1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 30 /* 31 * This file contains routines that manipulate Internet Routing Entries (IREs). 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/ddi.h> 39 #include <sys/cmn_err.h> 40 #include <sys/policy.h> 41 42 #include <sys/systm.h> 43 #include <sys/kmem.h> 44 #include <sys/param.h> 45 #include <sys/socket.h> 46 #include <net/if.h> 47 #include <net/route.h> 48 #include <netinet/in.h> 49 #include <net/if_dl.h> 50 #include <netinet/ip6.h> 51 #include <netinet/icmp6.h> 52 53 #include <inet/common.h> 54 #include <inet/mi.h> 55 #include <inet/ip.h> 56 #include <inet/ip6.h> 57 #include <inet/ip_ndp.h> 58 #include <inet/arp.h> 59 #include <inet/ip_if.h> 60 #include <inet/ip_ire.h> 61 #include <inet/ip_ftable.h> 62 #include <inet/ip_rts.h> 63 #include <inet/nd.h> 64 65 #include <net/pfkeyv2.h> 66 #include <inet/ipsec_info.h> 67 #include <inet/sadb.h> 68 #include <sys/kmem.h> 69 #include <inet/tcp.h> 70 #include <inet/ipclassifier.h> 71 #include <sys/zone.h> 72 #include <sys/tsol/label.h> 73 #include <sys/tsol/tnet.h> 74 75 struct kmem_cache *rt_entry_cache; 76 77 78 /* 79 * Synchronization notes: 80 * 81 * The fields of the ire_t struct are protected in the following way : 82 * 83 * ire_next/ire_ptpn 84 * 85 * - bucket lock of the respective tables (cache or forwarding tables). 86 * 87 * ire_mp, ire_rfq, ire_stq, ire_u *except* ire_gateway_addr[v6], ire_mask, 88 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags, ire_ipif, 89 * ire_ihandle, ire_phandle, ire_nce, ire_bucket, ire_in_ill, ire_in_src_addr 90 * 91 * - Set in ire_create_v4/v6 and never changes after that. Thus, 92 * we don't need a lock whenever these fields are accessed. 93 * 94 * - ire_bucket and ire_masklen (also set in ire_create) is set in 95 * ire_add_v4/ire_add_v6 before inserting in the bucket and never 96 * changes after that. Thus we don't need a lock whenever these 97 * fields are accessed. 98 * 99 * ire_gateway_addr_v4[v6] 100 * 101 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified 102 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to 103 * it assumed to be atomic and hence the other parts of the code 104 * does not use any locks. ire_gateway_addr_v6 updates are not atomic 105 * and hence any access to it uses ire_lock to get/set the right value. 106 * 107 * ire_ident, ire_refcnt 108 * 109 * - Updated atomically using atomic_add_32 110 * 111 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count 112 * 113 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is 114 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt. 115 * 116 * ire_max_frag, ire_frag_flag 117 * 118 * - ire_lock is used to set/read both of them together. 119 * 120 * ire_tire_mark 121 * 122 * - Set in ire_create and updated in ire_expire, which is called 123 * by only one function namely ip_trash_timer_expire. Thus only 124 * one function updates and examines the value. 125 * 126 * ire_marks 127 * - bucket lock protects this. 128 * 129 * ire_ipsec_overhead/ire_ll_hdr_length 130 * 131 * - Place holder for returning the information to the upper layers 132 * when IRE_DB_REQ comes down. 133 * 134 * 135 * ipv6_ire_default_count is protected by the bucket lock of 136 * ip_forwarding_table_v6[0][0]. 137 * 138 * ipv6_ire_default_index is not protected as it is just a hint 139 * at which default gateway to use. There is nothing 140 * wrong in using the same gateway for two different connections. 141 * 142 * As we always hold the bucket locks in all the places while accessing 143 * the above values, it is natural to use them for protecting them. 144 * 145 * We have a separate cache table and forwarding table for IPv4 and IPv6. 146 * Cache table (ip_cache_table/ip_cache_table_v6) is a pointer to an 147 * array of irb_t structure and forwarding table (ip_forwarding_table/ 148 * ip_forwarding_table_v6) is an array of pointers to array of irb_t 149 * structure. ip_forwarding_table[_v6] is allocated dynamically in 150 * ire_add_v4/v6. ire_ft_init_lock is used to serialize multiple threads 151 * initializing the same bucket. Once a bucket is initialized, it is never 152 * de-alloacted. This assumption enables us to access ip_forwarding_table[i] 153 * or ip_forwarding_table_v6[i] without any locks. 154 * 155 * Each irb_t - ire bucket structure has a lock to protect 156 * a bucket and the ires residing in the bucket have a back pointer to 157 * the bucket structure. It also has a reference count for the number 158 * of threads walking the bucket - irb_refcnt which is bumped up 159 * using the macro IRB_REFHOLD macro. The flags irb_flags can be 160 * set to IRE_MARK_CONDEMNED indicating that there are some ires 161 * in this bucket that are marked with IRE_MARK_CONDEMNED and the 162 * last thread to leave the bucket should delete the ires. Usually 163 * this is done by the IRB_REFRELE macro which is used to decrement 164 * the reference count on a bucket. 165 * 166 * IRE_REFHOLD/IRE_REFRELE macros operate on the ire which increments/ 167 * decrements the reference count, ire_refcnt, atomically on the ire. 168 * ire_refcnt is modified only using this macro. Operations on the IRE 169 * could be described as follows : 170 * 171 * CREATE an ire with reference count initialized to 1. 172 * 173 * ADDITION of an ire holds the bucket lock, checks for duplicates 174 * and then adds the ire. ire_add_v4/ire_add_v6 returns the ire after 175 * bumping up once more i.e the reference count is 2. This is to avoid 176 * an extra lookup in the functions calling ire_add which wants to 177 * work with the ire after adding. 178 * 179 * LOOKUP of an ire bumps up the reference count using IRE_REFHOLD 180 * macro. It is valid to bump up the referece count of the IRE, 181 * after the lookup has returned an ire. Following are the lookup 182 * functions that return an HELD ire : 183 * 184 * ire_lookup_local[_v6], ire_ctable_lookup[_v6], ire_ftable_lookup[_v6], 185 * ire_cache_lookup[_v6], ire_lookup_multi[_v6], ire_route_lookup[_v6], 186 * ipif_to_ire[_v6], ire_mrtun_lookup, ire_srcif_table_lookup. 187 * 188 * DELETION of an ire holds the bucket lock, removes it from the list 189 * and then decrements the reference count for having removed from the list 190 * by using the IRE_REFRELE macro. If some other thread has looked up 191 * the ire, the reference count would have been bumped up and hence 192 * this ire will not be freed once deleted. It will be freed once the 193 * reference count drops to zero. 194 * 195 * Add and Delete acquires the bucket lock as RW_WRITER, while all the 196 * lookups acquire the bucket lock as RW_READER. 197 * 198 * NOTE : The only functions that does the IRE_REFRELE when an ire is 199 * passed as an argument are : 200 * 201 * 1) ip_wput_ire : This is because it IRE_REFHOLD/RELEs the 202 * broadcast ires it looks up internally within 203 * the function. Currently, for simplicity it does 204 * not differentiate the one that is passed in and 205 * the ones it looks up internally. It always 206 * IRE_REFRELEs. 207 * 2) ire_send 208 * ire_send_v6 : As ire_send calls ip_wput_ire and other functions 209 * that take ire as an argument, it has to selectively 210 * IRE_REFRELE the ire. To maintain symmetry, 211 * ire_send_v6 does the same. 212 * 213 * Otherwise, the general rule is to do the IRE_REFRELE in the function 214 * that is passing the ire as an argument. 215 * 216 * In trying to locate ires the following points are to be noted. 217 * 218 * IRE_MARK_CONDEMNED signifies that the ire has been logically deleted and is 219 * to be ignored when walking the ires using ire_next. 220 * 221 * IRE_MARK_HIDDEN signifies that the ire is a special ire typically for the 222 * benefit of in.mpathd which needs to probe interfaces for failures. Normal 223 * applications should not be seeing this ire and hence this ire is ignored 224 * in most cases in the search using ire_next. 225 * 226 * Zones note: 227 * Walking IREs within a given zone also walks certain ires in other 228 * zones. This is done intentionally. IRE walks with a specified 229 * zoneid are used only when doing informational reports, and 230 * zone users want to see things that they can access. See block 231 * comment in ire_walk_ill_match(). 232 */ 233 234 /* This is dynamically allocated in ip_ire_init */ 235 irb_t *ip_cache_table; 236 /* This is dynamically allocated in ire_add_mrtun */ 237 irb_t *ip_mrtun_table; 238 239 uint32_t ire_handle = 1; 240 /* 241 * ire_ft_init_lock is used while initializing ip_forwarding_table 242 * dynamically in ire_add. 243 */ 244 kmutex_t ire_ft_init_lock; 245 kmutex_t ire_mrtun_lock; /* Protects creation of table and it's count */ 246 kmutex_t ire_srcif_table_lock; /* Same as above */ 247 /* 248 * The following counts are used to determine whether a walk is 249 * needed through the reverse tunnel table or through ills 250 */ 251 kmutex_t ire_handle_lock; /* Protects ire_handle */ 252 uint_t ire_mrtun_count; /* Number of ires in reverse tun table */ 253 254 /* 255 * A per-interface routing table is created ( if not present) 256 * when the first entry is added to this special routing table. 257 * This special routing table is accessed through the ill data structure. 258 * The routing table looks like cache table. For example, currently it 259 * is used by mobile-ip foreign agent to forward data that only comes from 260 * the home agent tunnel for a mobile node. Thus if the outgoing interface 261 * is a RESOLVER interface, IP may need to resolve the hardware address for 262 * the outgoing interface. The routing entries in this table are not updated 263 * in IRE_CACHE. When MCTL msg comes back from ARP, the incoming ill informa- 264 * tion is lost as the write queue is passed to ip_wput. 265 * But, before sending the packet out, the hardware information must be updated 266 * in the special forwarding table. ire_srcif_table_count keeps track of total 267 * number of ires that are in interface based tables. Each interface based 268 * table hangs off of the incoming ill and each ill_t also keeps a refcnt 269 * of ires in that table. 270 */ 271 272 uint_t ire_srcif_table_count; /* Number of ires in all srcif tables */ 273 274 /* 275 * The minimum size of IRE cache table. It will be recalcuated in 276 * ip_ire_init(). 277 */ 278 uint32_t ip_cache_table_size = IP_CACHE_TABLE_SIZE; 279 uint32_t ip6_cache_table_size = IP6_CACHE_TABLE_SIZE; 280 281 /* 282 * The size of the forwarding table. We will make sure that it is a 283 * power of 2 in ip_ire_init(). 284 */ 285 uint32_t ip6_ftable_hash_size = IP6_FTABLE_HASH_SIZE; 286 287 struct kmem_cache *ire_cache; 288 static ire_t ire_null; 289 290 ire_stats_t ire_stats_v4; /* IPv4 ire statistics */ 291 ire_stats_t ire_stats_v6; /* IPv6 ire statistics */ 292 293 /* 294 * The threshold number of IRE in a bucket when the IREs are 295 * cleaned up. This threshold is calculated later in ip_open() 296 * based on the speed of CPU and available memory. This default 297 * value is the maximum. 298 * 299 * We have two kinds of cached IRE, temporary and 300 * non-temporary. Temporary IREs are marked with 301 * IRE_MARK_TEMPORARY. They are IREs created for non 302 * TCP traffic and for forwarding purposes. All others 303 * are non-temporary IREs. We don't mark IRE created for 304 * TCP as temporary because TCP is stateful and there are 305 * info stored in the IRE which can be shared by other TCP 306 * connections to the same destination. For connected 307 * endpoint, we also don't want to mark the IRE used as 308 * temporary because the same IRE will be used frequently, 309 * otherwise, the app should not do a connect(). We change 310 * the marking at ip_bind_connected_*() if necessary. 311 * 312 * We want to keep the cache IRE hash bucket length reasonably 313 * short, otherwise IRE lookup functions will take "forever." 314 * We use the "crude" function that the IRE bucket 315 * length should be based on the CPU speed, which is 1 entry 316 * per x MHz, depending on the shift factor ip_ire_cpu_ratio 317 * (n). This means that with a 750MHz CPU, the max bucket 318 * length can be (750 >> n) entries. 319 * 320 * Note that this threshold is separate for temp and non-temp 321 * IREs. This means that the actual bucket length can be 322 * twice as that. And while we try to keep temporary IRE 323 * length at most at the threshold value, we do not attempt to 324 * make the length for non-temporary IREs fixed, for the 325 * reason stated above. Instead, we start trying to find 326 * "unused" non-temporary IREs when the bucket length reaches 327 * this threshold and clean them up. 328 * 329 * We also want to limit the amount of memory used by 330 * IREs. So if we are allowed to use ~3% of memory (M) 331 * for those IREs, each bucket should not have more than 332 * 333 * M / num of cache bucket / sizeof (ire_t) 334 * 335 * Again the above memory uses are separate for temp and 336 * non-temp cached IREs. 337 * 338 * We may also want the limit to be a function of the number 339 * of interfaces and number of CPUs. Doing the initialization 340 * in ip_open() means that every time an interface is plumbed, 341 * the max is re-calculated. Right now, we don't do anything 342 * different. In future, when we have more experience, we 343 * may want to change this behavior. 344 */ 345 uint32_t ip_ire_max_bucket_cnt = 10; 346 uint32_t ip6_ire_max_bucket_cnt = 10; 347 348 /* 349 * The minimum of the temporary IRE bucket count. We do not want 350 * the length of each bucket to be too short. This may hurt 351 * performance of some apps as the temporary IREs are removed too 352 * often. 353 */ 354 uint32_t ip_ire_min_bucket_cnt = 3; 355 uint32_t ip6_ire_min_bucket_cnt = 3; 356 357 /* 358 * The ratio of memory consumed by IRE used for temporary to available 359 * memory. This is a shift factor, so 6 means the ratio 1 to 64. This 360 * value can be changed in /etc/system. 6 is a reasonable number. 361 */ 362 uint32_t ip_ire_mem_ratio = 6; 363 /* The shift factor for CPU speed to calculate the max IRE bucket length. */ 364 uint32_t ip_ire_cpu_ratio = 7; 365 366 typedef struct nce_clookup_s { 367 ipaddr_t ncecl_addr; 368 boolean_t ncecl_found; 369 } nce_clookup_t; 370 371 /* 372 * The maximum number of buckets in IRE cache table. In future, we may 373 * want to make it a dynamic hash table. For the moment, we fix the 374 * size and allocate the table in ip_ire_init() when IP is first loaded. 375 * We take into account the amount of memory a system has. 376 */ 377 #define IP_MAX_CACHE_TABLE_SIZE 4096 378 379 static uint32_t ip_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 380 static uint32_t ip6_max_cache_table_size = IP_MAX_CACHE_TABLE_SIZE; 381 382 #define NUM_ILLS 3 /* To build the ILL list to unlock */ 383 384 /* Zero iulp_t for initialization. */ 385 const iulp_t ire_uinfo_null = { 0 }; 386 387 static int ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 388 ipsq_func_t func, boolean_t); 389 static int ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, 390 ipsq_func_t func); 391 static ire_t *ire_update_srcif_v4(ire_t *ire); 392 static void ire_delete_v4(ire_t *ire); 393 static void ire_report_ctable(ire_t *ire, char *mp); 394 static void ire_report_mrtun_table(ire_t *ire, char *mp); 395 static void ire_report_srcif_table(ire_t *ire, char *mp); 396 static void ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, 397 zoneid_t zoneid); 398 static void ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, 399 pfv_t func, void *arg, uchar_t vers, ill_t *ill); 400 static void ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt); 401 extern void ill_unlock_ills(ill_t **list, int cnt); 402 static void ire_fastpath_list_add(ill_t *ill, ire_t *ire); 403 static void ip_nce_clookup_and_delete(nce_t *nce, void *arg); 404 extern void th_trace_rrecord(th_trace_t *); 405 #ifdef IRE_DEBUG 406 static void ire_trace_inactive(ire_t *); 407 #endif 408 409 /* 410 * To avoid bloating the code, we call this function instead of 411 * using the macro IRE_REFRELE. Use macro only in performance 412 * critical paths. 413 * 414 * Must not be called while holding any locks. Otherwise if this is 415 * the last reference to be released there is a chance of recursive mutex 416 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 417 * to restart an ioctl. The one exception is when the caller is sure that 418 * this is not the last reference to be released. Eg. if the caller is 419 * sure that the ire has not been deleted and won't be deleted. 420 */ 421 void 422 ire_refrele(ire_t *ire) 423 { 424 IRE_REFRELE(ire); 425 } 426 427 void 428 ire_refrele_notr(ire_t *ire) 429 { 430 IRE_REFRELE_NOTR(ire); 431 } 432 433 /* 434 * kmem_cache_alloc constructor for IRE in kma space. 435 * Note that when ire_mp is set the IRE is stored in that mblk and 436 * not in this cache. 437 */ 438 /* ARGSUSED */ 439 static int 440 ip_ire_constructor(void *buf, void *cdrarg, int kmflags) 441 { 442 ire_t *ire = buf; 443 444 ire->ire_nce = NULL; 445 446 return (0); 447 } 448 449 /* ARGSUSED1 */ 450 static void 451 ip_ire_destructor(void *buf, void *cdrarg) 452 { 453 ire_t *ire = buf; 454 455 ASSERT(ire->ire_nce == NULL); 456 } 457 458 /* 459 * This function is associated with the IP_IOC_IRE_ADVISE_NO_REPLY 460 * IOCTL. It is used by TCP (or other ULPs) to supply revised information 461 * for an existing CACHED IRE. 462 */ 463 /* ARGSUSED */ 464 int 465 ip_ire_advise(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 466 { 467 uchar_t *addr_ucp; 468 ipic_t *ipic; 469 ire_t *ire; 470 ipaddr_t addr; 471 in6_addr_t v6addr; 472 irb_t *irb; 473 zoneid_t zoneid; 474 475 ASSERT(q->q_next == NULL); 476 zoneid = Q_TO_CONN(q)->conn_zoneid; 477 478 /* 479 * Check privilege using the ioctl credential; if it is NULL 480 * then this is a kernel message and therefor privileged. 481 */ 482 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 483 return (EPERM); 484 485 ipic = (ipic_t *)mp->b_rptr; 486 if (!(addr_ucp = mi_offset_param(mp, ipic->ipic_addr_offset, 487 ipic->ipic_addr_length))) { 488 return (EINVAL); 489 } 490 if (!OK_32PTR(addr_ucp)) 491 return (EINVAL); 492 switch (ipic->ipic_addr_length) { 493 case IP_ADDR_LEN: { 494 /* Extract the destination address. */ 495 addr = *(ipaddr_t *)addr_ucp; 496 /* Find the corresponding IRE. */ 497 ire = ire_cache_lookup(addr, zoneid, NULL); 498 break; 499 } 500 case IPV6_ADDR_LEN: { 501 /* Extract the destination address. */ 502 v6addr = *(in6_addr_t *)addr_ucp; 503 /* Find the corresponding IRE. */ 504 ire = ire_cache_lookup_v6(&v6addr, zoneid, NULL); 505 break; 506 } 507 default: 508 return (EINVAL); 509 } 510 511 if (ire == NULL) 512 return (ENOENT); 513 /* 514 * Update the round trip time estimate and/or the max frag size 515 * and/or the slow start threshold. 516 * 517 * We serialize multiple advises using ire_lock. 518 */ 519 mutex_enter(&ire->ire_lock); 520 if (ipic->ipic_rtt) { 521 /* 522 * If there is no old cached values, initialize them 523 * conservatively. Set them to be (1.5 * new value). 524 */ 525 if (ire->ire_uinfo.iulp_rtt != 0) { 526 ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + 527 ipic->ipic_rtt) >> 1; 528 } else { 529 ire->ire_uinfo.iulp_rtt = ipic->ipic_rtt + 530 (ipic->ipic_rtt >> 1); 531 } 532 if (ire->ire_uinfo.iulp_rtt_sd != 0) { 533 ire->ire_uinfo.iulp_rtt_sd = 534 (ire->ire_uinfo.iulp_rtt_sd + 535 ipic->ipic_rtt_sd) >> 1; 536 } else { 537 ire->ire_uinfo.iulp_rtt_sd = ipic->ipic_rtt_sd + 538 (ipic->ipic_rtt_sd >> 1); 539 } 540 } 541 if (ipic->ipic_max_frag) 542 ire->ire_max_frag = MIN(ipic->ipic_max_frag, IP_MAXPACKET); 543 if (ipic->ipic_ssthresh != 0) { 544 if (ire->ire_uinfo.iulp_ssthresh != 0) 545 ire->ire_uinfo.iulp_ssthresh = 546 (ipic->ipic_ssthresh + 547 ire->ire_uinfo.iulp_ssthresh) >> 1; 548 else 549 ire->ire_uinfo.iulp_ssthresh = ipic->ipic_ssthresh; 550 } 551 /* 552 * Don't need the ire_lock below this. ire_type does not change 553 * after initialization. ire_marks is protected by irb_lock. 554 */ 555 mutex_exit(&ire->ire_lock); 556 557 if (ipic->ipic_ire_marks != 0 && ire->ire_type == IRE_CACHE) { 558 /* 559 * Only increment the temporary IRE count if the original 560 * IRE is not already marked temporary. 561 */ 562 irb = ire->ire_bucket; 563 rw_enter(&irb->irb_lock, RW_WRITER); 564 if ((ipic->ipic_ire_marks & IRE_MARK_TEMPORARY) && 565 !(ire->ire_marks & IRE_MARK_TEMPORARY)) { 566 irb->irb_tmp_ire_cnt++; 567 } 568 ire->ire_marks |= ipic->ipic_ire_marks; 569 rw_exit(&irb->irb_lock); 570 } 571 572 ire_refrele(ire); 573 return (0); 574 } 575 576 /* 577 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY] 578 * IOCTL[s]. The NO_REPLY form is used by TCP to delete a route IRE 579 * for a host that is not responding. This will force an attempt to 580 * establish a new route, if available, and flush out the ARP entry so 581 * it will re-resolve. Management processes may want to use the 582 * version that generates a reply. 583 * 584 * This function does not support IPv6 since Neighbor Unreachability Detection 585 * means that negative advise like this is useless. 586 */ 587 /* ARGSUSED */ 588 int 589 ip_ire_delete(queue_t *q, mblk_t *mp, cred_t *ioc_cr) 590 { 591 uchar_t *addr_ucp; 592 ipaddr_t addr; 593 ire_t *ire; 594 ipid_t *ipid; 595 boolean_t routing_sock_info = B_FALSE; /* Sent info? */ 596 zoneid_t zoneid; 597 ire_t *gire = NULL; 598 ill_t *ill; 599 mblk_t *arp_mp; 600 601 ASSERT(q->q_next == NULL); 602 zoneid = Q_TO_CONN(q)->conn_zoneid; 603 604 /* 605 * Check privilege using the ioctl credential; if it is NULL 606 * then this is a kernel message and therefor privileged. 607 */ 608 if (ioc_cr != NULL && secpolicy_net_config(ioc_cr, B_FALSE) != 0) 609 return (EPERM); 610 611 ipid = (ipid_t *)mp->b_rptr; 612 613 /* Only actions on IRE_CACHEs are acceptable at present. */ 614 if (ipid->ipid_ire_type != IRE_CACHE) 615 return (EINVAL); 616 617 addr_ucp = mi_offset_param(mp, ipid->ipid_addr_offset, 618 ipid->ipid_addr_length); 619 if (addr_ucp == NULL || !OK_32PTR(addr_ucp)) 620 return (EINVAL); 621 switch (ipid->ipid_addr_length) { 622 case IP_ADDR_LEN: 623 /* addr_ucp points at IP addr */ 624 break; 625 case sizeof (sin_t): { 626 sin_t *sin; 627 /* 628 * got complete (sockaddr) address - increment addr_ucp to point 629 * at the ip_addr field. 630 */ 631 sin = (sin_t *)addr_ucp; 632 addr_ucp = (uchar_t *)&sin->sin_addr.s_addr; 633 break; 634 } 635 default: 636 return (EINVAL); 637 } 638 /* Extract the destination address. */ 639 bcopy(addr_ucp, &addr, IP_ADDR_LEN); 640 641 /* Try to find the CACHED IRE. */ 642 ire = ire_cache_lookup(addr, zoneid, NULL); 643 644 /* Nail it. */ 645 if (ire) { 646 /* Allow delete only on CACHE entries */ 647 if (ire->ire_type != IRE_CACHE) { 648 ire_refrele(ire); 649 return (EINVAL); 650 } 651 652 /* 653 * Verify that the IRE has been around for a while. 654 * This is to protect against transport protocols 655 * that are too eager in sending delete messages. 656 */ 657 if (gethrestime_sec() < 658 ire->ire_create_time + ip_ignore_delete_time) { 659 ire_refrele(ire); 660 return (EINVAL); 661 } 662 /* 663 * Now we have a potentially dead cache entry. We need 664 * to remove it. 665 * If this cache entry is generated from a 666 * default route (i.e., ire_cmask == 0), 667 * search the default list and mark it dead and some 668 * background process will try to activate it. 669 */ 670 if ((ire->ire_gateway_addr != 0) && (ire->ire_cmask == 0)) { 671 /* 672 * Make sure that we pick a different 673 * IRE_DEFAULT next time. 674 */ 675 ire_t *gw_ire; 676 irb_t *irb = NULL; 677 uint_t match_flags; 678 679 match_flags = (MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE); 680 681 gire = ire_ftable_lookup(ire->ire_addr, 682 ire->ire_cmask, 0, 0, 683 ire->ire_ipif, NULL, zoneid, 0, NULL, match_flags); 684 685 ip3dbg(("ire_ftable_lookup() returned gire %p\n", 686 (void *)gire)); 687 688 if (gire != NULL) { 689 irb = gire->ire_bucket; 690 691 /* 692 * We grab it as writer just to serialize 693 * multiple threads trying to bump up 694 * irb_rr_origin 695 */ 696 rw_enter(&irb->irb_lock, RW_WRITER); 697 if ((gw_ire = irb->irb_rr_origin) == NULL) { 698 rw_exit(&irb->irb_lock); 699 goto done; 700 } 701 702 DTRACE_PROBE1(ip__ire__del__origin, 703 (ire_t *), gw_ire); 704 705 /* Skip past the potentially bad gateway */ 706 if (ire->ire_gateway_addr == 707 gw_ire->ire_gateway_addr) { 708 ire_t *next = gw_ire->ire_next; 709 710 DTRACE_PROBE2(ip__ire__del, 711 (ire_t *), gw_ire, (irb_t *), irb); 712 IRE_FIND_NEXT_ORIGIN(next); 713 irb->irb_rr_origin = next; 714 } 715 rw_exit(&irb->irb_lock); 716 } 717 } 718 done: 719 if (gire != NULL) 720 IRE_REFRELE(gire); 721 /* report the bad route to routing sockets */ 722 ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, 723 ire->ire_mask, ire->ire_src_addr, 0, 0, 0, 724 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 725 routing_sock_info = B_TRUE; 726 727 /* 728 * TCP is really telling us to start over completely, and it 729 * expects that we'll resend the ARP query. Tell ARP to 730 * discard the entry, if this is a local destination. 731 */ 732 ill = ire->ire_stq->q_ptr; 733 if (ire->ire_gateway_addr == 0 && 734 (arp_mp = ill_ared_alloc(ill, addr)) != NULL) { 735 putnext(ill->ill_rq, arp_mp); 736 } 737 738 ire_delete(ire); 739 ire_refrele(ire); 740 } 741 /* Also look for an IRE_HOST_REDIRECT and remove it if present */ 742 ire = ire_route_lookup(addr, 0, 0, IRE_HOST_REDIRECT, NULL, NULL, 743 ALL_ZONES, NULL, MATCH_IRE_TYPE); 744 745 /* Nail it. */ 746 if (ire) { 747 if (!routing_sock_info) { 748 ip_rts_change(RTM_LOSING, ire->ire_addr, 749 ire->ire_gateway_addr, ire->ire_mask, 750 ire->ire_src_addr, 0, 0, 0, 751 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA)); 752 } 753 ire_delete(ire); 754 ire_refrele(ire); 755 } 756 return (0); 757 } 758 759 /* 760 * Named Dispatch routine to produce a formatted report on all IREs. 761 * This report is accessed by using the ndd utility to "get" ND variable 762 * "ipv4_ire_status". 763 */ 764 /* ARGSUSED */ 765 int 766 ip_ire_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 767 { 768 zoneid_t zoneid; 769 770 (void) mi_mpprintf(mp, 771 "IRE " MI_COL_HDRPAD_STR 772 /* 01234567[89ABCDEF] */ 773 "rfq " MI_COL_HDRPAD_STR 774 /* 01234567[89ABCDEF] */ 775 "stq " MI_COL_HDRPAD_STR 776 /* 01234567[89ABCDEF] */ 777 " zone " 778 /* 12345 */ 779 "addr mask " 780 /* 123.123.123.123 123.123.123.123 */ 781 "src gateway mxfrg rtt rtt_sd ssthresh ref " 782 /* 123.123.123.123 123.123.123.123 12345 12345 123456 12345678 123 */ 783 "rtomax tstamp_ok wscale_ok ecn_ok pmtud_ok sack sendpipe " 784 /* 123456 123456789 123456789 123456 12345678 1234 12345678 */ 785 "recvpipe in/out/forward type"); 786 /* 12345678 in/out/forward xxxxxxxxxx */ 787 788 /* 789 * Because of the ndd constraint, at most we can have 64K buffer 790 * to put in all IRE info. So to be more efficient, just 791 * allocate a 64K buffer here, assuming we need that large buffer. 792 * This should be OK as only root can do ndd /dev/ip. 793 */ 794 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 795 /* The following may work even if we cannot get a large buf. */ 796 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 797 return (0); 798 } 799 800 zoneid = Q_TO_CONN(q)->conn_zoneid; 801 if (zoneid == GLOBAL_ZONEID) 802 zoneid = ALL_ZONES; 803 804 ire_walk_v4(ire_report_ftable, mp->b_cont, zoneid); 805 ire_walk_v4(ire_report_ctable, mp->b_cont, zoneid); 806 807 return (0); 808 } 809 810 811 /* ire_walk routine invoked for ip_ire_report for each cached IRE. */ 812 static void 813 ire_report_ctable(ire_t *ire, char *mp) 814 { 815 char buf1[16]; 816 char buf2[16]; 817 char buf3[16]; 818 char buf4[16]; 819 uint_t fo_pkt_count; 820 uint_t ib_pkt_count; 821 int ref; 822 uint_t print_len, buf_len; 823 824 if ((ire->ire_type & IRE_CACHETABLE) == 0) 825 return; 826 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 827 if (buf_len <= 0) 828 return; 829 830 /* Number of active references of this ire */ 831 ref = ire->ire_refcnt; 832 /* "inbound" to a non local address is a forward */ 833 ib_pkt_count = ire->ire_ib_pkt_count; 834 fo_pkt_count = 0; 835 if (!