xref: /titanic_50/usr/src/uts/common/inet/ip/ipsecesp.c (revision e07d9cb85217949d497b02d7211de8a197d2f2eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/stropts.h>
31 #include <sys/errno.h>
32 #include <sys/strlog.h>
33 #include <sys/tihdr.h>
34 #include <sys/socket.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/kmem.h>
38 #include <sys/zone.h>
39 #include <sys/sysmacros.h>
40 #include <sys/cmn_err.h>
41 #include <sys/vtrace.h>
42 #include <sys/debug.h>
43 #include <sys/atomic.h>
44 #include <sys/strsun.h>
45 #include <sys/random.h>
46 #include <netinet/in.h>
47 #include <net/if.h>
48 #include <netinet/ip6.h>
49 #include <net/pfkeyv2.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 #include <inet/nd.h>
54 #include <inet/ip.h>
55 #include <inet/ip6.h>
56 #include <inet/sadb.h>
57 #include <inet/ipsec_info.h>
58 #include <inet/ipsec_impl.h>
59 #include <inet/ipsecesp.h>
60 #include <inet/ipdrop.h>
61 #include <inet/tcp.h>
62 #include <sys/kstat.h>
63 #include <sys/policy.h>
64 #include <sys/strsun.h>
65 #include <inet/udp_impl.h>
66 #include <sys/taskq.h>
67 #include <sys/note.h>
68 
69 #include <sys/iphada.h>
70 
71 /*
72  * Table of ND variables supported by ipsecesp. These are loaded into
73  * ipsecesp_g_nd in ipsecesp_init_nd.
74  * All of these are alterable, within the min/max values given, at run time.
75  */
76 static	ipsecespparam_t	lcl_param_arr[] = {
77 	/* min	max			value	name */
78 	{ 0,	3,			0,	"ipsecesp_debug"},
79 	{ 125,	32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"},
80 	{ 1,	10,			1,	"ipsecesp_reap_delay"},
81 	{ 1,	SADB_MAX_REPLAY,	64,	"ipsecesp_replay_size"},
82 	{ 1,	300,			15,	"ipsecesp_acquire_timeout"},
83 	{ 1,	1800,			90,	"ipsecesp_larval_timeout"},
84 	/* Default lifetime values for ACQUIRE messages. */
85 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_soft_bytes"},
86 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_hard_bytes"},
87 	{ 0,	0xffffffffU,	24000,	"ipsecesp_default_soft_addtime"},
88 	{ 0,	0xffffffffU,	28800,	"ipsecesp_default_hard_addtime"},
89 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_soft_usetime"},
90 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_hard_usetime"},
91 	{ 0,	1,		0,	"ipsecesp_log_unknown_spi"},
92 	{ 0,	2,		1,	"ipsecesp_padding_check"},
93 };
94 #define	ipsecesp_debug	ipsecesp_params[0].ipsecesp_param_value
95 #define	ipsecesp_age_interval ipsecesp_params[1].ipsecesp_param_value
96 #define	ipsecesp_age_int_max	ipsecesp_params[1].ipsecesp_param_max
97 #define	ipsecesp_reap_delay	ipsecesp_params[2].ipsecesp_param_value
98 #define	ipsecesp_replay_size	ipsecesp_params[3].ipsecesp_param_value
99 #define	ipsecesp_acquire_timeout	\
100 	ipsecesp_params[4].ipsecesp_param_value
101 #define	ipsecesp_larval_timeout	\
102 	ipsecesp_params[5].ipsecesp_param_value
103 #define	ipsecesp_default_soft_bytes	\
104 	ipsecesp_params[6].ipsecesp_param_value
105 #define	ipsecesp_default_hard_bytes	\
106 	ipsecesp_params[7].ipsecesp_param_value
107 #define	ipsecesp_default_soft_addtime	\
108 	ipsecesp_params[8].ipsecesp_param_value
109 #define	ipsecesp_default_hard_addtime	\
110 	ipsecesp_params[9].ipsecesp_param_value
111 #define	ipsecesp_default_soft_usetime	\
112 	ipsecesp_params[10].ipsecesp_param_value
113 #define	ipsecesp_default_hard_usetime	\
114 	ipsecesp_params[11].ipsecesp_param_value
115 #define	ipsecesp_log_unknown_spi	\
116 	ipsecesp_params[12].ipsecesp_param_value
117 #define	ipsecesp_padding_check	\
118 	ipsecesp_params[13].ipsecesp_param_value
119 
120 #define	esp0dbg(a)	printf a
121 /* NOTE:  != 0 instead of > 0 so lint doesn't complain. */
122 #define	esp1dbg(espstack, a)	if (espstack->ipsecesp_debug != 0) printf a
123 #define	esp2dbg(espstack, a)	if (espstack->ipsecesp_debug > 1) printf a
124 #define	esp3dbg(espstack, a)	if (espstack->ipsecesp_debug > 2) printf a
125 
126 static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *);
127 static int ipsecesp_close(queue_t *);
128 static void ipsecesp_rput(queue_t *, mblk_t *);
129 static void ipsecesp_wput(queue_t *, mblk_t *);
130 static void	*ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns);
131 static void	ipsecesp_stack_fini(netstackid_t stackid, void *arg);
132 static void esp_send_acquire(ipsacq_t *, mblk_t *, netstack_t *);
133 
134 static ipsec_status_t esp_outbound_accelerated(mblk_t *, uint_t);
135 static ipsec_status_t esp_inbound_accelerated(mblk_t *, mblk_t *,
136     boolean_t, ipsa_t *);
137 
138 static boolean_t esp_register_out(uint32_t, uint32_t, uint_t,
139     ipsecesp_stack_t *);
140 static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t,
141     kstat_named_t **, ipsecesp_stack_t *);
142 static ipsec_status_t esp_submit_req_inbound(mblk_t *, ipsa_t *, uint_t);
143 static ipsec_status_t esp_submit_req_outbound(mblk_t *, ipsa_t *, uchar_t *,
144     uint_t);
145 
146 /* Setable in /etc/system */
147 uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE;
148 
149 static struct module_info info = {
150 	5137, "ipsecesp", 0, INFPSZ, 65536, 1024
151 };
152 
153 static struct qinit rinit = {
154 	(pfi_t)ipsecesp_rput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
155 	NULL
156 };
157 
158 static struct qinit winit = {
159 	(pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
160 	NULL
161 };
162 
163 struct streamtab ipsecespinfo = {
164 	&rinit, &winit, NULL, NULL
165 };
166 
167 static taskq_t *esp_taskq;
168 
169 /*
170  * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now.
171  *
172  * Question:	Do I need this, given that all instance's esps->esps_wq point
173  *		to IP?
174  *
175  * Answer:	Yes, because I need to know which queue is BOUND to
176  *		IPPROTO_ESP
177  */
178 
179 /*
180  * Stats.  This may eventually become a full-blown SNMP MIB once that spec
181  * stabilizes.
182  */
183 
184 typedef struct esp_kstats_s {
185 	kstat_named_t esp_stat_num_aalgs;
186 	kstat_named_t esp_stat_good_auth;
187 	kstat_named_t esp_stat_bad_auth;
188 	kstat_named_t esp_stat_bad_padding;
189 	kstat_named_t esp_stat_replay_failures;
190 	kstat_named_t esp_stat_replay_early_failures;
191 	kstat_named_t esp_stat_keysock_in;
192 	kstat_named_t esp_stat_out_requests;
193 	kstat_named_t esp_stat_acquire_requests;
194 	kstat_named_t esp_stat_bytes_expired;
195 	kstat_named_t esp_stat_out_discards;
196 	kstat_named_t esp_stat_in_accelerated;
197 	kstat_named_t esp_stat_out_accelerated;
198 	kstat_named_t esp_stat_noaccel;
199 	kstat_named_t esp_stat_crypto_sync;
200 	kstat_named_t esp_stat_crypto_async;
201 	kstat_named_t esp_stat_crypto_failures;
202 	kstat_named_t esp_stat_num_ealgs;
203 	kstat_named_t esp_stat_bad_decrypt;
204 } esp_kstats_t;
205 
206 /*
207  * espstack->esp_kstats is equal to espstack->esp_ksp->ks_data if
208  * kstat_create_netstack for espstack->esp_ksp succeeds, but when it
209  * fails, it will be NULL. Note this is done for all stack instances,
210  * so it *could* fail. hence a non-NULL checking is done for
211  * ESP_BUMP_STAT and ESP_DEBUMP_STAT
212  */
213 #define	ESP_BUMP_STAT(espstack, x)					\
214 do {									\
215 	if (espstack->esp_kstats != NULL)				\
216 		(espstack->esp_kstats->esp_stat_ ## x).value.ui64++;	\
217 _NOTE(CONSTCOND)							\
218 } while (0)
219 
220 #define	ESP_DEBUMP_STAT(espstack, x)					\
221 do {									\
222 	if (espstack->esp_kstats != NULL)				\
223 		(espstack->esp_kstats->esp_stat_ ## x).value.ui64--;	\
224 _NOTE(CONSTCOND)							\
225 } while (0)
226 
227 static int	esp_kstat_update(kstat_t *, int);
228 
229 static boolean_t
230 esp_kstat_init(ipsecesp_stack_t *espstack, netstackid_t stackid)
231 {
232 	espstack->esp_ksp = kstat_create_netstack("ipsecesp", 0, "esp_stat",
233 	    "net", KSTAT_TYPE_NAMED,
234 	    sizeof (esp_kstats_t) / sizeof (kstat_named_t),
235 	    KSTAT_FLAG_PERSISTENT, stackid);
236 
237 	if (espstack->esp_ksp == NULL || espstack->esp_ksp->ks_data == NULL)
238 		return (B_FALSE);
239 
240 	espstack->esp_kstats = espstack->esp_ksp->ks_data;
241 
242 	espstack->esp_ksp->ks_update = esp_kstat_update;
243 	espstack->esp_ksp->ks_private = (void *)(uintptr_t)stackid;
244 
245 #define	K64 KSTAT_DATA_UINT64
246 #define	KI(x) kstat_named_init(&(espstack->esp_kstats->esp_stat_##x), #x, K64)
247 
248 	KI(num_aalgs);
249 	KI(num_ealgs);
250 	KI(good_auth);
251 	KI(bad_auth);
252 	KI(bad_padding);
253 	KI(replay_failures);
254 	KI(replay_early_failures);
255 	KI(keysock_in);
256 	KI(out_requests);
257 	KI(acquire_requests);
258 	KI(bytes_expired);
259 	KI(out_discards);
260 	KI(in_accelerated);
261 	KI(out_accelerated);
262 	KI(noaccel);
263 	KI(crypto_sync);
264 	KI(crypto_async);
265 	KI(crypto_failures);
266 	KI(bad_decrypt);
267 
268 #undef KI
269 #undef K64
270 
271 	kstat_install(espstack->esp_ksp);
272 
273 	return (B_TRUE);
274 }
275 
276 static int
277 esp_kstat_update(kstat_t *kp, int rw)
278 {
279 	esp_kstats_t *ekp;
280 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
281 	netstack_t	*ns;
282 	ipsec_stack_t	*ipss;
283 
284 	if ((kp == NULL) || (kp->ks_data == NULL))
285 		return (EIO);
286 
287 	if (rw == KSTAT_WRITE)
288 		return (EACCES);
289 
290 	ns = netstack_find_by_stackid(stackid);
291 	if (ns == NULL)
292 		return (-1);
293 	ipss = ns->netstack_ipsec;
294 	if (ipss == NULL) {
295 		netstack_rele(ns);
296 		return (-1);
297 	}
298 	ekp = (esp_kstats_t *)kp->ks_data;
299 
300 	mutex_enter(&ipss->ipsec_alg_lock);
301 	ekp->esp_stat_num_aalgs.value.ui64 =
302 	    ipss->ipsec_nalgs[IPSEC_ALG_AUTH];
303 	ekp->esp_stat_num_ealgs.value.ui64 =
304 	    ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
305 	mutex_exit(&ipss->ipsec_alg_lock);
306 
307 	netstack_rele(ns);
308 	return (0);
309 }
310 
311 #ifdef DEBUG
312 /*
313  * Debug routine, useful to see pre-encryption data.
314  */
315 static char *
316 dump_msg(mblk_t *mp)
317 {
318 	char tmp_str[3], tmp_line[256];
319 
320 	while (mp != NULL) {
321 		unsigned char *ptr;
322 
323 		printf("mblk address 0x%p, length %ld, db_ref %d "
324 		    "type %d, base 0x%p, lim 0x%p\n",
325 		    (void *) mp, (long)(mp->b_wptr - mp->b_rptr),
326 		    mp->b_datap->db_ref, mp->b_datap->db_type,
327 		    (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim);
328 		ptr = mp->b_rptr;
329 
330 		tmp_line[0] = '\0';
331 		while (ptr < mp->b_wptr) {
332 			uint_t diff;
333 
334 			diff = (ptr - mp->b_rptr);
335 			if (!(diff & 0x1f)) {
336 				if (strlen(tmp_line) > 0) {
337 					printf("bytes: %s\n", tmp_line);
338 					tmp_line[0] = '\0';
339 				}
340 			}
341 			if (!(diff & 0x3))
342 				(void) strcat(tmp_line, " ");
343 			(void) sprintf(tmp_str, "%02x", *ptr);
344 			(void) strcat(tmp_line, tmp_str);
345 			ptr++;
346 		}
347 		if (strlen(tmp_line) > 0)
348 			printf("bytes: %s\n", tmp_line);
349 
350 		mp = mp->b_cont;
351 	}
352 
353 	return ("\n");
354 }
355 
356 #else /* DEBUG */
357 static char *
358 dump_msg(mblk_t *mp)
359 {
360 	printf("Find value of mp %p.\n", mp);
361 	return ("\n");
362 }
363 #endif /* DEBUG */
364 
365 /*
366  * Don't have to lock age_interval, as only one thread will access it at
367  * a time, because I control the one function that does with timeout().
368  */
369 static void
370 esp_ager(void *arg)
371 {
372 	ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
373 	netstack_t	*ns = espstack->ipsecesp_netstack;
374 	hrtime_t begin = gethrtime();
375 
376 	sadb_ager(&espstack->esp_sadb.s_v4, espstack->esp_pfkey_q,
377 	    espstack->esp_sadb.s_ip_q, espstack->ipsecesp_reap_delay, ns);
378 	sadb_ager(&espstack->esp_sadb.s_v6, espstack->esp_pfkey_q,
379 	    espstack->esp_sadb.s_ip_q, espstack->ipsecesp_reap_delay, ns);
380 
381 	espstack->esp_event = sadb_retimeout(begin, espstack->esp_pfkey_q,
382 	    esp_ager, espstack,
383 	    &espstack->ipsecesp_age_interval, espstack->ipsecesp_age_int_max,
384 	    info.mi_idnum);
385 }
386 
387 /*
388  * Get an ESP NDD parameter.
389  */
390 /* ARGSUSED */
391 static int
392 ipsecesp_param_get(q, mp, cp, cr)
393 	queue_t	*q;
394 	mblk_t	*mp;
395 	caddr_t	cp;
396 	cred_t *cr;
397 {
398 	ipsecespparam_t	*ipsecesppa = (ipsecespparam_t *)cp;
399 	uint_t value;
400 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
401 
402 	mutex_enter(&espstack->ipsecesp_param_lock);
403 	value = ipsecesppa->ipsecesp_param_value;
404 	mutex_exit(&espstack->ipsecesp_param_lock);
405 
406 	(void) mi_mpprintf(mp, "%u", value);
407 	return (0);
408 }
409 
410 /*
411  * This routine sets an NDD variable in a ipsecespparam_t structure.
412  */
413 /* ARGSUSED */
414 static int
415 ipsecesp_param_set(q, mp, value, cp, cr)
416 	queue_t	*q;
417 	mblk_t	*mp;
418 	char	*value;
419 	caddr_t	cp;
420 	cred_t *cr;
421 {
422 	ulong_t	new_value;
423 	ipsecespparam_t	*ipsecesppa = (ipsecespparam_t *)cp;
424 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
425 
426 	/*
427 	 * Fail the request if the new value does not lie within the
428 	 * required bounds.
429 	 */
430 	if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
431 	    new_value < ipsecesppa->ipsecesp_param_min ||
432 	    new_value > ipsecesppa->ipsecesp_param_max) {
433 		return (EINVAL);
434 	}
435 
436 	/* Set the new value */
437 	mutex_enter(&espstack->ipsecesp_param_lock);
438 	ipsecesppa->ipsecesp_param_value = new_value;
439 	mutex_exit(&espstack->ipsecesp_param_lock);
440 	return (0);
441 }
442 
443 /*
444  * Using lifetime NDD variables, fill in an extended combination's
445  * lifetime information.
446  */
447 void
448 ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb, netstack_t *ns)
449 {
450 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
451 
452 	ecomb->sadb_x_ecomb_soft_bytes = espstack->ipsecesp_default_soft_bytes;
453 	ecomb->sadb_x_ecomb_hard_bytes = espstack->ipsecesp_default_hard_bytes;
454 	ecomb->sadb_x_ecomb_soft_addtime =
455 	    espstack->ipsecesp_default_soft_addtime;
456 	ecomb->sadb_x_ecomb_hard_addtime =
457 	    espstack->ipsecesp_default_hard_addtime;
458 	ecomb->sadb_x_ecomb_soft_usetime =
459 	    espstack->ipsecesp_default_soft_usetime;
460 	ecomb->sadb_x_ecomb_hard_usetime =
461 	    espstack->ipsecesp_default_hard_usetime;
462 }
463 
464 /*
465  * Initialize things for ESP at module load time.
466  */
467 boolean_t
468 ipsecesp_ddi_init(void)
469 {
470 	esp_taskq = taskq_create("esp_taskq", 1, minclsyspri,
471 	    IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
472 
473 	/*
474 	 * We want to be informed each time a stack is created or
475 	 * destroyed in the kernel, so we can maintain the
476 	 * set of ipsecesp_stack_t's.
477 	 */
478 	netstack_register(NS_IPSECESP, ipsecesp_stack_init, NULL,
479 	    ipsecesp_stack_fini);
480 
481 	return (B_TRUE);
482 }
483 
484 /*
485  * Walk through the param array specified registering each element with the
486  * named dispatch handler.
