xref: /titanic_50/usr/src/uts/common/inet/ip/ipsecesp.c (revision a4ca1d52cdf9b55a14d0c62ff62b74cd904110ff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/stropts.h>
29 #include <sys/errno.h>
30 #include <sys/strlog.h>
31 #include <sys/tihdr.h>
32 #include <sys/socket.h>
33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/kmem.h>
36 #include <sys/zone.h>
37 #include <sys/sysmacros.h>
38 #include <sys/cmn_err.h>
39 #include <sys/vtrace.h>
40 #include <sys/debug.h>
41 #include <sys/atomic.h>
42 #include <sys/strsun.h>
43 #include <sys/random.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #include <netinet/ip6.h>
47 #include <net/pfkeyv2.h>
48 #include <net/pfpolicy.h>
49 
50 #include <inet/common.h>
51 #include <inet/mi.h>
52 #include <inet/nd.h>
53 #include <inet/ip.h>
54 #include <inet/ip_impl.h>
55 #include <inet/ip6.h>
56 #include <inet/ip_if.h>
57 #include <inet/ip_ndp.h>
58 #include <inet/sadb.h>
59 #include <inet/ipsec_info.h>
60 #include <inet/ipsec_impl.h>
61 #include <inet/ipsecesp.h>
62 #include <inet/ipdrop.h>
63 #include <inet/tcp.h>
64 #include <sys/kstat.h>
65 #include <sys/policy.h>
66 #include <sys/strsun.h>
67 #include <sys/strsubr.h>
68 #include <inet/udp_impl.h>
69 #include <sys/taskq.h>
70 #include <sys/note.h>
71 
72 #include <sys/tsol/tnet.h>
73 
74 /*
75  * Table of ND variables supported by ipsecesp. These are loaded into
76  * ipsecesp_g_nd in ipsecesp_init_nd.
77  * All of these are alterable, within the min/max values given, at run time.
78  */
79 static	ipsecespparam_t	lcl_param_arr[] = {
80 	/* min	max			value	name */
81 	{ 0,	3,			0,	"ipsecesp_debug"},
82 	{ 125,	32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"},
83 	{ 1,	10,			1,	"ipsecesp_reap_delay"},
84 	{ 1,	SADB_MAX_REPLAY,	64,	"ipsecesp_replay_size"},
85 	{ 1,	300,			15,	"ipsecesp_acquire_timeout"},
86 	{ 1,	1800,			90,	"ipsecesp_larval_timeout"},
87 	/* Default lifetime values for ACQUIRE messages. */
88 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_soft_bytes"},
89 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_hard_bytes"},
90 	{ 0,	0xffffffffU,	24000,	"ipsecesp_default_soft_addtime"},
91 	{ 0,	0xffffffffU,	28800,	"ipsecesp_default_hard_addtime"},
92 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_soft_usetime"},
93 	{ 0,	0xffffffffU,	0,	"ipsecesp_default_hard_usetime"},
94 	{ 0,	1,		0,	"ipsecesp_log_unknown_spi"},
95 	{ 0,	2,		1,	"ipsecesp_padding_check"},
96 	{ 0,	600,		20,	"ipsecesp_nat_keepalive_interval"},
97 };
98 #define	ipsecesp_debug	ipsecesp_params[0].ipsecesp_param_value
99 #define	ipsecesp_age_interval ipsecesp_params[1].ipsecesp_param_value
100 #define	ipsecesp_age_int_max	ipsecesp_params[1].ipsecesp_param_max
101 #define	ipsecesp_reap_delay	ipsecesp_params[2].ipsecesp_param_value
102 #define	ipsecesp_replay_size	ipsecesp_params[3].ipsecesp_param_value
103 #define	ipsecesp_acquire_timeout	\
104 	ipsecesp_params[4].ipsecesp_param_value
105 #define	ipsecesp_larval_timeout	\
106 	ipsecesp_params[5].ipsecesp_param_value
107 #define	ipsecesp_default_soft_bytes	\
108 	ipsecesp_params[6].ipsecesp_param_value
109 #define	ipsecesp_default_hard_bytes	\
110 	ipsecesp_params[7].ipsecesp_param_value
111 #define	ipsecesp_default_soft_addtime	\
112 	ipsecesp_params[8].ipsecesp_param_value
113 #define	ipsecesp_default_hard_addtime	\
114 	ipsecesp_params[9].ipsecesp_param_value
115 #define	ipsecesp_default_soft_usetime	\
116 	ipsecesp_params[10].ipsecesp_param_value
117 #define	ipsecesp_default_hard_usetime	\
118 	ipsecesp_params[11].ipsecesp_param_value
119 #define	ipsecesp_log_unknown_spi	\
120 	ipsecesp_params[12].ipsecesp_param_value
121 #define	ipsecesp_padding_check	\
122 	ipsecesp_params[13].ipsecesp_param_value
123 /* For ipsecesp_nat_keepalive_interval, see ipsecesp.h. */
124 
125 #define	esp0dbg(a)	printf a
126 /* NOTE:  != 0 instead of > 0 so lint doesn't complain. */
127 #define	esp1dbg(espstack, a)	if (espstack->ipsecesp_debug != 0) printf a
128 #define	esp2dbg(espstack, a)	if (espstack->ipsecesp_debug > 1) printf a
129 #define	esp3dbg(espstack, a)	if (espstack->ipsecesp_debug > 2) printf a
130 
131 static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *);
132 static int ipsecesp_close(queue_t *);
133 static void ipsecesp_wput(queue_t *, mblk_t *);
134 static void	*ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns);
135 static void	ipsecesp_stack_fini(netstackid_t stackid, void *arg);
136 static void esp_send_acquire(ipsacq_t *, mblk_t *, netstack_t *);
137 
138 static void esp_prepare_udp(netstack_t *, mblk_t *, ipha_t *);
139 static void esp_outbound_finish(mblk_t *, ip_xmit_attr_t *);
140 static void esp_inbound_restart(mblk_t *, ip_recv_attr_t *);
141 
142 static boolean_t esp_register_out(uint32_t, uint32_t, uint_t,
143     ipsecesp_stack_t *, cred_t *);
144 static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t,
145     kstat_named_t **, ipsecesp_stack_t *);
146 static mblk_t *esp_submit_req_inbound(mblk_t *, ip_recv_attr_t *,
147     ipsa_t *, uint_t);
148 static mblk_t *esp_submit_req_outbound(mblk_t *, ip_xmit_attr_t *,
149     ipsa_t *, uchar_t *, uint_t);
150 
151 /* Setable in /etc/system */
152 uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE;
153 
154 static struct module_info info = {
155 	5137, "ipsecesp", 0, INFPSZ, 65536, 1024
156 };
157 
158 static struct qinit rinit = {
159 	(pfi_t)putnext, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
160 	NULL
161 };
162 
163 static struct qinit winit = {
164 	(pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
165 	NULL
166 };
167 
168 struct streamtab ipsecespinfo = {
169 	&rinit, &winit, NULL, NULL
170 };
171 
172 static taskq_t *esp_taskq;
173 
174 /*
175  * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now.
176  *
177  * Question:	Do I need this, given that all instance's esps->esps_wq point
178  *		to IP?
179  *
180  * Answer:	Yes, because I need to know which queue is BOUND to
181  *		IPPROTO_ESP
182  */
183 
184 /*
185  * Stats.  This may eventually become a full-blown SNMP MIB once that spec
186  * stabilizes.
187  */
188 
189 typedef struct esp_kstats_s {
190 	kstat_named_t esp_stat_num_aalgs;
191 	kstat_named_t esp_stat_good_auth;
192 	kstat_named_t esp_stat_bad_auth;
193 	kstat_named_t esp_stat_bad_padding;
194 	kstat_named_t esp_stat_replay_failures;
195 	kstat_named_t esp_stat_replay_early_failures;
196 	kstat_named_t esp_stat_keysock_in;
197 	kstat_named_t esp_stat_out_requests;
198 	kstat_named_t esp_stat_acquire_requests;
199 	kstat_named_t esp_stat_bytes_expired;
200 	kstat_named_t esp_stat_out_discards;
201 	kstat_named_t esp_stat_crypto_sync;
202 	kstat_named_t esp_stat_crypto_async;
203 	kstat_named_t esp_stat_crypto_failures;
204 	kstat_named_t esp_stat_num_ealgs;
205 	kstat_named_t esp_stat_bad_decrypt;
206 	kstat_named_t esp_stat_sa_port_renumbers;
207 } esp_kstats_t;
208 
209 /*
210  * espstack->esp_kstats is equal to espstack->esp_ksp->ks_data if
211  * kstat_create_netstack for espstack->esp_ksp succeeds, but when it
212  * fails, it will be NULL. Note this is done for all stack instances,
213  * so it *could* fail. hence a non-NULL checking is done for
214  * ESP_BUMP_STAT and ESP_DEBUMP_STAT
215  */
216 #define	ESP_BUMP_STAT(espstack, x)					\
217 do {									\
218 	if (espstack->esp_kstats != NULL)				\
219 		(espstack->esp_kstats->esp_stat_ ## x).value.ui64++;	\
220 _NOTE(CONSTCOND)							\
221 } while (0)
222 
223 #define	ESP_DEBUMP_STAT(espstack, x)					\
224 do {									\
225 	if (espstack->esp_kstats != NULL)				\
226 		(espstack->esp_kstats->esp_stat_ ## x).value.ui64--;	\
227 _NOTE(CONSTCOND)							\
228 } while (0)
229 
230 static int	esp_kstat_update(kstat_t *, int);
231 
232 static boolean_t
233 esp_kstat_init(ipsecesp_stack_t *espstack, netstackid_t stackid)
234 {
235 	espstack->esp_ksp = kstat_create_netstack("ipsecesp", 0, "esp_stat",
236 	    "net", KSTAT_TYPE_NAMED,
237 	    sizeof (esp_kstats_t) / sizeof (kstat_named_t),
238 	    KSTAT_FLAG_PERSISTENT, stackid);
239 
240 	if (espstack->esp_ksp == NULL || espstack->esp_ksp->ks_data == NULL)
241 		return (B_FALSE);
242 
243 	espstack->esp_kstats = espstack->esp_ksp->ks_data;
244 
245 	espstack->esp_ksp->ks_update = esp_kstat_update;
246 	espstack->esp_ksp->ks_private = (void *)(uintptr_t)stackid;
247 
248 #define	K64 KSTAT_DATA_UINT64
249 #define	KI(x) kstat_named_init(&(espstack->esp_kstats->esp_stat_##x), #x, K64)
250 
251 	KI(num_aalgs);
252 	KI(num_ealgs);
253 	KI(good_auth);
254 	KI(bad_auth);
255 	KI(bad_padding);
256 	KI(replay_failures);
257 	KI(replay_early_failures);
258 	KI(keysock_in);
259 	KI(out_requests);
260 	KI(acquire_requests);
261 	KI(bytes_expired);
262 	KI(out_discards);
263 	KI(crypto_sync);
264 	KI(crypto_async);
265 	KI(crypto_failures);
266 	KI(bad_decrypt);
267 	KI(sa_port_renumbers);
268 
269 #undef KI
270 #undef K64
271 
272 	kstat_install(espstack->esp_ksp);
273 
274 	return (B_TRUE);
275 }
276 
277 static int
278 esp_kstat_update(kstat_t *kp, int rw)
279 {
280 	esp_kstats_t *ekp;
281 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
282 	netstack_t	*ns;
283 	ipsec_stack_t	*ipss;
284 
285 	if ((kp == NULL) || (kp->ks_data == NULL))
286 		return (EIO);
287 
288 	if (rw == KSTAT_WRITE)
289 		return (EACCES);
290 
291 	ns = netstack_find_by_stackid(stackid);
292 	if (ns == NULL)
293 		return (-1);
294 	ipss = ns->netstack_ipsec;
295 	if (ipss == NULL) {
296 		netstack_rele(ns);
297 		return (-1);
298 	}
299 	ekp = (esp_kstats_t *)kp->ks_data;
300 
301 	mutex_enter(&ipss->ipsec_alg_lock);
302 	ekp->esp_stat_num_aalgs.value.ui64 =
303 	    ipss->ipsec_nalgs[IPSEC_ALG_AUTH];
304 	ekp->esp_stat_num_ealgs.value.ui64 =
305 	    ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
306 	mutex_exit(&ipss->ipsec_alg_lock);
307 
308 	netstack_rele(ns);
309 	return (0);
310 }
311 
312 #ifdef DEBUG
313 /*
314  * Debug routine, useful to see pre-encryption data.
315  */
316 static char *
317 dump_msg(mblk_t *mp)
318 {
319 	char tmp_str[3], tmp_line[256];
320 
321 	while (mp != NULL) {
322 		unsigned char *ptr;
323 
324 		printf("mblk address 0x%p, length %ld, db_ref %d "
325 		    "type %d, base 0x%p, lim 0x%p\n",
326 		    (void *) mp, (long)(mp->b_wptr - mp->b_rptr),
327 		    mp->b_datap->db_ref, mp->b_datap->db_type,
328 		    (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim);
329 		ptr = mp->b_rptr;
330 
331 		tmp_line[0] = '\0';
332 		while (ptr < mp->b_wptr) {
333 			uint_t diff;
334 
335 			diff = (ptr - mp->b_rptr);
336 			if (!(diff & 0x1f)) {
337 				if (strlen(tmp_line) > 0) {
338 					printf("bytes: %s\n", tmp_line);
339 					tmp_line[0] = '\0';
340 				}
341 			}
342 			if (!(diff & 0x3))
343 				(void) strcat(tmp_line, " ");
344 			(void) sprintf(tmp_str, "%02x", *ptr);
345 			(void) strcat(tmp_line, tmp_str);
346 			ptr++;
347 		}
348 		if (strlen(tmp_line) > 0)
349 			printf("bytes: %s\n", tmp_line);
350 
351 		mp = mp->b_cont;
352 	}
353 
354 	return ("\n");
355 }
356 
357 #else /* DEBUG */
358 static char *
359 dump_msg(mblk_t *mp)
360 {
361 	printf("Find value of mp %p.\n", mp);
362 	return ("\n");
363 }
364 #endif /* DEBUG */
365 
366 /*
367  * Don't have to lock age_interval, as only one thread will access it at
368  * a time, because I control the one function that does with timeout().
369  */
370 static void
371 esp_ager(void *arg)
372 {
373 	ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
374 	netstack_t	*ns = espstack->ipsecesp_netstack;
375 	hrtime_t begin = gethrtime();
376 
377 	sadb_ager(&espstack->esp_sadb.s_v4, espstack->esp_pfkey_q,
378 	    espstack->ipsecesp_reap_delay, ns);
379 	sadb_ager(&espstack->esp_sadb.s_v6, espstack->esp_pfkey_q,
380 	    espstack->ipsecesp_reap_delay, ns);
381 
382 	espstack->esp_event = sadb_retimeout(begin, espstack->esp_pfkey_q,
383 	    esp_ager, espstack,
384 	    &espstack->ipsecesp_age_interval, espstack->ipsecesp_age_int_max,
385 	    info.mi_idnum);
386 }
387 
388 /*
389  * Get an ESP NDD parameter.
390  */
391 /* ARGSUSED */
392 static int
393 ipsecesp_param_get(q, mp, cp, cr)
394 	queue_t	*q;
395 	mblk_t	*mp;
396 	caddr_t	cp;
397 	cred_t *cr;
398 {
399 	ipsecespparam_t	*ipsecesppa = (ipsecespparam_t *)cp;
400 	uint_t value;
401 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
402 
403 	mutex_enter(&espstack->ipsecesp_param_lock);
404 	value = ipsecesppa->ipsecesp_param_value;
405 	mutex_exit(&espstack->ipsecesp_param_lock);
406 
407 	(void) mi_mpprintf(mp, "%u", value);
408 	return (0);
409 }
410 
411 /*
412  * This routine sets an NDD variable in a ipsecespparam_t structure.
413  */
414 /* ARGSUSED */
415 static int
416 ipsecesp_param_set(q, mp, value, cp, cr)
417 	queue_t	*q;
418 	mblk_t	*mp;
419 	char	*value;
420 	caddr_t	cp;
421 	cred_t *cr;
422 {
423 	ulong_t	new_value;
424 	ipsecespparam_t	*ipsecesppa = (ipsecespparam_t *)cp;
425 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
426 
427 	/*
428 	 * Fail the request if the new value does not lie within the
429 	 * required bounds.
430 	 */
431 	if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
432 	    new_value < ipsecesppa->ipsecesp_param_min ||
433 	    new_value > ipsecesppa->ipsecesp_param_max) {
434 		return (EINVAL);
435 	}
436 
437 	/* Set the new value */
438 	mutex_enter(&espstack->ipsecesp_param_lock);
439 	ipsecesppa->ipsecesp_param_value = new_value;
440 	mutex_exit(&espstack->ipsecesp_param_lock);
441 	return (0);
442 }
443 
444 /*
445  * Using lifetime NDD variables, fill in an extended combination's
446  * lifetime information.
447  */
448 void
449 ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb, netstack_t *ns)
450 {
451 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
452 
453 	ecomb->sadb_x_ecomb_soft_bytes = espstack->ipsecesp_default_soft_bytes;
454 	ecomb->sadb_x_ecomb_hard_bytes = espstack->ipsecesp_default_hard_bytes;
455 	ecomb->sadb_x_ecomb_soft_addtime =
456 	    espstack->ipsecesp_default_soft_addtime;
457 	ecomb->sadb_x_ecomb_hard_addtime =
458 	    espstack->ipsecesp_default_hard_addtime;
459 	ecomb->sadb_x_ecomb_soft_usetime =
460 	    espstack->ipsecesp_default_soft_usetime;
461 	ecomb->sadb_x_ecomb_hard_usetime =
462 	    espstack->ipsecesp_default_hard_usetime;
463 }
464 
465 /*
466  * Initialize things for ESP at module load time.
467  */
468 boolean_t
469 ipsecesp_ddi_init(void)
470 {
471 	esp_taskq = taskq_create("esp_taskq", 1, minclsyspri,
472 	    IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
473 
474 	/*
475 	 * We want to be informed each time a stack is created or
476 	 * destroyed in the kernel, so we can maintain the
477 	 * set of ipsecesp_stack_t's.
478 	 */
479 	netstack_register(NS_IPSECESP, ipsecesp_stack_init, NULL,
480 	    ipsecesp_stack_fini);
481 
482 	return (B_TRUE);
483 }
484 
485 /*
486  * Walk through the param array specified registering each element with the
487  * named dispatch handler.
488  */
489 static boolean_t
490 ipsecesp_param_register(IDP *ndp, ipsecespparam_t *espp, int cnt)
491 {
492 	for (; cnt-- > 0; espp++) {
493 		if (espp->ipsecesp_param_name != NULL &&
494 		    espp->ipsecesp_param_name[0]) {
495 			if (!nd_load(ndp,
496 			    espp->ipsecesp_param_name,
497 			    ipsecesp_param_get, ipsecesp_param_set,
498 			    (caddr_t)espp)) {
499 				nd_free(ndp);
500 				return (B_FALSE);
501 			}
502 		}
503 	}
504 	return (B_TRUE);
505 }
506 /*
507  * Initialize things for ESP for each stack instance
508  */
509 static void *
510 ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns)
511 {
512 	ipsecesp_stack_t	*espstack;
513 	ipsecespparam_t		*espp;
514 
515 	espstack = (ipsecesp_stack_t *)kmem_zalloc(sizeof (*espstack),
516 	    KM_SLEEP);
517 	espstack->ipsecesp_netstack = ns;
518 
519 	espp = (ipsecespparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
520 	espstack->ipsecesp_params = espp;
521 	bcopy(lcl_param_arr, espp, sizeof (lcl_param_arr));
522 
523 	(void) ipsecesp_param_register(&espstack->ipsecesp_g_nd, espp,
524 	    A_CNT(lcl_param_arr));
525 
526 	(void) esp_kstat_init(espstack, stackid);
527 
528 	espstack->esp_sadb.s_acquire_timeout =
529 	    &espstack->ipsecesp_acquire_timeout;
530 	espstack->esp_sadb.s_acqfn = esp_send_acquire;
531 	sadbp_init("ESP", &espstack->esp_sadb, SADB_SATYPE_ESP, esp_hash_size,
532 	    espstack->ipsecesp_netstack);
533 
534 	mutex_init(&espstack->ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0);
535 
536 	ip_drop_register(&espstack->esp_dropper, "IPsec ESP");
537 	return (espstack);
538 }
539 
540 /*
541  * Destroy things for ESP at module unload time.
