xref: /titanic_50/usr/src/uts/common/inet/ip/ip_if.c (revision ead1f93ee620d7580f7e53350fe5a884fc4f158a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>
91 
92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 
98 #include <sys/systeminfo.h>
99 #include <sys/bootconf.h>
100 
101 #include <sys/tsol/tndb.h>
102 #include <sys/tsol/tnet.h>
103 
104 /* The character which tells where the ill_name ends */
105 #define	IPIF_SEPARATOR_CHAR	':'
106 
107 /* IP ioctl function table entry */
108 typedef struct ipft_s {
109 	int	ipft_cmd;
110 	pfi_t	ipft_pfi;
111 	int	ipft_min_size;
112 	int	ipft_flags;
113 } ipft_t;
114 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
115 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
116 
117 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
118 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
119 		    char *value, caddr_t cp, cred_t *ioc_cr);
120 
121 static boolean_t ill_is_quiescent(ill_t *);
122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
123 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
124 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
125     mblk_t *mp, boolean_t need_up);
126 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
127     mblk_t *mp, boolean_t need_up);
128 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
129     queue_t *q, mblk_t *mp, boolean_t need_up);
130 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
131     mblk_t *mp);
132 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133     mblk_t *mp);
134 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
135     queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
137     int ioccmd, struct linkblk *li);
138 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
139 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
140 static void	ipsq_flush(ill_t *ill);
141 
142 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
143     queue_t *q, mblk_t *mp, boolean_t need_up);
144 static void	ipsq_delete(ipsq_t *);
145 
146 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
147     boolean_t initialize, boolean_t insert, int *errorp);
148 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
149 static void	ipif_delete_bcast_ires(ipif_t *ipif);
150 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
152 		    boolean_t isv6);
153 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
154 static void	ipif_free(ipif_t *ipif);
155 static void	ipif_free_tail(ipif_t *ipif);
156 static void	ipif_set_default(ipif_t *ipif);
157 static int	ipif_set_values(queue_t *q, mblk_t *mp,
158     char *interf_name, uint_t *ppa);
159 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
160     queue_t *q);
161 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
162     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
163     ip_stack_t *);
164 
165 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
166 static void	ill_delete_interface_type(ill_if_t *);
167 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
168 static void	ill_dl_down(ill_t *ill);
169 static void	ill_down(ill_t *ill);
170 static void	ill_down_ipifs(ill_t *, boolean_t);
171 static void	ill_free_mib(ill_t *ill);
172 static void	ill_glist_delete(ill_t *);
173 static void	ill_phyint_reinit(ill_t *ill);
174 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
175 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
176 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
177 
178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
182 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
183 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
184 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
185 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
186 static ip_v4mapinfo_func_t ip_mbcast_mapping;
187 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
188 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
189 static void	phyint_free(phyint_t *);
190 
191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
197     dl_capability_sub_t *);
198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
199 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
200 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
201 		    dl_capability_sub_t *);
202 static void	ill_capability_dld_enable(ill_t *);
203 static void	ill_capability_ack_thr(void *);
204 static void	ill_capability_lso_enable(ill_t *);
205 
206 static ill_t	*ill_prev_usesrc(ill_t *);
207 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
208 static void	ill_disband_usesrc_group(ill_t *);
209 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
210 
211 #ifdef DEBUG
212 static	void	ill_trace_cleanup(const ill_t *);
213 static	void	ipif_trace_cleanup(const ipif_t *);
214 #endif
215 
216 static	void	ill_dlpi_clear_deferred(ill_t *ill);
217 
218 /*
219  * if we go over the memory footprint limit more than once in this msec
220  * interval, we'll start pruning aggressively.
221  */
222 int ip_min_frag_prune_time = 0;
223 
224 static ipft_t	ip_ioctl_ftbl[] = {
225 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
226 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
227 		IPFT_F_NO_REPLY },
228 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
229 	{ 0 }
230 };
231 
232 /* Simple ICMP IP Header Template */
233 static ipha_t icmp_ipha = {
234 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
235 };
236 
237 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
238 
239 static ip_m_t   ip_m_tbl[] = {
240 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
241 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
242 	    ip_nodef_v6intfid },
243 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
244 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
245 	    ip_nodef_v6intfid },
246 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
247 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
248 	    ip_nodef_v6intfid },
249 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
250 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
251 	    ip_nodef_v6intfid },
252 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
253 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
254 	    ip_nodef_v6intfid },
255 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
256 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
257 	    ip_nodef_v6intfid },
258 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
259 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
260 	    ip_ipv4_v6destintfid },
261 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
262 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
263 	    ip_ipv6_v6destintfid },
264 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
265 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
266 	    ip_nodef_v6intfid },
267 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
268 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
269 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
270 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
271 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
272 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
273 	    ip_nodef_v6intfid }
274 };
275 
276 static ill_t	ill_null;		/* Empty ILL for init. */
277 char	ipif_loopback_name[] = "lo0";
278 static char *ipv4_forward_suffix = ":ip_forwarding";
279 static char *ipv6_forward_suffix = ":ip6_forwarding";
280 
281 /* These are used by all IP network modules. */
282 sin6_t	sin6_null;	/* Zero address for quick clears */
283 sin_t	sin_null;	/* Zero address for quick clears */
284 
285 /* When set search for unused ipif_seqid */
286 static ipif_t	ipif_zero;
287 
288 /*
289  * ppa arena is created after these many
290  * interfaces have been plumbed.
291  */
292 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
293 
294 /*
295  * Allocate per-interface mibs.
296  * Returns true if ok. False otherwise.
297  *  ipsq  may not yet be allocated (loopback case ).
298  */
299 static boolean_t
300 ill_allocate_mibs(ill_t *ill)
301 {
302 	/* Already allocated? */
303 	if (ill->ill_ip_mib != NULL) {
304 		if (ill->ill_isv6)
305 			ASSERT(ill->ill_icmp6_mib != NULL);
306 		return (B_TRUE);
307 	}
308 
309 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
310 	    KM_NOSLEEP);
311 	if (ill->ill_ip_mib == NULL) {
312 		return (B_FALSE);
313 	}
314 
315 	/* Setup static information */
316 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
317 	    sizeof (mib2_ipIfStatsEntry_t));
318 	if (ill->ill_isv6) {
319 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
320 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
321 		    sizeof (mib2_ipv6AddrEntry_t));
322 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
323 		    sizeof (mib2_ipv6RouteEntry_t));
324 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
325 		    sizeof (mib2_ipv6NetToMediaEntry_t));
326 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
327 		    sizeof (ipv6_member_t));
328 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
329 		    sizeof (ipv6_grpsrc_t));
330 	} else {
331 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
332 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
333 		    sizeof (mib2_ipAddrEntry_t));
334 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
335 		    sizeof (mib2_ipRouteEntry_t));
336 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
337 		    sizeof (mib2_ipNetToMediaEntry_t));
338 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
339 		    sizeof (ip_member_t));
340 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
341 		    sizeof (ip_grpsrc_t));
342 
343 		/*
344 		 * For a v4 ill, we are done at this point, because per ill
345 		 * icmp mibs are only used for v6.
346 		 */
347 		return (B_TRUE);
348 	}
349 
350 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
351 	    KM_NOSLEEP);
352 	if (ill->ill_icmp6_mib == NULL) {
353 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
354 		ill->ill_ip_mib = NULL;
355 		return (B_FALSE);
356 	}
357 	/* static icmp info */
358 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
359 	    sizeof (mib2_ipv6IfIcmpEntry_t);
360 	/*
361 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
362 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
363 	 * -> ill_phyint_reinit
364 	 */
365 	return (B_TRUE);
366 }
367 
368 /*
369  * Completely vaporize a lower level tap and all associated interfaces.
370  * ill_delete is called only out of ip_close when the device control
371  * stream is being closed.
372  */
373 void
374 ill_delete(ill_t *ill)
375 {
376 	ipif_t	*ipif;
377 	ill_t	*prev_ill;
378 	ip_stack_t	*ipst = ill->ill_ipst;
379 
380 	/*
381 	 * ill_delete may be forcibly entering the ipsq. The previous
382 	 * ioctl may not have completed and may need to be aborted.
383 	 * ipsq_flush takes care of it. If we don't need to enter the
384 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
385 	 * ill_delete_tail is sufficient.
386 	 */
387 	ipsq_flush(ill);
388 
389 	/*
390 	 * Nuke all interfaces.  ipif_free will take down the interface,
391 	 * remove it from the list, and free the data structure.
392 	 * Walk down the ipif list and remove the logical interfaces
393 	 * first before removing the main ipif. We can't unplumb
394 	 * zeroth interface first in the case of IPv6 as update_conn_ill
395 	 * -> ip_ll_multireq de-references ill_ipif for checking
396 	 * POINTOPOINT.
397 	 *
398 	 * If ill_ipif was not properly initialized (i.e low on memory),
399 	 * then no interfaces to clean up. In this case just clean up the
400 	 * ill.
401 	 */
402 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
403 		ipif_free(ipif);
404 
405 	/*
406 	 * clean out all the nce_t entries that depend on this
407 	 * ill for the ill_phys_addr.
408 	 */
409 	nce_flush(ill, B_TRUE);
410 
411 	/* Clean up msgs on pending upcalls for mrouted */
412 	reset_mrt_ill(ill);
413 
414 	update_conn_ill(ill, ipst);
415 
416 	/*
417 	 * Remove multicast references added as a result of calls to
418 	 * ip_join_allmulti().
419 	 */
420 	ip_purge_allmulti(ill);
421 
422 	/*
423 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
424 	 */
425 	if (IS_UNDER_IPMP(ill))
426 		ipmp_ill_leave_illgrp(ill);
427 
428 	/*
429 	 * ill_down will arrange to blow off any IRE's dependent on this
430 	 * ILL, and shut down fragmentation reassembly.
431 	 */
432 	ill_down(ill);
433 
434 	/* Let SCTP know, so that it can remove this from its list. */
435 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
436 
437 	/*
438 	 * Walk all CONNs that can have a reference on an ire or nce for this
439 	 * ill (we actually walk all that now have stale references).
440 	 */
441 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
442 
443 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
444 	if (ill->ill_isv6)
445 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
446 
447 	/*
448 	 * If an address on this ILL is being used as a source address then
449 	 * clear out the pointers in other ILLs that point to this ILL.
450 	 */
451 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
452 	if (ill->ill_usesrc_grp_next != NULL) {
453 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
454 			ill_disband_usesrc_group(ill);
455 		} else {	/* consumer of the usesrc ILL */
456 			prev_ill = ill_prev_usesrc(ill);
457 			prev_ill->ill_usesrc_grp_next =
458 			    ill->ill_usesrc_grp_next;
459 		}
460 	}
461 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
462 }
463 
464 static void
465 ipif_non_duplicate(ipif_t *ipif)
466 {
467 	ill_t *ill = ipif->ipif_ill;
468 	mutex_enter(&ill->ill_lock);
469 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
470 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
471 		ASSERT(ill->ill_ipif_dup_count > 0);
472 		ill->ill_ipif_dup_count--;
473 	}
474 	mutex_exit(&ill->ill_lock);
475 }
476 
477 /*
478  * ill_delete_tail is called from ip_modclose after all references
479  * to the closing ill are gone. The wait is done in ip_modclose
480  */
481 void
482 ill_delete_tail(ill_t *ill)
483 {
484 	mblk_t	**mpp;
485 	ipif_t	*ipif;
486 	ip_stack_t	*ipst = ill->ill_ipst;
487 
488 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
489 		ipif_non_duplicate(ipif);
490 		(void) ipif_down_tail(ipif);
491 	}
492 
493 	ASSERT(ill->ill_ipif_dup_count == 0);
494 
495 	/*
496 	 * If polling capability is enabled (which signifies direct
497 	 * upcall into IP and driver has ill saved as a handle),
498 	 * we need to make sure that unbind has completed before we
499 	 * let the ill disappear and driver no longer has any reference
500 	 * to this ill.
501 	 */
502 	mutex_enter(&ill->ill_lock);
503 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
504 		cv_wait(&ill->ill_cv, &ill->ill_lock);
505 	mutex_exit(&ill->ill_lock);
506 	ASSERT(!(ill->ill_capabilities &
507 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
508 
509 	if (ill->ill_net_type != IRE_LOOPBACK)
510 		qprocsoff(ill->ill_rq);
511 
512 	/*
513 	 * We do an ipsq_flush once again now. New messages could have
514 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
515 	 * could also have landed up if an ioctl thread had looked up
516 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
517 	 * enqueued the ioctl when we did the ipsq_flush last time.
518 	 */
519 	ipsq_flush(ill);
520 
521 	/*
522 	 * Free capabilities.
523 	 */
524 	if (ill->ill_hcksum_capab != NULL) {
525 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
526 		ill->ill_hcksum_capab = NULL;
527 	}
528 
529 	if (ill->ill_zerocopy_capab != NULL) {
530 		kmem_free(ill->ill_zerocopy_capab,
531 		    sizeof (ill_zerocopy_capab_t));
532 		ill->ill_zerocopy_capab = NULL;
533 	}
534 
535 	if (ill->ill_lso_capab != NULL) {
536 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
537 		ill->ill_lso_capab = NULL;
538 	}
539 
540 	if (ill->ill_dld_capab != NULL) {
541 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
542 		ill->ill_dld_capab = NULL;
543 	}
544 
545 	while (ill->ill_ipif != NULL)
546 		ipif_free_tail(ill->ill_ipif);
547 
548 	/*
549 	 * We have removed all references to ilm from conn and the ones joined
550 	 * within the kernel.
551 	 *
552 	 * We don't walk conns, mrts and ires because
553 	 *
554 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
555 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
556 	 *    ill references.
557 	 */
558 
559 	/*
560 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
561 	 * is safe to do because the illgrp has already been unlinked from the
562 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
563 	 */
564 	if (IS_IPMP(ill)) {
565 		ipmp_illgrp_destroy(ill->ill_grp);
566 		ill->ill_grp = NULL;
567 	}
568 
569 	/*
570 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
571 	 * could free the phyint. No more reference to the phyint after this
572 	 * point.
573 	 */
574 	(void) ill_glist_delete(ill);
575 
576 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
577 	if (ill->ill_ndd_name != NULL)
578 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
579 	rw_exit(&ipst->ips_ip_g_nd_lock);
580 
581 	if (ill->ill_frag_ptr != NULL) {
582 		uint_t count;
583 
584 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
585 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
586 		}
587 		mi_free(ill->ill_frag_ptr);
588 		ill->ill_frag_ptr = NULL;
589 		ill->ill_frag_hash_tbl = NULL;
590 	}
591 
592 	freemsg(ill->ill_nd_lla_mp);
593 	/* Free all retained control messages. */
594 	mpp = &ill->ill_first_mp_to_free;
595 	do {
596 		while (mpp[0]) {
597 			mblk_t  *mp;
598 			mblk_t  *mp1;
599 
600 			mp = mpp[0];
601 			mpp[0] = mp->b_next;
602 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
603 				mp1->b_next = NULL;
604 				mp1->b_prev = NULL;
605 			}
606 			freemsg(mp);
607 		}
608 	} while (mpp++ != &ill->ill_last_mp_to_free);
609 
610 	ill_free_mib(ill);
611 
612 #ifdef DEBUG
613 	ill_trace_cleanup(ill);
614 #endif
615 
616 	/* The default multicast interface might have changed */
617 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
618 
619 	/* Drop refcnt here */
620 	netstack_rele(ill->ill_ipst->ips_netstack);
621 	ill->ill_ipst = NULL;
622 }
623 
624 static void
625 ill_free_mib(ill_t *ill)
626 {
627 	ip_stack_t *ipst = ill->ill_ipst;
628 
629 	/*
630 	 * MIB statistics must not be lost, so when an interface
631 	 * goes away the counter values will be added to the global
632 	 * MIBs.
633 	 */
634 	if (ill->ill_ip_mib != NULL) {
635 		if (ill->ill_isv6) {
636 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
637 			    ill->ill_ip_mib);
638 		} else {
639 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
640 			    ill->ill_ip_mib);
641 		}
642 
643 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
644 		ill->ill_ip_mib = NULL;
645 	}
646 	if (ill->ill_icmp6_mib != NULL) {
647 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
648 		    ill->ill_icmp6_mib);
649 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
650 		ill->ill_icmp6_mib = NULL;
651 	}
652 }
653 
654 /*
655  * Concatenate together a physical address and a sap.
656  *
657  * Sap_lengths are interpreted as follows:
658  *   sap_length == 0	==>	no sap
659  *   sap_length > 0	==>	sap is at the head of the dlpi address
660  *   sap_length < 0	==>	sap is at the tail of the dlpi address
661  */
662 static void
663 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
664     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
665 {
666 	uint16_t sap_addr = (uint16_t)sap_src;
667 
668 	if (sap_length == 0) {
669 		if (phys_src == NULL)
670 			bzero(dst, phys_length);
671 		else
672 			bcopy(phys_src, dst, phys_length);
673 	} else if (sap_length < 0) {
674 		if (phys_src == NULL)
675 			bzero(dst, phys_length);
676 		else
677 			bcopy(phys_src, dst, phys_length);
678 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
679 	} else {
680 		bcopy(&sap_addr, dst, sizeof (sap_addr));
681 		if (phys_src == NULL)
682 			bzero((char *)dst + sap_length, phys_length);
683 		else
684 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
685 	}
686 }
687 
688 /*
689  * Generate a dl_unitdata_req mblk for the device and address given.
690  * addr_length is the length of the physical portion of the address.
691  * If addr is NULL include an all zero address of the specified length.
692  * TRUE? In any case, addr_length is taken to be the entire length of the
693  * dlpi address, including the absolute value of sap_length.
694  */
695 mblk_t *
696 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
697 		t_scalar_t sap_length)
698 {
699 	dl_unitdata_req_t *dlur;
700 	mblk_t	*mp;
701 	t_scalar_t	abs_sap_length;		/* absolute value */
702 
703 	abs_sap_length = ABS(sap_length);
704 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
705 	    DL_UNITDATA_REQ);
706 	if (mp == NULL)
707 		return (NULL);
708 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
709 	/* HACK: accomodate incompatible DLPI drivers */
710 	if (addr_length == 8)
711 		addr_length = 6;
712 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
713 	dlur->dl_dest_addr_offset = sizeof (*dlur);
714 	dlur->dl_priority.dl_min = 0;
715 	dlur->dl_priority.dl_max = 0;
716 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
717 	    (uchar_t *)&dlur[1]);
718 	return (mp);
719 }
720 
721 /*
722  * Add the pending mp to the list. There can be only 1 pending mp
723  * in the list. Any exclusive ioctl that needs to wait for a response
724  * from another module or driver needs to use this function to set
725  * the ipx_pending_mp to the ioctl mblk and wait for the response from
726  * the other module/driver. This is also used while waiting for the
727  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
728  */
729 boolean_t
730 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
731     int waitfor)
732 {
733 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
734 
735 	ASSERT(IAM_WRITER_IPIF(ipif));
736 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
737 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
738 	ASSERT(ipx->ipx_pending_mp == NULL);
739 	/*
740 	 * The caller may be using a different ipif than the one passed into
741 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
742 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
743 	 * that `ipx_current_ipif == ipif'.
744 	 */
745 	ASSERT(ipx->ipx_current_ipif != NULL);
746 
747 	/*
748 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
749 	 * driver.
750 	 */
751 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
752 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
753 	    (DB_TYPE(add_mp) == M_PCPROTO));
754 
755 	if (connp != NULL) {
756 		ASSERT(MUTEX_HELD(&connp->conn_lock));
757 		/*
758 		 * Return error if the conn has started closing. The conn
759 		 * could have finished cleaning up the pending mp list,
760 		 * If so we should not add another mp to the list negating
761 		 * the cleanup.
762 		 */
763 		if (connp->conn_state_flags & CONN_CLOSING)
764 			return (B_FALSE);
765 	}
766 	mutex_enter(&ipx->ipx_lock);
767 	ipx->ipx_pending_ipif = ipif;
768 	/*
769 	 * Note down the queue in b_queue. This will be returned by
770 	 * ipsq_pending_mp_get. Caller will then use these values to restart
771 	 * the processing
772 	 */
773 	add_mp->b_next = NULL;
774 	add_mp->b_queue = q;
775 	ipx->ipx_pending_mp = add_mp;
776 	ipx->ipx_waitfor = waitfor;
777 	mutex_exit(&ipx->ipx_lock);
778 
779 	if (connp != NULL)
780 		connp->conn_oper_pending_ill = ipif->ipif_ill;
781 
782 	return (B_TRUE);
783 }
784 
785 /*
786  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
787  * queued in the list.
788  */
789 mblk_t *
790 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
791 {
792 	mblk_t	*curr = NULL;
793 	ipxop_t	*ipx = ipsq->ipsq_xop;
794 
795 	*connpp = NULL;
796 	mutex_enter(&ipx->ipx_lock);
797 	if (ipx->ipx_pending_mp == NULL) {
798 		mutex_exit(&ipx->ipx_lock);
799 		return (NULL);
800 	}
801 
802 	/* There can be only 1 such excl message */
803 	curr = ipx->ipx_pending_mp;
804 	ASSERT(curr->b_next == NULL);
805 	ipx->ipx_pending_ipif = NULL;
806 	ipx->ipx_pending_mp = NULL;
807 	ipx->ipx_waitfor = 0;
808 	mutex_exit(&ipx->ipx_lock);
809 
810 	if (CONN_Q(curr->b_queue)) {
811 		/*
812 		 * This mp did a refhold on the conn, at the start of the ioctl.
813 		 * So we can safely return a pointer to the conn to the caller.
814 		 */
815 		*connpp = Q_TO_CONN(curr->b_queue);
816 	} else {
817 		*connpp = NULL;
818 	}
819 	curr->b_next = NULL;
820 	curr->b_prev = NULL;
821 	return (curr);
822 }
823 
824 /*
825  * Cleanup the ioctl mp queued in ipx_pending_mp
826  * - Called in the ill_delete path
827  * - Called in the M_ERROR or M_HANGUP path on the ill.
828  * - Called in the conn close path.
829  *
830  * Returns success on finding the pending mblk associated with the ioctl or
831  * exclusive operation in progress, failure otherwise.
832  */
833 boolean_t
834 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
835 {
836 	mblk_t	*mp;
837 	ipxop_t	*ipx;
838 	queue_t	*q;
839 	ipif_t	*ipif;
840 	int	cmd;
841 
842 	ASSERT(IAM_WRITER_ILL(ill));
843 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
844 
845 	mutex_enter(&ipx->ipx_lock);
846 	mp = ipx->ipx_pending_mp;
847 	if (connp != NULL) {
848 		if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
849 			/*
850 			 * Nothing to clean since the conn that is closing
851 			 * does not have a matching pending mblk in
852 			 * ipx_pending_mp.
853 			 */
854 			mutex_exit(&ipx->ipx_lock);
855 			return (B_FALSE);
856 		}
857 	} else {
858 		/*
859 		 * A non-zero ill_error signifies we are called in the
860 		 * M_ERROR or M_HANGUP path and we need to unconditionally
861 		 * abort any current ioctl and do the corresponding cleanup.
862 		 * A zero ill_error means we are in the ill_delete path and
863 		 * we do the cleanup only if there is a pending mp.
864 		 */
865 		if (mp == NULL && ill->ill_error == 0) {
866 			mutex_exit(&ipx->ipx_lock);
867 			return (B_FALSE);
868 		}
869 	}
870 
871 	/* Now remove from the ipx_pending_mp */
872 	ipx->ipx_pending_mp = NULL;
873 	ipif = ipx->ipx_pending_ipif;
874 	ipx->ipx_pending_ipif = NULL;
875 	ipx->ipx_waitfor = 0;
876 	ipx->ipx_current_ipif = NULL;
877 	cmd = ipx->ipx_current_ioctl;
878 	ipx->ipx_current_ioctl = 0;
879 	ipx->ipx_current_done = B_TRUE;
880 	mutex_exit(&ipx->ipx_lock);
881 
882 	if (mp == NULL)
883 		return (B_FALSE);
884 
885 	q = mp->b_queue;
886 	mp->b_next = NULL;
887 	mp->b_prev = NULL;
888 	mp->b_queue = NULL;
889 
890 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
891 		DTRACE_PROBE4(ipif__ioctl,
892 		    char *, "ipsq_pending_mp_cleanup",
893 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
894 		    ipif_t *, ipif);
895 		if (connp == NULL) {
896 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
897 		} else {
898 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
899 			mutex_enter(&ipif->ipif_ill->ill_lock);
900 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
901 			mutex_exit(&ipif->ipif_ill->ill_lock);
902 		}
903 	} else {
904 		inet_freemsg(mp);
905 	}
906 	return (B_TRUE);
907 }
908 
909 /*
910  * Called in the conn close path and ill delete path
911  */
912 static void
913 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
914 {
915 	ipsq_t	*ipsq;
916 	mblk_t	*prev;
917 	mblk_t	*curr;
918 	mblk_t	*next;
919 	queue_t	*wq, *rq = NULL;
920 	mblk_t	*tmp_list = NULL;
921 
922 	ASSERT(IAM_WRITER_ILL(ill));
923 	if (connp != NULL)
924 		wq = CONNP_TO_WQ(connp);
925 	else
926 		wq = ill->ill_wq;
927 
928 	/*
929 	 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
930 	 * against this here.
931 	 */
932 	if (wq != NULL)
933 		rq = RD(wq);
934 
935 	ipsq = ill->ill_phyint->phyint_ipsq;
936 	/*
937 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
938 	 * In the case of ioctl from a conn, there can be only 1 mp
939 	 * queued on the ipsq. If an ill is being unplumbed flush all
940 	 * the messages.
941 	 */
942 	mutex_enter(&ipsq->ipsq_lock);
943 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
944 	    curr = next) {
945 		next = curr->b_next;
946 		if (connp == NULL ||
947 		    (curr->b_queue == wq || curr->b_queue == rq)) {
948 			/* Unlink the mblk from the pending mp list */
949 			if (prev != NULL) {
950 				prev->b_next = curr->b_next;
951 			} else {
952 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
953 				ipsq->ipsq_xopq_mphead = curr->b_next;
954 			}
955 			if (ipsq->ipsq_xopq_mptail == curr)
956 				ipsq->ipsq_xopq_mptail = prev;
957 			/*
958 			 * Create a temporary list and release the ipsq lock
959 			 * New elements are added to the head of the tmp_list
960 			 */
961 			curr->b_next = tmp_list;
962 			tmp_list = curr;
963 		} else {
964 			prev = curr;
965 		}
966 	}
967 	mutex_exit(&ipsq->ipsq_lock);
968 
969 	while (tmp_list != NULL) {
970 		curr = tmp_list;
971 		tmp_list = curr->b_next;
972 		curr->b_next = NULL;
973 		curr->b_prev = NULL;
974 		curr->b_queue = NULL;
975 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
976 			DTRACE_PROBE4(ipif__ioctl,
977 			    char *, "ipsq_xopq_mp_cleanup",
978 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
979 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
980 			    CONN_CLOSE : NO_COPYOUT, NULL);
981 		} else {
982 			/*
983 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
984 			 * this can't be just inet_freemsg. we have to
985 			 * restart it otherwise the thread will be stuck.
986 			 */
987 			inet_freemsg(curr);
988 		}
989 	}
990 }
991 
992 /*
993  * This conn has started closing. Cleanup any pending ioctl from this conn.
994  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
995  */
996 void
997 conn_ioctl_cleanup(conn_t *connp)
998 {
999 	ipsq_t	*ipsq;
1000 	ill_t	*ill;
1001 	boolean_t refheld;
1002 
1003 	/*
1004 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1005 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1006 	 * started the mp could be present in ipx_pending_mp. Note that if
1007 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1008 	 * not yet queued anywhere. In this case, the conn close code will wait
1009 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
1010 	 * tcp_close will wait first until all ioctls have completed for this
1011 	 * conn.
1012 	 */
1013 	mutex_enter(&connp->conn_lock);
1014 	ill = connp->conn_oper_pending_ill;
1015 	if (ill == NULL) {
1016 		mutex_exit(&connp->conn_lock);
1017 		return;
1018 	}
1019 
1020 	/*
1021 	 * We may not be able to refhold the ill if the ill/ipif
1022 	 * is changing. But we need to make sure that the ill will
1023 	 * not vanish. So we just bump up the ill_waiter count.
1024 	 */
1025 	refheld = ill_waiter_inc(ill);
1026 	mutex_exit(&connp->conn_lock);
1027 	if (refheld) {
1028 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1029 			ill_waiter_dcr(ill);
1030 			/*
1031 			 * Check whether this ioctl has started and is
1032 			 * pending. If it is not found there then check
1033 			 * whether this ioctl has not even started and is in
1034 			 * the ipsq_xopq list.
1035 			 */
1036 			if (!ipsq_pending_mp_cleanup(ill, connp))
1037 				ipsq_xopq_mp_cleanup(ill, connp);
1038 			ipsq = ill->ill_phyint->phyint_ipsq;
1039 			ipsq_exit(ipsq);
1040 			return;
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * The ill is also closing and we could not bump up the
1046 	 * ill_waiter_count or we could not enter the ipsq. Leave
1047 	 * the cleanup to ill_delete
1048 	 */
1049 	mutex_enter(&connp->conn_lock);
1050 	while (connp->conn_oper_pending_ill != NULL)
1051 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1052 	mutex_exit(&connp->conn_lock);
1053 	if (refheld)
1054 		ill_waiter_dcr(ill);
1055 }
1056 
1057 /*
1058  * ipcl_walk function for cleaning up conn_*_ill fields.
1059  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1060  * conn_bound_if in place. We prefer dropping
1061  * packets instead of sending them out the wrong interface, or accepting
1062  * packets from the wrong ifindex.
1063  */
1064 static void
1065 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1066 {
1067 	ill_t	*ill = (ill_t *)arg;
1068 
1069 	mutex_enter(&connp->conn_lock);
1070 	if (connp->conn_dhcpinit_ill == ill) {
1071 		connp->conn_dhcpinit_ill = NULL;
1072 		ASSERT(ill->ill_dhcpinit != 0);
1073 		atomic_dec_32(&ill->ill_dhcpinit);
1074 		ill_set_inputfn(ill);
1075 	}
1076 	mutex_exit(&connp->conn_lock);
1077 }
1078 
1079 static int
1080 ill_down_ipifs_tail(ill_t *ill)
1081 {
1082 	ipif_t	*ipif;
1083 	int err;
1084 
1085 	ASSERT(IAM_WRITER_ILL(ill));
1086 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1087 		ipif_non_duplicate(ipif);
1088 		/*
1089 		 * ipif_down_tail will call arp_ll_down on the last ipif
1090 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1091 		 */
1092 		if ((err = ipif_down_tail(ipif)) != 0)
1093 			return (err);
1094 	}
1095 	return (0);
1096 }
1097 
1098 /* ARGSUSED */
1099 void
1100 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1101 {
1102 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1103 	(void) ill_down_ipifs_tail(q->q_ptr);
1104 	freemsg(mp);
1105 	ipsq_current_finish(ipsq);
1106 }
1107 
1108 /*
1109  * ill_down_start is called when we want to down this ill and bring it up again
1110  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1111  * all interfaces, but don't tear down any plumbing.
1112  */
1113 boolean_t
1114 ill_down_start(queue_t *q, mblk_t *mp)
1115 {
1116 	ill_t	*ill = q->q_ptr;
1117 	ipif_t	*ipif;
1118 
1119 	ASSERT(IAM_WRITER_ILL(ill));
1120 	mutex_enter(&ill->ill_lock);
1121 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
1122 	/* no more nce addition allowed */
1123 	mutex_exit(&ill->ill_lock);
1124 
1125 	/*
1126 	 * It is possible that some ioctl is already in progress while we
1127 	 * received the M_ERROR / M_HANGUP in which case, we need to abort
1128 	 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1129 	 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1130 	 * the in progress ioctl from ever completing.
1131 	 *
1132 	 * The thread that started the ioctl (if any) must have returned,
1133 	 * since we are now executing as writer. After the 2 calls below,
1134 	 * the state of the ipsq and the ill would reflect no trace of any
1135 	 * pending operation. Subsequently if there is any response to the
1136 	 * original ioctl from the driver, it would be discarded as an
1137 	 * unsolicited message from the driver.
1138 	 */
1139 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1140 	ill_dlpi_clear_deferred(ill);
1141 
1142 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1143 		(void) ipif_down(ipif, NULL, NULL);
1144 
1145 	ill_down(ill);
1146 
1147 	/*
1148 	 * Walk all CONNs that can have a reference on an ire or nce for this
1149 	 * ill (we actually walk all that now have stale references).
1150 	 */
1151 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1152 
1153 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1154 	if (ill->ill_isv6)
1155 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1156 
1157 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1158 
1159 	/*
1160 	 * Atomically test and add the pending mp if references are active.
1161 	 */
1162 	mutex_enter(&ill->ill_lock);
1163 	if (!ill_is_quiescent(ill)) {
1164 		/* call cannot fail since `conn_t *' argument is NULL */
1165 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1166 		    mp, ILL_DOWN);
1167 		mutex_exit(&ill->ill_lock);
1168 		return (B_FALSE);
1169 	}
1170 	mutex_exit(&ill->ill_lock);
1171 	return (B_TRUE);
1172 }
1173 
1174 static void
1175 ill_down(ill_t *ill)
1176 {
1177 	mblk_t	*mp;
1178 	ip_stack_t	*ipst = ill->ill_ipst;
1179 
1180 	/*
1181 	 * Blow off any IREs dependent on this ILL.
1182 	 * The caller needs to handle conn_ixa_cleanup
1183 	 */
1184 	ill_delete_ires(ill);
1185 
1186 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1187 
1188 	/* Remove any conn_*_ill depending on this ill */
1189 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1190 
1191 	/*
1192 	 * Free state for additional IREs.
1193 	 */
1194 	mutex_enter(&ill->ill_saved_ire_lock);
1195 	mp = ill->ill_saved_ire_mp;
1196 	ill->ill_saved_ire_mp = NULL;
1197 	ill->ill_saved_ire_cnt = 0;
1198 	mutex_exit(&ill->ill_saved_ire_lock);
1199 	freemsg(mp);
1200 }
1201 
1202 /*
1203  * ire_walk routine used to delete every IRE that depends on
1204  * 'ill'.  (Always called as writer, and may only be called from ire_walk.)
1205  *
1206  * Note: since the routes added by the kernel are deleted separately,
1207  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1208  *
1209  * We also remove references on ire_nce_cache entries that refer to the ill.
1210  */
1211 void
1212 ill_downi(ire_t *ire, char *ill_arg)
1213 {
1214 	ill_t	*ill = (ill_t *)ill_arg;
1215 	nce_t	*nce;
1216 
1217 	mutex_enter(&ire->ire_lock);
1218 	nce = ire->ire_nce_cache;
1219 	if (nce != NULL && nce->nce_ill == ill)
1220 		ire->ire_nce_cache = NULL;
1221 	else
1222 		nce = NULL;
1223 	mutex_exit(&ire->ire_lock);
1224 	if (nce != NULL)
1225 		nce_refrele(nce);
1226 	if (ire->ire_ill == ill) {
1227 		/*
1228 		 * The existing interface binding for ire must be
1229 		 * deleted before trying to bind the route to another
1230 		 * interface. However, since we are using the contents of the
1231 		 * ire after ire_delete, the caller has to ensure that
1232 		 * CONDEMNED (deleted) ire's are not removed from the list
1233 		 * when ire_delete() returns. Currently ill_downi() is
1234 		 * only called as part of ire_walk*() routines, so that
1235 		 * the irb_refhold() done by ire_walk*() will ensure that
1236 		 * ire_delete() does not lead to ire_inactive().
1237 		 */
1238 		ASSERT(ire->ire_bucket->irb_refcnt > 0);
1239 		ire_delete(ire);
1240 		if (ire->ire_unbound)
1241 			ire_rebind(ire);
1242 	}
1243 }
1244 
1245 /* Remove IRE_IF_CLONE on this ill */
1246 void
1247 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1248 {
1249 	ill_t	*ill = (ill_t *)ill_arg;
1250 
1251 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1252 	if (ire->ire_ill == ill)
1253 		ire_delete(ire);
1254 }
1255 
1256 /* Consume an M_IOCACK of the fastpath probe. */
1257 void
1258 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1259 {
1260 	mblk_t	*mp1 = mp;
1261 
1262 	/*
1263 	 * If this was the first attempt turn on the fastpath probing.
1264 	 */
1265 	mutex_enter(&ill->ill_lock);
1266 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1267 		ill->ill_dlpi_fastpath_state = IDS_OK;
1268 	mutex_exit(&ill->ill_lock);
1269 
1270 	/* Free the M_IOCACK mblk, hold on to the data */
1271 	mp = mp->b_cont;
1272 	freeb(mp1);
1273 	if (mp == NULL)
1274 		return;
1275 	if (mp->b_cont != NULL)
1276 		nce_fastpath_update(ill, mp);
1277 	else
1278 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1279 	freemsg(mp);
1280 }
1281 
1282 /*
1283  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1284  * The data portion of the request is a dl_unitdata_req_t template for
1285  * what we would send downstream in the absence of a fastpath confirmation.
1286  */
1287 int
1288 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1289 {
1290 	struct iocblk	*ioc;
1291 	mblk_t	*mp;
1292 
1293 	if (dlur_mp == NULL)
1294 		return (EINVAL);
1295 
1296 	mutex_enter(&ill->ill_lock);
1297 	switch (ill->ill_dlpi_fastpath_state) {
1298 	case IDS_FAILED:
1299 		/*
1300 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1301 		 * support it.
1302 		 */
1303 		mutex_exit(&ill->ill_lock);
1304 		return (ENOTSUP);
1305 	case IDS_UNKNOWN:
1306 		/* This is the first probe */
1307 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1308 		break;
1309 	default:
1310 		break;
1311 	}
1312 	mutex_exit(&ill->ill_lock);
1313 
1314 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1315 		return (EAGAIN);
1316 
1317 	mp->b_cont = copyb(dlur_mp);
1318 	if (mp->b_cont == NULL) {
1319 		freeb(mp);
1320 		return (EAGAIN);
1321 	}
1322 
1323 	ioc = (struct iocblk *)mp->b_rptr;
1324 	ioc->ioc_count = msgdsize(mp->b_cont);
1325 
1326 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1327 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1328 	putnext(ill->ill_wq, mp);
1329 	return (0);
1330 }
1331 
1332 void
1333 ill_capability_probe(ill_t *ill)
1334 {
1335 	mblk_t	*mp;
1336 
1337 	ASSERT(IAM_WRITER_ILL(ill));
1338 
1339 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1340 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1341 		return;
1342 
1343 	/*
1344 	 * We are starting a new cycle of capability negotiation.
1345 	 * Free up the capab reset messages of any previous incarnation.
1346 	 * We will do a fresh allocation when we get the response to our probe
1347 	 */
1348 	if (ill->ill_capab_reset_mp != NULL) {
1349 		freemsg(ill->ill_capab_reset_mp);
1350 		ill->ill_capab_reset_mp = NULL;
1351 	}
1352 
1353 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1354 
1355 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1356 	if (mp == NULL)
1357 		return;
1358 
1359 	ill_capability_send(ill, mp);
1360 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1361 }
1362 
1363 void
1364 ill_capability_reset(ill_t *ill, boolean_t reneg)
1365 {
1366 	ASSERT(IAM_WRITER_ILL(ill));
1367 
1368 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1369 		return;
1370 
1371 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1372 
1373 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1374 	ill->ill_capab_reset_mp = NULL;
1375 	/*
1376 	 * We turn off all capabilities except those pertaining to
1377 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1378 	 * which will be turned off by the corresponding reset functions.
1379 	 */
1380 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1381 }
1382 
1383 static void
1384 ill_capability_reset_alloc(ill_t *ill)
1385 {
1386 	mblk_t *mp;
1387 	size_t	size = 0;
1388 	int	err;
1389 	dl_capability_req_t	*capb;
1390 
1391 	ASSERT(IAM_WRITER_ILL(ill));
1392 	ASSERT(ill->ill_capab_reset_mp == NULL);
1393 
1394 	if (ILL_HCKSUM_CAPABLE(ill)) {
1395 		size += sizeof (dl_capability_sub_t) +
1396 		    sizeof (dl_capab_hcksum_t);
1397 	}
1398 
1399 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1400 		size += sizeof (dl_capability_sub_t) +
1401 		    sizeof (dl_capab_zerocopy_t);
1402 	}
1403 
1404 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1405 		size += sizeof (dl_capability_sub_t) +
1406 		    sizeof (dl_capab_dld_t);
1407 	}
1408 
1409 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1410 	    STR_NOSIG, &err);
1411 
1412 	mp->b_datap->db_type = M_PROTO;
1413 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1414 
1415 	capb = (dl_capability_req_t *)mp->b_rptr;
1416 	capb->dl_primitive = DL_CAPABILITY_REQ;
1417 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1418 	capb->dl_sub_length = size;
1419 
1420 	mp->b_wptr += sizeof (dl_capability_req_t);
1421 
1422 	/*
1423 	 * Each handler fills in the corresponding dl_capability_sub_t
1424 	 * inside the mblk,
1425 	 */
1426 	ill_capability_hcksum_reset_fill(ill, mp);
1427 	ill_capability_zerocopy_reset_fill(ill, mp);
1428 	ill_capability_dld_reset_fill(ill, mp);
1429 
1430 	ill->ill_capab_reset_mp = mp;
1431 }
1432 
1433 static void
1434 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1435 {
1436 	dl_capab_id_t *id_ic;
1437 	uint_t sub_dl_cap = outers->dl_cap;
1438 	dl_capability_sub_t *inners;
1439 	uint8_t *capend;
1440 
1441 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1442 
1443 	/*
1444 	 * Note: range checks here are not absolutely sufficient to
1445 	 * make us robust against malformed messages sent by drivers;
1446 	 * this is in keeping with the rest of IP's dlpi handling.
1447 	 * (Remember, it's coming from something else in the kernel
1448 	 * address space)
1449 	 */
1450 
1451 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1452 	if (capend > mp->b_wptr) {
1453 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1454 		    "malformed sub-capability too long for mblk");
1455 		return;
1456 	}
1457 
1458 	id_ic = (dl_capab_id_t *)(outers + 1);
1459 
1460 	if (outers->dl_length < sizeof (*id_ic) ||
1461 	    (inners = &id_ic->id_subcap,
1462 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1463 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1464 		    "encapsulated capab type %d too long for mblk",
1465 		    inners->dl_cap);
1466 		return;
1467 	}
1468 
1469 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1470 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1471 		    "isn't as expected; pass-thru module(s) detected, "
1472 		    "discarding capability\n", inners->dl_cap));
1473 		return;
1474 	}
1475 
1476 	/* Process the encapsulated sub-capability */
1477 	ill_capability_dispatch(ill, mp, inners);
1478 }
1479 
1480 static void
1481 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1482 {
1483 	dl_capability_sub_t *dl_subcap;
1484 
1485 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1486 		return;
1487 
1488 	/*
1489 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1490 	 * initialized below since it is not used by DLD.
1491 	 */
1492 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1493 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1494 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1495 
1496 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1497 }
1498 
1499 static void
1500 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1501 {
1502 	/*
1503 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1504 	 * is only to get the VRRP capability.
1505 	 *
1506 	 * Note that we cannot check ill_ipif_up_count here since
1507 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1508 	 * That is done asynchronously, and can race with this function.
1509 	 */
1510 	if (!ill->ill_dl_up) {
1511 		if (subp->dl_cap == DL_CAPAB_VRRP)
1512 			ill_capability_vrrp_ack(ill, mp, subp);
1513 		return;
1514 	}
1515 
1516 	switch (subp->dl_cap) {
1517 	case DL_CAPAB_HCKSUM:
1518 		ill_capability_hcksum_ack(ill, mp, subp);
1519 		break;
1520 	case DL_CAPAB_ZEROCOPY:
1521 		ill_capability_zerocopy_ack(ill, mp, subp);
1522 		break;
1523 	case DL_CAPAB_DLD:
1524 		ill_capability_dld_ack(ill, mp, subp);
1525 		break;
1526 	case DL_CAPAB_VRRP:
1527 		break;
1528 	default:
1529 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1530 		    subp->dl_cap));
1531 	}
1532 }
1533 
1534 /*
1535  * Process the vrrp capability received from a DLS Provider. isub must point
1536  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1537  */
1538 static void
1539 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1540 {
1541 	dl_capab_vrrp_t	*vrrp;
1542 	uint_t		sub_dl_cap = isub->dl_cap;
1543 	uint8_t		*capend;
1544 
1545 	ASSERT(IAM_WRITER_ILL(ill));
1546 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1547 
1548 	/*
1549 	 * Note: range checks here are not absolutely sufficient to
1550 	 * make us robust against malformed messages sent by drivers;
1551 	 * this is in keeping with the rest of IP's dlpi handling.
1552 	 * (Remember, it's coming from something else in the kernel
1553 	 * address space)
1554 	 */
1555 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1556 	if (capend > mp->b_wptr) {
1557 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1558 		    "malformed sub-capability too long for mblk");
1559 		return;
1560 	}
1561 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1562 
1563 	/*
1564 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1565 	 */
1566 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1567 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1568 		ill->ill_flags |= ILLF_VRRP;
1569 	}
1570 }
1571 
1572 /*
1573  * Process a hardware checksum offload capability negotiation ack received
1574  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1575  * of a DL_CAPABILITY_ACK message.
1576  */
1577 static void
1578 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1579 {
1580 	dl_capability_req_t	*ocap;
1581 	dl_capab_hcksum_t	*ihck, *ohck;
1582 	ill_hcksum_capab_t	**ill_hcksum;
1583 	mblk_t			*nmp = NULL;
1584 	uint_t			sub_dl_cap = isub->dl_cap;
1585 	uint8_t			*capend;
1586 
1587 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1588 
1589 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1590 
1591 	/*
1592 	 * Note: range checks here are not absolutely sufficient to
1593 	 * make us robust against malformed messages sent by drivers;
1594 	 * this is in keeping with the rest of IP's dlpi handling.
1595 	 * (Remember, it's coming from something else in the kernel
1596 	 * address space)
1597 	 */
1598 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1599 	if (capend > mp->b_wptr) {
1600 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1601 		    "malformed sub-capability too long for mblk");
1602 		return;
1603 	}
1604 
1605 	/*
1606 	 * There are two types of acks we process here:
1607 	 * 1. acks in reply to a (first form) generic capability req
1608 	 *    (no ENABLE flag set)
1609 	 * 2. acks in reply to a ENABLE capability req.
1610 	 *    (ENABLE flag set)
1611 	 */
1612 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1613 
1614 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1615 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1616 		    "unsupported hardware checksum "
1617 		    "sub-capability (version %d, expected %d)",
1618 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1619 		return;
1620 	}
1621 
1622 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1623 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1624 		    "checksum capability isn't as expected; pass-thru "
1625 		    "module(s) detected, discarding capability\n"));
1626 		return;
1627 	}
1628 
1629 #define	CURR_HCKSUM_CAPAB				\
1630 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1631 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1632 
1633 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1634 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1635 		/* do ENABLE processing */
1636 		if (*ill_hcksum == NULL) {
1637 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1638 			    KM_NOSLEEP);
1639 
1640 			if (*ill_hcksum == NULL) {
1641 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1642 				    "could not enable hcksum version %d "
1643 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1644 				    ill->ill_name);
1645 				return;
1646 			}
1647 		}
1648 
1649 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1650 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1651 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1652 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1653 		    "has enabled hardware checksumming\n ",
1654 		    ill->ill_name));
1655 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1656 		/*
1657 		 * Enabling hardware checksum offload
1658 		 * Currently IP supports {TCP,UDP}/IPv4
1659 		 * partial and full cksum offload and
1660 		 * IPv4 header checksum offload.
1661 		 * Allocate new mblk which will
1662 		 * contain a new capability request
1663 		 * to enable hardware checksum offload.
1664 		 */
1665 		uint_t	size;
1666 		uchar_t	*rptr;
1667 
1668 		size = sizeof (dl_capability_req_t) +
1669 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1670 
1671 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1672 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1673 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1674 			    ill->ill_name);
1675 			return;
1676 		}
1677 
1678 		rptr = nmp->b_rptr;
1679 		/* initialize dl_capability_req_t */
1680 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1681 		ocap->dl_sub_offset =
1682 		    sizeof (dl_capability_req_t);
1683 		ocap->dl_sub_length =
1684 		    sizeof (dl_capability_sub_t) +
1685 		    isub->dl_length;
1686 		nmp->b_rptr += sizeof (dl_capability_req_t);
1687 
1688 		/* initialize dl_capability_sub_t */
1689 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1690 		nmp->b_rptr += sizeof (*isub);
1691 
1692 		/* initialize dl_capab_hcksum_t */
1693 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1694 		bcopy(ihck, ohck, sizeof (*ihck));
1695 
1696 		nmp->b_rptr = rptr;
1697 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1698 
1699 		/* Set ENABLE flag */
1700 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1701 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1702 
1703 		/*
1704 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1705 		 * hardware checksum acceleration.
1706 		 */
1707 		ill_capability_send(ill, nmp);
1708 	} else {
1709 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1710 		    "advertised %x hardware checksum capability flags\n",
1711 		    ill->ill_name, ihck->hcksum_txflags));
1712 	}
1713 }
1714 
1715 static void
1716 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1717 {
1718 	dl_capab_hcksum_t *hck_subcap;
1719 	dl_capability_sub_t *dl_subcap;
1720 
1721 	if (!ILL_HCKSUM_CAPABLE(ill))
1722 		return;
1723 
1724 	ASSERT(ill->ill_hcksum_capab != NULL);
1725 
1726 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1727 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1728 	dl_subcap->dl_length = sizeof (*hck_subcap);
1729 
1730 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1731 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1732 	hck_subcap->hcksum_txflags = 0;
1733 
1734 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1735 }
1736 
1737 static void
1738 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1739 {
1740 	mblk_t *nmp = NULL;
1741 	dl_capability_req_t *oc;
1742 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1743 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1744 	uint_t sub_dl_cap = isub->dl_cap;
1745 	uint8_t *capend;
1746 
1747 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1748 
1749 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1750 
1751 	/*
1752 	 * Note: range checks here are not absolutely sufficient to
1753 	 * make us robust against malformed messages sent by drivers;
1754 	 * this is in keeping with the rest of IP's dlpi handling.
1755 	 * (Remember, it's coming from something else in the kernel
1756 	 * address space)
1757 	 */
1758 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1759 	if (capend > mp->b_wptr) {
1760 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1761 		    "malformed sub-capability too long for mblk");
1762 		return;
1763 	}
1764 
1765 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1766 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1767 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1768 		    "unsupported ZEROCOPY sub-capability (version %d, "
1769 		    "expected %d)", zc_ic->zerocopy_version,
1770 		    ZEROCOPY_VERSION_1);
1771 		return;
1772 	}
1773 
1774 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1775 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1776 		    "capability isn't as expected; pass-thru module(s) "
1777 		    "detected, discarding capability\n"));
1778 		return;
1779 	}
1780 
1781 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1782 		if (*ill_zerocopy_capab == NULL) {
1783 			*ill_zerocopy_capab =
1784 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1785 			    KM_NOSLEEP);
1786 
1787 			if (*ill_zerocopy_capab == NULL) {
1788 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1789 				    "could not enable Zero-copy version %d "
1790 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1791 				    ill->ill_name);
1792 				return;
1793 			}
1794 		}
1795 
1796 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1797 		    "supports Zero-copy version %d\n", ill->ill_name,
1798 		    ZEROCOPY_VERSION_1));
1799 
1800 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1801 		    zc_ic->zerocopy_version;
1802 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1803 		    zc_ic->zerocopy_flags;
1804 
1805 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1806 	} else {
1807 		uint_t size;
1808 		uchar_t *rptr;
1809 
1810 		size = sizeof (dl_capability_req_t) +
1811 		    sizeof (dl_capability_sub_t) +
1812 		    sizeof (dl_capab_zerocopy_t);
1813 
1814 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1815 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1816 			    "could not enable zerocopy for %s (ENOMEM)\n",
1817 			    ill->ill_name);
1818 			return;
1819 		}
1820 
1821 		rptr = nmp->b_rptr;
1822 		/* initialize dl_capability_req_t */
1823 		oc = (dl_capability_req_t *)rptr;
1824 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1825 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1826 		    sizeof (dl_capab_zerocopy_t);
1827 		rptr += sizeof (dl_capability_req_t);
1828 
1829 		/* initialize dl_capability_sub_t */
1830 		bcopy(isub, rptr, sizeof (*isub));
1831 		rptr += sizeof (*isub);
1832 
1833 		/* initialize dl_capab_zerocopy_t */
1834 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1835 		*zc_oc = *zc_ic;
1836 
1837 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1838 		    "to enable zero-copy version %d\n", ill->ill_name,
1839 		    ZEROCOPY_VERSION_1));
1840 
1841 		/* set VMSAFE_MEM flag */
1842 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1843 
1844 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1845 		ill_capability_send(ill, nmp);
1846 	}
1847 }
1848 
1849 static void
1850 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1851 {
1852 	dl_capab_zerocopy_t *zerocopy_subcap;
1853 	dl_capability_sub_t *dl_subcap;
1854 
1855 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1856 		return;
1857 
1858 	ASSERT(ill->ill_zerocopy_capab != NULL);
1859 
1860 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1861 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1862 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1863 
1864 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1865 	zerocopy_subcap->zerocopy_version =
1866 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1867 	zerocopy_subcap->zerocopy_flags = 0;
1868 
1869 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1870 }
1871 
1872 /*
1873  * DLD capability
1874  * Refer to dld.h for more information regarding the purpose and usage
1875  * of this capability.
1876  */
1877 static void
1878 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1879 {
1880 	dl_capab_dld_t		*dld_ic, dld;
1881 	uint_t			sub_dl_cap = isub->dl_cap;
1882 	uint8_t			*capend;
1883 	ill_dld_capab_t		*idc;
1884 
1885 	ASSERT(IAM_WRITER_ILL(ill));
1886 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1887 
1888 	/*
1889 	 * Note: range checks here are not absolutely sufficient to
1890 	 * make us robust against malformed messages sent by drivers;
1891 	 * this is in keeping with the rest of IP's dlpi handling.
1892 	 * (Remember, it's coming from something else in the kernel
1893 	 * address space)
1894 	 */
1895 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1896 	if (capend > mp->b_wptr) {
1897 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1898 		    "malformed sub-capability too long for mblk");
1899 		return;
1900 	}
1901 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1902 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1903 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1904 		    "unsupported DLD sub-capability (version %d, "
1905 		    "expected %d)", dld_ic->dld_version,
1906 		    DLD_CURRENT_VERSION);
1907 		return;
1908 	}
1909 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1910 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1911 		    "capability isn't as expected; pass-thru module(s) "
1912 		    "detected, discarding capability\n"));
1913 		return;
1914 	}
1915 
1916 	/*
1917 	 * Copy locally to ensure alignment.
1918 	 */
1919 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1920 
1921 	if ((idc = ill->ill_dld_capab) == NULL) {
1922 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1923 		if (idc == NULL) {
1924 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1925 			    "could not enable DLD version %d "
1926 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1927 			    ill->ill_name);
1928 			return;
1929 		}
1930 		ill->ill_dld_capab = idc;
1931 	}
1932 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1933 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1934 	ip1dbg(("ill_capability_dld_ack: interface %s "
1935 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1936 
1937 	ill_capability_dld_enable(ill);
1938 }
1939 
1940 /*
1941  * Typically capability negotiation between IP and the driver happens via
1942  * DLPI message exchange. However GLD also offers a direct function call
1943  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1944  * But arbitrary function calls into IP or GLD are not permitted, since both
1945  * of them are protected by their own perimeter mechanism. The perimeter can
1946  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1947  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1948  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1949  * to enter the mac perimeter and then do the direct function calls into
1950  * GLD to enable squeue polling. The ring related callbacks from the mac into
1951  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1952  * protected by the mac perimeter.
1953  */
1954 static void
1955 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1956 {
1957 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1958 	int			err;
1959 
1960 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1961 	    DLD_ENABLE);
1962 	ASSERT(err == 0);
1963 }
1964 
1965 static void
1966 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1967 {
1968 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1969 	int			err;
1970 
1971 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1972 	    DLD_DISABLE);
1973 	ASSERT(err == 0);
1974 }
1975 
1976 boolean_t
1977 ill_mac_perim_held(ill_t *ill)
1978 {
1979 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1980 
1981 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1982 	    DLD_QUERY));
1983 }
1984 
1985 static void
1986 ill_capability_direct_enable(ill_t *ill)
1987 {
1988 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1989 	ill_dld_direct_t	*idd = &idc->idc_direct;
1990 	dld_capab_direct_t	direct;
1991 	int			rc;
1992 
1993 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1994 
1995 	bzero(&direct, sizeof (direct));
1996 	direct.di_rx_cf = (uintptr_t)ip_input;
1997 	direct.di_rx_ch = ill;
1998 
1999 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2000 	    DLD_ENABLE);
2001 	if (rc == 0) {
2002 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2003 		idd->idd_tx_dh = direct.di_tx_dh;
2004 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2005 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2006 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2007 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2008 		ASSERT(idd->idd_tx_cb_df != NULL);
2009 		ASSERT(idd->idd_tx_fctl_df != NULL);
2010 		ASSERT(idd->idd_tx_df != NULL);
2011 		/*
2012 		 * One time registration of flow enable callback function
2013 		 */
2014 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2015 		    ill_flow_enable, ill);
2016 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2017 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
2018 	} else {
2019 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
2020 		    "capability, rc = %d\n", rc);
2021 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2022 	}
2023 }
2024 
2025 static void
2026 ill_capability_poll_enable(ill_t *ill)
2027 {
2028 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2029 	dld_capab_poll_t	poll;
2030 	int			rc;
2031 
2032 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2033 
2034 	bzero(&poll, sizeof (poll));
2035 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2036 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2037 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2038 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2039 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2040 	poll.poll_ring_ch = ill;
2041 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2042 	    DLD_ENABLE);
2043 	if (rc == 0) {
2044 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2045 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
2046 	} else {
2047 		ip1dbg(("warning: could not enable POLL "
2048 		    "capability, rc = %d\n", rc));
2049 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2050 	}
2051 }
2052 
2053 /*
2054  * Enable the LSO capability.
2055  */
2056 static void
2057 ill_capability_lso_enable(ill_t *ill)
2058 {
2059 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2060 	dld_capab_lso_t	lso;
2061 	int rc;
2062 
2063 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2064 
2065 	if (ill->ill_lso_capab == NULL) {
2066 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2067 		    KM_NOSLEEP);
2068 		if (ill->ill_lso_capab == NULL) {
2069 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2070 			    "could not enable LSO for %s (ENOMEM)\n",
2071 			    ill->ill_name);
2072 			return;
2073 		}
2074 	}
2075 
2076 	bzero(&lso, sizeof (lso));
2077 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2078 	    DLD_ENABLE)) == 0) {
2079 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2080 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2081 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2082 		ip1dbg(("ill_capability_lso_enable: interface %s "
2083 		    "has enabled LSO\n ", ill->ill_name));
2084 	} else {
2085 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2086 		ill->ill_lso_capab = NULL;
2087 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2088 	}
2089 }
2090 
2091 static void
2092 ill_capability_dld_enable(ill_t *ill)
2093 {
2094 	mac_perim_handle_t mph;
2095 
2096 	ASSERT(IAM_WRITER_ILL(ill));
2097 
2098 	if (ill->ill_isv6)
2099 		return;
2100 
2101 	ill_mac_perim_enter(ill, &mph);
2102 	if (!ill->ill_isv6) {
2103 		ill_capability_direct_enable(ill);
2104 		ill_capability_poll_enable(ill);
2105 		ill_capability_lso_enable(ill);
2106 	}
2107 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2108 	ill_mac_perim_exit(ill, mph);
2109 }
2110 
2111 static void
2112 ill_capability_dld_disable(ill_t *ill)
2113 {
2114 	ill_dld_capab_t	*idc;
2115 	ill_dld_direct_t *idd;
2116 	mac_perim_handle_t	mph;
2117 
2118 	ASSERT(IAM_WRITER_ILL(ill));
2119 
2120 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2121 		return;
2122 
2123 	ill_mac_perim_enter(ill, &mph);
2124 
2125 	idc = ill->ill_dld_capab;
2126 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2127 		/*
2128 		 * For performance we avoid locks in the transmit data path
2129 		 * and don't maintain a count of the number of threads using
2130 		 * direct calls. Thus some threads could be using direct
2131 		 * transmit calls to GLD, even after the capability mechanism
2132 		 * turns it off. This is still safe since the handles used in
2133 		 * the direct calls continue to be valid until the unplumb is
2134 		 * completed. Remove the callback that was added (1-time) at
2135 		 * capab enable time.
2136 		 */
2137 		mutex_enter(&ill->ill_lock);
2138 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2139 		mutex_exit(&ill->ill_lock);
2140 		if (ill->ill_flownotify_mh != NULL) {
2141 			idd = &idc->idc_direct;
2142 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2143 			    ill->ill_flownotify_mh);
2144 			ill->ill_flownotify_mh = NULL;
2145 		}
2146 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2147 		    NULL, DLD_DISABLE);
2148 	}
2149 
2150 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2151 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2152 		ip_squeue_clean_all(ill);
2153 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2154 		    NULL, DLD_DISABLE);
2155 	}
2156 
2157 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2158 		ASSERT(ill->ill_lso_capab != NULL);
2159 		/*
2160 		 * Clear the capability flag for LSO but retain the
2161 		 * ill_lso_capab structure since it's possible that another
2162 		 * thread is still referring to it.  The structure only gets
2163 		 * deallocated when we destroy the ill.
2164 		 */
2165 
2166 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2167 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2168 		    NULL, DLD_DISABLE);
2169 	}
2170 
2171 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2172 	ill_mac_perim_exit(ill, mph);
2173 }
2174 
2175 /*
2176  * Capability Negotiation protocol
2177  *
2178  * We don't wait for DLPI capability operations to finish during interface
2179  * bringup or teardown. Doing so would introduce more asynchrony and the
2180  * interface up/down operations will need multiple return and restarts.
2181  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2182  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2183  * exclusive operation won't start until the DLPI operations of the previous
2184  * exclusive operation complete.
2185  *
2186  * The capability state machine is shown below.
2187  *
2188  * state		next state		event, action
2189  *
2190  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2191  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2192  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2193  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2194  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2195  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2196  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2197  *						    ill_capability_probe.
2198  */
2199 
2200 /*
2201  * Dedicated thread started from ip_stack_init that handles capability
2202  * disable. This thread ensures the taskq dispatch does not fail by waiting
2203  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2204  * that direct calls to DLD are done in a cv_waitable context.
2205  */
2206 void
2207 ill_taskq_dispatch(ip_stack_t *ipst)
2208 {
2209 	callb_cpr_t cprinfo;
2210 	char 	name[64];
2211 	mblk_t	*mp;
2212 
2213 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2214 	    ipst->ips_netstack->netstack_stackid);
2215 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2216 	    name);
2217 	mutex_enter(&ipst->ips_capab_taskq_lock);
2218 
2219 	for (;;) {
2220 		mp = ipst->ips_capab_taskq_head;
2221 		while (mp != NULL) {
2222 			ipst->ips_capab_taskq_head = mp->b_next;
2223 			if (ipst->ips_capab_taskq_head == NULL)
2224 				ipst->ips_capab_taskq_tail = NULL;
2225 			mutex_exit(&ipst->ips_capab_taskq_lock);
2226 			mp->b_next = NULL;
2227 
2228 			VERIFY(taskq_dispatch(system_taskq,
2229 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2230 			mutex_enter(&ipst->ips_capab_taskq_lock);
2231 			mp = ipst->ips_capab_taskq_head;
2232 		}
2233 
2234 		if (ipst->ips_capab_taskq_quit)
2235 			break;
2236 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2237 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2238 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2239 	}
2240 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2241 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2242 	CALLB_CPR_EXIT(&cprinfo);
2243 	thread_exit();
2244 }
2245 
2246 /*
2247  * Consume a new-style hardware capabilities negotiation ack.
2248  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2249  */
2250 static void
2251 ill_capability_ack_thr(void *arg)
2252 {
2253 	mblk_t	*mp = arg;
2254 	dl_capability_ack_t *capp;
2255 	dl_capability_sub_t *subp, *endp;
2256 	ill_t	*ill;
2257 	boolean_t reneg;
2258 
2259 	ill = (ill_t *)mp->b_prev;
2260 	mp->b_prev = NULL;
2261 
2262 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2263 
2264 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2265 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2266 		/*
2267 		 * We have received the ack for our DL_CAPAB reset request.
2268 		 * There isnt' anything in the message that needs processing.
2269 		 * All message based capabilities have been disabled, now
2270 		 * do the function call based capability disable.
2271 		 */
2272 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2273 		ill_capability_dld_disable(ill);
2274 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2275 		if (reneg)
2276 			ill_capability_probe(ill);
2277 		goto done;
2278 	}
2279 
2280 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2281 		ill->ill_dlpi_capab_state = IDCS_OK;
2282 
2283 	capp = (dl_capability_ack_t *)mp->b_rptr;
2284 
2285 	if (capp->dl_sub_length == 0) {
2286 		/* no new-style capabilities */
2287 		goto done;
2288 	}
2289 
2290 	/* make sure the driver supplied correct dl_sub_length */
2291 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2292 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2293 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2294 		goto done;
2295 	}
2296 
2297 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2298 	/*
2299 	 * There are sub-capabilities. Process the ones we know about.
2300 	 * Loop until we don't have room for another sub-cap header..
2301 	 */
2302 	for (subp = SC(capp, capp->dl_sub_offset),
2303 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2304 	    subp <= endp;
2305 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2306 
2307 		switch (subp->dl_cap) {
2308 		case DL_CAPAB_ID_WRAPPER:
2309 			ill_capability_id_ack(ill, mp, subp);
2310 			break;
2311 		default:
2312 			ill_capability_dispatch(ill, mp, subp);
2313 			break;
2314 		}
2315 	}
2316 #undef SC
2317 done:
2318 	inet_freemsg(mp);
2319 	ill_capability_done(ill);
2320 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2321 }
2322 
2323 /*
2324  * This needs to be started in a taskq thread to provide a cv_waitable
2325  * context.
2326  */
2327 void
2328 ill_capability_ack(ill_t *ill, mblk_t *mp)
2329 {
2330 	ip_stack_t	*ipst = ill->ill_ipst;
2331 
2332 	mp->b_prev = (mblk_t *)ill;
2333 	ASSERT(mp->b_next == NULL);
2334 
2335 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2336 	    TQ_NOSLEEP) != 0)
2337 		return;
2338 
2339 	/*
2340 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2341 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2342 	 */
2343 	mutex_enter(&ipst->ips_capab_taskq_lock);
2344 	if (ipst->ips_capab_taskq_head == NULL) {
2345 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2346 		ipst->ips_capab_taskq_head = mp;
2347 	} else {
2348 		ipst->ips_capab_taskq_tail->b_next = mp;
2349 	}
2350 	ipst->ips_capab_taskq_tail = mp;
2351 
2352 	cv_signal(&ipst->ips_capab_taskq_cv);
2353 	mutex_exit(&ipst->ips_capab_taskq_lock);
2354 }
2355 
2356 /*
2357  * This routine is called to scan the fragmentation reassembly table for
2358  * the specified ILL for any packets that are starting to smell.
2359  * dead_interval is the maximum time in seconds that will be tolerated.  It
2360  * will either be the value specified in ip_g_frag_timeout, or zero if the
2361  * ILL is shutting down and it is time to blow everything off.
2362  *
2363  * It returns the number of seconds (as a time_t) that the next frag timer
2364  * should be scheduled for, 0 meaning that the timer doesn't need to be
2365  * re-started.  Note that the method of calculating next_timeout isn't
2366  * entirely accurate since time will flow between the time we grab
2367  * current_time and the time we schedule the next timeout.  This isn't a
2368  * big problem since this is the timer for sending an ICMP reassembly time
2369  * exceeded messages, and it doesn't have to be exactly accurate.
2370  *
2371  * This function is
2372  * sometimes called as writer, although this is not required.
2373  */
2374 time_t
2375 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2376 {
2377 	ipfb_t	*ipfb;
2378 	ipfb_t	*endp;
2379 	ipf_t	*ipf;
2380 	ipf_t	*ipfnext;
2381 	mblk_t	*mp;
2382 	time_t	current_time = gethrestime_sec();
2383 	time_t	next_timeout = 0;
2384 	uint32_t	hdr_length;
2385 	mblk_t	*send_icmp_head;
2386 	mblk_t	*send_icmp_head_v6;
2387 	ip_stack_t *ipst = ill->ill_ipst;
2388 	ip_recv_attr_t iras;
2389 
2390 	bzero(&iras, sizeof (iras));
2391 	iras.ira_flags = 0;
2392 	iras.ira_ill = iras.ira_rill = ill;
2393 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2394 	iras.ira_rifindex = iras.ira_ruifindex;
2395 
2396 	ipfb = ill->ill_frag_hash_tbl;
2397 	if (ipfb == NULL)
2398 		return (B_FALSE);
2399 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2400 	/* Walk the frag hash table. */
2401 	for (; ipfb < endp; ipfb++) {
2402 		send_icmp_head = NULL;
2403 		send_icmp_head_v6 = NULL;
2404 		mutex_enter(&ipfb->ipfb_lock);
2405 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2406 			time_t frag_time = current_time - ipf->ipf_timestamp;
2407 			time_t frag_timeout;
2408 
2409 			if (frag_time < dead_interval) {
2410 				/*
2411 				 * There are some outstanding fragments
2412 				 * that will timeout later.  Make note of
2413 				 * the time so that we can reschedule the
2414 				 * next timeout appropriately.
2415 				 */
2416 				frag_timeout = dead_interval - frag_time;
2417 				if (next_timeout == 0 ||
2418 				    frag_timeout < next_timeout) {
2419 					next_timeout = frag_timeout;
2420 				}
2421 				break;
2422 			}
2423 			/* Time's up.  Get it out of here. */
2424 			hdr_length = ipf->ipf_nf_hdr_len;
2425 			ipfnext = ipf->ipf_hash_next;
2426 			if (ipfnext)
2427 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2428 			*ipf->ipf_ptphn = ipfnext;
2429 			mp = ipf->ipf_mp->b_cont;
2430 			for (; mp; mp = mp->b_cont) {
2431 				/* Extra points for neatness. */
2432 				IP_REASS_SET_START(mp, 0);
2433 				IP_REASS_SET_END(mp, 0);
2434 			}
2435 			mp = ipf->ipf_mp->b_cont;
2436 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2437 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2438 			ipfb->ipfb_count -= ipf->ipf_count;
2439 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2440 			ipfb->ipfb_frag_pkts--;
2441 			/*
2442 			 * We do not send any icmp message from here because
2443 			 * we currently are holding the ipfb_lock for this
2444 			 * hash chain. If we try and send any icmp messages
2445 			 * from here we may end up via a put back into ip
2446 			 * trying to get the same lock, causing a recursive
2447 			 * mutex panic. Instead we build a list and send all
2448 			 * the icmp messages after we have dropped the lock.