487  */
488 static boolean_t
489 ipsecesp_param_register(IDP *ndp, ipsecespparam_t *espp, int cnt)
490 {
491 	for (; cnt-- > 0; espp++) {
492 		if (espp->ipsecesp_param_name != NULL &&
493 		    espp->ipsecesp_param_name[0]) {
494 			if (!nd_load(ndp,
495 			    espp->ipsecesp_param_name,
496 			    ipsecesp_param_get, ipsecesp_param_set,
497 			    (caddr_t)espp)) {
498 				nd_free(ndp);
499 				return (B_FALSE);
500 			}
501 		}
502 	}
503 	return (B_TRUE);
504 }
505 /*
506  * Initialize things for ESP for each stack instance
507  */
508 static void *
509 ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns)
510 {
511 	ipsecesp_stack_t	*espstack;
512 	ipsecespparam_t		*espp;
513 
514 	espstack = (ipsecesp_stack_t *)kmem_zalloc(sizeof (*espstack),
515 	    KM_SLEEP);
516 	espstack->ipsecesp_netstack = ns;
517 
518 	espp = (ipsecespparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
519 	espstack->ipsecesp_params = espp;
520 	bcopy(lcl_param_arr, espp, sizeof (lcl_param_arr));
521 
522 	(void) ipsecesp_param_register(&espstack->ipsecesp_g_nd, espp,
523 	    A_CNT(lcl_param_arr));
524 
525 	(void) esp_kstat_init(espstack, stackid);
526 
527 	espstack->esp_sadb.s_acquire_timeout =
528 	    &espstack->ipsecesp_acquire_timeout;
529 	espstack->esp_sadb.s_acqfn = esp_send_acquire;
530 	sadbp_init("ESP", &espstack->esp_sadb, SADB_SATYPE_ESP, esp_hash_size,
531 	    espstack->ipsecesp_netstack);
532 
533 	mutex_init(&espstack->ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0);
534 
535 	ip_drop_register(&espstack->esp_dropper, "IPsec ESP");
536 	return (espstack);
537 }
538 
539 /*
540  * Destroy things for ESP at module unload time.
541  */
542 void
543 ipsecesp_ddi_destroy(void)
544 {
545 	netstack_unregister(NS_IPSECESP);
546 	taskq_destroy(esp_taskq);
547 }
548 
549 /*
550  * Destroy things for ESP for one stack instance
551  */
552 static void
553 ipsecesp_stack_fini(netstackid_t stackid, void *arg)
554 {
555 	ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
556 
557 	if (espstack->esp_pfkey_q != NULL) {
558 		(void) quntimeout(espstack->esp_pfkey_q, espstack->esp_event);
559 	}
560 	espstack->esp_sadb.s_acqfn = NULL;
561 	espstack->esp_sadb.s_acquire_timeout = NULL;
562 	sadbp_destroy(&espstack->esp_sadb, espstack->ipsecesp_netstack);
563 	ip_drop_unregister(&espstack->esp_dropper);
564 	mutex_destroy(&espstack->ipsecesp_param_lock);
565 	nd_free(&espstack->ipsecesp_g_nd);
566 
567 	kmem_free(espstack->ipsecesp_params, sizeof (lcl_param_arr));
568 	espstack->ipsecesp_params = NULL;
569 	kstat_delete_netstack(espstack->esp_ksp, stackid);
570 	espstack->esp_ksp = NULL;
571 	espstack->esp_kstats = NULL;
572 	kmem_free(espstack, sizeof (*espstack));
573 }
574 
575 /*
576  * ESP module open routine.
577  */
578 /* ARGSUSED */
579 static int
580 ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
581 {
582 	netstack_t		*ns;
583 	ipsecesp_stack_t	*espstack;
584 
585 	if (secpolicy_ip_config(credp, B_FALSE) != 0) {
586 		esp0dbg(("Non-privileged user trying to open ipsecesp.\n"));
587 		return (EPERM);
588 	}
589 
590 	if (q->q_ptr != NULL)
591 		return (0);  /* Re-open of an already open instance. */
592 
593 	if (sflag != MODOPEN)
594 		return (EINVAL);
595 
596 	ns = netstack_find_by_cred(credp);
597 	ASSERT(ns != NULL);
598 	espstack = ns->netstack_ipsecesp;
599 	ASSERT(espstack != NULL);
600 
601 	/*
602 	 * ASSUMPTIONS (because I'm MT_OCEXCL):
603 	 *
604 	 *	* I'm being pushed on top of IP for all my opens (incl. #1).
605 	 *	* Only ipsecesp_open() can write into esp_sadb.s_ip_q.
606 	 *	* Because of this, I can check lazily for esp_sadb.s_ip_q.
607 	 *
608 	 *  If these assumptions are wrong, I'm in BIG trouble...
609 	 */
610 
611 	q->q_ptr = espstack;
612 	WR(q)->q_ptr = q->q_ptr;
613 
614 	if (espstack->esp_sadb.s_ip_q == NULL) {
615 		struct T_unbind_req *tur;
616 
617 		espstack->esp_sadb.s_ip_q = WR(q);
618 		/* Allocate an unbind... */
619 		espstack->esp_ip_unbind = allocb(sizeof (struct T_unbind_req),
620 		    BPRI_HI);
621 
622 		/*
623 		 * Send down T_BIND_REQ to bind IPPROTO_ESP.
624 		 * Handle the ACK here in ESP.
625 		 */
626 		qprocson(q);
627 		if (espstack->esp_ip_unbind == NULL ||
628 		    !sadb_t_bind_req(espstack->esp_sadb.s_ip_q, IPPROTO_ESP)) {
629 			if (espstack->esp_ip_unbind != NULL) {
630 				freeb(espstack->esp_ip_unbind);
631 				espstack->esp_ip_unbind = NULL;
632 			}
633 			q->q_ptr = NULL;
634 			netstack_rele(espstack->ipsecesp_netstack);
635 			return (ENOMEM);
636 		}
637 
638 		espstack->esp_ip_unbind->b_datap->db_type = M_PROTO;
639 		tur = (struct T_unbind_req *)espstack->esp_ip_unbind->b_rptr;
640 		tur->PRIM_type = T_UNBIND_REQ;
641 	} else {
642 		qprocson(q);
643 	}
644 
645 	/*
646 	 * For now, there's not much I can do.  I'll be getting a message
647 	 * passed down to me from keysock (in my wput), and a T_BIND_ACK
648 	 * up from IP (in my rput).
649 	 */
650 
651 	return (0);
652 }
653 
654 /*
655  * ESP module close routine.
656  */
657 static int
658 ipsecesp_close(queue_t *q)
659 {
660 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
661 
662 	/*
663 	 * If esp_sadb.s_ip_q is attached to this instance, send a
664 	 * T_UNBIND_REQ to IP for the instance before doing
665 	 * a qprocsoff().
666 	 */
667 	if (WR(q) == espstack->esp_sadb.s_ip_q &&
668 	    espstack->esp_ip_unbind != NULL) {
669 		putnext(WR(q), espstack->esp_ip_unbind);
670 		espstack->esp_ip_unbind = NULL;
671 	}
672 
673 	/*
674 	 * Clean up q_ptr, if needed.
675 	 */
676 	qprocsoff(q);
677 
678 	/* Keysock queue check is safe, because of OCEXCL perimeter. */
679 
680 	if (q == espstack->esp_pfkey_q) {
681 		esp1dbg(espstack,
682 		    ("ipsecesp_close:  Ummm... keysock is closing ESP.\n"));
683 		espstack->esp_pfkey_q = NULL;
684 		/* Detach qtimeouts. */
685 		(void) quntimeout(q, espstack->esp_event);
686 	}
687 
688 	if (WR(q) == espstack->esp_sadb.s_ip_q) {
689 		/*
690 		 * If the esp_sadb.s_ip_q is attached to this instance, find
691 		 * another.  The OCEXCL outer perimeter helps us here.
692 		 */
693 		espstack->esp_sadb.s_ip_q = NULL;
694 
695 		/*
696 		 * Find a replacement queue for esp_sadb.s_ip_q.
697 		 */
698 		if (espstack->esp_pfkey_q != NULL &&
699 		    espstack->esp_pfkey_q != RD(q)) {
700 			/*
701 			 * See if we can use the pfkey_q.
702 			 */
703 			espstack->esp_sadb.s_ip_q = WR(espstack->esp_pfkey_q);
704 		}
705 
706 		if (espstack->esp_sadb.s_ip_q == NULL ||
707 		    !sadb_t_bind_req(espstack->esp_sadb.s_ip_q, IPPROTO_ESP)) {
708 			esp1dbg(espstack, ("ipsecesp: Can't reassign ip_q.\n"));
709 			espstack->esp_sadb.s_ip_q = NULL;
710 		} else {
711 			espstack->esp_ip_unbind =
712 			    allocb(sizeof (struct T_unbind_req), BPRI_HI);
713 
714 			if (espstack->esp_ip_unbind != NULL) {
715 				struct T_unbind_req *tur;
716 
717 				espstack->esp_ip_unbind->b_datap->db_type =
718 				    M_PROTO;
719 				tur = (struct T_unbind_req *)
720 				    espstack->esp_ip_unbind->b_rptr;
721 				tur->PRIM_type = T_UNBIND_REQ;
722 			}
723 			/* If it's NULL, I can't do much here. */
724 		}
725 	}
726 
727 	netstack_rele(espstack->ipsecesp_netstack);
728 	return (0);
729 }
730 
731 /*
732  * Add a number of bytes to what the SA has protected so far.  Return
733  * B_TRUE if the SA can still protect that many bytes.
734  *
735  * Caller must REFRELE the passed-in assoc.  This function must REFRELE
736  * any obtained peer SA.
737  */
738 static boolean_t
739 esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
740 {
741 	ipsa_t *inassoc, *outassoc;
742 	isaf_t *bucket;
743 	boolean_t inrc, outrc, isv6;
744 	sadb_t *sp;
745 	int outhash;
746 	netstack_t		*ns = assoc->ipsa_netstack;
747 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
748 
749 	/* No peer?  No problem! */
750 	if (!assoc->ipsa_haspeer) {
751 		return (sadb_age_bytes(espstack->esp_pfkey_q, assoc, bytes,
752 		    B_TRUE));
753 	}
754 
755 	/*
756 	 * Otherwise, we want to grab both the original assoc and its peer.
757 	 * There might be a race for this, but if it's a real race, two
758 	 * expire messages may occur.  We limit this by only sending the
759 	 * expire message on one of the peers, we'll pick the inbound
760 	 * arbitrarily.
761 	 *
762 	 * If we need tight synchronization on the peer SA, then we need to
763 	 * reconsider.
764 	 */
765 
766 	/* Use address length to select IPv6/IPv4 */
767 	isv6 = (assoc->ipsa_addrfam == AF_INET6);
768 	sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
769 
770 	if (inbound) {
771 		inassoc = assoc;
772 		if (isv6) {
773 			outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
774 			    &inassoc->ipsa_dstaddr));
775 		} else {
776 			outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
777 				&inassoc->ipsa_dstaddr));
778 		}
779 		bucket = &sp->sdb_of[outhash];
780 		mutex_enter(&bucket->isaf_lock);
781 		outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
782 		    inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
783 		    inassoc->ipsa_addrfam);
784 		mutex_exit(&bucket->isaf_lock);
785 		if (outassoc == NULL) {
786 			/* Q: Do we wish to set haspeer == B_FALSE? */
787 			esp0dbg(("esp_age_bytes: "
788 			    "can't find peer for inbound.\n"));
789 			return (sadb_age_bytes(espstack->esp_pfkey_q, inassoc,
790 			    bytes, B_TRUE));
791 		}
792 	} else {
793 		outassoc = assoc;
794 		bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
795 		mutex_enter(&bucket->isaf_lock);
796 		inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
797 		    outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
798 		    outassoc->ipsa_addrfam);
799 		mutex_exit(&bucket->isaf_lock);
800 		if (inassoc == NULL) {
801 			/* Q: Do we wish to set haspeer == B_FALSE? */
802 			esp0dbg(("esp_age_bytes: "
803 			    "can't find peer for outbound.\n"));
804 			return (sadb_age_bytes(espstack->esp_pfkey_q, outassoc,
805 			    bytes, B_TRUE));
806 		}
807 	}
808 
809 	inrc = sadb_age_bytes(espstack->esp_pfkey_q, inassoc, bytes, B_TRUE);
810 	outrc = sadb_age_bytes(espstack->esp_pfkey_q, outassoc, bytes, B_FALSE);
811 
812 	/*
813 	 * REFRELE any peer SA.
814 	 *
815 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
816 	 * them in { }.
817 	 */
818 	if (inbound) {
819 		IPSA_REFRELE(outassoc);
820 	} else {
821 		IPSA_REFRELE(inassoc);
822 	}
823 
824 	return (inrc && outrc);
825 }
826 
827 /*
828  * Do incoming NAT-T manipulations for packet.
829  */
830 static ipsec_status_t
831 esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc)
832 {
833 	ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
834 	tcpha_t *tcph;
835 	udpha_t *udpha;
836 	/* Initialize to our inbound cksum adjustment... */
837 	uint32_t sum = assoc->ipsa_inbound_cksum;
838 
839 	switch (ipha->ipha_protocol) {
840 	case IPPROTO_TCP:
841 		tcph = (tcpha_t *)(data_mp->b_rptr +
842 		    IPH_HDR_LENGTH(ipha));
843 
844 #define	DOWN_SUM(x) (x) = ((x) & 0xFFFF) +	 ((x) >> 16)
845 		sum += ~ntohs(tcph->tha_sum) & 0xFFFF;
846 		DOWN_SUM(sum);
847 		DOWN_SUM(sum);
848 		tcph->tha_sum = ~htons(sum);
849 		break;
850 	case IPPROTO_UDP:
851 		udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha));
852 
853 		if (udpha->uha_checksum != 0) {
854 			/* Adujst if the inbound one was not zero. */
855 			sum += ~ntohs(udpha->uha_checksum) & 0xFFFF;
856 			DOWN_SUM(sum);
857 			DOWN_SUM(sum);
858 			udpha->uha_checksum = ~htons(sum);
859 			if (udpha->uha_checksum == 0)
860 				udpha->uha_checksum = 0xFFFF;
861 		}
862 #undef DOWN_SUM
863 		break;
864 	case IPPROTO_IP:
865 		/*
866 		 * This case is only an issue for self-encapsulated
867 		 * packets.  So for now, fall through.
868 		 */
869 		break;
870 	}
871 	return (IPSEC_STATUS_SUCCESS);
872 }
873 
874 
875 /*
876  * Strip ESP header, check padding, and fix IP header.
877  * Returns B_TRUE on success, B_FALSE if an error occured.
878  */
879 static boolean_t
880 esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen,
881     kstat_named_t **counter, ipsecesp_stack_t *espstack)
882 {
883 	ipha_t *ipha;
884 	ip6_t *ip6h;
885 	uint_t divpoint;
886 	mblk_t *scratch;
887 	uint8_t nexthdr, padlen;
888 	uint8_t lastpad;
889 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
890 	uint8_t *lastbyte;
891 
892 	/*
893 	 * Strip ESP data and fix IP header.
894 	 *
895 	 * XXX In case the beginning of esp_inbound() changes to not do a
896 	 * pullup, this part of the code can remain unchanged.
897 	 */
898 	if (isv4) {
899 		ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t));
900 		ipha = (ipha_t *)data_mp->b_rptr;
901 		ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) +
902 		    IPH_HDR_LENGTH(ipha));
903 		divpoint = IPH_HDR_LENGTH(ipha);
904 	} else {
905 		ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t));
906 		ip6h = (ip6_t *)data_mp->b_rptr;
907 		divpoint = ip_hdr_length_v6(data_mp, ip6h);
908 	}
909 
910 	scratch = data_mp;
911 	while (scratch->b_cont != NULL)
912 		scratch = scratch->b_cont;
913 
914 	ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3);
915 
916 	/*
917 	 * "Next header" and padding length are the last two bytes in the
918 	 * ESP-protected datagram, thus the explicit - 1 and - 2.
919 	 * lastpad is the last byte of the padding, which can be used for
920 	 * a quick check to see if the padding is correct.
921 	 */
922 	lastbyte = scratch->b_wptr - 1;
923 	nexthdr = *lastbyte--;
924 	padlen = *lastbyte--;
925 
926 	if (isv4) {
927 		/* Fix part of the IP header. */
928 		ipha->ipha_protocol = nexthdr;
929 		/*
930 		 * Reality check the padlen.  The explicit - 2 is for the
931 		 * padding length and the next-header bytes.
932 		 */
933 		if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 -
934 		    sizeof (esph_t) - ivlen) {
935 			ESP_BUMP_STAT(espstack, bad_decrypt);
936 			ipsec_rl_strlog(espstack->ipsecesp_netstack,
937 			    info.mi_idnum, 0, 0,
938 			    SL_ERROR | SL_WARN,
939 			    "Corrupt ESP packet (padlen too big).\n");
940 			esp1dbg(espstack, ("padlen (%d) is greater than:\n",
941 				    padlen));
942 			esp1dbg(espstack, ("pkt len(%d) - ip hdr - esp "
943 			    "hdr - ivlen(%d) = %d.\n",
944 			    ntohs(ipha->ipha_length), ivlen,
945 			    (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) -
946 			    2 - sizeof (esph_t) - ivlen)));
947 			*counter = DROPPER(ipss, ipds_esp_bad_padlen);
948 			return (B_FALSE);
949 		}
950 
951 		/*
952 		 * Fix the rest of the header.  The explicit - 2 is for the
953 		 * padding length and the next-header bytes.
954 		 */
955 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen -
956 		    2 - sizeof (esph_t) - ivlen);
957 		ipha->ipha_hdr_checksum = 0;
958 		ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
959 	} else {
960 		if (ip6h->ip6_nxt == IPPROTO_ESP) {
961 			ip6h->ip6_nxt = nexthdr;
962 		} else {
963 			ip6_pkt_t ipp;
964 
965 			bzero(&ipp, sizeof (ipp));
966 			(void) ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL);
967 			if (ipp.ipp_dstopts != NULL) {
968 				ipp.ipp_dstopts->ip6d_nxt = nexthdr;
969 			} else if (ipp.ipp_rthdr != NULL) {
970 				ipp.ipp_rthdr->ip6r_nxt = nexthdr;
971 			} else if (ipp.ipp_hopopts != NULL) {
972 				ipp.ipp_hopopts->ip6h_nxt = nexthdr;
973 			} else {
974 				/* Panic a DEBUG kernel. */
975 				ASSERT(ipp.ipp_hopopts != NULL);
976 				/* Otherwise, pretend it's IP + ESP. */
977 				cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n");
978 				ip6h->ip6_nxt = nexthdr;
979 			}
980 		}
981 
982 		if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) -
983 		    ivlen) {
984 			ESP_BUMP_STAT(espstack, bad_decrypt);
985 			ipsec_rl_strlog(espstack->ipsecesp_netstack,
986 			    info.mi_idnum, 0, 0,
987 			    SL_ERROR | SL_WARN,
988 			    "Corrupt ESP packet (v6 padlen too big).\n");
989 			esp1dbg(espstack, ("padlen (%d) is greater than:\n",
990 				    padlen));
991 			esp1dbg(espstack, ("pkt len(%u) - ip hdr - esp "
992 				    "hdr - ivlen(%d) = %u.\n",
993 				    (unsigned)(ntohs(ip6h->ip6_plen)
994 					+ sizeof (ip6_t)), ivlen,
995 				    (unsigned)(ntohs(ip6h->ip6_plen) - 2 -
996 					sizeof (esph_t) - ivlen)));
997 			*counter = DROPPER(ipss, ipds_esp_bad_padlen);
998 			return (B_FALSE);
999 		}
1000 
1001 
1002 		/*
1003 		 * Fix the rest of the header.  The explicit - 2 is for the
1004 		 * padding length and the next-header bytes.  IPv6 is nice,
1005 		 * because there's no hdr checksum!