(ire->ire_type & (IRE_LOCAL|IRE_BROADCAST))) { 836 fo_pkt_count = ib_pkt_count; 837 ib_pkt_count = 0; 838 } 839 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 840 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR "%5d " 841 "%s %s %s %s %05d %05ld %06ld %08d %03d %06d %09d %09d %06d %08d " 842 "%04d %08d %08d %d/%d/%d %s\n", 843 (void *)ire, (void *)ire->ire_rfq, (void *)ire->ire_stq, 844 (int)ire->ire_zoneid, 845 ip_dot_addr(ire->ire_addr, buf1), ip_dot_addr(ire->ire_mask, buf2), 846 ip_dot_addr(ire->ire_src_addr, buf3), 847 ip_dot_addr(ire->ire_gateway_addr, buf4), 848 ire->ire_max_frag, ire->ire_uinfo.iulp_rtt, 849 ire->ire_uinfo.iulp_rtt_sd, ire->ire_uinfo.iulp_ssthresh, ref, 850 ire->ire_uinfo.iulp_rtomax, 851 (ire->ire_uinfo.iulp_tstamp_ok ? 1: 0), 852 (ire->ire_uinfo.iulp_wscale_ok ? 1: 0), 853 (ire->ire_uinfo.iulp_ecn_ok ? 1: 0), 854 (ire->ire_uinfo.iulp_pmtud_ok ? 1: 0), 855 ire->ire_uinfo.iulp_sack, 856 ire->ire_uinfo.iulp_spipe, ire->ire_uinfo.iulp_rpipe, 857 ib_pkt_count, ire->ire_ob_pkt_count, fo_pkt_count, 858 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type)); 859 if (print_len < buf_len) { 860 ((mblk_t *)mp)->b_wptr += print_len; 861 } else { 862 ((mblk_t *)mp)->b_wptr += buf_len; 863 } 864 } 865 866 /* ARGSUSED */ 867 int 868 ip_ire_report_mrtun(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 869 { 870 (void) mi_mpprintf(mp, 871 "IRE " MI_COL_HDRPAD_STR 872 /* 01234567[89ABCDEF] */ 873 "stq " MI_COL_HDRPAD_STR 874 /* 01234567[89ABCDEF] */ 875 "in_ill " MI_COL_HDRPAD_STR 876 /* 01234567[89ABCDEF] */ 877 "in_src_addr " 878 /* 123.123.123.123 */ 879 "max_frag " 880 /* 12345 */ 881 "ref "); 882 /* 123 */ 883 884 ire_walk_ill_mrtun(0, 0, ire_report_mrtun_table, mp, NULL); 885 return (0); 886 } 887 888 /* mrtun report table - supports ipv4_mrtun_ire_status ndd variable */ 889 890 static void 891 ire_report_mrtun_table(ire_t *ire, char *mp) 892 { 893 char buf1[INET_ADDRSTRLEN]; 894 int ref; 895 896 /* Number of active references of this ire */ 897 ref = ire->ire_refcnt; 898 ASSERT(ire->ire_type == IRE_MIPRTUN); 899 (void) mi_mpprintf((mblk_t *)mp, 900 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 901 "%s %05d %03d", 902 (void *)ire, (void *)ire->ire_stq, 903 (void *)ire->ire_in_ill, 904 ip_dot_addr(ire->ire_in_src_addr, buf1), 905 ire->ire_max_frag, ref); 906 } 907 908 /* 909 * Dispatch routine to format ires in interface based routine 910 */ 911 /* ARGSUSED */ 912 int 913 ip_ire_report_srcif(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 914 { 915 916 /* Report all interface based ires */ 917 918 (void) mi_mpprintf(mp, 919 "IRE " MI_COL_HDRPAD_STR 920 /* 01234567[89ABCDEF] */ 921 "stq " MI_COL_HDRPAD_STR 922 /* 01234567[89ABCDEF] */ 923 "in_ill " MI_COL_HDRPAD_STR 924 /* 01234567[89ABCDEF] */ 925 "addr " 926 /* 123.123.123.123 */ 927 "gateway " 928 /* 123.123.123.123 */ 929 "max_frag " 930 /* 12345 */ 931 "ref " 932 /* 123 */ 933 "type " 934 /* ABCDEFGH */ 935 "in/out/forward"); 936 ire_walk_srcif_table_v4(ire_report_srcif_table, mp); 937 return (0); 938 } 939 940 /* Reports the interface table ires */ 941 static void 942 ire_report_srcif_table(ire_t *ire, char *mp) 943 { 944 char buf1[INET_ADDRSTRLEN]; 945 char buf2[INET_ADDRSTRLEN]; 946 int ref; 947 948 ref = ire->ire_refcnt; 949 (void) mi_mpprintf((mblk_t *)mp, 950 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 951 "%s %s %05d %03d %s %d", 952 (void *)ire, (void *)ire->ire_stq, 953 (void *)ire->ire_in_ill, 954 ip_dot_addr(ire->ire_addr, buf1), 955 ip_dot_addr(ire->ire_gateway_addr, buf2), 956 ire->ire_max_frag, ref, 957 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type), 958 ire->ire_ib_pkt_count); 959 960 } 961 /* 962 * ip_ire_req is called by ip_wput when an IRE_DB_REQ_TYPE message is handed 963 * down from the Upper Level Protocol to request a copy of the IRE (to check 964 * its type or to extract information like round-trip time estimates or the 965 * MTU.) 966 * The address is assumed to be in the ire_addr field. If no IRE is found 967 * an IRE is returned with ire_type being zero. 968 * Note that the upper lavel protocol has to check for broadcast 969 * (IRE_BROADCAST) and multicast (CLASSD(addr)). 970 * If there is a b_cont the resulting IRE_DB_TYPE mblk is placed at the 971 * end of the returned message. 972 * 973 * TCP sends down a message of this type with a connection request packet 974 * chained on. UDP and ICMP send it down to verify that a route exists for 975 * the destination address when they get connected. 976 */ 977 void 978 ip_ire_req(queue_t *q, mblk_t *mp) 979 { 980 ire_t *inire; 981 ire_t *ire; 982 mblk_t *mp1; 983 ire_t *sire = NULL; 984 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 985 986 if ((mp->b_wptr - mp->b_rptr) < sizeof (ire_t) || 987 !OK_32PTR(mp->b_rptr)) { 988 freemsg(mp); 989 return; 990 } 991 inire = (ire_t *)mp->b_rptr; 992 /* 993 * Got it, now take our best shot at an IRE. 994 */ 995 if (inire->ire_ipversion == IPV6_VERSION) { 996 ire = ire_route_lookup_v6(&inire->ire_addr_v6, 0, 0, 0, 997 NULL, &sire, zoneid, NULL, 998 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 999 } else { 1000 ASSERT(inire->ire_ipversion == IPV4_VERSION); 1001 ire = ire_route_lookup(inire->ire_addr, 0, 0, 0, 1002 NULL, &sire, zoneid, NULL, 1003 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT)); 1004 } 1005 1006 /* 1007 * We prevent returning IRES with source address INADDR_ANY 1008 * as these were temporarily created for sending packets 1009 * from endpoints that have conn_unspec_src set. 1010 */ 1011 if (ire == NULL || 1012 (ire->ire_ipversion == IPV4_VERSION && 1013 ire->ire_src_addr == INADDR_ANY) || 1014 (ire->ire_ipversion == IPV6_VERSION && 1015 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6))) { 1016 inire->ire_type = 0; 1017 } else { 1018 bcopy(ire, inire, sizeof (ire_t)); 1019 /* Copy the route metrics from the parent. */ 1020 if (sire != NULL) { 1021 bcopy(&(sire->ire_uinfo), &(inire->ire_uinfo), 1022 sizeof (iulp_t)); 1023 } 1024 1025 /* 1026 * As we don't lookup global policy here, we may not 1027 * pass the right size if per-socket policy is not 1028 * present. For these cases, path mtu discovery will 1029 * do the right thing. 1030 */ 1031 inire->ire_ipsec_overhead = conn_ipsec_length(Q_TO_CONN(q)); 1032 1033 /* Pass the latest setting of the ip_path_mtu_discovery */ 1034 inire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1035 } 1036 if (ire != NULL) 1037 ire_refrele(ire); 1038 if (sire != NULL) 1039 ire_refrele(sire); 1040 mp->b_wptr = &mp->b_rptr[sizeof (ire_t)]; 1041 mp->b_datap->db_type = IRE_DB_TYPE; 1042 1043 /* Put the IRE_DB_TYPE mblk last in the chain */ 1044 mp1 = mp->b_cont; 1045 if (mp1 != NULL) { 1046 mp->b_cont = NULL; 1047 linkb(mp1, mp); 1048 mp = mp1; 1049 } 1050 qreply(q, mp); 1051 } 1052 1053 /* 1054 * Send a packet using the specified IRE. 1055 * If ire_src_addr_v6 is all zero then discard the IRE after 1056 * the packet has been sent. 1057 */ 1058 static void 1059 ire_send(queue_t *q, mblk_t *pkt, ire_t *ire) 1060 { 1061 mblk_t *ipsec_mp; 1062 boolean_t is_secure; 1063 uint_t ifindex; 1064 ill_t *ill; 1065 zoneid_t zoneid = ire->ire_zoneid; 1066 1067 ASSERT(ire->ire_ipversion == IPV4_VERSION); 1068 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1069 ipsec_mp = pkt; 1070 is_secure = (pkt->b_datap->db_type == M_CTL); 1071 if (is_secure) { 1072 ipsec_out_t *io; 1073 1074 pkt = pkt->b_cont; 1075 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1076 if (io->ipsec_out_type == IPSEC_OUT) 1077 zoneid = io->ipsec_out_zoneid; 1078 } 1079 1080 /* If the packet originated externally then */ 1081 if (pkt->b_prev) { 1082 ire_refrele(ire); 1083 /* 1084 * Extract the ifindex from b_prev (set in ip_rput_noire). 1085 * Look up interface to see if it still exists (it could have 1086 * been unplumbed by the time the reply came back from ARP) 1087 */ 1088 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1089 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 1090 NULL, NULL, NULL, NULL); 1091 if (ill == NULL) { 1092 pkt->b_prev = NULL; 1093 pkt->b_next = NULL; 1094 freemsg(ipsec_mp); 1095 return; 1096 } 1097 q = ill->ill_rq; 1098 pkt->b_prev = NULL; 1099 /* 1100 * This packet has not gone through IPSEC processing 1101 * and hence we should not have any IPSEC message 1102 * prepended. 1103 */ 1104 ASSERT(ipsec_mp == pkt); 1105 put(q, pkt); 1106 ill_refrele(ill); 1107 } else if (pkt->b_next) { 1108 /* Packets from multicast router */ 1109 pkt->b_next = NULL; 1110 /* 1111 * We never get the IPSEC_OUT while forwarding the 1112 * packet for multicast router. 1113 */ 1114 ASSERT(ipsec_mp == pkt); 1115 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, ipsec_mp, NULL); 1116 ire_refrele(ire); 1117 } else { 1118 /* Locally originated packets */ 1119 boolean_t is_inaddr_any; 1120 ipha_t *ipha = (ipha_t *)pkt->b_rptr; 1121 1122 /* 1123 * We need to do an ire_delete below for which 1124 * we need to make sure that the IRE will be 1125 * around even after calling ip_wput_ire - 1126 * which does ire_refrele. Otherwise somebody 1127 * could potentially delete this ire and hence 1128 * free this ire and we will be calling ire_delete 1129 * on a freed ire below. 1130 */ 1131 is_inaddr_any = (ire->ire_src_addr == INADDR_ANY); 1132 if (is_inaddr_any) { 1133 IRE_REFHOLD(ire); 1134 } 1135 /* 1136 * If we were resolving a router we can not use the 1137 * routers IRE for sending the packet (since it would 1138 * violate the uniqness of the IP idents) thus we 1139 * make another pass through ip_wput to create the IRE_CACHE 1140 * for the destination. 1141 * When IRE_MARK_NOADD is set, ire_add() is not called. 1142 * Thus ip_wput() will never find a ire and result in an 1143 * infinite loop. Thus we check whether IRE_MARK_NOADD is 1144 * is set. This also implies that IRE_MARK_NOADD can only be 1145 * used to send packets to directly connected hosts. 1146 */ 1147 if (ipha->ipha_dst != ire->ire_addr && 1148 !(ire->ire_marks & IRE_MARK_NOADD)) { 1149 ire_refrele(ire); /* Held in ire_add */ 1150 if (CONN_Q(q)) { 1151 (void) ip_output(Q_TO_CONN(q), ipsec_mp, q, 1152 IRE_SEND); 1153 } else { 1154 (void) ip_output((void *)(uintptr_t)zoneid, 1155 ipsec_mp, q, IRE_SEND); 1156 } 1157 } else { 1158 if (is_secure) { 1159 ipsec_out_t *oi; 1160 ipha_t *ipha; 1161 1162 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1163 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 1164 if (oi->ipsec_out_proc_begin) { 1165 /* 1166 * This is the case where 1167 * ip_wput_ipsec_out could not find 1168 * the IRE and recreated a new one. 1169 * As ip_wput_ipsec_out does ire 1170 * lookups, ire_refrele for the extra 1171 * bump in ire_add. 1172 */ 1173 ire_refrele(ire); 1174 ip_wput_ipsec_out(q, ipsec_mp, ipha, 1175 NULL, NULL); 1176 } else { 1177 /* 1178 * IRE_REFRELE will be done in 1179 * ip_wput_ire. 1180 */ 1181 ip_wput_ire(q, ipsec_mp, ire, NULL, 1182 IRE_SEND, zoneid); 1183 } 1184 } else { 1185 /* 1186 * IRE_REFRELE will be done in ip_wput_ire. 1187 */ 1188 ip_wput_ire(q, ipsec_mp, ire, NULL, 1189 IRE_SEND, zoneid); 1190 } 1191 } 1192 /* 1193 * Special code to support sending a single packet with 1194 * conn_unspec_src using an IRE which has no source address. 1195 * The IRE is deleted here after sending the packet to avoid 1196 * having other code trip on it. But before we delete the 1197 * ire, somebody could have looked up this ire. 1198 * We prevent returning/using this IRE by the upper layers 1199 * by making checks to NULL source address in other places 1200 * like e.g ip_ire_append, ip_ire_req and ip_bind_connected. 1201 * Though, this does not completely prevent other threads 1202 * from using this ire, this should not cause any problems. 1203 * 1204 * NOTE : We use is_inaddr_any instead of using ire_src_addr 1205 * because for the normal case i.e !is_inaddr_any, ire_refrele 1206 * above could have potentially freed the ire. 1207 */ 1208 if (is_inaddr_any) { 1209 /* 1210 * If this IRE has been deleted by another thread, then 1211 * ire_bucket won't be NULL, but ire_ptpn will be NULL. 1212 * Thus, ire_delete will do nothing. This check 1213 * guards against calling ire_delete when the IRE was 1214 * never inserted in the table, which is handled by 1215 * ire_delete as dropping another reference. 1216 */ 1217 if (ire->ire_bucket != NULL) { 1218 ip1dbg(("ire_send: delete IRE\n")); 1219 ire_delete(ire); 1220 } 1221 ire_refrele(ire); /* Held above */ 1222 } 1223 } 1224 } 1225 1226 /* 1227 * Send a packet using the specified IRE. 1228 * If ire_src_addr_v6 is all zero then discard the IRE after 1229 * the packet has been sent. 1230 */ 1231 static void 1232 ire_send_v6(queue_t *q, mblk_t *pkt, ire_t *ire) 1233 { 1234 mblk_t *ipsec_mp; 1235 boolean_t secure; 1236 uint_t ifindex; 1237 zoneid_t zoneid = ire->ire_zoneid; 1238 1239 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1240 ASSERT(!(ire->ire_type & IRE_LOCAL)); /* Has different ire_zoneid */ 1241 if (pkt->b_datap->db_type == M_CTL) { 1242 ipsec_out_t *io; 1243 1244 ipsec_mp = pkt; 1245 pkt = pkt->b_cont; 1246 secure = B_TRUE; 1247 io = (ipsec_out_t *)ipsec_mp->b_rptr; 1248 if (io->ipsec_out_type == IPSEC_OUT) 1249 zoneid = io->ipsec_out_zoneid; 1250 } else { 1251 ipsec_mp = pkt; 1252 secure = B_FALSE; 1253 } 1254 1255 /* If the packet originated externally then */ 1256 if (pkt->b_prev) { 1257 ill_t *ill; 1258 /* 1259 * Extract the ifindex from b_prev (set in ip_rput_data_v6). 1260 * Look up interface to see if it still exists (it could have 1261 * been unplumbed by the time the reply came back from the 1262 * resolver). 1263 */ 1264 ifindex = (uint_t)(uintptr_t)pkt->b_prev; 1265 ill = ill_lookup_on_ifindex(ifindex, B_TRUE, 1266 NULL, NULL, NULL, NULL); 1267 if (ill == NULL) { 1268 pkt->b_prev = NULL; 1269 pkt->b_next = NULL; 1270 freemsg(ipsec_mp); 1271 ire_refrele(ire); /* Held in ire_add */ 1272 return; 1273 } 1274 q = ill->ill_rq; 1275 pkt->b_prev = NULL; 1276 /* 1277 * This packet has not gone through IPSEC processing 1278 * and hence we should not have any IPSEC message 1279 * prepended. 1280 */ 1281 ASSERT(ipsec_mp == pkt); 1282 put(q, pkt); 1283 ill_refrele(ill); 1284 } else if (pkt->b_next) { 1285 /* Packets from multicast router */ 1286 pkt->b_next = NULL; 1287 /* 1288 * We never get the IPSEC_OUT while forwarding the 1289 * packet for multicast router. 1290 */ 1291 ASSERT(ipsec_mp == pkt); 1292 /* 1293 * XXX TODO IPv6. 1294 */ 1295 freemsg(pkt); 1296 #ifdef XXX 1297 ip_rput_forward(ire, (ipha_t *)pkt->b_rptr, pkt, NULL); 1298 #endif 1299 } else { 1300 if (secure) { 1301 ipsec_out_t *oi; 1302 ip6_t *ip6h; 1303 1304 oi = (ipsec_out_t *)ipsec_mp->b_rptr; 1305 ip6h = (ip6_t *)ipsec_mp->b_cont->b_rptr; 1306 if (oi->ipsec_out_proc_begin) { 1307 /* 1308 * This is the case where 1309 * ip_wput_ipsec_out could not find 1310 * the IRE and recreated a new one. 1311 */ 1312 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, 1313 NULL, NULL); 1314 } else { 1315 if (CONN_Q(q)) { 1316 (void) ip_output_v6(Q_TO_CONN(q), 1317 ipsec_mp, q, IRE_SEND); 1318 } else { 1319 (void) ip_output_v6( 1320 (void *)(uintptr_t)zoneid, 1321 ipsec_mp, q, IRE_SEND); 1322 } 1323 } 1324 } else { 1325 /* 1326 * Send packets through ip_output_v6 so that any 1327 * ip6_info header can be processed again. 1328 */ 1329 if (CONN_Q(q)) { 1330 (void) ip_output_v6(Q_TO_CONN(q), ipsec_mp, q, 1331 IRE_SEND); 1332 } else { 1333 (void) ip_output_v6((void *)(uintptr_t)zoneid, 1334 ipsec_mp, q, IRE_SEND); 1335 } 1336 } 1337 /* 1338 * Special code to support sending a single packet with 1339 * conn_unspec_src using an IRE which has no source address. 1340 * The IRE is deleted here after sending the packet to avoid 1341 * having other code trip on it. But before we delete the 1342 * ire, somebody could have looked up this ire. 1343 * We prevent returning/using this IRE by the upper layers 1344 * by making checks to NULL source address in other places 1345 * like e.g ip_ire_append_v6, ip_ire_req and 1346 * ip_bind_connected_v6. Though, this does not completely 1347 * prevent other threads from using this ire, this should 1348 * not cause any problems. 1349 */ 1350 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6)) { 1351 ip1dbg(("ire_send_v6: delete IRE\n")); 1352 ire_delete(ire); 1353 } 1354 } 1355 ire_refrele(ire); /* Held in ire_add */ 1356 } 1357 1358 /* 1359 * Make sure that IRE bucket does not get too long. 1360 * This can cause lock up because ire_cache_lookup() 1361 * may take "forever" to finish. 1362 * 1363 * We just remove cnt IREs each time. This means that 1364 * the bucket length will stay approximately constant, 1365 * depending on cnt. This should be enough to defend 1366 * against DoS attack based on creating temporary IREs 1367 * (for forwarding and non-TCP traffic). 1368 * 1369 * Note that new IRE is normally added at the tail of the 1370 * bucket. This means that we are removing the "oldest" 1371 * temporary IRE added. Only if there are IREs with 1372 * the same ire_addr, do we not add it at the tail. Refer 1373 * to ire_add_v*(). It should be OK for our purpose. 1374 * 1375 * For non-temporary cached IREs, we make sure that they 1376 * have not been used for some time (defined below), they 1377 * are non-local destinations, and there is no one using 1378 * them at the moment (refcnt == 1). 1379 * 1380 * The above means that the IRE bucket length may become 1381 * very long, consisting of mostly non-temporary IREs. 1382 * This can happen when the hash function does a bad job 1383 * so that most TCP connections cluster to a specific bucket. 1384 * This "hopefully" should never happen. It can also 1385 * happen if most TCP connections have very long lives. 1386 * Even with the minimal hash table size of 256, there 1387 * has to be a lot of such connections to make the bucket 1388 * length unreasonably long. This should probably not 1389 * happen either. The third can when this can happen is 1390 * when the machine is under attack, such as SYN flooding. 1391 * TCP should already have the proper mechanism to protect 1392 * that. So we should be safe. 1393 * 1394 * This function is called by ire_add_then_send() after 1395 * a new IRE is added and the packet is sent. 1396 * 1397 * The idle cutoff interval is set to 60s. It can be 1398 * changed using /etc/system. 1399 */ 1400 uint32_t ire_idle_cutoff_interval = 60000; 1401 1402 static void 1403 ire_cache_cleanup(irb_t *irb, uint32_t threshold, int cnt) 1404 { 1405 ire_t *ire; 1406 int tmp_cnt = cnt; 1407 clock_t cut_off = drv_usectohz(ire_idle_cutoff_interval * 1000); 1408 1409 /* 1410 * irb is NULL if the IRE is not added to the hash. This 1411 * happens when IRE_MARK_NOADD is set in ire_add_then_send() 1412 * and when ires are returned from ire_update_srcif_v4() routine. 1413 */ 1414 if (irb == NULL) 1415 return; 1416 1417 IRB_REFHOLD(irb); 1418 if (irb->irb_tmp_ire_cnt > threshold) { 1419 for (ire = irb->irb_ire; ire != NULL && tmp_cnt > 0; 1420 ire = ire->ire_next) { 1421 if (ire->ire_marks & IRE_MARK_CONDEMNED) 1422 continue; 1423 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 1424 ASSERT(ire->ire_type == IRE_CACHE); 1425 ire_delete(ire); 1426 tmp_cnt--; 1427 } 1428 } 1429 } 1430 if (irb->irb_ire_cnt - irb->irb_tmp_ire_cnt > threshold) { 1431 for (ire = irb->irb_ire; ire != NULL && cnt > 0; 1432 ire = ire->ire_next) { 1433 if (ire->ire_marks & IRE_MARK_CONDEMNED || 1434 ire->ire_gateway_addr == 0) { 1435 continue; 1436 } 1437 if ((ire->ire_type == IRE_CACHE) && 1438 (lbolt - ire->ire_last_used_time > cut_off) && 1439 (ire->ire_refcnt == 1)) { 1440 ire_delete(ire); 1441 cnt--; 1442 } 1443 } 1444 } 1445 IRB_REFRELE(irb); 1446 } 1447 1448 /* 1449 * ire_add_then_send is called when a new IRE has been created in order to 1450 * route an outgoing packet. Typically, it is called from ip_wput when 1451 * a response comes back down from a resolver. We add the IRE, and then 1452 * possibly run the packet through ip_wput or ip_rput, as appropriate. 1453 * However, we do not add the newly created IRE in the cache when 1454 * IRE_MARK_NOADD is set in the IRE. IRE_MARK_NOADD is set at 1455 * ip_newroute_ipif(). The ires with IRE_MARK_NOADD and ires returned 1456 * by ire_update_srcif_v4() are ire_refrele'd by ip_wput_ire() and get 1457 * deleted. 1458 * Multirouting support: the packet is silently discarded when the new IRE 1459 * holds the RTF_MULTIRT flag, but is not the first IRE to be added with the 1460 * RTF_MULTIRT flag for the same destination address. 1461 * In this case, we just want to register this additional ire without 1462 * sending the packet, as it has already been replicated through 1463 * existing multirt routes in ip_wput(). 1464 */ 1465 void 1466 ire_add_then_send(queue_t *q, ire_t *ire, mblk_t *mp) 1467 { 1468 irb_t *irb; 1469 boolean_t drop = B_FALSE; 1470 /* LINTED : set but not used in function */ 1471 boolean_t mctl_present; 1472 mblk_t *first_mp = NULL; 1473 mblk_t *save_mp = NULL; 1474 ire_t *dst_ire; 1475 ipha_t *ipha; 1476 ip6_t *ip6h; 1477 1478 if (mp != NULL) { 1479 /* 1480 * We first have to retrieve the destination address carried 1481 * by the packet. 1482 * We can't rely on ire as it can be related to a gateway. 1483 * The destination address will help in determining if 1484 * other RTF_MULTIRT ires are already registered. 1485 * 1486 * We first need to know where we are going : v4 or V6. 1487 * the ire version is enough, as there is no risk that 1488 * we resolve an IPv6 address with an IPv4 ire 1489 * or vice versa. 1490 */ 1491 if (ire->ire_ipversion == IPV4_VERSION) { 1492 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1493 ipha = (ipha_t *)mp->b_rptr; 1494 save_mp = mp; 1495 mp = first_mp; 1496 1497 dst_ire = ire_cache_lookup(ipha->ipha_dst, 1498 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1499 } else { 1500 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1501 /* 1502 * Get a pointer to the beginning of the IPv6 header. 1503 * Ignore leading IPsec control mblks. 1504 */ 1505 first_mp = mp; 1506 if (mp->b_datap->db_type == M_CTL) { 1507 mp = mp->b_cont; 1508 } 1509 ip6h = (ip6_t *)mp->b_rptr; 1510 save_mp = mp; 1511 mp = first_mp; 1512 dst_ire = ire_cache_lookup_v6(&ip6h->ip6_dst, 1513 ire->ire_zoneid, MBLK_GETLABEL(mp)); 1514 } 1515 if (dst_ire != NULL) { 1516 if (dst_ire->ire_flags & RTF_MULTIRT) { 1517 /* 1518 * At least one resolved multirt route 1519 * already exists for the destination, 1520 * don't sent this packet: either drop it 1521 * or complete the pending resolution, 1522 * depending on the ire. 1523 */ 1524 drop = B_TRUE; 1525 } 1526 ip1dbg(("ire_add_then_send: dst_ire %p " 1527 "[dst %08x, gw %08x], drop %d\n", 1528 (void *)dst_ire, 1529 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1530 ntohl(dst_ire->ire_addr) : \ 1531 ntohl(V4_PART_OF_V6(dst_ire->ire_addr_v6)), 1532 (dst_ire->ire_ipversion == IPV4_VERSION) ? \ 1533 ntohl(dst_ire->ire_gateway_addr) : \ 1534 ntohl(V4_PART_OF_V6( 1535 dst_ire->ire_gateway_addr_v6)), 1536 drop)); 1537 ire_refrele(dst_ire); 1538 } 1539 } 1540 1541 if (!(ire->ire_marks & IRE_MARK_NOADD)) { 1542 /* 1543 * Regular packets with cache bound ires and 1544 * the packets from ARP response for ires which 1545 * belong to the ire_srcif_v4 table, are here. 1546 */ 1547 if (ire->ire_in_ill == NULL) { 1548 /* Add the ire */ 1549 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 1550 } else { 1551 /* 1552 * This must be ARP response for ire in interface based 1553 * table. Note that we don't add them in cache table, 1554 * instead we update the existing table with dlureq_mp 1555 * information. The reverse tunnel ires do not come 1556 * here, as reverse tunnel is non-resolver interface. 1557 * XXX- another design alternative was to mark the 1558 * ires in interface based table with a special mark to 1559 * make absolutely sure that we operate in right ires. 1560 * This idea was not implemented as part of code review 1561 * suggestion, as ire_in_ill suffice to distinguish 1562 * between the regular ires and interface based 1563 * ires now and thus we save a bit in the ire_marks. 1564 */ 1565 ire = ire_update_srcif_v4(ire); 1566 } 1567 1568 if (ire == NULL) { 1569 mp->b_prev = NULL; 1570 mp->b_next = NULL; 1571 MULTIRT_DEBUG_UNTAG(mp); 1572 freemsg(mp); 1573 return; 1574 } 1575 if (mp == NULL) { 1576 ire_refrele(ire); /* Held in ire_add_v4/v6 */ 1577 return; 1578 } 1579 } 1580 if (drop) { 1581 /* 1582 * If we're adding an RTF_MULTIRT ire, the resolution 1583 * is over: we just drop the packet. 1584 */ 1585 if (ire->ire_flags & RTF_MULTIRT) { 1586 if (save_mp) { 1587 save_mp->b_prev = NULL; 1588 save_mp->b_next = NULL; 1589 } 1590 MULTIRT_DEBUG_UNTAG(mp); 1591 freemsg(mp); 1592 } else { 1593 /* 1594 * Otherwise, we're adding the ire to a gateway 1595 * for a multirt route. 1596 * Invoke ip_newroute() to complete the resolution 1597 * of the route. We will then come back here and 1598 * finally drop this packet in the above code. 1599 */ 1600 if (ire->ire_ipversion == IPV4_VERSION) { 1601 /* 1602 * TODO: in order for CGTP to work in non-global 1603 * zones, ip_newroute() must create the IRE 1604 * cache in the zone indicated by 1605 * ire->ire_zoneid. 1606 */ 1607 ip_newroute(q, mp, ipha->ipha_dst, 0, 1608 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 1609 ire->ire_zoneid); 1610 } else { 1611 ASSERT(ire->ire_ipversion == IPV6_VERSION); 1612 ip_newroute_v6(q, mp, &ip6h->ip6_dst, NULL, 1613 NULL, ire->ire_zoneid); 1614 } 1615 } 1616 1617 ire_refrele(ire); /* As done by ire_send(). */ 1618 return; 1619 } 1620 /* 1621 * Need to remember ire_bucket here as ire_send*() may delete 1622 * the ire so we cannot reference it after that. 1623 */ 1624 irb = ire->ire_bucket; 1625 if (ire->ire_ipversion == IPV6_VERSION) { 1626 ire_send_v6(q, mp, ire); 1627 /* 1628 * Clean up more than 1 IRE so that the clean up does not 1629 * need to be done every time when a new IRE is added and 1630 * the threshold is reached. 1631 */ 1632 ire_cache_cleanup(irb, ip6_ire_max_bucket_cnt, 2); 1633 } else { 1634 ire_send(q, mp, ire); 1635 ire_cache_cleanup(irb, ip_ire_max_bucket_cnt, 2); 1636 } 1637 } 1638 1639 /* 1640 * Initialize the ire that is specific to IPv4 part and call 1641 * ire_init_common to finish it. 1642 */ 1643 ire_t * 1644 ire_init(ire_t *ire, uchar_t *addr, uchar_t *mask, uchar_t *src_addr, 1645 uchar_t *gateway, uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, 1646 queue_t *rfq, queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, 1647 ill_t *in_ill, ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, 1648 uint32_t flags, const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1649 { 1650 /* 1651 * Reject IRE security attribute creation/initialization 1652 * if system is not running in Trusted mode. 1653 */ 1654 if ((gc != NULL || gcgrp != NULL) && !is_system_labeled()) 1655 return (NULL); 1656 1657 if (fp_mp != NULL) { 1658 /* 1659 * We can't dupb() here as multiple threads could be 1660 * calling dupb on the same mp which is incorrect. 1661 * First dupb() should be called only by one thread. 1662 */ 1663 fp_mp = copyb(fp_mp); 1664 if (fp_mp == NULL) 1665 return (NULL); 1666 } 1667 1668 if (dlureq_mp != NULL) { 1669 /* 1670 * We can't dupb() here as multiple threads could be 1671 * calling dupb on the same mp which is incorrect. 1672 * First dupb() should be called only by one thread. 1673 */ 1674 dlureq_mp = copyb(dlureq_mp); 1675 if (dlureq_mp == NULL) { 1676 if (fp_mp != NULL) 1677 freeb(fp_mp); 1678 return (NULL); 1679 } 1680 } 1681 1682 /* 1683 * Check that IRE_IF_RESOLVER and IRE_IF_NORESOLVER have a 1684 * dlureq_mp which is the ill_resolver_mp for IRE_IF_RESOLVER 1685 * and DL_UNITDATA_REQ for IRE_IF_NORESOLVER. 