xref: /titanic_50/usr/src/uts/common/inet/ip/ip_ire.c (revision 47ab0c7c6702159d8bb84e3b1533d9f9843dd568)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains routines that manipulate Internet Routing Entries (IREs).
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/stropts.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/ddi.h>
37 #include <sys/cmn_err.h>
38 #include <sys/policy.h>
39 
40 #include <sys/systm.h>
41 #include <sys/kmem.h>
42 #include <sys/param.h>
43 #include <sys/socket.h>
44 #include <net/if.h>
45 #include <net/route.h>
46 #include <netinet/in.h>
47 #include <net/if_dl.h>
48 #include <netinet/ip6.h>
49 #include <netinet/icmp6.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 #include <inet/ip.h>
54 #include <inet/ip6.h>
55 #include <inet/ip_ndp.h>
56 #include <inet/arp.h>
57 #include <inet/ip_if.h>
58 #include <inet/ip_ire.h>
59 #include <inet/ip_ftable.h>
60 #include <inet/ip_rts.h>
61 #include <inet/nd.h>
62 
63 #include <net/pfkeyv2.h>
64 #include <inet/ipsec_info.h>
65 #include <inet/sadb.h>
66 #include <inet/tcp.h>
67 #include <inet/ipclassifier.h>
68 #include <sys/zone.h>
69 #include <sys/cpuvar.h>
70 
71 #include <sys/tsol/label.h>
72 #include <sys/tsol/tnet.h>
73 
74 struct kmem_cache *rt_entry_cache;
75 
76 /*
77  * Synchronization notes:
78  *
79  * The fields of the ire_t struct are protected in the following way :
80  *
81  * ire_next/ire_ptpn
82  *
83  *	- bucket lock of the respective tables (cache or forwarding tables).
84  *
85  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
86  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
87  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
88  *
89  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
90  *	  we don't need a lock whenever these fields are accessed.
91  *
92  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
93  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
94  *        changes after that. Thus we don't need a lock whenever these
95  *	  fields are accessed.
96  *
97  * ire_gateway_addr_v4[v6]
98  *
99  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
100  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
101  *	  it assumed to be atomic and hence the other parts of the code
102  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
103  *	  and hence any access to it uses ire_lock to get/set the right value.
104  *
105  * ire_ident, ire_refcnt
106  *
107  *	- Updated atomically using atomic_add_32
108  *
109  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
110  *
111  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
112  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
113  *
114  * ire_max_frag, ire_frag_flag
115  *
116  *	- ire_lock is used to set/read both of them together.
117  *
118  * ire_tire_mark
119  *
120  *	- Set in ire_create and updated in ire_expire, which is called
121  *	  by only one function namely ip_trash_timer_expire. Thus only
122  *	  one function updates and examines the value.
123  *
124  * ire_marks
125  *	- bucket lock protects this.
126  *
127  * ire_ipsec_overhead/ire_ll_hdr_length
128  *
129  *	- Place holder for returning the information to the upper layers
130  *	  when IRE_DB_REQ comes down.
131  *
132  *
133  * ipv6_ire_default_count is protected by the bucket lock of
134  * ip_forwarding_table_v6[0][0].
135  *
136  * ipv6_ire_default_index is not protected as it  is just a hint
137  * at which default gateway to use. There is nothing
138  * wrong in using the same gateway for two different connections.
139  *
140  * As we always hold the bucket locks in all the places while accessing
141  * the above values, it is natural to use them for protecting them.
142  *
143  * We have a separate cache table and forwarding table for IPv4 and IPv6.
144  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
145  * array of irb_t structures. The IPv6 forwarding table
146  * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
147  *  structure. ip_forwarding_table_v6 is allocated dynamically in
148  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
149  * initializing the same bucket. Once a bucket is initialized, it is never
150  * de-alloacted. This assumption enables us to access
151  * ip_forwarding_table_v6[i] without any locks.
152  *
153  * The forwarding table for IPv4 is a radix tree whose leaves
154  * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
155  * for IPv4 is dynamically allocated and freed.
156  *
157  * Each irb_t - ire bucket structure has a lock to protect
158  * a bucket and the ires residing in the bucket have a back pointer to
159  * the bucket structure. It also has a reference count for the number
160  * of threads walking the bucket - irb_refcnt which is bumped up
161  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
162  * set to IRE_MARK_CONDEMNED indicating that there are some ires
163  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
164  * last thread to leave the bucket should delete the ires. Usually
165  * this is done by the IRB_REFRELE macro which is used to decrement
166  * the reference count on a bucket. See comments above irb_t structure
167  * definition in ip.h for further details.
168  *
169  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
170  * decrements the reference count, ire_refcnt, atomically on the ire.
171  * ire_refcnt is modified only using this macro. Operations on the IRE
172  * could be described as follows :
173  *
174  * CREATE an ire with reference count initialized to 1.
175  *
176  * ADDITION of an ire holds the bucket lock, checks for duplicates
177  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
178  * bumping up once more i.e the reference count is 2. This is to avoid
179  * an extra lookup in the functions calling ire_add which wants to
180  * work with the ire after adding.
181  *
182  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
183  * macro. It is valid to bump up the referece count of the IRE,
184  * after the lookup has returned an ire. Following are the lookup
185  * functions that return an HELD ire :
186  *
187  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
188  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
189  * ipif_to_ire[_v6].
190  *
191  * DELETION of an ire holds the bucket lock, removes it from the list
192  * and then decrements the reference count for having removed from the list
193  * by using the IRE_REFRELE macro. If some other thread has looked up
194  * the ire, the reference count would have been bumped up and hence
195  * this ire will not be freed once deleted. It will be freed once the
196  * reference count drops to zero.
197  *
198  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
199  * lookups acquire the bucket lock as RW_READER.
200  *
201  * NOTE : The only functions that does the IRE_REFRELE when an ire is
202  *	  passed as an argument are :
203  *
204  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
205  *			   broadcast ires it looks up internally within
206  *			   the function. Currently, for simplicity it does
207  *			   not differentiate the one that is passed in and
208  *			   the ones it looks up internally. It always
209  *			   IRE_REFRELEs.
210  *	  2) ire_send
211  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
212  *			   that take ire as an argument, it has to selectively
213  *			   IRE_REFRELE the ire. To maintain symmetry,
214  *			   ire_send_v6 does the same.
215  *
216  * Otherwise, the general rule is to do the IRE_REFRELE in the function
217  * that is passing the ire as an argument.
218  *
219  * In trying to locate ires the following points are to be noted.
220  *
221  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
222  * to be ignored when walking the ires using ire_next.
223  *
224  * Zones note:
225  *	Walking IREs within a given zone also walks certain ires in other
226  *	zones.  This is done intentionally.  IRE walks with a specified
227  *	zoneid are used only when doing informational reports, and
228  *	zone users want to see things that they can access. See block
229  *	comment in ire_walk_ill_match().
230  */
231 
232 /*
233  * The minimum size of IRE cache table.  It will be recalcuated in
234  * ip_ire_init().
235  * Setable in /etc/system
236  */
237 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
238 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
239 
240 /*
241  * The size of the forwarding table.  We will make sure that it is a
242  * power of 2 in ip_ire_init().
243  * Setable in /etc/system
244  */
245 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
246 
247 struct	kmem_cache	*ire_cache;
248 static ire_t	ire_null;
249 
250 /*
251  * The threshold number of IRE in a bucket when the IREs are
252  * cleaned up.  This threshold is calculated later in ip_open()
253  * based on the speed of CPU and available memory.  This default
254  * value is the maximum.
255  *
256  * We have two kinds of cached IRE, temporary and
257  * non-temporary.  Temporary IREs are marked with
258  * IRE_MARK_TEMPORARY.  They are IREs created for non
259  * TCP traffic and for forwarding purposes.  All others
260  * are non-temporary IREs.  We don't mark IRE created for
261  * TCP as temporary because TCP is stateful and there are
262  * info stored in the IRE which can be shared by other TCP
263  * connections to the same destination.  For connected
264  * endpoint, we also don't want to mark the IRE used as
265  * temporary because the same IRE will be used frequently,
266  * otherwise, the app should not do a connect().  We change
267  * the marking at ip_bind_connected_*() if necessary.
268  *
269  * We want to keep the cache IRE hash bucket length reasonably
270  * short, otherwise IRE lookup functions will take "forever."
271  * We use the "crude" function that the IRE bucket
272  * length should be based on the CPU speed, which is 1 entry
273  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
274  * (n).  This means that with a 750MHz CPU, the max bucket
275  * length can be (750 >> n) entries.
276  *
277  * Note that this threshold is separate for temp and non-temp
278  * IREs.  This means that the actual bucket length can be
279  * twice as that.  And while we try to keep temporary IRE
280  * length at most at the threshold value, we do not attempt to
281  * make the length for non-temporary IREs fixed, for the
282  * reason stated above.  Instead, we start trying to find
283  * "unused" non-temporary IREs when the bucket length reaches
284  * this threshold and clean them up.
285  *
286  * We also want to limit the amount of memory used by
287  * IREs.  So if we are allowed to use ~3% of memory (M)
288  * for those IREs, each bucket should not have more than
289  *
290  * 	M / num of cache bucket / sizeof (ire_t)
291  *
292  * Again the above memory uses are separate for temp and
293  * non-temp cached IREs.
294  *
295  * We may also want the limit to be a function of the number
296  * of interfaces and number of CPUs.  Doing the initialization
297  * in ip_open() means that every time an interface is plumbed,
298  * the max is re-calculated.  Right now, we don't do anything
299  * different.  In future, when we have more experience, we
300  * may want to change this behavior.
301  */
302 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
303 uint32_t ip6_ire_max_bucket_cnt = 10;
304 uint32_t ip_ire_cleanup_cnt = 2;
305 
306 /*
307  * The minimum of the temporary IRE bucket count.  We do not want
308  * the length of each bucket to be too short.  This may hurt
309  * performance of some apps as the temporary IREs are removed too
310  * often.
311  */
312 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
313 uint32_t ip6_ire_min_bucket_cnt = 3;
314 
315 /*
316  * The ratio of memory consumed by IRE used for temporary to available
317  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
318  * value can be changed in /etc/system.  6 is a reasonable number.
319  */
320 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
321 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
322 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
323 
324 typedef struct nce_clookup_s {
325 	ipaddr_t ncecl_addr;
326 	boolean_t ncecl_found;
327 } nce_clookup_t;
328 
329 /*
330  * The maximum number of buckets in IRE cache table.  In future, we may
331  * want to make it a dynamic hash table.  For the moment, we fix the
332  * size and allocate the table in ip_ire_init() when IP is first loaded.
333  * We take into account the amount of memory a system has.
334  */
335 #define	IP_MAX_CACHE_TABLE_SIZE	4096
336 
337 /* Setable in /etc/system */
338 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
339 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
340 
341 /* Zero iulp_t for initialization. */
342 const iulp_t	ire_uinfo_null = { 0 };
343 
344 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
345     ipsq_func_t func, boolean_t);
346 static void	ire_delete_v4(ire_t *ire);
347 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
348     zoneid_t zoneid, ip_stack_t *);
349 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
350     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
351 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold,
352     ire_t *ref_ire);
353 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
354 static	ire_t	*ip4_ctable_lookup_impl(ire_ctable_args_t *margs);
355 #ifdef DEBUG
356 static void	ire_trace_cleanup(const ire_t *);
357 #endif
358 
359 /*
360  * To avoid bloating the code, we call this function instead of
361  * using the macro IRE_REFRELE. Use macro only in performance
362  * critical paths.
363  *
364  * Must not be called while holding any locks. Otherwise if this is
365  * the last reference to be released there is a chance of recursive mutex
366  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
367  * to restart an ioctl. The one exception is when the caller is sure that
368  * this is not the last reference to be released. Eg. if the caller is
369  * sure that the ire has not been deleted and won't be deleted.
370  */
371 void
372 ire_refrele(ire_t *ire)
373 {
374 	IRE_REFRELE(ire);
375 }
376 
377 void
378 ire_refrele_notr(ire_t *ire)
379 {
380 	IRE_REFRELE_NOTR(ire);
381 }
382 
383 /*
384  * kmem_cache_alloc constructor for IRE in kma space.
385  * Note that when ire_mp is set the IRE is stored in that mblk and
386  * not in this cache.
387  */
388 /* ARGSUSED */
389 static int
390 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
391 {
392 	ire_t	*ire = buf;
393 
394 	ire->ire_nce = NULL;
395 
396 	return (0);
397 }
398 
399 /* ARGSUSED1 */
400 static void
401 ip_ire_destructor(void *buf, void *cdrarg)
402 {
403 	ire_t	*ire = buf;
404 
405 	ASSERT(ire->ire_nce == NULL);
406 }
407 
408 /*
409  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
410  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
411  * for an existing CACHED IRE.
412  */
413 /* ARGSUSED */
414 int
415 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
416 {
417 	uchar_t	*addr_ucp;
418 	ipic_t	*ipic;
419 	ire_t	*ire;
420 	ipaddr_t	addr;
421 	in6_addr_t	v6addr;
422 	irb_t	*irb;
423 	zoneid_t	zoneid;
424 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
425 
426 	ASSERT(q->q_next == NULL);
427 	zoneid = Q_TO_CONN(q)->conn_zoneid;
428 
429 	/*
430 	 * Check privilege using the ioctl credential; if it is NULL
431 	 * then this is a kernel message and therefor privileged.
432 	 */
433 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
434 		return (EPERM);
435 
436 	ipic = (ipic_t *)mp->b_rptr;
437 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
438 	    ipic->ipic_addr_length))) {
439 		return (EINVAL);
440 	}
441 	if (!OK_32PTR(addr_ucp))
442 		return (EINVAL);
443 	switch (ipic->ipic_addr_length) {
444 	case IP_ADDR_LEN: {
445 		/* Extract the destination address. */
446 		addr = *(ipaddr_t *)addr_ucp;
447 		/* Find the corresponding IRE. */
448 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
449 		break;
450 	}
451 	case IPV6_ADDR_LEN: {
452 		/* Extract the destination address. */
453 		v6addr = *(in6_addr_t *)addr_ucp;
454 		/* Find the corresponding IRE. */
455 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
456 		break;
457 	}
458 	default:
459 		return (EINVAL);
460 	}
461 
462 	if (ire == NULL)
463 		return (ENOENT);
464 	/*
465 	 * Update the round trip time estimate and/or the max frag size
466 	 * and/or the slow start threshold.
467 	 *
468 	 * We serialize multiple advises using ire_lock.
469 	 */
470 	mutex_enter(&ire->ire_lock);
471 	if (ipic->ipic_rtt) {
472 		/*
473 		 * If there is no old cached values, initialize them
474 		 * conservatively.  Set them to be (1.5 * new value).
475 		 */
476 		if (ire->ire_uinfo.iulp_rtt != 0) {
477 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
478 			    ipic->ipic_rtt) >> 1;
479 		} else {
480 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
481 			    (ipic->ipic_rtt >> 1);
482 		}
483 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
484 			ire->ire_uinfo.iulp_rtt_sd =
485 			    (ire->ire_uinfo.iulp_rtt_sd +
486 			    ipic->ipic_rtt_sd) >> 1;
487 		} else {
488 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
489 			    (ipic->ipic_rtt_sd >> 1);
490 		}
491 	}
492 	if (ipic->ipic_max_frag)
493 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
494 	if (ipic->ipic_ssthresh != 0) {
495 		if (ire->ire_uinfo.iulp_ssthresh != 0)
496 			ire->ire_uinfo.iulp_ssthresh =
497 			    (ipic->ipic_ssthresh +
498 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
499 		else
500 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
501 	}
502 	/*
503 	 * Don't need the ire_lock below this. ire_type does not change
504 	 * after initialization. ire_marks is protected by irb_lock.
505 	 */
506 	mutex_exit(&ire->ire_lock);
507 
508 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
509 		/*
510 		 * Only increment the temporary IRE count if the original
511 		 * IRE is not already marked temporary.
512 		 */
513 		irb = ire->ire_bucket;
514 		rw_enter(&irb->irb_lock, RW_WRITER);
515 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
516 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
517 			irb->irb_tmp_ire_cnt++;
518 		}
519 		ire->ire_marks |= ipic->ipic_ire_marks;
520 		rw_exit(&irb->irb_lock);
521 	}
522 
523 	ire_refrele(ire);
524 	return (0);
525 }
526 
527 /*
528  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
529  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
530  * for a host that is not responding.  This will force an attempt to
531  * establish a new route, if available, and flush out the ARP entry so
532  * it will re-resolve.  Management processes may want to use the
533  * version that generates a reply.
534  *
535  * This function does not support IPv6 since Neighbor Unreachability Detection
536  * means that negative advise like this is useless.
537  */
538 /* ARGSUSED */
539 int
540 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
541 {
542 	uchar_t		*addr_ucp;
543 	ipaddr_t	addr;
544 	ire_t		*ire;
545 	ipid_t		*ipid;
546 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
547 	zoneid_t	zoneid;
548 	ire_t		*gire = NULL;
549 	ill_t		*ill;
550 	mblk_t		*arp_mp;
551 	ip_stack_t	*ipst;
552 
553 	ASSERT(q->q_next == NULL);
554 	zoneid = Q_TO_CONN(q)->conn_zoneid;
555 	ipst = CONNQ_TO_IPST(q);
556 
557 	/*
558 	 * Check privilege using the ioctl credential; if it is NULL
559 	 * then this is a kernel message and therefor privileged.
560 	 */
561 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
562 		return (EPERM);
563 
564 	ipid = (ipid_t *)mp->b_rptr;
565 
566 	/* Only actions on IRE_CACHEs are acceptable at present. */
567 	if (ipid->ipid_ire_type != IRE_CACHE)
568 		return (EINVAL);
569 
570 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
571 	    ipid->ipid_addr_length);
572 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
573 		return (EINVAL);
574 	switch (ipid->ipid_addr_length) {
575 	case IP_ADDR_LEN:
576 		/* addr_ucp points at IP addr */
577 		break;
578 	case sizeof (sin_t): {
579 		sin_t	*sin;
580 		/*
581 		 * got complete (sockaddr) address - increment addr_ucp to point
582 		 * at the ip_addr field.
583 		 */
584 		sin = (sin_t *)addr_ucp;
585 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
586 		break;
587 	}
588 	default:
589 		return (EINVAL);
590 	}
591 	/* Extract the destination address. */
592 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
593 
594 	/* Try to find the CACHED IRE. */
595 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
596 
597 	/* Nail it. */
598 	if (ire) {
599 		/* Allow delete only on CACHE entries */
600 		if (ire->ire_type != IRE_CACHE) {
601 			ire_refrele(ire);
602 			return (EINVAL);
603 		}
604 
605 		/*
606 		 * Verify that the IRE has been around for a while.
607 		 * This is to protect against transport protocols
608 		 * that are too eager in sending delete messages.
609 		 */
610 		if (gethrestime_sec() <
611 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
612 			ire_refrele(ire);
613 			return (EINVAL);
614 		}
615 		/*
616 		 * Now we have a potentially dead cache entry. We need
617 		 * to remove it.
618 		 * If this cache entry is generated from a
619 		 * default route (i.e., ire_cmask == 0),
620 		 * search the default list and mark it dead and some
621 		 * background process will try to activate it.
622 		 */
623 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
624 			/*
625 			 * Make sure that we pick a different
626 			 * IRE_DEFAULT next time.
627 			 */
628 			ire_t *gw_ire;
629 			irb_t *irb = NULL;
630 			uint_t match_flags;
631 
632 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
633 
634 			gire = ire_ftable_lookup(ire->ire_addr,
635 			    ire->ire_cmask, 0, 0,
636 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
637 			    ipst);
638 
639 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
640 			    (void *)gire));
641 
642 			if (gire != NULL) {
643 				irb = gire->ire_bucket;
644 
645 				/*
646 				 * We grab it as writer just to serialize
647 				 * multiple threads trying to bump up
648 				 * irb_rr_origin
649 				 */
650 				rw_enter(&irb->irb_lock, RW_WRITER);
651 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
652 					rw_exit(&irb->irb_lock);
653 					goto done;
654 				}
655 
656 				DTRACE_PROBE1(ip__ire__del__origin,
657 				    (ire_t *), gw_ire);
658 
659 				/* Skip past the potentially bad gateway */
660 				if (ire->ire_gateway_addr ==
661 				    gw_ire->ire_gateway_addr) {
662 					ire_t *next = gw_ire->ire_next;
663 
664 					DTRACE_PROBE2(ip__ire__del,
665 					    (ire_t *), gw_ire, (irb_t *), irb);
666 					IRE_FIND_NEXT_ORIGIN(next);
667 					irb->irb_rr_origin = next;
668 				}
669 				rw_exit(&irb->irb_lock);
670 			}
671 		}
672 done:
673 		if (gire != NULL)
674 			IRE_REFRELE(gire);
675 		/* report the bad route to routing sockets */
676 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
677 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
678 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
679 		routing_sock_info = B_TRUE;
680 
681 		/*
682 		 * TCP is really telling us to start over completely, and it
683 		 * expects that we'll resend the ARP query.  Tell ARP to
684 		 * discard the entry, if this is a local destination.
685 		 *
686 		 * But, if the ARP entry is permanent then it shouldn't be
687 		 * deleted, so we set ARED_F_PRESERVE_PERM.
688 		 */
689 		ill = ire->ire_stq->q_ptr;
690 		if (ire->ire_gateway_addr == 0 &&
691 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
692 			ared_t *ared = (ared_t *)arp_mp->b_rptr;
693 
694 			ASSERT(ared->ared_cmd == AR_ENTRY_DELETE);
695 			ared->ared_flags |= ARED_F_PRESERVE_PERM;
696 			putnext(ill->ill_rq, arp_mp);
697 		}
698 
699 		ire_delete(ire);
700 		ire_refrele(ire);
701 	}
702 	/*
703 	 * Also look for an IRE_HOST type redirect ire and
704 	 * remove it if present.
705 	 */
706 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
707 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
708 
709 	/* Nail it. */
710 	if (ire != NULL) {
711 		if (ire->ire_flags & RTF_DYNAMIC) {
712 			if (!routing_sock_info) {
713 				ip_rts_change(RTM_LOSING, ire->ire_addr,
714 				    ire->ire_gateway_addr, ire->ire_mask,
715 				    ire->ire_src_addr, 0, 0, 0,
716 				    (RTA_DST | RTA_GATEWAY |
717 				    RTA_NETMASK | RTA_IFA),
718 				    ipst);
719 			}
720 			ire_delete(ire);
721 		}
722 		ire_refrele(ire);
723 	}
724 	return (0);
725 }
726 
727 /*
728  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
729  * down from the Upper Level Protocol to request a copy of the IRE (to check
730  * its type or to extract information like round-trip time estimates or the
731  * MTU.)
732  * The address is assumed to be in the ire_addr field. If no IRE is found
733  * an IRE is returned with ire_type being zero.
734  * Note that the upper lavel protocol has to check for broadcast
735  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
736  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
737  * end of the returned message.
738  *
739  * TCP sends down a message of this type with a connection request packet
740  * chained on. UDP and ICMP send it down to verify that a route exists for
741  * the destination address when they get connected.
742  */
743 void
744 ip_ire_req(queue_t *q, mblk_t *mp)
745 {
746 	ire_t	*inire;
747 	ire_t	*ire;
748 	mblk_t	*mp1;
749 	ire_t	*sire = NULL;
750 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
751 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
752 
753 	ASSERT(q->q_next == NULL);
754 
755 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
756 	    !OK_32PTR(mp->b_rptr)) {
757 		freemsg(mp);
758 		return;
759 	}
760 	inire = (ire_t *)mp->b_rptr;
761 	/*
762 	 * Got it, now take our best shot at an IRE.
763 	 */
764 	if (inire->ire_ipversion == IPV6_VERSION) {
765 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
766 		    NULL, &sire, zoneid, NULL,
767 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
768 	} else {
769 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
770 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
771 		    NULL, &sire, zoneid, NULL,
772 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
773 	}
774 
775 	/*
776 	 * We prevent returning IRES with source address INADDR_ANY
777 	 * as these were temporarily created for sending packets
778 	 * from endpoints that have conn_unspec_src set.
779 	 */
780 	if (ire == NULL ||
781 	    (ire->ire_ipversion == IPV4_VERSION &&
782 	    ire->ire_src_addr == INADDR_ANY) ||
783 	    (ire->ire_ipversion == IPV6_VERSION &&
784 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
785 		inire->ire_type = 0;
786 	} else {
787 		bcopy(ire, inire, sizeof (ire_t));
788 		/* Copy the route metrics from the parent. */
789 		if (sire != NULL) {
790 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
791 			    sizeof (iulp_t));
792 		}
793 
794 		/*
795 		 * As we don't lookup global policy here, we may not
796 		 * pass the right size if per-socket policy is not
797 		 * present. For these cases, path mtu discovery will
798 		 * do the right thing.