542  */
543 void
544 ipsecesp_ddi_destroy(void)
545 {
546 	netstack_unregister(NS_IPSECESP);
547 	taskq_destroy(esp_taskq);
548 }
549 
550 /*
551  * Destroy things for ESP for one stack instance
552  */
553 static void
554 ipsecesp_stack_fini(netstackid_t stackid, void *arg)
555 {
556 	ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
557 
558 	if (espstack->esp_pfkey_q != NULL) {
559 		(void) quntimeout(espstack->esp_pfkey_q, espstack->esp_event);
560 	}
561 	espstack->esp_sadb.s_acqfn = NULL;
562 	espstack->esp_sadb.s_acquire_timeout = NULL;
563 	sadbp_destroy(&espstack->esp_sadb, espstack->ipsecesp_netstack);
564 	ip_drop_unregister(&espstack->esp_dropper);
565 	mutex_destroy(&espstack->ipsecesp_param_lock);
566 	nd_free(&espstack->ipsecesp_g_nd);
567 
568 	kmem_free(espstack->ipsecesp_params, sizeof (lcl_param_arr));
569 	espstack->ipsecesp_params = NULL;
570 	kstat_delete_netstack(espstack->esp_ksp, stackid);
571 	espstack->esp_ksp = NULL;
572 	espstack->esp_kstats = NULL;
573 	kmem_free(espstack, sizeof (*espstack));
574 }
575 
576 /*
577  * ESP module open routine, which is here for keysock plumbing.
578  * Keysock is pushed over {AH,ESP} which is an artifact from the Bad Old
579  * Days of export control, and fears that ESP would not be allowed
580  * to be shipped at all by default.  Eventually, keysock should
581  * either access AH and ESP via modstubs or krtld dependencies, or
582  * perhaps be folded in with AH and ESP into a single IPsec/netsec
583  * module ("netsec" if PF_KEY provides more than AH/ESP keying tables).
584  */
585 /* ARGSUSED */
586 static int
587 ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
588 {
589 	netstack_t		*ns;
590 	ipsecesp_stack_t	*espstack;
591 
592 	if (secpolicy_ip_config(credp, B_FALSE) != 0)
593 		return (EPERM);
594 
595 	if (q->q_ptr != NULL)
596 		return (0);  /* Re-open of an already open instance. */
597 
598 	if (sflag != MODOPEN)
599 		return (EINVAL);
600 
601 	ns = netstack_find_by_cred(credp);
602 	ASSERT(ns != NULL);
603 	espstack = ns->netstack_ipsecesp;
604 	ASSERT(espstack != NULL);
605 
606 	q->q_ptr = espstack;
607 	WR(q)->q_ptr = q->q_ptr;
608 
609 	qprocson(q);
610 	return (0);
611 }
612 
613 /*
614  * ESP module close routine.
615  */
616 static int
617 ipsecesp_close(queue_t *q)
618 {
619 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
620 
621 	/*
622 	 * Clean up q_ptr, if needed.
623 	 */
624 	qprocsoff(q);
625 
626 	/* Keysock queue check is safe, because of OCEXCL perimeter. */
627 
628 	if (q == espstack->esp_pfkey_q) {
629 		esp1dbg(espstack,
630 		    ("ipsecesp_close:  Ummm... keysock is closing ESP.\n"));
631 		espstack->esp_pfkey_q = NULL;
632 		/* Detach qtimeouts. */
633 		(void) quntimeout(q, espstack->esp_event);
634 	}
635 
636 	netstack_rele(espstack->ipsecesp_netstack);
637 	return (0);
638 }
639 
640 /*
641  * Add a number of bytes to what the SA has protected so far.  Return
642  * B_TRUE if the SA can still protect that many bytes.
643  *
644  * Caller must REFRELE the passed-in assoc.  This function must REFRELE
645  * any obtained peer SA.
646  */
647 static boolean_t
648 esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
649 {
650 	ipsa_t *inassoc, *outassoc;
651 	isaf_t *bucket;
652 	boolean_t inrc, outrc, isv6;
653 	sadb_t *sp;
654 	int outhash;
655 	netstack_t		*ns = assoc->ipsa_netstack;
656 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
657 
658 	/* No peer?  No problem! */
659 	if (!assoc->ipsa_haspeer) {
660 		return (sadb_age_bytes(espstack->esp_pfkey_q, assoc, bytes,
661 		    B_TRUE));
662 	}
663 
664 	/*
665 	 * Otherwise, we want to grab both the original assoc and its peer.
666 	 * There might be a race for this, but if it's a real race, two
667 	 * expire messages may occur.  We limit this by only sending the
668 	 * expire message on one of the peers, we'll pick the inbound
669 	 * arbitrarily.
670 	 *
671 	 * If we need tight synchronization on the peer SA, then we need to
672 	 * reconsider.
673 	 */
674 
675 	/* Use address length to select IPv6/IPv4 */
676 	isv6 = (assoc->ipsa_addrfam == AF_INET6);
677 	sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
678 
679 	if (inbound) {
680 		inassoc = assoc;
681 		if (isv6) {
682 			outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
683 			    &inassoc->ipsa_dstaddr));
684 		} else {
685 			outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
686 			    &inassoc->ipsa_dstaddr));
687 		}
688 		bucket = &sp->sdb_of[outhash];
689 		mutex_enter(&bucket->isaf_lock);
690 		outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
691 		    inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
692 		    inassoc->ipsa_addrfam);
693 		mutex_exit(&bucket->isaf_lock);
694 		if (outassoc == NULL) {
695 			/* Q: Do we wish to set haspeer == B_FALSE? */
696 			esp0dbg(("esp_age_bytes: "
697 			    "can't find peer for inbound.\n"));
698 			return (sadb_age_bytes(espstack->esp_pfkey_q, inassoc,
699 			    bytes, B_TRUE));
700 		}
701 	} else {
702 		outassoc = assoc;
703 		bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
704 		mutex_enter(&bucket->isaf_lock);
705 		inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
706 		    outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
707 		    outassoc->ipsa_addrfam);
708 		mutex_exit(&bucket->isaf_lock);
709 		if (inassoc == NULL) {
710 			/* Q: Do we wish to set haspeer == B_FALSE? */
711 			esp0dbg(("esp_age_bytes: "
712 			    "can't find peer for outbound.\n"));
713 			return (sadb_age_bytes(espstack->esp_pfkey_q, outassoc,
714 			    bytes, B_TRUE));
715 		}
716 	}
717 
718 	inrc = sadb_age_bytes(espstack->esp_pfkey_q, inassoc, bytes, B_TRUE);
719 	outrc = sadb_age_bytes(espstack->esp_pfkey_q, outassoc, bytes, B_FALSE);
720 
721 	/*
722 	 * REFRELE any peer SA.
723 	 *
724 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
725 	 * them in { }.
726 	 */
727 	if (inbound) {
728 		IPSA_REFRELE(outassoc);
729 	} else {
730 		IPSA_REFRELE(inassoc);
731 	}
732 
733 	return (inrc && outrc);
734 }
735 
736 /*
737  * Do incoming NAT-T manipulations for packet.
738  * Returns NULL if the mblk chain is consumed.
739  */
740 static mblk_t *
741 esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc)
742 {
743 	ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
744 	tcpha_t *tcpha;
745 	udpha_t *udpha;
746 	/* Initialize to our inbound cksum adjustment... */
747 	uint32_t sum = assoc->ipsa_inbound_cksum;
748 
749 	switch (ipha->ipha_protocol) {
750 	case IPPROTO_TCP:
751 		tcpha = (tcpha_t *)(data_mp->b_rptr +
752 		    IPH_HDR_LENGTH(ipha));
753 
754 #define	DOWN_SUM(x) (x) = ((x) & 0xFFFF) +	 ((x) >> 16)
755 		sum += ~ntohs(tcpha->tha_sum) & 0xFFFF;
756 		DOWN_SUM(sum);
757 		DOWN_SUM(sum);
758 		tcpha->tha_sum = ~htons(sum);
759 		break;
760 	case IPPROTO_UDP:
761 		udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha));
762 
763 		if (udpha->uha_checksum != 0) {
764 			/* Adujst if the inbound one was not zero. */
765 			sum += ~ntohs(udpha->uha_checksum) & 0xFFFF;
766 			DOWN_SUM(sum);
767 			DOWN_SUM(sum);
768 			udpha->uha_checksum = ~htons(sum);
769 			if (udpha->uha_checksum == 0)
770 				udpha->uha_checksum = 0xFFFF;
771 		}
772 #undef DOWN_SUM
773 		break;
774 	case IPPROTO_IP:
775 		/*
776 		 * This case is only an issue for self-encapsulated
777 		 * packets.  So for now, fall through.
778 		 */
779 		break;
780 	}
781 	return (data_mp);
782 }
783 
784 
785 /*
786  * Strip ESP header, check padding, and fix IP header.
787  * Returns B_TRUE on success, B_FALSE if an error occured.
788  */
789 static boolean_t
790 esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen,
791     kstat_named_t **counter, ipsecesp_stack_t *espstack)
792 {
793 	ipha_t *ipha;
794 	ip6_t *ip6h;
795 	uint_t divpoint;
796 	mblk_t *scratch;
797 	uint8_t nexthdr, padlen;
798 	uint8_t lastpad;
799 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
800 	uint8_t *lastbyte;
801 
802 	/*
803 	 * Strip ESP data and fix IP header.
804 	 *
805 	 * XXX In case the beginning of esp_inbound() changes to not do a
806 	 * pullup, this part of the code can remain unchanged.
807 	 */
808 	if (isv4) {
809 		ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t));
810 		ipha = (ipha_t *)data_mp->b_rptr;
811 		ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) +
812 		    IPH_HDR_LENGTH(ipha));
813 		divpoint = IPH_HDR_LENGTH(ipha);
814 	} else {
815 		ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t));
816 		ip6h = (ip6_t *)data_mp->b_rptr;
817 		divpoint = ip_hdr_length_v6(data_mp, ip6h);
818 	}
819 
820 	scratch = data_mp;
821 	while (scratch->b_cont != NULL)
822 		scratch = scratch->b_cont;
823 
824 	ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3);
825 
826 	/*
827 	 * "Next header" and padding length are the last two bytes in the
828 	 * ESP-protected datagram, thus the explicit - 1 and - 2.
829 	 * lastpad is the last byte of the padding, which can be used for
830 	 * a quick check to see if the padding is correct.
831 	 */
832 	lastbyte = scratch->b_wptr - 1;
833 	nexthdr = *lastbyte--;
834 	padlen = *lastbyte--;
835 
836 	if (isv4) {
837 		/* Fix part of the IP header. */
838 		ipha->ipha_protocol = nexthdr;
839 		/*
840 		 * Reality check the padlen.  The explicit - 2 is for the
841 		 * padding length and the next-header bytes.
842 		 */
843 		if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 -
844 		    sizeof (esph_t) - ivlen) {
845 			ESP_BUMP_STAT(espstack, bad_decrypt);
846 			ipsec_rl_strlog(espstack->ipsecesp_netstack,
847 			    info.mi_idnum, 0, 0,
848 			    SL_ERROR | SL_WARN,
849 			    "Corrupt ESP packet (padlen too big).\n");
850 			esp1dbg(espstack, ("padlen (%d) is greater than:\n",
851 			    padlen));
852 			esp1dbg(espstack, ("pkt len(%d) - ip hdr - esp "
853 			    "hdr - ivlen(%d) = %d.\n",
854 			    ntohs(ipha->ipha_length), ivlen,
855 			    (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) -
856 			    2 - sizeof (esph_t) - ivlen)));
857 			*counter = DROPPER(ipss, ipds_esp_bad_padlen);
858 			return (B_FALSE);
859 		}
860 
861 		/*
862 		 * Fix the rest of the header.  The explicit - 2 is for the
863 		 * padding length and the next-header bytes.
864 		 */
865 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen -
866 		    2 - sizeof (esph_t) - ivlen);
867 		ipha->ipha_hdr_checksum = 0;
868 		ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
869 	} else {
870 		if (ip6h->ip6_nxt == IPPROTO_ESP) {
871 			ip6h->ip6_nxt = nexthdr;
872 		} else {
873 			ip_pkt_t ipp;
874 
875 			bzero(&ipp, sizeof (ipp));
876 			(void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
877 			    NULL);
878 			if (ipp.ipp_dstopts != NULL) {
879 				ipp.ipp_dstopts->ip6d_nxt = nexthdr;
880 			} else if (ipp.ipp_rthdr != NULL) {
881 				ipp.ipp_rthdr->ip6r_nxt = nexthdr;
882 			} else if (ipp.ipp_hopopts != NULL) {
883 				ipp.ipp_hopopts->ip6h_nxt = nexthdr;
884 			} else {
885 				/* Panic a DEBUG kernel. */
886 				ASSERT(ipp.ipp_hopopts != NULL);
887 				/* Otherwise, pretend it's IP + ESP. */
888 				cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n");
889 				ip6h->ip6_nxt = nexthdr;
890 			}
891 		}
892 
893 		if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) -
894 		    ivlen) {
895 			ESP_BUMP_STAT(espstack, bad_decrypt);
896 			ipsec_rl_strlog(espstack->ipsecesp_netstack,
897 			    info.mi_idnum, 0, 0,
898 			    SL_ERROR | SL_WARN,
899 			    "Corrupt ESP packet (v6 padlen too big).\n");
900 			esp1dbg(espstack, ("padlen (%d) is greater than:\n",
901 			    padlen));
902 			esp1dbg(espstack,
903 			    ("pkt len(%u) - ip hdr - esp hdr - ivlen(%d) = "
904 			    "%u.\n", (unsigned)(ntohs(ip6h->ip6_plen)
905 			    + sizeof (ip6_t)), ivlen,
906 			    (unsigned)(ntohs(ip6h->ip6_plen) - 2 -
907 			    sizeof (esph_t) - ivlen)));
908 			*counter = DROPPER(ipss, ipds_esp_bad_padlen);
909 			return (B_FALSE);
910 		}
911 
912 
913 		/*
914 		 * Fix the rest of the header.  The explicit - 2 is for the
915 		 * padding length and the next-header bytes.  IPv6 is nice,
916 		 * because there's no hdr checksum!
917 		 */
918 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen -
919 		    2 - sizeof (esph_t) - ivlen);
920 	}
921 
922 	if (espstack->ipsecesp_padding_check > 0 && padlen > 0) {
923 		/*
924 		 * Weak padding check: compare last-byte to length, they
925 		 * should be equal.
926 		 */
927 		lastpad = *lastbyte--;
928 
929 		if (padlen != lastpad) {
930 			ipsec_rl_strlog(espstack->ipsecesp_netstack,
931 			    info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
932 			    "Corrupt ESP packet (lastpad != padlen).\n");
933 			esp1dbg(espstack,
934 			    ("lastpad (%d) not equal to padlen (%d):\n",
935 			    lastpad, padlen));
936 			ESP_BUMP_STAT(espstack, bad_padding);
937 			*counter = DROPPER(ipss, ipds_esp_bad_padding);
938 			return (B_FALSE);
939 		}
940 
941 		/*
942 		 * Strong padding check: Check all pad bytes to see that
943 		 * they're ascending.  Go backwards using a descending counter
944 		 * to verify.  padlen == 1 is checked by previous block, so
945 		 * only bother if we've more than 1 byte of padding.
946 		 * Consequently, start the check one byte before the location
947 		 * of "lastpad".
948 		 */
949 		if (espstack->ipsecesp_padding_check > 1) {
950 			/*
951 			 * This assert may have to become an if and a pullup
952 			 * if we start accepting multi-dblk mblks. For now,
953 			 * though, any packet here will have been pulled up in
954 			 * esp_inbound.
955 			 */
956 			ASSERT(MBLKL(scratch) >= lastpad + 3);
957 
958 			/*
959 			 * Use "--lastpad" because we already checked the very
960 			 * last pad byte previously.
961 			 */
962 			while (--lastpad != 0) {
963 				if (lastpad != *lastbyte) {
964 					ipsec_rl_strlog(
965 					    espstack->ipsecesp_netstack,
966 					    info.mi_idnum, 0, 0,
967 					    SL_ERROR | SL_WARN, "Corrupt ESP "
968 					    "packet (bad padding).\n");
969 					esp1dbg(espstack,
970 					    ("padding not in correct"
971 					    " format:\n"));
972 					ESP_BUMP_STAT(espstack, bad_padding);
973 					*counter = DROPPER(ipss,
974 					    ipds_esp_bad_padding);
975 					return (B_FALSE);
976 				}
977 				lastbyte--;
978 			}
979 		}
980 	}
981 
982 	/* Trim off the padding. */
983 	ASSERT(data_mp->b_cont == NULL);
984 	data_mp->b_wptr -= (padlen + 2);
985 
986 	/*
987 	 * Remove the ESP header.
988 	 *
989 	 * The above assertions about data_mp's size will make this work.
990 	 *
991 	 * XXX  Question:  If I send up and get back a contiguous mblk,
992 	 * would it be quicker to bcopy over, or keep doing the dupb stuff?
993 	 * I go with copying for now.
994 	 */
995 
996 	if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) &&
997 	    IS_P2ALIGNED(ivlen, sizeof (uint32_t))) {
998 		uint8_t *start = data_mp->b_rptr;
999 		uint32_t *src, *dst;
1000 
1001 		src = (uint32_t *)(start + divpoint);
1002 		dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen);
1003 
1004 		ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) &&
1005 		    IS_P2ALIGNED(src, sizeof (uint32_t)));
1006 
1007 		do {
1008 			src--;
1009 			dst--;
1010 			*dst = *src;
1011 		} while (src != (uint32_t *)start);
1012 
1013 		data_mp->b_rptr = (uchar_t *)dst;
1014 	} else {
1015 		uint8_t *start = data_mp->b_rptr;
1016 		uint8_t *src, *dst;
1017 
1018 		src = start + divpoint;
1019 		dst = src + sizeof (esph_t) + ivlen;
1020 
1021 		do {
1022 			src--;
1023 			dst--;
1024 			*dst = *src;
1025 		} while (src != start);
1026 
1027 		data_mp->b_rptr = dst;
1028 	}
1029 
1030 	esp2dbg(espstack, ("data_mp after inbound ESP adjustment:\n"));
1031 	esp2dbg(espstack, (dump_msg(data_mp)));
1032 
1033 	return (B_TRUE);
1034 }
1035 
1036 /*
1037  * Updating use times can be tricky business if the ipsa_haspeer flag is
1038  * set.  This function is called once in an SA's lifetime.
1039  *
1040  * Caller has to REFRELE "assoc" which is passed in.  This function has
1041  * to REFRELE any peer SA that is obtained.
1042  */
1043 static void
1044 esp_set_usetime(ipsa_t *assoc, boolean_t inbound)
1045 {
1046 	ipsa_t *inassoc, *outassoc;
1047 	isaf_t *bucket;
1048 	sadb_t *sp;
1049 	int outhash;
1050 	boolean_t isv6;
1051 	netstack_t		*ns = assoc->ipsa_netstack;
1052 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
1053 
1054 	/* No peer?  No problem! */
1055 	if (!assoc->ipsa_haspeer) {
1056 		sadb_set_usetime(assoc);
1057 		return;
1058 	}
1059 
1060 	/*
1061 	 * Otherwise, we want to grab both the original assoc and its peer.
1062 	 * There might be a race for this, but if it's a real race, the times
1063 	 * will be out-of-synch by at most a second, and since our time
1064 	 * granularity is a second, this won't be a problem.
1065 	 *
1066 	 * If we need tight synchronization on the peer SA, then we need to
1067 	 * reconsider.
1068 	 */
1069 
1070 	/* Use address length to select IPv6/IPv4 */
1071 	isv6 = (assoc->ipsa_addrfam == AF_INET6);
1072 	sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
1073 
1074 	if (inbound) {
1075 		inassoc = assoc;
1076 		if (isv6) {
1077 			outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
1078 			    &inassoc->ipsa_dstaddr));
1079 		} else {
1080 			outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
1081 			    &inassoc->ipsa_dstaddr));
1082 		}
1083 		bucket = &sp->sdb_of[outhash];
1084 		mutex_enter(&bucket->isaf_lock);
1085 		outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
1086 		    inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
1087 		    inassoc->ipsa_addrfam);
1088 		mutex_exit(&bucket->isaf_lock);
1089 		if (outassoc == NULL) {
1090 			/* Q: Do we wish to set haspeer == B_FALSE? */
1091 			esp0dbg(("esp_set_usetime: "
1092 			    "can't find peer for inbound.\n"));
1093 			sadb_set_usetime(inassoc);
1094 			return;
1095 		}
1096 	} else {
1097 		outassoc = assoc;
1098 		bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
1099 		mutex_enter(&bucket->isaf_lock);
1100 		inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
1101 		    outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
1102 		    outassoc->ipsa_addrfam);
1103 		mutex_exit(&bucket->isaf_lock);
1104 		if (inassoc == NULL) {
1105 			/* Q: Do we wish to set haspeer == B_FALSE? */
1106 			esp0dbg(("esp_set_usetime: "
1107 			    "can't find peer for outbound.\n"));
1108 			sadb_set_usetime(outassoc);
1109 			return;
1110 		}
1111 	}
1112 
1113 	/* Update usetime on both. */
1114 	sadb_set_usetime(inassoc);
1115 	sadb_set_usetime(outassoc);
1116 
1117 	/*
1118 	 * REFRELE any peer SA.