1686 */ 1687 if ((type & IRE_INTERFACE) && 1688 dlureq_mp == NULL) { 1689 ASSERT(fp_mp == NULL); 1690 ip0dbg(("ire_init: no dlureq_mp\n")); 1691 return (NULL); 1692 } 1693 1694 BUMP_IRE_STATS(ire_stats_v4, ire_stats_alloced); 1695 1696 if (addr != NULL) 1697 bcopy(addr, &ire->ire_addr, IP_ADDR_LEN); 1698 if (src_addr != NULL) 1699 bcopy(src_addr, &ire->ire_src_addr, IP_ADDR_LEN); 1700 if (mask != NULL) { 1701 bcopy(mask, &ire->ire_mask, IP_ADDR_LEN); 1702 ire->ire_masklen = ip_mask_to_plen(ire->ire_mask); 1703 } 1704 if (gateway != NULL) { 1705 bcopy(gateway, &ire->ire_gateway_addr, IP_ADDR_LEN); 1706 } 1707 if (in_src_addr != NULL) { 1708 bcopy(in_src_addr, &ire->ire_in_src_addr, IP_ADDR_LEN); 1709 } 1710 1711 if (type == IRE_CACHE) 1712 ire->ire_cmask = cmask; 1713 1714 /* ire_init_common will free the mblks upon encountering any failure */ 1715 if (!ire_init_common(ire, max_fragp, fp_mp, rfq, stq, type, dlureq_mp, 1716 ipif, in_ill, phandle, ihandle, flags, IPV4_VERSION, ulp_info, 1717 gc, gcgrp)) 1718 return (NULL); 1719 1720 return (ire); 1721 } 1722 1723 /* 1724 * Similar to ire_create except that it is called only when 1725 * we want to allocate ire as an mblk e.g. we have an external 1726 * resolver ARP. 1727 */ 1728 ire_t * 1729 ire_create_mp(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1730 uchar_t *in_src_addr, uint_t max_frag, mblk_t *fp_mp, queue_t *rfq, 1731 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1732 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1733 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1734 { 1735 ire_t *ire, *buf; 1736 ire_t *ret_ire; 1737 mblk_t *mp; 1738 size_t bufsize; 1739 frtn_t *frtnp; 1740 ill_t *ill; 1741 1742 bufsize = sizeof (ire_t) + sizeof (frtn_t); 1743 buf = kmem_alloc(bufsize, KM_NOSLEEP); 1744 if (buf == NULL) { 1745 ip1dbg(("ire_create_mp: alloc failed\n")); 1746 return (NULL); 1747 } 1748 frtnp = (frtn_t *)(buf + 1); 1749 frtnp->free_arg = (caddr_t)buf; 1750 frtnp->free_func = ire_freemblk; 1751 1752 /* 1753 * Allocate the new IRE. The ire created will hold a ref on 1754 * an nce_t after ire_nce_init, and this ref must either be 1755 * (a) transferred to the ire_cache entry created when ire_add_v4 1756 * is called after successful arp resolution, or, 1757 * (b) released, when arp resolution fails 1758 * Case (b) is handled in ire_freemblk() which will be called 1759 * when mp is freed as a result of failed arp. 1760 */ 1761 mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 1762 if (mp == NULL) { 1763 ip1dbg(("ire_create_mp: alloc failed\n")); 1764 kmem_free(buf, bufsize); 1765 return (NULL); 1766 } 1767 ire = (ire_t *)mp->b_rptr; 1768 mp->b_wptr = (uchar_t *)&ire[1]; 1769 1770 /* Start clean. */ 1771 *ire = ire_null; 1772 ire->ire_mp = mp; 1773 mp->b_datap->db_type = IRE_DB_TYPE; 1774 ire->ire_marks |= IRE_MARK_UNCACHED; 1775 1776 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1777 NULL, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1778 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1779 1780 ill = (ill_t *)(stq->q_ptr); 1781 if (ret_ire == NULL) { 1782 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1783 freeb(ire->ire_mp); 1784 return (NULL); 1785 } 1786 ret_ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 1787 ASSERT(ret_ire == ire); 1788 /* 1789 * ire_max_frag is normally zero here and is atomically set 1790 * under the irebucket lock in ire_add_v[46] except for the 1791 * case of IRE_MARK_NOADD. In that event the the ire_max_frag 1792 * is non-zero here. 1793 */ 1794 ire->ire_max_frag = max_frag; 1795 return (ire); 1796 } 1797 1798 /* 1799 * ire_create is called to allocate and initialize a new IRE. 1800 * 1801 * NOTE : This is called as writer sometimes though not required 1802 * by this function. 1803 */ 1804 ire_t * 1805 ire_create(uchar_t *addr, uchar_t *mask, uchar_t *src_addr, uchar_t *gateway, 1806 uchar_t *in_src_addr, uint_t *max_fragp, mblk_t *fp_mp, queue_t *rfq, 1807 queue_t *stq, ushort_t type, mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, 1808 ipaddr_t cmask, uint32_t phandle, uint32_t ihandle, uint32_t flags, 1809 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1810 { 1811 ire_t *ire; 1812 ire_t *ret_ire; 1813 1814 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 1815 if (ire == NULL) { 1816 ip1dbg(("ire_create: alloc failed\n")); 1817 return (NULL); 1818 } 1819 *ire = ire_null; 1820 1821 ret_ire = ire_init(ire, addr, mask, src_addr, gateway, in_src_addr, 1822 max_fragp, fp_mp, rfq, stq, type, dlureq_mp, ipif, in_ill, cmask, 1823 phandle, ihandle, flags, ulp_info, gc, gcgrp); 1824 1825 if (ret_ire == NULL) { 1826 kmem_cache_free(ire_cache, ire); 1827 return (NULL); 1828 } 1829 ASSERT(ret_ire == ire); 1830 return (ire); 1831 } 1832 1833 1834 /* 1835 * Common to IPv4 and IPv6 1836 */ 1837 boolean_t 1838 ire_init_common(ire_t *ire, uint_t *max_fragp, mblk_t *fp_mp, 1839 queue_t *rfq, queue_t *stq, ushort_t type, 1840 mblk_t *dlureq_mp, ipif_t *ipif, ill_t *in_ill, uint32_t phandle, 1841 uint32_t ihandle, uint32_t flags, uchar_t ipversion, 1842 const iulp_t *ulp_info, tsol_gc_t *gc, tsol_gcgrp_t *gcgrp) 1843 { 1844 ire->ire_max_fragp = max_fragp; 1845 ire->ire_frag_flag |= (ip_path_mtu_discovery) ? IPH_DF : 0; 1846 1847 ASSERT(fp_mp == NULL || fp_mp->b_datap->db_type == M_DATA); 1848 #ifdef DEBUG 1849 if (ipif != NULL) { 1850 if (ipif->ipif_isv6) 1851 ASSERT(ipversion == IPV6_VERSION); 1852 else 1853 ASSERT(ipversion == IPV4_VERSION); 1854 } 1855 #endif /* DEBUG */ 1856 1857 /* 1858 * Create/initialize IRE security attribute only in Trusted mode; 1859 * if the passed in gc/gcgrp is non-NULL, we expect that the caller 1860 * has held a reference to it and will release it when this routine 1861 * returns a failure, otherwise we own the reference. We do this 1862 * prior to initializing the rest IRE fields. 1863 * 1864 * Don't allocate ire_gw_secattr for the resolver case to prevent 1865 * memory leak (in case of external resolution failure). We'll 1866 * allocate it after a successful external resolution, in ire_add(). 1867 * Note that ire->ire_mp != NULL here means this ire is headed 1868 * to an external resolver. 1869 */ 1870 if (is_system_labeled()) { 1871 if ((type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST | 1872 IRE_INTERFACE)) != 0) { 1873 /* release references on behalf of caller */ 1874 if (gc != NULL) 1875 GC_REFRELE(gc); 1876 if (gcgrp != NULL) 1877 GCGRP_REFRELE(gcgrp); 1878 } else if ((ire->ire_mp == NULL) && 1879 tsol_ire_init_gwattr(ire, ipversion, gc, gcgrp) != 0) { 1880 /* free any caller-allocated mblks upon failure */ 1881 if (fp_mp != NULL) 1882 freeb(fp_mp); 1883 if (dlureq_mp != NULL) 1884 freeb(dlureq_mp); 1885 return (B_FALSE); 1886 } 1887 } 1888 1889 ire->ire_stq = stq; 1890 ire->ire_rfq = rfq; 1891 ire->ire_type = type; 1892 ire->ire_flags = RTF_UP | flags; 1893 ire->ire_ident = TICK_TO_MSEC(lbolt); 1894 bcopy(ulp_info, &ire->ire_uinfo, sizeof (iulp_t)); 1895 1896 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 1897 ire->ire_last_used_time = lbolt; 1898 ire->ire_create_time = (uint32_t)gethrestime_sec(); 1899 1900 /* 1901 * If this IRE is an IRE_CACHE, inherit the handles from the 1902 * parent IREs. For others in the forwarding table, assign appropriate 1903 * new ones. 1904 * 1905 * The mutex protecting ire_handle is because ire_create is not always 1906 * called as a writer. 1907 */ 1908 if (ire->ire_type & IRE_OFFSUBNET) { 1909 mutex_enter(&ire_handle_lock); 1910 ire->ire_phandle = (uint32_t)ire_handle++; 1911 mutex_exit(&ire_handle_lock); 1912 } else if (ire->ire_type & IRE_INTERFACE) { 1913 mutex_enter(&ire_handle_lock); 1914 ire->ire_ihandle = (uint32_t)ire_handle++; 1915 mutex_exit(&ire_handle_lock); 1916 } else if (ire->ire_type == IRE_CACHE) { 1917 ire->ire_phandle = phandle; 1918 ire->ire_ihandle = ihandle; 1919 } 1920 ire->ire_in_ill = in_ill; 1921 ire->ire_ipif = ipif; 1922 if (ipif != NULL) { 1923 ire->ire_ipif_seqid = ipif->ipif_seqid; 1924 ire->ire_zoneid = ipif->ipif_zoneid; 1925 } else { 1926 ire->ire_zoneid = GLOBAL_ZONEID; 1927 } 1928 ire->ire_ipversion = ipversion; 1929 mutex_init(&ire->ire_lock, NULL, MUTEX_DEFAULT, NULL); 1930 if (ipversion == IPV4_VERSION) { 1931 if (ire_nce_init(ire, fp_mp, dlureq_mp) != 0) { 1932 /* some failure occurred. propagate error back */ 1933 return (B_FALSE); 1934 } 1935 } else { 1936 ASSERT(ipversion == IPV6_VERSION); 1937 /* 1938 * IPv6 initializes the ire_nce in ire_add_v6, 1939 * which expects to find the ire_nce to be null when 1940 * when it is called. 1941 */ 1942 if (dlureq_mp) 1943 freemsg(dlureq_mp); 1944 if (fp_mp) 1945 freemsg(fp_mp); 1946 } 1947 ire->ire_refcnt = 1; 1948 1949 #ifdef IRE_DEBUG 1950 bzero(ire->ire_trace, sizeof (th_trace_t *) * IP_TR_HASH_MAX); 1951 #endif 1952 1953 return (B_TRUE); 1954 } 1955 1956 /* 1957 * This routine is called repeatedly by ipif_up to create broadcast IREs. 1958 * It is passed a pointer to a slot in an IRE pointer array into which to 1959 * place the pointer to the new IRE, if indeed we create one. If the 1960 * IRE corresponding to the address passed in would be a duplicate of an 1961 * existing one, we don't create the new one. irep is incremented before 1962 * return only if we do create a new IRE. (Always called as writer.) 1963 * 1964 * Note that with the "match_flags" parameter, we can match on either 1965 * a particular logical interface (MATCH_IRE_IPIF) or for all logical 1966 * interfaces for a given physical interface (MATCH_IRE_ILL). Currently, 1967 * we only create broadcast ire's on a per physical interface basis. If 1968 * someone is going to be mucking with logical interfaces, it is important 1969 * to call "ipif_check_bcast_ires()" to make sure that any change to a 1970 * logical interface will not cause critical broadcast IRE's to be deleted. 1971 */ 1972 ire_t ** 1973 ire_check_and_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep, 1974 int match_flags) 1975 { 1976 ire_t *ire; 1977 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 1978 1979 /* 1980 * No broadcast IREs for the LOOPBACK interface 1981 * or others such as point to point and IPIF_NOXMIT. 1982 */ 1983 if (!(ipif->ipif_flags & IPIF_BROADCAST) || 1984 (ipif->ipif_flags & IPIF_NOXMIT)) 1985 return (irep); 1986 1987 /* If this would be a duplicate, don't bother. */ 1988 if ((ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ipif, 1989 ipif->ipif_zoneid, NULL, match_flags)) != NULL) { 1990 /* 1991 * We look for non-deprecated (and non-anycast, non-nolocal) 1992 * ipifs as the best choice. ipifs with check_flags matching 1993 * (deprecated, etc) are used only if non-deprecated ipifs 1994 * are not available. if the existing ire's ipif is deprecated 1995 * and the new ipif is non-deprecated, switch to the new ipif 1996 */ 1997 if ((!(ire->ire_ipif->ipif_flags & check_flags)) || 1998 (ipif->ipif_flags & check_flags)) { 1999 ire_refrele(ire); 2000 return (irep); 2001 } 2002 /* 2003 * Bcast ires exist in pairs. Both have to be deleted, 2004 * Since we are exclusive we can make the above assertion. 2005 * The 1st has to be refrele'd since it was ctable_lookup'd. 2006 */ 2007 ASSERT(IAM_WRITER_IPIF(ipif)); 2008 ASSERT(ire->ire_next->ire_addr == ire->ire_addr); 2009 ire_delete(ire->ire_next); 2010 ire_delete(ire); 2011 ire_refrele(ire); 2012 } 2013 2014 irep = ire_create_bcast(ipif, addr, irep); 2015 2016 return (irep); 2017 } 2018 2019 uint_t ip_loopback_mtu = IP_LOOPBACK_MTU; 2020 2021 /* 2022 * This routine is called from ipif_check_bcast_ires and ire_check_bcast. 2023 * It leaves all the verifying and deleting to those routines. So it always 2024 * creates 2 bcast ires and chains them into the ire array passed in. 2025 */ 2026 ire_t ** 2027 ire_create_bcast(ipif_t *ipif, ipaddr_t addr, ire_t **irep) 2028 { 2029 *irep++ = ire_create( 2030 (uchar_t *)&addr, /* dest addr */ 2031 (uchar_t *)&ip_g_all_ones, /* mask */ 2032 (uchar_t *)&ipif->ipif_src_addr, /* source addr */ 2033 NULL, /* no gateway */ 2034 NULL, /* no in_src_addr */ 2035 &ipif->ipif_mtu, /* max frag */ 2036 NULL, /* fast path header */ 2037 ipif->ipif_rq, /* recv-from queue */ 2038 ipif->ipif_wq, /* send-to queue */ 2039 IRE_BROADCAST, 2040 ipif->ipif_bcast_mp, /* xmit header */ 2041 ipif, 2042 NULL, 2043 0, 2044 0, 2045 0, 2046 0, 2047 &ire_uinfo_null, 2048 NULL, 2049 NULL); 2050 2051 *irep++ = ire_create( 2052 (uchar_t *)&addr, /* dest address */ 2053 (uchar_t *)&ip_g_all_ones, /* mask */ 2054 (uchar_t *)&ipif->ipif_src_addr, /* source address */ 2055 NULL, /* no gateway */ 2056 NULL, /* no in_src_addr */ 2057 &ip_loopback_mtu, /* max frag size */ 2058 NULL, /* Fast Path header */ 2059 ipif->ipif_rq, /* recv-from queue */ 2060 NULL, /* no send-to queue */ 2061 IRE_BROADCAST, /* Needed for fanout in wput */ 2062 NULL, 2063 ipif, 2064 NULL, 2065 0, 2066 0, 2067 0, 2068 0, 2069 &ire_uinfo_null, 2070 NULL, 2071 NULL); 2072 2073 return (irep); 2074 } 2075 2076 /* 2077 * ire_walk routine to delete or update any IRE_CACHE that might contain 2078 * stale information. 2079 * The flags state which entries to delete or update. 2080 * Garbage collection is done separately using kmem alloc callbacks to 2081 * ip_trash_ire_reclaim. 2082 * Used for both IPv4 and IPv6. However, IPv6 only uses FLUSH_MTU_TIME 2083 * since other stale information is cleaned up using NUD. 2084 */ 2085 void 2086 ire_expire(ire_t *ire, char *arg) 2087 { 2088 int flush_flags = (int)(uintptr_t)arg; 2089 ill_t *stq_ill; 2090 2091 if ((flush_flags & FLUSH_REDIRECT_TIME) && 2092 ire->ire_type == IRE_HOST_REDIRECT) { 2093 /* Make sure we delete the corresponding IRE_CACHE */ 2094 ip1dbg(("ire_expire: all redirects\n")); 2095 ip_rts_rtmsg(RTM_DELETE, ire, 0); 2096 ire_delete(ire); 2097 atomic_dec_32(&ip_redirect_cnt); 2098 return; 2099 } 2100 if (ire->ire_type != IRE_CACHE) 2101 return; 2102 2103 if (flush_flags & FLUSH_ARP_TIME) { 2104 /* 2105 * Remove all IRE_CACHE. 2106 * Verify that create time is more than 2107 * ip_ire_arp_interval milliseconds ago. 2108 */ 2109 if (NCE_EXPIRED(ire->ire_nce)) { 2110 ire_delete(ire); 2111 return; 2112 } 2113 } 2114 2115 if (ip_path_mtu_discovery && (flush_flags & FLUSH_MTU_TIME) && 2116 (ire->ire_ipif != NULL)) { 2117 /* Increase pmtu if it is less than the interface mtu */ 2118 mutex_enter(&ire->ire_lock); 2119 /* 2120 * If the ipif is a vni (whose mtu is 0, since it's virtual) 2121 * get the mtu from the sending interfaces' ipif 2122 */ 2123 if (IS_VNI(ire->ire_ipif->ipif_ill)) { 2124 stq_ill = ire->ire_stq->q_ptr; 2125 ire->ire_max_frag = MIN(stq_ill->ill_ipif->ipif_mtu, 2126 IP_MAXPACKET); 2127 } else { 2128 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 2129 IP_MAXPACKET); 2130 } 2131 ire->ire_frag_flag |= IPH_DF; 2132 mutex_exit(&ire->ire_lock); 2133 } 2134 } 2135 2136 /* 2137 * Do fast path probing if necessary. 2138 */ 2139 void 2140 ire_fastpath(ire_t *ire) 2141 { 2142 ill_t *ill; 2143 int res; 2144 2145 if (ire->ire_nce == NULL || ire->ire_nce->nce_fp_mp != NULL || 2146 ire->ire_nce->nce_state != ND_REACHABLE || 2147 ire->ire_nce->nce_res_mp == NULL) { 2148 2149 /* 2150 * Already contains fastpath info or 2151 * doesn't have DL_UNITDATA_REQ header or 2152 * or is an incomplete ire in the ire table 2153 * or is a loopback broadcast ire i.e. no stq. 2154 */ 2155 return; 2156 } 2157 ill = ire_to_ill(ire); 2158 if (ill == NULL) 2159 return; 2160 ire_fastpath_list_add(ill, ire); 2161 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2162 /* 2163 * EAGAIN is an indication of a transient error 2164 * i.e. allocation failure etc. leave the ire in the list it will 2165 * be updated when another probe happens for another ire if not 2166 * it will be taken out of the list when the ire is deleted. 2167 */ 2168 if (res != 0 && res != EAGAIN) 2169 ire_fastpath_list_delete(ill, ire); 2170 } 2171 2172 /* 2173 * Update all IRE's that are not in fastpath mode and 2174 * have an dlureq_mp that matches mp. mp->b_cont contains 2175 * the fastpath header. 2176 * 2177 * Returns TRUE if entry should be dequeued, or FALSE otherwise. 2178 */ 2179 boolean_t 2180 ire_fastpath_update(ire_t *ire, void *arg) 2181 { 2182 mblk_t *mp, *fp_mp; 2183 uchar_t *up, *up2; 2184 ptrdiff_t cmplen; 2185 nce_t *arpce; 2186 2187 ASSERT((ire->ire_type & (IRE_CACHE | IRE_BROADCAST | 2188 IRE_MIPRTUN)) != 0); 2189 2190 /* 2191 * Already contains fastpath info or doesn't have 2192 * DL_UNITDATA_REQ header or is an incomplete ire. 2193 */ 2194 if (ire->ire_nce == NULL || ire->ire_nce->nce_res_mp == NULL || 2195 ire->ire_nce->nce_fp_mp != NULL || 2196 ire->ire_nce->nce_state != ND_REACHABLE) 2197 return (B_TRUE); 2198 2199 ip2dbg(("ire_fastpath_update: trying\n")); 2200 mp = arg; 2201 up = mp->b_rptr; 2202 cmplen = mp->b_wptr - up; 2203 /* Serialize multiple fast path updates */ 2204 mutex_enter(&ire->ire_nce->nce_lock); 2205 up2 = ire->ire_nce->nce_res_mp->b_rptr; 2206 ASSERT(cmplen >= 0); 2207 if (ire->ire_nce->nce_res_mp->b_wptr - up2 != cmplen || 2208 bcmp(up, up2, cmplen) != 0) { 2209 mutex_exit(&ire->ire_nce->nce_lock); 2210 /* 2211 * Don't take the ire off the fastpath list yet, 2212 * since the response may come later. 2213 */ 2214 return (B_FALSE); 2215 } 2216 arpce = ire->ire_nce; 2217 /* Matched - install mp as the nce_fp_mp */ 2218 ip1dbg(("ire_fastpath_update: match\n")); 2219 fp_mp = dupb(mp->b_cont); 2220 if (fp_mp) { 2221 /* 2222 * We checked nce_fp_mp above. Check it again with the 2223 * lock. Update fp_mp only if it has not been done 2224 * already. 2225 */ 2226 if (arpce->nce_fp_mp == NULL) { 2227 /* 2228 * ire_ll_hdr_length is just an optimization to 2229 * store the length. It is used to return the 2230 * fast path header length to the upper layers. 2231 */ 2232 arpce->nce_fp_mp = fp_mp; 2233 ire->ire_ll_hdr_length = 2234 (uint_t)(fp_mp->b_wptr - fp_mp->b_rptr); 2235 } else { 2236 freeb(fp_mp); 2237 } 2238 } 2239 mutex_exit(&ire->ire_nce->nce_lock); 2240 return (B_TRUE); 2241 } 2242 2243 /* 2244 * This function handles the DL_NOTE_FASTPATH_FLUSH notification from the 2245 * driver. 2246 */ 2247 /* ARGSUSED */ 2248 void 2249 ire_fastpath_flush(ire_t *ire, void *arg) 2250 { 2251 ill_t *ill; 2252 int res; 2253 2254 /* No fastpath info? */ 2255 if (ire->ire_nce == NULL || 2256 ire->ire_nce->nce_fp_mp == NULL || ire->ire_nce->nce_res_mp == NULL) 2257 return; 2258 2259 /* 2260 * Just remove the IRE if it is for non-broadcast dest. Then 2261 * we will create another one which will have the correct 2262 * fastpath info. 2263 */ 2264 switch (ire->ire_type) { 2265 case IRE_CACHE: 2266 ire_delete(ire); 2267 break; 2268 case IRE_MIPRTUN: 2269 case IRE_BROADCAST: 2270 /* 2271 * We can't delete the ire since it is difficult to 2272 * recreate these ire's without going through the 2273 * ipif down/up dance. The nce_fp_mp is protected by the 2274 * nce_lock in the case of IRE_MIPRTUN and IRE_BROADCAST. 2275 * All access to ire->ire_nce->nce_fp_mp in the case of these 2276 * 2 ire types * is protected by nce_lock. 2277 */ 2278 mutex_enter(&ire->ire_nce->nce_lock); 2279 if (ire->ire_nce->nce_fp_mp != NULL) { 2280 freeb(ire->ire_nce->nce_fp_mp); 2281 ire->ire_nce->nce_fp_mp = NULL; 2282 mutex_exit(&ire->ire_nce->nce_lock); 2283 /* 2284 * No fastpath probe if there is no stq i.e. 2285 * i.e. the case of loopback broadcast ire. 2286 */ 2287 if (ire->ire_stq == NULL) 2288 break; 2289 ill = (ill_t *)((ire->ire_stq)->q_ptr); 2290 ire_fastpath_list_add(ill, ire); 2291 res = ill_fastpath_probe(ill, ire->ire_nce->nce_res_mp); 2292 /* 2293 * EAGAIN is an indication of a transient error 2294 * i.e. allocation failure etc. leave the ire in the 2295 * list it will be updated when another probe happens 2296 * for another ire if not it will be taken out of the 2297 * list when the ire is deleted. 2298 */ 2299 if (res != 0 && res != EAGAIN) 2300 ire_fastpath_list_delete(ill, ire); 2301 } else { 2302 mutex_exit(&ire->ire_nce->nce_lock); 2303 } 2304 break; 2305 default: 2306 /* This should not happen! */ 2307 ip0dbg(("ire_fastpath_flush: Wrong ire type %s\n", 2308 ip_nv_lookup(ire_nv_tbl, (int)ire->ire_type))); 2309 break; 2310 } 2311 } 2312 2313 /* 2314 * Drain the list of ire's waiting for fastpath response. 2315 */ 2316 void 2317 ire_fastpath_list_dispatch(ill_t *ill, boolean_t (*func)(ire_t *, void *), 2318 void *arg) 2319 { 2320 ire_t *next_ire; 2321 ire_t *current_ire; 2322 ire_t *first_ire; 2323 ire_t *prev_ire = NULL; 2324 2325 ASSERT(ill != NULL); 2326 2327 mutex_enter(&ill->ill_lock); 2328 first_ire = current_ire = (ire_t *)ill->ill_fastpath_list; 2329 while (current_ire != (ire_t *)&ill->ill_fastpath_list) { 2330 next_ire = current_ire->ire_fastpath; 2331 /* 2332 * Take it off the list if we're flushing, or if the callback 2333 * routine tells us to do so. Otherwise, leave the ire in the 2334 * fastpath list to handle any pending response from the lower 2335 * layer. We can't drain the list when the callback routine 2336 * comparison failed, because the response is asynchronous in 2337 * nature, and may not arrive in the same order as the list 2338 * insertion. 2339 */ 2340 if (func == NULL || func(current_ire, arg)) { 2341 current_ire->ire_fastpath = NULL; 2342 if (current_ire == first_ire) 2343 ill->ill_fastpath_list = first_ire = next_ire; 2344 else 2345 prev_ire->ire_fastpath = next_ire; 2346 } else { 2347 /* previous element that is still in the list */ 2348 prev_ire = current_ire; 2349 } 2350 current_ire = next_ire; 2351 } 2352 mutex_exit(&ill->ill_lock); 2353 } 2354 2355 /* 2356 * Add ire to the ire fastpath list. 2357 */ 2358 static void 2359 ire_fastpath_list_add(ill_t *ill, ire_t *ire) 2360 { 2361 ASSERT(ill != NULL); 2362 ASSERT(ire->ire_stq != NULL); 2363 2364 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2365 mutex_enter(&ill->ill_lock); 2366 2367 /* 2368 * if ire has not been deleted and 2369 * is not already in the list add it. 2370 */ 2371 if (((ire->ire_marks & IRE_MARK_CONDEMNED) == 0) && 2372 (ire->ire_fastpath == NULL)) { 2373 ire->ire_fastpath = (ire_t *)ill->ill_fastpath_list; 2374 ill->ill_fastpath_list = ire; 2375 } 2376 2377 mutex_exit(&ill->ill_lock); 2378 rw_exit(&ire->ire_bucket->irb_lock); 2379 } 2380 2381 /* 2382 * remove ire from the ire fastpath list. 2383 */ 2384 void 2385 ire_fastpath_list_delete(ill_t *ill, ire_t *ire) 2386 { 2387 ire_t *ire_ptr; 2388 2389 ASSERT(ire->ire_stq != NULL && ill != NULL); 2390 2391 mutex_enter(&ill->ill_lock); 2392 if (ire->ire_fastpath == NULL) 2393 goto done; 2394 2395 ASSERT(ill->ill_fastpath_list != &ill->ill_fastpath_list); 2396 2397 if (ill->ill_fastpath_list == ire) { 2398 ill->ill_fastpath_list = ire->ire_fastpath; 2399 } else { 2400 ire_ptr = ill->ill_fastpath_list; 2401 while (ire_ptr != (ire_t *)&ill->ill_fastpath_list) { 2402 if (ire_ptr->ire_fastpath == ire) { 2403 ire_ptr->ire_fastpath = ire->ire_fastpath; 2404 break; 2405 } 2406 ire_ptr = ire_ptr->ire_fastpath; 2407 } 2408 } 2409 ire->ire_fastpath = NULL; 2410 done: 2411 mutex_exit(&ill->ill_lock); 2412 } 2413 2414 /* 2415 * Return any local address. We use this to target ourselves 2416 * when the src address was specified as 'default'. 2417 * Preference for IRE_LOCAL entries. 2418 */ 2419 ire_t * 2420 ire_lookup_local(zoneid_t zoneid) 2421 { 2422 ire_t *ire; 2423 irb_t *irb; 2424 ire_t *maybe = NULL; 2425 int i; 2426 2427 for (i = 0; i < ip_cache_table_size; i++) { 2428 irb = &ip_cache_table[i]; 2429 if (irb->irb_ire == NULL) 2430 continue; 2431 rw_enter(&irb->irb_lock, RW_READER); 2432 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2433 if ((ire->ire_marks & IRE_MARK_CONDEMNED) || 2434 (ire->ire_zoneid != zoneid && 2435 ire->ire_zoneid != ALL_ZONES)) 2436 continue; 2437 switch (ire->ire_type) { 2438 case IRE_LOOPBACK: 2439 if (maybe == NULL) { 2440 IRE_REFHOLD(ire); 2441 maybe = ire; 2442 } 2443 break; 2444 case IRE_LOCAL: 2445 if (maybe != NULL) { 2446 ire_refrele(maybe); 2447 } 2448 IRE_REFHOLD(ire); 2449 rw_exit(&irb->irb_lock); 2450 return (ire); 2451 } 2452 } 2453 rw_exit(&irb->irb_lock); 2454 } 2455 return (maybe); 2456 } 2457 2458 /* 2459 * If the specified IRE is associated with a particular ILL, return 2460 * that ILL pointer (May be called as writer.). 2461 * 2462 * NOTE : This is not a generic function that can be used always. 2463 * This function always returns the ill of the outgoing packets 2464 * if this ire is used. 2465 */ 2466 ill_t * 2467 ire_to_ill(const ire_t *ire) 2468 { 2469 ill_t *ill = NULL; 2470 2471 /* 2472 * 1) For an IRE_CACHE, ire_ipif is the one where it obtained 2473 * the source address from. ire_stq is the one where the 2474 * packets will be sent out on. We return that here. 2475 * 2476 * 2) IRE_BROADCAST normally has a loopback and a non-loopback 2477 * copy and they always exist next to each other with loopback 2478 * copy being the first one. If we are called on the non-loopback 2479 * copy, return the one pointed by ire_stq. If it was called on 2480 * a loopback copy, we still return the one pointed by the next 2481 * ire's ire_stq pointer i.e the one pointed by the non-loopback 2482 * copy. We don't want use ire_ipif as it might represent the 2483 * source address (if we borrow source addresses for 2484 * IRE_BROADCASTS in the future). 2485 * However if an interface is currently coming up, the above 2486 * condition may not hold during that period since the ires 2487 * are added one at a time. Thus one of the pair could have been 2488 * added and the other not yet added. 2489 * 3) For all others return the ones pointed by ire_ipif->ipif_ill. 2490 */ 2491 2492 if (ire->ire_type == IRE_CACHE) { 2493 ill = (ill_t *)ire->ire_stq->q_ptr; 2494 } else if (ire->ire_type == IRE_BROADCAST) { 2495 if (ire->ire_stq != NULL) { 2496 ill = (ill_t *)ire->ire_stq->q_ptr; 2497 } else { 2498 ire_t *ire_next; 2499 2500 ire_next = ire->ire_next; 2501 if (ire_next != NULL && 2502 ire_next->ire_type == IRE_BROADCAST && 2503 ire_next->ire_addr == ire->ire_addr && 2504 ire_next->ire_ipif == ire->ire_ipif) { 2505 ill = (ill_t *)ire_next->ire_stq->q_ptr; 2506 } 2507 } 2508 } else if (ire->ire_ipif != NULL) { 2509 ill = ire->ire_ipif->ipif_ill; 2510 } 2511 return (ill); 2512 } 2513 2514 /* Arrange to call the specified function for every IRE in the world. */ 2515 void 2516 ire_walk(pfv_t func, void *arg) 2517 { 2518 ire_walk_ipvers(func, arg, 0, ALL_ZONES); 2519 } 2520 2521 void 2522 ire_walk_v4(pfv_t func, void *arg, zoneid_t zoneid) 2523 { 2524 ire_walk_ipvers(func, arg, IPV4_VERSION, zoneid); 2525 } 2526 2527 void 2528 ire_walk_v6(pfv_t func, void *arg, zoneid_t zoneid) 2529 { 2530 ire_walk_ipvers(func, arg, IPV6_VERSION, zoneid); 2531 } 2532 2533 /* 2534 * Walk a particular version. version == 0 means both v4 and v6. 2535 */ 2536 static void 2537 ire_walk_ipvers(pfv_t func, void *arg, uchar_t vers, zoneid_t zoneid) 2538 { 2539 if (vers != IPV6_VERSION) { 2540 /* 2541 * ip_forwarding_table variable doesn't matter for IPv4 since 2542 * ire_walk_ill_tables directly calls with the ip_ftable global 2543 */ 2544 ire_walk_ill_tables(0, 0, func, arg, IP_MASK_TABLE_SIZE, 2545 0, NULL, 2546 ip_cache_table_size, ip_cache_table, NULL, zoneid); 2547 } 2548 if (vers != IPV4_VERSION) { 2549 ire_walk_ill_tables(0, 0, func, arg, IP6_MASK_TABLE_SIZE, 2550 ip6_ftable_hash_size, ip_forwarding_table_v6, 2551 ip6_cache_table_size, ip_cache_table_v6, NULL, zoneid); 2552 } 2553 } 2554 2555 /* 2556 * Arrange to call the specified 2557 * function for every IRE that matches the ill. 2558 */ 2559 void 2560 ire_walk_ill(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2561 ill_t *ill) 2562 { 2563 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, 0, ill); 2564 } 2565 2566 void 2567 ire_walk_ill_v4(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2568 ill_t *ill) 2569 { 2570 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV4_VERSION, 2571 ill); 2572 } 2573 2574 void 2575 ire_walk_ill_v6(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 2576 ill_t *ill) 2577 { 2578 ire_walk_ill_ipvers(match_flags, ire_type, func, arg, IPV6_VERSION, 2579 ill); 2580 } 2581 2582 /* 2583 * Walk a particular ill and version. version == 0 means both v4 and v6. 2584 */ 2585 static void 2586 ire_walk_ill_ipvers(uint_t match_flags, uint_t ire_type, pfv_t func, 2587 void *arg, uchar_t vers, ill_t *ill) 2588 { 2589 if (vers != IPV6_VERSION) { 2590 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2591 IP_MASK_TABLE_SIZE, 0, 2592 NULL, ip_cache_table_size, 2593 ip_cache_table, ill, ALL_ZONES); 2594 } 2595 if (vers != IPV4_VERSION) { 2596 ire_walk_ill_tables(match_flags, ire_type, func, arg, 2597 IP6_MASK_TABLE_SIZE, ip6_ftable_hash_size, 2598 ip_forwarding_table_v6, ip6_cache_table_size, 2599 ip_cache_table_v6, ill, ALL_ZONES); 2600 } 2601 } 2602 2603 boolean_t 2604 ire_walk_ill_match(uint_t match_flags, uint_t ire_type, ire_t *ire, 2605 ill_t *ill, zoneid_t zoneid) 2606 { 2607 ill_t *ire_stq_ill = NULL; 2608 ill_t *ire_ipif_ill = NULL; 2609 ill_group_t *ire_ill_group = NULL; 2610 2611 ASSERT(match_flags != 0 || zoneid != ALL_ZONES); 2612 /* 2613 * 1) MATCH_IRE_WQ : Used specifically to match on ire_stq. 2614 * The fast path update uses this to make sure it does not 2615 * update the fast path header of interface X with the fast 2616 * path updates it recieved on interface Y. It is similar 2617 * in handling DL_NOTE_FASTPATH_FLUSH. 