xref: /titanic_50/usr/src/uts/common/inet/iptun/iptun.c (revision 705dd6c22fd6bceb21d995f1eb7c2774ff0e5317)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * iptun - IP Tunneling Driver
28  *
29  * This module is a GLDv3 driver that implements virtual datalinks over IP
30  * (a.k.a, IP tunneling).  The datalinks are managed through a dld ioctl
31  * interface (see iptun_ctl.c), and registered with GLDv3 using
32  * mac_register().  It implements the logic for various forms of IP (IPv4 or
33  * IPv6) encapsulation within IP (IPv4 or IPv6) by interacting with the ip
34  * module below it.  Each virtual IP tunnel datalink has a conn_t associated
35  * with it representing the "outer" IP connection.
36  *
37  * The module implements the following locking semantics:
38  *
39  * Lookups and deletions in iptun_hash are synchronized using iptun_hash_lock.
40  * See comments above iptun_hash_lock for details.
41  *
42  * No locks are ever held while calling up to GLDv3.  The general architecture
43  * of GLDv3 requires this, as the mac perimeter (essentially a lock) for a
44  * given link will be held while making downcalls (iptun_m_*() callbacks).
45  * Because we need to hold locks while handling downcalls, holding these locks
46  * while issuing upcalls results in deadlock scenarios.  See the block comment
47  * above iptun_task_cb() for details on how we safely issue upcalls without
48  * holding any locks.
49  *
50  * The contents of each iptun_t is protected by an iptun_mutex which is held
51  * in iptun_enter() (called by iptun_enter_by_linkid()), and exited in
52  * iptun_exit().
53  *
54  * See comments in iptun_delete() and iptun_free() for details on how the
55  * iptun_t is deleted safely.
56  */
57 
58 #include <sys/types.h>
59 #include <sys/kmem.h>
60 #include <sys/errno.h>
61 #include <sys/modhash.h>
62 #include <sys/list.h>
63 #include <sys/strsun.h>
64 #include <sys/file.h>
65 #include <sys/systm.h>
66 #include <sys/tihdr.h>
67 #include <sys/param.h>
68 #include <sys/mac_provider.h>
69 #include <sys/mac_ipv4.h>
70 #include <sys/mac_ipv6.h>
71 #include <sys/mac_6to4.h>
72 #include <sys/tsol/tnet.h>
73 #include <sys/sunldi.h>
74 #include <netinet/in.h>
75 #include <netinet/ip6.h>
76 #include <inet/ip.h>
77 #include <inet/ip_ire.h>
78 #include <inet/ipsec_impl.h>
79 #include <inet/iptun.h>
80 #include "iptun_impl.h"
81 
82 /* Do the tunnel type and address family match? */
83 #define	IPTUN_ADDR_MATCH(iptun_type, family)				\
84 	((iptun_type == IPTUN_TYPE_IPV4 && family == AF_INET) ||	\
85 	(iptun_type == IPTUN_TYPE_IPV6 && family == AF_INET6) ||	\
86 	(iptun_type == IPTUN_TYPE_6TO4 && family == AF_INET))
87 
88 #define	IPTUN_HASH_KEY(key)	((mod_hash_key_t)(uintptr_t)(key))
89 
90 #define	IPTUNQ_DEV	"/dev/iptunq"
91 
92 #define	IPTUN_MIN_IPV4_MTU	576		/* ip.h still uses 68 (!) */
93 #define	IPTUN_MIN_IPV6_MTU	IPV6_MIN_MTU
94 #define	IPTUN_MAX_IPV4_MTU	(IP_MAXPACKET - sizeof (ipha_t))
95 #define	IPTUN_MAX_IPV6_MTU	(IP_MAXPACKET - sizeof (ip6_t) -	\
96 				    sizeof (iptun_encaplim_t))
97 
98 #define	IPTUN_MIN_HOPLIMIT	1
99 #define	IPTUN_MAX_HOPLIMIT	UINT8_MAX
100 
101 #define	IPTUN_MIN_ENCAPLIMIT	0
102 #define	IPTUN_MAX_ENCAPLIMIT	UINT8_MAX
103 
104 #define	IPTUN_IPSEC_REQ_MASK	(IPSEC_PREF_REQUIRED | IPSEC_PREF_NEVER)
105 
106 static iptun_encaplim_t	iptun_encaplim_init = {
107 	{ IPPROTO_NONE, 0 },
108 	IP6OPT_TUNNEL_LIMIT,
109 	1,
110 	IPTUN_DEFAULT_ENCAPLIMIT,	/* filled in with actual value later */
111 	IP6OPT_PADN,
112 	1,
113 	0
114 };
115 
116 /* Table containing per-iptun-type information. */
117 static iptun_typeinfo_t	iptun_type_table[] = {
118 	{ IPTUN_TYPE_IPV4, MAC_PLUGIN_IDENT_IPV4, IPV4_VERSION, ip_output,
119 	    IPTUN_MIN_IPV4_MTU,	IPTUN_MAX_IPV4_MTU,	B_TRUE },
120 	{ IPTUN_TYPE_IPV6, MAC_PLUGIN_IDENT_IPV6, IPV6_VERSION, ip_output_v6,
121 	    IPTUN_MIN_IPV6_MTU,	IPTUN_MAX_IPV6_MTU,	B_TRUE },
122 	{ IPTUN_TYPE_6TO4, MAC_PLUGIN_IDENT_6TO4, IPV4_VERSION, ip_output,
123 	    IPTUN_MIN_IPV4_MTU,	IPTUN_MAX_IPV4_MTU,	B_FALSE },
124 	{ IPTUN_TYPE_UNKNOWN, NULL, 0, NULL, 0, 0, B_FALSE }
125 };
126 
127 /*
128  * iptun_hash is an iptun_t lookup table by link ID protected by
129  * iptun_hash_lock.  While the hash table's integrity is maintained via
130  * internal locking in the mod_hash_*() functions, we need additional locking
131  * so that an iptun_t cannot be deleted after a hash lookup has returned an
132  * iptun_t and before iptun_lock has been entered.  As such, we use
133  * iptun_hash_lock when doing lookups and removals from iptun_hash.
134  */
135 mod_hash_t	*iptun_hash;
136 static kmutex_t	iptun_hash_lock;
137 
138 static uint_t	iptun_tunnelcount;	/* total for all stacks */
139 kmem_cache_t	*iptun_cache;
140 ddi_taskq_t 	*iptun_taskq;
141 
142 typedef enum {
143 	IPTUN_TASK_PMTU_UPDATE,	/* obtain new destination path-MTU */
144 	IPTUN_TASK_MTU_UPDATE,	/* tell mac about new tunnel link MTU */
145 	IPTUN_TASK_LADDR_UPDATE, /* tell mac about new local address */
146 	IPTUN_TASK_RADDR_UPDATE, /* tell mac about new remote address */
147 	IPTUN_TASK_LINK_UPDATE,	/* tell mac about new link state */
148 	IPTUN_TASK_PDATA_UPDATE	/* tell mac about updated plugin data */
149 } iptun_task_t;
150 
151 typedef struct iptun_task_data_s {
152 	iptun_task_t	itd_task;
153 	datalink_id_t	itd_linkid;
154 } iptun_task_data_t;
155 
156 static void iptun_task_dispatch(iptun_t *, iptun_task_t);
157 static int iptun_enter(iptun_t *);
158 static void iptun_exit(iptun_t *);
159 static void iptun_headergen(iptun_t *, boolean_t);
160 static void iptun_drop_pkt(mblk_t *, uint64_t *);
161 static void iptun_input(void *, mblk_t *, void *);
162 static void iptun_output(iptun_t *, mblk_t *);
163 static uint32_t iptun_get_maxmtu(iptun_t *, uint32_t);
164 static uint32_t iptun_update_mtu(iptun_t *, uint32_t);
165 static uint32_t iptun_get_dst_pmtu(iptun_t *);
166 static int iptun_setladdr(iptun_t *, const struct sockaddr_storage *);
167 
168 static mac_callbacks_t iptun_m_callbacks;
169 
170 static int
171 iptun_m_getstat(void *arg, uint_t stat, uint64_t *val)
172 {
173 	iptun_t	*iptun = arg;
174 	int	err = 0;
175 
176 	switch (stat) {
177 	case MAC_STAT_IERRORS:
178 		*val = iptun->iptun_ierrors;
179 		break;
180 	case MAC_STAT_OERRORS:
181 		*val = iptun->iptun_oerrors;
182 		break;
183 	case MAC_STAT_RBYTES:
184 		*val = iptun->iptun_rbytes;
185 		break;
186 	case MAC_STAT_IPACKETS:
187 		*val = iptun->iptun_ipackets;
188 		break;
189 	case MAC_STAT_OBYTES:
190 		*val = iptun->iptun_obytes;
191 		break;
192 	case MAC_STAT_OPACKETS:
193 		*val = iptun->iptun_opackets;
194 		break;
195 	case MAC_STAT_NORCVBUF:
196 		*val = iptun->iptun_norcvbuf;
197 		break;
198 	case MAC_STAT_NOXMTBUF:
199 		*val = iptun->iptun_noxmtbuf;
200 		break;
201 	default:
202 		err = ENOTSUP;
203 	}
204 
205 	return (err);
206 }
207 
208 static int
209 iptun_m_start(void *arg)
210 {
211 	iptun_t	*iptun = arg;
212 	int	err;
213 
214 	if ((err = iptun_enter(iptun)) == 0) {
215 		iptun->iptun_flags |= IPTUN_MAC_STARTED;
216 		iptun_task_dispatch(iptun, IPTUN_TASK_LINK_UPDATE);
217 		iptun_exit(iptun);
218 	}
219 	return (err);
220 }
221 
222 static void
223 iptun_m_stop(void *arg)
224 {
225 	iptun_t *iptun = arg;
226 
227 	if (iptun_enter(iptun) == 0) {
228 		iptun->iptun_flags &= ~IPTUN_MAC_STARTED;
229 		iptun_task_dispatch(iptun, IPTUN_TASK_LINK_UPDATE);
230 		iptun_exit(iptun);
231 	}
232 }
233 
234 /*
235  * iptun_m_setpromisc() does nothing and always succeeds.  This is because a
236  * tunnel data-link only ever receives packets that are destined exclusively
237  * for the local address of the tunnel.
238  */
239 /* ARGSUSED */
240 static int
241 iptun_m_setpromisc(void *arg, boolean_t on)
242 {
243 	return (0);
244 }
245 
246 /* ARGSUSED */
247 static int
248 iptun_m_multicst(void *arg, boolean_t add, const uint8_t *addrp)
249 {
250 	return (ENOTSUP);
251 }
252 
253 /*
254  * iptun_m_unicst() sets the local address.
255  */
256 /* ARGSUSED */
257 static int
258 iptun_m_unicst(void *arg, const uint8_t *addrp)
259 {
260 	iptun_t			*iptun = arg;
261 	int			err;
262 	struct sockaddr_storage	ss;
263 	struct sockaddr_in	*sin;
264 	struct sockaddr_in6	*sin6;
265 
266 	if ((err = iptun_enter(iptun)) == 0) {
267 		switch (iptun->iptun_typeinfo->iti_ipvers) {
268 		case IPV4_VERSION:
269 			sin = (struct sockaddr_in *)&ss;
270 			sin->sin_family = AF_INET;
271 			bcopy(addrp, &sin->sin_addr, sizeof (in_addr_t));
272 			break;
273 		case IPV6_VERSION:
274 			sin6 = (struct sockaddr_in6 *)&ss;
275 			sin6->sin6_family = AF_INET6;
276 			bcopy(addrp, &sin6->sin6_addr, sizeof (in6_addr_t));
277 			break;
278 		default:
279 			ASSERT(0);
280 		}
281 		err = iptun_setladdr(iptun, &ss);
282 		iptun_exit(iptun);
283 	}
284 	return (err);
285 }
286 
287 static mblk_t *
288 iptun_m_tx(void *arg, mblk_t *mpchain)
289 {
290 	mblk_t	*mp, *nmp;
291 	iptun_t	*iptun = arg;
292 
293 	if (!IS_IPTUN_RUNNING(iptun)) {
294 		iptun_drop_pkt(mpchain, &iptun->iptun_noxmtbuf);
295 		return (NULL);
296 	}
297 
298 	/*
299 	 * Request the destination's path MTU information regularly in case
300 	 * path MTU has increased.
301 	 */
302 	if (IPTUN_PMTU_TOO_OLD(iptun))
303 		iptun_task_dispatch(iptun, IPTUN_TASK_PMTU_UPDATE);
304 
305 	for (mp = mpchain; mp != NULL; mp = nmp) {
306 		nmp = mp->b_next;
307 		mp->b_next = NULL;
308 		iptun_output(iptun, mp);
309 	}
310 
311 	return (NULL);
312 }
313 
314 /* ARGSUSED */
315 static int
316 iptun_m_setprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
317     uint_t pr_valsize, const void *pr_val)
318 {
319 	iptun_t		*iptun = barg;
320 	uint32_t	value = *(uint32_t *)pr_val;
321 	int		err;
322 
323 	/*
324 	 * We need to enter this iptun_t since we'll be modifying the outer
325 	 * header.
326 	 */
327 	if ((err = iptun_enter(iptun)) != 0)
328 		return (err);
329 
330 	switch (pr_num) {
331 	case MAC_PROP_IPTUN_HOPLIMIT:
332 		if (value < IPTUN_MIN_HOPLIMIT || value > IPTUN_MAX_HOPLIMIT) {
333 			err = EINVAL;
334 			break;
335 		}
336 		if (value != iptun->iptun_hoplimit) {
337 			iptun->iptun_hoplimit = (uint8_t)value;
338 			iptun_headergen(iptun, B_TRUE);
339 		}
340 		break;
341 	case MAC_PROP_IPTUN_ENCAPLIMIT:
342 		if (iptun->iptun_typeinfo->iti_type != IPTUN_TYPE_IPV6 ||
343 		    value > IPTUN_MAX_ENCAPLIMIT) {
344 			err = EINVAL;
345 			break;
346 		}
347 		if (value != iptun->iptun_encaplimit) {
348 			iptun->iptun_encaplimit = (uint8_t)value;
349 			iptun_headergen(iptun, B_TRUE);
350 		}
351 		break;
352 	case MAC_PROP_MTU: {
353 		uint32_t maxmtu = iptun_get_maxmtu(iptun, 0);
354 
355 		if (value < iptun->iptun_typeinfo->iti_minmtu ||
356 		    value > maxmtu) {
357 			err = EINVAL;
358 			break;
359 		}
360 		iptun->iptun_flags |= IPTUN_FIXED_MTU;
361 		if (value != iptun->iptun_mtu) {
362 			iptun->iptun_mtu = value;
363 			iptun_task_dispatch(iptun, IPTUN_TASK_MTU_UPDATE);
364 		}
365 		break;
366 	}
367 	default:
368 		err = EINVAL;
369 	}
370 	iptun_exit(iptun);
371 	return (err);
372 }
373 
374 /* ARGSUSED */
375 static int
376 iptun_m_getprop(void *barg, const char *pr_name, mac_prop_id_t pr_num,
377     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
378 {
379 	iptun_t			*iptun = barg;
380 	mac_propval_range_t	range;
381 	boolean_t		is_default = (pr_flags & MAC_PROP_DEFAULT);
382 	boolean_t		is_possible = (pr_flags & MAC_PROP_POSSIBLE);
383 	int			err;
384 
385 	if ((err = iptun_enter(iptun)) != 0)
386 		return (err);
387 
388 	if ((pr_flags & ~(MAC_PROP_DEFAULT | MAC_PROP_POSSIBLE)) != 0) {
389 		err = ENOTSUP;
390 		goto done;
391 	}
392 	if (is_default && is_possible) {
393 		err = EINVAL;
394 		goto done;
395 	}
396 
397 	*perm = MAC_PROP_PERM_RW;
398 
399 	if (is_possible) {
400 		if (pr_valsize < sizeof (mac_propval_range_t)) {
401 			err = EINVAL;
402 			goto done;
403 		}
404 		range.mpr_count = 1;
405 		range.mpr_type = MAC_PROPVAL_UINT32;
406 	} else if (pr_valsize < sizeof (uint32_t)) {
407 		err = EINVAL;
408 		goto done;
409 	}
410 
411 	switch (pr_num) {
412 	case MAC_PROP_IPTUN_HOPLIMIT:
413 		if (is_possible) {
414 			range.range_uint32[0].mpur_min = IPTUN_MIN_HOPLIMIT;
415 			range.range_uint32[0].mpur_max = IPTUN_MAX_HOPLIMIT;
416 		} else if (is_default) {
417 			*(uint32_t *)pr_val = IPTUN_DEFAULT_HOPLIMIT;
418 		} else {
419 			*(uint32_t *)pr_val = iptun->iptun_hoplimit;
420 		}
421 		break;
422 	case MAC_PROP_IPTUN_ENCAPLIMIT:
423 		if (iptun->iptun_typeinfo->iti_type != IPTUN_TYPE_IPV6) {
424 			err = ENOTSUP;
425 			goto done;
426 		}
427 		if (is_possible) {
428 			range.range_uint32[0].mpur_min = IPTUN_MIN_ENCAPLIMIT;
429 			range.range_uint32[0].mpur_max = IPTUN_MAX_ENCAPLIMIT;
430 		} else if (is_default) {
431 			*(uint32_t *)pr_val = IPTUN_DEFAULT_ENCAPLIMIT;
432 		} else {
433 			*(uint32_t *)pr_val = iptun->iptun_encaplimit;
434 		}
435 		break;
436 	case MAC_PROP_MTU: {
437 		uint32_t maxmtu = iptun_get_maxmtu(iptun, 0);
438 
439 		if (is_possible) {
440 			range.range_uint32[0].mpur_min =
441 			    iptun->iptun_typeinfo->iti_minmtu;
442 			range.range_uint32[0].mpur_max = maxmtu;
443 		} else {
444 			/*
445 			 * The MAC module knows the current value and should
446 			 * never call us for it.  There is also no default
447 			 * MTU, as by default, it is a dynamic property.
