xref: /titanic_50/usr/src/uts/common/inet/ip/ip_if.c (revision e1d3217b9afde782c4d3e946fda0e6ef36a61306)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 1990 Mentat Inc.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved.
26  */
27 
28 /*
29  * This file contains the interface control functions for IP.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/dlpi.h>
35 #include <sys/stropts.h>
36 #include <sys/strsun.h>
37 #include <sys/sysmacros.h>
38 #include <sys/strsubr.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 #include <sys/bitmap.h>
49 #include <sys/cpuvar.h>
50 #include <sys/time.h>
51 #include <sys/ctype.h>
52 #include <sys/kmem.h>
53 #include <sys/systm.h>
54 #include <sys/param.h>
55 #include <sys/socket.h>
56 #include <sys/isa_defs.h>
57 #include <net/if.h>
58 #include <net/if_arp.h>
59 #include <net/if_types.h>
60 #include <net/if_dl.h>
61 #include <net/route.h>
62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <netinet/ip6.h>
65 #include <netinet/icmp6.h>
66 #include <netinet/igmp_var.h>
67 #include <sys/policy.h>
68 #include <sys/ethernet.h>
69 #include <sys/callb.h>
70 #include <sys/md5.h>
71 
72 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
73 #include <inet/mi.h>
74 #include <inet/nd.h>
75 #include <inet/tunables.h>
76 #include <inet/arp.h>
77 #include <inet/ip_arp.h>
78 #include <inet/mib2.h>
79 #include <inet/ip.h>
80 #include <inet/ip6.h>
81 #include <inet/ip6_asp.h>
82 #include <inet/tcp.h>
83 #include <inet/ip_multi.h>
84 #include <inet/ip_ire.h>
85 #include <inet/ip_ftable.h>
86 #include <inet/ip_rts.h>
87 #include <inet/ip_ndp.h>
88 #include <inet/ip_if.h>
89 #include <inet/ip_impl.h>
90 #include <inet/sctp_ip.h>
91 #include <inet/ip_netinfo.h>
92 #include <inet/ilb_ip.h>
93 
94 #include <netinet/igmp.h>
95 #include <inet/ip_listutils.h>
96 #include <inet/ipclassifier.h>
97 #include <sys/mac_client.h>
98 #include <sys/dld.h>
99 #include <sys/mac_flow.h>
100 
101 #include <sys/systeminfo.h>
102 #include <sys/bootconf.h>
103 
104 #include <sys/tsol/tndb.h>
105 #include <sys/tsol/tnet.h>
106 
107 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */
108 #include <inet/udp_impl.h> /* needed for udp_stack_t */
109 
110 /* The character which tells where the ill_name ends */
111 #define	IPIF_SEPARATOR_CHAR	':'
112 
113 /* IP ioctl function table entry */
114 typedef struct ipft_s {
115 	int	ipft_cmd;
116 	pfi_t	ipft_pfi;
117 	int	ipft_min_size;
118 	int	ipft_flags;
119 } ipft_t;
120 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
121 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
122 
123 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
124 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
125 		    char *value, caddr_t cp, cred_t *ioc_cr);
126 
127 static boolean_t ill_is_quiescent(ill_t *);
128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
129 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
130 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
131     mblk_t *mp, boolean_t need_up);
132 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133     mblk_t *mp, boolean_t need_up);
134 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
135     queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
137     mblk_t *mp);
138 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139     mblk_t *mp);
140 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
141     queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
143     int ioccmd, struct linkblk *li);
144 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
145 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
146 static void	ipsq_flush(ill_t *ill);
147 
148 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
149     queue_t *q, mblk_t *mp, boolean_t need_up);
150 static void	ipsq_delete(ipsq_t *);
151 
152 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
153     boolean_t initialize, boolean_t insert, int *errorp);
154 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
155 static void	ipif_delete_bcast_ires(ipif_t *ipif);
156 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
157 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
158 		    boolean_t isv6);
159 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
160 static void	ipif_free(ipif_t *ipif);
161 static void	ipif_free_tail(ipif_t *ipif);
162 static void	ipif_set_default(ipif_t *ipif);
163 static int	ipif_set_values(queue_t *q, mblk_t *mp,
164     char *interf_name, uint_t *ppa);
165 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
166     queue_t *q);
167 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
168     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
169     ip_stack_t *);
170 static ipif_t	*ipif_lookup_on_name_async(char *name, size_t namelen,
171     boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func,
172     int *error, ip_stack_t *);
173 
174 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
175 static void	ill_delete_interface_type(ill_if_t *);
176 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
177 static void	ill_dl_down(ill_t *ill);
178 static void	ill_down(ill_t *ill);
179 static void	ill_down_ipifs(ill_t *, boolean_t);
180 static void	ill_free_mib(ill_t *ill);
181 static void	ill_glist_delete(ill_t *);
182 static void	ill_phyint_reinit(ill_t *ill);
183 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
184 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
185 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
186 
187 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
188 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
189 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
190 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
191 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
192 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
193 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
194 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
195 static ip_v4mapinfo_func_t ip_mbcast_mapping;
196 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
197 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
198 static void	phyint_free(phyint_t *);
199 
200 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
201 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
202 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
203 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
204 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
205 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
206     dl_capability_sub_t *);
207 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
208 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
209 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
210 		    dl_capability_sub_t *);
211 static void	ill_capability_dld_enable(ill_t *);
212 static void	ill_capability_ack_thr(void *);
213 static void	ill_capability_lso_enable(ill_t *);
214 
215 static ill_t	*ill_prev_usesrc(ill_t *);
216 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
217 static void	ill_disband_usesrc_group(ill_t *);
218 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
219 
220 #ifdef DEBUG
221 static	void	ill_trace_cleanup(const ill_t *);
222 static	void	ipif_trace_cleanup(const ipif_t *);
223 #endif
224 
225 static	void	ill_dlpi_clear_deferred(ill_t *ill);
226 
227 /*
228  * if we go over the memory footprint limit more than once in this msec
229  * interval, we'll start pruning aggressively.
230  */
231 int ip_min_frag_prune_time = 0;
232 
233 static ipft_t	ip_ioctl_ftbl[] = {
234 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
235 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
236 		IPFT_F_NO_REPLY },
237 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
238 	{ 0 }
239 };
240 
241 /* Simple ICMP IP Header Template */
242 static ipha_t icmp_ipha = {
243 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
244 };
245 
246 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
247 
248 static ip_m_t   ip_m_tbl[] = {
249 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
250 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
251 	    ip_nodef_v6intfid },
252 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
253 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
254 	    ip_nodef_v6intfid },
255 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
256 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
257 	    ip_nodef_v6intfid },
258 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
259 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
260 	    ip_nodef_v6intfid },
261 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
262 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
263 	    ip_nodef_v6intfid },
264 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
265 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
266 	    ip_nodef_v6intfid },
267 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
268 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
269 	    ip_ipv4_v6destintfid },
270 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
271 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
272 	    ip_ipv6_v6destintfid },
273 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
274 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
275 	    ip_nodef_v6intfid },
276 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
277 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
278 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
279 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
280 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
281 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
282 	    ip_nodef_v6intfid }
283 };
284 
285 static ill_t	ill_null;		/* Empty ILL for init. */
286 char	ipif_loopback_name[] = "lo0";
287 
288 /* These are used by all IP network modules. */
289 sin6_t	sin6_null;	/* Zero address for quick clears */
290 sin_t	sin_null;	/* Zero address for quick clears */
291 
292 /* When set search for unused ipif_seqid */
293 static ipif_t	ipif_zero;
294 
295 /*
296  * ppa arena is created after these many
297  * interfaces have been plumbed.
298  */
299 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
300 
301 /*
302  * Allocate per-interface mibs.
303  * Returns true if ok. False otherwise.
304  *  ipsq  may not yet be allocated (loopback case ).
305  */
306 static boolean_t
307 ill_allocate_mibs(ill_t *ill)
308 {
309 	/* Already allocated? */
310 	if (ill->ill_ip_mib != NULL) {
311 		if (ill->ill_isv6)
312 			ASSERT(ill->ill_icmp6_mib != NULL);
313 		return (B_TRUE);
314 	}
315 
316 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
317 	    KM_NOSLEEP);
318 	if (ill->ill_ip_mib == NULL) {
319 		return (B_FALSE);
320 	}
321 
322 	/* Setup static information */
323 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
324 	    sizeof (mib2_ipIfStatsEntry_t));
325 	if (ill->ill_isv6) {
326 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
327 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
328 		    sizeof (mib2_ipv6AddrEntry_t));
329 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
330 		    sizeof (mib2_ipv6RouteEntry_t));
331 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
332 		    sizeof (mib2_ipv6NetToMediaEntry_t));
333 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
334 		    sizeof (ipv6_member_t));
335 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
336 		    sizeof (ipv6_grpsrc_t));
337 	} else {
338 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
339 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
340 		    sizeof (mib2_ipAddrEntry_t));
341 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
342 		    sizeof (mib2_ipRouteEntry_t));
343 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
344 		    sizeof (mib2_ipNetToMediaEntry_t));
345 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
346 		    sizeof (ip_member_t));
347 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
348 		    sizeof (ip_grpsrc_t));
349 
350 		/*
351 		 * For a v4 ill, we are done at this point, because per ill
352 		 * icmp mibs are only used for v6.
353 		 */
354 		return (B_TRUE);
355 	}
356 
357 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
358 	    KM_NOSLEEP);
359 	if (ill->ill_icmp6_mib == NULL) {
360 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
361 		ill->ill_ip_mib = NULL;
362 		return (B_FALSE);
363 	}
364 	/* static icmp info */
365 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
366 	    sizeof (mib2_ipv6IfIcmpEntry_t);
367 	/*
368 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
369 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
370 	 * -> ill_phyint_reinit
371 	 */
372 	return (B_TRUE);
373 }
374 
375 /*
376  * Completely vaporize a lower level tap and all associated interfaces.
377  * ill_delete is called only out of ip_close when the device control
378  * stream is being closed.
379  */
380 void
381 ill_delete(ill_t *ill)
382 {
383 	ipif_t	*ipif;
384 	ill_t	*prev_ill;
385 	ip_stack_t	*ipst = ill->ill_ipst;
386 
387 	/*
388 	 * ill_delete may be forcibly entering the ipsq. The previous
389 	 * ioctl may not have completed and may need to be aborted.
390 	 * ipsq_flush takes care of it. If we don't need to enter the
391 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
392 	 * ill_delete_tail is sufficient.
393 	 */
394 	ipsq_flush(ill);
395 
396 	/*
397 	 * Nuke all interfaces.  ipif_free will take down the interface,
398 	 * remove it from the list, and free the data structure.
399 	 * Walk down the ipif list and remove the logical interfaces
400 	 * first before removing the main ipif. We can't unplumb
401 	 * zeroth interface first in the case of IPv6 as update_conn_ill
402 	 * -> ip_ll_multireq de-references ill_ipif for checking
403 	 * POINTOPOINT.
404 	 *
405 	 * If ill_ipif was not properly initialized (i.e low on memory),
406 	 * then no interfaces to clean up. In this case just clean up the
407 	 * ill.
408 	 */
409 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
410 		ipif_free(ipif);
411 
412 	/*
413 	 * clean out all the nce_t entries that depend on this
414 	 * ill for the ill_phys_addr.
415 	 */
416 	nce_flush(ill, B_TRUE);
417 
418 	/* Clean up msgs on pending upcalls for mrouted */
419 	reset_mrt_ill(ill);
420 
421 	update_conn_ill(ill, ipst);
422 
423 	/*
424 	 * Remove multicast references added as a result of calls to
425 	 * ip_join_allmulti().
426 	 */
427 	ip_purge_allmulti(ill);
428 
429 	/*
430 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
431 	 */
432 	if (IS_UNDER_IPMP(ill))
433 		ipmp_ill_leave_illgrp(ill);
434 
435 	/*
436 	 * ill_down will arrange to blow off any IRE's dependent on this
437 	 * ILL, and shut down fragmentation reassembly.
438 	 */
439 	ill_down(ill);
440 
441 	/* Let SCTP know, so that it can remove this from its list. */
442 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
443 
444 	/*
445 	 * Walk all CONNs that can have a reference on an ire or nce for this
446 	 * ill (we actually walk all that now have stale references).
447 	 */
448 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
449 
450 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
451 	if (ill->ill_isv6)
452 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
453 
454 	/*
455 	 * If an address on this ILL is being used as a source address then
456 	 * clear out the pointers in other ILLs that point to this ILL.
457 	 */
458 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
459 	if (ill->ill_usesrc_grp_next != NULL) {
460 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
461 			ill_disband_usesrc_group(ill);
462 		} else {	/* consumer of the usesrc ILL */
463 			prev_ill = ill_prev_usesrc(ill);
464 			prev_ill->ill_usesrc_grp_next =
465 			    ill->ill_usesrc_grp_next;
466 		}
467 	}
468 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
469 }
470 
471 static void
472 ipif_non_duplicate(ipif_t *ipif)
473 {
474 	ill_t *ill = ipif->ipif_ill;
475 	mutex_enter(&ill->ill_lock);
476 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
477 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
478 		ASSERT(ill->ill_ipif_dup_count > 0);
479 		ill->ill_ipif_dup_count--;
480 	}
481 	mutex_exit(&ill->ill_lock);
482 }
483 
484 /*
485  * ill_delete_tail is called from ip_modclose after all references
486  * to the closing ill are gone. The wait is done in ip_modclose
487  */
488 void
489 ill_delete_tail(ill_t *ill)
490 {
491 	mblk_t	**mpp;
492 	ipif_t	*ipif;
493 	ip_stack_t *ipst = ill->ill_ipst;
494 
495 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
496 		ipif_non_duplicate(ipif);
497 		(void) ipif_down_tail(ipif);
498 	}
499 
500 	ASSERT(ill->ill_ipif_dup_count == 0);
501 
502 	/*
503 	 * If polling capability is enabled (which signifies direct
504 	 * upcall into IP and driver has ill saved as a handle),
505 	 * we need to make sure that unbind has completed before we
506 	 * let the ill disappear and driver no longer has any reference
507 	 * to this ill.
508 	 */
509 	mutex_enter(&ill->ill_lock);
510 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
511 		cv_wait(&ill->ill_cv, &ill->ill_lock);
512 	mutex_exit(&ill->ill_lock);
513 	ASSERT(!(ill->ill_capabilities &
514 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
515 
516 	if (ill->ill_net_type != IRE_LOOPBACK)
517 		qprocsoff(ill->ill_rq);
518 
519 	/*
520 	 * We do an ipsq_flush once again now. New messages could have
521 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
522 	 * could also have landed up if an ioctl thread had looked up
523 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
524 	 * enqueued the ioctl when we did the ipsq_flush last time.
525 	 */
526 	ipsq_flush(ill);
527 
528 	/*
529 	 * Free capabilities.
530 	 */
531 	if (ill->ill_hcksum_capab != NULL) {
532 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
533 		ill->ill_hcksum_capab = NULL;
534 	}
535 
536 	if (ill->ill_zerocopy_capab != NULL) {
537 		kmem_free(ill->ill_zerocopy_capab,
538 		    sizeof (ill_zerocopy_capab_t));
539 		ill->ill_zerocopy_capab = NULL;
540 	}
541 
542 	if (ill->ill_lso_capab != NULL) {
543 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
544 		ill->ill_lso_capab = NULL;
545 	}
546 
547 	if (ill->ill_dld_capab != NULL) {
548 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
549 		ill->ill_dld_capab = NULL;
550 	}
551 
552 	/* Clean up ill_allowed_ips* related state */
553 	if (ill->ill_allowed_ips != NULL) {
554 		ASSERT(ill->ill_allowed_ips_cnt > 0);
555 		kmem_free(ill->ill_allowed_ips,
556 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
557 		ill->ill_allowed_ips = NULL;
558 		ill->ill_allowed_ips_cnt = 0;
559 	}
560 
561 	while (ill->ill_ipif != NULL)
562 		ipif_free_tail(ill->ill_ipif);
563 
564 	/*
565 	 * We have removed all references to ilm from conn and the ones joined
566 	 * within the kernel.
567 	 *
568 	 * We don't walk conns, mrts and ires because
569 	 *
570 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
571 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
572 	 *    ill references.
573 	 */
574 
575 	/*
576 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
577 	 * is safe to do because the illgrp has already been unlinked from the
578 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
579 	 */
580 	if (IS_IPMP(ill)) {
581 		ipmp_illgrp_destroy(ill->ill_grp);
582 		ill->ill_grp = NULL;
583 	}
584 
585 	if (ill->ill_mphysaddr_list != NULL) {
586 		multiphysaddr_t *mpa, *tmpa;
587 
588 		mpa = ill->ill_mphysaddr_list;
589 		ill->ill_mphysaddr_list = NULL;
590 		while (mpa) {
591 			tmpa = mpa->mpa_next;
592 			kmem_free(mpa, sizeof (*mpa));
593 			mpa = tmpa;
594 		}
595 	}
596 	/*
597 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
598 	 * could free the phyint. No more reference to the phyint after this
599 	 * point.
600 	 */
601 	(void) ill_glist_delete(ill);
602 
603 	if (ill->ill_frag_ptr != NULL) {
604 		uint_t count;
605 
606 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
607 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
608 		}
609 		mi_free(ill->ill_frag_ptr);
610 		ill->ill_frag_ptr = NULL;
611 		ill->ill_frag_hash_tbl = NULL;
612 	}
613 
614 	freemsg(ill->ill_nd_lla_mp);
615 	/* Free all retained control messages. */
616 	mpp = &ill->ill_first_mp_to_free;
617 	do {
618 		while (mpp[0]) {
619 			mblk_t  *mp;
620 			mblk_t  *mp1;
621 
622 			mp = mpp[0];
623 			mpp[0] = mp->b_next;
624 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
625 				mp1->b_next = NULL;
626 				mp1->b_prev = NULL;
627 			}
628 			freemsg(mp);
629 		}
630 	} while (mpp++ != &ill->ill_last_mp_to_free);
631 
632 	ill_free_mib(ill);
633 
634 #ifdef DEBUG
635 	ill_trace_cleanup(ill);
636 #endif
637 
638 	/* The default multicast interface might have changed */
639 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
640 
641 	/* Drop refcnt here */
642 	netstack_rele(ill->ill_ipst->ips_netstack);
643 	ill->ill_ipst = NULL;
644 }
645 
646 static void
647 ill_free_mib(ill_t *ill)
648 {
649 	ip_stack_t *ipst = ill->ill_ipst;
650 
651 	/*
652 	 * MIB statistics must not be lost, so when an interface
653 	 * goes away the counter values will be added to the global
654 	 * MIBs.
655 	 */
656 	if (ill->ill_ip_mib != NULL) {
657 		if (ill->ill_isv6) {
658 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
659 			    ill->ill_ip_mib);
660 		} else {
661 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
662 			    ill->ill_ip_mib);
663 		}
664 
665 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
666 		ill->ill_ip_mib = NULL;
667 	}
668 	if (ill->ill_icmp6_mib != NULL) {
669 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
670 		    ill->ill_icmp6_mib);
671 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
672 		ill->ill_icmp6_mib = NULL;
673 	}
674 }
675 
676 /*
677  * Concatenate together a physical address and a sap.
678  *
679  * Sap_lengths are interpreted as follows:
680  *   sap_length == 0	==>	no sap
681  *   sap_length > 0	==>	sap is at the head of the dlpi address
682  *   sap_length < 0	==>	sap is at the tail of the dlpi address
683  */
684 static void
685 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
686     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
687 {
688 	uint16_t sap_addr = (uint16_t)sap_src;
689 
690 	if (sap_length == 0) {
691 		if (phys_src == NULL)
692 			bzero(dst, phys_length);
693 		else
694 			bcopy(phys_src, dst, phys_length);
695 	} else if (sap_length < 0) {
696 		if (phys_src == NULL)
697 			bzero(dst, phys_length);
698 		else
699 			bcopy(phys_src, dst, phys_length);
700 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
701 	} else {
702 		bcopy(&sap_addr, dst, sizeof (sap_addr));
703 		if (phys_src == NULL)
704 			bzero((char *)dst + sap_length, phys_length);
705 		else
706 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
707 	}
708 }
709 
710 /*
711  * Generate a dl_unitdata_req mblk for the device and address given.
712  * addr_length is the length of the physical portion of the address.
713  * If addr is NULL include an all zero address of the specified length.
714  * TRUE? In any case, addr_length is taken to be the entire length of the
715  * dlpi address, including the absolute value of sap_length.
716  */
717 mblk_t *
718 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
719 		t_scalar_t sap_length)
720 {
721 	dl_unitdata_req_t *dlur;
722 	mblk_t	*mp;
723 	t_scalar_t	abs_sap_length;		/* absolute value */
724 
725 	abs_sap_length = ABS(sap_length);
726 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
727 	    DL_UNITDATA_REQ);
728 	if (mp == NULL)
729 		return (NULL);
730 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
731 	/* HACK: accomodate incompatible DLPI drivers */
732 	if (addr_length == 8)
733 		addr_length = 6;
734 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
735 	dlur->dl_dest_addr_offset = sizeof (*dlur);
736 	dlur->dl_priority.dl_min = 0;
737 	dlur->dl_priority.dl_max = 0;
738 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
739 	    (uchar_t *)&dlur[1]);
740 	return (mp);
741 }
742 
743 /*
744  * Add the pending mp to the list. There can be only 1 pending mp
745  * in the list. Any exclusive ioctl that needs to wait for a response
746  * from another module or driver needs to use this function to set
747  * the ipx_pending_mp to the ioctl mblk and wait for the response from
748  * the other module/driver. This is also used while waiting for the
749  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
750  */
751 boolean_t
752 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
753     int waitfor)
754 {
755 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
756 
757 	ASSERT(IAM_WRITER_IPIF(ipif));
758 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
759 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
760 	ASSERT(ipx->ipx_pending_mp == NULL);
761 	/*
762 	 * The caller may be using a different ipif than the one passed into
763 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
764 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
765 	 * that `ipx_current_ipif == ipif'.
766 	 */
767 	ASSERT(ipx->ipx_current_ipif != NULL);
768 
769 	/*
770 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
771 	 * driver.
772 	 */
773 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
774 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
775 	    (DB_TYPE(add_mp) == M_PCPROTO));
776 
777 	if (connp != NULL) {
778 		ASSERT(MUTEX_HELD(&connp->conn_lock));
779 		/*
780 		 * Return error if the conn has started closing. The conn
781 		 * could have finished cleaning up the pending mp list,
782 		 * If so we should not add another mp to the list negating
783 		 * the cleanup.