2449 			 */
2450 			if (ill->ill_isv6) {
2451 				if (hdr_length != 0) {
2452 					mp->b_next = send_icmp_head_v6;
2453 					send_icmp_head_v6 = mp;
2454 				} else {
2455 					freemsg(mp);
2456 				}
2457 			} else {
2458 				if (hdr_length != 0) {
2459 					mp->b_next = send_icmp_head;
2460 					send_icmp_head = mp;
2461 				} else {
2462 					freemsg(mp);
2463 				}
2464 			}
2465 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2466 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2467 			freeb(ipf->ipf_mp);
2468 		}
2469 		mutex_exit(&ipfb->ipfb_lock);
2470 		/*
2471 		 * Now need to send any icmp messages that we delayed from
2472 		 * above.
2473 		 */
2474 		while (send_icmp_head_v6 != NULL) {
2475 			ip6_t *ip6h;
2476 
2477 			mp = send_icmp_head_v6;
2478 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2479 			mp->b_next = NULL;
2480 			ip6h = (ip6_t *)mp->b_rptr;
2481 			iras.ira_flags = 0;
2482 			/*
2483 			 * This will result in an incorrect ALL_ZONES zoneid
2484 			 * for multicast packets, but we
2485 			 * don't send ICMP errors for those in any case.
2486 			 */
2487 			iras.ira_zoneid =
2488 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2489 			    ill, ipst);
2490 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2491 			icmp_time_exceeded_v6(mp,
2492 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2493 			    &iras);
2494 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2495 		}
2496 		while (send_icmp_head != NULL) {
2497 			ipaddr_t dst;
2498 
2499 			mp = send_icmp_head;
2500 			send_icmp_head = send_icmp_head->b_next;
2501 			mp->b_next = NULL;
2502 
2503 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2504 
2505 			iras.ira_flags = IRAF_IS_IPV4;
2506 			/*
2507 			 * This will result in an incorrect ALL_ZONES zoneid
2508 			 * for broadcast and multicast packets, but we
2509 			 * don't send ICMP errors for those in any case.
2510 			 */
2511 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2512 			    ill, ipst);
2513 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2514 			icmp_time_exceeded(mp,
2515 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2516 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2517 		}
2518 	}
2519 	/*
2520 	 * A non-dying ILL will use the return value to decide whether to
2521 	 * restart the frag timer, and for how long.
2522 	 */
2523 	return (next_timeout);
2524 }
2525 
2526 /*
2527  * This routine is called when the approximate count of mblk memory used
2528  * for the specified ILL has exceeded max_count.
2529  */
2530 void
2531 ill_frag_prune(ill_t *ill, uint_t max_count)
2532 {
2533 	ipfb_t	*ipfb;
2534 	ipf_t	*ipf;
2535 	size_t	count;
2536 	clock_t now;
2537 
2538 	/*
2539 	 * If we are here within ip_min_frag_prune_time msecs remove
2540 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2541 	 * ill_frag_free_num_pkts.
2542 	 */
2543 	mutex_enter(&ill->ill_lock);
2544 	now = ddi_get_lbolt();
2545 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2546 	    (ip_min_frag_prune_time != 0 ?
2547 	    ip_min_frag_prune_time : msec_per_tick)) {
2548 
2549 		ill->ill_frag_free_num_pkts++;
2550 
2551 	} else {
2552 		ill->ill_frag_free_num_pkts = 0;
2553 	}
2554 	ill->ill_last_frag_clean_time = now;
2555 	mutex_exit(&ill->ill_lock);
2556 
2557 	/*
2558 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2559 	 */
2560 	if (ill->ill_frag_free_num_pkts != 0) {
2561 		int ix;
2562 
2563 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2564 			ipfb = &ill->ill_frag_hash_tbl[ix];
2565 			mutex_enter(&ipfb->ipfb_lock);
2566 			if (ipfb->ipfb_ipf != NULL) {
2567 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2568 				    ill->ill_frag_free_num_pkts);
2569 			}
2570 			mutex_exit(&ipfb->ipfb_lock);
2571 		}
2572 	}
2573 	/*
2574 	 * While the reassembly list for this ILL is too big, prune a fragment
2575 	 * queue by age, oldest first.
2576 	 */
2577 	while (ill->ill_frag_count > max_count) {
2578 		int	ix;
2579 		ipfb_t	*oipfb = NULL;
2580 		uint_t	oldest = UINT_MAX;
2581 
2582 		count = 0;
2583 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2584 			ipfb = &ill->ill_frag_hash_tbl[ix];
2585 			mutex_enter(&ipfb->ipfb_lock);
2586 			ipf = ipfb->ipfb_ipf;
2587 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2588 				oldest = ipf->ipf_gen;
2589 				oipfb = ipfb;
2590 			}
2591 			count += ipfb->ipfb_count;
2592 			mutex_exit(&ipfb->ipfb_lock);
2593 		}
2594 		if (oipfb == NULL)
2595 			break;
2596 
2597 		if (count <= max_count)
2598 			return;	/* Somebody beat us to it, nothing to do */
2599 		mutex_enter(&oipfb->ipfb_lock);
2600 		ipf = oipfb->ipfb_ipf;
2601 		if (ipf != NULL) {
2602 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2603 		}
2604 		mutex_exit(&oipfb->ipfb_lock);
2605 	}
2606 }
2607 
2608 /*
2609  * free 'free_cnt' fragmented packets starting at ipf.
2610  */
2611 void
2612 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2613 {
2614 	size_t	count;
2615 	mblk_t	*mp;
2616 	mblk_t	*tmp;
2617 	ipf_t **ipfp = ipf->ipf_ptphn;
2618 
2619 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2620 	ASSERT(ipfp != NULL);
2621 	ASSERT(ipf != NULL);
2622 
2623 	while (ipf != NULL && free_cnt-- > 0) {
2624 		count = ipf->ipf_count;
2625 		mp = ipf->ipf_mp;
2626 		ipf = ipf->ipf_hash_next;
2627 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2628 			IP_REASS_SET_START(tmp, 0);
2629 			IP_REASS_SET_END(tmp, 0);
2630 		}
2631 		atomic_add_32(&ill->ill_frag_count, -count);
2632 		ASSERT(ipfb->ipfb_count >= count);
2633 		ipfb->ipfb_count -= count;
2634 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2635 		ipfb->ipfb_frag_pkts--;
2636 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2637 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2638 		freemsg(mp);
2639 	}
2640 
2641 	if (ipf)
2642 		ipf->ipf_ptphn = ipfp;
2643 	ipfp[0] = ipf;
2644 }
2645 
2646 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
2647 	"obsolete and may be removed in a future release of Solaris.  Use " \
2648 	"ifconfig(1M) to manipulate the forwarding status of an interface."
2649 
2650 /*
2651  * For obsolete per-interface forwarding configuration;
2652  * called in response to ND_GET.
2653  */
2654 /* ARGSUSED */
2655 static int
2656 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
2657 {
2658 	ill_t *ill = (ill_t *)cp;
2659 
2660 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2661 
2662 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
2663 	return (0);
2664 }
2665 
2666 /*
2667  * For obsolete per-interface forwarding configuration;
2668  * called in response to ND_SET.
2669  */
2670 /* ARGSUSED */
2671 static int
2672 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
2673     cred_t *ioc_cr)
2674 {
2675 	long value;
2676 	int retval;
2677 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
2678 
2679 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2680 
2681 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
2682 	    value < 0 || value > 1) {
2683 		return (EINVAL);
2684 	}
2685 
2686 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2687 	retval = ill_forward_set((ill_t *)cp, (value != 0));
2688 	rw_exit(&ipst->ips_ill_g_lock);
2689 	return (retval);
2690 }
2691 
2692 /*
2693  * Helper function for ill_forward_set().
2694  */
2695 static void
2696 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2697 {
2698 	ip_stack_t	*ipst = ill->ill_ipst;
2699 
2700 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2701 
2702 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2703 	    (enable ? "Enabling" : "Disabling"),
2704 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2705 	mutex_enter(&ill->ill_lock);
2706 	if (enable)
2707 		ill->ill_flags |= ILLF_ROUTER;
2708 	else
2709 		ill->ill_flags &= ~ILLF_ROUTER;
2710 	mutex_exit(&ill->ill_lock);
2711 	if (ill->ill_isv6)
2712 		ill_set_nce_router_flags(ill, enable);
2713 	/* Notify routing socket listeners of this change. */
2714 	if (ill->ill_ipif != NULL)
2715 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2716 }
2717 
2718 /*
2719  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2720  * socket messages for each interface whose flags we change.
2721  */
2722 int
2723 ill_forward_set(ill_t *ill, boolean_t enable)
2724 {
2725 	ipmp_illgrp_t *illg;
2726 	ip_stack_t *ipst = ill->ill_ipst;
2727 
2728 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2729 
2730 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2731 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2732 		return (0);
2733 
2734 	if (IS_LOOPBACK(ill))
2735 		return (EINVAL);
2736 
2737 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2738 		/*
2739 		 * Update all of the interfaces in the group.
2740 		 */
2741 		illg = ill->ill_grp;
2742 		ill = list_head(&illg->ig_if);
2743 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2744 			ill_forward_set_on_ill(ill, enable);
2745 
2746 		/*
2747 		 * Update the IPMP meta-interface.
2748 		 */
2749 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2750 		return (0);
2751 	}
2752 
2753 	ill_forward_set_on_ill(ill, enable);
2754 	return (0);
2755 }
2756 
2757 /*
2758  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2759  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2760  * set or clear.
2761  */
2762 static void
2763 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2764 {
2765 	ipif_t *ipif;
2766 	ncec_t *ncec;
2767 	nce_t *nce;
2768 
2769 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2770 		/*
2771 		 * NOTE: we match across the illgrp because nce's for
2772 		 * addresses on IPMP interfaces have an nce_ill that points to
2773 		 * the bound underlying ill.
2774 		 */
2775 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2776 		if (nce != NULL) {
2777 			ncec = nce->nce_common;
2778 			mutex_enter(&ncec->ncec_lock);
2779 			if (enable)
2780 				ncec->ncec_flags |= NCE_F_ISROUTER;
2781 			else
2782 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2783 			mutex_exit(&ncec->ncec_lock);
2784 			nce_refrele(nce);
2785 		}
2786 	}
2787 }
2788 
2789 /*
2790  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
2791  * for this ill.  Make sure the v6/v4 question has been answered about this
2792  * ill.  The creation of this ndd variable is only for backwards compatibility.
2793  * The preferred way to control per-interface IP forwarding is through the
2794  * ILLF_ROUTER interface flag.
2795  */
2796 static int
2797 ill_set_ndd_name(ill_t *ill)
2798 {
2799 	char *suffix;
2800 	ip_stack_t	*ipst = ill->ill_ipst;
2801 
2802 	ASSERT(IAM_WRITER_ILL(ill));
2803 
2804 	if (ill->ill_isv6)
2805 		suffix = ipv6_forward_suffix;
2806 	else
2807 		suffix = ipv4_forward_suffix;
2808 
2809 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
2810 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
2811 	/*
2812 	 * Copies over the '\0'.
2813 	 * Note that strlen(suffix) is always bounded.
2814 	 */
2815 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
2816 	    strlen(suffix) + 1);
2817 
2818 	/*
2819 	 * Use of the nd table requires holding the reader lock.
2820 	 * Modifying the nd table thru nd_load/nd_unload requires
2821 	 * the writer lock.
2822 	 */
2823 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
2824 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
2825 	    nd_ill_forward_set, (caddr_t)ill)) {
2826 		/*
2827 		 * If the nd_load failed, it only meant that it could not
2828 		 * allocate a new bunch of room for further NDD expansion.
2829 		 * Because of that, the ill_ndd_name will be set to 0, and
2830 		 * this interface is at the mercy of the global ip_forwarding
2831 		 * variable.
2832 		 */
2833 		rw_exit(&ipst->ips_ip_g_nd_lock);
2834 		ill->ill_ndd_name = NULL;
2835 		return (ENOMEM);
2836 	}
2837 	rw_exit(&ipst->ips_ip_g_nd_lock);
2838 	return (0);
2839 }
2840 
2841 /*
2842  * Intializes the context structure and returns the first ill in the list
2843  * cuurently start_list and end_list can have values:
2844  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2845  * IP_V4_G_HEAD		Traverse IPV4 list only.
2846  * IP_V6_G_HEAD		Traverse IPV6 list only.
2847  */
2848 
2849 /*
2850  * We don't check for CONDEMNED ills here. Caller must do that if
2851  * necessary under the ill lock.
2852  */
2853 ill_t *
2854 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2855     ip_stack_t *ipst)
2856 {
2857 	ill_if_t *ifp;
2858 	ill_t *ill;
2859 	avl_tree_t *avl_tree;
2860 
2861 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2862 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2863 
2864 	/*
2865 	 * setup the lists to search
2866 	 */
2867 	if (end_list != MAX_G_HEADS) {
2868 		ctx->ctx_current_list = start_list;
2869 		ctx->ctx_last_list = end_list;
2870 	} else {
2871 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2872 		ctx->ctx_current_list = 0;
2873 	}
2874 
2875 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2876 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2877 		if (ifp != (ill_if_t *)
2878 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2879 			avl_tree = &ifp->illif_avl_by_ppa;
2880 			ill = avl_first(avl_tree);
2881 			/*
2882 			 * ill is guaranteed to be non NULL or ifp should have
2883 			 * not existed.
2884 			 */
2885 			ASSERT(ill != NULL);
2886 			return (ill);
2887 		}
2888 		ctx->ctx_current_list++;
2889 	}
2890 
2891 	return (NULL);
2892 }
2893 
2894 /*
2895  * returns the next ill in the list. ill_first() must have been called
2896  * before calling ill_next() or bad things will happen.
2897  */
2898 
2899 /*
2900  * We don't check for CONDEMNED ills here. Caller must do that if
2901  * necessary under the ill lock.
2902  */
2903 ill_t *
2904 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2905 {
2906 	ill_if_t *ifp;
2907 	ill_t *ill;
2908 	ip_stack_t	*ipst = lastill->ill_ipst;
2909 
2910 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2911 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2912 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2913 	    AVL_AFTER)) != NULL) {
2914 		return (ill);
2915 	}
2916 
2917 	/* goto next ill_ifp in the list. */
2918 	ifp = lastill->ill_ifptr->illif_next;
2919 
2920 	/* make sure not at end of circular list */
2921 	while (ifp ==
2922 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2923 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2924 			return (NULL);
2925 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2926 	}
2927 
2928 	return (avl_first(&ifp->illif_avl_by_ppa));
2929 }
2930 
2931 /*
2932  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2933  * The final number (PPA) must not have any leading zeros.  Upon success, a
2934  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2935  */
2936 static char *
2937 ill_get_ppa_ptr(char *name)
2938 {
2939 	int namelen = strlen(name);
2940 	int end_ndx = namelen - 1;
2941 	int ppa_ndx, i;
2942 
2943 	/*
2944 	 * Check that the first character is [a-zA-Z], and that the last
2945 	 * character is [0-9].
2946 	 */
2947 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2948 		return (NULL);
2949 
2950 	/*
2951 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2952 	 */
2953 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2954 		if (!isdigit(name[ppa_ndx - 1]))
2955 			break;
2956 
2957 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2958 		return (NULL);
2959 
2960 	/*
2961 	 * Check that the intermediate characters are [a-z0-9.]
2962 	 */
2963 	for (i = 1; i < ppa_ndx; i++) {
2964 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2965 		    name[i] != '.' && name[i] != '_') {
2966 			return (NULL);
2967 		}
2968 	}
2969 
2970 	return (name + ppa_ndx);
2971 }
2972 
2973 /*
2974  * use avl tree to locate the ill.
2975  */
2976 static ill_t *
2977 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2978 {
2979 	char *ppa_ptr = NULL;
2980 	int len;
2981 	uint_t ppa;
2982 	ill_t *ill = NULL;
2983 	ill_if_t *ifp;
2984 	int list;
2985 
2986 	/*
2987 	 * get ppa ptr
2988 	 */
2989 	if (isv6)
2990 		list = IP_V6_G_HEAD;
2991 	else
2992 		list = IP_V4_G_HEAD;
2993 
2994 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2995 		return (NULL);
2996 	}
2997 
2998 	len = ppa_ptr - name + 1;
2999 
3000 	ppa = stoi(&ppa_ptr);
3001 
3002 	ifp = IP_VX_ILL_G_LIST(list, ipst);
3003 
3004 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
3005 		/*
3006 		 * match is done on len - 1 as the name is not null
3007 		 * terminated it contains ppa in addition to the interface
3008 		 * name.
3009 		 */
3010 		if ((ifp->illif_name_len == len) &&
3011 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
3012 			break;
3013 		} else {
3014 			ifp = ifp->illif_next;
3015 		}
3016 	}
3017 
3018 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
3019 		/*
3020 		 * Even the interface type does not exist.
3021 		 */
3022 		return (NULL);
3023 	}
3024 
3025 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
3026 	if (ill != NULL) {
3027 		mutex_enter(&ill->ill_lock);
3028 		if (ILL_CAN_LOOKUP(ill)) {
3029 			ill_refhold_locked(ill);
3030 			mutex_exit(&ill->ill_lock);
3031 			return (ill);
3032 		}
3033 		mutex_exit(&ill->ill_lock);
3034 	}
3035 	return (NULL);
3036 }
3037 
3038 /*
3039  * comparison function for use with avl.
3040  */
3041 static int
3042 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
3043 {
3044 	uint_t ppa;
3045 	uint_t ill_ppa;
3046 
3047 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
3048 
3049 	ppa = *((uint_t *)ppa_ptr);
3050 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
3051 	/*
3052 	 * We want the ill with the lowest ppa to be on the
3053 	 * top.
3054 	 */
3055 	if (ill_ppa < ppa)
3056 		return (1);
3057 	if (ill_ppa > ppa)
3058 		return (-1);
3059 	return (0);
3060 }
3061 
3062 /*
3063  * remove an interface type from the global list.
3064  */
3065 static void
3066 ill_delete_interface_type(ill_if_t *interface)
3067 {
3068 	ASSERT(interface != NULL);
3069 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
3070 
3071 	avl_destroy(&interface->illif_avl_by_ppa);
3072 	if (interface->illif_ppa_arena != NULL)
3073 		vmem_destroy(interface->illif_ppa_arena);
3074 
3075 	remque(interface);
3076 
3077 	mi_free(interface);
3078 }
3079 
3080 /*
3081  * remove ill from the global list.
3082  */
3083 static void
3084 ill_glist_delete(ill_t *ill)
3085 {
3086 	ip_stack_t	*ipst;
3087 	phyint_t	*phyi;
3088 
3089 	if (ill == NULL)
3090 		return;
3091 	ipst = ill->ill_ipst;
3092 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3093 
3094 	/*
3095 	 * If the ill was never inserted into the AVL tree
3096 	 * we skip the if branch.
3097 	 */
3098 	if (ill->ill_ifptr != NULL) {
3099 		/*
3100 		 * remove from AVL tree and free ppa number
3101 		 */
3102 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3103 
3104 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3105 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3106 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3107 		}
3108 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3109 			ill_delete_interface_type(ill->ill_ifptr);
3110 		}
3111 
3112 		/*
3113 		 * Indicate ill is no longer in the list.
3114 		 */
3115 		ill->ill_ifptr = NULL;
3116 		ill->ill_name_length = 0;
3117 		ill->ill_name[0] = '\0';
3118 		ill->ill_ppa = UINT_MAX;
3119 	}
3120 
3121 	/* Generate one last event for this ill. */
3122 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3123 	    ill->ill_name_length);
3124 
3125 	ASSERT(ill->ill_phyint != NULL);
3126 	phyi = ill->ill_phyint;
3127 	ill->ill_phyint = NULL;
3128 
3129 	/*
3130 	 * ill_init allocates a phyint always to store the copy
3131 	 * of flags relevant to phyint. At that point in time, we could
3132 	 * not assign the name and hence phyint_illv4/v6 could not be
3133 	 * initialized. Later in ipif_set_values, we assign the name to
3134 	 * the ill, at which point in time we assign phyint_illv4/v6.
3135 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3136 	 */
3137 	if (ill->ill_flags & ILLF_IPV6)
3138 		phyi->phyint_illv6 = NULL;
3139 	else
3140 		phyi->phyint_illv4 = NULL;
3141 
3142 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3143 		rw_exit(&ipst->ips_ill_g_lock);
3144 		return;
3145 	}
3146 
3147 	/*
3148 	 * There are no ills left on this phyint; pull it out of the phyint
3149 	 * avl trees, and free it.
3150 	 */
3151 	if (phyi->phyint_ifindex > 0) {
3152 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3153 		    phyi);
3154 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3155 		    phyi);
3156 	}
3157 	rw_exit(&ipst->ips_ill_g_lock);
3158 
3159 	phyint_free(phyi);
3160 }
3161 
3162 /*
3163  * allocate a ppa, if the number of plumbed interfaces of this type are
3164  * less than ill_no_arena do a linear search to find a unused ppa.
3165  * When the number goes beyond ill_no_arena switch to using an arena.
3166  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3167  * is the return value for an error condition, so allocation starts at one
3168  * and is decremented by one.
3169  */
3170 static int
3171 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3172 {
3173 	ill_t *tmp_ill;
3174 	uint_t start, end;
3175 	int ppa;
3176 
3177 	if (ifp->illif_ppa_arena == NULL &&
3178 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3179 		/*
3180 		 * Create an arena.
3181 		 */
3182 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3183 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3184 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3185 			/* allocate what has already been assigned */
3186 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3187 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3188 		    tmp_ill, AVL_AFTER)) {
3189 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3190 			    1,		/* size */
3191 			    1,		/* align/quantum */
3192 			    0,		/* phase */
3193 			    0,		/* nocross */
3194 			    /* minaddr */
3195 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3196 			    /* maxaddr */
3197 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3198 			    VM_NOSLEEP|VM_FIRSTFIT);
3199 			if (ppa == 0) {
3200 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3201 				    " failed while switching"));
3202 				vmem_destroy(ifp->illif_ppa_arena);
3203 				ifp->illif_ppa_arena = NULL;
3204 				break;
3205 			}
3206 		}
3207 	}
3208 
3209 	if (ifp->illif_ppa_arena != NULL) {
3210 		if (ill->ill_ppa == UINT_MAX) {
3211 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3212 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3213 			if (ppa == 0)
3214 				return (EAGAIN);
3215 			ill->ill_ppa = --ppa;
3216 		} else {
3217 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3218 			    1, 		/* size */
3219 			    1, 		/* align/quantum */
3220 			    0, 		/* phase */
3221 			    0, 		/* nocross */
3222 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3223 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3224 			    VM_NOSLEEP|VM_FIRSTFIT);
3225 			/*
3226 			 * Most likely the allocation failed because
3227 			 * the requested ppa was in use.
3228 			 */
3229 			if (ppa == 0)
3230 				return (EEXIST);
3231 		}
3232 		return (0);
3233 	}
3234 
3235 	/*
3236 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3237 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3238 	 */
3239 	if (ill->ill_ppa == UINT_MAX) {
3240 		end = UINT_MAX - 1;
3241 		start = 0;
3242 	} else {
3243 		end = start = ill->ill_ppa;
3244 	}
3245 
3246 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3247 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3248 		if (start++ >= end) {
3249 			if (ill->ill_ppa == UINT_MAX)
3250 				return (EAGAIN);
3251 			else
3252 				return (EEXIST);
3253 		}
3254 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3255 	}
3256 	ill->ill_ppa = start;
3257 	return (0);
3258 }
3259 
3260 /*
3261  * Insert ill into the list of configured ill's. Once this function completes,
3262  * the ill is globally visible and is available through lookups. More precisely
3263  * this happens after the caller drops the ill_g_lock.
3264  */
3265 static int
3266 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3267 {
3268 	ill_if_t *ill_interface;
3269 	avl_index_t where = 0;
3270 	int error;
3271 	int name_length;
3272 	int index;
3273 	boolean_t check_length = B_FALSE;
3274 	ip_stack_t	*ipst = ill->ill_ipst;
3275 
3276 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3277 
3278 	name_length = mi_strlen(name) + 1;
3279 
3280 	if (isv6)
3281 		index = IP_V6_G_HEAD;
3282 	else
3283 		index = IP_V4_G_HEAD;
3284 
3285 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3286 	/*
3287 	 * Search for interface type based on name
3288 	 */
3289 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3290 		if ((ill_interface->illif_name_len == name_length) &&
3291 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3292 			break;
3293 		}
3294 		ill_interface = ill_interface->illif_next;
3295 	}
3296 
3297 	/*
3298 	 * Interface type not found, create one.
3299 	 */
3300 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3301 		ill_g_head_t ghead;
3302 
3303 		/*
3304 		 * allocate ill_if_t structure
3305 		 */
3306 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3307 		if (ill_interface == NULL) {
3308 			return (ENOMEM);
3309 		}
3310 
3311 		(void) strcpy(ill_interface->illif_name, name);
3312 		ill_interface->illif_name_len = name_length;
3313 
3314 		avl_create(&ill_interface->illif_avl_by_ppa,
3315 		    ill_compare_ppa, sizeof (ill_t),
3316 		    offsetof(struct ill_s, ill_avl_byppa));
3317 
3318 		/*
3319 		 * link the structure in the back to maintain order
3320 		 * of configuration for ifconfig output.
3321 		 */
3322 		ghead = ipst->ips_ill_g_heads[index];
3323 		insque(ill_interface, ghead.ill_g_list_tail);
3324 	}
3325 
3326 	if (ill->ill_ppa == UINT_MAX)
3327 		check_length = B_TRUE;
3328 
3329 	error = ill_alloc_ppa(ill_interface, ill);
3330 	if (error != 0) {
3331 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3332 			ill_delete_interface_type(ill->ill_ifptr);
3333 		return (error);
3334 	}
3335 
3336 	/*
3337 	 * When the ppa is choosen by the system, check that there is
3338 	 * enough space to insert ppa. if a specific ppa was passed in this
3339 	 * check is not required as the interface name passed in will have
3340 	 * the right ppa in it.
3341 	 */
3342 	if (check_length) {
3343 		/*
3344 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3345 		 */
3346 		char buf[sizeof (uint_t) * 3];
3347 
3348 		/*
3349 		 * convert ppa to string to calculate the amount of space
3350 		 * required for it in the name.
3351 		 */
3352 		numtos(ill->ill_ppa, buf);
3353 
3354 		/* Do we have enough space to insert ppa ? */
3355 
3356 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3357 			/* Free ppa and interface type struct */
3358 			if (ill_interface->illif_ppa_arena != NULL) {
3359 				vmem_free(ill_interface->illif_ppa_arena,
3360 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3361 			}
3362 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3363 				ill_delete_interface_type(ill->ill_ifptr);
3364 
3365 			return (EINVAL);
3366 		}
3367 	}
3368 
3369 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3370 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3371 
3372 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3373 	    &where);
3374 	ill->ill_ifptr = ill_interface;
3375 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3376 
3377 	ill_phyint_reinit(ill);
3378 	return (0);
3379 }
3380 
3381 /* Initialize the per phyint ipsq used for serialization */
3382 static boolean_t
3383 ipsq_init(ill_t *ill, boolean_t enter)
3384 {
3385 	ipsq_t  *ipsq;
3386 	ipxop_t	*ipx;
3387 
3388 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3389 		return (B_FALSE);
3390 
3391 	ill->ill_phyint->phyint_ipsq = ipsq;
3392 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3393 	ipx->ipx_ipsq = ipsq;
3394 	ipsq->ipsq_next = ipsq;
3395 	ipsq->ipsq_phyint = ill->ill_phyint;
3396 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3397 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3398 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3399 	if (enter) {
3400 		ipx->ipx_writer = curthread;
3401 		ipx->ipx_forced = B_FALSE;
3402 		ipx->ipx_reentry_cnt = 1;
3403 #ifdef DEBUG
3404 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3405 #endif
3406 	}
3407 	return (B_TRUE);
3408 }
3409 
3410 /*
3411  * ill_init is called by ip_open when a device control stream is opened.
3412  * It does a few initializations, and shoots a DL_INFO_REQ message down
3413  * to the driver.  The response is later picked up in ip_rput_dlpi and
3414  * used to set up default mechanisms for talking to the driver.  (Always
3415  * called as writer.)
3416  *
3417  * If this function returns error, ip_open will call ip_close which in
3418  * turn will call ill_delete to clean up any memory allocated here that
3419  * is not yet freed.
3420  */
3421 int
3422 ill_init(queue_t *q, ill_t *ill)
3423 {
3424 	int	count;
3425 	dl_info_req_t	*dlir;
3426 	mblk_t	*info_mp;
3427 	uchar_t *frag_ptr;
3428 
3429 	/*
3430 	 * The ill is initialized to zero by mi_alloc*(). In addition
3431 	 * some fields already contain valid values, initialized in
3432 	 * ip_open(), before we reach here.
3433 	 */
3434 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3435 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3436 	ill->ill_saved_ire_cnt = 0;
3437 
3438 	ill->ill_rq = q;
3439 	ill->ill_wq = WR(q);
3440 
3441 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3442 	    BPRI_HI);
3443 	if (info_mp == NULL)
3444 		return (ENOMEM);
3445 
3446 	/*
3447 	 * Allocate sufficient space to contain our fragment hash table and
3448 	 * the device name.
3449 	 */
3450 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
3451 	    2 * LIFNAMSIZ + strlen(ipv6_forward_suffix));
3452 	if (frag_ptr == NULL) {
3453 		freemsg(info_mp);
3454 		return (ENOMEM);
3455 	}
3456 	ill->ill_frag_ptr = frag_ptr;
3457 	ill->ill_frag_free_num_pkts = 0;
3458 	ill->ill_last_frag_clean_time = 0;
3459 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3460 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3461 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3462 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3463 		    NULL, MUTEX_DEFAULT, NULL);
3464 	}
3465 
3466 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3467 	if (ill->ill_phyint == NULL) {
3468 		freemsg(info_mp);
3469 		mi_free(frag_ptr);
3470 		return (ENOMEM);
3471 	}
3472 
3473 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3474 	/*
3475 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3476 	 * at this point because of the following reason. If we can't
3477 	 * enter the ipsq at some point and cv_wait, the writer that
3478 	 * wakes us up tries to locate us using the list of all phyints
3479 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3480 	 * If we don't set it now, we risk a missed wakeup.
3481 	 */
3482 	ill->ill_phyint->phyint_illv4 = ill;
3483 	ill->ill_ppa = UINT_MAX;
3484 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3485 
3486 	ill_set_inputfn(ill);
3487 
3488 	if (!ipsq_init(ill, B_TRUE)) {
3489 		freemsg(info_mp);
3490 		mi_free(frag_ptr);
3491 		mi_free(ill->ill_phyint);
3492 		return (ENOMEM);
3493 	}
3494 
3495 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3496 
3497 	/* Frag queue limit stuff */
3498 	ill->ill_frag_count = 0;
3499 	ill->ill_ipf_gen = 0;
3500 
3501 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3502 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3503 	ill->ill_global_timer = INFINITY;
3504 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3505 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3506 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3507 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3508 
3509 	/*
3510 	 * Initialize IPv6 configuration variables.  The IP module is always
3511 	 * opened as an IPv4 module.  Instead tracking down the cases where
3512 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3513 	 * here for convenience, this has no effect until the ill is set to do
3514 	 * IPv6.
3515 	 */
3516 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3517 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3518 	ill->ill_max_buf = ND_MAX_Q;
3519 	ill->ill_refcnt = 0;
3520 
3521 	/* Send down the Info Request to the driver. */
3522 	info_mp->b_datap->db_type = M_PCPROTO;
3523 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3524 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3525 	dlir->dl_primitive = DL_INFO_REQ;
3526 
3527 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3528 
3529 	qprocson(q);
3530 	ill_dlpi_send(ill, info_mp);
3531 
3532 	return (0);
3533 }
3534 
3535 /*
3536  * ill_dls_info
3537  * creates datalink socket info from the device.
3538  */
3539 int
3540 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3541 {
3542 	size_t	len;
3543 
3544 	sdl->sdl_family = AF_LINK;
3545 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3546 	sdl->sdl_type = ill->ill_type;
3547 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3548 	len = strlen(sdl->sdl_data);
3549 	ASSERT(len < 256);
3550 	sdl->sdl_nlen = (uchar_t)len;
3551 	sdl->sdl_alen = ill->ill_phys_addr_length;
3552 	sdl->sdl_slen = 0;
3553 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3554 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3555 
3556 	return (sizeof (struct sockaddr_dl));
3557 }
3558 
3559 /*
3560  * ill_xarp_info
3561  * creates xarp info from the device.
3562  */
3563 static int
3564 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3565 {
3566 	sdl->sdl_family = AF_LINK;
3567 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3568 	sdl->sdl_type = ill->ill_type;
3569 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3570 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3571 	sdl->sdl_alen = ill->ill_phys_addr_length;
3572 	sdl->sdl_slen = 0;
3573 	return (sdl->sdl_nlen);
3574 }
3575 
3576 static int
3577 loopback_kstat_update(kstat_t *ksp, int rw)
3578 {
3579 	kstat_named_t *kn;
3580 	netstackid_t	stackid;
3581 	netstack_t	*ns;
3582 	ip_stack_t	*ipst;
3583 
3584 	if (ksp == NULL || ksp->ks_data == NULL)
3585 		return (EIO);
3586 
3587 	if (rw == KSTAT_WRITE)
3588 		return (EACCES);
3589 
3590 	kn = KSTAT_NAMED_PTR(ksp);
3591 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3592 
3593 	ns = netstack_find_by_stackid(stackid);
3594 	if (ns == NULL)
3595 		return (-1);
3596 
3597 	ipst = ns->netstack_ip;
3598 	if (ipst == NULL) {
3599 		netstack_rele(ns);
3600 		return (-1);
3601 	}
3602 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3603 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3604 	netstack_rele(ns);
3605 	return (0);
3606 }
3607 
3608 /*
3609  * Has ifindex been plumbed already?
3610  */
3611 static boolean_t
3612 phyint_exists(uint_t index, ip_stack_t *ipst)
3613 {
3614 	ASSERT(index != 0);
3615 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3616 
3617 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3618 	    &index, NULL) != NULL);
3619 }
3620 
3621 /* Pick a unique ifindex */
3622 boolean_t
3623 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3624 {
3625 	uint_t starting_index;
3626 
3627 	if (!ipst->ips_ill_index_wrap) {
3628 		*indexp = ipst->ips_ill_index++;
3629 		if (ipst->ips_ill_index == 0) {
3630 			/* Reached the uint_t limit Next time wrap  */
3631 			ipst->ips_ill_index_wrap = B_TRUE;
3632 		}
3633 		return (B_TRUE);
3634 	}
3635 
3636 	/*
3637 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3638 	 * at this point and don't want to call any function that attempts
3639 	 * to get the lock again.
3640 	 */
3641 	starting_index = ipst->ips_ill_index++;
3642 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
3643 		if (ipst->ips_ill_index != 0 &&
3644 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
3645 			/* found unused index - use it */
3646 			*indexp = ipst->ips_ill_index;
3647 			return (B_TRUE);
3648 		}
3649 	}
3650 
3651 	/*
3652 	 * all interface indicies are inuse.
3653 	 */
3654 	return (B_FALSE);
3655 }
3656 
3657 /*
3658  * Assign a unique interface index for the phyint.
3659  */
3660 static boolean_t
3661 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3662 {
3663 	ASSERT(phyi->phyint_ifindex == 0);
3664 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3665 }
3666 
3667 /*
3668  * Initialize the flags on `phyi' as per the provided mactype.
3669  */
3670 static void
3671 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3672 {
3673 	uint64_t flags = 0;
3674 
3675 	/*
3676 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3677 	 * we always presume the underlying hardware is working and set
3678 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3679 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3680 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3681 	 */
3682 	if (mactype == SUNW_DL_IPMP)
3683 		flags |= PHYI_FAILED;
3684 	else
3685 		flags |= PHYI_RUNNING;
3686 
3687 	switch (mactype) {
3688 	case SUNW_DL_VNI:
3689 		flags |= PHYI_VIRTUAL;
3690 		break;
3691 	case SUNW_DL_IPMP:
3692 		flags |= PHYI_IPMP;
3693 		break;
3694 	case DL_LOOP:
3695 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3696 		break;
3697 	}
3698 
3699 	mutex_enter(&phyi->phyint_lock);
3700 	phyi->phyint_flags |= flags;
3701 	mutex_exit(&phyi->phyint_lock);
3702 }
3703 
3704 /*
3705  * Return a pointer to the ill which matches the supplied name.  Note that
3706  * the ill name length includes the null termination character.  (May be
3707  * called as writer.)
3708  * If do_alloc and the interface is "lo0" it will be automatically created.
3709  * Cannot bump up reference on condemned ills. So dup detect can't be done
3710  * using this func.
3711  */
3712 ill_t *
3713 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3714     boolean_t *did_alloc, ip_stack_t *ipst)
3715 {
3716 	ill_t	*ill;
3717 	ipif_t	*ipif;
3718 	ipsq_t	*ipsq;
3719 	kstat_named_t	*kn;
3720 	boolean_t isloopback;
3721 	in6_addr_t ov6addr;
3722 
3723 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3724 
3725 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3726 	ill = ill_find_by_name(name, isv6, ipst);
3727 	rw_exit(&ipst->ips_ill_g_lock);
3728 	if (ill != NULL)
3729 		return (ill);
3730 
3731 	/*
3732 	 * Couldn't find it.  Does this happen to be a lookup for the
3733 	 * loopback device and are we allowed to allocate it?
3734 	 */
3735 	if (!isloopback || !do_alloc)
3736 		return (NULL);
3737 
3738 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3739 	ill = ill_find_by_name(name, isv6, ipst);
3740 	if (ill != NULL) {
3741 		rw_exit(&ipst->ips_ill_g_lock);
3742 		return (ill);
3743 	}
3744 
3745 	/* Create the loopback device on demand */
3746 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3747 	    sizeof (ipif_loopback_name), BPRI_MED));
3748 	if (ill == NULL)
3749 		goto done;
3750 
3751 	*ill = ill_null;
3752 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3753 	ill->ill_ipst = ipst;
3754 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3755 	netstack_hold(ipst->ips_netstack);
3756 	/*
3757 	 * For exclusive stacks we set the zoneid to zero
3758 	 * to make IP operate as if in the global zone.
3759 	 */
3760 	ill->ill_zoneid = GLOBAL_ZONEID;
3761 
3762 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3763 	if (ill->ill_phyint == NULL)
3764 		goto done;
3765 
3766 	if (isv6)
3767 		ill->ill_phyint->phyint_illv6 = ill;
3768 	else
3769 		ill->ill_phyint->phyint_illv4 = ill;
3770 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3771 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3772 
3773 	if (isv6) {
3774 		ill->ill_isv6 = B_TRUE;
3775 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3776 	} else {
3777 		ill->ill_max_frag = ip_loopback_mtuplus;
3778 	}
3779 	if (!ill_allocate_mibs(ill))
3780 		goto done;
3781 	ill->ill_current_frag = ill->ill_max_frag;
3782 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3783 	/*
3784 	 * ipif_loopback_name can't be pointed at directly because its used
3785 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3786 	 * from the glist, ill_glist_delete() sets the first character of
3787 	 * ill_name to '\0'.
3788 	 */
3789 	ill->ill_name = (char *)ill + sizeof (*ill);
3790 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3791 	ill->ill_name_length = sizeof (ipif_loopback_name);
3792 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3793 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3794 
3795 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3796 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3797 	ill->ill_global_timer = INFINITY;
3798 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3799 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3800 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3801 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3802 
3803 	/* No resolver here. */
3804 	ill->ill_net_type = IRE_LOOPBACK;
3805 
3806 	/* Initialize the ipsq */
3807 	if (!ipsq_init(ill, B_FALSE))
3808 		goto done;
3809 
3810 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3811 	if (ipif == NULL)
3812 		goto done;
3813 
3814 	ill->ill_flags = ILLF_MULTICAST;
3815 
3816 	ov6addr = ipif->ipif_v6lcl_addr;
3817 	/* Set up default loopback address and mask. */
3818 	if (!isv6) {
3819 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3820 
3821 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3822 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3823 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3824 		    ipif->ipif_v6subnet);
3825 		ill->ill_flags |= ILLF_IPV4;
3826 	} else {
3827 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3828 		ipif->ipif_v6net_mask = ipv6_all_ones;
3829 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3830 		    ipif->ipif_v6subnet);
3831 		ill->ill_flags |= ILLF_IPV6;
3832 	}
3833 
3834 	/*
3835 	 * Chain us in at the end of the ill list. hold the ill
3836 	 * before we make it globally visible. 1 for the lookup.
3837 	 */
3838 	ill->ill_refcnt = 0;
3839 	ill_refhold(ill);
3840 
3841 	ill->ill_frag_count = 0;
3842 	ill->ill_frag_free_num_pkts = 0;
3843 	ill->ill_last_frag_clean_time = 0;
3844 
3845 	ipsq = ill->ill_phyint->phyint_ipsq;
3846 
3847 	ill_set_inputfn(ill);
3848 
3849 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3850 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3851 
3852 	/* Let SCTP know so that it can add this to its list */
3853 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3854 
3855 	/*
3856 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3857 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3858 	 * requires to be after ill_glist_insert() since we need the
3859 	 * ill_index set. Pass on ipv6_loopback as the old address.
3860 	 */
3861 	sctp_update_ipif_addr(ipif, ov6addr);
3862 
3863 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3864 
3865 	/*
3866 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3867 	 * If so, free our original one.
3868 	 */
3869 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3870 		ipsq_delete(ipsq);
3871 
3872 	if (ipst->ips_loopback_ksp == NULL) {
3873 		/* Export loopback interface statistics */
3874 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3875 		    ipif_loopback_name, "net",
3876 		    KSTAT_TYPE_NAMED, 2, 0,
3877 		    ipst->ips_netstack->netstack_stackid);
3878 		if (ipst->ips_loopback_ksp != NULL) {
3879 			ipst->ips_loopback_ksp->ks_update =
3880 			    loopback_kstat_update;
3881 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3882 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3883 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3884 			ipst->ips_loopback_ksp->ks_private =
3885 			    (void *)(uintptr_t)ipst->ips_netstack->
3886 			    netstack_stackid;
3887 			kstat_install(ipst->ips_loopback_ksp);
3888 		}
3889 	}
3890 
3891 	*did_alloc = B_TRUE;
3892 	rw_exit(&ipst->ips_ill_g_lock);
3893 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3894 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3895 	return (ill);
3896 done:
3897 	if (ill != NULL) {
3898 		if (ill->ill_phyint != NULL) {
3899 			ipsq = ill->ill_phyint->phyint_ipsq;
3900 			if (ipsq != NULL) {
3901 				ipsq->ipsq_phyint = NULL;
3902 				ipsq_delete(ipsq);
3903 			}
3904 			mi_free(ill->ill_phyint);
3905 		}
3906 		ill_free_mib(ill);
3907 		if (ill->ill_ipst != NULL)
3908 			netstack_rele(ill->ill_ipst->ips_netstack);
3909 		mi_free(ill);
3910 	}
3911 	rw_exit(&ipst->ips_ill_g_lock);
3912 	return (NULL);
3913 }
3914 
3915 /*
3916  * For IPP calls - use the ip_stack_t for global stack.
3917  */
3918 ill_t *
3919 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3920 {
3921 	ip_stack_t	*ipst;
3922 	ill_t		*ill;
3923 
3924 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3925 	if (ipst == NULL) {
3926 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3927 		return (NULL);
3928 	}
3929 
3930 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3931 	netstack_rele(ipst->ips_netstack);
3932 	return (ill);
3933 }
3934 
3935 /*
3936  * Return a pointer to the ill which matches the index and IP version type.
3937  */
3938 ill_t *
3939 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3940 {
3941 	ill_t	*ill;
3942 	phyint_t *phyi;
3943 
3944 	/*
3945 	 * Indexes are stored in the phyint - a common structure
3946 	 * to both IPv4 and IPv6.
3947 	 */
3948 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3949 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3950 	    (void *) &index, NULL);
3951 	if (phyi != NULL) {
3952 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3953 		if (ill != NULL) {
3954 			mutex_enter(&ill->ill_lock);
3955 			if (!ILL_IS_CONDEMNED(ill)) {
3956 				ill_refhold_locked(ill);
3957 				mutex_exit(&ill->ill_lock);
3958 				rw_exit(&ipst->ips_ill_g_lock);
3959 				return (ill);
3960 			}
3961 			mutex_exit(&ill->ill_lock);
3962 		}
3963 	}
3964 	rw_exit(&ipst->ips_ill_g_lock);
3965 	return (NULL);
3966 }
3967 
3968 /*
3969  * Verify whether or not an interface index is valid for the specified zoneid
3970  * to transmit packets.
3971  * It can be zero (meaning "reset") or an interface index assigned
3972  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3973  */
3974 boolean_t
3975 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3976     ip_stack_t *ipst)
3977 {
3978 	ill_t		*ill;
3979 
3980 	if (ifindex == 0)
3981 		return (B_TRUE);
3982 
3983 	ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3984 	if (ill == NULL)
3985 		return (B_FALSE);
3986 	if (IS_VNI(ill)) {
3987 		ill_refrele(ill);
3988 		return (B_FALSE);
3989 	}
3990 	ill_refrele(ill);
3991 	return (B_TRUE);
3992 }
3993 
3994 /*
3995  * Return the ifindex next in sequence after the passed in ifindex.
3996  * If there is no next ifindex for the given protocol, return 0.
3997  */
3998 uint_t
3999 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
4000 {
4001 	phyint_t *phyi;
4002 	phyint_t *phyi_initial;
4003 	uint_t   ifindex;
4004 
4005 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4006 
4007 	if (index == 0) {
4008 		phyi = avl_first(
4009 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4010 	} else {
4011 		phyi = phyi_initial = avl_find(
4012 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4013 		    (void *) &index, NULL);
4014 	}
4015 
4016 	for (; phyi != NULL;
4017 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4018 	    phyi, AVL_AFTER)) {
4019 		/*
4020 		 * If we're not returning the first interface in the tree
4021 		 * and we still haven't moved past the phyint_t that
4022 		 * corresponds to index, avl_walk needs to be called again
4023 		 */
4024 		if (!((index != 0) && (phyi == phyi_initial))) {
4025 			if (isv6) {
4026 				if ((phyi->phyint_illv6) &&
4027 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
4028 				    (phyi->phyint_illv6->ill_isv6 == 1))
4029 					break;
4030 			} else {
4031 				if ((phyi->phyint_illv4) &&
4032 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
4033 				    (phyi->phyint_illv4->ill_isv6 == 0))
4034 					break;
4035 			}
4036 		}
4037 	}
4038 
4039 	rw_exit(&ipst->ips_ill_g_lock);
4040 
4041 	if (phyi != NULL)
4042 		ifindex = phyi->phyint_ifindex;
4043 	else
4044 		ifindex = 0;
4045 
4046 	return (ifindex);
4047 }
4048 
4049 /*
4050  * Return the ifindex for the named interface.
4051  * If there is no next ifindex for the interface, return 0.
4052  */
4053 uint_t
4054 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
4055 {
4056 	phyint_t	*phyi;
4057 	avl_index_t	where = 0;
4058 	uint_t		ifindex;
4059 
4060 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4061 
4062 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4063 	    name, &where)) == NULL) {
4064 		rw_exit(&ipst->ips_ill_g_lock);
4065 		return (0);
4066 	}
4067 
4068 	ifindex = phyi->phyint_ifindex;
4069 
4070 	rw_exit(&ipst->ips_ill_g_lock);
4071 
4072 	return (ifindex);
4073 }
4074 
4075 /*
4076  * Return the ifindex to be used by upper layer protocols for instance
4077  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4078  */
4079 uint_t
4080 ill_get_upper_ifindex(const ill_t *ill)
4081 {
4082 	if (IS_UNDER_IPMP(ill))
4083 		return (ipmp_ill_get_ipmp_ifindex(ill));
4084 	else
4085 		return (ill->ill_phyint->phyint_ifindex);
4086 }
4087 
4088 
4089 /*
4090  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4091  * that gives a running thread a reference to the ill. This reference must be
4092  * released by the thread when it is done accessing the ill and related
4093  * objects. ill_refcnt can not be used to account for static references
4094  * such as other structures pointing to an ill. Callers must generally
4095  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4096  * or be sure that the ill is not being deleted or changing state before
4097  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4098  * ill won't change any of its critical state such as address, netmask etc.
4099  */
4100 void
4101 ill_refhold(ill_t *ill)
4102 {
4103 	mutex_enter(&ill->ill_lock);
4104 	ill->ill_refcnt++;
4105 	ILL_TRACE_REF(ill);
4106 	mutex_exit(&ill->ill_lock);
4107 }
4108 
4109 void
4110 ill_refhold_locked(ill_t *ill)
4111 {
4112 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4113 	ill->ill_refcnt++;
4114 	ILL_TRACE_REF(ill);
4115 }
4116 
4117 /* Returns true if we managed to get a refhold */
4118 boolean_t
4119 ill_check_and_refhold(ill_t *ill)
4120 {
4121 	mutex_enter(&ill->ill_lock);
4122 	if (!ILL_IS_CONDEMNED(ill)) {
4123 		ill_refhold_locked(ill);
4124 		mutex_exit(&ill->ill_lock);
4125 		return (B_TRUE);
4126 	}
4127 	mutex_exit(&ill->ill_lock);
4128 	return (B_FALSE);
4129 }
4130 
4131 /*
4132  * Must not be called while holding any locks. Otherwise if this is
4133  * the last reference to be released, there is a chance of recursive mutex
4134  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4135  * to restart an ioctl.
4136  */
4137 void
4138 ill_refrele(ill_t *ill)
4139 {
4140 	mutex_enter(&ill->ill_lock);
4141 	ASSERT(ill->ill_refcnt != 0);
4142 	ill->ill_refcnt--;
4143 	ILL_UNTRACE_REF(ill);
4144 	if (ill->ill_refcnt != 0) {
4145 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4146 		mutex_exit(&ill->ill_lock);
4147 		return;
4148 	}
4149 
4150 	/* Drops the ill_lock */
4151 	ipif_ill_refrele_tail(ill);
4152 }
4153 
4154 /*
4155  * Obtain a weak reference count on the ill. This reference ensures the
4156  * ill won't be freed, but the ill may change any of its critical state
4157  * such as netmask, address etc. Returns an error if the ill has started
4158  * closing.
4159  */
4160 boolean_t
4161 ill_waiter_inc(ill_t *ill)
4162 {
4163 	mutex_enter(&ill->ill_lock);
4164 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4165 		mutex_exit(&ill->ill_lock);
4166 		return (B_FALSE);
4167 	}
4168 	ill->ill_waiters++;
4169 	mutex_exit(&ill->ill_lock);
4170 	return (B_TRUE);
4171 }
4172 
4173 void
4174 ill_waiter_dcr(ill_t *ill)
4175 {
4176 	mutex_enter(&ill->ill_lock);
4177 	ill->ill_waiters--;
4178 	if (ill->ill_waiters == 0)
4179 		cv_broadcast(&ill->ill_cv);
4180 	mutex_exit(&ill->ill_lock);
4181 }
4182 
4183 /*
4184  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4185  * driver.  We construct best guess defaults for lower level information that
4186  * we need.  If an interface is brought up without injection of any overriding
4187  * information from outside, we have to be ready to go with these defaults.
4188  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4189  * we primarely want the dl_provider_style.
4190  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4191  * at which point we assume the other part of the information is valid.
4192  */
4193 void
4194 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4195 {
4196 	uchar_t		*brdcst_addr;
4197 	uint_t		brdcst_addr_length, phys_addr_length;
4198 	t_scalar_t	sap_length;
4199 	dl_info_ack_t	*dlia;
4200 	ip_m_t		*ipm;
4201 	dl_qos_cl_sel1_t *sel1;
4202 	int		min_mtu;
4203 
4204 	ASSERT(IAM_WRITER_ILL(ill));
4205 
4206 	/*
4207 	 * Till the ill is fully up  the ill is not globally visible.
4208 	 * So no need for a lock.
4209 	 */
4210 	dlia = (dl_info_ack_t *)mp->b_rptr;
4211 	ill->ill_mactype = dlia->dl_mac_type;
4212 
4213 	ipm = ip_m_lookup(dlia->dl_mac_type);
4214 	if (ipm == NULL) {
4215 		ipm = ip_m_lookup(DL_OTHER);
4216 		ASSERT(ipm != NULL);
4217 	}
4218 	ill->ill_media = ipm;
4219 
4220 	/*
4221 	 * When the new DLPI stuff is ready we'll pull lengths
4222 	 * from dlia.
4223 	 */
4224 	if (dlia->dl_version == DL_VERSION_2) {
4225 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4226 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4227 		    brdcst_addr_length);
4228 		if (brdcst_addr == NULL) {
4229 			brdcst_addr_length = 0;
4230 		}
4231 		sap_length = dlia->dl_sap_length;
4232 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4233 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4234 		    brdcst_addr_length, sap_length, phys_addr_length));
4235 	} else {
4236 		brdcst_addr_length = 6;
4237 		brdcst_addr = ip_six_byte_all_ones;
4238 		sap_length = -2;
4239 		phys_addr_length = brdcst_addr_length;
4240 	}
4241 
4242 	ill->ill_bcast_addr_length = brdcst_addr_length;
4243 	ill->ill_phys_addr_length = phys_addr_length;
4244 	ill->ill_sap_length = sap_length;
4245 
4246 	/*
4247 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4248 	 * but we must ensure a minimum IP MTU is used since other bits of
4249 	 * IP will fly apart otherwise.
4250 	 */
4251 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4252 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4253 	ill->ill_current_frag = ill->ill_max_frag;
4254 	ill->ill_mtu = ill->ill_max_frag;
4255 
4256 	ill->ill_type = ipm->ip_m_type;
4257 
4258 	if (!ill->ill_dlpi_style_set) {
4259 		if (dlia->dl_provider_style == DL_STYLE2)
4260 			ill->ill_needs_attach = 1;
4261 
4262 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4263 
4264 		/*
4265 		 * Allocate the first ipif on this ill.  We don't delay it
4266 		 * further as ioctl handling assumes at least one ipif exists.
4267 		 *
4268 		 * At this point we don't know whether the ill is v4 or v6.
4269 		 * We will know this whan the SIOCSLIFNAME happens and
4270 		 * the correct value for ill_isv6 will be assigned in
4271 		 * ipif_set_values(). We need to hold the ill lock and
4272 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4273 		 * the wakeup.
4274 		 */
4275 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4276 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4277 		mutex_enter(&ill->ill_lock);
4278 		ASSERT(ill->ill_dlpi_style_set == 0);
4279 		ill->ill_dlpi_style_set = 1;
4280 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4281 		cv_broadcast(&ill->ill_cv);
4282 		mutex_exit(&ill->ill_lock);
4283 		freemsg(mp);
4284 		return;
4285 	}
4286 	ASSERT(ill->ill_ipif != NULL);
4287 	/*
4288 	 * We know whether it is IPv4 or IPv6 now, as this is the
4289 	 * second DL_INFO_ACK we are recieving in response to the
4290 	 * DL_INFO_REQ sent in ipif_set_values.
4291 	 */
4292 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4293 	/*
4294 	 * Clear all the flags that were set based on ill_bcast_addr_length
4295 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4296 	 * changed now and we need to re-evaluate.
4297 	 */
4298 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4299 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4300 
4301 	/*
4302 	 * Free ill_bcast_mp as things could have changed now.
4303 	 *
4304 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4305 	 * with no underlying interfaces (and thus an unknown broadcast
4306 	 * address length), but we enforce that an interface is broadcast-
4307 	 * capable as part of allowing it to join a group.
4308 	 */
4309 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4310 		if (ill->ill_bcast_mp != NULL)
4311 			freemsg(ill->ill_bcast_mp);
4312 		ill->ill_net_type = IRE_IF_NORESOLVER;
4313 
4314 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4315 		    ill->ill_phys_addr_length,
4316 		    ill->ill_sap,
4317 		    ill->ill_sap_length);
4318 
4319 		if (ill->ill_isv6)
4320 			/*
4321 			 * Note: xresolv interfaces will eventually need NOARP
4322 			 * set here as well, but that will require those
4323 			 * external resolvers to have some knowledge of
4324 			 * that flag and act appropriately. Not to be changed
4325 			 * at present.
4326 			 */
4327 			ill->ill_flags |= ILLF_NONUD;
4328 		else
4329 			ill->ill_flags |= ILLF_NOARP;
4330 
4331 		if (ill->ill_mactype == SUNW_DL_VNI) {
4332 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4333 		} else if (ill->ill_phys_addr_length == 0 ||
4334 		    ill->ill_mactype == DL_IPV4 ||
4335 		    ill->ill_mactype == DL_IPV6) {
4336 			/*
4337 			 * The underying link is point-to-point, so mark the
4338 			 * interface as such.  We can do IP multicast over
4339 			 * such a link since it transmits all network-layer
4340 			 * packets to the remote side the same way.
4341 			 */
4342 			ill->ill_flags |= ILLF_MULTICAST;
4343 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4344 		}
4345 	} else {
4346 		ill->ill_net_type = IRE_IF_RESOLVER;
4347 		if (ill->ill_bcast_mp != NULL)
4348 			freemsg(ill->ill_bcast_mp);
4349 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4350 		    ill->ill_bcast_addr_length, ill->ill_sap,
4351 		    ill->ill_sap_length);
4352 		/*
4353 		 * Later detect lack of DLPI driver multicast
4354 		 * capability by catching DL_ENABMULTI errors in
4355 		 * ip_rput_dlpi.
4356 		 */
4357 		ill->ill_flags |= ILLF_MULTICAST;
4358 		if (!ill->ill_isv6)
4359 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4360 	}
4361 
4362 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4363 	if (ill->ill_mactype == SUNW_DL_IPMP)
4364 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4365 
4366 	/* By default an interface does not support any CoS marking */
4367 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4368 
4369 	/*
4370 	 * If we get QoS information in DL_INFO_ACK, the device supports
4371 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4372 	 */
4373 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4374 	    dlia->dl_qos_length);
4375 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4376 		ill->ill_flags |= ILLF_COS_ENABLED;
4377 	}
4378 
4379 	/* Clear any previous error indication. */
4380 	ill->ill_error = 0;
4381 	freemsg(mp);
4382 }
4383 
4384 /*
4385  * Perform various checks to verify that an address would make sense as a
4386  * local, remote, or subnet interface address.
4387  */
4388 static boolean_t
4389 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4390 {
4391 	ipaddr_t	net_mask;
4392 
4393 	/*
4394 	 * Don't allow all zeroes, or all ones, but allow
4395 	 * all ones netmask.
4396 	 */
4397 	if ((net_mask = ip_net_mask(addr)) == 0)
4398 		return (B_FALSE);
4399 	/* A given netmask overrides the "guess" netmask */
4400 	if (subnet_mask != 0)
4401 		net_mask = subnet_mask;
4402 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4403 	    (addr == (addr | ~net_mask)))) {
4404 		return (B_FALSE);
4405 	}
4406 
4407 	/*
4408 	 * Even if the netmask is all ones, we do not allow address to be
4409 	 * 255.255.255.255
4410 	 */
4411 	if (addr == INADDR_BROADCAST)
4412 		return (B_FALSE);
4413 
4414 	if (CLASSD(addr))
4415 		return (B_FALSE);
4416 
4417 	return (B_TRUE);
4418 }
4419 
4420 #define	V6_IPIF_LINKLOCAL(p)	\
4421 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4422 
4423 /*
4424  * Compare two given ipifs and check if the second one is better than
4425  * the first one using the order of preference (not taking deprecated
4426  * into acount) specified in ipif_lookup_multicast().
4427  */
4428 static boolean_t
4429 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4430 {
4431 	/* Check the least preferred first. */
4432 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4433 		/* If both ipifs are the same, use the first one. */
4434 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4435 			return (B_FALSE);
4436 		else
4437 			return (B_TRUE);
4438 	}
4439 
4440 	/* For IPv6, check for link local address. */
4441 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4442 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4443 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4444 			/* The second one is equal or less preferred. */
4445 			return (B_FALSE);
4446 		} else {
4447 			return (B_TRUE);
4448 		}
4449 	}
4450 
4451 	/* Then check for point to point interface. */
4452 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4453 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4454 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4455 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4456 			return (B_FALSE);
4457 		} else {
4458 			return (B_TRUE);
4459 		}
4460 	}
4461 
4462 	/* old_ipif is a normal interface, so no need to use the new one. */
4463 	return (B_FALSE);
4464 }
4465 
4466 /*
4467  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4468  * The ipif must be up, and its ill must multicast-capable, not
4469  * condemned, not an underlying interface in an IPMP group, and
4470  * not a VNI interface.  Order of preference:
4471  *
4472  * 	1a. normal
4473  * 	1b. normal, but deprecated
4474  * 	2a. point to point
4475  * 	2b. point to point, but deprecated
4476  * 	3a. link local
4477  * 	3b. link local, but deprecated
4478  * 	4. loopback.
4479  */
4480 static ipif_t *
4481 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4482 {
4483 	ill_t			*ill;
4484 	ill_walk_context_t	ctx;
4485 	ipif_t			*ipif;
4486 	ipif_t			*saved_ipif = NULL;
4487 	ipif_t			*dep_ipif = NULL;
4488 
4489 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4490 	if (isv6)
4491 		ill = ILL_START_WALK_V6(&ctx, ipst);
4492 	else
4493 		ill = ILL_START_WALK_V4(&ctx, ipst);
4494 
4495 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4496 		mutex_enter(&ill->ill_lock);
4497 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4498 		    ILL_IS_CONDEMNED(ill) ||
4499 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4500 			mutex_exit(&ill->ill_lock);
4501 			continue;
4502 		}
4503 		for (ipif = ill->ill_ipif; ipif != NULL;
4504 		    ipif = ipif->ipif_next) {
4505 			if (zoneid != ipif->ipif_zoneid &&
4506 			    zoneid != ALL_ZONES &&
4507 			    ipif->ipif_zoneid != ALL_ZONES) {
4508 				continue;
4509 			}
4510 			if (!(ipif->ipif_flags & IPIF_UP) ||
4511 			    IPIF_IS_CONDEMNED(ipif)) {
4512 				continue;
4513 			}
4514 
4515 			/*
4516 			 * Found one candidate.  If it is deprecated,
4517 			 * remember it in dep_ipif.  If it is not deprecated,
4518 			 * remember it in saved_ipif.
4519 			 */
4520 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4521 				if (dep_ipif == NULL) {
4522 					dep_ipif = ipif;
4523 				} else if (ipif_comp_multi(dep_ipif, ipif,
4524 				    isv6)) {
4525 					/*
4526 					 * If the previous dep_ipif does not
4527 					 * belong to the same ill, we've done
4528 					 * a ipif_refhold() on it.  So we need
4529 					 * to release it.
4530 					 */
4531 					if (dep_ipif->ipif_ill != ill)
4532 						ipif_refrele(dep_ipif);
4533 					dep_ipif = ipif;
4534 				}
4535 				continue;
4536 			}
4537 			if (saved_ipif == NULL) {
4538 				saved_ipif = ipif;
4539 			} else {
4540 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4541 					if (saved_ipif->ipif_ill != ill)
4542 						ipif_refrele(saved_ipif);
4543 					saved_ipif = ipif;
4544 				}
4545 			}
4546 		}
4547 		/*
4548 		 * Before going to the next ill, do a ipif_refhold() on the
4549 		 * saved ones.
4550 		 */
4551 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4552 			ipif_refhold_locked(saved_ipif);
4553 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4554 			ipif_refhold_locked(dep_ipif);
4555 		mutex_exit(&ill->ill_lock);
4556 	}
4557 	rw_exit(&ipst->ips_ill_g_lock);
4558 
4559 	/*
4560 	 * If we have only the saved_ipif, return it.  But if we have both
4561 	 * saved_ipif and dep_ipif, check to see which one is better.
4562 	 */
4563 	if (saved_ipif != NULL) {
4564 		if (dep_ipif != NULL) {
4565 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4566 				ipif_refrele(saved_ipif);
4567 				return (dep_ipif);
4568 			} else {
4569 				ipif_refrele(dep_ipif);
4570 				return (saved_ipif);
4571 			}
4572 		}
4573 		return (saved_ipif);
4574 	} else {
4575 		return (dep_ipif);
4576 	}
4577 }
4578 
4579 ill_t *
4580 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4581 {
4582 	ipif_t *ipif;
4583 	ill_t *ill;
4584 
4585 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4586 	if (ipif == NULL)
4587 		return (NULL);
4588 
4589 	ill = ipif->ipif_ill;
4590 	ill_refhold(ill);
4591 	ipif_refrele(ipif);
4592 	return (ill);
4593 }
4594 
4595 /*
4596  * This function is called when an application does not specify an interface
4597  * to be used for multicast traffic (joining a group/sending data).  It
4598  * calls ire_lookup_multi() to look for an interface route for the
4599  * specified multicast group.  Doing this allows the administrator to add
4600  * prefix routes for multicast to indicate which interface to be used for
4601  * multicast traffic in the above scenario.  The route could be for all
4602  * multicast (224.0/4), for a single multicast group (a /32 route) or
4603  * anything in between.  If there is no such multicast route, we just find
4604  * any multicast capable interface and return it.  The returned ipif
4605  * is refhold'ed.
4606  *
4607  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4608  * unicast table. This is used by CGTP.
4609  */
4610 ill_t *
4611 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4612     boolean_t *multirtp, ipaddr_t *setsrcp)
4613 {
4614 	ill_t			*ill;
4615 
4616 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4617 	if (ill != NULL)
4618 		return (ill);
4619 
4620 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4621 }
4622 
4623 /*
4624  * Look for an ipif with the specified interface address and destination.
4625  * The destination address is used only for matching point-to-point interfaces.
4626  */
4627 ipif_t *
4628 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4629 {
4630 	ipif_t	*ipif;
4631 	ill_t	*ill;
4632 	ill_walk_context_t ctx;
4633 
4634 	/*
4635 	 * First match all the point-to-point interfaces
4636 	 * before looking at non-point-to-point interfaces.
4637 	 * This is done to avoid returning non-point-to-point
4638 	 * ipif instead of unnumbered point-to-point ipif.
4639 	 */
4640 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4641 	ill = ILL_START_WALK_V4(&ctx, ipst);
4642 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4643 		mutex_enter(&ill->ill_lock);
4644 		for (ipif = ill->ill_ipif; ipif != NULL;
4645 		    ipif = ipif->ipif_next) {
4646 			/* Allow the ipif to be down */
4647 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4648 			    (ipif->ipif_lcl_addr == if_addr) &&
4649 			    (ipif->ipif_pp_dst_addr == dst)) {
4650 				if (!IPIF_IS_CONDEMNED(ipif)) {
4651 					ipif_refhold_locked(ipif);
4652 					mutex_exit(&ill->ill_lock);
4653 					rw_exit(&ipst->ips_ill_g_lock);
4654 					return (ipif);
4655 				}
4656 			}
4657 		}
4658 		mutex_exit(&ill->ill_lock);
4659 	}
4660 	rw_exit(&ipst->ips_ill_g_lock);
4661 
4662 	/* lookup the ipif based on interface address */
4663 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4664 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4665 	return (ipif);
4666 }
4667 
4668 /*
4669  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4670  */
4671 static ipif_t *
4672 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4673     zoneid_t zoneid, ip_stack_t *ipst)
4674 {
4675 	ipif_t  *ipif;
4676 	ill_t   *ill;
4677 	boolean_t ptp = B_FALSE;
4678 	ill_walk_context_t	ctx;
4679 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4680 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4681 
4682 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4683 	/*
4684 	 * Repeat twice, first based on local addresses and
4685 	 * next time for pointopoint.
4686 	 */
4687 repeat:
4688 	ill = ILL_START_WALK_V4(&ctx, ipst);
4689 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4690 		if (match_ill != NULL && ill != match_ill &&
4691 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4692 			continue;
4693 		}
4694 		mutex_enter(&ill->ill_lock);
4695 		for (ipif = ill->ill_ipif; ipif != NULL;
4696 		    ipif = ipif->ipif_next) {
4697 			if (zoneid != ALL_ZONES &&
4698 			    zoneid != ipif->ipif_zoneid &&
4699 			    ipif->ipif_zoneid != ALL_ZONES)
4700 				continue;
4701 
4702 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4703 				continue;
4704 
4705 			/* Allow the ipif to be down */
4706 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4707 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4708 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4709 			    (ipif->ipif_pp_dst_addr == addr))) {
4710 				if (!IPIF_IS_CONDEMNED(ipif)) {
4711 					ipif_refhold_locked(ipif);
4712 					mutex_exit(&ill->ill_lock);
4713 					rw_exit(&ipst->ips_ill_g_lock);
4714 					return (ipif);
4715 				}
4716 			}
4717 		}
4718 		mutex_exit(&ill->ill_lock);
4719 	}
4720 
4721 	/* If we already did the ptp case, then we are done */
4722 	if (ptp) {
4723 		rw_exit(&ipst->ips_ill_g_lock);
4724 		return (NULL);
4725 	}
4726 	ptp = B_TRUE;
4727 	goto repeat;
4728 }
4729 
4730 /*
4731  * Lookup an ipif with the specified address.  For point-to-point links we
4732  * look for matches on either the destination address or the local address,
4733  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4734  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4735  * (or illgrp if `match_ill' is in an IPMP group).
4736  */
4737 ipif_t *
4738 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4739     ip_stack_t *ipst)
4740 {
4741 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4742 	    zoneid, ipst));
4743 }
4744 
4745 /*
4746  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4747  * except that we will only return an address if it is not marked as
4748  * IPIF_DUPLICATE
4749  */
4750 ipif_t *
4751 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4752     ip_stack_t *ipst)
4753 {
4754 	return (ipif_lookup_addr_common(addr, match_ill,
4755 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4756 	    zoneid, ipst));
4757 }
4758 
4759 /*
4760  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4761  * `match_ill' across the IPMP group.  This function is only needed in some
4762  * corner-cases; almost everything should use ipif_lookup_addr().
4763  */
4764 ipif_t *
4765 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4766 {
4767 	ASSERT(match_ill != NULL);
4768 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4769 	    ipst));
4770 }
4771 
4772 /*
4773  * Look for an ipif with the specified address. For point-point links
4774  * we look for matches on either the destination address and the local
4775  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4776  * is set.
4777  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4778  * ill (or illgrp if `match_ill' is in an IPMP group).
4779  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4780  */
4781 zoneid_t
4782 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4783 {
4784 	zoneid_t zoneid;
4785 	ipif_t  *ipif;
4786 	ill_t   *ill;
4787 	boolean_t ptp = B_FALSE;
4788 	ill_walk_context_t	ctx;
4789 
4790 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4791 	/*
4792 	 * Repeat twice, first based on local addresses and
4793 	 * next time for pointopoint.
4794 	 */
4795 repeat:
4796 	ill = ILL_START_WALK_V4(&ctx, ipst);
4797 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4798 		if (match_ill != NULL && ill != match_ill &&
4799 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4800 			continue;
4801 		}
4802 		mutex_enter(&ill->ill_lock);
4803 		for (ipif = ill->ill_ipif; ipif != NULL;
4804 		    ipif = ipif->ipif_next) {
4805 			/* Allow the ipif to be down */
4806 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4807 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4808 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4809 			    (ipif->ipif_pp_dst_addr == addr)) &&
4810 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4811 				zoneid = ipif->ipif_zoneid;
4812 				mutex_exit(&ill->ill_lock);
4813 				rw_exit(&ipst->ips_ill_g_lock);
4814 				/*
4815 				 * If ipif_zoneid was ALL_ZONES then we have
4816 				 * a trusted extensions shared IP address.