448 			 */
449 			err = ENOTSUP;
450 			goto done;
451 		}
452 		break;
453 	}
454 	default:
455 		err = EINVAL;
456 		goto done;
457 	}
458 	if (is_possible)
459 		bcopy(&range, pr_val, sizeof (range));
460 done:
461 	iptun_exit(iptun);
462 	return (err);
463 }
464 
465 uint_t
466 iptun_count(void)
467 {
468 	return (iptun_tunnelcount);
469 }
470 
471 /*
472  * Enter an iptun_t exclusively.  This is essentially just a mutex, but we
473  * don't allow iptun_enter() to succeed on a tunnel if it's in the process of
474  * being deleted.
475  */
476 static int
477 iptun_enter(iptun_t *iptun)
478 {
479 	mutex_enter(&iptun->iptun_lock);
480 	while (iptun->iptun_flags & IPTUN_DELETE_PENDING)
481 		cv_wait(&iptun->iptun_enter_cv, &iptun->iptun_lock);
482 	if (iptun->iptun_flags & IPTUN_CONDEMNED) {
483 		mutex_exit(&iptun->iptun_lock);
484 		return (ENOENT);
485 	}
486 	return (0);
487 }
488 
489 /*
490  * Exit the tunnel entered in iptun_enter().
491  */
492 static void
493 iptun_exit(iptun_t *iptun)
494 {
495 	mutex_exit(&iptun->iptun_lock);
496 }
497 
498 /*
499  * Enter the IP tunnel instance by datalink ID.
500  */
501 static int
502 iptun_enter_by_linkid(datalink_id_t linkid, iptun_t **iptun)
503 {
504 	int err;
505 
506 	mutex_enter(&iptun_hash_lock);
507 	if (mod_hash_find(iptun_hash, IPTUN_HASH_KEY(linkid),
508 	    (mod_hash_val_t *)iptun) == 0)
509 		err = iptun_enter(*iptun);
510 	else
511 		err = ENOENT;
512 	if (err != 0)
513 		*iptun = NULL;
514 	mutex_exit(&iptun_hash_lock);
515 	return (err);
516 }
517 
518 /*
519  * Handle tasks that were deferred through the iptun_taskq.  These fall into
520  * two categories:
521  *
522  * 1. Tasks that were defered because we didn't want to spend time doing them
523  * while in the data path.  Only IPTUN_TASK_PMTU_UPDATE falls into this
524  * category.
525  *
526  * 2. Tasks that were defered because they require calling up to the mac
527  * module, and we can't call up to the mac module while holding locks.
528  *
529  * Handling 1 is easy; we just lookup the iptun_t, perform the task, exit the
530  * tunnel, and we're done.
531  *
532  * Handling 2 is tricky to get right without introducing race conditions and
533  * deadlocks with the mac module, as we cannot issue an upcall while in the
534  * iptun_t.  The reason is that upcalls may try and enter the mac perimeter,
535  * while iptun callbacks (such as iptun_m_setprop()) called from the mac
536  * module will already have the perimeter held, and will then try and enter
537  * the iptun_t.  You can see the lock ordering problem with this; this will
538  * deadlock.
539  *
540  * The safe way to do this is to enter the iptun_t in question and copy the
541  * information we need out of it so that we can exit it and know that the
542  * information being passed up to the upcalls won't be subject to modification
543  * by other threads.  The problem now is that we need to exit it prior to
544  * issuing the upcall, but once we do this, a thread could come along and
545  * delete the iptun_t and thus the mac handle required to issue the upcall.
546  * To prevent this, we set the IPTUN_UPCALL_PENDING flag prior to exiting the
547  * iptun_t.  This flag is the condition associated with iptun_upcall_cv, which
548  * iptun_delete() will cv_wait() on.  When the upcall completes, we clear
549  * IPTUN_UPCALL_PENDING and cv_signal() any potentially waiting
550  * iptun_delete().  We can thus still safely use iptun->iptun_mh after having
551  * exited the iptun_t.
552  */
553 static void
554 iptun_task_cb(void *arg)
555 {
556 	iptun_task_data_t	*itd = arg;
557 	iptun_task_t		task = itd->itd_task;
558 	datalink_id_t		linkid = itd->itd_linkid;
559 	iptun_t			*iptun;
560 	uint32_t		mtu;
561 	iptun_addr_t		addr;
562 	link_state_t		linkstate;
563 	size_t			header_size;
564 	iptun_header_t		header;
565 
566 	kmem_free(itd, sizeof (*itd));
567 
568 	/*
569 	 * Note that if the lookup fails, it's because the tunnel was deleted
570 	 * between the time the task was dispatched and now.  That isn't an
571 	 * error.
572 	 */
573 	if (iptun_enter_by_linkid(linkid, &iptun) != 0)
574 		return;
575 
576 	if (task == IPTUN_TASK_PMTU_UPDATE) {
577 		(void) iptun_update_mtu(iptun, 0);
578 		iptun_exit(iptun);
579 		return;
580 	}
581 
582 	iptun->iptun_flags |= IPTUN_UPCALL_PENDING;
583 
584 	switch (task) {
585 	case IPTUN_TASK_MTU_UPDATE:
586 		mtu = iptun->iptun_mtu;
587 		break;
588 	case IPTUN_TASK_LADDR_UPDATE:
589 		addr = iptun->iptun_laddr;
590 		break;
591 	case IPTUN_TASK_RADDR_UPDATE:
592 		addr = iptun->iptun_raddr;
593 		break;
594 	case IPTUN_TASK_LINK_UPDATE:
595 		linkstate = IS_IPTUN_RUNNING(iptun) ?
596 		    LINK_STATE_UP : LINK_STATE_DOWN;
597 		break;
598 	case IPTUN_TASK_PDATA_UPDATE:
599 		header_size = iptun->iptun_header_size;
600 		header = iptun->iptun_header;
601 		break;
602 	default:
603 		ASSERT(0);
604 	}
605 
606 	iptun_exit(iptun);
607 
608 	switch (task) {
609 	case IPTUN_TASK_MTU_UPDATE:
610 		(void) mac_maxsdu_update(iptun->iptun_mh, mtu);
611 		break;
612 	case IPTUN_TASK_LADDR_UPDATE:
613 		mac_unicst_update(iptun->iptun_mh, (uint8_t *)&addr.ia_addr);
614 		break;
615 	case IPTUN_TASK_RADDR_UPDATE:
616 		mac_dst_update(iptun->iptun_mh, (uint8_t *)&addr.ia_addr);
617 		break;
618 	case IPTUN_TASK_LINK_UPDATE:
619 		mac_link_update(iptun->iptun_mh, linkstate);
620 		break;
621 	case IPTUN_TASK_PDATA_UPDATE:
622 		if (mac_pdata_update(iptun->iptun_mh,
623 		    header_size == 0 ? NULL : &header, header_size) != 0)
624 			atomic_inc_64(&iptun->iptun_taskq_fail);
625 		break;
626 	}
627 
628 	mutex_enter(&iptun->iptun_lock);
629 	iptun->iptun_flags &= ~IPTUN_UPCALL_PENDING;
630 	cv_signal(&iptun->iptun_upcall_cv);
631 	mutex_exit(&iptun->iptun_lock);
632 }
633 
634 static void
635 iptun_task_dispatch(iptun_t *iptun, iptun_task_t iptun_task)
636 {
637 	iptun_task_data_t *itd;
638 
639 	itd = kmem_alloc(sizeof (*itd), KM_NOSLEEP);
640 	if (itd == NULL) {
641 		atomic_inc_64(&iptun->iptun_taskq_fail);
642 		return;
643 	}
644 	itd->itd_task = iptun_task;
645 	itd->itd_linkid = iptun->iptun_linkid;
646 	if (ddi_taskq_dispatch(iptun_taskq, iptun_task_cb, itd, DDI_NOSLEEP)) {
647 		atomic_inc_64(&iptun->iptun_taskq_fail);
648 		kmem_free(itd, sizeof (*itd));
649 	}
650 }
651 
652 /*
653  * Convert an iptun_addr_t to sockaddr_storage.
654  */
655 static void
656 iptun_getaddr(iptun_addr_t *iptun_addr, struct sockaddr_storage *ss)
657 {
658 	struct sockaddr_in	*sin;
659 	struct sockaddr_in6	*sin6;
660 
661 	bzero(ss, sizeof (*ss));
662 	switch (iptun_addr->ia_family) {
663 	case AF_INET:
664 		sin = (struct sockaddr_in *)ss;
665 		sin->sin_addr.s_addr = iptun_addr->ia_addr.iau_addr4;
666 		break;
667 	case AF_INET6:
668 		sin6 = (struct sockaddr_in6 *)ss;
669 		sin6->sin6_addr = iptun_addr->ia_addr.iau_addr6;
670 		break;
671 	default:
672 		ASSERT(0);
673 	}
674 	ss->ss_family = iptun_addr->ia_family;
675 }
676 
677 /*
678  * General purpose function to set an IP tunnel source or destination address.
679  */
680 static int
681 iptun_setaddr(iptun_type_t iptun_type, iptun_addr_t *iptun_addr,
682     const struct sockaddr_storage *ss)
683 {
684 	if (!IPTUN_ADDR_MATCH(iptun_type, ss->ss_family))
685 		return (EINVAL);
686 
687 	switch (ss->ss_family) {
688 	case AF_INET: {
689 		struct sockaddr_in *sin = (struct sockaddr_in *)ss;
690 
691 		if ((sin->sin_addr.s_addr == INADDR_ANY) ||
692 		    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
693 		    CLASSD(sin->sin_addr.s_addr)) {
694 			return (EADDRNOTAVAIL);
695 		}
696 		iptun_addr->ia_addr.iau_addr4 = sin->sin_addr.s_addr;
697 		break;
698 	}
699 	case AF_INET6: {
700 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)ss;
701 
702 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) ||
703 		    IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) ||
704 		    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
705 			return (EADDRNOTAVAIL);
706 		}
707 		iptun_addr->ia_addr.iau_addr6 = sin6->sin6_addr;
708 		break;
709 	}
710 	default:
711 		return (EAFNOSUPPORT);
712 	}
713 	iptun_addr->ia_family = ss->ss_family;
714 	return (0);
715 }
716 
717 static int
718 iptun_setladdr(iptun_t *iptun, const struct sockaddr_storage *laddr)
719 {
720 	return (iptun_setaddr(iptun->iptun_typeinfo->iti_type,
721 	    &iptun->iptun_laddr, laddr));
722 }
723 
724 static int
725 iptun_setraddr(iptun_t *iptun, const struct sockaddr_storage *raddr)
726 {
727 	if (!(iptun->iptun_typeinfo->iti_hasraddr))
728 		return (EINVAL);
729 	return (iptun_setaddr(iptun->iptun_typeinfo->iti_type,
730 	    &iptun->iptun_raddr, raddr));
731 }
732 
733 static boolean_t
734 iptun_canbind(iptun_t *iptun)
735 {
736 	/*
737 	 * A tunnel may bind when its source address has been set, and if its
738 	 * tunnel type requires one, also its destination address.
739 	 */
740 	return ((iptun->iptun_flags & IPTUN_LADDR) &&
741 	    ((iptun->iptun_flags & IPTUN_RADDR) ||
742 	    !(iptun->iptun_typeinfo->iti_hasraddr)));
743 }
744 
745 static int
746 iptun_bind(iptun_t *iptun)
747 {
748 	conn_t	*connp = iptun->iptun_connp;
749 	int	err;
750 
751 	ASSERT(iptun_canbind(iptun));
752 
753 	switch (iptun->iptun_typeinfo->iti_type) {
754 	case IPTUN_TYPE_IPV4:
755 		/*
756 		 * When we set a tunnel's destination address, we do not care
757 		 * if the destination is reachable.  Transient routing issues
758 		 * should not inhibit the creation of a tunnel interface, for
759 		 * example.  For that reason, we pass in B_FALSE for the
760 		 * verify_dst argument of ip_proto_bind_connected_v4() (and
761 		 * similarly for IPv6 tunnels below).
762 		 */
763 		err = ip_proto_bind_connected_v4(connp, NULL, IPPROTO_ENCAP,
764 		    &iptun->iptun_laddr4, 0, iptun->iptun_raddr4, 0, B_TRUE,
765 		    B_FALSE, iptun->iptun_cred);
766 		break;
767 	case IPTUN_TYPE_IPV6:
768 		err = ip_proto_bind_connected_v6(connp, NULL, IPPROTO_IPV6,
769 		    &iptun->iptun_laddr6, 0, &iptun->iptun_raddr6, NULL, 0,
770 		    B_TRUE, B_FALSE, iptun->iptun_cred);
771 		break;
772 	case IPTUN_TYPE_6TO4:
773 		err = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_IPV6,
774 		    iptun->iptun_laddr4, 0, B_TRUE);
775 		break;
776 	}
777 
778 	if (err == 0) {
779 		iptun->iptun_flags |= IPTUN_BOUND;
780 
781 		/*
782 		 * Now that we're bound with ip below us, this is a good time
783 		 * to initialize the destination path MTU and to re-calculate
784 		 * the tunnel's link MTU.
785 		 */
786 		(void) iptun_update_mtu(iptun, 0);
787 
788 		if (IS_IPTUN_RUNNING(iptun))
789 			iptun_task_dispatch(iptun, IPTUN_TASK_LINK_UPDATE);
790 	}
791 	return (err);
792 }
793 
794 static void
795 iptun_unbind(iptun_t *iptun)
796 {
797 	ASSERT(iptun->iptun_flags & IPTUN_BOUND);
798 	ASSERT(mutex_owned(&iptun->iptun_lock) ||
799 	    (iptun->iptun_flags & IPTUN_CONDEMNED));
800 	ip_unbind(iptun->iptun_connp);
801 	iptun->iptun_flags &= ~IPTUN_BOUND;
802 	if (!(iptun->iptun_flags & IPTUN_CONDEMNED))
803 		iptun_task_dispatch(iptun, IPTUN_TASK_LINK_UPDATE);
804 }
805 
806 /*
807  * Re-generate the template data-link header for a given IP tunnel given the
808  * tunnel's current parameters.
809  */
810 static void
811 iptun_headergen(iptun_t *iptun, boolean_t update_mac)
812 {
813 	switch (iptun->iptun_typeinfo->iti_ipvers) {
814 	case IPV4_VERSION:
815 		/*
816 		 * We only need to use a custom IP header if the administrator
817 		 * has supplied a non-default hoplimit.
818 		 */
819 		if (iptun->iptun_hoplimit == IPTUN_DEFAULT_HOPLIMIT) {
820 			iptun->iptun_header_size = 0;
821 			break;
822 		}
823 		iptun->iptun_header_size = sizeof (ipha_t);
824 		iptun->iptun_header4.ipha_version_and_hdr_length =
825 		    IP_SIMPLE_HDR_VERSION;
826 		iptun->iptun_header4.ipha_fragment_offset_and_flags =
827 		    htons(IPH_DF);
828 		iptun->iptun_header4.ipha_ttl = iptun->iptun_hoplimit;
829 		break;
830 	case IPV6_VERSION: {
831 		ip6_t	*ip6hp = &iptun->iptun_header6.it6h_ip6h;
832 
833 		/*
834 		 * We only need to use a custom IPv6 header if either the
835 		 * administrator has supplied a non-default hoplimit, or we
836 		 * need to include an encapsulation limit option in the outer
837 		 * header.