784 		 */
785 		if (connp->conn_state_flags & CONN_CLOSING)
786 			return (B_FALSE);
787 	}
788 	mutex_enter(&ipx->ipx_lock);
789 	ipx->ipx_pending_ipif = ipif;
790 	/*
791 	 * Note down the queue in b_queue. This will be returned by
792 	 * ipsq_pending_mp_get. Caller will then use these values to restart
793 	 * the processing
794 	 */
795 	add_mp->b_next = NULL;
796 	add_mp->b_queue = q;
797 	ipx->ipx_pending_mp = add_mp;
798 	ipx->ipx_waitfor = waitfor;
799 	mutex_exit(&ipx->ipx_lock);
800 
801 	if (connp != NULL)
802 		connp->conn_oper_pending_ill = ipif->ipif_ill;
803 
804 	return (B_TRUE);
805 }
806 
807 /*
808  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
809  * queued in the list.
810  */
811 mblk_t *
812 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
813 {
814 	mblk_t	*curr = NULL;
815 	ipxop_t	*ipx = ipsq->ipsq_xop;
816 
817 	*connpp = NULL;
818 	mutex_enter(&ipx->ipx_lock);
819 	if (ipx->ipx_pending_mp == NULL) {
820 		mutex_exit(&ipx->ipx_lock);
821 		return (NULL);
822 	}
823 
824 	/* There can be only 1 such excl message */
825 	curr = ipx->ipx_pending_mp;
826 	ASSERT(curr->b_next == NULL);
827 	ipx->ipx_pending_ipif = NULL;
828 	ipx->ipx_pending_mp = NULL;
829 	ipx->ipx_waitfor = 0;
830 	mutex_exit(&ipx->ipx_lock);
831 
832 	if (CONN_Q(curr->b_queue)) {
833 		/*
834 		 * This mp did a refhold on the conn, at the start of the ioctl.
835 		 * So we can safely return a pointer to the conn to the caller.
836 		 */
837 		*connpp = Q_TO_CONN(curr->b_queue);
838 	} else {
839 		*connpp = NULL;
840 	}
841 	curr->b_next = NULL;
842 	curr->b_prev = NULL;
843 	return (curr);
844 }
845 
846 /*
847  * Cleanup the ioctl mp queued in ipx_pending_mp
848  * - Called in the ill_delete path
849  * - Called in the M_ERROR or M_HANGUP path on the ill.
850  * - Called in the conn close path.
851  *
852  * Returns success on finding the pending mblk associated with the ioctl or
853  * exclusive operation in progress, failure otherwise.
854  */
855 boolean_t
856 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
857 {
858 	mblk_t	*mp;
859 	ipxop_t	*ipx;
860 	queue_t	*q;
861 	ipif_t	*ipif;
862 	int	cmd;
863 
864 	ASSERT(IAM_WRITER_ILL(ill));
865 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
866 
867 	mutex_enter(&ipx->ipx_lock);
868 	mp = ipx->ipx_pending_mp;
869 	if (connp != NULL) {
870 		if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) {
871 			/*
872 			 * Nothing to clean since the conn that is closing
873 			 * does not have a matching pending mblk in
874 			 * ipx_pending_mp.
875 			 */
876 			mutex_exit(&ipx->ipx_lock);
877 			return (B_FALSE);
878 		}
879 	} else {
880 		/*
881 		 * A non-zero ill_error signifies we are called in the
882 		 * M_ERROR or M_HANGUP path and we need to unconditionally
883 		 * abort any current ioctl and do the corresponding cleanup.
884 		 * A zero ill_error means we are in the ill_delete path and
885 		 * we do the cleanup only if there is a pending mp.
886 		 */
887 		if (mp == NULL && ill->ill_error == 0) {
888 			mutex_exit(&ipx->ipx_lock);
889 			return (B_FALSE);
890 		}
891 	}
892 
893 	/* Now remove from the ipx_pending_mp */
894 	ipx->ipx_pending_mp = NULL;
895 	ipif = ipx->ipx_pending_ipif;
896 	ipx->ipx_pending_ipif = NULL;
897 	ipx->ipx_waitfor = 0;
898 	ipx->ipx_current_ipif = NULL;
899 	cmd = ipx->ipx_current_ioctl;
900 	ipx->ipx_current_ioctl = 0;
901 	ipx->ipx_current_done = B_TRUE;
902 	mutex_exit(&ipx->ipx_lock);
903 
904 	if (mp == NULL)
905 		return (B_FALSE);
906 
907 	q = mp->b_queue;
908 	mp->b_next = NULL;
909 	mp->b_prev = NULL;
910 	mp->b_queue = NULL;
911 
912 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
913 		DTRACE_PROBE4(ipif__ioctl,
914 		    char *, "ipsq_pending_mp_cleanup",
915 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
916 		    ipif_t *, ipif);
917 		if (connp == NULL) {
918 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
919 		} else {
920 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
921 			mutex_enter(&ipif->ipif_ill->ill_lock);
922 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
923 			mutex_exit(&ipif->ipif_ill->ill_lock);
924 		}
925 	} else {
926 		inet_freemsg(mp);
927 	}
928 	return (B_TRUE);
929 }
930 
931 /*
932  * Called in the conn close path and ill delete path
933  */
934 static void
935 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
936 {
937 	ipsq_t	*ipsq;
938 	mblk_t	*prev;
939 	mblk_t	*curr;
940 	mblk_t	*next;
941 	queue_t	*wq, *rq = NULL;
942 	mblk_t	*tmp_list = NULL;
943 
944 	ASSERT(IAM_WRITER_ILL(ill));
945 	if (connp != NULL)
946 		wq = CONNP_TO_WQ(connp);
947 	else
948 		wq = ill->ill_wq;
949 
950 	/*
951 	 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard
952 	 * against this here.
953 	 */
954 	if (wq != NULL)
955 		rq = RD(wq);
956 
957 	ipsq = ill->ill_phyint->phyint_ipsq;
958 	/*
959 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
960 	 * In the case of ioctl from a conn, there can be only 1 mp
961 	 * queued on the ipsq. If an ill is being unplumbed flush all
962 	 * the messages.
963 	 */
964 	mutex_enter(&ipsq->ipsq_lock);
965 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
966 	    curr = next) {
967 		next = curr->b_next;
968 		if (connp == NULL ||
969 		    (curr->b_queue == wq || curr->b_queue == rq)) {
970 			/* Unlink the mblk from the pending mp list */
971 			if (prev != NULL) {
972 				prev->b_next = curr->b_next;
973 			} else {
974 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
975 				ipsq->ipsq_xopq_mphead = curr->b_next;
976 			}
977 			if (ipsq->ipsq_xopq_mptail == curr)
978 				ipsq->ipsq_xopq_mptail = prev;
979 			/*
980 			 * Create a temporary list and release the ipsq lock
981 			 * New elements are added to the head of the tmp_list
982 			 */
983 			curr->b_next = tmp_list;
984 			tmp_list = curr;
985 		} else {
986 			prev = curr;
987 		}
988 	}
989 	mutex_exit(&ipsq->ipsq_lock);
990 
991 	while (tmp_list != NULL) {
992 		curr = tmp_list;
993 		tmp_list = curr->b_next;
994 		curr->b_next = NULL;
995 		curr->b_prev = NULL;
996 		wq = curr->b_queue;
997 		curr->b_queue = NULL;
998 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
999 			DTRACE_PROBE4(ipif__ioctl,
1000 			    char *, "ipsq_xopq_mp_cleanup",
1001 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
1002 			ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ?
1003 			    CONN_CLOSE : NO_COPYOUT, NULL);
1004 		} else {
1005 			/*
1006 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1007 			 * this can't be just inet_freemsg. we have to
1008 			 * restart it otherwise the thread will be stuck.
1009 			 */
1010 			inet_freemsg(curr);
1011 		}
1012 	}
1013 }
1014 
1015 /*
1016  * This conn has started closing. Cleanup any pending ioctl from this conn.
1017  * STREAMS ensures that there can be at most 1 active ioctl on a stream.
1018  */
1019 void
1020 conn_ioctl_cleanup(conn_t *connp)
1021 {
1022 	ipsq_t	*ipsq;
1023 	ill_t	*ill;
1024 	boolean_t refheld;
1025 
1026 	/*
1027 	 * Check for a queued ioctl. If the ioctl has not yet started, the mp
1028 	 * is pending in the list headed by ipsq_xopq_head. If the ioctl has
1029 	 * started the mp could be present in ipx_pending_mp. Note that if
1030 	 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and
1031 	 * not yet queued anywhere. In this case, the conn close code will wait
1032 	 * until the conn_ref is dropped. If the stream was a tcp stream, then
1033 	 * tcp_close will wait first until all ioctls have completed for this
1034 	 * conn.
1035 	 */
1036 	mutex_enter(&connp->conn_lock);
1037 	ill = connp->conn_oper_pending_ill;
1038 	if (ill == NULL) {
1039 		mutex_exit(&connp->conn_lock);
1040 		return;
1041 	}
1042 
1043 	/*
1044 	 * We may not be able to refhold the ill if the ill/ipif
1045 	 * is changing. But we need to make sure that the ill will
1046 	 * not vanish. So we just bump up the ill_waiter count.
1047 	 */
1048 	refheld = ill_waiter_inc(ill);
1049 	mutex_exit(&connp->conn_lock);
1050 	if (refheld) {
1051 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1052 			ill_waiter_dcr(ill);
1053 			/*
1054 			 * Check whether this ioctl has started and is
1055 			 * pending. If it is not found there then check
1056 			 * whether this ioctl has not even started and is in
1057 			 * the ipsq_xopq list.
1058 			 */
1059 			if (!ipsq_pending_mp_cleanup(ill, connp))
1060 				ipsq_xopq_mp_cleanup(ill, connp);
1061 			ipsq = ill->ill_phyint->phyint_ipsq;
1062 			ipsq_exit(ipsq);
1063 			return;
1064 		}
1065 	}
1066 
1067 	/*
1068 	 * The ill is also closing and we could not bump up the
1069 	 * ill_waiter_count or we could not enter the ipsq. Leave
1070 	 * the cleanup to ill_delete
1071 	 */
1072 	mutex_enter(&connp->conn_lock);
1073 	while (connp->conn_oper_pending_ill != NULL)
1074 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1075 	mutex_exit(&connp->conn_lock);
1076 	if (refheld)
1077 		ill_waiter_dcr(ill);
1078 }
1079 
1080 /*
1081  * ipcl_walk function for cleaning up conn_*_ill fields.
1082  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1083  * conn_bound_if in place. We prefer dropping
1084  * packets instead of sending them out the wrong interface, or accepting
1085  * packets from the wrong ifindex.
1086  */
1087 static void
1088 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1089 {
1090 	ill_t	*ill = (ill_t *)arg;
1091 
1092 	mutex_enter(&connp->conn_lock);
1093 	if (connp->conn_dhcpinit_ill == ill) {
1094 		connp->conn_dhcpinit_ill = NULL;
1095 		ASSERT(ill->ill_dhcpinit != 0);
1096 		atomic_dec_32(&ill->ill_dhcpinit);
1097 		ill_set_inputfn(ill);
1098 	}
1099 	mutex_exit(&connp->conn_lock);
1100 }
1101 
1102 static int
1103 ill_down_ipifs_tail(ill_t *ill)
1104 {
1105 	ipif_t	*ipif;
1106 	int err;
1107 
1108 	ASSERT(IAM_WRITER_ILL(ill));
1109 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1110 		ipif_non_duplicate(ipif);
1111 		/*
1112 		 * ipif_down_tail will call arp_ll_down on the last ipif
1113 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1114 		 */
1115 		if ((err = ipif_down_tail(ipif)) != 0)
1116 			return (err);
1117 	}
1118 	return (0);
1119 }
1120 
1121 /* ARGSUSED */
1122 void
1123 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1124 {
1125 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1126 	(void) ill_down_ipifs_tail(q->q_ptr);
1127 	freemsg(mp);
1128 	ipsq_current_finish(ipsq);
1129 }
1130 
1131 /*
1132  * ill_down_start is called when we want to down this ill and bring it up again
1133  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1134  * all interfaces, but don't tear down any plumbing.
1135  */
1136 boolean_t
1137 ill_down_start(queue_t *q, mblk_t *mp)
1138 {
1139 	ill_t	*ill = q->q_ptr;
1140 	ipif_t	*ipif;
1141 
1142 	ASSERT(IAM_WRITER_ILL(ill));
1143 	/*
1144 	 * It is possible that some ioctl is already in progress while we
1145 	 * received the M_ERROR / M_HANGUP in which case, we need to abort
1146 	 * the ioctl. ill_down_start() is being processed as CUR_OP rather
1147 	 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent
1148 	 * the in progress ioctl from ever completing.
1149 	 *
1150 	 * The thread that started the ioctl (if any) must have returned,
1151 	 * since we are now executing as writer. After the 2 calls below,
1152 	 * the state of the ipsq and the ill would reflect no trace of any
1153 	 * pending operation. Subsequently if there is any response to the
1154 	 * original ioctl from the driver, it would be discarded as an
1155 	 * unsolicited message from the driver.
1156 	 */
1157 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1158 	ill_dlpi_clear_deferred(ill);
1159 
1160 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1161 		(void) ipif_down(ipif, NULL, NULL);
1162 
1163 	ill_down(ill);
1164 
1165 	/*
1166 	 * Walk all CONNs that can have a reference on an ire or nce for this
1167 	 * ill (we actually walk all that now have stale references).
1168 	 */
1169 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1170 
1171 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1172 	if (ill->ill_isv6)
1173 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1174 
1175 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1176 
1177 	/*
1178 	 * Atomically test and add the pending mp if references are active.
1179 	 */
1180 	mutex_enter(&ill->ill_lock);
1181 	if (!ill_is_quiescent(ill)) {
1182 		/* call cannot fail since `conn_t *' argument is NULL */
1183 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1184 		    mp, ILL_DOWN);
1185 		mutex_exit(&ill->ill_lock);
1186 		return (B_FALSE);
1187 	}
1188 	mutex_exit(&ill->ill_lock);
1189 	return (B_TRUE);
1190 }
1191 
1192 static void
1193 ill_down(ill_t *ill)
1194 {
1195 	mblk_t	*mp;
1196 	ip_stack_t	*ipst = ill->ill_ipst;
1197 
1198 	/*
1199 	 * Blow off any IREs dependent on this ILL.
1200 	 * The caller needs to handle conn_ixa_cleanup
1201 	 */
1202 	ill_delete_ires(ill);
1203 
1204 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1205 
1206 	/* Remove any conn_*_ill depending on this ill */
1207 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1208 
1209 	/*
1210 	 * Free state for additional IREs.
1211 	 */
1212 	mutex_enter(&ill->ill_saved_ire_lock);
1213 	mp = ill->ill_saved_ire_mp;
1214 	ill->ill_saved_ire_mp = NULL;
1215 	ill->ill_saved_ire_cnt = 0;
1216 	mutex_exit(&ill->ill_saved_ire_lock);
1217 	freemsg(mp);
1218 }
1219 
1220 /*
1221  * ire_walk routine used to delete every IRE that depends on
1222  * 'ill'.  (Always called as writer, and may only be called from ire_walk.)
1223  *
1224  * Note: since the routes added by the kernel are deleted separately,
1225  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1226  *
1227  * We also remove references on ire_nce_cache entries that refer to the ill.
1228  */
1229 void
1230 ill_downi(ire_t *ire, char *ill_arg)
1231 {
1232 	ill_t	*ill = (ill_t *)ill_arg;
1233 	nce_t	*nce;
1234 
1235 	mutex_enter(&ire->ire_lock);
1236 	nce = ire->ire_nce_cache;
1237 	if (nce != NULL && nce->nce_ill == ill)
1238 		ire->ire_nce_cache = NULL;
1239 	else
1240 		nce = NULL;
1241 	mutex_exit(&ire->ire_lock);
1242 	if (nce != NULL)
1243 		nce_refrele(nce);
1244 	if (ire->ire_ill == ill) {
1245 		/*
1246 		 * The existing interface binding for ire must be
1247 		 * deleted before trying to bind the route to another
1248 		 * interface. However, since we are using the contents of the
1249 		 * ire after ire_delete, the caller has to ensure that
1250 		 * CONDEMNED (deleted) ire's are not removed from the list
1251 		 * when ire_delete() returns. Currently ill_downi() is
1252 		 * only called as part of ire_walk*() routines, so that
1253 		 * the irb_refhold() done by ire_walk*() will ensure that
1254 		 * ire_delete() does not lead to ire_inactive().
1255 		 */
1256 		ASSERT(ire->ire_bucket->irb_refcnt > 0);
1257 		ire_delete(ire);
1258 		if (ire->ire_unbound)
1259 			ire_rebind(ire);
1260 	}
1261 }
1262 
1263 /* Remove IRE_IF_CLONE on this ill */
1264 void
1265 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1266 {
1267 	ill_t	*ill = (ill_t *)ill_arg;
1268 
1269 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1270 	if (ire->ire_ill == ill)
1271 		ire_delete(ire);
1272 }
1273 
1274 /* Consume an M_IOCACK of the fastpath probe. */
1275 void
1276 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1277 {
1278 	mblk_t	*mp1 = mp;
1279 
1280 	/*
1281 	 * If this was the first attempt turn on the fastpath probing.
1282 	 */
1283 	mutex_enter(&ill->ill_lock);
1284 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1285 		ill->ill_dlpi_fastpath_state = IDS_OK;
1286 	mutex_exit(&ill->ill_lock);
1287 
1288 	/* Free the M_IOCACK mblk, hold on to the data */
1289 	mp = mp->b_cont;
1290 	freeb(mp1);
1291 	if (mp == NULL)
1292 		return;
1293 	if (mp->b_cont != NULL)
1294 		nce_fastpath_update(ill, mp);
1295 	else
1296 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1297 	freemsg(mp);
1298 }
1299 
1300 /*
1301  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1302  * The data portion of the request is a dl_unitdata_req_t template for
1303  * what we would send downstream in the absence of a fastpath confirmation.
1304  */
1305 int
1306 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1307 {
1308 	struct iocblk	*ioc;
1309 	mblk_t	*mp;
1310 
1311 	if (dlur_mp == NULL)
1312 		return (EINVAL);
1313 
1314 	mutex_enter(&ill->ill_lock);
1315 	switch (ill->ill_dlpi_fastpath_state) {
1316 	case IDS_FAILED:
1317 		/*
1318 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1319 		 * support it.
1320 		 */
1321 		mutex_exit(&ill->ill_lock);
1322 		return (ENOTSUP);
1323 	case IDS_UNKNOWN:
1324 		/* This is the first probe */
1325 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1326 		break;
1327 	default:
1328 		break;
1329 	}
1330 	mutex_exit(&ill->ill_lock);
1331 
1332 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1333 		return (EAGAIN);
1334 
1335 	mp->b_cont = copyb(dlur_mp);
1336 	if (mp->b_cont == NULL) {
1337 		freeb(mp);
1338 		return (EAGAIN);
1339 	}
1340 
1341 	ioc = (struct iocblk *)mp->b_rptr;
1342 	ioc->ioc_count = msgdsize(mp->b_cont);
1343 
1344 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1345 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1346 	putnext(ill->ill_wq, mp);
1347 	return (0);
1348 }
1349 
1350 void
1351 ill_capability_probe(ill_t *ill)
1352 {
1353 	mblk_t	*mp;
1354 
1355 	ASSERT(IAM_WRITER_ILL(ill));
1356 
1357 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1358 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1359 		return;
1360 
1361 	/*
1362 	 * We are starting a new cycle of capability negotiation.
1363 	 * Free up the capab reset messages of any previous incarnation.
1364 	 * We will do a fresh allocation when we get the response to our probe
1365 	 */
1366 	if (ill->ill_capab_reset_mp != NULL) {
1367 		freemsg(ill->ill_capab_reset_mp);
1368 		ill->ill_capab_reset_mp = NULL;
1369 	}
1370 
1371 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1372 
1373 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1374 	if (mp == NULL)
1375 		return;
1376 
1377 	ill_capability_send(ill, mp);
1378 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1379 }
1380 
1381 void
1382 ill_capability_reset(ill_t *ill, boolean_t reneg)
1383 {
1384 	ASSERT(IAM_WRITER_ILL(ill));
1385 
1386 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1387 		return;
1388 
1389 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1390 
1391 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1392 	ill->ill_capab_reset_mp = NULL;
1393 	/*
1394 	 * We turn off all capabilities except those pertaining to
1395 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1396 	 * which will be turned off by the corresponding reset functions.
1397 	 */
1398 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1399 }
1400 
1401 static void
1402 ill_capability_reset_alloc(ill_t *ill)
1403 {
1404 	mblk_t *mp;
1405 	size_t	size = 0;
1406 	int	err;
1407 	dl_capability_req_t	*capb;
1408 
1409 	ASSERT(IAM_WRITER_ILL(ill));
1410 	ASSERT(ill->ill_capab_reset_mp == NULL);
1411 
1412 	if (ILL_HCKSUM_CAPABLE(ill)) {
1413 		size += sizeof (dl_capability_sub_t) +
1414 		    sizeof (dl_capab_hcksum_t);
1415 	}
1416 
1417 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1418 		size += sizeof (dl_capability_sub_t) +
1419 		    sizeof (dl_capab_zerocopy_t);
1420 	}
1421 
1422 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1423 		size += sizeof (dl_capability_sub_t) +
1424 		    sizeof (dl_capab_dld_t);
1425 	}
1426 
1427 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1428 	    STR_NOSIG, &err);
1429 
1430 	mp->b_datap->db_type = M_PROTO;
1431 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1432 
1433 	capb = (dl_capability_req_t *)mp->b_rptr;
1434 	capb->dl_primitive = DL_CAPABILITY_REQ;
1435 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1436 	capb->dl_sub_length = size;
1437 
1438 	mp->b_wptr += sizeof (dl_capability_req_t);
1439 
1440 	/*
1441 	 * Each handler fills in the corresponding dl_capability_sub_t
1442 	 * inside the mblk,
1443 	 */
1444 	ill_capability_hcksum_reset_fill(ill, mp);
1445 	ill_capability_zerocopy_reset_fill(ill, mp);
1446 	ill_capability_dld_reset_fill(ill, mp);
1447 
1448 	ill->ill_capab_reset_mp = mp;
1449 }
1450 
1451 static void
1452 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1453 {
1454 	dl_capab_id_t *id_ic;
1455 	uint_t sub_dl_cap = outers->dl_cap;
1456 	dl_capability_sub_t *inners;
1457 	uint8_t *capend;
1458 
1459 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1460 
1461 	/*
1462 	 * Note: range checks here are not absolutely sufficient to
1463 	 * make us robust against malformed messages sent by drivers;
1464 	 * this is in keeping with the rest of IP's dlpi handling.
