xref: /titanic_50/usr/src/uts/common/inet/sadb.h (revision a192e900f6d2b0e1a822e3252c0dfd795ed49d76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_INET_SADB_H
27 #define	_INET_SADB_H
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #ifdef	__cplusplus
32 extern "C" {
33 #endif
34 
35 #include <inet/ipsec_info.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/api.h>
38 
39 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
40 
41 /*
42  * Return codes of IPsec processing functions.
43  */
44 typedef enum {
45 	IPSEC_STATUS_SUCCESS = 1,
46 	IPSEC_STATUS_FAILED = 2,
47 	IPSEC_STATUS_PENDING = 3
48 } ipsec_status_t;
49 
50 /*
51  * IP security association.  Synchronization assumes 32-bit loads, so
52  * the 64-bit quantities can't even be be read w/o locking it down!
53  */
54 
55 /* keying info */
56 typedef struct ipsa_key_s {
57 	void *sak_key;		/* Algorithm key. */
58 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
59 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
60 	uint_t sak_algid;	/* Algorithm ID number. */
61 } ipsa_key_t;
62 
63 /* the security association */
64 typedef struct ipsa_s {
65 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
66 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
67 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
68 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
69 	/*
70 	 * NOTE: I may need more pointers, depending on future SA
71 	 * requirements.
72 	 */
73 	ipsa_key_t ipsa_authkeydata;
74 #define	ipsa_authkey ipsa_authkeydata.sak_key
75 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
76 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
77 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
78 	ipsa_key_t ipsa_encrkeydata;
79 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
80 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
81 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
82 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
83 
84 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
85 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
86 	struct ipsid_s *ipsa_proxy_cid;	/* (src) Proxy agent's cert. id. */
87 	uint64_t *ipsa_integ;	/* Integrity bitmap */
88 	uint64_t *ipsa_sens;	/* Sensitivity bitmap */
89 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
90 
91 	/*
92 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
93 	 * need a bit vector to support a replay window of 255.  256 is a nice
94 	 * round number, so I support that.
95 	 *
96 	 * Use an array of uint64_t for best performance on 64-bit
97 	 * processors.  (And hope that 32-bit compilers can handle things
98 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
99 	 * ints.
100 	 */
101 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
102 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
103 
104 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
105 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
106 
107 	/*
108 	 * Reference count semantics:
109 	 *
110 	 *	An SA has a reference count of 1 if something's pointing
111 	 *	to it.  This includes being in a hash table.  So if an
112 	 *	SA is in a hash table, it has a reference count of at least 1.
113 	 *
114 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
115 	 *	said assignment.  When a ptr. to an IPSA is released
116 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
117 	 *	will free the IPSA.
118 	 */
119 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
120 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
121 	uint_t ipsa_refcnt;	/* Reference count. */
122 
123 	/*
124 	 * The following four time fields are the ones monitored by ah_ager()
125 	 * and esp_ager() respectively.  They are all absolute wall-clock
126 	 * times.  The times of creation (i.e. add time) and first use are
127 	 * pretty straightforward.  The soft and hard expire times are
128 	 * derived from the times of first use and creation, plus the minimum
129 	 * expiration times in the fields that follow this.
130 	 *
131 	 * For example, if I had a hard add time of 30 seconds, and a hard
132 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
133 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
134 	 * seconds would be earlier than the add time plus 30 seconds, then
135 	 * ipsa_hardexpiretime would become this earlier time.
136 	 */
137 	time_t ipsa_addtime;	/* Time I was added. */
138 	time_t ipsa_usetime;	/* Time of my first use. */
139 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
140 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
141 
142 	/*
143 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
144 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
145 	 * are in... bytes.
146 	 */
147 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
148 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
149 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
150 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
151 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
152 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
153 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
154 
155 	/*
156 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
157 	 * support them, except to record them per the PF_KEYv2 spec.
158 	 */
159 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
160 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
161 	uint_t ipsa_alloc;	/* Allocations made. */
162 
163 	uint_t ipsa_integlen;	/* Length of the integrity bitmap (bytes). */
164 	uint_t ipsa_senslen;	/* Length of the sensitivity bitmap (bytes). */
165 
166 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
167 	uint_t ipsa_dpd;	/* Domain for sensitivity bit vectors. */
168 	uint_t ipsa_senslevel;	/* Sensitivity level. */
169 	uint_t ipsa_integlevel;	/* Integrity level. */
170 	uint_t ipsa_state;	/* State of my association. */
171 	uint_t ipsa_replay_wsize; /* Size of replay window */
172 	uint32_t ipsa_flags;	/* Flags for security association. */
173 	uint32_t ipsa_spi;	/* Security parameters index. */
174 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
175 	uint32_t ipsa_kmp;	/* key management proto */
176 	uint32_t ipsa_kmc;	/* key management cookie */
177 
178 	boolean_t ipsa_haspeer;	/* Has peer in another table. */
179 
180 	/*
181 	 * Address storage.
