xref: /titanic_50/usr/src/uts/common/inet/ipf/fil.c (revision 60471b7bbfab236de7d8776aed871d919c5f81c3)
1 /*
2  * Copyright (C) 1993-2003 by Darren Reed.
3  *
4  * See the IPFILTER.LICENCE file for details on licencing.
5  *
6  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
7  * Use is subject to license terms.
8  */
9 
10 #if defined(KERNEL) || defined(_KERNEL)
11 # undef KERNEL
12 # undef _KERNEL
13 # define        KERNEL	1
14 # define        _KERNEL	1
15 #endif
16 #include <sys/errno.h>
17 #include <sys/types.h>
18 #include <sys/param.h>
19 #include <sys/time.h>
20 #if defined(__NetBSD__)
21 # if (NetBSD >= 199905) && !defined(IPFILTER_LKM) && defined(_KERNEL)
22 #  include "opt_ipfilter_log.h"
23 # endif
24 #endif
25 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
26     (__FreeBSD_version >= 220000)
27 # if (__FreeBSD_version >= 400000)
28 #  if !defined(IPFILTER_LKM)
29 #   include "opt_inet6.h"
30 #  endif
31 #  if (__FreeBSD_version == 400019)
32 #   define CSUM_DELAY_DATA
33 #  endif
34 # endif
35 # include <sys/filio.h>
36 #else
37 # include <sys/ioctl.h>
38 #endif
39 #if !defined(_AIX51)
40 # include <sys/fcntl.h>
41 #endif
42 #if defined(_KERNEL)
43 # include <sys/systm.h>
44 # include <sys/file.h>
45 #else
46 # include <stdio.h>
47 # include <string.h>
48 # include <stdlib.h>
49 # include <stddef.h>
50 # include <sys/file.h>
51 # define _KERNEL
52 # ifdef __OpenBSD__
53 struct file;
54 # endif
55 # include <sys/uio.h>
56 # undef _KERNEL
57 #endif
58 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
59     !defined(linux)
60 # include <sys/mbuf.h>
61 #else
62 # if !defined(linux)
63 #  include <sys/byteorder.h>
64 # endif
65 # if (SOLARIS2 < 5) && defined(sun)
66 #  include <sys/dditypes.h>
67 # endif
68 #endif
69 #ifdef __hpux
70 # define _NET_ROUTE_INCLUDED
71 #endif
72 #if !defined(linux)
73 # include <sys/protosw.h>
74 #endif
75 #include <sys/socket.h>
76 #include <net/if.h>
77 #ifdef sun
78 # include <net/af.h>
79 #endif
80 #if !defined(_KERNEL) && defined(__FreeBSD__)
81 # include "radix_ipf.h"
82 #endif
83 #include <net/route.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #if !defined(linux)
88 # include <netinet/ip_var.h>
89 #endif
90 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
91 # include <sys/hashing.h>
92 # include <netinet/in_var.h>
93 #endif
94 #include <netinet/tcp.h>
95 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
96 # include <netinet/udp.h>
97 # include <netinet/ip_icmp.h>
98 #endif
99 #ifdef __hpux
100 # undef _NET_ROUTE_INCLUDED
101 #endif
102 #include "netinet/ip_compat.h"
103 #ifdef	USE_INET6
104 # include <netinet/icmp6.h>
105 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
106 #  include <netinet6/in6_var.h>
107 # endif
108 #endif
109 #include <netinet/tcpip.h>
110 #include "netinet/ip_fil.h"
111 #include "netinet/ip_nat.h"
112 #include "netinet/ip_frag.h"
113 #include "netinet/ip_state.h"
114 #include "netinet/ip_proxy.h"
115 #include "netinet/ip_auth.h"
116 #include "netinet/ipf_stack.h"
117 #ifdef IPFILTER_SCAN
118 # include "netinet/ip_scan.h"
119 #endif
120 #ifdef IPFILTER_SYNC
121 # include "netinet/ip_sync.h"
122 #endif
123 #include "netinet/ip_pool.h"
124 #include "netinet/ip_htable.h"
125 #ifdef IPFILTER_COMPILED
126 # include "netinet/ip_rules.h"
127 #endif
128 #if defined(IPFILTER_BPF) && defined(_KERNEL)
129 # include <net/bpf.h>
130 #endif
131 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
132 # include <sys/malloc.h>
133 # if defined(_KERNEL) && !defined(IPFILTER_LKM)
134 #  include "opt_ipfilter.h"
135 # endif
136 #endif
137 #include "netinet/ipl.h"
138 /* END OF INCLUDES */
139 
140 #if !defined(lint)
141 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
142 static const char rcsid[] = "@(#)$Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $";
143 #endif
144 
145 #ifndef	_KERNEL
146 # include "ipf.h"
147 # include "ipt.h"
148 # include "bpf-ipf.h"
149 extern	int	opts;
150 
151 # define	FR_VERBOSE(verb_pr)			verbose verb_pr
152 # define	FR_DEBUG(verb_pr)			debug verb_pr
153 #else /* #ifndef _KERNEL */
154 # define	FR_VERBOSE(verb_pr)
155 # define	FR_DEBUG(verb_pr)
156 #endif /* _KERNEL */
157 
158 
159 char	ipfilter_version[] = IPL_VERSION;
160 int	fr_features = 0
161 #ifdef	IPFILTER_LKM
162 		| IPF_FEAT_LKM
163 #endif
164 #ifdef	IPFILTER_LOG
165 		| IPF_FEAT_LOG
166 #endif
167 #ifdef	IPFILTER_LOOKUP
168 		| IPF_FEAT_LOOKUP
169 #endif
170 #ifdef	IPFILTER_BPF
171 		| IPF_FEAT_BPF
172 #endif
173 #ifdef	IPFILTER_COMPILED
174 		| IPF_FEAT_COMPILED
175 #endif
176 #ifdef	IPFILTER_CKSUM
177 		| IPF_FEAT_CKSUM
178 #endif
179 #ifdef	IPFILTER_SYNC
180 		| IPF_FEAT_SYNC
181 #endif
182 #ifdef	IPFILTER_SCAN
183 		| IPF_FEAT_SCAN
184 #endif
185 #ifdef	USE_INET6
186 		| IPF_FEAT_IPV6
187 #endif
188 	;
189 
190 #define	IPF_BUMP(x)	(x)++
191 
192 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
193 static	INLINE int	fr_ipfcheck __P((fr_info_t *, frentry_t *, int));
194 static	int		fr_portcheck __P((frpcmp_t *, u_short *));
195 static	int		frflushlist __P((int, minor_t, int *, frentry_t **,
196 					 ipf_stack_t *));
197 static	ipfunc_t	fr_findfunc __P((ipfunc_t));
198 static	frentry_t	*fr_firewall __P((fr_info_t *, u_32_t *));
199 static	int		fr_funcinit __P((frentry_t *fr, ipf_stack_t *));
200 static	INLINE void	frpr_ah __P((fr_info_t *));
201 static	INLINE void	frpr_esp __P((fr_info_t *));
202 static	INLINE void	frpr_gre __P((fr_info_t *));
203 static	INLINE void	frpr_udp __P((fr_info_t *));
204 static	INLINE void	frpr_tcp __P((fr_info_t *));
205 static	INLINE void	frpr_icmp __P((fr_info_t *));
206 static	INLINE void	frpr_ipv4hdr __P((fr_info_t *));
207 static	INLINE int	frpr_pullup __P((fr_info_t *, int));
208 static	INLINE void	frpr_short __P((fr_info_t *, int));
209 static	INLINE void	frpr_tcpcommon __P((fr_info_t *));
210 static	INLINE void	frpr_udpcommon __P((fr_info_t *));
211 static	INLINE int	fr_updateipid __P((fr_info_t *));
212 #ifdef	IPFILTER_LOOKUP
213 static	int		fr_grpmapinit __P((frentry_t *fr, ipf_stack_t *));
214 static	INLINE void	*fr_resolvelookup __P((u_int, u_int, lookupfunc_t *,
215 					       ipf_stack_t *));
216 #endif
217 static	void		frsynclist __P((int, int, void *, char *, frentry_t *,
218     ipf_stack_t *));
219 static	void		*fr_ifsync __P((int, int, char *, char *,
220 					void *, void *, ipf_stack_t *));
221 static	ipftuneable_t	*fr_findtunebyname __P((const char *, ipf_stack_t *));
222 static	ipftuneable_t	*fr_findtunebycookie __P((void *, void **, ipf_stack_t *));
223 
224 /*
225  * bit values for identifying presence of individual IP options
226  * All of these tables should be ordered by increasing key value on the left
227  * hand side to allow for binary searching of the array and include a trailer
228  * with a 0 for the bitmask for linear searches to easily find the end with.
229  */
230 const	struct	optlist	ipopts[20] = {
231 	{ IPOPT_NOP,	0x000001 },
232 	{ IPOPT_RR,	0x000002 },
233 	{ IPOPT_ZSU,	0x000004 },
234 	{ IPOPT_MTUP,	0x000008 },
235 	{ IPOPT_MTUR,	0x000010 },
236 	{ IPOPT_ENCODE,	0x000020 },
237 	{ IPOPT_TS,	0x000040 },
238 	{ IPOPT_TR,	0x000080 },
239 	{ IPOPT_SECURITY, 0x000100 },
240 	{ IPOPT_LSRR,	0x000200 },
241 	{ IPOPT_E_SEC,	0x000400 },
242 	{ IPOPT_CIPSO,	0x000800 },
243 	{ IPOPT_SATID,	0x001000 },
244 	{ IPOPT_SSRR,	0x002000 },
245 	{ IPOPT_ADDEXT,	0x004000 },
246 	{ IPOPT_VISA,	0x008000 },
247 	{ IPOPT_IMITD,	0x010000 },
248 	{ IPOPT_EIP,	0x020000 },
249 	{ IPOPT_FINN,	0x040000 },
250 	{ 0,		0x000000 }
251 };
252 
253 #ifdef USE_INET6
254 struct optlist ip6exthdr[] = {
255 	{ IPPROTO_HOPOPTS,		0x000001 },
256 	{ IPPROTO_IPV6,			0x000002 },
257 	{ IPPROTO_ROUTING,		0x000004 },
258 	{ IPPROTO_FRAGMENT,		0x000008 },
259 	{ IPPROTO_ESP,			0x000010 },
260 	{ IPPROTO_AH,			0x000020 },
261 	{ IPPROTO_NONE,			0x000040 },
262 	{ IPPROTO_DSTOPTS,		0x000080 },
263 	{ 0,				0 }
264 };
265 #endif
266 
267 struct optlist tcpopts[] = {
268 	{ TCPOPT_NOP,			0x000001 },
269 	{ TCPOPT_MAXSEG,		0x000002 },
270 	{ TCPOPT_WINDOW,		0x000004 },
271 	{ TCPOPT_SACK_PERMITTED,	0x000008 },
272 	{ TCPOPT_SACK,			0x000010 },
273 	{ TCPOPT_TIMESTAMP,		0x000020 },
274 	{ 0,				0x000000 }
275 };
276 
277 /*
278  * bit values for identifying presence of individual IP security options
279  */
280 const	struct	optlist	secopt[8] = {
281 	{ IPSO_CLASS_RES4,	0x01 },
282 	{ IPSO_CLASS_TOPS,	0x02 },
283 	{ IPSO_CLASS_SECR,	0x04 },
284 	{ IPSO_CLASS_RES3,	0x08 },
285 	{ IPSO_CLASS_CONF,	0x10 },
286 	{ IPSO_CLASS_UNCL,	0x20 },
287 	{ IPSO_CLASS_RES2,	0x40 },
288 	{ IPSO_CLASS_RES1,	0x80 }
289 };
290 
291 
292 /*
293  * Table of functions available for use with call rules.
294  */
295 static ipfunc_resolve_t fr_availfuncs[] = {
296 #ifdef	IPFILTER_LOOKUP
297 	{ "fr_srcgrpmap", fr_srcgrpmap, fr_grpmapinit },
298 	{ "fr_dstgrpmap", fr_dstgrpmap, fr_grpmapinit },
299 #endif
300 	{ "", NULL }
301 };
302 
303 
304 /*
305  * Below we declare a list of constants used only by the ipf_extraflush()
306  * routine.  We are placing it here, instead of in ipf_extraflush() itself,
307  * because we want to make it visible to tools such as mdb, nm etc., so the
308  * values can easily be altered during debugging.
309  */
310 static	const	int	idletime_tab[] = {
311 	IPF_TTLVAL(30),		/* 30 seconds */
312 	IPF_TTLVAL(1800),	/* 30 minutes */
313 	IPF_TTLVAL(43200),	/* 12 hours */
314 	IPF_TTLVAL(345600),	/* 4 days */
315 };
316 
317 
318 /*
319  * The next section of code is a a collection of small routines that set
320  * fields in the fr_info_t structure passed based on properties of the
321  * current packet.  There are different routines for the same protocol
322  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
323  * will "special" inspection for setup, is now more easily done by adding
324  * a new routine and expanding the frpr_ipinit*() function rather than by
325  * adding more code to a growing switch statement.
326  */
327 #ifdef USE_INET6
328 static	INLINE int	frpr_ah6 __P((fr_info_t *));
329 static	INLINE void	frpr_esp6 __P((fr_info_t *));
330 static	INLINE void	frpr_gre6 __P((fr_info_t *));
331 static	INLINE void	frpr_udp6 __P((fr_info_t *));
332 static	INLINE void	frpr_tcp6 __P((fr_info_t *));
333 static	INLINE void	frpr_icmp6 __P((fr_info_t *));
334 static	INLINE void	frpr_ipv6hdr __P((fr_info_t *));
335 static	INLINE void	frpr_short6 __P((fr_info_t *, int));
336 static	INLINE int	frpr_hopopts6 __P((fr_info_t *));
337 static	INLINE int	frpr_routing6 __P((fr_info_t *));
338 static	INLINE int	frpr_dstopts6 __P((fr_info_t *));
339 static	INLINE int	frpr_fragment6 __P((fr_info_t *));
340 static	INLINE int	frpr_ipv6exthdr __P((fr_info_t *, int, int));
341 
342 
343 /* ------------------------------------------------------------------------ */
344 /* Function:    frpr_short6                                                 */
345 /* Returns:     void                                                        */
346 /* Parameters:  fin(I) - pointer to packet information                      */
347 /*                                                                          */
348 /* IPv6 Only                                                                */
349 /* This is function enforces the 'is a packet too short to be legit' rule   */
350 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
351 /* for frpr_short() for more details.                                       */
352 /* ------------------------------------------------------------------------ */
353 static INLINE void frpr_short6(fin, xmin)
354 fr_info_t *fin;
355 int xmin;
356 {
357 
358 	if (fin->fin_dlen < xmin)
359 		fin->fin_flx |= FI_SHORT;
360 }
361 
362 
363 /* ------------------------------------------------------------------------ */
364 /* Function:    frpr_ipv6hdr                                                */
365 /* Returns:     Nil                                                         */
366 /* Parameters:  fin(I) - pointer to packet information                      */
367 /*                                                                          */
368 /* IPv6 Only                                                                */
369 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
370 /* per-protocol analyzer if it exists.                                      */
371 /* ------------------------------------------------------------------------ */
372 static INLINE void frpr_ipv6hdr(fin)
373 fr_info_t *fin;
374 {
375 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
376 	int p, go = 1, i, hdrcount;
377 	fr_ip_t *fi = &fin->fin_fi;
378 
379 	fin->fin_off = 0;
380 
381 	fi->fi_tos = 0;
382 	fi->fi_optmsk = 0;
383 	fi->fi_secmsk = 0;
384 	fi->fi_auth = 0;
385 
386 	p = ip6->ip6_nxt;
387 	fi->fi_ttl = ip6->ip6_hlim;
388 	fi->fi_src.in6 = ip6->ip6_src;
389 	fi->fi_dst.in6 = ip6->ip6_dst;
390 	fin->fin_id = 0;
391 
392 	hdrcount = 0;
393 	while (go && !(fin->fin_flx & (FI_BAD|FI_SHORT))) {
394 		switch (p)
395 		{
396 		case IPPROTO_UDP :
397 			frpr_udp6(fin);
398 			go = 0;
399 			break;
400 
401 		case IPPROTO_TCP :
402 			frpr_tcp6(fin);
403 			go = 0;
404 			break;
405 
406 		case IPPROTO_ICMPV6 :
407 			frpr_icmp6(fin);
408 			go = 0;
409 			break;
410 
411 		case IPPROTO_GRE :
412 			frpr_gre6(fin);
413 			go = 0;
414 			break;
415 
416 		case IPPROTO_HOPOPTS :
417 			/*
418 			 * hop by hop ext header is only allowed
419 			 * right after IPv6 header.
420 			 */
421 			if (hdrcount != 0) {
422 				fin->fin_flx |= FI_BAD;
423 				p = IPPROTO_NONE;
424 			} else {
425 				p = frpr_hopopts6(fin);
426 			}
427 			break;
428 
429 		case IPPROTO_DSTOPTS :
430 			p = frpr_dstopts6(fin);
431 			break;
432 
433 		case IPPROTO_ROUTING :
434 			p = frpr_routing6(fin);
435 			break;
436 
437 		case IPPROTO_AH :
438 			p = frpr_ah6(fin);
439 			break;
440 
441 		case IPPROTO_ESP :
442 			frpr_esp6(fin);
443 			go = 0;
444 			break;
445 
446 		case IPPROTO_IPV6 :
447 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
448 				if (ip6exthdr[i].ol_val == p) {
449 					fin->fin_flx |= ip6exthdr[i].ol_bit;
450 					break;
451 				}
452 			go = 0;
453 			break;
454 
455 		case IPPROTO_NONE :
456 			go = 0;
457 			break;
458 
459 		case IPPROTO_FRAGMENT :
460 			p = frpr_fragment6(fin);
461 			if (fin->fin_off != 0)  /* Not the first frag */
462 				go = 0;
463 			break;
464 
465 		default :
466 			go = 0;
467 			break;
468 		}
469 		hdrcount++;
470 
471 		/*
472 		 * It is important to note that at this point, for the
473 		 * extension headers (go != 0), the entire header may not have
474 		 * been pulled up when the code gets to this point.  This is
475 		 * only done for "go != 0" because the other header handlers
476 		 * will all pullup their complete header.  The other indicator
477 		 * of an incomplete packet is that this was just an extension
478 		 * header.
479 		 */
480 		if ((go != 0) && (p != IPPROTO_NONE) &&
481 		    (frpr_pullup(fin, 0) == -1)) {
482 			p = IPPROTO_NONE;
483 			go = 0;
484 		}
485 	}
486 	fi->fi_p = p;
487 }
488 
489 
490 /* ------------------------------------------------------------------------ */
491 /* Function:    frpr_ipv6exthdr                                             */
492 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
493 /* Parameters:  fin(I)      - pointer to packet information                 */
494 /*              multiple(I) - flag indicating yes/no if multiple occurances */
495 /*                            of this extension header are allowed.         */
496 /*              proto(I)    - protocol number for this extension header     */
497 /*                                                                          */
498 /* IPv6 Only                                                                */
499 /* This function expects to find an IPv6 extension header at fin_dp.        */
500 /* There must be at least 8 bytes of data at fin_dp for there to be a valid */
501 /* extension header present. If a good one is found, fin_dp is advanced to  */
502 /* point at the first piece of data after the extension header, fin_exthdr  */
503 /* points to the start of the extension header and the "protocol" of the    */
504 /* *NEXT* header is returned.                                               */
505 /* ------------------------------------------------------------------------ */
506 static INLINE int frpr_ipv6exthdr(fin, multiple, proto)
507 fr_info_t *fin;
508 int multiple, proto;
509 {
510 	struct ip6_ext *hdr;
511 	u_short shift;
512 	int i;
513 
514 	fin->fin_flx |= FI_V6EXTHDR;
515 
516 				/* 8 is default length of extension hdr */
517 	if ((fin->fin_dlen - 8) < 0) {
518 		fin->fin_flx |= FI_SHORT;
519 		return IPPROTO_NONE;
520 	}
521 
522 	if (frpr_pullup(fin, 8) == -1)
523 		return IPPROTO_NONE;
524 
525 	hdr = fin->fin_dp;
526 	shift = 8 + (hdr->ip6e_len << 3);
527 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
528 		fin->fin_flx |= FI_BAD;
529 		return IPPROTO_NONE;
530 	}
531 
532 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
533 		if (ip6exthdr[i].ol_val == proto) {
534 			/*
535 			 * Most IPv6 extension headers are only allowed once.
536 			 */
537 			if ((multiple == 0) &&
538 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
539 				fin->fin_flx |= FI_BAD;
540 			else
541 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
542 			break;
543 		}
544 
545 	fin->fin_dp = (char *)fin->fin_dp + shift;
546 	fin->fin_dlen -= shift;
547 
548 	return hdr->ip6e_nxt;
549 }
550 
551 
552 /* ------------------------------------------------------------------------ */
553 /* Function:    frpr_hopopts6                                               */
554 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
555 /* Parameters:  fin(I) - pointer to packet information                      */
556 /*                                                                          */
557 /* IPv6 Only                                                                */
558 /* This is function checks pending hop by hop options extension header      */
559 /* ------------------------------------------------------------------------ */
560 static INLINE int frpr_hopopts6(fin)
561 fr_info_t *fin;
562 {
563 	return frpr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
564 }
565 
566 
567 /* ------------------------------------------------------------------------ */
568 /* Function:    frpr_routing6                                               */
569 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
570 /* Parameters:  fin(I) - pointer to packet information                      */
571 /*                                                                          */
572 /* IPv6 Only                                                                */
573 /* This is function checks pending routing extension header                 */
574 /* ------------------------------------------------------------------------ */
575 static INLINE int frpr_routing6(fin)
576 fr_info_t *fin;
577 {
578 	struct ip6_ext *hdr;
579 	int shift;
580 
581 	hdr = fin->fin_dp;
582 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_ROUTING) == IPPROTO_NONE)
583 		return IPPROTO_NONE;
584 
585 	shift = 8 + (hdr->ip6e_len << 3);
586 	/*
587 	 * Nasty extension header length?
588 	 */
589 	if ((hdr->ip6e_len << 3) & 15) {
590 		fin->fin_flx |= FI_BAD;
591 		/*
592 		 * Compensate for the changes made in frpr_ipv6exthdr()
593 		 */
594 		fin->fin_dlen += shift;
595 		fin->fin_dp = (char *)fin->fin_dp - shift;
596 		return IPPROTO_NONE;
597 	}
598 
599 	return hdr->ip6e_nxt;
600 }
601 
602 
603 /* ------------------------------------------------------------------------ */
604 /* Function:    frpr_fragment6                                              */
605 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
606 /* Parameters:  fin(I) - pointer to packet information                      */
607 /*                                                                          */
608 /* IPv6 Only                                                                */
609 /* Examine the IPv6 fragment header and extract fragment offset information.*/
610 /*                                                                          */
611 /* We don't know where the transport layer header (or whatever is next is), */
612 /* as it could be behind destination options (amongst others).  Because     */
613 /* there is no fragment cache, there is no knowledge about whether or not an*/
614 /* upper layer header has been seen (or where it ends) and thus we are not  */
615 /* able to continue processing beyond this header with any confidence.      */
616 /* ------------------------------------------------------------------------ */
617 static INLINE int frpr_fragment6(fin)
618 fr_info_t *fin;
619 {
620 	struct ip6_frag *frag;
621 	int extoff = 0;
622 
623 	fin->fin_flx |= FI_FRAG;
624 
625 	/*
626 	 * A fragmented IPv6 packet implies that there must be something
627 	 * else after the fragment.
628 	 */
629 	if (frpr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT) == IPPROTO_NONE)
630 		goto badv6frag;
631 
632 	if (frpr_pullup(fin, sizeof(*frag)) == -1)
633 		goto badv6frag;
634 
635 	frag = (struct ip6_frag *)((char *)fin->fin_dp - sizeof(*frag));
636 	/*
637 	 * Fragment but no fragmentation info set?  Bad packet...
638 	 */
639 	if (frag->ip6f_offlg == 0)
640 		goto badv6frag;
641 
642 	fin->fin_id = frag->ip6f_ident;
643 	fin->fin_dp = (char *)frag + sizeof(*frag);
644 	fin->fin_dlen -= sizeof(*frag);
645 	/* length of hdrs(after frag hdr) + data */
646 	extoff = sizeof(*frag);
647 
648 	/*
649 	 * If the frag is not the last one and the payload length
650 	 * is not multiple of 8, it must be dropped.
651 	 */
652 	if (((frag->ip6f_offlg & IP6F_MORE_FRAG) && (fin->fin_dlen & 7)) ||
653 	    (frag->ip6f_offlg == 0)) {
654 badv6frag:
655 		fin->fin_dp = (char *)fin->fin_dp - extoff;
656 		fin->fin_dlen += extoff;
657 		fin->fin_flx |= FI_BAD;
658 		return IPPROTO_NONE;
659 	}
660 
661 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
662 	if (fin->fin_off != 0)
663 		fin->fin_flx |= FI_FRAGBODY;
664 
665 	if (frag->ip6f_offlg & IP6F_MORE_FRAG)
666 		fin->fin_flx |= FI_MOREFRAG;
667 
668 	return frag->ip6f_nxt;
669 }
670 
671 
672 /* ------------------------------------------------------------------------ */
673 /* Function:    frpr_dstopts6                                               */
674 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
675 /* Parameters:  fin(I) - pointer to packet information                      */
676 /*              nextheader(I) - stores next header value                    */
677 /*                                                                          */
678 /* IPv6 Only                                                                */
679 /* This is function checks pending destination options extension header     */
680 /* ------------------------------------------------------------------------ */
681 static INLINE int frpr_dstopts6(fin)
682 fr_info_t *fin;
683 {
684 	return frpr_ipv6exthdr(fin, 1, IPPROTO_DSTOPTS);
685 }
686 
687 
688 /* ------------------------------------------------------------------------ */
689 /* Function:    frpr_icmp6                                                  */
690 /* Returns:     void                                                        */
691 /* Parameters:  fin(I) - pointer to packet information                      */
692 /*                                                                          */
693 /* IPv6 Only                                                                */
694 /* This routine is mainly concerned with determining the minimum valid size */
695 /* for an ICMPv6 packet.                                                    */
696 /* ------------------------------------------------------------------------ */
697 static INLINE void frpr_icmp6(fin)
698 fr_info_t *fin;
699 {
700 	int minicmpsz = sizeof(struct icmp6_hdr);
701 	struct icmp6_hdr *icmp6;
702 
703 	if (frpr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1)
704 		return;
705 
706 	if (fin->fin_dlen > 1) {
707 		icmp6 = fin->fin_dp;
708 
709 		fin->fin_data[0] = *(u_short *)icmp6;
710 
711 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
712 			fin->fin_flx |= FI_ICMPQUERY;
713 
714 		switch (icmp6->icmp6_type)
715 		{
716 		case ICMP6_ECHO_REPLY :
717 		case ICMP6_ECHO_REQUEST :
718 			if (fin->fin_dlen >= 6)
719 				fin->fin_data[1] = icmp6->icmp6_id;
720 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
721 			break;
722 		case ICMP6_DST_UNREACH :
723 		case ICMP6_PACKET_TOO_BIG :
724 		case ICMP6_TIME_EXCEEDED :
725 		case ICMP6_PARAM_PROB :
726 			if ((fin->fin_m != NULL) &&
727 			    (M_LEN(fin->fin_m) < fin->fin_plen)) {
728 				if (fr_coalesce(fin) != 1)
729 					return;
730 			}
731 			fin->fin_flx |= FI_ICMPERR;
732 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
733 			break;
734 		default :
735 			break;
736 		}
737 	}
738 
739 	frpr_short6(fin, minicmpsz);
740 }
741 
742 
743 /* ------------------------------------------------------------------------ */
744 /* Function:    frpr_udp6                                                   */
745 /* Returns:     void                                                        */
746 /* Parameters:  fin(I) - pointer to packet information                      */
747 /*                                                                          */
748 /* IPv6 Only                                                                */
749 /* Analyse the packet for IPv6/UDP properties.                              */
750 /* Is not expected to be called for fragmented packets.                     */
751 /* ------------------------------------------------------------------------ */
752 static INLINE void frpr_udp6(fin)
753 fr_info_t *fin;
754 {
755 
756 	fr_checkv6sum(fin);
757 
758 	frpr_short6(fin, sizeof(struct udphdr));
759 	if (frpr_pullup(fin, sizeof(struct udphdr)) == -1)
760 		return;
761 
762 	frpr_udpcommon(fin);
763 }
764 
765 
766 /* ------------------------------------------------------------------------ */
767 /* Function:    frpr_tcp6                                                   */
768 /* Returns:     void                                                        */
769 /* Parameters:  fin(I) - pointer to packet information                      */
770 /*                                                                          */
771 /* IPv6 Only                                                                */
772 /* Analyse the packet for IPv6/TCP properties.                              */
773 /* Is not expected to be called for fragmented packets.                     */
774 /* ------------------------------------------------------------------------ */
775 static INLINE void frpr_tcp6(fin)
776 fr_info_t *fin;
777 {
778 
779 	fr_checkv6sum(fin);
780 
781 	frpr_short6(fin, sizeof(struct tcphdr));
782 	if (frpr_pullup(fin, sizeof(struct tcphdr)) == -1)
783 		return;
784 
785 	frpr_tcpcommon(fin);
786 }
787 
788 
789 /* ------------------------------------------------------------------------ */
790 /* Function:    frpr_esp6                                                   */
791 /* Returns:     void                                                        */
792 /* Parameters:  fin(I) - pointer to packet information                      */
793 /*                                                                          */
794 /* IPv6 Only                                                                */
795 /* Analyse the packet for ESP properties.                                   */
796 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
797 /* even though the newer ESP packets must also have a sequence number that  */
798 /* is 32bits as well, it is not possible(?) to determine the version from a */
799 /* simple packet header.                                                    */
800 /* ------------------------------------------------------------------------ */
801 static INLINE void frpr_esp6(fin)
802 fr_info_t *fin;
803 {
804 	int i;
805 	frpr_short6(fin, sizeof(grehdr_t));
806 
807 	(void) frpr_pullup(fin, 8);
808 
809 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
810 		if (ip6exthdr[i].ol_val == IPPROTO_ESP) {
811 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
812 			break;
813 		}
814 }
815 
816 
817 /* ------------------------------------------------------------------------ */
818 /* Function:    frpr_ah6                                                    */
819 /* Returns:     void                                                        */
820 /* Parameters:  fin(I) - pointer to packet information                      */
821 /*                                                                          */
822 /* IPv6 Only                                                                */
823 /* Analyse the packet for AH properties.                                    */
824 /* The minimum length is taken to be the combination of all fields in the   */
825 /* header being present and no authentication data (null algorithm used.)   */
826 /* ------------------------------------------------------------------------ */
827 static INLINE int frpr_ah6(fin)
828 fr_info_t *fin;
829 {
830 	authhdr_t *ah;
831 	int i, shift;
832 
833 	frpr_short6(fin, 12);
834 
835 	if (frpr_pullup(fin, sizeof(*ah)) == -1)
836 		return IPPROTO_NONE;
837 
838 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
839 		if (ip6exthdr[i].ol_val == IPPROTO_AH) {
840 			fin->fin_optmsk |= ip6exthdr[i].ol_bit;
841 			break;
842 		}
843 
844 	ah = (authhdr_t *)fin->fin_dp;
845 
846 	shift = (ah->ah_plen + 2) * 4;
847 	fin->fin_dlen -= shift;
848 	fin->fin_dp = (char*)fin->fin_dp + shift;
849 
850 	return ah->ah_next;
851 }
852 
853 
854 /* ------------------------------------------------------------------------ */
855 /* Function:    frpr_gre6                                                   */
856 /* Returns:     void                                                        */
857 /* Parameters:  fin(I) - pointer to packet information                      */
858 /*                                                                          */
859 /* Analyse the packet for GRE properties.                                   */
860 /* ------------------------------------------------------------------------ */
861 static INLINE void frpr_gre6(fin)
862 fr_info_t *fin;
863 {
864 	grehdr_t *gre;
865 
866 	frpr_short6(fin, sizeof(grehdr_t));
867 
868 	if (frpr_pullup(fin, sizeof(grehdr_t)) == -1)
869 		return;
870 
871 	gre = fin->fin_dp;
872 	if (GRE_REV(gre->gr_flags) == 1)
873 		fin->fin_data[0] = gre->gr_call;
874 }
875 #endif	/* USE_INET6 */
876 
877 
878 /* ------------------------------------------------------------------------ */
879 /* Function:    frpr_pullup                                                 */
880 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
881 /* Parameters:  fin(I)  - pointer to packet information                     */
882 /*              plen(I) - length (excluding L3 header) to pullup            */
883 /*                                                                          */
884 /* Short inline function to cut down on code duplication to perform a call  */
885 /* to fr_pullup to ensure there is the required amount of data,             */
886 /* consecutively in the packet buffer.                                      */
887 /* ------------------------------------------------------------------------ */
888 static INLINE int frpr_pullup(fin, plen)
889 fr_info_t *fin;
890 int plen;
891 {
892 #if defined(_KERNEL)
893 	if (fin->fin_m != NULL) {
894 		int ipoff;
895 
896 		ipoff = (char *)fin->fin_ip - MTOD(fin->fin_m, char *);
897 
898 		if (fin->fin_dp != NULL)
899 			plen += (char *)fin->fin_dp -
900 				((char *)fin->fin_ip + fin->fin_hlen);
901 		plen += fin->fin_hlen;
902 		/*
903 		 * We don't do 'plen += ipoff;' here. The fr_pullup() will
904 		 * do it for us.
905 		 */
906 		if (M_LEN(fin->fin_m) < plen + ipoff) {
907 			if (fr_pullup(fin->fin_m, fin, plen) == NULL)
908 				return -1;
909 		}
910 	}
911 #endif
912 	return 0;
913 }
914 
915 
916 /* ------------------------------------------------------------------------ */
917 /* Function:    frpr_short                                                  */
918 /* Returns:     void                                                        */
919 /* Parameters:  fin(I)  - pointer to packet information                     */
920 /*              xmin(I) - minimum header size                               */
921 /*                                                                          */
922 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
923 /* applying here is that the packet must not be fragmented within the layer */
924 /* 4 header.  That is, it must not be a fragment that has its offset set to */
925 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
926 /* entire layer 4 header must be present (min).                             */
927 /* ------------------------------------------------------------------------ */
928 static INLINE void frpr_short(fin, xmin)
929 fr_info_t *fin;
930 int xmin;
931 {
932 
933 	if (fin->fin_off == 0) {
934 		if (fin->fin_dlen < xmin)
935 			fin->fin_flx |= FI_SHORT;
936 	} else if (fin->fin_off < xmin) {
937 		fin->fin_flx |= FI_SHORT;
938 	}
939 }
940 
941 
942 /* ------------------------------------------------------------------------ */
943 /* Function:    frpr_icmp                                                   */
944 /* Returns:     void                                                        */
945 /* Parameters:  fin(I) - pointer to packet information                      */
946 /*                                                                          */
947 /* IPv4 Only                                                                */
948 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
949 /* except extrememly bad packets, both type and code will be present.       */
950 /* The expected minimum size of an ICMP packet is very much dependent on    */
951 /* the type of it.                                                          */
952 /*                                                                          */
953 /* XXX - other ICMP sanity checks?                                          */
954 /* ------------------------------------------------------------------------ */
955 static INLINE void frpr_icmp(fin)
956 fr_info_t *fin;
957 {
958 	int minicmpsz = sizeof(struct icmp);
959 	icmphdr_t *icmp;
960 	ip_t *oip;
961 	ipf_stack_t *ifs = fin->fin_ifs;
962 
963 	if (fin->fin_off != 0) {
964 		frpr_short(fin, ICMPERR_ICMPHLEN);
965 		return;
966 	}
967 
968 	if (frpr_pullup(fin, ICMPERR_ICMPHLEN) == -1)
969 		return;
970 
971 	fr_checkv4sum(fin);
972 
973 	/*
974 	 * This is a right place to set icmp pointer, since the memory
975 	 * referenced by fin_dp could get reallocated. The code down below can
976 	 * rely on fact icmp variable always points to ICMP header.