2618 * 2619 * 2) MATCH_IRE_ILL/MATCH_IRE_ILL_GROUP : We match both on ill 2620 * pointed by ire_stq and ire_ipif. Only in the case of 2621 * IRE_CACHEs can ire_stq and ire_ipif be pointing to 2622 * different ills. But we want to keep this function generic 2623 * enough for future use. So, we always try to match on both. 2624 * The only caller of this function ire_walk_ill_tables, will 2625 * call "func" after we return from this function. We expect 2626 * "func" to do the right filtering of ires in this case. 2627 * 2628 * NOTE : In the case of MATCH_IRE_ILL_GROUP, groups 2629 * pointed by ire_stq and ire_ipif should always be the same. 2630 * So, we just match on only one of them. 2631 */ 2632 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 2633 if (ire->ire_stq != NULL) 2634 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2635 if (ire->ire_ipif != NULL) 2636 ire_ipif_ill = ire->ire_ipif->ipif_ill; 2637 if (ire_stq_ill != NULL) 2638 ire_ill_group = ire_stq_ill->ill_group; 2639 if ((ire_ill_group == NULL) && (ire_ipif_ill != NULL)) 2640 ire_ill_group = ire_ipif_ill->ill_group; 2641 } 2642 2643 if (zoneid != ALL_ZONES) { 2644 /* 2645 * We're walking the IREs for a specific zone. The only relevant 2646 * IREs are: 2647 * - all IREs with a matching ire_zoneid 2648 * - all IRE_OFFSUBNETs as they're shared across all zones 2649 * - IRE_INTERFACE IREs for interfaces with a usable source addr 2650 * with a matching zone 2651 * - IRE_DEFAULTs with a gateway reachable from the zone 2652 * We should really match on IRE_OFFSUBNETs and IRE_DEFAULTs 2653 * using the same rule; but the above rules are consistent with 2654 * the behavior of ire_ftable_lookup[_v6]() so that all the 2655 * routes that can be matched during lookup are also matched 2656 * here. 2657 */ 2658 if (zoneid != ire->ire_zoneid && ire->ire_zoneid != ALL_ZONES) { 2659 /* 2660 * Note, IRE_INTERFACE can have the stq as NULL. For 2661 * example, if the default multicast route is tied to 2662 * the loopback address. 2663 */ 2664 if ((ire->ire_type & IRE_INTERFACE) && 2665 (ire->ire_stq != NULL)) { 2666 ire_stq_ill = (ill_t *)ire->ire_stq->q_ptr; 2667 if (ire->ire_ipversion == IPV4_VERSION) { 2668 if (!ipif_usesrc_avail(ire_stq_ill, 2669 zoneid)) 2670 /* No usable src addr in zone */ 2671 return (B_FALSE); 2672 } else if (ire_stq_ill->ill_usesrc_ifindex 2673 != 0) { 2674 /* 2675 * For IPv6 use ipif_select_source_v6() 2676 * so the right scope selection is done 2677 */ 2678 ipif_t *src_ipif; 2679 src_ipif = 2680 ipif_select_source_v6(ire_stq_ill, 2681 &ire->ire_addr_v6, RESTRICT_TO_NONE, 2682 IPV6_PREFER_SRC_DEFAULT, 2683 zoneid); 2684 if (src_ipif != NULL) { 2685 ipif_refrele(src_ipif); 2686 } else { 2687 return (B_FALSE); 2688 } 2689 } else { 2690 return (B_FALSE); 2691 } 2692 2693 } else if (!(ire->ire_type & IRE_OFFSUBNET)) { 2694 return (B_FALSE); 2695 } 2696 } 2697 2698 /* 2699 * Match all default routes from the global zone, irrespective 2700 * of reachability. For a non-global zone only match those 2701 * where ire_gateway_addr has a IRE_INTERFACE for the zoneid. 2702 */ 2703 if (ire->ire_type == IRE_DEFAULT && zoneid != GLOBAL_ZONEID) { 2704 int ire_match_flags = 0; 2705 in6_addr_t gw_addr_v6; 2706 ire_t *rire; 2707 2708 ire_match_flags |= MATCH_IRE_TYPE; 2709 if (ire->ire_ipif != NULL) { 2710 ire_match_flags |= MATCH_IRE_ILL_GROUP; 2711 } 2712 if (ire->ire_ipversion == IPV4_VERSION) { 2713 rire = ire_route_lookup(ire->ire_gateway_addr, 2714 0, 0, IRE_INTERFACE, ire->ire_ipif, NULL, 2715 zoneid, NULL, ire_match_flags); 2716 } else { 2717 ASSERT(ire->ire_ipversion == IPV6_VERSION); 2718 mutex_enter(&ire->ire_lock); 2719 gw_addr_v6 = ire->ire_gateway_addr_v6; 2720 mutex_exit(&ire->ire_lock); 2721 rire = ire_route_lookup_v6(&gw_addr_v6, 2722 NULL, NULL, IRE_INTERFACE, ire->ire_ipif, 2723 NULL, zoneid, NULL, ire_match_flags); 2724 } 2725 if (rire == NULL) { 2726 return (B_FALSE); 2727 } 2728 ire_refrele(rire); 2729 } 2730 } 2731 2732 if (((!(match_flags & MATCH_IRE_TYPE)) || 2733 (ire->ire_type & ire_type)) && 2734 ((!(match_flags & MATCH_IRE_WQ)) || 2735 (ire->ire_stq == ill->ill_wq)) && 2736 ((!(match_flags & MATCH_IRE_ILL)) || 2737 (ire_stq_ill == ill || ire_ipif_ill == ill)) && 2738 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 2739 (ire_stq_ill == ill) || (ire_ipif_ill == ill) || 2740 (ire_ill_group != NULL && 2741 ire_ill_group == ill->ill_group))) { 2742 return (B_TRUE); 2743 } 2744 return (B_FALSE); 2745 } 2746 2747 int 2748 rtfunc(struct radix_node *rn, void *arg) 2749 { 2750 struct rtfuncarg *rtf = arg; 2751 struct rt_entry *rt; 2752 irb_t *irb; 2753 ire_t *ire; 2754 boolean_t ret; 2755 2756 rt = (struct rt_entry *)rn; 2757 ASSERT(rt != NULL); 2758 irb = &rt->rt_irb; 2759 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 2760 if ((rtf->rt_match_flags != 0) || 2761 (rtf->rt_zoneid != ALL_ZONES)) { 2762 ret = ire_walk_ill_match(rtf->rt_match_flags, 2763 rtf->rt_ire_type, ire, 2764 rtf->rt_ill, rtf->rt_zoneid); 2765 } else 2766 ret = B_TRUE; 2767 if (ret) 2768 (*rtf->rt_func)(ire, rtf->rt_arg); 2769 } 2770 return (0); 2771 } 2772 2773 /* 2774 * Walk the ftable and the ctable entries that match the ill. 2775 */ 2776 void 2777 ire_walk_ill_tables(uint_t match_flags, uint_t ire_type, pfv_t func, 2778 void *arg, size_t ftbl_sz, size_t htbl_sz, irb_t **ipftbl, 2779 size_t ctbl_sz, irb_t *ipctbl, ill_t *ill, zoneid_t zoneid) 2780 { 2781 irb_t *irb_ptr; 2782 irb_t *irb; 2783 ire_t *ire; 2784 int i, j; 2785 boolean_t ret; 2786 struct rtfuncarg rtfarg; 2787 2788 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 2789 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 2790 ASSERT(!(match_flags & MATCH_IRE_TYPE) || (ire_type != 0)); 2791 /* 2792 * Optimize by not looking at the forwarding table if there 2793 * is a MATCH_IRE_TYPE specified with no IRE_FORWARDTABLE 2794 * specified in ire_type. 2795 */ 2796 if (!(match_flags & MATCH_IRE_TYPE) || 2797 ((ire_type & IRE_FORWARDTABLE) != 0)) { 2798 /* knobs such that routine is called only for v6 case */ 2799 if (ipftbl == ip_forwarding_table_v6) { 2800 for (i = (ftbl_sz - 1); i >= 0; i--) { 2801 if ((irb_ptr = ipftbl[i]) == NULL) 2802 continue; 2803 for (j = 0; j < htbl_sz; j++) { 2804 irb = &irb_ptr[j]; 2805 if (irb->irb_ire == NULL) 2806 continue; 2807 2808 IRB_REFHOLD(irb); 2809 for (ire = irb->irb_ire; ire != NULL; 2810 ire = ire->ire_next) { 2811 if (match_flags == 0 && 2812 zoneid == ALL_ZONES) { 2813 ret = B_TRUE; 2814 } else { 2815 ret = 2816 ire_walk_ill_match( 2817 match_flags, 2818 ire_type, ire, ill, 2819 zoneid); 2820 } 2821 if (ret) 2822 (*func)(ire, arg); 2823 } 2824 IRB_REFRELE(irb); 2825 } 2826 } 2827 } else { 2828 (void) memset(&rtfarg, 0, sizeof (rtfarg)); 2829 rtfarg.rt_func = func; 2830 rtfarg.rt_arg = arg; 2831 if (match_flags != 0) { 2832 rtfarg.rt_match_flags = match_flags; 2833 } 2834 rtfarg.rt_ire_type = ire_type; 2835 rtfarg.rt_ill = ill; 2836 rtfarg.rt_zoneid = zoneid; 2837 (void) ip_ftable->rnh_walktree_mt(ip_ftable, rtfunc, 2838 &rtfarg, irb_refhold_rn, irb_refrele_rn); 2839 } 2840 } 2841 2842 /* 2843 * Optimize by not looking at the cache table if there 2844 * is a MATCH_IRE_TYPE specified with no IRE_CACHETABLE 2845 * specified in ire_type. 2846 */ 2847 if (!(match_flags & MATCH_IRE_TYPE) || 2848 ((ire_type & IRE_CACHETABLE) != 0)) { 2849 for (i = 0; i < ctbl_sz; i++) { 2850 irb = &ipctbl[i]; 2851 if (irb->irb_ire == NULL) 2852 continue; 2853 IRB_REFHOLD(irb); 2854 for (ire = irb->irb_ire; ire != NULL; 2855 ire = ire->ire_next) { 2856 if (match_flags == 0 && zoneid == ALL_ZONES) { 2857 ret = B_TRUE; 2858 } else { 2859 ret = ire_walk_ill_match( 2860 match_flags, ire_type, 2861 ire, ill, zoneid); 2862 } 2863 if (ret) 2864 (*func)(ire, arg); 2865 } 2866 IRB_REFRELE(irb); 2867 } 2868 } 2869 } 2870 2871 /* 2872 * This routine walks through the ill chain to find if there is any 2873 * ire linked to the ill's interface based forwarding table 2874 * The arg could be ill or mp. This routine is called when a ill goes 2875 * down/deleted or the 'ipv4_ire_srcif_status' report is printed. 2876 */ 2877 void 2878 ire_walk_srcif_table_v4(pfv_t func, void *arg) 2879 { 2880 irb_t *irb; 2881 ire_t *ire; 2882 ill_t *ill, *next_ill; 2883 int i; 2884 int total_count; 2885 ill_walk_context_t ctx; 2886 2887 /* 2888 * Take care of ire's in other ill's per-interface forwarding 2889 * table. Check if any ire in any of the ill's ill_srcif_table 2890 * is pointing to this ill. 2891 */ 2892 mutex_enter(&ire_srcif_table_lock); 2893 if (ire_srcif_table_count == 0) { 2894 mutex_exit(&ire_srcif_table_lock); 2895 return; 2896 } 2897 mutex_exit(&ire_srcif_table_lock); 2898 2899 #ifdef DEBUG 2900 /* Keep accounting of all interface based table ires */ 2901 total_count = 0; 2902 rw_enter(&ill_g_lock, RW_READER); 2903 ill = ILL_START_WALK_V4(&ctx); 2904 while (ill != NULL) { 2905 mutex_enter(&ill->ill_lock); 2906 total_count += ill->ill_srcif_refcnt; 2907 next_ill = ill_next(&ctx, ill); 2908 mutex_exit(&ill->ill_lock); 2909 ill = next_ill; 2910 } 2911 rw_exit(&ill_g_lock); 2912 2913 /* Hold lock here to make sure ire_srcif_table_count is stable */ 2914 mutex_enter(&ire_srcif_table_lock); 2915 i = ire_srcif_table_count; 2916 mutex_exit(&ire_srcif_table_lock); 2917 ip1dbg(("ire_walk_srcif_v4: ire_srcif_table_count %d " 2918 "total ill_srcif_refcnt %d\n", i, total_count)); 2919 #endif 2920 rw_enter(&ill_g_lock, RW_READER); 2921 ill = ILL_START_WALK_V4(&ctx); 2922 while (ill != NULL) { 2923 mutex_enter(&ill->ill_lock); 2924 if ((ill->ill_srcif_refcnt == 0) || !ILL_CAN_LOOKUP(ill)) { 2925 next_ill = ill_next(&ctx, ill); 2926 mutex_exit(&ill->ill_lock); 2927 ill = next_ill; 2928 continue; 2929 } 2930 ill_refhold_locked(ill); 2931 mutex_exit(&ill->ill_lock); 2932 rw_exit(&ill_g_lock); 2933 if (ill->ill_srcif_table != NULL) { 2934 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 2935 irb = &(ill->ill_srcif_table[i]); 2936 if (irb->irb_ire == NULL) 2937 continue; 2938 IRB_REFHOLD(irb); 2939 for (ire = irb->irb_ire; ire != NULL; 2940 ire = ire->ire_next) { 2941 (*func)(ire, arg); 2942 } 2943 IRB_REFRELE(irb); 2944 } 2945 } 2946 rw_enter(&ill_g_lock, RW_READER); 2947 next_ill = ill_next(&ctx, ill); 2948 ill_refrele(ill); 2949 ill = next_ill; 2950 } 2951 rw_exit(&ill_g_lock); 2952 } 2953 2954 /* 2955 * This function takes a mask and returns 2956 * number of bits set in the mask. If no 2957 * bit is set it returns 0. 2958 * Assumes a contiguous mask. 2959 */ 2960 int 2961 ip_mask_to_plen(ipaddr_t mask) 2962 { 2963 return (mask == 0 ? 0 : IP_ABITS - (ffs(ntohl(mask)) -1)); 2964 } 2965 2966 /* 2967 * Convert length for a mask to the mask. 2968 */ 2969 ipaddr_t 2970 ip_plen_to_mask(uint_t masklen) 2971 { 2972 return (htonl(IP_HOST_MASK << (IP_ABITS - masklen))); 2973 } 2974 2975 void 2976 ire_atomic_end(irb_t *irb_ptr, ire_t *ire) 2977 { 2978 ill_t *ill_list[NUM_ILLS]; 2979 2980 ill_list[0] = ire->ire_stq != NULL ? ire->ire_stq->q_ptr : NULL; 2981 ill_list[1] = ire->ire_ipif != NULL ? ire->ire_ipif->ipif_ill : NULL; 2982 ill_list[2] = ire->ire_in_ill; 2983 ill_unlock_ills(ill_list, NUM_ILLS); 2984 rw_exit(&irb_ptr->irb_lock); 2985 rw_exit(&ill_g_usesrc_lock); 2986 } 2987 2988 /* 2989 * ire_add_v[46] atomically make sure that the ipif or ill associated 2990 * with the new ire being added is stable and not IPIF_CHANGING or ILL_CHANGING 2991 * before adding the ire to the table. This ensures that we don't create 2992 * new IRE_CACHEs with stale values for parameters that are passed to 2993 * ire_create such as ire_max_frag. Note that ire_create() is passed a pointer 2994 * to the ipif_mtu, and not the value. The actual value is derived from the 2995 * parent ire or ipif under the bucket lock. 2996 */ 2997 int 2998 ire_atomic_start(irb_t *irb_ptr, ire_t *ire, queue_t *q, mblk_t *mp, 2999 ipsq_func_t func) 3000 { 3001 ill_t *stq_ill; 3002 ill_t *ipif_ill; 3003 ill_t *in_ill; 3004 ill_t *ill_list[NUM_ILLS]; 3005 int cnt = NUM_ILLS; 3006 int error = 0; 3007 ill_t *ill = NULL; 3008 3009 ill_list[0] = stq_ill = ire->ire_stq != 3010 NULL ? ire->ire_stq->q_ptr : NULL; 3011 ill_list[1] = ipif_ill = ire->ire_ipif != 3012 NULL ? ire->ire_ipif->ipif_ill : NULL; 3013 ill_list[2] = in_ill = ire->ire_in_ill; 3014 3015 ASSERT((q != NULL && mp != NULL && func != NULL) || 3016 (q == NULL && mp == NULL && func == NULL)); 3017 rw_enter(&ill_g_usesrc_lock, RW_READER); 3018 GRAB_CONN_LOCK(q); 3019 rw_enter(&irb_ptr->irb_lock, RW_WRITER); 3020 ill_lock_ills(ill_list, cnt); 3021 3022 /* 3023 * While the IRE is in the process of being added, a user may have 3024 * invoked the ifconfig usesrc option on the stq_ill to make it a 3025 * usesrc client ILL. Check for this possibility here, if it is true 3026 * then we fail adding the IRE_CACHE. Another check is to make sure 3027 * that an ipif_ill of an IRE_CACHE being added is not part of a usesrc 3028 * group. The ill_g_usesrc_lock is released in ire_atomic_end 3029 */ 3030 if ((ire->ire_type & IRE_CACHE) && 3031 (ire->ire_marks & IRE_MARK_USESRC_CHECK)) { 3032 if (stq_ill->ill_usesrc_ifindex != 0) { 3033 ASSERT(stq_ill->ill_usesrc_grp_next != NULL); 3034 if ((ipif_ill->ill_phyint->phyint_ifindex != 3035 stq_ill->ill_usesrc_ifindex) || 3036 (ipif_ill->ill_usesrc_grp_next == NULL) || 3037 (ipif_ill->ill_usesrc_ifindex != 0)) { 3038 error = EINVAL; 3039 goto done; 3040 } 3041 } else if (ipif_ill->ill_usesrc_grp_next != NULL) { 3042 error = EINVAL; 3043 goto done; 3044 } 3045 } 3046 3047 /* 3048 * IPMP flag settings happen without taking the exclusive route 3049 * in ip_sioctl_flags. So we need to make an atomic check here 3050 * for FAILED/OFFLINE/INACTIVE flags or if it has hit the 3051 * FAILBACK=no case. 3052 */ 3053 if ((stq_ill != NULL) && !IAM_WRITER_ILL(stq_ill)) { 3054 if (stq_ill->ill_state_flags & ILL_CHANGING) { 3055 ill = stq_ill; 3056 error = EAGAIN; 3057 } else if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3058 (ill_is_probeonly(stq_ill) && 3059 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3060 error = EINVAL; 3061 } 3062 goto done; 3063 } 3064 3065 /* 3066 * We don't check for OFFLINE/FAILED in this case because 3067 * the source address selection logic (ipif_select_source) 3068 * may still select a source address from such an ill. The 3069 * assumption is that these addresses will be moved by in.mpathd 3070 * soon. (i.e. this is a race). However link local addresses 3071 * will not move and hence ipif_select_source_v6 tries to avoid 3072 * FAILED ills. Please see ipif_select_source_v6 for more info 3073 */ 3074 if ((ipif_ill != NULL) && !IAM_WRITER_ILL(ipif_ill) && 3075 (ipif_ill->ill_state_flags & ILL_CHANGING)) { 3076 ill = ipif_ill; 3077 error = EAGAIN; 3078 goto done; 3079 } 3080 3081 if ((in_ill != NULL) && !IAM_WRITER_ILL(in_ill) && 3082 (in_ill->ill_state_flags & ILL_CHANGING)) { 3083 ill = in_ill; 3084 error = EAGAIN; 3085 goto done; 3086 } 3087 3088 if ((ire->ire_ipif != NULL) && !IAM_WRITER_IPIF(ire->ire_ipif) && 3089 (ire->ire_ipif->ipif_state_flags & IPIF_CHANGING)) { 3090 ill = ire->ire_ipif->ipif_ill; 3091 ASSERT(ill != NULL); 3092 error = EAGAIN; 3093 goto done; 3094 } 3095 3096 done: 3097 if (error == EAGAIN && ILL_CAN_WAIT(ill, q)) { 3098 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 3099 mutex_enter(&ipsq->ipsq_lock); 3100 ire_atomic_end(irb_ptr, ire); 3101 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 3102 mutex_exit(&ipsq->ipsq_lock); 3103 error = EINPROGRESS; 3104 } else if (error != 0) { 3105 ire_atomic_end(irb_ptr, ire); 3106 } 3107 3108 RELEASE_CONN_LOCK(q); 3109 return (error); 3110 } 3111 3112 /* 3113 * Add a fully initialized IRE to an appropriate table based on 3114 * ire_type. 3115 * 3116 * allow_unresolved == B_FALSE indicates a legacy code-path call 3117 * that has prohibited the addition of incomplete ire's. If this 3118 * parameter is set, and we find an nce that is in a state other 3119 * than ND_REACHABLE, we fail the add. Note that nce_state could be 3120 * something other than ND_REACHABLE if nce_reinit has just 3121 * kicked in and reset the nce. 3122 */ 3123 int 3124 ire_add(ire_t **irep, queue_t *q, mblk_t *mp, ipsq_func_t func, 3125 boolean_t allow_unresolved) 3126 { 3127 ire_t *ire1; 3128 ill_t *stq_ill = NULL; 3129 ill_t *ill; 3130 ipif_t *ipif = NULL; 3131 ill_walk_context_t ctx; 3132 ire_t *ire = *irep; 3133 int error; 3134 boolean_t ire_is_mblk = B_FALSE; 3135 tsol_gcgrp_t *gcgrp = NULL; 3136 tsol_gcgrp_addr_t ga; 3137 3138 ASSERT(ire->ire_type != IRE_MIPRTUN); 3139 3140 /* get ready for the day when original ire is not created as mblk */ 3141 if (ire->ire_mp != NULL) { 3142 ire_is_mblk = B_TRUE; 3143 /* Copy the ire to a kmem_alloc'ed area */ 3144 ire1 = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 3145 if (ire1 == NULL) { 3146 ip1dbg(("ire_add: alloc failed\n")); 3147 ire_delete(ire); 3148 *irep = NULL; 3149 return (ENOMEM); 3150 } 3151 ire->ire_marks &= ~IRE_MARK_UNCACHED; 3152 *ire1 = *ire; 3153 ire1->ire_mp = NULL; 3154 ire1->ire_stq_ifindex = 0; 3155 freeb(ire->ire_mp); 3156 ire = ire1; 3157 } 3158 if (ire->ire_stq != NULL) 3159 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3160 3161 if (ire->ire_type == IRE_CACHE) { 3162 /* 3163 * If this interface is FAILED, or INACTIVE or has hit 3164 * the FAILBACK=no case, we create IRE_CACHES marked 3165 * HIDDEN for some special cases e.g. bind to 3166 * IPIF_NOFAILOVER address etc. So, if this interface 3167 * is FAILED/INACTIVE/hit FAILBACK=no case, and we are 3168 * not creating hidden ires, we should not allow that. 3169 * This happens because the state of the interface 3170 * changed while we were waiting in ARP. If this is the 3171 * daemon sending probes, the next probe will create 3172 * HIDDEN ires and we will create an ire then. This 3173 * cannot happen with NDP currently because IRE is 3174 * never queued in NDP. But it can happen in the 3175 * future when we have external resolvers with IPv6. 3176 * If the interface gets marked with OFFLINE while we 3177 * are waiting in ARP, don't add the ire. 3178 */ 3179 if ((stq_ill->ill_phyint->phyint_flags & PHYI_OFFLINE) || 3180 (ill_is_probeonly(stq_ill) && 3181 !(ire->ire_marks & IRE_MARK_HIDDEN))) { 3182 /* 3183 * We don't know whether it is a valid ipif or not. 3184 * unless we do the check below. So, set it to NULL. 3185 */ 3186 ire->ire_ipif = NULL; 3187 ire_delete(ire); 3188 *irep = NULL; 3189 return (EINVAL); 3190 } 3191 } 3192 3193 if (stq_ill != NULL && ire->ire_type == IRE_CACHE && 3194 stq_ill->ill_net_type == IRE_IF_RESOLVER) { 3195 rw_enter(&ill_g_lock, RW_READER); 3196 ill = ILL_START_WALK_ALL(&ctx); 3197 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 3198 mutex_enter(&ill->ill_lock); 3199 if (ill->ill_state_flags & ILL_CONDEMNED) { 3200 mutex_exit(&ill->ill_lock); 3201 continue; 3202 } 3203 /* 3204 * We need to make sure that the ipif is a valid one 3205 * before adding the IRE_CACHE. This happens only 3206 * with IRE_CACHE when there is an external resolver. 3207 * 3208 * We can unplumb a logical interface while the 3209 * packet is waiting in ARP with the IRE. Then, 3210 * later on when we feed the IRE back, the ipif 3211 * has to be re-checked. This can't happen with 3212 * NDP currently, as we never queue the IRE with 3213 * the packet. We always try to recreate the IRE 3214 * when the resolution is completed. But, we do 3215 * it for IPv6 also here so that in future if 3216 * we have external resolvers, it will work without 3217 * any change. 3218 */ 3219 ipif = ipif_lookup_seqid(ill, ire->ire_ipif_seqid); 3220 if (ipif != NULL) { 3221 ipif_refhold_locked(ipif); 3222 mutex_exit(&ill->ill_lock); 3223 break; 3224 } 3225 mutex_exit(&ill->ill_lock); 3226 } 3227 rw_exit(&ill_g_lock); 3228 if (ipif == NULL || 3229 (ipif->ipif_isv6 && 3230 !IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 3231 &ipif->ipif_v6src_addr)) || 3232 (!ipif->ipif_isv6 && 3233 ire->ire_src_addr != ipif->ipif_src_addr) || 3234 ire->ire_zoneid != ipif->ipif_zoneid) { 3235 3236 if (ipif != NULL) 3237 ipif_refrele(ipif); 3238 ire->ire_ipif = NULL; 3239 ire_delete(ire); 3240 *irep = NULL; 3241 return (EINVAL); 3242 } 3243 3244 3245 ASSERT(ill != NULL); 3246 /* 3247 * If this group was dismantled while this packets was 3248 * queued in ARP, don't add it here. 3249 */ 3250 if (ire->ire_ipif->ipif_ill->ill_group != ill->ill_group) { 3251 /* We don't want ire_inactive bump stats for this */ 3252 ipif_refrele(ipif); 3253 ire->ire_ipif = NULL; 3254 ire_delete(ire); 3255 *irep = NULL; 3256 return (EINVAL); 3257 } 3258 3259 /* 3260 * Since we didn't attach label security attributes to the 3261 * ire for the resolver case, we need to add it now. (only 3262 * for v4 resolver and v6 xresolv case). 3263 */ 3264 if (is_system_labeled() && ire_is_mblk) { 3265 if (ire->ire_ipversion == IPV4_VERSION) { 3266 ga.ga_af = AF_INET; 3267 IN6_IPADDR_TO_V4MAPPED(ire->ire_gateway_addr != 3268 INADDR_ANY ? ire->ire_gateway_addr : 3269 ire->ire_addr, &ga.ga_addr); 3270 } else { 3271 ga.ga_af = AF_INET6; 3272 ga.ga_addr = IN6_IS_ADDR_UNSPECIFIED( 3273 &ire->ire_gateway_addr_v6) ? 3274 ire->ire_addr_v6 : 3275 ire->ire_gateway_addr_v6; 3276 } 3277 gcgrp = gcgrp_lookup(&ga, B_FALSE); 3278 error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, 3279 NULL, gcgrp); 3280 if (error != 0) { 3281 if (gcgrp != NULL) { 3282 GCGRP_REFRELE(gcgrp); 3283 gcgrp = NULL; 3284 } 3285 ipif_refrele(ipif); 3286 ire->ire_ipif = NULL; 3287 ire_delete(ire); 3288 *irep = NULL; 3289 return (error); 3290 } 3291 } 3292 } 3293 3294 /* 3295 * In case ire was changed 3296 */ 3297 *irep = ire; 3298 if (ire->ire_ipversion == IPV6_VERSION) { 3299 error = ire_add_v6(irep, q, mp, func); 3300 } else { 3301 if (ire->ire_in_ill == NULL) 3302 error = ire_add_v4(irep, q, mp, func, allow_unresolved); 3303 else 3304 error = ire_add_srcif_v4(irep, q, mp, func); 3305 } 3306 if (ipif != NULL) 3307 ipif_refrele(ipif); 3308 return (error); 3309 } 3310 3311 /* 3312 * Add an initialized IRE to an appropriate table based on ire_type. 3313 * 3314 * The forward table contains IRE_PREFIX/IRE_HOST/IRE_HOST_REDIRECT 3315 * IRE_IF_RESOLVER/IRE_IF_NORESOLVER and IRE_DEFAULT. 3316 * 3317 * The cache table contains IRE_BROADCAST/IRE_LOCAL/IRE_LOOPBACK 3318 * and IRE_CACHE. 3319 * 3320 * NOTE : This function is called as writer though not required 3321 * by this function. 3322 */ 3323 static int 3324 ire_add_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func, 3325 boolean_t allow_unresolved) 3326 { 3327 ire_t *ire1; 3328 irb_t *irb_ptr; 3329 ire_t **irep; 3330 int flags; 3331 ire_t *pire = NULL; 3332 ill_t *stq_ill; 3333 ire_t *ire = *ire_p; 3334 int error; 3335 boolean_t need_refrele = B_FALSE; 3336 nce_t *nce; 3337 3338 if (ire->ire_ipif != NULL) 3339 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3340 if (ire->ire_stq != NULL) 3341 ASSERT(!MUTEX_HELD( 3342 &((ill_t *)(ire->ire_stq->q_ptr))->ill_lock)); 3343 ASSERT(ire->ire_ipversion == IPV4_VERSION); 3344 ASSERT(ire->ire_mp == NULL); /* Calls should go through ire_add */ 3345 ASSERT(ire->ire_in_ill == NULL); /* No srcif entries */ 3346 3347 /* Find the appropriate list head. */ 3348 switch (ire->ire_type) { 3349 case IRE_HOST: 3350 ire->ire_mask = IP_HOST_MASK; 3351 ire->ire_masklen = IP_ABITS; 3352 if ((ire->ire_flags & RTF_SETSRC) == 0) 3353 ire->ire_src_addr = 0; 3354 break; 3355 case IRE_HOST_REDIRECT: 3356 ire->ire_mask = IP_HOST_MASK; 3357 ire->ire_masklen = IP_ABITS; 3358 ire->ire_src_addr = 0; 3359 break; 3360 case IRE_CACHE: 3361 case IRE_BROADCAST: 3362 case IRE_LOCAL: 3363 case IRE_LOOPBACK: 3364 ire->ire_mask = IP_HOST_MASK; 3365 ire->ire_masklen = IP_ABITS; 3366 break; 3367 case IRE_PREFIX: 3368 if ((ire->ire_flags & RTF_SETSRC) == 0) 3369 ire->ire_src_addr = 0; 3370 break; 3371 case IRE_DEFAULT: 3372 if ((ire->ire_flags & RTF_SETSRC) == 0) 3373 ire->ire_src_addr = 0; 3374 break; 3375 case IRE_IF_RESOLVER: 3376 case IRE_IF_NORESOLVER: 3377 break; 3378 default: 3379 ip0dbg(("ire_add_v4: ire %p has unrecognized IRE type (%d)\n", 3380 (void *)ire, ire->ire_type)); 3381 ire_delete(ire); 3382 *ire_p = NULL; 3383 return (EINVAL); 3384 } 3385 3386 /* Make sure the address is properly masked. */ 3387 ire->ire_addr &= ire->ire_mask; 3388 3389 /* 3390 * ip_newroute/ip_newroute_multi are unable to prevent the deletion 3391 * of the interface route while adding an IRE_CACHE for an on-link 3392 * destination in the IRE_IF_RESOLVER case, since the ire has to 3393 * go to ARP and return. We can't do a REFHOLD on the 3394 * associated interface ire for fear of ARP freeing the message. 3395 * Here we look up the interface ire in the forwarding table and 3396 * make sure that the interface route has not been deleted. 3397 */ 3398 if (ire->ire_type == IRE_CACHE && ire->ire_gateway_addr == 0 && 3399 ((ill_t *)ire->ire_stq->q_ptr)->ill_net_type == IRE_IF_RESOLVER) { 3400 3401 ASSERT(ire->ire_max_fragp == NULL); 3402 if (CLASSD(ire->ire_addr) && !(ire->ire_flags & RTF_SETSRC)) { 3403 /* 3404 * The ihandle that we used in ip_newroute_multi 3405 * comes from the interface route corresponding 3406 * to ire_ipif. Lookup here to see if it exists 3407 * still. 3408 * If the ire has a source address assigned using 3409 * RTF_SETSRC, ire_ipif is the logical interface holding 3410 * this source address, so we can't use it to check for 3411 * the existence of the interface route. Instead we rely 3412 * on the brute force ihandle search in 3413 * ire_ihandle_lookup_onlink() below. 3414 */ 3415 pire = ipif_to_ire(ire->ire_ipif); 3416 if (pire == NULL) { 3417 ire_delete(ire); 3418 *ire_p = NULL; 3419 return (EINVAL); 3420 } else if (pire->ire_ihandle != ire->ire_ihandle) { 3421 ire_refrele(pire); 3422 ire_delete(ire); 3423 *ire_p = NULL; 3424 return (EINVAL); 3425 } 3426 } else { 3427 pire = ire_ihandle_lookup_onlink(ire); 3428 if (pire == NULL) { 3429 ire_delete(ire); 3430 *ire_p = NULL; 3431 return (EINVAL); 3432 } 3433 } 3434 /* Prevent pire from getting deleted */ 3435 IRB_REFHOLD(pire->ire_bucket); 3436 /* Has it been removed already ? */ 3437 if (pire->ire_marks & IRE_MARK_CONDEMNED) { 3438 IRB_REFRELE(pire->ire_bucket); 3439 ire_refrele(pire); 3440 ire_delete(ire); 3441 *ire_p = NULL; 3442 return (EINVAL); 3443 } 3444 } else { 3445 ASSERT(ire->ire_max_fragp != NULL); 3446 } 3447 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 3448 3449 if (ire->ire_ipif != NULL) { 3450 /* 3451 * We use MATCH_IRE_IPIF while adding IRE_CACHES only 3452 * for historic reasons and to maintain symmetry with 3453 * IPv6 code path. Historically this was used by 3454 * multicast code to create multiple IRE_CACHES on 3455 * a single ill with different ipifs. This was used 3456 * so that multicast packets leaving the node had the 3457 * right source address. This is no longer needed as 3458 * ip_wput initializes the address correctly. 3459 */ 3460 flags |= MATCH_IRE_IPIF; 3461 /* 3462 * If we are creating hidden ires, make sure we search on 3463 * this ill (MATCH_IRE_ILL) and a hidden ire, 3464 * while we are searching for duplicates below. Otherwise we 3465 * could potentially find an IRE on some other interface 3466 * and it may not be a IRE marked with IRE_MARK_HIDDEN. We 3467 * shouldn't do this as this will lead to an infinite loop 3468 * (if we get to ip_wput again) eventually we need an hidden 3469 * ire for this packet to go out. MATCH_IRE_ILL is explicitly 3470 * done below. 3471 */ 3472 if (ire->ire_type == IRE_CACHE && 3473 (ire->ire_marks & IRE_MARK_HIDDEN)) 3474 flags |= (MATCH_IRE_MARK_HIDDEN); 3475 } 3476 if ((ire->ire_type & IRE_CACHETABLE) == 0) { 3477 irb_ptr = ire_get_bucket(ire); 3478 need_refrele = B_TRUE; 3479 if (irb_ptr == NULL) { 3480 /* 3481 * This assumes that the ire has not added 3482 * a reference to the ipif. 3483 */ 3484 ire->ire_ipif = NULL; 3485 ire_delete(ire); 3486 if (pire != NULL) { 3487 IRB_REFRELE(pire->ire_bucket); 3488 ire_refrele(pire); 3489 } 3490 *ire_p = NULL; 3491 return (EINVAL); 3492 } 3493 } else { 3494 irb_ptr = &(ip_cache_table[IRE_ADDR_HASH(ire->ire_addr, 3495 ip_cache_table_size)]); 3496 } 3497 3498 /* 3499 * Start the atomic add of the ire. Grab the ill locks, 3500 * ill_g_usesrc_lock and the bucket lock. Check for condemned 3501 * 3502 * If ipif or ill is changing ire_atomic_start() may queue the 3503 * request and return EINPROGRESS. 