xref: /titanic_50/usr/src/uts/common/inet/ip/ip_ire.c (revision 22e19ac1a2d512ea8d74e4f3662c08787d0716b1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 
30 /*
31  * This file contains routines that manipulate Internet Routing Entries (IREs).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/ddi.h>
39 #include <sys/cmn_err.h>
40 #include <sys/policy.h>
41 
42 #include <sys/systm.h>
43 #include <sys/kmem.h>
44 #include <sys/param.h>
45 #include <sys/socket.h>
46 #include <net/if.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <net/if_dl.h>
50 #include <netinet/ip6.h>
51 #include <netinet/icmp6.h>
52 
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 #include <inet/ip.h>
56 #include <inet/ip6.h>
57 #include <inet/ip_ndp.h>
58 #include <inet/arp.h>
59 #include <inet/ip_if.h>
60 #include <inet/ip_ire.h>
61 #include <inet/ip_ftable.h>
62 #include <inet/ip_rts.h>
63 #include <inet/nd.h>
64 
65 #include <net/pfkeyv2.h>
66 #include <inet/ipsec_info.h>
67 #include <inet/sadb.h>
68 #include <sys/kmem.h>
69 #include <inet/tcp.h>
70 #include <inet/ipclassifier.h>
71 #include <sys/zone.h>
72 #include <sys/cpuvar.h>
73 
74 #include <sys/tsol/label.h>
75 #include <sys/tsol/tnet.h>
76 #include <sys/dlpi.h>
77 
78 struct kmem_cache *rt_entry_cache;
79 
80 /*
81  * Synchronization notes:
82  *
83  * The fields of the ire_t struct are protected in the following way :
84  *
85  * ire_next/ire_ptpn
86  *
87  *	- bucket lock of the respective tables (cache or forwarding tables).
88  *
89  * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask,
90  * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif,
91  * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr
92  *
93  *	- Set in ire_create_v4/v6 and never changes after that. Thus,
94  *	  we don't need a lock whenever these fields are accessed.
95  *
96  *	- ire_bucket and ire_masklen (also set in ire_create) is set in
97  *        ire_add_v4/ire_add_v6 before inserting in the bucket and never
98  *        changes after that. Thus we don't need a lock whenever these
99  *	  fields are accessed.
100  *
101  * ire_gateway_addr_v4[v6]
102  *
103  *	- ire_gateway_addr_v4[v6] is set during ire_create and later modified
104  *	  by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
105  *	  it assumed to be atomic and hence the other parts of the code
106  *	  does not use any locks. ire_gateway_addr_v6 updates are not atomic
107  *	  and hence any access to it uses ire_lock to get/set the right value.
108  *
109  * ire_ident, ire_refcnt
110  *
111  *	- Updated atomically using atomic_add_32
112  *
113  * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
114  *
115  *	- Assumes that 32 bit writes are atomic. No locks. ire_lock is
116  *	  used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
117  *
118  * ire_max_frag, ire_frag_flag
119  *
120  *	- ire_lock is used to set/read both of them together.
121  *
122  * ire_tire_mark
123  *
124  *	- Set in ire_create and updated in ire_expire, which is called
125  *	  by only one function namely ip_trash_timer_expire. Thus only
126  *	  one function updates and examines the value.
127  *
128  * ire_marks
129  *	- bucket lock protects this.
130  *
131  * ire_ipsec_overhead/ire_ll_hdr_length
132  *
133  *	- Place holder for returning the information to the upper layers
134  *	  when IRE_DB_REQ comes down.
135  *
136  *
137  * ipv6_ire_default_count is protected by the bucket lock of
138  * ip_forwarding_table_v6[0][0].
139  *
140  * ipv6_ire_default_index is not protected as it  is just a hint
141  * at which default gateway to use. There is nothing
142  * wrong in using the same gateway for two different connections.
143  *
144  * As we always hold the bucket locks in all the places while accessing
145  * the above values, it is natural to use them for protecting them.
146  *
147  * We have a separate cache table and forwarding table for IPv4 and IPv6.
148  * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an
149  * array of irb_t structure and forwarding table (ip_forwarding_table/
150  * ip_forwarding_table_v6) is an array of pointers to array of irb_t
151  * structure. ip_forwarding_table_v6 is allocated dynamically in
152  * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
153  * initializing the same bucket. Once a bucket is initialized, it is never
154  * de-alloacted. This assumption enables us to access
155  * ip_forwarding_table_v6[i] without any locks.
156  *
157  * Each irb_t - ire bucket structure has a lock to protect
158  * a bucket and the ires residing in the bucket have a back pointer to
159  * the bucket structure. It also has a reference count for the number
160  * of threads walking the bucket - irb_refcnt which is bumped up
161  * using the macro IRB_REFHOLD macro. The flags irb_flags can be
162  * set to IRE_MARK_CONDEMNED indicating that there are some ires
163  * in this bucket that are marked with IRE_MARK_CONDEMNED and the
164  * last thread to leave the bucket should delete the ires. Usually
165  * this is done by the IRB_REFRELE macro which is used to decrement
166  * the reference count on a bucket.
167  *
168  * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/
169  * decrements the reference count, ire_refcnt, atomically on the ire.
170  * ire_refcnt is modified only using this macro. Operations on the IRE
171  * could be described as follows :
172  *
173  * CREATE an ire with reference count initialized to 1.
174  *
175  * ADDITION of an ire holds the bucket lock, checks for duplicates
176  * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after
177  * bumping up once more i.e the reference count is 2. This is to avoid
178  * an extra lookup in the functions calling ire_add which wants to
179  * work with the ire after adding.
180  *
181  * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD
182  * macro. It is valid to bump up the referece count of the IRE,
183  * after the lookup has returned an ire. Following are the lookup
184  * functions that return an HELD ire :
185  *
186  * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6],
187  * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6],
188  * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup.
189  *
190  * DELETION of an ire holds the bucket lock, removes it from the list
191  * and then decrements the reference count for having removed from the list
192  * by using the IRE_REFRELE macro. If some other thread has looked up
193  * the ire, the reference count would have been bumped up and hence
194  * this ire will not be freed once deleted. It will be freed once the
195  * reference count drops to zero.
196  *
197  * Add and Delete acquires the bucket lock as RW_WRITER, while all the
198  * lookups acquire the bucket lock as RW_READER.
199  *
200  * NOTE : The only functions that does the IRE_REFRELE when an ire is
201  *	  passed as an argument are :
202  *
203  *	  1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the
204  *			   broadcast ires it looks up internally within
205  *			   the function. Currently, for simplicity it does
206  *			   not differentiate the one that is passed in and
207  *			   the ones it looks up internally. It always
208  *			   IRE_REFRELEs.
209  *	  2) ire_send
210  *	     ire_send_v6 : As ire_send calls ip_wput_ire and other functions
211  *			   that take ire as an argument, it has to selectively
212  *			   IRE_REFRELE the ire. To maintain symmetry,
213  *			   ire_send_v6 does the same.
214  *
215  * Otherwise, the general rule is to do the IRE_REFRELE in the function
216  * that is passing the ire as an argument.
217  *
218  * In trying to locate ires the following points are to be noted.
219  *
220  * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is
221  * to be ignored when walking the ires using ire_next.
222  *
223  * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the
224  * benefit of in.mpathd which needs to probe interfaces for failures. Normal
225  * applications should not be seeing this ire and hence this ire is ignored
226  * in most cases in the search using ire_next.
227  *
228  * Zones note:
229  *	Walking IREs within a given zone also walks certain ires in other
230  *	zones.  This is done intentionally.  IRE walks with a specified
231  *	zoneid are used only when doing informational reports, and
232  *	zone users want to see things that they can access. See block
233  *	comment in ire_walk_ill_match().
234  */
235 
236 /*
237  * A per-interface routing table is created ( if not present)
238  * when the first entry is added to this special routing table.
239  * This special routing table is accessed through the ill data structure.
240  * The routing table looks like cache table. For example, currently it
241  * is used by mobile-ip foreign agent to forward data that only comes from
242  * the home agent tunnel for a mobile node. Thus if the outgoing interface
243  * is a RESOLVER interface, IP may need to resolve the hardware address for
244  * the outgoing interface. The routing entries in this table are not updated
245  * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa-
246  * tion is lost as the write queue is passed to ip_wput.
247  * But, before sending the packet out, the hardware information must be updated
248  * in the special forwarding table. ire_srcif_table_count keeps track of total
249  * number of ires that are in interface based tables. Each interface based
250  * table hangs off of the incoming ill and each ill_t also keeps a refcnt
251  * of ires in that table.
252  */
253 
254 /*
255  * The minimum size of IRE cache table.  It will be recalcuated in
256  * ip_ire_init().
257  * Setable in /etc/system
258  */
259 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE;
260 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE;
261 
262 /*
263  * The size of the forwarding table.  We will make sure that it is a
264  * power of 2 in ip_ire_init().
265  * Setable in /etc/system
266  */
267 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE;
268 
269 struct	kmem_cache	*ire_cache;
270 static ire_t	ire_null;
271 
272 /*
273  * The threshold number of IRE in a bucket when the IREs are
274  * cleaned up.  This threshold is calculated later in ip_open()
275  * based on the speed of CPU and available memory.  This default
276  * value is the maximum.
277  *
278  * We have two kinds of cached IRE, temporary and
279  * non-temporary.  Temporary IREs are marked with
280  * IRE_MARK_TEMPORARY.  They are IREs created for non
281  * TCP traffic and for forwarding purposes.  All others
282  * are non-temporary IREs.  We don't mark IRE created for
283  * TCP as temporary because TCP is stateful and there are
284  * info stored in the IRE which can be shared by other TCP
285  * connections to the same destination.  For connected
286  * endpoint, we also don't want to mark the IRE used as
287  * temporary because the same IRE will be used frequently,
288  * otherwise, the app should not do a connect().  We change
289  * the marking at ip_bind_connected_*() if necessary.
290  *
291  * We want to keep the cache IRE hash bucket length reasonably
292  * short, otherwise IRE lookup functions will take "forever."
293  * We use the "crude" function that the IRE bucket
294  * length should be based on the CPU speed, which is 1 entry
295  * per x MHz, depending on the shift factor ip_ire_cpu_ratio
296  * (n).  This means that with a 750MHz CPU, the max bucket
297  * length can be (750 >> n) entries.
298  *
299  * Note that this threshold is separate for temp and non-temp
300  * IREs.  This means that the actual bucket length can be
301  * twice as that.  And while we try to keep temporary IRE
302  * length at most at the threshold value, we do not attempt to
303  * make the length for non-temporary IREs fixed, for the
304  * reason stated above.  Instead, we start trying to find
305  * "unused" non-temporary IREs when the bucket length reaches
306  * this threshold and clean them up.
307  *
308  * We also want to limit the amount of memory used by
309  * IREs.  So if we are allowed to use ~3% of memory (M)
310  * for those IREs, each bucket should not have more than
311  *
312  * 	M / num of cache bucket / sizeof (ire_t)
313  *
314  * Again the above memory uses are separate for temp and
315  * non-temp cached IREs.
316  *
317  * We may also want the limit to be a function of the number
318  * of interfaces and number of CPUs.  Doing the initialization
319  * in ip_open() means that every time an interface is plumbed,
320  * the max is re-calculated.  Right now, we don't do anything
321  * different.  In future, when we have more experience, we
322  * may want to change this behavior.
323  */
324 uint32_t ip_ire_max_bucket_cnt = 10;	/* Setable in /etc/system */
325 uint32_t ip6_ire_max_bucket_cnt = 10;
326 
327 /*
328  * The minimum of the temporary IRE bucket count.  We do not want
329  * the length of each bucket to be too short.  This may hurt
330  * performance of some apps as the temporary IREs are removed too
331  * often.
332  */
333 uint32_t ip_ire_min_bucket_cnt = 3;	/* /etc/system - not used */
334 uint32_t ip6_ire_min_bucket_cnt = 3;
335 
336 /*
337  * The ratio of memory consumed by IRE used for temporary to available
338  * memory.  This is a shift factor, so 6 means the ratio 1 to 64.  This
339  * value can be changed in /etc/system.  6 is a reasonable number.
340  */
341 uint32_t ip_ire_mem_ratio = 6;	/* /etc/system */
342 /* The shift factor for CPU speed to calculate the max IRE bucket length. */
343 uint32_t ip_ire_cpu_ratio = 7;	/* /etc/system */
344 
345 typedef struct nce_clookup_s {
346 	ipaddr_t ncecl_addr;
347 	boolean_t ncecl_found;
348 } nce_clookup_t;
349 
350 /*
351  * The maximum number of buckets in IRE cache table.  In future, we may
352  * want to make it a dynamic hash table.  For the moment, we fix the
353  * size and allocate the table in ip_ire_init() when IP is first loaded.
354  * We take into account the amount of memory a system has.
355  */
356 #define	IP_MAX_CACHE_TABLE_SIZE	4096
357 
358 /* Setable in /etc/system */
359 static uint32_t	ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
360 static uint32_t	ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE;
361 
362 #define	NUM_ILLS	3	/* To build the ILL list to unlock */
363 
364 /* Zero iulp_t for initialization. */
365 const iulp_t	ire_uinfo_null = { 0 };
366 
367 static int	ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
368     ipsq_func_t func, boolean_t);
369 static int	ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp,
370     ipsq_func_t func);
371 static ire_t	*ire_update_srcif_v4(ire_t *ire);
372 static void	ire_delete_v4(ire_t *ire);
373 static void	ire_report_ctable(ire_t *ire, char *mp);
374 static void	ire_report_mrtun_table(ire_t *ire, char *mp);
375 static void	ire_report_srcif_table(ire_t *ire, char *mp, ip_stack_t *ipst);
376 static void	ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers,
377     zoneid_t zoneid, ip_stack_t *);
378 static void	ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type,
379     pfv_t func, void *arg, uchar_t vers, ill_t *ill);
380 static void	ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt);
381 extern void	ill_unlock_ills(ill_t **list, int cnt);
382 static	void	ip_nce_clookup_and_delete(nce_t *nce, void *arg);
383 extern void	th_trace_rrecord(th_trace_t *);
384 #ifdef IRE_DEBUG
385 static void	ire_trace_inactive(ire_t *);
386 #endif
387 
388 /*
389  * To avoid bloating the code, we call this function instead of
390  * using the macro IRE_REFRELE. Use macro only in performance
391  * critical paths.
392  *
393  * Must not be called while holding any locks. Otherwise if this is
394  * the last reference to be released there is a chance of recursive mutex
395  * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
396  * to restart an ioctl. The one exception is when the caller is sure that
397  * this is not the last reference to be released. Eg. if the caller is
398  * sure that the ire has not been deleted and won't be deleted.
399  */
400 void
401 ire_refrele(ire_t *ire)
402 {
403 	IRE_REFRELE(ire);
404 }
405 
406 void
407 ire_refrele_notr(ire_t *ire)
408 {
409 	IRE_REFRELE_NOTR(ire);
410 }
411 
412 /*
413  * kmem_cache_alloc constructor for IRE in kma space.
414  * Note that when ire_mp is set the IRE is stored in that mblk and
415  * not in this cache.
416  */
417 /* ARGSUSED */
418 static int
419 ip_ire_constructor(void *buf, void *cdrarg, int kmflags)
420 {
421 	ire_t	*ire = buf;
422 
423 	ire->ire_nce = NULL;
424 
425 	return (0);
426 }
427 
428 /* ARGSUSED1 */
429 static void
430 ip_ire_destructor(void *buf, void *cdrarg)
431 {
432 	ire_t	*ire = buf;
433 
434 	ASSERT(ire->ire_nce == NULL);
435 }
436 
437 /*
438  * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY
439  * IOCTL.  It is used by TCP (or other ULPs) to supply revised information
440  * for an existing CACHED IRE.
441  */
442 /* ARGSUSED */
443 int
444 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
445 {
446 	uchar_t	*addr_ucp;
447 	ipic_t	*ipic;
448 	ire_t	*ire;
449 	ipaddr_t	addr;
450 	in6_addr_t	v6addr;
451 	irb_t	*irb;
452 	zoneid_t	zoneid;
453 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
454 
455 	ASSERT(q->q_next == NULL);
456 	zoneid = Q_TO_CONN(q)->conn_zoneid;
457 
458 	/*
459 	 * Check privilege using the ioctl credential; if it is NULL
460 	 * then this is a kernel message and therefor privileged.
461 	 */
462 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
463 		return (EPERM);
464 
465 	ipic = (ipic_t *)mp->b_rptr;
466 	if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset,
467 	    ipic->ipic_addr_length))) {
468 		return (EINVAL);
469 	}
470 	if (!OK_32PTR(addr_ucp))
471 		return (EINVAL);
472 	switch (ipic->ipic_addr_length) {
473 	case IP_ADDR_LEN: {
474 		/* Extract the destination address. */
475 		addr = *(ipaddr_t *)addr_ucp;
476 		/* Find the corresponding IRE. */
477 		ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
478 		break;
479 	}
480 	case IPV6_ADDR_LEN: {
481 		/* Extract the destination address. */
482 		v6addr = *(in6_addr_t *)addr_ucp;
483 		/* Find the corresponding IRE. */
484 		ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL, ipst);
485 		break;
486 	}
487 	default:
488 		return (EINVAL);
489 	}
490 
491 	if (ire == NULL)
492 		return (ENOENT);
493 	/*
494 	 * Update the round trip time estimate and/or the max frag size
495 	 * and/or the slow start threshold.
496 	 *
497 	 * We serialize multiple advises using ire_lock.
498 	 */
499 	mutex_enter(&ire->ire_lock);
500 	if (ipic->ipic_rtt) {
501 		/*
502 		 * If there is no old cached values, initialize them
503 		 * conservatively.  Set them to be (1.5 * new value).
504 		 */
505 		if (ire->ire_uinfo.iulp_rtt != 0) {
506 			ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt +
507 			    ipic->ipic_rtt) >> 1;
508 		} else {
509 			ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt +
510 			    (ipic->ipic_rtt >> 1);
511 		}
512 		if (ire->ire_uinfo.iulp_rtt_sd != 0) {
513 			ire->ire_uinfo.iulp_rtt_sd =
514 			    (ire->ire_uinfo.iulp_rtt_sd +
515 			    ipic->ipic_rtt_sd) >> 1;
516 		} else {
517 			ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd +
518 			    (ipic->ipic_rtt_sd >> 1);
519 		}
520 	}
521 	if (ipic->ipic_max_frag)
522 		ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET);
523 	if (ipic->ipic_ssthresh != 0) {
524 		if (ire->ire_uinfo.iulp_ssthresh != 0)
525 			ire->ire_uinfo.iulp_ssthresh =
526 			    (ipic->ipic_ssthresh +
527 			    ire->ire_uinfo.iulp_ssthresh) >> 1;
528 		else
529 			ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh;
530 	}
531 	/*
532 	 * Don't need the ire_lock below this. ire_type does not change
533 	 * after initialization. ire_marks is protected by irb_lock.
534 	 */
535 	mutex_exit(&ire->ire_lock);
536 
537 	if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) {
538 		/*
539 		 * Only increment the temporary IRE count if the original
540 		 * IRE is not already marked temporary.
541 		 */
542 		irb = ire->ire_bucket;
543 		rw_enter(&irb->irb_lock, RW_WRITER);
544 		if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) &&
545 		    !(ire->ire_marks & IRE_MARK_TEMPORARY)) {
546 			irb->irb_tmp_ire_cnt++;
547 		}
548 		ire->ire_marks |= ipic->ipic_ire_marks;
549 		rw_exit(&irb->irb_lock);
550 	}
551 
552 	ire_refrele(ire);
553 	return (0);
554 }
555 
556 /*
557  * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
558  * IOCTL[s].  The NO_REPLY form is used by TCP to delete a route IRE
559  * for a host that is not responding.  This will force an attempt to
560  * establish a new route, if available, and flush out the ARP entry so
561  * it will re-resolve.  Management processes may want to use the
562  * version that generates a reply.
563  *
564  * This function does not support IPv6 since Neighbor Unreachability Detection
565  * means that negative advise like this is useless.
566  */
567 /* ARGSUSED */
568 int
569 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr)
570 {
571 	uchar_t		*addr_ucp;
572 	ipaddr_t	addr;
573 	ire_t		*ire;
574 	ipid_t		*ipid;
575 	boolean_t	routing_sock_info = B_FALSE;	/* Sent info? */
576 	zoneid_t	zoneid;
577 	ire_t		*gire = NULL;
578 	ill_t		*ill;
579 	mblk_t		*arp_mp;
580 	ip_stack_t	*ipst;
581 
582 	ASSERT(q->q_next == NULL);
583 	zoneid = Q_TO_CONN(q)->conn_zoneid;
584 	ipst = CONNQ_TO_IPST(q);
585 
586 	/*
587 	 * Check privilege using the ioctl credential; if it is NULL
588 	 * then this is a kernel message and therefor privileged.
589 	 */
590 	if (ioc_cr != NULL && secpolicy_ip_config(ioc_cr, B_FALSE) != 0)
591 		return (EPERM);
592 
593 	ipid = (ipid_t *)mp->b_rptr;
594 
595 	/* Only actions on IRE_CACHEs are acceptable at present. */
596 	if (ipid->ipid_ire_type != IRE_CACHE)
597 		return (EINVAL);
598 
599 	addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset,
600 	    ipid->ipid_addr_length);
601 	if (addr_ucp == NULL || !OK_32PTR(addr_ucp))
602 		return (EINVAL);
603 	switch (ipid->ipid_addr_length) {
604 	case IP_ADDR_LEN:
605 		/* addr_ucp points at IP addr */
606 		break;
607 	case sizeof (sin_t): {
608 		sin_t	*sin;
609 		/*
610 		 * got complete (sockaddr) address - increment addr_ucp to point
611 		 * at the ip_addr field.
612 		 */
613 		sin = (sin_t *)addr_ucp;
614 		addr_ucp = (uchar_t *)&sin->sin_addr.s_addr;
615 		break;
616 	}
617 	default:
618 		return (EINVAL);
619 	}
620 	/* Extract the destination address. */
621 	bcopy(addr_ucp, &addr, IP_ADDR_LEN);
622 
623 	/* Try to find the CACHED IRE. */
624 	ire = ire_cache_lookup(addr, zoneid, NULL, ipst);
625 
626 	/* Nail it. */
627 	if (ire) {
628 		/* Allow delete only on CACHE entries */
629 		if (ire->ire_type != IRE_CACHE) {
630 			ire_refrele(ire);
631 			return (EINVAL);
632 		}
633 
634 		/*
635 		 * Verify that the IRE has been around for a while.
636 		 * This is to protect against transport protocols
637 		 * that are too eager in sending delete messages.
638 		 */
639 		if (gethrestime_sec() <
640 		    ire->ire_create_time + ipst->ips_ip_ignore_delete_time) {
641 			ire_refrele(ire);
642 			return (EINVAL);
643 		}
644 		/*
645 		 * Now we have a potentially dead cache entry. We need
646 		 * to remove it.
647 		 * If this cache entry is generated from a
648 		 * default route (i.e., ire_cmask == 0),
649 		 * search the default list and mark it dead and some
650 		 * background process will try to activate it.
651 		 */
652 		if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) {
653 			/*
654 			 * Make sure that we pick a different
655 			 * IRE_DEFAULT next time.
656 			 */
657 			ire_t *gw_ire;
658 			irb_t *irb = NULL;
659 			uint_t match_flags;
660 
661 			match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE);
662 
663 			gire = ire_ftable_lookup(ire->ire_addr,
664 			    ire->ire_cmask, 0, 0,
665 			    ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags,
666 			    ipst);
667 
668 			ip3dbg(("ire_ftable_lookup() returned gire %p\n",
669 			    (void *)gire));
670 
671 			if (gire != NULL) {
672 				irb = gire->ire_bucket;
673 
674 				/*
675 				 * We grab it as writer just to serialize
676 				 * multiple threads trying to bump up
677 				 * irb_rr_origin
678 				 */
679 				rw_enter(&irb->irb_lock, RW_WRITER);
680 				if ((gw_ire = irb->irb_rr_origin) == NULL) {
681 					rw_exit(&irb->irb_lock);
682 					goto done;
683 				}
684 
685 				DTRACE_PROBE1(ip__ire__del__origin,
686 				    (ire_t *), gw_ire);
687 
688 				/* Skip past the potentially bad gateway */
689 				if (ire->ire_gateway_addr ==
690 				    gw_ire->ire_gateway_addr) {
691 					ire_t *next = gw_ire->ire_next;
692 
693 					DTRACE_PROBE2(ip__ire__del,
694 					    (ire_t *), gw_ire, (irb_t *), irb);
695 					IRE_FIND_NEXT_ORIGIN(next);
696 					irb->irb_rr_origin = next;
697 				}
698 				rw_exit(&irb->irb_lock);
699 			}
700 		}
701 done:
702 		if (gire != NULL)
703 			IRE_REFRELE(gire);
704 		/* report the bad route to routing sockets */
705 		ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr,
706 		    ire->ire_mask, ire->ire_src_addr, 0, 0, 0,
707 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ipst);
708 		routing_sock_info = B_TRUE;
709 
710 		/*
711 		 * TCP is really telling us to start over completely, and it
712 		 * expects that we'll resend the ARP query.  Tell ARP to
713 		 * discard the entry, if this is a local destination.
714 		 */
715 		ill = ire->ire_stq->q_ptr;
716 		if (ire->ire_gateway_addr == 0 &&
717 		    (arp_mp = ill_ared_alloc(ill, addr)) != NULL) {
718 			putnext(ill->ill_rq, arp_mp);
719 		}
720 
721 		ire_delete(ire);
722 		ire_refrele(ire);
723 	}
724 	/*
725 	 * Also look for an IRE_HOST type redirect ire and
726 	 * remove it if present.
727 	 */
728 	ire = ire_route_lookup(addr, 0, 0, IRE_HOST, NULL, NULL,
729 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
730 
731 	/* Nail it. */
732 	if (ire != NULL) {
733 		if (ire->ire_flags & RTF_DYNAMIC) {
734 			if (!routing_sock_info) {
735 				ip_rts_change(RTM_LOSING, ire->ire_addr,
736 				    ire->ire_gateway_addr, ire->ire_mask,
737 				    ire->ire_src_addr, 0, 0, 0,
738 				    (RTA_DST | RTA_GATEWAY |
739 				    RTA_NETMASK | RTA_IFA),
740 				    ipst);
741 			}
742 			ire_delete(ire);
743 		}
744 		ire_refrele(ire);
745 	}
746 	return (0);
747 }
748 
749 /*
750  * Named Dispatch routine to produce a formatted report on all IREs.
751  * This report is accessed by using the ndd utility to "get" ND variable
752  * "ipv4_ire_status".
753  */
754 /* ARGSUSED */
755 int
756 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
757 {
758 	zoneid_t zoneid;
759 	ip_stack_t	*ipst;
760 
761 	if (CONN_Q(q))
762 		ipst = CONNQ_TO_IPST(q);
763 	else
764 		ipst = ILLQ_TO_IPST(q);
765 
766 	(void) mi_mpprintf(mp,
767 	    "IRE      " MI_COL_HDRPAD_STR
768 	/*   01234567[89ABCDEF] */
769 	    "rfq      " MI_COL_HDRPAD_STR
770 	/*   01234567[89ABCDEF] */
771 	    "stq      " MI_COL_HDRPAD_STR
772 	/*   01234567[89ABCDEF] */
773 	    " zone "
774 	/*   12345 */
775 	    "addr            mask            "
776 	/*   123.123.123.123 123.123.123.123 */
777 	    "src             gateway         mxfrg rtt   rtt_sd ssthresh ref "
778 	/*   123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */
779 	    "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe "
780 	/*   123456 123456789 123456789 123456 12345678 1234 12345678 */
781 	    "recvpipe in/out/forward type");
782 	/*   12345678 in/out/forward xxxxxxxxxx */
783 
784 	/*
785 	 * Because of the ndd constraint, at most we can have 64K buffer
786 	 * to put in all IRE info.  So to be more efficient, just
787 	 * allocate a 64K buffer here, assuming we need that large buffer.
788 	 * This should be OK as only root can do ndd /dev/ip.
789 	 */
790 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
791 		/* The following may work even if we cannot get a large buf. */
792 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
793 		return (0);
794 	}
795 
796 	zoneid = Q_TO_CONN(q)->conn_zoneid;
797 	if (zoneid == GLOBAL_ZONEID)
798 		zoneid = ALL_ZONES;
799 
800 	ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid, ipst);
801 	ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid, ipst);
802 
803 	return (0);
804 }
805 
806 
807 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */
808 static void
809 ire_report_ctable(ire_t *ire, char *mp)
810 {
811 	char	buf1[16];
812 	char	buf2[16];
813 	char	buf3[16];
814 	char	buf4[16];
815 	uint_t	fo_pkt_count;
816 	uint_t	ib_pkt_count;
817 	int	ref;
818 	uint_t	print_len, buf_len;
819 
820 	if ((ire->ire_type & IRE_CACHETABLE) == 0)
821 		return;
822 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
823 	if (buf_len <= 0)
824 		return;
825 
826 	/* Number of active references of this ire */
827 	ref = ire->ire_refcnt;
828 	/* "inbound" to a non local address is a forward */
829 	ib_pkt_count = ire->ire_ib_pkt_count;
830 	fo_pkt_count = 0;
831 	if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) {
832 		fo_pkt_count = ib_pkt_count;
833 		ib_pkt_count = 0;
834 	}
835 	print_len =  snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
836 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d "
837 	    "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d "
838 	    "%04d %08d %08d %d/%d/%d %s\n",
839 	    (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq,
840 	    (int)ire->ire_zoneid,
841 	    ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2),
842 	    ip_dot_addr(ire->ire_src_addr, buf3),
843 	    ip_dot_addr(ire->ire_gateway_addr, buf4),
844 	    ire->ire_max_frag, ire->ire_uinfo.iulp_rtt,
845 	    ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref,
846 	    ire->ire_uinfo.iulp_rtomax,
847 	    (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0),
848 	    (ire->ire_uinfo.iulp_wscale_ok ? 1: 0),
849 	    (ire->ire_uinfo.iulp_ecn_ok ? 1: 0),
850 	    (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0),
851 	    ire->ire_uinfo.iulp_sack,
852 	    ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe,
853 	    ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count,
854 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type));
855 	if (print_len < buf_len) {
856 		((mblk_t *)mp)->b_wptr += print_len;
857 	} else {
858 		((mblk_t *)mp)->b_wptr += buf_len;
859 	}
860 }
861 
862 /* ARGSUSED */
863 int
864 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
865 {
866 	ip_stack_t	*ipst;
867 
868 	if (CONN_Q(q))
869 		ipst = CONNQ_TO_IPST(q);
870 	else
871 		ipst = ILLQ_TO_IPST(q);
872 
873 	(void) mi_mpprintf(mp,
874 	"IRE      " MI_COL_HDRPAD_STR
875 	/*   01234567[89ABCDEF] */
876 	"stq      " MI_COL_HDRPAD_STR
877 	/*   01234567[89ABCDEF] */
878 	"in_ill    " MI_COL_HDRPAD_STR
879 	/*   01234567[89ABCDEF] */
880 	"in_src_addr            "
881 	/*   123.123.123.123 */
882 	"max_frag      "
883 	/*   12345 */
884 	"ref     ");
885 	/*   123 */
886 
887 	ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL,
888 	    ipst);
889 	return (0);
890 }
891 
892 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */
893 
894 static void
895 ire_report_mrtun_table(ire_t *ire, char *mp)
896 {
897 	char	buf1[INET_ADDRSTRLEN];
898 	int	ref;
899 
900 	/* Number of active references of this ire */
901 	ref = ire->ire_refcnt;
902 	ASSERT(ire->ire_type == IRE_MIPRTUN);
903 	(void) mi_mpprintf((mblk_t *)mp,
904 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
905 	    "%s          %05d             %03d",
906 	    (void *)ire, (void *)ire->ire_stq,
907 	    (void *)ire->ire_in_ill,
908 	    ip_dot_addr(ire->ire_in_src_addr, buf1),
909 	    ire->ire_max_frag, ref);
910 }
911 
912 /*
913  * Dispatch routine to format ires in interface based routine
914  */
915 /* ARGSUSED */
916 int
917 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
918 {
919 	ip_stack_t	*ipst;
920 
921 	if (CONN_Q(q))
922 		ipst = CONNQ_TO_IPST(q);
923 	else
924 		ipst = ILLQ_TO_IPST(q);
925 
926 	/* Report all interface based ires */
927 
928 	(void) mi_mpprintf(mp,
929 	    "IRE      " MI_COL_HDRPAD_STR
930 	    /*   01234567[89ABCDEF] */
931 	    "stq      " MI_COL_HDRPAD_STR
932 	    /*   01234567[89ABCDEF] */
933 	    "in_ill    " MI_COL_HDRPAD_STR
934 	    /*   01234567[89ABCDEF] */
935 	    "addr            "
936 	    /*   123.123.123.123 */
937 	    "gateway         "
938 	    /*   123.123.123.123 */
939 	    "max_frag      "
940 	    /*   12345 */
941 	    "ref     "
942 	    /*   123 */
943 	    "type    "
944 	    /* ABCDEFGH */
945 	    "in/out/forward");
946 	ire_walk_srcif_table_v4(ire_report_srcif_table, mp, ipst);
947 	return (0);
948 }
949 
950 /* Reports the interface table ires */
951 /* ARGSUSED2 */
952 static void
953 ire_report_srcif_table(ire_t *ire, char *mp, ip_stack_t *ipst)
954 {
955 	char    buf1[INET_ADDRSTRLEN];
956 	char    buf2[INET_ADDRSTRLEN];
957 	int	ref;
958 
959 	ref = ire->ire_refcnt;
960 	(void) mi_mpprintf((mblk_t *)mp,
961 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
962 	    "%s    %s      %05d       %03d      %s     %d",
963 	    (void *)ire, (void *)ire->ire_stq,
964 	    (void *)ire->ire_in_ill,
965 	    ip_dot_addr(ire->ire_addr, buf1),
966 	    ip_dot_addr(ire->ire_gateway_addr, buf2),
967 	    ire->ire_max_frag, ref,
968 	    ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type),
969 	    ire->ire_ib_pkt_count);
970 
971 }
972 /*
973  * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed
974  * down from the Upper Level Protocol to request a copy of the IRE (to check
975  * its type or to extract information like round-trip time estimates or the
976  * MTU.)