977 	 */
978 	icmp = fin->fin_dp;
979 	fin->fin_data[0] = *(u_short *)icmp;
980 	fin->fin_data[1] = icmp->icmp_id;
981 
982 	switch (icmp->icmp_type)
983 	{
984 	case ICMP_ECHOREPLY :
985 	case ICMP_ECHO :
986 	/* Router discovery messaes - RFC 1256 */
987 	case ICMP_ROUTERADVERT :
988 	case ICMP_ROUTERSOLICIT :
989 		minicmpsz = ICMP_MINLEN;
990 		break;
991 	/*
992 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
993 	 * 3 * timestamp(3 * 4)
994 	 */
995 	case ICMP_TSTAMP :
996 	case ICMP_TSTAMPREPLY :
997 		minicmpsz = 20;
998 		break;
999 	/*
1000 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1001 	 * mask(4)
1002 	 */
1003 	case ICMP_MASKREQ :
1004 	case ICMP_MASKREPLY :
1005 			minicmpsz = 12;
1006 			break;
1007 	/*
1008 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1009 	 */
1010 	case ICMP_UNREACH :
1011 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1012 			if (icmp->icmp_nextmtu < ifs->ifs_fr_icmpminfragmtu)
1013 				fin->fin_flx |= FI_BAD;
1014 		}
1015 		/* FALLTHRU */
1016 	case ICMP_SOURCEQUENCH :
1017 	case ICMP_REDIRECT :
1018 	case ICMP_TIMXCEED :
1019 	case ICMP_PARAMPROB :
1020 		fin->fin_flx |= FI_ICMPERR;
1021 		if (fr_coalesce(fin) != 1)
1022 			return;
1023 		/*
1024 		 * ICMP error packets should not be generated for IP
1025 		 * packets that are a fragment that isn't the first
1026 		 * fragment.
1027 		 */
1028 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1029 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1030 			fin->fin_flx |= FI_BAD;
1031 		break;
1032 	default :
1033 		break;
1034 	}
1035 
1036 	frpr_short(fin, minicmpsz);
1037 }
1038 
1039 
1040 /* ------------------------------------------------------------------------ */
1041 /* Function:    frpr_tcpcommon                                              */
1042 /* Returns:     void                                                        */
1043 /* Parameters:  fin(I) - pointer to packet information                      */
1044 /*                                                                          */
1045 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1046 /* and make some checks with how they interact with other fields.           */
1047 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1048 /* valid and mark the packet as bad if not.                                 */
1049 /* ------------------------------------------------------------------------ */
1050 static INLINE void frpr_tcpcommon(fin)
1051 fr_info_t *fin;
1052 {
1053 	int flags, tlen;
1054 	tcphdr_t *tcp;
1055 
1056 	fin->fin_flx |= FI_TCPUDP;
1057 	if (fin->fin_off != 0)
1058 		return;
1059 
1060 	if (frpr_pullup(fin, sizeof(*tcp)) == -1)
1061 		return;
1062 	tcp = fin->fin_dp;
1063 
1064 	if (fin->fin_dlen > 3) {
1065 		fin->fin_sport = ntohs(tcp->th_sport);
1066 		fin->fin_dport = ntohs(tcp->th_dport);
1067 	}
1068 
1069 	if ((fin->fin_flx & FI_SHORT) != 0)
1070 		return;
1071 
1072 	/*
1073 	 * Use of the TCP data offset *must* result in a value that is at
1074 	 * least the same size as the TCP header.
1075 	 */
1076 	tlen = TCP_OFF(tcp) << 2;
1077 	if (tlen < sizeof(tcphdr_t)) {
1078 		fin->fin_flx |= FI_BAD;
1079 		return;
1080 	}
1081 
1082 	flags = tcp->th_flags;
1083 	fin->fin_tcpf = tcp->th_flags;
1084 
1085 	/*
1086 	 * If the urgent flag is set, then the urgent pointer must
1087 	 * also be set and vice versa.  Good TCP packets do not have
1088 	 * just one of these set.
1089 	 */
1090 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1091 		fin->fin_flx |= FI_BAD;
1092 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1093 		/* Ignore this case, it shows up in "real" traffic with */
1094 		/* bogus values in the urgent pointer field. */
1095 		flags = flags; /* LINT */
1096 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1097 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1098 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1099 		fin->fin_flx |= FI_BAD;
1100 	} else if (!(flags & TH_ACK)) {
1101 		/*
1102 		 * If the ack bit isn't set, then either the SYN or
1103 		 * RST bit must be set.  If the SYN bit is set, then
1104 		 * we expect the ACK field to be 0.  If the ACK is
1105 		 * not set and if URG, PSH or FIN are set, consdier
1106 		 * that to indicate a bad TCP packet.
1107 		 */
1108 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1109 			/*
1110 			 * Cisco PIX sets the ACK field to a random value.
1111 			 * In light of this, do not set FI_BAD until a patch
1112 			 * is available from Cisco to ensure that
1113 			 * interoperability between existing systems is
1114 			 * achieved.
1115 			 */
1116 			/*fin->fin_flx |= FI_BAD*/;
1117 			flags = flags; /* LINT */
1118 		} else if (!(flags & (TH_RST|TH_SYN))) {
1119 			fin->fin_flx |= FI_BAD;
1120 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1121 			fin->fin_flx |= FI_BAD;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * At this point, it's not exactly clear what is to be gained by
1127 	 * marking up which TCP options are and are not present.  The one we
1128 	 * are most interested in is the TCP window scale.  This is only in
1129 	 * a SYN packet [RFC1323] so we don't need this here...?
1130 	 * Now if we were to analyse the header for passive fingerprinting,
1131 	 * then that might add some weight to adding this...
1132 	 */
1133 	if (tlen == sizeof(tcphdr_t))
1134 		return;
1135 
1136 	if (frpr_pullup(fin, tlen) == -1)
1137 		return;
1138 
1139 #if 0
1140 	ip = fin->fin_ip;
1141 	s = (u_char *)(tcp + 1);
1142 	off = IP_HL(ip) << 2;
1143 # ifdef _KERNEL
1144 	if (fin->fin_mp != NULL) {
1145 		mb_t *m = *fin->fin_mp;
1146 
1147 		if (off + tlen > M_LEN(m))
1148 			return;
1149 	}
1150 # endif
1151 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1152 		opt = *s;
1153 		if (opt == '\0')
1154 			break;
1155 		else if (opt == TCPOPT_NOP)
1156 			ol = 1;
1157 		else {
1158 			if (tlen < 2)
1159 				break;
1160 			ol = (int)*(s + 1);
1161 			if (ol < 2 || ol > tlen)
1162 				break;
1163 		}
1164 
1165 		for (i = 9, mv = 4; mv >= 0; ) {
1166 			op = ipopts + i;
1167 			if (opt == (u_char)op->ol_val) {
1168 				optmsk |= op->ol_bit;
1169 				break;
1170 			}
1171 		}
1172 		tlen -= ol;
1173 		s += ol;
1174 	}
1175 #endif /* 0 */
1176 }
1177 
1178 
1179 
1180 /* ------------------------------------------------------------------------ */
1181 /* Function:    frpr_udpcommon                                              */
1182 /* Returns:     void                                                        */
1183 /* Parameters:  fin(I) - pointer to packet information                      */
1184 /*                                                                          */
1185 /* Extract the UDP source and destination ports, if present.  If compiled   */
1186 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1187 /* ------------------------------------------------------------------------ */
1188 static INLINE void frpr_udpcommon(fin)
1189 fr_info_t *fin;
1190 {
1191 	udphdr_t *udp;
1192 
1193 	fin->fin_flx |= FI_TCPUDP;
1194 
1195 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1196 		if (frpr_pullup(fin, sizeof(*udp)) == -1) {
1197 			fin->fin_flx |= FI_SHORT;
1198 			return;
1199 		}
1200 
1201 		udp = fin->fin_dp;
1202 
1203 		fin->fin_sport = ntohs(udp->uh_sport);
1204 		fin->fin_dport = ntohs(udp->uh_dport);
1205 	}
1206 }
1207 
1208 
1209 /* ------------------------------------------------------------------------ */
1210 /* Function:    frpr_tcp                                                    */
1211 /* Returns:     void                                                        */
1212 /* Parameters:  fin(I) - pointer to packet information                      */
1213 /*                                                                          */
1214 /* IPv4 Only                                                                */
1215 /* Analyse the packet for IPv4/TCP properties.                              */
1216 /* ------------------------------------------------------------------------ */
1217 static INLINE void frpr_tcp(fin)
1218 fr_info_t *fin;
1219 {
1220 
1221 	fr_checkv4sum(fin);
1222 
1223 	frpr_short(fin, sizeof(tcphdr_t));
1224 
1225 	frpr_tcpcommon(fin);
1226 }
1227 
1228 
1229 /* ------------------------------------------------------------------------ */
1230 /* Function:    frpr_udp                                                    */
1231 /* Returns:     void                                                        */
1232 /* Parameters:  fin(I) - pointer to packet information                      */
1233 /*                                                                          */
1234 /* IPv4 Only                                                                */
1235 /* Analyse the packet for IPv4/UDP properties.                              */
1236 /* ------------------------------------------------------------------------ */
1237 static INLINE void frpr_udp(fin)
1238 fr_info_t *fin;
1239 {
1240 
1241 	fr_checkv4sum(fin);
1242 
1243 	frpr_short(fin, sizeof(udphdr_t));
1244 
1245 	frpr_udpcommon(fin);
1246 }
1247 
1248 
1249 /* ------------------------------------------------------------------------ */
1250 /* Function:    frpr_esp                                                    */
1251 /* Returns:     void                                                        */
1252 /* Parameters:  fin(I) - pointer to packet information                      */
1253 /*                                                                          */
1254 /* Analyse the packet for ESP properties.                                   */
1255 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1256 /* even though the newer ESP packets must also have a sequence number that  */
1257 /* is 32bits as well, it is not possible(?) to determine the version from a */
1258 /* simple packet header.                                                    */
1259 /* ------------------------------------------------------------------------ */
1260 static INLINE void frpr_esp(fin)
1261 fr_info_t *fin;
1262 {
1263 	if ((fin->fin_off == 0) && (frpr_pullup(fin, 8) == -1))
1264 		return;
1265 
1266 	frpr_short(fin, 8);
1267 }
1268 
1269 
1270 /* ------------------------------------------------------------------------ */
1271 /* Function:    frpr_ah                                                     */
1272 /* Returns:     void                                                        */
1273 /* Parameters:  fin(I) - pointer to packet information                      */
1274 /*                                                                          */
1275 /* Analyse the packet for AH properties.                                    */
1276 /* The minimum length is taken to be the combination of all fields in the   */
1277 /* header being present and no authentication data (null algorithm used.)   */
1278 /* ------------------------------------------------------------------------ */
1279 static INLINE void frpr_ah(fin)
1280 fr_info_t *fin;
1281 {
1282 	authhdr_t *ah;
1283 	int len;
1284 
1285 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(*ah)) == -1))
1286 		return;
1287 
1288 	ah = (authhdr_t *)fin->fin_dp;
1289 
1290 	len = (ah->ah_plen + 2) << 2;
1291 	frpr_short(fin, len);
1292 }
1293 
1294 
1295 /* ------------------------------------------------------------------------ */
1296 /* Function:    frpr_gre                                                    */
1297 /* Returns:     void                                                        */
1298 /* Parameters:  fin(I) - pointer to packet information                      */
1299 /*                                                                          */
1300 /* Analyse the packet for GRE properties.                                   */
1301 /* ------------------------------------------------------------------------ */
1302 static INLINE void frpr_gre(fin)
1303 fr_info_t *fin;
1304 {
1305 	grehdr_t *gre;
1306 
1307 	if ((fin->fin_off == 0) && (frpr_pullup(fin, sizeof(grehdr_t)) == -1))
1308 		return;
1309 
1310 	frpr_short(fin, sizeof(grehdr_t));
1311 
1312 	if (fin->fin_off == 0) {
1313 		gre = fin->fin_dp;
1314 		if (GRE_REV(gre->gr_flags) == 1)
1315 			fin->fin_data[0] = gre->gr_call;
1316 	}
1317 }
1318 
1319 
1320 /* ------------------------------------------------------------------------ */
1321 /* Function:    frpr_ipv4hdr                                                */
1322 /* Returns:     void                                                        */
1323 /* Parameters:  fin(I) - pointer to packet information                      */
1324 /*                                                                          */
1325 /* IPv4 Only                                                                */
1326 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1327 /* Check all options present and flag their presence if any exist.          */
1328 /* ------------------------------------------------------------------------ */
1329 static INLINE void frpr_ipv4hdr(fin)
1330 fr_info_t *fin;
1331 {
1332 	u_short optmsk = 0, secmsk = 0, auth = 0;
1333 	int hlen, ol, mv, p, i;
1334 	const struct optlist *op;
1335 	u_char *s, opt;
1336 	u_short off;
1337 	fr_ip_t *fi;
1338 	ip_t *ip;
1339 
1340 	fi = &fin->fin_fi;
1341 	hlen = fin->fin_hlen;
1342 
1343 	ip = fin->fin_ip;
1344 	p = ip->ip_p;
1345 	fi->fi_p = p;
1346 	fi->fi_tos = ip->ip_tos;
1347 	fin->fin_id = ip->ip_id;
1348 	off = ip->ip_off;
1349 
1350 	/* Get both TTL and protocol */
1351 	fi->fi_p = ip->ip_p;
1352 	fi->fi_ttl = ip->ip_ttl;
1353 #if 0
1354 	(*(((u_short *)fi) + 1)) = (*(((u_short *)ip) + 4));
1355 #endif
1356 
1357 	/* Zero out bits not used in IPv6 address */
1358 	fi->fi_src.i6[1] = 0;
1359 	fi->fi_src.i6[2] = 0;
1360 	fi->fi_src.i6[3] = 0;
1361 	fi->fi_dst.i6[1] = 0;
1362 	fi->fi_dst.i6[2] = 0;
1363 	fi->fi_dst.i6[3] = 0;
1364 
1365 	fi->fi_saddr = ip->ip_src.s_addr;
1366 	fi->fi_daddr = ip->ip_dst.s_addr;
1367 
1368 	/*
1369 	 * set packet attribute flags based on the offset and
1370 	 * calculate the byte offset that it represents.
1371 	 */
1372 	off &= IP_MF|IP_OFFMASK;
1373 	if (off != 0) {
1374 		int morefrag = off & IP_MF;
1375 
1376 		fi->fi_flx |= FI_FRAG;
1377 		if (morefrag)
1378 			fi->fi_flx |= FI_MOREFRAG;
1379 		off &= IP_OFFMASK;
1380 		if (off != 0) {
1381 			fin->fin_flx |= FI_FRAGBODY;
1382 			off <<= 3;
1383 			if ((off + fin->fin_dlen > 65535) ||
1384 			    (fin->fin_dlen == 0) ||
1385 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1386 				/*
1387 				 * The length of the packet, starting at its
1388 				 * offset cannot exceed 65535 (0xffff) as the
1389 				 * length of an IP packet is only 16 bits.
1390 				 *
1391 				 * Any fragment that isn't the last fragment
1392 				 * must have a length greater than 0 and it
1393 				 * must be an even multiple of 8.
1394 				 */
1395 				fi->fi_flx |= FI_BAD;
1396 			}
1397 		}
1398 	}
1399 	fin->fin_off = off;
1400 
1401 	/*
1402 	 * Call per-protocol setup and checking
1403 	 */
1404 	switch (p)
1405 	{
1406 	case IPPROTO_UDP :
1407 		frpr_udp(fin);
1408 		break;
1409 	case IPPROTO_TCP :
1410 		frpr_tcp(fin);
1411 		break;
1412 	case IPPROTO_ICMP :
1413 		frpr_icmp(fin);
1414 		break;
1415 	case IPPROTO_AH :
1416 		frpr_ah(fin);
1417 		break;
1418 	case IPPROTO_ESP :
1419 		frpr_esp(fin);
1420 		break;
1421 	case IPPROTO_GRE :
1422 		frpr_gre(fin);
1423 		break;
1424 	}
1425 
1426 	ip = fin->fin_ip;
1427 	if (ip == NULL)
1428 		return;
1429 
1430 	/*
1431 	 * If it is a standard IP header (no options), set the flag fields
1432 	 * which relate to options to 0.
1433 	 */
1434 	if (hlen == sizeof(*ip)) {
1435 		fi->fi_optmsk = 0;
1436 		fi->fi_secmsk = 0;
1437 		fi->fi_auth = 0;
1438 		return;
1439 	}
1440 
1441 	/*
1442 	 * So the IP header has some IP options attached.  Walk the entire
1443 	 * list of options present with this packet and set flags to indicate
1444 	 * which ones are here and which ones are not.  For the somewhat out
1445 	 * of date and obscure security classification options, set a flag to
1446 	 * represent which classification is present.
1447 	 */
1448 	fi->fi_flx |= FI_OPTIONS;
1449 
1450 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1451 		opt = *s;
1452 		if (opt == '\0')
1453 			break;
1454 		else if (opt == IPOPT_NOP)
1455 			ol = 1;
1456 		else {
1457 			if (hlen < 2)
1458 				break;
1459 			ol = (int)*(s + 1);
1460 			if (ol < 2 || ol > hlen)
1461 				break;
1462 		}
1463 		for (i = 9, mv = 4; mv >= 0; ) {
1464 			op = ipopts + i;
1465 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1466 				optmsk |= op->ol_bit;
1467 				if (opt == IPOPT_SECURITY) {
1468 					const struct optlist *sp;
1469 					u_char	sec;
1470 					int j, m;
1471 
1472 					sec = *(s + 2);	/* classification */
1473 					for (j = 3, m = 2; m >= 0; ) {
1474 						sp = secopt + j;
1475 						if (sec == sp->ol_val) {
1476 							secmsk |= sp->ol_bit;
1477 							auth = *(s + 3);
1478 							auth *= 256;
1479 							auth += *(s + 4);
1480 							break;
1481 						}
1482 						if (sec < sp->ol_val)
1483 							j -= m;
1484 						else
1485 							j += m;
1486 						m--;
1487 					}
1488 				}
1489 				break;
1490 			}
1491 			if (opt < op->ol_val)
1492 				i -= mv;
1493 			else
1494 				i += mv;
1495 			mv--;
1496 		}
1497 		hlen -= ol;
1498 		s += ol;
1499 	}
1500 
1501 	/*
1502 	 *
1503 	 */
1504 	if (auth && !(auth & 0x0100))
1505 		auth &= 0xff00;
1506 	fi->fi_optmsk = optmsk;
1507 	fi->fi_secmsk = secmsk;
1508 	fi->fi_auth = auth;
1509 }
1510 
1511 
1512 /* ------------------------------------------------------------------------ */
1513 /* Function:    fr_makefrip                                                 */
1514 /* Returns:     int - 1 == hdr checking error, 0 == OK                      */
1515 /* Parameters:  hlen(I) - length of IP packet header                        */
1516 /*              ip(I)   - pointer to the IP header                          */
1517 /*              fin(IO) - pointer to packet information                     */
1518 /*                                                                          */
1519 /* Compact the IP header into a structure which contains just the info.     */
1520 /* which is useful for comparing IP headers with and store this information */
1521 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1522 /* this function will be called with either an IPv4 or IPv6 packet.         */
1523 /* ------------------------------------------------------------------------ */
1524 int	fr_makefrip(hlen, ip, fin)
1525 int hlen;
1526 ip_t *ip;
1527 fr_info_t *fin;
1528 {
1529 	int v;
1530 
1531 	fin->fin_depth = 0;
1532 	fin->fin_hlen = (u_short)hlen;
1533 	fin->fin_ip = ip;
1534 	fin->fin_rule = 0xffffffff;
1535 	fin->fin_group[0] = -1;
1536 	fin->fin_group[1] = '\0';
1537 	fin->fin_dlen = fin->fin_plen - hlen;
1538 	fin->fin_dp = (char *)ip + hlen;
1539 
1540 	v = fin->fin_v;
1541 	if (v == 4)
1542 		frpr_ipv4hdr(fin);
1543 #ifdef	USE_INET6
1544 	else if (v == 6)
1545 		frpr_ipv6hdr(fin);
1546 #endif
1547 	if (fin->fin_ip == NULL)
1548 		return -1;
1549 	return 0;
1550 }
1551 
1552 
1553 /* ------------------------------------------------------------------------ */
1554 /* Function:    fr_portcheck                                                */
1555 /* Returns:     int - 1 == port matched, 0 == port match failed             */
1556 /* Parameters:  frp(I) - pointer to port check `expression'                 */
1557 /*              pop(I) - pointer to port number to evaluate                 */
1558 /*                                                                          */
1559 /* Perform a comparison of a port number against some other(s), using a     */
1560 /* structure with compare information stored in it.                         */
1561 /* ------------------------------------------------------------------------ */
1562 static INLINE int fr_portcheck(frp, pop)
1563 frpcmp_t *frp;
1564 u_short *pop;
1565 {
1566 	u_short tup, po;
1567 	int err = 1;
1568 
1569 	tup = *pop;
1570 	po = frp->frp_port;
1571 
1572 	/*
1573 	 * Do opposite test to that required and continue if that succeeds.
1574 	 */
1575 	switch (frp->frp_cmp)
1576 	{
1577 	case FR_EQUAL :
1578 		if (tup != po) /* EQUAL */
1579 			err = 0;
1580 		break;
1581 	case FR_NEQUAL :
1582 		if (tup == po) /* NOTEQUAL */
1583 			err = 0;
1584 		break;
1585 	case FR_LESST :
1586 		if (tup >= po) /* LESSTHAN */
1587 			err = 0;
1588 		break;
1589 	case FR_GREATERT :
1590 		if (tup <= po) /* GREATERTHAN */
1591 			err = 0;
1592 		break;
1593 	case FR_LESSTE :
1594 		if (tup > po) /* LT or EQ */
1595 			err = 0;
1596 		break;
1597 	case FR_GREATERTE :
1598 		if (tup < po) /* GT or EQ */
1599 			err = 0;
1600 		break;
1601 	case FR_OUTRANGE :
1602 		if (tup >= po && tup <= frp->frp_top) /* Out of range */
1603 			err = 0;
1604 		break;
1605 	case FR_INRANGE :
1606 		if (tup <= po || tup >= frp->frp_top) /* In range */
1607 			err = 0;
1608 		break;
1609 	case FR_INCRANGE :
1610 		if (tup < po || tup > frp->frp_top) /* Inclusive range */
1611 			err = 0;
1612 		break;
1613 	default :
1614 		break;
1615 	}
1616 	return err;
1617 }
1618 
1619 
1620 /* ------------------------------------------------------------------------ */
1621 /* Function:    fr_tcpudpchk                                                */
1622 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
1623 /* Parameters:  fin(I) - pointer to packet information                      */
1624 /*              ft(I)  - pointer to structure with comparison data          */
1625 /*                                                                          */
1626 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
1627 /* structure containing information that we want to match against.          */
1628 /* ------------------------------------------------------------------------ */
1629 int fr_tcpudpchk(fin, ft)
1630 fr_info_t *fin;
1631 frtuc_t *ft;
1632 {
1633 	int err = 1;
1634 
1635 	/*
1636 	 * Both ports should *always* be in the first fragment.
1637 	 * So far, I cannot find any cases where they can not be.
1638 	 *
1639 	 * compare destination ports
1640 	 */
1641 	if (ft->ftu_dcmp)
1642 		err = fr_portcheck(&ft->ftu_dst, &fin->fin_dport);
1643 
1644 	/*
1645 	 * compare source ports
1646 	 */
1647 	if (err && ft->ftu_scmp)
1648 		err = fr_portcheck(&ft->ftu_src, &fin->fin_sport);
1649 
1650 	/*
1651 	 * If we don't have all the TCP/UDP header, then how can we
1652 	 * expect to do any sort of match on it ?  If we were looking for
1653 	 * TCP flags, then NO match.  If not, then match (which should
1654 	 * satisfy the "short" class too).
1655 	 */
1656 	if (err && (fin->fin_p == IPPROTO_TCP)) {
1657 		if (fin->fin_flx & FI_SHORT)
1658 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
1659 		/*
1660 		 * Match the flags ?  If not, abort this match.
1661 		 */
1662 		if (ft->ftu_tcpfm &&
1663 		    ft->ftu_tcpf != (fin->fin_tcpf & ft->ftu_tcpfm)) {
1664 			FR_DEBUG(("f. %#x & %#x != %#x\n", fin->fin_tcpf,
1665 				 ft->ftu_tcpfm, ft->ftu_tcpf));
1666 			err = 0;
1667 		}
1668 	}
1669 	return err;
1670 }
1671 
1672 
1673 /* ------------------------------------------------------------------------ */
1674 /* Function:    fr_ipfcheck                                                 */
1675 /* Returns:     int - 0 == match, 1 == no match                             */
1676 /* Parameters:  fin(I)     - pointer to packet information                  */
1677 /*              fr(I)      - pointer to filter rule                         */
1678 /*              portcmp(I) - flag indicating whether to attempt matching on */
1679 /*                           TCP/UDP port data.                             */
1680 /*                                                                          */
1681 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
1682 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
1683 /* this function.                                                           */
1684 /* ------------------------------------------------------------------------ */
1685 static INLINE int fr_ipfcheck(fin, fr, portcmp)
1686 fr_info_t *fin;
1687 frentry_t *fr;
1688 int portcmp;
1689 {
1690 	u_32_t	*ld, *lm, *lip;
1691 	fripf_t *fri;
1692 	fr_ip_t *fi;
1693 	int i;
1694 	ipf_stack_t *ifs = fin->fin_ifs;
1695 
1696 	fi = &fin->fin_fi;
1697 	fri = fr->fr_ipf;
1698 	lip = (u_32_t *)fi;
1699 	lm = (u_32_t *)&fri->fri_mip;
1700 	ld = (u_32_t *)&fri->fri_ip;
1701 
1702 	/*
1703 	 * first 32 bits to check coversion:
1704 	 * IP version, TOS, TTL, protocol
1705 	 */
1706 	i = ((*lip & *lm) != *ld);
1707 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
1708 		   *lip, *lm, *ld));
1709 	if (i)
1710 		return 1;
1711 
1712 	/*
1713 	 * Next 32 bits is a constructed bitmask indicating which IP options
1714 	 * are present (if any) in this packet.
1715 	 */
1716 	lip++, lm++, ld++;
1717 	i |= ((*lip & *lm) != *ld);
1718 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
1719 		   *lip, *lm, *ld));
1720 	if (i)
1721 		return 1;
1722 
1723 	lip++, lm++, ld++;
1724 	/*
1725 	 * Unrolled loops (4 each, for 32 bits) for address checks.
1726 	 */
1727 	/*
1728 	 * Check the source address.
1729 	 */
1730 #ifdef	IPFILTER_LOOKUP
1731 	if (fr->fr_satype == FRI_LOOKUP) {
1732 		i = (*fr->fr_srcfunc)(fr->fr_srcptr, fi->fi_v, lip, ifs);
1733 		if (i == -1)
1734 			return 1;
1735 		lip += 3;
1736 		lm += 3;
1737 		ld += 3;
1738 	} else {
1739 #endif
1740 		i = ((*lip & *lm) != *ld);
1741 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
1742 			   *lip, *lm, *ld));
1743 		if (fi->fi_v == 6) {
1744 			lip++, lm++, ld++;
1745 			i |= ((*lip & *lm) != *ld);
1746 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
1747 				   *lip, *lm, *ld));
1748 			lip++, lm++, ld++;
1749 			i |= ((*lip & *lm) != *ld);
1750 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
1751 				   *lip, *lm, *ld));
1752 			lip++, lm++, ld++;
1753 			i |= ((*lip & *lm) != *ld);
1754 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
1755 				   *lip, *lm, *ld));
1756 		} else {
1757 			lip += 3;
1758 			lm += 3;
1759 			ld += 3;
1760 		}
1761 #ifdef	IPFILTER_LOOKUP
1762 	}
1763 #endif
1764 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
1765 	if (i)
1766 		return 1;
1767 
1768 	/*
1769 	 * Check the destination address.
1770 	 */
1771 	lip++, lm++, ld++;
1772 #ifdef	IPFILTER_LOOKUP
1773 	if (fr->fr_datype == FRI_LOOKUP) {
1774 		i = (*fr->fr_dstfunc)(fr->fr_dstptr, fi->fi_v, lip, ifs);
1775 		if (i == -1)
1776 			return 1;
1777 		lip += 3;
1778 		lm += 3;
1779 		ld += 3;
1780 	} else {
1781 #endif
1782 		i = ((*lip & *lm) != *ld);
1783 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
1784 			   *lip, *lm, *ld));
1785 		if (fi->fi_v == 6) {
1786 			lip++, lm++, ld++;
1787 			i |= ((*lip & *lm) != *ld);
1788 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
1789 				   *lip, *lm, *ld));
1790 			lip++, lm++, ld++;
1791 			i |= ((*lip & *lm) != *ld);
1792 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
1793 				   *lip, *lm, *ld));
1794 			lip++, lm++, ld++;
1795 			i |= ((*lip & *lm) != *ld);
1796 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
1797 				   *lip, *lm, *ld));
1798 		} else {
1799 			lip += 3;
1800 			lm += 3;
1801 			ld += 3;
1802 		}
1803 #ifdef	IPFILTER_LOOKUP
1804 	}
1805 #endif
1806 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
1807 	if (i)
1808 		return 1;
1809 	/*
1810 	 * IP addresses matched.  The next 32bits contains:
1811 	 * mast of old IP header security & authentication bits.
1812 	 */
1813 	lip++, lm++, ld++;
1814 	i |= ((*lip & *lm) != *ld);
1815 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n",
1816 		   *lip, *lm, *ld));
1817 
1818 	/*
1819 	 * Next we have 32 bits of packet flags.
1820 	 */
1821 	lip++, lm++, ld++;
1822 	i |= ((*lip & *lm) != *ld);
1823 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n",
1824 		   *lip, *lm, *ld));
1825 
1826 	if (i == 0) {
1827 		/*
1828 		 * If a fragment, then only the first has what we're
1829 		 * looking for here...
1830 		 */
1831 		if (portcmp) {
1832 			if (!fr_tcpudpchk(fin, &fr->fr_tuc))
1833 				i = 1;
1834 		} else {
1835 			if (fr->fr_dcmp || fr->fr_scmp ||
1836 			    fr->fr_tcpf || fr->fr_tcpfm)
1837 				i = 1;
1838 			if (fr->fr_icmpm || fr->fr_icmp) {
1839 				if (((fi->fi_p != IPPROTO_ICMP) &&
1840 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
1841 				    fin->fin_off || (fin->fin_dlen < 2))
1842 					i = 1;
1843 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
1844 					 fr->fr_icmp) {
1845 					FR_DEBUG(("i. %#x & %#x != %#x\n",
1846 						 fin->fin_data[0],
1847 						 fr->fr_icmpm, fr->fr_icmp));
1848 					i = 1;
1849 				}
1850 			}
1851 		}
1852 	}
1853 	return i;
1854 }
1855 
1856 
1857 /* ------------------------------------------------------------------------ */
1858 /* Function:    fr_scanlist                                                 */
1859 /* Returns:     int - result flags of scanning filter list                  */
1860 /* Parameters:  fin(I) - pointer to packet information                      */
1861 /*              pass(I) - default result to return for filtering            */
1862 /*                                                                          */
1863 /* Check the input/output list of rules for a match to the current packet.  */
1864 /* If a match is found, the value of fr_flags from the rule becomes the     */
1865 /* return value and fin->fin_fr points to the matched rule.                 */
1866 /*                                                                          */
1867 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
1868 /* When unwinding, it should finish up with fin_depth as 0.                 */
1869 /*                                                                          */
1870 /* Could be per interface, but this gets real nasty when you don't have,    */
1871 /* or can't easily change, the kernel source code to .                      */
1872 /* ------------------------------------------------------------------------ */
1873 int fr_scanlist(fin, pass)
1874 fr_info_t *fin;
1875 u_32_t pass;
1876 {
1877 	int rulen, portcmp, off, logged, skip;
1878 	struct frentry *fr, *fnext;
1879 	u_32_t passt, passo;
1880 	ipf_stack_t *ifs = fin->fin_ifs;
1881 
1882 	/*
1883 	 * Do not allow nesting deeper than 16 levels.
1884 	 */
1885 	if (fin->fin_depth >= 16)
1886 		return pass;
1887 
1888 	fr = fin->fin_fr;
1889 
1890 	/*
1891 	 * If there are no rules in this list, return now.
1892 	 */
1893 	if (fr == NULL)
1894 		return pass;
1895 
1896 	skip = 0;
1897 	logged = 0;
1898 	portcmp = 0;
1899 	fin->fin_depth++;
1900 	fin->fin_fr = NULL;
1901 	off = fin->fin_off;
1902 
1903 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
1904 		portcmp = 1;
1905 
1906 	for (rulen = 0; fr; fr = fnext, rulen++) {
1907 		fnext = fr->fr_next;
1908 		if (skip != 0) {
1909 			FR_VERBOSE(("%d (%#x)\n", skip, fr->fr_flags));
1910 			skip--;
1911 			continue;
1912 		}
1913 
1914 		/*
1915 		 * In all checks below, a null (zero) value in the
1916 		 * filter struture is taken to mean a wildcard.
1917 		 *
1918 		 * check that we are working for the right interface
1919 		 */
1920 #ifdef	_KERNEL
1921 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1922 			continue;
1923 #else
1924 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
1925 			printf("\n");
1926 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
1927 				  FR_ISPASS(pass) ? 'p' :
1928 				  FR_ISACCOUNT(pass) ? 'A' :
1929 				  FR_ISAUTH(pass) ? 'a' :
1930 				  (pass & FR_NOMATCH) ? 'n' :'b'));
1931 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
1932 			continue;
1933 		FR_VERBOSE((":i"));
1934 #endif
1935 
1936 		switch (fr->fr_type)
1937 		{
1938 		case FR_T_IPF :
1939 		case FR_T_IPF|FR_T_BUILTIN :
1940 			if (fr_ipfcheck(fin, fr, portcmp))
1941 				continue;
1942 			break;
1943 #if defined(IPFILTER_BPF)
1944 		case FR_T_BPFOPC :
1945 		case FR_T_BPFOPC|FR_T_BUILTIN :
1946 		    {
1947 			u_char *mc;
1948 
1949 			if (*fin->fin_mp == NULL)
1950 				continue;
1951 			if (fin->fin_v != fr->fr_v)
1952 				continue;
1953 			mc = (u_char *)fin->fin_m;
1954 			if (!bpf_filter(fr->fr_data, mc, fin->fin_plen, 0))
1955 				continue;
1956 			break;
1957 		    }
1958 #endif
1959 		case FR_T_CALLFUNC|FR_T_BUILTIN :
1960 		    {
1961 			frentry_t *f;
1962 
1963 			f = (*fr->fr_func)(fin, &pass);
1964 			if (f != NULL)
1965 				fr = f;
1966 			else
1967 				continue;
1968 			break;
1969 		    }
1970 		default :
1971 			break;
1972 		}
1973 
1974 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
1975 			if (fin->fin_nattag == NULL)
1976 				continue;
1977 			if (fr_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
1978 				continue;
1979 		}
1980 		FR_VERBOSE(("=%s.%d *", fr->fr_group, rulen));
1981 
1982 		passt = fr->fr_flags;
1983 
1984 		/*
1985 		 * Allowing a rule with the "keep state" flag set to match
1986 		 * packets that have been tagged "out of window" by the TCP
1987 		 * state tracking is foolish as the attempt to add a new
1988 		 * state entry to the table will fail.
1989 		 */
1990 		if ((passt & FR_KEEPSTATE) && (fin->fin_flx & FI_OOW))
1991 			continue;
1992 
1993 		/*
1994 		 * If the rule is a "call now" rule, then call the function
1995 		 * in the rule, if it exists and use the results from that.
1996 		 * If the function pointer is bad, just make like we ignore
1997 		 * it, except for increasing the hit counter.
