xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 09539a3c2da6fef054f5306232ef0480de261eab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/sodirect.h>
66 #include <sys/uio.h>
67 #include <sys/systm.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/proto_set.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT)
220  * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's
221  * directly to the socket (sodirect) and start an asynchronous copyout
222  * to a user-land receive-side buffer (uioa) when a blocking socket read
223  * (e.g. read, recv, ...) is pending.
224  *
225  * This is accomplished when tcp_issocket is set and tcp_sodirect is not
226  * NULL so points to an sodirect_t and if marked enabled then we enqueue
227  * all mblk_t's directly to the socket.
228  *
229  * Further, if the sodirect_t sod_uioa and if marked enabled (due to a
230  * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous
231  * copyout will be started directly to the user-land uio buffer. Also, as we
232  * have a pending read, TCP's push logic can take into account the number of
233  * bytes to be received and only awake the blocked read()er when the uioa_t
234  * byte count has been satisfied.
235  *
236  * IPsec notes :
237  *
238  * Since a packet is always executed on the correct TCP perimeter
239  * all IPsec processing is defered to IP including checking new
240  * connections and setting IPSEC policies for new connection. The
241  * only exception is tcp_xmit_listeners_reset() which is called
242  * directly from IP and needs to policy check to see if TH_RST
243  * can be sent out.
244  *
245  * PFHooks notes :
246  *
247  * For mdt case, one meta buffer contains multiple packets. Mblks for every
248  * packet are assembled and passed to the hooks. When packets are blocked,
249  * or boundary of any packet is changed, the mdt processing is stopped, and
250  * packets of the meta buffer are send to the IP path one by one.
251  */
252 
253 /*
254  * Values for squeue switch:
255  * 1: SQ_NODRAIN
256  * 2: SQ_PROCESS
257  * 3: SQ_FILL
258  */
259 int tcp_squeue_wput = 2;	/* /etc/systems */
260 int tcp_squeue_flag;
261 
262 /*
263  * Macros for sodirect:
264  *
265  * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the
266  * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t
267  * if it exists and is enabled, else to NULL. Note, in the current
268  * sodirect implementation the sod_lockp must not be held across any
269  * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC
270  * will result as sod_lockp is the streamhead stdata.sd_lock.
271  *
272  * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the
273  * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve
274  * side tcp code path dealing with a tcp_rcv_list or putnext() isn't
275  * being used when sodirect code paths should be.
276  */
277 
278 #define	SOD_PTR_ENTER(tcp, sodp)					\
279 	(sodp) = (tcp)->tcp_sodirect;					\
280 									\
281 	if ((sodp) != NULL) {						\
282 		mutex_enter((sodp)->sod_lockp);				\
283 		if (!((sodp)->sod_state & SOD_ENABLED)) {		\
284 			mutex_exit((sodp)->sod_lockp);			\
285 			(sodp) = NULL;					\
286 		}							\
287 	}
288 
289 #define	SOD_NOT_ENABLED(tcp)						\
290 	((tcp)->tcp_sodirect == NULL ||					\
291 	    !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED))
292 
293 /*
294  * This controls how tiny a write must be before we try to copy it
295  * into the the mblk on the tail of the transmit queue.  Not much
296  * speedup is observed for values larger than sixteen.  Zero will
297  * disable the optimisation.
298  */
299 int tcp_tx_pull_len = 16;
300 
301 /*
302  * TCP Statistics.
303  *
304  * How TCP statistics work.
305  *
306  * There are two types of statistics invoked by two macros.
307  *
308  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
309  * supposed to be used in non MT-hot paths of the code.
310  *
311  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
312  * supposed to be used for DEBUG purposes and may be used on a hot path.
313  *
314  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
315  * (use "kstat tcp" to get them).
316  *
317  * There is also additional debugging facility that marks tcp_clean_death()
318  * instances and saves them in tcp_t structure. It is triggered by
319  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
320  * tcp_clean_death() calls that counts the number of times each tag was hit. It
321  * is triggered by TCP_CLD_COUNTERS define.
322  *
323  * How to add new counters.
324  *
325  * 1) Add a field in the tcp_stat structure describing your counter.
326  * 2) Add a line in the template in tcp_kstat2_init() with the name
327  *    of the counter.
328  *
329  *    IMPORTANT!! - make sure that both are in sync !!
330  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
331  *
332  * Please avoid using private counters which are not kstat-exported.
333  *
334  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
335  * in tcp_t structure.
336  *
337  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
338  */
339 
340 #ifndef TCP_DEBUG_COUNTER
341 #ifdef DEBUG
342 #define	TCP_DEBUG_COUNTER 1
343 #else
344 #define	TCP_DEBUG_COUNTER 0
345 #endif
346 #endif
347 
348 #define	TCP_CLD_COUNTERS 0
349 
350 #define	TCP_TAG_CLEAN_DEATH 1
351 #define	TCP_MAX_CLEAN_DEATH_TAG 32
352 
353 #ifdef lint
354 static int _lint_dummy_;
355 #endif
356 
357 #if TCP_CLD_COUNTERS
358 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
359 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
360 #elif defined(lint)
361 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
362 #else
363 #define	TCP_CLD_STAT(x)
364 #endif
365 
366 #if TCP_DEBUG_COUNTER
367 #define	TCP_DBGSTAT(tcps, x)	\
368 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
369 #define	TCP_G_DBGSTAT(x)	\
370 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
371 #elif defined(lint)
372 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
373 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
374 #else
375 #define	TCP_DBGSTAT(tcps, x)
376 #define	TCP_G_DBGSTAT(x)
377 #endif
378 
379 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
380 
381 tcp_g_stat_t	tcp_g_statistics;
382 kstat_t		*tcp_g_kstat;
383 
384 /*
385  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
386  * tcp write side.
387  */
388 #define	CALL_IP_WPUT(connp, q, mp) {					\
389 	ASSERT(((q)->q_flag & QREADR) == 0);				\
390 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
391 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
392 }
393 
394 /* Macros for timestamp comparisons */
395 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
396 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
397 
398 /*
399  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
400  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
401  * by adding three components: a time component which grows by 1 every 4096
402  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
403  * a per-connection component which grows by 125000 for every new connection;
404  * and an "extra" component that grows by a random amount centered
405  * approximately on 64000.  This causes the the ISS generator to cycle every
406  * 4.89 hours if no TCP connections are made, and faster if connections are
407  * made.
408  *
409  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
410  * components: a time component which grows by 250000 every second; and
411  * a per-connection component which grows by 125000 for every new connections.
412  *
413  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
414  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
415  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
416  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
417  * password.
418  */
419 #define	ISS_INCR	250000
420 #define	ISS_NSEC_SHT	12
421 
422 static sin_t	sin_null;	/* Zero address for quick clears */
423 static sin6_t	sin6_null;	/* Zero address for quick clears */
424 
425 /*
426  * This implementation follows the 4.3BSD interpretation of the urgent
427  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
428  * incompatible changes in protocols like telnet and rlogin.
429  */
430 #define	TCP_OLD_URP_INTERPRETATION	1
431 
432 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
433 	(TCP_IS_DETACHED(tcp) && \
434 	    (!(tcp)->tcp_hard_binding))
435 
436 /*
437  * TCP reassembly macros.  We hide starting and ending sequence numbers in
438  * b_next and b_prev of messages on the reassembly queue.  The messages are
439  * chained using b_cont.  These macros are used in tcp_reass() so we don't
440  * have to see the ugly casts and assignments.
441  */
442 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
443 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
444 					(mblk_t *)(uintptr_t)(u))
445 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
446 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
447 					(mblk_t *)(uintptr_t)(u))
448 
449 /*
450  * Implementation of TCP Timers.
451  * =============================
452  *
453  * INTERFACE:
454  *
455  * There are two basic functions dealing with tcp timers:
456  *
457  *	timeout_id_t	tcp_timeout(connp, func, time)
458  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
459  *	TCP_TIMER_RESTART(tcp, intvl)
460  *
461  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
462  * after 'time' ticks passed. The function called by timeout() must adhere to
463  * the same restrictions as a driver soft interrupt handler - it must not sleep
464  * or call other functions that might sleep. The value returned is the opaque
465  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
466  * cancel the request. The call to tcp_timeout() may fail in which case it
467  * returns zero. This is different from the timeout(9F) function which never
468  * fails.
469  *
470  * The call-back function 'func' always receives 'connp' as its single
471  * argument. It is always executed in the squeue corresponding to the tcp
472  * structure. The tcp structure is guaranteed to be present at the time the
473  * call-back is called.
474  *
475  * NOTE: The call-back function 'func' is never called if tcp is in
476  * 	the TCPS_CLOSED state.
477  *
478  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
479  * request. locks acquired by the call-back routine should not be held across
480  * the call to tcp_timeout_cancel() or a deadlock may result.
481  *
482  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
483  * Otherwise, it returns an integer value greater than or equal to 0. In
484  * particular, if the call-back function is already placed on the squeue, it can
485  * not be canceled.
486  *
487  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
488  * 	within squeue context corresponding to the tcp instance. Since the
489  *	call-back is also called via the same squeue, there are no race
490  *	conditions described in untimeout(9F) manual page since all calls are
491  *	strictly serialized.
492  *
493  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
494  *	stored in tcp_timer_tid and starts a new one using
495  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
496  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
497  *	field.
498  *
499  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
500  *	call-back may still be called, so it is possible tcp_timer() will be
501  *	called several times. This should not be a problem since tcp_timer()
502  *	should always check the tcp instance state.
503  *
504  *
505  * IMPLEMENTATION:
506  *
507  * TCP timers are implemented using three-stage process. The call to
508  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
509  * when the timer expires. The tcp_timer_callback() arranges the call of the
510  * tcp_timer_handler() function via squeue corresponding to the tcp
511  * instance. The tcp_timer_handler() calls actual requested timeout call-back
512  * and passes tcp instance as an argument to it. Information is passed between
513  * stages using the tcp_timer_t structure which contains the connp pointer, the
514  * tcp call-back to call and the timeout id returned by the timeout(9F).
515  *
516  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
517  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
518  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
519  * returns the pointer to this mblk.
520  *
521  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
522  * looks like a normal mblk without actual dblk attached to it.
523  *
524  * To optimize performance each tcp instance holds a small cache of timer
525  * mblocks. In the current implementation it caches up to two timer mblocks per
526  * tcp instance. The cache is preserved over tcp frees and is only freed when
527  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
528  * timer processing happens on a corresponding squeue, the cache manipulation
529  * does not require any locks. Experiments show that majority of timer mblocks
530  * allocations are satisfied from the tcp cache and do not involve kmem calls.
531  *
532  * The tcp_timeout() places a refhold on the connp instance which guarantees
533  * that it will be present at the time the call-back function fires. The
534  * tcp_timer_handler() drops the reference after calling the call-back, so the
535  * call-back function does not need to manipulate the references explicitly.
536  */
537 
538 typedef struct tcp_timer_s {
539 	conn_t	*connp;
540 	void 	(*tcpt_proc)(void *);
541 	callout_id_t   tcpt_tid;
542 } tcp_timer_t;
543 
544 static kmem_cache_t *tcp_timercache;
545 kmem_cache_t	*tcp_sack_info_cache;
546 kmem_cache_t	*tcp_iphc_cache;
547 
548 /*
549  * For scalability, we must not run a timer for every TCP connection
550  * in TIME_WAIT state.  To see why, consider (for time wait interval of
551  * 4 minutes):
552  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
553  *
554  * This list is ordered by time, so you need only delete from the head
555  * until you get to entries which aren't old enough to delete yet.
556  * The list consists of only the detached TIME_WAIT connections.
557  *
558  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
559  * becomes detached TIME_WAIT (either by changing the state and already
560  * being detached or the other way around). This means that the TIME_WAIT
561  * state can be extended (up to doubled) if the connection doesn't become
562  * detached for a long time.
563  *
564  * The list manipulations (including tcp_time_wait_next/prev)
565  * are protected by the tcp_time_wait_lock. The content of the
566  * detached TIME_WAIT connections is protected by the normal perimeters.
567  *
568  * This list is per squeue and squeues are shared across the tcp_stack_t's.
569  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
570  * and conn_netstack.
571  * The tcp_t's that are added to tcp_free_list are disassociated and
572  * have NULL tcp_tcps and conn_netstack pointers.
573  */
574 typedef struct tcp_squeue_priv_s {
575 	kmutex_t	tcp_time_wait_lock;
576 	callout_id_t	tcp_time_wait_tid;
577 	tcp_t		*tcp_time_wait_head;
578 	tcp_t		*tcp_time_wait_tail;
579 	tcp_t		*tcp_free_list;
580 	uint_t		tcp_free_list_cnt;
581 } tcp_squeue_priv_t;
582 
583 /*
584  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
585  * Running it every 5 seconds seems to give the best results.
586  */
587 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
588 
589 /*
590  * To prevent memory hog, limit the number of entries in tcp_free_list
591  * to 1% of available memory / number of cpus
592  */
593 uint_t tcp_free_list_max_cnt = 0;
594 
595 #define	TCP_XMIT_LOWATER	4096
596 #define	TCP_XMIT_HIWATER	49152
597 #define	TCP_RECV_LOWATER	2048
598 #define	TCP_RECV_HIWATER	49152
599 
600 /*
601  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
602  */
603 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
604 
605 #define	TIDUSZ	4096	/* transport interface data unit size */
606 
607 /*
608  * Bind hash list size and has function.  It has to be a power of 2 for
609  * hashing.
610  */
611 #define	TCP_BIND_FANOUT_SIZE	512
612 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
613 /*
614  * Size of listen and acceptor hash list.  It has to be a power of 2 for
615  * hashing.
616  */
617 #define	TCP_FANOUT_SIZE		256
618 
619 #ifdef	_ILP32
620 #define	TCP_ACCEPTOR_HASH(accid)					\
621 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
622 #else
623 #define	TCP_ACCEPTOR_HASH(accid)					\
624 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
625 #endif	/* _ILP32 */
626 
627 #define	IP_ADDR_CACHE_SIZE	2048
628 #define	IP_ADDR_CACHE_HASH(faddr)					\
629 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
630 
631 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
632 #define	TCP_HSP_HASH_SIZE 256
633 
634 #define	TCP_HSP_HASH(addr)					\
635 	(((addr>>24) ^ (addr >>16) ^			\
636 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
637 
638 /*
639  * TCP options struct returned from tcp_parse_options.
640  */
641 typedef struct tcp_opt_s {
642 	uint32_t	tcp_opt_mss;
643 	uint32_t	tcp_opt_wscale;
644 	uint32_t	tcp_opt_ts_val;
645 	uint32_t	tcp_opt_ts_ecr;
646 	tcp_t		*tcp;
647 } tcp_opt_t;
648 
649 /*
650  * TCP option struct passing information b/w lisenter and eager.
651  */
652 struct tcp_options {
653 	uint_t			to_flags;
654 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
655 };
656 
657 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
658 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
659 
660 /*
661  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
662  */
663 
664 #ifdef _BIG_ENDIAN
665 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
666 	(TCPOPT_TSTAMP << 8) | 10)
667 #else
668 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
669 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
670 #endif
671 
672 /*
673  * Flags returned from tcp_parse_options.
674  */
675 #define	TCP_OPT_MSS_PRESENT	1
676 #define	TCP_OPT_WSCALE_PRESENT	2
677 #define	TCP_OPT_TSTAMP_PRESENT	4
678 #define	TCP_OPT_SACK_OK_PRESENT	8
679 #define	TCP_OPT_SACK_PRESENT	16
680 
681 /* TCP option length */
682 #define	TCPOPT_NOP_LEN		1
683 #define	TCPOPT_MAXSEG_LEN	4
684 #define	TCPOPT_WS_LEN		3
685 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
686 #define	TCPOPT_TSTAMP_LEN	10
687 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
688 #define	TCPOPT_SACK_OK_LEN	2
689 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
690 #define	TCPOPT_REAL_SACK_LEN	4
691 #define	TCPOPT_MAX_SACK_LEN	36
692 #define	TCPOPT_HEADER_LEN	2
693 
694 /* TCP cwnd burst factor. */
695 #define	TCP_CWND_INFINITE	65535
696 #define	TCP_CWND_SS		3
697 #define	TCP_CWND_NORMAL		5
698 
699 /* Maximum TCP initial cwin (start/restart). */
700 #define	TCP_MAX_INIT_CWND	8
701 
702 /*
703  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
704  * either tcp_slow_start_initial or tcp_slow_start_after idle
705  * depending on the caller.  If the upper layer has not used the
706  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
707  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
708  * If the upper layer has changed set the tcp_init_cwnd, just use
709  * it to calculate the tcp_cwnd.
710  */
711 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
712 {									\
713 	if ((tcp)->tcp_init_cwnd == 0) {				\
714 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
715 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
716 	} else {							\
717 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
718 	}								\
719 	tcp->tcp_cwnd_cnt = 0;						\
720 }
721 
722 /* TCP Timer control structure */
723 typedef struct tcpt_s {
724 	pfv_t	tcpt_pfv;	/* The routine we are to call */
725 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
726 } tcpt_t;
727 
728 /* Host Specific Parameter structure */
729 typedef struct tcp_hsp {
730 	struct tcp_hsp	*tcp_hsp_next;
731 	in6_addr_t	tcp_hsp_addr_v6;
732 	in6_addr_t	tcp_hsp_subnet_v6;
733 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
734 	int32_t		tcp_hsp_sendspace;
735 	int32_t		tcp_hsp_recvspace;
736 	int32_t		tcp_hsp_tstamp;
737 } tcp_hsp_t;
738 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
739 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
740 
741 /*
742  * Functions called directly via squeue having a prototype of edesc_t.
743  */
744 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
745 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
746 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
747 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
748 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
749 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
750 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
751 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
752 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
753 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
754 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
755 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
756 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
757 
758 
759 /* Prototype for TCP functions */
760 static void	tcp_random_init(void);
761 int		tcp_random(void);
762 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
763 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
764 		    tcp_t *eager);
765 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
766 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
767     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
768     boolean_t user_specified);
769 static void	tcp_closei_local(tcp_t *tcp);
770 static void	tcp_close_detached(tcp_t *tcp);
771 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
772 			mblk_t *idmp, mblk_t **defermp);
773 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
774 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
775 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
776 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
777 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
778 		    uint32_t scope_id, cred_t *cr, pid_t pid);
779 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
780 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
781 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
782 static char	*tcp_display(tcp_t *tcp, char *, char);
783 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
784 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
785 static void	tcp_eager_unlink(tcp_t *tcp);
786 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
787 		    int unixerr);
788 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
789 		    int tlierr, int unixerr);
790 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
791 		    cred_t *cr);
792 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
793 		    char *value, caddr_t cp, cred_t *cr);
794 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
795 		    char *value, caddr_t cp, cred_t *cr);
796 static int	tcp_tpistate(tcp_t *tcp);
797 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
798     int caller_holds_lock);
799 static void	tcp_bind_hash_remove(tcp_t *tcp);
800 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
801 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
802 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
803 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
804 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
805 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
806 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
807 void		tcp_g_q_setup(tcp_stack_t *);
808 void		tcp_g_q_create(tcp_stack_t *);
809 void		tcp_g_q_destroy(tcp_stack_t *);
810 static int	tcp_header_init_ipv4(tcp_t *tcp);
811 static int	tcp_header_init_ipv6(tcp_t *tcp);
812 int		tcp_init(tcp_t *tcp, queue_t *q);
813 static int	tcp_init_values(tcp_t *tcp);
814 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
815 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
816 static void	tcp_ip_notify(tcp_t *tcp);
817 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
818 static void	tcp_iss_init(tcp_t *tcp);
819 static void	tcp_keepalive_killer(void *arg);
820 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
821 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
822 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
823 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
824 static boolean_t tcp_allow_connopt_set(int level, int name);
825 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
826 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
827 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
828 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
829 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
830 		    mblk_t *mblk);
831 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
832 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
833 		    uchar_t *ptr, uint_t len);
834 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
835 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
836     tcp_stack_t *);
837 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
838 		    caddr_t cp, cred_t *cr);
839 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
840 		    caddr_t cp, cred_t *cr);
841 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
842 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
843 		    caddr_t cp, cred_t *cr);
844 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
845 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
846 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
847 static void	tcp_reinit(tcp_t *tcp);
848 static void	tcp_reinit_values(tcp_t *tcp);
849 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
850 		    tcp_t *thisstream, cred_t *cr);
851 
852 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
853 static uint_t	tcp_rcv_drain(tcp_t *tcp);
854 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
855 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
856 static void	tcp_ss_rexmit(tcp_t *tcp);
857 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
858 static void	tcp_process_options(tcp_t *, tcph_t *);
859 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
860 static void	tcp_rsrv(queue_t *q);
861 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
862 static int	tcp_snmp_state(tcp_t *tcp);
863 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
864 		    cred_t *cr);
865 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
866 		    cred_t *cr);
867 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
868 		    cred_t *cr);
869 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
870 		    cred_t *cr);
871 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
872 		    cred_t *cr);
873 static void	tcp_timer(void *arg);
874 static void	tcp_timer_callback(void *);
875 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
876     boolean_t random);
877 static in_port_t tcp_get_next_priv_port(const tcp_t *);
878 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
879 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
880 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
881 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
882 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
883 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
884 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
885 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
886 		    const int num_sack_blk, int *usable, uint_t *snxt,
887 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
888 		    const int mdt_thres);
889 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
890 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
891 		    const int num_sack_blk, int *usable, uint_t *snxt,
892 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
893 		    const int mdt_thres);
894 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
895 		    int num_sack_blk);
896 static void	tcp_wsrv(queue_t *q);
897 static int	tcp_xmit_end(tcp_t *tcp);
898 static void	tcp_ack_timer(void *arg);
899 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
900 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
901 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
902 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
903 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
904 		    uint32_t ack, int ctl);
905 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
906 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
907 static int	setmaxps(queue_t *q, int maxpsz);
908 static void	tcp_set_rto(tcp_t *, time_t);
909 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
910 		    boolean_t, boolean_t);
911 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
912 		    boolean_t ipsec_mctl);
913 static int	tcp_build_hdrs(tcp_t *);
914 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
915 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
916 		    tcph_t *tcph);
917 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
918 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
919 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
920 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
921 		    const boolean_t, const uint32_t, const uint32_t,
922 		    const uint32_t, const uint32_t, tcp_stack_t *);
923 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
924 		    const uint_t, const uint_t, boolean_t *);
925 static mblk_t	*tcp_lso_info_mp(mblk_t *);
926 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
927 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
928 extern mblk_t	*tcp_timermp_alloc(int);
929 extern void	tcp_timermp_free(tcp_t *);
930 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
931 static void	tcp_stop_lingering(tcp_t *tcp);
932 static void	tcp_close_linger_timeout(void *arg);
933 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
934 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
935 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
936 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
937 static void	tcp_g_kstat_fini(kstat_t *);
938 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
939 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
940 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
941 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
942 static int	tcp_kstat_update(kstat_t *kp, int rw);
943 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
944 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
945 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
946 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
947 			tcph_t *tcph, mblk_t *idmp);
948 static int	tcp_squeue_switch(int);
949 
950 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
951 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
952 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
953 static int	tcp_tpi_close(queue_t *, int);
954 static int	tcpclose_accept(queue_t *);
955 
956 static void	tcp_squeue_add(squeue_t *);
957 static boolean_t tcp_zcopy_check(tcp_t *);
958 static void	tcp_zcopy_notify(tcp_t *);
959 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
960 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
961 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
962 
963 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
964 
965 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
966 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
967 
968 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
969 	    sock_upper_handle_t, cred_t *);
970 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
971 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
972 static int tcp_do_listen(conn_t *, int, cred_t *);
973 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
974     cred_t *, pid_t);
975 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
976     boolean_t);
977 static int tcp_do_unbind(conn_t *);
978 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
979     boolean_t);
980 
981 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
982 
983 /*
984  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
985  *
986  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
987  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
988  * (defined in tcp.h) needs to be filled in and passed into the kernel
989  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
990  * structure contains the four-tuple of a TCP connection and a range of TCP
991  * states (specified by ac_start and ac_end). The use of wildcard addresses
992  * and ports is allowed. Connections with a matching four tuple and a state
993  * within the specified range will be aborted. The valid states for the
994  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
995  * inclusive.
996  *
997  * An application which has its connection aborted by this ioctl will receive
998  * an error that is dependent on the connection state at the time of the abort.
999  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1000  * though a RST packet has been received.  If the connection state is equal to
1001  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1002  * and all resources associated with the connection will be freed.
1003  */
1004 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1005 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1006 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1007 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
1008 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1009 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1010     boolean_t, tcp_stack_t *);
1011 
1012 static struct module_info tcp_rinfo =  {
1013 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1014 };
1015 
1016 static struct module_info tcp_winfo =  {
1017 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1018 };
1019 
1020 /*
1021  * Entry points for TCP as a device. The normal case which supports
1022  * the TCP functionality.
1023  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
1024  */
1025 struct qinit tcp_rinitv4 = {
1026 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
1027 };
1028 
1029 struct qinit tcp_rinitv6 = {
1030 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
1031 };
1032 
1033 struct qinit tcp_winit = {
1034 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1035 };
1036 
1037 /* Initial entry point for TCP in socket mode. */
1038 struct qinit tcp_sock_winit = {
1039 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1040 };
1041 
1042 /* TCP entry point during fallback */
1043 struct qinit tcp_fallback_sock_winit = {
1044 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
1045 };
1046 
1047 /*
1048  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1049  * an accept. Avoid allocating data structures since eager has already
1050  * been created.
1051  */
1052 struct qinit tcp_acceptor_rinit = {
1053 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1054 };
1055 
1056 struct qinit tcp_acceptor_winit = {
1057 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1058 };
1059 
1060 /*
1061  * Entry points for TCP loopback (read side only)
1062  * The open routine is only used for reopens, thus no need to
1063  * have a separate one for tcp_openv6.
1064  */
1065 struct qinit tcp_loopback_rinit = {
1066 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
1067 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1068 };
1069 
1070 /* For AF_INET aka /dev/tcp */
1071 struct streamtab tcpinfov4 = {
1072 	&tcp_rinitv4, &tcp_winit
1073 };
1074 
1075 /* For AF_INET6 aka /dev/tcp6 */
1076 struct streamtab tcpinfov6 = {
1077 	&tcp_rinitv6, &tcp_winit
1078 };
1079 
1080 sock_downcalls_t sock_tcp_downcalls;
1081 
1082 /*
1083  * Have to ensure that tcp_g_q_close is not done by an
1084  * interrupt thread.
1085  */
1086 static taskq_t *tcp_taskq;
1087 
1088 /* Setable only in /etc/system. Move to ndd? */
1089 boolean_t tcp_icmp_source_quench = B_FALSE;
1090 
1091 /*
1092  * Following assumes TPI alignment requirements stay along 32 bit
1093  * boundaries
1094  */
1095 #define	ROUNDUP32(x) \
1096 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1097 
1098 /* Template for response to info request. */
1099 static struct T_info_ack tcp_g_t_info_ack = {
1100 	T_INFO_ACK,		/* PRIM_type */
1101 	0,			/* TSDU_size */
1102 	T_INFINITE,		/* ETSDU_size */
1103 	T_INVALID,		/* CDATA_size */
1104 	T_INVALID,		/* DDATA_size */
1105 	sizeof (sin_t),		/* ADDR_size */
1106 	0,			/* OPT_size - not initialized here */
1107 	TIDUSZ,			/* TIDU_size */
1108 	T_COTS_ORD,		/* SERV_type */
1109 	TCPS_IDLE,		/* CURRENT_state */
1110 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1111 };
1112 
1113 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1114 	T_INFO_ACK,		/* PRIM_type */
1115 	0,			/* TSDU_size */
1116 	T_INFINITE,		/* ETSDU_size */
1117 	T_INVALID,		/* CDATA_size */
1118 	T_INVALID,		/* DDATA_size */
1119 	sizeof (sin6_t),	/* ADDR_size */
1120 	0,			/* OPT_size - not initialized here */
1121 	TIDUSZ,		/* TIDU_size */
1122 	T_COTS_ORD,		/* SERV_type */
1123 	TCPS_IDLE,		/* CURRENT_state */
1124 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1125 };
1126 
1127 #define	MS	1L
1128 #define	SECONDS	(1000 * MS)
1129 #define	MINUTES	(60 * SECONDS)
1130 #define	HOURS	(60 * MINUTES)
1131 #define	DAYS	(24 * HOURS)
1132 
1133 #define	PARAM_MAX (~(uint32_t)0)
1134 
1135 /* Max size IP datagram is 64k - 1 */
1136 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1137 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1138 /* Max of the above */
1139 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1140 
1141 /* Largest TCP port number */
1142 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1143 
1144 /*
1145  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1146  * layer header.  It has to be a multiple of 4.
1147  */
1148 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1149 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1150 
1151 /*
1152  * All of these are alterable, within the min/max values given, at run time.
1153  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1154  * per the TCP spec.
1155  */
1156 /* BEGIN CSTYLED */
1157 static tcpparam_t	lcl_tcp_param_arr[] = {
1158  /*min		max		value		name */
1159  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1160  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1161  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1162  { 1,		1024,		1,		"tcp_conn_req_min" },
1163  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1164  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1165  { 0,		10,		0,		"tcp_debug" },
1166  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1167  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1168  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1169  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1170  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1171  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1172  { 1,		255,		64,		"tcp_ipv4_ttl"},
1173  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1174  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1175  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1176  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1177  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1178  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1179  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1180  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1181  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1182  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1183  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1184  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1185  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1186  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1187  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1188  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1189  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1190  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1191  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1192  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1193  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1194  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1195  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1196 /*
1197  * Question:  What default value should I set for tcp_strong_iss?
1198  */
1199  { 0,		2,		1,		"tcp_strong_iss"},
1200  { 0,		65536,		20,		"tcp_rtt_updates"},
1201  { 0,		1,		1,		"tcp_wscale_always"},
1202  { 0,		1,		0,		"tcp_tstamp_always"},
1203  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1204  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1205  { 0,		16,		2,		"tcp_deferred_acks_max"},
1206  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1207  { 1,		4,		4,		"tcp_slow_start_initial"},
1208  { 0,		2,		2,		"tcp_sack_permitted"},
1209  { 0,		1,		1,		"tcp_compression_enabled"},
1210  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1211  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1212  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1213  { 0,		1,		0,		"tcp_rev_src_routes"},
1214  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1215  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1216  { 0,		16,		8,		"tcp_local_dacks_max"},
1217  { 0,		2,		1,		"tcp_ecn_permitted"},
1218  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1219  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1220  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1221  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1222  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1223 };
1224 /* END CSTYLED */
1225 
1226 /*
1227  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1228  * each header fragment in the header buffer.  Each parameter value has
1229  * to be a multiple of 4 (32-bit aligned).
1230  */
1231 static tcpparam_t lcl_tcp_mdt_head_param =
1232 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1233 static tcpparam_t lcl_tcp_mdt_tail_param =
1234 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1235 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1236 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1237 
1238 /*
1239  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1240  * the maximum number of payload buffers associated per Multidata.
1241  */
1242 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1243 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1244 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1245 
1246 /* Round up the value to the nearest mss. */
1247 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1248 
1249 /*
1250  * Set ECN capable transport (ECT) code point in IP header.
1251  *
1252  * Note that there are 2 ECT code points '01' and '10', which are called
1253  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1254  * point ECT(0) for TCP as described in RFC 2481.
1255  */
1256 #define	SET_ECT(tcp, iph) \
1257 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1258 		/* We need to clear the code point first. */ \
1259 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1260 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1261 	} else { \
1262 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1263 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1264 	}
1265 
1266 /*
1267  * The format argument to pass to tcp_display().
1268  * DISP_PORT_ONLY means that the returned string has only port info.
1269  * DISP_ADDR_AND_PORT means that the returned string also contains the
1270  * remote and local IP address.
1271  */
1272 #define	DISP_PORT_ONLY		1
1273 #define	DISP_ADDR_AND_PORT	2
1274 
1275 #define	NDD_TOO_QUICK_MSG \
1276 	"ndd get info rate too high for non-privileged users, try again " \
1277 	"later.\n"
1278 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1279 
1280 #define	IS_VMLOANED_MBLK(mp) \
1281 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1282 
1283 
1284 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1285 boolean_t tcp_mdt_chain = B_TRUE;
1286 
1287 /*
1288  * MDT threshold in the form of effective send MSS multiplier; we take
1289  * the MDT path if the amount of unsent data exceeds the threshold value
1290  * (default threshold is 1*SMSS).
1291  */
1292 uint_t tcp_mdt_smss_threshold = 1;
1293 
1294 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1295 
1296 /*
1297  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1298  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1299  * determined dynamically during tcp_adapt_ire(), which is the default.
1300  */
1301 boolean_t tcp_static_maxpsz = B_FALSE;
1302 
1303 /* Setable in /etc/system */
1304 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1305 uint32_t tcp_random_anon_port = 1;
1306 
1307 /*
1308  * To reach to an eager in Q0 which can be dropped due to an incoming
1309  * new SYN request when Q0 is full, a new doubly linked list is
1310  * introduced. This list allows to select an eager from Q0 in O(1) time.
1311  * This is needed to avoid spending too much time walking through the
1312  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1313  * this new list has to be a member of Q0.
1314  * This list is headed by listener's tcp_t. When the list is empty,
1315  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1316  * of listener's tcp_t point to listener's tcp_t itself.
1317  *
1318  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1319  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1320  * These macros do not affect the eager's membership to Q0.
1321  */
1322 
1323 
1324 #define	MAKE_DROPPABLE(listener, eager)					\
1325 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1326 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1327 		    = (eager);						\
1328 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1329 		(eager)->tcp_eager_next_drop_q0 =			\
1330 		    (listener)->tcp_eager_next_drop_q0;			\
1331 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1332 	}
1333 
1334 #define	MAKE_UNDROPPABLE(eager)						\
1335 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1336 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1337 		    = (eager)->tcp_eager_prev_drop_q0;			\
1338 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1339 		    = (eager)->tcp_eager_next_drop_q0;			\
1340 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1341 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1342 	}
1343 
1344 /*
1345  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1346  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1347  * data, TCP will not respond with an ACK.  RFC 793 requires that
1348  * TCP responds with an ACK for such a bogus ACK.  By not following
1349  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1350  * an attacker successfully spoofs an acceptable segment to our
1351  * peer; or when our peer is "confused."
1352  */
1353 uint32_t tcp_drop_ack_unsent_cnt = 10;
1354 
1355 /*
1356  * Hook functions to enable cluster networking
1357  * On non-clustered systems these vectors must always be NULL.
1358  */
1359 
1360 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1361 			    sa_family_t addr_family, uint8_t *laddrp,
1362 			    in_port_t lport, void *args) = NULL;
1363 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1364 			    sa_family_t addr_family, uint8_t *laddrp,
1365 			    in_port_t lport, void *args) = NULL;
1366 
1367 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1368 			    boolean_t is_outgoing,
1369 			    sa_family_t addr_family,
1370 			    uint8_t *laddrp, in_port_t lport,
1371 			    uint8_t *faddrp, in_port_t fport,
1372 			    void *args) = NULL;
1373 
1374 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1375 			    sa_family_t addr_family, uint8_t *laddrp,
1376 			    in_port_t lport, uint8_t *faddrp,
1377 			    in_port_t fport, void *args) = NULL;
1378 
1379 /*
1380  * The following are defined in ip.c
1381  */
1382 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1383 			    sa_family_t addr_family, uint8_t *laddrp,
1384 			    void *args);
1385 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1386 			    sa_family_t addr_family, uint8_t *laddrp,
1387 			    uint8_t *faddrp, void *args);
1388 
1389 
1390 /*
1391  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1392  */
1393 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1394 	(err) = 0;						\
1395 	if (cl_inet_connect2 != NULL) {				\
1396 		/*						\
1397 		 * Running in cluster mode - register active connection	\
1398 		 * information						\
1399 		 */							\
1400 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1401 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1402 				(err) = (*cl_inet_connect2)(		\
1403 				    (connp)->conn_netstack->netstack_stackid,\
1404 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1405 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1406 				    (in_port_t)(tcp)->tcp_lport,	\
1407 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1408 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1409 			}						\
1410 		} else {						\
1411 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1412 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1413 				(err) = (*cl_inet_connect2)(		\
1414 				    (connp)->conn_netstack->netstack_stackid,\
1415 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1416 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1417 				    (in_port_t)(tcp)->tcp_lport,	\
1418 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1419 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1420 			}						\
1421 		}							\
1422 	}								\
1423 }
1424 
1425 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1426 	if (cl_inet_disconnect != NULL) {				\
1427 		/*							\
1428 		 * Running in cluster mode - deregister active		\
1429 		 * connection information				\
1430 		 */							\
1431 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1432 			if ((tcp)->tcp_ip_src != 0) {			\
1433 				(*cl_inet_disconnect)(			\
1434 				    (connp)->conn_netstack->netstack_stackid,\
1435 				    IPPROTO_TCP, AF_INET,		\
1436 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1437 				    (in_port_t)(tcp)->tcp_lport,	\
1438 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1439 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1440 			}						\
1441 		} else {						\
1442 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1443 			    &(tcp)->tcp_ip_src_v6)) {			\
1444 				(*cl_inet_disconnect)(			\
1445 				    (connp)->conn_netstack->netstack_stackid,\
1446 				    IPPROTO_TCP, AF_INET6,		\
1447 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1448 				    (in_port_t)(tcp)->tcp_lport,	\
1449 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1450 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1451 			}						\
1452 		}							\
1453 	}								\
1454 }
1455 
1456 /*
1457  * Cluster networking hook for traversing current connection list.
1458  * This routine is used to extract the current list of live connections
1459  * which must continue to to be dispatched to this node.
1460  */
1461 int cl_tcp_walk_list(netstackid_t stack_id,
1462     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1463 
1464 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1465     void *arg, tcp_stack_t *tcps);
1466 
1467 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1468 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1469 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1470 	    ip6_t *, ip6h, int, 0);
1471 
1472 /*
1473  * Figure out the value of window scale opton.  Note that the rwnd is
1474  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1475  * We cannot find the scale value and then do a round up of tcp_rwnd
1476  * because the scale value may not be correct after that.
1477  *
1478  * Set the compiler flag to make this function inline.
1479  */
1480 static void
1481 tcp_set_ws_value(tcp_t *tcp)
1482 {
1483 	int i;
1484 	uint32_t rwnd = tcp->tcp_rwnd;
1485 
1486 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1487 	    i++, rwnd >>= 1)
1488 		;
1489 	tcp->tcp_rcv_ws = i;
1490 }
1491 
1492 /*
1493  * Remove a connection from the list of detached TIME_WAIT connections.
1494  * It returns B_FALSE if it can't remove the connection from the list
1495  * as the connection has already been removed from the list due to an
1496  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1497  */
1498 static boolean_t
1499 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1500 {
1501 	boolean_t	locked = B_FALSE;
1502 
1503 	if (tcp_time_wait == NULL) {
1504 		tcp_time_wait = *((tcp_squeue_priv_t **)
1505 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1506 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1507 		locked = B_TRUE;
1508 	} else {
1509 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1510 	}
1511 
1512 	if (tcp->tcp_time_wait_expire == 0) {
1513 		ASSERT(tcp->tcp_time_wait_next == NULL);
1514 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1515 		if (locked)
1516 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1517 		return (B_FALSE);
1518 	}
1519 	ASSERT(TCP_IS_DETACHED(tcp));
1520 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1521 
1522 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1523 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1524 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1525 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1526 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1527 			    NULL;
1528 		} else {
1529 			tcp_time_wait->tcp_time_wait_tail = NULL;
1530 		}
1531 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1532 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1533 		ASSERT(tcp->tcp_time_wait_next == NULL);
1534 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1535 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1536 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1537 	} else {
1538 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1539 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1540 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1541 		    tcp->tcp_time_wait_next;
1542 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1543 		    tcp->tcp_time_wait_prev;
1544 	}
1545 	tcp->tcp_time_wait_next = NULL;
1546 	tcp->tcp_time_wait_prev = NULL;
1547 	tcp->tcp_time_wait_expire = 0;
1548 
1549 	if (locked)
1550 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1551 	return (B_TRUE);
1552 }
1553 
1554 /*
1555  * Add a connection to the list of detached TIME_WAIT connections
1556  * and set its time to expire.
1557  */
1558 static void
1559 tcp_time_wait_append(tcp_t *tcp)
1560 {
1561 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1562 	tcp_squeue_priv_t *tcp_time_wait =
1563 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1564 	    SQPRIVATE_TCP));
1565 
1566 	tcp_timers_stop(tcp);
1567 
1568 	/* Freed above */
1569 	ASSERT(tcp->tcp_timer_tid == 0);
1570 	ASSERT(tcp->tcp_ack_tid == 0);
1571 
1572 	/* must have happened at the time of detaching the tcp */
1573 	ASSERT(tcp->tcp_ptpahn == NULL);
1574 	ASSERT(tcp->tcp_flow_stopped == 0);
1575 	ASSERT(tcp->tcp_time_wait_next == NULL);
1576 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1577 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1578 	ASSERT(tcp->tcp_listener == NULL);
1579 
1580 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1581 	/*
1582 	 * The value computed below in tcp->tcp_time_wait_expire may
1583 	 * appear negative or wrap around. That is ok since our
1584 	 * interest is only in the difference between the current lbolt
1585 	 * value and tcp->tcp_time_wait_expire. But the value should not
1586 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1587 	 * The corresponding comparison in tcp_time_wait_collector() uses
1588 	 * modular arithmetic.
1589 	 */
1590 	tcp->tcp_time_wait_expire +=
1591 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1592 	if (tcp->tcp_time_wait_expire == 0)
1593 		tcp->tcp_time_wait_expire = 1;
1594 
1595 	ASSERT(TCP_IS_DETACHED(tcp));
1596 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1597 	ASSERT(tcp->tcp_time_wait_next == NULL);
1598 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1599 	TCP_DBGSTAT(tcps, tcp_time_wait);
1600 
1601 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1602 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1603 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1604 		tcp_time_wait->tcp_time_wait_head = tcp;
1605 	} else {
1606 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1607 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1608 		    TCPS_TIME_WAIT);
1609 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1610 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1611 	}
1612 	tcp_time_wait->tcp_time_wait_tail = tcp;
1613 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1614 }
1615 
1616 /* ARGSUSED */
1617 void
1618 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1619 {
1620 	conn_t	*connp = (conn_t *)arg;
1621 	tcp_t	*tcp = connp->conn_tcp;
1622 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1623 
1624 	ASSERT(tcp != NULL);
1625 	if (tcp->tcp_state == TCPS_CLOSED) {
1626 		return;
1627 	}
1628 
1629 	ASSERT((tcp->tcp_family == AF_INET &&
1630 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1631 	    (tcp->tcp_family == AF_INET6 &&
1632 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1633 	    tcp->tcp_ipversion == IPV6_VERSION)));
1634 	ASSERT(!tcp->tcp_listener);
1635 
1636 	TCP_STAT(tcps, tcp_time_wait_reap);
1637 	ASSERT(TCP_IS_DETACHED(tcp));
1638 
1639 	/*
1640 	 * Because they have no upstream client to rebind or tcp_close()
1641 	 * them later, we axe the connection here and now.
1642 	 */
1643 	tcp_close_detached(tcp);
1644 }
1645 
1646 /*
1647  * Remove cached/latched IPsec references.
1648  */
1649 void
1650 tcp_ipsec_cleanup(tcp_t *tcp)
1651 {
1652 	conn_t		*connp = tcp->tcp_connp;
1653 
1654 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1655 
1656 	if (connp->conn_latch != NULL) {
1657 		IPLATCH_REFRELE(connp->conn_latch,
1658 		    connp->conn_netstack);
1659 		connp->conn_latch = NULL;
1660 	}
1661 	if (connp->conn_policy != NULL) {
1662 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1663 		connp->conn_policy = NULL;
1664 	}
1665 }
1666 
1667 /*
1668  * Cleaup before placing on free list.
1669  * Disassociate from the netstack/tcp_stack_t since the freelist
1670  * is per squeue and not per netstack.
1671  */
1672 void
1673 tcp_cleanup(tcp_t *tcp)
1674 {
1675 	mblk_t		*mp;
1676 	char		*tcp_iphc;
1677 	int		tcp_iphc_len;
1678 	int		tcp_hdr_grown;
1679 	tcp_sack_info_t	*tcp_sack_info;
1680 	conn_t		*connp = tcp->tcp_connp;
1681 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1682 	netstack_t	*ns = tcps->tcps_netstack;
1683 	mblk_t		*tcp_rsrv_mp;
1684 
1685 	tcp_bind_hash_remove(tcp);
1686 
1687 	/* Cleanup that which needs the netstack first */
1688 	tcp_ipsec_cleanup(tcp);
1689 
1690 	tcp_free(tcp);
1691 
1692 	/* Release any SSL context */
1693 	if (tcp->tcp_kssl_ent != NULL) {
1694 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1695 		tcp->tcp_kssl_ent = NULL;
1696 	}
1697 
1698 	if (tcp->tcp_kssl_ctx != NULL) {
1699 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1700 		tcp->tcp_kssl_ctx = NULL;
1701 	}
1702 	tcp->tcp_kssl_pending = B_FALSE;
1703 
1704 	conn_delete_ire(connp, NULL);
1705 
1706 	/*
1707 	 * Since we will bzero the entire structure, we need to
1708 	 * remove it and reinsert it in global hash list. We
1709 	 * know the walkers can't get to this conn because we
1710 	 * had set CONDEMNED flag earlier and checked reference
1711 	 * under conn_lock so walker won't pick it and when we
1712 	 * go the ipcl_globalhash_remove() below, no walker
1713 	 * can get to it.
1714 	 */
1715 	ipcl_globalhash_remove(connp);
1716 
1717 	/*
1718 	 * Now it is safe to decrement the reference counts.
1719 	 * This might be the last reference on the netstack and TCPS
1720 	 * in which case it will cause the tcp_g_q_close and
1721 	 * the freeing of the IP Instance.
1722 	 */
1723 	connp->conn_netstack = NULL;
1724 	netstack_rele(ns);
1725 	ASSERT(tcps != NULL);
1726 	tcp->tcp_tcps = NULL;
1727 	TCPS_REFRELE(tcps);
1728 
1729 	/* Save some state */
1730 	mp = tcp->tcp_timercache;
1731 
1732 	tcp_sack_info = tcp->tcp_sack_info;
1733 	tcp_iphc = tcp->tcp_iphc;
1734 	tcp_iphc_len = tcp->tcp_iphc_len;
1735 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1736 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1737 
1738 	if (connp->conn_cred != NULL) {
1739 		crfree(connp->conn_cred);
1740 		connp->conn_cred = NULL;
1741 	}
1742 	if (connp->conn_peercred != NULL) {
1743 		crfree(connp->conn_peercred);
1744 		connp->conn_peercred = NULL;
1745 	}
1746 	ipcl_conn_cleanup(connp);
1747 	connp->conn_flags = IPCL_TCPCONN;
1748 	bzero(tcp, sizeof (tcp_t));
1749 
1750 	/* restore the state */
1751 	tcp->tcp_timercache = mp;
1752 
1753 	tcp->tcp_sack_info = tcp_sack_info;
1754 	tcp->tcp_iphc = tcp_iphc;
1755 	tcp->tcp_iphc_len = tcp_iphc_len;
1756 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1757 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1758 
1759 	tcp->tcp_connp = connp;
1760 
1761 	ASSERT(connp->conn_tcp == tcp);
1762 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1763 	connp->conn_state_flags = CONN_INCIPIENT;
1764 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1765 	ASSERT(connp->conn_ref == 1);
1766 }
1767 
1768 /*
1769  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1770  * is done forwards from the head.
1771  * This walks all stack instances since
1772  * tcp_time_wait remains global across all stacks.
1773  */
1774 /* ARGSUSED */
1775 void
1776 tcp_time_wait_collector(void *arg)
1777 {
1778 	tcp_t *tcp;
1779 	clock_t now;
1780 	mblk_t *mp;
1781 	conn_t *connp;
1782 	kmutex_t *lock;
1783 	boolean_t removed;
1784 
1785 	squeue_t *sqp = (squeue_t *)arg;
1786 	tcp_squeue_priv_t *tcp_time_wait =
1787 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1788 
1789 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1790 	tcp_time_wait->tcp_time_wait_tid = 0;
1791 
1792 	if (tcp_time_wait->tcp_free_list != NULL &&
1793 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1794 		TCP_G_STAT(tcp_freelist_cleanup);
1795 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1796 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1797 			tcp->tcp_time_wait_next = NULL;
1798 			tcp_time_wait->tcp_free_list_cnt--;
1799 			ASSERT(tcp->tcp_tcps == NULL);
1800 			CONN_DEC_REF(tcp->tcp_connp);
1801 		}
1802 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1803 	}
1804 
1805 	/*
1806 	 * In order to reap time waits reliably, we should use a
1807 	 * source of time that is not adjustable by the user -- hence
1808 	 * the call to ddi_get_lbolt().
1809 	 */
1810 	now = ddi_get_lbolt();
1811 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1812 		/*
1813 		 * Compare times using modular arithmetic, since
1814 		 * lbolt can wrapover.
1815 		 */
1816 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1817 			break;
1818 		}
1819 
1820 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1821 		ASSERT(removed);
1822 
1823 		connp = tcp->tcp_connp;
1824 		ASSERT(connp->conn_fanout != NULL);
1825 		lock = &connp->conn_fanout->connf_lock;
1826 		/*
1827 		 * This is essentially a TW reclaim fast path optimization for
1828 		 * performance where the timewait collector checks under the
1829 		 * fanout lock (so that no one else can get access to the
1830 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1831 		 * the classifier hash list. If ref count is indeed 2, we can
1832 		 * just remove the conn under the fanout lock and avoid
1833 		 * cleaning up the conn under the squeue, provided that
1834 		 * clustering callbacks are not enabled. If clustering is
1835 		 * enabled, we need to make the clustering callback before
1836 		 * setting the CONDEMNED flag and after dropping all locks and
1837 		 * so we forego this optimization and fall back to the slow
1838 		 * path. Also please see the comments in tcp_closei_local
1839 		 * regarding the refcnt logic.
1840 		 *
1841 		 * Since we are holding the tcp_time_wait_lock, its better
1842 		 * not to block on the fanout_lock because other connections
1843 		 * can't add themselves to time_wait list. So we do a
1844 		 * tryenter instead of mutex_enter.
1845 		 */
1846 		if (mutex_tryenter(lock)) {
1847 			mutex_enter(&connp->conn_lock);
1848 			if ((connp->conn_ref == 2) &&
1849 			    (cl_inet_disconnect == NULL)) {
1850 				ipcl_hash_remove_locked(connp,
1851 				    connp->conn_fanout);
1852 				/*
1853 				 * Set the CONDEMNED flag now itself so that
1854 				 * the refcnt cannot increase due to any
1855 				 * walker. But we have still not cleaned up
1856 				 * conn_ire_cache. This is still ok since
1857 				 * we are going to clean it up in tcp_cleanup
1858 				 * immediately and any interface unplumb
1859 				 * thread will wait till the ire is blown away
1860 				 */
1861 				connp->conn_state_flags |= CONN_CONDEMNED;
1862 				mutex_exit(lock);
1863 				mutex_exit(&connp->conn_lock);
1864 				if (tcp_time_wait->tcp_free_list_cnt <
1865 				    tcp_free_list_max_cnt) {
1866 					/* Add to head of tcp_free_list */
1867 					mutex_exit(
1868 					    &tcp_time_wait->tcp_time_wait_lock);
1869 					tcp_cleanup(tcp);
1870 					ASSERT(connp->conn_latch == NULL);
1871 					ASSERT(connp->conn_policy == NULL);
1872 					ASSERT(tcp->tcp_tcps == NULL);
1873 					ASSERT(connp->conn_netstack == NULL);
1874 
1875 					mutex_enter(
1876 					    &tcp_time_wait->tcp_time_wait_lock);
1877 					tcp->tcp_time_wait_next =
1878 					    tcp_time_wait->tcp_free_list;
1879 					tcp_time_wait->tcp_free_list = tcp;
1880 					tcp_time_wait->tcp_free_list_cnt++;
1881 					continue;
1882 				} else {
1883 					/* Do not add to tcp_free_list */
1884 					mutex_exit(
1885 					    &tcp_time_wait->tcp_time_wait_lock);
1886 					tcp_bind_hash_remove(tcp);
1887 					conn_delete_ire(tcp->tcp_connp, NULL);
1888 					tcp_ipsec_cleanup(tcp);
1889 					CONN_DEC_REF(tcp->tcp_connp);
1890 				}
1891 			} else {
1892 				CONN_INC_REF_LOCKED(connp);
1893 				mutex_exit(lock);
1894 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1895 				mutex_exit(&connp->conn_lock);
1896 				/*
1897 				 * We can reuse the closemp here since conn has
1898 				 * detached (otherwise we wouldn't even be in
1899 				 * time_wait list). tcp_closemp_used can safely
1900 				 * be changed without taking a lock as no other
1901 				 * thread can concurrently access it at this
1902 				 * point in the connection lifecycle.
1903 				 */
1904 
1905 				if (tcp->tcp_closemp.b_prev == NULL)
1906 					tcp->tcp_closemp_used = B_TRUE;
1907 				else
1908 					cmn_err(CE_PANIC,
1909 					    "tcp_timewait_collector: "
1910 					    "concurrent use of tcp_closemp: "
1911 					    "connp %p tcp %p\n", (void *)connp,
1912 					    (void *)tcp);
1913 
1914 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1915 				mp = &tcp->tcp_closemp;
1916 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1917 				    tcp_timewait_output, connp,
1918 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1919 			}
1920 		} else {
1921 			mutex_enter(&connp->conn_lock);
1922 			CONN_INC_REF_LOCKED(connp);
1923 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1924 			mutex_exit(&connp->conn_lock);
1925 			/*
1926 			 * We can reuse the closemp here since conn has
1927 			 * detached (otherwise we wouldn't even be in
1928 			 * time_wait list). tcp_closemp_used can safely
1929 			 * be changed without taking a lock as no other
1930 			 * thread can concurrently access it at this
1931 			 * point in the connection lifecycle.
1932 			 */
1933 
1934 			if (tcp->tcp_closemp.b_prev == NULL)
1935 				tcp->tcp_closemp_used = B_TRUE;
1936 			else
1937 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1938 				    "concurrent use of tcp_closemp: "
1939 				    "connp %p tcp %p\n", (void *)connp,
1940 				    (void *)tcp);
1941 
1942 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1943 			mp = &tcp->tcp_closemp;
1944 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1945 			    tcp_timewait_output, connp,
1946 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1947 		}
1948 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1949 	}
1950 
1951 	if (tcp_time_wait->tcp_free_list != NULL)
1952 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1953 
1954 	tcp_time_wait->tcp_time_wait_tid =
1955 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1956 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1957 	    CALLOUT_FLAG_ROUNDUP);
1958 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1959 }
1960 
1961 /*
1962  * Reply to a clients T_CONN_RES TPI message. This function
1963  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1964  * on the acceptor STREAM and processed in tcp_wput_accept().
1965  * Read the block comment on top of tcp_conn_request().
1966  */
1967 static void
1968 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1969 {
1970 	tcp_t	*acceptor;
1971 	tcp_t	*eager;
1972 	tcp_t   *tcp;
1973 	struct T_conn_res	*tcr;
1974 	t_uscalar_t	acceptor_id;
1975 	t_scalar_t	seqnum;
1976 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1977 	struct tcp_options *tcpopt;
1978 	mblk_t	*ok_mp;
1979 	mblk_t	*mp1;
1980 	tcp_stack_t	*tcps = listener->tcp_tcps;
1981 
1982 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1983 		tcp_err_ack(listener, mp, TPROTO, 0);
1984 		return;
1985 	}
1986 	tcr = (struct T_conn_res *)mp->b_rptr;
1987 
1988 	/*
1989 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1990 	 * read side queue of the streams device underneath us i.e. the
1991 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1992 	 * look it up in the queue_hash.  Under LP64 it sends down the
1993 	 * minor_t of the accepting endpoint.
1994 	 *
1995 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1996 	 * fanout hash lock is held.
1997 	 * This prevents any thread from entering the acceptor queue from
1998 	 * below (since it has not been hard bound yet i.e. any inbound
1999 	 * packets will arrive on the listener or default tcp queue and
2000 	 * go through tcp_lookup).
2001 	 * The CONN_INC_REF will prevent the acceptor from closing.
2002 	 *
2003 	 * XXX It is still possible for a tli application to send down data
2004 	 * on the accepting stream while another thread calls t_accept.
2005 	 * This should not be a problem for well-behaved applications since
2006 	 * the T_OK_ACK is sent after the queue swapping is completed.
2007 	 *
2008 	 * If the accepting fd is the same as the listening fd, avoid
2009 	 * queue hash lookup since that will return an eager listener in a
2010 	 * already established state.
2011 	 */
2012 	acceptor_id = tcr->ACCEPTOR_id;
2013 	mutex_enter(&listener->tcp_eager_lock);
2014 	if (listener->tcp_acceptor_id == acceptor_id) {
2015 		eager = listener->tcp_eager_next_q;
2016 		/* only count how many T_CONN_INDs so don't count q0 */
2017 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2018 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2019 			mutex_exit(&listener->tcp_eager_lock);
2020 			tcp_err_ack(listener, mp, TBADF, 0);
2021 			return;
2022 		}
2023 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2024 			/* Throw away all the eagers on q0. */
2025 			tcp_eager_cleanup(listener, 1);
2026 		}
2027 		if (listener->tcp_syn_defense) {
2028 			listener->tcp_syn_defense = B_FALSE;
2029 			if (listener->tcp_ip_addr_cache != NULL) {
2030 				kmem_free(listener->tcp_ip_addr_cache,
2031 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2032 				listener->tcp_ip_addr_cache = NULL;
2033 			}
2034 		}
2035 		/*
2036 		 * Transfer tcp_conn_req_max to the eager so that when
2037 		 * a disconnect occurs we can revert the endpoint to the
2038 		 * listen state.
2039 		 */
2040 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2041 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2042 		/*
2043 		 * Get a reference on the acceptor just like the
2044 		 * tcp_acceptor_hash_lookup below.
2045 		 */
2046 		acceptor = listener;
2047 		CONN_INC_REF(acceptor->tcp_connp);
2048 	} else {
2049 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
2050 		if (acceptor == NULL) {
2051 			if (listener->tcp_debug) {
2052 				(void) strlog(TCP_MOD_ID, 0, 1,
2053 				    SL_ERROR|SL_TRACE,
2054 				    "tcp_accept: did not find acceptor 0x%x\n",
2055 				    acceptor_id);
2056 			}
2057 			mutex_exit(&listener->tcp_eager_lock);
2058 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2059 			return;
2060 		}
2061 		/*
2062 		 * Verify acceptor state. The acceptable states for an acceptor
2063 		 * include TCPS_IDLE and TCPS_BOUND.
2064 		 */
2065 		switch (acceptor->tcp_state) {
2066 		case TCPS_IDLE:
2067 			/* FALLTHRU */
2068 		case TCPS_BOUND:
2069 			break;
2070 		default:
2071 			CONN_DEC_REF(acceptor->tcp_connp);
2072 			mutex_exit(&listener->tcp_eager_lock);
2073 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2074 			return;
2075 		}
2076 	}
2077 
2078 	/* The listener must be in TCPS_LISTEN */
2079 	if (listener->tcp_state != TCPS_LISTEN) {
2080 		CONN_DEC_REF(acceptor->tcp_connp);
2081 		mutex_exit(&listener->tcp_eager_lock);
2082 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * Rendezvous with an eager connection request packet hanging off
2088 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2089 	 * tcp structure when the connection packet arrived in
2090 	 * tcp_conn_request().
2091 	 */
2092 	seqnum = tcr->SEQ_number;
2093 	eager = listener;
2094 	do {
2095 		eager = eager->tcp_eager_next_q;
2096 		if (eager == NULL) {
2097 			CONN_DEC_REF(acceptor->tcp_connp);
2098 			mutex_exit(&listener->tcp_eager_lock);
2099 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2100 			return;
2101 		}
2102 	} while (eager->tcp_conn_req_seqnum != seqnum);
2103 	mutex_exit(&listener->tcp_eager_lock);
2104 
2105 	/*
2106 	 * At this point, both acceptor and listener have 2 ref
2107 	 * that they begin with. Acceptor has one additional ref
2108 	 * we placed in lookup while listener has 3 additional
2109 	 * ref for being behind the squeue (tcp_accept() is
2110 	 * done on listener's squeue); being in classifier hash;
2111 	 * and eager's ref on listener.
2112 	 */
2113 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2114 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2115 
2116 	/*
2117 	 * The eager at this point is set in its own squeue and
2118 	 * could easily have been killed (tcp_accept_finish will
2119 	 * deal with that) because of a TH_RST so we can only
2120 	 * ASSERT for a single ref.
2121 	 */
2122 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2123 
2124 	/* Pre allocate the stroptions mblk also */
2125 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2126 	    sizeof (struct T_conn_res)), BPRI_HI);
2127 	if (opt_mp == NULL) {
2128 		CONN_DEC_REF(acceptor->tcp_connp);
2129 		CONN_DEC_REF(eager->tcp_connp);
2130 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2131 		return;
2132 	}
2133 	DB_TYPE(opt_mp) = M_SETOPTS;
2134 	opt_mp->b_wptr += sizeof (struct tcp_options);
2135 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2136 	tcpopt->to_flags = 0;
2137 
2138 	/*
2139 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2140 	 * from listener to acceptor.
2141 	 */
2142 	if (listener->tcp_bound_if != 0) {
2143 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2144 		tcpopt->to_boundif = listener->tcp_bound_if;
2145 	}
2146 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2147 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2148 	}
2149 
2150 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2151 	if ((mp1 = copymsg(mp)) == NULL) {
2152 		CONN_DEC_REF(acceptor->tcp_connp);
2153 		CONN_DEC_REF(eager->tcp_connp);
2154 		freemsg(opt_mp);
2155 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2156 		return;
2157 	}
2158 
2159 	tcr = (struct T_conn_res *)mp1->b_rptr;
2160 
2161 	/*
2162 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2163 	 * which allocates a larger mblk and appends the new
2164 	 * local address to the ok_ack.  The address is copied by
2165 	 * soaccept() for getsockname().
2166 	 */
2167 	{
2168 		int extra;
2169 
2170 		extra = (eager->tcp_family == AF_INET) ?
2171 		    sizeof (sin_t) : sizeof (sin6_t);
2172 
2173 		/*
2174 		 * Try to re-use mp, if possible.  Otherwise, allocate
2175 		 * an mblk and return it as ok_mp.  In any case, mp
2176 		 * is no longer usable upon return.
2177 		 */
2178 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2179 			CONN_DEC_REF(acceptor->tcp_connp);
2180 			CONN_DEC_REF(eager->tcp_connp);
2181 			freemsg(opt_mp);
2182 			/* Original mp has been freed by now, so use mp1 */
2183 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2184 			return;
2185 		}
2186 
2187 		mp = NULL;	/* We should never use mp after this point */
2188 
2189 		switch (extra) {
2190 		case sizeof (sin_t): {
2191 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2192 
2193 				ok_mp->b_wptr += extra;
2194 				sin->sin_family = AF_INET;
2195 				sin->sin_port = eager->tcp_lport;
2196 				sin->sin_addr.s_addr =
2197 				    eager->tcp_ipha->ipha_src;
2198 				break;
2199 			}
2200 		case sizeof (sin6_t): {
2201 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2202 
2203 				ok_mp->b_wptr += extra;
2204 				sin6->sin6_family = AF_INET6;
2205 				sin6->sin6_port = eager->tcp_lport;
2206 				if (eager->tcp_ipversion == IPV4_VERSION) {
2207 					sin6->sin6_flowinfo = 0;
2208 					IN6_IPADDR_TO_V4MAPPED(
2209 					    eager->tcp_ipha->ipha_src,
2210 					    &sin6->sin6_addr);
2211 				} else {
2212 					ASSERT(eager->tcp_ip6h != NULL);
2213 					sin6->sin6_flowinfo =
2214 					    eager->tcp_ip6h->ip6_vcf &
2215 					    ~IPV6_VERS_AND_FLOW_MASK;
2216 					sin6->sin6_addr =
2217 					    eager->tcp_ip6h->ip6_src;
2218 				}
2219 				sin6->sin6_scope_id = 0;
2220 				sin6->__sin6_src_id = 0;
2221 				break;
2222 			}
2223 		default:
2224 			break;
2225 		}
2226 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2227 	}
2228 
2229 	/*
2230 	 * If there are no options we know that the T_CONN_RES will
2231 	 * succeed. However, we can't send the T_OK_ACK upstream until
2232 	 * the tcp_accept_swap is done since it would be dangerous to
2233 	 * let the application start using the new fd prior to the swap.
2234 	 */
2235 	tcp_accept_swap(listener, acceptor, eager);
2236 
2237 	/*
2238 	 * tcp_accept_swap unlinks eager from listener but does not drop
2239 	 * the eager's reference on the listener.
2240 	 */
2241 	ASSERT(eager->tcp_listener == NULL);
2242 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2243 
2244 	/*
2245 	 * The eager is now associated with its own queue. Insert in
2246 	 * the hash so that the connection can be reused for a future
2247 	 * T_CONN_RES.
2248 	 */
2249 	tcp_acceptor_hash_insert(acceptor_id, eager);
2250 
2251 	/*
2252 	 * We now do the processing of options with T_CONN_RES.
2253 	 * We delay till now since we wanted to have queue to pass to
2254 	 * option processing routines that points back to the right
2255 	 * instance structure which does not happen until after
2256 	 * tcp_accept_swap().
2257 	 *
2258 	 * Note:
2259 	 * The sanity of the logic here assumes that whatever options
2260 	 * are appropriate to inherit from listner=>eager are done
2261 	 * before this point, and whatever were to be overridden (or not)
2262 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2263 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2264 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2265 	 * This may not be true at this point in time but can be fixed
2266 	 * independently. This option processing code starts with
2267 	 * the instantiated acceptor instance and the final queue at
2268 	 * this point.
2269 	 */
2270 
2271 	if (tcr->OPT_length != 0) {
2272 		/* Options to process */
2273 		int t_error = 0;
2274 		int sys_error = 0;
2275 		int do_disconnect = 0;
2276 
2277 		if (tcp_conprim_opt_process(eager, mp1,
2278 		    &do_disconnect, &t_error, &sys_error) < 0) {
2279 			eager->tcp_accept_error = 1;
2280 			if (do_disconnect) {
2281 				/*
2282 				 * An option failed which does not allow
2283 				 * connection to be accepted.
2284 				 *
2285 				 * We allow T_CONN_RES to succeed and
2286 				 * put a T_DISCON_IND on the eager queue.
2287 				 */
2288 				ASSERT(t_error == 0 && sys_error == 0);
2289 				eager->tcp_send_discon_ind = 1;
2290 			} else {
2291 				ASSERT(t_error != 0);
2292 				freemsg(ok_mp);
2293 				/*
2294 				 * Original mp was either freed or set
2295 				 * to ok_mp above, so use mp1 instead.
2296 				 */
2297 				tcp_err_ack(listener, mp1, t_error, sys_error);
2298 				goto finish;
2299 			}
2300 		}
2301 		/*
2302 		 * Most likely success in setting options (except if
2303 		 * eager->tcp_send_discon_ind set).
2304 		 * mp1 option buffer represented by OPT_length/offset
2305 		 * potentially modified and contains results of setting
2306 		 * options at this point
2307 		 */
2308 	}
2309 
2310 	/* We no longer need mp1, since all options processing has passed */
2311 	freemsg(mp1);
2312 
2313 	putnext(listener->tcp_rq, ok_mp);
2314 
2315 	mutex_enter(&listener->tcp_eager_lock);
2316 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2317 		tcp_t	*tail;
2318 		mblk_t	*conn_ind;
2319 
2320 		/*
2321 		 * This path should not be executed if listener and
2322 		 * acceptor streams are the same.
2323 		 */
2324 		ASSERT(listener != acceptor);
2325 
2326 		tcp = listener->tcp_eager_prev_q0;
2327 		/*
2328 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2329 		 * deferred T_conn_ind queue. We need to get to the head of
2330 		 * the queue in order to send up T_conn_ind the same order as
2331 		 * how the 3WHS is completed.
2332 		 */
2333 		while (tcp != listener) {
2334 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2335 				break;
2336 			else
2337 				tcp = tcp->tcp_eager_prev_q0;
2338 		}
2339 		ASSERT(tcp != listener);
2340 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2341 		ASSERT(conn_ind != NULL);
2342 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2343 
2344 		/* Move from q0 to q */
2345 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2346 		listener->tcp_conn_req_cnt_q0--;
2347 		listener->tcp_conn_req_cnt_q++;
2348 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2349 		    tcp->tcp_eager_prev_q0;
2350 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2351 		    tcp->tcp_eager_next_q0;
2352 		tcp->tcp_eager_prev_q0 = NULL;
2353 		tcp->tcp_eager_next_q0 = NULL;
2354 		tcp->tcp_conn_def_q0 = B_FALSE;
2355 
2356 		/* Make sure the tcp isn't in the list of droppables */
2357 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2358 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2359 
2360 		/*
2361 		 * Insert at end of the queue because sockfs sends
2362 		 * down T_CONN_RES in chronological order. Leaving
2363 		 * the older conn indications at front of the queue
2364 		 * helps reducing search time.
2365 		 */
2366 		tail = listener->tcp_eager_last_q;
2367 		if (tail != NULL)
2368 			tail->tcp_eager_next_q = tcp;
2369 		else
2370 			listener->tcp_eager_next_q = tcp;
2371 		listener->tcp_eager_last_q = tcp;
2372 		tcp->tcp_eager_next_q = NULL;
2373 		mutex_exit(&listener->tcp_eager_lock);
2374 		putnext(tcp->tcp_rq, conn_ind);
2375 	} else {
2376 		mutex_exit(&listener->tcp_eager_lock);
2377 	}
2378 
2379 	/*
2380 	 * Done with the acceptor - free it
2381 	 *
2382 	 * Note: from this point on, no access to listener should be made
2383 	 * as listener can be equal to acceptor.
2384 	 */
2385 finish:
2386 	ASSERT(acceptor->tcp_detached);
2387 	ASSERT(tcps->tcps_g_q != NULL);
2388 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2389 	acceptor->tcp_rq = tcps->tcps_g_q;
2390 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2391 	(void) tcp_clean_death(acceptor, 0, 2);
2392 	CONN_DEC_REF(acceptor->tcp_connp);
2393 
2394 	/*
2395 	 * In case we already received a FIN we have to make tcp_rput send
2396 	 * the ordrel_ind. This will also send up a window update if the window
2397 	 * has opened up.
2398 	 *
2399 	 * In the normal case of a successful connection acceptance
2400 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2401 	 * indication that this was just accepted. This tells tcp_rput to
2402 	 * pass up any data queued in tcp_rcv_list.
2403 	 *
2404 	 * In the fringe case where options sent with T_CONN_RES failed and
2405 	 * we required, we would be indicating a T_DISCON_IND to blow
2406 	 * away this connection.
2407 	 */
2408 
2409 	/*
2410 	 * XXX: we currently have a problem if XTI application closes the
2411 	 * acceptor stream in between. This problem exists in on10-gate also
2412 	 * and is well know but nothing can be done short of major rewrite
2413 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2414 	 * eager same squeue as listener (we can distinguish non socket
2415 	 * listeners at the time of handling a SYN in tcp_conn_request)
2416 	 * and do most of the work that tcp_accept_finish does here itself
2417 	 * and then get behind the acceptor squeue to access the acceptor
2418 	 * queue.
2419 	 */
2420 	/*
2421 	 * We already have a ref on tcp so no need to do one before squeue_enter
2422 	 */
2423 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2424 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2425 }
2426 
2427 /*
2428  * Swap information between the eager and acceptor for a TLI/XTI client.
2429  * The sockfs accept is done on the acceptor stream and control goes
2430  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2431  * called. In either case, both the eager and listener are in their own
2432  * perimeter (squeue) and the code has to deal with potential race.
2433  *
2434  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2435  */
2436 static void
2437 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2438 {
2439 	conn_t	*econnp, *aconnp;
2440 
2441 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2442 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2443 	ASSERT(!eager->tcp_hard_bound);
2444 	ASSERT(!TCP_IS_SOCKET(acceptor));
2445 	ASSERT(!TCP_IS_SOCKET(eager));
2446 	ASSERT(!TCP_IS_SOCKET(listener));
2447 
2448 	acceptor->tcp_detached = B_TRUE;
2449 	/*
2450 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2451 	 * the acceptor id.
2452 	 */
2453 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2454 
2455 	/* remove eager from listen list... */
2456 	mutex_enter(&listener->tcp_eager_lock);
2457 	tcp_eager_unlink(eager);
2458 	ASSERT(eager->tcp_eager_next_q == NULL &&
2459 	    eager->tcp_eager_last_q == NULL);
2460 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2461 	    eager->tcp_eager_prev_q0 == NULL);
2462 	mutex_exit(&listener->tcp_eager_lock);
2463 	eager->tcp_rq = acceptor->tcp_rq;
2464 	eager->tcp_wq = acceptor->tcp_wq;
2465 
2466 	econnp = eager->tcp_connp;
2467 	aconnp = acceptor->tcp_connp;
2468 
2469 	eager->tcp_rq->q_ptr = econnp;
2470 	eager->tcp_wq->q_ptr = econnp;
2471 
2472 	/*
2473 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2474 	 * which might be a different squeue from our peer TCP instance.
2475 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2476 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2477 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2478 	 * above reach global visibility prior to the clearing of tcp_detached.
2479 	 */
2480 	membar_producer();
2481 	eager->tcp_detached = B_FALSE;
2482 
2483 	ASSERT(eager->tcp_ack_tid == 0);
2484 
2485 	econnp->conn_dev = aconnp->conn_dev;
2486 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2487 	ASSERT(econnp->conn_minor_arena != NULL);
2488 	if (eager->tcp_cred != NULL)
2489 		crfree(eager->tcp_cred);
2490 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2491 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2492 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2493 
2494 	aconnp->conn_cred = NULL;
2495 
2496 	econnp->conn_zoneid = aconnp->conn_zoneid;
2497 	econnp->conn_allzones = aconnp->conn_allzones;
2498 
2499 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2500 	aconnp->conn_mac_exempt = B_FALSE;
2501 
2502 	ASSERT(aconnp->conn_peercred == NULL);
2503 
2504 	/* Do the IPC initialization */
2505 	CONN_INC_REF(econnp);
2506 
2507 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2508 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2509 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2510 
2511 	/* Done with old IPC. Drop its ref on its connp */
2512 	CONN_DEC_REF(aconnp);
2513 }
2514 
2515 
2516 /*
2517  * Adapt to the information, such as rtt and rtt_sd, provided from the
2518  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2519  *
2520  * Checks for multicast and broadcast destination address.
2521  * Returns zero on failure; non-zero if ok.
2522  *
2523  * Note that the MSS calculation here is based on the info given in
2524  * the IRE.  We do not do any calculation based on TCP options.  They
2525  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2526  * knows which options to use.
2527  *
2528  * Note on how TCP gets its parameters for a connection.
2529  *
2530  * When a tcp_t structure is allocated, it gets all the default parameters.
2531  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2532  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2533  * default.
2534  *
2535  * An incoming SYN with a multicast or broadcast destination address, is dropped
2536  * in 1 of 2 places.
2537  *
2538  * 1. If the packet was received over the wire it is dropped in
2539  * ip_rput_process_broadcast()
2540  *
2541  * 2. If the packet was received through internal IP loopback, i.e. the packet
2542  * was generated and received on the same machine, it is dropped in
2543  * ip_wput_local()
2544  *
2545  * An incoming SYN with a multicast or broadcast source address is always
2546  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2547  * reject an attempt to connect to a broadcast or multicast (destination)
2548  * address.
2549  */
2550 static int
2551 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2552 {
2553 	tcp_hsp_t	*hsp;
2554 	ire_t		*ire;
2555 	ire_t		*sire = NULL;
2556 	iulp_t		*ire_uinfo = NULL;
2557 	uint32_t	mss_max;
2558 	uint32_t	mss;
2559 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2560 	conn_t		*connp = tcp->tcp_connp;
2561 	boolean_t	ire_cacheable = B_FALSE;
2562 	zoneid_t	zoneid = connp->conn_zoneid;
2563 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2564 	    MATCH_IRE_SECATTR;
2565 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2566 	ill_t		*ill = NULL;
2567 	boolean_t	incoming = (ire_mp == NULL);
2568 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2569 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2570 
2571 	ASSERT(connp->conn_ire_cache == NULL);
2572 
2573 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2574 
2575 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2576 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2577 			return (0);
2578 		}
2579 		/*
2580 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2581 		 * for the destination with the nexthop as gateway.
2582 		 * ire_ctable_lookup() is used because this particular
2583 		 * ire, if it exists, will be marked private.
2584 		 * If that is not available, use the interface ire
2585 		 * for the nexthop.
2586 		 *
2587 		 * TSol: tcp_update_label will detect label mismatches based
2588 		 * only on the destination's label, but that would not
2589 		 * detect label mismatches based on the security attributes
2590 		 * of routes or next hop gateway. Hence we need to pass the
2591 		 * label to ire_ftable_lookup below in order to locate the
2592 		 * right prefix (and/or) ire cache. Similarly we also need
2593 		 * pass the label to the ire_cache_lookup below to locate
2594 		 * the right ire that also matches on the label.
2595 		 */
2596 		if (tcp->tcp_connp->conn_nexthop_set) {
2597 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2598 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2599 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2600 			    ipst);
2601 			if (ire == NULL) {
2602 				ire = ire_ftable_lookup(
2603 				    tcp->tcp_connp->conn_nexthop_v4,
2604 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2605 				    tsl, match_flags, ipst);
2606 				if (ire == NULL)
2607 					return (0);
2608 			} else {
2609 				ire_uinfo = &ire->ire_uinfo;
2610 			}
2611 		} else {
2612 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2613 			    zoneid, tsl, ipst);
2614 			if (ire != NULL) {
2615 				ire_cacheable = B_TRUE;
2616 				ire_uinfo = (ire_mp != NULL) ?
2617 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2618 				    &ire->ire_uinfo;
2619 
2620 			} else {
2621 				if (ire_mp == NULL) {
2622 					ire = ire_ftable_lookup(
2623 					    tcp->tcp_connp->conn_rem,
2624 					    0, 0, 0, NULL, &sire, zoneid, 0,
2625 					    tsl, (MATCH_IRE_RECURSIVE |
2626 					    MATCH_IRE_DEFAULT), ipst);
2627 					if (ire == NULL)
2628 						return (0);
2629 					ire_uinfo = (sire != NULL) ?
2630 					    &sire->ire_uinfo :
2631 					    &ire->ire_uinfo;
2632 				} else {
2633 					ire = (ire_t *)ire_mp->b_rptr;
2634 					ire_uinfo =
2635 					    &((ire_t *)
2636 					    ire_mp->b_rptr)->ire_uinfo;
2637 				}
2638 			}
2639 		}
2640 		ASSERT(ire != NULL);
2641 
2642 		if ((ire->ire_src_addr == INADDR_ANY) ||
2643 		    (ire->ire_type & IRE_BROADCAST)) {
2644 			/*
2645 			 * ire->ire_mp is non null when ire_mp passed in is used
2646 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2647 			 */
2648 			if (ire->ire_mp == NULL)
2649 				ire_refrele(ire);
2650 			if (sire != NULL)
2651 				ire_refrele(sire);
2652 			return (0);
2653 		}
2654 
2655 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2656 			ipaddr_t src_addr;
2657 
2658 			/*
2659 			 * ip_bind_connected() has stored the correct source
2660 			 * address in conn_src.
2661 			 */
2662 			src_addr = tcp->tcp_connp->conn_src;
2663 			tcp->tcp_ipha->ipha_src = src_addr;
2664 			/*
2665 			 * Copy of the src addr. in tcp_t is needed
2666 			 * for the lookup funcs.
2667 			 */
2668 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2669 		}
2670 		/*
2671 		 * Set the fragment bit so that IP will tell us if the MTU
2672 		 * should change. IP tells us the latest setting of
2673 		 * ip_path_mtu_discovery through ire_frag_flag.
2674 		 */
2675 		if (ipst->ips_ip_path_mtu_discovery) {
2676 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2677 			    htons(IPH_DF);
2678 		}
2679 		/*
2680 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2681 		 * for IP_NEXTHOP. No cache ire has been found for the
2682 		 * destination and we are working with the nexthop's
2683 		 * interface ire. Since we need to forward all packets
2684 		 * to the nexthop first, we "blindly" set tcp_localnet
2685 		 * to false, eventhough the destination may also be
2686 		 * onlink.
2687 		 */
2688 		if (ire_uinfo == NULL)
2689 			tcp->tcp_localnet = 0;
2690 		else
2691 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2692 	} else {
2693 		/*
2694 		 * For incoming connection ire_mp = NULL
2695 		 * For outgoing connection ire_mp != NULL
2696 		 * Technically we should check conn_incoming_ill
2697 		 * when ire_mp is NULL and conn_outgoing_ill when
2698 		 * ire_mp is non-NULL. But this is performance
2699 		 * critical path and for IPV*_BOUND_IF, outgoing
2700 		 * and incoming ill are always set to the same value.
2701 		 */
2702 		ill_t	*dst_ill = NULL;
2703 		ipif_t  *dst_ipif = NULL;
2704 
2705 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2706 
2707 		if (connp->conn_outgoing_ill != NULL) {
2708 			/* Outgoing or incoming path */
2709 			int   err;
2710 
2711 			dst_ill = conn_get_held_ill(connp,
2712 			    &connp->conn_outgoing_ill, &err);
2713 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2714 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2715 				return (0);
2716 			}
2717 			match_flags |= MATCH_IRE_ILL;
2718 			dst_ipif = dst_ill->ill_ipif;
2719 		}
2720 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2721 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2722 
2723 		if (ire != NULL) {
2724 			ire_cacheable = B_TRUE;
2725 			ire_uinfo = (ire_mp != NULL) ?
2726 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2727 			    &ire->ire_uinfo;
2728 		} else {
2729 			if (ire_mp == NULL) {
2730 				ire = ire_ftable_lookup_v6(
2731 				    &tcp->tcp_connp->conn_remv6,
2732 				    0, 0, 0, dst_ipif, &sire, zoneid,
2733 				    0, tsl, match_flags, ipst);
2734 				if (ire == NULL) {
2735 					if (dst_ill != NULL)
2736 						ill_refrele(dst_ill);
2737 					return (0);
2738 				}
2739 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2740 				    &ire->ire_uinfo;
2741 			} else {
2742 				ire = (ire_t *)ire_mp->b_rptr;
2743 				ire_uinfo =
2744 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2745 			}
2746 		}
2747 		if (dst_ill != NULL)
2748 			ill_refrele(dst_ill);
2749 
2750 		ASSERT(ire != NULL);
2751 		ASSERT(ire_uinfo != NULL);
2752 
2753 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2754 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2755 			/*
2756 			 * ire->ire_mp is non null when ire_mp passed in is used
2757 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2758 			 */
2759 			if (ire->ire_mp == NULL)
2760 				ire_refrele(ire);
2761 			if (sire != NULL)
2762 				ire_refrele(sire);
2763 			return (0);
2764 		}
2765 
2766 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2767 			in6_addr_t	src_addr;
2768 
2769 			/*
2770 			 * ip_bind_connected_v6() has stored the correct source
2771 			 * address per IPv6 addr. selection policy in
2772 			 * conn_src_v6.
2773 			 */
2774 			src_addr = tcp->tcp_connp->conn_srcv6;
2775 
2776 			tcp->tcp_ip6h->ip6_src = src_addr;
2777 			/*
2778 			 * Copy of the src addr. in tcp_t is needed
2779 			 * for the lookup funcs.
2780 			 */
2781 			tcp->tcp_ip_src_v6 = src_addr;
2782 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2783 			    &connp->conn_srcv6));
2784 		}
2785 		tcp->tcp_localnet =
2786 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2787 	}
2788 
2789 	/*
2790 	 * This allows applications to fail quickly when connections are made
2791 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2792 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2793 	 */
2794 	if ((ire->ire_flags & RTF_REJECT) &&
2795 	    (ire->ire_flags & RTF_PRIVATE))
2796 		goto error;
2797 
2798 	/*
2799 	 * Make use of the cached rtt and rtt_sd values to calculate the
2800 	 * initial RTO.  Note that they are already initialized in
2801 	 * tcp_init_values().
2802 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2803 	 * IP_NEXTHOP, but instead are using the interface ire for the
2804 	 * nexthop, then we do not use the ire_uinfo from that ire to
2805 	 * do any initializations.
2806 	 */
2807 	if (ire_uinfo != NULL) {
2808 		if (ire_uinfo->iulp_rtt != 0) {
2809 			clock_t	rto;
2810 
2811 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2812 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2813 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2814 			    tcps->tcps_rexmit_interval_extra +
2815 			    (tcp->tcp_rtt_sa >> 5);
2816 
2817 			if (rto > tcps->tcps_rexmit_interval_max) {
2818 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2819 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2820 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2821 			} else {
2822 				tcp->tcp_rto = rto;
2823 			}
2824 		}
2825 		if (ire_uinfo->iulp_ssthresh != 0)
2826 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2827 		else
2828 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2829 		if (ire_uinfo->iulp_spipe > 0) {
2830 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2831 			    tcps->tcps_max_buf);
2832 			if (tcps->tcps_snd_lowat_fraction != 0)
2833 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2834 				    tcps->tcps_snd_lowat_fraction;
2835 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2836 		}
2837 		/*
2838 		 * Note that up till now, acceptor always inherits receive
2839 		 * window from the listener.  But if there is a metrics
2840 		 * associated with a host, we should use that instead of
2841 		 * inheriting it from listener. Thus we need to pass this
2842 		 * info back to the caller.
2843 		 */
2844 		if (ire_uinfo->iulp_rpipe > 0) {
2845 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2846 			    tcps->tcps_max_buf);
2847 		}
2848 
2849 		if (ire_uinfo->iulp_rtomax > 0) {
2850 			tcp->tcp_second_timer_threshold =
2851 			    ire_uinfo->iulp_rtomax;
2852 		}
2853 
2854 		/*
2855 		 * Use the metric option settings, iulp_tstamp_ok and
2856 		 * iulp_wscale_ok, only for active open. What this means
2857 		 * is that if the other side uses timestamp or window
2858 		 * scale option, TCP will also use those options. That
2859 		 * is for passive open.  If the application sets a
2860 		 * large window, window scale is enabled regardless of
2861 		 * the value in iulp_wscale_ok.  This is the behavior
2862 		 * since 2.6.  So we keep it.
2863 		 * The only case left in passive open processing is the
2864 		 * check for SACK.
2865 		 * For ECN, it should probably be like SACK.  But the
2866 		 * current value is binary, so we treat it like the other
2867 		 * cases.  The metric only controls active open.For passive
2868 		 * open, the ndd param, tcp_ecn_permitted, controls the
2869 		 * behavior.
2870 		 */
2871 		if (!tcp_detached) {
2872 			/*
2873 			 * The if check means that the following can only
2874 			 * be turned on by the metrics only IRE, but not off.
2875 			 */
2876 			if (ire_uinfo->iulp_tstamp_ok)
2877 				tcp->tcp_snd_ts_ok = B_TRUE;
2878 			if (ire_uinfo->iulp_wscale_ok)
2879 				tcp->tcp_snd_ws_ok = B_TRUE;
2880 			if (ire_uinfo->iulp_sack == 2)
2881 				tcp->tcp_snd_sack_ok = B_TRUE;
2882 			if (ire_uinfo->iulp_ecn_ok)
2883 				tcp->tcp_ecn_ok = B_TRUE;
2884 		} else {
2885 			/*
2886 			 * Passive open.
2887 			 *
2888 			 * As above, the if check means that SACK can only be
2889 			 * turned on by the metric only IRE.
2890 			 */
2891 			if (ire_uinfo->iulp_sack > 0) {
2892 				tcp->tcp_snd_sack_ok = B_TRUE;
2893 			}
2894 		}
2895 	}
2896 
2897 
2898 	/*
2899 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2900 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2901 	 * length of all those options exceeds 28 bytes.  But because
2902 	 * of the tcp_mss_min check below, we may not have a problem if
2903 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2904 	 * the negative problem still exists.  And the check defeats PMTUd.
2905 	 * In fact, if PMTUd finds that the MSS should be smaller than
2906 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2907 	 * value.
2908 	 *
2909 	 * We do not deal with that now.  All those problems related to
2910 	 * PMTUd will be fixed later.
2911 	 */
2912 	ASSERT(ire->ire_max_frag != 0);
2913 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2914 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2915 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2916 			mss = MIN(mss, IPV6_MIN_MTU);
2917 		}
2918 	}
2919 
2920 	/* Sanity check for MSS value. */
2921 	if (tcp->tcp_ipversion == IPV4_VERSION)
2922 		mss_max = tcps->tcps_mss_max_ipv4;
2923 	else
2924 		mss_max = tcps->tcps_mss_max_ipv6;
2925 
2926 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2927 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2928 		/*
2929 		 * After receiving an ICMPv6 "packet too big" message with a
2930 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2931 		 * will insert a 8-byte fragment header in every packet; we
2932 		 * reduce the MSS by that amount here.
2933 		 */
2934 		mss -= sizeof (ip6_frag_t);
2935 	}
2936 
2937 	if (tcp->tcp_ipsec_overhead == 0)
2938 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2939 
2940 	mss -= tcp->tcp_ipsec_overhead;
2941 
2942 	if (mss < tcps->tcps_mss_min)
2943 		mss = tcps->tcps_mss_min;
2944 	if (mss > mss_max)
2945 		mss = mss_max;
2946 
2947 	/* Note that this is the maximum MSS, excluding all options. */
2948 	tcp->tcp_mss = mss;
2949 
2950 	/*
2951 	 * Initialize the ISS here now that we have the full connection ID.
2952 	 * The RFC 1948 method of initial sequence number generation requires
2953 	 * knowledge of the full connection ID before setting the ISS.
2954 	 */
2955 
2956 	tcp_iss_init(tcp);
2957 
2958 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2959 		tcp->tcp_loopback = B_TRUE;
2960 
2961 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2962 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2963 	} else {
2964 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2965 	}
2966 
2967 	if (hsp != NULL) {
2968 		/* Only modify if we're going to make them bigger */
2969 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2970 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2971 			if (tcps->tcps_snd_lowat_fraction != 0)
2972 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2973 				    tcps->tcps_snd_lowat_fraction;
2974 		}
2975 
2976 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2977 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2978 		}
2979 
2980 		/* Copy timestamp flag only for active open */
2981 		if (!tcp_detached)
2982 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2983 	}
2984 
2985 	if (sire != NULL)
2986 		IRE_REFRELE(sire);
2987 
2988 	/*
2989 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2990 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2991 	 */
2992 	if (tcp->tcp_loopback ||
2993 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2994 		/*
2995 		 * For incoming, see if this tcp may be MDT-capable.  For
2996 		 * outgoing, this process has been taken care of through
2997 		 * tcp_rput_other.
2998 		 */
2999 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3000 		tcp->tcp_ire_ill_check_done = B_TRUE;
3001 	}
3002 
3003 	mutex_enter(&connp->conn_lock);
3004 	/*
3005 	 * Make sure that conn is not marked incipient
3006 	 * for incoming connections. A blind
3007 	 * removal of incipient flag is cheaper than
3008 	 * check and removal.
3009 	 */
3010 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3011 
3012 	/*
3013 	 * Must not cache forwarding table routes
3014 	 * or recache an IRE after the conn_t has
3015 	 * had conn_ire_cache cleared and is flagged
3016 	 * unusable, (see the CONN_CACHE_IRE() macro).
3017 	 */
3018 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
3019 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3020 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3021 			connp->conn_ire_cache = ire;
3022 			IRE_UNTRACE_REF(ire);
3023 			rw_exit(&ire->ire_bucket->irb_lock);
3024 			mutex_exit(&connp->conn_lock);
3025 			return (1);
3026 		}
3027 		rw_exit(&ire->ire_bucket->irb_lock);
3028 	}
3029 	mutex_exit(&connp->conn_lock);
3030 
3031 	if (ire->ire_mp == NULL)
3032 		ire_refrele(ire);
3033 	return (1);
3034 
3035 error:
3036 	if (ire->ire_mp == NULL)
3037 		ire_refrele(ire);
3038 	if (sire != NULL)
3039 		ire_refrele(sire);
3040 	return (0);
3041 }
3042 
3043 static void
3044 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
3045 {
3046 	int	error;
3047 	conn_t	*connp = tcp->tcp_connp;
3048 	struct sockaddr	*sa;
3049 	mblk_t  *mp1;
3050 	struct T_bind_req *tbr;
3051 	int	backlog;
3052 	socklen_t	len;
3053 	sin_t	*sin;
3054 	sin6_t	*sin6;
3055 	cred_t		*cr;
3056 
3057 	/*
3058 	 * All Solaris components should pass a db_credp
3059 	 * for this TPI message, hence we ASSERT.
3060 	 * But in case there is some other M_PROTO that looks
3061 	 * like a TPI message sent by some other kernel
3062 	 * component, we check and return an error.
3063 	 */
3064 	cr = msg_getcred(mp, NULL);
3065 	ASSERT(cr != NULL);
3066 	if (cr == NULL) {
3067 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3068 		return;
3069 	}
3070 
3071 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3072 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3073 		if (tcp->tcp_debug) {
3074 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3075 			    "tcp_tpi_bind: bad req, len %u",
3076 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3077 		}
3078 		tcp_err_ack(tcp, mp, TPROTO, 0);
3079 		return;
3080 	}
3081 	/* Make sure the largest address fits */
3082 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3083 	if (mp1 == NULL) {
3084 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3085 		return;
3086 	}
3087 	mp = mp1;
3088 	tbr = (struct T_bind_req *)mp->b_rptr;
3089 
3090 	backlog = tbr->CONIND_number;
3091 	len = tbr->ADDR_length;
3092 
3093 	switch (len) {
3094 	case 0:		/* request for a generic port */
3095 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3096 		if (tcp->tcp_family == AF_INET) {
3097 			tbr->ADDR_length = sizeof (sin_t);
3098 			sin = (sin_t *)&tbr[1];
3099 			*sin = sin_null;
3100 			sin->sin_family = AF_INET;
3101 			sa = (struct sockaddr *)sin;
3102 			len = sizeof (sin_t);
3103 			mp->b_wptr = (uchar_t *)&sin[1];
3104 		} else {
3105 			ASSERT(tcp->tcp_family == AF_INET6);
3106 			tbr->ADDR_length = sizeof (sin6_t);
3107 			sin6 = (sin6_t *)&tbr[1];
3108 			*sin6 = sin6_null;
3109 			sin6->sin6_family = AF_INET6;
3110 			sa = (struct sockaddr *)sin6;
3111 			len = sizeof (sin6_t);
3112 			mp->b_wptr = (uchar_t *)&sin6[1];
3113 		}
3114 		break;
3115 
3116 	case sizeof (sin_t):    /* Complete IPv4 address */
3117 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3118 		    sizeof (sin_t));
3119 		break;
3120 
3121 	case sizeof (sin6_t): /* Complete IPv6 address */
3122 		sa = (struct sockaddr *)mi_offset_param(mp,
3123 		    tbr->ADDR_offset, sizeof (sin6_t));
3124 		break;
3125 
3126 	default:
3127 		if (tcp->tcp_debug) {
3128 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3129 			    "tcp_tpi_bind: bad address length, %d",
3130 			    tbr->ADDR_length);
3131 		}
3132 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3133 		return;
3134 	}
3135 
3136 	error = tcp_bind_check(connp, sa, len, cr,
3137 	    tbr->PRIM_type != O_T_BIND_REQ);
3138 	if (error == 0) {
3139 		if (tcp->tcp_family == AF_INET) {
3140 			sin = (sin_t *)sa;
3141 			sin->sin_port = tcp->tcp_lport;
3142 		} else {
3143 			sin6 = (sin6_t *)sa;
3144 			sin6->sin6_port = tcp->tcp_lport;
3145 		}
3146 
3147 		if (backlog > 0) {
3148 			error = tcp_do_listen(connp, backlog, cr);
3149 		}
3150 	}
3151 done:
3152 	if (error > 0) {
3153 		tcp_err_ack(tcp, mp, TSYSERR, error);
3154 	} else if (error < 0) {
3155 		tcp_err_ack(tcp, mp, -error, 0);
3156 	} else {
3157 		mp->b_datap->db_type = M_PCPROTO;
3158 		tbr->PRIM_type = T_BIND_ACK;
3159 		putnext(tcp->tcp_rq, mp);
3160 	}
3161 }
3162 
3163 /*
3164  * If the "bind_to_req_port_only" parameter is set, if the requested port
3165  * number is available, return it, If not return 0
3166  *
3167  * If "bind_to_req_port_only" parameter is not set and
3168  * If the requested port number is available, return it.  If not, return
3169  * the first anonymous port we happen across.  If no anonymous ports are
3170  * available, return 0. addr is the requested local address, if any.
3171  *
3172  * In either case, when succeeding update the tcp_t to record the port number
3173  * and insert it in the bind hash table.
3174  *
3175  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3176  * without setting SO_REUSEADDR. This is needed so that they
3177  * can be viewed as two independent transport protocols.
3178  */
3179 static in_port_t
3180 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3181     int reuseaddr, boolean_t quick_connect,
3182     boolean_t bind_to_req_port_only, boolean_t user_specified)
3183 {
3184 	/* number of times we have run around the loop */
3185 	int count = 0;
3186 	/* maximum number of times to run around the loop */
3187 	int loopmax;
3188 	conn_t *connp = tcp->tcp_connp;
3189 	zoneid_t zoneid = connp->conn_zoneid;
3190 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3191 
3192 	/*
3193 	 * Lookup for free addresses is done in a loop and "loopmax"
3194 	 * influences how long we spin in the loop
3195 	 */
3196 	if (bind_to_req_port_only) {
3197 		/*
3198 		 * If the requested port is busy, don't bother to look
3199 		 * for a new one. Setting loop maximum count to 1 has
3200 		 * that effect.
3201 		 */
3202 		loopmax = 1;
3203 	} else {
3204 		/*
3205 		 * If the requested port is busy, look for a free one
3206 		 * in the anonymous port range.
3207 		 * Set loopmax appropriately so that one does not look
3208 		 * forever in the case all of the anonymous ports are in use.
3209 		 */
3210 		if (tcp->tcp_anon_priv_bind) {
3211 			/*
3212 			 * loopmax =
3213 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3214 			 */
3215 			loopmax = IPPORT_RESERVED -
3216 			    tcps->tcps_min_anonpriv_port;
3217 		} else {
3218 			loopmax = (tcps->tcps_largest_anon_port -
3219 			    tcps->tcps_smallest_anon_port + 1);
3220 		}
3221 	}
3222 	do {
3223 		uint16_t	lport;
3224 		tf_t		*tbf;
3225 		tcp_t		*ltcp;
3226 		conn_t		*lconnp;
3227 
3228 		lport = htons(port);
3229 
3230 		/*
3231 		 * Ensure that the tcp_t is not currently in the bind hash.
3232 		 * Hold the lock on the hash bucket to ensure that
3233 		 * the duplicate check plus the insertion is an atomic
3234 		 * operation.
3235 		 *
3236 		 * This function does an inline lookup on the bind hash list
3237 		 * Make sure that we access only members of tcp_t
3238 		 * and that we don't look at tcp_tcp, since we are not
3239 		 * doing a CONN_INC_REF.
3240 		 */
3241 		tcp_bind_hash_remove(tcp);
3242 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3243 		mutex_enter(&tbf->tf_lock);
3244 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3245 		    ltcp = ltcp->tcp_bind_hash) {
3246 			if (lport == ltcp->tcp_lport)
3247 				break;
3248 		}
3249 
3250 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3251 			boolean_t not_socket;
3252 			boolean_t exclbind;
3253 
3254 			lconnp = ltcp->tcp_connp;
3255 
3256 			/*
3257 			 * On a labeled system, we must treat bindings to ports
3258 			 * on shared IP addresses by sockets with MAC exemption
3259 			 * privilege as being in all zones, as there's
3260 			 * otherwise no way to identify the right receiver.
3261 			 */
3262 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3263 			    IPCL_ZONE_MATCH(connp,
3264 			    ltcp->tcp_connp->conn_zoneid)) &&
3265 			    !lconnp->conn_mac_exempt &&
3266 			    !connp->conn_mac_exempt)
3267 				continue;
3268 
3269 			/*
3270 			 * If TCP_EXCLBIND is set for either the bound or
3271 			 * binding endpoint, the semantics of bind
3272 			 * is changed according to the following.
3273 			 *
3274 			 * spec = specified address (v4 or v6)
3275 			 * unspec = unspecified address (v4 or v6)
3276 			 * A = specified addresses are different for endpoints
3277 			 *
3278 			 * bound	bind to		allowed
3279 			 * -------------------------------------
3280 			 * unspec	unspec		no
3281 			 * unspec	spec		no
3282 			 * spec		unspec		no
3283 			 * spec		spec		yes if A
3284 			 *
3285 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3286 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3287 			 *
3288 			 * Note:
3289 			 *
3290 			 * 1. Because of TLI semantics, an endpoint can go
3291 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3292 			 * TCPS_BOUND, depending on whether it is originally
3293 			 * a listener or not.  That is why we need to check
3294 			 * for states greater than or equal to TCPS_BOUND
3295 			 * here.
3296 			 *
3297 			 * 2. Ideally, we should only check for state equals
3298 			 * to TCPS_LISTEN. And the following check should be
3299 			 * added.
3300 			 *
3301 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3302 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3303 			 *		...
3304 			 * }
3305 			 *
3306 			 * The semantics will be changed to this.  If the
3307 			 * endpoint on the list is in state not equal to
3308 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3309 			 * set, let the bind succeed.
3310 			 *
3311 			 * Because of (1), we cannot do that for TLI
3312 			 * endpoints.  But we can do that for socket endpoints.
3313 			 * If in future, we can change this going back
3314 			 * semantics, we can use the above check for TLI also.
3315 			 */
3316 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3317 			    TCP_IS_SOCKET(tcp));
3318 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3319 
3320 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3321 			    (exclbind && (not_socket ||
3322 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3323 				if (V6_OR_V4_INADDR_ANY(
3324 				    ltcp->tcp_bound_source_v6) ||
3325 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3326 				    IN6_ARE_ADDR_EQUAL(laddr,
3327 				    &ltcp->tcp_bound_source_v6)) {
3328 					break;
3329 				}
3330 				continue;
3331 			}
3332 
3333 			/*
3334 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3335 			 * have disjoint port number spaces, if *_EXCLBIND
3336 			 * is not set and only if the application binds to a
3337 			 * specific port. We use the same autoassigned port
3338 			 * number space for IPv4 and IPv6 sockets.
3339 			 */
3340 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3341 			    bind_to_req_port_only)
3342 				continue;
3343 
3344 			/*
3345 			 * Ideally, we should make sure that the source
3346 			 * address, remote address, and remote port in the
3347 			 * four tuple for this tcp-connection is unique.
3348 			 * However, trying to find out the local source
3349 			 * address would require too much code duplication
3350 			 * with IP, since IP needs needs to have that code
3351 			 * to support userland TCP implementations.
3352 			 */
3353 			if (quick_connect &&
3354 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3355 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3356 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3357 			    &ltcp->tcp_remote_v6)))
3358 				continue;
3359 
3360 			if (!reuseaddr) {
3361 				/*
3362 				 * No socket option SO_REUSEADDR.
3363 				 * If existing port is bound to
3364 				 * a non-wildcard IP address
3365 				 * and the requesting stream is
3366 				 * bound to a distinct
3367 				 * different IP addresses
3368 				 * (non-wildcard, also), keep
3369 				 * going.
3370 				 */
3371 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3372 				    !V6_OR_V4_INADDR_ANY(
3373 				    ltcp->tcp_bound_source_v6) &&
3374 				    !IN6_ARE_ADDR_EQUAL(laddr,
3375 				    &ltcp->tcp_bound_source_v6))
3376 					continue;
3377 				if (ltcp->tcp_state >= TCPS_BOUND) {
3378 					/*
3379 					 * This port is being used and
3380 					 * its state is >= TCPS_BOUND,
3381 					 * so we can't bind to it.
3382 					 */
3383 					break;
3384 				}
3385 			} else {
3386 				/*
3387 				 * socket option SO_REUSEADDR is set on the
3388 				 * binding tcp_t.
3389 				 *
3390 				 * If two streams are bound to
3391 				 * same IP address or both addr
3392 				 * and bound source are wildcards
3393 				 * (INADDR_ANY), we want to stop
3394 				 * searching.
3395 				 * We have found a match of IP source
3396 				 * address and source port, which is
3397 				 * refused regardless of the
3398 				 * SO_REUSEADDR setting, so we break.
3399 				 */
3400 				if (IN6_ARE_ADDR_EQUAL(laddr,
3401 				    &ltcp->tcp_bound_source_v6) &&
3402 				    (ltcp->tcp_state == TCPS_LISTEN ||
3403 				    ltcp->tcp_state == TCPS_BOUND))
3404 					break;
3405 			}
3406 		}
3407 		if (ltcp != NULL) {
3408 			/* The port number is busy */
3409 			mutex_exit(&tbf->tf_lock);
3410 		} else {
3411 			/*
3412 			 * This port is ours. Insert in fanout and mark as
3413 			 * bound to prevent others from getting the port
3414 			 * number.
3415 			 */
3416 			tcp->tcp_state = TCPS_BOUND;
3417 			tcp->tcp_lport = htons(port);
3418 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3419 
3420 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3421 			    tcp->tcp_lport)] == tbf);
3422 			tcp_bind_hash_insert(tbf, tcp, 1);
3423 
3424 			mutex_exit(&tbf->tf_lock);
3425 
3426 			/*
3427 			 * We don't want tcp_next_port_to_try to "inherit"
3428 			 * a port number supplied by the user in a bind.
3429 			 */
3430 			if (user_specified)
3431 				return (port);
3432 
3433 			/*
3434 			 * This is the only place where tcp_next_port_to_try
3435 			 * is updated. After the update, it may or may not
3436 			 * be in the valid range.
3437 			 */
3438 			if (!tcp->tcp_anon_priv_bind)
3439 				tcps->tcps_next_port_to_try = port + 1;
3440 			return (port);
3441 		}
3442 
3443 		if (tcp->tcp_anon_priv_bind) {
3444 			port = tcp_get_next_priv_port(tcp);
3445 		} else {
3446 			if (count == 0 && user_specified) {
3447 				/*
3448 				 * We may have to return an anonymous port. So
3449 				 * get one to start with.
3450 				 */
3451 				port =
3452 				    tcp_update_next_port(
3453 				    tcps->tcps_next_port_to_try,
3454 				    tcp, B_TRUE);
3455 				user_specified = B_FALSE;
3456 			} else {
3457 				port = tcp_update_next_port(port + 1, tcp,
3458 				    B_FALSE);
3459 			}
3460 		}
3461 		if (port == 0)
3462 			break;
3463 
3464 		/*
3465 		 * Don't let this loop run forever in the case where
3466 		 * all of the anonymous ports are in use.
3467 		 */
3468 	} while (++count < loopmax);
3469 	return (0);
3470 }
3471 
3472 /*
3473  * tcp_clean_death / tcp_close_detached must not be called more than once
3474  * on a tcp. Thus every function that potentially calls tcp_clean_death
3475  * must check for the tcp state before calling tcp_clean_death.
3476  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3477  * tcp_timer_handler, all check for the tcp state.
3478  */
3479 /* ARGSUSED */
3480 void
3481 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3482 {
3483 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3484 
3485 	freemsg(mp);
3486 	if (tcp->tcp_state > TCPS_BOUND)
3487 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3488 		    ETIMEDOUT, 5);
3489 }
3490 
3491 /*
3492  * We are dying for some reason.  Try to do it gracefully.  (May be called
3493  * as writer.)
3494  *
3495  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3496  * done by a service procedure).
3497  * TBD - Should the return value distinguish between the tcp_t being
3498  * freed and it being reinitialized?
3499  */
3500 static int
3501 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3502 {
3503 	mblk_t	*mp;
3504 	queue_t	*q;
3505 	conn_t	*connp = tcp->tcp_connp;
3506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3507 	sodirect_t	*sodp;
3508 
3509 	TCP_CLD_STAT(tag);
3510 
3511 #if TCP_TAG_CLEAN_DEATH
3512 	tcp->tcp_cleandeathtag = tag;
3513 #endif
3514 
3515 	if (tcp->tcp_fused)
3516 		tcp_unfuse(tcp);
3517 
3518 	if (tcp->tcp_linger_tid != 0 &&
3519 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3520 		tcp_stop_lingering(tcp);
3521 	}
3522 
3523 	ASSERT(tcp != NULL);
3524 	ASSERT((tcp->tcp_family == AF_INET &&
3525 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3526 	    (tcp->tcp_family == AF_INET6 &&
3527 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3528 	    tcp->tcp_ipversion == IPV6_VERSION)));
3529 
3530 	if (TCP_IS_DETACHED(tcp)) {
3531 		if (tcp->tcp_hard_binding) {
3532 			/*
3533 			 * Its an eager that we are dealing with. We close the
3534 			 * eager but in case a conn_ind has already gone to the
3535 			 * listener, let tcp_accept_finish() send a discon_ind
3536 			 * to the listener and drop the last reference. If the
3537 			 * listener doesn't even know about the eager i.e. the
3538 			 * conn_ind hasn't gone up, blow away the eager and drop
3539 			 * the last reference as well. If the conn_ind has gone
3540 			 * up, state should be BOUND. tcp_accept_finish
3541 			 * will figure out that the connection has received a
3542 			 * RST and will send a DISCON_IND to the application.
3543 			 */
3544 			tcp_closei_local(tcp);
3545 			if (!tcp->tcp_tconnind_started) {
3546 				CONN_DEC_REF(connp);
3547 			} else {
3548 				tcp->tcp_state = TCPS_BOUND;
3549 			}
3550 		} else {
3551 			tcp_close_detached(tcp);
3552 		}
3553 		return (0);
3554 	}
3555 
3556 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3557 
3558 	/* If sodirect, not anymore */
3559 	SOD_PTR_ENTER(tcp, sodp);
3560 	if (sodp != NULL) {
3561 		tcp->tcp_sodirect = NULL;
3562 		mutex_exit(sodp->sod_lockp);
3563 	}
3564 
3565 	q = tcp->tcp_rq;
3566 
3567 	/* Trash all inbound data */
3568 	if (!IPCL_IS_NONSTR(connp)) {
3569 		ASSERT(q != NULL);
3570 		flushq(q, FLUSHALL);
3571 	}
3572 
3573 	/*
3574 	 * If we are at least part way open and there is error
3575 	 * (err==0 implies no error)
3576 	 * notify our client by a T_DISCON_IND.
3577 	 */
3578 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3579 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3580 		    !TCP_IS_SOCKET(tcp)) {
3581 			/*
3582 			 * Send M_FLUSH according to TPI. Because sockets will
3583 			 * (and must) ignore FLUSHR we do that only for TPI
3584 			 * endpoints and sockets in STREAMS mode.
3585 			 */
3586 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3587 		}
3588 		if (tcp->tcp_debug) {
3589 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3590 			    "tcp_clean_death: discon err %d", err);
3591 		}
3592 		if (IPCL_IS_NONSTR(connp)) {
3593 			/* Direct socket, use upcall */
3594 			(*connp->conn_upcalls->su_disconnected)(
3595 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3596 		} else {
3597 			mp = mi_tpi_discon_ind(NULL, err, 0);
3598 			if (mp != NULL) {
3599 				putnext(q, mp);
3600 			} else {
3601 				if (tcp->tcp_debug) {
3602 					(void) strlog(TCP_MOD_ID, 0, 1,
3603 					    SL_ERROR|SL_TRACE,
3604 					    "tcp_clean_death, sending M_ERROR");
3605 				}
3606 				(void) putnextctl1(q, M_ERROR, EPROTO);
3607 			}
3608 		}
3609 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3610 			/* SYN_SENT or SYN_RCVD */
3611 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3612 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3613 			/* ESTABLISHED or CLOSE_WAIT */
3614 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3615 		}
3616 	}
3617 
3618 	tcp_reinit(tcp);
3619 	if (IPCL_IS_NONSTR(connp))
3620 		(void) tcp_do_unbind(connp);
3621 
3622 	return (-1);
3623 }
3624 
3625 /*
3626  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3627  * to expire, stop the wait and finish the close.
3628  */
3629 static void
3630 tcp_stop_lingering(tcp_t *tcp)
3631 {
3632 	clock_t	delta = 0;
3633 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3634 
3635 	tcp->tcp_linger_tid = 0;
3636 	if (tcp->tcp_state > TCPS_LISTEN) {
3637 		tcp_acceptor_hash_remove(tcp);
3638 		mutex_enter(&tcp->tcp_non_sq_lock);
3639 		if (tcp->tcp_flow_stopped) {
3640 			tcp_clrqfull(tcp);
3641 		}
3642 		mutex_exit(&tcp->tcp_non_sq_lock);
3643 
3644 		if (tcp->tcp_timer_tid != 0) {
3645 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3646 			tcp->tcp_timer_tid = 0;
3647 		}
3648 		/*
3649 		 * Need to cancel those timers which will not be used when
3650 		 * TCP is detached.  This has to be done before the tcp_wq
3651 		 * is set to the global queue.
3652 		 */
3653 		tcp_timers_stop(tcp);
3654 
3655 		tcp->tcp_detached = B_TRUE;
3656 		ASSERT(tcps->tcps_g_q != NULL);
3657 		tcp->tcp_rq = tcps->tcps_g_q;
3658 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3659 
3660 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3661 			tcp_time_wait_append(tcp);
3662 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3663 			goto finish;
3664 		}
3665 
3666 		/*
3667 		 * If delta is zero the timer event wasn't executed and was
3668 		 * successfully canceled. In this case we need to restart it
3669 		 * with the minimal delta possible.
3670 		 */
3671 		if (delta >= 0) {
3672 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3673 			    delta ? delta : 1);
3674 		}
3675 	} else {
3676 		tcp_closei_local(tcp);
3677 		CONN_DEC_REF(tcp->tcp_connp);
3678 	}
3679 finish:
3680 	/* Signal closing thread that it can complete close */
3681 	mutex_enter(&tcp->tcp_closelock);
3682 	tcp->tcp_detached = B_TRUE;
3683 	ASSERT(tcps->tcps_g_q != NULL);
3684 
3685 	tcp->tcp_rq = tcps->tcps_g_q;
3686 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3687 
3688 	tcp->tcp_closed = 1;
3689 	cv_signal(&tcp->tcp_closecv);
3690 	mutex_exit(&tcp->tcp_closelock);
3691 }
3692 
3693 /*
3694  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3695  * expires.