838 		 */
839 		if (iptun->iptun_hoplimit == IPTUN_DEFAULT_HOPLIMIT &&
840 		    iptun->iptun_encaplimit == 0) {
841 			iptun->iptun_header_size = 0;
842 			break;
843 		}
844 
845 		(void) memset(ip6hp, 0, sizeof (*ip6hp));
846 		if (iptun->iptun_encaplimit == 0) {
847 			iptun->iptun_header_size = sizeof (ip6_t);
848 			ip6hp->ip6_nxt = IPPROTO_NONE;
849 		} else {
850 			iptun_encaplim_t	*iel;
851 
852 			iptun->iptun_header_size = sizeof (iptun_ipv6hdrs_t);
853 			/*
854 			 * The mac_ipv6 plugin requires ip6_plen to be in host
855 			 * byte order and reflect the extension headers
856 			 * present in the template.  The actual network byte
857 			 * order ip6_plen will be set on a per-packet basis on
858 			 * transmit.
859 			 */
860 			ip6hp->ip6_plen = sizeof (*iel);
861 			ip6hp->ip6_nxt = IPPROTO_DSTOPTS;
862 			iel = &iptun->iptun_header6.it6h_encaplim;
863 			*iel = iptun_encaplim_init;
864 			iel->iel_telopt.ip6ot_encap_limit =
865 			    iptun->iptun_encaplimit;
866 		}
867 
868 		ip6hp->ip6_hlim = iptun->iptun_hoplimit;
869 		break;
870 	}
871 	}
872 
873 	if (update_mac)
874 		iptun_task_dispatch(iptun, IPTUN_TASK_PDATA_UPDATE);
875 }
876 
877 /*
878  * Insert inbound and outbound IPv4 and IPv6 policy into the given policy
879  * head.
880  */
881 static boolean_t
882 iptun_insert_simple_policies(ipsec_policy_head_t *ph, ipsec_act_t *actp,
883     uint_t n, netstack_t *ns)
884 {
885 	int f = IPSEC_AF_V4;
886 
887 	if (!ipsec_polhead_insert(ph, actp, n, f, IPSEC_TYPE_INBOUND, ns) ||
888 	    !ipsec_polhead_insert(ph, actp, n, f, IPSEC_TYPE_OUTBOUND, ns))
889 		return (B_FALSE);
890 
891 	f = IPSEC_AF_V6;
892 	return (ipsec_polhead_insert(ph, actp, n, f, IPSEC_TYPE_INBOUND, ns) &&
893 	    ipsec_polhead_insert(ph, actp, n, f, IPSEC_TYPE_OUTBOUND, ns));
894 }
895 
896 /*
897  * Used to set IPsec policy when policy is set through the IPTUN_CREATE or
898  * IPTUN_MODIFY ioctls.
899  */
900 static int
901 iptun_set_sec_simple(iptun_t *iptun, const ipsec_req_t *ipsr)
902 {
903 	int		rc = 0;
904 	uint_t		nact;
905 	ipsec_act_t	*actp = NULL;
906 	boolean_t	clear_all, old_policy = B_FALSE;
907 	ipsec_tun_pol_t	*itp;
908 	char		name[MAXLINKNAMELEN];
909 	uint64_t	gen;
910 	netstack_t	*ns = iptun->iptun_ns;
911 
912 	/* Can't specify self-encap on a tunnel. */
913 	if (ipsr->ipsr_self_encap_req != 0)
914 		return (EINVAL);
915 
916 	/*
917 	 * If it's a "clear-all" entry, unset the security flags and resume
918 	 * normal cleartext (or inherit-from-global) policy.
919 	 */
920 	clear_all = ((ipsr->ipsr_ah_req & IPTUN_IPSEC_REQ_MASK) == 0 &&
921 	    (ipsr->ipsr_esp_req & IPTUN_IPSEC_REQ_MASK) == 0);
922 
923 	ASSERT(mutex_owned(&iptun->iptun_lock));
924 	itp = iptun->iptun_itp;
925 	if (itp == NULL) {
926 		if (clear_all)
927 			goto bail;
928 		if ((rc = dls_mgmt_get_linkinfo(iptun->iptun_linkid, name, NULL,
929 		    NULL, NULL)) != 0)
930 			goto bail;
931 		ASSERT(name[0] != '\0');
932 		if ((itp = create_tunnel_policy(name, &rc, &gen, ns)) == NULL)
933 			goto bail;
934 		iptun->iptun_itp = itp;
935 	}
936 
937 	/* Allocate the actvec now, before holding itp or polhead locks. */
938 	ipsec_actvec_from_req(ipsr, &actp, &nact, ns);
939 	if (actp == NULL) {
940 		rc = ENOMEM;
941 		goto bail;
942 	}
943 
944 	/*
945 	 * Just write on the active polhead.  Save the primary/secondary stuff
946 	 * for spdsock operations.
947 	 *
948 	 * Mutex because we need to write to the polhead AND flags atomically.
949 	 * Other threads will acquire the polhead lock as a reader if the
950 	 * (unprotected) flag is set.
951 	 */
952 	mutex_enter(&itp->itp_lock);
953 	if (itp->itp_flags & ITPF_P_TUNNEL) {
954 		/* Oops, we lost a race.  Let's get out of here. */
955 		rc = EBUSY;
956 		goto mutex_bail;
957 	}
958 	old_policy = ((itp->itp_flags & ITPF_P_ACTIVE) != 0);
959 
960 	if (old_policy) {
961 		ITPF_CLONE(itp->itp_flags);
962 		rc = ipsec_copy_polhead(itp->itp_policy, itp->itp_inactive, ns);
963 		if (rc != 0) {
964 			/* inactive has already been cleared. */
965 			itp->itp_flags &= ~ITPF_IFLAGS;
966 			goto mutex_bail;
967 		}
968 		rw_enter(&itp->itp_policy->iph_lock, RW_WRITER);
969 		ipsec_polhead_flush(itp->itp_policy, ns);
970 	} else {
971 		/* Else assume itp->itp_policy is already flushed. */
972 		rw_enter(&itp->itp_policy->iph_lock, RW_WRITER);
973 	}
974 
975 	if (clear_all) {
976 		ASSERT(avl_numnodes(&itp->itp_policy->iph_rulebyid) == 0);
977 		itp->itp_flags &= ~ITPF_PFLAGS;
978 		rw_exit(&itp->itp_policy->iph_lock);
979 		old_policy = B_FALSE;	/* Clear out the inactive one too. */
980 		goto recover_bail;
981 	}
982 
983 	if (iptun_insert_simple_policies(itp->itp_policy, actp, nact, ns)) {
984 		rw_exit(&itp->itp_policy->iph_lock);
985 		/*
986 		 * Adjust MTU and make sure the DL side knows what's up.
987 		 */
988 		itp->itp_flags = ITPF_P_ACTIVE;
989 		(void) iptun_update_mtu(iptun, 0);
990 		old_policy = B_FALSE;	/* Blank out inactive - we succeeded */
991 	} else {
992 		rw_exit(&itp->itp_policy->iph_lock);
993 		rc = ENOMEM;
994 	}
995 
996 recover_bail:
997 	if (old_policy) {
998 		/* Recover policy in in active polhead. */
999 		ipsec_swap_policy(itp->itp_policy, itp->itp_inactive, ns);
1000 		ITPF_SWAP(itp->itp_flags);
1001 	}
1002 
1003 	/* Clear policy in inactive polhead. */
1004 	itp->itp_flags &= ~ITPF_IFLAGS;
1005 	rw_enter(&itp->itp_inactive->iph_lock, RW_WRITER);
1006 	ipsec_polhead_flush(itp->itp_inactive, ns);
1007 	rw_exit(&itp->itp_inactive->iph_lock);
1008 
1009 mutex_bail:
1010 	mutex_exit(&itp->itp_lock);
1011 
1012 bail:
1013 	if (actp != NULL)
1014 		ipsec_actvec_free(actp, nact);
1015 
1016 	return (rc);
1017 }
1018 
1019 static iptun_typeinfo_t *
1020 iptun_gettypeinfo(iptun_type_t type)
1021 {
1022 	int i;
1023 
1024 	for (i = 0; iptun_type_table[i].iti_type != IPTUN_TYPE_UNKNOWN; i++) {
1025 		if (iptun_type_table[i].iti_type == type)
1026 			break;
1027 	}
1028 	return (&iptun_type_table[i]);
1029 }
1030 
1031 /*
1032  * Set the parameters included in ik on the tunnel iptun.  Parameters that can
1033  * only be set at creation time are set in iptun_create().
1034  */
1035 static int
1036 iptun_setparams(iptun_t *iptun, const iptun_kparams_t *ik)
1037 {
1038 	int		err = 0;
1039 	netstack_t	*ns = iptun->iptun_ns;
1040 	iptun_addr_t	orig_laddr, orig_raddr;
1041 	uint_t		orig_flags = iptun->iptun_flags;
1042 
1043 	if (ik->iptun_kparam_flags & IPTUN_KPARAM_LADDR) {
1044 		if (orig_flags & IPTUN_LADDR)
1045 			orig_laddr = iptun->iptun_laddr;
1046 		if ((err = iptun_setladdr(iptun, &ik->iptun_kparam_laddr)) != 0)
1047 			return (err);
1048 		iptun->iptun_flags |= IPTUN_LADDR;
1049 	}
1050 
1051 	if (ik->iptun_kparam_flags & IPTUN_KPARAM_RADDR) {
1052 		if (orig_flags & IPTUN_RADDR)
1053 			orig_raddr = iptun->iptun_raddr;
1054 		if ((err = iptun_setraddr(iptun, &ik->iptun_kparam_raddr)) != 0)
1055 			goto done;
1056 		iptun->iptun_flags |= IPTUN_RADDR;
1057 	}
1058 
1059 	if (ik->iptun_kparam_flags & IPTUN_KPARAM_SECINFO) {
1060 		/*
1061 		 * Set IPsec policy originating from the ifconfig(1M) command
1062 		 * line.  This is traditionally called "simple" policy because
1063 		 * the ipsec_req_t (iptun_kparam_secinfo) can only describe a
1064 		 * simple policy of "do ESP on everything" and/or "do AH on
1065 		 * everything" (as opposed to the rich policy that can be
1066 		 * defined with ipsecconf(1M)).
1067 		 */
1068 		if (iptun->iptun_typeinfo->iti_type == IPTUN_TYPE_6TO4) {
1069 			/*
1070 			 * Can't set security properties for automatic
1071 			 * tunnels.
1072 			 */
1073 			err = EINVAL;
1074 			goto done;
1075 		}
1076 
1077 		if (!ipsec_loaded(ns->netstack_ipsec)) {
1078 			/* If IPsec can be loaded, try and load it now. */
1079 			if (ipsec_failed(ns->netstack_ipsec)) {
1080 				err = EPROTONOSUPPORT;
1081 				goto done;
1082 			}
1083 			ipsec_loader_loadnow(ns->netstack_ipsec);
1084 			/*
1085 			 * ipsec_loader_loadnow() returns while IPsec is
1086 			 * loaded asynchronously.  While a method exists to
1087 			 * wait for IPsec to load (ipsec_loader_wait()), it
1088 			 * requires use of a STREAMS queue to do a qwait().
1089 			 * We're not in STREAMS context here, and so we can't
1090 			 * use it.  This is not a problem in practice because
1091 			 * in the vast majority of cases, key management and
1092 			 * global policy will have loaded before any tunnels
1093 			 * are plumbed, and so IPsec will already have been
1094 			 * loaded.
1095 			 */
1096 			err = EAGAIN;
1097 			goto done;
1098 		}
1099 
1100 		err = iptun_set_sec_simple(iptun, &ik->iptun_kparam_secinfo);
1101 		if (err == 0) {
1102 			iptun->iptun_flags |= IPTUN_SIMPLE_POLICY;
1103 			iptun->iptun_simple_policy = ik->iptun_kparam_secinfo;
1104 		}
1105 	}
1106 done:
1107 	if (err != 0) {
1108 		/* Restore original source and destination. */
1109 		if (ik->iptun_kparam_flags & IPTUN_KPARAM_LADDR &&
1110 		    (orig_flags & IPTUN_LADDR))
1111 			iptun->iptun_laddr = orig_laddr;
1112 		if ((ik->iptun_kparam_flags & IPTUN_KPARAM_RADDR) &&
1113 		    (orig_flags & IPTUN_RADDR))
1114 			iptun->iptun_raddr = orig_raddr;
1115 		iptun->iptun_flags = orig_flags;
1116 	}
1117 	return (err);
1118 }
1119 
1120 static int
1121 iptun_register(iptun_t *iptun)
1122 {
1123 	mac_register_t	*mac;
1124 	int		err;
1125 
1126 	ASSERT(!(iptun->iptun_flags & IPTUN_MAC_REGISTERED));
1127 
1128 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
1129 		return (EINVAL);
1130 
1131 	mac->m_type_ident = iptun->iptun_typeinfo->iti_ident;
1132 	mac->m_driver = iptun;
1133 	mac->m_dip = iptun_dip;
1134 	mac->m_instance = (uint_t)-1;
1135 	mac->m_src_addr = (uint8_t *)&iptun->iptun_laddr.ia_addr;
1136 	mac->m_dst_addr = iptun->iptun_typeinfo->iti_hasraddr ?
1137 	    (uint8_t *)&iptun->iptun_raddr.ia_addr : NULL;
1138 	mac->m_callbacks = &iptun_m_callbacks;
1139 	mac->m_min_sdu = iptun->iptun_typeinfo->iti_minmtu;
1140 	mac->m_max_sdu = iptun->iptun_mtu;
1141 	if (iptun->iptun_header_size != 0) {
1142 		mac->m_pdata = &iptun->iptun_header;
1143 		mac->m_pdata_size = iptun->iptun_header_size;
1144 	}
1145 	if ((err = mac_register(mac, &iptun->iptun_mh)) == 0)
1146 		iptun->iptun_flags |= IPTUN_MAC_REGISTERED;
1147 	mac_free(mac);
1148 	return (err);
1149 }
1150 
1151 static int
1152 iptun_unregister(iptun_t *iptun)
1153 {
1154 	int err;
1155 
1156 	ASSERT(iptun->iptun_flags & IPTUN_MAC_REGISTERED);
1157 	if ((err = mac_unregister(iptun->iptun_mh)) == 0)
1158 		iptun->iptun_flags &= ~IPTUN_MAC_REGISTERED;
1159 	return (err);
1160 }
1161 
1162 static conn_t *
1163 iptun_conn_create(iptun_t *iptun, netstack_t *ns, cred_t *credp)
1164 {
1165 	conn_t *connp;
1166 
1167 	if ((connp = ipcl_conn_create(IPCL_IPCCONN, KM_NOSLEEP, ns)) == NULL)
1168 		return (NULL);
1169 
1170 	connp->conn_flags |= IPCL_IPTUN;
1171 	connp->conn_iptun = iptun;
1172 	connp->conn_recv = iptun_input;
1173 	connp->conn_rq = ns->netstack_iptun->iptuns_g_q;
1174 	connp->conn_wq = WR(connp->conn_rq);
1175 	/*
1176 	 * For exclusive stacks we set conn_zoneid to GLOBAL_ZONEID as is done
1177 	 * for all other conn_t's.
1178 	 *
1179 	 * Note that there's an important distinction between iptun_zoneid and
1180 	 * conn_zoneid.  The conn_zoneid is set to GLOBAL_ZONEID in non-global
1181 	 * exclusive stack zones to make the ip module believe that the
1182 	 * non-global zone is actually a global zone.  Therefore, when
1183 	 * interacting with the ip module, we must always use conn_zoneid.
1184 	 */
1185 	connp->conn_zoneid = (ns->netstack_stackid == GLOBAL_NETSTACKID) ?