1465 	 * (Remember, it's coming from something else in the kernel
1466 	 * address space)
1467 	 */
1468 
1469 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1470 	if (capend > mp->b_wptr) {
1471 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1472 		    "malformed sub-capability too long for mblk");
1473 		return;
1474 	}
1475 
1476 	id_ic = (dl_capab_id_t *)(outers + 1);
1477 
1478 	if (outers->dl_length < sizeof (*id_ic) ||
1479 	    (inners = &id_ic->id_subcap,
1480 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1481 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1482 		    "encapsulated capab type %d too long for mblk",
1483 		    inners->dl_cap);
1484 		return;
1485 	}
1486 
1487 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1488 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1489 		    "isn't as expected; pass-thru module(s) detected, "
1490 		    "discarding capability\n", inners->dl_cap));
1491 		return;
1492 	}
1493 
1494 	/* Process the encapsulated sub-capability */
1495 	ill_capability_dispatch(ill, mp, inners);
1496 }
1497 
1498 static void
1499 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1500 {
1501 	dl_capability_sub_t *dl_subcap;
1502 
1503 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1504 		return;
1505 
1506 	/*
1507 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1508 	 * initialized below since it is not used by DLD.
1509 	 */
1510 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1511 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1512 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1513 
1514 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1515 }
1516 
1517 static void
1518 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1519 {
1520 	/*
1521 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1522 	 * is only to get the VRRP capability.
1523 	 *
1524 	 * Note that we cannot check ill_ipif_up_count here since
1525 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1526 	 * That is done asynchronously, and can race with this function.
1527 	 */
1528 	if (!ill->ill_dl_up) {
1529 		if (subp->dl_cap == DL_CAPAB_VRRP)
1530 			ill_capability_vrrp_ack(ill, mp, subp);
1531 		return;
1532 	}
1533 
1534 	switch (subp->dl_cap) {
1535 	case DL_CAPAB_HCKSUM:
1536 		ill_capability_hcksum_ack(ill, mp, subp);
1537 		break;
1538 	case DL_CAPAB_ZEROCOPY:
1539 		ill_capability_zerocopy_ack(ill, mp, subp);
1540 		break;
1541 	case DL_CAPAB_DLD:
1542 		ill_capability_dld_ack(ill, mp, subp);
1543 		break;
1544 	case DL_CAPAB_VRRP:
1545 		break;
1546 	default:
1547 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1548 		    subp->dl_cap));
1549 	}
1550 }
1551 
1552 /*
1553  * Process the vrrp capability received from a DLS Provider. isub must point
1554  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1555  */
1556 static void
1557 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1558 {
1559 	dl_capab_vrrp_t	*vrrp;
1560 	uint_t		sub_dl_cap = isub->dl_cap;
1561 	uint8_t		*capend;
1562 
1563 	ASSERT(IAM_WRITER_ILL(ill));
1564 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1565 
1566 	/*
1567 	 * Note: range checks here are not absolutely sufficient to
1568 	 * make us robust against malformed messages sent by drivers;
1569 	 * this is in keeping with the rest of IP's dlpi handling.
1570 	 * (Remember, it's coming from something else in the kernel
1571 	 * address space)
1572 	 */
1573 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1574 	if (capend > mp->b_wptr) {
1575 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1576 		    "malformed sub-capability too long for mblk");
1577 		return;
1578 	}
1579 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1580 
1581 	/*
1582 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1583 	 */
1584 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1585 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1586 		ill->ill_flags |= ILLF_VRRP;
1587 	}
1588 }
1589 
1590 /*
1591  * Process a hardware checksum offload capability negotiation ack received
1592  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1593  * of a DL_CAPABILITY_ACK message.
1594  */
1595 static void
1596 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1597 {
1598 	dl_capability_req_t	*ocap;
1599 	dl_capab_hcksum_t	*ihck, *ohck;
1600 	ill_hcksum_capab_t	**ill_hcksum;
1601 	mblk_t			*nmp = NULL;
1602 	uint_t			sub_dl_cap = isub->dl_cap;
1603 	uint8_t			*capend;
1604 
1605 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1606 
1607 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1608 
1609 	/*
1610 	 * Note: range checks here are not absolutely sufficient to
1611 	 * make us robust against malformed messages sent by drivers;
1612 	 * this is in keeping with the rest of IP's dlpi handling.
1613 	 * (Remember, it's coming from something else in the kernel
1614 	 * address space)
1615 	 */
1616 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1617 	if (capend > mp->b_wptr) {
1618 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1619 		    "malformed sub-capability too long for mblk");
1620 		return;
1621 	}
1622 
1623 	/*
1624 	 * There are two types of acks we process here:
1625 	 * 1. acks in reply to a (first form) generic capability req
1626 	 *    (no ENABLE flag set)
1627 	 * 2. acks in reply to a ENABLE capability req.
1628 	 *    (ENABLE flag set)
1629 	 */
1630 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1631 
1632 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1633 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1634 		    "unsupported hardware checksum "
1635 		    "sub-capability (version %d, expected %d)",
1636 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1637 		return;
1638 	}
1639 
1640 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1641 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1642 		    "checksum capability isn't as expected; pass-thru "
1643 		    "module(s) detected, discarding capability\n"));
1644 		return;
1645 	}
1646 
1647 #define	CURR_HCKSUM_CAPAB				\
1648 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1649 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1650 
1651 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1652 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1653 		/* do ENABLE processing */
1654 		if (*ill_hcksum == NULL) {
1655 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1656 			    KM_NOSLEEP);
1657 
1658 			if (*ill_hcksum == NULL) {
1659 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1660 				    "could not enable hcksum version %d "
1661 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1662 				    ill->ill_name);
1663 				return;
1664 			}
1665 		}
1666 
1667 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1668 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1669 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1670 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1671 		    "has enabled hardware checksumming\n ",
1672 		    ill->ill_name));
1673 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1674 		/*
1675 		 * Enabling hardware checksum offload
1676 		 * Currently IP supports {TCP,UDP}/IPv4
1677 		 * partial and full cksum offload and
1678 		 * IPv4 header checksum offload.
1679 		 * Allocate new mblk which will
1680 		 * contain a new capability request
1681 		 * to enable hardware checksum offload.
1682 		 */
1683 		uint_t	size;
1684 		uchar_t	*rptr;
1685 
1686 		size = sizeof (dl_capability_req_t) +
1687 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1688 
1689 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1690 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1691 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1692 			    ill->ill_name);
1693 			return;
1694 		}
1695 
1696 		rptr = nmp->b_rptr;
1697 		/* initialize dl_capability_req_t */
1698 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1699 		ocap->dl_sub_offset =
1700 		    sizeof (dl_capability_req_t);
1701 		ocap->dl_sub_length =
1702 		    sizeof (dl_capability_sub_t) +
1703 		    isub->dl_length;
1704 		nmp->b_rptr += sizeof (dl_capability_req_t);
1705 
1706 		/* initialize dl_capability_sub_t */
1707 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1708 		nmp->b_rptr += sizeof (*isub);
1709 
1710 		/* initialize dl_capab_hcksum_t */
1711 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1712 		bcopy(ihck, ohck, sizeof (*ihck));
1713 
1714 		nmp->b_rptr = rptr;
1715 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1716 
1717 		/* Set ENABLE flag */
1718 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1719 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1720 
1721 		/*
1722 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1723 		 * hardware checksum acceleration.
1724 		 */
1725 		ill_capability_send(ill, nmp);
1726 	} else {
1727 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1728 		    "advertised %x hardware checksum capability flags\n",
1729 		    ill->ill_name, ihck->hcksum_txflags));
1730 	}
1731 }
1732 
1733 static void
1734 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1735 {
1736 	dl_capab_hcksum_t *hck_subcap;
1737 	dl_capability_sub_t *dl_subcap;
1738 
1739 	if (!ILL_HCKSUM_CAPABLE(ill))
1740 		return;
1741 
1742 	ASSERT(ill->ill_hcksum_capab != NULL);
1743 
1744 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1745 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1746 	dl_subcap->dl_length = sizeof (*hck_subcap);
1747 
1748 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1749 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1750 	hck_subcap->hcksum_txflags = 0;
1751 
1752 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1753 }
1754 
1755 static void
1756 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1757 {
1758 	mblk_t *nmp = NULL;
1759 	dl_capability_req_t *oc;
1760 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1761 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1762 	uint_t sub_dl_cap = isub->dl_cap;
1763 	uint8_t *capend;
1764 
1765 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1766 
1767 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1768 
1769 	/*
1770 	 * Note: range checks here are not absolutely sufficient to
1771 	 * make us robust against malformed messages sent by drivers;
1772 	 * this is in keeping with the rest of IP's dlpi handling.
1773 	 * (Remember, it's coming from something else in the kernel
1774 	 * address space)
1775 	 */
1776 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1777 	if (capend > mp->b_wptr) {
1778 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1779 		    "malformed sub-capability too long for mblk");
1780 		return;
1781 	}
1782 
1783 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1784 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1785 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1786 		    "unsupported ZEROCOPY sub-capability (version %d, "
1787 		    "expected %d)", zc_ic->zerocopy_version,
1788 		    ZEROCOPY_VERSION_1);
1789 		return;
1790 	}
1791 
1792 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1793 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1794 		    "capability isn't as expected; pass-thru module(s) "
1795 		    "detected, discarding capability\n"));
1796 		return;
1797 	}
1798 
1799 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1800 		if (*ill_zerocopy_capab == NULL) {
1801 			*ill_zerocopy_capab =
1802 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1803 			    KM_NOSLEEP);
1804 
1805 			if (*ill_zerocopy_capab == NULL) {
1806 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1807 				    "could not enable Zero-copy version %d "
1808 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1809 				    ill->ill_name);
1810 				return;
1811 			}
1812 		}
1813 
1814 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1815 		    "supports Zero-copy version %d\n", ill->ill_name,
1816 		    ZEROCOPY_VERSION_1));
1817 
1818 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1819 		    zc_ic->zerocopy_version;
1820 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1821 		    zc_ic->zerocopy_flags;
1822 
1823 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1824 	} else {
1825 		uint_t size;
1826 		uchar_t *rptr;
1827 
1828 		size = sizeof (dl_capability_req_t) +
1829 		    sizeof (dl_capability_sub_t) +
1830 		    sizeof (dl_capab_zerocopy_t);
1831 
1832 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1833 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1834 			    "could not enable zerocopy for %s (ENOMEM)\n",
1835 			    ill->ill_name);
1836 			return;
1837 		}
1838 
1839 		rptr = nmp->b_rptr;
1840 		/* initialize dl_capability_req_t */
1841 		oc = (dl_capability_req_t *)rptr;
1842 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1843 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1844 		    sizeof (dl_capab_zerocopy_t);
1845 		rptr += sizeof (dl_capability_req_t);
1846 
1847 		/* initialize dl_capability_sub_t */
1848 		bcopy(isub, rptr, sizeof (*isub));
1849 		rptr += sizeof (*isub);
1850 
1851 		/* initialize dl_capab_zerocopy_t */
1852 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1853 		*zc_oc = *zc_ic;
1854 
1855 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1856 		    "to enable zero-copy version %d\n", ill->ill_name,
1857 		    ZEROCOPY_VERSION_1));
1858 
1859 		/* set VMSAFE_MEM flag */
1860 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1861 
1862 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1863 		ill_capability_send(ill, nmp);
1864 	}
1865 }
1866 
1867 static void
1868 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1869 {
1870 	dl_capab_zerocopy_t *zerocopy_subcap;
1871 	dl_capability_sub_t *dl_subcap;
1872 
1873 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1874 		return;
1875 
1876 	ASSERT(ill->ill_zerocopy_capab != NULL);
1877 
1878 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1879 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1880 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1881 
1882 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1883 	zerocopy_subcap->zerocopy_version =
1884 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1885 	zerocopy_subcap->zerocopy_flags = 0;
1886 
1887 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1888 }
1889 
1890 /*
1891  * DLD capability
1892  * Refer to dld.h for more information regarding the purpose and usage
1893  * of this capability.
1894  */
1895 static void
1896 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1897 {
1898 	dl_capab_dld_t		*dld_ic, dld;
1899 	uint_t			sub_dl_cap = isub->dl_cap;
1900 	uint8_t			*capend;
1901 	ill_dld_capab_t		*idc;
1902 
1903 	ASSERT(IAM_WRITER_ILL(ill));
1904 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1905 
1906 	/*
1907 	 * Note: range checks here are not absolutely sufficient to
1908 	 * make us robust against malformed messages sent by drivers;
1909 	 * this is in keeping with the rest of IP's dlpi handling.
1910 	 * (Remember, it's coming from something else in the kernel
1911 	 * address space)
1912 	 */
1913 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1914 	if (capend > mp->b_wptr) {
1915 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1916 		    "malformed sub-capability too long for mblk");
1917 		return;
1918 	}
1919 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1920 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1921 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1922 		    "unsupported DLD sub-capability (version %d, "
1923 		    "expected %d)", dld_ic->dld_version,
1924 		    DLD_CURRENT_VERSION);
1925 		return;
1926 	}
1927 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1928 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1929 		    "capability isn't as expected; pass-thru module(s) "
1930 		    "detected, discarding capability\n"));
1931 		return;
1932 	}
1933 
1934 	/*
1935 	 * Copy locally to ensure alignment.
1936 	 */
1937 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1938 
1939 	if ((idc = ill->ill_dld_capab) == NULL) {
1940 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1941 		if (idc == NULL) {
1942 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1943 			    "could not enable DLD version %d "
1944 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1945 			    ill->ill_name);
1946 			return;
1947 		}
1948 		ill->ill_dld_capab = idc;
1949 	}
1950 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1951 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1952 	ip1dbg(("ill_capability_dld_ack: interface %s "
1953 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1954 
1955 	ill_capability_dld_enable(ill);
1956 }
1957 
1958 /*
1959  * Typically capability negotiation between IP and the driver happens via
1960  * DLPI message exchange. However GLD also offers a direct function call
1961  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1962  * But arbitrary function calls into IP or GLD are not permitted, since both
1963  * of them are protected by their own perimeter mechanism. The perimeter can
1964  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1965  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1966  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1967  * to enter the mac perimeter and then do the direct function calls into
1968  * GLD to enable squeue polling. The ring related callbacks from the mac into
1969  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1970  * protected by the mac perimeter.
1971  */
1972 static void
1973 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1974 {
1975 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1976 	int			err;
1977 
1978 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1979 	    DLD_ENABLE);
1980 	ASSERT(err == 0);
1981 }
1982 
1983 static void
1984 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1985 {
1986 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1987 	int			err;
1988 
1989 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1990 	    DLD_DISABLE);
1991 	ASSERT(err == 0);
1992 }
1993 
1994 boolean_t
1995 ill_mac_perim_held(ill_t *ill)
1996 {
1997 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1998 
1999 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
2000 	    DLD_QUERY));
2001 }
2002 
2003 static void
2004 ill_capability_direct_enable(ill_t *ill)
2005 {
2006 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2007 	ill_dld_direct_t	*idd = &idc->idc_direct;
2008 	dld_capab_direct_t	direct;
2009 	int			rc;
2010 
2011 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2012 
2013 	bzero(&direct, sizeof (direct));
2014 	direct.di_rx_cf = (uintptr_t)ip_input;
2015 	direct.di_rx_ch = ill;
2016 
2017 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
2018 	    DLD_ENABLE);
2019 	if (rc == 0) {
2020 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
2021 		idd->idd_tx_dh = direct.di_tx_dh;
2022 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
2023 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
2024 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
2025 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
2026 		ASSERT(idd->idd_tx_cb_df != NULL);
2027 		ASSERT(idd->idd_tx_fctl_df != NULL);
2028 		ASSERT(idd->idd_tx_df != NULL);
2029 		/*
2030 		 * One time registration of flow enable callback function
2031 		 */
2032 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
2033 		    ill_flow_enable, ill);
2034 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
2035 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
2036 	} else {
2037 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
2038 		    "capability, rc = %d\n", rc);
2039 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
2040 	}
2041 }
2042 
2043 static void
2044 ill_capability_poll_enable(ill_t *ill)
2045 {
2046 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2047 	dld_capab_poll_t	poll;
2048 	int			rc;
2049 
2050 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2051 
2052 	bzero(&poll, sizeof (poll));
2053 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
2054 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
2055 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
2056 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
2057 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
2058 	poll.poll_ring_ch = ill;
2059 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
2060 	    DLD_ENABLE);
2061 	if (rc == 0) {
2062 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
2063 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
2064 	} else {
2065 		ip1dbg(("warning: could not enable POLL "
2066 		    "capability, rc = %d\n", rc));
2067 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
2068 	}
2069 }
2070 
2071 /*
2072  * Enable the LSO capability.
2073  */
2074 static void
2075 ill_capability_lso_enable(ill_t *ill)
2076 {
2077 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2078 	dld_capab_lso_t	lso;
2079 	int rc;
2080 
2081 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2082 
2083 	if (ill->ill_lso_capab == NULL) {
2084 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2085 		    KM_NOSLEEP);
2086 		if (ill->ill_lso_capab == NULL) {
2087 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2088 			    "could not enable LSO for %s (ENOMEM)\n",
2089 			    ill->ill_name);
2090 			return;
2091 		}
2092 	}
2093 
2094 	bzero(&lso, sizeof (lso));
2095 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2096 	    DLD_ENABLE)) == 0) {
2097 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2098 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2099 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2100 		ip1dbg(("ill_capability_lso_enable: interface %s "
2101 		    "has enabled LSO\n ", ill->ill_name));
2102 	} else {
2103 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2104 		ill->ill_lso_capab = NULL;
2105 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2106 	}
2107 }
2108 
2109 static void
2110 ill_capability_dld_enable(ill_t *ill)
2111 {
2112 	mac_perim_handle_t mph;
2113 
2114 	ASSERT(IAM_WRITER_ILL(ill));
2115 
2116 	if (ill->ill_isv6)
2117 		return;
2118 
2119 	ill_mac_perim_enter(ill, &mph);
2120 	if (!ill->ill_isv6) {
2121 		ill_capability_direct_enable(ill);
2122 		ill_capability_poll_enable(ill);
2123 		ill_capability_lso_enable(ill);
2124 	}
2125 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2126 	ill_mac_perim_exit(ill, mph);
2127 }
2128 
2129 static void
2130 ill_capability_dld_disable(ill_t *ill)
2131 {
2132 	ill_dld_capab_t	*idc;
2133 	ill_dld_direct_t *idd;
2134 	mac_perim_handle_t	mph;
2135 
2136 	ASSERT(IAM_WRITER_ILL(ill));
2137 
2138 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2139 		return;
2140 
2141 	ill_mac_perim_enter(ill, &mph);
2142 
2143 	idc = ill->ill_dld_capab;
2144 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2145 		/*
2146 		 * For performance we avoid locks in the transmit data path
2147 		 * and don't maintain a count of the number of threads using
2148 		 * direct calls. Thus some threads could be using direct
2149 		 * transmit calls to GLD, even after the capability mechanism
2150 		 * turns it off. This is still safe since the handles used in
2151 		 * the direct calls continue to be valid until the unplumb is
2152 		 * completed. Remove the callback that was added (1-time) at
2153 		 * capab enable time.
2154 		 */
2155 		mutex_enter(&ill->ill_lock);
2156 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2157 		mutex_exit(&ill->ill_lock);
2158 		if (ill->ill_flownotify_mh != NULL) {
2159 			idd = &idc->idc_direct;
2160 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2161 			    ill->ill_flownotify_mh);
2162 			ill->ill_flownotify_mh = NULL;
2163 		}
2164 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2165 		    NULL, DLD_DISABLE);
2166 	}
2167 
2168 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2169 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2170 		ip_squeue_clean_all(ill);
2171 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2172 		    NULL, DLD_DISABLE);
2173 	}
2174 
2175 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2176 		ASSERT(ill->ill_lso_capab != NULL);
2177 		/*
2178 		 * Clear the capability flag for LSO but retain the
2179 		 * ill_lso_capab structure since it's possible that another
2180 		 * thread is still referring to it.  The structure only gets
2181 		 * deallocated when we destroy the ill.
2182 		 */
2183 
2184 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2185 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2186 		    NULL, DLD_DISABLE);
2187 	}
2188 
2189 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2190 	ill_mac_perim_exit(ill, mph);
2191 }
2192 
2193 /*
2194  * Capability Negotiation protocol
2195  *
2196  * We don't wait for DLPI capability operations to finish during interface
2197  * bringup or teardown. Doing so would introduce more asynchrony and the
2198  * interface up/down operations will need multiple return and restarts.
2199  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2200  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2201  * exclusive operation won't start until the DLPI operations of the previous
2202  * exclusive operation complete.
2203  *
2204  * The capability state machine is shown below.
2205  *
2206  * state		next state		event, action
2207  *
2208  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2209  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2210  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2211  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2212  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2213  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2214  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2215  *						    ill_capability_probe.
2216  */
2217 
2218 /*
2219  * Dedicated thread started from ip_stack_init that handles capability
2220  * disable. This thread ensures the taskq dispatch does not fail by waiting
2221  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2222  * that direct calls to DLD are done in a cv_waitable context.
2223  */
2224 void
2225 ill_taskq_dispatch(ip_stack_t *ipst)
2226 {
2227 	callb_cpr_t cprinfo;
2228 	char 	name[64];
2229 	mblk_t	*mp;
2230 
2231 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2232 	    ipst->ips_netstack->netstack_stackid);
2233 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2234 	    name);
2235 	mutex_enter(&ipst->ips_capab_taskq_lock);
2236 
2237 	for (;;) {
2238 		mp = ipst->ips_capab_taskq_head;
2239 		while (mp != NULL) {
2240 			ipst->ips_capab_taskq_head = mp->b_next;
2241 			if (ipst->ips_capab_taskq_head == NULL)
2242 				ipst->ips_capab_taskq_tail = NULL;
2243 			mutex_exit(&ipst->ips_capab_taskq_lock);
2244 			mp->b_next = NULL;
2245 
2246 			VERIFY(taskq_dispatch(system_taskq,
2247 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2248 			mutex_enter(&ipst->ips_capab_taskq_lock);
2249 			mp = ipst->ips_capab_taskq_head;
2250 		}
2251 
2252 		if (ipst->ips_capab_taskq_quit)
2253 			break;
2254 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2255 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2256 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2257 	}
2258 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2259 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2260 	CALLB_CPR_EXIT(&cprinfo);
2261 	thread_exit();
2262 }
2263 
2264 /*
2265  * Consume a new-style hardware capabilities negotiation ack.
2266  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2267  */
2268 static void
2269 ill_capability_ack_thr(void *arg)
2270 {
2271 	mblk_t	*mp = arg;
2272 	dl_capability_ack_t *capp;
2273 	dl_capability_sub_t *subp, *endp;
2274 	ill_t	*ill;
2275 	boolean_t reneg;
2276 
2277 	ill = (ill_t *)mp->b_prev;
2278 	mp->b_prev = NULL;
2279 
2280 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2281 
2282 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2283 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2284 		/*
2285 		 * We have received the ack for our DL_CAPAB reset request.
2286 		 * There isnt' anything in the message that needs processing.