4817 				 * In that case GLOBAL_ZONEID works to send.
4818 				 */
4819 				if (zoneid == ALL_ZONES)
4820 					zoneid = GLOBAL_ZONEID;
4821 				return (zoneid);
4822 			}
4823 		}
4824 		mutex_exit(&ill->ill_lock);
4825 	}
4826 
4827 	/* If we already did the ptp case, then we are done */
4828 	if (ptp) {
4829 		rw_exit(&ipst->ips_ill_g_lock);
4830 		return (ALL_ZONES);
4831 	}
4832 	ptp = B_TRUE;
4833 	goto repeat;
4834 }
4835 
4836 /*
4837  * Look for an ipif that matches the specified remote address i.e. the
4838  * ipif that would receive the specified packet.
4839  * First look for directly connected interfaces and then do a recursive
4840  * IRE lookup and pick the first ipif corresponding to the source address in the
4841  * ire.
4842  * Returns: held ipif
4843  *
4844  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4845  */
4846 ipif_t *
4847 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4848 {
4849 	ipif_t	*ipif;
4850 
4851 	ASSERT(!ill->ill_isv6);
4852 
4853 	/*
4854 	 * Someone could be changing this ipif currently or change it
4855 	 * after we return this. Thus  a few packets could use the old
4856 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4857 	 * will atomically be updated or cleaned up with the new value
4858 	 * Thus we don't need a lock to check the flags or other attrs below.
4859 	 */
4860 	mutex_enter(&ill->ill_lock);
4861 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4862 		if (IPIF_IS_CONDEMNED(ipif))
4863 			continue;
4864 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4865 		    ipif->ipif_zoneid != ALL_ZONES)
4866 			continue;
4867 		/* Allow the ipif to be down */
4868 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4869 			if ((ipif->ipif_pp_dst_addr == addr) ||
4870 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4871 			    ipif->ipif_lcl_addr == addr)) {
4872 				ipif_refhold_locked(ipif);
4873 				mutex_exit(&ill->ill_lock);
4874 				return (ipif);
4875 			}
4876 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4877 			ipif_refhold_locked(ipif);
4878 			mutex_exit(&ill->ill_lock);
4879 			return (ipif);
4880 		}
4881 	}
4882 	mutex_exit(&ill->ill_lock);
4883 	/*
4884 	 * For a remote destination it isn't possible to nail down a particular
4885 	 * ipif.
4886 	 */
4887 
4888 	/* Pick the first interface */
4889 	ipif = ipif_get_next_ipif(NULL, ill);
4890 	return (ipif);
4891 }
4892 
4893 /*
4894  * This func does not prevent refcnt from increasing. But if
4895  * the caller has taken steps to that effect, then this func
4896  * can be used to determine whether the ill has become quiescent
4897  */
4898 static boolean_t
4899 ill_is_quiescent(ill_t *ill)
4900 {
4901 	ipif_t	*ipif;
4902 
4903 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4904 
4905 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4906 		if (ipif->ipif_refcnt != 0)
4907 			return (B_FALSE);
4908 	}
4909 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4910 		return (B_FALSE);
4911 	}
4912 	return (B_TRUE);
4913 }
4914 
4915 boolean_t
4916 ill_is_freeable(ill_t *ill)
4917 {
4918 	ipif_t	*ipif;
4919 
4920 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4921 
4922 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4923 		if (ipif->ipif_refcnt != 0) {
4924 			return (B_FALSE);
4925 		}
4926 	}
4927 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4928 		return (B_FALSE);
4929 	}
4930 	return (B_TRUE);
4931 }
4932 
4933 /*
4934  * This func does not prevent refcnt from increasing. But if
4935  * the caller has taken steps to that effect, then this func
4936  * can be used to determine whether the ipif has become quiescent
4937  */
4938 static boolean_t
4939 ipif_is_quiescent(ipif_t *ipif)
4940 {
4941 	ill_t *ill;
4942 
4943 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4944 
4945 	if (ipif->ipif_refcnt != 0)
4946 		return (B_FALSE);
4947 
4948 	ill = ipif->ipif_ill;
4949 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4950 	    ill->ill_logical_down) {
4951 		return (B_TRUE);
4952 	}
4953 
4954 	/* This is the last ipif going down or being deleted on this ill */
4955 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4956 		return (B_FALSE);
4957 	}
4958 
4959 	return (B_TRUE);
4960 }
4961 
4962 /*
4963  * return true if the ipif can be destroyed: the ipif has to be quiescent
4964  * with zero references from ire/ilm to it.
4965  */
4966 static boolean_t
4967 ipif_is_freeable(ipif_t *ipif)
4968 {
4969 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4970 	ASSERT(ipif->ipif_id != 0);
4971 	return (ipif->ipif_refcnt == 0);
4972 }
4973 
4974 /*
4975  * The ipif/ill/ire has been refreled. Do the tail processing.
4976  * Determine if the ipif or ill in question has become quiescent and if so
4977  * wakeup close and/or restart any queued pending ioctl that is waiting
4978  * for the ipif_down (or ill_down)
4979  */
4980 void
4981 ipif_ill_refrele_tail(ill_t *ill)
4982 {
4983 	mblk_t	*mp;
4984 	conn_t	*connp;
4985 	ipsq_t	*ipsq;
4986 	ipxop_t	*ipx;
4987 	ipif_t	*ipif;
4988 	dl_notify_ind_t *dlindp;
4989 
4990 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4991 
4992 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4993 		/* ip_modclose() may be waiting */
4994 		cv_broadcast(&ill->ill_cv);
4995 	}
4996 
4997 	ipsq = ill->ill_phyint->phyint_ipsq;
4998 	mutex_enter(&ipsq->ipsq_lock);
4999 	ipx = ipsq->ipsq_xop;
5000 	mutex_enter(&ipx->ipx_lock);
5001 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
5002 		goto unlock;
5003 
5004 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
5005 
5006 	ipif = ipx->ipx_pending_ipif;
5007 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
5008 		goto unlock;
5009 
5010 	switch (ipx->ipx_waitfor) {
5011 	case IPIF_DOWN:
5012 		if (!ipif_is_quiescent(ipif))
5013 			goto unlock;
5014 		break;
5015 	case IPIF_FREE:
5016 		if (!ipif_is_freeable(ipif))
5017 			goto unlock;
5018 		break;
5019 	case ILL_DOWN:
5020 		if (!ill_is_quiescent(ill))
5021 			goto unlock;
5022 		break;
5023 	case ILL_FREE:
5024 		/*
5025 		 * ILL_FREE is only for loopback; normal ill teardown waits
5026 		 * synchronously in ip_modclose() without using ipx_waitfor,
5027 		 * handled by the cv_broadcast() at the top of this function.
5028 		 */
5029 		if (!ill_is_freeable(ill))
5030 			goto unlock;
5031 		break;
5032 	default:
5033 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
5034 		    (void *)ipsq, ipx->ipx_waitfor);
5035 	}
5036 
5037 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
5038 	mutex_exit(&ipx->ipx_lock);
5039 	mp = ipsq_pending_mp_get(ipsq, &connp);
5040 	mutex_exit(&ipsq->ipsq_lock);
5041 	mutex_exit(&ill->ill_lock);
5042 
5043 	ASSERT(mp != NULL);
5044 	/*
5045 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
5046 	 * we can only get here when the current operation decides it
5047 	 * it needs to quiesce via ipsq_pending_mp_add().
5048 	 */
5049 	switch (mp->b_datap->db_type) {
5050 	case M_PCPROTO:
5051 	case M_PROTO:
5052 		/*
5053 		 * For now, only DL_NOTIFY_IND messages can use this facility.
5054 		 */
5055 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
5056 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
5057 
5058 		switch (dlindp->dl_notification) {
5059 		case DL_NOTE_PHYS_ADDR:
5060 			qwriter_ip(ill, ill->ill_rq, mp,
5061 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5062 			return;
5063 		case DL_NOTE_REPLUMB:
5064 			qwriter_ip(ill, ill->ill_rq, mp,
5065 			    ill_replumb_tail, CUR_OP, B_TRUE);
5066 			return;
5067 		default:
5068 			ASSERT(0);
5069 			ill_refrele(ill);
5070 		}
5071 		break;
5072 
5073 	case M_ERROR:
5074 	case M_HANGUP:
5075 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5076 		    B_TRUE);
5077 		return;
5078 
5079 	case M_IOCTL:
5080 	case M_IOCDATA:
5081 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5082 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5083 		return;
5084 
5085 	default:
5086 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5087 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5088 	}
5089 	return;
5090 unlock:
5091 	mutex_exit(&ipsq->ipsq_lock);
5092 	mutex_exit(&ipx->ipx_lock);
5093 	mutex_exit(&ill->ill_lock);
5094 }
5095 
5096 #ifdef DEBUG
5097 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5098 static void
5099 th_trace_rrecord(th_trace_t *th_trace)
5100 {
5101 	tr_buf_t *tr_buf;
5102 	uint_t lastref;
5103 
5104 	lastref = th_trace->th_trace_lastref;
5105 	lastref++;
5106 	if (lastref == TR_BUF_MAX)
5107 		lastref = 0;
5108 	th_trace->th_trace_lastref = lastref;
5109 	tr_buf = &th_trace->th_trbuf[lastref];
5110 	tr_buf->tr_time = ddi_get_lbolt();
5111 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5112 }
5113 
5114 static void
5115 th_trace_free(void *value)
5116 {
5117 	th_trace_t *th_trace = value;
5118 
5119 	ASSERT(th_trace->th_refcnt == 0);
5120 	kmem_free(th_trace, sizeof (*th_trace));
5121 }
5122 
5123 /*
5124  * Find or create the per-thread hash table used to track object references.
5125  * The ipst argument is NULL if we shouldn't allocate.
5126  *
5127  * Accesses per-thread data, so there's no need to lock here.
5128  */
5129 static mod_hash_t *
5130 th_trace_gethash(ip_stack_t *ipst)
5131 {
5132 	th_hash_t *thh;
5133 
5134 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5135 		mod_hash_t *mh;
5136 		char name[256];
5137 		size_t objsize, rshift;
5138 		int retv;
5139 
5140 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5141 			return (NULL);
5142 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5143 		    (void *)curthread);
5144 
5145 		/*
5146 		 * We use mod_hash_create_extended here rather than the more
5147 		 * obvious mod_hash_create_ptrhash because the latter has a
5148 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5149 		 * block.
5150 		 */
5151 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5152 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5153 		rshift = highbit(objsize);
5154 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5155 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5156 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5157 		if (mh == NULL) {
5158 			kmem_free(thh, sizeof (*thh));
5159 			return (NULL);
5160 		}
5161 		thh->thh_hash = mh;
5162 		thh->thh_ipst = ipst;
5163 		/*
5164 		 * We trace ills, ipifs, ires, and nces.  All of these are
5165 		 * per-IP-stack, so the lock on the thread list is as well.
5166 		 */
5167 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5168 		list_insert_tail(&ip_thread_list, thh);
5169 		rw_exit(&ip_thread_rwlock);
5170 		retv = tsd_set(ip_thread_data, thh);
5171 		ASSERT(retv == 0);
5172 	}
5173 	return (thh != NULL ? thh->thh_hash : NULL);
5174 }
5175 
5176 boolean_t
5177 th_trace_ref(const void *obj, ip_stack_t *ipst)
5178 {
5179 	th_trace_t *th_trace;
5180 	mod_hash_t *mh;
5181 	mod_hash_val_t val;
5182 
5183 	if ((mh = th_trace_gethash(ipst)) == NULL)
5184 		return (B_FALSE);
5185 
5186 	/*
5187 	 * Attempt to locate the trace buffer for this obj and thread.
5188 	 * If it does not exist, then allocate a new trace buffer and
5189 	 * insert into the hash.
5190 	 */
5191 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5192 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5193 		if (th_trace == NULL)
5194 			return (B_FALSE);
5195 
5196 		th_trace->th_id = curthread;
5197 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5198 		    (mod_hash_val_t)th_trace) != 0) {
5199 			kmem_free(th_trace, sizeof (th_trace_t));
5200 			return (B_FALSE);
5201 		}
5202 	} else {
5203 		th_trace = (th_trace_t *)val;
5204 	}
5205 
5206 	ASSERT(th_trace->th_refcnt >= 0 &&
5207 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5208 
5209 	th_trace->th_refcnt++;
5210 	th_trace_rrecord(th_trace);
5211 	return (B_TRUE);
5212 }
5213 
5214 /*
5215  * For the purpose of tracing a reference release, we assume that global
5216  * tracing is always on and that the same thread initiated the reference hold
5217  * is releasing.
5218  */
5219 void
5220 th_trace_unref(const void *obj)
5221 {
5222 	int retv;
5223 	mod_hash_t *mh;
5224 	th_trace_t *th_trace;
5225 	mod_hash_val_t val;
5226 
5227 	mh = th_trace_gethash(NULL);
5228 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5229 	ASSERT(retv == 0);
5230 	th_trace = (th_trace_t *)val;
5231 
5232 	ASSERT(th_trace->th_refcnt > 0);
5233 	th_trace->th_refcnt--;
5234 	th_trace_rrecord(th_trace);
5235 }
5236 
5237 /*
5238  * If tracing has been disabled, then we assume that the reference counts are
5239  * now useless, and we clear them out before destroying the entries.
5240  */
5241 void
5242 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5243 {
5244 	th_hash_t	*thh;
5245 	mod_hash_t	*mh;
5246 	mod_hash_val_t	val;
5247 	th_trace_t	*th_trace;
5248 	int		retv;
5249 
5250 	rw_enter(&ip_thread_rwlock, RW_READER);
5251 	for (thh = list_head(&ip_thread_list); thh != NULL;
5252 	    thh = list_next(&ip_thread_list, thh)) {
5253 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5254 		    &val) == 0) {
5255 			th_trace = (th_trace_t *)val;
5256 			if (trace_disable)
5257 				th_trace->th_refcnt = 0;
5258 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5259 			ASSERT(retv == 0);
5260 		}
5261 	}
5262 	rw_exit(&ip_thread_rwlock);
5263 }
5264 
5265 void
5266 ipif_trace_ref(ipif_t *ipif)
5267 {
5268 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5269 
5270 	if (ipif->ipif_trace_disable)
5271 		return;
5272 
5273 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5274 		ipif->ipif_trace_disable = B_TRUE;
5275 		ipif_trace_cleanup(ipif);
5276 	}
5277 }
5278 
5279 void
5280 ipif_untrace_ref(ipif_t *ipif)
5281 {
5282 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5283 
5284 	if (!ipif->ipif_trace_disable)
5285 		th_trace_unref(ipif);
5286 }
5287 
5288 void
5289 ill_trace_ref(ill_t *ill)
5290 {
5291 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5292 
5293 	if (ill->ill_trace_disable)
5294 		return;
5295 
5296 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5297 		ill->ill_trace_disable = B_TRUE;
5298 		ill_trace_cleanup(ill);
5299 	}
5300 }
5301 
5302 void
5303 ill_untrace_ref(ill_t *ill)
5304 {
5305 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5306 
5307 	if (!ill->ill_trace_disable)
5308 		th_trace_unref(ill);
5309 }
5310 
5311 /*
5312  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5313  * failure, ipif_trace_disable is set.
5314  */
5315 static void
5316 ipif_trace_cleanup(const ipif_t *ipif)
5317 {
5318 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5319 }
5320 
5321 /*
5322  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5323  * failure, ill_trace_disable is set.
5324  */
5325 static void
5326 ill_trace_cleanup(const ill_t *ill)
5327 {
5328 	th_trace_cleanup(ill, ill->ill_trace_disable);
5329 }
5330 #endif /* DEBUG */
5331 
5332 void
5333 ipif_refhold_locked(ipif_t *ipif)
5334 {
5335 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5336 	ipif->ipif_refcnt++;
5337 	IPIF_TRACE_REF(ipif);
5338 }
5339 
5340 void
5341 ipif_refhold(ipif_t *ipif)
5342 {
5343 	ill_t	*ill;
5344 
5345 	ill = ipif->ipif_ill;
5346 	mutex_enter(&ill->ill_lock);
5347 	ipif->ipif_refcnt++;
5348 	IPIF_TRACE_REF(ipif);
5349 	mutex_exit(&ill->ill_lock);
5350 }
5351 
5352 /*
5353  * Must not be called while holding any locks. Otherwise if this is
5354  * the last reference to be released there is a chance of recursive mutex
5355  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5356  * to restart an ioctl.
5357  */
5358 void
5359 ipif_refrele(ipif_t *ipif)
5360 {
5361 	ill_t	*ill;
5362 
5363 	ill = ipif->ipif_ill;
5364 
5365 	mutex_enter(&ill->ill_lock);
5366 	ASSERT(ipif->ipif_refcnt != 0);
5367 	ipif->ipif_refcnt--;
5368 	IPIF_UNTRACE_REF(ipif);
5369 	if (ipif->ipif_refcnt != 0) {
5370 		mutex_exit(&ill->ill_lock);
5371 		return;
5372 	}
5373 
5374 	/* Drops the ill_lock */
5375 	ipif_ill_refrele_tail(ill);
5376 }
5377 
5378 ipif_t *
5379 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5380 {
5381 	ipif_t	*ipif;
5382 
5383 	mutex_enter(&ill->ill_lock);
5384 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5385 	    ipif != NULL; ipif = ipif->ipif_next) {
5386 		if (IPIF_IS_CONDEMNED(ipif))
5387 			continue;
5388 		ipif_refhold_locked(ipif);
5389 		mutex_exit(&ill->ill_lock);
5390 		return (ipif);
5391 	}
5392 	mutex_exit(&ill->ill_lock);
5393 	return (NULL);
5394 }
5395 
5396 /*
5397  * TODO: make this table extendible at run time
5398  * Return a pointer to the mac type info for 'mac_type'
5399  */
5400 static ip_m_t *
5401 ip_m_lookup(t_uscalar_t mac_type)
5402 {
5403 	ip_m_t	*ipm;
5404 
5405 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5406 		if (ipm->ip_m_mac_type == mac_type)
5407 			return (ipm);
5408 	return (NULL);
5409 }
5410 
5411 /*
5412  * Make a link layer address from the multicast IP address *addr.
5413  * To form the link layer address, invoke the ip_m_v*mapping function
5414  * associated with the link-layer type.
5415  */
5416 void
5417 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5418 {
5419 	ip_m_t *ipm;
5420 
5421 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5422 		return;
5423 
5424 	ASSERT(addr != NULL);
5425 
5426 	ipm = ip_m_lookup(ill->ill_mactype);
5427 	if (ipm == NULL ||
5428 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5429 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5430 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5431 		    ill->ill_name, ill->ill_mactype));
5432 		return;
5433 	}
5434 	if (ill->ill_isv6)
5435 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5436 	else
5437 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5438 }
5439 
5440 /*
5441  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5442  * ill is passed in to associate it with the correct interface.
5443  * If ire_arg is set, then we return the held IRE in that location.
5444  */
5445 int
5446 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5447     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5448     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5449 {
5450 	ire_t	*ire, *nire;
5451 	ire_t	*gw_ire = NULL;
5452 	ipif_t	*ipif = NULL;
5453 	uint_t	type;
5454 	int	match_flags = MATCH_IRE_TYPE;
5455 	tsol_gc_t *gc = NULL;
5456 	tsol_gcgrp_t *gcgrp = NULL;
5457 	boolean_t gcgrp_xtraref = B_FALSE;
5458 	boolean_t cgtp_broadcast;
5459 	boolean_t unbound = B_FALSE;
5460 
5461 	ip1dbg(("ip_rt_add:"));
5462 
5463 	if (ire_arg != NULL)
5464 		*ire_arg = NULL;
5465 
5466 	/*
5467 	 * If this is the case of RTF_HOST being set, then we set the netmask
5468 	 * to all ones (regardless if one was supplied).
5469 	 */
5470 	if (flags & RTF_HOST)
5471 		mask = IP_HOST_MASK;
5472 
5473 	/*
5474 	 * Prevent routes with a zero gateway from being created (since
5475 	 * interfaces can currently be plumbed and brought up no assigned
5476 	 * address).
5477 	 */
5478 	if (gw_addr == 0)
5479 		return (ENETUNREACH);
5480 	/*
5481 	 * Get the ipif, if any, corresponding to the gw_addr
5482 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5483 	 * we match on the gatway and destination to handle unnumbered pt-pt
5484 	 * interfaces.
5485 	 */
5486 	if (ill != NULL)
5487 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5488 	else
5489 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5490 	if (ipif != NULL) {
5491 		if (IS_VNI(ipif->ipif_ill)) {
5492 			ipif_refrele(ipif);
5493 			return (EINVAL);
5494 		}
5495 	}
5496 
5497 	/*
5498 	 * GateD will attempt to create routes with a loopback interface
5499 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5500 	 * these routes to be added, but create them as interface routes
5501 	 * since the gateway is an interface address.
5502 	 */
5503 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5504 		flags &= ~RTF_GATEWAY;
5505 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5506 		    mask == IP_HOST_MASK) {
5507 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5508 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5509 			    NULL);
5510 			if (ire != NULL) {
5511 				ire_refrele(ire);
5512 				ipif_refrele(ipif);
5513 				return (EEXIST);
5514 			}
5515 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5516 			    "for 0x%x\n", (void *)ipif,
5517 			    ipif->ipif_ire_type,
5518 			    ntohl(ipif->ipif_lcl_addr)));
5519 			ire = ire_create(
5520 			    (uchar_t *)&dst_addr,	/* dest address */
5521 			    (uchar_t *)&mask,		/* mask */
5522 			    NULL,			/* no gateway */
5523 			    ipif->ipif_ire_type,	/* LOOPBACK */
5524 			    ipif->ipif_ill,
5525 			    zoneid,
5526 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5527 			    NULL,
5528 			    ipst);
5529 
5530 			if (ire == NULL) {
5531 				ipif_refrele(ipif);
5532 				return (ENOMEM);
5533 			}
5534 			/* src address assigned by the caller? */
5535 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5536 				ire->ire_setsrc_addr = src_addr;
5537 
5538 			nire = ire_add(ire);
5539 			if (nire == NULL) {
5540 				/*
5541 				 * In the result of failure, ire_add() will have
5542 				 * already deleted the ire in question, so there
5543 				 * is no need to do that here.
5544 				 */
5545 				ipif_refrele(ipif);
5546 				return (ENOMEM);
5547 			}
5548 			/*
5549 			 * Check if it was a duplicate entry. This handles
5550 			 * the case of two racing route adds for the same route
5551 			 */
5552 			if (nire != ire) {
5553 				ASSERT(nire->ire_identical_ref > 1);
5554 				ire_delete(nire);
5555 				ire_refrele(nire);
5556 				ipif_refrele(ipif);
5557 				return (EEXIST);
5558 			}
5559 			ire = nire;
5560 			goto save_ire;
5561 		}
5562 	}
5563 
5564 	/*
5565 	 * The routes for multicast with CGTP are quite special in that
5566 	 * the gateway is the local interface address, yet RTF_GATEWAY
5567 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5568 	 * this undocumented and unusual use of multicast routes.
5569 	 */
5570 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5571 		flags &= ~RTF_GATEWAY;
5572 
5573 	/*
5574 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5575 	 * and the gateway address provided is one of the system's interface
5576 	 * addresses.  By using the routing socket interface and supplying an
5577 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5578 	 * specifying an interface route to be created is available which uses
5579 	 * the interface index that specifies the outgoing interface rather than
5580 	 * the address of an outgoing interface (which may not be able to
5581 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5582 	 * flag, routes can be specified which not only specify the next-hop to
5583 	 * be used when routing to a certain prefix, but also which outgoing
5584 	 * interface should be used.
5585 	 *
5586 	 * Previously, interfaces would have unique addresses assigned to them
5587 	 * and so the address assigned to a particular interface could be used
5588 	 * to identify a particular interface.  One exception to this was the
5589 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5590 	 *
5591 	 * With the advent of IPv6 and its link-local addresses, this
5592 	 * restriction was relaxed and interfaces could share addresses between
5593 	 * themselves.  In fact, typically all of the link-local interfaces on
5594 	 * an IPv6 node or router will have the same link-local address.  In
5595 	 * order to differentiate between these interfaces, the use of an
5596 	 * interface index is necessary and this index can be carried inside a
5597 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5598 	 * of using the interface index, however, is that all of the ipif's that
5599 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5600 	 * cannot be used to differentiate between ipif's (or logical
5601 	 * interfaces) that belong to the same ill (physical interface).
5602 	 *
5603 	 * For example, in the following case involving IPv4 interfaces and
5604 	 * logical interfaces
5605 	 *
5606 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5607 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5608 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5609 	 *
5610 	 * the ipif's corresponding to each of these interface routes can be
5611 	 * uniquely identified by the "gateway" (actually interface address).
5612 	 *
5613 	 * In this case involving multiple IPv6 default routes to a particular
5614 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5615 	 * default route is of interest:
5616 	 *
5617 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5618 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5619 	 */
5620 
5621 	/* RTF_GATEWAY not set */
5622 	if (!(flags & RTF_GATEWAY)) {
5623 		if (sp != NULL) {
5624 			ip2dbg(("ip_rt_add: gateway security attributes "
5625 			    "cannot be set with interface route\n"));
5626 			if (ipif != NULL)
5627 				ipif_refrele(ipif);
5628 			return (EINVAL);
5629 		}
5630 
5631 		/*
5632 		 * Whether or not ill (RTA_IFP) is set, we require that
5633 		 * the gateway is one of our local addresses.
5634 		 */
5635 		if (ipif == NULL)
5636 			return (ENETUNREACH);
5637 
5638 		/*
5639 		 * We use MATCH_IRE_ILL here. If the caller specified an
5640 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5641 		 * we use the ill derived from the gateway address.
5642 		 * We can always match the gateway address since we record it
5643 		 * in ire_gateway_addr.
5644 		 * We don't allow RTA_IFP to specify a different ill than the
5645 		 * one matching the ipif to make sure we can delete the route.
5646 		 */
5647 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5648 		if (ill == NULL) {
5649 			ill = ipif->ipif_ill;
5650 		} else if (ill != ipif->ipif_ill) {
5651 			ipif_refrele(ipif);
5652 			return (EINVAL);
5653 		}
5654 
5655 		/*
5656 		 * We check for an existing entry at this point.
5657 		 *
5658 		 * Since a netmask isn't passed in via the ioctl interface
5659 		 * (SIOCADDRT), we don't check for a matching netmask in that
5660 		 * case.
5661 		 */
5662 		if (!ioctl_msg)
5663 			match_flags |= MATCH_IRE_MASK;
5664 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5665 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5666 		    NULL);
5667 		if (ire != NULL) {
5668 			ire_refrele(ire);
5669 			ipif_refrele(ipif);
5670 			return (EEXIST);
5671 		}
5672 
5673 		/*
5674 		 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or
5675 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5676 		 * gateway.
5677 		 */
5678 		ire = ire_create(
5679 		    (uchar_t *)&dst_addr,
5680 		    (uint8_t *)&mask,
5681 		    (uint8_t *)&gw_addr,
5682 		    ill->ill_net_type,
5683 		    ill,
5684 		    zoneid,
5685 		    flags,
5686 		    NULL,
5687 		    ipst);
5688 		if (ire == NULL) {
5689 			ipif_refrele(ipif);
5690 			return (ENOMEM);
5691 		}
5692 
5693 		/*
5694 		 * Some software (for example, GateD and Sun Cluster) attempts
5695 		 * to create (what amount to) IRE_PREFIX routes with the
5696 		 * loopback address as the gateway.  This is primarily done to
5697 		 * set up prefixes with the RTF_REJECT flag set (for example,
5698 		 * when generating aggregate routes.)
5699 		 *
5700 		 * If the IRE type (as defined by ill->ill_net_type) is
5701 		 * IRE_LOOPBACK, then we map the request into a
5702 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5703 		 * these interface routes, by definition, can only be that.
5704 		 *
5705 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5706 		 * routine, but rather using ire_create() directly.
5707 		 *
5708 		 */
5709 		if (ill->ill_net_type == IRE_LOOPBACK) {
5710 			ire->ire_type = IRE_IF_NORESOLVER;
5711 			ire->ire_flags |= RTF_BLACKHOLE;
5712 		}
5713 
5714 		/* src address assigned by the caller? */
5715 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5716 			ire->ire_setsrc_addr = src_addr;
5717 
5718 		nire = ire_add(ire);
5719 		if (nire == NULL) {
5720 			/*
5721 			 * In the result of failure, ire_add() will have
5722 			 * already deleted the ire in question, so there
5723 			 * is no need to do that here.
5724 			 */
5725 			ipif_refrele(ipif);
5726 			return (ENOMEM);
5727 		}
5728 		/*
5729 		 * Check if it was a duplicate entry. This handles
5730 		 * the case of two racing route adds for the same route
5731 		 */
5732 		if (nire != ire) {
5733 			ire_delete(nire);
5734 			ire_refrele(nire);
5735 			ipif_refrele(ipif);
5736 			return (EEXIST);
5737 		}
5738 		ire = nire;
5739 		goto save_ire;
5740 	}
5741 
5742 	/*
5743 	 * Get an interface IRE for the specified gateway.
5744 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5745 	 * gateway, it is currently unreachable and we fail the request
5746 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5747 	 * is an IRE_LOCAL or IRE_LOOPBACK.
5748 	 * If RTA_IFP was specified we look on that particular ill.
5749 	 */
5750 	if (ill != NULL)
5751 		match_flags |= MATCH_IRE_ILL;
5752 
5753 	/* Check whether the gateway is reachable. */
5754 again:
5755 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5756 	if (flags & RTF_INDIRECT)
5757 		type |= IRE_OFFLINK;
5758 
5759 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5760 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5761 	if (gw_ire == NULL) {
5762 		/*
5763 		 * With IPMP, we allow host routes to influence in.mpathd's
5764 		 * target selection.  However, if the test addresses are on
5765 		 * their own network, the above lookup will fail since the
5766 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5767 		 * hidden test IREs to be found and try again.
5768 		 */
5769 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5770 			match_flags |= MATCH_IRE_TESTHIDDEN;
5771 			goto again;
5772 		}
5773 		if (ipif != NULL)
5774 			ipif_refrele(ipif);
5775 		return (ENETUNREACH);
5776 	}
5777 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5778 		ire_refrele(gw_ire);
5779 		if (ipif != NULL)
5780 			ipif_refrele(ipif);
5781 		return (ENETUNREACH);
5782 	}
5783 
5784 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
5785 		unbound = B_TRUE;
5786 		if (ipst->ips_ip_strict_src_multihoming > 0)
5787 			ill = gw_ire->ire_ill;
5788 	}
5789 
5790 	/*
5791 	 * We create one of three types of IREs as a result of this request
5792 	 * based on the netmask.  A netmask of all ones (which is automatically
5793 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5794 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5795 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5796 	 * destination prefix.
5797 	 */
5798 	if (mask == IP_HOST_MASK)
5799 		type = IRE_HOST;
5800 	else if (mask == 0)
5801 		type = IRE_DEFAULT;
5802 	else
5803 		type = IRE_PREFIX;
5804 
5805 	/* check for a duplicate entry */
5806 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5807 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5808 	    0, ipst, NULL);
5809 	if (ire != NULL) {
5810 		if (ipif != NULL)
5811 			ipif_refrele(ipif);
5812 		ire_refrele(gw_ire);
5813 		ire_refrele(ire);
5814 		return (EEXIST);
5815 	}
5816 
5817 	/* Security attribute exists */
5818 	if (sp != NULL) {
5819 		tsol_gcgrp_addr_t ga;
5820 
5821 		/* find or create the gateway credentials group */
5822 		ga.ga_af = AF_INET;
5823 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5824 
5825 		/* we hold reference to it upon success */
5826 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5827 		if (gcgrp == NULL) {
5828 			if (ipif != NULL)
5829 				ipif_refrele(ipif);
5830 			ire_refrele(gw_ire);
5831 			return (ENOMEM);
5832 		}
5833 
5834 		/*
5835 		 * Create and add the security attribute to the group; a
5836 		 * reference to the group is made upon allocating a new
5837 		 * entry successfully.  If it finds an already-existing
5838 		 * entry for the security attribute in the group, it simply
5839 		 * returns it and no new reference is made to the group.
5840 		 */
5841 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5842 		if (gc == NULL) {
5843 			if (ipif != NULL)
5844 				ipif_refrele(ipif);
5845 			/* release reference held by gcgrp_lookup */
5846 			GCGRP_REFRELE(gcgrp);
5847 			ire_refrele(gw_ire);
5848 			return (ENOMEM);
5849 		}
5850 	}
5851 
5852 	/* Create the IRE. */
5853 	ire = ire_create(
5854 	    (uchar_t *)&dst_addr,		/* dest address */
5855 	    (uchar_t *)&mask,			/* mask */
5856 	    (uchar_t *)&gw_addr,		/* gateway address */
5857 	    (ushort_t)type,			/* IRE type */
5858 	    ill,
5859 	    zoneid,
5860 	    flags,
5861 	    gc,					/* security attribute */
5862 	    ipst);
5863 
5864 	/*
5865 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5866 	 * reference to the 'gcgrp'. We can now release the extra reference
5867 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5868 	 */
5869 	if (gcgrp_xtraref)
5870 		GCGRP_REFRELE(gcgrp);
5871 	if (ire == NULL) {
5872 		if (gc != NULL)
5873 			GC_REFRELE(gc);
5874 		if (ipif != NULL)
5875 			ipif_refrele(ipif);
5876 		ire_refrele(gw_ire);
5877 		return (ENOMEM);
5878 	}
5879 
5880 	/* Before we add, check if an extra CGTP broadcast is needed */
5881 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5882 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5883 
5884 	/* src address assigned by the caller? */
5885 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5886 		ire->ire_setsrc_addr = src_addr;
5887 
5888 	ire->ire_unbound = unbound;
5889 
5890 	/*
5891 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5892 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5893 	 */
5894 
5895 	/* Add the new IRE. */
5896 	nire = ire_add(ire);
5897 	if (nire == NULL) {
5898 		/*
5899 		 * In the result of failure, ire_add() will have
5900 		 * already deleted the ire in question, so there
5901 		 * is no need to do that here.
5902 		 */
5903 		if (ipif != NULL)
5904 			ipif_refrele(ipif);
5905 		ire_refrele(gw_ire);
5906 		return (ENOMEM);
5907 	}
5908 	/*
5909 	 * Check if it was a duplicate entry. This handles
5910 	 * the case of two racing route adds for the same route
5911 	 */
5912 	if (nire != ire) {
5913 		ire_delete(nire);
5914 		ire_refrele(nire);
5915 		if (ipif != NULL)
5916 			ipif_refrele(ipif);
5917 		ire_refrele(gw_ire);
5918 		return (EEXIST);
5919 	}
5920 	ire = nire;
5921 
5922 	if (flags & RTF_MULTIRT) {
5923 		/*
5924 		 * Invoke the CGTP (multirouting) filtering module
5925 		 * to add the dst address in the filtering database.
5926 		 * Replicated inbound packets coming from that address
5927 		 * will be filtered to discard the duplicates.
5928 		 * It is not necessary to call the CGTP filter hook
5929 		 * when the dst address is a broadcast or multicast,
5930 		 * because an IP source address cannot be a broadcast
5931 		 * or a multicast.
5932 		 */
5933 		if (cgtp_broadcast) {
5934 			ip_cgtp_bcast_add(ire, ipst);
5935 			goto save_ire;
5936 		}
5937 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5938 		    !CLASSD(ire->ire_addr)) {
5939 			int res;
5940 			ipif_t *src_ipif;
5941 
5942 			/* Find the source address corresponding to gw_ire */
5943 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5944 			    NULL, zoneid, ipst);
5945 			if (src_ipif != NULL) {
5946 				res = ipst->ips_ip_cgtp_filter_ops->
5947 				    cfo_add_dest_v4(
5948 				    ipst->ips_netstack->netstack_stackid,
5949 				    ire->ire_addr,
5950 				    ire->ire_gateway_addr,
5951 				    ire->ire_setsrc_addr,
5952 				    src_ipif->ipif_lcl_addr);
5953 				ipif_refrele(src_ipif);
5954 			} else {
5955 				res = EADDRNOTAVAIL;
5956 			}
5957 			if (res != 0) {
5958 				if (ipif != NULL)
5959 					ipif_refrele(ipif);
5960 				ire_refrele(gw_ire);
5961 				ire_delete(ire);
5962 				ire_refrele(ire);	/* Held in ire_add */
5963 				return (res);
5964 			}
5965 		}
5966 	}
5967 
5968 save_ire:
5969 	if (gw_ire != NULL) {
5970 		ire_refrele(gw_ire);
5971 		gw_ire = NULL;
5972 	}
5973 	if (ill != NULL) {
5974 		/*
5975 		 * Save enough information so that we can recreate the IRE if
5976 		 * the interface goes down and then up.  The metrics associated
5977 		 * with the route will be saved as well when rts_setmetrics() is
5978 		 * called after the IRE has been created.  In the case where
5979 		 * memory cannot be allocated, none of this information will be
5980 		 * saved.
5981 		 */
5982 		ill_save_ire(ill, ire);
5983 	}
5984 	if (ioctl_msg)
5985 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5986 	if (ire_arg != NULL) {
5987 		/*
5988 		 * Store the ire that was successfully added into where ire_arg
5989 		 * points to so that callers don't have to look it up
5990 		 * themselves (but they are responsible for ire_refrele()ing
5991 		 * the ire when they are finished with it).
5992 		 */
5993 		*ire_arg = ire;
5994 	} else {
5995 		ire_refrele(ire);		/* Held in ire_add */
5996 	}
5997 	if (ipif != NULL)
5998 		ipif_refrele(ipif);
5999 	return (0);
6000 }
6001 
6002 /*
6003  * ip_rt_delete is called to delete an IPv4 route.
6004  * ill is passed in to associate it with the correct interface.
6005  */
6006 /* ARGSUSED4 */
6007 int
6008 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6009     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
6010     ip_stack_t *ipst, zoneid_t zoneid)
6011 {
6012 	ire_t	*ire = NULL;
6013 	ipif_t	*ipif;
6014 	uint_t	type;
6015 	uint_t	match_flags = MATCH_IRE_TYPE;
6016 	int	err = 0;
6017 
6018 	ip1dbg(("ip_rt_delete:"));
6019 	/*
6020 	 * If this is the case of RTF_HOST being set, then we set the netmask
6021 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
6022 	 */
6023 	if (flags & RTF_HOST) {
6024 		mask = IP_HOST_MASK;
6025 		match_flags |= MATCH_IRE_MASK;
6026 	} else if (rtm_addrs & RTA_NETMASK) {
6027 		match_flags |= MATCH_IRE_MASK;
6028 	}
6029 
6030 	/*
6031 	 * Note that RTF_GATEWAY is never set on a delete, therefore
6032 	 * we check if the gateway address is one of our interfaces first,
6033 	 * and fall back on RTF_GATEWAY routes.
6034 	 *
6035 	 * This makes it possible to delete an original
6036 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6037 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
6038 	 * and those can not be deleted here.
6039 	 *
6040 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
6041 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
6042 	 * otherwise we use the ill derived from the gateway address.
6043 	 * We can always match the gateway address since we record it
6044 	 * in ire_gateway_addr.
6045 	 *
6046 	 * For more detail on specifying routes by gateway address and by
6047 	 * interface index, see the comments in ip_rt_add().
6048 	 */
6049 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6050 	if (ipif != NULL) {
6051 		ill_t	*ill_match;
6052 
6053 		if (ill != NULL)
6054 			ill_match = ill;
6055 		else
6056 			ill_match = ipif->ipif_ill;
6057 
6058 		match_flags |= MATCH_IRE_ILL;
6059 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6060 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
6061 			    ill_match, ALL_ZONES, NULL, match_flags, 0, ipst,
6062 			    NULL);
6063 		}
6064 		if (ire == NULL) {
6065 			match_flags |= MATCH_IRE_GW;
6066 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6067 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6068 			    match_flags, 0, ipst, NULL);
6069 		}
6070 		/* Avoid deleting routes created by kernel from an ipif */
6071 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6072 			ire_refrele(ire);
6073 			ire = NULL;
6074 		}
6075 
6076 		/* Restore in case we didn't find a match */
6077 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6078 	}
6079 
6080 	if (ire == NULL) {
6081 		/*
6082 		 * At this point, the gateway address is not one of our own
6083 		 * addresses or a matching interface route was not found.  We
6084 		 * set the IRE type to lookup based on whether
6085 		 * this is a host route, a default route or just a prefix.
6086 		 *
6087 		 * If an ill was passed in, then the lookup is based on an
6088 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6089 		 */
6090 		match_flags |= MATCH_IRE_GW;
6091 		if (ill != NULL)
6092 			match_flags |= MATCH_IRE_ILL;
6093 		if (mask == IP_HOST_MASK)
6094 			type = IRE_HOST;
6095 		else if (mask == 0)
6096 			type = IRE_DEFAULT;
6097 		else
6098 			type = IRE_PREFIX;
6099 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6100 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6101 	}
6102 
6103 	if (ipif != NULL) {
6104 		ipif_refrele(ipif);
6105 		ipif = NULL;
6106 	}
6107 
6108 	if (ire == NULL)
6109 		return (ESRCH);
6110 
6111 	if (ire->ire_flags & RTF_MULTIRT) {
6112 		/*
6113 		 * Invoke the CGTP (multirouting) filtering module
6114 		 * to remove the dst address from the filtering database.
6115 		 * Packets coming from that address will no longer be
6116 		 * filtered to remove duplicates.
6117 		 */
6118 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6119 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6120 			    ipst->ips_netstack->netstack_stackid,
6121 			    ire->ire_addr, ire->ire_gateway_addr);
6122 		}
6123 		ip_cgtp_bcast_delete(ire, ipst);
6124 	}
6125 
6126 	ill = ire->ire_ill;
6127 	if (ill != NULL)
6128 		ill_remove_saved_ire(ill, ire);
6129 	if (ioctl_msg)
6130 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6131 	ire_delete(ire);
6132 	ire_refrele(ire);
6133 	return (err);
6134 }
6135 
6136 /*
6137  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6138  */
6139 /* ARGSUSED */
6140 int
6141 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6142     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6143 {
6144 	ipaddr_t dst_addr;
6145 	ipaddr_t gw_addr;
6146 	ipaddr_t mask;
6147 	int error = 0;
6148 	mblk_t *mp1;
6149 	struct rtentry *rt;
6150 	ipif_t *ipif = NULL;
6151 	ip_stack_t	*ipst;
6152 
6153 	ASSERT(q->q_next == NULL);
6154 	ipst = CONNQ_TO_IPST(q);
6155 
6156 	ip1dbg(("ip_siocaddrt:"));
6157 	/* Existence of mp1 verified in ip_wput_nondata */
6158 	mp1 = mp->b_cont->b_cont;
6159 	rt = (struct rtentry *)mp1->b_rptr;
6160 
6161 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6162 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6163 
6164 	/*
6165 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6166 	 * to a particular host address.  In this case, we set the netmask to
6167 	 * all ones for the particular destination address.  Otherwise,
6168 	 * determine the netmask to be used based on dst_addr and the interfaces
6169 	 * in use.
6170 	 */
6171 	if (rt->rt_flags & RTF_HOST) {
6172 		mask = IP_HOST_MASK;
6173 	} else {
6174 		/*
6175 		 * Note that ip_subnet_mask returns a zero mask in the case of
6176 		 * default (an all-zeroes address).
6177 		 */
6178 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6179 	}
6180 
6181 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6182 	    B_TRUE, NULL, ipst, ALL_ZONES);
6183 	if (ipif != NULL)
6184 		ipif_refrele(ipif);
6185 	return (error);
6186 }
6187 
6188 /*
6189  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6190  */
6191 /* ARGSUSED */
6192 int
6193 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6194     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6195 {
6196 	ipaddr_t dst_addr;
6197 	ipaddr_t gw_addr;
6198 	ipaddr_t mask;
6199 	int error;
6200 	mblk_t *mp1;
6201 	struct rtentry *rt;
6202 	ipif_t *ipif = NULL;
6203 	ip_stack_t	*ipst;
6204 
6205 	ASSERT(q->q_next == NULL);
6206 	ipst = CONNQ_TO_IPST(q);
6207 
6208 	ip1dbg(("ip_siocdelrt:"));
6209 	/* Existence of mp1 verified in ip_wput_nondata */
6210 	mp1 = mp->b_cont->b_cont;
6211 	rt = (struct rtentry *)mp1->b_rptr;
6212 
6213 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6214 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6215 
6216 	/*
6217 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6218 	 * to a particular host address.  In this case, we set the netmask to
6219 	 * all ones for the particular destination address.  Otherwise,
6220 	 * determine the netmask to be used based on dst_addr and the interfaces
6221 	 * in use.
6222 	 */
6223 	if (rt->rt_flags & RTF_HOST) {
6224 		mask = IP_HOST_MASK;
6225 	} else {
6226 		/*
6227 		 * Note that ip_subnet_mask returns a zero mask in the case of
6228 		 * default (an all-zeroes address).
6229 		 */
6230 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6231 	}
6232 
6233 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6234 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6235 	    ipst, ALL_ZONES);
6236 	if (ipif != NULL)
6237 		ipif_refrele(ipif);
6238 	return (error);
6239 }
6240 
6241 /*
6242  * Enqueue the mp onto the ipsq, chained by b_next.
6243  * b_prev stores the function to be executed later, and b_queue the queue
6244  * where this mp originated.
6245  */
6246 void
6247 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6248     ill_t *pending_ill)
6249 {
6250 	conn_t	*connp;
6251 	ipxop_t *ipx = ipsq->ipsq_xop;
6252 
6253 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6254 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6255 	ASSERT(func != NULL);
6256 
6257 	mp->b_queue = q;
6258 	mp->b_prev = (void *)func;
6259 	mp->b_next = NULL;
6260 
6261 	switch (type) {
6262 	case CUR_OP:
6263 		if (ipx->ipx_mptail != NULL) {
6264 			ASSERT(ipx->ipx_mphead != NULL);
6265 			ipx->ipx_mptail->b_next = mp;
6266 		} else {
6267 			ASSERT(ipx->ipx_mphead == NULL);
6268 			ipx->ipx_mphead = mp;
6269 		}
6270 		ipx->ipx_mptail = mp;
6271 		break;
6272 
6273 	case NEW_OP:
6274 		if (ipsq->ipsq_xopq_mptail != NULL) {
6275 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6276 			ipsq->ipsq_xopq_mptail->b_next = mp;
6277 		} else {
6278 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6279 			ipsq->ipsq_xopq_mphead = mp;
6280 		}
6281 		ipsq->ipsq_xopq_mptail = mp;
6282 		ipx->ipx_ipsq_queued = B_TRUE;
6283 		break;
6284 
6285 	case SWITCH_OP:
6286 		ASSERT(ipsq->ipsq_swxop != NULL);
6287 		/* only one switch operation is currently allowed */
6288 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6289 		ipsq->ipsq_switch_mp = mp;
6290 		ipx->ipx_ipsq_queued = B_TRUE;
6291 		break;
6292 	default:
6293 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6294 	}
6295 
6296 	if (CONN_Q(q) && pending_ill != NULL) {
6297 		connp = Q_TO_CONN(q);
6298 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6299 		connp->conn_oper_pending_ill = pending_ill;
6300 	}
6301 }
6302 
6303 /*
6304  * Dequeue the next message that requested exclusive access to this IPSQ's
6305  * xop.  Specifically:
6306  *
6307  *  1. If we're still processing the current operation on `ipsq', then
6308  *     dequeue the next message for the operation (from ipx_mphead), or
6309  *     return NULL if there are no queued messages for the operation.
6310  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6311  *
6312  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6313  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6314  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6315  *     leaving IPMP groups and require a careful dance -- see the comments
6316  *     in-line below for details.  If we're leaving a group xop or if we're
6317  *     joining a group xop and become writer on it, then we proceed to (3).
6318  *     Otherwise, we return NULL and exit the xop.
6319  *
6320  *  3. For each IPSQ in the xop, return any switch operation stored on
6321  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6322  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6323  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6324  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6325  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6326  *     each phyint in the group, including the IPMP meta-interface phyint.
6327  */
6328 static mblk_t *
6329 ipsq_dq(ipsq_t *ipsq)
6330 {
6331 	ill_t	*illv4, *illv6;
6332 	mblk_t	*mp;
6333 	ipsq_t	*xopipsq;
6334 	ipsq_t	*leftipsq = NULL;
6335 	ipxop_t *ipx;
6336 	phyint_t *phyi = ipsq->ipsq_phyint;
6337 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6338 	boolean_t emptied = B_FALSE;
6339 
6340 	/*
6341 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6342 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6343 	 */
6344 	rw_enter(&ipst->ips_ill_g_lock,
6345 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6346 	mutex_enter(&ipsq->ipsq_lock);
6347 	ipx = ipsq->ipsq_xop;
6348 	mutex_enter(&ipx->ipx_lock);
6349 
6350 	/*
6351 	 * Dequeue the next message associated with the current exclusive
6352 	 * operation, if any.
6353 	 */
6354 	if ((mp = ipx->ipx_mphead) != NULL) {
6355 		ipx->ipx_mphead = mp->b_next;
6356 		if (ipx->ipx_mphead == NULL)
6357 			ipx->ipx_mptail = NULL;
6358 		mp->b_next = (void *)ipsq;
6359 		goto out;
6360 	}
6361 
6362 	if (ipx->ipx_current_ipif != NULL)
6363 		goto empty;
6364 
6365 	if (ipsq->ipsq_swxop != NULL) {
6366 		/*
6367 		 * The exclusive operation that is now being completed has
6368 		 * requested a switch to a different xop.  This happens
6369 		 * when an interface joins or leaves an IPMP group.  Joins
6370 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6371 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6372 		 * (phyint_free()), or interface plumb for an ill type
6373 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6374 		 *
6375 		 * Xop switches are not allowed on the IPMP meta-interface.
6376 		 */
6377 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6378 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6379 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6380 
6381 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6382 			/*
6383 			 * We're switching back to our own xop, so we have two
6384 			 * xop's to drain/exit: our own, and the group xop
6385 			 * that we are leaving.
6386 			 *
6387 			 * First, pull ourselves out of the group ipsq list.
6388 			 * This is safe since we're writer on ill_g_lock.
6389 			 */
6390 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6391 
6392 			xopipsq = ipx->ipx_ipsq;
6393 			while (xopipsq->ipsq_next != ipsq)
6394 				xopipsq = xopipsq->ipsq_next;
6395 
6396 			xopipsq->ipsq_next = ipsq->ipsq_next;
6397 			ipsq->ipsq_next = ipsq;
6398 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6399 			ipsq->ipsq_swxop = NULL;
6400 
6401 			/*
6402 			 * Second, prepare to exit the group xop.  The actual
6403 			 * ipsq_exit() is done at the end of this function
6404 			 * since we cannot hold any locks across ipsq_exit().
6405 			 * Note that although we drop the group's ipx_lock, no
6406 			 * threads can proceed since we're still ipx_writer.
6407 			 */
6408 			leftipsq = xopipsq;
6409 			mutex_exit(&ipx->ipx_lock);
6410 
6411 			/*
6412 			 * Third, set ipx to point to our own xop (which was
6413 			 * inactive and therefore can be entered).
6414 			 */
6415 			ipx = ipsq->ipsq_xop;
6416 			mutex_enter(&ipx->ipx_lock);
6417 			ASSERT(ipx->ipx_writer == NULL);
6418 			ASSERT(ipx->ipx_current_ipif == NULL);
6419 		} else {
6420 			/*
6421 			 * We're switching from our own xop to a group xop.
6422 			 * The requestor of the switch must ensure that the
6423 			 * group xop cannot go away (e.g. by ensuring the
6424 			 * phyint associated with the xop cannot go away).
6425 			 *
6426 			 * If we can become writer on our new xop, then we'll
6427 			 * do the drain.  Otherwise, the current writer of our
6428 			 * new xop will do the drain when it exits.
6429 			 *
6430 			 * First, splice ourselves into the group IPSQ list.
6431 			 * This is safe since we're writer on ill_g_lock.
6432 			 */
6433 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6434 
6435 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6436 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6437 				xopipsq = xopipsq->ipsq_next;
6438 
6439 			xopipsq->ipsq_next = ipsq;
6440 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6441 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6442 			ipsq->ipsq_swxop = NULL;
6443 
6444 			/*
6445 			 * Second, exit our own xop, since it's now unused.
6446 			 * This is safe since we've got the only reference.
6447 			 */
6448 			ASSERT(ipx->ipx_writer == curthread);
6449 			ipx->ipx_writer = NULL;
6450 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6451 			ipx->ipx_ipsq_queued = B_FALSE;
6452 			mutex_exit(&ipx->ipx_lock);
6453 
6454 			/*
6455 			 * Third, set ipx to point to our new xop, and check
6456 			 * if we can become writer on it.  If we cannot, then
6457 			 * the current writer will drain the IPSQ group when
6458 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6459 			 * because we're still holding ipsq_lock.
6460 			 */
6461 			ipx = ipsq->ipsq_xop;
6462 			mutex_enter(&ipx->ipx_lock);
6463 			if (ipx->ipx_writer != NULL ||
6464 			    ipx->ipx_current_ipif != NULL) {
6465 				goto out;
6466 			}
6467 		}
6468 
6469 		/*
6470 		 * Fourth, become writer on our new ipx before we continue
6471 		 * with the drain.  Note that we never dropped ipsq_lock
6472 		 * above, so no other thread could've raced with us to
6473 		 * become writer first.  Also, we're holding ipx_lock, so
6474 		 * no other thread can examine the ipx right now.
6475 		 */
6476 		ASSERT(ipx->ipx_current_ipif == NULL);
6477 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6478 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6479 		ipx->ipx_writer = curthread;
6480 		ipx->ipx_forced = B_FALSE;
6481 #ifdef DEBUG
6482 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6483 #endif
6484 	}
6485 
6486 	xopipsq = ipsq;
6487 	do {
6488 		/*
6489 		 * So that other operations operate on a consistent and
6490 		 * complete phyint, a switch message on an IPSQ must be
6491 		 * handled prior to any other operations on that IPSQ.
6492 		 */
6493 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6494 			xopipsq->ipsq_switch_mp = NULL;
6495 			ASSERT(mp->b_next == NULL);
6496 			mp->b_next = (void *)xopipsq;
6497 			goto out;
6498 		}
6499 
6500 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6501 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6502 			if (xopipsq->ipsq_xopq_mphead == NULL)
6503 				xopipsq->ipsq_xopq_mptail = NULL;
6504 			mp->b_next = (void *)xopipsq;
6505 			goto out;
6506 		}
6507 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6508 empty:
6509 	/*
6510 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6511 	 * new messages can end up on any IPSQ in the xop.
6512 	 */
6513 	ipx->ipx_writer = NULL;
6514 	ipx->ipx_forced = B_FALSE;
6515 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6516 	ipx->ipx_ipsq_queued = B_FALSE;
6517 	emptied = B_TRUE;
6518 #ifdef	DEBUG
6519 	ipx->ipx_depth = 0;
6520 #endif
6521 out:
6522 	mutex_exit(&ipx->ipx_lock);
6523 	mutex_exit(&ipsq->ipsq_lock);
6524 
6525 	/*
6526 	 * If we completely emptied the xop, then wake up any threads waiting
6527 	 * to enter any of the IPSQ's associated with it.
6528 	 */
6529 	if (emptied) {
6530 		xopipsq = ipsq;
6531 		do {
6532 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6533 				continue;
6534 
6535 			illv4 = phyi->phyint_illv4;
6536 			illv6 = phyi->phyint_illv6;
6537 
6538 			GRAB_ILL_LOCKS(illv4, illv6);
6539 			if (illv4 != NULL)
6540 				cv_broadcast(&illv4->ill_cv);
6541 			if (illv6 != NULL)
6542 				cv_broadcast(&illv6->ill_cv);
6543 			RELEASE_ILL_LOCKS(illv4, illv6);
6544 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6545 	}
6546 	rw_exit(&ipst->ips_ill_g_lock);
6547 
6548 	/*
6549 	 * Now that all locks are dropped, exit the IPSQ we left.
6550 	 */
6551 	if (leftipsq != NULL)
6552 		ipsq_exit(leftipsq);
6553 
6554 	return (mp);
6555 }
6556 
6557 /*
6558  * Return completion status of previously initiated DLPI operations on
6559  * ills in the purview of an ipsq.
6560  */
6561 static boolean_t
6562 ipsq_dlpi_done(ipsq_t *ipsq)
6563 {
6564 	ipsq_t		*ipsq_start;
6565 	phyint_t	*phyi;
6566 	ill_t		*ill;
6567 
6568 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6569 	ipsq_start = ipsq;
6570 
6571 	do {
6572 		/*
6573 		 * The only current users of this function are ipsq_try_enter
6574 		 * and ipsq_enter which have made sure that ipsq_writer is
6575 		 * NULL before we reach here. ill_dlpi_pending is modified
6576 		 * only by an ipsq writer
6577 		 */
6578 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6579 		phyi = ipsq->ipsq_phyint;
6580 		/*
6581 		 * phyi could be NULL if a phyint that is part of an
6582 		 * IPMP group is being unplumbed. A more detailed
6583 		 * comment is in ipmp_grp_update_kstats()
6584 		 */
6585 		if (phyi != NULL) {
6586 			ill = phyi->phyint_illv4;
6587 			if (ill != NULL &&
6588 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6589 			    ill->ill_arl_dlpi_pending))
6590 				return (B_FALSE);
6591 
6592 			ill = phyi->phyint_illv6;
6593 			if (ill != NULL &&
6594 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6595 				return (B_FALSE);
6596 		}
6597 
6598 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6599 
6600 	return (B_TRUE);
6601 }
6602 
6603 /*
6604  * Enter the ipsq corresponding to ill, by waiting synchronously till
6605  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6606  * will have to drain completely before ipsq_enter returns success.
6607  * ipx_current_ipif will be set if some exclusive op is in progress,
6608  * and the ipsq_exit logic will start the next enqueued op after
6609  * completion of the current op. If 'force' is used, we don't wait
6610  * for the enqueued ops. This is needed when a conn_close wants to
6611  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6612  * of an ill can also use this option. But we dont' use it currently.
6613  */
6614 #define	ENTER_SQ_WAIT_TICKS 100
6615 boolean_t
6616 ipsq_enter(ill_t *ill, boolean_t force, int type)
6617 {
6618 	ipsq_t	*ipsq;
6619 	ipxop_t *ipx;
6620 	boolean_t waited_enough = B_FALSE;
6621 	ip_stack_t *ipst = ill->ill_ipst;
6622 
6623 	/*
6624 	 * Note that the relationship between ill and ipsq is fixed as long as
6625 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6626 	 * relationship between the IPSQ and xop cannot change.  However,
6627 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6628 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6629 	 * waking up all ills in the xop when it becomes available.
6630 	 */
6631 	for (;;) {
6632 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6633 		mutex_enter(&ill->ill_lock);
6634 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6635 			mutex_exit(&ill->ill_lock);
6636 			rw_exit(&ipst->ips_ill_g_lock);
6637 			return (B_FALSE);
6638 		}
6639 
6640 		ipsq = ill->ill_phyint->phyint_ipsq;
6641 		mutex_enter(&ipsq->ipsq_lock);
6642 		ipx = ipsq->ipsq_xop;
6643 		mutex_enter(&ipx->ipx_lock);
6644 
6645 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6646 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6647 		    waited_enough))
6648 			break;
6649 
6650 		rw_exit(&ipst->ips_ill_g_lock);
6651 
6652 		if (!force || ipx->ipx_writer != NULL) {
6653 			mutex_exit(&ipx->ipx_lock);
6654 			mutex_exit(&ipsq->ipsq_lock);
6655 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6656 		} else {
6657 			mutex_exit(&ipx->ipx_lock);
6658 			mutex_exit(&ipsq->ipsq_lock);
6659 			(void) cv_reltimedwait(&ill->ill_cv,
6660 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6661 			waited_enough = B_TRUE;
6662 		}
6663 		mutex_exit(&ill->ill_lock);
6664 	}
6665 
6666 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6667 	ASSERT(ipx->ipx_reentry_cnt == 0);
6668 	ipx->ipx_writer = curthread;
6669 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6670 	ipx->ipx_reentry_cnt++;
6671 #ifdef DEBUG
6672 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6673 #endif
6674 	mutex_exit(&ipx->ipx_lock);
6675 	mutex_exit(&ipsq->ipsq_lock);
6676 	mutex_exit(&ill->ill_lock);
6677 	rw_exit(&ipst->ips_ill_g_lock);
6678 
6679 	return (B_TRUE);
6680 }
6681 
6682 /*
6683  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6684  * across the call to the core interface ipsq_try_enter() and hence calls this
6685  * function directly. This is explained more fully in ipif_set_values().
6686  * In order to support the above constraint, ipsq_try_enter is implemented as
6687  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6688  */
6689 static ipsq_t *
6690 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6691     int type, boolean_t reentry_ok)
6692 {
6693 	ipsq_t	*ipsq;
6694 	ipxop_t	*ipx;
6695 	ip_stack_t *ipst = ill->ill_ipst;
6696 
6697 	/*
6698 	 * lock ordering:
6699 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6700 	 *
6701 	 * ipx of an ipsq can't change when ipsq_lock is held.
6702 	 */
6703 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6704 	GRAB_CONN_LOCK(q);
6705 	mutex_enter(&ill->ill_lock);
6706 	ipsq = ill->ill_phyint->phyint_ipsq;
6707 	mutex_enter(&ipsq->ipsq_lock);
6708 	ipx = ipsq->ipsq_xop;
6709 	mutex_enter(&ipx->ipx_lock);
6710 
6711 	/*
6712 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6713 	 *    (Note: If the caller does not specify reentry_ok then neither
6714 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6715 	 *    again. Otherwise it can lead to an infinite loop
6716 	 * 2. Enter the ipsq if there is no current writer and this attempted
6717 	 *    entry is part of the current operation
6718 	 * 3. Enter the ipsq if there is no current writer and this is a new
6719 	 *    operation and the operation queue is empty and there is no
6720 	 *    operation currently in progress and if all previously initiated
6721 	 *    DLPI operations have completed.
6722 	 */
6723 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6724 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6725 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6726 	    ipsq_dlpi_done(ipsq))))) {
6727 		/* Success. */
6728 		ipx->ipx_reentry_cnt++;
6729 		ipx->ipx_writer = curthread;
6730 		ipx->ipx_forced = B_FALSE;
6731 		mutex_exit(&ipx->ipx_lock);
6732 		mutex_exit(&ipsq->ipsq_lock);
6733 		mutex_exit(&ill->ill_lock);
6734 		RELEASE_CONN_LOCK(q);
6735 #ifdef DEBUG
6736 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6737 #endif
6738 		return (ipsq);
6739 	}
6740 
6741 	if (func != NULL)
6742 		ipsq_enq(ipsq, q, mp, func, type, ill);
6743 
6744 	mutex_exit(&ipx->ipx_lock);
6745 	mutex_exit(&ipsq->ipsq_lock);
6746 	mutex_exit(&ill->ill_lock);
6747 	RELEASE_CONN_LOCK(q);
6748 	return (NULL);
6749 }
6750 
6751 /*
6752  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6753  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6754  * There is one ipsq per phyint. The ipsq
6755  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6756  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6757  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6758  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6759  * up the interface) and are enqueued in ipx_mphead.
6760  *
6761  * If a thread does not want to reenter the ipsq when it is already writer,
6762  * it must make sure that the specified reentry point to be called later
6763  * when the ipsq is empty, nor any code path starting from the specified reentry
6764  * point must never ever try to enter the ipsq again. Otherwise it can lead
6765  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6766  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6767  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6768  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6769  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6770  * ioctl if the current ioctl has completed. If the current ioctl is still
6771  * in progress it simply returns. The current ioctl could be waiting for
6772  * a response from another module (the driver or could be waiting for
6773  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6774  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6775  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6776  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6777  * all associated DLPI operations have completed.
6778  */
6779 
6780 /*
6781  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6782  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6783  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6784  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6785  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6786  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6787  */
6788 ipsq_t *
6789 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6790     ipsq_func_t func, int type, boolean_t reentry_ok)
6791 {
6792 	ip_stack_t	*ipst;
6793 	ipsq_t		*ipsq;
6794 
6795 	/* Only 1 of ipif or ill can be specified */
6796 	ASSERT((ipif != NULL) ^ (ill != NULL));
6797 
6798 	if (ipif != NULL)
6799 		ill = ipif->ipif_ill;
6800 	ipst = ill->ill_ipst;
6801 
6802 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6803 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6804 	rw_exit(&ipst->ips_ill_g_lock);
6805 
6806 	return (ipsq);
6807 }
6808 
6809 /*
6810  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6811  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6812  * cannot be entered, the mp is queued for completion.
6813  */
6814 void
6815 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6816     boolean_t reentry_ok)
6817 {
6818 	ipsq_t	*ipsq;
6819 
6820 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6821 
6822 	/*
6823 	 * Drop the caller's refhold on the ill.  This is safe since we either
6824 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6825 	 * IPSQ, in which case we return without accessing ill anymore.  This
6826 	 * is needed because func needs to see the correct refcount.
6827 	 * e.g. removeif can work only then.
6828 	 */
6829 	ill_refrele(ill);
6830 	if (ipsq != NULL) {
6831 		(*func)(ipsq, q, mp, NULL);
6832 		ipsq_exit(ipsq);
6833 	}
6834 }
6835 
6836 /*
6837  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6838  * prior to exiting.  Caller must be writer on the specified IPSQ.
6839  */
6840 void
6841 ipsq_exit(ipsq_t *ipsq)
6842 {
6843 	mblk_t *mp;
6844 	ipsq_t *mp_ipsq;
6845 	queue_t	*q;
6846 	phyint_t *phyi;
6847 	ipsq_func_t func;
6848 
6849 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6850 
6851 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6852 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6853 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6854 		return;
6855 	}
6856 
6857 	for (;;) {
6858 		phyi = ipsq->ipsq_phyint;
6859 		mp = ipsq_dq(ipsq);
6860 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6861 
6862 		/*
6863 		 * If we've changed to a new IPSQ, and the phyint associated
6864 		 * with the old one has gone away, free the old IPSQ.  Note
6865 		 * that this cannot happen while the IPSQ is in a group.
6866 		 */
6867 		if (mp_ipsq != ipsq && phyi == NULL) {
6868 			ASSERT(ipsq->ipsq_next == ipsq);
6869 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6870 			ipsq_delete(ipsq);
6871 		}
6872 
6873 		if (mp == NULL)
6874 			break;
6875 
6876 		q = mp->b_queue;
6877 		func = (ipsq_func_t)mp->b_prev;
6878 		ipsq = mp_ipsq;
6879 		mp->b_next = mp->b_prev = NULL;
6880 		mp->b_queue = NULL;
6881 
6882 		/*
6883 		 * If 'q' is an conn queue, it is valid, since we did a
6884 		 * a refhold on the conn at the start of the ioctl.
6885 		 * If 'q' is an ill queue, it is valid, since close of an
6886 		 * ill will clean up its IPSQ.
6887 		 */
6888 		(*func)(ipsq, q, mp, NULL);
6889 	}
6890 }
6891 
6892 /*
6893  * Used to start any igmp or mld timers that could not be started
6894  * while holding ill_mcast_lock. The timers can't be started while holding
6895  * the lock, since mld/igmp_start_timers may need to call untimeout()
6896  * which can't be done while holding the lock which the timeout handler
6897  * acquires. Otherwise
6898  * there could be a deadlock since the timeout handlers
6899  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6900  * ill_mcast_lock.
6901  */
6902 void
6903 ill_mcast_timer_start(ip_stack_t *ipst)
6904 {
6905 	int		next;
6906 
6907 	mutex_enter(&ipst->ips_igmp_timer_lock);
6908 	next = ipst->ips_igmp_deferred_next;
6909 	ipst->ips_igmp_deferred_next = INFINITY;
6910 	mutex_exit(&ipst->ips_igmp_timer_lock);
6911 
6912 	if (next != INFINITY)
6913 		igmp_start_timers(next, ipst);
6914 
6915 	mutex_enter(&ipst->ips_mld_timer_lock);
6916 	next = ipst->ips_mld_deferred_next;
6917 	ipst->ips_mld_deferred_next = INFINITY;
6918 	mutex_exit(&ipst->ips_mld_timer_lock);
6919 
6920 	if (next != INFINITY)
6921 		mld_start_timers(next, ipst);
6922 }
6923 
6924 /*
6925  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6926  * and `ioccmd'.
6927  */
6928 void
6929 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6930 {
6931 	ill_t *ill = ipif->ipif_ill;
6932 	ipxop_t *ipx = ipsq->ipsq_xop;
6933 
6934 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6935 	ASSERT(ipx->ipx_current_ipif == NULL);
6936 	ASSERT(ipx->ipx_current_ioctl == 0);
6937 
6938 	ipx->ipx_current_done = B_FALSE;
6939 	ipx->ipx_current_ioctl = ioccmd;
6940 	mutex_enter(&ipx->ipx_lock);
6941 	ipx->ipx_current_ipif = ipif;
6942 	mutex_exit(&ipx->ipx_lock);
6943 
6944 	/*
6945 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6946 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6947 	 * references to the ipif (so that the references will eventually
6948 	 * drop to zero) and also prevents any "get" operations (e.g.,
6949 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6950 	 * operation has completed and the ipif is again in a stable state.
6951 	 *
6952 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6953 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6954 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6955 	 * ipifs will be affected.
6956 	 *
6957 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6958 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6959 	 * operate on.
6960 	 */
6961 	switch (ioccmd) {
6962 	case SIOCLIFREMOVEIF:
6963 		break;
6964 	case 0:
6965 		mutex_enter(&ill->ill_lock);
6966 		ipif = ipif->ipif_ill->ill_ipif;
6967 		for (; ipif != NULL; ipif = ipif->ipif_next)
6968 			ipif->ipif_state_flags |= IPIF_CHANGING;
6969 		mutex_exit(&ill->ill_lock);
6970 		break;
6971 	default:
6972 		mutex_enter(&ill->ill_lock);
6973 		ipif->ipif_state_flags |= IPIF_CHANGING;
6974 		mutex_exit(&ill->ill_lock);
6975 	}
6976 }
6977 
6978 /*
6979  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6980  * the next exclusive operation to begin once we ipsq_exit().  However, if
6981  * pending DLPI operations remain, then we will wait for the queue to drain
6982  * before allowing the next exclusive operation to begin.  This ensures that
6983  * DLPI operations from one exclusive operation are never improperly processed
6984  * as part of a subsequent exclusive operation.
6985  */
6986 void
6987 ipsq_current_finish(ipsq_t *ipsq)
6988 {
6989 	ipxop_t	*ipx = ipsq->ipsq_xop;
6990 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6991 	ipif_t	*ipif = ipx->ipx_current_ipif;
6992 
6993 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6994 
6995 	/*
6996 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6997 	 * (but in that case, IPIF_CHANGING will already be clear and no
6998 	 * pending DLPI messages can remain).