977  * The address is assumed to be in the ire_addr field. If no IRE is found
978  * an IRE is returned with ire_type being zero.
979  * Note that the upper lavel protocol has to check for broadcast
980  * (IRE_BROADCAST) and multicast (CLASSD(addr)).
981  * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the
982  * end of the returned message.
983  *
984  * TCP sends down a message of this type with a connection request packet
985  * chained on. UDP and ICMP send it down to verify that a route exists for
986  * the destination address when they get connected.
987  */
988 void
989 ip_ire_req(queue_t *q, mblk_t *mp)
990 {
991 	ire_t	*inire;
992 	ire_t	*ire;
993 	mblk_t	*mp1;
994 	ire_t	*sire = NULL;
995 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
996 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
997 
998 	ASSERT(q->q_next == NULL);
999 
1000 	if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) ||
1001 	    !OK_32PTR(mp->b_rptr)) {
1002 		freemsg(mp);
1003 		return;
1004 	}
1005 	inire = (ire_t *)mp->b_rptr;
1006 	/*
1007 	 * Got it, now take our best shot at an IRE.
1008 	 */
1009 	if (inire->ire_ipversion == IPV6_VERSION) {
1010 		ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0,
1011 		    NULL, &sire, zoneid, NULL,
1012 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1013 	} else {
1014 		ASSERT(inire->ire_ipversion == IPV4_VERSION);
1015 		ire = ire_route_lookup(inire->ire_addr, 0, 0, 0,
1016 		    NULL, &sire, zoneid, NULL,
1017 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT), ipst);
1018 	}
1019 
1020 	/*
1021 	 * We prevent returning IRES with source address INADDR_ANY
1022 	 * as these were temporarily created for sending packets
1023 	 * from endpoints that have conn_unspec_src set.
1024 	 */
1025 	if (ire == NULL ||
1026 	    (ire->ire_ipversion == IPV4_VERSION &&
1027 	    ire->ire_src_addr == INADDR_ANY) ||
1028 	    (ire->ire_ipversion == IPV6_VERSION &&
1029 	    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) {
1030 		inire->ire_type = 0;
1031 	} else {
1032 		bcopy(ire, inire, sizeof (ire_t));
1033 		/* Copy the route metrics from the parent. */
1034 		if (sire != NULL) {
1035 			bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo),
1036 			    sizeof (iulp_t));
1037 		}
1038 
1039 		/*
1040 		 * As we don't lookup global policy here, we may not
1041 		 * pass the right size if per-socket policy is not
1042 		 * present. For these cases, path mtu discovery will
1043 		 * do the right thing.
1044 		 */
1045 		inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q));
1046 
1047 		/* Pass the latest setting of the ip_path_mtu_discovery */
1048 		inire->ire_frag_flag |=
1049 		    (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1050 	}
1051 	if (ire != NULL)
1052 		ire_refrele(ire);
1053 	if (sire != NULL)
1054 		ire_refrele(sire);
1055 	mp->b_wptr = &mp->b_rptr[sizeof (ire_t)];
1056 	mp->b_datap->db_type = IRE_DB_TYPE;
1057 
1058 	/* Put the IRE_DB_TYPE mblk last in the chain */
1059 	mp1 = mp->b_cont;
1060 	if (mp1 != NULL) {
1061 		mp->b_cont = NULL;
1062 		linkb(mp1, mp);
1063 		mp = mp1;
1064 	}
1065 	qreply(q, mp);
1066 }
1067 
1068 /*
1069  * Send a packet using the specified IRE.
1070  * If ire_src_addr_v6 is all zero then discard the IRE after
1071  * the packet has been sent.
1072  */
1073 static void
1074 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire)
1075 {
1076 	mblk_t *ipsec_mp;
1077 	boolean_t is_secure;
1078 	uint_t ifindex;
1079 	ill_t	*ill;
1080 	zoneid_t zoneid = ire->ire_zoneid;
1081 	ip_stack_t	*ipst = ire->ire_ipst;
1082 
1083 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
1084 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1085 	ipsec_mp = pkt;
1086 	is_secure = (pkt->b_datap->db_type == M_CTL);
1087 	if (is_secure) {
1088 		ipsec_out_t *io;
1089 
1090 		pkt = pkt->b_cont;
1091 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1092 		if (io->ipsec_out_type == IPSEC_OUT)
1093 			zoneid = io->ipsec_out_zoneid;
1094 	}
1095 
1096 	/* If the packet originated externally then */
1097 	if (pkt->b_prev) {
1098 		ire_refrele(ire);
1099 		/*
1100 		 * Extract the ifindex from b_prev (set in ip_rput_noire).
1101 		 * Look up interface to see if it still exists (it could have
1102 		 * been unplumbed by the time the reply came back from ARP)
1103 		 */
1104 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1105 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
1106 		    NULL, NULL, NULL, NULL, ipst);
1107 		if (ill == NULL) {
1108 			pkt->b_prev = NULL;
1109 			pkt->b_next = NULL;
1110 			freemsg(ipsec_mp);
1111 			return;
1112 		}
1113 		q = ill->ill_rq;
1114 		pkt->b_prev = NULL;
1115 		/*
1116 		 * This packet has not gone through IPSEC processing
1117 		 * and hence we should not have any IPSEC message
1118 		 * prepended.
1119 		 */
1120 		ASSERT(ipsec_mp == pkt);
1121 		put(q, pkt);
1122 		ill_refrele(ill);
1123 	} else if (pkt->b_next) {
1124 		/* Packets from multicast router */
1125 		pkt->b_next = NULL;
1126 		/*
1127 		 * We never get the IPSEC_OUT while forwarding the
1128 		 * packet for multicast router.
1129 		 */
1130 		ASSERT(ipsec_mp == pkt);
1131 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL);
1132 		ire_refrele(ire);
1133 	} else {
1134 		/* Locally originated packets */
1135 		boolean_t is_inaddr_any;
1136 		ipha_t *ipha = (ipha_t *)pkt->b_rptr;
1137 
1138 		/*
1139 		 * We need to do an ire_delete below for which
1140 		 * we need to make sure that the IRE will be
1141 		 * around even after calling ip_wput_ire -
1142 		 * which does ire_refrele. Otherwise somebody
1143 		 * could potentially delete this ire and hence
1144 		 * free this ire and we will be calling ire_delete
1145 		 * on a freed ire below.
1146 		 */
1147 		is_inaddr_any = (ire->ire_src_addr == INADDR_ANY);
1148 		if (is_inaddr_any) {
1149 			IRE_REFHOLD(ire);
1150 		}
1151 		/*
1152 		 * If we were resolving a router we can not use the
1153 		 * routers IRE for sending the packet (since it would
1154 		 * violate the uniqness of the IP idents) thus we
1155 		 * make another pass through ip_wput to create the IRE_CACHE
1156 		 * for the destination.
1157 		 * When IRE_MARK_NOADD is set, ire_add() is not called.
1158 		 * Thus ip_wput() will never find a ire and result in an
1159 		 * infinite loop. Thus we check whether IRE_MARK_NOADD is
1160 		 * is set. This also implies that IRE_MARK_NOADD can only be
1161 		 * used to send packets to directly connected hosts.
1162 		 */
1163 		if (ipha->ipha_dst != ire->ire_addr &&
1164 		    !(ire->ire_marks & IRE_MARK_NOADD)) {
1165 			ire_refrele(ire);	/* Held in ire_add */
1166 			if (CONN_Q(q)) {
1167 				(void) ip_output(Q_TO_CONN(q), ipsec_mp, q,
1168 				    IRE_SEND);
1169 			} else {
1170 				(void) ip_output((void *)(uintptr_t)zoneid,
1171 				    ipsec_mp, q, IRE_SEND);
1172 			}
1173 		} else {
1174 			if (is_secure) {
1175 				ipsec_out_t *oi;
1176 				ipha_t *ipha;
1177 
1178 				oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1179 				ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
1180 				if (oi->ipsec_out_proc_begin) {
1181 					/*
1182 					 * This is the case where
1183 					 * ip_wput_ipsec_out could not find
1184 					 * the IRE and recreated a new one.
1185 					 * As ip_wput_ipsec_out does ire
1186 					 * lookups, ire_refrele for the extra
1187 					 * bump in ire_add.
1188 					 */
1189 					ire_refrele(ire);
1190 					ip_wput_ipsec_out(q, ipsec_mp, ipha,
1191 					    NULL, NULL);
1192 				} else {
1193 					/*
1194 					 * IRE_REFRELE will be done in
1195 					 * ip_wput_ire.
1196 					 */
1197 					ip_wput_ire(q, ipsec_mp, ire, NULL,
1198 					    IRE_SEND, zoneid);
1199 				}
1200 			} else {
1201 				/*
1202 				 * IRE_REFRELE will be done in ip_wput_ire.
1203 				 */
1204 				ip_wput_ire(q, ipsec_mp, ire, NULL,
1205 				    IRE_SEND, zoneid);
1206 			}
1207 		}
1208 		/*
1209 		 * Special code to support sending a single packet with
1210 		 * conn_unspec_src using an IRE which has no source address.
1211 		 * The IRE is deleted here after sending the packet to avoid
1212 		 * having other code trip on it. But before we delete the
1213 		 * ire, somebody could have looked up this ire.
1214 		 * We prevent returning/using this IRE by the upper layers
1215 		 * by making checks to NULL source address in other places
1216 		 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected.
1217 		 * Though, this does not completely prevent other threads
1218 		 * from using this ire, this should not cause any problems.
1219 		 *
1220 		 * NOTE : We use is_inaddr_any instead of using ire_src_addr
1221 		 * because for the normal case i.e !is_inaddr_any, ire_refrele
1222 		 * above could have potentially freed the ire.
1223 		 */
1224 		if (is_inaddr_any) {
1225 			/*
1226 			 * If this IRE has been deleted by another thread, then
1227 			 * ire_bucket won't be NULL, but ire_ptpn will be NULL.
1228 			 * Thus, ire_delete will do nothing.  This check
1229 			 * guards against calling ire_delete when the IRE was
1230 			 * never inserted in the table, which is handled by
1231 			 * ire_delete as dropping another reference.
1232 			 */
1233 			if (ire->ire_bucket != NULL) {
1234 				ip1dbg(("ire_send: delete IRE\n"));
1235 				ire_delete(ire);
1236 			}
1237 			ire_refrele(ire);	/* Held above */
1238 		}
1239 	}
1240 }
1241 
1242 /*
1243  * Send a packet using the specified IRE.
1244  * If ire_src_addr_v6 is all zero then discard the IRE after
1245  * the packet has been sent.
1246  */
1247 static void
1248 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire)
1249 {
1250 	mblk_t *ipsec_mp;
1251 	boolean_t secure;
1252 	uint_t ifindex;
1253 	zoneid_t zoneid = ire->ire_zoneid;
1254 	ip_stack_t	*ipst = ire->ire_ipst;
1255 
1256 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
1257 	ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */
1258 	if (pkt->b_datap->db_type == M_CTL) {
1259 		ipsec_out_t *io;
1260 
1261 		ipsec_mp = pkt;
1262 		pkt = pkt->b_cont;
1263 		secure = B_TRUE;
1264 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
1265 		if (io->ipsec_out_type == IPSEC_OUT)
1266 			zoneid = io->ipsec_out_zoneid;
1267 	} else {
1268 		ipsec_mp = pkt;
1269 		secure = B_FALSE;
1270 	}
1271 
1272 	/* If the packet originated externally then */
1273 	if (pkt->b_prev) {
1274 		ill_t	*ill;
1275 		/*
1276 		 * Extract the ifindex from b_prev (set in ip_rput_data_v6).
1277 		 * Look up interface to see if it still exists (it could have
1278 		 * been unplumbed by the time the reply came back from the
1279 		 * resolver).
1280 		 */
1281 		ifindex = (uint_t)(uintptr_t)pkt->b_prev;
1282 		ill = ill_lookup_on_ifindex(ifindex, B_TRUE,
1283 		    NULL, NULL, NULL, NULL, ipst);
1284 		if (ill == NULL) {
1285 			pkt->b_prev = NULL;
1286 			pkt->b_next = NULL;
1287 			freemsg(ipsec_mp);
1288 			ire_refrele(ire);	/* Held in ire_add */
1289 			return;
1290 		}
1291 		q = ill->ill_rq;
1292 		pkt->b_prev = NULL;
1293 		/*
1294 		 * This packet has not gone through IPSEC processing
1295 		 * and hence we should not have any IPSEC message
1296 		 * prepended.
1297 		 */
1298 		ASSERT(ipsec_mp == pkt);
1299 		put(q, pkt);
1300 		ill_refrele(ill);
1301 	} else if (pkt->b_next) {
1302 		/* Packets from multicast router */
1303 		pkt->b_next = NULL;
1304 		/*
1305 		 * We never get the IPSEC_OUT while forwarding the
1306 		 * packet for multicast router.
1307 		 */
1308 		ASSERT(ipsec_mp == pkt);
1309 		/*
1310 		 * XXX TODO IPv6.
1311 		 */
1312 		freemsg(pkt);
1313 #ifdef XXX
1314 		ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL);
1315 #endif
1316 	} else {
1317 		if (secure) {
1318 			ipsec_out_t *oi;
1319 			ip6_t *ip6h;
1320 
1321 			oi = (ipsec_out_t *)ipsec_mp->b_rptr;
1322 			ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr;
1323 			if (oi->ipsec_out_proc_begin) {
1324 				/*
1325 				 * This is the case where
1326 				 * ip_wput_ipsec_out could not find
1327 				 * the IRE and recreated a new one.
1328 				 */
1329 				ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h,
1330 				    NULL, NULL);
1331 			} else {
1332 				if (CONN_Q(q)) {
1333 					(void) ip_output_v6(Q_TO_CONN(q),
1334 					    ipsec_mp, q, IRE_SEND);
1335 				} else {
1336 					(void) ip_output_v6(
1337 					    (void *)(uintptr_t)zoneid,
1338 					    ipsec_mp, q, IRE_SEND);
1339 				}
1340 			}
1341 		} else {
1342 			/*
1343 			 * Send packets through ip_output_v6 so that any
1344 			 * ip6_info header can be processed again.
1345 			 */
1346 			if (CONN_Q(q)) {
1347 				(void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q,
1348 				    IRE_SEND);
1349 			} else {
1350 				(void) ip_output_v6((void *)(uintptr_t)zoneid,
1351 				    ipsec_mp, q, IRE_SEND);
1352 			}
1353 		}
1354 		/*
1355 		 * Special code to support sending a single packet with
1356 		 * conn_unspec_src using an IRE which has no source address.
1357 		 * The IRE is deleted here after sending the packet to avoid
1358 		 * having other code trip on it. But before we delete the
1359 		 * ire, somebody could have looked up this ire.
1360 		 * We prevent returning/using this IRE by the upper layers
1361 		 * by making checks to NULL source address in other places
1362 		 * like e.g ip_ire_append_v6, ip_ire_req and
1363 		 * ip_bind_connected_v6. Though, this does not completely
1364 		 * prevent other threads from using this ire, this should
1365 		 * not cause any problems.
1366 		 */
1367 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) {
1368 			ip1dbg(("ire_send_v6: delete IRE\n"));
1369 			ire_delete(ire);
1370 		}
1371 	}
1372 	ire_refrele(ire);	/* Held in ire_add */
1373 }
1374 
1375 /*
1376  * Make sure that IRE bucket does not get too long.
1377  * This can cause lock up because ire_cache_lookup()
1378  * may take "forever" to finish.
1379  *
1380  * We just remove cnt IREs each time.  This means that
1381  * the bucket length will stay approximately constant,
1382  * depending on cnt.  This should be enough to defend
1383  * against DoS attack based on creating temporary IREs
1384  * (for forwarding and non-TCP traffic).
1385  *
1386  * Note that new IRE is normally added at the tail of the
1387  * bucket.  This means that we are removing the "oldest"
1388  * temporary IRE added.  Only if there are IREs with
1389  * the same ire_addr, do we not add it at the tail.  Refer
1390  * to ire_add_v*().  It should be OK for our purpose.
1391  *
1392  * For non-temporary cached IREs, we make sure that they
1393  * have not been used for some time (defined below), they
1394  * are non-local destinations, and there is no one using
1395  * them at the moment (refcnt == 1).
1396  *
1397  * The above means that the IRE bucket length may become
1398  * very long, consisting of mostly non-temporary IREs.
1399  * This can happen when the hash function does a bad job
1400  * so that most TCP connections cluster to a specific bucket.
1401  * This "hopefully" should never happen.  It can also
1402  * happen if most TCP connections have very long lives.
1403  * Even with the minimal hash table size of 256, there
1404  * has to be a lot of such connections to make the bucket
1405  * length unreasonably long.  This should probably not
1406  * happen either.  The third can when this can happen is
1407  * when the machine is under attack, such as SYN flooding.
1408  * TCP should already have the proper mechanism to protect
1409  * that.  So we should be safe.
1410  *
1411  * This function is called by ire_add_then_send() after
1412  * a new IRE is added and the packet is sent.
1413  *
1414  * The idle cutoff interval is set to 60s.  It can be
1415  * changed using /etc/system.
1416  */
1417 uint32_t ire_idle_cutoff_interval = 60000;
1418 
1419 static void
1420 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt)
1421 {
1422 	ire_t *ire;
1423 	int tmp_cnt = cnt;
1424 	clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000);
1425 
1426 	/*
1427 	 * irb is NULL if the IRE is not added to the hash.  This
1428 	 * happens when IRE_MARK_NOADD is set in ire_add_then_send()
1429 	 * and when ires are returned from ire_update_srcif_v4() routine.
1430 	 */
1431 	if (irb == NULL)
1432 		return;
1433 
1434 	IRB_REFHOLD(irb);
1435 	if (irb->irb_tmp_ire_cnt > threshold) {
1436 		for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0;
1437 		    ire = ire->ire_next) {
1438 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1439 				continue;
1440 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1441 				ASSERT(ire->ire_type == IRE_CACHE);
1442 				ire_delete(ire);
1443 				tmp_cnt--;
1444 			}
1445 		}
1446 	}
1447 	if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) {
1448 		for (ire = irb->irb_ire; ire != NULL && cnt > 0;
1449 		    ire = ire->ire_next) {
1450 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
1451 				continue;
1452 			if (ire->ire_ipversion == IPV4_VERSION) {
1453 				if (ire->ire_gateway_addr == 0)
1454 					continue;
1455 			} else {
1456 				if (IN6_IS_ADDR_UNSPECIFIED(
1457 				    &ire->ire_gateway_addr_v6))
1458 					continue;
1459 			}
1460 			if ((ire->ire_type == IRE_CACHE) &&
1461 			    (lbolt - ire->ire_last_used_time > cut_off) &&
1462 			    (ire->ire_refcnt == 1)) {
1463 				ire_delete(ire);
1464 				cnt--;
1465 			}
1466 		}
1467 	}
1468 	IRB_REFRELE(irb);
1469 }
1470 
1471 /*
1472  * ire_add_then_send is called when a new IRE has been created in order to
1473  * route an outgoing packet.  Typically, it is called from ip_wput when
1474  * a response comes back down from a resolver.  We add the IRE, and then
1475  * possibly run the packet through ip_wput or ip_rput, as appropriate.
1476  * However, we do not add the newly created IRE in the cache when
1477  * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at
1478  * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned
1479  * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get
1480  * deleted.
1481  * Multirouting support: the packet is silently discarded when the new IRE
1482  * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the
1483  * RTF_MULTIRT flag for the same destination address.
1484  * In this case, we just want to register this additional ire without
1485  * sending the packet, as it has already been replicated through
1486  * existing multirt routes in ip_wput().
1487  */
1488 void
1489 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp)
1490 {
1491 	irb_t *irb;
1492 	boolean_t drop = B_FALSE;
1493 	/* LINTED : set but not used in function */
1494 	boolean_t mctl_present;
1495 	mblk_t *first_mp = NULL;
1496 	mblk_t *save_mp = NULL;
1497 	ire_t *dst_ire;
1498 	ipha_t *ipha;
1499 	ip6_t *ip6h;
1500 	ip_stack_t	*ipst = ire->ire_ipst;
1501 
1502 	if (mp != NULL) {
1503 		/*
1504 		 * We first have to retrieve the destination address carried
1505 		 * by the packet.
1506 		 * We can't rely on ire as it can be related to a gateway.
1507 		 * The destination address will help in determining if
1508 		 * other RTF_MULTIRT ires are already registered.
1509 		 *
1510 		 * We first need to know where we are going : v4 or V6.
1511 		 * the ire version is enough, as there is no risk that
1512 		 * we resolve an IPv6 address with an IPv4 ire
1513 		 * or vice versa.
1514 		 */
1515 		if (ire->ire_ipversion == IPV4_VERSION) {
1516 			EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1517 			ipha = (ipha_t *)mp->b_rptr;
1518 			save_mp = mp;
1519 			mp = first_mp;
1520 
1521 			dst_ire = ire_cache_lookup(ipha->ipha_dst,
1522 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1523 		} else {
1524 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
1525 			/*
1526 			 * Get a pointer to the beginning of the IPv6 header.
1527 			 * Ignore leading IPsec control mblks.
1528 			 */
1529 			first_mp = mp;
1530 			if (mp->b_datap->db_type == M_CTL) {
1531 				mp = mp->b_cont;
1532 			}
1533 			ip6h = (ip6_t *)mp->b_rptr;
1534 			save_mp = mp;
1535 			mp = first_mp;
1536 			dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst,
1537 			    ire->ire_zoneid, MBLK_GETLABEL(mp), ipst);
1538 		}
1539 		if (dst_ire != NULL) {
1540 			if (dst_ire->ire_flags & RTF_MULTIRT) {
1541 				/*
1542 				 * At least one resolved multirt route
1543 				 * already exists for the destination,
1544 				 * don't sent this packet: either drop it
1545 				 * or complete the pending resolution,
1546 				 * depending on the ire.
1547 				 */
1548 				drop = B_TRUE;
1549 			}
1550 			ip1dbg(("ire_add_then_send: dst_ire %p "
1551 			    "[dst %08x, gw %08x], drop %d\n",
1552 			    (void *)dst_ire,
1553 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1554 			    ntohl(dst_ire->ire_addr) : \
1555 			    ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)),
1556 			    (dst_ire->ire_ipversion == IPV4_VERSION) ? \
1557 			    ntohl(dst_ire->ire_gateway_addr) : \
1558 			    ntohl(V4_PART_OF_V6(
1559 			    dst_ire->ire_gateway_addr_v6)),
1560 			    drop));
1561 			ire_refrele(dst_ire);
1562 		}
1563 	}
1564 
1565 	if (!(ire->ire_marks & IRE_MARK_NOADD)) {
1566 		/*
1567 		 * Regular packets with cache bound ires and
1568 		 * the packets from ARP response for ires which
1569 		 * belong to the ire_srcif_v4 table, are here.
1570 		 */
1571 		if (ire->ire_in_ill == NULL) {
1572 			/* Add the ire */
1573 			(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
1574 		} else {
1575 			/*
1576 			 * This must be ARP response for ire in interface based
1577 			 * table. Note that we don't add them in cache table,
1578 			 * instead we update the existing table with dlureq_mp
1579 			 * information. The reverse tunnel ires do not come
1580 			 * here, as reverse tunnel is non-resolver interface.
1581 			 * XXX- another design alternative was to mark the
1582 			 * ires in interface based table with a special mark to
1583 			 * make absolutely sure that we operate in right ires.
1584 			 * This idea was not implemented as part of code review
1585 			 * suggestion, as ire_in_ill suffice to distinguish
1586 			 * between the regular ires and interface based
1587 			 * ires now and thus we save a bit in the ire_marks.
1588 			 */
1589 			ire = ire_update_srcif_v4(ire);
1590 		}
1591 
1592 		if (ire == NULL) {
1593 			mp->b_prev = NULL;
1594 			mp->b_next = NULL;
1595 			MULTIRT_DEBUG_UNTAG(mp);
1596 			freemsg(mp);
1597 			return;
1598 		}
1599 		if (mp == NULL) {
1600 			ire_refrele(ire);	/* Held in ire_add_v4/v6 */
1601 			return;
1602 		}
1603 	}
1604 	if (drop) {
1605 		/*
1606 		 * If we're adding an RTF_MULTIRT ire, the resolution
1607 		 * is over: we just drop the packet.
1608 		 */
1609 		if (ire->ire_flags & RTF_MULTIRT) {
1610 			if (save_mp) {
1611 				save_mp->b_prev = NULL;
1612 				save_mp->b_next = NULL;
1613 			}
1614 			MULTIRT_DEBUG_UNTAG(mp);
1615 			freemsg(mp);
1616 		} else {
1617 			/*
1618 			 * Otherwise, we're adding the ire to a gateway
1619 			 * for a multirt route.
1620 			 * Invoke ip_newroute() to complete the resolution
1621 			 * of the route. We will then come back here and
1622 			 * finally drop this packet in the above code.
1623 			 */
1624 			if (ire->ire_ipversion == IPV4_VERSION) {
1625 				/*
1626 				 * TODO: in order for CGTP to work in non-global
1627 				 * zones, ip_newroute() must create the IRE
1628 				 * cache in the zone indicated by
1629 				 * ire->ire_zoneid.
1630 				 */
1631 				ip_newroute(q, mp, ipha->ipha_dst, 0,
1632 				    (CONN_Q(q) ? Q_TO_CONN(q) : NULL),
1633 				    ire->ire_zoneid, ipst);
1634 			} else {
1635 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
1636 				ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL,
1637 				    NULL, ire->ire_zoneid, ipst);
1638 			}
1639 		}
1640 
1641 		ire_refrele(ire); /* As done by ire_send(). */
1642 		return;
1643 	}
1644 	/*
1645 	 * Need to remember ire_bucket here as ire_send*() may delete
1646 	 * the ire so we cannot reference it after that.
1647 	 */
1648 	irb = ire->ire_bucket;
1649 	if (ire->ire_ipversion == IPV6_VERSION) {
1650 		ire_send_v6(q, mp, ire);
1651 		/*
1652 		 * Clean up more than 1 IRE so that the clean up does not
1653 		 * need to be done every time when a new IRE is added and
1654 		 * the threshold is reached.
1655 		 */
1656 		ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2);
1657 	} else {
1658 		ire_send(q, mp, ire);
1659 		ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2);
1660 	}
1661 }
1662 
1663 /*
1664  * Initialize the ire that is specific to IPv4 part and call
1665  * ire_init_common to finish it.
1666  */
1667 ire_t *
1668 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr,
1669     uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, nce_t *src_nce,
1670     queue_t *rfq, queue_t *stq, ushort_t type, ipif_t *ipif,
1671     ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle,
1672     uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1673     ip_stack_t *ipst)
1674 {
1675 	/*
1676 	 * Reject IRE security attribute creation/initialization
1677 	 * if system is not running in Trusted mode.
1678 	 */
1679 	if ((gc != NULL || gcgrp != NULL) && !is_system_labeled())
1680 		return (NULL);
1681 
1682 
1683 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_alloced);
1684 
1685 	if (addr != NULL)
1686 		bcopy(addr, &ire->ire_addr, IP_ADDR_LEN);
1687 	if (src_addr != NULL)
1688 		bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN);
1689 	if (mask != NULL) {
1690 		bcopy(mask, &ire->ire_mask, IP_ADDR_LEN);
1691 		ire->ire_masklen = ip_mask_to_plen(ire->ire_mask);
1692 	}
1693 	if (gateway != NULL) {
1694 		bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN);
1695 	}
1696 	if (in_src_addr != NULL) {
1697 		bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN);
1698 	}
1699 
1700 	if (type == IRE_CACHE)
1701 		ire->ire_cmask = cmask;
1702 
1703 	/* ire_init_common will free the mblks upon encountering any failure */
1704 	if (!ire_init_common(ire, max_fragp, src_nce, rfq, stq, type,
1705 	    ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info,
1706 	    gc, gcgrp, ipst))
1707 		return (NULL);
1708 
1709 	return (ire);
1710 }
1711 
1712 /*
1713  * Similar to ire_create except that it is called only when
1714  * we want to allocate ire as an mblk e.g. we have an external
1715  * resolver ARP.
1716  */
1717 ire_t *
1718 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1719     uchar_t *in_src_addr, uint_t max_frag, nce_t *src_nce, queue_t *rfq,
1720     queue_t *stq, ushort_t type, ipif_t *ipif, ill_t *in_ill,
1721     ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1722     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1723     ip_stack_t *ipst)
1724 {
1725 	ire_t	*ire, *buf;
1726 	ire_t	*ret_ire;
1727 	mblk_t	*mp;
1728 	size_t	bufsize;
1729 	frtn_t	*frtnp;
1730 	ill_t	*ill;
1731 
1732 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
1733 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
1734 	if (buf == NULL) {
1735 		ip1dbg(("ire_create_mp: alloc failed\n"));
1736 		return (NULL);
1737 	}
1738 	frtnp = (frtn_t *)(buf + 1);
1739 	frtnp->free_arg = (caddr_t)buf;
1740 	frtnp->free_func = ire_freemblk;
1741 
1742 	/*
1743 	 * Allocate the new IRE. The ire created will hold a ref on
1744 	 * an nce_t after ire_nce_init, and this ref must either be
1745 	 * (a)  transferred to the ire_cache entry created when ire_add_v4
1746 	 *	is called after successful arp resolution, or,
1747 	 * (b)  released, when arp resolution fails
1748 	 * Case (b) is handled in ire_freemblk() which will be called
1749 	 * when mp is freed as a result of failed arp.
1750 	 */
1751 	mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
1752 	if (mp == NULL) {
1753 		ip1dbg(("ire_create_mp: alloc failed\n"));
1754 		kmem_free(buf, bufsize);
1755 		return (NULL);
1756 	}
1757 	ire = (ire_t *)mp->b_rptr;
1758 	mp->b_wptr = (uchar_t *)&ire[1];
1759 
1760 	/* Start clean. */
1761 	*ire = ire_null;
1762 	ire->ire_mp = mp;
1763 	mp->b_datap->db_type = IRE_DB_TYPE;
1764 	ire->ire_marks |= IRE_MARK_UNCACHED;
1765 
1766 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1767 	    NULL, src_nce, rfq, stq, type, ipif, in_ill, cmask,
1768 	    phandle, ihandle, flags, ulp_info, gc, gcgrp, ipst);
1769 
1770 	ill = (ill_t *)(stq->q_ptr);
1771 	if (ret_ire == NULL) {
1772 		/* ire_freemblk needs these set */
1773 		ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1774 		ire->ire_ipst = ipst;
1775 		freeb(ire->ire_mp);
1776 		return (NULL);
1777 	}
1778 	ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
1779 	ASSERT(ret_ire == ire);
1780 	/*
1781 	 * ire_max_frag is normally zero here and is atomically set
1782 	 * under the irebucket lock in ire_add_v[46] except for the
1783 	 * case of IRE_MARK_NOADD. In that event the the ire_max_frag
1784 	 * is non-zero here.