182 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
183 	 *
184 	 * Address families (per sys/socket.h) guide us.  We could have just
185 	 * used sockaddr_storage
186 	 */
187 	sa_family_t ipsa_addrfam;
188 	sa_family_t ipsa_proxyfam;	/* Proxy AF can be != src/dst AF. */
189 
190 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
191 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
192 	uint32_t ipsa_proxysrc[IPSA_MAX_ADDRLEN];
193 	uint32_t ipsa_proxydst[IPSA_MAX_ADDRLEN];
194 
195 	/* these can only be v4 */
196 	uint32_t ipsa_natt_addr_loc[IPSA_MAX_ADDRLEN];
197 	uint32_t ipsa_natt_addr_rem[IPSA_MAX_ADDRLEN];
198 
199 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
200 	uint16_t ipsa_remote_port; /* the other port that isn't 4500 */
201 
202 	timeout_id_t ipsa_natt_ka_timer;
203 	queue_t *ipsa_natt_q;
204 	/*
205 	 * icmp type and code. *_end are to specify ranges. if only
206 	 * a single value, * and *_end are the same value.
207 	 */
208 	uint8_t ipsa_icmp_type;
209 	uint8_t ipsa_icmp_type_end;
210 	uint8_t ipsa_icmp_code;
211 	uint8_t ipsa_icmp_code_end;
212 
213 	/*
214 	 * For the kernel crypto framework.
215 	 */
216 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
217 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
218 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
219 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
220 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
221 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
222 	size_t ipsa_mac_len;			/* auth MAC length */
223 	size_t ipsa_iv_len;			/* encr IV length */
224 
225 	/*
226 	 * Input and output processing functions called from IP.
227 	 */
228 	ipsec_status_t (*ipsa_output_func)(mblk_t *);
229 	ipsec_status_t (*ipsa_input_func)(mblk_t *, void *);
230 
231 	/* MLS boxen will probably need more fields in here. */
232 
233 } ipsa_t;
234 
235 /*
236  * ipsa_t address handling macros.  We want these to be inlined, and deal
237  * with 32-bit words to avoid bcmp/bcopy calls.
238  *
239  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
240  * that we have 32-bit alignment on everything.
241  */
242 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
243 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
244 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
245 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
246 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
247 	(((fam) == AF_INET) || \
248 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
249 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
250 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
251 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
252 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
253 	if ((fam) == AF_INET6) {\
254 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
255 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
256 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
257 
258 /*
259  * ipsa_t reference hold/release macros.
260  *
261  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
262  * REFRELE.  An ipsa_t that is newly inserted into the table should have
263  * a reference count of 1 (for the table's pointer), plus 1 more for every
264  * pointer that is referencing the ipsa_t.
265  */
266 
267 #define	IPSA_REFHOLD(ipsa) {			\
268 	atomic_add_32(&(ipsa)->ipsa_refcnt, 1);	\
269 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
270 }
271 
272 /*
273  * Decrement the reference count on the SA.
274  * In architectures e.g sun4u, where atomic_add_32_nv is just
275  * a cas, we need to maintain the right memory barrier semantics
276  * as that of mutex_exit i.e all the loads and stores should complete
277  * before the cas is executed. membar_exit() does that here.
278  */
279 
280 #define	IPSA_REFRELE(ipsa) {					\
281 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
282 	membar_exit();						\
283 	if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0)	\
284 		((ipsa)->ipsa_freefunc)(ipsa);			\
285 }
286 
287 /*
288  * Security association hash macros and definitions.  For now, assume the
289  * IPsec model, and hash outbounds on destination address, and inbounds on
290  * SPI.
291  */
292 
293 #define	IPSEC_DEFAULT_HASH_SIZE 256
294 
295 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
296 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
297 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
298 	(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
299 	(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
300 
301 /*
302  * Syntactic sugar to find the appropriate hash bucket directly.