1119 	 *
1120 	 * Because of the multi-line macro nature of IPSA_REFRELE, keep
1121 	 * them in { }.
1122 	 */
1123 	if (inbound) {
1124 		IPSA_REFRELE(outassoc);
1125 	} else {
1126 		IPSA_REFRELE(inassoc);
1127 	}
1128 }
1129 
1130 /*
1131  * Handle ESP inbound data for IPv4 and IPv6.
1132  * On success returns B_TRUE, on failure returns B_FALSE and frees the
1133  * mblk chain data_mp.
1134  */
1135 mblk_t *
1136 esp_inbound(mblk_t *data_mp, void *arg, ip_recv_attr_t *ira)
1137 {
1138 	esph_t *esph = (esph_t *)arg;
1139 	ipsa_t *ipsa = ira->ira_ipsec_esp_sa;
1140 	netstack_t	*ns = ira->ira_ill->ill_ipst->ips_netstack;
1141 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1142 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1143 
1144 	/*
1145 	 * We may wish to check replay in-range-only here as an optimization.
1146 	 * Include the reality check of ipsa->ipsa_replay >
1147 	 * ipsa->ipsa_replay_wsize for times when it's the first N packets,
1148 	 * where N == ipsa->ipsa_replay_wsize.
1149 	 *
1150 	 * Another check that may come here later is the "collision" check.
1151 	 * If legitimate packets flow quickly enough, this won't be a problem,
1152 	 * but collisions may cause authentication algorithm crunching to
1153 	 * take place when it doesn't need to.
1154 	 */
1155 	if (!sadb_replay_peek(ipsa, esph->esph_replay)) {
1156 		ESP_BUMP_STAT(espstack, replay_early_failures);
1157 		IP_ESP_BUMP_STAT(ipss, in_discards);
1158 		ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
1159 		    DROPPER(ipss, ipds_esp_early_replay),
1160 		    &espstack->esp_dropper);
1161 		BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1162 		return (NULL);
1163 	}
1164 
1165 	/*
1166 	 * Adjust the IP header's payload length to reflect the removal
1167 	 * of the ICV.
1168 	 */
1169 	if (!(ira->ira_flags & IRAF_IS_IPV4)) {
1170 		ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
1171 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
1172 		    ipsa->ipsa_mac_len);
1173 	} else {
1174 		ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1175 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) -
1176 		    ipsa->ipsa_mac_len);
1177 	}
1178 
1179 	/* submit the request to the crypto framework */
1180 	return (esp_submit_req_inbound(data_mp, ira, ipsa,
1181 	    (uint8_t *)esph - data_mp->b_rptr));
1182 }
1183 
1184 /*
1185  * Perform the really difficult work of inserting the proposed situation.
1186  * Called while holding the algorithm lock.
1187  */
1188 static void
1189 esp_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs,
1190     netstack_t *ns)
1191 {
1192 	sadb_comb_t *comb = (sadb_comb_t *)(prop + 1);
1193 	ipsec_action_t *ap;
1194 	ipsec_prot_t *prot;
1195 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1196 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1197 
1198 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
1199 
1200 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
1201 	prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t));
1202 	*(uint32_t *)(&prop->sadb_prop_replay) = 0;	/* Quick zero-out! */
1203 
1204 	prop->sadb_prop_replay = espstack->ipsecesp_replay_size;
1205 
1206 	/*
1207 	 * Based upon algorithm properties, and what-not, prioritize a
1208 	 * proposal, based on the ordering of the ESP algorithms in the
1209 	 * alternatives in the policy rule or socket that was placed
1210 	 * in the acquire record.
1211 	 *
1212 	 * For each action in policy list
1213 	 *   Add combination.  If I've hit limit, return.
1214 	 */
1215 
1216 	for (ap = acqrec->ipsacq_act; ap != NULL;
1217 	    ap = ap->ipa_next) {
1218 		ipsec_alginfo_t *ealg = NULL;
1219 		ipsec_alginfo_t *aalg = NULL;
1220 
1221 		if (ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY)
1222 			continue;
1223 
1224 		prot = &ap->ipa_act.ipa_apply;
1225 
1226 		if (!(prot->ipp_use_esp))
1227 			continue;
1228 
1229 		if (prot->ipp_esp_auth_alg != 0) {
1230 			aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
1231 			    [prot->ipp_esp_auth_alg];
1232 			if (aalg == NULL || !ALG_VALID(aalg))
1233 				continue;
1234 		}
1235 
1236 		ASSERT(prot->ipp_encr_alg > 0);
1237 		ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
1238 		    [prot->ipp_encr_alg];
1239 		if (ealg == NULL || !ALG_VALID(ealg))
1240 			continue;
1241 
1242 		comb->sadb_comb_flags = 0;
1243 		comb->sadb_comb_reserved = 0;
1244 		comb->sadb_comb_encrypt = ealg->alg_id;
1245 		comb->sadb_comb_encrypt_minbits =
1246 		    MAX(prot->ipp_espe_minbits, ealg->alg_ef_minbits);
1247 		comb->sadb_comb_encrypt_maxbits =
1248 		    MIN(prot->ipp_espe_maxbits, ealg->alg_ef_maxbits);
1249 
1250 		if (aalg == NULL) {
1251 			comb->sadb_comb_auth = 0;
1252 			comb->sadb_comb_auth_minbits = 0;
1253 			comb->sadb_comb_auth_maxbits = 0;
1254 		} else {
1255 			comb->sadb_comb_auth = aalg->alg_id;
1256 			comb->sadb_comb_auth_minbits =
1257 			    MAX(prot->ipp_espa_minbits, aalg->alg_ef_minbits);
1258 			comb->sadb_comb_auth_maxbits =
1259 			    MIN(prot->ipp_espa_maxbits, aalg->alg_ef_maxbits);
1260 		}
1261 
1262 		/*
1263 		 * The following may be based on algorithm
1264 		 * properties, but in the meantime, we just pick
1265 		 * some good, sensible numbers.  Key mgmt. can
1266 		 * (and perhaps should) be the place to finalize
1267 		 * such decisions.
1268 		 */
1269 
1270 		/*
1271 		 * No limits on allocations, since we really don't
1272 		 * support that concept currently.
1273 		 */
1274 		comb->sadb_comb_soft_allocations = 0;
1275 		comb->sadb_comb_hard_allocations = 0;
1276 
1277 		/*
1278 		 * These may want to come from policy rule..
1279 		 */
1280 		comb->sadb_comb_soft_bytes =
1281 		    espstack->ipsecesp_default_soft_bytes;
1282 		comb->sadb_comb_hard_bytes =
1283 		    espstack->ipsecesp_default_hard_bytes;
1284 		comb->sadb_comb_soft_addtime =
1285 		    espstack->ipsecesp_default_soft_addtime;
1286 		comb->sadb_comb_hard_addtime =
1287 		    espstack->ipsecesp_default_hard_addtime;
1288 		comb->sadb_comb_soft_usetime =
1289 		    espstack->ipsecesp_default_soft_usetime;
1290 		comb->sadb_comb_hard_usetime =
1291 		    espstack->ipsecesp_default_hard_usetime;
1292 
1293 		prop->sadb_prop_len += SADB_8TO64(sizeof (*comb));
1294 		if (--combs == 0)
1295 			break;	/* out of space.. */
1296 		comb++;
1297 	}
1298 }
1299 
1300 /*
1301  * Prepare and actually send the SADB_ACQUIRE message to PF_KEY.
1302  */
1303 static void
1304 esp_send_acquire(ipsacq_t *acqrec, mblk_t *extended, netstack_t *ns)
1305 {
1306 	uint_t combs;
1307 	sadb_msg_t *samsg;
1308 	sadb_prop_t *prop;
1309 	mblk_t *pfkeymp, *msgmp;
1310 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1311 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1312 
1313 	ESP_BUMP_STAT(espstack, acquire_requests);
1314 
1315 	if (espstack->esp_pfkey_q == NULL) {
1316 		mutex_exit(&acqrec->ipsacq_lock);
1317 		return;
1318 	}
1319 
1320 	/* Set up ACQUIRE. */
1321 	pfkeymp = sadb_setup_acquire(acqrec, SADB_SATYPE_ESP,
1322 	    ns->netstack_ipsec);
1323 	if (pfkeymp == NULL) {
1324 		esp0dbg(("sadb_setup_acquire failed.\n"));
1325 		mutex_exit(&acqrec->ipsacq_lock);
1326 		return;
1327 	}
1328 	ASSERT(MUTEX_HELD(&ipss->ipsec_alg_lock));
1329 	combs = ipss->ipsec_nalgs[IPSEC_ALG_AUTH] *
1330 	    ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
1331 	msgmp = pfkeymp->b_cont;
1332 	samsg = (sadb_msg_t *)(msgmp->b_rptr);
1333 
1334 	/* Insert proposal here. */
1335 
1336 	prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len);
1337 	esp_insert_prop(prop, acqrec, combs, ns);
1338 	samsg->sadb_msg_len += prop->sadb_prop_len;
1339 	msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len);
1340 
1341 	mutex_exit(&ipss->ipsec_alg_lock);
1342 
1343 	/*
1344 	 * Must mutex_exit() before sending PF_KEY message up, in
1345 	 * order to avoid recursive mutex_enter() if there are no registered
1346 	 * listeners.
1347 	 *
1348 	 * Once I've sent the message, I'm cool anyway.
1349 	 */
1350 	mutex_exit(&acqrec->ipsacq_lock);
1351 	if (extended != NULL) {
1352 		putnext(espstack->esp_pfkey_q, extended);
1353 	}
1354 	putnext(espstack->esp_pfkey_q, pfkeymp);
1355 }
1356 
1357 /* XXX refactor me */
1358 /*
1359  * Handle the SADB_GETSPI message.  Create a larval SA.
1360  */
1361 static void
1362 esp_getspi(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
1363 {
1364 	ipsa_t *newbie, *target;
1365 	isaf_t *outbound, *inbound;
1366 	int rc, diagnostic;
1367 	sadb_sa_t *assoc;
1368 	keysock_out_t *kso;
1369 	uint32_t newspi;
1370 
1371 	/*
1372 	 * Randomly generate a proposed SPI value
1373 	 */
1374 	if (cl_inet_getspi != NULL) {
1375 		cl_inet_getspi(espstack->ipsecesp_netstack->netstack_stackid,
1376 		    IPPROTO_ESP, (uint8_t *)&newspi, sizeof (uint32_t), NULL);
1377 	} else {
1378 		(void) random_get_pseudo_bytes((uint8_t *)&newspi,
1379 		    sizeof (uint32_t));
1380 	}
1381 	newbie = sadb_getspi(ksi, newspi, &diagnostic,
1382 	    espstack->ipsecesp_netstack, IPPROTO_ESP);
1383 
1384 	if (newbie == NULL) {
1385 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM, diagnostic,
1386 		    ksi->ks_in_serial);
1387 		return;
1388 	} else if (newbie == (ipsa_t *)-1) {
1389 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
1390 		    ksi->ks_in_serial);
1391 		return;
1392 	}
1393 
1394 	/*
1395 	 * XXX - We may randomly collide.  We really should recover from this.
1396 	 *	 Unfortunately, that could require spending way-too-much-time
1397 	 *	 in here.  For now, let the user retry.
1398 	 */
1399 
1400 	if (newbie->ipsa_addrfam == AF_INET6) {
1401 		outbound = OUTBOUND_BUCKET_V6(&espstack->esp_sadb.s_v6,
1402 		    *(uint32_t *)(newbie->ipsa_dstaddr));
1403 		inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v6,
1404 		    newbie->ipsa_spi);
1405 	} else {
1406 		ASSERT(newbie->ipsa_addrfam == AF_INET);
1407 		outbound = OUTBOUND_BUCKET_V4(&espstack->esp_sadb.s_v4,
1408 		    *(uint32_t *)(newbie->ipsa_dstaddr));
1409 		inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v4,
1410 		    newbie->ipsa_spi);
1411 	}
1412 
1413 	mutex_enter(&outbound->isaf_lock);
1414 	mutex_enter(&inbound->isaf_lock);
1415 
1416 	/*
1417 	 * Check for collisions (i.e. did sadb_getspi() return with something
1418 	 * that already exists?).
1419 	 *
1420 	 * Try outbound first.  Even though SADB_GETSPI is traditionally
1421 	 * for inbound SAs, you never know what a user might do.
1422 	 */
1423 	target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
1424 	    newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
1425 	if (target == NULL) {
1426 		target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
1427 		    newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
1428 		    newbie->ipsa_addrfam);
1429 	}
1430 
1431 	/*
1432 	 * I don't have collisions elsewhere!
1433 	 * (Nor will I because I'm still holding inbound/outbound locks.)
1434 	 */
1435 
1436 	if (target != NULL) {
1437 		rc = EEXIST;
1438 		IPSA_REFRELE(target);
1439 	} else {
1440 		/*
1441 		 * sadb_insertassoc() also checks for collisions, so
1442 		 * if there's a colliding entry, rc will be set
1443 		 * to EEXIST.
1444 		 */
1445 		rc = sadb_insertassoc(newbie, inbound);
1446 		newbie->ipsa_hardexpiretime = gethrestime_sec();
1447 		newbie->ipsa_hardexpiretime +=
1448 		    espstack->ipsecesp_larval_timeout;
1449 	}
1450 
1451 	/*
1452 	 * Can exit outbound mutex.  Hold inbound until we're done
1453 	 * with newbie.
1454 	 */
1455 	mutex_exit(&outbound->isaf_lock);
1456 
1457 	if (rc != 0) {
1458 		mutex_exit(&inbound->isaf_lock);
1459 		IPSA_REFRELE(newbie);
1460 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, rc,
1461 		    SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1462 		return;
1463 	}
1464 
1465 
1466 	/* Can write here because I'm still holding the bucket lock. */
1467 	newbie->ipsa_type = SADB_SATYPE_ESP;
1468 
1469 	/*
1470 	 * Construct successful return message. We have one thing going
1471 	 * for us in PF_KEY v2.  That's the fact that
1472 	 *	sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
1473 	 */
1474 	assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
1475 	assoc->sadb_sa_exttype = SADB_EXT_SA;
1476 	assoc->sadb_sa_spi = newbie->ipsa_spi;
1477 	*((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
1478 	mutex_exit(&inbound->isaf_lock);
1479 
1480 	/* Convert KEYSOCK_IN to KEYSOCK_OUT. */
1481 	kso = (keysock_out_t *)ksi;
1482 	kso->ks_out_len = sizeof (*kso);
1483 	kso->ks_out_serial = ksi->ks_in_serial;
1484 	kso->ks_out_type = KEYSOCK_OUT;
1485 
1486 	/*
1487 	 * Can safely putnext() to esp_pfkey_q, because this is a turnaround
1488 	 * from the esp_pfkey_q.
1489 	 */
1490 	putnext(espstack->esp_pfkey_q, mp);
1491 }
1492 
1493 /*
1494  * Insert the ESP header into a packet.  Duplicate an mblk, and insert a newly
1495  * allocated mblk with the ESP header in between the two.
1496  */
1497 static boolean_t
1498 esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint,
1499     ipsecesp_stack_t *espstack)
1500 {
1501 	mblk_t *split_mp = mp;
1502 	uint_t wheretodiv = divpoint;
1503 
1504 	while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) {
1505 		wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr);
1506 		split_mp = split_mp->b_cont;
1507 		ASSERT(split_mp != NULL);
1508 	}
1509 
1510 	if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) {
1511 		mblk_t *scratch;
1512 
1513 		/* "scratch" is the 2nd half, split_mp is the first. */
1514 		scratch = dupb(split_mp);
1515 		if (scratch == NULL) {
1516 			esp1dbg(espstack,
1517 			    ("esp_insert_esp: can't allocate scratch.\n"));
1518 			return (B_FALSE);
1519 		}
1520 		/* NOTE:  dupb() doesn't set b_cont appropriately. */
1521 		scratch->b_cont = split_mp->b_cont;
1522 		scratch->b_rptr += wheretodiv;
1523 		split_mp->b_wptr = split_mp->b_rptr + wheretodiv;
1524 		split_mp->b_cont = scratch;
1525 	}
1526 	/*
1527 	 * At this point, split_mp is exactly "wheretodiv" bytes long, and
1528 	 * holds the end of the pre-ESP part of the datagram.
1529 	 */
1530 	esp_mp->b_cont = split_mp->b_cont;
1531 	split_mp->b_cont = esp_mp;
1532 
1533 	return (B_TRUE);
1534 }
1535 
1536 /*
1537  * Section 7 of RFC 3947 says:
1538  *
1539  * 7.  Recovering from the Expiring NAT Mappings
1540  *
1541  *    There are cases where NAT box decides to remove mappings that are still
1542  *    alive (for example, when the keepalive interval is too long, or when the
1543  *    NAT box is rebooted).  To recover from this, ends that are NOT behind
1544  *    NAT SHOULD use the last valid UDP encapsulated IKE or IPsec packet from
1545  *    the other end to determine which IP and port addresses should be used.
1546  *    The host behind dynamic NAT MUST NOT do this, as otherwise it opens a
1547  *    DoS attack possibility because the IP address or port of the other host
1548  *    will not change (it is not behind NAT).
1549  *
1550  *    Keepalives cannot be used for these purposes, as they are not
1551  *    authenticated, but any IKE authenticated IKE packet or ESP packet can be
1552  *    used to detect whether the IP address or the port has changed.
1553  *
1554  * The following function will check an SA and its explicitly-set pair to see
1555  * if the NAT-T remote port matches the received packet (which must have
1556  * passed ESP authentication, see esp_in_done() for the caller context).  If
1557  * there is a mismatch, the SAs are updated.  It is not important if we race
1558  * with a transmitting thread, as if there is a transmitting thread, it will
1559  * merely emit a packet that will most-likely be dropped.
1560  *
1561  * "ports" are ordered src,dst, and assoc is an inbound SA, where src should
1562  * match ipsa_remote_nat_port and dst should match ipsa_local_nat_port.
1563  */
1564 #ifdef _LITTLE_ENDIAN
1565 #define	FIRST_16(x) ((x) & 0xFFFF)
1566 #define	NEXT_16(x) (((x) >> 16) & 0xFFFF)
1567 #else
1568 #define	FIRST_16(x) (((x) >> 16) & 0xFFFF)
1569 #define	NEXT_16(x) ((x) & 0xFFFF)
1570 #endif
1571 static void
1572 esp_port_freshness(uint32_t ports, ipsa_t *assoc)
1573 {
1574 	uint16_t remote = FIRST_16(ports);
1575 	uint16_t local = NEXT_16(ports);
1576 	ipsa_t *outbound_peer;
1577 	isaf_t *bucket;
1578 	ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp;
1579 
1580 	/* We found a conn_t, therefore local != 0. */
1581 	ASSERT(local != 0);
1582 	/* Assume an IPv4 SA. */
1583 	ASSERT(assoc->ipsa_addrfam == AF_INET);
1584 
1585 	/*
1586 	 * On-the-wire rport == 0 means something's very wrong.
1587 	 * An unpaired SA is also useless to us.
1588 	 * If we are behind the NAT, don't bother.
1589 	 * A zero local NAT port defaults to 4500, so check that too.
1590 	 * And, of course, if the ports already match, we don't need to
1591 	 * bother.
1592 	 */
1593 	if (remote == 0 || assoc->ipsa_otherspi == 0 ||
1594 	    (assoc->ipsa_flags & IPSA_F_BEHIND_NAT) ||
1595 	    (assoc->ipsa_remote_nat_port == 0 &&
1596 	    remote == htons(IPPORT_IKE_NATT)) ||
1597 	    remote == assoc->ipsa_remote_nat_port)
1598 		return;
1599 
1600 	/* Try and snag the peer.   NOTE:  Assume IPv4 for now. */
1601 	bucket = OUTBOUND_BUCKET_V4(&(espstack->esp_sadb.s_v4),
1602 	    assoc->ipsa_srcaddr[0]);
1603 	mutex_enter(&bucket->isaf_lock);
1604 	outbound_peer = ipsec_getassocbyspi(bucket, assoc->ipsa_otherspi,
1605 	    assoc->ipsa_dstaddr, assoc->ipsa_srcaddr, AF_INET);
1606 	mutex_exit(&bucket->isaf_lock);
1607 
1608 	/* We probably lost a race to a deleting or expiring thread. */
1609 	if (outbound_peer == NULL)
1610 		return;
1611 
1612 	/*
1613 	 * Hold the mutexes for both SAs so we don't race another inbound
1614 	 * thread.  A lock-entry order shouldn't matter, since all other
1615 	 * per-ipsa locks are individually held-then-released.
