xref: /titanic_50/usr/src/uts/common/inet/sadb.h (revision c2e7b48d563d0e56b74d853118918af352e75cbb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef	_INET_SADB_H
28 #define	_INET_SADB_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #ifdef	__cplusplus
33 extern "C" {
34 #endif
35 
36 #include <inet/ipsec_info.h>
37 #include <sys/crypto/common.h>
38 #include <sys/crypto/api.h>
39 
40 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
41 
42 /*
43  * Return codes of IPsec processing functions.
44  */
45 typedef enum {
46 	IPSEC_STATUS_SUCCESS = 1,
47 	IPSEC_STATUS_FAILED = 2,
48 	IPSEC_STATUS_PENDING = 3
49 } ipsec_status_t;
50 
51 /*
52  * IP security association.  Synchronization assumes 32-bit loads, so
53  * the 64-bit quantities can't even be be read w/o locking it down!
54  */
55 
56 /* keying info */
57 typedef struct ipsa_key_s {
58 	void *sak_key;		/* Algorithm key. */
59 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
60 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
61 	uint_t sak_algid;	/* Algorithm ID number. */
62 } ipsa_key_t;
63 
64 /* the security association */
65 typedef struct ipsa_s {
66 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
67 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
68 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
69 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
70 	/*
71 	 * NOTE: I may need more pointers, depending on future SA
72 	 * requirements.
73 	 */
74 	ipsa_key_t ipsa_authkeydata;
75 #define	ipsa_authkey ipsa_authkeydata.sak_key
76 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
77 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
78 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
79 	ipsa_key_t ipsa_encrkeydata;
80 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
81 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
82 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
83 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
84 
85 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
86 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
87 	struct ipsid_s *ipsa_proxy_cid;	/* (src) Proxy agent's cert. id. */
88 	uint64_t *ipsa_integ;	/* Integrity bitmap */
89 	uint64_t *ipsa_sens;	/* Sensitivity bitmap */
90 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
91 
92 	/*
93 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
94 	 * need a bit vector to support a replay window of 255.  256 is a nice
95 	 * round number, so I support that.
96 	 *
97 	 * Use an array of uint64_t for best performance on 64-bit
98 	 * processors.  (And hope that 32-bit compilers can handle things
99 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
100 	 * ints.
101 	 */
102 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
103 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
104 
105 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
106 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
107 
108 	/*
109 	 * Reference count semantics:
110 	 *
111 	 *	An SA has a reference count of 1 if something's pointing
112 	 *	to it.  This includes being in a hash table.  So if an
113 	 *	SA is in a hash table, it has a reference count of at least 1.
114 	 *
115 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
116 	 *	said assignment.  When a ptr. to an IPSA is released
117 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
118 	 *	will free the IPSA.
119 	 */
120 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
121 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
122 	uint_t ipsa_refcnt;	/* Reference count. */
123 
124 	/*
125 	 * The following four time fields are the ones monitored by ah_ager()
126 	 * and esp_ager() respectively.  They are all absolute wall-clock
127 	 * times.  The times of creation (i.e. add time) and first use are
128 	 * pretty straightforward.  The soft and hard expire times are
129 	 * derived from the times of first use and creation, plus the minimum
130 	 * expiration times in the fields that follow this.
131 	 *
132 	 * For example, if I had a hard add time of 30 seconds, and a hard
133 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
134 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
135 	 * seconds would be earlier than the add time plus 30 seconds, then
136 	 * ipsa_hardexpiretime would become this earlier time.
137 	 */
138 	time_t ipsa_addtime;	/* Time I was added. */
139 	time_t ipsa_usetime;	/* Time of my first use. */
140 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
141 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
142 
143 	/*
144 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
145 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
146 	 * are in... bytes.
147 	 */
148 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
149 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
150 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
151 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
152 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
153 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
154 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
155 
156 	/*
157 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
158 	 * support them, except to record them per the PF_KEYv2 spec.
