1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/systm.h> 29 #include <sys/stream.h> 30 #include <sys/strsubr.h> 31 #include <sys/ddi.h> 32 #include <sys/sunddi.h> 33 #include <sys/kmem.h> 34 #include <sys/socket.h> 35 #include <sys/random.h> 36 #include <sys/tsol/tndb.h> 37 #include <sys/tsol/tnet.h> 38 39 #include <netinet/in.h> 40 #include <netinet/ip6.h> 41 #include <netinet/sctp.h> 42 43 #include <inet/common.h> 44 #include <inet/ip.h> 45 #include <inet/ip6.h> 46 #include <inet/ip_ire.h> 47 #include <inet/mib2.h> 48 #include <inet/nd.h> 49 #include <inet/optcom.h> 50 #include <inet/sctp_ip.h> 51 #include <inet/ipclassifier.h> 52 53 #include "sctp_impl.h" 54 #include "sctp_addr.h" 55 #include "sctp_asconf.h" 56 57 static struct kmem_cache *sctp_kmem_faddr_cache; 58 static void sctp_init_faddr(sctp_t *, sctp_faddr_t *, in6_addr_t *, mblk_t *); 59 60 /* Set the source address. Refer to comments in sctp_get_ire(). */ 61 void 62 sctp_set_saddr(sctp_t *sctp, sctp_faddr_t *fp) 63 { 64 boolean_t v6 = !fp->isv4; 65 boolean_t addr_set; 66 67 fp->saddr = sctp_get_valid_addr(sctp, v6, &addr_set); 68 /* 69 * If there is no source address avaialble, mark this peer address 70 * as unreachable for now. When the heartbeat timer fires, it will 71 * call sctp_get_ire() to re-check if there is any source address 72 * available. 73 */ 74 if (!addr_set) 75 fp->state = SCTP_FADDRS_UNREACH; 76 } 77 78 /* 79 * Call this function to update the cached IRE of a peer addr fp. 80 */ 81 void 82 sctp_get_ire(sctp_t *sctp, sctp_faddr_t *fp) 83 { 84 ire_t *ire; 85 ipaddr_t addr4; 86 in6_addr_t laddr; 87 sctp_saddr_ipif_t *sp; 88 int hdrlen; 89 ts_label_t *tsl; 90 sctp_stack_t *sctps = sctp->sctp_sctps; 91 ip_stack_t *ipst = sctps->sctps_netstack->netstack_ip; 92 93 /* Remove the previous cache IRE */ 94 if ((ire = fp->ire) != NULL) { 95 IRE_REFRELE_NOTR(ire); 96 fp->ire = NULL; 97 } 98 99 /* 100 * If this addr is not reachable, mark it as unconfirmed for now, the 101 * state will be changed back to unreachable later in this function 102 * if it is still the case. 103 */ 104 if (fp->state == SCTP_FADDRS_UNREACH) { 105 fp->state = SCTP_FADDRS_UNCONFIRMED; 106 } 107 108 tsl = crgetlabel(CONN_CRED(sctp->sctp_connp)); 109 110 if (fp->isv4) { 111 IN6_V4MAPPED_TO_IPADDR(&fp->faddr, addr4); 112 ire = ire_cache_lookup(addr4, sctp->sctp_zoneid, tsl, ipst); 113 if (ire != NULL) 114 IN6_IPADDR_TO_V4MAPPED(ire->ire_src_addr, &laddr); 115 } else { 116 ire = ire_cache_lookup_v6(&fp->faddr, sctp->sctp_zoneid, tsl, 117 ipst); 118 if (ire != NULL) 119 laddr = ire->ire_src_addr_v6; 120 } 121 122 if (ire == NULL) { 123 dprint(3, ("ire2faddr: no ire for %x:%x:%x:%x\n", 124 SCTP_PRINTADDR(fp->faddr))); 125 /* 126 * It is tempting to just leave the src addr 127 * unspecified and let IP figure it out, but we 128 * *cannot* do this, since IP may choose a src addr 129 * that is not part of this association... unless 130 * this sctp has bound to all addrs. So if the ire 131 * lookup fails, try to find one in our src addr 132 * list, unless the sctp has bound to all addrs, in 133 * which case we change the src addr to unspec. 134 * 135 * Note that if this is a v6 endpoint but it does 136 * not have any v4 address at this point (e.g. may 137 * have been deleted), sctp_get_valid_addr() will 138 * return mapped INADDR_ANY. In this case, this 139 * address should be marked not reachable so that 140 * it won't be used to send data. 141 */ 142 sctp_set_saddr(sctp, fp); 143 if (fp->state == SCTP_FADDRS_UNREACH) 144 return; 145 goto check_current; 146 } 147 148 /* Make sure the laddr is part of this association */ 149 if ((sp = sctp_saddr_lookup(sctp, &ire->ire_ipif->ipif_v6lcl_addr, 150 0)) != NULL && !sp->saddr_ipif_dontsrc) { 151 if (sp->saddr_ipif_unconfirmed == 1) 152 sp->saddr_ipif_unconfirmed = 0; 153 fp->saddr = laddr; 154 } else { 155 dprint(2, ("ire2faddr: src addr is not part of assc\n")); 156 157 /* 158 * Set the src to the first saddr and hope for the best. 159 * Note that we will still do the ire caching below. 160 * Otherwise, whenever we send a packet, we need to do 161 * the ire lookup again and still may not get the correct 162 * source address. Note that this case should very seldomly 163 * happen. One scenario this can happen is an app 164 * explicitly bind() to an address. But that address is 165 * not the preferred source address to send to the peer. 166 */ 167 sctp_set_saddr(sctp, fp); 168 if (fp->state == SCTP_FADDRS_UNREACH) { 169 IRE_REFRELE(ire); 170 return; 171 } 172 } 173 174 /* 175 * Note that ire_cache_lookup_*() returns an ire with the tracing 176 * bits enabled. This requires the thread holding the ire also 177 * do the IRE_REFRELE(). Thus we need to do IRE_REFHOLD_NOTR() 178 * and then IRE_REFRELE() the ire here to make the tracing bits 179 * work. 180 */ 181 IRE_REFHOLD_NOTR(ire); 182 IRE_REFRELE(ire); 183 184 /* Cache the IRE */ 185 fp->ire = ire; 186 if (fp->ire->ire_type == IRE_LOOPBACK && !sctp->sctp_loopback) 187 sctp->sctp_loopback = 1; 188 189 /* 190 * Pull out RTO information for this faddr and use it if we don't 191 * have any yet. 192 */ 193 if (fp->srtt == -1 && ire->ire_uinfo.iulp_rtt != 0) { 194 /* The cached value is in ms. */ 195 fp->srtt = MSEC_TO_TICK(ire->ire_uinfo.iulp_rtt); 196 fp->rttvar = MSEC_TO_TICK(ire->ire_uinfo.iulp_rtt_sd); 197 fp->rto = 3 * fp->srtt; 198 199 /* Bound the RTO by configured min and max values */ 200 if (fp->rto < sctp->sctp_rto_min) { 201 fp->rto = sctp->sctp_rto_min; 202 } 203 if (fp->rto > sctp->sctp_rto_max) { 204 fp->rto = sctp->sctp_rto_max; 205 } 206 } 207 208 /* 209 * Record the MTU for this faddr. If the MTU for this faddr has 210 * changed, check if the assc MTU will also change. 211 */ 212 if (fp->isv4) { 213 hdrlen = sctp->sctp_hdr_len; 214 } else { 215 hdrlen = sctp->sctp_hdr6_len; 216 } 217 if ((fp->sfa_pmss + hdrlen) != ire->ire_max_frag) { 218 /* Make sure that sfa_pmss is a multiple of SCTP_ALIGN. */ 219 fp->sfa_pmss = (ire->ire_max_frag - hdrlen) & ~(SCTP_ALIGN - 1); 220 if (fp->cwnd < (fp->sfa_pmss * 2)) { 221 SET_CWND(fp, fp->sfa_pmss, 222 sctps->sctps_slow_start_initial); 223 } 224 } 225 226 check_current: 227 if (fp == sctp->sctp_current) 228 sctp_set_faddr_current(sctp, fp); 229 } 230 231 void 232 sctp_update_ire(sctp_t *sctp) 233 { 234 ire_t *ire; 235 sctp_faddr_t *fp; 236 sctp_stack_t *sctps = sctp->sctp_sctps; 237 238 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { 239 if ((ire = fp->ire) == NULL) 240 continue; 241 mutex_enter(&ire->ire_lock); 242 243 /* 244 * If the cached IRE is going away, there is no point to 245 * update it. 246 */ 247 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 248 mutex_exit(&ire->ire_lock); 249 IRE_REFRELE_NOTR(ire); 250 fp->ire = NULL; 251 continue; 252 } 253 254 /* 255 * Only record the PMTU for this faddr if we actually have 256 * done discovery. This prevents initialized default from 257 * clobbering any real info that IP may have. 258 */ 259 if (fp->pmtu_discovered) { 260 if (fp->isv4) { 261 ire->ire_max_frag = fp->sfa_pmss + 262 sctp->sctp_hdr_len; 263 } else { 264 ire->ire_max_frag = fp->sfa_pmss + 265 sctp->sctp_hdr6_len; 266 } 267 } 268 269 if (sctps->sctps_rtt_updates != 0 && 270 fp->rtt_updates >= sctps->sctps_rtt_updates) { 271 /* 272 * If there is no old cached values, initialize them 273 * conservatively. Set them to be (1.5 * new value). 