1616 	 *
1617 	 * Luckily, this has nothing to do with the remote-NAT address,
1618 	 * so we don't have to re-scribble the cached-checksum differential.
1619 	 */
1620 	mutex_enter(&outbound_peer->ipsa_lock);
1621 	mutex_enter(&assoc->ipsa_lock);
1622 	outbound_peer->ipsa_remote_nat_port = assoc->ipsa_remote_nat_port =
1623 	    remote;
1624 	mutex_exit(&assoc->ipsa_lock);
1625 	mutex_exit(&outbound_peer->ipsa_lock);
1626 	IPSA_REFRELE(outbound_peer);
1627 	ESP_BUMP_STAT(espstack, sa_port_renumbers);
1628 }
1629 /*
1630  * Finish processing of an inbound ESP packet after processing by the
1631  * crypto framework.
1632  * - Remove the ESP header.
1633  * - Send packet back to IP.
1634  * If authentication was performed on the packet, this function is called
1635  * only if the authentication succeeded.
1636  * On success returns B_TRUE, on failure returns B_FALSE and frees the
1637  * mblk chain data_mp.
1638  */
1639 static mblk_t *
1640 esp_in_done(mblk_t *data_mp, ip_recv_attr_t *ira, ipsec_crypto_t *ic)
1641 {
1642 	ipsa_t *assoc;
1643 	uint_t espstart;
1644 	uint32_t ivlen = 0;
1645 	uint_t processed_len;
1646 	esph_t *esph;
1647 	kstat_named_t *counter;
1648 	boolean_t is_natt;
1649 	netstack_t	*ns = ira->ira_ill->ill_ipst->ips_netstack;
1650 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1651 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1652 
1653 	assoc = ira->ira_ipsec_esp_sa;
1654 	ASSERT(assoc != NULL);
1655 
1656 	is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
1657 
1658 	/* get the pointer to the ESP header */
1659 	if (assoc->ipsa_encr_alg == SADB_EALG_NULL) {
1660 		/* authentication-only ESP */
1661 		espstart = ic->ic_crypto_data.cd_offset;
1662 		processed_len = ic->ic_crypto_data.cd_length;
1663 	} else {
1664 		/* encryption present */
1665 		ivlen = assoc->ipsa_iv_len;
1666 		if (assoc->ipsa_auth_alg == SADB_AALG_NONE) {
1667 			/* encryption-only ESP */
1668 			espstart = ic->ic_crypto_data.cd_offset -
1669 			    sizeof (esph_t) - assoc->ipsa_iv_len;
1670 			processed_len = ic->ic_crypto_data.cd_length +
1671 			    ivlen;
1672 		} else {
1673 			/* encryption with authentication */
1674 			espstart = ic->ic_crypto_dual_data.dd_offset1;
1675 			processed_len = ic->ic_crypto_dual_data.dd_len2 +
1676 			    ivlen;
1677 		}
1678 	}
1679 
1680 	esph = (esph_t *)(data_mp->b_rptr + espstart);
1681 
1682 	if (assoc->ipsa_auth_alg != IPSA_AALG_NONE ||
1683 	    (assoc->ipsa_flags & IPSA_F_COMBINED)) {
1684 		/*
1685 		 * Authentication passed if we reach this point.
1686 		 * Packets with authentication will have the ICV
1687 		 * after the crypto data. Adjust b_wptr before
1688 		 * making padlen checks.
1689 		 */
1690 		ESP_BUMP_STAT(espstack, good_auth);
1691 		data_mp->b_wptr -= assoc->ipsa_mac_len;
1692 
1693 		/*
1694 		 * Check replay window here!
1695 		 * For right now, assume keysock will set the replay window
1696 		 * size to zero for SAs that have an unspecified sender.
1697 		 * This may change...
1698 		 */
1699 
1700 		if (!sadb_replay_check(assoc, esph->esph_replay)) {
1701 			/*
1702 			 * Log the event. As of now we print out an event.
1703 			 * Do not print the replay failure number, or else
1704 			 * syslog cannot collate the error messages.  Printing
1705 			 * the replay number that failed opens a denial-of-
1706 			 * service attack.
1707 			 */
1708 			ipsec_assocfailure(info.mi_idnum, 0, 0,
1709 			    SL_ERROR | SL_WARN,
1710 			    "Replay failed for ESP spi 0x%x, dst %s.\n",
1711 			    assoc->ipsa_spi, assoc->ipsa_dstaddr,
1712 			    assoc->ipsa_addrfam, espstack->ipsecesp_netstack);
1713 			ESP_BUMP_STAT(espstack, replay_failures);
1714 			counter = DROPPER(ipss, ipds_esp_replay);
1715 			goto drop_and_bail;
1716 		}
1717 
1718 		if (is_natt) {
1719 			ASSERT(ira->ira_flags & IRAF_ESP_UDP_PORTS);
1720 			ASSERT(ira->ira_esp_udp_ports != 0);
1721 			esp_port_freshness(ira->ira_esp_udp_ports, assoc);
1722 		}
1723 	}
1724 
1725 	esp_set_usetime(assoc, B_TRUE);
1726 
1727 	if (!esp_age_bytes(assoc, processed_len, B_TRUE)) {
1728 		/* The ipsa has hit hard expiration, LOG and AUDIT. */
1729 		ipsec_assocfailure(info.mi_idnum, 0, 0,
1730 		    SL_ERROR | SL_WARN,
1731 		    "ESP association 0x%x, dst %s had bytes expire.\n",
1732 		    assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1733 		    espstack->ipsecesp_netstack);
1734 		ESP_BUMP_STAT(espstack, bytes_expired);
1735 		counter = DROPPER(ipss, ipds_esp_bytes_expire);
1736 		goto drop_and_bail;
1737 	}
1738 
1739 	/*
1740 	 * Remove ESP header and padding from packet.  I hope the compiler
1741 	 * spews "branch, predict taken" code for this.
1742 	 */
1743 
1744 	if (esp_strip_header(data_mp, (ira->ira_flags & IRAF_IS_IPV4),
1745 	    ivlen, &counter, espstack)) {
1746 
1747 		if (is_system_labeled() && assoc->ipsa_tsl != NULL) {
1748 			if (!ip_recv_attr_replace_label(ira, assoc->ipsa_tsl)) {
1749 				ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
1750 				    DROPPER(ipss, ipds_ah_nomem),
1751 				    &espstack->esp_dropper);
1752 				BUMP_MIB(ira->ira_ill->ill_ip_mib,
1753 				    ipIfStatsInDiscards);
1754 				return (NULL);
1755 			}
1756 		}
1757 		if (is_natt)
1758 			return (esp_fix_natt_checksums(data_mp, assoc));
1759 
1760 		if (assoc->ipsa_state == IPSA_STATE_IDLE) {
1761 			/*
1762 			 * Cluster buffering case.  Tell caller that we're
1763 			 * handling the packet.
1764 			 */
1765 			sadb_buf_pkt(assoc, data_mp, ira);
1766 			return (NULL);
1767 		}
1768 
1769 		return (data_mp);
1770 	}
1771 
1772 	esp1dbg(espstack, ("esp_in_done: esp_strip_header() failed\n"));
1773 drop_and_bail:
1774 	IP_ESP_BUMP_STAT(ipss, in_discards);
1775 	ip_drop_packet(data_mp, B_TRUE, ira->ira_ill, counter,
1776 	    &espstack->esp_dropper);
1777 	BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1778 	return (NULL);
1779 }
1780 
1781 /*
1782  * Called upon failing the inbound ICV check. The message passed as
1783  * argument is freed.
1784  */
1785 static void
1786 esp_log_bad_auth(mblk_t *mp, ip_recv_attr_t *ira)
1787 {
1788 	ipsa_t		*assoc = ira->ira_ipsec_esp_sa;
1789 	netstack_t	*ns = ira->ira_ill->ill_ipst->ips_netstack;
1790 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1791 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1792 
1793 	/*
1794 	 * Log the event. Don't print to the console, block
1795 	 * potential denial-of-service attack.
1796 	 */
1797 	ESP_BUMP_STAT(espstack, bad_auth);
1798 
1799 	ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
1800 	    "ESP Authentication failed for spi 0x%x, dst %s.\n",
1801 	    assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1802 	    espstack->ipsecesp_netstack);
1803 
1804 	IP_ESP_BUMP_STAT(ipss, in_discards);
1805 	ip_drop_packet(mp, B_TRUE, ira->ira_ill,
1806 	    DROPPER(ipss, ipds_esp_bad_auth),
1807 	    &espstack->esp_dropper);
1808 }
1809 
1810 
1811 /*
1812  * Invoked for outbound packets after ESP processing. If the packet
1813  * also requires AH, performs the AH SA selection and AH processing.
1814  * Returns B_TRUE if the AH processing was not needed or if it was
1815  * performed successfully. Returns B_FALSE and consumes the passed mblk
1816  * if AH processing was required but could not be performed.
1817  *
1818  * Returns data_mp unless data_mp was consumed/queued.
1819  */
1820 static mblk_t *
1821 esp_do_outbound_ah(mblk_t *data_mp, ip_xmit_attr_t *ixa)
1822 {
1823 	ipsec_action_t *ap;
1824 
1825 	ap = ixa->ixa_ipsec_action;
1826 	if (ap == NULL) {
1827 		ipsec_policy_t *pp = ixa->ixa_ipsec_policy;
1828 		ap = pp->ipsp_act;
1829 	}
1830 
1831 	if (!ap->ipa_want_ah)
1832 		return (data_mp);
1833 
1834 	/*
1835 	 * Normally the AH SA would have already been put in place
1836 	 * but it could have been flushed so we need to look for it.
1837 	 */
1838 	if (ixa->ixa_ipsec_ah_sa == NULL) {
1839 		if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_AH)) {
1840 			sadb_acquire(data_mp, ixa, B_TRUE, B_FALSE);
1841 			return (NULL);
1842 		}
1843 	}
1844 	ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
1845 
1846 	data_mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(data_mp, ixa);
1847 	return (data_mp);
1848 }
1849 
1850 
1851 /*
1852  * Kernel crypto framework callback invoked after completion of async
1853  * crypto requests for outbound packets.
1854  */
1855 static void
1856 esp_kcf_callback_outbound(void *arg, int status)
1857 {
1858 	mblk_t		*mp = (mblk_t *)arg;
1859 	mblk_t		*async_mp;
1860 	netstack_t	*ns;
1861 	ipsec_stack_t	*ipss;
1862 	ipsecesp_stack_t *espstack;
1863 	mblk_t		*data_mp;
1864 	ip_xmit_attr_t	ixas;
1865 	ipsec_crypto_t	*ic;
1866 	ill_t		*ill;
1867 
1868 	/*
1869 	 * First remove the ipsec_crypto_t mblk
1870 	 * Note that we need to ipsec_free_crypto_data(mp) once done with ic.
1871 	 */
1872 	async_mp = ipsec_remove_crypto_data(mp, &ic);
1873 	ASSERT(async_mp != NULL);
1874 
1875 	/*
1876 	 * Extract the ip_xmit_attr_t from the first mblk.
1877 	 * Verifies that the netstack and ill is still around; could
1878 	 * have vanished while kEf was doing its work.
1879 	 * On succesful return we have a nce_t and the ill/ipst can't
1880 	 * disappear until we do the nce_refrele in ixa_cleanup.
1881 	 */
1882 	data_mp = async_mp->b_cont;
1883 	async_mp->b_cont = NULL;
1884 	if (!ip_xmit_attr_from_mblk(async_mp, &ixas)) {
1885 		/* Disappeared on us - no ill/ipst for MIB */
1886 		/* We have nowhere to do stats since ixa_ipst could be NULL */
1887 		if (ixas.ixa_nce != NULL) {
1888 			ill = ixas.ixa_nce->nce_ill;
1889 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1890 			ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
1891 		}
1892 		freemsg(data_mp);
1893 		goto done;
1894 	}
1895 	ns = ixas.ixa_ipst->ips_netstack;
1896 	espstack = ns->netstack_ipsecesp;
1897 	ipss = ns->netstack_ipsec;
1898 	ill = ixas.ixa_nce->nce_ill;
1899 
1900 	if (status == CRYPTO_SUCCESS) {
1901 		/*
1902 		 * If a ICV was computed, it was stored by the
1903 		 * crypto framework at the end of the packet.
1904 		 */
1905 		ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1906 
1907 		esp_set_usetime(ixas.ixa_ipsec_esp_sa, B_FALSE);
1908 		/* NAT-T packet. */
1909 		if (IPH_HDR_VERSION(ipha) == IP_VERSION &&
1910 		    ipha->ipha_protocol == IPPROTO_UDP)
1911 			esp_prepare_udp(ns, data_mp, ipha);
1912 
1913 		/* do AH processing if needed */
1914 		data_mp = esp_do_outbound_ah(data_mp, &ixas);
1915 		if (data_mp == NULL)
1916 			goto done;
1917 
1918 		(void) ip_output_post_ipsec(data_mp, &ixas);
1919 	} else {
1920 		/* Outbound shouldn't see invalid MAC */
1921 		ASSERT(status != CRYPTO_INVALID_MAC);
1922 
1923 		esp1dbg(espstack,
1924 		    ("esp_kcf_callback_outbound: crypto failed with 0x%x\n",
1925 		    status));
1926 		ESP_BUMP_STAT(espstack, crypto_failures);
1927 		ESP_BUMP_STAT(espstack, out_discards);
1928 		ip_drop_packet(data_mp, B_FALSE, ill,
1929 		    DROPPER(ipss, ipds_esp_crypto_failed),
1930 		    &espstack->esp_dropper);
1931 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1932 	}
1933 done:
1934 	ixa_cleanup(&ixas);
1935 	(void) ipsec_free_crypto_data(mp);
1936 }
1937 
1938 /*
1939  * Kernel crypto framework callback invoked after completion of async
1940  * crypto requests for inbound packets.
1941  */
1942 static void
1943 esp_kcf_callback_inbound(void *arg, int status)
1944 {
1945 	mblk_t		*mp = (mblk_t *)arg;
1946 	mblk_t		*async_mp;
1947 	netstack_t	*ns;
1948 	ipsecesp_stack_t *espstack;
1949 	ipsec_stack_t	*ipss;
1950 	mblk_t		*data_mp;
1951 	ip_recv_attr_t	iras;
1952 	ipsec_crypto_t	*ic;
1953 
1954 	/*
1955 	 * First remove the ipsec_crypto_t mblk
1956 	 * Note that we need to ipsec_free_crypto_data(mp) once done with ic.
1957 	 */
1958 	async_mp = ipsec_remove_crypto_data(mp, &ic);
1959 	ASSERT(async_mp != NULL);
1960 
1961 	/*
1962 	 * Extract the ip_recv_attr_t from the first mblk.
1963 	 * Verifies that the netstack and ill is still around; could
1964 	 * have vanished while kEf was doing its work.
1965 	 */
1966 	data_mp = async_mp->b_cont;
1967 	async_mp->b_cont = NULL;
1968 	if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
1969 		/* The ill or ip_stack_t disappeared on us */
1970 		ip_drop_input("ip_recv_attr_from_mblk", data_mp, NULL);
1971 		freemsg(data_mp);
1972 		goto done;
1973 	}
1974 
1975 	ns = iras.ira_ill->ill_ipst->ips_netstack;
1976 	espstack = ns->netstack_ipsecesp;
1977 	ipss = ns->netstack_ipsec;
1978 
1979 	if (status == CRYPTO_SUCCESS) {
1980 		data_mp = esp_in_done(data_mp, &iras, ic);
1981 		if (data_mp == NULL)
1982 			goto done;
1983 
1984 		/* finish IPsec processing */
1985 		ip_input_post_ipsec(data_mp, &iras);
1986 	} else if (status == CRYPTO_INVALID_MAC) {
1987 		esp_log_bad_auth(data_mp, &iras);
1988 	} else {
1989 		esp1dbg(espstack,
1990 		    ("esp_kcf_callback: crypto failed with 0x%x\n",
1991 		    status));
1992 		ESP_BUMP_STAT(espstack, crypto_failures);
1993 		IP_ESP_BUMP_STAT(ipss, in_discards);
1994 		ip_drop_packet(data_mp, B_TRUE, iras.ira_ill,
1995 		    DROPPER(ipss, ipds_esp_crypto_failed),
1996 		    &espstack->esp_dropper);
1997 		BUMP_MIB(iras.ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1998 	}
1999 done:
2000 	ira_cleanup(&iras, B_TRUE);
2001 	(void) ipsec_free_crypto_data(mp);
2002 }
2003 
2004 /*
2005  * Invoked on crypto framework failure during inbound and outbound processing.
2006  */
2007 static void
2008 esp_crypto_failed(mblk_t *data_mp, boolean_t is_inbound, int kef_rc,
2009     ill_t *ill, ipsecesp_stack_t *espstack)
2010 {
2011 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
2012 
2013 	esp1dbg(espstack, ("crypto failed for %s ESP with 0x%x\n",
2014 	    is_inbound ? "inbound" : "outbound", kef_rc));
2015 	ip_drop_packet(data_mp, is_inbound, ill,
2016 	    DROPPER(ipss, ipds_esp_crypto_failed),
2017 	    &espstack->esp_dropper);
2018 	ESP_BUMP_STAT(espstack, crypto_failures);
2019 	if (is_inbound)
2020 		IP_ESP_BUMP_STAT(ipss, in_discards);
2021 	else
2022 		ESP_BUMP_STAT(espstack, out_discards);
2023 }
2024 
2025 /*
2026  * A statement-equivalent macro, _cr MUST point to a modifiable
2027  * crypto_call_req_t.
2028  */
2029 #define	ESP_INIT_CALLREQ(_cr, _mp, _callback)				\
2030 	(_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_ALWAYS_QUEUE;	\
2031 	(_cr)->cr_callback_arg = (_mp);				\
2032 	(_cr)->cr_callback_func = (_callback)
2033 
2034 #define	ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) {			\
2035 	(mac)->cd_format = CRYPTO_DATA_RAW;				\
2036 	(mac)->cd_offset = 0;						\
2037 	(mac)->cd_length = icvlen;					\
2038 	(mac)->cd_raw.iov_base = (char *)icvbuf;			\
2039 	(mac)->cd_raw.iov_len = icvlen;					\
2040 }
2041 
2042 #define	ESP_INIT_CRYPTO_DATA(data, mp, off, len) {			\
2043 	if (MBLKL(mp) >= (len) + (off)) {				\
2044 		(data)->cd_format = CRYPTO_DATA_RAW;			\
2045 		(data)->cd_raw.iov_base = (char *)(mp)->b_rptr;		\
2046 		(data)->cd_raw.iov_len = MBLKL(mp);			\
2047 		(data)->cd_offset = off;				\
2048 	} else {							\
2049 		(data)->cd_format = CRYPTO_DATA_MBLK;			\
2050 		(data)->cd_mp = mp;			       		\
2051 		(data)->cd_offset = off;				\
2052 	}								\
2053 	(data)->cd_length = len;					\
2054 }
2055 
2056 #define	ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) {	\
2057 	(data)->dd_format = CRYPTO_DATA_MBLK;				\
2058 	(data)->dd_mp = mp;						\
2059 	(data)->dd_len1 = len1;						\
2060 	(data)->dd_offset1 = off1;					\
2061 	(data)->dd_len2 = len2;						\
2062 	(data)->dd_offset2 = off2;					\
2063 }
2064 
2065 /*
2066  * Returns data_mp if successfully completed the request. Returns
2067  * NULL if it failed (and increments InDiscards) or if it is pending.