159 	 */
160 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
161 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
162 	uint_t ipsa_alloc;	/* Allocations made. */
163 
164 	uint_t ipsa_integlen;	/* Length of the integrity bitmap (bytes). */
165 	uint_t ipsa_senslen;	/* Length of the sensitivity bitmap (bytes). */
166 
167 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
168 	uint_t ipsa_dpd;	/* Domain for sensitivity bit vectors. */
169 	uint_t ipsa_senslevel;	/* Sensitivity level. */
170 	uint_t ipsa_integlevel;	/* Integrity level. */
171 	uint_t ipsa_state;	/* State of my association. */
172 	uint_t ipsa_replay_wsize; /* Size of replay window */
173 	uint32_t ipsa_flags;	/* Flags for security association. */
174 	uint32_t ipsa_spi;	/* Security parameters index. */
175 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
176 	uint32_t ipsa_kmp;	/* key management proto */
177 	uint32_t ipsa_kmc;	/* key management cookie */
178 
179 	boolean_t ipsa_haspeer;	/* Has peer in another table. */
180 
181 	/*
182 	 * Address storage.
183 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
184 	 *
185 	 * Address families (per sys/socket.h) guide us.  We could have just
186 	 * used sockaddr_storage
187 	 */
188 	sa_family_t ipsa_addrfam;
189 	sa_family_t ipsa_proxyfam;	/* Proxy AF can be != src/dst AF. */
190 
191 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
192 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
193 	uint32_t ipsa_proxysrc[IPSA_MAX_ADDRLEN];
194 	uint32_t ipsa_proxydst[IPSA_MAX_ADDRLEN];
195 
196 	/* these can only be v4 */
197 	uint32_t ipsa_natt_addr_loc[IPSA_MAX_ADDRLEN];
198 	uint32_t ipsa_natt_addr_rem[IPSA_MAX_ADDRLEN];
199 
200 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
201 	uint16_t ipsa_remote_port; /* the other port that isn't 4500 */
202 
203 	timeout_id_t ipsa_natt_ka_timer;
204 	queue_t *ipsa_natt_q;
205 	/*
206 	 * icmp type and code. *_end are to specify ranges. if only
207 	 * a single value, * and *_end are the same value.
208 	 */
209 	uint8_t ipsa_icmp_type;
210 	uint8_t ipsa_icmp_type_end;
211 	uint8_t ipsa_icmp_code;
212 	uint8_t ipsa_icmp_code_end;
213 
214 	/*
215 	 * For the kernel crypto framework.
216 	 */
217 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
218 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
219 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
220 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
221 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
222 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
223 	size_t ipsa_mac_len;			/* auth MAC length */
224 	size_t ipsa_iv_len;			/* encr IV length */
225 
226 	/*
227 	 * Input and output processing functions called from IP.
228 	 */
229 	ipsec_status_t (*ipsa_output_func)(mblk_t *);
230 	ipsec_status_t (*ipsa_input_func)(mblk_t *, void *);
231 
232 	/* MLS boxen will probably need more fields in here. */
233 
234 } ipsa_t;
235 
236 /*
237  * ipsa_t address handling macros.  We want these to be inlined, and deal
238  * with 32-bit words to avoid bcmp/bcopy calls.
239  *
240  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
241  * that we have 32-bit alignment on everything.
242  */
243 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
244 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
245 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
246 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
247 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
248 	(((fam) == AF_INET) || \
249 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
250 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
251 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
252 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
253 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
254 	if ((fam) == AF_INET6) {\
255 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
256 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
257 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
258 
259 /*
260  * ipsa_t reference hold/release macros.
261  *
262  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
263  * REFRELE.  An ipsa_t that is newly inserted into the table should have
264  * a reference count of 1 (for the table's pointer), plus 1 more for every
265  * pointer that is referencing the ipsa_t.
266  */
267 
268 #define	IPSA_REFHOLD(ipsa) {			\
269 	atomic_add_32(&(ipsa)->ipsa_refcnt, 1);	\
270 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
271 }
272 
273 /*
274  * Decrement the reference count on the SA.
275  * In architectures e.g sun4u, where atomic_add_32_nv is just
276  * a cas, we need to maintain the right memory barrier semantics
277  * as that of mutex_exit i.e all the loads and stores should complete
278  * before the cas is executed. membar_exit() does that here.
279  */
280 
281 #define	IPSA_REFRELE(ipsa) {					\
282 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
283 	membar_exit();						\
284 	if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0)	\
285 		((ipsa)->ipsa_freefunc)(ipsa);			\
286 }
287 
288 /*
289  * Security association hash macros and definitions.  For now, assume the
290  * IPsec model, and hash outbounds on destination address, and inbounds on
291  * SPI.
292  */
293 
294 #define	IPSEC_DEFAULT_HASH_SIZE 256
295 
296 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
297 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
298 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
299 	(*(uint32_t *)&(v6addr)) ^ (*((uint32_t *)&(v6addr)) + 1) ^ \
300 	(*((uint32_t *)&(v6addr)) + 2) ^ (*((uint32_t *)&(v6addr)) + 3))
301 
302 /*
303  * Syntactic sugar to find the appropriate hash bucket directly.