1186 	    crgetzoneid(credp) : GLOBAL_ZONEID;
1187 	connp->conn_cred = credp;
1188 	/* crfree() is done in ipcl_conn_destroy(), called by CONN_DEC_REF() */
1189 	crhold(connp->conn_cred);
1190 
1191 	connp->conn_send = iptun->iptun_typeinfo->iti_txfunc;
1192 	connp->conn_af_isv6 = iptun->iptun_typeinfo->iti_ipvers == IPV6_VERSION;
1193 	ASSERT(connp->conn_ref == 1);
1194 
1195 	mutex_enter(&connp->conn_lock);
1196 	connp->conn_state_flags &= ~CONN_INCIPIENT;
1197 	mutex_exit(&connp->conn_lock);
1198 	return (connp);
1199 }
1200 
1201 static void
1202 iptun_conn_destroy(conn_t *connp)
1203 {
1204 	ip_quiesce_conn(connp);
1205 	connp->conn_iptun = NULL;
1206 	ASSERT(connp->conn_ref == 1);
1207 	CONN_DEC_REF(connp);
1208 }
1209 
1210 static int
1211 iptun_create_g_q(iptun_stack_t *iptuns, cred_t *credp)
1212 {
1213 	int	err;
1214 	conn_t	*connp;
1215 
1216 	ASSERT(iptuns->iptuns_g_q == NULL);
1217 	/*
1218 	 * The global queue for this stack is set when iptunq_open() calls
1219 	 * iptun_set_g_q().
1220 	 */
1221 	err = ldi_open_by_name(IPTUNQ_DEV, FWRITE|FREAD, credp,
1222 	    &iptuns->iptuns_g_q_lh, iptun_ldi_ident);
1223 	if (err == 0) {
1224 		connp = iptuns->iptuns_g_q->q_ptr;
1225 		connp->conn_recv = iptun_input;
1226 	}
1227 	return (err);
1228 }
1229 
1230 static iptun_t *
1231 iptun_alloc(void)
1232 {
1233 	iptun_t *iptun;
1234 
1235 	if ((iptun = kmem_cache_alloc(iptun_cache, KM_NOSLEEP)) != NULL) {
1236 		bzero(iptun, sizeof (*iptun));
1237 		atomic_inc_32(&iptun_tunnelcount);
1238 	}
1239 	return (iptun);
1240 }
1241 
1242 static void
1243 iptun_free(iptun_t *iptun)
1244 {
1245 	ASSERT(iptun->iptun_flags & IPTUN_CONDEMNED);
1246 
1247 	if (iptun->iptun_flags & IPTUN_HASH_INSERTED) {
1248 		iptun_stack_t	*iptuns = iptun->iptun_iptuns;
1249 
1250 		mutex_enter(&iptun_hash_lock);
1251 		VERIFY(mod_hash_remove(iptun_hash,
1252 		    IPTUN_HASH_KEY(iptun->iptun_linkid),
1253 		    (mod_hash_val_t *)&iptun) == 0);
1254 		mutex_exit(&iptun_hash_lock);
1255 		iptun->iptun_flags &= ~IPTUN_HASH_INSERTED;
1256 		mutex_enter(&iptuns->iptuns_lock);
1257 		list_remove(&iptuns->iptuns_iptunlist, iptun);
1258 		mutex_exit(&iptuns->iptuns_lock);
1259 	}
1260 
1261 	if (iptun->iptun_flags & IPTUN_BOUND)
1262 		iptun_unbind(iptun);
1263 
1264 	/*
1265 	 * After iptun_unregister(), there will be no threads executing a
1266 	 * downcall from the mac module, including in the tx datapath.
1267 	 */
1268 	if (iptun->iptun_flags & IPTUN_MAC_REGISTERED)
1269 		VERIFY(iptun_unregister(iptun) == 0);
1270 
1271 	if (iptun->iptun_itp != NULL) {
1272 		/*
1273 		 * Remove from the AVL tree, AND release the reference iptun_t
1274 		 * itself holds on the ITP.
1275 		 */
1276 		itp_unlink(iptun->iptun_itp, iptun->iptun_ns);
1277 		ITP_REFRELE(iptun->iptun_itp, iptun->iptun_ns);
1278 		iptun->iptun_itp = NULL;
1279 		iptun->iptun_flags &= ~IPTUN_SIMPLE_POLICY;
1280 	}
1281 
1282 	/*
1283 	 * After ipcl_conn_destroy(), there will be no threads executing an
1284 	 * upcall from ip (i.e., iptun_input()), and it is then safe to free
1285 	 * the iptun_t.
1286 	 */
1287 	if (iptun->iptun_connp != NULL) {
1288 		iptun_conn_destroy(iptun->iptun_connp);
1289 		iptun->iptun_connp = NULL;
1290 	}
1291 
1292 	netstack_rele(iptun->iptun_ns);
1293 	iptun->iptun_ns = NULL;
1294 	crfree(iptun->iptun_cred);
1295 	iptun->iptun_cred = NULL;
1296 
1297 	kmem_cache_free(iptun_cache, iptun);
1298 	atomic_dec_32(&iptun_tunnelcount);
1299 }
1300 
1301 int
1302 iptun_create(iptun_kparams_t *ik, cred_t *credp)
1303 {
1304 	iptun_t		*iptun = NULL;
1305 	int		err = 0, mherr;
1306 	char		linkname[MAXLINKNAMELEN];
1307 	ipsec_tun_pol_t	*itp;
1308 	netstack_t	*ns = NULL;
1309 	iptun_stack_t	*iptuns;
1310 	datalink_id_t	tmpid;
1311 	zoneid_t	zoneid = crgetzoneid(credp);
1312 	boolean_t	link_created = B_FALSE;
1313 
1314 	/* The tunnel type is mandatory */
1315 	if (!(ik->iptun_kparam_flags & IPTUN_KPARAM_TYPE))
1316 		return (EINVAL);
1317 
1318 	/*
1319 	 * Is the linkid that the caller wishes to associate with this new
1320 	 * tunnel assigned to this zone?
1321 	 */
1322 	if (zone_check_datalink(&zoneid, ik->iptun_kparam_linkid) != 0) {
1323 		if (zoneid != GLOBAL_ZONEID)
1324 			return (EINVAL);
1325 	} else if (zoneid == GLOBAL_ZONEID) {
1326 		return (EINVAL);
1327 	}
1328 
1329 	/*
1330 	 * Make sure that we're not trying to create a tunnel that has already
1331 	 * been created.
1332 	 */
1333 	if (iptun_enter_by_linkid(ik->iptun_kparam_linkid, &iptun) == 0) {
1334 		iptun_exit(iptun);
1335 		iptun = NULL;
1336 		err = EEXIST;
1337 		goto done;
1338 	}
1339 
1340 	ns = netstack_find_by_cred(credp);
1341 	iptuns = ns->netstack_iptun;
1342 
1343 	/*
1344 	 * Before we create any tunnel, we need to ensure that the default
1345 	 * STREAMS queue (used to satisfy the ip module's requirement for one)
1346 	 * is created.  We only do this once per stack.  The stream is closed
1347 	 * when the stack is destroyed in iptun_stack_fni().
1348 	 */
1349 	mutex_enter(&iptuns->iptuns_lock);
1350 	if (iptuns->iptuns_g_q == NULL)
1351 		err = iptun_create_g_q(iptuns, zone_kcred());
1352 	mutex_exit(&iptuns->iptuns_lock);
1353 	if (err != 0)
1354 		goto done;
1355 
1356 	if ((iptun = iptun_alloc()) == NULL) {
1357 		err = ENOMEM;
1358 		goto done;
1359 	}
1360 
1361 	iptun->iptun_linkid = ik->iptun_kparam_linkid;
1362 	iptun->iptun_zoneid = zoneid;
1363 	crhold(credp);
1364 	iptun->iptun_cred = credp;
1365 	iptun->iptun_ns = ns;
1366 
1367 	iptun->iptun_typeinfo = iptun_gettypeinfo(ik->iptun_kparam_type);
1368 	if (iptun->iptun_typeinfo->iti_type == IPTUN_TYPE_UNKNOWN) {
1369 		err = EINVAL;
1370 		goto done;
1371 	}
1372 
1373 	if (ik->iptun_kparam_flags & IPTUN_KPARAM_IMPLICIT)
1374 		iptun->iptun_flags |= IPTUN_IMPLICIT;
1375 
1376 	if ((err = iptun_setparams(iptun, ik)) != 0)
1377 		goto done;
1378 
1379 	iptun->iptun_hoplimit = IPTUN_DEFAULT_HOPLIMIT;
1380 	if (iptun->iptun_typeinfo->iti_type == IPTUN_TYPE_IPV6)
1381 		iptun->iptun_encaplimit = IPTUN_DEFAULT_ENCAPLIMIT;
1382 
1383 	iptun_headergen(iptun, B_FALSE);
1384 
1385 	iptun->iptun_connp = iptun_conn_create(iptun, ns, credp);
1386 	if (iptun->iptun_connp == NULL) {
1387 		err = ENOMEM;
1388 		goto done;
1389 	}
1390 
1391 	iptun->iptun_mtu = iptun->iptun_typeinfo->iti_maxmtu;
1392 	iptun->iptun_dpmtu = iptun->iptun_mtu;
1393 
1394 	/*
1395 	 * Find an ITP based on linkname.  If we have parms already set via
1396 	 * the iptun_setparams() call above, it may have created an ITP for
1397 	 * us.  We always try get_tunnel_policy() for DEBUG correctness
1398 	 * checks, and we may wish to refactor this to only check when
1399 	 * iptun_itp is NULL.
1400 	 */
1401 	if ((err = dls_mgmt_get_linkinfo(iptun->iptun_linkid, linkname, NULL,
1402 	    NULL, NULL)) != 0)
1403 		goto done;
1404 	if ((itp = get_tunnel_policy(linkname, ns)) != NULL)
1405 		iptun->iptun_itp = itp;
1406 
1407 	/*
1408 	 * See if we have the necessary IP addresses assigned to this tunnel
1409 	 * to try and bind them with ip underneath us.  If we're not ready to
1410 	 * bind yet, then we'll defer the bind operation until the addresses
1411 	 * are modified.
1412 	 */
1413 	if (iptun_canbind(iptun) && ((err = iptun_bind(iptun)) != 0))
1414 		goto done;
1415 
1416 	if ((err = iptun_register(iptun)) != 0)
1417 		goto done;
1418 
1419 	err = dls_devnet_create(iptun->iptun_mh, iptun->iptun_linkid,
1420 	    iptun->iptun_zoneid);
1421 	if (err != 0)
1422 		goto done;
1423 	link_created = B_TRUE;
1424 
1425 	/*
1426 	 * We hash by link-id as that is the key used by all other iptun
1427 	 * interfaces (modify, delete, etc.).
1428 	 */
1429 	if ((mherr = mod_hash_insert(iptun_hash,
1430 	    IPTUN_HASH_KEY(iptun->iptun_linkid), (mod_hash_val_t)iptun)) == 0) {
1431 		mutex_enter(&iptuns->iptuns_lock);
1432 		list_insert_head(&iptuns->iptuns_iptunlist, iptun);
1433 		mutex_exit(&iptuns->iptuns_lock);
1434 		iptun->iptun_flags |= IPTUN_HASH_INSERTED;
1435 	} else if (mherr == MH_ERR_NOMEM) {
1436 		err = ENOMEM;
1437 	} else if (mherr == MH_ERR_DUPLICATE) {
1438 		err = EEXIST;
1439 	} else {
1440 		err = EINVAL;
1441 	}
1442 
1443 done:
1444 	if (iptun == NULL && ns != NULL)
1445 		netstack_rele(ns);
1446 	if (err != 0 && iptun != NULL) {
1447 		if (link_created) {
1448 			(void) dls_devnet_destroy(iptun->iptun_mh, &tmpid,
1449 			    B_TRUE);
1450 		}
1451 		iptun->iptun_flags |= IPTUN_CONDEMNED;
1452 		iptun_free(iptun);
1453 	}
1454 	return (err);
1455 }
1456 
1457 int
1458 iptun_delete(datalink_id_t linkid, cred_t *credp)
1459 {
1460 	int	err;
1461 	iptun_t	*iptun = NULL;
1462 
1463 	if ((err = iptun_enter_by_linkid(linkid, &iptun)) != 0)
1464 		return (err);
1465 
1466 	/* One cannot delete a tunnel that belongs to another zone. */
1467 	if (iptun->iptun_zoneid != crgetzoneid(credp)) {
1468 		iptun_exit(iptun);
1469 		return (EACCES);
1470 	}
1471 
1472 	/*
1473 	 * We need to exit iptun in order to issue calls up the stack such as
1474 	 * dls_devnet_destroy().  If we call up while still in iptun, deadlock
1475 	 * with calls coming down the stack is possible.  We prevent other
1476 	 * threads from entering this iptun after we've exited it by setting
1477 	 * the IPTUN_DELETE_PENDING flag.  This will cause callers of
1478 	 * iptun_enter() to block waiting on iptun_enter_cv.  The assumption
1479 	 * here is that the functions we're calling while IPTUN_DELETE_PENDING
1480 	 * is set dont resuult in an iptun_enter() call, as that would result
1481 	 * in deadlock.
1482 	 */
1483 	iptun->iptun_flags |= IPTUN_DELETE_PENDING;
1484 
1485 	/* Wait for any pending upcall to the mac module to complete. */
1486 	while (iptun->iptun_flags & IPTUN_UPCALL_PENDING)
1487 		cv_wait(&iptun->iptun_upcall_cv, &iptun->iptun_lock);
1488 
1489 	iptun_exit(iptun);
1490 
1491 	if ((err = dls_devnet_destroy(iptun->iptun_mh, &linkid, B_TRUE)) == 0) {
1492 		/*
1493 		 * mac_disable() will fail with EBUSY if there are references
1494 		 * to the iptun MAC.  If there are none, then mac_disable()
1495 		 * will assure that none can be acquired until the MAC is
1496 		 * unregistered.
1497 		 *
1498 		 * XXX CR 6791335 prevents us from calling mac_disable() prior
1499 		 * to dls_devnet_destroy(), so we unfortunately need to
1500 		 * attempt to re-create the devnet node if mac_disable()
1501 		 * fails.
1502 		 */
1503 		if ((err = mac_disable(iptun->iptun_mh)) != 0) {
1504 			(void) dls_devnet_create(iptun->iptun_mh, linkid,
1505 			    iptun->iptun_zoneid);
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Now that we know the fate of this iptun_t, we need to clear
1511 	 * IPTUN_DELETE_PENDING, and set IPTUN_CONDEMNED if the iptun_t is
1512 	 * slated to be freed.  Either way, we need to signal the threads
1513 	 * waiting in iptun_enter() so that they can either fail if
1514 	 * IPTUN_CONDEMNED is set, or continue if it's not.
1515 	 */
1516 	mutex_enter(&iptun->iptun_lock);
1517 	iptun->iptun_flags &= ~IPTUN_DELETE_PENDING;
1518 	if (err == 0)
1519 		iptun->iptun_flags |= IPTUN_CONDEMNED;
1520 	cv_broadcast(&iptun->iptun_enter_cv);
1521 	mutex_exit(&iptun->iptun_lock);
1522 
1523 	/*
1524 	 * Note that there is no danger in calling iptun_free() after having
1525 	 * dropped the iptun_lock since callers of iptun_enter() at this point
1526 	 * are doing so from iptun_enter_by_linkid() (mac_disable() got rid of
1527 	 * threads entering from mac callbacks which call iptun_enter()
1528 	 * directly) which holds iptun_hash_lock, and iptun_free() grabs this
1529 	 * lock in order to remove the iptun_t from the hash table.
1530 	 */
1531 	if (err == 0)
1532 		iptun_free(iptun);
1533 
1534 	return (err);
1535 }
1536 
1537 int
1538 iptun_modify(const iptun_kparams_t *ik, cred_t *credp)
1539 {
1540 	iptun_t		*iptun;
1541 	boolean_t	laddr_change = B_FALSE, raddr_change = B_FALSE;
1542 	int		err;
1543 
1544 	if ((err = iptun_enter_by_linkid(ik->iptun_kparam_linkid, &iptun)) != 0)
1545 		return (err);
1546 
1547 	/* One cannot modify a tunnel that belongs to another zone. */
1548 	if (iptun->iptun_zoneid != crgetzoneid(credp)) {
1549 		err = EACCES;
1550 		goto done;
1551 	}
1552 
1553 	/* The tunnel type cannot be changed */
1554 	if (ik->iptun_kparam_flags & IPTUN_KPARAM_TYPE) {
1555 		err = EINVAL;
1556 		goto done;
1557 	}
1558 
1559 	if ((err = iptun_setparams(iptun, ik)) != 0)
1560 		goto done;
1561 	iptun_headergen(iptun, B_FALSE);
1562 
1563 	/*
1564 	 * If any of the tunnel's addresses has been modified and the tunnel
1565 	 * has the necessary addresses assigned to it, we need to try to bind
1566 	 * with ip underneath us.  If we're not ready to bind yet, then we'll
1567 	 * try again when the addresses are modified later.