1785 	 */
1786 	ire->ire_max_frag = max_frag;
1787 	return (ire);
1788 }
1789 
1790 /*
1791  * ire_create is called to allocate and initialize a new IRE.
1792  *
1793  * NOTE : This is called as writer sometimes though not required
1794  * by this function.
1795  */
1796 ire_t *
1797 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway,
1798     uchar_t *in_src_addr, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1799     queue_t *stq, ushort_t type, ipif_t *ipif, ill_t *in_ill,
1800     ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags,
1801     const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp,
1802     ip_stack_t *ipst)
1803 {
1804 	ire_t	*ire;
1805 	ire_t	*ret_ire;
1806 
1807 	ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
1808 	if (ire == NULL) {
1809 		ip1dbg(("ire_create: alloc failed\n"));
1810 		return (NULL);
1811 	}
1812 	*ire = ire_null;
1813 
1814 	ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr,
1815 	    max_fragp, src_nce, rfq, stq, type, ipif, in_ill,  cmask,
1816 	    phandle, ihandle, flags, ulp_info, gc, gcgrp, ipst);
1817 
1818 	if (ret_ire == NULL) {
1819 		kmem_cache_free(ire_cache, ire);
1820 		return (NULL);
1821 	}
1822 	ASSERT(ret_ire == ire);
1823 	return (ire);
1824 }
1825 
1826 
1827 /*
1828  * Common to IPv4 and IPv6
1829  */
1830 boolean_t
1831 ire_init_common(ire_t *ire, uint_t *max_fragp, nce_t *src_nce, queue_t *rfq,
1832     queue_t *stq, ushort_t type, ipif_t *ipif, ill_t *in_ill, uint32_t phandle,
1833     uint32_t ihandle, uint32_t flags, uchar_t ipversion, const iulp_t *ulp_info,
1834     tsol_gc_t *gc, tsol_gcgrp_t *gcgrp, ip_stack_t *ipst)
1835 {
1836 	ire->ire_max_fragp = max_fragp;
1837 	ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? IPH_DF : 0;
1838 
1839 #ifdef DEBUG
1840 	if (ipif != NULL) {
1841 		if (ipif->ipif_isv6)
1842 			ASSERT(ipversion == IPV6_VERSION);
1843 		else
1844 			ASSERT(ipversion == IPV4_VERSION);
1845 	}
1846 #endif /* DEBUG */
1847 
1848 	/*
1849 	 * Create/initialize IRE security attribute only in Trusted mode;
1850 	 * if the passed in gc/gcgrp is non-NULL, we expect that the caller
1851 	 * has held a reference to it and will release it when this routine
1852 	 * returns a failure, otherwise we own the reference.  We do this
1853 	 * prior to initializing the rest IRE fields.
1854 	 *
1855 	 * Don't allocate ire_gw_secattr for the resolver case to prevent
1856 	 * memory leak (in case of external resolution failure). We'll
1857 	 * allocate it after a successful external resolution, in ire_add().
1858 	 * Note that ire->ire_mp != NULL here means this ire is headed
1859 	 * to an external resolver.
1860 	 */
1861 	if (is_system_labeled()) {
1862 		if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST |
1863 		    IRE_INTERFACE)) != 0) {
1864 			/* release references on behalf of caller */
1865 			if (gc != NULL)
1866 				GC_REFRELE(gc);
1867 			if (gcgrp != NULL)
1868 				GCGRP_REFRELE(gcgrp);
1869 		} else if ((ire->ire_mp == NULL) &&
1870 		    tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) {
1871 			return (B_FALSE);
1872 		}
1873 	}
1874 
1875 	ire->ire_stq = stq;
1876 	ire->ire_rfq = rfq;
1877 	ire->ire_type = type;
1878 	ire->ire_flags = RTF_UP | flags;
1879 	ire->ire_ident = TICK_TO_MSEC(lbolt);
1880 	bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t));
1881 
1882 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
1883 	ire->ire_last_used_time = lbolt;
1884 	ire->ire_create_time = (uint32_t)gethrestime_sec();
1885 
1886 	/*
1887 	 * If this IRE is an IRE_CACHE, inherit the handles from the
1888 	 * parent IREs. For others in the forwarding table, assign appropriate
1889 	 * new ones.
1890 	 *
1891 	 * The mutex protecting ire_handle is because ire_create is not always
1892 	 * called as a writer.
1893 	 */
1894 	if (ire->ire_type & IRE_OFFSUBNET) {
1895 		mutex_enter(&ipst->ips_ire_handle_lock);
1896 		ire->ire_phandle = (uint32_t)ipst->ips_ire_handle++;
1897 		mutex_exit(&ipst->ips_ire_handle_lock);
1898 	} else if (ire->ire_type & IRE_INTERFACE) {
1899 		mutex_enter(&ipst->ips_ire_handle_lock);
1900 		ire->ire_ihandle = (uint32_t)ipst->ips_ire_handle++;
1901 		mutex_exit(&ipst->ips_ire_handle_lock);
1902 	} else if (ire->ire_type == IRE_CACHE) {
1903 		ire->ire_phandle = phandle;
1904 		ire->ire_ihandle = ihandle;
1905 	}
1906 	ire->ire_in_ill = in_ill;
1907 	ire->ire_ipif = ipif;
1908 	if (ipif != NULL) {
1909 		ire->ire_ipif_seqid = ipif->ipif_seqid;
1910 		ire->ire_zoneid = ipif->ipif_zoneid;
1911 	} else {
1912 		ire->ire_zoneid = GLOBAL_ZONEID;
1913 	}
1914 	ire->ire_ipversion = ipversion;
1915 	mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL);
1916 	if (ipversion == IPV4_VERSION) {
1917 		/*
1918 		 * IPv6 initializes the ire_nce in ire_add_v6, which expects
1919 		 * to find the ire_nce to be null when it is called.
1920 		 */
1921 		if (ire_nce_init(ire, src_nce) != 0) {
1922 			/* some failure occurred. propagate error back */
1923 			return (B_FALSE);
1924 		}
1925 	}
1926 	ire->ire_refcnt = 1;
1927 	ire->ire_ipst = ipst;	/* No netstack_hold */
1928 
1929 #ifdef IRE_DEBUG
1930 	bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX);
1931 #endif
1932 
1933 	return (B_TRUE);
1934 }
1935 
1936 /*
1937  * This routine is called repeatedly by ipif_up to create broadcast IREs.
1938  * It is passed a pointer to a slot in an IRE pointer array into which to
1939  * place the pointer to the new IRE, if indeed we create one.  If the
1940  * IRE corresponding to the address passed in would be a duplicate of an
1941  * existing one, we don't create the new one.  irep is incremented before
1942  * return only if we do create a new IRE.  (Always called as writer.)
1943  *
1944  * Note that with the "match_flags" parameter, we can match on either
1945  * a particular logical interface (MATCH_IRE_IPIF) or for all logical
1946  * interfaces for a given physical interface (MATCH_IRE_ILL).  Currently,
1947  * we only create broadcast ire's on a per physical interface basis. If
1948  * someone is going to be mucking with logical interfaces, it is important
1949  * to call "ipif_check_bcast_ires()" to make sure that any change to a
1950  * logical interface will not cause critical broadcast IRE's to be deleted.
1951  */
1952 ire_t **
1953 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep,
1954     int match_flags)
1955 {
1956 	ire_t *ire;
1957 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
1958 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
1959 
1960 	/*
1961 	 * No broadcast IREs for the LOOPBACK interface
1962 	 * or others such as point to point and IPIF_NOXMIT.
1963 	 */
1964 	if (!(ipif->ipif_flags & IPIF_BROADCAST) ||
1965 	    (ipif->ipif_flags & IPIF_NOXMIT))
1966 		return (irep);
1967 
1968 	/* If this would be a duplicate, don't bother. */
1969 	if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif,
1970 	    ipif->ipif_zoneid, NULL, match_flags, ipst)) != NULL) {
1971 		/*
1972 		 * We look for non-deprecated (and non-anycast, non-nolocal)
1973 		 * ipifs as the best choice. ipifs with check_flags matching
1974 		 * (deprecated, etc) are used only if non-deprecated ipifs
1975 		 * are not available. if the existing ire's ipif is deprecated
1976 		 * and the new ipif is non-deprecated, switch to the new ipif
1977 		 */
1978 		if ((!(ire->ire_ipif->ipif_flags & check_flags)) ||
1979 		    (ipif->ipif_flags & check_flags)) {
1980 			ire_refrele(ire);
1981 			return (irep);
1982 		}
1983 		/*
1984 		 * Bcast ires exist in pairs. Both have to be deleted,
1985 		 * Since we are exclusive we can make the above assertion.
1986 		 * The 1st has to be refrele'd since it was ctable_lookup'd.
1987 		 */
1988 		ASSERT(IAM_WRITER_IPIF(ipif));
1989 		ASSERT(ire->ire_next->ire_addr == ire->ire_addr);
1990 		ire_delete(ire->ire_next);
1991 		ire_delete(ire);
1992 		ire_refrele(ire);
1993 	}
1994 
1995 	irep = ire_create_bcast(ipif, addr, irep);
1996 
1997 	return (irep);
1998 }
1999 
2000 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU;
2001 
2002 /*
2003  * This routine is called from ipif_check_bcast_ires and ire_check_bcast.
2004  * It leaves all the verifying and deleting to those routines. So it always
2005  * creates 2 bcast ires and chains them into the ire array passed in.
2006  */
2007 ire_t **
2008 ire_create_bcast(ipif_t *ipif, ipaddr_t  addr, ire_t **irep)
2009 {
2010 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
2011 
2012 	*irep++ = ire_create(
2013 	    (uchar_t *)&addr,			/* dest addr */
2014 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2015 	    (uchar_t *)&ipif->ipif_src_addr,	/* source addr */
2016 	    NULL,				/* no gateway */
2017 	    NULL,				/* no in_src_addr */
2018 	    &ipif->ipif_mtu,			/* max frag */
2019 	    NULL,				/* no src nce */
2020 	    ipif->ipif_rq,			/* recv-from queue */
2021 	    ipif->ipif_wq,			/* send-to queue */
2022 	    IRE_BROADCAST,
2023 	    ipif,
2024 	    NULL,
2025 	    0,
2026 	    0,
2027 	    0,
2028 	    0,
2029 	    &ire_uinfo_null,
2030 	    NULL,
2031 	    NULL,
2032 	    ipst);
2033 
2034 	*irep++ = ire_create(
2035 	    (uchar_t *)&addr,			/* dest address */
2036 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2037 	    (uchar_t *)&ipif->ipif_src_addr,	/* source address */
2038 	    NULL,				/* no gateway */
2039 	    NULL,				/* no in_src_addr */
2040 	    &ip_loopback_mtu,			/* max frag size */
2041 	    NULL,				/* no src_nce */
2042 	    ipif->ipif_rq,			/* recv-from queue */
2043 	    NULL,				/* no send-to queue */
2044 	    IRE_BROADCAST,			/* Needed for fanout in wput */
2045 	    ipif,
2046 	    NULL,
2047 	    0,
2048 	    0,
2049 	    0,
2050 	    0,
2051 	    &ire_uinfo_null,
2052 	    NULL,
2053 	    NULL,
2054 	    ipst);
2055 
2056 	return (irep);
2057 }
2058 
2059 /*
2060  * ire_walk routine to delete or update any IRE_CACHE that might contain
2061  * stale information.
2062  * The flags state which entries to delete or update.
2063  * Garbage collection is done separately using kmem alloc callbacks to
2064  * ip_trash_ire_reclaim.
2065  * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME
2066  * since other stale information is cleaned up using NUD.
2067  */
2068 void
2069 ire_expire(ire_t *ire, char *arg)
2070 {
2071 	ire_expire_arg_t	*ieap = (ire_expire_arg_t *)(uintptr_t)arg;
2072 	ill_t			*stq_ill;
2073 	int			flush_flags = ieap->iea_flush_flag;
2074 	ip_stack_t		*ipst = ieap->iea_ipst;
2075 
2076 	if ((flush_flags & FLUSH_REDIRECT_TIME) &&
2077 	    (ire->ire_flags & RTF_DYNAMIC)) {
2078 		/* Make sure we delete the corresponding IRE_CACHE */
2079 		ip1dbg(("ire_expire: all redirects\n"));
2080 		ip_rts_rtmsg(RTM_DELETE, ire, 0, ipst);
2081 		ire_delete(ire);
2082 		atomic_dec_32(&ipst->ips_ip_redirect_cnt);
2083 		return;
2084 	}
2085 	if (ire->ire_type != IRE_CACHE)
2086 		return;
2087 
2088 	if (flush_flags & FLUSH_ARP_TIME) {
2089 		/*
2090 		 * Remove all IRE_CACHE.
2091 		 * Verify that create time is more than
2092 		 * ip_ire_arp_interval milliseconds ago.
2093 		 */
2094 		if (NCE_EXPIRED(ire->ire_nce, ipst)) {
2095 			ire_delete(ire);
2096 			return;
2097 		}
2098 	}
2099 
2100 	if (ipst->ips_ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) &&
2101 	    (ire->ire_ipif != NULL)) {
2102 		/* Increase pmtu if it is less than the interface mtu */
2103 		mutex_enter(&ire->ire_lock);
2104 		/*
2105 		 * If the ipif is a vni (whose mtu is 0, since it's virtual)
2106 		 * get the mtu from the sending interfaces' ipif
2107 		 */
2108 		if (IS_VNI(ire->ire_ipif->ipif_ill)) {
2109 			stq_ill = ire->ire_stq->q_ptr;
2110 			ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu,
2111 			    IP_MAXPACKET);
2112 		} else {
2113 			ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
2114 			    IP_MAXPACKET);
2115 		}
2116 		ire->ire_frag_flag |= IPH_DF;
2117 		mutex_exit(&ire->ire_lock);
2118 	}
2119 }
2120 
2121 /*
2122  * Return any local address.  We use this to target ourselves
2123  * when the src address was specified as 'default'.
2124  * Preference for IRE_LOCAL entries.
2125  */
2126 ire_t *
2127 ire_lookup_local(zoneid_t zoneid, ip_stack_t *ipst)
2128 {
2129 	ire_t	*ire;
2130 	irb_t	*irb;
2131 	ire_t	*maybe = NULL;
2132 	int i;
2133 
2134 	for (i = 0; i < ipst->ips_ip_cache_table_size;  i++) {
2135 		irb = &ipst->ips_ip_cache_table[i];
2136 		if (irb->irb_ire == NULL)
2137 			continue;
2138 		rw_enter(&irb->irb_lock, RW_READER);
2139 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2140 			if ((ire->ire_marks & IRE_MARK_CONDEMNED) ||
2141 			    (ire->ire_zoneid != zoneid &&
2142 			    ire->ire_zoneid != ALL_ZONES))
2143 				continue;
2144 			switch (ire->ire_type) {
2145 			case IRE_LOOPBACK:
2146 				if (maybe == NULL) {
2147 					IRE_REFHOLD(ire);
2148 					maybe = ire;
2149 				}
2150 				break;
2151 			case IRE_LOCAL:
2152 				if (maybe != NULL) {
2153 					ire_refrele(maybe);
2154 				}
2155 				IRE_REFHOLD(ire);
2156 				rw_exit(&irb->irb_lock);
2157 				return (ire);
2158 			}
2159 		}
2160 		rw_exit(&irb->irb_lock);
2161 	}
2162 	return (maybe);
2163 }
2164 
2165 /*
2166  * If the specified IRE is associated with a particular ILL, return
2167  * that ILL pointer (May be called as writer.).
2168  *
2169  * NOTE : This is not a generic function that can be used always.
2170  * This function always returns the ill of the outgoing packets
2171  * if this ire is used.
2172  */
2173 ill_t *
2174 ire_to_ill(const ire_t *ire)
2175 {
2176 	ill_t *ill = NULL;
2177 
2178 	/*
2179 	 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained
2180 	 *    the source address from. ire_stq is the one where the
2181 	 *    packets will be sent out on. We return that here.
2182 	 *
2183 	 * 2) IRE_BROADCAST normally has a loopback and a non-loopback
2184 	 *    copy and they always exist next to each other with loopback
2185 	 *    copy being the first one. If we are called on the non-loopback
2186 	 *    copy, return the one pointed by ire_stq. If it was called on
2187 	 *    a loopback copy, we still return the one pointed by the next
2188 	 *    ire's ire_stq pointer i.e the one pointed by the non-loopback
2189 	 *    copy. We don't want use ire_ipif as it might represent the
2190 	 *    source address (if we borrow source addresses for
2191 	 *    IRE_BROADCASTS in the future).
2192 	 *    However if an interface is currently coming up, the above
2193 	 *    condition may not hold during that period since the ires
2194 	 *    are added one at a time. Thus one of the pair could have been
2195 	 *    added and the other not yet added.
2196 	 * 3) For many other IREs (e.g., IRE_LOCAL), ire_rfq indicates the ill.
2197 	 * 4) For all others return the ones pointed by ire_ipif->ipif_ill.
2198 	 *    That handles IRE_LOOPBACK.
2199 	 */
2200 
2201 	if (ire->ire_type == IRE_CACHE) {
2202 		ill = (ill_t *)ire->ire_stq->q_ptr;
2203 	} else if (ire->ire_type == IRE_BROADCAST) {
2204 		if (ire->ire_stq != NULL) {
2205 			ill = (ill_t *)ire->ire_stq->q_ptr;
2206 		} else {
2207 			ire_t  *ire_next;
2208 
2209 			ire_next = ire->ire_next;
2210 			if (ire_next != NULL &&
2211 			    ire_next->ire_type == IRE_BROADCAST &&
2212 			    ire_next->ire_addr == ire->ire_addr &&
2213 			    ire_next->ire_ipif == ire->ire_ipif) {
2214 				ill = (ill_t *)ire_next->ire_stq->q_ptr;
2215 			}
2216 		}
2217 	} else if (ire->ire_rfq != NULL) {
2218 		ill = ire->ire_rfq->q_ptr;
2219 	} else if (ire->ire_ipif != NULL) {
2220 		ill = ire->ire_ipif->ipif_ill;
2221 	}
2222 	return (ill);
2223 }
2224 
2225 /* Arrange to call the specified function for every IRE in the world. */
2226 void
2227 ire_walk(pfv_t func, void *arg, ip_stack_t *ipst)
2228 {
2229 	ire_walk_ipvers(func, arg, 0, ALL_ZONES, ipst);
2230 }
2231 
2232 void
2233 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2234 {
2235 	ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid, ipst);
2236 }
2237 
2238 void
2239 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
2240 {
2241 	ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid, ipst);
2242 }
2243 
2244 /*
2245  * Walk a particular version. version == 0 means both v4 and v6.
2246  */
2247 static void
2248 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid,
2249     ip_stack_t *ipst)
2250 {
2251 	if (vers != IPV6_VERSION) {
2252 		/*
2253 		 * ip_forwarding_table variable doesn't matter for IPv4 since
2254 		 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
2255 		 */
2256 		ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE,
2257 		    0, NULL,
2258 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
2259 		    NULL, zoneid, ipst);
2260 	}
2261 	if (vers != IPV4_VERSION) {
2262 		ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE,
2263 		    ipst->ips_ip6_ftable_hash_size,
2264 		    ipst->ips_ip_forwarding_table_v6,
2265 		    ipst->ips_ip6_cache_table_size,
2266 		    ipst->ips_ip_cache_table_v6, NULL, zoneid, ipst);
2267 	}
2268 }
2269 
2270 /*
2271  * Arrange to call the specified
2272  * function for every IRE that matches the ill.
2273  */
2274 void
2275 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2276     ill_t *ill)
2277 {
2278 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill);
2279 }
2280 
2281 void
2282 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2283     ill_t *ill)
2284 {
2285 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION,
2286 	    ill);
2287 }
2288 
2289 void
2290 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
2291     ill_t *ill)
2292 {
2293 	ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION,
2294 	    ill);
2295 }
2296 
2297 /*
2298  * Walk a particular ill and version. version == 0 means both v4 and v6.
2299  */
2300 static void
2301 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func,
2302     void *arg, uchar_t vers, ill_t *ill)
2303 {
2304 	ip_stack_t	*ipst = ill->ill_ipst;
2305 
2306 	if (vers != IPV6_VERSION) {
2307 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2308 		    IP_MASK_TABLE_SIZE, 0,
2309 		    NULL, ipst->ips_ip_cache_table_size,
2310 		    ipst->ips_ip_cache_table, ill, ALL_ZONES, ipst);
2311 	}
2312 	if (vers != IPV4_VERSION) {
2313 		ire_walk_ill_tables(match_flags, ire_type, func, arg,
2314 		    IP6_MASK_TABLE_SIZE, ipst->ips_ip6_ftable_hash_size,
2315 		    ipst->ips_ip_forwarding_table_v6,
2316 		    ipst->ips_ip6_cache_table_size,
2317 		    ipst->ips_ip_cache_table_v6, ill, ALL_ZONES, ipst);
2318 	}
2319 }
2320 
2321 boolean_t
2322 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire,
2323     ill_t *ill, zoneid_t zoneid, ip_stack_t *ipst)
2324 {
2325 	ill_t *ire_stq_ill = NULL;
2326 	ill_t *ire_ipif_ill = NULL;
2327 	ill_group_t *ire_ill_group = NULL;
2328 
2329 	ASSERT(match_flags != 0 || zoneid != ALL_ZONES);
2330 	/*
2331 	 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq.
2332 	 *    The fast path update uses this to make sure it does not
2333 	 *    update the fast path header of interface X with the fast
2334 	 *    path updates it recieved on interface Y.  It is similar
2335 	 *    in handling DL_NOTE_FASTPATH_FLUSH.
2336 	 *
2337 	 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill
2338 	 *    pointed by ire_stq and ire_ipif. Only in the case of
2339 	 *    IRE_CACHEs can ire_stq and ire_ipif be pointing to
2340 	 *    different ills. But we want to keep this function generic
2341 	 *    enough for future use. So, we always try to match on both.
2342 	 *    The only caller of this function ire_walk_ill_tables, will
2343 	 *    call "func" after we return from this function. We expect
2344 	 *    "func" to do the right filtering of ires in this case.
2345 	 *
2346 	 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups
2347 	 * pointed by ire_stq and ire_ipif should always be the same.
2348 	 * So, we just match on only one of them.
2349 	 */
2350 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
2351 		if (ire->ire_stq != NULL)
2352 			ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2353 		if (ire->ire_ipif != NULL)
2354 			ire_ipif_ill = ire->ire_ipif->ipif_ill;
2355 		if (ire_stq_ill != NULL)
2356 			ire_ill_group = ire_stq_ill->ill_group;
2357 		if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL))
2358 			ire_ill_group = ire_ipif_ill->ill_group;
2359 	}
2360 
2361 	if (zoneid != ALL_ZONES) {
2362 		/*
2363 		 * We're walking the IREs for a specific zone. The only relevant
2364 		 * IREs are:
2365 		 * - all IREs with a matching ire_zoneid
2366 		 * - all IRE_OFFSUBNETs as they're shared across all zones
2367 		 * - IRE_INTERFACE IREs for interfaces with a usable source addr
2368 		 *   with a matching zone
2369 		 * - IRE_DEFAULTs with a gateway reachable from the zone
2370 		 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs
2371 		 * using the same rule; but the above rules are consistent with
2372 		 * the behavior of ire_ftable_lookup[_v6]() so that all the
2373 		 * routes that can be matched during lookup are also matched
2374 		 * here.
2375 		 */
2376 		if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) {
2377 			/*
2378 			 * Note, IRE_INTERFACE can have the stq as NULL. For
2379 			 * example, if the default multicast route is tied to
2380 			 * the loopback address.
2381 			 */
2382 			if ((ire->ire_type & IRE_INTERFACE) &&
2383 			    (ire->ire_stq != NULL)) {
2384 				ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2385 				if (ire->ire_ipversion == IPV4_VERSION) {
2386 					if (!ipif_usesrc_avail(ire_stq_ill,
2387 					    zoneid))
2388 						/* No usable src addr in zone */
2389 						return (B_FALSE);
2390 				} else if (ire_stq_ill->ill_usesrc_ifindex
2391 				    != 0) {
2392 					/*
2393 					 * For IPv6 use ipif_select_source_v6()
2394 					 * so the right scope selection is done
2395 					 */
2396 					ipif_t *src_ipif;
2397 					src_ipif =
2398 					    ipif_select_source_v6(ire_stq_ill,
2399 					    &ire->ire_addr_v6, RESTRICT_TO_NONE,
2400 					    IPV6_PREFER_SRC_DEFAULT,
2401 					    zoneid);
2402 					if (src_ipif != NULL) {
2403 						ipif_refrele(src_ipif);
2404 					} else {
2405 						return (B_FALSE);
2406 					}
2407 				} else {
2408 					return (B_FALSE);
2409 				}
2410 
2411 			} else if (!(ire->ire_type & IRE_OFFSUBNET)) {
2412 				return (B_FALSE);
2413 			}
2414 		}
2415 
2416 		/*
2417 		 * Match all default routes from the global zone, irrespective
2418 		 * of reachability. For a non-global zone only match those
2419 		 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid.
2420 		 */
2421 		if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) {
2422 			int ire_match_flags = 0;
2423 			in6_addr_t gw_addr_v6;
2424 			ire_t *rire;
2425 
2426 			ire_match_flags |= MATCH_IRE_TYPE;
2427 			if (ire->ire_ipif != NULL) {
2428 				ire_match_flags |= MATCH_IRE_ILL_GROUP;
2429 			}
2430 			if (ire->ire_ipversion == IPV4_VERSION) {
2431 				rire = ire_route_lookup(ire->ire_gateway_addr,
2432 				    0, 0, IRE_INTERFACE, ire->ire_ipif, NULL,
2433 				    zoneid, NULL, ire_match_flags, ipst);
2434 			} else {
2435 				ASSERT(ire->ire_ipversion == IPV6_VERSION);
2436 				mutex_enter(&ire->ire_lock);
2437 				gw_addr_v6 = ire->ire_gateway_addr_v6;
2438 				mutex_exit(&ire->ire_lock);
2439 				rire = ire_route_lookup_v6(&gw_addr_v6,
2440 				    NULL, NULL, IRE_INTERFACE, ire->ire_ipif,
2441 				    NULL, zoneid, NULL, ire_match_flags, ipst);
2442 			}
2443 			if (rire == NULL) {
2444 				return (B_FALSE);
2445 			}
2446 			ire_refrele(rire);
2447 		}
2448 	}
2449 
2450 	if (((!(match_flags & MATCH_IRE_TYPE)) ||
2451 	    (ire->ire_type & ire_type)) &&
2452 	    ((!(match_flags & MATCH_IRE_WQ)) ||
2453 	    (ire->ire_stq == ill->ill_wq)) &&
2454 	    ((!(match_flags & MATCH_IRE_ILL)) ||
2455 	    (ire_stq_ill == ill || ire_ipif_ill == ill)) &&
2456 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
2457 	    (ire_stq_ill == ill) || (ire_ipif_ill == ill) ||
2458 	    (ire_ill_group != NULL &&
2459 	    ire_ill_group == ill->ill_group))) {
2460 		return (B_TRUE);
2461 	}
2462 	return (B_FALSE);
2463 }
2464 
2465 int
2466 rtfunc(struct radix_node *rn, void *arg)
2467 {
2468 	struct rtfuncarg *rtf = arg;
2469 	struct rt_entry *rt;
2470 	irb_t *irb;
2471 	ire_t *ire;
2472 	boolean_t ret;
2473 
2474 	rt = (struct rt_entry *)rn;
2475 	ASSERT(rt != NULL);
2476 	irb = &rt->rt_irb;
2477 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
2478 		if ((rtf->rt_match_flags != 0) ||
2479 		    (rtf->rt_zoneid != ALL_ZONES)) {
2480 			ret = ire_walk_ill_match(rtf->rt_match_flags,
2481 			    rtf->rt_ire_type, ire,
2482 			    rtf->rt_ill, rtf->rt_zoneid, rtf->rt_ipst);
2483 		} else
2484 			ret = B_TRUE;
2485 		if (ret)
2486 			(*rtf->rt_func)(ire, rtf->rt_arg);
2487 	}
2488 	return (0);
2489 }
2490 
2491 /*
2492  * Walk the ftable and the ctable entries that match the ill.
2493  */
2494 void
2495 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func,
2496     void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl,
2497     size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid,
2498     ip_stack_t *ipst)
2499 {
2500 	irb_t	*irb_ptr;
2501 	irb_t	*irb;
2502 	ire_t	*ire;
2503 	int i, j;
2504 	boolean_t ret;
2505 	struct rtfuncarg rtfarg;
2506 
2507 	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
2508 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
2509 	ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0));
2510 	/*
2511 	 * Optimize by not looking at the forwarding table if there
2512 	 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE
2513 	 * specified in ire_type.
2514 	 */
2515 	if (!(match_flags & MATCH_IRE_TYPE) ||
2516 	    ((ire_type & IRE_FORWARDTABLE) != 0)) {
2517 		/* knobs such that routine is called only for v6 case */
2518 		if (ipftbl == ipst->ips_ip_forwarding_table_v6) {
2519 			for (i = (ftbl_sz - 1);  i >= 0; i--) {
2520 				if ((irb_ptr = ipftbl[i]) == NULL)
2521 					continue;
2522 				for (j = 0; j < htbl_sz; j++) {
2523 					irb = &irb_ptr[j];
2524 					if (irb->irb_ire == NULL)
2525 						continue;
2526 
2527 					IRB_REFHOLD(irb);
2528 					for (ire = irb->irb_ire; ire != NULL;
2529 					    ire = ire->ire_next) {
2530 						if (match_flags == 0 &&
2531 						    zoneid == ALL_ZONES) {
2532 							ret = B_TRUE;
2533 						} else {
2534 							ret =
2535 							    ire_walk_ill_match(
2536 							    match_flags,
2537 							    ire_type, ire, ill,
2538 							    zoneid, ipst);
2539 						}
2540 						if (ret)
2541 							(*func)(ire, arg);
2542 					}
2543 					IRB_REFRELE(irb);
2544 				}
2545 			}
2546 		} else {
2547 			(void) memset(&rtfarg, 0, sizeof (rtfarg));
2548 			rtfarg.rt_func = func;
2549 			rtfarg.rt_arg = arg;
2550 			if (match_flags != 0) {
2551 				rtfarg.rt_match_flags = match_flags;
2552 			}
2553 			rtfarg.rt_ire_type = ire_type;
2554 			rtfarg.rt_ill = ill;
2555 			rtfarg.rt_zoneid = zoneid;
2556 			rtfarg.rt_ipst = ipst;	/* No netstack_hold */
2557 			(void) ipst->ips_ip_ftable->rnh_walktree_mt(
2558 			    ipst->ips_ip_ftable,
2559 			    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
2560 		}
2561 	}
2562 
2563 	/*
2564 	 * Optimize by not looking at the cache table if there
2565 	 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE
2566 	 * specified in ire_type.
2567 	 */
2568 	if (!(match_flags & MATCH_IRE_TYPE) ||
2569 	    ((ire_type & IRE_CACHETABLE) != 0)) {
2570 		for (i = 0; i < ctbl_sz;  i++) {
2571 			irb = &ipctbl[i];
2572 			if (irb->irb_ire == NULL)
2573 				continue;
2574 			IRB_REFHOLD(irb);
2575 			for (ire = irb->irb_ire; ire != NULL;
2576 			    ire = ire->ire_next) {
2577 				if (match_flags == 0 && zoneid == ALL_ZONES) {
2578 					ret = B_TRUE;
2579 				} else {
2580 					ret = ire_walk_ill_match(
2581 					    match_flags, ire_type,
2582 					    ire, ill, zoneid, ipst);
2583 				}
2584 				if (ret)
2585 					(*func)(ire, arg);
2586 			}
2587 			IRB_REFRELE(irb);
2588 		}
2589 	}
2590 }
2591 
2592 /*
2593  * This routine walks through the ill chain to find if there is any
2594  * ire linked to the ill's interface based forwarding table
2595  * The arg could be ill or mp. This routine is called when a ill goes
2596  * down/deleted or the 'ipv4_ire_srcif_status' report is printed.