799 		 */
800 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
801 
802 		/* Pass the latest setting of the ip_path_mtu_discovery */
803 		inire->ire_frag_flag |=
804 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
805 	}
806 	if (ire != NULL)
807 		ire_refrele(ire);
808 	if (sire != NULL)
809 		ire_refrele(sire);
810 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
811 	mp->b_datap->db_type = IRE_DB_TYPE;
812 
813 	/* Put the IRE_DB_TYPE mblk last in the chain */
814 	mp1 = mp->b_cont;
815 	if (mp1 != NULL) {
816 		mp->b_cont = NULL;
817 		linkb(mp1, mp);
818 		mp = mp1;
819 	}
820 	qreply(q, mp);
821 }
822 
823 /*
824  * Send a packet using the specified IRE.
825  * If ire_src_addr_v6 is all zero then discard the IRE after
826  * the packet has been sent.
827  */
828 static void
829 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
830 {
831 	mblk_t *ipsec_mp;
832 	boolean_t is_secure;
833 	uint_t ifindex;
834 	ill_t	*ill;
835 	zoneid_t zoneid = ire->ire_zoneid;
836 	ip_stack_t	*ipst = ire->ire_ipst;
837 
838 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
839 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
840 	ipsec_mp = pkt;
841 	is_secure = (pkt->b_datap->db_type == M_CTL);
842 	if (is_secure) {
843 		ipsec_out_t *io;
844 
845 		pkt = pkt->b_cont;
846 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
847 		if (io->ipsec_out_type == IPSEC_OUT)
848 			zoneid = io->ipsec_out_zoneid;
849 	}
850 
851 	/* If the packet originated externally then */
852 	if (pkt->b_prev) {
853 		ire_refrele(ire);
854 		/*
855 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
856 		 * Look up interface to see if it still exists (it could have
857 		 * been unplumbed by the time the reply came back from ARP)
858 		 */
859 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
860 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
861 		    NULL, NULL, NULL, NULL, ipst);
862 		if (ill == NULL) {
863 			pkt->b_prev = NULL;
864 			pkt->b_next = NULL;
865 			freemsg(ipsec_mp);
866 			return;
867 		}
868 		q = ill->ill_rq;
869 		pkt->b_prev = NULL;
870 		/*
871 		 * This packet has not gone through IPSEC processing
872 		 * and hence we should not have any IPSEC message
873 		 * prepended.
874 		 */
875 		ASSERT(ipsec_mp == pkt);
876 		put(q, pkt);
877 		ill_refrele(ill);
878 	} else if (pkt->b_next) {
879 		/* Packets from multicast router */
880 		pkt->b_next = NULL;
881 		/*
882 		 * We never get the IPSEC_OUT while forwarding the
883 		 * packet for multicast router.
884 		 */
885 		ASSERT(ipsec_mp == pkt);
886 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
887 		ire_refrele(ire);
888 	} else {
889 		/* Locally originated packets */
890 		boolean_t delete_ire = B_FALSE;
891 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
892 
893 		/*
894 		 * If this IRE shouldn't be kept in the table (because its
895 		 * source address is unspecified), hold a reference to it so
896 		 * we can delete it even after e.g. ip_wput_ire() has dropped
897 		 * its reference.
898 		 */
899 		if (!(ire->ire_marks & IRE_MARK_NOADD) &&
900 		    ire->ire_src_addr == INADDR_ANY) {
901 			delete_ire = B_TRUE;
902 			IRE_REFHOLD(ire);
903 		}
904 
905 		/*
906 		 * If we were resolving a router we can not use the
907 		 * routers IRE for sending the packet (since it would
908 		 * violate the uniqness of the IP idents) thus we
909 		 * make another pass through ip_wput to create the IRE_CACHE
910 		 * for the destination.
911 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
912 		 * Thus ip_wput() will never find a ire and result in an
913 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
914 		 * is set. This also implies that IRE_MARK_NOADD can only be
915 		 * used to send packets to directly connected hosts.
916 		 */
917 		if (ipha->ipha_dst != ire->ire_addr &&
918 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
919 			ire_refrele(ire);	/* Held in ire_add */
920 			if (CONN_Q(q)) {
921 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
922 				    IRE_SEND);
923 			} else {
924 				(void) ip_output((void *)(uintptr_t)zoneid,
925 				    ipsec_mp, q, IRE_SEND);
926 			}
927 		} else {
928 			if (is_secure) {
929 				ipsec_out_t *oi;
930 				ipha_t *ipha;
931 
932 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
933 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
934 				if (oi->ipsec_out_proc_begin) {
935 					/*
936 					 * This is the case where
937 					 * ip_wput_ipsec_out could not find
938 					 * the IRE and recreated a new one.
939 					 * As ip_wput_ipsec_out does ire
940 					 * lookups, ire_refrele for the extra
941 					 * bump in ire_add.
942 					 */
943 					ire_refrele(ire);
944 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
945 					    NULL, NULL);
946 				} else {
947 					/*
948 					 * IRE_REFRELE will be done in
949 					 * ip_wput_ire.
950 					 */
951 					ip_wput_ire(q, ipsec_mp, ire, NULL,
952 					    IRE_SEND, zoneid);
953 				}
954 			} else {
955 				/*
956 				 * IRE_REFRELE will be done in ip_wput_ire.
957 				 */
958 				ip_wput_ire(q, ipsec_mp, ire, NULL,
959 				    IRE_SEND, zoneid);
960 			}
961 		}
962 		/*
963 		 * Special code to support sending a single packet with
964 		 * conn_unspec_src using an IRE which has no source address.
965 		 * The IRE is deleted here after sending the packet to avoid
966 		 * having other code trip on it. But before we delete the
967 		 * ire, somebody could have looked up this ire.
968 		 * We prevent returning/using this IRE by the upper layers
969 		 * by making checks to NULL source address in other places
970 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
971 		 * Though this does not completely prevent other threads
972 		 * from using this ire, this should not cause any problems.
973 		 */
974 		if (delete_ire) {
975 			ip1dbg(("ire_send: delete IRE\n"));
976 			ire_delete(ire);
977 			ire_refrele(ire);	/* Held above */
978 		}
979 	}
980 }
981 
982 /*
983  * Send a packet using the specified IRE.
984  * If ire_src_addr_v6 is all zero then discard the IRE after
985  * the packet has been sent.
986  */
987 static void
988 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
989 {
990 	mblk_t *ipsec_mp;
991 	boolean_t secure;
992 	uint_t ifindex;
993 	zoneid_t zoneid = ire->ire_zoneid;
994 	ip_stack_t	*ipst = ire->ire_ipst;
995 
996 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
997 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
998 	if (pkt->b_datap->db_type == M_CTL) {
999 		ipsec_out_t *io;
1000 
1001 		ipsec_mp = pkt;
1002 		pkt = pkt->b_cont;
1003 		secure = B_TRUE;
1004 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1005 		if (io->ipsec_out_type == IPSEC_OUT)
1006 			zoneid = io->ipsec_out_zoneid;
1007 	} else {
1008 		ipsec_mp = pkt;
1009 		secure = B_FALSE;
1010 	}
1011 
1012 	/* If the packet originated externally then */
1013 	if (pkt->b_prev) {
1014 		ill_t	*ill;
1015 		/*
1016 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1017 		 * Look up interface to see if it still exists (it could have
1018 		 * been unplumbed by the time the reply came back from the
1019 		 * resolver).
1020 		 */
1021 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1022 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1023 		    NULL, NULL, NULL, NULL, ipst);
1024 		if (ill == NULL) {
1025 			pkt->b_prev = NULL;
1026 			pkt->b_next = NULL;
1027 			freemsg(ipsec_mp);
1028 			ire_refrele(ire);	/* Held in ire_add */
1029 			return;
1030 		}
1031 		q = ill->ill_rq;
1032 		pkt->b_prev = NULL;
1033 		/*
1034 		 * This packet has not gone through IPSEC processing
1035 		 * and hence we should not have any IPSEC message
1036 		 * prepended.
1037 		 */
1038 		ASSERT(ipsec_mp == pkt);
1039 		put(q, pkt);
1040 		ill_refrele(ill);
1041 	} else if (pkt->b_next) {
1042 		/* Packets from multicast router */
1043 		pkt->b_next = NULL;
1044 		/*
1045 		 * We never get the IPSEC_OUT while forwarding the
1046 		 * packet for multicast router.
1047 		 */
1048 		ASSERT(ipsec_mp == pkt);
1049 		/*
1050 		 * XXX TODO IPv6.
1051 		 */
1052 		freemsg(pkt);
1053 #ifdef XXX
1054 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1055 #endif
1056 	} else {
1057 		if (secure) {
1058 			ipsec_out_t *oi;
1059 			ip6_t *ip6h;
1060 
1061 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1062 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1063 			if (oi->ipsec_out_proc_begin) {
1064 				/*
1065 				 * This is the case where
1066 				 * ip_wput_ipsec_out could not find
1067 				 * the IRE and recreated a new one.
1068 				 */
1069 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1070 				    NULL, NULL);
1071 			} else {
1072 				if (CONN_Q(q)) {
1073 					(void) ip_output_v6(Q_TO_CONN(q),
1074 					    ipsec_mp, q, IRE_SEND);
1075 				} else {
1076 					(void) ip_output_v6(
1077 					    (void *)(uintptr_t)zoneid,
1078 					    ipsec_mp, q, IRE_SEND);
1079 				}
1080 			}
1081 		} else {
1082 			/*
1083 			 * Send packets through ip_output_v6 so that any
1084 			 * ip6_info header can be processed again.
1085 			 */
1086 			if (CONN_Q(q)) {
1087 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1088 				    IRE_SEND);
1089 			} else {
1090 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1091 				    ipsec_mp, q, IRE_SEND);
1092 			}
1093 		}
1094 		/*
1095 		 * Special code to support sending a single packet with
1096 		 * conn_unspec_src using an IRE which has no source address.
1097 		 * The IRE is deleted here after sending the packet to avoid
1098 		 * having other code trip on it. But before we delete the
1099 		 * ire, somebody could have looked up this ire.
1100 		 * We prevent returning/using this IRE by the upper layers
1101 		 * by making checks to NULL source address in other places
1102 		 * like e.g ip_ire_append_v6, ip_ire_req and
1103 		 * ip_bind_connected_v6. Though, this does not completely
1104 		 * prevent other threads from using this ire, this should
1105 		 * not cause any problems.
1106 		 */
1107 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1108 			ip1dbg(("ire_send_v6: delete IRE\n"));
1109 			ire_delete(ire);
1110 		}
1111 	}
1112 	ire_refrele(ire);	/* Held in ire_add */
1113 }
1114 
1115 /*
1116  * Make sure that IRE bucket does not get too long.
1117  * This can cause lock up because ire_cache_lookup()
1118  * may take "forever" to finish.
1119  *
1120  * We only remove a maximum of cnt IREs each time.  This
1121  * should keep the bucket length approximately constant,
1122  * depending on cnt.  This should be enough to defend
1123  * against DoS attack based on creating temporary IREs
1124  * (for forwarding and non-TCP traffic).
1125  *
1126  * We also pass in the address of the newly created IRE
1127  * as we do not want to remove this straight after adding
1128  * it. New IREs are normally added at the tail of the
1129  * bucket.  This means that we are removing the "oldest"
1130  * temporary IREs added.  Only if there are IREs with
1131  * the same ire_addr, do we not add it at the tail.  Refer
1132  * to ire_add_v*().  It should be OK for our purpose.
1133  *
1134  * For non-temporary cached IREs, we make sure that they
1135  * have not been used for some time (defined below), they
1136  * are non-local destinations, and there is no one using
1137  * them at the moment (refcnt == 1).
1138  *
1139  * The above means that the IRE bucket length may become
1140  * very long, consisting of mostly non-temporary IREs.
1141  * This can happen when the hash function does a bad job
1142  * so that most TCP connections cluster to a specific bucket.
1143  * This "hopefully" should never happen.  It can also
1144  * happen if most TCP connections have very long lives.
1145  * Even with the minimal hash table size of 256, there
1146  * has to be a lot of such connections to make the bucket
1147  * length unreasonably long.  This should probably not
1148  * happen either.  The third can when this can happen is
1149  * when the machine is under attack, such as SYN flooding.
1150  * TCP should already have the proper mechanism to protect
1151  * that.  So we should be safe.
1152  *
1153  * This function is called by ire_add_then_send() after
1154  * a new IRE is added and the packet is sent.
1155  *
1156  * The idle cutoff interval is set to 60s.  It can be
1157  * changed using /etc/system.
1158  */
1159 uint32_t ire_idle_cutoff_interval = 60000;
1160 
1161 static void
1162 ire_cache_cleanup(irb_t *irb, uint32_t threshold, ire_t *ref_ire)
1163 {
1164 	ire_t *ire;
1165 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1166 	int cnt = ip_ire_cleanup_cnt;
1167 
1168 	/*
1169 	 * Try to remove cnt temporary IREs first.
1170 	 */
1171 	for (ire = irb->irb_ire; cnt > 0 && ire != NULL; ire = ire->ire_next) {
1172 		if (ire == ref_ire)
1173 			continue;
1174 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
1175 			continue;
1176 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1177 			ASSERT(ire->ire_type == IRE_CACHE);
1178 			ire_delete(ire);
1179 			cnt--;
1180 		}
1181 	}
1182 	if (cnt == 0)
1183 		return;
1184 
1185 	/*
1186 	 * If we didn't satisfy our removal target from temporary IREs
1187 	 * we see how many non-temporary IREs are currently in the bucket.
1188 	 * If this quantity is above the threshold then we see if there are any
1189 	 * candidates for removal. We are still limited to removing a maximum
1190 	 * of cnt IREs.
1191 	 */
1192 	if ((irb->irb_ire_cnt - irb->irb_tmp_ire_cnt) > threshold) {
1193 		for (ire = irb->irb_ire; cnt > 0 && ire != NULL;
1194 		    ire = ire->ire_next) {
1195 			if (ire == ref_ire)
1196 				continue;
1197 			if (ire->ire_type != IRE_CACHE)
1198 				continue;
1199 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1200 				continue;
1201 			if ((ire->ire_refcnt == 1) &&
1202 			    (lbolt - ire->ire_last_used_time > cut_off)) {
1203 				ire_delete(ire);
1204 				cnt--;
1205 			}
1206 		}
1207 	}
1208 }
1209 
1210 /*
1211  * ire_add_then_send is called when a new IRE has been created in order to
1212  * route an outgoing packet.  Typically, it is called from ip_wput when
1213  * a response comes back down from a resolver.  We add the IRE, and then
1214  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1215  * However, we do not add the newly created IRE in the cache when
1216  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1217  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD are ire_refrele'd by
1218  * ip_wput_ire() and get deleted.
1219  * Multirouting support: the packet is silently discarded when the new IRE
1220  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1221  * RTF_MULTIRT flag for the same destination address.
1222  * In this case, we just want to register this additional ire without
1223  * sending the packet, as it has already been replicated through
1224  * existing multirt routes in ip_wput().
1225  */
1226 void
1227 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1228 {
1229 	irb_t *irb;
1230 	boolean_t drop = B_FALSE;
1231 	boolean_t mctl_present;
1232 	mblk_t *first_mp = NULL;
1233 	mblk_t *data_mp = NULL;
1234 	ire_t *dst_ire;
1235 	ipha_t *ipha;
1236 	ip6_t *ip6h;
1237 	ip_stack_t	*ipst = ire->ire_ipst;
1238 	int		ire_limit;
1239 
1240 	if (mp != NULL) {
1241 		/*
1242 		 * We first have to retrieve the destination address carried
1243 		 * by the packet.
1244 		 * We can't rely on ire as it can be related to a gateway.
1245 		 * The destination address will help in determining if
1246 		 * other RTF_MULTIRT ires are already registered.
1247 		 *
1248 		 * We first need to know where we are going : v4 or V6.
1249 		 * the ire version is enough, as there is no risk that
1250 		 * we resolve an IPv6 address with an IPv4 ire
1251 		 * or vice versa.
1252 		 */
1253 		EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1254 		data_mp = mp;
1255 		mp = first_mp;
1256 		if (ire->ire_ipversion == IPV4_VERSION) {
1257 			ipha = (ipha_t *)data_mp->b_rptr;
1258 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1259 			    ire->ire_zoneid, msg_getlabel(mp), ipst);
1260 		} else {
1261 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1262 			ip6h = (ip6_t *)data_mp->b_rptr;
1263 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1264 			    ire->ire_zoneid, msg_getlabel(mp), ipst);
1265 		}
1266 		if (dst_ire != NULL) {
1267 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1268 				/*
1269 				 * At least one resolved multirt route
1270 				 * already exists for the destination,
1271 				 * don't sent this packet: either drop it
1272 				 * or complete the pending resolution,
1273 				 * depending on the ire.
1274 				 */
1275 				drop = B_TRUE;
1276 			}
1277 			ip1dbg(("ire_add_then_send: dst_ire %p "
1278 			    "[dst %08x, gw %08x], drop %d\n",
1279 			    (void *)dst_ire,
1280 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1281 			    ntohl(dst_ire->ire_addr) : \
1282 			    ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1283 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1284 			    ntohl(dst_ire->ire_gateway_addr) : \
1285 			    ntohl(V4_PART_OF_V6(
1286 			    dst_ire->ire_gateway_addr_v6)),
1287 			    drop));
1288 			ire_refrele(dst_ire);
1289 		}
1290 	}
1291 
1292 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1293 		/* Regular packets with cache bound ires are here. */
1294 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1295 
1296 		if (ire == NULL) {
1297 			mp->b_prev = NULL;
1298 			mp->b_next = NULL;
1299 			MULTIRT_DEBUG_UNTAG(mp);
1300 			freemsg(mp);
1301 			return;
1302 		}
1303 		if (mp == NULL) {
1304 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1305 			return;
1306 		}
1307 	}
1308 	if (drop) {
1309 		/*
1310 		 * If we're adding an RTF_MULTIRT ire, the resolution
1311 		 * is over: we just drop the packet.
1312 		 */
1313 		if (ire->ire_flags & RTF_MULTIRT) {
1314 			data_mp->b_prev = NULL;
1315 			data_mp->b_next = NULL;
1316 			MULTIRT_DEBUG_UNTAG(mp);
1317 			freemsg(mp);
1318 		} else {
1319 			/*
1320 			 * Otherwise, we're adding the ire to a gateway
1321 			 * for a multirt route.
1322 			 * Invoke ip_newroute() to complete the resolution
1323 			 * of the route. We will then come back here and
1324 			 * finally drop this packet in the above code.
1325 			 */
1326 			if (ire->ire_ipversion == IPV4_VERSION) {
1327 				/*
1328 				 * TODO: in order for CGTP to work in non-global
1329 				 * zones, ip_newroute() must create the IRE
1330 				 * cache in the zone indicated by
1331 				 * ire->ire_zoneid.
1332 				 */
1333 				ip_newroute(q, mp, ipha->ipha_dst,
1334 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1335 				    ire->ire_zoneid, ipst);
1336 			} else {
1337 				int minlen = sizeof (ip6i_t) + IPV6_HDR_LEN;
1338 
1339 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1340 
1341 				/*
1342 				 * If necessary, skip over the ip6i_t to find
1343 				 * the header with the actual source address.
1344 				 */
1345 				if (ip6h->ip6_nxt == IPPROTO_RAW) {
1346 					if (MBLKL(data_mp) < minlen &&
1347 					    pullupmsg(data_mp, -1) == 0) {
1348 						ip1dbg(("ire_add_then_send: "
1349 						    "cannot pullupmsg ip6i\n"));
1350 						if (mctl_present)
1351 							freeb(first_mp);
1352 						ire_refrele(ire);
1353 						return;
1354 					}
1355 					ASSERT(MBLKL(data_mp) >= IPV6_HDR_LEN);
1356 					ip6h = (ip6_t *)(data_mp->b_rptr +
1357 					    sizeof (ip6i_t));
1358 				}
1359 				ip_newroute_v6(q, mp, &ip6h->ip6_dst,
1360 				    &ip6h->ip6_src, NULL, ire->ire_zoneid,
1361 				    ipst);
1362 			}
1363 		}
1364 
1365 		ire_refrele(ire); /* As done by ire_send(). */
1366 		return;
1367 	}
1368 	/*
1369 	 * Need to remember ire_bucket here as ire_send*() may delete
1370 	 * the ire so we cannot reference it after that.
1371 	 */
1372 	irb = ire->ire_bucket;
1373 	if (ire->ire_ipversion == IPV4_VERSION) {
1374 		ire_send(q, mp, ire);
1375 		ire_limit = ip_ire_max_bucket_cnt;
1376 	} else {
1377 		ire_send_v6(q, mp, ire);
1378 		ire_limit = ip6_ire_max_bucket_cnt;
1379 	}
1380 
1381 	/*
1382 	 * irb is NULL if the IRE was not added to the hash. This happens
1383 	 * when IRE_MARK_NOADD is set and when IREs are returned from
1384 	 * ire_update_srcif_v4().
1385 	 */
1386 	if (irb != NULL) {
1387 		IRB_REFHOLD(irb);
1388 		if (irb->irb_ire_cnt > ire_limit)
1389 			ire_cache_cleanup(irb, ire_limit, ire);
1390 		IRB_REFRELE(irb);
1391 	}
1392 }
1393 
1394 /*
1395  * Initialize the ire that is specific to IPv4 part and call
1396  * ire_init_common to finish it.
1397  */
1398 ire_t *
1399 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1400     uchar_t *gateway, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1401     queue_t *stq, ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1402     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1403     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1404 {
1405 	ASSERT(type != IRE_CACHE || stq != NULL);
1406 	/*
1407 	 * Reject IRE security attribute creation/initialization
1408 	 * if system is not running in Trusted mode.
1409 	 */
1410 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1411 		return (NULL);
1412 
1413 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1414 
1415 	if (addr != NULL)
1416 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1417 	if (src_addr != NULL)
1418 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1419 	if (mask != NULL) {
1420 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1421 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1422 	}
1423 	if (gateway != NULL) {
1424 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1425 	}
1426 
1427 	if (type == IRE_CACHE)
1428 		ire->ire_cmask = cmask;
1429 
1430 	/* ire_init_common will free the mblks upon encountering any failure */
1431 	if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type, ipif,
1432 	    phandle, ihandle, flags, IPV4_VERSION, ulp_info, gc, gcgrp, ipst))
1433 		return (NULL);
1434 
1435 	return (ire);
1436 }
1437 
1438 /*
1439  * Similar to ire_create except that it is called only when
1440  * we want to allocate ire as an mblk e.g. we have an external
1441  * resolver ARP.
1442  */
1443 ire_t *
1444 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1445     uint_t max_frag, nce_t *src_nce, queue_t *rfq, queue_t *stq, ushort_t type,
1446     ipif_t *ipif, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1447     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1448     ip_stack_t *ipst)
1449 {
1450 	ire_t	*ire, *buf;
1451 	ire_t	*ret_ire;
1452 	mblk_t	*mp;
1453 	size_t	bufsize;
1454 	frtn_t	*frtnp;
1455 	ill_t	*ill;
1456 
1457 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1458 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1459 	if (buf == NULL) {
1460 		ip1dbg(("ire_create_mp: alloc failed\n"));
1461 		return (NULL);
1462 	}
1463 	frtnp = (frtn_t *)(buf + 1);
1464 	frtnp->free_arg = (caddr_t)buf;
1465 	frtnp->free_func = ire_freemblk;
1466 
1467 	/*
1468 	 * Allocate the new IRE. The ire created will hold a ref on
1469 	 * an nce_t after ire_nce_init, and this ref must either be
1470 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1471 	 *	is called after successful arp resolution, or,
1472 	 * (b)  released, when arp resolution fails
1473 	 * Case (b) is handled in ire_freemblk() which will be called
1474 	 * when mp is freed as a result of failed arp.