274 * This code copied from ip_ire_advise(). The cached 275 * value is in ms. 276 */ 277 if (ire->ire_uinfo.iulp_rtt != 0) { 278 ire->ire_uinfo.iulp_rtt = 279 (ire->ire_uinfo.iulp_rtt + 280 TICK_TO_MSEC(fp->srtt)) >> 1; 281 } else { 282 ire->ire_uinfo.iulp_rtt = 283 TICK_TO_MSEC(fp->srtt + (fp->srtt >> 1)); 284 } 285 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 286 ire->ire_uinfo.iulp_rtt_sd = 287 (ire->ire_uinfo.iulp_rtt_sd + 288 TICK_TO_MSEC(fp->rttvar)) >> 1; 289 } else { 290 ire->ire_uinfo.iulp_rtt_sd = 291 TICK_TO_MSEC(fp->rttvar + 292 (fp->rttvar >> 1)); 293 } 294 fp->rtt_updates = 0; 295 } 296 mutex_exit(&ire->ire_lock); 297 } 298 } 299 300 /* 301 * The sender must set the total length in the IP header. 302 * If sendto == NULL, the current will be used. 303 */ 304 mblk_t * 305 sctp_make_mp(sctp_t *sctp, sctp_faddr_t *sendto, int trailer) 306 { 307 mblk_t *mp; 308 size_t ipsctplen; 309 int isv4; 310 sctp_faddr_t *fp; 311 sctp_stack_t *sctps = sctp->sctp_sctps; 312 boolean_t src_changed = B_FALSE; 313 314 ASSERT(sctp->sctp_current != NULL || sendto != NULL); 315 if (sendto == NULL) { 316 fp = sctp->sctp_current; 317 } else { 318 fp = sendto; 319 } 320 isv4 = fp->isv4; 321 322 /* Try to look for another IRE again. */ 323 if (fp->ire == NULL) { 324 sctp_get_ire(sctp, fp); 325 /* 326 * Although we still may not get an IRE, the source address 327 * may be changed in sctp_get_ire(). Set src_changed to 328 * true so that the source address is copied again. 329 */ 330 src_changed = B_TRUE; 331 } 332 333 /* There is no suitable source address to use, return. */ 334 if (fp->state == SCTP_FADDRS_UNREACH) 335 return (NULL); 336 ASSERT(!SCTP_IS_ADDR_UNSPEC(fp->isv4, fp->saddr)); 337 338 if (isv4) { 339 ipsctplen = sctp->sctp_hdr_len; 340 } else { 341 ipsctplen = sctp->sctp_hdr6_len; 342 } 343 344 mp = allocb_cred(ipsctplen + sctps->sctps_wroff_xtra + trailer, 345 CONN_CRED(sctp->sctp_connp), sctp->sctp_cpid); 346 if (mp == NULL) { 347 ip1dbg(("sctp_make_mp: error making mp..\n")); 348 return (NULL); 349 } 350 mp->b_rptr += sctps->sctps_wroff_xtra; 351 mp->b_wptr = mp->b_rptr + ipsctplen; 352 353 ASSERT(OK_32PTR(mp->b_wptr)); 354 355 if (isv4) { 356 ipha_t *iph = (ipha_t *)mp->b_rptr; 357 358 bcopy(sctp->sctp_iphc, mp->b_rptr, ipsctplen); 359 if (fp != sctp->sctp_current || src_changed) { 360 /* Fix the source and destination addresses. */ 361 IN6_V4MAPPED_TO_IPADDR(&fp->faddr, iph->ipha_dst); 362 IN6_V4MAPPED_TO_IPADDR(&fp->saddr, iph->ipha_src); 363 } 364 /* set or clear the don't fragment bit */ 365 if (fp->df) { 366 iph->ipha_fragment_offset_and_flags = htons(IPH_DF); 367 } else { 368 iph->ipha_fragment_offset_and_flags = 0; 369 } 370 } else { 371 bcopy(sctp->sctp_iphc6, mp->b_rptr, ipsctplen); 372 if (fp != sctp->sctp_current || src_changed) { 373 /* Fix the source and destination addresses. */ 374 ((ip6_t *)(mp->b_rptr))->ip6_dst = fp->faddr; 375 ((ip6_t *)(mp->b_rptr))->ip6_src = fp->saddr; 376 } 377 } 378 ASSERT(sctp->sctp_connp != NULL); 379 380 /* 381 * IP will not free this IRE if it is condemned. SCTP needs to 382 * free it. 383 */ 384 if ((fp->ire != NULL) && (fp->ire->ire_marks & IRE_MARK_CONDEMNED)) { 385 IRE_REFRELE_NOTR(fp->ire); 386 fp->ire = NULL; 387 } 388 /* Stash the conn and ire ptr info. for IP */ 389 SCTP_STASH_IPINFO(mp, fp->ire); 390 391 return (mp); 392 } 393 394 /* 395 * Notify upper layers about preferred write offset, write size. 396 */ 397 void 398 sctp_set_ulp_prop(sctp_t *sctp) 399 { 400 int hdrlen; 401 struct sock_proto_props sopp; 402 403 sctp_stack_t *sctps = sctp->sctp_sctps; 404 405 if (sctp->sctp_current->isv4) { 406 hdrlen = sctp->sctp_hdr_len; 407 } else { 408 hdrlen = sctp->sctp_hdr6_len; 409 } 410 ASSERT(sctp->sctp_ulpd); 411 412 ASSERT(sctp->sctp_current->sfa_pmss == sctp->sctp_mss); 413 bzero(&sopp, sizeof (sopp)); 414 sopp.sopp_flags = SOCKOPT_MAXBLK|SOCKOPT_WROFF; 415 sopp.sopp_wroff = sctps->sctps_wroff_xtra + hdrlen + 416 sizeof (sctp_data_hdr_t); 417 sopp.sopp_maxblk = sctp->sctp_mss - sizeof (sctp_data_hdr_t); 418 sctp->sctp_ulp_prop(sctp->sctp_ulpd, &sopp); 419 } 420 421 void 422 sctp_set_iplen(sctp_t *sctp, mblk_t *mp) 423 { 424 uint16_t sum = 0; 425 ipha_t *iph; 426 ip6_t *ip6h; 427 mblk_t *pmp = mp; 428 boolean_t isv4; 429 430 isv4 = (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 431 for (; pmp; pmp = pmp->b_cont) 432 sum += pmp->b_wptr - pmp->b_rptr; 433 434 if (isv4) { 435 iph = (ipha_t *)mp->b_rptr; 436 iph->ipha_length = htons(sum); 437 } else { 438 ip6h = (ip6_t *)mp->b_rptr; 439 /* 440 * If an ip6i_t is present, the real IPv6 header 441 * immediately follows. 442 */ 443 if (ip6h->ip6_nxt == IPPROTO_RAW) 444 ip6h = (ip6_t *)&ip6h[1]; 445 ip6h->ip6_plen = htons(sum - ((char *)&sctp->sctp_ip6h[1] - 446 sctp->sctp_iphc6)); 447 } 448 } 449 450 int 451 sctp_compare_faddrsets(sctp_faddr_t *a1, sctp_faddr_t *a2) 452 { 453 int na1 = 0; 454 int overlap = 0; 455 int equal = 1; 456 int onematch; 457 sctp_faddr_t *fp1, *fp2; 458 459 for (fp1 = a1; fp1; fp1 = fp1->next) { 460 onematch = 0; 461 for (fp2 = a2; fp2; fp2 = fp2->next) { 462 if (IN6_ARE_ADDR_EQUAL(&fp1->faddr, &fp2->faddr)) { 463 overlap++; 464 onematch = 1; 465 break; 466 } 467 if (!onematch) { 468 equal = 0; 469 } 470 } 471 na1++; 472 } 473 474 if (equal) { 475 return (SCTP_ADDR_EQUAL); 476 } 477 if (overlap == na1) { 478 return (SCTP_ADDR_SUBSET); 479 } 480 if (overlap) { 481 return (SCTP_ADDR_OVERLAP); 482 } 483 return (SCTP_ADDR_DISJOINT); 484 } 485 486 /* 487 * Returns 0 on success, ENOMEM on memory allocation failure, EHOSTUNREACH 488 * if the connection credentials fail remote host accreditation or 489 * if the new destination does not support the previously established 490 * connection security label. If sleep is true, this function should 491 * never fail for a memory allocation failure. The boolean parameter 492 * "first" decides whether the newly created faddr structure should be 493 * added at the beginning of the list or at the end. 494 * 495 * Note: caller must hold conn fanout lock. 496 */ 497 int 498 sctp_add_faddr(sctp_t *sctp, in6_addr_t *addr, int sleep, boolean_t first) 499 { 500 sctp_faddr_t *faddr; 501 mblk_t *timer_mp; 502 int err; 503 504 if (is_system_labeled()) { 505 cred_t *effective_cred; 506 507 /* 508 * Verify the destination is allowed to receive packets 509 * at the security label of the connection we are initiating. 