1006 		 */
1007 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen -
1008 		    2 - sizeof (esph_t) - ivlen);
1009 	}
1010 
1011 	if (espstack->ipsecesp_padding_check > 0 && padlen > 0) {
1012 		/*
1013 		 * Weak padding check: compare last-byte to length, they
1014 		 * should be equal.
1015 		 */
1016 		lastpad = *lastbyte--;
1017 
1018 		if (padlen != lastpad) {
1019 			ipsec_rl_strlog(espstack->ipsecesp_netstack,
1020 			    info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
1021 			    "Corrupt ESP packet (lastpad != padlen).\n");
1022 			esp1dbg(espstack,
1023 			    ("lastpad (%d) not equal to padlen (%d):\n",
1024 			    lastpad, padlen));
1025 			ESP_BUMP_STAT(espstack, bad_padding);
1026 			*counter = DROPPER(ipss, ipds_esp_bad_padding);
1027 			return (B_FALSE);
1028 		}
1029 
1030 		/*
1031 		 * Strong padding check: Check all pad bytes to see that
1032 		 * they're ascending.  Go backwards using a descending counter
1033 		 * to verify.  padlen == 1 is checked by previous block, so
1034 		 * only bother if we've more than 1 byte of padding.
1035 		 * Consequently, start the check one byte before the location
1036 		 * of "lastpad".
1037 		 */
1038 		if (espstack->ipsecesp_padding_check > 1) {
1039 			/*
1040 			 * This assert may have to become an if and a pullup
1041 			 * if we start accepting multi-dblk mblks. For now,
1042 			 * though, any packet here will have been pulled up in
1043 			 * esp_inbound.
1044 			 */
1045 			ASSERT(MBLKL(scratch) >= lastpad + 3);
1046 
1047 			/*
1048 			 * Use "--lastpad" because we already checked the very
1049 			 * last pad byte previously.
1050 			 */
1051 			while (--lastpad != 0) {
1052 				if (lastpad != *lastbyte) {
1053 					ipsec_rl_strlog(
1054 					    espstack->ipsecesp_netstack,
1055 					    info.mi_idnum, 0, 0,
1056 					    SL_ERROR | SL_WARN, "Corrupt ESP "
1057 					    "packet (bad padding).\n");
1058 					esp1dbg(espstack,
1059 					    ("padding not in correct"
1060 					    " format:\n"));
1061 					ESP_BUMP_STAT(espstack, bad_padding);
1062 					*counter = DROPPER(ipss,
1063 					    ipds_esp_bad_padding);
1064 					return (B_FALSE);
1065 				}
1066 				lastbyte--;
1067 			}
1068 		}
1069 	}
1070 
1071 	/* Trim off the padding. */
1072 	ASSERT(data_mp->b_cont == NULL);
1073 	data_mp->b_wptr -= (padlen + 2);
1074 
1075 	/*
1076 	 * Remove the ESP header.
1077 	 *
1078 	 * The above assertions about data_mp's size will make this work.
1079 	 *
1080 	 * XXX  Question:  If I send up and get back a contiguous mblk,
1081 	 * would it be quicker to bcopy over, or keep doing the dupb stuff?
1082 	 * I go with copying for now.
1083 	 */
1084 
1085 	if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) &&
1086 	    IS_P2ALIGNED(ivlen, sizeof (uint32_t))) {
1087 		uint8_t *start = data_mp->b_rptr;
1088 		uint32_t *src, *dst;
1089 
1090 		src = (uint32_t *)(start + divpoint);
1091 		dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen);
1092 
1093 		ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) &&
1094 		    IS_P2ALIGNED(src, sizeof (uint32_t)));
1095 
1096 		do {
1097 			src--;
1098 			dst--;
1099 			*dst = *src;
1100 		} while (src != (uint32_t *)start);
1101 
1102 		data_mp->b_rptr = (uchar_t *)dst;
1103 	} else {
1104 		uint8_t *start = data_mp->b_rptr;
1105 		uint8_t *src, *dst;
1106 
1107 		src = start + divpoint;
1108 		dst = src + sizeof (esph_t) + ivlen;
1109 
1110 		do {
1111 			src--;
1112 			dst--;
1113 			*dst = *src;
1114 		} while (src != start);
1115 
1116 		data_mp->b_rptr = dst;
1117 	}
1118 
1119 	esp2dbg(espstack, ("data_mp after inbound ESP adjustment:\n"));
1120 	esp2dbg(espstack, (dump_msg(data_mp)));
1121 
1122 	return (B_TRUE);
1123 }
1124 
1125 /*
1126  * Updating use times can be tricky business if the ipsa_haspeer flag is
1127  * set.  This function is called once in an SA's lifetime.
1128  *
1129  * Caller has to REFRELE "assoc" which is passed in.  This function has
1130  * to REFRELE any peer SA that is obtained.
1131  */
1132 static void
1133 esp_set_usetime(ipsa_t *assoc, boolean_t inbound)
1134 {
1135 	ipsa_t *inassoc, *outassoc;
1136 	isaf_t *bucket;
1137 	sadb_t *sp;
1138 	int outhash;
1139 	boolean_t isv6;
1140 	netstack_t		*ns = assoc->ipsa_netstack;
1141 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
1142 
1143 	/* No peer?  No problem! */
1144 	if (!assoc->ipsa_haspeer) {
1145 		sadb_set_usetime(assoc);
1146 		return;
1147 	}
1148 
1149 	/*
1150 	 * Otherwise, we want to grab both the original assoc and its peer.
1151 	 * There might be a race for this, but if it's a real race, the times
1152 	 * will be out-of-synch by at most a second, and since our time
1153 	 * granularity is a second, this won't be a problem.
1154 	 *
1155 	 * If we need tight synchronization on the peer SA, then we need to
1156 	 * reconsider.
1157 	 */
1158 
1159 	/* Use address length to select IPv6/IPv4 */
1160 	isv6 = (assoc->ipsa_addrfam == AF_INET6);
1161 	sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
1162 
1163 	if (inbound) {
1164 		inassoc = assoc;
1165 		if (isv6) {
1166 			outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
1167 			    &inassoc->ipsa_dstaddr));
1168 		} else {
1169 			outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
1170 				&inassoc->ipsa_dstaddr));
1171 		}
1172 		bucket = &sp->sdb_of[outhash];
1173 		mutex_enter(&bucket->isaf_lock);
1174 		outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
1175 		    inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
1176 		    inassoc->ipsa_addrfam);
1177 		mutex_exit(&bucket->isaf_lock);
1178 		if (outassoc == NULL) {
1179 			/* Q: Do we wish to set haspeer == B_FALSE? */
1180 			esp0dbg(("esp_set_usetime: "
1181 			    "can't find peer for inbound.\n"));
1182 			sadb_set_usetime(inassoc);
1183 			return;
1184 		}
1185 	} else {
1186 		outassoc = assoc;
1187 		bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
1188 		mutex_enter(&bucket->isaf_lock);
1189 		inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
1190 		    outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
1191 		    outassoc->ipsa_addrfam);
1192 		mutex_exit(&bucket->isaf_lock);
1193 		if (inassoc == NULL) {
1194 			/* Q: Do we wish to set haspeer == B_FALSE? */
1195 			esp0dbg(("esp_set_usetime: "
1196 			    "can't find peer for outbound.\n"));
1197 			sadb_set_usetime(outassoc);
1198 			return;
1199 		}
1200 	}
1201 
1202 	/* Update usetime on both. */
1203 	sadb_set_usetime(inassoc);
1204 	sadb_set_usetime(outassoc);
1205 
1206 	/*
1207 	 * REFRELE any peer SA.
1208 	 *
1209 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
1210 	 * them in { }.
1211 	 */
1212 	if (inbound) {
1213 		IPSA_REFRELE(outassoc);
1214 	} else {
1215 		IPSA_REFRELE(inassoc);
1216 	}
1217 }
1218 
1219 /*
1220  * Handle ESP inbound data for IPv4 and IPv6.
1221  * On success returns B_TRUE, on failure returns B_FALSE and frees the
1222  * mblk chain ipsec_in_mp.
1223  */
1224 ipsec_status_t
1225 esp_inbound(mblk_t *ipsec_in_mp, void *arg)
1226 {
1227 	mblk_t *data_mp = ipsec_in_mp->b_cont;
1228 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr;
1229 	esph_t *esph = (esph_t *)arg;
1230 	ipsa_t *ipsa = ii->ipsec_in_esp_sa;
1231 	netstack_t	*ns = ii->ipsec_in_ns;
1232 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1233 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1234 
1235 	if (ipsa->ipsa_usetime == 0)
1236 		esp_set_usetime(ipsa, B_TRUE);
1237 
1238 	/*
1239 	 * We may wish to check replay in-range-only here as an optimization.
1240 	 * Include the reality check of ipsa->ipsa_replay >
1241 	 * ipsa->ipsa_replay_wsize for times when it's the first N packets,
1242 	 * where N == ipsa->ipsa_replay_wsize.
1243 	 *
1244 	 * Another check that may come here later is the "collision" check.
1245 	 * If legitimate packets flow quickly enough, this won't be a problem,
1246 	 * but collisions may cause authentication algorithm crunching to
1247 	 * take place when it doesn't need to.
1248 	 */
1249 	if (!sadb_replay_peek(ipsa, esph->esph_replay)) {
1250 		ESP_BUMP_STAT(espstack, replay_early_failures);
1251 		IP_ESP_BUMP_STAT(ipss, in_discards);
1252 		/*
1253 		 * TODO: Extract inbound interface from the IPSEC_IN
1254 		 * message's ii->ipsec_in_rill_index.
1255 		 */
1256 		ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL,
1257 		    DROPPER(ipss, ipds_esp_early_replay),
1258 		    &espstack->esp_dropper);
1259 		return (IPSEC_STATUS_FAILED);
1260 	}
1261 
1262 	/*
1263 	 * Has this packet already been processed by a hardware
1264 	 * IPsec accelerator?
1265 	 */
1266 	if (ii->ipsec_in_accelerated) {
1267 		ipsec_status_t rv;
1268 		esp3dbg(espstack,
1269 		    ("esp_inbound: pkt processed by ill=%d isv6=%d\n",
1270 		    ii->ipsec_in_ill_index, !ii->ipsec_in_v4));
1271 		rv = esp_inbound_accelerated(ipsec_in_mp,
1272 		    data_mp, ii->ipsec_in_v4, ipsa);
1273 		return (rv);
1274 	}
1275 	ESP_BUMP_STAT(espstack, noaccel);
1276 
1277 	/*
1278 	 * Adjust the IP header's payload length to reflect the removal
1279 	 * of the ICV.
1280 	 */
1281 	if (!ii->ipsec_in_v4) {
1282 		ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
1283 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
1284 		    ipsa->ipsa_mac_len);
1285 	} else {
1286 		ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1287 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) -
1288 		    ipsa->ipsa_mac_len);
1289 	}
1290 
1291 	/* submit the request to the crypto framework */
1292 	return (esp_submit_req_inbound(ipsec_in_mp, ipsa,
1293 	    (uint8_t *)esph - data_mp->b_rptr));
1294 }
1295 
1296 /*
1297  * Perform the really difficult work of inserting the proposed situation.
1298  * Called while holding the algorithm lock.
1299  */
1300 static void
1301 esp_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs)
1302 {
1303 	sadb_comb_t *comb = (sadb_comb_t *)(prop + 1);
1304 	ipsec_out_t *io;
1305 	ipsec_action_t *ap;
1306 	ipsec_prot_t *prot;
1307 	netstack_t *ns;
1308 	ipsecesp_stack_t *espstack;
1309 	ipsec_stack_t *ipss;
1310 
1311 	io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr;
1312 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
1313 	ns = io->ipsec_out_ns;
1314 	espstack = ns->netstack_ipsecesp;
1315 	ipss = ns->netstack_ipsec;
1316 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
1317 
1318 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
1319 	prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t));
1320 	*(uint32_t *)(&prop->sadb_prop_replay) = 0;	/* Quick zero-out! */
1321 
1322 	prop->sadb_prop_replay = espstack->ipsecesp_replay_size;
1323 
1324 	/*
1325 	 * Based upon algorithm properties, and what-not, prioritize
1326 	 * a proposal.  If the IPSEC_OUT message has an algorithm specified,
1327 	 * use it first and foremost.
1328 	 *
1329 	 * For each action in policy list
1330 	 *   Add combination.  If I've hit limit, return.
1331 	 */
1332 
1333 	for (ap = acqrec->ipsacq_act; ap != NULL;
1334 	    ap = ap->ipa_next) {
1335 		ipsec_alginfo_t *ealg = NULL;
1336 		ipsec_alginfo_t *aalg = NULL;
1337 
1338 		if (ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY)
1339 			continue;
1340 
1341 		prot = &ap->ipa_act.ipa_apply;
1342 
1343 		if (!(prot->ipp_use_esp))
1344 			continue;
1345 
1346 		if (prot->ipp_esp_auth_alg != 0) {
1347 			aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
1348 			    [prot->ipp_esp_auth_alg];
1349 			if (aalg == NULL || !ALG_VALID(aalg))
1350 				continue;
1351 		}
1352 
1353 		ASSERT(prot->ipp_encr_alg > 0);
1354 		ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
1355 		    [prot->ipp_encr_alg];
1356 		if (ealg == NULL || !ALG_VALID(ealg))
1357 			continue;
1358 
1359 		comb->sadb_comb_flags = 0;
1360 		comb->sadb_comb_reserved = 0;
1361 		comb->sadb_comb_encrypt = ealg->alg_id;
1362 		comb->sadb_comb_encrypt_minbits =
1363 		    MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits);
1364 		comb->sadb_comb_encrypt_maxbits =
1365 		    MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits);
1366 		if (aalg == NULL) {
1367 			comb->sadb_comb_auth = 0;
1368 			comb->sadb_comb_auth_minbits = 0;
1369 			comb->sadb_comb_auth_maxbits = 0;
1370 		} else {
1371 			comb->sadb_comb_auth = aalg->alg_id;
1372 			comb->sadb_comb_auth_minbits =
1373 			    MAX(prot->ipp_espa_minbits, aalg->alg_ef_minbits);
1374 			comb->sadb_comb_auth_maxbits =
1375 			    MIN(prot->ipp_espa_maxbits, aalg->alg_ef_maxbits);
1376 		}
1377 
1378 		/*
1379 		 * The following may be based on algorithm
1380 		 * properties, but in the meantime, we just pick
1381 		 * some good, sensible numbers.  Key mgmt. can
1382 		 * (and perhaps should) be the place to finalize
1383 		 * such decisions.
1384 		 */
1385 
1386 		/*
1387 		 * No limits on allocations, since we really don't
1388 		 * support that concept currently.
1389 		 */
1390 		comb->sadb_comb_soft_allocations = 0;
1391 		comb->sadb_comb_hard_allocations = 0;
1392 
1393 		/*
1394 		 * These may want to come from policy rule..
1395 		 */
1396 		comb->sadb_comb_soft_bytes =
1397 		    espstack->ipsecesp_default_soft_bytes;
1398 		comb->sadb_comb_hard_bytes =
1399 		    espstack->ipsecesp_default_hard_bytes;
1400 		comb->sadb_comb_soft_addtime =
1401 		    espstack->ipsecesp_default_soft_addtime;
1402 		comb->sadb_comb_hard_addtime =
1403 		    espstack->ipsecesp_default_hard_addtime;
1404 		comb->sadb_comb_soft_usetime =
1405 		    espstack->ipsecesp_default_soft_usetime;
1406 		comb->sadb_comb_hard_usetime =
1407 		    espstack->ipsecesp_default_hard_usetime;
1408 
1409 		prop->sadb_prop_len += SADB_8TO64(sizeof (*comb));
1410 		if (--combs == 0)
1411 			break;	/* out of space.. */
1412 		comb++;
1413 	}
1414 }
1415 
1416 /*
1417  * Prepare and actually send the SADB_ACQUIRE message to PF_KEY.
1418  */
1419 static void
1420 esp_send_acquire(ipsacq_t *acqrec, mblk_t *extended, netstack_t *ns)
1421 {
1422 	uint_t combs;
1423 	sadb_msg_t *samsg;
1424 	sadb_prop_t *prop;
1425 	mblk_t *pfkeymp, *msgmp;
1426 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1427 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1428 
1429 	ESP_BUMP_STAT(espstack, acquire_requests);
1430 
1431 	if (espstack->esp_pfkey_q == NULL)
1432 		return;
1433 
1434 	/* Set up ACQUIRE. */
1435 	pfkeymp = sadb_setup_acquire(acqrec, SADB_SATYPE_ESP,
1436 	    ns->netstack_ipsec);
1437 	if (pfkeymp == NULL) {
1438 		esp0dbg(("sadb_setup_acquire failed.\n"));
1439 		return;
1440 	}
1441 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
1442 	combs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH] *
1443 	    ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
1444 	msgmp = pfkeymp->b_cont;
1445 	samsg = (sadb_msg_t *)(msgmp->b_rptr);
1446 
1447 	/* Insert proposal here. */
1448 
1449 	prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len);
1450 	esp_insert_prop(prop, acqrec, combs);
1451 	samsg->sadb_msg_len += prop->sadb_prop_len;
1452 	msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len);
1453 
1454 	mutex_exit(&ipss->ipsec_alg_lock);
1455 
1456 	/*
1457 	 * Must mutex_exit() before sending PF_KEY message up, in
1458 	 * order to avoid recursive mutex_enter() if there are no registered
1459 	 * listeners.
1460 	 *
1461 	 * Once I've sent the message, I'm cool anyway.
1462 	 */
1463 	mutex_exit(&acqrec->ipsacq_lock);
1464 	if (extended != NULL) {
1465 		putnext(espstack->esp_pfkey_q, extended);
1466 	}
1467 	putnext(espstack->esp_pfkey_q, pfkeymp);
1468 }
1469 
1470 /*
1471  * Handle the SADB_GETSPI message.  Create a larval SA.
1472  */
1473 static void
1474 esp_getspi(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
1475 {
1476 	ipsa_t *newbie, *target;
1477 	isaf_t *outbound, *inbound;
1478 	int rc, diagnostic;
1479 	sadb_sa_t *assoc;
1480 	keysock_out_t *kso;
1481 	uint32_t newspi;
1482 
1483 	/*
1484 	 * Randomly generate a proposed SPI value
1485 	 */
1486 	(void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t));
1487 	newbie = sadb_getspi(ksi, newspi, &diagnostic,
1488 	    espstack->ipsecesp_netstack);
1489 
1490 	if (newbie == NULL) {
1491 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM, diagnostic,
1492 		    ksi->ks_in_serial);
1493 		return;
1494 	} else if (newbie == (ipsa_t *)-1) {
1495 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
1496 		    ksi->ks_in_serial);
1497 		return;
1498 	}
1499 
1500 	/*
1501 	 * XXX - We may randomly collide.  We really should recover from this.
1502 	 *	 Unfortunately, that could require spending way-too-much-time
1503 	 *	 in here.  For now, let the user retry.