3696  */
3697 static void
3698 tcp_close_linger_timeout(void *arg)
3699 {
3700 	conn_t	*connp = (conn_t *)arg;
3701 	tcp_t 	*tcp = connp->conn_tcp;
3702 
3703 	tcp->tcp_client_errno = ETIMEDOUT;
3704 	tcp_stop_lingering(tcp);
3705 }
3706 
3707 static void
3708 tcp_close_common(conn_t *connp, int flags)
3709 {
3710 	tcp_t		*tcp = connp->conn_tcp;
3711 	mblk_t 		*mp = &tcp->tcp_closemp;
3712 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3713 	mblk_t		*bp;
3714 
3715 	ASSERT(connp->conn_ref >= 2);
3716 
3717 	/*
3718 	 * Mark the conn as closing. ill_pending_mp_add will not
3719 	 * add any mp to the pending mp list, after this conn has
3720 	 * started closing. Same for sq_pending_mp_add
3721 	 */
3722 	mutex_enter(&connp->conn_lock);
3723 	connp->conn_state_flags |= CONN_CLOSING;
3724 	if (connp->conn_oper_pending_ill != NULL)
3725 		conn_ioctl_cleanup_reqd = B_TRUE;
3726 	CONN_INC_REF_LOCKED(connp);
3727 	mutex_exit(&connp->conn_lock);
3728 	tcp->tcp_closeflags = (uint8_t)flags;
3729 	ASSERT(connp->conn_ref >= 3);
3730 
3731 	/*
3732 	 * tcp_closemp_used is used below without any protection of a lock
3733 	 * as we don't expect any one else to use it concurrently at this
3734 	 * point otherwise it would be a major defect.
3735 	 */
3736 
3737 	if (mp->b_prev == NULL)
3738 		tcp->tcp_closemp_used = B_TRUE;
3739 	else
3740 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3741 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3742 
3743 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3744 
3745 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3746 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3747 
3748 	mutex_enter(&tcp->tcp_closelock);
3749 	while (!tcp->tcp_closed) {
3750 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3751 			/*
3752 			 * The cv_wait_sig() was interrupted. We now do the
3753 			 * following:
3754 			 *
3755 			 * 1) If the endpoint was lingering, we allow this
3756 			 * to be interrupted by cancelling the linger timeout
3757 			 * and closing normally.
3758 			 *
3759 			 * 2) Revert to calling cv_wait()
3760 			 *
3761 			 * We revert to using cv_wait() to avoid an
3762 			 * infinite loop which can occur if the calling
3763 			 * thread is higher priority than the squeue worker
3764 			 * thread and is bound to the same cpu.
3765 			 */
3766 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3767 				mutex_exit(&tcp->tcp_closelock);
3768 				/* Entering squeue, bump ref count. */
3769 				CONN_INC_REF(connp);
3770 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3771 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3772 				    tcp_linger_interrupted, connp,
3773 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3774 				mutex_enter(&tcp->tcp_closelock);
3775 			}
3776 			break;
3777 		}
3778 	}
3779 	while (!tcp->tcp_closed)
3780 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3781 	mutex_exit(&tcp->tcp_closelock);
3782 
3783 	/*
3784 	 * In the case of listener streams that have eagers in the q or q0
3785 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3786 	 * tcp_wq of the eagers point to our queues. By waiting for the
3787 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3788 	 * up their queue pointers and also dropped their references to us.
3789 	 */
3790 	if (tcp->tcp_wait_for_eagers) {
3791 		mutex_enter(&connp->conn_lock);
3792 		while (connp->conn_ref != 1) {
3793 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3794 		}
3795 		mutex_exit(&connp->conn_lock);
3796 	}
3797 	/*
3798 	 * ioctl cleanup. The mp is queued in the
3799 	 * ill_pending_mp or in the sq_pending_mp.
3800 	 */
3801 	if (conn_ioctl_cleanup_reqd)
3802 		conn_ioctl_cleanup(connp);
3803 
3804 	tcp->tcp_cpid = -1;
3805 }
3806 
3807 static int
3808 tcp_tpi_close(queue_t *q, int flags)
3809 {
3810 	conn_t		*connp;
3811 
3812 	ASSERT(WR(q)->q_next == NULL);
3813 
3814 	if (flags & SO_FALLBACK) {
3815 		/*
3816 		 * stream is being closed while in fallback
3817 		 * simply free the resources that were allocated
3818 		 */
3819 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3820 		qprocsoff(q);
3821 		goto done;
3822 	}
3823 
3824 	connp = Q_TO_CONN(q);
3825 	/*
3826 	 * We are being closed as /dev/tcp or /dev/tcp6.
3827 	 */
3828 	tcp_close_common(connp, flags);
3829 
3830 	qprocsoff(q);
3831 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3832 
3833 	/*
3834 	 * Drop IP's reference on the conn. This is the last reference
3835 	 * on the connp if the state was less than established. If the
3836 	 * connection has gone into timewait state, then we will have
3837 	 * one ref for the TCP and one more ref (total of two) for the
3838 	 * classifier connected hash list (a timewait connections stays
3839 	 * in connected hash till closed).
3840 	 *
3841 	 * We can't assert the references because there might be other
3842 	 * transient reference places because of some walkers or queued
3843 	 * packets in squeue for the timewait state.
3844 	 */
3845 	CONN_DEC_REF(connp);
3846 done:
3847 	q->q_ptr = WR(q)->q_ptr = NULL;
3848 	return (0);
3849 }
3850 
3851 static int
3852 tcpclose_accept(queue_t *q)
3853 {
3854 	vmem_t	*minor_arena;
3855 	dev_t	conn_dev;
3856 
3857 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3858 
3859 	/*
3860 	 * We had opened an acceptor STREAM for sockfs which is
3861 	 * now being closed due to some error.
3862 	 */
3863 	qprocsoff(q);
3864 
3865 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3866 	conn_dev = (dev_t)RD(q)->q_ptr;
3867 	ASSERT(minor_arena != NULL);
3868 	ASSERT(conn_dev != 0);
3869 	inet_minor_free(minor_arena, conn_dev);
3870 	q->q_ptr = WR(q)->q_ptr = NULL;
3871 	return (0);
3872 }
3873 
3874 /*
3875  * Called by tcp_close() routine via squeue when lingering is
3876  * interrupted by a signal.
3877  */
3878 
3879 /* ARGSUSED */
3880 static void
3881 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3882 {
3883 	conn_t	*connp = (conn_t *)arg;
3884 	tcp_t	*tcp = connp->conn_tcp;
3885 
3886 	freeb(mp);
3887 	if (tcp->tcp_linger_tid != 0 &&
3888 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3889 		tcp_stop_lingering(tcp);
3890 		tcp->tcp_client_errno = EINTR;
3891 	}
3892 }
3893 
3894 /*
3895  * Called by streams close routine via squeues when our client blows off her
3896  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3897  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3898  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3899  * acked.
3900  *
3901  * NOTE: tcp_close potentially returns error when lingering.
3902  * However, the stream head currently does not pass these errors
3903  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3904  * errors to the application (from tsleep()) and not errors
3905  * like ECONNRESET caused by receiving a reset packet.
3906  */
3907 
3908 /* ARGSUSED */
3909 static void
3910 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3911 {
3912 	char	*msg;
3913 	conn_t	*connp = (conn_t *)arg;
3914 	tcp_t	*tcp = connp->conn_tcp;
3915 	clock_t	delta = 0;
3916 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3917 
3918 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3919 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3920 
3921 	mutex_enter(&tcp->tcp_eager_lock);
3922 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3923 		/* Cleanup for listener */
3924 		tcp_eager_cleanup(tcp, 0);
3925 		tcp->tcp_wait_for_eagers = 1;
3926 	}
3927 	mutex_exit(&tcp->tcp_eager_lock);
3928 
3929 	connp->conn_mdt_ok = B_FALSE;
3930 	tcp->tcp_mdt = B_FALSE;
3931 
3932 	connp->conn_lso_ok = B_FALSE;
3933 	tcp->tcp_lso = B_FALSE;
3934 
3935 	msg = NULL;
3936 	switch (tcp->tcp_state) {
3937 	case TCPS_CLOSED:
3938 	case TCPS_IDLE:
3939 	case TCPS_BOUND:
3940 	case TCPS_LISTEN:
3941 		break;
3942 	case TCPS_SYN_SENT:
3943 		msg = "tcp_close, during connect";
3944 		break;
3945 	case TCPS_SYN_RCVD:
3946 		/*
3947 		 * Close during the connect 3-way handshake
3948 		 * but here there may or may not be pending data
3949 		 * already on queue. Process almost same as in
3950 		 * the ESTABLISHED state.
3951 		 */
3952 		/* FALLTHRU */
3953 	default:
3954 		if (tcp->tcp_sodirect != NULL) {
3955 			/* Ok, no more sodirect */
3956 			tcp->tcp_sodirect = NULL;
3957 		}
3958 
3959 		if (tcp->tcp_fused)
3960 			tcp_unfuse(tcp);
3961 
3962 		/*
3963 		 * If SO_LINGER has set a zero linger time, abort the
3964 		 * connection with a reset.
3965 		 */
3966 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3967 			msg = "tcp_close, zero lingertime";
3968 			break;
3969 		}
3970 
3971 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3972 		/*
3973 		 * Abort connection if there is unread data queued.
3974 		 */
3975 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3976 			msg = "tcp_close, unread data";
3977 			break;
3978 		}
3979 		/*
3980 		 * tcp_hard_bound is now cleared thus all packets go through
3981 		 * tcp_lookup. This fact is used by tcp_detach below.
3982 		 *
3983 		 * We have done a qwait() above which could have possibly
3984 		 * drained more messages in turn causing transition to a
3985 		 * different state. Check whether we have to do the rest
3986 		 * of the processing or not.
3987 		 */
3988 		if (tcp->tcp_state <= TCPS_LISTEN)
3989 			break;
3990 
3991 		/*
3992 		 * Transmit the FIN before detaching the tcp_t.
3993 		 * After tcp_detach returns this queue/perimeter
3994 		 * no longer owns the tcp_t thus others can modify it.
3995 		 */
3996 		(void) tcp_xmit_end(tcp);
3997 
3998 		/*
3999 		 * If lingering on close then wait until the fin is acked,
4000 		 * the SO_LINGER time passes, or a reset is sent/received.
4001 		 */
4002 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4003 		    !(tcp->tcp_fin_acked) &&
4004 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4005 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4006 				tcp->tcp_client_errno = EWOULDBLOCK;
4007 			} else if (tcp->tcp_client_errno == 0) {
4008 
4009 				ASSERT(tcp->tcp_linger_tid == 0);
4010 
4011 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4012 				    tcp_close_linger_timeout,
4013 				    tcp->tcp_lingertime * hz);
4014 
4015 				/* tcp_close_linger_timeout will finish close */
4016 				if (tcp->tcp_linger_tid == 0)
4017 					tcp->tcp_client_errno = ENOSR;
4018 				else
4019 					return;
4020 			}
4021 
4022 			/*
4023 			 * Check if we need to detach or just close
4024 			 * the instance.
4025 			 */
4026 			if (tcp->tcp_state <= TCPS_LISTEN)
4027 				break;
4028 		}
4029 
4030 		/*
4031 		 * Make sure that no other thread will access the tcp_rq of
4032 		 * this instance (through lookups etc.) as tcp_rq will go
4033 		 * away shortly.
4034 		 */
4035 		tcp_acceptor_hash_remove(tcp);
4036 
4037 		mutex_enter(&tcp->tcp_non_sq_lock);
4038 		if (tcp->tcp_flow_stopped) {
4039 			tcp_clrqfull(tcp);
4040 		}
4041 		mutex_exit(&tcp->tcp_non_sq_lock);
4042 
4043 		if (tcp->tcp_timer_tid != 0) {
4044 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4045 			tcp->tcp_timer_tid = 0;
4046 		}
4047 		/*
4048 		 * Need to cancel those timers which will not be used when
4049 		 * TCP is detached.  This has to be done before the tcp_wq
4050 		 * is set to the global queue.
4051 		 */
4052 		tcp_timers_stop(tcp);
4053 
4054 		tcp->tcp_detached = B_TRUE;
4055 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4056 			tcp_time_wait_append(tcp);
4057 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4058 			ASSERT(connp->conn_ref >= 3);
4059 			goto finish;
4060 		}
4061 
4062 		/*
4063 		 * If delta is zero the timer event wasn't executed and was
4064 		 * successfully canceled. In this case we need to restart it
4065 		 * with the minimal delta possible.
4066 		 */
4067 		if (delta >= 0)
4068 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4069 			    delta ? delta : 1);
4070 
4071 		ASSERT(connp->conn_ref >= 3);
4072 		goto finish;
4073 	}
4074 
4075 	/* Detach did not complete. Still need to remove q from stream. */
4076 	if (msg) {
4077 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4078 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4079 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4080 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4081 		    tcp->tcp_state == TCPS_SYN_RCVD)
4082 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4083 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4084 	}
4085 
4086 	tcp_closei_local(tcp);
4087 	CONN_DEC_REF(connp);
4088 	ASSERT(connp->conn_ref >= 2);
4089 
4090 finish:
4091 	/*
4092 	 * Although packets are always processed on the correct
4093 	 * tcp's perimeter and access is serialized via squeue's,
4094 	 * IP still needs a queue when sending packets in time_wait
4095 	 * state so use WR(tcps_g_q) till ip_output() can be
4096 	 * changed to deal with just connp. For read side, we
4097 	 * could have set tcp_rq to NULL but there are some cases
4098 	 * in tcp_rput_data() from early days of this code which
4099 	 * do a putnext without checking if tcp is closed. Those
4100 	 * need to be identified before both tcp_rq and tcp_wq
4101 	 * can be set to NULL and tcps_g_q can disappear forever.
4102 	 */
4103 	mutex_enter(&tcp->tcp_closelock);
4104 	/*
4105 	 * Don't change the queues in the case of a listener that has
4106 	 * eagers in its q or q0. It could surprise the eagers.
4107 	 * Instead wait for the eagers outside the squeue.
4108 	 */
4109 	if (!tcp->tcp_wait_for_eagers) {
4110 		tcp->tcp_detached = B_TRUE;
4111 		/*
4112 		 * When default queue is closing we set tcps_g_q to NULL
4113 		 * after the close is done.
4114 		 */
4115 		ASSERT(tcps->tcps_g_q != NULL);
4116 		tcp->tcp_rq = tcps->tcps_g_q;
4117 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4118 	}
4119 
4120 	/* Signal tcp_close() to finish closing. */
4121 	tcp->tcp_closed = 1;
4122 	cv_signal(&tcp->tcp_closecv);
4123 	mutex_exit(&tcp->tcp_closelock);
4124 }
4125 
4126 
4127 /*
4128  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4129  * Some stream heads get upset if they see these later on as anything but NULL.
4130  */
4131 static void
4132 tcp_close_mpp(mblk_t **mpp)
4133 {
4134 	mblk_t	*mp;
4135 
4136 	if ((mp = *mpp) != NULL) {
4137 		do {
4138 			mp->b_next = NULL;
4139 			mp->b_prev = NULL;
4140 		} while ((mp = mp->b_cont) != NULL);
4141 
4142 		mp = *mpp;
4143 		*mpp = NULL;
4144 		freemsg(mp);
4145 	}
4146 }
4147 
4148 /* Do detached close. */
4149 static void
4150 tcp_close_detached(tcp_t *tcp)
4151 {
4152 	if (tcp->tcp_fused)
4153 		tcp_unfuse(tcp);
4154 
4155 	/*
4156 	 * Clustering code serializes TCP disconnect callbacks and
4157 	 * cluster tcp list walks by blocking a TCP disconnect callback
4158 	 * if a cluster tcp list walk is in progress. This ensures
4159 	 * accurate accounting of TCPs in the cluster code even though
4160 	 * the TCP list walk itself is not atomic.
4161 	 */
4162 	tcp_closei_local(tcp);
4163 	CONN_DEC_REF(tcp->tcp_connp);
4164 }
4165 
4166 /*
4167  * Stop all TCP timers, and free the timer mblks if requested.
4168  */
4169 void
4170 tcp_timers_stop(tcp_t *tcp)
4171 {
4172 	if (tcp->tcp_timer_tid != 0) {
4173 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4174 		tcp->tcp_timer_tid = 0;
4175 	}
4176 	if (tcp->tcp_ka_tid != 0) {
4177 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4178 		tcp->tcp_ka_tid = 0;
4179 	}
4180 	if (tcp->tcp_ack_tid != 0) {
4181 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4182 		tcp->tcp_ack_tid = 0;
4183 	}
4184 	if (tcp->tcp_push_tid != 0) {
4185 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4186 		tcp->tcp_push_tid = 0;
4187 	}
4188 }
4189 
4190 /*
4191  * The tcp_t is going away. Remove it from all lists and set it
4192  * to TCPS_CLOSED. The freeing up of memory is deferred until
4193  * tcp_inactive. This is needed since a thread in tcp_rput might have
4194  * done a CONN_INC_REF on this structure before it was removed from the
4195  * hashes.
4196  */
4197 static void
4198 tcp_closei_local(tcp_t *tcp)
4199 {
4200 	ire_t 	*ire;
4201 	conn_t	*connp = tcp->tcp_connp;
4202 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4203 
4204 	if (!TCP_IS_SOCKET(tcp))
4205 		tcp_acceptor_hash_remove(tcp);
4206 
4207 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4208 	tcp->tcp_ibsegs = 0;
4209 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4210 	tcp->tcp_obsegs = 0;
4211 
4212 	/*
4213 	 * If we are an eager connection hanging off a listener that
4214 	 * hasn't formally accepted the connection yet, get off his
4215 	 * list and blow off any data that we have accumulated.
4216 	 */
4217 	if (tcp->tcp_listener != NULL) {
4218 		tcp_t	*listener = tcp->tcp_listener;
4219 		mutex_enter(&listener->tcp_eager_lock);
4220 		/*
4221 		 * tcp_tconnind_started == B_TRUE means that the
4222 		 * conn_ind has already gone to listener. At
4223 		 * this point, eager will be closed but we
4224 		 * leave it in listeners eager list so that
4225 		 * if listener decides to close without doing
4226 		 * accept, we can clean this up. In tcp_wput_accept
4227 		 * we take care of the case of accept on closed
4228 		 * eager.
4229 		 */
4230 		if (!tcp->tcp_tconnind_started) {
4231 			tcp_eager_unlink(tcp);
4232 			mutex_exit(&listener->tcp_eager_lock);
4233 			/*
4234 			 * We don't want to have any pointers to the
4235 			 * listener queue, after we have released our
4236 			 * reference on the listener
4237 			 */
4238 			ASSERT(tcps->tcps_g_q != NULL);
4239 			tcp->tcp_rq = tcps->tcps_g_q;
4240 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4241 			CONN_DEC_REF(listener->tcp_connp);
4242 		} else {
4243 			mutex_exit(&listener->tcp_eager_lock);
4244 		}
4245 	}
4246 
4247 	/* Stop all the timers */
4248 	tcp_timers_stop(tcp);
4249 
4250 	if (tcp->tcp_state == TCPS_LISTEN) {
4251 		if (tcp->tcp_ip_addr_cache) {
4252 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4253 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4254 			tcp->tcp_ip_addr_cache = NULL;
4255 		}
4256 	}
4257 	mutex_enter(&tcp->tcp_non_sq_lock);
4258 	if (tcp->tcp_flow_stopped)
4259 		tcp_clrqfull(tcp);
4260 	mutex_exit(&tcp->tcp_non_sq_lock);
4261 
4262 	tcp_bind_hash_remove(tcp);
4263 	/*
4264 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4265 	 * is trying to remove this tcp from the time wait list, we will
4266 	 * block in tcp_time_wait_remove while trying to acquire the
4267 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4268 	 * requires the ipcl_hash_remove to be ordered after the
4269 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4270 	 */
4271 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4272 		(void) tcp_time_wait_remove(tcp, NULL);
4273 	CL_INET_DISCONNECT(connp, tcp);
4274 	ipcl_hash_remove(connp);
4275 
4276 	/*
4277 	 * Delete the cached ire in conn_ire_cache and also mark
4278 	 * the conn as CONDEMNED
4279 	 */
4280 	mutex_enter(&connp->conn_lock);
4281 	connp->conn_state_flags |= CONN_CONDEMNED;
4282 	ire = connp->conn_ire_cache;
4283 	connp->conn_ire_cache = NULL;
4284 	mutex_exit(&connp->conn_lock);
4285 	if (ire != NULL)
4286 		IRE_REFRELE_NOTR(ire);
4287 
4288 	/* Need to cleanup any pending ioctls */
4289 	ASSERT(tcp->tcp_time_wait_next == NULL);
4290 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4291 	ASSERT(tcp->tcp_time_wait_expire == 0);
4292 	tcp->tcp_state = TCPS_CLOSED;
4293 
4294 	/* Release any SSL context */
4295 	if (tcp->tcp_kssl_ent != NULL) {
4296 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4297 		tcp->tcp_kssl_ent = NULL;
4298 	}
4299 	if (tcp->tcp_kssl_ctx != NULL) {
4300 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4301 		tcp->tcp_kssl_ctx = NULL;
4302 	}
4303 	tcp->tcp_kssl_pending = B_FALSE;
4304 
4305 	tcp_ipsec_cleanup(tcp);
4306 }
4307 
4308 /*
4309  * tcp is dying (called from ipcl_conn_destroy and error cases).
4310  * Free the tcp_t in either case.
4311  */
4312 void
4313 tcp_free(tcp_t *tcp)
4314 {
4315 	mblk_t	*mp;
4316 	ip6_pkt_t	*ipp;
4317 
4318 	ASSERT(tcp != NULL);
4319 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4320 
4321 	tcp->tcp_rq = NULL;
4322 	tcp->tcp_wq = NULL;
4323 
4324 	tcp_close_mpp(&tcp->tcp_xmit_head);
4325 	tcp_close_mpp(&tcp->tcp_reass_head);
4326 	if (tcp->tcp_rcv_list != NULL) {
4327 		/* Free b_next chain */
4328 		tcp_close_mpp(&tcp->tcp_rcv_list);
4329 	}
4330 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4331 		freemsg(mp);
4332 	}
4333 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4334 		freemsg(mp);
4335 	}
4336 
4337 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4338 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4339 		freeb(tcp->tcp_fused_sigurg_mp);
4340 		tcp->tcp_fused_sigurg_mp = NULL;
4341 	}
4342 
4343 	if (tcp->tcp_ordrel_mp != NULL) {
4344 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4345 		freeb(tcp->tcp_ordrel_mp);
4346 		tcp->tcp_ordrel_mp = NULL;
4347 	}
4348 
4349 	if (tcp->tcp_sack_info != NULL) {
4350 		if (tcp->tcp_notsack_list != NULL) {
4351 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4352 		}
4353 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4354 	}
4355 
4356 	if (tcp->tcp_hopopts != NULL) {
4357 		mi_free(tcp->tcp_hopopts);
4358 		tcp->tcp_hopopts = NULL;
4359 		tcp->tcp_hopoptslen = 0;
4360 	}
4361 	ASSERT(tcp->tcp_hopoptslen == 0);
4362 	if (tcp->tcp_dstopts != NULL) {
4363 		mi_free(tcp->tcp_dstopts);
4364 		tcp->tcp_dstopts = NULL;
4365 		tcp->tcp_dstoptslen = 0;
4366 	}
4367 	ASSERT(tcp->tcp_dstoptslen == 0);
4368 	if (tcp->tcp_rtdstopts != NULL) {
4369 		mi_free(tcp->tcp_rtdstopts);
4370 		tcp->tcp_rtdstopts = NULL;
4371 		tcp->tcp_rtdstoptslen = 0;
4372 	}
4373 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4374 	if (tcp->tcp_rthdr != NULL) {
4375 		mi_free(tcp->tcp_rthdr);
4376 		tcp->tcp_rthdr = NULL;
4377 		tcp->tcp_rthdrlen = 0;
4378 	}
4379 	ASSERT(tcp->tcp_rthdrlen == 0);
4380 
4381 	ipp = &tcp->tcp_sticky_ipp;
4382 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4383 	    IPPF_RTHDR))
4384 		ip6_pkt_free(ipp);
4385 
4386 	/*
4387 	 * Free memory associated with the tcp/ip header template.
4388 	 */
4389 
4390 	if (tcp->tcp_iphc != NULL)
4391 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4392 
4393 	/*
4394 	 * Following is really a blowing away a union.
4395 	 * It happens to have exactly two members of identical size
4396 	 * the following code is enough.
4397 	 */
4398 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4399 }
4400 
4401 
4402 /*
4403  * Put a connection confirmation message upstream built from the
4404  * address information within 'iph' and 'tcph'.  Report our success or failure.
4405  */
4406 static boolean_t
4407 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4408     mblk_t **defermp)
4409 {
4410 	sin_t	sin;
4411 	sin6_t	sin6;
4412 	mblk_t	*mp;
4413 	char	*optp = NULL;
4414 	int	optlen = 0;
4415 
4416 	if (defermp != NULL)
4417 		*defermp = NULL;
4418 
4419 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4420 		/*
4421 		 * Return in T_CONN_CON results of option negotiation through
4422 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4423 		 * negotiation, then what is received from remote end needs
4424 		 * to be taken into account but there is no such thing (yet?)
4425 		 * in our TCP/IP.
4426 		 * Note: We do not use mi_offset_param() here as
4427 		 * tcp_opts_conn_req contents do not directly come from
4428 		 * an application and are either generated in kernel or
4429 		 * from user input that was already verified.
4430 		 */
4431 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4432 		optp = (char *)(mp->b_rptr +
4433 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4434 		optlen = (int)
4435 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4436 	}
4437 
4438 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4439 		ipha_t *ipha = (ipha_t *)iphdr;
4440 
4441 		/* packet is IPv4 */
4442 		if (tcp->tcp_family == AF_INET) {
4443 			sin = sin_null;
4444 			sin.sin_addr.s_addr = ipha->ipha_src;
4445 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4446 			sin.sin_family = AF_INET;
4447 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4448 			    (int)sizeof (sin_t), optp, optlen);
4449 		} else {
4450 			sin6 = sin6_null;
4451 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4452 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4453 			sin6.sin6_family = AF_INET6;
4454 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4455 			    (int)sizeof (sin6_t), optp, optlen);
4456 
4457 		}
4458 	} else {
4459 		ip6_t	*ip6h = (ip6_t *)iphdr;
4460 
4461 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4462 		ASSERT(tcp->tcp_family == AF_INET6);
4463 		sin6 = sin6_null;
4464 		sin6.sin6_addr = ip6h->ip6_src;
4465 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4466 		sin6.sin6_family = AF_INET6;
4467 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4468 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4469 		    (int)sizeof (sin6_t), optp, optlen);
4470 	}
4471 
4472 	if (!mp)
4473 		return (B_FALSE);
4474 
4475 	mblk_copycred(mp, idmp);
4476 
4477 	if (defermp == NULL) {
4478 		conn_t *connp = tcp->tcp_connp;
4479 		if (IPCL_IS_NONSTR(connp)) {
4480 			cred_t *cr;
4481 			pid_t cpid;
4482 
4483 			cr = msg_getcred(mp, &cpid);
4484 			(*connp->conn_upcalls->su_connected)
4485 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4486 			    cpid);
4487 			freemsg(mp);
4488 		} else {
4489 			putnext(tcp->tcp_rq, mp);
4490 		}
4491 	} else {
4492 		*defermp = mp;
4493 	}
4494 
4495 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4496 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4497 	return (B_TRUE);
4498 }
4499 
4500 /*
4501  * Defense for the SYN attack -
4502  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4503  *    one from the list of droppable eagers. This list is a subset of q0.
4504  *    see comments before the definition of MAKE_DROPPABLE().
4505  * 2. Don't drop a SYN request before its first timeout. This gives every
4506  *    request at least til the first timeout to complete its 3-way handshake.
4507  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4508  *    requests currently on the queue that has timed out. This will be used
4509  *    as an indicator of whether an attack is under way, so that appropriate
4510  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4511  *    either when eager goes into ESTABLISHED, or gets freed up.)
4512  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4513  *    # of timeout drops back to <= q0len/32 => SYN alert off
4514  */
4515 static boolean_t
4516 tcp_drop_q0(tcp_t *tcp)
4517 {
4518 	tcp_t	*eager;
4519 	mblk_t	*mp;
4520 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4521 
4522 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4523 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4524 
4525 	/* Pick oldest eager from the list of droppable eagers */
4526 	eager = tcp->tcp_eager_prev_drop_q0;
4527 
4528 	/* If list is empty. return B_FALSE */
4529 	if (eager == tcp) {
4530 		return (B_FALSE);
4531 	}
4532 
4533 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4534 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4535 		return (B_FALSE);
4536 
4537 	/*
4538 	 * Take this eager out from the list of droppable eagers since we are
4539 	 * going to drop it.
4540 	 */
4541 	MAKE_UNDROPPABLE(eager);
4542 
4543 	if (tcp->tcp_debug) {
4544 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4545 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4546 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4547 		    tcp->tcp_conn_req_cnt_q0,
4548 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4549 	}
4550 
4551 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4552 
4553 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4554 	CONN_INC_REF(eager->tcp_connp);
4555 
4556 	/* Mark the IRE created for this SYN request temporary */
4557 	tcp_ip_ire_mark_advice(eager);
4558 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4559 	    tcp_clean_death_wrapper, eager->tcp_connp,
4560 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4561 
4562 	return (B_TRUE);
4563 }
4564 
4565 int
4566 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4567     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4568 {
4569 	tcp_t 		*ltcp = lconnp->conn_tcp;
4570 	tcp_t		*tcp = connp->conn_tcp;
4571 	mblk_t		*tpi_mp;
4572 	ipha_t		*ipha;
4573 	ip6_t		*ip6h;
4574 	sin6_t 		sin6;
4575 	in6_addr_t 	v6dst;
4576 	int		err;
4577 	int		ifindex = 0;
4578 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4579 
4580 	if (ipvers == IPV4_VERSION) {
4581 		ipha = (ipha_t *)mp->b_rptr;
4582 
4583 		connp->conn_send = ip_output;
4584 		connp->conn_recv = tcp_input;
4585 
4586 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4587 		    &connp->conn_bound_source_v6);
4588 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4589 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4590 
4591 		sin6 = sin6_null;
4592 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4593 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4594 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4595 		sin6.sin6_family = AF_INET6;
4596 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4597 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4598 		if (tcp->tcp_recvdstaddr) {
4599 			sin6_t	sin6d;
4600 
4601 			sin6d = sin6_null;
4602 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4603 			    &sin6d.sin6_addr);
4604 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4605 			sin6d.sin6_family = AF_INET;
4606 			tpi_mp = mi_tpi_extconn_ind(NULL,
4607 			    (char *)&sin6d, sizeof (sin6_t),
4608 			    (char *)&tcp,
4609 			    (t_scalar_t)sizeof (intptr_t),
4610 			    (char *)&sin6d, sizeof (sin6_t),
4611 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4612 		} else {
4613 			tpi_mp = mi_tpi_conn_ind(NULL,
4614 			    (char *)&sin6, sizeof (sin6_t),
4615 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4616 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4617 		}
4618 	} else {
4619 		ip6h = (ip6_t *)mp->b_rptr;
4620 
4621 		connp->conn_send = ip_output_v6;
4622 		connp->conn_recv = tcp_input;
4623 
4624 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4625 		connp->conn_srcv6 = ip6h->ip6_dst;
4626 		connp->conn_remv6 = ip6h->ip6_src;
4627 
4628 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4629 		ifindex = (int)DB_CKSUMSTUFF(mp);
4630 		DB_CKSUMSTUFF(mp) = 0;
4631 
4632 		sin6 = sin6_null;
4633 		sin6.sin6_addr = ip6h->ip6_src;
4634 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4635 		sin6.sin6_family = AF_INET6;
4636 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4637 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4638 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4639 
4640 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4641 			/* Pass up the scope_id of remote addr */
4642 			sin6.sin6_scope_id = ifindex;
4643 		} else {
4644 			sin6.sin6_scope_id = 0;
4645 		}
4646 		if (tcp->tcp_recvdstaddr) {
4647 			sin6_t	sin6d;
4648 
4649 			sin6d = sin6_null;
4650 			sin6.sin6_addr = ip6h->ip6_dst;
4651 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4652 			sin6d.sin6_family = AF_INET;
4653 			tpi_mp = mi_tpi_extconn_ind(NULL,
4654 			    (char *)&sin6d, sizeof (sin6_t),
4655 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4656 			    (char *)&sin6d, sizeof (sin6_t),
4657 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4658 		} else {
4659 			tpi_mp = mi_tpi_conn_ind(NULL,
4660 			    (char *)&sin6, sizeof (sin6_t),
4661 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4662 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4663 		}
4664 	}
4665 
4666 	if (tpi_mp == NULL)
4667 		return (ENOMEM);
4668 
4669 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4670 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4671 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4672 	connp->conn_fully_bound = B_FALSE;
4673 
4674 	/* Inherit information from the "parent" */
4675 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4676 	tcp->tcp_family = ltcp->tcp_family;
4677 
4678 	tcp->tcp_wq = ltcp->tcp_wq;
4679 	tcp->tcp_rq = ltcp->tcp_rq;
4680 
4681 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4682 	tcp->tcp_detached = B_TRUE;
4683 	SOCK_CONNID_INIT(tcp->tcp_connid);
4684 	if ((err = tcp_init_values(tcp)) != 0) {
4685 		freemsg(tpi_mp);
4686 		return (err);
4687 	}
4688 
4689 	if (ipvers == IPV4_VERSION) {
4690 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4691 			freemsg(tpi_mp);
4692 			return (err);
4693 		}
4694 		ASSERT(tcp->tcp_ipha != NULL);
4695 	} else {
4696 		/* ifindex must be already set */
4697 		ASSERT(ifindex != 0);
4698 
4699 		if (ltcp->tcp_bound_if != 0)
4700 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4701 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4702 			tcp->tcp_bound_if = ifindex;
4703 
4704 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4705 		tcp->tcp_recvifindex = 0;
4706 		tcp->tcp_recvhops = 0xffffffffU;
4707 		ASSERT(tcp->tcp_ip6h != NULL);
4708 	}
4709 
4710 	tcp->tcp_lport = ltcp->tcp_lport;
4711 
4712 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4713 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4714 			/*
4715 			 * Listener had options of some sort; eager inherits.
4716 			 * Free up the eager template and allocate one
4717 			 * of the right size.
4718 			 */
4719 			if (tcp->tcp_hdr_grown) {
4720 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4721 			} else {
4722 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4723 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4724 			}
4725 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4726 			    KM_NOSLEEP);
4727 			if (tcp->tcp_iphc == NULL) {
4728 				tcp->tcp_iphc_len = 0;
4729 				freemsg(tpi_mp);
4730 				return (ENOMEM);
4731 			}
4732 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4733 			tcp->tcp_hdr_grown = B_TRUE;
4734 		}
4735 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4736 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4737 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4738 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4739 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4740 
4741 		/*
4742 		 * Copy the IP+TCP header template from listener to eager
4743 		 */
4744 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4745 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4746 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4747 			    IPPROTO_RAW) {
4748 				tcp->tcp_ip6h =
4749 				    (ip6_t *)(tcp->tcp_iphc +
4750 				    sizeof (ip6i_t));
4751 			} else {
4752 				tcp->tcp_ip6h =
4753 				    (ip6_t *)(tcp->tcp_iphc);
4754 			}
4755 			tcp->tcp_ipha = NULL;
4756 		} else {
4757 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4758 			tcp->tcp_ip6h = NULL;
4759 		}
4760 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4761 		    tcp->tcp_ip_hdr_len);
4762 	} else {
4763 		/*
4764 		 * only valid case when ipversion of listener and
4765 		 * eager differ is when listener is IPv6 and
4766 		 * eager is IPv4.
4767 		 * Eager header template has been initialized to the
4768 		 * maximum v4 header sizes, which includes space for
4769 		 * TCP and IP options.
4770 		 */
4771 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4772 		    (tcp->tcp_ipversion == IPV4_VERSION));
4773 		ASSERT(tcp->tcp_iphc_len >=
4774 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4775 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4776 		/* copy IP header fields individually */
4777 		tcp->tcp_ipha->ipha_ttl =
4778 		    ltcp->tcp_ip6h->ip6_hops;
4779 		bcopy(ltcp->tcp_tcph->th_lport,
4780 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4781 	}
4782 
4783 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4784 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4785 	    sizeof (in_port_t));
4786 
4787 	if (ltcp->tcp_lport == 0) {
4788 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4789 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4790 		    sizeof (in_port_t));
4791 	}
4792 
4793 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4794 		ASSERT(ipha != NULL);
4795 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4796 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4797 
4798 		/* Source routing option copyover (reverse it) */
4799 		if (tcps->tcps_rev_src_routes)
4800 			tcp_opt_reverse(tcp, ipha);
4801 	} else {
4802 		ASSERT(ip6h != NULL);
4803 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4804 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4805 	}
4806 
4807 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4808 	ASSERT(!tcp->tcp_tconnind_started);
4809 	/*
4810 	 * If the SYN contains a credential, it's a loopback packet; attach
4811 	 * the credential to the TPI message.
4812 	 */
4813 	mblk_copycred(tpi_mp, idmp);
4814 
4815 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4816 
4817 	/* Inherit the listener's SSL protection state */
4818 
4819 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4820 		kssl_hold_ent(tcp->tcp_kssl_ent);
4821 		tcp->tcp_kssl_pending = B_TRUE;
4822 	}
4823 
4824 	/* Inherit the listener's non-STREAMS flag */
4825 	if (IPCL_IS_NONSTR(lconnp)) {
4826 		connp->conn_flags |= IPCL_NONSTR;
4827 	}
4828 
4829 	return (0);
4830 }
4831 
4832 
4833 int
4834 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4835     tcph_t *tcph, mblk_t *idmp)
4836 {
4837 	tcp_t 		*ltcp = lconnp->conn_tcp;
4838 	tcp_t		*tcp = connp->conn_tcp;
4839 	sin_t		sin;
4840 	mblk_t		*tpi_mp = NULL;
4841 	int		err;
4842 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4843 
4844 	sin = sin_null;
4845 	sin.sin_addr.s_addr = ipha->ipha_src;
4846 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4847 	sin.sin_family = AF_INET;
4848 	if (ltcp->tcp_recvdstaddr) {
4849 		sin_t	sind;
4850 
4851 		sind = sin_null;
4852 		sind.sin_addr.s_addr = ipha->ipha_dst;
4853 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4854 		sind.sin_family = AF_INET;
4855 		tpi_mp = mi_tpi_extconn_ind(NULL,
4856 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4857 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4858 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4859 	} else {
4860 		tpi_mp = mi_tpi_conn_ind(NULL,
4861 		    (char *)&sin, sizeof (sin_t),
4862 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4863 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4864 	}
4865 
4866 	if (tpi_mp == NULL) {
4867 		return (ENOMEM);
4868 	}
4869 
4870 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4871 	connp->conn_send = ip_output;
4872 	connp->conn_recv = tcp_input;
4873 	connp->conn_fully_bound = B_FALSE;
4874 
4875 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4876 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4877 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4878 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4879 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4880 
4881 	/* Inherit information from the "parent" */
4882 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4883 	tcp->tcp_family = ltcp->tcp_family;
4884 	tcp->tcp_wq = ltcp->tcp_wq;
4885 	tcp->tcp_rq = ltcp->tcp_rq;
4886 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4887 	tcp->tcp_detached = B_TRUE;
4888 	SOCK_CONNID_INIT(tcp->tcp_connid);
4889 	if ((err = tcp_init_values(tcp)) != 0) {
4890 		freemsg(tpi_mp);
4891 		return (err);
4892 	}
4893 
4894 	/*
4895 	 * Let's make sure that eager tcp template has enough space to
4896 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4897 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4898 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4899 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4900 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4901 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4902 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4903 	 */
4904 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4905 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4906 
4907 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4908 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4909 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4910 	tcp->tcp_ttl = ltcp->tcp_ttl;
4911 	tcp->tcp_tos = ltcp->tcp_tos;
4912 
4913 	/* Copy the IP+TCP header template from listener to eager */
4914 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4915 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4916 	tcp->tcp_ip6h = NULL;
4917 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4918 	    tcp->tcp_ip_hdr_len);
4919 
4920 	/* Initialize the IP addresses and Ports */
4921 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4922 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4923 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4924 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4925 
4926 	/* Source routing option copyover (reverse it) */
4927 	if (tcps->tcps_rev_src_routes)
4928 		tcp_opt_reverse(tcp, ipha);
4929 
4930 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4931 	ASSERT(!tcp->tcp_tconnind_started);
4932 
4933 	/*
4934 	 * If the SYN contains a credential, it's a loopback packet; attach
4935 	 * the credential to the TPI message.
4936 	 */
4937 	mblk_copycred(tpi_mp, idmp);
4938 
4939 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4940 
4941 	/* Inherit the listener's SSL protection state */
4942 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4943 		kssl_hold_ent(tcp->tcp_kssl_ent);
4944 		tcp->tcp_kssl_pending = B_TRUE;
4945 	}
4946 
4947 	/* Inherit the listener's non-STREAMS flag */
4948 	if (IPCL_IS_NONSTR(lconnp)) {
4949 		connp->conn_flags |= IPCL_NONSTR;
4950 	}
4951 
4952 	return (0);
4953 }
4954 
4955 /*
4956  * sets up conn for ipsec.
4957  * if the first mblk is M_CTL it is consumed and mpp is updated.
4958  * in case of error mpp is freed.
4959  */
4960 conn_t *
4961 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4962 {
4963 	conn_t 		*connp = tcp->tcp_connp;
4964 	conn_t 		*econnp;
4965 	squeue_t 	*new_sqp;
4966 	mblk_t 		*first_mp = *mpp;
4967 	mblk_t		*mp = *mpp;
4968 	boolean_t	mctl_present = B_FALSE;
4969 	uint_t		ipvers;
4970 
4971 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
4972 	if (econnp == NULL) {
4973 		freemsg(first_mp);
4974 		return (NULL);
4975 	}
4976 	if (DB_TYPE(mp) == M_CTL) {
4977 		if (mp->b_cont == NULL ||
4978 		    mp->b_cont->b_datap->db_type != M_DATA) {
4979 			freemsg(first_mp);
4980 			return (NULL);
4981 		}
4982 		mp = mp->b_cont;
4983 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4984 			freemsg(first_mp);
4985 			return (NULL);
4986 		}
4987 
4988 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4989 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4990 		mctl_present = B_TRUE;
4991 	} else {
4992 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4993 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4994 	}
4995 
4996 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4997 	DB_CKSUMSTART(mp) = 0;
4998 
4999 	ASSERT(OK_32PTR(mp->b_rptr));
5000 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5001 	if (ipvers == IPV4_VERSION) {
5002 		uint16_t  	*up;
5003 		uint32_t	ports;
5004 		ipha_t		*ipha;
5005 
5006 		ipha = (ipha_t *)mp->b_rptr;
5007 		up = (uint16_t *)((uchar_t *)ipha +
5008 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5009 		ports = *(uint32_t *)up;
5010 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5011 		    ipha->ipha_dst, ipha->ipha_src, ports);
5012 	} else {
5013 		uint16_t  	*up;
5014 		uint32_t	ports;
5015 		uint16_t	ip_hdr_len;
5016 		uint8_t		*nexthdrp;
5017 		ip6_t 		*ip6h;
5018 		tcph_t		*tcph;
5019 
5020 		ip6h = (ip6_t *)mp->b_rptr;
5021 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5022 			ip_hdr_len = IPV6_HDR_LEN;
5023 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5024 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5025 			CONN_DEC_REF(econnp);
5026 			freemsg(first_mp);
5027 			return (NULL);
5028 		}
5029 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5030 		up = (uint16_t *)tcph->th_lport;
5031 		ports = *(uint32_t *)up;
5032 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5033 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5034 	}
5035 
5036 	/*
5037 	 * The caller already ensured that there is a sqp present.
5038 	 */
5039 	econnp->conn_sqp = new_sqp;
5040 	econnp->conn_initial_sqp = new_sqp;
5041 
5042 	if (connp->conn_policy != NULL) {
5043 		ipsec_in_t *ii;
5044 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5045 		ASSERT(ii->ipsec_in_policy == NULL);
5046 		IPPH_REFHOLD(connp->conn_policy);
5047 		ii->ipsec_in_policy = connp->conn_policy;
5048 
5049 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5050 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5051 			CONN_DEC_REF(econnp);
5052 			freemsg(first_mp);
5053 			return (NULL);
5054 		}
5055 	}
5056 
5057 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5058 		CONN_DEC_REF(econnp);
5059 		freemsg(first_mp);
5060 		return (NULL);
5061 	}
5062 
5063 	/*
5064 	 * If we know we have some policy, pass the "IPSEC"
5065 	 * options size TCP uses this adjust the MSS.
5066 	 */
5067 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5068 	if (mctl_present) {
5069 		freeb(first_mp);
5070 		*mpp = mp;
5071 	}
5072 
5073 	return (econnp);
5074 }
5075 
5076 /*
5077  * tcp_get_conn/tcp_free_conn
5078  *
5079  * tcp_get_conn is used to get a clean tcp connection structure.
5080  * It tries to reuse the connections put on the freelist by the
5081  * time_wait_collector failing which it goes to kmem_cache. This
5082  * way has two benefits compared to just allocating from and
5083  * freeing to kmem_cache.
5084  * 1) The time_wait_collector can free (which includes the cleanup)
5085  * outside the squeue. So when the interrupt comes, we have a clean
5086  * connection sitting in the freelist. Obviously, this buys us
5087  * performance.
5088  *
5089  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5090  * has multiple disadvantages - tying up the squeue during alloc, and the
5091  * fact that IPSec policy initialization has to happen here which
5092  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5093  * But allocating the conn/tcp in IP land is also not the best since
5094  * we can't check the 'q' and 'q0' which are protected by squeue and
5095  * blindly allocate memory which might have to be freed here if we are
5096  * not allowed to accept the connection. By using the freelist and
5097  * putting the conn/tcp back in freelist, we don't pay a penalty for
5098  * allocating memory without checking 'q/q0' and freeing it if we can't
5099  * accept the connection.
5100  *
5101  * Care should be taken to put the conn back in the same squeue's freelist
5102  * from which it was allocated. Best results are obtained if conn is
5103  * allocated from listener's squeue and freed to the same. Time wait
5104  * collector will free up the freelist is the connection ends up sitting
5105  * there for too long.
5106  */
5107 void *
5108 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5109 {
5110 	tcp_t			*tcp = NULL;
5111 	conn_t			*connp = NULL;
5112 	squeue_t		*sqp = (squeue_t *)arg;
5113 	tcp_squeue_priv_t 	*tcp_time_wait;
5114 	netstack_t		*ns;
5115 
5116 	tcp_time_wait =
5117 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5118 
5119 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5120 	tcp = tcp_time_wait->tcp_free_list;
5121 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5122 	if (tcp != NULL) {
5123 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5124 		tcp_time_wait->tcp_free_list_cnt--;
5125 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5126 		tcp->tcp_time_wait_next = NULL;
5127 		connp = tcp->tcp_connp;
5128 		connp->conn_flags |= IPCL_REUSED;
5129 
5130 		ASSERT(tcp->tcp_tcps == NULL);
5131 		ASSERT(connp->conn_netstack == NULL);
5132 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5133 		ns = tcps->tcps_netstack;
5134 		netstack_hold(ns);
5135 		connp->conn_netstack = ns;
5136 		tcp->tcp_tcps = tcps;
5137 		TCPS_REFHOLD(tcps);
5138 		ipcl_globalhash_insert(connp);
5139 		return ((void *)connp);
5140 	}
5141 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5142 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5143 	    tcps->tcps_netstack)) == NULL)
5144 		return (NULL);
5145 	tcp = connp->conn_tcp;
5146 	/*
5147 	 * Pre-allocate the tcp_rsrv_mp.  This mblk will not be freed
5148 	 * until this conn_t/tcp_t is freed at ipcl_conn_destroy().
5149 	 */
5150 	if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) {
5151 		ipcl_conn_destroy(connp);
5152 		return (NULL);
5153 	}
5154 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5155 	tcp->tcp_tcps = tcps;
5156 	TCPS_REFHOLD(tcps);
5157 
5158 	return ((void *)connp);
5159 }
5160 
5161 /*
5162  * Update the cached label for the given tcp_t.  This should be called once per
5163  * connection, and before any packets are sent or tcp_process_options is
5164  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5165  */
5166 static boolean_t
5167 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5168 {
5169 	conn_t *connp = tcp->tcp_connp;
5170 
5171 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5172 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5173 		int added;
5174 
5175 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5176 		    connp->conn_mac_exempt,
5177 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5178 			return (B_FALSE);
5179 
5180 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5181 		if (added == -1)
5182 			return (B_FALSE);
5183 		tcp->tcp_hdr_len += added;
5184 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5185 		tcp->tcp_ip_hdr_len += added;
5186 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5187 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5188 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5189 			    tcp->tcp_hdr_len);
5190 			if (added == -1)
5191 				return (B_FALSE);
5192 			tcp->tcp_hdr_len += added;
5193 			tcp->tcp_tcph = (tcph_t *)
5194 			    ((uchar_t *)tcp->tcp_tcph + added);
5195 			tcp->tcp_ip_hdr_len += added;
5196 		}
5197 	} else {
5198 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5199 
5200 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5201 		    connp->conn_mac_exempt,
5202 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5203 			return (B_FALSE);
5204 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5205 		    &tcp->tcp_label_len, optbuf) != 0)
5206 			return (B_FALSE);
5207 		if (tcp_build_hdrs(tcp) != 0)
5208 			return (B_FALSE);
5209 	}
5210 
5211 	connp->conn_ulp_labeled = 1;
5212 
5213 	return (B_TRUE);
5214 }
5215 
5216 /* BEGIN CSTYLED */
5217 /*
5218  *
5219  * The sockfs ACCEPT path:
5220  * =======================
5221  *
5222  * The eager is now established in its own perimeter as soon as SYN is
5223  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5224  * completes the accept processing on the acceptor STREAM. The sending
5225  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5226  * listener but a TLI/XTI listener completes the accept processing
5227  * on the listener perimeter.
5228  *
5229  * Common control flow for 3 way handshake:
5230  * ----------------------------------------
5231  *
5232  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5233  *					-> tcp_conn_request()
5234  *
5235  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5236  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5237  *
5238  * Sockfs ACCEPT Path:
5239  * -------------------
5240  *
5241  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5242  * as STREAM entry point)
5243  *
5244  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5245  *
5246  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5247  * association (we are not behind eager's squeue but sockfs is protecting us
5248  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5249  * is changed to point at tcp_wput().
5250  *
5251  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5252  * listener (done on listener's perimeter).
5253  *
5254  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5255  * accept.
5256  *
5257  * TLI/XTI client ACCEPT path:
5258  * ---------------------------
5259  *
5260  * soaccept() sends T_CONN_RES on the listener STREAM.
5261  *
5262  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5263  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5264  *
5265  * Locks:
5266  * ======
5267  *
5268  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5269  * and listeners->tcp_eager_next_q.
5270  *
5271  * Referencing:
5272  * ============
5273  *
5274  * 1) We start out in tcp_conn_request by eager placing a ref on
5275  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5276  *
5277  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5278  * doing so we place a ref on the eager. This ref is finally dropped at the
5279  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5280  * reference is dropped by the squeue framework.
5281  *
5282  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5283  *
5284  * The reference must be released by the same entity that added the reference
5285  * In the above scheme, the eager is the entity that adds and releases the
5286  * references. Note that tcp_accept_finish executes in the squeue of the eager
5287  * (albeit after it is attached to the acceptor stream). Though 1. executes
5288  * in the listener's squeue, the eager is nascent at this point and the
5289  * reference can be considered to have been added on behalf of the eager.
5290  *
5291  * Eager getting a Reset or listener closing:
5292  * ==========================================
5293  *
5294  * Once the listener and eager are linked, the listener never does the unlink.
5295  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5296  * a message on all eager perimeter. The eager then does the unlink, clears
5297  * any pointers to the listener's queue and drops the reference to the
5298  * listener. The listener waits in tcp_close outside the squeue until its
5299  * refcount has dropped to 1. This ensures that the listener has waited for
5300  * all eagers to clear their association with the listener.
5301  *
5302  * Similarly, if eager decides to go away, it can unlink itself and close.
5303  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5304  * the reference to eager is still valid because of the extra ref we put
5305  * in tcp_send_conn_ind.
5306  *
5307  * Listener can always locate the eager under the protection
5308  * of the listener->tcp_eager_lock, and then do a refhold
5309  * on the eager during the accept processing.
5310  *
5311  * The acceptor stream accesses the eager in the accept processing
5312  * based on the ref placed on eager before sending T_conn_ind.
5313  * The only entity that can negate this refhold is a listener close
5314  * which is mutually exclusive with an active acceptor stream.
5315  *
5316  * Eager's reference on the listener
5317  * ===================================
5318  *
5319  * If the accept happens (even on a closed eager) the eager drops its
5320  * reference on the listener at the start of tcp_accept_finish. If the
5321  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5322  * the reference is dropped in tcp_closei_local. If the listener closes,
5323  * the reference is dropped in tcp_eager_kill. In all cases the reference
5324  * is dropped while executing in the eager's context (squeue).
5325  */
5326 /* END CSTYLED */
5327 
5328 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5329 
5330 /*
5331  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5332  * tcp_rput_data will not see any SYN packets.
5333  */
5334 /* ARGSUSED */
5335 void
5336 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5337 {
5338 	tcph_t		*tcph;
5339 	uint32_t	seg_seq;
5340 	tcp_t		*eager;
5341 	uint_t		ipvers;
5342 	ipha_t		*ipha;
5343 	ip6_t		*ip6h;
5344 	int		err;
5345 	conn_t		*econnp = NULL;
5346 	squeue_t	*new_sqp;
5347 	mblk_t		*mp1;
5348 	uint_t 		ip_hdr_len;
5349 	conn_t		*connp = (conn_t *)arg;
5350 	tcp_t		*tcp = connp->conn_tcp;
5351 	cred_t		*credp;
5352 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5353 	ip_stack_t	*ipst;
5354 
5355 	if (tcp->tcp_state != TCPS_LISTEN)
5356 		goto error2;
5357 
5358 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5359 
5360 	mutex_enter(&tcp->tcp_eager_lock);
5361 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5362 		mutex_exit(&tcp->tcp_eager_lock);
5363 		TCP_STAT(tcps, tcp_listendrop);
5364 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5365 		if (tcp->tcp_debug) {
5366 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5367 			    "tcp_conn_request: listen backlog (max=%d) "
5368 			    "overflow (%d pending) on %s",
5369 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5370 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5371 		}
5372 		goto error2;
5373 	}
5374 
5375 	if (tcp->tcp_conn_req_cnt_q0 >=
5376 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5377 		/*
5378 		 * Q0 is full. Drop a pending half-open req from the queue
5379 		 * to make room for the new SYN req. Also mark the time we
5380 		 * drop a SYN.
5381 		 *
5382 		 * A more aggressive defense against SYN attack will
5383 		 * be to set the "tcp_syn_defense" flag now.
5384 		 */
5385 		TCP_STAT(tcps, tcp_listendropq0);
5386 		tcp->tcp_last_rcv_lbolt = lbolt64;
5387 		if (!tcp_drop_q0(tcp)) {
5388 			mutex_exit(&tcp->tcp_eager_lock);
5389 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5390 			if (tcp->tcp_debug) {
5391 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5392 				    "tcp_conn_request: listen half-open queue "
5393 				    "(max=%d) full (%d pending) on %s",
5394 				    tcps->tcps_conn_req_max_q0,
5395 				    tcp->tcp_conn_req_cnt_q0,
5396 				    tcp_display(tcp, NULL,
5397 				    DISP_PORT_ONLY));
5398 			}
5399 			goto error2;
5400 		}
5401 	}
5402 	mutex_exit(&tcp->tcp_eager_lock);
5403 
5404 	/*
5405 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5406 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5407 	 * link local address.  If IPSec is enabled, db_struioflag has
5408 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5409 	 * otherwise an error case if neither of them is set.
5410 	 */
5411 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5412 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5413 		DB_CKSUMSTART(mp) = 0;
5414 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5415 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5416 		if (econnp == NULL)
5417 			goto error2;
5418 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5419 		econnp->conn_sqp = new_sqp;
5420 		econnp->conn_initial_sqp = new_sqp;
5421 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5422 		/*
5423 		 * mp is updated in tcp_get_ipsec_conn().
5424 		 */
5425 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5426 		if (econnp == NULL) {
5427 			/*
5428 			 * mp freed by tcp_get_ipsec_conn.
5429 			 */
5430 			return;
5431 		}
5432 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5433 	} else {
5434 		goto error2;
5435 	}
5436 
5437 	ASSERT(DB_TYPE(mp) == M_DATA);
5438 
5439 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5440 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5441 	ASSERT(OK_32PTR(mp->b_rptr));
5442 	if (ipvers == IPV4_VERSION) {
5443 		ipha = (ipha_t *)mp->b_rptr;
5444 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5445 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5446 	} else {
5447 		ip6h = (ip6_t *)mp->b_rptr;
5448 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5449 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5450 	}
5451 
5452 	if (tcp->tcp_family == AF_INET) {
5453 		ASSERT(ipvers == IPV4_VERSION);
5454 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5455 	} else {
5456 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5457 	}
5458 
5459 	if (err)
5460 		goto error3;
5461 
5462 	eager = econnp->conn_tcp;
5463 
5464 	/*
5465 	 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close
5466 	 * time, we will always have that to send up.  Otherwise, we need to do
5467 	 * special handling in case the allocation fails at that time.
5468 	 */
5469 	ASSERT(eager->tcp_ordrel_mp == NULL);
5470 	if (!IPCL_IS_NONSTR(econnp) &&
5471 	    (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5472 		goto error3;
5473 
5474 	/* Inherit various TCP parameters from the listener */
5475 	eager->tcp_naglim = tcp->tcp_naglim;
5476 	eager->tcp_first_timer_threshold =
5477 	    tcp->tcp_first_timer_threshold;
5478 	eager->tcp_second_timer_threshold =
5479 	    tcp->tcp_second_timer_threshold;
5480 
5481 	eager->tcp_first_ctimer_threshold =
5482 	    tcp->tcp_first_ctimer_threshold;
5483 	eager->tcp_second_ctimer_threshold =
5484 	    tcp->tcp_second_ctimer_threshold;
5485 
5486 	/*
5487 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5488 	 * If it does not, the eager's receive window will be set to the
5489 	 * listener's receive window later in this function.
5490 	 */
5491 	eager->tcp_rwnd = 0;
5492 
5493 	/*
5494 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5495 	 * calling tcp_process_options() where tcp_mss_set() is called
5496 	 * to set the initial cwnd.
5497 	 */
5498 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5499 
5500 	/*
5501 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5502 	 * zone id before the accept is completed in tcp_wput_accept().
5503 	 */
5504 	econnp->conn_zoneid = connp->conn_zoneid;
5505 	econnp->conn_allzones = connp->conn_allzones;
5506 
5507 	/* Copy nexthop information from listener to eager */
5508 	if (connp->conn_nexthop_set) {
5509 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5510 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5511 	}
5512 
5513 	/*
5514 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5515 	 * eager is accepted
5516 	 */
5517 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5518 	crhold(credp);
5519 
5520 	/*
5521 	 * If the caller has the process-wide flag set, then default to MAC
5522 	 * exempt mode.  This allows read-down to unlabeled hosts.
5523 	 */
5524 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5525 		econnp->conn_mac_exempt = B_TRUE;
5526 
5527 	if (is_system_labeled()) {
5528 		cred_t *cr;
5529 
5530 		if (connp->conn_mlp_type != mlptSingle) {
5531 			cr = econnp->conn_peercred = msg_getcred(mp, NULL);
5532 			if (cr != NULL)
5533 				crhold(cr);
5534 			else
5535 				cr = econnp->conn_cred;
5536 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5537 			    econnp, cred_t *, cr)
5538 		} else {
5539 			cr = econnp->conn_cred;
5540 			DTRACE_PROBE2(syn_accept, conn_t *,
5541 			    econnp, cred_t *, cr)
5542 		}
5543 
5544 		if (!tcp_update_label(eager, cr)) {
5545 			DTRACE_PROBE3(
5546 			    tx__ip__log__error__connrequest__tcp,
5547 			    char *, "eager connp(1) label on SYN mp(2) failed",
5548 			    conn_t *, econnp, mblk_t *, mp);
5549 			goto error3;
5550 		}
5551 	}
5552 
5553 	eager->tcp_hard_binding = B_TRUE;
5554 
5555 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5556 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5557 
5558 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5559 	if (err != 0) {
5560 		tcp_bind_hash_remove(eager);
5561 		goto error3;
5562 	}
5563 
5564 	/*
5565 	 * No need to check for multicast destination since ip will only pass
5566 	 * up multicasts to those that have expressed interest
5567 	 * TODO: what about rejecting broadcasts?
5568 	 * Also check that source is not a multicast or broadcast address.
5569 	 */
5570 	eager->tcp_state = TCPS_SYN_RCVD;
5571 
5572 
5573 	/*
5574 	 * There should be no ire in the mp as we are being called after
5575 	 * receiving the SYN.
5576 	 */
5577 	ASSERT(tcp_ire_mp(&mp) == NULL);
5578 
5579 	/*
5580 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5581 	 */
5582 
5583 	if (tcp_adapt_ire(eager, NULL) == 0) {
5584 		/* Undo the bind_hash_insert */
5585 		tcp_bind_hash_remove(eager);
5586 		goto error3;
5587 	}
5588 
5589 	/* Process all TCP options. */
5590 	tcp_process_options(eager, tcph);
5591 
5592 	/* Is the other end ECN capable? */
5593 	if (tcps->tcps_ecn_permitted >= 1 &&
5594 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5595 		eager->tcp_ecn_ok = B_TRUE;
5596 	}
5597 
5598 	/*
5599 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5600 	 * window size changed via SO_RCVBUF option.  First round up the
5601 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5602 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5603 	 * setting.
5604 	 *
5605 	 * Note if there is a rpipe metric associated with the remote host,
5606 	 * we should not inherit receive window size from listener.
5607 	 */
5608 	eager->tcp_rwnd = MSS_ROUNDUP(
5609 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5610 	    eager->tcp_rwnd), eager->tcp_mss);
5611 	if (eager->tcp_snd_ws_ok)
5612 		tcp_set_ws_value(eager);
5613 	/*
5614 	 * Note that this is the only place tcp_rwnd_set() is called for
5615 	 * accepting a connection.  We need to call it here instead of
5616 	 * after the 3-way handshake because we need to tell the other
5617 	 * side our rwnd in the SYN-ACK segment.
5618 	 */
5619 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5620 
5621 	/*
5622 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5623 	 * via soaccept()->soinheritoptions() which essentially applies
5624 	 * all the listener options to the new STREAM. The options that we
5625 	 * need to take care of are:
5626 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5627 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5628 	 * SO_SNDBUF, SO_RCVBUF.
5629 	 *
5630 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5631 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5632 	 *		tcp_maxpsz_set() gets called later from
5633 	 *		tcp_accept_finish(), the option takes effect.
5634 	 *
5635 	 */
5636 	/* Set the TCP options */
5637 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5638 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5639 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5640 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5641 	eager->tcp_oobinline = tcp->tcp_oobinline;
5642 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5643 	eager->tcp_broadcast = tcp->tcp_broadcast;
5644 	eager->tcp_useloopback = tcp->tcp_useloopback;
5645 	eager->tcp_dontroute = tcp->tcp_dontroute;
5646 	eager->tcp_debug = tcp->tcp_debug;
5647 	eager->tcp_linger = tcp->tcp_linger;
5648 	eager->tcp_lingertime = tcp->tcp_lingertime;
5649 	if (tcp->tcp_ka_enabled)
5650 		eager->tcp_ka_enabled = 1;
5651 
5652 	/* Set the IP options */
5653 	econnp->conn_broadcast = connp->conn_broadcast;
5654 	econnp->conn_loopback = connp->conn_loopback;
5655 	econnp->conn_dontroute = connp->conn_dontroute;
5656 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5657 
5658 	/* Put a ref on the listener for the eager. */
5659 	CONN_INC_REF(connp);
5660 	mutex_enter(&tcp->tcp_eager_lock);
5661 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5662 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5663 	tcp->tcp_eager_next_q0 = eager;
5664 	eager->tcp_eager_prev_q0 = tcp;
5665 
5666 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5667 	eager->tcp_listener = tcp;
5668 	eager->tcp_saved_listener = tcp;
5669 
5670 	/*
5671 	 * Tag this detached tcp vector for later retrieval
5672 	 * by our listener client in tcp_accept().
5673 	 */
5674 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5675 	tcp->tcp_conn_req_cnt_q0++;
5676 	if (++tcp->tcp_conn_req_seqnum == -1) {
5677 		/*
5678 		 * -1 is "special" and defined in TPI as something
5679 		 * that should never be used in T_CONN_IND
5680 		 */
5681 		++tcp->tcp_conn_req_seqnum;
5682 	}
5683 	mutex_exit(&tcp->tcp_eager_lock);
5684 
5685 	if (tcp->tcp_syn_defense) {
5686 		/* Don't drop the SYN that comes from a good IP source */
5687 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5688 		if (addr_cache != NULL && eager->tcp_remote ==
5689 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5690 			eager->tcp_dontdrop = B_TRUE;
5691 		}
5692 	}
5693 
5694 	/*
5695 	 * We need to insert the eager in its own perimeter but as soon
5696 	 * as we do that, we expose the eager to the classifier and
5697 	 * should not touch any field outside the eager's perimeter.
5698 	 * So do all the work necessary before inserting the eager
5699 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5700 	 * will succeed but undo everything if it fails.
5701 	 */
5702 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5703 	eager->tcp_irs = seg_seq;
5704 	eager->tcp_rack = seg_seq;
5705 	eager->tcp_rnxt = seg_seq + 1;
5706 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5707 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5708 	eager->tcp_state = TCPS_SYN_RCVD;
5709 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5710 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5711 	if (mp1 == NULL) {
5712 		/*
5713 		 * Increment the ref count as we are going to
5714 		 * enqueueing an mp in squeue
5715 		 */
5716 		CONN_INC_REF(econnp);
5717 		goto error;
5718 	}
5719 
5720 	/*
5721 	 * Note that in theory this should use the current pid
5722 	 * so that getpeerucred on the client returns the actual listener
5723 	 * that does accept. But accept() hasn't been called yet. We could use
5724 	 * the pid of the process that did bind/listen on the server.
5725 	 * However, with common usage like inetd() the bind/listen can be done
5726 	 * by a different process than the accept().
5727 	 * Hence we do the simple thing of using the open pid here.
5728 	 * Note that db_credp is set later in tcp_send_data().
5729 	 */
5730 	mblk_setcred(mp1, credp, tcp->tcp_cpid);
5731 	eager->tcp_cpid = tcp->tcp_cpid;
5732 	eager->tcp_open_time = lbolt64;
5733 
5734 	/*
5735 	 * We need to start the rto timer. In normal case, we start
5736 	 * the timer after sending the packet on the wire (or at
5737 	 * least believing that packet was sent by waiting for
5738 	 * CALL_IP_WPUT() to return). Since this is the first packet
5739 	 * being sent on the wire for the eager, our initial tcp_rto
5740 	 * is at least tcp_rexmit_interval_min which is a fairly
5741 	 * large value to allow the algorithm to adjust slowly to large
5742 	 * fluctuations of RTT during first few transmissions.
5743 	 *
5744 	 * Starting the timer first and then sending the packet in this
5745 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5746 	 * is of the order of several 100ms and starting the timer
5747 	 * first and then sending the packet will result in difference
5748 	 * of few micro seconds.
5749 	 *
5750 	 * Without this optimization, we are forced to hold the fanout
5751 	 * lock across the ipcl_bind_insert() and sending the packet
5752 	 * so that we don't race against an incoming packet (maybe RST)
5753 	 * for this eager.
5754 	 *
5755 	 * It is necessary to acquire an extra reference on the eager
5756 	 * at this point and hold it until after tcp_send_data() to
5757 	 * ensure against an eager close race.
5758 	 */
5759 
5760 	CONN_INC_REF(eager->tcp_connp);
5761 
5762 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5763 
5764 	/*
5765 	 * Insert the eager in its own perimeter now. We are ready to deal
5766 	 * with any packets on eager.
5767 	 */
5768 	if (eager->tcp_ipversion == IPV4_VERSION) {
5769 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5770 			goto error;
5771 		}
5772 	} else {
5773 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5774 			goto error;
5775 		}
5776 	}
5777 
5778 	/* mark conn as fully-bound */
5779 	econnp->conn_fully_bound = B_TRUE;
5780 
5781 	/* Send the SYN-ACK */
5782 	tcp_send_data(eager, eager->tcp_wq, mp1);
5783 	CONN_DEC_REF(eager->tcp_connp);
5784 	freemsg(mp);
5785 
5786 	return;
5787 error:
5788 	freemsg(mp1);
5789 	eager->tcp_closemp_used = B_TRUE;
5790 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5791 	mp1 = &eager->tcp_closemp;
5792 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5793 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5794 
5795 	/*
5796 	 * If a connection already exists, send the mp to that connections so
5797 	 * that it can be appropriately dealt with.
5798 	 */
5799 	ipst = tcps->tcps_netstack->netstack_ip;
5800 
5801 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5802 		if (!IPCL_IS_CONNECTED(econnp)) {
5803 			/*
5804 			 * Something bad happened. ipcl_conn_insert()
5805 			 * failed because a connection already existed
5806 			 * in connected hash but we can't find it
5807 			 * anymore (someone blew it away). Just
5808 			 * free this message and hopefully remote
5809 			 * will retransmit at which time the SYN can be
5810 			 * treated as a new connection or dealth with
5811 			 * a TH_RST if a connection already exists.
5812 			 */
5813 			CONN_DEC_REF(econnp);
5814 			freemsg(mp);
5815 		} else {
5816 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5817 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5818 		}
5819 	} else {
5820 		/* Nobody wants this packet */
5821 		freemsg(mp);
5822 	}
5823 	return;
5824 error3:
5825 	CONN_DEC_REF(econnp);
5826 error2:
5827 	freemsg(mp);
5828 }
5829 
5830 /*
5831  * In an ideal case of vertical partition in NUMA architecture, its
5832  * beneficial to have the listener and all the incoming connections
5833  * tied to the same squeue. The other constraint is that incoming
5834  * connections should be tied to the squeue attached to interrupted
5835  * CPU for obvious locality reason so this leaves the listener to
5836  * be tied to the same squeue. Our only problem is that when listener
5837  * is binding, the CPU that will get interrupted by the NIC whose
5838  * IP address the listener is binding to is not even known. So
5839  * the code below allows us to change that binding at the time the
5840  * CPU is interrupted by virtue of incoming connection's squeue.
5841  *
5842  * This is usefull only in case of a listener bound to a specific IP
5843  * address. For other kind of listeners, they get bound the
5844  * very first time and there is no attempt to rebind them.
5845  */
5846 void
5847 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5848 {
5849 	conn_t		*connp = (conn_t *)arg;
5850 	squeue_t	*sqp = (squeue_t *)arg2;
5851 	squeue_t	*new_sqp;
5852 	uint32_t	conn_flags;
5853 
5854 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5855 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5856 	} else {
5857 		goto done;
5858 	}
5859 
5860 	if (connp->conn_fanout == NULL)
5861 		goto done;
5862 
5863 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5864 		mutex_enter(&connp->conn_fanout->connf_lock);
5865 		mutex_enter(&connp->conn_lock);
5866 		/*
5867 		 * No one from read or write side can access us now
5868 		 * except for already queued packets on this squeue.
5869 		 * But since we haven't changed the squeue yet, they
5870 		 * can't execute. If they are processed after we have
5871 		 * changed the squeue, they are sent back to the
5872 		 * correct squeue down below.
5873 		 * But a listner close can race with processing of
5874 		 * incoming SYN. If incoming SYN processing changes
5875 		 * the squeue then the listener close which is waiting
5876 		 * to enter the squeue would operate on the wrong
5877 		 * squeue. Hence we don't change the squeue here unless
5878 		 * the refcount is exactly the minimum refcount. The
5879 		 * minimum refcount of 4 is counted as - 1 each for
5880 		 * TCP and IP, 1 for being in the classifier hash, and
5881 		 * 1 for the mblk being processed.
5882 		 */
5883 
5884 		if (connp->conn_ref != 4 ||
5885 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5886 			mutex_exit(&connp->conn_lock);
5887 			mutex_exit(&connp->conn_fanout->connf_lock);
5888 			goto done;
5889 		}
5890 		if (connp->conn_sqp != new_sqp) {
5891 			while (connp->conn_sqp != new_sqp)
5892 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5893 		}
5894 
5895 		do {
5896 			conn_flags = connp->conn_flags;
5897 			conn_flags |= IPCL_FULLY_BOUND;
5898 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5899 			    conn_flags);
5900 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5901 
5902 		mutex_exit(&connp->conn_fanout->connf_lock);
5903 		mutex_exit(&connp->conn_lock);
5904 	}
5905 
5906 done:
5907 	if (connp->conn_sqp != sqp) {
5908 		CONN_INC_REF(connp);
5909 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5910 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5911 	} else {
5912 		tcp_conn_request(connp, mp, sqp);
5913 	}
5914 }
5915 
5916 /*
5917  * Successful connect request processing begins when our client passes
5918  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5919  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5920  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5921  *   upstream <- tcp_rput()		<- IP
5922  * After various error checks are completed, tcp_tpi_connect() lays
5923  * the target address and port into the composite header template,
5924  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5925  * request followed by an IRE request, and passes the three mblk message
5926  * down to IP looking like this:
5927  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5928  * Processing continues in tcp_rput() when we receive the following message:
5929  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5930  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5931  * to fire off the connection request, and then passes the T_OK_ACK mblk
5932  * upstream that we filled in below.  There are, of course, numerous
5933  * error conditions along the way which truncate the processing described
5934  * above.
5935  */
5936 static void
5937 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5938 {
5939 	sin_t		*sin;
5940 	queue_t		*q = tcp->tcp_wq;
5941 	struct T_conn_req	*tcr;
5942 	struct sockaddr	*sa;
5943 	socklen_t	len;
5944 	int		error;
5945 	cred_t		*cr;
5946 	pid_t		cpid;
5947 
5948 	/*
5949 	 * All Solaris components should pass a db_credp
5950 	 * for this TPI message, hence we ASSERT.
5951 	 * But in case there is some other M_PROTO that looks
5952 	 * like a TPI message sent by some other kernel
5953 	 * component, we check and return an error.
5954 	 */
5955 	cr = msg_getcred(mp, &cpid);
5956 	ASSERT(cr != NULL);
5957 	if (cr == NULL) {
5958 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5959 		return;
5960 	}
5961 
5962 	tcr = (struct T_conn_req *)mp->b_rptr;
5963 
5964 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5965 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5966 		tcp_err_ack(tcp, mp, TPROTO, 0);
5967 		return;
5968 	}
5969 
5970 	/*
5971 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5972 	 * will always have that to send up.  Otherwise, we need to do
5973 	 * special handling in case the allocation fails at that time.
5974 	 * If the end point is TPI, the tcp_t can be reused and the
5975 	 * tcp_ordrel_mp may be allocated already.
5976 	 */
5977 	if (tcp->tcp_ordrel_mp == NULL) {
5978 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5979 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5980 			return;
5981 		}
5982 	}
5983 
5984 	/*
5985 	 * Determine packet type based on type of address passed in
5986 	 * the request should contain an IPv4 or IPv6 address.
5987 	 * Make sure that address family matches the type of
5988 	 * family of the the address passed down
5989 	 */
5990 	switch (tcr->DEST_length) {
5991 	default:
5992 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5993 		return;
5994 
5995 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5996 		/*
5997 		 * XXX: The check for valid DEST_length was not there
5998 		 * in earlier releases and some buggy
5999 		 * TLI apps (e.g Sybase) got away with not feeding
6000 		 * in sin_zero part of address.
6001 		 * We allow that bug to keep those buggy apps humming.
6002 		 * Test suites require the check on DEST_length.
6003 		 * We construct a new mblk with valid DEST_length
6004 		 * free the original so the rest of the code does
6005 		 * not have to keep track of this special shorter
6006 		 * length address case.
6007 		 */
6008 		mblk_t *nmp;
6009 		struct T_conn_req *ntcr;
6010 		sin_t *nsin;
6011 
6012 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6013 		    tcr->OPT_length, BPRI_HI);
6014 		if (nmp == NULL) {
6015 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6016 			return;
6017 		}
6018 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6019 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6020 		ntcr->PRIM_type = T_CONN_REQ;
6021 		ntcr->DEST_length = sizeof (sin_t);
6022 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6023 
6024 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6025 		*nsin = sin_null;
6026 		/* Get pointer to shorter address to copy from original mp */
6027 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6028 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6029 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6030 			freemsg(nmp);
6031 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6032 			return;
6033 		}
6034 		nsin->sin_family = sin->sin_family;
6035 		nsin->sin_port = sin->sin_port;
6036 		nsin->sin_addr = sin->sin_addr;
6037 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6038 		nmp->b_wptr = (uchar_t *)&nsin[1];
6039 		if (tcr->OPT_length != 0) {
6040 			ntcr->OPT_length = tcr->OPT_length;
6041 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6042 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6043 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6044 			    tcr->OPT_length);
6045 			nmp->b_wptr += tcr->OPT_length;
6046 		}
6047 		freemsg(mp);	/* original mp freed */
6048 		mp = nmp;	/* re-initialize original variables */
6049 		tcr = ntcr;
6050 	}
6051 	/* FALLTHRU */
6052 
6053 	case sizeof (sin_t):
6054 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6055 		    sizeof (sin_t));
6056 		len = sizeof (sin_t);
6057 		break;
6058 
6059 	case sizeof (sin6_t):
6060 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
6061 		    sizeof (sin6_t));
6062 		len = sizeof (sin6_t);
6063 		break;
6064 	}
6065 
6066 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
6067 	if (error != 0) {
6068 		tcp_err_ack(tcp, mp, TSYSERR, error);
6069 		return;
6070 	}
6071 
6072 	/*
6073 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6074 	 * should key on their sequence number and cut them loose.
6075 	 */
6076 
6077 	/*
6078 	 * If options passed in, feed it for verification and handling
6079 	 */
6080 	if (tcr->OPT_length != 0) {
6081 		mblk_t	*ok_mp;
6082 		mblk_t	*discon_mp;
6083 		mblk_t  *conn_opts_mp;
6084 		int t_error, sys_error, do_disconnect;
6085 
6086 		conn_opts_mp = NULL;
6087 
6088 		if (tcp_conprim_opt_process(tcp, mp,
6089 		    &do_disconnect, &t_error, &sys_error) < 0) {
6090 			if (do_disconnect) {
6091 				ASSERT(t_error == 0 && sys_error == 0);
6092 				discon_mp = mi_tpi_discon_ind(NULL,
6093 				    ECONNREFUSED, 0);
6094 				if (!discon_mp) {
6095 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6096 					    TSYSERR, ENOMEM);
6097 					return;
6098 				}
6099 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6100 				if (!ok_mp) {
6101 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6102 					    TSYSERR, ENOMEM);
6103 					return;
6104 				}
6105 				qreply(q, ok_mp);
6106 				qreply(q, discon_mp); /* no flush! */
6107 			} else {
6108 				ASSERT(t_error != 0);
6109 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6110 				    sys_error);
6111 			}
6112 			return;
6113 		}
6114 		/*
6115 		 * Success in setting options, the mp option buffer represented
6116 		 * by OPT_length/offset has been potentially modified and
6117 		 * contains results of option processing. We copy it in
6118 		 * another mp to save it for potentially influencing returning
6119 		 * it in T_CONN_CONN.
6120 		 */
6121 		if (tcr->OPT_length != 0) { /* there are resulting options */
6122 			conn_opts_mp = copyb(mp);
6123 			if (!conn_opts_mp) {
6124 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6125 				    TSYSERR, ENOMEM);
6126 				return;
6127 			}
6128 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6129 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6130 			/*
6131 			 * Note:
6132 			 * These resulting option negotiation can include any
6133 			 * end-to-end negotiation options but there no such
6134 			 * thing (yet?) in our TCP/IP.
6135 			 */
6136 		}
6137 	}
6138 
6139 	/* call the non-TPI version */
6140 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
6141 	if (error < 0) {
6142 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6143 	} else if (error > 0) {
6144 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6145 	} else {
6146 		mp = mi_tpi_ok_ack_alloc(mp);
6147 	}
6148 
6149 	/*
6150 	 * Note: Code below is the "failure" case
6151 	 */
6152 	/* return error ack and blow away saved option results if any */
6153 connect_failed:
6154 	if (mp != NULL)
6155 		putnext(tcp->tcp_rq, mp);
6156 	else {
6157 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6158 		    TSYSERR, ENOMEM);
6159 	}
6160 }
6161 
6162 /*
6163  * Handle connect to IPv4 destinations, including connections for AF_INET6
6164  * sockets connecting to IPv4 mapped IPv6 destinations.
6165  */
6166 static int
6167 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6168     uint_t srcid, cred_t *cr, pid_t pid)
6169 {
6170 	tcph_t	*tcph;
6171 	mblk_t	*mp;
6172 	ipaddr_t dstaddr = *dstaddrp;
6173 	int32_t	oldstate;
6174 	uint16_t lport;
6175 	int	error = 0;
6176 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6177 
6178 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6179 
6180 	/* Check for attempt to connect to INADDR_ANY */
6181 	if (dstaddr == INADDR_ANY)  {
6182 		/*
6183 		 * SunOS 4.x and 4.3 BSD allow an application
6184 		 * to connect a TCP socket to INADDR_ANY.
6185 		 * When they do this, the kernel picks the
6186 		 * address of one interface and uses it
6187 		 * instead.  The kernel usually ends up
6188 		 * picking the address of the loopback
6189 		 * interface.  This is an undocumented feature.
6190 		 * However, we provide the same thing here
6191 		 * in order to have source and binary
6192 		 * compatibility with SunOS 4.x.
6193 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6194 		 * generate the T_CONN_CON.
6195 		 */
6196 		dstaddr = htonl(INADDR_LOOPBACK);
6197 		*dstaddrp = dstaddr;
6198 	}
6199 
6200 	/* Handle __sin6_src_id if socket not bound to an IP address */
6201 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6202 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6203 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6204 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6205 		    tcp->tcp_ipha->ipha_src);
6206 	}
6207 
6208 	/*
6209 	 * Don't let an endpoint connect to itself.  Note that
6210 	 * the test here does not catch the case where the
6211 	 * source IP addr was left unspecified by the user. In
6212 	 * this case, the source addr is set in tcp_adapt_ire()
6213 	 * using the reply to the T_BIND message that we send
6214 	 * down to IP here and the check is repeated in tcp_rput_other.
6215 	 */
6216 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6217 	    dstport == tcp->tcp_lport) {
6218 		error = -TBADADDR;
6219 		goto failed;
6220 	}
6221 
6222 	tcp->tcp_ipha->ipha_dst = dstaddr;
6223 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6224 
6225 	/*
6226 	 * Massage a source route if any putting the first hop
6227 	 * in iph_dst. Compute a starting value for the checksum which
6228 	 * takes into account that the original iph_dst should be
6229 	 * included in the checksum but that ip will include the
6230 	 * first hop in the source route in the tcp checksum.
6231 	 */
6232 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6233 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6234 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6235 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6236 	if ((int)tcp->tcp_sum < 0)
6237 		tcp->tcp_sum--;
6238 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6239 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6240 	    (tcp->tcp_sum >> 16));
6241 	tcph = tcp->tcp_tcph;
6242 	*(uint16_t *)tcph->th_fport = dstport;
6243 	tcp->tcp_fport = dstport;
6244 
6245 	oldstate = tcp->tcp_state;
6246 	/*
6247 	 * At this point the remote destination address and remote port fields
6248 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6249 	 * have to see which state tcp was in so we can take apropriate action.
6250 	 */
6251 	if (oldstate == TCPS_IDLE) {
6252 		/*
6253 		 * We support a quick connect capability here, allowing
6254 		 * clients to transition directly from IDLE to SYN_SENT
6255 		 * tcp_bindi will pick an unused port, insert the connection
6256 		 * in the bind hash and transition to BOUND state.
6257 		 */
6258 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6259 		    tcp, B_TRUE);
6260 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6261 		    B_FALSE, B_FALSE);
6262 		if (lport == 0) {
6263 			error = -TNOADDR;
6264 			goto failed;
6265 		}
6266 	}
6267 	tcp->tcp_state = TCPS_SYN_SENT;
6268 
6269 	mp = allocb(sizeof (ire_t), BPRI_HI);
6270 	if (mp == NULL) {
6271 		tcp->tcp_state = oldstate;
6272 		error = ENOMEM;
6273 		goto failed;
6274 	}
6275 
6276 	mp->b_wptr += sizeof (ire_t);
6277 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6278 	tcp->tcp_hard_binding = 1;
6279 
6280 	/*
6281 	 * We need to make sure that the conn_recv is set to a non-null
6282 	 * value before we insert the conn_t into the classifier table.
6283 	 * This is to avoid a race with an incoming packet which does
6284 	 * an ipcl_classify().
6285 	 */
6286 	tcp->tcp_connp->conn_recv = tcp_input;
6287 
6288 	if (tcp->tcp_family == AF_INET) {
6289 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6290 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6291 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6292 	} else {
6293 		in6_addr_t v6src;
6294 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6295 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6296 		} else {
6297 			v6src = tcp->tcp_ip6h->ip6_src;
6298 		}
6299 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6300 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6301 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6302 	}
6303 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6304 	tcp->tcp_active_open = 1;
6305 
6306 
6307 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6308 failed:
6309 	/* return error ack and blow away saved option results if any */
6310 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6311 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6312 	return (error);
6313 }
6314 
6315 /*
6316  * Handle connect to IPv6 destinations.
6317  */
6318 static int
6319 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6320     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6321 {
6322 	tcph_t	*tcph;
6323 	mblk_t	*mp;
6324 	ip6_rthdr_t *rth;
6325 	int32_t  oldstate;
6326 	uint16_t lport;
6327 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6328 	int	error = 0;
6329 	conn_t	*connp = tcp->tcp_connp;
6330 
6331 	ASSERT(tcp->tcp_family == AF_INET6);
6332 
6333 	/*
6334 	 * If we're here, it means that the destination address is a native
6335 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6336 	 * reason why it might not be IPv6 is if the socket was bound to an
6337 	 * IPv4-mapped IPv6 address.
6338 	 */
6339 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6340 		return (-TBADADDR);
6341 	}
6342 
6343 	/*
6344 	 * Interpret a zero destination to mean loopback.
6345 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6346 	 * generate the T_CONN_CON.
6347 	 */
6348 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6349 		*dstaddrp = ipv6_loopback;
6350 	}
6351 
6352 	/* Handle __sin6_src_id if socket not bound to an IP address */
6353 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6354 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6355 		    connp->conn_zoneid, tcps->tcps_netstack);
6356 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6357 	}
6358 
6359 	/*
6360 	 * Take care of the scope_id now and add ip6i_t
6361 	 * if ip6i_t is not already allocated through TCP
6362 	 * sticky options. At this point tcp_ip6h does not
6363 	 * have dst info, thus use dstaddrp.
6364 	 */
6365 	if (scope_id != 0 &&
6366 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6367 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6368 		ip6i_t  *ip6i;
6369 
6370 		ipp->ipp_ifindex = scope_id;
6371 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6372 
6373 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6374 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6375 			/* Already allocated */
6376 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6377 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6378 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6379 		} else {
6380 			int reterr;
6381 
6382 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6383 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6384 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6385 			reterr = tcp_build_hdrs(tcp);
6386 			if (reterr != 0)
6387 				goto failed;
6388 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6389 		}
6390 	}
6391 
6392 	/*
6393 	 * Don't let an endpoint connect to itself.  Note that
6394 	 * the test here does not catch the case where the
6395 	 * source IP addr was left unspecified by the user. In
6396 	 * this case, the source addr is set in tcp_adapt_ire()
6397 	 * using the reply to the T_BIND message that we send
6398 	 * down to IP here and the check is repeated in tcp_rput_other.
6399 	 */
6400 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6401 	    (dstport == tcp->tcp_lport)) {
6402 		error = -TBADADDR;
6403 		goto failed;
6404 	}
6405 
6406 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6407 	tcp->tcp_remote_v6 = *dstaddrp;
6408 	tcp->tcp_ip6h->ip6_vcf =
6409 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6410 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6411 
6412 	/*
6413 	 * Massage a routing header (if present) putting the first hop
6414 	 * in ip6_dst. Compute a starting value for the checksum which
6415 	 * takes into account that the original ip6_dst should be
6416 	 * included in the checksum but that ip will include the
6417 	 * first hop in the source route in the tcp checksum.
6418 	 */
6419 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6420 	if (rth != NULL) {
6421 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6422 		    tcps->tcps_netstack);
6423 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6424 		    (tcp->tcp_sum >> 16));
6425 	} else {
6426 		tcp->tcp_sum = 0;
6427 	}
6428 
6429 	tcph = tcp->tcp_tcph;
6430 	*(uint16_t *)tcph->th_fport = dstport;
6431 	tcp->tcp_fport = dstport;
6432 
6433 	oldstate = tcp->tcp_state;
6434 	/*
6435 	 * At this point the remote destination address and remote port fields
6436 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6437 	 * have to see which state tcp was in so we can take apropriate action.
6438 	 */
6439 	if (oldstate == TCPS_IDLE) {
6440 		/*
6441 		 * We support a quick connect capability here, allowing
6442 		 * clients to transition directly from IDLE to SYN_SENT
6443 		 * tcp_bindi will pick an unused port, insert the connection
6444 		 * in the bind hash and transition to BOUND state.
6445 		 */
6446 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6447 		    tcp, B_TRUE);
6448 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6449 		    B_FALSE, B_FALSE);
6450 		if (lport == 0) {
6451 			error = -TNOADDR;
6452 			goto failed;
6453 		}
6454 	}
6455 	tcp->tcp_state = TCPS_SYN_SENT;
6456 
6457 	mp = allocb(sizeof (ire_t), BPRI_HI);
6458 	if (mp != NULL) {
6459 		in6_addr_t v6src;
6460 
6461 		mp->b_wptr += sizeof (ire_t);
6462 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6463 
6464 		tcp->tcp_hard_binding = 1;
6465 
6466 		/*
6467 		 * We need to make sure that the conn_recv is set to a non-null
6468 		 * value before we insert the conn_t into the classifier table.
6469 		 * This is to avoid a race with an incoming packet which does
6470 		 * an ipcl_classify().
6471 		 */
6472 		tcp->tcp_connp->conn_recv = tcp_input;
6473 
6474 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6475 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6476 		} else {
6477 			v6src = tcp->tcp_ip6h->ip6_src;
6478 		}
6479 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6480 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6481 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6482 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6483 		tcp->tcp_active_open = 1;
6484 
6485 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6486 	}
6487 	/* Error case */
6488 	tcp->tcp_state = oldstate;
6489 	error = ENOMEM;
6490 
6491 failed:
6492 	/* return error ack and blow away saved option results if any */
6493 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6494 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6495 	return (error);
6496 }
6497 
6498 /*
6499  * We need a stream q for detached closing tcp connections
6500  * to use.  Our client hereby indicates that this q is the
6501  * one to use.
6502  */
6503 static void
6504 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6505 {
6506 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6507 	queue_t	*q = tcp->tcp_wq;
6508 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6509 
6510 #ifdef NS_DEBUG
6511 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6512 	    tcps->tcps_netstack->netstack_stackid);
6513 #endif
6514 	mp->b_datap->db_type = M_IOCACK;
6515 	iocp->ioc_count = 0;
6516 	mutex_enter(&tcps->tcps_g_q_lock);
6517 	if (tcps->tcps_g_q != NULL) {
6518 		mutex_exit(&tcps->tcps_g_q_lock);
6519 		iocp->ioc_error = EALREADY;
6520 	} else {
6521 		int error = 0;
6522 		conn_t *connp = tcp->tcp_connp;
6523 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6524 
6525 		tcps->tcps_g_q = tcp->tcp_rq;
6526 		mutex_exit(&tcps->tcps_g_q_lock);
6527 		iocp->ioc_error = 0;
6528 		iocp->ioc_rval = 0;
6529 		/*
6530 		 * We are passing tcp_sticky_ipp as NULL
6531 		 * as it is not useful for tcp_default queue
6532 		 *
6533 		 * Set conn_recv just in case.
6534 		 */
6535 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6536 
6537 		ASSERT(connp->conn_af_isv6);
6538 		connp->conn_ulp = IPPROTO_TCP;
6539 
6540 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6541 		    NULL || connp->conn_mac_exempt) {
6542 			error = -TBADADDR;
6543 		} else {
6544 			connp->conn_srcv6 = ipv6_all_zeros;
6545 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6546 		}
6547 
6548 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6549 	}
6550 	qreply(q, mp);
6551 }
6552 
6553 static int
6554 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6555 {
6556 	tcp_t	*ltcp = NULL;
6557 	conn_t	*connp;
6558 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6559 
6560 	/*
6561 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6562 	 * when the stream is in BOUND state. Do not send a reset,
6563 	 * since the destination IP address is not valid, and it can
6564 	 * be the initialized value of all zeros (broadcast address).
6565 	 *
6566 	 * XXX There won't be any pending bind request to IP.
6567 	 */
6568 	if (tcp->tcp_state <= TCPS_BOUND) {
6569 		if (tcp->tcp_debug) {
6570 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6571 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6572 		}
6573 		return (TOUTSTATE);
6574 	}
6575 
6576 
6577 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6578 
6579 		/*
6580 		 * According to TPI, for non-listeners, ignore seqnum
6581 		 * and disconnect.
6582 		 * Following interpretation of -1 seqnum is historical
6583 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6584 		 * a valid seqnum should not be -1).
6585 		 *
6586 		 *	-1 means disconnect everything
6587 		 *	regardless even on a listener.
6588 		 */
6589 
6590 		int old_state = tcp->tcp_state;
6591 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6592 
6593 		/*
6594 		 * The connection can't be on the tcp_time_wait_head list
6595 		 * since it is not detached.
6596 		 */
6597 		ASSERT(tcp->tcp_time_wait_next == NULL);
6598 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6599 		ASSERT(tcp->tcp_time_wait_expire == 0);
6600 		ltcp = NULL;
6601 		/*
6602 		 * If it used to be a listener, check to make sure no one else
6603 		 * has taken the port before switching back to LISTEN state.
6604 		 */
6605 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6606 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6607 			    tcp->tcp_ipha->ipha_src,
6608 			    tcp->tcp_connp->conn_zoneid, ipst);
6609 			if (connp != NULL)
6610 				ltcp = connp->conn_tcp;
6611 		} else {
6612 			/* Allow tcp_bound_if listeners? */
6613 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6614 			    &tcp->tcp_ip6h->ip6_src, 0,
6615 			    tcp->tcp_connp->conn_zoneid, ipst);
6616 			if (connp != NULL)
6617 				ltcp = connp->conn_tcp;
6618 		}
6619 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6620 			tcp->tcp_state = TCPS_LISTEN;
6621 		} else if (old_state > TCPS_BOUND) {
6622 			tcp->tcp_conn_req_max = 0;
6623 			tcp->tcp_state = TCPS_BOUND;
6624 		}
6625 		if (ltcp != NULL)
6626 			CONN_DEC_REF(ltcp->tcp_connp);
6627 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6628 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6629 		} else if (old_state == TCPS_ESTABLISHED ||
6630 		    old_state == TCPS_CLOSE_WAIT) {
6631 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6632 		}
6633 
6634 		if (tcp->tcp_fused)
6635 			tcp_unfuse(tcp);
6636 
6637 		mutex_enter(&tcp->tcp_eager_lock);
6638 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6639 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6640 			tcp_eager_cleanup(tcp, 0);
6641 		}
6642 		mutex_exit(&tcp->tcp_eager_lock);
6643 
6644 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6645 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6646 
6647 		tcp_reinit(tcp);
6648 
6649 		return (0);
6650 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6651 		return (TBADSEQ);
6652 	}
6653 	return (0);
6654 }
6655 
6656 /*
6657  * Our client hereby directs us to reject the connection request
6658  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6659  * of sending the appropriate RST, not an ICMP error.
6660  */
6661 static void
6662 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6663 {
6664 	t_scalar_t seqnum;
6665 	int	error;
6666 
6667 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6668 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6669 		tcp_err_ack(tcp, mp, TPROTO, 0);
6670 		return;
6671 	}
6672 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6673 	error = tcp_disconnect_common(tcp, seqnum);
6674 	if (error != 0)
6675 		tcp_err_ack(tcp, mp, error, 0);
6676 	else {
6677 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6678 			/* Send M_FLUSH according to TPI */
6679 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6680 		}
6681 		mp = mi_tpi_ok_ack_alloc(mp);
6682 		if (mp)
6683 			putnext(tcp->tcp_rq, mp);
6684 	}
6685 }
6686 
6687 /*
6688  * Diagnostic routine used to return a string associated with the tcp state.
6689  * Note that if the caller does not supply a buffer, it will use an internal
6690  * static string.  This means that if multiple threads call this function at
6691  * the same time, output can be corrupted...  Note also that this function
6692  * does not check the size of the supplied buffer.  The caller has to make
6693  * sure that it is big enough.
6694  */
6695 static char *
6696 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6697 {
6698 	char		buf1[30];
6699 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6700 	char		*buf;
6701 	char		*cp;
6702 	in6_addr_t	local, remote;
6703 	char		local_addrbuf[INET6_ADDRSTRLEN];
6704 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6705 
6706 	if (sup_buf != NULL)
6707 		buf = sup_buf;
6708 	else
6709 		buf = priv_buf;
6710 
6711 	if (tcp == NULL)
6712 		return ("NULL_TCP");
6713 	switch (tcp->tcp_state) {
6714 	case TCPS_CLOSED:
6715 		cp = "TCP_CLOSED";
6716 		break;
6717 	case TCPS_IDLE:
6718 		cp = "TCP_IDLE";
6719 		break;
6720 	case TCPS_BOUND:
6721 		cp = "TCP_BOUND";
6722 		break;
6723 	case TCPS_LISTEN:
6724 		cp = "TCP_LISTEN";
6725 		break;
6726 	case TCPS_SYN_SENT:
6727 		cp = "TCP_SYN_SENT";
6728 		break;
6729 	case TCPS_SYN_RCVD:
6730 		cp = "TCP_SYN_RCVD";
6731 		break;
6732 	case TCPS_ESTABLISHED:
6733 		cp = "TCP_ESTABLISHED";
6734 		break;
6735 	case TCPS_CLOSE_WAIT:
6736 		cp = "TCP_CLOSE_WAIT";
6737 		break;
6738 	case TCPS_FIN_WAIT_1:
6739 		cp = "TCP_FIN_WAIT_1";
6740 		break;
6741 	case TCPS_CLOSING:
6742 		cp = "TCP_CLOSING";
6743 		break;
6744 	case TCPS_LAST_ACK:
6745 		cp = "TCP_LAST_ACK";
6746 		break;
6747 	case TCPS_FIN_WAIT_2:
6748 		cp = "TCP_FIN_WAIT_2";
6749 		break;
6750 	case TCPS_TIME_WAIT:
6751 		cp = "TCP_TIME_WAIT";
6752 		break;
6753 	default:
6754 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6755 		cp = buf1;
6756 		break;
6757 	}
6758 	switch (format) {
6759 	case DISP_ADDR_AND_PORT:
6760 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6761 			/*
6762 			 * Note that we use the remote address in the tcp_b
6763 			 * structure.  This means that it will print out
6764 			 * the real destination address, not the next hop's
6765 			 * address if source routing is used.
6766 			 */
6767 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6768 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6769 
6770 		} else {
6771 			local = tcp->tcp_ip_src_v6;
6772 			remote = tcp->tcp_remote_v6;
6773 		}
6774 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6775 		    sizeof (local_addrbuf));
6776 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6777 		    sizeof (remote_addrbuf));
6778 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6779 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6780 		    ntohs(tcp->tcp_fport), cp);
6781 		break;
6782 	case DISP_PORT_ONLY:
6783 	default:
6784 		(void) mi_sprintf(buf, "[%u, %u] %s",
6785 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6786 		break;
6787 	}
6788 
6789 	return (buf);
6790 }
6791 
6792 /*
6793  * Called via squeue to get on to eager's perimeter. It sends a
6794  * TH_RST if eager is in the fanout table. The listener wants the
6795  * eager to disappear either by means of tcp_eager_blowoff() or
6796  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6797  * called (via squeue) if the eager cannot be inserted in the
6798  * fanout table in tcp_conn_request().
6799  */
6800 /* ARGSUSED */
6801 void
6802 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6803 {
6804 	conn_t	*econnp = (conn_t *)arg;
6805 	tcp_t	*eager = econnp->conn_tcp;
6806 	tcp_t	*listener = eager->tcp_listener;
6807 	tcp_stack_t	*tcps = eager->tcp_tcps;
6808 
6809 	/*
6810 	 * We could be called because listener is closing. Since
6811 	 * the eager is using listener's queue's, its not safe.
6812 	 * Better use the default queue just to send the TH_RST
6813 	 * out.
6814 	 */
6815 	ASSERT(tcps->tcps_g_q != NULL);
6816 	eager->tcp_rq = tcps->tcps_g_q;
6817 	eager->tcp_wq = WR(tcps->tcps_g_q);
6818 
6819 	/*
6820 	 * An eager's conn_fanout will be NULL if it's a duplicate
6821 	 * for an existing 4-tuples in the conn fanout table.
6822 	 * We don't want to send an RST out in such case.
6823 	 */
6824 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6825 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6826 		    eager, eager->tcp_snxt, 0, TH_RST);
6827 	}
6828 
6829 	/* We are here because listener wants this eager gone */
6830 	if (listener != NULL) {
6831 		mutex_enter(&listener->tcp_eager_lock);
6832 		tcp_eager_unlink(eager);
6833 		if (eager->tcp_tconnind_started) {
6834 			/*
6835 			 * The eager has sent a conn_ind up to the
6836 			 * listener but listener decides to close
6837 			 * instead. We need to drop the extra ref
6838 			 * placed on eager in tcp_rput_data() before
6839 			 * sending the conn_ind to listener.
6840 			 */
6841 			CONN_DEC_REF(econnp);
6842 		}
6843 		mutex_exit(&listener->tcp_eager_lock);
6844 		CONN_DEC_REF(listener->tcp_connp);
6845 	}
6846 
6847 	if (eager->tcp_state > TCPS_BOUND)
6848 		tcp_close_detached(eager);
6849 }
6850 
6851 /*
6852  * Reset any eager connection hanging off this listener marked
6853  * with 'seqnum' and then reclaim it's resources.
6854  */
6855 static boolean_t
6856 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6857 {
6858 	tcp_t	*eager;
6859 	mblk_t 	*mp;
6860 	tcp_stack_t	*tcps = listener->tcp_tcps;
6861 
6862 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6863 	eager = listener;
6864 	mutex_enter(&listener->tcp_eager_lock);
6865 	do {
6866 		eager = eager->tcp_eager_next_q;
6867 		if (eager == NULL) {
6868 			mutex_exit(&listener->tcp_eager_lock);
6869 			return (B_FALSE);
6870 		}
6871 	} while (eager->tcp_conn_req_seqnum != seqnum);
6872 
6873 	if (eager->tcp_closemp_used) {
6874 		mutex_exit(&listener->tcp_eager_lock);
6875 		return (B_TRUE);
6876 	}
6877 	eager->tcp_closemp_used = B_TRUE;
6878 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6879 	CONN_INC_REF(eager->tcp_connp);
6880 	mutex_exit(&listener->tcp_eager_lock);
6881 	mp = &eager->tcp_closemp;
6882 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6883 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6884 	return (B_TRUE);
6885 }
6886 
6887 /*
6888  * Reset any eager connection hanging off this listener
6889  * and then reclaim it's resources.
6890  */
6891 static void
6892 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6893 {
6894 	tcp_t	*eager;
6895 	mblk_t	*mp;
6896 	tcp_stack_t	*tcps = listener->tcp_tcps;
6897 
6898 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6899 
6900 	if (!q0_only) {
6901 		/* First cleanup q */
6902 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6903 		eager = listener->tcp_eager_next_q;
6904 		while (eager != NULL) {
6905 			if (!eager->tcp_closemp_used) {
6906 				eager->tcp_closemp_used = B_TRUE;
6907 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6908 				CONN_INC_REF(eager->tcp_connp);
6909 				mp = &eager->tcp_closemp;
6910 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6911 				    tcp_eager_kill, eager->tcp_connp,
6912 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6913 			}
6914 			eager = eager->tcp_eager_next_q;
6915 		}
6916 	}
6917 	/* Then cleanup q0 */
6918 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6919 	eager = listener->tcp_eager_next_q0;
6920 	while (eager != listener) {
6921 		if (!eager->tcp_closemp_used) {
6922 			eager->tcp_closemp_used = B_TRUE;
6923 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6924 			CONN_INC_REF(eager->tcp_connp);
6925 			mp = &eager->tcp_closemp;
6926 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6927 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6928 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6929 		}
6930 		eager = eager->tcp_eager_next_q0;
6931 	}
6932 }
6933 
6934 /*
6935  * If we are an eager connection hanging off a listener that hasn't
6936  * formally accepted the connection yet, get off his list and blow off
6937  * any data that we have accumulated.
6938  */
6939 static void
6940 tcp_eager_unlink(tcp_t *tcp)
6941 {
6942 	tcp_t	*listener = tcp->tcp_listener;
6943 
6944 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6945 	ASSERT(listener != NULL);
6946 	if (tcp->tcp_eager_next_q0 != NULL) {
6947 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6948 
6949 		/* Remove the eager tcp from q0 */
6950 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6951 		    tcp->tcp_eager_prev_q0;
6952 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6953 		    tcp->tcp_eager_next_q0;
6954 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6955 		listener->tcp_conn_req_cnt_q0--;
6956 
6957 		tcp->tcp_eager_next_q0 = NULL;
6958 		tcp->tcp_eager_prev_q0 = NULL;
6959 
6960 		/*
6961 		 * Take the eager out, if it is in the list of droppable
6962 		 * eagers.
6963 		 */
6964 		MAKE_UNDROPPABLE(tcp);
6965 
6966 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6967 			/* we have timed out before */
6968 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6969 			listener->tcp_syn_rcvd_timeout--;
6970 		}
6971 	} else {
6972 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6973 		tcp_t	*prev = NULL;
6974 
6975 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6976 			if (tcpp[0] == tcp) {
6977 				if (listener->tcp_eager_last_q == tcp) {
6978 					/*
6979 					 * If we are unlinking the last
6980 					 * element on the list, adjust
6981 					 * tail pointer. Set tail pointer
6982 					 * to nil when list is empty.
6983 					 */
6984 					ASSERT(tcp->tcp_eager_next_q == NULL);
6985 					if (listener->tcp_eager_last_q ==
6986 					    listener->tcp_eager_next_q) {
6987 						listener->tcp_eager_last_q =
6988 						    NULL;
6989 					} else {
6990 						/*
6991 						 * We won't get here if there
6992 						 * is only one eager in the
6993 						 * list.
6994 						 */
6995 						ASSERT(prev != NULL);
6996 						listener->tcp_eager_last_q =
6997 						    prev;
6998 					}
6999 				}
7000 				tcpp[0] = tcp->tcp_eager_next_q;
7001 				tcp->tcp_eager_next_q = NULL;
7002 				tcp->tcp_eager_last_q = NULL;
7003 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7004 				listener->tcp_conn_req_cnt_q--;
7005 				break;
7006 			}
7007 			prev = tcpp[0];
7008 		}
7009 	}
7010 	tcp->tcp_listener = NULL;
7011 }
7012 
7013 /* Shorthand to generate and send TPI error acks to our client */
7014 static void
7015 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7016 {
7017 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7018 		putnext(tcp->tcp_rq, mp);
7019 }
7020 
7021 /* Shorthand to generate and send TPI error acks to our client */
7022 static void
7023 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7024     int t_error, int sys_error)
7025 {
7026 	struct T_error_ack	*teackp;
7027 
7028 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7029 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7030 		teackp = (struct T_error_ack *)mp->b_rptr;
7031 		teackp->ERROR_prim = primitive;
7032 		teackp->TLI_error = t_error;
7033 		teackp->UNIX_error = sys_error;
7034 		putnext(tcp->tcp_rq, mp);
7035 	}
7036 }
7037 
7038 /*
7039  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7040  * but instead the code relies on:
7041  * - the fact that the address of the array and its size never changes
7042  * - the atomic assignment of the elements of the array
7043  */
7044 /* ARGSUSED */
7045 static int
7046 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7047 {
7048 	int i;
7049 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7050 
7051 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7052 		if (tcps->tcps_g_epriv_ports[i] != 0)
7053 			(void) mi_mpprintf(mp, "%d ",
7054 			    tcps->tcps_g_epriv_ports[i]);
7055 	}
7056 	return (0);
7057 }
7058 
7059 /*
7060  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7061  * threads from changing it at the same time.
7062  */
7063 /* ARGSUSED */
7064 static int
7065 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7066     cred_t *cr)
7067 {
7068 	long	new_value;
7069 	int	i;
7070 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7071 
7072 	/*
7073 	 * Fail the request if the new value does not lie within the
7074 	 * port number limits.
7075 	 */
7076 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7077 	    new_value <= 0 || new_value >= 65536) {
7078 		return (EINVAL);
7079 	}
7080 
7081 	mutex_enter(&tcps->tcps_epriv_port_lock);
7082 	/* Check if the value is already in the list */
7083 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7084 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7085 			mutex_exit(&tcps->tcps_epriv_port_lock);
7086 			return (EEXIST);
7087 		}
7088 	}
7089 	/* Find an empty slot */
7090 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7091 		if (tcps->tcps_g_epriv_ports[i] == 0)
7092 			break;
7093 	}
7094 	if (i == tcps->tcps_g_num_epriv_ports) {
7095 		mutex_exit(&tcps->tcps_epriv_port_lock);
7096 		return (EOVERFLOW);
7097 	}
7098 	/* Set the new value */
7099 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7100 	mutex_exit(&tcps->tcps_epriv_port_lock);
7101 	return (0);
7102 }
7103 
7104 /*
7105  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7106  * threads from changing it at the same time.
7107  */
7108 /* ARGSUSED */
7109 static int
7110 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7111     cred_t *cr)
7112 {
7113 	long	new_value;
7114 	int	i;
7115 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7116 
7117 	/*
7118 	 * Fail the request if the new value does not lie within the
7119 	 * port number limits.
7120 	 */
7121 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7122 	    new_value >= 65536) {
7123 		return (EINVAL);
7124 	}
7125 
7126 	mutex_enter(&tcps->tcps_epriv_port_lock);
7127 	/* Check that the value is already in the list */
7128 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7129 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7130 			break;
7131 	}
7132 	if (i == tcps->tcps_g_num_epriv_ports) {
7133 		mutex_exit(&tcps->tcps_epriv_port_lock);
7134 		return (ESRCH);
7135 	}
7136 	/* Clear the value */
7137 	tcps->tcps_g_epriv_ports[i] = 0;
7138 	mutex_exit(&tcps->tcps_epriv_port_lock);
7139 	return (0);
7140 }
7141 
7142 /* Return the TPI/TLI equivalent of our current tcp_state */
7143 static int
7144 tcp_tpistate(tcp_t *tcp)
7145 {
7146 	switch (tcp->tcp_state) {
7147 	case TCPS_IDLE:
7148 		return (TS_UNBND);
7149 	case TCPS_LISTEN:
7150 		/*
7151 		 * Return whether there are outstanding T_CONN_IND waiting
7152 		 * for the matching T_CONN_RES. Therefore don't count q0.
7153 		 */
7154 		if (tcp->tcp_conn_req_cnt_q > 0)
7155 			return (TS_WRES_CIND);
7156 		else
7157 			return (TS_IDLE);
7158 	case TCPS_BOUND:
7159 		return (TS_IDLE);
7160 	case TCPS_SYN_SENT:
7161 		return (TS_WCON_CREQ);
7162 	case TCPS_SYN_RCVD:
7163 		/*
7164 		 * Note: assumption: this has to the active open SYN_RCVD.
7165 		 * The passive instance is detached in SYN_RCVD stage of
7166 		 * incoming connection processing so we cannot get request
7167 		 * for T_info_ack on it.
7168 		 */
7169 		return (TS_WACK_CRES);
7170 	case TCPS_ESTABLISHED:
7171 		return (TS_DATA_XFER);
7172 	case TCPS_CLOSE_WAIT:
7173 		return (TS_WREQ_ORDREL);
7174 	case TCPS_FIN_WAIT_1:
7175 		return (TS_WIND_ORDREL);
7176 	case TCPS_FIN_WAIT_2:
7177 		return (TS_WIND_ORDREL);
7178 
7179 	case TCPS_CLOSING:
7180 	case TCPS_LAST_ACK:
7181 	case TCPS_TIME_WAIT:
7182 	case TCPS_CLOSED:
7183 		/*
7184 		 * Following TS_WACK_DREQ7 is a rendition of "not
7185 		 * yet TS_IDLE" TPI state. There is no best match to any
7186 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7187 		 * choose a value chosen that will map to TLI/XTI level
7188 		 * state of TSTATECHNG (state is process of changing) which
7189 		 * captures what this dummy state represents.
7190 		 */
7191 		return (TS_WACK_DREQ7);
7192 	default:
7193 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7194 		    tcp->tcp_state, tcp_display(tcp, NULL,
7195 		    DISP_PORT_ONLY));
7196 		return (TS_UNBND);
7197 	}
7198 }
7199 
7200 static void
7201 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7202 {
7203 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7204 
7205 	if (tcp->tcp_family == AF_INET6)
7206 		*tia = tcp_g_t_info_ack_v6;
7207 	else
7208 		*tia = tcp_g_t_info_ack;
7209 	tia->CURRENT_state = tcp_tpistate(tcp);
7210 	tia->OPT_size = tcp_max_optsize;
7211 	if (tcp->tcp_mss == 0) {
7212 		/* Not yet set - tcp_open does not set mss */
7213 		if (tcp->tcp_ipversion == IPV4_VERSION)
7214 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7215 		else
7216 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7217 	} else {
7218 		tia->TIDU_size = tcp->tcp_mss;
7219 	}
7220 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7221 }
7222 
7223 static void
7224 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7225     t_uscalar_t cap_bits1)
7226 {
7227 	tcap->CAP_bits1 = 0;
7228 
7229 	if (cap_bits1 & TC1_INFO) {
7230 		tcp_copy_info(&tcap->INFO_ack, tcp);
7231 		tcap->CAP_bits1 |= TC1_INFO;
7232 	}
7233 
7234 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7235 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7236 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7237 	}
7238 
7239 }
7240 
7241 /*
7242  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7243  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7244  * tcp_g_t_info_ack.  The current state of the stream is copied from
7245  * tcp_state.