510 * 511 * tsol_check_dest() will create a new effective cred for 512 * this connection with a modified label or label flags only 513 * if there are changes from the original cred. 514 * 515 * conn_effective_cred may be non-NULL if a previous 516 * faddr was already added or if this is a server 517 * accepting a connection on a multi-label port. 518 * 519 * Accept whatever label we get if this is the first 520 * destination address for this connection. The security 521 * label and label flags must match any previuous settings 522 * for all subsequent destination addresses. 523 */ 524 if (IN6_IS_ADDR_V4MAPPED(addr)) { 525 uint32_t dst; 526 IN6_V4MAPPED_TO_IPADDR(addr, dst); 527 err = tsol_check_dest(CONN_CRED(sctp->sctp_connp), 528 &dst, IPV4_VERSION, sctp->sctp_mac_exempt, 529 &effective_cred); 530 } else { 531 err = tsol_check_dest(CONN_CRED(sctp->sctp_connp), 532 addr, IPV6_VERSION, sctp->sctp_mac_exempt, 533 &effective_cred); 534 } 535 if (err != 0) 536 return (err); 537 if (sctp->sctp_faddrs == NULL && 538 sctp->sctp_connp->conn_effective_cred == NULL) { 539 sctp->sctp_connp->conn_effective_cred = effective_cred; 540 } else if (effective_cred != NULL) { 541 crfree(effective_cred); 542 return (EHOSTUNREACH); 543 } 544 } 545 546 if ((faddr = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep)) == NULL) 547 return (ENOMEM); 548 timer_mp = sctp_timer_alloc((sctp), sctp_rexmit_timer, sleep); 549 if (timer_mp == NULL) { 550 kmem_cache_free(sctp_kmem_faddr_cache, faddr); 551 return (ENOMEM); 552 } 553 ((sctpt_t *)(timer_mp->b_rptr))->sctpt_faddr = faddr; 554 555 sctp_init_faddr(sctp, faddr, addr, timer_mp); 556 557 /* Check for subnet broadcast. */ 558 if (faddr->ire != NULL && faddr->ire->ire_type & IRE_BROADCAST) { 559 IRE_REFRELE_NOTR(faddr->ire); 560 sctp_timer_free(timer_mp); 561 faddr->timer_mp = NULL; 562 kmem_cache_free(sctp_kmem_faddr_cache, faddr); 563 return (EADDRNOTAVAIL); 564 } 565 ASSERT(faddr->next == NULL); 566 567 if (sctp->sctp_faddrs == NULL) { 568 ASSERT(sctp->sctp_lastfaddr == NULL); 569 /* only element on list; first and last are same */ 570 sctp->sctp_faddrs = sctp->sctp_lastfaddr = faddr; 571 } else if (first) { 572 ASSERT(sctp->sctp_lastfaddr != NULL); 573 faddr->next = sctp->sctp_faddrs; 574 sctp->sctp_faddrs = faddr; 575 } else { 576 sctp->sctp_lastfaddr->next = faddr; 577 sctp->sctp_lastfaddr = faddr; 578 } 579 sctp->sctp_nfaddrs++; 580 581 return (0); 582 } 583 584 sctp_faddr_t * 585 sctp_lookup_faddr(sctp_t *sctp, in6_addr_t *addr) 586 { 587 sctp_faddr_t *fp; 588 589 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { 590 if (IN6_ARE_ADDR_EQUAL(&fp->faddr, addr)) 591 break; 592 } 593 594 return (fp); 595 } 596 597 sctp_faddr_t * 598 sctp_lookup_faddr_nosctp(sctp_faddr_t *fp, in6_addr_t *addr) 599 { 600 for (; fp; fp = fp->next) { 601 if (IN6_ARE_ADDR_EQUAL(&fp->faddr, addr)) { 602 break; 603 } 604 } 605 606 return (fp); 607 } 608 609 /* 610 * To change the currently used peer address to the specified one. 611 */ 612 void 613 sctp_set_faddr_current(sctp_t *sctp, sctp_faddr_t *fp) 614 { 615 /* Now setup the composite header. */ 616 if (fp->isv4) { 617 IN6_V4MAPPED_TO_IPADDR(&fp->faddr, 618 sctp->sctp_ipha->ipha_dst); 619 IN6_V4MAPPED_TO_IPADDR(&fp->saddr, sctp->sctp_ipha->ipha_src); 620 /* update don't fragment bit */ 621 if (fp->df) { 622 sctp->sctp_ipha->ipha_fragment_offset_and_flags = 623 htons(IPH_DF); 624 } else { 625 sctp->sctp_ipha->ipha_fragment_offset_and_flags = 0; 626 } 627 } else { 628 sctp->sctp_ip6h->ip6_dst = fp->faddr; 629 sctp->sctp_ip6h->ip6_src = fp->saddr; 630 } 631 632 sctp->sctp_current = fp; 633 sctp->sctp_mss = fp->sfa_pmss; 634 635 /* Update the uppper layer for the change. */ 636 if (!SCTP_IS_DETACHED(sctp)) 637 sctp_set_ulp_prop(sctp); 638 } 639 640 void 641 sctp_redo_faddr_srcs(sctp_t *sctp) 642 { 643 sctp_faddr_t *fp; 644 645 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { 646 sctp_get_ire(sctp, fp); 647 } 648 } 649 650 void 651 sctp_faddr_alive(sctp_t *sctp, sctp_faddr_t *fp) 652 { 653 int64_t now = lbolt64; 654 655 fp->strikes = 0; 656 sctp->sctp_strikes = 0; 657 fp->lastactive = now; 658 fp->hb_expiry = now + SET_HB_INTVL(fp); 659 fp->hb_pending = B_FALSE; 660 if (fp->state != SCTP_FADDRS_ALIVE) { 661 fp->state = SCTP_FADDRS_ALIVE; 662 sctp_intf_event(sctp, fp->faddr, SCTP_ADDR_AVAILABLE, 0); 663 /* Should have a full IRE now */ 664 sctp_get_ire(sctp, fp); 665 666 /* 667 * If this is the primary, switch back to it now. And 668 * we probably want to reset the source addr used to reach 669 * it. 670 */ 671 if (fp == sctp->sctp_primary) { 672 ASSERT(fp->state != SCTP_FADDRS_UNREACH); 673 sctp_set_faddr_current(sctp, fp); 674 return; 675 } 676 } 677 } 678 679 int 680 sctp_is_a_faddr_clean(sctp_t *sctp) 681 { 682 sctp_faddr_t *fp; 683 684 for (fp = sctp->sctp_faddrs; fp; fp = fp->next) { 685 if (fp->state == SCTP_FADDRS_ALIVE && fp->strikes == 0) { 686 return (1); 687 } 688 } 689 690 return (0); 691 } 692 693 /* 694 * Returns 0 if there is at leave one other active faddr, -1 if there 695 * are none. If there are none left, faddr_dead() will start killing the 696 * association. 697 * If the downed faddr was the current faddr, a new current faddr 698 * will be chosen. 699 */ 700 int 701 sctp_faddr_dead(sctp_t *sctp, sctp_faddr_t *fp, int newstate) 702 { 703 sctp_faddr_t *ofp; 704 sctp_stack_t *sctps = sctp->sctp_sctps; 705 706 if (fp->state == SCTP_FADDRS_ALIVE) { 707 sctp_intf_event(sctp, fp->faddr, SCTP_ADDR_UNREACHABLE, 0); 708 } 709 fp->state = newstate; 710 711 dprint(1, ("sctp_faddr_dead: %x:%x:%x:%x down (state=%d)\n", 712 SCTP_PRINTADDR(fp->faddr), newstate)); 713 714 if (fp == sctp->sctp_current) { 715 /* Current faddr down; need to switch it */ 716 sctp->sctp_current = NULL; 717 } 718 719 /* Find next alive faddr */ 720 ofp = fp; 721 for (fp = fp->next; fp != NULL; fp = fp->next) { 722 if (fp->state == SCTP_FADDRS_ALIVE) { 723 break; 724 } 725 } 726 727 if (fp == NULL) { 728 /* Continue from beginning of list */ 729 for (fp = sctp->sctp_faddrs; fp != ofp; fp = fp->next) { 730 if (fp->state == SCTP_FADDRS_ALIVE) { 731 break; 732 } 733 } 734 } 735 736 /* 737 * Find a new fp, so if the current faddr is dead, use the new fp 738 * as the current one. 739 */ 740 if (fp != ofp) { 741 if (sctp->sctp_current == NULL) { 742 dprint(1, ("sctp_faddr_dead: failover->%x:%x:%x:%x\n", 743 SCTP_PRINTADDR(fp->faddr))); 744 /* 745 * Note that we don't need to reset the source addr 746 * of the new fp. 747 */ 748 sctp_set_faddr_current(sctp, fp); 749 } 750 return (0); 751 } 752 753 754 /* All faddrs are down; kill the association */ 755 dprint(1, ("sctp_faddr_dead: all faddrs down, killing assoc\n")); 756 BUMP_MIB(&sctps->sctps_mib, sctpAborted); 757 sctp_assoc_event(sctp, sctp->sctp_state < SCTPS_ESTABLISHED ? 758 SCTP_CANT_STR_ASSOC : SCTP_COMM_LOST, 0, NULL); 759 sctp_clean_death(sctp, sctp->sctp_client_errno ? 760 sctp->sctp_client_errno : ETIMEDOUT); 761 762 return (-1); 763 } 764 765 sctp_faddr_t * 766 sctp_rotate_faddr(sctp_t *sctp, sctp_faddr_t *ofp) 767 { 768 sctp_faddr_t *nfp = NULL; 769 770 if (ofp == NULL) { 771 ofp = sctp->sctp_current; 772 } 773 774 /* Find the next live one */ 775 for (nfp = ofp->next; nfp != NULL; nfp = nfp->next) { 776 if (nfp->state == SCTP_FADDRS_ALIVE) { 777 break; 778 } 779 } 780 781 if (nfp == NULL) { 782 /* Continue from beginning of list */ 783 for (nfp = sctp->sctp_faddrs; nfp != ofp; nfp = nfp->next) { 784 if (nfp->state == SCTP_FADDRS_ALIVE) { 785 break; 786 } 787 } 788 } 789 790 /* 791 * nfp could only be NULL if all faddrs are down, and when 792 * this happens, faddr_dead() should have killed the 793 * association. Hence this assertion... 