2597  */
2598 void
2599 ire_walk_srcif_table_v4(pfv_t func, void *arg, ip_stack_t *ipst)
2600 {
2601 	irb_t   *irb;
2602 	ire_t   *ire;
2603 	ill_t	*ill, *next_ill;
2604 	int	i;
2605 	int	total_count;
2606 	ill_walk_context_t ctx;
2607 
2608 	/*
2609 	 * Take care of ire's in other ill's per-interface forwarding
2610 	 * table. Check if any ire in any of the ill's ill_srcif_table
2611 	 * is pointing to this ill.
2612 	 */
2613 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
2614 	if (ipst->ips_ire_srcif_table_count == 0) {
2615 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
2616 		return;
2617 	}
2618 	mutex_exit(&ipst->ips_ire_srcif_table_lock);
2619 
2620 #ifdef DEBUG
2621 	/* Keep accounting of all interface based table ires */
2622 	total_count = 0;
2623 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2624 	ill = ILL_START_WALK_V4(&ctx, ipst);
2625 	while (ill != NULL) {
2626 		mutex_enter(&ill->ill_lock);
2627 		total_count += ill->ill_srcif_refcnt;
2628 		next_ill = ill_next(&ctx, ill);
2629 		mutex_exit(&ill->ill_lock);
2630 		ill = next_ill;
2631 	}
2632 	rw_exit(&ipst->ips_ill_g_lock);
2633 
2634 	/* Hold lock here to make sure ire_srcif_table_count is stable */
2635 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
2636 	i = ipst->ips_ire_srcif_table_count;
2637 	mutex_exit(&ipst->ips_ire_srcif_table_lock);
2638 	ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d "
2639 	    "total ill_srcif_refcnt %d\n", i, total_count));
2640 #endif
2641 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2642 	ill = ILL_START_WALK_V4(&ctx, ipst);
2643 	while (ill != NULL) {
2644 		mutex_enter(&ill->ill_lock);
2645 		if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) {
2646 			next_ill = ill_next(&ctx, ill);
2647 			mutex_exit(&ill->ill_lock);
2648 			ill = next_ill;
2649 			continue;
2650 		}
2651 		ill_refhold_locked(ill);
2652 		mutex_exit(&ill->ill_lock);
2653 		rw_exit(&ipst->ips_ill_g_lock);
2654 		if (ill->ill_srcif_table != NULL) {
2655 			for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
2656 				irb = &(ill->ill_srcif_table[i]);
2657 				if (irb->irb_ire == NULL)
2658 					continue;
2659 				IRB_REFHOLD(irb);
2660 				for (ire = irb->irb_ire; ire != NULL;
2661 				    ire = ire->ire_next) {
2662 					(*func)(ire, arg);
2663 				}
2664 				IRB_REFRELE(irb);
2665 			}
2666 		}
2667 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2668 		next_ill = ill_next(&ctx, ill);
2669 		ill_refrele(ill);
2670 		ill = next_ill;
2671 	}
2672 	rw_exit(&ipst->ips_ill_g_lock);
2673 }
2674 
2675 /*
2676  * This function takes a mask and returns
2677  * number of bits set in the mask. If no
2678  * bit is set it returns 0.
2679  * Assumes a contiguous mask.
2680  */
2681 int
2682 ip_mask_to_plen(ipaddr_t mask)
2683 {
2684 	return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1));
2685 }
2686 
2687 /*
2688  * Convert length for a mask to the mask.
2689  */
2690 ipaddr_t
2691 ip_plen_to_mask(uint_t masklen)
2692 {
2693 	return (htonl(IP_HOST_MASK << (IP_ABITS - masklen)));
2694 }
2695 
2696 void
2697 ire_atomic_end(irb_t *irb_ptr, ire_t *ire)
2698 {
2699 	ill_t	*ill_list[NUM_ILLS];
2700 	ip_stack_t	*ipst = ire->ire_ipst;
2701 
2702 	ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL;
2703 	ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL;
2704 	ill_list[2] = ire->ire_in_ill;
2705 	ill_unlock_ills(ill_list, NUM_ILLS);
2706 	rw_exit(&irb_ptr->irb_lock);
2707 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
2708 }
2709 
2710 /*
2711  * ire_add_v[46] atomically make sure that the ipif or ill associated
2712  * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING
2713  * before adding the ire to the table. This ensures that we don't create
2714  * new IRE_CACHEs with stale values for parameters that are passed to
2715  * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer
2716  * to the ipif_mtu, and not the value. The actual value is derived from the
2717  * parent ire or ipif under the bucket lock.
2718  */
2719 int
2720 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp,
2721     ipsq_func_t func)
2722 {
2723 	ill_t	*stq_ill;
2724 	ill_t	*ipif_ill;
2725 	ill_t	*in_ill;
2726 	ill_t	*ill_list[NUM_ILLS];
2727 	int	cnt = NUM_ILLS;
2728 	int	error = 0;
2729 	ill_t	*ill = NULL;
2730 	ip_stack_t	*ipst = ire->ire_ipst;
2731 
2732 	ill_list[0] = stq_ill = ire->ire_stq !=
2733 	    NULL ? ire->ire_stq->q_ptr : NULL;
2734 	ill_list[1] = ipif_ill = ire->ire_ipif !=
2735 	    NULL ? ire->ire_ipif->ipif_ill : NULL;
2736 	ill_list[2] = in_ill = ire->ire_in_ill;
2737 
2738 	ASSERT((q != NULL && mp != NULL && func != NULL) ||
2739 	    (q == NULL && mp == NULL && func == NULL));
2740 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
2741 	GRAB_CONN_LOCK(q);
2742 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2743 	ill_lock_ills(ill_list, cnt);
2744 
2745 	/*
2746 	 * While the IRE is in the process of being added, a user may have
2747 	 * invoked the ifconfig usesrc option on the stq_ill to make it a
2748 	 * usesrc client ILL. Check for this possibility here, if it is true
2749 	 * then we fail adding the IRE_CACHE. Another check is to make sure
2750 	 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc
2751 	 * group. The ill_g_usesrc_lock is released in ire_atomic_end
2752 	 */
2753 	if ((ire->ire_type & IRE_CACHE) &&
2754 	    (ire->ire_marks & IRE_MARK_USESRC_CHECK)) {
2755 		if (stq_ill->ill_usesrc_ifindex != 0) {
2756 			ASSERT(stq_ill->ill_usesrc_grp_next != NULL);
2757 			if ((ipif_ill->ill_phyint->phyint_ifindex !=
2758 			    stq_ill->ill_usesrc_ifindex) ||
2759 			    (ipif_ill->ill_usesrc_grp_next == NULL) ||
2760 			    (ipif_ill->ill_usesrc_ifindex != 0)) {
2761 				error = EINVAL;
2762 				goto done;
2763 			}
2764 		} else if (ipif_ill->ill_usesrc_grp_next != NULL) {
2765 			error = EINVAL;
2766 			goto done;
2767 		}
2768 	}
2769 
2770 	/*
2771 	 * IPMP flag settings happen without taking the exclusive route
2772 	 * in ip_sioctl_flags. So we need to make an atomic check here
2773 	 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the
2774 	 * FAILBACK=no case.
2775 	 */
2776 	if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) {
2777 		if (stq_ill->ill_state_flags & ILL_CHANGING) {
2778 			ill = stq_ill;
2779 			error = EAGAIN;
2780 		} else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2781 		    (ill_is_probeonly(stq_ill) &&
2782 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2783 			error = EINVAL;
2784 		}
2785 		goto done;
2786 	}
2787 
2788 	/*
2789 	 * We don't check for OFFLINE/FAILED in this case because
2790 	 * the source address selection logic (ipif_select_source)
2791 	 * may still select a source address from such an ill. The
2792 	 * assumption is that these addresses will be moved by in.mpathd
2793 	 * soon. (i.e. this is a race). However link local addresses
2794 	 * will not move and hence ipif_select_source_v6 tries to avoid
2795 	 * FAILED ills. Please see ipif_select_source_v6 for more info
2796 	 */
2797 	if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) &&
2798 	    (ipif_ill->ill_state_flags & ILL_CHANGING)) {
2799 		ill = ipif_ill;
2800 		error = EAGAIN;
2801 		goto done;
2802 	}
2803 
2804 	if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) &&
2805 	    (in_ill->ill_state_flags & ILL_CHANGING)) {
2806 		ill = in_ill;
2807 		error = EAGAIN;
2808 		goto done;
2809 	}
2810 
2811 	if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) &&
2812 	    (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) {
2813 		ill = ire->ire_ipif->ipif_ill;
2814 		ASSERT(ill != NULL);
2815 		error = EAGAIN;
2816 		goto done;
2817 	}
2818 
2819 done:
2820 	if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) {
2821 		ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
2822 		mutex_enter(&ipsq->ipsq_lock);
2823 		ire_atomic_end(irb_ptr, ire);
2824 		ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
2825 		mutex_exit(&ipsq->ipsq_lock);
2826 		error = EINPROGRESS;
2827 	} else if (error != 0) {
2828 		ire_atomic_end(irb_ptr, ire);
2829 	}
2830 
2831 	RELEASE_CONN_LOCK(q);
2832 	return (error);
2833 }
2834 
2835 /*
2836  * Add a fully initialized IRE to an appropriate table based on
2837  * ire_type.
2838  *
2839  * allow_unresolved == B_FALSE indicates a legacy code-path call
2840  * that has prohibited the addition of incomplete ire's. If this
2841  * parameter is set, and we find an nce that is in a state other
2842  * than ND_REACHABLE, we fail the add. Note that nce_state could be
2843  * something other than ND_REACHABLE if the nce had just expired and
2844  * the ire_create preceding the ire_add added a new ND_INITIAL nce.
2845  */
2846 int
2847 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func,
2848     boolean_t allow_unresolved)
2849 {
2850 	ire_t	*ire1;
2851 	ill_t	*stq_ill = NULL;
2852 	ill_t	*ill;
2853 	ipif_t	*ipif = NULL;
2854 	ill_walk_context_t ctx;
2855 	ire_t	*ire = *irep;
2856 	int	error;
2857 	boolean_t ire_is_mblk = B_FALSE;
2858 	tsol_gcgrp_t *gcgrp = NULL;
2859 	tsol_gcgrp_addr_t ga;
2860 	ip_stack_t	*ipst = ire->ire_ipst;
2861 
2862 	ASSERT(ire->ire_type != IRE_MIPRTUN);
2863 
2864 	/* get ready for the day when original ire is not created as mblk */
2865 	if (ire->ire_mp != NULL) {
2866 		ire_is_mblk = B_TRUE;
2867 		/* Copy the ire to a kmem_alloc'ed area */
2868 		ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
2869 		if (ire1 == NULL) {
2870 			ip1dbg(("ire_add: alloc failed\n"));
2871 			ire_delete(ire);
2872 			*irep = NULL;
2873 			return (ENOMEM);
2874 		}
2875 		ire->ire_marks &= ~IRE_MARK_UNCACHED;
2876 		*ire1 = *ire;
2877 		ire1->ire_mp = NULL;
2878 		ire1->ire_stq_ifindex = 0;
2879 		freeb(ire->ire_mp);
2880 		ire = ire1;
2881 	}
2882 	if (ire->ire_stq != NULL)
2883 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
2884 
2885 	if (ire->ire_type == IRE_CACHE) {
2886 		/*
2887 		 * If this interface is FAILED, or INACTIVE or has hit
2888 		 * the FAILBACK=no case, we create IRE_CACHES marked
2889 		 * HIDDEN for some special cases e.g. bind to
2890 		 * IPIF_NOFAILOVER address etc. So, if this interface
2891 		 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are
2892 		 * not creating hidden ires, we should not allow that.
2893 		 * This happens because the state of the interface
2894 		 * changed while we were waiting in ARP. If this is the
2895 		 * daemon sending probes, the next probe will create
2896 		 * HIDDEN ires and we will create an ire then. This
2897 		 * cannot happen with NDP currently because IRE is
2898 		 * never queued in NDP. But it can happen in the
2899 		 * future when we have external resolvers with IPv6.
2900 		 * If the interface gets marked with OFFLINE while we
2901 		 * are waiting in ARP, don't add the ire.
2902 		 */
2903 		if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) ||
2904 		    (ill_is_probeonly(stq_ill) &&
2905 		    !(ire->ire_marks & IRE_MARK_HIDDEN))) {
2906 			/*
2907 			 * We don't know whether it is a valid ipif or not.
2908 			 * unless we do the check below. So, set it to NULL.
2909 			 */
2910 			ire->ire_ipif = NULL;
2911 			ire_delete(ire);
2912 			*irep = NULL;
2913 			return (EINVAL);
2914 		}
2915 	}
2916 
2917 	if (stq_ill != NULL && ire->ire_type == IRE_CACHE &&
2918 	    stq_ill->ill_net_type == IRE_IF_RESOLVER) {
2919 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2920 		ill = ILL_START_WALK_ALL(&ctx, ipst);
2921 		for (; ill != NULL; ill = ill_next(&ctx, ill)) {
2922 			mutex_enter(&ill->ill_lock);
2923 			if (ill->ill_state_flags & ILL_CONDEMNED) {
2924 				mutex_exit(&ill->ill_lock);
2925 				continue;
2926 			}
2927 			/*
2928 			 * We need to make sure that the ipif is a valid one
2929 			 * before adding the IRE_CACHE. This happens only
2930 			 * with IRE_CACHE when there is an external resolver.
2931 			 *
2932 			 * We can unplumb a logical interface while the
2933 			 * packet is waiting in ARP with the IRE. Then,
2934 			 * later on when we feed the IRE back, the ipif
2935 			 * has to be re-checked. This can't happen with
2936 			 * NDP currently, as we never queue the IRE with
2937 			 * the packet. We always try to recreate the IRE
2938 			 * when the resolution is completed. But, we do
2939 			 * it for IPv6 also here so that in future if
2940 			 * we have external resolvers, it will work without
2941 			 * any change.
2942 			 */
2943 			ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid);
2944 			if (ipif != NULL) {
2945 				ipif_refhold_locked(ipif);
2946 				mutex_exit(&ill->ill_lock);
2947 				break;
2948 			}
2949 			mutex_exit(&ill->ill_lock);
2950 		}
2951 		rw_exit(&ipst->ips_ill_g_lock);
2952 		if (ipif == NULL ||
2953 		    (ipif->ipif_isv6 &&
2954 		    !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
2955 		    &ipif->ipif_v6src_addr)) ||
2956 		    (!ipif->ipif_isv6 &&
2957 		    ire->ire_src_addr != ipif->ipif_src_addr) ||
2958 		    ire->ire_zoneid != ipif->ipif_zoneid) {
2959 
2960 			if (ipif != NULL)
2961 				ipif_refrele(ipif);
2962 			ire->ire_ipif = NULL;
2963 			ire_delete(ire);
2964 			*irep = NULL;
2965 			return (EINVAL);
2966 		}
2967 
2968 
2969 		ASSERT(ill != NULL);
2970 		/*
2971 		 * If this group was dismantled while this packets was
2972 		 * queued in ARP, don't add it here.
2973 		 */
2974 		if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) {
2975 			/* We don't want ire_inactive bump stats for this */
2976 			ipif_refrele(ipif);
2977 			ire->ire_ipif = NULL;
2978 			ire_delete(ire);
2979 			*irep = NULL;
2980 			return (EINVAL);
2981 		}
2982 
2983 		/*
2984 		 * Since we didn't attach label security attributes to the
2985 		 * ire for the resolver case, we need to add it now. (only
2986 		 * for v4 resolver and v6 xresolv case).
2987 		 */
2988 		if (is_system_labeled() && ire_is_mblk) {
2989 			if (ire->ire_ipversion == IPV4_VERSION) {
2990 				ga.ga_af = AF_INET;
2991 				IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr !=
2992 				    INADDR_ANY ? ire->ire_gateway_addr :
2993 				    ire->ire_addr, &ga.ga_addr);
2994 			} else {
2995 				ga.ga_af = AF_INET6;
2996 				ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED(
2997 				    &ire->ire_gateway_addr_v6) ?
2998 				    ire->ire_addr_v6 :
2999 				    ire->ire_gateway_addr_v6;
3000 			}
3001 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
3002 			error = tsol_ire_init_gwattr(ire, ire->ire_ipversion,
3003 			    NULL, gcgrp);
3004 			if (error != 0) {
3005 				if (gcgrp != NULL) {
3006 					GCGRP_REFRELE(gcgrp);
3007 					gcgrp = NULL;
3008 				}
3009 				ipif_refrele(ipif);
3010 				ire->ire_ipif = NULL;
3011 				ire_delete(ire);
3012 				*irep = NULL;
3013 				return (error);
3014 			}
3015 		}
3016 	}
3017 
3018 	/*
3019 	 * In case ire was changed
3020 	 */
3021 	*irep = ire;
3022 	if (ire->ire_ipversion == IPV6_VERSION) {
3023 		error = ire_add_v6(irep, q, mp, func);
3024 	} else {
3025 		if (ire->ire_in_ill == NULL)
3026 			error = ire_add_v4(irep, q, mp, func, allow_unresolved);
3027 		else
3028 			error = ire_add_srcif_v4(irep, q, mp, func);
3029 	}
3030 	if (ipif != NULL)
3031 		ipif_refrele(ipif);
3032 	return (error);
3033 }
3034 
3035 /*
3036  * Add an initialized IRE to an appropriate table based on ire_type.
3037  *
3038  * The forward table contains IRE_PREFIX/IRE_HOST and
3039  * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT.
3040  *
3041  * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK
3042  * and IRE_CACHE.
3043  *
3044  * NOTE : This function is called as writer though not required
3045  * by this function.
3046  */
3047 static int
3048 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func,
3049     boolean_t allow_unresolved)
3050 {
3051 	ire_t	*ire1;
3052 	irb_t	*irb_ptr;
3053 	ire_t	**irep;
3054 	int	flags;
3055 	ire_t	*pire = NULL;
3056 	ill_t	*stq_ill;
3057 	ire_t	*ire = *ire_p;
3058 	int	error;
3059 	boolean_t need_refrele = B_FALSE;
3060 	nce_t	*nce;
3061 	ip_stack_t	*ipst = ire->ire_ipst;
3062 
3063 	if (ire->ire_ipif != NULL)
3064 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3065 	if (ire->ire_stq != NULL)
3066 		ASSERT(!MUTEX_HELD(
3067 		    &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock));
3068 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3069 	ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */
3070 	ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */
3071 
3072 	/* Find the appropriate list head. */
3073 	switch (ire->ire_type) {
3074 	case IRE_HOST:
3075 		ire->ire_mask = IP_HOST_MASK;
3076 		ire->ire_masklen = IP_ABITS;
3077 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3078 			ire->ire_src_addr = 0;
3079 		break;
3080 	case IRE_CACHE:
3081 	case IRE_BROADCAST:
3082 	case IRE_LOCAL:
3083 	case IRE_LOOPBACK:
3084 		ire->ire_mask = IP_HOST_MASK;
3085 		ire->ire_masklen = IP_ABITS;
3086 		break;
3087 	case IRE_PREFIX:
3088 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3089 			ire->ire_src_addr = 0;
3090 		break;
3091 	case IRE_DEFAULT:
3092 		if ((ire->ire_flags & RTF_SETSRC) == 0)
3093 			ire->ire_src_addr = 0;
3094 		break;
3095 	case IRE_IF_RESOLVER:
3096 	case IRE_IF_NORESOLVER:
3097 		break;
3098 	default:
3099 		ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n",
3100 		    (void *)ire, ire->ire_type));
3101 		ire_delete(ire);
3102 		*ire_p = NULL;
3103 		return (EINVAL);
3104 	}
3105 
3106 	/* Make sure the address is properly masked. */
3107 	ire->ire_addr &= ire->ire_mask;
3108 
3109 	/*
3110 	 * ip_newroute/ip_newroute_multi are unable to prevent the deletion
3111 	 * of the interface route while adding an IRE_CACHE for an on-link
3112 	 * destination in the IRE_IF_RESOLVER case, since the ire has to
3113 	 * go to ARP and return. We can't do a REFHOLD on the
3114 	 * associated interface ire for fear of ARP freeing the message.
3115 	 * Here we look up the interface ire in the forwarding table and
3116 	 * make sure that the interface route has not been deleted.
3117 	 */
3118 	if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 &&
3119 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) {
3120 
3121 		ASSERT(ire->ire_max_fragp == NULL);
3122 		if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) {
3123 			/*
3124 			 * The ihandle that we used in ip_newroute_multi
3125 			 * comes from the interface route corresponding
3126 			 * to ire_ipif. Lookup here to see if it exists
3127 			 * still.
3128 			 * If the ire has a source address assigned using
3129 			 * RTF_SETSRC, ire_ipif is the logical interface holding
3130 			 * this source address, so we can't use it to check for
3131 			 * the existence of the interface route. Instead we rely
3132 			 * on the brute force ihandle search in
3133 			 * ire_ihandle_lookup_onlink() below.
3134 			 */
3135 			pire = ipif_to_ire(ire->ire_ipif);
3136 			if (pire == NULL) {
3137 				ire_delete(ire);
3138 				*ire_p = NULL;
3139 				return (EINVAL);
3140 			} else if (pire->ire_ihandle != ire->ire_ihandle) {
3141 				ire_refrele(pire);
3142 				ire_delete(ire);
3143 				*ire_p = NULL;
3144 				return (EINVAL);
3145 			}
3146 		} else {
3147 			pire = ire_ihandle_lookup_onlink(ire);
3148 			if (pire == NULL) {
3149 				ire_delete(ire);
3150 				*ire_p = NULL;
3151 				return (EINVAL);
3152 			}
3153 		}
3154 		/* Prevent pire from getting deleted */
3155 		IRB_REFHOLD(pire->ire_bucket);
3156 		/* Has it been removed already ? */
3157 		if (pire->ire_marks & IRE_MARK_CONDEMNED) {
3158 			IRB_REFRELE(pire->ire_bucket);
3159 			ire_refrele(pire);
3160 			ire_delete(ire);
3161 			*ire_p = NULL;
3162 			return (EINVAL);
3163 		}
3164 	} else {
3165 		ASSERT(ire->ire_max_fragp != NULL);
3166 	}
3167 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
3168 
3169 	if (ire->ire_ipif != NULL) {
3170 		/*
3171 		 * We use MATCH_IRE_IPIF while adding IRE_CACHES only
3172 		 * for historic reasons and to maintain symmetry with
3173 		 * IPv6 code path. Historically this was used by
3174 		 * multicast code to create multiple IRE_CACHES on
3175 		 * a single ill with different ipifs. This was used
3176 		 * so that multicast packets leaving the node had the
3177 		 * right source address. This is no longer needed as
3178 		 * ip_wput initializes the address correctly.
3179 		 */
3180 		flags |= MATCH_IRE_IPIF;
3181 		/*
3182 		 * If we are creating hidden ires, make sure we search on
3183 		 * this ill (MATCH_IRE_ILL) and a hidden ire,
3184 		 * while we are searching for duplicates below. Otherwise we
3185 		 * could potentially find an IRE on some other interface
3186 		 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We
3187 		 * shouldn't do this as this will lead to an infinite loop
3188 		 * (if we get to ip_wput again) eventually we need an hidden
3189 		 * ire for this packet to go out. MATCH_IRE_ILL is explicitly
3190 		 * done below.
3191 		 */
3192 		if (ire->ire_type == IRE_CACHE &&
3193 		    (ire->ire_marks & IRE_MARK_HIDDEN))
3194 			flags |= (MATCH_IRE_MARK_HIDDEN);
3195 	}
3196 	if ((ire->ire_type & IRE_CACHETABLE) == 0) {
3197 		irb_ptr = ire_get_bucket(ire);
3198 		need_refrele = B_TRUE;
3199 		if (irb_ptr == NULL) {
3200 			/*
3201 			 * This assumes that the ire has not added
3202 			 * a reference to the ipif.
3203 			 */
3204 			ire->ire_ipif = NULL;
3205 			ire_delete(ire);
3206 			if (pire != NULL) {
3207 				IRB_REFRELE(pire->ire_bucket);
3208 				ire_refrele(pire);
3209 			}
3210 			*ire_p = NULL;
3211 			return (EINVAL);
3212 		}
3213 	} else {
3214 		irb_ptr = &(ipst->ips_ip_cache_table[IRE_ADDR_HASH(
3215 		    ire->ire_addr, ipst->ips_ip_cache_table_size)]);
3216 	}
3217 
3218 	/*
3219 	 * Start the atomic add of the ire. Grab the ill locks,
3220 	 * ill_g_usesrc_lock and the bucket lock. Check for condemned
3221 	 *
3222 	 * If ipif or ill is changing ire_atomic_start() may queue the
3223 	 * request and return EINPROGRESS.
3224 	 * To avoid lock order problems, get the ndp4->ndp_g_lock.
3225 	 */
3226 	mutex_enter(&ipst->ips_ndp4->ndp_g_lock);
3227 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
3228 	if (error != 0) {
3229 		mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3230 		/*
3231 		 * We don't know whether it is a valid ipif or not.
3232 		 * So, set it to NULL. This assumes that the ire has not added
3233 		 * a reference to the ipif.
3234 		 */
3235 		ire->ire_ipif = NULL;
3236 		ire_delete(ire);
3237 		if (pire != NULL) {
3238 			IRB_REFRELE(pire->ire_bucket);
3239 			ire_refrele(pire);
3240 		}
3241 		*ire_p = NULL;
3242 		if (need_refrele)
3243 			IRB_REFRELE(irb_ptr);
3244 		return (error);
3245 	}
3246 	/*
3247 	 * To avoid creating ires having stale values for the ire_max_frag
3248 	 * we get the latest value atomically here. For more details
3249 	 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE
3250 	 * in ip_rput_dlpi_writer
3251 	 */
3252 	if (ire->ire_max_fragp == NULL) {
3253 		if (CLASSD(ire->ire_addr))
3254 			ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
3255 		else
3256 			ire->ire_max_frag = pire->ire_max_frag;
3257 	} else {
3258 		uint_t	max_frag;
3259 
3260 		max_frag = *ire->ire_max_fragp;
3261 		ire->ire_max_fragp = NULL;
3262 		ire->ire_max_frag = max_frag;
3263 	}
3264 	/*
3265 	 * Atomically check for duplicate and insert in the table.
3266 	 */
3267 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
3268 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
3269 			continue;
3270 		if (ire->ire_ipif != NULL) {
3271 			/*
3272 			 * We do MATCH_IRE_ILL implicitly here for IREs
3273 			 * with a non-null ire_ipif, including IRE_CACHEs.
3274 			 * As ire_ipif and ire_stq could point to two
3275 			 * different ills, we can't pass just ire_ipif to
3276 			 * ire_match_args and get a match on both ills.
3277 			 * This is just needed for duplicate checks here and
3278 			 * so we don't add an extra argument to
3279 			 * ire_match_args for this. Do it locally.
3280 			 *
3281 			 * NOTE : Currently there is no part of the code
3282 			 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL
3283 			 * match for IRE_CACHEs. Thus we don't want to
3284 			 * extend the arguments to ire_match_args.
3285 			 */
3286 			if (ire1->ire_stq != ire->ire_stq)
3287 				continue;
3288 			/*
3289 			 * Multiroute IRE_CACHEs for a given destination can
3290 			 * have the same ire_ipif, typically if their source
3291 			 * address is forced using RTF_SETSRC, and the same
3292 			 * send-to queue. We differentiate them using the parent
3293 			 * handle.
3294 			 */
3295 			if (ire->ire_type == IRE_CACHE &&
3296 			    (ire1->ire_flags & RTF_MULTIRT) &&
3297 			    (ire->ire_flags & RTF_MULTIRT) &&
3298 			    (ire1->ire_phandle != ire->ire_phandle))
3299 				continue;
3300 		}
3301 		if (ire1->ire_zoneid != ire->ire_zoneid)
3302 			continue;
3303 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask,
3304 		    ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif,
3305 		    ire->ire_zoneid, 0, NULL, flags)) {
3306 			/*
3307 			 * Return the old ire after doing a REFHOLD.
3308 			 * As most of the callers continue to use the IRE
3309 			 * after adding, we return a held ire. This will
3310 			 * avoid a lookup in the caller again. If the callers
3311 			 * don't want to use it, they need to do a REFRELE.
3312 			 */
3313 			ip1dbg(("found dup ire existing %p new %p",
3314 			    (void *)ire1, (void *)ire));
3315 			IRE_REFHOLD(ire1);
3316 			ire_atomic_end(irb_ptr, ire);
3317 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3318 			ire_delete(ire);
3319 			if (pire != NULL) {
3320 				/*
3321 				 * Assert that it is not removed from the
3322 				 * list yet.
3323 				 */
3324 				ASSERT(pire->ire_ptpn != NULL);
3325 				IRB_REFRELE(pire->ire_bucket);
3326 				ire_refrele(pire);
3327 			}
3328 			*ire_p = ire1;
3329 			if (need_refrele)
3330 				IRB_REFRELE(irb_ptr);
3331 			return (0);
3332 		}
3333 	}
3334 	if (ire->ire_type & IRE_CACHE) {
3335 		ASSERT(ire->ire_stq != NULL);
3336 		nce = ndp_lookup_v4(ire_to_ill(ire),
3337 		    ((ire->ire_gateway_addr != INADDR_ANY) ?
3338 		    &ire->ire_gateway_addr : &ire->ire_addr),
3339 		    B_TRUE);
3340 		if (nce != NULL)
3341 			mutex_enter(&nce->nce_lock);
3342 		/*
3343 		 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE
3344 		 * and the caller has prohibited the addition of incomplete
3345 		 * ire's, we fail the add. Note that nce_state could be
3346 		 * something other than ND_REACHABLE if the nce had
3347 		 * just expired and the ire_create preceding the
3348 		 * ire_add added a new ND_INITIAL nce.
3349 		 */
3350 		if ((nce == NULL) ||
3351 		    (nce->nce_flags & NCE_F_CONDEMNED) ||
3352 		    (!allow_unresolved &&
3353 		    (nce->nce_state != ND_REACHABLE))) {
3354 			if (nce != NULL) {
3355 				DTRACE_PROBE1(ire__bad__nce, nce_t *, nce);
3356 				mutex_exit(&nce->nce_lock);
3357 			}
3358 			ire_atomic_end(irb_ptr, ire);
3359 			mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3360 			if (nce != NULL)
3361 				NCE_REFRELE(nce);
3362 			DTRACE_PROBE1(ire__no__nce, ire_t *, ire);
3363 			ire_delete(ire);
3364 			if (pire != NULL) {
3365 				IRB_REFRELE(pire->ire_bucket);
3366 				ire_refrele(pire);
3367 			}
3368 			*ire_p = NULL;
3369 			if (need_refrele)
3370 				IRB_REFRELE(irb_ptr);
3371 			return (EINVAL);
3372 		} else {
3373 			ire->ire_nce = nce;
3374 			mutex_exit(&nce->nce_lock);
3375 			/*
3376 			 * We are associating this nce to the ire, so
3377 			 * change the nce ref taken in ndp_lookup_v4() from
3378 			 * NCE_REFHOLD to NCE_REFHOLD_NOTR
3379 			 */
3380 			NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
3381 		}
3382 	}
3383 	/*
3384 	 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by
3385 	 * grouping identical addresses together on the hash chain. We also
3386 	 * don't want to send multiple copies out if there are two ills part
3387 	 * of the same group. Thus we group the ires with same addr and same
3388 	 * ill group together so that ip_wput_ire can easily skip all the
3389 	 * ires with same addr and same group after sending the first copy.
3390 	 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently
3391 	 * interested in such groupings only for broadcasts.
3392 	 *
3393 	 * NOTE : If the interfaces are brought up first and then grouped,
3394 	 * illgrp_insert will handle it. We come here when the interfaces
3395 	 * are already in group and we are bringing them UP.
3396 	 *
3397 	 * Find the first entry that matches ire_addr. *irep will be null
3398 	 * if no match.
3399 	 *
3400 	 * Note: the loopback and non-loopback broadcast entries for an
3401 	 * interface MUST be added before any MULTIRT entries.
3402 	 */
3403 	irep = (ire_t **)irb_ptr;
3404 	while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr)
3405 		irep = &ire1->ire_next;
3406 	if (ire->ire_type == IRE_BROADCAST && *irep != NULL) {
3407 		/*
3408 		 * We found some ire (i.e *irep) with a matching addr. We
3409 		 * want to group ires with same addr and same ill group
3410 		 * together.
3411 		 *
3412 		 * First get to the entry that matches our address and
3413 		 * ill group i.e stop as soon as we find the first ire
3414 		 * matching the ill group and address. If there is only
3415 		 * an address match, we should walk and look for some
3416 		 * group match. These are some of the possible scenarios :
3417 		 *
3418 		 * 1) There are no groups at all i.e all ire's ill_group
3419 		 *    are NULL. In that case we will essentially group
3420 		 *    all the ires with the same addr together. Same as
3421 		 *    the "else" block of this "if".