7246  */
7247 static void
7248 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7249 {
7250 	t_uscalar_t		cap_bits1;
7251 	struct T_capability_ack	*tcap;
7252 
7253 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7254 		freemsg(mp);
7255 		return;
7256 	}
7257 
7258 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7259 
7260 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7261 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7262 	if (mp == NULL)
7263 		return;
7264 
7265 	tcap = (struct T_capability_ack *)mp->b_rptr;
7266 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7267 
7268 	putnext(tcp->tcp_rq, mp);
7269 }
7270 
7271 /*
7272  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7273  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7274  * The current state of the stream is copied from tcp_state.
7275  */
7276 static void
7277 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7278 {
7279 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7280 	    T_INFO_ACK);
7281 	if (!mp) {
7282 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7283 		return;
7284 	}
7285 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7286 	putnext(tcp->tcp_rq, mp);
7287 }
7288 
7289 /* Respond to the TPI addr request */
7290 static void
7291 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7292 {
7293 	sin_t	*sin;
7294 	mblk_t	*ackmp;
7295 	struct T_addr_ack *taa;
7296 
7297 	/* Make it large enough for worst case */
7298 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7299 	    2 * sizeof (sin6_t), 1);
7300 	if (ackmp == NULL) {
7301 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7302 		return;
7303 	}
7304 
7305 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7306 		tcp_addr_req_ipv6(tcp, ackmp);
7307 		return;
7308 	}
7309 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7310 
7311 	bzero(taa, sizeof (struct T_addr_ack));
7312 	ackmp->b_wptr = (uchar_t *)&taa[1];
7313 
7314 	taa->PRIM_type = T_ADDR_ACK;
7315 	ackmp->b_datap->db_type = M_PCPROTO;
7316 
7317 	/*
7318 	 * Note: Following code assumes 32 bit alignment of basic
7319 	 * data structures like sin_t and struct T_addr_ack.
7320 	 */
7321 	if (tcp->tcp_state >= TCPS_BOUND) {
7322 		/*
7323 		 * Fill in local address
7324 		 */
7325 		taa->LOCADDR_length = sizeof (sin_t);
7326 		taa->LOCADDR_offset = sizeof (*taa);
7327 
7328 		sin = (sin_t *)&taa[1];
7329 
7330 		/* Fill zeroes and then intialize non-zero fields */
7331 		*sin = sin_null;
7332 
7333 		sin->sin_family = AF_INET;
7334 
7335 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7336 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7337 
7338 		ackmp->b_wptr = (uchar_t *)&sin[1];
7339 
7340 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7341 			/*
7342 			 * Fill in Remote address
7343 			 */
7344 			taa->REMADDR_length = sizeof (sin_t);
7345 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7346 			    taa->LOCADDR_length);
7347 
7348 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7349 			*sin = sin_null;
7350 			sin->sin_family = AF_INET;
7351 			sin->sin_addr.s_addr = tcp->tcp_remote;
7352 			sin->sin_port = tcp->tcp_fport;
7353 
7354 			ackmp->b_wptr = (uchar_t *)&sin[1];
7355 		}
7356 	}
7357 	putnext(tcp->tcp_rq, ackmp);
7358 }
7359 
7360 /* Assumes that tcp_addr_req gets enough space and alignment */
7361 static void
7362 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7363 {
7364 	sin6_t	*sin6;
7365 	struct T_addr_ack *taa;
7366 
7367 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7368 	ASSERT(OK_32PTR(ackmp->b_rptr));
7369 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7370 	    2 * sizeof (sin6_t));
7371 
7372 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7373 
7374 	bzero(taa, sizeof (struct T_addr_ack));
7375 	ackmp->b_wptr = (uchar_t *)&taa[1];
7376 
7377 	taa->PRIM_type = T_ADDR_ACK;
7378 	ackmp->b_datap->db_type = M_PCPROTO;
7379 
7380 	/*
7381 	 * Note: Following code assumes 32 bit alignment of basic
7382 	 * data structures like sin6_t and struct T_addr_ack.
7383 	 */
7384 	if (tcp->tcp_state >= TCPS_BOUND) {
7385 		/*
7386 		 * Fill in local address
7387 		 */
7388 		taa->LOCADDR_length = sizeof (sin6_t);
7389 		taa->LOCADDR_offset = sizeof (*taa);
7390 
7391 		sin6 = (sin6_t *)&taa[1];
7392 		*sin6 = sin6_null;
7393 
7394 		sin6->sin6_family = AF_INET6;
7395 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7396 		sin6->sin6_port = tcp->tcp_lport;
7397 
7398 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7399 
7400 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7401 			/*
7402 			 * Fill in Remote address
7403 			 */
7404 			taa->REMADDR_length = sizeof (sin6_t);
7405 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7406 			    taa->LOCADDR_length);
7407 
7408 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7409 			*sin6 = sin6_null;
7410 			sin6->sin6_family = AF_INET6;
7411 			sin6->sin6_flowinfo =
7412 			    tcp->tcp_ip6h->ip6_vcf &
7413 			    ~IPV6_VERS_AND_FLOW_MASK;
7414 			sin6->sin6_addr = tcp->tcp_remote_v6;
7415 			sin6->sin6_port = tcp->tcp_fport;
7416 
7417 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7418 		}
7419 	}
7420 	putnext(tcp->tcp_rq, ackmp);
7421 }
7422 
7423 /*
7424  * Handle reinitialization of a tcp structure.
7425  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7426  */
7427 static void
7428 tcp_reinit(tcp_t *tcp)
7429 {
7430 	mblk_t	*mp;
7431 	int 	err;
7432 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7433 
7434 	TCP_STAT(tcps, tcp_reinit_calls);
7435 
7436 	/* tcp_reinit should never be called for detached tcp_t's */
7437 	ASSERT(tcp->tcp_listener == NULL);
7438 	ASSERT((tcp->tcp_family == AF_INET &&
7439 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7440 	    (tcp->tcp_family == AF_INET6 &&
7441 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7442 	    tcp->tcp_ipversion == IPV6_VERSION)));
7443 
7444 	/* Cancel outstanding timers */
7445 	tcp_timers_stop(tcp);
7446 
7447 	/*
7448 	 * Reset everything in the state vector, after updating global
7449 	 * MIB data from instance counters.
7450 	 */
7451 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7452 	tcp->tcp_ibsegs = 0;
7453 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7454 	tcp->tcp_obsegs = 0;
7455 
7456 	tcp_close_mpp(&tcp->tcp_xmit_head);
7457 	if (tcp->tcp_snd_zcopy_aware)
7458 		tcp_zcopy_notify(tcp);
7459 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7460 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7461 	mutex_enter(&tcp->tcp_non_sq_lock);
7462 	if (tcp->tcp_flow_stopped &&
7463 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7464 		tcp_clrqfull(tcp);
7465 	}
7466 	mutex_exit(&tcp->tcp_non_sq_lock);
7467 	tcp_close_mpp(&tcp->tcp_reass_head);
7468 	tcp->tcp_reass_tail = NULL;
7469 	if (tcp->tcp_rcv_list != NULL) {
7470 		/* Free b_next chain */
7471 		tcp_close_mpp(&tcp->tcp_rcv_list);
7472 		tcp->tcp_rcv_last_head = NULL;
7473 		tcp->tcp_rcv_last_tail = NULL;
7474 		tcp->tcp_rcv_cnt = 0;
7475 	}
7476 	tcp->tcp_rcv_last_tail = NULL;
7477 
7478 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7479 		freemsg(mp);
7480 		tcp->tcp_urp_mp = NULL;
7481 	}
7482 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7483 		freemsg(mp);
7484 		tcp->tcp_urp_mark_mp = NULL;
7485 	}
7486 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7487 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7488 		freeb(tcp->tcp_fused_sigurg_mp);
7489 		tcp->tcp_fused_sigurg_mp = NULL;
7490 	}
7491 	if (tcp->tcp_ordrel_mp != NULL) {
7492 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7493 		freeb(tcp->tcp_ordrel_mp);
7494 		tcp->tcp_ordrel_mp = NULL;
7495 	}
7496 
7497 	/*
7498 	 * Following is a union with two members which are
7499 	 * identical types and size so the following cleanup
7500 	 * is enough.
7501 	 */
7502 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7503 
7504 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7505 
7506 	/*
7507 	 * The connection can't be on the tcp_time_wait_head list
7508 	 * since it is not detached.
7509 	 */
7510 	ASSERT(tcp->tcp_time_wait_next == NULL);
7511 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7512 	ASSERT(tcp->tcp_time_wait_expire == 0);
7513 
7514 	if (tcp->tcp_kssl_pending) {
7515 		tcp->tcp_kssl_pending = B_FALSE;
7516 
7517 		/* Don't reset if the initialized by bind. */
7518 		if (tcp->tcp_kssl_ent != NULL) {
7519 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7520 			    KSSL_NO_PROXY);
7521 		}
7522 	}
7523 	if (tcp->tcp_kssl_ctx != NULL) {
7524 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7525 		tcp->tcp_kssl_ctx = NULL;
7526 	}
7527 
7528 	/*
7529 	 * Reset/preserve other values
7530 	 */
7531 	tcp_reinit_values(tcp);
7532 	ipcl_hash_remove(tcp->tcp_connp);
7533 	conn_delete_ire(tcp->tcp_connp, NULL);
7534 	tcp_ipsec_cleanup(tcp);
7535 
7536 	if (tcp->tcp_conn_req_max != 0) {
7537 		/*
7538 		 * This is the case when a TLI program uses the same
7539 		 * transport end point to accept a connection.  This
7540 		 * makes the TCP both a listener and acceptor.  When
7541 		 * this connection is closed, we need to set the state
7542 		 * back to TCPS_LISTEN.  Make sure that the eager list
7543 		 * is reinitialized.
7544 		 *
7545 		 * Note that this stream is still bound to the four
7546 		 * tuples of the previous connection in IP.  If a new
7547 		 * SYN with different foreign address comes in, IP will
7548 		 * not find it and will send it to the global queue.  In
7549 		 * the global queue, TCP will do a tcp_lookup_listener()
7550 		 * to find this stream.  This works because this stream
7551 		 * is only removed from connected hash.
7552 		 *
7553 		 */
7554 		tcp->tcp_state = TCPS_LISTEN;
7555 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7556 		tcp->tcp_eager_next_drop_q0 = tcp;
7557 		tcp->tcp_eager_prev_drop_q0 = tcp;
7558 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7559 		if (tcp->tcp_family == AF_INET6) {
7560 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7561 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7562 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7563 		} else {
7564 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7565 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7566 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7567 		}
7568 	} else {
7569 		tcp->tcp_state = TCPS_BOUND;
7570 	}
7571 
7572 	/*
7573 	 * Initialize to default values
7574 	 * Can't fail since enough header template space already allocated
7575 	 * at open().
7576 	 */
7577 	err = tcp_init_values(tcp);
7578 	ASSERT(err == 0);
7579 	/* Restore state in tcp_tcph */
7580 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7581 	if (tcp->tcp_ipversion == IPV4_VERSION)
7582 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7583 	else
7584 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7585 	/*
7586 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7587 	 * since the lookup funcs can only lookup on tcp_t
7588 	 */
7589 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7590 
7591 	ASSERT(tcp->tcp_ptpbhn != NULL);
7592 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7593 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7594 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7595 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7596 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7597 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7598 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7599 }
7600 
7601 /*
7602  * Force values to zero that need be zero.
7603  * Do not touch values asociated with the BOUND or LISTEN state
7604  * since the connection will end up in that state after the reinit.
7605  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7606  * structure!
7607  */
7608 static void
7609 tcp_reinit_values(tcp)
7610 	tcp_t *tcp;
7611 {
7612 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7613 
7614 #ifndef	lint
7615 #define	DONTCARE(x)
7616 #define	PRESERVE(x)
7617 #else
7618 #define	DONTCARE(x)	((x) = (x))
7619 #define	PRESERVE(x)	((x) = (x))
7620 #endif	/* lint */
7621 
7622 	PRESERVE(tcp->tcp_bind_hash_port);
7623 	PRESERVE(tcp->tcp_bind_hash);
7624 	PRESERVE(tcp->tcp_ptpbhn);
7625 	PRESERVE(tcp->tcp_acceptor_hash);
7626 	PRESERVE(tcp->tcp_ptpahn);
7627 
7628 	/* Should be ASSERT NULL on these with new code! */
7629 	ASSERT(tcp->tcp_time_wait_next == NULL);
7630 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7631 	ASSERT(tcp->tcp_time_wait_expire == 0);
7632 	PRESERVE(tcp->tcp_state);
7633 	PRESERVE(tcp->tcp_rq);
7634 	PRESERVE(tcp->tcp_wq);
7635 
7636 	ASSERT(tcp->tcp_xmit_head == NULL);
7637 	ASSERT(tcp->tcp_xmit_last == NULL);
7638 	ASSERT(tcp->tcp_unsent == 0);
7639 	ASSERT(tcp->tcp_xmit_tail == NULL);
7640 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7641 
7642 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7643 	tcp->tcp_suna = 0;			/* Displayed in mib */
7644 	tcp->tcp_swnd = 0;
7645 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7646 
7647 	ASSERT(tcp->tcp_ibsegs == 0);
7648 	ASSERT(tcp->tcp_obsegs == 0);
7649 
7650 	if (tcp->tcp_iphc != NULL) {
7651 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7652 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7653 	}
7654 
7655 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7656 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7657 	DONTCARE(tcp->tcp_ipha);
7658 	DONTCARE(tcp->tcp_ip6h);
7659 	DONTCARE(tcp->tcp_ip_hdr_len);
7660 	DONTCARE(tcp->tcp_tcph);
7661 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7662 	tcp->tcp_valid_bits = 0;
7663 
7664 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7665 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7666 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7667 	tcp->tcp_last_rcv_lbolt = 0;
7668 
7669 	tcp->tcp_init_cwnd = 0;
7670 
7671 	tcp->tcp_urp_last_valid = 0;
7672 	tcp->tcp_hard_binding = 0;
7673 	tcp->tcp_hard_bound = 0;
7674 	PRESERVE(tcp->tcp_cred);
7675 	PRESERVE(tcp->tcp_cpid);
7676 	PRESERVE(tcp->tcp_open_time);
7677 	PRESERVE(tcp->tcp_exclbind);
7678 
7679 	tcp->tcp_fin_acked = 0;
7680 	tcp->tcp_fin_rcvd = 0;
7681 	tcp->tcp_fin_sent = 0;
7682 	tcp->tcp_ordrel_done = 0;
7683 
7684 	tcp->tcp_debug = 0;
7685 	tcp->tcp_dontroute = 0;
7686 	tcp->tcp_broadcast = 0;
7687 
7688 	tcp->tcp_useloopback = 0;
7689 	tcp->tcp_reuseaddr = 0;
7690 	tcp->tcp_oobinline = 0;
7691 	tcp->tcp_dgram_errind = 0;
7692 
7693 	tcp->tcp_detached = 0;
7694 	tcp->tcp_bind_pending = 0;
7695 	tcp->tcp_unbind_pending = 0;
7696 
7697 	tcp->tcp_snd_ws_ok = B_FALSE;
7698 	tcp->tcp_snd_ts_ok = B_FALSE;
7699 	tcp->tcp_linger = 0;
7700 	tcp->tcp_ka_enabled = 0;
7701 	tcp->tcp_zero_win_probe = 0;
7702 
7703 	tcp->tcp_loopback = 0;
7704 	tcp->tcp_refuse = 0;
7705 	tcp->tcp_localnet = 0;
7706 	tcp->tcp_syn_defense = 0;
7707 	tcp->tcp_set_timer = 0;
7708 
7709 	tcp->tcp_active_open = 0;
7710 	tcp->tcp_rexmit = B_FALSE;
7711 	tcp->tcp_xmit_zc_clean = B_FALSE;
7712 
7713 	tcp->tcp_snd_sack_ok = B_FALSE;
7714 	PRESERVE(tcp->tcp_recvdstaddr);
7715 	tcp->tcp_hwcksum = B_FALSE;
7716 
7717 	tcp->tcp_ire_ill_check_done = B_FALSE;
7718 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7719 
7720 	tcp->tcp_mdt = B_FALSE;
7721 	tcp->tcp_mdt_hdr_head = 0;
7722 	tcp->tcp_mdt_hdr_tail = 0;
7723 
7724 	tcp->tcp_conn_def_q0 = 0;
7725 	tcp->tcp_ip_forward_progress = B_FALSE;
7726 	tcp->tcp_anon_priv_bind = 0;
7727 	tcp->tcp_ecn_ok = B_FALSE;
7728 
7729 	tcp->tcp_cwr = B_FALSE;
7730 	tcp->tcp_ecn_echo_on = B_FALSE;
7731 
7732 	if (tcp->tcp_sack_info != NULL) {
7733 		if (tcp->tcp_notsack_list != NULL) {
7734 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7735 		}
7736 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7737 		tcp->tcp_sack_info = NULL;
7738 	}
7739 
7740 	tcp->tcp_rcv_ws = 0;
7741 	tcp->tcp_snd_ws = 0;
7742 	tcp->tcp_ts_recent = 0;
7743 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7744 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7745 	tcp->tcp_if_mtu = 0;
7746 
7747 	ASSERT(tcp->tcp_reass_head == NULL);
7748 	ASSERT(tcp->tcp_reass_tail == NULL);
7749 
7750 	tcp->tcp_cwnd_cnt = 0;
7751 
7752 	ASSERT(tcp->tcp_rcv_list == NULL);
7753 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7754 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7755 	ASSERT(tcp->tcp_rcv_cnt == 0);
7756 
7757 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7758 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7759 	tcp->tcp_csuna = 0;
7760 
7761 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7762 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7763 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7764 	tcp->tcp_rtt_update = 0;
7765 
7766 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7767 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7768 
7769 	tcp->tcp_rack = 0;			/* Displayed in mib */
7770 	tcp->tcp_rack_cnt = 0;
7771 	tcp->tcp_rack_cur_max = 0;
7772 	tcp->tcp_rack_abs_max = 0;
7773 
7774 	tcp->tcp_max_swnd = 0;
7775 
7776 	ASSERT(tcp->tcp_listener == NULL);
7777 
7778 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7779 
7780 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7781 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7782 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7783 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7784 
7785 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7786 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7787 	PRESERVE(tcp->tcp_conn_req_max);
7788 	PRESERVE(tcp->tcp_conn_req_seqnum);
7789 
7790 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7791 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7792 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7793 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7794 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7795 
7796 	tcp->tcp_lingertime = 0;
7797 
7798 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7799 	ASSERT(tcp->tcp_urp_mp == NULL);
7800 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7801 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7802 
7803 	ASSERT(tcp->tcp_eager_next_q == NULL);
7804 	ASSERT(tcp->tcp_eager_last_q == NULL);
7805 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7806 	    tcp->tcp_eager_prev_q0 == NULL) ||
7807 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7808 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7809 
7810 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7811 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7812 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7813 
7814 	tcp->tcp_client_errno = 0;
7815 
7816 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7817 
7818 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7819 
7820 	PRESERVE(tcp->tcp_bound_source_v6);
7821 	tcp->tcp_last_sent_len = 0;
7822 	tcp->tcp_dupack_cnt = 0;
7823 
7824 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7825 	PRESERVE(tcp->tcp_lport);
7826 
7827 	PRESERVE(tcp->tcp_acceptor_lockp);
7828 
7829 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7830 	PRESERVE(tcp->tcp_acceptor_id);
7831 	DONTCARE(tcp->tcp_ipsec_overhead);
7832 
7833 	PRESERVE(tcp->tcp_family);
7834 	if (tcp->tcp_family == AF_INET6) {
7835 		tcp->tcp_ipversion = IPV6_VERSION;
7836 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7837 	} else {
7838 		tcp->tcp_ipversion = IPV4_VERSION;
7839 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7840 	}
7841 
7842 	tcp->tcp_bound_if = 0;
7843 	tcp->tcp_ipv6_recvancillary = 0;
7844 	tcp->tcp_recvifindex = 0;
7845 	tcp->tcp_recvhops = 0;
7846 	tcp->tcp_closed = 0;
7847 	tcp->tcp_cleandeathtag = 0;
7848 	if (tcp->tcp_hopopts != NULL) {
7849 		mi_free(tcp->tcp_hopopts);
7850 		tcp->tcp_hopopts = NULL;
7851 		tcp->tcp_hopoptslen = 0;
7852 	}
7853 	ASSERT(tcp->tcp_hopoptslen == 0);
7854 	if (tcp->tcp_dstopts != NULL) {
7855 		mi_free(tcp->tcp_dstopts);
7856 		tcp->tcp_dstopts = NULL;
7857 		tcp->tcp_dstoptslen = 0;
7858 	}
7859 	ASSERT(tcp->tcp_dstoptslen == 0);
7860 	if (tcp->tcp_rtdstopts != NULL) {
7861 		mi_free(tcp->tcp_rtdstopts);
7862 		tcp->tcp_rtdstopts = NULL;
7863 		tcp->tcp_rtdstoptslen = 0;
7864 	}
7865 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7866 	if (tcp->tcp_rthdr != NULL) {
7867 		mi_free(tcp->tcp_rthdr);
7868 		tcp->tcp_rthdr = NULL;
7869 		tcp->tcp_rthdrlen = 0;
7870 	}
7871 	ASSERT(tcp->tcp_rthdrlen == 0);
7872 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7873 
7874 	/* Reset fusion-related fields */
7875 	tcp->tcp_fused = B_FALSE;
7876 	tcp->tcp_unfusable = B_FALSE;
7877 	tcp->tcp_fused_sigurg = B_FALSE;
7878 	tcp->tcp_direct_sockfs = B_FALSE;
7879 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7880 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7881 	tcp->tcp_loopback_peer = NULL;
7882 	tcp->tcp_fuse_rcv_hiwater = 0;
7883 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7884 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7885 
7886 	tcp->tcp_lso = B_FALSE;
7887 
7888 	tcp->tcp_in_ack_unsent = 0;
7889 	tcp->tcp_cork = B_FALSE;
7890 	tcp->tcp_tconnind_started = B_FALSE;
7891 
7892 	PRESERVE(tcp->tcp_squeue_bytes);
7893 
7894 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7895 	ASSERT(!tcp->tcp_kssl_pending);
7896 	PRESERVE(tcp->tcp_kssl_ent);
7897 
7898 	/* Sodirect */
7899 	tcp->tcp_sodirect = NULL;
7900 
7901 	tcp->tcp_closemp_used = B_FALSE;
7902 
7903 	PRESERVE(tcp->tcp_rsrv_mp);
7904 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7905 
7906 #ifdef DEBUG
7907 	DONTCARE(tcp->tcmp_stk[0]);
7908 #endif
7909 
7910 	PRESERVE(tcp->tcp_connid);
7911 
7912 
7913 #undef	DONTCARE
7914 #undef	PRESERVE
7915 }
7916 
7917 /*
7918  * Allocate necessary resources and initialize state vector.
7919  * Guaranteed not to fail so that when an error is returned,
7920  * the caller doesn't need to do any additional cleanup.
7921  */
7922 int
7923 tcp_init(tcp_t *tcp, queue_t *q)
7924 {
7925 	int	err;
7926 
7927 	tcp->tcp_rq = q;
7928 	tcp->tcp_wq = WR(q);
7929 	tcp->tcp_state = TCPS_IDLE;
7930 	if ((err = tcp_init_values(tcp)) != 0)
7931 		tcp_timers_stop(tcp);
7932 	return (err);
7933 }
7934 
7935 static int
7936 tcp_init_values(tcp_t *tcp)
7937 {
7938 	int	err;
7939 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7940 
7941 	ASSERT((tcp->tcp_family == AF_INET &&
7942 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7943 	    (tcp->tcp_family == AF_INET6 &&
7944 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7945 	    tcp->tcp_ipversion == IPV6_VERSION)));
7946 
7947 	/*
7948 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7949 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7950 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7951 	 * during first few transmissions of a connection as seen in slow
7952 	 * links.
7953 	 */
7954 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7955 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7956 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7957 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7958 	    tcps->tcps_conn_grace_period;
7959 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7960 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7961 	tcp->tcp_timer_backoff = 0;
7962 	tcp->tcp_ms_we_have_waited = 0;
7963 	tcp->tcp_last_recv_time = lbolt;
7964 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7965 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7966 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7967 
7968 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7969 
7970 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7971 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7972 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7973 	/*
7974 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7975 	 * passive open.
7976 	 */
7977 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7978 
7979 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7980 
7981 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7982 
7983 	tcp->tcp_mdt_hdr_head = 0;
7984 	tcp->tcp_mdt_hdr_tail = 0;
7985 
7986 	/* Reset fusion-related fields */
7987 	tcp->tcp_fused = B_FALSE;
7988 	tcp->tcp_unfusable = B_FALSE;
7989 	tcp->tcp_fused_sigurg = B_FALSE;
7990 	tcp->tcp_direct_sockfs = B_FALSE;
7991 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7992 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7993 	tcp->tcp_loopback_peer = NULL;
7994 	tcp->tcp_fuse_rcv_hiwater = 0;
7995 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7996 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7997 
7998 	/* Sodirect */
7999 	tcp->tcp_sodirect = NULL;
8000 
8001 	/* Initialize the header template */
8002 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8003 		err = tcp_header_init_ipv4(tcp);
8004 	} else {
8005 		err = tcp_header_init_ipv6(tcp);
8006 	}
8007 	if (err)
8008 		return (err);
8009 
8010 	/*
8011 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8012 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8013 	 */
8014 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8015 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8016 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8017 
8018 	tcp->tcp_cork = B_FALSE;
8019 	/*
8020 	 * Init the tcp_debug option.  This value determines whether TCP
8021 	 * calls strlog() to print out debug messages.  Doing this
8022 	 * initialization here means that this value is not inherited thru
8023 	 * tcp_reinit().
8024 	 */
8025 	tcp->tcp_debug = tcps->tcps_dbg;
8026 
8027 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8028 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8029 
8030 	return (0);
8031 }
8032 
8033 /*
8034  * Initialize the IPv4 header. Loses any record of any IP options.
8035  */
8036 static int
8037 tcp_header_init_ipv4(tcp_t *tcp)
8038 {
8039 	tcph_t		*tcph;
8040 	uint32_t	sum;
8041 	conn_t		*connp;
8042 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8043 
8044 	/*
8045 	 * This is a simple initialization. If there's
8046 	 * already a template, it should never be too small,
8047 	 * so reuse it.  Otherwise, allocate space for the new one.
8048 	 */
8049 	if (tcp->tcp_iphc == NULL) {
8050 		ASSERT(tcp->tcp_iphc_len == 0);
8051 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8052 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8053 		if (tcp->tcp_iphc == NULL) {
8054 			tcp->tcp_iphc_len = 0;
8055 			return (ENOMEM);
8056 		}
8057 	}
8058 
8059 	/* options are gone; may need a new label */
8060 	connp = tcp->tcp_connp;
8061 	connp->conn_mlp_type = mlptSingle;
8062 	connp->conn_ulp_labeled = !is_system_labeled();
8063 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8064 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8065 	tcp->tcp_ip6h = NULL;
8066 	tcp->tcp_ipversion = IPV4_VERSION;
8067 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8068 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8069 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8070 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8071 	tcp->tcp_ipha->ipha_version_and_hdr_length
8072 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8073 	tcp->tcp_ipha->ipha_ident = 0;
8074 
8075 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8076 	tcp->tcp_tos = 0;
8077 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8078 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8079 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8080 
8081 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8082 	tcp->tcp_tcph = tcph;
8083 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8084 	/*
8085 	 * IP wants our header length in the checksum field to
8086 	 * allow it to perform a single pseudo-header+checksum
8087 	 * calculation on behalf of TCP.
8088 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8089 	 */
8090 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8091 	sum = (sum >> 16) + (sum & 0xFFFF);
8092 	U16_TO_ABE16(sum, tcph->th_sum);
8093 	return (0);
8094 }
8095 
8096 /*
8097  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8098  */
8099 static int
8100 tcp_header_init_ipv6(tcp_t *tcp)
8101 {
8102 	tcph_t	*tcph;
8103 	uint32_t	sum;
8104 	conn_t	*connp;
8105 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8106 
8107 	/*
8108 	 * This is a simple initialization. If there's
8109 	 * already a template, it should never be too small,
8110 	 * so reuse it. Otherwise, allocate space for the new one.
8111 	 * Ensure that there is enough space to "downgrade" the tcp_t
8112 	 * to an IPv4 tcp_t. This requires having space for a full load
8113 	 * of IPv4 options, as well as a full load of TCP options
8114 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8115 	 * than a v6 header and a TCP header with a full load of TCP options
8116 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8117 	 * We want to avoid reallocation in the "downgraded" case when
8118 	 * processing outbound IPv4 options.
8119 	 */
8120 	if (tcp->tcp_iphc == NULL) {
8121 		ASSERT(tcp->tcp_iphc_len == 0);
8122 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8123 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8124 		if (tcp->tcp_iphc == NULL) {
8125 			tcp->tcp_iphc_len = 0;
8126 			return (ENOMEM);
8127 		}
8128 	}
8129 
8130 	/* options are gone; may need a new label */
8131 	connp = tcp->tcp_connp;
8132 	connp->conn_mlp_type = mlptSingle;
8133 	connp->conn_ulp_labeled = !is_system_labeled();
8134 
8135 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8136 	tcp->tcp_ipversion = IPV6_VERSION;
8137 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8138 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8139 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8140 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8141 	tcp->tcp_ipha = NULL;
8142 
8143 	/* Initialize the header template */
8144 
8145 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8146 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8147 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8148 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8149 
8150 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8151 	tcp->tcp_tcph = tcph;
8152 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8153 	/*
8154 	 * IP wants our header length in the checksum field to
8155 	 * allow it to perform a single psuedo-header+checksum
8156 	 * calculation on behalf of TCP.
8157 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8158 	 */
8159 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8160 	sum = (sum >> 16) + (sum & 0xFFFF);
8161 	U16_TO_ABE16(sum, tcph->th_sum);
8162 	return (0);
8163 }
8164 
8165 /* At minimum we need 8 bytes in the TCP header for the lookup */
8166 #define	ICMP_MIN_TCP_HDR	8
8167 
8168 /*
8169  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8170  * passed up by IP. The message is always received on the correct tcp_t.
8171  * Assumes that IP has pulled up everything up to and including the ICMP header.
8172  */
8173 void
8174 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8175 {
8176 	icmph_t *icmph;
8177 	ipha_t	*ipha;
8178 	int	iph_hdr_length;
8179 	tcph_t	*tcph;
8180 	boolean_t ipsec_mctl = B_FALSE;
8181 	boolean_t secure;
8182 	mblk_t *first_mp = mp;
8183 	int32_t new_mss;
8184 	uint32_t ratio;
8185 	size_t mp_size = MBLKL(mp);
8186 	uint32_t seg_seq;
8187 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8188 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8189 
8190 	/* Assume IP provides aligned packets - otherwise toss */
8191 	if (!OK_32PTR(mp->b_rptr)) {
8192 		freemsg(mp);
8193 		return;
8194 	}
8195 
8196 	/*
8197 	 * Since ICMP errors are normal data marked with M_CTL when sent
8198 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8199 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8200 	 */
8201 	if ((mp_size == sizeof (ipsec_info_t)) &&
8202 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8203 		ASSERT(mp->b_cont != NULL);
8204 		mp = mp->b_cont;
8205 		/* IP should have done this */
8206 		ASSERT(OK_32PTR(mp->b_rptr));
8207 		mp_size = MBLKL(mp);
8208 		ipsec_mctl = B_TRUE;
8209 	}
8210 
8211 	/*
8212 	 * Verify that we have a complete outer IP header. If not, drop it.
8213 	 */
8214 	if (mp_size < sizeof (ipha_t)) {
8215 noticmpv4:
8216 		freemsg(first_mp);
8217 		return;
8218 	}
8219 
8220 	ipha = (ipha_t *)mp->b_rptr;
8221 	/*
8222 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8223 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8224 	 */
8225 	switch (IPH_HDR_VERSION(ipha)) {
8226 	case IPV6_VERSION:
8227 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8228 		return;
8229 	case IPV4_VERSION:
8230 		break;
8231 	default:
8232 		goto noticmpv4;
8233 	}
8234 
8235 	/* Skip past the outer IP and ICMP headers */
8236 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8237 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8238 	/*
8239 	 * If we don't have the correct outer IP header length or if the ULP
8240 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8241 	 * send it upstream.
8242 	 */
8243 	if (iph_hdr_length < sizeof (ipha_t) ||
8244 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8245 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8246 		goto noticmpv4;
8247 	}
8248 	ipha = (ipha_t *)&icmph[1];
8249 
8250 	/* Skip past the inner IP and find the ULP header */
8251 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8252 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8253 	/*
8254 	 * If we don't have the correct inner IP header length or if the ULP
8255 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8256 	 * bytes of TCP header, drop it.
8257 	 */
8258 	if (iph_hdr_length < sizeof (ipha_t) ||
8259 	    ipha->ipha_protocol != IPPROTO_TCP ||
8260 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8261 		goto noticmpv4;
8262 	}
8263 
8264 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8265 		if (ipsec_mctl) {
8266 			secure = ipsec_in_is_secure(first_mp);
8267 		} else {
8268 			secure = B_FALSE;
8269 		}
8270 		if (secure) {
8271 			/*
8272 			 * If we are willing to accept this in clear
8273 			 * we don't have to verify policy.
8274 			 */
8275 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8276 				if (!tcp_check_policy(tcp, first_mp,
8277 				    ipha, NULL, secure, ipsec_mctl)) {
8278 					/*
8279 					 * tcp_check_policy called
8280 					 * ip_drop_packet() on failure.
8281 					 */
8282 					return;
8283 				}
8284 			}
8285 		}
8286 	} else if (ipsec_mctl) {
8287 		/*
8288 		 * This is a hard_bound connection. IP has already
8289 		 * verified policy. We don't have to do it again.
8290 		 */
8291 		freeb(first_mp);
8292 		first_mp = mp;
8293 		ipsec_mctl = B_FALSE;
8294 	}
8295 
8296 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8297 	/*
8298 	 * TCP SHOULD check that the TCP sequence number contained in
8299 	 * payload of the ICMP error message is within the range
8300 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8301 	 */
8302 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8303 		/*
8304 		 * The ICMP message is bogus, just drop it.  But if this is
8305 		 * an ICMP too big message, IP has already changed
8306 		 * the ire_max_frag to the bogus value.  We need to change
8307 		 * it back.
8308 		 */
8309 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8310 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8311 			conn_t *connp = tcp->tcp_connp;
8312 			ire_t *ire;
8313 			int flag;
8314 
8315 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8316 				flag = tcp->tcp_ipha->
8317 				    ipha_fragment_offset_and_flags;
8318 			} else {
8319 				flag = 0;
8320 			}
8321 			mutex_enter(&connp->conn_lock);
8322 			if ((ire = connp->conn_ire_cache) != NULL) {
8323 				mutex_enter(&ire->ire_lock);
8324 				mutex_exit(&connp->conn_lock);
8325 				ire->ire_max_frag = tcp->tcp_if_mtu;
8326 				ire->ire_frag_flag |= flag;
8327 				mutex_exit(&ire->ire_lock);
8328 			} else {
8329 				mutex_exit(&connp->conn_lock);
8330 			}
8331 		}
8332 		goto noticmpv4;
8333 	}
8334 
8335 	switch (icmph->icmph_type) {
8336 	case ICMP_DEST_UNREACHABLE:
8337 		switch (icmph->icmph_code) {
8338 		case ICMP_FRAGMENTATION_NEEDED:
8339 			/*
8340 			 * Reduce the MSS based on the new MTU.  This will
8341 			 * eliminate any fragmentation locally.
8342 			 * N.B.  There may well be some funny side-effects on
8343 			 * the local send policy and the remote receive policy.
8344 			 * Pending further research, we provide
8345 			 * tcp_ignore_path_mtu just in case this proves
8346 			 * disastrous somewhere.
8347 			 *
8348 			 * After updating the MSS, retransmit part of the
8349 			 * dropped segment using the new mss by calling
8350 			 * tcp_wput_data().  Need to adjust all those
8351 			 * params to make sure tcp_wput_data() work properly.
8352 			 */
8353 			if (tcps->tcps_ignore_path_mtu ||
8354 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8355 				break;
8356 
8357 			/*
8358 			 * Decrease the MSS by time stamp options
8359 			 * IP options and IPSEC options. tcp_hdr_len
8360 			 * includes time stamp option and IP option
8361 			 * length.  Note that new_mss may be negative
8362 			 * if tcp_ipsec_overhead is large and the
8363 			 * icmph_du_mtu is the minimum value, which is 68.
8364 			 */
8365 			new_mss = ntohs(icmph->icmph_du_mtu) -
8366 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8367 
8368 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8369 			    new_mss);
8370 
8371 			/*
8372 			 * Only update the MSS if the new one is
8373 			 * smaller than the previous one.  This is
8374 			 * to avoid problems when getting multiple
8375 			 * ICMP errors for the same MTU.
8376 			 */
8377 			if (new_mss >= tcp->tcp_mss)
8378 				break;
8379 
8380 			/*
8381 			 * Note that we are using the template header's DF
8382 			 * bit in the fast path sending.  So we need to compare
8383 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8384 			 * And stop doing IPv4 PMTUd if new_mss is less than
8385 			 * MAX(tcps_mss_min, ip_pmtu_min).
8386 			 */
8387 			if (new_mss < tcps->tcps_mss_min ||
8388 			    new_mss < ipst->ips_ip_pmtu_min) {
8389 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8390 				    0;
8391 			}
8392 
8393 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8394 			ASSERT(ratio >= 1);
8395 			tcp_mss_set(tcp, new_mss, B_TRUE);
8396 
8397 			/*
8398 			 * Make sure we have something to
8399 			 * send.
8400 			 */
8401 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8402 			    (tcp->tcp_xmit_head != NULL)) {
8403 				/*
8404 				 * Shrink tcp_cwnd in
8405 				 * proportion to the old MSS/new MSS.
8406 				 */
8407 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8408 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8409 				    (tcp->tcp_unsent == 0)) {
8410 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8411 				} else {
8412 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8413 				}
8414 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8415 				tcp->tcp_rexmit = B_TRUE;
8416 				tcp->tcp_dupack_cnt = 0;
8417 				tcp->tcp_snd_burst = TCP_CWND_SS;
8418 				tcp_ss_rexmit(tcp);
8419 			}
8420 			break;
8421 		case ICMP_PORT_UNREACHABLE:
8422 		case ICMP_PROTOCOL_UNREACHABLE:
8423 			switch (tcp->tcp_state) {
8424 			case TCPS_SYN_SENT:
8425 			case TCPS_SYN_RCVD:
8426 				/*
8427 				 * ICMP can snipe away incipient
8428 				 * TCP connections as long as
8429 				 * seq number is same as initial
8430 				 * send seq number.
8431 				 */
8432 				if (seg_seq == tcp->tcp_iss) {
8433 					(void) tcp_clean_death(tcp,
8434 					    ECONNREFUSED, 6);
8435 				}
8436 				break;
8437 			}
8438 			break;
8439 		case ICMP_HOST_UNREACHABLE:
8440 		case ICMP_NET_UNREACHABLE:
8441 			/* Record the error in case we finally time out. */
8442 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8443 				tcp->tcp_client_errno = EHOSTUNREACH;
8444 			else
8445 				tcp->tcp_client_errno = ENETUNREACH;
8446 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8447 				if (tcp->tcp_listener != NULL &&
8448 				    tcp->tcp_listener->tcp_syn_defense) {
8449 					/*
8450 					 * Ditch the half-open connection if we
8451 					 * suspect a SYN attack is under way.
8452 					 */
8453 					tcp_ip_ire_mark_advice(tcp);
8454 					(void) tcp_clean_death(tcp,
8455 					    tcp->tcp_client_errno, 7);
8456 				}
8457 			}
8458 			break;
8459 		default:
8460 			break;
8461 		}
8462 		break;
8463 	case ICMP_SOURCE_QUENCH: {
8464 		/*
8465 		 * use a global boolean to control
8466 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8467 		 * The default is false.
8468 		 */
8469 		if (tcp_icmp_source_quench) {
8470 			/*
8471 			 * Reduce the sending rate as if we got a
8472 			 * retransmit timeout
8473 			 */
8474 			uint32_t npkt;
8475 
8476 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8477 			    tcp->tcp_mss;
8478 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8479 			tcp->tcp_cwnd = tcp->tcp_mss;
8480 			tcp->tcp_cwnd_cnt = 0;
8481 		}
8482 		break;
8483 	}
8484 	}
8485 	freemsg(first_mp);
8486 }
8487 
8488 /*
8489  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8490  * error messages passed up by IP.
8491  * Assumes that IP has pulled up all the extension headers as well
8492  * as the ICMPv6 header.
8493  */
8494 static void
8495 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8496 {
8497 	icmp6_t *icmp6;
8498 	ip6_t	*ip6h;
8499 	uint16_t	iph_hdr_length;
8500 	tcpha_t	*tcpha;
8501 	uint8_t	*nexthdrp;
8502 	uint32_t new_mss;
8503 	uint32_t ratio;
8504 	boolean_t secure;
8505 	mblk_t *first_mp = mp;
8506 	size_t mp_size;
8507 	uint32_t seg_seq;
8508 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8509 
8510 	/*
8511 	 * The caller has determined if this is an IPSEC_IN packet and
8512 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8513 	 */
8514 	if (ipsec_mctl)
8515 		mp = mp->b_cont;
8516 
8517 	mp_size = MBLKL(mp);
8518 
8519 	/*
8520 	 * Verify that we have a complete IP header. If not, send it upstream.
8521 	 */
8522 	if (mp_size < sizeof (ip6_t)) {
8523 noticmpv6:
8524 		freemsg(first_mp);
8525 		return;
8526 	}
8527 
8528 	/*
8529 	 * Verify this is an ICMPV6 packet, else send it upstream.
8530 	 */
8531 	ip6h = (ip6_t *)mp->b_rptr;
8532 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8533 		iph_hdr_length = IPV6_HDR_LEN;
8534 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8535 	    &nexthdrp) ||
8536 	    *nexthdrp != IPPROTO_ICMPV6) {
8537 		goto noticmpv6;
8538 	}
8539 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8540 	ip6h = (ip6_t *)&icmp6[1];
8541 	/*
8542 	 * Verify if we have a complete ICMP and inner IP header.
8543 	 */
8544 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8545 		goto noticmpv6;
8546 
8547 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8548 		goto noticmpv6;
8549 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8550 	/*
8551 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8552 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8553 	 * packet.
8554 	 */
8555 	if ((*nexthdrp != IPPROTO_TCP) ||
8556 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8557 		goto noticmpv6;
8558 	}
8559 
8560 	/*
8561 	 * ICMP errors come on the right queue or come on
8562 	 * listener/global queue for detached connections and
8563 	 * get switched to the right queue. If it comes on the
8564 	 * right queue, policy check has already been done by IP
8565 	 * and thus free the first_mp without verifying the policy.
8566 	 * If it has come for a non-hard bound connection, we need
8567 	 * to verify policy as IP may not have done it.
8568 	 */
8569 	if (!tcp->tcp_hard_bound) {
8570 		if (ipsec_mctl) {
8571 			secure = ipsec_in_is_secure(first_mp);
8572 		} else {
8573 			secure = B_FALSE;
8574 		}
8575 		if (secure) {
8576 			/*
8577 			 * If we are willing to accept this in clear
8578 			 * we don't have to verify policy.
8579 			 */
8580 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8581 				if (!tcp_check_policy(tcp, first_mp,
8582 				    NULL, ip6h, secure, ipsec_mctl)) {
8583 					/*
8584 					 * tcp_check_policy called
8585 					 * ip_drop_packet() on failure.
8586 					 */
8587 					return;
8588 				}
8589 			}
8590 		}
8591 	} else if (ipsec_mctl) {
8592 		/*
8593 		 * This is a hard_bound connection. IP has already
8594 		 * verified policy. We don't have to do it again.
8595 		 */
8596 		freeb(first_mp);
8597 		first_mp = mp;
8598 		ipsec_mctl = B_FALSE;
8599 	}
8600 
8601 	seg_seq = ntohl(tcpha->tha_seq);
8602 	/*
8603 	 * TCP SHOULD check that the TCP sequence number contained in
8604 	 * payload of the ICMP error message is within the range
8605 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8606 	 */
8607 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8608 		/*
8609 		 * If the ICMP message is bogus, should we kill the
8610 		 * connection, or should we just drop the bogus ICMP
8611 		 * message? It would probably make more sense to just
8612 		 * drop the message so that if this one managed to get
8613 		 * in, the real connection should not suffer.
8614 		 */
8615 		goto noticmpv6;
8616 	}
8617 
8618 	switch (icmp6->icmp6_type) {
8619 	case ICMP6_PACKET_TOO_BIG:
8620 		/*
8621 		 * Reduce the MSS based on the new MTU.  This will
8622 		 * eliminate any fragmentation locally.
8623 		 * N.B.  There may well be some funny side-effects on
8624 		 * the local send policy and the remote receive policy.
8625 		 * Pending further research, we provide
8626 		 * tcp_ignore_path_mtu just in case this proves
8627 		 * disastrous somewhere.
8628 		 *
8629 		 * After updating the MSS, retransmit part of the
8630 		 * dropped segment using the new mss by calling
8631 		 * tcp_wput_data().  Need to adjust all those
8632 		 * params to make sure tcp_wput_data() work properly.
8633 		 */
8634 		if (tcps->tcps_ignore_path_mtu)
8635 			break;
8636 
8637 		/*
8638 		 * Decrease the MSS by time stamp options
8639 		 * IP options and IPSEC options. tcp_hdr_len
8640 		 * includes time stamp option and IP option
8641 		 * length.
8642 		 */
8643 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8644 		    tcp->tcp_ipsec_overhead;
8645 
8646 		/*
8647 		 * Only update the MSS if the new one is
8648 		 * smaller than the previous one.  This is
8649 		 * to avoid problems when getting multiple
8650 		 * ICMP errors for the same MTU.
8651 		 */
8652 		if (new_mss >= tcp->tcp_mss)
8653 			break;
8654 
8655 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8656 		ASSERT(ratio >= 1);
8657 		tcp_mss_set(tcp, new_mss, B_TRUE);
8658 
8659 		/*
8660 		 * Make sure we have something to
8661 		 * send.
8662 		 */
8663 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8664 		    (tcp->tcp_xmit_head != NULL)) {
8665 			/*
8666 			 * Shrink tcp_cwnd in
8667 			 * proportion to the old MSS/new MSS.
8668 			 */
8669 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8670 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8671 			    (tcp->tcp_unsent == 0)) {
8672 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8673 			} else {
8674 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8675 			}
8676 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8677 			tcp->tcp_rexmit = B_TRUE;
8678 			tcp->tcp_dupack_cnt = 0;
8679 			tcp->tcp_snd_burst = TCP_CWND_SS;
8680 			tcp_ss_rexmit(tcp);
8681 		}
8682 		break;
8683 
8684 	case ICMP6_DST_UNREACH:
8685 		switch (icmp6->icmp6_code) {
8686 		case ICMP6_DST_UNREACH_NOPORT:
8687 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8688 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8689 			    (seg_seq == tcp->tcp_iss)) {
8690 				(void) tcp_clean_death(tcp,
8691 				    ECONNREFUSED, 8);
8692 			}
8693 			break;
8694 
8695 		case ICMP6_DST_UNREACH_ADMIN:
8696 		case ICMP6_DST_UNREACH_NOROUTE:
8697 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8698 		case ICMP6_DST_UNREACH_ADDR:
8699 			/* Record the error in case we finally time out. */
8700 			tcp->tcp_client_errno = EHOSTUNREACH;
8701 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8702 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8703 			    (seg_seq == tcp->tcp_iss)) {
8704 				if (tcp->tcp_listener != NULL &&
8705 				    tcp->tcp_listener->tcp_syn_defense) {
8706 					/*
8707 					 * Ditch the half-open connection if we
8708 					 * suspect a SYN attack is under way.
8709 					 */
8710 					tcp_ip_ire_mark_advice(tcp);
8711 					(void) tcp_clean_death(tcp,
8712 					    tcp->tcp_client_errno, 9);
8713 				}
8714 			}
8715 
8716 
8717 			break;
8718 		default:
8719 			break;
8720 		}
8721 		break;
8722 
8723 	case ICMP6_PARAM_PROB:
8724 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8725 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8726 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8727 		    (uchar_t *)nexthdrp) {
8728 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8729 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8730 				(void) tcp_clean_death(tcp,
8731 				    ECONNREFUSED, 10);
8732 			}
8733 			break;
8734 		}
8735 		break;
8736 
8737 	case ICMP6_TIME_EXCEEDED:
8738 	default:
8739 		break;
8740 	}
8741 	freemsg(first_mp);
8742 }
8743 
8744 /*
8745  * Notify IP that we are having trouble with this connection.  IP should
8746  * blow the IRE away and start over.
8747  */
8748 static void
8749 tcp_ip_notify(tcp_t *tcp)
8750 {
8751 	struct iocblk	*iocp;
8752 	ipid_t	*ipid;
8753 	mblk_t	*mp;
8754 
8755 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8756 	if (tcp->tcp_ipversion == IPV6_VERSION)
8757 		return;
8758 
8759 	mp = mkiocb(IP_IOCTL);
8760 	if (mp == NULL)
8761 		return;
8762 
8763 	iocp = (struct iocblk *)mp->b_rptr;
8764 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8765 
8766 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8767 	if (!mp->b_cont) {
8768 		freeb(mp);
8769 		return;
8770 	}
8771 
8772 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8773 	mp->b_cont->b_wptr += iocp->ioc_count;
8774 	bzero(ipid, sizeof (*ipid));
8775 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8776 	ipid->ipid_ire_type = IRE_CACHE;
8777 	ipid->ipid_addr_offset = sizeof (ipid_t);
8778 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8779 	/*
8780 	 * Note: in the case of source routing we want to blow away the
8781 	 * route to the first source route hop.
8782 	 */
8783 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8784 	    sizeof (tcp->tcp_ipha->ipha_dst));
8785 
8786 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8787 }
8788 
8789 /* Unlink and return any mblk that looks like it contains an ire */
8790 static mblk_t *
8791 tcp_ire_mp(mblk_t **mpp)
8792 {
8793 	mblk_t 	*mp = *mpp;
8794 	mblk_t	*prev_mp = NULL;
8795 
8796 	for (;;) {
8797 		switch (DB_TYPE(mp)) {
8798 		case IRE_DB_TYPE:
8799 		case IRE_DB_REQ_TYPE:
8800 			if (mp == *mpp) {
8801 				*mpp = mp->b_cont;
8802 			} else {
8803 				prev_mp->b_cont = mp->b_cont;
8804 			}
8805 			mp->b_cont = NULL;
8806 			return (mp);
8807 		default:
8808 			break;
8809 		}
8810 		prev_mp = mp;
8811 		mp = mp->b_cont;
8812 		if (mp == NULL)
8813 			break;
8814 	}
8815 	return (mp);
8816 }
8817 
8818 /*
8819  * Timer callback routine for keepalive probe.  We do a fake resend of
8820  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8821  * check to see if we have heard anything from the other end for the last
8822  * RTO period.  If we have, set the timer to expire for another
8823  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8824  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8825  * the timeout if we have not heard from the other side.  If for more than
8826  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8827  * kill the connection unless the keepalive abort threshold is 0.  In
8828  * that case, we will probe "forever."
8829  */
8830 static void
8831 tcp_keepalive_killer(void *arg)
8832 {
8833 	mblk_t	*mp;
8834 	conn_t	*connp = (conn_t *)arg;
8835 	tcp_t  	*tcp = connp->conn_tcp;
8836 	int32_t	firetime;
8837 	int32_t	idletime;
8838 	int32_t	ka_intrvl;
8839 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8840 
8841 	tcp->tcp_ka_tid = 0;
8842 
8843 	if (tcp->tcp_fused)
8844 		return;
8845 
8846 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8847 	ka_intrvl = tcp->tcp_ka_interval;
8848 
8849 	/*
8850 	 * Keepalive probe should only be sent if the application has not
8851 	 * done a close on the connection.
8852 	 */
8853 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8854 		return;
8855 	}
8856 	/* Timer fired too early, restart it. */
8857 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8858 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8859 		    MSEC_TO_TICK(ka_intrvl));
8860 		return;
8861 	}
8862 
8863 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8864 	/*
8865 	 * If we have not heard from the other side for a long
8866 	 * time, kill the connection unless the keepalive abort
8867 	 * threshold is 0.  In that case, we will probe "forever."
8868 	 */
8869 	if (tcp->tcp_ka_abort_thres != 0 &&
8870 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8871 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8872 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8873 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8874 		return;
8875 	}
8876 
8877 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8878 	    idletime >= ka_intrvl) {
8879 		/* Fake resend of last ACKed byte. */
8880 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8881 
8882 		if (mp1 != NULL) {
8883 			*mp1->b_wptr++ = '\0';
8884 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8885 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8886 			freeb(mp1);
8887 			/*
8888 			 * if allocation failed, fall through to start the
8889 			 * timer back.
8890 			 */
8891 			if (mp != NULL) {
8892 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8893 				BUMP_MIB(&tcps->tcps_mib,
8894 				    tcpTimKeepaliveProbe);
8895 				if (tcp->tcp_ka_last_intrvl != 0) {
8896 					int max;
8897 					/*
8898 					 * We should probe again at least
8899 					 * in ka_intrvl, but not more than
8900 					 * tcp_rexmit_interval_max.
8901 					 */
8902 					max = tcps->tcps_rexmit_interval_max;
8903 					firetime = MIN(ka_intrvl - 1,
8904 					    tcp->tcp_ka_last_intrvl << 1);
8905 					if (firetime > max)
8906 						firetime = max;
8907 				} else {
8908 					firetime = tcp->tcp_rto;
8909 				}
8910 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8911 				    tcp_keepalive_killer,
8912 				    MSEC_TO_TICK(firetime));
8913 				tcp->tcp_ka_last_intrvl = firetime;
8914 				return;
8915 			}
8916 		}
8917 	} else {
8918 		tcp->tcp_ka_last_intrvl = 0;
8919 	}
8920 
8921 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8922 	if ((firetime = ka_intrvl - idletime) < 0) {
8923 		firetime = ka_intrvl;
8924 	}
8925 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8926 	    MSEC_TO_TICK(firetime));
8927 }
8928 
8929 int
8930 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8931 {
8932 	queue_t	*q = tcp->tcp_rq;
8933 	int32_t	mss = tcp->tcp_mss;
8934 	int	maxpsz;
8935 	conn_t	*connp = tcp->tcp_connp;
8936 
8937 	if (TCP_IS_DETACHED(tcp))
8938 		return (mss);
8939 	if (tcp->tcp_fused) {
8940 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8941 		mss = INFPSZ;
8942 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8943 		/*
8944 		 * Set the sd_qn_maxpsz according to the socket send buffer
8945 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8946 		 * instruct the stream head to copyin user data into contiguous
8947 		 * kernel-allocated buffers without breaking it up into smaller
8948 		 * chunks.  We round up the buffer size to the nearest SMSS.
8949 		 */
8950 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8951 		if (tcp->tcp_kssl_ctx == NULL)
8952 			mss = INFPSZ;
8953 		else
8954 			mss = SSL3_MAX_RECORD_LEN;
8955 	} else {
8956 		/*
8957 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8958 		 * (and a multiple of the mss).  This instructs the stream
8959 		 * head to break down larger than SMSS writes into SMSS-
8960 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8961 		 */
8962 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8963 		maxpsz = tcp->tcp_maxpsz * mss;
8964 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8965 			maxpsz = tcp->tcp_xmit_hiwater/2;
8966 			/* Round up to nearest mss */
8967 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8968 		}
8969 	}
8970 
8971 	(void) proto_set_maxpsz(q, connp, maxpsz);
8972 	if (!(IPCL_IS_NONSTR(connp))) {
8973 		/* XXX do it in set_maxpsz()? */
8974 		tcp->tcp_wq->q_maxpsz = maxpsz;
8975 	}
8976 
8977 	if (set_maxblk)
8978 		(void) proto_set_tx_maxblk(q, connp, mss);
8979 	return (mss);
8980 }
8981 
8982 /*
8983  * Extract option values from a tcp header.  We put any found values into the
8984  * tcpopt struct and return a bitmask saying which options were found.
8985  */
8986 static int
8987 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8988 {
8989 	uchar_t		*endp;
8990 	int		len;
8991 	uint32_t	mss;
8992 	uchar_t		*up = (uchar_t *)tcph;
8993 	int		found = 0;
8994 	int32_t		sack_len;
8995 	tcp_seq		sack_begin, sack_end;
8996 	tcp_t		*tcp;
8997 
8998 	endp = up + TCP_HDR_LENGTH(tcph);
8999 	up += TCP_MIN_HEADER_LENGTH;
9000 	while (up < endp) {
9001 		len = endp - up;
9002 		switch (*up) {
9003 		case TCPOPT_EOL:
9004 			break;
9005 
9006 		case TCPOPT_NOP:
9007 			up++;
9008 			continue;
9009 
9010 		case TCPOPT_MAXSEG:
9011 			if (len < TCPOPT_MAXSEG_LEN ||
9012 			    up[1] != TCPOPT_MAXSEG_LEN)
9013 				break;
9014 
9015 			mss = BE16_TO_U16(up+2);
9016 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9017 			tcpopt->tcp_opt_mss = mss;
9018 			found |= TCP_OPT_MSS_PRESENT;
9019 
9020 			up += TCPOPT_MAXSEG_LEN;
9021 			continue;
9022 
9023 		case TCPOPT_WSCALE:
9024 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9025 				break;
9026 
9027 			if (up[2] > TCP_MAX_WINSHIFT)
9028 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9029 			else
9030 				tcpopt->tcp_opt_wscale = up[2];
9031 			found |= TCP_OPT_WSCALE_PRESENT;
9032 
9033 			up += TCPOPT_WS_LEN;
9034 			continue;
9035 
9036 		case TCPOPT_SACK_PERMITTED:
9037 			if (len < TCPOPT_SACK_OK_LEN ||
9038 			    up[1] != TCPOPT_SACK_OK_LEN)
9039 				break;
9040 			found |= TCP_OPT_SACK_OK_PRESENT;
9041 			up += TCPOPT_SACK_OK_LEN;
9042 			continue;
9043 
9044 		case TCPOPT_SACK:
9045 			if (len <= 2 || up[1] <= 2 || len < up[1])
9046 				break;
9047 
9048 			/* If TCP is not interested in SACK blks... */
9049 			if ((tcp = tcpopt->tcp) == NULL) {
9050 				up += up[1];
9051 				continue;
9052 			}
9053 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9054 			up += TCPOPT_HEADER_LEN;
9055 
9056 			/*
9057 			 * If the list is empty, allocate one and assume
9058 			 * nothing is sack'ed.
9059 			 */
9060 			ASSERT(tcp->tcp_sack_info != NULL);
9061 			if (tcp->tcp_notsack_list == NULL) {
9062 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9063 				    tcp->tcp_suna, tcp->tcp_snxt,
9064 				    &(tcp->tcp_num_notsack_blk),
9065 				    &(tcp->tcp_cnt_notsack_list));
9066 
9067 				/*
9068 				 * Make sure tcp_notsack_list is not NULL.
9069 				 * This happens when kmem_alloc(KM_NOSLEEP)
9070 				 * returns NULL.
9071 				 */
9072 				if (tcp->tcp_notsack_list == NULL) {
9073 					up += sack_len;
9074 					continue;
9075 				}
9076 				tcp->tcp_fack = tcp->tcp_suna;
9077 			}
9078 
9079 			while (sack_len > 0) {
9080 				if (up + 8 > endp) {
9081 					up = endp;
9082 					break;
9083 				}
9084 				sack_begin = BE32_TO_U32(up);
9085 				up += 4;
9086 				sack_end = BE32_TO_U32(up);
9087 				up += 4;
9088 				sack_len -= 8;
9089 				/*
9090 				 * Bounds checking.  Make sure the SACK
9091 				 * info is within tcp_suna and tcp_snxt.
9092 				 * If this SACK blk is out of bound, ignore
9093 				 * it but continue to parse the following
9094 				 * blks.
9095 				 */
9096 				if (SEQ_LEQ(sack_end, sack_begin) ||
9097 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9098 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9099 					continue;
9100 				}
9101 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9102 				    sack_begin, sack_end,
9103 				    &(tcp->tcp_num_notsack_blk),
9104 				    &(tcp->tcp_cnt_notsack_list));
9105 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9106 					tcp->tcp_fack = sack_end;
9107 				}
9108 			}
9109 			found |= TCP_OPT_SACK_PRESENT;
9110 			continue;
9111 
9112 		case TCPOPT_TSTAMP:
9113 			if (len < TCPOPT_TSTAMP_LEN ||
9114 			    up[1] != TCPOPT_TSTAMP_LEN)
9115 				break;
9116 
9117 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9118 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9119 
9120 			found |= TCP_OPT_TSTAMP_PRESENT;
9121 
9122 			up += TCPOPT_TSTAMP_LEN;
9123 			continue;
9124 
9125 		default:
9126 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9127 				break;
9128 			up += up[1];
9129 			continue;
9130 		}
9131 		break;
9132 	}
9133 	return (found);
9134 }
9135 
9136 /*
9137  * Set the mss associated with a particular tcp based on its current value,
9138  * and a new one passed in. Observe minimums and maximums, and reset
9139  * other state variables that we want to view as multiples of mss.
9140  *
9141  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9142  * highwater marks etc. need to be initialized or adjusted.
9143  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9144  *    packet arrives.
9145  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9146  *    ICMP6_PACKET_TOO_BIG arrives.
9147  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9148  *    to increase the MSS to use the extra bytes available.
9149  *
9150  * Callers except tcp_paws_check() ensure that they only reduce mss.
9151  */
9152 static void
9153 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9154 {
9155 	uint32_t	mss_max;
9156 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9157 
9158 	if (tcp->tcp_ipversion == IPV4_VERSION)
9159 		mss_max = tcps->tcps_mss_max_ipv4;
9160 	else
9161 		mss_max = tcps->tcps_mss_max_ipv6;
9162 
9163 	if (mss < tcps->tcps_mss_min)
9164 		mss = tcps->tcps_mss_min;
9165 	if (mss > mss_max)
9166 		mss = mss_max;
9167 	/*
9168 	 * Unless naglim has been set by our client to
9169 	 * a non-mss value, force naglim to track mss.
9170 	 * This can help to aggregate small writes.
9171 	 */
9172 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9173 		tcp->tcp_naglim = mss;
9174 	/*
9175 	 * TCP should be able to buffer at least 4 MSS data for obvious
9176 	 * performance reason.
9177 	 */
9178 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9179 		tcp->tcp_xmit_hiwater = mss << 2;
9180 
9181 	if (do_ss) {
9182 		/*
9183 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9184 		 * changing due to a reduction in MTU, presumably as a
9185 		 * result of a new path component, reset cwnd to its
9186 		 * "initial" value, as a multiple of the new mss.
9187 		 */
9188 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9189 	} else {
9190 		/*
9191 		 * Called by tcp_paws_check(), the mss increased
9192 		 * marginally to allow use of space previously taken
9193 		 * by the timestamp option. It would be inappropriate
9194 		 * to apply slow start or tcp_init_cwnd values to
9195 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9196 		 */
9197 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9198 		tcp->tcp_cwnd_cnt = 0;
9199 	}
9200 	tcp->tcp_mss = mss;
9201 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9202 }
9203 
9204 /* For /dev/tcp aka AF_INET open */
9205 static int
9206 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9207 {
9208 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9209 }
9210 
9211 /* For /dev/tcp6 aka AF_INET6 open */
9212 static int
9213 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9214 {
9215 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9216 }
9217 
9218 static conn_t *
9219 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9220     boolean_t issocket, int *errorp)
9221 {
9222 	tcp_t		*tcp = NULL;
9223 	conn_t		*connp;
9224 	int		err;
9225 	zoneid_t	zoneid;
9226 	tcp_stack_t	*tcps;
9227 	squeue_t	*sqp;
9228 
9229 	ASSERT(errorp != NULL);
9230 	/*
9231 	 * Find the proper zoneid and netstack.
9232 	 */
9233 	/*
9234 	 * Special case for install: miniroot needs to be able to
9235 	 * access files via NFS as though it were always in the
9236 	 * global zone.
9237 	 */
9238 	if (credp == kcred && nfs_global_client_only != 0) {
9239 		zoneid = GLOBAL_ZONEID;
9240 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9241 		    netstack_tcp;
9242 		ASSERT(tcps != NULL);
9243 	} else {
9244 		netstack_t *ns;
9245 
9246 		ns = netstack_find_by_cred(credp);
9247 		ASSERT(ns != NULL);
9248 		tcps = ns->netstack_tcp;
9249 		ASSERT(tcps != NULL);
9250 
9251 		/*
9252 		 * For exclusive stacks we set the zoneid to zero
9253 		 * to make TCP operate as if in the global zone.
9254 		 */
9255 		if (tcps->tcps_netstack->netstack_stackid !=
9256 		    GLOBAL_NETSTACKID)
9257 			zoneid = GLOBAL_ZONEID;
9258 		else
9259 			zoneid = crgetzoneid(credp);
9260 	}
9261 	/*
9262 	 * For stackid zero this is done from strplumb.c, but
9263 	 * non-zero stackids are handled here.
9264 	 */
9265 	if (tcps->tcps_g_q == NULL &&
9266 	    tcps->tcps_netstack->netstack_stackid !=
9267 	    GLOBAL_NETSTACKID) {
9268 		tcp_g_q_setup(tcps);
9269 	}
9270 
9271 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9272 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
9273 	/*
9274 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9275 	 * so we drop it by one.
9276 	 */
9277 	netstack_rele(tcps->tcps_netstack);
9278 	if (connp == NULL) {
9279 		*errorp = ENOSR;
9280 		return (NULL);
9281 	}
9282 	connp->conn_sqp = sqp;
9283 	connp->conn_initial_sqp = connp->conn_sqp;
9284 	tcp = connp->conn_tcp;
9285 
9286 	if (isv6) {
9287 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9288 		connp->conn_send = ip_output_v6;
9289 		connp->conn_af_isv6 = B_TRUE;
9290 		connp->conn_pkt_isv6 = B_TRUE;
9291 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9292 		tcp->tcp_ipversion = IPV6_VERSION;
9293 		tcp->tcp_family = AF_INET6;
9294 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9295 	} else {
9296 		connp->conn_flags |= IPCL_TCP4;
9297 		connp->conn_send = ip_output;
9298 		connp->conn_af_isv6 = B_FALSE;
9299 		connp->conn_pkt_isv6 = B_FALSE;
9300 		tcp->tcp_ipversion = IPV4_VERSION;
9301 		tcp->tcp_family = AF_INET;
9302 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9303 	}
9304 
9305 	/*
9306 	 * TCP keeps a copy of cred for cache locality reasons but
9307 	 * we put a reference only once. If connp->conn_cred
9308 	 * becomes invalid, tcp_cred should also be set to NULL.
9309 	 */
9310 	tcp->tcp_cred = connp->conn_cred = credp;
9311 	crhold(connp->conn_cred);
9312 	tcp->tcp_cpid = curproc->p_pid;
9313 	tcp->tcp_open_time = lbolt64;
9314 	connp->conn_zoneid = zoneid;
9315 	connp->conn_mlp_type = mlptSingle;
9316 	connp->conn_ulp_labeled = !is_system_labeled();
9317 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9318 	ASSERT(tcp->tcp_tcps == tcps);
9319 
9320 	/*
9321 	 * If the caller has the process-wide flag set, then default to MAC
9322 	 * exempt mode.  This allows read-down to unlabeled hosts.
9323 	 */
9324 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9325 		connp->conn_mac_exempt = B_TRUE;
9326 
9327 	connp->conn_dev = NULL;
9328 	if (issocket) {
9329 		connp->conn_flags |= IPCL_SOCKET;
9330 		tcp->tcp_issocket = 1;
9331 	}
9332 
9333 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9334 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9335 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9336 
9337 	/* Non-zero default values */
9338 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9339 
9340 	if (q == NULL) {
9341 		/*
9342 		 * Create a helper stream for non-STREAMS socket.
9343 		 */
9344 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9345 		if (err != 0) {
9346 			ip1dbg(("tcp_create_common: create of IP helper stream "
9347 			    "failed\n"));
9348 			CONN_DEC_REF(connp);
9349 			*errorp = err;
9350 			return (NULL);
9351 		}
9352 		q = connp->conn_rq;
9353 	} else {
9354 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9355 	}
9356 
9357 	SOCK_CONNID_INIT(tcp->tcp_connid);
9358 	err = tcp_init(tcp, q);
9359 	if (err != 0) {
9360 		CONN_DEC_REF(connp);
9361 		*errorp = err;
9362 		return (NULL);
9363 	}
9364 
9365 	return (connp);
9366 }
9367 
9368 static int
9369 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9370     boolean_t isv6)
9371 {
9372 	tcp_t		*tcp = NULL;
9373 	conn_t		*connp = NULL;
9374 	int		err;
9375 	vmem_t		*minor_arena = NULL;
9376 	dev_t		conn_dev;
9377 	boolean_t	issocket;
9378 
9379 	if (q->q_ptr != NULL)
9380 		return (0);
9381 
9382 	if (sflag == MODOPEN)
9383 		return (EINVAL);
9384 
9385 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9386 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9387 		minor_arena = ip_minor_arena_la;
9388 	} else {
9389 		/*
9390 		 * Either minor numbers in the large arena were exhausted
9391 		 * or a non socket application is doing the open.
9392 		 * Try to allocate from the small arena.
9393 		 */
9394 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9395 			return (EBUSY);
9396 		}
9397 		minor_arena = ip_minor_arena_sa;
9398 	}
9399 
9400 	ASSERT(minor_arena != NULL);
9401 
9402 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9403 
9404 	if (flag & SO_FALLBACK) {
9405 		/*
9406 		 * Non streams socket needs a stream to fallback to
9407 		 */
9408 		RD(q)->q_ptr = (void *)conn_dev;
9409 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9410 		WR(q)->q_ptr = (void *)minor_arena;
9411 		qprocson(q);
9412 		return (0);
9413 	} else if (flag & SO_ACCEPTOR) {
9414 		q->q_qinfo = &tcp_acceptor_rinit;
9415 		/*
9416 		 * the conn_dev and minor_arena will be subsequently used by
9417 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9418 		 * minor device number for this connection from the q_ptr.
9419 		 */
9420 		RD(q)->q_ptr = (void *)conn_dev;
9421 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9422 		WR(q)->q_ptr = (void *)minor_arena;
9423 		qprocson(q);
9424 		return (0);
9425 	}
9426 
9427 	issocket = flag & SO_SOCKSTR;
9428 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9429 
9430 	if (connp == NULL) {
9431 		inet_minor_free(minor_arena, conn_dev);
9432 		q->q_ptr = WR(q)->q_ptr = NULL;
9433 		return (err);
9434 	}
9435 
9436 	q->q_ptr = WR(q)->q_ptr = connp;
9437 
9438 	connp->conn_dev = conn_dev;
9439 	connp->conn_minor_arena = minor_arena;
9440 
9441 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9442 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9443 
9444 	if (issocket) {
9445 		WR(q)->q_qinfo = &tcp_sock_winit;
9446 	} else {
9447 		tcp = connp->conn_tcp;
9448 #ifdef  _ILP32
9449 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9450 #else
9451 		tcp->tcp_acceptor_id = conn_dev;
9452 #endif  /* _ILP32 */
9453 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9454 	}
9455 
9456 	/*
9457 	 * Put the ref for TCP. Ref for IP was already put
9458 	 * by ipcl_conn_create. Also Make the conn_t globally
9459 	 * visible to walkers
9460 	 */
9461 	mutex_enter(&connp->conn_lock);
9462 	CONN_INC_REF_LOCKED(connp);
9463 	ASSERT(connp->conn_ref == 2);
9464 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9465 	mutex_exit(&connp->conn_lock);
9466 
9467 	qprocson(q);
9468 	return (0);
9469 }
9470 
9471 /*
9472  * Some TCP options can be "set" by requesting them in the option
9473  * buffer. This is needed for XTI feature test though we do not
9474  * allow it in general. We interpret that this mechanism is more
9475  * applicable to OSI protocols and need not be allowed in general.
9476  * This routine filters out options for which it is not allowed (most)
9477  * and lets through those (few) for which it is. [ The XTI interface
9478  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9479  * ever implemented will have to be allowed here ].
9480  */
9481 static boolean_t
9482 tcp_allow_connopt_set(int level, int name)
9483 {
9484 
9485 	switch (level) {
9486 	case IPPROTO_TCP:
9487 		switch (name) {
9488 		case TCP_NODELAY:
9489 			return (B_TRUE);
9490 		default:
9491 			return (B_FALSE);
9492 		}
9493 		/*NOTREACHED*/
9494 	default:
9495 		return (B_FALSE);
9496 	}
9497 	/*NOTREACHED*/
9498 }
9499 
9500 /*
9501  * this routine gets default values of certain options whose default
9502  * values are maintained by protocol specific code
9503  */
9504 /* ARGSUSED */
9505 int
9506 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9507 {
9508 	int32_t	*i1 = (int32_t *)ptr;
9509 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9510 
9511 	switch (level) {
9512 	case IPPROTO_TCP:
9513 		switch (name) {
9514 		case TCP_NOTIFY_THRESHOLD:
9515 			*i1 = tcps->tcps_ip_notify_interval;
9516 			break;
9517 		case TCP_ABORT_THRESHOLD:
9518 			*i1 = tcps->tcps_ip_abort_interval;
9519 			break;
9520 		case TCP_CONN_NOTIFY_THRESHOLD:
9521 			*i1 = tcps->tcps_ip_notify_cinterval;
9522 			break;
9523 		case TCP_CONN_ABORT_THRESHOLD:
9524 			*i1 = tcps->tcps_ip_abort_cinterval;
9525 			break;
9526 		default:
9527 			return (-1);
9528 		}
9529 		break;
9530 	case IPPROTO_IP:
9531 		switch (name) {
9532 		case IP_TTL:
9533 			*i1 = tcps->tcps_ipv4_ttl;
9534 			break;
9535 		default:
9536 			return (-1);
9537 		}
9538 		break;
9539 	case IPPROTO_IPV6:
9540 		switch (name) {
9541 		case IPV6_UNICAST_HOPS:
9542 			*i1 = tcps->tcps_ipv6_hoplimit;
9543 			break;
9544 		default:
9545 			return (-1);
9546 		}
9547 		break;
9548 	default:
9549 		return (-1);
9550 	}
9551 	return (sizeof (int));
9552 }
9553 
9554 static int
9555 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9556 {
9557 	int		*i1 = (int *)ptr;
9558 	tcp_t		*tcp = connp->conn_tcp;
9559 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9560 
9561 	switch (level) {
9562 	case SOL_SOCKET:
9563 		switch (name) {
9564 		case SO_LINGER:	{
9565 			struct linger *lgr = (struct linger *)ptr;
9566 
9567 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9568 			lgr->l_linger = tcp->tcp_lingertime;
9569 			}
9570 			return (sizeof (struct linger));
9571 		case SO_DEBUG:
9572 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9573 			break;
9574 		case SO_KEEPALIVE:
9575 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9576 			break;
9577 		case SO_DONTROUTE:
9578 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9579 			break;
9580 		case SO_USELOOPBACK:
9581 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9582 			break;
9583 		case SO_BROADCAST:
9584 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9585 			break;
9586 		case SO_REUSEADDR:
9587 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9588 			break;
9589 		case SO_OOBINLINE:
9590 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9591 			break;
9592 		case SO_DGRAM_ERRIND:
9593 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9594 			break;
9595 		case SO_TYPE:
9596 			*i1 = SOCK_STREAM;
9597 			break;
9598 		case SO_SNDBUF:
9599 			*i1 = tcp->tcp_xmit_hiwater;
9600 			break;
9601 		case SO_RCVBUF:
9602 			*i1 = tcp->tcp_recv_hiwater;
9603 			break;
9604 		case SO_SND_COPYAVOID:
9605 			*i1 = tcp->tcp_snd_zcopy_on ?
9606 			    SO_SND_COPYAVOID : 0;
9607 			break;
9608 		case SO_ALLZONES:
9609 			*i1 = connp->conn_allzones ? 1 : 0;
9610 			break;
9611 		case SO_ANON_MLP:
9612 			*i1 = connp->conn_anon_mlp;
9613 			break;
9614 		case SO_MAC_EXEMPT:
9615 			*i1 = connp->conn_mac_exempt;
9616 			break;
9617 		case SO_EXCLBIND:
9618 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9619 			break;
9620 		case SO_PROTOTYPE:
9621 			*i1 = IPPROTO_TCP;
9622 			break;
9623 		case SO_DOMAIN:
9624 			*i1 = tcp->tcp_family;
9625 			break;
9626 		case SO_ACCEPTCONN:
9627 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9628 		default:
9629 			return (-1);
9630 		}
9631 		break;
9632 	case IPPROTO_TCP:
9633 		switch (name) {
9634 		case TCP_NODELAY:
9635 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9636 			break;
9637 		case TCP_MAXSEG:
9638 			*i1 = tcp->tcp_mss;
9639 			break;
9640 		case TCP_NOTIFY_THRESHOLD:
9641 			*i1 = (int)tcp->tcp_first_timer_threshold;
9642 			break;
9643 		case TCP_ABORT_THRESHOLD:
9644 			*i1 = tcp->tcp_second_timer_threshold;
9645 			break;
9646 		case TCP_CONN_NOTIFY_THRESHOLD:
9647 			*i1 = tcp->tcp_first_ctimer_threshold;
9648 			break;
9649 		case TCP_CONN_ABORT_THRESHOLD:
9650 			*i1 = tcp->tcp_second_ctimer_threshold;
9651 			break;
9652 		case TCP_RECVDSTADDR:
9653 			*i1 = tcp->tcp_recvdstaddr;
9654 			break;
9655 		case TCP_ANONPRIVBIND:
9656 			*i1 = tcp->tcp_anon_priv_bind;
9657 			break;
9658 		case TCP_EXCLBIND:
9659 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9660 			break;
9661 		case TCP_INIT_CWND:
9662 			*i1 = tcp->tcp_init_cwnd;
9663 			break;
9664 		case TCP_KEEPALIVE_THRESHOLD:
9665 			*i1 = tcp->tcp_ka_interval;
9666 			break;
9667 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9668 			*i1 = tcp->tcp_ka_abort_thres;
9669 			break;
9670 		case TCP_CORK:
9671 			*i1 = tcp->tcp_cork;
9672 			break;
9673 		default:
9674 			return (-1);
9675 		}
9676 		break;
9677 	case IPPROTO_IP:
9678 		if (tcp->tcp_family != AF_INET)
9679 			return (-1);
9680 		switch (name) {
9681 		case IP_OPTIONS:
9682 		case T_IP_OPTIONS: {
9683 			/*
9684 			 * This is compatible with BSD in that in only return
9685 			 * the reverse source route with the final destination
9686 			 * as the last entry. The first 4 bytes of the option
9687 			 * will contain the final destination.
9688 			 */
9689 			int	opt_len;
9690 
9691 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9692 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9693 			ASSERT(opt_len >= 0);
9694 			/* Caller ensures enough space */
9695 			if (opt_len > 0) {
9696 				/*
9697 				 * TODO: Do we have to handle getsockopt on an
9698 				 * initiator as well?
9699 				 */
9700 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9701 			}
9702 			return (0);
9703 			}
9704 		case IP_TOS:
9705 		case T_IP_TOS:
9706 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9707 			break;
9708 		case IP_TTL:
9709 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9710 			break;
9711 		case IP_NEXTHOP:
9712 			/* Handled at IP level */
9713 			return (-EINVAL);
9714 		default:
9715 			return (-1);
9716 		}
9717 		break;
9718 	case IPPROTO_IPV6:
9719 		/*
9720 		 * IPPROTO_IPV6 options are only supported for sockets
9721 		 * that are using IPv6 on the wire.
9722 		 */
9723 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9724 			return (-1);
9725 		}
9726 		switch (name) {
9727 		case IPV6_UNICAST_HOPS:
9728 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9729 			break;	/* goto sizeof (int) option return */
9730 		case IPV6_BOUND_IF:
9731 			/* Zero if not set */
9732 			*i1 = tcp->tcp_bound_if;
9733 			break;	/* goto sizeof (int) option return */
9734 		case IPV6_RECVPKTINFO:
9735 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9736 				*i1 = 1;
9737 			else
9738 				*i1 = 0;
9739 			break;	/* goto sizeof (int) option return */
9740 		case IPV6_RECVTCLASS:
9741 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9742 				*i1 = 1;
9743 			else
9744 				*i1 = 0;
9745 			break;	/* goto sizeof (int) option return */
9746 		case IPV6_RECVHOPLIMIT:
9747 			if (tcp->tcp_ipv6_recvancillary &
9748 			    TCP_IPV6_RECVHOPLIMIT)
9749 				*i1 = 1;
9750 			else
9751 				*i1 = 0;
9752 			break;	/* goto sizeof (int) option return */
9753 		case IPV6_RECVHOPOPTS:
9754 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9755 				*i1 = 1;
9756 			else
9757 				*i1 = 0;
9758 			break;	/* goto sizeof (int) option return */
9759 		case IPV6_RECVDSTOPTS:
9760 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9761 				*i1 = 1;
9762 			else
9763 				*i1 = 0;
9764 			break;	/* goto sizeof (int) option return */
9765 		case _OLD_IPV6_RECVDSTOPTS:
9766 			if (tcp->tcp_ipv6_recvancillary &
9767 			    TCP_OLD_IPV6_RECVDSTOPTS)
9768 				*i1 = 1;
9769 			else
9770 				*i1 = 0;
9771 			break;	/* goto sizeof (int) option return */
9772 		case IPV6_RECVRTHDR:
9773 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9774 				*i1 = 1;
9775 			else
9776 				*i1 = 0;
9777 			break;	/* goto sizeof (int) option return */
9778 		case IPV6_RECVRTHDRDSTOPTS:
9779 			if (tcp->tcp_ipv6_recvancillary &
9780 			    TCP_IPV6_RECVRTDSTOPTS)
9781 				*i1 = 1;
9782 			else
9783 				*i1 = 0;
9784 			break;	/* goto sizeof (int) option return */
9785 		case IPV6_PKTINFO: {
9786 			/* XXX assumes that caller has room for max size! */
9787 			struct in6_pktinfo *pkti;
9788 
9789 			pkti = (struct in6_pktinfo *)ptr;
9790 			if (ipp->ipp_fields & IPPF_IFINDEX)
9791 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9792 			else
9793 				pkti->ipi6_ifindex = 0;
9794 			if (ipp->ipp_fields & IPPF_ADDR)
9795 				pkti->ipi6_addr = ipp->ipp_addr;
9796 			else
9797 				pkti->ipi6_addr = ipv6_all_zeros;
9798 			return (sizeof (struct in6_pktinfo));
9799 		}
9800 		case IPV6_TCLASS:
9801 			if (ipp->ipp_fields & IPPF_TCLASS)
9802 				*i1 = ipp->ipp_tclass;
9803 			else
9804 				*i1 = IPV6_FLOW_TCLASS(
9805 				    IPV6_DEFAULT_VERS_AND_FLOW);
9806 			break;	/* goto sizeof (int) option return */
9807 		case IPV6_NEXTHOP: {
9808 			sin6_t *sin6 = (sin6_t *)ptr;
9809 
9810 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9811 				return (0);
9812 			*sin6 = sin6_null;
9813 			sin6->sin6_family = AF_INET6;
9814 			sin6->sin6_addr = ipp->ipp_nexthop;
9815 			return (sizeof (sin6_t));
9816 		}
9817 		case IPV6_HOPOPTS:
9818 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9819 				return (0);
9820 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9821 				return (0);
9822 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9823 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9824 			if (tcp->tcp_label_len > 0) {
9825 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9826 				ptr[1] = (ipp->ipp_hopoptslen -
9827 				    tcp->tcp_label_len + 7) / 8 - 1;
9828 			}
9829 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9830 		case IPV6_RTHDRDSTOPTS:
9831 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9832 				return (0);
9833 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9834 			return (ipp->ipp_rtdstoptslen);
9835 		case IPV6_RTHDR:
9836 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9837 				return (0);
9838 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9839 			return (ipp->ipp_rthdrlen);
9840 		case IPV6_DSTOPTS:
9841 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9842 				return (0);
9843 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9844 			return (ipp->ipp_dstoptslen);
9845 		case IPV6_SRC_PREFERENCES:
9846 			return (ip6_get_src_preferences(connp,
9847 			    (uint32_t *)ptr));
9848 		case IPV6_PATHMTU: {
9849 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9850 
9851 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9852 				return (-1);
9853 
9854 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9855 			    connp->conn_fport, mtuinfo,
9856 			    connp->conn_netstack));
9857 		}
9858 		default:
9859 			return (-1);
9860 		}
9861 		break;
9862 	default:
9863 		return (-1);
9864 	}
9865 	return (sizeof (int));
9866 }
9867 
9868 /*
9869  * TCP routine to get the values of options.
9870  */
9871 int
9872 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9873 {
9874 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9875 }
9876 
9877 /* returns UNIX error, the optlen is a value-result arg */
9878 int
9879 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9880     void *optvalp, socklen_t *optlen, cred_t *cr)
9881 {
9882 	conn_t		*connp = (conn_t *)proto_handle;
9883 	squeue_t	*sqp = connp->conn_sqp;
9884 	int		error;
9885 	t_uscalar_t	max_optbuf_len;
9886 	void		*optvalp_buf;
9887 	int		len;
9888 
9889 	ASSERT(connp->conn_upper_handle != NULL);
9890 
9891 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9892 	    tcp_opt_obj.odb_opt_des_arr,
9893 	    tcp_opt_obj.odb_opt_arr_cnt,
9894 	    tcp_opt_obj.odb_topmost_tpiprovider,
9895 	    B_FALSE, B_TRUE, cr);
9896 	if (error != 0) {
9897 		if (error < 0) {
9898 			error = proto_tlitosyserr(-error);
9899 		}
9900 		return (error);
9901 	}
9902 
9903 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9904 
9905 	error = squeue_synch_enter(sqp, connp, 0);
9906 	if (error == ENOMEM) {
9907 		return (ENOMEM);
9908 	}
9909 
9910 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9911 	squeue_synch_exit(sqp, connp);
9912 
9913 	if (len < 0) {
9914 		/*
9915 		 * Pass on to IP
9916 		 */
9917 		kmem_free(optvalp_buf, max_optbuf_len);
9918 		return (ip_get_options(connp, level, option_name,
9919 		    optvalp, optlen, cr));
9920 	} else {
9921 		/*
9922 		 * update optlen and copy option value
9923 		 */
9924 		t_uscalar_t size = MIN(len, *optlen);
9925 		bcopy(optvalp_buf, optvalp, size);
9926 		bcopy(&size, optlen, sizeof (size));
9927 
9928 		kmem_free(optvalp_buf, max_optbuf_len);
9929 		return (0);
9930 	}
9931 }
9932 
9933 /*
9934  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9935  * Parameters are assumed to be verified by the caller.
9936  */
9937 /* ARGSUSED */
9938 int
9939 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9940     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9941     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9942 {
9943 	tcp_t	*tcp = connp->conn_tcp;
9944 	int	*i1 = (int *)invalp;
9945 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9946 	boolean_t checkonly;
9947 	int	reterr;
9948 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9949 
9950 	switch (optset_context) {
9951 	case SETFN_OPTCOM_CHECKONLY:
9952 		checkonly = B_TRUE;
9953 		/*
9954 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9955 		 * inlen != 0 implies value supplied and
9956 		 * 	we have to "pretend" to set it.
9957 		 * inlen == 0 implies that there is no
9958 		 * 	value part in T_CHECK request and just validation
9959 		 * done elsewhere should be enough, we just return here.
9960 		 */
9961 		if (inlen == 0) {
9962 			*outlenp = 0;
9963 			return (0);
9964 		}
9965 		break;
9966 	case SETFN_OPTCOM_NEGOTIATE:
9967 		checkonly = B_FALSE;
9968 		break;
9969 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9970 	case SETFN_CONN_NEGOTIATE:
9971 		checkonly = B_FALSE;
9972 		/*
9973 		 * Negotiating local and "association-related" options
9974 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9975 		 * primitives is allowed by XTI, but we choose
9976 		 * to not implement this style negotiation for Internet
9977 		 * protocols (We interpret it is a must for OSI world but
9978 		 * optional for Internet protocols) for all options.
9979 		 * [ Will do only for the few options that enable test
9980 		 * suites that our XTI implementation of this feature
9981 		 * works for transports that do allow it ]
9982 		 */
9983 		if (!tcp_allow_connopt_set(level, name)) {
9984 			*outlenp = 0;
9985 			return (EINVAL);
9986 		}
9987 		break;
9988 	default:
9989 		/*
9990 		 * We should never get here
9991 		 */
9992 		*outlenp = 0;
9993 		return (EINVAL);
9994 	}
9995 
9996 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9997 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9998 
9999 	/*
10000 	 * For TCP, we should have no ancillary data sent down
10001 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10002 	 * has to be zero.
10003 	 */
10004 	ASSERT(thisdg_attrs == NULL);
10005 
10006 	/*
10007 	 * For fixed length options, no sanity check
10008 	 * of passed in length is done. It is assumed *_optcom_req()
10009 	 * routines do the right thing.
10010 	 */
10011 	switch (level) {
10012 	case SOL_SOCKET:
10013 		switch (name) {
10014 		case SO_LINGER: {
10015 			struct linger *lgr = (struct linger *)invalp;
10016 
10017 			if (!checkonly) {
10018 				if (lgr->l_onoff) {
10019 					tcp->tcp_linger = 1;
10020 					tcp->tcp_lingertime = lgr->l_linger;
10021 				} else {
10022 					tcp->tcp_linger = 0;
10023 					tcp->tcp_lingertime = 0;
10024 				}
10025 				/* struct copy */
10026 				*(struct linger *)outvalp = *lgr;
10027 			} else {
10028 				if (!lgr->l_onoff) {
10029 					((struct linger *)
10030 					    outvalp)->l_onoff = 0;
10031 					((struct linger *)
10032 					    outvalp)->l_linger = 0;
10033 				} else {
10034 					/* struct copy */
10035 					*(struct linger *)outvalp = *lgr;
10036 				}
10037 			}
10038 			*outlenp = sizeof (struct linger);
10039 			return (0);
10040 		}
10041 		case SO_DEBUG:
10042 			if (!checkonly)
10043 				tcp->tcp_debug = onoff;
10044 			break;
10045 		case SO_KEEPALIVE:
10046 			if (checkonly) {
10047 				/* check only case */
10048 				break;
10049 			}
10050 
10051 			if (!onoff) {
10052 				if (tcp->tcp_ka_enabled) {
10053 					if (tcp->tcp_ka_tid != 0) {
10054 						(void) TCP_TIMER_CANCEL(tcp,
10055 						    tcp->tcp_ka_tid);
10056 						tcp->tcp_ka_tid = 0;
10057 					}
10058 					tcp->tcp_ka_enabled = 0;
10059 				}
10060 				break;
10061 			}
10062 			if (!tcp->tcp_ka_enabled) {
10063 				/* Crank up the keepalive timer */
10064 				tcp->tcp_ka_last_intrvl = 0;
10065 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10066 				    tcp_keepalive_killer,
10067 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10068 				tcp->tcp_ka_enabled = 1;
10069 			}
10070 			break;
10071 		case SO_DONTROUTE:
10072 			/*
10073 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10074 			 * only of interest to IP.  We track them here only so
10075 			 * that we can report their current value.
10076 			 */
10077 			if (!checkonly) {
10078 				tcp->tcp_dontroute = onoff;
10079 				tcp->tcp_connp->conn_dontroute = onoff;
10080 			}
10081 			break;
10082 		case SO_USELOOPBACK:
10083 			if (!checkonly) {
10084 				tcp->tcp_useloopback = onoff;
10085 				tcp->tcp_connp->conn_loopback = onoff;
10086 			}
10087 			break;
10088 		case SO_BROADCAST:
10089 			if (!checkonly) {
10090 				tcp->tcp_broadcast = onoff;
10091 				tcp->tcp_connp->conn_broadcast = onoff;
10092 			}
10093 			break;
10094 		case SO_REUSEADDR:
10095 			if (!checkonly) {
10096 				tcp->tcp_reuseaddr = onoff;
10097 				tcp->tcp_connp->conn_reuseaddr = onoff;
10098 			}
10099 			break;
10100 		case SO_OOBINLINE:
10101 			if (!checkonly) {
10102 				tcp->tcp_oobinline = onoff;
10103 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
10104 					proto_set_rx_oob_opt(connp, onoff);
10105 			}
10106 			break;
10107 		case SO_DGRAM_ERRIND:
10108 			if (!checkonly)
10109 				tcp->tcp_dgram_errind = onoff;
10110 			break;
10111 		case SO_SNDBUF: {
10112 			if (*i1 > tcps->tcps_max_buf) {
10113 				*outlenp = 0;
10114 				return (ENOBUFS);
10115 			}
10116 			if (checkonly)
10117 				break;
10118 
10119 			tcp->tcp_xmit_hiwater = *i1;
10120 			if (tcps->tcps_snd_lowat_fraction != 0)
10121 				tcp->tcp_xmit_lowater =
10122 				    tcp->tcp_xmit_hiwater /
10123 				    tcps->tcps_snd_lowat_fraction;
10124 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10125 			/*
10126 			 * If we are flow-controlled, recheck the condition.
10127 			 * There are apps that increase SO_SNDBUF size when
10128 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10129 			 * control condition to be lifted right away.
10130 			 */
10131 			mutex_enter(&tcp->tcp_non_sq_lock);
10132 			if (tcp->tcp_flow_stopped &&
10133 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10134 				tcp_clrqfull(tcp);
10135 			}
10136 			mutex_exit(&tcp->tcp_non_sq_lock);
10137 			break;
10138 		}
10139 		case SO_RCVBUF:
10140 			if (*i1 > tcps->tcps_max_buf) {
10141 				*outlenp = 0;
10142 				return (ENOBUFS);
10143 			}
10144 			/* Silently ignore zero */
10145 			if (!checkonly && *i1 != 0) {
10146 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10147 				(void) tcp_rwnd_set(tcp, *i1);
10148 			}
10149 			/*
10150 			 * XXX should we return the rwnd here
10151 			 * and tcp_opt_get ?
10152 			 */
10153 			break;
10154 		case SO_SND_COPYAVOID:
10155 			if (!checkonly) {
10156 				/* we only allow enable at most once for now */
10157 				if (tcp->tcp_loopback ||
10158 				    (tcp->tcp_kssl_ctx != NULL) ||
10159 				    (!tcp->tcp_snd_zcopy_aware &&
10160 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10161 					*outlenp = 0;
10162 					return (EOPNOTSUPP);
10163 				}
10164 				tcp->tcp_snd_zcopy_aware = 1;
10165 			}
10166 			break;
10167 		case SO_RCVTIMEO:
10168 		case SO_SNDTIMEO:
10169 			/*
10170 			 * Pass these two options in order for third part
10171 			 * protocol usage. Here just return directly.
10172 			 */
10173 			return (0);
10174 		case SO_ALLZONES:
10175 			/* Pass option along to IP level for handling */
10176 			return (-EINVAL);
10177 		case SO_ANON_MLP:
10178 			/* Pass option along to IP level for handling */
10179 			return (-EINVAL);
10180 		case SO_MAC_EXEMPT:
10181 			/* Pass option along to IP level for handling */
10182 			return (-EINVAL);
10183 		case SO_EXCLBIND:
10184 			if (!checkonly)
10185 				tcp->tcp_exclbind = onoff;
10186 			break;
10187 		default:
10188 			*outlenp = 0;
10189 			return (EINVAL);
10190 		}
10191 		break;
10192 	case IPPROTO_TCP:
10193 		switch (name) {
10194 		case TCP_NODELAY:
10195 			if (!checkonly)
10196 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10197 			break;
10198 		case TCP_NOTIFY_THRESHOLD:
10199 			if (!checkonly)
10200 				tcp->tcp_first_timer_threshold = *i1;
10201 			break;
10202 		case TCP_ABORT_THRESHOLD:
10203 			if (!checkonly)
10204 				tcp->tcp_second_timer_threshold = *i1;
10205 			break;
10206 		case TCP_CONN_NOTIFY_THRESHOLD:
10207 			if (!checkonly)
10208 				tcp->tcp_first_ctimer_threshold = *i1;
10209 			break;
10210 		case TCP_CONN_ABORT_THRESHOLD:
10211 			if (!checkonly)
10212 				tcp->tcp_second_ctimer_threshold = *i1;
10213 			break;
10214 		case TCP_RECVDSTADDR:
10215 			if (tcp->tcp_state > TCPS_LISTEN)
10216 				return (EOPNOTSUPP);
10217 			if (!checkonly)
10218 				tcp->tcp_recvdstaddr = onoff;
10219 			break;
10220 		case TCP_ANONPRIVBIND:
10221 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10222 			    IPPROTO_TCP)) != 0) {
10223 				*outlenp = 0;
10224 				return (reterr);
10225 			}
10226 			if (!checkonly) {
10227 				tcp->tcp_anon_priv_bind = onoff;
10228 			}
10229 			break;
10230 		case TCP_EXCLBIND:
10231 			if (!checkonly)
10232 				tcp->tcp_exclbind = onoff;
10233 			break;	/* goto sizeof (int) option return */
10234 		case TCP_INIT_CWND: {
10235 			uint32_t init_cwnd = *((uint32_t *)invalp);
10236 
10237 			if (checkonly)
10238 				break;
10239 
10240 			/*
10241 			 * Only allow socket with network configuration
10242 			 * privilege to set the initial cwnd to be larger
10243 			 * than allowed by RFC 3390.
10244 			 */
10245 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10246 				tcp->tcp_init_cwnd = init_cwnd;
10247 				break;
10248 			}
10249 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10250 				*outlenp = 0;
10251 				return (reterr);
10252 			}
10253 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10254 				*outlenp = 0;
10255 				return (EINVAL);
10256 			}
10257 			tcp->tcp_init_cwnd = init_cwnd;
10258 			break;
10259 		}
10260 		case TCP_KEEPALIVE_THRESHOLD:
10261 			if (checkonly)
10262 				break;
10263 
10264 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10265 			    *i1 > tcps->tcps_keepalive_interval_high) {
10266 				*outlenp = 0;
10267 				return (EINVAL);
10268 			}
10269 			if (*i1 != tcp->tcp_ka_interval) {
10270 				tcp->tcp_ka_interval = *i1;
10271 				/*
10272 				 * Check if we need to restart the
10273 				 * keepalive timer.
10274 				 */
10275 				if (tcp->tcp_ka_tid != 0) {
10276 					ASSERT(tcp->tcp_ka_enabled);
10277 					(void) TCP_TIMER_CANCEL(tcp,
10278 					    tcp->tcp_ka_tid);
10279 					tcp->tcp_ka_last_intrvl = 0;
10280 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10281 					    tcp_keepalive_killer,
10282 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10283 				}
10284 			}
10285 			break;
10286 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10287 			if (!checkonly) {
10288 				if (*i1 <
10289 				    tcps->tcps_keepalive_abort_interval_low ||
10290 				    *i1 >
10291 				    tcps->tcps_keepalive_abort_interval_high) {
10292 					*outlenp = 0;
10293 					return (EINVAL);
10294 				}
10295 				tcp->tcp_ka_abort_thres = *i1;
10296 			}
10297 			break;
10298 		case TCP_CORK:
10299 			if (!checkonly) {
10300 				/*
10301 				 * if tcp->tcp_cork was set and is now
10302 				 * being unset, we have to make sure that
10303 				 * the remaining data gets sent out. Also
10304 				 * unset tcp->tcp_cork so that tcp_wput_data()
10305 				 * can send data even if it is less than mss
10306 				 */
10307 				if (tcp->tcp_cork && onoff == 0 &&
10308 				    tcp->tcp_unsent > 0) {
10309 					tcp->tcp_cork = B_FALSE;
10310 					tcp_wput_data(tcp, NULL, B_FALSE);
10311 				}
10312 				tcp->tcp_cork = onoff;
10313 			}
10314 			break;
10315 		default:
10316 			*outlenp = 0;
10317 			return (EINVAL);
10318 		}
10319 		break;
10320 	case IPPROTO_IP:
10321 		if (tcp->tcp_family != AF_INET) {
10322 			*outlenp = 0;
10323 			return (ENOPROTOOPT);
10324 		}
10325 		switch (name) {
10326 		case IP_OPTIONS:
10327 		case T_IP_OPTIONS:
10328 			reterr = tcp_opt_set_header(tcp, checkonly,
10329 			    invalp, inlen);
10330 			if (reterr) {
10331 				*outlenp = 0;
10332 				return (reterr);
10333 			}
10334 			/* OK return - copy input buffer into output buffer */
10335 			if (invalp != outvalp) {
10336 				/* don't trust bcopy for identical src/dst */
10337 				bcopy(invalp, outvalp, inlen);
10338 			}
10339 			*outlenp = inlen;
10340 			return (0);
10341 		case IP_TOS:
10342 		case T_IP_TOS:
10343 			if (!checkonly) {
10344 				tcp->tcp_ipha->ipha_type_of_service =
10345 				    (uchar_t)*i1;
10346 				tcp->tcp_tos = (uchar_t)*i1;
10347 			}
10348 			break;
10349 		case IP_TTL:
10350 			if (!checkonly) {
10351 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10352 				tcp->tcp_ttl = (uchar_t)*i1;
10353 			}
10354 			break;
10355 		case IP_BOUND_IF:
10356 		case IP_NEXTHOP:
10357 			/* Handled at the IP level */
10358 			return (-EINVAL);
10359 		case IP_SEC_OPT:
10360 			/*
10361 			 * We should not allow policy setting after
10362 			 * we start listening for connections.
10363 			 */
10364 			if (tcp->tcp_state == TCPS_LISTEN) {
10365 				return (EINVAL);
10366 			} else {
10367 				/* Handled at the IP level */
10368 				return (-EINVAL);
10369 			}
10370 		default:
10371 			*outlenp = 0;
10372 			return (EINVAL);
10373 		}
10374 		break;
10375 	case IPPROTO_IPV6: {
10376 		ip6_pkt_t		*ipp;
10377 
10378 		/*
10379 		 * IPPROTO_IPV6 options are only supported for sockets
10380 		 * that are using IPv6 on the wire.
10381 		 */
10382 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10383 			*outlenp = 0;
10384 			return (ENOPROTOOPT);
10385 		}
10386 		/*
10387 		 * Only sticky options; no ancillary data
10388 		 */
10389 		ipp = &tcp->tcp_sticky_ipp;
10390 
10391 		switch (name) {
10392 		case IPV6_UNICAST_HOPS:
10393 			/* -1 means use default */
10394 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10395 				*outlenp = 0;
10396 				return (EINVAL);
10397 			}
10398 			if (!checkonly) {
10399 				if (*i1 == -1) {
10400 					tcp->tcp_ip6h->ip6_hops =
10401 					    ipp->ipp_unicast_hops =
10402 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10403 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10404 					/* Pass modified value to IP. */
10405 					*i1 = tcp->tcp_ip6h->ip6_hops;
10406 				} else {
10407 					tcp->tcp_ip6h->ip6_hops =
10408 					    ipp->ipp_unicast_hops =
10409 					    (uint8_t)*i1;
10410 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10411 				}
10412 				reterr = tcp_build_hdrs(tcp);
10413 				if (reterr != 0)
10414 					return (reterr);
10415 			}
10416 			break;
10417 		case IPV6_BOUND_IF:
10418 			if (!checkonly) {
10419 				tcp->tcp_bound_if = *i1;
10420 				PASS_OPT_TO_IP(connp);
10421 			}
10422 			break;
10423 		/*
10424 		 * Set boolean switches for ancillary data delivery
10425 		 */
10426 		case IPV6_RECVPKTINFO:
10427 			if (!checkonly) {
10428 				if (onoff)
10429 					tcp->tcp_ipv6_recvancillary |=
10430 					    TCP_IPV6_RECVPKTINFO;
10431 				else
10432 					tcp->tcp_ipv6_recvancillary &=
10433 					    ~TCP_IPV6_RECVPKTINFO;
10434 				/* Force it to be sent up with the next msg */
10435 				tcp->tcp_recvifindex = 0;
10436 				PASS_OPT_TO_IP(connp);
10437 			}
10438 			break;
10439 		case IPV6_RECVTCLASS:
10440 			if (!checkonly) {
10441 				if (onoff)
10442 					tcp->tcp_ipv6_recvancillary |=
10443 					    TCP_IPV6_RECVTCLASS;
10444 				else
10445 					tcp->tcp_ipv6_recvancillary &=
10446 					    ~TCP_IPV6_RECVTCLASS;
10447 				PASS_OPT_TO_IP(connp);
10448 			}
10449 			break;
10450 		case IPV6_RECVHOPLIMIT:
10451 			if (!checkonly) {
10452 				if (onoff)
10453 					tcp->tcp_ipv6_recvancillary |=
10454 					    TCP_IPV6_RECVHOPLIMIT;
10455 				else
10456 					tcp->tcp_ipv6_recvancillary &=
10457 					    ~TCP_IPV6_RECVHOPLIMIT;
10458 				/* Force it to be sent up with the next msg */
10459 				tcp->tcp_recvhops = 0xffffffffU;
10460 				PASS_OPT_TO_IP(connp);
10461 			}
10462 			break;
10463 		case IPV6_RECVHOPOPTS:
10464 			if (!checkonly) {
10465 				if (onoff)
10466 					tcp->tcp_ipv6_recvancillary |=
10467 					    TCP_IPV6_RECVHOPOPTS;
10468 				else
10469 					tcp->tcp_ipv6_recvancillary &=
10470 					    ~TCP_IPV6_RECVHOPOPTS;
10471 				PASS_OPT_TO_IP(connp);
10472 			}
10473 			break;
10474 		case IPV6_RECVDSTOPTS:
10475 			if (!checkonly) {
10476 				if (onoff)
10477 					tcp->tcp_ipv6_recvancillary |=
10478 					    TCP_IPV6_RECVDSTOPTS;
10479 				else
10480 					tcp->tcp_ipv6_recvancillary &=
10481 					    ~TCP_IPV6_RECVDSTOPTS;
10482 				PASS_OPT_TO_IP(connp);
10483 			}
10484 			break;
10485 		case _OLD_IPV6_RECVDSTOPTS:
10486 			if (!checkonly) {
10487 				if (onoff)
10488 					tcp->tcp_ipv6_recvancillary |=
10489 					    TCP_OLD_IPV6_RECVDSTOPTS;
10490 				else
10491 					tcp->tcp_ipv6_recvancillary &=
10492 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10493 			}
10494 			break;
10495 		case IPV6_RECVRTHDR:
10496 			if (!checkonly) {
10497 				if (onoff)
10498 					tcp->tcp_ipv6_recvancillary |=
10499 					    TCP_IPV6_RECVRTHDR;
10500 				else
10501 					tcp->tcp_ipv6_recvancillary &=
10502 					    ~TCP_IPV6_RECVRTHDR;
10503 				PASS_OPT_TO_IP(connp);
10504 			}
10505 			break;
10506 		case IPV6_RECVRTHDRDSTOPTS:
10507 			if (!checkonly) {
10508 				if (onoff)
10509 					tcp->tcp_ipv6_recvancillary |=
10510 					    TCP_IPV6_RECVRTDSTOPTS;
10511 				else
10512 					tcp->tcp_ipv6_recvancillary &=
10513 					    ~TCP_IPV6_RECVRTDSTOPTS;
10514 				PASS_OPT_TO_IP(connp);
10515 			}
10516 			break;
10517 		case IPV6_PKTINFO:
10518 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10519 				return (EINVAL);
10520 			if (checkonly)
10521 				break;
10522 
10523 			if (inlen == 0) {
10524 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10525 			} else {
10526 				struct in6_pktinfo *pkti;
10527 
10528 				pkti = (struct in6_pktinfo *)invalp;
10529 				/*
10530 				 * RFC 3542 states that ipi6_addr must be
10531 				 * the unspecified address when setting the
10532 				 * IPV6_PKTINFO sticky socket option on a
10533 				 * TCP socket.
10534 				 */
10535 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10536 					return (EINVAL);
10537 				/*
10538 				 * IP will validate the source address and
10539 				 * interface index.
10540 				 */
10541 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10542 					reterr = ip_set_options(tcp->tcp_connp,
10543 					    level, name, invalp, inlen, cr);
10544 				} else {
10545 					reterr = ip6_set_pktinfo(cr,
10546 					    tcp->tcp_connp, pkti);
10547 				}
10548 				if (reterr != 0)
10549 					return (reterr);
10550 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10551 				ipp->ipp_addr = pkti->ipi6_addr;
10552 				if (ipp->ipp_ifindex != 0)
10553 					ipp->ipp_fields |= IPPF_IFINDEX;
10554 				else
10555 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10556 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10557 					ipp->ipp_fields |= IPPF_ADDR;
10558 				else
10559 					ipp->ipp_fields &= ~IPPF_ADDR;
10560 			}
10561 			reterr = tcp_build_hdrs(tcp);
10562 			if (reterr != 0)
10563 				return (reterr);
10564 			break;
10565 		case IPV6_TCLASS:
10566 			if (inlen != 0 && inlen != sizeof (int))
10567 				return (EINVAL);
10568 			if (checkonly)
10569 				break;
10570 
10571 			if (inlen == 0) {
10572 				ipp->ipp_fields &= ~IPPF_TCLASS;
10573 			} else {
10574 				if (*i1 > 255 || *i1 < -1)
10575 					return (EINVAL);
10576 				if (*i1 == -1) {
10577 					ipp->ipp_tclass = 0;
10578 					*i1 = 0;
10579 				} else {
10580 					ipp->ipp_tclass = *i1;
10581 				}
10582 				ipp->ipp_fields |= IPPF_TCLASS;
10583 			}
10584 			reterr = tcp_build_hdrs(tcp);
10585 			if (reterr != 0)
10586 				return (reterr);
10587 			break;
10588 		case IPV6_NEXTHOP:
10589 			/*
10590 			 * IP will verify that the nexthop is reachable
10591 			 * and fail for sticky options.
10592 			 */
10593 			if (inlen != 0 && inlen != sizeof (sin6_t))
10594 				return (EINVAL);
10595 			if (checkonly)
10596 				break;
10597 
10598 			if (inlen == 0) {
10599 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10600 			} else {
10601 				sin6_t *sin6 = (sin6_t *)invalp;
10602 
10603 				if (sin6->sin6_family != AF_INET6)
10604 					return (EAFNOSUPPORT);
10605 				if (IN6_IS_ADDR_V4MAPPED(
10606 				    &sin6->sin6_addr))
10607 					return (EADDRNOTAVAIL);
10608 				ipp->ipp_nexthop = sin6->sin6_addr;
10609 				if (!IN6_IS_ADDR_UNSPECIFIED(
10610 				    &ipp->ipp_nexthop))
10611 					ipp->ipp_fields |= IPPF_NEXTHOP;
10612 				else
10613 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10614 			}
10615 			reterr = tcp_build_hdrs(tcp);
10616 			if (reterr != 0)
10617 				return (reterr);
10618 			PASS_OPT_TO_IP(connp);
10619 			break;
10620 		case IPV6_HOPOPTS: {
10621 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10622 
10623 			/*
10624 			 * Sanity checks - minimum size, size a multiple of
10625 			 * eight bytes, and matching size passed in.
10626 			 */
10627 			if (inlen != 0 &&
10628 			    inlen != (8 * (hopts->ip6h_len + 1)))
10629 				return (EINVAL);
10630 
10631 			if (checkonly)
10632 				break;
10633 
10634 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10635 			    (uchar_t **)&ipp->ipp_hopopts,
10636 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10637 			if (reterr != 0)
10638 				return (reterr);
10639 			if (ipp->ipp_hopoptslen == 0)
10640 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10641 			else
10642 				ipp->ipp_fields |= IPPF_HOPOPTS;
10643 			reterr = tcp_build_hdrs(tcp);
10644 			if (reterr != 0)
10645 				return (reterr);
10646 			break;
10647 		}
10648 		case IPV6_RTHDRDSTOPTS: {
10649 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10650 
10651 			/*
10652 			 * Sanity checks - minimum size, size a multiple of
10653 			 * eight bytes, and matching size passed in.
10654 			 */
10655 			if (inlen != 0 &&
10656 			    inlen != (8 * (dopts->ip6d_len + 1)))
10657 				return (EINVAL);
10658 
10659 			if (checkonly)
10660 				break;
10661 
10662 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10663 			    (uchar_t **)&ipp->ipp_rtdstopts,
10664 			    &ipp->ipp_rtdstoptslen, 0);
10665 			if (reterr != 0)
10666 				return (reterr);
10667 			if (ipp->ipp_rtdstoptslen == 0)
10668 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10669 			else
10670 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10671 			reterr = tcp_build_hdrs(tcp);
10672 			if (reterr != 0)
10673 				return (reterr);
10674 			break;
10675 		}
10676 		case IPV6_DSTOPTS: {
10677 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10678 
10679 			/*
10680 			 * Sanity checks - minimum size, size a multiple of
10681 			 * eight bytes, and matching size passed in.
10682 			 */
10683 			if (inlen != 0 &&
10684 			    inlen != (8 * (dopts->ip6d_len + 1)))
10685 				return (EINVAL);
10686 
10687 			if (checkonly)
10688 				break;
10689 
10690 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10691 			    (uchar_t **)&ipp->ipp_dstopts,
10692 			    &ipp->ipp_dstoptslen, 0);
10693 			if (reterr != 0)
10694 				return (reterr);
10695 			if (ipp->ipp_dstoptslen == 0)
10696 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10697 			else
10698 				ipp->ipp_fields |= IPPF_DSTOPTS;
10699 			reterr = tcp_build_hdrs(tcp);
10700 			if (reterr != 0)
10701 				return (reterr);
10702 			break;
10703 		}
10704 		case IPV6_RTHDR: {
10705 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10706 
10707 			/*
10708 			 * Sanity checks - minimum size, size a multiple of
10709 			 * eight bytes, and matching size passed in.