2068  */
2069 static mblk_t *
2070 esp_submit_req_inbound(mblk_t *esp_mp, ip_recv_attr_t *ira,
2071     ipsa_t *assoc, uint_t esph_offset)
2072 {
2073 	uint_t auth_offset, msg_len, auth_len;
2074 	crypto_call_req_t call_req, *callrp;
2075 	mblk_t *mp;
2076 	esph_t *esph_ptr;
2077 	int kef_rc;
2078 	uint_t icv_len = assoc->ipsa_mac_len;
2079 	crypto_ctx_template_t auth_ctx_tmpl;
2080 	boolean_t do_auth, do_encr, force;
2081 	uint_t encr_offset, encr_len;
2082 	uint_t iv_len = assoc->ipsa_iv_len;
2083 	crypto_ctx_template_t encr_ctx_tmpl;
2084 	ipsec_crypto_t	*ic, icstack;
2085 	uchar_t *iv_ptr;
2086 	netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
2087 	ipsec_stack_t *ipss = ns->netstack_ipsec;
2088 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2089 
2090 	do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
2091 	do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
2092 	force = (assoc->ipsa_flags & IPSA_F_ASYNC);
2093 
2094 #ifdef IPSEC_LATENCY_TEST
2095 	kef_rc = CRYPTO_SUCCESS;
2096 #else
2097 	kef_rc = CRYPTO_FAILED;
2098 #endif
2099 
2100 	/*
2101 	 * An inbound packet is of the form:
2102 	 * [IP,options,ESP,IV,data,ICV,pad]
2103 	 */
2104 	esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
2105 	iv_ptr = (uchar_t *)(esph_ptr + 1);
2106 	/* Packet length starting at IP header ending after ESP ICV. */
2107 	msg_len = MBLKL(esp_mp);
2108 
2109 	encr_offset = esph_offset + sizeof (esph_t) + iv_len;
2110 	encr_len = msg_len - encr_offset;
2111 
2112 	/*
2113 	 * Counter mode algs need a nonce. This is setup in sadb_common_add().
2114 	 * If for some reason we are using a SA which does not have a nonce
2115 	 * then we must fail here.
2116 	 */
2117 	if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
2118 	    (assoc->ipsa_nonce == NULL)) {
2119 		ip_drop_packet(esp_mp, B_TRUE, ira->ira_ill,
2120 		    DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2121 		return (NULL);
2122 	}
2123 
2124 	if (force) {
2125 		/* We are doing asynch; allocate mblks to hold state */
2126 		if ((mp = ip_recv_attr_to_mblk(ira)) == NULL ||
2127 		    (mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
2128 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
2129 			ip_drop_input("ipIfStatsInDiscards", esp_mp,
2130 			    ira->ira_ill);
2131 			return (NULL);
2132 		}
2133 		linkb(mp, esp_mp);
2134 		callrp = &call_req;
2135 		ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_inbound);
2136 	} else {
2137 		/*
2138 		 * If we know we are going to do sync then ipsec_crypto_t
2139 		 * should be on the stack.
2140 		 */
2141 		ic = &icstack;
2142 		bzero(ic, sizeof (*ic));
2143 		callrp = NULL;
2144 	}
2145 
2146 	if (do_auth) {
2147 		/* authentication context template */
2148 		IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
2149 		    auth_ctx_tmpl);
2150 
2151 		/* ICV to be verified */
2152 		ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
2153 		    icv_len, esp_mp->b_wptr - icv_len);
2154 
2155 		/* authentication starts at the ESP header */
2156 		auth_offset = esph_offset;
2157 		auth_len = msg_len - auth_offset - icv_len;
2158 		if (!do_encr) {
2159 			/* authentication only */
2160 			/* initialize input data argument */
2161 			ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2162 			    esp_mp, auth_offset, auth_len);
2163 
2164 			/* call the crypto framework */
2165 			kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
2166 			    &ic->ic_crypto_data,
2167 			    &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
2168 			    &ic->ic_crypto_mac, callrp);
2169 		}
2170 	}
2171 
2172 	if (do_encr) {
2173 		/* encryption template */
2174 		IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
2175 		    encr_ctx_tmpl);
2176 
2177 		/* Call the nonce update function. Also passes in IV */
2178 		(assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, encr_len,
2179 		    iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
2180 
2181 		if (!do_auth) {
2182 			/* decryption only */
2183 			/* initialize input data argument */
2184 			ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2185 			    esp_mp, encr_offset, encr_len);
2186 
2187 			/* call the crypto framework */
2188 			kef_rc = crypto_decrypt((crypto_mechanism_t *)
2189 			    &ic->ic_cmm, &ic->ic_crypto_data,
2190 			    &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
2191 			    NULL, callrp);
2192 		}
2193 	}
2194 
2195 	if (do_auth && do_encr) {
2196 		/* dual operation */
2197 		/* initialize input data argument */
2198 		ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
2199 		    esp_mp, auth_offset, auth_len,
2200 		    encr_offset, encr_len - icv_len);
2201 
2202 		/* specify IV */
2203 		ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
2204 
2205 		/* call the framework */
2206 		kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech,
2207 		    &assoc->ipsa_emech, &ic->ic_crypto_dual_data,
2208 		    &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey,
2209 		    auth_ctx_tmpl, encr_ctx_tmpl, &ic->ic_crypto_mac,
2210 		    NULL, callrp);
2211 	}
2212 
2213 	switch (kef_rc) {
2214 	case CRYPTO_SUCCESS:
2215 		ESP_BUMP_STAT(espstack, crypto_sync);
2216 		esp_mp = esp_in_done(esp_mp, ira, ic);
2217 		if (force) {
2218 			/* Free mp after we are done with ic */
2219 			mp = ipsec_free_crypto_data(mp);
2220 			(void) ip_recv_attr_free_mblk(mp);
2221 		}
2222 		return (esp_mp);
2223 	case CRYPTO_QUEUED:
2224 		/* esp_kcf_callback_inbound() will be invoked on completion */
2225 		ESP_BUMP_STAT(espstack, crypto_async);
2226 		return (NULL);
2227 	case CRYPTO_INVALID_MAC:
2228 		if (force) {
2229 			mp = ipsec_free_crypto_data(mp);
2230 			esp_mp = ip_recv_attr_free_mblk(mp);
2231 		}
2232 		ESP_BUMP_STAT(espstack, crypto_sync);
2233 		BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
2234 		esp_log_bad_auth(esp_mp, ira);
2235 		/* esp_mp was passed to ip_drop_packet */
2236 		return (NULL);
2237 	}
2238 
2239 	if (force) {
2240 		mp = ipsec_free_crypto_data(mp);
2241 		esp_mp = ip_recv_attr_free_mblk(mp);
2242 	}
2243 	BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
2244 	esp_crypto_failed(esp_mp, B_TRUE, kef_rc, ira->ira_ill, espstack);
2245 	/* esp_mp was passed to ip_drop_packet */
2246 	return (NULL);
2247 }
2248 
2249 /*
2250  * Compute the IP and UDP checksums -- common code for both keepalives and
2251  * actual ESP-in-UDP packets.  Be flexible with multiple mblks because ESP
2252  * uses mblk-insertion to insert the UDP header.
2253  * TODO - If there is an easy way to prep a packet for HW checksums, make
2254  * it happen here.
2255  * Note that this is used before both before calling ip_output_simple and
2256  * in the esp datapath. The former could use IXAF_SET_ULP_CKSUM but not the
2257  * latter.
2258  */
2259 static void
2260 esp_prepare_udp(netstack_t *ns, mblk_t *mp, ipha_t *ipha)
2261 {
2262 	int offset;
2263 	uint32_t cksum;
2264 	uint16_t *arr;
2265 	mblk_t *udpmp = mp;
2266 	uint_t hlen = IPH_HDR_LENGTH(ipha);
2267 
2268 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
2269 
2270 	ipha->ipha_hdr_checksum = 0;
2271 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
2272 
2273 	if (ns->netstack_udp->us_do_checksum) {
2274 		ASSERT(MBLKL(udpmp) >= sizeof (udpha_t));
2275 		/* arr points to the IP header. */
2276 		arr = (uint16_t *)ipha;
2277 		IP_STAT(ns->netstack_ip, ip_out_sw_cksum);
2278 		IP_STAT_UPDATE(ns->netstack_ip, ip_out_sw_cksum_bytes,
2279 		    ntohs(htons(ipha->ipha_length) - hlen));
2280 		/* arr[6-9] are the IP addresses. */
2281 		cksum = IP_UDP_CSUM_COMP + arr[6] + arr[7] + arr[8] + arr[9] +
2282 		    ntohs(htons(ipha->ipha_length) - hlen);
2283 		cksum = IP_CSUM(mp, hlen, cksum);
2284 		offset = hlen + UDP_CHECKSUM_OFFSET;
2285 		while (offset >= MBLKL(udpmp)) {
2286 			offset -= MBLKL(udpmp);
2287 			udpmp = udpmp->b_cont;
2288 		}
2289 		/* arr points to the UDP header's checksum field. */
2290 		arr = (uint16_t *)(udpmp->b_rptr + offset);
2291 		*arr = cksum;
2292 	}
2293 }
2294 
2295 /*
2296  * taskq handler so we can send the NAT-T keepalive on a separate thread.
2297  */
2298 static void
2299 actually_send_keepalive(void *arg)
2300 {
2301 	mblk_t *mp = (mblk_t *)arg;
2302 	ip_xmit_attr_t ixas;
2303 	netstack_t	*ns;
2304 	netstackid_t	stackid;
2305 
2306 	stackid = (netstackid_t)(uintptr_t)mp->b_prev;
2307 	mp->b_prev = NULL;
2308 	ns = netstack_find_by_stackid(stackid);
2309 	if (ns == NULL) {
2310 		/* Disappeared */
2311 		ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2312 		freemsg(mp);
2313 		return;
2314 	}
2315 
2316 	bzero(&ixas, sizeof (ixas));
2317 	ixas.ixa_zoneid = ALL_ZONES;
2318 	ixas.ixa_cred = kcred;
2319 	ixas.ixa_cpid = NOPID;
2320 	ixas.ixa_tsl = NULL;
2321 	ixas.ixa_ipst = ns->netstack_ip;
2322 	/* No ULP checksum; done by esp_prepare_udp */
2323 	ixas.ixa_flags = (IXAF_IS_IPV4 | IXAF_NO_IPSEC | IXAF_VERIFY_SOURCE);
2324 
2325 	(void) ip_output_simple(mp, &ixas);
2326 	ixa_cleanup(&ixas);
2327 	netstack_rele(ns);
2328 }
2329 
2330 /*
2331  * Send a one-byte UDP NAT-T keepalive.
2332  */
2333 void
2334 ipsecesp_send_keepalive(ipsa_t *assoc)
2335 {
2336 	mblk_t		*mp;
2337 	ipha_t		*ipha;
2338 	udpha_t		*udpha;
2339 	netstack_t	*ns = assoc->ipsa_netstack;
2340 
2341 	ASSERT(MUTEX_NOT_HELD(&assoc->ipsa_lock));
2342 
2343 	mp = allocb(sizeof (ipha_t) + sizeof (udpha_t) + 1, BPRI_HI);
2344 	if (mp == NULL)
2345 		return;
2346 	ipha = (ipha_t *)mp->b_rptr;
2347 	ipha->ipha_version_and_hdr_length = IP_SIMPLE_HDR_VERSION;
2348 	ipha->ipha_type_of_service = 0;
2349 	ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (udpha_t) + 1);
2350 	/* Use the low-16 of the SPI so we have some clue where it came from. */
2351 	ipha->ipha_ident = *(((uint16_t *)(&assoc->ipsa_spi)) + 1);
2352 	ipha->ipha_fragment_offset_and_flags = 0;  /* Too small to fragment! */
2353 	ipha->ipha_ttl = 0xFF;
2354 	ipha->ipha_protocol = IPPROTO_UDP;
2355 	ipha->ipha_hdr_checksum = 0;
2356 	ipha->ipha_src = assoc->ipsa_srcaddr[0];
2357 	ipha->ipha_dst = assoc->ipsa_dstaddr[0];
2358 	udpha = (udpha_t *)(ipha + 1);
2359 	udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
2360 	    assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
2361 	udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
2362 	    assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
2363 	udpha->uha_length = htons(sizeof (udpha_t) + 1);
2364 	udpha->uha_checksum = 0;
2365 	mp->b_wptr = (uint8_t *)(udpha + 1);
2366 	*(mp->b_wptr++) = 0xFF;
2367 
2368 	esp_prepare_udp(ns, mp, ipha);
2369 
2370 	/*
2371 	 * We're holding an isaf_t bucket lock, so pawn off the actual
2372 	 * packet transmission to another thread.  Just in case syncq
2373 	 * processing causes a same-bucket packet to be processed.
2374 	 */
2375 	mp->b_prev = (mblk_t *)(uintptr_t)ns->netstack_stackid;
2376 
2377 	if (taskq_dispatch(esp_taskq, actually_send_keepalive, mp,
2378 	    TQ_NOSLEEP) == 0) {
2379 		/* Assume no memory if taskq_dispatch() fails. */
2380 		mp->b_prev = NULL;
2381 		ip_drop_packet(mp, B_FALSE, NULL,
2382 		    DROPPER(ns->netstack_ipsec, ipds_esp_nomem),
2383 		    &ns->netstack_ipsecesp->esp_dropper);
2384 	}
2385 }
2386 
2387 /*
2388  * Returns mp if successfully completed the request. Returns
2389  * NULL if it failed (and increments InDiscards) or if it is pending.
2390  */
2391 static mblk_t *
2392 esp_submit_req_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa, ipsa_t *assoc,
2393     uchar_t *icv_buf, uint_t payload_len)
2394 {
2395 	uint_t auth_len;
2396 	crypto_call_req_t call_req, *callrp;
2397 	mblk_t *esp_mp;
2398 	esph_t *esph_ptr;
2399 	mblk_t *mp;
2400 	int kef_rc = CRYPTO_FAILED;
2401 	uint_t icv_len = assoc->ipsa_mac_len;
2402 	crypto_ctx_template_t auth_ctx_tmpl;
2403 	boolean_t do_auth, do_encr, force;
2404 	uint_t iv_len = assoc->ipsa_iv_len;
2405 	crypto_ctx_template_t encr_ctx_tmpl;
2406 	boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
2407 	size_t esph_offset = (is_natt ? UDPH_SIZE : 0);
2408 	netstack_t	*ns = ixa->ixa_ipst->ips_netstack;
2409 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2410 	ipsec_crypto_t	*ic, icstack;
2411 	uchar_t		*iv_ptr;
2412 	crypto_data_t	*cd_ptr = NULL;
2413 	ill_t		*ill = ixa->ixa_nce->nce_ill;
2414 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2415 
2416 	esp3dbg(espstack, ("esp_submit_req_outbound:%s",
2417 	    is_natt ? "natt" : "not natt"));
2418 
2419 	do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
2420 	do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
2421 	force = (assoc->ipsa_flags & IPSA_F_ASYNC);
2422 
2423 #ifdef IPSEC_LATENCY_TEST
2424 	kef_rc = CRYPTO_SUCCESS;
2425 #else
2426 	kef_rc = CRYPTO_FAILED;
2427 #endif
2428 
2429 	/*
2430 	 * Outbound IPsec packets are of the form:
2431 	 * [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV]
2432 	 * unless it's NATT, then it's
2433 	 * [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV]
2434 	 * Get a pointer to the mblk containing the ESP header.
2435 	 */
2436 	ASSERT(data_mp->b_cont != NULL);
2437 	esp_mp = data_mp->b_cont;
2438 	esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
2439 	iv_ptr = (uchar_t *)(esph_ptr + 1);
2440 
2441 	/*
2442 	 * Combined mode algs need a nonce. This is setup in sadb_common_add().
2443 	 * If for some reason we are using a SA which does not have a nonce
2444 	 * then we must fail here.
2445 	 */
2446 	if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
2447 	    (assoc->ipsa_nonce == NULL)) {
2448 		ip_drop_packet(data_mp, B_FALSE, NULL,
2449 		    DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2450 		return (NULL);
2451 	}
2452 
2453 	if (force) {
2454 		/* We are doing asynch; allocate mblks to hold state */
2455 		if ((mp = ip_xmit_attr_to_mblk(ixa)) == NULL ||
2456 		    (mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
2457 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2458 			ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
2459 			freemsg(data_mp);
2460 			return (NULL);
2461 		}
2462 
2463 		linkb(mp, data_mp);
2464 		callrp = &call_req;
2465 		ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_outbound);
2466 	} else {
2467 		/*
2468 		 * If we know we are going to do sync then ipsec_crypto_t
2469 		 * should be on the stack.
2470 		 */
2471 		ic = &icstack;
2472 		bzero(ic, sizeof (*ic));
2473 		callrp = NULL;
2474 	}
2475 
2476 
2477 	if (do_auth) {
2478 		/* authentication context template */
2479 		IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
2480 		    auth_ctx_tmpl);
2481 
2482 		/* where to store the computed mac */
2483 		ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
2484 		    icv_len, icv_buf);
2485 
2486 		/* authentication starts at the ESP header */
2487 		auth_len = payload_len + iv_len + sizeof (esph_t);
2488 		if (!do_encr) {
2489 			/* authentication only */
2490 			/* initialize input data argument */
2491 			ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2492 			    esp_mp, esph_offset, auth_len);
2493 
2494 			/* call the crypto framework */
2495 			kef_rc = crypto_mac(&assoc->ipsa_amech,
2496 			    &ic->ic_crypto_data,
2497 			    &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
2498 			    &ic->ic_crypto_mac, callrp);
2499 		}
2500 	}
2501 
2502 	if (do_encr) {
2503 		/* encryption context template */
2504 		IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
2505 		    encr_ctx_tmpl);
2506 		/* Call the nonce update function. */
2507 		(assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, payload_len,
2508 		    iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
2509 
2510 		if (!do_auth) {
2511 			/* encryption only, skip mblk that contains ESP hdr */
2512 			/* initialize input data argument */
2513 			ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2514 			    esp_mp->b_cont, 0, payload_len);
2515 
2516 			/*
2517 			 * For combined mode ciphers, the ciphertext is the same
2518 			 * size as the clear text, the ICV should follow the
2519 			 * ciphertext. To convince the kcf to allow in-line
2520 			 * encryption, with an ICV, use ipsec_out_crypto_mac
2521 			 * to point to the same buffer as the data. The calling
2522 			 * function need to ensure the buffer is large enough to
2523 			 * include the ICV.
2524 			 *
2525 			 * The IV is already written to the packet buffer, the
2526 			 * nonce setup function copied it to the params struct
2527 			 * for the cipher to use.
2528 			 */
2529 			if (assoc->ipsa_flags & IPSA_F_COMBINED) {
2530 				bcopy(&ic->ic_crypto_data,
2531 				    &ic->ic_crypto_mac,
2532 				    sizeof (crypto_data_t));
2533 				ic->ic_crypto_mac.cd_length =
2534 				    payload_len + icv_len;
2535 				cd_ptr = &ic->ic_crypto_mac;
2536 			}
2537 
2538 			/* call the crypto framework */
2539 			kef_rc = crypto_encrypt((crypto_mechanism_t *)
2540 			    &ic->ic_cmm, &ic->ic_crypto_data,
2541 			    &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
2542 			    cd_ptr, callrp);
2543 
2544 		}
2545 	}
2546 
2547 	if (do_auth && do_encr) {
2548 		/*
2549 		 * Encryption and authentication:
2550 		 * Pass the pointer to the mblk chain starting at the ESP
2551 		 * header to the framework. Skip the ESP header mblk
2552 		 * for encryption, which is reflected by an encryption
2553 		 * offset equal to the length of that mblk. Start
2554 		 * the authentication at the ESP header, i.e. use an
2555 		 * authentication offset of zero.
2556 		 */
2557 		ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
2558 		    esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len);
2559 
2560 		/* specify IV */
2561 		ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
2562 
2563 		/* call the framework */
2564 		kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech,
2565 		    &assoc->ipsa_amech, NULL,
2566 		    &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey,
2567 		    encr_ctx_tmpl, auth_ctx_tmpl,
2568 		    &ic->ic_crypto_dual_data,
2569 		    &ic->ic_crypto_mac, callrp);
2570 	}
2571 
2572 	switch (kef_rc) {
2573 	case CRYPTO_SUCCESS:
2574 		ESP_BUMP_STAT(espstack, crypto_sync);
2575 		esp_set_usetime(assoc, B_FALSE);
2576 		if (force) {
2577 			mp = ipsec_free_crypto_data(mp);
2578 			data_mp = ip_xmit_attr_free_mblk(mp);
2579 		}
2580 		if (is_natt)
2581 			esp_prepare_udp(ns, data_mp, (ipha_t *)data_mp->b_rptr);
2582 		return (data_mp);
2583 	case CRYPTO_QUEUED:
2584 		/* esp_kcf_callback_outbound() will be invoked on completion */
2585 		ESP_BUMP_STAT(espstack, crypto_async);
2586 		return (NULL);
2587 	}
2588 
2589 	if (force) {
2590 		mp = ipsec_free_crypto_data(mp);
2591 		data_mp = ip_xmit_attr_free_mblk(mp);
2592 	}
2593 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2594 	esp_crypto_failed(data_mp, B_FALSE, kef_rc, NULL, espstack);
2595 	/* data_mp was passed to ip_drop_packet */
2596 	return (NULL);
2597 }
2598 
2599 /*
2600  * Handle outbound IPsec processing for IPv4 and IPv6
2601  *
2602  * Returns data_mp if successfully completed the request. Returns
2603  * NULL if it failed (and increments InDiscards) or if it is pending.