1568 	 */
1569 	laddr_change = (ik->iptun_kparam_flags & IPTUN_KPARAM_LADDR);
1570 	raddr_change = (ik->iptun_kparam_flags & IPTUN_KPARAM_RADDR);
1571 	if (laddr_change || raddr_change) {
1572 		if (iptun->iptun_flags & IPTUN_BOUND)
1573 			iptun_unbind(iptun);
1574 		if (iptun_canbind(iptun) && (err = iptun_bind(iptun)) != 0) {
1575 			if (laddr_change)
1576 				iptun->iptun_flags &= ~IPTUN_LADDR;
1577 			if (raddr_change)
1578 				iptun->iptun_flags &= ~IPTUN_RADDR;
1579 			goto done;
1580 		}
1581 	}
1582 
1583 	if (laddr_change)
1584 		iptun_task_dispatch(iptun, IPTUN_TASK_LADDR_UPDATE);
1585 	if (raddr_change)
1586 		iptun_task_dispatch(iptun, IPTUN_TASK_RADDR_UPDATE);
1587 
1588 done:
1589 	iptun_exit(iptun);
1590 	return (err);
1591 }
1592 
1593 /* Given an IP tunnel's datalink id, fill in its parameters. */
1594 int
1595 iptun_info(iptun_kparams_t *ik, cred_t *credp)
1596 {
1597 	iptun_t	*iptun;
1598 	int	err;
1599 
1600 	/* Is the tunnel link visible from the caller's zone? */
1601 	if (!dls_devnet_islinkvisible(ik->iptun_kparam_linkid,
1602 	    crgetzoneid(credp)))
1603 		return (ENOENT);
1604 
1605 	if ((err = iptun_enter_by_linkid(ik->iptun_kparam_linkid, &iptun)) != 0)
1606 		return (err);
1607 
1608 	bzero(ik, sizeof (iptun_kparams_t));
1609 
1610 	ik->iptun_kparam_linkid = iptun->iptun_linkid;
1611 	ik->iptun_kparam_type = iptun->iptun_typeinfo->iti_type;
1612 	ik->iptun_kparam_flags |= IPTUN_KPARAM_TYPE;
1613 
1614 	if (iptun->iptun_flags & IPTUN_LADDR) {
1615 		iptun_getaddr(&iptun->iptun_laddr, &ik->iptun_kparam_laddr);
1616 		ik->iptun_kparam_flags |= IPTUN_KPARAM_LADDR;
1617 	}
1618 	if (iptun->iptun_flags & IPTUN_RADDR) {
1619 		iptun_getaddr(&iptun->iptun_raddr, &ik->iptun_kparam_raddr);
1620 		ik->iptun_kparam_flags |= IPTUN_KPARAM_RADDR;
1621 	}
1622 
1623 	if (iptun->iptun_flags & IPTUN_IMPLICIT)
1624 		ik->iptun_kparam_flags |= IPTUN_KPARAM_IMPLICIT;
1625 
1626 	if (iptun->iptun_itp != NULL) {
1627 		mutex_enter(&iptun->iptun_itp->itp_lock);
1628 		if (iptun->iptun_itp->itp_flags & ITPF_P_ACTIVE) {
1629 			ik->iptun_kparam_flags |= IPTUN_KPARAM_IPSECPOL;
1630 			if (iptun->iptun_flags & IPTUN_SIMPLE_POLICY) {
1631 				ik->iptun_kparam_flags |= IPTUN_KPARAM_SECINFO;
1632 				ik->iptun_kparam_secinfo =
1633 				    iptun->iptun_simple_policy;
1634 			}
1635 		}
1636 		mutex_exit(&iptun->iptun_itp->itp_lock);
1637 	}
1638 
1639 done:
1640 	iptun_exit(iptun);
1641 	return (err);
1642 }
1643 
1644 int
1645 iptun_set_6to4relay(netstack_t *ns, ipaddr_t relay_addr)
1646 {
1647 	if (relay_addr == INADDR_BROADCAST || CLASSD(relay_addr))
1648 		return (EADDRNOTAVAIL);
1649 	ns->netstack_iptun->iptuns_relay_rtr_addr = relay_addr;
1650 	return (0);
1651 }
1652 
1653 void
1654 iptun_get_6to4relay(netstack_t *ns, ipaddr_t *relay_addr)
1655 {
1656 	*relay_addr = ns->netstack_iptun->iptuns_relay_rtr_addr;
1657 }
1658 
1659 void
1660 iptun_set_policy(datalink_id_t linkid, ipsec_tun_pol_t *itp)
1661 {
1662 	iptun_t	*iptun;
1663 
1664 	if (iptun_enter_by_linkid(linkid, &iptun) != 0)
1665 		return;
1666 	if (iptun->iptun_itp != itp) {
1667 		ASSERT(iptun->iptun_itp == NULL);
1668 		ITP_REFHOLD(itp);
1669 		iptun->iptun_itp = itp;
1670 		/* IPsec policy means IPsec overhead, which means lower MTU. */
1671 		(void) iptun_update_mtu(iptun, 0);
1672 	}
1673 	iptun_exit(iptun);
1674 }
1675 
1676 /*
1677  * Obtain the path MTU to the tunnel destination.
1678  */
1679 static uint32_t
1680 iptun_get_dst_pmtu(iptun_t *iptun)
1681 {
1682 	ire_t		*ire = NULL;
1683 	ip_stack_t	*ipst = iptun->iptun_ns->netstack_ip;
1684 	uint32_t	pmtu = 0;
1685 
1686 	/*
1687 	 * We only obtain the destination IRE for tunnels that have a remote
1688 	 * tunnel address.
1689 	 */
1690 	if (!(iptun->iptun_flags & IPTUN_RADDR))
1691 		return (0);
1692 
1693 	switch (iptun->iptun_typeinfo->iti_ipvers) {
1694 	case IPV4_VERSION:
1695 		ire = ire_route_lookup(iptun->iptun_raddr4, INADDR_ANY,
1696 		    INADDR_ANY, 0, NULL, NULL, iptun->iptun_connp->conn_zoneid,
1697 		    NULL, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1698 		break;
1699 	case IPV6_VERSION:
1700 		ire = ire_route_lookup_v6(&iptun->iptun_raddr6, NULL, NULL, 0,
1701 		    NULL, NULL, iptun->iptun_connp->conn_zoneid, NULL,
1702 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1703 		break;
1704 	}
1705 
1706 	if (ire != NULL) {
1707 		pmtu = ire->ire_max_frag;
1708 		ire_refrele(ire);
1709 	}
1710 	return (pmtu);
1711 }
1712 
1713 /*
1714  * Returns the max of old_ovhd and the overhead associated with pol.
1715  */
1716 static uint32_t
1717 iptun_max_policy_overhead(ipsec_policy_t *pol, uint32_t old_ovhd)
1718 {
1719 	uint32_t new_ovhd = old_ovhd;
1720 
1721 	while (pol != NULL) {
1722 		new_ovhd = max(new_ovhd,
1723 		    ipsec_act_ovhd(&pol->ipsp_act->ipa_act));
1724 		pol = pol->ipsp_hash.hash_next;
1725 	}
1726 	return (new_ovhd);
1727 }
1728 
1729 static uint32_t
1730 iptun_get_ipsec_overhead(iptun_t *iptun)
1731 {
1732 	ipsec_policy_root_t	*ipr;
1733 	ipsec_policy_head_t	*iph;
1734 	ipsec_policy_t		*pol;
1735 	ipsec_selector_t	sel;
1736 	int			i;
1737 	uint32_t		ipsec_ovhd = 0;
1738 	ipsec_tun_pol_t		*itp = iptun->iptun_itp;
1739 	netstack_t		*ns = iptun->iptun_ns;
1740 
1741 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE)) {
1742 		/*
1743 		 * Consult global policy, just in case.  This will only work
1744 		 * if we have both source and destination addresses to work
1745 		 * with.
1746 		 */
1747 		if ((iptun->iptun_flags & (IPTUN_LADDR|IPTUN_RADDR)) !=
1748 		    (IPTUN_LADDR|IPTUN_RADDR))
1749 			return (0);
1750 
1751 		iph = ipsec_system_policy(ns);
1752 		bzero(&sel, sizeof (sel));
1753 		sel.ips_isv4 =
1754 		    (iptun->iptun_typeinfo->iti_ipvers == IPV4_VERSION);
1755 		switch (iptun->iptun_typeinfo->iti_ipvers) {
1756 		case IPV4_VERSION:
1757 			sel.ips_local_addr_v4 = iptun->iptun_laddr4;
1758 			sel.ips_remote_addr_v4 = iptun->iptun_raddr4;
1759 			break;
1760 		case IPV6_VERSION:
1761 			sel.ips_local_addr_v6 = iptun->iptun_laddr6;
1762 			sel.ips_remote_addr_v6 = iptun->iptun_raddr6;
1763 			break;
1764 		}
1765 		/* Check for both IPv4 and IPv6. */
1766 		sel.ips_protocol = IPPROTO_ENCAP;
1767 		pol = ipsec_find_policy_head(NULL, iph, IPSEC_TYPE_OUTBOUND,
1768 		    &sel, ns);
1769 		if (pol != NULL) {
1770 			ipsec_ovhd = ipsec_act_ovhd(&pol->ipsp_act->ipa_act);
1771 			IPPOL_REFRELE(pol, ns);
1772 		}
1773 		sel.ips_protocol = IPPROTO_IPV6;
1774 		pol = ipsec_find_policy_head(NULL, iph, IPSEC_TYPE_OUTBOUND,
1775 		    &sel, ns);
1776 		if (pol != NULL) {
1777 			ipsec_ovhd = max(ipsec_ovhd,
1778 			    ipsec_act_ovhd(&pol->ipsp_act->ipa_act));
1779 			IPPOL_REFRELE(pol, ns);
1780 		}
1781 		IPPH_REFRELE(iph, ns);
1782 	} else {
1783 		/*
1784 		 * Look through all of the possible IPsec actions for the
1785 		 * tunnel, and find the largest potential IPsec overhead.
1786 		 */
1787 		iph = itp->itp_policy;
1788 		rw_enter(&iph->iph_lock, RW_READER);
1789 		ipr = &(iph->iph_root[IPSEC_TYPE_OUTBOUND]);
1790 		ipsec_ovhd = iptun_max_policy_overhead(
1791 		    ipr->ipr_nonhash[IPSEC_AF_V4], 0);
1792 		ipsec_ovhd = iptun_max_policy_overhead(
1793 		    ipr->ipr_nonhash[IPSEC_AF_V6], ipsec_ovhd);
1794 		for (i = 0; i < ipr->ipr_nchains; i++) {
1795 			ipsec_ovhd = iptun_max_policy_overhead(
1796 			    ipr->ipr_hash[i].hash_head, ipsec_ovhd);
1797 		}
1798 		rw_exit(&iph->iph_lock);
1799 	}
1800 
1801 	return (ipsec_ovhd);
1802 }
1803 
1804 /*
1805  * Calculate and return the maximum possible MTU for the given tunnel.
1806  */
1807 static uint32_t
1808 iptun_get_maxmtu(iptun_t *iptun, uint32_t new_pmtu)
1809 {
1810 	size_t		header_size, ipsec_overhead;
1811 	uint32_t	maxmtu, pmtu;
1812 
1813 	/*
1814 	 * Start with the path-MTU to the remote address, which is either
1815 	 * provided as the new_pmtu argument, or obtained using
1816 	 * iptun_get_dst_pmtu().
1817 	 */
1818 	if (new_pmtu != 0) {
1819 		if (iptun->iptun_flags & IPTUN_RADDR) {
1820 			iptun->iptun_dpmtu = new_pmtu;
1821 			iptun->iptun_dpmtu_lastupdate = ddi_get_lbolt();
1822 		}
1823 		pmtu = new_pmtu;
1824 	} else if (iptun->iptun_flags & IPTUN_RADDR) {
1825 		if ((pmtu = iptun_get_dst_pmtu(iptun)) == 0) {
1826 			/*
1827 			 * We weren't able to obtain the path-MTU of the
1828 			 * destination.  Use the previous value.
1829 			 */
1830 			pmtu = iptun->iptun_dpmtu;
1831 		} else {
1832 			iptun->iptun_dpmtu = pmtu;
1833 			iptun->iptun_dpmtu_lastupdate = ddi_get_lbolt();
1834 		}
1835 	} else {
1836 		/*
1837 		 * We have no path-MTU information to go on, use the maximum
1838 		 * possible value.
1839 		 */
1840 		pmtu = iptun->iptun_typeinfo->iti_maxmtu;
1841 	}
1842 
1843 	/*
1844 	 * Now calculate tunneling overhead and subtract that from the
1845 	 * path-MTU information obtained above.
1846 	 */
1847 	if (iptun->iptun_header_size != 0) {
1848 		header_size = iptun->iptun_header_size;
1849 	} else {
1850 		switch (iptun->iptun_typeinfo->iti_ipvers) {
1851 		case IPV4_VERSION:
1852 			header_size = sizeof (ipha_t);
1853 			break;
1854 		case IPV6_VERSION:
1855 			header_size = sizeof (iptun_ipv6hdrs_t);
1856 			break;
1857 		}
1858 	}
1859 
1860 	ipsec_overhead = iptun_get_ipsec_overhead(iptun);
1861 
1862 	maxmtu = pmtu - (header_size + ipsec_overhead);
1863 	return (max(maxmtu, iptun->iptun_typeinfo->iti_minmtu));
1864 }
1865 
1866 /*
1867  * Re-calculate the tunnel's MTU and notify the MAC layer of any change in
1868  * MTU.  The new_pmtu argument is the new path MTU to the tunnel destination
1869  * to be used in the tunnel MTU calculation.  Passing in 0 for new_pmtu causes
1870  * the path MTU to be dynamically updated using iptun_update_pmtu().
1871  *
1872  * If the calculated tunnel MTU is different than its previous value, then we
1873  * notify the MAC layer above us of this change using mac_maxsdu_update().
1874  */
1875 static uint32_t
1876 iptun_update_mtu(iptun_t *iptun, uint32_t new_pmtu)
1877 {
1878 	uint32_t newmtu;
1879 
1880 	/*
1881 	 * We return the current MTU without updating it if it was pegged to a
1882 	 * static value using the MAC_PROP_MTU link property.
1883 	 */
1884 	if (iptun->iptun_flags & IPTUN_FIXED_MTU)
1885 		return (iptun->iptun_mtu);
1886 
1887 	/* If the MTU isn't fixed, then use the maximum possible value. */
1888 	newmtu = iptun_get_maxmtu(iptun, new_pmtu);
1889 
1890 	/*
1891 	 * We only dynamically adjust the tunnel MTU for tunnels with
1892 	 * destinations because dynamic MTU calculations are based on the
1893 	 * destination path-MTU.
1894 	 */
1895 	if ((iptun->iptun_flags & IPTUN_RADDR) && newmtu != iptun->iptun_mtu) {
1896 		iptun->iptun_mtu = newmtu;
1897 		if (iptun->iptun_flags & IPTUN_MAC_REGISTERED)
1898 			iptun_task_dispatch(iptun, IPTUN_TASK_MTU_UPDATE);
1899 	}
1900 
1901 	return (newmtu);
1902 }
1903 
1904 /*
1905  * Frees a packet or packet chain and bumps stat for each freed packet.
1906  */
1907 static void
1908 iptun_drop_pkt(mblk_t *mp, uint64_t *stat)
1909 {
1910 	mblk_t *pktmp;
1911 
1912 	for (pktmp = mp; pktmp != NULL; pktmp = mp) {
1913 		mp = mp->b_next;
1914 		pktmp->b_next = NULL;
1915 		if (stat != NULL)
1916 			atomic_inc_64(stat);
1917 		freemsg(pktmp);
1918 	}
1919 }
1920 
1921 /*
1922  * Allocate and return a new mblk to hold an IP and ICMP header, and chain the
1923  * original packet to its b_cont.  Returns NULL on failure.
1924  */
1925 static mblk_t *
1926 iptun_build_icmperr(size_t hdrs_size, mblk_t *orig_pkt)
1927 {
1928 	mblk_t *icmperr_mp;
1929 
1930 	if ((icmperr_mp = allocb_tmpl(hdrs_size, orig_pkt)) != NULL) {
1931 		icmperr_mp->b_wptr += hdrs_size;
1932 		/* tack on the offending packet */
1933 		icmperr_mp->b_cont = orig_pkt;
1934 	}
1935 	return (icmperr_mp);
1936 }
1937 
1938 /*
1939  * Transmit an ICMP error.  mp->b_rptr points at the packet to be included in
1940  * the ICMP error.