3422 		 *
3423 		 * 2) There are some groups and this ire's ill_group is
3424 		 *    NULL. In this case, we will first find the group
3425 		 *    that matches the address and a NULL group. Then
3426 		 *    we will insert the ire at the end of that group.
3427 		 *
3428 		 * 3) There are some groups and this ires's ill_group is
3429 		 *    non-NULL. In this case we will first find the group
3430 		 *    that matches the address and the ill_group. Then
3431 		 *    we will insert the ire at the end of that group.
3432 		 */
3433 		for (;;) {
3434 			ire1 = *irep;
3435 			if ((ire1->ire_next == NULL) ||
3436 			    (ire1->ire_next->ire_addr != ire->ire_addr) ||
3437 			    (ire1->ire_type != IRE_BROADCAST) ||
3438 			    (ire1->ire_flags & RTF_MULTIRT) ||
3439 			    (ire1->ire_ipif->ipif_ill->ill_group ==
3440 			    ire->ire_ipif->ipif_ill->ill_group))
3441 				break;
3442 			irep = &ire1->ire_next;
3443 		}
3444 		ASSERT(*irep != NULL);
3445 		/*
3446 		 * The ire will be added before *irep, so
3447 		 * if irep is a MULTIRT ire, just break to
3448 		 * ire insertion code.
3449 		 */
3450 		if (((*irep)->ire_flags & RTF_MULTIRT) != 0)
3451 			goto insert_ire;
3452 
3453 		irep = &((*irep)->ire_next);
3454 
3455 		/*
3456 		 * Either we have hit the end of the list or the address
3457 		 * did not match or the group *matched*. If we found
3458 		 * a match on the group, skip to the end of the group.
3459 		 */
3460 		while (*irep != NULL) {
3461 			ire1 = *irep;
3462 			if ((ire1->ire_addr != ire->ire_addr) ||
3463 			    (ire1->ire_type != IRE_BROADCAST) ||
3464 			    (ire1->ire_ipif->ipif_ill->ill_group !=
3465 			    ire->ire_ipif->ipif_ill->ill_group))
3466 				break;
3467 			if (ire1->ire_ipif->ipif_ill->ill_group == NULL &&
3468 			    ire1->ire_ipif == ire->ire_ipif) {
3469 				irep = &ire1->ire_next;
3470 				break;
3471 			}
3472 			irep = &ire1->ire_next;
3473 		}
3474 	} else if (*irep != NULL) {
3475 		/*
3476 		 * Find the last ire which matches ire_addr.
3477 		 * Needed to do tail insertion among entries with the same
3478 		 * ire_addr.
3479 		 */
3480 		while (ire->ire_addr == ire1->ire_addr) {
3481 			irep = &ire1->ire_next;
3482 			ire1 = *irep;
3483 			if (ire1 == NULL)
3484 				break;
3485 		}
3486 	}
3487 
3488 insert_ire:
3489 	/* Insert at *irep */
3490 	ire1 = *irep;
3491 	if (ire1 != NULL)
3492 		ire1->ire_ptpn = &ire->ire_next;
3493 	ire->ire_next = ire1;
3494 	/* Link the new one in. */
3495 	ire->ire_ptpn = irep;
3496 
3497 	/*
3498 	 * ire_walk routines de-reference ire_next without holding
3499 	 * a lock. Before we point to the new ire, we want to make
3500 	 * sure the store that sets the ire_next of the new ire
3501 	 * reaches global visibility, so that ire_walk routines
3502 	 * don't see a truncated list of ires i.e if the ire_next
3503 	 * of the new ire gets set after we do "*irep = ire" due
3504 	 * to re-ordering, the ire_walk thread will see a NULL
3505 	 * once it accesses the ire_next of the new ire.
3506 	 * membar_producer() makes sure that the following store
3507 	 * happens *after* all of the above stores.
3508 	 */
3509 	membar_producer();
3510 	*irep = ire;
3511 	ire->ire_bucket = irb_ptr;
3512 	/*
3513 	 * We return a bumped up IRE above. Keep it symmetrical
3514 	 * so that the callers will always have to release. This
3515 	 * helps the callers of this function because they continue
3516 	 * to use the IRE after adding and hence they don't have to
3517 	 * lookup again after we return the IRE.
3518 	 *
3519 	 * NOTE : We don't have to use atomics as this is appearing
3520 	 * in the list for the first time and no one else can bump
3521 	 * up the reference count on this yet.
3522 	 */
3523 	IRE_REFHOLD_LOCKED(ire);
3524 	BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
3525 
3526 	irb_ptr->irb_ire_cnt++;
3527 	if (irb_ptr->irb_marks & IRB_MARK_FTABLE)
3528 		irb_ptr->irb_nire++;
3529 
3530 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3531 		irb_ptr->irb_tmp_ire_cnt++;
3532 
3533 	if (ire->ire_ipif != NULL) {
3534 		ire->ire_ipif->ipif_ire_cnt++;
3535 		if (ire->ire_stq != NULL) {
3536 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
3537 			stq_ill->ill_ire_cnt++;
3538 		}
3539 	} else {
3540 		ASSERT(ire->ire_stq == NULL);
3541 	}
3542 
3543 	ire_atomic_end(irb_ptr, ire);
3544 	mutex_exit(&ipst->ips_ndp4->ndp_g_lock);
3545 
3546 	if (pire != NULL) {
3547 		/* Assert that it is not removed from the list yet */
3548 		ASSERT(pire->ire_ptpn != NULL);
3549 		IRB_REFRELE(pire->ire_bucket);
3550 		ire_refrele(pire);
3551 	}
3552 
3553 	if (ire->ire_type != IRE_CACHE) {
3554 		/*
3555 		 * For ire's with host mask see if there is an entry
3556 		 * in the cache. If there is one flush the whole cache as
3557 		 * there might be multiple entries due to RTF_MULTIRT (CGTP).
3558 		 * If no entry is found than there is no need to flush the
3559 		 * cache.
3560 		 */
3561 		if (ire->ire_mask == IP_HOST_MASK) {
3562 			ire_t *lire;
3563 			lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE,
3564 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3565 			if (lire != NULL) {
3566 				ire_refrele(lire);
3567 				ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3568 			}
3569 		} else {
3570 			ire_flush_cache_v4(ire, IRE_FLUSH_ADD);
3571 		}
3572 	}
3573 	/*
3574 	 * We had to delay the fast path probe until the ire is inserted
3575 	 * in the list. Otherwise the fast path ack won't find the ire in
3576 	 * the table.
3577 	 */
3578 	if (ire->ire_type == IRE_CACHE ||
3579 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL)) {
3580 		ASSERT(ire->ire_nce != NULL);
3581 		if (ire->ire_nce->nce_state == ND_REACHABLE)
3582 			nce_fastpath(ire->ire_nce);
3583 	}
3584 	if (ire->ire_ipif != NULL)
3585 		ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock));
3586 	*ire_p = ire;
3587 	if (need_refrele) {
3588 		IRB_REFRELE(irb_ptr);
3589 	}
3590 	return (0);
3591 }
3592 
3593 /*
3594  * IRB_REFRELE is the only caller of the function. ire_unlink calls to
3595  * do the final cleanup for this ire.
3596  */
3597 void
3598 ire_cleanup(ire_t *ire)
3599 {
3600 	ire_t *ire_next;
3601 	ip_stack_t *ipst = ire->ire_ipst;
3602 
3603 	ASSERT(ire != NULL);
3604 
3605 	while (ire != NULL) {
3606 		ire_next = ire->ire_next;
3607 		if (ire->ire_ipversion == IPV4_VERSION) {
3608 			ire_delete_v4(ire);
3609 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
3610 			    ire_stats_deleted);
3611 		} else {
3612 			ASSERT(ire->ire_ipversion == IPV6_VERSION);
3613 			ire_delete_v6(ire);
3614 			BUMP_IRE_STATS(ipst->ips_ire_stats_v6,
3615 			    ire_stats_deleted);
3616 		}
3617 		/*
3618 		 * Now it's really out of the list. Before doing the
3619 		 * REFRELE, set ire_next to NULL as ire_inactive asserts
3620 		 * so.
3621 		 */
3622 		ire->ire_next = NULL;
3623 		IRE_REFRELE_NOTR(ire);
3624 		ire = ire_next;
3625 	}
3626 }
3627 
3628 /*
3629  * IRB_REFRELE is the only caller of the function. It calls to unlink
3630  * all the CONDEMNED ires from this bucket.
3631  */
3632 ire_t *
3633 ire_unlink(irb_t *irb)
3634 {
3635 	ire_t *ire;
3636 	ire_t *ire1;
3637 	ire_t **ptpn;
3638 	ire_t *ire_list = NULL;
3639 
3640 	ASSERT(RW_WRITE_HELD(&irb->irb_lock));
3641 	ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) ||
3642 	    (irb->irb_refcnt == 0));
3643 	ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED);
3644 	ASSERT(irb->irb_ire != NULL);
3645 
3646 	for (ire = irb->irb_ire; ire != NULL; ire = ire1) {
3647 		ip_stack_t	*ipst = ire->ire_ipst;
3648 
3649 		ire1 = ire->ire_next;
3650 		if (ire->ire_marks & IRE_MARK_CONDEMNED) {
3651 			ptpn = ire->ire_ptpn;
3652 			ire1 = ire->ire_next;
3653 			if (ire1)
3654 				ire1->ire_ptpn = ptpn;
3655 			*ptpn = ire1;
3656 			ire->ire_ptpn = NULL;
3657 			ire->ire_next = NULL;
3658 			if (ire->ire_type == IRE_DEFAULT) {
3659 				/*
3660 				 * IRE is out of the list. We need to adjust
3661 				 * the accounting before the caller drops
3662 				 * the lock.
3663 				 */
3664 				if (ire->ire_ipversion == IPV6_VERSION) {
3665 					ASSERT(ipst->
3666 					    ips_ipv6_ire_default_count !=
3667 					    0);
3668 					ipst->ips_ipv6_ire_default_count--;
3669 				}
3670 			}
3671 			/*
3672 			 * We need to call ire_delete_v4 or ire_delete_v6
3673 			 * to clean up the cache or the redirects pointing at
3674 			 * the default gateway. We need to drop the lock
3675 			 * as ire_flush_cache/ire_delete_host_redircts require
3676 			 * so. But we can't drop the lock, as ire_unlink needs
3677 			 * to atomically remove the ires from the list.
3678 			 * So, create a temporary list of CONDEMNED ires
3679 			 * for doing ire_delete_v4/ire_delete_v6 operations
3680 			 * later on.
3681 			 */
3682 			ire->ire_next = ire_list;
3683 			ire_list = ire;
3684 		}
3685 	}
3686 	irb->irb_marks &= ~IRB_MARK_CONDEMNED;
3687 	return (ire_list);
3688 }
3689 
3690 /*
3691  * Delete all the cache entries with this 'addr'.  When IP gets a gratuitous
3692  * ARP message on any of its interface queue, it scans the nce table and
3693  * deletes and calls ndp_delete() for the appropriate nce. This action
3694  * also deletes all the neighbor/ire cache entries for that address.
3695  * This function is called from ip_arp_news in ip.c and also for
3696  * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns
3697  * true if it finds a nce entry which is used by ip_arp_news to determine if
3698  * it needs to do an ire_walk_v4. The return value is also  used for the
3699  * same purpose by ARP IOCTL processing * in ip_if.c when deleting
3700  * ARP entries. For SIOC*IFARP ioctls in addition to the address,
3701  * ip_if->ipif_ill also needs to be matched.
3702  */
3703 boolean_t
3704 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif, ip_stack_t *ipst)
3705 {
3706 	ill_t	*ill;
3707 	nce_t	*nce;
3708 
3709 	ill = (ipif ? ipif->ipif_ill : NULL);
3710 
3711 	if (ill != NULL) {
3712 		/*
3713 		 * clean up the nce (and any relevant ire's) that matches
3714 		 * on addr and ill.
3715 		 */
3716 		nce = ndp_lookup_v4(ill, &addr, B_FALSE);
3717 		if (nce != NULL) {
3718 			ndp_delete(nce);
3719 			return (B_TRUE);
3720 		}
3721 	} else {
3722 		/*
3723 		 * ill is wildcard. clean up all nce's and
3724 		 * ire's that match on addr
3725 		 */
3726 		nce_clookup_t cl;
3727 
3728 		cl.ncecl_addr = addr;
3729 		cl.ncecl_found = B_FALSE;
3730 
3731 		ndp_walk_common(ipst->ips_ndp4, NULL,
3732 		    (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE);
3733 
3734 		/*
3735 		 *  ncecl_found would be set by ip_nce_clookup_and_delete if
3736 		 *  we found a matching nce.
3737 		 */
3738 		return (cl.ncecl_found);
3739 	}
3740 	return (B_FALSE);
3741 
3742 }
3743 
3744 /* Delete the supplied nce if its nce_addr matches the supplied address */
3745 static void
3746 ip_nce_clookup_and_delete(nce_t *nce, void *arg)
3747 {
3748 	nce_clookup_t *cl = (nce_clookup_t *)arg;
3749 	ipaddr_t nce_addr;
3750 
3751 	IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr);
3752 	if (nce_addr == cl->ncecl_addr) {
3753 		cl->ncecl_found = B_TRUE;
3754 		/* clean up the nce (and any relevant ire's) */
3755 		ndp_delete(nce);
3756 	}
3757 }
3758 
3759 /*
3760  * Clean up the radix node for this ire. Must be called by IRB_REFRELE
3761  * when there are no ire's left in the bucket. Returns TRUE if the bucket
3762  * is deleted and freed.
3763  */
3764 boolean_t
3765 irb_inactive(irb_t *irb)
3766 {
3767 	struct rt_entry *rt;
3768 	struct radix_node *rn;
3769 	ip_stack_t *ipst = irb->irb_ipst;
3770 
3771 	ASSERT(irb->irb_ipst != NULL);
3772 
3773 	rt = IRB2RT(irb);
3774 	rn = (struct radix_node *)rt;
3775 
3776 	/* first remove it from the radix tree. */
3777 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
3778 	rw_enter(&irb->irb_lock, RW_WRITER);
3779 	if (irb->irb_refcnt == 1 && irb->irb_nire == 0) {
3780 		rn = ipst->ips_ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask,
3781 		    ipst->ips_ip_ftable);
3782 		DTRACE_PROBE1(irb__free, rt_t *,  rt);
3783 		ASSERT((void *)rn == (void *)rt);
3784 		Free(rt, rt_entry_cache);
3785 		/* irb_lock is freed */
3786 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3787 		return (B_TRUE);
3788 	}
3789 	rw_exit(&irb->irb_lock);
3790 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
3791 	return (B_FALSE);
3792 }
3793 
3794 /*
3795  * Delete the specified IRE.
3796  */
3797 void
3798 ire_delete(ire_t *ire)
3799 {
3800 	ire_t	*ire1;
3801 	ire_t	**ptpn;
3802 	irb_t *irb;
3803 	ip_stack_t	*ipst = ire->ire_ipst;
3804 
3805 	if ((irb = ire->ire_bucket) == NULL) {
3806 		/*
3807 		 * It was never inserted in the list. Should call REFRELE
3808 		 * to free this IRE.
3809 		 */
3810 		IRE_REFRELE_NOTR(ire);
3811 		return;
3812 	}
3813 
3814 	rw_enter(&irb->irb_lock, RW_WRITER);
3815 
3816 	if (irb->irb_rr_origin == ire) {
3817 		irb->irb_rr_origin = NULL;
3818 	}
3819 
3820 	/*
3821 	 * In case of V4 we might still be waiting for fastpath ack.
3822 	 */
3823 	if (ire->ire_ipversion == IPV4_VERSION &&
3824 	    (ire->ire_type == IRE_CACHE ||
3825 	    (ire->ire_type == IRE_BROADCAST && ire->ire_stq != NULL))) {
3826 		ASSERT(ire->ire_nce != NULL);
3827 		nce_fastpath_list_delete(ire->ire_nce);
3828 	}
3829 
3830 	if (ire->ire_ptpn == NULL) {
3831 		/*
3832 		 * Some other thread has removed us from the list.
3833 		 * It should have done the REFRELE for us.
3834 		 */
3835 		rw_exit(&irb->irb_lock);
3836 		return;
3837 	}
3838 
3839 	if (irb->irb_refcnt != 0) {
3840 		/*
3841 		 * The last thread to leave this bucket will
3842 		 * delete this ire.
3843 		 */
3844 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3845 			irb->irb_ire_cnt--;
3846 			if (ire->ire_marks & IRE_MARK_TEMPORARY)
3847 				irb->irb_tmp_ire_cnt--;
3848 			ire->ire_marks |= IRE_MARK_CONDEMNED;
3849 		}
3850 		irb->irb_marks |= IRB_MARK_CONDEMNED;
3851 		rw_exit(&irb->irb_lock);
3852 		return;
3853 	}
3854 
3855 	/*
3856 	 * Normally to delete an ire, we walk the bucket. While we
3857 	 * walk the bucket, we normally bump up irb_refcnt and hence
3858 	 * we return from above where we mark CONDEMNED and the ire
3859 	 * gets deleted from ire_unlink. This case is where somebody
3860 	 * knows the ire e.g by doing a lookup, and wants to delete the
3861 	 * IRE. irb_refcnt would be 0 in this case if nobody is walking
3862 	 * the bucket.
3863 	 */
3864 	ptpn = ire->ire_ptpn;
3865 	ire1 = ire->ire_next;
3866 	if (ire1 != NULL)
3867 		ire1->ire_ptpn = ptpn;
3868 	ASSERT(ptpn != NULL);
3869 	*ptpn = ire1;
3870 	ire->ire_ptpn = NULL;
3871 	ire->ire_next = NULL;
3872 	if (ire->ire_ipversion == IPV6_VERSION) {
3873 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_deleted);
3874 	} else {
3875 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_deleted);
3876 	}
3877 	/*
3878 	 * ip_wput/ip_wput_v6 checks this flag to see whether
3879 	 * it should still use the cached ire or not.
3880 	 */
3881 	ire->ire_marks |= IRE_MARK_CONDEMNED;
3882 	if (ire->ire_type == IRE_DEFAULT) {
3883 		/*
3884 		 * IRE is out of the list. We need to adjust the
3885 		 * accounting before we drop the lock.
3886 		 */
3887 		if (ire->ire_ipversion == IPV6_VERSION) {
3888 			ASSERT(ipst->ips_ipv6_ire_default_count != 0);
3889 			ipst->ips_ipv6_ire_default_count--;
3890 		}
3891 	}
3892 	irb->irb_ire_cnt--;
3893 
3894 	if (ire->ire_marks & IRE_MARK_TEMPORARY)
3895 		irb->irb_tmp_ire_cnt--;
3896 	rw_exit(&irb->irb_lock);
3897 
3898 	if (ire->ire_ipversion == IPV6_VERSION) {
3899 		ire_delete_v6(ire);
3900 	} else {
3901 		ire_delete_v4(ire);
3902 	}
3903 	/*
3904 	 * We removed it from the list. Decrement the
3905 	 * reference count.
3906 	 */
3907 	IRE_REFRELE_NOTR(ire);
3908 }
3909 
3910 /*
3911  * Delete the specified IRE.
3912  * All calls should use ire_delete().
3913  * Sometimes called as writer though not required by this function.
3914  *
3915  * NOTE : This function is called only if the ire was added
3916  * in the list.
3917  */
3918 static void
3919 ire_delete_v4(ire_t *ire)
3920 {
3921 	ip_stack_t	*ipst = ire->ire_ipst;
3922 
3923 	ASSERT(ire->ire_refcnt >= 1);
3924 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
3925 
3926 	if (ire->ire_type != IRE_CACHE)
3927 		ire_flush_cache_v4(ire, IRE_FLUSH_DELETE);
3928 	if (ire->ire_type == IRE_DEFAULT) {
3929 		/*
3930 		 * when a default gateway is going away
3931 		 * delete all the host redirects pointing at that
3932 		 * gateway.
3933 		 */
3934 		ire_delete_host_redirects(ire->ire_gateway_addr, ipst);
3935 	}
3936 }
3937 
3938 /*
3939  * IRE_REFRELE/ire_refrele are the only caller of the function. It calls
3940  * to free the ire when the reference count goes to zero.
3941  */
3942 void
3943 ire_inactive(ire_t *ire)
3944 {
3945 	nce_t	*nce;
3946 	ill_t	*ill = NULL;
3947 	ill_t	*stq_ill = NULL;
3948 	ill_t	*in_ill = NULL;
3949 	ipif_t	*ipif;
3950 	boolean_t	need_wakeup = B_FALSE;
3951 	irb_t 	*irb;
3952 	ip_stack_t	*ipst = ire->ire_ipst;
3953 
3954 	ASSERT(ire->ire_refcnt == 0);
3955 	ASSERT(ire->ire_ptpn == NULL);
3956 	ASSERT(ire->ire_next == NULL);
3957 
3958 	if (ire->ire_gw_secattr != NULL) {
3959 		ire_gw_secattr_free(ire->ire_gw_secattr);
3960 		ire->ire_gw_secattr = NULL;
3961 	}
3962 
3963 	if (ire->ire_mp != NULL) {
3964 		ASSERT(ire->ire_bucket == NULL);
3965 		mutex_destroy(&ire->ire_lock);
3966 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
3967 		if (ire->ire_nce != NULL)
3968 			NCE_REFRELE_NOTR(ire->ire_nce);
3969 		freeb(ire->ire_mp);
3970 		return;
3971 	}
3972 
3973 	if ((nce = ire->ire_nce) != NULL) {
3974 		NCE_REFRELE_NOTR(nce);
3975 		ire->ire_nce = NULL;
3976 	}
3977 
3978 	if (ire->ire_ipif == NULL)
3979 		goto end;
3980 
3981 	ipif = ire->ire_ipif;
3982 	ill = ipif->ipif_ill;
3983 
3984 	if (ire->ire_bucket == NULL) {
3985 		/* The ire was never inserted in the table. */
3986 		goto end;
3987 	}
3988 
3989 	/*
3990 	 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is
3991 	 * non-null ill_ire_count also goes down by 1. If the in_ill is
3992 	 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1.
3993 	 *
3994 	 * The ipif that is associated with an ire is ire->ire_ipif and
3995 	 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call
3996 	 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as
3997 	 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only
3998 	 * in the case of IRE_CACHES when IPMP is used, stq_ill can be
3999 	 * different. If this is different from ire->ire_ipif->ipif_ill and
4000 	 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call
4001 	 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use
4002 	 * in_ill could be non-null. If it is a reverse tunnel related ire
4003 	 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire
4004 	 * ill_srcif_refcnt is non-null.
4005 	 */
4006 
4007 	if (ire->ire_stq != NULL)
4008 		stq_ill = (ill_t *)ire->ire_stq->q_ptr;
4009 	if (ire->ire_in_ill != NULL)
4010 		in_ill = ire->ire_in_ill;
4011 
4012 	if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) {
4013 		/* Optimize the most common case */
4014 		mutex_enter(&ill->ill_lock);
4015 		ASSERT(ipif->ipif_ire_cnt != 0);
4016 		ipif->ipif_ire_cnt--;
4017 		if (ipif->ipif_ire_cnt == 0)
4018 			need_wakeup = B_TRUE;
4019 		if (stq_ill != NULL) {
4020 			ASSERT(stq_ill->ill_ire_cnt != 0);
4021 			stq_ill->ill_ire_cnt--;
4022 			if (stq_ill->ill_ire_cnt == 0)
4023 				need_wakeup = B_TRUE;
4024 		}
4025 		if (need_wakeup) {
4026 			/* Drops the ill lock */
4027 			ipif_ill_refrele_tail(ill);
4028 		} else {
4029 			mutex_exit(&ill->ill_lock);
4030 		}
4031 	} else {
4032 		/*
4033 		 * We can't grab all the ill locks at the same time.
4034 		 * It can lead to recursive lock enter in the call to
4035 		 * ipif_ill_refrele_tail and later. Instead do it 1 at
4036 		 * a time.
4037 		 */
4038 		mutex_enter(&ill->ill_lock);
4039 		ASSERT(ipif->ipif_ire_cnt != 0);
4040 		ipif->ipif_ire_cnt--;
4041 		if (ipif->ipif_ire_cnt == 0) {
4042 			/* Drops the lock */
4043 			ipif_ill_refrele_tail(ill);
4044 		} else {
4045 			mutex_exit(&ill->ill_lock);
4046 		}
4047 		if (stq_ill != NULL) {
4048 			mutex_enter(&stq_ill->ill_lock);
4049 			ASSERT(stq_ill->ill_ire_cnt != 0);
4050 			stq_ill->ill_ire_cnt--;
4051 			if (stq_ill->ill_ire_cnt == 0)  {
4052 				/* Drops the ill lock */
4053 				ipif_ill_refrele_tail(stq_ill);
4054 			} else {
4055 				mutex_exit(&stq_ill->ill_lock);
4056 			}
4057 		}
4058 		if (in_ill != NULL) {
4059 			mutex_enter(&in_ill->ill_lock);
4060 			if (ire->ire_type == IRE_MIPRTUN) {
4061 				/*
4062 				 * Mobile IP reverse tunnel ire.
4063 				 * Decrement table count and the
4064 				 * ill reference count. This signifies
4065 				 * mipagent is deleting reverse tunnel
4066 				 * route for a particular mobile node.
4067 				 */
4068 				mutex_enter(&ipst->ips_ire_mrtun_lock);
4069 				ipst->ips_ire_mrtun_count--;
4070 				mutex_exit(&ipst->ips_ire_mrtun_lock);
4071 				ASSERT(in_ill->ill_mrtun_refcnt != 0);
4072 				in_ill->ill_mrtun_refcnt--;
4073 				if (in_ill->ill_mrtun_refcnt == 0) {
4074 					/* Drops the ill lock */
4075 					ipif_ill_refrele_tail(in_ill);
4076 				} else {
4077 					mutex_exit(&in_ill->ill_lock);
4078 				}
4079 			} else {
4080 				mutex_enter(&ipst->ips_ire_srcif_table_lock);
4081 				ipst->ips_ire_srcif_table_count--;
4082 				mutex_exit(&ipst->ips_ire_srcif_table_lock);
4083 				ASSERT(in_ill->ill_srcif_refcnt != 0);
4084 				in_ill->ill_srcif_refcnt--;
4085 				if (in_ill->ill_srcif_refcnt == 0) {
4086 					/* Drops the ill lock */
4087 					ipif_ill_refrele_tail(in_ill);
4088 				} else {
4089 					mutex_exit(&in_ill->ill_lock);
4090 				}
4091 			}
4092 		}
4093 	}
4094 end:
4095 	/* This should be true for both V4 and V6 */
4096 
4097 	if ((ire->ire_type & IRE_FORWARDTABLE) &&
4098 	    (ire->ire_ipversion == IPV4_VERSION) &&
4099 	    ((irb = ire->ire_bucket) != NULL)) {
4100 		rw_enter(&irb->irb_lock, RW_WRITER);
4101 		irb->irb_nire--;
4102 		/*
4103 		 * Instead of examining the conditions for freeing
4104 		 * the radix node here, we do it by calling
4105 		 * IRB_REFRELE which is a single point in the code
4106 		 * that embeds that logic. Bump up the refcnt to
4107 		 * be able to call IRB_REFRELE
4108 		 */
4109 		IRB_REFHOLD_LOCKED(irb);
4110 		rw_exit(&irb->irb_lock);
4111 		IRB_REFRELE(irb);
4112 	}
4113 	ire->ire_ipif = NULL;
4114 
4115 	if (ire->ire_in_ill != NULL) {
4116 		ire->ire_in_ill = NULL;
4117 	}
4118 
4119 #ifdef IRE_DEBUG
4120 	ire_trace_inactive(ire);
4121 #endif
4122 	mutex_destroy(&ire->ire_lock);
4123 	if (ire->ire_ipversion == IPV6_VERSION) {
4124 		BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_freed);
4125 	} else {
4126 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_freed);
4127 	}
4128 	ASSERT(ire->ire_mp == NULL);
4129 	/* Has been allocated out of the cache */
4130 	kmem_cache_free(ire_cache, ire);
4131 }
4132 
4133 /*
4134  * ire_walk routine to delete all IRE_CACHE/IRE_HOST types redirect
4135  * entries that have a given gateway address.
4136  */
4137 void
4138 ire_delete_cache_gw(ire_t *ire, char *cp)
4139 {
4140 	ipaddr_t	gw_addr;
4141 
4142 	if (!(ire->ire_type & IRE_CACHE) &&
4143 	    !(ire->ire_flags & RTF_DYNAMIC))
4144 		return;
4145 
4146 	bcopy(cp, &gw_addr, sizeof (gw_addr));
4147 	if (ire->ire_gateway_addr == gw_addr) {
4148 		ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n",
4149 		    (int)ntohl(ire->ire_addr), ire->ire_type,
4150 		    (int)ntohl(ire->ire_gateway_addr)));
4151 		ire_delete(ire);
4152 	}
4153 }
4154 
4155 /*
4156  * Remove all IRE_CACHE entries that match the ire specified.
4157  *
4158  * The flag argument indicates if the flush request is due to addition
4159  * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE).
4160  *
4161  * This routine takes only the IREs from the forwarding table and flushes
4162  * the corresponding entries from the cache table.
4163  *
4164  * When flushing due to the deletion of an old route, it
4165  * just checks the cache handles (ire_phandle and ire_ihandle) and
4166  * deletes the ones that match.
4167  *
4168  * When flushing due to the creation of a new route, it checks
4169  * if a cache entry's address matches the one in the IRE and
4170  * that the cache entry's parent has a less specific mask than the
4171  * one in IRE. The destination of such a cache entry could be the
4172  * gateway for other cache entries, so we need to flush those as
4173  * well by looking for gateway addresses matching the IRE's address.
4174  */
4175 void
4176 ire_flush_cache_v4(ire_t *ire, int flag)
4177 {
4178 	int i;
4179 	ire_t *cire;
4180 	irb_t *irb;
4181 	ip_stack_t	*ipst = ire->ire_ipst;
4182 
4183 	if (ire->ire_type & IRE_CACHE)
4184 		return;
4185 
4186 	/*
4187 	 * If a default is just created, there is no point
4188 	 * in going through the cache, as there will not be any
4189 	 * cached ires.
4190 	 */
4191 	if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD)
4192 		return;
4193 	if (flag == IRE_FLUSH_ADD) {
4194 		/*
4195 		 * This selective flush is due to the addition of
4196 		 * new IRE.
4197 		 */
4198 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4199 			irb = &ipst->ips_ip_cache_table[i];
4200 			if ((cire = irb->irb_ire) == NULL)
4201 				continue;
4202 			IRB_REFHOLD(irb);
4203 			for (cire = irb->irb_ire; cire != NULL;
4204 			    cire = cire->ire_next) {
4205 				if (cire->ire_type != IRE_CACHE)
4206 					continue;
4207 				/*
4208 				 * If 'cire' belongs to the same subnet
4209 				 * as the new ire being added, and 'cire'
4210 				 * is derived from a prefix that is less
4211 				 * specific than the new ire being added,
4212 				 * we need to flush 'cire'; for instance,
4213 				 * when a new interface comes up.
4214 				 */
4215 				if (((cire->ire_addr & ire->ire_mask) ==
4216 				    (ire->ire_addr & ire->ire_mask)) &&
4217 				    (ip_mask_to_plen(cire->ire_cmask) <=
4218 				    ire->ire_masklen)) {
4219 					ire_delete(cire);
4220 					continue;
4221 				}
4222 				/*
4223 				 * This is the case when the ire_gateway_addr
4224 				 * of 'cire' belongs to the same subnet as
4225 				 * the new ire being added.
4226 				 * Flushing such ires is sometimes required to
4227 				 * avoid misrouting: say we have a machine with
4228 				 * two interfaces (I1 and I2), a default router
4229 				 * R on the I1 subnet, and a host route to an
4230 				 * off-link destination D with a gateway G on
4231 				 * the I2 subnet.
4232 				 * Under normal operation, we will have an
4233 				 * on-link cache entry for G and an off-link
4234 				 * cache entry for D with G as ire_gateway_addr,
4235 				 * traffic to D will reach its destination
4236 				 * through gateway G.