1998 		 */
1999 		if ((passt & FR_CALLNOW) != 0) {
2000 			IPF_BUMP(fr->fr_hits);
2001 			if ((fr->fr_func != NULL) &&
2002 			    (fr->fr_func != (ipfunc_t)-1)) {
2003 				frentry_t *frs;
2004 
2005 				frs = fin->fin_fr;
2006 				fin->fin_fr = fr;
2007 				fr = (*fr->fr_func)(fin, &passt);
2008 				if (fr == NULL) {
2009 					fin->fin_fr = frs;
2010 					continue;
2011 				}
2012 				passt = fr->fr_flags;
2013 				fin->fin_fr = fr;
2014 			}
2015 		} else {
2016 			fin->fin_fr = fr;
2017 		}
2018 
2019 #ifdef  IPFILTER_LOG
2020 		/*
2021 		 * Just log this packet...
2022 		 */
2023 		if ((passt & FR_LOGMASK) == FR_LOG) {
2024 			if (ipflog(fin, passt) == -1) {
2025 				if (passt & FR_LOGORBLOCK) {
2026 					passt &= ~FR_CMDMASK;
2027 					passt |= FR_BLOCK|FR_QUICK;
2028 				}
2029 				IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_skip);
2030 			}
2031 			IPF_BUMP(ifs->ifs_frstats[fin->fin_out].fr_pkl);
2032 			logged = 1;
2033 		}
2034 #endif /* IPFILTER_LOG */
2035 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2036 		passo = pass;
2037 		if (FR_ISSKIP(passt))
2038 			skip = fr->fr_arg;
2039 		else if ((passt & FR_LOGMASK) != FR_LOG)
2040 			pass = passt;
2041 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2042 			fin->fin_icode = fr->fr_icode;
2043 		FR_DEBUG(("pass %#x\n", pass));
2044 		IPF_BUMP(fr->fr_hits);
2045 		fin->fin_rule = rulen;
2046 		(void) strncpy(fin->fin_group, fr->fr_group, FR_GROUPLEN);
2047 		if (fr->fr_grp != NULL) {
2048 			fin->fin_fr = *fr->fr_grp;
2049 			pass = fr_scanlist(fin, pass);
2050 			if (fin->fin_fr == NULL) {
2051 				fin->fin_rule = rulen;
2052 				(void) strncpy(fin->fin_group, fr->fr_group,
2053 					       FR_GROUPLEN);
2054 				fin->fin_fr = fr;
2055 			}
2056 			if (fin->fin_flx & FI_DONTCACHE)
2057 				logged = 1;
2058 		}
2059 
2060 		if (pass & FR_QUICK) {
2061 			/*
2062 			 * Finally, if we've asked to track state for this
2063 			 * packet, set it up.  Add state for "quick" rules
2064 			 * here so that if the action fails we can consider
2065 			 * the rule to "not match" and keep on processing
2066 			 * filter rules.
2067 			 */
2068 			if ((pass & FR_KEEPSTATE) &&
2069 			    !(fin->fin_flx & FI_STATE)) {
2070 				int out = fin->fin_out;
2071 
2072 				if (fr_addstate(fin, NULL, 0) != NULL) {
2073 					IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2074 				} else {
2075 					IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2076 					pass = passo;
2077 					continue;
2078 				}
2079 			}
2080 			break;
2081 		}
2082 	}
2083 	if (logged)
2084 		fin->fin_flx |= FI_DONTCACHE;
2085 	fin->fin_depth--;
2086 	return pass;
2087 }
2088 
2089 
2090 /* ------------------------------------------------------------------------ */
2091 /* Function:    fr_acctpkt                                                  */
2092 /* Returns:     frentry_t* - always returns NULL                            */
2093 /* Parameters:  fin(I) - pointer to packet information                      */
2094 /*              passp(IO) - pointer to current/new filter decision (unused) */
2095 /*                                                                          */
2096 /* Checks a packet against accounting rules, if there are any for the given */
2097 /* IP protocol version.                                                     */
2098 /*                                                                          */
2099 /* N.B.: this function returns NULL to match the prototype used by other    */
2100 /* functions called from the IPFilter "mainline" in fr_check().             */
2101 /* ------------------------------------------------------------------------ */
2102 frentry_t *fr_acctpkt(fin, passp)
2103 fr_info_t *fin;
2104 u_32_t *passp;
2105 {
2106 	char group[FR_GROUPLEN];
2107 	frentry_t *fr, *frsave;
2108 	u_32_t pass, rulen;
2109 	ipf_stack_t *ifs = fin->fin_ifs;
2110 
2111 	passp = passp;
2112 #ifdef	USE_INET6
2113 	if (fin->fin_v == 6)
2114 		fr = ifs->ifs_ipacct6[fin->fin_out][ifs->ifs_fr_active];
2115 	else
2116 #endif
2117 		fr = ifs->ifs_ipacct[fin->fin_out][ifs->ifs_fr_active];
2118 
2119 	if (fr != NULL) {
2120 		frsave = fin->fin_fr;
2121 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2122 		rulen = fin->fin_rule;
2123 		fin->fin_fr = fr;
2124 		pass = fr_scanlist(fin, FR_NOMATCH);
2125 		if (FR_ISACCOUNT(pass)) {
2126 			IPF_BUMP(ifs->ifs_frstats[0].fr_acct);
2127 		}
2128 		fin->fin_fr = frsave;
2129 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2130 		fin->fin_rule = rulen;
2131 	}
2132 	return NULL;
2133 }
2134 
2135 
2136 /* ------------------------------------------------------------------------ */
2137 /* Function:    fr_firewall                                                 */
2138 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2139 /*                           were found, returns NULL.                      */
2140 /* Parameters:  fin(I) - pointer to packet information                      */
2141 /*              passp(IO) - pointer to current/new filter decision (unused) */
2142 /*                                                                          */
2143 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2144 /* there are any matches.  The first check is to see if a match can be seen */
2145 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2146 /* matching rule is found, take any appropriate actions as defined by the   */
2147 /* rule - except logging.                                                   */
2148 /* ------------------------------------------------------------------------ */
2149 static frentry_t *fr_firewall(fin, passp)
2150 fr_info_t *fin;
2151 u_32_t *passp;
2152 {
2153 	frentry_t *fr;
2154 	fr_info_t *fc;
2155 	u_32_t pass;
2156 	int out;
2157 	ipf_stack_t *ifs = fin->fin_ifs;
2158 
2159 	out = fin->fin_out;
2160 	pass = *passp;
2161 
2162 #ifdef	USE_INET6
2163 	if (fin->fin_v == 6)
2164 		fin->fin_fr = ifs->ifs_ipfilter6[out][ifs->ifs_fr_active];
2165 	else
2166 #endif
2167 		fin->fin_fr = ifs->ifs_ipfilter[out][ifs->ifs_fr_active];
2168 
2169 	/*
2170 	 * If there are no rules loaded skip all checks and return.
2171 	 */
2172 	if (fin->fin_fr == NULL) {
2173 
2174 		if ((pass & FR_NOMATCH)) {
2175 			IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2176 		}
2177 
2178 		return (NULL);
2179 	}
2180 
2181 	fc = &ifs->ifs_frcache[out][CACHE_HASH(fin)];
2182 	READ_ENTER(&ifs->ifs_ipf_frcache);
2183 	if (!bcmp((char *)fin, (char *)fc, FI_CSIZE)) {
2184 		/*
2185 		 * copy cached data so we can unlock the mutexes earlier.
2186 		 */
2187 		bcopy((char *)fc, (char *)fin, FI_COPYSIZE);
2188 		RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2189 		IPF_BUMP(ifs->ifs_frstats[out].fr_chit);
2190 
2191 		if ((fr = fin->fin_fr) != NULL) {
2192 			IPF_BUMP(fr->fr_hits);
2193 			pass = fr->fr_flags;
2194 		}
2195 	} else {
2196 		RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2197 
2198 		pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2199 
2200 		if (((pass & FR_KEEPSTATE) == 0) &&
2201 		    ((fin->fin_flx & FI_DONTCACHE) == 0)) {
2202 			WRITE_ENTER(&ifs->ifs_ipf_frcache);
2203 			bcopy((char *)fin, (char *)fc, FI_COPYSIZE);
2204 			RWLOCK_EXIT(&ifs->ifs_ipf_frcache);
2205 		}
2206 
2207 		fr = fin->fin_fr;
2208 	}
2209 
2210 	if ((pass & FR_NOMATCH)) {
2211 		IPF_BUMP(ifs->ifs_frstats[out].fr_nom);
2212 	}
2213 
2214 	/*
2215 	 * Apply packets per second rate-limiting to a rule as required.
2216 	 */
2217 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2218 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2219 		pass &= ~(FR_CMDMASK|FR_DUP|FR_RETICMP|FR_RETRST);
2220 		pass |= FR_BLOCK;
2221 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppshit);
2222 	}
2223 
2224 	/*
2225 	 * If we fail to add a packet to the authorization queue, then we
2226 	 * drop the packet later.  However, if it was added then pretend
2227 	 * we've dropped it already.
2228 	 */
2229 	if (FR_ISAUTH(pass)) {
2230 		if (fr_newauth(fin->fin_m, fin) != 0) {
2231 #ifdef	_KERNEL
2232 			fin->fin_m = *fin->fin_mp = NULL;
2233 #else
2234 			;
2235 #endif
2236 			fin->fin_error = 0;
2237 		} else
2238 			fin->fin_error = ENOSPC;
2239 	}
2240 
2241 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2242 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2243 		(void) (*fr->fr_func)(fin, &pass);
2244 
2245 	/*
2246 	 * If a rule is a pre-auth rule, check again in the list of rules
2247 	 * loaded for authenticated use.  It does not particulary matter
2248 	 * if this search fails because a "preauth" result, from a rule,
2249 	 * is treated as "not a pass", hence the packet is blocked.
2250 	 */
2251 	if (FR_ISPREAUTH(pass)) {
2252 		if ((fin->fin_fr = ifs->ifs_ipauth) != NULL)
2253 			pass = fr_scanlist(fin, ifs->ifs_fr_pass);
2254 	}
2255 
2256 	/*
2257 	 * If the rule has "keep frag" and the packet is actually a fragment,
2258 	 * then create a fragment state entry.
2259 	 */
2260 	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2261 		if (fin->fin_flx & FI_FRAG) {
2262 			if (fr_newfrag(fin, pass) == -1) {
2263 				IPF_BUMP(ifs->ifs_frstats[out].fr_bnfr);
2264 			} else {
2265 				IPF_BUMP(ifs->ifs_frstats[out].fr_nfr);
2266 			}
2267 		} else {
2268 			IPF_BUMP(ifs->ifs_frstats[out].fr_cfr);
2269 		}
2270 	}
2271 
2272 	/*
2273 	 * Finally, if we've asked to track state for this packet, set it up.
2274 	 */
2275 	if ((pass & FR_KEEPSTATE) && !(fin->fin_flx & FI_STATE)) {
2276 		if (fr_addstate(fin, NULL, 0) != NULL) {
2277 			IPF_BUMP(ifs->ifs_frstats[out].fr_ads);
2278 		} else {
2279 			IPF_BUMP(ifs->ifs_frstats[out].fr_bads);
2280 			if (FR_ISPASS(pass)) {
2281 				pass &= ~FR_CMDMASK;
2282 				pass |= FR_BLOCK;
2283 			}
2284 		}
2285 	}
2286 
2287 	fr = fin->fin_fr;
2288 
2289 	if (passp != NULL)
2290 		*passp = pass;
2291 
2292 	return fr;
2293 }
2294 
2295 /* ------------------------------------------------------------------------ */
2296 /* Function:    fr_check                                                    */
2297 /* Returns:     int -  0 == packet allowed through,                         */
2298 /*              User space:                                                 */
2299 /*                    -1 == packet blocked                                  */
2300 /*                     1 == packet not matched                              */
2301 /*                    -2 == requires authentication                         */
2302 /*              Kernel:                                                     */
2303 /*                   > 0 == filter error # for packet                       */
2304 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2305 /*             hlen(I) - length of header                                   */
2306 /*             ifp(I)  - pointer to interface this packet is on             */
2307 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2308 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2309 /*                       IP packet.                                         */
2310 /* Solaris & HP-UX ONLY :                                                   */
2311 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2312 /*                       interface & direction.                             */
2313 /*                                                                          */
2314 /* fr_check() is the master function for all IPFilter packet processing.    */
2315 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2316 /* authorisation (or pre-authorisation), presence of related state info.,   */
2317 /* generating log entries, IP packet accounting, routing of packets as      */
2318 /* directed by firewall rules and of course whether or not to allow the     */
2319 /* packet to be further processed by the kernel.                            */
2320 /*                                                                          */
2321 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2322 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2323 /* by "mp" changed to a new buffer.                                         */
2324 /* ------------------------------------------------------------------------ */
2325 int fr_check(ip, hlen, ifp, out
2326 #if defined(_KERNEL) && defined(MENTAT)
2327 , qif, mp, ifs)
2328 void *qif;
2329 #else
2330 , mp, ifs)
2331 #endif
2332 mb_t **mp;
2333 ip_t *ip;
2334 int hlen;
2335 void *ifp;
2336 int out;
2337 ipf_stack_t *ifs;
2338 {
2339 	/*
2340 	 * The above really sucks, but short of writing a diff
2341 	 */
2342 	fr_info_t frinfo;
2343 	fr_info_t *fin = &frinfo;
2344 	u_32_t pass;
2345 	frentry_t *fr = NULL;
2346 	int v = IP_V(ip);
2347 	mb_t *mc = NULL;
2348 	mb_t *m;
2349 #ifdef USE_INET6
2350 	ip6_t *ip6;
2351 #endif
2352 #ifdef	_KERNEL
2353 # ifdef MENTAT
2354 	qpktinfo_t *qpi = qif;
2355 #endif
2356 #endif
2357 
2358 	SPL_INT(s);
2359 	pass = ifs->ifs_fr_pass;
2360 
2361 	/*
2362 	 * The first part of fr_check() deals with making sure that what goes
2363 	 * into the filtering engine makes some sense.  Information about the
2364 	 * the packet is distilled, collected into a fr_info_t structure and
2365 	 * the an attempt to ensure the buffer the packet is in is big enough
2366 	 * to hold all the required packet headers.
2367 	 */
2368 #ifdef	_KERNEL
2369 # ifdef MENTAT
2370 	if (!OK_32PTR(ip))
2371 		return 2;
2372 # endif
2373 
2374 
2375 	if (ifs->ifs_fr_running <= 0) {
2376 		return 0;
2377 	}
2378 
2379 	bzero((char *)fin, sizeof(*fin));
2380 
2381 # ifdef MENTAT
2382 	fin->fin_flx = qpi->qpi_flags & (FI_NOCKSUM|FI_MBCAST|FI_MULTICAST|
2383 					 FI_BROADCAST);
2384 	m = qpi->qpi_m;
2385 	fin->fin_qfm = m;
2386 	fin->fin_qpi = qpi;
2387 # else /* MENTAT */
2388 
2389 	m = *mp;
2390 
2391 #  if defined(M_MCAST)
2392 	if ((m->m_flags & M_MCAST) != 0)
2393 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2394 #  endif
2395 #  if defined(M_MLOOP)
2396 	if ((m->m_flags & M_MLOOP) != 0)
2397 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2398 #  endif
2399 #  if defined(M_BCAST)
2400 	if ((m->m_flags & M_BCAST) != 0)
2401 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2402 #  endif
2403 #  ifdef M_CANFASTFWD
2404 	/*
2405 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2406 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2407 	 * XXX get a "can-fast-forward" filter rule.
2408 	 */
2409 	m->m_flags &= ~M_CANFASTFWD;
2410 #  endif /* M_CANFASTFWD */
2411 #  ifdef CSUM_DELAY_DATA
2412 	/*
2413 	 * disable delayed checksums.
2414 	 */
2415 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2416 		in_delayed_cksum(m);
2417 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2418 	}
2419 #  endif /* CSUM_DELAY_DATA */
2420 # endif /* MENTAT */
2421 #else
2422 
2423 	bzero((char *)fin, sizeof(*fin));
2424 	m = *mp;
2425 #endif /* _KERNEL */
2426 
2427 	fin->fin_v = v;
2428 	fin->fin_m = m;
2429 	fin->fin_ip = ip;
2430 	fin->fin_mp = mp;
2431 	fin->fin_out = out;
2432 	fin->fin_ifp = ifp;
2433 	fin->fin_error = ENETUNREACH;
2434 	fin->fin_hlen = (u_short)hlen;
2435 	fin->fin_dp = (char *)ip + hlen;
2436 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2437 	fin->fin_ifs = ifs;
2438 
2439 	SPL_NET(s);
2440 
2441 #ifdef	USE_INET6
2442 	if (v == 6) {
2443 		IPF_BUMP(ifs->ifs_frstats[out].fr_ipv6);
2444 		/*
2445 		 * Jumbo grams are quite likely too big for internal buffer
2446 		 * structures to handle comfortably, for now, so just drop
2447 		 * them.
2448 		 */
2449 		ip6 = (ip6_t *)ip;
2450 		fin->fin_plen = ntohs(ip6->ip6_plen);
2451 		if (fin->fin_plen == 0) {
2452 			READ_ENTER(&ifs->ifs_ipf_mutex);
2453 			pass = FR_BLOCK|FR_NOMATCH;
2454 			goto filtered;
2455 		}
2456 		fin->fin_plen += sizeof(ip6_t);
2457 	} else
2458 #endif
2459 	{
2460 #if (OpenBSD >= 200311) && defined(_KERNEL)
2461 		ip->ip_len = ntohs(ip->ip_len);
2462 		ip->ip_off = ntohs(ip->ip_off);
2463 #endif
2464 		fin->fin_plen = ip->ip_len;
2465 	}
2466 
2467 	if (fr_makefrip(hlen, ip, fin) == -1) {
2468 		READ_ENTER(&ifs->ifs_ipf_mutex);
2469 		pass = FR_BLOCK;
2470 		goto filtered;
2471 	}
2472 
2473 	/*
2474 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2475 	 * becomes NULL and so we have no packet to free.
2476 	 */
2477 	if (*fin->fin_mp == NULL)
2478 		goto finished;
2479 
2480 	if (!out) {
2481 		if (v == 4) {
2482 #ifdef _KERNEL
2483 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2484 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2485 				fin->fin_flx |= FI_BADSRC;
2486 			}
2487 #endif
2488 			if (fin->fin_ip->ip_ttl < ifs->ifs_fr_minttl) {
2489 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2490 				fin->fin_flx |= FI_LOWTTL;
2491 			}
2492 		}
2493 #ifdef USE_INET6
2494 		else  if (v == 6) {
2495 			ip6 = (ip6_t *)ip;
2496 #ifdef _KERNEL
2497 			if (ifs->ifs_fr_chksrc && !fr_verifysrc(fin)) {
2498 				IPF_BUMP(ifs->ifs_frstats[0].fr_badsrc);
2499 				fin->fin_flx |= FI_BADSRC;
2500 			}
2501 #endif
2502 			if (ip6->ip6_hlim < ifs->ifs_fr_minttl) {
2503 				IPF_BUMP(ifs->ifs_frstats[0].fr_badttl);
2504 				fin->fin_flx |= FI_LOWTTL;
2505 			}
2506 		}
2507 #endif
2508 	}
2509 
2510 	if (fin->fin_flx & FI_SHORT) {
2511 		IPF_BUMP(ifs->ifs_frstats[out].fr_short);
2512 	}
2513 
2514 	READ_ENTER(&ifs->ifs_ipf_mutex);
2515 
2516 	/*
2517 	 * Check auth now.  This, combined with the check below to see if apass
2518 	 * is 0 is to ensure that we don't count the packet twice, which can
2519 	 * otherwise occur when we reprocess it.  As it is, we only count it
2520 	 * after it has no auth. table matchup.  This also stops NAT from
2521 	 * occuring until after the packet has been auth'd.
2522 	 */
2523 	fr = fr_checkauth(fin, &pass);
2524 	if (!out) {
2525 		switch (fin->fin_v)
2526 		{
2527 		case 4 :
2528 			if (fr_checknatin(fin, &pass) == -1) {
2529 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2530 				goto finished;
2531 			}
2532 			break;
2533 #ifdef	USE_INET6
2534 		case 6 :
2535 			if (fr_checknat6in(fin, &pass) == -1) {
2536 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2537 				goto finished;
2538 			}
2539 			break;
2540 #endif
2541 		default :
2542 			break;
2543 		}
2544 	}
2545 	if (!out)
2546 		(void) fr_acctpkt(fin, NULL);
2547 
2548 	if (fr == NULL)
2549 		if ((fin->fin_flx & (FI_FRAG|FI_BAD)) == FI_FRAG)
2550 			fr = fr_knownfrag(fin, &pass);
2551 	if (fr == NULL)
2552 		fr = fr_checkstate(fin, &pass);
2553 
2554 	if ((pass & FR_NOMATCH) || (fr == NULL))
2555 		fr = fr_firewall(fin, &pass);
2556 
2557 	fin->fin_fr = fr;
2558 
2559 	/*
2560 	 * Only count/translate packets which will be passed on, out the
2561 	 * interface.
2562 	 */
2563 	if (out && FR_ISPASS(pass)) {
2564 		(void) fr_acctpkt(fin, NULL);
2565 
2566 		switch (fin->fin_v)
2567 		{
2568 		case 4 :
2569 			if (fr_checknatout(fin, &pass) == -1) {
2570 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2571 				goto finished;
2572 			}
2573 			break;
2574 #ifdef	USE_INET6
2575 		case 6 :
2576 			if (fr_checknat6out(fin, &pass) == -1) {
2577 				RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2578 				goto finished;
2579 			}
2580 			break;
2581 #endif
2582 		default :
2583 			break;
2584 		}
2585 
2586 		if ((ifs->ifs_fr_update_ipid != 0) && (v == 4)) {
2587 			if (fr_updateipid(fin) == -1) {
2588 				IPF_BUMP(ifs->ifs_frstats[1].fr_ipud);
2589 				pass &= ~FR_CMDMASK;
2590 				pass |= FR_BLOCK;
2591 			} else {
2592 				IPF_BUMP(ifs->ifs_frstats[0].fr_ipud);
2593 			}
2594 		}
2595 	}
2596 
2597 #ifdef	IPFILTER_LOG
2598 	if ((ifs->ifs_fr_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
2599 		(void) fr_dolog(fin, &pass);
2600 	}
2601 #endif
2602 
2603 	/*
2604 	 * The FI_STATE flag is cleared here so that calling fr_checkstate
2605 	 * will work when called from inside of fr_fastroute.  Although
2606 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
2607 	 * impact on code execution.
2608 	 */
2609 	fin->fin_flx &= ~FI_STATE;
2610 
2611 	/*
2612 	 * Only allow FR_DUP to work if a rule matched - it makes no sense to
2613 	 * set FR_DUP as a "default" as there are no instructions about where
2614 	 * to send the packet.  Use fin_m here because it may have changed
2615 	 * (without an update of 'm') in prior processing.
2616 	 */
2617 	if ((fr != NULL) && (pass & FR_DUP)) {
2618 		mc = M_DUPLICATE(fin->fin_m);
2619 	}
2620 
2621 	if (pass & (FR_RETRST|FR_RETICMP)) {
2622 		/*
2623 		 * Should we return an ICMP packet to indicate error
2624 		 * status passing through the packet filter ?
2625 		 * WARNING: ICMP error packets AND TCP RST packets should
2626 		 * ONLY be sent in repsonse to incoming packets.  Sending them
2627 		 * in response to outbound packets can result in a panic on
2628 		 * some operating systems.
2629 		 */
2630 		if (!out) {
2631 			if (pass & FR_RETICMP) {
2632 				int dst;
2633 
2634 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
2635 					dst = 1;
2636 				else
2637 					dst = 0;
2638 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2639 				/*
2640 				 * Assume it's possible to enter insane rule:
2641 				 * 	pass return-icmp in proto udp ...
2642 				 * then we have no other option than to forward
2643 				 * packet on loopback and give up any attempt
2644 				 * to create a fake response.
2645 				 */
2646 				if (IPF_IS_LOOPBACK(qpi->qpi_flags) &&
2647 				    FR_ISBLOCK(pass)) {
2648 
2649 					if (fr_make_icmp(fin) == 0) {
2650 						IPF_BUMP(
2651 						ifs->ifs_frstats[out].fr_ret);
2652 					}
2653 					/*
2654 					 * we drop packet silently in case we
2655 					 * failed assemble fake response for it
2656 					 */
2657 					else if (*mp != NULL) {
2658 						FREE_MB_T(*mp);
2659 						m = *mp = NULL;
2660 					}
2661 
2662 					IPF_BUMP(
2663 					    ifs->ifs_frstats[out].fr_block);
2664 					RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2665 
2666 					return (0);
2667 				}
2668 #endif	/* _KERNEL && SOLARIS2 >= 10 */
2669 
2670 				(void) fr_send_icmp_err(ICMP_UNREACH, fin, dst);
2671 				IPF_BUMP(ifs->ifs_frstats[out].fr_ret);
2672 
2673 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
2674 				   !(fin->fin_flx & FI_SHORT)) {
2675 
2676 #if defined(_KERNEL) && (SOLARIS2 >= 10)
2677 				/*
2678 				 * Assume it's possible to enter insane rule:
2679 				 * 	pass return-rst in proto tcp ...
2680 				 * then we have no other option than to forward
2681 				 * packet on loopback and give up any attempt
2682 				 * to create a fake response.
2683 				 */
2684 				if (IPF_IS_LOOPBACK(qpi->qpi_flags) &&
2685 				    FR_ISBLOCK(pass)) {
2686 					if (fr_make_rst(fin) == 0) {
2687 						IPF_BUMP(
2688 						ifs->ifs_frstats[out].fr_ret);
2689 					}
2690 					else if (mp != NULL) {
2691 					/*
2692 					 * we drop packet silently in case we
2693 					 * failed assemble fake response for it
2694 					 */
2695 						FREE_MB_T(*mp);
2696 						m = *mp = NULL;
2697 					}
2698 
2699 					IPF_BUMP(
2700 					    ifs->ifs_frstats[out].fr_block);
2701 					RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2702 
2703 					return (0);
2704 				 }
2705 #endif /* _KERNEL && _SOLARIS2 >= 10 */
2706 				if (fr_send_reset(fin) == 0) {
2707 					IPF_BUMP(ifs->ifs_frstats[1].fr_ret);
2708 				}
2709 			}
2710 		} else {
2711 			if (pass & FR_RETRST)
2712 				fin->fin_error = ECONNRESET;
2713 		}
2714 	}
2715 
2716 	/*
2717 	 * If we didn't drop off the bottom of the list of rules (and thus
2718 	 * the 'current' rule fr is not NULL), then we may have some extra
2719 	 * instructions about what to do with a packet.
2720 	 * Once we're finished return to our caller, freeing the packet if
2721 	 * we are dropping it (* BSD ONLY *).
2722 	 * Reassign m from fin_m as we may have a new buffer, now.
2723 	 */
2724 filtered:
2725 	m = fin->fin_m;
2726 
2727 	if (fr != NULL) {
2728 		frdest_t *fdp;
2729 
2730 		fdp = &fr->fr_tifs[fin->fin_rev];
2731 
2732 		if (!out && (pass & FR_FASTROUTE)) {
2733 			/*
2734 			 * For fastroute rule, no destioation interface defined
2735 			 * so pass NULL as the frdest_t parameter
2736 			 */
2737 			(void) fr_fastroute(m, mp, fin, NULL);
2738 			m = *mp = NULL;
2739 		} else if ((fdp->fd_ifp != NULL) &&
2740 			   (fdp->fd_ifp != (struct ifnet *)-1)) {
2741 			/* this is for to rules: */
2742 			(void) fr_fastroute(m, mp, fin, fdp);
2743 			m = *mp = NULL;
2744 		}
2745 
2746 		/*
2747 		 * Generate a duplicated packet.
2748 		 */
2749 		if (mc != NULL)
2750 			(void) fr_fastroute(mc, &mc, fin, &fr->fr_dif);
2751 	}
2752 
2753 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
2754 		nat_uncreate(fin);
2755 
2756 	/*
2757 	 * This late because the likes of fr_fastroute() use fin_fr.
2758 	 */
2759 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
2760 
2761 finished:
2762 	if (!FR_ISPASS(pass)) {
2763 		IPF_BUMP(ifs->ifs_frstats[out].fr_block);
2764 		if (*mp != NULL) {
2765 			FREE_MB_T(*mp);
2766 			m = *mp = NULL;
2767 		}
2768 	} else {
2769 		IPF_BUMP(ifs->ifs_frstats[out].fr_pass);
2770 #if defined(_KERNEL) && defined(__sgi)
2771 		if ((fin->fin_hbuf != NULL) &&
2772 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
2773 			COPYBACK(m, 0, fin->fin_plen, fin->fin_hbuf);
2774 		}
2775 #endif
2776 	}
2777 
2778 	SPL_X(s);
2779 
2780 #ifdef _KERNEL
2781 # if OpenBSD >= 200311
2782 	if (FR_ISPASS(pass) && (v == 4)) {
2783 		ip = fin->fin_ip;
2784 		ip->ip_len = ntohs(ip->ip_len);
2785 		ip->ip_off = ntohs(ip->ip_off);
2786 	}
2787 # endif
2788 	return (FR_ISPASS(pass)) ? 0 : fin->fin_error;
2789 #else /* _KERNEL */
2790 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
2791 	if ((pass & FR_NOMATCH) != 0)
2792 		return 1;
2793 
2794 	if ((pass & FR_RETMASK) != 0)
2795 		switch (pass & FR_RETMASK)
2796 		{
2797 		case FR_RETRST :
2798 			return 3;
2799 		case FR_RETICMP :
2800 			return 4;
2801 		case FR_FAKEICMP :
2802 			return 5;
2803 		}
2804 
2805 	switch (pass & FR_CMDMASK)
2806 	{
2807 	case FR_PASS :
2808 		return 0;
2809 	case FR_BLOCK :
2810 		return -1;
2811 	case FR_AUTH :
2812 		return -2;
2813 	case FR_ACCOUNT :
2814 		return -3;
2815 	case FR_PREAUTH :
2816 		return -4;
2817 	}
2818 	return 2;
2819 #endif /* _KERNEL */
2820 }
2821 
2822 
2823 #ifdef	IPFILTER_LOG
2824 /* ------------------------------------------------------------------------ */
2825 /* Function:    fr_dolog                                                    */
2826 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
2827 /* Parameters:  fin(I) - pointer to packet information                      */
2828 /*              passp(IO) - pointer to current/new filter decision (unused) */
2829 /*                                                                          */
2830 /* Checks flags set to see how a packet should be logged, if it is to be    */
2831 /* logged.  Adjust statistics based on its success or not.                  */
2832 /* ------------------------------------------------------------------------ */
2833 frentry_t *fr_dolog(fin, passp)
2834 fr_info_t *fin;
2835 u_32_t *passp;
2836 {
2837 	u_32_t pass;
2838 	int out;
2839 	ipf_stack_t *ifs = fin->fin_ifs;
2840 
2841 	out = fin->fin_out;
2842 	pass = *passp;
2843 
2844 	if ((ifs->ifs_fr_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
2845 		pass |= FF_LOGNOMATCH;
2846 		IPF_BUMP(ifs->ifs_frstats[out].fr_npkl);
2847 		goto logit;
2848 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
2849 	    (FR_ISPASS(pass) && (ifs->ifs_fr_flags & FF_LOGPASS))) {
2850 		if ((pass & FR_LOGMASK) != FR_LOGP)
2851 			pass |= FF_LOGPASS;
2852 		IPF_BUMP(ifs->ifs_frstats[out].fr_ppkl);
2853 		goto logit;
2854 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
2855 		   (FR_ISBLOCK(pass) && (ifs->ifs_fr_flags & FF_LOGBLOCK))) {
2856 		if ((pass & FR_LOGMASK) != FR_LOGB)
2857 			pass |= FF_LOGBLOCK;
2858 		IPF_BUMP(ifs->ifs_frstats[out].fr_bpkl);
2859 logit:
2860 		if (ipflog(fin, pass) == -1) {
2861 			IPF_BUMP(ifs->ifs_frstats[out].fr_skip);
2862 
2863 			/*
2864 			 * If the "or-block" option has been used then
2865 			 * block the packet if we failed to log it.
2866 			 */
2867 			if ((pass & FR_LOGORBLOCK) &&
2868 			    FR_ISPASS(pass)) {
2869 				pass &= ~FR_CMDMASK;
2870 				pass |= FR_BLOCK;
2871 			}
2872 		}
2873 		*passp = pass;
2874 	}
2875 
2876 	return fin->fin_fr;
2877 }
2878 #endif /* IPFILTER_LOG */
2879 
2880 
2881 /* ------------------------------------------------------------------------ */
2882 /* Function:    ipf_cksum                                                   */
2883 /* Returns:     u_short - IP header checksum                                */
2884 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
2885 /*              len(I)  - length of buffer in bytes                         */
2886 /*                                                                          */
2887 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
2888 /*                                                                          */
2889 /* N.B.: addr should be 16bit aligned.                                      */
2890 /* ------------------------------------------------------------------------ */
2891 u_short ipf_cksum(addr, len)
2892 u_short *addr;
2893 int len;
2894 {
2895 	u_32_t sum = 0;
2896 
2897 	for (sum = 0; len > 1; len -= 2)
2898 		sum += *addr++;
2899 
2900 	/* mop up an odd byte, if necessary */
2901 	if (len == 1)
2902 		sum += *(u_char *)addr;
2903 
2904 	/*
2905 	 * add back carry outs from top 16 bits to low 16 bits
2906 	 */
2907 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
2908 	sum += (sum >> 16);			/* add carry */
2909 	return (u_short)(~sum);
2910 }
2911 
2912 
2913 /* ------------------------------------------------------------------------ */
2914 /* Function:    fr_cksum                                                    */
2915 /* Returns:     u_short - layer 4 checksum                                  */
2916 /* Parameters:  m(I  )     - pointer to buffer holding packet               */
2917 /*              ip(I)      - pointer to IP header                           */
2918 /*              l4proto(I) - protocol to caclulate checksum for             */
2919 /*              l4hdr(I)   - pointer to layer 4 header                      */
2920 /*                                                                          */
2921 /* Calculates the TCP checksum for the packet held in "m", using the data   */
2922 /* in the IP header "ip" to seed it.                                        */
2923 /*                                                                          */
2924 /* NB: This function assumes we've pullup'd enough for all of the IP header */
2925 /* and the TCP header.  We also assume that data blocks aren't allocated in */
2926 /* odd sizes.                                                               */
2927 /*                                                                          */
2928 /* Expects ip_len to be in host byte order when called.                     */
2929 /* ------------------------------------------------------------------------ */
2930 u_short fr_cksum(m, ip, l4proto, l4hdr)
2931 mb_t *m;
2932 ip_t *ip;
2933 int l4proto;
2934 void *l4hdr;
2935 {
2936 	u_short *sp, slen, sumsave, l4hlen, *csump;
2937 	u_int sum, sum2;
2938 	int hlen;
2939 #ifdef	USE_INET6
2940 	ip6_t *ip6;
2941 #endif
2942 
2943 	csump = NULL;
2944 	sumsave = 0;
2945 	l4hlen = 0;
2946 	sp = NULL;
2947 	slen = 0;
2948 	hlen = 0;
2949 	sum = 0;
2950 
2951 	/*
2952 	 * Add up IP Header portion
2953 	 */
2954 #ifdef	USE_INET6
2955 	if (IP_V(ip) == 4) {
2956 #endif
2957 		hlen = IP_HL(ip) << 2;
2958 		slen = ip->ip_len - hlen;
2959 		sum = htons((u_short)l4proto);
2960 		sum += htons(slen);
2961 		sp = (u_short *)&ip->ip_src;
2962 		sum += *sp++;	/* ip_src */
2963 		sum += *sp++;
2964 		sum += *sp++;	/* ip_dst */
2965 		sum += *sp++;
2966 #ifdef	USE_INET6
2967 	} else if (IP_V(ip) == 6) {
2968 		ip6 = (ip6_t *)ip;
2969 		hlen = sizeof(*ip6);
2970 		slen = ntohs(ip6->ip6_plen);
2971 		sum = htons((u_short)l4proto);
2972 		sum += htons(slen);
2973 		sp = (u_short *)&ip6->ip6_src;
2974 		sum += *sp++;	/* ip6_src */
2975 		sum += *sp++;
2976 		sum += *sp++;
2977 		sum += *sp++;
2978 		sum += *sp++;
2979 		sum += *sp++;
2980 		sum += *sp++;
2981 		sum += *sp++;
2982 		sum += *sp++;	/* ip6_dst */
2983 		sum += *sp++;
2984 		sum += *sp++;
2985 		sum += *sp++;
2986 		sum += *sp++;
2987 		sum += *sp++;
2988 		sum += *sp++;
2989 		sum += *sp++;
2990 	}
2991 #endif
2992 
2993 	switch (l4proto)
2994 	{
2995 	case IPPROTO_UDP :
2996 		csump = &((udphdr_t *)l4hdr)->uh_sum;
2997 		l4hlen = sizeof(udphdr_t);
2998 		break;
2999 
3000 	case IPPROTO_TCP :
3001 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3002 		l4hlen = sizeof(tcphdr_t);
3003 		break;
3004 	case IPPROTO_ICMP :
3005 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3006 		l4hlen = 4;
3007 		sum = 0;
3008 		break;
3009 	default :
3010 		break;
3011 	}
3012 
3013 	if (csump != NULL) {
3014 		sumsave = *csump;
3015 		*csump = 0;
3016 	}
3017 
3018 	l4hlen = l4hlen;	/* LINT */
3019 
3020 #ifdef	_KERNEL
3021 # ifdef MENTAT
3022 	{
3023 	void *rp = m->b_rptr;
3024 
3025 	if ((unsigned char *)ip > m->b_rptr && (unsigned char *)ip < m->b_wptr)
3026 		m->b_rptr = (u_char *)ip;
3027 	sum2 = ip_cksum(m, hlen, sum);	/* hlen == offset */
3028 	m->b_rptr = rp;
3029 	sum2 = (sum2 & 0xffff) + (sum2 >> 16);
3030 	sum2 = ~sum2 & 0xffff;
3031 	}
3032 # else /* MENTAT */
3033 #  if defined(BSD) || defined(sun)
3034 #   if BSD >= 199103
3035 	m->m_data += hlen;
3036 #   else
3037 	m->m_off += hlen;
3038 #   endif
3039 	m->m_len -= hlen;
3040 	sum2 = in_cksum(m, slen);
3041 	m->m_len += hlen;
3042 #   if BSD >= 199103
3043 	m->m_data -= hlen;
3044 #   else
3045 	m->m_off -= hlen;
3046 #   endif
3047 	/*
3048 	 * Both sum and sum2 are partial sums, so combine them together.