3504 * To avoid lock order problems, get the ndp4.ndp_g_lock. 3505 */ 3506 mutex_enter(&ndp4.ndp_g_lock); 3507 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 3508 if (error != 0) { 3509 mutex_exit(&ndp4.ndp_g_lock); 3510 /* 3511 * We don't know whether it is a valid ipif or not. 3512 * So, set it to NULL. This assumes that the ire has not added 3513 * a reference to the ipif. 3514 */ 3515 ire->ire_ipif = NULL; 3516 ire_delete(ire); 3517 if (pire != NULL) { 3518 IRB_REFRELE(pire->ire_bucket); 3519 ire_refrele(pire); 3520 } 3521 *ire_p = NULL; 3522 if (need_refrele) 3523 IRB_REFRELE(irb_ptr); 3524 return (error); 3525 } 3526 /* 3527 * To avoid creating ires having stale values for the ire_max_frag 3528 * we get the latest value atomically here. For more details 3529 * see the block comment in ip_sioctl_mtu and in DL_NOTE_SDU_CHANGE 3530 * in ip_rput_dlpi_writer 3531 */ 3532 if (ire->ire_max_fragp == NULL) { 3533 if (CLASSD(ire->ire_addr)) 3534 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 3535 else 3536 ire->ire_max_frag = pire->ire_max_frag; 3537 } else { 3538 uint_t max_frag; 3539 3540 max_frag = *ire->ire_max_fragp; 3541 ire->ire_max_fragp = NULL; 3542 ire->ire_max_frag = max_frag; 3543 } 3544 /* 3545 * Atomically check for duplicate and insert in the table. 3546 */ 3547 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 3548 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 3549 continue; 3550 if (ire->ire_ipif != NULL) { 3551 /* 3552 * We do MATCH_IRE_ILL implicitly here for IREs 3553 * with a non-null ire_ipif, including IRE_CACHEs. 3554 * As ire_ipif and ire_stq could point to two 3555 * different ills, we can't pass just ire_ipif to 3556 * ire_match_args and get a match on both ills. 3557 * This is just needed for duplicate checks here and 3558 * so we don't add an extra argument to 3559 * ire_match_args for this. Do it locally. 3560 * 3561 * NOTE : Currently there is no part of the code 3562 * that asks for both MATH_IRE_IPIF and MATCH_IRE_ILL 3563 * match for IRE_CACHEs. Thus we don't want to 3564 * extend the arguments to ire_match_args. 3565 */ 3566 if (ire1->ire_stq != ire->ire_stq) 3567 continue; 3568 /* 3569 * Multiroute IRE_CACHEs for a given destination can 3570 * have the same ire_ipif, typically if their source 3571 * address is forced using RTF_SETSRC, and the same 3572 * send-to queue. We differentiate them using the parent 3573 * handle. 3574 */ 3575 if (ire->ire_type == IRE_CACHE && 3576 (ire1->ire_flags & RTF_MULTIRT) && 3577 (ire->ire_flags & RTF_MULTIRT) && 3578 (ire1->ire_phandle != ire->ire_phandle)) 3579 continue; 3580 } 3581 if (ire1->ire_zoneid != ire->ire_zoneid) 3582 continue; 3583 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 3584 ire->ire_gateway_addr, ire->ire_type, ire->ire_ipif, 3585 ire->ire_zoneid, 0, NULL, flags)) { 3586 /* 3587 * Return the old ire after doing a REFHOLD. 3588 * As most of the callers continue to use the IRE 3589 * after adding, we return a held ire. This will 3590 * avoid a lookup in the caller again. If the callers 3591 * don't want to use it, they need to do a REFRELE. 3592 */ 3593 ip1dbg(("found dup ire existing %p new %p", 3594 (void *)ire1, (void *)ire)); 3595 IRE_REFHOLD(ire1); 3596 ire_atomic_end(irb_ptr, ire); 3597 mutex_exit(&ndp4.ndp_g_lock); 3598 ire_delete(ire); 3599 if (pire != NULL) { 3600 /* 3601 * Assert that it is not removed from the 3602 * list yet. 3603 */ 3604 ASSERT(pire->ire_ptpn != NULL); 3605 IRB_REFRELE(pire->ire_bucket); 3606 ire_refrele(pire); 3607 } 3608 *ire_p = ire1; 3609 if (need_refrele) 3610 IRB_REFRELE(irb_ptr); 3611 return (0); 3612 } 3613 } 3614 if (ire->ire_type & IRE_CACHE) { 3615 ASSERT(ire->ire_stq != NULL); 3616 nce = ndp_lookup_v4(ire_to_ill(ire), 3617 ((ire->ire_gateway_addr != INADDR_ANY) ? 3618 &ire->ire_gateway_addr : &ire->ire_addr), 3619 B_TRUE); 3620 if (nce != NULL) 3621 mutex_enter(&nce->nce_lock); 3622 /* 3623 * if the nce is NCE_F_CONDEMNED, or if it is not ND_REACHABLE 3624 * and the caller has prohibited the addition of incomplete 3625 * ire's, we fail the add. Note that nce_state could be 3626 * something other than ND_REACHABLE if nce_reinit has just 3627 * kicked in and reset the nce. 3628 */ 3629 if ((nce == NULL) || 3630 (nce->nce_flags & NCE_F_CONDEMNED) || 3631 (!allow_unresolved && 3632 ((nce->nce_state & ND_REACHABLE) == 0))) { 3633 if (nce != NULL) 3634 mutex_exit(&nce->nce_lock); 3635 ire_atomic_end(irb_ptr, ire); 3636 mutex_exit(&ndp4.ndp_g_lock); 3637 if (nce != NULL) 3638 NCE_REFRELE(nce); 3639 DTRACE_PROBE1(ire__no__nce, ire_t *, ire); 3640 ire_delete(ire); 3641 if (pire != NULL) { 3642 IRB_REFRELE(pire->ire_bucket); 3643 ire_refrele(pire); 3644 } 3645 *ire_p = NULL; 3646 if (need_refrele) 3647 IRB_REFRELE(irb_ptr); 3648 return (EINVAL); 3649 } else { 3650 ire->ire_nce = nce; 3651 mutex_exit(&nce->nce_lock); 3652 /* 3653 * We are associating this nce to the ire, so 3654 * change the nce ref taken in ndp_lookup_v4() from 3655 * NCE_REFHOLD to NCE_REFHOLD_NOTR 3656 */ 3657 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 3658 } 3659 } 3660 /* 3661 * Make it easy for ip_wput_ire() to hit multiple broadcast ires by 3662 * grouping identical addresses together on the hash chain. We also 3663 * don't want to send multiple copies out if there are two ills part 3664 * of the same group. Thus we group the ires with same addr and same 3665 * ill group together so that ip_wput_ire can easily skip all the 3666 * ires with same addr and same group after sending the first copy. 3667 * We do this only for IRE_BROADCASTs as ip_wput_ire is currently 3668 * interested in such groupings only for broadcasts. 3669 * 3670 * NOTE : If the interfaces are brought up first and then grouped, 3671 * illgrp_insert will handle it. We come here when the interfaces 3672 * are already in group and we are bringing them UP. 3673 * 3674 * Find the first entry that matches ire_addr. *irep will be null 3675 * if no match. 3676 */ 3677 irep = (ire_t **)irb_ptr; 3678 while ((ire1 = *irep) != NULL && ire->ire_addr != ire1->ire_addr) 3679 irep = &ire1->ire_next; 3680 if (ire->ire_type == IRE_BROADCAST && *irep != NULL) { 3681 /* 3682 * We found some ire (i.e *irep) with a matching addr. We 3683 * want to group ires with same addr and same ill group 3684 * together. 3685 * 3686 * First get to the entry that matches our address and 3687 * ill group i.e stop as soon as we find the first ire 3688 * matching the ill group and address. If there is only 3689 * an address match, we should walk and look for some 3690 * group match. These are some of the possible scenarios : 3691 * 3692 * 1) There are no groups at all i.e all ire's ill_group 3693 * are NULL. In that case we will essentially group 3694 * all the ires with the same addr together. Same as 3695 * the "else" block of this "if". 3696 * 3697 * 2) There are some groups and this ire's ill_group is 3698 * NULL. In this case, we will first find the group 3699 * that matches the address and a NULL group. Then 3700 * we will insert the ire at the end of that group. 3701 * 3702 * 3) There are some groups and this ires's ill_group is 3703 * non-NULL. In this case we will first find the group 3704 * that matches the address and the ill_group. Then 3705 * we will insert the ire at the end of that group. 3706 */ 3707 /* LINTED : constant in conditional context */ 3708 while (1) { 3709 ire1 = *irep; 3710 if ((ire1->ire_next == NULL) || 3711 (ire1->ire_next->ire_addr != ire->ire_addr) || 3712 (ire1->ire_type != IRE_BROADCAST) || 3713 (ire1->ire_ipif->ipif_ill->ill_group == 3714 ire->ire_ipif->ipif_ill->ill_group)) 3715 break; 3716 irep = &ire1->ire_next; 3717 } 3718 ASSERT(*irep != NULL); 3719 irep = &((*irep)->ire_next); 3720 3721 /* 3722 * Either we have hit the end of the list or the address 3723 * did not match or the group *matched*. If we found 3724 * a match on the group, skip to the end of the group. 3725 */ 3726 while (*irep != NULL) { 3727 ire1 = *irep; 3728 if ((ire1->ire_addr != ire->ire_addr) || 3729 (ire1->ire_type != IRE_BROADCAST) || 3730 (ire1->ire_ipif->ipif_ill->ill_group != 3731 ire->ire_ipif->ipif_ill->ill_group)) 3732 break; 3733 if (ire1->ire_ipif->ipif_ill->ill_group == NULL && 3734 ire1->ire_ipif == ire->ire_ipif) { 3735 irep = &ire1->ire_next; 3736 break; 3737 } 3738 irep = &ire1->ire_next; 3739 } 3740 } else if (*irep != NULL) { 3741 /* 3742 * Find the last ire which matches ire_addr. 3743 * Needed to do tail insertion among entries with the same 3744 * ire_addr. 3745 */ 3746 while (ire->ire_addr == ire1->ire_addr) { 3747 irep = &ire1->ire_next; 3748 ire1 = *irep; 3749 if (ire1 == NULL) 3750 break; 3751 } 3752 } 3753 3754 /* Insert at *irep */ 3755 ire1 = *irep; 3756 if (ire1 != NULL) 3757 ire1->ire_ptpn = &ire->ire_next; 3758 ire->ire_next = ire1; 3759 /* Link the new one in. */ 3760 ire->ire_ptpn = irep; 3761 3762 /* 3763 * ire_walk routines de-reference ire_next without holding 3764 * a lock. Before we point to the new ire, we want to make 3765 * sure the store that sets the ire_next of the new ire 3766 * reaches global visibility, so that ire_walk routines 3767 * don't see a truncated list of ires i.e if the ire_next 3768 * of the new ire gets set after we do "*irep = ire" due 3769 * to re-ordering, the ire_walk thread will see a NULL 3770 * once it accesses the ire_next of the new ire. 3771 * membar_producer() makes sure that the following store 3772 * happens *after* all of the above stores. 3773 */ 3774 membar_producer(); 3775 *irep = ire; 3776 ire->ire_bucket = irb_ptr; 3777 /* 3778 * We return a bumped up IRE above. Keep it symmetrical 3779 * so that the callers will always have to release. This 3780 * helps the callers of this function because they continue 3781 * to use the IRE after adding and hence they don't have to 3782 * lookup again after we return the IRE. 3783 * 3784 * NOTE : We don't have to use atomics as this is appearing 3785 * in the list for the first time and no one else can bump 3786 * up the reference count on this yet. 3787 */ 3788 IRE_REFHOLD_LOCKED(ire); 3789 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 3790 3791 irb_ptr->irb_ire_cnt++; 3792 if (irb_ptr->irb_marks & IRB_MARK_FTABLE) 3793 irb_ptr->irb_nire++; 3794 3795 if (ire->ire_marks & IRE_MARK_TEMPORARY) 3796 irb_ptr->irb_tmp_ire_cnt++; 3797 3798 if (ire->ire_ipif != NULL) { 3799 ire->ire_ipif->ipif_ire_cnt++; 3800 if (ire->ire_stq != NULL) { 3801 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 3802 stq_ill->ill_ire_cnt++; 3803 } 3804 } else { 3805 ASSERT(ire->ire_stq == NULL); 3806 } 3807 3808 ire_atomic_end(irb_ptr, ire); 3809 mutex_exit(&ndp4.ndp_g_lock); 3810 3811 if (pire != NULL) { 3812 /* Assert that it is not removed from the list yet */ 3813 ASSERT(pire->ire_ptpn != NULL); 3814 IRB_REFRELE(pire->ire_bucket); 3815 ire_refrele(pire); 3816 } 3817 3818 if (ire->ire_type != IRE_CACHE) { 3819 /* 3820 * For ire's with host mask see if there is an entry 3821 * in the cache. If there is one flush the whole cache as 3822 * there might be multiple entries due to RTF_MULTIRT (CGTP). 3823 * If no entry is found than there is no need to flush the 3824 * cache. 3825 */ 3826 if (ire->ire_mask == IP_HOST_MASK) { 3827 ire_t *lire; 3828 lire = ire_ctable_lookup(ire->ire_addr, NULL, IRE_CACHE, 3829 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3830 if (lire != NULL) { 3831 ire_refrele(lire); 3832 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3833 } 3834 } else { 3835 ire_flush_cache_v4(ire, IRE_FLUSH_ADD); 3836 } 3837 } 3838 /* 3839 * We had to delay the fast path probe until the ire is inserted 3840 * in the list. Otherwise the fast path ack won't find the ire in 3841 * the table. 3842 */ 3843 if (ire->ire_type == IRE_CACHE || ire->ire_type == IRE_BROADCAST) 3844 ire_fastpath(ire); 3845 if (ire->ire_ipif != NULL) 3846 ASSERT(!MUTEX_HELD(&ire->ire_ipif->ipif_ill->ill_lock)); 3847 *ire_p = ire; 3848 if (need_refrele) { 3849 IRB_REFRELE(irb_ptr); 3850 } 3851 return (0); 3852 } 3853 3854 /* 3855 * IRB_REFRELE is the only caller of the function. ire_unlink calls to 3856 * do the final cleanup for this ire. 3857 */ 3858 void 3859 ire_cleanup(ire_t *ire) 3860 { 3861 ire_t *ire_next; 3862 3863 ASSERT(ire != NULL); 3864 3865 while (ire != NULL) { 3866 ire_next = ire->ire_next; 3867 if (ire->ire_ipversion == IPV4_VERSION) { 3868 ire_delete_v4(ire); 3869 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 3870 } else { 3871 ASSERT(ire->ire_ipversion == IPV6_VERSION); 3872 ire_delete_v6(ire); 3873 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 3874 } 3875 /* 3876 * Now it's really out of the list. Before doing the 3877 * REFRELE, set ire_next to NULL as ire_inactive asserts 3878 * so. 3879 */ 3880 ire->ire_next = NULL; 3881 IRE_REFRELE_NOTR(ire); 3882 ire = ire_next; 3883 } 3884 } 3885 3886 /* 3887 * IRB_REFRELE is the only caller of the function. It calls to unlink 3888 * all the CONDEMNED ires from this bucket. 3889 */ 3890 ire_t * 3891 ire_unlink(irb_t *irb) 3892 { 3893 ire_t *ire; 3894 ire_t *ire1; 3895 ire_t **ptpn; 3896 ire_t *ire_list = NULL; 3897 3898 ASSERT(RW_WRITE_HELD(&irb->irb_lock)); 3899 ASSERT(((irb->irb_marks & IRB_MARK_FTABLE) && irb->irb_refcnt == 1) || 3900 (irb->irb_refcnt == 0)); 3901 ASSERT(irb->irb_marks & IRB_MARK_CONDEMNED); 3902 ASSERT(irb->irb_ire != NULL); 3903 3904 for (ire = irb->irb_ire; ire != NULL; ire = ire1) { 3905 ire1 = ire->ire_next; 3906 if (ire->ire_marks & IRE_MARK_CONDEMNED) { 3907 ptpn = ire->ire_ptpn; 3908 ire1 = ire->ire_next; 3909 if (ire1) 3910 ire1->ire_ptpn = ptpn; 3911 *ptpn = ire1; 3912 ire->ire_ptpn = NULL; 3913 ire->ire_next = NULL; 3914 if (ire->ire_type == IRE_DEFAULT) { 3915 /* 3916 * IRE is out of the list. We need to adjust 3917 * the accounting before the caller drops 3918 * the lock. 3919 */ 3920 if (ire->ire_ipversion == IPV6_VERSION) { 3921 ASSERT(ipv6_ire_default_count != 0); 3922 ipv6_ire_default_count--; 3923 } 3924 } 3925 /* 3926 * We need to call ire_delete_v4 or ire_delete_v6 3927 * to clean up the cache or the redirects pointing at 3928 * the default gateway. We need to drop the lock 3929 * as ire_flush_cache/ire_delete_host_redircts require 3930 * so. But we can't drop the lock, as ire_unlink needs 3931 * to atomically remove the ires from the list. 3932 * So, create a temporary list of CONDEMNED ires 3933 * for doing ire_delete_v4/ire_delete_v6 operations 3934 * later on. 3935 */ 3936 ire->ire_next = ire_list; 3937 ire_list = ire; 3938 } 3939 } 3940 irb->irb_marks &= ~IRB_MARK_CONDEMNED; 3941 return (ire_list); 3942 } 3943 3944 /* 3945 * Delete all the cache entries with this 'addr'. When IP gets a gratuitous 3946 * ARP message on any of its interface queue, it scans the nce table and 3947 * deletes and calls ndp_delete() for the appropriate nce. This action 3948 * also deletes all the neighbor/ire cache entries for that address. 3949 * This function is called from ip_arp_news in ip.c and also for 3950 * ARP ioctl processing in ip_if.c. ip_ire_clookup_and_delete returns 3951 * true if it finds a nce entry which is used by ip_arp_news to determine if 3952 * it needs to do an ire_walk_v4. The return value is also used for the 3953 * same purpose by ARP IOCTL processing * in ip_if.c when deleting 3954 * ARP entries. For SIOC*IFARP ioctls in addition to the address, 3955 * ip_if->ipif_ill also needs to be matched. 3956 */ 3957 boolean_t 3958 ip_ire_clookup_and_delete(ipaddr_t addr, ipif_t *ipif) 3959 { 3960 ill_t *ill; 3961 nce_t *nce; 3962 3963 ill = (ipif ? ipif->ipif_ill : NULL); 3964 3965 if (ill != NULL) { 3966 /* 3967 * clean up the nce (and any relevant ire's) that matches 3968 * on addr and ill. 3969 */ 3970 nce = ndp_lookup_v4(ill, &addr, B_FALSE); 3971 if (nce != NULL) { 3972 ndp_delete(nce); 3973 return (B_TRUE); 3974 } 3975 } else { 3976 /* 3977 * ill is wildcard. clean up all nce's and 3978 * ire's that match on addr 3979 */ 3980 nce_clookup_t cl; 3981 3982 cl.ncecl_addr = addr; 3983 cl.ncecl_found = B_FALSE; 3984 3985 ndp_walk_common(&ndp4, NULL, 3986 (pfi_t)ip_nce_clookup_and_delete, (uchar_t *)&cl, B_TRUE); 3987 3988 /* 3989 * ncecl_found would be set by ip_nce_clookup_and_delete if 3990 * we found a matching nce. 3991 */ 3992 return (cl.ncecl_found); 3993 } 3994 return (B_FALSE); 3995 3996 } 3997 3998 /* Delete the supplied nce if its nce_addr matches the supplied address */ 3999 static void 4000 ip_nce_clookup_and_delete(nce_t *nce, void *arg) 4001 { 4002 nce_clookup_t *cl = (nce_clookup_t *)arg; 4003 ipaddr_t nce_addr; 4004 4005 IN6_V4MAPPED_TO_IPADDR(&nce->nce_addr, nce_addr); 4006 if (nce_addr == cl->ncecl_addr) { 4007 cl->ncecl_found = B_TRUE; 4008 /* clean up the nce (and any relevant ire's) */ 4009 ndp_delete(nce); 4010 } 4011 } 4012 4013 /* 4014 * Clean up the radix node for this ire. Must be called by IRB_REFRELE 4015 * when there are no ire's left in the bucket. Returns TRUE if the bucket 4016 * is deleted and freed. 4017 */ 4018 boolean_t 4019 irb_inactive(irb_t *irb) 4020 { 4021 struct rt_entry *rt; 4022 struct radix_node *rn; 4023 4024 rt = IRB2RT(irb); 4025 rn = (struct radix_node *)rt; 4026 4027 /* first remove it from the radix tree. */ 4028 RADIX_NODE_HEAD_WLOCK(ip_ftable); 4029 rw_enter(&irb->irb_lock, RW_WRITER); 4030 if (irb->irb_refcnt == 1 && irb->irb_nire == 0) { 4031 rn = ip_ftable->rnh_deladdr(rn->rn_key, rn->rn_mask, 4032 ip_ftable); 4033 DTRACE_PROBE1(irb__free, rt_t *, rt); 4034 ASSERT((void *)rn == (void *)rt); 4035 Free(rt, rt_entry_cache); 4036 /* irb_lock is freed */ 4037 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 4038 return (B_TRUE); 4039 } 4040 rw_exit(&irb->irb_lock); 4041 RADIX_NODE_HEAD_UNLOCK(ip_ftable); 4042 return (B_FALSE); 4043 } 4044 4045 /* 4046 * Delete the specified IRE. 4047 */ 4048 void 4049 ire_delete(ire_t *ire) 4050 { 4051 ire_t *ire1; 4052 ire_t **ptpn; 4053 irb_t *irb; 4054 4055 if ((irb = ire->ire_bucket) == NULL) { 4056 /* 4057 * It was never inserted in the list. Should call REFRELE 4058 * to free this IRE. 4059 */ 4060 IRE_REFRELE_NOTR(ire); 4061 return; 4062 } 4063 4064 rw_enter(&irb->irb_lock, RW_WRITER); 4065 4066 if (irb->irb_rr_origin == ire) { 4067 irb->irb_rr_origin = NULL; 4068 } 4069 4070 /* 4071 * In case of V4 we might still be waiting for fastpath ack. 4072 */ 4073 if (ire->ire_ipversion == IPV4_VERSION && ire->ire_stq != NULL) { 4074 ill_t *ill; 4075 4076 ill = ire_to_ill(ire); 4077 if (ill != NULL) 4078 ire_fastpath_list_delete(ill, ire); 4079 } 4080 4081 if (ire->ire_ptpn == NULL) { 4082 /* 4083 * Some other thread has removed us from the list. 4084 * It should have done the REFRELE for us. 4085 */ 4086 rw_exit(&irb->irb_lock); 4087 return; 4088 } 4089 4090 if (irb->irb_refcnt != 0) { 4091 /* 4092 * The last thread to leave this bucket will 4093 * delete this ire. 4094 */ 4095 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 4096 irb->irb_ire_cnt--; 4097 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4098 irb->irb_tmp_ire_cnt--; 4099 ire->ire_marks |= IRE_MARK_CONDEMNED; 4100 } 4101 irb->irb_marks |= IRB_MARK_CONDEMNED; 4102 rw_exit(&irb->irb_lock); 4103 return; 4104 } 4105 4106 /* 4107 * Normally to delete an ire, we walk the bucket. While we 4108 * walk the bucket, we normally bump up irb_refcnt and hence 4109 * we return from above where we mark CONDEMNED and the ire 4110 * gets deleted from ire_unlink. This case is where somebody 4111 * knows the ire e.g by doing a lookup, and wants to delete the 4112 * IRE. irb_refcnt would be 0 in this case if nobody is walking 4113 * the bucket. 4114 */ 4115 ptpn = ire->ire_ptpn; 4116 ire1 = ire->ire_next; 4117 if (ire1 != NULL) 4118 ire1->ire_ptpn = ptpn; 4119 ASSERT(ptpn != NULL); 4120 *ptpn = ire1; 4121 ire->ire_ptpn = NULL; 4122 ire->ire_next = NULL; 4123 if (ire->ire_ipversion == IPV6_VERSION) { 4124 BUMP_IRE_STATS(ire_stats_v6, ire_stats_deleted); 4125 } else { 4126 BUMP_IRE_STATS(ire_stats_v4, ire_stats_deleted); 4127 } 4128 /* 4129 * ip_wput/ip_wput_v6 checks this flag to see whether 4130 * it should still use the cached ire or not. 4131 */ 4132 ire->ire_marks |= IRE_MARK_CONDEMNED; 4133 if (ire->ire_type == IRE_DEFAULT) { 4134 /* 4135 * IRE is out of the list. We need to adjust the 4136 * accounting before we drop the lock. 4137 */ 4138 if (ire->ire_ipversion == IPV6_VERSION) { 4139 ASSERT(ipv6_ire_default_count != 0); 4140 ipv6_ire_default_count--; 4141 } 4142 } 4143 irb->irb_ire_cnt--; 4144 4145 if (ire->ire_marks & IRE_MARK_TEMPORARY) 4146 irb->irb_tmp_ire_cnt--; 4147 rw_exit(&irb->irb_lock); 4148 4149 if (ire->ire_ipversion == IPV6_VERSION) { 4150 ire_delete_v6(ire); 4151 } else { 4152 ire_delete_v4(ire); 4153 } 4154 /* 4155 * We removed it from the list. Decrement the 4156 * reference count. 4157 */ 4158 IRE_REFRELE_NOTR(ire); 4159 } 4160 4161 /* 4162 * Delete the specified IRE. 4163 * All calls should use ire_delete(). 4164 * Sometimes called as writer though not required by this function. 4165 * 4166 * NOTE : This function is called only if the ire was added 4167 * in the list. 4168 */ 4169 static void 4170 ire_delete_v4(ire_t *ire) 4171 { 4172 ASSERT(ire->ire_refcnt >= 1); 4173 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4174 4175 if (ire->ire_type != IRE_CACHE) 4176 ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); 4177 if (ire->ire_type == IRE_DEFAULT) { 4178 /* 4179 * when a default gateway is going away 4180 * delete all the host redirects pointing at that 4181 * gateway. 4182 */ 4183 ire_delete_host_redirects(ire->ire_gateway_addr); 4184 } 4185 } 4186 4187 /* 4188 * IRE_REFRELE/ire_refrele are the only caller of the function. It calls 4189 * to free the ire when the reference count goes to zero. 4190 */ 4191 void 4192 ire_inactive(ire_t *ire) 4193 { 4194 nce_t *nce; 4195 ill_t *ill = NULL; 4196 ill_t *stq_ill = NULL; 4197 ill_t *in_ill = NULL; 4198 ipif_t *ipif; 4199 boolean_t need_wakeup = B_FALSE; 4200 irb_t *irb; 4201 4202 ASSERT(ire->ire_refcnt == 0); 4203 ASSERT(ire->ire_ptpn == NULL); 4204 ASSERT(ire->ire_next == NULL); 4205 4206 if (ire->ire_gw_secattr != NULL) { 4207 ire_gw_secattr_free(ire->ire_gw_secattr); 4208 ire->ire_gw_secattr = NULL; 4209 } 4210 4211 if (ire->ire_mp != NULL) { 4212 ASSERT(ire->ire_fastpath == NULL); 4213 ASSERT(ire->ire_bucket == NULL); 4214 mutex_destroy(&ire->ire_lock); 4215 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4216 if (ire->ire_nce != NULL) 4217 NCE_REFRELE_NOTR(ire->ire_nce); 4218 freeb(ire->ire_mp); 4219 return; 4220 } 4221 4222 if ((nce = ire->ire_nce) != NULL) { 4223 NCE_REFRELE_NOTR(nce); 4224 ire->ire_nce = NULL; 4225 } 4226 4227 if (ire->ire_ipif == NULL) 4228 goto end; 4229 4230 ipif = ire->ire_ipif; 4231 ill = ipif->ipif_ill; 4232 4233 if (ire->ire_bucket == NULL) { 4234 /* The ire was never inserted in the table. */ 4235 goto end; 4236 } 4237 4238 /* 4239 * ipif_ire_cnt on this ipif goes down by 1. If the ire_stq is 4240 * non-null ill_ire_count also goes down by 1. If the in_ill is 4241 * non-null either ill_mrtun_refcnt or ill_srcif_refcnt goes down by 1. 4242 * 4243 * The ipif that is associated with an ire is ire->ire_ipif and 4244 * hence when the ire->ire_ipif->ipif_ire_cnt drops to zero we call 4245 * ipif_ill_refrele_tail. Usually stq_ill is null or the same as 4246 * ire->ire_ipif->ipif_ill. So nothing more needs to be done. Only 4247 * in the case of IRE_CACHES when IPMP is used, stq_ill can be 4248 * different. If this is different from ire->ire_ipif->ipif_ill and 4249 * if the ill_ire_cnt on the stq_ill also has dropped to zero, we call 4250 * ipif_ill_refrele_tail on the stq_ill. If mobile ip is in use 4251 * in_ill could be non-null. If it is a reverse tunnel related ire 4252 * ill_mrtun_refcnt is non-zero. If it is forward tunnel related ire 4253 * ill_srcif_refcnt is non-null. 4254 */ 4255 4256 if (ire->ire_stq != NULL) 4257 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 4258 if (ire->ire_in_ill != NULL) 4259 in_ill = ire->ire_in_ill; 4260 4261 if ((stq_ill == NULL || stq_ill == ill) && (in_ill == NULL)) { 4262 /* Optimize the most common case */ 4263 mutex_enter(&ill->ill_lock); 4264 ASSERT(ipif->ipif_ire_cnt != 0); 4265 ipif->ipif_ire_cnt--; 4266 if (ipif->ipif_ire_cnt == 0) 4267 need_wakeup = B_TRUE; 4268 if (stq_ill != NULL) { 4269 ASSERT(stq_ill->ill_ire_cnt != 0); 4270 stq_ill->ill_ire_cnt--; 4271 if (stq_ill->ill_ire_cnt == 0) 4272 need_wakeup = B_TRUE; 4273 } 4274 if (need_wakeup) { 4275 /* Drops the ill lock */ 4276 ipif_ill_refrele_tail(ill); 4277 } else { 4278 mutex_exit(&ill->ill_lock); 4279 } 4280 } else { 4281 /* 4282 * We can't grab all the ill locks at the same time. 4283 * It can lead to recursive lock enter in the call to 4284 * ipif_ill_refrele_tail and later. Instead do it 1 at 4285 * a time. 4286 */ 4287 mutex_enter(&ill->ill_lock); 4288 ASSERT(ipif->ipif_ire_cnt != 0); 4289 ipif->ipif_ire_cnt--; 4290 if (ipif->ipif_ire_cnt == 0) { 4291 /* Drops the lock */ 4292 ipif_ill_refrele_tail(ill); 4293 } else { 4294 mutex_exit(&ill->ill_lock); 4295 } 4296 if (stq_ill != NULL) { 4297 mutex_enter(&stq_ill->ill_lock); 4298 ASSERT(stq_ill->ill_ire_cnt != 0); 4299 stq_ill->ill_ire_cnt--; 4300 if (stq_ill->ill_ire_cnt == 0) { 4301 /* Drops the ill lock */ 4302 ipif_ill_refrele_tail(stq_ill); 4303 } else { 4304 mutex_exit(&stq_ill->ill_lock); 4305 } 4306 } 4307 if (in_ill != NULL) { 4308 mutex_enter(&in_ill->ill_lock); 4309 if (ire->ire_type == IRE_MIPRTUN) { 4310 /* 4311 * Mobile IP reverse tunnel ire. 4312 * Decrement table count and the 4313 * ill reference count. This signifies 4314 * mipagent is deleting reverse tunnel 4315 * route for a particular mobile node. 4316 */ 4317 mutex_enter(&ire_mrtun_lock); 4318 ire_mrtun_count--; 4319 mutex_exit(&ire_mrtun_lock); 4320 ASSERT(in_ill->ill_mrtun_refcnt != 0); 4321 in_ill->ill_mrtun_refcnt--; 4322 if (in_ill->ill_mrtun_refcnt == 0) { 4323 /* Drops the ill lock */ 4324 ipif_ill_refrele_tail(in_ill); 4325 } else { 4326 mutex_exit(&in_ill->ill_lock); 4327 } 4328 } else { 4329 mutex_enter(&ire_srcif_table_lock); 4330 ire_srcif_table_count--; 4331 mutex_exit(&ire_srcif_table_lock); 4332 ASSERT(in_ill->ill_srcif_refcnt != 0); 4333 in_ill->ill_srcif_refcnt--; 4334 if (in_ill->ill_srcif_refcnt == 0) { 4335 /* Drops the ill lock */ 4336 ipif_ill_refrele_tail(in_ill); 4337 } else { 4338 mutex_exit(&in_ill->ill_lock); 4339 } 4340 } 4341 } 4342 } 4343 end: 4344 /* This should be true for both V4 and V6 */ 4345 ASSERT(ire->ire_fastpath == NULL); 4346 4347 if ((ire->ire_type & IRE_FORWARDTABLE) && 4348 (ire->ire_ipversion == IPV4_VERSION) && 4349 ((irb = ire->ire_bucket) != NULL)) { 4350 rw_enter(&irb->irb_lock, RW_WRITER); 4351 irb->irb_nire--; 4352 /* 4353 * Instead of examining the conditions for freeing 4354 * the radix node here, we do it by calling 4355 * IRB_REFRELE which is a single point in the code 4356 * that embeds that logic. Bump up the refcnt to 4357 * be able to call IRB_REFRELE 4358 */ 4359 IRB_REFHOLD_LOCKED(irb); 4360 rw_exit(&irb->irb_lock); 4361 IRB_REFRELE(irb); 4362 } 4363 ire->ire_ipif = NULL; 4364 4365 if (ire->ire_in_ill != NULL) { 4366 ire->ire_in_ill = NULL; 4367 } 4368 4369 #ifdef IRE_DEBUG 4370 ire_trace_inactive(ire); 4371 #endif 4372 mutex_destroy(&ire->ire_lock); 4373 if (ire->ire_ipversion == IPV6_VERSION) { 4374 BUMP_IRE_STATS(ire_stats_v6, ire_stats_freed); 4375 } else { 4376 BUMP_IRE_STATS(ire_stats_v4, ire_stats_freed); 4377 } 4378 ASSERT(ire->ire_mp == NULL); 4379 /* Has been allocated out of the cache */ 4380 kmem_cache_free(ire_cache, ire); 4381 } 4382 4383 /* 4384 * ire_walk routine to delete all IRE_CACHE/IRE_HOST_REDIRECT entries 4385 * that have a given gateway address. 4386 */ 4387 void 4388 ire_delete_cache_gw(ire_t *ire, char *cp) 4389 { 4390 ipaddr_t gw_addr; 4391 4392 if (!(ire->ire_type & (IRE_CACHE|IRE_HOST_REDIRECT))) 4393 return; 4394 4395 bcopy(cp, &gw_addr, sizeof (gw_addr)); 4396 if (ire->ire_gateway_addr == gw_addr) { 4397 ip1dbg(("ire_delete_cache_gw: deleted 0x%x type %d to 0x%x\n", 4398 (int)ntohl(ire->ire_addr), ire->ire_type, 4399 (int)ntohl(ire->ire_gateway_addr))); 4400 ire_delete(ire); 4401 } 4402 } 4403 4404 /* 4405 * Remove all IRE_CACHE entries that match the ire specified. 4406 * 4407 * The flag argument indicates if the flush request is due to addition 4408 * of new route (IRE_FLUSH_ADD) or deletion of old route (IRE_FLUSH_DELETE). 4409 * 4410 * This routine takes only the IREs from the forwarding table and flushes 4411 * the corresponding entries from the cache table. 4412 * 4413 * When flushing due to the deletion of an old route, it 4414 * just checks the cache handles (ire_phandle and ire_ihandle) and 4415 * deletes the ones that match. 4416 * 4417 * When flushing due to the creation of a new route, it checks 4418 * if a cache entry's address matches the one in the IRE and 4419 * that the cache entry's parent has a less specific mask than the 4420 * one in IRE. The destination of such a cache entry could be the 4421 * gateway for other cache entries, so we need to flush those as 4422 * well by looking for gateway addresses matching the IRE's address. 