1941  */
1942 static void
1943 iptun_sendicmp_v4(iptun_t *iptun, icmph_t *icmp, ipha_t *orig_ipha, mblk_t *mp)
1944 {
1945 	size_t	orig_pktsize, hdrs_size;
1946 	mblk_t	*icmperr_mp;
1947 	ipha_t	*new_ipha;
1948 	icmph_t	*new_icmp;
1949 
1950 	orig_pktsize = msgdsize(mp);
1951 	hdrs_size = sizeof (ipha_t) + sizeof (icmph_t);
1952 	if ((icmperr_mp = iptun_build_icmperr(hdrs_size, mp)) == NULL) {
1953 		iptun_drop_pkt(mp, &iptun->iptun_noxmtbuf);
1954 		return;
1955 	}
1956 
1957 	new_ipha = (ipha_t *)icmperr_mp->b_rptr;
1958 	new_icmp = (icmph_t *)(new_ipha + 1);
1959 
1960 	new_ipha->ipha_version_and_hdr_length = IP_SIMPLE_HDR_VERSION;
1961 	new_ipha->ipha_type_of_service = 0;
1962 	new_ipha->ipha_ident = 0;
1963 	new_ipha->ipha_fragment_offset_and_flags = 0;
1964 	new_ipha->ipha_ttl = orig_ipha->ipha_ttl;
1965 	new_ipha->ipha_protocol = IPPROTO_ICMP;
1966 	new_ipha->ipha_src = orig_ipha->ipha_dst;
1967 	new_ipha->ipha_dst = orig_ipha->ipha_src;
1968 	new_ipha->ipha_hdr_checksum = 0; /* will be computed by ip */
1969 	new_ipha->ipha_length = htons(hdrs_size + orig_pktsize);
1970 
1971 	*new_icmp = *icmp;
1972 	new_icmp->icmph_checksum = 0;
1973 	new_icmp->icmph_checksum = IP_CSUM(icmperr_mp, sizeof (ipha_t), 0);
1974 
1975 	ip_output(iptun->iptun_connp, icmperr_mp, iptun->iptun_connp->conn_wq,
1976 	    IP_WPUT);
1977 }
1978 
1979 static void
1980 iptun_sendicmp_v6(iptun_t *iptun, icmp6_t *icmp6, ip6_t *orig_ip6h, mblk_t *mp)
1981 {
1982 	size_t	orig_pktsize, hdrs_size;
1983 	mblk_t	*icmp6err_mp;
1984 	ip6_t	*new_ip6h;
1985 	icmp6_t	*new_icmp6;
1986 
1987 	orig_pktsize = msgdsize(mp);
1988 	hdrs_size = sizeof (ip6_t) + sizeof (icmp6_t);
1989 	if ((icmp6err_mp = iptun_build_icmperr(hdrs_size, mp)) == NULL) {
1990 		iptun_drop_pkt(mp, &iptun->iptun_noxmtbuf);
1991 		return;
1992 	}
1993 
1994 	new_ip6h = (ip6_t *)icmp6err_mp->b_rptr;
1995 	new_icmp6 = (icmp6_t *)(new_ip6h + 1);
1996 
1997 	new_ip6h->ip6_vcf = orig_ip6h->ip6_vcf;
1998 	new_ip6h->ip6_plen = htons(sizeof (icmp6_t) + orig_pktsize);
1999 	new_ip6h->ip6_hops = orig_ip6h->ip6_hops;
2000 	new_ip6h->ip6_nxt = IPPROTO_ICMPV6;
2001 	new_ip6h->ip6_src = orig_ip6h->ip6_dst;
2002 	new_ip6h->ip6_dst = orig_ip6h->ip6_src;
2003 
2004 	*new_icmp6 = *icmp6;
2005 	/* The checksum is calculated in ip_wput_ire_v6(). */
2006 	new_icmp6->icmp6_cksum = new_ip6h->ip6_plen;
2007 
2008 	ip_output_v6(iptun->iptun_connp, icmp6err_mp,
2009 	    iptun->iptun_connp->conn_wq, IP_WPUT);
2010 }
2011 
2012 static void
2013 iptun_icmp_error_v4(iptun_t *iptun, ipha_t *orig_ipha, mblk_t *mp,
2014     uint8_t type, uint8_t code)
2015 {
2016 	icmph_t icmp;
2017 
2018 	bzero(&icmp, sizeof (icmp));
2019 	icmp.icmph_type = type;
2020 	icmp.icmph_code = code;
2021 
2022 	iptun_sendicmp_v4(iptun, &icmp, orig_ipha, mp);
2023 }
2024 
2025 static void
2026 iptun_icmp_fragneeded_v4(iptun_t *iptun, uint32_t newmtu, ipha_t *orig_ipha,
2027     mblk_t *mp)
2028 {
2029 	icmph_t	icmp;
2030 
2031 	icmp.icmph_type = ICMP_DEST_UNREACHABLE;
2032 	icmp.icmph_code = ICMP_FRAGMENTATION_NEEDED;
2033 	icmp.icmph_du_zero = 0;
2034 	icmp.icmph_du_mtu = htons(newmtu);
2035 
2036 	iptun_sendicmp_v4(iptun, &icmp, orig_ipha, mp);
2037 }
2038 
2039 static void
2040 iptun_icmp_error_v6(iptun_t *iptun, ip6_t *orig_ip6h, mblk_t *mp,
2041     uint8_t type, uint8_t code, uint32_t offset)
2042 {
2043 	icmp6_t icmp6;
2044 
2045 	bzero(&icmp6, sizeof (icmp6));
2046 	icmp6.icmp6_type = type;
2047 	icmp6.icmp6_code = code;
2048 	if (type == ICMP6_PARAM_PROB)
2049 		icmp6.icmp6_pptr = htonl(offset);
2050 
2051 	iptun_sendicmp_v6(iptun, &icmp6, orig_ip6h, mp);
2052 }
2053 
2054 static void
2055 iptun_icmp_toobig_v6(iptun_t *iptun, uint32_t newmtu, ip6_t *orig_ip6h,
2056     mblk_t *mp)
2057 {
2058 	icmp6_t icmp6;
2059 
2060 	icmp6.icmp6_type = ICMP6_PACKET_TOO_BIG;
2061 	icmp6.icmp6_code = 0;
2062 	icmp6.icmp6_mtu = htonl(newmtu);
2063 
2064 	iptun_sendicmp_v6(iptun, &icmp6, orig_ip6h, mp);
2065 }
2066 
2067 /*
2068  * Determines if the packet pointed to by ipha or ip6h is an ICMP error.  The
2069  * mp argument is only used to do bounds checking.
2070  */
2071 static boolean_t
2072 is_icmp_error(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2073 {
2074 	uint16_t hlen;
2075 
2076 	if (ipha != NULL) {
2077 		icmph_t	*icmph;
2078 
2079 		ASSERT(ip6h == NULL);
2080 		if (ipha->ipha_protocol != IPPROTO_ICMP)
2081 			return (B_FALSE);
2082 
2083 		hlen = IPH_HDR_LENGTH(ipha);
2084 		icmph = (icmph_t *)((uint8_t *)ipha + hlen);
2085 		return (ICMP_IS_ERROR(icmph->icmph_type) ||
2086 		    icmph->icmph_type == ICMP_REDIRECT);
2087 	} else {
2088 		icmp6_t	*icmp6;
2089 		uint8_t	*nexthdrp;
2090 
2091 		ASSERT(ip6h != NULL);
2092 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hlen, &nexthdrp) ||
2093 		    *nexthdrp != IPPROTO_ICMPV6) {
2094 			return (B_FALSE);
2095 		}
2096 
2097 		icmp6 = (icmp6_t *)((uint8_t *)ip6h + hlen);
2098 		return (ICMP6_IS_ERROR(icmp6->icmp6_type) ||
2099 		    icmp6->icmp6_type == ND_REDIRECT);
2100 	}
2101 }
2102 
2103 /*
2104  * Find inner and outer IP headers from a tunneled packet as setup for calls
2105  * into ipsec_tun_{in,out}bound().
2106  */
2107 static size_t
2108 iptun_find_headers(mblk_t *mp, ipha_t **outer4, ipha_t **inner4, ip6_t **outer6,
2109     ip6_t **inner6)
2110 {
2111 	ipha_t	*ipha;
2112 	size_t	outer_hlen;
2113 	size_t	first_mblkl = MBLKL(mp);
2114 	mblk_t	*inner_mp;
2115 
2116 	/*
2117 	 * Don't bother handling packets that don't have a full IP header in
2118 	 * the fist mblk.  For the input path, the ip module ensures that this
2119 	 * won't happen, and on the output path, the IP tunneling MAC-type
2120 	 * plugins ensure that this also won't happen.
2121 	 */
2122 	if (first_mblkl < sizeof (ipha_t))
2123 		return (0);
2124 	ipha = (ipha_t *)(mp->b_rptr);
2125 	switch (IPH_HDR_VERSION(ipha)) {
2126 	case IPV4_VERSION:
2127 		*outer4 = ipha;
2128 		*outer6 = NULL;
2129 		outer_hlen = IPH_HDR_LENGTH(ipha);
2130 		break;
2131 	case IPV6_VERSION:
2132 		*outer4 = NULL;
2133 		*outer6 = (ip6_t *)ipha;
2134 		outer_hlen = ip_hdr_length_v6(mp, (ip6_t *)ipha);
2135 		break;
2136 	default:
2137 		return (0);
2138 	}
2139 
2140 	if (first_mblkl < outer_hlen ||
2141 	    (first_mblkl == outer_hlen && mp->b_cont == NULL))
2142 		return (0);
2143 
2144 	/*
2145 	 * We don't bother doing a pullup here since the outer header will
2146 	 * just get stripped off soon on input anyway.  We just want to ensure
2147 	 * that the inner* pointer points to a full header.
2148 	 */
2149 	if (first_mblkl == outer_hlen) {
2150 		inner_mp = mp->b_cont;
2151 		ipha = (ipha_t *)inner_mp->b_rptr;
2152 	} else {
2153 		inner_mp = mp;
2154 		ipha = (ipha_t *)(mp->b_rptr + outer_hlen);
2155 	}
2156 	switch (IPH_HDR_VERSION(ipha)) {
2157 	case IPV4_VERSION:
2158 		if (inner_mp->b_wptr - (uint8_t *)ipha < sizeof (ipha_t))
2159 			return (0);
2160 		*inner4 = ipha;
2161 		*inner6 = NULL;
2162 		break;
2163 	case IPV6_VERSION:
2164 		if (inner_mp->b_wptr - (uint8_t *)ipha < sizeof (ip6_t))
2165 			return (0);
2166 		*inner4 = NULL;
2167 		*inner6 = (ip6_t *)ipha;
2168 		break;
2169 	default:
2170 		return (0);
2171 	}
2172 
2173 	return (outer_hlen);
2174 }
2175 
2176 /*
2177  * Received ICMP error in response to an X over IPv4 packet that we
2178  * transmitted.
2179  *
2180  * NOTE: "outer" refers to what's inside the ICMP payload.  We will get one of
2181  * the following:
2182  *
2183  * [IPv4(0)][ICMPv4][IPv4(1)][IPv4(2)][ULP]
2184  *
2185  *	or
2186  *
2187  * [IPv4(0)][ICMPv4][IPv4(1)][IPv6][ULP]
2188  *
2189  * And "outer4" will get set to IPv4(1), and inner[46] will correspond to
2190  * whatever the very-inner packet is (IPv4(2) or IPv6).
2191  */
2192 static void
2193 iptun_input_icmp_v4(iptun_t *iptun, mblk_t *ipsec_mp, mblk_t *data_mp,
2194     icmph_t *icmph)
2195 {
2196 	uint8_t	*orig;
2197 	ipha_t	*outer4, *inner4;
2198 	ip6_t	*outer6, *inner6;
2199 	int	outer_hlen;
2200 	uint8_t	type, code;
2201 
2202 	/*
2203 	 * Change the db_type to M_DATA because subsequent operations assume
2204 	 * the ICMP packet is M_DATA again (i.e. calls to msgdsize()).
2205 	 */
2206 	data_mp->b_datap->db_type = M_DATA;
2207 
2208 	ASSERT(data_mp->b_cont == NULL);
2209 	/*
2210 	 * Temporarily move b_rptr forward so that iptun_find_headers() can
2211 	 * find headers in the ICMP packet payload.
2212 	 */
2213 	orig = data_mp->b_rptr;
2214 	data_mp->b_rptr = (uint8_t *)(icmph + 1);
2215 	/*
2216 	 * The ip module ensures that ICMP errors contain at least the
2217 	 * original IP header (otherwise, the error would never have made it
2218 	 * here).
2219 	 */
2220 	ASSERT(MBLKL(data_mp) >= 0);
2221 	outer_hlen = iptun_find_headers(data_mp, &outer4, &inner4, &outer6,
2222 	    &inner6);
2223 	ASSERT(outer6 == NULL);
2224 	data_mp->b_rptr = orig;
2225 	if (outer_hlen == 0) {
2226 		iptun_drop_pkt((ipsec_mp != NULL ? ipsec_mp : data_mp),
2227 		    &iptun->iptun_ierrors);
2228 		return;
2229 	}
2230 
2231 	/* Only ICMP errors due to tunneled packets should reach here. */
2232 	ASSERT(outer4->ipha_protocol == IPPROTO_ENCAP ||
2233 	    outer4->ipha_protocol == IPPROTO_IPV6);
2234 
2235 	/* ipsec_tun_inbound() always frees ipsec_mp. */
2236 	if (!ipsec_tun_inbound(ipsec_mp, &data_mp, iptun->iptun_itp,
2237 	    inner4, inner6, outer4, outer6, -outer_hlen,
2238 	    iptun->iptun_ns)) {
2239 		/* Callee did all of the freeing. */
2240 		atomic_inc_64(&iptun->iptun_ierrors);
2241 		return;
2242 	}
2243 	/* We should never see reassembled fragment here. */
2244 	ASSERT(data_mp->b_next == NULL);
2245 
2246 	data_mp->b_rptr = (uint8_t *)outer4 + outer_hlen;
2247 
2248 	/*
2249 	 * If the original packet being transmitted was itself an ICMP error,
2250 	 * then drop this packet.  We don't want to generate an ICMP error in
2251 	 * response to an ICMP error.
2252 	 */
2253 	if (is_icmp_error(data_mp, inner4, inner6)) {
2254 		iptun_drop_pkt(data_mp, &iptun->iptun_norcvbuf);
2255 		return;
2256 	}
2257 
2258 	switch (icmph->icmph_type) {
2259 	case ICMP_DEST_UNREACHABLE:
2260 		type = (inner4 != NULL ? icmph->icmph_type : ICMP6_DST_UNREACH);
2261 		switch (icmph->icmph_code) {
2262 		case ICMP_FRAGMENTATION_NEEDED: {
2263 			uint32_t newmtu;
2264 
2265 			/*
2266 			 * We reconcile this with the fact that the tunnel may
2267 			 * also have IPsec policy by letting iptun_update_mtu
2268 			 * take care of it.
2269 			 */
2270 			newmtu =
2271 			    iptun_update_mtu(iptun, ntohs(icmph->icmph_du_mtu));
2272 
2273 			if (inner4 != NULL) {
2274 				iptun_icmp_fragneeded_v4(iptun, newmtu, inner4,
2275 				    data_mp);
2276 			} else {
2277 				iptun_icmp_toobig_v6(iptun, newmtu, inner6,
2278 				    data_mp);
2279 			}
2280 			return;
2281 		}
2282 		case ICMP_DEST_NET_UNREACH_ADMIN:
2283 		case ICMP_DEST_HOST_UNREACH_ADMIN:
2284 			code = (inner4 != NULL ? ICMP_DEST_NET_UNREACH_ADMIN :
2285 			    ICMP6_DST_UNREACH_ADMIN);
2286 			break;
2287 		default:
2288 			code = (inner4 != NULL ? ICMP_HOST_UNREACHABLE :
2289 			    ICMP6_DST_UNREACH_ADDR);
2290 			break;
2291 		}
2292 		break;
2293 	case ICMP_TIME_EXCEEDED:
2294 		if (inner6 != NULL) {
2295 			type = ICMP6_TIME_EXCEEDED;
2296 			code = 0;
2297 		} /* else we're already set. */
2298 		break;
2299 	case ICMP_PARAM_PROBLEM:
2300 		/*
2301 		 * This is a problem with the outer header we transmitted.
2302 		 * Treat this as an output error.