3049 	 */
3050 	sum += ~sum2 & 0xffff;
3051 	while (sum > 0xffff)
3052 		sum = (sum & 0xffff) + (sum >> 16);
3053 	sum2 = ~sum & 0xffff;
3054 #  else /* defined(BSD) || defined(sun) */
3055 {
3056 	union {
3057 		u_char	c[2];
3058 		u_short	s;
3059 	} bytes;
3060 	u_short len = ip->ip_len;
3061 #   if defined(__sgi)
3062 	int add;
3063 #   endif
3064 
3065 	/*
3066 	 * Add up IP Header portion
3067 	 */
3068 	if (sp != (u_short *)l4hdr)
3069 		sp = (u_short *)l4hdr;
3070 
3071 	switch (l4proto)
3072 	{
3073 	case IPPROTO_UDP :
3074 		sum += *sp++;	/* sport */
3075 		sum += *sp++;	/* dport */
3076 		sum += *sp++;	/* udp length */
3077 		sum += *sp++;	/* checksum */
3078 		break;
3079 
3080 	case IPPROTO_TCP :
3081 		sum += *sp++;	/* sport */
3082 		sum += *sp++;	/* dport */
3083 		sum += *sp++;	/* seq */
3084 		sum += *sp++;
3085 		sum += *sp++;	/* ack */
3086 		sum += *sp++;
3087 		sum += *sp++;	/* off */
3088 		sum += *sp++;	/* win */
3089 		sum += *sp++;	/* checksum */
3090 		sum += *sp++;	/* urp */
3091 		break;
3092 	case IPPROTO_ICMP :
3093 		sum = *sp++;	/* type/code */
3094 		sum += *sp++;	/* checksum */
3095 		break;
3096 	}
3097 
3098 #   ifdef	__sgi
3099 	/*
3100 	 * In case we had to copy the IP & TCP header out of mbufs,
3101 	 * skip over the mbuf bits which are the header
3102 	 */
3103 	if ((caddr_t)ip != mtod(m, caddr_t)) {
3104 		hlen = (caddr_t)sp - (caddr_t)ip;
3105 		while (hlen) {
3106 			add = MIN(hlen, m->m_len);
3107 			sp = (u_short *)(mtod(m, caddr_t) + add);
3108 			hlen -= add;
3109 			if (add == m->m_len) {
3110 				m = m->m_next;
3111 				if (!hlen) {
3112 					if (!m)
3113 						break;
3114 					sp = mtod(m, u_short *);
3115 				}
3116 				PANIC((!m),("fr_cksum(1): not enough data"));
3117 			}
3118 		}
3119 	}
3120 #   endif
3121 
3122 	len -= (l4hlen + hlen);
3123 	if (len <= 0)
3124 		goto nodata;
3125 
3126 	while (len > 1) {
3127 		if (((caddr_t)sp - mtod(m, caddr_t)) >= m->m_len) {
3128 			m = m->m_next;
3129 			PANIC((!m),("fr_cksum(2): not enough data"));
3130 			sp = mtod(m, u_short *);
3131 		}
3132 		if (((caddr_t)(sp + 1) - mtod(m, caddr_t)) > m->m_len) {
3133 			bytes.c[0] = *(u_char *)sp;
3134 			m = m->m_next;
3135 			PANIC((!m),("fr_cksum(3): not enough data"));
3136 			sp = mtod(m, u_short *);
3137 			bytes.c[1] = *(u_char *)sp;
3138 			sum += bytes.s;
3139 			sp = (u_short *)((u_char *)sp + 1);
3140 		}
3141 		if ((u_long)sp & 1) {
3142 			bcopy((char *)sp++, (char *)&bytes.s, sizeof(bytes.s));
3143 			sum += bytes.s;
3144 		} else
3145 			sum += *sp++;
3146 		len -= 2;
3147 	}
3148 
3149 	if (len != 0)
3150 		sum += ntohs(*(u_char *)sp << 8);
3151 nodata:
3152 	while (sum > 0xffff)
3153 		sum = (sum & 0xffff) + (sum >> 16);
3154 	sum2 = (u_short)(~sum & 0xffff);
3155 }
3156 #  endif /*  defined(BSD) || defined(sun) */
3157 # endif /* MENTAT */
3158 #else /* _KERNEL */
3159 	for (; slen > 1; slen -= 2)
3160 	        sum += *sp++;
3161 	if (slen)
3162 		sum += ntohs(*(u_char *)sp << 8);
3163 	while (sum > 0xffff)
3164 		sum = (sum & 0xffff) + (sum >> 16);
3165 	sum2 = (u_short)(~sum & 0xffff);
3166 #endif /* _KERNEL */
3167 	if (csump != NULL)
3168 		*csump = sumsave;
3169 	return sum2;
3170 }
3171 
3172 
3173 #if defined(_KERNEL) && ( ((BSD < 199103) && !defined(MENTAT)) || \
3174     defined(__sgi) ) && !defined(linux) && !defined(_AIX51)
3175 /*
3176  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3177  *	The Regents of the University of California.  All rights reserved.
3178  *
3179  * Redistribution and use in source and binary forms, with or without
3180  * modification, are permitted provided that the following conditions
3181  * are met:
3182  * 1. Redistributions of source code must retain the above copyright
3183  *    notice, this list of conditions and the following disclaimer.
3184  * 2. Redistributions in binary form must reproduce the above copyright
3185  *    notice, this list of conditions and the following disclaimer in the
3186  *    documentation and/or other materials provided with the distribution.
3187  * 3. Neither the name of the University nor the names of its contributors
3188  *    may be used to endorse or promote products derived from this software
3189  *    without specific prior written permission.
3190  *
3191  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3192  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3193  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3194  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3195  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3196  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3197  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3198  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3199  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3200  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3201  * SUCH DAMAGE.
3202  *
3203  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
3204  * $Id: fil.c,v 2.243.2.64 2005/08/13 05:19:59 darrenr Exp $
3205  */
3206 /*
3207  * Copy data from an mbuf chain starting "off" bytes from the beginning,
3208  * continuing for "len" bytes, into the indicated buffer.
3209  */
3210 void
3211 m_copydata(m, off, len, cp)
3212 	mb_t *m;
3213 	int off;
3214 	int len;
3215 	caddr_t cp;
3216 {
3217 	unsigned count;
3218 
3219 	if (off < 0 || len < 0)
3220 		panic("m_copydata");
3221 	while (off > 0) {
3222 		if (m == 0)
3223 			panic("m_copydata");
3224 		if (off < m->m_len)
3225 			break;
3226 		off -= m->m_len;
3227 		m = m->m_next;
3228 	}
3229 	while (len > 0) {
3230 		if (m == 0)
3231 			panic("m_copydata");
3232 		count = MIN(m->m_len - off, len);
3233 		bcopy(mtod(m, caddr_t) + off, cp, count);
3234 		len -= count;
3235 		cp += count;
3236 		off = 0;
3237 		m = m->m_next;
3238 	}
3239 }
3240 
3241 
3242 /*
3243  * Copy data from a buffer back into the indicated mbuf chain,
3244  * starting "off" bytes from the beginning, extending the mbuf
3245  * chain if necessary.
3246  */
3247 void
3248 m_copyback(m0, off, len, cp)
3249 	struct	mbuf *m0;
3250 	int off;
3251 	int len;
3252 	caddr_t cp;
3253 {
3254 	int mlen;
3255 	struct mbuf *m = m0, *n;
3256 	int totlen = 0;
3257 
3258 	if (m0 == 0)
3259 		return;
3260 	while (off > (mlen = m->m_len)) {
3261 		off -= mlen;
3262 		totlen += mlen;
3263 		if (m->m_next == 0) {
3264 			n = m_getclr(M_DONTWAIT, m->m_type);
3265 			if (n == 0)
3266 				goto out;
3267 			n->m_len = min(MLEN, len + off);
3268 			m->m_next = n;
3269 		}
3270 		m = m->m_next;
3271 	}
3272 	while (len > 0) {
3273 		mlen = min(m->m_len - off, len);
3274 		bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
3275 		cp += mlen;
3276 		len -= mlen;
3277 		mlen += off;
3278 		off = 0;
3279 		totlen += mlen;
3280 		if (len == 0)
3281 			break;
3282 		if (m->m_next == 0) {
3283 			n = m_get(M_DONTWAIT, m->m_type);
3284 			if (n == 0)
3285 				break;
3286 			n->m_len = min(MLEN, len);
3287 			m->m_next = n;
3288 		}
3289 		m = m->m_next;
3290 	}
3291 out:
3292 #if 0
3293 	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
3294 		m->m_pkthdr.len = totlen;
3295 #endif
3296 	return;
3297 }
3298 #endif /* (_KERNEL) && ( ((BSD < 199103) && !MENTAT) || __sgi) */
3299 
3300 
3301 /* ------------------------------------------------------------------------ */
3302 /* Function:    fr_findgroup                                                */
3303 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3304 /* Parameters:  group(I) - group name to search for                         */
3305 /*              unit(I)  - device to which this group belongs               */
3306 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3307 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3308 /*                         to where to add the next (last) group or where   */
3309 /*                         to delete group from.                            */
3310 /*                                                                          */
3311 /* Search amongst the defined groups for a particular group number.         */
3312 /* ------------------------------------------------------------------------ */
3313 frgroup_t *fr_findgroup(group, unit, set, fgpp, ifs)
3314 char *group;
3315 minor_t unit;
3316 int set;
3317 frgroup_t ***fgpp;
3318 ipf_stack_t *ifs;
3319 {
3320 	frgroup_t *fg, **fgp;
3321 
3322 	/*
3323 	 * Which list of groups to search in is dependent on which list of
3324 	 * rules are being operated on.
3325 	 */
3326 	fgp = &ifs->ifs_ipfgroups[unit][set];
3327 
3328 	while ((fg = *fgp) != NULL) {
3329 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3330 			break;
3331 		else
3332 			fgp = &fg->fg_next;
3333 	}
3334 	if (fgpp != NULL)
3335 		*fgpp = fgp;
3336 	return fg;
3337 }
3338 
3339 
3340 /* ------------------------------------------------------------------------ */
3341 /* Function:    fr_addgroup                                                 */
3342 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3343 /*                            != NULL == pointer to the group               */
3344 /* Parameters:  num(I)   - group number to add                              */
3345 /*              head(I)  - rule pointer that is using this as the head      */
3346 /*              flags(I) - rule flags which describe the type of rule it is */
3347 /*              unit(I)  - device to which this group will belong to        */
3348 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3349 /* Write Locks: ipf_mutex                                                   */
3350 /*                                                                          */
3351 /* Add a new group head, or if it already exists, increase the reference    */
3352 /* count to it.                                                             */
3353 /* ------------------------------------------------------------------------ */
3354 frgroup_t *fr_addgroup(group, head, flags, unit, set, ifs)
3355 char *group;
3356 void *head;
3357 u_32_t flags;
3358 minor_t unit;
3359 int set;
3360 ipf_stack_t *ifs;
3361 {
3362 	frgroup_t *fg, **fgp;
3363 	u_32_t gflags;
3364 
3365 	if (group == NULL)
3366 		return NULL;
3367 
3368 	if (unit == IPL_LOGIPF && *group == '\0')
3369 		return NULL;
3370 
3371 	fgp = NULL;
3372 	gflags = flags & FR_INOUT;
3373 
3374 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3375 	if (fg != NULL) {
3376 		if (fg->fg_flags == 0)
3377 			fg->fg_flags = gflags;
3378 		else if (gflags != fg->fg_flags)
3379 			return NULL;
3380 		fg->fg_ref++;
3381 		return fg;
3382 	}
3383 	KMALLOC(fg, frgroup_t *);
3384 	if (fg != NULL) {
3385 		fg->fg_head = head;
3386 		fg->fg_start = NULL;
3387 		fg->fg_next = *fgp;
3388 		bcopy(group, fg->fg_name, FR_GROUPLEN);
3389 		fg->fg_flags = gflags;
3390 		fg->fg_ref = 1;
3391 		*fgp = fg;
3392 	}
3393 	return fg;
3394 }
3395 
3396 
3397 /* ------------------------------------------------------------------------ */
3398 /* Function:    fr_delgroup                                                 */
3399 /* Returns:     Nil                                                         */
3400 /* Parameters:  group(I) - group name to delete                             */
3401 /*              unit(I)  - device to which this group belongs               */
3402 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3403 /* Write Locks: ipf_mutex                                                   */
3404 /*                                                                          */
3405 /* Attempt to delete a group head.                                          */
3406 /* Only do this when its reference count reaches 0.                         */
3407 /* ------------------------------------------------------------------------ */
3408 void fr_delgroup(group, unit, set, ifs)
3409 char *group;
3410 minor_t unit;
3411 int set;
3412 ipf_stack_t *ifs;
3413 {
3414 	frgroup_t *fg, **fgp;
3415 
3416 	fg = fr_findgroup(group, unit, set, &fgp, ifs);
3417 	if (fg == NULL)
3418 		return;
3419 
3420 	fg->fg_ref--;
3421 	if (fg->fg_ref == 0) {
3422 		*fgp = fg->fg_next;
3423 		KFREE(fg);
3424 	}
3425 }
3426 
3427 
3428 /* ------------------------------------------------------------------------ */
3429 /* Function:    fr_getrulen                                                 */
3430 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3431 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3432 /*              flags(I) - which set of rules to find the rule in           */
3433 /*              group(I) - group name                                       */
3434 /*              n(I)     - rule number to find                              */
3435 /*                                                                          */
3436 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3437 /* group # g doesn't exist or there are less than n rules in the group.     */
3438 /* ------------------------------------------------------------------------ */
3439 frentry_t *fr_getrulen(unit, group, n, ifs)
3440 int unit;
3441 char *group;
3442 u_32_t n;
3443 ipf_stack_t *ifs;
3444 {
3445 	frentry_t *fr;
3446 	frgroup_t *fg;
3447 
3448 	fg = fr_findgroup(group, unit, ifs->ifs_fr_active, NULL, ifs);
3449 	if (fg == NULL)
3450 		return NULL;
3451 	for (fr = fg->fg_head; fr && n; fr = fr->fr_next, n--)
3452 		;
3453 	if (n != 0)
3454 		return NULL;
3455 	return fr;
3456 }
3457 
3458 
3459 /* ------------------------------------------------------------------------ */
3460 /* Function:    fr_rulen                                                    */
3461 /* Returns:     int - >= 0 - rule number, -1 == search failed               */
3462 /* Parameters:  unit(I) - device for which to count the rule's number       */
3463 /*              fr(I)   - pointer to rule to match                          */
3464 /*                                                                          */
3465 /* Return the number for a rule on a specific filtering device.             */
3466 /* ------------------------------------------------------------------------ */
3467 int fr_rulen(unit, fr, ifs)
3468 int unit;
3469 frentry_t *fr;
3470 ipf_stack_t *ifs;
3471 {
3472 	frentry_t *fh;
3473 	frgroup_t *fg;
3474 	u_32_t n = 0;
3475 
3476 	if (fr == NULL)
3477 		return -1;
3478 	fg = fr_findgroup(fr->fr_group, unit, ifs->ifs_fr_active, NULL, ifs);
3479 	if (fg == NULL)
3480 		return -1;
3481 	for (fh = fg->fg_head; fh; n++, fh = fh->fr_next)
3482 		if (fh == fr)
3483 			break;
3484 	if (fh == NULL)
3485 		return -1;
3486 	return n;
3487 }
3488 
3489 
3490 /* ------------------------------------------------------------------------ */
3491 /* Function:    frflushlist                                                 */
3492 /* Returns:     int - >= 0 - number of flushed rules                        */
3493 /* Parameters:  set(I)   - which set of rules (inactive/inactive) this is   */
3494 /*              unit(I)  - device for which to flush rules                  */
3495 /*              flags(I) - which set of rules to flush                      */
3496 /*              nfreedp(O) - pointer to int where flush count is stored     */
3497 /*              listp(I)   - pointer to list to flush pointer               */
3498 /* Write Locks: ipf_mutex                                                   */
3499 /*                                                                          */
3500 /* Recursively flush rules from the list, descending groups as they are     */
3501 /* encountered.  if a rule is the head of a group and it has lost all its   */
3502 /* group members, then also delete the group reference.  nfreedp is needed  */
3503 /* to store the accumulating count of rules removed, whereas the returned   */
3504 /* value is just the number removed from the current list.  The latter is   */
3505 /* needed to correctly adjust reference counts on rules that define groups. */
3506 /*                                                                          */
3507 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3508 /* ------------------------------------------------------------------------ */
3509 static int frflushlist(set, unit, nfreedp, listp, ifs)
3510 int set;
3511 minor_t unit;
3512 int *nfreedp;
3513 frentry_t **listp;
3514 ipf_stack_t *ifs;
3515 {
3516 	int freed = 0;
3517 	frentry_t *fp;
3518 
3519 	while ((fp = *listp) != NULL) {
3520 		if ((fp->fr_type & FR_T_BUILTIN) ||
3521 		    !(fp->fr_flags & FR_COPIED)) {
3522 			listp = &fp->fr_next;
3523 			continue;
3524 		}
3525 		*listp = fp->fr_next;
3526 		if (fp->fr_grp != NULL) {
3527 			(void) frflushlist(set, unit, nfreedp, fp->fr_grp, ifs);
3528 		}
3529 
3530 		if (fp->fr_grhead != NULL) {
3531 			fr_delgroup(fp->fr_grhead, unit, set, ifs);
3532 			*fp->fr_grhead = '\0';
3533 		}
3534 
3535 		ASSERT(fp->fr_ref > 0);
3536 		fp->fr_next = NULL;
3537 		if (fr_derefrule(&fp, ifs) == 0)
3538 			freed++;
3539 	}
3540 	*nfreedp += freed;
3541 	return freed;
3542 }
3543 
3544 
3545 /* ------------------------------------------------------------------------ */
3546 /* Function:    frflush                                                     */
3547 /* Returns:     int - >= 0 - number of flushed rules                        */
3548 /* Parameters:  unit(I)  - device for which to flush rules                  */
3549 /*              flags(I) - which set of rules to flush                      */
3550 /*                                                                          */
3551 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3552 /* and IPv6) as defined by the value of flags.                              */
3553 /* ------------------------------------------------------------------------ */
3554 int frflush(unit, proto, flags, ifs)
3555 minor_t unit;
3556 int proto, flags;
3557 ipf_stack_t *ifs;
3558 {
3559 	int flushed = 0, set;
3560 
3561 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3562 	bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache));
3563 
3564 	set = ifs->ifs_fr_active;
3565 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3566 		set = 1 - set;
3567 
3568 	if (flags & FR_OUTQUE) {
3569 		if (proto == 0 || proto == 6) {
3570 			(void) frflushlist(set, unit,
3571 			    &flushed, &ifs->ifs_ipfilter6[1][set], ifs);
3572 			(void) frflushlist(set, unit,
3573 			    &flushed, &ifs->ifs_ipacct6[1][set], ifs);
3574 		}
3575 		if (proto == 0 || proto == 4) {
3576 			(void) frflushlist(set, unit,
3577 			    &flushed, &ifs->ifs_ipfilter[1][set], ifs);
3578 			(void) frflushlist(set, unit,
3579 			    &flushed, &ifs->ifs_ipacct[1][set], ifs);
3580 		}
3581 	}
3582 	if (flags & FR_INQUE) {
3583 		if (proto == 0 || proto == 6) {
3584 			(void) frflushlist(set, unit,
3585 			    &flushed, &ifs->ifs_ipfilter6[0][set], ifs);
3586 			(void) frflushlist(set, unit,
3587 			    &flushed, &ifs->ifs_ipacct6[0][set], ifs);
3588 		}
3589 		if (proto == 0 || proto == 4) {
3590 			(void) frflushlist(set, unit,
3591 			    &flushed, &ifs->ifs_ipfilter[0][set], ifs);
3592 			(void) frflushlist(set, unit,
3593 			    &flushed, &ifs->ifs_ipacct[0][set], ifs);
3594 		}
3595 	}
3596 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3597 
3598 	if (unit == IPL_LOGIPF) {
3599 		int tmp;
3600 
3601 		tmp = frflush(IPL_LOGCOUNT, proto, flags, ifs);
3602 		if (tmp >= 0)
3603 			flushed += tmp;
3604 	}
3605 	return flushed;
3606 }
3607 
3608 
3609 /* ------------------------------------------------------------------------ */
3610 /* Function:    memstr                                                      */
3611 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3612 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3613 /*              dst(I)  - pointer to byte sequence to search                */
3614 /*              slen(I) - match length                                      */
3615 /*              dlen(I) - length available to search in                     */
3616 /*                                                                          */
3617 /* Search dst for a sequence of bytes matching those at src and extend for  */
3618 /* slen bytes.                                                              */
3619 /* ------------------------------------------------------------------------ */
3620 char *memstr(src, dst, slen, dlen)
3621 char *src, *dst;
3622 int slen, dlen;
3623 {
3624 	char *s = NULL;
3625 
3626 	while (dlen >= slen) {
3627 		if (bcmp(src, dst, slen) == 0) {
3628 			s = dst;
3629 			break;
3630 		}
3631 		dst++;
3632 		dlen--;
3633 	}
3634 	return s;
3635 }
3636 /* ------------------------------------------------------------------------ */
3637 /* Function:    fr_fixskip                                                  */
3638 /* Returns:     Nil                                                         */
3639 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3640 /*              rp(I)        - rule added/removed with skip in it.          */
3641 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3642 /*                             depending on whether a rule was just added   */
3643 /*                             or removed.                                  */
3644 /*                                                                          */
3645 /* Adjust all the rules in a list which would have skip'd past the position */
3646 /* where we are inserting to skip to the right place given the change.      */
3647 /* ------------------------------------------------------------------------ */
3648 void fr_fixskip(listp, rp, addremove)
3649 frentry_t **listp, *rp;
3650 int addremove;
3651 {
3652 	int rules, rn;
3653 	frentry_t *fp;
3654 
3655 	rules = 0;
3656 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3657 		rules++;
3658 
3659 	if (!fp)
3660 		return;
3661 
3662 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3663 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3664 			fp->fr_arg += addremove;
3665 }
3666 
3667 
3668 #ifdef	_KERNEL
3669 /* ------------------------------------------------------------------------ */
3670 /* Function:    count4bits                                                  */
3671 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3672 /* Parameters:  ip(I) - 32bit IP address                                    */
3673 /*                                                                          */
3674 /* IPv4 ONLY                                                                */
3675 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3676 /* consecutive 1's is different to that passed, return -1, else return #    */
3677 /* of bits.                                                                 */
3678 /* ------------------------------------------------------------------------ */
3679 int	count4bits(ip)
3680 u_32_t	ip;
3681 {
3682 	u_32_t	ipn;
3683 	int	cnt = 0, i, j;
3684 
3685 	ip = ipn = ntohl(ip);
3686 	for (i = 32; i; i--, ipn *= 2)
3687 		if (ipn & 0x80000000)
3688 			cnt++;
3689 		else
3690 			break;
3691 	ipn = 0;
3692 	for (i = 32, j = cnt; i; i--, j--) {
3693 		ipn *= 2;
3694 		if (j > 0)
3695 			ipn++;
3696 	}
3697 	if (ipn == ip)
3698 		return cnt;
3699 	return -1;
3700 }
3701 
3702 
3703 #ifdef USE_INET6
3704 /* ------------------------------------------------------------------------ */
3705 /* Function:    count6bits                                                  */
3706 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3707 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3708 /*                                                                          */
3709 /* IPv6 ONLY                                                                */
3710 /* count consecutive 1's in bit mask.                                       */
3711 /* ------------------------------------------------------------------------ */
3712 int count6bits(msk)
3713 u_32_t *msk;
3714 {
3715 	int i = 0, k;
3716 	u_32_t j;
3717 
3718 	for (k = 3; k >= 0; k--)
3719 		if (msk[k] == 0xffffffff)
3720 			i += 32;
3721 		else {
3722 			for (j = msk[k]; j; j <<= 1)
3723 				if (j & 0x80000000)
3724 					i++;
3725 		}
3726 	return i;
3727 }
3728 # endif
3729 #endif /* _KERNEL */
3730 
3731 
3732 /* ------------------------------------------------------------------------ */
3733 /* Function:    fr_ifsync                                                   */
3734 /* Returns:     void *    - new interface identifier                        */
3735 /* Parameters:  action(I)  - type of synchronisation to do                  */
3736 /*              v(I)       - IP version being sync'd (v4 or v6)             */
3737 /*              newifp(I)  - interface identifier being introduced/removed  */
3738 /*              oldifp(I)  - interface identifier in a filter rule          */
3739 /*              newname(I) - name associated with newifp interface          */
3740 /*              oldname(I) - name associated with oldifp interface          */
3741 /*		ifs       - pointer to IPF stack instance		    */
3742 /*                                                                          */
3743 /* This function returns what the new value for "oldifp" should be for its  */
3744 /* caller.  In some cases it will not change, in some it will.              */
3745 /* action == IPFSYNC_RESYNC                                                 */
3746 /*   a new value for oldifp will always be looked up, according to oldname, */
3747 /*   the values of newname and newifp are ignored.                          */
3748 /* action == IPFSYNC_NEWIFP                                                 */
3749 /*   if oldname matches newname then we are doing a sync for the matching   */
3750 /*   interface, so we return newifp to be used in place of oldifp.  If the  */
3751 /*   the names don't match, just return oldifp.                             */
3752 /* action == IPFSYNC_OLDIFP                                                 */
3753 /*   if oldifp matches newifp then we are are doing a sync to remove any    */
3754 /*   references to oldifp, so we return "-1".                               */
3755 /* -----								    */
3756 /* NOTE:								    */
3757 /* This function processes NIC event from PF_HOOKS. The action parameter    */
3758 /* is set in ipf_nic_event_v4()/ipf_nic_event_v6() function. There is	    */
3759 /* one single switch statement() in ipf_nic_event_vx() function, which	    */
3760 /* translates the HOOK event type to action parameter passed to fr_ifsync.  */
3761 /* The translation table looks as follows:				    */
3762 /*	event		| action					    */
3763 /*	----------------+-------------					    */
3764 /*	NE_PLUMB	| IPFSYNC_NEWIFP				    */
3765 /*	NE_UNPLUMB	| IPFSYNC_OLDIFP				    */
3766 /*    NE_ADDRESS_CHANGE	| IPFSYNC_RESYNC				    */
3767 /*									    */
3768 /* The oldname and oldifp parameters are taken from IPF entry (rule, state  */
3769 /* table entry, NAT table entry, fragment ...). The newname and newifp	    */
3770 /* parameters come from hook event data, parameters are taken from event    */
3771 /* in ipf_nic_event_vx() functions. Any time NIC changes, the IPF is	    */
3772 /* notified by hook function.						    */
3773 /*									    */
3774 /* We get NE_UNPLUMB event from PF_HOOKS even if someone coincidently tries */
3775 /* to plumb the interface, which is already plumbed. In such case we always */
3776 /* get the event from PF_HOOKS as follows:				    */
3777 /*	event:	NE_PLUMB						    */
3778 /*	NIC:	0x0							    */
3779 /* ------------------------------------------------------------------------ */
3780 static void *fr_ifsync(action, v, newname, oldname, newifp, oldifp, ifs)
3781 int action, v;
3782 char *newname, *oldname;
3783 void *newifp, *oldifp;
3784 ipf_stack_t *ifs;
3785 {
3786 	void *rval = oldifp;
3787 
3788 	switch (action)
3789 	{
3790 	case IPFSYNC_RESYNC :
3791 		if (oldname[0] != '\0') {
3792 			rval = fr_resolvenic(oldname, v, ifs);
3793 		}
3794 		break;
3795 	case IPFSYNC_NEWIFP :
3796 		if (!strncmp(newname, oldname, LIFNAMSIZ))
3797 			rval = newifp;
3798 		break;
3799 	case IPFSYNC_OLDIFP :
3800 		/*
3801 		 * If interface gets unplumbed it must be invalidated, which
3802 		 * means set all existing references to the interface to -1.
3803 		 * We don't want to invalidate references for wildcard
3804 		 * (unbound) rules (entries).
3805 		 */
3806 		if (newifp == oldifp)
3807 			rval = (oldifp) ? (void *)-1 : NULL;
3808 		break;
3809 	}
3810 
3811 	return rval;
3812 }
3813 
3814 
3815 /* ------------------------------------------------------------------------ */
3816 /* Function:    frsynclist                                                  */
3817 /* Returns:     void                                                        */
3818 /* Parameters:  action(I) - type of synchronisation to do                   */
3819 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3820 /*              ifp(I)    - interface identifier associated with action     */
3821 /*              ifname(I) - name associated with ifp parameter              */
3822 /*              fr(I)     - pointer to filter rule                          */
3823 /*		ifs       - pointer to IPF stack instance		    */
3824 /* Write Locks: ipf_mutex                                                   */
3825 /*                                                                          */
3826 /* Walk through a list of filter rules and resolve any interface names into */
3827 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3828 /* used in the rule.  The interface pointer is used to limit the lookups to */
3829 /* a specific set of matching names if it is non-NULL.                      */
3830 /* ------------------------------------------------------------------------ */
3831 static void frsynclist(action, v, ifp, ifname, fr, ifs)
3832 int action, v;
3833 void *ifp;
3834 char *ifname;
3835 frentry_t *fr;
3836 ipf_stack_t *ifs;
3837 {
3838 	frdest_t *fdp;
3839 	int rv, i;
3840 
3841 	for (; fr; fr = fr->fr_next) {
3842 		rv = fr->fr_v;
3843 		if (v != 0 && v != rv)
3844 			continue;
3845 
3846 		/*
3847 		 * Lookup all the interface names that are part of the rule.
3848 		 */
3849 		for (i = 0; i < 4; i++) {
3850 			fr->fr_ifas[i] = fr_ifsync(action, rv, ifname,
3851 						   fr->fr_ifnames[i],
3852 						   ifp, fr->fr_ifas[i],
3853 						   ifs);
3854 		}
3855 
3856 		fdp = &fr->fr_tifs[0];
3857 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3858 					   ifp, fdp->fd_ifp, ifs);
3859 
3860 		fdp = &fr->fr_tifs[1];
3861 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3862 					   ifp, fdp->fd_ifp, ifs);
3863 
3864 		fdp = &fr->fr_dif;
3865 		fdp->fd_ifp = fr_ifsync(action, rv, ifname, fdp->fd_ifname,
3866 					   ifp, fdp->fd_ifp, ifs);
3867 
3868 		if (action != IPFSYNC_RESYNC)
3869 			continue;
3870 
3871 		if (fr->fr_type == FR_T_IPF) {
3872 			if (fr->fr_satype != FRI_NORMAL &&
3873 			    fr->fr_satype != FRI_LOOKUP) {
3874 				(void)fr_ifpaddr(rv, fr->fr_satype,
3875 						 fr->fr_ifas[fr->fr_sifpidx],
3876 						 &fr->fr_src, &fr->fr_smsk,
3877 						 ifs);
3878 			}
3879 			if (fr->fr_datype != FRI_NORMAL &&
3880 			    fr->fr_datype != FRI_LOOKUP) {
3881 				(void)fr_ifpaddr(rv, fr->fr_datype,
3882 						 fr->fr_ifas[fr->fr_difpidx],
3883 						 &fr->fr_dst, &fr->fr_dmsk,
3884 						 ifs);
3885 			}
3886 		}
3887 
3888 #ifdef	IPFILTER_LOOKUP
3889 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP &&
3890 		    fr->fr_srcptr == NULL) {
3891 			fr->fr_srcptr = fr_resolvelookup(fr->fr_srctype,
3892 							 fr->fr_srcnum,
3893 							 &fr->fr_srcfunc, ifs);
3894 		}
3895 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP &&
3896 		    fr->fr_dstptr == NULL) {
3897 			fr->fr_dstptr = fr_resolvelookup(fr->fr_dsttype,
3898 							 fr->fr_dstnum,
3899 							 &fr->fr_dstfunc, ifs);
3900 		}
3901 #endif
3902 	}
3903 }
3904 
3905 
3906 #ifdef	_KERNEL
3907 /* ------------------------------------------------------------------------ */
3908 /* Function:    frsync                                                      */
3909 /* Returns:     void                                                        */
3910 /* Parameters:  action(I) - type of synchronisation to do                   */
3911 /*              v(I)      - IP version being sync'd (v4 or v6)              */
3912 /*              ifp(I)    - interface identifier associated with action     */
3913 /*              name(I)   - name associated with ifp parameter              */
3914 /*                                                                          */
3915 /* frsync() is called when we suspect that the interface list or            */
3916 /* information about interfaces (like IP#) has changed.  Go through all     */
3917 /* filter rules, NAT entries and the state table and check if anything      */
3918 /* needs to be changed/updated.                                             */
3919 /* With the filtering hooks added to Solaris, we needed to change the manner*/
3920 /* in which this was done to support three different types of sync:         */
3921 /* - complete resync of all interface name/identifiers                      */
3922 /* - new interface being announced with its name and identifier             */
3923 /* - interface removal being announced by only its identifier               */
3924 /* ------------------------------------------------------------------------ */
3925 void frsync(action, v, ifp, name, ifs)
3926 int action, v;
3927 void *ifp;
3928 char *name;
3929 ipf_stack_t *ifs;
3930 {
3931 	int i;
3932 
3933 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
3934 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[0][ifs->ifs_fr_active], ifs);
3935 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct[1][ifs->ifs_fr_active], ifs);
3936 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[0][ifs->ifs_fr_active], ifs);
3937 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter[1][ifs->ifs_fr_active], ifs);
3938 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[0][ifs->ifs_fr_active], ifs);
3939 	frsynclist(action, v, ifp, name, ifs->ifs_ipacct6[1][ifs->ifs_fr_active], ifs);
3940 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[0][ifs->ifs_fr_active], ifs);
3941 	frsynclist(action, v, ifp, name, ifs->ifs_ipfilter6[1][ifs->ifs_fr_active], ifs);
3942 
3943 	for (i = 0; i < IPL_LOGSIZE; i++) {
3944 		frgroup_t *g;
3945 
3946 		for (g = ifs->ifs_ipfgroups[i][0]; g != NULL; g = g->fg_next)
3947 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3948 		for (g = ifs->ifs_ipfgroups[i][1]; g != NULL; g = g->fg_next)
3949 			frsynclist(action, v, ifp, name, g->fg_start, ifs);
3950 	}
3951 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
3952 }
3953 
3954 
3955 /*
3956  * In the functions below, bcopy() is called because the pointer being
3957  * copied _from_ in this instance is a pointer to a char buf (which could
3958  * end up being unaligned) and on the kernel's local stack.