10710 			 */
10711 			if (inlen != 0 &&
10712 			    inlen != (8 * (rt->ip6r_len + 1)))
10713 				return (EINVAL);
10714 
10715 			if (checkonly)
10716 				break;
10717 
10718 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10719 			    (uchar_t **)&ipp->ipp_rthdr,
10720 			    &ipp->ipp_rthdrlen, 0);
10721 			if (reterr != 0)
10722 				return (reterr);
10723 			if (ipp->ipp_rthdrlen == 0)
10724 				ipp->ipp_fields &= ~IPPF_RTHDR;
10725 			else
10726 				ipp->ipp_fields |= IPPF_RTHDR;
10727 			reterr = tcp_build_hdrs(tcp);
10728 			if (reterr != 0)
10729 				return (reterr);
10730 			break;
10731 		}
10732 		case IPV6_V6ONLY:
10733 			if (!checkonly) {
10734 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10735 			}
10736 			break;
10737 		case IPV6_USE_MIN_MTU:
10738 			if (inlen != sizeof (int))
10739 				return (EINVAL);
10740 
10741 			if (*i1 < -1 || *i1 > 1)
10742 				return (EINVAL);
10743 
10744 			if (checkonly)
10745 				break;
10746 
10747 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10748 			ipp->ipp_use_min_mtu = *i1;
10749 			break;
10750 		case IPV6_SEC_OPT:
10751 			/*
10752 			 * We should not allow policy setting after
10753 			 * we start listening for connections.
10754 			 */
10755 			if (tcp->tcp_state == TCPS_LISTEN) {
10756 				return (EINVAL);
10757 			} else {
10758 				/* Handled at the IP level */
10759 				return (-EINVAL);
10760 			}
10761 		case IPV6_SRC_PREFERENCES:
10762 			if (inlen != sizeof (uint32_t))
10763 				return (EINVAL);
10764 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10765 			    *(uint32_t *)invalp);
10766 			if (reterr != 0) {
10767 				*outlenp = 0;
10768 				return (reterr);
10769 			}
10770 			break;
10771 		default:
10772 			*outlenp = 0;
10773 			return (EINVAL);
10774 		}
10775 		break;
10776 	}		/* end IPPROTO_IPV6 */
10777 	default:
10778 		*outlenp = 0;
10779 		return (EINVAL);
10780 	}
10781 	/*
10782 	 * Common case of OK return with outval same as inval
10783 	 */
10784 	if (invalp != outvalp) {
10785 		/* don't trust bcopy for identical src/dst */
10786 		(void) bcopy(invalp, outvalp, inlen);
10787 	}
10788 	*outlenp = inlen;
10789 	return (0);
10790 }
10791 
10792 /* ARGSUSED */
10793 int
10794 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10795     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10796     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10797 {
10798 	conn_t	*connp =  Q_TO_CONN(q);
10799 
10800 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10801 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10802 }
10803 
10804 int
10805 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10806     const void *optvalp, socklen_t optlen, cred_t *cr)
10807 {
10808 	conn_t		*connp = (conn_t *)proto_handle;
10809 	squeue_t	*sqp = connp->conn_sqp;
10810 	int		error;
10811 
10812 	ASSERT(connp->conn_upper_handle != NULL);
10813 	/*
10814 	 * Entering the squeue synchronously can result in a context switch,
10815 	 * which can cause a rather sever performance degradation. So we try to
10816 	 * handle whatever options we can without entering the squeue.
10817 	 */
10818 	if (level == IPPROTO_TCP) {
10819 		switch (option_name) {
10820 		case TCP_NODELAY:
10821 			if (optlen != sizeof (int32_t))
10822 				return (EINVAL);
10823 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10824 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10825 			    connp->conn_tcp->tcp_mss;
10826 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10827 			return (0);
10828 		default:
10829 			break;
10830 		}
10831 	}
10832 
10833 	error = squeue_synch_enter(sqp, connp, 0);
10834 	if (error == ENOMEM) {
10835 		return (ENOMEM);
10836 	}
10837 
10838 	error = proto_opt_check(level, option_name, optlen, NULL,
10839 	    tcp_opt_obj.odb_opt_des_arr,
10840 	    tcp_opt_obj.odb_opt_arr_cnt,
10841 	    tcp_opt_obj.odb_topmost_tpiprovider,
10842 	    B_TRUE, B_FALSE, cr);
10843 
10844 	if (error != 0) {
10845 		if (error < 0) {
10846 			error = proto_tlitosyserr(-error);
10847 		}
10848 		squeue_synch_exit(sqp, connp);
10849 		return (error);
10850 	}
10851 
10852 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10853 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10854 	    NULL, cr, NULL);
10855 	squeue_synch_exit(sqp, connp);
10856 
10857 	if (error < 0) {
10858 		/*
10859 		 * Pass on to ip
10860 		 */
10861 		error = ip_set_options(connp, level, option_name, optvalp,
10862 		    optlen, cr);
10863 	}
10864 	return (error);
10865 }
10866 
10867 /*
10868  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10869  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10870  * headers, and the maximum size tcp header (to avoid reallocation
10871  * on the fly for additional tcp options).
10872  * Returns failure if can't allocate memory.
10873  */
10874 static int
10875 tcp_build_hdrs(tcp_t *tcp)
10876 {
10877 	char	*hdrs;
10878 	uint_t	hdrs_len;
10879 	ip6i_t	*ip6i;
10880 	char	buf[TCP_MAX_HDR_LENGTH];
10881 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10882 	in6_addr_t src, dst;
10883 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10884 	conn_t *connp = tcp->tcp_connp;
10885 
10886 	/*
10887 	 * save the existing tcp header and source/dest IP addresses
10888 	 */
10889 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10890 	src = tcp->tcp_ip6h->ip6_src;
10891 	dst = tcp->tcp_ip6h->ip6_dst;
10892 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10893 	ASSERT(hdrs_len != 0);
10894 	if (hdrs_len > tcp->tcp_iphc_len) {
10895 		/* Need to reallocate */
10896 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10897 		if (hdrs == NULL)
10898 			return (ENOMEM);
10899 		if (tcp->tcp_iphc != NULL) {
10900 			if (tcp->tcp_hdr_grown) {
10901 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10902 			} else {
10903 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10904 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10905 			}
10906 			tcp->tcp_iphc_len = 0;
10907 		}
10908 		ASSERT(tcp->tcp_iphc_len == 0);
10909 		tcp->tcp_iphc = hdrs;
10910 		tcp->tcp_iphc_len = hdrs_len;
10911 		tcp->tcp_hdr_grown = B_TRUE;
10912 	}
10913 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10914 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10915 
10916 	/* Set header fields not in ipp */
10917 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10918 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10919 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10920 	} else {
10921 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10922 	}
10923 	/*
10924 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10925 	 *
10926 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10927 	 */
10928 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10929 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10930 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10931 
10932 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10933 
10934 	tcp->tcp_ip6h->ip6_src = src;
10935 	tcp->tcp_ip6h->ip6_dst = dst;
10936 
10937 	/*
10938 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10939 	 * the default value for TCP.
10940 	 */
10941 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10942 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10943 
10944 	/*
10945 	 * If we're setting extension headers after a connection
10946 	 * has been established, and if we have a routing header
10947 	 * among the extension headers, call ip_massage_options_v6 to
10948 	 * manipulate the routing header/ip6_dst set the checksum
10949 	 * difference in the tcp header template.
10950 	 * (This happens in tcp_connect_ipv6 if the routing header
10951 	 * is set prior to the connect.)
10952 	 * Set the tcp_sum to zero first in case we've cleared a
10953 	 * routing header or don't have one at all.
10954 	 */
10955 	tcp->tcp_sum = 0;
10956 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10957 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10958 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10959 		    (uint8_t *)tcp->tcp_tcph);
10960 		if (rth != NULL) {
10961 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10962 			    rth, tcps->tcps_netstack);
10963 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10964 			    (tcp->tcp_sum >> 16));
10965 		}
10966 	}
10967 
10968 	/* Try to get everything in a single mblk */
10969 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10970 	    hdrs_len + tcps->tcps_wroff_xtra);
10971 	return (0);
10972 }
10973 
10974 /*
10975  * Transfer any source route option from ipha to buf/dst in reversed form.
10976  */
10977 static int
10978 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10979 {
10980 	ipoptp_t	opts;
10981 	uchar_t		*opt;
10982 	uint8_t		optval;
10983 	uint8_t		optlen;
10984 	uint32_t	len = 0;
10985 
10986 	for (optval = ipoptp_first(&opts, ipha);
10987 	    optval != IPOPT_EOL;
10988 	    optval = ipoptp_next(&opts)) {
10989 		opt = opts.ipoptp_cur;
10990 		optlen = opts.ipoptp_len;
10991 		switch (optval) {
10992 			int	off1, off2;
10993 		case IPOPT_SSRR:
10994 		case IPOPT_LSRR:
10995 
10996 			/* Reverse source route */
10997 			/*
10998 			 * First entry should be the next to last one in the
10999 			 * current source route (the last entry is our
11000 			 * address.)
11001 			 * The last entry should be the final destination.
11002 			 */
11003 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11004 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11005 			off1 = IPOPT_MINOFF_SR - 1;
11006 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11007 			if (off2 < 0) {
11008 				/* No entries in source route */
11009 				break;
11010 			}
11011 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11012 			/*
11013 			 * Note: use src since ipha has not had its src
11014 			 * and dst reversed (it is in the state it was
11015 			 * received.
11016 			 */
11017 			bcopy(&ipha->ipha_src, buf + off2,
11018 			    IP_ADDR_LEN);
11019 			off2 -= IP_ADDR_LEN;
11020 
11021 			while (off2 > 0) {
11022 				bcopy(opt + off2, buf + off1,
11023 				    IP_ADDR_LEN);
11024 				off1 += IP_ADDR_LEN;
11025 				off2 -= IP_ADDR_LEN;
11026 			}
11027 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11028 			buf += optlen;
11029 			len += optlen;
11030 			break;
11031 		}
11032 	}
11033 done:
11034 	/* Pad the resulting options */
11035 	while (len & 0x3) {
11036 		*buf++ = IPOPT_EOL;
11037 		len++;
11038 	}
11039 	return (len);
11040 }
11041 
11042 
11043 /*
11044  * Extract and revert a source route from ipha (if any)
11045  * and then update the relevant fields in both tcp_t and the standard header.
11046  */
11047 static void
11048 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11049 {
11050 	char	buf[TCP_MAX_HDR_LENGTH];
11051 	uint_t	tcph_len;
11052 	int	len;
11053 
11054 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11055 	len = IPH_HDR_LENGTH(ipha);
11056 	if (len == IP_SIMPLE_HDR_LENGTH)
11057 		/* Nothing to do */
11058 		return;
11059 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11060 	    (len & 0x3))
11061 		return;
11062 
11063 	tcph_len = tcp->tcp_tcp_hdr_len;
11064 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11065 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11066 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11067 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11068 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11069 	len += IP_SIMPLE_HDR_LENGTH;
11070 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11071 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11072 	if ((int)tcp->tcp_sum < 0)
11073 		tcp->tcp_sum--;
11074 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11075 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11076 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11077 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11078 	tcp->tcp_ip_hdr_len = len;
11079 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11080 	    (IP_VERSION << 4) | (len >> 2);
11081 	len += tcph_len;
11082 	tcp->tcp_hdr_len = len;
11083 }
11084 
11085 /*
11086  * Copy the standard header into its new location,
11087  * lay in the new options and then update the relevant
11088  * fields in both tcp_t and the standard header.
11089  */
11090 static int
11091 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11092 {
11093 	uint_t	tcph_len;
11094 	uint8_t	*ip_optp;
11095 	tcph_t	*new_tcph;
11096 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11097 	conn_t	*connp = tcp->tcp_connp;
11098 
11099 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11100 		return (EINVAL);
11101 
11102 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11103 		return (EINVAL);
11104 
11105 	if (checkonly) {
11106 		/*
11107 		 * do not really set, just pretend to - T_CHECK
11108 		 */
11109 		return (0);
11110 	}
11111 
11112 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11113 	if (tcp->tcp_label_len > 0) {
11114 		int padlen;
11115 		uint8_t opt;
11116 
11117 		/* convert list termination to no-ops */
11118 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11119 		ip_optp += ip_optp[IPOPT_OLEN];
11120 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11121 		while (--padlen >= 0)
11122 			*ip_optp++ = opt;
11123 	}
11124 	tcph_len = tcp->tcp_tcp_hdr_len;
11125 	new_tcph = (tcph_t *)(ip_optp + len);
11126 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11127 	tcp->tcp_tcph = new_tcph;
11128 	bcopy(ptr, ip_optp, len);
11129 
11130 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11131 
11132 	tcp->tcp_ip_hdr_len = len;
11133 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11134 	    (IP_VERSION << 4) | (len >> 2);
11135 	tcp->tcp_hdr_len = len + tcph_len;
11136 	if (!TCP_IS_DETACHED(tcp)) {
11137 		/* Always allocate room for all options. */
11138 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11139 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11140 	}
11141 	return (0);
11142 }
11143 
11144 /* Get callback routine passed to nd_load by tcp_param_register */
11145 /* ARGSUSED */
11146 static int
11147 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11148 {
11149 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11150 
11151 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11152 	return (0);
11153 }
11154 
11155 /*
11156  * Walk through the param array specified registering each element with the
11157  * named dispatch handler.
11158  */
11159 static boolean_t
11160 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11161 {
11162 	for (; cnt-- > 0; tcppa++) {
11163 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11164 			if (!nd_load(ndp, tcppa->tcp_param_name,
11165 			    tcp_param_get, tcp_param_set,
11166 			    (caddr_t)tcppa)) {
11167 				nd_free(ndp);
11168 				return (B_FALSE);
11169 			}
11170 		}
11171 	}
11172 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11173 	    KM_SLEEP);
11174 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11175 	    sizeof (tcpparam_t));
11176 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11177 	    tcp_param_get, tcp_param_set_aligned,
11178 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11179 		nd_free(ndp);
11180 		return (B_FALSE);
11181 	}
11182 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11183 	    KM_SLEEP);
11184 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11185 	    sizeof (tcpparam_t));
11186 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11187 	    tcp_param_get, tcp_param_set_aligned,
11188 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11189 		nd_free(ndp);
11190 		return (B_FALSE);
11191 	}
11192 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11193 	    KM_SLEEP);
11194 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11195 	    sizeof (tcpparam_t));
11196 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11197 	    tcp_param_get, tcp_param_set_aligned,
11198 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11199 		nd_free(ndp);
11200 		return (B_FALSE);
11201 	}
11202 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11203 	    KM_SLEEP);
11204 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11205 	    sizeof (tcpparam_t));
11206 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11207 	    tcp_param_get, tcp_param_set_aligned,
11208 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11209 		nd_free(ndp);
11210 		return (B_FALSE);
11211 	}
11212 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11213 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11214 		nd_free(ndp);
11215 		return (B_FALSE);
11216 	}
11217 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11218 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11219 		nd_free(ndp);
11220 		return (B_FALSE);
11221 	}
11222 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11223 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11224 		nd_free(ndp);
11225 		return (B_FALSE);
11226 	}
11227 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11228 	    NULL)) {
11229 		nd_free(ndp);
11230 		return (B_FALSE);
11231 	}
11232 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11233 	    NULL, NULL)) {
11234 		nd_free(ndp);
11235 		return (B_FALSE);
11236 	}
11237 	if (!nd_load(ndp, "tcp_listen_hash",
11238 	    tcp_listen_hash_report, NULL, NULL)) {
11239 		nd_free(ndp);
11240 		return (B_FALSE);
11241 	}
11242 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11243 	    NULL, NULL)) {
11244 		nd_free(ndp);
11245 		return (B_FALSE);
11246 	}
11247 	if (!nd_load(ndp, "tcp_acceptor_hash",
11248 	    tcp_acceptor_hash_report, NULL, NULL)) {
11249 		nd_free(ndp);
11250 		return (B_FALSE);
11251 	}
11252 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11253 	    tcp_1948_phrase_set, NULL)) {
11254 		nd_free(ndp);
11255 		return (B_FALSE);
11256 	}
11257 	/*
11258 	 * Dummy ndd variables - only to convey obsolescence information
11259 	 * through printing of their name (no get or set routines)
11260 	 * XXX Remove in future releases ?
11261 	 */
11262 	if (!nd_load(ndp,
11263 	    "tcp_close_wait_interval(obsoleted - "
11264 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11265 		nd_free(ndp);
11266 		return (B_FALSE);
11267 	}
11268 	return (B_TRUE);
11269 }
11270 
11271 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11272 /* ARGSUSED */
11273 static int
11274 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11275     cred_t *cr)
11276 {
11277 	long new_value;
11278 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11279 
11280 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11281 	    new_value < tcppa->tcp_param_min ||
11282 	    new_value > tcppa->tcp_param_max) {
11283 		return (EINVAL);
11284 	}
11285 	/*
11286 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11287 	 * round it up.  For future 64 bit requirement, we actually make it
11288 	 * a multiple of 8.
11289 	 */
11290 	if (new_value & 0x7) {
11291 		new_value = (new_value & ~0x7) + 0x8;
11292 	}
11293 	tcppa->tcp_param_val = new_value;
11294 	return (0);
11295 }
11296 
11297 /* Set callback routine passed to nd_load by tcp_param_register */
11298 /* ARGSUSED */
11299 static int
11300 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11301 {
11302 	long	new_value;
11303 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11304 
11305 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11306 	    new_value < tcppa->tcp_param_min ||
11307 	    new_value > tcppa->tcp_param_max) {
11308 		return (EINVAL);
11309 	}
11310 	tcppa->tcp_param_val = new_value;
11311 	return (0);
11312 }
11313 
11314 /*
11315  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11316  * is filled, return as much as we can.  The message passed in may be
11317  * multi-part, chained using b_cont.  "start" is the starting sequence
11318  * number for this piece.
11319  */
11320 static mblk_t *
11321 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11322 {
11323 	uint32_t	end;
11324 	mblk_t		*mp1;
11325 	mblk_t		*mp2;
11326 	mblk_t		*next_mp;
11327 	uint32_t	u1;
11328 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11329 
11330 	/* Walk through all the new pieces. */
11331 	do {
11332 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11333 		    (uintptr_t)INT_MAX);
11334 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11335 		next_mp = mp->b_cont;
11336 		if (start == end) {
11337 			/* Empty.  Blast it. */
11338 			freeb(mp);
11339 			continue;
11340 		}
11341 		mp->b_cont = NULL;
11342 		TCP_REASS_SET_SEQ(mp, start);
11343 		TCP_REASS_SET_END(mp, end);
11344 		mp1 = tcp->tcp_reass_tail;
11345 		if (!mp1) {
11346 			tcp->tcp_reass_tail = mp;
11347 			tcp->tcp_reass_head = mp;
11348 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11349 			UPDATE_MIB(&tcps->tcps_mib,
11350 			    tcpInDataUnorderBytes, end - start);
11351 			continue;
11352 		}
11353 		/* New stuff completely beyond tail? */
11354 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11355 			/* Link it on end. */
11356 			mp1->b_cont = mp;
11357 			tcp->tcp_reass_tail = mp;
11358 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11359 			UPDATE_MIB(&tcps->tcps_mib,
11360 			    tcpInDataUnorderBytes, end - start);
11361 			continue;
11362 		}
11363 		mp1 = tcp->tcp_reass_head;
11364 		u1 = TCP_REASS_SEQ(mp1);
11365 		/* New stuff at the front? */
11366 		if (SEQ_LT(start, u1)) {
11367 			/* Yes... Check for overlap. */
11368 			mp->b_cont = mp1;
11369 			tcp->tcp_reass_head = mp;
11370 			tcp_reass_elim_overlap(tcp, mp);
11371 			continue;
11372 		}
11373 		/*
11374 		 * The new piece fits somewhere between the head and tail.
11375 		 * We find our slot, where mp1 precedes us and mp2 trails.
11376 		 */
11377 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11378 			u1 = TCP_REASS_SEQ(mp2);
11379 			if (SEQ_LEQ(start, u1))
11380 				break;
11381 		}
11382 		/* Link ourselves in */
11383 		mp->b_cont = mp2;
11384 		mp1->b_cont = mp;
11385 
11386 		/* Trim overlap with following mblk(s) first */
11387 		tcp_reass_elim_overlap(tcp, mp);
11388 
11389 		/* Trim overlap with preceding mblk */
11390 		tcp_reass_elim_overlap(tcp, mp1);
11391 
11392 	} while (start = end, mp = next_mp);
11393 	mp1 = tcp->tcp_reass_head;
11394 	/* Anything ready to go? */
11395 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11396 		return (NULL);
11397 	/* Eat what we can off the queue */
11398 	for (;;) {
11399 		mp = mp1->b_cont;
11400 		end = TCP_REASS_END(mp1);
11401 		TCP_REASS_SET_SEQ(mp1, 0);
11402 		TCP_REASS_SET_END(mp1, 0);
11403 		if (!mp) {
11404 			tcp->tcp_reass_tail = NULL;
11405 			break;
11406 		}
11407 		if (end != TCP_REASS_SEQ(mp)) {
11408 			mp1->b_cont = NULL;
11409 			break;
11410 		}
11411 		mp1 = mp;
11412 	}
11413 	mp1 = tcp->tcp_reass_head;
11414 	tcp->tcp_reass_head = mp;
11415 	return (mp1);
11416 }
11417 
11418 /* Eliminate any overlap that mp may have over later mblks */
11419 static void
11420 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11421 {
11422 	uint32_t	end;
11423 	mblk_t		*mp1;
11424 	uint32_t	u1;
11425 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11426 
11427 	end = TCP_REASS_END(mp);
11428 	while ((mp1 = mp->b_cont) != NULL) {
11429 		u1 = TCP_REASS_SEQ(mp1);
11430 		if (!SEQ_GT(end, u1))
11431 			break;
11432 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11433 			mp->b_wptr -= end - u1;
11434 			TCP_REASS_SET_END(mp, u1);
11435 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11436 			UPDATE_MIB(&tcps->tcps_mib,
11437 			    tcpInDataPartDupBytes, end - u1);
11438 			break;
11439 		}
11440 		mp->b_cont = mp1->b_cont;
11441 		TCP_REASS_SET_SEQ(mp1, 0);
11442 		TCP_REASS_SET_END(mp1, 0);
11443 		freeb(mp1);
11444 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11445 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11446 	}
11447 	if (!mp1)
11448 		tcp->tcp_reass_tail = mp;
11449 }
11450 
11451 static uint_t
11452 tcp_rwnd_reopen(tcp_t *tcp)
11453 {
11454 	uint_t ret = 0;
11455 	uint_t thwin;
11456 
11457 	/* Learn the latest rwnd information that we sent to the other side. */
11458 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11459 	    << tcp->tcp_rcv_ws;
11460 	/* This is peer's calculated send window (our receive window). */
11461 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11462 	/*
11463 	 * Increase the receive window to max.  But we need to do receiver
11464 	 * SWS avoidance.  This means that we need to check the increase of
11465 	 * of receive window is at least 1 MSS.
11466 	 */
11467 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11468 		/*
11469 		 * If the window that the other side knows is less than max
11470 		 * deferred acks segments, send an update immediately.
11471 		 */
11472 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11473 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11474 			ret = TH_ACK_NEEDED;
11475 		}
11476 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11477 	}
11478 	return (ret);
11479 }
11480 
11481 /*
11482  * Send up all messages queued on tcp_rcv_list.
11483  */
11484 static uint_t
11485 tcp_rcv_drain(tcp_t *tcp)
11486 {
11487 	mblk_t *mp;
11488 	uint_t ret = 0;
11489 #ifdef DEBUG
11490 	uint_t cnt = 0;
11491 #endif
11492 	queue_t	*q = tcp->tcp_rq;
11493 
11494 	/* Can't drain on an eager connection */
11495 	if (tcp->tcp_listener != NULL)
11496 		return (ret);
11497 
11498 	/* Can't be a non-STREAMS connection or sodirect enabled */
11499 	ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp));
11500 
11501 	/* No need for the push timer now. */
11502 	if (tcp->tcp_push_tid != 0) {
11503 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11504 		tcp->tcp_push_tid = 0;
11505 	}
11506 
11507 	/*
11508 	 * Handle two cases here: we are currently fused or we were
11509 	 * previously fused and have some urgent data to be delivered
11510 	 * upstream.  The latter happens because we either ran out of
11511 	 * memory or were detached and therefore sending the SIGURG was
11512 	 * deferred until this point.  In either case we pass control
11513 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11514 	 * some work.
11515 	 */
11516 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11517 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11518 		    tcp->tcp_fused_sigurg_mp != NULL);
11519 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11520 		    &tcp->tcp_fused_sigurg_mp))
11521 			return (ret);
11522 	}
11523 
11524 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11525 		tcp->tcp_rcv_list = mp->b_next;
11526 		mp->b_next = NULL;
11527 #ifdef DEBUG
11528 		cnt += msgdsize(mp);
11529 #endif
11530 		/* Does this need SSL processing first? */
11531 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11532 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11533 			    mblk_t *, mp);
11534 			tcp_kssl_input(tcp, mp);
11535 			continue;
11536 		}
11537 		putnext(q, mp);
11538 	}
11539 #ifdef DEBUG
11540 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11541 #endif
11542 	tcp->tcp_rcv_last_head = NULL;
11543 	tcp->tcp_rcv_last_tail = NULL;
11544 	tcp->tcp_rcv_cnt = 0;
11545 
11546 	if (canputnext(q))
11547 		return (tcp_rwnd_reopen(tcp));
11548 
11549 	return (ret);
11550 }
11551 
11552 /*
11553  * Queue data on tcp_rcv_list which is a b_next chain.
11554  * tcp_rcv_last_head/tail is the last element of this chain.
11555  * Each element of the chain is a b_cont chain.
11556  *
11557  * M_DATA messages are added to the current element.
11558  * Other messages are added as new (b_next) elements.
11559  */
11560 void
11561 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11562 {
11563 	ASSERT(seg_len == msgdsize(mp));
11564 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11565 
11566 	if (tcp->tcp_rcv_list == NULL) {
11567 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11568 		tcp->tcp_rcv_list = mp;
11569 		tcp->tcp_rcv_last_head = mp;
11570 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11571 		tcp->tcp_rcv_last_tail->b_cont = mp;
11572 	} else {
11573 		tcp->tcp_rcv_last_head->b_next = mp;
11574 		tcp->tcp_rcv_last_head = mp;
11575 	}
11576 
11577 	while (mp->b_cont)
11578 		mp = mp->b_cont;
11579 
11580 	tcp->tcp_rcv_last_tail = mp;
11581 	tcp->tcp_rcv_cnt += seg_len;
11582 	tcp->tcp_rwnd -= seg_len;
11583 }
11584 
11585 /*
11586  * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket
11587  * above, in addition when uioa is enabled schedule an asynchronous uio
11588  * prior to enqueuing. They implement the combinhed semantics of the
11589  * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext()
11590  * canputnext(), i.e. flow-control with backenable.
11591  *
11592  * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the
11593  * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal
11594  * with the rcv_wnd and push timer and call the sodirect wakeup function.
11595  *
11596  * Must be called with sodp->sod_lockp held and will return with the lock
11597  * released.
11598  */
11599 static uint_t
11600 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp)
11601 {
11602 	queue_t		*q = tcp->tcp_rq;
11603 	uint_t		thwin;
11604 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11605 	uint_t		ret = 0;
11606 
11607 	/* Can't be an eager connection */
11608 	ASSERT(tcp->tcp_listener == NULL);
11609 
11610 	/* Caller must have lock held */
11611 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11612 
11613 	/* Sodirect mode so must not be a tcp_rcv_list */
11614 	ASSERT(tcp->tcp_rcv_list == NULL);
11615 
11616 	if (SOD_QFULL(sodp)) {
11617 		/* Q is full, mark Q for need backenable */
11618 		SOD_QSETBE(sodp);
11619 	}
11620 	/* Last advertised rwnd, i.e. rwnd last sent in a packet */
11621 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11622 	    << tcp->tcp_rcv_ws;
11623 	/* This is peer's calculated send window (our available rwnd). */
11624 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11625 	/*
11626 	 * Increase the receive window to max.  But we need to do receiver
11627 	 * SWS avoidance.  This means that we need to check the increase of
11628 	 * of receive window is at least 1 MSS.
11629 	 */
11630 	if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11631 		/*
11632 		 * If the window that the other side knows is less than max
11633 		 * deferred acks segments, send an update immediately.
11634 		 */
11635 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11636 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11637 			ret = TH_ACK_NEEDED;
11638 		}
11639 		tcp->tcp_rwnd = q->q_hiwat;
11640 	}
11641 
11642 	if (!SOD_QEMPTY(sodp)) {
11643 		/* Wakeup to socket */
11644 		sodp->sod_state &= SOD_WAKE_CLR;
11645 		sodp->sod_state |= SOD_WAKE_DONE;
11646 		(sodp->sod_wakeup)(sodp);
11647 		/* wakeup() does the mutex_ext() */
11648 	} else {
11649 		/* Q is empty, no need to wake */
11650 		sodp->sod_state &= SOD_WAKE_CLR;
11651 		sodp->sod_state |= SOD_WAKE_NOT;
11652 		mutex_exit(sodp->sod_lockp);
11653 	}
11654 
11655 	/* No need for the push timer now. */
11656 	if (tcp->tcp_push_tid != 0) {
11657 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11658 		tcp->tcp_push_tid = 0;
11659 	}
11660 
11661 	return (ret);
11662 }
11663 
11664 /*
11665  * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA
11666  * mblk_t's if uioa enabled then start a uioa asynchronous copy directly
11667  * to the user-land buffer and flag the mblk_t as such.
11668  *
11669  * Also, handle tcp_rwnd.
11670  */
11671 uint_t
11672 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len)
11673 {
11674 	uioa_t		*uioap = &sodp->sod_uioa;
11675 	boolean_t	qfull;
11676 	uint_t		thwin;
11677 
11678 	/* Can't be an eager connection */
11679 	ASSERT(tcp->tcp_listener == NULL);
11680 
11681 	/* Caller must have lock held */
11682 	ASSERT(MUTEX_HELD(sodp->sod_lockp));
11683 
11684 	/* Sodirect mode so must not be a tcp_rcv_list */
11685 	ASSERT(tcp->tcp_rcv_list == NULL);
11686 
11687 	/* Passed in segment length must be equal to mblk_t chain data size */
11688 	ASSERT(seg_len == msgdsize(mp));
11689 
11690 	if (DB_TYPE(mp) != M_DATA) {
11691 		/* Only process M_DATA mblk_t's */
11692 		goto enq;
11693 	}
11694 	if (uioap->uioa_state & UIOA_ENABLED) {
11695 		/* Uioa is enabled */
11696 		mblk_t		*mp1 = mp;
11697 		mblk_t		*lmp = NULL;
11698 
11699 		if (seg_len > uioap->uio_resid) {
11700 			/*
11701 			 * There isn't enough uio space for the mblk_t chain
11702 			 * so disable uioa such that this and any additional
11703 			 * mblk_t data is handled by the socket and schedule
11704 			 * the socket for wakeup to finish this uioa.
11705 			 */
11706 			uioap->uioa_state &= UIOA_CLR;
11707 			uioap->uioa_state |= UIOA_FINI;
11708 			if (sodp->sod_state & SOD_WAKE_NOT) {
11709 				sodp->sod_state &= SOD_WAKE_CLR;
11710 				sodp->sod_state |= SOD_WAKE_NEED;
11711 			}
11712 			goto enq;
11713 		}
11714 		do {
11715 			uint32_t	len = MBLKL(mp1);
11716 
11717 			if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) {
11718 				/* Scheduled, mark dblk_t as such */
11719 				DB_FLAGS(mp1) |= DBLK_UIOA;
11720 			} else {
11721 				/* Error, turn off async processing */
11722 				uioap->uioa_state &= UIOA_CLR;
11723 				uioap->uioa_state |= UIOA_FINI;
11724 				break;
11725 			}
11726 			lmp = mp1;
11727 		} while ((mp1 = mp1->b_cont) != NULL);
11728 
11729 		if (mp1 != NULL || uioap->uio_resid == 0) {
11730 			/*
11731 			 * Not all mblk_t(s) uioamoved (error) or all uio
11732 			 * space has been consumed so schedule the socket
11733 			 * for wakeup to finish this uio.
11734 			 */
11735 			sodp->sod_state &= SOD_WAKE_CLR;
11736 			sodp->sod_state |= SOD_WAKE_NEED;
11737 
11738 			/* Break the mblk chain if neccessary. */
11739 			if (mp1 != NULL && lmp != NULL) {
11740 				mp->b_next = mp1;
11741 				lmp->b_cont = NULL;
11742 			}
11743 		}
11744 	} else if (uioap->uioa_state & UIOA_FINI) {
11745 		/*
11746 		 * Post UIO_ENABLED waiting for socket to finish processing
11747 		 * so just enqueue and update tcp_rwnd.
11748 		 */
11749 		if (SOD_QFULL(sodp))
11750 			tcp->tcp_rwnd -= seg_len;
11751 	} else if (sodp->sod_want > 0) {
11752 		/*
11753 		 * Uioa isn't enabled but sodirect has a pending read().
11754 		 */
11755 		if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) {
11756 			if (sodp->sod_state & SOD_WAKE_NOT) {
11757 				/* Schedule socket for wakeup */
11758 				sodp->sod_state &= SOD_WAKE_CLR;
11759 				sodp->sod_state |= SOD_WAKE_NEED;
11760 			}
11761 			tcp->tcp_rwnd -= seg_len;
11762 		}
11763 	} else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
11764 		/*
11765 		 * No pending sodirect read() so used the default
11766 		 * TCP push logic to guess that a push is needed.
11767 		 */
11768 		if (sodp->sod_state & SOD_WAKE_NOT) {
11769 			/* Schedule socket for wakeup */
11770 			sodp->sod_state &= SOD_WAKE_CLR;
11771 			sodp->sod_state |= SOD_WAKE_NEED;
11772 		}
11773 		tcp->tcp_rwnd -= seg_len;
11774 	} else {
11775 		/* Just update tcp_rwnd */
11776 		tcp->tcp_rwnd -= seg_len;
11777 	}
11778 enq:
11779 	qfull = SOD_QFULL(sodp);
11780 
11781 	(sodp->sod_enqueue)(sodp, mp);
11782 
11783 	if (! qfull && SOD_QFULL(sodp)) {
11784 		/* Wasn't QFULL, now QFULL, need back-enable */
11785 		SOD_QSETBE(sodp);
11786 	}
11787 
11788 	/*
11789 	 * Check to see if remote avail swnd < mss due to delayed ACK,
11790 	 * first get advertised rwnd.
11791 	 */
11792 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win));
11793 	/* Minus delayed ACK count */
11794 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11795 	if (thwin < tcp->tcp_mss) {
11796 		/* Remote avail swnd < mss, need ACK now */
11797 		return (TH_ACK_NEEDED);
11798 	}
11799 
11800 	return (0);
11801 }
11802 
11803 /*
11804  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11805  *
11806  * This is the default entry function into TCP on the read side. TCP is
11807  * always entered via squeue i.e. using squeue's for mutual exclusion.
11808  * When classifier does a lookup to find the tcp, it also puts a reference
11809  * on the conn structure associated so the tcp is guaranteed to exist
11810  * when we come here. We still need to check the state because it might
11811  * as well has been closed. The squeue processing function i.e. squeue_enter,
11812  * is responsible for doing the CONN_DEC_REF.
11813  *
11814  * Apart from the default entry point, IP also sends packets directly to
11815  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11816  * connections.
11817  */
11818 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11819 void
11820 tcp_input(void *arg, mblk_t *mp, void *arg2)
11821 {
11822 	conn_t	*connp = (conn_t *)arg;
11823 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11824 
11825 	/* arg2 is the sqp */
11826 	ASSERT(arg2 != NULL);
11827 	ASSERT(mp != NULL);
11828 
11829 	/*
11830 	 * Don't accept any input on a closed tcp as this TCP logically does
11831 	 * not exist on the system. Don't proceed further with this TCP.
11832 	 * For eg. this packet could trigger another close of this tcp
11833 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11834 	 * tcp_clean_death / tcp_closei_local must be called at most once
11835 	 * on a TCP. In this case we need to refeed the packet into the
11836 	 * classifier and figure out where the packet should go. Need to
11837 	 * preserve the recv_ill somehow. Until we figure that out, for
11838 	 * now just drop the packet if we can't classify the packet.
11839 	 */
11840 	if (tcp->tcp_state == TCPS_CLOSED ||
11841 	    tcp->tcp_state == TCPS_BOUND) {
11842 		conn_t	*new_connp;
11843 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11844 
11845 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11846 		if (new_connp != NULL) {
11847 			tcp_reinput(new_connp, mp, arg2);
11848 			return;
11849 		}
11850 		/* We failed to classify. For now just drop the packet */
11851 		freemsg(mp);
11852 		return;
11853 	}
11854 
11855 	if (DB_TYPE(mp) != M_DATA) {
11856 		tcp_rput_common(tcp, mp);
11857 		return;
11858 	}
11859 
11860 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11861 		squeue_t	*final_sqp;
11862 
11863 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11864 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11865 		DB_CKSUMSTART(mp) = 0;
11866 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11867 		    connp->conn_final_sqp == NULL &&
11868 		    tcp_outbound_squeue_switch) {
11869 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11870 			connp->conn_final_sqp = final_sqp;
11871 			if (connp->conn_final_sqp != connp->conn_sqp) {
11872 				CONN_INC_REF(connp);
11873 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11874 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11875 				    tcp_rput_data, connp, ip_squeue_flag,
11876 				    SQTAG_CONNECT_FINISH);
11877 				return;
11878 			}
11879 		}
11880 	}
11881 	tcp_rput_data(connp, mp, arg2);
11882 }
11883 
11884 /*
11885  * The read side put procedure.
11886  * The packets passed up by ip are assume to be aligned according to
11887  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11888  */
11889 static void
11890 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11891 {
11892 	/*
11893 	 * tcp_rput_data() does not expect M_CTL except for the case
11894 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11895 	 * type. Need to make sure that any other M_CTLs don't make
11896 	 * it to tcp_rput_data since it is not expecting any and doesn't
11897 	 * check for it.
11898 	 */
11899 	if (DB_TYPE(mp) == M_CTL) {
11900 		switch (*(uint32_t *)(mp->b_rptr)) {
11901 		case TCP_IOC_ABORT_CONN:
11902 			/*
11903 			 * Handle connection abort request.
11904 			 */
11905 			tcp_ioctl_abort_handler(tcp, mp);
11906 			return;
11907 		case IPSEC_IN:
11908 			/*
11909 			 * Only secure icmp arrive in TCP and they
11910 			 * don't go through data path.
11911 			 */
11912 			tcp_icmp_error(tcp, mp);
11913 			return;
11914 		case IN_PKTINFO:
11915 			/*
11916 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11917 			 * sockets that are receiving IPv4 traffic. tcp
11918 			 */
11919 			ASSERT(tcp->tcp_family == AF_INET6);
11920 			ASSERT(tcp->tcp_ipv6_recvancillary &
11921 			    TCP_IPV6_RECVPKTINFO);
11922 			tcp_rput_data(tcp->tcp_connp, mp,
11923 			    tcp->tcp_connp->conn_sqp);
11924 			return;
11925 		case MDT_IOC_INFO_UPDATE:
11926 			/*
11927 			 * Handle Multidata information update; the
11928 			 * following routine will free the message.
11929 			 */
11930 			if (tcp->tcp_connp->conn_mdt_ok) {
11931 				tcp_mdt_update(tcp,
11932 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11933 				    B_FALSE);
11934 			}
11935 			freemsg(mp);
11936 			return;
11937 		case LSO_IOC_INFO_UPDATE:
11938 			/*
11939 			 * Handle LSO information update; the following
11940 			 * routine will free the message.
11941 			 */
11942 			if (tcp->tcp_connp->conn_lso_ok) {
11943 				tcp_lso_update(tcp,
11944 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11945 			}
11946 			freemsg(mp);
11947 			return;
11948 		default:
11949 			/*
11950 			 * tcp_icmp_err() will process the M_CTL packets.
11951 			 * Non-ICMP packets, if any, will be discarded in
11952 			 * tcp_icmp_err(). We will process the ICMP packet
11953 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11954 			 * incoming ICMP packet may result in changing
11955 			 * the tcp_mss, which we would need if we have
11956 			 * packets to retransmit.
11957 			 */
11958 			tcp_icmp_error(tcp, mp);
11959 			return;
11960 		}
11961 	}
11962 
11963 	/* No point processing the message if tcp is already closed */
11964 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11965 		freemsg(mp);
11966 		return;
11967 	}
11968 
11969 	tcp_rput_other(tcp, mp);
11970 }
11971 
11972 
11973 /* The minimum of smoothed mean deviation in RTO calculation. */
11974 #define	TCP_SD_MIN	400
11975 
11976 /*
11977  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11978  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11979  * are the same as those in Appendix A.2 of that paper.
11980  *
11981  * m = new measurement
11982  * sa = smoothed RTT average (8 * average estimates).
11983  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11984  */
11985 static void
11986 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11987 {
11988 	long m = TICK_TO_MSEC(rtt);
11989 	clock_t sa = tcp->tcp_rtt_sa;
11990 	clock_t sv = tcp->tcp_rtt_sd;
11991 	clock_t rto;
11992 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11993 
11994 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11995 	tcp->tcp_rtt_update++;
11996 
11997 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11998 	if (sa != 0) {
11999 		/*
12000 		 * Update average estimator:
12001 		 *	new rtt = 7/8 old rtt + 1/8 Error
12002 		 */
12003 
12004 		/* m is now Error in estimate. */
12005 		m -= sa >> 3;
12006 		if ((sa += m) <= 0) {
12007 			/*
12008 			 * Don't allow the smoothed average to be negative.
12009 			 * We use 0 to denote reinitialization of the
12010 			 * variables.
12011 			 */
12012 			sa = 1;
12013 		}
12014 
12015 		/*
12016 		 * Update deviation estimator:
12017 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12018 		 */
12019 		if (m < 0)
12020 			m = -m;
12021 		m -= sv >> 2;
12022 		sv += m;
12023 	} else {
12024 		/*
12025 		 * This follows BSD's implementation.  So the reinitialized
12026 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12027 		 * link is bandwidth dominated, doubling the window size
12028 		 * during slow start means doubling the RTT.  We want to be
12029 		 * more conservative when we reinitialize our estimates.  3
12030 		 * is just a convenient number.
12031 		 */
12032 		sa = m << 3;
12033 		sv = m << 1;
12034 	}
12035 	if (sv < TCP_SD_MIN) {
12036 		/*
12037 		 * We do not know that if sa captures the delay ACK
12038 		 * effect as in a long train of segments, a receiver
12039 		 * does not delay its ACKs.  So set the minimum of sv
12040 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12041 		 * of BSD DATO.  That means the minimum of mean
12042 		 * deviation is 100 ms.
12043 		 *
12044 		 */
12045 		sv = TCP_SD_MIN;
12046 	}
12047 	tcp->tcp_rtt_sa = sa;
12048 	tcp->tcp_rtt_sd = sv;
12049 	/*
12050 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12051 	 *
12052 	 * Add tcp_rexmit_interval extra in case of extreme environment
12053 	 * where the algorithm fails to work.  The default value of
12054 	 * tcp_rexmit_interval_extra should be 0.
12055 	 *
12056 	 * As we use a finer grained clock than BSD and update
12057 	 * RTO for every ACKs, add in another .25 of RTT to the
12058 	 * deviation of RTO to accomodate burstiness of 1/4 of
12059 	 * window size.
12060 	 */
12061 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12062 
12063 	if (rto > tcps->tcps_rexmit_interval_max) {
12064 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12065 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12066 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12067 	} else {
12068 		tcp->tcp_rto = rto;
12069 	}
12070 
12071 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12072 	tcp->tcp_timer_backoff = 0;
12073 }
12074 
12075 /*
12076  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12077  * send queue which starts at the given seq. no.
12078  *
12079  * Parameters:
12080  *	tcp_t *tcp: the tcp instance pointer.
12081  *	uint32_t seq: the starting seq. no of the requested segment.
12082  *	int32_t *off: after the execution, *off will be the offset to
12083  *		the returned mblk which points to the requested seq no.
12084  *		It is the caller's responsibility to send in a non-null off.
12085  *
12086  * Return:
12087  *	A mblk_t pointer pointing to the requested segment in send queue.
12088  */
12089 static mblk_t *
12090 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12091 {
12092 	int32_t	cnt;
12093 	mblk_t	*mp;
12094 
12095 	/* Defensive coding.  Make sure we don't send incorrect data. */
12096 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12097 		return (NULL);
12098 
12099 	cnt = seq - tcp->tcp_suna;
12100 	mp = tcp->tcp_xmit_head;
12101 	while (cnt > 0 && mp != NULL) {
12102 		cnt -= mp->b_wptr - mp->b_rptr;
12103 		if (cnt < 0) {
12104 			cnt += mp->b_wptr - mp->b_rptr;
12105 			break;
12106 		}
12107 		mp = mp->b_cont;
12108 	}
12109 	ASSERT(mp != NULL);
12110 	*off = cnt;
12111 	return (mp);
12112 }
12113 
12114 /*
12115  * This function handles all retransmissions if SACK is enabled for this
12116  * connection.  First it calculates how many segments can be retransmitted
12117  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12118  * segments.  A segment is eligible if sack_cnt for that segment is greater
12119  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12120  * all eligible segments, it checks to see if TCP can send some new segments
12121  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12122  *
12123  * Parameters:
12124  *	tcp_t *tcp: the tcp structure of the connection.
12125  *	uint_t *flags: in return, appropriate value will be set for
12126  *	tcp_rput_data().
12127  */
12128 static void
12129 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12130 {
12131 	notsack_blk_t	*notsack_blk;
12132 	int32_t		usable_swnd;
12133 	int32_t		mss;
12134 	uint32_t	seg_len;
12135 	mblk_t		*xmit_mp;
12136 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12137 
12138 	ASSERT(tcp->tcp_sack_info != NULL);
12139 	ASSERT(tcp->tcp_notsack_list != NULL);
12140 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12141 
12142 	/* Defensive coding in case there is a bug... */
12143 	if (tcp->tcp_notsack_list == NULL) {
12144 		return;
12145 	}
12146 	notsack_blk = tcp->tcp_notsack_list;
12147 	mss = tcp->tcp_mss;
12148 
12149 	/*
12150 	 * Limit the num of outstanding data in the network to be
12151 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12152 	 */
12153 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12154 
12155 	/* At least retransmit 1 MSS of data. */
12156 	if (usable_swnd <= 0) {
12157 		usable_swnd = mss;
12158 	}
12159 
12160 	/* Make sure no new RTT samples will be taken. */
12161 	tcp->tcp_csuna = tcp->tcp_snxt;
12162 
12163 	notsack_blk = tcp->tcp_notsack_list;
12164 	while (usable_swnd > 0) {
12165 		mblk_t		*snxt_mp, *tmp_mp;
12166 		tcp_seq		begin = tcp->tcp_sack_snxt;
12167 		tcp_seq		end;
12168 		int32_t		off;
12169 
12170 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12171 			if (SEQ_GT(notsack_blk->end, begin) &&
12172 			    (notsack_blk->sack_cnt >=
12173 			    tcps->tcps_dupack_fast_retransmit)) {
12174 				end = notsack_blk->end;
12175 				if (SEQ_LT(begin, notsack_blk->begin)) {
12176 					begin = notsack_blk->begin;
12177 				}
12178 				break;
12179 			}
12180 		}
12181 		/*
12182 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12183 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12184 		 * set to tcp_cwnd_ssthresh.
12185 		 */
12186 		if (notsack_blk == NULL) {
12187 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12188 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12189 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12190 				ASSERT(tcp->tcp_cwnd > 0);
12191 				return;
12192 			} else {
12193 				usable_swnd = usable_swnd / mss;
12194 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12195 				    MAX(usable_swnd * mss, mss);
12196 				*flags |= TH_XMIT_NEEDED;
12197 				return;
12198 			}
12199 		}
12200 
12201 		/*
12202 		 * Note that we may send more than usable_swnd allows here
12203 		 * because of round off, but no more than 1 MSS of data.
12204 		 */
12205 		seg_len = end - begin;
12206 		if (seg_len > mss)
12207 			seg_len = mss;
12208 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12209 		ASSERT(snxt_mp != NULL);
12210 		/* This should not happen.  Defensive coding again... */
12211 		if (snxt_mp == NULL) {
12212 			return;
12213 		}
12214 
12215 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12216 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12217 		if (xmit_mp == NULL)
12218 			return;
12219 
12220 		usable_swnd -= seg_len;
12221 		tcp->tcp_pipe += seg_len;
12222 		tcp->tcp_sack_snxt = begin + seg_len;
12223 
12224 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12225 
12226 		/*
12227 		 * Update the send timestamp to avoid false retransmission.
12228 		 */
12229 		snxt_mp->b_prev = (mblk_t *)lbolt;
12230 
12231 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12232 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12233 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12234 		/*
12235 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12236 		 * This happens when new data sent during fast recovery is
12237 		 * also lost.  If TCP retransmits those new data, it needs
12238 		 * to extend SACK recover phase to avoid starting another
12239 		 * fast retransmit/recovery unnecessarily.
12240 		 */
12241 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12242 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12243 		}
12244 	}
12245 }
12246 
12247 /*
12248  * This function handles policy checking at TCP level for non-hard_bound/
12249  * detached connections.
12250  */
12251 static boolean_t
12252 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12253     boolean_t secure, boolean_t mctl_present)
12254 {
12255 	ipsec_latch_t *ipl = NULL;
12256 	ipsec_action_t *act = NULL;
12257 	mblk_t *data_mp;
12258 	ipsec_in_t *ii;
12259 	const char *reason;
12260 	kstat_named_t *counter;
12261 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12262 	ipsec_stack_t	*ipss;
12263 	ip_stack_t	*ipst;
12264 
12265 	ASSERT(mctl_present || !secure);
12266 
12267 	ASSERT((ipha == NULL && ip6h != NULL) ||
12268 	    (ip6h == NULL && ipha != NULL));
12269 
12270 	/*
12271 	 * We don't necessarily have an ipsec_in_act action to verify
12272 	 * policy because of assymetrical policy where we have only
12273 	 * outbound policy and no inbound policy (possible with global
12274 	 * policy).
12275 	 */
12276 	if (!secure) {
12277 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12278 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12279 			return (B_TRUE);
12280 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12281 		    "tcp_check_policy", ipha, ip6h, secure,
12282 		    tcps->tcps_netstack);
12283 		ipss = tcps->tcps_netstack->netstack_ipsec;
12284 
12285 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12286 		    DROPPER(ipss, ipds_tcp_clear),
12287 		    &tcps->tcps_dropper);
12288 		return (B_FALSE);
12289 	}
12290 
12291 	/*
12292 	 * We have a secure packet.
12293 	 */
12294 	if (act == NULL) {
12295 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12296 		    "tcp_check_policy", ipha, ip6h, secure,
12297 		    tcps->tcps_netstack);
12298 		ipss = tcps->tcps_netstack->netstack_ipsec;
12299 
12300 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12301 		    DROPPER(ipss, ipds_tcp_secure),
12302 		    &tcps->tcps_dropper);
12303 		return (B_FALSE);
12304 	}
12305 
12306 	/*
12307 	 * XXX This whole routine is currently incorrect.  ipl should
12308 	 * be set to the latch pointer, but is currently not set, so
12309 	 * we initialize it to NULL to avoid picking up random garbage.
12310 	 */
12311 	if (ipl == NULL)
12312 		return (B_TRUE);
12313 
12314 	data_mp = first_mp->b_cont;
12315 
12316 	ii = (ipsec_in_t *)first_mp->b_rptr;
12317 
12318 	ipst = tcps->tcps_netstack->netstack_ip;
12319 
12320 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12321 	    &counter, tcp->tcp_connp)) {
12322 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12323 		return (B_TRUE);
12324 	}
12325 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12326 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12327 	    reason);
12328 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12329 
12330 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12331 	    &tcps->tcps_dropper);
12332 	return (B_FALSE);
12333 }
12334 
12335 /*
12336  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12337  * retransmission after a timeout.
12338  *
12339  * To limit the number of duplicate segments, we limit the number of segment
12340  * to be sent in one time to tcp_snd_burst, the burst variable.
12341  */
12342 static void
12343 tcp_ss_rexmit(tcp_t *tcp)
12344 {
12345 	uint32_t	snxt;
12346 	uint32_t	smax;
12347 	int32_t		win;
12348 	int32_t		mss;
12349 	int32_t		off;
12350 	int32_t		burst = tcp->tcp_snd_burst;
12351 	mblk_t		*snxt_mp;
12352 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12353 
12354 	/*
12355 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12356 	 * all unack'ed segments.
12357 	 */
12358 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12359 		smax = tcp->tcp_rexmit_max;
12360 		snxt = tcp->tcp_rexmit_nxt;
12361 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12362 			snxt = tcp->tcp_suna;
12363 		}
12364 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12365 		win -= snxt - tcp->tcp_suna;
12366 		mss = tcp->tcp_mss;
12367 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12368 
12369 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12370 		    (burst > 0) && (snxt_mp != NULL)) {
12371 			mblk_t	*xmit_mp;
12372 			mblk_t	*old_snxt_mp = snxt_mp;
12373 			uint32_t cnt = mss;
12374 
12375 			if (win < cnt) {
12376 				cnt = win;
12377 			}
12378 			if (SEQ_GT(snxt + cnt, smax)) {
12379 				cnt = smax - snxt;
12380 			}
12381 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12382 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12383 			if (xmit_mp == NULL)
12384 				return;
12385 
12386 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12387 
12388 			snxt += cnt;
12389 			win -= cnt;
12390 			/*
12391 			 * Update the send timestamp to avoid false
12392 			 * retransmission.
12393 			 */
12394 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12395 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12396 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12397 
12398 			tcp->tcp_rexmit_nxt = snxt;
12399 			burst--;
12400 		}
12401 		/*
12402 		 * If we have transmitted all we have at the time
12403 		 * we started the retranmission, we can leave
12404 		 * the rest of the job to tcp_wput_data().  But we
12405 		 * need to check the send window first.  If the
12406 		 * win is not 0, go on with tcp_wput_data().
12407 		 */
12408 		if (SEQ_LT(snxt, smax) || win == 0) {
12409 			return;
12410 		}
12411 	}
12412 	/* Only call tcp_wput_data() if there is data to be sent. */
12413 	if (tcp->tcp_unsent) {
12414 		tcp_wput_data(tcp, NULL, B_FALSE);
12415 	}
12416 }
12417 
12418 /*
12419  * Process all TCP option in SYN segment.  Note that this function should
12420  * be called after tcp_adapt_ire() is called so that the necessary info
12421  * from IRE is already set in the tcp structure.
12422  *
12423  * This function sets up the correct tcp_mss value according to the
12424  * MSS option value and our header size.  It also sets up the window scale
12425  * and timestamp values, and initialize SACK info blocks.  But it does not
12426  * change receive window size after setting the tcp_mss value.  The caller
12427  * should do the appropriate change.
12428  */
12429 void
12430 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12431 {
12432 	int options;
12433 	tcp_opt_t tcpopt;
12434 	uint32_t mss_max;
12435 	char *tmp_tcph;
12436 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12437 
12438 	tcpopt.tcp = NULL;
12439 	options = tcp_parse_options(tcph, &tcpopt);
12440 
12441 	/*
12442 	 * Process MSS option.  Note that MSS option value does not account
12443 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12444 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12445 	 * IPv6.
12446 	 */
12447 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12448 		if (tcp->tcp_ipversion == IPV4_VERSION)
12449 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12450 		else
12451 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12452 	} else {
12453 		if (tcp->tcp_ipversion == IPV4_VERSION)
12454 			mss_max = tcps->tcps_mss_max_ipv4;
12455 		else
12456 			mss_max = tcps->tcps_mss_max_ipv6;
12457 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12458 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12459 		else if (tcpopt.tcp_opt_mss > mss_max)
12460 			tcpopt.tcp_opt_mss = mss_max;
12461 	}
12462 
12463 	/* Process Window Scale option. */
12464 	if (options & TCP_OPT_WSCALE_PRESENT) {
12465 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12466 		tcp->tcp_snd_ws_ok = B_TRUE;
12467 	} else {
12468 		tcp->tcp_snd_ws = B_FALSE;
12469 		tcp->tcp_snd_ws_ok = B_FALSE;
12470 		tcp->tcp_rcv_ws = B_FALSE;
12471 	}
12472 
12473 	/* Process Timestamp option. */
12474 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12475 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12476 		tmp_tcph = (char *)tcp->tcp_tcph;
12477 
12478 		tcp->tcp_snd_ts_ok = B_TRUE;
12479 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12480 		tcp->tcp_last_rcv_lbolt = lbolt64;
12481 		ASSERT(OK_32PTR(tmp_tcph));
12482 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12483 
12484 		/* Fill in our template header with basic timestamp option. */
12485 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12486 		tmp_tcph[0] = TCPOPT_NOP;
12487 		tmp_tcph[1] = TCPOPT_NOP;
12488 		tmp_tcph[2] = TCPOPT_TSTAMP;
12489 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12490 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12491 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12492 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12493 	} else {
12494 		tcp->tcp_snd_ts_ok = B_FALSE;
12495 	}
12496 
12497 	/*
12498 	 * Process SACK options.  If SACK is enabled for this connection,
12499 	 * then allocate the SACK info structure.  Note the following ways
12500 	 * when tcp_snd_sack_ok is set to true.
12501 	 *
12502 	 * For active connection: in tcp_adapt_ire() called in
12503 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12504 	 * is checked.
12505 	 *
12506 	 * For passive connection: in tcp_adapt_ire() called in
12507 	 * tcp_accept_comm().
12508 	 *
12509 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12510 	 * That check makes sure that if we did not send a SACK OK option,
12511 	 * we will not enable SACK for this connection even though the other
12512 	 * side sends us SACK OK option.  For active connection, the SACK
12513 	 * info structure has already been allocated.  So we need to free
12514 	 * it if SACK is disabled.
12515 	 */
12516 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12517 	    (tcp->tcp_snd_sack_ok ||
12518 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12519 		/* This should be true only in the passive case. */
12520 		if (tcp->tcp_sack_info == NULL) {
12521 			ASSERT(TCP_IS_DETACHED(tcp));
12522 			tcp->tcp_sack_info =
12523 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12524 		}
12525 		if (tcp->tcp_sack_info == NULL) {
12526 			tcp->tcp_snd_sack_ok = B_FALSE;
12527 		} else {
12528 			tcp->tcp_snd_sack_ok = B_TRUE;
12529 			if (tcp->tcp_snd_ts_ok) {
12530 				tcp->tcp_max_sack_blk = 3;
12531 			} else {
12532 				tcp->tcp_max_sack_blk = 4;
12533 			}
12534 		}
12535 	} else {
12536 		/*
12537 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12538 		 * no SACK info will be used for this
12539 		 * connection.  This assumes that SACK usage
12540 		 * permission is negotiated.  This may need
12541 		 * to be changed once this is clarified.
12542 		 */
12543 		if (tcp->tcp_sack_info != NULL) {
12544 			ASSERT(tcp->tcp_notsack_list == NULL);
12545 			kmem_cache_free(tcp_sack_info_cache,
12546 			    tcp->tcp_sack_info);
12547 			tcp->tcp_sack_info = NULL;
12548 		}
12549 		tcp->tcp_snd_sack_ok = B_FALSE;
12550 	}
12551 
12552 	/*
12553 	 * Now we know the exact TCP/IP header length, subtract
12554 	 * that from tcp_mss to get our side's MSS.
12555 	 */
12556 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12557 	/*
12558 	 * Here we assume that the other side's header size will be equal to
12559 	 * our header size.  We calculate the real MSS accordingly.  Need to
12560 	 * take into additional stuffs IPsec puts in.
12561 	 *
12562 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12563 	 */
12564 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12565 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12566 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12567 
12568 	/*
12569 	 * Set MSS to the smaller one of both ends of the connection.
12570 	 * We should not have called tcp_mss_set() before, but our
12571 	 * side of the MSS should have been set to a proper value
12572 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12573 	 * STREAM head parameters properly.
12574 	 *
12575 	 * If we have a larger-than-16-bit window but the other side
12576 	 * didn't want to do window scale, tcp_rwnd_set() will take
12577 	 * care of that.
12578 	 */
12579 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12580 }
12581 
12582 /*
12583  * Sends the T_CONN_IND to the listener. The caller calls this
12584  * functions via squeue to get inside the listener's perimeter
12585  * once the 3 way hand shake is done a T_CONN_IND needs to be
12586  * sent. As an optimization, the caller can call this directly
12587  * if listener's perimeter is same as eager's.
12588  */
12589 /* ARGSUSED */
12590 void
12591 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12592 {
12593 	conn_t			*lconnp = (conn_t *)arg;
12594 	tcp_t			*listener = lconnp->conn_tcp;
12595 	tcp_t			*tcp;
12596 	struct T_conn_ind	*conn_ind;
12597 	ipaddr_t 		*addr_cache;
12598 	boolean_t		need_send_conn_ind = B_FALSE;
12599 	tcp_stack_t		*tcps = listener->tcp_tcps;
12600 
12601 	/* retrieve the eager */
12602 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12603 	ASSERT(conn_ind->OPT_offset != 0 &&
12604 	    conn_ind->OPT_length == sizeof (intptr_t));
12605 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12606 	    conn_ind->OPT_length);
12607 
12608 	/*
12609 	 * TLI/XTI applications will get confused by
12610 	 * sending eager as an option since it violates
12611 	 * the option semantics. So remove the eager as
12612 	 * option since TLI/XTI app doesn't need it anyway.
12613 	 */
12614 	if (!TCP_IS_SOCKET(listener)) {
12615 		conn_ind->OPT_length = 0;
12616 		conn_ind->OPT_offset = 0;
12617 	}
12618 	if (listener->tcp_state == TCPS_CLOSED ||
12619 	    TCP_IS_DETACHED(listener)) {
12620 		/*
12621 		 * If listener has closed, it would have caused a
12622 		 * a cleanup/blowoff to happen for the eager. We
12623 		 * just need to return.
12624 		 */
12625 		freemsg(mp);
12626 		return;
12627 	}
12628 
12629 
12630 	/*
12631 	 * if the conn_req_q is full defer passing up the
12632 	 * T_CONN_IND until space is availabe after t_accept()
12633 	 * processing
12634 	 */
12635 	mutex_enter(&listener->tcp_eager_lock);
12636 
12637 	/*
12638 	 * Take the eager out, if it is in the list of droppable eagers
12639 	 * as we are here because the 3W handshake is over.
12640 	 */
12641 	MAKE_UNDROPPABLE(tcp);
12642 
12643 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12644 		tcp_t *tail;
12645 
12646 		/*
12647 		 * The eager already has an extra ref put in tcp_rput_data
12648 		 * so that it stays till accept comes back even though it
12649 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12650 		 */
12651 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12652 		listener->tcp_conn_req_cnt_q0--;
12653 		listener->tcp_conn_req_cnt_q++;
12654 
12655 		/* Move from SYN_RCVD to ESTABLISHED list  */
12656 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12657 		    tcp->tcp_eager_prev_q0;
12658 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12659 		    tcp->tcp_eager_next_q0;
12660 		tcp->tcp_eager_prev_q0 = NULL;
12661 		tcp->tcp_eager_next_q0 = NULL;
12662 
12663 		/*
12664 		 * Insert at end of the queue because sockfs
12665 		 * sends down T_CONN_RES in chronological
12666 		 * order. Leaving the older conn indications
12667 		 * at front of the queue helps reducing search
12668 		 * time.
12669 		 */
12670 		tail = listener->tcp_eager_last_q;
12671 		if (tail != NULL)
12672 			tail->tcp_eager_next_q = tcp;
12673 		else
12674 			listener->tcp_eager_next_q = tcp;
12675 		listener->tcp_eager_last_q = tcp;
12676 		tcp->tcp_eager_next_q = NULL;
12677 		/*
12678 		 * Delay sending up the T_conn_ind until we are
12679 		 * done with the eager. Once we have have sent up
12680 		 * the T_conn_ind, the accept can potentially complete
12681 		 * any time and release the refhold we have on the eager.
12682 		 */
12683 		need_send_conn_ind = B_TRUE;
12684 	} else {
12685 		/*
12686 		 * Defer connection on q0 and set deferred
12687 		 * connection bit true
12688 		 */
12689 		tcp->tcp_conn_def_q0 = B_TRUE;
12690 
12691 		/* take tcp out of q0 ... */
12692 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12693 		    tcp->tcp_eager_next_q0;
12694 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12695 		    tcp->tcp_eager_prev_q0;
12696 
12697 		/* ... and place it at the end of q0 */
12698 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12699 		tcp->tcp_eager_next_q0 = listener;
12700 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12701 		listener->tcp_eager_prev_q0 = tcp;
12702 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12703 	}
12704 
12705 	/* we have timed out before */
12706 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12707 		tcp->tcp_syn_rcvd_timeout = 0;
12708 		listener->tcp_syn_rcvd_timeout--;
12709 		if (listener->tcp_syn_defense &&
12710 		    listener->tcp_syn_rcvd_timeout <=
12711 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12712 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12713 		    listener->tcp_last_rcv_lbolt)) {
12714 			/*
12715 			 * Turn off the defense mode if we
12716 			 * believe the SYN attack is over.
12717 			 */
12718 			listener->tcp_syn_defense = B_FALSE;
12719 			if (listener->tcp_ip_addr_cache) {
12720 				kmem_free((void *)listener->tcp_ip_addr_cache,
12721 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12722 				listener->tcp_ip_addr_cache = NULL;
12723 			}
12724 		}
12725 	}
12726 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12727 	if (addr_cache != NULL) {
12728 		/*
12729 		 * We have finished a 3-way handshake with this
12730 		 * remote host. This proves the IP addr is good.
12731 		 * Cache it!
12732 		 */
12733 		addr_cache[IP_ADDR_CACHE_HASH(
12734 		    tcp->tcp_remote)] = tcp->tcp_remote;
12735 	}
12736 	mutex_exit(&listener->tcp_eager_lock);
12737 	if (need_send_conn_ind)
12738 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
12739 }
12740 
12741 /*
12742  * Send the newconn notification to ulp. The eager is blown off if the
12743  * notification fails.
12744  */
12745 static void
12746 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
12747 {
12748 	if (IPCL_IS_NONSTR(lconnp)) {
12749 		cred_t	*cr;
12750 		pid_t	cpid;
12751 
12752 		cr = msg_getcred(mp, &cpid);
12753 
12754 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
12755 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
12756 		    lconnp->conn_tcp);
12757 
12758 		/* Keep the message around in case of a fallback to TPI */
12759 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
12760 
12761 		/*
12762 		 * Notify the ULP about the newconn. It is guaranteed that no
12763 		 * tcp_accept() call will be made for the eager if the
12764 		 * notification fails, so it's safe to blow it off in that
12765 		 * case.
12766 		 *
12767 		 * The upper handle will be assigned when tcp_accept() is
12768 		 * called.
12769 		 */
12770 		if ((*lconnp->conn_upcalls->su_newconn)
12771 		    (lconnp->conn_upper_handle,
12772 		    (sock_lower_handle_t)econnp,
12773 		    &sock_tcp_downcalls, cr, cpid,
12774 		    &econnp->conn_upcalls) == NULL) {
12775 			/* Failed to allocate a socket */
12776 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
12777 			    tcpEstabResets);
12778 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
12779 			    econnp->conn_tcp->tcp_conn_req_seqnum);
12780 		}
12781 	} else {
12782 		putnext(lconnp->conn_tcp->tcp_rq, mp);
12783 	}
12784 }
12785 
12786 mblk_t *
12787 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12788     uint_t *ifindexp, ip6_pkt_t *ippp)
12789 {
12790 	ip_pktinfo_t	*pinfo;
12791 	ip6_t		*ip6h;
12792 	uchar_t		*rptr;
12793 	mblk_t		*first_mp = mp;
12794 	boolean_t	mctl_present = B_FALSE;
12795 	uint_t 		ifindex = 0;
12796 	ip6_pkt_t	ipp;
12797 	uint_t		ipvers;
12798 	uint_t		ip_hdr_len;
12799 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12800 
12801 	rptr = mp->b_rptr;
12802 	ASSERT(OK_32PTR(rptr));
12803 	ASSERT(tcp != NULL);
12804 	ipp.ipp_fields = 0;
12805 
12806 	switch DB_TYPE(mp) {
12807 	case M_CTL:
12808 		mp = mp->b_cont;
12809 		if (mp == NULL) {
12810 			freemsg(first_mp);
12811 			return (NULL);
12812 		}
12813 		if (DB_TYPE(mp) != M_DATA) {
12814 			freemsg(first_mp);
12815 			return (NULL);
12816 		}
12817 		mctl_present = B_TRUE;
12818 		break;
12819 	case M_DATA:
12820 		break;
12821 	default:
12822 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12823 		freemsg(mp);
12824 		return (NULL);
12825 	}
12826 	ipvers = IPH_HDR_VERSION(rptr);
12827 	if (ipvers == IPV4_VERSION) {
12828 		if (tcp == NULL) {
12829 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12830 			goto done;
12831 		}
12832 
12833 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12834 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12835 
12836 		/*
12837 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12838 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12839 		 */
12840 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12841 		    mctl_present) {
12842 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12843 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12844 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12845 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12846 				ipp.ipp_fields |= IPPF_IFINDEX;
12847 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12848 				ifindex = pinfo->ip_pkt_ifindex;
12849 			}
12850 			freeb(first_mp);
12851 			mctl_present = B_FALSE;
12852 		}
12853 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12854 	} else {
12855 		ip6h = (ip6_t *)rptr;
12856 
12857 		ASSERT(ipvers == IPV6_VERSION);
12858 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12859 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12860 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12861 
12862 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12863 			uint8_t	nexthdrp;
12864 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12865 
12866 			/* Look for ifindex information */
12867 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12868 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12869 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12870 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12871 					freemsg(first_mp);
12872 					return (NULL);
12873 				}
12874 
12875 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12876 					ASSERT(ip6i->ip6i_ifindex != 0);
12877 					ipp.ipp_fields |= IPPF_IFINDEX;
12878 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12879 					ifindex = ip6i->ip6i_ifindex;
12880 				}
12881 				rptr = (uchar_t *)&ip6i[1];
12882 				mp->b_rptr = rptr;
12883 				if (rptr == mp->b_wptr) {
12884 					mblk_t *mp1;
12885 					mp1 = mp->b_cont;
12886 					freeb(mp);
12887 					mp = mp1;
12888 					rptr = mp->b_rptr;
12889 				}
12890 				if (MBLKL(mp) < IPV6_HDR_LEN +
12891 				    sizeof (tcph_t)) {
12892 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12893 					freemsg(first_mp);
12894 					return (NULL);
12895 				}
12896 				ip6h = (ip6_t *)rptr;
12897 			}
12898 
12899 			/*
12900 			 * Find any potentially interesting extension headers
12901 			 * as well as the length of the IPv6 + extension
12902 			 * headers.
12903 			 */
12904 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12905 			/* Verify if this is a TCP packet */
12906 			if (nexthdrp != IPPROTO_TCP) {
12907 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12908 				freemsg(first_mp);
12909 				return (NULL);
12910 			}
12911 		} else {
12912 			ip_hdr_len = IPV6_HDR_LEN;
12913 		}
12914 	}
12915 
12916 done:
12917 	if (ipversp != NULL)
12918 		*ipversp = ipvers;
12919 	if (ip_hdr_lenp != NULL)
12920 		*ip_hdr_lenp = ip_hdr_len;
12921 	if (ippp != NULL)
12922 		*ippp = ipp;
12923 	if (ifindexp != NULL)
12924 		*ifindexp = ifindex;
12925 	if (mctl_present) {
12926 		freeb(first_mp);
12927 	}
12928 	return (mp);
12929 }
12930 
12931 /*
12932  * Handle M_DATA messages from IP. Its called directly from IP via
12933  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12934  * in this path.
12935  *
12936  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12937  * v4 and v6), we are called through tcp_input() and a M_CTL can
12938  * be present for options but tcp_find_pktinfo() deals with it. We
12939  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12940  *
12941  * The first argument is always the connp/tcp to which the mp belongs.
12942  * There are no exceptions to this rule. The caller has already put
12943  * a reference on this connp/tcp and once tcp_rput_data() returns,
12944  * the squeue will do the refrele.
12945  *
12946  * The TH_SYN for the listener directly go to tcp_conn_request via
12947  * squeue.
12948  *
12949  * sqp: NULL = recursive, sqp != NULL means called from squeue
12950  */
12951 void
12952 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12953 {
12954 	int32_t		bytes_acked;
12955 	int32_t		gap;
12956 	mblk_t		*mp1;
12957 	uint_t		flags;
12958 	uint32_t	new_swnd = 0;
12959 	uchar_t		*iphdr;
12960 	uchar_t		*rptr;
12961 	int32_t		rgap;
12962 	uint32_t	seg_ack;
12963 	int		seg_len;
12964 	uint_t		ip_hdr_len;
12965 	uint32_t	seg_seq;
12966 	tcph_t		*tcph;
12967 	int		urp;
12968 	tcp_opt_t	tcpopt;
12969 	uint_t		ipvers;
12970 	ip6_pkt_t	ipp;
12971 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12972 	uint32_t	cwnd;
12973 	uint32_t	add;
12974 	int		npkt;
12975 	int		mss;
12976 	conn_t		*connp = (conn_t *)arg;
12977 	squeue_t	*sqp = (squeue_t *)arg2;
12978 	tcp_t		*tcp = connp->conn_tcp;
12979 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12980 
12981 	/*
12982 	 * RST from fused tcp loopback peer should trigger an unfuse.
12983 	 */
12984 	if (tcp->tcp_fused) {
12985 		TCP_STAT(tcps, tcp_fusion_aborted);
12986 		tcp_unfuse(tcp);
12987 	}
12988 
12989 	iphdr = mp->b_rptr;
12990 	rptr = mp->b_rptr;
12991 	ASSERT(OK_32PTR(rptr));
12992 
12993 	/*
12994 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12995 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12996 	 * necessary information.
12997 	 */
12998 	if (IPCL_IS_TCP4(connp)) {
12999 		ipvers = IPV4_VERSION;
13000 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
13001 	} else {
13002 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
13003 		    NULL, &ipp);
13004 		if (mp == NULL) {
13005 			TCP_STAT(tcps, tcp_rput_v6_error);
13006 			return;
13007 		}
13008 		iphdr = mp->b_rptr;
13009 		rptr = mp->b_rptr;
13010 	}
13011 	ASSERT(DB_TYPE(mp) == M_DATA);
13012 	ASSERT(mp->b_next == NULL);
13013 
13014 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13015 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13016 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13017 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13018 	seg_len = (int)(mp->b_wptr - rptr) -
13019 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13020 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13021 		do {
13022 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13023 			    (uintptr_t)INT_MAX);
13024 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13025 		} while ((mp1 = mp1->b_cont) != NULL &&
13026 		    mp1->b_datap->db_type == M_DATA);
13027 	}
13028 
13029 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13030 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13031 		    seg_len, tcph);
13032 		return;
13033 	}
13034 
13035 	if (sqp != NULL) {
13036 		/*
13037 		 * This is the correct place to update tcp_last_recv_time. Note
13038 		 * that it is also updated for tcp structure that belongs to
13039 		 * global and listener queues which do not really need updating.
13040 		 * But that should not cause any harm.  And it is updated for
13041 		 * all kinds of incoming segments, not only for data segments.
13042 		 */
13043 		tcp->tcp_last_recv_time = lbolt;
13044 	}
13045 
13046 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13047 
13048 	BUMP_LOCAL(tcp->tcp_ibsegs);
13049 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13050 
13051 	if ((flags & TH_URG) && sqp != NULL) {
13052 		/*
13053 		 * TCP can't handle urgent pointers that arrive before
13054 		 * the connection has been accept()ed since it can't
13055 		 * buffer OOB data.  Discard segment if this happens.
13056 		 *
13057 		 * We can't just rely on a non-null tcp_listener to indicate
13058 		 * that the accept() has completed since unlinking of the
13059 		 * eager and completion of the accept are not atomic.
13060 		 * tcp_detached, when it is not set (B_FALSE) indicates
13061 		 * that the accept() has completed.
13062 		 *
13063 		 * Nor can it reassemble urgent pointers, so discard
13064 		 * if it's not the next segment expected.
13065 		 *
13066 		 * Otherwise, collapse chain into one mblk (discard if
13067 		 * that fails).  This makes sure the headers, retransmitted
13068 		 * data, and new data all are in the same mblk.
13069 		 */
13070 		ASSERT(mp != NULL);
13071 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
13072 			freemsg(mp);
13073 			return;
13074 		}
13075 		/* Update pointers into message */
13076 		iphdr = rptr = mp->b_rptr;
13077 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13078 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13079 			/*
13080 			 * Since we can't handle any data with this urgent
13081 			 * pointer that is out of sequence, we expunge
13082 			 * the data.  This allows us to still register
13083 			 * the urgent mark and generate the M_PCSIG,
13084 			 * which we can do.
13085 			 */
13086 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13087 			seg_len = 0;
13088 		}
13089 	}
13090 
13091 	switch (tcp->tcp_state) {
13092 	case TCPS_SYN_SENT:
13093 		if (flags & TH_ACK) {
13094 			/*
13095 			 * Note that our stack cannot send data before a
13096 			 * connection is established, therefore the
13097 			 * following check is valid.  Otherwise, it has
13098 			 * to be changed.
13099 			 */
13100 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13101 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13102 				freemsg(mp);
13103 				if (flags & TH_RST)
13104 					return;
13105 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13106 				    tcp, seg_ack, 0, TH_RST);
13107 				return;
13108 			}
13109 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13110 		}
13111 		if (flags & TH_RST) {
13112 			freemsg(mp);
13113 			if (flags & TH_ACK)
13114 				(void) tcp_clean_death(tcp,
13115 				    ECONNREFUSED, 13);
13116 			return;
13117 		}
13118 		if (!(flags & TH_SYN)) {
13119 			freemsg(mp);
13120 			return;
13121 		}
13122 
13123 		/* Process all TCP options. */
13124 		tcp_process_options(tcp, tcph);
13125 		/*
13126 		 * The following changes our rwnd to be a multiple of the
13127 		 * MIN(peer MSS, our MSS) for performance reason.
13128 		 */
13129 		(void) tcp_rwnd_set(tcp,
13130 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
13131 
13132 		/* Is the other end ECN capable? */
13133 		if (tcp->tcp_ecn_ok) {
13134 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13135 				tcp->tcp_ecn_ok = B_FALSE;
13136 			}
13137 		}
13138 		/*
13139 		 * Clear ECN flags because it may interfere with later
13140 		 * processing.
13141 		 */
13142 		flags &= ~(TH_ECE|TH_CWR);
13143 
13144 		tcp->tcp_irs = seg_seq;
13145 		tcp->tcp_rack = seg_seq;
13146 		tcp->tcp_rnxt = seg_seq + 1;
13147 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13148 		if (!TCP_IS_DETACHED(tcp)) {
13149 			/* Allocate room for SACK options if needed. */
13150 			if (tcp->tcp_snd_sack_ok) {
13151 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13152 				    tcp->tcp_hdr_len +
13153 				    TCPOPT_MAX_SACK_LEN +
13154 				    (tcp->tcp_loopback ? 0 :
13155 				    tcps->tcps_wroff_xtra));
13156 			} else {
13157 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
13158 				    tcp->tcp_hdr_len +
13159 				    (tcp->tcp_loopback ? 0 :
13160 				    tcps->tcps_wroff_xtra));
13161 			}
13162 		}
13163 		if (flags & TH_ACK) {
13164 			/*
13165 			 * If we can't get the confirmation upstream, pretend
13166 			 * we didn't even see this one.
13167 			 *
13168 			 * XXX: how can we pretend we didn't see it if we
13169 			 * have updated rnxt et. al.
13170 			 *
13171 			 * For loopback we defer sending up the T_CONN_CON
13172 			 * until after some checks below.
13173 			 */
13174 			mp1 = NULL;
13175 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13176 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13177 				freemsg(mp);
13178 				return;
13179 			}
13180 			/* SYN was acked - making progress */
13181 			if (tcp->tcp_ipversion == IPV6_VERSION)
13182 				tcp->tcp_ip_forward_progress = B_TRUE;
13183 
13184 			/* One for the SYN */
13185 			tcp->tcp_suna = tcp->tcp_iss + 1;
13186 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13187 			tcp->tcp_state = TCPS_ESTABLISHED;
13188 
13189 			/*
13190 			 * If SYN was retransmitted, need to reset all
13191 			 * retransmission info.  This is because this
13192 			 * segment will be treated as a dup ACK.
13193 			 */
13194 			if (tcp->tcp_rexmit) {
13195 				tcp->tcp_rexmit = B_FALSE;
13196 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13197 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13198 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13199 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13200 				tcp->tcp_ms_we_have_waited = 0;
13201 
13202 				/*
13203 				 * Set tcp_cwnd back to 1 MSS, per
13204 				 * recommendation from
13205 				 * draft-floyd-incr-init-win-01.txt,
13206 				 * Increasing TCP's Initial Window.
13207 				 */
13208 				tcp->tcp_cwnd = tcp->tcp_mss;
13209 			}
13210 
13211 			tcp->tcp_swl1 = seg_seq;
13212 			tcp->tcp_swl2 = seg_ack;
13213 
13214 			new_swnd = BE16_TO_U16(tcph->th_win);
13215 			tcp->tcp_swnd = new_swnd;
13216 			if (new_swnd > tcp->tcp_max_swnd)
13217 				tcp->tcp_max_swnd = new_swnd;
13218 
13219 			/*
13220 			 * Always send the three-way handshake ack immediately
13221 			 * in order to make the connection complete as soon as
13222 			 * possible on the accepting host.
13223 			 */
13224 			flags |= TH_ACK_NEEDED;
13225 
13226 			/*
13227 			 * Special case for loopback.  At this point we have
13228 			 * received SYN-ACK from the remote endpoint.  In
13229 			 * order to ensure that both endpoints reach the
13230 			 * fused state prior to any data exchange, the final
13231 			 * ACK needs to be sent before we indicate T_CONN_CON
13232 			 * to the module upstream.
13233 			 */
13234 			if (tcp->tcp_loopback) {
13235 				mblk_t *ack_mp;
13236 
13237 				ASSERT(!tcp->tcp_unfusable);
13238 				ASSERT(mp1 != NULL);
13239 				/*
13240 				 * For loopback, we always get a pure SYN-ACK
13241 				 * and only need to send back the final ACK
13242 				 * with no data (this is because the other
13243 				 * tcp is ours and we don't do T/TCP).  This
13244 				 * final ACK triggers the passive side to
13245 				 * perform fusion in ESTABLISHED state.
13246 				 */
13247 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13248 					if (tcp->tcp_ack_tid != 0) {
13249 						(void) TCP_TIMER_CANCEL(tcp,
13250 						    tcp->tcp_ack_tid);
13251 						tcp->tcp_ack_tid = 0;
13252 					}
13253 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13254 					BUMP_LOCAL(tcp->tcp_obsegs);
13255 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13256 
13257 					if (!IPCL_IS_NONSTR(connp)) {
13258 						/* Send up T_CONN_CON */
13259 						putnext(tcp->tcp_rq, mp1);
13260 					} else {
13261 						cred_t	*cr;
13262 						pid_t	cpid;
13263 
13264 						cr = msg_getcred(mp1, &cpid);
13265 						(*connp->conn_upcalls->
13266 						    su_connected)
13267 						    (connp->conn_upper_handle,
13268 						    tcp->tcp_connid, cr, cpid);
13269 						freemsg(mp1);
13270 					}
13271 
13272 					freemsg(mp);
13273 					return;
13274 				}
13275 				/*
13276 				 * Forget fusion; we need to handle more
13277 				 * complex cases below.  Send the deferred
13278 				 * T_CONN_CON message upstream and proceed
13279 				 * as usual.  Mark this tcp as not capable
13280 				 * of fusion.
13281 				 */
13282 				TCP_STAT(tcps, tcp_fusion_unfusable);
13283 				tcp->tcp_unfusable = B_TRUE;
13284 				if (!IPCL_IS_NONSTR(connp)) {
13285 					putnext(tcp->tcp_rq, mp1);
13286 				} else {
13287 					cred_t	*cr;
13288 					pid_t	cpid;
13289 
13290 					cr = msg_getcred(mp1, &cpid);
13291 					(*connp->conn_upcalls->su_connected)
13292 					    (connp->conn_upper_handle,
13293 					    tcp->tcp_connid, cr, cpid);
13294 					freemsg(mp1);
13295 				}
13296 			}
13297 
13298 			/*
13299 			 * Check to see if there is data to be sent.  If
13300 			 * yes, set the transmit flag.  Then check to see
13301 			 * if received data processing needs to be done.
13302 			 * If not, go straight to xmit_check.  This short
13303 			 * cut is OK as we don't support T/TCP.
13304 			 */
13305 			if (tcp->tcp_unsent)
13306 				flags |= TH_XMIT_NEEDED;
13307 
13308 			if (seg_len == 0 && !(flags & TH_URG)) {
13309 				freemsg(mp);
13310 				goto xmit_check;
13311 			}
13312 
13313 			flags &= ~TH_SYN;
13314 			seg_seq++;
13315 			break;
13316 		}
13317 		tcp->tcp_state = TCPS_SYN_RCVD;
13318 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13319 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13320 		if (mp1) {
13321 			/*
13322 			 * See comment in tcp_conn_request() for why we use
13323 			 * the open() time pid here.
13324 			 */
13325 			DB_CPID(mp1) = tcp->tcp_cpid;
13326 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13327 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13328 		}
13329 		freemsg(mp);
13330 		return;
13331 	case TCPS_SYN_RCVD:
13332 		if (flags & TH_ACK) {
13333 			/*
13334 			 * In this state, a SYN|ACK packet is either bogus
13335 			 * because the other side must be ACKing our SYN which
13336 			 * indicates it has seen the ACK for their SYN and
13337 			 * shouldn't retransmit it or we're crossing SYNs
13338 			 * on active open.
13339 			 */
13340 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13341 				freemsg(mp);
13342 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13343 				    tcp, seg_ack, 0, TH_RST);
13344 				return;
13345 			}
13346 			/*
13347 			 * NOTE: RFC 793 pg. 72 says this should be
13348 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13349 			 * but that would mean we have an ack that ignored
13350 			 * our SYN.
13351 			 */
13352 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13353 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13354 				freemsg(mp);
13355 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13356 				    tcp, seg_ack, 0, TH_RST);
13357 				return;
13358 			}
13359 		}
13360 		break;
13361 	case TCPS_LISTEN:
13362 		/*
13363 		 * Only a TLI listener can come through this path when a
13364 		 * acceptor is going back to be a listener and a packet
13365 		 * for the acceptor hits the classifier. For a socket
13366 		 * listener, this can never happen because a listener
13367 		 * can never accept connection on itself and hence a
13368 		 * socket acceptor can not go back to being a listener.
13369 		 */
13370 		ASSERT(!TCP_IS_SOCKET(tcp));
13371 		/*FALLTHRU*/
13372 	case TCPS_CLOSED:
13373 	case TCPS_BOUND: {
13374 		conn_t	*new_connp;
13375 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13376 
13377 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13378 		if (new_connp != NULL) {
13379 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13380 			return;
13381 		}
13382 		/* We failed to classify. For now just drop the packet */
13383 		freemsg(mp);
13384 		return;
13385 	}
13386 	case TCPS_IDLE:
13387 		/*
13388 		 * Handle the case where the tcp_clean_death() has happened
13389 		 * on a connection (application hasn't closed yet) but a packet
13390 		 * was already queued on squeue before tcp_clean_death()
13391 		 * was processed. Calling tcp_clean_death() twice on same
13392 		 * connection can result in weird behaviour.
13393 		 */
13394 		freemsg(mp);
13395 		return;
13396 	default:
13397 		break;
13398 	}
13399 
13400 	/*
13401 	 * Already on the correct queue/perimeter.
13402 	 * If this is a detached connection and not an eager
13403 	 * connection hanging off a listener then new data
13404 	 * (past the FIN) will cause a reset.
13405 	 * We do a special check here where it
13406 	 * is out of the main line, rather than check
13407 	 * if we are detached every time we see new
13408 	 * data down below.
13409 	 */
13410 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13411 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13412 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13413 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13414 
13415 		freemsg(mp);
13416 		/*
13417 		 * This could be an SSL closure alert. We're detached so just
13418 		 * acknowledge it this last time.
13419 		 */
13420 		if (tcp->tcp_kssl_ctx != NULL) {
13421 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13422 			tcp->tcp_kssl_ctx = NULL;
13423 
13424 			tcp->tcp_rnxt += seg_len;
13425 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13426 			flags |= TH_ACK_NEEDED;
13427 			goto ack_check;
13428 		}
13429 
13430 		tcp_xmit_ctl("new data when detached", tcp,
13431 		    tcp->tcp_snxt, 0, TH_RST);
13432 		(void) tcp_clean_death(tcp, EPROTO, 12);
13433 		return;
13434 	}
13435 
13436 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13437 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13438 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13439 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13440 
13441 	if (tcp->tcp_snd_ts_ok) {
13442 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13443 			/*
13444 			 * This segment is not acceptable.
13445 			 * Drop it and send back an ACK.
13446 			 */
13447 			freemsg(mp);
13448 			flags |= TH_ACK_NEEDED;
13449 			goto ack_check;
13450 		}
13451 	} else if (tcp->tcp_snd_sack_ok) {
13452 		ASSERT(tcp->tcp_sack_info != NULL);
13453 		tcpopt.tcp = tcp;
13454 		/*
13455 		 * SACK info in already updated in tcp_parse_options.  Ignore
13456 		 * all other TCP options...
13457 		 */
13458 		(void) tcp_parse_options(tcph, &tcpopt);
13459 	}
13460 try_again:;
13461 	mss = tcp->tcp_mss;
13462 	gap = seg_seq - tcp->tcp_rnxt;
13463 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13464 	/*
13465 	 * gap is the amount of sequence space between what we expect to see
13466 	 * and what we got for seg_seq.  A positive value for gap means
13467 	 * something got lost.  A negative value means we got some old stuff.
13468 	 */
13469 	if (gap < 0) {
13470 		/* Old stuff present.  Is the SYN in there? */
13471 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13472 		    (seg_len != 0)) {
13473 			flags &= ~TH_SYN;
13474 			seg_seq++;
13475 			urp--;
13476 			/* Recompute the gaps after noting the SYN. */
13477 			goto try_again;
13478 		}
13479 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13480 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13481 		    (seg_len > -gap ? -gap : seg_len));
13482 		/* Remove the old stuff from seg_len. */
13483 		seg_len += gap;
13484 		/*
13485 		 * Anything left?
13486 		 * Make sure to check for unack'd FIN when rest of data
13487 		 * has been previously ack'd.
13488 		 */
13489 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13490 			/*
13491 			 * Resets are only valid if they lie within our offered
13492 			 * window.  If the RST bit is set, we just ignore this
13493 			 * segment.
13494 			 */
13495 			if (flags & TH_RST) {
13496 				freemsg(mp);
13497 				return;
13498 			}
13499 
13500 			/*
13501 			 * The arriving of dup data packets indicate that we
13502 			 * may have postponed an ack for too long, or the other
13503 			 * side's RTT estimate is out of shape. Start acking
13504 			 * more often.
13505 			 */
13506 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13507 			    tcp->tcp_rack_cnt >= 1 &&
13508 			    tcp->tcp_rack_abs_max > 2) {
13509 				tcp->tcp_rack_abs_max--;
13510 			}
13511 			tcp->tcp_rack_cur_max = 1;
13512 
13513 			/*
13514 			 * This segment is "unacceptable".  None of its
13515 			 * sequence space lies within our advertized window.
13516 			 *
13517 			 * Adjust seg_len to the original value for tracing.
13518 			 */
13519 			seg_len -= gap;
13520 			if (tcp->tcp_debug) {
13521 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13522 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13523 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13524 				    "seg_len %d, rnxt %u, snxt %u, %s",
13525 				    gap, rgap, flags, seg_seq, seg_ack,
13526 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13527 				    tcp_display(tcp, NULL,
13528 				    DISP_ADDR_AND_PORT));
13529 			}
13530 
13531 			/*
13532 			 * Arrange to send an ACK in response to the
13533 			 * unacceptable segment per RFC 793 page 69. There
13534 			 * is only one small difference between ours and the
13535 			 * acceptability test in the RFC - we accept ACK-only
13536 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13537 			 * will be generated.
13538 			 *
13539 			 * Note that we have to ACK an ACK-only packet at least
13540 			 * for stacks that send 0-length keep-alives with
13541 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13542 			 * section 4.2.3.6. As long as we don't ever generate
13543 			 * an unacceptable packet in response to an incoming
13544 			 * packet that is unacceptable, it should not cause
13545 			 * "ACK wars".
13546 			 */
13547 			flags |=  TH_ACK_NEEDED;
13548 
13549 			/*
13550 			 * Continue processing this segment in order to use the
13551 			 * ACK information it contains, but skip all other
13552 			 * sequence-number processing.	Processing the ACK
13553 			 * information is necessary in order to
13554 			 * re-synchronize connections that may have lost
13555 			 * synchronization.
13556 			 *
13557 			 * We clear seg_len and flag fields related to
13558 			 * sequence number processing as they are not
13559 			 * to be trusted for an unacceptable segment.
13560 			 */
13561 			seg_len = 0;
13562 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13563 			goto process_ack;
13564 		}
13565 
13566 		/* Fix seg_seq, and chew the gap off the front. */
13567 		seg_seq = tcp->tcp_rnxt;
13568 		urp += gap;
13569 		do {
13570 			mblk_t	*mp2;
13571 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13572 			    (uintptr_t)UINT_MAX);
13573 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13574 			if (gap > 0) {
13575 				mp->b_rptr = mp->b_wptr - gap;
13576 				break;
13577 			}
13578 			mp2 = mp;
13579 			mp = mp->b_cont;
13580 			freeb(mp2);
13581 		} while (gap < 0);
13582 		/*
13583 		 * If the urgent data has already been acknowledged, we
13584 		 * should ignore TH_URG below
13585 		 */
13586 		if (urp < 0)
13587 			flags &= ~TH_URG;
13588 	}
13589 	/*
13590 	 * rgap is the amount of stuff received out of window.  A negative
13591 	 * value is the amount out of window.
13592 	 */
13593 	if (rgap < 0) {
13594 		mblk_t	*mp2;
13595 
13596 		if (tcp->tcp_rwnd == 0) {
13597 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13598 		} else {
13599 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13600 			UPDATE_MIB(&tcps->tcps_mib,
13601 			    tcpInDataPastWinBytes, -rgap);
13602 		}
13603 
13604 		/*
13605 		 * seg_len does not include the FIN, so if more than
13606 		 * just the FIN is out of window, we act like we don't
13607 		 * see it.  (If just the FIN is out of window, rgap
13608 		 * will be zero and we will go ahead and acknowledge
13609 		 * the FIN.)
13610 		 */
13611 		flags &= ~TH_FIN;
13612 
13613 		/* Fix seg_len and make sure there is something left. */
13614 		seg_len += rgap;
13615 		if (seg_len <= 0) {
13616 			/*
13617 			 * Resets are only valid if they lie within our offered
13618 			 * window.  If the RST bit is set, we just ignore this
13619 			 * segment.
13620 			 */
13621 			if (flags & TH_RST) {
13622 				freemsg(mp);
13623 				return;
13624 			}
13625 
13626 			/* Per RFC 793, we need to send back an ACK. */
13627 			flags |= TH_ACK_NEEDED;
13628 
13629 			/*
13630 			 * Send SIGURG as soon as possible i.e. even
13631 			 * if the TH_URG was delivered in a window probe
13632 			 * packet (which will be unacceptable).
13633 			 *
13634 			 * We generate a signal if none has been generated
13635 			 * for this connection or if this is a new urgent
13636 			 * byte. Also send a zero-length "unmarked" message
13637 			 * to inform SIOCATMARK that this is not the mark.
13638 			 *
13639 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13640 			 * is sent up. This plus the check for old data
13641 			 * (gap >= 0) handles the wraparound of the sequence
13642 			 * number space without having to always track the
13643 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13644 			 * this max in its rcv_up variable).
13645 			 *
13646 			 * This prevents duplicate SIGURGS due to a "late"
13647 			 * zero-window probe when the T_EXDATA_IND has already
13648 			 * been sent up.
13649 			 */
13650 			if ((flags & TH_URG) &&
13651 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13652 			    tcp->tcp_urp_last))) {
13653 				if (IPCL_IS_NONSTR(connp)) {
13654 					if (!TCP_IS_DETACHED(tcp)) {
13655 						(*connp->conn_upcalls->
13656 						    su_signal_oob)
13657 						    (connp->conn_upper_handle,
13658 						    urp);
13659 					}
13660 				} else {
13661 					mp1 = allocb(0, BPRI_MED);
13662 					if (mp1 == NULL) {
13663 						freemsg(mp);
13664 						return;
13665 					}
13666 					if (!TCP_IS_DETACHED(tcp) &&
13667 					    !putnextctl1(tcp->tcp_rq,
13668 					    M_PCSIG, SIGURG)) {
13669 						/* Try again on the rexmit. */
13670 						freemsg(mp1);
13671 						freemsg(mp);
13672 						return;
13673 					}
13674 					/*
13675 					 * If the next byte would be the mark
13676 					 * then mark with MARKNEXT else mark
13677 					 * with NOTMARKNEXT.
13678 					 */
13679 					if (gap == 0 && urp == 0)
13680 						mp1->b_flag |= MSGMARKNEXT;
13681 					else
13682 						mp1->b_flag |= MSGNOTMARKNEXT;
13683 					freemsg(tcp->tcp_urp_mark_mp);
13684 					tcp->tcp_urp_mark_mp = mp1;
13685 					flags |= TH_SEND_URP_MARK;
13686 				}
13687 				tcp->tcp_urp_last_valid = B_TRUE;
13688 				tcp->tcp_urp_last = urp + seg_seq;
13689 			}
13690 			/*
13691 			 * If this is a zero window probe, continue to
13692 			 * process the ACK part.  But we need to set seg_len
13693 			 * to 0 to avoid data processing.  Otherwise just
13694 			 * drop the segment and send back an ACK.
13695 			 */
13696 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13697 				flags &= ~(TH_SYN | TH_URG);
13698 				seg_len = 0;
13699 				goto process_ack;
13700 			} else {
13701 				freemsg(mp);
13702 				goto ack_check;
13703 			}
13704 		}
13705 		/* Pitch out of window stuff off the end. */
13706 		rgap = seg_len;
13707 		mp2 = mp;
13708 		do {
13709 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13710 			    (uintptr_t)INT_MAX);
13711 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13712 			if (rgap < 0) {
13713 				mp2->b_wptr += rgap;
13714 				if ((mp1 = mp2->b_cont) != NULL) {
13715 					mp2->b_cont = NULL;
13716 					freemsg(mp1);
13717 				}
13718 				break;
13719 			}
13720 		} while ((mp2 = mp2->b_cont) != NULL);
13721 	}
13722 ok:;
13723 	/*
13724 	 * TCP should check ECN info for segments inside the window only.
13725 	 * Therefore the check should be done here.
13726 	 */
13727 	if (tcp->tcp_ecn_ok) {
13728 		if (flags & TH_CWR) {
13729 			tcp->tcp_ecn_echo_on = B_FALSE;
13730 		}
13731 		/*
13732 		 * Note that both ECN_CE and CWR can be set in the
13733 		 * same segment.  In this case, we once again turn
13734 		 * on ECN_ECHO.
13735 		 */
13736 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13737 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13738 
13739 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13740 				tcp->tcp_ecn_echo_on = B_TRUE;
13741 			}
13742 		} else {
13743 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13744 
13745 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13746 			    htonl(IPH_ECN_CE << 20)) {
13747 				tcp->tcp_ecn_echo_on = B_TRUE;
13748 			}
13749 		}
13750 	}
13751 
13752 	/*
13753 	 * Check whether we can update tcp_ts_recent.  This test is
13754 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13755 	 * Extensions for High Performance: An Update", Internet Draft.
13756 	 */
13757 	if (tcp->tcp_snd_ts_ok &&
13758 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13759 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13760 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13761 		tcp->tcp_last_rcv_lbolt = lbolt64;
13762 	}
13763 
13764 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13765 		/*
13766 		 * FIN in an out of order segment.  We record this in
13767 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13768 		 * Clear the FIN so that any check on FIN flag will fail.
13769 		 * Remember that FIN also counts in the sequence number
13770 		 * space.  So we need to ack out of order FIN only segments.
13771 		 */
13772 		if (flags & TH_FIN) {
13773 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13774 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13775 			flags &= ~TH_FIN;
13776 			flags |= TH_ACK_NEEDED;
13777 		}
13778 		if (seg_len > 0) {
13779 			/* Fill in the SACK blk list. */
13780 			if (tcp->tcp_snd_sack_ok) {
13781 				ASSERT(tcp->tcp_sack_info != NULL);
13782 				tcp_sack_insert(tcp->tcp_sack_list,
13783 				    seg_seq, seg_seq + seg_len,
13784 				    &(tcp->tcp_num_sack_blk));
13785 			}
13786 
13787 			/*
13788 			 * Attempt reassembly and see if we have something
13789 			 * ready to go.
13790 			 */
13791 			mp = tcp_reass(tcp, mp, seg_seq);
13792 			/* Always ack out of order packets */
13793 			flags |= TH_ACK_NEEDED | TH_PUSH;
13794 			if (mp) {
13795 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13796 				    (uintptr_t)INT_MAX);
13797 				seg_len = mp->b_cont ? msgdsize(mp) :
13798 				    (int)(mp->b_wptr - mp->b_rptr);
13799 				seg_seq = tcp->tcp_rnxt;
13800 				/*
13801 				 * A gap is filled and the seq num and len
13802 				 * of the gap match that of a previously
13803 				 * received FIN, put the FIN flag back in.
13804 				 */
13805 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13806 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13807 					flags |= TH_FIN;
13808 					tcp->tcp_valid_bits &=
13809 					    ~TCP_OFO_FIN_VALID;
13810 				}
13811 			} else {
13812 				/*
13813 				 * Keep going even with NULL mp.
13814 				 * There may be a useful ACK or something else
13815 				 * we don't want to miss.
13816 				 *
13817 				 * But TCP should not perform fast retransmit
13818 				 * because of the ack number.  TCP uses
13819 				 * seg_len == 0 to determine if it is a pure
13820 				 * ACK.  And this is not a pure ACK.
13821 				 */
13822 				seg_len = 0;
13823 				ofo_seg = B_TRUE;
13824 			}
13825 		}
13826 	} else if (seg_len > 0) {
13827 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13828 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13829 		/*
13830 		 * If an out of order FIN was received before, and the seq
13831 		 * num and len of the new segment match that of the FIN,
13832 		 * put the FIN flag back in.
13833 		 */
13834 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13835 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13836 			flags |= TH_FIN;
13837 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13838 		}
13839 	}
13840 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13841 	if (flags & TH_RST) {
13842 		freemsg(mp);
13843 		switch (tcp->tcp_state) {
13844 		case TCPS_SYN_RCVD:
13845 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13846 			break;
13847 		case TCPS_ESTABLISHED:
13848 		case TCPS_FIN_WAIT_1:
13849 		case TCPS_FIN_WAIT_2:
13850 		case TCPS_CLOSE_WAIT:
13851 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13852 			break;
13853 		case TCPS_CLOSING:
13854 		case TCPS_LAST_ACK:
13855 			(void) tcp_clean_death(tcp, 0, 16);
13856 			break;
13857 		default:
13858 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13859 			(void) tcp_clean_death(tcp, ENXIO, 17);
13860 			break;
13861 		}
13862 		return;
13863 	}
13864 	if (flags & TH_SYN) {
13865 		/*
13866 		 * See RFC 793, Page 71
13867 		 *
13868 		 * The seq number must be in the window as it should
13869 		 * be "fixed" above.  If it is outside window, it should
13870 		 * be already rejected.  Note that we allow seg_seq to be
13871 		 * rnxt + rwnd because we want to accept 0 window probe.
13872 		 */
13873 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13874 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13875 		freemsg(mp);
13876 		/*
13877 		 * If the ACK flag is not set, just use our snxt as the
13878 		 * seq number of the RST segment.
13879 		 */
13880 		if (!(flags & TH_ACK)) {
13881 			seg_ack = tcp->tcp_snxt;
13882 		}
13883 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13884 		    TH_RST|TH_ACK);
13885 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13886 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13887 		return;
13888 	}
13889 	/*
13890 	 * urp could be -1 when the urp field in the packet is 0
13891 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13892 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13893 	 */
13894 	if (flags & TH_URG && urp >= 0) {
13895 		if (!tcp->tcp_urp_last_valid ||
13896 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13897 			if (IPCL_IS_NONSTR(connp)) {
13898 				if (!TCP_IS_DETACHED(tcp)) {
13899 					(*connp->conn_upcalls->su_signal_oob)
13900 					    (connp->conn_upper_handle, urp);
13901 				}
13902 			} else {
13903 				/*
13904 				 * If we haven't generated the signal yet for
13905 				 * this urgent pointer value, do it now.  Also,
13906 				 * send up a zero-length M_DATA indicating
13907 				 * whether or not this is the mark. The latter
13908 				 * is not needed when a T_EXDATA_IND is sent up.
13909 				 * However, if there are allocation failures
13910 				 * this code relies on the sender retransmitting
13911 				 * and the socket code for determining the mark
13912 				 * should not block waiting for the peer to
13913 				 * transmit. Thus, for simplicity we always
13914 				 * send up the mark indication.
13915 				 */
13916 				mp1 = allocb(0, BPRI_MED);
13917 				if (mp1 == NULL) {
13918 					freemsg(mp);
13919 					return;
13920 				}
13921 				if (!TCP_IS_DETACHED(tcp) &&
13922 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13923 				    SIGURG)) {
13924 					/* Try again on the rexmit. */
13925 					freemsg(mp1);
13926 					freemsg(mp);
13927 					return;
13928 				}
13929 				/*
13930 				 * Mark with NOTMARKNEXT for now.
13931 				 * The code below will change this to MARKNEXT
13932 				 * if we are at the mark.
13933 				 *
13934 				 * If there are allocation failures (e.g. in
13935 				 * dupmsg below) the next time tcp_rput_data
13936 				 * sees the urgent segment it will send up the
13937 				 * MSGMARKNEXT message.
13938 				 */
13939 				mp1->b_flag |= MSGNOTMARKNEXT;
13940 				freemsg(tcp->tcp_urp_mark_mp);
13941 				tcp->tcp_urp_mark_mp = mp1;
13942 				flags |= TH_SEND_URP_MARK;
13943 #ifdef DEBUG
13944 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13945 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13946 				    "last %x, %s",
13947 				    seg_seq, urp, tcp->tcp_urp_last,
13948 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13949 #endif /* DEBUG */
13950 			}
13951 			tcp->tcp_urp_last_valid = B_TRUE;
13952 			tcp->tcp_urp_last = urp + seg_seq;
13953 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13954 			/*
13955 			 * An allocation failure prevented the previous
13956 			 * tcp_rput_data from sending up the allocated
13957 			 * MSG*MARKNEXT message - send it up this time
13958 			 * around.
13959 			 */
13960 			flags |= TH_SEND_URP_MARK;
13961 		}
13962 
13963 		/*
13964 		 * If the urgent byte is in this segment, make sure that it is
13965 		 * all by itself.  This makes it much easier to deal with the
13966 		 * possibility of an allocation failure on the T_exdata_ind.
13967 		 * Note that seg_len is the number of bytes in the segment, and
13968 		 * urp is the offset into the segment of the urgent byte.
13969 		 * urp < seg_len means that the urgent byte is in this segment.
13970 		 */
13971 		if (urp < seg_len) {
13972 			if (seg_len != 1) {
13973 				uint32_t  tmp_rnxt;
13974 				/*
13975 				 * Break it up and feed it back in.
13976 				 * Re-attach the IP header.
13977 				 */
13978 				mp->b_rptr = iphdr;
13979 				if (urp > 0) {
13980 					/*
13981 					 * There is stuff before the urgent
13982 					 * byte.
13983 					 */
13984 					mp1 = dupmsg(mp);
13985 					if (!mp1) {
13986 						/*
13987 						 * Trim from urgent byte on.
13988 						 * The rest will come back.
13989 						 */
13990 						(void) adjmsg(mp,
13991 						    urp - seg_len);
13992 						tcp_rput_data(connp,
13993 						    mp, NULL);
13994 						return;
13995 					}
13996 					(void) adjmsg(mp1, urp - seg_len);
13997 					/* Feed this piece back in. */
13998 					tmp_rnxt = tcp->tcp_rnxt;
13999 					tcp_rput_data(connp, mp1, NULL);
14000 					/*
14001 					 * If the data passed back in was not
14002 					 * processed (ie: bad ACK) sending
14003 					 * the remainder back in will cause a
14004 					 * loop. In this case, drop the
14005 					 * packet and let the sender try
14006 					 * sending a good packet.
14007 					 */
14008 					if (tmp_rnxt == tcp->tcp_rnxt) {
14009 						freemsg(mp);
14010 						return;
14011 					}
14012 				}
14013 				if (urp != seg_len - 1) {
14014 					uint32_t  tmp_rnxt;
14015 					/*
14016 					 * There is stuff after the urgent
14017 					 * byte.
14018 					 */
14019 					mp1 = dupmsg(mp);
14020 					if (!mp1) {
14021 						/*
14022 						 * Trim everything beyond the
14023 						 * urgent byte.  The rest will
14024 						 * come back.
14025 						 */
14026 						(void) adjmsg(mp,
14027 						    urp + 1 - seg_len);
14028 						tcp_rput_data(connp,
14029 						    mp, NULL);
14030 						return;
14031 					}
14032 					(void) adjmsg(mp1, urp + 1 - seg_len);
14033 					tmp_rnxt = tcp->tcp_rnxt;
14034 					tcp_rput_data(connp, mp1, NULL);
14035 					/*
14036 					 * If the data passed back in was not
14037 					 * processed (ie: bad ACK) sending
14038 					 * the remainder back in will cause a
14039 					 * loop. In this case, drop the
14040 					 * packet and let the sender try
14041 					 * sending a good packet.
14042 					 */
14043 					if (tmp_rnxt == tcp->tcp_rnxt) {
14044 						freemsg(mp);
14045 						return;
14046 					}
14047 				}
14048 				tcp_rput_data(connp, mp, NULL);
14049 				return;
14050 			}
14051 			/*
14052 			 * This segment contains only the urgent byte.  We
14053 			 * have to allocate the T_exdata_ind, if we can.
14054 			 */
14055 			if (IPCL_IS_NONSTR(connp)) {
14056 				int error;
14057 
14058 				(*connp->conn_upcalls->su_recv)
14059 				    (connp->conn_upper_handle, mp, seg_len,
14060 				    MSG_OOB, &error, NULL);
14061 				mp = NULL;
14062 				goto update_ack;
14063 			} else if (!tcp->tcp_urp_mp) {
14064 				struct T_exdata_ind *tei;
14065 				mp1 = allocb(sizeof (struct T_exdata_ind),
14066 				    BPRI_MED);
14067 				if (!mp1) {
14068 					/*
14069 					 * Sigh... It'll be back.
14070 					 * Generate any MSG*MARK message now.
14071 					 */
14072 					freemsg(mp);
14073 					seg_len = 0;
14074 					if (flags & TH_SEND_URP_MARK) {
14075 
14076 
14077 						ASSERT(tcp->tcp_urp_mark_mp);
14078 						tcp->tcp_urp_mark_mp->b_flag &=
14079 						    ~MSGNOTMARKNEXT;
14080 						tcp->tcp_urp_mark_mp->b_flag |=
14081 						    MSGMARKNEXT;
14082 					}
14083 					goto ack_check;
14084 				}
14085 				mp1->b_datap->db_type = M_PROTO;
14086 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14087 				tei->PRIM_type = T_EXDATA_IND;
14088 				tei->MORE_flag = 0;
14089 				mp1->b_wptr = (uchar_t *)&tei[1];
14090 				tcp->tcp_urp_mp = mp1;
14091 #ifdef DEBUG
14092 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14093 				    "tcp_rput: allocated exdata_ind %s",
14094 				    tcp_display(tcp, NULL,
14095 				    DISP_PORT_ONLY));
14096 #endif /* DEBUG */
14097 				/*
14098 				 * There is no need to send a separate MSG*MARK
14099 				 * message since the T_EXDATA_IND will be sent
14100 				 * now.
14101 				 */
14102 				flags &= ~TH_SEND_URP_MARK;
14103 				freemsg(tcp->tcp_urp_mark_mp);
14104 				tcp->tcp_urp_mark_mp = NULL;
14105 			}
14106 			/*
14107 			 * Now we are all set.  On the next putnext upstream,
14108 			 * tcp_urp_mp will be non-NULL and will get prepended
14109 			 * to what has to be this piece containing the urgent
14110 			 * byte.  If for any reason we abort this segment below,
14111 			 * if it comes back, we will have this ready, or it
14112 			 * will get blown off in close.
14113 			 */
14114 		} else if (urp == seg_len) {
14115 			/*
14116 			 * The urgent byte is the next byte after this sequence
14117 			 * number. If there is data it is marked with
14118 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14119 			 * since it is not needed. Otherwise, if the code
14120 			 * above just allocated a zero-length tcp_urp_mark_mp
14121 			 * message, that message is tagged with MSGMARKNEXT.
14122 			 * Sending up these MSGMARKNEXT messages makes
14123 			 * SIOCATMARK work correctly even though
14124 			 * the T_EXDATA_IND will not be sent up until the
14125 			 * urgent byte arrives.
14126 			 */
14127 			if (seg_len != 0) {
14128 				flags |= TH_MARKNEXT_NEEDED;
14129 				freemsg(tcp->tcp_urp_mark_mp);
14130 				tcp->tcp_urp_mark_mp = NULL;
14131 				flags &= ~TH_SEND_URP_MARK;
14132 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14133 				flags |= TH_SEND_URP_MARK;
14134 				tcp->tcp_urp_mark_mp->b_flag &=
14135 				    ~MSGNOTMARKNEXT;
14136 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14137 			}
14138 #ifdef DEBUG
14139 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14140 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14141 			    seg_len, flags,
14142 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14143 #endif /* DEBUG */
14144 		}
14145 #ifdef DEBUG
14146 		else {
14147 			/* Data left until we hit mark */
14148 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14149 			    "tcp_rput: URP %d bytes left, %s",
14150 			    urp - seg_len, tcp_display(tcp, NULL,
14151 			    DISP_PORT_ONLY));
14152 		}
14153 #endif /* DEBUG */
14154 	}
14155 
14156 process_ack:
14157 	if (!(flags & TH_ACK)) {
14158 		freemsg(mp);
14159 		goto xmit_check;
14160 	}
14161 	}
14162 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14163 
14164 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14165 		tcp->tcp_ip_forward_progress = B_TRUE;
14166 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14167 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14168 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14169 			/* 3-way handshake complete - pass up the T_CONN_IND */
14170 			tcp_t	*listener = tcp->tcp_listener;
14171 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14172 
14173 			tcp->tcp_tconnind_started = B_TRUE;
14174 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14175 			/*
14176 			 * We are here means eager is fine but it can
14177 			 * get a TH_RST at any point between now and till
14178 			 * accept completes and disappear. We need to
14179 			 * ensure that reference to eager is valid after
14180 			 * we get out of eager's perimeter. So we do
14181 			 * an extra refhold.