1475 	 */
1476 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1477 	if (mp == NULL) {
1478 		ip1dbg(("ire_create_mp: alloc failed\n"));
1479 		kmem_free(buf, bufsize);
1480 		return (NULL);
1481 	}
1482 	ire = (ire_t *)mp->b_rptr;
1483 	mp->b_wptr = (uchar_t *)&ire[1];
1484 
1485 	/* Start clean. */
1486 	*ire = ire_null;
1487 	ire->ire_mp = mp;
1488 	mp->b_datap->db_type = IRE_DB_TYPE;
1489 	ire->ire_marks |= IRE_MARK_UNCACHED;
1490 
1491 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, NULL, src_nce,
1492 	    rfq, stq, type, ipif, cmask, phandle, ihandle, flags, ulp_info, gc,
1493 	    gcgrp, ipst);
1494 
1495 	ill = (ill_t *)(stq->q_ptr);
1496 	if (ret_ire == NULL) {
1497 		/* ire_freemblk needs these set */
1498 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1499 		ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
1500 		ire->ire_ipst = ipst;
1501 		freeb(ire->ire_mp);
1502 		return (NULL);
1503 	}
1504 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1505 	ret_ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
1506 	ASSERT(ret_ire == ire);
1507 	ASSERT(ret_ire->ire_ipst == ipst);
1508 	/*
1509 	 * ire_max_frag is normally zero here and is atomically set
1510 	 * under the irebucket lock in ire_add_v[46] except for the
1511 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1512 	 * is non-zero here.
1513 	 */
1514 	ire->ire_max_frag = max_frag;
1515 	return (ire);
1516 }
1517 
1518 /*
1519  * ire_create is called to allocate and initialize a new IRE.
1520  *
1521  * NOTE : This is called as writer sometimes though not required
1522  * by this function.
1523  */
1524 ire_t *
1525 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1526     uint_t *max_fragp, nce_t *src_nce, queue_t *rfq, queue_t *stq,
1527     ushort_t type, ipif_t *ipif, ipaddr_t cmask, uint32_t phandle,
1528     uint32_t ihandle, uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc,
1529     tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1530 {
1531 	ire_t	*ire;
1532 	ire_t	*ret_ire;
1533 
1534 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1535 	if (ire == NULL) {
1536 		ip1dbg(("ire_create: alloc failed\n"));
1537 		return (NULL);
1538 	}
1539 	*ire = ire_null;
1540 
1541 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, max_fragp,
1542 	    src_nce, rfq, stq, type, ipif, cmask, phandle, ihandle, flags,
1543 	    ulp_info, gc, gcgrp, ipst);
1544 
1545 	if (ret_ire == NULL) {
1546 		kmem_cache_free(ire_cache, ire);
1547 		return (NULL);
1548 	}
1549 	ASSERT(ret_ire == ire);
1550 	return (ire);
1551 }
1552 
1553 /*
1554  * Common to IPv4 and IPv6
1555  */
1556 boolean_t
1557 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1558     queue_t *stq, ushort_t type, ipif_t *ipif, uint32_t phandle,
1559     uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
1560     tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1561 {
1562 	ire->ire_max_fragp = max_fragp;
1563 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1564 
1565 #ifdef DEBUG
1566 	if (ipif != NULL) {
1567 		if (ipif->ipif_isv6)
1568 			ASSERT(ipversion == IPV6_VERSION);
1569 		else
1570 			ASSERT(ipversion == IPV4_VERSION);
1571 	}
1572 #endif /* DEBUG */
1573 
1574 	/*
1575 	 * Create/initialize IRE security attribute only in Trusted mode;
1576 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1577 	 * has held a reference to it and will release it when this routine
1578 	 * returns a failure, otherwise we own the reference.  We do this
1579 	 * prior to initializing the rest IRE fields.
1580 	 *
1581 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1582 	 * memory leak (in case of external resolution failure). We'll
1583 	 * allocate it after a successful external resolution, in ire_add().
1584 	 * Note that ire->ire_mp != NULL here means this ire is headed
1585 	 * to an external resolver.
1586 	 */
1587 	if (is_system_labeled()) {
1588 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1589 		    IRE_INTERFACE)) != 0) {
1590 			/* release references on behalf of caller */
1591 			if (gc != NULL)
1592 				GC_REFRELE(gc);
1593 			if (gcgrp != NULL)
1594 				GCGRP_REFRELE(gcgrp);
1595 		} else if ((ire->ire_mp == NULL) &&
1596 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1597 			return (B_FALSE);
1598 		}
1599 	}
1600 
1601 	ire->ire_stq = stq;
1602 	ire->ire_rfq = rfq;
1603 	ire->ire_type = type;
1604 	ire->ire_flags = RTF_UP | flags;
1605 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1606 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1607 
1608 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1609 	ire->ire_last_used_time = lbolt;
1610 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1611 
1612 	/*
1613 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1614 	 * parent IREs. For others in the forwarding table, assign appropriate
1615 	 * new ones.
1616 	 *
1617 	 * The mutex protecting ire_handle is because ire_create is not always
1618 	 * called as a writer.
1619 	 */
1620 	if (ire->ire_type & IRE_OFFSUBNET) {
1621 		mutex_enter(&ipst->ips_ire_handle_lock);
1622 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1623 		mutex_exit(&ipst->ips_ire_handle_lock);
1624 	} else if (ire->ire_type & IRE_INTERFACE) {
1625 		mutex_enter(&ipst->ips_ire_handle_lock);
1626 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1627 		mutex_exit(&ipst->ips_ire_handle_lock);
1628 	} else if (ire->ire_type == IRE_CACHE) {
1629 		ire->ire_phandle = phandle;
1630 		ire->ire_ihandle = ihandle;
1631 	}
1632 	ire->ire_ipif = ipif;
1633 	if (ipif != NULL) {
1634 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1635 		ire->ire_ipif_ifindex =
1636 		    ipif->ipif_ill->ill_phyint->phyint_ifindex;
1637 		ire->ire_zoneid = ipif->ipif_zoneid;
1638 	} else {
1639 		ire->ire_zoneid = GLOBAL_ZONEID;
1640 	}
1641 	ire->ire_ipversion = ipversion;
1642 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1643 	if (ipversion == IPV4_VERSION) {
1644 		/*
1645 		 * IPv6 initializes the ire_nce in ire_add_v6, which expects
1646 		 * to find the ire_nce to be null when it is called.
1647 		 */
1648 		if (ire_nce_init(ire, src_nce) != 0) {
1649 			/* some failure occurred. propagate error back */
1650 			return (B_FALSE);
1651 		}
1652 	}
1653 	ire->ire_refcnt = 1;
1654 	ire->ire_ipst = ipst;	/* No netstack_hold */
1655 	ire->ire_trace_disable = B_FALSE;
1656 
1657 	return (B_TRUE);
1658 }
1659 
1660 /*
1661  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1662  * It is passed a pointer to a slot in an IRE pointer array into which to
1663  * place the pointer to the new IRE, if indeed we create one.  If the
1664  * IRE corresponding to the address passed in would be a duplicate of an
1665  * existing one, we don't create the new one.  irep is incremented before
1666  * return only if we do create a new IRE.  (Always called as writer.)
1667  *
1668  * Note that with the "match_flags" parameter, we can match on either
1669  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1670  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1671  * we only create broadcast ire's on a per physical interface basis. If
1672  * someone is going to be mucking with logical interfaces, it is important
1673  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1674  * logical interface will not cause critical broadcast IRE's to be deleted.
1675  */
1676 ire_t **
1677 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1678     int match_flags)
1679 {
1680 	ire_t *ire;
1681 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1682 	boolean_t prefer;
1683 	ill_t *ill = ipif->ipif_ill;
1684 	ip_stack_t *ipst = ill->ill_ipst;
1685 
1686 	/*
1687 	 * No broadcast IREs for the LOOPBACK interface
1688 	 * or others such as point to point and IPIF_NOXMIT.
1689 	 */
1690 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1691 	    (ipif->ipif_flags & IPIF_NOXMIT))
1692 		return (irep);
1693 
1694 	/*
1695 	 * If this new IRE would be a duplicate, only prefer it if one of
1696 	 * the following is true:
1697 	 *
1698 	 * 1. The existing one has IPIF_DEPRECATED|IPIF_LOCAL|IPIF_ANYCAST
1699 	 *    set and the new one has all of those clear.
1700 	 *
1701 	 * 2. The existing one corresponds to an underlying ILL in an IPMP
1702 	 *    group and the new one corresponds to an IPMP group interface.
1703 	 */
1704 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1705 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
1706 		prefer = ((ire->ire_ipif->ipif_flags & check_flags) &&
1707 		    !(ipif->ipif_flags & check_flags)) ||
1708 		    (IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && IS_IPMP(ill));
1709 		if (!prefer) {
1710 			ire_refrele(ire);
1711 			return (irep);
1712 		}
1713 
1714 		/*
1715 		 * Bcast ires exist in pairs. Both have to be deleted,
1716 		 * Since we are exclusive we can make the above assertion.
1717 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1718 		 */
1719 		ASSERT(IAM_WRITER_IPIF(ipif));
1720 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
1721 		ire_delete(ire->ire_next);
1722 		ire_delete(ire);
1723 		ire_refrele(ire);
1724 	}
1725 	return (ire_create_bcast(ipif, addr, irep));
1726 }
1727 
1728 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
1729 
1730 /*
1731  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
1732  * It leaves all the verifying and deleting to those routines. So it always
1733  * creates 2 bcast ires and chains them into the ire array passed in.
1734  */
1735 ire_t **
1736 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
1737 {
1738 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1739 	ill_t		*ill = ipif->ipif_ill;
1740 
1741 	ASSERT(IAM_WRITER_IPIF(ipif));
1742 
1743 	if (IS_IPMP(ill)) {
1744 		/*
1745 		 * Broadcast IREs for the IPMP meta-interface use the
1746 		 * nominated broadcast interface to send and receive packets.
1747 		 * If there's no nominated interface, send the packets down to
1748 		 * the IPMP stub driver, which will discard them.  If the
1749 		 * nominated broadcast interface changes, ill_refresh_bcast()
1750 		 * will refresh the broadcast IREs.
1751 		 */
1752 		if ((ill = ipmp_illgrp_cast_ill(ill->ill_grp)) == NULL)
1753 			ill = ipif->ipif_ill;
1754 	}
1755 
1756 	*irep++ = ire_create(
1757 	    (uchar_t *)&addr,			/* dest addr */
1758 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1759 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
1760 	    NULL,				/* no gateway */
1761 	    &ipif->ipif_mtu,			/* max frag */
1762 	    NULL,				/* no src nce */
1763 	    ill->ill_rq,			/* recv-from queue */
1764 	    ill->ill_wq,			/* send-to queue */
1765 	    IRE_BROADCAST,
1766 	    ipif,
1767 	    0,
1768 	    0,
1769 	    0,
1770 	    0,
1771 	    &ire_uinfo_null,
1772 	    NULL,
1773 	    NULL,
1774 	    ipst);
1775 
1776 	*irep++ = ire_create(
1777 	    (uchar_t *)&addr,			/* dest address */
1778 	    (uchar_t *)&ip_g_all_ones,		/* mask */
1779 	    (uchar_t *)&ipif->ipif_src_addr,	/* source address */
1780 	    NULL,				/* no gateway */
1781 	    &ip_loopback_mtu,			/* max frag size */
1782 	    NULL,				/* no src_nce */
1783 	    ill->ill_rq,			/* recv-from queue */
1784 	    NULL,				/* no send-to queue */
1785 	    IRE_BROADCAST,			/* Needed for fanout in wput */
1786 	    ipif,
1787 	    0,
1788 	    0,
1789 	    0,
1790 	    0,
1791 	    &ire_uinfo_null,
1792 	    NULL,
1793 	    NULL,
1794 	    ipst);
1795 
1796 	return (irep);
1797 }
1798 
1799 /*
1800  * ire_walk routine to delete or update any IRE_CACHE that might contain
1801  * stale information.
1802  * The flags state which entries to delete or update.
1803  * Garbage collection is done separately using kmem alloc callbacks to
1804  * ip_trash_ire_reclaim.
1805  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
1806  * since other stale information is cleaned up using NUD.
1807  */
1808 void
1809 ire_expire(ire_t *ire, char *arg)
1810 {
1811 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
1812 	ill_t			*stq_ill;
1813 	int			flush_flags = ieap->iea_flush_flag;
1814 	ip_stack_t		*ipst = ieap->iea_ipst;
1815 
1816 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
1817 	    (ire->ire_flags & RTF_DYNAMIC)) {
1818 		/* Make sure we delete the corresponding IRE_CACHE */
1819 		ip1dbg(("ire_expire: all redirects\n"));
1820 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
1821 		ire_delete(ire);
1822 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
1823 		return;
1824 	}
1825 	if (ire->ire_type != IRE_CACHE)
1826 		return;
1827 
1828 	if (flush_flags & FLUSH_ARP_TIME) {
1829 		/*
1830 		 * Remove all IRE_CACHE except IPv4 multicast ires. These
1831 		 * ires will be deleted by ip_trash_ire_reclaim_stack()
1832 		 * when system runs low in memory.
1833 		 * Verify that create time is more than ip_ire_arp_interval
1834 		 * milliseconds ago.
1835 		 */
1836 
1837 		if (!(ire->ire_ipversion == IPV4_VERSION &&
1838 		    CLASSD(ire->ire_addr)) && NCE_EXPIRED(ire->ire_nce, ipst)) {
1839 			ire_delete(ire);
1840 			return;
1841 		}
1842 	}
1843 
1844 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
1845 	    (ire->ire_ipif != NULL)) {
1846 		/* Increase pmtu if it is less than the interface mtu */
1847 		mutex_enter(&ire->ire_lock);
1848 		/*
1849 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
1850 		 * get the mtu from the sending interfaces' ipif
1851 		 */
1852 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
1853 			stq_ill = ire->ire_stq->q_ptr;
1854 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
1855 			    IP_MAXPACKET);
1856 		} else {
1857 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
1858 			    IP_MAXPACKET);
1859 		}
1860 		ire->ire_frag_flag |= IPH_DF;
1861 		mutex_exit(&ire->ire_lock);
1862 	}
1863 }
1864 
1865 /*
1866  * Return any local address.  We use this to target ourselves
1867  * when the src address was specified as 'default'.
1868  * Preference for IRE_LOCAL entries.
1869  */
1870 ire_t *
1871 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
1872 {
1873 	ire_t	*ire;
1874 	irb_t	*irb;
1875 	ire_t	*maybe = NULL;
1876 	int i;
1877 
1878 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
1879 		irb = &ipst->ips_ip_cache_table[i];
1880 		if (irb->irb_ire == NULL)
1881 			continue;
1882 		rw_enter(&irb->irb_lock, RW_READER);
1883 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
1884 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
1885 			    (ire->ire_zoneid != zoneid &&
1886 			    ire->ire_zoneid != ALL_ZONES))
1887 				continue;
1888 			switch (ire->ire_type) {
1889 			case IRE_LOOPBACK:
1890 				if (maybe == NULL) {
1891 					IRE_REFHOLD(ire);
1892 					maybe = ire;
1893 				}
1894 				break;
1895 			case IRE_LOCAL:
1896 				if (maybe != NULL) {
1897 					ire_refrele(maybe);
1898 				}
1899 				IRE_REFHOLD(ire);
1900 				rw_exit(&irb->irb_lock);
1901 				return (ire);
1902 			}
1903 		}
1904 		rw_exit(&irb->irb_lock);
1905 	}
1906 	return (maybe);
1907 }
1908 
1909 /*
1910  * If the specified IRE is associated with a particular ILL, return
1911  * that ILL pointer (May be called as writer.).
1912  *
1913  * NOTE : This is not a generic function that can be used always.
1914  * This function always returns the ill of the outgoing packets
1915  * if this ire is used.
1916  */
1917 ill_t *
1918 ire_to_ill(const ire_t *ire)
1919 {
1920 	ill_t *ill = NULL;
1921 
1922 	/*
1923 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
1924 	 *    the source address from. ire_stq is the one where the
1925 	 *    packets will be sent out on. We return that here.
1926 	 *
1927 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
1928 	 *    copy and they always exist next to each other with loopback
1929 	 *    copy being the first one. If we are called on the non-loopback
1930 	 *    copy, return the one pointed by ire_stq. If it was called on
1931 	 *    a loopback copy, we still return the one pointed by the next
1932 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
1933 	 *    copy. We don't want use ire_ipif as it might represent the
1934 	 *    source address (if we borrow source addresses for
1935 	 *    IRE_BROADCASTS in the future).
1936 	 *    However if an interface is currently coming up, the above
1937 	 *    condition may not hold during that period since the ires
1938 	 *    are added one at a time. Thus one of the pair could have been
1939 	 *    added and the other not yet added.
1940 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
1941 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
1942 	 *    That handles IRE_LOOPBACK.
1943 	 */
1944 
1945 	if (ire->ire_type == IRE_CACHE) {
1946 		ill = (ill_t *)ire->ire_stq->q_ptr;
1947 	} else if (ire->ire_type == IRE_BROADCAST) {
1948 		if (ire->ire_stq != NULL) {
1949 			ill = (ill_t *)ire->ire_stq->q_ptr;
1950 		} else {
1951 			ire_t  *ire_next;
1952 
1953 			ire_next = ire->ire_next;
1954 			if (ire_next != NULL &&
1955 			    ire_next->ire_type == IRE_BROADCAST &&
1956 			    ire_next->ire_addr == ire->ire_addr &&
1957 			    ire_next->ire_ipif == ire->ire_ipif) {
1958 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
1959 			}
1960 		}
1961 	} else if (ire->ire_rfq != NULL) {
1962 		ill = ire->ire_rfq->q_ptr;
1963 	} else if (ire->ire_ipif != NULL) {
1964 		ill = ire->ire_ipif->ipif_ill;
1965 	}
1966 	return (ill);
1967 }
1968 
1969 /* Arrange to call the specified function for every IRE in the world. */
1970 void
1971 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
1972 {
1973 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
1974 }
1975 
1976 void
1977 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
1978 {
1979 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
1980 }
1981 
1982 void
1983 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
1984 {
1985 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
1986 }
1987 
1988 /*
1989  * Walk a particular version. version == 0 means both v4 and v6.
1990  */
1991 static void
1992 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
1993     ip_stack_t *ipst)
1994 {
1995 	if (vers != IPV6_VERSION) {
1996 		/*
1997 		 * ip_forwarding_table variable doesn't matter for IPv4 since
1998 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
1999 		 */
2000 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2001 		    0, NULL,
2002 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2003 		    NULL, zoneid, ipst);
2004 	}
2005 	if (vers != IPV4_VERSION) {
2006 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2007 		    ipst->ips_ip6_ftable_hash_size,
2008 		    ipst->ips_ip_forwarding_table_v6,
2009 		    ipst->ips_ip6_cache_table_size,
2010 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2011 	}
2012 }
2013 
2014 /*
2015  * Arrange to call the specified function for every IRE that matches the ill.
2016  */
2017 void
2018 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2019     ill_t *ill)
2020 {
2021 	uchar_t vers = (ill->ill_isv6 ? IPV6_VERSION : IPV4_VERSION);
2022 
2023 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, vers, ill);
2024 }
2025 
2026 void
2027 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2028     ill_t *ill)
2029 {
2030 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2031 	    ill);
2032 }
2033 
2034 void
2035 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2036     ill_t *ill)
2037 {
2038 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2039 	    ill);
2040 }
2041 
2042 /*
2043  * Walk a particular ill and version.
2044  */
2045 static void
2046 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2047     void *arg, uchar_t vers, ill_t *ill)
2048 {
2049 	ip_stack_t	*ipst = ill->ill_ipst;
2050 
2051 	if (vers == IPV4_VERSION) {
2052 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2053 		    IP_MASK_TABLE_SIZE, 0,
2054 		    NULL, ipst->ips_ip_cache_table_size,
2055 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2056 	} else if (vers == IPV6_VERSION) {
2057 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2058 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2059 		    ipst->ips_ip_forwarding_table_v6,
2060 		    ipst->ips_ip6_cache_table_size,
2061 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2062 	}
2063 }
2064 
2065 boolean_t
2066 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2067     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2068 {
2069 	ill_t *ire_stq_ill = NULL;
2070 	ill_t *ire_ipif_ill = NULL;
2071 
2072 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2073 	/*
2074 	 * MATCH_IRE_ILL: We match both on ill pointed by ire_stq and
2075 	 *    ire_ipif.  Only in the case of IRE_CACHEs can ire_stq and
2076 	 *    ire_ipif be pointing to different ills. But we want to keep
2077 	 *    this function generic enough for future use. So, we always
2078 	 *    try to match on both.  The only caller of this function
2079 	 *    ire_walk_ill_tables, will call "func" after we return from
2080 	 *    this function. We expect "func" to do the right filtering
2081 	 *    of ires in this case.
2082 	 */
2083 	if (match_flags & MATCH_IRE_ILL) {
2084 		if (ire->ire_stq != NULL)
2085 			ire_stq_ill = ire->ire_stq->q_ptr;
2086 		if (ire->ire_ipif != NULL)
2087 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2088 	}
2089 
2090 	if (zoneid != ALL_ZONES) {
2091 		/*
2092 		 * We're walking the IREs for a specific zone. The only relevant
2093 		 * IREs are:
2094 		 * - all IREs with a matching ire_zoneid
2095 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2096 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2097 		 *   with a matching zone
2098 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2099 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2100 		 * using the same rule; but the above rules are consistent with
2101 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2102 		 * routes that can be matched during lookup are also matched
2103 		 * here.
2104 		 */
2105 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2106 			/*
2107 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2108 			 * example, if the default multicast route is tied to
2109 			 * the loopback address.
2110 			 */
2111 			if ((ire->ire_type & IRE_INTERFACE) &&
2112 			    (ire->ire_stq != NULL)) {
2113 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2114 				if (ire->ire_ipversion == IPV4_VERSION) {
2115 					if (!ipif_usesrc_avail(ire_stq_ill,
2116 					    zoneid))
2117 						/* No usable src addr in zone */
2118 						return (B_FALSE);
2119 				} else if (ire_stq_ill->ill_usesrc_ifindex
2120 				    != 0) {
2121 					/*
2122 					 * For IPv6 use ipif_select_source_v6()
2123 					 * so the right scope selection is done
2124 					 */
2125 					ipif_t *src_ipif;
2126 					src_ipif =
2127 					    ipif_select_source_v6(ire_stq_ill,
2128 					    &ire->ire_addr_v6, B_FALSE,
2129 					    IPV6_PREFER_SRC_DEFAULT,
2130 					    zoneid);
2131 					if (src_ipif != NULL) {
2132 						ipif_refrele(src_ipif);
2133 					} else {
2134 						return (B_FALSE);
2135 					}
2136 				} else {
2137 					return (B_FALSE);
2138 				}
2139 
2140 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2141 				return (B_FALSE);
2142 			}
2143 		}
2144 
2145 		/*
2146 		 * Match all default routes from the global zone, irrespective
2147 		 * of reachability. For a non-global zone only match those
2148 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2149 		 */
2150 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2151 			int ire_match_flags = 0;
2152 			in6_addr_t gw_addr_v6;
2153 			ire_t *rire;
2154 
2155 			ire_match_flags |= MATCH_IRE_TYPE;
2156 			if (ire->ire_ipif != NULL)
2157 				ire_match_flags |= MATCH_IRE_ILL;
2158 
2159 			if (ire->ire_ipversion == IPV4_VERSION) {
2160 				rire = ire_route_lookup(ire->ire_gateway_addr,
2161 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2162 				    zoneid, NULL, ire_match_flags, ipst);
2163 			} else {
2164 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2165 				mutex_enter(&ire->ire_lock);
2166 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2167 				mutex_exit(&ire->ire_lock);
2168 				rire = ire_route_lookup_v6(&gw_addr_v6,
2169 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2170 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2171 			}
2172 			if (rire == NULL) {
2173 				return (B_FALSE);
2174 			}
2175 			ire_refrele(rire);
2176 		}
2177 	}
2178 
2179 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2180 	    (ire->ire_type & ire_type)) &&
2181 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2182 	    (ire_stq_ill == ill || ire_ipif_ill == ill ||
2183 	    ire_ipif_ill != NULL && IS_IN_SAME_ILLGRP(ire_ipif_ill, ill)))) {
2184 		return (B_TRUE);
2185 	}
2186 	return (B_FALSE);
2187 }
2188 
2189 int
2190 rtfunc(struct radix_node *rn, void *arg)
2191 {
2192 	struct rtfuncarg *rtf = arg;
2193 	struct rt_entry *rt;
2194 	irb_t *irb;
2195 	ire_t *ire;
2196 	boolean_t ret;
2197 
2198 	rt = (struct rt_entry *)rn;
2199 	ASSERT(rt != NULL);
2200 	irb = &rt->rt_irb;
2201 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2202 		if ((rtf->rt_match_flags != 0) ||
2203 		    (rtf->rt_zoneid != ALL_ZONES)) {
2204 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2205 			    rtf->rt_ire_type, ire,
2206 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2207 		} else
2208 			ret = B_TRUE;
2209 		if (ret)
2210 			(*rtf->rt_func)(ire, rtf->rt_arg);
2211 	}
2212 	return (0);
2213 }
2214 
2215 /*
2216  * Walk the ftable and the ctable entries that match the ill.