4237 				 * If the administrator does 'ifconfig I2 down',
4238 				 * the cache entries for D and G will be
4239 				 * flushed. However, G will now be resolved as
4240 				 * an off-link destination using R (the default
4241 				 * router) as gateway. Then D will also be
4242 				 * resolved as an off-link destination using G
4243 				 * as gateway - this behavior is due to
4244 				 * compatibility reasons, see comment in
4245 				 * ire_ihandle_lookup_offlink(). Traffic to D
4246 				 * will go to the router R and probably won't
4247 				 * reach the destination.
4248 				 * The administrator then does 'ifconfig I2 up'.
4249 				 * Since G is on the I2 subnet, this routine
4250 				 * will flush its cache entry. It must also
4251 				 * flush the cache entry for D, otherwise
4252 				 * traffic will stay misrouted until the IRE
4253 				 * times out.
4254 				 */
4255 				if ((cire->ire_gateway_addr & ire->ire_mask) ==
4256 				    (ire->ire_addr & ire->ire_mask)) {
4257 					ire_delete(cire);
4258 					continue;
4259 				}
4260 			}
4261 			IRB_REFRELE(irb);
4262 		}
4263 	} else {
4264 		/*
4265 		 * delete the cache entries based on
4266 		 * handle in the IRE as this IRE is
4267 		 * being deleted/changed.
4268 		 */
4269 		for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
4270 			irb = &ipst->ips_ip_cache_table[i];
4271 			if ((cire = irb->irb_ire) == NULL)
4272 				continue;
4273 			IRB_REFHOLD(irb);
4274 			for (cire = irb->irb_ire; cire != NULL;
4275 			    cire = cire->ire_next) {
4276 				if (cire->ire_type != IRE_CACHE)
4277 					continue;
4278 				if ((cire->ire_phandle == 0 ||
4279 				    cire->ire_phandle != ire->ire_phandle) &&
4280 				    (cire->ire_ihandle == 0 ||
4281 				    cire->ire_ihandle != ire->ire_ihandle))
4282 					continue;
4283 				ire_delete(cire);
4284 			}
4285 			IRB_REFRELE(irb);
4286 		}
4287 	}
4288 }
4289 
4290 /*
4291  * Matches the arguments passed with the values in the ire.
4292  *
4293  * Note: for match types that match using "ipif" passed in, ipif
4294  * must be checked for non-NULL before calling this routine.
4295  */
4296 boolean_t
4297 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4298     int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle,
4299     const ts_label_t *tsl, int match_flags)
4300 {
4301 	ill_t *ire_ill = NULL, *dst_ill;
4302 	ill_t *ipif_ill = NULL;
4303 	ill_group_t *ire_ill_group = NULL;
4304 	ill_group_t *ipif_ill_group = NULL;
4305 
4306 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
4307 	ASSERT((ire->ire_addr & ~ire->ire_mask) == 0);
4308 	ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) ||
4309 	    (ipif != NULL && !ipif->ipif_isv6));
4310 	ASSERT(!(match_flags & MATCH_IRE_WQ));
4311 
4312 	/*
4313 	 * HIDDEN cache entries have to be looked up specifically with
4314 	 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set
4315 	 * when the interface is FAILED or INACTIVE. In that case,
4316 	 * any IRE_CACHES that exists should be marked with
4317 	 * IRE_MARK_HIDDEN. So, we don't really need to match below
4318 	 * for IRE_MARK_HIDDEN. But we do so for consistency.
4319 	 */
4320 	if (!(match_flags & MATCH_IRE_MARK_HIDDEN) &&
4321 	    (ire->ire_marks & IRE_MARK_HIDDEN))
4322 		return (B_FALSE);
4323 
4324 	/*
4325 	 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option
4326 	 * is used. In that case the routing table is bypassed and the
4327 	 * packets are sent directly to the specified nexthop. The
4328 	 * IRE_CACHE entry representing this route should be marked
4329 	 * with IRE_MARK_PRIVATE_ADDR.
4330 	 */
4331 
4332 	if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) &&
4333 	    (ire->ire_marks & IRE_MARK_PRIVATE_ADDR))
4334 		return (B_FALSE);
4335 
4336 	if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
4337 	    ire->ire_zoneid != ALL_ZONES) {
4338 		/*
4339 		 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is
4340 		 * valid and does not match that of ire_zoneid, a failure to
4341 		 * match is reported at this point. Otherwise, since some IREs
4342 		 * that are available in the global zone can be used in local
4343 		 * zones, additional checks need to be performed:
4344 		 *
4345 		 *	IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK
4346 		 *	entries should never be matched in this situation.
4347 		 *
4348 		 *	IRE entries that have an interface associated with them
4349 		 *	should in general not match unless they are an IRE_LOCAL
4350 		 *	or in the case when MATCH_IRE_DEFAULT has been set in
4351 		 *	the caller.  In the case of the former, checking of the
4352 		 *	other fields supplied should take place.
4353 		 *
4354 		 *	In the case where MATCH_IRE_DEFAULT has been set,
4355 		 *	all of the ipif's associated with the IRE's ill are
4356 		 *	checked to see if there is a matching zoneid.  If any
4357 		 *	one ipif has a matching zoneid, this IRE is a
4358 		 *	potential candidate so checking of the other fields
4359 		 *	takes place.
4360 		 *
4361 		 *	In the case where the IRE_INTERFACE has a usable source
4362 		 *	address (indicated by ill_usesrc_ifindex) in the
4363 		 *	correct zone then it's permitted to return this IRE
4364 		 */
4365 		if (match_flags & MATCH_IRE_ZONEONLY)
4366 			return (B_FALSE);
4367 		if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK))
4368 			return (B_FALSE);
4369 		/*
4370 		 * Note, IRE_INTERFACE can have the stq as NULL. For
4371 		 * example, if the default multicast route is tied to
4372 		 * the loopback address.
4373 		 */
4374 		if ((ire->ire_type & IRE_INTERFACE) &&
4375 		    (ire->ire_stq != NULL)) {
4376 			dst_ill = (ill_t *)ire->ire_stq->q_ptr;
4377 			/*
4378 			 * If there is a usable source address in the
4379 			 * zone, then it's ok to return an
4380 			 * IRE_INTERFACE
4381 			 */
4382 			if (ipif_usesrc_avail(dst_ill, zoneid)) {
4383 				ip3dbg(("ire_match_args: dst_ill %p match %d\n",
4384 				    (void *)dst_ill,
4385 				    (ire->ire_addr == (addr & mask))));
4386 			} else {
4387 				ip3dbg(("ire_match_args: src_ipif NULL"
4388 				    " dst_ill %p\n", (void *)dst_ill));
4389 				return (B_FALSE);
4390 			}
4391 		}
4392 		if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL &&
4393 		    !(ire->ire_type & IRE_INTERFACE)) {
4394 			ipif_t	*tipif;
4395 
4396 			if ((match_flags & MATCH_IRE_DEFAULT) == 0) {
4397 				return (B_FALSE);
4398 			}
4399 			mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock);
4400 			for (tipif = ire->ire_ipif->ipif_ill->ill_ipif;
4401 			    tipif != NULL; tipif = tipif->ipif_next) {
4402 				if (IPIF_CAN_LOOKUP(tipif) &&
4403 				    (tipif->ipif_flags & IPIF_UP) &&
4404 				    (tipif->ipif_zoneid == zoneid ||
4405 				    tipif->ipif_zoneid == ALL_ZONES))
4406 					break;
4407 			}
4408 			mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock);
4409 			if (tipif == NULL) {
4410 				return (B_FALSE);
4411 			}
4412 		}
4413 	}
4414 
4415 	/*
4416 	 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that
4417 	 * somebody wants to send out on a particular interface which
4418 	 * is given by ire_stq and hence use ire_stq to derive the ill
4419 	 * value. ire_ipif for IRE_CACHES is just the means of getting
4420 	 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr.
4421 	 * ire_to_ill does the right thing for this.
4422 	 */
4423 	if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) {
4424 		ire_ill = ire_to_ill(ire);
4425 		if (ire_ill != NULL)
4426 			ire_ill_group = ire_ill->ill_group;
4427 		ipif_ill = ipif->ipif_ill;
4428 		ipif_ill_group = ipif_ill->ill_group;
4429 	}
4430 
4431 	if ((ire->ire_addr == (addr & mask)) &&
4432 	    ((!(match_flags & MATCH_IRE_GW)) ||
4433 	    (ire->ire_gateway_addr == gateway)) &&
4434 	    ((!(match_flags & MATCH_IRE_TYPE)) ||
4435 	    (ire->ire_type & type)) &&
4436 	    ((!(match_flags & MATCH_IRE_SRC)) ||
4437 	    (ire->ire_src_addr == ipif->ipif_src_addr)) &&
4438 	    ((!(match_flags & MATCH_IRE_IPIF)) ||
4439 	    (ire->ire_ipif == ipif)) &&
4440 	    ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) ||
4441 	    (ire->ire_type != IRE_CACHE ||
4442 	    ire->ire_marks & IRE_MARK_HIDDEN)) &&
4443 	    ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) ||
4444 	    (ire->ire_type != IRE_CACHE ||
4445 	    ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) &&
4446 	    ((!(match_flags & MATCH_IRE_ILL)) ||
4447 	    (ire_ill == ipif_ill)) &&
4448 	    ((!(match_flags & MATCH_IRE_IHANDLE)) ||
4449 	    (ire->ire_ihandle == ihandle)) &&
4450 	    ((!(match_flags & MATCH_IRE_MASK)) ||
4451 	    (ire->ire_mask == mask)) &&
4452 	    ((!(match_flags & MATCH_IRE_ILL_GROUP)) ||
4453 	    (ire_ill == ipif_ill) ||
4454 	    (ire_ill_group != NULL &&
4455 	    ire_ill_group == ipif_ill_group)) &&
4456 	    ((!(match_flags & MATCH_IRE_SECATTR)) ||
4457 	    (!is_system_labeled()) ||
4458 	    (tsol_ire_match_gwattr(ire, tsl) == 0))) {
4459 		/* We found the matched IRE */
4460 		return (B_TRUE);
4461 	}
4462 	return (B_FALSE);
4463 }
4464 
4465 
4466 /*
4467  * Lookup for a route in all the tables
4468  */
4469 ire_t *
4470 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
4471     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
4472     const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4473 {
4474 	ire_t *ire = NULL;
4475 
4476 	/*
4477 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4478 	 * MATCH_IRE_ILL is set.
4479 	 */
4480 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4481 	    (ipif == NULL))
4482 		return (NULL);
4483 
4484 	/*
4485 	 * might be asking for a cache lookup,
4486 	 * This is not best way to lookup cache,
4487 	 * user should call ire_cache_lookup directly.
4488 	 *
4489 	 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then
4490 	 * in the forwarding table, if the applicable type flags were set.
4491 	 */
4492 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) {
4493 		ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid,
4494 		    tsl, flags, ipst);
4495 		if (ire != NULL)
4496 			return (ire);
4497 	}
4498 	if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) {
4499 		ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire,
4500 		    zoneid, 0, tsl, flags, ipst);
4501 	}
4502 	return (ire);
4503 }
4504 
4505 
4506 /*
4507  * Delete the IRE cache for the gateway and all IRE caches whose
4508  * ire_gateway_addr points to this gateway, and allow them to
4509  * be created on demand by ip_newroute.
4510  */
4511 void
4512 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
4513 {
4514 	irb_t *irb;
4515 	ire_t *ire;
4516 
4517 	irb = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4518 	    ipst->ips_ip_cache_table_size)];
4519 	IRB_REFHOLD(irb);
4520 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
4521 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4522 			continue;
4523 
4524 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4525 		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4526 		if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE,
4527 		    NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) {
4528 			ire_delete(ire);
4529 		}
4530 	}
4531 	IRB_REFRELE(irb);
4532 
4533 	ire_walk_v4(ire_delete_cache_gw, &addr, zoneid, ipst);
4534 }
4535 
4536 /*
4537  * Looks up cache table for a route.
4538  * specific lookup can be indicated by
4539  * passing the MATCH_* flags and the
4540  * necessary parameters.
4541  */
4542 ire_t *
4543 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif,
4544     zoneid_t zoneid, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
4545 {
4546 	irb_t *irb_ptr;
4547 	ire_t *ire;
4548 
4549 	/*
4550 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
4551 	 * MATCH_IRE_ILL is set.
4552 	 */
4553 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
4554 	    (ipif == NULL))
4555 		return (NULL);
4556 
4557 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4558 	    ipst->ips_ip_cache_table_size)];
4559 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4560 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4561 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4562 			continue;
4563 		ASSERT(ire->ire_mask == IP_HOST_MASK);
4564 		ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL);
4565 		if (ire_match_args(ire, addr, ire->ire_mask, gateway, type,
4566 		    ipif, zoneid, 0, tsl, flags)) {
4567 			IRE_REFHOLD(ire);
4568 			rw_exit(&irb_ptr->irb_lock);
4569 			return (ire);
4570 		}
4571 	}
4572 	rw_exit(&irb_ptr->irb_lock);
4573 	return (NULL);
4574 }
4575 
4576 /*
4577  * Check whether the IRE_LOCAL and the IRE potentially used to transmit
4578  * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of
4579  * the same ill group.
4580  */
4581 boolean_t
4582 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire)
4583 {
4584 	ill_t		*recv_ill, *xmit_ill;
4585 	ill_group_t	*recv_group, *xmit_group;
4586 
4587 	ASSERT(ire_local->ire_type & (IRE_LOCAL|IRE_LOOPBACK));
4588 	ASSERT(xmit_ire->ire_type & (IRE_CACHETABLE|IRE_INTERFACE));
4589 
4590 	recv_ill = ire_to_ill(ire_local);
4591 	xmit_ill = ire_to_ill(xmit_ire);
4592 
4593 	ASSERT(recv_ill != NULL);
4594 	ASSERT(xmit_ill != NULL);
4595 
4596 	if (recv_ill == xmit_ill)
4597 		return (B_TRUE);
4598 
4599 	recv_group = recv_ill->ill_group;
4600 	xmit_group = xmit_ill->ill_group;
4601 
4602 	if (recv_group != NULL && recv_group == xmit_group)
4603 		return (B_TRUE);
4604 
4605 	return (B_FALSE);
4606 }
4607 
4608 /*
4609  * Check if the IRE_LOCAL uses the same ill (group) as another route would use.
4610  * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
4611  * then we don't allow this IRE_LOCAL to be used.
4612  */
4613 boolean_t
4614 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr,
4615     const ts_label_t *tsl, ip_stack_t *ipst)
4616 {
4617 	ire_t		*alt_ire;
4618 	boolean_t	rval;
4619 
4620 	if (ire_local->ire_ipversion == IPV4_VERSION) {
4621 		alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL,
4622 		    NULL, zoneid, 0, tsl,
4623 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4624 		    MATCH_IRE_RJ_BHOLE, ipst);
4625 	} else {
4626 		alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
4627 		    0, NULL, NULL, zoneid, 0, tsl,
4628 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4629 		    MATCH_IRE_RJ_BHOLE, ipst);
4630 	}
4631 
4632 	if (alt_ire == NULL)
4633 		return (B_FALSE);
4634 
4635 	if (alt_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4636 		ire_refrele(alt_ire);
4637 		return (B_FALSE);
4638 	}
4639 	rval = ire_local_same_ill_group(ire_local, alt_ire);
4640 
4641 	ire_refrele(alt_ire);
4642 	return (rval);
4643 }
4644 
4645 /*
4646  * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers
4647  * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get
4648  * to the hidden ones.
4649  *
4650  * In general the zoneid has to match (where ALL_ZONES match all of them).
4651  * But for IRE_LOCAL we also need to handle the case where L2 should
4652  * conceptually loop back the packet. This is necessary since neither
4653  * Ethernet drivers nor Ethernet hardware loops back packets sent to their
4654  * own MAC address. This loopback is needed when the normal
4655  * routes (ignoring IREs with different zoneids) would send out the packet on
4656  * the same ill (or ill group) as the ill with which this IRE_LOCAL is
4657  * associated.
4658  *
4659  * Earlier versions of this code always matched an IRE_LOCAL independently of
4660  * the zoneid. We preserve that earlier behavior when
4661  * ip_restrict_interzone_loopback is turned off.
4662  */
4663 ire_t *
4664 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl,
4665     ip_stack_t *ipst)
4666 {
4667 	irb_t *irb_ptr;
4668 	ire_t *ire;
4669 
4670 	irb_ptr = &ipst->ips_ip_cache_table[IRE_ADDR_HASH(addr,
4671 	    ipst->ips_ip_cache_table_size)];
4672 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4673 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4674 		if (ire->ire_marks & (IRE_MARK_CONDEMNED |
4675 		    IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) {
4676 			continue;
4677 		}
4678 		if (ire->ire_addr == addr) {
4679 			/*
4680 			 * Finally, check if the security policy has any
4681 			 * restriction on using this route for the specified
4682 			 * message.
4683 			 */
4684 			if (tsl != NULL &&
4685 			    ire->ire_gw_secattr != NULL &&
4686 			    tsol_ire_match_gwattr(ire, tsl) != 0) {
4687 				continue;
4688 			}
4689 
4690 			if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid ||
4691 			    ire->ire_zoneid == ALL_ZONES) {
4692 				IRE_REFHOLD(ire);
4693 				rw_exit(&irb_ptr->irb_lock);
4694 				return (ire);
4695 			}
4696 
4697 			if (ire->ire_type == IRE_LOCAL) {
4698 				if (ipst->ips_ip_restrict_interzone_loopback &&
4699 				    !ire_local_ok_across_zones(ire, zoneid,
4700 				    &addr, tsl, ipst))
4701 					continue;
4702 
4703 				IRE_REFHOLD(ire);
4704 				rw_exit(&irb_ptr->irb_lock);
4705 				return (ire);
4706 			}
4707 		}
4708 	}
4709 	rw_exit(&irb_ptr->irb_lock);
4710 	return (NULL);
4711 }
4712 
4713 /*
4714  * Locate the interface ire that is tied to the cache ire 'cire' via
4715  * cire->ire_ihandle.
4716  *
4717  * We are trying to create the cache ire for an offlink destn based
4718  * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire
4719  * as found by ip_newroute(). We are called from ip_newroute() in
4720  * the IRE_CACHE case.
4721  */
4722 ire_t *
4723 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire)
4724 {
4725 	ire_t	*ire;
4726 	int	match_flags;
4727 	ipaddr_t gw_addr;
4728 	ipif_t	*gw_ipif;
4729 	ip_stack_t	*ipst = cire->ire_ipst;
4730 
4731 	ASSERT(cire != NULL && pire != NULL);
4732 
4733 	/*
4734 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
4735 	 * because the ihandle refers to an ipif which can be in only one zone.
4736 	 */
4737 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
4738 	/*
4739 	 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only
4740 	 * for on-link hosts. We should never be here for onlink.
4741 	 * Thus, use MATCH_IRE_ILL_GROUP.
4742 	 */
4743 	if (pire->ire_ipif != NULL)
4744 		match_flags |= MATCH_IRE_ILL_GROUP;
4745 	/*
4746 	 * We know that the mask of the interface ire equals cire->ire_cmask.
4747 	 * (When ip_newroute() created 'cire' for the gateway it set its
4748 	 * cmask from the interface ire's mask)
4749 	 */
4750 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
4751 	    IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle,
4752 	    NULL, match_flags, ipst);
4753 	if (ire != NULL)
4754 		return (ire);
4755 	/*
4756 	 * If we didn't find an interface ire above, we can't declare failure.
4757 	 * For backwards compatibility, we need to support prefix routes
4758 	 * pointing to next hop gateways that are not on-link.
4759 	 *
4760 	 * Assume we are trying to ping some offlink destn, and we have the
4761 	 * routing table below.
4762 	 *
4763 	 * Eg.	default	- gw1		<--- pire	(line 1)
4764 	 *	gw1	- gw2				(line 2)
4765 	 *	gw2	- hme0				(line 3)
4766 	 *
4767 	 * If we already have a cache ire for gw1 in 'cire', the
4768 	 * ire_ftable_lookup above would have failed, since there is no
4769 	 * interface ire to reach gw1. We will fallthru below.
4770 	 *
4771 	 * Here we duplicate the steps that ire_ftable_lookup() did in
4772 	 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case.
4773 	 * The differences are the following
4774 	 * i.   We want the interface ire only, so we call ire_ftable_lookup()
4775 	 *	instead of ire_route_lookup()
4776 	 * ii.  We look for only prefix routes in the 1st call below.
4777 	 * ii.  We want to match on the ihandle in the 2nd call below.
4778 	 */
4779 	match_flags =  MATCH_IRE_TYPE;
4780 	if (pire->ire_ipif != NULL)
4781 		match_flags |= MATCH_IRE_ILL_GROUP;
4782 	ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET,
4783 	    pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
4784 	if (ire == NULL)
4785 		return (NULL);
4786 	/*
4787 	 * At this point 'ire' corresponds to the entry shown in line 2.
4788 	 * gw_addr is 'gw2' in the example above.
4789 	 */
4790 	gw_addr = ire->ire_gateway_addr;
4791 	gw_ipif = ire->ire_ipif;
4792 	ire_refrele(ire);
4793 
4794 	match_flags |= MATCH_IRE_IHANDLE;
4795 	ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
4796 	    gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags,
4797 	    ipst);
4798 	return (ire);
4799 }
4800 
4801 /*
4802  * ire_mrtun_lookup() is called by ip_rput() when packet is to be
4803  * tunneled through reverse tunnel. This is only supported for
4804  * IPv4 packets
4805  */
4806 
4807 ire_t *
4808 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill)
4809 {
4810 	irb_t *irb_ptr;
4811 	ire_t *ire;
4812 	ip_stack_t	*ipst = ill->ill_ipst;
4813 
4814 	ASSERT(ill != NULL);
4815 	ASSERT(!(ill->ill_isv6));
4816 
4817 	if (ipst->ips_ip_mrtun_table == NULL)
4818 		return (NULL);
4819 	irb_ptr = &ipst->ips_ip_mrtun_table[IRE_ADDR_HASH(srcaddr,
4820 	    IP_MRTUN_TABLE_SIZE)];
4821 	rw_enter(&irb_ptr->irb_lock, RW_READER);
4822 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
4823 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
4824 			continue;
4825 		if ((ire->ire_in_src_addr == srcaddr) &&
4826 		    ire->ire_in_ill == ill) {
4827 			IRE_REFHOLD(ire);
4828 			rw_exit(&irb_ptr->irb_lock);
4829 			return (ire);
4830 		}
4831 	}
4832 	rw_exit(&irb_ptr->irb_lock);
4833 	return (NULL);
4834 }
4835 
4836 /*
4837  * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER
4838  * ire associated with the specified ipif.
4839  *
4840  * This might occasionally be called when IPIF_UP is not set since
4841  * the IP_MULTICAST_IF as well as creating interface routes
4842  * allows specifying a down ipif (ipif_lookup* match ipifs that are down).
4843  *
4844  * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on
4845  * the ipif, this routine might return NULL.
4846  */
4847 ire_t *
4848 ipif_to_ire(const ipif_t *ipif)
4849 {
4850 	ire_t	*ire;
4851 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
4852 
4853 	ASSERT(!ipif->ipif_isv6);
4854 	if (ipif->ipif_ire_type == IRE_LOOPBACK) {
4855 		ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK,
4856 		    ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
4857 		    ipst);
4858 	} else if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4859 		/* In this case we need to lookup destination address. */
4860 		ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0,
4861 		    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
4862 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK), ipst);
4863 	} else {
4864 		ire = ire_ftable_lookup(ipif->ipif_subnet,
4865 		    ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL,
4866 		    ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF |
4867 		    MATCH_IRE_MASK), ipst);
4868 	}
4869 	return (ire);
4870 }
4871 
4872 /*
4873  * ire_walk function.
4874  * Count the number of IRE_CACHE entries in different categories.
4875  */
4876 void
4877 ire_cache_count(ire_t *ire, char *arg)
4878 {
4879 	ire_cache_count_t *icc = (ire_cache_count_t *)arg;
4880 
4881 	if (ire->ire_type != IRE_CACHE)
4882 		return;
4883 
4884 	icc->icc_total++;
4885 
4886 	if (ire->ire_ipversion == IPV6_VERSION) {
4887 		mutex_enter(&ire->ire_lock);
4888 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4889 			mutex_exit(&ire->ire_lock);
4890 			icc->icc_onlink++;
4891 			return;
4892 		}
4893 		mutex_exit(&ire->ire_lock);
4894 	} else {
4895 		if (ire->ire_gateway_addr == 0) {
4896 			icc->icc_onlink++;
4897 			return;
4898 		}
4899 	}
4900 
4901 	ASSERT(ire->ire_ipif != NULL);
4902 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu)
4903 		icc->icc_pmtu++;
4904 	else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4905 	    ire->ire_ib_pkt_count)
4906 		icc->icc_offlink++;
4907 	else
4908 		icc->icc_unused++;
4909 }
4910 
4911 /*
4912  * ire_walk function called by ip_trash_ire_reclaim().
4913  * Free a fraction of the IRE_CACHE cache entries. The fractions are
4914  * different for different categories of IRE_CACHE entries.
4915  * A fraction of zero means to not free any in that category.
4916  * Use the hash bucket id plus lbolt as a random number. Thus if the fraction
4917  * is N then every Nth hash bucket chain will be freed.
4918  */
4919 void
4920 ire_cache_reclaim(ire_t *ire, char *arg)
4921 {
4922 	ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg;
4923 	uint_t rand;
4924 	ip_stack_t	*ipst = icr->icr_ipst;
4925 
4926 	if (ire->ire_type != IRE_CACHE)
4927 		return;
4928 
4929 	if (ire->ire_ipversion == IPV6_VERSION) {
4930 		rand = (uint_t)lbolt +
4931 		    IRE_ADDR_HASH_V6(ire->ire_addr_v6,
4932 		    ipst->ips_ip6_cache_table_size);
4933 		mutex_enter(&ire->ire_lock);
4934 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) {
4935 			mutex_exit(&ire->ire_lock);
4936 			if (icr->icr_onlink != 0 &&
4937 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4938 				ire_delete(ire);
4939 				return;
4940 			}
4941 			goto done;
4942 		}
4943 		mutex_exit(&ire->ire_lock);
4944 	} else {
4945 		rand = (uint_t)lbolt +
4946 		    IRE_ADDR_HASH(ire->ire_addr, ipst->ips_ip_cache_table_size);
4947 		if (ire->ire_gateway_addr == 0) {
4948 			if (icr->icr_onlink != 0 &&
4949 			    (rand/icr->icr_onlink)*icr->icr_onlink == rand) {
4950 				ire_delete(ire);
4951 				return;
4952 			}
4953 			goto done;
4954 		}
4955 	}
4956 	/* Not onlink IRE */
4957 	ASSERT(ire->ire_ipif != NULL);
4958 	if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) {
4959 		/* Use ptmu fraction */
4960 		if (icr->icr_pmtu != 0 &&
4961 		    (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) {
4962 			ire_delete(ire);
4963 			return;
4964 		}
4965 	} else if (ire->ire_tire_mark != ire->ire_ob_pkt_count +
4966 	    ire->ire_ib_pkt_count) {
4967 		/* Use offlink fraction */
4968 		if (icr->icr_offlink != 0 &&
4969 		    (rand/icr->icr_offlink)*icr->icr_offlink == rand) {
4970 			ire_delete(ire);
4971 			return;
4972 		}
4973 	} else {
4974 		/* Use unused fraction */
4975 		if (icr->icr_unused != 0 &&
4976 		    (rand/icr->icr_unused)*icr->icr_unused == rand) {
4977 			ire_delete(ire);
4978 			return;
4979 		}
4980 	}
4981 done:
4982 	/*
4983 	 * Update tire_mark so that those that haven't been used since this
4984 	 * reclaim will be considered unused next time we reclaim.
4985 	 */
4986 	ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count;
4987 }
4988 
4989 static void
4990 power2_roundup(uint32_t *value)
4991 {
4992 	int i;
4993 
4994 	for (i = 1; i < 31; i++) {
4995 		if (*value <= (1 << i))
4996 			break;
4997 	}
4998 	*value = (1 << i);
4999 }
5000 
5001 /* Global init for all zones */
5002 void
5003 ip_ire_g_init()
5004 {
5005 	/*
5006 	 * Create ire caches, ire_reclaim()
5007 	 * will give IRE_CACHE back to system when needed.
5008 	 * This needs to be done here before anything else, since
5009 	 * ire_add() expects the cache to be created.
5010 	 */
5011 	ire_cache = kmem_cache_create("ire_cache",
5012 	    sizeof (ire_t), 0, ip_ire_constructor,
5013 	    ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0);
5014 
5015 	rt_entry_cache = kmem_cache_create("rt_entry",
5016 	    sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0);
5017 
5018 	/*
5019 	 * Have radix code setup kmem caches etc.
5020 	 */
5021 	rn_init();
5022 }
5023 
5024 void
5025 ip_ire_init(ip_stack_t *ipst)
5026 {
5027 	int i;
5028 	uint32_t mem_cnt;
5029 	uint32_t cpu_cnt;
5030 	uint32_t min_cnt;
5031 	pgcnt_t mem_avail;
5032 
5033 	/*
5034 	 * ip_ire_max_bucket_cnt is sized below based on the memory
5035 	 * size and the cpu speed of the machine. This is upper
5036 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
5037 	 * and is lower bounded by the compile time value of
5038 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
5039 	 * ip6_ire_max_bucket_cnt.
5040 	 *
5041 	 * We calculate this for each IP Instances in order to use
5042 	 * the kmem_avail and ip_ire_{min,max}_bucket_cnt that are
5043 	 * in effect when the zone is booted.
5044 	 */
5045 	mem_avail = kmem_avail();
5046 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
5047 	    ip_cache_table_size / sizeof (ire_t);
5048 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
5049 
5050 	min_cnt = MIN(cpu_cnt, mem_cnt);
5051 	if (min_cnt < ip_ire_min_bucket_cnt)
5052 		min_cnt = ip_ire_min_bucket_cnt;
5053 	if (ip_ire_max_bucket_cnt > min_cnt) {
5054 		ip_ire_max_bucket_cnt = min_cnt;
5055 	}
5056 
5057 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
5058 	    ip6_cache_table_size / sizeof (ire_t);
5059 	min_cnt = MIN(cpu_cnt, mem_cnt);
5060 	if (min_cnt < ip6_ire_min_bucket_cnt)
5061 		min_cnt = ip6_ire_min_bucket_cnt;
5062 	if (ip6_ire_max_bucket_cnt > min_cnt) {
5063 		ip6_ire_max_bucket_cnt = min_cnt;
5064 	}
5065 
5066 	mutex_init(&ipst->ips_ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0);
5067 	mutex_init(&ipst->ips_ire_handle_lock, NULL, MUTEX_DEFAULT, NULL);
5068 	mutex_init(&ipst->ips_ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL);
5069 	mutex_init(&ipst->ips_ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL);
5070 
5071 	(void) rn_inithead((void **)&ipst->ips_ip_ftable, 32);
5072 
5073 
5074 	/* Calculate the IPv4 cache table size. */
5075 	ipst->ips_ip_cache_table_size = MAX(ip_cache_table_size,
5076 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
5077 	    ip_ire_max_bucket_cnt));
5078 	if (ipst->ips_ip_cache_table_size > ip_max_cache_table_size)
5079 		ipst->ips_ip_cache_table_size = ip_max_cache_table_size;
5080 	/*
5081 	 * Make sure that the table size is always a power of 2.  The
5082 	 * hash macro IRE_ADDR_HASH() depends on that.
5083 	 */
5084 	power2_roundup(&ipst->ips_ip_cache_table_size);
5085 
5086 	ipst->ips_ip_cache_table = kmem_zalloc(ipst->ips_ip_cache_table_size *
5087 	    sizeof (irb_t), KM_SLEEP);
5088 
5089 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
5090 		rw_init(&ipst->ips_ip_cache_table[i].irb_lock, NULL,
5091 		    RW_DEFAULT, NULL);
5092 	}
5093 
5094 	/* Calculate the IPv6 cache table size. */
5095 	ipst->ips_ip6_cache_table_size = MAX(ip6_cache_table_size,
5096 	    ((mem_avail >> ip_ire_mem_ratio) / sizeof (ire_t) /
5097 	    ip6_ire_max_bucket_cnt));
5098 	if (ipst->ips_ip6_cache_table_size > ip6_max_cache_table_size)
5099 		ipst->ips_ip6_cache_table_size = ip6_max_cache_table_size;
5100 	/*
5101 	 * Make sure that the table size is always a power of 2.  The
5102 	 * hash macro IRE_ADDR_HASH_V6() depends on that.