2604  */
2605 static mblk_t *
2606 esp_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa)
2607 {
2608 	mblk_t *espmp, *tailmp;
2609 	ipha_t *ipha;
2610 	ip6_t *ip6h;
2611 	esph_t *esph_ptr, *iv_ptr;
2612 	uint_t af;
2613 	uint8_t *nhp;
2614 	uintptr_t divpoint, datalen, adj, padlen, i, alloclen;
2615 	uintptr_t esplen = sizeof (esph_t);
2616 	uint8_t protocol;
2617 	ipsa_t *assoc;
2618 	uint_t iv_len, block_size, mac_len = 0;
2619 	uchar_t *icv_buf;
2620 	udpha_t *udpha;
2621 	boolean_t is_natt = B_FALSE;
2622 	netstack_t	*ns = ixa->ixa_ipst->ips_netstack;
2623 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2624 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2625 	ill_t		*ill = ixa->ixa_nce->nce_ill;
2626 	boolean_t	need_refrele = B_FALSE;
2627 
2628 	ESP_BUMP_STAT(espstack, out_requests);
2629 
2630 	/*
2631 	 * <sigh> We have to copy the message here, because TCP (for example)
2632 	 * keeps a dupb() of the message lying around for retransmission.
2633 	 * Since ESP changes the whole of the datagram, we have to create our
2634 	 * own copy lest we clobber TCP's data.  Since we have to copy anyway,
2635 	 * we might as well make use of msgpullup() and get the mblk into one
2636 	 * contiguous piece!
2637 	 */
2638 	tailmp = msgpullup(data_mp, -1);
2639 	if (tailmp == NULL) {
2640 		esp0dbg(("esp_outbound: msgpullup() failed, "
2641 		    "dropping packet.\n"));
2642 		ip_drop_packet(data_mp, B_FALSE, ill,
2643 		    DROPPER(ipss, ipds_esp_nomem),
2644 		    &espstack->esp_dropper);
2645 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2646 		return (NULL);
2647 	}
2648 	freemsg(data_mp);
2649 	data_mp = tailmp;
2650 
2651 	assoc = ixa->ixa_ipsec_esp_sa;
2652 	ASSERT(assoc != NULL);
2653 
2654 	/*
2655 	 * Get the outer IP header in shape to escape this system..
2656 	 */
2657 	if (is_system_labeled() && (assoc->ipsa_otsl != NULL)) {
2658 		/*
2659 		 * Need to update packet with any CIPSO option and update
2660 		 * ixa_tsl to capture the new label.
2661 		 * We allocate a separate ixa for that purpose.
2662 		 */
2663 		ixa = ip_xmit_attr_duplicate(ixa);
2664 		if (ixa == NULL) {
2665 			ip_drop_packet(data_mp, B_FALSE, ill,
2666 			    DROPPER(ipss, ipds_esp_nomem),
2667 			    &espstack->esp_dropper);
2668 			return (NULL);
2669 		}
2670 		need_refrele = B_TRUE;
2671 
2672 		label_hold(assoc->ipsa_otsl);
2673 		ip_xmit_attr_replace_tsl(ixa, assoc->ipsa_otsl);
2674 
2675 		data_mp = sadb_whack_label(data_mp, assoc, ixa,
2676 		    DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2677 		if (data_mp == NULL) {
2678 			/* Packet dropped by sadb_whack_label */
2679 			ixa_refrele(ixa);
2680 			return (NULL);
2681 		}
2682 	}
2683 
2684 	/*
2685 	 * Reality check....
2686 	 */
2687 	ipha = (ipha_t *)data_mp->b_rptr;  /* So we can call esp_acquire(). */
2688 
2689 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
2690 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
2691 
2692 		af = AF_INET;
2693 		divpoint = IPH_HDR_LENGTH(ipha);
2694 		datalen = ntohs(ipha->ipha_length) - divpoint;
2695 		nhp = (uint8_t *)&ipha->ipha_protocol;
2696 	} else {
2697 		ip_pkt_t ipp;
2698 
2699 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
2700 
2701 		af = AF_INET6;
2702 		ip6h = (ip6_t *)ipha;
2703 		bzero(&ipp, sizeof (ipp));
2704 		divpoint = ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp, NULL);
2705 		if (ipp.ipp_dstopts != NULL &&
2706 		    ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) {
2707 			/*
2708 			 * Destination options are tricky.  If we get in here,
2709 			 * then we have a terminal header following the
2710 			 * destination options.  We need to adjust backwards
2711 			 * so we insert ESP BEFORE the destination options
2712 			 * bag.  (So that the dstopts get encrypted!)
2713 			 *
2714 			 * Since this is for outbound packets only, we know
2715 			 * that non-terminal destination options only precede
2716 			 * routing headers.
2717 			 */
2718 			divpoint -= ipp.ipp_dstoptslen;
2719 		}
2720 		datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint;
2721 
2722 		if (ipp.ipp_rthdr != NULL) {
2723 			nhp = &ipp.ipp_rthdr->ip6r_nxt;
2724 		} else if (ipp.ipp_hopopts != NULL) {
2725 			nhp = &ipp.ipp_hopopts->ip6h_nxt;
2726 		} else {
2727 			ASSERT(divpoint == sizeof (ip6_t));
2728 			/* It's probably IP + ESP. */
2729 			nhp = &ip6h->ip6_nxt;
2730 		}
2731 	}
2732 
2733 	mac_len = assoc->ipsa_mac_len;
2734 
2735 	if (assoc->ipsa_flags & IPSA_F_NATT) {
2736 		/* wedge in UDP header */
2737 		is_natt = B_TRUE;
2738 		esplen += UDPH_SIZE;
2739 	}
2740 
2741 	/*
2742 	 * Set up ESP header and encryption padding for ENCR PI request.
2743 	 */
2744 
2745 	/* Determine the padding length.  Pad to 4-bytes for no-encryption. */
2746 	if (assoc->ipsa_encr_alg != SADB_EALG_NULL) {
2747 		iv_len = assoc->ipsa_iv_len;
2748 		block_size = assoc->ipsa_datalen;
2749 
2750 		/*
2751 		 * Pad the data to the length of the cipher block size.
2752 		 * Include the two additional bytes (hence the - 2) for the
2753 		 * padding length and the next header.  Take this into account
2754 		 * when calculating the actual length of the padding.
2755 		 */
2756 		ASSERT(ISP2(iv_len));
2757 		padlen = ((unsigned)(block_size - datalen - 2)) &
2758 		    (block_size - 1);
2759 	} else {
2760 		iv_len = 0;
2761 		padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) &
2762 		    (sizeof (uint32_t) - 1);
2763 	}
2764 
2765 	/* Allocate ESP header and IV. */
2766 	esplen += iv_len;
2767 
2768 	/*
2769 	 * Update association byte-count lifetimes.  Don't forget to take
2770 	 * into account the padding length and next-header (hence the + 2).
2771 	 *
2772 	 * Use the amount of data fed into the "encryption algorithm".  This
2773 	 * is the IV, the data length, the padding length, and the final two
2774 	 * bytes (padlen, and next-header).
2775 	 *
2776 	 */
2777 
2778 	if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) {
2779 		ip_drop_packet(data_mp, B_FALSE, ill,
2780 		    DROPPER(ipss, ipds_esp_bytes_expire),
2781 		    &espstack->esp_dropper);
2782 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2783 		if (need_refrele)
2784 			ixa_refrele(ixa);
2785 		return (NULL);
2786 	}
2787 
2788 	espmp = allocb(esplen, BPRI_HI);
2789 	if (espmp == NULL) {
2790 		ESP_BUMP_STAT(espstack, out_discards);
2791 		esp1dbg(espstack, ("esp_outbound: can't allocate espmp.\n"));
2792 		ip_drop_packet(data_mp, B_FALSE, ill,
2793 		    DROPPER(ipss, ipds_esp_nomem),
2794 		    &espstack->esp_dropper);
2795 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2796 		if (need_refrele)
2797 			ixa_refrele(ixa);
2798 		return (NULL);
2799 	}
2800 	espmp->b_wptr += esplen;
2801 	esph_ptr = (esph_t *)espmp->b_rptr;
2802 
2803 	if (is_natt) {
2804 		esp3dbg(espstack, ("esp_outbound: NATT"));
2805 
2806 		udpha = (udpha_t *)espmp->b_rptr;
2807 		udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
2808 		    assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
2809 		udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
2810 		    assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
2811 		/*
2812 		 * Set the checksum to 0, so that the esp_prepare_udp() call
2813 		 * can do the right thing.
2814 		 */
2815 		udpha->uha_checksum = 0;
2816 		esph_ptr = (esph_t *)(udpha + 1);
2817 	}
2818 
2819 	esph_ptr->esph_spi = assoc->ipsa_spi;
2820 
2821 	esph_ptr->esph_replay = htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1));
2822 	if (esph_ptr->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) {
2823 		/*
2824 		 * XXX We have replay counter wrapping.
2825 		 * We probably want to nuke this SA (and its peer).
2826 		 */
2827 		ipsec_assocfailure(info.mi_idnum, 0, 0,
2828 		    SL_ERROR | SL_CONSOLE | SL_WARN,
2829 		    "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n",
2830 		    esph_ptr->esph_spi, assoc->ipsa_dstaddr, af,
2831 		    espstack->ipsecesp_netstack);
2832 
2833 		ESP_BUMP_STAT(espstack, out_discards);
2834 		sadb_replay_delete(assoc);
2835 		ip_drop_packet(data_mp, B_FALSE, ill,
2836 		    DROPPER(ipss, ipds_esp_replay),
2837 		    &espstack->esp_dropper);
2838 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2839 		if (need_refrele)
2840 			ixa_refrele(ixa);
2841 		return (NULL);
2842 	}
2843 
2844 	iv_ptr = (esph_ptr + 1);
2845 	/*
2846 	 * iv_ptr points to the mblk which will contain the IV once we have
2847 	 * written it there. This mblk will be part of a mblk chain that
2848 	 * will make up the packet.
2849 	 *
2850 	 * For counter mode algorithms, the IV is a 64 bit quantity, it
2851 	 * must NEVER repeat in the lifetime of the SA, otherwise an
2852 	 * attacker who had recorded enough packets might be able to
2853 	 * determine some clear text.
2854 	 *
2855 	 * To ensure this does not happen, the IV is stored in the SA and
2856 	 * incremented for each packet, the IV is then copied into the
2857 	 * "packet" for transmission to the receiving system. The IV will
2858 	 * also be copied into the nonce, when the packet is encrypted.
2859 	 *
2860 	 * CBC mode algorithms use a random IV for each packet. We do not
2861 	 * require the highest quality random bits, but for best security
2862 	 * with CBC mode ciphers, the value must be unlikely to repeat and
2863 	 * must not be known in advance to an adversary capable of influencing
2864 	 * the clear text.
2865 	 */
2866 	if (!update_iv((uint8_t *)iv_ptr, espstack->esp_pfkey_q, assoc,
2867 	    espstack)) {
2868 		ip_drop_packet(data_mp, B_FALSE, ill,
2869 		    DROPPER(ipss, ipds_esp_iv_wrap), &espstack->esp_dropper);
2870 		if (need_refrele)
2871 			ixa_refrele(ixa);
2872 		return (NULL);
2873 	}
2874 
2875 	/* Fix the IP header. */
2876 	alloclen = padlen + 2 + mac_len;
2877 	adj = alloclen + (espmp->b_wptr - espmp->b_rptr);
2878 
2879 	protocol = *nhp;
2880 
2881 	if (ixa->ixa_flags & IXAF_IS_IPV4) {
2882 		ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj);
2883 		if (is_natt) {
2884 			*nhp = IPPROTO_UDP;
2885 			udpha->uha_length = htons(ntohs(ipha->ipha_length) -
2886 			    IPH_HDR_LENGTH(ipha));
2887 		} else {
2888 			*nhp = IPPROTO_ESP;
2889 		}
2890 		ipha->ipha_hdr_checksum = 0;
2891 		ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
2892 	} else {
2893 		ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj);
2894 		*nhp = IPPROTO_ESP;
2895 	}
2896 
2897 	/* I've got the two ESP mblks, now insert them. */
2898 
2899 	esp2dbg(espstack, ("data_mp before outbound ESP adjustment:\n"));
2900 	esp2dbg(espstack, (dump_msg(data_mp)));
2901 
2902 	if (!esp_insert_esp(data_mp, espmp, divpoint, espstack)) {
2903 		ESP_BUMP_STAT(espstack, out_discards);
2904 		/* NOTE:  esp_insert_esp() only fails if there's no memory. */
2905 		ip_drop_packet(data_mp, B_FALSE, ill,
2906 		    DROPPER(ipss, ipds_esp_nomem),
2907 		    &espstack->esp_dropper);
2908 		freeb(espmp);
2909 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2910 		if (need_refrele)
2911 			ixa_refrele(ixa);
2912 		return (NULL);
2913 	}
2914 
2915 	/* Append padding (and leave room for ICV). */
2916 	for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont)
2917 		;
2918 	if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) {
2919 		tailmp->b_cont = allocb(alloclen, BPRI_HI);
2920 		if (tailmp->b_cont == NULL) {
2921 			ESP_BUMP_STAT(espstack, out_discards);
2922 			esp0dbg(("esp_outbound:  Can't allocate tailmp.\n"));
2923 			ip_drop_packet(data_mp, B_FALSE, ill,
2924 			    DROPPER(ipss, ipds_esp_nomem),
2925 			    &espstack->esp_dropper);
2926 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2927 			if (need_refrele)
2928 				ixa_refrele(ixa);
2929 			return (NULL);
2930 		}
2931 		tailmp = tailmp->b_cont;
2932 	}
2933 
2934 	/*
2935 	 * If there's padding, N bytes of padding must be of the form 0x1,
2936 	 * 0x2, 0x3... 0xN.
2937 	 */
2938 	for (i = 0; i < padlen; ) {
2939 		i++;
2940 		*tailmp->b_wptr++ = i;
2941 	}
2942 	*tailmp->b_wptr++ = i;
2943 	*tailmp->b_wptr++ = protocol;
2944 
2945 	esp2dbg(espstack, ("data_Mp before encryption:\n"));
2946 	esp2dbg(espstack, (dump_msg(data_mp)));
2947 
2948 	/*
2949 	 * Okay.  I've set up the pre-encryption ESP.  Let's do it!
2950 	 */
2951 
2952 	if (mac_len > 0) {
2953 		ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim);
2954 		icv_buf = tailmp->b_wptr;
2955 		tailmp->b_wptr += mac_len;
2956 	} else {
2957 		icv_buf = NULL;
2958 	}
2959 
2960 	data_mp = esp_submit_req_outbound(data_mp, ixa, assoc, icv_buf,
2961 	    datalen + padlen + 2);
2962 	if (need_refrele)
2963 		ixa_refrele(ixa);
2964 	return (data_mp);
2965 }
2966 
2967 /*
2968  * IP calls this to validate the ICMP errors that
2969  * we got from the network.
2970  */
2971 mblk_t *
2972 ipsecesp_icmp_error(mblk_t *data_mp, ip_recv_attr_t *ira)
2973 {
2974 	netstack_t	*ns = ira->ira_ill->ill_ipst->ips_netstack;
2975 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2976 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2977 
2978 	/*
2979 	 * Unless we get an entire packet back, this function is useless.
2980 	 * Why?
2981 	 *
2982 	 * 1.)	Partial packets are useless, because the "next header"
2983 	 *	is at the end of the decrypted ESP packet.  Without the
2984 	 *	whole packet, this is useless.
2985 	 *
2986 	 * 2.)	If we every use a stateful cipher, such as a stream or a
2987 	 *	one-time pad, we can't do anything.
2988 	 *
2989 	 * Since the chances of us getting an entire packet back are very
2990 	 * very small, we discard here.
2991 	 */
2992 	IP_ESP_BUMP_STAT(ipss, in_discards);
2993 	ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
2994 	    DROPPER(ipss, ipds_esp_icmp),
2995 	    &espstack->esp_dropper);
2996 	return (NULL);
2997 }
2998 
2999 /*
3000  * Construct an SADB_REGISTER message with the current algorithms.
3001  * This function gets called when 'ipsecalgs -s' is run or when
3002  * in.iked (or other KMD) starts.
3003  */
3004 static boolean_t
3005 esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial,
3006     ipsecesp_stack_t *espstack, cred_t *cr)
3007 {
3008 	mblk_t *pfkey_msg_mp, *keysock_out_mp;
3009 	sadb_msg_t *samsg;
3010 	sadb_supported_t *sasupp_auth = NULL;
3011 	sadb_supported_t *sasupp_encr = NULL;
3012 	sadb_alg_t *saalg;
3013 	uint_t allocsize = sizeof (*samsg);
3014 	uint_t i, numalgs_snap;
3015 	int current_aalgs;
3016 	ipsec_alginfo_t **authalgs;
3017 	uint_t num_aalgs;
3018 	int current_ealgs;
3019 	ipsec_alginfo_t **encralgs;
3020 	uint_t num_ealgs;
3021 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
3022 	sadb_sens_t *sens;
3023 	size_t sens_len = 0;
3024 	sadb_ext_t *nextext;
3025 	ts_label_t *sens_tsl = NULL;
3026 
3027 	/* Allocate the KEYSOCK_OUT. */
3028 	keysock_out_mp = sadb_keysock_out(serial);
3029 	if (keysock_out_mp == NULL) {
3030 		esp0dbg(("esp_register_out: couldn't allocate mblk.\n"));
3031 		return (B_FALSE);
3032 	}
3033 
3034 	if (is_system_labeled() && (cr != NULL)) {
3035 		sens_tsl = crgetlabel(cr);
3036 		if (sens_tsl != NULL) {
3037 			sens_len = sadb_sens_len_from_label(sens_tsl);
3038 			allocsize += sens_len;
3039 		}
3040 	}
3041 
3042 	/*
3043 	 * Allocate the PF_KEY message that follows KEYSOCK_OUT.
3044 	 */
3045 
3046 	mutex_enter(&ipss->ipsec_alg_lock);
3047 	/*
3048 	 * Fill SADB_REGISTER message's algorithm descriptors.  Hold
3049 	 * down the lock while filling it.
3050 	 *
3051 	 * Return only valid algorithms, so the number of algorithms
3052 	 * to send up may be less than the number of algorithm entries
3053 	 * in the table.
3054 	 */
3055 	authalgs = ipss->ipsec_alglists[IPSEC_ALG_AUTH];
3056 	for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
3057 		if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
3058 			num_aalgs++;
3059 
3060 	if (num_aalgs != 0) {
3061 		allocsize += (num_aalgs * sizeof (*saalg));
3062 		allocsize += sizeof (*sasupp_auth);
3063 	}
3064 	encralgs = ipss->ipsec_alglists[IPSEC_ALG_ENCR];
3065 	for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
3066 		if (encralgs[i] != NULL && ALG_VALID(encralgs[i]))
3067 			num_ealgs++;
3068 
3069 	if (num_ealgs != 0) {
3070 		allocsize += (num_ealgs * sizeof (*saalg));
3071 		allocsize += sizeof (*sasupp_encr);
3072 	}
3073 	keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI);
3074 	if (keysock_out_mp->b_cont == NULL) {
3075 		mutex_exit(&ipss->ipsec_alg_lock);
3076 		freemsg(keysock_out_mp);
3077 		return (B_FALSE);
3078 	}
3079 	pfkey_msg_mp = keysock_out_mp->b_cont;
3080 	pfkey_msg_mp->b_wptr += allocsize;
3081 
3082 	nextext = (sadb_ext_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg));
3083 
3084 	if (num_aalgs != 0) {
3085 		sasupp_auth = (sadb_supported_t *)nextext;
3086 		saalg = (sadb_alg_t *)(sasupp_auth + 1);
3087 
3088 		ASSERT(((ulong_t)saalg & 0x7) == 0);
3089 
3090 		numalgs_snap = 0;
3091 		for (i = 0;
3092 		    ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs));
3093 		    i++) {
3094 			if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
3095 				continue;
3096 
3097 			saalg->sadb_alg_id = authalgs[i]->alg_id;
3098 			saalg->sadb_alg_ivlen = 0;
3099 			saalg->sadb_alg_minbits	= authalgs[i]->alg_ef_minbits;
3100 			saalg->sadb_alg_maxbits	= authalgs[i]->alg_ef_maxbits;
3101 			saalg->sadb_x_alg_increment =
3102 			    authalgs[i]->alg_increment;
3103 			saalg->sadb_x_alg_saltbits = SADB_8TO1(
3104 			    authalgs[i]->alg_saltlen);
3105 			numalgs_snap++;
3106 			saalg++;
3107 		}
3108 		ASSERT(numalgs_snap == num_aalgs);
3109 #ifdef DEBUG
3110 		/*
3111 		 * Reality check to make sure I snagged all of the
3112 		 * algorithms.