2217  */
2218 void
2219 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2220     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2221     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2222     ip_stack_t *ipst)
2223 {
2224 	irb_t	*irb_ptr;
2225 	irb_t	*irb;
2226 	ire_t	*ire;
2227 	int i, j;
2228 	boolean_t ret;
2229 	struct rtfuncarg rtfarg;
2230 
2231 	ASSERT((!(match_flags & MATCH_IRE_ILL)) || (ill != NULL));
2232 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2233 	/*
2234 	 * Optimize by not looking at the forwarding table if there
2235 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2236 	 * specified in ire_type.
2237 	 */
2238 	if (!(match_flags & MATCH_IRE_TYPE) ||
2239 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2240 		/* knobs such that routine is called only for v6 case */
2241 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2242 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2243 				if ((irb_ptr = ipftbl[i]) == NULL)
2244 					continue;
2245 				for (j = 0; j < htbl_sz; j++) {
2246 					irb = &irb_ptr[j];
2247 					if (irb->irb_ire == NULL)
2248 						continue;
2249 
2250 					IRB_REFHOLD(irb);
2251 					for (ire = irb->irb_ire; ire != NULL;
2252 					    ire = ire->ire_next) {
2253 						if (match_flags == 0 &&
2254 						    zoneid == ALL_ZONES) {
2255 							ret = B_TRUE;
2256 						} else {
2257 							ret =
2258 							    ire_walk_ill_match(
2259 							    match_flags,
2260 							    ire_type, ire, ill,
2261 							    zoneid, ipst);
2262 						}
2263 						if (ret)
2264 							(*func)(ire, arg);
2265 					}
2266 					IRB_REFRELE(irb);
2267 				}
2268 			}
2269 		} else {
2270 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2271 			rtfarg.rt_func = func;
2272 			rtfarg.rt_arg = arg;
2273 			if (match_flags != 0) {
2274 				rtfarg.rt_match_flags = match_flags;
2275 			}
2276 			rtfarg.rt_ire_type = ire_type;
2277 			rtfarg.rt_ill = ill;
2278 			rtfarg.rt_zoneid = zoneid;
2279 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2280 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2281 			    ipst->ips_ip_ftable,
2282 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2283 		}
2284 	}
2285 
2286 	/*
2287 	 * Optimize by not looking at the cache table if there
2288 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2289 	 * specified in ire_type.
2290 	 */
2291 	if (!(match_flags & MATCH_IRE_TYPE) ||
2292 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2293 		for (i = 0; i < ctbl_sz;  i++) {
2294 			irb = &ipctbl[i];
2295 			if (irb->irb_ire == NULL)
2296 				continue;
2297 			IRB_REFHOLD(irb);
2298 			for (ire = irb->irb_ire; ire != NULL;
2299 			    ire = ire->ire_next) {
2300 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2301 					ret = B_TRUE;
2302 				} else {
2303 					ret = ire_walk_ill_match(
2304 					    match_flags, ire_type,
2305 					    ire, ill, zoneid, ipst);
2306 				}
2307 				if (ret)
2308 					(*func)(ire, arg);
2309 			}
2310 			IRB_REFRELE(irb);
2311 		}
2312 	}
2313 }
2314 
2315 /*
2316  * This function takes a mask and returns
2317  * number of bits set in the mask. If no
2318  * bit is set it returns 0.
2319  * Assumes a contiguous mask.
2320  */
2321 int
2322 ip_mask_to_plen(ipaddr_t mask)
2323 {
2324 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2325 }
2326 
2327 /*
2328  * Convert length for a mask to the mask.
2329  */
2330 ipaddr_t
2331 ip_plen_to_mask(uint_t masklen)
2332 {
2333 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2334 }
2335 
2336 void
2337 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2338 {
2339 	ill_t *stq_ill, *ipif_ill;
2340 	ip_stack_t *ipst = ire->ire_ipst;
2341 
2342 	stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2343 	ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2344 	RELEASE_ILL_LOCKS(ipif_ill, stq_ill);
2345 	rw_exit(&irb_ptr->irb_lock);
2346 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2347 }
2348 
2349 /*
2350  * ire_add_v[46] atomically make sure that the ipif or ill associated
2351  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2352  * before adding the ire to the table. This ensures that we don't create
2353  * new IRE_CACHEs with stale values for parameters that are passed to
2354  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2355  * to the ipif_mtu, and not the value. The actual value is derived from the
2356  * parent ire or ipif under the bucket lock.
2357  */
2358 int
2359 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2360     ipsq_func_t func)
2361 {
2362 	ill_t	*stq_ill;
2363 	ill_t	*ipif_ill;
2364 	int	error = 0;
2365 	ill_t	*ill = NULL;
2366 	ip_stack_t	*ipst = ire->ire_ipst;
2367 
2368 	stq_ill = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2369 	ipif_ill = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2370 
2371 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2372 	    (q == NULL && mp == NULL && func == NULL));
2373 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2374 	GRAB_CONN_LOCK(q);
2375 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2376 	GRAB_ILL_LOCKS(ipif_ill, stq_ill);
2377 
2378 	/*
2379 	 * While the IRE is in the process of being added, a user may have
2380 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2381 	 * usesrc client ILL. Check for this possibility here, if it is true
2382 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2383 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2384 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2385 	 */
2386 	if ((ire->ire_type & IRE_CACHE) &&
2387 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2388 		if (stq_ill->ill_usesrc_ifindex != 0) {
2389 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2390 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2391 			    stq_ill->ill_usesrc_ifindex) ||
2392 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2393 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2394 				error = EINVAL;
2395 				goto done;
2396 			}
2397 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2398 			error = EINVAL;
2399 			goto done;
2400 		}
2401 	}
2402 
2403 	/*
2404 	 * Don't allow IRE's to be created on changing ill's.  Also, since
2405 	 * IPMP flags can be set on an ill without quiescing it, if we're not
2406 	 * a writer on stq_ill, check that the flags still allow IRE creation.
2407 	 */
2408 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2409 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2410 			ill = stq_ill;
2411 			error = EAGAIN;
2412 		} else if (IS_UNDER_IPMP(stq_ill)) {
2413 			mutex_enter(&stq_ill->ill_phyint->phyint_lock);
2414 			if (!ipmp_ill_is_active(stq_ill) &&
2415 			    !(ire->ire_marks & IRE_MARK_TESTHIDDEN)) {
2416 				error = EINVAL;
2417 			}
2418 			mutex_exit(&stq_ill->ill_phyint->phyint_lock);
2419 		}
2420 		if (error != 0)
2421 			goto done;
2422 	}
2423 
2424 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2425 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2426 		ill = ipif_ill;
2427 		error = EAGAIN;
2428 		goto done;
2429 	}
2430 
2431 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2432 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2433 		ill = ire->ire_ipif->ipif_ill;
2434 		ASSERT(ill != NULL);
2435 		error = EAGAIN;
2436 		goto done;
2437 	}
2438 
2439 done:
2440 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2441 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2442 		mutex_enter(&ipsq->ipsq_lock);
2443 		mutex_enter(&ipsq->ipsq_xop->ipx_lock);
2444 		ire_atomic_end(irb_ptr, ire);
2445 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2446 		mutex_exit(&ipsq->ipsq_xop->ipx_lock);
2447 		mutex_exit(&ipsq->ipsq_lock);
2448 		error = EINPROGRESS;
2449 	} else if (error != 0) {
2450 		ire_atomic_end(irb_ptr, ire);
2451 	}
2452 
2453 	RELEASE_CONN_LOCK(q);
2454 	return (error);
2455 }
2456 
2457 /*
2458  * Add a fully initialized IRE to an appropriate table based on
2459  * ire_type.
2460  *
2461  * allow_unresolved == B_FALSE indicates a legacy code-path call
2462  * that has prohibited the addition of incomplete ire's. If this
2463  * parameter is set, and we find an nce that is in a state other
2464  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2465  * something other than ND_REACHABLE if the nce had just expired and
2466  * the ire_create preceding the ire_add added a new ND_INITIAL nce.
2467  */
2468 int
2469 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2470     boolean_t allow_unresolved)
2471 {
2472 	ire_t	*ire1;
2473 	ill_t	*stq_ill = NULL;
2474 	ill_t	*ill;
2475 	ipif_t	*ipif = NULL;
2476 	ill_walk_context_t ctx;
2477 	ire_t	*ire = *irep;
2478 	int	error;
2479 	boolean_t ire_is_mblk = B_FALSE;
2480 	tsol_gcgrp_t *gcgrp = NULL;
2481 	tsol_gcgrp_addr_t ga;
2482 	ip_stack_t	*ipst = ire->ire_ipst;
2483 
2484 	/* get ready for the day when original ire is not created as mblk */
2485 	if (ire->ire_mp != NULL) {
2486 		ire_is_mblk = B_TRUE;
2487 		/* Copy the ire to a kmem_alloc'ed area */
2488 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2489 		if (ire1 == NULL) {
2490 			ip1dbg(("ire_add: alloc failed\n"));
2491 			ire_delete(ire);
2492 			*irep = NULL;
2493 			return (ENOMEM);
2494 		}
2495 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2496 		*ire1 = *ire;
2497 		ire1->ire_mp = NULL;
2498 		ire1->ire_stq_ifindex = 0;
2499 		freeb(ire->ire_mp);
2500 		ire = ire1;
2501 	}
2502 	if (ire->ire_stq != NULL)
2503 		stq_ill = ire->ire_stq->q_ptr;
2504 
2505 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2506 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2507 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2508 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2509 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2510 			mutex_enter(&ill->ill_lock);
2511 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2512 				mutex_exit(&ill->ill_lock);
2513 				continue;
2514 			}
2515 			/*
2516 			 * We need to make sure that the ipif is a valid one
2517 			 * before adding the IRE_CACHE. This happens only
2518 			 * with IRE_CACHE when there is an external resolver.
2519 			 *
2520 			 * We can unplumb a logical interface while the
2521 			 * packet is waiting in ARP with the IRE. Then,
2522 			 * later on when we feed the IRE back, the ipif
2523 			 * has to be re-checked. This can't happen with
2524 			 * NDP currently, as we never queue the IRE with
2525 			 * the packet. We always try to recreate the IRE
2526 			 * when the resolution is completed. But, we do
2527 			 * it for IPv6 also here so that in future if
2528 			 * we have external resolvers, it will work without
2529 			 * any change.
2530 			 */
2531 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2532 			if (ipif != NULL) {
2533 				ipif_refhold_locked(ipif);
2534 				mutex_exit(&ill->ill_lock);
2535 				break;
2536 			}
2537 			mutex_exit(&ill->ill_lock);
2538 		}
2539 		rw_exit(&ipst->ips_ill_g_lock);
2540 		if (ipif == NULL ||
2541 		    (ipif->ipif_isv6 &&
2542 		    !IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) &&
2543 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
2544 		    &ipif->ipif_v6src_addr)) ||
2545 		    (!ipif->ipif_isv6 &&
2546 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
2547 		    ire->ire_zoneid != ipif->ipif_zoneid) {
2548 			if (ipif != NULL)
2549 				ipif_refrele(ipif);
2550 			ire->ire_ipif = NULL;
2551 			ire_delete(ire);
2552 			*irep = NULL;
2553 			return (EINVAL);
2554 		}
2555 
2556 		ASSERT(ill != NULL);
2557 
2558 		/*
2559 		 * Since we didn't attach label security attributes to the
2560 		 * ire for the resolver case, we need to add it now. (only
2561 		 * for v4 resolver and v6 xresolv case).
2562 		 */
2563 		if (is_system_labeled() && ire_is_mblk) {
2564 			if (ire->ire_ipversion == IPV4_VERSION) {
2565 				ga.ga_af = AF_INET;
2566 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
2567 				    INADDR_ANY ? ire->ire_gateway_addr :
2568 				    ire->ire_addr, &ga.ga_addr);
2569 			} else {
2570 				ga.ga_af = AF_INET6;
2571 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
2572 				    &ire->ire_gateway_addr_v6) ?
2573 				    ire->ire_addr_v6 :
2574 				    ire->ire_gateway_addr_v6;
2575 			}
2576 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
2577 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
2578 			    NULL, gcgrp);
2579 			if (error != 0) {
2580 				if (gcgrp != NULL) {
2581 					GCGRP_REFRELE(gcgrp);
2582 					gcgrp = NULL;
2583 				}
2584 				ipif_refrele(ipif);
2585 				ire->ire_ipif = NULL;
2586 				ire_delete(ire);
2587 				*irep = NULL;
2588 				return (error);
2589 			}
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * In case ire was changed
2595 	 */
2596 	*irep = ire;
2597 	if (ire->ire_ipversion == IPV6_VERSION)
2598 		error = ire_add_v6(irep, q, mp, func);
2599 	else
2600 		error = ire_add_v4(irep, q, mp, func, allow_unresolved);
2601 	if (ipif != NULL)
2602 		ipif_refrele(ipif);
2603 	return (error);
2604 }
2605 
2606 /*
2607  * Add an initialized IRE to an appropriate table based on ire_type.
2608  *
2609  * The forward table contains IRE_PREFIX/IRE_HOST and
2610  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
2611  *
2612  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
2613  * and IRE_CACHE.
2614  *
2615  * NOTE : This function is called as writer though not required
2616  * by this function.
2617  */
2618 static int
2619 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
2620     boolean_t allow_unresolved)
2621 {
2622 	ire_t	*ire1;
2623 	irb_t	*irb_ptr;
2624 	ire_t	**irep;
2625 	int	flags;
2626 	ire_t	*pire = NULL;
2627 	ill_t	*stq_ill;
2628 	ire_t	*ire = *ire_p;
2629 	int	error;
2630 	boolean_t need_refrele = B_FALSE;
2631 	nce_t	*nce;
2632 	ip_stack_t	*ipst = ire->ire_ipst;
2633 	uint_t	marks = 0;
2634 
2635 	/*
2636 	 * IREs with source addresses hosted on interfaces that are under IPMP
2637 	 * should be hidden so that applications don't accidentally end up
2638 	 * sending packets with test addresses as their source addresses, or
2639 	 * sending out interfaces that are e.g. IFF_INACTIVE.  Hide them here.
2640 	 */
2641 	if (ire->ire_ipif != NULL && IS_UNDER_IPMP(ire->ire_ipif->ipif_ill))
2642 		marks |= IRE_MARK_TESTHIDDEN;
2643 
2644 	if (ire->ire_ipif != NULL)
2645 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
2646 	if (ire->ire_stq != NULL)
2647 		ASSERT(!MUTEX_HELD(
2648 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
2649 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
2650 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
2651 
2652 	/* Find the appropriate list head. */
2653 	switch (ire->ire_type) {
2654 	case IRE_HOST:
2655 		ire->ire_mask = IP_HOST_MASK;
2656 		ire->ire_masklen = IP_ABITS;
2657 		ire->ire_marks |= marks;
2658 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2659 			ire->ire_src_addr = 0;
2660 		break;
2661 	case IRE_CACHE:
2662 		ire->ire_mask = IP_HOST_MASK;
2663 		ire->ire_masklen = IP_ABITS;
2664 		ire->ire_marks |= marks;
2665 		break;
2666 	case IRE_BROADCAST:
2667 	case IRE_LOCAL:
2668 	case IRE_LOOPBACK:
2669 		ire->ire_mask = IP_HOST_MASK;
2670 		ire->ire_masklen = IP_ABITS;
2671 		break;
2672 	case IRE_PREFIX:
2673 	case IRE_DEFAULT:
2674 		ire->ire_marks |= marks;
2675 		if ((ire->ire_flags & RTF_SETSRC) == 0)
2676 			ire->ire_src_addr = 0;
2677 		break;
2678 	case IRE_IF_RESOLVER:
2679 	case IRE_IF_NORESOLVER:
2680 		ire->ire_marks |= marks;
2681 		break;
2682 	default:
2683 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
2684 		    (void *)ire, ire->ire_type));
2685 		ire_delete(ire);
2686 		*ire_p = NULL;
2687 		return (EINVAL);
2688 	}
2689 
2690 	/* Make sure the address is properly masked. */
2691 	ire->ire_addr &= ire->ire_mask;
2692 
2693 	/*
2694 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
2695 	 * of the interface route while adding an IRE_CACHE for an on-link
2696 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
2697 	 * go to ARP and return. We can't do a REFHOLD on the
2698 	 * associated interface ire for fear of ARP freeing the message.
2699 	 * Here we look up the interface ire in the forwarding table and
2700 	 * make sure that the interface route has not been deleted.
2701 	 */
2702 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
2703 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
2704 
2705 		ASSERT(ire->ire_max_fragp == NULL);
2706 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
2707 			/*
2708 			 * The ihandle that we used in ip_newroute_multi
2709 			 * comes from the interface route corresponding
2710 			 * to ire_ipif. Lookup here to see if it exists
2711 			 * still.
2712 			 * If the ire has a source address assigned using
2713 			 * RTF_SETSRC, ire_ipif is the logical interface holding
2714 			 * this source address, so we can't use it to check for
2715 			 * the existence of the interface route. Instead we rely
2716 			 * on the brute force ihandle search in
2717 			 * ire_ihandle_lookup_onlink() below.
2718 			 */
2719 			pire = ipif_to_ire(ire->ire_ipif);
2720 			if (pire == NULL) {
2721 				ire_delete(ire);
2722 				*ire_p = NULL;
2723 				return (EINVAL);
2724 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
2725 				ire_refrele(pire);
2726 				ire_delete(ire);
2727 				*ire_p = NULL;
2728 				return (EINVAL);
2729 			}
2730 		} else {
2731 			pire = ire_ihandle_lookup_onlink(ire);
2732 			if (pire == NULL) {
2733 				ire_delete(ire);
2734 				*ire_p = NULL;
2735 				return (EINVAL);
2736 			}
2737 		}
2738 		/* Prevent pire from getting deleted */
2739 		IRB_REFHOLD(pire->ire_bucket);
2740 		/* Has it been removed already ? */
2741 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
2742 			IRB_REFRELE(pire->ire_bucket);
2743 			ire_refrele(pire);
2744 			ire_delete(ire);
2745 			*ire_p = NULL;
2746 			return (EINVAL);
2747 		}
2748 	} else {
2749 		ASSERT(ire->ire_max_fragp != NULL);
2750 	}
2751 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
2752 
2753 	if (ire->ire_ipif != NULL) {
2754 		/*
2755 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
2756 		 * for historic reasons and to maintain symmetry with
2757 		 * IPv6 code path. Historically this was used by
2758 		 * multicast code to create multiple IRE_CACHES on
2759 		 * a single ill with different ipifs. This was used
2760 		 * so that multicast packets leaving the node had the
2761 		 * right source address. This is no longer needed as
2762 		 * ip_wput initializes the address correctly.
2763 		 */
2764 		flags |= MATCH_IRE_IPIF;
2765 		/*
2766 		 * If we are creating a hidden IRE, make sure we search for
2767 		 * hidden IREs when searching for duplicates below.
2768 		 * Otherwise, we might find an IRE on some other interface
2769 		 * that's not marked hidden.
2770 		 */
2771 		if (ire->ire_marks & IRE_MARK_TESTHIDDEN)
2772 			flags |= MATCH_IRE_MARK_TESTHIDDEN;
2773 	}
2774 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
2775 		irb_ptr = ire_get_bucket(ire);
2776 		need_refrele = B_TRUE;
2777 		if (irb_ptr == NULL) {
2778 			/*
2779 			 * This assumes that the ire has not added
2780 			 * a reference to the ipif.
2781 			 */
2782 			ire->ire_ipif = NULL;
2783 			ire_delete(ire);
2784 			if (pire != NULL) {
2785 				IRB_REFRELE(pire->ire_bucket);
2786 				ire_refrele(pire);
2787 			}
2788 			*ire_p = NULL;
2789 			return (EINVAL);
2790 		}
2791 	} else {
2792 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
2793 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
2794 	}
2795 
2796 	/*
2797 	 * Start the atomic add of the ire. Grab the ill locks,
2798 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
2799 	 *
2800 	 * If ipif or ill is changing ire_atomic_start() may queue the
2801 	 * request and return EINPROGRESS.
2802 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
2803 	 */
2804 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
2805 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
2806 	if (error != 0) {
2807 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2808 		/*
2809 		 * We don't know whether it is a valid ipif or not.
2810 		 * So, set it to NULL. This assumes that the ire has not added
2811 		 * a reference to the ipif.
2812 		 */
2813 		ire->ire_ipif = NULL;
2814 		ire_delete(ire);
2815 		if (pire != NULL) {
2816 			IRB_REFRELE(pire->ire_bucket);
2817 			ire_refrele(pire);
2818 		}
2819 		*ire_p = NULL;
2820 		if (need_refrele)
2821 			IRB_REFRELE(irb_ptr);
2822 		return (error);
2823 	}
2824 	/*
2825 	 * To avoid creating ires having stale values for the ire_max_frag
2826 	 * we get the latest value atomically here. For more details
2827 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
2828 	 * in ip_rput_dlpi_writer
2829 	 */
2830 	if (ire->ire_max_fragp == NULL) {
2831 		if (CLASSD(ire->ire_addr))
2832 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
2833 		else
2834 			ire->ire_max_frag = pire->ire_max_frag;
2835 	} else {
2836 		uint_t	max_frag;
2837 
2838 		max_frag = *ire->ire_max_fragp;
2839 		ire->ire_max_fragp = NULL;
2840 		ire->ire_max_frag = max_frag;
2841 	}
2842 	/*
2843 	 * Atomically check for duplicate and insert in the table.
2844 	 */
2845 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
2846 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
2847 			continue;
2848 		if (ire->ire_ipif != NULL) {
2849 			/*
2850 			 * We do MATCH_IRE_ILL implicitly here for IREs
2851 			 * with a non-null ire_ipif, including IRE_CACHEs.
2852 			 * As ire_ipif and ire_stq could point to two
2853 			 * different ills, we can't pass just ire_ipif to
2854 			 * ire_match_args and get a match on both ills.
2855 			 * This is just needed for duplicate checks here and
2856 			 * so we don't add an extra argument to
2857 			 * ire_match_args for this. Do it locally.
2858 			 *
2859 			 * NOTE : Currently there is no part of the code
2860 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
2861 			 * match for IRE_CACHEs. Thus we don't want to
2862 			 * extend the arguments to ire_match_args.
2863 			 */
2864 			if (ire1->ire_stq != ire->ire_stq)
2865 				continue;
2866 			/*
2867 			 * Multiroute IRE_CACHEs for a given destination can
2868 			 * have the same ire_ipif, typically if their source
2869 			 * address is forced using RTF_SETSRC, and the same
2870 			 * send-to queue. We differentiate them using the parent
2871 			 * handle.
2872 			 */
2873 			if (ire->ire_type == IRE_CACHE &&
2874 			    (ire1->ire_flags & RTF_MULTIRT) &&
2875 			    (ire->ire_flags & RTF_MULTIRT) &&
2876 			    (ire1->ire_phandle != ire->ire_phandle))
2877 				continue;
2878 		}
2879 		if (ire1->ire_zoneid != ire->ire_zoneid)
2880 			continue;
2881 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
2882 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
2883 		    ire->ire_zoneid, 0, NULL, flags, NULL)) {
2884 			/*
2885 			 * Return the old ire after doing a REFHOLD.
2886 			 * As most of the callers continue to use the IRE
2887 			 * after adding, we return a held ire. This will
2888 			 * avoid a lookup in the caller again. If the callers
2889 			 * don't want to use it, they need to do a REFRELE.
2890 			 */
2891 			ip1dbg(("found dup ire existing %p new %p\n",
2892 			    (void *)ire1, (void *)ire));
2893 			IRE_REFHOLD(ire1);
2894 			ire_atomic_end(irb_ptr, ire);
2895 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2896 			ire_delete(ire);
2897 			if (pire != NULL) {
2898 				/*
2899 				 * Assert that it is not removed from the
2900 				 * list yet.
2901 				 */
2902 				ASSERT(pire->ire_ptpn != NULL);
2903 				IRB_REFRELE(pire->ire_bucket);
2904 				ire_refrele(pire);
2905 			}
2906 			*ire_p = ire1;
2907 			if (need_refrele)
2908 				IRB_REFRELE(irb_ptr);
2909 			return (0);
2910 		}
2911 	}
2912 
2913 	if (ire->ire_type & IRE_CACHE) {
2914 		ASSERT(ire->ire_stq != NULL);
2915 		nce = ndp_lookup_v4(ire_to_ill(ire),
2916 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
2917 		    &ire->ire_gateway_addr : &ire->ire_addr),
2918 		    B_TRUE);
2919 		if (nce != NULL)
2920 			mutex_enter(&nce->nce_lock);
2921 		/*
2922 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
2923 		 * and the caller has prohibited the addition of incomplete
2924 		 * ire's, we fail the add. Note that nce_state could be
2925 		 * something other than ND_REACHABLE if the nce had
2926 		 * just expired and the ire_create preceding the
2927 		 * ire_add added a new ND_INITIAL nce.