5103 	 */
5104 	power2_roundup(&ipst->ips_ip6_cache_table_size);
5105 
5106 	ipst->ips_ip_cache_table_v6 = kmem_zalloc(
5107 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t), KM_SLEEP);
5108 
5109 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
5110 		rw_init(&ipst->ips_ip_cache_table_v6[i].irb_lock, NULL,
5111 		    RW_DEFAULT, NULL);
5112 	}
5113 
5114 	/*
5115 	 * Initialize ip_mrtun_table to NULL now, it will be
5116 	 * populated by ip_rt_add if reverse tunnel is created
5117 	 */
5118 	ipst->ips_ip_mrtun_table = NULL;
5119 
5120 	/*
5121 	 * Make sure that the forwarding table size is a power of 2.
5122 	 * The IRE*_ADDR_HASH() macroes depend on that.
5123 	 */
5124 	ipst->ips_ip6_ftable_hash_size = ip6_ftable_hash_size;
5125 	power2_roundup(&ipst->ips_ip6_ftable_hash_size);
5126 
5127 	ipst->ips_ire_handle = 1;
5128 }
5129 
5130 void
5131 ip_ire_g_fini(void)
5132 {
5133 	kmem_cache_destroy(ire_cache);
5134 	kmem_cache_destroy(rt_entry_cache);
5135 
5136 	rn_fini();
5137 }
5138 
5139 void
5140 ip_ire_fini(ip_stack_t *ipst)
5141 {
5142 	int i;
5143 
5144 	/*
5145 	 * Delete all IREs - assumes that the ill/ipifs have
5146 	 * been removed so what remains are just the ftable and IRE_CACHE.
5147 	 */
5148 	ire_walk_ill_mrtun(0, 0, ire_delete, NULL, NULL, ipst);
5149 	ire_walk(ire_delete, NULL, ipst);
5150 
5151 	rn_freehead(ipst->ips_ip_ftable);
5152 	ipst->ips_ip_ftable = NULL;
5153 
5154 	mutex_destroy(&ipst->ips_ire_ft_init_lock);
5155 	mutex_destroy(&ipst->ips_ire_handle_lock);
5156 	mutex_destroy(&ipst->ips_ire_mrtun_lock);
5157 	mutex_destroy(&ipst->ips_ire_srcif_table_lock);
5158 
5159 	for (i = 0; i < ipst->ips_ip_cache_table_size; i++) {
5160 		ASSERT(ipst->ips_ip_cache_table[i].irb_ire == NULL);
5161 		rw_destroy(&ipst->ips_ip_cache_table[i].irb_lock);
5162 	}
5163 	kmem_free(ipst->ips_ip_cache_table,
5164 	    ipst->ips_ip_cache_table_size * sizeof (irb_t));
5165 	ipst->ips_ip_cache_table = NULL;
5166 
5167 	for (i = 0; i < ipst->ips_ip6_cache_table_size; i++) {
5168 		ASSERT(ipst->ips_ip_cache_table_v6[i].irb_ire == NULL);
5169 		rw_destroy(&ipst->ips_ip_cache_table_v6[i].irb_lock);
5170 	}
5171 	kmem_free(ipst->ips_ip_cache_table_v6,
5172 	    ipst->ips_ip6_cache_table_size * sizeof (irb_t));
5173 	ipst->ips_ip_cache_table_v6 = NULL;
5174 
5175 	if (ipst->ips_ip_mrtun_table != NULL) {
5176 		for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5177 			ASSERT(ipst->ips_ip_mrtun_table[i].irb_ire == NULL);
5178 			rw_destroy(&ipst->ips_ip_mrtun_table[i].irb_lock);
5179 		}
5180 		kmem_free(ipst->ips_ip_mrtun_table,
5181 		    IP_MRTUN_TABLE_SIZE * sizeof (irb_t));
5182 		ipst->ips_ip_mrtun_table = NULL;
5183 	}
5184 
5185 	for (i = 0; i < IP6_MASK_TABLE_SIZE; i++) {
5186 		irb_t *ptr;
5187 		int j;
5188 
5189 		if ((ptr = ipst->ips_ip_forwarding_table_v6[i]) == NULL)
5190 			continue;
5191 
5192 		for (j = 0; j < ipst->ips_ip6_ftable_hash_size; j++) {
5193 			ASSERT(ptr[j].irb_ire == NULL);
5194 			rw_destroy(&ptr[j].irb_lock);
5195 		}
5196 		mi_free(ptr);
5197 		ipst->ips_ip_forwarding_table_v6[i] = NULL;
5198 	}
5199 }
5200 
5201 int
5202 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5203 {
5204 	ire_t   *ire1;
5205 	irb_t	*irb_ptr;
5206 	ire_t	**irep;
5207 	ire_t	*ire = *ire_p;
5208 	int	i;
5209 	uint_t	max_frag;
5210 	ill_t	*stq_ill;
5211 	int error;
5212 	ip_stack_t	*ipst = ire->ire_ipst;
5213 
5214 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5215 	/* Is ip_mrtun_table empty ? */
5216 
5217 	if (ipst->ips_ip_mrtun_table == NULL) {
5218 		/* create the mrtun table */
5219 		mutex_enter(&ipst->ips_ire_mrtun_lock);
5220 		if (ipst->ips_ip_mrtun_table == NULL) {
5221 			ipst->ips_ip_mrtun_table = kmem_zalloc(
5222 			    IP_MRTUN_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP);
5223 
5224 			if (ipst->ips_ip_mrtun_table == NULL) {
5225 				ip2dbg(("ire_add_mrtun: allocation failure\n"));
5226 				mutex_exit(&ipst->ips_ire_mrtun_lock);
5227 				ire_refrele(ire);
5228 				*ire_p = NULL;
5229 				return (ENOMEM);
5230 			}
5231 
5232 			for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5233 				rw_init(&ipst->ips_ip_mrtun_table[i].irb_lock,
5234 				    NULL, RW_DEFAULT, NULL);
5235 			}
5236 			ip2dbg(("ire_add_mrtun: mrtun table is created\n"));
5237 		}
5238 		/* some other thread got it and created the table */
5239 		mutex_exit(&ipst->ips_ire_mrtun_lock);
5240 	}
5241 
5242 	/*
5243 	 * Check for duplicate in the bucket and insert in the table
5244 	 */
5245 	irb_ptr = &(ipst->ips_ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr,
5246 	    IP_MRTUN_TABLE_SIZE)]);
5247 
5248 	/*
5249 	 * Start the atomic add of the ire. Grab the ill locks,
5250 	 * ill_g_usesrc_lock and the bucket lock.
5251 	 *
5252 	 * If ipif or ill is changing ire_atomic_start() may queue the
5253 	 * request and return EINPROGRESS.
5254 	 */
5255 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5256 	if (error != 0) {
5257 		/*
5258 		 * We don't know whether it is a valid ipif or not.
5259 		 * So, set it to NULL. This assumes that the ire has not added
5260 		 * a reference to the ipif.
5261 		 */
5262 		ire->ire_ipif = NULL;
5263 		ire_delete(ire);
5264 		ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n"));
5265 		*ire_p = NULL;
5266 		return (error);
5267 	}
5268 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5269 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5270 			continue;
5271 		/* has anyone inserted the route in the meanwhile ? */
5272 		if (ire1->ire_in_ill == ire->ire_in_ill &&
5273 		    ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5274 			ip1dbg(("ire_add_mrtun: Duplicate entry exists\n"));
5275 			IRE_REFHOLD(ire1);
5276 			ire_atomic_end(irb_ptr, ire);
5277 			ire_delete(ire);
5278 			/* Return the old ire */
5279 			*ire_p = ire1;
5280 			return (0);
5281 		}
5282 	}
5283 
5284 	/* Atomically set the ire_max_frag */
5285 	max_frag = *ire->ire_max_fragp;
5286 	ire->ire_max_fragp = NULL;
5287 	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5288 	ASSERT(ire->ire_type != IRE_CACHE);
5289 	irep = (ire_t **)irb_ptr;
5290 	if (*irep != NULL) {
5291 		/* Find the last ire which matches ire_in_src_addr */
5292 		ire1 = *irep;
5293 		while (ire1->ire_in_src_addr == ire->ire_in_src_addr) {
5294 			irep = &ire1->ire_next;
5295 			ire1 = *irep;
5296 			if (ire1 == NULL)
5297 				break;
5298 		}
5299 	}
5300 	ire1 = *irep;
5301 	if (ire1 != NULL)
5302 		ire1->ire_ptpn = &ire->ire_next;
5303 	ire->ire_next = ire1;
5304 	/* Link the new one in. */
5305 	ire->ire_ptpn = irep;
5306 	membar_producer();
5307 	*irep = ire;
5308 	ire->ire_bucket = irb_ptr;
5309 	IRE_REFHOLD_LOCKED(ire);
5310 
5311 	ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep));
5312 
5313 	/*
5314 	 * Protect ire_mrtun_count and ill_mrtun_refcnt from
5315 	 * another thread trying to add ire in the table
5316 	 */
5317 	mutex_enter(&ipst->ips_ire_mrtun_lock);
5318 	ipst->ips_ire_mrtun_count++;
5319 	mutex_exit(&ipst->ips_ire_mrtun_lock);
5320 	/*
5321 	 * ill_mrtun_refcnt is protected by the ill_lock held via
5322 	 * ire_atomic_start
5323 	 */
5324 	ire->ire_in_ill->ill_mrtun_refcnt++;
5325 
5326 	if (ire->ire_ipif != NULL) {
5327 		ire->ire_ipif->ipif_ire_cnt++;
5328 		if (ire->ire_stq != NULL) {
5329 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5330 			stq_ill->ill_ire_cnt++;
5331 		}
5332 	} else {
5333 		ASSERT(ire->ire_stq == NULL);
5334 	}
5335 
5336 	ire_atomic_end(irb_ptr, ire);
5337 	nce_fastpath(ire->ire_nce);
5338 	*ire_p = ire;
5339 	return (0);
5340 }
5341 
5342 
5343 /* Walks down the mrtun table */
5344 
5345 void
5346 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg,
5347     ill_t *ill, ip_stack_t *ipst)
5348 {
5349 	irb_t	*irb;
5350 	ire_t	*ire;
5351 	int	i;
5352 	int	ret;
5353 
5354 	ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL |
5355 	    MATCH_IRE_ILL_GROUP))) || (ill != NULL));
5356 	ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN);
5357 
5358 	mutex_enter(&ipst->ips_ire_mrtun_lock);
5359 	if (ipst->ips_ire_mrtun_count == 0) {
5360 		mutex_exit(&ipst->ips_ire_mrtun_lock);
5361 		return;
5362 	}
5363 	mutex_exit(&ipst->ips_ire_mrtun_lock);
5364 
5365 	ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n"));
5366 	for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) {
5367 
5368 		irb = &(ipst->ips_ip_mrtun_table[i]);
5369 		if (irb->irb_ire == NULL)
5370 			continue;
5371 		IRB_REFHOLD(irb);
5372 		for (ire = irb->irb_ire; ire != NULL;
5373 		    ire = ire->ire_next) {
5374 			ASSERT(ire->ire_ipversion == IPV4_VERSION);
5375 			if (match_flags != 0) {
5376 				ret = ire_walk_ill_match(
5377 				    match_flags, ire_type,
5378 				    ire, ill, ALL_ZONES, ipst);
5379 			}
5380 			if (match_flags == 0 || ret)
5381 				(*func)(ire, arg);
5382 		}
5383 		IRB_REFRELE(irb);
5384 	}
5385 }
5386 
5387 /*
5388  * Source interface based lookup routine (IPV4 only).
5389  * This routine is called only when RTA_SRCIFP bitflag is set
5390  * by routing socket while adding/deleting the route and it is
5391  * also called from ip_rput() when packets arrive from an interface
5392  * for which ill_srcif_ref_cnt is positive. This function is useful
5393  * when a packet coming from one interface must be forwarded to another
5394  * designated interface to reach the correct node. This function is also
5395  * called from ip_newroute when the link-layer address of an ire is resolved.
5396  * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type
5397  * ires--thus the ire_type parameter is needed.
5398  */
5399 
5400 ire_t *
5401 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif,
5402     ill_t *in_ill, int flags)
5403 {
5404 	irb_t	*irb_ptr;
5405 	ire_t	*ire;
5406 	irb_t	*ire_srcif_table;
5407 
5408 	ASSERT(in_ill != NULL && !in_ill->ill_isv6);
5409 	ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) ||
5410 	    (ipif != NULL && !ipif->ipif_isv6));
5411 
5412 	/*
5413 	 * No need to lock the ill since it is refheld by the caller of this
5414 	 * function
5415 	 */
5416 	if (in_ill->ill_srcif_table == NULL) {
5417 		return (NULL);
5418 	}
5419 
5420 	if (!(flags & MATCH_IRE_TYPE)) {
5421 		flags |= MATCH_IRE_TYPE;
5422 		ire_type = IRE_INTERFACE;
5423 	}
5424 	ire_srcif_table = in_ill->ill_srcif_table;
5425 	irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr,
5426 	    IP_SRCIF_TABLE_SIZE)];
5427 	rw_enter(&irb_ptr->irb_lock, RW_READER);
5428 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
5429 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
5430 			continue;
5431 		if (ire_match_args(ire, dst_addr, ire->ire_mask, 0,
5432 		    ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) {
5433 			IRE_REFHOLD(ire);
5434 			rw_exit(&irb_ptr->irb_lock);
5435 			return (ire);
5436 		}
5437 	}
5438 	/* Not Found */
5439 	rw_exit(&irb_ptr->irb_lock);
5440 	return (NULL);
5441 }
5442 
5443 
5444 /*
5445  * Adds the ire into the special routing table which is hanging off of
5446  * the src_ipif->ipif_ill. It also increments the refcnt in the ill.
5447  * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER
5448  * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL
5449  * for IRE_IF_RESOLVER entry because we do not have the dst_addr's
5450  * link-layer address at the time of addition.
5451  * Upon resolving the address from ARP, dlureq_mp field is updated with
5452  * proper information in ire_update_srcif_v4.
5453  */
5454 static int
5455 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func)
5456 {
5457 	ire_t	*ire1;
5458 	irb_t	*ire_srcifp_table = NULL;
5459 	irb_t	*irb_ptr = NULL;
5460 	ire_t   **irep;
5461 	ire_t   *ire;
5462 	int	flags;
5463 	int	i;
5464 	ill_t	*stq_ill;
5465 	uint_t	max_frag;
5466 	int error = 0;
5467 	ip_stack_t	*ipst;
5468 
5469 	ire = *ire_p;
5470 	ipst = ire->ire_ipst;
5471 	ASSERT(ire->ire_in_ill != NULL);
5472 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5473 	ASSERT(ire->ire_type == IRE_IF_NORESOLVER ||
5474 	    ire->ire_type == IRE_IF_RESOLVER);
5475 
5476 	ire->ire_mask = IP_HOST_MASK;
5477 	/*
5478 	 * Update ire_nce->nce_res_mp with NULL value upon creation;
5479 	 * first free the default res_mp created by ire_nce_init.
5480 	 */
5481 	freeb(ire->ire_nce->nce_res_mp);
5482 	if (ire->ire_type == IRE_IF_RESOLVER) {
5483 		/*
5484 		 * assign NULL now, it will be updated
5485 		 * with correct value upon returning from
5486 		 * ARP
5487 		 */
5488 		ire->ire_nce->nce_res_mp = NULL;
5489 	} else {
5490 		ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL,
5491 		    ire->ire_ipif->ipif_ill->ill_phys_addr_length,
5492 		    ire->ire_ipif->ipif_ill->ill_sap,
5493 		    ire->ire_ipif->ipif_ill->ill_sap_length);
5494 	}
5495 	/* Make sure the address is properly masked. */
5496 	ire->ire_addr &= ire->ire_mask;
5497 
5498 	ASSERT(ire->ire_max_fragp != NULL);
5499 	max_frag = *ire->ire_max_fragp;
5500 	ire->ire_max_fragp = NULL;
5501 	ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET);
5502 
5503 	mutex_enter(&ire->ire_in_ill->ill_lock);
5504 	if (ire->ire_in_ill->ill_srcif_table == NULL) {
5505 		/* create the incoming interface based table */
5506 		ire->ire_in_ill->ill_srcif_table = kmem_zalloc(
5507 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t), KM_NOSLEEP);
5508 		if (ire->ire_in_ill->ill_srcif_table == NULL) {
5509 			ip1dbg(("ire_add_srcif_v4: Allocation fail\n"));
5510 			mutex_exit(&ire->ire_in_ill->ill_lock);
5511 			ire_delete(ire);
5512 			*ire_p = NULL;
5513 			return (ENOMEM);
5514 		}
5515 		ire_srcifp_table = ire->ire_in_ill->ill_srcif_table;
5516 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
5517 			rw_init(&ire_srcifp_table[i].irb_lock, NULL,
5518 			    RW_DEFAULT, NULL);
5519 		}
5520 		ip2dbg(("ire_add_srcif_v4: table created for ill %p\n",
5521 		    (void *)ire->ire_in_ill));
5522 	}
5523 	/* Check for duplicate and insert */
5524 	ASSERT(ire->ire_in_ill->ill_srcif_table != NULL);
5525 	irb_ptr =
5526 	    &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr,
5527 	    IP_SRCIF_TABLE_SIZE)]);
5528 	mutex_exit(&ire->ire_in_ill->ill_lock);
5529 	flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
5530 	flags |= MATCH_IRE_IPIF;
5531 
5532 	/*
5533 	 * Start the atomic add of the ire. Grab the ill locks,
5534 	 * ill_g_usesrc_lock and the bucket lock.
5535 	 *
5536 	 * If ipif or ill is changing ire_atomic_start() may queue the
5537 	 * request and return EINPROGRESS.
5538 	 */
5539 	error = ire_atomic_start(irb_ptr, ire, q, mp, func);
5540 	if (error != 0) {
5541 		/*
5542 		 * We don't know whether it is a valid ipif or not.
5543 		 * So, set it to NULL. This assumes that the ire has not added
5544 		 * a reference to the ipif.
5545 		 */
5546 		ire->ire_ipif = NULL;
5547 		ire_delete(ire);
5548 		ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n"));
5549 		*ire_p = NULL;
5550 		return (error);
5551 	}
5552 	for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
5553 		if (ire1->ire_marks & IRE_MARK_CONDEMNED)
5554 			continue;
5555 		if (ire1->ire_zoneid != ire->ire_zoneid)
5556 			continue;
5557 		/* Has anyone inserted route in the meanwhile ? */
5558 		if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0,
5559 		    ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL,
5560 		    flags)) {
5561 			ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n"));
5562 			IRE_REFHOLD(ire1);
5563 			ire_atomic_end(irb_ptr, ire);
5564 			ire_delete(ire);
5565 			/* Return old ire as in ire_add_v4 */
5566 			*ire_p = ire1;
5567 			return (0);
5568 		}
5569 	}
5570 	irep = (ire_t **)irb_ptr;
5571 	if (*irep != NULL) {
5572 		/* Find the last ire which matches ire_addr */
5573 		ire1 = *irep;
5574 		while (ire1->ire_addr == ire->ire_addr) {
5575 			irep = &ire1->ire_next;
5576 			ire1 = *irep;
5577 			if (ire1 == NULL)
5578 				break;
5579 		}
5580 	}
5581 	ire1 = *irep;
5582 	if (ire1 != NULL)
5583 		ire1->ire_ptpn = &ire->ire_next;
5584 	ire->ire_next = ire1;
5585 	/* Link the new one in. */
5586 	ire->ire_ptpn = irep;
5587 	membar_producer();
5588 	*irep = ire;
5589 	ire->ire_bucket = irb_ptr;
5590 	IRE_REFHOLD_LOCKED(ire);
5591 
5592 	/*
5593 	 * Protect ire_in_ill->ill_srcif_refcnt and table reference count.
5594 	 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock
5595 	 * so ill_srcif_refcnt is already protected.
5596 	 */
5597 	ire->ire_in_ill->ill_srcif_refcnt++;
5598 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
5599 	ipst->ips_ire_srcif_table_count++;
5600 	mutex_exit(&ipst->ips_ire_srcif_table_lock);
5601 	irb_ptr->irb_ire_cnt++;
5602 	if (ire->ire_ipif != NULL) {
5603 		ire->ire_ipif->ipif_ire_cnt++;
5604 		if (ire->ire_stq != NULL) {
5605 			stq_ill = (ill_t *)ire->ire_stq->q_ptr;
5606 			stq_ill->ill_ire_cnt++;
5607 		}
5608 	} else {
5609 		ASSERT(ire->ire_stq == NULL);
5610 	}
5611 
5612 	ire_atomic_end(irb_ptr, ire);
5613 	*ire_p = ire;
5614 	return (0);
5615 }
5616 
5617 
5618 /*
5619  * This function is called by ire_add_then_send when ARP request comes
5620  * back to ip_wput->ire_add_then_send for resolved ire in the interface
5621  * based routing table. At this point, it only needs to update the resolver
5622  * information for the ire. The passed ire is returned to the caller as it
5623  * is the ire which is created as mblk.
5624  */
5625 static ire_t *
5626 ire_update_srcif_v4(ire_t *ire)
5627 {
5628 	ire_t   *ire1;
5629 	irb_t	*irb;
5630 	int	error;
5631 
5632 	ASSERT(ire->ire_type != IRE_MIPRTUN &&
5633 	    ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER);
5634 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
5635 
5636 	/*
5637 	 * This ire is from ARP. Update
5638 	 * ire_nce->nce_res_mp info
5639 	 */
5640 	ire1 = ire_srcif_table_lookup(ire->ire_addr,
5641 	    IRE_IF_RESOLVER, ire->ire_ipif,
5642 	    ire->ire_in_ill,
5643 	    MATCH_IRE_ILL | MATCH_IRE_TYPE);
5644 	if (ire1 == NULL) {
5645 		/* Mobile node registration expired ? */
5646 		ire_delete(ire);
5647 		return (NULL);
5648 	}
5649 	irb = ire1->ire_bucket;
5650 	ASSERT(irb != NULL);
5651 	/*
5652 	 * Start the atomic add of the ire. Grab the ill locks,
5653 	 * ill_g_usesrc_lock and the bucket lock.
5654 	 */
5655 	error = ire_atomic_start(irb, ire1, NULL, NULL, NULL);
5656 	if (error != 0) {
5657 		/*
5658 		 * We don't know whether it is a valid ipif or not.
5659 		 * So, set it to NULL. This assumes that the ire has not added
5660 		 * a reference to the ipif.
5661 		 */
5662 		ire->ire_ipif = NULL;
5663 		ire_delete(ire);
5664 		ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n"));
5665 		return (NULL);
5666 	}
5667 	ASSERT(ire->ire_max_fragp == NULL);
5668 	ire->ire_max_frag = ire1->ire_max_frag;
5669 	/*
5670 	 * Update resolver information and
5671 	 * send-to queue.
5672 	 */
5673 	ASSERT(ire->ire_nce->nce_res_mp != NULL);
5674 	ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp);
5675 	if (ire1->ire_nce->nce_res_mp ==  NULL) {
5676 		ip0dbg(("ire_update_srcif: copyb failed\n"));
5677 		ire_refrele(ire1);
5678 		ire_refrele(ire);
5679 		ire_atomic_end(irb, ire1);
5680 		return (NULL);
5681 	}
5682 	ire1->ire_stq = ire->ire_stq;
5683 
5684 	ASSERT(ire->ire_nce->nce_fp_mp == NULL);
5685 
5686 	ire_atomic_end(irb, ire1);
5687 	ire_refrele(ire1);
5688 	/* Return the passed ire */
5689 	return (ire);   /* Update done */
5690 }
5691 
5692 
5693 /*
5694  * Check if another multirt route resolution is needed.
5695  * B_TRUE is returned is there remain a resolvable route,
5696  * or if no route for that dst is resolved yet.
5697  * B_FALSE is returned if all routes for that dst are resolved
5698  * or if the remaining unresolved routes are actually not
5699  * resolvable.
5700  * This only works in the global zone.
5701  */
5702 boolean_t
5703 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl, ip_stack_t *ipst)
5704 {
5705 	ire_t	*first_fire;
5706 	ire_t	*first_cire;
5707 	ire_t	*fire;
5708 	ire_t	*cire;
5709 	irb_t	*firb;
5710 	irb_t	*cirb;
5711 	int	unres_cnt = 0;
5712 	boolean_t resolvable = B_FALSE;
5713 
5714 	/* Retrieve the first IRE_HOST that matches the destination */
5715 	first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL,
5716 	    NULL, ALL_ZONES, 0, tsl,
5717 	    MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
5718 
5719 	/* No route at all */
5720 	if (first_fire == NULL) {
5721 		return (B_TRUE);
5722 	}
5723 
5724 	firb = first_fire->ire_bucket;
5725 	ASSERT(firb != NULL);
5726 
5727 	/* Retrieve the first IRE_CACHE ire for that destination. */
5728 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5729 
5730 	/* No resolved route. */
5731 	if (first_cire == NULL) {
5732 		ire_refrele(first_fire);
5733 		return (B_TRUE);
5734 	}
5735 
5736 	/*
5737 	 * At least one route is resolved. Here we look through the forward
5738 	 * and cache tables, to compare the number of declared routes
5739 	 * with the number of resolved routes. The search for a resolvable
5740 	 * route is performed only if at least one route remains
5741 	 * unresolved.
5742 	 */
5743 	cirb = first_cire->ire_bucket;
5744 	ASSERT(cirb != NULL);
5745 
5746 	/* Count the number of routes to that dest that are declared. */
5747 	IRB_REFHOLD(firb);
5748 	for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5749 		if (!(fire->ire_flags & RTF_MULTIRT))
5750 			continue;
5751 		if (fire->ire_addr != dst)
5752 			continue;
5753 		unres_cnt++;
5754 	}
5755 	IRB_REFRELE(firb);
5756 
5757 	/* Then subtract the number of routes to that dst that are resolved */
5758 	IRB_REFHOLD(cirb);
5759 	for (cire = first_cire; cire != NULL; cire = cire->ire_next) {
5760 		if (!(cire->ire_flags & RTF_MULTIRT))
5761 			continue;
5762 		if (cire->ire_addr != dst)
5763 			continue;
5764 		if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
5765 			continue;
5766 		unres_cnt--;
5767 	}
5768 	IRB_REFRELE(cirb);
5769 
5770 	/* At least one route is unresolved; search for a resolvable route. */
5771 	if (unres_cnt > 0)
5772 		resolvable = ire_multirt_lookup(&first_cire, &first_fire,
5773 		    MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl, ipst);
5774 
5775 	if (first_fire != NULL)
5776 		ire_refrele(first_fire);
5777 
5778 	if (first_cire != NULL)
5779 		ire_refrele(first_cire);
5780 
5781 	return (resolvable);
5782 }
5783 
5784 
5785 /*
5786  * Explore a forward_table bucket, starting from fire_arg.
5787  * fire_arg MUST be an IRE_HOST entry.
5788  *
5789  * Return B_TRUE and update *ire_arg and *fire_arg
5790  * if at least one resolvable route is found. *ire_arg
5791  * is the IRE entry for *fire_arg's gateway.
5792  *
5793  * Return B_FALSE otherwise (all routes are resolved or
5794  * the remaining unresolved routes are all unresolvable).
5795  *
5796  * The IRE selection relies on a priority mechanism
5797  * driven by the flags passed in by the caller.
5798  * The caller, such as ip_newroute_ipif(), can get the most
5799  * relevant ire at each stage of a multiple route resolution.
5800  *
5801  * The rules are:
5802  *
5803  * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE
5804  *   ires are preferred for the gateway. This gives the highest
5805  *   priority to routes that can be resolved without using
5806  *   a resolver.
5807  *
5808  * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW
5809  *   is specified but no IRE_CACHETABLE ire entry for the gateway
5810  *   is found, the following rules apply.
5811  *
5812  * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE
5813  *   ires for the gateway, that have not been tried since
5814  *   a configurable amount of time, are preferred.
5815  *   This applies when a resolver must be invoked for
5816  *   a missing route, but we don't want to use the resolver
5817  *   upon each packet emission. If no such resolver is found,
5818  *   B_FALSE is returned.
5819  *   The MULTIRT_USESTAMP flag can be combined with
5820  *   MULTIRT_CACHEGW.
5821  *
5822  * - if MULTIRT_USESTAMP is not specified in flags, the first
5823  *   unresolved but resolvable route is selected.
5824  *
5825  * - Otherwise, there is no resolvalble route, and
5826  *   B_FALSE is returned.
5827  *
5828  * At last, MULTIRT_SETSTAMP can be specified in flags to
5829  * request the timestamp of unresolvable routes to
5830  * be refreshed. This prevents the useless exploration
5831  * of those routes for a while, when MULTIRT_USESTAMP is used.
5832  *
5833  * This only works in the global zone.
5834  */
5835 boolean_t
5836 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags,
5837     const ts_label_t *tsl, ip_stack_t *ipst)
5838 {
5839 	clock_t	delta;
5840 	ire_t	*best_fire = NULL;
5841 	ire_t	*best_cire = NULL;
5842 	ire_t	*first_fire;
5843 	ire_t	*first_cire;
5844 	ire_t	*fire;
5845 	ire_t	*cire;
5846 	irb_t	*firb = NULL;
5847 	irb_t	*cirb = NULL;
5848 	ire_t	*gw_ire;
5849 	boolean_t	already_resolved;
5850 	boolean_t	res;
5851 	ipaddr_t	dst;
5852 	ipaddr_t	gw;
5853 
5854 	ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n",
5855 	    (void *)*ire_arg, (void *)*fire_arg, flags));
5856 
5857 	ASSERT(ire_arg != NULL);
5858 	ASSERT(fire_arg != NULL);
5859 
5860 	/* Not an IRE_HOST ire; give up. */
5861 	if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) {
5862 		return (B_FALSE);
5863 	}
5864 
5865 	/* This is the first IRE_HOST ire for that destination. */
5866 	first_fire = *fire_arg;
5867 	firb = first_fire->ire_bucket;
5868 	ASSERT(firb != NULL);
5869 
5870 	dst = first_fire->ire_addr;
5871 
5872 	ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst)));
5873 
5874 	/*
5875 	 * Retrieve the first IRE_CACHE ire for that destination;
5876 	 * if we don't find one, no route for that dest is
5877 	 * resolved yet.
5878 	 */
5879 	first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl, ipst);
5880 	if (first_cire != NULL) {
5881 		cirb = first_cire->ire_bucket;
5882 	}
5883 
5884 	ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire));
5885 
5886 	/*
5887 	 * Search for a resolvable route, giving the top priority
5888 	 * to routes that can be resolved without any call to the resolver.
5889 	 */
5890 	IRB_REFHOLD(firb);
5891 
5892 	if (!CLASSD(dst)) {
5893 		/*
5894 		 * For all multiroute IRE_HOST ires for that destination,
5895 		 * check if the route via the IRE_HOST's gateway is
5896 		 * resolved yet.
5897 		 */
5898 		for (fire = first_fire; fire != NULL; fire = fire->ire_next) {
5899 
5900 			if (!(fire->ire_flags & RTF_MULTIRT))
5901 				continue;
5902 			if (fire->ire_addr != dst)
5903 				continue;
5904 
5905 			if (fire->ire_gw_secattr != NULL &&
5906 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
5907 				continue;
5908 			}
5909 
5910 			gw = fire->ire_gateway_addr;
5911 
5912 			ip2dbg(("ire_multirt_lookup: fire %p, "
5913 			    "ire_addr %08x, ire_gateway_addr %08x\n",
5914 			    (void *)fire, ntohl(fire->ire_addr), ntohl(gw)));
5915 
5916 			already_resolved = B_FALSE;
5917 
5918 			if (first_cire != NULL) {
5919 				ASSERT(cirb != NULL);
5920 
5921 				IRB_REFHOLD(cirb);
5922 				/*
5923 				 * For all IRE_CACHE ires for that
5924 				 * destination.
5925 				 */
5926 				for (cire = first_cire;
5927 				    cire != NULL;
5928 				    cire = cire->ire_next) {
5929 
5930 					if (!(cire->ire_flags & RTF_MULTIRT))
5931 						continue;
5932 					if (cire->ire_addr != dst)
5933 						continue;
5934 					if (cire->ire_marks &
5935 					    (IRE_MARK_CONDEMNED |
5936 					    IRE_MARK_HIDDEN))
5937 						continue;
5938 
5939 					if (cire->ire_gw_secattr != NULL &&
5940 					    tsol_ire_match_gwattr(cire,
5941 					    tsl) != 0) {
5942 						continue;
5943 					}
5944 
5945 					/*
5946 					 * Check if the IRE_CACHE's gateway
5947 					 * matches the IRE_HOST's gateway.