14182 			 */
14183 			CONN_INC_REF(connp);
14184 
14185 			/*
14186 			 * The listener also exists because of the refhold
14187 			 * done in tcp_conn_request. Its possible that it
14188 			 * might have closed. We will check that once we
14189 			 * get inside listeners context.
14190 			 */
14191 			CONN_INC_REF(listener->tcp_connp);
14192 			if (listener->tcp_connp->conn_sqp ==
14193 			    connp->conn_sqp) {
14194 				/*
14195 				 * We optimize by not calling an SQUEUE_ENTER
14196 				 * on the listener since we know that the
14197 				 * listener and eager squeues are the same.
14198 				 * We are able to make this check safely only
14199 				 * because neither the eager nor the listener
14200 				 * can change its squeue. Only an active connect
14201 				 * can change its squeue
14202 				 */
14203 				tcp_send_conn_ind(listener->tcp_connp, mp,
14204 				    listener->tcp_connp->conn_sqp);
14205 				CONN_DEC_REF(listener->tcp_connp);
14206 			} else if (!tcp->tcp_loopback) {
14207 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14208 				    mp, tcp_send_conn_ind,
14209 				    listener->tcp_connp, SQ_FILL,
14210 				    SQTAG_TCP_CONN_IND);
14211 			} else {
14212 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
14213 				    mp, tcp_send_conn_ind,
14214 				    listener->tcp_connp, SQ_PROCESS,
14215 				    SQTAG_TCP_CONN_IND);
14216 			}
14217 		}
14218 
14219 		if (tcp->tcp_active_open) {
14220 			/*
14221 			 * We are seeing the final ack in the three way
14222 			 * hand shake of a active open'ed connection
14223 			 * so we must send up a T_CONN_CON
14224 			 */
14225 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14226 				freemsg(mp);
14227 				return;
14228 			}
14229 			/*
14230 			 * Don't fuse the loopback endpoints for
14231 			 * simultaneous active opens.
14232 			 */
14233 			if (tcp->tcp_loopback) {
14234 				TCP_STAT(tcps, tcp_fusion_unfusable);
14235 				tcp->tcp_unfusable = B_TRUE;
14236 			}
14237 		}
14238 
14239 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14240 		bytes_acked--;
14241 		/* SYN was acked - making progress */
14242 		if (tcp->tcp_ipversion == IPV6_VERSION)
14243 			tcp->tcp_ip_forward_progress = B_TRUE;
14244 
14245 		/*
14246 		 * If SYN was retransmitted, need to reset all
14247 		 * retransmission info as this segment will be
14248 		 * treated as a dup ACK.
14249 		 */
14250 		if (tcp->tcp_rexmit) {
14251 			tcp->tcp_rexmit = B_FALSE;
14252 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14253 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14254 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14255 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14256 			tcp->tcp_ms_we_have_waited = 0;
14257 			tcp->tcp_cwnd = mss;
14258 		}
14259 
14260 		/*
14261 		 * We set the send window to zero here.
14262 		 * This is needed if there is data to be
14263 		 * processed already on the queue.
14264 		 * Later (at swnd_update label), the
14265 		 * "new_swnd > tcp_swnd" condition is satisfied
14266 		 * the XMIT_NEEDED flag is set in the current
14267 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14268 		 * called if there is already data on queue in
14269 		 * this state.
14270 		 */
14271 		tcp->tcp_swnd = 0;
14272 
14273 		if (new_swnd > tcp->tcp_max_swnd)
14274 			tcp->tcp_max_swnd = new_swnd;
14275 		tcp->tcp_swl1 = seg_seq;
14276 		tcp->tcp_swl2 = seg_ack;
14277 		tcp->tcp_state = TCPS_ESTABLISHED;
14278 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14279 
14280 		/* Fuse when both sides are in ESTABLISHED state */
14281 		if (tcp->tcp_loopback && do_tcp_fusion)
14282 			tcp_fuse(tcp, iphdr, tcph);
14283 
14284 	}
14285 	/* This code follows 4.4BSD-Lite2 mostly. */
14286 	if (bytes_acked < 0)
14287 		goto est;
14288 
14289 	/*
14290 	 * If TCP is ECN capable and the congestion experience bit is
14291 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14292 	 * done once per window (or more loosely, per RTT).
14293 	 */
14294 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14295 		tcp->tcp_cwr = B_FALSE;
14296 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14297 		if (!tcp->tcp_cwr) {
14298 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14299 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14300 			tcp->tcp_cwnd = npkt * mss;
14301 			/*
14302 			 * If the cwnd is 0, use the timer to clock out
14303 			 * new segments.  This is required by the ECN spec.
14304 			 */
14305 			if (npkt == 0) {
14306 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14307 				/*
14308 				 * This makes sure that when the ACK comes
14309 				 * back, we will increase tcp_cwnd by 1 MSS.
14310 				 */
14311 				tcp->tcp_cwnd_cnt = 0;
14312 			}
14313 			tcp->tcp_cwr = B_TRUE;
14314 			/*
14315 			 * This marks the end of the current window of in
14316 			 * flight data.  That is why we don't use
14317 			 * tcp_suna + tcp_swnd.  Only data in flight can
14318 			 * provide ECN info.
14319 			 */
14320 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14321 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14322 		}
14323 	}
14324 
14325 	mp1 = tcp->tcp_xmit_head;
14326 	if (bytes_acked == 0) {
14327 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14328 			int dupack_cnt;
14329 
14330 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14331 			/*
14332 			 * Fast retransmit.  When we have seen exactly three
14333 			 * identical ACKs while we have unacked data
14334 			 * outstanding we take it as a hint that our peer
14335 			 * dropped something.
14336 			 *
14337 			 * If TCP is retransmitting, don't do fast retransmit.
14338 			 */
14339 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14340 			    ! tcp->tcp_rexmit) {
14341 				/* Do Limited Transmit */
14342 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14343 				    tcps->tcps_dupack_fast_retransmit) {
14344 					/*
14345 					 * RFC 3042
14346 					 *
14347 					 * What we need to do is temporarily
14348 					 * increase tcp_cwnd so that new
14349 					 * data can be sent if it is allowed
14350 					 * by the receive window (tcp_rwnd).
14351 					 * tcp_wput_data() will take care of
14352 					 * the rest.
14353 					 *
14354 					 * If the connection is SACK capable,
14355 					 * only do limited xmit when there
14356 					 * is SACK info.
14357 					 *
14358 					 * Note how tcp_cwnd is incremented.
14359 					 * The first dup ACK will increase
14360 					 * it by 1 MSS.  The second dup ACK
14361 					 * will increase it by 2 MSS.  This
14362 					 * means that only 1 new segment will
14363 					 * be sent for each dup ACK.
14364 					 */
14365 					if (tcp->tcp_unsent > 0 &&
14366 					    (!tcp->tcp_snd_sack_ok ||
14367 					    (tcp->tcp_snd_sack_ok &&
14368 					    tcp->tcp_notsack_list != NULL))) {
14369 						tcp->tcp_cwnd += mss <<
14370 						    (tcp->tcp_dupack_cnt - 1);
14371 						flags |= TH_LIMIT_XMIT;
14372 					}
14373 				} else if (dupack_cnt ==
14374 				    tcps->tcps_dupack_fast_retransmit) {
14375 
14376 				/*
14377 				 * If we have reduced tcp_ssthresh
14378 				 * because of ECN, do not reduce it again
14379 				 * unless it is already one window of data
14380 				 * away.  After one window of data, tcp_cwr
14381 				 * should then be cleared.  Note that
14382 				 * for non ECN capable connection, tcp_cwr
14383 				 * should always be false.
14384 				 *
14385 				 * Adjust cwnd since the duplicate
14386 				 * ack indicates that a packet was
14387 				 * dropped (due to congestion.)
14388 				 */
14389 				if (!tcp->tcp_cwr) {
14390 					npkt = ((tcp->tcp_snxt -
14391 					    tcp->tcp_suna) >> 1) / mss;
14392 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14393 					    mss;
14394 					tcp->tcp_cwnd = (npkt +
14395 					    tcp->tcp_dupack_cnt) * mss;
14396 				}
14397 				if (tcp->tcp_ecn_ok) {
14398 					tcp->tcp_cwr = B_TRUE;
14399 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14400 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14401 				}
14402 
14403 				/*
14404 				 * We do Hoe's algorithm.  Refer to her
14405 				 * paper "Improving the Start-up Behavior
14406 				 * of a Congestion Control Scheme for TCP,"
14407 				 * appeared in SIGCOMM'96.
14408 				 *
14409 				 * Save highest seq no we have sent so far.
14410 				 * Be careful about the invisible FIN byte.
14411 				 */
14412 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14413 				    (tcp->tcp_unsent == 0)) {
14414 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14415 				} else {
14416 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14417 				}
14418 
14419 				/*
14420 				 * Do not allow bursty traffic during.
14421 				 * fast recovery.  Refer to Fall and Floyd's
14422 				 * paper "Simulation-based Comparisons of
14423 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14424 				 * This is a best current practise.
14425 				 */
14426 				tcp->tcp_snd_burst = TCP_CWND_SS;
14427 
14428 				/*
14429 				 * For SACK:
14430 				 * Calculate tcp_pipe, which is the
14431 				 * estimated number of bytes in
14432 				 * network.
14433 				 *
14434 				 * tcp_fack is the highest sack'ed seq num
14435 				 * TCP has received.
14436 				 *
14437 				 * tcp_pipe is explained in the above quoted
14438 				 * Fall and Floyd's paper.  tcp_fack is
14439 				 * explained in Mathis and Mahdavi's
14440 				 * "Forward Acknowledgment: Refining TCP
14441 				 * Congestion Control" in SIGCOMM '96.
14442 				 */
14443 				if (tcp->tcp_snd_sack_ok) {
14444 					ASSERT(tcp->tcp_sack_info != NULL);
14445 					if (tcp->tcp_notsack_list != NULL) {
14446 						tcp->tcp_pipe = tcp->tcp_snxt -
14447 						    tcp->tcp_fack;
14448 						tcp->tcp_sack_snxt = seg_ack;
14449 						flags |= TH_NEED_SACK_REXMIT;
14450 					} else {
14451 						/*
14452 						 * Always initialize tcp_pipe
14453 						 * even though we don't have
14454 						 * any SACK info.  If later
14455 						 * we get SACK info and
14456 						 * tcp_pipe is not initialized,
14457 						 * funny things will happen.
14458 						 */
14459 						tcp->tcp_pipe =
14460 						    tcp->tcp_cwnd_ssthresh;
14461 					}
14462 				} else {
14463 					flags |= TH_REXMIT_NEEDED;
14464 				} /* tcp_snd_sack_ok */
14465 
14466 				} else {
14467 					/*
14468 					 * Here we perform congestion
14469 					 * avoidance, but NOT slow start.
14470 					 * This is known as the Fast
14471 					 * Recovery Algorithm.
14472 					 */
14473 					if (tcp->tcp_snd_sack_ok &&
14474 					    tcp->tcp_notsack_list != NULL) {
14475 						flags |= TH_NEED_SACK_REXMIT;
14476 						tcp->tcp_pipe -= mss;
14477 						if (tcp->tcp_pipe < 0)
14478 							tcp->tcp_pipe = 0;
14479 					} else {
14480 					/*
14481 					 * We know that one more packet has
14482 					 * left the pipe thus we can update
14483 					 * cwnd.
14484 					 */
14485 					cwnd = tcp->tcp_cwnd + mss;
14486 					if (cwnd > tcp->tcp_cwnd_max)
14487 						cwnd = tcp->tcp_cwnd_max;
14488 					tcp->tcp_cwnd = cwnd;
14489 					if (tcp->tcp_unsent > 0)
14490 						flags |= TH_XMIT_NEEDED;
14491 					}
14492 				}
14493 			}
14494 		} else if (tcp->tcp_zero_win_probe) {
14495 			/*
14496 			 * If the window has opened, need to arrange
14497 			 * to send additional data.
14498 			 */
14499 			if (new_swnd != 0) {
14500 				/* tcp_suna != tcp_snxt */
14501 				/* Packet contains a window update */
14502 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14503 				tcp->tcp_zero_win_probe = 0;
14504 				tcp->tcp_timer_backoff = 0;
14505 				tcp->tcp_ms_we_have_waited = 0;
14506 
14507 				/*
14508 				 * Transmit starting with tcp_suna since
14509 				 * the one byte probe is not ack'ed.
14510 				 * If TCP has sent more than one identical
14511 				 * probe, tcp_rexmit will be set.  That means
14512 				 * tcp_ss_rexmit() will send out the one
14513 				 * byte along with new data.  Otherwise,
14514 				 * fake the retransmission.
14515 				 */
14516 				flags |= TH_XMIT_NEEDED;
14517 				if (!tcp->tcp_rexmit) {
14518 					tcp->tcp_rexmit = B_TRUE;
14519 					tcp->tcp_dupack_cnt = 0;
14520 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14521 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14522 				}
14523 			}
14524 		}
14525 		goto swnd_update;
14526 	}
14527 
14528 	/*
14529 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14530 	 * If the ACK value acks something that we have not yet sent, it might
14531 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14532 	 * other side.
14533 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14534 	 * state is handled above, so we can always just drop the segment and
14535 	 * send an ACK here.
14536 	 *
14537 	 * Should we send ACKs in response to ACK only segments?
14538 	 */
14539 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14540 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14541 		/* drop the received segment */
14542 		freemsg(mp);
14543 
14544 		/*
14545 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14546 		 * greater than 0, check if the number of such
14547 		 * bogus ACks is greater than that count.  If yes,
14548 		 * don't send back any ACK.  This prevents TCP from
14549 		 * getting into an ACK storm if somehow an attacker
14550 		 * successfully spoofs an acceptable segment to our
14551 		 * peer.
14552 		 */
14553 		if (tcp_drop_ack_unsent_cnt > 0 &&
14554 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14555 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14556 			return;
14557 		}
14558 		mp = tcp_ack_mp(tcp);
14559 		if (mp != NULL) {
14560 			BUMP_LOCAL(tcp->tcp_obsegs);
14561 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14562 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14563 		}
14564 		return;
14565 	}
14566 
14567 	/*
14568 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14569 	 * blocks that are covered by this ACK.
14570 	 */
14571 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14572 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14573 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14574 	}
14575 
14576 	/*
14577 	 * If we got an ACK after fast retransmit, check to see
14578 	 * if it is a partial ACK.  If it is not and the congestion
14579 	 * window was inflated to account for the other side's
14580 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14581 	 */
14582 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14583 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14584 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14585 			tcp->tcp_dupack_cnt = 0;
14586 			/*
14587 			 * Restore the orig tcp_cwnd_ssthresh after
14588 			 * fast retransmit phase.
14589 			 */
14590 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14591 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14592 			}
14593 			tcp->tcp_rexmit_max = seg_ack;
14594 			tcp->tcp_cwnd_cnt = 0;
14595 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14596 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14597 
14598 			/*
14599 			 * Remove all notsack info to avoid confusion with
14600 			 * the next fast retrasnmit/recovery phase.
14601 			 */
14602 			if (tcp->tcp_snd_sack_ok &&
14603 			    tcp->tcp_notsack_list != NULL) {
14604 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14605 			}
14606 		} else {
14607 			if (tcp->tcp_snd_sack_ok &&
14608 			    tcp->tcp_notsack_list != NULL) {
14609 				flags |= TH_NEED_SACK_REXMIT;
14610 				tcp->tcp_pipe -= mss;
14611 				if (tcp->tcp_pipe < 0)
14612 					tcp->tcp_pipe = 0;
14613 			} else {
14614 				/*
14615 				 * Hoe's algorithm:
14616 				 *
14617 				 * Retransmit the unack'ed segment and
14618 				 * restart fast recovery.  Note that we
14619 				 * need to scale back tcp_cwnd to the
14620 				 * original value when we started fast
14621 				 * recovery.  This is to prevent overly
14622 				 * aggressive behaviour in sending new
14623 				 * segments.
14624 				 */
14625 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14626 				    tcps->tcps_dupack_fast_retransmit * mss;
14627 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14628 				flags |= TH_REXMIT_NEEDED;
14629 			}
14630 		}
14631 	} else {
14632 		tcp->tcp_dupack_cnt = 0;
14633 		if (tcp->tcp_rexmit) {
14634 			/*
14635 			 * TCP is retranmitting.  If the ACK ack's all
14636 			 * outstanding data, update tcp_rexmit_max and
14637 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14638 			 * to the correct value.
14639 			 *
14640 			 * Note that SEQ_LEQ() is used.  This is to avoid
14641 			 * unnecessary fast retransmit caused by dup ACKs
14642 			 * received when TCP does slow start retransmission
14643 			 * after a time out.  During this phase, TCP may
14644 			 * send out segments which are already received.
14645 			 * This causes dup ACKs to be sent back.
14646 			 */
14647 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14648 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14649 					tcp->tcp_rexmit_nxt = seg_ack;
14650 				}
14651 				if (seg_ack != tcp->tcp_rexmit_max) {
14652 					flags |= TH_XMIT_NEEDED;
14653 				}
14654 			} else {
14655 				tcp->tcp_rexmit = B_FALSE;
14656 				tcp->tcp_xmit_zc_clean = B_FALSE;
14657 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14658 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14659 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14660 			}
14661 			tcp->tcp_ms_we_have_waited = 0;
14662 		}
14663 	}
14664 
14665 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14666 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14667 	tcp->tcp_suna = seg_ack;
14668 	if (tcp->tcp_zero_win_probe != 0) {
14669 		tcp->tcp_zero_win_probe = 0;
14670 		tcp->tcp_timer_backoff = 0;
14671 	}
14672 
14673 	/*
14674 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14675 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14676 	 * will not reach here.
14677 	 */
14678 	if (mp1 == NULL) {
14679 		goto fin_acked;
14680 	}
14681 
14682 	/*
14683 	 * Update the congestion window.
14684 	 *
14685 	 * If TCP is not ECN capable or TCP is ECN capable but the
14686 	 * congestion experience bit is not set, increase the tcp_cwnd as
14687 	 * usual.
14688 	 */
14689 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14690 		cwnd = tcp->tcp_cwnd;
14691 		add = mss;
14692 
14693 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14694 			/*
14695 			 * This is to prevent an increase of less than 1 MSS of
14696 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14697 			 * may send out tinygrams in order to preserve mblk
14698 			 * boundaries.
14699 			 *
14700 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14701 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14702 			 * increased by 1 MSS for every RTTs.
14703 			 */
14704 			if (tcp->tcp_cwnd_cnt <= 0) {
14705 				tcp->tcp_cwnd_cnt = cwnd + add;
14706 			} else {
14707 				tcp->tcp_cwnd_cnt -= add;
14708 				add = 0;
14709 			}
14710 		}
14711 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14712 	}
14713 
14714 	/* See if the latest urgent data has been acknowledged */
14715 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14716 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14717 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14718 
14719 	/* Can we update the RTT estimates? */
14720 	if (tcp->tcp_snd_ts_ok) {
14721 		/* Ignore zero timestamp echo-reply. */
14722 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14723 			tcp_set_rto(tcp, (int32_t)lbolt -
14724 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14725 		}
14726 
14727 		/* If needed, restart the timer. */
14728 		if (tcp->tcp_set_timer == 1) {
14729 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14730 			tcp->tcp_set_timer = 0;
14731 		}
14732 		/*
14733 		 * Update tcp_csuna in case the other side stops sending
14734 		 * us timestamps.
14735 		 */
14736 		tcp->tcp_csuna = tcp->tcp_snxt;
14737 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14738 		/*
14739 		 * An ACK sequence we haven't seen before, so get the RTT
14740 		 * and update the RTO. But first check if the timestamp is
14741 		 * valid to use.
14742 		 */
14743 		if ((mp1->b_next != NULL) &&
14744 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14745 			tcp_set_rto(tcp, (int32_t)lbolt -
14746 			    (int32_t)(intptr_t)mp1->b_prev);
14747 		else
14748 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14749 
14750 		/* Remeber the last sequence to be ACKed */
14751 		tcp->tcp_csuna = seg_ack;
14752 		if (tcp->tcp_set_timer == 1) {
14753 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14754 			tcp->tcp_set_timer = 0;
14755 		}
14756 	} else {
14757 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14758 	}
14759 
14760 	/* Eat acknowledged bytes off the xmit queue. */
14761 	for (;;) {
14762 		mblk_t	*mp2;
14763 		uchar_t	*wptr;
14764 
14765 		wptr = mp1->b_wptr;
14766 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14767 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14768 		if (bytes_acked < 0) {
14769 			mp1->b_rptr = wptr + bytes_acked;
14770 			/*
14771 			 * Set a new timestamp if all the bytes timed by the
14772 			 * old timestamp have been ack'ed.
14773 			 */
14774 			if (SEQ_GT(seg_ack,
14775 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14776 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14777 				mp1->b_next = NULL;
14778 			}
14779 			break;
14780 		}
14781 		mp1->b_next = NULL;
14782 		mp1->b_prev = NULL;
14783 		mp2 = mp1;
14784 		mp1 = mp1->b_cont;
14785 
14786 		/*
14787 		 * This notification is required for some zero-copy
14788 		 * clients to maintain a copy semantic. After the data
14789 		 * is ack'ed, client is safe to modify or reuse the buffer.
14790 		 */
14791 		if (tcp->tcp_snd_zcopy_aware &&
14792 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14793 			tcp_zcopy_notify(tcp);
14794 		freeb(mp2);
14795 		if (bytes_acked == 0) {
14796 			if (mp1 == NULL) {
14797 				/* Everything is ack'ed, clear the tail. */
14798 				tcp->tcp_xmit_tail = NULL;
14799 				/*
14800 				 * Cancel the timer unless we are still
14801 				 * waiting for an ACK for the FIN packet.
14802 				 */
14803 				if (tcp->tcp_timer_tid != 0 &&
14804 				    tcp->tcp_snxt == tcp->tcp_suna) {
14805 					(void) TCP_TIMER_CANCEL(tcp,
14806 					    tcp->tcp_timer_tid);
14807 					tcp->tcp_timer_tid = 0;
14808 				}
14809 				goto pre_swnd_update;
14810 			}
14811 			if (mp2 != tcp->tcp_xmit_tail)
14812 				break;
14813 			tcp->tcp_xmit_tail = mp1;
14814 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14815 			    (uintptr_t)INT_MAX);
14816 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14817 			    mp1->b_rptr);
14818 			break;
14819 		}
14820 		if (mp1 == NULL) {
14821 			/*
14822 			 * More was acked but there is nothing more
14823 			 * outstanding.  This means that the FIN was
14824 			 * just acked or that we're talking to a clown.
14825 			 */
14826 fin_acked:
14827 			ASSERT(tcp->tcp_fin_sent);
14828 			tcp->tcp_xmit_tail = NULL;
14829 			if (tcp->tcp_fin_sent) {
14830 				/* FIN was acked - making progress */
14831 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14832 				    !tcp->tcp_fin_acked)
14833 					tcp->tcp_ip_forward_progress = B_TRUE;
14834 				tcp->tcp_fin_acked = B_TRUE;
14835 				if (tcp->tcp_linger_tid != 0 &&
14836 				    TCP_TIMER_CANCEL(tcp,
14837 				    tcp->tcp_linger_tid) >= 0) {
14838 					tcp_stop_lingering(tcp);
14839 					freemsg(mp);
14840 					mp = NULL;
14841 				}
14842 			} else {
14843 				/*
14844 				 * We should never get here because
14845 				 * we have already checked that the
14846 				 * number of bytes ack'ed should be
14847 				 * smaller than or equal to what we
14848 				 * have sent so far (it is the
14849 				 * acceptability check of the ACK).
14850 				 * We can only get here if the send
14851 				 * queue is corrupted.
14852 				 *
14853 				 * Terminate the connection and
14854 				 * panic the system.  It is better
14855 				 * for us to panic instead of
14856 				 * continuing to avoid other disaster.
14857 				 */
14858 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14859 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14860 				panic("Memory corruption "
14861 				    "detected for connection %s.",
14862 				    tcp_display(tcp, NULL,
14863 				    DISP_ADDR_AND_PORT));
14864 				/*NOTREACHED*/
14865 			}
14866 			goto pre_swnd_update;
14867 		}
14868 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14869 	}
14870 	if (tcp->tcp_unsent) {
14871 		flags |= TH_XMIT_NEEDED;
14872 	}
14873 pre_swnd_update:
14874 	tcp->tcp_xmit_head = mp1;
14875 swnd_update:
14876 	/*
14877 	 * The following check is different from most other implementations.
14878 	 * For bi-directional transfer, when segments are dropped, the
14879 	 * "normal" check will not accept a window update in those
14880 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14881 	 * segments which are outside receiver's window.  As TCP accepts
14882 	 * the ack in those retransmitted segments, if the window update in
14883 	 * the same segment is not accepted, TCP will incorrectly calculates
14884 	 * that it can send more segments.  This can create a deadlock
14885 	 * with the receiver if its window becomes zero.
14886 	 */
14887 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14888 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14889 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14890 		/*
14891 		 * The criteria for update is:
14892 		 *
14893 		 * 1. the segment acknowledges some data.  Or
14894 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14895 		 * 3. the segment is not old and the advertised window is
14896 		 * larger than the previous advertised window.
14897 		 */
14898 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14899 			flags |= TH_XMIT_NEEDED;
14900 		tcp->tcp_swnd = new_swnd;
14901 		if (new_swnd > tcp->tcp_max_swnd)
14902 			tcp->tcp_max_swnd = new_swnd;
14903 		tcp->tcp_swl1 = seg_seq;
14904 		tcp->tcp_swl2 = seg_ack;
14905 	}
14906 est:
14907 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14908 
14909 		switch (tcp->tcp_state) {
14910 		case TCPS_FIN_WAIT_1:
14911 			if (tcp->tcp_fin_acked) {
14912 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14913 				/*
14914 				 * We implement the non-standard BSD/SunOS
14915 				 * FIN_WAIT_2 flushing algorithm.
14916 				 * If there is no user attached to this
14917 				 * TCP endpoint, then this TCP struct
14918 				 * could hang around forever in FIN_WAIT_2
14919 				 * state if the peer forgets to send us
14920 				 * a FIN.  To prevent this, we wait only
14921 				 * 2*MSL (a convenient time value) for
14922 				 * the FIN to arrive.  If it doesn't show up,
14923 				 * we flush the TCP endpoint.  This algorithm,
14924 				 * though a violation of RFC-793, has worked
14925 				 * for over 10 years in BSD systems.
14926 				 * Note: SunOS 4.x waits 675 seconds before
14927 				 * flushing the FIN_WAIT_2 connection.
14928 				 */
14929 				TCP_TIMER_RESTART(tcp,
14930 				    tcps->tcps_fin_wait_2_flush_interval);
14931 			}
14932 			break;
14933 		case TCPS_FIN_WAIT_2:
14934 			break;	/* Shutdown hook? */
14935 		case TCPS_LAST_ACK:
14936 			freemsg(mp);
14937 			if (tcp->tcp_fin_acked) {
14938 				(void) tcp_clean_death(tcp, 0, 19);
14939 				return;
14940 			}
14941 			goto xmit_check;
14942 		case TCPS_CLOSING:
14943 			if (tcp->tcp_fin_acked) {
14944 				tcp->tcp_state = TCPS_TIME_WAIT;
14945 				/*
14946 				 * Unconditionally clear the exclusive binding
14947 				 * bit so this TIME-WAIT connection won't
14948 				 * interfere with new ones.
14949 				 */
14950 				tcp->tcp_exclbind = 0;
14951 				if (!TCP_IS_DETACHED(tcp)) {
14952 					TCP_TIMER_RESTART(tcp,
14953 					    tcps->tcps_time_wait_interval);
14954 				} else {
14955 					tcp_time_wait_append(tcp);
14956 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14957 				}
14958 			}
14959 			/*FALLTHRU*/
14960 		case TCPS_CLOSE_WAIT:
14961 			freemsg(mp);
14962 			goto xmit_check;
14963 		default:
14964 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14965 			break;
14966 		}
14967 	}
14968 	if (flags & TH_FIN) {
14969 		/* Make sure we ack the fin */
14970 		flags |= TH_ACK_NEEDED;
14971 		if (!tcp->tcp_fin_rcvd) {
14972 			tcp->tcp_fin_rcvd = B_TRUE;
14973 			tcp->tcp_rnxt++;
14974 			tcph = tcp->tcp_tcph;
14975 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14976 
14977 			/*
14978 			 * Generate the ordrel_ind at the end unless we
14979 			 * are an eager guy.
14980 			 * In the eager case tcp_rsrv will do this when run
14981 			 * after tcp_accept is done.
14982 			 */
14983 			if (tcp->tcp_listener == NULL &&
14984 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14985 				flags |= TH_ORDREL_NEEDED;
14986 			switch (tcp->tcp_state) {
14987 			case TCPS_SYN_RCVD:
14988 			case TCPS_ESTABLISHED:
14989 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14990 				/* Keepalive? */
14991 				break;
14992 			case TCPS_FIN_WAIT_1:
14993 				if (!tcp->tcp_fin_acked) {
14994 					tcp->tcp_state = TCPS_CLOSING;
14995 					break;
14996 				}
14997 				/* FALLTHRU */
14998 			case TCPS_FIN_WAIT_2:
14999 				tcp->tcp_state = TCPS_TIME_WAIT;
15000 				/*
15001 				 * Unconditionally clear the exclusive binding
15002 				 * bit so this TIME-WAIT connection won't
15003 				 * interfere with new ones.
15004 				 */
15005 				tcp->tcp_exclbind = 0;
15006 				if (!TCP_IS_DETACHED(tcp)) {
15007 					TCP_TIMER_RESTART(tcp,
15008 					    tcps->tcps_time_wait_interval);
15009 				} else {
15010 					tcp_time_wait_append(tcp);
15011 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
15012 				}
15013 				if (seg_len) {
15014 					/*
15015 					 * implies data piggybacked on FIN.
15016 					 * break to handle data.
15017 					 */
15018 					break;
15019 				}
15020 				freemsg(mp);
15021 				goto ack_check;
15022 			}
15023 		}
15024 	}
15025 	if (mp == NULL)
15026 		goto xmit_check;
15027 	if (seg_len == 0) {
15028 		freemsg(mp);
15029 		goto xmit_check;
15030 	}
15031 	if (mp->b_rptr == mp->b_wptr) {
15032 		/*
15033 		 * The header has been consumed, so we remove the
15034 		 * zero-length mblk here.
15035 		 */
15036 		mp1 = mp;
15037 		mp = mp->b_cont;
15038 		freeb(mp1);
15039 	}
15040 update_ack:
15041 	tcph = tcp->tcp_tcph;
15042 	tcp->tcp_rack_cnt++;
15043 	{
15044 		uint32_t cur_max;
15045 
15046 		cur_max = tcp->tcp_rack_cur_max;
15047 		if (tcp->tcp_rack_cnt >= cur_max) {
15048 			/*
15049 			 * We have more unacked data than we should - send
15050 			 * an ACK now.
15051 			 */
15052 			flags |= TH_ACK_NEEDED;
15053 			cur_max++;
15054 			if (cur_max > tcp->tcp_rack_abs_max)
15055 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15056 			else
15057 				tcp->tcp_rack_cur_max = cur_max;
15058 		} else if (TCP_IS_DETACHED(tcp)) {
15059 			/* We don't have an ACK timer for detached TCP. */
15060 			flags |= TH_ACK_NEEDED;
15061 		} else if (seg_len < mss) {
15062 			/*
15063 			 * If we get a segment that is less than an mss, and we
15064 			 * already have unacknowledged data, and the amount
15065 			 * unacknowledged is not a multiple of mss, then we
15066 			 * better generate an ACK now.  Otherwise, this may be
15067 			 * the tail piece of a transaction, and we would rather
15068 			 * wait for the response.
15069 			 */
15070 			uint32_t udif;
15071 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
15072 			    (uintptr_t)INT_MAX);
15073 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
15074 			if (udif && (udif % mss))
15075 				flags |= TH_ACK_NEEDED;
15076 			else
15077 				flags |= TH_ACK_TIMER_NEEDED;
15078 		} else {
15079 			/* Start delayed ack timer */
15080 			flags |= TH_ACK_TIMER_NEEDED;
15081 		}
15082 	}
15083 	tcp->tcp_rnxt += seg_len;
15084 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
15085 
15086 	if (mp == NULL)
15087 		goto xmit_check;
15088 
15089 	/* Update SACK list */
15090 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
15091 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
15092 		    &(tcp->tcp_num_sack_blk));
15093 	}
15094 
15095 	if (tcp->tcp_urp_mp) {
15096 		tcp->tcp_urp_mp->b_cont = mp;
15097 		mp = tcp->tcp_urp_mp;
15098 		tcp->tcp_urp_mp = NULL;
15099 		/* Ready for a new signal. */
15100 		tcp->tcp_urp_last_valid = B_FALSE;
15101 #ifdef DEBUG
15102 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15103 		    "tcp_rput: sending exdata_ind %s",
15104 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15105 #endif /* DEBUG */
15106 	}
15107 
15108 	/*
15109 	 * Check for ancillary data changes compared to last segment.
15110 	 */
15111 	if (tcp->tcp_ipv6_recvancillary != 0) {
15112 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
15113 		ASSERT(mp != NULL);
15114 	}
15115 
15116 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
15117 		/*
15118 		 * Side queue inbound data until the accept happens.
15119 		 * tcp_accept/tcp_rput drains this when the accept happens.
15120 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15121 		 * T_EXDATA_IND) it is queued on b_next.
15122 		 * XXX Make urgent data use this. Requires:
15123 		 *	Removing tcp_listener check for TH_URG
15124 		 *	Making M_PCPROTO and MARK messages skip the eager case
15125 		 */
15126 
15127 		if (tcp->tcp_kssl_pending) {
15128 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
15129 			    mblk_t *, mp);
15130 			tcp_kssl_input(tcp, mp);
15131 		} else {
15132 			tcp_rcv_enqueue(tcp, mp, seg_len);
15133 		}
15134 	} else {
15135 		sodirect_t	*sodp = tcp->tcp_sodirect;
15136 
15137 		/*
15138 		 * If an sodirect connection and an enabled sodirect_t then
15139 		 * sodp will be set to point to the tcp_t/sonode_t shared
15140 		 * sodirect_t and the sodirect_t's lock will be held.
15141 		 */
15142 		if (sodp != NULL) {
15143 			mutex_enter(sodp->sod_lockp);
15144 			if (!(sodp->sod_state & SOD_ENABLED) ||
15145 			    (tcp->tcp_kssl_ctx != NULL &&
15146 			    DB_TYPE(mp) == M_DATA)) {
15147 				sodp = NULL;
15148 			}
15149 			mutex_exit(sodp->sod_lockp);
15150 		}
15151 		if (mp->b_datap->db_type != M_DATA ||
15152 		    (flags & TH_MARKNEXT_NEEDED)) {
15153 			if (IPCL_IS_NONSTR(connp)) {
15154 				int error;
15155 
15156 				if ((*connp->conn_upcalls->su_recv)
15157 				    (connp->conn_upper_handle, mp,
15158 				    seg_len, 0, &error, NULL) <= 0) {
15159 					if (error == ENOSPC) {
15160 						tcp->tcp_rwnd -= seg_len;
15161 					} else if (error == EOPNOTSUPP) {
15162 						tcp_rcv_enqueue(tcp, mp,
15163 						    seg_len);
15164 					}
15165 				}
15166 			} else if (sodp != NULL) {
15167 				mutex_enter(sodp->sod_lockp);
15168 				SOD_UIOAFINI(sodp);
15169 				if (!SOD_QEMPTY(sodp) &&
15170 				    (sodp->sod_state & SOD_WAKE_NOT)) {
15171 					flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15172 					/* sod_wakeup() did the mutex_exit() */
15173 				} else {
15174 					mutex_exit(sodp->sod_lockp);
15175 				}
15176 			} else if (tcp->tcp_rcv_list != NULL) {
15177 				flags |= tcp_rcv_drain(tcp);
15178 			}
15179 			ASSERT(tcp->tcp_rcv_list == NULL ||
15180 			    tcp->tcp_fused_sigurg);
15181 
15182 			if (flags & TH_MARKNEXT_NEEDED) {
15183 #ifdef DEBUG
15184 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15185 				    "tcp_rput: sending MSGMARKNEXT %s",
15186 				    tcp_display(tcp, NULL,
15187 				    DISP_PORT_ONLY));
15188 #endif /* DEBUG */
15189 				mp->b_flag |= MSGMARKNEXT;
15190 				flags &= ~TH_MARKNEXT_NEEDED;
15191 			}
15192 
15193 			/* Does this need SSL processing first? */
15194 			if ((tcp->tcp_kssl_ctx != NULL) &&
15195 			    (DB_TYPE(mp) == M_DATA)) {
15196 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15197 				    mblk_t *, mp);
15198 				tcp_kssl_input(tcp, mp);
15199 			} else if (!IPCL_IS_NONSTR(connp)) {
15200 				/* Already handled non-STREAMS case. */
15201 				putnext(tcp->tcp_rq, mp);
15202 				if (!canputnext(tcp->tcp_rq))
15203 					tcp->tcp_rwnd -= seg_len;
15204 			}
15205 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
15206 		    (DB_TYPE(mp) == M_DATA)) {
15207 			/* Does this need SSL processing first? */
15208 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
15209 			tcp_kssl_input(tcp, mp);
15210 		} else if (IPCL_IS_NONSTR(connp)) {
15211 			/* Non-STREAMS socket */
15212 			boolean_t push = flags & (TH_PUSH|TH_FIN);
15213 			int	error;
15214 
15215 			if ((*connp->conn_upcalls->su_recv)(
15216 			    connp->conn_upper_handle,
15217 			    mp, seg_len, 0, &error, &push) <= 0) {
15218 				if (error == ENOSPC) {
15219 					tcp->tcp_rwnd -= seg_len;
15220 				} else if (error == EOPNOTSUPP) {
15221 					tcp_rcv_enqueue(tcp, mp, seg_len);
15222 				}
15223 			} else if (push) {
15224 				/*
15225 				 * PUSH bit set and sockfs is not
15226 				 * flow controlled
15227 				 */
15228 				flags |= tcp_rwnd_reopen(tcp);
15229 			}
15230 		} else if (sodp != NULL) {
15231 			/*
15232 			 * Sodirect so all mblk_t's are queued on the
15233 			 * socket directly, check for wakeup of blocked
15234 			 * reader (if any), and last if flow-controled.
15235 			 */
15236 			mutex_enter(sodp->sod_lockp);
15237 			flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len);
15238 			if ((sodp->sod_state & SOD_WAKE_NEED) ||
15239 			    (flags & (TH_PUSH|TH_FIN))) {
15240 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15241 				/* sod_wakeup() did the mutex_exit() */
15242 			} else {
15243 				if (SOD_QFULL(sodp)) {
15244 					/* Q is full, need backenable */
15245 					SOD_QSETBE(sodp);
15246 				}
15247 				mutex_exit(sodp->sod_lockp);
15248 			}
15249 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15250 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
15251 			if (tcp->tcp_rcv_list != NULL) {
15252 				/*
15253 				 * Enqueue the new segment first and then
15254 				 * call tcp_rcv_drain() to send all data
15255 				 * up.  The other way to do this is to
15256 				 * send all queued data up and then call
15257 				 * putnext() to send the new segment up.
15258 				 * This way can remove the else part later
15259 				 * on.
15260 				 *
15261 				 * We don't do this to avoid one more call to
15262 				 * canputnext() as tcp_rcv_drain() needs to
15263 				 * call canputnext().
15264 				 */
15265 				tcp_rcv_enqueue(tcp, mp, seg_len);
15266 				flags |= tcp_rcv_drain(tcp);
15267 			} else {
15268 				putnext(tcp->tcp_rq, mp);
15269 				if (!canputnext(tcp->tcp_rq))
15270 					tcp->tcp_rwnd -= seg_len;
15271 			}
15272 		} else {
15273 			/*
15274 			 * Enqueue all packets when processing an mblk
15275 			 * from the co queue and also enqueue normal packets.
15276 			 * For packets which belong to SSL stream do SSL
15277 			 * processing first.
15278 			 */
15279 			tcp_rcv_enqueue(tcp, mp, seg_len);
15280 		}
15281 		/*
15282 		 * Make sure the timer is running if we have data waiting
15283 		 * for a push bit. This provides resiliency against
15284 		 * implementations that do not correctly generate push bits.
15285 		 *
15286 		 * Note, for sodirect if Q isn't empty and there's not a
15287 		 * pending wakeup then we need a timer. Also note that sodp
15288 		 * is assumed to be still valid after exit()ing the sod_lockp
15289 		 * above and while the SOD state can change it can only change
15290 		 * such that the Q is empty now even though data was added
15291 		 * above.
15292 		 */
15293 		if (!IPCL_IS_NONSTR(connp) &&
15294 		    ((sodp != NULL && !SOD_QEMPTY(sodp) &&
15295 		    (sodp->sod_state & SOD_WAKE_NOT)) ||
15296 		    (sodp == NULL && tcp->tcp_rcv_list != NULL)) &&
15297 		    tcp->tcp_push_tid == 0) {
15298 			/*
15299 			 * The connection may be closed at this point, so don't
15300 			 * do anything for a detached tcp.
15301 			 */
15302 			if (!TCP_IS_DETACHED(tcp))
15303 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15304 				    tcp_push_timer,
15305 				    MSEC_TO_TICK(
15306 				    tcps->tcps_push_timer_interval));
15307 		}
15308 	}
15309 
15310 xmit_check:
15311 	/* Is there anything left to do? */
15312 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15313 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15314 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15315 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15316 		goto done;
15317 
15318 	/* Any transmit work to do and a non-zero window? */
15319 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15320 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15321 		if (flags & TH_REXMIT_NEEDED) {
15322 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15323 
15324 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15325 			if (snd_size > mss)
15326 				snd_size = mss;
15327 			if (snd_size > tcp->tcp_swnd)
15328 				snd_size = tcp->tcp_swnd;
15329 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15330 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15331 			    B_TRUE);
15332 
15333 			if (mp1 != NULL) {
15334 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15335 				tcp->tcp_csuna = tcp->tcp_snxt;
15336 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15337 				UPDATE_MIB(&tcps->tcps_mib,
15338 				    tcpRetransBytes, snd_size);
15339 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15340 			}
15341 		}
15342 		if (flags & TH_NEED_SACK_REXMIT) {
15343 			tcp_sack_rxmit(tcp, &flags);
15344 		}
15345 		/*
15346 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15347 		 * out new segment.  Note that tcp_rexmit should not be
15348 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15349 		 */
15350 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15351 			if (!tcp->tcp_rexmit) {
15352 				tcp_wput_data(tcp, NULL, B_FALSE);
15353 			} else {
15354 				tcp_ss_rexmit(tcp);
15355 			}
15356 		}
15357 		/*
15358 		 * Adjust tcp_cwnd back to normal value after sending
15359 		 * new data segments.
15360 		 */
15361 		if (flags & TH_LIMIT_XMIT) {
15362 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15363 			/*
15364 			 * This will restart the timer.  Restarting the
15365 			 * timer is used to avoid a timeout before the
15366 			 * limited transmitted segment's ACK gets back.
15367 			 */
15368 			if (tcp->tcp_xmit_head != NULL)
15369 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15370 		}
15371 
15372 		/* Anything more to do? */
15373 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15374 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15375 			goto done;
15376 	}
15377 ack_check:
15378 	if (flags & TH_SEND_URP_MARK) {
15379 		ASSERT(tcp->tcp_urp_mark_mp);
15380 		ASSERT(!IPCL_IS_NONSTR(connp));
15381 		/*
15382 		 * Send up any queued data and then send the mark message
15383 		 */
15384 		sodirect_t *sodp;
15385 
15386 		SOD_PTR_ENTER(tcp, sodp);
15387 
15388 		mp1 = tcp->tcp_urp_mark_mp;
15389 		tcp->tcp_urp_mark_mp = NULL;
15390 		if (sodp != NULL) {
15391 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15392 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15393 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15394 			}
15395 			ASSERT(tcp->tcp_rcv_list == NULL);
15396 
15397 			flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15398 			/* sod_wakeup() does the mutex_exit() */
15399 		} else if (tcp->tcp_rcv_list != NULL) {
15400 			flags |= tcp_rcv_drain(tcp);
15401 
15402 			ASSERT(tcp->tcp_rcv_list == NULL ||
15403 			    tcp->tcp_fused_sigurg);
15404 
15405 		}
15406 		putnext(tcp->tcp_rq, mp1);
15407 #ifdef DEBUG
15408 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15409 		    "tcp_rput: sending zero-length %s %s",
15410 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15411 		    "MSGNOTMARKNEXT"),
15412 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15413 #endif /* DEBUG */
15414 		flags &= ~TH_SEND_URP_MARK;
15415 	}
15416 	if (flags & TH_ACK_NEEDED) {
15417 		/*
15418 		 * Time to send an ack for some reason.
15419 		 */
15420 		mp1 = tcp_ack_mp(tcp);
15421 
15422 		if (mp1 != NULL) {
15423 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15424 			BUMP_LOCAL(tcp->tcp_obsegs);
15425 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15426 		}
15427 		if (tcp->tcp_ack_tid != 0) {
15428 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15429 			tcp->tcp_ack_tid = 0;
15430 		}
15431 	}
15432 	if (flags & TH_ACK_TIMER_NEEDED) {
15433 		/*
15434 		 * Arrange for deferred ACK or push wait timeout.
15435 		 * Start timer if it is not already running.
15436 		 */
15437 		if (tcp->tcp_ack_tid == 0) {
15438 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15439 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15440 			    (clock_t)tcps->tcps_local_dack_interval :
15441 			    (clock_t)tcps->tcps_deferred_ack_interval));
15442 		}
15443 	}
15444 	if (flags & TH_ORDREL_NEEDED) {
15445 		/*
15446 		 * Send up the ordrel_ind unless we are an eager guy.
15447 		 * In the eager case tcp_rsrv will do this when run
15448 		 * after tcp_accept is done.
15449 		 */
15450 		sodirect_t *sodp;
15451 
15452 		ASSERT(tcp->tcp_listener == NULL);
15453 
15454 		if (IPCL_IS_NONSTR(connp)) {
15455 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15456 			tcp->tcp_ordrel_done = B_TRUE;
15457 			(*connp->conn_upcalls->su_opctl)
15458 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15459 			goto done;
15460 		}
15461 
15462 		SOD_PTR_ENTER(tcp, sodp);
15463 		if (sodp != NULL) {
15464 			if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
15465 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
15466 				sodp->sod_uioa.uioa_state |= UIOA_FINI;
15467 			}
15468 			/* No more sodirect */
15469 			tcp->tcp_sodirect = NULL;
15470 			if (!SOD_QEMPTY(sodp)) {
15471 				/* Mblk(s) to process, notify */
15472 				flags |= tcp_rcv_sod_wakeup(tcp, sodp);
15473 				/* sod_wakeup() does the mutex_exit() */
15474 			} else {
15475 				/* Nothing to process */
15476 				mutex_exit(sodp->sod_lockp);
15477 			}
15478 		} else if (tcp->tcp_rcv_list != NULL) {
15479 			/*
15480 			 * Push any mblk(s) enqueued from co processing.
15481 			 */
15482 			flags |= tcp_rcv_drain(tcp);
15483 
15484 			ASSERT(tcp->tcp_rcv_list == NULL ||
15485 			    tcp->tcp_fused_sigurg);
15486 		}
15487 
15488 		mp1 = tcp->tcp_ordrel_mp;
15489 		tcp->tcp_ordrel_mp = NULL;
15490 		tcp->tcp_ordrel_done = B_TRUE;
15491 		putnext(tcp->tcp_rq, mp1);
15492 	}
15493 done:
15494 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15495 }
15496 
15497 /*
15498  * This function does PAWS protection check. Returns B_TRUE if the
15499  * segment passes the PAWS test, else returns B_FALSE.
15500  */
15501 boolean_t
15502 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15503 {
15504 	uint8_t	flags;
15505 	int	options;
15506 	uint8_t *up;
15507 
15508 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15509 	/*
15510 	 * If timestamp option is aligned nicely, get values inline,
15511 	 * otherwise call general routine to parse.  Only do that
15512 	 * if timestamp is the only option.
15513 	 */
15514 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15515 	    TCPOPT_REAL_TS_LEN &&
15516 	    OK_32PTR((up = ((uint8_t *)tcph) +
15517 	    TCP_MIN_HEADER_LENGTH)) &&
15518 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15519 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15520 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15521 
15522 		options = TCP_OPT_TSTAMP_PRESENT;
15523 	} else {
15524 		if (tcp->tcp_snd_sack_ok) {
15525 			tcpoptp->tcp = tcp;
15526 		} else {
15527 			tcpoptp->tcp = NULL;
15528 		}
15529 		options = tcp_parse_options(tcph, tcpoptp);
15530 	}
15531 
15532 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15533 		/*
15534 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15535 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15536 		 */
15537 		if ((flags & TH_RST) == 0 &&
15538 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15539 		    tcp->tcp_ts_recent)) {
15540 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15541 			    PAWS_TIMEOUT)) {
15542 				/* This segment is not acceptable. */
15543 				return (B_FALSE);
15544 			} else {
15545 				/*
15546 				 * Connection has been idle for
15547 				 * too long.  Reset the timestamp
15548 				 * and assume the segment is valid.
15549 				 */
15550 				tcp->tcp_ts_recent =
15551 				    tcpoptp->tcp_opt_ts_val;
15552 			}
15553 		}
15554 	} else {
15555 		/*
15556 		 * If we don't get a timestamp on every packet, we
15557 		 * figure we can't really trust 'em, so we stop sending
15558 		 * and parsing them.
15559 		 */
15560 		tcp->tcp_snd_ts_ok = B_FALSE;
15561 
15562 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15563 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15564 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15565 		/*
15566 		 * Adjust the tcp_mss accordingly. We also need to
15567 		 * adjust tcp_cwnd here in accordance with the new mss.
15568 		 * But we avoid doing a slow start here so as to not
15569 		 * to lose on the transfer rate built up so far.
15570 		 */
15571 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15572 		if (tcp->tcp_snd_sack_ok) {
15573 			ASSERT(tcp->tcp_sack_info != NULL);
15574 			tcp->tcp_max_sack_blk = 4;
15575 		}
15576 	}
15577 	return (B_TRUE);
15578 }
15579 
15580 /*
15581  * Attach ancillary data to a received TCP segments for the
15582  * ancillary pieces requested by the application that are
15583  * different than they were in the previous data segment.
15584  *
15585  * Save the "current" values once memory allocation is ok so that
15586  * when memory allocation fails we can just wait for the next data segment.
15587  */
15588 static mblk_t *
15589 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15590 {
15591 	struct T_optdata_ind *todi;
15592 	int optlen;
15593 	uchar_t *optptr;
15594 	struct T_opthdr *toh;
15595 	uint_t addflag;	/* Which pieces to add */
15596 	mblk_t *mp1;
15597 
15598 	optlen = 0;
15599 	addflag = 0;
15600 	/* If app asked for pktinfo and the index has changed ... */
15601 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15602 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15603 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15604 		optlen += sizeof (struct T_opthdr) +
15605 		    sizeof (struct in6_pktinfo);
15606 		addflag |= TCP_IPV6_RECVPKTINFO;
15607 	}
15608 	/* If app asked for hoplimit and it has changed ... */
15609 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15610 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15611 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15612 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15613 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15614 	}
15615 	/* If app asked for tclass and it has changed ... */
15616 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15617 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15618 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15619 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15620 		addflag |= TCP_IPV6_RECVTCLASS;
15621 	}
15622 	/*
15623 	 * If app asked for hopbyhop headers and it has changed ...
15624 	 * For security labels, note that (1) security labels can't change on
15625 	 * a connected socket at all, (2) we're connected to at most one peer,
15626 	 * (3) if anything changes, then it must be some other extra option.
15627 	 */
15628 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15629 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15630 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15631 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15632 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15633 		    tcp->tcp_label_len;
15634 		addflag |= TCP_IPV6_RECVHOPOPTS;
15635 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15636 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15637 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15638 			return (mp);
15639 	}
15640 	/* If app asked for dst headers before routing headers ... */
15641 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15642 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15643 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15644 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15645 		optlen += sizeof (struct T_opthdr) +
15646 		    ipp->ipp_rtdstoptslen;
15647 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15648 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15649 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15650 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15651 			return (mp);
15652 	}
15653 	/* If app asked for routing headers and it has changed ... */
15654 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15655 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15656 	    (ipp->ipp_fields & IPPF_RTHDR),
15657 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15658 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15659 		addflag |= TCP_IPV6_RECVRTHDR;
15660 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15661 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15662 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15663 			return (mp);
15664 	}
15665 	/* If app asked for dest headers and it has changed ... */
15666 	if ((tcp->tcp_ipv6_recvancillary &
15667 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15668 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15669 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15670 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15671 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15672 		addflag |= TCP_IPV6_RECVDSTOPTS;
15673 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15674 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15675 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15676 			return (mp);
15677 	}
15678 
15679 	if (optlen == 0) {
15680 		/* Nothing to add */
15681 		return (mp);
15682 	}
15683 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15684 	if (mp1 == NULL) {
15685 		/*
15686 		 * Defer sending ancillary data until the next TCP segment
15687 		 * arrives.
15688 		 */
15689 		return (mp);
15690 	}
15691 	mp1->b_cont = mp;
15692 	mp = mp1;
15693 	mp->b_wptr += sizeof (*todi) + optlen;
15694 	mp->b_datap->db_type = M_PROTO;
15695 	todi = (struct T_optdata_ind *)mp->b_rptr;
15696 	todi->PRIM_type = T_OPTDATA_IND;
15697 	todi->DATA_flag = 1;	/* MORE data */
15698 	todi->OPT_length = optlen;
15699 	todi->OPT_offset = sizeof (*todi);
15700 	optptr = (uchar_t *)&todi[1];
15701 	/*
15702 	 * If app asked for pktinfo and the index has changed ...
15703 	 * Note that the local address never changes for the connection.
15704 	 */
15705 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15706 		struct in6_pktinfo *pkti;
15707 
15708 		toh = (struct T_opthdr *)optptr;
15709 		toh->level = IPPROTO_IPV6;
15710 		toh->name = IPV6_PKTINFO;
15711 		toh->len = sizeof (*toh) + sizeof (*pkti);
15712 		toh->status = 0;
15713 		optptr += sizeof (*toh);
15714 		pkti = (struct in6_pktinfo *)optptr;
15715 		if (tcp->tcp_ipversion == IPV6_VERSION)
15716 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15717 		else
15718 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15719 			    &pkti->ipi6_addr);
15720 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15721 		optptr += sizeof (*pkti);
15722 		ASSERT(OK_32PTR(optptr));
15723 		/* Save as "last" value */
15724 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15725 	}
15726 	/* If app asked for hoplimit and it has changed ... */
15727 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15728 		toh = (struct T_opthdr *)optptr;
15729 		toh->level = IPPROTO_IPV6;
15730 		toh->name = IPV6_HOPLIMIT;
15731 		toh->len = sizeof (*toh) + sizeof (uint_t);
15732 		toh->status = 0;
15733 		optptr += sizeof (*toh);
15734 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15735 		optptr += sizeof (uint_t);
15736 		ASSERT(OK_32PTR(optptr));
15737 		/* Save as "last" value */
15738 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15739 	}
15740 	/* If app asked for tclass and it has changed ... */
15741 	if (addflag & TCP_IPV6_RECVTCLASS) {
15742 		toh = (struct T_opthdr *)optptr;
15743 		toh->level = IPPROTO_IPV6;
15744 		toh->name = IPV6_TCLASS;
15745 		toh->len = sizeof (*toh) + sizeof (uint_t);
15746 		toh->status = 0;
15747 		optptr += sizeof (*toh);
15748 		*(uint_t *)optptr = ipp->ipp_tclass;
15749 		optptr += sizeof (uint_t);
15750 		ASSERT(OK_32PTR(optptr));
15751 		/* Save as "last" value */
15752 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15753 	}
15754 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15755 		toh = (struct T_opthdr *)optptr;
15756 		toh->level = IPPROTO_IPV6;
15757 		toh->name = IPV6_HOPOPTS;
15758 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15759 		    tcp->tcp_label_len;
15760 		toh->status = 0;
15761 		optptr += sizeof (*toh);
15762 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15763 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15764 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15765 		ASSERT(OK_32PTR(optptr));
15766 		/* Save as last value */
15767 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15768 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15769 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15770 	}
15771 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15772 		toh = (struct T_opthdr *)optptr;
15773 		toh->level = IPPROTO_IPV6;
15774 		toh->name = IPV6_RTHDRDSTOPTS;
15775 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15776 		toh->status = 0;
15777 		optptr += sizeof (*toh);
15778 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15779 		optptr += ipp->ipp_rtdstoptslen;
15780 		ASSERT(OK_32PTR(optptr));
15781 		/* Save as last value */
15782 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15783 		    &tcp->tcp_rtdstoptslen,
15784 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15785 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15786 	}
15787 	if (addflag & TCP_IPV6_RECVRTHDR) {
15788 		toh = (struct T_opthdr *)optptr;
15789 		toh->level = IPPROTO_IPV6;
15790 		toh->name = IPV6_RTHDR;
15791 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15792 		toh->status = 0;
15793 		optptr += sizeof (*toh);
15794 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15795 		optptr += ipp->ipp_rthdrlen;
15796 		ASSERT(OK_32PTR(optptr));
15797 		/* Save as last value */
15798 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15799 		    (ipp->ipp_fields & IPPF_RTHDR),
15800 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15801 	}
15802 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15803 		toh = (struct T_opthdr *)optptr;
15804 		toh->level = IPPROTO_IPV6;
15805 		toh->name = IPV6_DSTOPTS;
15806 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15807 		toh->status = 0;
15808 		optptr += sizeof (*toh);
15809 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15810 		optptr += ipp->ipp_dstoptslen;
15811 		ASSERT(OK_32PTR(optptr));
15812 		/* Save as last value */
15813 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15814 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15815 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15816 	}
15817 	ASSERT(optptr == mp->b_wptr);
15818 	return (mp);
15819 }
15820 
15821 /*
15822  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15823  * messages.
15824  */
15825 void
15826 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15827 {
15828 	uchar_t	*rptr = mp->b_rptr;
15829 	queue_t	*q = tcp->tcp_rq;
15830 	struct T_error_ack *tea;
15831 
15832 	switch (mp->b_datap->db_type) {
15833 	case M_PROTO:
15834 	case M_PCPROTO:
15835 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15836 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15837 			break;
15838 		tea = (struct T_error_ack *)rptr;
15839 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15840 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15841 		    tea->ERROR_prim != T_BIND_REQ);
15842 		switch (tea->PRIM_type) {
15843 		case T_ERROR_ACK:
15844 			if (tcp->tcp_debug) {
15845 				(void) strlog(TCP_MOD_ID, 0, 1,
15846 				    SL_TRACE|SL_ERROR,
15847 				    "tcp_rput_other: case T_ERROR_ACK, "
15848 				    "ERROR_prim == %d",
15849 				    tea->ERROR_prim);
15850 			}
15851 			switch (tea->ERROR_prim) {
15852 			case T_SVR4_OPTMGMT_REQ:
15853 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15854 					/* T_OPTMGMT_REQ generated by TCP */
15855 					printf("T_SVR4_OPTMGMT_REQ failed "
15856 					    "%d/%d - dropped (cnt %d)\n",
15857 					    tea->TLI_error, tea->UNIX_error,
15858 					    tcp->tcp_drop_opt_ack_cnt);
15859 					freemsg(mp);
15860 					tcp->tcp_drop_opt_ack_cnt--;
15861 					return;
15862 				}
15863 				break;
15864 			}
15865 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15866 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15867 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15868 				    "- dropped (cnt %d)\n",
15869 				    tea->TLI_error, tea->UNIX_error,
15870 				    tcp->tcp_drop_opt_ack_cnt);
15871 				freemsg(mp);
15872 				tcp->tcp_drop_opt_ack_cnt--;
15873 				return;
15874 			}
15875 			break;
15876 		case T_OPTMGMT_ACK:
15877 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15878 				/* T_OPTMGMT_REQ generated by TCP */
15879 				freemsg(mp);
15880 				tcp->tcp_drop_opt_ack_cnt--;
15881 				return;
15882 			}
15883 			break;
15884 		default:
15885 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15886 			break;
15887 		}
15888 		break;
15889 	case M_FLUSH:
15890 		if (*rptr & FLUSHR)
15891 			flushq(q, FLUSHDATA);
15892 		break;
15893 	default:
15894 		/* M_CTL will be directly sent to tcp_icmp_error() */
15895 		ASSERT(DB_TYPE(mp) != M_CTL);
15896 		break;
15897 	}
15898 	/*
15899 	 * Make sure we set this bit before sending the ACK for
15900 	 * bind. Otherwise accept could possibly run and free
15901 	 * this tcp struct.
15902 	 */
15903 	ASSERT(q != NULL);
15904 	putnext(q, mp);
15905 }
15906 
15907 /* ARGSUSED */
15908 static void
15909 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15910 {
15911 	conn_t	*connp = (conn_t *)arg;
15912 	tcp_t	*tcp = connp->conn_tcp;
15913 	queue_t	*q = tcp->tcp_rq;
15914 	uint_t	thwin;
15915 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15916 	sodirect_t	*sodp;
15917 	boolean_t	fc;
15918 
15919 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15920 	tcp->tcp_rsrv_mp = mp;
15921 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15922 
15923 	TCP_STAT(tcps, tcp_rsrv_calls);
15924 
15925 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15926 		return;
15927 	}
15928 
15929 	if (tcp->tcp_fused) {
15930 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15931 
15932 		ASSERT(tcp->tcp_fused);
15933 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15934 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15935 		ASSERT(!TCP_IS_DETACHED(tcp));
15936 		ASSERT(tcp->tcp_connp->conn_sqp ==
15937 		    peer_tcp->tcp_connp->conn_sqp);
15938 
15939 		/*
15940 		 * Normally we would not get backenabled in synchronous
15941 		 * streams mode, but in case this happens, we need to plug
15942 		 * synchronous streams during our drain to prevent a race
15943 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15944 		 */
15945 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15946 		if (tcp->tcp_rcv_list != NULL)
15947 			(void) tcp_rcv_drain(tcp);
15948 
15949 		if (peer_tcp > tcp) {
15950 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15951 			mutex_enter(&tcp->tcp_non_sq_lock);
15952 		} else {
15953 			mutex_enter(&tcp->tcp_non_sq_lock);
15954 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
15955 		}
15956 
15957 		if (peer_tcp->tcp_flow_stopped &&
15958 		    (TCP_UNSENT_BYTES(peer_tcp) <=
15959 		    peer_tcp->tcp_xmit_lowater)) {
15960 			tcp_clrqfull(peer_tcp);
15961 		}
15962 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
15963 		mutex_exit(&tcp->tcp_non_sq_lock);
15964 
15965 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15966 		TCP_STAT(tcps, tcp_fusion_backenabled);
15967 		return;
15968 	}
15969 
15970 	SOD_PTR_ENTER(tcp, sodp);
15971 	if (sodp != NULL) {
15972 		/* An sodirect connection */
15973 		if (SOD_QFULL(sodp)) {
15974 			/* Flow-controlled, need another back-enable */
15975 			fc = B_TRUE;
15976 			SOD_QSETBE(sodp);
15977 		} else {
15978 			/* Not flow-controlled */
15979 			fc = B_FALSE;
15980 		}
15981 		mutex_exit(sodp->sod_lockp);
15982 	} else if (canputnext(q)) {
15983 		/* STREAMS, not flow-controlled */
15984 		fc = B_FALSE;
15985 	} else {
15986 		/* STREAMS, flow-controlled */
15987 		fc = B_TRUE;
15988 	}
15989 	if (!fc) {
15990 		/* Not flow-controlled, open rwnd */
15991 		tcp->tcp_rwnd = q->q_hiwat;
15992 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15993 		    << tcp->tcp_rcv_ws;
15994 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15995 		/*
15996 		 * Send back a window update immediately if TCP is above
15997 		 * ESTABLISHED state and the increase of the rcv window
15998 		 * that the other side knows is at least 1 MSS after flow
15999 		 * control is lifted.
16000 		 */
16001 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16002 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16003 			tcp_xmit_ctl(NULL, tcp,
16004 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16005 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16006 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16007 		}
16008 	}
16009 }
16010 
16011 /*
16012  * The read side service routine is called mostly when we get back-enabled as a
16013  * result of flow control relief.  Since we don't actually queue anything in
16014  * TCP, we have no data to send out of here.  What we do is clear the receive
16015  * window, and send out a window update.
16016  */
16017 static void
16018 tcp_rsrv(queue_t *q)
16019 {
16020 	conn_t		*connp = Q_TO_CONN(q);
16021 	tcp_t		*tcp = connp->conn_tcp;
16022 	mblk_t		*mp;
16023 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16024 
16025 	/* No code does a putq on the read side */
16026 	ASSERT(q->q_first == NULL);
16027 
16028 	/* Nothing to do for the default queue */
16029 	if (q == tcps->tcps_g_q) {
16030 		return;
16031 	}
16032 
16033 	/*
16034 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
16035 	 * been run.  So just return.
16036 	 */
16037 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
16038 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
16039 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
16040 		return;
16041 	}
16042 	tcp->tcp_rsrv_mp = NULL;
16043 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
16044 
16045 	CONN_INC_REF(connp);
16046 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16047 	    SQ_PROCESS, SQTAG_TCP_RSRV);
16048 }
16049 
16050 /*
16051  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16052  * We do not allow the receive window to shrink.  After setting rwnd,
16053  * set the flow control hiwat of the stream.
16054  *
16055  * This function is called in 2 cases:
16056  *
16057  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16058  *    connection (passive open) and in tcp_rput_data() for active connect.
16059  *    This is called after tcp_mss_set() when the desired MSS value is known.
16060  *    This makes sure that our window size is a mutiple of the other side's
16061  *    MSS.
16062  * 2) Handling SO_RCVBUF option.
16063  *
16064  * It is ASSUMED that the requested size is a multiple of the current MSS.
16065  *
16066  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16067  * user requests so.
16068  */
16069 static int
16070 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16071 {
16072 	uint32_t	mss = tcp->tcp_mss;
16073 	uint32_t	old_max_rwnd;
16074 	uint32_t	max_transmittable_rwnd;
16075 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16076 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16077 
16078 	if (tcp->tcp_fused) {
16079 		size_t sth_hiwat;
16080 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16081 
16082 		ASSERT(peer_tcp != NULL);
16083 		/*
16084 		 * Record the stream head's high water mark for
16085 		 * this endpoint; this is used for flow-control
16086 		 * purposes in tcp_fuse_output().
16087 		 */
16088 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16089 		if (!tcp_detached) {
16090 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16091 			    sth_hiwat);
16092 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
16093 				conn_t *connp = tcp->tcp_connp;
16094 				struct sock_proto_props sopp;
16095 
16096 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
16097 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
16098 
16099 				(*connp->conn_upcalls->su_set_proto_props)
16100 				    (connp->conn_upper_handle, &sopp);
16101 			}
16102 		}
16103 
16104 		/*
16105 		 * In the fusion case, the maxpsz stream head value of
16106 		 * our peer is set according to its send buffer size
16107 		 * and our receive buffer size; since the latter may
16108 		 * have changed we need to update the peer's maxpsz.
16109 		 */
16110 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16111 		return (rwnd);
16112 	}
16113 
16114 	if (tcp_detached) {
16115 		old_max_rwnd = tcp->tcp_rwnd;
16116 	} else {
16117 		old_max_rwnd = tcp->tcp_recv_hiwater;
16118 	}
16119 
16120 	/*
16121 	 * Insist on a receive window that is at least
16122 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16123 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16124 	 * and delayed acknowledgement.
16125 	 */
16126 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16127 
16128 	/*
16129 	 * If window size info has already been exchanged, TCP should not
16130 	 * shrink the window.  Shrinking window is doable if done carefully.
16131 	 * We may add that support later.  But so far there is not a real
16132 	 * need to do that.
16133 	 */
16134 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16135 		/* MSS may have changed, do a round up again. */
16136 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16137 	}
16138 
16139 	/*
16140 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16141 	 * can be applied even before the window scale option is decided.
16142 	 */
16143 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16144 	if (rwnd > max_transmittable_rwnd) {
16145 		rwnd = max_transmittable_rwnd -
16146 		    (max_transmittable_rwnd % mss);
16147 		if (rwnd < mss)
16148 			rwnd = max_transmittable_rwnd;
16149 		/*
16150 		 * If we're over the limit we may have to back down tcp_rwnd.
16151 		 * The increment below won't work for us. So we set all three
16152 		 * here and the increment below will have no effect.
16153 		 */
16154 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16155 	}
16156 	if (tcp->tcp_localnet) {
16157 		tcp->tcp_rack_abs_max =
16158 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16159 	} else {
16160 		/*
16161 		 * For a remote host on a different subnet (through a router),
16162 		 * we ack every other packet to be conforming to RFC1122.
16163 		 * tcp_deferred_acks_max is default to 2.
16164 		 */
16165 		tcp->tcp_rack_abs_max =
16166 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16167 	}
16168 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16169 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16170 	else
16171 		tcp->tcp_rack_cur_max = 0;
16172 	/*
16173 	 * Increment the current rwnd by the amount the maximum grew (we
16174 	 * can not overwrite it since we might be in the middle of a
16175 	 * connection.)
16176 	 */
16177 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16178 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16179 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16180 		tcp->tcp_cwnd_max = rwnd;
16181 
16182 	if (tcp_detached)
16183 		return (rwnd);
16184 	/*
16185 	 * We set the maximum receive window into rq->q_hiwat if it is
16186 	 * a STREAMS socket.
16187 	 * This is not actually used for flow control.
16188 	 */
16189 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
16190 		tcp->tcp_rq->q_hiwat = rwnd;
16191 	tcp->tcp_recv_hiwater = rwnd;
16192 	/*
16193 	 * Set the STREAM head high water mark. This doesn't have to be
16194 	 * here, since we are simply using default values, but we would
16195 	 * prefer to choose these values algorithmically, with a likely
16196 	 * relationship to rwnd.
16197 	 */
16198 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
16199 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16200 	return (rwnd);
16201 }
16202 
16203 /*
16204  * Return SNMP stuff in buffer in mpdata.
16205  */
16206 mblk_t *
16207 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16208 {
16209 	mblk_t			*mpdata;
16210 	mblk_t			*mp_conn_ctl = NULL;
16211 	mblk_t			*mp_conn_tail;
16212 	mblk_t			*mp_attr_ctl = NULL;
16213 	mblk_t			*mp_attr_tail;
16214 	mblk_t			*mp6_conn_ctl = NULL;
16215 	mblk_t			*mp6_conn_tail;
16216 	mblk_t			*mp6_attr_ctl = NULL;
16217 	mblk_t			*mp6_attr_tail;
16218 	struct opthdr		*optp;
16219 	mib2_tcpConnEntry_t	tce;
16220 	mib2_tcp6ConnEntry_t	tce6;
16221 	mib2_transportMLPEntry_t mlp;
16222 	connf_t			*connfp;
16223 	int			i;
16224 	boolean_t 		ispriv;
16225 	zoneid_t 		zoneid;
16226 	int			v4_conn_idx;
16227 	int			v6_conn_idx;
16228 	conn_t			*connp = Q_TO_CONN(q);
16229 	tcp_stack_t		*tcps;
16230 	ip_stack_t		*ipst;
16231 	mblk_t			*mp2ctl;
16232 
16233 	/*
16234 	 * make a copy of the original message
16235 	 */
16236 	mp2ctl = copymsg(mpctl);
16237 
16238 	if (mpctl == NULL ||
16239 	    (mpdata = mpctl->b_cont) == NULL ||
16240 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16241 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16242 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16243 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16244 		freemsg(mp_conn_ctl);
16245 		freemsg(mp_attr_ctl);
16246 		freemsg(mp6_conn_ctl);
16247 		freemsg(mp6_attr_ctl);
16248 		freemsg(mpctl);
16249 		freemsg(mp2ctl);
16250 		return (NULL);
16251 	}
16252 
16253 	ipst = connp->conn_netstack->netstack_ip;
16254 	tcps = connp->conn_netstack->netstack_tcp;
16255 
16256 	/* build table of connections -- need count in fixed part */
16257 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16258 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16259 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16260 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16261 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16262 
16263 	ispriv =
16264 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16265 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16266 
16267 	v4_conn_idx = v6_conn_idx = 0;
16268 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16269 
16270 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16271 		ipst = tcps->tcps_netstack->netstack_ip;
16272 
16273 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16274 
16275 		connp = NULL;
16276 
16277 		while ((connp =
16278 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16279 			tcp_t *tcp;
16280 			boolean_t needattr;
16281 
16282 			if (connp->conn_zoneid != zoneid)
16283 				continue;	/* not in this zone */
16284 
16285 			tcp = connp->conn_tcp;
16286 			UPDATE_MIB(&tcps->tcps_mib,
16287 			    tcpHCInSegs, tcp->tcp_ibsegs);
16288 			tcp->tcp_ibsegs = 0;
16289 			UPDATE_MIB(&tcps->tcps_mib,
16290 			    tcpHCOutSegs, tcp->tcp_obsegs);
16291 			tcp->tcp_obsegs = 0;
16292 
16293 			tce6.tcp6ConnState = tce.tcpConnState =
16294 			    tcp_snmp_state(tcp);
16295 			if (tce.tcpConnState == MIB2_TCP_established ||
16296 			    tce.tcpConnState == MIB2_TCP_closeWait)
16297 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16298 
16299 			needattr = B_FALSE;
16300 			bzero(&mlp, sizeof (mlp));
16301 			if (connp->conn_mlp_type != mlptSingle) {
16302 				if (connp->conn_mlp_type == mlptShared ||
16303 				    connp->conn_mlp_type == mlptBoth)
16304 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16305 				if (connp->conn_mlp_type == mlptPrivate ||
16306 				    connp->conn_mlp_type == mlptBoth)
16307 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16308 				needattr = B_TRUE;
16309 			}
16310 			if (connp->conn_peercred != NULL) {
16311 				ts_label_t *tsl;
16312 
16313 				tsl = crgetlabel(connp->conn_peercred);
16314 				mlp.tme_doi = label2doi(tsl);
16315 				mlp.tme_label = *label2bslabel(tsl);
16316 				needattr = B_TRUE;
16317 			}
16318 
16319 			/* Create a message to report on IPv6 entries */
16320 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16321 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16322 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16323 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16324 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16325 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16326 			/* Don't want just anybody seeing these... */
16327 			if (ispriv) {
16328 				tce6.tcp6ConnEntryInfo.ce_snxt =
16329 				    tcp->tcp_snxt;
16330 				tce6.tcp6ConnEntryInfo.ce_suna =
16331 				    tcp->tcp_suna;
16332 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16333 				    tcp->tcp_rnxt;
16334 				tce6.tcp6ConnEntryInfo.ce_rack =
16335 				    tcp->tcp_rack;
16336 			} else {
16337 				/*
16338 				 * Netstat, unfortunately, uses this to
16339 				 * get send/receive queue sizes.  How to fix?
16340 				 * Why not compute the difference only?
16341 				 */
16342 				tce6.tcp6ConnEntryInfo.ce_snxt =
16343 				    tcp->tcp_snxt - tcp->tcp_suna;
16344 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16345 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16346 				    tcp->tcp_rnxt - tcp->tcp_rack;
16347 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16348 			}
16349 
16350 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16351 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16352 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16353 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16354 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16355 
16356 			tce6.tcp6ConnCreationProcess =
16357 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16358 			    tcp->tcp_cpid;
16359 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16360 
16361 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16362 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16363 
16364 			mlp.tme_connidx = v6_conn_idx++;
16365 			if (needattr)
16366 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16367 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16368 			}
16369 			/*
16370 			 * Create an IPv4 table entry for IPv4 entries and also
16371 			 * for IPv6 entries which are bound to in6addr_any
16372 			 * but don't have IPV6_V6ONLY set.
16373 			 * (i.e. anything an IPv4 peer could connect to)
16374 			 */
16375 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16376 			    (tcp->tcp_state <= TCPS_LISTEN &&
16377 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16378 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16379 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16380 					tce.tcpConnRemAddress = INADDR_ANY;
16381 					tce.tcpConnLocalAddress = INADDR_ANY;
16382 				} else {
16383 					tce.tcpConnRemAddress =
16384 					    tcp->tcp_remote;
16385 					tce.tcpConnLocalAddress =
16386 					    tcp->tcp_ip_src;
16387 				}
16388 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16389 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16390 				/* Don't want just anybody seeing these... */
16391 				if (ispriv) {
16392 					tce.tcpConnEntryInfo.ce_snxt =
16393 					    tcp->tcp_snxt;
16394 					tce.tcpConnEntryInfo.ce_suna =
16395 					    tcp->tcp_suna;
16396 					tce.tcpConnEntryInfo.ce_rnxt =
16397 					    tcp->tcp_rnxt;
16398 					tce.tcpConnEntryInfo.ce_rack =
16399 					    tcp->tcp_rack;
16400 				} else {
16401 					/*
16402 					 * Netstat, unfortunately, uses this to
16403 					 * get send/receive queue sizes.  How
16404 					 * to fix?
16405 					 * Why not compute the difference only?
16406 					 */
16407 					tce.tcpConnEntryInfo.ce_snxt =
16408 					    tcp->tcp_snxt - tcp->tcp_suna;
16409 					tce.tcpConnEntryInfo.ce_suna = 0;
16410 					tce.tcpConnEntryInfo.ce_rnxt =
16411 					    tcp->tcp_rnxt - tcp->tcp_rack;
16412 					tce.tcpConnEntryInfo.ce_rack = 0;
16413 				}
16414 
16415 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16416 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16417 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16418 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16419 				tce.tcpConnEntryInfo.ce_state =
16420 				    tcp->tcp_state;
16421 
16422 				tce.tcpConnCreationProcess =
16423 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16424 				    tcp->tcp_cpid;
16425 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16426 
16427 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16428 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16429 
16430 				mlp.tme_connidx = v4_conn_idx++;
16431 				if (needattr)
16432 					(void) snmp_append_data2(
16433 					    mp_attr_ctl->b_cont,
16434 					    &mp_attr_tail, (char *)&mlp,
16435 					    sizeof (mlp));
16436 			}
16437 		}
16438 	}
16439 
16440 	/* fixed length structure for IPv4 and IPv6 counters */
16441 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16442 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16443 	    sizeof (mib2_tcp6ConnEntry_t));
16444 	/* synchronize 32- and 64-bit counters */
16445 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16446 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16447 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16448 	optp->level = MIB2_TCP;
16449 	optp->name = 0;
16450 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16451 	    sizeof (tcps->tcps_mib));
16452 	optp->len = msgdsize(mpdata);
16453 	qreply(q, mpctl);
16454 
16455 	/* table of connections... */
16456 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16457 	    sizeof (struct T_optmgmt_ack)];
16458 	optp->level = MIB2_TCP;
16459 	optp->name = MIB2_TCP_CONN;
16460 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16461 	qreply(q, mp_conn_ctl);
16462 
16463 	/* table of MLP attributes... */
16464 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16465 	    sizeof (struct T_optmgmt_ack)];
16466 	optp->level = MIB2_TCP;
16467 	optp->name = EXPER_XPORT_MLP;
16468 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16469 	if (optp->len == 0)
16470 		freemsg(mp_attr_ctl);
16471 	else
16472 		qreply(q, mp_attr_ctl);
16473 
16474 	/* table of IPv6 connections... */
16475 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16476 	    sizeof (struct T_optmgmt_ack)];
16477 	optp->level = MIB2_TCP6;
16478 	optp->name = MIB2_TCP6_CONN;
16479 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16480 	qreply(q, mp6_conn_ctl);
16481 
16482 	/* table of IPv6 MLP attributes... */
16483 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16484 	    sizeof (struct T_optmgmt_ack)];
16485 	optp->level = MIB2_TCP6;
16486 	optp->name = EXPER_XPORT_MLP;
16487 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16488 	if (optp->len == 0)
16489 		freemsg(mp6_attr_ctl);
16490 	else
16491 		qreply(q, mp6_attr_ctl);
16492 	return (mp2ctl);
16493 }
16494 
16495 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16496 /* ARGSUSED */
16497 int
16498 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16499 {
16500 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16501 
16502 	switch (level) {
16503 	case MIB2_TCP:
16504 		switch (name) {
16505 		case 13:
16506 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16507 				return (0);
16508 			/* TODO: delete entry defined by tce */
16509 			return (1);
16510 		default:
16511 			return (0);
16512 		}
16513 	default:
16514 		return (1);
16515 	}
16516 }
16517 
16518 /* Translate TCP state to MIB2 TCP state. */
16519 static int
16520 tcp_snmp_state(tcp_t *tcp)
16521 {
16522 	if (tcp == NULL)
16523 		return (0);
16524 
16525 	switch (tcp->tcp_state) {
16526 	case TCPS_CLOSED:
16527 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16528 	case TCPS_BOUND:
16529 		return (MIB2_TCP_closed);
16530 	case TCPS_LISTEN:
16531 		return (MIB2_TCP_listen);
16532 	case TCPS_SYN_SENT:
16533 		return (MIB2_TCP_synSent);
16534 	case TCPS_SYN_RCVD:
16535 		return (MIB2_TCP_synReceived);
16536 	case TCPS_ESTABLISHED:
16537 		return (MIB2_TCP_established);
16538 	case TCPS_CLOSE_WAIT:
16539 		return (MIB2_TCP_closeWait);
16540 	case TCPS_FIN_WAIT_1:
16541 		return (MIB2_TCP_finWait1);
16542 	case TCPS_CLOSING:
16543 		return (MIB2_TCP_closing);
16544 	case TCPS_LAST_ACK:
16545 		return (MIB2_TCP_lastAck);
16546 	case TCPS_FIN_WAIT_2:
16547 		return (MIB2_TCP_finWait2);
16548 	case TCPS_TIME_WAIT:
16549 		return (MIB2_TCP_timeWait);
16550 	default:
16551 		return (0);
16552 	}
16553 }
16554 
16555 static char tcp_report_header[] =
16556 	"TCP     " MI_COL_HDRPAD_STR
16557 	"zone dest	    snxt     suna     "
16558 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16559 	"recent   [lport,fport] state";
16560 
16561 /*
16562  * TCP status report triggered via the Named Dispatch mechanism.
16563  */
16564 /* ARGSUSED */
16565 static void
16566 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16567     cred_t *cr)
16568 {
16569 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16570 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16571 	char cflag;
16572 	in6_addr_t	v6dst;
16573 	char buf[80];
16574 	uint_t print_len, buf_len;
16575 
16576 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16577 	if (buf_len <= 0)
16578 		return;
16579 
16580 	if (hashval >= 0)
16581 		(void) sprintf(hash, "%03d ", hashval);
16582 	else
16583 		hash[0] = '\0';
16584 
16585 	/*
16586 	 * Note that we use the remote address in the tcp_b  structure.
16587 	 * This means that it will print out the real destination address,
16588 	 * not the next hop's address if source routing is used.  This
16589 	 * avoid the confusion on the output because user may not
16590 	 * know that source routing is used for a connection.
16591 	 */
16592 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16593 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16594 	} else {
16595 		v6dst = tcp->tcp_remote_v6;
16596 	}
16597 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16598 	/*
16599 	 * the ispriv checks are so that normal users cannot determine
16600 	 * sequence number information using NDD.
16601 	 */
16602 
16603 	if (TCP_IS_DETACHED(tcp))
16604 		cflag = '*';
16605 	else
16606 		cflag = ' ';
16607 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16608 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16609 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16610 	    hash,
16611 	    (void *)tcp,
16612 	    tcp->tcp_connp->conn_zoneid,
16613 	    addrbuf,
16614 	    (ispriv) ? tcp->tcp_snxt : 0,
16615 	    (ispriv) ? tcp->tcp_suna : 0,
16616 	    tcp->tcp_swnd,
16617 	    (ispriv) ? tcp->tcp_rnxt : 0,
16618 	    (ispriv) ? tcp->tcp_rack : 0,
16619 	    tcp->tcp_rwnd,
16620 	    tcp->tcp_rto,
16621 	    tcp->tcp_mss,
16622 	    tcp->tcp_snd_ws_ok,
16623 	    tcp->tcp_snd_ws,
16624 	    tcp->tcp_rcv_ws,
16625 	    tcp->tcp_snd_ts_ok,
16626 	    tcp->tcp_ts_recent,
16627 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16628 	if (print_len < buf_len) {
16629 		((mblk_t *)mp)->b_wptr += print_len;
16630 	} else {
16631 		((mblk_t *)mp)->b_wptr += buf_len;
16632 	}
16633 }
16634 
16635 /*
16636  * TCP status report (for listeners only) triggered via the Named Dispatch
16637  * mechanism.
16638  */
16639 /* ARGSUSED */
16640 static void
16641 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16642 {
16643 	char addrbuf[INET6_ADDRSTRLEN];
16644 	in6_addr_t	v6dst;
16645 	uint_t print_len, buf_len;
16646 
16647 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16648 	if (buf_len <= 0)
16649 		return;
16650 
16651 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16652 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16653 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16654 	} else {
16655 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16656 		    addrbuf, sizeof (addrbuf));
16657 	}
16658 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16659 	    "%03d "
16660 	    MI_COL_PTRFMT_STR
16661 	    "%d %s %05u %08u %d/%d/%d%c\n",
16662 	    hashval, (void *)tcp,
16663 	    tcp->tcp_connp->conn_zoneid,
16664 	    addrbuf,
16665 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16666 	    tcp->tcp_conn_req_seqnum,
16667 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16668 	    tcp->tcp_conn_req_max,
16669 	    tcp->tcp_syn_defense ? '*' : ' ');
16670 	if (print_len < buf_len) {
16671 		((mblk_t *)mp)->b_wptr += print_len;
16672 	} else {
16673 		((mblk_t *)mp)->b_wptr += buf_len;
16674 	}
16675 }
16676 
16677 /* TCP status report triggered via the Named Dispatch mechanism. */
16678 /* ARGSUSED */
16679 static int
16680 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16681 {
16682 	tcp_t	*tcp;
16683 	int	i;
16684 	conn_t	*connp;
16685 	connf_t	*connfp;
16686 	zoneid_t zoneid;
16687 	tcp_stack_t *tcps;
16688 	ip_stack_t *ipst;
16689 
16690 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16691 	tcps = Q_TO_TCP(q)->tcp_tcps;
16692 
16693 	/*
16694 	 * Because of the ndd constraint, at most we can have 64K buffer
16695 	 * to put in all TCP info.  So to be more efficient, just
16696 	 * allocate a 64K buffer here, assuming we need that large buffer.
16697 	 * This may be a problem as any user can read tcp_status.  Therefore
16698 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16699 	 * This should be OK as normal users should not do this too often.
16700 	 */
16701 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16702 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16703 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16704 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16705 			return (0);
16706 		}
16707 	}
16708 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16709 		/* The following may work even if we cannot get a large buf. */
16710 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16711 		return (0);
16712 	}
16713 
16714 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16715 
16716 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16717 
16718 		ipst = tcps->tcps_netstack->netstack_ip;
16719 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16720 
16721 		connp = NULL;
16722 
16723 		while ((connp =
16724 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16725 			tcp = connp->conn_tcp;
16726 			if (zoneid != GLOBAL_ZONEID &&
16727 			    zoneid != connp->conn_zoneid)
16728 				continue;
16729 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16730 			    cr);
16731 		}
16732 
16733 	}
16734 
16735 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16736 	return (0);
16737 }
16738 
16739 /* TCP status report triggered via the Named Dispatch mechanism. */
16740 /* ARGSUSED */
16741 static int
16742 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16743 {
16744 	tf_t	*tbf;
16745 	tcp_t	*tcp, *ltcp;
16746 	int	i;
16747 	zoneid_t zoneid;
16748 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16749 
16750 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16751 
16752 	/* Refer to comments in tcp_status_report(). */
16753 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16754 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16755 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16756 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16757 			return (0);
16758 		}
16759 	}
16760 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16761 		/* The following may work even if we cannot get a large buf. */
16762 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16763 		return (0);
16764 	}
16765 
16766 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16767 
16768 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16769 		tbf = &tcps->tcps_bind_fanout[i];
16770 		mutex_enter(&tbf->tf_lock);
16771 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
16772 		    ltcp = ltcp->tcp_bind_hash) {
16773 			for (tcp = ltcp; tcp != NULL;
16774 			    tcp = tcp->tcp_bind_hash_port) {
16775 				if (zoneid != GLOBAL_ZONEID &&
16776 				    zoneid != tcp->tcp_connp->conn_zoneid)
16777 					continue;
16778 				CONN_INC_REF(tcp->tcp_connp);
16779 				tcp_report_item(mp->b_cont, tcp, i,
16780 				    Q_TO_TCP(q), cr);
16781 				CONN_DEC_REF(tcp->tcp_connp);
16782 			}
16783 		}
16784 		mutex_exit(&tbf->tf_lock);
16785 	}
16786 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16787 	return (0);
16788 }
16789 
16790 /* TCP status report triggered via the Named Dispatch mechanism. */
16791 /* ARGSUSED */
16792 static int
16793 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16794 {
16795 	connf_t	*connfp;
16796 	conn_t	*connp;
16797 	tcp_t	*tcp;
16798 	int	i;
16799 	zoneid_t zoneid;
16800 	tcp_stack_t *tcps;
16801 	ip_stack_t	*ipst;
16802 
16803 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16804 	tcps = Q_TO_TCP(q)->tcp_tcps;
16805 
16806 	/* Refer to comments in tcp_status_report(). */
16807 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16808 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16809 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16810 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16811 			return (0);
16812 		}
16813 	}
16814 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16815 		/* The following may work even if we cannot get a large buf. */
16816 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16817 		return (0);
16818 	}
16819 
16820 	(void) mi_mpprintf(mp,
16821 	    "    TCP    " MI_COL_HDRPAD_STR
16822 	    "zone IP addr	 port  seqnum   backlog (q0/q/max)");
16823 
16824 	ipst = tcps->tcps_netstack->netstack_ip;
16825 
16826 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16827 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16828 		connp = NULL;
16829 		while ((connp =
16830 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16831 			tcp = connp->conn_tcp;
16832 			if (zoneid != GLOBAL_ZONEID &&
16833 			    zoneid != connp->conn_zoneid)
16834 				continue;
16835 			tcp_report_listener(mp->b_cont, tcp, i);
16836 		}
16837 	}
16838 
16839 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16840 	return (0);
16841 }
16842 
16843 /* TCP status report triggered via the Named Dispatch mechanism. */
16844 /* ARGSUSED */
16845 static int
16846 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16847 {
16848 	connf_t	*connfp;
16849 	conn_t	*connp;
16850 	tcp_t	*tcp;
16851 	int	i;
16852 	zoneid_t zoneid;
16853 	tcp_stack_t *tcps;
16854 	ip_stack_t *ipst;
16855 
16856 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16857 	tcps = Q_TO_TCP(q)->tcp_tcps;
16858 	ipst = tcps->tcps_netstack->netstack_ip;
16859 
16860 	/* Refer to comments in tcp_status_report(). */
16861 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16862 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16863 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16864 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16865 			return (0);
16866 		}
16867 	}
16868 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16869 		/* The following may work even if we cannot get a large buf. */
16870 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16871 		return (0);
16872 	}
16873 
16874 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16875 	    ipst->ips_ipcl_conn_fanout_size);
16876 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16877 
16878 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16879 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16880 		connp = NULL;
16881 		while ((connp =
16882 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16883 			tcp = connp->conn_tcp;
16884 			if (zoneid != GLOBAL_ZONEID &&
16885 			    zoneid != connp->conn_zoneid)
16886 				continue;
16887 			tcp_report_item(mp->b_cont, tcp, i,
16888 			    Q_TO_TCP(q), cr);
16889 		}
16890 	}
16891 
16892 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16893 	return (0);
16894 }
16895 
16896 /* TCP status report triggered via the Named Dispatch mechanism. */
16897 /* ARGSUSED */
16898 static int
16899 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16900 {
16901 	tf_t	*tf;
16902 	tcp_t	*tcp;
16903 	int	i;
16904 	zoneid_t zoneid;
16905 	tcp_stack_t	*tcps;
16906 
16907 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16908 	tcps = Q_TO_TCP(q)->tcp_tcps;
16909 
16910 	/* Refer to comments in tcp_status_report(). */
16911 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16912 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16913 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16914 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16915 			return (0);
16916 		}
16917 	}
16918 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16919 		/* The following may work even if we cannot get a large buf. */
16920 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16921 		return (0);
16922 	}
16923 
16924 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16925 
16926 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16927 		tf = &tcps->tcps_acceptor_fanout[i];
16928 		mutex_enter(&tf->tf_lock);
16929 		for (tcp = tf->tf_tcp; tcp != NULL;
16930 		    tcp = tcp->tcp_acceptor_hash) {
16931 			if (zoneid != GLOBAL_ZONEID &&
16932 			    zoneid != tcp->tcp_connp->conn_zoneid)
16933 				continue;
16934 			tcp_report_item(mp->b_cont, tcp, i,
16935 			    Q_TO_TCP(q), cr);
16936 		}
16937 		mutex_exit(&tf->tf_lock);
16938 	}
16939 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16940 	return (0);
16941 }
16942 
16943 /*
16944  * tcp_timer is the timer service routine.  It handles the retransmission,
16945  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16946  * from the state of the tcp instance what kind of action needs to be done
16947  * at the time it is called.
16948  */
16949 static void
16950 tcp_timer(void *arg)
16951 {
16952 	mblk_t		*mp;
16953 	clock_t		first_threshold;
16954 	clock_t		second_threshold;
16955 	clock_t		ms;
16956 	uint32_t	mss;
16957 	conn_t		*connp = (conn_t *)arg;
16958 	tcp_t		*tcp = connp->conn_tcp;
16959 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16960 
16961 	tcp->tcp_timer_tid = 0;
16962 
16963 	if (tcp->tcp_fused)
16964 		return;
16965 
16966 	first_threshold =  tcp->tcp_first_timer_threshold;
16967 	second_threshold = tcp->tcp_second_timer_threshold;
16968 	switch (tcp->tcp_state) {
16969 	case TCPS_IDLE:
16970 	case TCPS_BOUND:
16971 	case TCPS_LISTEN:
16972 		return;
16973 	case TCPS_SYN_RCVD: {
16974 		tcp_t	*listener = tcp->tcp_listener;
16975 
16976 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16977 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16978 			/* it's our first timeout */
16979 			tcp->tcp_syn_rcvd_timeout = 1;
16980 			mutex_enter(&listener->tcp_eager_lock);
16981 			listener->tcp_syn_rcvd_timeout++;
16982 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16983 				/*
16984 				 * Make this eager available for drop if we
16985 				 * need to drop one to accomodate a new
16986 				 * incoming SYN request.
16987 				 */
16988 				MAKE_DROPPABLE(listener, tcp);
16989 			}
16990 			if (!listener->tcp_syn_defense &&
16991 			    (listener->tcp_syn_rcvd_timeout >
16992 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16993 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16994 				/* We may be under attack. Put on a defense. */
16995 				listener->tcp_syn_defense = B_TRUE;
16996 				cmn_err(CE_WARN, "High TCP connect timeout "
16997 				    "rate! System (port %d) may be under a "
16998 				    "SYN flood attack!",
16999 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17000 
17001 				listener->tcp_ip_addr_cache = kmem_zalloc(
17002 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17003 				    KM_NOSLEEP);
17004 			}
17005 			mutex_exit(&listener->tcp_eager_lock);
17006 		} else if (listener != NULL) {
17007 			mutex_enter(&listener->tcp_eager_lock);
17008 			tcp->tcp_syn_rcvd_timeout++;
17009 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17010 			    !tcp->tcp_closemp_used) {
17011 				/*
17012 				 * This is our second timeout. Put the tcp in
17013 				 * the list of droppable eagers to allow it to
17014 				 * be dropped, if needed. We don't check
17015 				 * whether tcp_dontdrop is set or not to
17016 				 * protect ourselve from a SYN attack where a
17017 				 * remote host can spoof itself as one of the
17018 				 * good IP source and continue to hold
17019 				 * resources too long.
17020 				 */
17021 				MAKE_DROPPABLE(listener, tcp);
17022 			}
17023 			mutex_exit(&listener->tcp_eager_lock);
17024 		}
17025 	}
17026 		/* FALLTHRU */
17027 	case TCPS_SYN_SENT:
17028 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17029 		second_threshold = tcp->tcp_second_ctimer_threshold;
17030 		break;
17031 	case TCPS_ESTABLISHED:
17032 	case TCPS_FIN_WAIT_1:
17033 	case TCPS_CLOSING:
17034 	case TCPS_CLOSE_WAIT:
17035 	case TCPS_LAST_ACK:
17036 		/* If we have data to rexmit */
17037 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17038 			clock_t	time_to_wait;
17039 
17040 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17041 			if (!tcp->tcp_xmit_head)
17042 				break;
17043 			time_to_wait = lbolt -
17044 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17045 			time_to_wait = tcp->tcp_rto -
17046 			    TICK_TO_MSEC(time_to_wait);
17047 			/*
17048 			 * If the timer fires too early, 1 clock tick earlier,
17049 			 * restart the timer.
17050 			 */
17051 			if (time_to_wait > msec_per_tick) {
17052 				TCP_STAT(tcps, tcp_timer_fire_early);
17053 				TCP_TIMER_RESTART(tcp, time_to_wait);
17054 				return;
17055 			}
17056 			/*
17057 			 * When we probe zero windows, we force the swnd open.
17058 			 * If our peer acks with a closed window swnd will be
17059 			 * set to zero by tcp_rput(). As long as we are
17060 			 * receiving acks tcp_rput will
17061 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17062 			 * first and second interval actions.  NOTE: the timer
17063 			 * interval is allowed to continue its exponential
17064 			 * backoff.
17065 			 */
17066 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17067 				if (tcp->tcp_debug) {
17068 					(void) strlog(TCP_MOD_ID, 0, 1,
17069 					    SL_TRACE, "tcp_timer: zero win");
17070 				}
17071 			} else {
17072 				/*
17073 				 * After retransmission, we need to do
17074 				 * slow start.  Set the ssthresh to one
17075 				 * half of current effective window and
17076 				 * cwnd to one MSS.  Also reset
17077 				 * tcp_cwnd_cnt.
17078 				 *
17079 				 * Note that if tcp_ssthresh is reduced because
17080 				 * of ECN, do not reduce it again unless it is
17081 				 * already one window of data away (tcp_cwr
17082 				 * should then be cleared) or this is a
17083 				 * timeout for a retransmitted segment.
17084 				 */
17085 				uint32_t npkt;
17086 
17087 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17088 					npkt = ((tcp->tcp_timer_backoff ?
17089 					    tcp->tcp_cwnd_ssthresh :
17090 					    tcp->tcp_snxt -
17091 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17092 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17093 					    tcp->tcp_mss;
17094 				}
17095 				tcp->tcp_cwnd = tcp->tcp_mss;
17096 				tcp->tcp_cwnd_cnt = 0;
17097 				if (tcp->tcp_ecn_ok) {
17098 					tcp->tcp_cwr = B_TRUE;
17099 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17100 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17101 				}
17102 			}
17103 			break;
17104 		}
17105 		/*
17106 		 * We have something to send yet we cannot send.  The
17107 		 * reason can be:
17108 		 *
17109 		 * 1. Zero send window: we need to do zero window probe.
17110 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17111 		 * segments.
17112 		 * 3. SWS avoidance: receiver may have shrunk window,
17113 		 * reset our knowledge.
17114 		 *
17115 		 * Note that condition 2 can happen with either 1 or
17116 		 * 3.  But 1 and 3 are exclusive.
17117 		 */
17118 		if (tcp->tcp_unsent != 0) {
17119 			if (tcp->tcp_cwnd == 0) {
17120 				/*
17121 				 * Set tcp_cwnd to 1 MSS so that a
17122 				 * new segment can be sent out.  We
17123 				 * are "clocking out" new data when
17124 				 * the network is really congested.
17125 				 */
17126 				ASSERT(tcp->tcp_ecn_ok);
17127 				tcp->tcp_cwnd = tcp->tcp_mss;
17128 			}
17129 			if (tcp->tcp_swnd == 0) {
17130 				/* Extend window for zero window probe */
17131 				tcp->tcp_swnd++;
17132 				tcp->tcp_zero_win_probe = B_TRUE;
17133 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17134 			} else {
17135 				/*
17136 				 * Handle timeout from sender SWS avoidance.
17137 				 * Reset our knowledge of the max send window
17138 				 * since the receiver might have reduced its
17139 				 * receive buffer.  Avoid setting tcp_max_swnd
17140 				 * to one since that will essentially disable
17141 				 * the SWS checks.
17142 				 *
17143 				 * Note that since we don't have a SWS
17144 				 * state variable, if the timeout is set
17145 				 * for ECN but not for SWS, this
17146 				 * code will also be executed.  This is
17147 				 * fine as tcp_max_swnd is updated
17148 				 * constantly and it will not affect
17149 				 * anything.
17150 				 */
17151 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17152 			}
17153 			tcp_wput_data(tcp, NULL, B_FALSE);
17154 			return;
17155 		}
17156 		/* Is there a FIN that needs to be to re retransmitted? */
17157 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17158 		    !tcp->tcp_fin_acked)
17159 			break;
17160 		/* Nothing to do, return without restarting timer. */
17161 		TCP_STAT(tcps, tcp_timer_fire_miss);
17162 		return;
17163 	case TCPS_FIN_WAIT_2:
17164 		/*
17165 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17166 		 * We waited some time for for peer's FIN, but it hasn't
17167 		 * arrived.  We flush the connection now to avoid
17168 		 * case where the peer has rebooted.
17169 		 */
17170 		if (TCP_IS_DETACHED(tcp)) {
17171 			(void) tcp_clean_death(tcp, 0, 23);
17172 		} else {
17173 			TCP_TIMER_RESTART(tcp,
17174 			    tcps->tcps_fin_wait_2_flush_interval);
17175 		}
17176 		return;
17177 	case TCPS_TIME_WAIT:
17178 		(void) tcp_clean_death(tcp, 0, 24);
17179 		return;
17180 	default:
17181 		if (tcp->tcp_debug) {
17182 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17183 			    "tcp_timer: strange state (%d) %s",
17184 			    tcp->tcp_state, tcp_display(tcp, NULL,
17185 			    DISP_PORT_ONLY));
17186 		}
17187 		return;
17188 	}
17189 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17190 		/*
17191 		 * For zero window probe, we need to send indefinitely,
17192 		 * unless we have not heard from the other side for some
17193 		 * time...
17194 		 */
17195 		if ((tcp->tcp_zero_win_probe == 0) ||
17196 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17197 		    second_threshold)) {
17198 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17199 			/*
17200 			 * If TCP is in SYN_RCVD state, send back a
17201 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17202 			 * should be zero in TCPS_SYN_RCVD state.
17203 			 */
17204 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17205 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17206 				    "in SYN_RCVD",
17207 				    tcp, tcp->tcp_snxt,
17208 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17209 			}
17210 			(void) tcp_clean_death(tcp,
17211 			    tcp->tcp_client_errno ?
17212 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17213 			return;
17214 		} else {
17215 			/*
17216 			 * Set tcp_ms_we_have_waited to second_threshold
17217 			 * so that in next timeout, we will do the above
17218 			 * check (lbolt - tcp_last_recv_time).  This is
17219 			 * also to avoid overflow.
17220 			 *
17221 			 * We don't need to decrement tcp_timer_backoff
17222 			 * to avoid overflow because it will be decremented
17223 			 * later if new timeout value is greater than
17224 			 * tcp_rexmit_interval_max.  In the case when
17225 			 * tcp_rexmit_interval_max is greater than
17226 			 * second_threshold, it means that we will wait
17227 			 * longer than second_threshold to send the next
17228 			 * window probe.
17229 			 */
17230 			tcp->tcp_ms_we_have_waited = second_threshold;
17231 		}
17232 	} else if (ms > first_threshold) {
17233 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17234 		    tcp->tcp_xmit_head != NULL) {
17235 			tcp->tcp_xmit_head =
17236 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17237 		}
17238 		/*
17239 		 * We have been retransmitting for too long...  The RTT
17240 		 * we calculated is probably incorrect.  Reinitialize it.
17241 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17242 		 * tcp_rtt_update so that we won't accidentally cache a
17243 		 * bad value.  But only do this if this is not a zero
17244 		 * window probe.
17245 		 */
17246 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17247 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17248 			    (tcp->tcp_rtt_sa >> 5);
17249 			tcp->tcp_rtt_sa = 0;
17250 			tcp_ip_notify(tcp);
17251 			tcp->tcp_rtt_update = 0;
17252 		}
17253 	}
17254 	tcp->tcp_timer_backoff++;
17255 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17256 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17257 	    tcps->tcps_rexmit_interval_min) {
17258 		/*
17259 		 * This means the original RTO is tcp_rexmit_interval_min.
17260 		 * So we will use tcp_rexmit_interval_min as the RTO value
17261 		 * and do the backoff.
17262 		 */
17263 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17264 	} else {
17265 		ms <<= tcp->tcp_timer_backoff;
17266 	}
17267 	if (ms > tcps->tcps_rexmit_interval_max) {
17268 		ms = tcps->tcps_rexmit_interval_max;
17269 		/*
17270 		 * ms is at max, decrement tcp_timer_backoff to avoid
17271 		 * overflow.
17272 		 */
17273 		tcp->tcp_timer_backoff--;
17274 	}
17275 	tcp->tcp_ms_we_have_waited += ms;
17276 	if (tcp->tcp_zero_win_probe == 0) {
17277 		tcp->tcp_rto = ms;
17278 	}
17279 	TCP_TIMER_RESTART(tcp, ms);
17280 	/*
17281 	 * This is after a timeout and tcp_rto is backed off.  Set
17282 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17283 	 * restart the timer with a correct value.
17284 	 */
17285 	tcp->tcp_set_timer = 1;
17286 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17287 	if (mss > tcp->tcp_mss)
17288 		mss = tcp->tcp_mss;
17289 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17290 		mss = tcp->tcp_swnd;
17291 
17292 	if ((mp = tcp->tcp_xmit_head) != NULL)
17293 		mp->b_prev = (mblk_t *)lbolt;
17294 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17295 	    B_TRUE);
17296 
17297 	/*
17298 	 * When slow start after retransmission begins, start with
17299 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17300 	 * start phase.  tcp_snd_burst controls how many segments
17301 	 * can be sent because of an ack.
17302 	 */
17303 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17304 	tcp->tcp_snd_burst = TCP_CWND_SS;
17305 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17306 	    (tcp->tcp_unsent == 0)) {
17307 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17308 	} else {
17309 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17310 	}
17311 	tcp->tcp_rexmit = B_TRUE;
17312 	tcp->tcp_dupack_cnt = 0;
17313 
17314 	/*
17315 	 * Remove all rexmit SACK blk to start from fresh.
17316 	 */
17317 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17318 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17319 		tcp->tcp_num_notsack_blk = 0;
17320 		tcp->tcp_cnt_notsack_list = 0;
17321 	}
17322 	if (mp == NULL) {
17323 		return;
17324 	}
17325 	/*
17326 	 * Attach credentials to retransmitted initial SYNs.
17327 	 * In theory we should use the credentials from the connect()
17328 	 * call to ensure that getpeerucred() on the peer will be correct.
17329 	 * But we assume that SYN's are not dropped for loopback connections.
17330 	 */
17331 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17332 		mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid);
17333 	}
17334 
17335 	tcp->tcp_csuna = tcp->tcp_snxt;
17336 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17337 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17338 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17339 
17340 }
17341 
17342 static int
17343 tcp_do_unbind(conn_t *connp)
17344 {
17345 	tcp_t *tcp = connp->conn_tcp;
17346 	int error = 0;
17347 
17348 	switch (tcp->tcp_state) {
17349 	case TCPS_BOUND:
17350 	case TCPS_LISTEN:
17351 		break;
17352 	default:
17353 		return (-TOUTSTATE);
17354 	}
17355 
17356 	/*
17357 	 * Need to clean up all the eagers since after the unbind, segments
17358 	 * will no longer be delivered to this listener stream.
17359 	 */
17360 	mutex_enter(&tcp->tcp_eager_lock);
17361 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17362 		tcp_eager_cleanup(tcp, 0);
17363 	}
17364 	mutex_exit(&tcp->tcp_eager_lock);
17365 
17366 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17367 		tcp->tcp_ipha->ipha_src = 0;
17368 	} else {
17369 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17370 	}
17371 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17372 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17373 	tcp_bind_hash_remove(tcp);
17374 	tcp->tcp_state = TCPS_IDLE;
17375 	tcp->tcp_mdt = B_FALSE;
17376 
17377 	connp = tcp->tcp_connp;
17378 	connp->conn_mdt_ok = B_FALSE;
17379 	ipcl_hash_remove(connp);
17380 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17381 
17382 	return (error);
17383 }
17384 
17385 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17386 static void
17387 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
17388 {
17389 	int error = tcp_do_unbind(tcp->tcp_connp);
17390 
17391 	if (error > 0) {
17392 		tcp_err_ack(tcp, mp, TSYSERR, error);
17393 	} else if (error < 0) {
17394 		tcp_err_ack(tcp, mp, -error, 0);
17395 	} else {
17396 		/* Send M_FLUSH according to TPI */
17397 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17398 
17399 		mp = mi_tpi_ok_ack_alloc(mp);
17400 		putnext(tcp->tcp_rq, mp);
17401 	}
17402 }
17403 
17404 /*
17405  * Don't let port fall into the privileged range.
17406  * Since the extra privileged ports can be arbitrary we also
17407  * ensure that we exclude those from consideration.
17408  * tcp_g_epriv_ports is not sorted thus we loop over it until
17409  * there are no changes.
17410  *
17411  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17412  * but instead the code relies on:
17413  * - the fact that the address of the array and its size never changes
17414  * - the atomic assignment of the elements of the array
17415  *
17416  * Returns 0 if there are no more ports available.
17417  *
17418  * TS note: skip multilevel ports.
17419  */
17420 static in_port_t
17421 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17422 {
17423 	int i;
17424 	boolean_t restart = B_FALSE;
17425 	tcp_stack_t *tcps = tcp->tcp_tcps;
17426 
17427 	if (random && tcp_random_anon_port != 0) {
17428 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17429 		    sizeof (in_port_t));
17430 		/*
17431 		 * Unless changed by a sys admin, the smallest anon port
17432 		 * is 32768 and the largest anon port is 65535.  It is
17433 		 * very likely (50%) for the random port to be smaller
17434 		 * than the smallest anon port.  When that happens,
17435 		 * add port % (anon port range) to the smallest anon
17436 		 * port to get the random port.  It should fall into the
17437 		 * valid anon port range.
17438 		 */
17439 		if (port < tcps->tcps_smallest_anon_port) {
17440 			port = tcps->tcps_smallest_anon_port +
17441 			    port % (tcps->tcps_largest_anon_port -
17442 			    tcps->tcps_smallest_anon_port);
17443 		}
17444 	}
17445 
17446 retry:
17447 	if (port < tcps->tcps_smallest_anon_port)
17448 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17449 
17450 	if (port > tcps->tcps_largest_anon_port) {
17451 		if (restart)
17452 			return (0);
17453 		restart = B_TRUE;
17454 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17455 	}
17456 
17457 	if (port < tcps->tcps_smallest_nonpriv_port)
17458 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17459 
17460 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17461 		if (port == tcps->tcps_g_epriv_ports[i]) {
17462 			port++;
17463 			/*
17464 			 * Make sure whether the port is in the
17465 			 * valid range.
17466 			 */
17467 			goto retry;
17468 		}
17469 	}
17470 	if (is_system_labeled() &&
17471 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17472 	    IPPROTO_TCP, B_TRUE)) != 0) {
17473 		port = i;
17474 		goto retry;
17475 	}
17476 	return (port);
17477 }
17478 
17479 /*
17480  * Return the next anonymous port in the privileged port range for
17481  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17482  * downwards.  This is the same behavior as documented in the userland
17483  * library call rresvport(3N).
17484  *
17485  * TS note: skip multilevel ports.
17486  */
17487 static in_port_t
17488 tcp_get_next_priv_port(const tcp_t *tcp)
17489 {
17490 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17491 	in_port_t nextport;
17492 	boolean_t restart = B_FALSE;
17493 	tcp_stack_t *tcps = tcp->tcp_tcps;
17494 retry:
17495 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17496 	    next_priv_port >= IPPORT_RESERVED) {
17497 		next_priv_port = IPPORT_RESERVED - 1;
17498 		if (restart)
17499 			return (0);
17500 		restart = B_TRUE;
17501 	}
17502 	if (is_system_labeled() &&
17503 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17504 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17505 		next_priv_port = nextport;
17506 		goto retry;
17507 	}
17508 	return (next_priv_port--);
17509 }
17510 
17511 /* The write side r/w procedure. */
17512 
17513 #if CCS_STATS
17514 struct {
17515 	struct {
17516 		int64_t count, bytes;
17517 	} tot, hit;
17518 } wrw_stats;
17519 #endif
17520 
17521 /*
17522  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17523  * messages.
17524  */
17525 /* ARGSUSED */
17526 static void
17527 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17528 {
17529 	conn_t	*connp = (conn_t *)arg;
17530 	tcp_t	*tcp = connp->conn_tcp;
17531 	queue_t	*q = tcp->tcp_wq;
17532 
17533 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17534 	/*
17535 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17536 	 * Once the close starts, streamhead and sockfs will not let any data
17537 	 * packets come down (close ensures that there are no threads using the
17538 	 * queue and no new threads will come down) but since qprocsoff()
17539 	 * hasn't happened yet, a M_FLUSH or some non data message might
17540 	 * get reflected back (in response to our own FLUSHRW) and get
17541 	 * processed after tcp_close() is done. The conn would still be valid
17542 	 * because a ref would have added but we need to check the state
17543 	 * before actually processing the packet.