6999 	 */
7000 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
7001 		ill_t *ill = ipif->ipif_ill;
7002 
7003 		mutex_enter(&ill->ill_lock);
7004 		dlpi_pending = ill->ill_dlpi_pending;
7005 		if (ipx->ipx_current_ioctl == 0) {
7006 			ipif = ill->ill_ipif;
7007 			for (; ipif != NULL; ipif = ipif->ipif_next)
7008 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
7009 		} else {
7010 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
7011 		}
7012 		mutex_exit(&ill->ill_lock);
7013 	}
7014 
7015 	ASSERT(!ipx->ipx_current_done);
7016 	ipx->ipx_current_done = B_TRUE;
7017 	ipx->ipx_current_ioctl = 0;
7018 	if (dlpi_pending == DL_PRIM_INVAL) {
7019 		mutex_enter(&ipx->ipx_lock);
7020 		ipx->ipx_current_ipif = NULL;
7021 		mutex_exit(&ipx->ipx_lock);
7022 	}
7023 }
7024 
7025 /*
7026  * The ill is closing. Flush all messages on the ipsq that originated
7027  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
7028  * for this ill since ipsq_enter could not have entered until then.
7029  * New messages can't be queued since the CONDEMNED flag is set.
7030  */
7031 static void
7032 ipsq_flush(ill_t *ill)
7033 {
7034 	queue_t	*q;
7035 	mblk_t	*prev;
7036 	mblk_t	*mp;
7037 	mblk_t	*mp_next;
7038 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7039 
7040 	ASSERT(IAM_WRITER_ILL(ill));
7041 
7042 	/*
7043 	 * Flush any messages sent up by the driver.
7044 	 */
7045 	mutex_enter(&ipx->ipx_lock);
7046 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7047 		mp_next = mp->b_next;
7048 		q = mp->b_queue;
7049 		if (q == ill->ill_rq || q == ill->ill_wq) {
7050 			/* dequeue mp */
7051 			if (prev == NULL)
7052 				ipx->ipx_mphead = mp->b_next;
7053 			else
7054 				prev->b_next = mp->b_next;
7055 			if (ipx->ipx_mptail == mp) {
7056 				ASSERT(mp_next == NULL);
7057 				ipx->ipx_mptail = prev;
7058 			}
7059 			inet_freemsg(mp);
7060 		} else {
7061 			prev = mp;
7062 		}
7063 	}
7064 	mutex_exit(&ipx->ipx_lock);
7065 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7066 	ipsq_xopq_mp_cleanup(ill, NULL);
7067 }
7068 
7069 /*
7070  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7071  * and return the associated ipif.
7072  * Return value:
7073  *	Non zero: An error has occurred. ci may not be filled out.
7074  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7075  *	a held ipif in ci.ci_ipif.
7076  */
7077 int
7078 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7079     cmd_info_t *ci)
7080 {
7081 	char		*name;
7082 	struct ifreq    *ifr;
7083 	struct lifreq    *lifr;
7084 	ipif_t		*ipif = NULL;
7085 	ill_t		*ill;
7086 	conn_t		*connp;
7087 	boolean_t	isv6;
7088 	boolean_t	exists;
7089 	mblk_t		*mp1;
7090 	zoneid_t	zoneid;
7091 	ip_stack_t	*ipst;
7092 
7093 	if (q->q_next != NULL) {
7094 		ill = (ill_t *)q->q_ptr;
7095 		isv6 = ill->ill_isv6;
7096 		connp = NULL;
7097 		zoneid = ALL_ZONES;
7098 		ipst = ill->ill_ipst;
7099 	} else {
7100 		ill = NULL;
7101 		connp = Q_TO_CONN(q);
7102 		isv6 = (connp->conn_family == AF_INET6);
7103 		zoneid = connp->conn_zoneid;
7104 		if (zoneid == GLOBAL_ZONEID) {
7105 			/* global zone can access ipifs in all zones */
7106 			zoneid = ALL_ZONES;
7107 		}
7108 		ipst = connp->conn_netstack->netstack_ip;
7109 	}
7110 
7111 	/* Has been checked in ip_wput_nondata */
7112 	mp1 = mp->b_cont->b_cont;
7113 
7114 	if (ipip->ipi_cmd_type == IF_CMD) {
7115 		/* This a old style SIOC[GS]IF* command */
7116 		ifr = (struct ifreq *)mp1->b_rptr;
7117 		/*
7118 		 * Null terminate the string to protect against buffer
7119 		 * overrun. String was generated by user code and may not
7120 		 * be trusted.
7121 		 */
7122 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7123 		name = ifr->ifr_name;
7124 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7125 		ci->ci_sin6 = NULL;
7126 		ci->ci_lifr = (struct lifreq *)ifr;
7127 	} else {
7128 		/* This a new style SIOC[GS]LIF* command */
7129 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7130 		lifr = (struct lifreq *)mp1->b_rptr;
7131 		/*
7132 		 * Null terminate the string to protect against buffer
7133 		 * overrun. String was generated by user code and may not
7134 		 * be trusted.
7135 		 */
7136 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7137 		name = lifr->lifr_name;
7138 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7139 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7140 		ci->ci_lifr = lifr;
7141 	}
7142 
7143 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7144 		/*
7145 		 * The ioctl will be failed if the ioctl comes down
7146 		 * an conn stream
7147 		 */
7148 		if (ill == NULL) {
7149 			/*
7150 			 * Not an ill queue, return EINVAL same as the
7151 			 * old error code.
7152 			 */
7153 			return (ENXIO);
7154 		}
7155 		ipif = ill->ill_ipif;
7156 		ipif_refhold(ipif);
7157 	} else {
7158 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
7159 		    &exists, isv6, zoneid, ipst);
7160 
7161 		/*
7162 		 * Ensure that get ioctls don't see any internal state changes
7163 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7164 		 * set.
7165 		 */
7166 		if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) &&
7167 		    !IAM_WRITER_IPIF(ipif)) {
7168 			ipsq_t	*ipsq;
7169 
7170 			if (connp != NULL)
7171 				mutex_enter(&connp->conn_lock);
7172 			mutex_enter(&ipif->ipif_ill->ill_lock);
7173 			if (IPIF_IS_CHANGING(ipif) &&
7174 			    !IPIF_IS_CONDEMNED(ipif)) {
7175 				ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
7176 				mutex_enter(&ipsq->ipsq_lock);
7177 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
7178 				mutex_exit(&ipif->ipif_ill->ill_lock);
7179 				ipsq_enq(ipsq, q, mp, ip_process_ioctl,
7180 				    NEW_OP, ipif->ipif_ill);
7181 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
7182 				mutex_exit(&ipsq->ipsq_lock);
7183 				if (connp != NULL)
7184 					mutex_exit(&connp->conn_lock);
7185 				ipif_refrele(ipif);
7186 				return (EINPROGRESS);
7187 			}
7188 			mutex_exit(&ipif->ipif_ill->ill_lock);
7189 			if (connp != NULL)
7190 				mutex_exit(&connp->conn_lock);
7191 		}
7192 	}
7193 
7194 	/*
7195 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7196 	 */
7197 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7198 		ipif_refrele(ipif);
7199 		return (ENXIO);
7200 	}
7201 
7202 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7203 	    name[0] == '\0') {
7204 		/*
7205 		 * Handle a or a SIOC?IF* with a null name
7206 		 * during plumb (on the ill queue before the I_PLINK).
7207 		 */
7208 		ipif = ill->ill_ipif;
7209 		ipif_refhold(ipif);
7210 	}
7211 
7212 	if (ipif == NULL)
7213 		return (ENXIO);
7214 
7215 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7216 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7217 
7218 	ci->ci_ipif = ipif;
7219 	return (0);
7220 }
7221 
7222 /*
7223  * Return the total number of ipifs.
7224  */
7225 static uint_t
7226 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7227 {
7228 	uint_t numifs = 0;
7229 	ill_t	*ill;
7230 	ill_walk_context_t	ctx;
7231 	ipif_t	*ipif;
7232 
7233 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7234 	ill = ILL_START_WALK_V4(&ctx, ipst);
7235 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7236 		if (IS_UNDER_IPMP(ill))
7237 			continue;
7238 		for (ipif = ill->ill_ipif; ipif != NULL;
7239 		    ipif = ipif->ipif_next) {
7240 			if (ipif->ipif_zoneid == zoneid ||
7241 			    ipif->ipif_zoneid == ALL_ZONES)
7242 				numifs++;
7243 		}
7244 	}
7245 	rw_exit(&ipst->ips_ill_g_lock);
7246 	return (numifs);
7247 }
7248 
7249 /*
7250  * Return the total number of ipifs.
7251  */
7252 static uint_t
7253 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7254 {
7255 	uint_t numifs = 0;
7256 	ill_t	*ill;
7257 	ipif_t	*ipif;
7258 	ill_walk_context_t	ctx;
7259 
7260 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7261 
7262 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7263 	if (family == AF_INET)
7264 		ill = ILL_START_WALK_V4(&ctx, ipst);
7265 	else if (family == AF_INET6)
7266 		ill = ILL_START_WALK_V6(&ctx, ipst);
7267 	else
7268 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7269 
7270 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7271 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7272 			continue;
7273 
7274 		for (ipif = ill->ill_ipif; ipif != NULL;
7275 		    ipif = ipif->ipif_next) {
7276 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7277 			    !(lifn_flags & LIFC_NOXMIT))
7278 				continue;
7279 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7280 			    !(lifn_flags & LIFC_TEMPORARY))
7281 				continue;
7282 			if (((ipif->ipif_flags &
7283 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7284 			    IPIF_DEPRECATED)) ||
7285 			    IS_LOOPBACK(ill) ||
7286 			    !(ipif->ipif_flags & IPIF_UP)) &&
7287 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7288 				continue;
7289 
7290 			if (zoneid != ipif->ipif_zoneid &&
7291 			    ipif->ipif_zoneid != ALL_ZONES &&
7292 			    (zoneid != GLOBAL_ZONEID ||
7293 			    !(lifn_flags & LIFC_ALLZONES)))
7294 				continue;
7295 
7296 			numifs++;
7297 		}
7298 	}
7299 	rw_exit(&ipst->ips_ill_g_lock);
7300 	return (numifs);
7301 }
7302 
7303 uint_t
7304 ip_get_lifsrcofnum(ill_t *ill)
7305 {
7306 	uint_t numifs = 0;
7307 	ill_t	*ill_head = ill;
7308 	ip_stack_t	*ipst = ill->ill_ipst;
7309 
7310 	/*
7311 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7312 	 * other thread may be trying to relink the ILLs in this usesrc group
7313 	 * and adjusting the ill_usesrc_grp_next pointers
7314 	 */
7315 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7316 	if ((ill->ill_usesrc_ifindex == 0) &&
7317 	    (ill->ill_usesrc_grp_next != NULL)) {
7318 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7319 		    ill = ill->ill_usesrc_grp_next)
7320 			numifs++;
7321 	}
7322 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7323 
7324 	return (numifs);
7325 }
7326 
7327 /* Null values are passed in for ipif, sin, and ifreq */
7328 /* ARGSUSED */
7329 int
7330 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7331     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7332 {
7333 	int *nump;
7334 	conn_t *connp = Q_TO_CONN(q);
7335 
7336 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7337 
7338 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7339 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7340 
7341 	*nump = ip_get_numifs(connp->conn_zoneid,
7342 	    connp->conn_netstack->netstack_ip);
7343 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7344 	return (0);
7345 }
7346 
7347 /* Null values are passed in for ipif, sin, and ifreq */
7348 /* ARGSUSED */
7349 int
7350 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7351     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7352 {
7353 	struct lifnum *lifn;
7354 	mblk_t	*mp1;
7355 	conn_t *connp = Q_TO_CONN(q);
7356 
7357 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7358 
7359 	/* Existence checked in ip_wput_nondata */
7360 	mp1 = mp->b_cont->b_cont;
7361 
7362 	lifn = (struct lifnum *)mp1->b_rptr;
7363 	switch (lifn->lifn_family) {
7364 	case AF_UNSPEC:
7365 	case AF_INET:
7366 	case AF_INET6:
7367 		break;
7368 	default:
7369 		return (EAFNOSUPPORT);
7370 	}
7371 
7372 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7373 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7374 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7375 	return (0);
7376 }
7377 
7378 /* ARGSUSED */
7379 int
7380 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7381     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7382 {
7383 	STRUCT_HANDLE(ifconf, ifc);
7384 	mblk_t *mp1;
7385 	struct iocblk *iocp;
7386 	struct ifreq *ifr;
7387 	ill_walk_context_t	ctx;
7388 	ill_t	*ill;
7389 	ipif_t	*ipif;
7390 	struct sockaddr_in *sin;
7391 	int32_t	ifclen;
7392 	zoneid_t zoneid;
7393 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7394 
7395 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7396 
7397 	ip1dbg(("ip_sioctl_get_ifconf"));
7398 	/* Existence verified in ip_wput_nondata */
7399 	mp1 = mp->b_cont->b_cont;
7400 	iocp = (struct iocblk *)mp->b_rptr;
7401 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7402 
7403 	/*
7404 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7405 	 * the user buffer address and length into which the list of struct
7406 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7407 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7408 	 * the SIOCGIFCONF operation was redefined to simply provide
7409 	 * a large output buffer into which we are supposed to jam the ifreq
7410 	 * array.  The same ioctl command code was used, despite the fact that
7411 	 * both the applications and the kernel code had to change, thus making
7412 	 * it impossible to support both interfaces.
7413 	 *
7414 	 * For reasons not good enough to try to explain, the following
7415 	 * algorithm is used for deciding what to do with one of these:
7416 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7417 	 * form with the output buffer coming down as the continuation message.
7418 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7419 	 * and we have to copy in the ifconf structure to find out how big the
7420 	 * output buffer is and where to copy out to.  Sure no problem...
7421 	 *
7422 	 */
7423 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7424 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7425 		int numifs = 0;
7426 		size_t ifc_bufsize;
7427 
7428 		/*
7429 		 * Must be (better be!) continuation of a TRANSPARENT
7430 		 * IOCTL.  We just copied in the ifconf structure.
7431 		 */
7432 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7433 		    (struct ifconf *)mp1->b_rptr);
7434 
7435 		/*
7436 		 * Allocate a buffer to hold requested information.
7437 		 *
7438 		 * If ifc_len is larger than what is needed, we only
7439 		 * allocate what we will use.
7440 		 *
7441 		 * If ifc_len is smaller than what is needed, return
7442 		 * EINVAL.
7443 		 *
7444 		 * XXX: the ill_t structure can hava 2 counters, for
7445 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7446 		 * number of interfaces for a device, so we don't need
7447 		 * to count them here...
7448 		 */
7449 		numifs = ip_get_numifs(zoneid, ipst);
7450 
7451 		ifclen = STRUCT_FGET(ifc, ifc_len);
7452 		ifc_bufsize = numifs * sizeof (struct ifreq);
7453 		if (ifc_bufsize > ifclen) {
7454 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7455 				/* old behaviour */
7456 				return (EINVAL);
7457 			} else {
7458 				ifc_bufsize = ifclen;
7459 			}
7460 		}
7461 
7462 		mp1 = mi_copyout_alloc(q, mp,
7463 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7464 		if (mp1 == NULL)
7465 			return (ENOMEM);
7466 
7467 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7468 	}
7469 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7470 	/*
7471 	 * the SIOCGIFCONF ioctl only knows about
7472 	 * IPv4 addresses, so don't try to tell
7473 	 * it about interfaces with IPv6-only
7474 	 * addresses. (Last parm 'isv6' is B_FALSE)
7475 	 */
7476 
7477 	ifr = (struct ifreq *)mp1->b_rptr;
7478 
7479 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7480 	ill = ILL_START_WALK_V4(&ctx, ipst);
7481 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7482 		if (IS_UNDER_IPMP(ill))
7483 			continue;
7484 		for (ipif = ill->ill_ipif; ipif != NULL;
7485 		    ipif = ipif->ipif_next) {
7486 			if (zoneid != ipif->ipif_zoneid &&
7487 			    ipif->ipif_zoneid != ALL_ZONES)
7488 				continue;
7489 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7490 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7491 					/* old behaviour */
7492 					rw_exit(&ipst->ips_ill_g_lock);
7493 					return (EINVAL);
7494 				} else {
7495 					goto if_copydone;
7496 				}
7497 			}
7498 			ipif_get_name(ipif, ifr->ifr_name,
7499 			    sizeof (ifr->ifr_name));
7500 			sin = (sin_t *)&ifr->ifr_addr;
7501 			*sin = sin_null;
7502 			sin->sin_family = AF_INET;
7503 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7504 			ifr++;
7505 		}
7506 	}
7507 if_copydone:
7508 	rw_exit(&ipst->ips_ill_g_lock);
7509 	mp1->b_wptr = (uchar_t *)ifr;
7510 
7511 	if (STRUCT_BUF(ifc) != NULL) {
7512 		STRUCT_FSET(ifc, ifc_len,
7513 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7514 	}
7515 	return (0);
7516 }
7517 
7518 /*
7519  * Get the interfaces using the address hosted on the interface passed in,
7520  * as a source adddress
7521  */
7522 /* ARGSUSED */
7523 int
7524 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7525     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7526 {
7527 	mblk_t *mp1;
7528 	ill_t	*ill, *ill_head;
7529 	ipif_t	*ipif, *orig_ipif;
7530 	int	numlifs = 0;
7531 	size_t	lifs_bufsize, lifsmaxlen;
7532 	struct	lifreq *lifr;
7533 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7534 	uint_t	ifindex;
7535 	zoneid_t zoneid;
7536 	boolean_t isv6 = B_FALSE;
7537 	struct	sockaddr_in	*sin;
7538 	struct	sockaddr_in6	*sin6;
7539 	STRUCT_HANDLE(lifsrcof, lifs);
7540 	ip_stack_t		*ipst;
7541 
7542 	ipst = CONNQ_TO_IPST(q);
7543 
7544 	ASSERT(q->q_next == NULL);
7545 
7546 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7547 
7548 	/* Existence verified in ip_wput_nondata */
7549 	mp1 = mp->b_cont->b_cont;
7550 
7551 	/*
7552 	 * Must be (better be!) continuation of a TRANSPARENT
7553 	 * IOCTL.  We just copied in the lifsrcof structure.
7554 	 */
7555 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7556 	    (struct lifsrcof *)mp1->b_rptr);
7557 
7558 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7559 		return (EINVAL);
7560 
7561 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7562 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7563 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7564 	if (ipif == NULL) {
7565 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7566 		    ifindex));
7567 		return (ENXIO);
7568 	}
7569 
7570 	/* Allocate a buffer to hold requested information */
7571 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7572 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7573 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7574 	/* The actual size needed is always returned in lifs_len */
7575 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7576 
7577 	/* If the amount we need is more than what is passed in, abort */
7578 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7579 		ipif_refrele(ipif);
7580 		return (0);
7581 	}
7582 
7583 	mp1 = mi_copyout_alloc(q, mp,
7584 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7585 	if (mp1 == NULL) {
7586 		ipif_refrele(ipif);
7587 		return (ENOMEM);
7588 	}
7589 
7590 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7591 	bzero(mp1->b_rptr, lifs_bufsize);
7592 
7593 	lifr = (struct lifreq *)mp1->b_rptr;
7594 
7595 	ill = ill_head = ipif->ipif_ill;
7596 	orig_ipif = ipif;
7597 
7598 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7599 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7600 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7601 
7602 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7603 	for (; (ill != NULL) && (ill != ill_head);
7604 	    ill = ill->ill_usesrc_grp_next) {
7605 
7606 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7607 			break;
7608 
7609 		ipif = ill->ill_ipif;
7610 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7611 		if (ipif->ipif_isv6) {
7612 			sin6 = (sin6_t *)&lifr->lifr_addr;
7613 			*sin6 = sin6_null;
7614 			sin6->sin6_family = AF_INET6;
7615 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7616 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7617 			    &ipif->ipif_v6net_mask);
7618 		} else {
7619 			sin = (sin_t *)&lifr->lifr_addr;
7620 			*sin = sin_null;
7621 			sin->sin_family = AF_INET;
7622 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7623 			lifr->lifr_addrlen = ip_mask_to_plen(
7624 			    ipif->ipif_net_mask);
7625 		}
7626 		lifr++;
7627 	}
7628 	rw_exit(&ipst->ips_ill_g_lock);
7629 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7630 	ipif_refrele(orig_ipif);
7631 	mp1->b_wptr = (uchar_t *)lifr;
7632 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7633 
7634 	return (0);
7635 }
7636 
7637 /* ARGSUSED */
7638 int
7639 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7640     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7641 {
7642 	mblk_t *mp1;
7643 	int	list;
7644 	ill_t	*ill;
7645 	ipif_t	*ipif;
7646 	int	flags;
7647 	int	numlifs = 0;
7648 	size_t	lifc_bufsize;
7649 	struct	lifreq *lifr;
7650 	sa_family_t	family;
7651 	struct	sockaddr_in	*sin;
7652 	struct	sockaddr_in6	*sin6;
7653 	ill_walk_context_t	ctx;
7654 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7655 	int32_t	lifclen;
7656 	zoneid_t zoneid;
7657 	STRUCT_HANDLE(lifconf, lifc);
7658 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7659 
7660 	ip1dbg(("ip_sioctl_get_lifconf"));
7661 
7662 	ASSERT(q->q_next == NULL);
7663 
7664 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7665 
7666 	/* Existence verified in ip_wput_nondata */
7667 	mp1 = mp->b_cont->b_cont;
7668 
7669 	/*
7670 	 * An extended version of SIOCGIFCONF that takes an
7671 	 * additional address family and flags field.
7672 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7673 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7674 	 * interfaces are omitted.
7675 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7676 	 * unless LIFC_TEMPORARY is specified.
7677 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7678 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7679 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7680 	 * has priority over LIFC_NOXMIT.
7681 	 */
7682 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7683 
7684 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7685 		return (EINVAL);
7686 
7687 	/*
7688 	 * Must be (better be!) continuation of a TRANSPARENT
7689 	 * IOCTL.  We just copied in the lifconf structure.
7690 	 */
7691 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7692 
7693 	family = STRUCT_FGET(lifc, lifc_family);
7694 	flags = STRUCT_FGET(lifc, lifc_flags);
7695 
7696 	switch (family) {
7697 	case AF_UNSPEC:
7698 		/*
7699 		 * walk all ILL's.
7700 		 */
7701 		list = MAX_G_HEADS;
7702 		break;
7703 	case AF_INET:
7704 		/*
7705 		 * walk only IPV4 ILL's.
7706 		 */
7707 		list = IP_V4_G_HEAD;
7708 		break;
7709 	case AF_INET6:
7710 		/*
7711 		 * walk only IPV6 ILL's.
7712 		 */
7713 		list = IP_V6_G_HEAD;
7714 		break;
7715 	default:
7716 		return (EAFNOSUPPORT);
7717 	}
7718 
7719 	/*
7720 	 * Allocate a buffer to hold requested information.
7721 	 *
7722 	 * If lifc_len is larger than what is needed, we only
7723 	 * allocate what we will use.
7724 	 *
7725 	 * If lifc_len is smaller than what is needed, return
7726 	 * EINVAL.
7727 	 */
7728 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7729 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7730 	lifclen = STRUCT_FGET(lifc, lifc_len);
7731 	if (lifc_bufsize > lifclen) {
7732 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7733 			return (EINVAL);
7734 		else
7735 			lifc_bufsize = lifclen;
7736 	}
7737 
7738 	mp1 = mi_copyout_alloc(q, mp,
7739 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7740 	if (mp1 == NULL)
7741 		return (ENOMEM);
7742 
7743 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7744 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7745 
7746 	lifr = (struct lifreq *)mp1->b_rptr;
7747 
7748 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7749 	ill = ill_first(list, list, &ctx, ipst);
7750 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7751 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7752 			continue;
7753 
7754 		for (ipif = ill->ill_ipif; ipif != NULL;
7755 		    ipif = ipif->ipif_next) {
7756 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7757 			    !(flags & LIFC_NOXMIT))
7758 				continue;
7759 
7760 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7761 			    !(flags & LIFC_TEMPORARY))
7762 				continue;
7763 
7764 			if (((ipif->ipif_flags &
7765 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7766 			    IPIF_DEPRECATED)) ||
7767 			    IS_LOOPBACK(ill) ||
7768 			    !(ipif->ipif_flags & IPIF_UP)) &&
7769 			    (flags & LIFC_EXTERNAL_SOURCE))
7770 				continue;
7771 
7772 			if (zoneid != ipif->ipif_zoneid &&
7773 			    ipif->ipif_zoneid != ALL_ZONES &&
7774 			    (zoneid != GLOBAL_ZONEID ||
7775 			    !(flags & LIFC_ALLZONES)))
7776 				continue;
7777 
7778 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7779 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7780 					rw_exit(&ipst->ips_ill_g_lock);
7781 					return (EINVAL);
7782 				} else {
7783 					goto lif_copydone;
7784 				}
7785 			}
7786 
7787 			ipif_get_name(ipif, lifr->lifr_name,
7788 			    sizeof (lifr->lifr_name));
7789 			lifr->lifr_type = ill->ill_type;
7790 			if (ipif->ipif_isv6) {
7791 				sin6 = (sin6_t *)&lifr->lifr_addr;
7792 				*sin6 = sin6_null;
7793 				sin6->sin6_family = AF_INET6;
7794 				sin6->sin6_addr =
7795 				    ipif->ipif_v6lcl_addr;
7796 				lifr->lifr_addrlen =
7797 				    ip_mask_to_plen_v6(
7798 				    &ipif->ipif_v6net_mask);
7799 			} else {
7800 				sin = (sin_t *)&lifr->lifr_addr;
7801 				*sin = sin_null;
7802 				sin->sin_family = AF_INET;
7803 				sin->sin_addr.s_addr =
7804 				    ipif->ipif_lcl_addr;
7805 				lifr->lifr_addrlen =
7806 				    ip_mask_to_plen(
7807 				    ipif->ipif_net_mask);
7808 			}
7809 			lifr++;
7810 		}
7811 	}
7812 lif_copydone:
7813 	rw_exit(&ipst->ips_ill_g_lock);
7814 
7815 	mp1->b_wptr = (uchar_t *)lifr;
7816 	if (STRUCT_BUF(lifc) != NULL) {
7817 		STRUCT_FSET(lifc, lifc_len,
7818 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7819 	}
7820 	return (0);
7821 }
7822 
7823 static void
7824 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7825 {
7826 	ip6_asp_t *table;
7827 	size_t table_size;
7828 	mblk_t *data_mp;
7829 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7830 	ip_stack_t	*ipst;
7831 
7832 	if (q->q_next == NULL)
7833 		ipst = CONNQ_TO_IPST(q);
7834 	else
7835 		ipst = ILLQ_TO_IPST(q);
7836 
7837 	/* These two ioctls are I_STR only */
7838 	if (iocp->ioc_count == TRANSPARENT) {
7839 		miocnak(q, mp, 0, EINVAL);
7840 		return;
7841 	}
7842 
7843 	data_mp = mp->b_cont;
7844 	if (data_mp == NULL) {
7845 		/* The user passed us a NULL argument */
7846 		table = NULL;
7847 		table_size = iocp->ioc_count;
7848 	} else {
7849 		/*
7850 		 * The user provided a table.  The stream head
7851 		 * may have copied in the user data in chunks,
7852 		 * so make sure everything is pulled up
7853 		 * properly.
7854 		 */
7855 		if (MBLKL(data_mp) < iocp->ioc_count) {
7856 			mblk_t *new_data_mp;
7857 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7858 			    NULL) {
7859 				miocnak(q, mp, 0, ENOMEM);
7860 				return;
7861 			}
7862 			freemsg(data_mp);
7863 			data_mp = new_data_mp;
7864 			mp->b_cont = data_mp;
7865 		}
7866 		table = (ip6_asp_t *)data_mp->b_rptr;
7867 		table_size = iocp->ioc_count;
7868 	}
7869 
7870 	switch (iocp->ioc_cmd) {
7871 	case SIOCGIP6ADDRPOLICY:
7872 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7873 		if (iocp->ioc_rval == -1)
7874 			iocp->ioc_error = EINVAL;
7875 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7876 		else if (table != NULL &&
7877 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7878 			ip6_asp_t *src = table;
7879 			ip6_asp32_t *dst = (void *)table;
7880 			int count = table_size / sizeof (ip6_asp_t);
7881 			int i;
7882 
7883 			/*
7884 			 * We need to do an in-place shrink of the array
7885 			 * to match the alignment attributes of the
7886 			 * 32-bit ABI looking at it.
7887 			 */
7888 			/* LINTED: logical expression always true: op "||" */
7889 			ASSERT(sizeof (*src) > sizeof (*dst));
7890 			for (i = 1; i < count; i++)
7891 				bcopy(src + i, dst + i, sizeof (*dst));
7892 		}
7893 #endif
7894 		break;
7895 
7896 	case SIOCSIP6ADDRPOLICY:
7897 		ASSERT(mp->b_prev == NULL);
7898 		mp->b_prev = (void *)q;
7899 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7900 		/*
7901 		 * We pass in the datamodel here so that the ip6_asp_replace()
7902 		 * routine can handle converting from 32-bit to native formats
7903 		 * where necessary.
7904 		 *
7905 		 * A better way to handle this might be to convert the inbound
7906 		 * data structure here, and hang it off a new 'mp'; thus the
7907 		 * ip6_asp_replace() logic would always be dealing with native
7908 		 * format data structures..
7909 		 *
7910 		 * (An even simpler way to handle these ioctls is to just
7911 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7912 		 * and just recompile everything that depends on it.)
7913 		 */
7914 #endif
7915 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7916 		    iocp->ioc_flag & IOC_MODELS);
7917 		return;
7918 	}
7919 
7920 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7921 	qreply(q, mp);
7922 }
7923 
7924 static void
7925 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7926 {
7927 	mblk_t 		*data_mp;
7928 	struct dstinforeq	*dir;
7929 	uint8_t		*end, *cur;
7930 	in6_addr_t	*daddr, *saddr;
7931 	ipaddr_t	v4daddr;
7932 	ire_t		*ire;
7933 	ipaddr_t	v4setsrc;
7934 	in6_addr_t	v6setsrc;
7935 	char		*slabel, *dlabel;
7936 	boolean_t	isipv4;
7937 	int		match_ire;
7938 	ill_t		*dst_ill;
7939 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7940 	conn_t		*connp = Q_TO_CONN(q);
7941 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7942 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7943 	uint64_t	ipif_flags;
7944 
7945 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7946 
7947 	/*
7948 	 * This ioctl is I_STR only, and must have a
7949 	 * data mblk following the M_IOCTL mblk.
7950 	 */
7951 	data_mp = mp->b_cont;
7952 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7953 		miocnak(q, mp, 0, EINVAL);
7954 		return;
7955 	}
7956 
7957 	if (MBLKL(data_mp) < iocp->ioc_count) {
7958 		mblk_t *new_data_mp;
7959 
7960 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7961 			miocnak(q, mp, 0, ENOMEM);
7962 			return;
7963 		}
7964 		freemsg(data_mp);
7965 		data_mp = new_data_mp;
7966 		mp->b_cont = data_mp;
7967 	}
7968 	match_ire = MATCH_IRE_DSTONLY;
7969 
7970 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7971 	    end - cur >= sizeof (struct dstinforeq);
7972 	    cur += sizeof (struct dstinforeq)) {
7973 		dir = (struct dstinforeq *)cur;
7974 		daddr = &dir->dir_daddr;
7975 		saddr = &dir->dir_saddr;
7976 
7977 		/*
7978 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7979 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7980 		 * and ip_select_source_v6() do not.
7981 		 */
7982 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7983 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7984 
7985 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7986 		if (isipv4) {
7987 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7988 			v4setsrc = INADDR_ANY;
7989 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7990 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7991 			    NULL, NULL);
7992 		} else {
7993 			v6setsrc = ipv6_all_zeros;
7994 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7995 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7996 			    NULL, NULL);
7997 		}
7998 		ASSERT(ire != NULL);
7999 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
8000 			ire_refrele(ire);
8001 			dir->dir_dreachable = 0;
8002 
8003 			/* move on to next dst addr */
8004 			continue;
8005 		}
8006 		dir->dir_dreachable = 1;
8007 
8008 		dst_ill = ire_nexthop_ill(ire);
8009 		if (dst_ill == NULL) {
8010 			ire_refrele(ire);
8011 			continue;
8012 		}
8013 
8014 		/* With ipmp we most likely look at the ipmp ill here */
8015 		dir->dir_dmactype = dst_ill->ill_mactype;
8016 
8017 		if (isipv4) {
8018 			ipaddr_t v4saddr;
8019 
8020 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
8021 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
8022 			    &v4saddr, NULL, &ipif_flags) != 0) {
8023 				v4saddr = INADDR_ANY;
8024 				ipif_flags = 0;
8025 			}
8026 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
8027 		} else {
8028 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
8029 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
8030 			    saddr, NULL, &ipif_flags) != 0) {
8031 				*saddr = ipv6_all_zeros;
8032 				ipif_flags = 0;
8033 			}
8034 		}
8035 
8036 		dir->dir_sscope = ip_addr_scope_v6(saddr);
8037 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
8038 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
8039 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
8040 		ire_refrele(ire);
8041 		ill_refrele(dst_ill);
8042 	}
8043 	miocack(q, mp, iocp->ioc_count, 0);
8044 }
8045 
8046 /*
8047  * Check if this is an address assigned to this machine.
8048  * Skips interfaces that are down by using ire checks.
8049  * Translates mapped addresses to v4 addresses and then
8050  * treats them as such, returning true if the v4 address
8051  * associated with this mapped address is configured.
8052  * Note: Applications will have to be careful what they do
8053  * with the response; use of mapped addresses limits
8054  * what can be done with the socket, especially with
8055  * respect to socket options and ioctls - neither IPv4
8056  * options nor IPv6 sticky options/ancillary data options
8057  * may be used.
8058  */
8059 /* ARGSUSED */
8060 int
8061 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8062     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8063 {
8064 	struct sioc_addrreq *sia;
8065 	sin_t *sin;
8066 	ire_t *ire;
8067 	mblk_t *mp1;
8068 	zoneid_t zoneid;
8069 	ip_stack_t	*ipst;
8070 
8071 	ip1dbg(("ip_sioctl_tmyaddr"));
8072 
8073 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8074 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8075 	ipst = CONNQ_TO_IPST(q);
8076 
8077 	/* Existence verified in ip_wput_nondata */
8078 	mp1 = mp->b_cont->b_cont;
8079 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8080 	sin = (sin_t *)&sia->sa_addr;
8081 	switch (sin->sin_family) {
8082 	case AF_INET6: {
8083 		sin6_t *sin6 = (sin6_t *)sin;
8084 
8085 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8086 			ipaddr_t v4_addr;
8087 
8088 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8089 			    v4_addr);
8090 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8091 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8092 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8093 		} else {
8094 			in6_addr_t v6addr;
8095 
8096 			v6addr = sin6->sin6_addr;
8097 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8098 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8099 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8100 		}
8101 		break;
8102 	}
8103 	case AF_INET: {
8104 		ipaddr_t v4addr;
8105 
8106 		v4addr = sin->sin_addr.s_addr;
8107 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8108 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8109 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8110 		break;
8111 	}
8112 	default:
8113 		return (EAFNOSUPPORT);
8114 	}
8115 	if (ire != NULL) {
8116 		sia->sa_res = 1;
8117 		ire_refrele(ire);
8118 	} else {
8119 		sia->sa_res = 0;
8120 	}
8121 	return (0);
8122 }
8123 
8124 /*
8125  * Check if this is an address assigned on-link i.e. neighbor,
8126  * and makes sure it's reachable from the current zone.
8127  * Returns true for my addresses as well.
8128  * Translates mapped addresses to v4 addresses and then
8129  * treats them as such, returning true if the v4 address
8130  * associated with this mapped address is configured.
8131  * Note: Applications will have to be careful what they do
8132  * with the response; use of mapped addresses limits
8133  * what can be done with the socket, especially with
8134  * respect to socket options and ioctls - neither IPv4
8135  * options nor IPv6 sticky options/ancillary data options
8136  * may be used.
8137  */
8138 /* ARGSUSED */
8139 int
8140 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8141     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8142 {
8143 	struct sioc_addrreq *sia;
8144 	sin_t *sin;
8145 	mblk_t	*mp1;
8146 	ire_t *ire = NULL;
8147 	zoneid_t zoneid;
8148 	ip_stack_t	*ipst;
8149 
8150 	ip1dbg(("ip_sioctl_tonlink"));
8151 
8152 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8153 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8154 	ipst = CONNQ_TO_IPST(q);
8155 
8156 	/* Existence verified in ip_wput_nondata */
8157 	mp1 = mp->b_cont->b_cont;
8158 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8159 	sin = (sin_t *)&sia->sa_addr;
8160 
8161 	/*
8162 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8163 	 * to make sure we only look at on-link unicast address.
8164 	 */
8165 	switch (sin->sin_family) {
8166 	case AF_INET6: {
8167 		sin6_t *sin6 = (sin6_t *)sin;
8168 
8169 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8170 			ipaddr_t v4_addr;
8171 
8172 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8173 			    v4_addr);
8174 			if (!CLASSD(v4_addr)) {
8175 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8176 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8177 				    0, ipst, NULL);
8178 			}
8179 		} else {
8180 			in6_addr_t v6addr;
8181 
8182 			v6addr = sin6->sin6_addr;
8183 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8184 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8185 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8186 				    ipst, NULL);
8187 			}
8188 		}
8189 		break;
8190 	}
8191 	case AF_INET: {
8192 		ipaddr_t v4addr;
8193 
8194 		v4addr = sin->sin_addr.s_addr;
8195 		if (!CLASSD(v4addr)) {
8196 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8197 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8198 		}
8199 		break;
8200 	}
8201 	default:
8202 		return (EAFNOSUPPORT);
8203 	}
8204 	sia->sa_res = 0;
8205 	if (ire != NULL) {
8206 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8207 
8208 		if ((ire->ire_type & IRE_ONLINK) &&
8209 		    !(ire->ire_type & IRE_BROADCAST))
8210 			sia->sa_res = 1;
8211 		ire_refrele(ire);
8212 	}
8213 	return (0);
8214 }
8215 
8216 /*
8217  * TBD: implement when kernel maintaines a list of site prefixes.
8218  */
8219 /* ARGSUSED */
8220 int
8221 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8222     ip_ioctl_cmd_t *ipip, void *ifreq)
8223 {
8224 	return (ENXIO);
8225 }
8226 
8227 /* ARP IOCTLs. */
8228 /* ARGSUSED */
8229 int
8230 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8231     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8232 {
8233 	int		err;
8234 	ipaddr_t	ipaddr;
8235 	struct iocblk	*iocp;
8236 	conn_t		*connp;
8237 	struct arpreq	*ar;
8238 	struct xarpreq	*xar;
8239 	int		arp_flags, flags, alength;
8240 	uchar_t		*lladdr;
8241 	ip_stack_t	*ipst;
8242 	ill_t		*ill = ipif->ipif_ill;
8243 	ill_t		*proxy_ill = NULL;
8244 	ipmp_arpent_t	*entp = NULL;
8245 	boolean_t	proxyarp = B_FALSE;
8246 	boolean_t	if_arp_ioctl = B_FALSE;
8247 	ncec_t		*ncec = NULL;
8248 	nce_t		*nce;
8249 
8250 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8251 	connp = Q_TO_CONN(q);
8252 	ipst = connp->conn_netstack->netstack_ip;
8253 	iocp = (struct iocblk *)mp->b_rptr;
8254 
8255 	if (ipip->ipi_cmd_type == XARP_CMD) {
8256 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8257 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8258 		ar = NULL;
8259 
8260 		arp_flags = xar->xarp_flags;
8261 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8262 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8263 		/*
8264 		 * Validate against user's link layer address length
8265 		 * input and name and addr length limits.
8266 		 */
8267 		alength = ill->ill_phys_addr_length;
8268 		if (ipip->ipi_cmd == SIOCSXARP) {
8269 			if (alength != xar->xarp_ha.sdl_alen ||
8270 			    (alength + xar->xarp_ha.sdl_nlen >
8271 			    sizeof (xar->xarp_ha.sdl_data)))
8272 				return (EINVAL);
8273 		}
8274 	} else {
8275 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8276 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8277 		xar = NULL;
8278 
8279 		arp_flags = ar->arp_flags;
8280 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8281 		/*
8282 		 * Theoretically, the sa_family could tell us what link
8283 		 * layer type this operation is trying to deal with. By
8284 		 * common usage AF_UNSPEC means ethernet. We'll assume
8285 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8286 		 * for now. Our new SIOC*XARP ioctls can be used more
8287 		 * generally.
8288 		 *
8289 		 * If the underlying media happens to have a non 6 byte
8290 		 * address, arp module will fail set/get, but the del
8291 		 * operation will succeed.
8292 		 */
8293 		alength = 6;
8294 		if ((ipip->ipi_cmd != SIOCDARP) &&
8295 		    (alength != ill->ill_phys_addr_length)) {
8296 			return (EINVAL);
8297 		}
8298 	}
8299 
8300 	/* Translate ATF* flags to NCE* flags */
8301 	flags = 0;
8302 	if (arp_flags & ATF_AUTHORITY)
8303 		flags |= NCE_F_AUTHORITY;
8304 	if (arp_flags & ATF_PERM)
8305 		flags |= NCE_F_NONUD; /* not subject to aging */
8306 	if (arp_flags & ATF_PUBL)
8307 		flags |= NCE_F_PUBLISH;
8308 
8309 	/*
8310 	 * IPMP ARP special handling:
8311 	 *
8312 	 * 1. Since ARP mappings must appear consistent across the group,
8313 	 *    prohibit changing ARP mappings on the underlying interfaces.
8314 	 *
8315 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8316 	 *    IP itself, prohibit changing them.
8317 	 *
8318 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8319 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8320 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8321 	 */
8322 	if (IS_UNDER_IPMP(ill)) {
8323 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8324 			return (EPERM);
8325 	}
8326 	if (IS_IPMP(ill)) {
8327 		ipmp_illgrp_t *illg = ill->ill_grp;
8328 
8329 		switch (ipip->ipi_cmd) {
8330 		case SIOCSARP:
8331 		case SIOCSXARP:
8332 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8333 			if (proxy_ill != NULL) {
8334 				proxyarp = B_TRUE;
8335 				if (!ipmp_ill_is_active(proxy_ill))
8336 					proxy_ill = ipmp_illgrp_next_ill(illg);
8337 				if (proxy_ill != NULL)
8338 					lladdr = proxy_ill->ill_phys_addr;
8339 			}
8340 			/* FALLTHRU */
8341 		}
8342 	}
8343 
8344 	ipaddr = sin->sin_addr.s_addr;
8345 	/*
8346 	 * don't match across illgrp per case (1) and (2).
8347 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8348 	 */
8349 	nce = nce_lookup_v4(ill, &ipaddr);
8350 	if (nce != NULL)
8351 		ncec = nce->nce_common;
8352 
8353 	switch (iocp->ioc_cmd) {
8354 	case SIOCDARP:
8355 	case SIOCDXARP: {
8356 		/*
8357 		 * Delete the NCE if any.
8358 		 */
8359 		if (ncec == NULL) {
8360 			iocp->ioc_error = ENXIO;
8361 			break;
8362 		}
8363 		/* Don't allow changes to arp mappings of local addresses. */
8364 		if (NCE_MYADDR(ncec)) {
8365 			nce_refrele(nce);
8366 			return (ENOTSUP);
8367 		}
8368 		iocp->ioc_error = 0;
8369 
8370 		/*
8371 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8372 		 * This will delete all the nce entries on the under_ills.
8373 		 */
8374 		ncec_delete(ncec);
8375 		/*
8376 		 * Once the NCE has been deleted, then the ire_dep* consistency
8377 		 * mechanism will find any IRE which depended on the now
8378 		 * condemned NCE (as part of sending packets).
8379 		 * That mechanism handles redirects by deleting redirects
8380 		 * that refer to UNREACHABLE nces.
8381 		 */
8382 		break;
8383 	}
8384 	case SIOCGARP:
8385 	case SIOCGXARP:
8386 		if (ncec != NULL) {
8387 			lladdr = ncec->ncec_lladdr;
8388 			flags = ncec->ncec_flags;
8389 			iocp->ioc_error = 0;
8390 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8391 		} else {
8392 			iocp->ioc_error = ENXIO;
8393 		}
8394 		break;
8395 	case SIOCSARP:
8396 	case SIOCSXARP:
8397 		/* Don't allow changes to arp mappings of local addresses. */
8398 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8399 			nce_refrele(nce);
8400 			return (ENOTSUP);
8401 		}
8402 
8403 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8404 		flags |= NCE_F_STATIC;
8405 		if (!if_arp_ioctl) {
8406 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8407 			    lladdr, alength, flags);
8408 		} else {
8409 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8410 			if (ipif != NULL) {
8411 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8412 				    lladdr, alength, flags);
8413 				ipif_refrele(ipif);
8414 			}
8415 		}
8416 		if (nce != NULL) {
8417 			nce_refrele(nce);
8418 			nce = NULL;
8419 		}
8420 		/*
8421 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8422 		 * by nce_add_common()
8423 		 */
8424 		err = nce_lookup_then_add_v4(ill, lladdr,
8425 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8426 		    &nce);
8427 		if (err == EEXIST) {
8428 			ncec = nce->nce_common;
8429 			mutex_enter(&ncec->ncec_lock);
8430 			ncec->ncec_state = ND_REACHABLE;
8431 			ncec->ncec_flags = flags;
8432 			nce_update(ncec, ND_UNCHANGED, lladdr);
8433 			mutex_exit(&ncec->ncec_lock);
8434 			err = 0;
8435 		}
8436 		if (nce != NULL) {
8437 			nce_refrele(nce);
8438 			nce = NULL;
8439 		}
8440 		if (IS_IPMP(ill) && err == 0) {
8441 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8442 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8443 			    flags);
8444 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8445 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8446 				break;
8447 			}
8448 		}
8449 		iocp->ioc_error = err;
8450 	}
8451 
8452 	if (nce != NULL) {
8453 		nce_refrele(nce);
8454 	}
8455 
8456 	/*
8457 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8458 	 */
8459 	if (entp != NULL)
8460 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8461 
8462 	return (iocp->ioc_error);
8463 }
8464 
8465 /*
8466  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8467  * the associated sin and refhold and return the associated ipif via `ci'.
8468  */
8469 int
8470 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8471     cmd_info_t *ci)
8472 {
8473 	mblk_t	*mp1;
8474 	sin_t	*sin;
8475 	conn_t	*connp;
8476 	ipif_t	*ipif;
8477 	ire_t	*ire = NULL;
8478 	ill_t	*ill = NULL;
8479 	boolean_t exists;
8480 	ip_stack_t *ipst;
8481 	struct arpreq *ar;
8482 	struct xarpreq *xar;
8483 	struct sockaddr_dl *sdl;
8484 
8485 	/* ioctl comes down on a conn */
8486 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8487 	connp = Q_TO_CONN(q);
8488 	if (connp->conn_family == AF_INET6)
8489 		return (ENXIO);
8490 
8491 	ipst = connp->conn_netstack->netstack_ip;
8492 
8493 	/* Verified in ip_wput_nondata */
8494 	mp1 = mp->b_cont->b_cont;
8495 
8496 	if (ipip->ipi_cmd_type == XARP_CMD) {
8497 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8498 		xar = (struct xarpreq *)mp1->b_rptr;
8499 		sin = (sin_t *)&xar->xarp_pa;
8500 		sdl = &xar->xarp_ha;
8501 
8502 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8503 			return (ENXIO);
8504 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8505 			return (EINVAL);
8506 	} else {
8507 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8508 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8509 		ar = (struct arpreq *)mp1->b_rptr;
8510 		sin = (sin_t *)&ar->arp_pa;
8511 	}
8512 
8513 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8514 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8515 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8516 		if (ipif == NULL)
8517 			return (ENXIO);
8518 		if (ipif->ipif_id != 0) {
8519 			ipif_refrele(ipif);
8520 			return (ENXIO);
8521 		}
8522 	} else {
8523 		/*
8524 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8525 		 * of 0: use the IP address to find the ipif.  If the IP
8526 		 * address is an IPMP test address, ire_ftable_lookup() will
8527 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8528 		 */
8529 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8530 		    ipst);
8531 		if (ipif == NULL) {
8532 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8533 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8534 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8535 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8536 				if (ire != NULL)
8537 					ire_refrele(ire);
8538 				return (ENXIO);
8539 			}
8540 			ASSERT(ire != NULL && ill != NULL);
8541 			ipif = ill->ill_ipif;
8542 			ipif_refhold(ipif);
8543 			ire_refrele(ire);
8544 		}
8545 	}
8546 
8547 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8548 		ipif_refrele(ipif);
8549 		return (ENXIO);
8550 	}
8551 
8552 	ci->ci_sin = sin;
8553 	ci->ci_ipif = ipif;
8554 	return (0);
8555 }
8556 
8557 /*
8558  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8559  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8560  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8561  * up and thus an ill can join that illgrp.
8562  *
8563  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8564  * open()/close() primarily because close() is not allowed to fail or block
8565  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8566  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8567  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8568  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8569  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8570  * state if I_UNLINK didn't occur.
8571  *
8572  * Note that for each plumb/unplumb operation, we may end up here more than
8573  * once because of the way ifconfig works.  However, it's OK to link the same
8574  * illgrp more than once, or unlink an illgrp that's already unlinked.
8575  */
8576 static int
8577 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8578 {
8579 	int err;
8580 	ip_stack_t *ipst = ill->ill_ipst;
8581 
8582 	ASSERT(IS_IPMP(ill));
8583 	ASSERT(IAM_WRITER_ILL(ill));
8584 
8585 	switch (ioccmd) {
8586 	case I_LINK:
8587 		return (ENOTSUP);
8588 
8589 	case I_PLINK:
8590 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8591 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8592 		rw_exit(&ipst->ips_ipmp_lock);
8593 		break;
8594 
8595 	case I_PUNLINK:
8596 		/*
8597 		 * Require all UP ipifs be brought down prior to unlinking the
8598 		 * illgrp so any associated IREs (and other state) is torched.
8599 		 */
8600 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8601 			return (EBUSY);
8602 
8603 		/*
8604 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8605 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8606 		 * join this group.  Specifically: ills trying to join grab
8607 		 * ipmp_lock and bump a "pending join" counter checked by
8608 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8609 		 * joins can occur (since we have ipmp_lock).  Once we drop
8610 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8611 		 * find the illgrp (since we unlinked it) and will return
8612 		 * EAFNOSUPPORT.  This will then take them back through the
8613 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8614 		 * back through I_PLINK above.
8615 		 */
8616 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8617 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8618 		rw_exit(&ipst->ips_ipmp_lock);
8619 		return (err);
8620 	default:
8621 		break;
8622 	}
8623 	return (0);
8624 }
8625 
8626 /*
8627  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8628  * atomically set/clear the muxids. Also complete the ioctl by acking or
8629  * naking it.  Note that the code is structured such that the link type,
8630  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8631  * its clones use the persistent link, while pppd(1M) and perhaps many
8632  * other daemons may use non-persistent link.  When combined with some
8633  * ill_t states, linking and unlinking lower streams may be used as
8634  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8635  */
8636 /* ARGSUSED */
8637 void
8638 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8639 {
8640 	mblk_t		*mp1;
8641 	struct linkblk	*li;
8642 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8643 	int		err = 0;
8644 
8645 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8646 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8647 
8648 	mp1 = mp->b_cont;	/* This is the linkblk info */
8649 	li = (struct linkblk *)mp1->b_rptr;
8650 
8651 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8652 	if (err == EINPROGRESS)
8653 		return;
8654 done:
8655 	if (err == 0)
8656 		miocack(q, mp, 0, 0);
8657 	else
8658 		miocnak(q, mp, 0, err);
8659 
8660 	/* Conn was refheld in ip_sioctl_copyin_setup */
8661 	if (CONN_Q(q))
8662 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8663 }
8664 
8665 /*
8666  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8667  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8668  * module stream).  If `doconsist' is set, then do the extended consistency
8669  * checks requested by ifconfig(1M) and (atomically) set ill_muxid here.
8670  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8671  * an error code on failure.
8672  */
8673 static int
8674 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8675     struct linkblk *li)
8676 {
8677 	int		err = 0;
8678 	ill_t  		*ill;
8679 	queue_t		*ipwq, *dwq;
8680 	const char	*name;
8681 	struct qinit	*qinfo;
8682 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8683 	boolean_t	entered_ipsq = B_FALSE;
8684 	boolean_t	is_ip = B_FALSE;
8685 	arl_t		*arl;
8686 
8687 	/*
8688 	 * Walk the lower stream to verify it's the IP module stream.
8689 	 * The IP module is identified by its name, wput function,
8690 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8691 	 * (li->l_qbot) will not vanish until this ioctl completes.
8692 	 */
8693 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8694 		qinfo = ipwq->q_qinfo;
8695 		name = qinfo->qi_minfo->mi_idname;
8696 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8697 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8698 			is_ip = B_TRUE;
8699 			break;
8700 		}
8701 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8702 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8703 			break;
8704 		}
8705 	}
8706 
8707 	/*
8708 	 * If this isn't an IP module stream, bail.
8709 	 */
8710 	if (ipwq == NULL)
8711 		return (0);
8712 
8713 	if (!is_ip) {
8714 		arl = (arl_t *)ipwq->q_ptr;
8715 		ill = arl_to_ill(arl);
8716 		if (ill == NULL)
8717 			return (0);
8718 	} else {
8719 		ill = ipwq->q_ptr;
8720 	}
8721 	ASSERT(ill != NULL);
8722 
8723 	if (ipsq == NULL) {
8724 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8725 		    NEW_OP, B_FALSE);
8726 		if (ipsq == NULL) {
8727 			if (!is_ip)
8728 				ill_refrele(ill);
8729 			return (EINPROGRESS);
8730 		}
8731 		entered_ipsq = B_TRUE;
8732 	}
8733 	ASSERT(IAM_WRITER_ILL(ill));
8734 	mutex_enter(&ill->ill_lock);
8735 	if (!is_ip) {
8736 		if (islink && ill->ill_muxid == 0) {
8737 			/*
8738 			 * Plumbing has to be done with IP plumbed first, arp
8739 			 * second, but here we have arp being plumbed first.
8740 			 */
8741 			mutex_exit(&ill->ill_lock);
8742 			ipsq_exit(ipsq);
8743 			ill_refrele(ill);
8744 			return (EINVAL);
8745 		}
8746 	}
8747 	mutex_exit(&ill->ill_lock);
8748 	if (!is_ip) {
8749 		arl->arl_muxid = islink ? li->l_index : 0;
8750 		ill_refrele(ill);
8751 		goto done;
8752 	}
8753 
8754 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8755 		goto done;
8756 
8757 	/*
8758 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8759 	 * the read queue of the module immediately below IP in the ill.
8760 	 * These are used during the capability negotiation below.
8761 	 */
8762 	ill->ill_lmod_rq = NULL;
8763 	ill->ill_lmod_cnt = 0;
8764 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8765 		ill->ill_lmod_rq = RD(dwq);
8766 		for (; dwq != NULL; dwq = dwq->q_next)
8767 			ill->ill_lmod_cnt++;
8768 	}
8769 
8770 	ill->ill_muxid = islink ? li->l_index : 0;
8771 
8772 	/*
8773 	 * Mark the ipsq busy until the capability operations initiated below
8774 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8775 	 * returns, but the capability operation may complete asynchronously
8776 	 * much later.
8777 	 */
8778 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8779 	/*
8780 	 * If there's at least one up ipif on this ill, then we're bound to
8781 	 * the underlying driver via DLPI.  In that case, renegotiate
8782 	 * capabilities to account for any possible change in modules
8783 	 * interposed between IP and the driver.
8784 	 */
8785 	if (ill->ill_ipif_up_count > 0) {
8786 		if (islink)
8787 			ill_capability_probe(ill);
8788 		else
8789 			ill_capability_reset(ill, B_FALSE);
8790 	}
8791 	ipsq_current_finish(ipsq);
8792 done:
8793 	if (entered_ipsq)
8794 		ipsq_exit(ipsq);
8795 
8796 	return (err);
8797 }
8798 
8799 /*
8800  * Search the ioctl command in the ioctl tables and return a pointer
8801  * to the ioctl command information. The ioctl command tables are
8802  * static and fully populated at compile time.
8803  */
8804 ip_ioctl_cmd_t *
8805 ip_sioctl_lookup(int ioc_cmd)
8806 {
8807 	int index;
8808 	ip_ioctl_cmd_t *ipip;
8809 	ip_ioctl_cmd_t *ipip_end;
8810 
8811 	if (ioc_cmd == IPI_DONTCARE)
8812 		return (NULL);
8813 
8814 	/*
8815 	 * Do a 2 step search. First search the indexed table
8816 	 * based on the least significant byte of the ioctl cmd.
8817 	 * If we don't find a match, then search the misc table
8818 	 * serially.
8819 	 */
8820 	index = ioc_cmd & 0xFF;
8821 	if (index < ip_ndx_ioctl_count) {
8822 		ipip = &ip_ndx_ioctl_table[index];
8823 		if (ipip->ipi_cmd == ioc_cmd) {
8824 			/* Found a match in the ndx table */
8825 			return (ipip);
8826 		}
8827 	}
8828 
8829 	/* Search the misc table */
8830 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8831 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8832 		if (ipip->ipi_cmd == ioc_cmd)
8833 			/* Found a match in the misc table */
8834 			return (ipip);
8835 	}
8836 
8837 	return (NULL);
8838 }
8839 
8840 /*
8841  * Wrapper function for resuming deferred ioctl processing
8842  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
8843  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
8844  */
8845 /* ARGSUSED */
8846 void
8847 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
8848     void *dummy_arg)
8849 {
8850 	ip_sioctl_copyin_setup(q, mp);
8851 }
8852 
8853 /*
8854  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
8855  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
8856  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
8857  * We establish here the size of the block to be copied in.  mi_copyin
8858  * arranges for this to happen, an processing continues in ip_wput_nondata with
8859  * an M_IOCDATA message.
8860  */
8861 void
8862 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
8863 {
8864 	int	copyin_size;
8865 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8866 	ip_ioctl_cmd_t *ipip;
8867 	cred_t *cr;
8868 	ip_stack_t	*ipst;
8869 
8870 	if (CONN_Q(q))
8871 		ipst = CONNQ_TO_IPST(q);
8872 	else
8873 		ipst = ILLQ_TO_IPST(q);
8874 
8875 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
8876 	if (ipip == NULL) {
8877 		/*
8878 		 * The ioctl is not one we understand or own.
8879 		 * Pass it along to be processed down stream,
8880 		 * if this is a module instance of IP, else nak
8881 		 * the ioctl.
8882 		 */
8883 		if (q->q_next == NULL) {
8884 			goto nak;
8885 		} else {
8886 			putnext(q, mp);
8887 			return;
8888 		}
8889 	}
8890 
8891 	/*
8892 	 * If this is deferred, then we will do all the checks when we
8893 	 * come back.
8894 	 */
8895 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
8896 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
8897 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
8898 		return;
8899 	}
8900 
8901 	/*
8902 	 * Only allow a very small subset of IP ioctls on this stream if
8903 	 * IP is a module and not a driver. Allowing ioctls to be processed
8904 	 * in this case may cause assert failures or data corruption.
8905 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
8906 	 * ioctls allowed on an IP module stream, after which this stream
8907 	 * normally becomes a multiplexor (at which time the stream head
8908 	 * will fail all ioctls).
8909 	 */
8910 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
8911 		goto nak;
8912 	}
8913 
8914 	/* Make sure we have ioctl data to process. */
8915 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
8916 		goto nak;
8917 
8918 	/*
8919 	 * Prefer dblk credential over ioctl credential; some synthesized
8920 	 * ioctls have kcred set because there's no way to crhold()
8921 	 * a credential in some contexts.  (ioc_cr is not crfree() by
8922 	 * the framework; the caller of ioctl needs to hold the reference
8923 	 * for the duration of the call).
8924 	 */
8925 	cr = msg_getcred(mp, NULL);
8926 	if (cr == NULL)
8927 		cr = iocp->ioc_cr;
8928 
8929 	/* Make sure normal users don't send down privileged ioctls */
8930 	if ((ipip->ipi_flags & IPI_PRIV) &&
8931 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
8932 		/* We checked the privilege earlier but log it here */
8933 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
8934 		return;
8935 	}
8936 
8937 	/*
8938 	 * The ioctl command tables can only encode fixed length
8939 	 * ioctl data. If the length is variable, the table will
8940 	 * encode the length as zero. Such special cases are handled
8941 	 * below in the switch.
8942 	 */
8943 	if (ipip->ipi_copyin_size != 0) {
8944 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
8945 		return;
8946 	}
8947 
8948 	switch (iocp->ioc_cmd) {
8949 	case O_SIOCGIFCONF:
8950 	case SIOCGIFCONF:
8951 		/*
8952 		 * This IOCTL is hilarious.  See comments in
8953 		 * ip_sioctl_get_ifconf for the story.
8954 		 */
8955 		if (iocp->ioc_count == TRANSPARENT)
8956 			copyin_size = SIZEOF_STRUCT(ifconf,
8957 			    iocp->ioc_flag);
8958 		else
8959 			copyin_size = iocp->ioc_count;
8960 		mi_copyin(q, mp, NULL, copyin_size);
8961 		return;
8962 
8963 	case O_SIOCGLIFCONF:
8964 	case SIOCGLIFCONF:
8965 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
8966 		mi_copyin(q, mp, NULL, copyin_size);
8967 		return;
8968 
8969 	case SIOCGLIFSRCOF:
8970 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
8971 		mi_copyin(q, mp, NULL, copyin_size);
8972 		return;
8973 	case SIOCGIP6ADDRPOLICY:
8974 		ip_sioctl_ip6addrpolicy(q, mp);
8975 		ip6_asp_table_refrele(ipst);
8976 		return;
8977 
8978 	case SIOCSIP6ADDRPOLICY:
8979 		ip_sioctl_ip6addrpolicy(q, mp);
8980 		return;
8981 
8982 	case SIOCGDSTINFO:
8983 		ip_sioctl_dstinfo(q, mp);
8984 		ip6_asp_table_refrele(ipst);
8985 		return;
8986 
8987 	case I_PLINK:
8988 	case I_PUNLINK:
8989 	case I_LINK:
8990 	case I_UNLINK:
8991 		/*
8992 		 * We treat non-persistent link similarly as the persistent
8993 		 * link case, in terms of plumbing/unplumbing, as well as
8994 		 * dynamic re-plumbing events indicator.  See comments
8995 		 * in ip_sioctl_plink() for more.
8996 		 *
8997 		 * Request can be enqueued in the 'ipsq' while waiting
8998 		 * to become exclusive. So bump up the conn ref.
8999 		 */
9000 		if (CONN_Q(q))
9001 			CONN_INC_REF(Q_TO_CONN(q));
9002 		ip_sioctl_plink(NULL, q, mp, NULL);
9003 		return;
9004 
9005 	case ND_GET:
9006 	case ND_SET:
9007 		/*
9008 		 * Use of the nd table requires holding the reader lock.
9009 		 * Modifying the nd table thru nd_load/nd_unload requires
9010 		 * the writer lock.
9011 		 */
9012 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
9013 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
9014 			rw_exit(&ipst->ips_ip_g_nd_lock);
9015 
9016 			if (iocp->ioc_error)
9017 				iocp->ioc_count = 0;
9018 			mp->b_datap->db_type = M_IOCACK;
9019 			qreply(q, mp);
9020 			return;
9021 		}
9022 		rw_exit(&ipst->ips_ip_g_nd_lock);
9023 		/*
9024 		 * We don't understand this subioctl of ND_GET / ND_SET.
9025 		 * Maybe intended for some driver / module below us
9026 		 */
9027 		if (q->q_next) {
9028 			putnext(q, mp);
9029 		} else {
9030 			iocp->ioc_error = ENOENT;
9031 			mp->b_datap->db_type = M_IOCNAK;
9032 			iocp->ioc_count = 0;
9033 			qreply(q, mp);
9034 		}
9035 		return;
9036 
9037 	case IP_IOCTL:
9038 		ip_wput_ioctl(q, mp);
9039 		return;
9040 
9041 	case SIOCILB:
9042 		/* The ioctl length varies depending on the ILB command. */
9043 		copyin_size = iocp->ioc_count;
9044 		if (copyin_size < sizeof (ilb_cmd_t))
9045 			goto nak;
9046 		mi_copyin(q, mp, NULL, copyin_size);
9047 		return;
9048 
9049 	default:
9050 		cmn_err(CE_PANIC, "should not happen ");
9051 	}
9052 nak:
9053 	if (mp->b_cont != NULL) {
9054 		freemsg(mp->b_cont);
9055 		mp->b_cont = NULL;
9056 	}
9057 	iocp->ioc_error = EINVAL;
9058 	mp->b_datap->db_type = M_IOCNAK;
9059 	iocp->ioc_count = 0;
9060 	qreply(q, mp);
9061 }
9062 
9063 static void
9064 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9065 {
9066 	struct arpreq *ar;
9067 	struct xarpreq *xar;
9068 	mblk_t	*tmp;
9069 	struct iocblk *iocp;
9070 	int x_arp_ioctl = B_FALSE;
9071 	int *flagsp;
9072 	char *storage = NULL;
9073 
9074 	ASSERT(ill != NULL);
9075 
9076 	iocp = (struct iocblk *)mp->b_rptr;
9077 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9078 
9079 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9080 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9081 	    (iocp->ioc_cmd == SIOCSXARP)) {
9082 		x_arp_ioctl = B_TRUE;
9083 		xar = (struct xarpreq *)tmp->b_rptr;
9084 		flagsp = &xar->xarp_flags;
9085 		storage = xar->xarp_ha.sdl_data;
9086 	} else {
9087 		ar = (struct arpreq *)tmp->b_rptr;
9088 		flagsp = &ar->arp_flags;
9089 		storage = ar->arp_ha.sa_data;
9090 	}
9091 
9092 	/*
9093 	 * We're done if this is not an SIOCG{X}ARP
9094 	 */
9095 	if (x_arp_ioctl) {
9096 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9097 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9098 		    sizeof (xar->xarp_ha.sdl_data)) {
9099 			iocp->ioc_error = EINVAL;
9100 			return;
9101 		}
9102 	}
9103 	*flagsp = ATF_INUSE;
9104 	/*
9105 	 * If /sbin/arp told us we are the authority using the "permanent"
9106 	 * flag, or if this is one of my addresses print "permanent"
9107 	 * in the /sbin/arp output.
9108 	 */
9109 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9110 		*flagsp |= ATF_AUTHORITY;
9111 	if (flags & NCE_F_NONUD)
9112 		*flagsp |= ATF_PERM; /* not subject to aging */
9113 	if (flags & NCE_F_PUBLISH)
9114 		*flagsp |= ATF_PUBL;
9115 	if (hwaddr != NULL) {
9116 		*flagsp |= ATF_COM;
9117 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9118 	}
9119 }
9120 
9121 /*
9122  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9123  * interface) create the next available logical interface for this
9124  * physical interface.
9125  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9126  * ipif with the specified name.
9127  *
9128  * If the address family is not AF_UNSPEC then set the address as well.
9129  *
9130  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9131  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9132  *
9133  * Executed as a writer on the ill.
9134  * So no lock is needed to traverse the ipif chain, or examine the
9135  * phyint flags.
9136  */
9137 /* ARGSUSED */
9138 int
9139 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9140     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9141 {
9142 	mblk_t	*mp1;
9143 	struct lifreq *lifr;
9144 	boolean_t	isv6;
9145 	boolean_t	exists;
9146 	char 	*name;
9147 	char	*endp;
9148 	char	*cp;
9149 	int	namelen;
9150 	ipif_t	*ipif;
9151 	long	id;
9152 	ipsq_t	*ipsq;
9153 	ill_t	*ill;
9154 	sin_t	*sin;
9155 	int	err = 0;
9156 	boolean_t found_sep = B_FALSE;
9157 	conn_t	*connp;
9158 	zoneid_t zoneid;
9159 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9160 
9161 	ASSERT(q->q_next == NULL);
9162 	ip1dbg(("ip_sioctl_addif\n"));
9163 	/* Existence of mp1 has been checked in ip_wput_nondata */
9164 	mp1 = mp->b_cont->b_cont;
9165 	/*
9166 	 * Null terminate the string to protect against buffer
9167 	 * overrun. String was generated by user code and may not
9168 	 * be trusted.
9169 	 */
9170 	lifr = (struct lifreq *)mp1->b_rptr;
9171 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9172 	name = lifr->lifr_name;
9173 	ASSERT(CONN_Q(q));
9174 	connp = Q_TO_CONN(q);
9175 	isv6 = (connp->conn_family == AF_INET6);
9176 	zoneid = connp->conn_zoneid;
9177 	namelen = mi_strlen(name);
9178 	if (namelen == 0)
9179 		return (EINVAL);
9180 
9181 	exists = B_FALSE;
9182 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9183 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9184 		/*
9185 		 * Allow creating lo0 using SIOCLIFADDIF.
9186 		 * can't be any other writer thread. So can pass null below
9187 		 * for the last 4 args to ipif_lookup_name.
9188 		 */
9189 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9190 		    &exists, isv6, zoneid, ipst);
9191 		/* Prevent any further action */
9192 		if (ipif == NULL) {
9193 			return (ENOBUFS);
9194 		} else if (!exists) {
9195 			/* We created the ipif now and as writer */
9196 			ipif_refrele(ipif);
9197 			return (0);
9198 		} else {
9199 			ill = ipif->ipif_ill;
9200 			ill_refhold(ill);
9201 			ipif_refrele(ipif);
9202 		}
9203 	} else {
9204 		/* Look for a colon in the name. */
9205 		endp = &name[namelen];
9206 		for (cp = endp; --cp > name; ) {
9207 			if (*cp == IPIF_SEPARATOR_CHAR) {
9208 				found_sep = B_TRUE;
9209 				/*
9210 				 * Reject any non-decimal aliases for plumbing
9211 				 * of logical interfaces. Aliases with leading
9212 				 * zeroes are also rejected as they introduce
9213 				 * ambiguity in the naming of the interfaces.
9214 				 * Comparing with "0" takes care of all such
9215 				 * cases.
9216 				 */
9217 				if ((strncmp("0", cp+1, 1)) == 0)
9218 					return (EINVAL);
9219 
9220 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9221 				    id <= 0 || *endp != '\0') {
9222 					return (EINVAL);
9223 				}
9224 				*cp = '\0';
9225 				break;
9226 			}
9227 		}
9228 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9229 		if (found_sep)
9230 			*cp = IPIF_SEPARATOR_CHAR;
9231 		if (ill == NULL)
9232 			return (ENXIO);
9233 	}
9234 
9235 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9236 	    B_TRUE);
9237 
9238 	/*
9239 	 * Release the refhold due to the lookup, now that we are excl
9240 	 * or we are just returning
9241 	 */
9242 	ill_refrele(ill);
9243 
9244 	if (ipsq == NULL)
9245 		return (EINPROGRESS);
9246 
9247 	/* We are now exclusive on the IPSQ */
9248 	ASSERT(IAM_WRITER_ILL(ill));
9249 
9250 	if (found_sep) {
9251 		/* Now see if there is an IPIF with this unit number. */
9252 		for (ipif = ill->ill_ipif; ipif != NULL;
9253 		    ipif = ipif->ipif_next) {
9254 			if (ipif->ipif_id == id) {
9255 				err = EEXIST;
9256 				goto done;
9257 			}
9258 		}
9259 	}
9260 
9261 	/*
9262 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9263 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9264 	 * instead.