303  */
304 
305 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
306 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
307 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
308 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
309 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
310 
311 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
312 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
313 						/* backward compat. */
314 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
315 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
316 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
317 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
318 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
319 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
320 
321 #define	IPSA_F_HW	0x200000		/* hwaccel capable SA */
322 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
323 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
324 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)
325 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
326 
327 /* SA states are important for handling UPDATE PF_KEY messages. */
328 #define	IPSA_STATE_LARVAL	SADB_SASTATE_LARVAL
329 #define	IPSA_STATE_MATURE	SADB_SASTATE_MATURE
330 #define	IPSA_STATE_DYING	SADB_SASTATE_DYING
331 #define	IPSA_STATE_DEAD		SADB_SASTATE_DEAD
332 
333 /*
334  * NOTE:  If the document authors do things right in defining algorithms, we'll
335  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
336  *	  etc.
337  */
338 
339 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
340 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
341 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
342 
343 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
344 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
345 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
346 
347 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
348 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
349 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
350 
351 /*
352  * Protect each ipsa_t bucket (and linkage) with a lock.
353  */
354 
355 typedef struct isaf_s {
356 	ipsa_t *isaf_ipsa;
357 	kmutex_t isaf_lock;
358 	uint64_t isaf_gen;
359 } isaf_t;
360 
361 /*
362  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
363  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
364  */
365 
366 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
367 				/* waiting for an ACQUIRE to finish. */
368 
369 typedef struct ipsacq_s {
370 	struct ipsacq_s *ipsacq_next;
371 	struct ipsacq_s **ipsacq_ptpn;
372 	kmutex_t *ipsacq_linklock;
373 	struct ipsec_policy_s  *ipsacq_policy;
374 	struct ipsec_action_s  *ipsacq_act;
375 
376 	sa_family_t ipsacq_addrfam;	/* Address family. */
377 	int ipsacq_numpackets;		/* How many packets queued up so far. */
378 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
379 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
380 
381 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
382 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
383 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
384 
385 	/* These two point inside the last mblk inserted. */
386 	uint32_t *ipsacq_srcaddr;
387 	uint32_t *ipsacq_dstaddr;
388 
389 	/* uint32_t ipsacq_proxysrc[IPSA_MAX_ADDRLEN]; */	/* For later */
390 	/* uint32_t ipsacq_proxydst[IPSA_MAX_ADDRLEN]; */	/* For later */
391 
392 	/* These may change per-acquire. */
393 	uint16_t ipsacq_srcport;
394 	uint16_t ipsacq_dstport;
395 	uint8_t ipsacq_proto;
396 	/* icmp type and code of triggering packet (if applicable) */
397 	uint8_t	ipsacq_icmp_type;
398 	uint8_t ipsacq_icmp_code;
399 } ipsacq_t;
400 
401 /*
402  * Kernel-generated sequence numbers will be no less than 0x80000000 to
403  * forestall any cretinous problems with manual keying accidentally updating
404  * an ACQUIRE entry.
405  */
406 #define	IACQF_LOWEST_SEQ 0x80000000
407 
408 #define	SADB_AGE_INTERVAL_DEFAULT 1000
409 
410 /*
411  * ACQUIRE fanout.  Protect each linkage with a lock.
412  */
413 
414 typedef struct iacqf_s {
415 	ipsacq_t *iacqf_ipsacq;
416 	kmutex_t iacqf_lock;
417 } iacqf_t;
418 
419 /*
420  * A (network protocol, ipsec protocol) specific SADB.
421  * (i.e., one each for {ah, esp} and {v4, v6}.
422  *
423  * Keep outbound assocs about the same as ire_cache entries for now.
424  * One danger point, multiple SAs for a single dest will clog a bucket.
425  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
426  */
427 
428 typedef struct sadb_s
429 {
430 	isaf_t	*sdb_of;
431 	isaf_t	*sdb_if;
432 	iacqf_t	*sdb_acq;
433 	int	sdb_hashsize;
434 } sadb_t;
435 
436 /*
437  * A pair of SADB's (one for v4, one for v6), and related state (including
438  * acquire callbacks).
439  */
440 
441 typedef struct sadbp_s
442 {
443 	uint32_t	s_satype;
444 	queue_t		*s_ip_q;
445 	uint32_t	*s_acquire_timeout;
446 	void 		(*s_acqfn)(ipsacq_t *, mblk_t *);
447 	sadb_t		s_v4;
448 	sadb_t		s_v6;
449 } sadbp_t;
450 
451 /*
452  * Global IPsec security association databases (and all that go with them).