794 */ 795 ASSERT(nfp != NULL); 796 return (nfp); 797 } 798 799 void 800 sctp_unlink_faddr(sctp_t *sctp, sctp_faddr_t *fp) 801 { 802 sctp_faddr_t *fpp; 803 804 if (!sctp->sctp_faddrs) { 805 return; 806 } 807 808 if (fp->timer_mp != NULL) { 809 sctp_timer_free(fp->timer_mp); 810 fp->timer_mp = NULL; 811 fp->timer_running = 0; 812 } 813 if (fp->rc_timer_mp != NULL) { 814 sctp_timer_free(fp->rc_timer_mp); 815 fp->rc_timer_mp = NULL; 816 fp->rc_timer_running = 0; 817 } 818 if (fp->ire != NULL) { 819 IRE_REFRELE_NOTR(fp->ire); 820 fp->ire = NULL; 821 } 822 823 if (fp == sctp->sctp_faddrs) { 824 goto gotit; 825 } 826 827 for (fpp = sctp->sctp_faddrs; fpp->next != fp; fpp = fpp->next) 828 ; 829 830 gotit: 831 ASSERT(sctp->sctp_conn_tfp != NULL); 832 mutex_enter(&sctp->sctp_conn_tfp->tf_lock); 833 if (fp == sctp->sctp_faddrs) { 834 sctp->sctp_faddrs = fp->next; 835 } else { 836 fpp->next = fp->next; 837 } 838 mutex_exit(&sctp->sctp_conn_tfp->tf_lock); 839 /* XXX faddr2ire? */ 840 kmem_cache_free(sctp_kmem_faddr_cache, fp); 841 sctp->sctp_nfaddrs--; 842 } 843 844 void 845 sctp_zap_faddrs(sctp_t *sctp, int caller_holds_lock) 846 { 847 sctp_faddr_t *fp, *fpn; 848 849 if (sctp->sctp_faddrs == NULL) { 850 ASSERT(sctp->sctp_lastfaddr == NULL); 851 return; 852 } 853 854 ASSERT(sctp->sctp_lastfaddr != NULL); 855 sctp->sctp_lastfaddr = NULL; 856 sctp->sctp_current = NULL; 857 sctp->sctp_primary = NULL; 858 859 sctp_free_faddr_timers(sctp); 860 861 if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) { 862 /* in conn fanout; need to hold lock */ 863 mutex_enter(&sctp->sctp_conn_tfp->tf_lock); 864 } 865 866 for (fp = sctp->sctp_faddrs; fp; fp = fpn) { 867 fpn = fp->next; 868 if (fp->ire != NULL) 869 IRE_REFRELE_NOTR(fp->ire); 870 kmem_cache_free(sctp_kmem_faddr_cache, fp); 871 sctp->sctp_nfaddrs--; 872 } 873 874 sctp->sctp_faddrs = NULL; 875 ASSERT(sctp->sctp_nfaddrs == 0); 876 if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) { 877 mutex_exit(&sctp->sctp_conn_tfp->tf_lock); 878 } 879 880 } 881 882 void 883 sctp_zap_addrs(sctp_t *sctp) 884 { 885 sctp_zap_faddrs(sctp, 0); 886 sctp_free_saddrs(sctp); 887 } 888 889 /* 890 * Initialize the IPv4 header. Loses any record of any IP options. 891 */ 892 int 893 sctp_header_init_ipv4(sctp_t *sctp, int sleep) 894 { 895 sctp_hdr_t *sctph; 896 sctp_stack_t *sctps = sctp->sctp_sctps; 897 898 /* 899 * This is a simple initialization. If there's 900 * already a template, it should never be too small, 901 * so reuse it. Otherwise, allocate space for the new one. 902 */ 903 if (sctp->sctp_iphc != NULL) { 904 ASSERT(sctp->sctp_iphc_len >= SCTP_MAX_COMBINED_HEADER_LENGTH); 905 bzero(sctp->sctp_iphc, sctp->sctp_iphc_len); 906 } else { 907 sctp->sctp_iphc_len = SCTP_MAX_COMBINED_HEADER_LENGTH; 908 sctp->sctp_iphc = kmem_zalloc(sctp->sctp_iphc_len, sleep); 909 if (sctp->sctp_iphc == NULL) { 910 sctp->sctp_iphc_len = 0; 911 return (ENOMEM); 912 } 913 } 914 915 sctp->sctp_ipha = (ipha_t *)sctp->sctp_iphc; 916 917 sctp->sctp_hdr_len = sizeof (ipha_t) + sizeof (sctp_hdr_t); 918 sctp->sctp_ip_hdr_len = sizeof (ipha_t); 919 sctp->sctp_ipha->ipha_length = htons(sizeof (ipha_t) + 920 sizeof (sctp_hdr_t)); 921 sctp->sctp_ipha->ipha_version_and_hdr_length = 922 (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 923 924 /* 925 * These two fields should be zero, and are already set above. 926 * 927 * sctp->sctp_ipha->ipha_ident, 928 * sctp->sctp_ipha->ipha_fragment_offset_and_flags. 929 */ 930 931 sctp->sctp_ipha->ipha_ttl = sctps->sctps_ipv4_ttl; 932 sctp->sctp_ipha->ipha_protocol = IPPROTO_SCTP; 933 934 sctph = (sctp_hdr_t *)(sctp->sctp_iphc + sizeof (ipha_t)); 935 sctp->sctp_sctph = sctph; 936 937 return (0); 938 } 939 940 /* 941 * Update sctp_sticky_hdrs based on sctp_sticky_ipp. 942 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 943 * headers, and the maximum size sctp header (to avoid reallocation 944 * on the fly for additional sctp options). 945 * Returns failure if can't allocate memory. 946 */ 947 int 948 sctp_build_hdrs(sctp_t *sctp) 949 { 950 char *hdrs; 951 uint_t hdrs_len; 952 ip6i_t *ip6i; 953 char buf[SCTP_MAX_HDR_LENGTH]; 954 ip6_pkt_t *ipp = &sctp->sctp_sticky_ipp; 955 in6_addr_t src; 956 in6_addr_t dst; 957 sctp_stack_t *sctps = sctp->sctp_sctps; 958 959 /* 960 * save the existing sctp header and source/dest IP addresses 961 */ 962 bcopy(sctp->sctp_sctph6, buf, sizeof (sctp_hdr_t)); 963 src = sctp->sctp_ip6h->ip6_src; 964 dst = sctp->sctp_ip6h->ip6_dst; 965 hdrs_len = ip_total_hdrs_len_v6(ipp) + SCTP_MAX_HDR_LENGTH; 966 ASSERT(hdrs_len != 0); 967 if (hdrs_len > sctp->sctp_iphc6_len) { 968 /* Need to reallocate */ 969 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 970 if (hdrs == NULL) 971 return (ENOMEM); 972 973 if (sctp->sctp_iphc6_len != 0) 974 kmem_free(sctp->sctp_iphc6, sctp->sctp_iphc6_len); 975 sctp->sctp_iphc6 = hdrs; 976 sctp->sctp_iphc6_len = hdrs_len; 977 } 978 ip_build_hdrs_v6((uchar_t *)sctp->sctp_iphc6, 979 hdrs_len - SCTP_MAX_HDR_LENGTH, ipp, IPPROTO_SCTP); 980 981 /* Set header fields not in ipp */ 982 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 983 ip6i = (ip6i_t *)sctp->sctp_iphc6; 984 sctp->sctp_ip6h = (ip6_t *)&ip6i[1]; 985 } else { 986 sctp->sctp_ip6h = (ip6_t *)sctp->sctp_iphc6; 987 } 988 /* 989 * sctp->sctp_ip_hdr_len will include ip6i_t if there is one. 990 */ 991 sctp->sctp_ip_hdr6_len = hdrs_len - SCTP_MAX_HDR_LENGTH; 992 sctp->sctp_sctph6 = (sctp_hdr_t *)(sctp->sctp_iphc6 + 993 sctp->sctp_ip_hdr6_len); 994 sctp->sctp_hdr6_len = sctp->sctp_ip_hdr6_len + sizeof (sctp_hdr_t); 995 996 bcopy(buf, sctp->sctp_sctph6, sizeof (sctp_hdr_t)); 997 998 sctp->sctp_ip6h->ip6_src = src; 999 sctp->sctp_ip6h->ip6_dst = dst; 1000 /* 1001 * If the hoplimit was not set by ip_build_hdrs_v6(), we need to 1002 * set it to the default value for SCTP. 1003 */ 1004 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 1005 sctp->sctp_ip6h->ip6_hops = sctps->sctps_ipv6_hoplimit; 1006 /* 1007 * If we're setting extension headers after a connection 1008 * has been established, and if we have a routing header 1009 * among the extension headers, call ip_massage_options_v6 to 1010 * manipulate the routing header/ip6_dst set the checksum 1011 * difference in the sctp header template. 1012 * (This happens in sctp_connect_ipv6 if the routing header 1013 * is set prior to the connect.) 