9265 	 */
9266 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9267 	    B_TRUE, B_TRUE, &err)) == NULL) {
9268 		goto done;
9269 	}
9270 
9271 	/* Return created name with ioctl */
9272 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9273 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9274 	ip1dbg(("created %s\n", lifr->lifr_name));
9275 
9276 	/* Set address */
9277 	sin = (sin_t *)&lifr->lifr_addr;
9278 	if (sin->sin_family != AF_UNSPEC) {
9279 		err = ip_sioctl_addr(ipif, sin, q, mp,
9280 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9281 	}
9282 
9283 done:
9284 	ipsq_exit(ipsq);
9285 	return (err);
9286 }
9287 
9288 /*
9289  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9290  * interface) delete it based on the IP address (on this physical interface).
9291  * Otherwise delete it based on the ipif_id.
9292  * Also, special handling to allow a removeif of lo0.
9293  */
9294 /* ARGSUSED */
9295 int
9296 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9297     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9298 {
9299 	conn_t		*connp;
9300 	ill_t		*ill = ipif->ipif_ill;
9301 	boolean_t	 success;
9302 	ip_stack_t	*ipst;
9303 
9304 	ipst = CONNQ_TO_IPST(q);
9305 
9306 	ASSERT(q->q_next == NULL);
9307 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9308 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9309 	ASSERT(IAM_WRITER_IPIF(ipif));
9310 
9311 	connp = Q_TO_CONN(q);
9312 	/*
9313 	 * Special case for unplumbing lo0 (the loopback physical interface).
9314 	 * If unplumbing lo0, the incoming address structure has been
9315 	 * initialized to all zeros. When unplumbing lo0, all its logical
9316 	 * interfaces must be removed too.
9317 	 *
9318 	 * Note that this interface may be called to remove a specific
9319 	 * loopback logical interface (eg, lo0:1). But in that case
9320 	 * ipif->ipif_id != 0 so that the code path for that case is the
9321 	 * same as any other interface (meaning it skips the code directly
9322 	 * below).
9323 	 */
9324 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9325 		if (sin->sin_family == AF_UNSPEC &&
9326 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9327 			/*
9328 			 * Mark it condemned. No new ref. will be made to ill.
9329 			 */
9330 			mutex_enter(&ill->ill_lock);
9331 			ill->ill_state_flags |= ILL_CONDEMNED;
9332 			for (ipif = ill->ill_ipif; ipif != NULL;
9333 			    ipif = ipif->ipif_next) {
9334 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9335 			}
9336 			mutex_exit(&ill->ill_lock);
9337 
9338 			ipif = ill->ill_ipif;
9339 			/* unplumb the loopback interface */
9340 			ill_delete(ill);
9341 			mutex_enter(&connp->conn_lock);
9342 			mutex_enter(&ill->ill_lock);
9343 
9344 			/* Are any references to this ill active */
9345 			if (ill_is_freeable(ill)) {
9346 				mutex_exit(&ill->ill_lock);
9347 				mutex_exit(&connp->conn_lock);
9348 				ill_delete_tail(ill);
9349 				mi_free(ill);
9350 				return (0);
9351 			}
9352 			success = ipsq_pending_mp_add(connp, ipif,
9353 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9354 			mutex_exit(&connp->conn_lock);
9355 			mutex_exit(&ill->ill_lock);
9356 			if (success)
9357 				return (EINPROGRESS);
9358 			else
9359 				return (EINTR);
9360 		}
9361 	}
9362 
9363 	if (ipif->ipif_id == 0) {
9364 		ipsq_t *ipsq;
9365 
9366 		/* Find based on address */
9367 		if (ipif->ipif_isv6) {
9368 			sin6_t *sin6;
9369 
9370 			if (sin->sin_family != AF_INET6)
9371 				return (EAFNOSUPPORT);
9372 
9373 			sin6 = (sin6_t *)sin;
9374 			/* We are a writer, so we should be able to lookup */
9375 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9376 			    ipst);
9377 		} else {
9378 			if (sin->sin_family != AF_INET)
9379 				return (EAFNOSUPPORT);
9380 
9381 			/* We are a writer, so we should be able to lookup */
9382 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9383 			    ipst);
9384 		}
9385 		if (ipif == NULL) {
9386 			return (EADDRNOTAVAIL);
9387 		}
9388 
9389 		/*
9390 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9391 		 * lifr_name of the physical interface but with an ip address
9392 		 * lifr_addr of a logical interface plumbed over it.
9393 		 * So update ipx_current_ipif now that ipif points to the
9394 		 * correct one.
9395 		 */
9396 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9397 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9398 
9399 		/* This is a writer */
9400 		ipif_refrele(ipif);
9401 	}
9402 
9403 	/*
9404 	 * Can not delete instance zero since it is tied to the ill.
9405 	 */
9406 	if (ipif->ipif_id == 0)
9407 		return (EBUSY);
9408 
9409 	mutex_enter(&ill->ill_lock);
9410 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9411 	mutex_exit(&ill->ill_lock);
9412 
9413 	ipif_free(ipif);
9414 
9415 	mutex_enter(&connp->conn_lock);
9416 	mutex_enter(&ill->ill_lock);
9417 
9418 	/* Are any references to this ipif active */
9419 	if (ipif_is_freeable(ipif)) {
9420 		mutex_exit(&ill->ill_lock);
9421 		mutex_exit(&connp->conn_lock);
9422 		ipif_non_duplicate(ipif);
9423 		(void) ipif_down_tail(ipif);
9424 		ipif_free_tail(ipif); /* frees ipif */
9425 		return (0);
9426 	}
9427 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9428 	    IPIF_FREE);
9429 	mutex_exit(&ill->ill_lock);
9430 	mutex_exit(&connp->conn_lock);
9431 	if (success)
9432 		return (EINPROGRESS);
9433 	else
9434 		return (EINTR);
9435 }
9436 
9437 /*
9438  * Restart the removeif ioctl. The refcnt has gone down to 0.
9439  * The ipif is already condemned. So can't find it thru lookups.
9440  */
9441 /* ARGSUSED */
9442 int
9443 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9444     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9445 {
9446 	ill_t *ill = ipif->ipif_ill;
9447 
9448 	ASSERT(IAM_WRITER_IPIF(ipif));
9449 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9450 
9451 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9452 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9453 
9454 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9455 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9456 		ill_delete_tail(ill);
9457 		mi_free(ill);
9458 		return (0);
9459 	}
9460 
9461 	ipif_non_duplicate(ipif);
9462 	(void) ipif_down_tail(ipif);
9463 	ipif_free_tail(ipif);
9464 
9465 	return (0);
9466 }
9467 
9468 /*
9469  * Set the local interface address.
9470  * Allow an address of all zero when the interface is down.
9471  */
9472 /* ARGSUSED */
9473 int
9474 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9475     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9476 {
9477 	int err = 0;
9478 	in6_addr_t v6addr;
9479 	boolean_t need_up = B_FALSE;
9480 
9481 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9482 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9483 
9484 	ASSERT(IAM_WRITER_IPIF(ipif));
9485 
9486 	if (ipif->ipif_isv6) {
9487 		sin6_t *sin6;
9488 		ill_t *ill;
9489 		phyint_t *phyi;
9490 
9491 		if (sin->sin_family != AF_INET6)
9492 			return (EAFNOSUPPORT);
9493 
9494 		sin6 = (sin6_t *)sin;
9495 		v6addr = sin6->sin6_addr;
9496 		ill = ipif->ipif_ill;
9497 		phyi = ill->ill_phyint;
9498 
9499 		/*
9500 		 * Enforce that true multicast interfaces have a link-local
9501 		 * address for logical unit 0.
9502 		 */
9503 		if (ipif->ipif_id == 0 &&
9504 		    (ill->ill_flags & ILLF_MULTICAST) &&
9505 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9506 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9507 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9508 			return (EADDRNOTAVAIL);
9509 		}
9510 
9511 		/*
9512 		 * up interfaces shouldn't have the unspecified address
9513 		 * unless they also have the IPIF_NOLOCAL flags set and
9514 		 * have a subnet assigned.
9515 		 */
9516 		if ((ipif->ipif_flags & IPIF_UP) &&
9517 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9518 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9519 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9520 			return (EADDRNOTAVAIL);
9521 		}
9522 
9523 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9524 			return (EADDRNOTAVAIL);
9525 	} else {
9526 		ipaddr_t addr;
9527 
9528 		if (sin->sin_family != AF_INET)
9529 			return (EAFNOSUPPORT);
9530 
9531 		addr = sin->sin_addr.s_addr;
9532 
9533 		/* Allow 0 as the local address. */
9534 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9535 			return (EADDRNOTAVAIL);
9536 
9537 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9538 	}
9539 
9540 	/*
9541 	 * Even if there is no change we redo things just to rerun
9542 	 * ipif_set_default.
9543 	 */
9544 	if (ipif->ipif_flags & IPIF_UP) {
9545 		/*
9546 		 * Setting a new local address, make sure
9547 		 * we have net and subnet bcast ire's for
9548 		 * the old address if we need them.
9549 		 */
9550 		/*
9551 		 * If the interface is already marked up,
9552 		 * we call ipif_down which will take care
9553 		 * of ditching any IREs that have been set
9554 		 * up based on the old interface address.
9555 		 */
9556 		err = ipif_logical_down(ipif, q, mp);
9557 		if (err == EINPROGRESS)
9558 			return (err);
9559 		(void) ipif_down_tail(ipif);
9560 		need_up = 1;
9561 	}
9562 
9563 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9564 	return (err);
9565 }
9566 
9567 int
9568 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9569     boolean_t need_up)
9570 {
9571 	in6_addr_t v6addr;
9572 	in6_addr_t ov6addr;
9573 	ipaddr_t addr;
9574 	sin6_t	*sin6;
9575 	int	sinlen;
9576 	int	err = 0;
9577 	ill_t	*ill = ipif->ipif_ill;
9578 	boolean_t need_dl_down;
9579 	boolean_t need_arp_down;
9580 	struct iocblk *iocp;
9581 
9582 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9583 
9584 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9585 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9586 	ASSERT(IAM_WRITER_IPIF(ipif));
9587 
9588 	/* Must cancel any pending timer before taking the ill_lock */
9589 	if (ipif->ipif_recovery_id != 0)
9590 		(void) untimeout(ipif->ipif_recovery_id);
9591 	ipif->ipif_recovery_id = 0;
9592 
9593 	if (ipif->ipif_isv6) {
9594 		sin6 = (sin6_t *)sin;
9595 		v6addr = sin6->sin6_addr;
9596 		sinlen = sizeof (struct sockaddr_in6);
9597 	} else {
9598 		addr = sin->sin_addr.s_addr;
9599 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9600 		sinlen = sizeof (struct sockaddr_in);
9601 	}
9602 	mutex_enter(&ill->ill_lock);
9603 	ov6addr = ipif->ipif_v6lcl_addr;
9604 	ipif->ipif_v6lcl_addr = v6addr;
9605 	sctp_update_ipif_addr(ipif, ov6addr);
9606 	ipif->ipif_addr_ready = 0;
9607 
9608 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9609 
9610 	/*
9611 	 * If the interface was previously marked as a duplicate, then since
9612 	 * we've now got a "new" address, it should no longer be considered a
9613 	 * duplicate -- even if the "new" address is the same as the old one.
9614 	 * Note that if all ipifs are down, we may have a pending ARP down
9615 	 * event to handle.  This is because we want to recover from duplicates
9616 	 * and thus delay tearing down ARP until the duplicates have been
9617 	 * removed or disabled.
9618 	 */
9619 	need_dl_down = need_arp_down = B_FALSE;
9620 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9621 		need_arp_down = !need_up;
9622 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9623 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9624 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9625 			need_dl_down = B_TRUE;
9626 		}
9627 	}
9628 
9629 	ipif_set_default(ipif);
9630 
9631 	/*
9632 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9633 	 * tag the ill so that future updates to the interface ID don't result
9634 	 * in this address getting automatically reconfigured from under the
9635 	 * administrator.
9636 	 */
9637 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9638 		ill->ill_manual_linklocal = 1;
9639 
9640 	/*
9641 	 * When publishing an interface address change event, we only notify
9642 	 * the event listeners of the new address.  It is assumed that if they
9643 	 * actively care about the addresses assigned that they will have
9644 	 * already discovered the previous address assigned (if there was one.)
9645 	 *
9646 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9647 	 */
9648 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9649 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9650 		    NE_ADDRESS_CHANGE, sin, sinlen);
9651 	}
9652 
9653 	mutex_exit(&ill->ill_lock);
9654 
9655 	if (need_up) {
9656 		/*
9657 		 * Now bring the interface back up.  If this
9658 		 * is the only IPIF for the ILL, ipif_up
9659 		 * will have to re-bind to the device, so
9660 		 * we may get back EINPROGRESS, in which
9661 		 * case, this IOCTL will get completed in
9662 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9663 		 */
9664 		err = ipif_up(ipif, q, mp);
9665 	} else {
9666 		/* Perhaps ilgs should use this ill */
9667 		update_conn_ill(NULL, ill->ill_ipst);
9668 	}
9669 
9670 	if (need_dl_down)
9671 		ill_dl_down(ill);
9672 
9673 	if (need_arp_down && !ill->ill_isv6)
9674 		(void) ipif_arp_down(ipif);
9675 
9676 	/*
9677 	 * The default multicast interface might have changed (for
9678 	 * instance if the IPv6 scope of the address changed)
9679 	 */
9680 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9681 
9682 	return (err);
9683 }
9684 
9685 /*
9686  * Restart entry point to restart the address set operation after the
9687  * refcounts have dropped to zero.
9688  */
9689 /* ARGSUSED */
9690 int
9691 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9692     ip_ioctl_cmd_t *ipip, void *ifreq)
9693 {
9694 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9695 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9696 	ASSERT(IAM_WRITER_IPIF(ipif));
9697 	(void) ipif_down_tail(ipif);
9698 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9699 }
9700 
9701 /* ARGSUSED */
9702 int
9703 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9704     ip_ioctl_cmd_t *ipip, void *if_req)
9705 {
9706 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9707 	struct lifreq *lifr = (struct lifreq *)if_req;
9708 
9709 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9710 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9711 	/*
9712 	 * The net mask and address can't change since we have a
9713 	 * reference to the ipif. So no lock is necessary.
9714 	 */
9715 	if (ipif->ipif_isv6) {
9716 		*sin6 = sin6_null;
9717 		sin6->sin6_family = AF_INET6;
9718 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9719 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9720 		lifr->lifr_addrlen =
9721 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9722 	} else {
9723 		*sin = sin_null;
9724 		sin->sin_family = AF_INET;
9725 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9726 		if (ipip->ipi_cmd_type == LIF_CMD) {
9727 			lifr->lifr_addrlen =
9728 			    ip_mask_to_plen(ipif->ipif_net_mask);
9729 		}
9730 	}
9731 	return (0);
9732 }
9733 
9734 /*
9735  * Set the destination address for a pt-pt interface.
9736  */
9737 /* ARGSUSED */
9738 int
9739 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9740     ip_ioctl_cmd_t *ipip, void *if_req)
9741 {
9742 	int err = 0;
9743 	in6_addr_t v6addr;
9744 	boolean_t need_up = B_FALSE;
9745 
9746 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9747 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9748 	ASSERT(IAM_WRITER_IPIF(ipif));
9749 
9750 	if (ipif->ipif_isv6) {
9751 		sin6_t *sin6;
9752 
9753 		if (sin->sin_family != AF_INET6)
9754 			return (EAFNOSUPPORT);
9755 
9756 		sin6 = (sin6_t *)sin;
9757 		v6addr = sin6->sin6_addr;
9758 
9759 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9760 			return (EADDRNOTAVAIL);
9761 	} else {
9762 		ipaddr_t addr;
9763 
9764 		if (sin->sin_family != AF_INET)
9765 			return (EAFNOSUPPORT);
9766 
9767 		addr = sin->sin_addr.s_addr;
9768 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9769 			return (EADDRNOTAVAIL);
9770 
9771 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9772 	}
9773 
9774 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
9775 		return (0);	/* No change */
9776 
9777 	if (ipif->ipif_flags & IPIF_UP) {
9778 		/*
9779 		 * If the interface is already marked up,
9780 		 * we call ipif_down which will take care
9781 		 * of ditching any IREs that have been set
9782 		 * up based on the old pp dst address.
9783 		 */
9784 		err = ipif_logical_down(ipif, q, mp);
9785 		if (err == EINPROGRESS)
9786 			return (err);
9787 		(void) ipif_down_tail(ipif);
9788 		need_up = B_TRUE;
9789 	}
9790 	/*
9791 	 * could return EINPROGRESS. If so ioctl will complete in
9792 	 * ip_rput_dlpi_writer
9793 	 */
9794 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
9795 	return (err);
9796 }
9797 
9798 static int
9799 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9800     boolean_t need_up)
9801 {
9802 	in6_addr_t v6addr;
9803 	ill_t	*ill = ipif->ipif_ill;
9804 	int	err = 0;
9805 	boolean_t need_dl_down;
9806 	boolean_t need_arp_down;
9807 
9808 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
9809 	    ipif->ipif_id, (void *)ipif));
9810 
9811 	/* Must cancel any pending timer before taking the ill_lock */
9812 	if (ipif->ipif_recovery_id != 0)
9813 		(void) untimeout(ipif->ipif_recovery_id);
9814 	ipif->ipif_recovery_id = 0;
9815 
9816 	if (ipif->ipif_isv6) {
9817 		sin6_t *sin6;
9818 
9819 		sin6 = (sin6_t *)sin;
9820 		v6addr = sin6->sin6_addr;
9821 	} else {
9822 		ipaddr_t addr;
9823 
9824 		addr = sin->sin_addr.s_addr;
9825 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9826 	}
9827 	mutex_enter(&ill->ill_lock);
9828 	/* Set point to point destination address. */
9829 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
9830 		/*
9831 		 * Allow this as a means of creating logical
9832 		 * pt-pt interfaces on top of e.g. an Ethernet.
9833 		 * XXX Undocumented HACK for testing.
9834 		 * pt-pt interfaces are created with NUD disabled.
9835 		 */
9836 		ipif->ipif_flags |= IPIF_POINTOPOINT;
9837 		ipif->ipif_flags &= ~IPIF_BROADCAST;
9838 		if (ipif->ipif_isv6)
9839 			ill->ill_flags |= ILLF_NONUD;
9840 	}
9841 
9842 	/*
9843 	 * If the interface was previously marked as a duplicate, then since
9844 	 * we've now got a "new" address, it should no longer be considered a
9845 	 * duplicate -- even if the "new" address is the same as the old one.
9846 	 * Note that if all ipifs are down, we may have a pending ARP down
9847 	 * event to handle.
9848 	 */
9849 	need_dl_down = need_arp_down = B_FALSE;
9850 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9851 		need_arp_down = !need_up;
9852 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9853 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9854 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9855 			need_dl_down = B_TRUE;
9856 		}
9857 	}
9858 
9859 	/*
9860 	 * If we've just manually set the IPv6 destination link-local address
9861 	 * (0th ipif), tag the ill so that future updates to the destination
9862 	 * interface ID (as can happen with interfaces over IP tunnels) don't
9863 	 * result in this address getting automatically reconfigured from
9864 	 * under the administrator.
9865 	 */
9866 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9867 		ill->ill_manual_dst_linklocal = 1;
9868 
9869 	/* Set the new address. */
9870 	ipif->ipif_v6pp_dst_addr = v6addr;
9871 	/* Make sure subnet tracks pp_dst */
9872 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
9873 	mutex_exit(&ill->ill_lock);
9874 
9875 	if (need_up) {
9876 		/*
9877 		 * Now bring the interface back up.  If this
9878 		 * is the only IPIF for the ILL, ipif_up
9879 		 * will have to re-bind to the device, so
9880 		 * we may get back EINPROGRESS, in which
9881 		 * case, this IOCTL will get completed in
9882 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9883 		 */
9884 		err = ipif_up(ipif, q, mp);
9885 	}
9886 
9887 	if (need_dl_down)
9888 		ill_dl_down(ill);
9889 	if (need_arp_down && !ipif->ipif_isv6)
9890 		(void) ipif_arp_down(ipif);
9891 
9892 	return (err);
9893 }
9894 
9895 /*
9896  * Restart entry point to restart the dstaddress set operation after the
9897  * refcounts have dropped to zero.
9898  */
9899 /* ARGSUSED */
9900 int
9901 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9902     ip_ioctl_cmd_t *ipip, void *ifreq)
9903 {
9904 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
9905 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9906 	(void) ipif_down_tail(ipif);
9907 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
9908 }
9909 
9910 /* ARGSUSED */
9911 int
9912 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9913     ip_ioctl_cmd_t *ipip, void *if_req)
9914 {
9915 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
9916 
9917 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
9918 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9919 	/*
9920 	 * Get point to point destination address. The addresses can't
9921 	 * change since we hold a reference to the ipif.
9922 	 */
9923 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
9924 		return (EADDRNOTAVAIL);
9925 
9926 	if (ipif->ipif_isv6) {
9927 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9928 		*sin6 = sin6_null;
9929 		sin6->sin6_family = AF_INET6;
9930 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
9931 	} else {
9932 		*sin = sin_null;
9933 		sin->sin_family = AF_INET;
9934 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
9935 	}
9936 	return (0);
9937 }
9938 
9939 /*
9940  * Check which flags will change by the given flags being set
9941  * silently ignore flags which userland is not allowed to control.
9942  * (Because these flags may change between SIOCGLIFFLAGS and
9943  * SIOCSLIFFLAGS, and that's outside of userland's control,
9944  * we need to silently ignore them rather than fail.)
9945  */
9946 static void
9947 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
9948     uint64_t *offp)
9949 {
9950 	ill_t		*ill = ipif->ipif_ill;
9951 	phyint_t 	*phyi = ill->ill_phyint;
9952 	uint64_t	cantchange_flags, intf_flags;
9953 	uint64_t	turn_on, turn_off;
9954 
9955 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9956 	cantchange_flags = IFF_CANTCHANGE;
9957 	if (IS_IPMP(ill))
9958 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
9959 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
9960 	turn_off = intf_flags & turn_on;
9961 	turn_on ^= turn_off;
9962 	*onp = turn_on;
9963 	*offp = turn_off;
9964 }
9965 
9966 /*
9967  * Set interface flags.  Many flags require special handling (e.g.,
9968  * bringing the interface down); see below for details.
9969  *
9970  * NOTE : We really don't enforce that ipif_id zero should be used
9971  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
9972  *	  is because applications generally does SICGLIFFLAGS and
9973  *	  ORs in the new flags (that affects the logical) and does a
9974  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
9975  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
9976  *	  flags that will be turned on is correct with respect to
9977  *	  ipif_id 0. For backward compatibility reasons, it is not done.
9978  */
9979 /* ARGSUSED */
9980 int
9981 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9982     ip_ioctl_cmd_t *ipip, void *if_req)
9983 {
9984 	uint64_t turn_on;
9985 	uint64_t turn_off;
9986 	int	err = 0;
9987 	phyint_t *phyi;
9988 	ill_t *ill;
9989 	conn_t *connp;
9990 	uint64_t intf_flags;
9991 	boolean_t phyint_flags_modified = B_FALSE;
9992 	uint64_t flags;
9993 	struct ifreq *ifr;
9994 	struct lifreq *lifr;
9995 	boolean_t set_linklocal = B_FALSE;
9996 
9997 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
9998 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9999 
10000 	ASSERT(IAM_WRITER_IPIF(ipif));
10001 
10002 	ill = ipif->ipif_ill;
10003 	phyi = ill->ill_phyint;
10004 
10005 	if (ipip->ipi_cmd_type == IF_CMD) {
10006 		ifr = (struct ifreq *)if_req;
10007 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10008 	} else {
10009 		lifr = (struct lifreq *)if_req;
10010 		flags = lifr->lifr_flags;
10011 	}
10012 
10013 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10014 
10015 	/*
10016 	 * Have the flags been set correctly until now?
10017 	 */
10018 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10019 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10020 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10021 	/*
10022 	 * Compare the new flags to the old, and partition
10023 	 * into those coming on and those going off.
10024 	 * For the 16 bit command keep the bits above bit 16 unchanged.
10025 	 */
10026 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
10027 		flags |= intf_flags & ~0xFFFF;
10028 
10029 	/*
10030 	 * Explicitly fail attempts to change flags that are always invalid on
10031 	 * an IPMP meta-interface.
10032 	 */
10033 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10034 		return (EINVAL);
10035 
10036 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10037 	if ((turn_on|turn_off) == 0)
10038 		return (0);	/* No change */
10039 
10040 	/*
10041 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
10042 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10043 	 * allow it to be turned off.
10044 	 */
10045 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10046 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
10047 		return (EINVAL);
10048 
10049 	if ((connp = Q_TO_CONN(q)) == NULL)
10050 		return (EINVAL);
10051 
10052 	/*
10053 	 * Only vrrp control socket is allowed to change IFF_UP and
10054 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
10055 	 */
10056 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10057 		if (!connp->conn_isvrrp)
10058 			return (EINVAL);
10059 	}
10060 
10061 	/*
10062 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10063 	 * VRRP control socket.
10064 	 */
10065 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
10066 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10067 			return (EINVAL);
10068 	}
10069 
10070 	if (turn_on & IFF_NOFAILOVER) {
10071 		turn_on |= IFF_DEPRECATED;
10072 		flags |= IFF_DEPRECATED;
10073 	}
10074 
10075 	/*
10076 	 * On underlying interfaces, only allow applications to manage test
10077 	 * addresses -- otherwise, they may get confused when the address
10078 	 * moves as part of being brought up.  Likewise, prevent an
10079 	 * application-managed test address from being converted to a data
10080 	 * address.  To prevent migration of administratively up addresses in
10081 	 * the kernel, we don't allow them to be converted either.
10082 	 */
10083 	if (IS_UNDER_IPMP(ill)) {
10084 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10085 
10086 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10087 			return (EINVAL);
10088 
10089 		if ((turn_off & IFF_NOFAILOVER) &&
10090 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10091 			return (EINVAL);
10092 	}
10093 
10094 	/*
10095 	 * Only allow IFF_TEMPORARY flag to be set on
10096 	 * IPv6 interfaces.
10097 	 */
10098 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10099 		return (EINVAL);
10100 
10101 	/*
10102 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10103 	 */
10104 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10105 		return (EINVAL);
10106 
10107 	/*
10108 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10109 	 * interfaces.  It makes no sense in that context.
10110 	 */
10111 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10112 		return (EINVAL);
10113 
10114 	/*
10115 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10116 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10117 	 * If the link local address isn't set, and can be set, it will get
10118 	 * set later on in this function.
10119 	 */
10120 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10121 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10122 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10123 		if (ipif_cant_setlinklocal(ipif))
10124 			return (EINVAL);
10125 		set_linklocal = B_TRUE;
10126 	}
10127 
10128 	/*
10129 	 * If we modify physical interface flags, we'll potentially need to
10130 	 * send up two routing socket messages for the changes (one for the
10131 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10132 	 */
10133 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10134 		phyint_flags_modified = B_TRUE;
10135 
10136 	/*
10137 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10138 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10139 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10140 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10141 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10142 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10143 	 * will not be honored.
10144 	 */
10145 	if (turn_on & PHYI_STANDBY) {
10146 		/*
10147 		 * No need to grab ill_g_usesrc_lock here; see the
10148 		 * synchronization notes in ip.c.
10149 		 */
10150 		if (ill->ill_usesrc_grp_next != NULL ||
10151 		    intf_flags & PHYI_INACTIVE)
10152 			return (EINVAL);
10153 		if (!(flags & PHYI_FAILED)) {
10154 			flags |= PHYI_INACTIVE;
10155 			turn_on |= PHYI_INACTIVE;
10156 		}
10157 	}
10158 
10159 	if (turn_off & PHYI_STANDBY) {
10160 		flags &= ~PHYI_INACTIVE;
10161 		turn_off |= PHYI_INACTIVE;
10162 	}
10163 
10164 	/*
10165 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10166 	 * would end up on.
10167 	 */
10168 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10169 	    (PHYI_FAILED | PHYI_INACTIVE))
10170 		return (EINVAL);
10171 
10172 	/*
10173 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10174 	 * status of the interface.
10175 	 */
10176 	if ((turn_on | turn_off) & ILLF_ROUTER)
10177 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10178 
10179 	/*
10180 	 * If the interface is not UP and we are not going to
10181 	 * bring it UP, record the flags and return. When the
10182 	 * interface comes UP later, the right actions will be
10183 	 * taken.
10184 	 */
10185 	if (!(ipif->ipif_flags & IPIF_UP) &&
10186 	    !(turn_on & IPIF_UP)) {
10187 		/* Record new flags in their respective places. */
10188 		mutex_enter(&ill->ill_lock);
10189 		mutex_enter(&ill->ill_phyint->phyint_lock);
10190 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10191 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10192 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10193 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10194 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10195 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10196 		mutex_exit(&ill->ill_lock);
10197 		mutex_exit(&ill->ill_phyint->phyint_lock);
10198 
10199 		/*
10200 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10201 		 * same to the kernel: if any of them has been set by
10202 		 * userland, the interface cannot be used for data traffic.
10203 		 */
10204 		if ((turn_on|turn_off) &
10205 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10206 			ASSERT(!IS_IPMP(ill));
10207 			/*
10208 			 * It's possible the ill is part of an "anonymous"
10209 			 * IPMP group rather than a real group.  In that case,
10210 			 * there are no other interfaces in the group and thus
10211 			 * no need to call ipmp_phyint_refresh_active().
10212 			 */
10213 			if (IS_UNDER_IPMP(ill))
10214 				ipmp_phyint_refresh_active(phyi);
10215 		}
10216 
10217 		if (phyint_flags_modified) {
10218 			if (phyi->phyint_illv4 != NULL) {
10219 				ip_rts_ifmsg(phyi->phyint_illv4->
10220 				    ill_ipif, RTSQ_DEFAULT);
10221 			}
10222 			if (phyi->phyint_illv6 != NULL) {
10223 				ip_rts_ifmsg(phyi->phyint_illv6->
10224 				    ill_ipif, RTSQ_DEFAULT);
10225 			}
10226 		}
10227 		/* The default multicast interface might have changed */
10228 		ire_increment_multicast_generation(ill->ill_ipst,
10229 		    ill->ill_isv6);
10230 
10231 		return (0);
10232 	} else if (set_linklocal) {
10233 		mutex_enter(&ill->ill_lock);
10234 		if (set_linklocal)
10235 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10236 		mutex_exit(&ill->ill_lock);
10237 	}
10238 
10239 	/*
10240 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10241 	 * or point-to-point interfaces with an unspecified destination. We do
10242 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10243 	 * have a subnet assigned, which is how in.ndpd currently manages its
10244 	 * onlink prefix list when no addresses are configured with those
10245 	 * prefixes.
10246 	 */
10247 	if (ipif->ipif_isv6 &&
10248 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10249 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10250 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10251 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10252 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10253 		return (EINVAL);
10254 	}
10255 
10256 	/*
10257 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10258 	 * from being brought up.
10259 	 */
10260 	if (!ipif->ipif_isv6 &&
10261 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10262 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10263 		return (EINVAL);
10264 	}
10265 
10266 	/*
10267 	 * If we are going to change one or more of the flags that are
10268 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10269 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10270 	 * IPIF_NOFAILOVER, we will take special action.  This is
10271 	 * done by bring the ipif down, changing the flags and bringing
10272 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10273 	 * back up will trigger the address to be moved.
10274 	 *
10275 	 * If we are going to change IFF_NOACCEPT, we need to bring
10276 	 * all the ipifs down then bring them up again.	 The act of
10277 	 * bringing all the ipifs back up will trigger the local
10278 	 * ires being recreated with "no_accept" set/cleared.
10279 	 *
10280 	 * Note that ILLF_NOACCEPT is always set separately from the
10281 	 * other flags.
10282 	 */
10283 	if ((turn_on|turn_off) &
10284 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10285 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10286 	    IPIF_NOFAILOVER)) {
10287 		/*
10288 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10289 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10290 		 * entries shared between multiple ipifs on the same subnet.
10291 		 */
10292 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10293 		    !(turn_off & IPIF_UP)) {
10294 			if (ipif->ipif_flags & IPIF_UP)
10295 				ill->ill_logical_down = 1;
10296 			turn_on &= ~IPIF_UP;
10297 		}
10298 		err = ipif_down(ipif, q, mp);
10299 		ip1dbg(("ipif_down returns %d err ", err));
10300 		if (err == EINPROGRESS)
10301 			return (err);
10302 		(void) ipif_down_tail(ipif);
10303 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10304 		/*
10305 		 * If we can quiesce the ill, then continue.  If not, then
10306 		 * ip_sioctl_flags_tail() will be called from
10307 		 * ipif_ill_refrele_tail().
10308 		 */
10309 		ill_down_ipifs(ill, B_TRUE);
10310 
10311 		mutex_enter(&connp->conn_lock);
10312 		mutex_enter(&ill->ill_lock);
10313 		if (!ill_is_quiescent(ill)) {
10314 			boolean_t success;
10315 
10316 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10317 			    q, mp, ILL_DOWN);
10318 			mutex_exit(&ill->ill_lock);
10319 			mutex_exit(&connp->conn_lock);
10320 			return (success ? EINPROGRESS : EINTR);
10321 		}
10322 		mutex_exit(&ill->ill_lock);
10323 		mutex_exit(&connp->conn_lock);
10324 	}
10325 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10326 }
10327 
10328 static int
10329 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10330 {
10331 	ill_t	*ill;
10332 	phyint_t *phyi;
10333 	uint64_t turn_on, turn_off;
10334 	boolean_t phyint_flags_modified = B_FALSE;
10335 	int	err = 0;
10336 	boolean_t set_linklocal = B_FALSE;
10337 
10338 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10339 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10340 
10341 	ASSERT(IAM_WRITER_IPIF(ipif));
10342 
10343 	ill = ipif->ipif_ill;
10344 	phyi = ill->ill_phyint;
10345 
10346 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10347 
10348 	/*
10349 	 * IFF_UP is handled separately.
10350 	 */
10351 	turn_on &= ~IFF_UP;
10352 	turn_off &= ~IFF_UP;
10353 
10354 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10355 		phyint_flags_modified = B_TRUE;
10356 
10357 	/*
10358 	 * Now we change the flags. Track current value of
10359 	 * other flags in their respective places.
10360 	 */
10361 	mutex_enter(&ill->ill_lock);
10362 	mutex_enter(&phyi->phyint_lock);
10363 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10364 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10365 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10366 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10367 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10368 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10369 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10370 		set_linklocal = B_TRUE;
10371 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10372 	}
10373 
10374 	mutex_exit(&ill->ill_lock);
10375 	mutex_exit(&phyi->phyint_lock);
10376 
10377 	if (set_linklocal)
10378 		(void) ipif_setlinklocal(ipif);
10379 
10380 	/*
10381 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10382 	 * the kernel: if any of them has been set by userland, the interface
10383 	 * cannot be used for data traffic.
10384 	 */
10385 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10386 		ASSERT(!IS_IPMP(ill));
10387 		/*
10388 		 * It's possible the ill is part of an "anonymous" IPMP group
10389 		 * rather than a real group.  In that case, there are no other
10390 		 * interfaces in the group and thus no need for us to call
10391 		 * ipmp_phyint_refresh_active().
10392 		 */
10393 		if (IS_UNDER_IPMP(ill))
10394 			ipmp_phyint_refresh_active(phyi);
10395 	}
10396 
10397 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10398 		/*
10399 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10400 		 * ipifs that were brought down.
10401 		 *
10402 		 * The routing sockets messages are sent as the result
10403 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10404 		 * as well.
10405 		 */
10406 		err = ill_up_ipifs(ill, q, mp);
10407 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10408 		/*
10409 		 * XXX ipif_up really does not know whether a phyint flags
10410 		 * was modified or not. So, it sends up information on
10411 		 * only one routing sockets message. As we don't bring up
10412 		 * the interface and also set PHYI_ flags simultaneously
10413 		 * it should be okay.
10414 		 */
10415 		err = ipif_up(ipif, q, mp);
10416 	} else {
10417 		/*
10418 		 * Make sure routing socket sees all changes to the flags.
10419 		 * ipif_up_done* handles this when we use ipif_up.
10420 		 */
10421 		if (phyint_flags_modified) {
10422 			if (phyi->phyint_illv4 != NULL) {
10423 				ip_rts_ifmsg(phyi->phyint_illv4->
10424 				    ill_ipif, RTSQ_DEFAULT);
10425 			}
10426 			if (phyi->phyint_illv6 != NULL) {
10427 				ip_rts_ifmsg(phyi->phyint_illv6->
10428 				    ill_ipif, RTSQ_DEFAULT);
10429 			}
10430 		} else {
10431 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10432 		}
10433 		/*
10434 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10435 		 * this in need_up case.
10436 		 */
10437 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10438 	}
10439 
10440 	/* The default multicast interface might have changed */
10441 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10442 	return (err);
10443 }
10444 
10445 /*
10446  * Restart the flags operation now that the refcounts have dropped to zero.
10447  */
10448 /* ARGSUSED */
10449 int
10450 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10451     ip_ioctl_cmd_t *ipip, void *if_req)
10452 {
10453 	uint64_t flags;
10454 	struct ifreq *ifr = if_req;
10455 	struct lifreq *lifr = if_req;
10456 	uint64_t turn_on, turn_off;
10457 
10458 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10459 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10460 
10461 	if (ipip->ipi_cmd_type == IF_CMD) {
10462 		/* cast to uint16_t prevents unwanted sign extension */
10463 		flags = (uint16_t)ifr->ifr_flags;
10464 	} else {
10465 		flags = lifr->lifr_flags;
10466 	}
10467 
10468 	/*
10469 	 * If this function call is a result of the ILLF_NOACCEPT flag
10470 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10471 	 */
10472 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10473 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10474 		(void) ipif_down_tail(ipif);
10475 
10476 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10477 }
10478 
10479 /*
10480  * Can operate on either a module or a driver queue.
10481  */
10482 /* ARGSUSED */
10483 int
10484 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10485     ip_ioctl_cmd_t *ipip, void *if_req)
10486 {
10487 	/*
10488 	 * Has the flags been set correctly till now ?
10489 	 */
10490 	ill_t *ill = ipif->ipif_ill;
10491 	phyint_t *phyi = ill->ill_phyint;
10492 
10493 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10494 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10495 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10496 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10497 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10498 
10499 	/*
10500 	 * Need a lock since some flags can be set even when there are
10501 	 * references to the ipif.
10502 	 */
10503 	mutex_enter(&ill->ill_lock);
10504 	if (ipip->ipi_cmd_type == IF_CMD) {
10505 		struct ifreq *ifr = (struct ifreq *)if_req;
10506 
10507 		/* Get interface flags (low 16 only). */
10508 		ifr->ifr_flags = ((ipif->ipif_flags |
10509 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10510 	} else {
10511 		struct lifreq *lifr = (struct lifreq *)if_req;
10512 
10513 		/* Get interface flags. */
10514 		lifr->lifr_flags = ipif->ipif_flags |
10515 		    ill->ill_flags | phyi->phyint_flags;
10516 	}
10517 	mutex_exit(&ill->ill_lock);
10518 	return (0);
10519 }
10520 
10521 /*
10522  * We allow the MTU to be set on an ILL, but not have it be different
10523  * for different IPIFs since we don't actually send packets on IPIFs.
10524  */
10525 /* ARGSUSED */
10526 int
10527 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10528     ip_ioctl_cmd_t *ipip, void *if_req)
10529 {
10530 	int mtu;
10531 	int ip_min_mtu;
10532 	struct ifreq	*ifr;
10533 	struct lifreq *lifr;
10534 	ill_t	*ill;
10535 
10536 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10537 	    ipif->ipif_id, (void *)ipif));
10538 	if (ipip->ipi_cmd_type == IF_CMD) {
10539 		ifr = (struct ifreq *)if_req;
10540 		mtu = ifr->ifr_metric;
10541 	} else {
10542 		lifr = (struct lifreq *)if_req;
10543 		mtu = lifr->lifr_mtu;
10544 	}
10545 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10546 	if (ipif->ipif_id != 0)
10547 		return (EINVAL);
10548 
10549 	ill = ipif->ipif_ill;
10550 	if (ipif->ipif_isv6)
10551 		ip_min_mtu = IPV6_MIN_MTU;
10552 	else
10553 		ip_min_mtu = IP_MIN_MTU;
10554 
10555 	mutex_enter(&ill->ill_lock);
10556 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10557 		mutex_exit(&ill->ill_lock);
10558 		return (EINVAL);
10559 	}
10560 	/*
10561 	 * The dce and fragmentation code can handle changes to ill_mtu
10562 	 * concurrent with sending/fragmenting packets.
10563 	 */
10564 	ill->ill_mtu = mtu;
10565 	ill->ill_flags |= ILLF_FIXEDMTU;
10566 	mutex_exit(&ill->ill_lock);
10567 
10568 	/*
10569 	 * Make sure all dce_generation checks find out
10570 	 * that ill_mtu has changed.
10571 	 */
10572 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10573 
10574 	/* Update the MTU in SCTP's list */
10575 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10576 	return (0);
10577 }
10578 
10579 /* Get interface MTU. */
10580 /* ARGSUSED */
10581 int
10582 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10583 	ip_ioctl_cmd_t *ipip, void *if_req)
10584 {
10585 	struct ifreq	*ifr;
10586 	struct lifreq	*lifr;
10587 
10588 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10589 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10590 
10591 	/*
10592 	 * We allow a get on any logical interface even though the set
10593 	 * can only be done on logical unit 0.
10594 	 */
10595 	if (ipip->ipi_cmd_type == IF_CMD) {
10596 		ifr = (struct ifreq *)if_req;
10597 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10598 	} else {
10599 		lifr = (struct lifreq *)if_req;
10600 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10601 	}
10602 	return (0);
10603 }
10604 
10605 /* Set interface broadcast address. */
10606 /* ARGSUSED2 */
10607 int
10608 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10609 	ip_ioctl_cmd_t *ipip, void *if_req)
10610 {
10611 	ipaddr_t addr;
10612 	ire_t	*ire;
10613 	ill_t		*ill = ipif->ipif_ill;
10614 	ip_stack_t	*ipst = ill->ill_ipst;
10615 
10616 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10617 	    ipif->ipif_id));
10618 
10619 	ASSERT(IAM_WRITER_IPIF(ipif));
10620 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10621 		return (EADDRNOTAVAIL);
10622 
10623 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10624 
10625 	if (sin->sin_family != AF_INET)
10626 		return (EAFNOSUPPORT);
10627 
10628 	addr = sin->sin_addr.s_addr;
10629 	if (ipif->ipif_flags & IPIF_UP) {
10630 		/*
10631 		 * If we are already up, make sure the new
10632 		 * broadcast address makes sense.  If it does,
10633 		 * there should be an IRE for it already.
10634 		 */
10635 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10636 		    ill, ipif->ipif_zoneid, NULL,
10637 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10638 		if (ire == NULL) {
10639 			return (EINVAL);
10640 		} else {
10641 			ire_refrele(ire);
10642 		}
10643 	}
10644 	/*
10645 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10646 	 * needs to already exist we never need to change the set of
10647 	 * IRE_BROADCASTs when we are UP.
10648 	 */
10649 	if (addr != ipif->ipif_brd_addr)
10650 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10651 
10652 	return (0);
10653 }
10654 
10655 /* Get interface broadcast address. */
10656 /* ARGSUSED */
10657 int
10658 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10659     ip_ioctl_cmd_t *ipip, void *if_req)
10660 {
10661 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10662 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10663 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10664 		return (EADDRNOTAVAIL);
10665 
10666 	/* IPIF_BROADCAST not possible with IPv6 */
10667 	ASSERT(!ipif->ipif_isv6);
10668 	*sin = sin_null;
10669 	sin->sin_family = AF_INET;
10670 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10671 	return (0);
10672 }
10673 
10674 /*
10675  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10676  */
10677 /* ARGSUSED */
10678 int
10679 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10680     ip_ioctl_cmd_t *ipip, void *if_req)
10681 {
10682 	int err = 0;
10683 	in6_addr_t v6mask;
10684 
10685 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10686 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10687 
10688 	ASSERT(IAM_WRITER_IPIF(ipif));
10689 
10690 	if (ipif->ipif_isv6) {
10691 		sin6_t *sin6;
10692 
10693 		if (sin->sin_family != AF_INET6)
10694 			return (EAFNOSUPPORT);
10695 
10696 		sin6 = (sin6_t *)sin;
10697 		v6mask = sin6->sin6_addr;
10698 	} else {
10699 		ipaddr_t mask;
10700 
10701 		if (sin->sin_family != AF_INET)
10702 			return (EAFNOSUPPORT);
10703 
10704 		mask = sin->sin_addr.s_addr;
10705 		V4MASK_TO_V6(mask, v6mask);
10706 	}
10707 
10708 	/*
10709 	 * No big deal if the interface isn't already up, or the mask
10710 	 * isn't really changing, or this is pt-pt.
10711 	 */
10712 	if (!(ipif->ipif_flags & IPIF_UP) ||
10713 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10714 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10715 		ipif->ipif_v6net_mask = v6mask;
10716 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10717 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10718 			    ipif->ipif_v6net_mask,
10719 			    ipif->ipif_v6subnet);
10720 		}
10721 		return (0);
10722 	}
10723 	/*
10724 	 * Make sure we have valid net and subnet broadcast ire's
10725 	 * for the old netmask, if needed by other logical interfaces.
10726 	 */
10727 	err = ipif_logical_down(ipif, q, mp);
10728 	if (err == EINPROGRESS)
10729 		return (err);
10730 	(void) ipif_down_tail(ipif);
10731 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10732 	return (err);
10733 }
10734 
10735 static int
10736 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10737 {
10738 	in6_addr_t v6mask;
10739 	int err = 0;
10740 
10741 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10742 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10743 
10744 	if (ipif->ipif_isv6) {
10745 		sin6_t *sin6;
10746 
10747 		sin6 = (sin6_t *)sin;
10748 		v6mask = sin6->sin6_addr;
10749 	} else {
10750 		ipaddr_t mask;
10751 
10752 		mask = sin->sin_addr.s_addr;
10753 		V4MASK_TO_V6(mask, v6mask);
10754 	}
10755 
10756 	ipif->ipif_v6net_mask = v6mask;
10757 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10758 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
10759 		    ipif->ipif_v6subnet);
10760 	}
10761 	err = ipif_up(ipif, q, mp);
10762 
10763 	if (err == 0 || err == EINPROGRESS) {
10764 		/*
10765 		 * The interface must be DL_BOUND if this packet has to
10766 		 * go out on the wire. Since we only go through a logical
10767 		 * down and are bound with the driver during an internal
10768 		 * down/up that is satisfied.
10769 		 */
10770 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
10771 			/* Potentially broadcast an address mask reply. */
10772 			ipif_mask_reply(ipif);
10773 		}
10774 	}
10775 	return (err);
10776 }
10777 
10778 /* ARGSUSED */
10779 int
10780 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10781     ip_ioctl_cmd_t *ipip, void *if_req)
10782 {
10783 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
10784 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10785 	(void) ipif_down_tail(ipif);
10786 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
10787 }
10788 
10789 /* Get interface net mask. */
10790 /* ARGSUSED */
10791 int
10792 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10793     ip_ioctl_cmd_t *ipip, void *if_req)
10794 {
10795 	struct lifreq *lifr = (struct lifreq *)if_req;
10796 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
10797 
10798 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
10799 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10800 
10801 	/*
10802 	 * net mask can't change since we have a reference to the ipif.
10803 	 */
10804 	if (ipif->ipif_isv6) {
10805 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10806 		*sin6 = sin6_null;
10807 		sin6->sin6_family = AF_INET6;
10808 		sin6->sin6_addr = ipif->ipif_v6net_mask;
10809 		lifr->lifr_addrlen =
10810 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10811 	} else {
10812 		*sin = sin_null;
10813 		sin->sin_family = AF_INET;
10814 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
10815 		if (ipip->ipi_cmd_type == LIF_CMD) {
10816 			lifr->lifr_addrlen =
10817 			    ip_mask_to_plen(ipif->ipif_net_mask);
10818 		}
10819 	}
10820 	return (0);
10821 }
10822 
10823 /* ARGSUSED */
10824 int
10825 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10826     ip_ioctl_cmd_t *ipip, void *if_req)
10827 {
10828 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
10829 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10830 
10831 	/*
10832 	 * Since no applications should ever be setting metrics on underlying
10833 	 * interfaces, we explicitly fail to smoke 'em out.
10834 	 */
10835 	if (IS_UNDER_IPMP(ipif->ipif_ill))
10836 		return (EINVAL);
10837 
10838 	/*
10839 	 * Set interface metric.  We don't use this for
10840 	 * anything but we keep track of it in case it is
10841 	 * important to routing applications or such.
10842 	 */
10843 	if (ipip->ipi_cmd_type == IF_CMD) {
10844 		struct ifreq    *ifr;
10845 
10846 		ifr = (struct ifreq *)if_req;
10847 		ipif->ipif_metric = ifr->ifr_metric;
10848 	} else {
10849 		struct lifreq   *lifr;
10850 
10851 		lifr = (struct lifreq *)if_req;
10852 		ipif->ipif_metric = lifr->lifr_metric;
10853 	}
10854 	return (0);
10855 }
10856 
10857 /* ARGSUSED */
10858 int
10859 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10860     ip_ioctl_cmd_t *ipip, void *if_req)
10861 {
10862 	/* Get interface metric. */
10863 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
10864 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10865 
10866 	if (ipip->ipi_cmd_type == IF_CMD) {
10867 		struct ifreq    *ifr;
10868 
10869 		ifr = (struct ifreq *)if_req;
10870 		ifr->ifr_metric = ipif->ipif_metric;
10871 	} else {
10872 		struct lifreq   *lifr;
10873 
10874 		lifr = (struct lifreq *)if_req;
10875 		lifr->lifr_metric = ipif->ipif_metric;
10876 	}
10877 
10878 	return (0);
10879 }
10880 
10881 /* ARGSUSED */
10882 int
10883 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10884     ip_ioctl_cmd_t *ipip, void *if_req)
10885 {
10886 	int	arp_muxid;
10887 
10888 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
10889 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10890 	/*
10891 	 * Set the muxid returned from I_PLINK.
10892 	 */
10893 	if (ipip->ipi_cmd_type == IF_CMD) {
10894 		struct ifreq *ifr = (struct ifreq *)if_req;
10895 
10896 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
10897 		arp_muxid = ifr->ifr_arp_muxid;
10898 	} else {
10899 		struct lifreq *lifr = (struct lifreq *)if_req;
10900 
10901 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
10902 		arp_muxid = lifr->lifr_arp_muxid;
10903 	}
10904 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
10905 	return (0);
10906 }
10907 
10908 /* ARGSUSED */
10909 int
10910 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10911     ip_ioctl_cmd_t *ipip, void *if_req)
10912 {
10913 	int	arp_muxid = 0;
10914 
10915 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
10916 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10917 	/*
10918 	 * Get the muxid saved in ill for I_PUNLINK.
10919 	 */
10920 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
10921 	if (ipip->ipi_cmd_type == IF_CMD) {
10922 		struct ifreq *ifr = (struct ifreq *)if_req;
10923 
10924 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10925 		ifr->ifr_arp_muxid = arp_muxid;
10926 	} else {
10927 		struct lifreq *lifr = (struct lifreq *)if_req;
10928 
10929 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10930 		lifr->lifr_arp_muxid = arp_muxid;
10931 	}
10932 	return (0);
10933 }
10934 
10935 /*
10936  * Set the subnet prefix. Does not modify the broadcast address.
10937  */
10938 /* ARGSUSED */
10939 int
10940 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10941     ip_ioctl_cmd_t *ipip, void *if_req)
10942 {
10943 	int err = 0;
10944 	in6_addr_t v6addr;
10945 	in6_addr_t v6mask;
10946 	boolean_t need_up = B_FALSE;
10947 	int addrlen;
10948 
10949 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
10950 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10951 
10952 	ASSERT(IAM_WRITER_IPIF(ipif));
10953 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
10954 
10955 	if (ipif->ipif_isv6) {
10956 		sin6_t *sin6;
10957 
10958 		if (sin->sin_family != AF_INET6)
10959 			return (EAFNOSUPPORT);
10960 
10961 		sin6 = (sin6_t *)sin;
10962 		v6addr = sin6->sin6_addr;
10963 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
10964 			return (EADDRNOTAVAIL);
10965 	} else {
10966 		ipaddr_t addr;
10967 
10968 		if (sin->sin_family != AF_INET)
10969 			return (EAFNOSUPPORT);
10970 
10971 		addr = sin->sin_addr.s_addr;
10972 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
10973 			return (EADDRNOTAVAIL);
10974 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10975 		/* Add 96 bits */
10976 		addrlen += IPV6_ABITS - IP_ABITS;
10977 	}
10978 
10979 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
10980 		return (EINVAL);
10981 
10982 	/* Check if bits in the address is set past the mask */
10983 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
10984 		return (EINVAL);
10985 
10986 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
10987 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
10988 		return (0);	/* No change */
10989 
10990 	if (ipif->ipif_flags & IPIF_UP) {
10991 		/*
10992 		 * If the interface is already marked up,
10993 		 * we call ipif_down which will take care
10994 		 * of ditching any IREs that have been set
10995 		 * up based on the old interface address.
10996 		 */
10997 		err = ipif_logical_down(ipif, q, mp);
10998 		if (err == EINPROGRESS)
10999 			return (err);
11000 		(void) ipif_down_tail(ipif);
11001 		need_up = B_TRUE;
11002 	}
11003 
11004 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11005 	return (err);
11006 }
11007 
11008 static int
11009 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11010     queue_t *q, mblk_t *mp, boolean_t need_up)
11011 {
11012 	ill_t	*ill = ipif->ipif_ill;
11013 	int	err = 0;
11014 
11015 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11016 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11017 
11018 	/* Set the new address. */
11019 	mutex_enter(&ill->ill_lock);
11020 	ipif->ipif_v6net_mask = v6mask;
11021 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11022 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11023 		    ipif->ipif_v6subnet);
11024 	}
11025 	mutex_exit(&ill->ill_lock);
11026 
11027 	if (need_up) {
11028 		/*
11029 		 * Now bring the interface back up.  If this
11030 		 * is the only IPIF for the ILL, ipif_up
11031 		 * will have to re-bind to the device, so
11032 		 * we may get back EINPROGRESS, in which
11033 		 * case, this IOCTL will get completed in
11034 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11035 		 */
11036 		err = ipif_up(ipif, q, mp);
11037 		if (err == EINPROGRESS)
11038 			return (err);
11039 	}
11040 	return (err);
11041 }
11042 
11043 /* ARGSUSED */
11044 int
11045 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11046     ip_ioctl_cmd_t *ipip, void *if_req)
11047 {
11048 	int	addrlen;
11049 	in6_addr_t v6addr;
11050 	in6_addr_t v6mask;
11051 	struct lifreq *lifr = (struct lifreq *)if_req;
11052 
11053 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11054 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11055 	(void) ipif_down_tail(ipif);
11056 
11057 	addrlen = lifr->lifr_addrlen;
11058 	if (ipif->ipif_isv6) {
11059 		sin6_t *sin6;
11060 
11061 		sin6 = (sin6_t *)sin;
11062 		v6addr = sin6->sin6_addr;
11063 	} else {
11064 		ipaddr_t addr;
11065 
11066 		addr = sin->sin_addr.s_addr;
11067 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11068 		addrlen += IPV6_ABITS - IP_ABITS;
11069 	}
11070 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11071 
11072 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11073 }
11074 
11075 /* ARGSUSED */
11076 int
11077 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11078     ip_ioctl_cmd_t *ipip, void *if_req)
11079 {
11080 	struct lifreq *lifr = (struct lifreq *)if_req;
11081 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11082 
11083 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11084 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11085 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11086 
11087 	if (ipif->ipif_isv6) {
11088 		*sin6 = sin6_null;
11089 		sin6->sin6_family = AF_INET6;
11090 		sin6->sin6_addr = ipif->ipif_v6subnet;
11091 		lifr->lifr_addrlen =
11092 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11093 	} else {
11094 		*sin = sin_null;
11095 		sin->sin_family = AF_INET;
11096 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11097 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11098 	}
11099 	return (0);
11100 }
11101 
11102 /*
11103  * Set the IPv6 address token.
11104  */
11105 /* ARGSUSED */
11106 int
11107 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11108     ip_ioctl_cmd_t *ipi, void *if_req)
11109 {
11110 	ill_t *ill = ipif->ipif_ill;
11111 	int err;
11112 	in6_addr_t v6addr;
11113 	in6_addr_t v6mask;
11114 	boolean_t need_up = B_FALSE;
11115 	int i;
11116 	sin6_t *sin6 = (sin6_t *)sin;
11117 	struct lifreq *lifr = (struct lifreq *)if_req;
11118 	int addrlen;
11119 
11120 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11121 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11122 	ASSERT(IAM_WRITER_IPIF(ipif));
11123 
11124 	addrlen = lifr->lifr_addrlen;
11125 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11126 	if (ipif->ipif_id != 0)
11127 		return (EINVAL);
11128 
11129 	if (!ipif->ipif_isv6)
11130 		return (EINVAL);
11131 
11132 	if (addrlen > IPV6_ABITS)
11133 		return (EINVAL);
11134 
11135 	v6addr = sin6->sin6_addr;
11136 
11137 	/*
11138 	 * The length of the token is the length from the end.  To get
11139 	 * the proper mask for this, compute the mask of the bits not
11140 	 * in the token; ie. the prefix, and then xor to get the mask.
11141 	 */
11142 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11143 		return (EINVAL);
11144 	for (i = 0; i < 4; i++) {
11145 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11146 	}
11147 
11148 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11149 	    ill->ill_token_length == addrlen)
11150 		return (0);	/* No change */
11151 
11152 	if (ipif->ipif_flags & IPIF_UP) {
11153 		err = ipif_logical_down(ipif, q, mp);
11154 		if (err == EINPROGRESS)
11155 			return (err);
11156 		(void) ipif_down_tail(ipif);
11157 		need_up = B_TRUE;
11158 	}
11159 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11160 	return (err);
11161 }
11162 
11163 static int
11164 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11165     mblk_t *mp, boolean_t need_up)
11166 {
11167 	in6_addr_t v6addr;
11168 	in6_addr_t v6mask;
11169 	ill_t	*ill = ipif->ipif_ill;
11170 	int	i;
11171 	int	err = 0;
11172 
11173 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11174 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11175 	v6addr = sin6->sin6_addr;
11176 	/*
11177 	 * The length of the token is the length from the end.  To get
11178 	 * the proper mask for this, compute the mask of the bits not
11179 	 * in the token; ie. the prefix, and then xor to get the mask.
11180 	 */
11181 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11182 	for (i = 0; i < 4; i++)
11183 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11184 
11185 	mutex_enter(&ill->ill_lock);
11186 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11187 	ill->ill_token_length = addrlen;
11188 	ill->ill_manual_token = 1;
11189 
11190 	/* Reconfigure the link-local address based on this new token */
11191 	ipif_setlinklocal(ill->ill_ipif);
11192 
11193 	mutex_exit(&ill->ill_lock);
11194 
11195 	if (need_up) {
11196 		/*
11197 		 * Now bring the interface back up.  If this
11198 		 * is the only IPIF for the ILL, ipif_up
11199 		 * will have to re-bind to the device, so
11200 		 * we may get back EINPROGRESS, in which
11201 		 * case, this IOCTL will get completed in
11202 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11203 		 */
11204 		err = ipif_up(ipif, q, mp);
11205 		if (err == EINPROGRESS)
11206 			return (err);
11207 	}
11208 	return (err);
11209 }
11210 
11211 /* ARGSUSED */
11212 int
11213 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11214     ip_ioctl_cmd_t *ipi, void *if_req)
11215 {
11216 	ill_t *ill;
11217 	sin6_t *sin6 = (sin6_t *)sin;
11218 	struct lifreq *lifr = (struct lifreq *)if_req;
11219 
11220 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11221 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11222 	if (ipif->ipif_id != 0)
11223 		return (EINVAL);
11224 
11225 	ill = ipif->ipif_ill;
11226 	if (!ill->ill_isv6)
11227 		return (ENXIO);
11228 
11229 	*sin6 = sin6_null;
11230 	sin6->sin6_family = AF_INET6;
11231 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11232 	sin6->sin6_addr = ill->ill_token;
11233 	lifr->lifr_addrlen = ill->ill_token_length;
11234 	return (0);
11235 }
11236 
11237 /*
11238  * Set (hardware) link specific information that might override
11239  * what was acquired through the DL_INFO_ACK.
11240  */
11241 /* ARGSUSED */
11242 int
11243 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11244     ip_ioctl_cmd_t *ipi, void *if_req)
11245 {
11246 	ill_t		*ill = ipif->ipif_ill;
11247 	int		ip_min_mtu;
11248 	struct lifreq	*lifr = (struct lifreq *)if_req;
11249 	lif_ifinfo_req_t *lir;
11250 
11251 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11252 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11253 	lir = &lifr->lifr_ifinfo;
11254 	ASSERT(IAM_WRITER_IPIF(ipif));
11255 
11256 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11257 	if (ipif->ipif_id != 0)
11258 		return (EINVAL);
11259 
11260 	/* Set interface MTU. */
11261 	if (ipif->ipif_isv6)
11262 		ip_min_mtu = IPV6_MIN_MTU;
11263 	else
11264 		ip_min_mtu = IP_MIN_MTU;
11265 
11266 	/*
11267 	 * Verify values before we set anything. Allow zero to
11268 	 * mean unspecified.
11269 	 *
11270 	 * XXX We should be able to set the user-defined lir_mtu to some value
11271 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11272 	 * ill_max_frag value tells us the max MTU that can be handled by the
11273 	 * datalink, whereas the ill_current_frag is dynamically computed for
11274 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11275 	 * since there is currently no way of distinguishing between
11276 	 * administratively fixed link mtu values (e.g., those set via
11277 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11278 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11279 	 * upper-bound.
11280 	 */
11281 	if (lir->lir_maxmtu != 0 &&
11282 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11283 	    lir->lir_maxmtu < ip_min_mtu))
11284 		return (EINVAL);
11285 	if (lir->lir_reachtime != 0 &&
11286 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11287 		return (EINVAL);
11288 	if (lir->lir_reachretrans != 0 &&
11289 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11290 		return (EINVAL);
11291 
11292 	mutex_enter(&ill->ill_lock);
11293 	/*
11294 	 * The dce and fragmentation code can handle changes to ill_mtu
11295 	 * concurrent with sending/fragmenting packets.
11296 	 */
11297 	if (lir->lir_maxmtu != 0)
11298 		ill->ill_user_mtu = lir->lir_maxmtu;
11299 
11300 	if (lir->lir_reachtime != 0)
11301 		ill->ill_reachable_time = lir->lir_reachtime;
11302 
11303 	if (lir->lir_reachretrans != 0)
11304 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11305 
11306 	ill->ill_max_hops = lir->lir_maxhops;
11307 	ill->ill_max_buf = ND_MAX_Q;
11308 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11309 		/*
11310 		 * ill_mtu is the actual interface MTU, obtained as the min
11311 		 * of user-configured mtu and the value announced by the
11312 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11313 		 * we have already made the choice of requiring
11314 		 * ill_user_mtu < ill_current_frag by the time we get here,
11315 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11316 		 * here.
11317 		 */
11318 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11319 	}
11320 	mutex_exit(&ill->ill_lock);
11321 
11322 	/*
11323 	 * Make sure all dce_generation checks find out
11324 	 * that ill_mtu has changed.
11325 	 */
11326 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11327 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11328 
11329 	/*
11330 	 * Refresh IPMP meta-interface MTU if necessary.
11331 	 */
11332 	if (IS_UNDER_IPMP(ill))
11333 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11334 
11335 	return (0);
11336 }
11337 
11338 /* ARGSUSED */
11339 int
11340 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11341     ip_ioctl_cmd_t *ipi, void *if_req)
11342 {
11343 	struct lif_ifinfo_req *lir;
11344 	ill_t *ill = ipif->ipif_ill;
11345 
11346 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11347 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11348 	if (ipif->ipif_id != 0)
11349 		return (EINVAL);
11350 
11351 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11352 	lir->lir_maxhops = ill->ill_max_hops;
11353 	lir->lir_reachtime = ill->ill_reachable_time;
11354 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11355 	lir->lir_maxmtu = ill->ill_mtu;
11356 
11357 	return (0);
11358 }
11359 
11360 /*
11361  * Return best guess as to the subnet mask for the specified address.
11362  * Based on the subnet masks for all the configured interfaces.
11363  *
11364  * We end up returning a zero mask in the case of default, multicast or
11365  * experimental.
11366  */
11367 static ipaddr_t
11368 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11369 {
11370 	ipaddr_t net_mask;
11371 	ill_t	*ill;
11372 	ipif_t	*ipif;
11373 	ill_walk_context_t ctx;
11374 	ipif_t	*fallback_ipif = NULL;
11375 
11376 	net_mask = ip_net_mask(addr);
11377 	if (net_mask == 0) {
11378 		*ipifp = NULL;
11379 		return (0);
11380 	}
11381 
11382 	/* Let's check to see if this is maybe a local subnet route. */
11383 	/* this function only applies to IPv4 interfaces */
11384 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11385 	ill = ILL_START_WALK_V4(&ctx, ipst);
11386 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11387 		mutex_enter(&ill->ill_lock);
11388 		for (ipif = ill->ill_ipif; ipif != NULL;
11389 		    ipif = ipif->ipif_next) {
11390 			if (IPIF_IS_CONDEMNED(ipif))
11391 				continue;
11392 			if (!(ipif->ipif_flags & IPIF_UP))
11393 				continue;
11394 			if ((ipif->ipif_subnet & net_mask) ==
11395 			    (addr & net_mask)) {
11396 				/*
11397 				 * Don't trust pt-pt interfaces if there are
11398 				 * other interfaces.
11399 				 */
11400 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11401 					if (fallback_ipif == NULL) {
11402 						ipif_refhold_locked(ipif);
11403 						fallback_ipif = ipif;
11404 					}
11405 					continue;
11406 				}
11407 
11408 				/*
11409 				 * Fine. Just assume the same net mask as the
11410 				 * directly attached subnet interface is using.
11411 				 */
11412 				ipif_refhold_locked(ipif);
11413 				mutex_exit(&ill->ill_lock);
11414 				rw_exit(&ipst->ips_ill_g_lock);
11415 				if (fallback_ipif != NULL)
11416 					ipif_refrele(fallback_ipif);
11417 				*ipifp = ipif;
11418 				return (ipif->ipif_net_mask);
11419 			}
11420 		}
11421 		mutex_exit(&ill->ill_lock);
11422 	}
11423 	rw_exit(&ipst->ips_ill_g_lock);
11424 
11425 	*ipifp = fallback_ipif;
11426 	return ((fallback_ipif != NULL) ?
11427 	    fallback_ipif->ipif_net_mask : net_mask);
11428 }
11429 
11430 /*
11431  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11432  */
11433 static void
11434 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11435 {
11436 	IOCP	iocp;
11437 	ipft_t	*ipft;
11438 	ipllc_t	*ipllc;
11439 	mblk_t	*mp1;
11440 	cred_t	*cr;
11441 	int	error = 0;
11442 	conn_t	*connp;
11443 
11444 	ip1dbg(("ip_wput_ioctl"));
11445 	iocp = (IOCP)mp->b_rptr;
11446 	mp1 = mp->b_cont;
11447 	if (mp1 == NULL) {
11448 		iocp->ioc_error = EINVAL;
11449 		mp->b_datap->db_type = M_IOCNAK;
11450 		iocp->ioc_count = 0;
11451 		qreply(q, mp);
11452 		return;
11453 	}
11454 
11455 	/*
11456 	 * These IOCTLs provide various control capabilities to
11457 	 * upstream agents such as ULPs and processes.	There
11458 	 * are currently two such IOCTLs implemented.  They
11459 	 * are used by TCP to provide update information for
11460 	 * existing IREs and to forcibly delete an IRE for a
11461 	 * host that is not responding, thereby forcing an
11462 	 * attempt at a new route.
11463 	 */
11464 	iocp->ioc_error = EINVAL;
11465 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11466 		goto done;
11467 
11468 	ipllc = (ipllc_t *)mp1->b_rptr;
11469 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11470 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11471 			break;
11472 	}
11473 	/*
11474 	 * prefer credential from mblk over ioctl;
11475 	 * see ip_sioctl_copyin_setup
11476 	 */
11477 	cr = msg_getcred(mp, NULL);
11478 	if (cr == NULL)
11479 		cr = iocp->ioc_cr;
11480 
11481 	/*
11482 	 * Refhold the conn in case the request gets queued up in some lookup
11483 	 */
11484 	ASSERT(CONN_Q(q));
11485 	connp = Q_TO_CONN(q);
11486 	CONN_INC_REF(connp);
11487 	if (ipft->ipft_pfi &&
11488 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11489 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11490 		error = (*ipft->ipft_pfi)(q,
11491 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11492 	}
11493 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11494 		/*
11495 		 * CONN_OPER_PENDING_DONE happens in the function called
11496 		 * through ipft_pfi above.
11497 		 */
11498 		return;
11499 	}
11500 
11501 	CONN_OPER_PENDING_DONE(connp);
11502 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11503 		freemsg(mp);
11504 		return;
11505 	}
11506 	iocp->ioc_error = error;
11507 
11508 done:
11509 	mp->b_datap->db_type = M_IOCACK;
11510 	if (iocp->ioc_error)
11511 		iocp->ioc_count = 0;
11512 	qreply(q, mp);
11513 }
11514 
11515 /*
11516  * Assign a unique id for the ipif. This is used by sctp_addr.c
11517  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11518  */
11519 static void
11520 ipif_assign_seqid(ipif_t *ipif)
11521 {
11522 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11523 
11524 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11525 }
11526 
11527 /*
11528  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11529  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11530  * that the clone is complete -- including the seqid -- and the expectation is
11531  * that the caller will either free or overwrite `sipif' before it's unlocked.
11532  */
11533 static void
11534 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11535 {
11536 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11537 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11538 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11539 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11540 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11541 
11542 	dipif->ipif_flags = sipif->ipif_flags;
11543 	dipif->ipif_metric = sipif->ipif_metric;
11544 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11545 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11546 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11547 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11548 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11549 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11550 
11551 	/*
11552 	 * As per the comment atop the function, we assume that these sipif
11553 	 * fields will be changed before sipif is unlocked.
11554 	 */
11555 	dipif->ipif_seqid = sipif->ipif_seqid;
11556 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11557 }
11558 
11559 /*
11560  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11561  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11562  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11563  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11564  * down (i.e., no DAD), of the same type, and unlocked.
11565  */
11566 static void
11567 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11568 {
11569 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11570 	ipxop_t *ipx = ipsq->ipsq_xop;
11571 
11572 	ASSERT(sipif != dipif);
11573 	ASSERT(sipif != virgipif);
11574 
11575 	/*
11576 	 * Grab all of the locks that protect the ipif in a defined order.
11577 	 */
11578 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11579 
11580 	ipif_clone(sipif, dipif);
11581 	if (virgipif != NULL) {
11582 		ipif_clone(virgipif, sipif);
11583 		mi_free(virgipif);
11584 	}
11585 
11586 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11587 
11588 	/*
11589 	 * Transfer ownership of the current xop, if necessary.