1504 	 */
1505 
1506 	if (newbie->ipsa_addrfam == AF_INET6) {
1507 		outbound = OUTBOUND_BUCKET_V6(&espstack->esp_sadb.s_v6,
1508 		    *(uint32_t *)(newbie->ipsa_dstaddr));
1509 		inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v6,
1510 		    newbie->ipsa_spi);
1511 	} else {
1512 		ASSERT(newbie->ipsa_addrfam == AF_INET);
1513 		outbound = OUTBOUND_BUCKET_V4(&espstack->esp_sadb.s_v4,
1514 		    *(uint32_t *)(newbie->ipsa_dstaddr));
1515 		inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v4,
1516 		    newbie->ipsa_spi);
1517 	}
1518 
1519 	mutex_enter(&outbound->isaf_lock);
1520 	mutex_enter(&inbound->isaf_lock);
1521 
1522 	/*
1523 	 * Check for collisions (i.e. did sadb_getspi() return with something
1524 	 * that already exists?).
1525 	 *
1526 	 * Try outbound first.  Even though SADB_GETSPI is traditionally
1527 	 * for inbound SAs, you never know what a user might do.
1528 	 */
1529 	target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
1530 	    newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
1531 	if (target == NULL) {
1532 		target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
1533 		    newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
1534 		    newbie->ipsa_addrfam);
1535 	}
1536 
1537 	/*
1538 	 * I don't have collisions elsewhere!
1539 	 * (Nor will I because I'm still holding inbound/outbound locks.)
1540 	 */
1541 
1542 	if (target != NULL) {
1543 		rc = EEXIST;
1544 		IPSA_REFRELE(target);
1545 	} else {
1546 		/*
1547 		 * sadb_insertassoc() also checks for collisions, so
1548 		 * if there's a colliding entry, rc will be set
1549 		 * to EEXIST.
1550 		 */
1551 		rc = sadb_insertassoc(newbie, inbound);
1552 		(void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime);
1553 		newbie->ipsa_hardexpiretime +=
1554 		    espstack->ipsecesp_larval_timeout;
1555 	}
1556 
1557 	/*
1558 	 * Can exit outbound mutex.  Hold inbound until we're done
1559 	 * with newbie.
1560 	 */
1561 	mutex_exit(&outbound->isaf_lock);
1562 
1563 	if (rc != 0) {
1564 		mutex_exit(&inbound->isaf_lock);
1565 		IPSA_REFRELE(newbie);
1566 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, rc,
1567 		    SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1568 		return;
1569 	}
1570 
1571 
1572 	/* Can write here because I'm still holding the bucket lock. */
1573 	newbie->ipsa_type = SADB_SATYPE_ESP;
1574 
1575 	/*
1576 	 * Construct successful return message.  We have one thing going
1577 	 * for us in PF_KEY v2.  That's the fact that
1578 	 *	sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
1579 	 */
1580 	assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
1581 	assoc->sadb_sa_exttype = SADB_EXT_SA;
1582 	assoc->sadb_sa_spi = newbie->ipsa_spi;
1583 	*((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
1584 	mutex_exit(&inbound->isaf_lock);
1585 
1586 	/* Convert KEYSOCK_IN to KEYSOCK_OUT. */
1587 	kso = (keysock_out_t *)ksi;
1588 	kso->ks_out_len = sizeof (*kso);
1589 	kso->ks_out_serial = ksi->ks_in_serial;
1590 	kso->ks_out_type = KEYSOCK_OUT;
1591 
1592 	/*
1593 	 * Can safely putnext() to esp_pfkey_q, because this is a turnaround
1594 	 * from the esp_pfkey_q.
1595 	 */
1596 	putnext(espstack->esp_pfkey_q, mp);
1597 }
1598 
1599 /*
1600  * Insert the ESP header into a packet.  Duplicate an mblk, and insert a newly
1601  * allocated mblk with the ESP header in between the two.
1602  */
1603 static boolean_t
1604 esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint,
1605     ipsecesp_stack_t *espstack)
1606 {
1607 	mblk_t *split_mp = mp;
1608 	uint_t wheretodiv = divpoint;
1609 
1610 	while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) {
1611 		wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr);
1612 		split_mp = split_mp->b_cont;
1613 		ASSERT(split_mp != NULL);
1614 	}
1615 
1616 	if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) {
1617 		mblk_t *scratch;
1618 
1619 		/* "scratch" is the 2nd half, split_mp is the first. */
1620 		scratch = dupb(split_mp);
1621 		if (scratch == NULL) {
1622 			esp1dbg(espstack,
1623 			    ("esp_insert_esp: can't allocate scratch.\n"));
1624 			return (B_FALSE);
1625 		}
1626 		/* NOTE:  dupb() doesn't set b_cont appropriately. */
1627 		scratch->b_cont = split_mp->b_cont;
1628 		scratch->b_rptr += wheretodiv;
1629 		split_mp->b_wptr = split_mp->b_rptr + wheretodiv;
1630 		split_mp->b_cont = scratch;
1631 	}
1632 	/*
1633 	 * At this point, split_mp is exactly "wheretodiv" bytes long, and
1634 	 * holds the end of the pre-ESP part of the datagram.
1635 	 */
1636 	esp_mp->b_cont = split_mp->b_cont;
1637 	split_mp->b_cont = esp_mp;
1638 
1639 	return (B_TRUE);
1640 }
1641 
1642 /*
1643  * Finish processing of an inbound ESP packet after processing by the
1644  * crypto framework.
1645  * - Remove the ESP header.
1646  * - Send packet back to IP.
1647  * If authentication was performed on the packet, this function is called
1648  * only if the authentication succeeded.
1649  * On success returns B_TRUE, on failure returns B_FALSE and frees the
1650  * mblk chain ipsec_in_mp.
1651  */
1652 static ipsec_status_t
1653 esp_in_done(mblk_t *ipsec_in_mp)
1654 {
1655 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr;
1656 	mblk_t *data_mp;
1657 	ipsa_t *assoc;
1658 	uint_t espstart;
1659 	uint32_t ivlen = 0;
1660 	uint_t processed_len;
1661 	esph_t *esph;
1662 	kstat_named_t *counter;
1663 	boolean_t is_natt;
1664 	netstack_t	*ns = ii->ipsec_in_ns;
1665 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1666 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1667 
1668 	assoc = ii->ipsec_in_esp_sa;
1669 	ASSERT(assoc != NULL);
1670 
1671 	is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
1672 
1673 	/* get the pointer to the ESP header */
1674 	if (assoc->ipsa_encr_alg == SADB_EALG_NULL) {
1675 		/* authentication-only ESP */
1676 		espstart = ii->ipsec_in_crypto_data.cd_offset;
1677 		processed_len = ii->ipsec_in_crypto_data.cd_length;
1678 	} else {
1679 		/* encryption present */
1680 		ivlen = assoc->ipsa_iv_len;
1681 		if (assoc->ipsa_auth_alg == SADB_AALG_NONE) {
1682 			/* encryption-only ESP */
1683 			espstart = ii->ipsec_in_crypto_data.cd_offset -
1684 				sizeof (esph_t) - assoc->ipsa_iv_len;
1685 			processed_len = ii->ipsec_in_crypto_data.cd_length +
1686 				ivlen;
1687 		} else {
1688 			/* encryption with authentication */
1689 			espstart = ii->ipsec_in_crypto_dual_data.dd_offset1;
1690 			processed_len = ii->ipsec_in_crypto_dual_data.dd_len2 +
1691 			    ivlen;
1692 		}
1693 	}
1694 
1695 	data_mp = ipsec_in_mp->b_cont;
1696 	esph = (esph_t *)(data_mp->b_rptr + espstart);
1697 
1698 	if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) {
1699 		/* authentication passed if we reach this point */
1700 		ESP_BUMP_STAT(espstack, good_auth);
1701 		data_mp->b_wptr -= assoc->ipsa_mac_len;
1702 
1703 		/*
1704 		 * Check replay window here!
1705 		 * For right now, assume keysock will set the replay window
1706 		 * size to zero for SAs that have an unspecified sender.
1707 		 * This may change...
1708 		 */
1709 
1710 		if (!sadb_replay_check(assoc, esph->esph_replay)) {
1711 			/*
1712 			 * Log the event. As of now we print out an event.
1713 			 * Do not print the replay failure number, or else
1714 			 * syslog cannot collate the error messages.  Printing
1715 			 * the replay number that failed opens a denial-of-
1716 			 * service attack.
1717 			 */
1718 			ipsec_assocfailure(info.mi_idnum, 0, 0,
1719 			    SL_ERROR | SL_WARN,
1720 			    "Replay failed for ESP spi 0x%x, dst %s.\n",
1721 			    assoc->ipsa_spi, assoc->ipsa_dstaddr,
1722 			    assoc->ipsa_addrfam, espstack->ipsecesp_netstack);
1723 			ESP_BUMP_STAT(espstack, replay_failures);
1724 			counter = DROPPER(ipss, ipds_esp_replay);
1725 			goto drop_and_bail;
1726 		}
1727 	}
1728 
1729 	if (!esp_age_bytes(assoc, processed_len, B_TRUE)) {
1730 		/* The ipsa has hit hard expiration, LOG and AUDIT. */
1731 		ipsec_assocfailure(info.mi_idnum, 0, 0,
1732 		    SL_ERROR | SL_WARN,
1733 		    "ESP association 0x%x, dst %s had bytes expire.\n",
1734 		    assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1735 		    espstack->ipsecesp_netstack);
1736 		ESP_BUMP_STAT(espstack, bytes_expired);
1737 		counter = DROPPER(ipss, ipds_esp_bytes_expire);
1738 		goto drop_and_bail;
1739 	}
1740 
1741 	/*
1742 	 * Remove ESP header and padding from packet.  I hope the compiler
1743 	 * spews "branch, predict taken" code for this.
1744 	 */
1745 
1746 	if (esp_strip_header(data_mp, ii->ipsec_in_v4, ivlen, &counter,
1747 		espstack)) {
1748 		if (is_natt)
1749 			return (esp_fix_natt_checksums(data_mp, assoc));
1750 		return (IPSEC_STATUS_SUCCESS);
1751 	}
1752 
1753 	esp1dbg(espstack, ("esp_in_done: esp_strip_header() failed\n"));
1754 drop_and_bail:
1755 	IP_ESP_BUMP_STAT(ipss, in_discards);
1756 	/*
1757 	 * TODO: Extract inbound interface from the IPSEC_IN message's
1758 	 * ii->ipsec_in_rill_index.
1759 	 */
1760 	ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, counter,
1761 	    &espstack->esp_dropper);
1762 	return (IPSEC_STATUS_FAILED);
1763 }
1764 
1765 /*
1766  * Called upon failing the inbound ICV check. The message passed as
1767  * argument is freed.
1768  */
1769 static void
1770 esp_log_bad_auth(mblk_t *ipsec_in)
1771 {
1772 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr;
1773 	ipsa_t *assoc = ii->ipsec_in_esp_sa;
1774 	netstack_t	*ns = ii->ipsec_in_ns;
1775 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1776 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1777 
1778 	/*
1779 	 * Log the event. Don't print to the console, block
1780 	 * potential denial-of-service attack.
1781 	 */
1782 	ESP_BUMP_STAT(espstack, bad_auth);
1783 
1784 	ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
1785 	    "ESP Authentication failed for spi 0x%x, dst %s.\n",
1786 	    assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1787 	    espstack->ipsecesp_netstack);
1788 
1789 	IP_ESP_BUMP_STAT(ipss, in_discards);
1790 	/*
1791 	 * TODO: Extract inbound interface from the IPSEC_IN
1792 	 * message's ii->ipsec_in_rill_index.
1793 	 */
1794 	ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL,
1795 	    DROPPER(ipss, ipds_esp_bad_auth),
1796 	    &espstack->esp_dropper);
1797 }
1798 
1799 
1800 /*
1801  * Invoked for outbound packets after ESP processing. If the packet
1802  * also requires AH, performs the AH SA selection and AH processing.
1803  * Returns B_TRUE if the AH processing was not needed or if it was
1804  * performed successfully. Returns B_FALSE and consumes the passed mblk
1805  * if AH processing was required but could not be performed.
1806  */
1807 static boolean_t
1808 esp_do_outbound_ah(mblk_t *ipsec_mp)
1809 {
1810 	ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
1811 	ipsec_status_t ipsec_rc;
1812 	ipsec_action_t *ap;
1813 
1814 	ap = io->ipsec_out_act;
1815 	if (ap == NULL) {
1816 		ipsec_policy_t *pp = io->ipsec_out_policy;
1817 		ap = pp->ipsp_act;
1818 	}
1819 
1820 	if (!ap->ipa_want_ah)
1821 		return (B_TRUE);
1822 
1823 	ASSERT(io->ipsec_out_ah_done == B_FALSE);
1824 
1825 	if (io->ipsec_out_ah_sa == NULL) {
1826 		if (!ipsec_outbound_sa(ipsec_mp, IPPROTO_AH)) {
1827 			sadb_acquire(ipsec_mp, io, B_TRUE, B_FALSE);
1828 			return (B_FALSE);
1829 		}
1830 	}
1831 	ASSERT(io->ipsec_out_ah_sa != NULL);
1832 
1833 	io->ipsec_out_ah_done = B_TRUE;
1834 	ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp);
1835 	return (ipsec_rc == IPSEC_STATUS_SUCCESS);
1836 }
1837 
1838 
1839 /*
1840  * Kernel crypto framework callback invoked after completion of async
1841  * crypto requests.
1842  */
1843 static void
1844 esp_kcf_callback(void *arg, int status)
1845 {
1846 	mblk_t *ipsec_mp = (mblk_t *)arg;
1847 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1848 	boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN);
1849 	netstackid_t	stackid;
1850 	netstack_t	*ns, *ns_arg;
1851 	ipsecesp_stack_t *espstack;
1852 	ipsec_stack_t	*ipss;
1853 	ipsec_out_t	*io = (ipsec_out_t *)ii;
1854 
1855 	ASSERT(ipsec_mp->b_cont != NULL);
1856 
1857 	if (is_inbound) {
1858 		stackid = ii->ipsec_in_stackid;
1859 		ns_arg = ii->ipsec_in_ns;
1860 	} else {
1861 		stackid = io->ipsec_out_stackid;
1862 		ns_arg = io->ipsec_out_ns;
1863 	}
1864 
1865 	/*
1866 	 * Verify that the netstack is still around; could have vanished
1867 	 * while kEf was doing its work.
1868 	 */
1869 	ns = netstack_find_by_stackid(stackid);
1870 	if (ns == NULL || ns != ns_arg) {
1871 		/* Disappeared on us */
1872 		if (ns != NULL)
1873 			netstack_rele(ns);
1874 		freemsg(ipsec_mp);
1875 		return;
1876 	}
1877 
1878 	espstack = ns->netstack_ipsecesp;
1879 	ipss = ns->netstack_ipsec;
1880 
1881 	if (status == CRYPTO_SUCCESS) {
1882 		if (is_inbound) {
1883 			if (esp_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) {
1884 				netstack_rele(ns);
1885 				return;
1886 			}
1887 			/* finish IPsec processing */
1888 			ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL);
1889 		} else {
1890 			/*
1891 			 * If a ICV was computed, it was stored by the
1892 			 * crypto framework at the end of the packet.
1893 			 */
1894 			ipha_t *ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1895 
1896 			/* do AH processing if needed */
1897 			if (!esp_do_outbound_ah(ipsec_mp)) {
1898 				netstack_rele(ns);
1899 				return;
1900 			}
1901 			/* finish IPsec processing */
1902 			if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
1903 				ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL,
1904 				    NULL);
1905 			} else {
1906 				ip6_t *ip6h = (ip6_t *)ipha;
1907 				ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h,
1908 				    NULL, NULL);
1909 			}
1910 		}
1911 
1912 	} else if (status == CRYPTO_INVALID_MAC) {
1913 		esp_log_bad_auth(ipsec_mp);
1914 
1915 	} else {
1916 		esp1dbg(espstack,
1917 		    ("esp_kcf_callback: crypto failed with 0x%x\n",
1918 		    status));
1919 		ESP_BUMP_STAT(espstack, crypto_failures);
1920 		if (is_inbound)
1921 			IP_ESP_BUMP_STAT(ipss, in_discards);
1922 		else
1923 			ESP_BUMP_STAT(espstack, out_discards);
1924 		ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL,
1925 		    DROPPER(ipss, ipds_esp_crypto_failed),
1926 		    &espstack->esp_dropper);
1927 	}
1928 	netstack_rele(ns);
1929 }
1930 
1931 /*
1932  * Invoked on crypto framework failure during inbound and outbound processing.
1933  */
1934 static void
1935 esp_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc,
1936     ipsecesp_stack_t *espstack)
1937 {
1938 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
1939 
1940 	esp1dbg(espstack, ("crypto failed for %s ESP with 0x%x\n",
1941 	    is_inbound ? "inbound" : "outbound", kef_rc));
1942 	ip_drop_packet(mp, is_inbound, NULL, NULL,
1943 	    DROPPER(ipss, ipds_esp_crypto_failed),
1944 	    &espstack->esp_dropper);
1945 	ESP_BUMP_STAT(espstack, crypto_failures);
1946 	if (is_inbound)
1947 		IP_ESP_BUMP_STAT(ipss, in_discards);
1948 	else
1949 		ESP_BUMP_STAT(espstack, out_discards);
1950 }
1951 
1952 #define	ESP_INIT_CALLREQ(_cr) {						\
1953 	(_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED;		\
1954 	(_cr)->cr_callback_arg = ipsec_mp;				\
1955 	(_cr)->cr_callback_func = esp_kcf_callback;			\
1956 }
1957 
1958 #define	ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) {			\
1959 	(mac)->cd_format = CRYPTO_DATA_RAW;				\
1960 	(mac)->cd_offset = 0;						\
1961 	(mac)->cd_length = icvlen;					\
1962 	(mac)->cd_raw.iov_base = (char *)icvbuf;			\
1963 	(mac)->cd_raw.iov_len = icvlen;					\
1964 }
1965 
1966 #define	ESP_INIT_CRYPTO_DATA(data, mp, off, len) {			\
1967 	if (MBLKL(mp) >= (len) + (off)) {				\
1968 		(data)->cd_format = CRYPTO_DATA_RAW;			\
1969 		(data)->cd_raw.iov_base = (char *)(mp)->b_rptr;		\
1970 		(data)->cd_raw.iov_len = MBLKL(mp);			\
1971 		(data)->cd_offset = off;				\
1972 	} else {							\
1973 		(data)->cd_format = CRYPTO_DATA_MBLK;			\
1974 		(data)->cd_mp = mp;			       		\
1975 		(data)->cd_offset = off;				\
1976 	}								\
1977 	(data)->cd_length = len;					\
1978 }
1979 
1980 #define	ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) {	\
1981 	(data)->dd_format = CRYPTO_DATA_MBLK;				\
1982 	(data)->dd_mp = mp;						\
1983 	(data)->dd_len1 = len1;						\
1984 	(data)->dd_offset1 = off1;					\
1985 	(data)->dd_len2 = len2;						\
1986 	(data)->dd_offset2 = off2;					\
1987 }
1988 
1989 static ipsec_status_t
1990 esp_submit_req_inbound(mblk_t *ipsec_mp, ipsa_t *assoc, uint_t esph_offset)
1991 {
1992 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1993 	boolean_t do_auth;
1994 	uint_t auth_offset, msg_len, auth_len;
1995 	crypto_call_req_t call_req;
1996 	mblk_t *esp_mp;
1997 	int kef_rc = CRYPTO_FAILED;
1998 	uint_t icv_len = assoc->ipsa_mac_len;
1999 	crypto_ctx_template_t auth_ctx_tmpl;
2000 	boolean_t do_encr;
2001 	uint_t encr_offset, encr_len;
2002 	uint_t iv_len = assoc->ipsa_iv_len;
2003 	crypto_ctx_template_t encr_ctx_tmpl;
2004 	netstack_t	*ns = ii->ipsec_in_ns;
2005 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2006 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2007 
2008 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2009 
2010 	/*
2011 	 * In case kEF queues and calls back, keep netstackid_t for
2012 	 * verification that the IP instance is still around in
2013 	 * esp_kcf_callback().