2303 		 */
2304 		iptun_drop_pkt(data_mp, &iptun->iptun_oerrors);
2305 		return;
2306 	default:
2307 		iptun_drop_pkt(data_mp, &iptun->iptun_norcvbuf);
2308 		return;
2309 	}
2310 
2311 	if (inner4 != NULL)
2312 		iptun_icmp_error_v4(iptun, inner4, data_mp, type, code);
2313 	else
2314 		iptun_icmp_error_v6(iptun, inner6, data_mp, type, code, 0);
2315 }
2316 
2317 /*
2318  * Return B_TRUE if the IPv6 packet pointed to by ip6h contains a Tunnel
2319  * Encapsulation Limit destination option.  If there is one, set encaplim_ptr
2320  * to point to the option value.
2321  */
2322 static boolean_t
2323 iptun_find_encaplimit(mblk_t *mp, ip6_t *ip6h, uint8_t **encaplim_ptr)
2324 {
2325 	ip6_pkt_t	pkt;
2326 	uint8_t		*endptr;
2327 	ip6_dest_t	*destp;
2328 	struct ip6_opt	*optp;
2329 
2330 	pkt.ipp_fields = 0; /* must be initialized */
2331 	(void) ip_find_hdr_v6(mp, ip6h, &pkt, NULL);
2332 	if ((pkt.ipp_fields & IPPF_DSTOPTS) != 0) {
2333 		destp = pkt.ipp_dstopts;
2334 	} else if ((pkt.ipp_fields & IPPF_RTDSTOPTS) != 0) {
2335 		destp = pkt.ipp_rtdstopts;
2336 	} else {
2337 		return (B_FALSE);
2338 	}
2339 
2340 	endptr = (uint8_t *)destp + 8 * (destp->ip6d_len + 1);
2341 	optp = (struct ip6_opt *)(destp + 1);
2342 	while (endptr - (uint8_t *)optp > sizeof (*optp)) {
2343 		if (optp->ip6o_type == IP6OPT_TUNNEL_LIMIT) {
2344 			if ((uint8_t *)(optp + 1) >= endptr)
2345 				return (B_FALSE);
2346 			*encaplim_ptr = (uint8_t *)&optp[1];
2347 			return (B_TRUE);
2348 		}
2349 		optp = (struct ip6_opt *)((uint8_t *)optp + optp->ip6o_len + 2);
2350 	}
2351 	return (B_FALSE);
2352 }
2353 
2354 /*
2355  * Received ICMPv6 error in response to an X over IPv6 packet that we
2356  * transmitted.
2357  *
2358  * NOTE: "outer" refers to what's inside the ICMP payload.  We will get one of
2359  * the following:
2360  *
2361  * [IPv6(0)][ICMPv6][IPv6(1)][IPv4][ULP]
2362  *
2363  *	or
2364  *
2365  * [IPv6(0)][ICMPv6][IPv6(1)][IPv6(2)][ULP]
2366  *
2367  * And "outer6" will get set to IPv6(1), and inner[46] will correspond to
2368  * whatever the very-inner packet is (IPv4 or IPv6(2)).
2369  */
2370 static void
2371 iptun_input_icmp_v6(iptun_t *iptun, mblk_t *ipsec_mp, mblk_t *data_mp,
2372     icmp6_t *icmp6h)
2373 {
2374 	uint8_t	*orig;
2375 	ipha_t	*outer4, *inner4;
2376 	ip6_t	*outer6, *inner6;
2377 	int	outer_hlen;
2378 	uint8_t	type, code;
2379 
2380 	/*
2381 	 * Change the db_type to M_DATA because subsequent operations assume
2382 	 * the ICMP packet is M_DATA again (i.e. calls to msgdsize().)
2383 	 */
2384 	data_mp->b_datap->db_type = M_DATA;
2385 
2386 	ASSERT(data_mp->b_cont == NULL);
2387 
2388 	/*
2389 	 * Temporarily move b_rptr forward so that iptun_find_headers() can
2390 	 * find IP headers in the ICMP packet payload.
2391 	 */
2392 	orig = data_mp->b_rptr;
2393 	data_mp->b_rptr = (uint8_t *)(icmp6h + 1);
2394 	/*
2395 	 * The ip module ensures that ICMP errors contain at least the
2396 	 * original IP header (otherwise, the error would never have made it
2397 	 * here).
2398 	 */
2399 	ASSERT(MBLKL(data_mp) >= 0);
2400 	outer_hlen = iptun_find_headers(data_mp, &outer4, &inner4, &outer6,
2401 	    &inner6);
2402 	ASSERT(outer4 == NULL);
2403 	data_mp->b_rptr = orig;	/* Restore r_ptr */
2404 	if (outer_hlen == 0) {
2405 		iptun_drop_pkt((ipsec_mp != NULL ? ipsec_mp : data_mp),
2406 		    &iptun->iptun_ierrors);
2407 		return;
2408 	}
2409 
2410 	if (!ipsec_tun_inbound(ipsec_mp, &data_mp, iptun->iptun_itp,
2411 	    inner4, inner6, outer4, outer6, -outer_hlen,
2412 	    iptun->iptun_ns)) {
2413 		/* Callee did all of the freeing. */
2414 		atomic_inc_64(&iptun->iptun_ierrors);
2415 		return;
2416 	}
2417 	/* We should never see reassembled fragment here. */
2418 	ASSERT(data_mp->b_next == NULL);
2419 
2420 	data_mp->b_rptr = (uint8_t *)outer6 + outer_hlen;
2421 
2422 	/*
2423 	 * If the original packet being transmitted was itself an ICMP error,
2424 	 * then drop this packet.  We don't want to generate an ICMP error in
2425 	 * response to an ICMP error.
2426 	 */
2427 	if (is_icmp_error(data_mp, inner4, inner6)) {
2428 		iptun_drop_pkt(data_mp, &iptun->iptun_norcvbuf);
2429 		return;
2430 	}
2431 
2432 	switch (icmp6h->icmp6_type) {
2433 	case ICMP6_PARAM_PROB: {
2434 		uint8_t *encaplim_ptr;
2435 
2436 		/*
2437 		 * If the ICMPv6 error points to a valid Tunnel Encapsulation
2438 		 * Limit option and the limit value is 0, then fall through
2439 		 * and send a host unreachable message.  Otherwise, treat the
2440 		 * error as an output error, as there must have been a problem
2441 		 * with a packet we sent.
2442 		 */
2443 		if (!iptun_find_encaplimit(data_mp, outer6, &encaplim_ptr) ||
2444 		    (icmp6h->icmp6_pptr !=
2445 		    ((ptrdiff_t)encaplim_ptr - (ptrdiff_t)outer6)) ||
2446 		    *encaplim_ptr != 0) {
2447 			iptun_drop_pkt(data_mp, &iptun->iptun_oerrors);
2448 			return;
2449 		}
2450 		/* FALLTHRU */
2451 	}
2452 	case ICMP6_TIME_EXCEEDED:
2453 	case ICMP6_DST_UNREACH:
2454 		type = (inner4 != NULL ? ICMP_DEST_UNREACHABLE :
2455 		    ICMP6_DST_UNREACH);
2456 		code = (inner4 != NULL ? ICMP_HOST_UNREACHABLE :
2457 		    ICMP6_DST_UNREACH_ADDR);
2458 		break;
2459 	case ICMP6_PACKET_TOO_BIG: {
2460 		uint32_t newmtu;
2461 
2462 		/*
2463 		 * We reconcile this with the fact that the tunnel may also
2464 		 * have IPsec policy by letting iptun_update_mtu take care of
2465 		 * it.
2466 		 */
2467 		newmtu = iptun_update_mtu(iptun, ntohl(icmp6h->icmp6_mtu));
2468 
2469 		if (inner4 != NULL) {
2470 			iptun_icmp_fragneeded_v4(iptun, newmtu, inner4,
2471 			    data_mp);
2472 		} else {
2473 			iptun_icmp_toobig_v6(iptun, newmtu, inner6, data_mp);
2474 		}
2475 		return;
2476 	}
2477 	default:
2478 		iptun_drop_pkt(data_mp, &iptun->iptun_norcvbuf);
2479 		return;
2480 	}
2481 
2482 	if (inner4 != NULL)
2483 		iptun_icmp_error_v4(iptun, inner4, data_mp, type, code);
2484 	else
2485 		iptun_icmp_error_v6(iptun, inner6, data_mp, type, code, 0);
2486 }
2487 
2488 static void
2489 iptun_input_icmp(iptun_t *iptun, mblk_t *ipsec_mp, mblk_t *data_mp)
2490 {
2491 	mblk_t	*tmpmp;
2492 	size_t	hlen;
2493 
2494 	if (data_mp->b_cont != NULL) {
2495 		/*
2496 		 * Since ICMP error processing necessitates access to bits
2497 		 * that are within the ICMP error payload (the original packet
2498 		 * that caused the error), pull everything up into a single
2499 		 * block for convenience.
2500 		 */
2501 		data_mp->b_datap->db_type = M_DATA;
2502 		if ((tmpmp = msgpullup(data_mp, -1)) == NULL) {
2503 			iptun_drop_pkt((ipsec_mp != NULL ? ipsec_mp : data_mp),
2504 			    &iptun->iptun_norcvbuf);
2505 			return;
2506 		}
2507 		freemsg(data_mp);
2508 		data_mp = tmpmp;
2509 		if (ipsec_mp != NULL)
2510 			ipsec_mp->b_cont = data_mp;
2511 	}
2512 
2513 	switch (iptun->iptun_typeinfo->iti_ipvers) {
2514 	case IPV4_VERSION:
2515 		/*
2516 		 * The outer IP header coming up from IP is always ipha_t
2517 		 * alligned (otherwise, we would have crashed in ip).
2518 		 */
2519 		hlen = IPH_HDR_LENGTH((ipha_t *)data_mp->b_rptr);
2520 		iptun_input_icmp_v4(iptun, ipsec_mp, data_mp,
2521 		    (icmph_t *)(data_mp->b_rptr + hlen));
2522 		break;
2523 	case IPV6_VERSION:
2524 		hlen = ip_hdr_length_v6(data_mp, (ip6_t *)data_mp->b_rptr);
2525 		iptun_input_icmp_v6(iptun, ipsec_mp, data_mp,
2526 		    (icmp6_t *)(data_mp->b_rptr + hlen));
2527 		break;
2528 	}
2529 }
2530 
2531 static boolean_t
2532 iptun_in_6to4_ok(iptun_t *iptun, ipha_t *outer4, ip6_t *inner6)
2533 {
2534 	ipaddr_t v4addr;
2535 
2536 	/*
2537 	 * It's possible that someone sent us an IPv4-in-IPv4 packet with the
2538 	 * IPv4 address of a 6to4 tunnel as the destination.
2539 	 */
2540 	if (inner6 == NULL)
2541 		return (B_FALSE);
2542 
2543 	/*
2544 	 * Make sure that the IPv6 destination is within the site that this
2545 	 * 6to4 tunnel is routing for.  We don't want people bouncing random
2546 	 * tunneled IPv6 packets through this 6to4 router.
2547 	 */
2548 	IN6_6TO4_TO_V4ADDR(&inner6->ip6_dst, (struct in_addr *)&v4addr);
2549 	if (outer4->ipha_dst != v4addr)
2550 		return (B_FALSE);
2551 
2552 	if (IN6_IS_ADDR_6TO4(&inner6->ip6_src)) {
2553 		/*
2554 		 * Section 9 of RFC 3056 (security considerations) suggests
2555 		 * that when a packet is from a 6to4 site (i.e., it's not a
2556 		 * global address being forwarded froma relay router), make
2557 		 * sure that the packet was tunneled by that site's 6to4
2558 		 * router.
2559 		 */
2560 		IN6_6TO4_TO_V4ADDR(&inner6->ip6_src, (struct in_addr *)&v4addr);
2561 		if (outer4->ipha_src != v4addr)
2562 			return (B_FALSE);
2563 	} else {
2564 		/*
2565 		 * Only accept packets from a relay router if we've configured
2566 		 * outbound relay router functionality.
2567 		 */
2568 		if (iptun->iptun_iptuns->iptuns_relay_rtr_addr == INADDR_ANY)
2569 			return (B_FALSE);
2570 	}
2571 
2572 	return (B_TRUE);
2573 }
2574 
2575 /*
2576  * Input function for everything that comes up from the ip module below us.
2577  * This is called directly from the ip module via connp->conn_recv().
2578  *
2579  * There are two kinds of packets that can arrive here: (1) IP-in-IP tunneled
2580  * packets and (2) ICMP errors containing IP-in-IP packets transmitted by us.
2581  * They have the following structure:
2582  *
2583  * 1) M_DATA
2584  * 2) M_CTL[->M_DATA]
2585  *
2586  * (2) Is an M_CTL optionally followed by M_DATA, where the M_CTL block is the
2587  * start of the actual ICMP packet (it doesn't contain any special control
2588  * information).
2589  *
2590  * Either (1) or (2) can be IPsec-protected, in which case an M_CTL block
2591  * containing an ipsec_in_t will have been prepended to either (1) or (2),
2592  * making a total of four combinations of possible mblk chains:
2593  *
2594  * A) (1)
2595  * B) (2)
2596  * C) M_CTL(ipsec_in_t)->(1)
2597  * D) M_CTL(ipsec_in_t)->(2)
2598  */
2599 /* ARGSUSED */
2600 static void
2601 iptun_input(void *arg, mblk_t *mp, void *arg2)
2602 {
2603 	conn_t	*connp = arg;
2604 	iptun_t	*iptun = connp->conn_iptun;
2605 	int	outer_hlen;
2606 	ipha_t	*outer4, *inner4;
2607 	ip6_t	*outer6, *inner6;
2608 	mblk_t	*data_mp = mp;
2609 
2610 	ASSERT(IPCL_IS_IPTUN(connp));
2611 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
2612 
2613 	if (DB_TYPE(mp) == M_CTL) {
2614 		if (((ipsec_in_t *)(mp->b_rptr))->ipsec_in_type != IPSEC_IN) {
2615 			iptun_input_icmp(iptun, NULL, mp);
2616 			return;
2617 		}
2618 
2619 		data_mp = mp->b_cont;
2620 		if (DB_TYPE(data_mp) == M_CTL) {
2621 			/* Protected ICMP packet. */
2622 			iptun_input_icmp(iptun, mp, data_mp);
2623 			return;
2624 		}
2625 	}
2626 
2627 	/*
2628 	 * Request the destination's path MTU information regularly in case
2629 	 * path MTU has increased.
2630 	 */
2631 	if (IPTUN_PMTU_TOO_OLD(iptun))
2632 		iptun_task_dispatch(iptun, IPTUN_TASK_PMTU_UPDATE);
2633 
2634 	if ((outer_hlen = iptun_find_headers(data_mp, &outer4, &inner4, &outer6,
2635 	    &inner6)) == 0)
2636 		goto drop;
2637 
2638 	/*
2639 	 * If the system is labeled, we call tsol_check_dest() on the packet
2640 	 * destination (our local tunnel address) to ensure that the packet as
2641 	 * labeled should be allowed to be sent to us.  We don't need to call
2642 	 * the more involved tsol_receive_local() since the tunnel link itself
2643 	 * cannot be assigned to shared-stack non-global zones.
2644 	 */
2645 	if (is_system_labeled()) {
2646 		cred_t *msg_cred;
2647 
2648 		if ((msg_cred = msg_getcred(data_mp, NULL)) == NULL)
2649 			goto drop;
2650 		if (tsol_check_dest(msg_cred, (outer4 != NULL ?
2651 		    (void *)&outer4->ipha_dst : (void *)&outer6->ip6_dst),
2652 		    (outer4 != NULL ? IPV4_VERSION : IPV6_VERSION),
2653 		    B_FALSE, NULL) != 0)
2654 			goto drop;
2655 	}
2656 
2657 	if (!ipsec_tun_inbound((mp == data_mp ? NULL : mp), &data_mp,
2658 	    iptun->iptun_itp, inner4, inner6, outer4, outer6, outer_hlen,
2659 	    iptun->iptun_ns)) {
2660 		/* Callee did all of the freeing. */
2661 		return;
2662 	}
2663 	mp = data_mp;
2664 
2665 	if (iptun->iptun_typeinfo->iti_type == IPTUN_TYPE_6TO4 &&
2666 	    !iptun_in_6to4_ok(iptun, outer4, inner6))
2667 		goto drop;
2668 
2669 	/*
2670 	 * We need to statistically account for each packet individually, so
2671 	 * we might as well split up any b_next chains here.