11590 	 */
11591 	if (ipx->ipx_current_ipif == sipif) {
11592 		ASSERT(ipx->ipx_pending_ipif == NULL);
11593 		mutex_enter(&ipx->ipx_lock);
11594 		ipx->ipx_current_ipif = dipif;
11595 		mutex_exit(&ipx->ipx_lock);
11596 	}
11597 
11598 	if (virgipif == NULL)
11599 		mi_free(sipif);
11600 }
11601 
11602 /*
11603  * checks if:
11604  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11605  *	- logical interface is within the allowed range
11606  */
11607 static int
11608 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11609 {
11610 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11611 		return (ENAMETOOLONG);
11612 
11613 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11614 		return (ERANGE);
11615 	return (0);
11616 }
11617 
11618 /*
11619  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11620  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11621  * be inserted into the first space available in the list. The value of
11622  * ipif_id will then be set to the appropriate value for its position.
11623  */
11624 static int
11625 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11626 {
11627 	ill_t *ill;
11628 	ipif_t *tipif;
11629 	ipif_t **tipifp;
11630 	int id, err;
11631 	ip_stack_t	*ipst;
11632 
11633 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11634 	    IAM_WRITER_IPIF(ipif));
11635 
11636 	ill = ipif->ipif_ill;
11637 	ASSERT(ill != NULL);
11638 	ipst = ill->ill_ipst;
11639 
11640 	/*
11641 	 * In the case of lo0:0 we already hold the ill_g_lock.
11642 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11643 	 * ipif_insert.
11644 	 */
11645 	if (acquire_g_lock)
11646 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11647 	mutex_enter(&ill->ill_lock);
11648 	id = ipif->ipif_id;
11649 	tipifp = &(ill->ill_ipif);
11650 	if (id == -1) {	/* need to find a real id */
11651 		id = 0;
11652 		while ((tipif = *tipifp) != NULL) {
11653 			ASSERT(tipif->ipif_id >= id);
11654 			if (tipif->ipif_id != id)
11655 				break; /* non-consecutive id */
11656 			id++;
11657 			tipifp = &(tipif->ipif_next);
11658 		}
11659 		if ((err = is_lifname_valid(ill, id)) != 0) {
11660 			mutex_exit(&ill->ill_lock);
11661 			if (acquire_g_lock)
11662 				rw_exit(&ipst->ips_ill_g_lock);
11663 			return (err);
11664 		}
11665 		ipif->ipif_id = id; /* assign new id */
11666 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11667 		/* we have a real id; insert ipif in the right place */
11668 		while ((tipif = *tipifp) != NULL) {
11669 			ASSERT(tipif->ipif_id != id);
11670 			if (tipif->ipif_id > id)
11671 				break; /* found correct location */
11672 			tipifp = &(tipif->ipif_next);
11673 		}
11674 	} else {
11675 		mutex_exit(&ill->ill_lock);
11676 		if (acquire_g_lock)
11677 			rw_exit(&ipst->ips_ill_g_lock);
11678 		return (err);
11679 	}
11680 
11681 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11682 
11683 	ipif->ipif_next = tipif;
11684 	*tipifp = ipif;
11685 	mutex_exit(&ill->ill_lock);
11686 	if (acquire_g_lock)
11687 		rw_exit(&ipst->ips_ill_g_lock);
11688 
11689 	return (0);
11690 }
11691 
11692 static void
11693 ipif_remove(ipif_t *ipif)
11694 {
11695 	ipif_t	**ipifp;
11696 	ill_t	*ill = ipif->ipif_ill;
11697 
11698 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11699 
11700 	mutex_enter(&ill->ill_lock);
11701 	ipifp = &ill->ill_ipif;
11702 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11703 		if (*ipifp == ipif) {
11704 			*ipifp = ipif->ipif_next;
11705 			break;
11706 		}
11707 	}
11708 	mutex_exit(&ill->ill_lock);
11709 }
11710 
11711 /*
11712  * Allocate and initialize a new interface control structure.  (Always
11713  * called as writer.)
11714  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11715  * is not part of the global linked list of ills. ipif_seqid is unique
11716  * in the system and to preserve the uniqueness, it is assigned only
11717  * when ill becomes part of the global list. At that point ill will
11718  * have a name. If it doesn't get assigned here, it will get assigned
11719  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11720  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11721  * the interface flags or any other information from the DL_INFO_ACK for
11722  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11723  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11724  * second DL_INFO_ACK comes in from the driver.
11725  */
11726 static ipif_t *
11727 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11728     boolean_t insert, int *errorp)
11729 {
11730 	int err;
11731 	ipif_t	*ipif;
11732 	ip_stack_t *ipst = ill->ill_ipst;
11733 
11734 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11735 	    ill->ill_name, id, (void *)ill));
11736 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11737 
11738 	if (errorp != NULL)
11739 		*errorp = 0;
11740 
11741 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11742 		if (errorp != NULL)
11743 			*errorp = ENOMEM;
11744 		return (NULL);
11745 	}
11746 	*ipif = ipif_zero;	/* start clean */
11747 
11748 	ipif->ipif_ill = ill;
11749 	ipif->ipif_id = id;	/* could be -1 */
11750 	/*
11751 	 * Inherit the zoneid from the ill; for the shared stack instance
11752 	 * this is always the global zone
11753 	 */
11754 	ipif->ipif_zoneid = ill->ill_zoneid;
11755 
11756 	ipif->ipif_refcnt = 0;
11757 
11758 	if (insert) {
11759 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
11760 			mi_free(ipif);
11761 			if (errorp != NULL)
11762 				*errorp = err;
11763 			return (NULL);
11764 		}
11765 		/* -1 id should have been replaced by real id */
11766 		id = ipif->ipif_id;
11767 		ASSERT(id >= 0);
11768 	}
11769 
11770 	if (ill->ill_name[0] != '\0')
11771 		ipif_assign_seqid(ipif);
11772 
11773 	/*
11774 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
11775 	 * (which must not exist yet because the zeroth ipif is created once
11776 	 * per ill).  However, do not not link it to the ipmp_grp_t until
11777 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
11778 	 */
11779 	if (id == 0 && IS_IPMP(ill)) {
11780 		if (ipmp_illgrp_create(ill) == NULL) {
11781 			if (insert) {
11782 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11783 				ipif_remove(ipif);
11784 				rw_exit(&ipst->ips_ill_g_lock);
11785 			}
11786 			mi_free(ipif);
11787 			if (errorp != NULL)
11788 				*errorp = ENOMEM;
11789 			return (NULL);
11790 		}
11791 	}
11792 
11793 	/*
11794 	 * We grab ill_lock to protect the flag changes.  The ipif is still
11795 	 * not up and can't be looked up until the ioctl completes and the
11796 	 * IPIF_CHANGING flag is cleared.
11797 	 */
11798 	mutex_enter(&ill->ill_lock);
11799 
11800 	ipif->ipif_ire_type = ire_type;
11801 
11802 	if (ipif->ipif_isv6) {
11803 		ill->ill_flags |= ILLF_IPV6;
11804 	} else {
11805 		ipaddr_t inaddr_any = INADDR_ANY;
11806 
11807 		ill->ill_flags |= ILLF_IPV4;
11808 
11809 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
11810 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11811 		    &ipif->ipif_v6lcl_addr);
11812 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11813 		    &ipif->ipif_v6subnet);
11814 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11815 		    &ipif->ipif_v6net_mask);
11816 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11817 		    &ipif->ipif_v6brd_addr);
11818 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11819 		    &ipif->ipif_v6pp_dst_addr);
11820 	}
11821 
11822 	/*
11823 	 * Don't set the interface flags etc. now, will do it in
11824 	 * ip_ll_subnet_defaults.
11825 	 */
11826 	if (!initialize)
11827 		goto out;
11828 
11829 	/*
11830 	 * NOTE: The IPMP meta-interface is special-cased because it starts
11831 	 * with no underlying interfaces (and thus an unknown broadcast
11832 	 * address length), but all interfaces that can be placed into an IPMP
11833 	 * group are required to be broadcast-capable.
11834 	 */
11835 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
11836 		/*
11837 		 * Later detect lack of DLPI driver multicast capability by
11838 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
11839 		 */
11840 		ill->ill_flags |= ILLF_MULTICAST;
11841 		if (!ipif->ipif_isv6)
11842 			ipif->ipif_flags |= IPIF_BROADCAST;
11843 	} else {
11844 		if (ill->ill_net_type != IRE_LOOPBACK) {
11845 			if (ipif->ipif_isv6)
11846 				/*
11847 				 * Note: xresolv interfaces will eventually need
11848 				 * NOARP set here as well, but that will require
11849 				 * those external resolvers to have some
11850 				 * knowledge of that flag and act appropriately.
11851 				 * Not to be changed at present.
11852 				 */
11853 				ill->ill_flags |= ILLF_NONUD;
11854 			else
11855 				ill->ill_flags |= ILLF_NOARP;
11856 		}
11857 		if (ill->ill_phys_addr_length == 0) {
11858 			if (IS_VNI(ill)) {
11859 				ipif->ipif_flags |= IPIF_NOXMIT;
11860 			} else {
11861 				/* pt-pt supports multicast. */
11862 				ill->ill_flags |= ILLF_MULTICAST;
11863 				if (ill->ill_net_type != IRE_LOOPBACK)
11864 					ipif->ipif_flags |= IPIF_POINTOPOINT;
11865 			}
11866 		}
11867 	}
11868 out:
11869 	mutex_exit(&ill->ill_lock);
11870 	return (ipif);
11871 }
11872 
11873 /*
11874  * Remove the neighbor cache entries associated with this logical
11875  * interface.
11876  */
11877 int
11878 ipif_arp_down(ipif_t *ipif)
11879 {
11880 	ill_t	*ill = ipif->ipif_ill;
11881 	int	err = 0;
11882 
11883 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
11884 	ASSERT(IAM_WRITER_IPIF(ipif));
11885 
11886 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
11887 	    ill_t *, ill, ipif_t *, ipif);
11888 	ipif_nce_down(ipif);
11889 
11890 	/*
11891 	 * If this is the last ipif that is going down and there are no
11892 	 * duplicate addresses we may yet attempt to re-probe, then we need to
11893 	 * clean up ARP completely.
11894 	 */
11895 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
11896 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
11897 		/*
11898 		 * If this was the last ipif on an IPMP interface, purge any
11899 		 * static ARP entries associated with it.
11900 		 */
11901 		if (IS_IPMP(ill))
11902 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
11903 
11904 		/* UNBIND, DETACH */
11905 		err = arp_ll_down(ill);
11906 	}
11907 
11908 	return (err);
11909 }
11910 
11911 /*
11912  * Get the resolver set up for a new IP address.  (Always called as writer.)
11913  * Called both for IPv4 and IPv6 interfaces, though it only does some
11914  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
11915  *
11916  * The enumerated value res_act tunes the behavior:
11917  * 	* Res_act_initial: set up all the resolver structures for a new
11918  *	  IP address.
11919  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
11920  *	  ARP message in defense of the address.
11921  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
11922  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
11923  *
11924  * Returns zero on success, or an errno upon failure.
11925  */
11926 int
11927 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
11928 {
11929 	ill_t		*ill = ipif->ipif_ill;
11930 	int		err;
11931 	boolean_t	was_dup;
11932 
11933 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
11934 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
11935 	ASSERT(IAM_WRITER_IPIF(ipif));
11936 
11937 	was_dup = B_FALSE;
11938 	if (res_act == Res_act_initial) {
11939 		ipif->ipif_addr_ready = 0;
11940 		/*
11941 		 * We're bringing an interface up here.  There's no way that we
11942 		 * should need to shut down ARP now.
11943 		 */
11944 		mutex_enter(&ill->ill_lock);
11945 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
11946 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
11947 			ill->ill_ipif_dup_count--;
11948 			was_dup = B_TRUE;
11949 		}
11950 		mutex_exit(&ill->ill_lock);
11951 	}
11952 	if (ipif->ipif_recovery_id != 0)
11953 		(void) untimeout(ipif->ipif_recovery_id);
11954 	ipif->ipif_recovery_id = 0;
11955 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
11956 		ipif->ipif_addr_ready = 1;
11957 		return (0);
11958 	}
11959 	/* NDP will set the ipif_addr_ready flag when it's ready */
11960 	if (ill->ill_isv6)
11961 		return (0);
11962 
11963 	err = ipif_arp_up(ipif, res_act, was_dup);
11964 	return (err);
11965 }
11966 
11967 /*
11968  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
11969  * when a link has just gone back up.
11970  */
11971 static void
11972 ipif_nce_start_dad(ipif_t *ipif)
11973 {
11974 	ncec_t *ncec;
11975 	ill_t *ill = ipif->ipif_ill;
11976 	boolean_t isv6 = ill->ill_isv6;
11977 
11978 	if (isv6) {
11979 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
11980 		    &ipif->ipif_v6lcl_addr);
11981 	} else {
11982 		ipaddr_t v4addr;
11983 
11984 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
11985 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
11986 		    ipif->ipif_lcl_addr == INADDR_ANY) {
11987 			/*
11988 			 * If we can't contact ARP for some reason,
11989 			 * that's not really a problem.  Just send
11990 			 * out the routing socket notification that
11991 			 * DAD completion would have done, and continue.
11992 			 */
11993 			ipif_mask_reply(ipif);
11994 			ipif_up_notify(ipif);
11995 			ipif->ipif_addr_ready = 1;
11996 			return;
11997 		}
11998 
11999 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12000 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12001 	}
12002 
12003 	if (ncec == NULL) {
12004 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12005 		    (void *)ipif));
12006 		return;
12007 	}
12008 	if (!nce_restart_dad(ncec)) {
12009 		/*
12010 		 * If we can't restart DAD for some reason, that's not really a
12011 		 * problem.  Just send out the routing socket notification that
12012 		 * DAD completion would have done, and continue.
12013 		 */
12014 		ipif_up_notify(ipif);
12015 		ipif->ipif_addr_ready = 1;
12016 	}
12017 	ncec_refrele(ncec);
12018 }
12019 
12020 /*
12021  * Restart duplicate address detection on all interfaces on the given ill.
12022  *
12023  * This is called when an interface transitions from down to up
12024  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12025  *
12026  * Note that since the underlying physical link has transitioned, we must cause
12027  * at least one routing socket message to be sent here, either via DAD
12028  * completion or just by default on the first ipif.  (If we don't do this, then
12029  * in.mpathd will see long delays when doing link-based failure recovery.)
12030  */
12031 void
12032 ill_restart_dad(ill_t *ill, boolean_t went_up)
12033 {
12034 	ipif_t *ipif;
12035 
12036 	if (ill == NULL)
12037 		return;
12038 
12039 	/*
12040 	 * If layer two doesn't support duplicate address detection, then just
12041 	 * send the routing socket message now and be done with it.
12042 	 */
12043 	if (!ill->ill_isv6 && arp_no_defense) {
12044 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12045 		return;
12046 	}
12047 
12048 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12049 		if (went_up) {
12050 
12051 			if (ipif->ipif_flags & IPIF_UP) {
12052 				ipif_nce_start_dad(ipif);
12053 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12054 				/*
12055 				 * kick off the bring-up process now.
12056 				 */
12057 				ipif_do_recovery(ipif);
12058 			} else {
12059 				/*
12060 				 * Unfortunately, the first ipif is "special"
12061 				 * and represents the underlying ill in the
12062 				 * routing socket messages.  Thus, when this
12063 				 * one ipif is down, we must still notify so
12064 				 * that the user knows the IFF_RUNNING status
12065 				 * change.  (If the first ipif is up, then
12066 				 * we'll handle eventual routing socket
12067 				 * notification via DAD completion.)
12068 				 */
12069 				if (ipif == ill->ill_ipif) {
12070 					ip_rts_ifmsg(ill->ill_ipif,
12071 					    RTSQ_DEFAULT);
12072 				}
12073 			}
12074 		} else {
12075 			/*
12076 			 * After link down, we'll need to send a new routing
12077 			 * message when the link comes back, so clear
12078 			 * ipif_addr_ready.
12079 			 */
12080 			ipif->ipif_addr_ready = 0;
12081 		}
12082 	}
12083 
12084 	/*
12085 	 * If we've torn down links, then notify the user right away.
12086 	 */
12087 	if (!went_up)
12088 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12089 }
12090 
12091 static void
12092 ipsq_delete(ipsq_t *ipsq)
12093 {
12094 	ipxop_t *ipx = ipsq->ipsq_xop;
12095 
12096 	ipsq->ipsq_ipst = NULL;
12097 	ASSERT(ipsq->ipsq_phyint == NULL);
12098 	ASSERT(ipsq->ipsq_xop != NULL);
12099 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12100 	ASSERT(ipx->ipx_pending_mp == NULL);
12101 	kmem_free(ipsq, sizeof (ipsq_t));
12102 }
12103 
12104 static int
12105 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12106 {
12107 	int err = 0;
12108 	ipif_t *ipif;
12109 
12110 	if (ill == NULL)
12111 		return (0);
12112 
12113 	ASSERT(IAM_WRITER_ILL(ill));
12114 	ill->ill_up_ipifs = B_TRUE;
12115 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12116 		if (ipif->ipif_was_up) {
12117 			if (!(ipif->ipif_flags & IPIF_UP))
12118 				err = ipif_up(ipif, q, mp);
12119 			ipif->ipif_was_up = B_FALSE;
12120 			if (err != 0) {
12121 				ASSERT(err == EINPROGRESS);
12122 				return (err);
12123 			}
12124 		}
12125 	}
12126 	ill->ill_up_ipifs = B_FALSE;
12127 	return (0);
12128 }
12129 
12130 /*
12131  * This function is called to bring up all the ipifs that were up before
12132  * bringing the ill down via ill_down_ipifs().
12133  */
12134 int
12135 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12136 {
12137 	int err;
12138 
12139 	ASSERT(IAM_WRITER_ILL(ill));
12140 
12141 	if (ill->ill_replumbing) {
12142 		ill->ill_replumbing = 0;
12143 		/*
12144 		 * Send down REPLUMB_DONE notification followed by the
12145 		 * BIND_REQ on the arp stream.
12146 		 */
12147 		if (!ill->ill_isv6)
12148 			arp_send_replumb_conf(ill);
12149 	}
12150 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12151 	if (err != 0)
12152 		return (err);
12153 
12154 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12155 }
12156 
12157 /*
12158  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12159  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12160  */
12161 static void
12162 ill_down_ipifs(ill_t *ill, boolean_t logical)
12163 {
12164 	ipif_t *ipif;
12165 
12166 	ASSERT(IAM_WRITER_ILL(ill));
12167 
12168 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12169 		/*
12170 		 * We go through the ipif_down logic even if the ipif
12171 		 * is already down, since routes can be added based
12172 		 * on down ipifs. Going through ipif_down once again
12173 		 * will delete any IREs created based on these routes.
12174 		 */
12175 		if (ipif->ipif_flags & IPIF_UP)
12176 			ipif->ipif_was_up = B_TRUE;
12177 
12178 		if (logical) {
12179 			(void) ipif_logical_down(ipif, NULL, NULL);
12180 			ipif_non_duplicate(ipif);
12181 			(void) ipif_down_tail(ipif);
12182 		} else {
12183 			(void) ipif_down(ipif, NULL, NULL);
12184 		}
12185 	}
12186 }
12187 
12188 /*
12189  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12190  * a look again at valid source addresses.
12191  * This should be called each time after the set of source addresses has been
12192  * changed.
12193  */
12194 void
12195 ip_update_source_selection(ip_stack_t *ipst)
12196 {
12197 	/* We skip past SRC_GENERATION_VERIFY */
12198 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12199 	    SRC_GENERATION_VERIFY)
12200 		atomic_add_32(&ipst->ips_src_generation, 1);
12201 }
12202 
12203 /*
12204  * Finish the group join started in ip_sioctl_groupname().
12205  */
12206 /* ARGSUSED */
12207 static void
12208 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12209 {
12210 	ill_t		*ill = q->q_ptr;
12211 	phyint_t	*phyi = ill->ill_phyint;
12212 	ipmp_grp_t	*grp = phyi->phyint_grp;
12213 	ip_stack_t	*ipst = ill->ill_ipst;
12214 
12215 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12216 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12217 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12218 
12219 	if (phyi->phyint_illv4 != NULL) {
12220 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12221 		VERIFY(grp->gr_pendv4-- > 0);
12222 		rw_exit(&ipst->ips_ipmp_lock);
12223 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12224 	}
12225 	if (phyi->phyint_illv6 != NULL) {
12226 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12227 		VERIFY(grp->gr_pendv6-- > 0);
12228 		rw_exit(&ipst->ips_ipmp_lock);
12229 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12230 	}
12231 	freemsg(mp);
12232 }
12233 
12234 /*
12235  * Process an SIOCSLIFGROUPNAME request.
12236  */
12237 /* ARGSUSED */
12238 int
12239 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12240     ip_ioctl_cmd_t *ipip, void *ifreq)
12241 {
12242 	struct lifreq	*lifr = ifreq;
12243 	ill_t		*ill = ipif->ipif_ill;
12244 	ip_stack_t	*ipst = ill->ill_ipst;
12245 	phyint_t	*phyi = ill->ill_phyint;
12246 	ipmp_grp_t	*grp = phyi->phyint_grp;
12247 	mblk_t		*ipsq_mp;
12248 	int		err = 0;
12249 
12250 	/*
12251 	 * Note that phyint_grp can only change here, where we're exclusive.
12252 	 */
12253 	ASSERT(IAM_WRITER_ILL(ill));
12254 
12255 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12256 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12257 		return (EINVAL);
12258 
12259 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12260 
12261 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12262 
12263 	/*
12264 	 * If the name hasn't changed, there's nothing to do.
12265 	 */
12266 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12267 		goto unlock;
12268 
12269 	/*
12270 	 * Handle requests to rename an IPMP meta-interface.
12271 	 *
12272 	 * Note that creation of the IPMP meta-interface is handled in
12273 	 * userland through the standard plumbing sequence.  As part of the
12274 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12275 	 * the name of the interface (see ipif_set_values_tail()).
12276 	 */
12277 	if (IS_IPMP(ill)) {
12278 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12279 		goto unlock;
12280 	}
12281 
12282 	/*
12283 	 * Handle requests to add or remove an IP interface from a group.
12284 	 */
12285 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12286 		/*
12287 		 * Moves are handled by first removing the interface from
12288 		 * its existing group, and then adding it to another group.
12289 		 * So, fail if it's already in a group.
12290 		 */
12291 		if (IS_UNDER_IPMP(ill)) {
12292 			err = EALREADY;
12293 			goto unlock;
12294 		}
12295 
12296 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12297 		if (grp == NULL) {
12298 			err = ENOENT;
12299 			goto unlock;
12300 		}
12301 
12302 		/*
12303 		 * Check if the phyint and its ills are suitable for
12304 		 * inclusion into the group.
12305 		 */
12306 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12307 			goto unlock;
12308 
12309 		/*
12310 		 * Checks pass; join the group, and enqueue the remaining
12311 		 * illgrp joins for when we've become part of the group xop
12312 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12313 		 * requires an mblk_t to scribble on, and since `mp' will be
12314 		 * freed as part of completing the ioctl, allocate another.
12315 		 */
12316 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12317 			err = ENOMEM;
12318 			goto unlock;
12319 		}
12320 
12321 		/*
12322 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12323 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12324 		 * before ip_join_illgrps() is called back.  See the comments
12325 		 * in ip_sioctl_plink_ipmp() for more.
12326 		 */
12327 		if (phyi->phyint_illv4 != NULL)
12328 			grp->gr_pendv4++;
12329 		if (phyi->phyint_illv6 != NULL)
12330 			grp->gr_pendv6++;
12331 
12332 		rw_exit(&ipst->ips_ipmp_lock);
12333 
12334 		ipmp_phyint_join_grp(phyi, grp);
12335 		ill_refhold(ill);
12336 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12337 		    SWITCH_OP, B_FALSE);
12338 		return (0);
12339 	} else {
12340 		/*
12341 		 * Request to remove the interface from a group.  If the
12342 		 * interface is not in a group, this trivially succeeds.
12343 		 */
12344 		rw_exit(&ipst->ips_ipmp_lock);
12345 		if (IS_UNDER_IPMP(ill))
12346 			ipmp_phyint_leave_grp(phyi);
12347 		return (0);
12348 	}
12349 unlock:
12350 	rw_exit(&ipst->ips_ipmp_lock);
12351 	return (err);
12352 }
12353 
12354 /*
12355  * Process an SIOCGLIFBINDING request.
12356  */
12357 /* ARGSUSED */
12358 int
12359 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12360     ip_ioctl_cmd_t *ipip, void *ifreq)
12361 {
12362 	ill_t		*ill;
12363 	struct lifreq	*lifr = ifreq;
12364 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12365 
12366 	if (!IS_IPMP(ipif->ipif_ill))
12367 		return (EINVAL);
12368 
12369 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12370 	if ((ill = ipif->ipif_bound_ill) == NULL)
12371 		lifr->lifr_binding[0] = '\0';
12372 	else
12373 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12374 	rw_exit(&ipst->ips_ipmp_lock);
12375 	return (0);
12376 }
12377 
12378 /*
12379  * Process an SIOCGLIFGROUPNAME request.
12380  */
12381 /* ARGSUSED */
12382 int
12383 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12384     ip_ioctl_cmd_t *ipip, void *ifreq)
12385 {
12386 	ipmp_grp_t	*grp;
12387 	struct lifreq	*lifr = ifreq;
12388 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12389 
12390 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12391 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12392 		lifr->lifr_groupname[0] = '\0';
12393 	else
12394 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12395 	rw_exit(&ipst->ips_ipmp_lock);
12396 	return (0);
12397 }
12398 
12399 /*
12400  * Process an SIOCGLIFGROUPINFO request.
12401  */
12402 /* ARGSUSED */
12403 int
12404 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12405     ip_ioctl_cmd_t *ipip, void *dummy)
12406 {
12407 	ipmp_grp_t	*grp;
12408 	lifgroupinfo_t	*lifgr;
12409 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12410 
12411 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12412 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12413 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12414 
12415 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12416 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12417 		rw_exit(&ipst->ips_ipmp_lock);
12418 		return (ENOENT);
12419 	}
12420 	ipmp_grp_info(grp, lifgr);
12421 	rw_exit(&ipst->ips_ipmp_lock);
12422 	return (0);
12423 }
12424 
12425 static void
12426 ill_dl_down(ill_t *ill)
12427 {
12428 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12429 
12430 	/*
12431 	 * The ill is down; unbind but stay attached since we're still
12432 	 * associated with a PPA. If we have negotiated DLPI capabilites
12433 	 * with the data link service provider (IDS_OK) then reset them.
12434 	 * The interval between unbinding and rebinding is potentially
12435 	 * unbounded hence we cannot assume things will be the same.
12436 	 * The DLPI capabilities will be probed again when the data link
12437 	 * is brought up.
12438 	 */
12439 	mblk_t	*mp = ill->ill_unbind_mp;
12440 
12441 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12442 
12443 	if (!ill->ill_replumbing) {
12444 		/* Free all ilms for this ill */
12445 		update_conn_ill(ill, ill->ill_ipst);
12446 	} else {
12447 		ill_leave_multicast(ill);
12448 	}
12449 
12450 	ill->ill_unbind_mp = NULL;
12451 	if (mp != NULL) {
12452 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12453 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12454 		    ill->ill_name));
12455 		mutex_enter(&ill->ill_lock);
12456 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12457 		mutex_exit(&ill->ill_lock);
12458 		/*
12459 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12460 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12461 		 * ill_capability_dld_disable disable rightaway. If this is not
12462 		 * an unplumb operation then the disable happens on receipt of
12463 		 * the capab ack via ip_rput_dlpi_writer ->
12464 		 * ill_capability_ack_thr. In both cases the order of
12465 		 * the operations seen by DLD is capability disable followed
12466 		 * by DL_UNBIND. Also the DLD capability disable needs a
12467 		 * cv_wait'able context.
12468 		 */
12469 		if (ill->ill_state_flags & ILL_CONDEMNED)
12470 			ill_capability_dld_disable(ill);
12471 		ill_capability_reset(ill, B_FALSE);
12472 		ill_dlpi_send(ill, mp);
12473 	}
12474 	mutex_enter(&ill->ill_lock);
12475 	ill->ill_dl_up = 0;
12476 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12477 	mutex_exit(&ill->ill_lock);
12478 }
12479 
12480 void
12481 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12482 {
12483 	union DL_primitives *dlp;
12484 	t_uscalar_t prim;
12485 	boolean_t waitack = B_FALSE;
12486 
12487 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12488 
12489 	dlp = (union DL_primitives *)mp->b_rptr;
12490 	prim = dlp->dl_primitive;
12491 
12492 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12493 	    dl_primstr(prim), prim, ill->ill_name));
12494 
12495 	switch (prim) {
12496 	case DL_PHYS_ADDR_REQ:
12497 	{
12498 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12499 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12500 		break;
12501 	}
12502 	case DL_BIND_REQ:
12503 		mutex_enter(&ill->ill_lock);
12504 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12505 		mutex_exit(&ill->ill_lock);
12506 		break;
12507 	}
12508 
12509 	/*
12510 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12511 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12512 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12513 	 */
12514 	mutex_enter(&ill->ill_lock);
12515 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12516 	    (prim == DL_UNBIND_REQ)) {
12517 		ill->ill_dlpi_pending = prim;
12518 		waitack = B_TRUE;
12519 	}
12520 
12521 	mutex_exit(&ill->ill_lock);
12522 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12523 	    char *, dl_primstr(prim), ill_t *, ill);
12524 	putnext(ill->ill_wq, mp);
12525 
12526 	/*
12527 	 * There is no ack for DL_NOTIFY_CONF messages
12528 	 */
12529 	if (waitack && prim == DL_NOTIFY_CONF)
12530 		ill_dlpi_done(ill, prim);
12531 }
12532 
12533 /*
12534  * Helper function for ill_dlpi_send().
12535  */
12536 /* ARGSUSED */
12537 static void
12538 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12539 {
12540 	ill_dlpi_send(q->q_ptr, mp);
12541 }
12542 
12543 /*
12544  * Send a DLPI control message to the driver but make sure there
12545  * is only one outstanding message. Uses ill_dlpi_pending to tell
12546  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12547  * when an ACK or a NAK is received to process the next queued message.
12548  */
12549 void
12550 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12551 {
12552 	mblk_t **mpp;
12553 
12554 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12555 
12556 	/*
12557 	 * To ensure that any DLPI requests for current exclusive operation
12558 	 * are always completely sent before any DLPI messages for other
12559 	 * operations, require writer access before enqueuing.
12560 	 */
12561 	if (!IAM_WRITER_ILL(ill)) {
12562 		ill_refhold(ill);
12563 		/* qwriter_ip() does the ill_refrele() */
12564 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12565 		    NEW_OP, B_TRUE);
12566 		return;
12567 	}
12568 
12569 	mutex_enter(&ill->ill_lock);
12570 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12571 		/* Must queue message. Tail insertion */
12572 		mpp = &ill->ill_dlpi_deferred;
12573 		while (*mpp != NULL)
12574 			mpp = &((*mpp)->b_next);
12575 
12576 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12577 		    "while %s pending\n", ill->ill_name,
12578 		    dl_primstr(ill->ill_dlpi_pending)));
12579 
12580 		*mpp = mp;
12581 		mutex_exit(&ill->ill_lock);
12582 		return;
12583 	}
12584 	mutex_exit(&ill->ill_lock);
12585 	ill_dlpi_dispatch(ill, mp);
12586 }
12587 
12588 void
12589 ill_capability_send(ill_t *ill, mblk_t *mp)
12590 {
12591 	ill->ill_capab_pending_cnt++;
12592 	ill_dlpi_send(ill, mp);
12593 }
12594 
12595 void
12596 ill_capability_done(ill_t *ill)
12597 {
12598 	ASSERT(ill->ill_capab_pending_cnt != 0);
12599 
12600 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12601 
12602 	ill->ill_capab_pending_cnt--;
12603 	if (ill->ill_capab_pending_cnt == 0 &&
12604 	    ill->ill_dlpi_capab_state == IDCS_OK)
12605 		ill_capability_reset_alloc(ill);
12606 }
12607 
12608 /*
12609  * Send all deferred DLPI messages without waiting for their ACKs.
12610  */
12611 void
12612 ill_dlpi_send_deferred(ill_t *ill)
12613 {
12614 	mblk_t *mp, *nextmp;
12615 
12616 	/*
12617 	 * Clear ill_dlpi_pending so that the message is not queued in
12618 	 * ill_dlpi_send().
12619 	 */
12620 	mutex_enter(&ill->ill_lock);
12621 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12622 	mp = ill->ill_dlpi_deferred;
12623 	ill->ill_dlpi_deferred = NULL;
12624 	mutex_exit(&ill->ill_lock);
12625 
12626 	for (; mp != NULL; mp = nextmp) {
12627 		nextmp = mp->b_next;
12628 		mp->b_next = NULL;
12629 		ill_dlpi_send(ill, mp);
12630 	}
12631 }
12632 
12633 /*
12634  * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12635  * or M_HANGUP
12636  */
12637 static void
12638 ill_dlpi_clear_deferred(ill_t *ill)
12639 {
12640 	mblk_t	*mp, *nextmp;
12641 
12642 	mutex_enter(&ill->ill_lock);
12643 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12644 	mp = ill->ill_dlpi_deferred;
12645 	ill->ill_dlpi_deferred = NULL;
12646 	mutex_exit(&ill->ill_lock);
12647 
12648 	for (; mp != NULL; mp = nextmp) {
12649 		nextmp = mp->b_next;
12650 		inet_freemsg(mp);
12651 	}
12652 }
12653 
12654 /*
12655  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12656  */
12657 boolean_t
12658 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12659 {
12660 	t_uscalar_t pending;
12661 
12662 	mutex_enter(&ill->ill_lock);
12663 	if (ill->ill_dlpi_pending == prim) {
12664 		mutex_exit(&ill->ill_lock);
12665 		return (B_TRUE);
12666 	}
12667 
12668 	/*
12669 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12670 	 * without waiting, so don't print any warnings in that case.
12671 	 */
12672 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12673 		mutex_exit(&ill->ill_lock);
12674 		return (B_FALSE);
12675 	}
12676 	pending = ill->ill_dlpi_pending;
12677 	mutex_exit(&ill->ill_lock);
12678 
12679 	if (pending == DL_PRIM_INVAL) {
12680 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12681 		    "received unsolicited ack for %s on %s\n",
12682 		    dl_primstr(prim), ill->ill_name);
12683 	} else {
12684 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12685 		    "received unexpected ack for %s on %s (expecting %s)\n",
12686 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12687 	}
12688 	return (B_FALSE);
12689 }
12690 
12691 /*
12692  * Complete the current DLPI operation associated with `prim' on `ill' and
12693  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12694  * operations and the ill's current exclusive IPSQ operation has finished
12695  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12696  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12697  * the comments above ipsq_current_finish() for details.
12698  */
12699 void
12700 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12701 {
12702 	mblk_t *mp;
12703 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12704 	ipxop_t *ipx = ipsq->ipsq_xop;
12705 
12706 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12707 	mutex_enter(&ill->ill_lock);
12708 
12709 	ASSERT(prim != DL_PRIM_INVAL);
12710 	ASSERT(ill->ill_dlpi_pending == prim);
12711 
12712 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12713 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12714 
12715 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12716 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12717 		if (ipx->ipx_current_done) {
12718 			mutex_enter(&ipx->ipx_lock);
12719 			ipx->ipx_current_ipif = NULL;
12720 			mutex_exit(&ipx->ipx_lock);
12721 		}
12722 		cv_signal(&ill->ill_cv);
12723 		mutex_exit(&ill->ill_lock);
12724 		return;
12725 	}
12726 
12727 	ill->ill_dlpi_deferred = mp->b_next;
12728 	mp->b_next = NULL;
12729 	mutex_exit(&ill->ill_lock);
12730 
12731 	ill_dlpi_dispatch(ill, mp);
12732 }
12733 
12734 /*
12735  * Queue a (multicast) DLPI control message to be sent to the driver by
12736  * later calling ill_dlpi_send_queued.
12737  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12738  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12739  * for the same group to race.
12740  * We send DLPI control messages in order using ill_lock.
12741  * For IPMP we should be called on the cast_ill.
12742  */
12743 void
12744 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12745 {
12746 	mblk_t **mpp;
12747 
12748 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12749 
12750 	mutex_enter(&ill->ill_lock);
12751 	/* Must queue message. Tail insertion */
12752 	mpp = &ill->ill_dlpi_deferred;
12753 	while (*mpp != NULL)
12754 		mpp = &((*mpp)->b_next);
12755 
12756 	*mpp = mp;
12757 	mutex_exit(&ill->ill_lock);
12758 }
12759 
12760 /*
12761  * Send the messages that were queued. Make sure there is only
12762  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
12763  * when an ACK or a NAK is received to process the next queued message.
12764  * For IPMP we are called on the upper ill, but when send what is queued
12765  * on the cast_ill.
12766  */
12767 void
12768 ill_dlpi_send_queued(ill_t *ill)
12769 {
12770 	mblk_t	*mp;
12771 	union DL_primitives *dlp;
12772 	t_uscalar_t prim;
12773 	ill_t *release_ill = NULL;
12774 
12775 	if (IS_IPMP(ill)) {
12776 		/* On the upper IPMP ill. */
12777 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12778 		if (release_ill == NULL) {
12779 			/* Avoid ever sending anything down to the ipmpstub */
12780 			return;
12781 		}
12782 		ill = release_ill;
12783 	}
12784 	mutex_enter(&ill->ill_lock);
12785 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
12786 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12787 			/* Can't send. Somebody else will send it */
12788 			mutex_exit(&ill->ill_lock);
12789 			goto done;
12790 		}
12791 		ill->ill_dlpi_deferred = mp->b_next;
12792 		mp->b_next = NULL;
12793 		if (!ill->ill_dl_up) {
12794 			/*
12795 			 * Nobody there. All multicast addresses will be
12796 			 * re-joined when we get the DL_BIND_ACK bringing the
12797 			 * interface up.
12798 			 */
12799 			freemsg(mp);
12800 			continue;
12801 		}
12802 		dlp = (union DL_primitives *)mp->b_rptr;
12803 		prim = dlp->dl_primitive;
12804 
12805 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12806 		    (prim == DL_UNBIND_REQ)) {
12807 			ill->ill_dlpi_pending = prim;
12808 		}
12809 		mutex_exit(&ill->ill_lock);
12810 
12811 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
12812 		    char *, dl_primstr(prim), ill_t *, ill);
12813 		putnext(ill->ill_wq, mp);
12814 		mutex_enter(&ill->ill_lock);
12815 	}
12816 	mutex_exit(&ill->ill_lock);
12817 done:
12818 	if (release_ill != NULL)
12819 		ill_refrele(release_ill);
12820 }
12821 
12822 /*
12823  * Queue an IP (IGMP/MLD) message to be sent by IP from
12824  * ill_mcast_send_queued
12825  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12826  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
12827  * group to race.
12828  * We send them in order using ill_lock.
12829  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
12830  */
12831 void
12832 ill_mcast_queue(ill_t *ill, mblk_t *mp)
12833 {
12834 	mblk_t **mpp;
12835 	ill_t *release_ill = NULL;
12836 
12837 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
12838 
12839 	if (IS_IPMP(ill)) {
12840 		/* On the upper IPMP ill. */
12841 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12842 		if (release_ill == NULL) {
12843 			/* Discard instead of queuing for the ipmp interface */
12844 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12845 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
12846 			    mp, ill);
12847 			freemsg(mp);
12848 			return;
12849 		}
12850 		ill = release_ill;
12851 	}
12852 
12853 	mutex_enter(&ill->ill_lock);
12854 	/* Must queue message. Tail insertion */
12855 	mpp = &ill->ill_mcast_deferred;
12856 	while (*mpp != NULL)
12857 		mpp = &((*mpp)->b_next);
12858 
12859 	*mpp = mp;
12860 	mutex_exit(&ill->ill_lock);
12861 	if (release_ill != NULL)
12862 		ill_refrele(release_ill);
12863 }
12864 
12865 /*
12866  * Send the IP packets that were queued by ill_mcast_queue.
12867  * These are IGMP/MLD packets.
12868  *
12869  * For IPMP we are called on the upper ill, but when send what is queued
12870  * on the cast_ill.
12871  *
12872  * Request loopback of the report if we are acting as a multicast
12873  * router, so that the process-level routing demon can hear it.
12874  * This will run multiple times for the same group if there are members
12875  * on the same group for multiple ipif's on the same ill. The
12876  * igmp_input/mld_input code will suppress this due to the loopback thus we
12877  * always loopback membership report.
12878  *
12879  * We also need to make sure that this does not get load balanced
12880  * by IPMP. We do this by passing an ill to ip_output_simple.
12881  */
12882 void
12883 ill_mcast_send_queued(ill_t *ill)
12884 {
12885 	mblk_t	*mp;
12886 	ip_xmit_attr_t ixas;
12887 	ill_t *release_ill = NULL;
12888 
12889 	if (IS_IPMP(ill)) {
12890 		/* On the upper IPMP ill. */
12891 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12892 		if (release_ill == NULL) {
12893 			/*
12894 			 * We should have no messages on the ipmp interface
12895 			 * but no point in trying to send them.
12896 			 */
12897 			return;
12898 		}
12899 		ill = release_ill;
12900 	}
12901 	bzero(&ixas, sizeof (ixas));
12902 	ixas.ixa_zoneid = ALL_ZONES;
12903 	ixas.ixa_cred = kcred;
12904 	ixas.ixa_cpid = NOPID;
12905 	ixas.ixa_tsl = NULL;
12906 	/*
12907 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
12908 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
12909 	 * That is necessary to handle IGMP/MLD snooping switches.
12910 	 */
12911 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
12912 	ixas.ixa_ipst = ill->ill_ipst;
12913 
12914 	mutex_enter(&ill->ill_lock);
12915 	while ((mp = ill->ill_mcast_deferred) != NULL) {
12916 		ill->ill_mcast_deferred = mp->b_next;
12917 		mp->b_next = NULL;
12918 		if (!ill->ill_dl_up) {
12919 			/*
12920 			 * Nobody there. Just drop the ip packets.
12921 			 * IGMP/MLD will resend later, if this is a replumb.
12922 			 */
12923 			freemsg(mp);
12924 			continue;
12925 		}
12926 		mutex_enter(&ill->ill_phyint->phyint_lock);
12927 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
12928 			/*
12929 			 * When the ill is getting deactivated, we only want to
12930 			 * send the DLPI messages, so drop IGMP/MLD packets.
12931 			 * DLPI messages are handled by ill_dlpi_send_queued()
12932 			 */
12933 			mutex_exit(&ill->ill_phyint->phyint_lock);
12934 			freemsg(mp);
12935 			continue;
12936 		}
12937 		mutex_exit(&ill->ill_phyint->phyint_lock);
12938 		mutex_exit(&ill->ill_lock);
12939 
12940 		/* Check whether we are sending IPv4 or IPv6. */
12941 		if (ill->ill_isv6) {
12942 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
12943 
12944 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
12945 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
12946 		} else {
12947 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
12948 
12949 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
12950 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
12951 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
12952 		}
12953 
12954 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
12955 		(void) ip_output_simple(mp, &ixas);
12956 		ixa_cleanup(&ixas);
12957 
12958 		mutex_enter(&ill->ill_lock);
12959 	}
12960 	mutex_exit(&ill->ill_lock);
12961 
12962 done:
12963 	if (release_ill != NULL)
12964 		ill_refrele(release_ill);
12965 }
12966 
12967 /*
12968  * Take down a specific interface, but don't lose any information about it.
12969  * (Always called as writer.)
12970  * This function goes through the down sequence even if the interface is
12971  * already down. There are 2 reasons.
12972  * a. Currently we permit interface routes that depend on down interfaces
12973  *    to be added. This behaviour itself is questionable. However it appears
12974  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
12975  *    time. We go thru the cleanup in order to remove these routes.
12976  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
12977  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
12978  *    down, but we need to cleanup i.e. do ill_dl_down and
12979  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
12980  *
12981  * IP-MT notes:
12982  *
12983  * Model of reference to interfaces.
12984  *
12985  * The following members in ipif_t track references to the ipif.
12986  *	int     ipif_refcnt;    Active reference count
12987  *
12988  * The following members in ill_t track references to the ill.
12989  *	int             ill_refcnt;     active refcnt
12990  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
12991  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
12992  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
12993  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
12994  *
12995  * Reference to an ipif or ill can be obtained in any of the following ways.
12996  *
12997  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
12998  * Pointers to ipif / ill from other data structures viz ire and conn.
12999  * Implicit reference to the ipif / ill by holding a reference to the ire.
13000  *
13001  * The ipif/ill lookup functions return a reference held ipif / ill.
13002  * ipif_refcnt and ill_refcnt track the reference counts respectively.
13003  * This is a purely dynamic reference count associated with threads holding
13004  * references to the ipif / ill. Pointers from other structures do not
13005  * count towards this reference count.
13006  *
13007  * ill_ire_cnt is the number of ire's associated with the
13008  * ill. This is incremented whenever a new ire is created referencing the
13009  * ill. This is done atomically inside ire_add_v[46] where the ire is
13010  * actually added to the ire hash table. The count is decremented in
13011  * ire_inactive where the ire is destroyed.
13012  *
13013  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13014  * This is incremented atomically in
13015  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13016  * table. Similarly it is decremented in ncec_inactive() where the ncec
13017  * is destroyed.
13018  *
13019  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13020  * incremented atomically in nce_add() where the nce is actually added to the
13021  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13022  * is destroyed.
13023  *
13024  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13025  * ilm_add() and decremented before the ilm is freed in ilm_delete().
13026  *
13027  * Flow of ioctls involving interface down/up
13028  *
13029  * The following is the sequence of an attempt to set some critical flags on an
13030  * up interface.
13031  * ip_sioctl_flags
13032  * ipif_down
13033  * wait for ipif to be quiescent
13034  * ipif_down_tail
13035  * ip_sioctl_flags_tail
13036  *
13037  * All set ioctls that involve down/up sequence would have a skeleton similar
13038  * to the above. All the *tail functions are called after the refcounts have
13039  * dropped to the appropriate values.
13040  *
13041  * SIOC ioctls during the IPIF_CHANGING interval.
13042  *
13043  * Threads handling SIOC set ioctls serialize on the squeue, but this
13044  * is not done for SIOC get ioctls. Since a set ioctl can cause several
13045  * steps of internal changes to the state, some of which are visible in
13046  * ipif_flags (such as IFF_UP being cleared and later set), and we want
13047  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13048  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13049  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13050  * the current exclusive operation completes. The IPIF_CHANGING check
13051  * and enqueue is atomic using the ill_lock and ipsq_lock. The
13052  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13053  * change while the ill_lock is held. Before dropping the ill_lock we acquire
13054  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13055  * until we release the ipsq_lock, even though the ill/ipif state flags
13056  * can change after we drop the ill_lock.
13057  */
13058 int
13059 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13060 {
13061 	ill_t		*ill = ipif->ipif_ill;
13062 	conn_t		*connp;
13063 	boolean_t	success;
13064 	boolean_t	ipif_was_up = B_FALSE;
13065 	ip_stack_t	*ipst = ill->ill_ipst;
13066 
13067 	ASSERT(IAM_WRITER_IPIF(ipif));
13068 
13069 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13070 
13071 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13072 	    ill_t *, ill, ipif_t *, ipif);
13073 
13074 	if (ipif->ipif_flags & IPIF_UP) {
13075 		mutex_enter(&ill->ill_lock);
13076 		ipif->ipif_flags &= ~IPIF_UP;
13077 		ASSERT(ill->ill_ipif_up_count > 0);
13078 		--ill->ill_ipif_up_count;
13079 		mutex_exit(&ill->ill_lock);
13080 		ipif_was_up = B_TRUE;
13081 		/* Update status in SCTP's list */
13082 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13083 		ill_nic_event_dispatch(ipif->ipif_ill,
13084 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13085 	}
13086 
13087 	/*
13088 	 * Blow away memberships we established in ipif_multicast_up().
13089 	 */
13090 	ipif_multicast_down(ipif);
13091 
13092 	/*
13093 	 * Remove from the mapping for __sin6_src_id. We insert only
13094 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13095 	 * stored as mapped addresses, we need to check for mapped
13096 	 * INADDR_ANY also.
13097 	 */
13098 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13099 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13100 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13101 		int err;
13102 
13103 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13104 		    ipif->ipif_zoneid, ipst);
13105 		if (err != 0) {
13106 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13107 		}
13108 	}
13109 
13110 	if (ipif_was_up) {
13111 		/* only delete if we'd added ire's before */
13112 		if (ipif->ipif_isv6)
13113 			ipif_delete_ires_v6(ipif);
13114 		else
13115 			ipif_delete_ires_v4(ipif);
13116 	}
13117 
13118 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13119 		/*
13120 		 * Since the interface is now down, it may have just become
13121 		 * inactive.  Note that this needs to be done even for a
13122 		 * lll_logical_down(), or ARP entries will not get correctly
13123 		 * restored when the interface comes back up.
13124 		 */
13125 		if (IS_UNDER_IPMP(ill))
13126 			ipmp_ill_refresh_active(ill);
13127 	}
13128 
13129 	/*
13130 	 * neighbor-discovery or arp entries for this interface. The ipif
13131 	 * has to be quiesced, so we walk all the nce's and delete those
13132 	 * that point at the ipif->ipif_ill. At the same time, we also
13133 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13134 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13135 	 * that for ipif_down_tail()
13136 	 */
13137 	ipif_nce_down(ipif);
13138 
13139 	/*
13140 	 * If this is the last ipif on the ill, we also need to remove
13141 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13142 	 * never succeed.
13143 	 */
13144 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13145 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13146 
13147 	/*
13148 	 * Walk all CONNs that can have a reference on an ire for this
13149 	 * ipif (we actually walk all that now have stale references).
13150 	 */
13151 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13152 
13153 	/*
13154 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13155 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13156 	 * and ill_delete -> ipif_free -> ipif_down
13157 	 */
13158 	if (mp == NULL) {
13159 		ASSERT(q == NULL);
13160 		return (0);
13161 	}
13162 
13163 	if (CONN_Q(q)) {
13164 		connp = Q_TO_CONN(q);
13165 		mutex_enter(&connp->conn_lock);
13166 	} else {
13167 		connp = NULL;
13168 	}
13169 	mutex_enter(&ill->ill_lock);
13170 	/*
13171 	 * Are there any ire's pointing to this ipif that are still active ?
13172 	 * If this is the last ipif going down, are there any ire's pointing
13173 	 * to this ill that are still active ?
13174 	 */
13175 	if (ipif_is_quiescent(ipif)) {
13176 		mutex_exit(&ill->ill_lock);
13177 		if (connp != NULL)
13178 			mutex_exit(&connp->conn_lock);
13179 		return (0);
13180 	}
13181 
13182 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13183 	    ill->ill_name, (void *)ill));
13184 	/*
13185 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13186 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13187 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13188 	 */
13189 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13190 	if (!success) {
13191 		/* The conn is closing. So just return */
13192 		ASSERT(connp != NULL);
13193 		mutex_exit(&ill->ill_lock);
13194 		mutex_exit(&connp->conn_lock);
13195 		return (EINTR);
13196 	}
13197 
13198 	mutex_exit(&ill->ill_lock);
13199 	if (connp != NULL)
13200 		mutex_exit(&connp->conn_lock);
13201 	return (EINPROGRESS);
13202 }
13203 
13204 int
13205 ipif_down_tail(ipif_t *ipif)
13206 {
13207 	ill_t	*ill = ipif->ipif_ill;
13208 	int	err = 0;
13209 
13210 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13211 	    ill_t *, ill, ipif_t *, ipif);
13212 
13213 	/*
13214 	 * Skip any loopback interface (null wq).
13215 	 * If this is the last logical interface on the ill
13216 	 * have ill_dl_down tell the driver we are gone (unbind)
13217 	 * Note that lun 0 can ipif_down even though
13218 	 * there are other logical units that are up.
13219 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13220 	 */
13221 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13222 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13223 	    ill->ill_dl_up) {
13224 		ill_dl_down(ill);
13225 	}
13226 	if (!ipif->ipif_isv6)
13227 		err = ipif_arp_down(ipif);
13228 
13229 	ill->ill_logical_down = 0;
13230 
13231 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13232 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13233 	return (err);
13234 }
13235 
13236 /*
13237  * Bring interface logically down without bringing the physical interface
13238  * down e.g. when the netmask is changed. This avoids long lasting link
13239  * negotiations between an ethernet interface and a certain switches.
13240  */
13241 static int
13242 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13243 {
13244 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13245 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13246 
13247 	/*
13248 	 * The ill_logical_down flag is a transient flag. It is set here
13249 	 * and is cleared once the down has completed in ipif_down_tail.
13250 	 * This flag does not indicate whether the ill stream is in the
13251 	 * DL_BOUND state with the driver. Instead this flag is used by
13252 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13253 	 * the driver. The state of the ill stream i.e. whether it is
13254 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13255 	 */
13256 	ipif->ipif_ill->ill_logical_down = 1;
13257 	return (ipif_down(ipif, q, mp));
13258 }
13259 
13260 /*
13261  * Initiate deallocate of an IPIF. Always called as writer. Called by
13262  * ill_delete or ip_sioctl_removeif.
13263  */
13264 static void
13265 ipif_free(ipif_t *ipif)
13266 {
13267 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13268 
13269 	ASSERT(IAM_WRITER_IPIF(ipif));
13270 
13271 	if (ipif->ipif_recovery_id != 0)
13272 		(void) untimeout(ipif->ipif_recovery_id);
13273 	ipif->ipif_recovery_id = 0;
13274 
13275 	/*
13276 	 * Take down the interface. We can be called either from ill_delete
13277 	 * or from ip_sioctl_removeif.
13278 	 */
13279 	(void) ipif_down(ipif, NULL, NULL);
13280 
13281 	/*
13282 	 * Now that the interface is down, there's no chance it can still
13283 	 * become a duplicate.  Cancel any timer that may have been set while
13284 	 * tearing down.
13285 	 */
13286 	if (ipif->ipif_recovery_id != 0)
13287 		(void) untimeout(ipif->ipif_recovery_id);
13288 	ipif->ipif_recovery_id = 0;
13289 
13290 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13291 	/* Remove pointers to this ill in the multicast routing tables */
13292 	reset_mrt_vif_ipif(ipif);
13293 	/* If necessary, clear the cached source ipif rotor. */
13294 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13295 		ipif->ipif_ill->ill_src_ipif = NULL;
13296 	rw_exit(&ipst->ips_ill_g_lock);
13297 }
13298 
13299 static void
13300 ipif_free_tail(ipif_t *ipif)
13301 {
13302 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13303 
13304 	/*
13305 	 * Need to hold both ill_g_lock and ill_lock while
13306 	 * inserting or removing an ipif from the linked list
13307 	 * of ipifs hanging off the ill.
13308 	 */
13309 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13310 
13311 #ifdef DEBUG
13312 	ipif_trace_cleanup(ipif);
13313 #endif
13314 
13315 	/* Ask SCTP to take it out of it list */
13316 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13317 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13318 
13319 	/* Get it out of the ILL interface list. */
13320 	ipif_remove(ipif);
13321 	rw_exit(&ipst->ips_ill_g_lock);
13322 
13323 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13324 	ASSERT(ipif->ipif_recovery_id == 0);
13325 	ASSERT(ipif->ipif_ire_local == NULL);
13326 	ASSERT(ipif->ipif_ire_if == NULL);
13327 
13328 	/* Free the memory. */
13329 	mi_free(ipif);
13330 }
13331 
13332 /*
13333  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13334  * is zero.
13335  */
13336 void
13337 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13338 {
13339 	char	lbuf[LIFNAMSIZ];
13340 	char	*name;
13341 	size_t	name_len;
13342 
13343 	buf[0] = '\0';
13344 	name = ipif->ipif_ill->ill_name;
13345 	name_len = ipif->ipif_ill->ill_name_length;
13346 	if (ipif->ipif_id != 0) {
13347 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13348 		    ipif->ipif_id);
13349 		name = lbuf;
13350 		name_len = mi_strlen(name) + 1;
13351 	}
13352 	len -= 1;
13353 	buf[len] = '\0';
13354 	len = MIN(len, name_len);
13355 	bcopy(name, buf, len);
13356 }
13357 
13358 /*
13359  * Sets `buf' to an ill name.
13360  */
13361 void
13362 ill_get_name(const ill_t *ill, char *buf, int len)
13363 {
13364 	char	*name;
13365 	size_t	name_len;
13366 
13367 	name = ill->ill_name;
13368 	name_len = ill->ill_name_length;
13369 	len -= 1;
13370 	buf[len] = '\0';
13371 	len = MIN(len, name_len);
13372 	bcopy(name, buf, len);
13373 }
13374 
13375 /*
13376  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13377  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13378  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13379  * (May be called as writer.)
13380  */
13381 static ipif_t *
13382 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13383     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13384 {
13385 	char	*cp;
13386 	char	*endp;
13387 	long	id;
13388 	ill_t	*ill;
13389 	ipif_t	*ipif;
13390 	uint_t	ire_type;
13391 	boolean_t did_alloc = B_FALSE;
13392 
13393 	/*
13394 	 * If the caller wants to us to create the ipif, make sure we have a
13395 	 * valid zoneid
13396 	 */
13397 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13398 
13399 	if (namelen == 0) {
13400 		return (NULL);
13401 	}
13402 
13403 	*exists = B_FALSE;
13404 	/* Look for a colon in the name. */
13405 	endp = &name[namelen];
13406 	for (cp = endp; --cp > name; ) {
13407 		if (*cp == IPIF_SEPARATOR_CHAR)
13408 			break;
13409 	}
13410 
13411 	if (*cp == IPIF_SEPARATOR_CHAR) {
13412 		/*
13413 		 * Reject any non-decimal aliases for logical
13414 		 * interfaces. Aliases with leading zeroes
13415 		 * are also rejected as they introduce ambiguity
13416 		 * in the naming of the interfaces.
13417 		 * In order to confirm with existing semantics,
13418 		 * and to not break any programs/script relying
13419 		 * on that behaviour, if<0>:0 is considered to be
13420 		 * a valid interface.
13421 		 *
13422 		 * If alias has two or more digits and the first
13423 		 * is zero, fail.
13424 		 */
13425 		if (&cp[2] < endp && cp[1] == '0') {
13426 			return (NULL);
13427 		}
13428 	}
13429 
13430 	if (cp <= name) {
13431 		cp = endp;
13432 	} else {
13433 		*cp = '\0';
13434 	}
13435 
13436 	/*
13437 	 * Look up the ILL, based on the portion of the name
13438 	 * before the slash. ill_lookup_on_name returns a held ill.
13439 	 * Temporary to check whether ill exists already. If so
13440 	 * ill_lookup_on_name will clear it.
13441 	 */
13442 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13443 	    &did_alloc, ipst);
13444 	if (cp != endp)
13445 		*cp = IPIF_SEPARATOR_CHAR;
13446 	if (ill == NULL)
13447 		return (NULL);
13448 
13449 	/* Establish the unit number in the name. */
13450 	id = 0;
13451 	if (cp < endp && *endp == '\0') {
13452 		/* If there was a colon, the unit number follows. */
13453 		cp++;
13454 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13455 			ill_refrele(ill);
13456 			return (NULL);
13457 		}
13458 	}
13459 
13460 	mutex_enter(&ill->ill_lock);
13461 	/* Now see if there is an IPIF with this unit number. */
13462 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13463 		if (ipif->ipif_id == id) {
13464 			if (zoneid != ALL_ZONES &&
13465 			    zoneid != ipif->ipif_zoneid &&
13466 			    ipif->ipif_zoneid != ALL_ZONES) {
13467 				mutex_exit(&ill->ill_lock);
13468 				ill_refrele(ill);
13469 				return (NULL);
13470 			}
13471 			if (IPIF_CAN_LOOKUP(ipif)) {
13472 				ipif_refhold_locked(ipif);
13473 				mutex_exit(&ill->ill_lock);
13474 				if (!did_alloc)
13475 					*exists = B_TRUE;
13476 				/*
13477 				 * Drop locks before calling ill_refrele
13478 				 * since it can potentially call into
13479 				 * ipif_ill_refrele_tail which can end up
13480 				 * in trying to acquire any lock.
13481 				 */
13482 				ill_refrele(ill);
13483 				return (ipif);
13484 			}
13485 		}
13486 	}
13487 
13488 	if (!do_alloc) {
13489 		mutex_exit(&ill->ill_lock);
13490 		ill_refrele(ill);
13491 		return (NULL);
13492 	}
13493 
13494 	/*
13495 	 * If none found, atomically allocate and return a new one.
13496 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13497 	 * to support "receive only" use of lo0:1 etc. as is still done
13498 	 * below as an initial guess.
13499 	 * However, this is now likely to be overriden later in ipif_up_done()
13500 	 * when we know for sure what address has been configured on the
13501 	 * interface, since we might have more than one loopback interface
13502 	 * with a loopback address, e.g. in the case of zones, and all the
13503 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13504 	 */
13505 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13506 		ire_type = IRE_LOOPBACK;
13507 	else
13508 		ire_type = IRE_LOCAL;
13509 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13510 	if (ipif != NULL)
13511 		ipif_refhold_locked(ipif);
13512 	mutex_exit(&ill->ill_lock);
13513 	ill_refrele(ill);
13514 	return (ipif);
13515 }
13516 
13517 /*
13518  * This routine is called whenever a new address comes up on an ipif.  If
13519  * we are configured to respond to address mask requests, then we are supposed
13520  * to broadcast an address mask reply at this time.  This routine is also
13521  * called if we are already up, but a netmask change is made.  This is legal
13522  * but might not make the system manager very popular.	(May be called
13523  * as writer.)
13524  */
13525 void
13526 ipif_mask_reply(ipif_t *ipif)
13527 {
13528 	icmph_t	*icmph;
13529 	ipha_t	*ipha;
13530 	mblk_t	*mp;
13531 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13532 	ip_xmit_attr_t ixas;
13533 
13534 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13535 
13536 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13537 		return;
13538 
13539 	/* ICMP mask reply is IPv4 only */
13540 	ASSERT(!ipif->ipif_isv6);
13541 	/* ICMP mask reply is not for a loopback interface */
13542 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13543 
13544 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13545 		return;
13546 
13547 	mp = allocb(REPLY_LEN, BPRI_HI);
13548 	if (mp == NULL)
13549 		return;
13550 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13551 
13552 	ipha = (ipha_t *)mp->b_rptr;
13553 	bzero(ipha, REPLY_LEN);
13554 	*ipha = icmp_ipha;
13555 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13556 	ipha->ipha_src = ipif->ipif_lcl_addr;
13557 	ipha->ipha_dst = ipif->ipif_brd_addr;
13558 	ipha->ipha_length = htons(REPLY_LEN);
13559 	ipha->ipha_ident = 0;
13560 
13561 	icmph = (icmph_t *)&ipha[1];
13562 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13563 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13564 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13565 
13566 	bzero(&ixas, sizeof (ixas));
13567 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13568 	ixas.ixa_flags |= IXAF_SET_SOURCE;
13569 	ixas.ixa_zoneid = ALL_ZONES;
13570 	ixas.ixa_ifindex = 0;
13571 	ixas.ixa_ipst = ipst;
13572 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13573 	(void) ip_output_simple(mp, &ixas);
13574 	ixa_cleanup(&ixas);
13575 #undef	REPLY_LEN
13576 }
13577 
13578 /*
13579  * Join the ipif specific multicast groups.
13580  * Must be called after a mapping has been set up in the resolver.  (Always
13581  * called as writer.)
13582  */
13583 void
13584 ipif_multicast_up(ipif_t *ipif)
13585 {
13586 	int err;
13587 	ill_t *ill;
13588 	ilm_t *ilm;
13589 
13590 	ASSERT(IAM_WRITER_IPIF(ipif));
13591 
13592 	ill = ipif->ipif_ill;
13593 
13594 	ip1dbg(("ipif_multicast_up\n"));
13595 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
13596 	    ipif->ipif_allhosts_ilm != NULL)
13597 		return;
13598 
13599 	if (ipif->ipif_isv6) {
13600 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
13601 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
13602 
13603 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
13604 
13605 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
13606 			return;
13607 
13608 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13609 
13610 		/*
13611 		 * Join the all hosts multicast address.  We skip this for
13612 		 * underlying IPMP interfaces since they should be invisible.
13613 		 */
13614 		if (!IS_UNDER_IPMP(ill)) {
13615 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
13616 			    &err);
13617 			if (ilm == NULL) {
13618 				ASSERT(err != 0);
13619 				ip0dbg(("ipif_multicast_up: "
13620 				    "all_hosts_mcast failed %d\n", err));
13621 				return;
13622 			}
13623 			ipif->ipif_allhosts_ilm = ilm;
13624 		}
13625 
13626 		/*
13627 		 * Enable multicast for the solicited node multicast address.
13628 		 * If IPMP we need to put the membership on the upper ill.
13629 		 */
13630 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
13631 			ill_t *mcast_ill = NULL;
13632 			boolean_t need_refrele;
13633 
13634 			if (IS_UNDER_IPMP(ill) &&
13635 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
13636 				need_refrele = B_TRUE;
13637 			} else {
13638 				mcast_ill = ill;
13639 				need_refrele = B_FALSE;
13640 			}
13641 
13642 			ilm = ip_addmulti(&v6solmc, mcast_ill,
13643 			    ipif->ipif_zoneid, &err);
13644 			if (need_refrele)
13645 				ill_refrele(mcast_ill);
13646 
13647 			if (ilm == NULL) {
13648 				ASSERT(err != 0);
13649 				ip0dbg(("ipif_multicast_up: solicited MC"
13650 				    " failed %d\n", err));
13651 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
13652 					ipif->ipif_allhosts_ilm = NULL;
13653 					(void) ip_delmulti(ilm);
13654 				}
13655 				return;
13656 			}
13657 			ipif->ipif_solmulti_ilm = ilm;
13658 		}
13659 	} else {
13660 		in6_addr_t v6group;
13661 
13662 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
13663 			return;
13664 
13665 		/* Join the all hosts multicast address */
13666 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13667 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
13668 
13669 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
13670 		if (ilm == NULL) {
13671 			ASSERT(err != 0);
13672 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
13673 			return;
13674 		}
13675 		ipif->ipif_allhosts_ilm = ilm;
13676 	}
13677 }
13678 
13679 /*
13680  * Blow away any multicast groups that we joined in ipif_multicast_up().
13681  * (ilms from explicit memberships are handled in conn_update_ill.)
13682  */
13683 void
13684 ipif_multicast_down(ipif_t *ipif)
13685 {
13686 	ASSERT(IAM_WRITER_IPIF(ipif));
13687 
13688 	ip1dbg(("ipif_multicast_down\n"));
13689 
13690 	if (ipif->ipif_allhosts_ilm != NULL) {
13691 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
13692 		ipif->ipif_allhosts_ilm = NULL;
13693 	}
13694 	if (ipif->ipif_solmulti_ilm != NULL) {
13695 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
13696 		ipif->ipif_solmulti_ilm = NULL;
13697 	}
13698 }
13699 
13700 /*
13701  * Used when an interface comes up to recreate any extra routes on this
13702  * interface.
13703  */
13704 int
13705 ill_recover_saved_ire(ill_t *ill)
13706 {
13707 	mblk_t		*mp;
13708 	ip_stack_t	*ipst = ill->ill_ipst;
13709 
13710 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
13711 
13712 	mutex_enter(&ill->ill_saved_ire_lock);
13713 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
13714 		ire_t		*ire, *nire;
13715 		ifrt_t		*ifrt;
13716 
13717 		ifrt = (ifrt_t *)mp->b_rptr;
13718 		/*
13719 		 * Create a copy of the IRE with the saved address and netmask.
13720 		 */
13721 		if (ill->ill_isv6) {
13722 			ire = ire_create_v6(
13723 			    &ifrt->ifrt_v6addr,
13724 			    &ifrt->ifrt_v6mask,
13725 			    &ifrt->ifrt_v6gateway_addr,
13726 			    ifrt->ifrt_type,
13727 			    ill,
13728 			    ifrt->ifrt_zoneid,
13729 			    ifrt->ifrt_flags,
13730 			    NULL,
13731 			    ipst);
13732 		} else {
13733 			ire = ire_create(
13734 			    (uint8_t *)&ifrt->ifrt_addr,
13735 			    (uint8_t *)&ifrt->ifrt_mask,
13736 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
13737 			    ifrt->ifrt_type,
13738 			    ill,
13739 			    ifrt->ifrt_zoneid,
13740 			    ifrt->ifrt_flags,
13741 			    NULL,
13742 			    ipst);
13743 		}
13744 		if (ire == NULL) {
13745 			mutex_exit(&ill->ill_saved_ire_lock);
13746 			return (ENOMEM);
13747 		}
13748 
13749 		if (ifrt->ifrt_flags & RTF_SETSRC) {
13750 			if (ill->ill_isv6) {
13751 				ire->ire_setsrc_addr_v6 =
13752 				    ifrt->ifrt_v6setsrc_addr;
13753 			} else {
13754 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
13755 			}
13756 		}
13757 
13758 		/*
13759 		 * Some software (for example, GateD and Sun Cluster) attempts
13760 		 * to create (what amount to) IRE_PREFIX routes with the
13761 		 * loopback address as the gateway.  This is primarily done to
13762 		 * set up prefixes with the RTF_REJECT flag set (for example,
13763 		 * when generating aggregate routes.)
13764 		 *
13765 		 * If the IRE type (as defined by ill->ill_net_type) is
13766 		 * IRE_LOOPBACK, then we map the request into a
13767 		 * IRE_IF_NORESOLVER.
13768 		 */
13769 		if (ill->ill_net_type == IRE_LOOPBACK)
13770 			ire->ire_type = IRE_IF_NORESOLVER;
13771 
13772 		/*
13773 		 * ire held by ire_add, will be refreled' towards the
13774 		 * the end of ipif_up_done
13775 		 */
13776 		nire = ire_add(ire);
13777 		/*
13778 		 * Check if it was a duplicate entry. This handles
13779 		 * the case of two racing route adds for the same route
13780 		 */
13781 		if (nire == NULL) {
13782 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
13783 		} else if (nire != ire) {
13784 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
13785 			    (void *)nire));
13786 			ire_delete(nire);
13787 		} else {
13788 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
13789 			    (void *)nire));
13790 		}
13791 		if (nire != NULL)
13792 			ire_refrele(nire);
13793 	}
13794 	mutex_exit(&ill->ill_saved_ire_lock);
13795 	return (0);
13796 }
13797 
13798 /*
13799  * Used to set the netmask and broadcast address to default values when the
13800  * interface is brought up.  (Always called as writer.)
13801  */
13802 static void
13803 ipif_set_default(ipif_t *ipif)
13804 {
13805 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
13806 
13807 	if (!ipif->ipif_isv6) {
13808 		/*
13809 		 * Interface holds an IPv4 address. Default
13810 		 * mask is the natural netmask.
13811 		 */
13812 		if (!ipif->ipif_net_mask) {
13813 			ipaddr_t	v4mask;
13814 
13815 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
13816 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
13817 		}
13818 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13819 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13820 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13821 		} else {
13822 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13823 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13824 		}
13825 		/*
13826 		 * NOTE: SunOS 4.X does this even if the broadcast address
13827 		 * has been already set thus we do the same here.
13828 		 */
13829 		if (ipif->ipif_flags & IPIF_BROADCAST) {
13830 			ipaddr_t	v4addr;
13831 
13832 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
13833 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
13834 		}
13835 	} else {
13836 		/*
13837 		 * Interface holds an IPv6-only address.  Default
13838 		 * mask is all-ones.