4423 */ 4424 void 4425 ire_flush_cache_v4(ire_t *ire, int flag) 4426 { 4427 int i; 4428 ire_t *cire; 4429 irb_t *irb; 4430 4431 if (ire->ire_type & IRE_CACHE) 4432 return; 4433 4434 /* 4435 * If a default is just created, there is no point 4436 * in going through the cache, as there will not be any 4437 * cached ires. 4438 */ 4439 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) 4440 return; 4441 if (flag == IRE_FLUSH_ADD) { 4442 /* 4443 * This selective flush is due to the addition of 4444 * new IRE. 4445 */ 4446 for (i = 0; i < ip_cache_table_size; i++) { 4447 irb = &ip_cache_table[i]; 4448 if ((cire = irb->irb_ire) == NULL) 4449 continue; 4450 IRB_REFHOLD(irb); 4451 for (cire = irb->irb_ire; cire != NULL; 4452 cire = cire->ire_next) { 4453 if (cire->ire_type != IRE_CACHE) 4454 continue; 4455 /* 4456 * If 'cire' belongs to the same subnet 4457 * as the new ire being added, and 'cire' 4458 * is derived from a prefix that is less 4459 * specific than the new ire being added, 4460 * we need to flush 'cire'; for instance, 4461 * when a new interface comes up. 4462 */ 4463 if (((cire->ire_addr & ire->ire_mask) == 4464 (ire->ire_addr & ire->ire_mask)) && 4465 (ip_mask_to_plen(cire->ire_cmask) <= 4466 ire->ire_masklen)) { 4467 ire_delete(cire); 4468 continue; 4469 } 4470 /* 4471 * This is the case when the ire_gateway_addr 4472 * of 'cire' belongs to the same subnet as 4473 * the new ire being added. 4474 * Flushing such ires is sometimes required to 4475 * avoid misrouting: say we have a machine with 4476 * two interfaces (I1 and I2), a default router 4477 * R on the I1 subnet, and a host route to an 4478 * off-link destination D with a gateway G on 4479 * the I2 subnet. 4480 * Under normal operation, we will have an 4481 * on-link cache entry for G and an off-link 4482 * cache entry for D with G as ire_gateway_addr, 4483 * traffic to D will reach its destination 4484 * through gateway G. 4485 * If the administrator does 'ifconfig I2 down', 4486 * the cache entries for D and G will be 4487 * flushed. However, G will now be resolved as 4488 * an off-link destination using R (the default 4489 * router) as gateway. Then D will also be 4490 * resolved as an off-link destination using G 4491 * as gateway - this behavior is due to 4492 * compatibility reasons, see comment in 4493 * ire_ihandle_lookup_offlink(). Traffic to D 4494 * will go to the router R and probably won't 4495 * reach the destination. 4496 * The administrator then does 'ifconfig I2 up'. 4497 * Since G is on the I2 subnet, this routine 4498 * will flush its cache entry. It must also 4499 * flush the cache entry for D, otherwise 4500 * traffic will stay misrouted until the IRE 4501 * times out. 4502 */ 4503 if ((cire->ire_gateway_addr & ire->ire_mask) == 4504 (ire->ire_addr & ire->ire_mask)) { 4505 ire_delete(cire); 4506 continue; 4507 } 4508 } 4509 IRB_REFRELE(irb); 4510 } 4511 } else { 4512 /* 4513 * delete the cache entries based on 4514 * handle in the IRE as this IRE is 4515 * being deleted/changed. 4516 */ 4517 for (i = 0; i < ip_cache_table_size; i++) { 4518 irb = &ip_cache_table[i]; 4519 if ((cire = irb->irb_ire) == NULL) 4520 continue; 4521 IRB_REFHOLD(irb); 4522 for (cire = irb->irb_ire; cire != NULL; 4523 cire = cire->ire_next) { 4524 if (cire->ire_type != IRE_CACHE) 4525 continue; 4526 if ((cire->ire_phandle == 0 || 4527 cire->ire_phandle != ire->ire_phandle) && 4528 (cire->ire_ihandle == 0 || 4529 cire->ire_ihandle != ire->ire_ihandle)) 4530 continue; 4531 ire_delete(cire); 4532 } 4533 IRB_REFRELE(irb); 4534 } 4535 } 4536 } 4537 4538 /* 4539 * Matches the arguments passed with the values in the ire. 4540 * 4541 * Note: for match types that match using "ipif" passed in, ipif 4542 * must be checked for non-NULL before calling this routine. 4543 */ 4544 boolean_t 4545 ire_match_args(ire_t *ire, ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4546 int type, const ipif_t *ipif, zoneid_t zoneid, uint32_t ihandle, 4547 const ts_label_t *tsl, int match_flags) 4548 { 4549 ill_t *ire_ill = NULL, *dst_ill; 4550 ill_t *ipif_ill = NULL; 4551 ill_group_t *ire_ill_group = NULL; 4552 ill_group_t *ipif_ill_group = NULL; 4553 4554 ASSERT(ire->ire_ipversion == IPV4_VERSION); 4555 ASSERT((ire->ire_addr & ~ire->ire_mask) == 0); 4556 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP))) || 4557 (ipif != NULL && !ipif->ipif_isv6)); 4558 ASSERT(!(match_flags & MATCH_IRE_WQ)); 4559 4560 /* 4561 * HIDDEN cache entries have to be looked up specifically with 4562 * MATCH_IRE_MARK_HIDDEN. MATCH_IRE_MARK_HIDDEN is usually set 4563 * when the interface is FAILED or INACTIVE. In that case, 4564 * any IRE_CACHES that exists should be marked with 4565 * IRE_MARK_HIDDEN. So, we don't really need to match below 4566 * for IRE_MARK_HIDDEN. But we do so for consistency. 4567 */ 4568 if (!(match_flags & MATCH_IRE_MARK_HIDDEN) && 4569 (ire->ire_marks & IRE_MARK_HIDDEN)) 4570 return (B_FALSE); 4571 4572 /* 4573 * MATCH_IRE_MARK_PRIVATE_ADDR is set when IP_NEXTHOP option 4574 * is used. In that case the routing table is bypassed and the 4575 * packets are sent directly to the specified nexthop. The 4576 * IRE_CACHE entry representing this route should be marked 4577 * with IRE_MARK_PRIVATE_ADDR. 4578 */ 4579 4580 if (!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR) && 4581 (ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) 4582 return (B_FALSE); 4583 4584 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid && 4585 ire->ire_zoneid != ALL_ZONES) { 4586 /* 4587 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid is 4588 * valid and does not match that of ire_zoneid, a failure to 4589 * match is reported at this point. Otherwise, since some IREs 4590 * that are available in the global zone can be used in local 4591 * zones, additional checks need to be performed: 4592 * 4593 * IRE_BROADCAST, IRE_CACHE and IRE_LOOPBACK 4594 * entries should never be matched in this situation. 4595 * 4596 * IRE entries that have an interface associated with them 4597 * should in general not match unless they are an IRE_LOCAL 4598 * or in the case when MATCH_IRE_DEFAULT has been set in 4599 * the caller. In the case of the former, checking of the 4600 * other fields supplied should take place. 4601 * 4602 * In the case where MATCH_IRE_DEFAULT has been set, 4603 * all of the ipif's associated with the IRE's ill are 4604 * checked to see if there is a matching zoneid. If any 4605 * one ipif has a matching zoneid, this IRE is a 4606 * potential candidate so checking of the other fields 4607 * takes place. 4608 * 4609 * In the case where the IRE_INTERFACE has a usable source 4610 * address (indicated by ill_usesrc_ifindex) in the 4611 * correct zone then it's permitted to return this IRE 4612 */ 4613 if (match_flags & MATCH_IRE_ZONEONLY) 4614 return (B_FALSE); 4615 if (ire->ire_type & (IRE_BROADCAST | IRE_CACHE | IRE_LOOPBACK)) 4616 return (B_FALSE); 4617 /* 4618 * Note, IRE_INTERFACE can have the stq as NULL. For 4619 * example, if the default multicast route is tied to 4620 * the loopback address. 4621 */ 4622 if ((ire->ire_type & IRE_INTERFACE) && 4623 (ire->ire_stq != NULL)) { 4624 dst_ill = (ill_t *)ire->ire_stq->q_ptr; 4625 /* 4626 * If there is a usable source address in the 4627 * zone, then it's ok to return an 4628 * IRE_INTERFACE 4629 */ 4630 if (ipif_usesrc_avail(dst_ill, zoneid)) { 4631 ip3dbg(("ire_match_args: dst_ill %p match %d\n", 4632 (void *)dst_ill, 4633 (ire->ire_addr == (addr & mask)))); 4634 } else { 4635 ip3dbg(("ire_match_args: src_ipif NULL" 4636 " dst_ill %p\n", (void *)dst_ill)); 4637 return (B_FALSE); 4638 } 4639 } 4640 if (ire->ire_ipif != NULL && ire->ire_type != IRE_LOCAL && 4641 !(ire->ire_type & IRE_INTERFACE)) { 4642 ipif_t *tipif; 4643 4644 if ((match_flags & MATCH_IRE_DEFAULT) == 0) { 4645 return (B_FALSE); 4646 } 4647 mutex_enter(&ire->ire_ipif->ipif_ill->ill_lock); 4648 for (tipif = ire->ire_ipif->ipif_ill->ill_ipif; 4649 tipif != NULL; tipif = tipif->ipif_next) { 4650 if (IPIF_CAN_LOOKUP(tipif) && 4651 (tipif->ipif_flags & IPIF_UP) && 4652 (tipif->ipif_zoneid == zoneid || 4653 tipif->ipif_zoneid == ALL_ZONES)) 4654 break; 4655 } 4656 mutex_exit(&ire->ire_ipif->ipif_ill->ill_lock); 4657 if (tipif == NULL) { 4658 return (B_FALSE); 4659 } 4660 } 4661 } 4662 4663 /* 4664 * For IRE_CACHES, MATCH_IRE_ILL/ILL_GROUP really means that 4665 * somebody wants to send out on a particular interface which 4666 * is given by ire_stq and hence use ire_stq to derive the ill 4667 * value. ire_ipif for IRE_CACHES is just the means of getting 4668 * a source address i.e ire_src_addr = ire->ire_ipif->ipif_src_addr. 4669 * ire_to_ill does the right thing for this. 4670 */ 4671 if (match_flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) { 4672 ire_ill = ire_to_ill(ire); 4673 if (ire_ill != NULL) 4674 ire_ill_group = ire_ill->ill_group; 4675 ipif_ill = ipif->ipif_ill; 4676 ipif_ill_group = ipif_ill->ill_group; 4677 } 4678 4679 if ((ire->ire_addr == (addr & mask)) && 4680 ((!(match_flags & MATCH_IRE_GW)) || 4681 (ire->ire_gateway_addr == gateway)) && 4682 ((!(match_flags & MATCH_IRE_TYPE)) || 4683 (ire->ire_type & type)) && 4684 ((!(match_flags & MATCH_IRE_SRC)) || 4685 (ire->ire_src_addr == ipif->ipif_src_addr)) && 4686 ((!(match_flags & MATCH_IRE_IPIF)) || 4687 (ire->ire_ipif == ipif)) && 4688 ((!(match_flags & MATCH_IRE_MARK_HIDDEN)) || 4689 (ire->ire_type != IRE_CACHE || 4690 ire->ire_marks & IRE_MARK_HIDDEN)) && 4691 ((!(match_flags & MATCH_IRE_MARK_PRIVATE_ADDR)) || 4692 (ire->ire_type != IRE_CACHE || 4693 ire->ire_marks & IRE_MARK_PRIVATE_ADDR)) && 4694 ((!(match_flags & MATCH_IRE_ILL)) || 4695 (ire_ill == ipif_ill)) && 4696 ((!(match_flags & MATCH_IRE_IHANDLE)) || 4697 (ire->ire_ihandle == ihandle)) && 4698 ((!(match_flags & MATCH_IRE_MASK)) || 4699 (ire->ire_mask == mask)) && 4700 ((!(match_flags & MATCH_IRE_ILL_GROUP)) || 4701 (ire_ill == ipif_ill) || 4702 (ire_ill_group != NULL && 4703 ire_ill_group == ipif_ill_group)) && 4704 ((!(match_flags & MATCH_IRE_SECATTR)) || 4705 (!is_system_labeled()) || 4706 (tsol_ire_match_gwattr(ire, tsl) == 0))) { 4707 /* We found the matched IRE */ 4708 return (B_TRUE); 4709 } 4710 return (B_FALSE); 4711 } 4712 4713 4714 /* 4715 * Lookup for a route in all the tables 4716 */ 4717 ire_t * 4718 ire_route_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway, 4719 int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid, 4720 const ts_label_t *tsl, int flags) 4721 { 4722 ire_t *ire = NULL; 4723 4724 /* 4725 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4726 * MATCH_IRE_ILL is set. 4727 */ 4728 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4729 (ipif == NULL)) 4730 return (NULL); 4731 4732 /* 4733 * might be asking for a cache lookup, 4734 * This is not best way to lookup cache, 4735 * user should call ire_cache_lookup directly. 4736 * 4737 * If MATCH_IRE_TYPE was set, first lookup in the cache table and then 4738 * in the forwarding table, if the applicable type flags were set. 4739 */ 4740 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_CACHETABLE) != 0) { 4741 ire = ire_ctable_lookup(addr, gateway, type, ipif, zoneid, 4742 tsl, flags); 4743 if (ire != NULL) 4744 return (ire); 4745 } 4746 if ((flags & MATCH_IRE_TYPE) == 0 || (type & IRE_FORWARDTABLE) != 0) { 4747 ire = ire_ftable_lookup(addr, mask, gateway, type, ipif, pire, 4748 zoneid, 0, tsl, flags); 4749 } 4750 return (ire); 4751 } 4752 4753 4754 /* 4755 * Delete the IRE cache for the gateway and all IRE caches whose 4756 * ire_gateway_addr points to this gateway, and allow them to 4757 * be created on demand by ip_newroute. 4758 */ 4759 void 4760 ire_clookup_delete_cache_gw(ipaddr_t addr, zoneid_t zoneid) 4761 { 4762 irb_t *irb; 4763 ire_t *ire; 4764 4765 irb = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4766 IRB_REFHOLD(irb); 4767 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 4768 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4769 continue; 4770 4771 ASSERT(ire->ire_mask == IP_HOST_MASK); 4772 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4773 if (ire_match_args(ire, addr, ire->ire_mask, 0, IRE_CACHE, 4774 NULL, zoneid, 0, NULL, MATCH_IRE_TYPE)) { 4775 ire_delete(ire); 4776 } 4777 } 4778 IRB_REFRELE(irb); 4779 4780 ire_walk_v4(ire_delete_cache_gw, &addr, zoneid); 4781 } 4782 4783 /* 4784 * Looks up cache table for a route. 4785 * specific lookup can be indicated by 4786 * passing the MATCH_* flags and the 4787 * necessary parameters. 4788 */ 4789 ire_t * 4790 ire_ctable_lookup(ipaddr_t addr, ipaddr_t gateway, int type, const ipif_t *ipif, 4791 zoneid_t zoneid, const ts_label_t *tsl, int flags) 4792 { 4793 irb_t *irb_ptr; 4794 ire_t *ire; 4795 4796 /* 4797 * ire_match_args() will dereference ipif MATCH_IRE_SRC or 4798 * MATCH_IRE_ILL is set. 4799 */ 4800 if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) && 4801 (ipif == NULL)) 4802 return (NULL); 4803 4804 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4805 rw_enter(&irb_ptr->irb_lock, RW_READER); 4806 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4807 if (ire->ire_marks & IRE_MARK_CONDEMNED) 4808 continue; 4809 ASSERT(ire->ire_mask == IP_HOST_MASK); 4810 ASSERT(ire->ire_type != IRE_MIPRTUN && ire->ire_in_ill == NULL); 4811 if (ire_match_args(ire, addr, ire->ire_mask, gateway, type, 4812 ipif, zoneid, 0, tsl, flags)) { 4813 IRE_REFHOLD(ire); 4814 rw_exit(&irb_ptr->irb_lock); 4815 return (ire); 4816 } 4817 } 4818 rw_exit(&irb_ptr->irb_lock); 4819 return (NULL); 4820 } 4821 4822 /* 4823 * Check whether the IRE_LOCAL and the IRE potentially used to transmit 4824 * (could be an IRE_CACHE, IRE_BROADCAST, or IRE_INTERFACE) are part of 4825 * the same ill group. 4826 */ 4827 boolean_t 4828 ire_local_same_ill_group(ire_t *ire_local, ire_t *xmit_ire) 4829 { 4830 ill_t *recv_ill, *xmit_ill; 4831 ill_group_t *recv_group, *xmit_group; 4832 4833 ASSERT(ire_local->ire_type == IRE_LOCAL); 4834 ASSERT(ire_local->ire_rfq != NULL); 4835 ASSERT(xmit_ire->ire_type & (IRE_CACHE|IRE_BROADCAST|IRE_INTERFACE)); 4836 ASSERT(xmit_ire->ire_stq != NULL); 4837 ASSERT(xmit_ire->ire_ipif != NULL); 4838 4839 recv_ill = ire_local->ire_rfq->q_ptr; 4840 xmit_ill = xmit_ire->ire_stq->q_ptr; 4841 4842 if (recv_ill == xmit_ill) 4843 return (B_TRUE); 4844 4845 recv_group = recv_ill->ill_group; 4846 xmit_group = xmit_ill->ill_group; 4847 4848 if (recv_group != NULL && recv_group == xmit_group) 4849 return (B_TRUE); 4850 4851 return (B_FALSE); 4852 } 4853 4854 /* 4855 * Check if the IRE_LOCAL uses the same ill (group) as another route would use. 4856 */ 4857 boolean_t 4858 ire_local_ok_across_zones(ire_t *ire_local, zoneid_t zoneid, void *addr, 4859 const ts_label_t *tsl) 4860 { 4861 ire_t *alt_ire; 4862 boolean_t rval; 4863 4864 if (ire_local->ire_ipversion == IPV4_VERSION) { 4865 alt_ire = ire_ftable_lookup(*((ipaddr_t *)addr), 0, 0, 0, NULL, 4866 NULL, zoneid, 0, tsl, 4867 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4868 MATCH_IRE_RJ_BHOLE); 4869 } else { 4870 alt_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 4871 0, NULL, NULL, zoneid, 0, tsl, 4872 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4873 MATCH_IRE_RJ_BHOLE); 4874 } 4875 4876 if (alt_ire == NULL) 4877 return (B_FALSE); 4878 4879 rval = ire_local_same_ill_group(ire_local, alt_ire); 4880 4881 ire_refrele(alt_ire); 4882 return (rval); 4883 } 4884 4885 /* 4886 * Lookup cache. Don't return IRE_MARK_HIDDEN entries. Callers 4887 * should use ire_ctable_lookup with MATCH_IRE_MARK_HIDDEN to get 4888 * to the hidden ones. 4889 * 4890 * In general the zoneid has to match (where ALL_ZONES match all of them). 4891 * But for IRE_LOCAL we also need to handle the case where L2 should 4892 * conceptually loop back the packet. This is necessary since neither 4893 * Ethernet drivers nor Ethernet hardware loops back packets sent to their 4894 * own MAC address. This loopback is needed when the normal 4895 * routes (ignoring IREs with different zoneids) would send out the packet on 4896 * the same ill (or ill group) as the ill with which this IRE_LOCAL is 4897 * associated. 4898 * 4899 * Earlier versions of this code always matched an IRE_LOCAL independently of 4900 * the zoneid. We preserve that earlier behavior when 4901 * ip_restrict_interzone_loopback is turned off. 4902 */ 4903 ire_t * 4904 ire_cache_lookup(ipaddr_t addr, zoneid_t zoneid, const ts_label_t *tsl) 4905 { 4906 irb_t *irb_ptr; 4907 ire_t *ire; 4908 4909 irb_ptr = &ip_cache_table[IRE_ADDR_HASH(addr, ip_cache_table_size)]; 4910 rw_enter(&irb_ptr->irb_lock, RW_READER); 4911 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 4912 if (ire->ire_marks & (IRE_MARK_CONDEMNED | 4913 IRE_MARK_HIDDEN | IRE_MARK_PRIVATE_ADDR)) { 4914 continue; 4915 } 4916 if (ire->ire_addr == addr) { 4917 /* 4918 * Finally, check if the security policy has any 4919 * restriction on using this route for the specified 4920 * message. 4921 */ 4922 if (tsl != NULL && 4923 ire->ire_gw_secattr != NULL && 4924 tsol_ire_match_gwattr(ire, tsl) != 0) { 4925 continue; 4926 } 4927 4928 if (zoneid == ALL_ZONES || ire->ire_zoneid == zoneid || 4929 ire->ire_zoneid == ALL_ZONES) { 4930 IRE_REFHOLD(ire); 4931 rw_exit(&irb_ptr->irb_lock); 4932 return (ire); 4933 } 4934 4935 if (ire->ire_type == IRE_LOCAL) { 4936 if (ip_restrict_interzone_loopback && 4937 !ire_local_ok_across_zones(ire, zoneid, 4938 &addr, tsl)) 4939 continue; 4940 4941 IRE_REFHOLD(ire); 4942 rw_exit(&irb_ptr->irb_lock); 4943 return (ire); 4944 } 4945 } 4946 } 4947 rw_exit(&irb_ptr->irb_lock); 4948 return (NULL); 4949 } 4950 4951 /* 4952 * Locate the interface ire that is tied to the cache ire 'cire' via 4953 * cire->ire_ihandle. 4954 * 4955 * We are trying to create the cache ire for an offlink destn based 4956 * on the cache ire of the gateway in 'cire'. 'pire' is the prefix ire 4957 * as found by ip_newroute(). We are called from ip_newroute() in 4958 * the IRE_CACHE case. 4959 */ 4960 ire_t * 4961 ire_ihandle_lookup_offlink(ire_t *cire, ire_t *pire) 4962 { 4963 ire_t *ire; 4964 int match_flags; 4965 ipaddr_t gw_addr; 4966 ipif_t *gw_ipif; 4967 4968 ASSERT(cire != NULL && pire != NULL); 4969 4970 /* 4971 * We don't need to specify the zoneid to ire_ftable_lookup() below 4972 * because the ihandle refers to an ipif which can be in only one zone. 4973 */ 4974 match_flags = MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK; 4975 /* 4976 * ip_newroute calls ire_ftable_lookup with MATCH_IRE_ILL only 4977 * for on-link hosts. We should never be here for onlink. 4978 * Thus, use MATCH_IRE_ILL_GROUP. 4979 */ 4980 if (pire->ire_ipif != NULL) 4981 match_flags |= MATCH_IRE_ILL_GROUP; 4982 /* 4983 * We know that the mask of the interface ire equals cire->ire_cmask. 4984 * (When ip_newroute() created 'cire' for the gateway it set its 4985 * cmask from the interface ire's mask) 4986 */ 4987 ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0, 4988 IRE_INTERFACE, pire->ire_ipif, NULL, ALL_ZONES, cire->ire_ihandle, 4989 NULL, match_flags); 4990 if (ire != NULL) 4991 return (ire); 4992 /* 4993 * If we didn't find an interface ire above, we can't declare failure. 4994 * For backwards compatibility, we need to support prefix routes 4995 * pointing to next hop gateways that are not on-link. 4996 * 4997 * Assume we are trying to ping some offlink destn, and we have the 4998 * routing table below. 4999 * 5000 * Eg. default - gw1 <--- pire (line 1) 5001 * gw1 - gw2 (line 2) 5002 * gw2 - hme0 (line 3) 5003 * 5004 * If we already have a cache ire for gw1 in 'cire', the 5005 * ire_ftable_lookup above would have failed, since there is no 5006 * interface ire to reach gw1. We will fallthru below. 5007 * 5008 * Here we duplicate the steps that ire_ftable_lookup() did in 5009 * getting 'cire' from 'pire', in the MATCH_IRE_RECURSIVE case. 5010 * The differences are the following 5011 * i. We want the interface ire only, so we call ire_ftable_lookup() 5012 * instead of ire_route_lookup() 5013 * ii. We look for only prefix routes in the 1st call below. 5014 * ii. We want to match on the ihandle in the 2nd call below. 5015 */ 5016 match_flags = MATCH_IRE_TYPE; 5017 if (pire->ire_ipif != NULL) 5018 match_flags |= MATCH_IRE_ILL_GROUP; 5019 ire = ire_ftable_lookup(pire->ire_gateway_addr, 0, 0, IRE_OFFSUBNET, 5020 pire->ire_ipif, NULL, ALL_ZONES, 0, NULL, match_flags); 5021 if (ire == NULL) 5022 return (NULL); 5023 /* 5024 * At this point 'ire' corresponds to the entry shown in line 2. 5025 * gw_addr is 'gw2' in the example above. 5026 */ 5027 gw_addr = ire->ire_gateway_addr; 5028 gw_ipif = ire->ire_ipif; 5029 ire_refrele(ire); 5030 5031 match_flags |= MATCH_IRE_IHANDLE; 5032 ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, 5033 gw_ipif, NULL, ALL_ZONES, cire->ire_ihandle, NULL, match_flags); 5034 return (ire); 5035 } 5036 5037 /* 5038 * ire_mrtun_lookup() is called by ip_rput() when packet is to be 5039 * tunneled through reverse tunnel. This is only supported for 5040 * IPv4 packets 5041 */ 5042 5043 ire_t * 5044 ire_mrtun_lookup(ipaddr_t srcaddr, ill_t *ill) 5045 { 5046 irb_t *irb_ptr; 5047 ire_t *ire; 5048 5049 ASSERT(ill != NULL); 5050 ASSERT(!(ill->ill_isv6)); 5051 5052 if (ip_mrtun_table == NULL) 5053 return (NULL); 5054 irb_ptr = &ip_mrtun_table[IRE_ADDR_HASH(srcaddr, IP_MRTUN_TABLE_SIZE)]; 5055 rw_enter(&irb_ptr->irb_lock, RW_READER); 5056 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5057 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5058 continue; 5059 if ((ire->ire_in_src_addr == srcaddr) && 5060 ire->ire_in_ill == ill) { 5061 IRE_REFHOLD(ire); 5062 rw_exit(&irb_ptr->irb_lock); 5063 return (ire); 5064 } 5065 } 5066 rw_exit(&irb_ptr->irb_lock); 5067 return (NULL); 5068 } 5069 5070 /* 5071 * Return the IRE_LOOPBACK, IRE_IF_RESOLVER or IRE_IF_NORESOLVER 5072 * ire associated with the specified ipif. 5073 * 5074 * This might occasionally be called when IPIF_UP is not set since 5075 * the IP_MULTICAST_IF as well as creating interface routes 5076 * allows specifying a down ipif (ipif_lookup* match ipifs that are down). 5077 * 5078 * Note that if IPIF_NOLOCAL, IPIF_NOXMIT, or IPIF_DEPRECATED is set on 5079 * the ipif, this routine might return NULL. 5080 */ 5081 ire_t * 5082 ipif_to_ire(const ipif_t *ipif) 5083 { 5084 ire_t *ire; 5085 5086 ASSERT(!ipif->ipif_isv6); 5087 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5088 ire = ire_ctable_lookup(ipif->ipif_lcl_addr, 0, IRE_LOOPBACK, 5089 ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 5090 } else if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5091 /* In this case we need to lookup destination address. */ 5092 ire = ire_ftable_lookup(ipif->ipif_pp_dst_addr, IP_HOST_MASK, 0, 5093 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 5094 (MATCH_IRE_TYPE | MATCH_IRE_IPIF | MATCH_IRE_MASK)); 5095 } else { 5096 ire = ire_ftable_lookup(ipif->ipif_subnet, 5097 ipif->ipif_net_mask, 0, IRE_INTERFACE, ipif, NULL, 5098 ALL_ZONES, 0, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF | 5099 MATCH_IRE_MASK)); 5100 } 5101 return (ire); 5102 } 5103 5104 /* 5105 * ire_walk function. 5106 * Count the number of IRE_CACHE entries in different categories. 5107 */ 5108 void 5109 ire_cache_count(ire_t *ire, char *arg) 5110 { 5111 ire_cache_count_t *icc = (ire_cache_count_t *)arg; 5112 5113 if (ire->ire_type != IRE_CACHE) 5114 return; 5115 5116 icc->icc_total++; 5117 5118 if (ire->ire_ipversion == IPV6_VERSION) { 5119 mutex_enter(&ire->ire_lock); 5120 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5121 mutex_exit(&ire->ire_lock); 5122 icc->icc_onlink++; 5123 return; 5124 } 5125 mutex_exit(&ire->ire_lock); 5126 } else { 5127 if (ire->ire_gateway_addr == 0) { 5128 icc->icc_onlink++; 5129 return; 5130 } 5131 } 5132 5133 ASSERT(ire->ire_ipif != NULL); 5134 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) 5135 icc->icc_pmtu++; 5136 else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5137 ire->ire_ib_pkt_count) 5138 icc->icc_offlink++; 5139 else 5140 icc->icc_unused++; 5141 } 5142 5143 /* 5144 * ire_walk function called by ip_trash_ire_reclaim(). 5145 * Free a fraction of the IRE_CACHE cache entries. The fractions are 5146 * different for different categories of IRE_CACHE entries. 5147 * A fraction of zero means to not free any in that category. 5148 * Use the hash bucket id plus lbolt as a random number. Thus if the fraction 5149 * is N then every Nth hash bucket chain will be freed. 5150 */ 5151 void 5152 ire_cache_reclaim(ire_t *ire, char *arg) 5153 { 5154 ire_cache_reclaim_t *icr = (ire_cache_reclaim_t *)arg; 5155 uint_t rand; 5156 5157 if (ire->ire_type != IRE_CACHE) 5158 return; 5159 5160 if (ire->ire_ipversion == IPV6_VERSION) { 5161 rand = (uint_t)lbolt + 5162 IRE_ADDR_HASH_V6(ire->ire_addr_v6, ip6_cache_table_size); 5163 mutex_enter(&ire->ire_lock); 5164 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6)) { 5165 mutex_exit(&ire->ire_lock); 5166 if (icr->icr_onlink != 0 && 5167 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5168 ire_delete(ire); 5169 return; 5170 } 5171 goto done; 5172 } 5173 mutex_exit(&ire->ire_lock); 5174 } else { 5175 rand = (uint_t)lbolt + 5176 IRE_ADDR_HASH(ire->ire_addr, ip_cache_table_size); 5177 if (ire->ire_gateway_addr == 0) { 5178 if (icr->icr_onlink != 0 && 5179 (rand/icr->icr_onlink)*icr->icr_onlink == rand) { 5180 ire_delete(ire); 5181 return; 5182 } 5183 goto done; 5184 } 5185 } 5186 /* Not onlink IRE */ 5187 ASSERT(ire->ire_ipif != NULL); 5188 if (ire->ire_max_frag < ire->ire_ipif->ipif_mtu) { 5189 /* Use ptmu fraction */ 5190 if (icr->icr_pmtu != 0 && 5191 (rand/icr->icr_pmtu)*icr->icr_pmtu == rand) { 5192 ire_delete(ire); 5193 return; 5194 } 5195 } else if (ire->ire_tire_mark != ire->ire_ob_pkt_count + 5196 ire->ire_ib_pkt_count) { 5197 /* Use offlink fraction */ 5198 if (icr->icr_offlink != 0 && 5199 (rand/icr->icr_offlink)*icr->icr_offlink == rand) { 5200 ire_delete(ire); 5201 return; 5202 } 5203 } else { 5204 /* Use unused fraction */ 5205 if (icr->icr_unused != 0 && 5206 (rand/icr->icr_unused)*icr->icr_unused == rand) { 5207 ire_delete(ire); 5208 return; 5209 } 5210 } 5211 done: 5212 /* 5213 * Update tire_mark so that those that haven't been used since this 5214 * reclaim will be considered unused next time we reclaim. 5215 */ 5216 ire->ire_tire_mark = ire->ire_ob_pkt_count + ire->ire_ib_pkt_count; 5217 } 5218 5219 static void 5220 power2_roundup(uint32_t *value) 5221 { 5222 int i; 5223 5224 for (i = 1; i < 31; i++) { 5225 if (*value <= (1 << i)) 5226 break; 5227 } 5228 *value = (1 << i); 5229 } 5230 5231 void 5232 ip_ire_init() 5233 { 5234 int i; 5235 5236 mutex_init(&ire_ft_init_lock, NULL, MUTEX_DEFAULT, 0); 5237 mutex_init(&ire_handle_lock, NULL, MUTEX_DEFAULT, NULL); 5238 mutex_init(&ire_mrtun_lock, NULL, MUTEX_DEFAULT, NULL); 5239 mutex_init(&ire_srcif_table_lock, NULL, MUTEX_DEFAULT, NULL); 5240 mutex_init(&ndp4.ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5241 5242 rn_init(); 5243 (void) rn_inithead((void **)&ip_ftable, 32); 5244 rt_entry_cache = kmem_cache_create("rt_entry", 5245 sizeof (struct rt_entry), 0, NULL, NULL, NULL, NULL, NULL, 0); 5246 5247 /* Calculate the IPv4 cache table size. */ 5248 ip_cache_table_size = MAX(ip_cache_table_size, 5249 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5250 ip_ire_max_bucket_cnt)); 5251 if (ip_cache_table_size > ip_max_cache_table_size) 5252 ip_cache_table_size = ip_max_cache_table_size; 5253 /* 5254 * Make sure that the table size is always a power of 2. The 5255 * hash macro IRE_ADDR_HASH() depends on that. 5256 */ 5257 power2_roundup(&ip_cache_table_size); 5258 5259 ip_cache_table = (irb_t *)kmem_zalloc(ip_cache_table_size * 5260 sizeof (irb_t), KM_SLEEP); 5261 5262 for (i = 0; i < ip_cache_table_size; i++) { 5263 rw_init(&ip_cache_table[i].irb_lock, NULL, 5264 RW_DEFAULT, NULL); 5265 } 5266 5267 /* Calculate the IPv6 cache table size. */ 5268 ip6_cache_table_size = MAX(ip6_cache_table_size, 5269 ((kmem_avail() >> ip_ire_mem_ratio) / sizeof (ire_t) / 5270 ip6_ire_max_bucket_cnt)); 5271 if (ip6_cache_table_size > ip6_max_cache_table_size) 5272 ip6_cache_table_size = ip6_max_cache_table_size; 5273 /* 5274 * Make sure that the table size is always a power of 2. The 5275 * hash macro IRE_ADDR_HASH_V6() depends on that. 5276 */ 5277 power2_roundup(&ip6_cache_table_size); 5278 5279 ip_cache_table_v6 = (irb_t *)kmem_zalloc(ip6_cache_table_size * 5280 sizeof (irb_t), KM_SLEEP); 5281 5282 for (i = 0; i < ip6_cache_table_size; i++) { 5283 rw_init(&ip_cache_table_v6[i].irb_lock, NULL, 5284 RW_DEFAULT, NULL); 5285 } 5286 /* 5287 * Create ire caches, ire_reclaim() 5288 * will give IRE_CACHE back to system when needed. 