1014 */ 1015 1016 if ((sctp->sctp_state >= SCTPS_COOKIE_WAIT) && 1017 (sctp->sctp_sticky_ipp.ipp_fields & IPPF_RTHDR)) { 1018 ip6_rthdr_t *rth; 1019 1020 rth = ip_find_rthdr_v6(sctp->sctp_ip6h, 1021 (uint8_t *)sctp->sctp_sctph6); 1022 if (rth != NULL) { 1023 (void) ip_massage_options_v6(sctp->sctp_ip6h, rth, 1024 sctps->sctps_netstack); 1025 } 1026 } 1027 return (0); 1028 } 1029 1030 /* 1031 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 1032 */ 1033 int 1034 sctp_header_init_ipv6(sctp_t *sctp, int sleep) 1035 { 1036 sctp_hdr_t *sctph; 1037 sctp_stack_t *sctps = sctp->sctp_sctps; 1038 1039 /* 1040 * This is a simple initialization. If there's 1041 * already a template, it should never be too small, 1042 * so reuse it. Otherwise, allocate space for the new one. 1043 * Ensure that there is enough space to "downgrade" the sctp_t 1044 * to an IPv4 sctp_t. This requires having space for a full load 1045 * of IPv4 options 1046 */ 1047 if (sctp->sctp_iphc6 != NULL) { 1048 ASSERT(sctp->sctp_iphc6_len >= 1049 SCTP_MAX_COMBINED_HEADER_LENGTH); 1050 bzero(sctp->sctp_iphc6, sctp->sctp_iphc6_len); 1051 } else { 1052 sctp->sctp_iphc6_len = SCTP_MAX_COMBINED_HEADER_LENGTH; 1053 sctp->sctp_iphc6 = kmem_zalloc(sctp->sctp_iphc_len, sleep); 1054 if (sctp->sctp_iphc6 == NULL) { 1055 sctp->sctp_iphc6_len = 0; 1056 return (ENOMEM); 1057 } 1058 } 1059 sctp->sctp_hdr6_len = IPV6_HDR_LEN + sizeof (sctp_hdr_t); 1060 sctp->sctp_ip_hdr6_len = IPV6_HDR_LEN; 1061 sctp->sctp_ip6h = (ip6_t *)sctp->sctp_iphc6; 1062 1063 /* Initialize the header template */ 1064 1065 sctp->sctp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 1066 sctp->sctp_ip6h->ip6_plen = ntohs(sizeof (sctp_hdr_t)); 1067 sctp->sctp_ip6h->ip6_nxt = IPPROTO_SCTP; 1068 sctp->sctp_ip6h->ip6_hops = sctps->sctps_ipv6_hoplimit; 1069 1070 sctph = (sctp_hdr_t *)(sctp->sctp_iphc6 + IPV6_HDR_LEN); 1071 sctp->sctp_sctph6 = sctph; 1072 1073 return (0); 1074 } 1075 1076 static int 1077 sctp_v4_label(sctp_t *sctp) 1078 { 1079 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 1080 const cred_t *cr = CONN_CRED(sctp->sctp_connp); 1081 int added; 1082 1083 if (tsol_compute_label(cr, sctp->sctp_ipha->ipha_dst, optbuf, 1084 sctp->sctp_sctps->sctps_netstack->netstack_ip) != 0) 1085 return (EACCES); 1086 1087 added = tsol_remove_secopt(sctp->sctp_ipha, sctp->sctp_hdr_len); 1088 if (added == -1) 1089 return (EACCES); 1090 sctp->sctp_hdr_len += added; 1091 sctp->sctp_sctph = (sctp_hdr_t *)((uchar_t *)sctp->sctp_sctph + added); 1092 sctp->sctp_ip_hdr_len += added; 1093 if ((sctp->sctp_v4label_len = optbuf[IPOPT_OLEN]) != 0) { 1094 sctp->sctp_v4label_len = (sctp->sctp_v4label_len + 3) & ~3; 1095 added = tsol_prepend_option(optbuf, sctp->sctp_ipha, 1096 sctp->sctp_hdr_len); 1097 if (added == -1) 1098 return (EACCES); 1099 sctp->sctp_hdr_len += added; 1100 sctp->sctp_sctph = (sctp_hdr_t *)((uchar_t *)sctp->sctp_sctph + 1101 added); 1102 sctp->sctp_ip_hdr_len += added; 1103 } 1104 return (0); 1105 } 1106 1107 static int 1108 sctp_v6_label(sctp_t *sctp) 1109 { 1110 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 1111 const cred_t *cr = CONN_CRED(sctp->sctp_connp); 1112 1113 if (tsol_compute_label_v6(cr, &sctp->sctp_ip6h->ip6_dst, optbuf, 1114 sctp->sctp_sctps->sctps_netstack->netstack_ip) != 0) 1115 return (EACCES); 1116 if (tsol_update_sticky(&sctp->sctp_sticky_ipp, &sctp->sctp_v6label_len, 1117 optbuf) != 0) 1118 return (EACCES); 1119 if (sctp_build_hdrs(sctp) != 0) 1120 return (EACCES); 1121 return (0); 1122 } 1123 1124 /* 1125 * XXX implement more sophisticated logic 1126 */ 1127 int 1128 sctp_set_hdraddrs(sctp_t *sctp) 1129 { 1130 sctp_faddr_t *fp; 1131 int gotv4 = 0; 1132 int gotv6 = 0; 1133 1134 ASSERT(sctp->sctp_faddrs != NULL); 1135 ASSERT(sctp->sctp_nsaddrs > 0); 1136 1137 /* Set up using the primary first */ 1138 if (IN6_IS_ADDR_V4MAPPED(&sctp->sctp_primary->faddr)) { 1139 IN6_V4MAPPED_TO_IPADDR(&sctp->sctp_primary->faddr, 1140 sctp->sctp_ipha->ipha_dst); 1141 /* saddr may be unspec; make_mp() will handle this */ 1142 IN6_V4MAPPED_TO_IPADDR(&sctp->sctp_primary->saddr, 1143 sctp->sctp_ipha->ipha_src); 1144 if (!is_system_labeled() || sctp_v4_label(sctp) == 0) { 1145 gotv4 = 1; 1146 if (sctp->sctp_ipversion == IPV4_VERSION) { 1147 goto copyports; 1148 } 1149 } 1150 } else { 1151 sctp->sctp_ip6h->ip6_dst = sctp->sctp_primary->faddr; 1152 /* saddr may be unspec; make_mp() will handle this */ 1153 sctp->sctp_ip6h->ip6_src = sctp->sctp_primary->saddr; 1154 if (!is_system_labeled() || sctp_v6_label(sctp) == 0) 1155 gotv6 = 1; 1156 } 1157 1158 for (fp = sctp->sctp_faddrs; fp; fp = fp->next) { 1159 if (!gotv4 && IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { 1160 IN6_V4MAPPED_TO_IPADDR(&fp->faddr, 1161 sctp->sctp_ipha->ipha_dst); 1162 /* copy in the faddr_t's saddr */ 1163 IN6_V4MAPPED_TO_IPADDR(&fp->saddr, 1164 sctp->sctp_ipha->ipha_src); 1165 if (!is_system_labeled() || sctp_v4_label(sctp) == 0) { 1166 gotv4 = 1; 1167 if (sctp->sctp_ipversion == IPV4_VERSION || 1168 gotv6) { 1169 break; 1170 } 1171 } 1172 } else if (!gotv6 && !IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { 1173 sctp->sctp_ip6h->ip6_dst = fp->faddr; 1174 /* copy in the faddr_t's saddr */ 1175 sctp->sctp_ip6h->ip6_src = fp->saddr; 1176 if (!is_system_labeled() || sctp_v6_label(sctp) == 0) { 1177 gotv6 = 1; 1178 if (gotv4) 1179 break; 1180 } 1181 } 1182 } 1183 1184 copyports: 1185 if (!gotv4 && !gotv6) 1186 return (EACCES); 1187 1188 /* copy in the ports for good measure */ 1189 sctp->sctp_sctph->sh_sport = sctp->sctp_lport; 1190 sctp->sctp_sctph->sh_dport = sctp->sctp_fport; 1191 1192 sctp->sctp_sctph6->sh_sport = sctp->sctp_lport; 1193 sctp->sctp_sctph6->sh_dport = sctp->sctp_fport; 1194 return (0); 1195 } 1196 1197 /* 1198 * got_errchunk is set B_TRUE only if called from validate_init_params(), when 1199 * an ERROR chunk is already prepended the size of which needs updating for 1200 * additional unrecognized parameters. Other callers either prepend the ERROR 1201 * chunk with the correct size after calling this function, or they are calling 1202 * to add an invalid parameter to an INIT_ACK chunk, in that case no ERROR chunk 1203 * exists, the CAUSE blocks go into the INIT_ACK directly. 1204 * 1205 * *errmp will be non-NULL both when adding an additional CAUSE block to an 1206 * existing prepended COOKIE ERROR chunk (processing params of an INIT_ACK), 1207 * and when adding unrecognized parameters after the first, to an INIT_ACK 1208 * (processing params of an INIT chunk). 1209 */ 1210 void 1211 sctp_add_unrec_parm(sctp_parm_hdr_t *uph, mblk_t **errmp, 1212 boolean_t got_errchunk) 1213 { 1214 mblk_t *mp; 1215 sctp_parm_hdr_t *ph; 1216 size_t len; 1217 int pad; 1218 sctp_chunk_hdr_t *ecp; 1219 1220 len = sizeof (*ph) + ntohs(uph->sph_len); 1221 if ((pad = len % SCTP_ALIGN) != 0) { 1222 pad = SCTP_ALIGN - pad; 1223 len += pad; 1224 } 1225 mp = allocb(len, BPRI_MED); 1226 if (mp == NULL) { 1227 return; 1228 } 1229 1230 ph = (sctp_parm_hdr_t *)(mp->b_rptr); 1231 ph->sph_type = htons(PARM_UNRECOGNIZED); 1232 ph->sph_len = htons(len - pad); 1233 1234 /* copy in the unrecognized parameter */ 1235 bcopy(uph, ph + 1, ntohs(uph->sph_len)); 1236 1237 if (pad != 0) 1238 bzero((mp->b_rptr + len - pad), pad); 1239 1240 mp->b_wptr = mp->b_rptr + len; 1241 if (*errmp != NULL) { 1242 /* 1243 * Update total length if an ERROR chunk, then link 1244 * this CAUSE block to the possible chain of CAUSE 1245 * blocks attached to the ERROR chunk or INIT_ACK 1246 * being created. 