2287 		 * All message based capabilities have been disabled, now
2288 		 * do the function call based capability disable.
2289 		 */
2290 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2291 		ill_capability_dld_disable(ill);
2292 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2293 		if (reneg)
2294 			ill_capability_probe(ill);
2295 		goto done;
2296 	}
2297 
2298 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2299 		ill->ill_dlpi_capab_state = IDCS_OK;
2300 
2301 	capp = (dl_capability_ack_t *)mp->b_rptr;
2302 
2303 	if (capp->dl_sub_length == 0) {
2304 		/* no new-style capabilities */
2305 		goto done;
2306 	}
2307 
2308 	/* make sure the driver supplied correct dl_sub_length */
2309 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2310 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2311 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2312 		goto done;
2313 	}
2314 
2315 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2316 	/*
2317 	 * There are sub-capabilities. Process the ones we know about.
2318 	 * Loop until we don't have room for another sub-cap header..
2319 	 */
2320 	for (subp = SC(capp, capp->dl_sub_offset),
2321 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2322 	    subp <= endp;
2323 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2324 
2325 		switch (subp->dl_cap) {
2326 		case DL_CAPAB_ID_WRAPPER:
2327 			ill_capability_id_ack(ill, mp, subp);
2328 			break;
2329 		default:
2330 			ill_capability_dispatch(ill, mp, subp);
2331 			break;
2332 		}
2333 	}
2334 #undef SC
2335 done:
2336 	inet_freemsg(mp);
2337 	ill_capability_done(ill);
2338 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2339 }
2340 
2341 /*
2342  * This needs to be started in a taskq thread to provide a cv_waitable
2343  * context.
2344  */
2345 void
2346 ill_capability_ack(ill_t *ill, mblk_t *mp)
2347 {
2348 	ip_stack_t	*ipst = ill->ill_ipst;
2349 
2350 	mp->b_prev = (mblk_t *)ill;
2351 	ASSERT(mp->b_next == NULL);
2352 
2353 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2354 	    TQ_NOSLEEP) != 0)
2355 		return;
2356 
2357 	/*
2358 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2359 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2360 	 */
2361 	mutex_enter(&ipst->ips_capab_taskq_lock);
2362 	if (ipst->ips_capab_taskq_head == NULL) {
2363 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2364 		ipst->ips_capab_taskq_head = mp;
2365 	} else {
2366 		ipst->ips_capab_taskq_tail->b_next = mp;
2367 	}
2368 	ipst->ips_capab_taskq_tail = mp;
2369 
2370 	cv_signal(&ipst->ips_capab_taskq_cv);
2371 	mutex_exit(&ipst->ips_capab_taskq_lock);
2372 }
2373 
2374 /*
2375  * This routine is called to scan the fragmentation reassembly table for
2376  * the specified ILL for any packets that are starting to smell.
2377  * dead_interval is the maximum time in seconds that will be tolerated.  It
2378  * will either be the value specified in ip_g_frag_timeout, or zero if the
2379  * ILL is shutting down and it is time to blow everything off.
2380  *
2381  * It returns the number of seconds (as a time_t) that the next frag timer
2382  * should be scheduled for, 0 meaning that the timer doesn't need to be
2383  * re-started.  Note that the method of calculating next_timeout isn't
2384  * entirely accurate since time will flow between the time we grab
2385  * current_time and the time we schedule the next timeout.  This isn't a
2386  * big problem since this is the timer for sending an ICMP reassembly time
2387  * exceeded messages, and it doesn't have to be exactly accurate.
2388  *
2389  * This function is
2390  * sometimes called as writer, although this is not required.
2391  */
2392 time_t
2393 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2394 {
2395 	ipfb_t	*ipfb;
2396 	ipfb_t	*endp;
2397 	ipf_t	*ipf;
2398 	ipf_t	*ipfnext;
2399 	mblk_t	*mp;
2400 	time_t	current_time = gethrestime_sec();
2401 	time_t	next_timeout = 0;
2402 	uint32_t	hdr_length;
2403 	mblk_t	*send_icmp_head;
2404 	mblk_t	*send_icmp_head_v6;
2405 	ip_stack_t *ipst = ill->ill_ipst;
2406 	ip_recv_attr_t iras;
2407 
2408 	bzero(&iras, sizeof (iras));
2409 	iras.ira_flags = 0;
2410 	iras.ira_ill = iras.ira_rill = ill;
2411 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2412 	iras.ira_rifindex = iras.ira_ruifindex;
2413 
2414 	ipfb = ill->ill_frag_hash_tbl;
2415 	if (ipfb == NULL)
2416 		return (B_FALSE);
2417 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2418 	/* Walk the frag hash table. */
2419 	for (; ipfb < endp; ipfb++) {
2420 		send_icmp_head = NULL;
2421 		send_icmp_head_v6 = NULL;
2422 		mutex_enter(&ipfb->ipfb_lock);
2423 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2424 			time_t frag_time = current_time - ipf->ipf_timestamp;
2425 			time_t frag_timeout;
2426 
2427 			if (frag_time < dead_interval) {
2428 				/*
2429 				 * There are some outstanding fragments
2430 				 * that will timeout later.  Make note of
2431 				 * the time so that we can reschedule the
2432 				 * next timeout appropriately.
2433 				 */
2434 				frag_timeout = dead_interval - frag_time;
2435 				if (next_timeout == 0 ||
2436 				    frag_timeout < next_timeout) {
2437 					next_timeout = frag_timeout;
2438 				}
2439 				break;
2440 			}
2441 			/* Time's up.  Get it out of here. */
2442 			hdr_length = ipf->ipf_nf_hdr_len;
2443 			ipfnext = ipf->ipf_hash_next;
2444 			if (ipfnext)
2445 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2446 			*ipf->ipf_ptphn = ipfnext;
2447 			mp = ipf->ipf_mp->b_cont;
2448 			for (; mp; mp = mp->b_cont) {
2449 				/* Extra points for neatness. */
2450 				IP_REASS_SET_START(mp, 0);
2451 				IP_REASS_SET_END(mp, 0);
2452 			}
2453 			mp = ipf->ipf_mp->b_cont;
2454 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2455 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2456 			ipfb->ipfb_count -= ipf->ipf_count;
2457 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2458 			ipfb->ipfb_frag_pkts--;
2459 			/*
2460 			 * We do not send any icmp message from here because
2461 			 * we currently are holding the ipfb_lock for this
2462 			 * hash chain. If we try and send any icmp messages
2463 			 * from here we may end up via a put back into ip
2464 			 * trying to get the same lock, causing a recursive
2465 			 * mutex panic. Instead we build a list and send all
2466 			 * the icmp messages after we have dropped the lock.
2467 			 */
2468 			if (ill->ill_isv6) {
2469 				if (hdr_length != 0) {
2470 					mp->b_next = send_icmp_head_v6;
2471 					send_icmp_head_v6 = mp;
2472 				} else {
2473 					freemsg(mp);
2474 				}
2475 			} else {
2476 				if (hdr_length != 0) {
2477 					mp->b_next = send_icmp_head;
2478 					send_icmp_head = mp;
2479 				} else {
2480 					freemsg(mp);
2481 				}
2482 			}
2483 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2484 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2485 			freeb(ipf->ipf_mp);
2486 		}
2487 		mutex_exit(&ipfb->ipfb_lock);
2488 		/*
2489 		 * Now need to send any icmp messages that we delayed from
2490 		 * above.
2491 		 */
2492 		while (send_icmp_head_v6 != NULL) {
2493 			ip6_t *ip6h;
2494 
2495 			mp = send_icmp_head_v6;
2496 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2497 			mp->b_next = NULL;
2498 			ip6h = (ip6_t *)mp->b_rptr;
2499 			iras.ira_flags = 0;
2500 			/*
2501 			 * This will result in an incorrect ALL_ZONES zoneid
2502 			 * for multicast packets, but we
2503 			 * don't send ICMP errors for those in any case.
2504 			 */
2505 			iras.ira_zoneid =
2506 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2507 			    ill, ipst);
2508 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2509 			icmp_time_exceeded_v6(mp,
2510 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2511 			    &iras);
2512 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2513 		}
2514 		while (send_icmp_head != NULL) {
2515 			ipaddr_t dst;
2516 
2517 			mp = send_icmp_head;
2518 			send_icmp_head = send_icmp_head->b_next;
2519 			mp->b_next = NULL;
2520 
2521 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2522 
2523 			iras.ira_flags = IRAF_IS_IPV4;
2524 			/*
2525 			 * This will result in an incorrect ALL_ZONES zoneid
2526 			 * for broadcast and multicast packets, but we
2527 			 * don't send ICMP errors for those in any case.
2528 			 */
2529 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2530 			    ill, ipst);
2531 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2532 			icmp_time_exceeded(mp,
2533 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2534 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2535 		}
2536 	}
2537 	/*
2538 	 * A non-dying ILL will use the return value to decide whether to
2539 	 * restart the frag timer, and for how long.
2540 	 */
2541 	return (next_timeout);
2542 }
2543 
2544 /*
2545  * This routine is called when the approximate count of mblk memory used
2546  * for the specified ILL has exceeded max_count.
2547  */
2548 void
2549 ill_frag_prune(ill_t *ill, uint_t max_count)
2550 {
2551 	ipfb_t	*ipfb;
2552 	ipf_t	*ipf;
2553 	size_t	count;
2554 	clock_t now;
2555 
2556 	/*
2557 	 * If we are here within ip_min_frag_prune_time msecs remove
2558 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2559 	 * ill_frag_free_num_pkts.
2560 	 */
2561 	mutex_enter(&ill->ill_lock);
2562 	now = ddi_get_lbolt();
2563 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2564 	    (ip_min_frag_prune_time != 0 ?
2565 	    ip_min_frag_prune_time : msec_per_tick)) {
2566 
2567 		ill->ill_frag_free_num_pkts++;
2568 
2569 	} else {
2570 		ill->ill_frag_free_num_pkts = 0;
2571 	}
2572 	ill->ill_last_frag_clean_time = now;
2573 	mutex_exit(&ill->ill_lock);
2574 
2575 	/*
2576 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2577 	 */
2578 	if (ill->ill_frag_free_num_pkts != 0) {
2579 		int ix;
2580 
2581 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2582 			ipfb = &ill->ill_frag_hash_tbl[ix];
2583 			mutex_enter(&ipfb->ipfb_lock);
2584 			if (ipfb->ipfb_ipf != NULL) {
2585 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2586 				    ill->ill_frag_free_num_pkts);
2587 			}
2588 			mutex_exit(&ipfb->ipfb_lock);
2589 		}
2590 	}
2591 	/*
2592 	 * While the reassembly list for this ILL is too big, prune a fragment
2593 	 * queue by age, oldest first.
2594 	 */
2595 	while (ill->ill_frag_count > max_count) {
2596 		int	ix;
2597 		ipfb_t	*oipfb = NULL;
2598 		uint_t	oldest = UINT_MAX;
2599 
2600 		count = 0;
2601 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2602 			ipfb = &ill->ill_frag_hash_tbl[ix];
2603 			mutex_enter(&ipfb->ipfb_lock);
2604 			ipf = ipfb->ipfb_ipf;
2605 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2606 				oldest = ipf->ipf_gen;
2607 				oipfb = ipfb;
2608 			}
2609 			count += ipfb->ipfb_count;
2610 			mutex_exit(&ipfb->ipfb_lock);
2611 		}
2612 		if (oipfb == NULL)
2613 			break;
2614 
2615 		if (count <= max_count)
2616 			return;	/* Somebody beat us to it, nothing to do */
2617 		mutex_enter(&oipfb->ipfb_lock);
2618 		ipf = oipfb->ipfb_ipf;
2619 		if (ipf != NULL) {
2620 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2621 		}
2622 		mutex_exit(&oipfb->ipfb_lock);
2623 	}
2624 }
2625 
2626 /*
2627  * free 'free_cnt' fragmented packets starting at ipf.
2628  */
2629 void
2630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2631 {
2632 	size_t	count;
2633 	mblk_t	*mp;
2634 	mblk_t	*tmp;
2635 	ipf_t **ipfp = ipf->ipf_ptphn;
2636 
2637 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2638 	ASSERT(ipfp != NULL);
2639 	ASSERT(ipf != NULL);
2640 
2641 	while (ipf != NULL && free_cnt-- > 0) {
2642 		count = ipf->ipf_count;
2643 		mp = ipf->ipf_mp;
2644 		ipf = ipf->ipf_hash_next;
2645 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2646 			IP_REASS_SET_START(tmp, 0);
2647 			IP_REASS_SET_END(tmp, 0);
2648 		}
2649 		atomic_add_32(&ill->ill_frag_count, -count);
2650 		ASSERT(ipfb->ipfb_count >= count);
2651 		ipfb->ipfb_count -= count;
2652 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2653 		ipfb->ipfb_frag_pkts--;
2654 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2655 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2656 		freemsg(mp);
2657 	}
2658 
2659 	if (ipf)
2660 		ipf->ipf_ptphn = ipfp;
2661 	ipfp[0] = ipf;
2662 }
2663 
2664 /*
2665  * Helper function for ill_forward_set().
2666  */
2667 static void
2668 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2669 {
2670 	ip_stack_t	*ipst = ill->ill_ipst;
2671 
2672 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2673 
2674 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2675 	    (enable ? "Enabling" : "Disabling"),
2676 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2677 	mutex_enter(&ill->ill_lock);
2678 	if (enable)
2679 		ill->ill_flags |= ILLF_ROUTER;
2680 	else
2681 		ill->ill_flags &= ~ILLF_ROUTER;
2682 	mutex_exit(&ill->ill_lock);
2683 	if (ill->ill_isv6)
2684 		ill_set_nce_router_flags(ill, enable);
2685 	/* Notify routing socket listeners of this change. */
2686 	if (ill->ill_ipif != NULL)
2687 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2688 }
2689 
2690 /*
2691  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2692  * socket messages for each interface whose flags we change.
2693  */
2694 int
2695 ill_forward_set(ill_t *ill, boolean_t enable)
2696 {
2697 	ipmp_illgrp_t *illg;
2698 	ip_stack_t *ipst = ill->ill_ipst;
2699 
2700 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2701 
2702 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2703 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2704 		return (0);
2705 
2706 	if (IS_LOOPBACK(ill))
2707 		return (EINVAL);
2708 
2709 	if (enable && ill->ill_allowed_ips_cnt > 0)
2710 		return (EPERM);
2711 
2712 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2713 		/*
2714 		 * Update all of the interfaces in the group.
2715 		 */
2716 		illg = ill->ill_grp;
2717 		ill = list_head(&illg->ig_if);
2718 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2719 			ill_forward_set_on_ill(ill, enable);
2720 
2721 		/*
2722 		 * Update the IPMP meta-interface.
2723 		 */
2724 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2725 		return (0);
2726 	}
2727 
2728 	ill_forward_set_on_ill(ill, enable);
2729 	return (0);
2730 }
2731 
2732 /*
2733  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2734  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2735  * set or clear.
2736  */
2737 static void
2738 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2739 {
2740 	ipif_t *ipif;
2741 	ncec_t *ncec;
2742 	nce_t *nce;
2743 
2744 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2745 		/*
2746 		 * NOTE: we match across the illgrp because nce's for
2747 		 * addresses on IPMP interfaces have an nce_ill that points to
2748 		 * the bound underlying ill.
2749 		 */
2750 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2751 		if (nce != NULL) {
2752 			ncec = nce->nce_common;
2753 			mutex_enter(&ncec->ncec_lock);
2754 			if (enable)
2755 				ncec->ncec_flags |= NCE_F_ISROUTER;
2756 			else
2757 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2758 			mutex_exit(&ncec->ncec_lock);
2759 			nce_refrele(nce);
2760 		}
2761 	}
2762 }
2763 
2764 /*
2765  * Intializes the context structure and returns the first ill in the list
2766  * cuurently start_list and end_list can have values:
2767  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2768  * IP_V4_G_HEAD		Traverse IPV4 list only.
2769  * IP_V6_G_HEAD		Traverse IPV6 list only.
2770  */
2771 
2772 /*
2773  * We don't check for CONDEMNED ills here. Caller must do that if
2774  * necessary under the ill lock.
2775  */
2776 ill_t *
2777 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2778     ip_stack_t *ipst)
2779 {
2780 	ill_if_t *ifp;
2781 	ill_t *ill;
2782 	avl_tree_t *avl_tree;
2783 
2784 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2785 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2786 
2787 	/*
2788 	 * setup the lists to search
2789 	 */
2790 	if (end_list != MAX_G_HEADS) {
2791 		ctx->ctx_current_list = start_list;
2792 		ctx->ctx_last_list = end_list;
2793 	} else {
2794 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2795 		ctx->ctx_current_list = 0;
2796 	}
2797 
2798 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2799 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2800 		if (ifp != (ill_if_t *)
2801 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2802 			avl_tree = &ifp->illif_avl_by_ppa;
2803 			ill = avl_first(avl_tree);
2804 			/*
2805 			 * ill is guaranteed to be non NULL or ifp should have
2806 			 * not existed.
2807 			 */
2808 			ASSERT(ill != NULL);
2809 			return (ill);
2810 		}
2811 		ctx->ctx_current_list++;
2812 	}
2813 
2814 	return (NULL);
2815 }
2816 
2817 /*
2818  * returns the next ill in the list. ill_first() must have been called
2819  * before calling ill_next() or bad things will happen.
2820  */
2821 
2822 /*
2823  * We don't check for CONDEMNED ills here. Caller must do that if
2824  * necessary under the ill lock.
2825  */
2826 ill_t *
2827 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2828 {
2829 	ill_if_t *ifp;
2830 	ill_t *ill;
2831 	ip_stack_t	*ipst = lastill->ill_ipst;
2832 
2833 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2834 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2835 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2836 	    AVL_AFTER)) != NULL) {
2837 		return (ill);
2838 	}
2839 
2840 	/* goto next ill_ifp in the list. */
2841 	ifp = lastill->ill_ifptr->illif_next;
2842 
2843 	/* make sure not at end of circular list */
2844 	while (ifp ==
2845 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2846 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2847 			return (NULL);
2848 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2849 	}
2850 
2851 	return (avl_first(&ifp->illif_avl_by_ppa));
2852 }
2853 
2854 /*
2855  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2856  * The final number (PPA) must not have any leading zeros.  Upon success, a
2857  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2858  */
2859 static char *
2860 ill_get_ppa_ptr(char *name)
2861 {
2862 	int namelen = strlen(name);
2863 	int end_ndx = namelen - 1;
2864 	int ppa_ndx, i;
2865 
2866 	/*
2867 	 * Check that the first character is [a-zA-Z], and that the last
2868 	 * character is [0-9].
2869 	 */
2870 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2871 		return (NULL);
2872 
2873 	/*
2874 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2875 	 */
2876 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2877 		if (!isdigit(name[ppa_ndx - 1]))
2878 			break;
2879 
2880 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2881 		return (NULL);
2882 
2883 	/*
2884 	 * Check that the intermediate characters are [a-z0-9.]
2885 	 */
2886 	for (i = 1; i < ppa_ndx; i++) {
2887 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2888 		    name[i] != '.' && name[i] != '_') {
2889 			return (NULL);
2890 		}
2891 	}
2892 
2893 	return (name + ppa_ndx);
2894 }
2895 
2896 /*
2897  * use avl tree to locate the ill.
2898  */
2899 static ill_t *
2900 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2901 {
2902 	char *ppa_ptr = NULL;
2903 	int len;
2904 	uint_t ppa;
2905 	ill_t *ill = NULL;
2906 	ill_if_t *ifp;
2907 	int list;
2908 
2909 	/*
2910 	 * get ppa ptr
2911 	 */
2912 	if (isv6)
2913 		list = IP_V6_G_HEAD;
2914 	else
2915 		list = IP_V4_G_HEAD;
2916 
2917 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2918 		return (NULL);
2919 	}
2920 
2921 	len = ppa_ptr - name + 1;
2922 
2923 	ppa = stoi(&ppa_ptr);
2924 
2925 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2926 
2927 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2928 		/*
2929 		 * match is done on len - 1 as the name is not null
2930 		 * terminated it contains ppa in addition to the interface
2931 		 * name.
2932 		 */
2933 		if ((ifp->illif_name_len == len) &&
2934 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2935 			break;
2936 		} else {
2937 			ifp = ifp->illif_next;
2938 		}
2939 	}
2940 
2941 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2942 		/*
2943 		 * Even the interface type does not exist.
2944 		 */
2945 		return (NULL);
2946 	}
2947 
2948 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2949 	if (ill != NULL) {
2950 		mutex_enter(&ill->ill_lock);
2951 		if (ILL_CAN_LOOKUP(ill)) {
2952 			ill_refhold_locked(ill);
2953 			mutex_exit(&ill->ill_lock);
2954 			return (ill);
2955 		}
2956 		mutex_exit(&ill->ill_lock);
2957 	}
2958 	return (NULL);
2959 }
2960 
2961 /*
2962  * comparison function for use with avl.
2963  */
2964 static int
2965 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2966 {
2967 	uint_t ppa;
2968 	uint_t ill_ppa;
2969 
2970 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2971 
2972 	ppa = *((uint_t *)ppa_ptr);
2973 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2974 	/*
2975 	 * We want the ill with the lowest ppa to be on the
2976 	 * top.
2977 	 */
2978 	if (ill_ppa < ppa)
2979 		return (1);
2980 	if (ill_ppa > ppa)
2981 		return (-1);
2982 	return (0);
2983 }
2984 
2985 /*
2986  * remove an interface type from the global list.
2987  */
2988 static void
2989 ill_delete_interface_type(ill_if_t *interface)
2990 {
2991 	ASSERT(interface != NULL);
2992 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
2993 
2994 	avl_destroy(&interface->illif_avl_by_ppa);
2995 	if (interface->illif_ppa_arena != NULL)
2996 		vmem_destroy(interface->illif_ppa_arena);
2997 
2998 	remque(interface);
2999 
3000 	mi_free(interface);
3001 }
3002 
3003 /*
3004  * remove ill from the global list.
3005  */
3006 static void
3007 ill_glist_delete(ill_t *ill)
3008 {
3009 	ip_stack_t	*ipst;
3010 	phyint_t	*phyi;
3011 
3012 	if (ill == NULL)
3013 		return;
3014 	ipst = ill->ill_ipst;
3015 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3016 
3017 	/*
3018 	 * If the ill was never inserted into the AVL tree
3019 	 * we skip the if branch.
3020 	 */
3021 	if (ill->ill_ifptr != NULL) {
3022 		/*
3023 		 * remove from AVL tree and free ppa number
3024 		 */
3025 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3026 
3027 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3028 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3029 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3030 		}
3031 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3032 			ill_delete_interface_type(ill->ill_ifptr);
3033 		}
3034 
3035 		/*
3036 		 * Indicate ill is no longer in the list.