5289 * This needs to be done here before anything else, since 5290 * ire_add() expects the cache to be created. 5291 */ 5292 ire_cache = kmem_cache_create("ire_cache", 5293 sizeof (ire_t), 0, ip_ire_constructor, 5294 ip_ire_destructor, ip_trash_ire_reclaim, NULL, NULL, 0); 5295 5296 /* 5297 * Initialize ip_mrtun_table to NULL now, it will be 5298 * populated by ip_rt_add if reverse tunnel is created 5299 */ 5300 ip_mrtun_table = NULL; 5301 5302 /* 5303 * Make sure that the forwarding table size is a power of 2. 5304 * The IRE*_ADDR_HASH() macroes depend on that. 5305 */ 5306 power2_roundup(&ip6_ftable_hash_size); 5307 } 5308 5309 void 5310 ip_ire_fini() 5311 { 5312 int i; 5313 5314 mutex_destroy(&ire_ft_init_lock); 5315 mutex_destroy(&ire_handle_lock); 5316 mutex_destroy(&ndp4.ndp_g_lock); 5317 5318 rn_fini(); 5319 RADIX_NODE_HEAD_DESTROY(ip_ftable); 5320 kmem_cache_destroy(rt_entry_cache); 5321 5322 for (i = 0; i < ip_cache_table_size; i++) { 5323 rw_destroy(&ip_cache_table[i].irb_lock); 5324 } 5325 kmem_free(ip_cache_table, ip_cache_table_size * sizeof (irb_t)); 5326 5327 for (i = 0; i < ip6_cache_table_size; i++) { 5328 rw_destroy(&ip_cache_table_v6[i].irb_lock); 5329 } 5330 kmem_free(ip_cache_table_v6, ip6_cache_table_size * sizeof (irb_t)); 5331 5332 if (ip_mrtun_table != NULL) { 5333 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5334 rw_destroy(&ip_mrtun_table[i].irb_lock); 5335 } 5336 kmem_free(ip_mrtun_table, IP_MRTUN_TABLE_SIZE * sizeof (irb_t)); 5337 } 5338 kmem_cache_destroy(ire_cache); 5339 } 5340 5341 int 5342 ire_add_mrtun(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5343 { 5344 ire_t *ire1; 5345 irb_t *irb_ptr; 5346 ire_t **irep; 5347 ire_t *ire; 5348 int i; 5349 uint_t max_frag; 5350 ill_t *stq_ill; 5351 int error; 5352 5353 ire = *ire_p; 5354 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5355 /* Is ip_mrtun_table empty ? */ 5356 5357 if (ip_mrtun_table == NULL) { 5358 /* create the mrtun table */ 5359 mutex_enter(&ire_mrtun_lock); 5360 if (ip_mrtun_table == NULL) { 5361 ip_mrtun_table = 5362 (irb_t *)kmem_zalloc(IP_MRTUN_TABLE_SIZE * 5363 sizeof (irb_t), KM_NOSLEEP); 5364 5365 if (ip_mrtun_table == NULL) { 5366 ip2dbg(("ire_add_mrtun: allocation failure\n")); 5367 mutex_exit(&ire_mrtun_lock); 5368 ire_refrele(ire); 5369 *ire_p = NULL; 5370 return (ENOMEM); 5371 } 5372 5373 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5374 rw_init(&ip_mrtun_table[i].irb_lock, NULL, 5375 RW_DEFAULT, NULL); 5376 } 5377 ip2dbg(("ire_add_mrtun: mrtun table is created\n")); 5378 } 5379 /* some other thread got it and created the table */ 5380 mutex_exit(&ire_mrtun_lock); 5381 } 5382 5383 /* 5384 * Check for duplicate in the bucket and insert in the table 5385 */ 5386 irb_ptr = &(ip_mrtun_table[IRE_ADDR_HASH(ire->ire_in_src_addr, 5387 IP_MRTUN_TABLE_SIZE)]); 5388 5389 /* 5390 * Start the atomic add of the ire. Grab the ill locks, 5391 * ill_g_usesrc_lock and the bucket lock. 5392 * 5393 * If ipif or ill is changing ire_atomic_start() may queue the 5394 * request and return EINPROGRESS. 5395 */ 5396 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5397 if (error != 0) { 5398 /* 5399 * We don't know whether it is a valid ipif or not. 5400 * So, set it to NULL. This assumes that the ire has not added 5401 * a reference to the ipif. 5402 */ 5403 ire->ire_ipif = NULL; 5404 ire_delete(ire); 5405 ip1dbg(("ire_add_mrtun: ire_atomic_start failed\n")); 5406 *ire_p = NULL; 5407 return (error); 5408 } 5409 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5410 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5411 continue; 5412 /* has anyone inserted the route in the meanwhile ? */ 5413 if (ire1->ire_in_ill == ire->ire_in_ill && 5414 ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5415 ip1dbg(("ire_add_mrtun: Duplicate entry exists\n")); 5416 IRE_REFHOLD(ire1); 5417 ire_atomic_end(irb_ptr, ire); 5418 ire_delete(ire); 5419 /* Return the old ire */ 5420 *ire_p = ire1; 5421 return (0); 5422 } 5423 } 5424 5425 /* Atomically set the ire_max_frag */ 5426 max_frag = *ire->ire_max_fragp; 5427 ire->ire_max_fragp = NULL; 5428 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5429 ASSERT(ire->ire_type != IRE_CACHE); 5430 irep = (ire_t **)irb_ptr; 5431 if (*irep != NULL) { 5432 /* Find the last ire which matches ire_in_src_addr */ 5433 ire1 = *irep; 5434 while (ire1->ire_in_src_addr == ire->ire_in_src_addr) { 5435 irep = &ire1->ire_next; 5436 ire1 = *irep; 5437 if (ire1 == NULL) 5438 break; 5439 } 5440 } 5441 ire1 = *irep; 5442 if (ire1 != NULL) 5443 ire1->ire_ptpn = &ire->ire_next; 5444 ire->ire_next = ire1; 5445 /* Link the new one in. */ 5446 ire->ire_ptpn = irep; 5447 membar_producer(); 5448 *irep = ire; 5449 ire->ire_bucket = irb_ptr; 5450 IRE_REFHOLD_LOCKED(ire); 5451 5452 ip2dbg(("ire_add_mrtun: created and linked ire %p\n", (void *)*irep)); 5453 5454 /* 5455 * Protect ire_mrtun_count and ill_mrtun_refcnt from 5456 * another thread trying to add ire in the table 5457 */ 5458 mutex_enter(&ire_mrtun_lock); 5459 ire_mrtun_count++; 5460 mutex_exit(&ire_mrtun_lock); 5461 /* 5462 * ill_mrtun_refcnt is protected by the ill_lock held via 5463 * ire_atomic_start 5464 */ 5465 ire->ire_in_ill->ill_mrtun_refcnt++; 5466 5467 if (ire->ire_ipif != NULL) { 5468 ire->ire_ipif->ipif_ire_cnt++; 5469 if (ire->ire_stq != NULL) { 5470 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5471 stq_ill->ill_ire_cnt++; 5472 } 5473 } else { 5474 ASSERT(ire->ire_stq == NULL); 5475 } 5476 5477 ire_atomic_end(irb_ptr, ire); 5478 ire_fastpath(ire); 5479 *ire_p = ire; 5480 return (0); 5481 } 5482 5483 5484 /* Walks down the mrtun table */ 5485 5486 void 5487 ire_walk_ill_mrtun(uint_t match_flags, uint_t ire_type, pfv_t func, void *arg, 5488 ill_t *ill) 5489 { 5490 irb_t *irb; 5491 ire_t *ire; 5492 int i; 5493 int ret; 5494 5495 ASSERT((!(match_flags & (MATCH_IRE_WQ | MATCH_IRE_ILL | 5496 MATCH_IRE_ILL_GROUP))) || (ill != NULL)); 5497 ASSERT(match_flags == 0 || ire_type == IRE_MIPRTUN); 5498 5499 mutex_enter(&ire_mrtun_lock); 5500 if (ire_mrtun_count == 0) { 5501 mutex_exit(&ire_mrtun_lock); 5502 return; 5503 } 5504 mutex_exit(&ire_mrtun_lock); 5505 5506 ip2dbg(("ire_walk_ill_mrtun:walking the reverse tunnel table \n")); 5507 for (i = 0; i < IP_MRTUN_TABLE_SIZE; i++) { 5508 5509 irb = &(ip_mrtun_table[i]); 5510 if (irb->irb_ire == NULL) 5511 continue; 5512 IRB_REFHOLD(irb); 5513 for (ire = irb->irb_ire; ire != NULL; 5514 ire = ire->ire_next) { 5515 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5516 if (match_flags != 0) { 5517 ret = ire_walk_ill_match( 5518 match_flags, ire_type, 5519 ire, ill, ALL_ZONES); 5520 } 5521 if (match_flags == 0 || ret) 5522 (*func)(ire, arg); 5523 } 5524 IRB_REFRELE(irb); 5525 } 5526 } 5527 5528 /* 5529 * Source interface based lookup routine (IPV4 only). 5530 * This routine is called only when RTA_SRCIFP bitflag is set 5531 * by routing socket while adding/deleting the route and it is 5532 * also called from ip_rput() when packets arrive from an interface 5533 * for which ill_srcif_ref_cnt is positive. This function is useful 5534 * when a packet coming from one interface must be forwarded to another 5535 * designated interface to reach the correct node. This function is also 5536 * called from ip_newroute when the link-layer address of an ire is resolved. 5537 * We need to make sure that ip_newroute searches for IRE_IF_RESOLVER type 5538 * ires--thus the ire_type parameter is needed. 5539 */ 5540 5541 ire_t * 5542 ire_srcif_table_lookup(ipaddr_t dst_addr, int ire_type, ipif_t *ipif, 5543 ill_t *in_ill, int flags) 5544 { 5545 irb_t *irb_ptr; 5546 ire_t *ire; 5547 irb_t *ire_srcif_table; 5548 5549 ASSERT(in_ill != NULL && !in_ill->ill_isv6); 5550 ASSERT(!(flags & (MATCH_IRE_ILL|MATCH_IRE_ILL_GROUP)) || 5551 (ipif != NULL && !ipif->ipif_isv6)); 5552 5553 /* 5554 * No need to lock the ill since it is refheld by the caller of this 5555 * function 5556 */ 5557 if (in_ill->ill_srcif_table == NULL) { 5558 return (NULL); 5559 } 5560 5561 if (!(flags & MATCH_IRE_TYPE)) { 5562 flags |= MATCH_IRE_TYPE; 5563 ire_type = IRE_INTERFACE; 5564 } 5565 ire_srcif_table = in_ill->ill_srcif_table; 5566 irb_ptr = &ire_srcif_table[IRE_ADDR_HASH(dst_addr, 5567 IP_SRCIF_TABLE_SIZE)]; 5568 rw_enter(&irb_ptr->irb_lock, RW_READER); 5569 for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) { 5570 if (ire->ire_marks & IRE_MARK_CONDEMNED) 5571 continue; 5572 if (ire_match_args(ire, dst_addr, ire->ire_mask, 0, 5573 ire_type, ipif, ire->ire_zoneid, 0, NULL, flags)) { 5574 IRE_REFHOLD(ire); 5575 rw_exit(&irb_ptr->irb_lock); 5576 return (ire); 5577 } 5578 } 5579 /* Not Found */ 5580 rw_exit(&irb_ptr->irb_lock); 5581 return (NULL); 5582 } 5583 5584 5585 /* 5586 * Adds the ire into the special routing table which is hanging off of 5587 * the src_ipif->ipif_ill. It also increments the refcnt in the ill. 5588 * The forward table contains only IRE_IF_RESOLVER, IRE_IF_NORESOLVER 5589 * i,e. IRE_INTERFACE entries. Originally the dlureq_mp field is NULL 5590 * for IRE_IF_RESOLVER entry because we do not have the dst_addr's 5591 * link-layer address at the time of addition. 5592 * Upon resolving the address from ARP, dlureq_mp field is updated with 5593 * proper information in ire_update_srcif_v4. 5594 */ 5595 static int 5596 ire_add_srcif_v4(ire_t **ire_p, queue_t *q, mblk_t *mp, ipsq_func_t func) 5597 { 5598 ire_t *ire1; 5599 irb_t *ire_srcifp_table = NULL; 5600 irb_t *irb_ptr = NULL; 5601 ire_t **irep; 5602 ire_t *ire; 5603 int flags; 5604 int i; 5605 ill_t *stq_ill; 5606 uint_t max_frag; 5607 int error = 0; 5608 5609 ire = *ire_p; 5610 ASSERT(ire->ire_in_ill != NULL); 5611 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5612 ASSERT(ire->ire_type == IRE_IF_NORESOLVER || 5613 ire->ire_type == IRE_IF_RESOLVER); 5614 5615 ire->ire_mask = IP_HOST_MASK; 5616 /* 5617 * Update ire_nce->nce_res_mp with NULL value upon creation; 5618 * first free the default res_mp created by ire_nce_init. 5619 */ 5620 freeb(ire->ire_nce->nce_res_mp); 5621 if (ire->ire_type == IRE_IF_RESOLVER) { 5622 /* 5623 * assign NULL now, it will be updated 5624 * with correct value upon returning from 5625 * ARP 5626 */ 5627 ire->ire_nce->nce_res_mp = NULL; 5628 } else { 5629 ire->ire_nce->nce_res_mp = ill_dlur_gen(NULL, 5630 ire->ire_ipif->ipif_ill->ill_phys_addr_length, 5631 ire->ire_ipif->ipif_ill->ill_sap, 5632 ire->ire_ipif->ipif_ill->ill_sap_length); 5633 } 5634 /* Make sure the address is properly masked. */ 5635 ire->ire_addr &= ire->ire_mask; 5636 5637 ASSERT(ire->ire_max_fragp != NULL); 5638 max_frag = *ire->ire_max_fragp; 5639 ire->ire_max_fragp = NULL; 5640 ire->ire_max_frag = MIN(max_frag, IP_MAXPACKET); 5641 5642 mutex_enter(&ire->ire_in_ill->ill_lock); 5643 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5644 /* create the incoming interface based table */ 5645 ire->ire_in_ill->ill_srcif_table = 5646 (irb_t *)kmem_zalloc(IP_SRCIF_TABLE_SIZE * 5647 sizeof (irb_t), KM_NOSLEEP); 5648 if (ire->ire_in_ill->ill_srcif_table == NULL) { 5649 ip1dbg(("ire_add_srcif_v4: Allocation fail\n")); 5650 mutex_exit(&ire->ire_in_ill->ill_lock); 5651 ire_delete(ire); 5652 *ire_p = NULL; 5653 return (ENOMEM); 5654 } 5655 ire_srcifp_table = ire->ire_in_ill->ill_srcif_table; 5656 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 5657 rw_init(&ire_srcifp_table[i].irb_lock, NULL, 5658 RW_DEFAULT, NULL); 5659 } 5660 ip2dbg(("ire_add_srcif_v4: table created for ill %p\n", 5661 (void *)ire->ire_in_ill)); 5662 } 5663 /* Check for duplicate and insert */ 5664 ASSERT(ire->ire_in_ill->ill_srcif_table != NULL); 5665 irb_ptr = 5666 &(ire->ire_in_ill->ill_srcif_table[IRE_ADDR_HASH(ire->ire_addr, 5667 IP_SRCIF_TABLE_SIZE)]); 5668 mutex_exit(&ire->ire_in_ill->ill_lock); 5669 flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW); 5670 flags |= MATCH_IRE_IPIF; 5671 5672 /* 5673 * Start the atomic add of the ire. Grab the ill locks, 5674 * ill_g_usesrc_lock and the bucket lock. 5675 * 5676 * If ipif or ill is changing ire_atomic_start() may queue the 5677 * request and return EINPROGRESS. 5678 */ 5679 error = ire_atomic_start(irb_ptr, ire, q, mp, func); 5680 if (error != 0) { 5681 /* 5682 * We don't know whether it is a valid ipif or not. 5683 * So, set it to NULL. This assumes that the ire has not added 5684 * a reference to the ipif. 5685 */ 5686 ire->ire_ipif = NULL; 5687 ire_delete(ire); 5688 ip1dbg(("ire_add_srcif_v4: ire_atomic_start failed\n")); 5689 *ire_p = NULL; 5690 return (error); 5691 } 5692 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) { 5693 if (ire1->ire_marks & IRE_MARK_CONDEMNED) 5694 continue; 5695 if (ire1->ire_zoneid != ire->ire_zoneid) 5696 continue; 5697 /* Has anyone inserted route in the meanwhile ? */ 5698 if (ire_match_args(ire1, ire->ire_addr, ire->ire_mask, 0, 5699 ire->ire_type, ire->ire_ipif, ire->ire_zoneid, 0, NULL, 5700 flags)) { 5701 ip1dbg(("ire_add_srcif_v4 : Duplicate entry exists\n")); 5702 IRE_REFHOLD(ire1); 5703 ire_atomic_end(irb_ptr, ire); 5704 ire_delete(ire); 5705 /* Return old ire as in ire_add_v4 */ 5706 *ire_p = ire1; 5707 return (0); 5708 } 5709 } 5710 irep = (ire_t **)irb_ptr; 5711 if (*irep != NULL) { 5712 /* Find the last ire which matches ire_addr */ 5713 ire1 = *irep; 5714 while (ire1->ire_addr == ire->ire_addr) { 5715 irep = &ire1->ire_next; 5716 ire1 = *irep; 5717 if (ire1 == NULL) 5718 break; 5719 } 5720 } 5721 ire1 = *irep; 5722 if (ire1 != NULL) 5723 ire1->ire_ptpn = &ire->ire_next; 5724 ire->ire_next = ire1; 5725 /* Link the new one in. */ 5726 ire->ire_ptpn = irep; 5727 membar_producer(); 5728 *irep = ire; 5729 ire->ire_bucket = irb_ptr; 5730 IRE_REFHOLD_LOCKED(ire); 5731 5732 /* 5733 * Protect ire_in_ill->ill_srcif_refcnt and table reference count. 5734 * Note, ire_atomic_start already grabs the ire_in_ill->ill_lock 5735 * so ill_srcif_refcnt is already protected. 5736 */ 5737 ire->ire_in_ill->ill_srcif_refcnt++; 5738 mutex_enter(&ire_srcif_table_lock); 5739 ire_srcif_table_count++; 5740 mutex_exit(&ire_srcif_table_lock); 5741 irb_ptr->irb_ire_cnt++; 5742 if (ire->ire_ipif != NULL) { 5743 ire->ire_ipif->ipif_ire_cnt++; 5744 if (ire->ire_stq != NULL) { 5745 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 5746 stq_ill->ill_ire_cnt++; 5747 } 5748 } else { 5749 ASSERT(ire->ire_stq == NULL); 5750 } 5751 5752 ire_atomic_end(irb_ptr, ire); 5753 *ire_p = ire; 5754 return (0); 5755 } 5756 5757 5758 /* 5759 * This function is called by ire_add_then_send when ARP request comes 5760 * back to ip_wput->ire_add_then_send for resolved ire in the interface 5761 * based routing table. At this point, it only needs to update the resolver 5762 * information for the ire. The passed ire is returned to the caller as it 5763 * is the ire which is created as mblk. 5764 */ 5765 5766 static ire_t * 5767 ire_update_srcif_v4(ire_t *ire) 5768 { 5769 ire_t *ire1; 5770 irb_t *irb; 5771 int error; 5772 5773 ASSERT(ire->ire_type != IRE_MIPRTUN && 5774 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER); 5775 ASSERT(ire->ire_ipversion == IPV4_VERSION); 5776 5777 /* 5778 * This ire is from ARP. Update 5779 * ire_nce->nce_res_mp info 5780 */ 5781 ire1 = ire_srcif_table_lookup(ire->ire_addr, 5782 IRE_IF_RESOLVER, ire->ire_ipif, 5783 ire->ire_in_ill, 5784 MATCH_IRE_ILL | MATCH_IRE_TYPE); 5785 if (ire1 == NULL) { 5786 /* Mobile node registration expired ? */ 5787 ire_delete(ire); 5788 return (NULL); 5789 } 5790 irb = ire1->ire_bucket; 5791 ASSERT(irb != NULL); 5792 /* 5793 * Start the atomic add of the ire. Grab the ill locks, 5794 * ill_g_usesrc_lock and the bucket lock. 5795 */ 5796 error = ire_atomic_start(irb, ire1, NULL, NULL, NULL); 5797 if (error != 0) { 5798 /* 5799 * We don't know whether it is a valid ipif or not. 5800 * So, set it to NULL. This assumes that the ire has not added 5801 * a reference to the ipif. 5802 */ 5803 ire->ire_ipif = NULL; 5804 ire_delete(ire); 5805 ip1dbg(("ire_update_srcif_v4: ire_atomic_start failed\n")); 5806 return (NULL); 5807 } 5808 ASSERT(ire->ire_max_fragp == NULL); 5809 ire->ire_max_frag = ire1->ire_max_frag; 5810 /* 5811 * Update resolver information and 5812 * send-to queue. 5813 */ 5814 ASSERT(ire->ire_nce->nce_res_mp != NULL); 5815 ire1->ire_nce->nce_res_mp = copyb(ire->ire_nce->nce_res_mp); 5816 if (ire1->ire_nce->nce_res_mp == NULL) { 5817 ip0dbg(("ire_update_srcif: copyb failed\n")); 5818 ire_refrele(ire1); 5819 ire_refrele(ire); 5820 ire_atomic_end(irb, ire1); 5821 return (NULL); 5822 } 5823 ire1->ire_stq = ire->ire_stq; 5824 5825 ASSERT(ire->ire_nce->nce_fp_mp == NULL); 5826 5827 ire_atomic_end(irb, ire1); 5828 ire_refrele(ire1); 5829 /* Return the passed ire */ 5830 return (ire); /* Update done */ 5831 } 5832 5833 5834 /* 5835 * Check if another multirt route resolution is needed. 5836 * B_TRUE is returned is there remain a resolvable route, 5837 * or if no route for that dst is resolved yet. 5838 * B_FALSE is returned if all routes for that dst are resolved 5839 * or if the remaining unresolved routes are actually not 5840 * resolvable. 5841 * This only works in the global zone. 5842 */ 5843 boolean_t 5844 ire_multirt_need_resolve(ipaddr_t dst, const ts_label_t *tsl) 5845 { 5846 ire_t *first_fire; 5847 ire_t *first_cire; 5848 ire_t *fire; 5849 ire_t *cire; 5850 irb_t *firb; 5851 irb_t *cirb; 5852 int unres_cnt = 0; 5853 boolean_t resolvable = B_FALSE; 5854 5855 /* Retrieve the first IRE_HOST that matches the destination */ 5856 first_fire = ire_ftable_lookup(dst, IP_HOST_MASK, 0, IRE_HOST, NULL, 5857 NULL, ALL_ZONES, 0, tsl, 5858 MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 5859 5860 /* No route at all */ 5861 if (first_fire == NULL) { 5862 return (B_TRUE); 5863 } 5864 5865 firb = first_fire->ire_bucket; 5866 ASSERT(firb != NULL); 5867 5868 /* Retrieve the first IRE_CACHE ire for that destination. */ 5869 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 5870 5871 /* No resolved route. */ 5872 if (first_cire == NULL) { 5873 ire_refrele(first_fire); 5874 return (B_TRUE); 5875 } 5876 5877 /* 5878 * At least one route is resolved. Here we look through the forward 5879 * and cache tables, to compare the number of declared routes 5880 * with the number of resolved routes. The search for a resolvable 5881 * route is performed only if at least one route remains 5882 * unresolved. 5883 */ 5884 cirb = first_cire->ire_bucket; 5885 ASSERT(cirb != NULL); 5886 5887 /* Count the number of routes to that dest that are declared. */ 5888 IRB_REFHOLD(firb); 5889 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 5890 if (!(fire->ire_flags & RTF_MULTIRT)) 5891 continue; 5892 if (fire->ire_addr != dst) 5893 continue; 5894 unres_cnt++; 5895 } 5896 IRB_REFRELE(firb); 5897 5898 /* Then subtract the number of routes to that dst that are resolved */ 5899 IRB_REFHOLD(cirb); 5900 for (cire = first_cire; cire != NULL; cire = cire->ire_next) { 5901 if (!(cire->ire_flags & RTF_MULTIRT)) 5902 continue; 5903 if (cire->ire_addr != dst) 5904 continue; 5905 if (cire->ire_marks & (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 5906 continue; 5907 unres_cnt--; 5908 } 5909 IRB_REFRELE(cirb); 5910 5911 /* At least one route is unresolved; search for a resolvable route. */ 5912 if (unres_cnt > 0) 5913 resolvable = ire_multirt_lookup(&first_cire, &first_fire, 5914 MULTIRT_USESTAMP | MULTIRT_CACHEGW, tsl); 5915 5916 if (first_fire != NULL) 5917 ire_refrele(first_fire); 5918 5919 if (first_cire != NULL) 5920 ire_refrele(first_cire); 5921 5922 return (resolvable); 5923 } 5924 5925 5926 /* 5927 * Explore a forward_table bucket, starting from fire_arg. 5928 * fire_arg MUST be an IRE_HOST entry. 5929 * 5930 * Return B_TRUE and update *ire_arg and *fire_arg 5931 * if at least one resolvable route is found. *ire_arg 5932 * is the IRE entry for *fire_arg's gateway. 5933 * 5934 * Return B_FALSE otherwise (all routes are resolved or 5935 * the remaining unresolved routes are all unresolvable). 5936 * 5937 * The IRE selection relies on a priority mechanism 5938 * driven by the flags passed in by the caller. 5939 * The caller, such as ip_newroute_ipif(), can get the most 5940 * relevant ire at each stage of a multiple route resolution. 5941 * 5942 * The rules are: 5943 * 5944 * - if MULTIRT_CACHEGW is specified in flags, IRE_CACHETABLE 5945 * ires are preferred for the gateway. This gives the highest 5946 * priority to routes that can be resolved without using 5947 * a resolver. 5948 * 5949 * - if MULTIRT_CACHEGW is not specified, or if MULTIRT_CACHEGW 5950 * is specified but no IRE_CACHETABLE ire entry for the gateway 5951 * is found, the following rules apply. 5952 * 5953 * - if MULTIRT_USESTAMP is specified in flags, IRE_INTERFACE 5954 * ires for the gateway, that have not been tried since 5955 * a configurable amount of time, are preferred. 5956 * This applies when a resolver must be invoked for 5957 * a missing route, but we don't want to use the resolver 5958 * upon each packet emission. If no such resolver is found, 5959 * B_FALSE is returned. 5960 * The MULTIRT_USESTAMP flag can be combined with 5961 * MULTIRT_CACHEGW. 5962 * 5963 * - if MULTIRT_USESTAMP is not specified in flags, the first 5964 * unresolved but resolvable route is selected. 5965 * 5966 * - Otherwise, there is no resolvalble route, and 5967 * B_FALSE is returned. 5968 * 5969 * At last, MULTIRT_SETSTAMP can be specified in flags to 5970 * request the timestamp of unresolvable routes to 5971 * be refreshed. This prevents the useless exploration 5972 * of those routes for a while, when MULTIRT_USESTAMP is used. 5973 * 5974 * This only works in the global zone. 5975 */ 5976 boolean_t 5977 ire_multirt_lookup(ire_t **ire_arg, ire_t **fire_arg, uint32_t flags, 5978 const ts_label_t *tsl) 5979 { 5980 clock_t delta; 5981 ire_t *best_fire = NULL; 5982 ire_t *best_cire = NULL; 5983 ire_t *first_fire; 5984 ire_t *first_cire; 5985 ire_t *fire; 5986 ire_t *cire; 5987 irb_t *firb = NULL; 5988 irb_t *cirb = NULL; 5989 ire_t *gw_ire; 5990 boolean_t already_resolved; 5991 boolean_t res; 5992 ipaddr_t dst; 5993 ipaddr_t gw; 5994 5995 ip2dbg(("ire_multirt_lookup: *ire_arg %p, *fire_arg %p, flags %04x\n", 5996 (void *)*ire_arg, (void *)*fire_arg, flags)); 5997 5998 ASSERT(ire_arg != NULL); 5999 ASSERT(fire_arg != NULL); 6000 6001 /* Not an IRE_HOST ire; give up. */ 6002 if ((*fire_arg == NULL) || ((*fire_arg)->ire_type != IRE_HOST)) { 6003 return (B_FALSE); 6004 } 6005 6006 /* This is the first IRE_HOST ire for that destination. */ 6007 first_fire = *fire_arg; 6008 firb = first_fire->ire_bucket; 6009 ASSERT(firb != NULL); 6010 6011 dst = first_fire->ire_addr; 6012 6013 ip2dbg(("ire_multirt_lookup: dst %08x\n", ntohl(dst))); 6014 6015 /* 6016 * Retrieve the first IRE_CACHE ire for that destination; 6017 * if we don't find one, no route for that dest is 6018 * resolved yet. 6019 */ 6020 first_cire = ire_cache_lookup(dst, GLOBAL_ZONEID, tsl); 6021 if (first_cire != NULL) { 6022 cirb = first_cire->ire_bucket; 6023 } 6024 6025 ip2dbg(("ire_multirt_lookup: first_cire %p\n", (void *)first_cire)); 6026 6027 /* 6028 * Search for a resolvable route, giving the top priority 6029 * to routes that can be resolved without any call to the resolver. 6030 */ 6031 IRB_REFHOLD(firb); 6032 6033 if (!CLASSD(dst)) { 6034 /* 6035 * For all multiroute IRE_HOST ires for that destination, 6036 * check if the route via the IRE_HOST's gateway is 6037 * resolved yet. 6038 */ 6039 for (fire = first_fire; fire != NULL; fire = fire->ire_next) { 6040 6041 if (!(fire->ire_flags & RTF_MULTIRT)) 6042 continue; 6043 if (fire->ire_addr != dst) 6044 continue; 6045 6046 if (fire->ire_gw_secattr != NULL && 6047 tsol_ire_match_gwattr(fire, tsl) != 0) { 6048 continue; 6049 } 6050 6051 gw = fire->ire_gateway_addr; 6052 6053 ip2dbg(("ire_multirt_lookup: fire %p, " 6054 "ire_addr %08x, ire_gateway_addr %08x\n", 6055 (void *)fire, ntohl(fire->ire_addr), ntohl(gw))); 6056 6057 already_resolved = B_FALSE; 6058 6059 if (first_cire != NULL) { 6060 ASSERT(cirb != NULL); 6061 6062 IRB_REFHOLD(cirb); 6063 /* 6064 * For all IRE_CACHE ires for that 6065 * destination. 6066 */ 6067 for (cire = first_cire; 6068 cire != NULL; 6069 cire = cire->ire_next) { 6070 6071 if (!(cire->ire_flags & RTF_MULTIRT)) 6072 continue; 6073 if (cire->ire_addr != dst) 6074 continue; 6075 if (cire->ire_marks & 6076 (IRE_MARK_CONDEMNED | 6077 IRE_MARK_HIDDEN)) 6078 continue; 6079 6080 if (cire->ire_gw_secattr != NULL && 6081 tsol_ire_match_gwattr(cire, 6082 tsl) != 0) { 6083 continue; 6084 } 6085 6086 /* 6087 * Check if the IRE_CACHE's gateway 6088 * matches the IRE_HOST's gateway. 6089 */ 6090 if (cire->ire_gateway_addr == gw) { 6091 already_resolved = B_TRUE; 6092 break; 6093 } 6094 } 6095 IRB_REFRELE(cirb); 6096 } 6097 6098 /* 6099 * This route is already resolved; 6100 * proceed with next one. 6101 */ 6102 if (already_resolved) { 6103 ip2dbg(("ire_multirt_lookup: found cire %p, " 6104 "already resolved\n", (void *)cire)); 6105 continue; 6106 } 6107 6108 /* 6109 * The route is unresolved; is it actually 6110 * resolvable, i.e. is there a cache or a resolver 6111 * for the gateway? 6112 */ 6113 gw_ire = ire_route_lookup(gw, 0, 0, 0, NULL, NULL, 6114 ALL_ZONES, tsl, 6115 MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); 6116 6117 ip2dbg(("ire_multirt_lookup: looked up gw_ire %p\n", 6118 (void *)gw_ire)); 6119 6120 /* 6121 * If gw_ire is typed IRE_CACHETABLE, 6122 * this route can be resolved without any call to the 6123 * resolver. If the MULTIRT_CACHEGW flag is set, 6124 * give the top priority to this ire and exit the 6125 * loop. 6126 * This is typically the case when an ARP reply 6127 * is processed through ip_wput_nondata(). 6128 */ 6129 if ((flags & MULTIRT_CACHEGW) && 6130 (gw_ire != NULL) && 6131 (gw_ire->ire_type & IRE_CACHETABLE)) { 6132 ASSERT(gw_ire->ire_nce == NULL || 6133 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6134 /* 6135 * Release the resolver associated to the 6136 * previous candidate best ire, if any. 6137 */ 6138 if (best_cire != NULL) { 6139 ire_refrele(best_cire); 6140 ASSERT(best_fire != NULL); 6141 } 6142 6143 best_fire = fire; 6144 best_cire = gw_ire; 6145 6146 ip2dbg(("ire_multirt_lookup: found top prio " 6147 "best_fire %p, best_cire %p\n", 6148 (void *)best_fire, (void *)best_cire)); 6149 break; 6150 } 6151 6152 /* 6153 * Compute the time elapsed since our preceding 6154 * attempt to resolve that route. 6155 * If the MULTIRT_USESTAMP flag is set, we take that 6156 * route into account only if this time interval 6157 * exceeds ip_multirt_resolution_interval; 6158 * this prevents us from attempting to resolve a 6159 * broken route upon each sending of a packet. 6160 */ 6161 delta = lbolt - fire->ire_last_used_time; 6162 delta = TICK_TO_MSEC(delta); 6163 6164 res = (boolean_t) 6165 ((delta > ip_multirt_resolution_interval) || 6166 (!(flags & MULTIRT_USESTAMP))); 6167 6168 ip2dbg(("ire_multirt_lookup: fire %p, delta %lu, " 6169 "res %d\n", 6170 (void *)fire, delta, res)); 6171 6172 if (res) { 6173 /* 6174 * We are here if MULTIRT_USESTAMP flag is set 6175 * and the resolver for fire's gateway 6176 * has not been tried since 6177 * ip_multirt_resolution_interval, or if 6178 * MULTIRT_USESTAMP is not set but gw_ire did 6179 * not fill the conditions for MULTIRT_CACHEGW, 6180 * or if neither MULTIRT_USESTAMP nor 6181 * MULTIRT_CACHEGW are set. 6182 */ 6183 if (gw_ire != NULL) { 6184 if (best_fire == NULL) { 6185 ASSERT(best_cire == NULL); 6186 6187 best_fire = fire; 6188 best_cire = gw_ire; 6189 6190 ip2dbg(("ire_multirt_lookup:" 6191 "found candidate " 6192 "best_fire %p, " 6193 "best_cire %p\n", 6194 (void *)best_fire, 6195 (void *)best_cire)); 6196 6197 /* 6198 * If MULTIRT_CACHEGW is not 6199 * set, we ignore the top 6200 * priority ires that can 6201 * be resolved without any 6202 * call to the resolver; 6203 * In that case, there is 6204 * actually no need 6205 * to continue the loop. 6206 */ 6207 if (!(flags & 6208 MULTIRT_CACHEGW)) { 6209 break; 6210 } 6211 continue; 6212 } 6213 } else { 6214 /* 6215 * No resolver for the gateway: the 6216 * route is not resolvable. 6217 * If the MULTIRT_SETSTAMP flag is 6218 * set, we stamp the IRE_HOST ire, 6219 * so we will not select it again 6220 * during this resolution interval. 