3959  */
3960 /* ------------------------------------------------------------------------ */
3961 /* Function:    copyinptr                                                   */
3962 /* Returns:     int - 0 = success, else failure                             */
3963 /* Parameters:  src(I)  - pointer to the source address                     */
3964 /*              dst(I)  - destination address                               */
3965 /*              size(I) - number of bytes to copy                           */
3966 /*                                                                          */
3967 /* Copy a block of data in from user space, given a pointer to the pointer  */
3968 /* to start copying from (src) and a pointer to where to store it (dst).    */
3969 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
3970 /* ------------------------------------------------------------------------ */
3971 int copyinptr(src, dst, size)
3972 void *src, *dst;
3973 size_t size;
3974 {
3975 	caddr_t ca;
3976 	int err;
3977 
3978 # if SOLARIS
3979 	err = COPYIN(src, (caddr_t)&ca, sizeof(ca));
3980 	if (err != 0)
3981 		return err;
3982 # else
3983 	bcopy(src, (caddr_t)&ca, sizeof(ca));
3984 # endif
3985 	err = COPYIN(ca, dst, size);
3986 	return err;
3987 }
3988 
3989 
3990 /* ------------------------------------------------------------------------ */
3991 /* Function:    copyoutptr                                                  */
3992 /* Returns:     int - 0 = success, else failure                             */
3993 /* Parameters:  src(I)  - pointer to the source address                     */
3994 /*              dst(I)  - destination address                               */
3995 /*              size(I) - number of bytes to copy                           */
3996 /*                                                                          */
3997 /* Copy a block of data out to user space, given a pointer to the pointer   */
3998 /* to start copying from (src) and a pointer to where to store it (dst).    */
3999 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4000 /* ------------------------------------------------------------------------ */
4001 int copyoutptr(src, dst, size)
4002 void *src, *dst;
4003 size_t size;
4004 {
4005 	caddr_t ca;
4006 	int err;
4007 
4008 # if SOLARIS
4009 	err = COPYIN(dst, (caddr_t)&ca, sizeof(ca));
4010 	if (err != 0)
4011 		return err;
4012 # else
4013 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4014 # endif
4015 	err = COPYOUT(src, ca, size);
4016 	return err;
4017 }
4018 #endif
4019 
4020 
4021 /* ------------------------------------------------------------------------ */
4022 /* Function:    fr_lock                                                     */
4023 /* Returns:	int - 0 = success, else error				    */
4024 /* Parameters:  data(I)  - pointer to lock value to set                     */
4025 /*              lockp(O) - pointer to location to store old lock value      */
4026 /*                                                                          */
4027 /* Get the new value for the lock integer, set it and return the old value  */
4028 /* in *lockp.                                                               */
4029 /* ------------------------------------------------------------------------ */
4030 int fr_lock(data, lockp)
4031 caddr_t data;
4032 int *lockp;
4033 {
4034 	int arg, err;
4035 
4036 	err = BCOPYIN(data, (caddr_t)&arg, sizeof(arg));
4037 	if (err != 0)
4038 		return (EFAULT);
4039 	err = BCOPYOUT((caddr_t)lockp, data, sizeof(*lockp));
4040 	if (err != 0)
4041 		return (EFAULT);
4042 	*lockp = arg;
4043 	return (0);
4044 }
4045 
4046 
4047 /* ------------------------------------------------------------------------ */
4048 /* Function:    fr_getstat                                                  */
4049 /* Returns:     Nil                                                         */
4050 /* Parameters:  fiop(I)  - pointer to ipfilter stats structure              */
4051 /*                                                                          */
4052 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4053 /* structure.                                                               */
4054 /* ------------------------------------------------------------------------ */
4055 void fr_getstat(fiop, ifs)
4056 friostat_t *fiop;
4057 ipf_stack_t *ifs;
4058 {
4059 	int i, j;
4060 
4061 	bcopy((char *)&ifs->ifs_frstats, (char *)fiop->f_st,
4062 	    sizeof(filterstats_t) * 2);
4063 	fiop->f_locks[IPL_LOGSTATE] = ifs->ifs_fr_state_lock;
4064 	fiop->f_locks[IPL_LOGNAT] = ifs->ifs_fr_nat_lock;
4065 	fiop->f_locks[IPL_LOGIPF] = ifs->ifs_fr_frag_lock;
4066 	fiop->f_locks[IPL_LOGAUTH] = ifs->ifs_fr_auth_lock;
4067 
4068 	for (i = 0; i < 2; i++)
4069 		for (j = 0; j < 2; j++) {
4070 			fiop->f_ipf[i][j] = ifs->ifs_ipfilter[i][j];
4071 			fiop->f_acct[i][j] = ifs->ifs_ipacct[i][j];
4072 			fiop->f_ipf6[i][j] = ifs->ifs_ipfilter6[i][j];
4073 			fiop->f_acct6[i][j] = ifs->ifs_ipacct6[i][j];
4074 		}
4075 
4076 	fiop->f_ticks = ifs->ifs_fr_ticks;
4077 	fiop->f_active = ifs->ifs_fr_active;
4078 	fiop->f_froute[0] = ifs->ifs_fr_frouteok[0];
4079 	fiop->f_froute[1] = ifs->ifs_fr_frouteok[1];
4080 
4081 	fiop->f_running = ifs->ifs_fr_running;
4082 	for (i = 0; i < IPL_LOGSIZE; i++) {
4083 		fiop->f_groups[i][0] = ifs->ifs_ipfgroups[i][0];
4084 		fiop->f_groups[i][1] = ifs->ifs_ipfgroups[i][1];
4085 	}
4086 #ifdef  IPFILTER_LOG
4087 	fiop->f_logging = 1;
4088 #else
4089 	fiop->f_logging = 0;
4090 #endif
4091 	fiop->f_defpass = ifs->ifs_fr_pass;
4092 	fiop->f_features = fr_features;
4093 	(void) strncpy(fiop->f_version, ipfilter_version,
4094 		       sizeof(fiop->f_version));
4095 }
4096 
4097 
4098 #ifdef	USE_INET6
4099 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4100 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4101 	-1,			/* 1: UNUSED */
4102 	-1,			/* 2: UNUSED */
4103 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4104 	-1,			/* 4: ICMP_SOURCEQUENCH */
4105 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4106 	-1,			/* 6: UNUSED */
4107 	-1,			/* 7: UNUSED */
4108 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4109 	-1,			/* 9: UNUSED */
4110 	-1,			/* 10: UNUSED */
4111 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4112 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4113 	-1,			/* 13: ICMP_TSTAMP */
4114 	-1,			/* 14: ICMP_TSTAMPREPLY */
4115 	-1,			/* 15: ICMP_IREQ */
4116 	-1,			/* 16: ICMP_IREQREPLY */
4117 	-1,			/* 17: ICMP_MASKREQ */
4118 	-1,			/* 18: ICMP_MASKREPLY */
4119 };
4120 
4121 
4122 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4123 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4124 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4125 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4126 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4127 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4128 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4129 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4130 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4131 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4132 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4133 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4134 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4135 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4136 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4137 };
4138 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4139 #endif
4140 
4141 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4142 
4143 
4144 /* ------------------------------------------------------------------------ */
4145 /* Function:    fr_matchicmpqueryreply                                      */
4146 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4147 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4148 /*              ic(I)   - ICMP information                                  */
4149 /*              icmp(I) - ICMP packet header                                */
4150 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4151 /*                                                                          */
4152 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4153 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4154 /* else return 0 for no match.                                              */
4155 /* ------------------------------------------------------------------------ */
4156 int fr_matchicmpqueryreply(v, ic, icmp, rev)
4157 int v;
4158 icmpinfo_t *ic;
4159 icmphdr_t *icmp;
4160 int rev;
4161 {
4162 	int ictype;
4163 
4164 	ictype = ic->ici_type;
4165 
4166 	if (v == 4) {
4167 		/*
4168 		 * If we matched its type on the way in, then when going out
4169 		 * it will still be the same type.
4170 		 */
4171 		if ((!rev && (icmp->icmp_type == ictype)) ||
4172 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4173 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4174 				return 1;
4175 			if (icmp->icmp_id == ic->ici_id)
4176 				return 1;
4177 		}
4178 	}
4179 #ifdef	USE_INET6
4180 	else if (v == 6) {
4181 		if ((!rev && (icmp->icmp_type == ictype)) ||
4182 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4183 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4184 				return 1;
4185 			if (icmp->icmp_id == ic->ici_id)
4186 				return 1;
4187 		}
4188 	}
4189 #endif
4190 	return 0;
4191 }
4192 
4193 
4194 #ifdef	IPFILTER_LOOKUP
4195 /* ------------------------------------------------------------------------ */
4196 /* Function:    fr_resolvelookup                                            */
4197 /* Returns:     void * - NULL = failure, else success.                      */
4198 /* Parameters:  type(I)     - type of lookup these parameters are for.      */
4199 /*              number(I)   - table number to use when searching            */
4200 /*              funcptr(IO) - pointer to pointer for storing IP address     */
4201 /*                           searching function.                            */
4202 /*                                                                          */
4203 /* Search for the "table" number passed in amongst those configured for     */
4204 /* that particular type.  If the type is recognised then the function to    */
4205 /* call to do the IP address search will be change, regardless of whether   */
4206 /* or not the "table" number exists.                                        */
4207 /* ------------------------------------------------------------------------ */
4208 static void *fr_resolvelookup(type, number, funcptr, ifs)
4209 u_int type, number;
4210 lookupfunc_t *funcptr;
4211 ipf_stack_t *ifs;
4212 {
4213 	char name[FR_GROUPLEN];
4214 	iphtable_t *iph;
4215 	ip_pool_t *ipo;
4216 	void *ptr;
4217 
4218 #if defined(SNPRINTF) && defined(_KERNEL)
4219 	(void) SNPRINTF(name, sizeof(name), "%u", number);
4220 #else
4221 	(void) sprintf(name, "%u", number);
4222 #endif
4223 
4224 	READ_ENTER(&ifs->ifs_ip_poolrw);
4225 
4226 	switch (type)
4227 	{
4228 	case IPLT_POOL :
4229 # if (defined(__osf__) && defined(_KERNEL))
4230 		ptr = NULL;
4231 		*funcptr = NULL;
4232 # else
4233 		ipo = ip_pool_find(IPL_LOGIPF, name, ifs);
4234 		ptr = ipo;
4235 		if (ipo != NULL) {
4236 			ATOMIC_INC32(ipo->ipo_ref);
4237 		}
4238 		*funcptr = ip_pool_search;
4239 # endif
4240 		break;
4241 	case IPLT_HASH :
4242 		iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4243 		ptr = iph;
4244 		if (iph != NULL) {
4245 			ATOMIC_INC32(iph->iph_ref);
4246 		}
4247 		*funcptr = fr_iphmfindip;
4248 		break;
4249 	default:
4250 		ptr = NULL;
4251 		*funcptr = NULL;
4252 		break;
4253 	}
4254 	RWLOCK_EXIT(&ifs->ifs_ip_poolrw);
4255 
4256 	return ptr;
4257 }
4258 #endif
4259 
4260 
4261 /* ------------------------------------------------------------------------ */
4262 /* Function:    frrequest                                                   */
4263 /* Returns:     int - 0 == success, > 0 == errno value                      */
4264 /* Parameters:  unit(I)     - device for which this is for                  */
4265 /*              req(I)      - ioctl command (SIOC*)                         */
4266 /*              data(I)     - pointr to ioctl data                          */
4267 /*              set(I)      - 1 or 0 (filter set)                           */
4268 /*              makecopy(I) - flag indicating whether data points to a rule */
4269 /*                            in kernel space & hence doesn't need copying. */
4270 /*                                                                          */
4271 /* This function handles all the requests which operate on the list of      */
4272 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4273 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4274 /* names are resolved here and other sanity checks are made on the content  */
4275 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4276 /* then make sure they are created and initialised before exiting.          */
4277 /* ------------------------------------------------------------------------ */
4278 int frrequest(unit, req, data, set, makecopy, ifs)
4279 int unit;
4280 ioctlcmd_t req;
4281 int set, makecopy;
4282 caddr_t data;
4283 ipf_stack_t *ifs;
4284 {
4285 	frentry_t frd, *fp, *f, **fprev, **ftail;
4286 	int error = 0, in, v;
4287 	void *ptr, *uptr;
4288 	u_int *p, *pp;
4289 	frgroup_t *fg;
4290 	char *group;
4291 
4292 	fg = NULL;
4293 	fp = &frd;
4294 	if (makecopy != 0) {
4295 		error = fr_inobj(data, fp, IPFOBJ_FRENTRY);
4296 		if (error)
4297 			return EFAULT;
4298 		if ((fp->fr_flags & FR_T_BUILTIN) != 0)
4299 			return EINVAL;
4300 		fp->fr_ref = 0;
4301 		fp->fr_flags |= FR_COPIED;
4302 	} else {
4303 		fp = (frentry_t *)data;
4304 		if ((fp->fr_type & FR_T_BUILTIN) == 0)
4305 			return EINVAL;
4306 		fp->fr_flags &= ~FR_COPIED;
4307 	}
4308 
4309 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4310 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL)))
4311 		return EINVAL;
4312 
4313 	v = fp->fr_v;
4314 	uptr = fp->fr_data;
4315 
4316 	/*
4317 	 * Only filter rules for IPv4 or IPv6 are accepted.
4318 	 */
4319 	if (v == 4)
4320 		/*EMPTY*/;
4321 #ifdef	USE_INET6
4322 	else if (v == 6)
4323 		/*EMPTY*/;
4324 #endif
4325 	else {
4326 		return EINVAL;
4327 	}
4328 
4329 	/*
4330 	 * If the rule is being loaded from user space, i.e. we had to copy it
4331 	 * into kernel space, then do not trust the function pointer in the
4332 	 * rule.
4333 	 */
4334 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4335 		if (fr_findfunc(fp->fr_func) == NULL)
4336 			return ESRCH;
4337 		error = fr_funcinit(fp, ifs);
4338 		if (error != 0)
4339 			return error;
4340 	}
4341 
4342 	ptr = NULL;
4343 	/*
4344 	 * Check that the group number does exist and that its use (in/out)
4345 	 * matches what the rule is.
4346 	 */
4347 	if (!strncmp(fp->fr_grhead, "0", FR_GROUPLEN))
4348 		*fp->fr_grhead = '\0';
4349 	group = fp->fr_group;
4350 	if (!strncmp(group, "0", FR_GROUPLEN))
4351 		*group = '\0';
4352 
4353 	if (FR_ISACCOUNT(fp->fr_flags))
4354 		unit = IPL_LOGCOUNT;
4355 
4356 	if ((req != (int)SIOCZRLST) && (*group != '\0')) {
4357 		fg = fr_findgroup(group, unit, set, NULL, ifs);
4358 		if (fg == NULL)
4359 			return ESRCH;
4360 		if (fg->fg_flags == 0)
4361 			fg->fg_flags = fp->fr_flags & FR_INOUT;
4362 		else if (fg->fg_flags != (fp->fr_flags & FR_INOUT))
4363 			return ESRCH;
4364 	}
4365 
4366 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4367 
4368 	/*
4369 	 * Work out which rule list this change is being applied to.
4370 	 */
4371 	ftail = NULL;
4372 	fprev = NULL;
4373 	if (unit == IPL_LOGAUTH)
4374 		fprev = &ifs->ifs_ipauth;
4375 	else if (v == 4) {
4376 		if (FR_ISACCOUNT(fp->fr_flags))
4377 			fprev = &ifs->ifs_ipacct[in][set];
4378 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4379 			fprev = &ifs->ifs_ipfilter[in][set];
4380 	} else if (v == 6) {
4381 		if (FR_ISACCOUNT(fp->fr_flags))
4382 			fprev = &ifs->ifs_ipacct6[in][set];
4383 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4384 			fprev = &ifs->ifs_ipfilter6[in][set];
4385 	}
4386 	if (fprev == NULL)
4387 		return ESRCH;
4388 
4389 	if (*group != '\0') {
4390 	    if (!fg && !(fg = fr_findgroup(group, unit, set, NULL, ifs)))
4391 			return ESRCH;
4392 		fprev = &fg->fg_start;
4393 	}
4394 
4395 	ftail = fprev;
4396 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4397 		if (fp->fr_collect <= f->fr_collect) {
4398 			ftail = fprev;
4399 			f = NULL;
4400 			break;
4401 		}
4402 		fprev = ftail;
4403 	}
4404 
4405 	/*
4406 	 * Copy in extra data for the rule.
4407 	 */
4408 	if (fp->fr_dsize != 0) {
4409 		if (makecopy != 0) {
4410 			KMALLOCS(ptr, void *, fp->fr_dsize);
4411 			if (!ptr)
4412 				return ENOMEM;
4413 			error = COPYIN(uptr, ptr, fp->fr_dsize);
4414 		} else {
4415 			ptr = uptr;
4416 			error = 0;
4417 		}
4418 		if (error != 0) {
4419 			KFREES(ptr, fp->fr_dsize);
4420 			return EFAULT;
4421 		}
4422 		fp->fr_data = ptr;
4423 	} else
4424 		fp->fr_data = NULL;
4425 
4426 	/*
4427 	 * Perform per-rule type sanity checks of their members.
4428 	 */
4429 	switch (fp->fr_type & ~FR_T_BUILTIN)
4430 	{
4431 #if defined(IPFILTER_BPF)
4432 	case FR_T_BPFOPC :
4433 		if (fp->fr_dsize == 0)
4434 			return EINVAL;
4435 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4436 			if (makecopy && fp->fr_data != NULL) {
4437 				KFREES(fp->fr_data, fp->fr_dsize);
4438 			}
4439 			return EINVAL;
4440 		}
4441 		break;
4442 #endif
4443 	case FR_T_IPF :
4444 		if (fp->fr_dsize != sizeof(fripf_t)) {
4445 			if (makecopy && fp->fr_data != NULL) {
4446 				KFREES(fp->fr_data, fp->fr_dsize);
4447 			}
4448 			return EINVAL;
4449 		}
4450 
4451 		/*
4452 		 * Allowing a rule with both "keep state" and "with oow" is
4453 		 * pointless because adding a state entry to the table will
4454 		 * fail with the out of window (oow) flag set.
4455 		 */
4456 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4457 			if (makecopy && fp->fr_data != NULL) {
4458 				KFREES(fp->fr_data, fp->fr_dsize);
4459 			}
4460 			return EINVAL;
4461 		}
4462 
4463 		switch (fp->fr_satype)
4464 		{
4465 		case FRI_BROADCAST :
4466 		case FRI_DYNAMIC :
4467 		case FRI_NETWORK :
4468 		case FRI_NETMASKED :
4469 		case FRI_PEERADDR :
4470 			if (fp->fr_sifpidx < 0 || fp->fr_sifpidx > 3) {
4471 				if (makecopy && fp->fr_data != NULL) {
4472 					KFREES(fp->fr_data, fp->fr_dsize);
4473 				}
4474 				return EINVAL;
4475 			}
4476 			break;
4477 #ifdef	IPFILTER_LOOKUP
4478 		case FRI_LOOKUP :
4479 			fp->fr_srcptr = fr_resolvelookup(fp->fr_srctype,
4480 							 fp->fr_srcnum,
4481 							 &fp->fr_srcfunc, ifs);
4482 			break;
4483 #endif
4484 		default :
4485 			break;
4486 		}
4487 
4488 		switch (fp->fr_datype)
4489 		{
4490 		case FRI_BROADCAST :
4491 		case FRI_DYNAMIC :
4492 		case FRI_NETWORK :
4493 		case FRI_NETMASKED :
4494 		case FRI_PEERADDR :
4495 			if (fp->fr_difpidx < 0 || fp->fr_difpidx > 3) {
4496 				if (makecopy && fp->fr_data != NULL) {
4497 					KFREES(fp->fr_data, fp->fr_dsize);
4498 				}
4499 				return EINVAL;
4500 			}
4501 			break;
4502 #ifdef	IPFILTER_LOOKUP
4503 		case FRI_LOOKUP :
4504 			fp->fr_dstptr = fr_resolvelookup(fp->fr_dsttype,
4505 							 fp->fr_dstnum,
4506 							 &fp->fr_dstfunc, ifs);
4507 			break;
4508 #endif
4509 		default :
4510 			break;
4511 		}
4512 		break;
4513 	case FR_T_NONE :
4514 		break;
4515 	case FR_T_CALLFUNC :
4516 		break;
4517 	case FR_T_COMPIPF :
4518 		break;
4519 	default :
4520 		if (makecopy && fp->fr_data != NULL) {
4521 			KFREES(fp->fr_data, fp->fr_dsize);
4522 		}
4523 		return EINVAL;
4524 	}
4525 
4526 	/*
4527 	 * Lookup all the interface names that are part of the rule.
4528 	 */
4529 	frsynclist(0, 0, NULL, NULL, fp, ifs);
4530 	fp->fr_statecnt = 0;
4531 
4532 	/*
4533 	 * Look for an existing matching filter rule, but don't include the
4534 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4535 	 * This elminates rules which are indentical being loaded.  Checksum
4536 	 * the constant part of the filter rule to make comparisons quicker
4537 	 * (this meaning no pointers are included).
4538 	 */
4539 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4540 	     p < pp; p++)
4541 		fp->fr_cksum += *p;
4542 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4543 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4544 		fp->fr_cksum += *p;
4545 
4546 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
4547 	bzero((char *)ifs->ifs_frcache, sizeof (ifs->ifs_frcache));
4548 
4549 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4550 		if ((fp->fr_cksum != f->fr_cksum) ||
4551 		    (f->fr_dsize != fp->fr_dsize))
4552 			continue;
4553 		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func, FR_CMPSIZ))
4554 			continue;
4555 		if ((!ptr && !f->fr_data) ||
4556 		    (ptr && f->fr_data &&
4557 		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4558 			break;
4559 	}
4560 
4561 	/*
4562 	 * If zero'ing statistics, copy current to caller and zero.
4563 	 */
4564 	if (req == (ioctlcmd_t)SIOCZRLST) {
4565 		if (f == NULL)
4566 			error = ESRCH;
4567 		else {
4568 			/*
4569 			 * Copy and reduce lock because of impending copyout.
4570 			 * Well we should, but if we do then the atomicity of
4571 			 * this call and the correctness of fr_hits and
4572 			 * fr_bytes cannot be guaranteed.  As it is, this code
4573 			 * only resets them to 0 if they are successfully
4574 			 * copied out into user space.
4575 			 */
4576 			bcopy((char *)f, (char *)fp, sizeof(*f));
4577 
4578 			/*
4579 			 * When we copy this rule back out, set the data
4580 			 * pointer to be what it was in user space.
4581 			 */
4582 			fp->fr_data = uptr;
4583 			error = fr_outobj(data, fp, IPFOBJ_FRENTRY);
4584 
4585 			if (error == 0) {
4586 				if ((f->fr_dsize != 0) && (uptr != NULL))
4587 					error = COPYOUT(f->fr_data, uptr,
4588 							f->fr_dsize);
4589 				if (error == 0) {
4590 					f->fr_hits = 0;
4591 					f->fr_bytes = 0;
4592 				}
4593 			}
4594 		}
4595 
4596 		if ((ptr != NULL) && (makecopy != 0)) {
4597 			KFREES(ptr, fp->fr_dsize);
4598 		}
4599 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4600 		return error;
4601 	}
4602 
4603 	if (!f) {
4604 		/*
4605 		 * At the end of this, ftail must point to the place where the
4606 		 * new rule is to be saved/inserted/added.
4607 		 * For SIOCAD*FR, this should be the last rule in the group of
4608 		 * rules that have equal fr_collect fields.
4609 		 * For SIOCIN*FR, ...
4610 		 */
4611 		if (req == (ioctlcmd_t)SIOCADAFR ||
4612 		    req == (ioctlcmd_t)SIOCADIFR) {
4613 
4614 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4615 				if (f->fr_collect > fp->fr_collect)
4616 					break;
4617 				ftail = &f->fr_next;
4618 			}
4619 			f = NULL;
4620 			ptr = NULL;
4621 			error = 0;
4622 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4623 			   req == (ioctlcmd_t)SIOCINIFR) {
4624 			while ((f = *fprev) != NULL) {
4625 				if (f->fr_collect >= fp->fr_collect)
4626 					break;
4627 				fprev = &f->fr_next;
4628 			}
4629 			ftail = fprev;
4630 			if (fp->fr_hits != 0) {
4631 				while (fp->fr_hits && (f = *ftail)) {
4632 					if (f->fr_collect != fp->fr_collect)
4633 						break;
4634 					fprev = ftail;
4635 					ftail = &f->fr_next;
4636 					fp->fr_hits--;
4637 				}
4638 			}
4639 			f = NULL;
4640 			ptr = NULL;
4641 			error = 0;
4642 		}
4643 	}
4644 
4645 	/*
4646 	 * Request to remove a rule.
4647 	 */
4648 	if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR) {
4649 		if (!f)
4650 			error = ESRCH;
4651 		else {
4652 			/*
4653 			 * Do not allow activity from user space to interfere
4654 			 * with rules not loaded that way.
4655 			 */
4656 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4657 				error = EPERM;
4658 				goto done;
4659 			}
4660 
4661 			/*
4662 			 * Return EBUSY if the rule is being reference by
4663 			 * something else (eg state information.
4664 			 */
4665 			if (f->fr_ref > 1) {
4666 				error = EBUSY;
4667 				goto done;
4668 			}
4669 #ifdef	IPFILTER_SCAN
4670 			if (f->fr_isctag[0] != '\0' &&
4671 			    (f->fr_isc != (struct ipscan *)-1))
4672 				ipsc_detachfr(f);
4673 #endif
4674 			if (unit == IPL_LOGAUTH) {
4675 				error = fr_preauthcmd(req, f, ftail, ifs);
4676 				goto done;
4677 			}
4678 			if (*f->fr_grhead != '\0')
4679 				fr_delgroup(f->fr_grhead, unit, set, ifs);
4680 			fr_fixskip(ftail, f, -1);
4681 			*ftail = f->fr_next;
4682 			f->fr_next = NULL;
4683 			(void)fr_derefrule(&f, ifs);
4684 		}
4685 	} else {
4686 		/*
4687 		 * Not removing, so we must be adding/inserting a rule.
4688 		 */
4689 		if (f)
4690 			error = EEXIST;
4691 		else {
4692 			if (unit == IPL_LOGAUTH) {
4693 				error = fr_preauthcmd(req, fp, ftail, ifs);
4694 				goto done;
4695 			}
4696 			if (makecopy) {
4697 				KMALLOC(f, frentry_t *);
4698 			} else
4699 				f = fp;
4700 			if (f != NULL) {
4701 				if (fp != f)
4702 					bcopy((char *)fp, (char *)f,
4703 					      sizeof(*f));
4704 				MUTEX_NUKE(&f->fr_lock);
4705 				MUTEX_INIT(&f->fr_lock, "filter rule lock");
4706 #ifdef	IPFILTER_SCAN
4707 				if (f->fr_isctag[0] != '\0' &&
4708 				    ipsc_attachfr(f))
4709 					f->fr_isc = (struct ipscan *)-1;
4710 #endif
4711 				f->fr_hits = 0;
4712 				if (makecopy != 0)
4713 					f->fr_ref = 1;
4714 				f->fr_next = *ftail;
4715 				*ftail = f;
4716 				if (req == (ioctlcmd_t)SIOCINIFR ||
4717 				    req == (ioctlcmd_t)SIOCINAFR)
4718 					fr_fixskip(ftail, f, 1);
4719 				f->fr_grp = NULL;
4720 				group = f->fr_grhead;
4721 				if (*group != '\0') {
4722 					fg = fr_addgroup(group, f, f->fr_flags,
4723 							 unit, set, ifs);
4724 					if (fg != NULL)
4725 						f->fr_grp = &fg->fg_start;
4726 				}
4727 			} else
4728 				error = ENOMEM;
4729 		}
4730 	}
4731 done:
4732 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
4733 	if ((ptr != NULL) && (error != 0) && (makecopy != 0)) {
4734 		KFREES(ptr, fp->fr_dsize);
4735 	}
4736 	return (error);
4737 }
4738 
4739 
4740 /* ------------------------------------------------------------------------ */
4741 /* Function:    fr_funcinit                                                 */
4742 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
4743 /* Parameters:  fr(I) - pointer to filter rule                              */
4744 /*                                                                          */
4745 /* If a rule is a call rule, then check if the function it points to needs  */
4746 /* an init function to be called now the rule has been loaded.              */
4747 /* ------------------------------------------------------------------------ */
4748 static int fr_funcinit(fr, ifs)
4749 frentry_t *fr;
4750 ipf_stack_t *ifs;
4751 {
4752 	ipfunc_resolve_t *ft;
4753 	int err;
4754 
4755 	err = ESRCH;
4756 
4757 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4758 		if (ft->ipfu_addr == fr->fr_func) {
4759 			err = 0;
4760 			if (ft->ipfu_init != NULL)
4761 				err = (*ft->ipfu_init)(fr, ifs);
4762 			break;
4763 		}
4764 	return err;
4765 }
4766 
4767 
4768 /* ------------------------------------------------------------------------ */
4769 /* Function:    fr_findfunc                                                 */
4770 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
4771 /* Parameters:  funcptr(I) - function pointer to lookup                     */
4772 /*                                                                          */
4773 /* Look for a function in the table of known functions.                     */
4774 /* ------------------------------------------------------------------------ */
4775 static ipfunc_t fr_findfunc(funcptr)
4776 ipfunc_t funcptr;
4777 {
4778 	ipfunc_resolve_t *ft;
4779 
4780 	for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4781 		if (ft->ipfu_addr == funcptr)
4782 			return funcptr;
4783 	return NULL;
4784 }
4785 
4786 
4787 /* ------------------------------------------------------------------------ */
4788 /* Function:    fr_resolvefunc                                              */
4789 /* Returns:     int - 0 == success, else error                              */
4790 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
4791 /*                                                                          */
4792 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
4793 /* This will either be the function name (if the pointer is set) or the     */
4794 /* function pointer if the name is set.  When found, fill in the other one  */
4795 /* so that the entire, complete, structure can be copied back to user space.*/
4796 /* ------------------------------------------------------------------------ */
4797 int fr_resolvefunc(data)
4798 void *data;
4799 {
4800 	ipfunc_resolve_t res, *ft;
4801 	int err;
4802 
4803 	err = BCOPYIN(data, &res, sizeof(res));
4804 	if (err != 0)
4805 		return EFAULT;
4806 
4807 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
4808 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4809 			if (strncmp(res.ipfu_name, ft->ipfu_name,
4810 				    sizeof(res.ipfu_name)) == 0) {
4811 				res.ipfu_addr = ft->ipfu_addr;
4812 				res.ipfu_init = ft->ipfu_init;
4813 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4814 					return EFAULT;
4815 				return 0;
4816 			}
4817 	}
4818 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
4819 		for (ft = fr_availfuncs; ft->ipfu_addr != NULL; ft++)
4820 			if (ft->ipfu_addr == res.ipfu_addr) {
4821 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
4822 					       sizeof(res.ipfu_name));
4823 				res.ipfu_init = ft->ipfu_init;
4824 				if (COPYOUT(&res, data, sizeof(res)) != 0)
4825 					return EFAULT;
4826 				return 0;
4827 			}
4828 	}
4829 	return ESRCH;
4830 }
4831 
4832 
4833 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && !defined(__FreeBSD__)) || \
4834     (defined(__FreeBSD__) && (__FreeBSD_version < 490000)) || \
4835     (defined(__NetBSD__) && (__NetBSD_Version__ < 105000000)) || \
4836     (defined(__OpenBSD__) && (OpenBSD < 200006))
4837 /*
4838  * From: NetBSD
4839  * ppsratecheck(): packets (or events) per second limitation.
4840  */
4841 int
4842 ppsratecheck(lasttime, curpps, maxpps)
4843 	struct timeval *lasttime;
4844 	int *curpps;
4845 	int maxpps;	/* maximum pps allowed */
4846 {
4847 	struct timeval tv, delta;
4848 	int rv;
4849 
4850 	GETKTIME(&tv);
4851 
4852 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
4853 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
4854 	if (delta.tv_usec < 0) {
4855 		delta.tv_sec--;
4856 		delta.tv_usec += 1000000;
4857 	}
4858 
4859 	/*
4860 	 * check for 0,0 is so that the message will be seen at least once.
4861 	 * if more than one second have passed since the last update of
4862 	 * lasttime, reset the counter.
4863 	 *
4864 	 * we do increment *curpps even in *curpps < maxpps case, as some may
4865 	 * try to use *curpps for stat purposes as well.