453  */
454 extern sadbp_t ah_sadb, esp_sadb;
455 
456 /* Pointer to an all-zeroes IPv6 address. */
457 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
458 
459 /*
460  * Form unique id from ipsec_out_t
461  */
462 
463 #define	SA_FORM_UNIQUE_ID(io)				\
464 	SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \
465 		(io)->ipsec_out_proto)
466 
467 /*
468  * This macro is used to generate unique ids (along with the addresses) for
469  * outbound datagrams that require unique SAs.
470  *
471  * N.B. casts and unsigned shift amounts discourage unwarranted
472  * sign extension of dstport and proto.
473  */
474 #define	SA_UNIQUE_ID(srcport, dstport, proto) 		\
475 	((srcport) | ((uint64_t)(dstport) << 16U) | ((uint64_t)(proto) << 32U))
476 
477 /*
478  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
479  * from a packet to an SA.
480  */
481 
482 #define	SA_UNIQUE_MASK(srcport, dstport, proto) 		\
483 	SA_UNIQUE_ID((srcport != 0)? 0xffff : 0,		\
484 		    (dstport != 0)? 0xffff : 0,			\
485 		    (proto != 0)? 0xff : 0)
486 
487 /*
488  * Decompose unique id back into its original fields.
489  */
490 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
491 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
492 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
493 
494 /*
495  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
496  * already called.
497  */
498 
499 /* SA retrieval (inbound and outbound) */
500 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
501     sa_family_t);
502 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *,
503     sa_family_t, uint8_t);
504 
505 /* SA insertion. */
506 int sadb_insertassoc(ipsa_t *, isaf_t *);
507 
508 /* SA table construction and destruction. */
509 void sadbp_init(const char *name, sadbp_t *, int, int);
510 void sadbp_flush(sadbp_t *);
511 void sadbp_destroy(sadbp_t *);
512 
513 /* SA insertion and deletion. */
514 int sadb_insertassoc(ipsa_t *, isaf_t *);
515 void sadb_unlinkassoc(ipsa_t *);
516 
517 /* Support routines to interface a keysock consumer to PF_KEY. */
518 mblk_t *sadb_keysock_out(minor_t);
519 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *);
520 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
521     ipsa_t *);
522 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
523 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
524     timeout_id_t *, int);
525 int sadb_addrcheck(queue_t *, queue_t *, mblk_t *, sadb_ext_t *, uint_t);
526 void sadb_srcaddrfix(keysock_in_t *);
527 int sadb_addrset(ire_t *);
528 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
529     boolean_t);
530 #define	sadb_get_sa(m, k, s, i, q)	sadb_delget_sa(m, k, s, i, q, B_FALSE)
531 #define	sadb_del_sa(m, k, s, i, q)	sadb_delget_sa(m, k, s, i, q, B_TRUE)
532 
533 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, int *,
534     queue_t *, queue_t *);
535 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *,
536     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t);
537 void sadb_set_usetime(ipsa_t *);
538 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
539 int sadb_update_sa(mblk_t *, keysock_in_t *, sadb_t *,
540     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *));
541 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t);
542 
543 void sadb_destroy_acquire(ipsacq_t *);
544 uint8_t *sadb_setup_acquire(uint8_t *, uint8_t *, ipsacq_t *);
545 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *);
546 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *);
547 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
548 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
549 mblk_t *sadb_sa2msg(ipsa_t *, sadb_msg_t *);
550 int sadb_dump(queue_t *, mblk_t *, minor_t, sadb_t *);
551 void sadb_replay_delete(ipsa_t *);
552 void sadb_ager(sadb_t *, queue_t *, queue_t *, int);
553 
554 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *),
555     uint_t *, uint_t, short);
556 void sadb_sa_refrele(void *target);
557 void sadb_set_lpkt(ipsa_t *, mblk_t *);
558 mblk_t *sadb_clear_lpkt(ipsa_t *);
559 
560 /*
561  * Hw accel-related calls (downloading sadb to driver)
562  */
563 void sadb_ill_download(ill_t *, uint_t);
564 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t);
565 /*
566  * Sub-set of the IPsec hardware acceleration capabilities functions
567  * implemented by ip_if.c
568  */
569 extern	boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *);
570 extern	void	ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *);
571 
572 
573 /*
574  * One IPsec -> IP linking routine, and two IPsec rate-limiting routines.
575  */
576 extern boolean_t sadb_t_bind_req(queue_t *, int);
577 /*PRINTFLIKE5*/
578 extern void ipsec_rl_strlog(short, short, char, ushort_t, char *, ...)
579     __KPRINTFLIKE(5);
580 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
581     void *, int);
582 
583 /*
584  * Algorithm types.