1247 */ 1248 if (got_errchunk) { 1249 /* ERROR chunk already prepended */ 1250 ecp = (sctp_chunk_hdr_t *)((*errmp)->b_rptr); 1251 ecp->sch_len = htons(ntohs(ecp->sch_len) + len); 1252 } 1253 linkb(*errmp, mp); 1254 } else { 1255 *errmp = mp; 1256 } 1257 } 1258 1259 /* 1260 * o Bounds checking 1261 * o Updates remaining 1262 * o Checks alignment 1263 */ 1264 sctp_parm_hdr_t * 1265 sctp_next_parm(sctp_parm_hdr_t *current, ssize_t *remaining) 1266 { 1267 int pad; 1268 uint16_t len; 1269 1270 len = ntohs(current->sph_len); 1271 *remaining -= len; 1272 if (*remaining < sizeof (*current) || len < sizeof (*current)) { 1273 return (NULL); 1274 } 1275 if ((pad = len & (SCTP_ALIGN - 1)) != 0) { 1276 pad = SCTP_ALIGN - pad; 1277 *remaining -= pad; 1278 } 1279 /*LINTED pointer cast may result in improper alignment*/ 1280 current = (sctp_parm_hdr_t *)((char *)current + len + pad); 1281 return (current); 1282 } 1283 1284 /* 1285 * Sets the address parameters given in the INIT chunk into sctp's 1286 * faddrs; if psctp is non-NULL, copies psctp's saddrs. If there are 1287 * no address parameters in the INIT chunk, a single faddr is created 1288 * from the ip hdr at the beginning of pkt. 1289 * If there already are existing addresses hanging from sctp, merge 1290 * them in, if the old info contains addresses which are not present 1291 * in this new info, get rid of them, and clean the pointers if there's 1292 * messages which have this as their target address. 1293 * 1294 * We also re-adjust the source address list here since the list may 1295 * contain more than what is actually part of the association. If 1296 * we get here from sctp_send_cookie_echo(), we are on the active 1297 * side and psctp will be NULL and ich will be the INIT-ACK chunk. 1298 * If we get here from sctp_accept_comm(), ich will be the INIT chunk 1299 * and psctp will the listening endpoint. 1300 * 1301 * INIT processing: When processing the INIT we inherit the src address 1302 * list from the listener. For a loopback or linklocal association, we 1303 * delete the list and just take the address from the IP header (since 1304 * that's how we created the INIT-ACK). Additionally, for loopback we 1305 * ignore the address params in the INIT. For determining which address 1306 * types were sent in the INIT-ACK we follow the same logic as in 1307 * creating the INIT-ACK. We delete addresses of the type that are not 1308 * supported by the peer. 1309 * 1310 * INIT-ACK processing: When processing the INIT-ACK since we had not 1311 * included addr params for loopback or linklocal addresses when creating 1312 * the INIT, we just use the address from the IP header. Further, for 1313 * loopback we ignore the addr param list. We mark addresses of the 1314 * type not supported by the peer as unconfirmed. 1315 * 1316 * In case of INIT processing we look for supported address types in the 1317 * supported address param, if present. In both cases the address type in 1318 * the IP header is supported as well as types for addresses in the param 1319 * list, if any. 1320 * 1321 * Once we have the supported address types sctp_check_saddr() runs through 1322 * the source address list and deletes or marks as unconfirmed address of 1323 * types not supported by the peer. 1324 * 1325 * Returns 0 on success, sys errno on failure 1326 */ 1327 int 1328 sctp_get_addrparams(sctp_t *sctp, sctp_t *psctp, mblk_t *pkt, 1329 sctp_chunk_hdr_t *ich, uint_t *sctp_options) 1330 { 1331 sctp_init_chunk_t *init; 1332 ipha_t *iph; 1333 ip6_t *ip6h; 1334 in6_addr_t hdrsaddr[1]; 1335 in6_addr_t hdrdaddr[1]; 1336 sctp_parm_hdr_t *ph; 1337 ssize_t remaining; 1338 int isv4; 1339 int err; 1340 sctp_faddr_t *fp; 1341 int supp_af = 0; 1342 boolean_t check_saddr = B_TRUE; 1343 in6_addr_t curaddr; 1344 sctp_stack_t *sctps = sctp->sctp_sctps; 1345 1346 if (sctp_options != NULL) 1347 *sctp_options = 0; 1348 1349 /* extract the address from the IP header */ 1350 isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION); 1351 if (isv4) { 1352 iph = (ipha_t *)pkt->b_rptr; 1353 IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdrsaddr); 1354 IN6_IPADDR_TO_V4MAPPED(iph->ipha_dst, hdrdaddr); 1355 supp_af |= PARM_SUPP_V4; 1356 } else { 1357 ip6h = (ip6_t *)pkt->b_rptr; 1358 hdrsaddr[0] = ip6h->ip6_src; 1359 hdrdaddr[0] = ip6h->ip6_dst; 1360 supp_af |= PARM_SUPP_V6; 1361 } 1362 1363 /* 1364 * Unfortunately, we can't delay this because adding an faddr 1365 * looks for the presence of the source address (from the ire 1366 * for the faddr) in the source address list. We could have 1367 * delayed this if, say, this was a loopback/linklocal connection. 1368 * Now, we just end up nuking this list and taking the addr from 1369 * the IP header for loopback/linklocal. 1370 */ 1371 if (psctp != NULL && psctp->sctp_nsaddrs > 0) { 1372 ASSERT(sctp->sctp_nsaddrs == 0); 1373 1374 err = sctp_dup_saddrs(psctp, sctp, KM_NOSLEEP); 1375 if (err != 0) 1376 return (err); 1377 } 1378 /* 1379 * We will add the faddr before parsing the address list as this 1380 * might be a loopback connection and we would not have to 1381 * go through the list. 1382 * 1383 * Make sure the header's addr is in the list 1384 */ 1385 fp = sctp_lookup_faddr(sctp, hdrsaddr); 1386 if (fp == NULL) { 1387 /* not included; add it now */ 1388 err = sctp_add_faddr(sctp, hdrsaddr, KM_NOSLEEP, B_TRUE); 1389 if (err != 0) 1390 return (err); 1391 1392 /* sctp_faddrs will be the hdr addr */ 1393 fp = sctp->sctp_faddrs; 1394 } 1395 /* make the header addr the primary */ 1396 1397 if (cl_sctp_assoc_change != NULL && psctp == NULL) 1398 curaddr = sctp->sctp_current->faddr; 1399 1400 sctp->sctp_primary = fp; 1401 sctp->sctp_current = fp; 1402 sctp->sctp_mss = fp->sfa_pmss; 1403 1404 /* For loopback connections & linklocal get address from the header */ 1405 if (sctp->sctp_loopback || sctp->sctp_linklocal) { 1406 if (sctp->sctp_nsaddrs != 0) 1407 sctp_free_saddrs(sctp); 1408 if ((err = sctp_saddr_add_addr(sctp, hdrdaddr, 0)) != 0) 1409 return (err); 1410 /* For loopback ignore address list */ 1411 if (sctp->sctp_loopback) 1412 return (0); 1413 check_saddr = B_FALSE; 1414 } 1415 1416 /* Walk the params in the INIT [ACK], pulling out addr params */ 1417 remaining = ntohs(ich->sch_len) - sizeof (*ich) - 1418 sizeof (sctp_init_chunk_t); 1419 if (remaining < sizeof (*ph)) { 1420 if (check_saddr) { 1421 sctp_check_saddr(sctp, supp_af, psctp == NULL ? 