4866 	 */
4867 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
4868 	    delta.tv_sec >= 1) {
4869 		*lasttime = tv;
4870 		*curpps = 0;
4871 		rv = 1;
4872 	} else if (maxpps < 0)
4873 		rv = 1;
4874 	else if (*curpps < maxpps)
4875 		rv = 1;
4876 	else
4877 		rv = 0;
4878 	*curpps = *curpps + 1;
4879 
4880 	return (rv);
4881 }
4882 #endif
4883 
4884 
4885 /* ------------------------------------------------------------------------ */
4886 /* Function:    fr_derefrule                                                */
4887 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
4888 /* Parameters:  fr(I) - pointer to filter rule                              */
4889 /*                                                                          */
4890 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
4891 /* free it and any associated storage space being used by it.               */
4892 /* ------------------------------------------------------------------------ */
4893 int fr_derefrule(frp, ifs)
4894 frentry_t **frp;
4895 ipf_stack_t *ifs;
4896 {
4897 	frentry_t *fr;
4898 
4899 	fr = *frp;
4900 
4901 	MUTEX_ENTER(&fr->fr_lock);
4902 	fr->fr_ref--;
4903 	if (fr->fr_ref == 0) {
4904 		MUTEX_EXIT(&fr->fr_lock);
4905 		MUTEX_DESTROY(&fr->fr_lock);
4906 
4907 #ifdef IPFILTER_LOOKUP
4908 		if (fr->fr_type == FR_T_IPF && fr->fr_satype == FRI_LOOKUP)
4909 		    ip_lookup_deref(fr->fr_srctype, fr->fr_srcptr, ifs);
4910 		if (fr->fr_type == FR_T_IPF && fr->fr_datype == FRI_LOOKUP)
4911 		    ip_lookup_deref(fr->fr_dsttype, fr->fr_dstptr, ifs);
4912 #endif
4913 
4914 		if (fr->fr_dsize) {
4915 			KFREES(fr->fr_data, fr->fr_dsize);
4916 		}
4917 		if ((fr->fr_flags & FR_COPIED) != 0) {
4918 			KFREE(fr);
4919 			return 0;
4920 		}
4921 		return 1;
4922 	} else {
4923 		MUTEX_EXIT(&fr->fr_lock);
4924 	}
4925 	*frp = NULL;
4926 	return -1;
4927 }
4928 
4929 
4930 #ifdef	IPFILTER_LOOKUP
4931 /* ------------------------------------------------------------------------ */
4932 /* Function:    fr_grpmapinit                                               */
4933 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
4934 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
4935 /*                                                                          */
4936 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
4937 /* fr_ptr is later used by fr_srcgrpmap and fr_dstgrpmap.                   */
4938 /* ------------------------------------------------------------------------ */
4939 static int fr_grpmapinit(fr, ifs)
4940 frentry_t *fr;
4941 ipf_stack_t *ifs;
4942 {
4943 	char name[FR_GROUPLEN];
4944 	iphtable_t *iph;
4945 
4946 #if defined(SNPRINTF) && defined(_KERNEL)
4947 	(void) SNPRINTF(name, sizeof(name), "%d", fr->fr_arg);
4948 #else
4949 	(void) sprintf(name, "%d", fr->fr_arg);
4950 #endif
4951 	iph = fr_findhtable(IPL_LOGIPF, name, ifs);
4952 	if (iph == NULL)
4953 		return ESRCH;
4954 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT))
4955 		return ESRCH;
4956 	fr->fr_ptr = iph;
4957 	return 0;
4958 }
4959 
4960 
4961 /* ------------------------------------------------------------------------ */
4962 /* Function:    fr_srcgrpmap                                                */
4963 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4964 /* Parameters:  fin(I)    - pointer to packet information                   */
4965 /*              passp(IO) - pointer to current/new filter decision (unused) */
4966 /*                                                                          */
4967 /* Look for a rule group head in a hash table, using the source address as  */
4968 /* the key, and descend into that group and continue matching rules against */
4969 /* the packet.                                                              */
4970 /* ------------------------------------------------------------------------ */
4971 frentry_t *fr_srcgrpmap(fin, passp)
4972 fr_info_t *fin;
4973 u_32_t *passp;
4974 {
4975 	frgroup_t *fg;
4976 	void *rval;
4977 	ipf_stack_t *ifs = fin->fin_ifs;
4978 
4979 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_src, ifs);
4980 	if (rval == NULL)
4981 		return NULL;
4982 
4983 	fg = rval;
4984 	fin->fin_fr = fg->fg_start;
4985 	(void) fr_scanlist(fin, *passp);
4986 	return fin->fin_fr;
4987 }
4988 
4989 
4990 /* ------------------------------------------------------------------------ */
4991 /* Function:    fr_dstgrpmap                                                */
4992 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
4993 /* Parameters:  fin(I)    - pointer to packet information                   */
4994 /*              passp(IO) - pointer to current/new filter decision (unused) */
4995 /*                                                                          */
4996 /* Look for a rule group head in a hash table, using the destination        */
4997 /* address as the key, and descend into that group and continue matching    */
4998 /* rules against  the packet.                                               */
4999 /* ------------------------------------------------------------------------ */
5000 frentry_t *fr_dstgrpmap(fin, passp)
5001 fr_info_t *fin;
5002 u_32_t *passp;
5003 {
5004 	frgroup_t *fg;
5005 	void *rval;
5006 	ipf_stack_t *ifs = fin->fin_ifs;
5007 
5008 	rval = fr_iphmfindgroup(fin->fin_fr->fr_ptr, fin->fin_v, &fin->fin_dst, ifs);
5009 	if (rval == NULL)
5010 		return NULL;
5011 
5012 	fg = rval;
5013 	fin->fin_fr = fg->fg_start;
5014 	(void) fr_scanlist(fin, *passp);
5015 	return fin->fin_fr;
5016 }
5017 #endif /* IPFILTER_LOOKUP */
5018 
5019 /*
5020  * Queue functions
5021  * ===============
5022  * These functions manage objects on queues for efficient timeouts.  There are
5023  * a number of system defined queues as well as user defined timeouts.  It is
5024  * expected that a lock is held in the domain in which the queue belongs
5025  * (i.e. either state or NAT) when calling any of these functions that prevents
5026  * fr_freetimeoutqueue() from being called at the same time as any other.
5027  */
5028 
5029 
5030 /* ------------------------------------------------------------------------ */
5031 /* Function:    fr_addtimeoutqueue                                          */
5032 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5033 /*                               timeout queue with given interval.         */
5034 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5035 /*                           of interface queues.                           */
5036 /*              seconds(I) - timeout value in seconds for this queue.       */
5037 /*                                                                          */
5038 /* This routine first looks for a timeout queue that matches the interval   */
5039 /* being requested.  If it finds one, increments the reference counter and  */
5040 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5041 /* inserts it at the top of the list.                                       */
5042 /*                                                                          */
5043 /* Locking.                                                                 */
5044 /* It is assumed that the caller of this function has an appropriate lock   */
5045 /* held (exclusively) in the domain that encompases 'parent'.               */
5046 /* ------------------------------------------------------------------------ */
5047 ipftq_t *fr_addtimeoutqueue(parent, seconds, ifs)
5048 ipftq_t **parent;
5049 u_int seconds;
5050 ipf_stack_t *ifs;
5051 {
5052 	ipftq_t *ifq;
5053 	u_int period;
5054 
5055 	period = seconds * IPF_HZ_DIVIDE;
5056 
5057 	MUTEX_ENTER(&ifs->ifs_ipf_timeoutlock);
5058 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5059 		if (ifq->ifq_ttl == period) {
5060 			/*
5061 			 * Reset the delete flag, if set, so the structure
5062 			 * gets reused rather than freed and reallocated.
5063 			 */
5064 			MUTEX_ENTER(&ifq->ifq_lock);
5065 			ifq->ifq_flags &= ~IFQF_DELETE;
5066 			ifq->ifq_ref++;
5067 			MUTEX_EXIT(&ifq->ifq_lock);
5068 			MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
5069 
5070 			return ifq;
5071 		}
5072 	}
5073 
5074 	KMALLOC(ifq, ipftq_t *);
5075 	if (ifq != NULL) {
5076 		ifq->ifq_ttl = period;
5077 		ifq->ifq_head = NULL;
5078 		ifq->ifq_tail = &ifq->ifq_head;
5079 		ifq->ifq_next = *parent;
5080 		ifq->ifq_pnext = parent;
5081 		ifq->ifq_ref = 1;
5082 		ifq->ifq_flags = IFQF_USER;
5083 		*parent = ifq;
5084 		ifs->ifs_fr_userifqs++;
5085 		MUTEX_NUKE(&ifq->ifq_lock);
5086 		MUTEX_INIT(&ifq->ifq_lock, "ipftq mutex");
5087 	}
5088 	MUTEX_EXIT(&ifs->ifs_ipf_timeoutlock);
5089 	return ifq;
5090 }
5091 
5092 
5093 /* ------------------------------------------------------------------------ */
5094 /* Function:    fr_deletetimeoutqueue                                       */
5095 /* Returns:     int    - new reference count value of the timeout queue     */
5096 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5097 /* Locks:       ifq->ifq_lock                                               */
5098 /*                                                                          */
5099 /* This routine must be called when we're discarding a pointer to a timeout */
5100 /* queue object, taking care of the reference counter.                      */
5101 /*                                                                          */
5102 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5103 /* check the list of user defined timeout queues and call the free function */
5104 /* below (currently commented out) to stop memory leaking.  It is done this */
5105 /* way because the locking may not be sufficient to safely do a free when   */
5106 /* this function is called.                                                 */
5107 /* ------------------------------------------------------------------------ */
5108 int fr_deletetimeoutqueue(ifq)
5109 ipftq_t *ifq;
5110 {
5111 
5112 	ifq->ifq_ref--;
5113 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5114 		ifq->ifq_flags |= IFQF_DELETE;
5115 	}
5116 
5117 	return ifq->ifq_ref;
5118 }
5119 
5120 
5121 /* ------------------------------------------------------------------------ */
5122 /* Function:    fr_freetimeoutqueue                                         */
5123 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5124 /* Returns:     Nil                                                         */
5125 /*                                                                          */
5126 /* Locking:                                                                 */
5127 /* It is assumed that the caller of this function has an appropriate lock   */
5128 /* held (exclusively) in the domain that encompases the callers "domain".   */
5129 /* The ifq_lock for this structure should not be held.                      */
5130 /*                                                                          */
5131 /* Remove a user definde timeout queue from the list of queues it is in and */
5132 /* tidy up after this is done.                                              */
5133 /* ------------------------------------------------------------------------ */
5134 void fr_freetimeoutqueue(ifq, ifs)
5135 ipftq_t *ifq;
5136 ipf_stack_t *ifs;
5137 {
5138 
5139 
5140 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5141 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5142 		printf("fr_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5143 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5144 		       ifq->ifq_ref);
5145 		return;
5146 	}
5147 
5148 	/*
5149 	 * Remove from its position in the list.
5150 	 */
5151 	*ifq->ifq_pnext = ifq->ifq_next;
5152 	if (ifq->ifq_next != NULL)
5153 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5154 
5155 	MUTEX_DESTROY(&ifq->ifq_lock);
5156 	ifs->ifs_fr_userifqs--;
5157 	KFREE(ifq);
5158 }
5159 
5160 
5161 /* ------------------------------------------------------------------------ */
5162 /* Function:    fr_deletequeueentry                                         */
5163 /* Returns:     Nil                                                         */
5164 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5165 /*              ifq(I) - timeout queue to remove entry from                 */
5166 /*                                                                          */
5167 /* Remove a tail queue entry from its queue and make it an orphan.          */
5168 /* fr_deletetimeoutqueue is called to make sure the reference count on the  */
5169 /* queue is correct.  We can't, however, call fr_freetimeoutqueue because   */
5170 /* the correct lock(s) may not be held that would make it safe to do so.    */
5171 /* ------------------------------------------------------------------------ */
5172 void fr_deletequeueentry(tqe)
5173 ipftqent_t *tqe;
5174 {
5175 	ipftq_t *ifq;
5176 
5177 	ifq = tqe->tqe_ifq;
5178 	if (ifq == NULL)
5179 		return;
5180 
5181 	MUTEX_ENTER(&ifq->ifq_lock);
5182 
5183 	if (tqe->tqe_pnext != NULL) {
5184 		*tqe->tqe_pnext = tqe->tqe_next;
5185 		if (tqe->tqe_next != NULL)
5186 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5187 		else    /* we must be the tail anyway */
5188 			ifq->ifq_tail = tqe->tqe_pnext;
5189 
5190 		tqe->tqe_pnext = NULL;
5191 		tqe->tqe_ifq = NULL;
5192 	}
5193 
5194 	(void) fr_deletetimeoutqueue(ifq);
5195 
5196 	MUTEX_EXIT(&ifq->ifq_lock);
5197 }
5198 
5199 
5200 /* ------------------------------------------------------------------------ */
5201 /* Function:    fr_queuefront                                               */
5202 /* Returns:     Nil                                                         */
5203 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5204 /*                                                                          */
5205 /* Move a queue entry to the front of the queue, if it isn't already there. */
5206 /* ------------------------------------------------------------------------ */
5207 void fr_queuefront(tqe)
5208 ipftqent_t *tqe;
5209 {
5210 	ipftq_t *ifq;
5211 
5212 	ifq = tqe->tqe_ifq;
5213 	if (ifq == NULL)
5214 		return;
5215 
5216 	MUTEX_ENTER(&ifq->ifq_lock);
5217 	if (ifq->ifq_head != tqe) {
5218 		*tqe->tqe_pnext = tqe->tqe_next;
5219 		if (tqe->tqe_next)
5220 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5221 		else
5222 			ifq->ifq_tail = tqe->tqe_pnext;
5223 
5224 		tqe->tqe_next = ifq->ifq_head;
5225 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5226 		ifq->ifq_head = tqe;
5227 		tqe->tqe_pnext = &ifq->ifq_head;
5228 	}
5229 	MUTEX_EXIT(&ifq->ifq_lock);
5230 }
5231 
5232 
5233 /* ------------------------------------------------------------------------ */
5234 /* Function:    fr_queueback                                                */
5235 /* Returns:     Nil                                                         */
5236 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5237 /*                                                                          */
5238 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5239 /* ------------------------------------------------------------------------ */
5240 void fr_queueback(tqe, ifs)
5241 ipftqent_t *tqe;
5242 ipf_stack_t *ifs;
5243 {
5244 	ipftq_t *ifq;
5245 
5246 	ifq = tqe->tqe_ifq;
5247 	if (ifq == NULL)
5248 		return;
5249 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5250 
5251 	MUTEX_ENTER(&ifq->ifq_lock);
5252 	if (tqe->tqe_next == NULL) {		/* at the end already ? */
5253 		MUTEX_EXIT(&ifq->ifq_lock);
5254 		return;
5255 	}
5256 
5257 	/*
5258 	 * Remove from list
5259 	 */
5260 	*tqe->tqe_pnext = tqe->tqe_next;
5261 	tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5262 
5263 	/*
5264 	 * Make it the last entry.
5265 	 */
5266 	tqe->tqe_next = NULL;
5267 	tqe->tqe_pnext = ifq->ifq_tail;
5268 	*ifq->ifq_tail = tqe;
5269 	ifq->ifq_tail = &tqe->tqe_next;
5270 	MUTEX_EXIT(&ifq->ifq_lock);
5271 }
5272 
5273 
5274 /* ------------------------------------------------------------------------ */
5275 /* Function:    fr_queueappend                                              */
5276 /* Returns:     Nil                                                         */
5277 /* Parameters:  tqe(I)    - pointer to timeout queue entry                  */
5278 /*              ifq(I)    - pointer to timeout queue                        */
5279 /*              parent(I) - owing object pointer                            */
5280 /*                                                                          */
5281 /* Add a new item to this queue and put it on the very end.                 */
5282 /* ------------------------------------------------------------------------ */
5283 void fr_queueappend(tqe, ifq, parent, ifs)
5284 ipftqent_t *tqe;
5285 ipftq_t *ifq;
5286 void *parent;
5287 ipf_stack_t *ifs;
5288 {
5289 
5290 	MUTEX_ENTER(&ifq->ifq_lock);
5291 	tqe->tqe_parent = parent;
5292 	tqe->tqe_pnext = ifq->ifq_tail;
5293 	*ifq->ifq_tail = tqe;
5294 	ifq->ifq_tail = &tqe->tqe_next;
5295 	tqe->tqe_next = NULL;
5296 	tqe->tqe_ifq = ifq;
5297 	tqe->tqe_die = ifs->ifs_fr_ticks + ifq->ifq_ttl;
5298 	ifq->ifq_ref++;
5299 	MUTEX_EXIT(&ifq->ifq_lock);
5300 }
5301 
5302 
5303 /* ------------------------------------------------------------------------ */
5304 /* Function:    fr_movequeue                                                */
5305 /* Returns:     Nil                                                         */
5306 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5307 /*              oifp(I) - old timeout queue entry was on                    */
5308 /*              nifp(I) - new timeout queue to put entry on                 */
5309 /*		ifs	- ipf stack instance				    */
5310 /*                                                                          */
5311 /* Move a queue entry from one timeout queue to another timeout queue.      */
5312 /* If it notices that the current entry is already last and does not need   */
5313 /* to move queue, the return.                                               */
5314 /* ------------------------------------------------------------------------ */
5315 void fr_movequeue(tqe, oifq, nifq, ifs)
5316 ipftqent_t *tqe;
5317 ipftq_t *oifq, *nifq;
5318 ipf_stack_t *ifs;
5319 {
5320 	/*
5321 	 * If the queue isn't changing, and the clock hasn't ticked
5322 	 * since the last update, the operation will be a no-op.
5323 	 */
5324 	if (oifq == nifq && tqe->tqe_touched == ifs->ifs_fr_ticks)
5325 		return;
5326 
5327 	/*
5328 	 * Grab the lock and update the timers.
5329 	 */
5330 	MUTEX_ENTER(&oifq->ifq_lock);
5331 	tqe->tqe_touched = ifs->ifs_fr_ticks;
5332 	tqe->tqe_die = ifs->ifs_fr_ticks + nifq->ifq_ttl;
5333 
5334 	/*
5335 	 * The remainder of the operation can still be a no-op.
5336 	 *
5337 	 * If the queue isn't changing, check to see if
5338 	 * an update would be meaningless.
5339 	 */
5340 	if (oifq == nifq) {
5341 		if ((tqe->tqe_next == NULL) ||
5342 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5343 			MUTEX_EXIT(&oifq->ifq_lock);
5344 			return;
5345 		}
5346 	}
5347 
5348 	/*
5349 	 * Remove from the old queue
5350 	 */
5351 	*tqe->tqe_pnext = tqe->tqe_next;
5352 	if (tqe->tqe_next)
5353 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5354 	else
5355 		oifq->ifq_tail = tqe->tqe_pnext;
5356 	tqe->tqe_next = NULL;
5357 
5358 	/*
5359 	 * If we're moving from one queue to another, release the lock on the
5360 	 * old queue and get a lock on the new queue.  For user defined queues,
5361 	 * if we're moving off it, call delete in case it can now be freed.
5362 	 */
5363 	if (oifq != nifq) {
5364 		tqe->tqe_ifq = NULL;
5365 
5366 		(void) fr_deletetimeoutqueue(oifq);
5367 
5368 		MUTEX_EXIT(&oifq->ifq_lock);
5369 
5370 		MUTEX_ENTER(&nifq->ifq_lock);
5371 
5372 		tqe->tqe_ifq = nifq;
5373 		nifq->ifq_ref++;
5374 	}
5375 
5376 	/*
5377 	 * Add to the bottom of the new queue
5378 	 */
5379 	tqe->tqe_pnext = nifq->ifq_tail;
5380 	*nifq->ifq_tail = tqe;
5381 	nifq->ifq_tail = &tqe->tqe_next;
5382 	MUTEX_EXIT(&nifq->ifq_lock);
5383 }
5384 
5385 
5386 /* ------------------------------------------------------------------------ */
5387 /* Function:    fr_updateipid                                               */
5388 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5389 /* Parameters:  fin(I) - pointer to packet information                      */
5390 /*                                                                          */
5391 /* When we are doing NAT, change the IP of every packet to represent a      */
5392 /* single sequence of packets coming from the host, hiding any host         */
5393 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5394 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5395 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5396 /* has no match in the cache, return an error.                              */
5397 /* ------------------------------------------------------------------------ */
5398 static INLINE int fr_updateipid(fin)
5399 fr_info_t *fin;
5400 {
5401 	u_short id, ido, sums;
5402 	u_32_t sumd, sum;
5403 	ip_t *ip;
5404 
5405 	if (fin->fin_off != 0) {
5406 		sum = fr_ipid_knownfrag(fin);
5407 		if (sum == 0xffffffff)
5408 			return -1;
5409 		sum &= 0xffff;
5410 		id = (u_short)sum;
5411 	} else {
5412 		id = fr_nextipid(fin);
5413 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5414 			(void) fr_ipid_newfrag(fin, (u_32_t)id);
5415 	}
5416 
5417 	ip = fin->fin_ip;
5418 	ido = ntohs(ip->ip_id);
5419 	if (id == ido)
5420 		return 0;
5421 	ip->ip_id = htons(id);
5422 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5423 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5424 	sum += sumd;
5425 	sum = (sum >> 16) + (sum & 0xffff);
5426 	sum = (sum >> 16) + (sum & 0xffff);
5427 	sums = ~(u_short)sum;
5428 	ip->ip_sum = htons(sums);
5429 	return 0;
5430 }
5431 
5432 
5433 #ifdef	NEED_FRGETIFNAME
5434 /* ------------------------------------------------------------------------ */
5435 /* Function:    fr_getifname                                                */
5436 /* Returns:     char *    - pointer to interface name                       */
5437 /* Parameters:  ifp(I)    - pointer to network interface                    */
5438 /*              buffer(O) - pointer to where to store interface name        */
5439 /*                                                                          */
5440 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5441 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5442 /* as a NULL pointer then return a pointer to a static array.               */
5443 /* ------------------------------------------------------------------------ */
5444 char *fr_getifname(ifp, buffer)
5445 struct ifnet *ifp;
5446 char *buffer;
5447 {
5448 	static char namebuf[LIFNAMSIZ];
5449 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5450      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5451      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5452 	int unit, space;
5453 	char temp[20];
5454 	char *s;
5455 # endif
5456 
5457 	ASSERT(buffer != NULL);
5458 #ifdef notdef
5459 	if (buffer == NULL)
5460 		buffer = namebuf;
5461 #endif
5462 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5463 	buffer[LIFNAMSIZ - 1] = '\0';
5464 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5465      defined(__sgi) || defined(_AIX51) || \
5466      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5467 	for (s = buffer; *s; s++)
5468 		;
5469 	unit = ifp->if_unit;
5470 	space = LIFNAMSIZ - (s - buffer);
5471 	if (space > 0) {
5472 #  if defined(SNPRINTF) && defined(_KERNEL)
5473 		(void) SNPRINTF(temp, sizeof(temp), "%d", unit);
5474 #  else
5475 		(void) sprintf(temp, "%d", unit);
5476 #  endif
5477 		(void) strncpy(s, temp, space);
5478 	}
5479 # endif
5480 	return buffer;
5481 }
5482 #endif
5483 
5484 
5485 /* ------------------------------------------------------------------------ */
5486 /* Function:    fr_ioctlswitch                                              */
5487 /* Returns:     int     - -1 continue processing, else ioctl return value   */
5488 /* Parameters:  unit(I) - device unit opened                                */
5489 /*              data(I) - pointer to ioctl data                             */
5490 /*              cmd(I)  - ioctl command                                     */
5491 /*              mode(I) - mode value                                        */
5492 /*                                                                          */
5493 /* Based on the value of unit, call the appropriate ioctl handler or return */
5494 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
5495 /* for the device in order to execute the ioctl.                            */
5496 /* ------------------------------------------------------------------------ */
5497 INLINE int fr_ioctlswitch(unit, data, cmd, mode, uid, ctx, ifs)
5498 int unit, mode, uid;
5499 ioctlcmd_t cmd;
5500 void *data, *ctx;
5501 ipf_stack_t *ifs;
5502 {
5503 	int error = 0;
5504 
5505 	switch (unit)
5506 	{
5507 	case IPL_LOGIPF :
5508 		error = -1;
5509 		break;
5510 	case IPL_LOGNAT :
5511 		if (ifs->ifs_fr_running > 0)
5512 			error = fr_nat_ioctl(data, cmd, mode, uid, ctx, ifs);
5513 		else
5514 			error = EIO;
5515 		break;
5516 	case IPL_LOGSTATE :
5517 		if (ifs->ifs_fr_running > 0)
5518 			error = fr_state_ioctl(data, cmd, mode, uid, ctx, ifs);
5519 		else
5520 			error = EIO;
5521 		break;
5522 	case IPL_LOGAUTH :
5523 		if (ifs->ifs_fr_running > 0) {
5524 			if ((cmd == (ioctlcmd_t)SIOCADAFR) ||
5525 			    (cmd == (ioctlcmd_t)SIOCRMAFR)) {
5526 				if (!(mode & FWRITE)) {
5527 					error = EPERM;
5528 				} else {
5529 					error = frrequest(unit, cmd, data,
5530 						  ifs->ifs_fr_active, 1, ifs);
5531 				}
5532 			} else {
5533 				error = fr_auth_ioctl(data, cmd, mode, uid, ctx, ifs);
5534 			}
5535 		} else
5536 			error = EIO;
5537 		break;
5538 	case IPL_LOGSYNC :
5539 #ifdef IPFILTER_SYNC
5540 		if (ifs->ifs_fr_running > 0)
5541 			error = fr_sync_ioctl(data, cmd, mode, ifs);
5542 		else
5543 #endif
5544 			error = EIO;
5545 		break;
5546 	case IPL_LOGSCAN :
5547 #ifdef IPFILTER_SCAN
5548 		if (ifs->ifs_fr_running > 0)
5549 			error = fr_scan_ioctl(data, cmd, mode, ifs);
5550 		else
5551 #endif
5552 			error = EIO;
5553 		break;
5554 	case IPL_LOGLOOKUP :
5555 #ifdef IPFILTER_LOOKUP
5556 		if (ifs->ifs_fr_running > 0)
5557 			error = ip_lookup_ioctl(data, cmd, mode, uid, ctx, ifs);
5558 		else
5559 #endif
5560 			error = EIO;
5561 		break;
5562 	default :
5563 		error = EIO;
5564 		break;
5565 	}
5566 
5567 	return error;
5568 }
5569 
5570 
5571 /*
5572  * This array defines the expected size of objects coming into the kernel
5573  * for the various recognised object types.
5574  */
5575 #define	NUM_OBJ_TYPES	19
5576 
5577 static	int	fr_objbytes[NUM_OBJ_TYPES][2] = {
5578 	{ 1,	sizeof(struct frentry) },		/* frentry */
5579 	{ 0,	sizeof(struct friostat) },
5580 	{ 0,	sizeof(struct fr_info) },
5581 	{ 0,	sizeof(struct fr_authstat) },
5582 	{ 0,	sizeof(struct ipfrstat) },
5583 	{ 0,	sizeof(struct ipnat) },
5584 	{ 0,	sizeof(struct natstat) },
5585 	{ 0,	sizeof(struct ipstate_save) },
5586 	{ 1,	sizeof(struct nat_save) },		/* nat_save */
5587 	{ 0,	sizeof(struct natlookup) },
5588 	{ 1,	sizeof(struct ipstate) },		/* ipstate */
5589 	{ 0,	sizeof(struct ips_stat) },
5590 	{ 0,	sizeof(struct frauth) },
5591 	{ 0,	sizeof(struct ipftune) },
5592 	{ 0,	sizeof(struct nat) },                   /* nat_t */
5593 	{ 0,	sizeof(struct ipfruleiter) },
5594 	{ 0,	sizeof(struct ipfgeniter) },
5595 	{ 0,	sizeof(struct ipftable) },
5596 	{ 0,	sizeof(struct ipflookupiter) }
5597 };
5598 
5599 
5600 /* ------------------------------------------------------------------------ */
5601 /* Function:    fr_inobj                                                    */
5602 /* Returns:     int     - 0 = success, else failure                         */
5603 /* Parameters:  data(I) - pointer to ioctl data                             */
5604 /*              ptr(I)  - pointer to store real data in                     */
5605 /*              type(I) - type of structure being moved                     */
5606 /*                                                                          */
5607 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
5608 /* add things to check for version numbers, sizes, etc, to make it backward */
5609 /* compatible at the ABI for user land.                                     */
5610 /* ------------------------------------------------------------------------ */
5611 int fr_inobj(data, ptr, type)
5612 void *data;
5613 void *ptr;
5614 int type;
5615 {
5616 	ipfobj_t obj;
5617 	int error = 0;
5618 
5619 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5620 		return EINVAL;
5621 
5622 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5623 	if (error != 0)
5624 		return EFAULT;
5625 
5626 	if (obj.ipfo_type != type)
5627 		return EINVAL;
5628 
5629 #ifndef	IPFILTER_COMPAT
5630 	if ((fr_objbytes[type][0] & 1) != 0) {
5631 		if (obj.ipfo_size < fr_objbytes[type][1])
5632 			return EINVAL;
5633 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5634 		return EINVAL;
5635 #else
5636 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5637 		error = fr_incomptrans(&obj, ptr);
5638 		return error;
5639 	}
5640 
5641 	if ((fr_objbytes[type][0] & 1) != 0 &&
5642 	    obj.ipfo_size < fr_objbytes[type][1] ||
5643 	    obj.ipfo_size != fr_objbytes[type][1])
5644 		return EINVAL;
5645 #endif
5646 
5647 	if ((fr_objbytes[type][0] & 1) != 0) {
5648 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5649 				fr_objbytes[type][1]);
5650 	} else {
5651 		error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr,
5652 				obj.ipfo_size);
5653 	}
5654 	return error;
5655 }
5656 
5657 
5658 /* ------------------------------------------------------------------------ */
5659 /* Function:    fr_inobjsz                                                  */
5660 /* Returns:     int     - 0 = success, else failure                         */
5661 /* Parameters:  data(I) - pointer to ioctl data                             */
5662 /*              ptr(I)  - pointer to store real data in                     */
5663 /*              type(I) - type of structure being moved                     */
5664 /*              sz(I)   - size of data to copy                              */
5665 /*                                                                          */
5666 /* As per fr_inobj, except the size of the object to copy in is passed in   */
5667 /* but it must not be smaller than the size defined for the type and the    */
5668 /* type must allow for varied sized objects.  The extra requirement here is */
5669 /* that sz must match the size of the object being passed in - this is not  */
5670 /* not possible nor required in fr_inobj().                                 */
5671 /* ------------------------------------------------------------------------ */
5672 int fr_inobjsz(data, ptr, type, sz)
5673 void *data;
5674 void *ptr;
5675 int type, sz;
5676 {
5677 	ipfobj_t obj;
5678 	int error;
5679 
5680 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5681 		return EINVAL;
5682 	if (((fr_objbytes[type][0] & 1) == 0) || (sz < fr_objbytes[type][1]))
5683 		return EINVAL;
5684 
5685 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5686 	if (error != 0)
5687 		return EFAULT;
5688 
5689 	if (obj.ipfo_type != type)
5690 		return EINVAL;
5691 
5692 #ifndef	IPFILTER_COMPAT
5693 	if (obj.ipfo_size != sz)
5694 		return EINVAL;
5695 #else
5696 	if (obj.ipfo_rev != IPFILTER_VERSION)
5697 		/*XXX compatibility hook here */
5698 		/*EMPTY*/;
5699 	if (obj.ipfo_size != sz)
5700 		/* XXX compatibility hook here */
5701 		return EINVAL;
5702 #endif
5703 
5704 	error = COPYIN((caddr_t)obj.ipfo_ptr, (caddr_t)ptr, sz);
5705 	return error;
5706 }
5707 
5708 
5709 /* ------------------------------------------------------------------------ */
5710 /* Function:    fr_outobjsz                                                 */
5711 /* Returns:     int     - 0 = success, else failure                         */
5712 /* Parameters:  data(I) - pointer to ioctl data                             */
5713 /*              ptr(I)  - pointer to store real data in                     */
5714 /*              type(I) - type of structure being moved                     */
5715 /*              sz(I)   - size of data to copy                              */
5716 /*                                                                          */
5717 /* As per fr_outobj, except the size of the object to copy out is passed in */
5718 /* but it must not be smaller than the size defined for the type and the    */
5719 /* type must allow for varied sized objects.  The extra requirement here is */
5720 /* that sz must match the size of the object being passed in - this is not  */
5721 /* not possible nor required in fr_outobj().                                */
5722 /* ------------------------------------------------------------------------ */
5723 int fr_outobjsz(data, ptr, type, sz)
5724 void *data;
5725 void *ptr;
5726 int type, sz;
5727 {
5728 	ipfobj_t obj;
5729 	int error;
5730 
5731 	if ((type < 0) || (type > NUM_OBJ_TYPES-1) ||
5732 	    ((fr_objbytes[type][0] & 1) == 0) ||
5733 	    (sz < fr_objbytes[type][1]))
5734 		return EINVAL;
5735 
5736 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5737 	if (error != 0)
5738 		return EFAULT;
5739 
5740 	if (obj.ipfo_type != type)
5741 		return EINVAL;
5742 
5743 #ifndef	IPFILTER_COMPAT
5744 	if (obj.ipfo_size != sz)
5745 		return EINVAL;
5746 #else
5747 	if (obj.ipfo_rev != IPFILTER_VERSION)
5748 		/* XXX compatibility hook here */
5749 		/*EMPTY*/;
5750 	if (obj.ipfo_size != sz)
5751 		/* XXX compatibility hook here */
5752 		return EINVAL;
5753 #endif
5754 
5755 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, sz);
5756 	return error;
5757 }
5758 
5759 
5760 /* ------------------------------------------------------------------------ */
5761 /* Function:    fr_outobj                                                   */
5762 /* Returns:     int     - 0 = success, else failure                         */
5763 /* Parameters:  data(I) - pointer to ioctl data                             */
5764 /*              ptr(I)  - pointer to store real data in                     */
5765 /*              type(I) - type of structure being moved                     */
5766 /*                                                                          */
5767 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
5768 /* future, we add things to check for version numbers, sizes, etc, to make  */
5769 /* it backward  compatible at the ABI for user land.                        */
5770 /* ------------------------------------------------------------------------ */
5771 int fr_outobj(data, ptr, type)
5772 void *data;
5773 void *ptr;
5774 int type;
5775 {
5776 	ipfobj_t obj;
5777 	int error;
5778 
5779 	if ((type < 0) || (type > NUM_OBJ_TYPES-1))
5780 		return EINVAL;
5781 
5782 	error = BCOPYIN((caddr_t)data, (caddr_t)&obj, sizeof(obj));
5783 	if (error != 0)
5784 		return EFAULT;
5785 
5786 	if (obj.ipfo_type != type)
5787 		return EINVAL;
5788 
5789 #ifndef	IPFILTER_COMPAT
5790 	if ((fr_objbytes[type][0] & 1) != 0) {
5791 		if (obj.ipfo_size < fr_objbytes[type][1])
5792 			return EINVAL;
5793 	} else if (obj.ipfo_size != fr_objbytes[type][1])
5794 		return EINVAL;
5795 #else
5796 	if (obj.ipfo_rev != IPFILTER_VERSION) {
5797 		error = fr_outcomptrans(&obj, ptr);
5798 		return error;
5799 	}
5800 
5801 	if ((fr_objbytes[type][0] & 1) != 0 &&
5802 	    obj.ipfo_size < fr_objbytes[type][1] ||
5803 	    obj.ipfo_size != fr_objbytes[type][1])
5804 		return EINVAL;
5805 #endif
5806 
5807 	error = COPYOUT((caddr_t)ptr, (caddr_t)obj.ipfo_ptr, obj.ipfo_size);
5808 	return error;
5809 }
5810 
5811 
5812 /* ------------------------------------------------------------------------ */
5813 /* Function:    fr_checkl4sum                                               */
5814 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
5815 /* Parameters:  fin(I) - pointer to packet information                      */
5816 /*                                                                          */
5817 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
5818 /* not possible, return without indicating a failure or success but in a    */
5819 /* way that is ditinguishable.                                              */
5820 /* ------------------------------------------------------------------------ */
5821 int fr_checkl4sum(fin)
5822 fr_info_t *fin;
5823 {
5824 	u_short sum, hdrsum, *csump;
5825 	udphdr_t *udp;
5826 	int dosum;
5827 	ipf_stack_t *ifs = fin->fin_ifs;
5828 
5829 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5830 	net_handle_t net_data_p;
5831 	if (fin->fin_v == 4)
5832 		net_data_p = ifs->ifs_ipf_ipv4;
5833 	else
5834 		net_data_p = ifs->ifs_ipf_ipv6;
5835 #endif
5836 
5837 	if ((fin->fin_flx & FI_NOCKSUM) != 0)
5838 		return 0;
5839 
5840 	/*
5841 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
5842 	 * isn't already considered "bad", then validate the checksum.  If
5843 	 * this check fails then considered the packet to be "bad".