585  */
586 
587 #define	IPSEC_NALGTYPES 	2
588 
589 typedef enum ipsec_algtype {
590 	IPSEC_ALG_AUTH = 0,
591 	IPSEC_ALG_ENCR = 1
592 } ipsec_algtype_t;
593 
594 /*
595  * Definitions as per IPsec/ISAKMP DOI.
596  */
597 
598 #define	IPSEC_MAX_ALGS		256
599 #define	PROTO_IPSEC_AH		2
600 #define	PROTO_IPSEC_ESP		3
601 
602 /*
603  * Common algorithm info.
604  */
605 typedef struct ipsec_alginfo
606 {
607 	uint8_t		alg_id;
608 	uint8_t		alg_flags;
609 	uint16_t	*alg_key_sizes;
610 	uint16_t	*alg_block_sizes;
611 	uint16_t	alg_nkey_sizes;
612 	uint16_t	alg_nblock_sizes;
613 	uint16_t	alg_minbits;
614 	uint16_t	alg_maxbits;
615 	uint16_t	alg_datalen;
616 	/*
617 	 * increment: number of bits from keysize to keysize
618 	 * default: # of increments from min to default key len
619 	 */
620 	uint16_t	alg_increment;
621 	uint16_t	alg_default;
622 	uint16_t	alg_default_bits;
623 	/*
624 	 * Min, max, and default key sizes effectively supported
625 	 * by the encryption framework.
626 	 */
627 	uint16_t	alg_ef_minbits;
628 	uint16_t	alg_ef_maxbits;
629 	uint16_t	alg_ef_default;
630 	uint16_t	alg_ef_default_bits;
631 
632 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
633 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
634 } ipsec_alginfo_t;
635 
636 #define	alg_datalen alg_block_sizes[0]
637 
638 #define	ALG_FLAG_VALID	0x01
639 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
640 
641 /*
642  * Software crypto execution mode.
643  */
644 typedef enum {
645 	IPSEC_ALGS_EXEC_SYNC = 0,
646 	IPSEC_ALGS_EXEC_ASYNC = 1
647 } ipsec_algs_exec_mode_t;
648 
649 extern uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
650 extern ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
651 extern uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
652 extern ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES];
653 
654 extern kmutex_t alg_lock;
655 
656 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *);
657 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t);
658 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t);
659 extern void ipsec_alg_free(ipsec_alginfo_t *);
660 extern void ipsec_register_prov_update(void);
661 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t);
662 
663 /*
664  * Context templates management.
665  */
666 
667 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
668 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
669 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
670 		mutex_enter(&assoc->ipsa_lock);				\
671 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
672 			mutex_enter(&alg_lock);				\
673 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
674 			mutex_exit(&alg_lock);				\
675 		}							\
676 		mutex_exit(&assoc->ipsa_lock);				\
677 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
678 			_tmpl = NULL;					\
679 	}								\
680 }
681 
682 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
683 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
684 
685 /* key checking */
686 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
687 
688 /* natt cleanup */
689 extern void sadb_clear_timeouts(queue_t *);
690 
691 typedef struct {
692 	kstat_named_t esp_stat_in_requests;
693 	kstat_named_t esp_stat_in_discards;
694 	kstat_named_t esp_stat_lookup_failure;
695 	kstat_named_t ah_stat_in_requests;
696 	kstat_named_t ah_stat_in_discards;
697 	kstat_named_t ah_stat_lookup_failure;
698 	kstat_named_t sadb_acquire_maxpackets;
699 	kstat_named_t sadb_acquire_qhiwater;
700 } ipsec_kstats_t;
701 
702 extern ipsec_kstats_t *ipsec_kstats;
703 extern void ipsec_kstat_init(void);
704 extern void ipsec_kstat_destroy(void);
705 
706 #define	IP_ESP_BUMP_STAT(x) (ipsec_kstats->esp_stat_ ## x).value.ui64++
707 #define	IP_AH_BUMP_STAT(x) (ipsec_kstats->ah_stat_ ## x).value.ui64++
708 #define	IP_ACQUIRE_STAT(val, new) \
709 if (((uint64_t)(new)) > (ipsec_kstats->sadb_acquire_ ## val).value.ui64) \
710 	(ipsec_kstats->sadb_acquire_ ## val).value.ui64 = ((uint64_t)(new))
711 
712 #ifdef	__cplusplus
713 }
714 #endif
715 
716 #endif /* _INET_SADB_H */
717