304  */
305 
306 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
307 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
308 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
309 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
310 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
311 
312 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
313 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
314 						/* backward compat. */
315 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
316 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
317 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
318 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
319 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
320 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
321 
322 #define	IPSA_F_HW	0x200000		/* hwaccel capable SA */
323 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
324 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
325 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)
326 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
327 
328 /* SA states are important for handling UPDATE PF_KEY messages. */
329 #define	IPSA_STATE_LARVAL	SADB_SASTATE_LARVAL
330 #define	IPSA_STATE_MATURE	SADB_SASTATE_MATURE
331 #define	IPSA_STATE_DYING	SADB_SASTATE_DYING
332 #define	IPSA_STATE_DEAD		SADB_SASTATE_DEAD
333 
334 /*
335  * NOTE:  If the document authors do things right in defining algorithms, we'll
336  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
337  *	  etc.
338  */
339 
340 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
341 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
342 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
343 
344 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
345 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
346 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
347 
348 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
349 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
350 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
351 
352 /*
353  * Protect each ipsa_t bucket (and linkage) with a lock.
354  */
355 
356 typedef struct isaf_s {
357 	ipsa_t *isaf_ipsa;
358 	kmutex_t isaf_lock;
359 	uint64_t isaf_gen;
360 } isaf_t;
361 
362 /*
363  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
364  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
365  */
366 
367 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
368 				/* waiting for an ACQUIRE to finish. */
369 
370 typedef struct ipsacq_s {
371 	struct ipsacq_s *ipsacq_next;
372 	struct ipsacq_s **ipsacq_ptpn;
373 	kmutex_t *ipsacq_linklock;
374 	struct ipsec_policy_s  *ipsacq_policy;
375 	struct ipsec_action_s  *ipsacq_act;
376 
377 	sa_family_t ipsacq_addrfam;	/* Address family. */
378 	int ipsacq_numpackets;		/* How many packets queued up so far. */
379 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
380 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
381 
382 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
383 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
384 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
385 
386 	/* These two point inside the last mblk inserted. */
387 	uint32_t *ipsacq_srcaddr;
388 	uint32_t *ipsacq_dstaddr;
389 
390 	/* uint32_t ipsacq_proxysrc[IPSA_MAX_ADDRLEN]; */	/* For later */
391 	/* uint32_t ipsacq_proxydst[IPSA_MAX_ADDRLEN]; */	/* For later */
392 
393 	/* These may change per-acquire. */
394 	uint16_t ipsacq_srcport;
395 	uint16_t ipsacq_dstport;
396 	uint8_t ipsacq_proto;
397 	/* icmp type and code of triggering packet (if applicable) */
398 	uint8_t	ipsacq_icmp_type;
399 	uint8_t ipsacq_icmp_code;
400 } ipsacq_t;
401 
402 /*
403  * Kernel-generated sequence numbers will be no less than 0x80000000 to
404  * forestall any cretinous problems with manual keying accidentally updating
405  * an ACQUIRE entry.
406  */
407 #define	IACQF_LOWEST_SEQ 0x80000000
408 
409 #define	SADB_AGE_INTERVAL_DEFAULT 1000
410 
411 /*
412  * ACQUIRE fanout.  Protect each linkage with a lock.
413  */
414 
415 typedef struct iacqf_s {
416 	ipsacq_t *iacqf_ipsacq;
417 	kmutex_t iacqf_lock;
418 } iacqf_t;
419 
420 /*
421  * A (network protocol, ipsec protocol) specific SADB.
422  * (i.e., one each for {ah, esp} and {v4, v6}.
423  *
424  * Keep outbound assocs about the same as ire_cache entries for now.
425  * One danger point, multiple SAs for a single dest will clog a bucket.
426  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
427  */
428 
429 typedef struct sadb_s
430 {
431 	isaf_t	*sdb_of;
432 	isaf_t	*sdb_if;
433 	iacqf_t	*sdb_acq;
434 	int	sdb_hashsize;
435 } sadb_t;
436 
437 /*
438  * A pair of SADB's (one for v4, one for v6), and related state (including
439  * acquire callbacks).