2928 		 */
2929 		if ((nce == NULL) ||
2930 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
2931 		    (!allow_unresolved &&
2932 		    (nce->nce_state != ND_REACHABLE))) {
2933 			if (nce != NULL) {
2934 				DTRACE_PROBE1(ire__bad__nce, nce_t *, nce);
2935 				mutex_exit(&nce->nce_lock);
2936 			}
2937 			ire_atomic_end(irb_ptr, ire);
2938 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
2939 			if (nce != NULL)
2940 				NCE_REFRELE(nce);
2941 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
2942 			ire_delete(ire);
2943 			if (pire != NULL) {
2944 				IRB_REFRELE(pire->ire_bucket);
2945 				ire_refrele(pire);
2946 			}
2947 			*ire_p = NULL;
2948 			if (need_refrele)
2949 				IRB_REFRELE(irb_ptr);
2950 			return (EINVAL);
2951 		} else {
2952 			ire->ire_nce = nce;
2953 			mutex_exit(&nce->nce_lock);
2954 			/*
2955 			 * We are associating this nce to the ire, so
2956 			 * change the nce ref taken in ndp_lookup_v4() from
2957 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
2958 			 */
2959 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
2960 		}
2961 	}
2962 	/*
2963 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
2964 	 * grouping identical addresses together on the hash chain.  We do
2965 	 * this only for IRE_BROADCASTs as ip_wput_ire is currently interested
2966 	 * in such groupings only for broadcasts.
2967 	 *
2968 	 * Find the first entry that matches ire_addr. *irep will be null
2969 	 * if no match.
2970 	 *
2971 	 * Note: the loopback and non-loopback broadcast entries for an
2972 	 * interface MUST be added before any MULTIRT entries.
2973 	 */
2974 	irep = (ire_t **)irb_ptr;
2975 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
2976 		irep = &ire1->ire_next;
2977 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
2978 		/*
2979 		 * We found some ire (i.e *irep) with a matching addr. We
2980 		 * want to group ires with same addr.
2981 		 */
2982 		for (;;) {
2983 			ire1 = *irep;
2984 			if ((ire1->ire_next == NULL) ||
2985 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
2986 			    (ire1->ire_type != IRE_BROADCAST) ||
2987 			    (ire1->ire_flags & RTF_MULTIRT) ||
2988 			    (ire1->ire_ipif->ipif_ill->ill_grp ==
2989 			    ire->ire_ipif->ipif_ill->ill_grp))
2990 				break;
2991 			irep = &ire1->ire_next;
2992 		}
2993 		ASSERT(*irep != NULL);
2994 		/*
2995 		 * The ire will be added before *irep, so
2996 		 * if irep is a MULTIRT ire, just break to
2997 		 * ire insertion code.
2998 		 */
2999 		if (((*irep)->ire_flags & RTF_MULTIRT) != 0)
3000 			goto insert_ire;
3001 
3002 		irep = &((*irep)->ire_next);
3003 
3004 		/*
3005 		 * Either we have hit the end of the list or the address
3006 		 * did not match.
3007 		 */
3008 		while (*irep != NULL) {
3009 			ire1 = *irep;
3010 			if ((ire1->ire_addr != ire->ire_addr) ||
3011 			    (ire1->ire_type != IRE_BROADCAST))
3012 				break;
3013 			if (ire1->ire_ipif == ire->ire_ipif) {
3014 				irep = &ire1->ire_next;
3015 				break;
3016 			}
3017 			irep = &ire1->ire_next;
3018 		}
3019 	} else if (*irep != NULL) {
3020 		/*
3021 		 * Find the last ire which matches ire_addr.
3022 		 * Needed to do tail insertion among entries with the same
3023 		 * ire_addr.
3024 		 */
3025 		while (ire->ire_addr == ire1->ire_addr) {
3026 			irep = &ire1->ire_next;
3027 			ire1 = *irep;
3028 			if (ire1 == NULL)
3029 				break;
3030 		}
3031 	}
3032 
3033 insert_ire:
3034 	/* Insert at *irep */
3035 	ire1 = *irep;
3036 	if (ire1 != NULL)
3037 		ire1->ire_ptpn = &ire->ire_next;
3038 	ire->ire_next = ire1;
3039 	/* Link the new one in. */
3040 	ire->ire_ptpn = irep;
3041 
3042 	/*
3043 	 * ire_walk routines de-reference ire_next without holding
3044 	 * a lock. Before we point to the new ire, we want to make
3045 	 * sure the store that sets the ire_next of the new ire
3046 	 * reaches global visibility, so that ire_walk routines
3047 	 * don't see a truncated list of ires i.e if the ire_next
3048 	 * of the new ire gets set after we do "*irep = ire" due
3049 	 * to re-ordering, the ire_walk thread will see a NULL
3050 	 * once it accesses the ire_next of the new ire.
3051 	 * membar_producer() makes sure that the following store
3052 	 * happens *after* all of the above stores.
3053 	 */
3054 	membar_producer();
3055 	*irep = ire;
3056 	ire->ire_bucket = irb_ptr;
3057 	/*
3058 	 * We return a bumped up IRE above. Keep it symmetrical
3059 	 * so that the callers will always have to release. This
3060 	 * helps the callers of this function because they continue
3061 	 * to use the IRE after adding and hence they don't have to
3062 	 * lookup again after we return the IRE.
3063 	 *
3064 	 * NOTE : We don't have to use atomics as this is appearing
3065 	 * in the list for the first time and no one else can bump
3066 	 * up the reference count on this yet.
3067 	 */
3068 	IRE_REFHOLD_LOCKED(ire);
3069 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3070 
3071 	irb_ptr->irb_ire_cnt++;
3072 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3073 		irb_ptr->irb_nire++;
3074 
3075 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3076 		irb_ptr->irb_tmp_ire_cnt++;
3077 
3078 	if (ire->ire_ipif != NULL) {
3079 		DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ire->ire_ipif,
3080 		    (char *), "ire", (void *), ire);
3081 		ire->ire_ipif->ipif_ire_cnt++;
3082 		if (ire->ire_stq != NULL) {
3083 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3084 			DTRACE_PROBE3(ill__incr__cnt, (ill_t *), stq_ill,
3085 			    (char *), "ire", (void *), ire);
3086 			stq_ill->ill_ire_cnt++;
3087 		}
3088 	} else {
3089 		ASSERT(ire->ire_stq == NULL);
3090 	}
3091 
3092 	ire_atomic_end(irb_ptr, ire);
3093 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3094 
3095 	if (pire != NULL) {
3096 		/* Assert that it is not removed from the list yet */
3097 		ASSERT(pire->ire_ptpn != NULL);
3098 		IRB_REFRELE(pire->ire_bucket);
3099 		ire_refrele(pire);
3100 	}
3101 
3102 	if (ire->ire_type != IRE_CACHE) {
3103 		/*
3104 		 * For ire's with host mask see if there is an entry
3105 		 * in the cache. If there is one flush the whole cache as
3106 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3107 		 * If no entry is found than there is no need to flush the
3108 		 * cache.
3109 		 */
3110 		if (ire->ire_mask == IP_HOST_MASK) {
3111 			ire_t *lire;
3112 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3113 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3114 			if (lire != NULL) {
3115 				ire_refrele(lire);
3116 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3117 			}
3118 		} else {
3119 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3120 		}
3121 	}
3122 	/*
3123 	 * We had to delay the fast path probe until the ire is inserted
3124 	 * in the list. Otherwise the fast path ack won't find the ire in
3125 	 * the table.
3126 	 */
3127 	if (ire->ire_type == IRE_CACHE ||
3128 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3129 		ASSERT(ire->ire_nce != NULL);
3130 		if (ire->ire_nce->nce_state == ND_REACHABLE)
3131 			nce_fastpath(ire->ire_nce);
3132 	}
3133 	if (ire->ire_ipif != NULL)
3134 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3135 	*ire_p = ire;
3136 	if (need_refrele) {
3137 		IRB_REFRELE(irb_ptr);
3138 	}
3139 	return (0);
3140 }
3141 
3142 /*
3143  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3144  * do the final cleanup for this ire.
3145  */
3146 void
3147 ire_cleanup(ire_t *ire)
3148 {
3149 	ire_t *ire_next;
3150 	ip_stack_t *ipst = ire->ire_ipst;
3151 
3152 	ASSERT(ire != NULL);
3153 
3154 	while (ire != NULL) {
3155 		ire_next = ire->ire_next;
3156 		if (ire->ire_ipversion == IPV4_VERSION) {
3157 			ire_delete_v4(ire);
3158 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3159 			    ire_stats_deleted);
3160 		} else {
3161 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3162 			ire_delete_v6(ire);
3163 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3164 			    ire_stats_deleted);
3165 		}
3166 		/*
3167 		 * Now it's really out of the list. Before doing the
3168 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3169 		 * so.
3170 		 */
3171 		ire->ire_next = NULL;
3172 		IRE_REFRELE_NOTR(ire);
3173 		ire = ire_next;
3174 	}
3175 }
3176 
3177 /*
3178  * IRB_REFRELE is the only caller of the function. It calls to unlink
3179  * all the CONDEMNED ires from this bucket.
3180  */
3181 ire_t *
3182 ire_unlink(irb_t *irb)
3183 {
3184 	ire_t *ire;
3185 	ire_t *ire1;
3186 	ire_t **ptpn;
3187 	ire_t *ire_list = NULL;
3188 
3189 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3190 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3191 	    (irb->irb_refcnt == 0));
3192 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3193 	ASSERT(irb->irb_ire != NULL);
3194 
3195 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3196 		ip_stack_t	*ipst = ire->ire_ipst;
3197 
3198 		ire1 = ire->ire_next;
3199 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3200 			ptpn = ire->ire_ptpn;
3201 			ire1 = ire->ire_next;
3202 			if (ire1)
3203 				ire1->ire_ptpn = ptpn;
3204 			*ptpn = ire1;
3205 			ire->ire_ptpn = NULL;
3206 			ire->ire_next = NULL;
3207 			if (ire->ire_type == IRE_DEFAULT) {
3208 				/*
3209 				 * IRE is out of the list. We need to adjust
3210 				 * the accounting before the caller drops
3211 				 * the lock.
3212 				 */
3213 				if (ire->ire_ipversion == IPV6_VERSION) {
3214 					ASSERT(ipst->
3215 					    ips_ipv6_ire_default_count !=
3216 					    0);
3217 					ipst->ips_ipv6_ire_default_count--;
3218 				}
3219 			}
3220 			/*
3221 			 * We need to call ire_delete_v4 or ire_delete_v6
3222 			 * to clean up the cache or the redirects pointing at
3223 			 * the default gateway. We need to drop the lock
3224 			 * as ire_flush_cache/ire_delete_host_redircts require
3225 			 * so. But we can't drop the lock, as ire_unlink needs
3226 			 * to atomically remove the ires from the list.
3227 			 * So, create a temporary list of CONDEMNED ires
3228 			 * for doing ire_delete_v4/ire_delete_v6 operations
3229 			 * later on.
3230 			 */
3231 			ire->ire_next = ire_list;
3232 			ire_list = ire;
3233 		}
3234 	}
3235 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3236 	return (ire_list);
3237 }
3238 
3239 /*
3240  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3241  * ARP message on any of its interface queue, it scans the nce table and
3242  * deletes and calls ndp_delete() for the appropriate nce. This action
3243  * also deletes all the neighbor/ire cache entries for that address.
3244  * This function is called from ip_arp_news in ip.c and also for
3245  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3246  * true if it finds a nce entry which is used by ip_arp_news to determine if
3247  * it needs to do an ire_walk_v4. The return value is also  used for the
3248  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3249  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3250  * ip_if->ipif_ill also needs to be matched.
3251  */
3252 boolean_t
3253 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3254 {
3255 	ill_t	*ill;
3256 	nce_t	*nce;
3257 
3258 	ill = (ipif ? ipif->ipif_ill : NULL);
3259 
3260 	if (ill != NULL) {
3261 		/*
3262 		 * clean up the nce (and any relevant ire's) that matches
3263 		 * on addr and ill.
3264 		 */
3265 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3266 		if (nce != NULL) {
3267 			ndp_delete(nce);
3268 			return (B_TRUE);
3269 		}
3270 	} else {
3271 		/*
3272 		 * ill is wildcard. clean up all nce's and
3273 		 * ire's that match on addr
3274 		 */
3275 		nce_clookup_t cl;
3276 
3277 		cl.ncecl_addr = addr;
3278 		cl.ncecl_found = B_FALSE;
3279 
3280 		ndp_walk_common(ipst->ips_ndp4, NULL,
3281 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3282 
3283 		/*
3284 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3285 		 *  we found a matching nce.
3286 		 */
3287 		return (cl.ncecl_found);
3288 	}
3289 	return (B_FALSE);
3290 
3291 }
3292 
3293 /* Delete the supplied nce if its nce_addr matches the supplied address */
3294 static void
3295 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3296 {
3297 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3298 	ipaddr_t nce_addr;
3299 
3300 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3301 	if (nce_addr == cl->ncecl_addr) {
3302 		cl->ncecl_found = B_TRUE;
3303 		/* clean up the nce (and any relevant ire's) */
3304 		ndp_delete(nce);
3305 	}
3306 }
3307 
3308 /*
3309  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3310  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3311  * is deleted and freed.
3312  */
3313 boolean_t
3314 irb_inactive(irb_t *irb)
3315 {
3316 	struct rt_entry *rt;
3317 	struct radix_node *rn;
3318 	ip_stack_t *ipst = irb->irb_ipst;
3319 
3320 	ASSERT(irb->irb_ipst != NULL);
3321 
3322 	rt = IRB2RT(irb);
3323 	rn = (struct radix_node *)rt;
3324 
3325 	/* first remove it from the radix tree. */
3326 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3327 	rw_enter(&irb->irb_lock, RW_WRITER);
3328 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3329 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3330 		    ipst->ips_ip_ftable);
3331 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3332 		ASSERT((void *)rn == (void *)rt);
3333 		Free(rt, rt_entry_cache);
3334 		/* irb_lock is freed */
3335 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3336 		return (B_TRUE);
3337 	}
3338 	rw_exit(&irb->irb_lock);
3339 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3340 	return (B_FALSE);
3341 }
3342 
3343 /*
3344  * Delete the specified IRE.
3345  */
3346 void
3347 ire_delete(ire_t *ire)
3348 {
3349 	ire_t	*ire1;
3350 	ire_t	**ptpn;
3351 	irb_t *irb;
3352 	ip_stack_t	*ipst = ire->ire_ipst;
3353 
3354 	if ((irb = ire->ire_bucket) == NULL) {
3355 		/*
3356 		 * It was never inserted in the list. Should call REFRELE
3357 		 * to free this IRE.
3358 		 */
3359 		IRE_REFRELE_NOTR(ire);
3360 		return;
3361 	}
3362 
3363 	rw_enter(&irb->irb_lock, RW_WRITER);
3364 
3365 	if (irb->irb_rr_origin == ire) {
3366 		irb->irb_rr_origin = NULL;
3367 	}
3368 
3369 	/*
3370 	 * In case of V4 we might still be waiting for fastpath ack.
3371 	 */
3372 	if (ire->ire_ipversion == IPV4_VERSION &&
3373 	    (ire->ire_type == IRE_CACHE ||
3374 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3375 		ASSERT(ire->ire_nce != NULL);
3376 		nce_fastpath_list_delete(ire->ire_nce);
3377 	}
3378 
3379 	if (ire->ire_ptpn == NULL) {
3380 		/*
3381 		 * Some other thread has removed us from the list.
3382 		 * It should have done the REFRELE for us.
3383 		 */
3384 		rw_exit(&irb->irb_lock);
3385 		return;
3386 	}
3387 
3388 	if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3389 		irb->irb_ire_cnt--;
3390 		ire->ire_marks |= IRE_MARK_CONDEMNED;
3391 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
3392 			irb->irb_tmp_ire_cnt--;
3393 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
3394 		}
3395 	}
3396 
3397 	if (irb->irb_refcnt != 0) {
3398 		/*
3399 		 * The last thread to leave this bucket will
3400 		 * delete this ire.
3401 		 */
3402 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3403 		rw_exit(&irb->irb_lock);
3404 		return;
3405 	}
3406 
3407 	/*
3408 	 * Normally to delete an ire, we walk the bucket. While we
3409 	 * walk the bucket, we normally bump up irb_refcnt and hence
3410 	 * we return from above where we mark CONDEMNED and the ire
3411 	 * gets deleted from ire_unlink. This case is where somebody
3412 	 * knows the ire e.g by doing a lookup, and wants to delete the
3413 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3414 	 * the bucket.
3415 	 */
3416 	ptpn = ire->ire_ptpn;
3417 	ire1 = ire->ire_next;
3418 	if (ire1 != NULL)
3419 		ire1->ire_ptpn = ptpn;
3420 	ASSERT(ptpn != NULL);
3421 	*ptpn = ire1;
3422 	ire->ire_ptpn = NULL;
3423 	ire->ire_next = NULL;
3424 	if (ire->ire_ipversion == IPV6_VERSION) {
3425 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3426 	} else {
3427 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3428 	}
3429 	/*
3430 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3431 	 * it should still use the cached ire or not.
3432 	 */
3433 	if (ire->ire_type == IRE_DEFAULT) {
3434 		/*
3435 		 * IRE is out of the list. We need to adjust the
3436 		 * accounting before we drop the lock.
3437 		 */
3438 		if (ire->ire_ipversion == IPV6_VERSION) {
3439 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3440 			ipst->ips_ipv6_ire_default_count--;
3441 		}
3442 	}
3443 	rw_exit(&irb->irb_lock);
3444 
3445 	if (ire->ire_ipversion == IPV6_VERSION) {
3446 		ire_delete_v6(ire);
3447 	} else {
3448 		ire_delete_v4(ire);
3449 	}
3450 	/*
3451 	 * We removed it from the list. Decrement the
3452 	 * reference count.
3453 	 */
3454 	IRE_REFRELE_NOTR(ire);
3455 }
3456 
3457 /*
3458  * Delete the specified IRE.
3459  * All calls should use ire_delete().
3460  * Sometimes called as writer though not required by this function.
3461  *
3462  * NOTE : This function is called only if the ire was added
3463  * in the list.
3464  */
3465 static void
3466 ire_delete_v4(ire_t *ire)
3467 {
3468 	ip_stack_t	*ipst = ire->ire_ipst;
3469 
3470 	ASSERT(ire->ire_refcnt >= 1);
3471 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3472 
3473 	if (ire->ire_type != IRE_CACHE)
3474 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3475 	if (ire->ire_type == IRE_DEFAULT) {
3476 		/*
3477 		 * when a default gateway is going away
3478 		 * delete all the host redirects pointing at that
3479 		 * gateway.
3480 		 */
3481 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3482 	}
3483 }
3484 
3485 /*
3486  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3487  * to free the ire when the reference count goes to zero.
3488  */
3489 void
3490 ire_inactive(ire_t *ire)
3491 {
3492 	nce_t	*nce;
3493 	ill_t	*ill = NULL;
3494 	ill_t	*stq_ill = NULL;
3495 	ipif_t	*ipif;
3496 	boolean_t	need_wakeup = B_FALSE;
3497 	irb_t 	*irb;
3498 	ip_stack_t	*ipst = ire->ire_ipst;
3499 
3500 	ASSERT(ire->ire_refcnt == 0);
3501 	ASSERT(ire->ire_ptpn == NULL);
3502 	ASSERT(ire->ire_next == NULL);
3503 
3504 	if (ire->ire_gw_secattr != NULL) {
3505 		ire_gw_secattr_free(ire->ire_gw_secattr);
3506 		ire->ire_gw_secattr = NULL;
3507 	}
3508 
3509 	if (ire->ire_mp != NULL) {
3510 		ASSERT(ire->ire_bucket == NULL);
3511 		mutex_destroy(&ire->ire_lock);
3512 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3513 		if (ire->ire_nce != NULL)
3514 			NCE_REFRELE_NOTR(ire->ire_nce);
3515 		freeb(ire->ire_mp);
3516 		return;
3517 	}
3518 
3519 	if ((nce = ire->ire_nce) != NULL) {
3520 		NCE_REFRELE_NOTR(nce);
3521 		ire->ire_nce = NULL;
3522 	}
3523 
3524 	if (ire->ire_ipif == NULL)
3525 		goto end;
3526 
3527 	ipif = ire->ire_ipif;
3528 	ill = ipif->ipif_ill;
3529 
3530 	if (ire->ire_bucket == NULL) {
3531 		/* The ire was never inserted in the table. */
3532 		goto end;
3533 	}
3534 
3535 	/*
3536 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
3537 	 * non-null ill_ire_count also goes down by 1.
3538 	 *
3539 	 * The ipif that is associated with an ire is ire->ire_ipif and
3540 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
3541 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
3542 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done.
3543 	 * However, for VNI or IPMP IRE entries, stq_ill can be different.
3544 	 * If this is different from ire->ire_ipif->ipif_ill and if the
3545 	 * ill_ire_cnt on the stq_ill also has dropped to zero, we call
3546 	 * ipif_ill_refrele_tail on the stq_ill.
3547 	 */
3548 	if (ire->ire_stq != NULL)
3549 		stq_ill = ire->ire_stq->q_ptr;
3550 
3551 	if (stq_ill == NULL || stq_ill == ill) {
3552 		/* Optimize the most common case */
3553 		mutex_enter(&ill->ill_lock);
3554 		ASSERT(ipif->ipif_ire_cnt != 0);
3555 		DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif,
3556 		    (char *), "ire", (void *), ire);
3557 		ipif->ipif_ire_cnt--;
3558 		if (IPIF_DOWN_OK(ipif))
3559 			need_wakeup = B_TRUE;
3560 		if (stq_ill != NULL) {
3561 			ASSERT(stq_ill->ill_ire_cnt != 0);
3562 			DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill,
3563 			    (char *), "ire", (void *), ire);
3564 			stq_ill->ill_ire_cnt--;
3565 			if (ILL_DOWN_OK(stq_ill))
3566 				need_wakeup = B_TRUE;
3567 		}
3568 		if (need_wakeup) {
3569 			/* Drops the ill lock */
3570 			ipif_ill_refrele_tail(ill);
3571 		} else {
3572 			mutex_exit(&ill->ill_lock);
3573 		}
3574 	} else {
3575 		/*
3576 		 * We can't grab all the ill locks at the same time.
3577 		 * It can lead to recursive lock enter in the call to
3578 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
3579 		 * a time.
3580 		 */
3581 		mutex_enter(&ill->ill_lock);
3582 		ASSERT(ipif->ipif_ire_cnt != 0);
3583 		DTRACE_PROBE3(ipif__decr__cnt, (ipif_t *), ipif,
3584 		    (char *), "ire", (void *), ire);
3585 		ipif->ipif_ire_cnt--;
3586 		if (IPIF_DOWN_OK(ipif)) {
3587 			/* Drops the lock */
3588 			ipif_ill_refrele_tail(ill);
3589 		} else {
3590 			mutex_exit(&ill->ill_lock);
3591 		}
3592 		if (stq_ill != NULL) {
3593 			mutex_enter(&stq_ill->ill_lock);
3594 			ASSERT(stq_ill->ill_ire_cnt != 0);
3595 			DTRACE_PROBE3(ill__decr__cnt, (ill_t *), stq_ill,
3596 			    (char *), "ire", (void *), ire);
3597 			stq_ill->ill_ire_cnt--;
3598 			if (ILL_DOWN_OK(stq_ill)) {
3599 				/* Drops the ill lock */
3600 				ipif_ill_refrele_tail(stq_ill);
3601 			} else {
3602 				mutex_exit(&stq_ill->ill_lock);
3603 			}
3604 		}
3605 	}
3606 end:
3607 	/* This should be true for both V4 and V6 */
3608 
3609 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
3610 	    (ire->ire_ipversion == IPV4_VERSION) &&
3611 	    ((irb = ire->ire_bucket) != NULL)) {
3612 		rw_enter(&irb->irb_lock, RW_WRITER);
3613 		irb->irb_nire--;
3614 		/*
3615 		 * Instead of examining the conditions for freeing
3616 		 * the radix node here, we do it by calling
3617 		 * IRB_REFRELE which is a single point in the code
3618 		 * that embeds that logic. Bump up the refcnt to
3619 		 * be able to call IRB_REFRELE
3620 		 */
3621 		IRB_REFHOLD_LOCKED(irb);
3622 		rw_exit(&irb->irb_lock);
3623 		IRB_REFRELE(irb);
3624 	}
3625 	ire->ire_ipif = NULL;
3626 
3627 #ifdef DEBUG
3628 	ire_trace_cleanup(ire);
3629 #endif
3630 	mutex_destroy(&ire->ire_lock);
3631 	if (ire->ire_ipversion == IPV6_VERSION) {
3632 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
3633 	} else {
3634 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3635 	}
3636 	ASSERT(ire->ire_mp == NULL);
3637 	/* Has been allocated out of the cache */
3638 	kmem_cache_free(ire_cache, ire);
3639 }
3640 
3641 /*
3642  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
3643  * entries that have a given gateway address.