3113 		 */
3114 		for (; i < IPSEC_MAX_ALGS; i++) {
3115 			if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) {
3116 				cmn_err(CE_PANIC, "esp_register_out()! "
3117 				    "Missed aalg #%d.\n", i);
3118 			}
3119 		}
3120 #endif /* DEBUG */
3121 		nextext = (sadb_ext_t *)saalg;
3122 	}
3123 
3124 	if (num_ealgs != 0) {
3125 		sasupp_encr = (sadb_supported_t *)nextext;
3126 		saalg = (sadb_alg_t *)(sasupp_encr + 1);
3127 
3128 		numalgs_snap = 0;
3129 		for (i = 0;
3130 		    ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) {
3131 			if (encralgs[i] == NULL || !ALG_VALID(encralgs[i]))
3132 				continue;
3133 			saalg->sadb_alg_id = encralgs[i]->alg_id;
3134 			saalg->sadb_alg_ivlen = encralgs[i]->alg_ivlen;
3135 			saalg->sadb_alg_minbits	= encralgs[i]->alg_ef_minbits;
3136 			saalg->sadb_alg_maxbits	= encralgs[i]->alg_ef_maxbits;
3137 			/*
3138 			 * We could advertise the ICV length, except there
3139 			 * is not a value in sadb_x_algb to do this.
3140 			 * saalg->sadb_alg_maclen = encralgs[i]->alg_maclen;
3141 			 */
3142 			saalg->sadb_x_alg_increment =
3143 			    encralgs[i]->alg_increment;
3144 			saalg->sadb_x_alg_saltbits =
3145 			    SADB_8TO1(encralgs[i]->alg_saltlen);
3146 
3147 			numalgs_snap++;
3148 			saalg++;
3149 		}
3150 		ASSERT(numalgs_snap == num_ealgs);
3151 #ifdef DEBUG
3152 		/*
3153 		 * Reality check to make sure I snagged all of the
3154 		 * algorithms.
3155 		 */
3156 		for (; i < IPSEC_MAX_ALGS; i++) {
3157 			if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) {
3158 				cmn_err(CE_PANIC, "esp_register_out()! "
3159 				    "Missed ealg #%d.\n", i);
3160 			}
3161 		}
3162 #endif /* DEBUG */
3163 		nextext = (sadb_ext_t *)saalg;
3164 	}
3165 
3166 	current_aalgs = num_aalgs;
3167 	current_ealgs = num_ealgs;
3168 
3169 	mutex_exit(&ipss->ipsec_alg_lock);
3170 
3171 	if (sens_tsl != NULL) {
3172 		sens = (sadb_sens_t *)nextext;
3173 		sadb_sens_from_label(sens, SADB_EXT_SENSITIVITY,
3174 		    sens_tsl, sens_len);
3175 
3176 		nextext = (sadb_ext_t *)(((uint8_t *)sens) + sens_len);
3177 	}
3178 
3179 	/* Now fill the rest of the SADB_REGISTER message. */
3180 
3181 	samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr;
3182 	samsg->sadb_msg_version = PF_KEY_V2;
3183 	samsg->sadb_msg_type = SADB_REGISTER;
3184 	samsg->sadb_msg_errno = 0;
3185 	samsg->sadb_msg_satype = SADB_SATYPE_ESP;
3186 	samsg->sadb_msg_len = SADB_8TO64(allocsize);
3187 	samsg->sadb_msg_reserved = 0;
3188 	/*
3189 	 * Assume caller has sufficient sequence/pid number info.  If it's one
3190 	 * from me over a new alg., I could give two hoots about sequence.
3191 	 */
3192 	samsg->sadb_msg_seq = sequence;
3193 	samsg->sadb_msg_pid = pid;
3194 
3195 	if (sasupp_auth != NULL) {
3196 		sasupp_auth->sadb_supported_len = SADB_8TO64(
3197 		    sizeof (*sasupp_auth) + sizeof (*saalg) * current_aalgs);
3198 		sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
3199 		sasupp_auth->sadb_supported_reserved = 0;
3200 	}
3201 
3202 	if (sasupp_encr != NULL) {
3203 		sasupp_encr->sadb_supported_len = SADB_8TO64(
3204 		    sizeof (*sasupp_encr) + sizeof (*saalg) * current_ealgs);
3205 		sasupp_encr->sadb_supported_exttype =
3206 		    SADB_EXT_SUPPORTED_ENCRYPT;
3207 		sasupp_encr->sadb_supported_reserved = 0;
3208 	}
3209 
3210 	if (espstack->esp_pfkey_q != NULL)
3211 		putnext(espstack->esp_pfkey_q, keysock_out_mp);
3212 	else {
3213 		freemsg(keysock_out_mp);
3214 		return (B_FALSE);
3215 	}
3216 
3217 	return (B_TRUE);
3218 }
3219 
3220 /*
3221  * Invoked when the algorithm table changes. Causes SADB_REGISTER
3222  * messages continaining the current list of algorithms to be
3223  * sent up to the ESP listeners.
3224  */
3225 void
3226 ipsecesp_algs_changed(netstack_t *ns)
3227 {
3228 	ipsecesp_stack_t	*espstack = ns->netstack_ipsecesp;
3229 
3230 	/*
3231 	 * Time to send a PF_KEY SADB_REGISTER message to ESP listeners
3232 	 * everywhere.  (The function itself checks for NULL esp_pfkey_q.)
3233 	 */
3234 	(void) esp_register_out(0, 0, 0, espstack, NULL);
3235 }
3236 
3237 /*
3238  * Stub function that taskq_dispatch() invokes to take the mblk (in arg)
3239  * and send() it into ESP and IP again.
3240  */
3241 static void
3242 inbound_task(void *arg)
3243 {
3244 	mblk_t		*mp = (mblk_t *)arg;
3245 	mblk_t		*async_mp;
3246 	ip_recv_attr_t	iras;
3247 
3248 	async_mp = mp;
3249 	mp = async_mp->b_cont;
3250 	async_mp->b_cont = NULL;
3251 	if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
3252 		/* The ill or ip_stack_t disappeared on us */
3253 		ip_drop_input("ip_recv_attr_from_mblk", mp, NULL);
3254 		freemsg(mp);
3255 		goto done;
3256 	}
3257 
3258 	esp_inbound_restart(mp, &iras);
3259 done:
3260 	ira_cleanup(&iras, B_TRUE);
3261 }
3262 
3263 /*
3264  * Restart ESP after the SA has been added.
3265  */
3266 static void
3267 esp_inbound_restart(mblk_t *mp, ip_recv_attr_t *ira)
3268 {
3269 	esph_t		*esph;
3270 	netstack_t	*ns = ira->ira_ill->ill_ipst->ips_netstack;
3271 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3272 
3273 	esp2dbg(espstack, ("in ESP inbound_task"));
3274 	ASSERT(espstack != NULL);
3275 
3276 	mp = ipsec_inbound_esp_sa(mp, ira, &esph);
3277 	if (mp == NULL)
3278 		return;
3279 
3280 	ASSERT(esph != NULL);
3281 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
3282 	ASSERT(ira->ira_ipsec_esp_sa != NULL);
3283 
3284 	mp = ira->ira_ipsec_esp_sa->ipsa_input_func(mp, esph, ira);
3285 	if (mp == NULL) {
3286 		/*
3287 		 * Either it failed or is pending. In the former case
3288 		 * ipIfStatsInDiscards was increased.
3289 		 */
3290 		return;
3291 	}
3292 
3293 	ip_input_post_ipsec(mp, ira);
3294 }
3295 
3296 /*
3297  * Now that weak-key passed, actually ADD the security association, and
3298  * send back a reply ADD message.
3299  */
3300 static int
3301 esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi,
3302     int *diagnostic, ipsecesp_stack_t *espstack)
3303 {
3304 	isaf_t *primary = NULL, *secondary;
3305 	boolean_t clone = B_FALSE, is_inbound = B_FALSE;
3306 	ipsa_t *larval = NULL;
3307 	ipsacq_t *acqrec;
3308 	iacqf_t *acq_bucket;
3309 	mblk_t *acq_msgs = NULL;
3310 	int rc;
3311 	mblk_t *lpkt;
3312 	int error;
3313 	ipsa_query_t sq;
3314 	ipsec_stack_t	*ipss = espstack->ipsecesp_netstack->netstack_ipsec;
3315 
3316 	/*
3317 	 * Locate the appropriate table(s).
3318 	 */
3319 	sq.spp = &espstack->esp_sadb;	/* XXX */
3320 	error = sadb_form_query(ksi, IPSA_Q_SA|IPSA_Q_DST,
3321 	    IPSA_Q_SA|IPSA_Q_DST|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND,
3322 	    &sq, diagnostic);
3323 	if (error)
3324 		return (error);
3325 
3326 	/*
3327 	 * Use the direction flags provided by the KMD to determine
3328 	 * if the inbound or outbound table should be the primary
3329 	 * for this SA. If these flags were absent then make this
3330 	 * decision based on the addresses.
3331 	 */
3332 	if (sq.assoc->sadb_sa_flags & IPSA_F_INBOUND) {
3333 		primary = sq.inbound;
3334 		secondary = sq.outbound;
3335 		is_inbound = B_TRUE;
3336 		if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND)
3337 			clone = B_TRUE;
3338 	} else if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND) {
3339 		primary = sq.outbound;
3340 		secondary = sq.inbound;
3341 	}
3342 
3343 	if (primary == NULL) {
3344 		/*
3345 		 * The KMD did not set a direction flag, determine which
3346 		 * table to insert the SA into based on addresses.
3347 		 */
3348 		switch (ksi->ks_in_dsttype) {
3349 		case KS_IN_ADDR_MBCAST:
3350 			clone = B_TRUE;	/* All mcast SAs can be bidirectional */
3351 			sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
3352 			/* FALLTHRU */
3353 		/*
3354 		 * If the source address is either one of mine, or unspecified
3355 		 * (which is best summed up by saying "not 'not mine'"),
3356 		 * then the association is potentially bi-directional,
3357 		 * in that it can be used for inbound traffic and outbound
3358 		 * traffic.  The best example of such an SA is a multicast
3359 		 * SA (which allows me to receive the outbound traffic).
3360 		 */
3361 		case KS_IN_ADDR_ME:
3362 			sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
3363 			primary = sq.inbound;
3364 			secondary = sq.outbound;
3365 			if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
3366 				clone = B_TRUE;
3367 			is_inbound = B_TRUE;
3368 			break;
3369 		/*
3370 		 * If the source address literally not mine (either
3371 		 * unspecified or not mine), then this SA may have an
3372 		 * address that WILL be mine after some configuration.
3373 		 * We pay the price for this by making it a bi-directional
3374 		 * SA.
3375 		 */
3376 		case KS_IN_ADDR_NOTME:
3377 			sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
3378 			primary = sq.outbound;
3379 			secondary = sq.inbound;
3380 			if (ksi->ks_in_srctype != KS_IN_ADDR_ME) {
3381 				sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
3382 				clone = B_TRUE;
3383 			}
3384 			break;
3385 		default:
3386 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
3387 			return (EINVAL);
3388 		}
3389 	}
3390 
3391 	/*
3392 	 * Find a ACQUIRE list entry if possible.  If we've added an SA that
3393 	 * suits the needs of an ACQUIRE list entry, we can eliminate the
3394 	 * ACQUIRE list entry and transmit the enqueued packets.  Use the
3395 	 * high-bit of the sequence number to queue it.  Key off destination
3396 	 * addr, and change acqrec's state.
3397 	 */
3398 
3399 	if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
3400 		acq_bucket = &(sq.sp->sdb_acq[sq.outhash]);
3401 		mutex_enter(&acq_bucket->iacqf_lock);
3402 		for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
3403 		    acqrec = acqrec->ipsacq_next) {
3404 			mutex_enter(&acqrec->ipsacq_lock);
3405 			/*
3406 			 * Q:  I only check sequence.  Should I check dst?
3407 			 * A: Yes, check dest because those are the packets
3408 			 *    that are queued up.
3409 			 */
3410 			if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
3411 			    IPSA_ARE_ADDR_EQUAL(sq.dstaddr,
3412 			    acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
3413 				break;
3414 			mutex_exit(&acqrec->ipsacq_lock);
3415 		}
3416 		if (acqrec != NULL) {
3417 			/*
3418 			 * AHA!  I found an ACQUIRE record for this SA.
3419 			 * Grab the msg list, and free the acquire record.
3420 			 * I already am holding the lock for this record,
3421 			 * so all I have to do is free it.
3422 			 */
3423 			acq_msgs = acqrec->ipsacq_mp;
3424 			acqrec->ipsacq_mp = NULL;
3425 			mutex_exit(&acqrec->ipsacq_lock);
3426 			sadb_destroy_acquire(acqrec,
3427 			    espstack->ipsecesp_netstack);
3428 		}
3429 		mutex_exit(&acq_bucket->iacqf_lock);
3430 	}
3431 
3432 	/*
3433 	 * Find PF_KEY message, and see if I'm an update.  If so, find entry
3434 	 * in larval list (if there).
3435 	 */
3436 	if (samsg->sadb_msg_type == SADB_UPDATE) {
3437 		mutex_enter(&sq.inbound->isaf_lock);
3438 		larval = ipsec_getassocbyspi(sq.inbound, sq.assoc->sadb_sa_spi,
3439 		    ALL_ZEROES_PTR, sq.dstaddr, sq.dst->sin_family);
3440 		mutex_exit(&sq.inbound->isaf_lock);
3441 
3442 		if ((larval == NULL) ||
3443 		    (larval->ipsa_state != IPSA_STATE_LARVAL)) {
3444 			*diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND;
3445 			if (larval != NULL) {
3446 				IPSA_REFRELE(larval);
3447 			}
3448 			esp0dbg(("Larval update, but larval disappeared.\n"));
3449 			return (ESRCH);
3450 		} /* Else sadb_common_add unlinks it for me! */
3451 	}
3452 
3453 	if (larval != NULL) {
3454 		/*
3455 		 * Hold again, because sadb_common_add() consumes a reference,
3456 		 * and we don't want to clear_lpkt() without a reference.
3457 		 */
3458 		IPSA_REFHOLD(larval);
3459 	}
3460 
3461 	rc = sadb_common_add(espstack->esp_pfkey_q,
3462 	    mp, samsg, ksi, primary, secondary, larval, clone, is_inbound,
3463 	    diagnostic, espstack->ipsecesp_netstack, &espstack->esp_sadb);
3464 
3465 	if (larval != NULL) {
3466 		if (rc == 0) {
3467 			lpkt = sadb_clear_lpkt(larval);
3468 			if (lpkt != NULL) {
3469 				rc = !taskq_dispatch(esp_taskq, inbound_task,
3470 				    lpkt, TQ_NOSLEEP);
3471 			}
3472 		}
3473 		IPSA_REFRELE(larval);
3474 	}
3475 
3476 	/*
3477 	 * How much more stack will I create with all of these
3478 	 * esp_outbound() calls?
3479 	 */
3480 
3481 	/* Handle the packets queued waiting for the SA */
3482 	while (acq_msgs != NULL) {
3483 		mblk_t		*asyncmp;
3484 		mblk_t		*data_mp;
3485 		ip_xmit_attr_t	ixas;
3486 		ill_t		*ill;
3487 
3488 		asyncmp = acq_msgs;
3489 		acq_msgs = acq_msgs->b_next;
3490 		asyncmp->b_next = NULL;
3491 
3492 		/*
3493 		 * Extract the ip_xmit_attr_t from the first mblk.
3494 		 * Verifies that the netstack and ill is still around; could
3495 		 * have vanished while iked was doing its work.
3496 		 * On succesful return we have a nce_t and the ill/ipst can't
3497 		 * disappear until we do the nce_refrele in ixa_cleanup.
3498 		 */
3499 		data_mp = asyncmp->b_cont;
3500 		asyncmp->b_cont = NULL;
3501 		if (!ip_xmit_attr_from_mblk(asyncmp, &ixas)) {
3502 			ESP_BUMP_STAT(espstack, out_discards);
3503 			ip_drop_packet(data_mp, B_FALSE, NULL,
3504 			    DROPPER(ipss, ipds_sadb_acquire_timeout),
3505 			    &espstack->esp_dropper);
3506 		} else if (rc != 0) {
3507 			ill = ixas.ixa_nce->nce_ill;
3508 			ESP_BUMP_STAT(espstack, out_discards);
3509 			ip_drop_packet(data_mp, B_FALSE, ill,
3510 			    DROPPER(ipss, ipds_sadb_acquire_timeout),
3511 			    &espstack->esp_dropper);
3512 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
3513 		} else {
3514 			esp_outbound_finish(data_mp, &ixas);
3515 		}
3516 		ixa_cleanup(&ixas);
3517 	}
3518 
3519 	return (rc);
3520 }
3521 
3522 /*
3523  * Process one of the queued messages (from ipsacq_mp) once the SA
3524  * has been added.
3525  */
3526 static void
3527 esp_outbound_finish(mblk_t *data_mp, ip_xmit_attr_t *ixa)
3528 {
3529 	netstack_t	*ns = ixa->ixa_ipst->ips_netstack;
3530 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3531 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3532 	ill_t		*ill = ixa->ixa_nce->nce_ill;
3533 
3534 	if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_ESP)) {
3535 		ESP_BUMP_STAT(espstack, out_discards);
3536 		ip_drop_packet(data_mp, B_FALSE, ill,
3537 		    DROPPER(ipss, ipds_sadb_acquire_timeout),
3538 		    &espstack->esp_dropper);
3539 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
3540 		return;
3541 	}
3542 
3543 	data_mp = esp_outbound(data_mp, ixa);
3544 	if (data_mp == NULL)
3545 		return;
3546 
3547 	/* do AH processing if needed */
3548 	data_mp = esp_do_outbound_ah(data_mp, ixa);
3549 	if (data_mp == NULL)
3550 		return;
3551 
3552 	(void) ip_output_post_ipsec(data_mp, ixa);
3553 }
3554 
3555 /*
3556  * Add new ESP security association.  This may become a generic AH/ESP
3557  * routine eventually.