5844 	 */
5845 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
5846 		return 1;
5847 
5848 	csump = NULL;
5849 	hdrsum = 0;
5850 	dosum = 0;
5851 	sum = 0;
5852 
5853 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5854 	ASSERT(fin->fin_m != NULL);
5855 	if (NET_IS_HCK_L4_FULL(net_data_p, fin->fin_m) ||
5856 	    NET_IS_HCK_L4_PART(net_data_p, fin->fin_m)) {
5857 			hdrsum = 0;
5858 			sum = 0;
5859 	} else {
5860 #endif
5861 		switch (fin->fin_p)
5862 		{
5863 		case IPPROTO_TCP :
5864 			csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
5865 			dosum = 1;
5866 			break;
5867 
5868 		case IPPROTO_UDP :
5869 			udp = fin->fin_dp;
5870 			if (udp->uh_sum != 0) {
5871 				csump = &udp->uh_sum;
5872 				dosum = 1;
5873 			}
5874 			break;
5875 
5876 		case IPPROTO_ICMP :
5877 			csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
5878 			dosum = 1;
5879 			break;
5880 
5881 		default :
5882 			return 1;
5883 			/*NOTREACHED*/
5884 		}
5885 
5886 		if (csump != NULL)
5887 			hdrsum = *csump;
5888 
5889 		if (dosum)
5890 			sum = fr_cksum(fin->fin_m, fin->fin_ip,
5891 				       fin->fin_p, fin->fin_dp);
5892 #if SOLARIS && defined(_KERNEL) && (SOLARIS2 >= 6)
5893 	}
5894 #endif
5895 #if !defined(_KERNEL)
5896 	if (sum == hdrsum) {
5897 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
5898 	} else {
5899 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
5900 	}
5901 #endif
5902 	if (hdrsum == sum)
5903 		return 0;
5904 	return -1;
5905 }
5906 
5907 
5908 /* ------------------------------------------------------------------------ */
5909 /* Function:    fr_ifpfillv4addr                                            */
5910 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5911 /* Parameters:  atype(I)   - type of network address update to perform      */
5912 /*              sin(I)     - pointer to source of address information       */
5913 /*              mask(I)    - pointer to source of netmask information       */
5914 /*              inp(I)     - pointer to destination address store           */
5915 /*              inpmask(I) - pointer to destination netmask store           */
5916 /*                                                                          */
5917 /* Given a type of network address update (atype) to perform, copy          */
5918 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5919 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5920 /* which case the operation fails.  For all values of atype other than      */
5921 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5922 /* value.                                                                   */
5923 /* ------------------------------------------------------------------------ */
5924 int fr_ifpfillv4addr(atype, sin, mask, inp, inpmask)
5925 int atype;
5926 struct sockaddr_in *sin, *mask;
5927 struct in_addr *inp, *inpmask;
5928 {
5929 	if (inpmask != NULL && atype != FRI_NETMASKED)
5930 		inpmask->s_addr = 0xffffffff;
5931 
5932 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5933 		if (atype == FRI_NETMASKED) {
5934 			if (inpmask == NULL)
5935 				return -1;
5936 			inpmask->s_addr = mask->sin_addr.s_addr;
5937 		}
5938 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
5939 	} else {
5940 		inp->s_addr = sin->sin_addr.s_addr;
5941 	}
5942 	return 0;
5943 }
5944 
5945 
5946 #ifdef	USE_INET6
5947 /* ------------------------------------------------------------------------ */
5948 /* Function:    fr_ifpfillv6addr                                            */
5949 /* Returns:     int     - 0 = address update, -1 = address not updated      */
5950 /* Parameters:  atype(I)   - type of network address update to perform      */
5951 /*              sin(I)     - pointer to source of address information       */
5952 /*              mask(I)    - pointer to source of netmask information       */
5953 /*              inp(I)     - pointer to destination address store           */
5954 /*              inpmask(I) - pointer to destination netmask store           */
5955 /*                                                                          */
5956 /* Given a type of network address update (atype) to perform, copy          */
5957 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
5958 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
5959 /* which case the operation fails.  For all values of atype other than      */
5960 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
5961 /* value.                                                                   */
5962 /* ------------------------------------------------------------------------ */
5963 int fr_ifpfillv6addr(atype, sin, mask, inp, inpmask)
5964 int atype;
5965 struct sockaddr_in6 *sin, *mask;
5966 struct in_addr *inp, *inpmask;
5967 {
5968 	i6addr_t *src, *dst, *and, *dmask;
5969 
5970 	src = (i6addr_t *)&sin->sin6_addr;
5971 	and = (i6addr_t *)&mask->sin6_addr;
5972 	dst = (i6addr_t *)inp;
5973 	dmask = (i6addr_t *)inpmask;
5974 
5975 	if (inpmask != NULL && atype != FRI_NETMASKED) {
5976 		dmask->i6[0] = 0xffffffff;
5977 		dmask->i6[1] = 0xffffffff;
5978 		dmask->i6[2] = 0xffffffff;
5979 		dmask->i6[3] = 0xffffffff;
5980 	}
5981 
5982 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
5983 		if (atype == FRI_NETMASKED) {
5984 			if (inpmask == NULL)
5985 				return -1;
5986 			dmask->i6[0] = and->i6[0];
5987 			dmask->i6[1] = and->i6[1];
5988 			dmask->i6[2] = and->i6[2];
5989 			dmask->i6[3] = and->i6[3];
5990 		}
5991 
5992 		dst->i6[0] = src->i6[0] & and->i6[0];
5993 		dst->i6[1] = src->i6[1] & and->i6[1];
5994 		dst->i6[2] = src->i6[2] & and->i6[2];
5995 		dst->i6[3] = src->i6[3] & and->i6[3];
5996 	} else {
5997 		dst->i6[0] = src->i6[0];
5998 		dst->i6[1] = src->i6[1];
5999 		dst->i6[2] = src->i6[2];
6000 		dst->i6[3] = src->i6[3];
6001 	}
6002 	return 0;
6003 }
6004 #endif
6005 
6006 
6007 /* ------------------------------------------------------------------------ */
6008 /* Function:    fr_matchtag                                                 */
6009 /* Returns:     0 == mismatch, 1 == match.                                  */
6010 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6011 /*              tag2(I) - pointer to second tag to compare                  */
6012 /*                                                                          */
6013 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6014 /* considered to be a match or not match, respectively.  The tag is 16      */
6015 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6016 /* compare the ints instead, for speed. tag1 is the master of the           */
6017 /* comparison.  This function should only be called with both tag1 and tag2 */
6018 /* as non-NULL pointers.                                                    */
6019 /* ------------------------------------------------------------------------ */
6020 int fr_matchtag(tag1, tag2)
6021 ipftag_t *tag1, *tag2;
6022 {
6023 	if (tag1 == tag2)
6024 		return 1;
6025 
6026 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6027 		return 1;
6028 
6029 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6030 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6031 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6032 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6033 		return 1;
6034 	return 0;
6035 }
6036 
6037 
6038 /* ------------------------------------------------------------------------ */
6039 /* Function:    fr_coalesce                                                 */
6040 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6041 /* Parameters:  fin(I) - pointer to packet information                      */
6042 /*                                                                          */
6043 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6044 /* If this call returns a failure then the buffers have also been freed.    */
6045 /* ------------------------------------------------------------------------ */
6046 int fr_coalesce(fin)
6047 fr_info_t *fin;
6048 {
6049 	ipf_stack_t *ifs = fin->fin_ifs;
6050 	if ((fin->fin_flx & FI_COALESCE) != 0)
6051 		return 1;
6052 
6053 	/*
6054 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6055 	 * return but do not indicate success or failure.
6056 	 */
6057 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6058 		return 0;
6059 
6060 #if defined(_KERNEL)
6061 	if (fr_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6062 		IPF_BUMP(ifs->ifs_fr_badcoalesces[fin->fin_out]);
6063 # ifdef MENTAT
6064 		FREE_MB_T(*fin->fin_mp);
6065 # endif
6066 		*fin->fin_mp = NULL;
6067 		fin->fin_m = NULL;
6068 		return -1;
6069 	}
6070 #else
6071 	fin = fin;	/* LINT */
6072 #endif
6073 	return 1;
6074 }
6075 
6076 
6077 /*
6078  * The following table lists all of the tunable variables that can be
6079  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXT.  The format of each row
6080  * in the table below is as follows:
6081  *
6082  * pointer to value, name of value, minimum, maximum, size of the value's
6083  *     container, value attribute flags
6084  *
6085  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6086  * means the value can only be written to when IPFilter is loaded but disabled.
6087  * The obvious implication is if neither of these are set then the value can be
6088  * changed at any time without harm.
6089  */
6090 ipftuneable_t lcl_ipf_tuneables[] = {
6091 	/* filtering */
6092 	{ { NULL },	"fr_flags",		0,	0xffffffff,
6093 			0,		0 },
6094 	{ { NULL },	"fr_active",		0,	0,
6095 			0,		IPFT_RDONLY },
6096 	{ { NULL },	"fr_control_forwarding",	0, 1,
6097 			0,		0 },
6098 	{ { NULL },	"fr_update_ipid",	0,	1,
6099 			0,		0 },
6100 	{ { NULL },	"fr_chksrc",		0,	1,
6101 			0,		0 },
6102 	{ { NULL },	"fr_minttl",		0,	1,
6103 			0,		0 },
6104 	{ { NULL }, 	"fr_icmpminfragmtu",	0,	1,
6105 			0,		0 },
6106 	{ { NULL },		"fr_pass",		0,	0xffffffff,
6107 			0,		0 },
6108 #if SOLARIS2 >= 10
6109 	{ { NULL },	"ipf_loopback",		0,	1,
6110 			0,		IPFT_WRDISABLED },
6111 #endif
6112 	/* state */
6113 	{ { NULL }, "fr_tcpidletimeout",	1,	0x7fffffff,
6114 			0,	IPFT_WRDISABLED },
6115 	{ { NULL },	"fr_tcpclosewait",	1,	0x7fffffff,
6116 			0,	IPFT_WRDISABLED },
6117 	{ { NULL },	"fr_tcplastack",	1,	0x7fffffff,
6118 			0,		IPFT_WRDISABLED },
6119 	{ { NULL },	"fr_tcptimeout",	1,	0x7fffffff,
6120 			0,		IPFT_WRDISABLED },
6121 	{ { NULL },	"fr_tcpclosed",		1,	0x7fffffff,
6122 			0,		IPFT_WRDISABLED },
6123 	{ { NULL },	"fr_tcphalfclosed",	1,	0x7fffffff,
6124 			0,	IPFT_WRDISABLED },
6125 	{ { NULL },	"fr_udptimeout",	1,	0x7fffffff,
6126 			0,		IPFT_WRDISABLED },
6127 	{ { NULL }, "fr_udpacktimeout",	1,	0x7fffffff,
6128 			0,	IPFT_WRDISABLED },
6129 	{ { NULL },	"fr_icmptimeout",	1,	0x7fffffff,
6130 			0,		IPFT_WRDISABLED },
6131 	{ { NULL }, "fr_icmpacktimeout",	1,	0x7fffffff,
6132 			0,	IPFT_WRDISABLED },
6133 	{ { NULL }, "fr_iptimeout",		1,	0x7fffffff,
6134 			0,		IPFT_WRDISABLED },
6135 	{ { NULL },	"fr_statemax",		1,	0x7fffffff,
6136 			0,		0 },
6137 	{ { NULL },	"fr_statesize",		1,	0x7fffffff,
6138 			0,		IPFT_WRDISABLED },
6139 	{ { NULL },	"fr_state_lock",	0,	1,
6140 			0,		IPFT_RDONLY },
6141 	{ { NULL }, "fr_state_maxbucket", 1,	0x7fffffff,
6142 			0,	IPFT_WRDISABLED },
6143 	{ { NULL }, "fr_state_maxbucket_reset",	0, 1,
6144 			0, IPFT_WRDISABLED },
6145 	{ { NULL },	"ipstate_logging",	0,	1,
6146 			0,	0 },
6147 	{ { NULL },	"state_flush_level_hi",	1,	100,
6148 			0,		0 },
6149 	{ { NULL },	"state_flush_level_lo",	1,	100,
6150 			0,		0 },
6151 	/* nat */
6152 	{ { NULL },		"fr_nat_lock",		0,	1,
6153 			0,		IPFT_RDONLY },
6154 	{ { NULL },	"ipf_nattable_sz",	1,	0x7fffffff,
6155 			0,	IPFT_WRDISABLED },
6156 	{ { NULL }, "ipf_nattable_max",	1,	0x7fffffff,
6157 			0,	0 },
6158 	{ { NULL },	"ipf_natrules_sz",	1,	0x7fffffff,
6159 			0,	IPFT_WRDISABLED },
6160 	{ { NULL },	"ipf_rdrrules_sz",	1,	0x7fffffff,
6161 			0,	IPFT_WRDISABLED },
6162 	{ { NULL },	"ipf_hostmap_sz",	1,	0x7fffffff,
6163 			0,		IPFT_WRDISABLED },
6164 	{ { NULL }, "fr_nat_maxbucket",	1,	0x7fffffff,
6165 			0,	IPFT_WRDISABLED },
6166 	{ { NULL },	"fr_nat_maxbucket_reset",	0, 1,
6167 			0,	IPFT_WRDISABLED },
6168 	{ { NULL },		"nat_logging",		0,	1,
6169 			0,		0 },
6170 	{ { NULL },	"fr_defnatage",		1,	0x7fffffff,
6171 			0,		IPFT_WRDISABLED },
6172 	{ { NULL },	"fr_defnatipage",	1,	0x7fffffff,
6173 			0,		IPFT_WRDISABLED },
6174 	{ { NULL }, "fr_defnaticmpage",	1,	0x7fffffff,
6175 			0,	IPFT_WRDISABLED },
6176 	{ { NULL },	"nat_flush_level_hi",	1,	100,
6177 			0,		0 },
6178 	{ { NULL },	"nat_flush_level_lo",	1,	100,
6179 			0,		0 },
6180 	/* frag */
6181 	{ { NULL },	"ipfr_size",		1,	0x7fffffff,
6182 			0,		IPFT_WRDISABLED },
6183 	{ { NULL },	"fr_ipfrttl",		1,	0x7fffffff,
6184 			0,		IPFT_WRDISABLED },
6185 #ifdef IPFILTER_LOG
6186 	/* log */
6187 	{ { NULL },	"ipl_suppress",		0,	1,
6188 			0,		0 },
6189 	{ { NULL },	"ipl_buffer_sz",	0,	0,
6190 			0,		IPFT_RDONLY },
6191 	{ { NULL },	"ipl_logmax",		0,	0x7fffffff,
6192 			0,		IPFT_WRDISABLED },
6193 	{ { NULL },	"ipl_logall",		0,	1,
6194 			0,		0 },
6195 	{ { NULL },	"ipl_logsize",		0,	0x80000,
6196 			0,		0 },
6197 #endif
6198 	{ { NULL },		NULL,			0,	0 }
6199 };
6200 
6201 static ipftuneable_t *
6202 tune_lookup(ipf_stack_t *ifs, char *name)
6203 {
6204     int i;
6205 
6206     for (i = 0; ifs->ifs_ipf_tuneables[i].ipft_name != NULL; i++) {
6207 	if (strcmp(ifs->ifs_ipf_tuneables[i].ipft_name, name) == 0)
6208 	    return (&ifs->ifs_ipf_tuneables[i]);
6209     }
6210     return (NULL);
6211 }
6212 
6213 #ifdef _KERNEL
6214 extern dev_info_t *ipf_dev_info;
6215 extern int ipf_property_update __P((dev_info_t *, ipf_stack_t *));
6216 #endif
6217 
6218 /* -------------------------------------------------------------------- */
6219 /* Function:	ipftuneable_setdefs()					*/
6220 /* Returns:		void						*/
6221 /* Parameters:	ifs - pointer to newly allocated IPF instance		*/
6222 /*				assigned to	IP instance		*/
6223 /*									*/
6224 /* Function initializes IPF instance variables. Function is invoked	*/
6225 /* from	ipftuneable_alloc(). ipftuneable_alloc() is called only one	*/
6226 /* time during IP instance lifetime - at the time of IP instance	*/
6227 /* creation. Anytime IP	instance is being created new private IPF	*/
6228 /* instance is allocated and assigned to it. The moment of IP 		*/
6229 /* instance creation is the right time to initialize those IPF 		*/
6230 /* variables.								*/
6231 /*									*/
6232 /* -------------------------------------------------------------------- */
6233 static void ipftuneable_setdefs(ipf_stack_t *ifs)
6234 {
6235 	ifs->ifs_ipfr_size = IPFT_SIZE;
6236 	ifs->ifs_fr_ipfrttl = 120;	/* 60 seconds */
6237 
6238 	/* it comes from fr_authinit() in IPF auth */
6239 	ifs->ifs_fr_authsize = FR_NUMAUTH;
6240 	ifs->ifs_fr_defaultauthage = 600;
6241 
6242 	/* it comes from fr_stateinit() in IPF state */
6243 	ifs->ifs_fr_tcpidletimeout = IPF_TTLVAL(3600 * 24 * 5);	/* five days */
6244 	ifs->ifs_fr_tcpclosewait = IPF_TTLVAL(TCP_MSL);
6245 	ifs->ifs_fr_tcplastack = IPF_TTLVAL(TCP_MSL);
6246 	ifs->ifs_fr_tcptimeout = IPF_TTLVAL(TCP_MSL);
6247 	ifs->ifs_fr_tcpclosed = IPF_TTLVAL(60);
6248 	ifs->ifs_fr_tcphalfclosed = IPF_TTLVAL(2 * 3600);	/* 2 hours */
6249 	ifs->ifs_fr_udptimeout = IPF_TTLVAL(120);
6250 	ifs->ifs_fr_udpacktimeout = IPF_TTLVAL(12);
6251 	ifs->ifs_fr_icmptimeout = IPF_TTLVAL(60);
6252 	ifs->ifs_fr_icmpacktimeout = IPF_TTLVAL(6);
6253 	ifs->ifs_fr_iptimeout = IPF_TTLVAL(60);
6254 	ifs->ifs_fr_statemax = IPSTATE_MAX;
6255 	ifs->ifs_fr_statesize = IPSTATE_SIZE;
6256 	ifs->ifs_fr_state_maxbucket_reset = 1;
6257 	ifs->ifs_state_flush_level_hi = ST_FLUSH_HI;
6258 	ifs->ifs_state_flush_level_lo = ST_FLUSH_LO;
6259 
6260 	/* it comes from fr_natinit() in ipnat */
6261 	ifs->ifs_ipf_nattable_sz = NAT_TABLE_SZ;
6262 	ifs->ifs_ipf_nattable_max = NAT_TABLE_MAX;
6263 	ifs->ifs_ipf_natrules_sz = NAT_SIZE;
6264 	ifs->ifs_ipf_rdrrules_sz = RDR_SIZE;
6265 	ifs->ifs_ipf_hostmap_sz = HOSTMAP_SIZE;
6266 	ifs->ifs_fr_nat_maxbucket_reset = 1;
6267 	ifs->ifs_fr_defnatage = DEF_NAT_AGE;
6268 	ifs->ifs_fr_defnatipage = 120;		/* 60 seconds */
6269 	ifs->ifs_fr_defnaticmpage = 6;		/* 3 seconds */
6270 	ifs->ifs_nat_flush_level_hi = NAT_FLUSH_HI;
6271 	ifs->ifs_nat_flush_level_lo = NAT_FLUSH_LO;
6272 
6273 #ifdef IPFILTER_LOG
6274 	/* it comes from fr_loginit() in IPF log */
6275 	ifs->ifs_ipl_suppress = 1;
6276 	ifs->ifs_ipl_logmax = IPL_LOGMAX;
6277 	ifs->ifs_ipl_logsize = IPFILTER_LOGSIZE;
6278 
6279 	/* from fr_natinit() */
6280 	ifs->ifs_nat_logging = 1;
6281 
6282 	/* from fr_stateinit() */
6283 	ifs->ifs_ipstate_logging = 1;
6284 #else
6285 	/* from fr_natinit() */
6286 	ifs->ifs_nat_logging = 0;
6287 
6288 	/* from fr_stateinit() */
6289 	ifs->ifs_ipstate_logging = 0;
6290 #endif
6291 	ifs->ifs_ipf_loopback = 0;
6292 
6293 }
6294 /*
6295  * Allocate a per-stack tuneable and copy in the names. Then
6296  * set it to point to each of the per-stack tunables.
6297  */
6298 void
6299 ipftuneable_alloc(ipf_stack_t *ifs)
6300 {
6301     ipftuneable_t *item;
6302 
6303     KMALLOCS(ifs->ifs_ipf_tuneables, ipftuneable_t *,
6304 	sizeof (lcl_ipf_tuneables));
6305     bcopy(lcl_ipf_tuneables, ifs->ifs_ipf_tuneables,
6306 	sizeof (lcl_ipf_tuneables));
6307 
6308 #define TUNE_SET(_ifs, _name, _field)			\
6309     item = tune_lookup((_ifs), (_name));		\
6310     if (item != NULL) {					\
6311 	item->ipft_una.ipftp_int = (unsigned int *)&((_ifs)->_field);	\
6312 	item->ipft_sz = sizeof ((_ifs)->_field);	\
6313     }
6314 
6315     TUNE_SET(ifs, "fr_flags", ifs_fr_flags);
6316     TUNE_SET(ifs, "fr_active", ifs_fr_active);
6317     TUNE_SET(ifs, "fr_control_forwarding", ifs_fr_control_forwarding);
6318     TUNE_SET(ifs, "fr_update_ipid", ifs_fr_update_ipid);
6319     TUNE_SET(ifs, "fr_chksrc", ifs_fr_chksrc);
6320     TUNE_SET(ifs, "fr_minttl", ifs_fr_minttl);
6321     TUNE_SET(ifs, "fr_icmpminfragmtu", ifs_fr_icmpminfragmtu);
6322     TUNE_SET(ifs, "fr_pass", ifs_fr_pass);
6323     TUNE_SET(ifs, "fr_tcpidletimeout", ifs_fr_tcpidletimeout);
6324     TUNE_SET(ifs, "fr_tcpclosewait", ifs_fr_tcpclosewait);
6325     TUNE_SET(ifs, "fr_tcplastack", ifs_fr_tcplastack);
6326     TUNE_SET(ifs, "fr_tcptimeout", ifs_fr_tcptimeout);
6327     TUNE_SET(ifs, "fr_tcpclosed", ifs_fr_tcpclosed);
6328     TUNE_SET(ifs, "fr_tcphalfclosed", ifs_fr_tcphalfclosed);
6329     TUNE_SET(ifs, "fr_udptimeout", ifs_fr_udptimeout);
6330     TUNE_SET(ifs, "fr_udpacktimeout", ifs_fr_udpacktimeout);
6331     TUNE_SET(ifs, "fr_icmptimeout", ifs_fr_icmptimeout);
6332     TUNE_SET(ifs, "fr_icmpacktimeout", ifs_fr_icmpacktimeout);
6333     TUNE_SET(ifs, "fr_iptimeout", ifs_fr_iptimeout);
6334     TUNE_SET(ifs, "fr_statemax", ifs_fr_statemax);
6335     TUNE_SET(ifs, "fr_statesize", ifs_fr_statesize);
6336     TUNE_SET(ifs, "fr_state_lock", ifs_fr_state_lock);
6337     TUNE_SET(ifs, "fr_state_maxbucket", ifs_fr_state_maxbucket);
6338     TUNE_SET(ifs, "fr_state_maxbucket_reset", ifs_fr_state_maxbucket_reset);
6339     TUNE_SET(ifs, "ipstate_logging", ifs_ipstate_logging);
6340     TUNE_SET(ifs, "fr_nat_lock", ifs_fr_nat_lock);
6341     TUNE_SET(ifs, "ipf_nattable_sz", ifs_ipf_nattable_sz);
6342     TUNE_SET(ifs, "ipf_nattable_max", ifs_ipf_nattable_max);
6343     TUNE_SET(ifs, "ipf_natrules_sz", ifs_ipf_natrules_sz);
6344     TUNE_SET(ifs, "ipf_rdrrules_sz", ifs_ipf_rdrrules_sz);
6345     TUNE_SET(ifs, "ipf_hostmap_sz", ifs_ipf_hostmap_sz);
6346     TUNE_SET(ifs, "fr_nat_maxbucket", ifs_fr_nat_maxbucket);
6347     TUNE_SET(ifs, "fr_nat_maxbucket_reset", ifs_fr_nat_maxbucket_reset);
6348     TUNE_SET(ifs, "nat_logging", ifs_nat_logging);
6349     TUNE_SET(ifs, "fr_defnatage", ifs_fr_defnatage);
6350     TUNE_SET(ifs, "fr_defnatipage", ifs_fr_defnatipage);
6351     TUNE_SET(ifs, "fr_defnaticmpage", ifs_fr_defnaticmpage);
6352     TUNE_SET(ifs, "nat_flush_level_hi", ifs_nat_flush_level_hi);
6353     TUNE_SET(ifs, "nat_flush_level_lo", ifs_nat_flush_level_lo);
6354     TUNE_SET(ifs, "state_flush_level_hi", ifs_state_flush_level_hi);
6355     TUNE_SET(ifs, "state_flush_level_lo", ifs_state_flush_level_lo);
6356     TUNE_SET(ifs, "ipfr_size", ifs_ipfr_size);
6357     TUNE_SET(ifs, "fr_ipfrttl", ifs_fr_ipfrttl);
6358     TUNE_SET(ifs, "ipf_loopback", ifs_ipf_loopback);
6359 #ifdef IPFILTER_LOG
6360     TUNE_SET(ifs, "ipl_suppress", ifs_ipl_suppress);
6361     TUNE_SET(ifs, "ipl_buffer_sz", ifs_ipl_buffer_sz);
6362     TUNE_SET(ifs, "ipl_logmax", ifs_ipl_logmax);
6363     TUNE_SET(ifs, "ipl_logall", ifs_ipl_logall);
6364     TUNE_SET(ifs, "ipl_logsize", ifs_ipl_logsize);
6365 #endif
6366 #undef TUNE_SET
6367 
6368 	ipftuneable_setdefs(ifs);
6369 
6370 #ifdef _KERNEL
6371     (void) ipf_property_update(ipf_dev_info, ifs);
6372 #endif
6373 }
6374 
6375 void
6376 ipftuneable_free(ipf_stack_t *ifs)
6377 {
6378 	KFREES(ifs->ifs_ipf_tuneables, sizeof (lcl_ipf_tuneables));
6379 	ifs->ifs_ipf_tuneables = NULL;
6380 }
6381 
6382 /* ------------------------------------------------------------------------ */
6383 /* Function:    fr_findtunebycookie                                         */
6384 /* Returns:     NULL = search failed, else pointer to tune struct           */
6385 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6386 /*              next(O)   - pointer to place to store the cookie for the    */
6387 /*                          "next" tuneable, if it is desired.              */
6388 /*                                                                          */
6389 /* This function is used to walk through all of the existing tunables with  */
6390 /* successive calls.  It searches the known tunables for the one which has  */
6391 /* a matching value for "cookie" - ie its address.  When returning a match, */
6392 /* the next one to be found may be returned inside next.                    */
6393 /* ------------------------------------------------------------------------ */
6394 static ipftuneable_t *fr_findtunebycookie(cookie, next, ifs)
6395 void *cookie, **next;
6396 ipf_stack_t * ifs;
6397 {
6398 	ipftuneable_t *ta, **tap;
6399 
6400 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6401 		if (ta == cookie) {
6402 			if (next != NULL) {
6403 				/*
6404 				 * If the next entry in the array has a name
6405 				 * present, then return a pointer to it for
6406 				 * where to go next, else return a pointer to
6407 				 * the dynaminc list as a key to search there
6408 				 * next.  This facilitates a weak linking of
6409 				 * the two "lists" together.
6410 				 */
6411 				if ((ta + 1)->ipft_name != NULL)
6412 					*next = ta + 1;
6413 				else
6414 					*next = &ifs->ifs_ipf_tunelist;
6415 			}
6416 			return ta;
6417 		}
6418 
6419 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6420 		if (tap == cookie) {
6421 			if (next != NULL)
6422 				*next = &ta->ipft_next;
6423 			return ta;
6424 		}
6425 
6426 	if (next != NULL)
6427 		*next = NULL;
6428 	return NULL;
6429 }
6430 
6431 
6432 /* ------------------------------------------------------------------------ */
6433 /* Function:    fr_findtunebyname                                           */
6434 /* Returns:     NULL = search failed, else pointer to tune struct           */
6435 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6436 /*                                                                          */
6437 /* Search the static array of tuneables and the list of dynamic tuneables   */
6438 /* for an entry with a matching name.  If we can find one, return a pointer */
6439 /* to the matching structure.                                               */
6440 /* ------------------------------------------------------------------------ */
6441 static ipftuneable_t *fr_findtunebyname(name, ifs)
6442 const char *name;
6443 ipf_stack_t *ifs;
6444 {
6445 	ipftuneable_t *ta;
6446 
6447 	for (ta = ifs->ifs_ipf_tuneables; ta->ipft_name != NULL; ta++)
6448 		if (!strcmp(ta->ipft_name, name)) {
6449 			return ta;
6450 		}
6451 
6452 	for (ta = ifs->ifs_ipf_tunelist; ta != NULL; ta = ta->ipft_next)
6453 		if (!strcmp(ta->ipft_name, name)) {
6454 			return ta;
6455 		}
6456 
6457 	return NULL;
6458 }
6459 
6460 
6461 /* ------------------------------------------------------------------------ */
6462 /* Function:    fr_addipftune                                               */
6463 /* Returns:     int - 0 == success, else failure                            */
6464 /* Parameters:  newtune - pointer to new tune struct to add to tuneables    */
6465 /*                                                                          */
6466 /* Appends the tune structure pointer to by "newtune" to the end of the     */
6467 /* current list of "dynamic" tuneable parameters.  Once added, the owner    */
6468 /* of the object is not expected to ever change "ipft_next".                */
6469 /* ------------------------------------------------------------------------ */
6470 int fr_addipftune(newtune, ifs)
6471 ipftuneable_t *newtune;
6472 ipf_stack_t *ifs;
6473 {
6474 	ipftuneable_t *ta, **tap;
6475 
6476 	ta = fr_findtunebyname(newtune->ipft_name, ifs);
6477 	if (ta != NULL)
6478 		return EEXIST;
6479 
6480 	for (tap = &ifs->ifs_ipf_tunelist; *tap != NULL; tap = &(*tap)->ipft_next)
6481 		;
6482 
6483 	newtune->ipft_next = NULL;
6484 	*tap = newtune;
6485 	return 0;
6486 }
6487 
6488 
6489 /* ------------------------------------------------------------------------ */
6490 /* Function:    fr_delipftune                                               */
6491 /* Returns:     int - 0 == success, else failure                            */
6492 /* Parameters:  oldtune - pointer to tune struct to remove from the list of */
6493 /*                        current dynamic tuneables                         */
6494 /*                                                                          */
6495 /* Search for the tune structure, by pointer, in the list of those that are */
6496 /* dynamically added at run time.  If found, adjust the list so that this   */
6497 /* structure is no longer part of it.                                       */
6498 /* ------------------------------------------------------------------------ */
6499 int fr_delipftune(oldtune, ifs)
6500 ipftuneable_t *oldtune;
6501 ipf_stack_t *ifs;
6502 {
6503 	ipftuneable_t *ta, **tap;
6504 
6505 	for (tap = &ifs->ifs_ipf_tunelist; (ta = *tap) != NULL; tap = &ta->ipft_next)
6506 		if (ta == oldtune) {
6507 			*tap = oldtune->ipft_next;
6508 			oldtune->ipft_next = NULL;
6509 			return 0;
6510 		}
6511 
6512 	return ESRCH;
6513 }
6514 
6515 
6516 /* ------------------------------------------------------------------------ */
6517 /* Function:    fr_ipftune                                                  */
6518 /* Returns:     int - 0 == success, else failure                            */
6519 /* Parameters:  cmd(I)  - ioctl command number                              */
6520 /*              data(I) - pointer to ioctl data structure                   */
6521 /*                                                                          */
6522 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
6523 /* three ioctls provide the means to access and control global variables    */
6524 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
6525 /* changed without rebooting, reloading or recompiling.  The initialisation */
6526 /* and 'destruction' routines of the various components of ipfilter are all */
6527 /* each responsible for handling their own values being too big.            */
6528 /* ------------------------------------------------------------------------ */
6529 int fr_ipftune(cmd, data, ifs)
6530 ioctlcmd_t cmd;
6531 void *data;
6532 ipf_stack_t *ifs;
6533 {
6534 	ipftuneable_t *ta;
6535 	ipftune_t tu;
6536 	void *cookie;
6537 	int error;
6538 
6539 	error = fr_inobj(data, &tu, IPFOBJ_TUNEABLE);
6540 	if (error != 0)
6541 		return error;
6542 
6543 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
6544 	cookie = tu.ipft_cookie;
6545 	ta = NULL;
6546 
6547 	switch (cmd)
6548 	{
6549 	case SIOCIPFGETNEXT :
6550 		/*
6551 		 * If cookie is non-NULL, assume it to be a pointer to the last
6552 		 * entry we looked at, so find it (if possible) and return a
6553 		 * pointer to the next one after it.  The last entry in the
6554 		 * the table is a NULL entry, so when we get to it, set cookie
6555 		 * to NULL and return that, indicating end of list, erstwhile
6556 		 * if we come in with cookie set to NULL, we are starting anew
6557 		 * at the front of the list.
6558 		 */
6559 		if (cookie != NULL) {
6560 			ta = fr_findtunebycookie(cookie, &tu.ipft_cookie, ifs);
6561 		} else {
6562 			ta = ifs->ifs_ipf_tuneables;
6563 			tu.ipft_cookie = ta + 1;
6564 		}
6565 		if (ta != NULL) {
6566 			/*
6567 			 * Entry found, but does the data pointed to by that
6568 			 * row fit in what we can return?
6569 			 */
6570 			if (ta->ipft_sz > sizeof(tu.ipft_un))
6571 				return EINVAL;
6572 
6573 			tu.ipft_vlong = 0;
6574 			if (ta->ipft_sz == sizeof(u_long))
6575 				tu.ipft_vlong = *ta->ipft_plong;
6576 			else if (ta->ipft_sz == sizeof(u_int))
6577 				tu.ipft_vint = *ta->ipft_pint;
6578 			else if (ta->ipft_sz == sizeof(u_short))
6579 				tu.ipft_vshort = *ta->ipft_pshort;
6580 			else if (ta->ipft_sz == sizeof(u_char))
6581 				tu.ipft_vchar = *ta->ipft_pchar;
6582 
6583 			tu.ipft_sz = ta->ipft_sz;
6584 			tu.ipft_min = ta->ipft_min;
6585 			tu.ipft_max = ta->ipft_max;
6586 			tu.ipft_flags = ta->ipft_flags;
6587 			bcopy(ta->ipft_name, tu.ipft_name,
6588 			      MIN(sizeof(tu.ipft_name),
6589 				  strlen(ta->ipft_name) + 1));
6590 		}
6591 		error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6592 		break;
6593 
6594 	case SIOCIPFGET :
6595 	case SIOCIPFSET :
6596 		/*
6597 		 * Search by name or by cookie value for a particular entry
6598 		 * in the tuning paramter table.
6599 		 */
6600 		error = ESRCH;
6601 		if (cookie != NULL) {
6602 			ta = fr_findtunebycookie(cookie, NULL, ifs);
6603 			if (ta != NULL)
6604 				error = 0;
6605 		} else if (tu.ipft_name[0] != '\0') {
6606 			ta = fr_findtunebyname(tu.ipft_name, ifs);
6607 			if (ta != NULL)
6608 				error = 0;
6609 		}
6610 		if (error != 0)
6611 			break;
6612 
6613 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
6614 			/*
6615 			 * Fetch the tuning parameters for a particular value
6616 			 */
6617 			tu.ipft_vlong = 0;
6618 			if (ta->ipft_sz == sizeof(u_long))
6619 				tu.ipft_vlong = *ta->ipft_plong;
6620 			else if (ta->ipft_sz == sizeof(u_int))
6621 				tu.ipft_vint = *ta->ipft_pint;
6622 			else if (ta->ipft_sz == sizeof(u_short))
6623 				tu.ipft_vshort = *ta->ipft_pshort;
6624 			else if (ta->ipft_sz == sizeof(u_char))
6625 				tu.ipft_vchar = *ta->ipft_pchar;
6626 			tu.ipft_cookie = ta;
6627 			tu.ipft_sz = ta->ipft_sz;
6628 			tu.ipft_min = ta->ipft_min;
6629 			tu.ipft_max = ta->ipft_max;
6630 			tu.ipft_flags = ta->ipft_flags;
6631 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6632 
6633 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
6634 			/*
6635 			 * Set an internal parameter.  The hard part here is
6636 			 * getting the new value safely and correctly out of
6637 			 * the kernel (given we only know its size, not type.)