3037 		 */
3038 		ill->ill_ifptr = NULL;
3039 		ill->ill_name_length = 0;
3040 		ill->ill_name[0] = '\0';
3041 		ill->ill_ppa = UINT_MAX;
3042 	}
3043 
3044 	/* Generate one last event for this ill. */
3045 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3046 	    ill->ill_name_length);
3047 
3048 	ASSERT(ill->ill_phyint != NULL);
3049 	phyi = ill->ill_phyint;
3050 	ill->ill_phyint = NULL;
3051 
3052 	/*
3053 	 * ill_init allocates a phyint always to store the copy
3054 	 * of flags relevant to phyint. At that point in time, we could
3055 	 * not assign the name and hence phyint_illv4/v6 could not be
3056 	 * initialized. Later in ipif_set_values, we assign the name to
3057 	 * the ill, at which point in time we assign phyint_illv4/v6.
3058 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3059 	 */
3060 	if (ill->ill_flags & ILLF_IPV6)
3061 		phyi->phyint_illv6 = NULL;
3062 	else
3063 		phyi->phyint_illv4 = NULL;
3064 
3065 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3066 		rw_exit(&ipst->ips_ill_g_lock);
3067 		return;
3068 	}
3069 
3070 	/*
3071 	 * There are no ills left on this phyint; pull it out of the phyint
3072 	 * avl trees, and free it.
3073 	 */
3074 	if (phyi->phyint_ifindex > 0) {
3075 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3076 		    phyi);
3077 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3078 		    phyi);
3079 	}
3080 	rw_exit(&ipst->ips_ill_g_lock);
3081 
3082 	phyint_free(phyi);
3083 }
3084 
3085 /*
3086  * allocate a ppa, if the number of plumbed interfaces of this type are
3087  * less than ill_no_arena do a linear search to find a unused ppa.
3088  * When the number goes beyond ill_no_arena switch to using an arena.
3089  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3090  * is the return value for an error condition, so allocation starts at one
3091  * and is decremented by one.
3092  */
3093 static int
3094 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3095 {
3096 	ill_t *tmp_ill;
3097 	uint_t start, end;
3098 	int ppa;
3099 
3100 	if (ifp->illif_ppa_arena == NULL &&
3101 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3102 		/*
3103 		 * Create an arena.
3104 		 */
3105 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3106 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3107 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3108 			/* allocate what has already been assigned */
3109 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3110 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3111 		    tmp_ill, AVL_AFTER)) {
3112 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3113 			    1,		/* size */
3114 			    1,		/* align/quantum */
3115 			    0,		/* phase */
3116 			    0,		/* nocross */
3117 			    /* minaddr */
3118 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3119 			    /* maxaddr */
3120 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3121 			    VM_NOSLEEP|VM_FIRSTFIT);
3122 			if (ppa == 0) {
3123 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3124 				    " failed while switching"));
3125 				vmem_destroy(ifp->illif_ppa_arena);
3126 				ifp->illif_ppa_arena = NULL;
3127 				break;
3128 			}
3129 		}
3130 	}
3131 
3132 	if (ifp->illif_ppa_arena != NULL) {
3133 		if (ill->ill_ppa == UINT_MAX) {
3134 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3135 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3136 			if (ppa == 0)
3137 				return (EAGAIN);
3138 			ill->ill_ppa = --ppa;
3139 		} else {
3140 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3141 			    1, 		/* size */
3142 			    1, 		/* align/quantum */
3143 			    0, 		/* phase */
3144 			    0, 		/* nocross */
3145 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3146 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3147 			    VM_NOSLEEP|VM_FIRSTFIT);
3148 			/*
3149 			 * Most likely the allocation failed because
3150 			 * the requested ppa was in use.
3151 			 */
3152 			if (ppa == 0)
3153 				return (EEXIST);
3154 		}
3155 		return (0);
3156 	}
3157 
3158 	/*
3159 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3160 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3161 	 */
3162 	if (ill->ill_ppa == UINT_MAX) {
3163 		end = UINT_MAX - 1;
3164 		start = 0;
3165 	} else {
3166 		end = start = ill->ill_ppa;
3167 	}
3168 
3169 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3170 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3171 		if (start++ >= end) {
3172 			if (ill->ill_ppa == UINT_MAX)
3173 				return (EAGAIN);
3174 			else
3175 				return (EEXIST);
3176 		}
3177 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3178 	}
3179 	ill->ill_ppa = start;
3180 	return (0);
3181 }
3182 
3183 /*
3184  * Insert ill into the list of configured ill's. Once this function completes,
3185  * the ill is globally visible and is available through lookups. More precisely
3186  * this happens after the caller drops the ill_g_lock.
3187  */
3188 static int
3189 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3190 {
3191 	ill_if_t *ill_interface;
3192 	avl_index_t where = 0;
3193 	int error;
3194 	int name_length;
3195 	int index;
3196 	boolean_t check_length = B_FALSE;
3197 	ip_stack_t	*ipst = ill->ill_ipst;
3198 
3199 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3200 
3201 	name_length = mi_strlen(name) + 1;
3202 
3203 	if (isv6)
3204 		index = IP_V6_G_HEAD;
3205 	else
3206 		index = IP_V4_G_HEAD;
3207 
3208 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3209 	/*
3210 	 * Search for interface type based on name
3211 	 */
3212 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3213 		if ((ill_interface->illif_name_len == name_length) &&
3214 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3215 			break;
3216 		}
3217 		ill_interface = ill_interface->illif_next;
3218 	}
3219 
3220 	/*
3221 	 * Interface type not found, create one.
3222 	 */
3223 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3224 		ill_g_head_t ghead;
3225 
3226 		/*
3227 		 * allocate ill_if_t structure
3228 		 */
3229 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3230 		if (ill_interface == NULL) {
3231 			return (ENOMEM);
3232 		}
3233 
3234 		(void) strcpy(ill_interface->illif_name, name);
3235 		ill_interface->illif_name_len = name_length;
3236 
3237 		avl_create(&ill_interface->illif_avl_by_ppa,
3238 		    ill_compare_ppa, sizeof (ill_t),
3239 		    offsetof(struct ill_s, ill_avl_byppa));
3240 
3241 		/*
3242 		 * link the structure in the back to maintain order
3243 		 * of configuration for ifconfig output.
3244 		 */
3245 		ghead = ipst->ips_ill_g_heads[index];
3246 		insque(ill_interface, ghead.ill_g_list_tail);
3247 	}
3248 
3249 	if (ill->ill_ppa == UINT_MAX)
3250 		check_length = B_TRUE;
3251 
3252 	error = ill_alloc_ppa(ill_interface, ill);
3253 	if (error != 0) {
3254 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3255 			ill_delete_interface_type(ill->ill_ifptr);
3256 		return (error);
3257 	}
3258 
3259 	/*
3260 	 * When the ppa is choosen by the system, check that there is
3261 	 * enough space to insert ppa. if a specific ppa was passed in this
3262 	 * check is not required as the interface name passed in will have
3263 	 * the right ppa in it.
3264 	 */
3265 	if (check_length) {
3266 		/*
3267 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3268 		 */
3269 		char buf[sizeof (uint_t) * 3];
3270 
3271 		/*
3272 		 * convert ppa to string to calculate the amount of space
3273 		 * required for it in the name.
3274 		 */
3275 		numtos(ill->ill_ppa, buf);
3276 
3277 		/* Do we have enough space to insert ppa ? */
3278 
3279 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3280 			/* Free ppa and interface type struct */
3281 			if (ill_interface->illif_ppa_arena != NULL) {
3282 				vmem_free(ill_interface->illif_ppa_arena,
3283 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3284 			}
3285 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3286 				ill_delete_interface_type(ill->ill_ifptr);
3287 
3288 			return (EINVAL);
3289 		}
3290 	}
3291 
3292 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3293 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3294 
3295 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3296 	    &where);
3297 	ill->ill_ifptr = ill_interface;
3298 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3299 
3300 	ill_phyint_reinit(ill);
3301 	return (0);
3302 }
3303 
3304 /* Initialize the per phyint ipsq used for serialization */
3305 static boolean_t
3306 ipsq_init(ill_t *ill, boolean_t enter)
3307 {
3308 	ipsq_t  *ipsq;
3309 	ipxop_t	*ipx;
3310 
3311 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3312 		return (B_FALSE);
3313 
3314 	ill->ill_phyint->phyint_ipsq = ipsq;
3315 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3316 	ipx->ipx_ipsq = ipsq;
3317 	ipsq->ipsq_next = ipsq;
3318 	ipsq->ipsq_phyint = ill->ill_phyint;
3319 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3320 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3321 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3322 	if (enter) {
3323 		ipx->ipx_writer = curthread;
3324 		ipx->ipx_forced = B_FALSE;
3325 		ipx->ipx_reentry_cnt = 1;
3326 #ifdef DEBUG
3327 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3328 #endif
3329 	}
3330 	return (B_TRUE);
3331 }
3332 
3333 /*
3334  * ill_init is called by ip_open when a device control stream is opened.
3335  * It does a few initializations, and shoots a DL_INFO_REQ message down
3336  * to the driver.  The response is later picked up in ip_rput_dlpi and
3337  * used to set up default mechanisms for talking to the driver.  (Always
3338  * called as writer.)
3339  *
3340  * If this function returns error, ip_open will call ip_close which in
3341  * turn will call ill_delete to clean up any memory allocated here that
3342  * is not yet freed.
3343  */
3344 int
3345 ill_init(queue_t *q, ill_t *ill)
3346 {
3347 	int	count;
3348 	dl_info_req_t	*dlir;
3349 	mblk_t	*info_mp;
3350 	uchar_t *frag_ptr;
3351 
3352 	/*
3353 	 * The ill is initialized to zero by mi_alloc*(). In addition
3354 	 * some fields already contain valid values, initialized in
3355 	 * ip_open(), before we reach here.
3356 	 */
3357 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3358 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3359 	ill->ill_saved_ire_cnt = 0;
3360 
3361 	ill->ill_rq = q;
3362 	ill->ill_wq = WR(q);
3363 
3364 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3365 	    BPRI_HI);
3366 	if (info_mp == NULL)
3367 		return (ENOMEM);
3368 
3369 	/*
3370 	 * Allocate sufficient space to contain our fragment hash table and
3371 	 * the device name.
3372 	 */
3373 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ);
3374 	if (frag_ptr == NULL) {
3375 		freemsg(info_mp);
3376 		return (ENOMEM);
3377 	}
3378 	ill->ill_frag_ptr = frag_ptr;
3379 	ill->ill_frag_free_num_pkts = 0;
3380 	ill->ill_last_frag_clean_time = 0;
3381 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3382 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3383 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3384 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3385 		    NULL, MUTEX_DEFAULT, NULL);
3386 	}
3387 
3388 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3389 	if (ill->ill_phyint == NULL) {
3390 		freemsg(info_mp);
3391 		mi_free(frag_ptr);
3392 		return (ENOMEM);
3393 	}
3394 
3395 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3396 	/*
3397 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3398 	 * at this point because of the following reason. If we can't
3399 	 * enter the ipsq at some point and cv_wait, the writer that
3400 	 * wakes us up tries to locate us using the list of all phyints
3401 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3402 	 * If we don't set it now, we risk a missed wakeup.
3403 	 */
3404 	ill->ill_phyint->phyint_illv4 = ill;
3405 	ill->ill_ppa = UINT_MAX;
3406 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3407 
3408 	ill_set_inputfn(ill);
3409 
3410 	if (!ipsq_init(ill, B_TRUE)) {
3411 		freemsg(info_mp);
3412 		mi_free(frag_ptr);
3413 		mi_free(ill->ill_phyint);
3414 		return (ENOMEM);
3415 	}
3416 
3417 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3418 
3419 	/* Frag queue limit stuff */
3420 	ill->ill_frag_count = 0;
3421 	ill->ill_ipf_gen = 0;
3422 
3423 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3424 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3425 	ill->ill_global_timer = INFINITY;
3426 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3427 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3428 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3429 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3430 
3431 	/*
3432 	 * Initialize IPv6 configuration variables.  The IP module is always
3433 	 * opened as an IPv4 module.  Instead tracking down the cases where
3434 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3435 	 * here for convenience, this has no effect until the ill is set to do
3436 	 * IPv6.
3437 	 */
3438 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3439 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3440 	ill->ill_max_buf = ND_MAX_Q;
3441 	ill->ill_refcnt = 0;
3442 
3443 	/* Send down the Info Request to the driver. */
3444 	info_mp->b_datap->db_type = M_PCPROTO;
3445 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3446 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3447 	dlir->dl_primitive = DL_INFO_REQ;
3448 
3449 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3450 
3451 	qprocson(q);
3452 	ill_dlpi_send(ill, info_mp);
3453 
3454 	return (0);
3455 }
3456 
3457 /*
3458  * ill_dls_info
3459  * creates datalink socket info from the device.
3460  */
3461 int
3462 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3463 {
3464 	size_t	len;
3465 
3466 	sdl->sdl_family = AF_LINK;
3467 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3468 	sdl->sdl_type = ill->ill_type;
3469 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3470 	len = strlen(sdl->sdl_data);
3471 	ASSERT(len < 256);
3472 	sdl->sdl_nlen = (uchar_t)len;
3473 	sdl->sdl_alen = ill->ill_phys_addr_length;
3474 	sdl->sdl_slen = 0;
3475 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3476 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3477 
3478 	return (sizeof (struct sockaddr_dl));
3479 }
3480 
3481 /*
3482  * ill_xarp_info
3483  * creates xarp info from the device.
3484  */
3485 static int
3486 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3487 {
3488 	sdl->sdl_family = AF_LINK;
3489 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3490 	sdl->sdl_type = ill->ill_type;
3491 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3492 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3493 	sdl->sdl_alen = ill->ill_phys_addr_length;
3494 	sdl->sdl_slen = 0;
3495 	return (sdl->sdl_nlen);
3496 }
3497 
3498 static int
3499 loopback_kstat_update(kstat_t *ksp, int rw)
3500 {
3501 	kstat_named_t *kn;
3502 	netstackid_t	stackid;
3503 	netstack_t	*ns;
3504 	ip_stack_t	*ipst;
3505 
3506 	if (ksp == NULL || ksp->ks_data == NULL)
3507 		return (EIO);
3508 
3509 	if (rw == KSTAT_WRITE)
3510 		return (EACCES);
3511 
3512 	kn = KSTAT_NAMED_PTR(ksp);
3513 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3514 
3515 	ns = netstack_find_by_stackid(stackid);
3516 	if (ns == NULL)
3517 		return (-1);
3518 
3519 	ipst = ns->netstack_ip;
3520 	if (ipst == NULL) {
3521 		netstack_rele(ns);
3522 		return (-1);
3523 	}
3524 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3525 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3526 	netstack_rele(ns);
3527 	return (0);
3528 }
3529 
3530 /*
3531  * Has ifindex been plumbed already?
3532  */
3533 static boolean_t
3534 phyint_exists(uint_t index, ip_stack_t *ipst)
3535 {
3536 	ASSERT(index != 0);
3537 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3538 
3539 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3540 	    &index, NULL) != NULL);
3541 }
3542 
3543 /*
3544  * Pick a unique ifindex.
3545  * When the index counter passes IF_INDEX_MAX for the first time, the wrap
3546  * flag is set so that next time time ip_assign_ifindex() is called, it
3547  * falls through and resets the index counter back to 1, the minimum value
3548  * for the interface index. The logic below assumes that ips_ill_index
3549  * can hold a value of IF_INDEX_MAX+1 without there being any loss
3550  * (i.e. reset back to 0.)
3551  */
3552 boolean_t
3553 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3554 {
3555 	uint_t loops;
3556 
3557 	if (!ipst->ips_ill_index_wrap) {
3558 		*indexp = ipst->ips_ill_index++;
3559 		if (ipst->ips_ill_index > IF_INDEX_MAX) {
3560 			/*
3561 			 * Reached the maximum ifindex value, set the wrap
3562 			 * flag to indicate that it is no longer possible
3563 			 * to assume that a given index is unallocated.
3564 			 */
3565 			ipst->ips_ill_index_wrap = B_TRUE;
3566 		}
3567 		return (B_TRUE);
3568 	}
3569 
3570 	if (ipst->ips_ill_index > IF_INDEX_MAX)
3571 		ipst->ips_ill_index = 1;
3572 
3573 	/*
3574 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3575 	 * at this point and don't want to call any function that attempts
3576 	 * to get the lock again.
3577 	 */
3578 	for (loops = IF_INDEX_MAX; loops > 0; loops--) {
3579 		if (!phyint_exists(ipst->ips_ill_index, ipst)) {
3580 			/* found unused index - use it */
3581 			*indexp = ipst->ips_ill_index;
3582 			return (B_TRUE);
3583 		}
3584 
3585 		ipst->ips_ill_index++;
3586 		if (ipst->ips_ill_index > IF_INDEX_MAX)
3587 			ipst->ips_ill_index = 1;
3588 	}
3589 
3590 	/*
3591 	 * all interface indicies are inuse.
3592 	 */
3593 	return (B_FALSE);
3594 }
3595 
3596 /*
3597  * Assign a unique interface index for the phyint.
3598  */
3599 static boolean_t
3600 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3601 {
3602 	ASSERT(phyi->phyint_ifindex == 0);
3603 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3604 }
3605 
3606 /*
3607  * Initialize the flags on `phyi' as per the provided mactype.
3608  */
3609 static void
3610 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3611 {
3612 	uint64_t flags = 0;
3613 
3614 	/*
3615 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3616 	 * we always presume the underlying hardware is working and set
3617 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3618 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3619 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3620 	 */
3621 	if (mactype == SUNW_DL_IPMP)
3622 		flags |= PHYI_FAILED;
3623 	else
3624 		flags |= PHYI_RUNNING;
3625 
3626 	switch (mactype) {
3627 	case SUNW_DL_VNI:
3628 		flags |= PHYI_VIRTUAL;
3629 		break;
3630 	case SUNW_DL_IPMP:
3631 		flags |= PHYI_IPMP;
3632 		break;
3633 	case DL_LOOP:
3634 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3635 		break;
3636 	}
3637 
3638 	mutex_enter(&phyi->phyint_lock);
3639 	phyi->phyint_flags |= flags;
3640 	mutex_exit(&phyi->phyint_lock);
3641 }
3642 
3643 /*
3644  * Return a pointer to the ill which matches the supplied name.  Note that
3645  * the ill name length includes the null termination character.  (May be
3646  * called as writer.)
3647  * If do_alloc and the interface is "lo0" it will be automatically created.
3648  * Cannot bump up reference on condemned ills. So dup detect can't be done
3649  * using this func.
3650  */
3651 ill_t *
3652 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3653     boolean_t *did_alloc, ip_stack_t *ipst)
3654 {
3655 	ill_t	*ill;
3656 	ipif_t	*ipif;
3657 	ipsq_t	*ipsq;
3658 	kstat_named_t	*kn;
3659 	boolean_t isloopback;
3660 	in6_addr_t ov6addr;
3661 
3662 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3663 
3664 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3665 	ill = ill_find_by_name(name, isv6, ipst);
3666 	rw_exit(&ipst->ips_ill_g_lock);
3667 	if (ill != NULL)
3668 		return (ill);
3669 
3670 	/*
3671 	 * Couldn't find it.  Does this happen to be a lookup for the
3672 	 * loopback device and are we allowed to allocate it?
3673 	 */
3674 	if (!isloopback || !do_alloc)
3675 		return (NULL);
3676 
3677 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3678 	ill = ill_find_by_name(name, isv6, ipst);
3679 	if (ill != NULL) {
3680 		rw_exit(&ipst->ips_ill_g_lock);
3681 		return (ill);
3682 	}
3683 
3684 	/* Create the loopback device on demand */
3685 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3686 	    sizeof (ipif_loopback_name), BPRI_MED));
3687 	if (ill == NULL)
3688 		goto done;
3689 
3690 	*ill = ill_null;
3691 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3692 	ill->ill_ipst = ipst;
3693 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3694 	netstack_hold(ipst->ips_netstack);
3695 	/*
3696 	 * For exclusive stacks we set the zoneid to zero
3697 	 * to make IP operate as if in the global zone.
3698 	 */
3699 	ill->ill_zoneid = GLOBAL_ZONEID;
3700 
3701 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3702 	if (ill->ill_phyint == NULL)
3703 		goto done;
3704 
3705 	if (isv6)
3706 		ill->ill_phyint->phyint_illv6 = ill;
3707 	else
3708 		ill->ill_phyint->phyint_illv4 = ill;
3709 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3710 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3711 
3712 	if (isv6) {
3713 		ill->ill_isv6 = B_TRUE;
3714 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3715 	} else {
3716 		ill->ill_max_frag = ip_loopback_mtuplus;
3717 	}
3718 	if (!ill_allocate_mibs(ill))
3719 		goto done;
3720 	ill->ill_current_frag = ill->ill_max_frag;
3721 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3722 	ill->ill_mc_mtu = ill->ill_mtu;
3723 	/*
3724 	 * ipif_loopback_name can't be pointed at directly because its used
3725 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3726 	 * from the glist, ill_glist_delete() sets the first character of
3727 	 * ill_name to '\0'.
3728 	 */
3729 	ill->ill_name = (char *)ill + sizeof (*ill);
3730 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3731 	ill->ill_name_length = sizeof (ipif_loopback_name);
3732 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3733 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3734 
3735 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3736 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3737 	ill->ill_global_timer = INFINITY;
3738 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3739 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3740 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3741 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3742 
3743 	/* No resolver here. */
3744 	ill->ill_net_type = IRE_LOOPBACK;
3745 
3746 	/* Initialize the ipsq */
3747 	if (!ipsq_init(ill, B_FALSE))
3748 		goto done;
3749 
3750 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3751 	if (ipif == NULL)
3752 		goto done;
3753 
3754 	ill->ill_flags = ILLF_MULTICAST;
3755 
3756 	ov6addr = ipif->ipif_v6lcl_addr;
3757 	/* Set up default loopback address and mask. */
3758 	if (!isv6) {
3759 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3760 
3761 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3762 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3763 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3764 		    ipif->ipif_v6subnet);
3765 		ill->ill_flags |= ILLF_IPV4;
3766 	} else {
3767 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3768 		ipif->ipif_v6net_mask = ipv6_all_ones;
3769 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3770 		    ipif->ipif_v6subnet);
3771 		ill->ill_flags |= ILLF_IPV6;
3772 	}
3773 
3774 	/*
3775 	 * Chain us in at the end of the ill list. hold the ill
3776 	 * before we make it globally visible. 1 for the lookup.
3777 	 */
3778 	ill->ill_refcnt = 0;
3779 	ill_refhold(ill);
3780 
3781 	ill->ill_frag_count = 0;
3782 	ill->ill_frag_free_num_pkts = 0;
3783 	ill->ill_last_frag_clean_time = 0;
3784 
3785 	ipsq = ill->ill_phyint->phyint_ipsq;
3786 
3787 	ill_set_inputfn(ill);
3788 
3789 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3790 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3791 
3792 	/* Let SCTP know so that it can add this to its list */
3793 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3794 
3795 	/*
3796 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3797 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3798 	 * requires to be after ill_glist_insert() since we need the
3799 	 * ill_index set. Pass on ipv6_loopback as the old address.