17544 	 */
17545 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17546 		freemsg(mp);
17547 		return;
17548 	}
17549 
17550 	switch (DB_TYPE(mp)) {
17551 	case M_IOCDATA:
17552 		tcp_wput_iocdata(tcp, mp);
17553 		break;
17554 	case M_FLUSH:
17555 		tcp_wput_flush(tcp, mp);
17556 		break;
17557 	default:
17558 		CALL_IP_WPUT(connp, q, mp);
17559 		break;
17560 	}
17561 }
17562 
17563 /*
17564  * The TCP fast path write put procedure.
17565  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17566  */
17567 /* ARGSUSED */
17568 void
17569 tcp_output(void *arg, mblk_t *mp, void *arg2)
17570 {
17571 	int		len;
17572 	int		hdrlen;
17573 	int		plen;
17574 	mblk_t		*mp1;
17575 	uchar_t		*rptr;
17576 	uint32_t	snxt;
17577 	tcph_t		*tcph;
17578 	struct datab	*db;
17579 	uint32_t	suna;
17580 	uint32_t	mss;
17581 	ipaddr_t	*dst;
17582 	ipaddr_t	*src;
17583 	uint32_t	sum;
17584 	int		usable;
17585 	conn_t		*connp = (conn_t *)arg;
17586 	tcp_t		*tcp = connp->conn_tcp;
17587 	uint32_t	msize;
17588 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17589 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
17590 
17591 	/*
17592 	 * Try and ASSERT the minimum possible references on the
17593 	 * conn early enough. Since we are executing on write side,
17594 	 * the connection is obviously not detached and that means
17595 	 * there is a ref each for TCP and IP. Since we are behind
17596 	 * the squeue, the minimum references needed are 3. If the
17597 	 * conn is in classifier hash list, there should be an
17598 	 * extra ref for that (we check both the possibilities).
17599 	 */
17600 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17601 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17602 
17603 	ASSERT(DB_TYPE(mp) == M_DATA);
17604 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17605 
17606 	mutex_enter(&tcp->tcp_non_sq_lock);
17607 	tcp->tcp_squeue_bytes -= msize;
17608 	mutex_exit(&tcp->tcp_non_sq_lock);
17609 
17610 	/* Check to see if this connection wants to be re-fused. */
17611 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
17612 		if (tcp->tcp_ipversion == IPV4_VERSION) {
17613 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
17614 			    &tcp->tcp_saved_tcph);
17615 		} else {
17616 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
17617 			    &tcp->tcp_saved_tcph);
17618 		}
17619 	}
17620 	/* Bypass tcp protocol for fused tcp loopback */
17621 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17622 		return;
17623 
17624 	mss = tcp->tcp_mss;
17625 	if (tcp->tcp_xmit_zc_clean)
17626 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17627 
17628 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17629 	len = (int)(mp->b_wptr - mp->b_rptr);
17630 
17631 	/*
17632 	 * Criteria for fast path:
17633 	 *
17634 	 *   1. no unsent data
17635 	 *   2. single mblk in request
17636 	 *   3. connection established
17637 	 *   4. data in mblk
17638 	 *   5. len <= mss
17639 	 *   6. no tcp_valid bits
17640 	 */
17641 	if ((tcp->tcp_unsent != 0) ||
17642 	    (tcp->tcp_cork) ||
17643 	    (mp->b_cont != NULL) ||
17644 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17645 	    (len == 0) ||
17646 	    (len > mss) ||
17647 	    (tcp->tcp_valid_bits != 0)) {
17648 		tcp_wput_data(tcp, mp, B_FALSE);
17649 		return;
17650 	}
17651 
17652 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17653 	ASSERT(tcp->tcp_fin_sent == 0);
17654 
17655 	/* queue new packet onto retransmission queue */
17656 	if (tcp->tcp_xmit_head == NULL) {
17657 		tcp->tcp_xmit_head = mp;
17658 	} else {
17659 		tcp->tcp_xmit_last->b_cont = mp;
17660 	}
17661 	tcp->tcp_xmit_last = mp;
17662 	tcp->tcp_xmit_tail = mp;
17663 
17664 	/* find out how much we can send */
17665 	/* BEGIN CSTYLED */
17666 	/*
17667 	 *    un-acked	   usable
17668 	 *  |--------------|-----------------|
17669 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
17670 	 */
17671 	/* END CSTYLED */
17672 
17673 	/* start sending from tcp_snxt */
17674 	snxt = tcp->tcp_snxt;
17675 
17676 	/*
17677 	 * Check to see if this connection has been idled for some
17678 	 * time and no ACK is expected.  If it is, we need to slow
17679 	 * start again to get back the connection's "self-clock" as
17680 	 * described in VJ's paper.
17681 	 *
17682 	 * Refer to the comment in tcp_mss_set() for the calculation
17683 	 * of tcp_cwnd after idle.
17684 	 */
17685 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17686 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17687 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17688 	}
17689 
17690 	usable = tcp->tcp_swnd;		/* tcp window size */
17691 	if (usable > tcp->tcp_cwnd)
17692 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17693 	usable -= snxt;		/* subtract stuff already sent */
17694 	suna = tcp->tcp_suna;
17695 	usable += suna;
17696 	/* usable can be < 0 if the congestion window is smaller */
17697 	if (len > usable) {
17698 		/* Can't send complete M_DATA in one shot */
17699 		goto slow;
17700 	}
17701 
17702 	mutex_enter(&tcp->tcp_non_sq_lock);
17703 	if (tcp->tcp_flow_stopped &&
17704 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17705 		tcp_clrqfull(tcp);
17706 	}
17707 	mutex_exit(&tcp->tcp_non_sq_lock);
17708 
17709 	/*
17710 	 * determine if anything to send (Nagle).
17711 	 *
17712 	 *   1. len < tcp_mss (i.e. small)
17713 	 *   2. unacknowledged data present
17714 	 *   3. len < nagle limit
17715 	 *   4. last packet sent < nagle limit (previous packet sent)
17716 	 */
17717 	if ((len < mss) && (snxt != suna) &&
17718 	    (len < (int)tcp->tcp_naglim) &&
17719 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17720 		/*
17721 		 * This was the first unsent packet and normally
17722 		 * mss < xmit_hiwater so there is no need to worry
17723 		 * about flow control. The next packet will go
17724 		 * through the flow control check in tcp_wput_data().
17725 		 */
17726 		/* leftover work from above */
17727 		tcp->tcp_unsent = len;
17728 		tcp->tcp_xmit_tail_unsent = len;
17729 
17730 		return;
17731 	}
17732 
17733 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17734 
17735 	if (snxt == suna) {
17736 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17737 	}
17738 
17739 	/* we have always sent something */
17740 	tcp->tcp_rack_cnt = 0;
17741 
17742 	tcp->tcp_snxt = snxt + len;
17743 	tcp->tcp_rack = tcp->tcp_rnxt;
17744 
17745 	if ((mp1 = dupb(mp)) == 0)
17746 		goto no_memory;
17747 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17748 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17749 
17750 	/* adjust tcp header information */
17751 	tcph = tcp->tcp_tcph;
17752 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17753 
17754 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17755 	sum = (sum >> 16) + (sum & 0xFFFF);
17756 	U16_TO_ABE16(sum, tcph->th_sum);
17757 
17758 	U32_TO_ABE32(snxt, tcph->th_seq);
17759 
17760 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17761 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17762 	BUMP_LOCAL(tcp->tcp_obsegs);
17763 
17764 	/* Update the latest receive window size in TCP header. */
17765 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17766 	    tcph->th_win);
17767 
17768 	tcp->tcp_last_sent_len = (ushort_t)len;
17769 
17770 	plen = len + tcp->tcp_hdr_len;
17771 
17772 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17773 		tcp->tcp_ipha->ipha_length = htons(plen);
17774 	} else {
17775 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17776 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17777 	}
17778 
17779 	/* see if we need to allocate a mblk for the headers */
17780 	hdrlen = tcp->tcp_hdr_len;
17781 	rptr = mp1->b_rptr - hdrlen;
17782 	db = mp1->b_datap;
17783 	if ((db->db_ref != 2) || rptr < db->db_base ||
17784 	    (!OK_32PTR(rptr))) {
17785 		/* NOTE: we assume allocb returns an OK_32PTR */
17786 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17787 		    tcps->tcps_wroff_xtra, BPRI_MED);
17788 		if (!mp) {
17789 			freemsg(mp1);
17790 			goto no_memory;
17791 		}
17792 		mp->b_cont = mp1;
17793 		mp1 = mp;
17794 		/* Leave room for Link Level header */
17795 		/* hdrlen = tcp->tcp_hdr_len; */
17796 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17797 		mp1->b_wptr = &rptr[hdrlen];
17798 	}
17799 	mp1->b_rptr = rptr;
17800 
17801 	/* Fill in the timestamp option. */
17802 	if (tcp->tcp_snd_ts_ok) {
17803 		U32_TO_BE32((uint32_t)lbolt,
17804 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17805 		U32_TO_BE32(tcp->tcp_ts_recent,
17806 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17807 	} else {
17808 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17809 	}
17810 
17811 	/* copy header into outgoing packet */
17812 	dst = (ipaddr_t *)rptr;
17813 	src = (ipaddr_t *)tcp->tcp_iphc;
17814 	dst[0] = src[0];
17815 	dst[1] = src[1];
17816 	dst[2] = src[2];
17817 	dst[3] = src[3];
17818 	dst[4] = src[4];
17819 	dst[5] = src[5];
17820 	dst[6] = src[6];
17821 	dst[7] = src[7];
17822 	dst[8] = src[8];
17823 	dst[9] = src[9];
17824 	if (hdrlen -= 40) {
17825 		hdrlen >>= 2;
17826 		dst += 10;
17827 		src += 10;
17828 		do {
17829 			*dst++ = *src++;
17830 		} while (--hdrlen);
17831 	}
17832 
17833 	/*
17834 	 * Set the ECN info in the TCP header.  Note that this
17835 	 * is not the template header.
17836 	 */
17837 	if (tcp->tcp_ecn_ok) {
17838 		SET_ECT(tcp, rptr);
17839 
17840 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17841 		if (tcp->tcp_ecn_echo_on)
17842 			tcph->th_flags[0] |= TH_ECE;
17843 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17844 			tcph->th_flags[0] |= TH_CWR;
17845 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17846 		}
17847 	}
17848 
17849 	if (tcp->tcp_ip_forward_progress) {
17850 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17851 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17852 		tcp->tcp_ip_forward_progress = B_FALSE;
17853 	}
17854 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17855 	return;
17856 
17857 	/*
17858 	 * If we ran out of memory, we pretend to have sent the packet
17859 	 * and that it was lost on the wire.
17860 	 */
17861 no_memory:
17862 	return;
17863 
17864 slow:
17865 	/* leftover work from above */
17866 	tcp->tcp_unsent = len;
17867 	tcp->tcp_xmit_tail_unsent = len;
17868 	tcp_wput_data(tcp, NULL, B_FALSE);
17869 }
17870 
17871 /* ARGSUSED */
17872 void
17873 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17874 {
17875 	conn_t			*connp = (conn_t *)arg;
17876 	tcp_t			*tcp = connp->conn_tcp;
17877 	queue_t			*q = tcp->tcp_rq;
17878 	struct tcp_options	*tcpopt;
17879 	tcp_stack_t		*tcps = tcp->tcp_tcps;
17880 
17881 	/* socket options */
17882 	uint_t 			sopp_flags;
17883 	ssize_t			sopp_rxhiwat;
17884 	ssize_t			sopp_maxblk;
17885 	ushort_t		sopp_wroff;
17886 	ushort_t		sopp_tail;
17887 	ushort_t		sopp_copyopt;
17888 
17889 	tcpopt = (struct tcp_options *)mp->b_rptr;
17890 
17891 	/*
17892 	 * Drop the eager's ref on the listener, that was placed when
17893 	 * this eager began life in tcp_conn_request.
17894 	 */
17895 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17896 	if (IPCL_IS_NONSTR(connp)) {
17897 		/* Safe to free conn_ind message */
17898 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17899 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17900 	}
17901 
17902 	tcp->tcp_detached = B_FALSE;
17903 
17904 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17905 		/*
17906 		 * Someone blewoff the eager before we could finish
17907 		 * the accept.
17908 		 *
17909 		 * The only reason eager exists it because we put in
17910 		 * a ref on it when conn ind went up. We need to send
17911 		 * a disconnect indication up while the last reference
17912 		 * on the eager will be dropped by the squeue when we
17913 		 * return.
17914 		 */
17915 		ASSERT(tcp->tcp_listener == NULL);
17916 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17917 			if (IPCL_IS_NONSTR(connp)) {
17918 				ASSERT(tcp->tcp_issocket);
17919 				(*connp->conn_upcalls->su_disconnected)(
17920 				    connp->conn_upper_handle, tcp->tcp_connid,
17921 				    ECONNREFUSED);
17922 				freemsg(mp);
17923 			} else {
17924 				struct	T_discon_ind	*tdi;
17925 
17926 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17927 				/*
17928 				 * Let us reuse the incoming mblk to avoid
17929 				 * memory allocation failure problems. We know
17930 				 * that the size of the incoming mblk i.e.
17931 				 * stroptions is greater than sizeof
17932 				 * T_discon_ind. So the reallocb below can't
17933 				 * fail.
17934 				 */
17935 				freemsg(mp->b_cont);
17936 				mp->b_cont = NULL;
17937 				ASSERT(DB_REF(mp) == 1);
17938 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17939 				    B_FALSE);
17940 				ASSERT(mp != NULL);
17941 				DB_TYPE(mp) = M_PROTO;
17942 				((union T_primitives *)mp->b_rptr)->type =
17943 				    T_DISCON_IND;
17944 				tdi = (struct T_discon_ind *)mp->b_rptr;
17945 				if (tcp->tcp_issocket) {
17946 					tdi->DISCON_reason = ECONNREFUSED;
17947 					tdi->SEQ_number = 0;
17948 				} else {
17949 					tdi->DISCON_reason = ENOPROTOOPT;
17950 					tdi->SEQ_number =
17951 					    tcp->tcp_conn_req_seqnum;
17952 				}
17953 				mp->b_wptr = mp->b_rptr +
17954 				    sizeof (struct T_discon_ind);
17955 				putnext(q, mp);
17956 				return;
17957 			}
17958 		}
17959 		if (tcp->tcp_hard_binding) {
17960 			tcp->tcp_hard_binding = B_FALSE;
17961 			tcp->tcp_hard_bound = B_TRUE;
17962 		}
17963 		return;
17964 	}
17965 
17966 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17967 		int boundif = tcpopt->to_boundif;
17968 		uint_t len = sizeof (int);
17969 
17970 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17971 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17972 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17973 	}
17974 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17975 		uint_t on = 1;
17976 		uint_t len = sizeof (uint_t);
17977 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17978 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17979 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17980 	}
17981 
17982 	/*
17983 	 * For a loopback connection with tcp_direct_sockfs on, note that
17984 	 * we don't have to protect tcp_rcv_list yet because synchronous
17985 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17986 	 * possibly race with us.
17987 	 */
17988 
17989 	/*
17990 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17991 	 * properly.  This is the first time we know of the acceptor'
17992 	 * queue.  So we do it here.
17993 	 *
17994 	 * XXX
17995 	 */
17996 	if (tcp->tcp_rcv_list == NULL) {
17997 		/*
17998 		 * Recv queue is empty, tcp_rwnd should not have changed.
17999 		 * That means it should be equal to the listener's tcp_rwnd.
18000 		 */
18001 		if (!IPCL_IS_NONSTR(connp))
18002 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18003 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
18004 	} else {
18005 #ifdef DEBUG
18006 		mblk_t *tmp;
18007 		mblk_t	*mp1;
18008 		uint_t	cnt = 0;
18009 
18010 		mp1 = tcp->tcp_rcv_list;
18011 		while ((tmp = mp1) != NULL) {
18012 			mp1 = tmp->b_next;
18013 			cnt += msgdsize(tmp);
18014 		}
18015 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18016 #endif
18017 		/* There is some data, add them back to get the max. */
18018 		if (!IPCL_IS_NONSTR(connp))
18019 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18020 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18021 	}
18022 	/*
18023 	 * This is the first time we run on the correct
18024 	 * queue after tcp_accept. So fix all the q parameters
18025 	 * here.
18026 	 */
18027 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
18028 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18029 
18030 	/*
18031 	 * Record the stream head's high water mark for this endpoint;
18032 	 * this is used for flow-control purposes.
18033 	 */
18034 	sopp_rxhiwat = tcp->tcp_fused ?
18035 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
18036 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
18037 
18038 	/*
18039 	 * Determine what write offset value to use depending on SACK and
18040 	 * whether the endpoint is fused or not.
18041 	 */
18042 	if (tcp->tcp_fused) {
18043 		ASSERT(tcp->tcp_loopback);
18044 		ASSERT(tcp->tcp_loopback_peer != NULL);
18045 		/*
18046 		 * For fused tcp loopback, set the stream head's write
18047 		 * offset value to zero since we won't be needing any room
18048 		 * for TCP/IP headers.  This would also improve performance
18049 		 * since it would reduce the amount of work done by kmem.
18050 		 * Non-fused tcp loopback case is handled separately below.
18051 		 */
18052 		sopp_wroff = 0;
18053 		/*
18054 		 * Update the peer's transmit parameters according to
18055 		 * our recently calculated high water mark value.
18056 		 */
18057 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18058 	} else if (tcp->tcp_snd_sack_ok) {
18059 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18060 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18061 	} else {
18062 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18063 		    tcps->tcps_wroff_xtra);
18064 	}
18065 
18066 	/*
18067 	 * If this is endpoint is handling SSL, then reserve extra
18068 	 * offset and space at the end.
18069 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18070 	 * overriding the previous setting. The extra cost of signing and
18071 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18072 	 * instead of a single contiguous one by the stream head
18073 	 * largely outweighs the statistical reduction of ACKs, when
18074 	 * applicable. The peer will also save on decryption and verification
18075 	 * costs.
18076 	 */
18077 	if (tcp->tcp_kssl_ctx != NULL) {
18078 		sopp_wroff += SSL3_WROFFSET;
18079 
18080 		sopp_flags |= SOCKOPT_TAIL;
18081 		sopp_tail = SSL3_MAX_TAIL_LEN;
18082 
18083 		sopp_flags |= SOCKOPT_ZCOPY;
18084 		sopp_copyopt = ZCVMUNSAFE;
18085 
18086 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
18087 	}
18088 
18089 	/* Send the options up */
18090 	if (IPCL_IS_NONSTR(connp)) {
18091 		struct sock_proto_props sopp;
18092 
18093 		sopp.sopp_flags = sopp_flags;
18094 		sopp.sopp_wroff = sopp_wroff;
18095 		sopp.sopp_maxblk = sopp_maxblk;
18096 		sopp.sopp_rxhiwat = sopp_rxhiwat;
18097 		if (sopp_flags & SOCKOPT_TAIL) {
18098 			ASSERT(tcp->tcp_kssl_ctx != NULL);
18099 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
18100 			sopp.sopp_tail = sopp_tail;
18101 			sopp.sopp_zcopyflag = sopp_copyopt;
18102 		}
18103 		(*connp->conn_upcalls->su_set_proto_props)
18104 		    (connp->conn_upper_handle, &sopp);
18105 	} else {
18106 		struct stroptions *stropt;
18107 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18108 		if (stropt_mp == NULL) {
18109 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
18110 			return;
18111 		}
18112 		DB_TYPE(stropt_mp) = M_SETOPTS;
18113 		stropt = (struct stroptions *)stropt_mp->b_rptr;
18114 		stropt_mp->b_wptr += sizeof (struct stroptions);
18115 		stropt = (struct stroptions *)stropt_mp->b_rptr;
18116 		stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
18117 		stropt->so_hiwat = sopp_rxhiwat;
18118 		stropt->so_wroff = sopp_wroff;
18119 		stropt->so_maxblk = sopp_maxblk;
18120 
18121 		if (sopp_flags & SOCKOPT_TAIL) {
18122 			ASSERT(tcp->tcp_kssl_ctx != NULL);
18123 
18124 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
18125 			stropt->so_tail = sopp_tail;
18126 			stropt->so_copyopt = sopp_copyopt;
18127 		}
18128 
18129 		/* Send the options up */
18130 		putnext(q, stropt_mp);
18131 	}
18132 
18133 	freemsg(mp);
18134 	/*
18135 	 * Pass up any data and/or a fin that has been received.
18136 	 *
18137 	 * Adjust receive window in case it had decreased
18138 	 * (because there is data <=> tcp_rcv_list != NULL)
18139 	 * while the connection was detached. Note that
18140 	 * in case the eager was flow-controlled, w/o this
18141 	 * code, the rwnd may never open up again!
18142 	 */
18143 	if (tcp->tcp_rcv_list != NULL) {
18144 		if (IPCL_IS_NONSTR(connp)) {
18145 			mblk_t *mp;
18146 			int space_left;
18147 			int error;
18148 			boolean_t push = B_TRUE;
18149 
18150 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
18151 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
18152 			    &push) >= 0) {
18153 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
18154 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18155 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
18156 					tcp_xmit_ctl(NULL,
18157 					    tcp, (tcp->tcp_swnd == 0) ?
18158 					    tcp->tcp_suna : tcp->tcp_snxt,
18159 					    tcp->tcp_rnxt, TH_ACK);
18160 				}
18161 			}
18162 			while ((mp = tcp->tcp_rcv_list) != NULL) {
18163 				push = B_TRUE;
18164 				tcp->tcp_rcv_list = mp->b_next;
18165 				mp->b_next = NULL;
18166 				space_left = (*connp->conn_upcalls->su_recv)
18167 				    (connp->conn_upper_handle, mp, msgdsize(mp),
18168 				    0, &error, &push);
18169 				if (space_left < 0) {
18170 					/*
18171 					 * At this point the eager is not
18172 					 * visible to anyone, so fallback
18173 					 * can not happen.
18174 					 */
18175 					ASSERT(error != EOPNOTSUPP);
18176 				}
18177 			}
18178 			tcp->tcp_rcv_last_head = NULL;
18179 			tcp->tcp_rcv_last_tail = NULL;
18180 			tcp->tcp_rcv_cnt = 0;
18181 		} else {
18182 			/* We drain directly in case of fused tcp loopback */
18183 			sodirect_t *sodp;
18184 
18185 			if (!tcp->tcp_fused && canputnext(q)) {
18186 				tcp->tcp_rwnd = q->q_hiwat;
18187 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18188 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
18189 					tcp_xmit_ctl(NULL,
18190 					    tcp, (tcp->tcp_swnd == 0) ?
18191 					    tcp->tcp_suna : tcp->tcp_snxt,
18192 					    tcp->tcp_rnxt, TH_ACK);
18193 				}
18194 			}
18195 
18196 			SOD_PTR_ENTER(tcp, sodp);
18197 			if (sodp != NULL) {
18198 				/* Sodirect, move from rcv_list */
18199 				ASSERT(!tcp->tcp_fused);
18200 				while ((mp = tcp->tcp_rcv_list) != NULL) {
18201 					tcp->tcp_rcv_list = mp->b_next;
18202 					mp->b_next = NULL;
18203 					(void) tcp_rcv_sod_enqueue(tcp, sodp,
18204 					    mp, msgdsize(mp));
18205 				}
18206 				tcp->tcp_rcv_last_head = NULL;
18207 				tcp->tcp_rcv_last_tail = NULL;
18208 				tcp->tcp_rcv_cnt = 0;
18209 				(void) tcp_rcv_sod_wakeup(tcp, sodp);
18210 				/* sod_wakeup() did the mutex_exit() */
18211 			} else {
18212 				/* Not sodirect, drain */
18213 				(void) tcp_rcv_drain(tcp);
18214 			}
18215 		}
18216 
18217 		/*
18218 		 * For fused tcp loopback, back-enable peer endpoint
18219 		 * if it's currently flow-controlled.
18220 		 */
18221 		if (tcp->tcp_fused) {
18222 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18223 
18224 			ASSERT(peer_tcp != NULL);
18225 			ASSERT(peer_tcp->tcp_fused);
18226 			/*
18227 			 * In order to change the peer's tcp_flow_stopped,
18228 			 * we need to take locks for both end points. The
18229 			 * highest address is taken first.
18230 			 */
18231 			if (peer_tcp > tcp) {
18232 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18233 				mutex_enter(&tcp->tcp_non_sq_lock);
18234 			} else {
18235 				mutex_enter(&tcp->tcp_non_sq_lock);
18236 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18237 			}
18238 			if (peer_tcp->tcp_flow_stopped) {
18239 				tcp_clrqfull(peer_tcp);
18240 				TCP_STAT(tcps, tcp_fusion_backenabled);
18241 			}
18242 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18243 			mutex_exit(&tcp->tcp_non_sq_lock);
18244 		}
18245 	}
18246 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18247 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18248 		tcp->tcp_ordrel_done = B_TRUE;
18249 		if (IPCL_IS_NONSTR(connp)) {
18250 			ASSERT(tcp->tcp_ordrel_mp == NULL);
18251 			(*connp->conn_upcalls->su_opctl)(
18252 			    connp->conn_upper_handle,
18253 			    SOCK_OPCTL_SHUT_RECV, 0);
18254 		} else {
18255 			mp = tcp->tcp_ordrel_mp;
18256 			tcp->tcp_ordrel_mp = NULL;
18257 			putnext(q, mp);
18258 		}
18259 	}
18260 	if (tcp->tcp_hard_binding) {
18261 		tcp->tcp_hard_binding = B_FALSE;
18262 		tcp->tcp_hard_bound = B_TRUE;
18263 	}
18264 
18265 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
18266 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
18267 	    tcp->tcp_loopback_peer != NULL &&
18268 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
18269 		tcp_fuse_syncstr_enable_pair(tcp);
18270 	}
18271 
18272 	if (tcp->tcp_ka_enabled) {
18273 		tcp->tcp_ka_last_intrvl = 0;
18274 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18275 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18276 	}
18277 
18278 	/*
18279 	 * At this point, eager is fully established and will
18280 	 * have the following references -
18281 	 *
18282 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18283 	 * 1 reference for the squeue which will be dropped by the squeue as
18284 	 *	soon as this function returns.
18285 	 * There will be 1 additonal reference for being in classifier
18286 	 *	hash list provided something bad hasn't happened.
18287 	 */
18288 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18289 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18290 }
18291 
18292 /*
18293  * The function called through squeue to get behind listener's perimeter to
18294  * send a deffered conn_ind.
18295  */
18296 /* ARGSUSED */
18297 void
18298 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18299 {
18300 	conn_t	*connp = (conn_t *)arg;
18301 	tcp_t *listener = connp->conn_tcp;
18302 	struct T_conn_ind *conn_ind;
18303 	tcp_t *tcp;
18304 
18305 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
18306 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18307 	    conn_ind->OPT_length);
18308 
18309 	if (listener->tcp_state == TCPS_CLOSED ||
18310 	    TCP_IS_DETACHED(listener)) {
18311 		/*
18312 		 * If listener has closed, it would have caused a
18313 		 * a cleanup/blowoff to happen for the eager.
18314 		 *
18315 		 * We need to drop the ref on eager that was put
18316 		 * tcp_rput_data() before trying to send the conn_ind
18317 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18318 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18319 		 * listener is closed so we drop the ref.
18320 		 */
18321 		CONN_DEC_REF(tcp->tcp_connp);
18322 		freemsg(mp);
18323 		return;
18324 	}
18325 
18326 	tcp_ulp_newconn(connp, tcp->tcp_connp, mp);
18327 }
18328 
18329 /* ARGSUSED */
18330 static int
18331 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
18332 {
18333 	tcp_t *listener, *eager;
18334 	mblk_t *opt_mp;
18335 	struct tcp_options *tcpopt;
18336 
18337 	listener = lconnp->conn_tcp;
18338 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18339 	eager = econnp->conn_tcp;
18340 	ASSERT(eager->tcp_listener != NULL);
18341 
18342 	ASSERT(eager->tcp_rq != NULL);
18343 
18344 	/* If tcp_fused and sodirect enabled disable it */
18345 	if (eager->tcp_fused && eager->tcp_sodirect != NULL) {
18346 		/* Fused, disable sodirect */
18347 		mutex_enter(eager->tcp_sodirect->sod_lockp);
18348 		SOD_DISABLE(eager->tcp_sodirect);
18349 		mutex_exit(eager->tcp_sodirect->sod_lockp);
18350 		eager->tcp_sodirect = NULL;
18351 	}
18352 
18353 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
18354 	if (opt_mp == NULL) {
18355 		return (-TPROTO);
18356 	}
18357 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
18358 	eager->tcp_issocket = B_TRUE;
18359 
18360 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18361 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18362 	ASSERT(econnp->conn_netstack ==
18363 	    listener->tcp_connp->conn_netstack);
18364 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18365 
18366 	/* Put the ref for IP */
18367 	CONN_INC_REF(econnp);
18368 
18369 	/*
18370 	 * We should have minimum of 3 references on the conn
18371 	 * at this point. One each for TCP and IP and one for
18372 	 * the T_conn_ind that was sent up when the 3-way handshake
18373 	 * completed. In the normal case we would also have another
18374 	 * reference (making a total of 4) for the conn being in the
18375 	 * classifier hash list. However the eager could have received
18376 	 * an RST subsequently and tcp_closei_local could have removed
18377 	 * the eager from the classifier hash list, hence we can't
18378 	 * assert that reference.
18379 	 */
18380 	ASSERT(econnp->conn_ref >= 3);
18381 
18382 	opt_mp->b_datap->db_type = M_SETOPTS;
18383 	opt_mp->b_wptr += sizeof (struct tcp_options);
18384 
18385 	/*
18386 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18387 	 * from listener to acceptor.
18388 	 */
18389 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
18390 	tcpopt->to_flags = 0;
18391 
18392 	if (listener->tcp_bound_if != 0) {
18393 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
18394 		tcpopt->to_boundif = listener->tcp_bound_if;
18395 	}
18396 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18397 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
18398 	}
18399 
18400 	mutex_enter(&listener->tcp_eager_lock);
18401 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18402 
18403 		tcp_t *tail;
18404 		tcp_t *tcp;
18405 		mblk_t *mp1;
18406 
18407 		tcp = listener->tcp_eager_prev_q0;
18408 		/*
18409 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
18410 		 * deferred T_conn_ind queue. We need to get to the head
18411 		 * of the queue in order to send up T_conn_ind the same
18412 		 * order as how the 3WHS is completed.
18413 		 */
18414 		while (tcp != listener) {
18415 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18416 			    !tcp->tcp_kssl_pending)
18417 				break;
18418 			else
18419 				tcp = tcp->tcp_eager_prev_q0;
18420 		}
18421 		/* None of the pending eagers can be sent up now */
18422 		if (tcp == listener)
18423 			goto no_more_eagers;
18424 
18425 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18426 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18427 		/* Move from q0 to q */
18428 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18429 		listener->tcp_conn_req_cnt_q0--;
18430 		listener->tcp_conn_req_cnt_q++;
18431 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18432 		    tcp->tcp_eager_prev_q0;
18433 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18434 		    tcp->tcp_eager_next_q0;
18435 		tcp->tcp_eager_prev_q0 = NULL;
18436 		tcp->tcp_eager_next_q0 = NULL;
18437 		tcp->tcp_conn_def_q0 = B_FALSE;
18438 
18439 		/* Make sure the tcp isn't in the list of droppables */
18440 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18441 		    tcp->tcp_eager_prev_drop_q0 == NULL);
18442 
18443 		/*
18444 		 * Insert at end of the queue because sockfs sends
18445 		 * down T_CONN_RES in chronological order. Leaving
18446 		 * the older conn indications at front of the queue
18447 		 * helps reducing search time.
18448 		 */
18449 		tail = listener->tcp_eager_last_q;
18450 		if (tail != NULL) {
18451 			tail->tcp_eager_next_q = tcp;
18452 		} else {
18453 			listener->tcp_eager_next_q = tcp;
18454 		}
18455 		listener->tcp_eager_last_q = tcp;
18456 		tcp->tcp_eager_next_q = NULL;
18457 
18458 		/* Need to get inside the listener perimeter */
18459 		CONN_INC_REF(listener->tcp_connp);
18460 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
18461 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
18462 		    SQTAG_TCP_SEND_PENDING);
18463 	}
18464 no_more_eagers:
18465 	tcp_eager_unlink(eager);
18466 	mutex_exit(&listener->tcp_eager_lock);
18467 
18468 	/*
18469 	 * At this point, the eager is detached from the listener
18470 	 * but we still have an extra refs on eager (apart from the
18471 	 * usual tcp references). The ref was placed in tcp_rput_data
18472 	 * before sending the conn_ind in tcp_send_conn_ind.
18473 	 * The ref will be dropped in tcp_accept_finish().
18474 	 */
18475 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
18476 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
18477 	return (0);
18478 }
18479 
18480 int
18481 tcp_accept(sock_lower_handle_t lproto_handle,
18482     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
18483     cred_t *cr)
18484 {
18485 	conn_t *lconnp, *econnp;
18486 	tcp_t *listener, *eager;
18487 	tcp_stack_t	*tcps;
18488 
18489 	lconnp = (conn_t *)lproto_handle;
18490 	listener = lconnp->conn_tcp;
18491 	ASSERT(listener->tcp_state == TCPS_LISTEN);
18492 	econnp = (conn_t *)eproto_handle;
18493 	eager = econnp->conn_tcp;
18494 	ASSERT(eager->tcp_listener != NULL);
18495 	tcps = eager->tcp_tcps;
18496 
18497 	/*
18498 	 * It is OK to manipulate these fields outside the eager's squeue
18499 	 * because they will not start being used until tcp_accept_finish
18500 	 * has been called.
18501 	 */
18502 	ASSERT(lconnp->conn_upper_handle != NULL);
18503 	ASSERT(econnp->conn_upper_handle == NULL);
18504 	econnp->conn_upper_handle = sock_handle;
18505 	econnp->conn_upcalls = lconnp->conn_upcalls;
18506 	ASSERT(IPCL_IS_NONSTR(econnp));
18507 	/*
18508 	 * Create helper stream if it is a non-TPI TCP connection.
18509 	 */
18510 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
18511 		ip1dbg(("tcp_accept: create of IP helper stream"
18512 		    " failed\n"));
18513 		return (EPROTO);
18514 	}
18515 	eager->tcp_rq = econnp->conn_rq;
18516 	eager->tcp_wq = econnp->conn_wq;
18517 
18518 	ASSERT(eager->tcp_rq != NULL);
18519 
18520 	eager->tcp_sodirect = SOD_SOTOSODP(sock_handle);
18521 	return (tcp_accept_common(lconnp, econnp, cr));
18522 }
18523 
18524 
18525 /*
18526  * This is the STREAMS entry point for T_CONN_RES coming down on
18527  * Acceptor STREAM when  sockfs listener does accept processing.
18528  * Read the block comment on top of tcp_conn_request().
18529  */
18530 void
18531 tcp_tpi_accept(queue_t *q, mblk_t *mp)
18532 {
18533 	queue_t *rq = RD(q);
18534 	struct T_conn_res *conn_res;
18535 	tcp_t *eager;
18536 	tcp_t *listener;
18537 	struct T_ok_ack *ok;
18538 	t_scalar_t PRIM_type;
18539 	conn_t *econnp;
18540 	cred_t *cr;
18541 
18542 	ASSERT(DB_TYPE(mp) == M_PROTO);
18543 
18544 	/*
18545 	 * All Solaris components should pass a db_credp
18546 	 * for this TPI message, hence we ASSERT.
18547 	 * But in case there is some other M_PROTO that looks
18548 	 * like a TPI message sent by some other kernel
18549 	 * component, we check and return an error.
18550 	 */
18551 	cr = msg_getcred(mp, NULL);
18552 	ASSERT(cr != NULL);
18553 	if (cr == NULL) {
18554 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
18555 		if (mp != NULL)
18556 			putnext(rq, mp);
18557 		return;
18558 	}
18559 	conn_res = (struct T_conn_res *)mp->b_rptr;
18560 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18561 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18562 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18563 		if (mp != NULL)
18564 			putnext(rq, mp);
18565 		return;
18566 	}
18567 	switch (conn_res->PRIM_type) {
18568 	case O_T_CONN_RES:
18569 	case T_CONN_RES:
18570 		/*
18571 		 * We pass up an err ack if allocb fails. This will
18572 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18573 		 * tcp_eager_blowoff to be called. sockfs will then call
18574 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18575 		 * we need to do the allocb up here because we have to
18576 		 * make sure rq->q_qinfo->qi_qclose still points to the
18577 		 * correct function (tcpclose_accept) in case allocb
18578 		 * fails.
18579 		 */
18580 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18581 		    &eager, conn_res->OPT_length);
18582 		PRIM_type = conn_res->PRIM_type;
18583 		mp->b_datap->db_type = M_PCPROTO;
18584 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18585 		ok = (struct T_ok_ack *)mp->b_rptr;
18586 		ok->PRIM_type = T_OK_ACK;
18587 		ok->CORRECT_prim = PRIM_type;
18588 		econnp = eager->tcp_connp;
18589 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18590 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18591 		eager->tcp_rq = rq;
18592 		eager->tcp_wq = q;
18593 		rq->q_ptr = econnp;
18594 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18595 		q->q_ptr = econnp;
18596 		q->q_qinfo = &tcp_winit;
18597 		listener = eager->tcp_listener;
18598 
18599 		/*
18600 		 * TCP is _D_SODIRECT and sockfs is directly above so
18601 		 * save shared sodirect_t pointer (if any).
18602 		 */
18603 		eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq);
18604 		if (tcp_accept_common(listener->tcp_connp,
18605 		    econnp, cr) < 0) {
18606 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18607 			if (mp != NULL)
18608 				putnext(rq, mp);
18609 			return;
18610 		}
18611 
18612 		/*
18613 		 * Send the new local address also up to sockfs. There
18614 		 * should already be enough space in the mp that came
18615 		 * down from soaccept().
18616 		 */
18617 		if (eager->tcp_family == AF_INET) {
18618 			sin_t *sin;
18619 
18620 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18621 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18622 			sin = (sin_t *)mp->b_wptr;
18623 			mp->b_wptr += sizeof (sin_t);
18624 			sin->sin_family = AF_INET;
18625 			sin->sin_port = eager->tcp_lport;
18626 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18627 		} else {
18628 			sin6_t *sin6;
18629 
18630 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18631 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18632 			sin6 = (sin6_t *)mp->b_wptr;
18633 			mp->b_wptr += sizeof (sin6_t);
18634 			sin6->sin6_family = AF_INET6;
18635 			sin6->sin6_port = eager->tcp_lport;
18636 			if (eager->tcp_ipversion == IPV4_VERSION) {
18637 				sin6->sin6_flowinfo = 0;
18638 				IN6_IPADDR_TO_V4MAPPED(
18639 				    eager->tcp_ipha->ipha_src,
18640 				    &sin6->sin6_addr);
18641 			} else {
18642 				ASSERT(eager->tcp_ip6h != NULL);
18643 				sin6->sin6_flowinfo =
18644 				    eager->tcp_ip6h->ip6_vcf &
18645 				    ~IPV6_VERS_AND_FLOW_MASK;
18646 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18647 			}
18648 			sin6->sin6_scope_id = 0;
18649 			sin6->__sin6_src_id = 0;
18650 		}
18651 
18652 		putnext(rq, mp);
18653 		return;
18654 	default:
18655 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18656 		if (mp != NULL)
18657 			putnext(rq, mp);
18658 		return;
18659 	}
18660 }
18661 
18662 static int
18663 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18664 {
18665 	sin_t *sin = (sin_t *)sa;
18666 	sin6_t *sin6 = (sin6_t *)sa;
18667 
18668 	switch (tcp->tcp_family) {
18669 	case AF_INET:
18670 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18671 
18672 		if (*salenp < sizeof (sin_t))
18673 			return (EINVAL);
18674 
18675 		*sin = sin_null;
18676 		sin->sin_family = AF_INET;
18677 		if (tcp->tcp_state >= TCPS_BOUND) {
18678 			sin->sin_port = tcp->tcp_lport;
18679 			sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
18680 		}
18681 		*salenp = sizeof (sin_t);
18682 		break;
18683 
18684 	case AF_INET6:
18685 		if (*salenp < sizeof (sin6_t))
18686 			return (EINVAL);
18687 
18688 		*sin6 = sin6_null;
18689 		sin6->sin6_family = AF_INET6;
18690 		if (tcp->tcp_state >= TCPS_BOUND) {
18691 			sin6->sin6_port = tcp->tcp_lport;
18692 			if (tcp->tcp_ipversion == IPV4_VERSION) {
18693 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
18694 				    &sin6->sin6_addr);
18695 			} else {
18696 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
18697 			}
18698 		}
18699 		*salenp = sizeof (sin6_t);
18700 		break;
18701 	}
18702 
18703 	return (0);
18704 }
18705 
18706 static int
18707 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
18708 {
18709 	sin_t *sin = (sin_t *)sa;
18710 	sin6_t *sin6 = (sin6_t *)sa;
18711 
18712 	if (tcp->tcp_state < TCPS_SYN_RCVD)
18713 		return (ENOTCONN);
18714 
18715 	switch (tcp->tcp_family) {
18716 	case AF_INET:
18717 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
18718 
18719 		if (*salenp < sizeof (sin_t))
18720 			return (EINVAL);
18721 
18722 		*sin = sin_null;
18723 		sin->sin_family = AF_INET;
18724 		sin->sin_port = tcp->tcp_fport;
18725 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
18726 		    sin->sin_addr.s_addr);
18727 		*salenp = sizeof (sin_t);
18728 		break;
18729 
18730 	case AF_INET6:
18731 		if (*salenp < sizeof (sin6_t))
18732 			return (EINVAL);
18733 
18734 		*sin6 = sin6_null;
18735 		sin6->sin6_family = AF_INET6;
18736 		sin6->sin6_port = tcp->tcp_fport;
18737 		sin6->sin6_addr = tcp->tcp_remote_v6;
18738 		if (tcp->tcp_ipversion == IPV6_VERSION) {
18739 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
18740 			    ~IPV6_VERS_AND_FLOW_MASK;
18741 		}
18742 		*salenp = sizeof (sin6_t);
18743 		break;
18744 	}
18745 
18746 	return (0);
18747 }
18748 
18749 /*
18750  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
18751  */
18752 static void
18753 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
18754 {
18755 	void	*data;
18756 	mblk_t	*datamp = mp->b_cont;
18757 	tcp_t	*tcp = Q_TO_TCP(q);
18758 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
18759 
18760 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
18761 		cmdp->cb_error = EPROTO;
18762 		qreply(q, mp);
18763 		return;
18764 	}
18765 
18766 	data = datamp->b_rptr;
18767 
18768 	switch (cmdp->cb_cmd) {
18769 	case TI_GETPEERNAME:
18770 		cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len);
18771 		break;
18772 	case TI_GETMYNAME:
18773 		cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len);
18774 		break;
18775 	default:
18776 		cmdp->cb_error = EINVAL;
18777 		break;
18778 	}
18779 
18780 	qreply(q, mp);
18781 }
18782 
18783 void
18784 tcp_wput(queue_t *q, mblk_t *mp)
18785 {
18786 	conn_t	*connp = Q_TO_CONN(q);
18787 	tcp_t	*tcp;
18788 	void (*output_proc)();
18789 	t_scalar_t type;
18790 	uchar_t *rptr;
18791 	struct iocblk	*iocp;
18792 	size_t size;
18793 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18794 
18795 	ASSERT(connp->conn_ref >= 2);
18796 
18797 	switch (DB_TYPE(mp)) {
18798 	case M_DATA:
18799 		tcp = connp->conn_tcp;
18800 		ASSERT(tcp != NULL);
18801 
18802 		size = msgdsize(mp);
18803 
18804 		mutex_enter(&tcp->tcp_non_sq_lock);
18805 		tcp->tcp_squeue_bytes += size;
18806 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18807 			tcp_setqfull(tcp);
18808 		}
18809 		mutex_exit(&tcp->tcp_non_sq_lock);
18810 
18811 		CONN_INC_REF(connp);
18812 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
18813 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
18814 		return;
18815 
18816 	case M_CMD:
18817 		tcp_wput_cmdblk(q, mp);
18818 		return;
18819 
18820 	case M_PROTO:
18821 	case M_PCPROTO:
18822 		/*
18823 		 * if it is a snmp message, don't get behind the squeue
18824 		 */
18825 		tcp = connp->conn_tcp;
18826 		rptr = mp->b_rptr;
18827 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18828 			type = ((union T_primitives *)rptr)->type;
18829 		} else {
18830 			if (tcp->tcp_debug) {
18831 				(void) strlog(TCP_MOD_ID, 0, 1,
18832 				    SL_ERROR|SL_TRACE,
18833 				    "tcp_wput_proto, dropping one...");
18834 			}
18835 			freemsg(mp);
18836 			return;
18837 		}
18838 		if (type == T_SVR4_OPTMGMT_REQ) {
18839 			/*
18840 			 * All Solaris components should pass a db_credp
18841 			 * for this TPI message, hence we ASSERT.
18842 			 * But in case there is some other M_PROTO that looks
18843 			 * like a TPI message sent by some other kernel
18844 			 * component, we check and return an error.
18845 			 */
18846 			cred_t	*cr = msg_getcred(mp, NULL);
18847 
18848 			ASSERT(cr != NULL);
18849 			if (cr == NULL) {
18850 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
18851 				return;
18852 			}
18853 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18854 			    cr)) {
18855 				/*
18856 				 * This was a SNMP request
18857 				 */
18858 				return;
18859 			} else {
18860 				output_proc = tcp_wput_proto;
18861 			}
18862 		} else {
18863 			output_proc = tcp_wput_proto;
18864 		}
18865 		break;
18866 	case M_IOCTL:
18867 		/*
18868 		 * Most ioctls can be processed right away without going via
18869 		 * squeues - process them right here. Those that do require
18870 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18871 		 * are processed by tcp_wput_ioctl().
18872 		 */
18873 		iocp = (struct iocblk *)mp->b_rptr;
18874 		tcp = connp->conn_tcp;
18875 
18876 		switch (iocp->ioc_cmd) {
18877 		case TCP_IOC_ABORT_CONN:
18878 			tcp_ioctl_abort_conn(q, mp);
18879 			return;
18880 		case TI_GETPEERNAME:
18881 		case TI_GETMYNAME:
18882 			mi_copyin(q, mp, NULL,
18883 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18884 			return;
18885 		case ND_SET:
18886 			/* nd_getset does the necessary checks */
18887 		case ND_GET:
18888 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18889 				CALL_IP_WPUT(connp, q, mp);
18890 				return;
18891 			}
18892 			qreply(q, mp);
18893 			return;
18894 		case TCP_IOC_DEFAULT_Q:
18895 			/*
18896 			 * Wants to be the default wq. Check the credentials
18897 			 * first, the rest is executed via squeue.
18898 			 */
18899 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18900 				iocp->ioc_error = EPERM;
18901 				iocp->ioc_count = 0;
18902 				mp->b_datap->db_type = M_IOCACK;
18903 				qreply(q, mp);
18904 				return;
18905 			}
18906 			output_proc = tcp_wput_ioctl;
18907 			break;
18908 		default:
18909 			output_proc = tcp_wput_ioctl;
18910 			break;
18911 		}
18912 		break;
18913 	default:
18914 		output_proc = tcp_wput_nondata;
18915 		break;
18916 	}
18917 
18918 	CONN_INC_REF(connp);
18919 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18920 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18921 }
18922 
18923 /*
18924  * Initial STREAMS write side put() procedure for sockets. It tries to
18925  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18926  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18927  * are handled by tcp_wput() as usual.
18928  *
18929  * All further messages will also be handled by tcp_wput() because we cannot
18930  * be sure that the above short cut is safe later.
18931  */
18932 static void
18933 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18934 {
18935 	conn_t			*connp = Q_TO_CONN(wq);
18936 	tcp_t			*tcp = connp->conn_tcp;
18937 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18938 
18939 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18940 	wq->q_qinfo = &tcp_winit;
18941 
18942 	ASSERT(IPCL_IS_TCP(connp));
18943 	ASSERT(TCP_IS_SOCKET(tcp));
18944 
18945 	if (DB_TYPE(mp) == M_PCPROTO &&
18946 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18947 	    car->PRIM_type == T_CAPABILITY_REQ) {
18948 		tcp_capability_req(tcp, mp);
18949 		return;
18950 	}
18951 
18952 	tcp_wput(wq, mp);
18953 }
18954 
18955 /* ARGSUSED */
18956 static void
18957 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18958 {
18959 #ifdef DEBUG
18960 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18961 #endif
18962 	freemsg(mp);
18963 }
18964 
18965 static boolean_t
18966 tcp_zcopy_check(tcp_t *tcp)
18967 {
18968 	conn_t	*connp = tcp->tcp_connp;
18969 	ire_t	*ire;
18970 	boolean_t	zc_enabled = B_FALSE;
18971 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18972 
18973 	if (do_tcpzcopy == 2)
18974 		zc_enabled = B_TRUE;
18975 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18976 	    IPCL_IS_CONNECTED(connp) &&
18977 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18978 	    connp->conn_dontroute == 0 &&
18979 	    !connp->conn_nexthop_set &&
18980 	    connp->conn_outgoing_ill == NULL &&
18981 	    do_tcpzcopy == 1) {
18982 		/*
18983 		 * the checks above  closely resemble the fast path checks
18984 		 * in tcp_send_data().
18985 		 */
18986 		mutex_enter(&connp->conn_lock);
18987 		ire = connp->conn_ire_cache;
18988 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18989 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18990 			IRE_REFHOLD(ire);
18991 			if (ire->ire_stq != NULL) {
18992 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18993 
18994 				zc_enabled = ill && (ill->ill_capabilities &
18995 				    ILL_CAPAB_ZEROCOPY) &&
18996 				    (ill->ill_zerocopy_capab->
18997 				    ill_zerocopy_flags != 0);
18998 			}
18999 			IRE_REFRELE(ire);
19000 		}
19001 		mutex_exit(&connp->conn_lock);
19002 	}
19003 	tcp->tcp_snd_zcopy_on = zc_enabled;
19004 	if (!TCP_IS_DETACHED(tcp)) {
19005 		if (zc_enabled) {
19006 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
19007 			    ZCVMSAFE);
19008 			TCP_STAT(tcps, tcp_zcopy_on);
19009 		} else {
19010 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
19011 			    ZCVMUNSAFE);
19012 			TCP_STAT(tcps, tcp_zcopy_off);
19013 		}
19014 	}
19015 	return (zc_enabled);
19016 }
19017 
19018 static mblk_t *
19019 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
19020 {
19021 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19022 
19023 	if (do_tcpzcopy == 2)
19024 		return (bp);
19025 	else if (tcp->tcp_snd_zcopy_on) {
19026 		tcp->tcp_snd_zcopy_on = B_FALSE;
19027 		if (!TCP_IS_DETACHED(tcp)) {
19028 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
19029 			    ZCVMUNSAFE);
19030 			TCP_STAT(tcps, tcp_zcopy_disable);
19031 		}
19032 	}
19033 	return (tcp_zcopy_backoff(tcp, bp, 0));
19034 }
19035 
19036 /*
19037  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
19038  * the original desballoca'ed segmapped mblk.
19039  */
19040 static mblk_t *
19041 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
19042 {
19043 	mblk_t *head, *tail, *nbp;
19044 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19045 
19046 	if (IS_VMLOANED_MBLK(bp)) {
19047 		TCP_STAT(tcps, tcp_zcopy_backoff);
19048 		if ((head = copyb(bp)) == NULL) {
19049 			/* fail to backoff; leave it for the next backoff */
19050 			tcp->tcp_xmit_zc_clean = B_FALSE;
19051 			return (bp);
19052 		}
19053 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19054 			if (fix_xmitlist)
19055 				tcp_zcopy_notify(tcp);
19056 			else
19057 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19058 		}
19059 		nbp = bp->b_cont;
19060 		if (fix_xmitlist) {
19061 			head->b_prev = bp->b_prev;
19062 			head->b_next = bp->b_next;
19063 			if (tcp->tcp_xmit_tail == bp)
19064 				tcp->tcp_xmit_tail = head;
19065 		}
19066 		bp->b_next = NULL;
19067 		bp->b_prev = NULL;
19068 		freeb(bp);
19069 	} else {
19070 		head = bp;
19071 		nbp = bp->b_cont;
19072 	}
19073 	tail = head;
19074 	while (nbp) {
19075 		if (IS_VMLOANED_MBLK(nbp)) {
19076 			TCP_STAT(tcps, tcp_zcopy_backoff);
19077 			if ((tail->b_cont = copyb(nbp)) == NULL) {
19078 				tcp->tcp_xmit_zc_clean = B_FALSE;
19079 				tail->b_cont = nbp;
19080 				return (head);
19081 			}
19082 			tail = tail->b_cont;
19083 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
19084 				if (fix_xmitlist)
19085 					tcp_zcopy_notify(tcp);
19086 				else
19087 					tail->b_datap->db_struioflag |=
19088 					    STRUIO_ZCNOTIFY;
19089 			}
19090 			bp = nbp;
19091 			nbp = nbp->b_cont;
19092 			if (fix_xmitlist) {
19093 				tail->b_prev = bp->b_prev;
19094 				tail->b_next = bp->b_next;
19095 				if (tcp->tcp_xmit_tail == bp)
19096 					tcp->tcp_xmit_tail = tail;
19097 			}
19098 			bp->b_next = NULL;
19099 			bp->b_prev = NULL;
19100 			freeb(bp);
19101 		} else {
19102 			tail->b_cont = nbp;
19103 			tail = nbp;
19104 			nbp = nbp->b_cont;
19105 		}
19106 	}
19107 	if (fix_xmitlist) {
19108 		tcp->tcp_xmit_last = tail;
19109 		tcp->tcp_xmit_zc_clean = B_TRUE;
19110 	}
19111 	return (head);
19112 }
19113 
19114 static void
19115 tcp_zcopy_notify(tcp_t *tcp)
19116 {
19117 	struct stdata	*stp;
19118 	conn_t *connp;
19119 
19120 	if (tcp->tcp_detached)
19121 		return;
19122 	connp = tcp->tcp_connp;
19123 	if (IPCL_IS_NONSTR(connp)) {
19124 		(*connp->conn_upcalls->su_zcopy_notify)
19125 		    (connp->conn_upper_handle);
19126 		return;
19127 	}
19128 	stp = STREAM(tcp->tcp_rq);
19129 	mutex_enter(&stp->sd_lock);
19130 	stp->sd_flag |= STZCNOTIFY;
19131 	cv_broadcast(&stp->sd_zcopy_wait);
19132 	mutex_exit(&stp->sd_lock);
19133 }
19134 
19135 static boolean_t
19136 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
19137 {
19138 	ire_t	*ire;
19139 	conn_t	*connp = tcp->tcp_connp;
19140 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19141 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19142 
19143 	mutex_enter(&connp->conn_lock);
19144 	ire = connp->conn_ire_cache;
19145 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19146 
19147 	if ((ire != NULL) &&
19148 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
19149 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
19150 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19151 		IRE_REFHOLD(ire);
19152 		mutex_exit(&connp->conn_lock);
19153 	} else {
19154 		boolean_t cached = B_FALSE;
19155 		ts_label_t *tsl;
19156 
19157 		/* force a recheck later on */
19158 		tcp->tcp_ire_ill_check_done = B_FALSE;
19159 
19160 		TCP_DBGSTAT(tcps, tcp_ire_null1);
19161 		connp->conn_ire_cache = NULL;
19162 		mutex_exit(&connp->conn_lock);
19163 
19164 		if (ire != NULL)
19165 			IRE_REFRELE_NOTR(ire);
19166 
19167 		tsl = crgetlabel(CONN_CRED(connp));
19168 		ire = (dst ?
19169 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
19170 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19171 		    connp->conn_zoneid, tsl, ipst));
19172 
19173 		if (ire == NULL) {
19174 			TCP_STAT(tcps, tcp_ire_null);
19175 			return (B_FALSE);
19176 		}
19177 
19178 		IRE_REFHOLD_NOTR(ire);
19179 
19180 		mutex_enter(&connp->conn_lock);
19181 		if (CONN_CACHE_IRE(connp)) {
19182 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19183 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19184 				TCP_CHECK_IREINFO(tcp, ire);
19185 				connp->conn_ire_cache = ire;
19186 				cached = B_TRUE;
19187 			}
19188 			rw_exit(&ire->ire_bucket->irb_lock);
19189 		}
19190 		mutex_exit(&connp->conn_lock);
19191 
19192 		/*
19193 		 * We can continue to use the ire but since it was
19194 		 * not cached, we should drop the extra reference.
19195 		 */
19196 		if (!cached)
19197 			IRE_REFRELE_NOTR(ire);
19198 
19199 		/*
19200 		 * Rampart note: no need to select a new label here, since
19201 		 * labels are not allowed to change during the life of a TCP
19202 		 * connection.
19203 		 */
19204 	}
19205 
19206 	*irep = ire;
19207 
19208 	return (B_TRUE);
19209 }
19210 
19211 /*
19212  * Called from tcp_send() or tcp_send_data() to find workable IRE.
19213  *
19214  * 0 = success;
19215  * 1 = failed to find ire and ill.
19216  */
19217 static boolean_t
19218 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
19219 {
19220 	ipha_t		*ipha;
19221 	ipaddr_t	dst;
19222 	ire_t		*ire;
19223 	ill_t		*ill;
19224 	mblk_t		*ire_fp_mp;
19225 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19226 
19227 	if (mp != NULL)
19228 		ipha = (ipha_t *)mp->b_rptr;
19229 	else
19230 		ipha = tcp->tcp_ipha;
19231 	dst = ipha->ipha_dst;
19232 
19233 	if (!tcp_send_find_ire(tcp, &dst, &ire))
19234 		return (B_FALSE);
19235 
19236 	if ((ire->ire_flags & RTF_MULTIRT) ||
19237 	    (ire->ire_stq == NULL) ||
19238 	    (ire->ire_nce == NULL) ||
19239 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
19240 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
19241 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
19242 		TCP_STAT(tcps, tcp_ip_ire_send);
19243 		IRE_REFRELE(ire);
19244 		return (B_FALSE);
19245 	}
19246 
19247 	ill = ire_to_ill(ire);
19248 	ASSERT(ill != NULL);
19249 
19250 	if (!tcp->tcp_ire_ill_check_done) {
19251 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19252 		tcp->tcp_ire_ill_check_done = B_TRUE;
19253 	}
19254 
19255 	*irep = ire;
19256 	*illp = ill;
19257 
19258 	return (B_TRUE);
19259 }
19260 
19261 static void
19262 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
19263 {
19264 	ipha_t		*ipha;
19265 	ipaddr_t	src;
19266 	ipaddr_t	dst;
19267 	uint32_t	cksum;
19268 	ire_t		*ire;
19269 	uint16_t	*up;
19270 	ill_t		*ill;
19271 	conn_t		*connp = tcp->tcp_connp;
19272 	uint32_t	hcksum_txflags = 0;
19273 	mblk_t		*ire_fp_mp;
19274 	uint_t		ire_fp_mp_len;
19275 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19276 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
19277 	cred_t		*cr;
19278 	pid_t		cpid;
19279 
19280 	ASSERT(DB_TYPE(mp) == M_DATA);
19281 
19282 	/*
19283 	 * Here we need to handle the overloading of the cred_t for
19284 	 * both getpeerucred and TX.
19285 	 * If this is a SYN then the caller already set db_credp so
19286 	 * that getpeerucred will work. But if TX is in use we might have
19287 	 * a conn_peercred which is different, and we need to use that cred
19288 	 * to make TX use the correct label and label dependent route.
19289 	 */
19290 	if (is_system_labeled()) {
19291 		cr = msg_getcred(mp, &cpid);
19292 		if (cr == NULL || connp->conn_peercred != NULL)
19293 			mblk_setcred(mp, CONN_CRED(connp), cpid);
19294 	}
19295 
19296 	ipha = (ipha_t *)mp->b_rptr;
19297 	src = ipha->ipha_src;
19298 	dst = ipha->ipha_dst;
19299 
19300 	ASSERT(q != NULL);
19301 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
19302 
19303 	/*
19304 	 * Drop off fast path for IPv6 and also if options are present or
19305 	 * we need to resolve a TS label.
19306 	 */
19307 	if (tcp->tcp_ipversion != IPV4_VERSION ||
19308 	    !IPCL_IS_CONNECTED(connp) ||
19309 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
19310 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
19311 	    !connp->conn_ulp_labeled ||
19312 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
19313 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
19314 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
19315 		if (tcp->tcp_snd_zcopy_aware)
19316 			mp = tcp_zcopy_disable(tcp, mp);
19317 		TCP_STAT(tcps, tcp_ip_send);
19318 		CALL_IP_WPUT(connp, q, mp);
19319 		return;
19320 	}
19321 
19322 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19323 		if (tcp->tcp_snd_zcopy_aware)
19324 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19325 		CALL_IP_WPUT(connp, q, mp);
19326 		return;
19327 	}
19328 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19329 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19330 
19331 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19332 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19333 #ifndef _BIG_ENDIAN
19334 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19335 #endif
19336 
19337 	/*
19338 	 * Check to see if we need to re-enable LSO/MDT for this connection
19339 	 * because it was previously disabled due to changes in the ill;
19340 	 * note that by doing it here, this re-enabling only applies when
19341 	 * the packet is not dispatched through CALL_IP_WPUT().
19342 	 *
19343 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19344 	 * case, since that's how we ended up here.  For IPv6, we do the
19345 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19346 	 */
19347 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19348 		/*
19349 		 * Restore LSO for this connection, so that next time around
19350 		 * it is eligible to go through tcp_lsosend() path again.
19351 		 */
19352 		TCP_STAT(tcps, tcp_lso_enabled);
19353 		tcp->tcp_lso = B_TRUE;
19354 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19355 		    "interface %s\n", (void *)connp, ill->ill_name));
19356 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19357 		/*
19358 		 * Restore MDT for this connection, so that next time around
19359 		 * it is eligible to go through tcp_multisend() path again.
19360 		 */
19361 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19362 		tcp->tcp_mdt = B_TRUE;
19363 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19364 		    "interface %s\n", (void *)connp, ill->ill_name));
19365 	}
19366 
19367 	if (tcp->tcp_snd_zcopy_aware) {
19368 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19369 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19370 			mp = tcp_zcopy_disable(tcp, mp);
19371 		/*
19372 		 * we shouldn't need to reset ipha as the mp containing
19373 		 * ipha should never be a zero-copy mp.
19374 		 */
19375 	}
19376 
19377 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19378 		ASSERT(ill->ill_hcksum_capab != NULL);
19379 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19380 	}
19381 
19382 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19383 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19384 
19385 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19386 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19387 
19388 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19389 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19390 
19391 	/* Software checksum? */
19392 	if (DB_CKSUMFLAGS(mp) == 0) {
19393 		TCP_STAT(tcps, tcp_out_sw_cksum);
19394 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19395 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19396 	}
19397 
19398 	/* Calculate IP header checksum if hardware isn't capable */
19399 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19400 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19401 		    ((uint16_t *)ipha)[4]);
19402 	}
19403 
19404 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19405 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19406 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19407 
19408 	UPDATE_OB_PKT_COUNT(ire);
19409 	ire->ire_last_used_time = lbolt;
19410 
19411 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19412 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19413 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19414 	    ntohs(ipha->ipha_length));
19415 
19416 	DTRACE_PROBE4(ip4__physical__out__start,
19417 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
19418 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
19419 	    ipst->ips_ipv4firewall_physical_out,
19420 	    NULL, ill, ipha, mp, mp, 0, ipst);
19421 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19422 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
19423 
19424 	if (mp != NULL) {
19425 		if (ipst->ips_ipobs_enabled) {
19426 			zoneid_t szone;
19427 
19428 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
19429 			    ipst, ALL_ZONES);
19430 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
19431 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
19432 		}
19433 
19434 		ILL_SEND_TX(ill, ire, connp, mp, 0);
19435 	}
19436 
19437 	IRE_REFRELE(ire);
19438 }
19439 
19440 /*
19441  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19442  * if the receiver shrinks the window, i.e. moves the right window to the
19443  * left, the we should not send new data, but should retransmit normally the
19444  * old unacked data between suna and suna + swnd. We might has sent data
19445  * that is now outside the new window, pretend that we didn't send  it.
19446  */
19447 static void
19448 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19449 {
19450 	uint32_t	snxt = tcp->tcp_snxt;
19451 	mblk_t		*xmit_tail;
19452 	int32_t		offset;
19453 
19454 	ASSERT(shrunk_count > 0);
19455 
19456 	/* Pretend we didn't send the data outside the window */
19457 	snxt -= shrunk_count;
19458 
19459 	/* Get the mblk and the offset in it per the shrunk window */
19460 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19461 
19462 	ASSERT(xmit_tail != NULL);
19463 
19464 	/* Reset all the values per the now shrunk window */
19465 	tcp->tcp_snxt = snxt;
19466 	tcp->tcp_xmit_tail = xmit_tail;
19467 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19468 	    offset;
19469 	tcp->tcp_unsent += shrunk_count;
19470 
19471 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19472 		/*
19473 		 * Make sure the timer is running so that we will probe a zero
19474 		 * window.
19475 		 */
19476 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19477 }
19478 
19479 
19480 /*
19481  * The TCP normal data output path.
19482  * NOTE: the logic of the fast path is duplicated from this function.
19483  */
19484 static void
19485 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19486 {
19487 	int		len;
19488 	mblk_t		*local_time;
19489 	mblk_t		*mp1;
19490 	uint32_t	snxt;
19491 	int		tail_unsent;
19492 	int		tcpstate;
19493 	int		usable = 0;
19494 	mblk_t		*xmit_tail;
19495 	queue_t		*q = tcp->tcp_wq;
19496 	int32_t		mss;
19497 	int32_t		num_sack_blk = 0;
19498 	int32_t		tcp_hdr_len;
19499 	int32_t		tcp_tcp_hdr_len;
19500 	int		mdt_thres;
19501 	int		rc;
19502 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19503 	ip_stack_t	*ipst;
19504 
19505 	tcpstate = tcp->tcp_state;
19506 	if (mp == NULL) {
19507 		/*
19508 		 * tcp_wput_data() with NULL mp should only be called when
19509 		 * there is unsent data.
19510 		 */
19511 		ASSERT(tcp->tcp_unsent > 0);
19512 		/* Really tacky... but we need this for detached closes. */
19513 		len = tcp->tcp_unsent;
19514 		goto data_null;
19515 	}
19516 
19517 #if CCS_STATS
19518 	wrw_stats.tot.count++;
19519 	wrw_stats.tot.bytes += msgdsize(mp);
19520 #endif
19521 	ASSERT(mp->b_datap->db_type == M_DATA);
19522 	/*
19523 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19524 	 * or before a connection attempt has begun.
19525 	 */
19526 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19527 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19528 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19529 #ifdef DEBUG
19530 			cmn_err(CE_WARN,
19531 			    "tcp_wput_data: data after ordrel, %s",
19532 			    tcp_display(tcp, NULL,
19533 			    DISP_ADDR_AND_PORT));
19534 #else
19535 			if (tcp->tcp_debug) {
19536 				(void) strlog(TCP_MOD_ID, 0, 1,
19537 				    SL_TRACE|SL_ERROR,
19538 				    "tcp_wput_data: data after ordrel, %s\n",
19539 				    tcp_display(tcp, NULL,
19540 				    DISP_ADDR_AND_PORT));
19541 			}
19542 #endif /* DEBUG */
19543 		}
19544 		if (tcp->tcp_snd_zcopy_aware &&
19545 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19546 			tcp_zcopy_notify(tcp);
19547 		freemsg(mp);
19548 		mutex_enter(&tcp->tcp_non_sq_lock);
19549 		if (tcp->tcp_flow_stopped &&
19550 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19551 			tcp_clrqfull(tcp);
19552 		}
19553 		mutex_exit(&tcp->tcp_non_sq_lock);
19554 		return;
19555 	}
19556 
19557 	/* Strip empties */
19558 	for (;;) {
19559 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19560 		    (uintptr_t)INT_MAX);
19561 		len = (int)(mp->b_wptr - mp->b_rptr);
19562 		if (len > 0)
19563 			break;
19564 		mp1 = mp;
19565 		mp = mp->b_cont;
19566 		freeb(mp1);
19567 		if (!mp) {
19568 			return;
19569 		}
19570 	}
19571 
19572 	/* If we are the first on the list ... */
19573 	if (tcp->tcp_xmit_head == NULL) {
19574 		tcp->tcp_xmit_head = mp;
19575 		tcp->tcp_xmit_tail = mp;
19576 		tcp->tcp_xmit_tail_unsent = len;
19577 	} else {
19578 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19579 		struct datab *dp;
19580 
19581 		mp1 = tcp->tcp_xmit_last;
19582 		if (len < tcp_tx_pull_len &&
19583 		    (dp = mp1->b_datap)->db_ref == 1 &&
19584 		    dp->db_lim - mp1->b_wptr >= len) {
19585 			ASSERT(len > 0);
19586 			ASSERT(!mp1->b_cont);
19587 			if (len == 1) {
19588 				*mp1->b_wptr++ = *mp->b_rptr;
19589 			} else {
19590 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19591 				mp1->b_wptr += len;
19592 			}
19593 			if (mp1 == tcp->tcp_xmit_tail)
19594 				tcp->tcp_xmit_tail_unsent += len;
19595 			mp1->b_cont = mp->b_cont;
19596 			if (tcp->tcp_snd_zcopy_aware &&
19597 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19598 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19599 			freeb(mp);
19600 			mp = mp1;
19601 		} else {
19602 			tcp->tcp_xmit_last->b_cont = mp;
19603 		}
19604 		len += tcp->tcp_unsent;
19605 	}
19606 
19607 	/* Tack on however many more positive length mblks we have */
19608 	if ((mp1 = mp->b_cont) != NULL) {
19609 		do {
19610 			int tlen;
19611 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19612 			    (uintptr_t)INT_MAX);
19613 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19614 			if (tlen <= 0) {
19615 				mp->b_cont = mp1->b_cont;
19616 				freeb(mp1);
19617 			} else {
19618 				len += tlen;
19619 				mp = mp1;
19620 			}
19621 		} while ((mp1 = mp->b_cont) != NULL);
19622 	}
19623 	tcp->tcp_xmit_last = mp;
19624 	tcp->tcp_unsent = len;
19625 
19626 	if (urgent)
19627 		usable = 1;
19628 
19629 data_null:
19630 	snxt = tcp->tcp_snxt;
19631 	xmit_tail = tcp->tcp_xmit_tail;
19632 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19633 
19634 	/*
19635 	 * Note that tcp_mss has been adjusted to take into account the
19636 	 * timestamp option if applicable.  Because SACK options do not
19637 	 * appear in every TCP segments and they are of variable lengths,
19638 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19639 	 * the actual segment length when we need to send a segment which
19640 	 * includes SACK options.
19641 	 */
19642 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19643 		int32_t	opt_len;
19644 
19645 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19646 		    tcp->tcp_num_sack_blk);
19647 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19648 		    2 + TCPOPT_HEADER_LEN;
19649 		mss = tcp->tcp_mss - opt_len;
19650 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19651 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19652 	} else {
19653 		mss = tcp->tcp_mss;
19654 		tcp_hdr_len = tcp->tcp_hdr_len;
19655 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19656 	}
19657 
19658 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19659 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19660 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19661 	}
19662 	if (tcpstate == TCPS_SYN_RCVD) {
19663 		/*
19664 		 * The three-way connection establishment handshake is not
19665 		 * complete yet. We want to queue the data for transmission
19666 		 * after entering ESTABLISHED state (RFC793). A jump to
19667 		 * "done" label effectively leaves data on the queue.
19668 		 */
19669 		goto done;
19670 	} else {
19671 		int usable_r;
19672 
19673 		/*
19674 		 * In the special case when cwnd is zero, which can only
19675 		 * happen if the connection is ECN capable, return now.
19676 		 * New segments is sent using tcp_timer().  The timer
19677 		 * is set in tcp_rput_data().
19678 		 */
19679 		if (tcp->tcp_cwnd == 0) {
19680 			/*
19681 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19682 			 * finished.
19683 			 */
19684 			ASSERT(tcp->tcp_ecn_ok ||
19685 			    tcp->tcp_state < TCPS_ESTABLISHED);
19686 			return;
19687 		}
19688 
19689 		/* NOTE: trouble if xmitting while SYN not acked? */
19690 		usable_r = snxt - tcp->tcp_suna;
19691 		usable_r = tcp->tcp_swnd - usable_r;
19692 
19693 		/*
19694 		 * Check if the receiver has shrunk the window.  If
19695 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19696 		 * cannot be set as there is unsent data, so FIN cannot
19697 		 * be sent out.  Otherwise, we need to take into account
19698 		 * of FIN as it consumes an "invisible" sequence number.
19699 		 */
19700 		ASSERT(tcp->tcp_fin_sent == 0);
19701 		if (usable_r < 0) {
19702 			/*
19703 			 * The receiver has shrunk the window and we have sent
19704 			 * -usable_r date beyond the window, re-adjust.
19705 			 *
19706 			 * If TCP window scaling is enabled, there can be
19707 			 * round down error as the advertised receive window
19708 			 * is actually right shifted n bits.  This means that
19709 			 * the lower n bits info is wiped out.  It will look
19710 			 * like the window is shrunk.  Do a check here to
19711 			 * see if the shrunk amount is actually within the
19712 			 * error in window calculation.  If it is, just
19713 			 * return.  Note that this check is inside the
19714 			 * shrunk window check.  This makes sure that even
19715 			 * though tcp_process_shrunk_swnd() is not called,
19716 			 * we will stop further processing.
19717 			 */
19718 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19719 				tcp_process_shrunk_swnd(tcp, -usable_r);
19720 			}
19721 			return;
19722 		}
19723 
19724 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19725 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19726 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19727 
19728 		/* usable = MIN(usable, unsent) */
19729 		if (usable_r > len)
19730 			usable_r = len;
19731 
19732 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19733 		if (usable_r > 0) {
19734 			usable = usable_r;
19735 		} else {
19736 			/* Bypass all other unnecessary processing. */
19737 			goto done;
19738 		}
19739 	}
19740 
19741 	local_time = (mblk_t *)lbolt;
19742 
19743 	/*
19744 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19745 	 * BSD.  This is more in line with the true intent of Nagle.
19746 	 *
19747 	 * The conditions are:
19748 	 * 1. The amount of unsent data (or amount of data which can be
19749 	 *    sent, whichever is smaller) is less than Nagle limit.
19750 	 * 2. The last sent size is also less than Nagle limit.
19751 	 * 3. There is unack'ed data.
19752 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19753 	 *    Nagle algorithm.  This reduces the probability that urgent
19754 	 *    bytes get "merged" together.
19755 	 * 5. The app has not closed the connection.  This eliminates the
19756 	 *    wait time of the receiving side waiting for the last piece of
19757 	 *    (small) data.
19758 	 *
19759 	 * If all are satisified, exit without sending anything.  Note
19760 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19761 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19762 	 * 4095).
19763 	 */
19764 	if (usable < (int)tcp->tcp_naglim &&
19765 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19766 	    snxt != tcp->tcp_suna &&
19767 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19768 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19769 		goto done;
19770 	}
19771 
19772 	if (tcp->tcp_cork) {
19773 		/*
19774 		 * if the tcp->tcp_cork option is set, then we have to force
19775 		 * TCP not to send partial segment (smaller than MSS bytes).
19776 		 * We are calculating the usable now based on full mss and
19777 		 * will save the rest of remaining data for later.
19778 		 */
19779 		if (usable < mss)
19780 			goto done;
19781 		usable = (usable / mss) * mss;
19782 	}
19783 
19784 	/* Update the latest receive window size in TCP header. */
19785 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19786 	    tcp->tcp_tcph->th_win);
19787 
19788 	/*
19789 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19790 	 *
19791 	 * 1. Simple TCP/IP{v4,v6} (no options).
19792 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19793 	 * 3. If the TCP connection is in ESTABLISHED state.
19794 	 * 4. The TCP is not detached.
19795 	 *
19796 	 * If any of the above conditions have changed during the
19797 	 * connection, stop using LSO/MDT and restore the stream head
19798 	 * parameters accordingly.
19799 	 */
19800 	ipst = tcps->tcps_netstack->netstack_ip;
19801 
19802 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19803 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19804 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19805 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19806 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19807 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19808 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19809 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19810 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19811 		if (tcp->tcp_lso) {
19812 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19813 			tcp->tcp_lso = B_FALSE;
19814 		} else {
19815 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19816 			tcp->tcp_mdt = B_FALSE;
19817 		}
19818 
19819 		/* Anything other than detached is considered pathological */
19820 		if (!TCP_IS_DETACHED(tcp)) {
19821 			if (tcp->tcp_lso)
19822 				TCP_STAT(tcps, tcp_lso_disabled);
19823 			else
19824 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19825 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19826 		}
19827 	}
19828 
19829 	/* Use MDT if sendable amount is greater than the threshold */
19830 	if (tcp->tcp_mdt &&
19831 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19832 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19833 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19834 	    (tcp->tcp_valid_bits == 0 ||
19835 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19836 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19837 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19838 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19839 		    local_time, mdt_thres);
19840 	} else {
19841 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19842 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19843 		    local_time, INT_MAX);
19844 	}
19845 
19846 	/* Pretend that all we were trying to send really got sent */
19847 	if (rc < 0 && tail_unsent < 0) {
19848 		do {
19849 			xmit_tail = xmit_tail->b_cont;
19850 			xmit_tail->b_prev = local_time;
19851 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19852 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19853 			tail_unsent += (int)(xmit_tail->b_wptr -
19854 			    xmit_tail->b_rptr);
19855 		} while (tail_unsent < 0);
19856 	}
19857 done:;
19858 	tcp->tcp_xmit_tail = xmit_tail;
19859 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19860 	len = tcp->tcp_snxt - snxt;
19861 	if (len) {
19862 		/*
19863 		 * If new data was sent, need to update the notsack
19864 		 * list, which is, afterall, data blocks that have
19865 		 * not been sack'ed by the receiver.  New data is
19866 		 * not sack'ed.
19867 		 */
19868 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19869 			/* len is a negative value. */
19870 			tcp->tcp_pipe -= len;
19871 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19872 			    tcp->tcp_snxt, snxt,
19873 			    &(tcp->tcp_num_notsack_blk),
19874 			    &(tcp->tcp_cnt_notsack_list));
19875 		}
19876 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19877 		tcp->tcp_rack = tcp->tcp_rnxt;
19878 		tcp->tcp_rack_cnt = 0;
19879 		if ((snxt + len) == tcp->tcp_suna) {
19880 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19881 		}
19882 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19883 		/*
19884 		 * Didn't send anything. Make sure the timer is running
19885 		 * so that we will probe a zero window.
19886 		 */
19887 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19888 	}
19889 	/* Note that len is the amount we just sent but with a negative sign */
19890 	tcp->tcp_unsent += len;
19891 	mutex_enter(&tcp->tcp_non_sq_lock);
19892 	if (tcp->tcp_flow_stopped) {
19893 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19894 			tcp_clrqfull(tcp);
19895 		}
19896 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19897 		tcp_setqfull(tcp);
19898 	}
19899 	mutex_exit(&tcp->tcp_non_sq_lock);
19900 }
19901 
19902 /*
19903  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19904  * outgoing TCP header with the template header, as well as other
19905  * options such as time-stamp, ECN and/or SACK.
19906  */
19907 static void
19908 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19909 {
19910 	tcph_t *tcp_tmpl, *tcp_h;
19911 	uint32_t *dst, *src;
19912 	int hdrlen;
19913 
19914 	ASSERT(OK_32PTR(rptr));
19915 
19916 	/* Template header */
19917 	tcp_tmpl = tcp->tcp_tcph;
19918 
19919 	/* Header of outgoing packet */
19920 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19921 
19922 	/* dst and src are opaque 32-bit fields, used for copying */
19923 	dst = (uint32_t *)rptr;
19924 	src = (uint32_t *)tcp->tcp_iphc;
19925 	hdrlen = tcp->tcp_hdr_len;
19926 
19927 	/* Fill time-stamp option if needed */
19928 	if (tcp->tcp_snd_ts_ok) {
19929 		U32_TO_BE32((uint32_t)now,
19930 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19931 		U32_TO_BE32(tcp->tcp_ts_recent,
19932 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19933 	} else {
19934 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19935 	}
19936 
19937 	/*
19938 	 * Copy the template header; is this really more efficient than
19939 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19940 	 * but perhaps not for other scenarios.
19941 	 */
19942 	dst[0] = src[0];
19943 	dst[1] = src[1];
19944 	dst[2] = src[2];
19945 	dst[3] = src[3];
19946 	dst[4] = src[4];
19947 	dst[5] = src[5];
19948 	dst[6] = src[6];
19949 	dst[7] = src[7];
19950 	dst[8] = src[8];
19951 	dst[9] = src[9];
19952 	if (hdrlen -= 40) {
19953 		hdrlen >>= 2;
19954 		dst += 10;
19955 		src += 10;
19956 		do {
19957 			*dst++ = *src++;
19958 		} while (--hdrlen);
19959 	}
19960 
19961 	/*
19962 	 * Set the ECN info in the TCP header if it is not a zero
19963 	 * window probe.  Zero window probe is only sent in
19964 	 * tcp_wput_data() and tcp_timer().
19965 	 */
19966 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19967 		SET_ECT(tcp, rptr);
19968 
19969 		if (tcp->tcp_ecn_echo_on)
19970 			tcp_h->th_flags[0] |= TH_ECE;
19971 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19972 			tcp_h->th_flags[0] |= TH_CWR;
19973 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19974 		}
19975 	}
19976 
19977 	/* Fill in SACK options */
19978 	if (num_sack_blk > 0) {
19979 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19980 		sack_blk_t *tmp;
19981 		int32_t	i;
19982 
19983 		wptr[0] = TCPOPT_NOP;
19984 		wptr[1] = TCPOPT_NOP;
19985 		wptr[2] = TCPOPT_SACK;
19986 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19987 		    sizeof (sack_blk_t);
19988 		wptr += TCPOPT_REAL_SACK_LEN;
19989 
19990 		tmp = tcp->tcp_sack_list;
19991 		for (i = 0; i < num_sack_blk; i++) {
19992 			U32_TO_BE32(tmp[i].begin, wptr);
19993 			wptr += sizeof (tcp_seq);
19994 			U32_TO_BE32(tmp[i].end, wptr);
19995 			wptr += sizeof (tcp_seq);
19996 		}
19997 		tcp_h->th_offset_and_rsrvd[0] +=
19998 		    ((num_sack_blk * 2 + 1) << 4);
19999 	}
20000 }
20001 
20002 /*
20003  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
20004  * the destination address and SAP attribute, and if necessary, the
20005  * hardware checksum offload attribute to a Multidata message.
20006  */
20007 static int
20008 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
20009     const uint32_t start, const uint32_t stuff, const uint32_t end,
20010     const uint32_t flags, tcp_stack_t *tcps)
20011 {
20012 	/* Add global destination address & SAP attribute */
20013 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
20014 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
20015 		    "destination address+SAP\n"));
20016 
20017 		if (dlmp != NULL)
20018 			TCP_STAT(tcps, tcp_mdt_allocfail);
20019 		return (-1);
20020 	}
20021 
20022 	/* Add global hwcksum attribute */
20023 	if (hwcksum &&
20024 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
20025 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
20026 		    "checksum attribute\n"));
20027 
20028 		TCP_STAT(tcps, tcp_mdt_allocfail);
20029 		return (-1);
20030 	}
20031 
20032 	return (0);
20033 }
20034 
20035 /*
20036  * Smaller and private version of pdescinfo_t used specifically for TCP,
20037  * which allows for only two payload spans per packet.
20038  */
20039 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
20040 
20041 /*
20042  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
20043  * scheme, and returns one the following:
20044  *
20045  * -1 = failed allocation.
20046  *  0 = success; burst count reached, or usable send window is too small,
20047  *      and that we'd rather wait until later before sending again.
20048  */
20049 static int
20050 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20051     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20052     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20053     const int mdt_thres)
20054 {
20055 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
20056 	multidata_t	*mmd;
20057 	uint_t		obsegs, obbytes, hdr_frag_sz;
20058 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
20059 	int		num_burst_seg, max_pld;
20060 	pdesc_t		*pkt;
20061 	tcp_pdescinfo_t	tcp_pkt_info;
20062 	pdescinfo_t	*pkt_info;
20063 	int		pbuf_idx, pbuf_idx_nxt;
20064 	int		seg_len, len, spill, af;
20065 	boolean_t	add_buffer, zcopy, clusterwide;
20066 	boolean_t	rconfirm = B_FALSE;
20067 	boolean_t	done = B_FALSE;
20068 	uint32_t	cksum;
20069 	uint32_t	hwcksum_flags;
20070 	ire_t		*ire = NULL;
20071 	ill_t		*ill;
20072 	ipha_t		*ipha;
20073 	ip6_t		*ip6h;
20074 	ipaddr_t	src, dst;
20075 	ill_zerocopy_capab_t *zc_cap = NULL;
20076 	uint16_t	*up;
20077 	int		err;
20078 	conn_t		*connp;
20079 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20080 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
20081 	int		usable_mmd, tail_unsent_mmd;
20082 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
20083 	mblk_t		*xmit_tail_mmd;
20084 	netstackid_t	stack_id;
20085 
20086 #ifdef	_BIG_ENDIAN
20087 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
20088 #else
20089 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
20090 #endif
20091 
20092 #define	PREP_NEW_MULTIDATA() {			\
20093 	mmd = NULL;				\
20094 	md_mp = md_hbuf = NULL;			\
20095 	cur_hdr_off = 0;			\
20096 	max_pld = tcp->tcp_mdt_max_pld;		\
20097 	pbuf_idx = pbuf_idx_nxt = -1;		\
20098 	add_buffer = B_TRUE;			\
20099 	zcopy = B_FALSE;			\
20100 }
20101 
20102 #define	PREP_NEW_PBUF() {			\
20103 	md_pbuf = md_pbuf_nxt = NULL;		\
20104 	pbuf_idx = pbuf_idx_nxt = -1;		\
20105 	cur_pld_off = 0;			\
20106 	first_snxt = *snxt;			\
20107 	ASSERT(*tail_unsent > 0);		\
20108 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
20109 }
20110 
20111 	ASSERT(mdt_thres >= mss);
20112 	ASSERT(*usable > 0 && *usable > mdt_thres);
20113 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20114 	ASSERT(!TCP_IS_DETACHED(tcp));
20115 	ASSERT(tcp->tcp_valid_bits == 0 ||
20116 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
20117 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
20118 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
20119 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20120 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
20121 
20122 	connp = tcp->tcp_connp;
20123 	ASSERT(connp != NULL);
20124 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
20125 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
20126 
20127 	stack_id = connp->conn_netstack->netstack_stackid;
20128 
20129 	usable_mmd = tail_unsent_mmd = 0;
20130 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
20131 	xmit_tail_mmd = NULL;
20132 	/*
20133 	 * Note that tcp will only declare at most 2 payload spans per
20134 	 * packet, which is much lower than the maximum allowable number
20135 	 * of packet spans per Multidata.  For this reason, we use the
20136 	 * privately declared and smaller descriptor info structure, in
20137 	 * order to save some stack space.
20138 	 */
20139 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
20140 
20141 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
20142 	if (af == AF_INET) {
20143 		dst = tcp->tcp_ipha->ipha_dst;
20144 		src = tcp->tcp_ipha->ipha_src;
20145 		ASSERT(!CLASSD(dst));
20146 	}
20147 	ASSERT(af == AF_INET ||
20148 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
20149 
20150 	obsegs = obbytes = 0;
20151 	num_burst_seg = tcp->tcp_snd_burst;
20152 	md_mp_head = NULL;
20153 	PREP_NEW_MULTIDATA();
20154 
20155 	/*
20156 	 * Before we go on further, make sure there is an IRE that we can
20157 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
20158 	 * in proceeding any further, and we should just hand everything
20159 	 * off to the legacy path.
20160 	 */
20161 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
20162 		goto legacy_send_no_md;
20163 
20164 	ASSERT(ire != NULL);
20165 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
20166 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
20167 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
20168 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
20169 	/*
20170 	 * If we do support loopback for MDT (which requires modifications
20171 	 * to the receiving paths), the following assertions should go away,
20172 	 * and we would be sending the Multidata to loopback conn later on.
20173 	 */
20174 	ASSERT(!IRE_IS_LOCAL(ire));
20175 	ASSERT(ire->ire_stq != NULL);
20176 
20177 	ill = ire_to_ill(ire);
20178 	ASSERT(ill != NULL);
20179 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
20180 
20181 	if (!tcp->tcp_ire_ill_check_done) {
20182 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
20183 		tcp->tcp_ire_ill_check_done = B_TRUE;
20184 	}
20185 
20186 	/*
20187 	 * If the underlying interface conditions have changed, or if the
20188 	 * new interface does not support MDT, go back to legacy path.
20189 	 */
20190 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
20191 		/* don't go through this path anymore for this connection */
20192 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
20193 		tcp->tcp_mdt = B_FALSE;
20194 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
20195 		    "interface %s\n", (void *)connp, ill->ill_name));
20196 		/* IRE will be released prior to returning */
20197 		goto legacy_send_no_md;
20198 	}
20199 
20200 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
20201 		zc_cap = ill->ill_zerocopy_capab;
20202 
20203 	/*
20204 	 * Check if we can take tcp fast-path. Note that "incomplete"
20205 	 * ire's (where the link-layer for next hop is not resolved
20206 	 * or where the fast-path header in nce_fp_mp is not available
20207 	 * yet) are sent down the legacy (slow) path.
20208 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
20209 	 */
20210 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
20211 		/* IRE will be released prior to returning */
20212 		goto legacy_send_no_md;
20213 	}
20214 
20215 	/* go to legacy path if interface doesn't support zerocopy */
20216 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
20217 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
20218 		/* IRE will be released prior to returning */
20219 		goto legacy_send_no_md;
20220 	}
20221 
20222 	/* does the interface support hardware checksum offload? */
20223 	hwcksum_flags = 0;
20224 	if (ILL_HCKSUM_CAPABLE(ill) &&
20225 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
20226 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
20227 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
20228 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20229 		    HCKSUM_IPHDRCKSUM)
20230 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
20231 
20232 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20233 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
20234 			hwcksum_flags |= HCK_FULLCKSUM;
20235 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
20236 		    HCKSUM_INET_PARTIAL)
20237 			hwcksum_flags |= HCK_PARTIALCKSUM;
20238 	}
20239 
20240 	/*
20241 	 * Each header fragment consists of the leading extra space,
20242 	 * followed by the TCP/IP header, and the trailing extra space.
20243 	 * We make sure that each header fragment begins on a 32-bit
20244 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
20245 	 * aligned in tcp_mdt_update).
20246 	 */
20247 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
20248 	    tcp->tcp_mdt_hdr_tail), 4);
20249 
20250 	/* are we starting from the beginning of data block? */
20251 	if (*tail_unsent == 0) {
20252 		*xmit_tail = (*xmit_tail)->b_cont;
20253 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
20254 		*tail_unsent = (int)MBLKL(*xmit_tail);
20255 	}
20256 
20257 	/*
20258 	 * Here we create one or more Multidata messages, each made up of
20259 	 * one header buffer and up to N payload buffers.  This entire
20260 	 * operation is done within two loops:
20261 	 *
20262 	 * The outer loop mostly deals with creating the Multidata message,
20263 	 * as well as the header buffer that gets added to it.  It also
20264 	 * links the Multidata messages together such that all of them can
20265 	 * be sent down to the lower layer in a single putnext call; this
20266 	 * linking behavior depends on the tcp_mdt_chain tunable.
20267 	 *
20268 	 * The inner loop takes an existing Multidata message, and adds
20269 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
20270 	 * packetizes those buffers by filling up the corresponding header
20271 	 * buffer fragments with the proper IP and TCP headers, and by
20272 	 * describing the layout of each packet in the packet descriptors
20273 	 * that get added to the Multidata.
20274 	 */
20275 	do {
20276 		/*
20277 		 * If usable send window is too small, or data blocks in
20278 		 * transmit list are smaller than our threshold (i.e. app
20279 		 * performs large writes followed by small ones), we hand
20280 		 * off the control over to the legacy path.  Note that we'll
20281 		 * get back the control once it encounters a large block.
20282 		 */
20283 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
20284 		    (*xmit_tail)->b_cont != NULL &&
20285 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
20286 			/* send down what we've got so far */
20287 			if (md_mp_head != NULL) {
20288 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
20289 				    obsegs, obbytes, &rconfirm);
20290 			}
20291 			/*
20292 			 * Pass control over to tcp_send(), but tell it to
20293 			 * return to us once a large-size transmission is
20294 			 * possible.
20295 			 */
20296 			TCP_STAT(tcps, tcp_mdt_legacy_small);
20297 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
20298 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
20299 			    tail_unsent, xmit_tail, local_time,
20300 			    mdt_thres)) <= 0) {
20301 				/* burst count reached, or alloc failed */
20302 				IRE_REFRELE(ire);
20303 				return (err);
20304 			}
20305 
20306 			/* tcp_send() may have sent everything, so check */
20307 			if (*usable <= 0) {
20308 				IRE_REFRELE(ire);
20309 				return (0);
20310 			}
20311 
20312 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
20313 			/*
20314 			 * We may have delivered the Multidata, so make sure
20315 			 * to re-initialize before the next round.
20316 			 */
20317 			md_mp_head = NULL;
20318 			obsegs = obbytes = 0;
20319 			num_burst_seg = tcp->tcp_snd_burst;
20320 			PREP_NEW_MULTIDATA();
20321 
20322 			/* are we starting from the beginning of data block? */
20323 			if (*tail_unsent == 0) {
20324 				*xmit_tail = (*xmit_tail)->b_cont;
20325 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20326 				    (uintptr_t)INT_MAX);
20327 				*tail_unsent = (int)MBLKL(*xmit_tail);
20328 			}
20329 		}
20330 		/*
20331 		 * Record current values for parameters we may need to pass
20332 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
20333 		 * each iteration of the outer loop (each multidata message
20334 		 * creation). If we have a failure in the inner loop, we send
20335 		 * any complete multidata messages we have before reverting
20336 		 * to using the traditional non-md path.
20337 		 */
20338 		snxt_mmd = *snxt;
20339 		usable_mmd = *usable;
20340 		xmit_tail_mmd = *xmit_tail;
20341 		tail_unsent_mmd = *tail_unsent;
20342 		obsegs_mmd = obsegs;
20343 		obbytes_mmd = obbytes;
20344 
20345 		/*
20346 		 * max_pld limits the number of mblks in tcp's transmit
20347 		 * queue that can be added to a Multidata message.  Once
20348 		 * this counter reaches zero, no more additional mblks
20349 		 * can be added to it.  What happens afterwards depends
20350 		 * on whether or not we are set to chain the Multidata
20351 		 * messages.  If we are to link them together, reset
20352 		 * max_pld to its original value (tcp_mdt_max_pld) and
20353 		 * prepare to create a new Multidata message which will
20354 		 * get linked to md_mp_head.  Else, leave it alone and
20355 		 * let the inner loop break on its own.
20356 		 */
20357 		if (tcp_mdt_chain && max_pld == 0)
20358 			PREP_NEW_MULTIDATA();
20359 
20360 		/* adding a payload buffer; re-initialize values */
20361 		if (add_buffer)
20362 			PREP_NEW_PBUF();
20363 
20364 		/*
20365 		 * If we don't have a Multidata, either because we just
20366 		 * (re)entered this outer loop, or after we branched off
20367 		 * to tcp_send above, setup the Multidata and header
20368 		 * buffer to be used.
20369 		 */
20370 		if (md_mp == NULL) {
20371 			int md_hbuflen;
20372 			uint32_t start, stuff;
20373 
20374 			/*
20375 			 * Calculate Multidata header buffer size large enough
20376 			 * to hold all of the headers that can possibly be
20377 			 * sent at this moment.  We'd rather over-estimate
20378 			 * the size than running out of space; this is okay
20379 			 * since this buffer is small anyway.
20380 			 */
20381 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20382 
20383 			/*
20384 			 * Start and stuff offset for partial hardware
20385 			 * checksum offload; these are currently for IPv4.
20386 			 * For full checksum offload, they are set to zero.
20387 			 */
20388 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20389 				if (af == AF_INET) {
20390 					start = IP_SIMPLE_HDR_LENGTH;
20391 					stuff = IP_SIMPLE_HDR_LENGTH +
20392 					    TCP_CHECKSUM_OFFSET;
20393 				} else {
20394 					start = IPV6_HDR_LEN;
20395 					stuff = IPV6_HDR_LEN +
20396 					    TCP_CHECKSUM_OFFSET;
20397 				}
20398 			} else {
20399 				start = stuff = 0;
20400 			}
20401 
20402 			/*
20403 			 * Create the header buffer, Multidata, as well as
20404 			 * any necessary attributes (destination address,
20405 			 * SAP and hardware checksum offload) that should
20406 			 * be associated with the Multidata message.
20407 			 */
20408 			ASSERT(cur_hdr_off == 0);
20409 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20410 			    ((md_hbuf->b_wptr += md_hbuflen),
20411 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20412 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20413 			    /* fastpath mblk */
20414 			    ire->ire_nce->nce_res_mp,
20415 			    /* hardware checksum enabled */
20416 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20417 			    /* hardware checksum offsets */
20418 			    start, stuff, 0,
20419 			    /* hardware checksum flag */
20420 			    hwcksum_flags, tcps) != 0)) {
20421 legacy_send:
20422 				/*
20423 				 * We arrive here from a failure within the
20424 				 * inner (packetizer) loop or we fail one of
20425 				 * the conditionals above. We restore the
20426 				 * previously checkpointed values for:
20427 				 *    xmit_tail
20428 				 *    usable
20429 				 *    tail_unsent
20430 				 *    snxt
20431 				 *    obbytes
20432 				 *    obsegs
20433 				 * We should then be able to dispatch any
20434 				 * complete multidata before reverting to the
20435 				 * traditional path with consistent parameters
20436 				 * (the inner loop updates these as it
20437 				 * iterates).
20438 				 */
20439 				*xmit_tail = xmit_tail_mmd;
20440 				*usable = usable_mmd;
20441 				*tail_unsent = tail_unsent_mmd;
20442 				*snxt = snxt_mmd;
20443 				obbytes = obbytes_mmd;
20444 				obsegs = obsegs_mmd;
20445 				if (md_mp != NULL) {
20446 					/* Unlink message from the chain */
20447 					if (md_mp_head != NULL) {
20448 						err = (intptr_t)rmvb(md_mp_head,
20449 						    md_mp);
20450 						/*
20451 						 * We can't assert that rmvb
20452 						 * did not return -1, since we
20453 						 * may get here before linkb
20454 						 * happens.  We do, however,
20455 						 * check if we just removed the
20456 						 * only element in the list.
20457 						 */
20458 						if (err == 0)
20459 							md_mp_head = NULL;
20460 					}
20461 					/* md_hbuf gets freed automatically */
20462 					TCP_STAT(tcps, tcp_mdt_discarded);
20463 					freeb(md_mp);
20464 				} else {
20465 					/* Either allocb or mmd_alloc failed */
20466 					TCP_STAT(tcps, tcp_mdt_allocfail);
20467 					if (md_hbuf != NULL)
20468 						freeb(md_hbuf);
20469 				}
20470 
20471 				/* send down what we've got so far */
20472 				if (md_mp_head != NULL) {
20473 					tcp_multisend_data(tcp, ire, ill,
20474 					    md_mp_head, obsegs, obbytes,
20475 					    &rconfirm);
20476 				}
20477 legacy_send_no_md:
20478 				if (ire != NULL)
20479 					IRE_REFRELE(ire);
20480 				/*
20481 				 * Too bad; let the legacy path handle this.
20482 				 * We specify INT_MAX for the threshold, since
20483 				 * we gave up with the Multidata processings
20484 				 * and let the old path have it all.
20485 				 */
20486 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20487 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20488 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20489 				    snxt, tail_unsent, xmit_tail, local_time,
20490 				    INT_MAX));
20491 			}
20492 
20493 			/* link to any existing ones, if applicable */
20494 			TCP_STAT(tcps, tcp_mdt_allocd);
20495 			if (md_mp_head == NULL) {
20496 				md_mp_head = md_mp;
20497 			} else if (tcp_mdt_chain) {
20498 				TCP_STAT(tcps, tcp_mdt_linked);
20499 				linkb(md_mp_head, md_mp);
20500 			}
20501 		}
20502 
20503 		ASSERT(md_mp_head != NULL);
20504 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20505 		ASSERT(md_mp != NULL && mmd != NULL);
20506 		ASSERT(md_hbuf != NULL);
20507 
20508 		/*
20509 		 * Packetize the transmittable portion of the data block;
20510 		 * each data block is essentially added to the Multidata
20511 		 * as a payload buffer.  We also deal with adding more
20512 		 * than one payload buffers, which happens when the remaining
20513 		 * packetized portion of the current payload buffer is less
20514 		 * than MSS, while the next data block in transmit queue
20515 		 * has enough data to make up for one.  This "spillover"
20516 		 * case essentially creates a split-packet, where portions
20517 		 * of the packet's payload fragments may span across two
20518 		 * virtually discontiguous address blocks.
20519 		 */
20520 		seg_len = mss;
20521 		do {
20522 			len = seg_len;
20523 
20524 			/* one must remain NULL for DTRACE_IP_FASTPATH */
20525 			ipha = NULL;
20526 			ip6h = NULL;
20527 
20528 			ASSERT(len > 0);
20529 			ASSERT(max_pld >= 0);
20530 			ASSERT(!add_buffer || cur_pld_off == 0);
20531 
20532 			/*
20533 			 * First time around for this payload buffer; note
20534 			 * in the case of a spillover, the following has
20535 			 * been done prior to adding the split-packet
20536 			 * descriptor to Multidata, and we don't want to
20537 			 * repeat the process.
20538 			 */
20539 			if (add_buffer) {
20540 				ASSERT(mmd != NULL);
20541 				ASSERT(md_pbuf == NULL);
20542 				ASSERT(md_pbuf_nxt == NULL);
20543 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20544 
20545 				/*
20546 				 * Have we reached the limit?  We'd get to
20547 				 * this case when we're not chaining the
20548 				 * Multidata messages together, and since
20549 				 * we're done, terminate this loop.
20550 				 */
20551 				if (max_pld == 0)
20552 					break; /* done */
20553 
20554 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20555 					TCP_STAT(tcps, tcp_mdt_allocfail);
20556 					goto legacy_send; /* out_of_mem */
20557 				}
20558 
20559 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20560 				    zc_cap != NULL) {
20561 					if (!ip_md_zcopy_attr(mmd, NULL,
20562 					    zc_cap->ill_zerocopy_flags)) {
20563 						freeb(md_pbuf);
20564 						TCP_STAT(tcps,
20565 						    tcp_mdt_allocfail);
20566 						/* out_of_mem */
20567 						goto legacy_send;
20568 					}
20569 					zcopy = B_TRUE;
20570 				}
20571 
20572 				md_pbuf->b_rptr += base_pld_off;
20573 
20574 				/*
20575 				 * Add a payload buffer to the Multidata; this
20576 				 * operation must not fail, or otherwise our
20577 				 * logic in this routine is broken.  There
20578 				 * is no memory allocation done by the
20579 				 * routine, so any returned failure simply
20580 				 * tells us that we've done something wrong.
20581 				 *
20582 				 * A failure tells us that either we're adding
20583 				 * the same payload buffer more than once, or
20584 				 * we're trying to add more buffers than
20585 				 * allowed (max_pld calculation is wrong).
20586 				 * None of the above cases should happen, and
20587 				 * we panic because either there's horrible
20588 				 * heap corruption, and/or programming mistake.
20589 				 */
20590 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20591 				if (pbuf_idx < 0) {
20592 					cmn_err(CE_PANIC, "tcp_multisend: "
20593 					    "payload buffer logic error "
20594 					    "detected for tcp %p mmd %p "
20595 					    "pbuf %p (%d)\n",
20596 					    (void *)tcp, (void *)mmd,
20597 					    (void *)md_pbuf, pbuf_idx);
20598 				}
20599 
20600 				ASSERT(max_pld > 0);
20601 				--max_pld;
20602 				add_buffer = B_FALSE;
20603 			}
20604 
20605 			ASSERT(md_mp_head != NULL);
20606 			ASSERT(md_pbuf != NULL);
20607 			ASSERT(md_pbuf_nxt == NULL);
20608 			ASSERT(pbuf_idx != -1);
20609 			ASSERT(pbuf_idx_nxt == -1);
20610 			ASSERT(*usable > 0);
20611 
20612 			/*
20613 			 * We spillover to the next payload buffer only
20614 			 * if all of the following is true:
20615 			 *
20616 			 *   1. There is not enough data on the current
20617 			 *	payload buffer to make up `len',
20618 			 *   2. We are allowed to send `len',
20619 			 *   3. The next payload buffer length is large
20620 			 *	enough to accomodate `spill'.
20621 			 */
20622 			if ((spill = len - *tail_unsent) > 0 &&
20623 			    *usable >= len &&
20624 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20625 			    max_pld > 0) {
20626 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20627 				if (md_pbuf_nxt == NULL) {
20628 					TCP_STAT(tcps, tcp_mdt_allocfail);
20629 					goto legacy_send; /* out_of_mem */
20630 				}
20631 
20632 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20633 				    zc_cap != NULL) {
20634 					if (!ip_md_zcopy_attr(mmd, NULL,
20635 					    zc_cap->ill_zerocopy_flags)) {
20636 						freeb(md_pbuf_nxt);
20637 						TCP_STAT(tcps,
20638 						    tcp_mdt_allocfail);
20639 						/* out_of_mem */
20640 						goto legacy_send;
20641 					}
20642 					zcopy = B_TRUE;
20643 				}
20644 
20645 				/*
20646 				 * See comments above on the first call to
20647 				 * mmd_addpldbuf for explanation on the panic.
20648 				 */
20649 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20650 				if (pbuf_idx_nxt < 0) {
20651 					panic("tcp_multisend: "
20652 					    "next payload buffer logic error "
20653 					    "detected for tcp %p mmd %p "
20654 					    "pbuf %p (%d)\n",
20655 					    (void *)tcp, (void *)mmd,
20656 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20657 				}
20658 
20659 				ASSERT(max_pld > 0);
20660 				--max_pld;
20661 			} else if (spill > 0) {
20662 				/*
20663 				 * If there's a spillover, but the following
20664 				 * xmit_tail couldn't give us enough octets
20665 				 * to reach "len", then stop the current
20666 				 * Multidata creation and let the legacy
20667 				 * tcp_send() path take over.  We don't want
20668 				 * to send the tiny segment as part of this
20669 				 * Multidata for performance reasons; instead,
20670 				 * we let the legacy path deal with grouping
20671 				 * it with the subsequent small mblks.
20672 				 */
20673 				if (*usable >= len &&
20674 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20675 					max_pld = 0;
20676 					break;	/* done */
20677 				}
20678 
20679 				/*
20680 				 * We can't spillover, and we are near
20681 				 * the end of the current payload buffer,
20682 				 * so send what's left.
20683 				 */
20684 				ASSERT(*tail_unsent > 0);
20685 				len = *tail_unsent;
20686 			}
20687 
20688 			/* tail_unsent is negated if there is a spillover */
20689 			*tail_unsent -= len;
20690 			*usable -= len;
20691 			ASSERT(*usable >= 0);
20692 
20693 			if (*usable < mss)
20694 				seg_len = *usable;
20695 			/*
20696 			 * Sender SWS avoidance; see comments in tcp_send();
20697 			 * everything else is the same, except that we only
20698 			 * do this here if there is no more data to be sent
20699 			 * following the current xmit_tail.  We don't check
20700 			 * for 1-byte urgent data because we shouldn't get
20701 			 * here if TCP_URG_VALID is set.
20702 			 */
20703 			if (*usable > 0 && *usable < mss &&
20704 			    ((md_pbuf_nxt == NULL &&
20705 			    (*xmit_tail)->b_cont == NULL) ||
20706 			    (md_pbuf_nxt != NULL &&
20707 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20708 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20709 			    (tcp->tcp_unsent -
20710 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20711 			    !tcp->tcp_zero_win_probe) {
20712 				if ((*snxt + len) == tcp->tcp_snxt &&
20713 				    (*snxt + len) == tcp->tcp_suna) {
20714 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20715 				}
20716 				done = B_TRUE;
20717 			}
20718 
20719 			/*
20720 			 * Prime pump for IP's checksumming on our behalf;
20721 			 * include the adjustment for a source route if any.
20722 			 * Do this only for software/partial hardware checksum
20723 			 * offload, as this field gets zeroed out later for
20724 			 * the full hardware checksum offload case.
20725 			 */
20726 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20727 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20728 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20729 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20730 			}
20731 
20732 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20733 			*snxt += len;
20734 
20735 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20736 			/*
20737 			 * We set the PUSH bit only if TCP has no more buffered
20738 			 * data to be transmitted (or if sender SWS avoidance
20739 			 * takes place), as opposed to setting it for every
20740 			 * last packet in the burst.
20741 			 */
20742 			if (done ||
20743 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20744 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20745 
20746 			/*
20747 			 * Set FIN bit if this is our last segment; snxt
20748 			 * already includes its length, and it will not
20749 			 * be adjusted after this point.
20750 			 */
20751 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20752 			    *snxt == tcp->tcp_fss) {
20753 				if (!tcp->tcp_fin_acked) {
20754 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20755 					BUMP_MIB(&tcps->tcps_mib,
20756 					    tcpOutControl);
20757 				}
20758 				if (!tcp->tcp_fin_sent) {
20759 					tcp->tcp_fin_sent = B_TRUE;
20760 					/*
20761 					 * tcp state must be ESTABLISHED
20762 					 * in order for us to get here in
20763 					 * the first place.
20764 					 */
20765 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20766 
20767 					/*
20768 					 * Upon returning from this routine,
20769 					 * tcp_wput_data() will set tcp_snxt
20770 					 * to be equal to snxt + tcp_fin_sent.
20771 					 * This is essentially the same as
20772 					 * setting it to tcp_fss + 1.
20773 					 */
20774 				}
20775 			}
20776 
20777 			tcp->tcp_last_sent_len = (ushort_t)len;
20778 
20779 			len += tcp_hdr_len;
20780 			if (tcp->tcp_ipversion == IPV4_VERSION)
20781 				tcp->tcp_ipha->ipha_length = htons(len);
20782 			else
20783 				tcp->tcp_ip6h->ip6_plen = htons(len -
20784 				    ((char *)&tcp->tcp_ip6h[1] -
20785 				    tcp->tcp_iphc));
20786 
20787 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20788 
20789 			/* setup header fragment */
20790 			PDESC_HDR_ADD(pkt_info,
20791 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20792 			    tcp->tcp_mdt_hdr_head,		/* head room */
20793 			    tcp_hdr_len,			/* len */
20794 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20795 
20796 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20797 			    hdr_frag_sz);
20798 			ASSERT(MBLKIN(md_hbuf,
20799 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20800 			    PDESC_HDRSIZE(pkt_info)));
20801 
20802 			/* setup first payload fragment */
20803 			PDESC_PLD_INIT(pkt_info);
20804 			PDESC_PLD_SPAN_ADD(pkt_info,
20805 			    pbuf_idx,				/* index */
20806 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20807 			    tcp->tcp_last_sent_len);		/* len */
20808 
20809 			/* create a split-packet in case of a spillover */
20810 			if (md_pbuf_nxt != NULL) {
20811 				ASSERT(spill > 0);
20812 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20813 				ASSERT(!add_buffer);
20814 
20815 				md_pbuf = md_pbuf_nxt;
20816 				md_pbuf_nxt = NULL;
20817 				pbuf_idx = pbuf_idx_nxt;
20818 				pbuf_idx_nxt = -1;
20819 				cur_pld_off = spill;
20820 
20821 				/* trim out first payload fragment */
20822 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20823 
20824 				/* setup second payload fragment */
20825 				PDESC_PLD_SPAN_ADD(pkt_info,
20826 				    pbuf_idx,			/* index */
20827 				    md_pbuf->b_rptr,		/* start */
20828 				    spill);			/* len */
20829 
20830 				if ((*xmit_tail)->b_next == NULL) {
20831 					/*
20832 					 * Store the lbolt used for RTT
20833 					 * estimation. We can only record one
20834 					 * timestamp per mblk so we do it when
20835 					 * we reach the end of the payload
20836 					 * buffer.  Also we only take a new
20837 					 * timestamp sample when the previous
20838 					 * timed data from the same mblk has
20839 					 * been ack'ed.
20840 					 */
20841 					(*xmit_tail)->b_prev = local_time;
20842 					(*xmit_tail)->b_next =
20843 					    (mblk_t *)(uintptr_t)first_snxt;
20844 				}
20845 
20846 				first_snxt = *snxt - spill;
20847 
20848 				/*
20849 				 * Advance xmit_tail; usable could be 0 by
20850 				 * the time we got here, but we made sure
20851 				 * above that we would only spillover to
20852 				 * the next data block if usable includes
20853 				 * the spilled-over amount prior to the
20854 				 * subtraction.  Therefore, we are sure
20855 				 * that xmit_tail->b_cont can't be NULL.
20856 				 */
20857 				ASSERT((*xmit_tail)->b_cont != NULL);
20858 				*xmit_tail = (*xmit_tail)->b_cont;
20859 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20860 				    (uintptr_t)INT_MAX);
20861 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20862 			} else {
20863 				cur_pld_off += tcp->tcp_last_sent_len;
20864 			}
20865 
20866 			/*
20867 			 * Fill in the header using the template header, and
20868 			 * add options such as time-stamp, ECN and/or SACK,
20869 			 * as needed.
20870 			 */
20871 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20872 			    (clock_t)local_time, num_sack_blk);
20873 
20874 			/* take care of some IP header businesses */
20875 			if (af == AF_INET) {
20876 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20877 
20878 				ASSERT(OK_32PTR((uchar_t *)ipha));
20879 				ASSERT(PDESC_HDRL(pkt_info) >=
20880 				    IP_SIMPLE_HDR_LENGTH);
20881 				ASSERT(ipha->ipha_version_and_hdr_length ==
20882 				    IP_SIMPLE_HDR_VERSION);
20883 
20884 				/*
20885 				 * Assign ident value for current packet; see
20886 				 * related comments in ip_wput_ire() about the
20887 				 * contract private interface with clustering
20888 				 * group.