2014 	 */
2015 	ii->ipsec_in_stackid = ns->netstack_stackid;
2016 
2017 	do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
2018 	do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
2019 
2020 	/*
2021 	 * An inbound packet is of the form:
2022 	 * IPSEC_IN -> [IP,options,ESP,IV,data,ICV,pad]
2023 	 */
2024 	esp_mp = ipsec_mp->b_cont;
2025 	msg_len = MBLKL(esp_mp);
2026 
2027 	ESP_INIT_CALLREQ(&call_req);
2028 
2029 	if (do_auth) {
2030 		/* force asynchronous processing? */
2031 		if (ipss->ipsec_algs_exec_mode[IPSEC_ALG_AUTH] ==
2032 		    IPSEC_ALGS_EXEC_ASYNC)
2033 			call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE;
2034 
2035 		/* authentication context template */
2036 		IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
2037 		    auth_ctx_tmpl);
2038 
2039 		/* ICV to be verified */
2040 		ESP_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac,
2041 		    icv_len, esp_mp->b_wptr - icv_len);
2042 
2043 		/* authentication starts at the ESP header */
2044 		auth_offset = esph_offset;
2045 		auth_len = msg_len - auth_offset - icv_len;
2046 		if (!do_encr) {
2047 			/* authentication only */
2048 			/* initialize input data argument */
2049 			ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data,
2050 			    esp_mp, auth_offset, auth_len);
2051 
2052 			/* call the crypto framework */
2053 			kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
2054 			    &ii->ipsec_in_crypto_data,
2055 			    &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
2056 			    &ii->ipsec_in_crypto_mac, &call_req);
2057 		}
2058 	}
2059 
2060 	if (do_encr) {
2061 		/* force asynchronous processing? */
2062 		if (ipss->ipsec_algs_exec_mode[IPSEC_ALG_ENCR] ==
2063 		    IPSEC_ALGS_EXEC_ASYNC)
2064 			call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE;
2065 
2066 		/* encryption template */
2067 		IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
2068 		    encr_ctx_tmpl);
2069 
2070 		/* skip IV, since it is passed separately */
2071 		encr_offset = esph_offset + sizeof (esph_t) + iv_len;
2072 		encr_len = msg_len - encr_offset;
2073 
2074 		if (!do_auth) {
2075 			/* decryption only */
2076 			/* initialize input data argument */
2077 			ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data,
2078 			    esp_mp, encr_offset, encr_len);
2079 
2080 			/* specify IV */
2081 			ii->ipsec_in_crypto_data.cd_miscdata =
2082 			    (char *)esp_mp->b_rptr + sizeof (esph_t) +
2083 			    esph_offset;
2084 
2085 			/* call the crypto framework */
2086 			kef_rc = crypto_decrypt(&assoc->ipsa_emech,
2087 			    &ii->ipsec_in_crypto_data,
2088 			    &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
2089 			    NULL, &call_req);
2090 		}
2091 	}
2092 
2093 	if (do_auth && do_encr) {
2094 		/* dual operation */
2095 		/* initialize input data argument */
2096 		ESP_INIT_CRYPTO_DUAL_DATA(&ii->ipsec_in_crypto_dual_data,
2097 		    esp_mp, auth_offset, auth_len,
2098 		    encr_offset, encr_len - icv_len);
2099 
2100 		/* specify IV */
2101 		ii->ipsec_in_crypto_dual_data.dd_miscdata =
2102 		    (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset;
2103 
2104 		/* call the framework */
2105 		kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech,
2106 		    &assoc->ipsa_emech, &ii->ipsec_in_crypto_dual_data,
2107 		    &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey,
2108 		    auth_ctx_tmpl, encr_ctx_tmpl, &ii->ipsec_in_crypto_mac,
2109 		    NULL, &call_req);
2110 	}
2111 
2112 	switch (kef_rc) {
2113 	case CRYPTO_SUCCESS:
2114 		ESP_BUMP_STAT(espstack, crypto_sync);
2115 		return (esp_in_done(ipsec_mp));
2116 	case CRYPTO_QUEUED:
2117 		/* esp_kcf_callback() will be invoked on completion */
2118 		ESP_BUMP_STAT(espstack, crypto_async);
2119 		return (IPSEC_STATUS_PENDING);
2120 	case CRYPTO_INVALID_MAC:
2121 		ESP_BUMP_STAT(espstack, crypto_sync);
2122 		esp_log_bad_auth(ipsec_mp);
2123 		return (IPSEC_STATUS_FAILED);
2124 	}
2125 
2126 	esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc, espstack);
2127 	return (IPSEC_STATUS_FAILED);
2128 }
2129 
2130 static ipsec_status_t
2131 esp_submit_req_outbound(mblk_t *ipsec_mp, ipsa_t *assoc, uchar_t *icv_buf,
2132     uint_t payload_len)
2133 {
2134 	ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
2135 	uint_t auth_len;
2136 	crypto_call_req_t call_req;
2137 	mblk_t *esp_mp;
2138 	int kef_rc = CRYPTO_FAILED;
2139 	uint_t icv_len = assoc->ipsa_mac_len;
2140 	crypto_ctx_template_t auth_ctx_tmpl;
2141 	boolean_t do_auth;
2142 	boolean_t do_encr;
2143 	uint_t iv_len = assoc->ipsa_iv_len;
2144 	crypto_ctx_template_t encr_ctx_tmpl;
2145 	boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
2146 	size_t esph_offset = (is_natt ? UDPH_SIZE : 0);
2147 	netstack_t	*ns = io->ipsec_out_ns;
2148 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2149 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2150 
2151 	esp3dbg(espstack, ("esp_submit_req_outbound:%s",
2152 		is_natt ? "natt" : "not natt"));
2153 
2154 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
2155 
2156 	/*
2157 	 * In case kEF queues and calls back, keep netstackid_t for
2158 	 * verification that the IP instance is still around in
2159 	 * esp_kcf_callback().
2160 	 */
2161 	io->ipsec_out_stackid = ns->netstack_stackid;
2162 
2163 	do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
2164 	do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
2165 
2166 	/*
2167 	 * Outbound IPsec packets are of the form:
2168 	 * IPSEC_OUT -> [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV]
2169 	 * unless it's NATT, then it's
2170 	 * IPSEC_OUT -> [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV]
2171 	 * Get a pointer to the mblk containing the ESP header.
2172 	 */
2173 	ASSERT(ipsec_mp->b_cont != NULL && ipsec_mp->b_cont->b_cont != NULL);
2174 	esp_mp = ipsec_mp->b_cont->b_cont;
2175 
2176 	ESP_INIT_CALLREQ(&call_req);
2177 
2178 	if (do_auth) {
2179 		/* force asynchronous processing? */
2180 		if (ipss->ipsec_algs_exec_mode[IPSEC_ALG_AUTH] ==
2181 		    IPSEC_ALGS_EXEC_ASYNC)
2182 			call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE;
2183 
2184 		/* authentication context template */
2185 		IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
2186 		    auth_ctx_tmpl);
2187 
2188 		/* where to store the computed mac */
2189 		ESP_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac,
2190 		    icv_len, icv_buf);
2191 
2192 		/* authentication starts at the ESP header */
2193 		auth_len = payload_len + iv_len + sizeof (esph_t);
2194 		if (!do_encr) {
2195 			/* authentication only */
2196 			/* initialize input data argument */
2197 			ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data,
2198 			    esp_mp, esph_offset, auth_len);
2199 
2200 			/* call the crypto framework */
2201 			kef_rc = crypto_mac(&assoc->ipsa_amech,
2202 			    &io->ipsec_out_crypto_data,
2203 			    &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
2204 			    &io->ipsec_out_crypto_mac, &call_req);
2205 		}
2206 	}
2207 
2208 	if (do_encr) {
2209 		/* force asynchronous processing? */
2210 		if (ipss->ipsec_algs_exec_mode[IPSEC_ALG_ENCR] ==
2211 		    IPSEC_ALGS_EXEC_ASYNC)
2212 			call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE;
2213 
2214 		/* encryption context template */
2215 		IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
2216 		    encr_ctx_tmpl);
2217 
2218 		if (!do_auth) {
2219 			/* encryption only, skip mblk that contains ESP hdr */
2220 			/* initialize input data argument */
2221 			ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data,
2222 			    esp_mp->b_cont, 0, payload_len);
2223 
2224 			/* specify IV */
2225 			io->ipsec_out_crypto_data.cd_miscdata =
2226 			    (char *)esp_mp->b_rptr + sizeof (esph_t) +
2227 			    esph_offset;
2228 
2229 			/* call the crypto framework */
2230 			kef_rc = crypto_encrypt(&assoc->ipsa_emech,
2231 			    &io->ipsec_out_crypto_data,
2232 			    &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
2233 			    NULL, &call_req);
2234 		}
2235 	}
2236 
2237 	if (do_auth && do_encr) {
2238 		/*
2239 		 * Encryption and authentication:
2240 		 * Pass the pointer to the mblk chain starting at the ESP
2241 		 * header to the framework. Skip the ESP header mblk
2242 		 * for encryption, which is reflected by an encryption
2243 		 * offset equal to the length of that mblk. Start
2244 		 * the authentication at the ESP header, i.e. use an
2245 		 * authentication offset of zero.
2246 		 */
2247 		ESP_INIT_CRYPTO_DUAL_DATA(&io->ipsec_out_crypto_dual_data,
2248 		    esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len);
2249 
2250 		/* specify IV */
2251 		io->ipsec_out_crypto_dual_data.dd_miscdata =
2252 		    (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset;
2253 
2254 		/* call the framework */
2255 		kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech,
2256 		    &assoc->ipsa_amech, NULL,
2257 		    &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey,
2258 		    encr_ctx_tmpl, auth_ctx_tmpl,
2259 		    &io->ipsec_out_crypto_dual_data,
2260 		    &io->ipsec_out_crypto_mac, &call_req);
2261 	}
2262 
2263 	switch (kef_rc) {
2264 	case CRYPTO_SUCCESS:
2265 		ESP_BUMP_STAT(espstack, crypto_sync);
2266 		return (IPSEC_STATUS_SUCCESS);
2267 	case CRYPTO_QUEUED:
2268 		/* esp_kcf_callback() will be invoked on completion */
2269 		ESP_BUMP_STAT(espstack, crypto_async);
2270 		return (IPSEC_STATUS_PENDING);
2271 	}
2272 
2273 	esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc, espstack);
2274 	return (IPSEC_STATUS_FAILED);
2275 }
2276 
2277 /*
2278  * Handle outbound IPsec processing for IPv4 and IPv6
2279  * On success returns B_TRUE, on failure returns B_FALSE and frees the
2280  * mblk chain ipsec_in_mp.
2281  */
2282 static ipsec_status_t
2283 esp_outbound(mblk_t *mp)
2284 {
2285 	mblk_t *ipsec_out_mp, *data_mp, *espmp, *tailmp;
2286 	ipsec_out_t *io;
2287 	ipha_t *ipha;
2288 	ip6_t *ip6h;
2289 	esph_t *esph;
2290 	uint_t af;
2291 	uint8_t *nhp;
2292 	uintptr_t divpoint, datalen, adj, padlen, i, alloclen;
2293 	uintptr_t esplen = sizeof (esph_t);
2294 	uint8_t protocol;
2295 	ipsa_t *assoc;
2296 	uint_t iv_len, mac_len = 0;
2297 	uchar_t *icv_buf;
2298 	udpha_t *udpha;
2299 	boolean_t is_natt = B_FALSE;
2300 	netstack_t	*ns;
2301 	ipsecesp_stack_t *espstack;
2302 	ipsec_stack_t	*ipss;
2303 
2304 	ipsec_out_mp = mp;
2305 	data_mp = ipsec_out_mp->b_cont;
2306 
2307 	io = (ipsec_out_t *)ipsec_out_mp->b_rptr;
2308 	ns = io->ipsec_out_ns;
2309 	espstack = ns->netstack_ipsecesp;
2310 	ipss = ns->netstack_ipsec;
2311 
2312 	ESP_BUMP_STAT(espstack, out_requests);
2313 
2314 	/*
2315 	 * <sigh> We have to copy the message here, because TCP (for example)
2316 	 * keeps a dupb() of the message lying around for retransmission.
2317 	 * Since ESP changes the whole of the datagram, we have to create our
2318 	 * own copy lest we clobber TCP's data.  Since we have to copy anyway,
2319 	 * we might as well make use of msgpullup() and get the mblk into one
2320 	 * contiguous piece!
2321 	 */
2322 	ipsec_out_mp->b_cont = msgpullup(data_mp, -1);
2323 	if (ipsec_out_mp->b_cont == NULL) {
2324 		esp0dbg(("esp_outbound: msgpullup() failed, "
2325 		    "dropping packet.\n"));
2326 		ipsec_out_mp->b_cont = data_mp;
2327 		/*
2328 		 * TODO:  Find the outbound IRE for this packet and
2329 		 * pass it to ip_drop_packet().
2330 		 */
2331 		ip_drop_packet(ipsec_out_mp, B_FALSE, NULL, NULL,
2332 		    DROPPER(ipss, ipds_esp_nomem),
2333 		    &espstack->esp_dropper);
2334 		return (IPSEC_STATUS_FAILED);
2335 	} else {
2336 		freemsg(data_mp);
2337 		data_mp = ipsec_out_mp->b_cont;
2338 	}
2339 
2340 	/*
2341 	 * Reality check....
2342 	 */
2343 
2344 	ipha = (ipha_t *)data_mp->b_rptr;  /* So we can call esp_acquire(). */
2345 
2346 	if (io->ipsec_out_v4) {
2347 		af = AF_INET;
2348 		divpoint = IPH_HDR_LENGTH(ipha);
2349 		datalen = ntohs(ipha->ipha_length) - divpoint;
2350 		nhp = (uint8_t *)&ipha->ipha_protocol;
2351 	} else {
2352 		ip6_pkt_t ipp;
2353 
2354 		af = AF_INET6;
2355 		ip6h = (ip6_t *)ipha;
2356 		bzero(&ipp, sizeof (ipp));
2357 		divpoint = ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL);
2358 		if (ipp.ipp_dstopts != NULL &&
2359 		    ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) {
2360 			/*
2361 			 * Destination options are tricky.  If we get in here,
2362 			 * then we have a terminal header following the
2363 			 * destination options.  We need to adjust backwards
2364 			 * so we insert ESP BEFORE the destination options
2365 			 * bag.  (So that the dstopts get encrypted!)
2366 			 *
2367 			 * Since this is for outbound packets only, we know
2368 			 * that non-terminal destination options only precede
2369 			 * routing headers.
2370 			 */
2371 			divpoint -= ipp.ipp_dstoptslen;
2372 		}
2373 		datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint;
2374 
2375 		if (ipp.ipp_rthdr != NULL) {
2376 			nhp = &ipp.ipp_rthdr->ip6r_nxt;
2377 		} else if (ipp.ipp_hopopts != NULL) {
2378 			nhp = &ipp.ipp_hopopts->ip6h_nxt;
2379 		} else {
2380 			ASSERT(divpoint == sizeof (ip6_t));
2381 			/* It's probably IP + ESP. */
2382 			nhp = &ip6h->ip6_nxt;
2383 		}
2384 	}
2385 	assoc = io->ipsec_out_esp_sa;
2386 	ASSERT(assoc != NULL);
2387 
2388 	if (assoc->ipsa_usetime == 0)
2389 		esp_set_usetime(assoc, B_FALSE);
2390 
2391 	if (assoc->ipsa_auth_alg != SADB_AALG_NONE)
2392 		mac_len = assoc->ipsa_mac_len;
2393 
2394 	if (assoc->ipsa_flags & IPSA_F_NATT) {
2395 		/* wedge in fake UDP */
2396 		is_natt = B_TRUE;
2397 		esplen += UDPH_SIZE;
2398 	}
2399 
2400 	/*
2401 	 * Set up ESP header and encryption padding for ENCR PI request.
2402 	 */
2403 
2404 	/* Determine the padding length.  Pad to 4-bytes for no-encryption. */
2405 	if (assoc->ipsa_encr_alg != SADB_EALG_NULL) {
2406 		iv_len = assoc->ipsa_iv_len;
2407 
2408 		/*
2409 		 * Include the two additional bytes (hence the - 2) for the
2410 		 * padding length and the next header.  Take this into account
2411 		 * when calculating the actual length of the padding.
2412 		 */
2413 		ASSERT(ISP2(iv_len));
2414 		padlen = ((unsigned)(iv_len - datalen - 2)) & (iv_len - 1);
2415 	} else {
2416 		iv_len = 0;
2417 		padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) &
2418 		    (sizeof (uint32_t) - 1);
2419 	}
2420 
2421 	/* Allocate ESP header and IV. */
2422 	esplen += iv_len;
2423 
2424 	/*
2425 	 * Update association byte-count lifetimes.  Don't forget to take
2426 	 * into account the padding length and next-header (hence the + 2).
2427 	 *
2428 	 * Use the amount of data fed into the "encryption algorithm".  This
2429 	 * is the IV, the data length, the padding length, and the final two
2430 	 * bytes (padlen, and next-header).
2431 	 *
2432 	 */
2433 
2434 	if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) {
2435 		/*
2436 		 * TODO:  Find the outbound IRE for this packet and
2437 		 * pass it to ip_drop_packet().
2438 		 */
2439 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
2440 		    DROPPER(ipss, ipds_esp_bytes_expire),
2441 		    &espstack->esp_dropper);
2442 		return (IPSEC_STATUS_FAILED);
2443 	}
2444 
2445 	espmp = allocb(esplen, BPRI_HI);
2446 	if (espmp == NULL) {
2447 		ESP_BUMP_STAT(espstack, out_discards);
2448 		esp1dbg(espstack, ("esp_outbound: can't allocate espmp.\n"));
2449 		/*
2450 		 * TODO:  Find the outbound IRE for this packet and
2451 		 * pass it to ip_drop_packet().
2452 		 */
2453 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
2454 		    DROPPER(ipss, ipds_esp_nomem),
2455 		    &espstack->esp_dropper);
2456 		return (IPSEC_STATUS_FAILED);
2457 	}
2458 	espmp->b_wptr += esplen;
2459 	esph = (esph_t *)espmp->b_rptr;
2460 
2461 	if (is_natt) {
2462 		esp3dbg(espstack, ("esp_outbound: NATT"));
2463 
2464 		udpha = (udpha_t *)espmp->b_rptr;
2465 		udpha->uha_src_port = htons(IPPORT_IKE_NATT);
2466 		if (assoc->ipsa_remote_port != 0)
2467 			udpha->uha_dst_port = assoc->ipsa_remote_port;
2468 		else
2469 			udpha->uha_dst_port = htons(IPPORT_IKE_NATT);
2470 		/*
2471 		 * Set the checksum to 0, so that the ip_wput_ipsec_out()
2472 		 * can do the right thing.