3800 	 */
3801 	sctp_update_ipif_addr(ipif, ov6addr);
3802 
3803 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3804 
3805 	/*
3806 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3807 	 * If so, free our original one.
3808 	 */
3809 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3810 		ipsq_delete(ipsq);
3811 
3812 	if (ipst->ips_loopback_ksp == NULL) {
3813 		/* Export loopback interface statistics */
3814 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3815 		    ipif_loopback_name, "net",
3816 		    KSTAT_TYPE_NAMED, 2, 0,
3817 		    ipst->ips_netstack->netstack_stackid);
3818 		if (ipst->ips_loopback_ksp != NULL) {
3819 			ipst->ips_loopback_ksp->ks_update =
3820 			    loopback_kstat_update;
3821 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3822 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3823 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3824 			ipst->ips_loopback_ksp->ks_private =
3825 			    (void *)(uintptr_t)ipst->ips_netstack->
3826 			    netstack_stackid;
3827 			kstat_install(ipst->ips_loopback_ksp);
3828 		}
3829 	}
3830 
3831 	*did_alloc = B_TRUE;
3832 	rw_exit(&ipst->ips_ill_g_lock);
3833 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3834 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3835 	return (ill);
3836 done:
3837 	if (ill != NULL) {
3838 		if (ill->ill_phyint != NULL) {
3839 			ipsq = ill->ill_phyint->phyint_ipsq;
3840 			if (ipsq != NULL) {
3841 				ipsq->ipsq_phyint = NULL;
3842 				ipsq_delete(ipsq);
3843 			}
3844 			mi_free(ill->ill_phyint);
3845 		}
3846 		ill_free_mib(ill);
3847 		if (ill->ill_ipst != NULL)
3848 			netstack_rele(ill->ill_ipst->ips_netstack);
3849 		mi_free(ill);
3850 	}
3851 	rw_exit(&ipst->ips_ill_g_lock);
3852 	return (NULL);
3853 }
3854 
3855 /*
3856  * For IPP calls - use the ip_stack_t for global stack.
3857  */
3858 ill_t *
3859 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3860 {
3861 	ip_stack_t	*ipst;
3862 	ill_t		*ill;
3863 
3864 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3865 	if (ipst == NULL) {
3866 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3867 		return (NULL);
3868 	}
3869 
3870 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3871 	netstack_rele(ipst->ips_netstack);
3872 	return (ill);
3873 }
3874 
3875 /*
3876  * Return a pointer to the ill which matches the index and IP version type.
3877  */
3878 ill_t *
3879 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3880 {
3881 	ill_t	*ill;
3882 	phyint_t *phyi;
3883 
3884 	/*
3885 	 * Indexes are stored in the phyint - a common structure
3886 	 * to both IPv4 and IPv6.
3887 	 */
3888 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3889 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3890 	    (void *) &index, NULL);
3891 	if (phyi != NULL) {
3892 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3893 		if (ill != NULL) {
3894 			mutex_enter(&ill->ill_lock);
3895 			if (!ILL_IS_CONDEMNED(ill)) {
3896 				ill_refhold_locked(ill);
3897 				mutex_exit(&ill->ill_lock);
3898 				rw_exit(&ipst->ips_ill_g_lock);
3899 				return (ill);
3900 			}
3901 			mutex_exit(&ill->ill_lock);
3902 		}
3903 	}
3904 	rw_exit(&ipst->ips_ill_g_lock);
3905 	return (NULL);
3906 }
3907 
3908 /*
3909  * Verify whether or not an interface index is valid for the specified zoneid
3910  * to transmit packets.
3911  * It can be zero (meaning "reset") or an interface index assigned
3912  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3913  */
3914 boolean_t
3915 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6,
3916     ip_stack_t *ipst)
3917 {
3918 	ill_t		*ill;
3919 
3920 	if (ifindex == 0)
3921 		return (B_TRUE);
3922 
3923 	ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst);
3924 	if (ill == NULL)
3925 		return (B_FALSE);
3926 	if (IS_VNI(ill)) {
3927 		ill_refrele(ill);
3928 		return (B_FALSE);
3929 	}
3930 	ill_refrele(ill);
3931 	return (B_TRUE);
3932 }
3933 
3934 /*
3935  * Return the ifindex next in sequence after the passed in ifindex.
3936  * If there is no next ifindex for the given protocol, return 0.
3937  */
3938 uint_t
3939 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3940 {
3941 	phyint_t *phyi;
3942 	phyint_t *phyi_initial;
3943 	uint_t   ifindex;
3944 
3945 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3946 
3947 	if (index == 0) {
3948 		phyi = avl_first(
3949 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3950 	} else {
3951 		phyi = phyi_initial = avl_find(
3952 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3953 		    (void *) &index, NULL);
3954 	}
3955 
3956 	for (; phyi != NULL;
3957 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3958 	    phyi, AVL_AFTER)) {
3959 		/*
3960 		 * If we're not returning the first interface in the tree
3961 		 * and we still haven't moved past the phyint_t that
3962 		 * corresponds to index, avl_walk needs to be called again
3963 		 */
3964 		if (!((index != 0) && (phyi == phyi_initial))) {
3965 			if (isv6) {
3966 				if ((phyi->phyint_illv6) &&
3967 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3968 				    (phyi->phyint_illv6->ill_isv6 == 1))
3969 					break;
3970 			} else {
3971 				if ((phyi->phyint_illv4) &&
3972 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3973 				    (phyi->phyint_illv4->ill_isv6 == 0))
3974 					break;
3975 			}
3976 		}
3977 	}
3978 
3979 	rw_exit(&ipst->ips_ill_g_lock);
3980 
3981 	if (phyi != NULL)
3982 		ifindex = phyi->phyint_ifindex;
3983 	else
3984 		ifindex = 0;
3985 
3986 	return (ifindex);
3987 }
3988 
3989 /*
3990  * Return the ifindex for the named interface.
3991  * If there is no next ifindex for the interface, return 0.
3992  */
3993 uint_t
3994 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
3995 {
3996 	phyint_t	*phyi;
3997 	avl_index_t	where = 0;
3998 	uint_t		ifindex;
3999 
4000 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4001 
4002 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4003 	    name, &where)) == NULL) {
4004 		rw_exit(&ipst->ips_ill_g_lock);
4005 		return (0);
4006 	}
4007 
4008 	ifindex = phyi->phyint_ifindex;
4009 
4010 	rw_exit(&ipst->ips_ill_g_lock);
4011 
4012 	return (ifindex);
4013 }
4014 
4015 /*
4016  * Return the ifindex to be used by upper layer protocols for instance
4017  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4018  */
4019 uint_t
4020 ill_get_upper_ifindex(const ill_t *ill)
4021 {
4022 	if (IS_UNDER_IPMP(ill))
4023 		return (ipmp_ill_get_ipmp_ifindex(ill));
4024 	else
4025 		return (ill->ill_phyint->phyint_ifindex);
4026 }
4027 
4028 
4029 /*
4030  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4031  * that gives a running thread a reference to the ill. This reference must be
4032  * released by the thread when it is done accessing the ill and related
4033  * objects. ill_refcnt can not be used to account for static references
4034  * such as other structures pointing to an ill. Callers must generally
4035  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4036  * or be sure that the ill is not being deleted or changing state before
4037  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4038  * ill won't change any of its critical state such as address, netmask etc.
4039  */
4040 void
4041 ill_refhold(ill_t *ill)
4042 {
4043 	mutex_enter(&ill->ill_lock);
4044 	ill->ill_refcnt++;
4045 	ILL_TRACE_REF(ill);
4046 	mutex_exit(&ill->ill_lock);
4047 }
4048 
4049 void
4050 ill_refhold_locked(ill_t *ill)
4051 {
4052 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4053 	ill->ill_refcnt++;
4054 	ILL_TRACE_REF(ill);
4055 }
4056 
4057 /* Returns true if we managed to get a refhold */
4058 boolean_t
4059 ill_check_and_refhold(ill_t *ill)
4060 {
4061 	mutex_enter(&ill->ill_lock);
4062 	if (!ILL_IS_CONDEMNED(ill)) {
4063 		ill_refhold_locked(ill);
4064 		mutex_exit(&ill->ill_lock);
4065 		return (B_TRUE);
4066 	}
4067 	mutex_exit(&ill->ill_lock);
4068 	return (B_FALSE);
4069 }
4070 
4071 /*
4072  * Must not be called while holding any locks. Otherwise if this is
4073  * the last reference to be released, there is a chance of recursive mutex
4074  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4075  * to restart an ioctl.
4076  */
4077 void
4078 ill_refrele(ill_t *ill)
4079 {
4080 	mutex_enter(&ill->ill_lock);
4081 	ASSERT(ill->ill_refcnt != 0);
4082 	ill->ill_refcnt--;
4083 	ILL_UNTRACE_REF(ill);
4084 	if (ill->ill_refcnt != 0) {
4085 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4086 		mutex_exit(&ill->ill_lock);
4087 		return;
4088 	}
4089 
4090 	/* Drops the ill_lock */
4091 	ipif_ill_refrele_tail(ill);
4092 }
4093 
4094 /*
4095  * Obtain a weak reference count on the ill. This reference ensures the
4096  * ill won't be freed, but the ill may change any of its critical state
4097  * such as netmask, address etc. Returns an error if the ill has started
4098  * closing.
4099  */
4100 boolean_t
4101 ill_waiter_inc(ill_t *ill)
4102 {
4103 	mutex_enter(&ill->ill_lock);
4104 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4105 		mutex_exit(&ill->ill_lock);
4106 		return (B_FALSE);
4107 	}
4108 	ill->ill_waiters++;
4109 	mutex_exit(&ill->ill_lock);
4110 	return (B_TRUE);
4111 }
4112 
4113 void
4114 ill_waiter_dcr(ill_t *ill)
4115 {
4116 	mutex_enter(&ill->ill_lock);
4117 	ill->ill_waiters--;
4118 	if (ill->ill_waiters == 0)
4119 		cv_broadcast(&ill->ill_cv);
4120 	mutex_exit(&ill->ill_lock);
4121 }
4122 
4123 /*
4124  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4125  * driver.  We construct best guess defaults for lower level information that
4126  * we need.  If an interface is brought up without injection of any overriding
4127  * information from outside, we have to be ready to go with these defaults.
4128  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4129  * we primarely want the dl_provider_style.
4130  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4131  * at which point we assume the other part of the information is valid.
4132  */
4133 void
4134 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4135 {
4136 	uchar_t		*brdcst_addr;
4137 	uint_t		brdcst_addr_length, phys_addr_length;
4138 	t_scalar_t	sap_length;
4139 	dl_info_ack_t	*dlia;
4140 	ip_m_t		*ipm;
4141 	dl_qos_cl_sel1_t *sel1;
4142 	int		min_mtu;
4143 
4144 	ASSERT(IAM_WRITER_ILL(ill));
4145 
4146 	/*
4147 	 * Till the ill is fully up  the ill is not globally visible.
4148 	 * So no need for a lock.
4149 	 */
4150 	dlia = (dl_info_ack_t *)mp->b_rptr;
4151 	ill->ill_mactype = dlia->dl_mac_type;
4152 
4153 	ipm = ip_m_lookup(dlia->dl_mac_type);
4154 	if (ipm == NULL) {
4155 		ipm = ip_m_lookup(DL_OTHER);
4156 		ASSERT(ipm != NULL);
4157 	}
4158 	ill->ill_media = ipm;
4159 
4160 	/*
4161 	 * When the new DLPI stuff is ready we'll pull lengths
4162 	 * from dlia.
4163 	 */
4164 	if (dlia->dl_version == DL_VERSION_2) {
4165 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4166 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4167 		    brdcst_addr_length);
4168 		if (brdcst_addr == NULL) {
4169 			brdcst_addr_length = 0;
4170 		}
4171 		sap_length = dlia->dl_sap_length;
4172 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4173 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4174 		    brdcst_addr_length, sap_length, phys_addr_length));
4175 	} else {
4176 		brdcst_addr_length = 6;
4177 		brdcst_addr = ip_six_byte_all_ones;
4178 		sap_length = -2;
4179 		phys_addr_length = brdcst_addr_length;
4180 	}
4181 
4182 	ill->ill_bcast_addr_length = brdcst_addr_length;
4183 	ill->ill_phys_addr_length = phys_addr_length;
4184 	ill->ill_sap_length = sap_length;
4185 
4186 	/*
4187 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4188 	 * but we must ensure a minimum IP MTU is used since other bits of
4189 	 * IP will fly apart otherwise.
4190 	 */
4191 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4192 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4193 	ill->ill_current_frag = ill->ill_max_frag;
4194 	ill->ill_mtu = ill->ill_max_frag;
4195 	ill->ill_mc_mtu = ill->ill_mtu;	/* Overridden by DL_NOTE_SDU_SIZE2 */
4196 
4197 	ill->ill_type = ipm->ip_m_type;
4198 
4199 	if (!ill->ill_dlpi_style_set) {
4200 		if (dlia->dl_provider_style == DL_STYLE2)
4201 			ill->ill_needs_attach = 1;
4202 
4203 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4204 
4205 		/*
4206 		 * Allocate the first ipif on this ill.  We don't delay it
4207 		 * further as ioctl handling assumes at least one ipif exists.
4208 		 *
4209 		 * At this point we don't know whether the ill is v4 or v6.
4210 		 * We will know this whan the SIOCSLIFNAME happens and
4211 		 * the correct value for ill_isv6 will be assigned in
4212 		 * ipif_set_values(). We need to hold the ill lock and
4213 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4214 		 * the wakeup.
4215 		 */
4216 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4217 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4218 		mutex_enter(&ill->ill_lock);
4219 		ASSERT(ill->ill_dlpi_style_set == 0);
4220 		ill->ill_dlpi_style_set = 1;
4221 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4222 		cv_broadcast(&ill->ill_cv);
4223 		mutex_exit(&ill->ill_lock);
4224 		freemsg(mp);
4225 		return;
4226 	}
4227 	ASSERT(ill->ill_ipif != NULL);
4228 	/*
4229 	 * We know whether it is IPv4 or IPv6 now, as this is the
4230 	 * second DL_INFO_ACK we are recieving in response to the
4231 	 * DL_INFO_REQ sent in ipif_set_values.
4232 	 */
4233 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4234 	/*
4235 	 * Clear all the flags that were set based on ill_bcast_addr_length
4236 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4237 	 * changed now and we need to re-evaluate.
4238 	 */
4239 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4240 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4241 
4242 	/*
4243 	 * Free ill_bcast_mp as things could have changed now.
4244 	 *
4245 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4246 	 * with no underlying interfaces (and thus an unknown broadcast
4247 	 * address length), but we enforce that an interface is broadcast-
4248 	 * capable as part of allowing it to join a group.
4249 	 */
4250 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4251 		if (ill->ill_bcast_mp != NULL)
4252 			freemsg(ill->ill_bcast_mp);
4253 		ill->ill_net_type = IRE_IF_NORESOLVER;
4254 
4255 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4256 		    ill->ill_phys_addr_length,
4257 		    ill->ill_sap,
4258 		    ill->ill_sap_length);
4259 
4260 		if (ill->ill_isv6)
4261 			/*
4262 			 * Note: xresolv interfaces will eventually need NOARP
4263 			 * set here as well, but that will require those
4264 			 * external resolvers to have some knowledge of
4265 			 * that flag and act appropriately. Not to be changed
4266 			 * at present.
4267 			 */
4268 			ill->ill_flags |= ILLF_NONUD;
4269 		else
4270 			ill->ill_flags |= ILLF_NOARP;
4271 
4272 		if (ill->ill_mactype == SUNW_DL_VNI) {
4273 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4274 		} else if (ill->ill_phys_addr_length == 0 ||
4275 		    ill->ill_mactype == DL_IPV4 ||
4276 		    ill->ill_mactype == DL_IPV6) {
4277 			/*
4278 			 * The underying link is point-to-point, so mark the
4279 			 * interface as such.  We can do IP multicast over
4280 			 * such a link since it transmits all network-layer
4281 			 * packets to the remote side the same way.
4282 			 */
4283 			ill->ill_flags |= ILLF_MULTICAST;
4284 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4285 		}
4286 	} else {
4287 		ill->ill_net_type = IRE_IF_RESOLVER;
4288 		if (ill->ill_bcast_mp != NULL)
4289 			freemsg(ill->ill_bcast_mp);
4290 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4291 		    ill->ill_bcast_addr_length, ill->ill_sap,
4292 		    ill->ill_sap_length);
4293 		/*
4294 		 * Later detect lack of DLPI driver multicast
4295 		 * capability by catching DL_ENABMULTI errors in
4296 		 * ip_rput_dlpi.
4297 		 */
4298 		ill->ill_flags |= ILLF_MULTICAST;
4299 		if (!ill->ill_isv6)
4300 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4301 	}
4302 
4303 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4304 	if (ill->ill_mactype == SUNW_DL_IPMP)
4305 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4306 
4307 	/* By default an interface does not support any CoS marking */
4308 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4309 
4310 	/*
4311 	 * If we get QoS information in DL_INFO_ACK, the device supports
4312 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4313 	 */
4314 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4315 	    dlia->dl_qos_length);
4316 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4317 		ill->ill_flags |= ILLF_COS_ENABLED;
4318 	}
4319 
4320 	/* Clear any previous error indication. */
4321 	ill->ill_error = 0;
4322 	freemsg(mp);
4323 }
4324 
4325 /*
4326  * Perform various checks to verify that an address would make sense as a
4327  * local, remote, or subnet interface address.
4328  */
4329 static boolean_t
4330 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4331 {
4332 	ipaddr_t	net_mask;
4333 
4334 	/*
4335 	 * Don't allow all zeroes, or all ones, but allow
4336 	 * all ones netmask.
4337 	 */
4338 	if ((net_mask = ip_net_mask(addr)) == 0)
4339 		return (B_FALSE);
4340 	/* A given netmask overrides the "guess" netmask */
4341 	if (subnet_mask != 0)
4342 		net_mask = subnet_mask;
4343 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4344 	    (addr == (addr | ~net_mask)))) {
4345 		return (B_FALSE);
4346 	}
4347 
4348 	/*
4349 	 * Even if the netmask is all ones, we do not allow address to be
4350 	 * 255.255.255.255
4351 	 */
4352 	if (addr == INADDR_BROADCAST)
4353 		return (B_FALSE);
4354 
4355 	if (CLASSD(addr))
4356 		return (B_FALSE);
4357 
4358 	return (B_TRUE);
4359 }
4360 
4361 #define	V6_IPIF_LINKLOCAL(p)	\
4362 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4363 
4364 /*
4365  * Compare two given ipifs and check if the second one is better than
4366  * the first one using the order of preference (not taking deprecated
4367  * into acount) specified in ipif_lookup_multicast().
4368  */
4369 static boolean_t
4370 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4371 {
4372 	/* Check the least preferred first. */
4373 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4374 		/* If both ipifs are the same, use the first one. */
4375 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4376 			return (B_FALSE);
4377 		else
4378 			return (B_TRUE);
4379 	}
4380 
4381 	/* For IPv6, check for link local address. */
4382 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4383 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4384 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4385 			/* The second one is equal or less preferred. */
4386 			return (B_FALSE);
4387 		} else {
4388 			return (B_TRUE);
4389 		}
4390 	}
4391 
4392 	/* Then check for point to point interface. */
4393 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4394 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4395 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4396 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4397 			return (B_FALSE);
4398 		} else {
4399 			return (B_TRUE);
4400 		}
4401 	}
4402 
4403 	/* old_ipif is a normal interface, so no need to use the new one. */
4404 	return (B_FALSE);
4405 }
4406 
4407 /*
4408  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4409  * The ipif must be up, and its ill must multicast-capable, not
4410  * condemned, not an underlying interface in an IPMP group, and
4411  * not a VNI interface.  Order of preference:
4412  *
4413  * 	1a. normal
4414  * 	1b. normal, but deprecated
4415  * 	2a. point to point
4416  * 	2b. point to point, but deprecated
4417  * 	3a. link local
4418  * 	3b. link local, but deprecated
4419  * 	4. loopback.
4420  */
4421 static ipif_t *
4422 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4423 {
4424 	ill_t			*ill;
4425 	ill_walk_context_t	ctx;
4426 	ipif_t			*ipif;
4427 	ipif_t			*saved_ipif = NULL;
4428 	ipif_t			*dep_ipif = NULL;
4429 
4430 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4431 	if (isv6)
4432 		ill = ILL_START_WALK_V6(&ctx, ipst);
4433 	else
4434 		ill = ILL_START_WALK_V4(&ctx, ipst);
4435 
4436 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4437 		mutex_enter(&ill->ill_lock);
4438 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4439 		    ILL_IS_CONDEMNED(ill) ||
4440 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4441 			mutex_exit(&ill->ill_lock);
4442 			continue;
4443 		}
4444 		for (ipif = ill->ill_ipif; ipif != NULL;
4445 		    ipif = ipif->ipif_next) {
4446 			if (zoneid != ipif->ipif_zoneid &&
4447 			    zoneid != ALL_ZONES &&
4448 			    ipif->ipif_zoneid != ALL_ZONES) {
4449 				continue;
4450 			}
4451 			if (!(ipif->ipif_flags & IPIF_UP) ||
4452 			    IPIF_IS_CONDEMNED(ipif)) {
4453 				continue;
4454 			}
4455 
4456 			/*
4457 			 * Found one candidate.  If it is deprecated,
4458 			 * remember it in dep_ipif.  If it is not deprecated,
4459 			 * remember it in saved_ipif.
4460 			 */
4461 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4462 				if (dep_ipif == NULL) {
4463 					dep_ipif = ipif;
4464 				} else if (ipif_comp_multi(dep_ipif, ipif,
4465 				    isv6)) {
4466 					/*
4467 					 * If the previous dep_ipif does not
4468 					 * belong to the same ill, we've done
4469 					 * a ipif_refhold() on it.  So we need
4470 					 * to release it.
4471 					 */
4472 					if (dep_ipif->ipif_ill != ill)
4473 						ipif_refrele(dep_ipif);
4474 					dep_ipif = ipif;
4475 				}
4476 				continue;
4477 			}
4478 			if (saved_ipif == NULL) {
4479 				saved_ipif = ipif;
4480 			} else {
4481 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4482 					if (saved_ipif->ipif_ill != ill)
4483 						ipif_refrele(saved_ipif);
4484 					saved_ipif = ipif;
4485 				}
4486 			}
4487 		}
4488 		/*
4489 		 * Before going to the next ill, do a ipif_refhold() on the
4490 		 * saved ones.