3644  */
3645 void
3646 ire_delete_cache_gw(ire_t *ire, char *cp)
3647 {
3648 	ipaddr_t	gw_addr;
3649 
3650 	if (!(ire->ire_type & IRE_CACHE) &&
3651 	    !(ire->ire_flags & RTF_DYNAMIC))
3652 		return;
3653 
3654 	bcopy(cp, &gw_addr, sizeof (gw_addr));
3655 	if (ire->ire_gateway_addr == gw_addr) {
3656 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
3657 		    (int)ntohl(ire->ire_addr), ire->ire_type,
3658 		    (int)ntohl(ire->ire_gateway_addr)));
3659 		ire_delete(ire);
3660 	}
3661 }
3662 
3663 /*
3664  * Remove all IRE_CACHE entries that match the ire specified.
3665  *
3666  * The flag argument indicates if the flush request is due to addition
3667  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
3668  *
3669  * This routine takes only the IREs from the forwarding table and flushes
3670  * the corresponding entries from the cache table.
3671  *
3672  * When flushing due to the deletion of an old route, it
3673  * just checks the cache handles (ire_phandle and ire_ihandle) and
3674  * deletes the ones that match.
3675  *
3676  * When flushing due to the creation of a new route, it checks
3677  * if a cache entry's address matches the one in the IRE and
3678  * that the cache entry's parent has a less specific mask than the
3679  * one in IRE. The destination of such a cache entry could be the
3680  * gateway for other cache entries, so we need to flush those as
3681  * well by looking for gateway addresses matching the IRE's address.
3682  */
3683 void
3684 ire_flush_cache_v4(ire_t *ire, int flag)
3685 {
3686 	int i;
3687 	ire_t *cire;
3688 	irb_t *irb;
3689 	ip_stack_t	*ipst = ire->ire_ipst;
3690 
3691 	if (ire->ire_type & IRE_CACHE)
3692 		return;
3693 
3694 	/*
3695 	 * If a default is just created, there is no point
3696 	 * in going through the cache, as there will not be any
3697 	 * cached ires.
3698 	 */
3699 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
3700 		return;
3701 	if (flag == IRE_FLUSH_ADD) {
3702 		/*
3703 		 * This selective flush is due to the addition of
3704 		 * new IRE.
3705 		 */
3706 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3707 			irb = &ipst->ips_ip_cache_table[i];
3708 			if ((cire = irb->irb_ire) == NULL)
3709 				continue;
3710 			IRB_REFHOLD(irb);
3711 			for (cire = irb->irb_ire; cire != NULL;
3712 			    cire = cire->ire_next) {
3713 				if (cire->ire_type != IRE_CACHE)
3714 					continue;
3715 				/*
3716 				 * If 'cire' belongs to the same subnet
3717 				 * as the new ire being added, and 'cire'
3718 				 * is derived from a prefix that is less
3719 				 * specific than the new ire being added,
3720 				 * we need to flush 'cire'; for instance,
3721 				 * when a new interface comes up.
3722 				 */
3723 				if (((cire->ire_addr & ire->ire_mask) ==
3724 				    (ire->ire_addr & ire->ire_mask)) &&
3725 				    (ip_mask_to_plen(cire->ire_cmask) <=
3726 				    ire->ire_masklen)) {
3727 					ire_delete(cire);
3728 					continue;
3729 				}
3730 				/*
3731 				 * This is the case when the ire_gateway_addr
3732 				 * of 'cire' belongs to the same subnet as
3733 				 * the new ire being added.
3734 				 * Flushing such ires is sometimes required to
3735 				 * avoid misrouting: say we have a machine with
3736 				 * two interfaces (I1 and I2), a default router
3737 				 * R on the I1 subnet, and a host route to an
3738 				 * off-link destination D with a gateway G on
3739 				 * the I2 subnet.
3740 				 * Under normal operation, we will have an
3741 				 * on-link cache entry for G and an off-link
3742 				 * cache entry for D with G as ire_gateway_addr,
3743 				 * traffic to D will reach its destination
3744 				 * through gateway G.
3745 				 * If the administrator does 'ifconfig I2 down',
3746 				 * the cache entries for D and G will be
3747 				 * flushed. However, G will now be resolved as
3748 				 * an off-link destination using R (the default
3749 				 * router) as gateway. Then D will also be
3750 				 * resolved as an off-link destination using G
3751 				 * as gateway - this behavior is due to
3752 				 * compatibility reasons, see comment in
3753 				 * ire_ihandle_lookup_offlink(). Traffic to D
3754 				 * will go to the router R and probably won't
3755 				 * reach the destination.
3756 				 * The administrator then does 'ifconfig I2 up'.
3757 				 * Since G is on the I2 subnet, this routine
3758 				 * will flush its cache entry. It must also
3759 				 * flush the cache entry for D, otherwise
3760 				 * traffic will stay misrouted until the IRE
3761 				 * times out.
3762 				 */
3763 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
3764 				    (ire->ire_addr & ire->ire_mask)) {
3765 					ire_delete(cire);
3766 					continue;
3767 				}
3768 			}
3769 			IRB_REFRELE(irb);
3770 		}
3771 	} else {
3772 		/*
3773 		 * delete the cache entries based on
3774 		 * handle in the IRE as this IRE is
3775 		 * being deleted/changed.
3776 		 */
3777 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
3778 			irb = &ipst->ips_ip_cache_table[i];
3779 			if ((cire = irb->irb_ire) == NULL)
3780 				continue;
3781 			IRB_REFHOLD(irb);
3782 			for (cire = irb->irb_ire; cire != NULL;
3783 			    cire = cire->ire_next) {
3784 				if (cire->ire_type != IRE_CACHE)
3785 					continue;
3786 				if ((cire->ire_phandle == 0 ||
3787 				    cire->ire_phandle != ire->ire_phandle) &&
3788 				    (cire->ire_ihandle == 0 ||
3789 				    cire->ire_ihandle != ire->ire_ihandle))
3790 					continue;
3791 				ire_delete(cire);
3792 			}
3793 			IRB_REFRELE(irb);
3794 		}
3795 	}
3796 }
3797 
3798 /*
3799  * Matches the arguments passed with the values in the ire.
3800  *
3801  * Note: for match types that match using "ipif" passed in, ipif
3802  * must be checked for non-NULL before calling this routine.
3803  */
3804 boolean_t
3805 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3806     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
3807     const ts_label_t *tsl, int match_flags, queue_t *wq)
3808 {
3809 	ill_t *ire_ill = NULL, *dst_ill;
3810 	ill_t *ipif_ill = NULL;
3811 
3812 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3813 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
3814 	ASSERT((!(match_flags & MATCH_IRE_ILL)) ||
3815 	    (ipif != NULL && !ipif->ipif_isv6));
3816 	ASSERT(!(match_flags & MATCH_IRE_WQ) || wq != NULL);
3817 
3818 	/*
3819 	 * If MATCH_IRE_MARK_TESTHIDDEN is set, then only return the IRE if it
3820 	 * is in fact hidden, to ensure the caller gets the right one.  One
3821 	 * exception: if the caller passed MATCH_IRE_IHANDLE, then they
3822 	 * already know the identity of the given IRE_INTERFACE entry and
3823 	 * there's no point trying to hide it from them.
3824 	 */
3825 	if (ire->ire_marks & IRE_MARK_TESTHIDDEN) {
3826 		if (match_flags & MATCH_IRE_IHANDLE)
3827 			match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
3828 
3829 		if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN))
3830 			return (B_FALSE);
3831 	}
3832 
3833 	/*
3834 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
3835 	 * is used. In that case the routing table is bypassed and the
3836 	 * packets are sent directly to the specified nexthop. The
3837 	 * IRE_CACHE entry representing this route should be marked
3838 	 * with IRE_MARK_PRIVATE_ADDR.
3839 	 */
3840 
3841 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
3842 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
3843 		return (B_FALSE);
3844 
3845 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
3846 	    ire->ire_zoneid != ALL_ZONES) {
3847 		/*
3848 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
3849 		 * valid and does not match that of ire_zoneid, a failure to
3850 		 * match is reported at this point. Otherwise, since some IREs
3851 		 * that are available in the global zone can be used in local
3852 		 * zones, additional checks need to be performed:
3853 		 *
3854 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
3855 		 *	entries should never be matched in this situation.
3856 		 *
3857 		 *	IRE entries that have an interface associated with them
3858 		 *	should in general not match unless they are an IRE_LOCAL
3859 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
3860 		 *	the caller.  In the case of the former, checking of the
3861 		 *	other fields supplied should take place.
3862 		 *
3863 		 *	In the case where MATCH_IRE_DEFAULT has been set,
3864 		 *	all of the ipif's associated with the IRE's ill are
3865 		 *	checked to see if there is a matching zoneid.  If any
3866 		 *	one ipif has a matching zoneid, this IRE is a
3867 		 *	potential candidate so checking of the other fields
3868 		 *	takes place.
3869 		 *
3870 		 *	In the case where the IRE_INTERFACE has a usable source
3871 		 *	address (indicated by ill_usesrc_ifindex) in the
3872 		 *	correct zone then it's permitted to return this IRE
3873 		 */
3874 		if (match_flags & MATCH_IRE_ZONEONLY)
3875 			return (B_FALSE);
3876 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
3877 			return (B_FALSE);
3878 		/*
3879 		 * Note, IRE_INTERFACE can have the stq as NULL. For
3880 		 * example, if the default multicast route is tied to
3881 		 * the loopback address.
3882 		 */
3883 		if ((ire->ire_type & IRE_INTERFACE) &&
3884 		    (ire->ire_stq != NULL)) {
3885 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
3886 			/*
3887 			 * If there is a usable source address in the
3888 			 * zone, then it's ok to return an
3889 			 * IRE_INTERFACE
3890 			 */
3891 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
3892 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
3893 				    (void *)dst_ill,
3894 				    (ire->ire_addr == (addr & mask))));
3895 			} else {
3896 				ip3dbg(("ire_match_args: src_ipif NULL"
3897 				    " dst_ill %p\n", (void *)dst_ill));
3898 				return (B_FALSE);
3899 			}
3900 		}
3901 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
3902 		    !(ire->ire_type & IRE_INTERFACE)) {
3903 			ipif_t	*tipif;
3904 
3905 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
3906 				return (B_FALSE);
3907 			}
3908 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
3909 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
3910 			    tipif != NULL; tipif = tipif->ipif_next) {
3911 				if (IPIF_CAN_LOOKUP(tipif) &&
3912 				    (tipif->ipif_flags & IPIF_UP) &&
3913 				    (tipif->ipif_zoneid == zoneid ||
3914 				    tipif->ipif_zoneid == ALL_ZONES))
3915 					break;
3916 			}
3917 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
3918 			if (tipif == NULL) {
3919 				return (B_FALSE);
3920 			}
3921 		}
3922 	}
3923 
3924 	/*
3925 	 * For IRE_CACHE entries, MATCH_IRE_ILL means that somebody wants to
3926 	 * send out ire_stq (ire_ipif for IRE_CACHE entries is just the means
3927 	 * of getting a source address -- i.e., ire_src_addr ==
3928 	 * ire->ire_ipif->ipif_src_addr).  ire_to_ill() handles this.
3929 	 *
3930 	 * NOTE: For IPMP, MATCH_IRE_ILL usually matches any ill in the group.
3931 	 * However, if MATCH_IRE_MARK_TESTHIDDEN is set (i.e., the IRE is for
3932 	 * IPMP test traffic), then the ill must match exactly.
3933 	 */
3934 	if (match_flags & MATCH_IRE_ILL) {
3935 		ire_ill = ire_to_ill(ire);
3936 		ipif_ill = ipif->ipif_ill;
3937 	}
3938 
3939 	if ((ire->ire_addr == (addr & mask)) &&
3940 	    ((!(match_flags & MATCH_IRE_GW)) ||
3941 	    (ire->ire_gateway_addr == gateway)) &&
3942 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
3943 	    (ire->ire_type & type)) &&
3944 	    ((!(match_flags & MATCH_IRE_SRC)) ||
3945 	    (ire->ire_src_addr == ipif->ipif_src_addr)) &&
3946 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
3947 	    (ire->ire_ipif == ipif)) &&
3948 	    ((!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) ||
3949 	    (ire->ire_marks & IRE_MARK_TESTHIDDEN)) &&
3950 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
3951 	    (ire->ire_type != IRE_CACHE ||
3952 	    ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
3953 	    ((!(match_flags & MATCH_IRE_WQ)) ||
3954 	    (ire->ire_stq == wq)) &&
3955 	    ((!(match_flags & MATCH_IRE_ILL)) ||
3956 	    (ire_ill == ipif_ill ||
3957 	    (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN) &&
3958 	    ire_ill != NULL && IS_IN_SAME_ILLGRP(ipif_ill, ire_ill)))) &&
3959 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
3960 	    (ire->ire_ihandle == ihandle)) &&
3961 	    ((!(match_flags & MATCH_IRE_MASK)) ||
3962 	    (ire->ire_mask == mask)) &&
3963 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
3964 	    (!is_system_labeled()) ||
3965 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
3966 		/* We found the matched IRE */
3967 		return (B_TRUE);
3968 	}
3969 	return (B_FALSE);
3970 }
3971 
3972 /*
3973  * Lookup for a route in all the tables
3974  */
3975 ire_t *
3976 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
3977     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
3978     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
3979 {
3980 	ire_t *ire = NULL;
3981 
3982 	/*
3983 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
3984 	 * MATCH_IRE_ILL is set.
3985 	 */
3986 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) && (ipif == NULL))
3987 		return (NULL);
3988 
3989 	/*
3990 	 * might be asking for a cache lookup,
3991 	 * This is not best way to lookup cache,
3992 	 * user should call ire_cache_lookup directly.
3993 	 *
3994 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
3995 	 * in the forwarding table, if the applicable type flags were set.
3996 	 */
3997 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
3998 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
3999 		    tsl, flags, ipst);
4000 		if (ire != NULL)
4001 			return (ire);
4002 	}
4003 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4004 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4005 		    zoneid, 0, tsl, flags, ipst);
4006 	}
4007 	return (ire);
4008 }
4009 
4010 /*
4011  * Delete the IRE cache for the gateway and all IRE caches whose
4012  * ire_gateway_addr points to this gateway, and allow them to
4013  * be created on demand by ip_newroute.
4014  */
4015 void
4016 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4017 {
4018 	irb_t *irb;
4019 	ire_t *ire;
4020 
4021 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4022 	    ipst->ips_ip_cache_table_size)];
4023 	IRB_REFHOLD(irb);
4024 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4025 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4026 			continue;
4027 
4028 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4029 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4030 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE, NULL)) {
4031 			ire_delete(ire);
4032 		}
4033 	}
4034 	IRB_REFRELE(irb);
4035 
4036 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4037 }
4038 
4039 /*
4040  * Looks up cache table for a route.
4041  * specific lookup can be indicated by
4042  * passing the MATCH_* flags and the
4043  * necessary parameters.
4044  */
4045 ire_t *
4046 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4047     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4048 {
4049 	ire_ctable_args_t	margs;
4050 
4051 	margs.ict_addr = &addr;
4052 	margs.ict_gateway = &gateway;
4053 	margs.ict_type = type;
4054 	margs.ict_ipif = ipif;
4055 	margs.ict_zoneid = zoneid;
4056 	margs.ict_tsl = tsl;
4057 	margs.ict_flags = flags;
4058 	margs.ict_ipst = ipst;
4059 	margs.ict_wq = NULL;
4060 
4061 	return (ip4_ctable_lookup_impl(&margs));
4062 }
4063 
4064 /*
4065  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4066  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are identical
4067  * or part of the same illgrp.  (In the IPMP case, usually the two IREs
4068  * will both belong to the IPMP ill, but exceptions are possible -- e.g.
4069  * if IPMP test addresses are on their own subnet.)
4070  */
4071 boolean_t
4072 ire_local_same_lan(ire_t *ire_local, ire_t *xmit_ire)
4073 {
4074 	ill_t *recv_ill, *xmit_ill;
4075 
4076 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4077 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4078 
4079 	recv_ill = ire_to_ill(ire_local);
4080 	xmit_ill = ire_to_ill(xmit_ire);
4081 
4082 	ASSERT(recv_ill != NULL);
4083 	ASSERT(xmit_ill != NULL);
4084 
4085 	return (IS_ON_SAME_LAN(recv_ill, xmit_ill));
4086 }
4087 
4088 /*
4089  * Check if the IRE_LOCAL uses the same ill as another route would use.
4090  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4091  * then we don't allow this IRE_LOCAL to be used.
4092  */
4093 boolean_t
4094 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4095     const ts_label_t *tsl, ip_stack_t *ipst)
4096 {
4097 	ire_t		*alt_ire;
4098 	boolean_t	rval;
4099 	int		flags;
4100 
4101 	flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE;
4102 
4103 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4104 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4105 		    NULL, zoneid, 0, tsl, flags, ipst);
4106 	} else {
4107 		alt_ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL,
4108 		    NULL, zoneid, 0, tsl, flags, ipst);
4109 	}
4110 
4111 	if (alt_ire == NULL)
4112 		return (B_FALSE);
4113 
4114 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4115 		ire_refrele(alt_ire);
4116 		return (B_FALSE);
4117 	}
4118 	rval = ire_local_same_lan(ire_local, alt_ire);
4119 
4120 	ire_refrele(alt_ire);
4121 	return (rval);
4122 }
4123 
4124 /*
4125  * Lookup cache
4126  *
4127  * In general the zoneid has to match (where ALL_ZONES match all of them).
4128  * But for IRE_LOCAL we also need to handle the case where L2 should
4129  * conceptually loop back the packet. This is necessary since neither
4130  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4131  * own MAC address. This loopback is needed when the normal
4132  * routes (ignoring IREs with different zoneids) would send out the packet on
4133  * the same ill as the ill with which this IRE_LOCAL is associated.
4134  *
4135  * Earlier versions of this code always matched an IRE_LOCAL independently of
4136  * the zoneid. We preserve that earlier behavior when
4137  * ip_restrict_interzone_loopback is turned off.
4138  */
4139 ire_t *
4140 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4141     ip_stack_t *ipst)
4142 {
4143 	irb_t *irb_ptr;
4144 	ire_t *ire;
4145 
4146 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4147 	    ipst->ips_ip_cache_table_size)];
4148 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4149 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4150 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4151 		    IRE_MARK_TESTHIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4152 			continue;
4153 		}
4154 		if (ire->ire_addr == addr) {
4155 			/*
4156 			 * Finally, check if the security policy has any
4157 			 * restriction on using this route for the specified
4158 			 * message.
4159 			 */
4160 			if (tsl != NULL &&
4161 			    ire->ire_gw_secattr != NULL &&
4162 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4163 				continue;
4164 			}
4165 
4166 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4167 			    ire->ire_zoneid == ALL_ZONES) {
4168 				IRE_REFHOLD(ire);
4169 				rw_exit(&irb_ptr->irb_lock);
4170 				return (ire);
4171 			}
4172 
4173 			if (ire->ire_type == IRE_LOCAL) {
4174 				if (ipst->ips_ip_restrict_interzone_loopback &&
4175 				    !ire_local_ok_across_zones(ire, zoneid,
4176 				    &addr, tsl, ipst))
4177 					continue;
4178 
4179 				IRE_REFHOLD(ire);
4180 				rw_exit(&irb_ptr->irb_lock);
4181 				return (ire);
4182 			}
4183 		}
4184 	}
4185 	rw_exit(&irb_ptr->irb_lock);
4186 	return (NULL);
4187 }
4188 
4189 ire_t *
4190 ire_cache_lookup_simple(ipaddr_t dst, ip_stack_t *ipst)
4191 {
4192 	irb_t *irb_ptr;
4193 	ire_t *ire;
4194 
4195 	/*
4196 	 * Look for an ire in the cachetable whose
4197 	 * ire_addr matches the destination.
4198 	 * Since we are being called by forwarding fastpath
4199 	 * no need to check for Trusted Solaris label.
4200 	 */
4201 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(
4202 	    dst, ipst->ips_ip_cache_table_size)];
4203 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4204 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4205 		if (ire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN |
4206 		    IRE_MARK_PRIVATE_ADDR)) {
4207 			continue;
4208 		}
4209 		if (ire->ire_addr == dst) {
4210 			IRE_REFHOLD(ire);
4211 			rw_exit(&irb_ptr->irb_lock);
4212 			return (ire);
4213 		}
4214 	}
4215 	rw_exit(&irb_ptr->irb_lock);
4216 	return (NULL);
4217 }
4218 
4219 /*
4220  * Locate the interface ire that is tied to the cache ire 'cire' via
4221  * cire->ire_ihandle.
4222  *
4223  * We are trying to create the cache ire for an offlink destn based
4224  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4225  * as found by ip_newroute(). We are called from ip_newroute() in
4226  * the IRE_CACHE case.
4227  */
4228 ire_t *
4229 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4230 {
4231 	ire_t	*ire;
4232 	int	match_flags;
4233 	ipaddr_t gw_addr;
4234 	ipif_t	*gw_ipif;
4235 	ip_stack_t	*ipst = cire->ire_ipst;
4236 
4237 	ASSERT(cire != NULL && pire != NULL);
4238 
4239 	/*
4240 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4241 	 * because the ihandle refers to an ipif which can be in only one zone.
4242 	 */
4243 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4244 	if (pire->ire_ipif != NULL)
4245 		match_flags |= MATCH_IRE_ILL;
4246 	/*
4247 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4248 	 * (When ip_newroute() created 'cire' for the gateway it set its
4249 	 * cmask from the interface ire's mask)
4250 	 */
4251 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4252 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4253 	    NULL, match_flags, ipst);
4254 	if (ire != NULL)
4255 		return (ire);
4256 	/*
4257 	 * If we didn't find an interface ire above, we can't declare failure.
4258 	 * For backwards compatibility, we need to support prefix routes
4259 	 * pointing to next hop gateways that are not on-link.
4260 	 *
4261 	 * Assume we are trying to ping some offlink destn, and we have the
4262 	 * routing table below.
4263 	 *
4264 	 * Eg.	default	- gw1		<--- pire	(line 1)
4265 	 *	gw1	- gw2				(line 2)
4266 	 *	gw2	- hme0				(line 3)
4267 	 *
4268 	 * If we already have a cache ire for gw1 in 'cire', the
4269 	 * ire_ftable_lookup above would have failed, since there is no
4270 	 * interface ire to reach gw1. We will fallthru below.
4271 	 *
4272 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4273 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4274 	 * The differences are the following
4275 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4276 	 *	instead of ire_route_lookup()
4277 	 * ii.  We look for only prefix routes in the 1st call below.
4278 	 * ii.  We want to match on the ihandle in the 2nd call below.
4279 	 */
4280 	match_flags =  MATCH_IRE_TYPE;
4281 	if (pire->ire_ipif != NULL)
4282 		match_flags |= MATCH_IRE_ILL;
4283 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4284 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4285 	if (ire == NULL)
4286 		return (NULL);
4287 	/*
4288 	 * At this point 'ire' corresponds to the entry shown in line 2.
4289 	 * gw_addr is 'gw2' in the example above.
4290 	 */
4291 	gw_addr = ire->ire_gateway_addr;
4292 	gw_ipif = ire->ire_ipif;
4293 	ire_refrele(ire);
4294 
4295 	match_flags |= MATCH_IRE_IHANDLE;
4296 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4297 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4298 	    ipst);
4299 	return (ire);
4300 }
4301 
4302 /*
4303  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4304  * ire associated with the specified ipif.
4305  *
4306  * This might occasionally be called when IPIF_UP is not set since
4307  * the IP_MULTICAST_IF as well as creating interface routes
4308  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4309  *
4310  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4311  * the ipif, this routine might return NULL.