2473 		 */
2474 		udpha->uha_checksum = 0;
2475 		esph = (esph_t *)(udpha + 1);
2476 	}
2477 
2478 	esph->esph_spi = assoc->ipsa_spi;
2479 
2480 	esph->esph_replay = htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1));
2481 	if (esph->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) {
2482 		/*
2483 		 * XXX We have replay counter wrapping.
2484 		 * We probably want to nuke this SA (and its peer).
2485 		 */
2486 		ipsec_assocfailure(info.mi_idnum, 0, 0,
2487 		    SL_ERROR | SL_CONSOLE | SL_WARN,
2488 		    "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n",
2489 		    esph->esph_spi, assoc->ipsa_dstaddr, af,
2490 		    espstack->ipsecesp_netstack);
2491 
2492 		ESP_BUMP_STAT(espstack, out_discards);
2493 		sadb_replay_delete(assoc);
2494 		/*
2495 		 * TODO:  Find the outbound IRE for this packet and
2496 		 * pass it to ip_drop_packet().
2497 		 */
2498 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
2499 		    DROPPER(ipss, ipds_esp_replay),
2500 		    &espstack->esp_dropper);
2501 		return (IPSEC_STATUS_FAILED);
2502 	}
2503 
2504 	/*
2505 	 * Set the IV to a random quantity.  We do not require the
2506 	 * highest quality random bits, but for best security with CBC
2507 	 * mode ciphers, the value must be unlikely to repeat and also
2508 	 * must not be known in advance to an adversary capable of
2509 	 * influencing the plaintext.
2510 	 */
2511 	(void) random_get_pseudo_bytes((uint8_t *)(esph + 1), iv_len);
2512 
2513 	/* Fix the IP header. */
2514 	alloclen = padlen + 2 + mac_len;
2515 	adj = alloclen + (espmp->b_wptr - espmp->b_rptr);
2516 
2517 	protocol = *nhp;
2518 
2519 	if (io->ipsec_out_v4) {
2520 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj);
2521 		if (is_natt) {
2522 			*nhp = IPPROTO_UDP;
2523 			udpha->uha_length = htons(ntohs(ipha->ipha_length) -
2524 			    IPH_HDR_LENGTH(ipha));
2525 		} else {
2526 			*nhp = IPPROTO_ESP;
2527 		}
2528 		ipha->ipha_hdr_checksum = 0;
2529 		ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
2530 	} else {
2531 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj);
2532 		*nhp = IPPROTO_ESP;
2533 	}
2534 
2535 	/* I've got the two ESP mblks, now insert them. */
2536 
2537 	esp2dbg(espstack, ("data_mp before outbound ESP adjustment:\n"));
2538 	esp2dbg(espstack, (dump_msg(data_mp)));
2539 
2540 	if (!esp_insert_esp(data_mp, espmp, divpoint, espstack)) {
2541 		ESP_BUMP_STAT(espstack, out_discards);
2542 		/* NOTE:  esp_insert_esp() only fails if there's no memory. */
2543 		/*
2544 		 * TODO:  Find the outbound IRE for this packet and
2545 		 * pass it to ip_drop_packet().
2546 		 */
2547 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
2548 		    DROPPER(ipss, ipds_esp_nomem),
2549 		    &espstack->esp_dropper);
2550 		freeb(espmp);
2551 		return (IPSEC_STATUS_FAILED);
2552 	}
2553 
2554 	/* Append padding (and leave room for ICV). */
2555 	for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont)
2556 		;
2557 	if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) {
2558 		tailmp->b_cont = allocb(alloclen, BPRI_HI);
2559 		if (tailmp->b_cont == NULL) {
2560 			ESP_BUMP_STAT(espstack, out_discards);
2561 			esp0dbg(("esp_outbound:  Can't allocate tailmp.\n"));
2562 			/*
2563 			 * TODO:  Find the outbound IRE for this packet and
2564 			 * pass it to ip_drop_packet().
2565 			 */
2566 			ip_drop_packet(mp, B_FALSE, NULL, NULL,
2567 			    DROPPER(ipss, ipds_esp_nomem),
2568 			    &espstack->esp_dropper);
2569 			return (IPSEC_STATUS_FAILED);
2570 		}
2571 		tailmp = tailmp->b_cont;
2572 	}
2573 
2574 	/*
2575 	 * If there's padding, N bytes of padding must be of the form 0x1,
2576 	 * 0x2, 0x3... 0xN.
2577 	 */
2578 	for (i = 0; i < padlen; ) {
2579 		i++;
2580 		*tailmp->b_wptr++ = i;
2581 	}
2582 	*tailmp->b_wptr++ = i;
2583 	*tailmp->b_wptr++ = protocol;
2584 
2585 	esp2dbg(espstack, ("data_Mp before encryption:\n"));
2586 	esp2dbg(espstack, (dump_msg(data_mp)));
2587 
2588 	/*
2589 	 * The packet is eligible for hardware acceleration if the
2590 	 * following conditions are satisfied:
2591 	 *
2592 	 * 1. the packet will not be fragmented
2593 	 * 2. the provider supports the algorithms specified by SA
2594 	 * 3. there is no pending control message being exchanged
2595 	 * 4. snoop is not attached
2596 	 * 5. the destination address is not a multicast address
2597 	 *
2598 	 * All five of these conditions are checked by IP prior to
2599 	 * sending the packet to ESP.
2600 	 *
2601 	 * But We, and We Alone, can, nay MUST check if the packet
2602 	 * is over NATT, and then disqualify it from hardware
2603 	 * acceleration.
2604 	 */
2605 
2606 	if (io->ipsec_out_is_capab_ill && !(assoc->ipsa_flags & IPSA_F_NATT)) {
2607 		return (esp_outbound_accelerated(ipsec_out_mp, mac_len));
2608 	}
2609 	ESP_BUMP_STAT(espstack, noaccel);
2610 
2611 	/*
2612 	 * Okay.  I've set up the pre-encryption ESP.  Let's do it!
2613 	 */
2614 
2615 	if (mac_len > 0) {
2616 		ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim);
2617 		icv_buf = tailmp->b_wptr;
2618 		tailmp->b_wptr += mac_len;
2619 	} else {
2620 		icv_buf = NULL;
2621 	}
2622 
2623 	return (esp_submit_req_outbound(ipsec_out_mp, assoc, icv_buf,
2624 	    datalen + padlen + 2));
2625 }
2626 
2627 /*
2628  * IP calls this to validate the ICMP errors that
2629  * we got from the network.
2630  */
2631 ipsec_status_t
2632 ipsecesp_icmp_error(mblk_t *ipsec_mp)
2633 {
2634 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2635 	boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN);
2636 	netstack_t	*ns;
2637 	ipsecesp_stack_t *espstack;
2638 	ipsec_stack_t	*ipss;
2639 
2640 	if (is_inbound) {
2641 		ns = ii->ipsec_in_ns;
2642 	} else {
2643 		ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
2644 
2645 		ns = io->ipsec_out_ns;
2646 	}
2647 	espstack = ns->netstack_ipsecesp;
2648 	ipss = ns->netstack_ipsec;
2649 
2650 	/*
2651 	 * Unless we get an entire packet back, this function is useless.
2652 	 * Why?
2653 	 *
2654 	 * 1.)	Partial packets are useless, because the "next header"
2655 	 *	is at the end of the decrypted ESP packet.  Without the
2656 	 *	whole packet, this is useless.
2657 	 *
2658 	 * 2.)	If we every use a stateful cipher, such as a stream or a
2659 	 *	one-time pad, we can't do anything.
2660 	 *
2661 	 * Since the chances of us getting an entire packet back are very
2662 	 * very small, we discard here.
2663 	 */
2664 	IP_ESP_BUMP_STAT(ipss, in_discards);
2665 	ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
2666 	    DROPPER(ipss, ipds_esp_icmp),
2667 	    &espstack->esp_dropper);
2668 	return (IPSEC_STATUS_FAILED);
2669 }
2670 
2671 /*
2672  * ESP module read put routine.
2673  */
2674 /* ARGSUSED */
2675 static void
2676 ipsecesp_rput(queue_t *q, mblk_t *mp)
2677 {
2678 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
2679 
2680 	ASSERT(mp->b_datap->db_type != M_CTL);	/* No more IRE_DB_REQ. */
2681 
2682 	switch (mp->b_datap->db_type) {
2683 	case M_PROTO:
2684 	case M_PCPROTO:
2685 		/* TPI message of some sort. */
2686 		switch (*((t_scalar_t *)mp->b_rptr)) {
2687 		case T_BIND_ACK:
2688 			esp3dbg(espstack,
2689 			    ("Thank you IP from ESP for T_BIND_ACK\n"));
2690 			break;
2691 		case T_ERROR_ACK:
2692 			cmn_err(CE_WARN,
2693 			    "ipsecesp:  ESP received T_ERROR_ACK from IP.");
2694 			/*
2695 			 * Make esp_sadb.s_ip_q NULL, and in the
2696 			 * future, perhaps try again.
2697 			 */
2698 			espstack->esp_sadb.s_ip_q = NULL;
2699 			break;
2700 		case T_OK_ACK:
2701 			/* Probably from a (rarely sent) T_UNBIND_REQ. */
2702 			break;
2703 		default:
2704 			esp0dbg(("Unknown M_{,PC}PROTO message.\n"));
2705 		}
2706 		freemsg(mp);
2707 		break;
2708 	default:
2709 		/* For now, passthru message. */
2710 		esp2dbg(espstack, ("ESP got unknown mblk type %d.\n",
2711 		    mp->b_datap->db_type));
2712 		putnext(q, mp);
2713 	}
2714 }
2715 
2716 /*
2717  * Construct an SADB_REGISTER message with the current algorithms.
2718  */
2719 static boolean_t
2720 esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial,
2721     ipsecesp_stack_t *espstack)
2722 {
2723 	mblk_t *pfkey_msg_mp, *keysock_out_mp;
2724 	sadb_msg_t *samsg;
2725 	sadb_supported_t *sasupp_auth = NULL;
2726 	sadb_supported_t *sasupp_encr = NULL;
2727 	sadb_alg_t *saalg;
2728 	uint_t allocsize = sizeof (*samsg);
2729 	uint_t i, numalgs_snap;
2730 	int current_aalgs;
2731 	ipsec_alginfo_t **authalgs;
2732 	uint_t num_aalgs;
2733 	int current_ealgs;
2734 	ipsec_alginfo_t **encralgs;
2735 	uint_t num_ealgs;
2736 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
2737 
2738 	/* Allocate the KEYSOCK_OUT. */
2739 	keysock_out_mp = sadb_keysock_out(serial);
2740 	if (keysock_out_mp == NULL) {
2741 		esp0dbg(("esp_register_out: couldn't allocate mblk.\n"));
2742 		return (B_FALSE);
2743 	}
2744 
2745 	/*
2746 	 * Allocate the PF_KEY message that follows KEYSOCK_OUT.
2747 	 */
2748 
2749 	mutex_enter(&ipss->ipsec_alg_lock);
2750 
2751 	/*
2752 	 * Fill SADB_REGISTER message's algorithm descriptors.  Hold
2753 	 * down the lock while filling it.
2754 	 *
2755 	 * Return only valid algorithms, so the number of algorithms
2756 	 * to send up may be less than the number of algorithm entries
2757 	 * in the table.
2758 	 */
2759 	authalgs = ipss->ipsec_alglists[IPSEC_ALG_AUTH];
2760 	for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
2761 		if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
2762 			num_aalgs++;
2763 
2764 	if (num_aalgs != 0) {
2765 		allocsize += (num_aalgs * sizeof (*saalg));
2766 		allocsize += sizeof (*sasupp_auth);
2767 	}
2768 	encralgs = ipss->ipsec_alglists[IPSEC_ALG_ENCR];
2769 	for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
2770 		if (encralgs[i] != NULL && ALG_VALID(encralgs[i]))
2771 			num_ealgs++;
2772 
2773 	if (num_ealgs != 0) {
2774 		allocsize += (num_ealgs * sizeof (*saalg));
2775 		allocsize += sizeof (*sasupp_encr);
2776 	}
2777 	keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI);
2778 	if (keysock_out_mp->b_cont == NULL) {
2779 		mutex_exit(&ipss->ipsec_alg_lock);
2780 		freemsg(keysock_out_mp);
2781 		return (B_FALSE);
2782 	}
2783 
2784 	pfkey_msg_mp = keysock_out_mp->b_cont;
2785 	pfkey_msg_mp->b_wptr += allocsize;
2786 	if (num_aalgs != 0) {
2787 		sasupp_auth = (sadb_supported_t *)
2788 		    (pfkey_msg_mp->b_rptr + sizeof (*samsg));
2789 		saalg = (sadb_alg_t *)(sasupp_auth + 1);
2790 
2791 		ASSERT(((ulong_t)saalg & 0x7) == 0);
2792 
2793 		numalgs_snap = 0;
2794 		for (i = 0;
2795 		    ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs));
2796 		    i++) {
2797 			if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
2798 				continue;
2799 
2800 			saalg->sadb_alg_id = authalgs[i]->alg_id;
2801 			saalg->sadb_alg_ivlen = 0;
2802 			saalg->sadb_alg_minbits	= authalgs[i]->alg_ef_minbits;
2803 			saalg->sadb_alg_maxbits	= authalgs[i]->alg_ef_maxbits;
2804 			saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default;
2805 			saalg->sadb_x_alg_increment =
2806 			    authalgs[i]->alg_increment;
2807 			numalgs_snap++;
2808 			saalg++;
2809 		}
2810 		ASSERT(numalgs_snap == num_aalgs);
2811 #ifdef DEBUG
2812 		/*
2813 		 * Reality check to make sure I snagged all of the
2814 		 * algorithms.
2815 		 */
2816 		for (; i < IPSEC_MAX_ALGS; i++) {
2817 			if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) {
2818 				cmn_err(CE_PANIC, "esp_register_out()! "
2819 				    "Missed aalg #%d.\n", i);
2820 			}
2821 		}
2822 #endif /* DEBUG */
2823 	} else {
2824 		saalg = (sadb_alg_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg));
2825 	}
2826 
2827 	if (num_ealgs != 0) {
2828 		sasupp_encr = (sadb_supported_t *)saalg;
2829 		saalg = (sadb_alg_t *)(sasupp_encr + 1);
2830 
2831 		numalgs_snap = 0;
2832 		for (i = 0;
2833 		    ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) {
2834 			if (encralgs[i] == NULL || !ALG_VALID(encralgs[i]))
2835 				continue;
2836 			saalg->sadb_alg_id = encralgs[i]->alg_id;
2837 			saalg->sadb_alg_ivlen = encralgs[i]->alg_datalen;
2838 			saalg->sadb_alg_minbits	= encralgs[i]->alg_ef_minbits;
2839 			saalg->sadb_alg_maxbits	= encralgs[i]->alg_ef_maxbits;
2840 			saalg->sadb_x_alg_defincr = encralgs[i]->alg_ef_default;
2841 			saalg->sadb_x_alg_increment =
2842 			    encralgs[i]->alg_increment;
2843 			numalgs_snap++;
2844 			saalg++;
2845 		}
2846 		ASSERT(numalgs_snap == num_ealgs);
2847 #ifdef DEBUG
2848 		/*
2849 		 * Reality check to make sure I snagged all of the
2850 		 * algorithms.
2851 		 */
2852 		for (; i < IPSEC_MAX_ALGS; i++) {
2853 			if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) {
2854 				cmn_err(CE_PANIC, "esp_register_out()! "
2855 				    "Missed ealg #%d.\n", i);
2856 			}
2857 		}
2858 #endif /* DEBUG */
2859 	}
2860 
2861 	current_aalgs = num_aalgs;
2862 	current_ealgs = num_ealgs;
2863 
2864 	mutex_exit(&ipss->ipsec_alg_lock);
2865 
2866 	/* Now fill the rest of the SADB_REGISTER message. */
2867 
2868 	samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr;
2869 	samsg->sadb_msg_version = PF_KEY_V2;
2870 	samsg->sadb_msg_type = SADB_REGISTER;
2871 	samsg->sadb_msg_errno = 0;
2872 	samsg->sadb_msg_satype = SADB_SATYPE_ESP;
2873 	samsg->sadb_msg_len = SADB_8TO64(allocsize);
2874 	samsg->sadb_msg_reserved = 0;
2875 	/*
2876 	 * Assume caller has sufficient sequence/pid number info.  If it's one
2877 	 * from me over a new alg., I could give two hoots about sequence.
2878 	 */
2879 	samsg->sadb_msg_seq = sequence;
2880 	samsg->sadb_msg_pid = pid;
2881 
2882 	if (sasupp_auth != NULL) {
2883 		sasupp_auth->sadb_supported_len =
2884 		    SADB_8TO64(sizeof (*sasupp_auth) +
2885 			sizeof (*saalg) * current_aalgs);
2886 		sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
2887 		sasupp_auth->sadb_supported_reserved = 0;
2888 	}
2889 
2890 	if (sasupp_encr != NULL) {
2891 		sasupp_encr->sadb_supported_len =
2892 		    SADB_8TO64(sizeof (*sasupp_encr) +
2893 			sizeof (*saalg) * current_ealgs);
2894 		sasupp_encr->sadb_supported_exttype =
2895 		    SADB_EXT_SUPPORTED_ENCRYPT;
2896 		sasupp_encr->sadb_supported_reserved = 0;
2897 	}
2898 
2899 	if (espstack->esp_pfkey_q != NULL)
2900 		putnext(espstack->esp_pfkey_q, keysock_out_mp);
2901 	else {
2902 		freemsg(keysock_out_mp);
2903 		return (B_FALSE);
2904 	}
2905 
2906 	return (B_TRUE);
2907 }
2908 
2909 /*
2910  * Invoked when the algorithm table changes. Causes SADB_REGISTER
2911  * messages continaining the current list of algorithms to be
2912  * sent up to the ESP listeners.
2913  */
2914 void
2915 ipsecesp_algs_changed(netstack_t *ns)
2916 {
2917 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
2918 
2919 	/*
2920 	 * Time to send a PF_KEY SADB_REGISTER message to ESP listeners
2921 	 * everywhere.  (The function itself checks for NULL esp_pfkey_q.)
2922 	 */
2923 	(void) esp_register_out(0, 0, 0, espstack);
2924 }
2925 
2926 /*
2927  * taskq_dispatch handler.