20889 				 */
20890 				clusterwide = B_FALSE;
20891 				if (cl_inet_ipident != NULL) {
20892 					ASSERT(cl_inet_isclusterwide != NULL);
20893 					if ((*cl_inet_isclusterwide)(stack_id,
20894 					    IPPROTO_IP, AF_INET,
20895 					    (uint8_t *)(uintptr_t)src, NULL)) {
20896 						ipha->ipha_ident =
20897 						    (*cl_inet_ipident)(stack_id,
20898 						    IPPROTO_IP, AF_INET,
20899 						    (uint8_t *)(uintptr_t)src,
20900 						    (uint8_t *)(uintptr_t)dst,
20901 						    NULL);
20902 						clusterwide = B_TRUE;
20903 					}
20904 				}
20905 
20906 				if (!clusterwide) {
20907 					ipha->ipha_ident = (uint16_t)
20908 					    atomic_add_32_nv(
20909 						&ire->ire_ident, 1);
20910 				}
20911 #ifndef _BIG_ENDIAN
20912 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20913 				    (ipha->ipha_ident >> 8);
20914 #endif
20915 			} else {
20916 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20917 
20918 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20919 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20920 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20921 				ASSERT(PDESC_HDRL(pkt_info) >=
20922 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20923 				    TCP_CHECKSUM_SIZE));
20924 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20925 
20926 				if (tcp->tcp_ip_forward_progress) {
20927 					rconfirm = B_TRUE;
20928 					tcp->tcp_ip_forward_progress = B_FALSE;
20929 				}
20930 			}
20931 
20932 			/* at least one payload span, and at most two */
20933 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20934 
20935 			/* add the packet descriptor to Multidata */
20936 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20937 			    KM_NOSLEEP)) == NULL) {
20938 				/*
20939 				 * Any failure other than ENOMEM indicates
20940 				 * that we have passed in invalid pkt_info
20941 				 * or parameters to mmd_addpdesc, which must
20942 				 * not happen.
20943 				 *
20944 				 * EINVAL is a result of failure on boundary
20945 				 * checks against the pkt_info contents.  It
20946 				 * should not happen, and we panic because
20947 				 * either there's horrible heap corruption,
20948 				 * and/or programming mistake.
20949 				 */
20950 				if (err != ENOMEM) {
20951 					cmn_err(CE_PANIC, "tcp_multisend: "
20952 					    "pdesc logic error detected for "
20953 					    "tcp %p mmd %p pinfo %p (%d)\n",
20954 					    (void *)tcp, (void *)mmd,
20955 					    (void *)pkt_info, err);
20956 				}
20957 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20958 				goto legacy_send; /* out_of_mem */
20959 			}
20960 			ASSERT(pkt != NULL);
20961 
20962 			/* calculate IP header and TCP checksums */
20963 			if (af == AF_INET) {
20964 				/* calculate pseudo-header checksum */
20965 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20966 				    (src >> 16) + (src & 0xFFFF);
20967 
20968 				/* offset for TCP header checksum */
20969 				up = IPH_TCPH_CHECKSUMP(ipha,
20970 				    IP_SIMPLE_HDR_LENGTH);
20971 			} else {
20972 				up = (uint16_t *)&ip6h->ip6_src;
20973 
20974 				/* calculate pseudo-header checksum */
20975 				cksum = up[0] + up[1] + up[2] + up[3] +
20976 				    up[4] + up[5] + up[6] + up[7] +
20977 				    up[8] + up[9] + up[10] + up[11] +
20978 				    up[12] + up[13] + up[14] + up[15];
20979 
20980 				/* Fold the initial sum */
20981 				cksum = (cksum & 0xffff) + (cksum >> 16);
20982 
20983 				up = (uint16_t *)(((uchar_t *)ip6h) +
20984 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20985 			}
20986 
20987 			if (hwcksum_flags & HCK_FULLCKSUM) {
20988 				/* clear checksum field for hardware */
20989 				*up = 0;
20990 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20991 				uint32_t sum;
20992 
20993 				/* pseudo-header checksumming */
20994 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20995 				sum = (sum & 0xFFFF) + (sum >> 16);
20996 				*up = (sum & 0xFFFF) + (sum >> 16);
20997 			} else {
20998 				/* software checksumming */
20999 				TCP_STAT(tcps, tcp_out_sw_cksum);
21000 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
21001 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
21002 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
21003 				    cksum + IP_TCP_CSUM_COMP);
21004 				if (*up == 0)
21005 					*up = 0xFFFF;
21006 			}
21007 
21008 			/* IPv4 header checksum */
21009 			if (af == AF_INET) {
21010 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
21011 					ipha->ipha_hdr_checksum = 0;
21012 				} else {
21013 					IP_HDR_CKSUM(ipha, cksum,
21014 					    ((uint32_t *)ipha)[0],
21015 					    ((uint16_t *)ipha)[4]);
21016 				}
21017 			}
21018 
21019 			if (af == AF_INET &&
21020 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
21021 			    af == AF_INET6 &&
21022 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
21023 				mblk_t	*mp, *mp1;
21024 				uchar_t	*hdr_rptr, *hdr_wptr;
21025 				uchar_t	*pld_rptr, *pld_wptr;
21026 
21027 				/*
21028 				 * We reconstruct a pseudo packet for the hooks
21029 				 * framework using mmd_transform_link().
21030 				 * If it is a split packet we pullup the
21031 				 * payload. FW_HOOKS expects a pkt comprising
21032 				 * of two mblks: a header and the payload.
21033 				 */
21034 				if ((mp = mmd_transform_link(pkt)) == NULL) {
21035 					TCP_STAT(tcps, tcp_mdt_allocfail);
21036 					goto legacy_send;
21037 				}
21038 
21039 				if (pkt_info->pld_cnt > 1) {
21040 					/* split payload, more than one pld */
21041 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
21042 					    NULL) {
21043 						freemsg(mp);
21044 						TCP_STAT(tcps,
21045 						    tcp_mdt_allocfail);
21046 						goto legacy_send;
21047 					}
21048 					freemsg(mp->b_cont);
21049 					mp->b_cont = mp1;
21050 				} else {
21051 					mp1 = mp->b_cont;
21052 				}
21053 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
21054 
21055 				/*
21056 				 * Remember the message offsets. This is so we
21057 				 * can detect changes when we return from the
21058 				 * FW_HOOKS callbacks.
21059 				 */
21060 				hdr_rptr = mp->b_rptr;
21061 				hdr_wptr = mp->b_wptr;
21062 				pld_rptr = mp->b_cont->b_rptr;
21063 				pld_wptr = mp->b_cont->b_wptr;
21064 
21065 				if (af == AF_INET) {
21066 					DTRACE_PROBE4(
21067 					    ip4__physical__out__start,
21068 					    ill_t *, NULL,
21069 					    ill_t *, ill,
21070 					    ipha_t *, ipha,
21071 					    mblk_t *, mp);
21072 					FW_HOOKS(
21073 					    ipst->ips_ip4_physical_out_event,
21074 					    ipst->ips_ipv4firewall_physical_out,
21075 					    NULL, ill, ipha, mp, mp, 0, ipst);
21076 					DTRACE_PROBE1(
21077 					    ip4__physical__out__end,
21078 					    mblk_t *, mp);
21079 				} else {
21080 					DTRACE_PROBE4(
21081 					    ip6__physical__out_start,
21082 					    ill_t *, NULL,
21083 					    ill_t *, ill,
21084 					    ip6_t *, ip6h,
21085 					    mblk_t *, mp);
21086 					FW_HOOKS6(
21087 					    ipst->ips_ip6_physical_out_event,
21088 					    ipst->ips_ipv6firewall_physical_out,
21089 					    NULL, ill, ip6h, mp, mp, 0, ipst);
21090 					DTRACE_PROBE1(
21091 					    ip6__physical__out__end,
21092 					    mblk_t *, mp);
21093 				}
21094 
21095 				if (mp == NULL ||
21096 				    (mp1 = mp->b_cont) == NULL ||
21097 				    mp->b_rptr != hdr_rptr ||
21098 				    mp->b_wptr != hdr_wptr ||
21099 				    mp1->b_rptr != pld_rptr ||
21100 				    mp1->b_wptr != pld_wptr ||
21101 				    mp1->b_cont != NULL) {
21102 					/*
21103 					 * We abandon multidata processing and
21104 					 * return to the normal path, either
21105 					 * when a packet is blocked, or when
21106 					 * the boundaries of header buffer or
21107 					 * payload buffer have been changed by
21108 					 * FW_HOOKS[6].
21109 					 */
21110 					if (mp != NULL)
21111 						freemsg(mp);
21112 					goto legacy_send;
21113 				}
21114 				/* Finished with the pseudo packet */
21115 				freemsg(mp);
21116 			}
21117 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
21118 			    ill, ipha, ip6h);
21119 			/* advance header offset */
21120 			cur_hdr_off += hdr_frag_sz;
21121 
21122 			obbytes += tcp->tcp_last_sent_len;
21123 			++obsegs;
21124 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
21125 		    *tail_unsent > 0);
21126 
21127 		if ((*xmit_tail)->b_next == NULL) {
21128 			/*
21129 			 * Store the lbolt used for RTT estimation. We can only
21130 			 * record one timestamp per mblk so we do it when we
21131 			 * reach the end of the payload buffer. Also we only
21132 			 * take a new timestamp sample when the previous timed
21133 			 * data from the same mblk has been ack'ed.
21134 			 */
21135 			(*xmit_tail)->b_prev = local_time;
21136 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
21137 		}
21138 
21139 		ASSERT(*tail_unsent >= 0);
21140 		if (*tail_unsent > 0) {
21141 			/*
21142 			 * We got here because we broke out of the above
21143 			 * loop due to of one of the following cases:
21144 			 *
21145 			 *   1. len < adjusted MSS (i.e. small),
21146 			 *   2. Sender SWS avoidance,
21147 			 *   3. max_pld is zero.
21148 			 *
21149 			 * We are done for this Multidata, so trim our
21150 			 * last payload buffer (if any) accordingly.
21151 			 */
21152 			if (md_pbuf != NULL)
21153 				md_pbuf->b_wptr -= *tail_unsent;
21154 		} else if (*usable > 0) {
21155 			*xmit_tail = (*xmit_tail)->b_cont;
21156 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
21157 			    (uintptr_t)INT_MAX);
21158 			*tail_unsent = (int)MBLKL(*xmit_tail);
21159 			add_buffer = B_TRUE;
21160 		}
21161 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
21162 	    (tcp_mdt_chain || max_pld > 0));
21163 
21164 	if (md_mp_head != NULL) {
21165 		/* send everything down */
21166 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
21167 		    &rconfirm);
21168 	}
21169 
21170 #undef PREP_NEW_MULTIDATA
21171 #undef PREP_NEW_PBUF
21172 #undef IPVER
21173 
21174 	IRE_REFRELE(ire);
21175 	return (0);
21176 }
21177 
21178 /*
21179  * A wrapper function for sending one or more Multidata messages down to
21180  * the module below ip; this routine does not release the reference of the
21181  * IRE (caller does that).  This routine is analogous to tcp_send_data().
21182  */
21183 static void
21184 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
21185     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
21186 {
21187 	uint64_t delta;
21188 	nce_t *nce;
21189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21190 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21191 
21192 	ASSERT(ire != NULL && ill != NULL);
21193 	ASSERT(ire->ire_stq != NULL);
21194 	ASSERT(md_mp_head != NULL);
21195 	ASSERT(rconfirm != NULL);
21196 
21197 	/* adjust MIBs and IRE timestamp */
21198 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
21199 	tcp->tcp_obsegs += obsegs;
21200 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
21201 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
21202 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
21203 
21204 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21205 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
21206 	} else {
21207 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
21208 	}
21209 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
21210 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
21211 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
21212 
21213 	ire->ire_ob_pkt_count += obsegs;
21214 	if (ire->ire_ipif != NULL)
21215 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
21216 	ire->ire_last_used_time = lbolt;
21217 
21218 	if (ipst->ips_ipobs_enabled) {
21219 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
21220 		pdesc_t *dl_pkt;
21221 		pdescinfo_t pinfo;
21222 		mblk_t *nmp;
21223 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
21224 
21225 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
21226 		    (dl_pkt != NULL);
21227 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
21228 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
21229 				continue;
21230 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
21231 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
21232 			freemsg(nmp);
21233 		}
21234 	}
21235 
21236 	/* send it down */
21237 	putnext(ire->ire_stq, md_mp_head);
21238 
21239 	/* we're done for TCP/IPv4 */
21240 	if (tcp->tcp_ipversion == IPV4_VERSION)
21241 		return;
21242 
21243 	nce = ire->ire_nce;
21244 
21245 	ASSERT(nce != NULL);
21246 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
21247 	ASSERT(nce->nce_state != ND_INCOMPLETE);
21248 
21249 	/* reachability confirmation? */
21250 	if (*rconfirm) {
21251 		nce->nce_last = TICK_TO_MSEC(lbolt64);
21252 		if (nce->nce_state != ND_REACHABLE) {
21253 			mutex_enter(&nce->nce_lock);
21254 			nce->nce_state = ND_REACHABLE;
21255 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
21256 			mutex_exit(&nce->nce_lock);
21257 			(void) untimeout(nce->nce_timeout_id);
21258 			if (ip_debug > 2) {
21259 				/* ip1dbg */
21260 				pr_addr_dbg("tcp_multisend_data: state "
21261 				    "for %s changed to REACHABLE\n",
21262 				    AF_INET6, &ire->ire_addr_v6);
21263 			}
21264 		}
21265 		/* reset transport reachability confirmation */
21266 		*rconfirm = B_FALSE;
21267 	}
21268 
21269 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
21270 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
21271 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
21272 
21273 	if (delta > (uint64_t)ill->ill_reachable_time) {
21274 		mutex_enter(&nce->nce_lock);
21275 		switch (nce->nce_state) {
21276 		case ND_REACHABLE:
21277 		case ND_STALE:
21278 			/*
21279 			 * ND_REACHABLE is identical to ND_STALE in this
21280 			 * specific case. If reachable time has expired for
21281 			 * this neighbor (delta is greater than reachable
21282 			 * time), conceptually, the neighbor cache is no
21283 			 * longer in REACHABLE state, but already in STALE
21284 			 * state.  So the correct transition here is to
21285 			 * ND_DELAY.
21286 			 */
21287 			nce->nce_state = ND_DELAY;
21288 			mutex_exit(&nce->nce_lock);
21289 			NDP_RESTART_TIMER(nce,
21290 			    ipst->ips_delay_first_probe_time);
21291 			if (ip_debug > 3) {
21292 				/* ip2dbg */
21293 				pr_addr_dbg("tcp_multisend_data: state "
21294 				    "for %s changed to DELAY\n",
21295 				    AF_INET6, &ire->ire_addr_v6);
21296 			}
21297 			break;
21298 		case ND_DELAY:
21299 		case ND_PROBE:
21300 			mutex_exit(&nce->nce_lock);
21301 			/* Timers have already started */
21302 			break;
21303 		case ND_UNREACHABLE:
21304 			/*
21305 			 * ndp timer has detected that this nce is
21306 			 * unreachable and initiated deleting this nce
21307 			 * and all its associated IREs. This is a race
21308 			 * where we found the ire before it was deleted
21309 			 * and have just sent out a packet using this
21310 			 * unreachable nce.
21311 			 */
21312 			mutex_exit(&nce->nce_lock);
21313 			break;
21314 		default:
21315 			ASSERT(0);
21316 		}
21317 	}
21318 }
21319 
21320 /*
21321  * Derived from tcp_send_data().
21322  */
21323 static void
21324 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
21325     int num_lso_seg)
21326 {
21327 	ipha_t		*ipha;
21328 	mblk_t		*ire_fp_mp;
21329 	uint_t		ire_fp_mp_len;
21330 	uint32_t	hcksum_txflags = 0;
21331 	ipaddr_t	src;
21332 	ipaddr_t	dst;
21333 	uint32_t	cksum;
21334 	uint16_t	*up;
21335 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21336 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21337 
21338 	ASSERT(DB_TYPE(mp) == M_DATA);
21339 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
21340 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
21341 	ASSERT(tcp->tcp_connp != NULL);
21342 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
21343 
21344 	ipha = (ipha_t *)mp->b_rptr;
21345 	src = ipha->ipha_src;
21346 	dst = ipha->ipha_dst;
21347 
21348 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
21349 
21350 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
21351 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
21352 	    num_lso_seg);
21353 #ifndef _BIG_ENDIAN
21354 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21355 #endif
21356 	if (tcp->tcp_snd_zcopy_aware) {
21357 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21358 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21359 			mp = tcp_zcopy_disable(tcp, mp);
21360 	}
21361 
21362 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21363 		ASSERT(ill->ill_hcksum_capab != NULL);
21364 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21365 	}
21366 
21367 	/*
21368 	 * Since the TCP checksum should be recalculated by h/w, we can just
21369 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21370 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21371 	 * The partial pseudo-header excludes TCP length, that was calculated
21372 	 * in tcp_send(), so to zero *up before further processing.
21373 	 */
21374 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21375 
21376 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21377 	*up = 0;
21378 
21379 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21380 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21381 
21382 	/*
21383 	 * Append LSO flags and mss to the mp.
21384 	 */
21385 	lso_info_set(mp, mss, HW_LSO);
21386 
21387 	ipha->ipha_fragment_offset_and_flags |=
21388 	    (uint32_t)htons(ire->ire_frag_flag);
21389 
21390 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21391 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21392 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21393 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21394 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21395 
21396 	UPDATE_OB_PKT_COUNT(ire);
21397 	ire->ire_last_used_time = lbolt;
21398 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21399 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21400 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21401 	    ntohs(ipha->ipha_length));
21402 
21403 	DTRACE_PROBE4(ip4__physical__out__start,
21404 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
21405 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
21406 	    ipst->ips_ipv4firewall_physical_out, NULL,
21407 	    ill, ipha, mp, mp, 0, ipst);
21408 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21409 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
21410 
21411 	if (mp != NULL) {
21412 		if (ipst->ips_ipobs_enabled) {
21413 			zoneid_t szone;
21414 
21415 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
21416 			    ipst, ALL_ZONES);
21417 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
21418 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
21419 		}
21420 
21421 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0);
21422 	}
21423 }
21424 
21425 /*
21426  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21427  * scheme, and returns one of the following:
21428  *
21429  * -1 = failed allocation.
21430  *  0 = success; burst count reached, or usable send window is too small,
21431  *      and that we'd rather wait until later before sending again.
21432  *  1 = success; we are called from tcp_multisend(), and both usable send
21433  *      window and tail_unsent are greater than the MDT threshold, and thus
21434  *      Multidata Transmit should be used instead.
21435  */
21436 static int
21437 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21438     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21439     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21440     const int mdt_thres)
21441 {
21442 	int num_burst_seg = tcp->tcp_snd_burst;
21443 	ire_t		*ire = NULL;
21444 	ill_t		*ill = NULL;
21445 	mblk_t		*ire_fp_mp = NULL;
21446 	uint_t		ire_fp_mp_len = 0;
21447 	int		num_lso_seg = 1;
21448 	uint_t		lso_usable;
21449 	boolean_t	do_lso_send = B_FALSE;
21450 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21451 
21452 	/*
21453 	 * Check LSO capability before any further work. And the similar check
21454 	 * need to be done in for(;;) loop.
21455 	 * LSO will be deployed when therer is more than one mss of available
21456 	 * data and a burst transmission is allowed.
21457 	 */
21458 	if (tcp->tcp_lso &&
21459 	    (tcp->tcp_valid_bits == 0 ||
21460 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21461 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21462 		/*
21463 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21464 		 */
21465 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21466 			/*
21467 			 * Enable LSO with this transmission.
21468 			 * Since IRE has been hold in
21469 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21470 			 * should be called before return.
21471 			 */
21472 			do_lso_send = B_TRUE;
21473 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21474 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21475 			/* Round up to multiple of 4 */
21476 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21477 		} else {
21478 			do_lso_send = B_FALSE;
21479 			ill = NULL;
21480 		}
21481 	}
21482 
21483 	for (;;) {
21484 		struct datab	*db;
21485 		tcph_t		*tcph;
21486 		uint32_t	sum;
21487 		mblk_t		*mp, *mp1;
21488 		uchar_t		*rptr;
21489 		int		len;
21490 
21491 		/*
21492 		 * If we're called by tcp_multisend(), and the amount of
21493 		 * sendable data as well as the size of current xmit_tail
21494 		 * is beyond the MDT threshold, return to the caller and
21495 		 * let the large data transmit be done using MDT.
21496 		 */
21497 		if (*usable > 0 && *usable > mdt_thres &&
21498 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21499 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21500 			ASSERT(tcp->tcp_mdt);
21501 			return (1);	/* success; do large send */
21502 		}
21503 
21504 		if (num_burst_seg == 0)
21505 			break;		/* success; burst count reached */
21506 
21507 		/*
21508 		 * Calculate the maximum payload length we can send in *one*
21509 		 * time.
21510 		 */
21511 		if (do_lso_send) {
21512 			/*
21513 			 * Check whether need to do LSO any more.
21514 			 */
21515 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21516 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21517 				lso_usable = MIN(lso_usable,
21518 				    num_burst_seg * mss);
21519 
21520 				num_lso_seg = lso_usable / mss;
21521 				if (lso_usable % mss) {
21522 					num_lso_seg++;
21523 					tcp->tcp_last_sent_len = (ushort_t)
21524 					    (lso_usable % mss);
21525 				} else {
21526 					tcp->tcp_last_sent_len = (ushort_t)mss;
21527 				}
21528 			} else {
21529 				do_lso_send = B_FALSE;
21530 				num_lso_seg = 1;
21531 				lso_usable = mss;
21532 			}
21533 		}
21534 
21535 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21536 
21537 		/*
21538 		 * Adjust num_burst_seg here.
21539 		 */
21540 		num_burst_seg -= num_lso_seg;
21541 
21542 		len = mss;
21543 		if (len > *usable) {
21544 			ASSERT(do_lso_send == B_FALSE);
21545 
21546 			len = *usable;
21547 			if (len <= 0) {
21548 				/* Terminate the loop */
21549 				break;	/* success; too small */
21550 			}
21551 			/*
21552 			 * Sender silly-window avoidance.
21553 			 * Ignore this if we are going to send a
21554 			 * zero window probe out.
21555 			 *
21556 			 * TODO: force data into microscopic window?
21557 			 *	==> (!pushed || (unsent > usable))
21558 			 */
21559 			if (len < (tcp->tcp_max_swnd >> 1) &&
21560 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21561 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21562 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21563 				/*
21564 				 * If the retransmit timer is not running
21565 				 * we start it so that we will retransmit
21566 				 * in the case when the the receiver has
21567 				 * decremented the window.
21568 				 */
21569 				if (*snxt == tcp->tcp_snxt &&
21570 				    *snxt == tcp->tcp_suna) {
21571 					/*
21572 					 * We are not supposed to send
21573 					 * anything.  So let's wait a little
21574 					 * bit longer before breaking SWS
21575 					 * avoidance.
21576 					 *
21577 					 * What should the value be?
21578 					 * Suggestion: MAX(init rexmit time,
21579 					 * tcp->tcp_rto)
21580 					 */
21581 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21582 				}
21583 				break;	/* success; too small */
21584 			}
21585 		}
21586 
21587 		tcph = tcp->tcp_tcph;
21588 
21589 		/*
21590 		 * The reason to adjust len here is that we need to set flags
21591 		 * and calculate checksum.
21592 		 */
21593 		if (do_lso_send)
21594 			len = lso_usable;
21595 
21596 		*usable -= len; /* Approximate - can be adjusted later */
21597 		if (*usable > 0)
21598 			tcph->th_flags[0] = TH_ACK;
21599 		else
21600 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21601 
21602 		/*
21603 		 * Prime pump for IP's checksumming on our behalf
21604 		 * Include the adjustment for a source route if any.
21605 		 */
21606 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21607 		sum = (sum >> 16) + (sum & 0xFFFF);
21608 		U16_TO_ABE16(sum, tcph->th_sum);
21609 
21610 		U32_TO_ABE32(*snxt, tcph->th_seq);
21611 
21612 		/*
21613 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21614 		 * set.  For the case when TCP_FSS_VALID is the only valid
21615 		 * bit (normal active close), branch off only when we think
21616 		 * that the FIN flag needs to be set.  Note for this case,
21617 		 * that (snxt + len) may not reflect the actual seg_len,
21618 		 * as len may be further reduced in tcp_xmit_mp().  If len
21619 		 * gets modified, we will end up here again.
21620 		 */
21621 		if (tcp->tcp_valid_bits != 0 &&
21622 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21623 		    ((*snxt + len) == tcp->tcp_fss))) {
21624 			uchar_t		*prev_rptr;
21625 			uint32_t	prev_snxt = tcp->tcp_snxt;
21626 
21627 			if (*tail_unsent == 0) {
21628 				ASSERT((*xmit_tail)->b_cont != NULL);
21629 				*xmit_tail = (*xmit_tail)->b_cont;
21630 				prev_rptr = (*xmit_tail)->b_rptr;
21631 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21632 				    (*xmit_tail)->b_rptr);
21633 			} else {
21634 				prev_rptr = (*xmit_tail)->b_rptr;
21635 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21636 				    *tail_unsent;
21637 			}
21638 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21639 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21640 			/* Restore tcp_snxt so we get amount sent right. */
21641 			tcp->tcp_snxt = prev_snxt;
21642 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21643 				/*
21644 				 * If the previous timestamp is still in use,
21645 				 * don't stomp on it.
21646 				 */
21647 				if ((*xmit_tail)->b_next == NULL) {
21648 					(*xmit_tail)->b_prev = local_time;
21649 					(*xmit_tail)->b_next =
21650 					    (mblk_t *)(uintptr_t)(*snxt);
21651 				}
21652 			} else
21653 				(*xmit_tail)->b_rptr = prev_rptr;
21654 
21655 			if (mp == NULL) {
21656 				if (ire != NULL)
21657 					IRE_REFRELE(ire);
21658 				return (-1);
21659 			}
21660 			mp1 = mp->b_cont;
21661 
21662 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21663 				tcp->tcp_last_sent_len = (ushort_t)len;
21664 			while (mp1->b_cont) {
21665 				*xmit_tail = (*xmit_tail)->b_cont;
21666 				(*xmit_tail)->b_prev = local_time;
21667 				(*xmit_tail)->b_next =
21668 				    (mblk_t *)(uintptr_t)(*snxt);
21669 				mp1 = mp1->b_cont;
21670 			}
21671 			*snxt += len;
21672 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21673 			BUMP_LOCAL(tcp->tcp_obsegs);
21674 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21675 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21676 			tcp_send_data(tcp, q, mp);
21677 			continue;
21678 		}
21679 
21680 		*snxt += len;	/* Adjust later if we don't send all of len */
21681 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21682 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21683 
21684 		if (*tail_unsent) {
21685 			/* Are the bytes above us in flight? */
21686 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21687 			if (rptr != (*xmit_tail)->b_rptr) {
21688 				*tail_unsent -= len;
21689 				if (len <= mss) /* LSO is unusable */
21690 					tcp->tcp_last_sent_len = (ushort_t)len;
21691 				len += tcp_hdr_len;
21692 				if (tcp->tcp_ipversion == IPV4_VERSION)
21693 					tcp->tcp_ipha->ipha_length = htons(len);
21694 				else
21695 					tcp->tcp_ip6h->ip6_plen =
21696 					    htons(len -
21697 					    ((char *)&tcp->tcp_ip6h[1] -
21698 					    tcp->tcp_iphc));
21699 				mp = dupb(*xmit_tail);
21700 				if (mp == NULL) {
21701 					if (ire != NULL)
21702 						IRE_REFRELE(ire);
21703 					return (-1);	/* out_of_mem */
21704 				}
21705 				mp->b_rptr = rptr;
21706 				/*
21707 				 * If the old timestamp is no longer in use,
21708 				 * sample a new timestamp now.
21709 				 */
21710 				if ((*xmit_tail)->b_next == NULL) {
21711 					(*xmit_tail)->b_prev = local_time;
21712 					(*xmit_tail)->b_next =
21713 					    (mblk_t *)(uintptr_t)(*snxt-len);
21714 				}
21715 				goto must_alloc;
21716 			}
21717 		} else {
21718 			*xmit_tail = (*xmit_tail)->b_cont;
21719 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21720 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21721 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21722 			    (*xmit_tail)->b_rptr);
21723 		}
21724 
21725 		(*xmit_tail)->b_prev = local_time;
21726 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21727 
21728 		*tail_unsent -= len;
21729 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21730 			tcp->tcp_last_sent_len = (ushort_t)len;
21731 
21732 		len += tcp_hdr_len;
21733 		if (tcp->tcp_ipversion == IPV4_VERSION)
21734 			tcp->tcp_ipha->ipha_length = htons(len);
21735 		else
21736 			tcp->tcp_ip6h->ip6_plen = htons(len -
21737 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21738 
21739 		mp = dupb(*xmit_tail);
21740 		if (mp == NULL) {
21741 			if (ire != NULL)
21742 				IRE_REFRELE(ire);
21743 			return (-1);	/* out_of_mem */
21744 		}
21745 
21746 		len = tcp_hdr_len;
21747 		/*
21748 		 * There are four reasons to allocate a new hdr mblk:
21749 		 *  1) The bytes above us are in use by another packet
21750 		 *  2) We don't have good alignment
21751 		 *  3) The mblk is being shared
21752 		 *  4) We don't have enough room for a header
21753 		 */
21754 		rptr = mp->b_rptr - len;
21755 		if (!OK_32PTR(rptr) ||
21756 		    ((db = mp->b_datap), db->db_ref != 2) ||
21757 		    rptr < db->db_base + ire_fp_mp_len) {
21758 			/* NOTE: we assume allocb returns an OK_32PTR */
21759 
21760 		must_alloc:;
21761 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21762 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21763 			if (mp1 == NULL) {
21764 				freemsg(mp);
21765 				if (ire != NULL)
21766 					IRE_REFRELE(ire);
21767 				return (-1);	/* out_of_mem */
21768 			}
21769 			mp1->b_cont = mp;
21770 			mp = mp1;
21771 			/* Leave room for Link Level header */
21772 			len = tcp_hdr_len;
21773 			rptr =
21774 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21775 			mp->b_wptr = &rptr[len];
21776 		}
21777 
21778 		/*
21779 		 * Fill in the header using the template header, and add
21780 		 * options such as time-stamp, ECN and/or SACK, as needed.
21781 		 */
21782 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21783 
21784 		mp->b_rptr = rptr;
21785 
21786 		if (*tail_unsent) {
21787 			int spill = *tail_unsent;
21788 
21789 			mp1 = mp->b_cont;
21790 			if (mp1 == NULL)
21791 				mp1 = mp;
21792 
21793 			/*
21794 			 * If we're a little short, tack on more mblks until
21795 			 * there is no more spillover.
21796 			 */
21797 			while (spill < 0) {
21798 				mblk_t *nmp;
21799 				int nmpsz;
21800 
21801 				nmp = (*xmit_tail)->b_cont;
21802 				nmpsz = MBLKL(nmp);
21803 
21804 				/*
21805 				 * Excess data in mblk; can we split it?
21806 				 * If MDT is enabled for the connection,
21807 				 * keep on splitting as this is a transient
21808 				 * send path.
21809 				 */
21810 				if (!do_lso_send && !tcp->tcp_mdt &&
21811 				    (spill + nmpsz > 0)) {
21812 					/*
21813 					 * Don't split if stream head was
21814 					 * told to break up larger writes
21815 					 * into smaller ones.
21816 					 */
21817 					if (tcp->tcp_maxpsz > 0)
21818 						break;
21819 
21820 					/*
21821 					 * Next mblk is less than SMSS/2
21822 					 * rounded up to nearest 64-byte;
21823 					 * let it get sent as part of the
21824 					 * next segment.
21825 					 */
21826 					if (tcp->tcp_localnet &&
21827 					    !tcp->tcp_cork &&
21828 					    (nmpsz < roundup((mss >> 1), 64)))
21829 						break;
21830 				}
21831 
21832 				*xmit_tail = nmp;
21833 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21834 				/* Stash for rtt use later */
21835 				(*xmit_tail)->b_prev = local_time;
21836 				(*xmit_tail)->b_next =
21837 				    (mblk_t *)(uintptr_t)(*snxt - len);
21838 				mp1->b_cont = dupb(*xmit_tail);
21839 				mp1 = mp1->b_cont;
21840 
21841 				spill += nmpsz;
21842 				if (mp1 == NULL) {
21843 					*tail_unsent = spill;
21844 					freemsg(mp);
21845 					if (ire != NULL)
21846 						IRE_REFRELE(ire);
21847 					return (-1);	/* out_of_mem */
21848 				}
21849 			}
21850 
21851 			/* Trim back any surplus on the last mblk */
21852 			if (spill >= 0) {
21853 				mp1->b_wptr -= spill;
21854 				*tail_unsent = spill;
21855 			} else {
21856 				/*
21857 				 * We did not send everything we could in
21858 				 * order to remain within the b_cont limit.
21859 				 */
21860 				*usable -= spill;
21861 				*snxt += spill;
21862 				tcp->tcp_last_sent_len += spill;
21863 				UPDATE_MIB(&tcps->tcps_mib,
21864 				    tcpOutDataBytes, spill);
21865 				/*
21866 				 * Adjust the checksum
21867 				 */
21868 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21869 				sum += spill;
21870 				sum = (sum >> 16) + (sum & 0xFFFF);
21871 				U16_TO_ABE16(sum, tcph->th_sum);
21872 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21873 					sum = ntohs(
21874 					    ((ipha_t *)rptr)->ipha_length) +
21875 					    spill;
21876 					((ipha_t *)rptr)->ipha_length =
21877 					    htons(sum);
21878 				} else {
21879 					sum = ntohs(
21880 					    ((ip6_t *)rptr)->ip6_plen) +
21881 					    spill;
21882 					((ip6_t *)rptr)->ip6_plen =
21883 					    htons(sum);
21884 				}
21885 				*tail_unsent = 0;
21886 			}
21887 		}
21888 		if (tcp->tcp_ip_forward_progress) {
21889 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21890 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21891 			tcp->tcp_ip_forward_progress = B_FALSE;
21892 		}
21893 
21894 		if (do_lso_send) {
21895 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21896 			    num_lso_seg);
21897 			tcp->tcp_obsegs += num_lso_seg;
21898 
21899 			TCP_STAT(tcps, tcp_lso_times);
21900 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21901 		} else {
21902 			tcp_send_data(tcp, q, mp);
21903 			BUMP_LOCAL(tcp->tcp_obsegs);
21904 		}
21905 	}
21906 
21907 	if (ire != NULL)
21908 		IRE_REFRELE(ire);
21909 	return (0);
21910 }
21911 
21912 /* Unlink and return any mblk that looks like it contains a MDT info */
21913 static mblk_t *
21914 tcp_mdt_info_mp(mblk_t *mp)
21915 {
21916 	mblk_t	*prev_mp;
21917 
21918 	for (;;) {
21919 		prev_mp = mp;
21920 		/* no more to process? */
21921 		if ((mp = mp->b_cont) == NULL)
21922 			break;
21923 
21924 		switch (DB_TYPE(mp)) {
21925 		case M_CTL:
21926 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21927 				continue;
21928 			ASSERT(prev_mp != NULL);
21929 			prev_mp->b_cont = mp->b_cont;
21930 			mp->b_cont = NULL;
21931 			return (mp);
21932 		default:
21933 			break;
21934 		}
21935 	}
21936 	return (mp);
21937 }
21938 
21939 /* MDT info update routine, called when IP notifies us about MDT */
21940 static void
21941 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21942 {
21943 	boolean_t prev_state;
21944 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21945 
21946 	/*
21947 	 * IP is telling us to abort MDT on this connection?  We know
21948 	 * this because the capability is only turned off when IP
21949 	 * encounters some pathological cases, e.g. link-layer change
21950 	 * where the new driver doesn't support MDT, or in situation
21951 	 * where MDT usage on the link-layer has been switched off.
21952 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21953 	 * if the link-layer doesn't support MDT, and if it does, it
21954 	 * will indicate that the feature is to be turned on.
21955 	 */
21956 	prev_state = tcp->tcp_mdt;
21957 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21958 	if (!tcp->tcp_mdt && !first) {
21959 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21960 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21961 		    (void *)tcp->tcp_connp));
21962 	}
21963 
21964 	/*
21965 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21966 	 * so disable MDT otherwise.  The checks are done here
21967 	 * and in tcp_wput_data().
21968 	 */
21969 	if (tcp->tcp_mdt &&
21970 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21971 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21972 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21973 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21974 		tcp->tcp_mdt = B_FALSE;
21975 
21976 	if (tcp->tcp_mdt) {
21977 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21978 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21979 			    "version (%d), expected version is %d",
21980 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21981 			tcp->tcp_mdt = B_FALSE;
21982 			return;
21983 		}
21984 
21985 		/*
21986 		 * We need the driver to be able to handle at least three
21987 		 * spans per packet in order for tcp MDT to be utilized.
21988 		 * The first is for the header portion, while the rest are
21989 		 * needed to handle a packet that straddles across two
21990 		 * virtually non-contiguous buffers; a typical tcp packet
21991 		 * therefore consists of only two spans.  Note that we take
21992 		 * a zero as "don't care".
21993 		 */
21994 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21995 		    mdt_capab->ill_mdt_span_limit < 3) {
21996 			tcp->tcp_mdt = B_FALSE;
21997 			return;
21998 		}
21999 
22000 		/* a zero means driver wants default value */
22001 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
22002 		    tcps->tcps_mdt_max_pbufs);
22003 		if (tcp->tcp_mdt_max_pld == 0)
22004 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
22005 
22006 		/* ensure 32-bit alignment */
22007 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
22008 		    mdt_capab->ill_mdt_hdr_head), 4);
22009 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
22010 		    mdt_capab->ill_mdt_hdr_tail), 4);
22011 
22012 		if (!first && !prev_state) {
22013 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
22014 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
22015 			    (void *)tcp->tcp_connp));
22016 		}
22017 	}
22018 }
22019 
22020 /* Unlink and return any mblk that looks like it contains a LSO info */
22021 static mblk_t *
22022 tcp_lso_info_mp(mblk_t *mp)
22023 {
22024 	mblk_t	*prev_mp;
22025 
22026 	for (;;) {
22027 		prev_mp = mp;
22028 		/* no more to process? */
22029 		if ((mp = mp->b_cont) == NULL)
22030 			break;
22031 
22032 		switch (DB_TYPE(mp)) {
22033 		case M_CTL:
22034 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
22035 				continue;
22036 			ASSERT(prev_mp != NULL);
22037 			prev_mp->b_cont = mp->b_cont;
22038 			mp->b_cont = NULL;
22039 			return (mp);
22040 		default:
22041 			break;
22042 		}
22043 	}
22044 
22045 	return (mp);
22046 }
22047 
22048 /* LSO info update routine, called when IP notifies us about LSO */
22049 static void
22050 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
22051 {
22052 	tcp_stack_t *tcps = tcp->tcp_tcps;
22053 
22054 	/*
22055 	 * IP is telling us to abort LSO on this connection?  We know
22056 	 * this because the capability is only turned off when IP
22057 	 * encounters some pathological cases, e.g. link-layer change
22058 	 * where the new NIC/driver doesn't support LSO, or in situation
22059 	 * where LSO usage on the link-layer has been switched off.
22060 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
22061 	 * if the link-layer doesn't support LSO, and if it does, it
22062 	 * will indicate that the feature is to be turned on.
22063 	 */
22064 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
22065 	TCP_STAT(tcps, tcp_lso_enabled);
22066 
22067 	/*
22068 	 * We currently only support LSO on simple TCP/IPv4,
22069 	 * so disable LSO otherwise.  The checks are done here
22070 	 * and in tcp_wput_data().
22071 	 */
22072 	if (tcp->tcp_lso &&
22073 	    (tcp->tcp_ipversion == IPV4_VERSION &&
22074 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
22075 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
22076 		tcp->tcp_lso = B_FALSE;
22077 		TCP_STAT(tcps, tcp_lso_disabled);
22078 	} else {
22079 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
22080 		    lso_capab->ill_lso_max);
22081 	}
22082 }
22083 
22084 static void
22085 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
22086 {
22087 	conn_t *connp = tcp->tcp_connp;
22088 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22089 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22090 
22091 	ASSERT(ire != NULL);
22092 
22093 	/*
22094 	 * We may be in the fastpath here, and although we essentially do
22095 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
22096 	 * we try to keep things as brief as possible.  After all, these
22097 	 * are only best-effort checks, and we do more thorough ones prior
22098 	 * to calling tcp_send()/tcp_multisend().
22099 	 */
22100 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
22101 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
22102 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
22103 	    !(ire->ire_flags & RTF_MULTIRT) &&
22104 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
22105 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
22106 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
22107 			/* Cache the result */
22108 			connp->conn_lso_ok = B_TRUE;
22109 
22110 			ASSERT(ill->ill_lso_capab != NULL);
22111 			if (!ill->ill_lso_capab->ill_lso_on) {
22112 				ill->ill_lso_capab->ill_lso_on = 1;
22113 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22114 				    "LSO for interface %s\n", (void *)connp,
22115 				    ill->ill_name));
22116 			}
22117 			tcp_lso_update(tcp, ill->ill_lso_capab);
22118 		} else if (ipst->ips_ip_multidata_outbound &&
22119 		    ILL_MDT_CAPABLE(ill)) {
22120 			/* Cache the result */
22121 			connp->conn_mdt_ok = B_TRUE;
22122 
22123 			ASSERT(ill->ill_mdt_capab != NULL);
22124 			if (!ill->ill_mdt_capab->ill_mdt_on) {
22125 				ill->ill_mdt_capab->ill_mdt_on = 1;
22126 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
22127 				    "MDT for interface %s\n", (void *)connp,
22128 				    ill->ill_name));
22129 			}
22130 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
22131 		}
22132 	}
22133 
22134 	/*
22135 	 * The goal is to reduce the number of generated tcp segments by
22136 	 * setting the maxpsz multiplier to 0; this will have an affect on
22137 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
22138 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
22139 	 * of outbound segments and incoming ACKs, thus allowing for better
22140 	 * network and system performance.  In contrast the legacy behavior
22141 	 * may result in sending less than SMSS size, because the last mblk
22142 	 * for some packets may have more data than needed to make up SMSS,
22143 	 * and the legacy code refused to "split" it.
22144 	 *
22145 	 * We apply the new behavior on following situations:
22146 	 *
22147 	 *   1) Loopback connections,
22148 	 *   2) Connections in which the remote peer is not on local subnet,
22149 	 *   3) Local subnet connections over the bge interface (see below).
22150 	 *
22151 	 * Ideally, we would like this behavior to apply for interfaces other
22152 	 * than bge.  However, doing so would negatively impact drivers which
22153 	 * perform dynamic mapping and unmapping of DMA resources, which are
22154 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
22155 	 * packet will be generated by tcp).  The bge driver does not suffer
22156 	 * from this, as it copies the mblks into pre-mapped buffers, and
22157 	 * therefore does not require more I/O resources than before.
22158 	 *
22159 	 * Otherwise, this behavior is present on all network interfaces when
22160 	 * the destination endpoint is non-local, since reducing the number
22161 	 * of packets in general is good for the network.
22162 	 *
22163 	 * TODO We need to remove this hard-coded conditional for bge once
22164 	 *	a better "self-tuning" mechanism, or a way to comprehend
22165 	 *	the driver transmit strategy is devised.  Until the solution
22166 	 *	is found and well understood, we live with this hack.
22167 	 */
22168 	if (!tcp_static_maxpsz &&
22169 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
22170 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
22171 		/* override the default value */
22172 		tcp->tcp_maxpsz = 0;
22173 
22174 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
22175 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
22176 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
22177 	}
22178 
22179 	/* set the stream head parameters accordingly */
22180 	(void) tcp_maxpsz_set(tcp, B_TRUE);
22181 }
22182 
22183 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
22184 static void
22185 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
22186 {
22187 	uchar_t	fval = *mp->b_rptr;
22188 	mblk_t	*tail;
22189 	queue_t	*q = tcp->tcp_wq;
22190 
22191 	/* TODO: How should flush interact with urgent data? */
22192 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
22193 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
22194 		/*
22195 		 * Flush only data that has not yet been put on the wire.  If
22196 		 * we flush data that we have already transmitted, life, as we
22197 		 * know it, may come to an end.
22198 		 */
22199 		tail = tcp->tcp_xmit_tail;
22200 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
22201 		tcp->tcp_xmit_tail_unsent = 0;
22202 		tcp->tcp_unsent = 0;
22203 		if (tail->b_wptr != tail->b_rptr)
22204 			tail = tail->b_cont;
22205 		if (tail) {
22206 			mblk_t **excess = &tcp->tcp_xmit_head;
22207 			for (;;) {
22208 				mblk_t *mp1 = *excess;
22209 				if (mp1 == tail)
22210 					break;
22211 				tcp->tcp_xmit_tail = mp1;
22212 				tcp->tcp_xmit_last = mp1;
22213 				excess = &mp1->b_cont;
22214 			}
22215 			*excess = NULL;
22216 			tcp_close_mpp(&tail);
22217 			if (tcp->tcp_snd_zcopy_aware)
22218 				tcp_zcopy_notify(tcp);
22219 		}
22220 		/*
22221 		 * We have no unsent data, so unsent must be less than
22222 		 * tcp_xmit_lowater, so re-enable flow.
22223 		 */
22224 		mutex_enter(&tcp->tcp_non_sq_lock);
22225 		if (tcp->tcp_flow_stopped) {
22226 			tcp_clrqfull(tcp);
22227 		}
22228 		mutex_exit(&tcp->tcp_non_sq_lock);
22229 	}
22230 	/*
22231 	 * TODO: you can't just flush these, you have to increase rwnd for one
22232 	 * thing.  For another, how should urgent data interact?
22233 	 */
22234 	if (fval & FLUSHR) {
22235 		*mp->b_rptr = fval & ~FLUSHW;
22236 		/* XXX */
22237 		qreply(q, mp);
22238 		return;
22239 	}
22240 	freemsg(mp);
22241 }
22242 
22243 /*
22244  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
22245  * messages.
22246  */
22247 static void
22248 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
22249 {
22250 	mblk_t	*mp1;
22251 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
22252 	STRUCT_HANDLE(strbuf, sb);
22253 	queue_t *q = tcp->tcp_wq;
22254 	int	error;
22255 	uint_t	addrlen;
22256 
22257 	/* Make sure it is one of ours. */
22258 	switch (iocp->ioc_cmd) {
22259 	case TI_GETMYNAME:
22260 	case TI_GETPEERNAME:
22261 		break;
22262 	default:
22263 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
22264 		return;
22265 	}
22266 	switch (mi_copy_state(q, mp, &mp1)) {
22267 	case -1:
22268 		return;
22269 	case MI_COPY_CASE(MI_COPY_IN, 1):
22270 		break;
22271 	case MI_COPY_CASE(MI_COPY_OUT, 1):
22272 		/* Copy out the strbuf. */
22273 		mi_copyout(q, mp);
22274 		return;
22275 	case MI_COPY_CASE(MI_COPY_OUT, 2):
22276 		/* All done. */
22277 		mi_copy_done(q, mp, 0);
22278 		return;
22279 	default:
22280 		mi_copy_done(q, mp, EPROTO);
22281 		return;
22282 	}
22283 	/* Check alignment of the strbuf */
22284 	if (!OK_32PTR(mp1->b_rptr)) {
22285 		mi_copy_done(q, mp, EINVAL);
22286 		return;
22287 	}
22288 
22289 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
22290 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
22291 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
22292 		mi_copy_done(q, mp, EINVAL);
22293 		return;
22294 	}
22295 
22296 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
22297 	if (mp1 == NULL)
22298 		return;
22299 
22300 	switch (iocp->ioc_cmd) {
22301 	case TI_GETMYNAME:
22302 		error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen);
22303 		break;
22304 	case TI_GETPEERNAME:
22305 		error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
22306 		break;
22307 	}
22308 
22309 	if (error != 0) {
22310 		mi_copy_done(q, mp, error);
22311 	} else {
22312 		mp1->b_wptr += addrlen;
22313 		STRUCT_FSET(sb, len, addrlen);
22314 
22315 		/* Copy out the address */
22316 		mi_copyout(q, mp);
22317 	}
22318 }
22319 
22320 static void
22321 tcp_disable_direct_sockfs(tcp_t *tcp)
22322 {
22323 #ifdef	_ILP32
22324 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
22325 #else
22326 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22327 #endif
22328 	/*
22329 	 * Insert this socket into the acceptor hash.
22330 	 * We might need it for T_CONN_RES message
22331 	 */
22332 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22333 
22334 	if (tcp->tcp_fused) {
22335 		/*
22336 		 * This is a fused loopback tcp; disable
22337 		 * read-side synchronous streams interface
22338 		 * and drain any queued data.  It is okay
22339 		 * to do this for non-synchronous streams
22340 		 * fused tcp as well.
22341 		 */
22342 		tcp_fuse_disable_pair(tcp, B_FALSE);
22343 	}
22344 	tcp->tcp_issocket = B_FALSE;
22345 	tcp->tcp_sodirect = NULL;
22346 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
22347 }
22348 
22349 /*
22350  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22351  * messages.
22352  */
22353 /* ARGSUSED */
22354 static void
22355 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22356 {
22357 	conn_t 	*connp = (conn_t *)arg;
22358 	tcp_t	*tcp = connp->conn_tcp;
22359 	queue_t	*q = tcp->tcp_wq;
22360 	struct iocblk	*iocp;
22361 
22362 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22363 	/*
22364 	 * Try and ASSERT the minimum possible references on the
22365 	 * conn early enough. Since we are executing on write side,
22366 	 * the connection is obviously not detached and that means
22367 	 * there is a ref each for TCP and IP. Since we are behind
22368 	 * the squeue, the minimum references needed are 3. If the
22369 	 * conn is in classifier hash list, there should be an
22370 	 * extra ref for that (we check both the possibilities).
22371 	 */
22372 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22373 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22374 
22375 	iocp = (struct iocblk *)mp->b_rptr;
22376 	switch (iocp->ioc_cmd) {
22377 	case TCP_IOC_DEFAULT_Q:
22378 		/* Wants to be the default wq. */
22379 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22380 			iocp->ioc_error = EPERM;
22381 			iocp->ioc_count = 0;
22382 			mp->b_datap->db_type = M_IOCACK;
22383 			qreply(q, mp);
22384 			return;
22385 		}
22386 		tcp_def_q_set(tcp, mp);
22387 		return;
22388 	case _SIOCSOCKFALLBACK:
22389 		/*
22390 		 * Either sockmod is about to be popped and the socket
22391 		 * would now be treated as a plain stream, or a module
22392 		 * is about to be pushed so we could no longer use read-
22393 		 * side synchronous streams for fused loopback tcp.
22394 		 * Drain any queued data and disable direct sockfs
22395 		 * interface from now on.
22396 		 */
22397 		if (!tcp->tcp_issocket) {
22398 			DB_TYPE(mp) = M_IOCNAK;
22399 			iocp->ioc_error = EINVAL;
22400 		} else {
22401 			tcp_disable_direct_sockfs(tcp);
22402 			DB_TYPE(mp) = M_IOCACK;
22403 			iocp->ioc_error = 0;
22404 		}
22405 		iocp->ioc_count = 0;
22406 		iocp->ioc_rval = 0;
22407 		qreply(q, mp);
22408 		return;
22409 	}
22410 	CALL_IP_WPUT(connp, q, mp);
22411 }
22412 
22413 /*
22414  * This routine is called by tcp_wput() to handle all TPI requests.
22415  */
22416 /* ARGSUSED */
22417 static void
22418 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22419 {
22420 	conn_t 	*connp = (conn_t *)arg;
22421 	tcp_t	*tcp = connp->conn_tcp;
22422 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22423 	uchar_t *rptr;
22424 	t_scalar_t type;
22425 	cred_t *cr;
22426 
22427 	/*
22428 	 * Try and ASSERT the minimum possible references on the
22429 	 * conn early enough. Since we are executing on write side,
22430 	 * the connection is obviously not detached and that means
22431 	 * there is a ref each for TCP and IP. Since we are behind
22432 	 * the squeue, the minimum references needed are 3. If the
22433 	 * conn is in classifier hash list, there should be an
22434 	 * extra ref for that (we check both the possibilities).
22435 	 */
22436 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22437 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22438 
22439 	rptr = mp->b_rptr;
22440 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22441 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22442 		type = ((union T_primitives *)rptr)->type;
22443 		if (type == T_EXDATA_REQ) {
22444 			tcp_output_urgent(connp, mp->b_cont, arg2);
22445 			freeb(mp);
22446 		} else if (type != T_DATA_REQ) {
22447 			goto non_urgent_data;
22448 		} else {
22449 			/* TODO: options, flags, ... from user */
22450 			/* Set length to zero for reclamation below */
22451 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22452 			freeb(mp);
22453 		}
22454 		return;
22455 	} else {
22456 		if (tcp->tcp_debug) {
22457 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22458 			    "tcp_wput_proto, dropping one...");
22459 		}
22460 		freemsg(mp);
22461 		return;
22462 	}
22463 
22464 non_urgent_data:
22465 
22466 	switch ((int)tprim->type) {
22467 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22468 		/*
22469 		 * save the kssl_ent_t from the next block, and convert this
22470 		 * back to a normal bind_req.
22471 		 */
22472 		if (mp->b_cont != NULL) {
22473 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22474 
22475 			if (tcp->tcp_kssl_ent != NULL) {
22476 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22477 				    KSSL_NO_PROXY);
22478 				tcp->tcp_kssl_ent = NULL;
22479 			}
22480 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22481 			    sizeof (kssl_ent_t));
22482 			kssl_hold_ent(tcp->tcp_kssl_ent);
22483 			freemsg(mp->b_cont);
22484 			mp->b_cont = NULL;
22485 		}
22486 		tprim->type = T_BIND_REQ;
22487 
22488 	/* FALLTHROUGH */
22489 	case O_T_BIND_REQ:	/* bind request */
22490 	case T_BIND_REQ:	/* new semantics bind request */
22491 		tcp_tpi_bind(tcp, mp);
22492 		break;
22493 	case T_UNBIND_REQ:	/* unbind request */
22494 		tcp_tpi_unbind(tcp, mp);
22495 		break;
22496 	case O_T_CONN_RES:	/* old connection response XXX */
22497 	case T_CONN_RES:	/* connection response */
22498 		tcp_tli_accept(tcp, mp);
22499 		break;
22500 	case T_CONN_REQ:	/* connection request */
22501 		tcp_tpi_connect(tcp, mp);
22502 		break;
22503 	case T_DISCON_REQ:	/* disconnect request */
22504 		tcp_disconnect(tcp, mp);
22505 		break;
22506 	case T_CAPABILITY_REQ:
22507 		tcp_capability_req(tcp, mp);	/* capability request */
22508 		break;
22509 	case T_INFO_REQ:	/* information request */
22510 		tcp_info_req(tcp, mp);
22511 		break;
22512 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22513 	case T_OPTMGMT_REQ:
22514 		/*
22515 		 * Note:  no support for snmpcom_req() through new
22516 		 * T_OPTMGMT_REQ. See comments in ip.c
22517 		 */
22518 
22519 		/*
22520 		 * All Solaris components should pass a db_credp
22521 		 * for this TPI message, hence we ASSERT.
22522 		 * But in case there is some other M_PROTO that looks
22523 		 * like a TPI message sent by some other kernel
22524 		 * component, we check and return an error.
22525 		 */
22526 		cr = msg_getcred(mp, NULL);
22527 		ASSERT(cr != NULL);
22528 		if (cr == NULL) {
22529 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
22530 			return;
22531 		}
22532 		/*
22533 		 * If EINPROGRESS is returned, the request has been queued
22534 		 * for subsequent processing by ip_restart_optmgmt(), which
22535 		 * will do the CONN_DEC_REF().
22536 		 */
22537 		CONN_INC_REF(connp);
22538 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
22539 			if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22540 			    B_TRUE) != EINPROGRESS) {
22541 				CONN_DEC_REF(connp);
22542 			}
22543 		} else {
22544 			if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22545 			    B_TRUE) != EINPROGRESS) {
22546 				CONN_DEC_REF(connp);
22547 			}
22548 		}
22549 		break;
22550 
22551 	case T_UNITDATA_REQ:	/* unitdata request */
22552 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22553 		break;
22554 	case T_ORDREL_REQ:	/* orderly release req */
22555 		freemsg(mp);
22556 
22557 		if (tcp->tcp_fused)
22558 			tcp_unfuse(tcp);
22559 
22560 		if (tcp_xmit_end(tcp) != 0) {
22561 			/*
22562 			 * We were crossing FINs and got a reset from
22563 			 * the other side. Just ignore it.
22564 			 */
22565 			if (tcp->tcp_debug) {
22566 				(void) strlog(TCP_MOD_ID, 0, 1,
22567 				    SL_ERROR|SL_TRACE,
22568 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22569 				    "state %s",
22570 				    tcp_display(tcp, NULL,
22571 				    DISP_ADDR_AND_PORT));
22572 			}
22573 		}
22574 		break;
22575 	case T_ADDR_REQ:
22576 		tcp_addr_req(tcp, mp);
22577 		break;
22578 	default:
22579 		if (tcp->tcp_debug) {
22580 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22581 			    "tcp_wput_proto, bogus TPI msg, type %d",
22582 			    tprim->type);
22583 		}
22584 		/*
22585 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22586 		 * to recover.
22587 		 */
22588 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22589 		break;
22590 	}
22591 }
22592 
22593 /*
22594  * The TCP write service routine should never be called...
22595  */
22596 /* ARGSUSED */
22597 static void
22598 tcp_wsrv(queue_t *q)
22599 {
22600 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22601 
22602 	TCP_STAT(tcps, tcp_wsrv_called);
22603 }
22604 
22605 /* Non overlapping byte exchanger */
22606 static void
22607 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22608 {
22609 	uchar_t	uch;
22610 
22611 	while (len-- > 0) {
22612 		uch = a[len];
22613 		a[len] = b[len];
22614 		b[len] = uch;
22615 	}
22616 }
22617 
22618 /*
22619  * Send out a control packet on the tcp connection specified.  This routine
22620  * is typically called where we need a simple ACK or RST generated.
22621  */
22622 static void
22623 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22624 {
22625 	uchar_t		*rptr;
22626 	tcph_t		*tcph;
22627 	ipha_t		*ipha = NULL;
22628 	ip6_t		*ip6h = NULL;
22629 	uint32_t	sum;
22630 	int		tcp_hdr_len;
22631 	int		tcp_ip_hdr_len;
22632 	mblk_t		*mp;
22633 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22634 
22635 	/*
22636 	 * Save sum for use in source route later.
22637 	 */
22638 	ASSERT(tcp != NULL);
22639 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22640 	tcp_hdr_len = tcp->tcp_hdr_len;
22641 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22642 
22643 	/* If a text string is passed in with the request, pass it to strlog. */
22644 	if (str != NULL && tcp->tcp_debug) {
22645 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22646 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22647 		    str, seq, ack, ctl);
22648 	}
22649 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22650 	    BPRI_MED);
22651 	if (mp == NULL) {
22652 		return;
22653 	}
22654 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22655 	mp->b_rptr = rptr;
22656 	mp->b_wptr = &rptr[tcp_hdr_len];
22657 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22658 
22659 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22660 		ipha = (ipha_t *)rptr;
22661 		ipha->ipha_length = htons(tcp_hdr_len);
22662 	} else {
22663 		ip6h = (ip6_t *)rptr;
22664 		ASSERT(tcp != NULL);
22665 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22666 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22667 	}
22668 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22669 	tcph->th_flags[0] = (uint8_t)ctl;
22670 	if (ctl & TH_RST) {
22671 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22672 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22673 		/*
22674 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22675 		 */
22676 		if (tcp->tcp_snd_ts_ok &&
22677 		    tcp->tcp_state > TCPS_SYN_SENT) {
22678 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22679 			*(mp->b_wptr) = TCPOPT_EOL;
22680 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22681 				ipha->ipha_length = htons(tcp_hdr_len -
22682 				    TCPOPT_REAL_TS_LEN);
22683 			} else {
22684 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22685 				    TCPOPT_REAL_TS_LEN);
22686 			}
22687 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22688 			sum -= TCPOPT_REAL_TS_LEN;
22689 		}
22690 	}
22691 	if (ctl & TH_ACK) {
22692 		if (tcp->tcp_snd_ts_ok) {
22693 			U32_TO_BE32(lbolt,
22694 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22695 			U32_TO_BE32(tcp->tcp_ts_recent,
22696 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22697 		}
22698 
22699 		/* Update the latest receive window size in TCP header. */
22700 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22701 		    tcph->th_win);
22702 		tcp->tcp_rack = ack;
22703 		tcp->tcp_rack_cnt = 0;
22704 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22705 	}
22706 	BUMP_LOCAL(tcp->tcp_obsegs);
22707 	U32_TO_BE32(seq, tcph->th_seq);
22708 	U32_TO_BE32(ack, tcph->th_ack);
22709 	/*
22710 	 * Include the adjustment for a source route if any.
22711 	 */
22712 	sum = (sum >> 16) + (sum & 0xFFFF);
22713 	U16_TO_BE16(sum, tcph->th_sum);
22714 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22715 }
22716 
22717 /*
22718  * If this routine returns B_TRUE, TCP can generate a RST in response
22719  * to a segment.  If it returns B_FALSE, TCP should not respond.
22720  */
22721 static boolean_t
22722 tcp_send_rst_chk(tcp_stack_t *tcps)
22723 {
22724 	clock_t	now;
22725 
22726 	/*
22727 	 * TCP needs to protect itself from generating too many RSTs.
22728 	 * This can be a DoS attack by sending us random segments
22729 	 * soliciting RSTs.
22730 	 *
22731 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22732 	 * in each 1 second interval.  In this way, TCP still generate
22733 	 * RSTs in normal cases but when under attack, the impact is
22734 	 * limited.
22735 	 */
22736 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22737 		now = lbolt;
22738 		/* lbolt can wrap around. */
22739 		if ((tcps->tcps_last_rst_intrvl > now) ||
22740 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22741 		    1*SECONDS)) {
22742 			tcps->tcps_last_rst_intrvl = now;
22743 			tcps->tcps_rst_cnt = 1;
22744 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22745 			return (B_FALSE);
22746 		}
22747 	}
22748 	return (B_TRUE);
22749 }
22750 
22751 /*
22752  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22753  */
22754 static void
22755 tcp_ip_ire_mark_advice(tcp_t *tcp)
22756 {
22757 	mblk_t *mp;
22758 	ipic_t *ipic;
22759 
22760 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22761 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22762 		    &ipic);
22763 	} else {
22764 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22765 		    &ipic);
22766 	}
22767 	if (mp == NULL)
22768 		return;
22769 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22770 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22771 }
22772 
22773 /*
22774  * Return an IP advice ioctl mblk and set ipic to be the pointer
22775  * to the advice structure.
22776  */
22777 static mblk_t *
22778 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22779 {
22780 	struct iocblk *ioc;
22781 	mblk_t *mp, *mp1;
22782 
22783 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22784 	if (mp == NULL)
22785 		return (NULL);
22786 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22787 	*ipic = (ipic_t *)mp->b_rptr;
22788 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22789 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22790 
22791 	bcopy(addr, *ipic + 1, addr_len);
22792 
22793 	(*ipic)->ipic_addr_length = addr_len;
22794 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22795 
22796 	mp1 = mkiocb(IP_IOCTL);
22797 	if (mp1 == NULL) {
22798 		freemsg(mp);
22799 		return (NULL);
22800 	}
22801 	mp1->b_cont = mp;
22802 	ioc = (struct iocblk *)mp1->b_rptr;
22803 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22804 
22805 	return (mp1);
22806 }
22807 
22808 /*
22809  * Generate a reset based on an inbound packet, connp is set by caller
22810  * when RST is in response to an unexpected inbound packet for which
22811  * there is active tcp state in the system.
22812  *
22813  * IPSEC NOTE : Try to send the reply with the same protection as it came
22814  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22815  * the packet will go out at the same level of protection as it came in by
22816  * converting the IPSEC_IN to IPSEC_OUT.
22817  */
22818 static void
22819 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22820     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22821     tcp_stack_t *tcps, conn_t *connp)
22822 {
22823 	ipha_t		*ipha = NULL;
22824 	ip6_t		*ip6h = NULL;
22825 	ushort_t	len;
22826 	tcph_t		*tcph;
22827 	int		i;
22828 	mblk_t		*ipsec_mp;
22829 	boolean_t	mctl_present;
22830 	ipic_t		*ipic;
22831 	ipaddr_t	v4addr;
22832 	in6_addr_t	v6addr;
22833 	int		addr_len;
22834 	void		*addr;
22835 	queue_t		*q = tcps->tcps_g_q;
22836 	tcp_t		*tcp;
22837 	cred_t		*cr;
22838 	mblk_t		*nmp;
22839 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22840 
22841 	if (tcps->tcps_g_q == NULL) {
22842 		/*
22843 		 * For non-zero stackids the default queue isn't created
22844 		 * until the first open, thus there can be a need to send
22845 		 * a reset before then. But we can't do that, hence we just
22846 		 * drop the packet. Later during boot, when the default queue
22847 		 * has been setup, a retransmitted packet from the peer
22848 		 * will result in a reset.
22849 		 */
22850 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22851 		    GLOBAL_NETSTACKID);
22852 		freemsg(mp);
22853 		return;
22854 	}
22855 
22856 	if (connp != NULL)
22857 		tcp = connp->conn_tcp;
22858 	else
22859 		tcp = Q_TO_TCP(q);
22860 
22861 	if (!tcp_send_rst_chk(tcps)) {
22862 		tcps->tcps_rst_unsent++;
22863 		freemsg(mp);
22864 		return;
22865 	}
22866 
22867 	if (mp->b_datap->db_type == M_CTL) {
22868 		ipsec_mp = mp;
22869 		mp = mp->b_cont;
22870 		mctl_present = B_TRUE;
22871 	} else {
22872 		ipsec_mp = mp;
22873 		mctl_present = B_FALSE;
22874 	}
22875 
22876 	if (str && q && tcps->tcps_dbg) {
22877 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22878 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22879 		    "flags 0x%x",
22880 		    str, seq, ack, ctl);
22881 	}
22882 	if (mp->b_datap->db_ref != 1) {
22883 		mblk_t *mp1 = copyb(mp);
22884 		freemsg(mp);
22885 		mp = mp1;
22886 		if (!mp) {
22887 			if (mctl_present)
22888 				freeb(ipsec_mp);
22889 			return;
22890 		} else {
22891 			if (mctl_present) {
22892 				ipsec_mp->b_cont = mp;
22893 			} else {
22894 				ipsec_mp = mp;
22895 			}
22896 		}
22897 	} else if (mp->b_cont) {
22898 		freemsg(mp->b_cont);
22899 		mp->b_cont = NULL;
22900 	}
22901 	/*
22902 	 * We skip reversing source route here.
22903 	 * (for now we replace all IP options with EOL)
22904 	 */
22905 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22906 		ipha = (ipha_t *)mp->b_rptr;
22907 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22908 			mp->b_rptr[i] = IPOPT_EOL;
22909 		/*
22910 		 * Make sure that src address isn't flagrantly invalid.
22911 		 * Not all broadcast address checking for the src address
22912 		 * is possible, since we don't know the netmask of the src
22913 		 * addr.  No check for destination address is done, since
22914 		 * IP will not pass up a packet with a broadcast dest
22915 		 * address to TCP.  Similar checks are done below for IPv6.
22916 		 */
22917 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22918 		    CLASSD(ipha->ipha_src)) {
22919 			freemsg(ipsec_mp);
22920 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22921 			return;
22922 		}
22923 	} else {
22924 		ip6h = (ip6_t *)mp->b_rptr;
22925 
22926 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22927 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22928 			freemsg(ipsec_mp);
22929 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22930 			return;
22931 		}
22932 
22933 		/* Remove any extension headers assuming partial overlay */
22934 		if (ip_hdr_len > IPV6_HDR_LEN) {
22935 			uint8_t *to;
22936 
22937 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22938 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22939 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22940 			ip_hdr_len = IPV6_HDR_LEN;
22941 			ip6h = (ip6_t *)mp->b_rptr;
22942 			ip6h->ip6_nxt = IPPROTO_TCP;
22943 		}
22944 	}
22945 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22946 	if (tcph->th_flags[0] & TH_RST) {
22947 		freemsg(ipsec_mp);
22948 		return;
22949 	}
22950 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22951 	len = ip_hdr_len + sizeof (tcph_t);
22952 	mp->b_wptr = &mp->b_rptr[len];
22953 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22954 		ipha->ipha_length = htons(len);
22955 		/* Swap addresses */
22956 		v4addr = ipha->ipha_src;
22957 		ipha->ipha_src = ipha->ipha_dst;
22958 		ipha->ipha_dst = v4addr;
22959 		ipha->ipha_ident = 0;
22960 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22961 		addr_len = IP_ADDR_LEN;
22962 		addr = &v4addr;
22963 	} else {
22964 		/* No ip6i_t in this case */
22965 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22966 		/* Swap addresses */
22967 		v6addr = ip6h->ip6_src;
22968 		ip6h->ip6_src = ip6h->ip6_dst;
22969 		ip6h->ip6_dst = v6addr;
22970 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22971 		addr_len = IPV6_ADDR_LEN;
22972 		addr = &v6addr;
22973 	}
22974 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22975 	U32_TO_BE32(ack, tcph->th_ack);
22976 	U32_TO_BE32(seq, tcph->th_seq);
22977 	U16_TO_BE16(0, tcph->th_win);
22978 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22979 	tcph->th_flags[0] = (uint8_t)ctl;
22980 	if (ctl & TH_RST) {
22981 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22982 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22983 	}
22984 
22985 	/* IP trusts us to set up labels when required. */
22986 	if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL &&
22987 	    crgetlabel(cr) != NULL) {
22988 		int err;
22989 
22990 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22991 			err = tsol_check_label(cr, &mp,
22992 			    tcp->tcp_connp->conn_mac_exempt,
22993 			    tcps->tcps_netstack->netstack_ip);
22994 		else
22995 			err = tsol_check_label_v6(cr, &mp,
22996 			    tcp->tcp_connp->conn_mac_exempt,
22997 			    tcps->tcps_netstack->netstack_ip);
22998 		if (mctl_present)
22999 			ipsec_mp->b_cont = mp;
23000 		else
23001 			ipsec_mp = mp;
23002 		if (err != 0) {
23003 			freemsg(ipsec_mp);
23004 			return;
23005 		}
23006 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23007 			ipha = (ipha_t *)mp->b_rptr;
23008 		} else {
23009 			ip6h = (ip6_t *)mp->b_rptr;
23010 		}
23011 	}
23012 
23013 	if (mctl_present) {
23014 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23015 
23016 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23017 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
23018 			return;
23019 		}
23020 	}
23021 	if (zoneid == ALL_ZONES)
23022 		zoneid = GLOBAL_ZONEID;
23023 
23024 	/* Add the zoneid so ip_output routes it properly */
23025 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
23026 		freemsg(ipsec_mp);
23027 		return;
23028 	}
23029 	ipsec_mp = nmp;
23030 
23031 	/*
23032 	 * NOTE:  one might consider tracing a TCP packet here, but
23033 	 * this function has no active TCP state and no tcp structure
23034 	 * that has a trace buffer.  If we traced here, we would have
23035 	 * to keep a local trace buffer in tcp_record_trace().
23036 	 *
23037 	 * TSol note: The mblk that contains the incoming packet was
23038 	 * reused by tcp_xmit_listener_reset, so it already contains
23039 	 * the right credentials and we don't need to call mblk_setcred.
23040 	 * Also the conn's cred is not right since it is associated
23041 	 * with tcps_g_q.
23042 	 */
23043 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
23044 
23045 	/*
23046 	 * Tell IP to mark the IRE used for this destination temporary.
23047 	 * This way, we can limit our exposure to DoS attack because IP
23048 	 * creates an IRE for each destination.  If there are too many,
23049 	 * the time to do any routing lookup will be extremely long.  And
23050 	 * the lookup can be in interrupt context.
23051 	 *
23052 	 * Note that in normal circumstances, this marking should not
23053 	 * affect anything.  It would be nice if only 1 message is
23054 	 * needed to inform IP that the IRE created for this RST should
23055 	 * not be added to the cache table.  But there is currently
23056 	 * not such communication mechanism between TCP and IP.  So
23057 	 * the best we can do now is to send the advice ioctl to IP
23058 	 * to mark the IRE temporary.
23059 	 */
23060 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
23061 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
23062 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23063 	}
23064 }
23065 
23066 /*
23067  * Initiate closedown sequence on an active connection.  (May be called as
23068  * writer.)  Return value zero for OK return, non-zero for error return.
23069  */
23070 static int
23071 tcp_xmit_end(tcp_t *tcp)
23072 {
23073 	ipic_t	*ipic;
23074 	mblk_t	*mp;
23075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23076 
23077 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
23078 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
23079 		/*
23080 		 * Invalid state, only states TCPS_SYN_RCVD,
23081 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
23082 		 */
23083 		return (-1);
23084 	}
23085 
23086 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
23087 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
23088 	/*
23089 	 * If there is nothing more unsent, send the FIN now.
23090 	 * Otherwise, it will go out with the last segment.
23091 	 */
23092 	if (tcp->tcp_unsent == 0) {
23093 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
23094 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
23095 
23096 		if (mp) {
23097 			tcp_send_data(tcp, tcp->tcp_wq, mp);
23098 		} else {
23099 			/*
23100 			 * Couldn't allocate msg.  Pretend we got it out.
23101 			 * Wait for rexmit timeout.
23102 			 */
23103 			tcp->tcp_snxt = tcp->tcp_fss + 1;
23104 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23105 		}
23106 
23107 		/*
23108 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
23109 		 * changed.
23110 		 */
23111 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
23112 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
23113 		}
23114 	} else {
23115 		/*
23116 		 * If tcp->tcp_cork is set, then the data will not get sent,
23117 		 * so we have to check that and unset it first.
23118 		 */
23119 		if (tcp->tcp_cork)
23120 			tcp->tcp_cork = B_FALSE;
23121 		tcp_wput_data(tcp, NULL, B_FALSE);
23122 	}
23123 
23124 	/*
23125 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
23126 	 * is 0, don't update the cache.
23127 	 */
23128 	if (tcps->tcps_rtt_updates == 0 ||
23129 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
23130 		return (0);
23131 
23132 	/*
23133 	 * NOTE: should not update if source routes i.e. if tcp_remote if
23134 	 * different from the destination.
23135 	 */
23136 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23137 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
23138 			return (0);
23139 		}
23140 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
23141 		    &ipic);
23142 	} else {
23143 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
23144 		    &tcp->tcp_ip6h->ip6_dst))) {
23145 			return (0);
23146 		}
23147 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
23148 		    &ipic);
23149 	}
23150 
23151 	/* Record route attributes in the IRE for use by future connections. */
23152 	if (mp == NULL)
23153 		return (0);
23154 
23155 	/*
23156 	 * We do not have a good algorithm to update ssthresh at this time.
23157 	 * So don't do any update.
23158 	 */
23159 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
23160 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
23161 
23162 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
23163 
23164 	return (0);
23165 }
23166 
23167 /*
23168  * Generate a "no listener here" RST in response to an "unknown" segment.
23169  * connp is set by caller when RST is in response to an unexpected
23170  * inbound packet for which there is active tcp state in the system.
23171  * Note that we are reusing the incoming mp to construct the outgoing RST.
23172  */
23173 void
23174 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
23175     tcp_stack_t *tcps, conn_t *connp)
23176 {
23177 	uchar_t		*rptr;
23178 	uint32_t	seg_len;
23179 	tcph_t		*tcph;
23180 	uint32_t	seg_seq;
23181 	uint32_t	seg_ack;
23182 	uint_t		flags;
23183 	mblk_t		*ipsec_mp;
23184 	ipha_t 		*ipha;
23185 	ip6_t 		*ip6h;
23186 	boolean_t	mctl_present = B_FALSE;
23187 	boolean_t	check = B_TRUE;
23188 	boolean_t	policy_present;
23189 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
23190 
23191 	TCP_STAT(tcps, tcp_no_listener);
23192 
23193 	ipsec_mp = mp;
23194 
23195 	if (mp->b_datap->db_type == M_CTL) {
23196 		ipsec_in_t *ii;
23197 
23198 		mctl_present = B_TRUE;
23199 		mp = mp->b_cont;
23200 
23201 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
23202 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
23203 		if (ii->ipsec_in_dont_check) {
23204 			check = B_FALSE;
23205 			if (!ii->ipsec_in_secure) {
23206 				freeb(ipsec_mp);
23207 				mctl_present = B_FALSE;
23208 				ipsec_mp = mp;
23209 			}
23210 		}
23211 	}
23212 
23213 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
23214 		policy_present = ipss->ipsec_inbound_v4_policy_present;
23215 		ipha = (ipha_t *)mp->b_rptr;
23216 		ip6h = NULL;
23217 	} else {
23218 		policy_present = ipss->ipsec_inbound_v6_policy_present;
23219 		ipha = NULL;
23220 		ip6h = (ip6_t *)mp->b_rptr;
23221 	}
23222 
23223 	if (check && policy_present) {
23224 		/*
23225 		 * The conn_t parameter is NULL because we already know
23226 		 * nobody's home.
23227 		 */
23228 		ipsec_mp = ipsec_check_global_policy(
23229 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
23230 		    tcps->tcps_netstack);
23231 		if (ipsec_mp == NULL)
23232 			return;
23233 	}
23234 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
23235 		DTRACE_PROBE2(
23236 		    tx__ip__log__error__nolistener__tcp,
23237 		    char *, "Could not reply with RST to mp(1)",
23238 		    mblk_t *, mp);
23239 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
23240 		freemsg(ipsec_mp);
23241 		return;
23242 	}
23243 
23244 	rptr = mp->b_rptr;
23245 
23246 	tcph = (tcph_t *)&rptr[ip_hdr_len];
23247 	seg_seq = BE32_TO_U32(tcph->th_seq);
23248 	seg_ack = BE32_TO_U32(tcph->th_ack);
23249 	flags = tcph->th_flags[0];
23250 
23251 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
23252 	if (flags & TH_RST) {
23253 		freemsg(ipsec_mp);
23254 	} else if (flags & TH_ACK) {
23255 		tcp_xmit_early_reset("no tcp, reset",
23256 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
23257 		    connp);
23258 	} else {
23259 		if (flags & TH_SYN) {
23260 			seg_len++;
23261 		} else {
23262 			/*
23263 			 * Here we violate the RFC.  Note that a normal
23264 			 * TCP will never send a segment without the ACK
23265 			 * flag, except for RST or SYN segment.  This
23266 			 * segment is neither.  Just drop it on the
23267 			 * floor.
23268 			 */
23269 			freemsg(ipsec_mp);
23270 			tcps->tcps_rst_unsent++;
23271 			return;
23272 		}
23273 
23274 		tcp_xmit_early_reset("no tcp, reset/ack",
23275 		    ipsec_mp, 0, seg_seq + seg_len,
23276 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
23277 	}
23278 }
23279 
23280 /*
23281  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
23282  * ip and tcp header ready to pass down to IP.  If the mp passed in is
23283  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
23284  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
23285  * otherwise it will dup partial mblks.)
23286  * Otherwise, an appropriate ACK packet will be generated.  This
23287  * routine is not usually called to send new data for the first time.  It
23288  * is mostly called out of the timer for retransmits, and to generate ACKs.
23289  *
23290  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
23291  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
23292  * of the original mblk chain will be returned in *offset and *end_mp.
23293  */
23294 mblk_t *
23295 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
23296     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
23297     boolean_t rexmit)
23298 {
23299 	int	data_length;
23300 	int32_t	off = 0;
23301 	uint_t	flags;
23302 	mblk_t	*mp1;
23303 	mblk_t	*mp2;
23304 	uchar_t	*rptr;
23305 	tcph_t	*tcph;
23306 	int32_t	num_sack_blk = 0;
23307 	int32_t	sack_opt_len = 0;
23308 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23309 
23310 	/* Allocate for our maximum TCP header + link-level */
23311 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23312 	    tcps->tcps_wroff_xtra, BPRI_MED);
23313 	if (!mp1)
23314 		return (NULL);
23315 	data_length = 0;
23316 
23317 	/*
23318 	 * Note that tcp_mss has been adjusted to take into account the
23319 	 * timestamp option if applicable.  Because SACK options do not
23320 	 * appear in every TCP segments and they are of variable lengths,
23321 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23322 	 * the actual segment length when we need to send a segment which
23323 	 * includes SACK options.
23324 	 */
23325 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23326 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23327 		    tcp->tcp_num_sack_blk);
23328 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23329 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23330 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23331 			max_to_send -= sack_opt_len;
23332 	}
23333 
23334 	if (offset != NULL) {
23335 		off = *offset;
23336 		/* We use offset as an indicator that end_mp is not NULL. */
23337 		*end_mp = NULL;
23338 	}
23339 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23340 		/* This could be faster with cooperation from downstream */
23341 		if (mp2 != mp1 && !sendall &&
23342 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23343 		    max_to_send)
23344 			/*
23345 			 * Don't send the next mblk since the whole mblk
23346 			 * does not fit.
23347 			 */
23348 			break;
23349 		mp2->b_cont = dupb(mp);
23350 		mp2 = mp2->b_cont;
23351 		if (!mp2) {
23352 			freemsg(mp1);
23353 			return (NULL);
23354 		}
23355 		mp2->b_rptr += off;
23356 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23357 		    (uintptr_t)INT_MAX);
23358 
23359 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23360 		if (data_length > max_to_send) {
23361 			mp2->b_wptr -= data_length - max_to_send;
23362 			data_length = max_to_send;
23363 			off = mp2->b_wptr - mp->b_rptr;
23364 			break;
23365 		} else {
23366 			off = 0;
23367 		}
23368 	}
23369 	if (offset != NULL) {
23370 		*offset = off;
23371 		*end_mp = mp;
23372 	}
23373 	if (seg_len != NULL) {
23374 		*seg_len = data_length;
23375 	}
23376 
23377 	/* Update the latest receive window size in TCP header. */
23378 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23379 	    tcp->tcp_tcph->th_win);
23380 
23381 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23382 	mp1->b_rptr = rptr;
23383 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23384 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23385 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23386 	U32_TO_ABE32(seq, tcph->th_seq);
23387 
23388 	/*
23389 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23390 	 * that this function was called from tcp_wput_data. Thus, when called
23391 	 * to retransmit data the setting of the PUSH bit may appear some
23392 	 * what random in that it might get set when it should not. This
23393 	 * should not pose any performance issues.
23394 	 */
23395 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23396 	    tcp->tcp_unsent == data_length)) {
23397 		flags = TH_ACK | TH_PUSH;
23398 	} else {
23399 		flags = TH_ACK;
23400 	}
23401 
23402 	if (tcp->tcp_ecn_ok) {
23403 		if (tcp->tcp_ecn_echo_on)
23404 			flags |= TH_ECE;
23405 
23406 		/*
23407 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23408 		 * There is no TCP flow control for non-data segments, and
23409 		 * only data segment is transmitted reliably.
23410 		 */
23411 		if (data_length > 0 && !rexmit) {
23412 			SET_ECT(tcp, rptr);
23413 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23414 				flags |= TH_CWR;
23415 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23416 			}
23417 		}
23418 	}
23419 
23420 	if (tcp->tcp_valid_bits) {
23421 		uint32_t u1;
23422 
23423 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23424 		    seq == tcp->tcp_iss) {
23425 			uchar_t	*wptr;
23426 
23427 			/*
23428 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23429 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23430 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23431 			 * our SYN is not ack'ed but the app closes this
23432 			 * TCP connection.
23433 			 */
23434 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23435 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23436 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23437 
23438 			/*
23439 			 * Tack on the MSS option.  It is always needed
23440 			 * for both active and passive open.
23441 			 *
23442 			 * MSS option value should be interface MTU - MIN
23443 			 * TCP/IP header according to RFC 793 as it means
23444 			 * the maximum segment size TCP can receive.  But
23445 			 * to get around some broken middle boxes/end hosts
23446 			 * out there, we allow the option value to be the
23447 			 * same as the MSS option size on the peer side.
23448 			 * In this way, the other side will not send
23449 			 * anything larger than they can receive.
23450 			 *
23451 			 * Note that for SYN_SENT state, the ndd param
23452 			 * tcp_use_smss_as_mss_opt has no effect as we
23453 			 * don't know the peer's MSS option value. So
23454 			 * the only case we need to take care of is in
23455 			 * SYN_RCVD state, which is done later.
23456 			 */
23457 			wptr = mp1->b_wptr;
23458 			wptr[0] = TCPOPT_MAXSEG;
23459 			wptr[1] = TCPOPT_MAXSEG_LEN;
23460 			wptr += 2;
23461 			u1 = tcp->tcp_if_mtu -
23462 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23463 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23464 			    TCP_MIN_HEADER_LENGTH;
23465 			U16_TO_BE16(u1, wptr);
23466 			mp1->b_wptr = wptr + 2;
23467 			/* Update the offset to cover the additional word */
23468 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23469 
23470 			/*
23471 			 * Note that the following way of filling in
23472 			 * TCP options are not optimal.  Some NOPs can
23473 			 * be saved.  But there is no need at this time
23474 			 * to optimize it.  When it is needed, we will
23475 			 * do it.
23476 			 */
23477 			switch (tcp->tcp_state) {
23478 			case TCPS_SYN_SENT:
23479 				flags = TH_SYN;
23480 
23481 				if (tcp->tcp_snd_ts_ok) {
23482 					uint32_t llbolt = (uint32_t)lbolt;
23483 
23484 					wptr = mp1->b_wptr;
23485 					wptr[0] = TCPOPT_NOP;
23486 					wptr[1] = TCPOPT_NOP;
23487 					wptr[2] = TCPOPT_TSTAMP;
23488 					wptr[3] = TCPOPT_TSTAMP_LEN;
23489 					wptr += 4;
23490 					U32_TO_BE32(llbolt, wptr);
23491 					wptr += 4;
23492 					ASSERT(tcp->tcp_ts_recent == 0);
23493 					U32_TO_BE32(0L, wptr);
23494 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23495 					tcph->th_offset_and_rsrvd[0] +=
23496 					    (3 << 4);
23497 				}
23498 
23499 				/*
23500 				 * Set up all the bits to tell other side
23501 				 * we are ECN capable.
23502 				 */
23503 				if (tcp->tcp_ecn_ok) {
23504 					flags |= (TH_ECE | TH_CWR);
23505 				}
23506 				break;
23507 			case TCPS_SYN_RCVD:
23508 				flags |= TH_SYN;
23509 
23510 				/*
23511 				 * Reset the MSS option value to be SMSS
23512 				 * We should probably add back the bytes
23513 				 * for timestamp option and IPsec.  We
23514 				 * don't do that as this is a workaround
23515 				 * for broken middle boxes/end hosts, it
23516 				 * is better for us to be more cautious.
23517 				 * They may not take these things into
23518 				 * account in their SMSS calculation.  Thus
23519 				 * the peer's calculated SMSS may be smaller
23520 				 * than what it can be.  This should be OK.
23521 				 */
23522 				if (tcps->tcps_use_smss_as_mss_opt) {
23523 					u1 = tcp->tcp_mss;
23524 					U16_TO_BE16(u1, wptr);
23525 				}
23526 
23527 				/*
23528 				 * If the other side is ECN capable, reply
23529 				 * that we are also ECN capable.
23530 				 */
23531 				if (tcp->tcp_ecn_ok)
23532 					flags |= TH_ECE;
23533 				break;
23534 			default:
23535 				/*
23536 				 * The above ASSERT() makes sure that this
23537 				 * must be FIN-WAIT-1 state.  Our SYN has
23538 				 * not been ack'ed so retransmit it.
23539 				 */
23540 				flags |= TH_SYN;
23541 				break;
23542 			}
23543 
23544 			if (tcp->tcp_snd_ws_ok) {
23545 				wptr = mp1->b_wptr;
23546 				wptr[0] =  TCPOPT_NOP;
23547 				wptr[1] =  TCPOPT_WSCALE;
23548 				wptr[2] =  TCPOPT_WS_LEN;
23549 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23550 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23551 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23552 			}
23553 
23554 			if (tcp->tcp_snd_sack_ok) {
23555 				wptr = mp1->b_wptr;
23556 				wptr[0] = TCPOPT_NOP;
23557 				wptr[1] = TCPOPT_NOP;
23558 				wptr[2] = TCPOPT_SACK_PERMITTED;
23559 				wptr[3] = TCPOPT_SACK_OK_LEN;
23560 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23561 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23562 			}
23563 
23564 			/* allocb() of adequate mblk assures space */
23565 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23566 			    (uintptr_t)INT_MAX);
23567 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23568 			/*
23569 			 * Get IP set to checksum on our behalf
23570 			 * Include the adjustment for a source route if any.
23571 			 */
23572 			u1 += tcp->tcp_sum;
23573 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23574 			U16_TO_BE16(u1, tcph->th_sum);
23575 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23576 		}
23577 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23578 		    (seq + data_length) == tcp->tcp_fss) {
23579 			if (!tcp->tcp_fin_acked) {
23580 				flags |= TH_FIN;
23581 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23582 			}
23583 			if (!tcp->tcp_fin_sent) {
23584 				tcp->tcp_fin_sent = B_TRUE;
23585 				switch (tcp->tcp_state) {
23586 				case TCPS_SYN_RCVD:
23587 				case TCPS_ESTABLISHED:
23588 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23589 					break;
23590 				case TCPS_CLOSE_WAIT:
23591 					tcp->tcp_state = TCPS_LAST_ACK;
23592 					break;
23593 				}
23594 				if (tcp->tcp_suna == tcp->tcp_snxt)
23595 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23596 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23597 			}
23598 		}
23599 		/*
23600 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23601 		 * is smaller than seq, u1 will become a very huge value.
23602 		 * So the comparison will fail.  Also note that tcp_urp
23603 		 * should be positive, see RFC 793 page 17.
23604 		 */
23605 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23606 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23607 		    u1 < (uint32_t)(64 * 1024)) {
23608 			flags |= TH_URG;
23609 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23610 			U32_TO_ABE16(u1, tcph->th_urp);
23611 		}
23612 	}
23613 	tcph->th_flags[0] = (uchar_t)flags;
23614 	tcp->tcp_rack = tcp->tcp_rnxt;
23615 	tcp->tcp_rack_cnt = 0;
23616 
23617 	if (tcp->tcp_snd_ts_ok) {
23618 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23619 			uint32_t llbolt = (uint32_t)lbolt;
23620 
23621 			U32_TO_BE32(llbolt,
23622 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23623 			U32_TO_BE32(tcp->tcp_ts_recent,
23624 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23625 		}
23626 	}
23627 
23628 	if (num_sack_blk > 0) {
23629 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23630 		sack_blk_t *tmp;
23631 		int32_t	i;
23632 
23633 		wptr[0] = TCPOPT_NOP;
23634 		wptr[1] = TCPOPT_NOP;
23635 		wptr[2] = TCPOPT_SACK;
23636 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23637 		    sizeof (sack_blk_t);
23638 		wptr += TCPOPT_REAL_SACK_LEN;
23639 
23640 		tmp = tcp->tcp_sack_list;
23641 		for (i = 0; i < num_sack_blk; i++) {
23642 			U32_TO_BE32(tmp[i].begin, wptr);
23643 			wptr += sizeof (tcp_seq);
23644 			U32_TO_BE32(tmp[i].end, wptr);
23645 			wptr += sizeof (tcp_seq);
23646 		}
23647 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23648 	}
23649 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23650 	data_length += (int)(mp1->b_wptr - rptr);
23651 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23652 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23653 	} else {
23654 		ip6_t *ip6 = (ip6_t *)(rptr +
23655 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23656 		    sizeof (ip6i_t) : 0));
23657 
23658 		ip6->ip6_plen = htons(data_length -
23659 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23660 	}
23661 
23662 	/*
23663 	 * Prime pump for IP
23664 	 * Include the adjustment for a source route if any.
23665 	 */
23666 	data_length -= tcp->tcp_ip_hdr_len;
23667 	data_length += tcp->tcp_sum;
23668 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23669 	U16_TO_ABE16(data_length, tcph->th_sum);
23670 	if (tcp->tcp_ip_forward_progress) {
23671 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23672 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23673 		tcp->tcp_ip_forward_progress = B_FALSE;
23674 	}
23675 	return (mp1);
23676 }
23677 
23678 /* This function handles the push timeout. */
23679 void
23680 tcp_push_timer(void *arg)
23681 {
23682 	conn_t	*connp = (conn_t *)arg;
23683 	tcp_t *tcp = connp->conn_tcp;
23684 	uint_t		flags;
23685 	sodirect_t	*sodp;
23686 
23687 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
23688 
23689 	ASSERT(tcp->tcp_listener == NULL);
23690 
23691 	ASSERT(!IPCL_IS_NONSTR(connp));
23692 
23693 	/*
23694 	 * We need to plug synchronous streams during our drain to prevent
23695 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23696 	 */
23697 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23698 	tcp->tcp_push_tid = 0;
23699 
23700 	SOD_PTR_ENTER(tcp, sodp);
23701 	if (sodp != NULL) {
23702 		flags = tcp_rcv_sod_wakeup(tcp, sodp);
23703 		/* sod_wakeup() does the mutex_exit() */
23704 	} else if (tcp->tcp_rcv_list != NULL) {
23705 		flags = tcp_rcv_drain(tcp);
23706 	}
23707 	if (flags == TH_ACK_NEEDED)
23708 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23709 
23710 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23711 }
23712 
23713 /*
23714  * This function handles delayed ACK timeout.
23715  */
23716 static void
23717 tcp_ack_timer(void *arg)
23718 {
23719 	conn_t	*connp = (conn_t *)arg;
23720 	tcp_t *tcp = connp->conn_tcp;
23721 	mblk_t *mp;
23722 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23723 
23724 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23725 
23726 	tcp->tcp_ack_tid = 0;
23727 
23728 	if (tcp->tcp_fused)
23729 		return;
23730 
23731 	/*
23732 	 * Do not send ACK if there is no outstanding unack'ed data.
23733 	 */
23734 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23735 		return;
23736 	}
23737 
23738 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23739 		/*
23740 		 * Make sure we don't allow deferred ACKs to result in
23741 		 * timer-based ACKing.  If we have held off an ACK
23742 		 * when there was more than an mss here, and the timer
23743 		 * goes off, we have to worry about the possibility
23744 		 * that the sender isn't doing slow-start, or is out
23745 		 * of step with us for some other reason.  We fall
23746 		 * permanently back in the direction of
23747 		 * ACK-every-other-packet as suggested in RFC 1122.
23748 		 */
23749 		if (tcp->tcp_rack_abs_max > 2)
23750 			tcp->tcp_rack_abs_max--;
23751 		tcp->tcp_rack_cur_max = 2;
23752 	}
23753 	mp = tcp_ack_mp(tcp);
23754 
23755 	if (mp != NULL) {
23756 		BUMP_LOCAL(tcp->tcp_obsegs);
23757 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23758 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23759 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23760 	}
23761 }
23762 
23763 
23764 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23765 static mblk_t *
23766 tcp_ack_mp(tcp_t *tcp)
23767 {
23768 	uint32_t	seq_no;
23769 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23770 
23771 	/*
23772 	 * There are a few cases to be considered while setting the sequence no.
23773 	 * Essentially, we can come here while processing an unacceptable pkt
23774 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23775 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23776 	 * If we are here for a zero window probe, stick with suna. In all
23777 	 * other cases, we check if suna + swnd encompasses snxt and set
23778 	 * the sequence number to snxt, if so. If snxt falls outside the
23779 	 * window (the receiver probably shrunk its window), we will go with
23780 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23781 	 * receiver.
23782 	 */
23783 	if (tcp->tcp_zero_win_probe) {
23784 		seq_no = tcp->tcp_suna;
23785 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23786 		ASSERT(tcp->tcp_swnd == 0);
23787 		seq_no = tcp->tcp_snxt;
23788 	} else {
23789 		seq_no = SEQ_GT(tcp->tcp_snxt,
23790 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23791 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23792 	}
23793 
23794 	if (tcp->tcp_valid_bits) {
23795 		/*
23796 		 * For the complex case where we have to send some
23797 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23798 		 */
23799 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23800 		    NULL, B_FALSE));
23801 	} else {
23802 		/* Generate a simple ACK */
23803 		int	data_length;
23804 		uchar_t	*rptr;
23805 		tcph_t	*tcph;
23806 		mblk_t	*mp1;
23807 		int32_t	tcp_hdr_len;
23808 		int32_t	tcp_tcp_hdr_len;
23809 		int32_t	num_sack_blk = 0;
23810 		int32_t sack_opt_len;
23811 
23812 		/*
23813 		 * Allocate space for TCP + IP headers
23814 		 * and link-level header
23815 		 */
23816 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23817 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23818 			    tcp->tcp_num_sack_blk);
23819 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23820 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23821 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23822 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23823 		} else {
23824 			tcp_hdr_len = tcp->tcp_hdr_len;
23825 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23826 		}
23827 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23828 		if (!mp1)
23829 			return (NULL);
23830 
23831 		/* Update the latest receive window size in TCP header. */
23832 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23833 		    tcp->tcp_tcph->th_win);
23834 		/* copy in prototype TCP + IP header */
23835 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23836 		mp1->b_rptr = rptr;
23837 		mp1->b_wptr = rptr + tcp_hdr_len;
23838 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23839 
23840 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23841 
23842 		/* Set the TCP sequence number. */
23843 		U32_TO_ABE32(seq_no, tcph->th_seq);
23844 
23845 		/* Set up the TCP flag field. */
23846 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23847 		if (tcp->tcp_ecn_echo_on)
23848 			tcph->th_flags[0] |= TH_ECE;
23849 
23850 		tcp->tcp_rack = tcp->tcp_rnxt;
23851 		tcp->tcp_rack_cnt = 0;
23852 
23853 		/* fill in timestamp option if in use */
23854 		if (tcp->tcp_snd_ts_ok) {
23855 			uint32_t llbolt = (uint32_t)lbolt;
23856 
23857 			U32_TO_BE32(llbolt,
23858 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23859 			U32_TO_BE32(tcp->tcp_ts_recent,
23860 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23861 		}
23862 
23863 		/* Fill in SACK options */
23864 		if (num_sack_blk > 0) {
23865 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23866 			sack_blk_t *tmp;
23867 			int32_t	i;
23868 
23869 			wptr[0] = TCPOPT_NOP;
23870 			wptr[1] = TCPOPT_NOP;
23871 			wptr[2] = TCPOPT_SACK;
23872 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23873 			    sizeof (sack_blk_t);
23874 			wptr += TCPOPT_REAL_SACK_LEN;
23875 
23876 			tmp = tcp->tcp_sack_list;
23877 			for (i = 0; i < num_sack_blk; i++) {
23878 				U32_TO_BE32(tmp[i].begin, wptr);
23879 				wptr += sizeof (tcp_seq);
23880 				U32_TO_BE32(tmp[i].end, wptr);
23881 				wptr += sizeof (tcp_seq);
23882 			}
23883 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23884 			    << 4);
23885 		}
23886 
23887 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23888 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23889 		} else {
23890 			/* Check for ip6i_t header in sticky hdrs */
23891 			ip6_t *ip6 = (ip6_t *)(rptr +
23892 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23893 			    sizeof (ip6i_t) : 0));
23894 
23895 			ip6->ip6_plen = htons(tcp_hdr_len -
23896 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23897 		}
23898 
23899 		/*
23900 		 * Prime pump for checksum calculation in IP.  Include the
23901 		 * adjustment for a source route if any.
23902 		 */
23903 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23904 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23905 		U16_TO_ABE16(data_length, tcph->th_sum);
23906 
23907 		if (tcp->tcp_ip_forward_progress) {
23908 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23909 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23910 			tcp->tcp_ip_forward_progress = B_FALSE;
23911 		}
23912 		return (mp1);
23913 	}
23914 }
23915 
23916 /*
23917  * Hash list insertion routine for tcp_t structures. Each hash bucket
23918  * contains a list of tcp_t entries, and each entry is bound to a unique
23919  * port. If there are multiple tcp_t's that are bound to the same port, then
23920  * one of them will be linked into the hash bucket list, and the rest will
23921  * hang off of that one entry. For each port, entries bound to a specific IP
23922  * address will be inserted before those those bound to INADDR_ANY.
23923  */
23924 static void
23925 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23926 {
23927 	tcp_t	**tcpp;
23928 	tcp_t	*tcpnext;
23929 	tcp_t	*tcphash;
23930 
23931 	if (tcp->tcp_ptpbhn != NULL) {
23932 		ASSERT(!caller_holds_lock);
23933 		tcp_bind_hash_remove(tcp);
23934 	}
23935 	tcpp = &tbf->tf_tcp;
23936 	if (!caller_holds_lock) {
23937 		mutex_enter(&tbf->tf_lock);
23938 	} else {
23939 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23940 	}
23941 	tcphash = tcpp[0];
23942 	tcpnext = NULL;
23943 	if (tcphash != NULL) {
23944 		/* Look for an entry using the same port */
23945 		while ((tcphash = tcpp[0]) != NULL &&
23946 		    tcp->tcp_lport != tcphash->tcp_lport)
23947 			tcpp = &(tcphash->tcp_bind_hash);
23948 
23949 		/* The port was not found, just add to the end */
23950 		if (tcphash == NULL)
23951 			goto insert;
23952 
23953 		/*
23954 		 * OK, there already exists an entry bound to the
23955 		 * same port.
23956 		 *
23957 		 * If the new tcp bound to the INADDR_ANY address
23958 		 * and the first one in the list is not bound to
23959 		 * INADDR_ANY we skip all entries until we find the
23960 		 * first one bound to INADDR_ANY.
23961 		 * This makes sure that applications binding to a
23962 		 * specific address get preference over those binding to
23963 		 * INADDR_ANY.
23964 		 */
23965 		tcpnext = tcphash;
23966 		tcphash = NULL;
23967 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23968 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23969 			while ((tcpnext = tcpp[0]) != NULL &&
23970 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23971 				tcpp = &(tcpnext->tcp_bind_hash_port);
23972 
23973 			if (tcpnext) {
23974 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23975 				tcphash = tcpnext->tcp_bind_hash;
23976 				if (tcphash != NULL) {
23977 					tcphash->tcp_ptpbhn =
23978 					    &(tcp->tcp_bind_hash);
23979 					tcpnext->tcp_bind_hash = NULL;
23980 				}
23981 			}
23982 		} else {
23983 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23984 			tcphash = tcpnext->tcp_bind_hash;
23985 			if (tcphash != NULL) {
23986 				tcphash->tcp_ptpbhn =
23987 				    &(tcp->tcp_bind_hash);
23988 				tcpnext->tcp_bind_hash = NULL;
23989 			}
23990 		}
23991 	}
23992 insert:
23993 	tcp->tcp_bind_hash_port = tcpnext;
23994 	tcp->tcp_bind_hash = tcphash;
23995 	tcp->tcp_ptpbhn = tcpp;
23996 	tcpp[0] = tcp;
23997 	if (!caller_holds_lock)
23998 		mutex_exit(&tbf->tf_lock);
23999 }
24000 
24001 /*
24002  * Hash list removal routine for tcp_t structures.
24003  */
24004 static void
24005 tcp_bind_hash_remove(tcp_t *tcp)
24006 {
24007 	tcp_t	*tcpnext;
24008 	kmutex_t *lockp;
24009 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24010 
24011 	if (tcp->tcp_ptpbhn == NULL)
24012 		return;
24013 
24014 	/*
24015 	 * Extract the lock pointer in case there are concurrent
24016 	 * hash_remove's for this instance.
24017 	 */
24018 	ASSERT(tcp->tcp_lport != 0);
24019 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24020 
24021 	ASSERT(lockp != NULL);
24022 	mutex_enter(lockp);
24023 	if (tcp->tcp_ptpbhn) {
24024 		tcpnext = tcp->tcp_bind_hash_port;
24025 		if (tcpnext != NULL) {
24026 			tcp->tcp_bind_hash_port = NULL;
24027 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24028 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
24029 			if (tcpnext->tcp_bind_hash != NULL) {
24030 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
24031 				    &(tcpnext->tcp_bind_hash);
24032 				tcp->tcp_bind_hash = NULL;
24033 			}
24034 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
24035 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24036 			tcp->tcp_bind_hash = NULL;
24037 		}
24038 		*tcp->tcp_ptpbhn = tcpnext;
24039 		tcp->tcp_ptpbhn = NULL;
24040 	}
24041 	mutex_exit(lockp);
24042 }
24043 
24044 
24045 /*
24046  * Hash list lookup routine for tcp_t structures.
24047  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24048  */
24049 static tcp_t *
24050 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24051 {
24052 	tf_t	*tf;
24053 	tcp_t	*tcp;
24054 
24055 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24056 	mutex_enter(&tf->tf_lock);
24057 	for (tcp = tf->tf_tcp; tcp != NULL;
24058 	    tcp = tcp->tcp_acceptor_hash) {
24059 		if (tcp->tcp_acceptor_id == id) {
24060 			CONN_INC_REF(tcp->tcp_connp);
24061 			mutex_exit(&tf->tf_lock);
24062 			return (tcp);
24063 		}
24064 	}
24065 	mutex_exit(&tf->tf_lock);
24066 	return (NULL);
24067 }
24068 
24069 
24070 /*
24071  * Hash list insertion routine for tcp_t structures.
24072  */
24073 void
24074 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24075 {
24076 	tf_t	*tf;
24077 	tcp_t	**tcpp;
24078 	tcp_t	*tcpnext;
24079 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24080 
24081 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24082 
24083 	if (tcp->tcp_ptpahn != NULL)
24084 		tcp_acceptor_hash_remove(tcp);
24085 	tcpp = &tf->tf_tcp;
24086 	mutex_enter(&tf->tf_lock);
24087 	tcpnext = tcpp[0];
24088 	if (tcpnext)
24089 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24090 	tcp->tcp_acceptor_hash = tcpnext;
24091 	tcp->tcp_ptpahn = tcpp;
24092 	tcpp[0] = tcp;
24093 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24094 	mutex_exit(&tf->tf_lock);
24095 }
24096 
24097 /*
24098  * Hash list removal routine for tcp_t structures.
24099  */
24100 static void
24101 tcp_acceptor_hash_remove(tcp_t *tcp)
24102 {
24103 	tcp_t	*tcpnext;
24104 	kmutex_t *lockp;
24105 
24106 	/*
24107 	 * Extract the lock pointer in case there are concurrent
24108 	 * hash_remove's for this instance.
24109 	 */
24110 	lockp = tcp->tcp_acceptor_lockp;
24111 
24112 	if (tcp->tcp_ptpahn == NULL)
24113 		return;
24114 
24115 	ASSERT(lockp != NULL);
24116 	mutex_enter(lockp);
24117 	if (tcp->tcp_ptpahn) {
24118 		tcpnext = tcp->tcp_acceptor_hash;
24119 		if (tcpnext) {
24120 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24121 			tcp->tcp_acceptor_hash = NULL;
24122 		}
24123 		*tcp->tcp_ptpahn = tcpnext;
24124 		tcp->tcp_ptpahn = NULL;
24125 	}
24126 	mutex_exit(lockp);
24127 	tcp->tcp_acceptor_lockp = NULL;
24128 }
24129 
24130 /* Data for fast netmask macro used by tcp_hsp_lookup */
24131 
24132 static ipaddr_t netmasks[] = {
24133 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24134 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24135 };
24136 
24137 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24138 
24139 /*
24140  * XXX This routine should go away and instead we should use the metrics
24141  * associated with the routes to determine the default sndspace and rcvspace.
24142  */
24143 static tcp_hsp_t *
24144 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24145 {
24146 	tcp_hsp_t *hsp = NULL;
24147 
24148 	/* Quick check without acquiring the lock. */
24149 	if (tcps->tcps_hsp_hash == NULL)
24150 		return (NULL);
24151 
24152 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24153 
24154 	/* This routine finds the best-matching HSP for address addr. */
24155 
24156 	if (tcps->tcps_hsp_hash) {
24157 		int i;
24158 		ipaddr_t srchaddr;
24159 		tcp_hsp_t *hsp_net;
24160 
24161 		/* We do three passes: host, network, and subnet. */
24162 
24163 		srchaddr = addr;
24164 
24165 		for (i = 1; i <= 3; i++) {
24166 			/* Look for exact match on srchaddr */
24167 
24168 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24169 			while (hsp) {
24170 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24171 				    hsp->tcp_hsp_addr == srchaddr)
24172 					break;
24173 				hsp = hsp->tcp_hsp_next;
24174 			}
24175 			ASSERT(hsp == NULL ||
24176 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24177 
24178 			/*
24179 			 * If this is the first pass:
24180 			 *   If we found a match, great, return it.
24181 			 *   If not, search for the network on the second pass.
24182 			 */
24183 
24184 			if (i == 1)
24185 				if (hsp)
24186 					break;
24187 				else
24188 				{
24189 					srchaddr = addr & netmask(addr);
24190 					continue;
24191 				}
24192 
24193 			/*
24194 			 * If this is the second pass:
24195 			 *   If we found a match, but there's a subnet mask,
24196 			 *    save the match but try again using the subnet
24197 			 *    mask on the third pass.
24198 			 *   Otherwise, return whatever we found.
24199 			 */
24200 
24201 			if (i == 2) {
24202 				if (hsp && hsp->tcp_hsp_subnet) {
24203 					hsp_net = hsp;
24204 					srchaddr = addr & hsp->tcp_hsp_subnet;
24205 					continue;
24206 				} else {
24207 					break;
24208 				}
24209 			}
24210 
24211 			/*
24212 			 * This must be the third pass.  If we didn't find
24213 			 * anything, return the saved network HSP instead.
24214 			 */
24215 
24216 			if (!hsp)
24217 				hsp = hsp_net;
24218 		}
24219 	}
24220 
24221 	rw_exit(&tcps->tcps_hsp_lock);
24222 	return (hsp);
24223 }
24224 
24225 /*
24226  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24227  * match lookup.
24228  */
24229 static tcp_hsp_t *
24230 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24231 {
24232 	tcp_hsp_t *hsp = NULL;
24233 
24234 	/* Quick check without acquiring the lock. */
24235 	if (tcps->tcps_hsp_hash == NULL)
24236 		return (NULL);
24237 
24238 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24239 
24240 	/* This routine finds the best-matching HSP for address addr. */
24241 
24242 	if (tcps->tcps_hsp_hash) {
24243 		int i;
24244 		in6_addr_t v6srchaddr;
24245 		tcp_hsp_t *hsp_net;
24246 
24247 		/* We do three passes: host, network, and subnet. */
24248 
24249 		v6srchaddr = *v6addr;
24250 
24251 		for (i = 1; i <= 3; i++) {
24252 			/* Look for exact match on srchaddr */
24253 
24254 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24255 			    V4_PART_OF_V6(v6srchaddr))];
24256 			while (hsp) {
24257 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24258 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24259 				    &v6srchaddr))
24260 					break;
24261 				hsp = hsp->tcp_hsp_next;
24262 			}
24263 
24264 			/*
24265 			 * If this is the first pass:
24266 			 *   If we found a match, great, return it.
24267 			 *   If not, search for the network on the second pass.
24268 			 */
24269 
24270 			if (i == 1)
24271 				if (hsp)
24272 					break;
24273 				else {
24274 					/* Assume a 64 bit mask */
24275 					v6srchaddr.s6_addr32[0] =
24276 					    v6addr->s6_addr32[0];
24277 					v6srchaddr.s6_addr32[1] =
24278 					    v6addr->s6_addr32[1];
24279 					v6srchaddr.s6_addr32[2] = 0;
24280 					v6srchaddr.s6_addr32[3] = 0;
24281 					continue;
24282 				}
24283 
24284 			/*
24285 			 * If this is the second pass:
24286 			 *   If we found a match, but there's a subnet mask,
24287 			 *    save the match but try again using the subnet
24288 			 *    mask on the third pass.
24289 			 *   Otherwise, return whatever we found.
24290 			 */
24291 
24292 			if (i == 2) {
24293 				ASSERT(hsp == NULL ||
24294 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24295 				if (hsp &&
24296 				    !IN6_IS_ADDR_UNSPECIFIED(
24297 				    &hsp->tcp_hsp_subnet_v6)) {
24298 					hsp_net = hsp;
24299 					V6_MASK_COPY(*v6addr,
24300 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24301 					continue;
24302 				} else {
24303 					break;
24304 				}
24305 			}
24306 
24307 			/*
24308 			 * This must be the third pass.  If we didn't find
24309 			 * anything, return the saved network HSP instead.
24310 			 */
24311 
24312 			if (!hsp)
24313 				hsp = hsp_net;
24314 		}
24315 	}
24316 
24317 	rw_exit(&tcps->tcps_hsp_lock);
24318 	return (hsp);
24319 }
24320 
24321 /*
24322  * Type three generator adapted from the random() function in 4.4 BSD:
24323  */
24324 
24325 /*
24326  * Copyright (c) 1983, 1993
24327  *	The Regents of the University of California.  All rights reserved.
24328  *
24329  * Redistribution and use in source and binary forms, with or without
24330  * modification, are permitted provided that the following conditions
24331  * are met:
24332  * 1. Redistributions of source code must retain the above copyright
24333  *    notice, this list of conditions and the following disclaimer.
24334  * 2. Redistributions in binary form must reproduce the above copyright
24335  *    notice, this list of conditions and the following disclaimer in the
24336  *    documentation and/or other materials provided with the distribution.
24337  * 3. All advertising materials mentioning features or use of this software
24338  *    must display the following acknowledgement:
24339  *	This product includes software developed by the University of
24340  *	California, Berkeley and its contributors.
24341  * 4. Neither the name of the University nor the names of its contributors
24342  *    may be used to endorse or promote products derived from this software
24343  *    without specific prior written permission.
24344  *
24345  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24346  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24347  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24348  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24349  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24350  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24351  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24352  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24353  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24354  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24355  * SUCH DAMAGE.
24356  */
24357 
24358 /* Type 3 -- x**31 + x**3 + 1 */
24359 #define	DEG_3		31
24360 #define	SEP_3		3
24361 
24362 
24363 /* Protected by tcp_random_lock */
24364 static int tcp_randtbl[DEG_3 + 1];
24365 
24366 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24367 static int *tcp_random_rptr = &tcp_randtbl[1];
24368 
24369 static int *tcp_random_state = &tcp_randtbl[1];
24370 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24371 
24372 kmutex_t tcp_random_lock;
24373 
24374 void
24375 tcp_random_init(void)
24376 {
24377 	int i;
24378 	hrtime_t hrt;
24379 	time_t wallclock;
24380 	uint64_t result;
24381 
24382 	/*
24383 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24384 	 * a longlong, which may contain resolution down to nanoseconds.
24385 	 * The current time will either be a 32-bit or a 64-bit quantity.
24386 	 * XOR the two together in a 64-bit result variable.