1422 B_FALSE : B_TRUE, hdrdaddr); 1423 } 1424 ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL); 1425 return (0); 1426 } 1427 1428 init = (sctp_init_chunk_t *)(ich + 1); 1429 ph = (sctp_parm_hdr_t *)(init + 1); 1430 1431 /* params will have already been byteordered when validating */ 1432 while (ph != NULL) { 1433 if (ph->sph_type == htons(PARM_SUPP_ADDRS)) { 1434 int plen; 1435 uint16_t *p; 1436 uint16_t addrtype; 1437 1438 ASSERT(psctp != NULL); 1439 plen = ntohs(ph->sph_len); 1440 p = (uint16_t *)(ph + 1); 1441 while (plen > 0) { 1442 addrtype = ntohs(*p); 1443 switch (addrtype) { 1444 case PARM_ADDR6: 1445 supp_af |= PARM_SUPP_V6; 1446 break; 1447 case PARM_ADDR4: 1448 supp_af |= PARM_SUPP_V4; 1449 break; 1450 default: 1451 break; 1452 } 1453 p++; 1454 plen -= sizeof (*p); 1455 } 1456 } else if (ph->sph_type == htons(PARM_ADDR4)) { 1457 if (remaining >= PARM_ADDR4_LEN) { 1458 in6_addr_t addr; 1459 ipaddr_t ta; 1460 1461 supp_af |= PARM_SUPP_V4; 1462 /* 1463 * Screen out broad/multicasts & loopback. 1464 * If the endpoint only accepts v6 address, 1465 * go to the next one. 1466 * 1467 * Subnet broadcast check is done in 1468 * sctp_add_faddr(). If the address is 1469 * a broadcast address, it won't be added. 1470 */ 1471 bcopy(ph + 1, &ta, sizeof (ta)); 1472 if (ta == 0 || 1473 ta == INADDR_BROADCAST || 1474 ta == htonl(INADDR_LOOPBACK) || 1475 CLASSD(ta) || 1476 sctp->sctp_connp->conn_ipv6_v6only) { 1477 goto next; 1478 } 1479 IN6_INADDR_TO_V4MAPPED((struct in_addr *) 1480 (ph + 1), &addr); 1481 1482 /* Check for duplicate. */ 1483 if (sctp_lookup_faddr(sctp, &addr) != NULL) 1484 goto next; 1485 1486 /* OK, add it to the faddr set */ 1487 err = sctp_add_faddr(sctp, &addr, KM_NOSLEEP, 1488 B_FALSE); 1489 /* Something is wrong... Try the next one. */ 1490 if (err != 0) 1491 goto next; 1492 } 1493 } else if (ph->sph_type == htons(PARM_ADDR6) && 1494 sctp->sctp_family == AF_INET6) { 1495 /* An v4 socket should not take v6 addresses. */ 1496 if (remaining >= PARM_ADDR6_LEN) { 1497 in6_addr_t *addr6; 1498 1499 supp_af |= PARM_SUPP_V6; 1500 addr6 = (in6_addr_t *)(ph + 1); 1501 /* 1502 * Screen out link locals, mcast, loopback 1503 * and bogus v6 address. 1504 */ 1505 if (IN6_IS_ADDR_LINKLOCAL(addr6) || 1506 IN6_IS_ADDR_MULTICAST(addr6) || 1507 IN6_IS_ADDR_LOOPBACK(addr6) || 1508 IN6_IS_ADDR_V4MAPPED(addr6)) { 1509 goto next; 1510 } 1511 /* Check for duplicate. */ 1512 if (sctp_lookup_faddr(sctp, addr6) != NULL) 1513 goto next; 1514 1515 err = sctp_add_faddr(sctp, 1516 (in6_addr_t *)(ph + 1), KM_NOSLEEP, 1517 B_FALSE); 1518 /* Something is wrong... Try the next one. */ 1519 if (err != 0) 1520 goto next; 1521 } 1522 } else if (ph->sph_type == htons(PARM_FORWARD_TSN)) { 1523 if (sctp_options != NULL) 1524 *sctp_options |= SCTP_PRSCTP_OPTION; 1525 } /* else; skip */ 1526 1527 next: 1528 ph = sctp_next_parm(ph, &remaining); 1529 } 1530 if (check_saddr) { 1531 sctp_check_saddr(sctp, supp_af, psctp == NULL ? B_FALSE : 1532 B_TRUE, hdrdaddr); 1533 } 1534 ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL); 1535 /* 1536 * We have the right address list now, update clustering's 1537 * knowledge because when we sent the INIT we had just added 1538 * the address the INIT was sent to. 1539 */ 1540 if (psctp == NULL && cl_sctp_assoc_change != NULL) { 1541 uchar_t *alist; 1542 size_t asize; 1543 uchar_t *dlist; 1544 size_t dsize; 1545 1546 asize = sizeof (in6_addr_t) * sctp->sctp_nfaddrs; 1547 alist = kmem_alloc(asize, KM_NOSLEEP); 1548 if (alist == NULL) { 1549 SCTP_KSTAT(sctps, sctp_cl_assoc_change); 1550 return (ENOMEM); 1551 } 1552 /* 1553 * Just include the address the INIT was sent to in the 1554 * delete list and send the entire faddr list. We could 1555 * do it differently (i.e include all the addresses in the 1556 * add list even if it contains the original address OR 1557 * remove the original address from the add list etc.), but 1558 * this seems reasonable enough. 1559 */ 1560 dsize = sizeof (in6_addr_t); 1561 dlist = kmem_alloc(dsize, KM_NOSLEEP); 1562 if (dlist == NULL) { 1563 kmem_free(alist, asize); 1564 SCTP_KSTAT(sctps, sctp_cl_assoc_change); 1565 return (ENOMEM); 1566 } 1567 bcopy(&curaddr, dlist, sizeof (curaddr)); 1568 sctp_get_faddr_list(sctp, alist, asize); 1569 (*cl_sctp_assoc_change)(sctp->sctp_family, alist, asize, 1570 sctp->sctp_nfaddrs, dlist, dsize, 1, SCTP_CL_PADDR, 1571 (cl_sctp_handle_t)sctp); 1572 /* alist and dlist will be freed by the clustering module */ 1573 } 1574 return (0); 1575 } 1576 1577 /* 1578 * Returns 0 if the check failed and the restart should be refused, 1579 * 1 if the check succeeded. 1580 */ 1581 int 1582 sctp_secure_restart_check(mblk_t *pkt, sctp_chunk_hdr_t *ich, uint32_t ports, 1583 int sleep, sctp_stack_t *sctps) 1584 { 1585 sctp_faddr_t *fp, *fphead = NULL; 1586 sctp_parm_hdr_t *ph; 1587 ssize_t remaining; 1588 int isv4; 1589 ipha_t *iph; 1590 ip6_t *ip6h; 1591 in6_addr_t hdraddr[1]; 1592 int retval = 0; 1593 sctp_tf_t *tf; 1594 sctp_t *sctp; 1595 int compres; 1596 sctp_init_chunk_t *init; 1597 int nadded = 0; 1598 1599 /* extract the address from the IP header */ 1600 isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION); 1601 if (isv4) { 1602 iph = (ipha_t *)pkt->b_rptr; 1603 IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdraddr); 1604 } else { 1605 ip6h = (ip6_t *)pkt->b_rptr; 1606 hdraddr[0] = ip6h->ip6_src; 1607 } 1608 1609 /* Walk the params in the INIT [ACK], pulling out addr params */ 1610 remaining = ntohs(ich->sch_len) - sizeof (*ich) - 1611 sizeof (sctp_init_chunk_t); 1612 if (remaining < sizeof (*ph)) { 1613 /* no parameters; restart OK */ 1614 return (1); 1615 } 1616 init = (sctp_init_chunk_t *)(ich + 1); 1617 ph = (sctp_parm_hdr_t *)(init + 1); 1618 1619 while (ph != NULL) { 1620 sctp_faddr_t *fpa = NULL; 1621 1622 /* params will have already been byteordered when validating */ 1623 if (ph->sph_type == htons(PARM_ADDR4)) { 1624 if (remaining >= PARM_ADDR4_LEN) { 1625 in6_addr_t addr; 1626 IN6_INADDR_TO_V4MAPPED((struct in_addr *) 1627 (ph + 1), &addr); 1628 fpa = kmem_cache_alloc(sctp_kmem_faddr_cache, 1629 sleep); 1630 if (fpa == NULL) { 1631 goto done; 1632 } 1633 bzero(fpa, sizeof (*fpa)); 1634 fpa->faddr = addr; 1635 fpa->next = NULL; 1636 } 1637 } else if (ph->sph_type == htons(PARM_ADDR6)) { 1638 if (remaining >= PARM_ADDR6_LEN) { 1639 fpa = kmem_cache_alloc(sctp_kmem_faddr_cache, 1640 sleep); 1641 if (fpa == NULL) { 1642 goto done; 1643 } 1644 bzero(fpa, sizeof (*fpa)); 1645 bcopy(ph + 1, &fpa->faddr, 1646 sizeof (fpa->faddr)); 1647 fpa->next = NULL; 1648 } 1649 } 1650 /* link in the new addr, if it was an addr param */ 1651 if (fpa != NULL) { 1652 if (fphead == NULL) { 1653 fphead = fpa; 1654 } else { 1655 fpa->next = fphead; 1656 fphead = fpa; 1657 } 1658 } 1659 1660 ph = sctp_next_parm(ph, &remaining); 1661 } 1662 1663 if (fphead == NULL) { 1664 /* no addr parameters; restart OK */ 1665 return (1); 1666 } 1667 1668 /* 1669 * got at least one; make sure the header's addr is 1670 * in the list 1671 */ 1672 fp = sctp_lookup_faddr_nosctp(fphead, hdraddr); 1673 if (fp == NULL) { 1674 /* not included; add it now */ 1675 fp = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep); 1676 if (fp == NULL) { 1677 goto done; 1678 } 1679 bzero(fp, sizeof (*fp)); 1680 fp->faddr = *hdraddr; 1681 fp->next = fphead; 1682 fphead = fp; 1683 } 1684 1685 /* 1686 * Now, we can finally do the check: For each sctp instance 1687 * on the hash line for ports, compare its faddr set against 1688 * the new one. If the new one is a strict subset of any 1689 * existing sctp's faddrs, the restart is OK. However, if there 1690 * is an overlap, this could be an attack, so return failure. 