6638 			 */
6639 			u_long in;
6640 
6641 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
6642 			    (ifs->ifs_fr_running > 0)) {
6643 				error = EBUSY;
6644 				break;
6645 			}
6646 
6647 			in = tu.ipft_vlong;
6648 			if (in < ta->ipft_min || in > ta->ipft_max) {
6649 				error = EINVAL;
6650 				break;
6651 			}
6652 
6653 			if (ta->ipft_sz == sizeof(u_long)) {
6654 				tu.ipft_vlong = *ta->ipft_plong;
6655 				*ta->ipft_plong = in;
6656 			} else if (ta->ipft_sz == sizeof(u_int)) {
6657 				tu.ipft_vint = *ta->ipft_pint;
6658 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
6659 			} else if (ta->ipft_sz == sizeof(u_short)) {
6660 				tu.ipft_vshort = *ta->ipft_pshort;
6661 				*ta->ipft_pshort = (u_short)(in & 0xffff);
6662 			} else if (ta->ipft_sz == sizeof(u_char)) {
6663 				tu.ipft_vchar = *ta->ipft_pchar;
6664 				*ta->ipft_pchar = (u_char)(in & 0xff);
6665 			}
6666 			error = fr_outobj(data, &tu, IPFOBJ_TUNEABLE);
6667 		}
6668 		break;
6669 
6670 	default :
6671 		error = EINVAL;
6672 		break;
6673 	}
6674 
6675 	return error;
6676 }
6677 
6678 
6679 /* ------------------------------------------------------------------------ */
6680 /* Function:    fr_initialise                                               */
6681 /* Returns:     int - 0 == success,  < 0 == failure                         */
6682 /* Parameters:  None.                                                       */
6683 /*                                                                          */
6684 /* Call of the initialise functions for all the various subsystems inside   */
6685 /* of IPFilter.  If any of them should fail, return immeadiately a failure  */
6686 /* BUT do not try to recover from the error here.                           */
6687 /* ------------------------------------------------------------------------ */
6688 int fr_initialise(ifs)
6689 ipf_stack_t *ifs;
6690 {
6691 	int i;
6692 
6693 #ifdef IPFILTER_LOG
6694 	i = fr_loginit(ifs);
6695 	if (i < 0)
6696 		return -10 + i;
6697 #endif
6698 	i = fr_natinit(ifs);
6699 	if (i < 0)
6700 		return -20 + i;
6701 
6702 	i = fr_stateinit(ifs);
6703 	if (i < 0)
6704 		return -30 + i;
6705 
6706 	i = fr_authinit(ifs);
6707 	if (i < 0)
6708 		return -40 + i;
6709 
6710 	i = fr_fraginit(ifs);
6711 	if (i < 0)
6712 		return -50 + i;
6713 
6714 	i = appr_init(ifs);
6715 	if (i < 0)
6716 		return -60 + i;
6717 
6718 #ifdef IPFILTER_SYNC
6719 	i = ipfsync_init(ifs);
6720 	if (i < 0)
6721 		return -70 + i;
6722 #endif
6723 #ifdef IPFILTER_SCAN
6724 	i = ipsc_init(ifs);
6725 	if (i < 0)
6726 		return -80 + i;
6727 #endif
6728 #ifdef IPFILTER_LOOKUP
6729 	i = ip_lookup_init(ifs);
6730 	if (i < 0)
6731 		return -90 + i;
6732 #endif
6733 #ifdef IPFILTER_COMPILED
6734 	ipfrule_add(ifs);
6735 #endif
6736 	return 0;
6737 }
6738 
6739 
6740 /* ------------------------------------------------------------------------ */
6741 /* Function:    fr_deinitialise                                             */
6742 /* Returns:     None.                                                       */
6743 /* Parameters:  None.                                                       */
6744 /*                                                                          */
6745 /* Call all the various subsystem cleanup routines to deallocate memory or  */
6746 /* destroy locks or whatever they've done that they need to now undo.       */
6747 /* The order here IS important as there are some cross references of        */
6748 /* internal data structures.                                                */
6749 /* ------------------------------------------------------------------------ */
6750 void fr_deinitialise(ifs)
6751 ipf_stack_t *ifs;
6752 {
6753 	fr_fragunload(ifs);
6754 	fr_authunload(ifs);
6755 	fr_natunload(ifs);
6756 	fr_stateunload(ifs);
6757 #ifdef IPFILTER_SCAN
6758 	fr_scanunload(ifs);
6759 #endif
6760 	appr_unload(ifs);
6761 
6762 #ifdef IPFILTER_COMPILED
6763 	ipfrule_remove(ifs);
6764 #endif
6765 
6766 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6767 	(void) frflush(IPL_LOGIPF, 0, FR_INQUE|FR_OUTQUE, ifs);
6768 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE|FR_INACTIVE, ifs);
6769 	(void) frflush(IPL_LOGCOUNT, 0, FR_INQUE|FR_OUTQUE, ifs);
6770 
6771 #ifdef IPFILTER_LOOKUP
6772 	ip_lookup_unload(ifs);
6773 #endif
6774 
6775 #ifdef IPFILTER_LOG
6776 	fr_logunload(ifs);
6777 #endif
6778 }
6779 
6780 
6781 /* ------------------------------------------------------------------------ */
6782 /* Function:    fr_zerostats                                                */
6783 /* Returns:     int - 0 = success, else failure                             */
6784 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
6785 /*                                                                          */
6786 /* Copies the current statistics out to userspace and then zero's the       */
6787 /* current ones in the kernel. The lock is only held across the bzero() as  */
6788 /* the copyout may result in paging (ie network activity.)                  */
6789 /* ------------------------------------------------------------------------ */
6790 int	fr_zerostats(data, ifs)
6791 caddr_t	data;
6792 ipf_stack_t *ifs;
6793 {
6794 	friostat_t fio;
6795 	int error;
6796 
6797 	fr_getstat(&fio, ifs);
6798 	error = copyoutptr(&fio, data, sizeof(fio));
6799 	if (error)
6800 		return EFAULT;
6801 
6802 	WRITE_ENTER(&ifs->ifs_ipf_mutex);
6803 	bzero((char *)ifs->ifs_frstats, sizeof(*ifs->ifs_frstats) * 2);
6804 	RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
6805 
6806 	return 0;
6807 }
6808 
6809 
6810 #ifdef _KERNEL
6811 /* ------------------------------------------------------------------------ */
6812 /* Function:    fr_resolvedest                                              */
6813 /* Returns:     Nil                                                         */
6814 /* Parameters:  fdp(IO) - pointer to destination information to resolve     */
6815 /*              v(I)    - IP protocol version to match                      */
6816 /*                                                                          */
6817 /* Looks up an interface name in the frdest structure pointed to by fdp and */
6818 /* if a matching name can be found for the particular IP protocol version   */
6819 /* then store the interface pointer in the frdest struct.  If no match is   */
6820 /* found, then set the interface pointer to be -1 as NULL is considered to  */
6821 /* indicate there is no information at all in the structure.                */
6822 /* ------------------------------------------------------------------------ */
6823 void fr_resolvedest(fdp, v, ifs)
6824 frdest_t *fdp;
6825 int v;
6826 ipf_stack_t *ifs;
6827 {
6828 	fdp->fd_ifp = NULL;
6829 
6830   	if (*fdp->fd_ifname != '\0') {
6831  		fdp->fd_ifp = GETIFP(fdp->fd_ifname, v, ifs);
6832 		if (fdp->fd_ifp == NULL)
6833 			fdp->fd_ifp = (void *)-1;
6834 	}
6835 }
6836 #endif /* _KERNEL */
6837 
6838 
6839 /* ------------------------------------------------------------------------ */
6840 /* Function:    fr_resolvenic                                               */
6841 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
6842 /*                      pointer to interface structure for NIC              */
6843 /* Parameters:  name(I) - complete interface name                           */
6844 /*              v(I)    - IP protocol version                               */
6845 /*                                                                          */
6846 /* Look for a network interface structure that firstly has a matching name  */
6847 /* to that passed in and that is also being used for that IP protocol       */
6848 /* version (necessary on some platforms where there are separate listings   */
6849 /* for both IPv4 and IPv6 on the same physical NIC.                         */
6850 /*                                                                          */
6851 /* One might wonder why name gets terminated with a \0 byte in here.  The   */
6852 /* reason is an interface name could get into the kernel structures of ipf  */
6853 /* in any number of ways and so long as they all use the same sized array   */
6854 /* to put the name in, it makes sense to ensure it gets null terminated     */
6855 /* before it is used for its intended purpose - finding its match in the    */
6856 /* kernel's list of configured interfaces.                                  */
6857 /*                                                                          */
6858 /* NOTE: This SHOULD ONLY be used with IPFilter structures that have an     */
6859 /*       array for the name that is LIFNAMSIZ bytes (at least) in length.   */
6860 /* ------------------------------------------------------------------------ */
6861 void *fr_resolvenic(name, v, ifs)
6862 char *name;
6863 int v;
6864 ipf_stack_t *ifs;
6865 {
6866 	void *nic;
6867 
6868 	if (name[0] == '\0')
6869 		return NULL;
6870 
6871 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
6872 		return NULL;
6873 	}
6874 
6875 	name[LIFNAMSIZ - 1] = '\0';
6876 
6877 	nic = GETIFP(name, v, ifs);
6878 	if (nic == NULL)
6879 		nic = (void *)-1;
6880 	return nic;
6881 }
6882 
6883 
6884 /* ------------------------------------------------------------------------ */
6885 /* Function:    ipf_expiretokens                                            */
6886 /* Returns:     None.                                                       */
6887 /* Parameters:  ifs - ipf stack instance                                    */
6888 /*                                                                          */
6889 /* This function is run every ipf tick to see if there are any tokens that  */
6890 /* have been held for too long and need to be freed up.                     */
6891 /* ------------------------------------------------------------------------ */
6892 void ipf_expiretokens(ifs)
6893 ipf_stack_t *ifs;
6894 {
6895 	ipftoken_t *it;
6896 
6897 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6898 	while ((it = ifs->ifs_ipftokenhead) != NULL) {
6899 		if (it->ipt_die > ifs->ifs_fr_ticks)
6900 			break;
6901 
6902 		ipf_freetoken(it, ifs);
6903 	}
6904 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6905 }
6906 
6907 
6908 /* ------------------------------------------------------------------------ */
6909 /* Function:    ipf_deltoken                                                */
6910 /* Returns:     int - 0 = success, else error                               */
6911 /* Parameters:  type(I) - the token type to match                           */
6912 /*              uid(I)  - uid owning the token                              */
6913 /*              ptr(I)  - context pointer for the token                     */
6914 /*              ifs - ipf stack instance                                    */
6915 /*                                                                          */
6916 /* This function looks for a a token in the current list that matches up    */
6917 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
6918 /* call ipf_freetoken() to remove it from the list.                         */
6919 /* ------------------------------------------------------------------------ */
6920 int ipf_deltoken(type, uid, ptr, ifs)
6921 int type, uid;
6922 void *ptr;
6923 ipf_stack_t *ifs;
6924 {
6925 	ipftoken_t *it;
6926 	int error = ESRCH;
6927 
6928 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6929 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next)
6930 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6931 		    uid == it->ipt_uid) {
6932 			ipf_freetoken(it, ifs);
6933 			error = 0;
6934 			break;
6935 	}
6936 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
6937 
6938 	return error;
6939 }
6940 
6941 
6942 /* ------------------------------------------------------------------------ */
6943 /* Function:    ipf_unlinktoken                                             */
6944 /* Returns:     None.                                                       */
6945 /* Parameters:  token(I) - pointer to token structure                       */
6946 /*              ifs - ipf stack instance                                    */
6947 /*                                                                          */
6948 /* This function unlinks a token structure from the linked list of tokens   */
6949 /* that it belongs to.  The head pointer never needs to be explicitly       */
6950 /* adjusted, but the tail does due to the linked list implementation.       */
6951 /* ------------------------------------------------------------------------ */
6952 static void ipf_unlinktoken(token, ifs)
6953 ipftoken_t *token;
6954 ipf_stack_t *ifs;
6955 {
6956 
6957 	if (ifs->ifs_ipftokentail == &token->ipt_next)
6958 		ifs->ifs_ipftokentail = token->ipt_pnext;
6959 
6960 	*token->ipt_pnext = token->ipt_next;
6961 	if (token->ipt_next != NULL)
6962 		token->ipt_next->ipt_pnext = token->ipt_pnext;
6963 }
6964 
6965 
6966 /* ------------------------------------------------------------------------ */
6967 /* Function:    ipf_findtoken                                               */
6968 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
6969 /* Parameters:  type(I) - the token type to match                           */
6970 /*              uid(I) - uid owning the token                               */
6971 /*              ptr(I) - context pointer for the token                      */
6972 /*              ifs - ipf stack instance                                    */
6973 /*                                                                          */
6974 /* This function looks for a live token in the list of current tokens that  */
6975 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
6976 /* allocated.  If one is found then it is moved to the top of the list of   */
6977 /* currently active tokens.                                                 */
6978 /*                                                                          */
6979 /* NOTE: It is by design that this function returns holding a read lock on  */
6980 /*       ipf_tokens.  Callers must make sure they release it!               */
6981 /* ------------------------------------------------------------------------ */
6982 ipftoken_t *ipf_findtoken(type, uid, ptr, ifs)
6983 int type, uid;
6984 void *ptr;
6985 ipf_stack_t *ifs;
6986 {
6987 	ipftoken_t *it, *new;
6988 
6989 	KMALLOC(new, ipftoken_t *);
6990 
6991 	WRITE_ENTER(&ifs->ifs_ipf_tokens);
6992 	for (it = ifs->ifs_ipftokenhead; it != NULL; it = it->ipt_next) {
6993 		if (it->ipt_alive == 0)
6994 			continue;
6995 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
6996 		    uid == it->ipt_uid)
6997 			break;
6998 	}
6999 
7000 	if (it == NULL) {
7001 		it = new;
7002 		new = NULL;
7003 		if (it == NULL)
7004 			return NULL;
7005 		it->ipt_data = NULL;
7006 		it->ipt_ctx = ptr;
7007 		it->ipt_uid = uid;
7008 		it->ipt_type = type;
7009 		it->ipt_next = NULL;
7010 		it->ipt_alive = 1;
7011 	} else {
7012 		if (new != NULL) {
7013 			KFREE(new);
7014 			new = NULL;
7015 		}
7016 
7017 		ipf_unlinktoken(it, ifs);
7018 	}
7019 	it->ipt_pnext = ifs->ifs_ipftokentail;
7020 	*ifs->ifs_ipftokentail = it;
7021 	ifs->ifs_ipftokentail = &it->ipt_next;
7022 	it->ipt_next = NULL;
7023 
7024 	it->ipt_die = ifs->ifs_fr_ticks + 2;
7025 
7026 	MUTEX_DOWNGRADE(&ifs->ifs_ipf_tokens);
7027 
7028 	return it;
7029 }
7030 
7031 
7032 /* ------------------------------------------------------------------------ */
7033 /* Function:    ipf_freetoken                                               */
7034 /* Returns:     None.                                                       */
7035 /* Parameters:  token(I) - pointer to token structure                       */
7036 /*              ifs - ipf stack instance                                    */
7037 /*                                                                          */
7038 /* This function unlinks a token from the linked list and on the path to    */
7039 /* free'ing the data, it calls the dereference function that is associated  */
7040 /* with the type of data pointed to by the token as it is considered to     */
7041 /* hold a reference to it.                                                  */
7042 /* ------------------------------------------------------------------------ */
7043 void ipf_freetoken(token, ifs)
7044 ipftoken_t *token;
7045 ipf_stack_t *ifs;
7046 {
7047 	void *data, **datap;
7048 
7049 	ipf_unlinktoken(token, ifs);
7050 
7051 	data = token->ipt_data;
7052 	datap = &data;
7053 
7054 	if ((data != NULL) && (data != (void *)-1)) {
7055 		switch (token->ipt_type)
7056 		{
7057 		case IPFGENITER_IPF :
7058 			(void)fr_derefrule((frentry_t **)datap, ifs);
7059 			break;
7060 		case IPFGENITER_IPNAT :
7061 			WRITE_ENTER(&ifs->ifs_ipf_nat);
7062 			fr_ipnatderef((ipnat_t **)datap, ifs);
7063 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
7064 			break;
7065 		case IPFGENITER_NAT :
7066 			fr_natderef((nat_t **)datap, ifs);
7067 			break;
7068 		case IPFGENITER_STATE :
7069 			fr_statederef((ipstate_t **)datap, ifs);
7070 			break;
7071 		case IPFGENITER_FRAG :
7072 			fr_fragderef((ipfr_t **)datap, &ifs->ifs_ipf_frag, ifs);
7073 			break;
7074 		case IPFGENITER_NATFRAG :
7075  			fr_fragderef((ipfr_t **)datap,
7076 				     &ifs->ifs_ipf_natfrag, ifs);
7077 			break;
7078 		case IPFGENITER_HOSTMAP :
7079 			WRITE_ENTER(&ifs->ifs_ipf_nat);
7080 			fr_hostmapdel((hostmap_t **)datap);
7081 			RWLOCK_EXIT(&ifs->ifs_ipf_nat);
7082 			break;
7083 		default :
7084 			(void) ip_lookup_iterderef(token->ipt_type, data, ifs);
7085 			break;
7086 		}
7087 	}
7088 
7089 	KFREE(token);
7090 }
7091 
7092 
7093 /* ------------------------------------------------------------------------ */
7094 /* Function:    ipf_getnextrule                                             */
7095 /* Returns:     int - 0 = success, else error                               */
7096 /* Parameters:  t(I)   - pointer to destination information to resolve      */
7097 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7098 /*              ifs - ipf stack instance                                    */
7099 /*                                                                          */
7100 /* This function's first job is to bring in the ipfruleiter_t structure via */
7101 /* the ipfobj_t structure to determine what should be the next rule to      */
7102 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7103 /* find the 'next rule'.  This may include searching rule group lists or    */
7104 /* just be as simple as looking at the 'next' field in the rule structure.  */
7105 /* When we have found the rule to return, increase its reference count and  */
7106 /* if we used an existing rule to get here, decrease its reference count.   */
7107 /* ------------------------------------------------------------------------ */
7108 int ipf_getnextrule(t, ptr, ifs)
7109 ipftoken_t *t;
7110 void *ptr;
7111 ipf_stack_t *ifs;
7112 {
7113 	frentry_t *fr, *next, zero;
7114 	int error, out, count;
7115 	ipfruleiter_t it;
7116 	frgroup_t *fg;
7117 	char *dst;
7118 
7119 	if (t == NULL || ptr == NULL)
7120 		return EFAULT;
7121 	error = fr_inobj(ptr, &it, IPFOBJ_IPFITER);
7122 	if (error != 0)
7123 		return error;
7124 	if ((it.iri_ver != AF_INET) && (it.iri_ver != AF_INET6))
7125 		return EINVAL;
7126 	if ((it.iri_inout < 0) || (it.iri_inout > 3))
7127 		return EINVAL;
7128 	if (it.iri_nrules == 0)
7129 		return EINVAL;
7130 	if ((it.iri_active != 0) && (it.iri_active != 1))
7131 		return EINVAL;
7132 	if (it.iri_rule == NULL)
7133 		return EFAULT;
7134 
7135 	/*
7136 	 * Use bitmask on it.iri_inout to determine direction.
7137 	 * F_OUT (1) and F_ACOUT (3) mask to out = 1, while
7138 	 * F_IN (0) and F_ACIN (2) mask to out = 0.
7139 	 */
7140 	out = it.iri_inout & F_OUT;
7141 	READ_ENTER(&ifs->ifs_ipf_mutex);
7142 
7143 	/*
7144 	 * Retrieve "previous" entry from token and find the next entry.
7145 	 */
7146 	fr = t->ipt_data;
7147 	if (fr == NULL) {
7148 		if (*it.iri_group == '\0') {
7149 			/*
7150 			 * Use bitmask again to determine accounting or not.
7151 			 * F_ACIN will mask to accounting cases F_ACIN (2)
7152 			 * or F_ACOUT (3), but not F_IN or F_OUT.
7153 			 */
7154 			if ((it.iri_inout & F_ACIN) != 0) {
7155 				if (it.iri_ver == AF_INET)
7156 					next = ifs->ifs_ipacct
7157 					    [out][it.iri_active];
7158 				else
7159 					next = ifs->ifs_ipacct6
7160 					    [out][it.iri_active];
7161 			} else {
7162 				if (it.iri_ver == AF_INET)
7163 					next = ifs->ifs_ipfilter
7164 					    [out][it.iri_active];
7165 				else
7166 					next = ifs->ifs_ipfilter6
7167 					    [out][it.iri_active];
7168 			}
7169 		} else {
7170 			fg = fr_findgroup(it.iri_group, IPL_LOGIPF,
7171 					  it.iri_active, NULL, ifs);
7172 			if (fg != NULL)
7173 				next = fg->fg_start;
7174 			else
7175 				next = NULL;
7176 		}
7177 	} else {
7178 		next = fr->fr_next;
7179 	}
7180 
7181 	dst = (char *)it.iri_rule;
7182 	/*
7183 	 * The ipfruleiter may ask for more than 1 rule at a time to be
7184 	 * copied out, so long as that many exist in the list to start with!
7185 	 */
7186 	for (count = it.iri_nrules; count > 0; count--) {
7187 		/*
7188 		 * If we found an entry, add reference to it and update token.
7189 		 * Otherwise, zero out data to be returned and NULL out token.
7190 		 */
7191 		if (next != NULL) {
7192 			MUTEX_ENTER(&next->fr_lock);
7193 			next->fr_ref++;
7194 			MUTEX_EXIT(&next->fr_lock);
7195 			t->ipt_data = next;
7196 		} else {
7197 			bzero(&zero, sizeof(zero));
7198 			next = &zero;
7199 			t->ipt_data = NULL;
7200 		}
7201 
7202 		/*
7203 		 * Now that we have ref, it's save to give up lock.
7204 		 */
7205 		RWLOCK_EXIT(&ifs->ifs_ipf_mutex);
7206 
7207 		/*
7208 		 * Copy out data and clean up references and token as needed.
7209 		 */
7210 		error = COPYOUT(next, dst, sizeof(*next));
7211 		if (error != 0)
7212 			error = EFAULT;
7213 		if (t->ipt_data == NULL) {
7214 			ipf_freetoken(t, ifs);
7215 			break;
7216 		} else {
7217 			if (fr != NULL)
7218 				(void) fr_derefrule(&fr, ifs);
7219 			if (next->fr_data != NULL) {
7220 				dst += sizeof(*next);
7221 				error = COPYOUT(next->fr_data, dst,
7222 						next->fr_dsize);
7223 				if (error != 0)
7224 					error = EFAULT;
7225 				else
7226 					dst += next->fr_dsize;
7227 			}
7228 			if (next->fr_next == NULL) {
7229 				ipf_freetoken(t, ifs);
7230 				break;
7231 			}
7232 		}
7233 
7234 		if ((count == 1) || (error != 0))
7235 			break;
7236 
7237 		READ_ENTER(&ifs->ifs_ipf_mutex);
7238 		fr = next;
7239 		next = fr->fr_next;
7240 	}
7241 
7242 	return error;
7243 }
7244 
7245 
7246 /* ------------------------------------------------------------------------ */
7247 /* Function:    fr_frruleiter                                               */
7248 /* Returns:     int - 0 = success, else error                               */
7249 /* Parameters:  data(I) - the token type to match                           */
7250 /*              uid(I) - uid owning the token                               */
7251 /*              ptr(I) - context pointer for the token                      */
7252 /*              ifs - ipf stack instance                                    */
7253 /*                                                                          */
7254 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7255 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7256 /* the process doing the ioctl and use that to ask for the next rule.       */
7257 /* ------------------------------------------------------------------------ */
7258 int ipf_frruleiter(data, uid, ctx, ifs)
7259 void *data, *ctx;
7260 int uid;
7261 ipf_stack_t *ifs;
7262 {
7263 	ipftoken_t *token;
7264 	int error;
7265 
7266 	token = ipf_findtoken(IPFGENITER_IPF, uid, ctx, ifs);
7267 	if (token != NULL)
7268 		error = ipf_getnextrule(token, data, ifs);
7269 	else
7270 		error = EFAULT;
7271 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7272 
7273 	return error;
7274 }
7275 
7276 
7277 /* ------------------------------------------------------------------------ */
7278 /* Function:    ipf_geniter                                                 */
7279 /* Returns:     int - 0 = success, else error                               */
7280 /* Parameters:  token(I) - pointer to ipftoken structure                    */
7281 /*              itp(I) - pointer to ipfgeniter structure                    */
7282 /*              ifs - ipf stack instance                                    */
7283 /*                                                                          */
7284 /* Generic iterator called from ipf_genericiter.  Currently only used for   */
7285 /* walking through list of fragments.                                       */
7286 /* ------------------------------------------------------------------------ */
7287 int ipf_geniter(token, itp, ifs)
7288 ipftoken_t *token;
7289 ipfgeniter_t *itp;
7290 ipf_stack_t *ifs;
7291 {
7292 	int error;
7293 
7294 	switch (itp->igi_type)
7295 	{
7296 	case IPFGENITER_FRAG :
7297 		error = fr_nextfrag(token, itp, &ifs->ifs_ipfr_list,
7298 				    &ifs->ifs_ipfr_tail, &ifs->ifs_ipf_frag,
7299 				    ifs);
7300 		break;
7301 	default :
7302 		error = EINVAL;
7303 		break;
7304 	}
7305 
7306 	return error;
7307 }
7308 
7309 
7310 /* ------------------------------------------------------------------------ */
7311 /* Function:    ipf_genericiter                                             */
7312 /* Returns:     int - 0 = success, else error                               */
7313 /* Parameters:  data(I) - the token type to match                           */
7314 /*              uid(I) - uid owning the token                               */
7315 /*              ptr(I) - context pointer for the token                      */
7316 /*              ifs - ipf stack instance                                    */
7317 /*                                                                          */
7318 /* This function serves as a stepping stone between fr_ipf_ioctl and        */
7319 /* ipf_geniter when handling SIOCGENITER.  It's role is to find the right   */
7320 /* token in the kernel for the process using the ioctl, and to use that     */
7321 /* token when calling ipf_geniter.                                          */
7322 /* ------------------------------------------------------------------------ */
7323 int ipf_genericiter(data, uid, ctx, ifs)
7324 void *data, *ctx;
7325 int uid;
7326 ipf_stack_t *ifs;
7327 {
7328 	ipftoken_t *token;
7329 	ipfgeniter_t iter;
7330 	int error;
7331 
7332 	error = fr_inobj(data, &iter, IPFOBJ_GENITER);
7333 	if (error != 0)
7334 		return error;
7335 
7336 	token = ipf_findtoken(iter.igi_type, uid, ctx, ifs);
7337 	if (token != NULL) {
7338 		token->ipt_subtype = iter.igi_type;
7339 		error = ipf_geniter(token, &iter, ifs);
7340 	} else
7341 		error = EFAULT;
7342 	RWLOCK_EXIT(&ifs->ifs_ipf_tokens);
7343 
7344 	return error;
7345 }
7346 
7347 
7348 /* --------------------------------------------------------------------- */
7349 /* Function:    ipf_earlydrop                                            */
7350 /* Returns:     number of dropped/removed entries from the queue         */
7351 /* Parameters:	flushtype - which table we're cleaning (NAT or State)	 */
7352 /*              ifq	- pointer to queue with entries to be deleted    */
7353 /*              idletime - entry must be idle this long to be deleted    */
7354 /*              ifs     - ipf stack instance                             */
7355 /*                                                                       */
7356 /* Function is invoked from state/NAT flush routines to remove entries   */
7357 /* from specified timeout queue, based on how long they've sat idle,     */
7358 /* without waiting for it to happen on its own.                          */
7359 /* --------------------------------------------------------------------- */
7360 int ipf_earlydrop(flushtype, ifq, idletime, ifs)
7361 int flushtype;
7362 ipftq_t *ifq;
7363 int idletime;
7364 ipf_stack_t *ifs;
7365 {
7366         ipftqent_t *tqe, *tqn;
7367         unsigned int dropped;
7368         int droptick;
7369 	void *ent;
7370 
7371         if (ifq == NULL)
7372                 return (0);
7373 
7374         dropped = 0;
7375 
7376         /*
7377          * Determine the tick representing the idle time we're interested
7378          * in.  If an entry exists in the queue, and it was touched before
7379          * that tick, then it's been idle longer than idletime, so it should
7380 	 * be deleted.
7381          */
7382         droptick = ifs->ifs_fr_ticks - idletime;
7383         tqn = ifq->ifq_head;
7384         while ((tqe = tqn) != NULL && tqe->tqe_touched < droptick) {
7385                 tqn = tqe->tqe_next;
7386 		ent = tqe->tqe_parent;
7387 		switch (flushtype)
7388 		{
7389 		case NAT_FLUSH:
7390 			if (nat_delete((nat_t *)ent, NL_FLUSH, ifs) == 0)
7391 				dropped++;
7392 			break;
7393 		case STATE_FLUSH:
7394 			if (fr_delstate((ipstate_t *)ent, ISL_FLUSH, ifs) == 0)
7395 				dropped++;
7396 			break;
7397 		default:
7398 			return (0);
7399 		}
7400         }
7401         return (dropped);
7402 }
7403 
7404 
7405 /* --------------------------------------------------------------------- */
7406 /* Function:    ipf_flushclosing                                         */
7407 /* Returns:     int - number of entries deleted                          */
7408 /* Parameters:	flushtype - which table we're cleaning (NAT or State)	 */
7409 /*              stateval - TCP state at which to start removing entries  */
7410 /*              ipfqs - pointer to timeout queues                        */
7411 /*              userqs - pointer to user defined queues                  */
7412 /*              ifs  - ipf stack instance                                */
7413 /*                                                                       */
7414 /* Remove state/NAT table entries for TCP connections which are in the   */
7415 /* process of closing, and have at least reached the state specified by  */
7416 /* the 'stateval' parameter.                                             */
7417 /* --------------------------------------------------------------------- */
7418 int ipf_flushclosing(flushtype, stateval, ipfqs, userqs, ifs)
7419 int flushtype, stateval;
7420 ipftq_t *ipfqs, *userqs;
7421 ipf_stack_t *ifs;
7422 {
7423 	ipftq_t *ifq, *ifqn;
7424         ipftqent_t *tqe, *tqn;
7425         int dropped;
7426 	void *ent;
7427 	nat_t *nat;
7428 	ipstate_t *is;
7429 
7430         dropped = 0;
7431 
7432         /*
7433          * Start by deleting any entries in specific timeout queues.
7434          */
7435 	ifqn = &ipfqs[stateval];
7436         while ((ifq = ifqn) != NULL) {
7437                 ifqn = ifq->ifq_next;
7438                 dropped += ipf_earlydrop(flushtype, ifq, (int)0, ifs);
7439         }
7440 
7441         /*
7442          * Next, look through user defined queues for closing entries.
7443          */
7444 	ifqn = userqs;
7445         while ((ifq = ifqn) != NULL) {
7446                 ifqn = ifq->ifq_next;
7447                 tqn = ifq->ifq_head;
7448                 while ((tqe = tqn) != NULL) {
7449                         tqn = tqe->tqe_next;
7450 			ent = tqe->tqe_parent;
7451 			switch (flushtype)
7452 			{
7453 			case NAT_FLUSH:
7454 				nat = (nat_t *)ent;
7455 				if ((nat->nat_p == IPPROTO_TCP) &&
7456 				    (nat->nat_tcpstate[0] >= stateval) &&
7457 				    (nat->nat_tcpstate[1] >= stateval) &&
7458 				    (nat_delete(nat, NL_EXPIRE, ifs) == 0))
7459 					dropped++;
7460 				break;
7461 			case STATE_FLUSH:
7462 				is = (ipstate_t *)ent;
7463 				if ((is->is_p == IPPROTO_TCP) &&
7464 				    (is->is_state[0] >= stateval) &&
7465 				    (is->is_state[1] >= stateval) &&
7466 				    (fr_delstate(is, ISL_EXPIRE, ifs) == 0))
7467 					dropped++;
7468 				break;
7469 			default:
7470 				return (0);
7471 			}
7472                 }
7473         }
7474         return (dropped);
7475 }
7476 
7477 
7478 /* --------------------------------------------------------------------- */
7479 /* Function:    ipf_extraflush                                           */
7480 /* Returns:     int - number of entries flushed (0 = none)               */
7481 /* Parameters:	flushtype - which table we're cleaning (NAT or State)	 */
7482 /*              ipfqs - pointer to 'established' timeout queue           */
7483 /*              userqs - pointer to user defined queues                  */
7484 /*              ifs  - ipf stack instance                                */
7485 /*                                                                       */
7486 /* This function gets called when either NAT or state tables fill up.    */
7487 /* We need to try a bit harder to free up some space.  The function will */
7488 /* flush entries for TCP connections which have been idle a long time.   */
7489 /*                                                                       */
7490 /* Currently, the idle time is checked using values from ideltime_tab[]	 */
7491 /* --------------------------------------------------------------------- */
7492 int ipf_extraflush(flushtype, ipfqs, userqs, ifs)
7493 int flushtype;
7494 ipftq_t *ipfqs, *userqs;
7495 ipf_stack_t *ifs;
7496 {
7497 	ipftq_t *ifq, *ifqn;
7498 	int idletime, removed, idle_idx;
7499 
7500 	removed = 0;
7501 
7502 	/*
7503   	 * Determine initial threshold for minimum idle time based on
7504 	 * how long ipfilter has been running.  Ipfilter needs to have
7505 	 * been up as long as the smallest interval to continue on.
7506 	 *
7507 	 * Minimum idle times stored in idletime_tab and indexed by
7508 	 * idle_idx.  Start at upper end of array and work backwards.
7509 	 *
7510 	 * Once the index is found, set the initial idle time to the
7511 	 * first interval before the current ipfilter run time.
7512 	 */
7513 	if (ifs->ifs_fr_ticks < idletime_tab[0])
7514 		return (0);
7515 	idle_idx = (sizeof (idletime_tab) / sizeof (int)) - 1;
7516 	if (ifs->ifs_fr_ticks > idletime_tab[idle_idx]) {
7517 		idletime = idletime_tab[idle_idx];
7518 	} else {
7519 		while ((idle_idx > 0) &&
7520 		    (ifs->ifs_fr_ticks < idletime_tab[idle_idx]))
7521 			idle_idx--;
7522 
7523 		idletime = (ifs->ifs_fr_ticks /
7524 			    idletime_tab[idle_idx]) *
7525 			    idletime_tab[idle_idx];
7526 	}
7527 
7528 	while (idle_idx >= 0) {
7529 		/*
7530 		 * Check to see if we need to delete more entries.
7531 		 * If we do, start with appropriate timeout queue.
7532 		 */
7533 		if (flushtype == NAT_FLUSH) {
7534 			if (NAT_TAB_WATER_LEVEL(ifs) <=
7535 			    ifs->ifs_nat_flush_level_lo)
7536 				break;
7537 		} else if (flushtype == STATE_FLUSH) {
7538 			if (ST_TAB_WATER_LEVEL(ifs) <=
7539 			    ifs->ifs_state_flush_level_lo)
7540 				break;
7541 		} else {
7542 			break;
7543 		}
7544 
7545 		removed += ipf_earlydrop(flushtype, ipfqs, idletime, ifs);
7546 
7547 		/*
7548 		 * Next, check the user defined queues.  But first, make
7549 		 * certain that timeout queue deletions didn't do enough.
7550 		 */
7551 		if (flushtype == NAT_FLUSH) {
7552 			if (NAT_TAB_WATER_LEVEL(ifs) <=
7553 			    ifs->ifs_nat_flush_level_lo)
7554 				break;
7555 		} else {
7556 			if (ST_TAB_WATER_LEVEL(ifs) <=
7557 			    ifs->ifs_state_flush_level_lo)
7558 				break;
7559 		}
7560 		ifqn = userqs;
7561 		while ((ifq = ifqn) != NULL) {
7562 			ifqn = ifq->ifq_next;
7563 			removed += ipf_earlydrop(flushtype, ifq, idletime, ifs);
7564 		}
7565 
7566 		/*
7567 		 * Adjust the granularity of idle time.
7568 		 *
7569 		 * If we reach an interval boundary, we need to
7570 		 * either adjust the idle time accordingly or exit
7571 		 * the loop altogether (if this is very last check).
7572 		 */
7573 		idletime -= idletime_tab[idle_idx];
7574 		if (idletime < idletime_tab[idle_idx]) {
7575 			if (idle_idx != 0) {
7576 				idletime = idletime_tab[idle_idx] -
7577 				idletime_tab[idle_idx - 1];
7578 				idle_idx--;
7579 			} else {
7580 				break;
7581 			}
7582 		}
7583 	}
7584 
7585 	return (removed);
7586 }
7587