440  */
441 
442 typedef struct sadbp_s
443 {
444 	uint32_t	s_satype;
445 	queue_t		*s_ip_q;
446 	uint32_t	*s_acquire_timeout;
447 	void 		(*s_acqfn)(ipsacq_t *, mblk_t *);
448 	sadb_t		s_v4;
449 	sadb_t		s_v6;
450 } sadbp_t;
451 
452 /*
453  * Global IPsec security association databases (and all that go with them).
454  */
455 extern sadbp_t ah_sadb, esp_sadb;
456 
457 /* Pointer to an all-zeroes IPv6 address. */
458 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
459 
460 /*
461  * Form unique id from ipsec_out_t
462  */
463 
464 #define	SA_FORM_UNIQUE_ID(io)				\
465 	SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \
466 		(io)->ipsec_out_proto)
467 
468 /*
469  * This macro is used to generate unique ids (along with the addresses) for
470  * outbound datagrams that require unique SAs.
471  *
472  * N.B. casts and unsigned shift amounts discourage unwarranted
473  * sign extension of dstport and proto.
474  */
475 #define	SA_UNIQUE_ID(srcport, dstport, proto) 		\
476 	((srcport) | ((uint64_t)(dstport) << 16U) | ((uint64_t)(proto) << 32U))
477 
478 /*
479  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
480  * from a packet to an SA.
481  */
482 
483 #define	SA_UNIQUE_MASK(srcport, dstport, proto) 		\
484 	SA_UNIQUE_ID((srcport != 0)? 0xffff : 0,		\
485 		    (dstport != 0)? 0xffff : 0,			\
486 		    (proto != 0)? 0xff : 0)
487 
488 /*
489  * Decompose unique id back into its original fields.
490  */
491 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
492 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
493 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
494 
495 /*
496  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
497  * already called.
498  */
499 
500 /* SA retrieval (inbound and outbound) */
501 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
502     sa_family_t);
503 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *,
504     sa_family_t, uint8_t);
505 
506 /* SA insertion. */
507 int sadb_insertassoc(ipsa_t *, isaf_t *);
508 
509 /* SA table construction and destruction. */
510 void sadbp_init(const char *name, sadbp_t *, int, int);
511 void sadbp_flush(sadbp_t *);
512 void sadbp_destroy(sadbp_t *);
513 
514 /* SA insertion and deletion. */
515 int sadb_insertassoc(ipsa_t *, isaf_t *);
516 void sadb_unlinkassoc(ipsa_t *);
517 
518 /* Support routines to interface a keysock consumer to PF_KEY. */
519 mblk_t *sadb_keysock_out(minor_t);
520 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *);
521 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
522     ipsa_t *);
523 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
524 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
525     timeout_id_t *, int);
526 int sadb_addrcheck(queue_t *, queue_t *, mblk_t *, sadb_ext_t *, uint_t);
527 void sadb_srcaddrfix(keysock_in_t *);
528 int sadb_addrset(ire_t *);
529 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
530     boolean_t);
531 #define	sadb_get_sa(m, k, s, i, q)	sadb_delget_sa(m, k, s, i, q, B_FALSE)
532 #define	sadb_del_sa(m, k, s, i, q)	sadb_delget_sa(m, k, s, i, q, B_TRUE)
533 
534 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *,
535     queue_t *, queue_t *);
536 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *,
537     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t);
538 void sadb_set_usetime(ipsa_t *);
539 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
540 int sadb_update_sa(mblk_t *, keysock_in_t *, sadb_t *,
541     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *));
542 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t);
543 
544 void sadb_destroy_acquire(ipsacq_t *);
545 uint8_t *sadb_setup_acquire(uint8_t *, uint8_t *, ipsacq_t *);
546 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *);
547 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *);
548 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
549 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
550 mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *);
551 int sadb_dump(queue_t *, mblk_t *, minor_t, sadb_t *);
552 void sadb_replay_delete(ipsa_t *);
553 void sadb_ager(sadb_t *, queue_t *, queue_t *, int);
554 
555 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *),
556     uint_t *, uint_t, short);
557 void sadb_sa_refrele(void *target);
558 void sadb_set_lpkt(ipsa_t *, mblk_t *);
559 mblk_t *sadb_clear_lpkt(ipsa_t *);
560 
561 /*
562  * Hw accel-related calls (downloading sadb to driver)
563  */
564 void sadb_ill_download(ill_t *, uint_t);
565 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t);
566 /*
567  * Sub-set of the IPsec hardware acceleration capabilities functions
568  * implemented by ip_if.c
569  */
570 extern	boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *);
571 extern	void	ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *);
572 
573 
574 /*
575  * One IPsec -> IP linking routine, and two IPsec rate-limiting routines.