4491 		 */
4492 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4493 			ipif_refhold_locked(saved_ipif);
4494 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4495 			ipif_refhold_locked(dep_ipif);
4496 		mutex_exit(&ill->ill_lock);
4497 	}
4498 	rw_exit(&ipst->ips_ill_g_lock);
4499 
4500 	/*
4501 	 * If we have only the saved_ipif, return it.  But if we have both
4502 	 * saved_ipif and dep_ipif, check to see which one is better.
4503 	 */
4504 	if (saved_ipif != NULL) {
4505 		if (dep_ipif != NULL) {
4506 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4507 				ipif_refrele(saved_ipif);
4508 				return (dep_ipif);
4509 			} else {
4510 				ipif_refrele(dep_ipif);
4511 				return (saved_ipif);
4512 			}
4513 		}
4514 		return (saved_ipif);
4515 	} else {
4516 		return (dep_ipif);
4517 	}
4518 }
4519 
4520 ill_t *
4521 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4522 {
4523 	ipif_t *ipif;
4524 	ill_t *ill;
4525 
4526 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4527 	if (ipif == NULL)
4528 		return (NULL);
4529 
4530 	ill = ipif->ipif_ill;
4531 	ill_refhold(ill);
4532 	ipif_refrele(ipif);
4533 	return (ill);
4534 }
4535 
4536 /*
4537  * This function is called when an application does not specify an interface
4538  * to be used for multicast traffic (joining a group/sending data).  It
4539  * calls ire_lookup_multi() to look for an interface route for the
4540  * specified multicast group.  Doing this allows the administrator to add
4541  * prefix routes for multicast to indicate which interface to be used for
4542  * multicast traffic in the above scenario.  The route could be for all
4543  * multicast (224.0/4), for a single multicast group (a /32 route) or
4544  * anything in between.  If there is no such multicast route, we just find
4545  * any multicast capable interface and return it.  The returned ipif
4546  * is refhold'ed.
4547  *
4548  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4549  * unicast table. This is used by CGTP.
4550  */
4551 ill_t *
4552 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4553     boolean_t *multirtp, ipaddr_t *setsrcp)
4554 {
4555 	ill_t			*ill;
4556 
4557 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4558 	if (ill != NULL)
4559 		return (ill);
4560 
4561 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4562 }
4563 
4564 /*
4565  * Look for an ipif with the specified interface address and destination.
4566  * The destination address is used only for matching point-to-point interfaces.
4567  */
4568 ipif_t *
4569 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4570 {
4571 	ipif_t	*ipif;
4572 	ill_t	*ill;
4573 	ill_walk_context_t ctx;
4574 
4575 	/*
4576 	 * First match all the point-to-point interfaces
4577 	 * before looking at non-point-to-point interfaces.
4578 	 * This is done to avoid returning non-point-to-point
4579 	 * ipif instead of unnumbered point-to-point ipif.
4580 	 */
4581 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4582 	ill = ILL_START_WALK_V4(&ctx, ipst);
4583 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4584 		mutex_enter(&ill->ill_lock);
4585 		for (ipif = ill->ill_ipif; ipif != NULL;
4586 		    ipif = ipif->ipif_next) {
4587 			/* Allow the ipif to be down */
4588 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4589 			    (ipif->ipif_lcl_addr == if_addr) &&
4590 			    (ipif->ipif_pp_dst_addr == dst)) {
4591 				if (!IPIF_IS_CONDEMNED(ipif)) {
4592 					ipif_refhold_locked(ipif);
4593 					mutex_exit(&ill->ill_lock);
4594 					rw_exit(&ipst->ips_ill_g_lock);
4595 					return (ipif);
4596 				}
4597 			}
4598 		}
4599 		mutex_exit(&ill->ill_lock);
4600 	}
4601 	rw_exit(&ipst->ips_ill_g_lock);
4602 
4603 	/* lookup the ipif based on interface address */
4604 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4605 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4606 	return (ipif);
4607 }
4608 
4609 /*
4610  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4611  */
4612 static ipif_t *
4613 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4614     zoneid_t zoneid, ip_stack_t *ipst)
4615 {
4616 	ipif_t  *ipif;
4617 	ill_t   *ill;
4618 	boolean_t ptp = B_FALSE;
4619 	ill_walk_context_t	ctx;
4620 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4621 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4622 
4623 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4624 	/*
4625 	 * Repeat twice, first based on local addresses and
4626 	 * next time for pointopoint.
4627 	 */
4628 repeat:
4629 	ill = ILL_START_WALK_V4(&ctx, ipst);
4630 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4631 		if (match_ill != NULL && ill != match_ill &&
4632 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4633 			continue;
4634 		}
4635 		mutex_enter(&ill->ill_lock);
4636 		for (ipif = ill->ill_ipif; ipif != NULL;
4637 		    ipif = ipif->ipif_next) {
4638 			if (zoneid != ALL_ZONES &&
4639 			    zoneid != ipif->ipif_zoneid &&
4640 			    ipif->ipif_zoneid != ALL_ZONES)
4641 				continue;
4642 
4643 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4644 				continue;
4645 
4646 			/* Allow the ipif to be down */
4647 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4648 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4649 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4650 			    (ipif->ipif_pp_dst_addr == addr))) {
4651 				if (!IPIF_IS_CONDEMNED(ipif)) {
4652 					ipif_refhold_locked(ipif);
4653 					mutex_exit(&ill->ill_lock);
4654 					rw_exit(&ipst->ips_ill_g_lock);
4655 					return (ipif);
4656 				}
4657 			}
4658 		}
4659 		mutex_exit(&ill->ill_lock);
4660 	}
4661 
4662 	/* If we already did the ptp case, then we are done */
4663 	if (ptp) {
4664 		rw_exit(&ipst->ips_ill_g_lock);
4665 		return (NULL);
4666 	}
4667 	ptp = B_TRUE;
4668 	goto repeat;
4669 }
4670 
4671 /*
4672  * Lookup an ipif with the specified address.  For point-to-point links we
4673  * look for matches on either the destination address or the local address,
4674  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4675  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4676  * (or illgrp if `match_ill' is in an IPMP group).
4677  */
4678 ipif_t *
4679 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4680     ip_stack_t *ipst)
4681 {
4682 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4683 	    zoneid, ipst));
4684 }
4685 
4686 /*
4687  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4688  * except that we will only return an address if it is not marked as
4689  * IPIF_DUPLICATE
4690  */
4691 ipif_t *
4692 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4693     ip_stack_t *ipst)
4694 {
4695 	return (ipif_lookup_addr_common(addr, match_ill,
4696 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4697 	    zoneid, ipst));
4698 }
4699 
4700 /*
4701  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4702  * `match_ill' across the IPMP group.  This function is only needed in some
4703  * corner-cases; almost everything should use ipif_lookup_addr().
4704  */
4705 ipif_t *
4706 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4707 {
4708 	ASSERT(match_ill != NULL);
4709 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4710 	    ipst));
4711 }
4712 
4713 /*
4714  * Look for an ipif with the specified address. For point-point links
4715  * we look for matches on either the destination address and the local
4716  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4717  * is set.
4718  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4719  * ill (or illgrp if `match_ill' is in an IPMP group).
4720  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4721  */
4722 zoneid_t
4723 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4724 {
4725 	zoneid_t zoneid;
4726 	ipif_t  *ipif;
4727 	ill_t   *ill;
4728 	boolean_t ptp = B_FALSE;
4729 	ill_walk_context_t	ctx;
4730 
4731 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4732 	/*
4733 	 * Repeat twice, first based on local addresses and
4734 	 * next time for pointopoint.
4735 	 */
4736 repeat:
4737 	ill = ILL_START_WALK_V4(&ctx, ipst);
4738 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4739 		if (match_ill != NULL && ill != match_ill &&
4740 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4741 			continue;
4742 		}
4743 		mutex_enter(&ill->ill_lock);
4744 		for (ipif = ill->ill_ipif; ipif != NULL;
4745 		    ipif = ipif->ipif_next) {
4746 			/* Allow the ipif to be down */
4747 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4748 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4749 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4750 			    (ipif->ipif_pp_dst_addr == addr)) &&
4751 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4752 				zoneid = ipif->ipif_zoneid;
4753 				mutex_exit(&ill->ill_lock);
4754 				rw_exit(&ipst->ips_ill_g_lock);
4755 				/*
4756 				 * If ipif_zoneid was ALL_ZONES then we have
4757 				 * a trusted extensions shared IP address.
4758 				 * In that case GLOBAL_ZONEID works to send.
4759 				 */
4760 				if (zoneid == ALL_ZONES)
4761 					zoneid = GLOBAL_ZONEID;
4762 				return (zoneid);
4763 			}
4764 		}
4765 		mutex_exit(&ill->ill_lock);
4766 	}
4767 
4768 	/* If we already did the ptp case, then we are done */
4769 	if (ptp) {
4770 		rw_exit(&ipst->ips_ill_g_lock);
4771 		return (ALL_ZONES);
4772 	}
4773 	ptp = B_TRUE;
4774 	goto repeat;
4775 }
4776 
4777 /*
4778  * Look for an ipif that matches the specified remote address i.e. the
4779  * ipif that would receive the specified packet.
4780  * First look for directly connected interfaces and then do a recursive
4781  * IRE lookup and pick the first ipif corresponding to the source address in the
4782  * ire.
4783  * Returns: held ipif
4784  *
4785  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4786  */
4787 ipif_t *
4788 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4789 {
4790 	ipif_t	*ipif;
4791 
4792 	ASSERT(!ill->ill_isv6);
4793 
4794 	/*
4795 	 * Someone could be changing this ipif currently or change it
4796 	 * after we return this. Thus  a few packets could use the old
4797 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4798 	 * will atomically be updated or cleaned up with the new value
4799 	 * Thus we don't need a lock to check the flags or other attrs below.
4800 	 */
4801 	mutex_enter(&ill->ill_lock);
4802 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4803 		if (IPIF_IS_CONDEMNED(ipif))
4804 			continue;
4805 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4806 		    ipif->ipif_zoneid != ALL_ZONES)
4807 			continue;
4808 		/* Allow the ipif to be down */
4809 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4810 			if ((ipif->ipif_pp_dst_addr == addr) ||
4811 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4812 			    ipif->ipif_lcl_addr == addr)) {
4813 				ipif_refhold_locked(ipif);
4814 				mutex_exit(&ill->ill_lock);
4815 				return (ipif);
4816 			}
4817 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4818 			ipif_refhold_locked(ipif);
4819 			mutex_exit(&ill->ill_lock);
4820 			return (ipif);
4821 		}
4822 	}
4823 	mutex_exit(&ill->ill_lock);
4824 	/*
4825 	 * For a remote destination it isn't possible to nail down a particular
4826 	 * ipif.
4827 	 */
4828 
4829 	/* Pick the first interface */
4830 	ipif = ipif_get_next_ipif(NULL, ill);
4831 	return (ipif);
4832 }
4833 
4834 /*
4835  * This func does not prevent refcnt from increasing. But if
4836  * the caller has taken steps to that effect, then this func
4837  * can be used to determine whether the ill has become quiescent
4838  */
4839 static boolean_t
4840 ill_is_quiescent(ill_t *ill)
4841 {
4842 	ipif_t	*ipif;
4843 
4844 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4845 
4846 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4847 		if (ipif->ipif_refcnt != 0)
4848 			return (B_FALSE);
4849 	}
4850 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4851 		return (B_FALSE);
4852 	}
4853 	return (B_TRUE);
4854 }
4855 
4856 boolean_t
4857 ill_is_freeable(ill_t *ill)
4858 {
4859 	ipif_t	*ipif;
4860 
4861 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4862 
4863 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4864 		if (ipif->ipif_refcnt != 0) {
4865 			return (B_FALSE);
4866 		}
4867 	}
4868 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4869 		return (B_FALSE);
4870 	}
4871 	return (B_TRUE);
4872 }
4873 
4874 /*
4875  * This func does not prevent refcnt from increasing. But if
4876  * the caller has taken steps to that effect, then this func
4877  * can be used to determine whether the ipif has become quiescent
4878  */
4879 static boolean_t
4880 ipif_is_quiescent(ipif_t *ipif)
4881 {
4882 	ill_t *ill;
4883 
4884 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4885 
4886 	if (ipif->ipif_refcnt != 0)
4887 		return (B_FALSE);
4888 
4889 	ill = ipif->ipif_ill;
4890 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4891 	    ill->ill_logical_down) {
4892 		return (B_TRUE);
4893 	}
4894 
4895 	/* This is the last ipif going down or being deleted on this ill */
4896 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4897 		return (B_FALSE);
4898 	}
4899 
4900 	return (B_TRUE);
4901 }
4902 
4903 /*
4904  * return true if the ipif can be destroyed: the ipif has to be quiescent
4905  * with zero references from ire/ilm to it.
4906  */
4907 static boolean_t
4908 ipif_is_freeable(ipif_t *ipif)
4909 {
4910 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4911 	ASSERT(ipif->ipif_id != 0);
4912 	return (ipif->ipif_refcnt == 0);
4913 }
4914 
4915 /*
4916  * The ipif/ill/ire has been refreled. Do the tail processing.
4917  * Determine if the ipif or ill in question has become quiescent and if so
4918  * wakeup close and/or restart any queued pending ioctl that is waiting
4919  * for the ipif_down (or ill_down)
4920  */
4921 void
4922 ipif_ill_refrele_tail(ill_t *ill)
4923 {
4924 	mblk_t	*mp;
4925 	conn_t	*connp;
4926 	ipsq_t	*ipsq;
4927 	ipxop_t	*ipx;
4928 	ipif_t	*ipif;
4929 	dl_notify_ind_t *dlindp;
4930 
4931 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4932 
4933 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4934 		/* ip_modclose() may be waiting */
4935 		cv_broadcast(&ill->ill_cv);
4936 	}
4937 
4938 	ipsq = ill->ill_phyint->phyint_ipsq;
4939 	mutex_enter(&ipsq->ipsq_lock);
4940 	ipx = ipsq->ipsq_xop;
4941 	mutex_enter(&ipx->ipx_lock);
4942 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4943 		goto unlock;
4944 
4945 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4946 
4947 	ipif = ipx->ipx_pending_ipif;
4948 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
4949 		goto unlock;
4950 
4951 	switch (ipx->ipx_waitfor) {
4952 	case IPIF_DOWN:
4953 		if (!ipif_is_quiescent(ipif))
4954 			goto unlock;
4955 		break;
4956 	case IPIF_FREE:
4957 		if (!ipif_is_freeable(ipif))
4958 			goto unlock;
4959 		break;
4960 	case ILL_DOWN:
4961 		if (!ill_is_quiescent(ill))
4962 			goto unlock;
4963 		break;
4964 	case ILL_FREE:
4965 		/*
4966 		 * ILL_FREE is only for loopback; normal ill teardown waits
4967 		 * synchronously in ip_modclose() without using ipx_waitfor,
4968 		 * handled by the cv_broadcast() at the top of this function.
4969 		 */
4970 		if (!ill_is_freeable(ill))
4971 			goto unlock;
4972 		break;
4973 	default:
4974 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4975 		    (void *)ipsq, ipx->ipx_waitfor);
4976 	}
4977 
4978 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4979 	mutex_exit(&ipx->ipx_lock);
4980 	mp = ipsq_pending_mp_get(ipsq, &connp);
4981 	mutex_exit(&ipsq->ipsq_lock);
4982 	mutex_exit(&ill->ill_lock);
4983 
4984 	ASSERT(mp != NULL);
4985 	/*
4986 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4987 	 * we can only get here when the current operation decides it
4988 	 * it needs to quiesce via ipsq_pending_mp_add().
4989 	 */
4990 	switch (mp->b_datap->db_type) {
4991 	case M_PCPROTO:
4992 	case M_PROTO:
4993 		/*
4994 		 * For now, only DL_NOTIFY_IND messages can use this facility.
4995 		 */
4996 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
4997 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
4998 
4999 		switch (dlindp->dl_notification) {
5000 		case DL_NOTE_PHYS_ADDR:
5001 			qwriter_ip(ill, ill->ill_rq, mp,
5002 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5003 			return;
5004 		case DL_NOTE_REPLUMB:
5005 			qwriter_ip(ill, ill->ill_rq, mp,
5006 			    ill_replumb_tail, CUR_OP, B_TRUE);
5007 			return;
5008 		default:
5009 			ASSERT(0);
5010 			ill_refrele(ill);
5011 		}
5012 		break;
5013 
5014 	case M_ERROR:
5015 	case M_HANGUP:
5016 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5017 		    B_TRUE);
5018 		return;
5019 
5020 	case M_IOCTL:
5021 	case M_IOCDATA:
5022 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5023 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5024 		return;
5025 
5026 	default:
5027 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5028 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5029 	}
5030 	return;
5031 unlock:
5032 	mutex_exit(&ipsq->ipsq_lock);
5033 	mutex_exit(&ipx->ipx_lock);
5034 	mutex_exit(&ill->ill_lock);
5035 }
5036 
5037 #ifdef DEBUG
5038 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5039 static void
5040 th_trace_rrecord(th_trace_t *th_trace)
5041 {
5042 	tr_buf_t *tr_buf;
5043 	uint_t lastref;
5044 
5045 	lastref = th_trace->th_trace_lastref;
5046 	lastref++;
5047 	if (lastref == TR_BUF_MAX)
5048 		lastref = 0;
5049 	th_trace->th_trace_lastref = lastref;
5050 	tr_buf = &th_trace->th_trbuf[lastref];
5051 	tr_buf->tr_time = ddi_get_lbolt();
5052 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5053 }
5054 
5055 static void
5056 th_trace_free(void *value)
5057 {
5058 	th_trace_t *th_trace = value;
5059 
5060 	ASSERT(th_trace->th_refcnt == 0);
5061 	kmem_free(th_trace, sizeof (*th_trace));
5062 }
5063 
5064 /*
5065  * Find or create the per-thread hash table used to track object references.
5066  * The ipst argument is NULL if we shouldn't allocate.
5067  *
5068  * Accesses per-thread data, so there's no need to lock here.
5069  */
5070 static mod_hash_t *
5071 th_trace_gethash(ip_stack_t *ipst)
5072 {
5073 	th_hash_t *thh;
5074 
5075 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5076 		mod_hash_t *mh;
5077 		char name[256];
5078 		size_t objsize, rshift;
5079 		int retv;
5080 
5081 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5082 			return (NULL);
5083 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5084 		    (void *)curthread);
5085 
5086 		/*
5087 		 * We use mod_hash_create_extended here rather than the more
5088 		 * obvious mod_hash_create_ptrhash because the latter has a
5089 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5090 		 * block.
5091 		 */
5092 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5093 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5094 		rshift = highbit(objsize);
5095 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5096 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5097 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5098 		if (mh == NULL) {
5099 			kmem_free(thh, sizeof (*thh));
5100 			return (NULL);
5101 		}
5102 		thh->thh_hash = mh;
5103 		thh->thh_ipst = ipst;
5104 		/*
5105 		 * We trace ills, ipifs, ires, and nces.  All of these are
5106 		 * per-IP-stack, so the lock on the thread list is as well.
5107 		 */
5108 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5109 		list_insert_tail(&ip_thread_list, thh);
5110 		rw_exit(&ip_thread_rwlock);
5111 		retv = tsd_set(ip_thread_data, thh);
5112 		ASSERT(retv == 0);
5113 	}
5114 	return (thh != NULL ? thh->thh_hash : NULL);
5115 }
5116 
5117 boolean_t
5118 th_trace_ref(const void *obj, ip_stack_t *ipst)
5119 {
5120 	th_trace_t *th_trace;
5121 	mod_hash_t *mh;
5122 	mod_hash_val_t val;
5123 
5124 	if ((mh = th_trace_gethash(ipst)) == NULL)
5125 		return (B_FALSE);
5126 
5127 	/*
5128 	 * Attempt to locate the trace buffer for this obj and thread.
5129 	 * If it does not exist, then allocate a new trace buffer and
5130 	 * insert into the hash.
5131 	 */
5132 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5133 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5134 		if (th_trace == NULL)
5135 			return (B_FALSE);
5136 
5137 		th_trace->th_id = curthread;
5138 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5139 		    (mod_hash_val_t)th_trace) != 0) {
5140 			kmem_free(th_trace, sizeof (th_trace_t));
5141 			return (B_FALSE);
5142 		}
5143 	} else {
5144 		th_trace = (th_trace_t *)val;
5145 	}
5146 
5147 	ASSERT(th_trace->th_refcnt >= 0 &&
5148 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5149 
5150 	th_trace->th_refcnt++;
5151 	th_trace_rrecord(th_trace);
5152 	return (B_TRUE);
5153 }
5154 
5155 /*
5156  * For the purpose of tracing a reference release, we assume that global
5157  * tracing is always on and that the same thread initiated the reference hold
5158  * is releasing.
5159  */
5160 void
5161 th_trace_unref(const void *obj)
5162 {
5163 	int retv;
5164 	mod_hash_t *mh;
5165 	th_trace_t *th_trace;
5166 	mod_hash_val_t val;
5167 
5168 	mh = th_trace_gethash(NULL);
5169 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5170 	ASSERT(retv == 0);
5171 	th_trace = (th_trace_t *)val;
5172 
5173 	ASSERT(th_trace->th_refcnt > 0);
5174 	th_trace->th_refcnt--;
5175 	th_trace_rrecord(th_trace);
5176 }
5177 
5178 /*
5179  * If tracing has been disabled, then we assume that the reference counts are
5180  * now useless, and we clear them out before destroying the entries.
5181  */
5182 void
5183 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5184 {
5185 	th_hash_t	*thh;
5186 	mod_hash_t	*mh;
5187 	mod_hash_val_t	val;
5188 	th_trace_t	*th_trace;
5189 	int		retv;
5190 
5191 	rw_enter(&ip_thread_rwlock, RW_READER);
5192 	for (thh = list_head(&ip_thread_list); thh != NULL;
5193 	    thh = list_next(&ip_thread_list, thh)) {
5194 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5195 		    &val) == 0) {
5196 			th_trace = (th_trace_t *)val;
5197 			if (trace_disable)
5198 				th_trace->th_refcnt = 0;
5199 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5200 			ASSERT(retv == 0);
5201 		}
5202 	}
5203 	rw_exit(&ip_thread_rwlock);
5204 }
5205 
5206 void
5207 ipif_trace_ref(ipif_t *ipif)
5208 {
5209 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5210 
5211 	if (ipif->ipif_trace_disable)
5212 		return;
5213 
5214 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5215 		ipif->ipif_trace_disable = B_TRUE;
5216 		ipif_trace_cleanup(ipif);
5217 	}
5218 }
5219 
5220 void
5221 ipif_untrace_ref(ipif_t *ipif)
5222 {
5223 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5224 
5225 	if (!ipif->ipif_trace_disable)
5226 		th_trace_unref(ipif);
5227 }
5228 
5229 void
5230 ill_trace_ref(ill_t *ill)
5231 {
5232 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5233 
5234 	if (ill->ill_trace_disable)
5235 		return;
5236 
5237 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5238 		ill->ill_trace_disable = B_TRUE;
5239 		ill_trace_cleanup(ill);
5240 	}
5241 }
5242 
5243 void
5244 ill_untrace_ref(ill_t *ill)
5245 {
5246 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5247 
5248 	if (!ill->ill_trace_disable)
5249 		th_trace_unref(ill);
5250 }
5251 
5252 /*
5253  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5254  * failure, ipif_trace_disable is set.