5948 					 */
5949 					if (cire->ire_gateway_addr == gw) {
5950 						already_resolved = B_TRUE;
5951 						break;
5952 					}
5953 				}
5954 				IRB_REFRELE(cirb);
5955 			}
5956 
5957 			/*
5958 			 * This route is already resolved;
5959 			 * proceed with next one.
5960 			 */
5961 			if (already_resolved) {
5962 				ip2dbg(("ire_multirt_lookup: found cire %p, "
5963 				    "already resolved\n", (void *)cire));
5964 				continue;
5965 			}
5966 
5967 			/*
5968 			 * The route is unresolved; is it actually
5969 			 * resolvable, i.e. is there a cache or a resolver
5970 			 * for the gateway?
5971 			 */
5972 			gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL,
5973 			    ALL_ZONES, tsl,
5974 			    MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR, ipst);
5975 
5976 			ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n",
5977 			    (void *)gw_ire));
5978 
5979 			/*
5980 			 * If gw_ire is typed IRE_CACHETABLE,
5981 			 * this route can be resolved without any call to the
5982 			 * resolver. If the MULTIRT_CACHEGW flag is set,
5983 			 * give the top priority to this ire and exit the
5984 			 * loop.
5985 			 * This is typically the case when an ARP reply
5986 			 * is processed through ip_wput_nondata().
5987 			 */
5988 			if ((flags & MULTIRT_CACHEGW) &&
5989 			    (gw_ire != NULL) &&
5990 			    (gw_ire->ire_type & IRE_CACHETABLE)) {
5991 				ASSERT(gw_ire->ire_nce == NULL ||
5992 				    gw_ire->ire_nce->nce_state == ND_REACHABLE);
5993 				/*
5994 				 * Release the resolver associated to the
5995 				 * previous candidate best ire, if any.
5996 				 */
5997 				if (best_cire != NULL) {
5998 					ire_refrele(best_cire);
5999 					ASSERT(best_fire != NULL);
6000 				}
6001 
6002 				best_fire = fire;
6003 				best_cire = gw_ire;
6004 
6005 				ip2dbg(("ire_multirt_lookup: found top prio "
6006 				    "best_fire %p, best_cire %p\n",
6007 				    (void *)best_fire, (void *)best_cire));
6008 				break;
6009 			}
6010 
6011 			/*
6012 			 * Compute the time elapsed since our preceding
6013 			 * attempt to  resolve that route.
6014 			 * If the MULTIRT_USESTAMP flag is set, we take that
6015 			 * route into account only if this time interval
6016 			 * exceeds ip_multirt_resolution_interval;
6017 			 * this prevents us from attempting to resolve a
6018 			 * broken route upon each sending of a packet.
6019 			 */
6020 			delta = lbolt - fire->ire_last_used_time;
6021 			delta = TICK_TO_MSEC(delta);
6022 
6023 			res = (boolean_t)((delta >
6024 			    ipst->ips_ip_multirt_resolution_interval) ||
6025 			    (!(flags & MULTIRT_USESTAMP)));
6026 
6027 			ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, "
6028 			    "res %d\n",
6029 			    (void *)fire, delta, res));
6030 
6031 			if (res) {
6032 				/*
6033 				 * We are here if MULTIRT_USESTAMP flag is set
6034 				 * and the resolver for fire's gateway
6035 				 * has not been tried since
6036 				 * ip_multirt_resolution_interval, or if
6037 				 * MULTIRT_USESTAMP is not set but gw_ire did
6038 				 * not fill the conditions for MULTIRT_CACHEGW,
6039 				 * or if neither MULTIRT_USESTAMP nor
6040 				 * MULTIRT_CACHEGW are set.
6041 				 */
6042 				if (gw_ire != NULL) {
6043 					if (best_fire == NULL) {
6044 						ASSERT(best_cire == NULL);
6045 
6046 						best_fire = fire;
6047 						best_cire = gw_ire;
6048 
6049 						ip2dbg(("ire_multirt_lookup:"
6050 						    "found candidate "
6051 						    "best_fire %p, "
6052 						    "best_cire %p\n",
6053 						    (void *)best_fire,
6054 						    (void *)best_cire));
6055 
6056 						/*
6057 						 * If MULTIRT_CACHEGW is not
6058 						 * set, we ignore the top
6059 						 * priority ires that can
6060 						 * be resolved without any
6061 						 * call to the resolver;
6062 						 * In that case, there is
6063 						 * actually no need
6064 						 * to continue the loop.
6065 						 */
6066 						if (!(flags &
6067 						    MULTIRT_CACHEGW)) {
6068 							break;
6069 						}
6070 						continue;
6071 					}
6072 				} else {
6073 					/*
6074 					 * No resolver for the gateway: the
6075 					 * route is not resolvable.
6076 					 * If the MULTIRT_SETSTAMP flag is
6077 					 * set, we stamp the IRE_HOST ire,
6078 					 * so we will not select it again
6079 					 * during this resolution interval.
6080 					 */
6081 					if (flags & MULTIRT_SETSTAMP)
6082 						fire->ire_last_used_time =
6083 						    lbolt;
6084 				}
6085 			}
6086 
6087 			if (gw_ire != NULL)
6088 				ire_refrele(gw_ire);
6089 		}
6090 	} else { /* CLASSD(dst) */
6091 
6092 		for (fire = first_fire;
6093 		    fire != NULL;
6094 		    fire = fire->ire_next) {
6095 
6096 			if (!(fire->ire_flags & RTF_MULTIRT))
6097 				continue;
6098 			if (fire->ire_addr != dst)
6099 				continue;
6100 
6101 			if (fire->ire_gw_secattr != NULL &&
6102 			    tsol_ire_match_gwattr(fire, tsl) != 0) {
6103 				continue;
6104 			}
6105 
6106 			already_resolved = B_FALSE;
6107 
6108 			gw = fire->ire_gateway_addr;
6109 
6110 			gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE,
6111 			    NULL, NULL, ALL_ZONES, 0, tsl,
6112 			    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE |
6113 			    MATCH_IRE_SECATTR, ipst);
6114 
6115 			/* No resolver for the gateway; we skip this ire. */
6116 			if (gw_ire == NULL) {
6117 				continue;
6118 			}
6119 			ASSERT(gw_ire->ire_nce == NULL ||
6120 			    gw_ire->ire_nce->nce_state == ND_REACHABLE);
6121 
6122 			if (first_cire != NULL) {
6123 
6124 				IRB_REFHOLD(cirb);
6125 				/*
6126 				 * For all IRE_CACHE ires for that
6127 				 * destination.
6128 				 */
6129 				for (cire = first_cire;
6130 				    cire != NULL;
6131 				    cire = cire->ire_next) {
6132 
6133 					if (!(cire->ire_flags & RTF_MULTIRT))
6134 						continue;
6135 					if (cire->ire_addr != dst)
6136 						continue;
6137 					if (cire->ire_marks &
6138 					    (IRE_MARK_CONDEMNED |
6139 					    IRE_MARK_HIDDEN))
6140 						continue;
6141 
6142 					if (cire->ire_gw_secattr != NULL &&
6143 					    tsol_ire_match_gwattr(cire,
6144 					    tsl) != 0) {
6145 						continue;
6146 					}
6147 
6148 					/*
6149 					 * Cache entries are linked to the
6150 					 * parent routes using the parent handle
6151 					 * (ire_phandle). If no cache entry has
6152 					 * the same handle as fire, fire is
6153 					 * still unresolved.
6154 					 */
6155 					ASSERT(cire->ire_phandle != 0);
6156 					if (cire->ire_phandle ==
6157 					    fire->ire_phandle) {
6158 						already_resolved = B_TRUE;
6159 						break;
6160 					}
6161 				}
6162 				IRB_REFRELE(cirb);
6163 			}
6164 
6165 			/*
6166 			 * This route is already resolved; proceed with
6167 			 * next one.
6168 			 */
6169 			if (already_resolved) {
6170 				ire_refrele(gw_ire);
6171 				continue;
6172 			}
6173 
6174 			/*
6175 			 * Compute the time elapsed since our preceding
6176 			 * attempt to resolve that route.
6177 			 * If the MULTIRT_USESTAMP flag is set, we take
6178 			 * that route into account only if this time
6179 			 * interval exceeds ip_multirt_resolution_interval;
6180 			 * this prevents us from attempting to resolve a
6181 			 * broken route upon each sending of a packet.
6182 			 */
6183 			delta = lbolt - fire->ire_last_used_time;
6184 			delta = TICK_TO_MSEC(delta);
6185 
6186 			res = (boolean_t)((delta >
6187 			    ipst->ips_ip_multirt_resolution_interval) ||
6188 			    (!(flags & MULTIRT_USESTAMP)));
6189 
6190 			ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, "
6191 			    "flags %04x, res %d\n",
6192 			    (void *)fire, delta, flags, res));
6193 
6194 			if (res) {
6195 				if (best_cire != NULL) {
6196 					/*
6197 					 * Release the resolver associated
6198 					 * to the preceding candidate best
6199 					 * ire, if any.
6200 					 */
6201 					ire_refrele(best_cire);
6202 					ASSERT(best_fire != NULL);
6203 				}
6204 				best_fire = fire;
6205 				best_cire = gw_ire;
6206 				continue;
6207 			}
6208 
6209 			ire_refrele(gw_ire);
6210 		}
6211 	}
6212 
6213 	if (best_fire != NULL) {
6214 		IRE_REFHOLD(best_fire);
6215 	}
6216 	IRB_REFRELE(firb);
6217 
6218 	/* Release the first IRE_CACHE we initially looked up, if any. */
6219 	if (first_cire != NULL)
6220 		ire_refrele(first_cire);
6221 
6222 	/* Found a resolvable route. */
6223 	if (best_fire != NULL) {
6224 		ASSERT(best_cire != NULL);
6225 
6226 		if (*fire_arg != NULL)
6227 			ire_refrele(*fire_arg);
6228 		if (*ire_arg != NULL)
6229 			ire_refrele(*ire_arg);
6230 
6231 		/*
6232 		 * Update the passed-in arguments with the
6233 		 * resolvable multirt route we found.
6234 		 */
6235 		*fire_arg = best_fire;
6236 		*ire_arg = best_cire;
6237 
6238 		ip2dbg(("ire_multirt_lookup: returning B_TRUE, "
6239 		    "*fire_arg %p, *ire_arg %p\n",
6240 		    (void *)best_fire, (void *)best_cire));
6241 
6242 		return (B_TRUE);
6243 	}
6244 
6245 	ASSERT(best_cire == NULL);
6246 
6247 	ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, "
6248 	    "*ire_arg %p\n",
6249 	    (void *)*fire_arg, (void *)*ire_arg));
6250 
6251 	/* No resolvable route. */
6252 	return (B_FALSE);
6253 }
6254 
6255 /*
6256  * IRE iterator for inbound and loopback broadcast processing.
6257  * Given an IRE_BROADCAST ire, walk the ires with the same destination
6258  * address, but skip over the passed-in ire. Returns the next ire without
6259  * a hold - assumes that the caller holds a reference on the IRE bucket.
6260  */
6261 ire_t *
6262 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire)
6263 {
6264 	ill_t *ill;
6265 
6266 	if (curr == NULL) {
6267 		for (curr = ire->ire_bucket->irb_ire; curr != NULL;
6268 		    curr = curr->ire_next) {
6269 			if (curr->ire_addr == ire->ire_addr)
6270 				break;
6271 		}
6272 	} else {
6273 		curr = curr->ire_next;
6274 	}
6275 	ill = ire_to_ill(ire);
6276 	for (; curr != NULL; curr = curr->ire_next) {
6277 		if (curr->ire_addr != ire->ire_addr) {
6278 			/*
6279 			 * All the IREs to a given destination are contiguous;
6280 			 * break out once the address doesn't match.
6281 			 */
6282 			break;
6283 		}
6284 		if (curr == ire) {
6285 			/* skip over the passed-in ire */
6286 			continue;
6287 		}
6288 		if ((curr->ire_stq != NULL && ire->ire_stq == NULL) ||
6289 		    (curr->ire_stq == NULL && ire->ire_stq != NULL)) {
6290 			/*
6291 			 * If the passed-in ire is loopback, skip over
6292 			 * non-loopback ires and vice versa.
6293 			 */
6294 			continue;
6295 		}
6296 		if (ire_to_ill(curr) != ill) {
6297 			/* skip over IREs going through a different interface */
6298 			continue;
6299 		}
6300 		if (curr->ire_marks & IRE_MARK_CONDEMNED) {
6301 			/* skip over deleted IREs */
6302 			continue;
6303 		}
6304 		return (curr);
6305 	}
6306 	return (NULL);
6307 }
6308 
6309 #ifdef IRE_DEBUG
6310 th_trace_t *
6311 th_trace_ire_lookup(ire_t *ire)
6312 {
6313 	int bucket_id;
6314 	th_trace_t *th_trace;
6315 
6316 	ASSERT(MUTEX_HELD(&ire->ire_lock));
6317 
6318 	bucket_id = IP_TR_HASH(curthread);
6319 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6320 
6321 	for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL;
6322 	    th_trace = th_trace->th_next) {
6323 		if (th_trace->th_id == curthread)
6324 			return (th_trace);
6325 	}
6326 	return (NULL);
6327 }
6328 
6329 void
6330 ire_trace_ref(ire_t *ire)
6331 {
6332 	int bucket_id;
6333 	th_trace_t *th_trace;
6334 
6335 	/*
6336 	 * Attempt to locate the trace buffer for the curthread.
6337 	 * If it does not exist, then allocate a new trace buffer
6338 	 * and link it in list of trace bufs for this ipif, at the head
6339 	 */
6340 	mutex_enter(&ire->ire_lock);
6341 	if (ire->ire_trace_disable == B_TRUE) {
6342 		mutex_exit(&ire->ire_lock);
6343 		return;
6344 	}
6345 	th_trace = th_trace_ire_lookup(ire);
6346 	if (th_trace == NULL) {
6347 		bucket_id = IP_TR_HASH(curthread);
6348 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6349 		    KM_NOSLEEP);
6350 		if (th_trace == NULL) {
6351 			ire->ire_trace_disable = B_TRUE;
6352 			mutex_exit(&ire->ire_lock);
6353 			ire_trace_inactive(ire);
6354 			return;
6355 		}
6356 
6357 		th_trace->th_id = curthread;
6358 		th_trace->th_next = ire->ire_trace[bucket_id];
6359 		th_trace->th_prev = &ire->ire_trace[bucket_id];
6360 		if (th_trace->th_next != NULL)
6361 			th_trace->th_next->th_prev = &th_trace->th_next;
6362 		ire->ire_trace[bucket_id] = th_trace;
6363 	}
6364 	ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1);
6365 	th_trace->th_refcnt++;
6366 	th_trace_rrecord(th_trace);
6367 	mutex_exit(&ire->ire_lock);
6368 }
6369 
6370 void
6371 ire_trace_free(th_trace_t *th_trace)
6372 {
6373 	/* unlink th_trace and free it */
6374 	*th_trace->th_prev = th_trace->th_next;
6375 	if (th_trace->th_next != NULL)
6376 		th_trace->th_next->th_prev = th_trace->th_prev;
6377 	th_trace->th_next = NULL;
6378 	th_trace->th_prev = NULL;
6379 	kmem_free(th_trace, sizeof (th_trace_t));
6380 }
6381 
6382 void
6383 ire_untrace_ref(ire_t *ire)
6384 {
6385 	th_trace_t *th_trace;
6386 
6387 	mutex_enter(&ire->ire_lock);
6388 
6389 	if (ire->ire_trace_disable == B_TRUE) {
6390 		mutex_exit(&ire->ire_lock);
6391 		return;
6392 	}
6393 
6394 	th_trace = th_trace_ire_lookup(ire);
6395 	ASSERT(th_trace != NULL && th_trace->th_refcnt > 0);
6396 	th_trace_rrecord(th_trace);
6397 	th_trace->th_refcnt--;
6398 
6399 	if (th_trace->th_refcnt == 0)
6400 		ire_trace_free(th_trace);
6401 
6402 	mutex_exit(&ire->ire_lock);
6403 }
6404 
6405 static void
6406 ire_trace_inactive(ire_t *ire)
6407 {
6408 	th_trace_t *th_trace;
6409 	int i;
6410 
6411 	mutex_enter(&ire->ire_lock);
6412 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6413 		while (ire->ire_trace[i] != NULL) {
6414 			th_trace = ire->ire_trace[i];
6415 
6416 			/* unlink th_trace and free it */
6417 			ire->ire_trace[i] = th_trace->th_next;
6418 			if (th_trace->th_next != NULL)
6419 				th_trace->th_next->th_prev =
6420 				    &ire->ire_trace[i];
6421 
6422 			th_trace->th_next = NULL;
6423 			th_trace->th_prev = NULL;
6424 			kmem_free(th_trace, sizeof (th_trace_t));
6425 		}
6426 	}
6427 
6428 	mutex_exit(&ire->ire_lock);
6429 }
6430 
6431 /* ARGSUSED */
6432 void
6433 ire_thread_exit(ire_t *ire, caddr_t arg)
6434 {
6435 	th_trace_t	*th_trace;
6436 
6437 	mutex_enter(&ire->ire_lock);
6438 	th_trace = th_trace_ire_lookup(ire);
6439 	if (th_trace == NULL) {
6440 		mutex_exit(&ire->ire_lock);
6441 		return;
6442 	}
6443 	ASSERT(th_trace->th_refcnt == 0);
6444 
6445 	ire_trace_free(th_trace);
6446 	mutex_exit(&ire->ire_lock);
6447 }
6448 
6449 #endif
6450 
6451 /*
6452  * Generate a message chain with an arp request to resolve the in_ire.
6453  * It is assumed that in_ire itself is currently in the ire cache table,
6454  * so we create a fake_ire filled with enough information about ire_addr etc.
6455  * to retrieve in_ire when the DL_UNITDATA response from the resolver
6456  * comes back. The fake_ire itself is created by calling esballoc with
6457  * the fr_rtnp (free routine) set to ire_freemblk. This routine will be
6458  * invoked when the mblk containing fake_ire is freed.
6459  */
6460 void
6461 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill)
6462 {
6463 	areq_t		*areq;
6464 	ipaddr_t	*addrp;
6465 	mblk_t 		*ire_mp, *areq_mp;
6466 	ire_t 		*ire, *buf;
6467 	size_t		bufsize;
6468 	frtn_t		*frtnp;
6469 	ill_t		*ill;
6470 	ip_stack_t	*ipst = dst_ill->ill_ipst;
6471 
6472 	/*
6473 	 * Construct message chain for the resolver
6474 	 * of the form:
6475 	 *	ARP_REQ_MBLK-->IRE_MBLK
6476 	 *
6477 	 * NOTE : If the response does not
6478 	 * come back, ARP frees the packet. For this reason,
6479 	 * we can't REFHOLD the bucket of save_ire to prevent
6480 	 * deletions. We may not be able to REFRELE the bucket
6481 	 * if the response never comes back. Thus, before
6482 	 * adding the ire, ire_add_v4 will make sure that the
6483 	 * interface route does not get deleted. This is the
6484 	 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
6485 	 * where we can always prevent deletions because of
6486 	 * the synchronous nature of adding IRES i.e
6487 	 * ire_add_then_send is called after creating the IRE.
6488 	 */
6489 
6490 	/*
6491 	 * We use esballoc to allocate the second part(the ire_t size mblk)
6492 	 * of the message chain depicted above. THis mblk will be freed
6493 	 * by arp when there is a  timeout, and otherwise passed to IP
6494 	 * and IP will * free it after processing the ARP response.
6495 	 */
6496 
6497 	bufsize = sizeof (ire_t) + sizeof (frtn_t);
6498 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
6499 	if (buf == NULL) {
6500 		ip1dbg(("ire_arpresolver:alloc buffer failed\n "));
6501 		return;
6502 	}
6503 	frtnp = (frtn_t *)(buf + 1);
6504 	frtnp->free_arg = (caddr_t)buf;
6505 	frtnp->free_func = ire_freemblk;
6506 
6507 	ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp);
6508 
6509 	if (ire_mp == NULL) {
6510 		ip1dbg(("ire_arpresolve: esballoc failed\n"));
6511 		kmem_free(buf, bufsize);
6512 		return;
6513 	}
6514 	ASSERT(in_ire->ire_nce != NULL);
6515 	areq_mp = copyb(dst_ill->ill_resolver_mp);
6516 	if (areq_mp == NULL) {
6517 		kmem_free(buf, bufsize);
6518 		return;
6519 	}
6520 
6521 	ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE;
6522 	ire = (ire_t *)buf;
6523 	/*
6524 	 * keep enough info in the fake ire so that we can pull up
6525 	 * the incomplete ire (in_ire) after result comes back from
6526 	 * arp and make it complete.
6527 	 */
6528 	*ire = ire_null;
6529 	ire->ire_u = in_ire->ire_u;
6530 	ire->ire_ipif_seqid = in_ire->ire_ipif_seqid;
6531 	ire->ire_ipif = in_ire->ire_ipif;
6532 	ire->ire_stq = in_ire->ire_stq;
6533 	ill = ire_to_ill(ire);
6534 	ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex;
6535 	ire->ire_zoneid = in_ire->ire_zoneid;
6536 	ire->ire_ipst = ipst;
6537 
6538 	/*
6539 	 * ire_freemblk will be called when ire_mp is freed, both for
6540 	 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set
6541 	 * when the arp resolution failed.
6542 	 */
6543 	ire->ire_marks |= IRE_MARK_UNCACHED;
6544 	ire->ire_mp = ire_mp;
6545 	ire_mp->b_wptr = (uchar_t *)&ire[1];
6546 	ire_mp->b_cont = NULL;
6547 	linkb(areq_mp, ire_mp);
6548 
6549 	/*
6550 	 * Fill in the source and dest addrs for the resolver.
6551 	 * NOTE: this depends on memory layouts imposed by
6552 	 * ill_init().
6553 	 */
6554 	areq = (areq_t *)areq_mp->b_rptr;
6555 	addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset);
6556 	*addrp = ire->ire_src_addr;
6557 
6558 	addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset);
6559 	if (ire->ire_gateway_addr != INADDR_ANY) {
6560 		*addrp = ire->ire_gateway_addr;
6561 	} else {
6562 		*addrp = ire->ire_addr;
6563 	}
6564 
6565 	/* Up to the resolver. */
6566 	if (canputnext(dst_ill->ill_rq)) {
6567 		putnext(dst_ill->ill_rq, areq_mp);
6568 	} else {
6569 		freemsg(areq_mp);
6570 	}
6571 }
6572 
6573 /*
6574  * Esballoc free function for AR_ENTRY_QUERY request to clean up any
6575  * unresolved ire_t and/or nce_t structures when ARP resolution fails.
6576  *
6577  * This function can be called by ARP via free routine for ire_mp or
6578  * by IPv4(both host and forwarding path) via ire_delete
6579  * in case ARP resolution fails.
6580  * NOTE: Since IP is MT, ARP can call into IP but not vice versa
6581  * (for IP to talk to ARP, it still has to send AR* messages).
6582  *
6583  * Note that the ARP/IP merge should replace the functioanlity by providing
6584  * direct function calls to clean up unresolved entries in ire/nce lists.
6585  */
6586 void
6587 ire_freemblk(ire_t *ire_mp)
6588 {
6589 	nce_t		*nce = NULL;
6590 	ill_t		*ill;
6591 	ip_stack_t	*ipst;
6592 
6593 	ASSERT(ire_mp != NULL);
6594 
6595 	if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) {
6596 		ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n",
6597 		    (void *)ire_mp));
6598 		goto cleanup;
6599 	}
6600 	if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) {
6601 		goto cleanup; /* everything succeeded. just free and return */
6602 	}
6603 
6604 	/*
6605 	 * the arp information corresponding to this ire_mp was not
6606 	 * transferred to  a ire_cache entry. Need
6607 	 * to clean up incomplete ire's and nce, if necessary.
6608 	 */
6609 	ASSERT(ire_mp->ire_stq != NULL);
6610 	ASSERT(ire_mp->ire_stq_ifindex != 0);
6611 	ASSERT(ire_mp->ire_ipst != NULL);
6612 
6613 	ipst = ire_mp->ire_ipst;
6614 
6615 	/*
6616 	 * Get any nce's corresponding to this ire_mp. We first have to
6617 	 * make sure that the ill is still around.
6618 	 */
6619 	ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex,
6620 	    B_FALSE, NULL, NULL, NULL, NULL, ipst);
6621 	if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) ||
6622 	    (ill->ill_state_flags & ILL_CONDEMNED)) {
6623 		/*
6624 		 * ill went away. no nce to clean up.
6625 		 * Note that the ill_state_flags could be set to
6626 		 * ILL_CONDEMNED after this point, but if we know
6627 		 * that it is CONDEMNED now, we just bail out quickly.
6628 		 */
6629 		if (ill != NULL)
6630 			ill_refrele(ill);
6631 		goto cleanup;
6632 	}
6633 	nce = ndp_lookup_v4(ill,
6634 	    ((ire_mp->ire_gateway_addr != INADDR_ANY) ?
6635 	    &ire_mp->ire_gateway_addr : &ire_mp->ire_addr),
6636 	    B_FALSE);
6637 	ill_refrele(ill);
6638 
6639 	if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) {
6640 		/*
6641 		 * some incomplete nce was found.
6642 		 */
6643 		DTRACE_PROBE2(ire__freemblk__arp__resolv__fail,
6644 		    nce_t *, nce, ire_t *, ire_mp);
6645 		/*
6646 		 * Send the icmp_unreachable messages for the queued mblks in
6647 		 * ire->ire_nce->nce_qd_mp, since ARP resolution failed
6648 		 * for this ire
6649 		 */
6650 		arp_resolv_failed(nce);
6651 		/*
6652 		 * Delete the nce and clean up all ire's pointing at this nce
6653 		 * in the cachetable
6654 		 */
6655 		ndp_delete(nce);
6656 	}
6657 	if (nce != NULL)
6658 		NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */
6659 
6660 cleanup:
6661 	/*
6662 	 * Get rid of the ire buffer
6663 	 * We call kmem_free here(instead of ire_delete()), since
6664 	 * this is the freeb's callback.
6665 	 */
6666 	kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t));
6667 }
6668 
6669 /*
6670  * find, or create if needed, a neighbor cache entry nce_t for IRE_CACHE and
6671  * non-loopback IRE_BROADCAST ire's.
6672  *
6673  * If a neighbor-cache entry has to be created (i.e., one does not already
6674  * exist in the nce list) the nce_res_mp and nce_state of the neighbor cache
6675  * entry are initialized in ndp_add_v4(). These values are picked from
6676  * the src_nce, if one is passed in. Otherwise (if src_nce == NULL) the
6677  * ire->ire_type and the outgoing interface (ire_to_ill(ire)) values
6678  * determine the {nce_state, nce_res_mp} of the nce_t created. All
6679  * IRE_BROADCAST entries have nce_state = ND_REACHABLE, and the nce_res_mp
6680  * is set to the ill_bcast_mp of the outgoing inerface. For unicast ire
6681  * entries,
6682  *   - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
6683  *     nce_t will have a null nce_res_mp, and will be in the ND_INITIAL state.
6684  *   - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
6685  *     layer resolution is necessary, so that the nce_t will be in the
6686  *     ND_REACHABLE state and the nce_res_mp will have a copy of the
6687  *     ill_resolver_mp of the outgoing interface.
6688  *
6689  * The link layer information needed for broadcast addresses, and for
6690  * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
6691  * never needs re-verification for the lifetime of the nce_t. These are
6692  * therefore marked NCE_F_PERMANENT, and never allowed to expire via
6693  * NCE_EXPIRED.
6694  *
6695  * IRE_CACHE ire's contain the information for  the nexthop (ire_gateway_addr)
6696  * in the case of indirect routes, and for the dst itself (ire_addr) in the
6697  * case of direct routes, with the nce_res_mp containing a template
6698  * DL_UNITDATA request.
6699  *
6700  * The actual association of the ire_nce to the nce created here is
6701  * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions
6702  * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which
6703  * the ire_nce assignment is done in ire_add_then_send, and mobile-ip
6704  * where the assignment is done in ire_add_mrtun().
6705  */
6706 int
6707 ire_nce_init(ire_t *ire, nce_t *src_nce)
6708 {
6709 	in_addr_t	addr4;
6710 	int		err;
6711 	nce_t		*nce = NULL;
6712 	ill_t		*ire_ill;
6713 	uint16_t	nce_flags = 0;
6714 	ip_stack_t	*ipst;
6715 
6716 	if (ire->ire_stq == NULL)
6717 		return (0); /* no need to create nce for local/loopback */
6718 
6719 	switch (ire->ire_type) {
6720 	case IRE_CACHE:
6721 		if (ire->ire_gateway_addr != INADDR_ANY)
6722 			addr4 = ire->ire_gateway_addr; /* 'G' route */
6723 		else
6724 			addr4 = ire->ire_addr; /* direct route */
6725 		break;
6726 	case IRE_BROADCAST:
6727 		addr4 = ire->ire_addr;
6728 		nce_flags |= (NCE_F_PERMANENT|NCE_F_BCAST);
6729 		break;
6730 	default:
6731 		return (0);
6732 	}
6733 
6734 	/*
6735 	 * ire_ipif is picked based on RTF_SETSRC, usesrc etc.
6736 	 * rules in ire_forward_src_ipif. We want the dlureq_mp
6737 	 * for the outgoing interface, which we get from the ire_stq.
6738 	 */
6739 	ire_ill = ire_to_ill(ire);
6740 	ipst = ire_ill->ill_ipst;
6741 
6742 	/*
6743 	 * IRE_IF_NORESOLVER entries never need re-verification and
6744 	 * do not expire, so we mark them as NCE_F_PERMANENT.
6745 	 */
6746 	if (ire_ill->ill_net_type == IRE_IF_NORESOLVER)
6747 		nce_flags |= NCE_F_PERMANENT;
6748 
6749 retry_nce:
6750 	err = ndp_lookup_then_add_v4(ire_ill, &addr4, nce_flags,
6751 	    &nce, src_nce);
6752 
6753 	if (err == EEXIST && NCE_EXPIRED(nce, ipst)) {
6754 		/*
6755 		 * We looked up an expired nce.
6756 		 * Go back and try to create one again.
6757 		 */
6758 		ndp_delete(nce);
6759 		NCE_REFRELE(nce);
6760 		nce = NULL;
6761 		goto retry_nce;
6762 	}
6763 
6764 	ip1dbg(("ire 0x%p addr 0x%lx type 0x%x; found nce 0x%p err %d\n",
6765 	    (void *)ire, (ulong_t)addr4, ire->ire_type, (void *)nce, err));
6766 
6767 	switch (err) {
6768 	case 0:
6769 	case EEXIST:
6770 		/*
6771 		 * return a pointer to a newly created or existing nce_t;
6772 		 * note that the ire-nce mapping is many-one, i.e.,
6773 		 * multiple ire's could point to the same nce_t.
6774 		 */
6775 		break;
6776 	default:
6777 		DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err);
6778 		return (EINVAL);
6779 	}
6780 	if (ire->ire_type == IRE_BROADCAST) {
6781 		/*
6782 		 * Two bcast ires are created for each interface;
6783 		 * 1. loopback copy (which does not  have an
6784 		 *    ire_stq, and therefore has no ire_nce), and,
6785 		 * 2. the non-loopback copy, which has the nce_res_mp
6786 		 *    initialized to a copy of the ill_bcast_mp, and
6787 		 *    is marked as ND_REACHABLE at this point.
6788 		 *    This nce does not undergo any further state changes,
6789 		 *    and exists as long as the interface is plumbed.
6790 		 * Note: we do the ire_nce assignment here for IRE_BROADCAST
6791 		 * because some functions like ill_mark_bcast() inline the
6792 		 * ire_add functionality.
6793 		 */
6794 		ire->ire_nce = nce;
6795 		/*
6796 		 * We are associating this nce to the ire,
6797 		 * so change the nce ref taken in
6798 		 * ndp_lookup_then_add_v4() from
6799 		 * NCE_REFHOLD to NCE_REFHOLD_NOTR
6800 		 */
6801 		NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
6802 	} else {
6803 		/*
6804 		 * We are not using this nce_t just yet so release
6805 		 * the ref taken in ndp_lookup_then_add_v4()
6806 		 */
6807 		NCE_REFRELE(nce);
6808 	}
6809 	return (0);
6810 }
6811