576  */
577 extern boolean_t sadb_t_bind_req(queue_t *, int);
578 /*PRINTFLIKE5*/
579 extern void ipsec_rl_strlog(short, short, char, ushort_t, char *, ...)
580     __KPRINTFLIKE(5);
581 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
582     void *, int);
583 
584 /*
585  * Algorithm types.
586  */
587 
588 #define	IPSEC_NALGTYPES 	2
589 
590 typedef enum ipsec_algtype {
591 	IPSEC_ALG_AUTH = 0,
592 	IPSEC_ALG_ENCR = 1
593 } ipsec_algtype_t;
594 
595 /*
596  * Definitions as per IPsec/ISAKMP DOI.
597  */
598 
599 #define	IPSEC_MAX_ALGS		256
600 #define	PROTO_IPSEC_AH		2
601 #define	PROTO_IPSEC_ESP		3
602 
603 /*
604  * Common algorithm info.
605  */
606 typedef struct ipsec_alginfo
607 {
608 	uint8_t		alg_id;
609 	uint8_t		alg_flags;
610 	uint16_t	*alg_key_sizes;
611 	uint16_t	*alg_block_sizes;
612 	uint16_t	alg_nkey_sizes;
613 	uint16_t	alg_nblock_sizes;
614 	uint16_t	alg_minbits;
615 	uint16_t	alg_maxbits;
616 	uint16_t	alg_datalen;
617 	/*
618 	 * increment: number of bits from keysize to keysize
619 	 * default: # of increments from min to default key len
620 	 */
621 	uint16_t	alg_increment;
622 	uint16_t	alg_default;
623 	uint16_t	alg_default_bits;
624 	/*
625 	 * Min, max, and default key sizes effectively supported
626 	 * by the encryption framework.
627 	 */
628 	uint16_t	alg_ef_minbits;
629 	uint16_t	alg_ef_maxbits;
630 	uint16_t	alg_ef_default;
631 	uint16_t	alg_ef_default_bits;
632 
633 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
634 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
635 } ipsec_alginfo_t;
636 
637 #define	alg_datalen alg_block_sizes[0]
638 
639 #define	ALG_FLAG_VALID	0x01
640 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
641 
642 /*
643  * Software crypto execution mode.
644  */
645 typedef enum {
646 	IPSEC_ALGS_EXEC_SYNC = 0,
647 	IPSEC_ALGS_EXEC_ASYNC = 1
648 } ipsec_algs_exec_mode_t;
649 
650 extern uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
651 extern ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
652 extern uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
653 extern ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES];
654 
655 extern kmutex_t alg_lock;
656 
657 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *);
658 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t);
659 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t);
660 extern void ipsec_alg_free(ipsec_alginfo_t *);
661 extern void ipsec_register_prov_update(void);
662 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t);
663 
664 /*
665  * Context templates management.
666  */
667 
668 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
669 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
670 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
671 		mutex_enter(&assoc->ipsa_lock);				\
672 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
673 			mutex_enter(&alg_lock);				\
674 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
675 			mutex_exit(&alg_lock);				\
676 		}							\
677 		mutex_exit(&assoc->ipsa_lock);				\
678 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
679 			_tmpl = NULL;					\
680 	}								\
681 }
682 
683 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
684 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
685 
686 /* key checking */
687 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
688 
689 /* natt cleanup */
690 extern void sadb_clear_timeouts(queue_t *);
691 
692 typedef struct {
693 	kstat_named_t esp_stat_in_requests;
694 	kstat_named_t esp_stat_in_discards;
695 	kstat_named_t esp_stat_lookup_failure;
696 	kstat_named_t ah_stat_in_requests;
697 	kstat_named_t ah_stat_in_discards;
698 	kstat_named_t ah_stat_lookup_failure;
699 } ipsec_kstats_t;
700 
701 extern ipsec_kstats_t *ipsec_kstats;
702 extern void ipsec_kstat_init(void);
703 extern void ipsec_kstat_destroy(void);
704 
705 #define	IP_ESP_BUMP_STAT(x) (ipsec_kstats->esp_stat_ ## x).value.ui64++
706 #define	IP_AH_BUMP_STAT(x) (ipsec_kstats->ah_stat_ ## x).value.ui64++
707 
708 #ifdef	__cplusplus
709 }
710 #endif
711 
712 #endif /* _INET_SADB_H */
713