1691 * If all sctp's faddrs are disjoint, this is a legitimate new 1692 * association. 1693 */ 1694 tf = &(sctps->sctps_conn_fanout[SCTP_CONN_HASH(sctps, ports)]); 1695 mutex_enter(&tf->tf_lock); 1696 1697 for (sctp = tf->tf_sctp; sctp; sctp = sctp->sctp_conn_hash_next) { 1698 if (ports != sctp->sctp_ports) { 1699 continue; 1700 } 1701 compres = sctp_compare_faddrsets(fphead, sctp->sctp_faddrs); 1702 if (compres <= SCTP_ADDR_SUBSET) { 1703 retval = 1; 1704 mutex_exit(&tf->tf_lock); 1705 goto done; 1706 } 1707 if (compres == SCTP_ADDR_OVERLAP) { 1708 dprint(1, 1709 ("new assoc from %x:%x:%x:%x overlaps with %p\n", 1710 SCTP_PRINTADDR(*hdraddr), (void *)sctp)); 1711 /* 1712 * While we still hold the lock, we need to 1713 * figure out which addresses have been 1714 * added so we can include them in the abort 1715 * we will send back. Since these faddrs will 1716 * never be used, we overload the rto field 1717 * here, setting it to 0 if the address was 1718 * not added, 1 if it was added. 1719 */ 1720 for (fp = fphead; fp; fp = fp->next) { 1721 if (sctp_lookup_faddr(sctp, &fp->faddr)) { 1722 fp->rto = 0; 1723 } else { 1724 fp->rto = 1; 1725 nadded++; 1726 } 1727 } 1728 mutex_exit(&tf->tf_lock); 1729 goto done; 1730 } 1731 } 1732 mutex_exit(&tf->tf_lock); 1733 1734 /* All faddrs are disjoint; legit new association */ 1735 retval = 1; 1736 1737 done: 1738 /* If are attempted adds, send back an abort listing the addrs */ 1739 if (nadded > 0) { 1740 void *dtail; 1741 size_t dlen; 1742 1743 dtail = kmem_alloc(PARM_ADDR6_LEN * nadded, KM_NOSLEEP); 1744 if (dtail == NULL) { 1745 goto cleanup; 1746 } 1747 1748 ph = dtail; 1749 dlen = 0; 1750 for (fp = fphead; fp; fp = fp->next) { 1751 if (fp->rto == 0) { 1752 continue; 1753 } 1754 if (IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { 1755 ipaddr_t addr4; 1756 1757 ph->sph_type = htons(PARM_ADDR4); 1758 ph->sph_len = htons(PARM_ADDR4_LEN); 1759 IN6_V4MAPPED_TO_IPADDR(&fp->faddr, addr4); 1760 ph++; 1761 bcopy(&addr4, ph, sizeof (addr4)); 1762 ph = (sctp_parm_hdr_t *) 1763 ((char *)ph + sizeof (addr4)); 1764 dlen += PARM_ADDR4_LEN; 1765 } else { 1766 ph->sph_type = htons(PARM_ADDR6); 1767 ph->sph_len = htons(PARM_ADDR6_LEN); 1768 ph++; 1769 bcopy(&fp->faddr, ph, sizeof (fp->faddr)); 1770 ph = (sctp_parm_hdr_t *) 1771 ((char *)ph + sizeof (fp->faddr)); 1772 dlen += PARM_ADDR6_LEN; 1773 } 1774 } 1775 1776 /* Send off the abort */ 1777 sctp_send_abort(sctp, sctp_init2vtag(ich), 1778 SCTP_ERR_RESTART_NEW_ADDRS, dtail, dlen, pkt, 0, B_TRUE); 1779 1780 kmem_free(dtail, PARM_ADDR6_LEN * nadded); 1781 } 1782 1783 cleanup: 1784 /* Clean up */ 1785 if (fphead) { 1786 sctp_faddr_t *fpn; 1787 for (fp = fphead; fp; fp = fpn) { 1788 fpn = fp->next; 1789 kmem_cache_free(sctp_kmem_faddr_cache, fp); 1790 } 1791 } 1792 1793 return (retval); 1794 } 1795 1796 /* 1797 * Reset any state related to transmitted chunks. 1798 */ 1799 void 1800 sctp_congest_reset(sctp_t *sctp) 1801 { 1802 sctp_faddr_t *fp; 1803 sctp_stack_t *sctps = sctp->sctp_sctps; 1804 mblk_t *mp; 1805 1806 for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { 1807 fp->ssthresh = sctps->sctps_initial_mtu; 1808 SET_CWND(fp, fp->sfa_pmss, sctps->sctps_slow_start_initial); 1809 fp->suna = 0; 1810 fp->pba = 0; 1811 } 1812 /* 1813 * Clean up the transmit list as well since we have reset accounting 1814 * on all the fps. Send event upstream, if required. 1815 */ 1816 while ((mp = sctp->sctp_xmit_head) != NULL) { 1817 sctp->sctp_xmit_head = mp->b_next; 1818 mp->b_next = NULL; 1819 if (sctp->sctp_xmit_head != NULL) 1820 sctp->sctp_xmit_head->b_prev = NULL; 1821 sctp_sendfail_event(sctp, mp, 0, B_TRUE); 1822 } 1823 sctp->sctp_xmit_head = NULL; 1824 sctp->sctp_xmit_tail = NULL; 1825 sctp->sctp_xmit_unacked = NULL; 1826 1827 sctp->sctp_unacked = 0; 1828 /* 1829 * Any control message as well. We will clean-up this list as well. 1830 * This contains any pending ASCONF request that we have queued/sent. 1831 * If we do get an ACK we will just drop it. However, given that 1832 * we are restarting chances are we aren't going to get any. 1833 */ 1834 if (sctp->sctp_cxmit_list != NULL) 1835 sctp_asconf_free_cxmit(sctp, NULL); 1836 sctp->sctp_cxmit_list = NULL; 1837 sctp->sctp_cchunk_pend = 0; 1838 1839 sctp->sctp_rexmitting = B_FALSE; 1840 sctp->sctp_rxt_nxttsn = 0; 1841 sctp->sctp_rxt_maxtsn = 0; 1842 1843 sctp->sctp_zero_win_probe = B_FALSE; 1844 } 1845 1846 static void 1847 sctp_init_faddr(sctp_t *sctp, sctp_faddr_t *fp, in6_addr_t *addr, 1848 mblk_t *timer_mp) 1849 { 1850 sctp_stack_t *sctps = sctp->sctp_sctps; 1851 1852 bcopy(addr, &fp->faddr, sizeof (*addr)); 1853 if (IN6_IS_ADDR_V4MAPPED(addr)) { 1854 fp->isv4 = 1; 1855 /* Make sure that sfa_pmss is a multiple of SCTP_ALIGN. */ 1856 fp->sfa_pmss = 1857 (sctps->sctps_initial_mtu - sctp->sctp_hdr_len) & 1858 ~(SCTP_ALIGN - 1); 1859 } else { 1860 fp->isv4 = 0; 1861 fp->sfa_pmss = 1862 (sctps->sctps_initial_mtu - sctp->sctp_hdr6_len) & 1863 ~(SCTP_ALIGN - 1); 1864 } 1865 fp->cwnd = sctps->sctps_slow_start_initial * fp->sfa_pmss; 1866 fp->rto = MIN(sctp->sctp_rto_initial, sctp->sctp_init_rto_max); 1867 fp->srtt = -1; 1868 fp->rtt_updates = 0; 1869 fp->strikes = 0; 1870 fp->max_retr = sctp->sctp_pp_max_rxt; 1871 /* Mark it as not confirmed. */ 1872 fp->state = SCTP_FADDRS_UNCONFIRMED; 1873 fp->hb_interval = sctp->sctp_hb_interval; 1874 fp->ssthresh = sctps->sctps_initial_ssthresh; 1875 fp->suna = 0; 1876 fp->pba = 0; 1877 fp->acked = 0; 1878 fp->lastactive = lbolt64; 1879 fp->timer_mp = timer_mp; 1880 fp->hb_pending = B_FALSE; 1881 fp->hb_enabled = B_TRUE; 1882 fp->df = 1; 1883 fp->pmtu_discovered = 0; 1884 fp->next = NULL; 1885 fp->ire = NULL; 1886 fp->T3expire = 0; 1887 (void) random_get_pseudo_bytes((uint8_t *)&fp->hb_secret, 1888 sizeof (fp->hb_secret)); 1889 fp->hb_expiry = lbolt64; 1890 fp->rxt_unacked = 0; 1891 1892 sctp_get_ire(sctp, fp); 1893 } 1894 1895 /*ARGSUSED*/ 1896 static int 1897 faddr_constructor(void *buf, void *arg, int flags) 1898 { 1899 sctp_faddr_t *fp = buf; 1900 1901 fp->timer_mp = NULL; 1902 fp->timer_running = 0; 1903 1904 fp->rc_timer_mp = NULL; 1905 fp->rc_timer_running = 0; 1906 1907 return (0); 1908 } 1909 1910 /*ARGSUSED*/ 1911 static void 1912 faddr_destructor(void *buf, void *arg) 1913 { 1914 sctp_faddr_t *fp = buf; 1915 1916 ASSERT(fp->timer_mp == NULL); 1917 ASSERT(fp->timer_running == 0); 1918 1919 ASSERT(fp->rc_timer_mp == NULL); 1920 ASSERT(fp->rc_timer_running == 0); 1921 } 1922 1923 void 1924 sctp_faddr_init(void) 1925 { 1926 sctp_kmem_faddr_cache = kmem_cache_create("sctp_faddr_cache", 1927 sizeof (sctp_faddr_t), 0, faddr_constructor, faddr_destructor, 1928 NULL, NULL, NULL, 0); 1929 } 1930 1931 void 1932 sctp_faddr_fini(void) 1933 { 1934 kmem_cache_destroy(sctp_kmem_faddr_cache); 1935 } 1936