13839 		 */
13840 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
13841 			ipif->ipif_v6net_mask = ipv6_all_ones;
13842 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13843 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13844 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13845 		} else {
13846 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13847 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13848 		}
13849 	}
13850 }
13851 
13852 /*
13853  * Return 0 if this address can be used as local address without causing
13854  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
13855  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
13856  * Note that the same IPv6 link-local address is allowed as long as the ills
13857  * are not on the same link.
13858  */
13859 int
13860 ip_addr_availability_check(ipif_t *new_ipif)
13861 {
13862 	in6_addr_t our_v6addr;
13863 	ill_t *ill;
13864 	ipif_t *ipif;
13865 	ill_walk_context_t ctx;
13866 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
13867 
13868 	ASSERT(IAM_WRITER_IPIF(new_ipif));
13869 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
13870 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
13871 
13872 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
13873 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
13874 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
13875 		return (0);
13876 
13877 	our_v6addr = new_ipif->ipif_v6lcl_addr;
13878 
13879 	if (new_ipif->ipif_isv6)
13880 		ill = ILL_START_WALK_V6(&ctx, ipst);
13881 	else
13882 		ill = ILL_START_WALK_V4(&ctx, ipst);
13883 
13884 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13885 		for (ipif = ill->ill_ipif; ipif != NULL;
13886 		    ipif = ipif->ipif_next) {
13887 			if ((ipif == new_ipif) ||
13888 			    !(ipif->ipif_flags & IPIF_UP) ||
13889 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13890 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
13891 			    &our_v6addr))
13892 				continue;
13893 
13894 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
13895 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
13896 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
13897 				ipif->ipif_flags |= IPIF_UNNUMBERED;
13898 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
13899 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
13900 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
13901 				continue;
13902 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
13903 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
13904 				continue;
13905 			else if (new_ipif->ipif_ill == ill)
13906 				return (EADDRINUSE);
13907 			else
13908 				return (EADDRNOTAVAIL);
13909 		}
13910 	}
13911 
13912 	return (0);
13913 }
13914 
13915 /*
13916  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
13917  * IREs for the ipif.
13918  * When the routine returns EINPROGRESS then mp has been consumed and
13919  * the ioctl will be acked from ip_rput_dlpi.
13920  */
13921 int
13922 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
13923 {
13924 	ill_t		*ill = ipif->ipif_ill;
13925 	boolean_t 	isv6 = ipif->ipif_isv6;
13926 	int		err = 0;
13927 	boolean_t	success;
13928 	uint_t		ipif_orig_id;
13929 	ip_stack_t	*ipst = ill->ill_ipst;
13930 
13931 	ASSERT(IAM_WRITER_IPIF(ipif));
13932 
13933 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13934 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
13935 	    ill_t *, ill, ipif_t *, ipif);
13936 
13937 	/* Shouldn't get here if it is already up. */
13938 	if (ipif->ipif_flags & IPIF_UP)
13939 		return (EALREADY);
13940 
13941 	/*
13942 	 * If this is a request to bring up a data address on an interface
13943 	 * under IPMP, then move the address to its IPMP meta-interface and
13944 	 * try to bring it up.  One complication is that the zeroth ipif for
13945 	 * an ill is special, in that every ill always has one, and that code
13946 	 * throughout IP deferences ill->ill_ipif without holding any locks.
13947 	 */
13948 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
13949 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
13950 		ipif_t	*stubipif = NULL, *moveipif = NULL;
13951 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
13952 
13953 		/*
13954 		 * The ipif being brought up should be quiesced.  If it's not,
13955 		 * something has gone amiss and we need to bail out.  (If it's
13956 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
13957 		 */
13958 		mutex_enter(&ill->ill_lock);
13959 		if (!ipif_is_quiescent(ipif)) {
13960 			mutex_exit(&ill->ill_lock);
13961 			return (EINVAL);
13962 		}
13963 		mutex_exit(&ill->ill_lock);
13964 
13965 		/*
13966 		 * If we're going to need to allocate ipifs, do it prior
13967 		 * to starting the move (and grabbing locks).
13968 		 */
13969 		if (ipif->ipif_id == 0) {
13970 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13971 			    B_FALSE, &err)) == NULL) {
13972 				return (err);
13973 			}
13974 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13975 			    B_FALSE, &err)) == NULL) {
13976 				mi_free(moveipif);
13977 				return (err);
13978 			}
13979 		}
13980 
13981 		/*
13982 		 * Grab or transfer the ipif to move.  During the move, keep
13983 		 * ill_g_lock held to prevent any ill walker threads from
13984 		 * seeing things in an inconsistent state.
13985 		 */
13986 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13987 		if (ipif->ipif_id != 0) {
13988 			ipif_remove(ipif);
13989 		} else {
13990 			ipif_transfer(ipif, moveipif, stubipif);
13991 			ipif = moveipif;
13992 		}
13993 
13994 		/*
13995 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
13996 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
13997 		 * replace that one.  Otherwise, pick the next available slot.
13998 		 */
13999 		ipif->ipif_ill = ipmp_ill;
14000 		ipif_orig_id = ipif->ipif_id;
14001 
14002 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14003 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14004 			ipif = ipmp_ill->ill_ipif;
14005 		} else {
14006 			ipif->ipif_id = -1;
14007 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14008 				/*
14009 				 * No more available ipif_id's -- put it back
14010 				 * on the original ill and fail the operation.
14011 				 * Since we're writer on the ill, we can be
14012 				 * sure our old slot is still available.
14013 				 */
14014 				ipif->ipif_id = ipif_orig_id;
14015 				ipif->ipif_ill = ill;
14016 				if (ipif_orig_id == 0) {
14017 					ipif_transfer(ipif, ill->ill_ipif,
14018 					    NULL);
14019 				} else {
14020 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14021 				}
14022 				rw_exit(&ipst->ips_ill_g_lock);
14023 				return (err);
14024 			}
14025 		}
14026 		rw_exit(&ipst->ips_ill_g_lock);
14027 
14028 		/*
14029 		 * Tell SCTP that the ipif has moved.  Note that even if we
14030 		 * had to allocate a new ipif, the original sequence id was
14031 		 * preserved and therefore SCTP won't know.
14032 		 */
14033 		sctp_move_ipif(ipif, ill, ipmp_ill);
14034 
14035 		/*
14036 		 * If the ipif being brought up was on slot zero, then we
14037 		 * first need to bring up the placeholder we stuck there.  In
14038 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14039 		 * call to ipif_up() itself, if we successfully bring up the
14040 		 * placeholder, we'll check ill_move_ipif and bring it up too.
14041 		 */
14042 		if (ipif_orig_id == 0) {
14043 			ASSERT(ill->ill_move_ipif == NULL);
14044 			ill->ill_move_ipif = ipif;
14045 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14046 				ASSERT(ill->ill_move_ipif == NULL);
14047 			if (err != EINPROGRESS)
14048 				ill->ill_move_ipif = NULL;
14049 			return (err);
14050 		}
14051 
14052 		/*
14053 		 * Bring it up on the IPMP ill.
14054 		 */
14055 		return (ipif_up(ipif, q, mp));
14056 	}
14057 
14058 	/* Skip arp/ndp for any loopback interface. */
14059 	if (ill->ill_wq != NULL) {
14060 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14061 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
14062 
14063 		if (!ill->ill_dl_up) {
14064 			/*
14065 			 * ill_dl_up is not yet set. i.e. we are yet to
14066 			 * DL_BIND with the driver and this is the first
14067 			 * logical interface on the ill to become "up".
14068 			 * Tell the driver to get going (via DL_BIND_REQ).
14069 			 * Note that changing "significant" IFF_ flags
14070 			 * address/netmask etc cause a down/up dance, but
14071 			 * does not cause an unbind (DL_UNBIND) with the driver
14072 			 */
14073 			return (ill_dl_up(ill, ipif, mp, q));
14074 		}
14075 
14076 		/*
14077 		 * ipif_resolver_up may end up needeing to bind/attach
14078 		 * the ARP stream, which in turn necessitates a
14079 		 * DLPI message exchange with the driver. ioctls are
14080 		 * serialized and so we cannot send more than one
14081 		 * interface up message at a time. If ipif_resolver_up
14082 		 * does need to wait for the DLPI handshake for the ARP stream,
14083 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
14084 		 */
14085 
14086 		ASSERT(connp != NULL || !CONN_Q(q));
14087 		if (connp != NULL)
14088 			mutex_enter(&connp->conn_lock);
14089 		mutex_enter(&ill->ill_lock);
14090 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14091 		mutex_exit(&ill->ill_lock);
14092 		if (connp != NULL)
14093 			mutex_exit(&connp->conn_lock);
14094 		if (!success)
14095 			return (EINTR);
14096 
14097 		/*
14098 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14099 		 * complete when ipif_ndp_up returns.
14100 		 */
14101 		err = ipif_resolver_up(ipif, Res_act_initial);
14102 		if (err == EINPROGRESS) {
14103 			/* We will complete it in arp_bringup_done() */
14104 			return (err);
14105 		}
14106 
14107 		if (isv6 && err == 0)
14108 			err = ipif_ndp_up(ipif, B_TRUE);
14109 
14110 		ASSERT(err != EINPROGRESS);
14111 		mp = ipsq_pending_mp_get(ipsq, &connp);
14112 		ASSERT(mp != NULL);
14113 		if (err != 0)
14114 			return (err);
14115 	} else {
14116 		/*
14117 		 * Interfaces without underlying hardware don't do duplicate
14118 		 * address detection.
14119 		 */
14120 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14121 		ipif->ipif_addr_ready = 1;
14122 		err = ill_add_ires(ill);
14123 		/* allocation failure? */
14124 		if (err != 0)
14125 			return (err);
14126 	}
14127 
14128 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14129 	if (err == 0 && ill->ill_move_ipif != NULL) {
14130 		ipif = ill->ill_move_ipif;
14131 		ill->ill_move_ipif = NULL;
14132 		return (ipif_up(ipif, q, mp));
14133 	}
14134 	return (err);
14135 }
14136 
14137 /*
14138  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14139  * The identical set of IREs need to be removed in ill_delete_ires().
14140  */
14141 int
14142 ill_add_ires(ill_t *ill)
14143 {
14144 	ire_t	*ire;
14145 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14146 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14147 
14148 	if (ill->ill_ire_multicast != NULL)
14149 		return (0);
14150 
14151 	/*
14152 	 * provide some dummy ire_addr for creating the ire.
14153 	 */
14154 	if (ill->ill_isv6) {
14155 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14156 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14157 	} else {
14158 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14159 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14160 	}
14161 	if (ire == NULL)
14162 		return (ENOMEM);
14163 
14164 	ill->ill_ire_multicast = ire;
14165 	return (0);
14166 }
14167 
14168 void
14169 ill_delete_ires(ill_t *ill)
14170 {
14171 	if (ill->ill_ire_multicast != NULL) {
14172 		/*
14173 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14174 		 * which was taken without any th_tracing enabled.
14175 		 * We also mark it as condemned (note that it was never added)
14176 		 * so that caching conn's can move off of it.
14177 		 */
14178 		ire_make_condemned(ill->ill_ire_multicast);
14179 		ire_refrele_notr(ill->ill_ire_multicast);
14180 		ill->ill_ire_multicast = NULL;
14181 	}
14182 }
14183 
14184 /*
14185  * Perform a bind for the physical device.
14186  * When the routine returns EINPROGRESS then mp has been consumed and
14187  * the ioctl will be acked from ip_rput_dlpi.
14188  * Allocate an unbind message and save it until ipif_down.
14189  */
14190 static int
14191 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14192 {
14193 	mblk_t	*bind_mp = NULL;
14194 	mblk_t	*unbind_mp = NULL;
14195 	conn_t	*connp;
14196 	boolean_t success;
14197 	int	err;
14198 
14199 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14200 
14201 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14202 	ASSERT(IAM_WRITER_ILL(ill));
14203 	ASSERT(mp != NULL);
14204 
14205 	/*
14206 	 * Make sure we have an IRE_MULTICAST in case we immediately
14207 	 * start receiving packets.
14208 	 */
14209 	err = ill_add_ires(ill);
14210 	if (err != 0)
14211 		goto bad;
14212 
14213 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14214 	    DL_BIND_REQ);
14215 	if (bind_mp == NULL)
14216 		goto bad;
14217 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14218 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14219 
14220 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
14221 	if (unbind_mp == NULL)
14222 		goto bad;
14223 
14224 	/*
14225 	 * Record state needed to complete this operation when the
14226 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14227 	 */
14228 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14229 	ASSERT(connp != NULL || !CONN_Q(q));
14230 	GRAB_CONN_LOCK(q);
14231 	mutex_enter(&ipif->ipif_ill->ill_lock);
14232 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14233 	mutex_exit(&ipif->ipif_ill->ill_lock);
14234 	RELEASE_CONN_LOCK(q);
14235 	if (!success)
14236 		goto bad;
14237 
14238 	/*
14239 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14240 	 * the interface goes down.
14241 	 */
14242 	ASSERT(ill->ill_unbind_mp == NULL);
14243 	ill->ill_unbind_mp = unbind_mp;
14244 
14245 	ill_dlpi_send(ill, bind_mp);
14246 	/* Send down link-layer capabilities probe if not already done. */
14247 	ill_capability_probe(ill);
14248 
14249 	/*
14250 	 * Sysid used to rely on the fact that netboots set domainname
14251 	 * and the like. Now that miniroot boots aren't strictly netboots
14252 	 * and miniroot network configuration is driven from userland
14253 	 * these things still need to be set. This situation can be detected
14254 	 * by comparing the interface being configured here to the one
14255 	 * dhcifname was set to reference by the boot loader. Once sysid is
14256 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14257 	 */
14258 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14259 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14260 	    (strlen(srpc_domain) == 0)) {
14261 		if (dhcpinit() != 0)
14262 			cmn_err(CE_WARN, "no cached dhcp response");
14263 	}
14264 
14265 	/*
14266 	 * This operation will complete in ip_rput_dlpi with either
14267 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14268 	 */
14269 	return (EINPROGRESS);
14270 bad:
14271 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14272 
14273 	freemsg(bind_mp);
14274 	freemsg(unbind_mp);
14275 	return (ENOMEM);
14276 }
14277 
14278 /* Add room for tcp+ip headers */
14279 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14280 
14281 /*
14282  * DLPI and ARP is up.
14283  * Create all the IREs associated with an interface. Bring up multicast.
14284  * Set the interface flag and finish other initialization
14285  * that potentially had to be deferred to after DL_BIND_ACK.
14286  */
14287 int
14288 ipif_up_done(ipif_t *ipif)
14289 {
14290 	ill_t		*ill = ipif->ipif_ill;
14291 	int		err = 0;
14292 	boolean_t	loopback = B_FALSE;
14293 	boolean_t	update_src_selection = B_TRUE;
14294 	ipif_t		*tmp_ipif;
14295 
14296 	ip1dbg(("ipif_up_done(%s:%u)\n",
14297 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14298 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14299 	    ill_t *, ill, ipif_t *, ipif);
14300 
14301 	/* Check if this is a loopback interface */
14302 	if (ipif->ipif_ill->ill_wq == NULL)
14303 		loopback = B_TRUE;
14304 
14305 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14306 
14307 	/*
14308 	 * If all other interfaces for this ill are down or DEPRECATED,
14309 	 * or otherwise unsuitable for source address selection,
14310 	 * reset the src generation numbers to make sure source
14311 	 * address selection gets to take this new ipif into account.
14312 	 * No need to hold ill_lock while traversing the ipif list since
14313 	 * we are writer
14314 	 */
14315 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14316 	    tmp_ipif = tmp_ipif->ipif_next) {
14317 		if (((tmp_ipif->ipif_flags &
14318 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14319 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14320 		    (tmp_ipif == ipif))
14321 			continue;
14322 		/* first useable pre-existing interface */
14323 		update_src_selection = B_FALSE;
14324 		break;
14325 	}
14326 	if (update_src_selection)
14327 		ip_update_source_selection(ill->ill_ipst);
14328 
14329 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14330 		nce_t *loop_nce = NULL;
14331 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14332 
14333 		/*
14334 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14335 		 * ipif_lookup_on_name(), but in the case of zones we can have
14336 		 * several loopback addresses on lo0. So all the interfaces with
14337 		 * loopback addresses need to be marked IRE_LOOPBACK.
14338 		 */
14339 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14340 		    htonl(INADDR_LOOPBACK))
14341 			ipif->ipif_ire_type = IRE_LOOPBACK;
14342 		else
14343 			ipif->ipif_ire_type = IRE_LOCAL;
14344 		if (ill->ill_net_type != IRE_LOOPBACK)
14345 			flags |= NCE_F_PUBLISH;
14346 
14347 		/* add unicast nce for the local addr */
14348 		err = nce_lookup_then_add_v4(ill, NULL,
14349 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14350 		    ND_REACHABLE, &loop_nce);
14351 		/* A shared-IP zone sees EEXIST for lo0:N */
14352 		if (err == 0 || err == EEXIST) {
14353 			ipif->ipif_added_nce = 1;
14354 			loop_nce->nce_ipif_cnt++;
14355 			nce_refrele(loop_nce);
14356 			err = 0;
14357 		} else {
14358 			ASSERT(loop_nce == NULL);
14359 			return (err);
14360 		}
14361 	}
14362 
14363 	/* Create all the IREs associated with this interface */
14364 	err = ipif_add_ires_v4(ipif, loopback);
14365 	if (err != 0) {
14366 		/*
14367 		 * see comments about return value from
14368 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14369 		 */
14370 		if (err != EADDRINUSE) {
14371 			(void) ipif_arp_down(ipif);
14372 		} else {
14373 			/*
14374 			 * Make IPMP aware of the deleted ipif so that
14375 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14376 			 * can be completed. Note that we do not want to
14377 			 * destroy the nce that was created on the ipmp_ill
14378 			 * for the active copy of the duplicate address in
14379 			 * use.
14380 			 */
14381 			if (IS_IPMP(ill))
14382 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14383 			err = EADDRNOTAVAIL;
14384 		}
14385 		return (err);
14386 	}
14387 
14388 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14389 		/* Recover any additional IREs entries for this ill */
14390 		(void) ill_recover_saved_ire(ill);
14391 	}
14392 
14393 	if (ill->ill_need_recover_multicast) {
14394 		/*
14395 		 * Need to recover all multicast memberships in the driver.
14396 		 * This had to be deferred until we had attached.  The same
14397 		 * code exists in ipif_up_done_v6() to recover IPv6
14398 		 * memberships.
14399 		 *
14400 		 * Note that it would be preferable to unconditionally do the
14401 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14402 		 * that since ill_join_allmulti() depends on ill_dl_up being
14403 		 * set, and it is not set until we receive a DL_BIND_ACK after
14404 		 * having called ill_dl_up().
14405 		 */
14406 		ill_recover_multicast(ill);
14407 	}
14408 
14409 	if (ill->ill_ipif_up_count == 1) {
14410 		/*
14411 		 * Since the interface is now up, it may now be active.
14412 		 */
14413 		if (IS_UNDER_IPMP(ill))
14414 			ipmp_ill_refresh_active(ill);
14415 
14416 		/*
14417 		 * If this is an IPMP interface, we may now be able to
14418 		 * establish ARP entries.
14419 		 */
14420 		if (IS_IPMP(ill))
14421 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14422 	}
14423 
14424 	/* Join the allhosts multicast address */
14425 	ipif_multicast_up(ipif);
14426 
14427 	if (!loopback && !update_src_selection &&
14428 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14429 		ip_update_source_selection(ill->ill_ipst);
14430 
14431 	if (!loopback && ipif->ipif_addr_ready) {
14432 		/* Broadcast an address mask reply. */
14433 		ipif_mask_reply(ipif);
14434 	}
14435 	/* Perhaps ilgs should use this ill */
14436 	update_conn_ill(NULL, ill->ill_ipst);
14437 
14438 	/*
14439 	 * This had to be deferred until we had bound.  Tell routing sockets and
14440 	 * others that this interface is up if it looks like the address has
14441 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14442 	 * duplicate address detection to do its thing.
14443 	 */
14444 	if (ipif->ipif_addr_ready)
14445 		ipif_up_notify(ipif);
14446 	return (0);
14447 }
14448 
14449 /*
14450  * Add the IREs associated with the ipif.
14451  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14452  */
14453 static int
14454 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14455 {
14456 	ill_t		*ill = ipif->ipif_ill;
14457 	ip_stack_t	*ipst = ill->ill_ipst;
14458 	ire_t		*ire_array[20];
14459 	ire_t		**irep = ire_array;
14460 	ire_t		**irep1;
14461 	ipaddr_t	net_mask = 0;
14462 	ipaddr_t	subnet_mask, route_mask;
14463 	int		err;
14464 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14465 	ire_t		*ire_if = NULL;
14466 	uchar_t		*gw;
14467 
14468 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14469 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14470 		/*
14471 		 * If we're on a labeled system then make sure that zone-
14472 		 * private addresses have proper remote host database entries.
14473 		 */
14474 		if (is_system_labeled() &&
14475 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14476 		    !tsol_check_interface_address(ipif))
14477 			return (EINVAL);
14478 
14479 		/* Register the source address for __sin6_src_id */
14480 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14481 		    ipif->ipif_zoneid, ipst);
14482 		if (err != 0) {
14483 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14484 			return (err);
14485 		}
14486 
14487 		if (loopback)
14488 			gw = (uchar_t *)&ipif->ipif_lcl_addr;
14489 		else
14490 			gw = NULL;
14491 
14492 		/* If the interface address is set, create the local IRE. */
14493 		ire_local = ire_create(
14494 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14495 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14496 		    gw,					/* gateway */
14497 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14498 		    ipif->ipif_ill,
14499 		    ipif->ipif_zoneid,
14500 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14501 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14502 		    NULL,
14503 		    ipst);
14504 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14505 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14506 		    ipif->ipif_ire_type,
14507 		    ntohl(ipif->ipif_lcl_addr)));
14508 		if (ire_local == NULL) {
14509 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14510 			err = ENOMEM;
14511 			goto bad;
14512 		}
14513 	} else {
14514 		ip1dbg((
14515 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14516 		    ipif->ipif_ire_type,
14517 		    ntohl(ipif->ipif_lcl_addr),
14518 		    (uint_t)ipif->ipif_flags));
14519 	}
14520 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14521 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14522 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14523 	} else {
14524 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14525 	}
14526 
14527 	subnet_mask = ipif->ipif_net_mask;
14528 
14529 	/*
14530 	 * If mask was not specified, use natural netmask of
14531 	 * interface address. Also, store this mask back into the
14532 	 * ipif struct.
14533 	 */
14534 	if (subnet_mask == 0) {
14535 		subnet_mask = net_mask;
14536 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14537 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14538 		    ipif->ipif_v6subnet);
14539 	}
14540 
14541 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14542 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14543 	    ipif->ipif_subnet != INADDR_ANY) {
14544 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14545 
14546 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14547 			route_mask = IP_HOST_MASK;
14548 		} else {
14549 			route_mask = subnet_mask;
14550 		}
14551 
14552 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14553 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14554 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14555 		    ntohl(ipif->ipif_subnet)));
14556 		ire_if = ire_create(
14557 		    (uchar_t *)&ipif->ipif_subnet,
14558 		    (uchar_t *)&route_mask,
14559 		    (uchar_t *)&ipif->ipif_lcl_addr,
14560 		    ill->ill_net_type,
14561 		    ill,
14562 		    ipif->ipif_zoneid,
14563 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14564 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14565 		    NULL,
14566 		    ipst);
14567 		if (ire_if == NULL) {
14568 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14569 			err = ENOMEM;
14570 			goto bad;
14571 		}
14572 	}
14573 
14574 	/*
14575 	 * Create any necessary broadcast IREs.
14576 	 */
14577 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14578 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14579 		irep = ipif_create_bcast_ires(ipif, irep);
14580 
14581 	/* If an earlier ire_create failed, get out now */
14582 	for (irep1 = irep; irep1 > ire_array; ) {
14583 		irep1--;
14584 		if (*irep1 == NULL) {
14585 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
14586 			err = ENOMEM;
14587 			goto bad;
14588 		}
14589 	}
14590 
14591 	/*
14592 	 * Need to atomically check for IP address availability under
14593 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
14594 	 * ills or new ipifs can be added while we are checking availability.
14595 	 */
14596 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14597 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
14598 	/* Mark it up, and increment counters. */
14599 	ipif->ipif_flags |= IPIF_UP;
14600 	ill->ill_ipif_up_count++;
14601 	err = ip_addr_availability_check(ipif);
14602 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
14603 	rw_exit(&ipst->ips_ill_g_lock);
14604 
14605 	if (err != 0) {
14606 		/*
14607 		 * Our address may already be up on the same ill. In this case,
14608 		 * the ARP entry for our ipif replaced the one for the other
14609 		 * ipif. So we don't want to delete it (otherwise the other ipif
14610 		 * would be unable to send packets).
14611 		 * ip_addr_availability_check() identifies this case for us and
14612 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
14613 		 * which is the expected error code.
14614 		 */
14615 		ill->ill_ipif_up_count--;
14616 		ipif->ipif_flags &= ~IPIF_UP;
14617 		goto bad;
14618 	}
14619 
14620 	/*
14621 	 * Add in all newly created IREs.  ire_create_bcast() has
14622 	 * already checked for duplicates of the IRE_BROADCAST type.
14623 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
14624 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
14625 	 * a /32 route.
14626 	 */
14627 	if (ire_if != NULL) {
14628 		ire_if = ire_add(ire_if);
14629 		if (ire_if == NULL) {
14630 			err = ENOMEM;
14631 			goto bad2;
14632 		}
14633 #ifdef DEBUG
14634 		ire_refhold_notr(ire_if);
14635 		ire_refrele(ire_if);
14636 #endif
14637 	}
14638 	if (ire_local != NULL) {
14639 		ire_local = ire_add(ire_local);
14640 		if (ire_local == NULL) {
14641 			err = ENOMEM;
14642 			goto bad2;
14643 		}
14644 #ifdef DEBUG
14645 		ire_refhold_notr(ire_local);
14646 		ire_refrele(ire_local);
14647 #endif
14648 	}
14649 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14650 	if (ire_local != NULL)
14651 		ipif->ipif_ire_local = ire_local;
14652 	if (ire_if != NULL)
14653 		ipif->ipif_ire_if = ire_if;
14654 	rw_exit(&ipst->ips_ill_g_lock);
14655 	ire_local = NULL;
14656 	ire_if = NULL;
14657 
14658 	/*
14659 	 * We first add all of them, and if that succeeds we refrele the
14660 	 * bunch. That enables us to delete all of them should any of the
14661 	 * ire_adds fail.
14662 	 */
14663 	for (irep1 = irep; irep1 > ire_array; ) {
14664 		irep1--;
14665 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
14666 		*irep1 = ire_add(*irep1);
14667 		if (*irep1 == NULL) {
14668 			err = ENOMEM;
14669 			goto bad2;
14670 		}
14671 	}
14672 
14673 	for (irep1 = irep; irep1 > ire_array; ) {
14674 		irep1--;
14675 		/* refheld by ire_add. */
14676 		if (*irep1 != NULL) {
14677 			ire_refrele(*irep1);
14678 			*irep1 = NULL;
14679 		}
14680 	}
14681 
14682 	if (!loopback) {
14683 		/*
14684 		 * If the broadcast address has been set, make sure it makes
14685 		 * sense based on the interface address.
14686 		 * Only match on ill since we are sharing broadcast addresses.
14687 		 */
14688 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
14689 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
14690 			ire_t	*ire;
14691 
14692 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
14693 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
14694 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
14695 
14696 			if (ire == NULL) {
14697 				/*
14698 				 * If there isn't a matching broadcast IRE,
14699 				 * revert to the default for this netmask.
14700 				 */
14701 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
14702 				mutex_enter(&ipif->ipif_ill->ill_lock);
14703 				ipif_set_default(ipif);
14704 				mutex_exit(&ipif->ipif_ill->ill_lock);
14705 			} else {
14706 				ire_refrele(ire);
14707 			}
14708 		}
14709 
14710 	}
14711 	return (0);
14712 
14713 bad2:
14714 	ill->ill_ipif_up_count--;
14715 	ipif->ipif_flags &= ~IPIF_UP;
14716 
14717 bad:
14718 	ip1dbg(("ipif_add_ires: FAILED \n"));
14719 	if (ire_local != NULL)
14720 		ire_delete(ire_local);
14721 	if (ire_if != NULL)
14722 		ire_delete(ire_if);
14723 
14724 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14725 	ire_local = ipif->ipif_ire_local;
14726 	ipif->ipif_ire_local = NULL;
14727 	ire_if = ipif->ipif_ire_if;
14728 	ipif->ipif_ire_if = NULL;
14729 	rw_exit(&ipst->ips_ill_g_lock);
14730 	if (ire_local != NULL) {
14731 		ire_delete(ire_local);
14732 		ire_refrele_notr(ire_local);
14733 	}
14734 	if (ire_if != NULL) {
14735 		ire_delete(ire_if);
14736 		ire_refrele_notr(ire_if);
14737 	}
14738 
14739 	while (irep > ire_array) {
14740 		irep--;
14741 		if (*irep != NULL) {
14742 			ire_delete(*irep);
14743 		}
14744 	}
14745 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
14746 
14747 	return (err);
14748 }
14749 
14750 /* Remove all the IREs created by ipif_add_ires_v4 */
14751 void
14752 ipif_delete_ires_v4(ipif_t *ipif)
14753 {
14754 	ill_t		*ill = ipif->ipif_ill;
14755 	ip_stack_t	*ipst = ill->ill_ipst;
14756 	ire_t		*ire;
14757 
14758 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14759 	ire = ipif->ipif_ire_local;
14760 	ipif->ipif_ire_local = NULL;
14761 	rw_exit(&ipst->ips_ill_g_lock);
14762 	if (ire != NULL) {
14763 		/*
14764 		 * Move count to ipif so we don't loose the count due to
14765 		 * a down/up dance.
14766 		 */
14767 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
14768 
14769 		ire_delete(ire);
14770 		ire_refrele_notr(ire);
14771 	}
14772 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14773 	ire = ipif->ipif_ire_if;
14774 	ipif->ipif_ire_if = NULL;
14775 	rw_exit(&ipst->ips_ill_g_lock);
14776 	if (ire != NULL) {
14777 		ire_delete(ire);
14778 		ire_refrele_notr(ire);
14779 	}
14780 
14781 	/*
14782 	 * Delete the broadcast IREs.
14783 	 */
14784 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14785 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14786 		ipif_delete_bcast_ires(ipif);
14787 }
14788 
14789 /*
14790  * Checks for availbility of a usable source address (if there is one) when the
14791  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
14792  * this selection is done regardless of the destination.
14793  */
14794 boolean_t
14795 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
14796     ip_stack_t *ipst)
14797 {
14798 	ipif_t		*ipif = NULL;
14799 	ill_t		*uill;
14800 
14801 	ASSERT(ifindex != 0);
14802 
14803 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
14804 	if (uill == NULL)
14805 		return (B_FALSE);
14806 
14807 	mutex_enter(&uill->ill_lock);
14808 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14809 		if (IPIF_IS_CONDEMNED(ipif))
14810 			continue;
14811 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14812 			continue;
14813 		if (!(ipif->ipif_flags & IPIF_UP))
14814 			continue;
14815 		if (ipif->ipif_zoneid != zoneid)
14816 			continue;
14817 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14818 		    ipif->ipif_lcl_addr == INADDR_ANY)
14819 			continue;
14820 		mutex_exit(&uill->ill_lock);
14821 		ill_refrele(uill);
14822 		return (B_TRUE);
14823 	}
14824 	mutex_exit(&uill->ill_lock);
14825 	ill_refrele(uill);
14826 	return (B_FALSE);
14827 }
14828 
14829 /*
14830  * Find an ipif with a good local address on the ill+zoneid.
14831  */
14832 ipif_t *
14833 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
14834 {
14835 	ipif_t		*ipif;
14836 
14837 	mutex_enter(&ill->ill_lock);
14838 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14839 		if (IPIF_IS_CONDEMNED(ipif))
14840 			continue;
14841 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14842 			continue;
14843 		if (!(ipif->ipif_flags & IPIF_UP))
14844 			continue;
14845 		if (ipif->ipif_zoneid != zoneid &&
14846 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
14847 			continue;
14848 		if (ill->ill_isv6 ?
14849 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14850 		    ipif->ipif_lcl_addr == INADDR_ANY)
14851 			continue;
14852 		ipif_refhold_locked(ipif);
14853 		mutex_exit(&ill->ill_lock);
14854 		return (ipif);
14855 	}
14856 	mutex_exit(&ill->ill_lock);
14857 	return (NULL);
14858 }
14859 
14860 /*
14861  * IP source address type, sorted from worst to best.  For a given type,
14862  * always prefer IP addresses on the same subnet.  All-zones addresses are
14863  * suboptimal because they pose problems with unlabeled destinations.
14864  */
14865 typedef enum {
14866 	IPIF_NONE,
14867 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
14868 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
14869 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
14870 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
14871 	IPIF_DIFFNET,			/* normal and different subnet */
14872 	IPIF_SAMENET,			/* normal and same subnet */
14873 	IPIF_LOCALADDR			/* local loopback */
14874 } ipif_type_t;
14875 
14876 /*
14877  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
14878  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
14879  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
14880  * the first one, unless IPMP is used in which case we round-robin among them;
14881  * see below for more.
14882  *
14883  * Returns NULL if there is no suitable source address for the ill.
14884  * This only occurs when there is no valid source address for the ill.
14885  */
14886 ipif_t *
14887 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
14888     boolean_t allow_usesrc, boolean_t *notreadyp)
14889 {
14890 	ill_t	*usill = NULL;
14891 	ill_t	*ipmp_ill = NULL;
14892 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
14893 	ipif_type_t type, best_type;
14894 	tsol_tpc_t *src_rhtp, *dst_rhtp;
14895 	ip_stack_t *ipst = ill->ill_ipst;
14896 	boolean_t samenet;
14897 
14898 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
14899 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
14900 		    B_FALSE, ipst);
14901 		if (usill != NULL)
14902 			ill = usill;	/* Select source from usesrc ILL */
14903 		else
14904 			return (NULL);
14905 	}
14906 
14907 	/*
14908 	 * Test addresses should never be used for source address selection,
14909 	 * so if we were passed one, switch to the IPMP meta-interface.
14910 	 */
14911 	if (IS_UNDER_IPMP(ill)) {
14912 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
14913 			ill = ipmp_ill;	/* Select source from IPMP ill */
14914 		else
14915 			return (NULL);
14916 	}
14917 
14918 	/*
14919 	 * If we're dealing with an unlabeled destination on a labeled system,
14920 	 * make sure that we ignore source addresses that are incompatible with
14921 	 * the destination's default label.  That destination's default label
14922 	 * must dominate the minimum label on the source address.
14923 	 */
14924 	dst_rhtp = NULL;
14925 	if (is_system_labeled()) {
14926 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
14927 		if (dst_rhtp == NULL)
14928 			return (NULL);
14929 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
14930 			TPC_RELE(dst_rhtp);
14931 			dst_rhtp = NULL;
14932 		}
14933 	}
14934 
14935 	/*
14936 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
14937 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
14938 	 * After selecting the right ipif, under ill_lock make sure ipif is
14939 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
14940 	 * we retry. Inside the loop we still need to check for CONDEMNED,
14941 	 * but not under a lock.
14942 	 */
14943 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14944 retry:
14945 	/*
14946 	 * For source address selection, we treat the ipif list as circular
14947 	 * and continue until we get back to where we started.  This allows
14948 	 * IPMP to vary source address selection (which improves inbound load
14949 	 * spreading) by caching its last ending point and starting from
14950 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
14951 	 * ills since that can't happen on the IPMP ill.
14952 	 */
14953 	start_ipif = ill->ill_ipif;
14954 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
14955 		start_ipif = ill->ill_src_ipif;
14956 
14957 	ipif = start_ipif;
14958 	best_ipif = NULL;
14959 	best_type = IPIF_NONE;
14960 	do {
14961 		if ((next_ipif = ipif->ipif_next) == NULL)
14962 			next_ipif = ill->ill_ipif;
14963 
14964 		if (IPIF_IS_CONDEMNED(ipif))
14965 			continue;
14966 		/* Always skip NOLOCAL and ANYCAST interfaces */
14967 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14968 			continue;
14969 		/* Always skip NOACCEPT interfaces */
14970 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
14971 			continue;
14972 		if (!(ipif->ipif_flags & IPIF_UP))
14973 			continue;
14974 
14975 		if (!ipif->ipif_addr_ready) {
14976 			if (notreadyp != NULL)
14977 				*notreadyp = B_TRUE;
14978 			continue;
14979 		}
14980 
14981 		if (zoneid != ALL_ZONES &&
14982 		    ipif->ipif_zoneid != zoneid &&
14983 		    ipif->ipif_zoneid != ALL_ZONES)
14984 			continue;
14985 
14986 		/*
14987 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
14988 		 * are not valid as source addresses.
14989 		 */
14990 		if (ipif->ipif_lcl_addr == INADDR_ANY)
14991 			continue;
14992 
14993 		/*
14994 		 * Check compatibility of local address for destination's
14995 		 * default label if we're on a labeled system.	Incompatible
14996 		 * addresses can't be used at all.
14997 		 */
14998 		if (dst_rhtp != NULL) {
14999 			boolean_t incompat;
15000 
15001 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15002 			    IPV4_VERSION, B_FALSE);
15003 			if (src_rhtp == NULL)
15004 				continue;
15005 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15006 			    src_rhtp->tpc_tp.tp_doi !=
15007 			    dst_rhtp->tpc_tp.tp_doi ||
15008 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15009 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15010 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15011 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
15012 			TPC_RELE(src_rhtp);
15013 			if (incompat)
15014 				continue;
15015 		}
15016 
15017 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15018 
15019 		if (ipif->ipif_lcl_addr == dst) {
15020 			type = IPIF_LOCALADDR;
15021 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15022 			type = samenet ? IPIF_SAMENET_DEPRECATED :
15023 			    IPIF_DIFFNET_DEPRECATED;
15024 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
15025 			type = samenet ? IPIF_SAMENET_ALLZONES :
15026 			    IPIF_DIFFNET_ALLZONES;
15027 		} else {
15028 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15029 		}
15030 
15031 		if (type > best_type) {
15032 			best_type = type;
15033 			best_ipif = ipif;
15034 			if (best_type == IPIF_LOCALADDR)
15035 				break; /* can't get better */
15036 		}
15037 	} while ((ipif = next_ipif) != start_ipif);
15038 
15039 	if ((ipif = best_ipif) != NULL) {
15040 		mutex_enter(&ipif->ipif_ill->ill_lock);
15041 		if (IPIF_IS_CONDEMNED(ipif)) {
15042 			mutex_exit(&ipif->ipif_ill->ill_lock);
15043 			goto retry;
15044 		}
15045 		ipif_refhold_locked(ipif);
15046 
15047 		/*
15048 		 * For IPMP, update the source ipif rotor to the next ipif,
15049 		 * provided we can look it up.  (We must not use it if it's
15050 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15051 		 * ipif_free() checked ill_src_ipif.)
15052 		 */
15053 		if (IS_IPMP(ill) && ipif != NULL) {
15054 			next_ipif = ipif->ipif_next;
15055 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15056 				ill->ill_src_ipif = next_ipif;
15057 			else
15058 				ill->ill_src_ipif = NULL;
15059 		}
15060 		mutex_exit(&ipif->ipif_ill->ill_lock);
15061 	}
15062 
15063 	rw_exit(&ipst->ips_ill_g_lock);
15064 	if (usill != NULL)
15065 		ill_refrele(usill);
15066 	if (ipmp_ill != NULL)
15067 		ill_refrele(ipmp_ill);
15068 	if (dst_rhtp != NULL)
15069 		TPC_RELE(dst_rhtp);
15070 
15071 #ifdef DEBUG
15072 	if (ipif == NULL) {
15073 		char buf1[INET6_ADDRSTRLEN];
15074 
15075 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15076 		    ill->ill_name,
15077 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15078 	} else {
15079 		char buf1[INET6_ADDRSTRLEN];
15080 		char buf2[INET6_ADDRSTRLEN];
15081 
15082 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15083 		    ipif->ipif_ill->ill_name,
15084 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15085 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15086 		    buf2, sizeof (buf2))));
15087 	}
15088 #endif /* DEBUG */
15089 	return (ipif);
15090 }
15091 
15092 /*
15093  * Pick a source address based on the destination ill and an optional setsrc
15094  * address.
15095  * The result is stored in srcp. If generation is set, then put the source
15096  * generation number there before we look for the source address (to avoid
15097  * missing changes in the set of source addresses.
15098  * If flagsp is set, then us it to pass back ipif_flags.
15099  *
15100  * If the caller wants to cache the returned source address and detect when
15101  * that might be stale, the caller should pass in a generation argument,
15102  * which the caller can later compare against ips_src_generation
15103  *
15104  * The precedence order for selecting an IPv4 source address is:
15105  *  - RTF_SETSRC on the offlink ire always wins.
15106  *  - If usrsrc is set, swap the ill to be the usesrc one.
15107  *  - If IPMP is used on the ill, select a random address from the most
15108  *    preferred ones below:
15109  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15110  * 2. Not deprecated, not ALL_ZONES
15111  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15112  * 4. Not deprecated, ALL_ZONES
15113  * 5. If onlink destination, same subnet and deprecated
15114  * 6. Deprecated.
15115  *
15116  * We have lower preference for ALL_ZONES IP addresses,
15117  * as they pose problems with unlabeled destinations.
15118  *
15119  * Note that when multiple IP addresses match e.g., #1 we pick
15120  * the first one if IPMP is not in use. With IPMP we randomize.
15121  */
15122 int
15123 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15124     ipaddr_t multicast_ifaddr,
15125     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15126     uint32_t *generation, uint64_t *flagsp)
15127 {
15128 	ipif_t *ipif;
15129 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15130 
15131 	if (flagsp != NULL)
15132 		*flagsp = 0;
15133 
15134 	/*
15135 	 * Need to grab the generation number before we check to
15136 	 * avoid a race with a change to the set of local addresses.
15137 	 * No lock needed since the thread which updates the set of local
15138 	 * addresses use ipif/ill locks and exit those (hence a store memory
15139 	 * barrier) before doing the atomic increase of ips_src_generation.
15140 	 */
15141 	if (generation != NULL) {
15142 		*generation = ipst->ips_src_generation;
15143 	}
15144 
15145 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15146 		*srcp = multicast_ifaddr;
15147 		return (0);
15148 	}
15149 
15150 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15151 	if (setsrc != INADDR_ANY) {
15152 		*srcp = setsrc;
15153 		return (0);
15154 	}
15155 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15156 	if (ipif == NULL) {
15157 		if (notready)
15158 			return (ENETDOWN);
15159 		else
15160 			return (EADDRNOTAVAIL);
15161 	}
15162 	*srcp = ipif->ipif_lcl_addr;
15163 	if (flagsp != NULL)
15164 		*flagsp = ipif->ipif_flags;
15165 	ipif_refrele(ipif);
15166 	return (0);
15167 }
15168 
15169 /* ARGSUSED */
15170 int
15171 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15172 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15173 {
15174 	/*
15175 	 * ill_phyint_reinit merged the v4 and v6 into a single
15176 	 * ipsq.  We might not have been able to complete the
15177 	 * operation in ipif_set_values, if we could not become
15178 	 * exclusive.  If so restart it here.
15179 	 */
15180 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15181 }
15182 
15183 /*
15184  * Can operate on either a module or a driver queue.
15185  * Returns an error if not a module queue.
15186  */
15187 /* ARGSUSED */
15188 int
15189 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15190     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15191 {
15192 	queue_t		*q1 = q;
15193 	char 		*cp;
15194 	char		interf_name[LIFNAMSIZ];
15195 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15196 
15197 	if (q->q_next == NULL) {
15198 		ip1dbg((
15199 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15200 		return (EINVAL);
15201 	}
15202 
15203 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15204 		return (EALREADY);
15205 
15206 	do {
15207 		q1 = q1->q_next;
15208 	} while (q1->q_next);
15209 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15210 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15211 
15212 	/*
15213 	 * Here we are not going to delay the ioack until after
15214 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15215 	 * original ioctl message before sending the requests.
15216 	 */
15217 	return (ipif_set_values(q, mp, interf_name, &ppa));
15218 }
15219 
15220 /* ARGSUSED */
15221 int
15222 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15223     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15224 {
15225 	return (ENXIO);
15226 }
15227 
15228 /*
15229  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15230  * `irep'.  Returns a pointer to the next free `irep' entry
15231  * A mirror exists in ipif_delete_bcast_ires().
15232  *
15233  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15234  * done in ire_add.
15235  */
15236 static ire_t **
15237 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15238 {
15239 	ipaddr_t addr;
15240 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15241 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15242 	ill_t *ill = ipif->ipif_ill;
15243 	zoneid_t zoneid = ipif->ipif_zoneid;
15244 
15245 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15246 
15247 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15248 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15249 
15250 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15251 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15252 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15253 
15254 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15255 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15256 
15257 	/*
15258 	 * For backward compatibility, we create net broadcast IREs based on
15259 	 * the old "IP address class system", since some old machines only
15260 	 * respond to these class derived net broadcast.  However, we must not
15261 	 * create these net broadcast IREs if the subnetmask is shorter than
15262 	 * the IP address class based derived netmask.  Otherwise, we may
15263 	 * create a net broadcast address which is the same as an IP address
15264 	 * on the subnet -- and then TCP will refuse to talk to that address.
15265 	 */
15266 	if (netmask < subnetmask) {
15267 		addr = netmask & ipif->ipif_subnet;
15268 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15269 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15270 	}
15271 
15272 	/*
15273 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15274 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15275 	 * created.  Creating these broadcast IREs will only create confusion
15276 	 * as `addr' will be the same as the IP address.
15277 	 */
15278 	if (subnetmask != 0xFFFFFFFF) {
15279 		addr = ipif->ipif_subnet;
15280 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15281 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15282 	}
15283 
15284 	return (irep);
15285 }
15286 
15287 /*
15288  * Mirror of ipif_create_bcast_ires()
15289  */
15290 static void
15291 ipif_delete_bcast_ires(ipif_t *ipif)
15292 {
15293 	ipaddr_t	addr;
15294 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15295 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15296 	ill_t		*ill = ipif->ipif_ill;
15297 	zoneid_t	zoneid = ipif->ipif_zoneid;
15298 	ire_t		*ire;
15299 
15300 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15301 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15302 
15303 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15304 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15305 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15306 
15307 	ire = ire_lookup_bcast(ill, 0, zoneid);
15308 	ASSERT(ire != NULL);
15309 	ire_delete(ire); ire_refrele(ire);
15310 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15311 	ASSERT(ire != NULL);
15312 	ire_delete(ire); ire_refrele(ire);
15313 
15314 	/*
15315 	 * For backward compatibility, we create net broadcast IREs based on
15316 	 * the old "IP address class system", since some old machines only
15317 	 * respond to these class derived net broadcast.  However, we must not
15318 	 * create these net broadcast IREs if the subnetmask is shorter than
15319 	 * the IP address class based derived netmask.  Otherwise, we may
15320 	 * create a net broadcast address which is the same as an IP address
15321 	 * on the subnet -- and then TCP will refuse to talk to that address.
15322 	 */
15323 	if (netmask < subnetmask) {
15324 		addr = netmask & ipif->ipif_subnet;
15325 		ire = ire_lookup_bcast(ill, addr, zoneid);
15326 		ASSERT(ire != NULL);
15327 		ire_delete(ire); ire_refrele(ire);
15328 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15329 		ASSERT(ire != NULL);
15330 		ire_delete(ire); ire_refrele(ire);
15331 	}
15332 
15333 	/*
15334 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15335 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15336 	 * created.  Creating these broadcast IREs will only create confusion
15337 	 * as `addr' will be the same as the IP address.
15338 	 */
15339 	if (subnetmask != 0xFFFFFFFF) {
15340 		addr = ipif->ipif_subnet;
15341 		ire = ire_lookup_bcast(ill, addr, zoneid);
15342 		ASSERT(ire != NULL);
15343 		ire_delete(ire); ire_refrele(ire);
15344 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15345 		ASSERT(ire != NULL);
15346 		ire_delete(ire); ire_refrele(ire);
15347 	}
15348 }
15349 
15350 /*
15351  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15352  * from lifr_flags and the name from lifr_name.
15353  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15354  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15355  * Returns EINPROGRESS when mp has been consumed by queueing it on
15356  * ipx_pending_mp and the ioctl will complete in ip_rput.
15357  *
15358  * Can operate on either a module or a driver queue.
15359  * Returns an error if not a module queue.
15360  */
15361 /* ARGSUSED */
15362 int
15363 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15364     ip_ioctl_cmd_t *ipip, void *if_req)
15365 {
15366 	ill_t	*ill = q->q_ptr;
15367 	phyint_t *phyi;
15368 	ip_stack_t *ipst;
15369 	struct lifreq *lifr = if_req;
15370 	uint64_t new_flags;
15371 
15372 	ASSERT(ipif != NULL);
15373 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15374 
15375 	if (q->q_next == NULL) {
15376 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15377 		return (EINVAL);
15378 	}
15379 
15380 	/*
15381 	 * If we are not writer on 'q' then this interface exists already
15382 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15383 	 * so return EALREADY.
15384 	 */
15385 	if (ill != ipif->ipif_ill)
15386 		return (EALREADY);
15387 
15388 	if (ill->ill_name[0] != '\0')
15389 		return (EALREADY);
15390 
15391 	/*
15392 	 * If there's another ill already with the requested name, ensure
15393 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15394 	 * fuse together two unrelated ills, which will cause chaos.
15395 	 */
15396 	ipst = ill->ill_ipst;
15397 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15398 	    lifr->lifr_name, NULL);
15399 	if (phyi != NULL) {
15400 		ill_t *ill_mate = phyi->phyint_illv4;
15401 
15402 		if (ill_mate == NULL)
15403 			ill_mate = phyi->phyint_illv6;
15404 		ASSERT(ill_mate != NULL);
15405 
15406 		if (ill_mate->ill_media->ip_m_mac_type !=
15407 		    ill->ill_media->ip_m_mac_type) {
15408 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15409 			    "use the same ill name on differing media\n"));
15410 			return (EINVAL);
15411 		}
15412 	}
15413 
15414 	/*
15415 	 * We start off as IFF_IPV4 in ipif_allocate and become
15416 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15417 	 * The only flags that we read from user space are IFF_IPV4,
15418 	 * IFF_IPV6, and IFF_BROADCAST.
15419 	 *
15420 	 * This ill has not been inserted into the global list.
15421 	 * So we are still single threaded and don't need any lock
15422 	 *
15423 	 * Saniy check the flags.
15424 	 */
15425 
15426 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15427 	    ((lifr->lifr_flags & IFF_IPV6) ||
15428 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15429 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15430 		    "or IPv6 i.e., no broadcast \n"));
15431 		return (EINVAL);
15432 	}
15433 
15434 	new_flags =
15435 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15436 
15437 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15438 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15439 		    "IFF_IPV4 or IFF_IPV6\n"));
15440 		return (EINVAL);
15441 	}
15442 
15443 	/*
15444 	 * We always start off as IPv4, so only need to check for IPv6.
15445 	 */
15446 	if ((new_flags & IFF_IPV6) != 0) {
15447 		ill->ill_flags |= ILLF_IPV6;
15448 		ill->ill_flags &= ~ILLF_IPV4;
15449 	}
15450 
15451 	if ((new_flags & IFF_BROADCAST) != 0)
15452 		ipif->ipif_flags |= IPIF_BROADCAST;
15453 	else
15454 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15455 
15456 	/* We started off as V4. */
15457 	if (ill->ill_flags & ILLF_IPV6) {
15458 		ill->ill_phyint->phyint_illv6 = ill;
15459 		ill->ill_phyint->phyint_illv4 = NULL;
15460 	}
15461 
15462 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15463 }
15464 
15465 /* ARGSUSED */
15466 int
15467 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15468     ip_ioctl_cmd_t *ipip, void *if_req)
15469 {
15470 	/*
15471 	 * ill_phyint_reinit merged the v4 and v6 into a single
15472 	 * ipsq.  We might not have been able to complete the
15473 	 * slifname in ipif_set_values, if we could not become
15474 	 * exclusive.  If so restart it here
15475 	 */
15476 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15477 }
15478 
15479 /*
15480  * Return a pointer to the ipif which matches the index, IP version type and
15481  * zoneid.
15482  */
15483 ipif_t *
15484 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15485     ip_stack_t *ipst)
15486 {
15487 	ill_t	*ill;
15488 	ipif_t	*ipif = NULL;
15489 
15490 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15491 	if (ill != NULL) {
15492 		mutex_enter(&ill->ill_lock);
15493 		for (ipif = ill->ill_ipif; ipif != NULL;
15494 		    ipif = ipif->ipif_next) {
15495 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15496 			    zoneid == ipif->ipif_zoneid ||
15497 			    ipif->ipif_zoneid == ALL_ZONES)) {
15498 				ipif_refhold_locked(ipif);
15499 				break;
15500 			}
15501 		}
15502 		mutex_exit(&ill->ill_lock);
15503 		ill_refrele(ill);
15504 	}
15505 	return (ipif);
15506 }
15507 
15508 /*
15509  * Change an existing physical interface's index. If the new index
15510  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15511  * Finally, we update other systems which may have a dependence on the
15512  * index value.
15513  */
15514 /* ARGSUSED */
15515 int
15516 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15517     ip_ioctl_cmd_t *ipip, void *ifreq)
15518 {
15519 	ill_t		*ill;
15520 	phyint_t	*phyi;
15521 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15522 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15523 	uint_t	old_index, index;
15524 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15525 	avl_index_t	where;
15526 
15527 	if (ipip->ipi_cmd_type == IF_CMD)
15528 		index = ifr->ifr_index;
15529 	else
15530 		index = lifr->lifr_index;
15531 
15532 	/*
15533 	 * Only allow on physical interface. Also, index zero is illegal.
15534 	 */
15535 	ill = ipif->ipif_ill;
15536 	phyi = ill->ill_phyint;
15537 	if (ipif->ipif_id != 0 || index == 0) {
15538 		return (EINVAL);
15539 	}
15540 
15541 	/* If the index is not changing, no work to do */
15542 	if (phyi->phyint_ifindex == index)
15543 		return (0);
15544 
15545 	/*
15546 	 * Use phyint_exists() to determine if the new interface index
15547 	 * is already in use. If the index is unused then we need to
15548 	 * change the phyint's position in the phyint_list_avl_by_index
15549 	 * tree. If we do not do this, subsequent lookups (using the new
15550 	 * index value) will not find the phyint.
15551 	 */
15552 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15553 	if (phyint_exists(index, ipst)) {
15554 		rw_exit(&ipst->ips_ill_g_lock);
15555 		return (EEXIST);
15556 	}
15557 
15558 	/*
15559 	 * The new index is unused. Set it in the phyint. However we must not
15560 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15561 	 * changes. The event must be bound to old ifindex value.
15562 	 */
15563 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15564 	    &index, sizeof (index));
15565 
15566 	old_index = phyi->phyint_ifindex;
15567 	phyi->phyint_ifindex = index;
15568 
15569 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15570 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15571 	    &index, &where);
15572 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15573 	    phyi, where);
15574 	rw_exit(&ipst->ips_ill_g_lock);
15575 
15576 	/* Update SCTP's ILL list */
15577 	sctp_ill_reindex(ill, old_index);
15578 
15579 	/* Send the routing sockets message */
15580 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
15581 	if (ILL_OTHER(ill))
15582 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
15583 
15584 	/* Perhaps ilgs should use this ill */
15585 	update_conn_ill(NULL, ill->ill_ipst);
15586 	return (0);
15587 }
15588 
15589 /* ARGSUSED */
15590 int
15591 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15592     ip_ioctl_cmd_t *ipip, void *ifreq)
15593 {
15594 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15595 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15596 
15597 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
15598 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15599 	/* Get the interface index */
15600 	if (ipip->ipi_cmd_type == IF_CMD) {
15601 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15602 	} else {
15603 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15604 	}
15605 	return (0);
15606 }
15607 
15608 /* ARGSUSED */
15609 int
15610 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15611     ip_ioctl_cmd_t *ipip, void *ifreq)
15612 {
15613 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15614 
15615 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
15616 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15617 	/* Get the interface zone */
15618 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15619 	lifr->lifr_zoneid = ipif->ipif_zoneid;
15620 	return (0);
15621 }
15622 
15623 /*
15624  * Set the zoneid of an interface.
15625  */
15626 /* ARGSUSED */
15627 int
15628 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15629     ip_ioctl_cmd_t *ipip, void *ifreq)
15630 {
15631 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15632 	int err = 0;
15633 	boolean_t need_up = B_FALSE;
15634 	zone_t *zptr;
15635 	zone_status_t status;
15636 	zoneid_t zoneid;
15637 
15638 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15639 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
15640 		if (!is_system_labeled())
15641 			return (ENOTSUP);
15642 		zoneid = GLOBAL_ZONEID;
15643 	}
15644 
15645 	/* cannot assign instance zero to a non-global zone */
15646 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
15647 		return (ENOTSUP);
15648 
15649 	/*
15650 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
15651 	 * the event of a race with the zone shutdown processing, since IP
15652 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
15653 	 * interface will be cleaned up even if the zone is shut down
15654 	 * immediately after the status check. If the interface can't be brought
15655 	 * down right away, and the zone is shut down before the restart
15656 	 * function is called, we resolve the possible races by rechecking the
15657 	 * zone status in the restart function.
15658 	 */
15659 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
15660 		return (EINVAL);
15661 	status = zone_status_get(zptr);
15662 	zone_rele(zptr);
15663 
15664 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
15665 		return (EINVAL);
15666 
15667 	if (ipif->ipif_flags & IPIF_UP) {
15668 		/*
15669 		 * If the interface is already marked up,
15670 		 * we call ipif_down which will take care
15671 		 * of ditching any IREs that have been set
15672 		 * up based on the old interface address.
15673 		 */
15674 		err = ipif_logical_down(ipif, q, mp);
15675 		if (err == EINPROGRESS)
15676 			return (err);
15677 		(void) ipif_down_tail(ipif);
15678 		need_up = B_TRUE;
15679 	}
15680 
15681 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
15682 	return (err);
15683 }
15684 
15685 static int
15686 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
15687     queue_t *q, mblk_t *mp, boolean_t need_up)
15688 {
15689 	int	err = 0;
15690 	ip_stack_t	*ipst;
15691 
15692 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
15693 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15694 
15695 	if (CONN_Q(q))
15696 		ipst = CONNQ_TO_IPST(q);
15697 	else
15698 		ipst = ILLQ_TO_IPST(q);
15699 
15700 	/*
15701 	 * For exclusive stacks we don't allow a different zoneid than
15702 	 * global.
15703 	 */
15704 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
15705 	    zoneid != GLOBAL_ZONEID)
15706 		return (EINVAL);
15707 
15708 	/* Set the new zone id. */
15709 	ipif->ipif_zoneid = zoneid;
15710 
15711 	/* Update sctp list */
15712 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
15713 
15714 	/* The default multicast interface might have changed */
15715 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
15716 
15717 	if (need_up) {
15718 		/*
15719 		 * Now bring the interface back up.  If this
15720 		 * is the only IPIF for the ILL, ipif_up
15721 		 * will have to re-bind to the device, so
15722 		 * we may get back EINPROGRESS, in which
15723 		 * case, this IOCTL will get completed in
15724 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
15725 		 */
15726 		err = ipif_up(ipif, q, mp);
15727 	}
15728 	return (err);
15729 }
15730 
15731 /* ARGSUSED */
15732 int
15733 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15734     ip_ioctl_cmd_t *ipip, void *if_req)
15735 {
15736 	struct lifreq *lifr = (struct lifreq *)if_req;
15737 	zoneid_t zoneid;
15738 	zone_t *zptr;
15739 	zone_status_t status;
15740 
15741 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15742 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
15743 		zoneid = GLOBAL_ZONEID;
15744 
15745 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
15746 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15747 
15748 	/*
15749 	 * We recheck the zone status to resolve the following race condition:
15750 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
15751 	 * 2) hme0:1 is up and can't be brought down right away;
15752 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
15753 	 * 3) zone "myzone" is halted; the zone status switches to
15754 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
15755 	 * the interfaces to remove - hme0:1 is not returned because it's not
15756 	 * yet in "myzone", so it won't be removed;
15757 	 * 4) the restart function for SIOCSLIFZONE is called; without the
15758 	 * status check here, we would have hme0:1 in "myzone" after it's been
15759 	 * destroyed.
15760 	 * Note that if the status check fails, we need to bring the interface
15761 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
15762 	 * ipif_up_done[_v6]().
15763 	 */
15764 	status = ZONE_IS_UNINITIALIZED;
15765 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
15766 		status = zone_status_get(zptr);
15767 		zone_rele(zptr);
15768 	}
15769 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
15770 		if (ipif->ipif_isv6) {
15771 			(void) ipif_up_done_v6(ipif);
15772 		} else {
15773 			(void) ipif_up_done(ipif);
15774 		}
15775 		return (EINVAL);
15776 	}
15777 
15778 	(void) ipif_down_tail(ipif);
15779 
15780 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
15781 	    B_TRUE));
15782 }
15783 
15784 /*
15785  * Return the number of addresses on `ill' with one or more of the values
15786  * in `set' set and all of the values in `clear' clear.
15787  */
15788 static uint_t
15789 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
15790 {
15791 	ipif_t	*ipif;
15792 	uint_t	cnt = 0;
15793 
15794 	ASSERT(IAM_WRITER_ILL(ill));
15795 
15796 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
15797 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
15798 			cnt++;
15799 
15800 	return (cnt);
15801 }
15802 
15803 /*
15804  * Return the number of migratable addresses on `ill' that are under
15805  * application control.
15806  */
15807 uint_t
15808 ill_appaddr_cnt(const ill_t *ill)
15809 {
15810 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
15811 	    IPIF_NOFAILOVER));
15812 }
15813 
15814 /*
15815  * Return the number of point-to-point addresses on `ill'.
15816  */
15817 uint_t
15818 ill_ptpaddr_cnt(const ill_t *ill)
15819 {
15820 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
15821 }
15822 
15823 /* ARGSUSED */
15824 int
15825 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15826 	ip_ioctl_cmd_t *ipip, void *ifreq)
15827 {
15828 	struct lifreq	*lifr = ifreq;
15829 
15830 	ASSERT(q->q_next == NULL);
15831 	ASSERT(CONN_Q(q));
15832 
15833 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
15834 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15835 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
15836 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
15837 
15838 	return (0);
15839 }
15840 
15841 /* Find the previous ILL in this usesrc group */
15842 static ill_t *
15843 ill_prev_usesrc(ill_t *uill)
15844 {
15845 	ill_t *ill;
15846 
15847 	for (ill = uill->ill_usesrc_grp_next;
15848 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
15849 	    ill = ill->ill_usesrc_grp_next)
15850 		/* do nothing */;
15851 	return (ill);
15852 }
15853 
15854 /*
15855  * Release all members of the usesrc group. This routine is called
15856  * from ill_delete when the interface being unplumbed is the
15857  * group head.
15858  *
15859  * This silently clears the usesrc that ifconfig setup.
15860  * An alternative would be to keep that ifindex, and drop packets on the floor
15861  * since no source address can be selected.
15862  * Even if we keep the current semantics, don't need a lock and a linked list.
15863  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
15864  * the one that is being removed. Issue is how we return the usesrc users
15865  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
15866  * ill_usesrc_ifindex matching a target ill. We could also do that with an
15867  * ill walk, but the walker would need to insert in the ioctl response.
15868  */
15869 static void
15870 ill_disband_usesrc_group(ill_t *uill)
15871 {
15872 	ill_t *next_ill, *tmp_ill;
15873 	ip_stack_t	*ipst = uill->ill_ipst;
15874 
15875 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15876 	next_ill = uill->ill_usesrc_grp_next;
15877 
15878 	do {
15879 		ASSERT(next_ill != NULL);
15880 		tmp_ill = next_ill->ill_usesrc_grp_next;
15881 		ASSERT(tmp_ill != NULL);
15882 		next_ill->ill_usesrc_grp_next = NULL;
15883 		next_ill->ill_usesrc_ifindex = 0;
15884 		next_ill = tmp_ill;
15885 	} while (next_ill->ill_usesrc_ifindex != 0);
15886 	uill->ill_usesrc_grp_next = NULL;
15887 }
15888 
15889 /*
15890  * Remove the client usesrc ILL from the list and relink to a new list
15891  */
15892 int
15893 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
15894 {
15895 	ill_t *ill, *tmp_ill;
15896 	ip_stack_t	*ipst = ucill->ill_ipst;
15897 
15898 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
15899 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15900 
15901 	/*
15902 	 * Check if the usesrc client ILL passed in is not already
15903 	 * in use as a usesrc ILL i.e one whose source address is
15904 	 * in use OR a usesrc ILL is not already in use as a usesrc
15905 	 * client ILL
15906 	 */
15907 	if ((ucill->ill_usesrc_ifindex == 0) ||
15908 	    (uill->ill_usesrc_ifindex != 0)) {
15909 		return (-1);
15910 	}
15911 
15912 	ill = ill_prev_usesrc(ucill);
15913 	ASSERT(ill->ill_usesrc_grp_next != NULL);
15914 
15915 	/* Remove from the current list */
15916 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
15917 		/* Only two elements in the list */
15918 		ASSERT(ill->ill_usesrc_ifindex == 0);
15919 		ill->ill_usesrc_grp_next = NULL;
15920 	} else {
15921 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
15922 	}
15923 
15924 	if (ifindex == 0) {
15925 		ucill->ill_usesrc_ifindex = 0;
15926 		ucill->ill_usesrc_grp_next = NULL;
15927 		return (0);
15928 	}
15929 
15930 	ucill->ill_usesrc_ifindex = ifindex;
15931 	tmp_ill = uill->ill_usesrc_grp_next;
15932 	uill->ill_usesrc_grp_next = ucill;
15933 	ucill->ill_usesrc_grp_next =
15934 	    (tmp_ill != NULL) ? tmp_ill : uill;
15935 	return (0);
15936 }
15937 
15938 /*
15939  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
15940  * ip.c for locking details.
15941  */
15942 /* ARGSUSED */
15943 int
15944 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15945     ip_ioctl_cmd_t *ipip, void *ifreq)
15946 {
15947 	struct lifreq *lifr = (struct lifreq *)ifreq;
15948 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
15949 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
15950 	int err = 0, ret;
15951 	uint_t ifindex;
15952 	ipsq_t *ipsq = NULL;
15953 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15954 
15955 	ASSERT(IAM_WRITER_IPIF(ipif));
15956 	ASSERT(q->q_next == NULL);
15957 	ASSERT(CONN_Q(q));
15958 
15959 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
15960 
15961 	ifindex = lifr->lifr_index;
15962 	if (ifindex == 0) {
15963 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
15964 			/* non usesrc group interface, nothing to reset */
15965 			return (0);
15966 		}
15967 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
15968 		/* valid reset request */
15969 		reset_flg = B_TRUE;
15970 	}
15971 
15972 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15973 	if (usesrc_ill == NULL) {
15974 		return (ENXIO);
15975 	}
15976 
15977 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
15978 	    NEW_OP, B_TRUE);
15979 	if (ipsq == NULL) {
15980 		err = EINPROGRESS;
15981 		/* Operation enqueued on the ipsq of the usesrc ILL */
15982 		goto done;
15983 	}
15984 
15985 	/* USESRC isn't currently supported with IPMP */
15986 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
15987 		err = ENOTSUP;
15988 		goto done;
15989 	}
15990 
15991 	/*
15992 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
15993 	 * used by IPMP underlying interfaces, but someone might think it's
15994 	 * more general and try to use it independently with VNI.)
15995 	 */
15996 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
15997 		err = ENOTSUP;
15998 		goto done;
15999 	}
16000 
16001 	/*
16002 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16003 	 * already a client then return EINVAL
16004 	 */
16005 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16006 		err = EINVAL;
16007 		goto done;
16008 	}
16009 
16010 	/*
16011 	 * If the ill_usesrc_ifindex field is already set to what it needs to
16012 	 * be then this is a duplicate operation.
16013 	 */
16014 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16015 		err = 0;
16016 		goto done;
16017 	}
16018 
16019 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16020 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16021 	    usesrc_ill->ill_isv6));
16022 
16023 	/*
16024 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16025 	 * and the ill_usesrc_ifindex fields
16026 	 */
16027 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16028 
16029 	if (reset_flg) {
16030 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16031 		if (ret != 0) {
16032 			err = EINVAL;
16033 		}
16034 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
16035 		goto done;
16036 	}
16037 
16038 	/*
16039 	 * Four possibilities to consider:
16040 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16041 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16042 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16043 	 * 4. Both are part of their respective usesrc groups
16044 	 */
16045 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16046 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16047 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16048 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16049 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16050 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16051 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16052 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16053 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16054 		/* Insert at head of list */
16055 		usesrc_cli_ill->ill_usesrc_grp_next =
16056 		    usesrc_ill->ill_usesrc_grp_next;
16057 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16058 	} else {
16059 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16060 		    ifindex);
16061 		if (ret != 0)
16062 			err = EINVAL;
16063 	}
16064 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
16065 
16066 done:
16067 	if (ipsq != NULL)
16068 		ipsq_exit(ipsq);
16069 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16070 	ill_refrele(usesrc_ill);
16071 
16072 	/* Let conn_ixa caching know that source address selection changed */
16073 	ip_update_source_selection(ipst);
16074 
16075 	return (err);
16076 }
16077 
16078 /*
16079  * comparison function used by avl.
16080  */
16081 static int
16082 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16083 {
16084 
16085 	uint_t index;
16086 
16087 	ASSERT(phyip != NULL && index_ptr != NULL);
16088 
16089 	index = *((uint_t *)index_ptr);
16090 	/*
16091 	 * let the phyint with the lowest index be on top.
16092 	 */
16093 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16094 		return (1);
16095 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16096 		return (-1);
16097 	return (0);
16098 }
16099 
16100 /*
16101  * comparison function used by avl.
16102  */
16103 static int
16104 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16105 {
16106 	ill_t *ill;
16107 	int res = 0;
16108 
16109 	ASSERT(phyip != NULL && name_ptr != NULL);
16110 
16111 	if (((phyint_t *)phyip)->phyint_illv4)
16112 		ill = ((phyint_t *)phyip)->phyint_illv4;
16113 	else
16114 		ill = ((phyint_t *)phyip)->phyint_illv6;
16115 	ASSERT(ill != NULL);
16116 
16117 	res = strcmp(ill->ill_name, (char *)name_ptr);
16118 	if (res > 0)
16119 		return (1);
16120 	else if (res < 0)
16121 		return (-1);
16122 	return (0);
16123 }
16124 
16125 /*
16126  * This function is called on the unplumb path via ill_glist_delete() when
16127  * there are no ills left on the phyint and thus the phyint can be freed.
16128  */
16129 static void
16130 phyint_free(phyint_t *phyi)
16131 {
16132 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16133 
16134 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16135 
16136 	/*
16137 	 * If this phyint was an IPMP meta-interface, blow away the group.
16138 	 * This is safe to do because all of the illgrps have already been
16139 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16140 	 * If we're cleaning up as a result of failed initialization,
16141 	 * phyint_grp may be NULL.