24387 	 * Convert the result to a 32-bit value by multiplying the high-order
24388 	 * 32-bits by the low-order 32-bits.
24389 	 */
24390 
24391 	hrt = gethrtime();
24392 	(void) drv_getparm(TIME, &wallclock);
24393 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24394 	mutex_enter(&tcp_random_lock);
24395 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24396 	    (result & 0xffffffff);
24397 
24398 	for (i = 1; i < DEG_3; i++)
24399 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24400 		    + 12345;
24401 	tcp_random_fptr = &tcp_random_state[SEP_3];
24402 	tcp_random_rptr = &tcp_random_state[0];
24403 	mutex_exit(&tcp_random_lock);
24404 	for (i = 0; i < 10 * DEG_3; i++)
24405 		(void) tcp_random();
24406 }
24407 
24408 /*
24409  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24410  * This range is selected to be approximately centered on TCP_ISS / 2,
24411  * and easy to compute. We get this value by generating a 32-bit random
24412  * number, selecting out the high-order 17 bits, and then adding one so
24413  * that we never return zero.
24414  */
24415 int
24416 tcp_random(void)
24417 {
24418 	int i;
24419 
24420 	mutex_enter(&tcp_random_lock);
24421 	*tcp_random_fptr += *tcp_random_rptr;
24422 
24423 	/*
24424 	 * The high-order bits are more random than the low-order bits,
24425 	 * so we select out the high-order 17 bits and add one so that
24426 	 * we never return zero.
24427 	 */
24428 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24429 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24430 		tcp_random_fptr = tcp_random_state;
24431 		++tcp_random_rptr;
24432 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24433 		tcp_random_rptr = tcp_random_state;
24434 
24435 	mutex_exit(&tcp_random_lock);
24436 	return (i);
24437 }
24438 
24439 static int
24440 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24441     int *t_errorp, int *sys_errorp)
24442 {
24443 	int error;
24444 	int is_absreq_failure;
24445 	t_scalar_t *opt_lenp;
24446 	t_scalar_t opt_offset;
24447 	int prim_type;
24448 	struct T_conn_req *tcreqp;
24449 	struct T_conn_res *tcresp;
24450 	cred_t *cr;
24451 
24452 	/*
24453 	 * All Solaris components should pass a db_credp
24454 	 * for this TPI message, hence we ASSERT.
24455 	 * But in case there is some other M_PROTO that looks
24456 	 * like a TPI message sent by some other kernel
24457 	 * component, we check and return an error.
24458 	 */
24459 	cr = msg_getcred(mp, NULL);
24460 	ASSERT(cr != NULL);
24461 	if (cr == NULL)
24462 		return (-1);
24463 
24464 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24465 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24466 	    prim_type == T_CONN_RES);
24467 
24468 	switch (prim_type) {
24469 	case T_CONN_REQ:
24470 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24471 		opt_offset = tcreqp->OPT_offset;
24472 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24473 		break;
24474 	case O_T_CONN_RES:
24475 	case T_CONN_RES:
24476 		tcresp = (struct T_conn_res *)mp->b_rptr;
24477 		opt_offset = tcresp->OPT_offset;
24478 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24479 		break;
24480 	}
24481 
24482 	*t_errorp = 0;
24483 	*sys_errorp = 0;
24484 	*do_disconnectp = 0;
24485 
24486 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24487 	    opt_offset, cr, &tcp_opt_obj,
24488 	    NULL, &is_absreq_failure);
24489 
24490 	switch (error) {
24491 	case  0:		/* no error */
24492 		ASSERT(is_absreq_failure == 0);
24493 		return (0);
24494 	case ENOPROTOOPT:
24495 		*t_errorp = TBADOPT;
24496 		break;
24497 	case EACCES:
24498 		*t_errorp = TACCES;
24499 		break;
24500 	default:
24501 		*t_errorp = TSYSERR; *sys_errorp = error;
24502 		break;
24503 	}
24504 	if (is_absreq_failure != 0) {
24505 		/*
24506 		 * The connection request should get the local ack
24507 		 * T_OK_ACK and then a T_DISCON_IND.
24508 		 */
24509 		*do_disconnectp = 1;
24510 	}
24511 	return (-1);
24512 }
24513 
24514 /*
24515  * Split this function out so that if the secret changes, I'm okay.
24516  *
24517  * Initialize the tcp_iss_cookie and tcp_iss_key.
24518  */
24519 
24520 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24521 
24522 static void
24523 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24524 {
24525 	struct {
24526 		int32_t current_time;
24527 		uint32_t randnum;
24528 		uint16_t pad;
24529 		uint8_t ether[6];
24530 		uint8_t passwd[PASSWD_SIZE];
24531 	} tcp_iss_cookie;
24532 	time_t t;
24533 
24534 	/*
24535 	 * Start with the current absolute time.
24536 	 */
24537 	(void) drv_getparm(TIME, &t);
24538 	tcp_iss_cookie.current_time = t;
24539 
24540 	/*
24541 	 * XXX - Need a more random number per RFC 1750, not this crap.
24542 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24543 	 */
24544 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24545 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24546 
24547 	/*
24548 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24549 	 * as a good template.
24550 	 */
24551 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24552 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24553 
24554 	/*
24555 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24556 	 */
24557 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24558 
24559 	/*
24560 	 * See 4010593 if this section becomes a problem again,
24561 	 * but the local ethernet address is useful here.
24562 	 */
24563 	(void) localetheraddr(NULL,
24564 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24565 
24566 	/*
24567 	 * Hash 'em all together.  The MD5Final is called per-connection.
24568 	 */
24569 	mutex_enter(&tcps->tcps_iss_key_lock);
24570 	MD5Init(&tcps->tcps_iss_key);
24571 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24572 	    sizeof (tcp_iss_cookie));
24573 	mutex_exit(&tcps->tcps_iss_key_lock);
24574 }
24575 
24576 /*
24577  * Set the RFC 1948 pass phrase
24578  */
24579 /* ARGSUSED */
24580 static int
24581 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24582     cred_t *cr)
24583 {
24584 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24585 
24586 	/*
24587 	 * Basically, value contains a new pass phrase.  Pass it along!
24588 	 */
24589 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24590 	return (0);
24591 }
24592 
24593 /* ARGSUSED */
24594 static int
24595 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24596 {
24597 	bzero(buf, sizeof (tcp_sack_info_t));
24598 	return (0);
24599 }
24600 
24601 /* ARGSUSED */
24602 static int
24603 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24604 {
24605 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24606 	return (0);
24607 }
24608 
24609 /*
24610  * Make sure we wait until the default queue is setup, yet allow
24611  * tcp_g_q_create() to open a TCP stream.
24612  * We need to allow tcp_g_q_create() do do an open
24613  * of tcp, hence we compare curhread.
24614  * All others have to wait until the tcps_g_q has been
24615  * setup.
24616  */
24617 void
24618 tcp_g_q_setup(tcp_stack_t *tcps)
24619 {
24620 	mutex_enter(&tcps->tcps_g_q_lock);
24621 	if (tcps->tcps_g_q != NULL) {
24622 		mutex_exit(&tcps->tcps_g_q_lock);
24623 		return;
24624 	}
24625 	if (tcps->tcps_g_q_creator == NULL) {
24626 		/* This thread will set it up */
24627 		tcps->tcps_g_q_creator = curthread;
24628 		mutex_exit(&tcps->tcps_g_q_lock);
24629 		tcp_g_q_create(tcps);
24630 		mutex_enter(&tcps->tcps_g_q_lock);
24631 		ASSERT(tcps->tcps_g_q_creator == curthread);
24632 		tcps->tcps_g_q_creator = NULL;
24633 		cv_signal(&tcps->tcps_g_q_cv);
24634 		ASSERT(tcps->tcps_g_q != NULL);
24635 		mutex_exit(&tcps->tcps_g_q_lock);
24636 		return;
24637 	}
24638 	/* Everybody but the creator has to wait */
24639 	if (tcps->tcps_g_q_creator != curthread) {
24640 		while (tcps->tcps_g_q == NULL)
24641 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24642 	}
24643 	mutex_exit(&tcps->tcps_g_q_lock);
24644 }
24645 
24646 #define	IP	"ip"
24647 
24648 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24649 
24650 /*
24651  * Create a default tcp queue here instead of in strplumb
24652  */
24653 void
24654 tcp_g_q_create(tcp_stack_t *tcps)
24655 {
24656 	int error;
24657 	ldi_handle_t	lh = NULL;
24658 	ldi_ident_t	li = NULL;
24659 	int		rval;
24660 	cred_t		*cr;
24661 	major_t IP_MAJ;
24662 
24663 #ifdef NS_DEBUG
24664 	(void) printf("tcp_g_q_create()\n");
24665 #endif
24666 
24667 	IP_MAJ = ddi_name_to_major(IP);
24668 
24669 	ASSERT(tcps->tcps_g_q_creator == curthread);
24670 
24671 	error = ldi_ident_from_major(IP_MAJ, &li);
24672 	if (error) {
24673 #ifdef DEBUG
24674 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
24675 		    error);
24676 #endif
24677 		return;
24678 	}
24679 
24680 	cr = zone_get_kcred(netstackid_to_zoneid(
24681 	    tcps->tcps_netstack->netstack_stackid));
24682 	ASSERT(cr != NULL);
24683 	/*
24684 	 * We set the tcp default queue to IPv6 because IPv4 falls
24685 	 * back to IPv6 when it can't find a client, but
24686 	 * IPv6 does not fall back to IPv4.
24687 	 */
24688 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
24689 	if (error) {
24690 #ifdef DEBUG
24691 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
24692 		    error);
24693 #endif
24694 		goto out;
24695 	}
24696 
24697 	/*
24698 	 * This ioctl causes the tcp framework to cache a pointer to
24699 	 * this stream, so we don't want to close the stream after
24700 	 * this operation.
24701 	 * Use the kernel credentials that are for the zone we're in.
24702 	 */
24703 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
24704 	    (intptr_t)0, FKIOCTL, cr, &rval);
24705 	if (error) {
24706 #ifdef DEBUG
24707 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
24708 		    "error %d\n", error);
24709 #endif
24710 		goto out;
24711 	}
24712 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
24713 	lh = NULL;
24714 out:
24715 	/* Close layered handles */
24716 	if (li)
24717 		ldi_ident_release(li);
24718 	/* Keep cred around until _inactive needs it */
24719 	tcps->tcps_g_q_cr = cr;
24720 }
24721 
24722 /*
24723  * We keep tcp_g_q set until all other tcp_t's in the zone
24724  * has gone away, and then when tcp_g_q_inactive() is called
24725  * we clear it.
24726  */
24727 void
24728 tcp_g_q_destroy(tcp_stack_t *tcps)
24729 {
24730 #ifdef NS_DEBUG
24731 	(void) printf("tcp_g_q_destroy()for stack %d\n",
24732 	    tcps->tcps_netstack->netstack_stackid);
24733 #endif
24734 
24735 	if (tcps->tcps_g_q == NULL) {
24736 		return;	/* Nothing to cleanup */
24737 	}
24738 	/*
24739 	 * Drop reference corresponding to the default queue.
24740 	 * This reference was added from tcp_open when the default queue
24741 	 * was created, hence we compensate for this extra drop in
24742 	 * tcp_g_q_close. If the refcnt drops to zero here it means
24743 	 * the default queue was the last one to be open, in which
24744 	 * case, then tcp_g_q_inactive will be
24745 	 * called as a result of the refrele.
24746 	 */
24747 	TCPS_REFRELE(tcps);
24748 }
24749 
24750 /*
24751  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24752  * Run by tcp_q_q_inactive using a taskq.
24753  */
24754 static void
24755 tcp_g_q_close(void *arg)
24756 {
24757 	tcp_stack_t *tcps = arg;
24758 	int error;
24759 	ldi_handle_t	lh = NULL;
24760 	ldi_ident_t	li = NULL;
24761 	cred_t		*cr;
24762 	major_t IP_MAJ;
24763 
24764 	IP_MAJ = ddi_name_to_major(IP);
24765 
24766 #ifdef NS_DEBUG
24767 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
24768 	    tcps->tcps_netstack->netstack_stackid,
24769 	    tcps->tcps_netstack->netstack_refcnt);
24770 #endif
24771 	lh = tcps->tcps_g_q_lh;
24772 	if (lh == NULL)
24773 		return;	/* Nothing to cleanup */
24774 
24775 	ASSERT(tcps->tcps_refcnt == 1);
24776 	ASSERT(tcps->tcps_g_q != NULL);
24777 
24778 	error = ldi_ident_from_major(IP_MAJ, &li);
24779 	if (error) {
24780 #ifdef DEBUG
24781 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
24782 		    error);
24783 #endif
24784 		return;
24785 	}
24786 
24787 	cr = tcps->tcps_g_q_cr;
24788 	tcps->tcps_g_q_cr = NULL;
24789 	ASSERT(cr != NULL);
24790 
24791 	/*
24792 	 * Make sure we can break the recursion when tcp_close decrements
24793 	 * the reference count causing g_q_inactive to be called again.
24794 	 */
24795 	tcps->tcps_g_q_lh = NULL;
24796 
24797 	/* close the default queue */
24798 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24799 	/*
24800 	 * At this point in time tcps and the rest of netstack_t might
24801 	 * have been deleted.
24802 	 */
24803 	tcps = NULL;
24804 
24805 	/* Close layered handles */
24806 	ldi_ident_release(li);
24807 	crfree(cr);
24808 }
24809 
24810 /*
24811  * Called when last tcp_t drops reference count using TCPS_REFRELE.
24812  *
24813  * Have to ensure that the ldi routines are not used by an
24814  * interrupt thread by using a taskq.
24815  */
24816 void
24817 tcp_g_q_inactive(tcp_stack_t *tcps)
24818 {
24819 	if (tcps->tcps_g_q_lh == NULL)
24820 		return;	/* Nothing to cleanup */
24821 
24822 	ASSERT(tcps->tcps_refcnt == 0);
24823 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
24824 
24825 	if (servicing_interrupt()) {
24826 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
24827 		    (void *) tcps, TQ_SLEEP);
24828 	} else {
24829 		tcp_g_q_close(tcps);
24830 	}
24831 }
24832 
24833 /*
24834  * Called by IP when IP is loaded into the kernel
24835  */
24836 void
24837 tcp_ddi_g_init(void)
24838 {
24839 	tcp_timercache = kmem_cache_create("tcp_timercache",
24840 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24841 	    NULL, NULL, NULL, NULL, NULL, 0);
24842 
24843 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24844 	    sizeof (tcp_sack_info_t), 0,
24845 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24846 
24847 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24848 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24849 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24850 
24851 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24852 
24853 	/* Initialize the random number generator */
24854 	tcp_random_init();
24855 
24856 	/* A single callback independently of how many netstacks we have */
24857 	ip_squeue_init(tcp_squeue_add);
24858 
24859 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
24860 
24861 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
24862 	    TASKQ_PREPOPULATE);
24863 
24864 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
24865 
24866 	/*
24867 	 * We want to be informed each time a stack is created or
24868 	 * destroyed in the kernel, so we can maintain the
24869 	 * set of tcp_stack_t's.
24870 	 */
24871 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
24872 	    tcp_stack_fini);
24873 }
24874 
24875 
24876 #define	INET_NAME	"ip"
24877 
24878 /*
24879  * Initialize the TCP stack instance.
24880  */
24881 static void *
24882 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
24883 {
24884 	tcp_stack_t	*tcps;
24885 	tcpparam_t	*pa;
24886 	int		i;
24887 	int		error = 0;
24888 	major_t		major;
24889 
24890 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
24891 	tcps->tcps_netstack = ns;
24892 
24893 	/* Initialize locks */
24894 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
24895 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24896 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
24897 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24898 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24899 
24900 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
24901 	tcps->tcps_g_epriv_ports[0] = 2049;
24902 	tcps->tcps_g_epriv_ports[1] = 4045;
24903 	tcps->tcps_min_anonpriv_port = 512;
24904 
24905 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
24906 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
24907 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
24908 	    TCP_FANOUT_SIZE, KM_SLEEP);
24909 
24910 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
24911 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
24912 		    MUTEX_DEFAULT, NULL);
24913 	}
24914 
24915 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
24916 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
24917 		    MUTEX_DEFAULT, NULL);
24918 	}
24919 
24920 	/* TCP's IPsec code calls the packet dropper. */
24921 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
24922 
24923 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
24924 	tcps->tcps_params = pa;
24925 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
24926 
24927 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
24928 	    A_CNT(lcl_tcp_param_arr), tcps);
24929 
24930 	/*
24931 	 * Note: To really walk the device tree you need the devinfo
24932 	 * pointer to your device which is only available after probe/attach.
24933 	 * The following is safe only because it uses ddi_root_node()
24934 	 */
24935 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24936 	    tcp_opt_obj.odb_opt_arr_cnt);
24937 
24938 	/*
24939 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24940 	 * by the boot scripts.
24941 	 *
24942 	 * Use NULL name, as the name is caught by the new lockstats.
24943 	 *
24944 	 * Initialize with some random, non-guessable string, like the global
24945 	 * T_INFO_ACK.
24946 	 */
24947 
24948 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24949 	    sizeof (tcp_g_t_info_ack), tcps);
24950 
24951 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
24952 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
24953 
24954 	major = mod_name_to_major(INET_NAME);
24955 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
24956 	ASSERT(error == 0);
24957 	return (tcps);
24958 }
24959 
24960 /*
24961  * Called when the IP module is about to be unloaded.
24962  */
24963 void
24964 tcp_ddi_g_destroy(void)
24965 {
24966 	tcp_g_kstat_fini(tcp_g_kstat);
24967 	tcp_g_kstat = NULL;
24968 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
24969 
24970 	mutex_destroy(&tcp_random_lock);
24971 
24972 	kmem_cache_destroy(tcp_timercache);
24973 	kmem_cache_destroy(tcp_sack_info_cache);
24974 	kmem_cache_destroy(tcp_iphc_cache);
24975 
24976 	netstack_unregister(NS_TCP);
24977 	taskq_destroy(tcp_taskq);
24978 }
24979 
24980 /*
24981  * Shut down the TCP stack instance.
24982  */
24983 /* ARGSUSED */
24984 static void
24985 tcp_stack_shutdown(netstackid_t stackid, void *arg)
24986 {
24987 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24988 
24989 	tcp_g_q_destroy(tcps);
24990 }
24991 
24992 /*
24993  * Free the TCP stack instance.
24994  */
24995 static void
24996 tcp_stack_fini(netstackid_t stackid, void *arg)
24997 {
24998 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
24999 	int i;
25000 
25001 	nd_free(&tcps->tcps_g_nd);
25002 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25003 	tcps->tcps_params = NULL;
25004 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25005 	tcps->tcps_wroff_xtra_param = NULL;
25006 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25007 	tcps->tcps_mdt_head_param = NULL;
25008 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25009 	tcps->tcps_mdt_tail_param = NULL;
25010 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25011 	tcps->tcps_mdt_max_pbufs_param = NULL;
25012 
25013 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25014 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25015 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25016 	}
25017 
25018 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25019 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25020 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25021 	}
25022 
25023 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25024 	tcps->tcps_bind_fanout = NULL;
25025 
25026 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25027 	tcps->tcps_acceptor_fanout = NULL;
25028 
25029 	mutex_destroy(&tcps->tcps_iss_key_lock);
25030 	rw_destroy(&tcps->tcps_hsp_lock);
25031 	mutex_destroy(&tcps->tcps_g_q_lock);
25032 	cv_destroy(&tcps->tcps_g_q_cv);
25033 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25034 
25035 	ip_drop_unregister(&tcps->tcps_dropper);
25036 
25037 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25038 	tcps->tcps_kstat = NULL;
25039 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25040 
25041 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25042 	tcps->tcps_mibkp = NULL;
25043 
25044 	ldi_ident_release(tcps->tcps_ldi_ident);
25045 	kmem_free(tcps, sizeof (*tcps));
25046 }
25047 
25048 /*
25049  * Generate ISS, taking into account NDD changes may happen halfway through.
25050  * (If the iss is not zero, set it.)
25051  */
25052 
25053 static void
25054 tcp_iss_init(tcp_t *tcp)
25055 {
25056 	MD5_CTX context;
25057 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25058 	uint32_t answer[4];
25059 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25060 
25061 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25062 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25063 	switch (tcps->tcps_strong_iss) {
25064 	case 2:
25065 		mutex_enter(&tcps->tcps_iss_key_lock);
25066 		context = tcps->tcps_iss_key;
25067 		mutex_exit(&tcps->tcps_iss_key_lock);
25068 		arg.ports = tcp->tcp_ports;
25069 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25070 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25071 			    &arg.src);
25072 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25073 			    &arg.dst);
25074 		} else {
25075 			arg.src = tcp->tcp_ip6h->ip6_src;
25076 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25077 		}
25078 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25079 		MD5Final((uchar_t *)answer, &context);
25080 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25081 		/*
25082 		 * Now that we've hashed into a unique per-connection sequence
25083 		 * space, add a random increment per strong_iss == 1.  So I
25084 		 * guess we'll have to...
25085 		 */
25086 		/* FALLTHRU */
25087 	case 1:
25088 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25089 		break;
25090 	default:
25091 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25092 		break;
25093 	}
25094 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25095 	tcp->tcp_fss = tcp->tcp_iss - 1;
25096 	tcp->tcp_suna = tcp->tcp_iss;
25097 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25098 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25099 	tcp->tcp_csuna = tcp->tcp_snxt;
25100 }
25101 
25102 /*
25103  * Exported routine for extracting active tcp connection status.
25104  *
25105  * This is used by the Solaris Cluster Networking software to
25106  * gather a list of connections that need to be forwarded to
25107  * specific nodes in the cluster when configuration changes occur.
25108  *
25109  * The callback is invoked for each tcp_t structure from all netstacks,
25110  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
25111  * from the netstack with the specified stack_id. Returning
25112  * non-zero from the callback routine terminates the search.
25113  */
25114 int
25115 cl_tcp_walk_list(netstackid_t stack_id,
25116     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
25117 {
25118 	netstack_handle_t nh;
25119 	netstack_t *ns;
25120 	int ret = 0;
25121 
25122 	if (stack_id >= 0) {
25123 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
25124 			return (EINVAL);
25125 
25126 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25127 		    ns->netstack_tcp);
25128 		netstack_rele(ns);
25129 		return (ret);
25130 	}
25131 
25132 	netstack_next_init(&nh);
25133 	while ((ns = netstack_next(&nh)) != NULL) {
25134 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25135 		    ns->netstack_tcp);
25136 		netstack_rele(ns);
25137 	}
25138 	netstack_next_fini(&nh);
25139 	return (ret);
25140 }
25141 
25142 static int
25143 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25144     tcp_stack_t *tcps)
25145 {
25146 	tcp_t *tcp;
25147 	cl_tcp_info_t	cl_tcpi;
25148 	connf_t	*connfp;
25149 	conn_t	*connp;
25150 	int	i;
25151 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25152 
25153 	ASSERT(callback != NULL);
25154 
25155 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25156 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25157 		connp = NULL;
25158 
25159 		while ((connp =
25160 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25161 
25162 			tcp = connp->conn_tcp;
25163 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25164 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25165 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25166 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25167 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25168 			/*
25169 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25170 			 * addresses. They are copied implicitly below as
25171 			 * mapped addresses.
25172 			 */
25173 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25174 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25175 				cl_tcpi.cl_tcpi_faddr =
25176 				    tcp->tcp_ipha->ipha_dst;
25177 			} else {
25178 				cl_tcpi.cl_tcpi_faddr_v6 =
25179 				    tcp->tcp_ip6h->ip6_dst;
25180 			}
25181 
25182 			/*
25183 			 * If the callback returns non-zero
25184 			 * we terminate the traversal.
25185 			 */
25186 			if ((*callback)(&cl_tcpi, arg) != 0) {
25187 				CONN_DEC_REF(tcp->tcp_connp);
25188 				return (1);
25189 			}
25190 		}
25191 	}
25192 
25193 	return (0);
25194 }
25195 
25196 /*
25197  * Macros used for accessing the different types of sockaddr
25198  * structures inside a tcp_ioc_abort_conn_t.
25199  */
25200 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25201 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25202 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25203 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25204 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25205 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25206 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25207 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25208 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25209 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25210 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25211 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25212 
25213 /*
25214  * Return the correct error code to mimic the behavior
25215  * of a connection reset.
25216  */
25217 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25218 		switch ((state)) {		\
25219 		case TCPS_SYN_SENT:		\
25220 		case TCPS_SYN_RCVD:		\
25221 			(err) = ECONNREFUSED;	\
25222 			break;			\
25223 		case TCPS_ESTABLISHED:		\
25224 		case TCPS_FIN_WAIT_1:		\
25225 		case TCPS_FIN_WAIT_2:		\
25226 		case TCPS_CLOSE_WAIT:		\
25227 			(err) = ECONNRESET;	\
25228 			break;			\
25229 		case TCPS_CLOSING:		\
25230 		case TCPS_LAST_ACK:		\
25231 		case TCPS_TIME_WAIT:		\
25232 			(err) = 0;		\
25233 			break;			\
25234 		default:			\
25235 			(err) = ENXIO;		\
25236 		}				\
25237 	}
25238 
25239 /*
25240  * Check if a tcp structure matches the info in acp.
25241  */
25242 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25243 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25244 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25245 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25246 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25247 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25248 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25249 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25250 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25251 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25252 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25253 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25254 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25255 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25256 	&(tcp)->tcp_ip_src_v6)) &&				\
25257 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25258 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25259 	&(tcp)->tcp_remote_v6)) &&				\
25260 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25261 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25262 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25263 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25264 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25265 	(acp)->ac_end >= (tcp)->tcp_state))
25266 
25267 #define	TCP_AC_MATCH(acp, tcp)					\
25268 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25269 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25270 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25271 
25272 /*
25273  * Build a message containing a tcp_ioc_abort_conn_t structure
25274  * which is filled in with information from acp and tp.
25275  */
25276 static mblk_t *
25277 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25278 {
25279 	mblk_t *mp;
25280 	tcp_ioc_abort_conn_t *tacp;
25281 
25282 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25283 	if (mp == NULL)
25284 		return (NULL);
25285 
25286 	mp->b_datap->db_type = M_CTL;
25287 
25288 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25289 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25290 	    sizeof (uint32_t));
25291 
25292 	tacp->ac_start = acp->ac_start;
25293 	tacp->ac_end = acp->ac_end;
25294 	tacp->ac_zoneid = acp->ac_zoneid;
25295 
25296 	if (acp->ac_local.ss_family == AF_INET) {
25297 		tacp->ac_local.ss_family = AF_INET;
25298 		tacp->ac_remote.ss_family = AF_INET;
25299 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25300 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25301 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25302 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25303 	} else {
25304 		tacp->ac_local.ss_family = AF_INET6;
25305 		tacp->ac_remote.ss_family = AF_INET6;
25306 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25307 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25308 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25309 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25310 	}
25311 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25312 	return (mp);
25313 }
25314 
25315 /*
25316  * Print a tcp_ioc_abort_conn_t structure.
25317  */
25318 static void
25319 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25320 {
25321 	char lbuf[128];
25322 	char rbuf[128];
25323 	sa_family_t af;
25324 	in_port_t lport, rport;
25325 	ushort_t logflags;
25326 
25327 	af = acp->ac_local.ss_family;
25328 
25329 	if (af == AF_INET) {
25330 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25331 		    lbuf, 128);
25332 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25333 		    rbuf, 128);
25334 		lport = ntohs(TCP_AC_V4LPORT(acp));
25335 		rport = ntohs(TCP_AC_V4RPORT(acp));
25336 	} else {
25337 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25338 		    lbuf, 128);
25339 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25340 		    rbuf, 128);
25341 		lport = ntohs(TCP_AC_V6LPORT(acp));
25342 		rport = ntohs(TCP_AC_V6RPORT(acp));
25343 	}
25344 
25345 	logflags = SL_TRACE | SL_NOTE;
25346 	/*
25347 	 * Don't print this message to the console if the operation was done
25348 	 * to a non-global zone.
25349 	 */
25350 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25351 		logflags |= SL_CONSOLE;
25352 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25353 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25354 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25355 	    acp->ac_start, acp->ac_end);
25356 }
25357 
25358 /*
25359  * Called inside tcp_rput when a message built using
25360  * tcp_ioctl_abort_build_msg is put into a queue.
25361  * Note that when we get here there is no wildcard in acp any more.
25362  */
25363 static void
25364 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25365 {
25366 	tcp_ioc_abort_conn_t *acp;
25367 
25368 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25369 	if (tcp->tcp_state <= acp->ac_end) {
25370 		/*
25371 		 * If we get here, we are already on the correct
25372 		 * squeue. This ioctl follows the following path
25373 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25374 		 * ->tcp_ioctl_abort->squeue_enter (if on a
25375 		 * different squeue)
25376 		 */
25377 		int errcode;
25378 
25379 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25380 		(void) tcp_clean_death(tcp, errcode, 26);
25381 	}
25382 	freemsg(mp);
25383 }
25384 
25385 /*
25386  * Abort all matching connections on a hash chain.
25387  */
25388 static int
25389 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25390     boolean_t exact, tcp_stack_t *tcps)
25391 {
25392 	int nmatch, err = 0;
25393 	tcp_t *tcp;
25394 	MBLKP mp, last, listhead = NULL;
25395 	conn_t	*tconnp;
25396 	connf_t	*connfp;
25397 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25398 
25399 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25400 
25401 startover:
25402 	nmatch = 0;
25403 
25404 	mutex_enter(&connfp->connf_lock);
25405 	for (tconnp = connfp->connf_head; tconnp != NULL;
25406 	    tconnp = tconnp->conn_next) {
25407 		tcp = tconnp->conn_tcp;
25408 		if (TCP_AC_MATCH(acp, tcp)) {
25409 			CONN_INC_REF(tcp->tcp_connp);
25410 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25411 			if (mp == NULL) {
25412 				err = ENOMEM;
25413 				CONN_DEC_REF(tcp->tcp_connp);
25414 				break;
25415 			}
25416 			mp->b_prev = (mblk_t *)tcp;
25417 
25418 			if (listhead == NULL) {
25419 				listhead = mp;
25420 				last = mp;
25421 			} else {
25422 				last->b_next = mp;
25423 				last = mp;
25424 			}
25425 			nmatch++;
25426 			if (exact)
25427 				break;
25428 		}
25429 
25430 		/* Avoid holding lock for too long. */
25431 		if (nmatch >= 500)
25432 			break;
25433 	}
25434 	mutex_exit(&connfp->connf_lock);
25435 
25436 	/* Pass mp into the correct tcp */
25437 	while ((mp = listhead) != NULL) {
25438 		listhead = listhead->b_next;
25439 		tcp = (tcp_t *)mp->b_prev;
25440 		mp->b_next = mp->b_prev = NULL;
25441 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
25442 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
25443 	}
25444 
25445 	*count += nmatch;
25446 	if (nmatch >= 500 && err == 0)
25447 		goto startover;
25448 	return (err);
25449 }
25450 
25451 /*
25452  * Abort all connections that matches the attributes specified in acp.
25453  */
25454 static int
25455 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25456 {
25457 	sa_family_t af;
25458 	uint32_t  ports;
25459 	uint16_t *pports;
25460 	int err = 0, count = 0;
25461 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25462 	int index = -1;
25463 	ushort_t logflags;
25464 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25465 
25466 	af = acp->ac_local.ss_family;
25467 
25468 	if (af == AF_INET) {
25469 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25470 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25471 			pports = (uint16_t *)&ports;
25472 			pports[1] = TCP_AC_V4LPORT(acp);
25473 			pports[0] = TCP_AC_V4RPORT(acp);
25474 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25475 		}
25476 	} else {
25477 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25478 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25479 			pports = (uint16_t *)&ports;
25480 			pports[1] = TCP_AC_V6LPORT(acp);
25481 			pports[0] = TCP_AC_V6RPORT(acp);
25482 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25483 		}
25484 	}
25485 
25486 	/*
25487 	 * For cases where remote addr, local port, and remote port are non-
25488 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25489 	 */
25490 	if (index != -1) {
25491 		err = tcp_ioctl_abort_bucket(acp, index,
25492 		    &count, exact, tcps);
25493 	} else {
25494 		/*
25495 		 * loop through all entries for wildcard case
25496 		 */
25497 		for (index = 0;
25498 		    index < ipst->ips_ipcl_conn_fanout_size;
25499 		    index++) {
25500 			err = tcp_ioctl_abort_bucket(acp, index,
25501 			    &count, exact, tcps);
25502 			if (err != 0)
25503 				break;
25504 		}
25505 	}
25506 
25507 	logflags = SL_TRACE | SL_NOTE;
25508 	/*
25509 	 * Don't print this message to the console if the operation was done
25510 	 * to a non-global zone.
25511 	 */
25512 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25513 		logflags |= SL_CONSOLE;
25514 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25515 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25516 	if (err == 0 && count == 0)
25517 		err = ENOENT;
25518 	return (err);
25519 }
25520 
25521 /*
25522  * Process the TCP_IOC_ABORT_CONN ioctl request.
25523  */
25524 static void
25525 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25526 {
25527 	int	err;
25528 	IOCP    iocp;
25529 	MBLKP   mp1;
25530 	sa_family_t laf, raf;
25531 	tcp_ioc_abort_conn_t *acp;
25532 	zone_t		*zptr;
25533 	conn_t		*connp = Q_TO_CONN(q);
25534 	zoneid_t	zoneid = connp->conn_zoneid;
25535 	tcp_t		*tcp = connp->conn_tcp;
25536 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25537 
25538 	iocp = (IOCP)mp->b_rptr;
25539 
25540 	if ((mp1 = mp->b_cont) == NULL ||
25541 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25542 		err = EINVAL;
25543 		goto out;
25544 	}
25545 
25546 	/* check permissions */
25547 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25548 		err = EPERM;
25549 		goto out;
25550 	}
25551 
25552 	if (mp1->b_cont != NULL) {
25553 		freemsg(mp1->b_cont);
25554 		mp1->b_cont = NULL;
25555 	}
25556 
25557 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25558 	laf = acp->ac_local.ss_family;
25559 	raf = acp->ac_remote.ss_family;
25560 
25561 	/* check that a zone with the supplied zoneid exists */
25562 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25563 		zptr = zone_find_by_id(zoneid);
25564 		if (zptr != NULL) {
25565 			zone_rele(zptr);
25566 		} else {
25567 			err = EINVAL;
25568 			goto out;
25569 		}
25570 	}
25571 
25572 	/*
25573 	 * For exclusive stacks we set the zoneid to zero
25574 	 * to make TCP operate as if in the global zone.
25575 	 */
25576 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25577 		acp->ac_zoneid = GLOBAL_ZONEID;
25578 
25579 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25580 	    acp->ac_start > acp->ac_end || laf != raf ||
25581 	    (laf != AF_INET && laf != AF_INET6)) {
25582 		err = EINVAL;
25583 		goto out;
25584 	}
25585 
25586 	tcp_ioctl_abort_dump(acp);
25587 	err = tcp_ioctl_abort(acp, tcps);
25588 
25589 out:
25590 	if (mp1 != NULL) {
25591 		freemsg(mp1);
25592 		mp->b_cont = NULL;
25593 	}
25594 
25595 	if (err != 0)
25596 		miocnak(q, mp, 0, err);
25597 	else
25598 		miocack(q, mp, 0, 0);
25599 }
25600 
25601 /*
25602  * tcp_time_wait_processing() handles processing of incoming packets when
25603  * the tcp is in the TIME_WAIT state.
25604  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25605  * on the time wait list.
25606  */
25607 void
25608 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25609     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25610 {
25611 	int32_t		bytes_acked;
25612 	int32_t		gap;
25613 	int32_t		rgap;
25614 	tcp_opt_t	tcpopt;
25615 	uint_t		flags;
25616 	uint32_t	new_swnd = 0;
25617 	conn_t		*connp;
25618 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25619 
25620 	BUMP_LOCAL(tcp->tcp_ibsegs);
25621 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
25622 
25623 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25624 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25625 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25626 	if (tcp->tcp_snd_ts_ok) {
25627 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25628 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25629 			    tcp->tcp_rnxt, TH_ACK);
25630 			goto done;
25631 		}
25632 	}
25633 	gap = seg_seq - tcp->tcp_rnxt;
25634 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25635 	if (gap < 0) {
25636 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25637 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25638 		    (seg_len > -gap ? -gap : seg_len));
25639 		seg_len += gap;
25640 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25641 			if (flags & TH_RST) {
25642 				goto done;
25643 			}
25644 			if ((flags & TH_FIN) && seg_len == -1) {
25645 				/*
25646 				 * When TCP receives a duplicate FIN in
25647 				 * TIME_WAIT state, restart the 2 MSL timer.
25648 				 * See page 73 in RFC 793. Make sure this TCP
25649 				 * is already on the TIME_WAIT list. If not,
25650 				 * just restart the timer.
25651 				 */
25652 				if (TCP_IS_DETACHED(tcp)) {
25653 					if (tcp_time_wait_remove(tcp, NULL) ==
25654 					    B_TRUE) {
25655 						tcp_time_wait_append(tcp);
25656 						TCP_DBGSTAT(tcps,
25657 						    tcp_rput_time_wait);
25658 					}
25659 				} else {
25660 					ASSERT(tcp != NULL);
25661 					TCP_TIMER_RESTART(tcp,
25662 					    tcps->tcps_time_wait_interval);
25663 				}
25664 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25665 				    tcp->tcp_rnxt, TH_ACK);
25666 				goto done;
25667 			}
25668 			flags |=  TH_ACK_NEEDED;
25669 			seg_len = 0;
25670 			goto process_ack;
25671 		}
25672 
25673 		/* Fix seg_seq, and chew the gap off the front. */
25674 		seg_seq = tcp->tcp_rnxt;
25675 	}
25676 
25677 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25678 		/*
25679 		 * Make sure that when we accept the connection, pick
25680 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25681 		 * old connection.
25682 		 *
25683 		 * The next ISS generated is equal to tcp_iss_incr_extra
25684 		 * + ISS_INCR/2 + other components depending on the
25685 		 * value of tcp_strong_iss.  We pre-calculate the new
25686 		 * ISS here and compare with tcp_snxt to determine if
25687 		 * we need to make adjustment to tcp_iss_incr_extra.
25688 		 *
25689 		 * The above calculation is ugly and is a
25690 		 * waste of CPU cycles...
25691 		 */
25692 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
25693 		int32_t adj;
25694 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25695 
25696 		switch (tcps->tcps_strong_iss) {
25697 		case 2: {
25698 			/* Add time and MD5 components. */
25699 			uint32_t answer[4];
25700 			struct {
25701 				uint32_t ports;
25702 				in6_addr_t src;
25703 				in6_addr_t dst;
25704 			} arg;
25705 			MD5_CTX context;
25706 
25707 			mutex_enter(&tcps->tcps_iss_key_lock);
25708 			context = tcps->tcps_iss_key;
25709 			mutex_exit(&tcps->tcps_iss_key_lock);
25710 			arg.ports = tcp->tcp_ports;
25711 			/* We use MAPPED addresses in tcp_iss_init */
25712 			arg.src = tcp->tcp_ip_src_v6;
25713 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25714 				IN6_IPADDR_TO_V4MAPPED(
25715 				    tcp->tcp_ipha->ipha_dst,
25716 				    &arg.dst);
25717 			} else {
25718 				arg.dst =
25719 				    tcp->tcp_ip6h->ip6_dst;
25720 			}
25721 			MD5Update(&context, (uchar_t *)&arg,
25722 			    sizeof (arg));
25723 			MD5Final((uchar_t *)answer, &context);
25724 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
25725 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
25726 			break;
25727 		}
25728 		case 1:
25729 			/* Add time component and min random (i.e. 1). */
25730 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
25731 			break;
25732 		default:
25733 			/* Add only time component. */
25734 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25735 			break;
25736 		}
25737 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
25738 			/*
25739 			 * New ISS not guaranteed to be ISS_INCR/2
25740 			 * ahead of the current tcp_snxt, so add the
25741 			 * difference to tcp_iss_incr_extra.
25742 			 */
25743 			tcps->tcps_iss_incr_extra += adj;
25744 		}
25745 		/*
25746 		 * If tcp_clean_death() can not perform the task now,
25747 		 * drop the SYN packet and let the other side re-xmit.
25748 		 * Otherwise pass the SYN packet back in, since the
25749 		 * old tcp state has been cleaned up or freed.
25750 		 */
25751 		if (tcp_clean_death(tcp, 0, 27) == -1)
25752 			goto done;
25753 		/*
25754 		 * We will come back to tcp_rput_data
25755 		 * on the global queue. Packets destined
25756 		 * for the global queue will be checked
25757 		 * with global policy. But the policy for
25758 		 * this packet has already been checked as
25759 		 * this was destined for the detached
25760 		 * connection. We need to bypass policy
25761 		 * check this time by attaching a dummy
25762 		 * ipsec_in with ipsec_in_dont_check set.
25763 		 */
25764 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
25765 		if (connp != NULL) {
25766 			TCP_STAT(tcps, tcp_time_wait_syn_success);
25767 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
25768 			return;
25769 		}
25770 		goto done;
25771 	}
25772 
25773 	/*
25774 	 * rgap is the amount of stuff received out of window.  A negative
25775 	 * value is the amount out of window.
25776 	 */
25777 	if (rgap < 0) {
25778 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
25779 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
25780 		/* Fix seg_len and make sure there is something left. */
25781 		seg_len += rgap;
25782 		if (seg_len <= 0) {
25783 			if (flags & TH_RST) {
25784 				goto done;
25785 			}
25786 			flags |=  TH_ACK_NEEDED;
25787 			seg_len = 0;
25788 			goto process_ack;
25789 		}
25790 	}
25791 	/*
25792 	 * Check whether we can update tcp_ts_recent.  This test is
25793 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
25794 	 * Extensions for High Performance: An Update", Internet Draft.
25795 	 */
25796 	if (tcp->tcp_snd_ts_ok &&
25797 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
25798 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
25799 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
25800 		tcp->tcp_last_rcv_lbolt = lbolt64;
25801 	}
25802 
25803 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
25804 		/* Always ack out of order packets */
25805 		flags |= TH_ACK_NEEDED;
25806 		seg_len = 0;
25807 	} else if (seg_len > 0) {
25808 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
25809 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
25810 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
25811 	}
25812 	if (flags & TH_RST) {
25813 		(void) tcp_clean_death(tcp, 0, 28);
25814 		goto done;
25815 	}
25816 	if (flags & TH_SYN) {
25817 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25818 		    TH_RST|TH_ACK);
25819 		/*
25820 		 * Do not delete the TCP structure if it is in
25821 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25822 		 */
25823 		goto done;
25824 	}
25825 process_ack:
25826 	if (flags & TH_ACK) {
25827 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25828 		if (bytes_acked <= 0) {
25829 			if (bytes_acked == 0 && seg_len == 0 &&
25830 			    new_swnd == tcp->tcp_swnd)
25831 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
25832 		} else {
25833 			/* Acks something not sent */
25834 			flags |= TH_ACK_NEEDED;
25835 		}
25836 	}
25837 	if (flags & TH_ACK_NEEDED) {
25838 		/*
25839 		 * Time to send an ack for some reason.
25840 		 */
25841 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25842 		    tcp->tcp_rnxt, TH_ACK);
25843 	}
25844 done:
25845 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25846 		DB_CKSUMSTART(mp) = 0;
25847 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25848 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
25849 	}
25850 	freemsg(mp);
25851 }
25852 
25853 /*
25854  * TCP Timers Implementation.
25855  */
25856 timeout_id_t
25857 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25858 {
25859 	mblk_t *mp;
25860 	tcp_timer_t *tcpt;
25861 	tcp_t *tcp = connp->conn_tcp;
25862 
25863 	ASSERT(connp->conn_sqp != NULL);
25864 
25865 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
25866 
25867 	if (tcp->tcp_timercache == NULL) {
25868 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25869 	} else {
25870 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
25871 		mp = tcp->tcp_timercache;
25872 		tcp->tcp_timercache = mp->b_next;
25873 		mp->b_next = NULL;
25874 		ASSERT(mp->b_wptr == NULL);
25875 	}
25876 
25877 	CONN_INC_REF(connp);
25878 	tcpt = (tcp_timer_t *)mp->b_rptr;
25879 	tcpt->connp = connp;
25880 	tcpt->tcpt_proc = f;
25881 	/*
25882 	 * TCP timers are normal timeouts. Plus, they do not require more than
25883 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
25884 	 * rounding up the expiration to the next resolution boundary, we can
25885 	 * batch timers in the callout subsystem to make TCP timers more
25886 	 * efficient. The roundup also protects short timers from expiring too
25887 	 * early before they have a chance to be cancelled.
25888 	 */
25889 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
25890 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
25891 
25892 	return ((timeout_id_t)mp);
25893 }
25894 
25895 static void
25896 tcp_timer_callback(void *arg)
25897 {
25898 	mblk_t *mp = (mblk_t *)arg;
25899 	tcp_timer_t *tcpt;
25900 	conn_t	*connp;
25901 
25902 	tcpt = (tcp_timer_t *)mp->b_rptr;
25903 	connp = tcpt->connp;
25904 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
25905 	    SQ_FILL, SQTAG_TCP_TIMER);
25906 }
25907 
25908 static void
25909 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25910 {
25911 	tcp_timer_t *tcpt;
25912 	conn_t *connp = (conn_t *)arg;
25913 	tcp_t *tcp = connp->conn_tcp;
25914 
25915 	tcpt = (tcp_timer_t *)mp->b_rptr;
25916 	ASSERT(connp == tcpt->connp);
25917 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25918 
25919 	/*
25920 	 * If the TCP has reached the closed state, don't proceed any
25921 	 * further. This TCP logically does not exist on the system.
25922 	 * tcpt_proc could for example access queues, that have already
25923 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25924 	 */
25925 	if (tcp->tcp_state != TCPS_CLOSED) {
25926 		(*tcpt->tcpt_proc)(connp);
25927 	} else {
25928 		tcp->tcp_timer_tid = 0;
25929 	}
25930 	tcp_timer_free(connp->conn_tcp, mp);
25931 }
25932 
25933 /*
25934  * There is potential race with untimeout and the handler firing at the same
25935  * time. The mblock may be freed by the handler while we are trying to use
25936  * it. But since both should execute on the same squeue, this race should not
25937  * occur.
25938  */
25939 clock_t
25940 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25941 {
25942 	mblk_t	*mp = (mblk_t *)id;
25943 	tcp_timer_t *tcpt;
25944 	clock_t delta;
25945 
25946 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
25947 
25948 	if (mp == NULL)
25949 		return (-1);
25950 
25951 	tcpt = (tcp_timer_t *)mp->b_rptr;
25952 	ASSERT(tcpt->connp == connp);
25953 
25954 	delta = untimeout_default(tcpt->tcpt_tid, 0);
25955 
25956 	if (delta >= 0) {
25957 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
25958 		tcp_timer_free(connp->conn_tcp, mp);
25959 		CONN_DEC_REF(connp);
25960 	}
25961 
25962 	return (delta);
25963 }
25964 
25965 /*
25966  * Allocate space for the timer event. The allocation looks like mblk, but it is
25967  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25968  *
25969  * Dealing with failures: If we can't allocate from the timer cache we try
25970  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25971  * points to b_rptr.
25972  * If we can't allocate anything using allocb_tryhard(), we perform a last
25973  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25974  * save the actual allocation size in b_datap.
25975  */
25976 mblk_t *
25977 tcp_timermp_alloc(int kmflags)
25978 {
25979 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25980 	    kmflags & ~KM_PANIC);
25981 
25982 	if (mp != NULL) {
25983 		mp->b_next = mp->b_prev = NULL;
25984 		mp->b_rptr = (uchar_t *)(&mp[1]);
25985 		mp->b_wptr = NULL;
25986 		mp->b_datap = NULL;
25987 		mp->b_queue = NULL;
25988 		mp->b_cont = NULL;
25989 	} else if (kmflags & KM_PANIC) {
25990 		/*
25991 		 * Failed to allocate memory for the timer. Try allocating from
25992 		 * dblock caches.
25993 		 */
25994 		/* ipclassifier calls this from a constructor - hence no tcps */
25995 		TCP_G_STAT(tcp_timermp_allocfail);
25996 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25997 		if (mp == NULL) {
25998 			size_t size = 0;
25999 			/*
26000 			 * Memory is really low. Try tryhard allocation.
26001 			 *
26002 			 * ipclassifier calls this from a constructor -
26003 			 * hence no tcps
26004 			 */
26005 			TCP_G_STAT(tcp_timermp_allocdblfail);
26006 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26007 			    sizeof (tcp_timer_t), &size, kmflags);
26008 			mp->b_rptr = (uchar_t *)(&mp[1]);
26009 			mp->b_next = mp->b_prev = NULL;
26010 			mp->b_wptr = (uchar_t *)-1;
26011 			mp->b_datap = (dblk_t *)size;
26012 			mp->b_queue = NULL;
26013 			mp->b_cont = NULL;
26014 		}
26015 		ASSERT(mp->b_wptr != NULL);
26016 	}
26017 	/* ipclassifier calls this from a constructor - hence no tcps */
26018 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26019 
26020 	return (mp);
26021 }
26022 
26023 /*
26024  * Free per-tcp timer cache.
26025  * It can only contain entries from tcp_timercache.
26026  */
26027 void
26028 tcp_timermp_free(tcp_t *tcp)
26029 {
26030 	mblk_t *mp;
26031 
26032 	while ((mp = tcp->tcp_timercache) != NULL) {
26033 		ASSERT(mp->b_wptr == NULL);
26034 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26035 		kmem_cache_free(tcp_timercache, mp);
26036 	}
26037 }
26038 
26039 /*
26040  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26041  * events there already (currently at most two events are cached).
26042  * If the event is not allocated from the timer cache, free it right away.
26043  */
26044 static void
26045 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26046 {
26047 	mblk_t *mp1 = tcp->tcp_timercache;
26048 
26049 	if (mp->b_wptr != NULL) {
26050 		/*
26051 		 * This allocation is not from a timer cache, free it right
26052 		 * away.
26053 		 */
26054 		if (mp->b_wptr != (uchar_t *)-1)
26055 			freeb(mp);
26056 		else
26057 			kmem_free(mp, (size_t)mp->b_datap);
26058 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26059 		/* Cache this timer block for future allocations */
26060 		mp->b_rptr = (uchar_t *)(&mp[1]);
26061 		mp->b_next = mp1;
26062 		tcp->tcp_timercache = mp;
26063 	} else {
26064 		kmem_cache_free(tcp_timercache, mp);
26065 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
26066 	}
26067 }
26068 
26069 /*
26070  * End of TCP Timers implementation.
26071  */
26072 
26073 /*
26074  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26075  * on the specified backing STREAMS q. Note, the caller may make the
26076  * decision to call based on the tcp_t.tcp_flow_stopped value which
26077  * when check outside the q's lock is only an advisory check ...
26078  */
26079 void
26080 tcp_setqfull(tcp_t *tcp)
26081 {
26082 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26083 	conn_t	*connp = tcp->tcp_connp;
26084 
26085 	if (tcp->tcp_closed)
26086 		return;
26087 
26088 	if (IPCL_IS_NONSTR(connp)) {
26089 		(*connp->conn_upcalls->su_txq_full)
26090 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
26091 		tcp->tcp_flow_stopped = B_TRUE;
26092 	} else {
26093 		queue_t *q = tcp->tcp_wq;
26094 
26095 		if (!(q->q_flag & QFULL)) {
26096 			mutex_enter(QLOCK(q));
26097 			if (!(q->q_flag & QFULL)) {
26098 				/* still need to set QFULL */
26099 				q->q_flag |= QFULL;
26100 				tcp->tcp_flow_stopped = B_TRUE;
26101 				mutex_exit(QLOCK(q));
26102 				TCP_STAT(tcps, tcp_flwctl_on);
26103 			} else {
26104 				mutex_exit(QLOCK(q));
26105 			}
26106 		}
26107 	}
26108 }
26109 
26110 void
26111 tcp_clrqfull(tcp_t *tcp)
26112 {
26113 	conn_t  *connp = tcp->tcp_connp;
26114 
26115 	if (tcp->tcp_closed)
26116 		return;
26117 
26118 	if (IPCL_IS_NONSTR(connp)) {
26119 		(*connp->conn_upcalls->su_txq_full)
26120 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
26121 		tcp->tcp_flow_stopped = B_FALSE;
26122 	} else {
26123 		queue_t *q = tcp->tcp_wq;
26124 
26125 		if (q->q_flag & QFULL) {
26126 			mutex_enter(QLOCK(q));
26127 			if (q->q_flag & QFULL) {
26128 				q->q_flag &= ~QFULL;
26129 				tcp->tcp_flow_stopped = B_FALSE;
26130 				mutex_exit(QLOCK(q));
26131 				if (q->q_flag & QWANTW)
26132 					qbackenable(q, 0);
26133 			} else {
26134 				mutex_exit(QLOCK(q));
26135 			}
26136 		}
26137 	}
26138 }
26139 
26140 /*
26141  * kstats related to squeues i.e. not per IP instance
26142  */
26143 static void *
26144 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26145 {
26146 	kstat_t *ksp;
26147 
26148 	tcp_g_stat_t template = {
26149 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26150 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26151 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26152 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26153 	};
26154 
26155 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26156 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26157 	    KSTAT_FLAG_VIRTUAL);
26158 
26159 	if (ksp == NULL)
26160 		return (NULL);
26161 
26162 	bcopy(&template, tcp_g_statp, sizeof (template));
26163 	ksp->ks_data = (void *)tcp_g_statp;
26164 
26165 	kstat_install(ksp);
26166 	return (ksp);
26167 }
26168 
26169 static void
26170 tcp_g_kstat_fini(kstat_t *ksp)
26171 {
26172 	if (ksp != NULL) {
26173 		kstat_delete(ksp);
26174 	}
26175 }
26176 
26177 
26178 static void *
26179 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26180 {
26181 	kstat_t *ksp;
26182 
26183 	tcp_stat_t template = {
26184 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26185 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26186 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26187 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26188 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26189 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26190 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26191 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26192 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26193 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26194 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26195 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26196 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26197 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26198 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26199 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26200 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26201 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26202 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26203 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26204 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26205 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26206 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26207 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26208 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26209 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26210 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26211 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26212 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26213 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26214 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26215 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26216 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26217 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26218 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26219 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26220 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26221 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26222 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26223 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26224 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26225 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26226 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26227 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26228 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26229 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26230 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26231 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26232 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26233 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26234 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26235 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26236 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26237 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26238 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26239 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26240 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26241 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26242 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26243 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26244 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26245 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26246 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26247 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26248 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26249 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26250 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26251 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26252 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26253 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26254 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26255 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26256 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26257 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26258 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26259 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26260 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26261 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26262 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26263 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26264 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26265 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26266 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26267 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26268 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26269 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26270 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26271 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26272 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26273 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26274 	};
26275 
26276 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26277 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26278 	    KSTAT_FLAG_VIRTUAL, stackid);
26279 
26280 	if (ksp == NULL)
26281 		return (NULL);
26282 
26283 	bcopy(&template, tcps_statisticsp, sizeof (template));
26284 	ksp->ks_data = (void *)tcps_statisticsp;
26285 	ksp->ks_private = (void *)(uintptr_t)stackid;
26286 
26287 	kstat_install(ksp);
26288 	return (ksp);
26289 }
26290 
26291 static void
26292 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26293 {
26294 	if (ksp != NULL) {
26295 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26296 		kstat_delete_netstack(ksp, stackid);
26297 	}
26298 }
26299 
26300 /*
26301  * TCP Kstats implementation
26302  */
26303 static void *
26304 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26305 {
26306 	kstat_t	*ksp;
26307 
26308 	tcp_named_kstat_t template = {
26309 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26310 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26311 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26312 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26313 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26314 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26315 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26316 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26317 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26318 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26319 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26320 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26321 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26322 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26323 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26324 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26325 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26326 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26327 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26328 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26329 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26330 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26331 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26332 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26333 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26334 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26335 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26336 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26337 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26338 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26339 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26340 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26341 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26342 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26343 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26344 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26345 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26346 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26347 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26348 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26349 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26350 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26351 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26352 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26353 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26354 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26355 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26356 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26357 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26358 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26359 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26360 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26361 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26362 	};
26363 
26364 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26365 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26366 
26367 	if (ksp == NULL)
26368 		return (NULL);
26369 
26370 	template.rtoAlgorithm.value.ui32 = 4;
26371 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26372 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26373 	template.maxConn.value.i32 = -1;
26374 
26375 	bcopy(&template, ksp->ks_data, sizeof (template));
26376 	ksp->ks_update = tcp_kstat_update;
26377 	ksp->ks_private = (void *)(uintptr_t)stackid;
26378 
26379 	kstat_install(ksp);
26380 	return (ksp);
26381 }
26382 
26383 static void
26384 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26385 {
26386 	if (ksp != NULL) {
26387 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26388 		kstat_delete_netstack(ksp, stackid);
26389 	}
26390 }
26391 
26392 static int
26393 tcp_kstat_update(kstat_t *kp, int rw)
26394 {
26395 	tcp_named_kstat_t *tcpkp;
26396 	tcp_t		*tcp;
26397 	connf_t		*connfp;
26398 	conn_t		*connp;
26399 	int 		i;
26400 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26401 	netstack_t	*ns;
26402 	tcp_stack_t	*tcps;
26403 	ip_stack_t	*ipst;
26404 
26405 	if ((kp == NULL) || (kp->ks_data == NULL))
26406 		return (EIO);
26407 
26408 	if (rw == KSTAT_WRITE)
26409 		return (EACCES);
26410 
26411 	ns = netstack_find_by_stackid(stackid);
26412 	if (ns == NULL)
26413 		return (-1);
26414 	tcps = ns->netstack_tcp;
26415 	if (tcps == NULL) {
26416 		netstack_rele(ns);
26417 		return (-1);
26418 	}
26419 
26420 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26421 
26422 	tcpkp->currEstab.value.ui32 = 0;
26423 
26424 	ipst = ns->netstack_ip;
26425 
26426 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26427 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26428 		connp = NULL;
26429 		while ((connp =
26430 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26431 			tcp = connp->conn_tcp;
26432 			switch (tcp_snmp_state(tcp)) {
26433 			case MIB2_TCP_established:
26434 			case MIB2_TCP_closeWait:
26435 				tcpkp->currEstab.value.ui32++;
26436 				break;
26437 			}
26438 		}
26439 	}
26440 
26441 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26442 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26443 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26444 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26445 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26446 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26447 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26448 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26449 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26450 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26451 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26452 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26453 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26454 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26455 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26456 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26457 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26458 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26459 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26460 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26461 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26462 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26463 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26464 	tcpkp->inDataInorderSegs.value.ui32 =
26465 	    tcps->tcps_mib.tcpInDataInorderSegs;
26466 	tcpkp->inDataInorderBytes.value.ui32 =
26467 	    tcps->tcps_mib.tcpInDataInorderBytes;
26468 	tcpkp->inDataUnorderSegs.value.ui32 =
26469 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26470 	tcpkp->inDataUnorderBytes.value.ui32 =
26471 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26472 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26473 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26474 	tcpkp->inDataPartDupSegs.value.ui32 =
26475 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26476 	tcpkp->inDataPartDupBytes.value.ui32 =
26477 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26478 	tcpkp->inDataPastWinSegs.value.ui32 =
26479 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26480 	tcpkp->inDataPastWinBytes.value.ui32 =
26481 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26482 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26483 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26484 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26485 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26486 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26487 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26488 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26489 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26490 	tcpkp->timKeepaliveProbe.value.ui32 =
26491 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26492 	tcpkp->timKeepaliveDrop.value.ui32 =
26493 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26494 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26495 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26496 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26497 	tcpkp->outSackRetransSegs.value.ui32 =
26498 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26499 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26500 
26501 	netstack_rele(ns);
26502 	return (0);
26503 }
26504 
26505 void
26506 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26507 {
26508 	uint16_t	hdr_len;
26509 	ipha_t		*ipha;
26510 	uint8_t		*nexthdrp;
26511 	tcph_t		*tcph;
26512 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26513 
26514 	/* Already has an eager */
26515 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26516 		TCP_STAT(tcps, tcp_reinput_syn);
26517 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
26518 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
26519 		return;
26520 	}
26521 
26522 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26523 	case IPV4_VERSION:
26524 		ipha = (ipha_t *)mp->b_rptr;
26525 		hdr_len = IPH_HDR_LENGTH(ipha);
26526 		break;
26527 	case IPV6_VERSION:
26528 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26529 		    &hdr_len, &nexthdrp)) {
26530 			CONN_DEC_REF(connp);
26531 			freemsg(mp);
26532 			return;
26533 		}
26534 		break;
26535 	}
26536 
26537 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26538 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26539 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26540 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26541 	}
26542 
26543 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
26544 	    SQ_FILL, SQTAG_TCP_REINPUT);
26545 }
26546 
26547 static int
26548 tcp_squeue_switch(int val)
26549 {
26550 	int rval = SQ_FILL;
26551 
26552 	switch (val) {
26553 	case 1:
26554 		rval = SQ_NODRAIN;
26555 		break;
26556 	case 2:
26557 		rval = SQ_PROCESS;
26558 		break;
26559 	default:
26560 		break;
26561 	}
26562 	return (rval);
26563 }
26564 
26565 /*
26566  * This is called once for each squeue - globally for all stack
26567  * instances.
26568  */
26569 static void
26570 tcp_squeue_add(squeue_t *sqp)
26571 {
26572 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26573 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26574 
26575 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26576 	tcp_time_wait->tcp_time_wait_tid =
26577 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
26578 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
26579 	    CALLOUT_FLAG_ROUNDUP);
26580 	if (tcp_free_list_max_cnt == 0) {
26581 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26582 		    max_ncpus : boot_max_ncpus);
26583 
26584 		/*
26585 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26586 		 */
26587 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26588 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26589 	}
26590 	tcp_time_wait->tcp_free_list_cnt = 0;
26591 }
26592 
26593 static int
26594 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
26595 {
26596 	mblk_t	*ire_mp = NULL;
26597 	mblk_t	*syn_mp;
26598 	mblk_t	*mdti;
26599 	mblk_t	*lsoi;
26600 	int	retval;
26601 	tcph_t	*tcph;
26602 	uint32_t	mss;
26603 	queue_t	*q = tcp->tcp_rq;
26604 	conn_t	*connp = tcp->tcp_connp;
26605 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26606 
26607 	if (error == 0) {
26608 		/*
26609 		 * Adapt Multidata information, if any.  The
26610 		 * following tcp_mdt_update routine will free
26611 		 * the message.
26612 		 */
26613 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
26614 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
26615 			    b_rptr)->mdt_capab, B_TRUE);
26616 			freemsg(mdti);
26617 		}
26618 
26619 		/*
26620 		 * Check to update LSO information with tcp, and
26621 		 * tcp_lso_update routine will free the message.
26622 		 */
26623 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
26624 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
26625 			    b_rptr)->lso_capab);
26626 			freemsg(lsoi);
26627 		}
26628 
26629 		/* Get the IRE, if we had requested for it */
26630 		if (mp != NULL)
26631 			ire_mp = tcp_ire_mp(&mp);
26632 
26633 		if (tcp->tcp_hard_binding) {
26634 			tcp->tcp_hard_binding = B_FALSE;
26635 			tcp->tcp_hard_bound = B_TRUE;
26636 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
26637 			if (retval != 0) {
26638 				error = EADDRINUSE;
26639 				goto bind_failed;
26640 			}
26641 		} else {
26642 			if (ire_mp != NULL)
26643 				freeb(ire_mp);
26644 			goto after_syn_sent;
26645 		}
26646 
26647 		retval = tcp_adapt_ire(tcp, ire_mp);
26648 		if (ire_mp != NULL)
26649 			freeb(ire_mp);
26650 		if (retval == 0) {
26651 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
26652 			    ENETUNREACH : EADDRNOTAVAIL);
26653 			goto ipcl_rm;
26654 		}
26655 		/*
26656 		 * Don't let an endpoint connect to itself.
26657 		 * Also checked in tcp_connect() but that
26658 		 * check can't handle the case when the
26659 		 * local IP address is INADDR_ANY.
26660 		 */
26661 		if (tcp->tcp_ipversion == IPV4_VERSION) {
26662 			if ((tcp->tcp_ipha->ipha_dst ==
26663 			    tcp->tcp_ipha->ipha_src) &&
26664 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26665 			    tcp->tcp_tcph->th_fport))) {
26666 				error = EADDRNOTAVAIL;
26667 				goto ipcl_rm;
26668 			}
26669 		} else {
26670 			if (IN6_ARE_ADDR_EQUAL(
26671 			    &tcp->tcp_ip6h->ip6_dst,
26672 			    &tcp->tcp_ip6h->ip6_src) &&
26673 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
26674 			    tcp->tcp_tcph->th_fport))) {
26675 				error = EADDRNOTAVAIL;
26676 				goto ipcl_rm;
26677 			}
26678 		}
26679 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
26680 		/*
26681 		 * This should not be possible!  Just for
26682 		 * defensive coding...
26683 		 */
26684 		if (tcp->tcp_state != TCPS_SYN_SENT)
26685 			goto after_syn_sent;
26686 
26687 		if (is_system_labeled() &&
26688 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
26689 			error = EHOSTUNREACH;
26690 			goto ipcl_rm;
26691 		}
26692 
26693 		/*
26694 		 * tcp_adapt_ire() does not adjust
26695 		 * for TCP/IP header length.
26696 		 */
26697 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
26698 
26699 		/*
26700 		 * Just make sure our rwnd is at
26701 		 * least tcp_recv_hiwat_mss * MSS
26702 		 * large, and round up to the nearest
26703 		 * MSS.
26704 		 *
26705 		 * We do the round up here because
26706 		 * we need to get the interface
26707 		 * MTU first before we can do the
26708 		 * round up.
26709 		 */
26710 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
26711 		    tcps->tcps_recv_hiwat_minmss * mss);
26712 		if (!IPCL_IS_NONSTR(connp))
26713 			q->q_hiwat = tcp->tcp_rwnd;
26714 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
26715 		tcp_set_ws_value(tcp);
26716 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
26717 		    tcp->tcp_tcph->th_win);
26718 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
26719 			tcp->tcp_snd_ws_ok = B_TRUE;
26720 
26721 		/*
26722 		 * Set tcp_snd_ts_ok to true
26723 		 * so that tcp_xmit_mp will
26724 		 * include the timestamp
26725 		 * option in the SYN segment.
26726 		 */
26727 		if (tcps->tcps_tstamp_always ||
26728 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
26729 			tcp->tcp_snd_ts_ok = B_TRUE;
26730 		}
26731 
26732 		/*
26733 		 * tcp_snd_sack_ok can be set in
26734 		 * tcp_adapt_ire() if the sack metric
26735 		 * is set.  So check it here also.
26736 		 */
26737 		if (tcps->tcps_sack_permitted == 2 ||
26738 		    tcp->tcp_snd_sack_ok) {
26739 			if (tcp->tcp_sack_info == NULL) {
26740 				tcp->tcp_sack_info =
26741 				    kmem_cache_alloc(tcp_sack_info_cache,
26742 				    KM_SLEEP);
26743 			}
26744 			tcp->tcp_snd_sack_ok = B_TRUE;
26745 		}
26746 
26747 		/*
26748 		 * Should we use ECN?  Note that the current
26749 		 * default value (SunOS 5.9) of tcp_ecn_permitted
26750 		 * is 1.  The reason for doing this is that there
26751 		 * are equipments out there that will drop ECN
26752 		 * enabled IP packets.  Setting it to 1 avoids
26753 		 * compatibility problems.
26754 		 */
26755 		if (tcps->tcps_ecn_permitted == 2)
26756 			tcp->tcp_ecn_ok = B_TRUE;
26757 
26758 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
26759 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
26760 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
26761 		if (syn_mp) {
26762 			if (cr == NULL) {
26763 				cr = tcp->tcp_cred;
26764 				pid = tcp->tcp_cpid;
26765 			}
26766 			mblk_setcred(syn_mp, cr, pid);
26767 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
26768 		}
26769 	after_syn_sent:
26770 		if (mp != NULL) {
26771 			ASSERT(mp->b_cont == NULL);
26772 			freeb(mp);
26773 		}
26774 		return (error);
26775 	} else {
26776 		/* error */
26777 		if (tcp->tcp_debug) {
26778 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
26779 			    "tcp_post_ip_bind: error == %d", error);
26780 		}
26781 		if (mp != NULL) {
26782 			freeb(mp);
26783 		}
26784 	}
26785 
26786 ipcl_rm:
26787 	/*
26788 	 * Need to unbind with classifier since we were just
26789 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
26790 	 */
26791 	tcp->tcp_hard_bound = B_FALSE;
26792 	tcp->tcp_hard_binding = B_FALSE;
26793 
26794 	ipcl_hash_remove(connp);
26795 
26796 bind_failed:
26797 	tcp->tcp_state = TCPS_IDLE;
26798 	if (tcp->tcp_ipversion == IPV4_VERSION)
26799 		tcp->tcp_ipha->ipha_src = 0;
26800 	else
26801 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
26802 	/*
26803 	 * Copy of the src addr. in tcp_t is needed since
26804 	 * the lookup funcs. can only look at tcp_t
26805 	 */
26806 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
26807 
26808 	tcph = tcp->tcp_tcph;
26809 	tcph->th_lport[0] = 0;
26810 	tcph->th_lport[1] = 0;
26811 	tcp_bind_hash_remove(tcp);
26812 	bzero(&connp->u_port, sizeof (connp->u_port));
26813 	/* blow away saved option results if any */
26814 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26815 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26816 
26817 	conn_delete_ire(tcp->tcp_connp, NULL);
26818 
26819 	return (error);
26820 }
26821 
26822 static int
26823 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
26824     boolean_t bind_to_req_port_only, cred_t *cr)
26825 {
26826 	in_port_t	mlp_port;
26827 	mlp_type_t 	addrtype, mlptype;
26828 	boolean_t	user_specified;
26829 	in_port_t	allocated_port;
26830 	in_port_t	requested_port = *requested_port_ptr;
26831 	conn_t		*connp;
26832 	zone_t		*zone;
26833 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26834 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
26835 
26836 	/*
26837 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
26838 	 */
26839 	if (cr == NULL)
26840 		cr = tcp->tcp_cred;
26841 	/*
26842 	 * Get a valid port (within the anonymous range and should not
26843 	 * be a privileged one) to use if the user has not given a port.
26844 	 * If multiple threads are here, they may all start with
26845 	 * with the same initial port. But, it should be fine as long as
26846 	 * tcp_bindi will ensure that no two threads will be assigned
26847 	 * the same port.
26848 	 *
26849 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
26850 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
26851 	 * unless TCP_ANONPRIVBIND option is set.
26852 	 */
26853 	mlptype = mlptSingle;
26854 	mlp_port = requested_port;
26855 	if (requested_port == 0) {
26856 		requested_port = tcp->tcp_anon_priv_bind ?
26857 		    tcp_get_next_priv_port(tcp) :
26858 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
26859 		    tcp, B_TRUE);
26860 		if (requested_port == 0) {
26861 			return (-TNOADDR);
26862 		}
26863 		user_specified = B_FALSE;
26864 
26865 		/*
26866 		 * If the user went through one of the RPC interfaces to create
26867 		 * this socket and RPC is MLP in this zone, then give him an
26868 		 * anonymous MLP.
26869 		 */
26870 		connp = tcp->tcp_connp;
26871 		if (connp->conn_anon_mlp && is_system_labeled()) {
26872 			zone = crgetzone(cr);
26873 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26874 			    IPV6_VERSION, &v6addr,
26875 			    tcps->tcps_netstack->netstack_ip);
26876 			if (addrtype == mlptSingle) {
26877 				return (-TNOADDR);
26878 			}
26879 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26880 			    PMAPPORT, addrtype);
26881 			mlp_port = PMAPPORT;
26882 		}
26883 	} else {
26884 		int i;
26885 		boolean_t priv = B_FALSE;
26886 
26887 		/*
26888 		 * If the requested_port is in the well-known privileged range,
26889 		 * verify that the stream was opened by a privileged user.
26890 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
26891 		 * but instead the code relies on:
26892 		 * - the fact that the address of the array and its size never
26893 		 *   changes
26894 		 * - the atomic assignment of the elements of the array
26895 		 */
26896 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
26897 			priv = B_TRUE;
26898 		} else {
26899 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
26900 				if (requested_port ==
26901 				    tcps->tcps_g_epriv_ports[i]) {
26902 					priv = B_TRUE;
26903 					break;
26904 				}
26905 			}
26906 		}
26907 		if (priv) {
26908 			if (secpolicy_net_privaddr(cr, requested_port,
26909 			    IPPROTO_TCP) != 0) {
26910 				if (tcp->tcp_debug) {
26911 					(void) strlog(TCP_MOD_ID, 0, 1,
26912 					    SL_ERROR|SL_TRACE,
26913 					    "tcp_bind: no priv for port %d",
26914 					    requested_port);
26915 				}
26916 				return (-TACCES);
26917 			}
26918 		}
26919 		user_specified = B_TRUE;
26920 
26921 		connp = tcp->tcp_connp;
26922 		if (is_system_labeled()) {
26923 			zone = crgetzone(cr);
26924 			addrtype = tsol_mlp_addr_type(zone->zone_id,
26925 			    IPV6_VERSION, &v6addr,
26926 			    tcps->tcps_netstack->netstack_ip);
26927 			if (addrtype == mlptSingle) {
26928 				return (-TNOADDR);
26929 			}
26930 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
26931 			    requested_port, addrtype);
26932 		}
26933 	}
26934 
26935 	if (mlptype != mlptSingle) {
26936 		if (secpolicy_net_bindmlp(cr) != 0) {
26937 			if (tcp->tcp_debug) {
26938 				(void) strlog(TCP_MOD_ID, 0, 1,
26939 				    SL_ERROR|SL_TRACE,
26940 				    "tcp_bind: no priv for multilevel port %d",
26941 				    requested_port);
26942 			}
26943 			return (-TACCES);
26944 		}
26945 
26946 		/*
26947 		 * If we're specifically binding a shared IP address and the
26948 		 * port is MLP on shared addresses, then check to see if this
26949 		 * zone actually owns the MLP.  Reject if not.
26950 		 */
26951 		if (mlptype == mlptShared && addrtype == mlptShared) {
26952 			/*
26953 			 * No need to handle exclusive-stack zones since
26954 			 * ALL_ZONES only applies to the shared stack.
26955 			 */
26956 			zoneid_t mlpzone;
26957 
26958 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
26959 			    htons(mlp_port));
26960 			if (connp->conn_zoneid != mlpzone) {
26961 				if (tcp->tcp_debug) {
26962 					(void) strlog(TCP_MOD_ID, 0, 1,
26963 					    SL_ERROR|SL_TRACE,
26964 					    "tcp_bind: attempt to bind port "
26965 					    "%d on shared addr in zone %d "
26966 					    "(should be %d)",
26967 					    mlp_port, connp->conn_zoneid,
26968 					    mlpzone);
26969 				}
26970 				return (-TACCES);
26971 			}
26972 		}
26973 
26974 		if (!user_specified) {
26975 			int err;
26976 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
26977 			    requested_port, B_TRUE);
26978 			if (err != 0) {
26979 				if (tcp->tcp_debug) {
26980 					(void) strlog(TCP_MOD_ID, 0, 1,
26981 					    SL_ERROR|SL_TRACE,
26982 					    "tcp_bind: cannot establish anon "
26983 					    "MLP for port %d",
26984 					    requested_port);
26985 				}
26986 				return (err);
26987 			}
26988 			connp->conn_anon_port = B_TRUE;
26989 		}
26990 		connp->conn_mlp_type = mlptype;
26991 	}
26992 
26993 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
26994 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
26995 
26996 	if (allocated_port == 0) {
26997 		connp->conn_mlp_type = mlptSingle;
26998 		if (connp->conn_anon_port) {
26999 			connp->conn_anon_port = B_FALSE;
27000 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
27001 			    requested_port, B_FALSE);
27002 		}
27003 		if (bind_to_req_port_only) {
27004 			if (tcp->tcp_debug) {
27005 				(void) strlog(TCP_MOD_ID, 0, 1,
27006 				    SL_ERROR|SL_TRACE,
27007 				    "tcp_bind: requested addr busy");
27008 			}
27009 			return (-TADDRBUSY);
27010 		} else {
27011 			/* If we are out of ports, fail the bind. */
27012 			if (tcp->tcp_debug) {
27013 				(void) strlog(TCP_MOD_ID, 0, 1,
27014 				    SL_ERROR|SL_TRACE,
27015 				    "tcp_bind: out of ports?");
27016 			}
27017 			return (-TNOADDR);
27018 		}
27019 	}
27020 
27021 	/* Pass the allocated port back */
27022 	*requested_port_ptr = allocated_port;
27023 	return (0);
27024 }
27025 
27026 static int
27027 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
27028     boolean_t bind_to_req_port_only)
27029 {
27030 	tcp_t	*tcp = connp->conn_tcp;
27031 	sin_t	*sin;
27032 	sin6_t  *sin6;
27033 	sin6_t	sin6addr;
27034 	in_port_t requested_port;
27035 	ipaddr_t	v4addr;
27036 	in6_addr_t	v6addr;
27037 	uint_t	origipversion;
27038 	int	error = 0;
27039 
27040 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
27041 
27042 	if (tcp->tcp_state == TCPS_BOUND) {
27043 		return (0);
27044 	} else if (tcp->tcp_state > TCPS_BOUND) {
27045 		if (tcp->tcp_debug) {
27046 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27047 			    "tcp_bind: bad state, %d", tcp->tcp_state);
27048 		}
27049 		return (-TOUTSTATE);
27050 	}
27051 	origipversion = tcp->tcp_ipversion;
27052 
27053 	if (sa != NULL && !OK_32PTR((char *)sa)) {
27054 		if (tcp->tcp_debug) {
27055 			(void) strlog(TCP_MOD_ID, 0, 1,
27056 			    SL_ERROR|SL_TRACE,
27057 			    "tcp_bind: bad address parameter, "
27058 			    "address %p, len %d",
27059 			    (void *)sa, len);
27060 		}
27061 		return (-TPROTO);
27062 	}
27063 
27064 	switch (len) {
27065 	case 0:		/* request for a generic port */
27066 		if (tcp->tcp_family == AF_INET) {
27067 			sin = (sin_t *)&sin6addr;
27068 			*sin = sin_null;
27069 			sin->sin_family = AF_INET;
27070 			tcp->tcp_ipversion = IPV4_VERSION;
27071 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
27072 		} else {
27073 			ASSERT(tcp->tcp_family == AF_INET6);
27074 			sin6 = (sin6_t *)&sin6addr;
27075 			*sin6 = sin6_null;
27076 			sin6->sin6_family = AF_INET6;
27077 			tcp->tcp_ipversion = IPV6_VERSION;
27078 			V6_SET_ZERO(v6addr);
27079 		}
27080 		requested_port = 0;
27081 		break;
27082 
27083 	case sizeof (sin_t):	/* Complete IPv4 address */
27084 		sin = (sin_t *)sa;
27085 		/*
27086 		 * With sockets sockfs will accept bogus sin_family in
27087 		 * bind() and replace it with the family used in the socket
27088 		 * call.
27089 		 */
27090 		if (sin->sin_family != AF_INET ||
27091 		    tcp->tcp_family != AF_INET) {
27092 			return (EAFNOSUPPORT);
27093 		}
27094 		requested_port = ntohs(sin->sin_port);
27095 		tcp->tcp_ipversion = IPV4_VERSION;
27096 		v4addr = sin->sin_addr.s_addr;
27097 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
27098 		break;
27099 
27100 	case sizeof (sin6_t): /* Complete IPv6 address */
27101 		sin6 = (sin6_t *)sa;
27102 		if (sin6->sin6_family != AF_INET6 ||
27103 		    tcp->tcp_family != AF_INET6) {
27104 			return (EAFNOSUPPORT);
27105 		}
27106 		requested_port = ntohs(sin6->sin6_port);
27107 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
27108 		    IPV4_VERSION : IPV6_VERSION;
27109 		v6addr = sin6->sin6_addr;
27110 		break;
27111 
27112 	default:
27113 		if (tcp->tcp_debug) {
27114 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27115 			    "tcp_bind: bad address length, %d", len);
27116 		}
27117 		return (EAFNOSUPPORT);
27118 		/* return (-TBADADDR); */
27119 	}
27120 
27121 	tcp->tcp_bound_source_v6 = v6addr;
27122 
27123 	/* Check for change in ipversion */
27124 	if (origipversion != tcp->tcp_ipversion) {
27125 		ASSERT(tcp->tcp_family == AF_INET6);
27126 		error = tcp->tcp_ipversion == IPV6_VERSION ?
27127 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
27128 		if (error) {
27129 			return (ENOMEM);
27130 		}
27131 	}
27132 
27133 	/*
27134 	 * Initialize family specific fields. Copy of the src addr.
27135 	 * in tcp_t is needed for the lookup funcs.
27136 	 */
27137 	if (tcp->tcp_ipversion == IPV6_VERSION) {
27138 		tcp->tcp_ip6h->ip6_src = v6addr;
27139 	} else {
27140 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
27141 	}
27142 	tcp->tcp_ip_src_v6 = v6addr;
27143 
27144 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
27145 
27146 	error = tcp_bind_select_lport(tcp, &requested_port,
27147 	    bind_to_req_port_only, cr);
27148 
27149 	return (error);
27150 }
27151 
27152 /*
27153  * Return unix error is tli error is TSYSERR, otherwise return a negative
27154  * tli error.
27155  */
27156 int
27157 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
27158     boolean_t bind_to_req_port_only)
27159 {
27160 	int error;
27161 	tcp_t *tcp = connp->conn_tcp;
27162 
27163 	if (tcp->tcp_state >= TCPS_BOUND) {
27164 		if (tcp->tcp_debug) {
27165 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
27166 			    "tcp_bind: bad state, %d", tcp->tcp_state);
27167 		}
27168 		return (-TOUTSTATE);
27169 	}
27170 
27171 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
27172 	if (error != 0)
27173 		return (error);
27174 
27175 	ASSERT(tcp->tcp_state == TCPS_BOUND);
27176 
27177 	tcp->tcp_conn_req_max = 0;
27178 
27179 	/*
27180 	 * We need to make sure that the conn_recv is set to a non-null
27181 	 * value before we insert the conn into the classifier table.
27182 	 * This is to avoid a race with an incoming packet which does an
27183 	 * ipcl_classify().
27184 	 */
27185 	connp->conn_recv = tcp_conn_request;
27186 
27187 	if (tcp->tcp_family == AF_INET6) {
27188 		ASSERT(tcp->tcp_connp->conn_af_isv6);
27189 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
27190 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
27191 	} else {
27192 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
27193 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
27194 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
27195 	}
27196 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
27197 }
27198 
27199 int
27200 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
27201     socklen_t len, cred_t *cr)
27202 {
27203 	int 		error;
27204 	conn_t		*connp = (conn_t *)proto_handle;
27205 	squeue_t	*sqp = connp->conn_sqp;
27206 
27207 	/* All Solaris components should pass a cred for this operation. */
27208 	ASSERT(cr != NULL);
27209 
27210 	ASSERT(sqp != NULL);
27211 	ASSERT(connp->conn_upper_handle != NULL);
27212 
27213 	error = squeue_synch_enter(sqp, connp, 0);
27214 	if (error != 0) {
27215 		/* failed to enter */
27216 		return (ENOSR);
27217 	}
27218 
27219 	/* binding to a NULL address really means unbind */
27220 	if (sa == NULL) {
27221 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
27222 			error = tcp_do_unbind(connp);
27223 		else
27224 			error = EINVAL;
27225 	} else {
27226 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
27227 	}
27228 
27229 	squeue_synch_exit(sqp, connp);
27230 
27231 	if (error < 0) {
27232 		if (error == -TOUTSTATE)
27233 			error = EINVAL;
27234 		else
27235 			error = proto_tlitosyserr(-error);
27236 	}
27237 
27238 	return (error);
27239 }
27240 
27241 /*
27242  * If the return value from this function is positive, it's a UNIX error.
27243  * Otherwise, if it's negative, then the absolute value is a TLI error.
27244  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
27245  */
27246 int
27247 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
27248     cred_t *cr, pid_t pid)
27249 {
27250 	tcp_t		*tcp = connp->conn_tcp;
27251 	sin_t		*sin = (sin_t *)sa;
27252 	sin6_t		*sin6 = (sin6_t *)sa;
27253 	ipaddr_t	*dstaddrp;
27254 	in_port_t	dstport;
27255 	uint_t		srcid;
27256 	int		error = 0;
27257 
27258 	switch (len) {
27259 	default:
27260 		/*
27261 		 * Should never happen
27262 		 */
27263 		return (EINVAL);
27264 
27265 	case sizeof (sin_t):
27266 		sin = (sin_t *)sa;
27267 		if (sin->sin_port == 0) {
27268 			return (-TBADADDR);
27269 		}
27270 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
27271 			return (EAFNOSUPPORT);
27272 		}
27273 		break;
27274 
27275 	case sizeof (sin6_t):
27276 		sin6 = (sin6_t *)sa;
27277 		if (sin6->sin6_port == 0) {
27278 			return (-TBADADDR);
27279 		}
27280 		break;
27281 	}
27282 	/*
27283 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
27284 	 * make sure that the template IP header in the tcp structure is an
27285 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
27286 	 * need to this before we call tcp_bindi() so that the port lookup
27287 	 * code will look for ports in the correct port space (IPv4 and
27288 	 * IPv6 have separate port spaces).
27289 	 */
27290 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
27291 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
27292 		int err = 0;
27293 
27294 		err = tcp_header_init_ipv4(tcp);
27295 			if (err != 0) {
27296 				error = ENOMEM;
27297 				goto connect_failed;
27298 			}
27299 		if (tcp->tcp_lport != 0)
27300 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
27301 	}
27302 
27303 	switch (tcp->tcp_state) {
27304 	case TCPS_LISTEN:
27305 		/*
27306 		 * Listening sockets are not allowed to issue connect().
27307 		 */
27308 		if (IPCL_IS_NONSTR(connp))
27309 			return (EOPNOTSUPP);
27310 		/* FALLTHRU */
27311 	case TCPS_IDLE:
27312 		/*
27313 		 * We support quick connect, refer to comments in
27314 		 * tcp_connect_*()
27315 		 */
27316 		/* FALLTHRU */
27317 	case TCPS_BOUND:
27318 		/*
27319 		 * We must bump the generation before the operation start.
27320 		 * This is done to ensure that any upcall made later on sends
27321 		 * up the right generation to the socket.
27322 		 */
27323 		SOCK_CONNID_BUMP(tcp->tcp_connid);
27324 
27325 		if (tcp->tcp_family == AF_INET6) {
27326 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
27327 				return (tcp_connect_ipv6(tcp,
27328 				    &sin6->sin6_addr,
27329 				    sin6->sin6_port, sin6->sin6_flowinfo,
27330 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
27331 				    cr, pid));
27332 			}
27333 			/*
27334 			 * Destination adress is mapped IPv6 address.
27335 			 * Source bound address should be unspecified or
27336 			 * IPv6 mapped address as well.
27337 			 */
27338 			if (!IN6_IS_ADDR_UNSPECIFIED(
27339 			    &tcp->tcp_bound_source_v6) &&
27340 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
27341 				return (EADDRNOTAVAIL);
27342 			}
27343 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
27344 			dstport = sin6->sin6_port;
27345 			srcid = sin6->__sin6_src_id;
27346 		} else {
27347 			dstaddrp = &sin->sin_addr.s_addr;
27348 			dstport = sin->sin_port;
27349 			srcid = 0;
27350 		}
27351 
27352 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
27353 		    pid);
27354 		break;
27355 	default:
27356 		return (-TOUTSTATE);
27357 	}
27358 	/*
27359 	 * Note: Code below is the "failure" case
27360 	 */
27361 connect_failed:
27362 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
27363 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
27364 	return (error);
27365 }
27366 
27367 int
27368 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
27369     socklen_t len, sock_connid_t *id, cred_t *cr)
27370 {
27371 	conn_t		*connp = (conn_t *)proto_handle;
27372 	tcp_t		*tcp = connp->conn_tcp;
27373 	squeue_t	*sqp = connp->conn_sqp;
27374 	int		error;
27375 
27376 	ASSERT(connp->conn_upper_handle != NULL);
27377 
27378 	/* All Solaris components should pass a cred for this operation. */
27379 	ASSERT(cr != NULL);
27380 
27381 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
27382 	if (error != 0) {
27383 		return (error);
27384 	}
27385 
27386 	error = squeue_synch_enter(sqp, connp, 0);
27387 	if (error != 0) {
27388 		/* failed to enter */
27389 		return (ENOSR);
27390 	}
27391 
27392 	/*
27393 	 * TCP supports quick connect, so no need to do an implicit bind
27394 	 */
27395 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
27396 	if (error == 0) {
27397 		*id = connp->conn_tcp->tcp_connid;
27398 	} else if (error < 0) {
27399 		if (error == -TOUTSTATE) {
27400 			switch (connp->conn_tcp->tcp_state) {
27401 			case TCPS_SYN_SENT:
27402 				error = EALREADY;
27403 				break;
27404 			case TCPS_ESTABLISHED:
27405 				error = EISCONN;
27406 				break;
27407 			case TCPS_LISTEN:
27408 				error = EOPNOTSUPP;
27409 				break;
27410 			default:
27411 				error = EINVAL;
27412 				break;
27413 			}
27414 		} else {
27415 			error = proto_tlitosyserr(-error);
27416 		}
27417 	}
27418 done:
27419 	squeue_synch_exit(sqp, connp);
27420 
27421 	return ((error == 0) ? EINPROGRESS : error);
27422 }
27423 
27424 /* ARGSUSED */
27425 sock_lower_handle_t
27426 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
27427     uint_t *smodep, int *errorp, int flags, cred_t *credp)
27428 {
27429 	conn_t		*connp;
27430 	boolean_t	isv6 = family == AF_INET6;
27431 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
27432 	    (proto != 0 && proto != IPPROTO_TCP)) {
27433 		*errorp = EPROTONOSUPPORT;
27434 		return (NULL);
27435 	}
27436 
27437 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
27438 	if (connp == NULL) {
27439 		return (NULL);
27440 	}
27441 
27442 	/*
27443 	 * Put the ref for TCP. Ref for IP was already put
27444 	 * by ipcl_conn_create. Also Make the conn_t globally
27445 	 * visible to walkers
27446 	 */
27447 	mutex_enter(&connp->conn_lock);
27448 	CONN_INC_REF_LOCKED(connp);
27449 	ASSERT(connp->conn_ref == 2);
27450 	connp->conn_state_flags &= ~CONN_INCIPIENT;
27451 
27452 	connp->conn_flags |= IPCL_NONSTR;
27453 	mutex_exit(&connp->conn_lock);
27454 
27455 	ASSERT(errorp != NULL);
27456 	*errorp = 0;
27457 	*sock_downcalls = &sock_tcp_downcalls;
27458 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
27459 	    SM_SENDFILESUPP;
27460 
27461 	return ((sock_lower_handle_t)connp);
27462 }
27463 
27464 /* ARGSUSED */
27465 void
27466 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
27467     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
27468 {
27469 	conn_t *connp = (conn_t *)proto_handle;
27470 	struct sock_proto_props sopp;
27471 
27472 	ASSERT(connp->conn_upper_handle == NULL);
27473 
27474 	/* All Solaris components should pass a cred for this operation. */
27475 	ASSERT(cr != NULL);
27476 
27477 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
27478 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
27479 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
27480 
27481 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
27482 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
27483 	sopp.sopp_maxpsz = INFPSZ;
27484 	sopp.sopp_maxblk = INFPSZ;
27485 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
27486 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
27487 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
27488 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
27489 	    tcp_rinfo.mi_minpsz;
27490 
27491 	connp->conn_upcalls = sock_upcalls;
27492 	connp->conn_upper_handle = sock_handle;
27493 
27494 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
27495 }
27496 
27497 /* ARGSUSED */
27498 int
27499 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
27500 {
27501 	conn_t *connp = (conn_t *)proto_handle;
27502 
27503 	ASSERT(connp->conn_upper_handle != NULL);
27504 
27505 	/* All Solaris components should pass a cred for this operation. */
27506 	ASSERT(cr != NULL);
27507 
27508 	tcp_close_common(connp, flags);
27509 
27510 	ip_free_helper_stream(connp);
27511 
27512 	/*
27513 	 * Drop IP's reference on the conn. This is the last reference
27514 	 * on the connp if the state was less than established. If the
27515 	 * connection has gone into timewait state, then we will have
27516 	 * one ref for the TCP and one more ref (total of two) for the
27517 	 * classifier connected hash list (a timewait connections stays
27518 	 * in connected hash till closed).
27519 	 *
27520 	 * We can't assert the references because there might be other
27521 	 * transient reference places because of some walkers or queued
27522 	 * packets in squeue for the timewait state.
27523 	 */
27524 	CONN_DEC_REF(connp);
27525 	return (0);
27526 }
27527 
27528 /* ARGSUSED */
27529 int
27530 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
27531     cred_t *cr)
27532 {
27533 	tcp_t		*tcp;
27534 	uint32_t	msize;
27535 	conn_t *connp = (conn_t *)proto_handle;
27536 	int32_t		tcpstate;
27537 
27538 	/* All Solaris components should pass a cred for this operation. */
27539 	ASSERT(cr != NULL);
27540 
27541 	ASSERT(connp->conn_ref >= 2);
27542 	ASSERT(connp->conn_upper_handle != NULL);
27543 
27544 	if (msg->msg_controllen != 0) {
27545 		return (EOPNOTSUPP);
27546 
27547 	}
27548 	switch (DB_TYPE(mp)) {
27549 	case M_DATA:
27550 		tcp = connp->conn_tcp;
27551 		ASSERT(tcp != NULL);
27552 
27553 		tcpstate = tcp->tcp_state;
27554 		if (tcpstate < TCPS_ESTABLISHED) {
27555 			freemsg(mp);
27556 			return (ENOTCONN);
27557 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
27558 			freemsg(mp);
27559 			return (EPIPE);
27560 		}
27561 
27562 		msize = msgdsize(mp);
27563 
27564 		mutex_enter(&tcp->tcp_non_sq_lock);
27565 		tcp->tcp_squeue_bytes += msize;
27566 		/*
27567 		 * Squeue Flow Control
27568 		 */
27569 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
27570 			tcp_setqfull(tcp);
27571 		}
27572 		mutex_exit(&tcp->tcp_non_sq_lock);
27573 
27574 		/*
27575 		 * The application may pass in an address in the msghdr, but
27576 		 * we ignore the address on connection-oriented sockets.
27577 		 * Just like BSD this code does not generate an error for
27578 		 * TCP (a CONNREQUIRED socket) when sending to an address
27579 		 * passed in with sendto/sendmsg. Instead the data is
27580 		 * delivered on the connection as if no address had been
27581 		 * supplied.
27582 		 */
27583 		CONN_INC_REF(connp);
27584 
27585 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
27586 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
27587 			    tcp_output_urgent, connp, tcp_squeue_flag,
27588 			    SQTAG_TCP_OUTPUT);
27589 		} else {
27590 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
27591 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
27592 		}
27593 
27594 		return (0);
27595 
27596 	default:
27597 		ASSERT(0);
27598 	}
27599 
27600 	freemsg(mp);
27601 	return (0);
27602 }
27603 
27604 /* ARGSUSED */
27605 void
27606 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
27607 {
27608 	int len;
27609 	uint32_t msize;
27610 	conn_t *connp = (conn_t *)arg;
27611 	tcp_t *tcp = connp->conn_tcp;
27612 
27613 	msize = msgdsize(mp);
27614 
27615 	len = msize - 1;
27616 	if (len < 0) {
27617 		freemsg(mp);
27618 		return;
27619 	}
27620 
27621 	/*
27622 	 * Try to force urgent data out on the wire.
27623 	 * Even if we have unsent data this will
27624 	 * at least send the urgent flag.
27625 	 * XXX does not handle more flag correctly.
27626 	 */
27627 	len += tcp->tcp_unsent;
27628 	len += tcp->tcp_snxt;
27629 	tcp->tcp_urg = len;
27630 	tcp->tcp_valid_bits |= TCP_URG_VALID;
27631 
27632 	/* Bypass tcp protocol for fused tcp loopback */
27633 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
27634 		return;
27635 	tcp_wput_data(tcp, mp, B_TRUE);
27636 }
27637 
27638 /* ARGSUSED */
27639 int
27640 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27641     socklen_t *addrlenp, cred_t *cr)
27642 {
27643 	conn_t	*connp = (conn_t *)proto_handle;
27644 	tcp_t	*tcp = connp->conn_tcp;
27645 
27646 	ASSERT(connp->conn_upper_handle != NULL);
27647 	/* All Solaris components should pass a cred for this operation. */
27648 	ASSERT(cr != NULL);
27649 
27650 	ASSERT(tcp != NULL);
27651 
27652 	return (tcp_do_getpeername(tcp, addr, addrlenp));
27653 }
27654 
27655 /* ARGSUSED */
27656 int
27657 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
27658     socklen_t *addrlenp, cred_t *cr)
27659 {
27660 	conn_t	*connp = (conn_t *)proto_handle;
27661 	tcp_t	*tcp = connp->conn_tcp;
27662 
27663 	/* All Solaris components should pass a cred for this operation. */
27664 	ASSERT(cr != NULL);
27665 
27666 	ASSERT(connp->conn_upper_handle != NULL);
27667 
27668 	return (tcp_do_getsockname(tcp, addr, addrlenp));
27669 }
27670 
27671 /*
27672  * tcp_fallback
27673  *
27674  * A direct socket is falling back to using STREAMS. Hanging
27675  * off of the queue is a temporary tcp_t, which was created using
27676  * tcp_open(). The tcp_open() was called as part of the regular
27677  * sockfs create path, i.e., the SO_SOCKSTR flag is passed down,
27678  * and therefore the temporary tcp_t is marked to be a socket
27679  * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations
27680  * introduced by FireEngine will be used.
27681  *
27682  * The tcp_t associated with the socket falling back will
27683  * still be marked as a socket, although the direct socket flag
27684  * (IPCL_NONSTR) is removed. A fall back to true TPI semantics
27685  * will not take place until a _SIOCSOCKFALLBACK ioctl is issued.
27686  *
27687  * If the above mentioned behavior, i.e., the tmp tcp_t is created
27688  * as a STREAMS/TPI endpoint, then we will need to do more work here.
27689  * Such as inserting the direct socket into the acceptor hash.
27690  */
27691 void
27692 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
27693     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
27694 {
27695 	tcp_t			*tcp, *eager;
27696 	conn_t 			*connp = (conn_t *)proto_handle;
27697 	int			error;
27698 	struct T_capability_ack tca;
27699 	struct sockaddr_in6	laddr, faddr;
27700 	socklen_t 		laddrlen, faddrlen;
27701 	short			opts;
27702 	struct stroptions	*stropt;
27703 	mblk_t			*stropt_mp;
27704 	mblk_t			*mp;
27705 	mblk_t			*conn_ind_head = NULL;
27706 	mblk_t			*conn_ind_tail = NULL;
27707 	mblk_t			*ordrel_mp;
27708 	mblk_t			*fused_sigurp_mp;
27709 
27710 	tcp = connp->conn_tcp;
27711 	/*
27712 	 * No support for acceptor fallback
27713 	 */
27714 	ASSERT(q->q_qinfo != &tcp_acceptor_rinit);
27715 
27716 	stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL);
27717 
27718 	/* Pre-allocate the T_ordrel_ind mblk. */
27719 	ASSERT(tcp->tcp_ordrel_mp == NULL);
27720 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
27721 	    STR_NOSIG, NULL);
27722 	ordrel_mp->b_datap->db_type = M_PROTO;
27723 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
27724 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
27725 
27726 	/* Pre-allocate the M_PCSIG anyway */
27727 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
27728 
27729 	/*
27730 	 * Enter the squeue so that no new packets can come in
27731 	 */
27732 	error = squeue_synch_enter(connp->conn_sqp, connp, 0);
27733 	if (error != 0) {
27734 		/* failed to enter, free all the pre-allocated messages. */
27735 		freeb(stropt_mp);
27736 		freeb(ordrel_mp);
27737 		freeb(fused_sigurp_mp);
27738 		return;
27739 	}
27740 
27741 	/* Disable I/OAT during fallback */
27742 	tcp->tcp_sodirect = NULL;
27743 
27744 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
27745 	connp->conn_minor_arena = WR(q)->q_ptr;
27746 
27747 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
27748 
27749 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
27750 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
27751 
27752 	WR(q)->q_qinfo = &tcp_sock_winit;
27753 
27754 	if (!direct_sockfs)
27755 		tcp_disable_direct_sockfs(tcp);
27756 
27757 	/*
27758 	 * free the helper stream
27759 	 */
27760 	ip_free_helper_stream(connp);
27761 
27762 	/*
27763 	 * Notify the STREAM head about options
27764 	 */
27765 	DB_TYPE(stropt_mp) = M_SETOPTS;
27766 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27767 	stropt_mp->b_wptr += sizeof (struct stroptions);
27768 	stropt = (struct stroptions *)stropt_mp->b_rptr;
27769 	stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK;
27770 
27771 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
27772 	    tcp->tcp_tcps->tcps_wroff_xtra);
27773 	if (tcp->tcp_snd_sack_ok)
27774 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
27775 	stropt->so_hiwat = tcp->tcp_fused ?
27776 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
27777 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
27778 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
27779 
27780 	putnext(RD(q), stropt_mp);
27781 
27782 	/*
27783 	 * Collect the information needed to sync with the sonode
27784 	 */
27785 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
27786 
27787 	laddrlen = faddrlen = sizeof (sin6_t);
27788 	(void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr,
27789 	    &laddrlen, CRED());
27790 	error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr,
27791 	    &faddrlen, CRED());
27792 	if (error != 0)
27793 		faddrlen = 0;
27794 
27795 	opts = 0;
27796 	if (tcp->tcp_oobinline)
27797 		opts |= SO_OOBINLINE;
27798 	if (tcp->tcp_dontroute)
27799 		opts |= SO_DONTROUTE;
27800 
27801 	/*
27802 	 * Notify the socket that the protocol is now quiescent,
27803 	 * and it's therefore safe move data from the socket
27804 	 * to the stream head.
27805 	 */
27806 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
27807 	    (struct sockaddr *)&laddr, laddrlen,
27808 	    (struct sockaddr *)&faddr, faddrlen, opts);
27809 
27810 	while ((mp = tcp->tcp_rcv_list) != NULL) {
27811 		tcp->tcp_rcv_list = mp->b_next;
27812 		mp->b_next = NULL;
27813 		putnext(q, mp);
27814 	}
27815 	tcp->tcp_rcv_last_head = NULL;
27816 	tcp->tcp_rcv_last_tail = NULL;
27817 	tcp->tcp_rcv_cnt = 0;
27818 
27819 	/*
27820 	 * No longer a direct socket
27821 	 */
27822 	connp->conn_flags &= ~IPCL_NONSTR;
27823 
27824 	tcp->tcp_ordrel_mp = ordrel_mp;
27825 
27826 	if (tcp->tcp_fused) {
27827 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
27828 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
27829 	} else {
27830 		freeb(fused_sigurp_mp);
27831 	}
27832 
27833 	/*
27834 	 * Send T_CONN_IND messages for all ESTABLISHED connections.
27835 	 */
27836 	mutex_enter(&tcp->tcp_eager_lock);
27837 	for (eager = tcp->tcp_eager_next_q; eager != NULL;
27838 	    eager = eager->tcp_eager_next_q) {
27839 		mp = eager->tcp_conn.tcp_eager_conn_ind;
27840 
27841 		eager->tcp_conn.tcp_eager_conn_ind = NULL;
27842 		ASSERT(mp != NULL);
27843 		/*
27844 		 * TLI/XTI applications will get confused by
27845 		 * sending eager as an option since it violates
27846 		 * the option semantics. So remove the eager as
27847 		 * option since TLI/XTI app doesn't need it anyway.
27848 		 */
27849 		if (!TCP_IS_SOCKET(tcp)) {
27850 			struct T_conn_ind *conn_ind;
27851 
27852 			conn_ind = (struct T_conn_ind *)mp->b_rptr;
27853 			conn_ind->OPT_length = 0;
27854 			conn_ind->OPT_offset = 0;
27855 		}
27856 		if (conn_ind_head == NULL) {
27857 			conn_ind_head = mp;
27858 		} else {
27859 			conn_ind_tail->b_next = mp;
27860 		}
27861 		conn_ind_tail = mp;
27862 	}
27863 	mutex_exit(&tcp->tcp_eager_lock);
27864 
27865 	mp = conn_ind_head;
27866 	while (mp != NULL) {
27867 		mblk_t *nmp = mp->b_next;
27868 		mp->b_next = NULL;
27869 
27870 		putnext(tcp->tcp_rq, mp);
27871 		mp = nmp;
27872 	}
27873 
27874 	/*
27875 	 * There should be atleast two ref's (IP + TCP)
27876 	 */
27877 	ASSERT(connp->conn_ref >= 2);
27878 	squeue_synch_exit(connp->conn_sqp, connp);
27879 }
27880 
27881 /* ARGSUSED */
27882 static void
27883 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
27884 {
27885 	conn_t 	*connp = (conn_t *)arg;
27886 	tcp_t	*tcp = connp->conn_tcp;
27887 
27888 	freemsg(mp);
27889 
27890 	if (tcp->tcp_fused)
27891 		tcp_unfuse(tcp);
27892 
27893 	if (tcp_xmit_end(tcp) != 0) {
27894 		/*
27895 		 * We were crossing FINs and got a reset from
27896 		 * the other side. Just ignore it.
27897 		 */
27898 		if (tcp->tcp_debug) {
27899 			(void) strlog(TCP_MOD_ID, 0, 1,
27900 			    SL_ERROR|SL_TRACE,
27901 			    "tcp_shutdown_output() out of state %s",
27902 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
27903 		}
27904 	}
27905 }
27906 
27907 /* ARGSUSED */
27908 int
27909 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
27910 {
27911 	conn_t  *connp = (conn_t *)proto_handle;
27912 	tcp_t   *tcp = connp->conn_tcp;
27913 
27914 	ASSERT(connp->conn_upper_handle != NULL);
27915 
27916 	/* All Solaris components should pass a cred for this operation. */
27917 	ASSERT(cr != NULL);
27918 
27919 	/*
27920 	 * X/Open requires that we check the connected state.
27921 	 */
27922 	if (tcp->tcp_state < TCPS_SYN_SENT)
27923 		return (ENOTCONN);
27924 
27925 	/* shutdown the send side */
27926 	if (how != SHUT_RD) {
27927 		mblk_t *bp;
27928 
27929 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
27930 		CONN_INC_REF(connp);
27931 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
27932 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
27933 
27934 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27935 		    SOCK_OPCTL_SHUT_SEND, 0);
27936 	}
27937 
27938 	/* shutdown the recv side */
27939 	if (how != SHUT_WR)
27940 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27941 		    SOCK_OPCTL_SHUT_RECV, 0);
27942 
27943 	return (0);
27944 }
27945 
27946 /*
27947  * SOP_LISTEN() calls into tcp_listen().
27948  */
27949 /* ARGSUSED */
27950 int
27951 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
27952 {
27953 	conn_t	*connp = (conn_t *)proto_handle;
27954 	int 	error;
27955 	squeue_t *sqp = connp->conn_sqp;
27956 
27957 	ASSERT(connp->conn_upper_handle != NULL);
27958 
27959 	/* All Solaris components should pass a cred for this operation. */
27960 	ASSERT(cr != NULL);
27961 
27962 	error = squeue_synch_enter(sqp, connp, 0);
27963 	if (error != 0) {
27964 		/* failed to enter */
27965 		return (ENOBUFS);
27966 	}
27967 
27968 	error = tcp_do_listen(connp, backlog, cr);
27969 	if (error == 0) {
27970 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
27971 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
27972 	} else if (error < 0) {
27973 		if (error == -TOUTSTATE)
27974 			error = EINVAL;
27975 		else
27976 			error = proto_tlitosyserr(-error);
27977 	}
27978 	squeue_synch_exit(sqp, connp);
27979 	return (error);
27980 }
27981 
27982 static int
27983 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr)
27984 {
27985 	tcp_t		*tcp = connp->conn_tcp;
27986 	sin_t		*sin;
27987 	sin6_t  	*sin6;
27988 	int		error = 0;
27989 	tcp_stack_t	*tcps = tcp->tcp_tcps;
27990 
27991 	/* All Solaris components should pass a cred for this operation. */
27992 	ASSERT(cr != NULL);
27993 
27994 	if (tcp->tcp_state >= TCPS_BOUND) {
27995 		if ((tcp->tcp_state == TCPS_BOUND ||
27996 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
27997 			/*
27998 			 * Handle listen() increasing backlog.
27999 			 * This is more "liberal" then what the TPI spec
28000 			 * requires but is needed to avoid a t_unbind
28001 			 * when handling listen() since the port number
28002 			 * might be "stolen" between the unbind and bind.
28003 			 */
28004 			goto do_listen;
28005 		}
28006 		if (tcp->tcp_debug) {
28007 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
28008 			    "tcp_listen: bad state, %d", tcp->tcp_state);
28009 		}
28010 		return (-TOUTSTATE);
28011 	} else {
28012 		int32_t len;
28013 		sin6_t	addr;
28014 
28015 		/* Do an implicit bind: Request for a generic port. */
28016 		if (tcp->tcp_family == AF_INET) {
28017 			len = sizeof (sin_t);
28018 			sin = (sin_t *)&addr;
28019 			*sin = sin_null;
28020 			sin->sin_family = AF_INET;
28021 			tcp->tcp_ipversion = IPV4_VERSION;
28022 		} else {
28023 			ASSERT(tcp->tcp_family == AF_INET6);
28024 			len = sizeof (sin6_t);
28025 			sin6 = (sin6_t *)&addr;
28026 			*sin6 = sin6_null;
28027 			sin6->sin6_family = AF_INET6;
28028 			tcp->tcp_ipversion = IPV6_VERSION;
28029 		}
28030 
28031 		error = tcp_bind_check(connp, (struct sockaddr *)&addr, len,
28032 		    cr, B_FALSE);
28033 		if (error)
28034 			return (error);
28035 		/* Fall through and do the fanout insertion */
28036 	}
28037 
28038 do_listen:
28039 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
28040 	tcp->tcp_conn_req_max = backlog;
28041 	if (tcp->tcp_conn_req_max) {
28042 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
28043 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
28044 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
28045 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
28046 		/*
28047 		 * If this is a listener, do not reset the eager list
28048 		 * and other stuffs.  Note that we don't check if the
28049 		 * existing eager list meets the new tcp_conn_req_max
28050 		 * requirement.
28051 		 */
28052 		if (tcp->tcp_state != TCPS_LISTEN) {
28053 			tcp->tcp_state = TCPS_LISTEN;
28054 			/* Initialize the chain. Don't need the eager_lock */
28055 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
28056 			tcp->tcp_eager_next_drop_q0 = tcp;
28057 			tcp->tcp_eager_prev_drop_q0 = tcp;
28058 			tcp->tcp_second_ctimer_threshold =
28059 			    tcps->tcps_ip_abort_linterval;
28060 		}
28061 	}
28062 
28063 	/*
28064 	 * We can call ip_bind directly, the processing continues
28065 	 * in tcp_post_ip_bind().
28066 	 *
28067 	 * We need to make sure that the conn_recv is set to a non-null
28068 	 * value before we insert the conn into the classifier table.
28069 	 * This is to avoid a race with an incoming packet which does an
28070 	 * ipcl_classify().
28071 	 */
28072 	connp->conn_recv = tcp_conn_request;
28073 	if (tcp->tcp_family == AF_INET) {
28074 		error = ip_proto_bind_laddr_v4(connp, NULL,
28075 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
28076 	} else {
28077 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
28078 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
28079 	}
28080 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
28081 }
28082 
28083 void
28084 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
28085 {
28086 	conn_t  *connp = (conn_t *)proto_handle;
28087 	tcp_t	*tcp = connp->conn_tcp;
28088 	tcp_stack_t	*tcps = tcp->tcp_tcps;
28089 	uint_t thwin;
28090 
28091 	ASSERT(connp->conn_upper_handle != NULL);
28092 
28093 	(void) squeue_synch_enter(connp->conn_sqp, connp, 0);
28094 
28095 	/* Flow control condition has been removed. */
28096 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
28097 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
28098 	    << tcp->tcp_rcv_ws;
28099 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
28100 	/*
28101 	 * Send back a window update immediately if TCP is above
28102 	 * ESTABLISHED state and the increase of the rcv window
28103 	 * that the other side knows is at least 1 MSS after flow
28104 	 * control is lifted.
28105 	 */
28106 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
28107 	    (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) {
28108 		tcp_xmit_ctl(NULL, tcp,
28109 		    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
28110 		    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
28111 		BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
28112 	}
28113 
28114 	squeue_synch_exit(connp->conn_sqp, connp);
28115 }
28116 
28117 /* ARGSUSED */
28118 int
28119 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
28120     int mode, int32_t *rvalp, cred_t *cr)
28121 {
28122 	conn_t  	*connp = (conn_t *)proto_handle;
28123 	int		error;
28124 
28125 	ASSERT(connp->conn_upper_handle != NULL);
28126 
28127 	/* All Solaris components should pass a cred for this operation. */
28128 	ASSERT(cr != NULL);
28129 
28130 	switch (cmd) {
28131 		case ND_SET:
28132 		case ND_GET:
28133 		case TCP_IOC_DEFAULT_Q:
28134 		case _SIOCSOCKFALLBACK:
28135 		case TCP_IOC_ABORT_CONN:
28136 		case TI_GETPEERNAME:
28137 		case TI_GETMYNAME:
28138 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
28139 			    cmd));
28140 			error = EINVAL;
28141 			break;
28142 		default:
28143 			/*
28144 			 * Pass on to IP using helper stream
28145 			 */
28146 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
28147 			    cmd, arg, mode, cr, rvalp);
28148 			break;
28149 	}
28150 	return (error);
28151 }
28152 
28153 sock_downcalls_t sock_tcp_downcalls = {
28154 	tcp_activate,
28155 	tcp_accept,
28156 	tcp_bind,
28157 	tcp_listen,
28158 	tcp_connect,
28159 	tcp_getpeername,
28160 	tcp_getsockname,
28161 	tcp_getsockopt,
28162 	tcp_setsockopt,
28163 	tcp_sendmsg,
28164 	NULL,
28165 	NULL,
28166 	NULL,
28167 	tcp_shutdown,
28168 	tcp_clr_flowctrl,
28169 	tcp_ioctl,
28170 	tcp_close,
28171 };
28172