2672 	 */
2673 	do {
2674 		mp = data_mp->b_next;
2675 		data_mp->b_next = NULL;
2676 
2677 		atomic_inc_64(&iptun->iptun_ipackets);
2678 		atomic_add_64(&iptun->iptun_rbytes, msgdsize(data_mp));
2679 		mac_rx(iptun->iptun_mh, NULL, data_mp);
2680 
2681 		data_mp = mp;
2682 	} while (data_mp != NULL);
2683 	return;
2684 drop:
2685 	iptun_drop_pkt(mp, &iptun->iptun_ierrors);
2686 }
2687 
2688 /*
2689  * Do 6to4-specific header-processing on output.  Return B_TRUE if the packet
2690  * was processed without issue, or B_FALSE if the packet had issues and should
2691  * be dropped.
2692  */
2693 static boolean_t
2694 iptun_out_process_6to4(iptun_t *iptun, ipha_t *outer4, ip6_t *inner6)
2695 {
2696 	ipaddr_t v4addr;
2697 
2698 	/*
2699 	 * IPv6 source must be a 6to4 address.  This is because a conscious
2700 	 * decision was made to not allow a Solaris system to be used as a
2701 	 * relay router (for security reasons) when 6to4 was initially
2702 	 * integrated.  If this decision is ever reversed, the following check
2703 	 * can be removed.
2704 	 */
2705 	if (!IN6_IS_ADDR_6TO4(&inner6->ip6_src))
2706 		return (B_FALSE);
2707 
2708 	/*
2709 	 * RFC3056 mandates that the IPv4 source MUST be set to the IPv4
2710 	 * portion of the 6to4 IPv6 source address.  In other words, make sure
2711 	 * that we're tunneling packets from our own 6to4 site.
2712 	 */
2713 	IN6_6TO4_TO_V4ADDR(&inner6->ip6_src, (struct in_addr *)&v4addr);
2714 	if (outer4->ipha_src != v4addr)
2715 		return (B_FALSE);
2716 
2717 	/*
2718 	 * Automatically set the destination of the outer IPv4 header as
2719 	 * described in RFC3056.  There are two possibilities:
2720 	 *
2721 	 * a. If the IPv6 destination is a 6to4 address, set the IPv4 address
2722 	 *    to the IPv4 portion of the 6to4 address.
2723 	 * b. If the IPv6 destination is a native IPv6 address, set the IPv4
2724 	 *    destination to the address of a relay router.
2725 	 *
2726 	 * Design Note: b shouldn't be necessary here, and this is a flaw in
2727 	 * the design of the 6to4relay command.  Instead of setting a 6to4
2728 	 * relay address in this module via an ioctl, the 6to4relay command
2729 	 * could simply add a IPv6 route for native IPv6 addresses (such as a
2730 	 * default route) in the forwarding table that uses a 6to4 destination
2731 	 * as its next hop, and the IPv4 portion of that address could be a
2732 	 * 6to4 relay address.  In order for this to work, IP would have to
2733 	 * resolve the next hop address, which would necessitate a link-layer
2734 	 * address resolver for 6to4 links, which doesn't exist today.
2735 	 *
2736 	 * In fact, if a resolver existed for 6to4 links, then setting the
2737 	 * IPv4 destination in the outer header could be done as part of
2738 	 * link-layer address resolution and fast-path header generation, and
2739 	 * not here.
2740 	 */
2741 	if (IN6_IS_ADDR_6TO4(&inner6->ip6_dst)) {
2742 		/* destination is a 6to4 router */
2743 		IN6_6TO4_TO_V4ADDR(&inner6->ip6_dst,
2744 		    (struct in_addr *)&outer4->ipha_dst);
2745 	} else {
2746 		/*
2747 		 * The destination is a native IPv6 address.  If output to a
2748 		 * relay-router is enabled, use the relay-router's IPv4
2749 		 * address as the destination.
2750 		 */
2751 		if (iptun->iptun_iptuns->iptuns_relay_rtr_addr == INADDR_ANY)
2752 			return (B_FALSE);
2753 		outer4->ipha_dst = iptun->iptun_iptuns->iptuns_relay_rtr_addr;
2754 	}
2755 
2756 	/*
2757 	 * If the outer source and destination are equal, this means that the
2758 	 * 6to4 router somehow forwarded an IPv6 packet destined for its own
2759 	 * 6to4 site to its 6to4 tunnel interface, which will result in this
2760 	 * packet infinitely bouncing between ip and iptun.
2761 	 */
2762 	return (outer4->ipha_src != outer4->ipha_dst);
2763 }
2764 
2765 /*
2766  * Process output packets with outer IPv4 headers.  Frees mp and bumps stat on
2767  * error.
2768  */
2769 static mblk_t *
2770 iptun_out_process_ipv4(iptun_t *iptun, mblk_t *mp, ipha_t *outer4,
2771     ipha_t *inner4, ip6_t *inner6)
2772 {
2773 	uint8_t	*innerptr = (inner4 != NULL ?
2774 	    (uint8_t *)inner4 : (uint8_t *)inner6);
2775 	size_t	minmtu = (inner4 != NULL ?
2776 	    IPTUN_MIN_IPV4_MTU : IPTUN_MIN_IPV6_MTU);
2777 
2778 	if (inner4 != NULL) {
2779 		ASSERT(outer4->ipha_protocol == IPPROTO_ENCAP);
2780 		/*
2781 		 * Copy the tos from the inner IPv4 header. We mask off ECN
2782 		 * bits (bits 6 and 7) because there is currently no
2783 		 * tunnel-tunnel communication to determine if both sides
2784 		 * support ECN.  We opt for the safe choice: don't copy the
2785 		 * ECN bits when doing encapsulation.
2786 		 */
2787 		outer4->ipha_type_of_service =
2788 		    inner4->ipha_type_of_service & ~0x03;
2789 	} else {
2790 		ASSERT(outer4->ipha_protocol == IPPROTO_IPV6 &&
2791 		    inner6 != NULL);
2792 
2793 		if (iptun->iptun_typeinfo->iti_type == IPTUN_TYPE_6TO4 &&
2794 		    !iptun_out_process_6to4(iptun, outer4, inner6)) {
2795 			iptun_drop_pkt(mp, &iptun->iptun_oerrors);
2796 			return (NULL);
2797 		}
2798 	}
2799 
2800 	/*
2801 	 * As described in section 3.2.2 of RFC4213, if the packet payload is
2802 	 * less than or equal to the minimum MTU size, then we need to allow
2803 	 * IPv4 to fragment the packet.  The reason is that even if we end up
2804 	 * receiving an ICMP frag-needed, the interface above this tunnel
2805 	 * won't be allowed to drop its MTU as a result, since the packet was
2806 	 * already smaller than the smallest allowable MTU for that interface.
2807 	 */
2808 	if (mp->b_wptr - innerptr <= minmtu)
2809 		outer4->ipha_fragment_offset_and_flags = 0;
2810 
2811 	outer4->ipha_length = htons(msgdsize(mp));
2812 
2813 	return (mp);
2814 }
2815 
2816 /*
2817  * Insert an encapsulation limit destination option in the packet provided.
2818  * Always consumes the mp argument and returns a new mblk pointer.
2819  */
2820 static mblk_t *
2821 iptun_insert_encaplimit(iptun_t *iptun, mblk_t *mp, ip6_t *outer6,
2822     uint8_t limit)
2823 {
2824 	mblk_t			*newmp;
2825 	iptun_ipv6hdrs_t	*newouter6;
2826 
2827 	ASSERT(outer6->ip6_nxt == IPPROTO_IPV6);
2828 	ASSERT(mp->b_cont == NULL);
2829 
2830 	mp->b_rptr += sizeof (ip6_t);
2831 	newmp = allocb_tmpl(sizeof (iptun_ipv6hdrs_t) + MBLKL(mp), mp);
2832 	if (newmp == NULL) {
2833 		iptun_drop_pkt(mp, &iptun->iptun_noxmtbuf);
2834 		return (NULL);
2835 	}
2836 	newmp->b_wptr += sizeof (iptun_ipv6hdrs_t);
2837 	/* Copy the payload (Starting with the inner IPv6 header). */
2838 	bcopy(mp->b_rptr, newmp->b_wptr, MBLKL(mp));
2839 	newmp->b_wptr += MBLKL(mp);
2840 	newouter6 = (iptun_ipv6hdrs_t *)newmp->b_rptr;
2841 	/* Now copy the outer IPv6 header. */
2842 	bcopy(outer6, &newouter6->it6h_ip6h, sizeof (ip6_t));
2843 	newouter6->it6h_ip6h.ip6_nxt = IPPROTO_DSTOPTS;
2844 	newouter6->it6h_encaplim = iptun_encaplim_init;
2845 	newouter6->it6h_encaplim.iel_destopt.ip6d_nxt = outer6->ip6_nxt;
2846 	newouter6->it6h_encaplim.iel_telopt.ip6ot_encap_limit = limit;
2847 
2848 	/*
2849 	 * The payload length will be set at the end of
2850 	 * iptun_out_process_ipv6().
2851 	 */
2852 
2853 	freemsg(mp);
2854 	return (newmp);
2855 }
2856 
2857 /*
2858  * Process output packets with outer IPv6 headers.  Frees mp and bumps stats
2859  * on error.
2860  */
2861 static mblk_t *
2862 iptun_out_process_ipv6(iptun_t *iptun, mblk_t *mp, ip6_t *outer6, ip6_t *inner6)
2863 {
2864 	uint8_t		*limit, *configlimit;
2865 	uint32_t	offset;
2866 	iptun_ipv6hdrs_t *v6hdrs;
2867 
2868 	if (inner6 != NULL && iptun_find_encaplimit(mp, inner6, &limit)) {
2869 		/*
2870 		 * The inner packet is an IPv6 packet which itself contains an
2871 		 * encapsulation limit option.  The limit variable points to
2872 		 * the value in the embedded option.  Process the
2873 		 * encapsulation limit option as specified in RFC 2473.
2874 		 *
2875 		 * If limit is 0, then we've exceeded the limit and we need to
2876 		 * send back an ICMPv6 parameter problem message.
2877 		 *
2878 		 * If limit is > 0, then we decrement it by 1 and make sure
2879 		 * that the encapsulation limit option in the outer header
2880 		 * reflects that (adding an option if one isn't already
2881 		 * there).
2882 		 */
2883 		ASSERT(limit > mp->b_rptr && limit < mp->b_wptr);
2884 		if (*limit == 0) {
2885 			mp->b_rptr = (uint8_t *)inner6;
2886 			offset = limit - mp->b_rptr;
2887 			iptun_icmp_error_v6(iptun, inner6, mp, ICMP6_PARAM_PROB,
2888 			    0, offset);
2889 			atomic_inc_64(&iptun->iptun_noxmtbuf);
2890 			return (NULL);
2891 		}
2892 
2893 		/*
2894 		 * The outer header requires an encapsulation limit option.
2895 		 * If there isn't one already, add one.
2896 		 */
2897 		if (iptun->iptun_encaplimit == 0) {
2898 			if ((mp = iptun_insert_encaplimit(iptun, mp, outer6,
2899 			    (*limit - 1))) == NULL)
2900 				return (NULL);
2901 		} else {
2902 			/*
2903 			 * There is an existing encapsulation limit option in
2904 			 * the outer header.  If the inner encapsulation limit
2905 			 * is less than the configured encapsulation limit,
2906 			 * update the outer encapsulation limit to reflect
2907 			 * this lesser value.
2908 			 */
2909 			v6hdrs = (iptun_ipv6hdrs_t *)mp->b_rptr;
2910 			configlimit =
2911 			    &v6hdrs->it6h_encaplim.iel_telopt.ip6ot_encap_limit;
2912 			if ((*limit - 1) < *configlimit)
2913 				*configlimit = (*limit - 1);
2914 		}
2915 	}
2916 
2917 	outer6->ip6_plen = htons(msgdsize(mp) - sizeof (ip6_t));
2918 	return (mp);
2919 }
2920 
2921 /*
2922  * The IP tunneling MAC-type plugins have already done most of the header
2923  * processing and validity checks.  We are simply responsible for multiplexing
2924  * down to the ip module below us.
2925  */
2926 static void
2927 iptun_output(iptun_t *iptun, mblk_t *mp)
2928 {
2929 	conn_t	*connp = iptun->iptun_connp;
2930 	int	outer_hlen;
2931 	mblk_t	*newmp;
2932 	ipha_t	*outer4, *inner4;
2933 	ip6_t	*outer6, *inner6;
2934 	ipsec_tun_pol_t	*itp = iptun->iptun_itp;
2935 
2936 	ASSERT(mp->b_datap->db_type == M_DATA);
2937 
2938 	if (mp->b_cont != NULL) {
2939 		if ((newmp = msgpullup(mp, -1)) == NULL) {
2940 			iptun_drop_pkt(mp, &iptun->iptun_noxmtbuf);
2941 			return;
2942 		}
2943 		freemsg(mp);
2944 		mp = newmp;
2945 	}
2946 
2947 	outer_hlen = iptun_find_headers(mp, &outer4, &inner4, &outer6, &inner6);
2948 	if (outer_hlen == 0) {
2949 		iptun_drop_pkt(mp, &iptun->iptun_oerrors);
2950 		return;
2951 	}
2952 
2953 	/* Perform header processing. */
2954 	if (outer4 != NULL)
2955 		mp = iptun_out_process_ipv4(iptun, mp, outer4, inner4, inner6);
2956 	else
2957 		mp = iptun_out_process_ipv6(iptun, mp, outer6, inner6);
2958 	if (mp == NULL)
2959 		return;
2960 
2961 	/*
2962 	 * Let's hope the compiler optimizes this with "branch taken".
2963 	 */
2964 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
2965 		if ((mp = ipsec_tun_outbound(mp, iptun, inner4, inner6, outer4,
2966 		    outer6, outer_hlen)) == NULL) {
2967 			/* ipsec_tun_outbound() frees mp on error. */
2968 			atomic_inc_64(&iptun->iptun_oerrors);
2969 			return;
2970 		}
2971 		/*
2972 		 * ipsec_tun_outbound() returns a chain of tunneled IP
2973 		 * fragments linked with b_next (or a single message if the
2974 		 * tunneled packet wasn't a fragment).  Each message in the
2975 		 * chain is prepended by an IPSEC_OUT M_CTL block with
2976 		 * instructions for outbound IPsec processing.
2977 		 */
2978 		for (newmp = mp; newmp != NULL; newmp = mp) {
2979 			ASSERT(newmp->b_datap->db_type == M_CTL);
2980 			atomic_inc_64(&iptun->iptun_opackets);
2981 			atomic_add_64(&iptun->iptun_obytes,
2982 			    msgdsize(newmp->b_cont));
2983 			mp = mp->b_next;
2984 			newmp->b_next = NULL;
2985 			connp->conn_send(connp, newmp, connp->conn_wq, IP_WPUT);
2986 		}
2987 	} else {
2988 		/*
2989 		 * The ip module will potentially apply global policy to the
2990 		 * packet in its output path if there's no active tunnel
2991 		 * policy.
2992 		 */
2993 		atomic_inc_64(&iptun->iptun_opackets);
2994 		atomic_add_64(&iptun->iptun_obytes, msgdsize(mp));
2995 		connp->conn_send(connp, mp, connp->conn_wq, IP_WPUT);
2996 	}
2997 }
2998 
2999 /*
3000  * Note that the setting or clearing iptun_{set,get}_g_q() is serialized via
3001  * iptuns_lock and iptunq_open(), so we must never be in a situation where
3002  * iptun_set_g_q() is called if the queue has already been set or vice versa
3003  * (hence the ASSERT()s.)
3004  */
3005 void
3006 iptun_set_g_q(netstack_t *ns, queue_t *q)
3007 {
3008 	ASSERT(ns->netstack_iptun->iptuns_g_q == NULL);
3009 	ns->netstack_iptun->iptuns_g_q = q;
3010 }
3011 
3012 void
3013 iptun_clear_g_q(netstack_t *ns)
3014 {
3015 	ASSERT(ns->netstack_iptun->iptuns_g_q != NULL);
3016 	ns->netstack_iptun->iptuns_g_q = NULL;
3017 }
3018 
3019 static mac_callbacks_t iptun_m_callbacks = {
3020 	.mc_callbacks	= (MC_SETPROP | MC_GETPROP),
3021 	.mc_getstat	= iptun_m_getstat,
3022 	.mc_start	= iptun_m_start,
3023 	.mc_stop	= iptun_m_stop,
3024 	.mc_setpromisc	= iptun_m_setpromisc,
3025 	.mc_multicst	= iptun_m_multicst,
3026 	.mc_unicst	= iptun_m_unicst,
3027 	.mc_tx		= iptun_m_tx,
3028 	.mc_setprop	= iptun_m_setprop,
3029 	.mc_getprop	= iptun_m_getprop
3030 };
3031