2928  */
2929 static void
2930 inbound_task(void *arg)
2931 {
2932 	esph_t *esph;
2933 	mblk_t *mp = (mblk_t *)arg;
2934 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
2935 	netstack_t		*ns = ii->ipsec_in_ns;
2936 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
2937 	int ipsec_rc;
2938 
2939 	esp2dbg(espstack, ("in ESP inbound_task"));
2940 	ASSERT(espstack != NULL);
2941 
2942 	esph = ipsec_inbound_esp_sa(mp, ns);
2943 	if (esph == NULL)
2944 		return;
2945 	ASSERT(ii->ipsec_in_esp_sa != NULL);
2946 	ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(mp, esph);
2947 	if (ipsec_rc != IPSEC_STATUS_SUCCESS)
2948 		return;
2949 	ip_fanout_proto_again(mp, NULL, NULL, NULL);
2950 }
2951 
2952 /*
2953  * Now that weak-key passed, actually ADD the security association, and
2954  * send back a reply ADD message.
2955  */
2956 static int
2957 esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi,
2958     int *diagnostic, ipsecesp_stack_t *espstack)
2959 {
2960 	isaf_t *primary, *secondary, *inbound, *outbound;
2961 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
2962 	sadb_address_t *dstext =
2963 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
2964 	struct sockaddr_in *dst;
2965 	struct sockaddr_in6 *dst6;
2966 	boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE;
2967 	uint32_t *dstaddr;
2968 	ipsa_t *larval = NULL;
2969 	ipsacq_t *acqrec;
2970 	iacqf_t *acq_bucket;
2971 	mblk_t *acq_msgs = NULL;
2972 	int rc;
2973 	sadb_t *sp;
2974 	int outhash;
2975 	mblk_t *lpkt;
2976 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
2977 
2978 	/*
2979 	 * Locate the appropriate table(s).
2980 	 */
2981 
2982 	dst = (struct sockaddr_in *)(dstext + 1);
2983 	dst6 = (struct sockaddr_in6 *)dst;
2984 	is_ipv4 = (dst->sin_family == AF_INET);
2985 	if (is_ipv4) {
2986 		sp = &espstack->esp_sadb.s_v4;
2987 		dstaddr = (uint32_t *)(&dst->sin_addr);
2988 		outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr);
2989 	} else {
2990 		sp = &espstack->esp_sadb.s_v6;
2991 		dstaddr = (uint32_t *)(&dst6->sin6_addr);
2992 		outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr);
2993 	}
2994 
2995 	inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi);
2996 	outbound = &sp->sdb_of[outhash];
2997 
2998 	switch (ksi->ks_in_dsttype) {
2999 	case KS_IN_ADDR_MBCAST:
3000 		clone = B_TRUE;	/* All mcast SAs can be bidirectional */
3001 		/* FALLTHRU */
3002 	case KS_IN_ADDR_ME:
3003 		primary = inbound;
3004 		secondary = outbound;
3005 		/*
3006 		 * If the source address is either one of mine, or unspecified
3007 		 * (which is best summed up by saying "not 'not mine'"),
3008 		 * then the association is potentially bi-directional,
3009 		 * in that it can be used for inbound traffic and outbound
3010 		 * traffic.  The best example of such an SA is a multicast
3011 		 * SA (which allows me to receive the outbound traffic).
3012 		 */
3013 		if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
3014 			clone = B_TRUE;
3015 		is_inbound = B_TRUE;
3016 		break;
3017 	case KS_IN_ADDR_NOTME:
3018 		primary = outbound;
3019 		secondary = inbound;
3020 		/*
3021 		 * If the source address literally not mine (either
3022 		 * unspecified or not mine), then this SA may have an
3023 		 * address that WILL be mine after some configuration.
3024 		 * We pay the price for this by making it a bi-directional
3025 		 * SA.
3026 		 */
3027 		if (ksi->ks_in_srctype != KS_IN_ADDR_ME)
3028 			clone = B_TRUE;
3029 		break;
3030 	default:
3031 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
3032 		return (EINVAL);
3033 	}
3034 
3035 	/*
3036 	 * Find a ACQUIRE list entry if possible.  If we've added an SA that
3037 	 * suits the needs of an ACQUIRE list entry, we can eliminate the
3038 	 * ACQUIRE list entry and transmit the enqueued packets.  Use the
3039 	 * high-bit of the sequence number to queue it.  Key off destination
3040 	 * addr, and change acqrec's state.
3041 	 */
3042 
3043 	if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
3044 		acq_bucket = &sp->sdb_acq[outhash];
3045 		mutex_enter(&acq_bucket->iacqf_lock);
3046 		for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
3047 		    acqrec = acqrec->ipsacq_next) {
3048 			mutex_enter(&acqrec->ipsacq_lock);
3049 			/*
3050 			 * Q:  I only check sequence.  Should I check dst?
3051 			 * A: Yes, check dest because those are the packets
3052 			 *    that are queued up.
3053 			 */
3054 			if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
3055 			    IPSA_ARE_ADDR_EQUAL(dstaddr,
3056 				acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
3057 				break;
3058 			mutex_exit(&acqrec->ipsacq_lock);
3059 		}
3060 		if (acqrec != NULL) {
3061 			/*
3062 			 * AHA!  I found an ACQUIRE record for this SA.
3063 			 * Grab the msg list, and free the acquire record.
3064 			 * I already am holding the lock for this record,
3065 			 * so all I have to do is free it.
3066 			 */
3067 			acq_msgs = acqrec->ipsacq_mp;
3068 			acqrec->ipsacq_mp = NULL;
3069 			mutex_exit(&acqrec->ipsacq_lock);
3070 			sadb_destroy_acquire(acqrec,
3071 			    espstack->ipsecesp_netstack);
3072 		}
3073 		mutex_exit(&acq_bucket->iacqf_lock);
3074 	}
3075 
3076 	/*
3077 	 * Find PF_KEY message, and see if I'm an update.  If so, find entry
3078 	 * in larval list (if there).
3079 	 */
3080 
3081 	if (samsg->sadb_msg_type == SADB_UPDATE) {
3082 		mutex_enter(&inbound->isaf_lock);
3083 		larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi,
3084 		    ALL_ZEROES_PTR, dstaddr, dst->sin_family);
3085 		mutex_exit(&inbound->isaf_lock);
3086 
3087 		if (larval == NULL) {
3088 			esp0dbg(("Larval update, but larval disappeared.\n"));
3089 			return (ESRCH);
3090 		} /* Else sadb_common_add unlinks it for me! */
3091 	}
3092 
3093 	lpkt = NULL;
3094 	if (larval != NULL)
3095 		lpkt = sadb_clear_lpkt(larval);
3096 
3097 	rc = sadb_common_add(espstack->esp_sadb.s_ip_q, espstack->esp_pfkey_q,
3098 	    mp, samsg, ksi, primary, secondary, larval, clone, is_inbound,
3099 	    diagnostic, espstack->ipsecesp_netstack);
3100 
3101 	if (rc == 0 && lpkt != NULL) {
3102 		rc = !taskq_dispatch(esp_taskq, inbound_task,
3103 			    (void *) lpkt, TQ_NOSLEEP);
3104 	}
3105 
3106 	if (rc != 0) {
3107 		ip_drop_packet(lpkt, B_TRUE, NULL, NULL,
3108 		    DROPPER(ipss, ipds_sadb_inlarval_timeout),
3109 		    &espstack->esp_dropper);
3110 	}
3111 
3112 	/*
3113 	 * How much more stack will I create with all of these
3114 	 * esp_outbound() calls?
3115 	 */
3116 
3117 	while (acq_msgs != NULL) {
3118 		mblk_t *mp = acq_msgs;
3119 
3120 		acq_msgs = acq_msgs->b_next;
3121 		mp->b_next = NULL;
3122 		if (rc == 0) {
3123 			if (ipsec_outbound_sa(mp, IPPROTO_ESP)) {
3124 				((ipsec_out_t *)(mp->b_rptr))->
3125 				    ipsec_out_esp_done = B_TRUE;
3126 				if (esp_outbound(mp) == IPSEC_STATUS_SUCCESS) {
3127 					ipha_t *ipha;
3128 
3129 					/* do AH processing if needed */
3130 					if (!esp_do_outbound_ah(mp))
3131 						continue;
3132 
3133 					ipha = (ipha_t *)mp->b_cont->b_rptr;
3134 
3135 					/* finish IPsec processing */
3136 					if (is_ipv4) {
3137 						ip_wput_ipsec_out(NULL, mp,
3138 						    ipha, NULL, NULL);
3139 					} else {
3140 						ip6_t *ip6h = (ip6_t *)ipha;
3141 						ip_wput_ipsec_out_v6(NULL,
3142 						    mp, ip6h, NULL, NULL);
3143 					}
3144 				}
3145 				continue;
3146 			}
3147 		}
3148 		ESP_BUMP_STAT(espstack, out_discards);
3149 		ip_drop_packet(mp, B_FALSE, NULL, NULL,
3150 		    DROPPER(ipss, ipds_sadb_acquire_timeout),
3151 		    &espstack->esp_dropper);
3152 	}
3153 
3154 	return (rc);
3155 }
3156 
3157 /*
3158  * Add new ESP security association.  This may become a generic AH/ESP
3159  * routine eventually.
3160  */
3161 static int
3162 esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic, netstack_t *ns)
3163 {
3164 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3165 	sadb_address_t *srcext =
3166 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3167 	sadb_address_t *dstext =
3168 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3169 	sadb_address_t *isrcext =
3170 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
3171 	sadb_address_t *idstext =
3172 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
3173 	sadb_address_t *nttext_loc =
3174 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC];
3175 	sadb_address_t *nttext_rem =
3176 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM];
3177 	sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
3178 	sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
3179 	struct sockaddr_in *src, *dst;
3180 	struct sockaddr_in *natt_loc, *natt_rem;
3181 	struct sockaddr_in6 *natt_loc6, *natt_rem6;
3182 	sadb_lifetime_t *soft =
3183 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
3184 	sadb_lifetime_t *hard =
3185 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
3186 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3187 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3188 
3189 	/* I need certain extensions present for an ADD message. */
3190 	if (srcext == NULL) {
3191 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
3192 		return (EINVAL);
3193 	}
3194 	if (dstext == NULL) {
3195 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3196 		return (EINVAL);
3197 	}
3198 	if (isrcext == NULL && idstext != NULL) {
3199 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
3200 		return (EINVAL);
3201 	}
3202 	if (isrcext != NULL && idstext == NULL) {
3203 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
3204 		return (EINVAL);
3205 	}
3206 	if (assoc == NULL) {
3207 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3208 		return (EINVAL);
3209 	}
3210 	if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) {
3211 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY;
3212 		return (EINVAL);
3213 	}
3214 
3215 	src = (struct sockaddr_in *)(srcext + 1);
3216 	dst = (struct sockaddr_in *)(dstext + 1);
3217 	natt_loc = (struct sockaddr_in *)(nttext_loc + 1);
3218 	natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1);
3219 	natt_rem = (struct sockaddr_in *)(nttext_rem + 1);
3220 	natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1);
3221 
3222 	/* Sundry ADD-specific reality checks. */
3223 	/* XXX STATS :  Logging/stats here? */
3224 	if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) {
3225 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
3226 		return (EINVAL);
3227 	}
3228 	if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) {
3229 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3230 		return (EINVAL);
3231 	}
3232 
3233 	if (assoc->sadb_sa_encrypt == SADB_EALG_NULL &&
3234 	    assoc->sadb_sa_auth == SADB_AALG_NONE) {
3235 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3236 		return (EINVAL);
3237 	}
3238 
3239 	if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY |
3240 	    SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM |
3241 		SADB_X_SAFLAGS_TUNNEL)) {
3242 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
3243 		return (EINVAL);
3244 	}
3245 
3246 	if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) {
3247 		return (EINVAL);
3248 	}
3249 	ASSERT(src->sin_family == dst->sin_family);
3250 
3251 	if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) {
3252 		if (nttext_loc == NULL) {
3253 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC;
3254 			return (EINVAL);
3255 		}
3256 
3257 		if (natt_loc->sin_family == AF_INET6 &&
3258 		    !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) {
3259 			*diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC;
3260 			return (EINVAL);
3261 		}
3262 	}
3263 
3264 	if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) {
3265 		if (nttext_rem == NULL) {
3266 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM;
3267 			return (EINVAL);
3268 		}
3269 		if (natt_rem->sin_family == AF_INET6 &&
3270 		    !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) {
3271 			*diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM;
3272 			return (EINVAL);
3273 		}
3274 	}
3275 
3276 
3277 	/* Stuff I don't support, for now.  XXX Diagnostic? */
3278 	if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL ||
3279 	    ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL)
3280 		return (EOPNOTSUPP);
3281 
3282 	/*
3283 	 * XXX Policy :  I'm not checking identities or sensitivity
3284 	 * labels at this time, but if I did, I'd do them here, before I sent
3285 	 * the weak key check up to the algorithm.
3286 	 */
3287 
3288 	mutex_enter(&ipss->ipsec_alg_lock);
3289 
3290 	/*
3291 	 * First locate the authentication algorithm.
3292 	 */
3293 	if (akey != NULL) {
3294 		ipsec_alginfo_t *aalg;
3295 
3296 		aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
3297 		    [assoc->sadb_sa_auth];
3298 		if (aalg == NULL || !ALG_VALID(aalg)) {
3299 			mutex_exit(&ipss->ipsec_alg_lock);
3300 			esp1dbg(espstack, ("Couldn't find auth alg #%d.\n",
3301 			    assoc->sadb_sa_auth));
3302 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3303 			return (EINVAL);
3304 		}
3305 
3306 		/*
3307 		 * Sanity check key sizes.
3308 		 * Note: It's not possible to use SADB_AALG_NONE because
3309 		 * this auth_alg is not defined with ALG_FLAG_VALID. If this
3310 		 * ever changes, the same check for SADB_AALG_NONE and
3311 		 * a auth_key != NULL should be made here ( see below).
3312 		 */
3313 		if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) {
3314 			mutex_exit(&ipss->ipsec_alg_lock);
3315 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
3316 			return (EINVAL);
3317 		}
3318 		ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3319 
3320 		/* check key and fix parity if needed */
3321 		if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE,
3322 		    diagnostic) != 0) {
3323 			mutex_exit(&ipss->ipsec_alg_lock);
3324 			return (EINVAL);
3325 		}
3326 	}
3327 
3328 	/*
3329 	 * Then locate the encryption algorithm.
3330 	 */
3331 	if (ekey != NULL) {
3332 		ipsec_alginfo_t *ealg;
3333 
3334 		ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
3335 		    [assoc->sadb_sa_encrypt];
3336 		if (ealg == NULL || !ALG_VALID(ealg)) {
3337 			mutex_exit(&ipss->ipsec_alg_lock);
3338 			esp1dbg(espstack, ("Couldn't find encr alg #%d.\n",
3339 			    assoc->sadb_sa_encrypt));
3340 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3341 			return (EINVAL);
3342 		}
3343 
3344 		/*
3345 		 * Sanity check key sizes. If the encryption algorithm is
3346 		 * SADB_EALG_NULL but the encryption key is NOT
3347 		 * NULL then complain.
3348 		 */
3349 		if ((assoc->sadb_sa_encrypt == SADB_EALG_NULL) ||
3350 		    (!ipsec_valid_key_size(ekey->sadb_key_bits, ealg))) {
3351 			mutex_exit(&ipss->ipsec_alg_lock);
3352 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
3353 			return (EINVAL);
3354 		}
3355 		ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3356 
3357 		/* check key */
3358 		if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE,
3359 		    diagnostic) != 0) {
3360 			mutex_exit(&ipss->ipsec_alg_lock);
3361 			return (EINVAL);
3362 		}
3363 	}
3364 	mutex_exit(&ipss->ipsec_alg_lock);
3365 
3366 	return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
3367 		    diagnostic, espstack));
3368 }
3369 
3370 /*
3371  * Update a security association.  Updates come in two varieties.  The first
3372  * is an update of lifetimes on a non-larval SA.  The second is an update of
3373  * a larval SA, which ends up looking a lot more like an add.
3374  */
3375 static int
3376 esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3377     ipsecesp_stack_t *espstack)
3378 {
3379 	sadb_address_t *dstext =
3380 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3381 	struct sockaddr_in *sin;
3382 
3383 	if (dstext == NULL) {
3384 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3385 		return (EINVAL);
3386 	}
3387 
3388 	sin = (struct sockaddr_in *)(dstext + 1);
3389 	return (sadb_update_sa(mp, ksi,
3390 		(sin->sin_family == AF_INET6) ? &espstack->esp_sadb.s_v6 :
3391 		&espstack->esp_sadb.s_v4,
3392 		diagnostic, espstack->esp_pfkey_q, esp_add_sa,
3393 		espstack->ipsecesp_netstack));
3394 }
3395 
3396 /*
3397  * Delete a security association.  This is REALLY likely to be code common to
3398  * both AH and ESP.  Find the association, then unlink it.
3399  */
3400 static int
3401 esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3402     ipsecesp_stack_t *espstack)
3403 {
3404 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3405 	sadb_address_t *dstext =
3406 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3407 	sadb_address_t *srcext =
3408 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3409 	struct sockaddr_in *sin;
3410 
3411 	if (assoc == NULL) {
3412 		if (dstext != NULL) {
3413 			sin = (struct sockaddr_in *)(dstext + 1);
3414 		} else if (srcext != NULL) {
3415 			sin = (struct sockaddr_in *)(srcext + 1);
3416 		} else {
3417 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3418 			return (EINVAL);
3419 		}
3420 		return (sadb_purge_sa(mp, ksi,
3421 		    (sin->sin_family == AF_INET6) ? &espstack->esp_sadb.s_v6 :
3422 		    &espstack->esp_sadb.s_v4, espstack->esp_pfkey_q,
3423 		    espstack->esp_sadb.s_ip_q));
3424 	}
3425 
3426 	return (sadb_del_sa(mp, ksi, &espstack->esp_sadb, diagnostic,
3427 		    espstack->esp_pfkey_q));
3428 }
3429 
3430 /*
3431  * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP
3432  * messages.
3433  */
3434 static void
3435 esp_dump(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
3436 {
3437 	int error;
3438 	sadb_msg_t *samsg;
3439 
3440 	/*
3441 	 * Dump each fanout, bailing if error is non-zero.
3442 	 */
3443 
3444 	error = sadb_dump(espstack->esp_pfkey_q, mp, ksi->ks_in_serial,
3445 	    &espstack->esp_sadb.s_v4);
3446 	if (error != 0)
3447 		goto bail;
3448 
3449 	error = sadb_dump(espstack->esp_pfkey_q, mp, ksi->ks_in_serial,
3450 	    &espstack->esp_sadb.s_v6);
3451 bail:
3452 	ASSERT(mp->b_cont != NULL);
3453 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3454 	samsg->sadb_msg_errno = (uint8_t)error;
3455 	sadb_pfkey_echo(espstack->esp_pfkey_q, mp,
3456 	    (sadb_msg_t *)mp->b_cont->b_rptr, ksi, NULL);
3457 }
3458 
3459 /*
3460  * First-cut reality check for an inbound PF_KEY message.
3461  */
3462 static boolean_t
3463 esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi,
3464     ipsecesp_stack_t *espstack)
3465 {
3466 	int diagnostic;
3467 
3468 	if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
3469 		diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
3470 		goto badmsg;
3471 	}
3472 	if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
3473 	    ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
3474 		diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
3475 		goto badmsg;
3476 	}
3477 	return (B_FALSE);	/* False ==> no failures */
3478 
3479 badmsg:
3480 	sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
3481 	    ksi->ks_in_serial);
3482 	return (B_TRUE);	/* True ==> failures */
3483 }
3484 
3485 /*
3486  * ESP parsing of PF_KEY messages.  Keysock did most of the really silly
3487  * error cases.  What I receive is a fully-formed, syntactically legal
3488  * PF_KEY message.  I then need to check semantics...