4312  */
4313 ire_t *
4314 ipif_to_ire(const ipif_t *ipif)
4315 {
4316 	ire_t	*ire;
4317 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
4318 	uint_t	match_flags = MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK;
4319 
4320 	/*
4321 	 * IRE_INTERFACE entries for ills under IPMP are IRE_MARK_TESTHIDDEN
4322 	 * so that they aren't accidentally returned.  However, if the
4323 	 * caller's ipif is on an ill under IPMP, there's no need to hide 'em.
4324 	 */
4325 	if (IS_UNDER_IPMP(ipif->ipif_ill))
4326 		match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
4327 
4328 	ASSERT(!ipif->ipif_isv6);
4329 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4330 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4331 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4332 		    ipst);
4333 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4334 		/* In this case we need to lookup destination address. */
4335 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4336 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, match_flags,
4337 		    ipst);
4338 	} else {
4339 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4340 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4341 		    ALL_ZONES, 0, NULL, match_flags, ipst);
4342 	}
4343 	return (ire);
4344 }
4345 
4346 /*
4347  * ire_walk function.
4348  * Count the number of IRE_CACHE entries in different categories.
4349  */
4350 void
4351 ire_cache_count(ire_t *ire, char *arg)
4352 {
4353 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4354 
4355 	if (ire->ire_type != IRE_CACHE)
4356 		return;
4357 
4358 	icc->icc_total++;
4359 
4360 	if (ire->ire_ipversion == IPV6_VERSION) {
4361 		mutex_enter(&ire->ire_lock);
4362 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4363 			mutex_exit(&ire->ire_lock);
4364 			icc->icc_onlink++;
4365 			return;
4366 		}
4367 		mutex_exit(&ire->ire_lock);
4368 	} else {
4369 		if (ire->ire_gateway_addr == 0) {
4370 			icc->icc_onlink++;
4371 			return;
4372 		}
4373 	}
4374 
4375 	ASSERT(ire->ire_ipif != NULL);
4376 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4377 		icc->icc_pmtu++;
4378 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4379 	    ire->ire_ib_pkt_count)
4380 		icc->icc_offlink++;
4381 	else
4382 		icc->icc_unused++;
4383 }
4384 
4385 /*
4386  * ire_walk function called by ip_trash_ire_reclaim().
4387  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4388  * different for different categories of IRE_CACHE entries.
4389  * A fraction of zero means to not free any in that category.
4390  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4391  * is N then every Nth hash bucket chain will be freed.
4392  */
4393 void
4394 ire_cache_reclaim(ire_t *ire, char *arg)
4395 {
4396 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4397 	uint_t rand;
4398 	ip_stack_t	*ipst = icr->icr_ipst;
4399 
4400 	if (ire->ire_type != IRE_CACHE)
4401 		return;
4402 
4403 	if (ire->ire_ipversion == IPV6_VERSION) {
4404 		rand = (uint_t)lbolt +
4405 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4406 		    ipst->ips_ip6_cache_table_size);
4407 		mutex_enter(&ire->ire_lock);
4408 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4409 			mutex_exit(&ire->ire_lock);
4410 			if (icr->icr_onlink != 0 &&
4411 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4412 				ire_delete(ire);
4413 				return;
4414 			}
4415 			goto done;
4416 		}
4417 		mutex_exit(&ire->ire_lock);
4418 	} else {
4419 		rand = (uint_t)lbolt +
4420 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4421 		if (ire->ire_gateway_addr == 0) {
4422 			if (icr->icr_onlink != 0 &&
4423 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4424 				ire_delete(ire);
4425 				return;
4426 			}
4427 			goto done;
4428 		}
4429 	}
4430 	/* Not onlink IRE */
4431 	ASSERT(ire->ire_ipif != NULL);
4432 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4433 		/* Use ptmu fraction */
4434 		if (icr->icr_pmtu != 0 &&
4435 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4436 			ire_delete(ire);
4437 			return;
4438 		}
4439 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4440 	    ire->ire_ib_pkt_count) {
4441 		/* Use offlink fraction */
4442 		if (icr->icr_offlink != 0 &&
4443 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
4444 			ire_delete(ire);
4445 			return;
4446 		}
4447 	} else {
4448 		/* Use unused fraction */
4449 		if (icr->icr_unused != 0 &&
4450 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
4451 			ire_delete(ire);
4452 			return;
4453 		}
4454 	}
4455 done:
4456 	/*
4457 	 * Update tire_mark so that those that haven't been used since this
4458 	 * reclaim will be considered unused next time we reclaim.
4459 	 */
4460 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
4461 }
4462 
4463 static void
4464 power2_roundup(uint32_t *value)
4465 {
4466 	int i;
4467 
4468 	for (i = 1; i < 31; i++) {
4469 		if (*value <= (1 << i))
4470 			break;
4471 	}
4472 	*value = (1 << i);
4473 }
4474 
4475 /* Global init for all zones */
4476 void
4477 ip_ire_g_init()
4478 {
4479 	/*
4480 	 * Create ire caches, ire_reclaim()
4481 	 * will give IRE_CACHE back to system when needed.
4482 	 * This needs to be done here before anything else, since
4483 	 * ire_add() expects the cache to be created.
4484 	 */
4485 	ire_cache = kmem_cache_create("ire_cache",
4486 	    sizeof (ire_t), 0, ip_ire_constructor,
4487 	    ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
4488 
4489 	rt_entry_cache = kmem_cache_create("rt_entry",
4490 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
4491 
4492 	/*
4493 	 * Have radix code setup kmem caches etc.
4494 	 */
4495 	rn_init();
4496 }
4497 
4498 void
4499 ip_ire_init(ip_stack_t *ipst)
4500 {
4501 	int i;
4502 	uint32_t mem_cnt;
4503 	uint32_t cpu_cnt;
4504 	uint32_t min_cnt;
4505 	pgcnt_t mem_avail;
4506 
4507 	/*
4508 	 * ip_ire_max_bucket_cnt is sized below based on the memory
4509 	 * size and the cpu speed of the machine. This is upper
4510 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
4511 	 * and is lower bounded by the compile time value of
4512 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
4513 	 * ip6_ire_max_bucket_cnt.
4514 	 *
4515 	 * We calculate this for each IP Instances in order to use
4516 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
4517 	 * in effect when the zone is booted.
4518 	 */
4519 	mem_avail = kmem_avail();
4520 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4521 	    ip_cache_table_size / sizeof (ire_t);
4522 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
4523 
4524 	min_cnt = MIN(cpu_cnt, mem_cnt);
4525 	if (min_cnt < ip_ire_min_bucket_cnt)
4526 		min_cnt = ip_ire_min_bucket_cnt;
4527 	if (ip_ire_max_bucket_cnt > min_cnt) {
4528 		ip_ire_max_bucket_cnt = min_cnt;
4529 	}
4530 
4531 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
4532 	    ip6_cache_table_size / sizeof (ire_t);
4533 	min_cnt = MIN(cpu_cnt, mem_cnt);
4534 	if (min_cnt < ip6_ire_min_bucket_cnt)
4535 		min_cnt = ip6_ire_min_bucket_cnt;
4536 	if (ip6_ire_max_bucket_cnt > min_cnt) {
4537 		ip6_ire_max_bucket_cnt = min_cnt;
4538 	}
4539 
4540 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
4541 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
4542 
4543 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
4544 
4545 	/* Calculate the IPv4 cache table size. */
4546 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
4547 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4548 	    ip_ire_max_bucket_cnt));
4549 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
4550 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
4551 	/*
4552 	 * Make sure that the table size is always a power of 2.  The
4553 	 * hash macro IRE_ADDR_HASH() depends on that.
4554 	 */
4555 	power2_roundup(&ipst->ips_ip_cache_table_size);
4556 
4557 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
4558 	    sizeof (irb_t), KM_SLEEP);
4559 
4560 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4561 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
4562 		    RW_DEFAULT, NULL);
4563 	}
4564 
4565 	/* Calculate the IPv6 cache table size. */
4566 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
4567 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
4568 	    ip6_ire_max_bucket_cnt));
4569 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
4570 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
4571 	/*
4572 	 * Make sure that the table size is always a power of 2.  The
4573 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
4574 	 */
4575 	power2_roundup(&ipst->ips_ip6_cache_table_size);
4576 
4577 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
4578 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
4579 
4580 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4581 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
4582 		    RW_DEFAULT, NULL);
4583 	}
4584 
4585 	/*
4586 	 * Make sure that the forwarding table size is a power of 2.
4587 	 * The IRE*_ADDR_HASH() macroes depend on that.
4588 	 */
4589 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
4590 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
4591 
4592 	ipst->ips_ire_handle = 1;
4593 }
4594 
4595 void
4596 ip_ire_g_fini(void)
4597 {
4598 	kmem_cache_destroy(ire_cache);
4599 	kmem_cache_destroy(rt_entry_cache);
4600 
4601 	rn_fini();
4602 }
4603 
4604 void
4605 ip_ire_fini(ip_stack_t *ipst)
4606 {
4607 	int i;
4608 
4609 	/*
4610 	 * Delete all IREs - assumes that the ill/ipifs have
4611 	 * been removed so what remains are just the ftable and IRE_CACHE.
4612 	 */
4613 	ire_walk(ire_delete, NULL, ipst);
4614 
4615 	rn_freehead(ipst->ips_ip_ftable);
4616 	ipst->ips_ip_ftable = NULL;
4617 
4618 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
4619 	mutex_destroy(&ipst->ips_ire_handle_lock);
4620 
4621 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4622 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
4623 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
4624 	}
4625 	kmem_free(ipst->ips_ip_cache_table,
4626 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
4627 	ipst->ips_ip_cache_table = NULL;
4628 
4629 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
4630 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
4631 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
4632 	}
4633 	kmem_free(ipst->ips_ip_cache_table_v6,
4634 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
4635 	ipst->ips_ip_cache_table_v6 = NULL;
4636 
4637 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
4638 		irb_t *ptr;
4639 		int j;
4640 
4641 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
4642 			continue;
4643 
4644 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
4645 			ASSERT(ptr[j].irb_ire == NULL);
4646 			rw_destroy(&ptr[j].irb_lock);
4647 		}
4648 		mi_free(ptr);
4649 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
4650 	}
4651 }
4652 
4653 /*
4654  * Check if another multirt route resolution is needed.
4655  * B_TRUE is returned is there remain a resolvable route,
4656  * or if no route for that dst is resolved yet.
4657  * B_FALSE is returned if all routes for that dst are resolved
4658  * or if the remaining unresolved routes are actually not
4659  * resolvable.
4660  * This only works in the global zone.
4661  */
4662 boolean_t
4663 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
4664 {
4665 	ire_t	*first_fire;
4666 	ire_t	*first_cire;
4667 	ire_t	*fire;
4668 	ire_t	*cire;
4669 	irb_t	*firb;
4670 	irb_t	*cirb;
4671 	int	unres_cnt = 0;
4672 	boolean_t resolvable = B_FALSE;
4673 
4674 	/* Retrieve the first IRE_HOST that matches the destination */
4675 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
4676 	    NULL, ALL_ZONES, 0, tsl,
4677 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
4678 
4679 	/* No route at all */
4680 	if (first_fire == NULL) {
4681 		return (B_TRUE);
4682 	}
4683 
4684 	firb = first_fire->ire_bucket;
4685 	ASSERT(firb != NULL);
4686 
4687 	/* Retrieve the first IRE_CACHE ire for that destination. */
4688 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4689 
4690 	/* No resolved route. */
4691 	if (first_cire == NULL) {
4692 		ire_refrele(first_fire);
4693 		return (B_TRUE);
4694 	}
4695 
4696 	/*
4697 	 * At least one route is resolved. Here we look through the forward
4698 	 * and cache tables, to compare the number of declared routes
4699 	 * with the number of resolved routes. The search for a resolvable
4700 	 * route is performed only if at least one route remains
4701 	 * unresolved.
4702 	 */
4703 	cirb = first_cire->ire_bucket;
4704 	ASSERT(cirb != NULL);
4705 
4706 	/* Count the number of routes to that dest that are declared. */
4707 	IRB_REFHOLD(firb);
4708 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4709 		if (!(fire->ire_flags & RTF_MULTIRT))
4710 			continue;
4711 		if (fire->ire_addr != dst)
4712 			continue;
4713 		unres_cnt++;
4714 	}
4715 	IRB_REFRELE(firb);
4716 
4717 	/* Then subtract the number of routes to that dst that are resolved */
4718 	IRB_REFHOLD(cirb);
4719 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
4720 		if (!(cire->ire_flags & RTF_MULTIRT))
4721 			continue;
4722 		if (cire->ire_addr != dst)
4723 			continue;
4724 		if (cire->ire_marks & (IRE_MARK_CONDEMNED|IRE_MARK_TESTHIDDEN))
4725 			continue;
4726 		unres_cnt--;
4727 	}
4728 	IRB_REFRELE(cirb);
4729 
4730 	/* At least one route is unresolved; search for a resolvable route. */
4731 	if (unres_cnt > 0)
4732 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
4733 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
4734 
4735 	if (first_fire != NULL)
4736 		ire_refrele(first_fire);
4737 
4738 	if (first_cire != NULL)
4739 		ire_refrele(first_cire);
4740 
4741 	return (resolvable);
4742 }
4743 
4744 /*
4745  * Explore a forward_table bucket, starting from fire_arg.
4746  * fire_arg MUST be an IRE_HOST entry.
4747  *
4748  * Return B_TRUE and update *ire_arg and *fire_arg
4749  * if at least one resolvable route is found. *ire_arg
4750  * is the IRE entry for *fire_arg's gateway.
4751  *
4752  * Return B_FALSE otherwise (all routes are resolved or
4753  * the remaining unresolved routes are all unresolvable).
4754  *
4755  * The IRE selection relies on a priority mechanism
4756  * driven by the flags passed in by the caller.
4757  * The caller, such as ip_newroute_ipif(), can get the most
4758  * relevant ire at each stage of a multiple route resolution.
4759  *
4760  * The rules are:
4761  *
4762  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
4763  *   ires are preferred for the gateway. This gives the highest
4764  *   priority to routes that can be resolved without using
4765  *   a resolver.
4766  *
4767  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
4768  *   is specified but no IRE_CACHETABLE ire entry for the gateway
4769  *   is found, the following rules apply.
4770  *
4771  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
4772  *   ires for the gateway, that have not been tried since
4773  *   a configurable amount of time, are preferred.
4774  *   This applies when a resolver must be invoked for
4775  *   a missing route, but we don't want to use the resolver
4776  *   upon each packet emission. If no such resolver is found,
4777  *   B_FALSE is returned.
4778  *   The MULTIRT_USESTAMP flag can be combined with
4779  *   MULTIRT_CACHEGW.
4780  *
4781  * - if MULTIRT_USESTAMP is not specified in flags, the first
4782  *   unresolved but resolvable route is selected.
4783  *
4784  * - Otherwise, there is no resolvalble route, and
4785  *   B_FALSE is returned.
4786  *
4787  * At last, MULTIRT_SETSTAMP can be specified in flags to
4788  * request the timestamp of unresolvable routes to
4789  * be refreshed. This prevents the useless exploration
4790  * of those routes for a while, when MULTIRT_USESTAMP is used.
4791  *
4792  * This only works in the global zone.
4793  */
4794 boolean_t
4795 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
4796     const ts_label_t *tsl, ip_stack_t *ipst)
4797 {
4798 	clock_t	delta;
4799 	ire_t	*best_fire = NULL;
4800 	ire_t	*best_cire = NULL;
4801 	ire_t	*first_fire;
4802 	ire_t	*first_cire;
4803 	ire_t	*fire;
4804 	ire_t	*cire;
4805 	irb_t	*firb = NULL;
4806 	irb_t	*cirb = NULL;
4807 	ire_t	*gw_ire;
4808 	boolean_t	already_resolved;
4809 	boolean_t	res;
4810 	ipaddr_t	dst;
4811 	ipaddr_t	gw;
4812 
4813 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
4814 	    (void *)*ire_arg, (void *)*fire_arg, flags));
4815 
4816 	ASSERT(ire_arg != NULL);
4817 	ASSERT(fire_arg != NULL);
4818 
4819 	/* Not an IRE_HOST ire; give up. */
4820 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
4821 		return (B_FALSE);
4822 	}
4823 
4824 	/* This is the first IRE_HOST ire for that destination. */
4825 	first_fire = *fire_arg;
4826 	firb = first_fire->ire_bucket;
4827 	ASSERT(firb != NULL);
4828 
4829 	dst = first_fire->ire_addr;
4830 
4831 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
4832 
4833 	/*
4834 	 * Retrieve the first IRE_CACHE ire for that destination;
4835 	 * if we don't find one, no route for that dest is
4836 	 * resolved yet.
4837 	 */
4838 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
4839 	if (first_cire != NULL) {
4840 		cirb = first_cire->ire_bucket;
4841 	}
4842 
4843 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
4844 
4845 	/*
4846 	 * Search for a resolvable route, giving the top priority
4847 	 * to routes that can be resolved without any call to the resolver.
4848 	 */
4849 	IRB_REFHOLD(firb);
4850 
4851 	if (!CLASSD(dst)) {
4852 		/*
4853 		 * For all multiroute IRE_HOST ires for that destination,
4854 		 * check if the route via the IRE_HOST's gateway is
4855 		 * resolved yet.
4856 		 */
4857 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
4858 
4859 			if (!(fire->ire_flags & RTF_MULTIRT))
4860 				continue;
4861 			if (fire->ire_addr != dst)
4862 				continue;
4863 
4864 			if (fire->ire_gw_secattr != NULL &&
4865 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
4866 				continue;
4867 			}
4868 
4869 			gw = fire->ire_gateway_addr;
4870 
4871 			ip2dbg(("ire_multirt_lookup: fire %p, "
4872 			    "ire_addr %08x, ire_gateway_addr %08x\n",
4873 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
4874 
4875 			already_resolved = B_FALSE;
4876 
4877 			if (first_cire != NULL) {
4878 				ASSERT(cirb != NULL);
4879 
4880 				IRB_REFHOLD(cirb);
4881 				/*
4882 				 * For all IRE_CACHE ires for that
4883 				 * destination.
4884 				 */
4885 				for (cire = first_cire;
4886 				    cire != NULL;
4887 				    cire = cire->ire_next) {
4888 
4889 					if (!(cire->ire_flags & RTF_MULTIRT))
4890 						continue;
4891 					if (cire->ire_addr != dst)
4892 						continue;
4893 					if (cire->ire_marks &
4894 					    (IRE_MARK_CONDEMNED |
4895 					    IRE_MARK_TESTHIDDEN))
4896 						continue;
4897 
4898 					if (cire->ire_gw_secattr != NULL &&
4899 					    tsol_ire_match_gwattr(cire,
4900 					    tsl) != 0) {
4901 						continue;
4902 					}
4903 
4904 					/*
4905 					 * Check if the IRE_CACHE's gateway
4906 					 * matches the IRE_HOST's gateway.
4907 					 */
4908 					if (cire->ire_gateway_addr == gw) {
4909 						already_resolved = B_TRUE;
4910 						break;
4911 					}
4912 				}
4913 				IRB_REFRELE(cirb);
4914 			}
4915 
4916 			/*
4917 			 * This route is already resolved;
4918 			 * proceed with next one.
4919 			 */
4920 			if (already_resolved) {
4921 				ip2dbg(("ire_multirt_lookup: found cire %p, "
4922 				    "already resolved\n", (void *)cire));
4923 				continue;
4924 			}
4925 
4926 			/*
4927 			 * The route is unresolved; is it actually
4928 			 * resolvable, i.e. is there a cache or a resolver
4929 			 * for the gateway?
4930 			 */
4931 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
4932 			    ALL_ZONES, tsl,
4933 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
4934 
4935 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
4936 			    (void *)gw_ire));
4937 
4938 			/*
4939 			 * If gw_ire is typed IRE_CACHETABLE,
4940 			 * this route can be resolved without any call to the
4941 			 * resolver. If the MULTIRT_CACHEGW flag is set,
4942 			 * give the top priority to this ire and exit the
4943 			 * loop.
4944 			 * This is typically the case when an ARP reply
4945 			 * is processed through ip_wput_nondata().
4946 			 */
4947 			if ((flags & MULTIRT_CACHEGW) &&
4948 			    (gw_ire != NULL) &&
4949 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
4950 				ASSERT(gw_ire->ire_nce == NULL ||
4951 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
4952 				/*
4953 				 * Release the resolver associated to the
4954 				 * previous candidate best ire, if any.
4955 				 */
4956 				if (best_cire != NULL) {
4957 					ire_refrele(best_cire);
4958 					ASSERT(best_fire != NULL);
4959 				}
4960 
4961 				best_fire = fire;
4962 				best_cire = gw_ire;
4963 
4964 				ip2dbg(("ire_multirt_lookup: found top prio "
4965 				    "best_fire %p, best_cire %p\n",
4966 				    (void *)best_fire, (void *)best_cire));
4967 				break;
4968 			}
4969 
4970 			/*
4971 			 * Compute the time elapsed since our preceding
4972 			 * attempt to  resolve that route.
4973 			 * If the MULTIRT_USESTAMP flag is set, we take that
4974 			 * route into account only if this time interval
4975 			 * exceeds ip_multirt_resolution_interval;
4976 			 * this prevents us from attempting to resolve a
4977 			 * broken route upon each sending of a packet.
4978 			 */
4979 			delta = lbolt - fire->ire_last_used_time;
4980 			delta = TICK_TO_MSEC(delta);
4981 
4982 			res = (boolean_t)((delta >
4983 			    ipst->ips_ip_multirt_resolution_interval) ||
4984 			    (!(flags & MULTIRT_USESTAMP)));
4985 
4986 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
4987 			    "res %d\n",
4988 			    (void *)fire, delta, res));
4989 
4990 			if (res) {
4991 				/*
4992 				 * We are here if MULTIRT_USESTAMP flag is set
4993 				 * and the resolver for fire's gateway
4994 				 * has not been tried since
4995 				 * ip_multirt_resolution_interval, or if
4996 				 * MULTIRT_USESTAMP is not set but gw_ire did
4997 				 * not fill the conditions for MULTIRT_CACHEGW,
4998 				 * or if neither MULTIRT_USESTAMP nor
4999 				 * MULTIRT_CACHEGW are set.
5000 				 */
5001 				if (gw_ire != NULL) {
5002 					if (best_fire == NULL) {
5003 						ASSERT(best_cire == NULL);
5004 
5005 						best_fire = fire;
5006 						best_cire = gw_ire;
5007 
5008 						ip2dbg(("ire_multirt_lookup:"
5009 						    "found candidate "
5010 						    "best_fire %p, "
5011 						    "best_cire %p\n",
5012 						    (void *)best_fire,
5013 						    (void *)best_cire));
5014 
5015 						/*
5016 						 * If MULTIRT_CACHEGW is not
5017 						 * set, we ignore the top
5018 						 * priority ires that can
5019 						 * be resolved without any
5020 						 * call to the resolver;
5021 						 * In that case, there is
5022 						 * actually no need
5023 						 * to continue the loop.
5024 						 */
5025 						if (!(flags &
5026 						    MULTIRT_CACHEGW)) {
5027 							break;
5028 						}
5029 						continue;
5030 					}
5031 				} else {
5032 					/*
5033 					 * No resolver for the gateway: the
5034 					 * route is not resolvable.
5035 					 * If the MULTIRT_SETSTAMP flag is
5036 					 * set, we stamp the IRE_HOST ire,
5037 					 * so we will not select it again
5038 					 * during this resolution interval.
5039 					 */
5040 					if (flags & MULTIRT_SETSTAMP)
5041 						fire->ire_last_used_time =
5042 						    lbolt;
5043 				}
5044 			}
5045 
5046 			if (gw_ire != NULL)
5047 				ire_refrele(gw_ire);
5048 		}
5049 	} else { /* CLASSD(dst) */
5050 
5051 		for (fire = first_fire;
5052 		    fire != NULL;
5053 		    fire = fire->ire_next) {
5054 
5055 			if (!(fire->ire_flags & RTF_MULTIRT))
5056 				continue;
5057 			if (fire->ire_addr != dst)
5058 				continue;
5059 
5060 			if (fire->ire_gw_secattr != NULL &&
5061 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5062 				continue;
5063 			}
5064 
5065 			already_resolved = B_FALSE;
5066 
5067 			gw = fire->ire_gateway_addr;
5068 
5069 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
5070 			    NULL, NULL, ALL_ZONES, 0, tsl,
5071 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
5072 			    MATCH_IRE_SECATTR, ipst);
5073 
5074 			/* No resolver for the gateway; we skip this ire. */
5075 			if (gw_ire == NULL) {
5076 				continue;
5077 			}
5078 			ASSERT(gw_ire->ire_nce == NULL ||
5079 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5080 
5081 			if (first_cire != NULL) {
5082 
5083 				IRB_REFHOLD(cirb);
5084 				/*
5085 				 * For all IRE_CACHE ires for that
5086 				 * destination.