6221 */ 6222 if (flags & MULTIRT_SETSTAMP) 6223 fire->ire_last_used_time = 6224 lbolt; 6225 } 6226 } 6227 6228 if (gw_ire != NULL) 6229 ire_refrele(gw_ire); 6230 } 6231 } else { /* CLASSD(dst) */ 6232 6233 for (fire = first_fire; 6234 fire != NULL; 6235 fire = fire->ire_next) { 6236 6237 if (!(fire->ire_flags & RTF_MULTIRT)) 6238 continue; 6239 if (fire->ire_addr != dst) 6240 continue; 6241 6242 if (fire->ire_gw_secattr != NULL && 6243 tsol_ire_match_gwattr(fire, tsl) != 0) { 6244 continue; 6245 } 6246 6247 already_resolved = B_FALSE; 6248 6249 gw = fire->ire_gateway_addr; 6250 6251 gw_ire = ire_ftable_lookup(gw, 0, 0, IRE_INTERFACE, 6252 NULL, NULL, ALL_ZONES, 0, tsl, 6253 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE | 6254 MATCH_IRE_SECATTR); 6255 6256 /* No resolver for the gateway; we skip this ire. */ 6257 if (gw_ire == NULL) { 6258 continue; 6259 } 6260 ASSERT(gw_ire->ire_nce == NULL || 6261 gw_ire->ire_nce->nce_state == ND_REACHABLE); 6262 6263 if (first_cire != NULL) { 6264 6265 IRB_REFHOLD(cirb); 6266 /* 6267 * For all IRE_CACHE ires for that 6268 * destination. 6269 */ 6270 for (cire = first_cire; 6271 cire != NULL; 6272 cire = cire->ire_next) { 6273 6274 if (!(cire->ire_flags & RTF_MULTIRT)) 6275 continue; 6276 if (cire->ire_addr != dst) 6277 continue; 6278 if (cire->ire_marks & 6279 (IRE_MARK_CONDEMNED | 6280 IRE_MARK_HIDDEN)) 6281 continue; 6282 6283 if (cire->ire_gw_secattr != NULL && 6284 tsol_ire_match_gwattr(cire, 6285 tsl) != 0) { 6286 continue; 6287 } 6288 6289 /* 6290 * Cache entries are linked to the 6291 * parent routes using the parent handle 6292 * (ire_phandle). If no cache entry has 6293 * the same handle as fire, fire is 6294 * still unresolved. 6295 */ 6296 ASSERT(cire->ire_phandle != 0); 6297 if (cire->ire_phandle == 6298 fire->ire_phandle) { 6299 already_resolved = B_TRUE; 6300 break; 6301 } 6302 } 6303 IRB_REFRELE(cirb); 6304 } 6305 6306 /* 6307 * This route is already resolved; proceed with 6308 * next one. 6309 */ 6310 if (already_resolved) { 6311 ire_refrele(gw_ire); 6312 continue; 6313 } 6314 6315 /* 6316 * Compute the time elapsed since our preceding 6317 * attempt to resolve that route. 6318 * If the MULTIRT_USESTAMP flag is set, we take 6319 * that route into account only if this time 6320 * interval exceeds ip_multirt_resolution_interval; 6321 * this prevents us from attempting to resolve a 6322 * broken route upon each sending of a packet. 6323 */ 6324 delta = lbolt - fire->ire_last_used_time; 6325 delta = TICK_TO_MSEC(delta); 6326 6327 res = (boolean_t) 6328 ((delta > ip_multirt_resolution_interval) || 6329 (!(flags & MULTIRT_USESTAMP))); 6330 6331 ip3dbg(("ire_multirt_lookup: fire %p, delta %lx, " 6332 "flags %04x, res %d\n", 6333 (void *)fire, delta, flags, res)); 6334 6335 if (res) { 6336 if (best_cire != NULL) { 6337 /* 6338 * Release the resolver associated 6339 * to the preceding candidate best 6340 * ire, if any. 6341 */ 6342 ire_refrele(best_cire); 6343 ASSERT(best_fire != NULL); 6344 } 6345 best_fire = fire; 6346 best_cire = gw_ire; 6347 continue; 6348 } 6349 6350 ire_refrele(gw_ire); 6351 } 6352 } 6353 6354 if (best_fire != NULL) { 6355 IRE_REFHOLD(best_fire); 6356 } 6357 IRB_REFRELE(firb); 6358 6359 /* Release the first IRE_CACHE we initially looked up, if any. */ 6360 if (first_cire != NULL) 6361 ire_refrele(first_cire); 6362 6363 /* Found a resolvable route. */ 6364 if (best_fire != NULL) { 6365 ASSERT(best_cire != NULL); 6366 6367 if (*fire_arg != NULL) 6368 ire_refrele(*fire_arg); 6369 if (*ire_arg != NULL) 6370 ire_refrele(*ire_arg); 6371 6372 /* 6373 * Update the passed-in arguments with the 6374 * resolvable multirt route we found. 6375 */ 6376 *fire_arg = best_fire; 6377 *ire_arg = best_cire; 6378 6379 ip2dbg(("ire_multirt_lookup: returning B_TRUE, " 6380 "*fire_arg %p, *ire_arg %p\n", 6381 (void *)best_fire, (void *)best_cire)); 6382 6383 return (B_TRUE); 6384 } 6385 6386 ASSERT(best_cire == NULL); 6387 6388 ip2dbg(("ire_multirt_lookup: returning B_FALSE, *fire_arg %p, " 6389 "*ire_arg %p\n", 6390 (void *)*fire_arg, (void *)*ire_arg)); 6391 6392 /* No resolvable route. */ 6393 return (B_FALSE); 6394 } 6395 6396 /* 6397 * The purpose of the next two functions is to provide some external access to 6398 * routing/l2 lookup functionality while hiding the implementation of routing 6399 * and interface data structures (IRE/ILL). Thus, interfaces are passed/ 6400 * returned by name instead of by ILL reference. These functions are used by 6401 * IP Filter. 6402 * Return a link layer header suitable for an IP packet being sent to the 6403 * dst_addr IP address. The interface associated with the route is put into 6404 * ifname, which must be a buffer of LIFNAMSIZ bytes. The dst_addr is the 6405 * packet's ultimate destination address, not a router address. 6406 * 6407 * This function is used when the caller wants to know the outbound interface 6408 * and MAC header for a packet given only the address. 6409 */ 6410 mblk_t * 6411 ip_nexthop_route(const struct sockaddr *target, char *ifname) 6412 { 6413 struct nce_s *nce; 6414 ire_t *dir; 6415 ill_t *ill; 6416 mblk_t *mp, *tmp_mp; 6417 6418 /* parameter sanity */ 6419 if (ifname == NULL || target == NULL) 6420 return (NULL); 6421 6422 /* Find the route entry, if it exists. */ 6423 switch (target->sa_family) { 6424 case AF_INET: 6425 dir = ire_route_lookup( 6426 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6427 0xffffffff, 6428 0, 0, NULL, NULL, ALL_ZONES, NULL, 6429 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6430 break; 6431 case AF_INET6: 6432 dir = ire_route_lookup_v6( 6433 &((struct sockaddr_in6 *)target)->sin6_addr, 6434 NULL, 6435 0, 0, NULL, NULL, ALL_ZONES, NULL, 6436 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE); 6437 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6438 ire_refrele(dir); 6439 dir = NULL; 6440 } 6441 break; 6442 default: 6443 dir = NULL; 6444 break; 6445 } 6446 6447 if (dir == NULL) { 6448 return (NULL); 6449 } 6450 6451 /* Map the IRE to an ILL so we can fill in ifname. */ 6452 ill = ire_to_ill(dir); 6453 if (ill == NULL) { 6454 ire_refrele(dir); 6455 return (NULL); 6456 } 6457 (void) strncpy(ifname, ill->ill_name, LIFNAMSIZ); 6458 6459 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6460 mp = copyb(ill->ill_resolver_mp); 6461 ire_refrele(dir); 6462 return (mp); 6463 } 6464 6465 /* Return a copy of the header to the caller. */ 6466 switch (target->sa_family) { 6467 case AF_INET : 6468 if (dir->ire_nce != NULL && 6469 dir->ire_nce->nce_state == ND_REACHABLE) { 6470 if (dir->ire_nce->nce_fp_mp != NULL) 6471 tmp_mp = dir->ire_nce->nce_fp_mp; 6472 else 6473 tmp_mp = dir->ire_nce->nce_fp_mp; 6474 if ((mp = dupb(tmp_mp)) == NULL) 6475 mp = copyb(tmp_mp); 6476 } else { 6477 mp = copyb(ill->ill_resolver_mp); 6478 } 6479 break; 6480 case AF_INET6 : 6481 nce = dir->ire_nce; 6482 if (nce->nce_fp_mp != NULL) { 6483 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6484 mp = copyb(nce->nce_fp_mp); 6485 } else if (nce->nce_res_mp != NULL) { 6486 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6487 mp = copyb(nce->nce_res_mp); 6488 } else { 6489 mp = NULL; 6490 } 6491 break; 6492 } 6493 6494 ire_refrele(dir); 6495 return (mp); 6496 } 6497 6498 6499 /* 6500 * Return a link layer header suitable for an IP packet being sent to the 6501 * dst_addr IP address on the specified output interface. The dst_addr 6502 * may be the packet's ultimate destination or a predetermined next hop 6503 * router's address. 6504 * ifname must be nul-terminated. 6505 * 6506 * This function is used when the caller knows the outbound interface (usually 6507 * because it was specified by policy) and only needs the MAC header for a 6508 * packet. 6509 */ 6510 mblk_t * 6511 ip_nexthop(const struct sockaddr *target, const char *ifname) 6512 { 6513 struct nce_s *nce; 6514 ill_walk_context_t ctx; 6515 t_uscalar_t sap; 6516 ire_t *dir; 6517 ill_t *ill; 6518 mblk_t *mp; 6519 6520 /* parameter sanity */ 6521 if (ifname == NULL || target == NULL) 6522 return (NULL); 6523 6524 switch (target->sa_family) { 6525 case AF_INET : 6526 sap = IP_DL_SAP; 6527 break; 6528 case AF_INET6 : 6529 sap = IP6_DL_SAP; 6530 break; 6531 default: 6532 return (NULL); 6533 } 6534 6535 /* Lock ill_g_lock before walking through the list */ 6536 rw_enter(&ill_g_lock, RW_READER); 6537 /* 6538 * Can we find the interface name among those currently configured? 6539 */ 6540 for (ill = ILL_START_WALK_ALL(&ctx); ill != NULL; 6541 ill = ill_next(&ctx, ill)) { 6542 if ((strcmp(ifname, ill->ill_name) == 0) && 6543 (ill->ill_sap == sap)) 6544 break; 6545 } 6546 if (ill == NULL || ill->ill_ipif == NULL) { 6547 rw_exit(&ill_g_lock); 6548 return (NULL); 6549 } 6550 6551 mutex_enter(&ill->ill_lock); 6552 if (!ILL_CAN_LOOKUP(ill)) { 6553 mutex_exit(&ill->ill_lock); 6554 rw_exit(&ill_g_lock); 6555 return (NULL); 6556 } 6557 ill_refhold_locked(ill); 6558 mutex_exit(&ill->ill_lock); 6559 rw_exit(&ill_g_lock); 6560 6561 /* Find the resolver entry, if it exists. */ 6562 switch (target->sa_family) { 6563 case AF_INET: 6564 dir = ire_route_lookup( 6565 ((struct sockaddr_in *)target)->sin_addr.s_addr, 6566 0xffffffff, 6567 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6568 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6569 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6570 if ((dir != NULL) && dir->ire_nce != NULL && 6571 dir->ire_nce->nce_state != ND_REACHABLE) { 6572 ire_refrele(dir); 6573 dir = NULL; 6574 } 6575 break; 6576 case AF_INET6: 6577 dir = ire_route_lookup_v6( 6578 &((struct sockaddr_in6 *)target)->sin6_addr, NULL, 6579 0, 0, ill->ill_ipif, NULL, ALL_ZONES, NULL, 6580 MATCH_IRE_DSTONLY|MATCH_IRE_DEFAULT| 6581 MATCH_IRE_RECURSIVE|MATCH_IRE_IPIF); 6582 if ((dir != NULL) && (dir->ire_nce == NULL)) { 6583 ire_refrele(dir); 6584 dir = NULL; 6585 } 6586 break; 6587 default: 6588 dir = NULL; 6589 break; 6590 } 6591 6592 if (dir == NULL) { 6593 return (NULL); 6594 } 6595 6596 if ((dir->ire_type & (IRE_CACHE|IRE_BROADCAST)) == 0) { 6597 mp = copyb(ill->ill_resolver_mp); 6598 ill_refrele(ill); 6599 ire_refrele(dir); 6600 return (mp); 6601 } 6602 6603 /* Return a copy of the header to the caller. */ 6604 switch (target->sa_family) { 6605 case AF_INET : 6606 if (dir->ire_nce->nce_fp_mp != NULL) { 6607 if ((mp = dupb(dir->ire_nce->nce_fp_mp)) == NULL) 6608 mp = copyb(dir->ire_nce->nce_fp_mp); 6609 } else if (dir->ire_nce->nce_res_mp != NULL) { 6610 if ((mp = dupb(dir->ire_nce->nce_res_mp)) == NULL) 6611 mp = copyb(dir->ire_nce->nce_res_mp); 6612 } else { 6613 mp = copyb(ill->ill_resolver_mp); 6614 } 6615 break; 6616 case AF_INET6 : 6617 nce = dir->ire_nce; 6618 if (nce->nce_fp_mp != NULL) { 6619 if ((mp = dupb(nce->nce_fp_mp)) == NULL) 6620 mp = copyb(nce->nce_fp_mp); 6621 } else if (nce->nce_res_mp != NULL) { 6622 if ((mp = dupb(nce->nce_res_mp)) == NULL) 6623 mp = copyb(nce->nce_res_mp); 6624 } else { 6625 mp = NULL; 6626 } 6627 break; 6628 } 6629 6630 ire_refrele(dir); 6631 ill_refrele(ill); 6632 return (mp); 6633 } 6634 6635 /* 6636 * IRE iterator for inbound and loopback broadcast processing. 6637 * Given an IRE_BROADCAST ire, walk the ires with the same destination 6638 * address, but skip over the passed-in ire. Returns the next ire without 6639 * a hold - assumes that the caller holds a reference on the IRE bucket. 6640 */ 6641 ire_t * 6642 ire_get_next_bcast_ire(ire_t *curr, ire_t *ire) 6643 { 6644 ill_t *ill; 6645 6646 if (curr == NULL) { 6647 for (curr = ire->ire_bucket->irb_ire; curr != NULL; 6648 curr = curr->ire_next) { 6649 if (curr->ire_addr == ire->ire_addr) 6650 break; 6651 } 6652 } else { 6653 curr = curr->ire_next; 6654 } 6655 ill = ire_to_ill(ire); 6656 for (; curr != NULL; curr = curr->ire_next) { 6657 if (curr->ire_addr != ire->ire_addr) { 6658 /* 6659 * All the IREs to a given destination are contiguous; 6660 * break out once the address doesn't match. 6661 */ 6662 break; 6663 } 6664 if (curr == ire) { 6665 /* skip over the passed-in ire */ 6666 continue; 6667 } 6668 if ((curr->ire_stq != NULL && ire->ire_stq == NULL) || 6669 (curr->ire_stq == NULL && ire->ire_stq != NULL)) { 6670 /* 6671 * If the passed-in ire is loopback, skip over 6672 * non-loopback ires and vice versa. 6673 */ 6674 continue; 6675 } 6676 if (ire_to_ill(curr) != ill) { 6677 /* skip over IREs going through a different interface */ 6678 continue; 6679 } 6680 if (curr->ire_marks & IRE_MARK_CONDEMNED) { 6681 /* skip over deleted IREs */ 6682 continue; 6683 } 6684 return (curr); 6685 } 6686 return (NULL); 6687 } 6688 6689 #ifdef IRE_DEBUG 6690 th_trace_t * 6691 th_trace_ire_lookup(ire_t *ire) 6692 { 6693 int bucket_id; 6694 th_trace_t *th_trace; 6695 6696 ASSERT(MUTEX_HELD(&ire->ire_lock)); 6697 6698 bucket_id = IP_TR_HASH(curthread); 6699 ASSERT(bucket_id < IP_TR_HASH_MAX); 6700 6701 for (th_trace = ire->ire_trace[bucket_id]; th_trace != NULL; 6702 th_trace = th_trace->th_next) { 6703 if (th_trace->th_id == curthread) 6704 return (th_trace); 6705 } 6706 return (NULL); 6707 } 6708 6709 void 6710 ire_trace_ref(ire_t *ire) 6711 { 6712 int bucket_id; 6713 th_trace_t *th_trace; 6714 6715 /* 6716 * Attempt to locate the trace buffer for the curthread. 6717 * If it does not exist, then allocate a new trace buffer 6718 * and link it in list of trace bufs for this ipif, at the head 6719 */ 6720 mutex_enter(&ire->ire_lock); 6721 if (ire->ire_trace_disable == B_TRUE) { 6722 mutex_exit(&ire->ire_lock); 6723 return; 6724 } 6725 th_trace = th_trace_ire_lookup(ire); 6726 if (th_trace == NULL) { 6727 bucket_id = IP_TR_HASH(curthread); 6728 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6729 KM_NOSLEEP); 6730 if (th_trace == NULL) { 6731 ire->ire_trace_disable = B_TRUE; 6732 mutex_exit(&ire->ire_lock); 6733 ire_trace_inactive(ire); 6734 return; 6735 } 6736 6737 th_trace->th_id = curthread; 6738 th_trace->th_next = ire->ire_trace[bucket_id]; 6739 th_trace->th_prev = &ire->ire_trace[bucket_id]; 6740 if (th_trace->th_next != NULL) 6741 th_trace->th_next->th_prev = &th_trace->th_next; 6742 ire->ire_trace[bucket_id] = th_trace; 6743 } 6744 ASSERT(th_trace->th_refcnt < TR_BUF_MAX - 1); 6745 th_trace->th_refcnt++; 6746 th_trace_rrecord(th_trace); 6747 mutex_exit(&ire->ire_lock); 6748 } 6749 6750 void 6751 ire_trace_free(th_trace_t *th_trace) 6752 { 6753 /* unlink th_trace and free it */ 6754 *th_trace->th_prev = th_trace->th_next; 6755 if (th_trace->th_next != NULL) 6756 th_trace->th_next->th_prev = th_trace->th_prev; 6757 th_trace->th_next = NULL; 6758 th_trace->th_prev = NULL; 6759 kmem_free(th_trace, sizeof (th_trace_t)); 6760 } 6761 6762 void 6763 ire_untrace_ref(ire_t *ire) 6764 { 6765 th_trace_t *th_trace; 6766 6767 mutex_enter(&ire->ire_lock); 6768 6769 if (ire->ire_trace_disable == B_TRUE) { 6770 mutex_exit(&ire->ire_lock); 6771 return; 6772 } 6773 6774 th_trace = th_trace_ire_lookup(ire); 6775 ASSERT(th_trace != NULL && th_trace->th_refcnt > 0); 6776 th_trace_rrecord(th_trace); 6777 th_trace->th_refcnt--; 6778 6779 if (th_trace->th_refcnt == 0) 6780 ire_trace_free(th_trace); 6781 6782 mutex_exit(&ire->ire_lock); 6783 } 6784 6785 static void 6786 ire_trace_inactive(ire_t *ire) 6787 { 6788 th_trace_t *th_trace; 6789 int i; 6790 6791 mutex_enter(&ire->ire_lock); 6792 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6793 while (ire->ire_trace[i] != NULL) { 6794 th_trace = ire->ire_trace[i]; 6795 6796 /* unlink th_trace and free it */ 6797 ire->ire_trace[i] = th_trace->th_next; 6798 if (th_trace->th_next != NULL) 6799 th_trace->th_next->th_prev = 6800 &ire->ire_trace[i]; 6801 6802 th_trace->th_next = NULL; 6803 th_trace->th_prev = NULL; 6804 kmem_free(th_trace, sizeof (th_trace_t)); 6805 } 6806 } 6807 6808 mutex_exit(&ire->ire_lock); 6809 } 6810 6811 /* ARGSUSED */ 6812 void 6813 ire_thread_exit(ire_t *ire, caddr_t arg) 6814 { 6815 th_trace_t *th_trace; 6816 6817 mutex_enter(&ire->ire_lock); 6818 th_trace = th_trace_ire_lookup(ire); 6819 if (th_trace == NULL) { 6820 mutex_exit(&ire->ire_lock); 6821 return; 6822 } 6823 ASSERT(th_trace->th_refcnt == 0); 6824 6825 ire_trace_free(th_trace); 6826 mutex_exit(&ire->ire_lock); 6827 } 6828 6829 #endif 6830 6831 /* 6832 * Generate a message chain with an arp request to resolve the in_ire. 6833 * It is assumed that in_ire itself is currently in the ire cache table, 6834 * so we create a fake_ire filled with enough information about ire_addr etc. 6835 * to retrieve in_ire when the DL_UNITDATA response from the resolver 6836 * comes back. The fake_ire itself is created by calling esballoc with 6837 * the fr_rtnp (free routine) set to ire_freemblk. This routine will be 6838 * invoked when the mblk containing fake_ire is freed. 6839 */ 6840 void 6841 ire_arpresolve(ire_t *in_ire, ill_t *dst_ill) 6842 { 6843 areq_t *areq; 6844 ipaddr_t *addrp; 6845 mblk_t *ire_mp, *dlureq_mp; 6846 ire_t *ire, *buf; 6847 size_t bufsize; 6848 frtn_t *frtnp; 6849 ill_t *ill; 6850 6851 /* 6852 * Construct message chain for the resolver 6853 * of the form: 6854 * ARP_REQ_MBLK-->IRE_MBLK 6855 * 6856 * NOTE : If the response does not 6857 * come back, ARP frees the packet. For this reason, 6858 * we can't REFHOLD the bucket of save_ire to prevent 6859 * deletions. We may not be able to REFRELE the bucket 6860 * if the response never comes back. Thus, before 6861 * adding the ire, ire_add_v4 will make sure that the 6862 * interface route does not get deleted. This is the 6863 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 6864 * where we can always prevent deletions because of 6865 * the synchronous nature of adding IRES i.e 6866 * ire_add_then_send is called after creating the IRE. 6867 */ 6868 6869 /* 6870 * We use esballoc to allocate the second part(the ire_t size mblk) 6871 * of the message chain depicted above. THis mblk will be freed 6872 * by arp when there is a timeout, and otherwise passed to IP 6873 * and IP will * free it after processing the ARP response. 6874 */ 6875 6876 bufsize = sizeof (ire_t) + sizeof (frtn_t); 6877 buf = kmem_alloc(bufsize, KM_NOSLEEP); 6878 if (buf == NULL) { 6879 ip1dbg(("ire_arpresolver:alloc buffer failed\n ")); 6880 return; 6881 } 6882 frtnp = (frtn_t *)(buf + 1); 6883 frtnp->free_arg = (caddr_t)buf; 6884 frtnp->free_func = ire_freemblk; 6885 6886 ire_mp = esballoc((unsigned char *)buf, bufsize, BPRI_MED, frtnp); 6887 6888 if (ire_mp == NULL) { 6889 ip1dbg(("ire_arpresolve: esballoc failed\n")); 6890 kmem_free(buf, bufsize); 6891 return; 6892 } 6893 ASSERT(in_ire->ire_nce != NULL); 6894 dlureq_mp = copyb(dst_ill->ill_resolver_mp); 6895 if (dlureq_mp == NULL) { 6896 kmem_free(buf, bufsize); 6897 return; 6898 } 6899 6900 ire_mp->b_datap->db_type = IRE_ARPRESOLVE_TYPE; 6901 ire = (ire_t *)buf; 6902 /* 6903 * keep enough info in the fake ire so that we can pull up 6904 * the incomplete ire (in_ire) after result comes back from 6905 * arp and make it complete. 6906 */ 6907 *ire = ire_null; 6908 ire->ire_u = in_ire->ire_u; 6909 ire->ire_ipif_seqid = in_ire->ire_ipif_seqid; 6910 ire->ire_ipif = in_ire->ire_ipif; 6911 ire->ire_stq = in_ire->ire_stq; 6912 ill = ire_to_ill(ire); 6913 ire->ire_stq_ifindex = ill->ill_phyint->phyint_ifindex; 6914 ire->ire_zoneid = in_ire->ire_zoneid; 6915 /* 6916 * ire_freemblk will be called when ire_mp is freed, both for 6917 * successful and failed arp resolution. IRE_MARK_UNCACHED will be set 6918 * when the arp resolution failed. 6919 */ 6920 ire->ire_marks |= IRE_MARK_UNCACHED; 6921 ire->ire_mp = ire_mp; 6922 ire_mp->b_wptr = (uchar_t *)&ire[1]; 6923 ire_mp->b_cont = NULL; 6924 ASSERT(dlureq_mp != NULL); 6925 linkb(dlureq_mp, ire_mp); 6926 6927 /* 6928 * Fill in the source and dest addrs for the resolver. 6929 * NOTE: this depends on memory layouts imposed by 6930 * ill_init(). 6931 */ 6932 areq = (areq_t *)dlureq_mp->b_rptr; 6933 addrp = (ipaddr_t *)((char *)areq + areq->areq_sender_addr_offset); 6934 *addrp = ire->ire_src_addr; 6935 6936 addrp = (ipaddr_t *)((char *)areq + areq->areq_target_addr_offset); 6937 if (ire->ire_gateway_addr != INADDR_ANY) { 6938 *addrp = ire->ire_gateway_addr; 6939 } else { 6940 *addrp = ire->ire_addr; 6941 } 6942 6943 /* Up to the resolver. */ 6944 if (canputnext(dst_ill->ill_rq)) { 6945 putnext(dst_ill->ill_rq, dlureq_mp); 6946 } else { 6947 /* Prepare for cleanup */ 6948 freemsg(dlureq_mp); 6949 } 6950 } 6951 6952 /* 6953 * Esballoc free function for AR_ENTRY_QUERY request to clean up any 6954 * unresolved ire_t and/or nce_t structures when ARP resolution fails. 6955 * 6956 * This function can be called by ARP via free routine for ire_mp or 6957 * by IPv4(both host and forwarding path) via ire_delete 6958 * in case ARP resolution fails. 6959 * NOTE: Since IP is MT, ARP can call into IP but not vice versa 6960 * (for IP to talk to ARP, it still has to send AR* messages). 6961 * 6962 * Note that the ARP/IP merge should replace the functioanlity by providing 6963 * direct function calls to clean up unresolved entries in ire/nce lists. 6964 */ 6965 void 6966 ire_freemblk(ire_t *ire_mp) 6967 { 6968 nce_t *nce = NULL; 6969 ill_t *ill; 6970 6971 ASSERT(ire_mp != NULL); 6972 6973 if ((ire_mp->ire_addr == NULL) && (ire_mp->ire_gateway_addr == NULL)) { 6974 ip1dbg(("ire_freemblk(0x%p) ire_addr is NULL\n", 6975 (void *)ire_mp)); 6976 goto cleanup; 6977 } 6978 if ((ire_mp->ire_marks & IRE_MARK_UNCACHED) == 0) { 6979 goto cleanup; /* everything succeeded. just free and return */ 6980 } 6981 6982 /* 6983 * the arp information corresponding to this ire_mp was not 6984 * transferred to a ire_cache entry. Need 6985 * to clean up incomplete ire's and nce, if necessary. 6986 */ 6987 ASSERT(ire_mp->ire_stq != NULL); 6988 ASSERT(ire_mp->ire_stq_ifindex != 0); 6989 /* 6990 * Get any nce's corresponding to this ire_mp. We first have to 6991 * make sure that the ill is still around. 6992 */ 6993 ill = ill_lookup_on_ifindex(ire_mp->ire_stq_ifindex, B_FALSE, 6994 NULL, NULL, NULL, NULL); 6995 if (ill == NULL || (ire_mp->ire_stq != ill->ill_wq) || 6996 (ill->ill_state_flags & ILL_CONDEMNED)) { 6997 /* 6998 * ill went away. no nce to clean up. 6999 * Note that the ill_state_flags could be set to 7000 * ILL_CONDEMNED after this point, but if we know 7001 * that it is CONDEMNED now, we just bail out quickly. 7002 */ 7003 if (ill != NULL) 7004 ill_refrele(ill); 7005 goto cleanup; 7006 } 7007 nce = ndp_lookup_v4(ill, 7008 ((ire_mp->ire_gateway_addr != INADDR_ANY) ? 7009 &ire_mp->ire_gateway_addr : &ire_mp->ire_addr), 7010 B_FALSE); 7011 ill_refrele(ill); 7012 7013 if ((nce != NULL) && (nce->nce_state != ND_REACHABLE)) { 7014 /* 7015 * some incomplete nce was found. 7016 */ 7017 DTRACE_PROBE2(ire__freemblk__arp__resolv__fail, 7018 nce_t *, nce, ire_t *, ire_mp); 7019 /* 7020 * Send the icmp_unreachable messages for the queued mblks in 7021 * ire->ire_nce->nce_qd_mp, since ARP resolution failed 7022 * for this ire 7023 */ 7024 arp_resolv_failed(nce); 7025 /* 7026 * Delete the nce and clean up all ire's pointing at this nce 7027 * in the cachetable 7028 */ 7029 ndp_delete(nce); 7030 } 7031 if (nce != NULL) 7032 NCE_REFRELE(nce); /* release the ref taken by ndp_lookup_v4 */ 7033 7034 cleanup: 7035 /* 7036 * Get rid of the ire buffer 7037 * We call kmem_free here(instead of ire_delete()), since 7038 * this is the freeb's callback. 7039 */ 7040 kmem_free(ire_mp, sizeof (ire_t) + sizeof (frtn_t)); 7041 } 7042 7043 7044 /* 7045 * create the neighbor cache entry nce_t for IRE_CACHE and 7046 * non-loopback IRE_BROADCAST ire's. Note that IRE_BROADCAST 7047 * (non-loopback) entries have the nce_res_mp set to the 7048 * template passed in (generated from ill_bcast_mp); IRE_CACHE ire's 7049 * contain the information for the nexthop (ire_gateway_addr) in the 7050 * case of indirect routes, and for the dst itself (ire_addr) in the 7051 * case of direct routes, with the nce_res_mp containing a template 7052 * DL_UNITDATA request. 7053 * 7054 * This function always consumes res_mp and fp_mp. 7055 * 7056 * The actual association of the ire_nce to the nce created here is 7057 * typically done in ire_add_v4 for IRE_CACHE entries. Exceptions 7058 * to this rule are SO_DONTROUTE ire's (IRE_MARK_NO_ADD), for which 7059 * the ire_nce assignment is done in ire_add_then_send, and mobile-ip 7060 * where the assignment is done in ire_add_mrtun(). 7061 */ 7062 int 7063 ire_nce_init(ire_t *ire, mblk_t *fp_mp, mblk_t *res_mp) 7064 { 7065 in_addr_t addr4, mask4; 7066 int err; 7067 nce_t *arpce = NULL; 7068 ill_t *ire_ill; 7069 uint16_t nce_state, nce_flags; 7070 7071 if (ire->ire_stq == NULL) { 7072 if (res_mp) 7073 freemsg(res_mp); 7074 if (fp_mp) 7075 freemsg(fp_mp); 7076 return (0); /* no need to create nce for local/loopback */ 7077 } 7078 7079 mask4 = IP_HOST_MASK; 7080 switch (ire->ire_type) { 7081 case IRE_CACHE: 7082 if (ire->ire_gateway_addr != INADDR_ANY) 7083 addr4 = ire->ire_gateway_addr; /* 'G' route */ 7084 else 7085 addr4 = ire->ire_addr; /* direct route */ 7086 break; 7087 case IRE_BROADCAST: 7088 addr4 = ire->ire_addr; 7089 break; 7090 default: 7091 if (res_mp) 7092 freemsg(res_mp); 7093 if (fp_mp) 7094 freemsg(fp_mp); 7095 return (0); 7096 } 7097 7098 /* 7099 * ire_ipif is picked based on RTF_SETSRC, usesrc etc. 7100 * rules in ire_forward_src_ipif. We want the dlureq_mp 7101 * for the outgoing interface, which we get from the ire_stq. 7102 */ 7103 ire_ill = ire_to_ill(ire); 7104 7105 /* 7106 * if we are creating an nce for the first time, and this is 7107 * a NORESOLVER interface, atomically create the nce in the 7108 * REACHABLE state; else create it in the ND_INITIAL state. 7109 */ 7110 if (ire_ill->ill_net_type == IRE_IF_NORESOLVER) { 7111 nce_state = ND_REACHABLE; 7112 nce_flags = NCE_F_PERMANENT; 7113 } else { 7114 if (fp_mp != NULL) 7115 nce_state = ND_REACHABLE; 7116 else 7117 nce_state = ND_INITIAL; 7118 nce_flags = 0; 7119 } 7120 7121 err = ndp_lookup_then_add(ire_ill, NULL, 7122 &addr4, &mask4, NULL, 0, nce_flags, nce_state, &arpce, 7123 fp_mp, res_mp); 7124 7125 ip1dbg(("ire 0x%p addr 0x%lx mask 0x%lx type 0x%x; " 7126 "found nce 0x%p err %d\n", (void *)ire, (ulong_t)addr4, 7127 (ulong_t)mask4, ire->ire_type, (void *)arpce, err)); 7128 7129 switch (err) { 7130 case 0: 7131 break; 7132 case EEXIST: 7133 /* 7134 * return a pointer to an existing nce_t; 7135 * note that the ire-nce mapping is many-one, i.e., 7136 * multiple ire's could point to the same nce_t; 7137 */ 7138 if (fp_mp != NULL) { 7139 freemsg(fp_mp); 7140 } 7141 if (res_mp != NULL) { 7142 freemsg(res_mp); 7143 } 7144 break; 7145 default: 7146 DTRACE_PROBE2(nce__init__fail, ill_t *, ire_ill, int, err); 7147 if (res_mp) 7148 freemsg(res_mp); 7149 if (fp_mp) 7150 freemsg(fp_mp); 7151 return (EINVAL); 7152 } 7153 #if DEBUG 7154 /* 7155 * if an nce_fp_mp was passed in, we should be picking up an 7156 * existing nce_t in the ND_REACHABLE state. 7157 */ 7158 mutex_enter(&arpce->nce_lock); 7159 ASSERT(arpce->nce_fp_mp == NULL || arpce->nce_state == ND_REACHABLE); 7160 mutex_exit(&arpce->nce_lock); 7161 #endif 7162 if (ire->ire_type == IRE_BROADCAST) { 7163 /* 7164 * Two bcast ires are created for each interface; 7165 * 1. loopback copy (which does not have an 7166 * ire_stq, and therefore has no ire_nce), and, 7167 * 2. the non-loopback copy, which has the nce_res_mp 7168 * initialized to a copy of the ill_bcast_mp, and 7169 * is marked as ND_REACHABLE at this point. 7170 * This nce does not undergo any further state changes, 7171 * and exists as long as the interface is plumbed. 7172 * Note: we do the ire_nce assignment here for IRE_BROADCAST 7173 * because some functions like ill_mark_bcast() inline the 7174 * ire_add functionality; 7175 */ 7176 mutex_enter(&arpce->nce_lock); 7177 arpce->nce_state = ND_REACHABLE; 7178 arpce->nce_flags |= NCE_F_PERMANENT; 7179 arpce->nce_last = TICK_TO_MSEC(lbolt64); 7180 ire->ire_nce = arpce; 7181 mutex_exit(&arpce->nce_lock); 7182 /* 7183 * We are associating this nce to the ire, 7184 * so change the nce ref taken in 7185 * ndp_lookup_then_add_v4() from 7186 * NCE_REFHOLD to NCE_REFHOLD_NOTR 7187 */ 7188 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 7189 } else { 7190 if (NCE_EXPIRED(arpce)) 7191 arpce = nce_reinit(arpce); 7192 if (arpce != NULL) { 7193 /* 7194 * We are not using this nce_t just yet so release 7195 * the ref taken in ndp_lookup_then_add_v4() 7196 */ 7197 NCE_REFRELE(arpce); 7198 } else { 7199 ip0dbg(("can't reinit arpce for ill 0x%p;\n", 7200 (void *)ire_ill)); 7201 } 7202 } 7203 return (0); 7204 } 7205