3489  *
3490  * This code may become common to AH and ESP.  Stay tuned.
3491  *
3492  * I also make the assumption that db_ref's are cool.  If this assumption
3493  * is wrong, this means that someone other than keysock or me has been
3494  * mucking with PF_KEY messages.
3495  */
3496 static void
3497 esp_parse_pfkey(mblk_t *mp, ipsecesp_stack_t *espstack)
3498 {
3499 	mblk_t *msg = mp->b_cont;
3500 	sadb_msg_t *samsg;
3501 	keysock_in_t *ksi;
3502 	int error;
3503 	int diagnostic = SADB_X_DIAGNOSTIC_NONE;
3504 
3505 	ASSERT(msg != NULL);
3506 
3507 	samsg = (sadb_msg_t *)msg->b_rptr;
3508 	ksi = (keysock_in_t *)mp->b_rptr;
3509 
3510 	/*
3511 	 * If applicable, convert unspecified AF_INET6 to unspecified
3512 	 * AF_INET.  And do other address reality checks.
3513 	 */
3514 	if (!sadb_addrfix(ksi, espstack->esp_pfkey_q, mp,
3515 	    espstack->ipsecesp_netstack) ||
3516 	    esp_pfkey_reality_failures(mp, ksi, espstack)) {
3517 		return;
3518 	}
3519 
3520 	switch (samsg->sadb_msg_type) {
3521 	case SADB_ADD:
3522 		error = esp_add_sa(mp, ksi, &diagnostic,
3523 		    espstack->ipsecesp_netstack);
3524 		if (error != 0) {
3525 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3526 			    diagnostic, ksi->ks_in_serial);
3527 		}
3528 		/* else esp_add_sa() took care of things. */
3529 		break;
3530 	case SADB_DELETE:
3531 		error = esp_del_sa(mp, ksi, &diagnostic, espstack);
3532 		if (error != 0) {
3533 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3534 			    diagnostic, ksi->ks_in_serial);
3535 		}
3536 		/* Else esp_del_sa() took care of things. */
3537 		break;
3538 	case SADB_GET:
3539 		error = sadb_get_sa(mp, ksi, &espstack->esp_sadb, &diagnostic,
3540 		    espstack->esp_pfkey_q);
3541 		if (error != 0) {
3542 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3543 			    diagnostic, ksi->ks_in_serial);
3544 		}
3545 		/* Else sadb_get_sa() took care of things. */
3546 		break;
3547 	case SADB_FLUSH:
3548 		sadbp_flush(&espstack->esp_sadb, espstack->ipsecesp_netstack);
3549 		sadb_pfkey_echo(espstack->esp_pfkey_q, mp, samsg, ksi, NULL);
3550 		break;
3551 	case SADB_REGISTER:
3552 		/*
3553 		 * Hmmm, let's do it!  Check for extensions (there should
3554 		 * be none), extract the fields, call esp_register_out(),
3555 		 * then either free or report an error.
3556 		 *
3557 		 * Keysock takes care of the PF_KEY bookkeeping for this.
3558 		 */
3559 		if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
3560 		    ksi->ks_in_serial, espstack)) {
3561 			freemsg(mp);
3562 		} else {
3563 			/*
3564 			 * Only way this path hits is if there is a memory
3565 			 * failure.  It will not return B_FALSE because of
3566 			 * lack of esp_pfkey_q if I am in wput().
3567 			 */
3568 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM,
3569 			    diagnostic, ksi->ks_in_serial);
3570 		}
3571 		break;
3572 	case SADB_UPDATE:
3573 		/*
3574 		 * Find a larval, if not there, find a full one and get
3575 		 * strict.
3576 		 */
3577 		error = esp_update_sa(mp, ksi, &diagnostic, espstack);
3578 		if (error != 0) {
3579 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3580 			    diagnostic, ksi->ks_in_serial);
3581 		}
3582 		/* else esp_update_sa() took care of things. */
3583 		break;
3584 	case SADB_GETSPI:
3585 		/*
3586 		 * Reserve a new larval entry.
3587 		 */
3588 		esp_getspi(mp, ksi, espstack);
3589 		break;
3590 	case SADB_ACQUIRE:
3591 		/*
3592 		 * Find larval and/or ACQUIRE record and kill it (them), I'm
3593 		 * most likely an error.  Inbound ACQUIRE messages should only
3594 		 * have the base header.
3595 		 */
3596 		sadb_in_acquire(samsg, &espstack->esp_sadb,
3597 		    espstack->esp_pfkey_q, espstack->ipsecesp_netstack);
3598 		freemsg(mp);
3599 		break;
3600 	case SADB_DUMP:
3601 		/*
3602 		 * Dump all entries.
3603 		 */
3604 		esp_dump(mp, ksi, espstack);
3605 		/* esp_dump will take care of the return message, etc. */
3606 		break;
3607 	case SADB_EXPIRE:
3608 		/* Should never reach me. */
3609 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, EOPNOTSUPP,
3610 		    diagnostic, ksi->ks_in_serial);
3611 		break;
3612 	default:
3613 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL,
3614 		    SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
3615 		break;
3616 	}
3617 }
3618 
3619 /*
3620  * Handle case where PF_KEY says it can't find a keysock for one of my
3621  * ACQUIRE messages.
3622  */
3623 static void
3624 esp_keysock_no_socket(mblk_t *mp, ipsecesp_stack_t *espstack)
3625 {
3626 	sadb_msg_t *samsg;
3627 	keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
3628 
3629 	if (mp->b_cont == NULL) {
3630 		freemsg(mp);
3631 		return;
3632 	}
3633 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3634 
3635 	/*
3636 	 * If keysock can't find any registered, delete the acquire record
3637 	 * immediately, and handle errors.
3638 	 */
3639 	if (samsg->sadb_msg_type == SADB_ACQUIRE) {
3640 		samsg->sadb_msg_errno = kse->ks_err_errno;
3641 		samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
3642 		/*
3643 		 * Use the write-side of the esp_pfkey_q, in case there is
3644 		 * no esp_sadb.s_ip_q.
3645 		 */
3646 		sadb_in_acquire(samsg, &espstack->esp_sadb,
3647 		    WR(espstack->esp_pfkey_q), espstack->ipsecesp_netstack);
3648 	}
3649 
3650 	freemsg(mp);
3651 }
3652 
3653 /*
3654  * ESP module write put routine.
3655  */
3656 static void
3657 ipsecesp_wput(queue_t *q, mblk_t *mp)
3658 {
3659 	ipsec_info_t *ii;
3660 	struct iocblk *iocp;
3661 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
3662 
3663 	esp3dbg(espstack, ("In esp_wput().\n"));
3664 
3665 	/* NOTE: Each case must take care of freeing or passing mp. */
3666 	switch (mp->b_datap->db_type) {
3667 	case M_CTL:
3668 		if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
3669 			/* Not big enough message. */
3670 			freemsg(mp);
3671 			break;
3672 		}
3673 		ii = (ipsec_info_t *)mp->b_rptr;
3674 
3675 		switch (ii->ipsec_info_type) {
3676 		case KEYSOCK_OUT_ERR:
3677 			esp1dbg(espstack, ("Got KEYSOCK_OUT_ERR message.\n"));
3678 			esp_keysock_no_socket(mp, espstack);
3679 			break;
3680 		case KEYSOCK_IN:
3681 			ESP_BUMP_STAT(espstack, keysock_in);
3682 			esp3dbg(espstack, ("Got KEYSOCK_IN message.\n"));
3683 
3684 			/* Parse the message. */
3685 			esp_parse_pfkey(mp, espstack);
3686 			break;
3687 		case KEYSOCK_HELLO:
3688 			sadb_keysock_hello(&espstack->esp_pfkey_q, q, mp,
3689 			    esp_ager, (void *)espstack, &espstack->esp_event,
3690 			    SADB_SATYPE_ESP);
3691 			break;
3692 		default:
3693 			esp2dbg(espstack, ("Got M_CTL from above of 0x%x.\n",
3694 			    ii->ipsec_info_type));
3695 			freemsg(mp);
3696 			break;
3697 		}
3698 		break;
3699 	case M_IOCTL:
3700 		iocp = (struct iocblk *)mp->b_rptr;
3701 		switch (iocp->ioc_cmd) {
3702 		case ND_SET:
3703 		case ND_GET:
3704 			if (nd_getset(q, espstack->ipsecesp_g_nd, mp)) {
3705 				qreply(q, mp);
3706 				return;
3707 			} else {
3708 				iocp->ioc_error = ENOENT;
3709 			}
3710 			/* FALLTHRU */
3711 		default:
3712 			/* We really don't support any other ioctls, do we? */
3713 
3714 			/* Return EINVAL */
3715 			if (iocp->ioc_error != ENOENT)
3716 				iocp->ioc_error = EINVAL;
3717 			iocp->ioc_count = 0;
3718 			mp->b_datap->db_type = M_IOCACK;
3719 			qreply(q, mp);
3720 			return;
3721 		}
3722 	default:
3723 		esp3dbg(espstack,
3724 		    ("Got default message, type %d, passing to IP.\n",
3725 		    mp->b_datap->db_type));
3726 		putnext(q, mp);
3727 	}
3728 }
3729 
3730 /*
3731  * Process an outbound ESP packet that can be accelerated by a IPsec
3732  * hardware acceleration capable Provider.
3733  * The caller already inserted and initialized the ESP header.
3734  * This function allocates a tagging M_CTL, and adds room at the end
3735  * of the packet to hold the ICV if authentication is needed.
3736  *
3737  * On success returns B_TRUE, on failure returns B_FALSE and frees the
3738  * mblk chain ipsec_out.
3739  */
3740 static ipsec_status_t
3741 esp_outbound_accelerated(mblk_t *ipsec_out, uint_t icv_len)
3742 {
3743 	ipsec_out_t *io;
3744 	mblk_t *lastmp;
3745 	netstack_t	*ns;
3746 	ipsecesp_stack_t *espstack;
3747 	ipsec_stack_t	*ipss;
3748 
3749 	io = (ipsec_out_t *)ipsec_out->b_rptr;
3750 	ns = io->ipsec_out_ns;
3751 	espstack = ns->netstack_ipsecesp;
3752 	ipss = ns->netstack_ipsec;
3753 
3754 	ESP_BUMP_STAT(espstack, out_accelerated);
3755 
3756 	/* mark packet as being accelerated in IPSEC_OUT */
3757 	ASSERT(io->ipsec_out_accelerated == B_FALSE);
3758 	io->ipsec_out_accelerated = B_TRUE;
3759 
3760 	/*
3761 	 * add room at the end of the packet for the ICV if needed
3762 	 */
3763 	if (icv_len > 0) {
3764 		/* go to last mblk */
3765 		lastmp = ipsec_out;	/* For following while loop. */
3766 		do {
3767 			lastmp = lastmp->b_cont;
3768 		} while (lastmp->b_cont != NULL);
3769 
3770 		/* if not enough available room, allocate new mblk */
3771 		if ((lastmp->b_wptr + icv_len) > lastmp->b_datap->db_lim) {
3772 			lastmp->b_cont = allocb(icv_len, BPRI_HI);
3773 			if (lastmp->b_cont == NULL) {
3774 				ESP_BUMP_STAT(espstack, out_discards);
3775 				ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL,
3776 				    DROPPER(ipss, ipds_esp_nomem),
3777 				    &espstack->esp_dropper);
3778 				return (IPSEC_STATUS_FAILED);
3779 			}
3780 			lastmp = lastmp->b_cont;
3781 		}
3782 		lastmp->b_wptr += icv_len;
3783 	}
3784 
3785 	return (IPSEC_STATUS_SUCCESS);
3786 }
3787 
3788 /*
3789  * Process an inbound accelerated ESP packet.
3790  * On success returns B_TRUE, on failure returns B_FALSE and frees the
3791  * mblk chain ipsec_in.
3792  */
3793 static ipsec_status_t
3794 esp_inbound_accelerated(mblk_t *ipsec_in, mblk_t *data_mp, boolean_t isv4,
3795     ipsa_t *assoc)
3796 {
3797 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr;
3798 	mblk_t *hada_mp;
3799 	uint32_t icv_len = 0;
3800 	da_ipsec_t *hada;
3801 	ipha_t *ipha;
3802 	ip6_t *ip6h;
3803 	kstat_named_t *counter;
3804 	netstack_t	*ns = ii->ipsec_in_ns;
3805 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3806 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3807 
3808 	ESP_BUMP_STAT(espstack, in_accelerated);
3809 
3810 	hada_mp = ii->ipsec_in_da;
3811 	ASSERT(hada_mp != NULL);
3812 	hada = (da_ipsec_t *)hada_mp->b_rptr;
3813 
3814 	/*
3815 	 * We only support one level of decapsulation in hardware, so
3816 	 * nuke the pointer.
3817 	 */
3818 	ii->ipsec_in_da = NULL;
3819 	ii->ipsec_in_accelerated = B_FALSE;
3820 
3821 	if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) {
3822 		/*
3823 		 * ESP with authentication. We expect the Provider to have
3824 		 * computed the ICV and placed it in the hardware acceleration
3825 		 * data attributes.
3826 		 *
3827 		 * Extract ICV length from attributes M_CTL and sanity check
3828 		 * its value. We allow the mblk to be smaller than da_ipsec_t
3829 		 * for a small ICV, as long as the entire ICV fits within the
3830 		 * mblk.
3831 		 *
3832 		 * Also ensures that the ICV length computed by Provider
3833 		 * corresponds to the ICV length of the agorithm specified by
3834 		 * the SA.
3835 		 */
3836 		icv_len = hada->da_icv_len;
3837 		if ((icv_len != assoc->ipsa_mac_len) ||
3838 		    (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) <
3839 			(sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) {
3840 			esp0dbg(("esp_inbound_accelerated: "
3841 			    "ICV len (%u) incorrect or mblk too small (%u)\n",
3842 			    icv_len, (uint32_t)(MBLKL(hada_mp))));
3843 			counter = DROPPER(ipss, ipds_esp_bad_auth);
3844 			goto esp_in_discard;
3845 		}
3846 	}
3847 
3848 	/* get pointers to IP header */
3849 	if (isv4) {
3850 		ipha = (ipha_t *)data_mp->b_rptr;
3851 	} else {
3852 		ip6h = (ip6_t *)data_mp->b_rptr;
3853 	}
3854 
3855 	/*
3856 	 * Compare ICV in ESP packet vs ICV computed by adapter.
3857 	 * We also remove the ICV from the end of the packet since
3858 	 * it will no longer be needed.
3859 	 *
3860 	 * Assume that esp_inbound() already ensured that the pkt
3861 	 * was in one mblk.
3862 	 */
3863 	ASSERT(data_mp->b_cont == NULL);
3864 	data_mp->b_wptr -= icv_len;
3865 	/* adjust IP header */
3866 	if (isv4)
3867 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) - icv_len);
3868 	else
3869 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - icv_len);
3870 	if (icv_len && bcmp(hada->da_icv, data_mp->b_wptr, icv_len)) {
3871 		int af;
3872 		void *addr;
3873 
3874 		if (isv4) {
3875 			addr = &ipha->ipha_dst;
3876 			af = AF_INET;
3877 		} else {
3878 			addr = &ip6h->ip6_dst;
3879 			af = AF_INET6;
3880 		}
3881 
3882 		/*
3883 		 * Log the event. Don't print to the console, block
3884 		 * potential denial-of-service attack.
3885 		 */
3886 		ESP_BUMP_STAT(espstack, bad_auth);
3887 		ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
3888 		    "ESP Authentication failed spi %x, dst_addr %s",
3889 		    assoc->ipsa_spi, addr, af, espstack->ipsecesp_netstack);
3890 		counter = DROPPER(ipss, ipds_esp_bad_auth);
3891 		goto esp_in_discard;
3892 	}
3893 
3894 	esp3dbg(espstack, ("esp_inbound_accelerated: ESP authentication "
3895 		    "succeeded, checking replay\n"));
3896 
3897 	ipsec_in->b_cont = data_mp;
3898 
3899 	/*
3900 	 * Remove ESP header and padding from packet.
3901 	 */
3902 	if (!esp_strip_header(data_mp, ii->ipsec_in_v4, assoc->ipsa_iv_len,
3903 		&counter, espstack)) {
3904 		esp1dbg(espstack, ("esp_inbound_accelerated: "
3905 		    "esp_strip_header() failed\n"));
3906 		goto esp_in_discard;
3907 	}
3908 
3909 	freeb(hada_mp);
3910 
3911 	/*
3912 	 * Account for usage..
3913 	 */
3914 	if (!esp_age_bytes(assoc, msgdsize(data_mp), B_TRUE)) {
3915 		/* The ipsa has hit hard expiration, LOG and AUDIT. */
3916 		ESP_BUMP_STAT(espstack, bytes_expired);
3917 		IP_ESP_BUMP_STAT(ipss, in_discards);
3918 		ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
3919 		    "ESP association 0x%x, dst %s had bytes expire.\n",
3920 		    assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
3921 		    espstack->ipsecesp_netstack);
3922 		ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL,
3923 		    DROPPER(ipss, ipds_esp_bytes_expire),
3924 		    &espstack->esp_dropper);
3925 		return (IPSEC_STATUS_FAILED);
3926 	}
3927 
3928 	/* done processing the packet */
3929 	return (IPSEC_STATUS_SUCCESS);
3930 
3931 esp_in_discard:
3932 	IP_ESP_BUMP_STAT(ipss, in_discards);
3933 	freeb(hada_mp);
3934 
3935 	ipsec_in->b_cont = data_mp;	/* For ip_drop_packet()'s sake... */
3936 	ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter,
3937 	    &espstack->esp_dropper);
3938 
3939 	return (IPSEC_STATUS_FAILED);
3940 }
3941 
3942 /*
3943  * Wrapper to allow IP to trigger an ESP association failure message
3944  * during inbound SA selection.
3945  */
3946 void
3947 ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
3948     uint32_t spi, void *addr, int af, ipsecesp_stack_t *espstack)
3949 {
3950 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
3951 
3952 	if (espstack->ipsecesp_log_unknown_spi) {
3953 		ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
3954 		    addr, af, espstack->ipsecesp_netstack);
3955 	}
3956 
3957 	ip_drop_packet(mp, B_TRUE, NULL, NULL,
3958 	    DROPPER(ipss, ipds_esp_no_sa),
3959 	    &espstack->esp_dropper);
3960 }
3961 
3962 /*
3963  * Initialize the ESP input and output processing functions.
3964  */
3965 void
3966 ipsecesp_init_funcs(ipsa_t *sa)
3967 {
3968 	if (sa->ipsa_output_func == NULL)
3969 		sa->ipsa_output_func = esp_outbound;
3970 	if (sa->ipsa_input_func == NULL)
3971 		sa->ipsa_input_func = esp_inbound;
3972 }
3973