16142 	 */
16143 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16144 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16145 		ipmp_grp_destroy(phyi->phyint_grp);
16146 		phyi->phyint_grp = NULL;
16147 		rw_exit(&ipst->ips_ipmp_lock);
16148 	}
16149 
16150 	/*
16151 	 * If this interface was under IPMP, take it out of the group.
16152 	 */
16153 	if (phyi->phyint_grp != NULL)
16154 		ipmp_phyint_leave_grp(phyi);
16155 
16156 	/*
16157 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16158 	 * will be freed in ipsq_exit().
16159 	 */
16160 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16161 	phyi->phyint_name[0] = '\0';
16162 
16163 	mi_free(phyi);
16164 }
16165 
16166 /*
16167  * Attach the ill to the phyint structure which can be shared by both
16168  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16169  * function is called from ipif_set_values and ill_lookup_on_name (for
16170  * loopback) where we know the name of the ill. We lookup the ill and if
16171  * there is one present already with the name use that phyint. Otherwise
16172  * reuse the one allocated by ill_init.
16173  */
16174 static void
16175 ill_phyint_reinit(ill_t *ill)
16176 {
16177 	boolean_t isv6 = ill->ill_isv6;
16178 	phyint_t *phyi_old;
16179 	phyint_t *phyi;
16180 	avl_index_t where = 0;
16181 	ill_t	*ill_other = NULL;
16182 	ip_stack_t	*ipst = ill->ill_ipst;
16183 
16184 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16185 
16186 	phyi_old = ill->ill_phyint;
16187 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16188 	    phyi_old->phyint_illv6 == NULL));
16189 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16190 	    phyi_old->phyint_illv4 == NULL));
16191 	ASSERT(phyi_old->phyint_ifindex == 0);
16192 
16193 	/*
16194 	 * Now that our ill has a name, set it in the phyint.
16195 	 */
16196 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16197 
16198 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16199 	    ill->ill_name, &where);
16200 
16201 	/*
16202 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16203 	 *    the global list of ills. So no other thread could have located
16204 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16205 	 * 2. Now locate the other protocol instance of this ill.
16206 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16207 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16208 	 *    of neither ill can change.
16209 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16210 	 *    other ill.
16211 	 * 5. Release all locks.
16212 	 */
16213 
16214 	/*
16215 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16216 	 * we are initializing IPv4.
16217 	 */
16218 	if (phyi != NULL) {
16219 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16220 		ASSERT(ill_other->ill_phyint != NULL);
16221 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16222 		    (!isv6 && ill_other->ill_isv6));
16223 		GRAB_ILL_LOCKS(ill, ill_other);
16224 		/*
16225 		 * We are potentially throwing away phyint_flags which
16226 		 * could be different from the one that we obtain from
16227 		 * ill_other->ill_phyint. But it is okay as we are assuming
16228 		 * that the state maintained within IP is correct.
16229 		 */
16230 		mutex_enter(&phyi->phyint_lock);
16231 		if (isv6) {
16232 			ASSERT(phyi->phyint_illv6 == NULL);
16233 			phyi->phyint_illv6 = ill;
16234 		} else {
16235 			ASSERT(phyi->phyint_illv4 == NULL);
16236 			phyi->phyint_illv4 = ill;
16237 		}
16238 
16239 		/*
16240 		 * Delete the old phyint and make its ipsq eligible
16241 		 * to be freed in ipsq_exit().
16242 		 */
16243 		phyi_old->phyint_illv4 = NULL;
16244 		phyi_old->phyint_illv6 = NULL;
16245 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16246 		phyi_old->phyint_name[0] = '\0';
16247 		mi_free(phyi_old);
16248 	} else {
16249 		mutex_enter(&ill->ill_lock);
16250 		/*
16251 		 * We don't need to acquire any lock, since
16252 		 * the ill is not yet visible globally  and we
16253 		 * have not yet released the ill_g_lock.
16254 		 */
16255 		phyi = phyi_old;
16256 		mutex_enter(&phyi->phyint_lock);
16257 		/* XXX We need a recovery strategy here. */
16258 		if (!phyint_assign_ifindex(phyi, ipst))
16259 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16260 
16261 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16262 		    (void *)phyi, where);
16263 
16264 		(void) avl_find(&ipst->ips_phyint_g_list->
16265 		    phyint_list_avl_by_index,
16266 		    &phyi->phyint_ifindex, &where);
16267 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16268 		    (void *)phyi, where);
16269 	}
16270 
16271 	/*
16272 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16273 	 * pending mp is not affected because that is per ill basis.
16274 	 */
16275 	ill->ill_phyint = phyi;
16276 
16277 	/*
16278 	 * Now that the phyint's ifindex has been assigned, complete the
16279 	 * remaining
16280 	 */
16281 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16282 	if (ill->ill_isv6) {
16283 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16284 		    ill->ill_phyint->phyint_ifindex;
16285 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16286 	} else {
16287 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16288 	}
16289 
16290 	/*
16291 	 * Generate an event within the hooks framework to indicate that
16292 	 * a new interface has just been added to IP.  For this event to
16293 	 * be generated, the network interface must, at least, have an
16294 	 * ifindex assigned to it.  (We don't generate the event for
16295 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16296 	 *
16297 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16298 	 * that the ordering of delivered events to listeners matches the
16299 	 * order of them in the kernel.
16300 	 */
16301 	if (!IS_LOOPBACK(ill)) {
16302 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16303 		    ill->ill_name_length);
16304 	}
16305 	RELEASE_ILL_LOCKS(ill, ill_other);
16306 	mutex_exit(&phyi->phyint_lock);
16307 }
16308 
16309 /*
16310  * Notify any downstream modules of the name of this interface.
16311  * An M_IOCTL is used even though we don't expect a successful reply.
16312  * Any reply message from the driver (presumably an M_IOCNAK) will
16313  * eventually get discarded somewhere upstream.  The message format is
16314  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16315  * to IP.
16316  */
16317 static void
16318 ip_ifname_notify(ill_t *ill, queue_t *q)
16319 {
16320 	mblk_t *mp1, *mp2;
16321 	struct iocblk *iocp;
16322 	struct lifreq *lifr;
16323 
16324 	mp1 = mkiocb(SIOCSLIFNAME);
16325 	if (mp1 == NULL)
16326 		return;
16327 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16328 	if (mp2 == NULL) {
16329 		freeb(mp1);
16330 		return;
16331 	}
16332 
16333 	mp1->b_cont = mp2;
16334 	iocp = (struct iocblk *)mp1->b_rptr;
16335 	iocp->ioc_count = sizeof (struct lifreq);
16336 
16337 	lifr = (struct lifreq *)mp2->b_rptr;
16338 	mp2->b_wptr += sizeof (struct lifreq);
16339 	bzero(lifr, sizeof (struct lifreq));
16340 
16341 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16342 	lifr->lifr_ppa = ill->ill_ppa;
16343 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16344 
16345 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16346 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16347 	putnext(q, mp1);
16348 }
16349 
16350 static int
16351 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16352 {
16353 	int		err;
16354 	ip_stack_t	*ipst = ill->ill_ipst;
16355 	phyint_t	*phyi = ill->ill_phyint;
16356 
16357 	/* Set the obsolete NDD per-interface forwarding name. */
16358 	err = ill_set_ndd_name(ill);
16359 	if (err != 0) {
16360 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
16361 		    err);
16362 	}
16363 
16364 	/*
16365 	 * Now that ill_name is set, the configuration for the IPMP
16366 	 * meta-interface can be performed.
16367 	 */
16368 	if (IS_IPMP(ill)) {
16369 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16370 		/*
16371 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16372 		 * meta-interface and we need to create the IPMP group.
16373 		 */
16374 		if (phyi->phyint_grp == NULL) {
16375 			/*
16376 			 * If someone has renamed another IPMP group to have
16377 			 * the same name as our interface, bail.
16378 			 */
16379 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16380 				rw_exit(&ipst->ips_ipmp_lock);
16381 				return (EEXIST);
16382 			}
16383 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16384 			if (phyi->phyint_grp == NULL) {
16385 				rw_exit(&ipst->ips_ipmp_lock);
16386 				return (ENOMEM);
16387 			}
16388 		}
16389 		rw_exit(&ipst->ips_ipmp_lock);
16390 	}
16391 
16392 	/* Tell downstream modules where they are. */
16393 	ip_ifname_notify(ill, q);
16394 
16395 	/*
16396 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16397 	 * Error cases are ENOMEM ...
16398 	 */
16399 	err = ill_dl_phys(ill, ipif, mp, q);
16400 
16401 	if (ill->ill_isv6) {
16402 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16403 		if (ipst->ips_mld_slowtimeout_id == 0) {
16404 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16405 			    (void *)ipst,
16406 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16407 		}
16408 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16409 	} else {
16410 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16411 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16412 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16413 			    (void *)ipst,
16414 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16415 		}
16416 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16417 	}
16418 
16419 	return (err);
16420 }
16421 
16422 /*
16423  * Common routine for ppa and ifname setting. Should be called exclusive.
16424  *
16425  * Returns EINPROGRESS when mp has been consumed by queueing it on
16426  * ipx_pending_mp and the ioctl will complete in ip_rput.
16427  *
16428  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16429  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16430  * For SLIFNAME, we pass these values back to the userland.
16431  */
16432 static int
16433 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16434 {
16435 	ill_t	*ill;
16436 	ipif_t	*ipif;
16437 	ipsq_t	*ipsq;
16438 	char	*ppa_ptr;
16439 	char	*old_ptr;
16440 	char	old_char;
16441 	int	error;
16442 	ip_stack_t	*ipst;
16443 
16444 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16445 	ASSERT(q->q_next != NULL);
16446 	ASSERT(interf_name != NULL);
16447 
16448 	ill = (ill_t *)q->q_ptr;
16449 	ipst = ill->ill_ipst;
16450 
16451 	ASSERT(ill->ill_ipst != NULL);
16452 	ASSERT(ill->ill_name[0] == '\0');
16453 	ASSERT(IAM_WRITER_ILL(ill));
16454 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16455 	ASSERT(ill->ill_ppa == UINT_MAX);
16456 
16457 	ill->ill_defend_start = ill->ill_defend_count = 0;
16458 	/* The ppa is sent down by ifconfig or is chosen */
16459 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16460 		return (EINVAL);
16461 	}
16462 
16463 	/*
16464 	 * make sure ppa passed in is same as ppa in the name.
16465 	 * This check is not made when ppa == UINT_MAX in that case ppa
16466 	 * in the name could be anything. System will choose a ppa and
16467 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16468 	 */
16469 	if (*new_ppa_ptr != UINT_MAX) {
16470 		/* stoi changes the pointer */
16471 		old_ptr = ppa_ptr;
16472 		/*
16473 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16474 		 * (they don't have an externally visible ppa).  We assign one
16475 		 * here so that we can manage the interface.  Note that in
16476 		 * the past this value was always 0 for DLPI 1 drivers.
16477 		 */
16478 		if (*new_ppa_ptr == 0)
16479 			*new_ppa_ptr = stoi(&old_ptr);
16480 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16481 			return (EINVAL);
16482 	}
16483 	/*
16484 	 * terminate string before ppa
16485 	 * save char at that location.
16486 	 */
16487 	old_char = ppa_ptr[0];
16488 	ppa_ptr[0] = '\0';
16489 
16490 	ill->ill_ppa = *new_ppa_ptr;
16491 	/*
16492 	 * Finish as much work now as possible before calling ill_glist_insert
16493 	 * which makes the ill globally visible and also merges it with the
16494 	 * other protocol instance of this phyint. The remaining work is
16495 	 * done after entering the ipsq which may happen sometime later.
16496 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
16497 	 */
16498 	ipif = ill->ill_ipif;
16499 
16500 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16501 	ipif_assign_seqid(ipif);
16502 
16503 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16504 		ill->ill_flags |= ILLF_IPV4;
16505 
16506 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16507 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16508 
16509 	if (ill->ill_flags & ILLF_IPV6) {
16510 
16511 		ill->ill_isv6 = B_TRUE;
16512 		ill_set_inputfn(ill);
16513 		if (ill->ill_rq != NULL) {
16514 			ill->ill_rq->q_qinfo = &iprinitv6;
16515 		}
16516 
16517 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16518 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16519 		ipif->ipif_v6subnet = ipv6_all_zeros;
16520 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16521 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16522 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16523 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16524 		/*
16525 		 * point-to-point or Non-mulicast capable
16526 		 * interfaces won't do NUD unless explicitly
16527 		 * configured to do so.
16528 		 */
16529 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16530 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16531 			ill->ill_flags |= ILLF_NONUD;
16532 		}
16533 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16534 		if (ill->ill_flags & ILLF_NOARP) {
16535 			/*
16536 			 * Note: xresolv interfaces will eventually need
16537 			 * NOARP set here as well, but that will require
16538 			 * those external resolvers to have some
16539 			 * knowledge of that flag and act appropriately.
16540 			 * Not to be changed at present.
16541 			 */
16542 			ill->ill_flags &= ~ILLF_NOARP;
16543 		}
16544 		/*
16545 		 * Set the ILLF_ROUTER flag according to the global
16546 		 * IPv6 forwarding policy.
16547 		 */
16548 		if (ipst->ips_ipv6_forward != 0)
16549 			ill->ill_flags |= ILLF_ROUTER;
16550 	} else if (ill->ill_flags & ILLF_IPV4) {
16551 		ill->ill_isv6 = B_FALSE;
16552 		ill_set_inputfn(ill);
16553 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16554 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16555 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16556 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16557 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16558 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16559 		/*
16560 		 * Set the ILLF_ROUTER flag according to the global
16561 		 * IPv4 forwarding policy.
16562 		 */
16563 		if (ipst->ips_ip_g_forward != 0)
16564 			ill->ill_flags |= ILLF_ROUTER;
16565 	}
16566 
16567 	ASSERT(ill->ill_phyint != NULL);
16568 
16569 	/*
16570 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
16571 	 * be completed in ill_glist_insert -> ill_phyint_reinit
16572 	 */
16573 	if (!ill_allocate_mibs(ill))
16574 		return (ENOMEM);
16575 
16576 	/*
16577 	 * Pick a default sap until we get the DL_INFO_ACK back from
16578 	 * the driver.
16579 	 */
16580 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
16581 	    ill->ill_media->ip_m_ipv4sap;
16582 
16583 	ill->ill_ifname_pending = 1;
16584 	ill->ill_ifname_pending_err = 0;
16585 
16586 	/*
16587 	 * When the first ipif comes up in ipif_up_done(), multicast groups
16588 	 * that were joined while this ill was not bound to the DLPI link need
16589 	 * to be recovered by ill_recover_multicast().
16590 	 */
16591 	ill->ill_need_recover_multicast = 1;
16592 
16593 	ill_refhold(ill);
16594 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16595 	if ((error = ill_glist_insert(ill, interf_name,
16596 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
16597 		ill->ill_ppa = UINT_MAX;
16598 		ill->ill_name[0] = '\0';
16599 		/*
16600 		 * undo null termination done above.
16601 		 */
16602 		ppa_ptr[0] = old_char;
16603 		rw_exit(&ipst->ips_ill_g_lock);
16604 		ill_refrele(ill);
16605 		return (error);
16606 	}
16607 
16608 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
16609 
16610 	/*
16611 	 * When we return the buffer pointed to by interf_name should contain
16612 	 * the same name as in ill_name.
16613 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
16614 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
16615 	 * so copy full name and update the ppa ptr.
16616 	 * When ppa passed in != UINT_MAX all values are correct just undo
16617 	 * null termination, this saves a bcopy.
16618 	 */
16619 	if (*new_ppa_ptr == UINT_MAX) {
16620 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
16621 		*new_ppa_ptr = ill->ill_ppa;
16622 	} else {
16623 		/*
16624 		 * undo null termination done above.
16625 		 */
16626 		ppa_ptr[0] = old_char;
16627 	}
16628 
16629 	/* Let SCTP know about this ILL */
16630 	sctp_update_ill(ill, SCTP_ILL_INSERT);
16631 
16632 	/*
16633 	 * ill_glist_insert has made the ill visible globally, and
16634 	 * ill_phyint_reinit could have changed the ipsq. At this point,
16635 	 * we need to hold the ips_ill_g_lock across the call to enter the
16636 	 * ipsq to enforce atomicity and prevent reordering. In the event
16637 	 * the ipsq has changed, and if the new ipsq is currently busy,
16638 	 * we need to make sure that this half-completed ioctl is ahead of
16639 	 * any subsequent ioctl. We achieve this by not dropping the
16640 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
16641 	 * ensuring that new ioctls can't start.
16642 	 */
16643 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
16644 	    B_TRUE);
16645 
16646 	rw_exit(&ipst->ips_ill_g_lock);
16647 	ill_refrele(ill);
16648 	if (ipsq == NULL)
16649 		return (EINPROGRESS);
16650 
16651 	/*
16652 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
16653 	 */
16654 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
16655 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
16656 	else
16657 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
16658 
16659 	error = ipif_set_values_tail(ill, ipif, mp, q);
16660 	ipsq_exit(ipsq);
16661 	if (error != 0 && error != EINPROGRESS) {
16662 		/*
16663 		 * restore previous values
16664 		 */
16665 		ill->ill_isv6 = B_FALSE;
16666 		ill_set_inputfn(ill);
16667 	}
16668 	return (error);
16669 }
16670 
16671 void
16672 ipif_init(ip_stack_t *ipst)
16673 {
16674 	int i;
16675 
16676 	for (i = 0; i < MAX_G_HEADS; i++) {
16677 		ipst->ips_ill_g_heads[i].ill_g_list_head =
16678 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16679 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
16680 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16681 	}
16682 
16683 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16684 	    ill_phyint_compare_index,
16685 	    sizeof (phyint_t),
16686 	    offsetof(struct phyint, phyint_avl_by_index));
16687 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16688 	    ill_phyint_compare_name,
16689 	    sizeof (phyint_t),
16690 	    offsetof(struct phyint, phyint_avl_by_name));
16691 }
16692 
16693 /*
16694  * Save enough information so that we can recreate the IRE if
16695  * the interface goes down and then up.
16696  */
16697 void
16698 ill_save_ire(ill_t *ill, ire_t *ire)
16699 {
16700 	mblk_t	*save_mp;
16701 
16702 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
16703 	if (save_mp != NULL) {
16704 		ifrt_t	*ifrt;
16705 
16706 		save_mp->b_wptr += sizeof (ifrt_t);
16707 		ifrt = (ifrt_t *)save_mp->b_rptr;
16708 		bzero(ifrt, sizeof (ifrt_t));
16709 		ifrt->ifrt_type = ire->ire_type;
16710 		if (ire->ire_ipversion == IPV4_VERSION) {
16711 			ASSERT(!ill->ill_isv6);
16712 			ifrt->ifrt_addr = ire->ire_addr;
16713 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
16714 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
16715 			ifrt->ifrt_mask = ire->ire_mask;
16716 		} else {
16717 			ASSERT(ill->ill_isv6);
16718 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
16719 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
16720 			mutex_enter(&ire->ire_lock);
16721 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
16722 			mutex_exit(&ire->ire_lock);
16723 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
16724 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
16725 		}
16726 		ifrt->ifrt_flags = ire->ire_flags;
16727 		ifrt->ifrt_zoneid = ire->ire_zoneid;
16728 		mutex_enter(&ill->ill_saved_ire_lock);
16729 		save_mp->b_cont = ill->ill_saved_ire_mp;
16730 		ill->ill_saved_ire_mp = save_mp;
16731 		ill->ill_saved_ire_cnt++;
16732 		mutex_exit(&ill->ill_saved_ire_lock);
16733 	}
16734 }
16735 
16736 /*
16737  * Remove one entry from ill_saved_ire_mp.
16738  */
16739 void
16740 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
16741 {
16742 	mblk_t	**mpp;
16743 	mblk_t	*mp;
16744 	ifrt_t	*ifrt;
16745 
16746 	/* Remove from ill_saved_ire_mp list if it is there */
16747 	mutex_enter(&ill->ill_saved_ire_lock);
16748 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
16749 	    mpp = &(*mpp)->b_cont) {
16750 		in6_addr_t	gw_addr_v6;
16751 
16752 		/*
16753 		 * On a given ill, the tuple of address, gateway, mask,
16754 		 * ire_type, and zoneid is unique for each saved IRE.
16755 		 */
16756 		mp = *mpp;
16757 		ifrt = (ifrt_t *)mp->b_rptr;
16758 		/* ire_gateway_addr_v6 can change - need lock */
16759 		mutex_enter(&ire->ire_lock);
16760 		gw_addr_v6 = ire->ire_gateway_addr_v6;
16761 		mutex_exit(&ire->ire_lock);
16762 
16763 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
16764 		    ifrt->ifrt_type != ire->ire_type)
16765 			continue;
16766 
16767 		if (ill->ill_isv6 ?
16768 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
16769 		    &ire->ire_addr_v6) &&
16770 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
16771 		    &gw_addr_v6) &&
16772 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
16773 		    &ire->ire_mask_v6)) :
16774 		    (ifrt->ifrt_addr == ire->ire_addr &&
16775 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
16776 		    ifrt->ifrt_mask == ire->ire_mask)) {
16777 			*mpp = mp->b_cont;
16778 			ill->ill_saved_ire_cnt--;
16779 			freeb(mp);
16780 			break;
16781 		}
16782 	}
16783 	mutex_exit(&ill->ill_saved_ire_lock);
16784 }
16785 
16786 /*
16787  * IP multirouting broadcast routes handling
16788  * Append CGTP broadcast IREs to regular ones created
16789  * at ifconfig time.
16790  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
16791  * the destination and the gateway are broadcast addresses.
16792  * The caller has verified that the destination is an IRE_BROADCAST and that
16793  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
16794  * we create a MULTIRT IRE_BROADCAST.
16795  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
16796  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
16797  */
16798 static void
16799 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
16800 {
16801 	ire_t *ire_prim;
16802 
16803 	ASSERT(ire != NULL);
16804 
16805 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16806 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
16807 	    NULL);
16808 	if (ire_prim != NULL) {
16809 		/*
16810 		 * We are in the special case of broadcasts for
16811 		 * CGTP. We add an IRE_BROADCAST that holds
16812 		 * the RTF_MULTIRT flag, the destination
16813 		 * address and the low level
16814 		 * info of ire_prim. In other words, CGTP
16815 		 * broadcast is added to the redundant ipif.
16816 		 */
16817 		ill_t *ill_prim;
16818 		ire_t  *bcast_ire;
16819 
16820 		ill_prim = ire_prim->ire_ill;
16821 
16822 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
16823 		    (void *)ire_prim, (void *)ill_prim));
16824 
16825 		bcast_ire = ire_create(
16826 		    (uchar_t *)&ire->ire_addr,
16827 		    (uchar_t *)&ip_g_all_ones,
16828 		    (uchar_t *)&ire->ire_gateway_addr,
16829 		    IRE_BROADCAST,
16830 		    ill_prim,
16831 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
16832 		    ire->ire_flags | RTF_KERNEL,
16833 		    NULL,
16834 		    ipst);
16835 
16836 		/*
16837 		 * Here we assume that ire_add does head insertion so that
16838 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
16839 		 */
16840 		if (bcast_ire != NULL) {
16841 			if (ire->ire_flags & RTF_SETSRC) {
16842 				bcast_ire->ire_setsrc_addr =
16843 				    ire->ire_setsrc_addr;
16844 			}
16845 			bcast_ire = ire_add(bcast_ire);
16846 			if (bcast_ire != NULL) {
16847 				ip2dbg(("ip_cgtp_filter_bcast_add: "
16848 				    "added bcast_ire %p\n",
16849 				    (void *)bcast_ire));
16850 
16851 				ill_save_ire(ill_prim, bcast_ire);
16852 				ire_refrele(bcast_ire);
16853 			}
16854 		}
16855 		ire_refrele(ire_prim);
16856 	}
16857 }
16858 
16859 /*
16860  * IP multirouting broadcast routes handling
16861  * Remove the broadcast ire.
16862  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
16863  * the destination and the gateway are broadcast addresses.
16864  * The caller has only verified that RTF_MULTIRT was set. We check
16865  * that the destination is broadcast and that the gateway is a broadcast
16866  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
16867  */
16868 static void
16869 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
16870 {
16871 	ASSERT(ire != NULL);
16872 
16873 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
16874 		ire_t *ire_prim;
16875 
16876 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16877 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
16878 		    ipst, NULL);
16879 		if (ire_prim != NULL) {
16880 			ill_t *ill_prim;
16881 			ire_t  *bcast_ire;
16882 
16883 			ill_prim = ire_prim->ire_ill;
16884 
16885 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
16886 			    "ire_prim %p, ill_prim %p\n",
16887 			    (void *)ire_prim, (void *)ill_prim));
16888 
16889 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
16890 			    ire->ire_gateway_addr, IRE_BROADCAST,
16891 			    ill_prim, ALL_ZONES, NULL,
16892 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
16893 			    MATCH_IRE_MASK, 0, ipst, NULL);
16894 
16895 			if (bcast_ire != NULL) {
16896 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
16897 				    "looked up bcast_ire %p\n",
16898 				    (void *)bcast_ire));
16899 				ill_remove_saved_ire(bcast_ire->ire_ill,
16900 				    bcast_ire);
16901 				ire_delete(bcast_ire);
16902 				ire_refrele(bcast_ire);
16903 			}
16904 			ire_refrele(ire_prim);
16905 		}
16906 	}
16907 }
16908 
16909 /*
16910  * Derive an interface id from the link layer address.
16911  * Knows about IEEE 802 and IEEE EUI-64 mappings.
16912  */
16913 static void
16914 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16915 {
16916 	char		*addr;
16917 
16918 	/*
16919 	 * Note that some IPv6 interfaces get plumbed over links that claim to
16920 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
16921 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
16922 	 * interface ID on IPv6 interfaces above links that actually have real
16923 	 * Ethernet addresses.
16924 	 */
16925 	if (ill->ill_phys_addr_length == ETHERADDRL) {
16926 		/* Form EUI-64 like address */
16927 		addr = (char *)&v6addr->s6_addr32[2];
16928 		bcopy(ill->ill_phys_addr, addr, 3);
16929 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
16930 		addr[3] = (char)0xff;
16931 		addr[4] = (char)0xfe;
16932 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
16933 	}
16934 }
16935 
16936 /* ARGSUSED */
16937 static void
16938 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16939 {
16940 }
16941 
16942 typedef struct ipmp_ifcookie {
16943 	uint32_t	ic_hostid;
16944 	char		ic_ifname[LIFNAMSIZ];
16945 	char		ic_zonename[ZONENAME_MAX];
16946 } ipmp_ifcookie_t;
16947 
16948 /*
16949  * Construct a pseudo-random interface ID for the IPMP interface that's both
16950  * predictable and (almost) guaranteed to be unique.
16951  */
16952 static void
16953 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16954 {
16955 	zone_t		*zp;
16956 	uint8_t		*addr;
16957 	uchar_t		hash[16];
16958 	ulong_t 	hostid;
16959 	MD5_CTX		ctx;
16960 	ipmp_ifcookie_t	ic = { 0 };
16961 
16962 	ASSERT(IS_IPMP(ill));
16963 
16964 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
16965 	ic.ic_hostid = htonl((uint32_t)hostid);
16966 
16967 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
16968 
16969 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
16970 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
16971 		zone_rele(zp);
16972 	}
16973 
16974 	MD5Init(&ctx);
16975 	MD5Update(&ctx, &ic, sizeof (ic));
16976 	MD5Final(hash, &ctx);
16977 
16978 	/*
16979 	 * Map the hash to an interface ID per the basic approach in RFC3041.
16980 	 */
16981 	addr = &v6addr->s6_addr8[8];
16982 	bcopy(hash + 8, addr, sizeof (uint64_t));
16983 	addr[0] &= ~0x2;				/* set local bit */
16984 }
16985 
16986 /*
16987  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
16988  */
16989 static void
16990 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
16991 {
16992 	phyint_t *phyi = ill->ill_phyint;
16993 
16994 	/*
16995 	 * Check PHYI_MULTI_BCAST and length of physical
16996 	 * address to determine if we use the mapping or the
16997 	 * broadcast address.
16998 	 */
16999 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17000 	    ill->ill_phys_addr_length != ETHERADDRL) {
17001 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17002 		return;
17003 	}
17004 	m_physaddr[0] = 0x33;
17005 	m_physaddr[1] = 0x33;
17006 	m_physaddr[2] = m_ip6addr[12];
17007 	m_physaddr[3] = m_ip6addr[13];
17008 	m_physaddr[4] = m_ip6addr[14];
17009 	m_physaddr[5] = m_ip6addr[15];
17010 }
17011 
17012 /*
17013  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17014  */
17015 static void
17016 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17017 {
17018 	phyint_t *phyi = ill->ill_phyint;
17019 
17020 	/*
17021 	 * Check PHYI_MULTI_BCAST and length of physical
17022 	 * address to determine if we use the mapping or the
17023 	 * broadcast address.
17024 	 */
17025 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17026 	    ill->ill_phys_addr_length != ETHERADDRL) {
17027 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17028 		return;
17029 	}
17030 	m_physaddr[0] = 0x01;
17031 	m_physaddr[1] = 0x00;
17032 	m_physaddr[2] = 0x5e;
17033 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
17034 	m_physaddr[4] = m_ipaddr[2];
17035 	m_physaddr[5] = m_ipaddr[3];
17036 }
17037 
17038 /* ARGSUSED */
17039 static void
17040 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17041 {
17042 	/*
17043 	 * for the MULTI_BCAST case and other cases when we want to
17044 	 * use the link-layer broadcast address for multicast.
17045 	 */
17046 	uint8_t	*bphys_addr;
17047 	dl_unitdata_req_t *dlur;
17048 
17049 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17050 	if (ill->ill_sap_length < 0) {
17051 		bphys_addr = (uchar_t *)dlur +
17052 		    dlur->dl_dest_addr_offset;
17053 	} else  {
17054 		bphys_addr = (uchar_t *)dlur +
17055 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
17056 	}
17057 
17058 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17059 }
17060 
17061 /*
17062  * Derive IPoIB interface id from the link layer address.
17063  */
17064 static void
17065 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17066 {
17067 	char		*addr;
17068 
17069 	ASSERT(ill->ill_phys_addr_length == 20);
17070 	addr = (char *)&v6addr->s6_addr32[2];
17071 	bcopy(ill->ill_phys_addr + 12, addr, 8);
17072 	/*
17073 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17074 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17075 	 * rules. In these cases, the IBA considers these GUIDs to be in
17076 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17077 	 * required; vendors are required not to assign global EUI-64's
17078 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
17079 	 * of the interface identifier. Whether the GUID is in modified
17080 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17081 	 * bit set to 1.
17082 	 */
17083 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
17084 }
17085 
17086 /*
17087  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17088  * Note on mapping from multicast IP addresses to IPoIB multicast link
17089  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17090  * The format of an IPoIB multicast address is:
17091  *
17092  *  4 byte QPN      Scope Sign.  Pkey
17093  * +--------------------------------------------+
17094  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17095  * +--------------------------------------------+
17096  *
17097  * The Scope and Pkey components are properties of the IBA port and
17098  * network interface. They can be ascertained from the broadcast address.
17099  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17100  */
17101 static void
17102 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17103 {
17104 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17105 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17106 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17107 	uint8_t	*bphys_addr;
17108 	dl_unitdata_req_t *dlur;
17109 
17110 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17111 
17112 	/*
17113 	 * RFC 4391: IPv4 MGID is 28-bit long.
17114 	 */
17115 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17116 	m_physaddr[17] = m_ipaddr[1];
17117 	m_physaddr[18] = m_ipaddr[2];
17118 	m_physaddr[19] = m_ipaddr[3];
17119 
17120 
17121 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17122 	if (ill->ill_sap_length < 0) {
17123 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17124 	} else  {
17125 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17126 		    ill->ill_sap_length;
17127 	}
17128 	/*
17129 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17130 	 */
17131 	m_physaddr[5] = bphys_addr[5];
17132 	m_physaddr[8] = bphys_addr[8];
17133 	m_physaddr[9] = bphys_addr[9];
17134 }
17135 
17136 static void
17137 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17138 {
17139 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17140 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17141 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17142 	uint8_t	*bphys_addr;
17143 	dl_unitdata_req_t *dlur;
17144 
17145 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17146 
17147 	/*
17148 	 * RFC 4391: IPv4 MGID is 80-bit long.
17149 	 */
17150 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17151 
17152 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17153 	if (ill->ill_sap_length < 0) {
17154 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17155 	} else  {
17156 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17157 		    ill->ill_sap_length;
17158 	}
17159 	/*
17160 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17161 	 */
17162 	m_physaddr[5] = bphys_addr[5];
17163 	m_physaddr[8] = bphys_addr[8];
17164 	m_physaddr[9] = bphys_addr[9];
17165 }
17166 
17167 /*
17168  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17169  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17170  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17171  * of RFC4213.
17172  */
17173 static void
17174 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17175 {
17176 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17177 	v6addr->s6_addr32[2] = 0;
17178 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17179 }
17180 
17181 /*
17182  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17183  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17184  * id.
17185  */
17186 static void
17187 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17188 {
17189 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17190 
17191 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17192 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17193 }
17194 
17195 static void
17196 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17197 {
17198 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17199 }
17200 
17201 static void
17202 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17203 {
17204 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17205 }
17206 
17207 static void
17208 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17209 {
17210 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17211 }
17212 
17213 static void
17214 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17215 {
17216 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17217 }
17218 
17219 /*
17220  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17221  * Returns an held ill, or NULL.
17222  */
17223 ill_t *
17224 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17225     ip_stack_t *ipst)
17226 {
17227 	ill_t	*ill;
17228 	ipif_t	*ipif;
17229 
17230 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17231 	if (ill == NULL)
17232 		return (NULL);
17233 
17234 	mutex_enter(&ill->ill_lock);
17235 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17236 		if (IPIF_IS_CONDEMNED(ipif))
17237 			continue;
17238 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17239 		    ipif->ipif_zoneid != ALL_ZONES)
17240 			continue;
17241 
17242 		mutex_exit(&ill->ill_lock);
17243 		return (ill);
17244 	}
17245 	mutex_exit(&ill->ill_lock);
17246 	ill_refrele(ill);
17247 	return (NULL);
17248 }
17249 
17250 /*
17251  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17252  * If a pointer to an ipif_t is returned then the caller will need to do
17253  * an ill_refrele().
17254  */
17255 ipif_t *
17256 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17257     ip_stack_t *ipst)
17258 {
17259 	ipif_t *ipif;
17260 	ill_t *ill;
17261 
17262 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17263 	if (ill == NULL)
17264 		return (NULL);
17265 
17266 	mutex_enter(&ill->ill_lock);
17267 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17268 		mutex_exit(&ill->ill_lock);
17269 		ill_refrele(ill);
17270 		return (NULL);
17271 	}
17272 
17273 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17274 		if (!IPIF_CAN_LOOKUP(ipif))
17275 			continue;
17276 		if (lifidx == ipif->ipif_id) {
17277 			ipif_refhold_locked(ipif);
17278 			break;
17279 		}
17280 	}
17281 
17282 	mutex_exit(&ill->ill_lock);
17283 	ill_refrele(ill);
17284 	return (ipif);
17285 }
17286 
17287 /*
17288  * Set ill_inputfn based on the current know state.
17289  * This needs to be called when any of the factors taken into
17290  * account changes.
17291  */
17292 void
17293 ill_set_inputfn(ill_t *ill)
17294 {
17295 	ip_stack_t	*ipst = ill->ill_ipst;
17296 
17297 	if (ill->ill_isv6) {
17298 		if (is_system_labeled())
17299 			ill->ill_inputfn = ill_input_full_v6;
17300 		else
17301 			ill->ill_inputfn = ill_input_short_v6;
17302 	} else {
17303 		if (is_system_labeled())
17304 			ill->ill_inputfn = ill_input_full_v4;
17305 		else if (ill->ill_dhcpinit != 0)
17306 			ill->ill_inputfn = ill_input_full_v4;
17307 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17308 		    != NULL)
17309 			ill->ill_inputfn = ill_input_full_v4;
17310 		else if (ipst->ips_ip_cgtp_filter &&
17311 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17312 			ill->ill_inputfn = ill_input_full_v4;
17313 		else
17314 			ill->ill_inputfn = ill_input_short_v4;
17315 	}
17316 }
17317 
17318 /*
17319  * Re-evaluate ill_inputfn for all the IPv4 ills.
17320  * Used when RSVP and CGTP comes and goes.
17321  */
17322 void
17323 ill_set_inputfn_all(ip_stack_t *ipst)
17324 {
17325 	ill_walk_context_t	ctx;
17326 	ill_t			*ill;
17327 
17328 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17329 	ill = ILL_START_WALK_V4(&ctx, ipst);
17330 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17331 		ill_set_inputfn(ill);
17332 
17333 	rw_exit(&ipst->ips_ill_g_lock);
17334 }
17335 
17336 /*
17337  * Set the physical address information for `ill' to the contents of the
17338  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17339  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17340  * EINPROGRESS will be returned.
17341  */
17342 int
17343 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17344 {
17345 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17346 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17347 
17348 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17349 
17350 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17351 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17352 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17353 		/* Changing DL_IPV6_TOKEN is not yet supported */
17354 		return (0);
17355 	}
17356 
17357 	/*
17358 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17359 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17360 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17361 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17362 	 */
17363 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17364 		freemsg(mp);
17365 		return (ENOMEM);
17366 	}
17367 
17368 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17369 	mutex_enter(&ill->ill_lock);
17370 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17371 	/* no more nce addition allowed */
17372 	mutex_exit(&ill->ill_lock);
17373 
17374 	/*
17375 	 * If we can quiesce the ill, then set the address.  If not, then
17376 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17377 	 */
17378 	ill_down_ipifs(ill, B_TRUE);
17379 	mutex_enter(&ill->ill_lock);
17380 	if (!ill_is_quiescent(ill)) {
17381 		/* call cannot fail since `conn_t *' argument is NULL */
17382 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17383 		    mp, ILL_DOWN);
17384 		mutex_exit(&ill->ill_lock);
17385 		return (EINPROGRESS);
17386 	}
17387 	mutex_exit(&ill->ill_lock);
17388 
17389 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17390 	return (0);
17391 }
17392 
17393 /*
17394  * Once the ill associated with `q' has quiesced, set its physical address
17395  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17396  * are passed (linked by b_cont), since we sometimes need to save two distinct
17397  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17398  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17399  * is quiesced, we know any stale nce's with the old address information have
17400  * already been removed, so we don't need to call nce_flush().
17401  */
17402 /* ARGSUSED */
17403 static void
17404 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17405 {
17406 	ill_t		*ill = q->q_ptr;
17407 	mblk_t		*addrmp2 = unlinkb(addrmp);
17408 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17409 	uint_t		addrlen, addroff;
17410 	int		status;
17411 
17412 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17413 
17414 	addroff	= dlindp->dl_addr_offset;
17415 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17416 
17417 	switch (dlindp->dl_data) {
17418 	case DL_IPV6_LINK_LAYER_ADDR:
17419 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17420 		freemsg(addrmp2);
17421 		break;
17422 
17423 	case DL_CURR_DEST_ADDR:
17424 		freemsg(ill->ill_dest_addr_mp);
17425 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17426 		ill->ill_dest_addr_mp = addrmp;
17427 		if (ill->ill_isv6) {
17428 			ill_setdesttoken(ill);
17429 			ipif_setdestlinklocal(ill->ill_ipif);
17430 		}
17431 		freemsg(addrmp2);
17432 		break;
17433 
17434 	case DL_CURR_PHYS_ADDR:
17435 		freemsg(ill->ill_phys_addr_mp);
17436 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17437 		ill->ill_phys_addr_mp = addrmp;
17438 		ill->ill_phys_addr_length = addrlen;
17439 		if (ill->ill_isv6)
17440 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17441 		else
17442 			freemsg(addrmp2);
17443 		if (ill->ill_isv6) {
17444 			ill_setdefaulttoken(ill);
17445 			ipif_setlinklocal(ill->ill_ipif);
17446 		}
17447 		break;
17448 	default:
17449 		ASSERT(0);
17450 	}
17451 
17452 	/*
17453 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17454 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17455 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17456 	 * brought up.
17457 	 */
17458 	status = ill_up_ipifs(ill, q, addrmp);
17459 	mutex_enter(&ill->ill_lock);
17460 	if (ill->ill_dl_up)
17461 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17462 	mutex_exit(&ill->ill_lock);
17463 	if (status != EINPROGRESS)
17464 		ipsq_current_finish(ipsq);
17465 }
17466 
17467 /*
17468  * Helper routine for setting the ill_nd_lla fields.
17469  */
17470 void
17471 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17472 {
17473 	freemsg(ill->ill_nd_lla_mp);
17474 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17475 	ill->ill_nd_lla_mp = ndmp;
17476 	ill->ill_nd_lla_len = addrlen;
17477 }
17478 
17479 /*
17480  * Replumb the ill.
17481  */
17482 int
17483 ill_replumb(ill_t *ill, mblk_t *mp)
17484 {
17485 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17486 
17487 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17488 
17489 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17490 
17491 	mutex_enter(&ill->ill_lock);
17492 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17493 	/* no more nce addition allowed */
17494 	mutex_exit(&ill->ill_lock);
17495 
17496 	/*
17497 	 * If we can quiesce the ill, then continue.  If not, then
17498 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17499 	 */
17500 	ill_down_ipifs(ill, B_FALSE);
17501 
17502 	mutex_enter(&ill->ill_lock);
17503 	if (!ill_is_quiescent(ill)) {
17504 		/* call cannot fail since `conn_t *' argument is NULL */
17505 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17506 		    mp, ILL_DOWN);
17507 		mutex_exit(&ill->ill_lock);
17508 		return (EINPROGRESS);
17509 	}
17510 	mutex_exit(&ill->ill_lock);
17511 
17512 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
17513 	return (0);
17514 }
17515 
17516 /* ARGSUSED */
17517 static void
17518 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
17519 {
17520 	ill_t *ill = q->q_ptr;
17521 	int err;
17522 	conn_t *connp = NULL;
17523 
17524 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17525 	freemsg(ill->ill_replumb_mp);
17526 	ill->ill_replumb_mp = copyb(mp);
17527 
17528 	if (ill->ill_replumb_mp == NULL) {
17529 		/* out of memory */
17530 		ipsq_current_finish(ipsq);
17531 		return;
17532 	}
17533 
17534 	mutex_enter(&ill->ill_lock);
17535 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
17536 	    ill->ill_rq, ill->ill_replumb_mp, 0);
17537 	mutex_exit(&ill->ill_lock);
17538 
17539 	if (!ill->ill_up_ipifs) {
17540 		/* already closing */
17541 		ipsq_current_finish(ipsq);
17542 		return;
17543 	}
17544 	ill->ill_replumbing = 1;
17545 	err = ill_down_ipifs_tail(ill);
17546 
17547 	/*
17548 	 * Successfully quiesced and brought down the interface, now we send
17549 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
17550 	 * DL_NOTE_REPLUMB message.
17551 	 */
17552 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
17553 	    DL_NOTIFY_CONF);
17554 	ASSERT(mp != NULL);
17555 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
17556 	    DL_NOTE_REPLUMB_DONE;
17557 	ill_dlpi_send(ill, mp);
17558 
17559 	/*
17560 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
17561 	 * streams have to be unbound. When all the DLPI exchanges are done,
17562 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
17563 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
17564 	 * arp_bringup_done().
17565 	 */
17566 	ASSERT(ill->ill_replumb_mp != NULL);
17567 	if (err == EINPROGRESS)
17568 		return;
17569 	else
17570 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
17571 	ASSERT(connp == NULL);
17572 	if (err == 0 && ill->ill_replumb_mp != NULL &&
17573 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
17574 		return;
17575 	}
17576 	ipsq_current_finish(ipsq);
17577 }
17578 
17579 /*
17580  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
17581  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
17582  * as per the ioctl.  On failure, an errno is returned.
17583  */
17584 static int
17585 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
17586 {
17587 	int rval;
17588 	struct strioctl iocb;
17589 
17590 	iocb.ic_cmd = cmd;
17591 	iocb.ic_timout = 15;
17592 	iocb.ic_len = bufsize;
17593 	iocb.ic_dp = buf;
17594 
17595 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
17596 }
17597 
17598 /*
17599  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
17600  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
17601  */
17602 static int
17603 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
17604     uint_t *bufsizep, cred_t *cr)
17605 {
17606 	int err;
17607 	struct lifnum lifn;
17608 
17609 	bzero(&lifn, sizeof (lifn));
17610 	lifn.lifn_family = af;
17611 	lifn.lifn_flags = LIFC_UNDER_IPMP;
17612 
17613 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
17614 		return (err);
17615 
17616 	/*
17617 	 * Pad the interface count to account for additional interfaces that
17618 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
17619 	 */
17620 	lifn.lifn_count += 4;
17621 	bzero(lifcp, sizeof (*lifcp));
17622 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
17623 	lifcp->lifc_family = af;
17624 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
17625 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
17626 
17627 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
17628 	if (err != 0) {
17629 		kmem_free(lifcp->lifc_buf, *bufsizep);
17630 		return (err);
17631 	}
17632 
17633 	return (0);
17634 }
17635 
17636 /*
17637  * Helper for ip_interface_cleanup() that removes the loopback interface.
17638  */
17639 static void
17640 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17641 {
17642 	int err;
17643 	struct lifreq lifr;
17644 
17645 	bzero(&lifr, sizeof (lifr));
17646 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
17647 
17648 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
17649 	if (err != 0) {
17650 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
17651 		    "error %d\n", isv6 ? "v6" : "v4", err));
17652 	}
17653 }
17654 
17655 /*
17656  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
17657  * groups and that IPMP data addresses are down.  These conditions must be met
17658  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
17659  */
17660 static void
17661 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17662 {
17663 	int af = isv6 ? AF_INET6 : AF_INET;
17664 	int i, nifs;
17665 	int err;
17666 	uint_t bufsize;
17667 	uint_t lifrsize = sizeof (struct lifreq);
17668 	struct lifconf lifc;
17669 	struct lifreq *lifrp;
17670 
17671 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
17672 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
17673 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
17674 		return;
17675 	}
17676 
17677 	nifs = lifc.lifc_len / lifrsize;
17678 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
17679 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17680 		if (err != 0) {
17681 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
17682 			    "flags: error %d", lifrp->lifr_name, err);
17683 			continue;
17684 		}
17685 
17686 		if (lifrp->lifr_flags & IFF_IPMP) {
17687 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
17688 				continue;
17689 
17690 			lifrp->lifr_flags &= ~IFF_UP;
17691 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
17692 			if (err != 0) {
17693 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17694 				    "bring down (error %d); IPMP interface may "
17695 				    "not be shutdown", lifrp->lifr_name, err);
17696 			}
17697 
17698 			/*
17699 			 * Check if IFF_DUPLICATE is still set -- and if so,
17700 			 * reset the address to clear it.
17701 			 */
17702 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17703 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
17704 				continue;
17705 
17706 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
17707 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
17708 			    lifrp, lifrsize, cr)) != 0) {
17709 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17710 				    "reset DAD (error %d); IPMP interface may "
17711 				    "not be shutdown", lifrp->lifr_name, err);
17712 			}
17713 			continue;
17714 		}
17715 
17716 		lifrp->lifr_groupname[0] = '\0';
17717 		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
17718 		if (err != 0) {
17719 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
17720 			    "IPMP group (error %d); associated IPMP interface "
17721 			    "may not be shutdown", lifrp->lifr_name, err);
17722 			continue;
17723 		}
17724 	}
17725 
17726 	kmem_free(lifc.lifc_buf, bufsize);
17727 }
17728 
17729 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
17730 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
17731 
17732 /*
17733  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
17734  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
17735  * when the user-level processes in the zone are killed and the latter are
17736  * cleaned up by str_stack_shutdown().
17737  */
17738 void
17739 ip_interface_cleanup(ip_stack_t *ipst)
17740 {
17741 	ldi_handle_t	lh;
17742 	ldi_ident_t	li;
17743 	cred_t		*cr;
17744 	int		err;
17745 	int		i;
17746 	char		*devs[] = { UDP6DEV, UDPDEV };
17747 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
17748 
17749 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
17750 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
17751 		    " error %d", err);
17752 		return;
17753 	}
17754 
17755 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
17756 	ASSERT(cr != NULL);
17757 
17758 	/*
17759 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
17760 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
17761 	 * the loop.)
17762 	 */
17763 	for (i = 0; i < 2; i++) {
17764 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
17765 		if (err != 0) {
17766 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
17767 			    " error %d", devs[i], err);
17768 			continue;
17769 		}
17770 
17771 		ip_loopback_removeif(lh, i == 0, cr);
17772 		ip_ipmp_cleanup(lh, i == 0, cr);
17773 
17774 		(void) ldi_close(lh, FREAD|FWRITE, cr);
17775 	}
17776 
17777 	ldi_ident_release(li);
17778 	crfree(cr);
17779 }
17780 
17781 /*
17782  * This needs to be in-sync with nic_event_t definition
17783  */
17784 static const char *
17785 ill_hook_event2str(nic_event_t event)
17786 {
17787 	switch (event) {
17788 	case NE_PLUMB:
17789 		return ("PLUMB");
17790 	case NE_UNPLUMB:
17791 		return ("UNPLUMB");
17792 	case NE_UP:
17793 		return ("UP");
17794 	case NE_DOWN:
17795 		return ("DOWN");
17796 	case NE_ADDRESS_CHANGE:
17797 		return ("ADDRESS_CHANGE");
17798 	case NE_LIF_UP:
17799 		return ("LIF_UP");
17800 	case NE_LIF_DOWN:
17801 		return ("LIF_DOWN");
17802 	case NE_IFINDEX_CHANGE:
17803 		return ("IFINDEX_CHANGE");
17804 	default:
17805 		return ("UNKNOWN");
17806 	}
17807 }
17808 
17809 void
17810 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
17811     nic_event_data_t data, size_t datalen)
17812 {
17813 	ip_stack_t		*ipst = ill->ill_ipst;
17814 	hook_nic_event_int_t	*info;
17815 	const char		*str = NULL;
17816 
17817 	/* create a new nic event info */
17818 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
17819 		goto fail;
17820 
17821 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
17822 	info->hnei_event.hne_lif = lif;
17823 	info->hnei_event.hne_event = event;
17824 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
17825 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
17826 	info->hnei_event.hne_data = NULL;
17827 	info->hnei_event.hne_datalen = 0;
17828 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
17829 
17830 	if (data != NULL && datalen != 0) {
17831 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
17832 		if (info->hnei_event.hne_data == NULL)
17833 			goto fail;
17834 		bcopy(data, info->hnei_event.hne_data, datalen);
17835 		info->hnei_event.hne_datalen = datalen;
17836 	}
17837 
17838 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
17839 	    DDI_NOSLEEP) == DDI_SUCCESS)
17840 		return;
17841 
17842 fail:
17843 	if (info != NULL) {
17844 		if (info->hnei_event.hne_data != NULL) {
17845 			kmem_free(info->hnei_event.hne_data,
17846 			    info->hnei_event.hne_datalen);
17847 		}
17848 		kmem_free(info, sizeof (hook_nic_event_t));
17849 	}
17850 	str = ill_hook_event2str(event);
17851 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
17852 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
17853 }
17854 
17855 static int
17856 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
17857 {
17858 	int		err = 0;
17859 	const in_addr_t	*addr = NULL;
17860 	nce_t		*nce = NULL;
17861 	ill_t		*ill = ipif->ipif_ill;
17862 	ill_t		*bound_ill;
17863 	boolean_t	added_ipif = B_FALSE;
17864 	uint16_t	state;
17865 	uint16_t	flags;
17866 
17867 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
17868 	    ill_t *, ill, ipif_t *, ipif);
17869 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
17870 		addr = &ipif->ipif_lcl_addr;
17871 	}
17872 
17873 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
17874 		if (res_act != Res_act_initial)
17875 			return (EINVAL);
17876 	}
17877 
17878 	if (addr != NULL) {
17879 		ipmp_illgrp_t	*illg = ill->ill_grp;
17880 
17881 		/* add unicast nce for the local addr */
17882 
17883 		if (IS_IPMP(ill)) {
17884 			/*
17885 			 * If we're here via ipif_up(), then the ipif
17886 			 * won't be bound yet -- add it to the group,
17887 			 * which will bind it if possible. (We would
17888 			 * add it in ipif_up(), but deleting on failure
17889 			 * there is gruesome.)  If we're here via
17890 			 * ipmp_ill_bind_ipif(), then the ipif has
17891 			 * already been added to the group and we
17892 			 * just need to use the binding.
17893 			 */
17894 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
17895 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
17896 				if (bound_ill == NULL) {
17897 					/*
17898 					 * We couldn't bind the ipif to an ill
17899 					 * yet, so we have nothing to publish.
17900 					 * Mark the address as ready and return.
17901 					 */
17902 					ipif->ipif_addr_ready = 1;
17903 					return (0);
17904 				}
17905 				added_ipif = B_TRUE;
17906 			}
17907 		} else {
17908 			bound_ill = ill;
17909 		}
17910 
17911 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
17912 		    NCE_F_NONUD);
17913 		/*
17914 		 * If this is an initial bring-up (or the ipif was never
17915 		 * completely brought up), do DAD.  Otherwise, we're here
17916 		 * because IPMP has rebound an address to this ill: send
17917 		 * unsolicited advertisements (ARP announcements) to
17918 		 * inform others.
17919 		 */
17920 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
17921 			state = ND_UNCHANGED; /* compute in nce_add_common() */
17922 		} else {
17923 			state = ND_REACHABLE;
17924 			flags |= NCE_F_UNSOL_ADV;
17925 		}
17926 
17927 retry:
17928 		err = nce_lookup_then_add_v4(ill,
17929 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
17930 		    addr, flags, state, &nce);
17931 
17932 		/*
17933 		 * note that we may encounter EEXIST if we are moving
17934 		 * the nce as a result of a rebind operation.
17935 		 */
17936 		switch (err) {
17937 		case 0:
17938 			ipif->ipif_added_nce = 1;
17939 			nce->nce_ipif_cnt++;
17940 			break;
17941 		case EEXIST:
17942 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
17943 			    ill->ill_name));
17944 			if (!NCE_MYADDR(nce->nce_common)) {
17945 				/*
17946 				 * A leftover nce from before this address
17947 				 * existed
17948 				 */
17949 				ncec_delete(nce->nce_common);
17950 				nce_refrele(nce);
17951 				nce = NULL;
17952 				goto retry;
17953 			}
17954 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
17955 				nce_refrele(nce);
17956 				nce = NULL;
17957 				ip1dbg(("ipif_arp_up: NCE already exists "
17958 				    "for %s:%u\n", ill->ill_name,
17959 				    ipif->ipif_id));
17960 				goto arp_up_done;
17961 			}
17962 			/*
17963 			 * Duplicate local addresses are permissible for
17964 			 * IPIF_POINTOPOINT interfaces which will get marked
17965 			 * IPIF_UNNUMBERED later in
17966 			 * ip_addr_availability_check().
17967 			 *
17968 			 * The nce_ipif_cnt field tracks the number of
17969 			 * ipifs that have nce_addr as their local address.
17970 			 */
17971 			ipif->ipif_addr_ready = 1;
17972 			ipif->ipif_added_nce = 1;
17973 			nce->nce_ipif_cnt++;
17974 			err = 0;
17975 			break;
17976 		default:
17977 			ASSERT(nce == NULL);
17978 			goto arp_up_done;
17979 		}
17980 		if (arp_no_defense) {
17981 			if ((ipif->ipif_flags & IPIF_UP) &&
17982 			    !ipif->ipif_addr_ready)
17983 				ipif_up_notify(ipif);
17984 			ipif->ipif_addr_ready = 1;
17985 		}
17986 	} else {
17987 		/* zero address. nothing to publish */
17988 		ipif->ipif_addr_ready = 1;
17989 	}
17990 	if (nce != NULL)
17991 		nce_refrele(nce);
17992 arp_up_done:
17993 	if (added_ipif && err != 0)
17994 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
17995 	return (err);
17996 }
17997 
17998 int
17999 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18000 {
18001 	int 		err = 0;
18002 	ill_t 		*ill = ipif->ipif_ill;
18003 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
18004 
18005 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18006 	    ill_t *, ill, ipif_t *, ipif);
18007 
18008 	/*
18009 	 * need to bring up ARP or setup mcast mapping only
18010 	 * when the first interface is coming UP.
18011 	 */
18012 	first_interface = (ill->ill_ipif_up_count == 0 &&
18013 	    ill->ill_ipif_dup_count == 0 && !was_dup);
18014 
18015 	if (res_act == Res_act_initial && first_interface) {
18016 		/*
18017 		 * Send ATTACH + BIND
18018 		 */
18019 		err = arp_ll_up(ill);
18020 		if (err != EINPROGRESS && err != 0)
18021 			return (err);
18022 
18023 		/*
18024 		 * Add NCE for local address. Start DAD.
18025 		 * we'll wait to hear that DAD has finished
18026 		 * before using the interface.
18027 		 */
18028 		if (err == EINPROGRESS)
18029 			wait_for_dlpi = B_TRUE;
18030 	}
18031 
18032 	if (!wait_for_dlpi)
18033 		(void) ipif_arp_up_done_tail(ipif, res_act);
18034 
18035 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
18036 }
18037 
18038 /*
18039  * Finish processing of "arp_up" after all the DLPI message
18040  * exchanges have completed between arp and the driver.
18041  */
18042 void
18043 arp_bringup_done(ill_t *ill, int err)
18044 {
18045 	mblk_t	*mp1;
18046 	ipif_t  *ipif;
18047 	conn_t *connp = NULL;
18048 	ipsq_t	*ipsq;
18049 	queue_t *q;
18050 
18051 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18052 
18053 	ASSERT(IAM_WRITER_ILL(ill));
18054 
18055 	ipsq = ill->ill_phyint->phyint_ipsq;
18056 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18057 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18058 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18059 	if (mp1 == NULL) /* bringup was aborted by the user */
18060 		return;
18061 
18062 	/*
18063 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18064 	 * must have an associated conn_t.  Otherwise, we're bringing this
18065 	 * interface back up as part of handling an asynchronous event (e.g.,
18066 	 * physical address change).
18067 	 */
18068 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18069 		ASSERT(connp != NULL);
18070 		q = CONNP_TO_WQ(connp);
18071 	} else {
18072 		ASSERT(connp == NULL);
18073 		q = ill->ill_rq;
18074 	}
18075 	if (err == 0) {
18076 		if (ipif->ipif_isv6) {
18077 			if ((err = ipif_up_done_v6(ipif)) != 0)
18078 				ip0dbg(("arp_bringup_done: init failed\n"));
18079 		} else {
18080 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18081 			if (err != 0 ||
18082 			    (err = ipif_up_done(ipif)) != 0) {
18083 				ip0dbg(("arp_bringup_done: "
18084 				    "init failed err %x\n", err));
18085 				(void) ipif_arp_down(ipif);
18086 			}
18087 
18088 		}
18089 	} else {
18090 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18091 	}
18092 
18093 	if ((err == 0) && (ill->ill_up_ipifs)) {
18094 		err = ill_up_ipifs(ill, q, mp1);
18095 		if (err == EINPROGRESS)
18096 			return;
18097 	}
18098 
18099 	/*
18100 	 * If we have a moved ipif to bring up, and everything has succeeded
18101 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18102 	 * down -- the admin can try to bring it up by hand if need be.
18103 	 */
18104 	if (ill->ill_move_ipif != NULL) {
18105 		ipif = ill->ill_move_ipif;
18106 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18107 		    ipif->ipif_ill->ill_name));
18108 		ill->ill_move_ipif = NULL;
18109 		if (err == 0) {
18110 			err = ipif_up(ipif, q, mp1);
18111 			if (err == EINPROGRESS)
18112 				return;
18113 		}
18114 	}
18115 
18116 	/*
18117 	 * The operation must complete without EINPROGRESS since
18118 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18119 	 * Otherwise, the operation will be stuck forever in the ipsq.
18120 	 */
18121 	ASSERT(err != EINPROGRESS);
18122 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18123 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18124 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18125 		    ill_t *, ill, ipif_t *, ipif);
18126 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18127 	} else {
18128 		ipsq_current_finish(ipsq);
18129 	}
18130 }
18131 
18132 /*
18133  * Finish processing of arp replumb after all the DLPI message
18134  * exchanges have completed between arp and the driver.
18135  */
18136 void
18137 arp_replumb_done(ill_t *ill, int err)
18138 {
18139 	mblk_t	*mp1;
18140 	ipif_t  *ipif;
18141 	conn_t *connp = NULL;
18142 	ipsq_t	*ipsq;
18143 	queue_t *q;
18144 
18145 	ASSERT(IAM_WRITER_ILL(ill));
18146 
18147 	ipsq = ill->ill_phyint->phyint_ipsq;
18148 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18149 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18150 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18151 	if (mp1 == NULL) {
18152 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18153 		    ipsq->ipsq_xop->ipx_current_ioctl));
18154 		/* bringup was aborted by the user */
18155 		return;
18156 	}
18157 	/*
18158 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18159 	 * must have an associated conn_t.  Otherwise, we're bringing this
18160 	 * interface back up as part of handling an asynchronous event (e.g.,
18161 	 * physical address change).
18162 	 */
18163 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18164 		ASSERT(connp != NULL);
18165 		q = CONNP_TO_WQ(connp);
18166 	} else {
18167 		ASSERT(connp == NULL);
18168 		q = ill->ill_rq;
18169 	}
18170 	if ((err == 0) && (ill->ill_up_ipifs)) {
18171 		err = ill_up_ipifs(ill, q, mp1);
18172 		if (err == EINPROGRESS)
18173 			return;
18174 	}
18175 	/*
18176 	 * The operation must complete without EINPROGRESS since
18177 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18178 	 * Otherwise, the operation will be stuck forever in the ipsq.
18179 	 */
18180 	ASSERT(err != EINPROGRESS);
18181 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18182 		DTRACE_PROBE4(ipif__ioctl, char *,
18183 		    "arp_replumb_done finish",
18184 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18185 		    ill_t *, ill, ipif_t *, ipif);
18186 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18187 	} else {
18188 		ipsq_current_finish(ipsq);
18189 	}
18190 }
18191 
18192 void
18193 ipif_up_notify(ipif_t *ipif)
18194 {
18195 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18196 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18197 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18198 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18199 	    NE_LIF_UP, NULL, 0);
18200 }
18201 
18202 /*
18203  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18204  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18205  * TPI end points with STREAMS modules pushed above.  This is assured by not
18206  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18207  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18208  * while unwinding from the ispq and that could be a thread from the bottom.
18209  */
18210 /* ARGSUSED */
18211 int
18212 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18213     ip_ioctl_cmd_t *ipip, void *arg)
18214 {
18215 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18216 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18217 	int ret = 0;
18218 	int i;
18219 	size_t size;
18220 	ip_stack_t *ipst;
18221 	zoneid_t zoneid;
18222 	ilb_stack_t *ilbs;
18223 
18224 	ipst = CONNQ_TO_IPST(q);
18225 	ilbs = ipst->ips_netstack->netstack_ilb;
18226 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18227 
18228 	switch (command) {
18229 	case ILB_CREATE_RULE: {
18230 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18231 
18232 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18233 			ret = EINVAL;
18234 			break;
18235 		}
18236 
18237 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18238 		break;
18239 	}
18240 	case ILB_DESTROY_RULE:
18241 	case ILB_ENABLE_RULE:
18242 	case ILB_DISABLE_RULE: {
18243 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18244 
18245 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18246 			ret = EINVAL;
18247 			break;
18248 		}
18249 
18250 		if (cmd->flags & ILB_RULE_ALLRULES) {
18251 			if (command == ILB_DESTROY_RULE) {
18252 				ilb_rule_del_all(ilbs, zoneid);
18253 				break;
18254 			} else if (command == ILB_ENABLE_RULE) {
18255 				ilb_rule_enable_all(ilbs, zoneid);
18256 				break;
18257 			} else if (command == ILB_DISABLE_RULE) {
18258 				ilb_rule_disable_all(ilbs, zoneid);
18259 				break;
18260 			}
18261 		} else {
18262 			if (command == ILB_DESTROY_RULE) {
18263 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18264 			} else if (command == ILB_ENABLE_RULE) {
18265 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18266 				    NULL);
18267 			} else if (command == ILB_DISABLE_RULE) {
18268 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18269 				    NULL);
18270 			}
18271 		}
18272 		break;
18273 	}
18274 	case ILB_NUM_RULES: {
18275 		ilb_num_rules_cmd_t *cmd;
18276 
18277 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18278 			ret = EINVAL;
18279 			break;
18280 		}
18281 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18282 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18283 		break;
18284 	}
18285 	case ILB_RULE_NAMES: {
18286 		ilb_rule_names_cmd_t *cmd;
18287 
18288 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18289 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18290 		    cmd->num_names == 0) {
18291 			ret = EINVAL;
18292 			break;
18293 		}
18294 		size = cmd->num_names * ILB_RULE_NAMESZ;
18295 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18296 		    size != cmd_mp->b_wptr) {
18297 			ret = EINVAL;
18298 			break;
18299 		}
18300 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18301 		break;
18302 	}
18303 	case ILB_NUM_SERVERS: {
18304 		ilb_num_servers_cmd_t *cmd;
18305 
18306 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18307 			ret = EINVAL;
18308 			break;
18309 		}
18310 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18311 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18312 		    &(cmd->num));
18313 		break;
18314 	}
18315 	case ILB_LIST_RULE: {
18316 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18317 
18318 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18319 			ret = EINVAL;
18320 			break;
18321 		}
18322 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18323 		break;
18324 	}
18325 	case ILB_LIST_SERVERS: {
18326 		ilb_servers_info_cmd_t *cmd;
18327 
18328 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18329 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18330 		    cmd->num_servers == 0) {
18331 			ret = EINVAL;
18332 			break;
18333 		}
18334 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18335 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18336 		    size != cmd_mp->b_wptr) {
18337 			ret = EINVAL;
18338 			break;
18339 		}
18340 
18341 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18342 		    &cmd->num_servers);
18343 		break;
18344 	}
18345 	case ILB_ADD_SERVERS: {
18346 		ilb_servers_info_cmd_t *cmd;
18347 		ilb_rule_t *rule;
18348 
18349 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18350 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18351 			ret = EINVAL;
18352 			break;
18353 		}
18354 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18355 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18356 		    size != cmd_mp->b_wptr) {
18357 			ret = EINVAL;
18358 			break;
18359 		}
18360 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18361 		if (rule == NULL) {
18362 			ASSERT(ret != 0);
18363 			break;
18364 		}
18365 		for (i = 0; i < cmd->num_servers; i++) {
18366 			ilb_server_info_t *s;
18367 
18368 			s = &cmd->servers[i];
18369 			s->err = ilb_server_add(ilbs, rule, s);
18370 		}
18371 		ILB_RULE_REFRELE(rule);
18372 		break;
18373 	}
18374 	case ILB_DEL_SERVERS:
18375 	case ILB_ENABLE_SERVERS:
18376 	case ILB_DISABLE_SERVERS: {
18377 		ilb_servers_cmd_t *cmd;
18378 		ilb_rule_t *rule;
18379 		int (*f)();
18380 
18381 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18382 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18383 			ret = EINVAL;
18384 			break;
18385 		}
18386 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18387 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18388 		    size != cmd_mp->b_wptr) {
18389 			ret = EINVAL;
18390 			break;
18391 		}
18392 
18393 		if (command == ILB_DEL_SERVERS)
18394 			f = ilb_server_del;
18395 		else if (command == ILB_ENABLE_SERVERS)
18396 			f = ilb_server_enable;
18397 		else if (command == ILB_DISABLE_SERVERS)
18398 			f = ilb_server_disable;
18399 
18400 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18401 		if (rule == NULL) {
18402 			ASSERT(ret != 0);
18403 			break;
18404 		}
18405 
18406 		for (i = 0; i < cmd->num_servers; i++) {
18407 			ilb_server_arg_t *s;
18408 
18409 			s = &cmd->servers[i];
18410 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18411 		}
18412 		ILB_RULE_REFRELE(rule);
18413 		break;
18414 	}
18415 	case ILB_LIST_NAT_TABLE: {
18416 		ilb_list_nat_cmd_t *cmd;
18417 
18418 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18419 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18420 			ret = EINVAL;
18421 			break;
18422 		}
18423 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18424 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18425 		    size != cmd_mp->b_wptr) {
18426 			ret = EINVAL;
18427 			break;
18428 		}
18429 
18430 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18431 		    &cmd->flags);
18432 		break;
18433 	}
18434 	case ILB_LIST_STICKY_TABLE: {
18435 		ilb_list_sticky_cmd_t *cmd;
18436 
18437 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18438 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18439 			ret = EINVAL;
18440 			break;
18441 		}
18442 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18443 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18444 		    size != cmd_mp->b_wptr) {
18445 			ret = EINVAL;
18446 			break;
18447 		}
18448 
18449 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18450 		    &cmd->num_sticky, &cmd->flags);
18451 		break;
18452 	}
18453 	default:
18454 		ret = EINVAL;
18455 		break;
18456 	}
18457 done:
18458 	return (ret);
18459 }
18460 
18461 /* Remove all cache entries for this logical interface */
18462 void
18463 ipif_nce_down(ipif_t *ipif)
18464 {
18465 	ill_t *ill = ipif->ipif_ill;
18466 	nce_t *nce;
18467 
18468 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18469 	    ill_t *, ill, ipif_t *, ipif);
18470 	if (ipif->ipif_added_nce) {
18471 		if (ipif->ipif_isv6)
18472 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18473 		else
18474 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18475 		if (nce != NULL) {
18476 			if (--nce->nce_ipif_cnt == 0)
18477 				ncec_delete(nce->nce_common);
18478 			ipif->ipif_added_nce = 0;
18479 			nce_refrele(nce);
18480 		} else {
18481 			/*
18482 			 * nce may already be NULL because it was already
18483 			 * flushed, e.g., due to a call to nce_flush
18484 			 */
18485 			ipif->ipif_added_nce = 0;
18486 		}
18487 	}
18488 	/*
18489 	 * Make IPMP aware of the deleted data address.
18490 	 */
18491 	if (IS_IPMP(ill))
18492 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18493 
18494 	/*
18495 	 * Remove all other nces dependent on this ill when the last ipif
18496 	 * is going away.
18497 	 */
18498 	if (ill->ill_ipif_up_count == 0) {
18499 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18500 		    (uchar_t *)ill, ill->ill_ipst);
18501 		if (IS_UNDER_IPMP(ill))
18502 			nce_flush(ill, B_TRUE);
18503 	}
18504 }
18505 
18506 /*
18507  * find the first interface that uses usill for its source address.
18508  */
18509 ill_t *
18510 ill_lookup_usesrc(ill_t *usill)
18511 {
18512 	ip_stack_t *ipst = usill->ill_ipst;
18513 	ill_t *ill;
18514 
18515 	ASSERT(usill != NULL);
18516 
18517 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
18518 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
18519 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18520 	for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
18521 	    ill = ill->ill_usesrc_grp_next) {
18522 		if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
18523 		    !ILL_IS_CONDEMNED(ill)) {
18524 			ill_refhold(ill);
18525 			break;
18526 		}
18527 	}
18528 	rw_exit(&ipst->ips_ill_g_lock);
18529 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
18530 	return (ill);
18531 }
18532