5087 				 */
5088 				for (cire = first_cire;
5089 				    cire != NULL;
5090 				    cire = cire->ire_next) {
5091 
5092 					if (!(cire->ire_flags & RTF_MULTIRT))
5093 						continue;
5094 					if (cire->ire_addr != dst)
5095 						continue;
5096 					if (cire->ire_marks &
5097 					    (IRE_MARK_CONDEMNED |
5098 					    IRE_MARK_TESTHIDDEN))
5099 						continue;
5100 
5101 					if (cire->ire_gw_secattr != NULL &&
5102 					    tsol_ire_match_gwattr(cire,
5103 					    tsl) != 0) {
5104 						continue;
5105 					}
5106 
5107 					/*
5108 					 * Cache entries are linked to the
5109 					 * parent routes using the parent handle
5110 					 * (ire_phandle). If no cache entry has
5111 					 * the same handle as fire, fire is
5112 					 * still unresolved.
5113 					 */
5114 					ASSERT(cire->ire_phandle != 0);
5115 					if (cire->ire_phandle ==
5116 					    fire->ire_phandle) {
5117 						already_resolved = B_TRUE;
5118 						break;
5119 					}
5120 				}
5121 				IRB_REFRELE(cirb);
5122 			}
5123 
5124 			/*
5125 			 * This route is already resolved; proceed with
5126 			 * next one.
5127 			 */
5128 			if (already_resolved) {
5129 				ire_refrele(gw_ire);
5130 				continue;
5131 			}
5132 
5133 			/*
5134 			 * Compute the time elapsed since our preceding
5135 			 * attempt to resolve that route.
5136 			 * If the MULTIRT_USESTAMP flag is set, we take
5137 			 * that route into account only if this time
5138 			 * interval exceeds ip_multirt_resolution_interval;
5139 			 * this prevents us from attempting to resolve a
5140 			 * broken route upon each sending of a packet.
5141 			 */
5142 			delta = lbolt - fire->ire_last_used_time;
5143 			delta = TICK_TO_MSEC(delta);
5144 
5145 			res = (boolean_t)((delta >
5146 			    ipst->ips_ip_multirt_resolution_interval) ||
5147 			    (!(flags & MULTIRT_USESTAMP)));
5148 
5149 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
5150 			    "flags %04x, res %d\n",
5151 			    (void *)fire, delta, flags, res));
5152 
5153 			if (res) {
5154 				if (best_cire != NULL) {
5155 					/*
5156 					 * Release the resolver associated
5157 					 * to the preceding candidate best
5158 					 * ire, if any.
5159 					 */
5160 					ire_refrele(best_cire);
5161 					ASSERT(best_fire != NULL);
5162 				}
5163 				best_fire = fire;
5164 				best_cire = gw_ire;
5165 				continue;
5166 			}
5167 
5168 			ire_refrele(gw_ire);
5169 		}
5170 	}
5171 
5172 	if (best_fire != NULL) {
5173 		IRE_REFHOLD(best_fire);
5174 	}
5175 	IRB_REFRELE(firb);
5176 
5177 	/* Release the first IRE_CACHE we initially looked up, if any. */
5178 	if (first_cire != NULL)
5179 		ire_refrele(first_cire);
5180 
5181 	/* Found a resolvable route. */
5182 	if (best_fire != NULL) {
5183 		ASSERT(best_cire != NULL);
5184 
5185 		if (*fire_arg != NULL)
5186 			ire_refrele(*fire_arg);
5187 		if (*ire_arg != NULL)
5188 			ire_refrele(*ire_arg);
5189 
5190 		/*
5191 		 * Update the passed-in arguments with the
5192 		 * resolvable multirt route we found.
5193 		 */
5194 		*fire_arg = best_fire;
5195 		*ire_arg = best_cire;
5196 
5197 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
5198 		    "*fire_arg %p, *ire_arg %p\n",
5199 		    (void *)best_fire, (void *)best_cire));
5200 
5201 		return (B_TRUE);
5202 	}
5203 
5204 	ASSERT(best_cire == NULL);
5205 
5206 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
5207 	    "*ire_arg %p\n",
5208 	    (void *)*fire_arg, (void *)*ire_arg));
5209 
5210 	/* No resolvable route. */
5211 	return (B_FALSE);
5212 }
5213 
5214 /*
5215  * IRE iterator for inbound and loopback broadcast processing.
5216  * Given an IRE_BROADCAST ire, walk the ires with the same destination
5217  * address, but skip over the passed-in ire. Returns the next ire without
5218  * a hold - assumes that the caller holds a reference on the IRE bucket.
5219  */
5220 ire_t *
5221 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
5222 {
5223 	ill_t *ill;
5224 
5225 	if (curr == NULL) {
5226 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
5227 		    curr = curr->ire_next) {
5228 			if (curr->ire_addr == ire->ire_addr)
5229 				break;
5230 		}
5231 	} else {
5232 		curr = curr->ire_next;
5233 	}
5234 	ill = ire_to_ill(ire);
5235 	for (; curr != NULL; curr = curr->ire_next) {
5236 		if (curr->ire_addr != ire->ire_addr) {
5237 			/*
5238 			 * All the IREs to a given destination are contiguous;
5239 			 * break out once the address doesn't match.
5240 			 */
5241 			break;
5242 		}
5243 		if (curr == ire) {
5244 			/* skip over the passed-in ire */
5245 			continue;
5246 		}
5247 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
5248 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
5249 			/*
5250 			 * If the passed-in ire is loopback, skip over
5251 			 * non-loopback ires and vice versa.
5252 			 */
5253 			continue;
5254 		}
5255 		if (ire_to_ill(curr) != ill) {
5256 			/* skip over IREs going through a different interface */
5257 			continue;
5258 		}
5259 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
5260 			/* skip over deleted IREs */
5261 			continue;
5262 		}
5263 		return (curr);
5264 	}
5265 	return (NULL);
5266 }
5267 
5268 #ifdef DEBUG
5269 void
5270 ire_trace_ref(ire_t *ire)
5271 {
5272 	mutex_enter(&ire->ire_lock);
5273 	if (ire->ire_trace_disable) {
5274 		mutex_exit(&ire->ire_lock);
5275 		return;
5276 	}
5277 
5278 	if (th_trace_ref(ire, ire->ire_ipst)) {
5279 		mutex_exit(&ire->ire_lock);
5280 	} else {
5281 		ire->ire_trace_disable = B_TRUE;
5282 		mutex_exit(&ire->ire_lock);
5283 		ire_trace_cleanup(ire);
5284 	}
5285 }
5286 
5287 void
5288 ire_untrace_ref(ire_t *ire)
5289 {
5290 	mutex_enter(&ire->ire_lock);
5291 	if (!ire->ire_trace_disable)
5292 		th_trace_unref(ire);
5293 	mutex_exit(&ire->ire_lock);
5294 }
5295 
5296 static void
5297 ire_trace_cleanup(const ire_t *ire)
5298 {
5299 	th_trace_cleanup(ire, ire->ire_trace_disable);
5300 }
5301 #endif /* DEBUG */
5302 
5303 /*
5304  * Generate a message chain with an arp request to resolve the in_ire.
5305  * It is assumed that in_ire itself is currently in the ire cache table,
5306  * so we create a fake_ire filled with enough information about ire_addr etc.
5307  * to retrieve in_ire when the DL_UNITDATA response from the resolver
5308  * comes back. The fake_ire itself is created by calling esballoc with
5309  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
5310  * invoked when the mblk containing fake_ire is freed.
5311  */
5312 void
5313 ire_arpresolve(ire_t *in_ire)
5314 {
5315 	areq_t		*areq;
5316 	ipaddr_t	*addrp;
5317 	mblk_t 		*ire_mp, *areq_mp;
5318 	ire_t 		*ire, *buf;
5319 	size_t		bufsize;
5320 	frtn_t		*frtnp;
5321 	ill_t		*dst_ill;
5322 	ip_stack_t	*ipst;
5323 
5324 	ASSERT(in_ire->ire_nce != NULL);
5325 
5326 	dst_ill = ire_to_ill(in_ire);
5327 	ipst = dst_ill->ill_ipst;
5328 
5329 	/*
5330 	 * Construct message chain for the resolver
5331 	 * of the form:
5332 	 *	ARP_REQ_MBLK-->IRE_MBLK
5333 	 *
5334 	 * NOTE : If the response does not
5335 	 * come back, ARP frees the packet. For this reason,
5336 	 * we can't REFHOLD the bucket of save_ire to prevent
5337 	 * deletions. We may not be able to REFRELE the bucket
5338 	 * if the response never comes back. Thus, before
5339 	 * adding the ire, ire_add_v4 will make sure that the
5340 	 * interface route does not get deleted. This is the
5341 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
5342 	 * where we can always prevent deletions because of
5343 	 * the synchronous nature of adding IRES i.e
5344 	 * ire_add_then_send is called after creating the IRE.
5345 	 */
5346 
5347 	/*
5348 	 * We use esballoc to allocate the second part (IRE_MBLK)
5349 	 * of the message chain depicted above.  This mblk will be freed
5350 	 * by arp when there is a timeout, and otherwise passed to IP
5351 	 * and IP will free it after processing the ARP response.
5352 	 */
5353 
5354 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
5355 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
5356 	if (buf == NULL) {
5357 		ip1dbg(("ire_arpresolve: alloc buffer failed\n"));
5358 		return;
5359 	}
5360 	frtnp = (frtn_t *)(buf + 1);
5361 	frtnp->free_arg = (caddr_t)buf;
5362 	frtnp->free_func = ire_freemblk;
5363 
5364 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
5365 	if (ire_mp == NULL) {
5366 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
5367 		kmem_free(buf, bufsize);
5368 		return;
5369 	}
5370 
5371 	areq_mp = copyb(dst_ill->ill_resolver_mp);
5372 	if (areq_mp == NULL) {
5373 		freemsg(ire_mp);
5374 		return;
5375 	}
5376 
5377 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
5378 	ire = (ire_t *)buf;
5379 	/*
5380 	 * keep enough info in the fake ire so that we can pull up
5381 	 * the incomplete ire (in_ire) after result comes back from
5382 	 * arp and make it complete.
5383 	 */
5384 	*ire = ire_null;
5385 	ire->ire_u = in_ire->ire_u;
5386 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
5387 	ire->ire_ipif_ifindex = in_ire->ire_ipif_ifindex;
5388 	ire->ire_ipif = in_ire->ire_ipif;
5389 	ire->ire_stq = dst_ill->ill_wq;
5390 	ire->ire_stq_ifindex = dst_ill->ill_phyint->phyint_ifindex;
5391 	ire->ire_zoneid = in_ire->ire_zoneid;
5392 	ire->ire_stackid = ipst->ips_netstack->netstack_stackid;
5393 	ire->ire_ipst = ipst;
5394 
5395 	/*
5396 	 * ire_freemblk will be called when ire_mp is freed, both for
5397 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
5398 	 * when the arp resolution failed.
5399 	 */
5400 	ire->ire_marks |= IRE_MARK_UNCACHED;
5401 	ire->ire_mp = ire_mp;
5402 	ire_mp->b_wptr = (uchar_t *)&ire[1];
5403 	ire_mp->b_cont = NULL;
5404 	linkb(areq_mp, ire_mp);
5405 
5406 	/*
5407 	 * Fill in the source and dest addrs for the resolver.
5408 	 * NOTE: this depends on memory layouts imposed by
5409 	 * ill_init().
5410 	 */
5411 	areq = (areq_t *)areq_mp->b_rptr;
5412 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
5413 	*addrp = ire->ire_src_addr;
5414 
5415 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
5416 	if (ire->ire_gateway_addr != INADDR_ANY) {
5417 		*addrp = ire->ire_gateway_addr;
5418 	} else {
5419 		*addrp = ire->ire_addr;
5420 	}
5421 
5422 	/* Up to the resolver. */
5423 	if (canputnext(dst_ill->ill_rq)) {
5424 		putnext(dst_ill->ill_rq, areq_mp);
5425 	} else {
5426 		freemsg(areq_mp);
5427 	}
5428 }
5429 
5430 /*
5431  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
5432  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
5433  *
5434  * This function can be called by ARP via free routine for ire_mp or
5435  * by IPv4(both host and forwarding path) via ire_delete
5436  * in case ARP resolution fails.
5437  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
5438  * (for IP to talk to ARP, it still has to send AR* messages).
5439  *
5440  * Note that the ARP/IP merge should replace the functioanlity by providing
5441  * direct function calls to clean up unresolved entries in ire/nce lists.
5442  */
5443 void
5444 ire_freemblk(ire_t *ire_mp)
5445 {
5446 	nce_t		*nce = NULL;
5447 	ill_t		*ill;
5448 	ip_stack_t	*ipst;
5449 	netstack_t	*ns = NULL;
5450 
5451 	ASSERT(ire_mp != NULL);
5452 
5453 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
5454 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
5455 		    (void *)ire_mp));
5456 		goto cleanup;
5457 	}
5458 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
5459 		goto cleanup; /* everything succeeded. just free and return */
5460 	}
5461 
5462 	/*
5463 	 * the arp information corresponding to this ire_mp was not
5464 	 * transferred to an ire_cache entry. Need
5465 	 * to clean up incomplete ire's and nce, if necessary.
5466 	 */
5467 	ASSERT(ire_mp->ire_stq != NULL);
5468 	ASSERT(ire_mp->ire_stq_ifindex != 0);
5469 	ASSERT(ire_mp->ire_ipst != NULL);
5470 
5471 	ns = netstack_find_by_stackid(ire_mp->ire_stackid);
5472 	ipst = (ns ? ns->netstack_ip : NULL);
5473 	if (ipst == NULL || ipst != ire_mp->ire_ipst) /* Disapeared on us */
5474 		goto  cleanup;
5475 
5476 	/*
5477 	 * Get any nce's corresponding to this ire_mp. We first have to
5478 	 * make sure that the ill is still around.
5479 	 */
5480 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
5481 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
5482 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
5483 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
5484 		/*
5485 		 * ill went away. no nce to clean up.
5486 		 * Note that the ill_state_flags could be set to
5487 		 * ILL_CONDEMNED after this point, but if we know
5488 		 * that it is CONDEMNED now, we just bail out quickly.
5489 		 */
5490 		if (ill != NULL)
5491 			ill_refrele(ill);
5492 		goto cleanup;
5493 	}
5494 	nce = ndp_lookup_v4(ill,
5495 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
5496 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
5497 	    B_FALSE);
5498 	ill_refrele(ill);
5499 
5500 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
5501 		/*
5502 		 * some incomplete nce was found.
5503 		 */
5504 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
5505 		    nce_t *, nce, ire_t *, ire_mp);
5506 		/*
5507 		 * Send the icmp_unreachable messages for the queued mblks in
5508 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
5509 		 * for this ire
5510 		 */
5511 		arp_resolv_failed(nce);
5512 		/*
5513 		 * Delete the nce and clean up all ire's pointing at this nce
5514 		 * in the cachetable
5515 		 */
5516 		ndp_delete(nce);
5517 	}
5518 	if (nce != NULL)
5519 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
5520 
5521 cleanup:
5522 	if (ns != NULL)
5523 		netstack_rele(ns);
5524 	/*
5525 	 * Get rid of the ire buffer
5526 	 * We call kmem_free here(instead of ire_delete()), since
5527 	 * this is the freeb's callback.
5528 	 */
5529 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
5530 }
5531 
5532 /*
5533  * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and
5534  * non-loopback IRE_BROADCAST ire's.
5535  *
5536  * If a neighbor-cache entry has to be created (i.e., one does not already
5537  * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache
5538  * entry are initialized in ndp_add_v4(). These values are picked from
5539  * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the
5540  * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values
5541  * determine the {nce_state, nce_res_mp} of the nce_t created. All
5542  * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp
5543  * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire
5544  * entries,
5545  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
5546  *     nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state.
5547  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
5548  *     layer resolution is necessary, so that the nce_t will be in the
5549  *     ND_REACHABLE state and the nce_res_mp will have a copy of the
5550  *     ill_resolver_mp of the outgoing interface.
5551  *
5552  * The link layer information needed for broadcast addresses, and for
5553  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
5554  * never needs re-verification for the lifetime of the nce_t. These are
5555  * therefore marked NCE_F_PERMANENT, and never allowed to expire via
5556  * NCE_EXPIRED.
5557  *
5558  * IRE_CACHE ire's contain the information for  the nexthop (ire_gateway_addr)
5559  * in the case of indirect routes, and for the dst itself (ire_addr) in the
5560  * case of direct routes, with the nce_res_mp containing a template
5561  * DL_UNITDATA request.
5562  *
5563  * The actual association of the ire_nce to the nce created here is
5564  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
5565  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
5566  * the ire_nce assignment is done in ire_add_then_send.
5567  */
5568 int
5569 ire_nce_init(ire_t *ire, nce_t *src_nce)
5570 {
5571 	in_addr_t	addr4;
5572 	int		err;
5573 	nce_t		*nce = NULL;
5574 	ill_t		*ire_ill;
5575 	uint16_t	nce_flags = 0;
5576 	ip_stack_t	*ipst;
5577 
5578 	if (ire->ire_stq == NULL)
5579 		return (0); /* no need to create nce for local/loopback */
5580 
5581 	switch (ire->ire_type) {
5582 	case IRE_CACHE:
5583 		if (ire->ire_gateway_addr != INADDR_ANY)
5584 			addr4 = ire->ire_gateway_addr; /* 'G' route */
5585 		else
5586 			addr4 = ire->ire_addr; /* direct route */
5587 		break;
5588 	case IRE_BROADCAST:
5589 		addr4 = ire->ire_addr;
5590 		nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST);
5591 		break;
5592 	default:
5593 		return (0);
5594 	}
5595 
5596 	/*
5597 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
5598 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
5599 	 * for the outgoing interface, which we get from the ire_stq.
5600 	 */
5601 	ire_ill = ire_to_ill(ire);
5602 	ipst = ire_ill->ill_ipst;
5603 
5604 	/*
5605 	 * IRE_IF_NORESOLVER entries never need re-verification and
5606 	 * do not expire, so we mark them as NCE_F_PERMANENT.
5607 	 */
5608 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)
5609 		nce_flags |= NCE_F_PERMANENT;
5610 
5611 retry_nce:
5612 	err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags,
5613 	    &nce, src_nce);
5614 
5615 	if (err == EEXIST && NCE_EXPIRED(nce, ipst)) {
5616 		/*
5617 		 * We looked up an expired nce.
5618 		 * Go back and try to create one again.
5619 		 */
5620 		ndp_delete(nce);
5621 		NCE_REFRELE(nce);
5622 		nce = NULL;
5623 		goto retry_nce;
5624 	}
5625 
5626 	ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n",
5627 	    (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err));
5628 
5629 	switch (err) {
5630 	case 0:
5631 	case EEXIST:
5632 		/*
5633 		 * return a pointer to a newly created or existing nce_t;
5634 		 * note that the ire-nce mapping is many-one, i.e.,
5635 		 * multiple ire's could point to the same nce_t.
5636 		 */
5637 		break;
5638 	default:
5639 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
5640 		return (EINVAL);
5641 	}
5642 	/*
5643 	 * IRE_BROADCAST ire's must be linked to NCE_F_BCAST nce's and
5644 	 * vice-versa (IRE_CACHE <-> unicast nce entries). We may have found an
5645 	 * existing unicast (or bcast) nce when trying to add a BROADCAST (or
5646 	 * unicast) ire, e.g., when address/netmask modifications were in
5647 	 * progress, and the ipif_ndp_down() call to quiesce existing state
5648 	 * during the addr/mask modification may have skipped the ndp_delete()
5649 	 * because the ipif being affected was not the last one on the ill.  We
5650 	 * recover from the missed ndp_delete() now, by deleting the old nce and
5651 	 * adding a new one with the correct NCE_F_BCAST state.
5652 	 */
5653 	if (ire->ire_type == IRE_BROADCAST) {
5654 		if ((nce->nce_flags & NCE_F_BCAST) == 0) {
5655 			/* IRE_BROADCAST needs NCE_F_BCAST */
5656 			ndp_delete(nce);
5657 			NCE_REFRELE(nce);
5658 			goto retry_nce;
5659 		}
5660 		/*
5661 		 * Two bcast ires are created for each interface;
5662 		 * 1. loopback copy (which does not  have an
5663 		 *    ire_stq, and therefore has no ire_nce), and,
5664 		 * 2. the non-loopback copy, which has the nce_res_mp
5665 		 *    initialized to a copy of the ill_bcast_mp, and
5666 		 *    is marked as ND_REACHABLE at this point.
5667 		 *    This nce does not undergo any further state changes,
5668 		 *    and exists as long as the interface is plumbed.
5669 		 * Note: the assignment of ire_nce here is a historical
5670 		 * artifact of old code that used to inline ire_add().
5671 		 */
5672 		ire->ire_nce = nce;
5673 		/*
5674 		 * We are associating this nce to the ire,
5675 		 * so change the nce ref taken in
5676 		 * ndp_lookup_then_add_v4() from
5677 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
5678 		 */
5679 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
5680 	} else {
5681 		if ((nce->nce_flags & NCE_F_BCAST) != 0) {
5682 			/* IRE_CACHE needs unicast nce */
5683 			ndp_delete(nce);
5684 			NCE_REFRELE(nce);
5685 			goto retry_nce;
5686 		}
5687 		/*
5688 		 * We are not using this nce_t just yet so release
5689 		 * the ref taken in ndp_lookup_then_add_v4()
5690 		 */
5691 		NCE_REFRELE(nce);
5692 	}
5693 	return (0);
5694 }
5695 
5696 /*
5697  * This is the implementation of the IPv4 IRE cache lookup procedure.
5698  * Separating the interface from the implementation allows additional
5699  * flexibility when specifying search criteria.
5700  */
5701 static ire_t *
5702 ip4_ctable_lookup_impl(ire_ctable_args_t *margs)
5703 {
5704 	irb_t			*irb_ptr;
5705 	ire_t			*ire;
5706 	ip_stack_t		*ipst = margs->ict_ipst;
5707 
5708 	if ((margs->ict_flags & (MATCH_IRE_SRC | MATCH_IRE_ILL)) &&
5709 	    (margs->ict_ipif == NULL)) {
5710 		return (NULL);
5711 	}
5712 
5713 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(
5714 	    *((ipaddr_t *)margs->ict_addr), ipst->ips_ip_cache_table_size)];
5715 	rw_enter(&irb_ptr->irb_lock, RW_READER);
5716 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5717 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5718 			continue;
5719 		ASSERT(ire->ire_mask == IP_HOST_MASK);
5720 		if (ire_match_args(ire, *((ipaddr_t *)margs->ict_addr),
5721 		    ire->ire_mask, *((ipaddr_t *)margs->ict_gateway),
5722 		    margs->ict_type, margs->ict_ipif, margs->ict_zoneid, 0,
5723 		    margs->ict_tsl, margs->ict_flags, margs->ict_wq)) {
5724 			IRE_REFHOLD(ire);
5725 			rw_exit(&irb_ptr->irb_lock);
5726 			return (ire);
5727 		}
5728 	}
5729 
5730 	rw_exit(&irb_ptr->irb_lock);
5731 	return (NULL);
5732 }
5733 
5734 /*
5735  * This function locates IRE_CACHE entries which were added by the
5736  * ire_forward() path. We can fully specify the IRE we are looking for by
5737  * providing the ipif (MATCH_IRE_IPIF) *and* the stq (MATCH_IRE_WQ).
5738  */
5739 ire_t *
5740 ire_arpresolve_lookup(ipaddr_t addr, ipaddr_t gw, ipif_t *ipif,
5741     zoneid_t zoneid, ip_stack_t *ipst, queue_t *wq)
5742 {
5743 	ire_ctable_args_t	margs;
5744 
5745 	margs.ict_addr = &addr;
5746 	margs.ict_gateway = &gw;
5747 	margs.ict_type = IRE_CACHE;
5748 	margs.ict_ipif = ipif;
5749 	margs.ict_zoneid = zoneid;
5750 	margs.ict_tsl = NULL;
5751 	margs.ict_flags = MATCH_IRE_GW | MATCH_IRE_IPIF | MATCH_IRE_ZONEONLY |
5752 	    MATCH_IRE_TYPE | MATCH_IRE_WQ;
5753 	margs.ict_ipst = ipst;
5754 	margs.ict_wq = wq;
5755 
5756 	return (ip4_ctable_lookup_impl(&margs));
5757 }
5758