3558  */
3559 static int
3560 esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic, netstack_t *ns)
3561 {
3562 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3563 	sadb_address_t *srcext =
3564 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3565 	sadb_address_t *dstext =
3566 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3567 	sadb_address_t *isrcext =
3568 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
3569 	sadb_address_t *idstext =
3570 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
3571 	sadb_address_t *nttext_loc =
3572 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC];
3573 	sadb_address_t *nttext_rem =
3574 	    (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM];
3575 	sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
3576 	sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
3577 	struct sockaddr_in *src, *dst;
3578 	struct sockaddr_in *natt_loc, *natt_rem;
3579 	struct sockaddr_in6 *natt_loc6, *natt_rem6;
3580 	sadb_lifetime_t *soft =
3581 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
3582 	sadb_lifetime_t *hard =
3583 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
3584 	sadb_lifetime_t *idle =
3585 	    (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE];
3586 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3587 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3588 
3589 
3590 
3591 	/* I need certain extensions present for an ADD message. */
3592 	if (srcext == NULL) {
3593 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
3594 		return (EINVAL);
3595 	}
3596 	if (dstext == NULL) {
3597 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3598 		return (EINVAL);
3599 	}
3600 	if (isrcext == NULL && idstext != NULL) {
3601 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
3602 		return (EINVAL);
3603 	}
3604 	if (isrcext != NULL && idstext == NULL) {
3605 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
3606 		return (EINVAL);
3607 	}
3608 	if (assoc == NULL) {
3609 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3610 		return (EINVAL);
3611 	}
3612 	if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) {
3613 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY;
3614 		return (EINVAL);
3615 	}
3616 
3617 	src = (struct sockaddr_in *)(srcext + 1);
3618 	dst = (struct sockaddr_in *)(dstext + 1);
3619 	natt_loc = (struct sockaddr_in *)(nttext_loc + 1);
3620 	natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1);
3621 	natt_rem = (struct sockaddr_in *)(nttext_rem + 1);
3622 	natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1);
3623 
3624 	/* Sundry ADD-specific reality checks. */
3625 	/* XXX STATS :  Logging/stats here? */
3626 
3627 	if ((assoc->sadb_sa_state != SADB_SASTATE_MATURE) &&
3628 	    (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) {
3629 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
3630 		return (EINVAL);
3631 	}
3632 	if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) {
3633 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3634 		return (EINVAL);
3635 	}
3636 
3637 #ifndef IPSEC_LATENCY_TEST
3638 	if (assoc->sadb_sa_encrypt == SADB_EALG_NULL &&
3639 	    assoc->sadb_sa_auth == SADB_AALG_NONE) {
3640 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3641 		return (EINVAL);
3642 	}
3643 #endif
3644 
3645 	if (assoc->sadb_sa_flags & ~espstack->esp_sadb.s_addflags) {
3646 		*diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
3647 		return (EINVAL);
3648 	}
3649 
3650 	if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) {
3651 		return (EINVAL);
3652 	}
3653 	ASSERT(src->sin_family == dst->sin_family);
3654 
3655 	if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) {
3656 		if (nttext_loc == NULL) {
3657 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC;
3658 			return (EINVAL);
3659 		}
3660 
3661 		if (natt_loc->sin_family == AF_INET6 &&
3662 		    !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) {
3663 			*diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC;
3664 			return (EINVAL);
3665 		}
3666 	}
3667 
3668 	if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) {
3669 		if (nttext_rem == NULL) {
3670 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM;
3671 			return (EINVAL);
3672 		}
3673 		if (natt_rem->sin_family == AF_INET6 &&
3674 		    !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) {
3675 			*diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM;
3676 			return (EINVAL);
3677 		}
3678 	}
3679 
3680 
3681 	/* Stuff I don't support, for now.  XXX Diagnostic? */
3682 	if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL)
3683 		return (EOPNOTSUPP);
3684 
3685 	if ((*diagnostic = sadb_labelchk(ksi)) != 0)
3686 		return (EINVAL);
3687 
3688 	/*
3689 	 * XXX Policy :  I'm not checking identities at this time,
3690 	 * but if I did, I'd do them here, before I sent
3691 	 * the weak key check up to the algorithm.
3692 	 */
3693 
3694 	mutex_enter(&ipss->ipsec_alg_lock);
3695 
3696 	/*
3697 	 * First locate the authentication algorithm.
3698 	 */
3699 #ifdef IPSEC_LATENCY_TEST
3700 	if (akey != NULL && assoc->sadb_sa_auth != SADB_AALG_NONE) {
3701 #else
3702 	if (akey != NULL) {
3703 #endif
3704 		ipsec_alginfo_t *aalg;
3705 
3706 		aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
3707 		    [assoc->sadb_sa_auth];
3708 		if (aalg == NULL || !ALG_VALID(aalg)) {
3709 			mutex_exit(&ipss->ipsec_alg_lock);
3710 			esp1dbg(espstack, ("Couldn't find auth alg #%d.\n",
3711 			    assoc->sadb_sa_auth));
3712 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3713 			return (EINVAL);
3714 		}
3715 
3716 		/*
3717 		 * Sanity check key sizes.
3718 		 * Note: It's not possible to use SADB_AALG_NONE because
3719 		 * this auth_alg is not defined with ALG_FLAG_VALID. If this
3720 		 * ever changes, the same check for SADB_AALG_NONE and
3721 		 * a auth_key != NULL should be made here ( see below).
3722 		 */
3723 		if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) {
3724 			mutex_exit(&ipss->ipsec_alg_lock);
3725 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
3726 			return (EINVAL);
3727 		}
3728 		ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3729 
3730 		/* check key and fix parity if needed */
3731 		if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE,
3732 		    diagnostic) != 0) {
3733 			mutex_exit(&ipss->ipsec_alg_lock);
3734 			return (EINVAL);
3735 		}
3736 	}
3737 
3738 	/*
3739 	 * Then locate the encryption algorithm.
3740 	 */
3741 	if (ekey != NULL) {
3742 		uint_t keybits;
3743 		ipsec_alginfo_t *ealg;
3744 
3745 		ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
3746 		    [assoc->sadb_sa_encrypt];
3747 		if (ealg == NULL || !ALG_VALID(ealg)) {
3748 			mutex_exit(&ipss->ipsec_alg_lock);
3749 			esp1dbg(espstack, ("Couldn't find encr alg #%d.\n",
3750 			    assoc->sadb_sa_encrypt));
3751 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3752 			return (EINVAL);
3753 		}
3754 
3755 		/*
3756 		 * Sanity check key sizes. If the encryption algorithm is
3757 		 * SADB_EALG_NULL but the encryption key is NOT
3758 		 * NULL then complain.
3759 		 *
3760 		 * The keying material includes salt bits if required by
3761 		 * algorithm and optionally the Initial IV, check the
3762 		 * length of whats left.
3763 		 */
3764 		keybits = ekey->sadb_key_bits;
3765 		keybits -= ekey->sadb_key_reserved;
3766 		keybits -= SADB_8TO1(ealg->alg_saltlen);
3767 		if ((assoc->sadb_sa_encrypt == SADB_EALG_NULL) ||
3768 		    (!ipsec_valid_key_size(keybits, ealg))) {
3769 			mutex_exit(&ipss->ipsec_alg_lock);
3770 			*diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
3771 			return (EINVAL);
3772 		}
3773 		ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3774 
3775 		/* check key */
3776 		if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE,
3777 		    diagnostic) != 0) {
3778 			mutex_exit(&ipss->ipsec_alg_lock);
3779 			return (EINVAL);
3780 		}
3781 	}
3782 	mutex_exit(&ipss->ipsec_alg_lock);
3783 
3784 	return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
3785 	    diagnostic, espstack));
3786 }
3787 
3788 /*
3789  * Update a security association.  Updates come in two varieties.  The first
3790  * is an update of lifetimes on a non-larval SA.  The second is an update of
3791  * a larval SA, which ends up looking a lot more like an add.
3792  */
3793 static int
3794 esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3795     ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
3796 {
3797 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3798 	mblk_t    *buf_pkt;
3799 	int rcode;
3800 
3801 	sadb_address_t *dstext =
3802 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3803 
3804 	if (dstext == NULL) {
3805 		*diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3806 		return (EINVAL);
3807 	}
3808 
3809 	rcode = sadb_update_sa(mp, ksi, &buf_pkt, &espstack->esp_sadb,
3810 	    diagnostic, espstack->esp_pfkey_q, esp_add_sa,
3811 	    espstack->ipsecesp_netstack, sadb_msg_type);
3812 
3813 	if ((assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE) ||
3814 	    (rcode != 0)) {
3815 		return (rcode);
3816 	}
3817 
3818 	HANDLE_BUF_PKT(esp_taskq, espstack->ipsecesp_netstack->netstack_ipsec,
3819 	    espstack->esp_dropper, buf_pkt);
3820 
3821 	return (rcode);
3822 }
3823 
3824 /* XXX refactor me */
3825 /*
3826  * Delete a security association.  This is REALLY likely to be code common to
3827  * both AH and ESP.  Find the association, then unlink it.
3828  */
3829 static int
3830 esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3831     ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
3832 {
3833 	sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3834 	sadb_address_t *dstext =
3835 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3836 	sadb_address_t *srcext =
3837 	    (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3838 	struct sockaddr_in *sin;
3839 
3840 	if (assoc == NULL) {
3841 		if (dstext != NULL) {
3842 			sin = (struct sockaddr_in *)(dstext + 1);
3843 		} else if (srcext != NULL) {
3844 			sin = (struct sockaddr_in *)(srcext + 1);
3845 		} else {
3846 			*diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3847 			return (EINVAL);
3848 		}
3849 		return (sadb_purge_sa(mp, ksi,
3850 		    (sin->sin_family == AF_INET6) ? &espstack->esp_sadb.s_v6 :
3851 		    &espstack->esp_sadb.s_v4, diagnostic,
3852 		    espstack->esp_pfkey_q));
3853 	}
3854 
3855 	return (sadb_delget_sa(mp, ksi, &espstack->esp_sadb, diagnostic,
3856 	    espstack->esp_pfkey_q, sadb_msg_type));
3857 }
3858 
3859 /* XXX refactor me */
3860 /*
3861  * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP
3862  * messages.
3863  */
3864 static void
3865 esp_dump(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
3866 {
3867 	int error;
3868 	sadb_msg_t *samsg;
3869 
3870 	/*
3871 	 * Dump each fanout, bailing if error is non-zero.
3872 	 */
3873 
3874 	error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
3875 	    &espstack->esp_sadb.s_v4);
3876 	if (error != 0)
3877 		goto bail;
3878 
3879 	error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
3880 	    &espstack->esp_sadb.s_v6);
3881 bail:
3882 	ASSERT(mp->b_cont != NULL);
3883 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3884 	samsg->sadb_msg_errno = (uint8_t)error;
3885 	sadb_pfkey_echo(espstack->esp_pfkey_q, mp,
3886 	    (sadb_msg_t *)mp->b_cont->b_rptr, ksi, NULL);
3887 }
3888 
3889 /*
3890  * First-cut reality check for an inbound PF_KEY message.
3891  */
3892 static boolean_t
3893 esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi,
3894     ipsecesp_stack_t *espstack)
3895 {
3896 	int diagnostic;
3897 
3898 	if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
3899 		diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
3900 		goto badmsg;
3901 	}
3902 	if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
3903 	    ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
3904 		diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
3905 		goto badmsg;
3906 	}
3907 	return (B_FALSE);	/* False ==> no failures */
3908 
3909 badmsg:
3910 	sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
3911 	    ksi->ks_in_serial);
3912 	return (B_TRUE);	/* True ==> failures */
3913 }
3914 
3915 /*
3916  * ESP parsing of PF_KEY messages.  Keysock did most of the really silly
3917  * error cases.  What I receive is a fully-formed, syntactically legal
3918  * PF_KEY message.  I then need to check semantics...
3919  *
3920  * This code may become common to AH and ESP.  Stay tuned.
3921  *
3922  * I also make the assumption that db_ref's are cool.  If this assumption
3923  * is wrong, this means that someone other than keysock or me has been
3924  * mucking with PF_KEY messages.
3925  */
3926 static void
3927 esp_parse_pfkey(mblk_t *mp, ipsecesp_stack_t *espstack)
3928 {
3929 	mblk_t *msg = mp->b_cont;
3930 	sadb_msg_t *samsg;
3931 	keysock_in_t *ksi;
3932 	int error;
3933 	int diagnostic = SADB_X_DIAGNOSTIC_NONE;
3934 
3935 	ASSERT(msg != NULL);
3936 
3937 	samsg = (sadb_msg_t *)msg->b_rptr;
3938 	ksi = (keysock_in_t *)mp->b_rptr;
3939 
3940 	/*
3941 	 * If applicable, convert unspecified AF_INET6 to unspecified
3942 	 * AF_INET.  And do other address reality checks.
3943 	 */
3944 	if (!sadb_addrfix(ksi, espstack->esp_pfkey_q, mp,
3945 	    espstack->ipsecesp_netstack) ||
3946 	    esp_pfkey_reality_failures(mp, ksi, espstack)) {
3947 		return;
3948 	}
3949 
3950 	switch (samsg->sadb_msg_type) {
3951 	case SADB_ADD:
3952 		error = esp_add_sa(mp, ksi, &diagnostic,
3953 		    espstack->ipsecesp_netstack);
3954 		if (error != 0) {
3955 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3956 			    diagnostic, ksi->ks_in_serial);
3957 		}
3958 		/* else esp_add_sa() took care of things. */
3959 		break;
3960 	case SADB_DELETE:
3961 	case SADB_X_DELPAIR:
3962 	case SADB_X_DELPAIR_STATE:
3963 		error = esp_del_sa(mp, ksi, &diagnostic, espstack,
3964 		    samsg->sadb_msg_type);
3965 		if (error != 0) {
3966 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3967 			    diagnostic, ksi->ks_in_serial);
3968 		}
3969 		/* Else esp_del_sa() took care of things. */
3970 		break;
3971 	case SADB_GET:
3972 		error = sadb_delget_sa(mp, ksi, &espstack->esp_sadb,
3973 		    &diagnostic, espstack->esp_pfkey_q, samsg->sadb_msg_type);
3974 		if (error != 0) {
3975 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3976 			    diagnostic, ksi->ks_in_serial);
3977 		}
3978 		/* Else sadb_get_sa() took care of things. */
3979 		break;
3980 	case SADB_FLUSH:
3981 		sadbp_flush(&espstack->esp_sadb, espstack->ipsecesp_netstack);
3982 		sadb_pfkey_echo(espstack->esp_pfkey_q, mp, samsg, ksi, NULL);
3983 		break;
3984 	case SADB_REGISTER:
3985 		/*
3986 		 * Hmmm, let's do it!  Check for extensions (there should
3987 		 * be none), extract the fields, call esp_register_out(),
3988 		 * then either free or report an error.
3989 		 *
3990 		 * Keysock takes care of the PF_KEY bookkeeping for this.
3991 		 */
3992 		if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
3993 		    ksi->ks_in_serial, espstack, msg_getcred(mp, NULL))) {
3994 			freemsg(mp);
3995 		} else {
3996 			/*
3997 			 * Only way this path hits is if there is a memory
3998 			 * failure.  It will not return B_FALSE because of
3999 			 * lack of esp_pfkey_q if I am in wput().
4000 			 */
4001 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM,
4002 			    diagnostic, ksi->ks_in_serial);
4003 		}
4004 		break;
4005 	case SADB_UPDATE:
4006 	case SADB_X_UPDATEPAIR:
4007 		/*
4008 		 * Find a larval, if not there, find a full one and get
4009 		 * strict.
4010 		 */
4011 		error = esp_update_sa(mp, ksi, &diagnostic, espstack,
4012 		    samsg->sadb_msg_type);
4013 		if (error != 0) {
4014 			sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
4015 			    diagnostic, ksi->ks_in_serial);
4016 		}
4017 		/* else esp_update_sa() took care of things. */
4018 		break;
4019 	case SADB_GETSPI:
4020 		/*
4021 		 * Reserve a new larval entry.
4022 		 */
4023 		esp_getspi(mp, ksi, espstack);
4024 		break;
4025 	case SADB_ACQUIRE:
4026 		/*
4027 		 * Find larval and/or ACQUIRE record and kill it (them), I'm
4028 		 * most likely an error.  Inbound ACQUIRE messages should only
4029 		 * have the base header.
4030 		 */
4031 		sadb_in_acquire(samsg, &espstack->esp_sadb,
4032 		    espstack->esp_pfkey_q, espstack->ipsecesp_netstack);
4033 		freemsg(mp);
4034 		break;
4035 	case SADB_DUMP:
4036 		/*
4037 		 * Dump all entries.
4038 		 */
4039 		esp_dump(mp, ksi, espstack);
4040 		/* esp_dump will take care of the return message, etc. */
4041 		break;
4042 	case SADB_EXPIRE:
4043 		/* Should never reach me. */
4044 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, EOPNOTSUPP,
4045 		    diagnostic, ksi->ks_in_serial);
4046 		break;
4047 	default:
4048 		sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL,
4049 		    SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
4050 		break;
4051 	}
4052 }
4053 
4054 /*
4055  * Handle case where PF_KEY says it can't find a keysock for one of my
4056  * ACQUIRE messages.
4057  */
4058 static void
4059 esp_keysock_no_socket(mblk_t *mp, ipsecesp_stack_t *espstack)
4060 {
4061 	sadb_msg_t *samsg;
4062 	keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
4063 
4064 	if (mp->b_cont == NULL) {
4065 		freemsg(mp);
4066 		return;
4067 	}
4068 	samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
4069 
4070 	/*
4071 	 * If keysock can't find any registered, delete the acquire record
4072 	 * immediately, and handle errors.
4073 	 */
4074 	if (samsg->sadb_msg_type == SADB_ACQUIRE) {
4075 		samsg->sadb_msg_errno = kse->ks_err_errno;
4076 		samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
4077 		/*
4078 		 * Use the write-side of the esp_pfkey_q
4079 		 */
4080 		sadb_in_acquire(samsg, &espstack->esp_sadb,
4081 		    WR(espstack->esp_pfkey_q), espstack->ipsecesp_netstack);
4082 	}
4083 
4084 	freemsg(mp);
4085 }
4086 
4087 /*
4088  * ESP module write put routine.
4089  */
4090 static void
4091 ipsecesp_wput(queue_t *q, mblk_t *mp)
4092 {
4093 	ipsec_info_t *ii;
4094 	struct iocblk *iocp;
4095 	ipsecesp_stack_t	*espstack = (ipsecesp_stack_t *)q->q_ptr;
4096 
4097 	esp3dbg(espstack, ("In esp_wput().\n"));
4098 
4099 	/* NOTE: Each case must take care of freeing or passing mp. */
4100 	switch (mp->b_datap->db_type) {
4101 	case M_CTL:
4102 		if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
4103 			/* Not big enough message. */
4104 			freemsg(mp);
4105 			break;
4106 		}
4107 		ii = (ipsec_info_t *)mp->b_rptr;
4108 
4109 		switch (ii->ipsec_info_type) {
4110 		case KEYSOCK_OUT_ERR:
4111 			esp1dbg(espstack, ("Got KEYSOCK_OUT_ERR message.\n"));
4112 			esp_keysock_no_socket(mp, espstack);
4113 			break;
4114 		case KEYSOCK_IN:
4115 			ESP_BUMP_STAT(espstack, keysock_in);
4116 			esp3dbg(espstack, ("Got KEYSOCK_IN message.\n"));
4117 
4118 			/* Parse the message. */
4119 			esp_parse_pfkey(mp, espstack);
4120 			break;
4121 		case KEYSOCK_HELLO:
4122 			sadb_keysock_hello(&espstack->esp_pfkey_q, q, mp,
4123 			    esp_ager, (void *)espstack, &espstack->esp_event,
4124 			    SADB_SATYPE_ESP);
4125 			break;
4126 		default:
4127 			esp2dbg(espstack, ("Got M_CTL from above of 0x%x.\n",
4128 			    ii->ipsec_info_type));
4129 			freemsg(mp);
4130 			break;
4131 		}
4132 		break;
4133 	case M_IOCTL:
4134 		iocp = (struct iocblk *)mp->b_rptr;
4135 		switch (iocp->ioc_cmd) {
4136 		case ND_SET:
4137 		case ND_GET:
4138 			if (nd_getset(q, espstack->ipsecesp_g_nd, mp)) {
4139 				qreply(q, mp);
4140 				return;
4141 			} else {
4142 				iocp->ioc_error = ENOENT;
4143 			}
4144 			/* FALLTHRU */
4145 		default:
4146 			/* We really don't support any other ioctls, do we? */
4147 
4148 			/* Return EINVAL */
4149 			if (iocp->ioc_error != ENOENT)
4150 				iocp->ioc_error = EINVAL;
4151 			iocp->ioc_count = 0;
4152 			mp->b_datap->db_type = M_IOCACK;
4153 			qreply(q, mp);
4154 			return;
4155 		}
4156 	default:
4157 		esp3dbg(espstack,
4158 		    ("Got default message, type %d, passing to IP.\n",
4159 		    mp->b_datap->db_type));
4160 		putnext(q, mp);
4161 	}
4162 }
4163 
4164 /*
4165  * Wrapper to allow IP to trigger an ESP association failure message
4166  * during inbound SA selection.
4167  */
4168 void
4169 ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
4170     uint32_t spi, void *addr, int af, ip_recv_attr_t *ira)
4171 {
4172 	netstack_t	*ns = ira->ira_ill->ill_ipst->ips_netstack;
4173 	ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
4174 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4175 
4176 	if (espstack->ipsecesp_log_unknown_spi) {
4177 		ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
4178 		    addr, af, espstack->ipsecesp_netstack);
4179 	}
4180 
4181 	ip_drop_packet(mp, B_TRUE, ira->ira_ill,
4182 	    DROPPER(ipss, ipds_esp_no_sa),
4183 	    &espstack->esp_dropper);
4184 }
4185 
4186 /*
4187  * Initialize the ESP input and output processing functions.
4188  */
4189 void
4190 ipsecesp_init_funcs(ipsa_t *sa)
4191 {
4192 	if (sa->ipsa_output_func == NULL)
4193 		sa->ipsa_output_func = esp_outbound;
4194 	if (sa->ipsa_input_func == NULL)
4195 		sa->ipsa_input_func = esp_inbound;
4196 }
4197