5255  */
5256 static void
5257 ipif_trace_cleanup(const ipif_t *ipif)
5258 {
5259 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5260 }
5261 
5262 /*
5263  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5264  * failure, ill_trace_disable is set.
5265  */
5266 static void
5267 ill_trace_cleanup(const ill_t *ill)
5268 {
5269 	th_trace_cleanup(ill, ill->ill_trace_disable);
5270 }
5271 #endif /* DEBUG */
5272 
5273 void
5274 ipif_refhold_locked(ipif_t *ipif)
5275 {
5276 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5277 	ipif->ipif_refcnt++;
5278 	IPIF_TRACE_REF(ipif);
5279 }
5280 
5281 void
5282 ipif_refhold(ipif_t *ipif)
5283 {
5284 	ill_t	*ill;
5285 
5286 	ill = ipif->ipif_ill;
5287 	mutex_enter(&ill->ill_lock);
5288 	ipif->ipif_refcnt++;
5289 	IPIF_TRACE_REF(ipif);
5290 	mutex_exit(&ill->ill_lock);
5291 }
5292 
5293 /*
5294  * Must not be called while holding any locks. Otherwise if this is
5295  * the last reference to be released there is a chance of recursive mutex
5296  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5297  * to restart an ioctl.
5298  */
5299 void
5300 ipif_refrele(ipif_t *ipif)
5301 {
5302 	ill_t	*ill;
5303 
5304 	ill = ipif->ipif_ill;
5305 
5306 	mutex_enter(&ill->ill_lock);
5307 	ASSERT(ipif->ipif_refcnt != 0);
5308 	ipif->ipif_refcnt--;
5309 	IPIF_UNTRACE_REF(ipif);
5310 	if (ipif->ipif_refcnt != 0) {
5311 		mutex_exit(&ill->ill_lock);
5312 		return;
5313 	}
5314 
5315 	/* Drops the ill_lock */
5316 	ipif_ill_refrele_tail(ill);
5317 }
5318 
5319 ipif_t *
5320 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5321 {
5322 	ipif_t	*ipif;
5323 
5324 	mutex_enter(&ill->ill_lock);
5325 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5326 	    ipif != NULL; ipif = ipif->ipif_next) {
5327 		if (IPIF_IS_CONDEMNED(ipif))
5328 			continue;
5329 		ipif_refhold_locked(ipif);
5330 		mutex_exit(&ill->ill_lock);
5331 		return (ipif);
5332 	}
5333 	mutex_exit(&ill->ill_lock);
5334 	return (NULL);
5335 }
5336 
5337 /*
5338  * TODO: make this table extendible at run time
5339  * Return a pointer to the mac type info for 'mac_type'
5340  */
5341 static ip_m_t *
5342 ip_m_lookup(t_uscalar_t mac_type)
5343 {
5344 	ip_m_t	*ipm;
5345 
5346 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5347 		if (ipm->ip_m_mac_type == mac_type)
5348 			return (ipm);
5349 	return (NULL);
5350 }
5351 
5352 /*
5353  * Make a link layer address from the multicast IP address *addr.
5354  * To form the link layer address, invoke the ip_m_v*mapping function
5355  * associated with the link-layer type.
5356  */
5357 void
5358 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5359 {
5360 	ip_m_t *ipm;
5361 
5362 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5363 		return;
5364 
5365 	ASSERT(addr != NULL);
5366 
5367 	ipm = ip_m_lookup(ill->ill_mactype);
5368 	if (ipm == NULL ||
5369 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5370 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5371 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5372 		    ill->ill_name, ill->ill_mactype));
5373 		return;
5374 	}
5375 	if (ill->ill_isv6)
5376 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5377 	else
5378 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5379 }
5380 
5381 /*
5382  * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous.
5383  * Otherwise returns B_TRUE.
5384  *
5385  * The netmask can be verified to be contiguous with 32 shifts and or
5386  * operations. Take the contiguous mask (in host byte order) and compute
5387  * 	mask | mask << 1 | mask << 2 | ... | mask << 31
5388  * the result will be the same as the 'mask' for contiguous mask.
5389  */
5390 static boolean_t
5391 ip_contiguous_mask(uint32_t mask)
5392 {
5393 	uint32_t	m = mask;
5394 	int		i;
5395 
5396 	for (i = 1; i < 32; i++)
5397 		m |= (mask << i);
5398 
5399 	return (m == mask);
5400 }
5401 
5402 /*
5403  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5404  * ill is passed in to associate it with the correct interface.
5405  * If ire_arg is set, then we return the held IRE in that location.
5406  */
5407 int
5408 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5409     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5410     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5411 {
5412 	ire_t	*ire, *nire;
5413 	ire_t	*gw_ire = NULL;
5414 	ipif_t	*ipif = NULL;
5415 	uint_t	type;
5416 	int	match_flags = MATCH_IRE_TYPE;
5417 	tsol_gc_t *gc = NULL;
5418 	tsol_gcgrp_t *gcgrp = NULL;
5419 	boolean_t gcgrp_xtraref = B_FALSE;
5420 	boolean_t cgtp_broadcast;
5421 	boolean_t unbound = B_FALSE;
5422 
5423 	ip1dbg(("ip_rt_add:"));
5424 
5425 	if (ire_arg != NULL)
5426 		*ire_arg = NULL;
5427 
5428 	/* disallow non-contiguous netmasks */
5429 	if (!ip_contiguous_mask(ntohl(mask)))
5430 		return (ENOTSUP);
5431 
5432 	/*
5433 	 * If this is the case of RTF_HOST being set, then we set the netmask
5434 	 * to all ones (regardless if one was supplied).
5435 	 */
5436 	if (flags & RTF_HOST)
5437 		mask = IP_HOST_MASK;
5438 
5439 	/*
5440 	 * Prevent routes with a zero gateway from being created (since
5441 	 * interfaces can currently be plumbed and brought up no assigned
5442 	 * address).
5443 	 */
5444 	if (gw_addr == 0)
5445 		return (ENETUNREACH);
5446 	/*
5447 	 * Get the ipif, if any, corresponding to the gw_addr
5448 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5449 	 * we match on the gatway and destination to handle unnumbered pt-pt
5450 	 * interfaces.
5451 	 */
5452 	if (ill != NULL)
5453 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5454 	else
5455 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5456 	if (ipif != NULL) {
5457 		if (IS_VNI(ipif->ipif_ill)) {
5458 			ipif_refrele(ipif);
5459 			return (EINVAL);
5460 		}
5461 	}
5462 
5463 	/*
5464 	 * GateD will attempt to create routes with a loopback interface
5465 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5466 	 * these routes to be added, but create them as interface routes
5467 	 * since the gateway is an interface address.
5468 	 */
5469 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5470 		flags &= ~RTF_GATEWAY;
5471 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5472 		    mask == IP_HOST_MASK) {
5473 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5474 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5475 			    NULL);
5476 			if (ire != NULL) {
5477 				ire_refrele(ire);
5478 				ipif_refrele(ipif);
5479 				return (EEXIST);
5480 			}
5481 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5482 			    "for 0x%x\n", (void *)ipif,
5483 			    ipif->ipif_ire_type,
5484 			    ntohl(ipif->ipif_lcl_addr)));
5485 			ire = ire_create(
5486 			    (uchar_t *)&dst_addr,	/* dest address */
5487 			    (uchar_t *)&mask,		/* mask */
5488 			    NULL,			/* no gateway */
5489 			    ipif->ipif_ire_type,	/* LOOPBACK */
5490 			    ipif->ipif_ill,
5491 			    zoneid,
5492 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5493 			    NULL,
5494 			    ipst);
5495 
5496 			if (ire == NULL) {
5497 				ipif_refrele(ipif);
5498 				return (ENOMEM);
5499 			}
5500 			/* src address assigned by the caller? */
5501 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5502 				ire->ire_setsrc_addr = src_addr;
5503 
5504 			nire = ire_add(ire);
5505 			if (nire == NULL) {
5506 				/*
5507 				 * In the result of failure, ire_add() will have
5508 				 * already deleted the ire in question, so there
5509 				 * is no need to do that here.
5510 				 */
5511 				ipif_refrele(ipif);
5512 				return (ENOMEM);
5513 			}
5514 			/*
5515 			 * Check if it was a duplicate entry. This handles
5516 			 * the case of two racing route adds for the same route
5517 			 */
5518 			if (nire != ire) {
5519 				ASSERT(nire->ire_identical_ref > 1);
5520 				ire_delete(nire);
5521 				ire_refrele(nire);
5522 				ipif_refrele(ipif);
5523 				return (EEXIST);
5524 			}
5525 			ire = nire;
5526 			goto save_ire;
5527 		}
5528 	}
5529 
5530 	/*
5531 	 * The routes for multicast with CGTP are quite special in that
5532 	 * the gateway is the local interface address, yet RTF_GATEWAY
5533 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5534 	 * this undocumented and unusual use of multicast routes.
5535 	 */
5536 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5537 		flags &= ~RTF_GATEWAY;
5538 
5539 	/*
5540 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5541 	 * and the gateway address provided is one of the system's interface
5542 	 * addresses.  By using the routing socket interface and supplying an
5543 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5544 	 * specifying an interface route to be created is available which uses
5545 	 * the interface index that specifies the outgoing interface rather than
5546 	 * the address of an outgoing interface (which may not be able to
5547 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5548 	 * flag, routes can be specified which not only specify the next-hop to
5549 	 * be used when routing to a certain prefix, but also which outgoing
5550 	 * interface should be used.
5551 	 *
5552 	 * Previously, interfaces would have unique addresses assigned to them
5553 	 * and so the address assigned to a particular interface could be used
5554 	 * to identify a particular interface.  One exception to this was the
5555 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5556 	 *
5557 	 * With the advent of IPv6 and its link-local addresses, this
5558 	 * restriction was relaxed and interfaces could share addresses between
5559 	 * themselves.  In fact, typically all of the link-local interfaces on
5560 	 * an IPv6 node or router will have the same link-local address.  In
5561 	 * order to differentiate between these interfaces, the use of an
5562 	 * interface index is necessary and this index can be carried inside a
5563 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5564 	 * of using the interface index, however, is that all of the ipif's that
5565 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5566 	 * cannot be used to differentiate between ipif's (or logical
5567 	 * interfaces) that belong to the same ill (physical interface).
5568 	 *
5569 	 * For example, in the following case involving IPv4 interfaces and
5570 	 * logical interfaces
5571 	 *
5572 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5573 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5574 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5575 	 *
5576 	 * the ipif's corresponding to each of these interface routes can be
5577 	 * uniquely identified by the "gateway" (actually interface address).
5578 	 *
5579 	 * In this case involving multiple IPv6 default routes to a particular
5580 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5581 	 * default route is of interest:
5582 	 *
5583 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5584 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5585 	 */
5586 
5587 	/* RTF_GATEWAY not set */
5588 	if (!(flags & RTF_GATEWAY)) {
5589 		if (sp != NULL) {
5590 			ip2dbg(("ip_rt_add: gateway security attributes "
5591 			    "cannot be set with interface route\n"));
5592 			if (ipif != NULL)
5593 				ipif_refrele(ipif);
5594 			return (EINVAL);
5595 		}
5596 
5597 		/*
5598 		 * Whether or not ill (RTA_IFP) is set, we require that
5599 		 * the gateway is one of our local addresses.
5600 		 */
5601 		if (ipif == NULL)
5602 			return (ENETUNREACH);
5603 
5604 		/*
5605 		 * We use MATCH_IRE_ILL here. If the caller specified an
5606 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5607 		 * we use the ill derived from the gateway address.
5608 		 * We can always match the gateway address since we record it
5609 		 * in ire_gateway_addr.
5610 		 * We don't allow RTA_IFP to specify a different ill than the
5611 		 * one matching the ipif to make sure we can delete the route.
5612 		 */
5613 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5614 		if (ill == NULL) {
5615 			ill = ipif->ipif_ill;
5616 		} else if (ill != ipif->ipif_ill) {
5617 			ipif_refrele(ipif);
5618 			return (EINVAL);
5619 		}
5620 
5621 		/*
5622 		 * We check for an existing entry at this point.
5623 		 *
5624 		 * Since a netmask isn't passed in via the ioctl interface
5625 		 * (SIOCADDRT), we don't check for a matching netmask in that
5626 		 * case.
5627 		 */
5628 		if (!ioctl_msg)
5629 			match_flags |= MATCH_IRE_MASK;
5630 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5631 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5632 		    NULL);
5633 		if (ire != NULL) {
5634 			ire_refrele(ire);
5635 			ipif_refrele(ipif);
5636 			return (EEXIST);
5637 		}
5638 
5639 		/*
5640 		 * Some software (for example, GateD and Sun Cluster) attempts
5641 		 * to create (what amount to) IRE_PREFIX routes with the
5642 		 * loopback address as the gateway.  This is primarily done to
5643 		 * set up prefixes with the RTF_REJECT flag set (for example,
5644 		 * when generating aggregate routes.)
5645 		 *
5646 		 * If the IRE type (as defined by ill->ill_net_type) would be
5647 		 * IRE_LOOPBACK, then we map the request into a
5648 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5649 		 * these interface routes, by definition, can only be that.
5650 		 *
5651 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5652 		 * routine, but rather using ire_create() directly.
5653 		 *
5654 		 */
5655 		type = ill->ill_net_type;
5656 		if (type == IRE_LOOPBACK) {
5657 			type = IRE_IF_NORESOLVER;
5658 			flags |= RTF_BLACKHOLE;
5659 		}
5660 
5661 		/*
5662 		 * Create a copy of the IRE_IF_NORESOLVER or
5663 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5664 		 * gateway.
5665 		 */
5666 		ire = ire_create(
5667 		    (uchar_t *)&dst_addr,
5668 		    (uint8_t *)&mask,
5669 		    (uint8_t *)&gw_addr,
5670 		    type,
5671 		    ill,
5672 		    zoneid,
5673 		    flags,
5674 		    NULL,
5675 		    ipst);
5676 		if (ire == NULL) {
5677 			ipif_refrele(ipif);
5678 			return (ENOMEM);
5679 		}
5680 
5681 		/* src address assigned by the caller? */
5682 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5683 			ire->ire_setsrc_addr = src_addr;
5684 
5685 		nire = ire_add(ire);
5686 		if (nire == NULL) {
5687 			/*
5688 			 * In the result of failure, ire_add() will have
5689 			 * already deleted the ire in question, so there
5690 			 * is no need to do that here.
5691 			 */
5692 			ipif_refrele(ipif);
5693 			return (ENOMEM);
5694 		}
5695 		/*
5696 		 * Check if it was a duplicate entry. This handles
5697 		 * the case of two racing route adds for the same route
5698 		 */
5699 		if (nire != ire) {
5700 			ire_delete(nire);
5701 			ire_refrele(nire);
5702 			ipif_refrele(ipif);
5703 			return (EEXIST);
5704 		}
5705 		ire = nire;
5706 		goto save_ire;
5707 	}
5708 
5709 	/*
5710 	 * Get an interface IRE for the specified gateway.
5711 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5712 	 * gateway, it is currently unreachable and we fail the request
5713 	 * accordingly. We reject any RTF_GATEWAY routes where the gateway
5714 	 * is an IRE_LOCAL or IRE_LOOPBACK.
5715 	 * If RTA_IFP was specified we look on that particular ill.
5716 	 */
5717 	if (ill != NULL)
5718 		match_flags |= MATCH_IRE_ILL;
5719 
5720 	/* Check whether the gateway is reachable. */
5721 again:
5722 	type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK;
5723 	if (flags & RTF_INDIRECT)
5724 		type |= IRE_OFFLINK;
5725 
5726 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5727 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5728 	if (gw_ire == NULL) {
5729 		/*
5730 		 * With IPMP, we allow host routes to influence in.mpathd's
5731 		 * target selection.  However, if the test addresses are on
5732 		 * their own network, the above lookup will fail since the
5733 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5734 		 * hidden test IREs to be found and try again.
5735 		 */
5736 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5737 			match_flags |= MATCH_IRE_TESTHIDDEN;
5738 			goto again;
5739 		}
5740 		if (ipif != NULL)
5741 			ipif_refrele(ipif);
5742 		return (ENETUNREACH);
5743 	}
5744 	if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
5745 		ire_refrele(gw_ire);
5746 		if (ipif != NULL)
5747 			ipif_refrele(ipif);
5748 		return (ENETUNREACH);
5749 	}
5750 
5751 	if (ill == NULL && !(flags & RTF_INDIRECT)) {
5752 		unbound = B_TRUE;
5753 		if (ipst->ips_ip_strict_src_multihoming > 0)
5754 			ill = gw_ire->ire_ill;
5755 	}
5756 
5757 	/*
5758 	 * We create one of three types of IREs as a result of this request
5759 	 * based on the netmask.  A netmask of all ones (which is automatically
5760 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5761 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5762 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5763 	 * destination prefix.
5764 	 */
5765 	if (mask == IP_HOST_MASK)
5766 		type = IRE_HOST;
5767 	else if (mask == 0)
5768 		type = IRE_DEFAULT;
5769 	else
5770 		type = IRE_PREFIX;
5771 
5772 	/* check for a duplicate entry */
5773 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5774 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5775 	    0, ipst, NULL);
5776 	if (ire != NULL) {
5777 		if (ipif != NULL)
5778 			ipif_refrele(ipif);
5779 		ire_refrele(gw_ire);
5780 		ire_refrele(ire);
5781 		return (EEXIST);
5782 	}
5783 
5784 	/* Security attribute exists */
5785 	if (sp != NULL) {
5786 		tsol_gcgrp_addr_t ga;
5787 
5788 		/* find or create the gateway credentials group */
5789 		ga.ga_af = AF_INET;
5790 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5791 
5792 		/* we hold reference to it upon success */
5793 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5794 		if (gcgrp == NULL) {
5795 			if (ipif != NULL)
5796 				ipif_refrele(ipif);
5797 			ire_refrele(gw_ire);
5798 			return (ENOMEM);
5799 		}
5800 
5801 		/*
5802 		 * Create and add the security attribute to the group; a
5803 		 * reference to the group is made upon allocating a new
5804 		 * entry successfully.  If it finds an already-existing
5805 		 * entry for the security attribute in the group, it simply
5806 		 * returns it and no new reference is made to the group.
5807 		 */
5808 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5809 		if (gc == NULL) {
5810 			if (ipif != NULL)
5811 				ipif_refrele(ipif);
5812 			/* release reference held by gcgrp_lookup */
5813 			GCGRP_REFRELE(gcgrp);
5814 			ire_refrele(gw_ire);
5815 			return (ENOMEM);
5816 		}
5817 	}
5818 
5819 	/* Create the IRE. */
5820 	ire = ire_create(
5821 	    (uchar_t *)&dst_addr,		/* dest address */
5822 	    (uchar_t *)&mask,			/* mask */
5823 	    (uchar_t *)&gw_addr,		/* gateway address */
5824 	    (ushort_t)type,			/* IRE type */
5825 	    ill,
5826 	    zoneid,
5827 	    flags,
5828 	    gc,					/* security attribute */
5829 	    ipst);
5830 
5831 	/*
5832 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5833 	 * reference to the 'gcgrp'. We can now release the extra reference
5834 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5835 	 */
5836 	if (gcgrp_xtraref)
5837 		GCGRP_REFRELE(gcgrp);
5838 	if (ire == NULL) {
5839 		if (gc != NULL)
5840 			GC_REFRELE(gc);
5841 		if (ipif != NULL)
5842 			ipif_refrele(ipif);
5843 		ire_refrele(gw_ire);
5844 		return (ENOMEM);
5845 	}
5846 
5847 	/* Before we add, check if an extra CGTP broadcast is needed */
5848 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5849 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5850 
5851 	/* src address assigned by the caller? */
5852 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5853 		ire->ire_setsrc_addr = src_addr;
5854 
5855 	ire->ire_unbound = unbound;
5856 
5857 	/*
5858 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5859 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5860 	 */
5861 
5862 	/* Add the new IRE. */
5863 	nire = ire_add(ire);
5864 	if (nire == NULL) {
5865 		/*
5866 		 * In the result of failure, ire_add() will have
5867 		 * already deleted the ire in question, so there
5868 		 * is no need to do that here.
5869 		 */
5870 		if (ipif != NULL)
5871 			ipif_refrele(ipif);
5872 		ire_refrele(gw_ire);
5873 		return (ENOMEM);
5874 	}
5875 	/*
5876 	 * Check if it was a duplicate entry. This handles
5877 	 * the case of two racing route adds for the same route
5878 	 */
5879 	if (nire != ire) {
5880 		ire_delete(nire);
5881 		ire_refrele(nire);
5882 		if (ipif != NULL)
5883 			ipif_refrele(ipif);
5884 		ire_refrele(gw_ire);
5885 		return (EEXIST);
5886 	}
5887 	ire = nire;
5888 
5889 	if (flags & RTF_MULTIRT) {
5890 		/*
5891 		 * Invoke the CGTP (multirouting) filtering module
5892 		 * to add the dst address in the filtering database.
5893 		 * Replicated inbound packets coming from that address
5894 		 * will be filtered to discard the duplicates.
5895 		 * It is not necessary to call the CGTP filter hook
5896 		 * when the dst address is a broadcast or multicast,
5897 		 * because an IP source address cannot be a broadcast
5898 		 * or a multicast.
5899 		 */
5900 		if (cgtp_broadcast) {
5901 			ip_cgtp_bcast_add(ire, ipst);
5902 			goto save_ire;
5903 		}
5904 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5905 		    !CLASSD(ire->ire_addr)) {
5906 			int res;
5907 			ipif_t *src_ipif;
5908 
5909 			/* Find the source address corresponding to gw_ire */
5910 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5911 			    NULL, zoneid, ipst);
5912 			if (src_ipif != NULL) {
5913 				res = ipst->ips_ip_cgtp_filter_ops->
5914 				    cfo_add_dest_v4(
5915 				    ipst->ips_netstack->netstack_stackid,
5916 				    ire->ire_addr,
5917 				    ire->ire_gateway_addr,
5918 				    ire->ire_setsrc_addr,
5919 				    src_ipif->ipif_lcl_addr);
5920 				ipif_refrele(src_ipif);
5921 			} else {
5922 				res = EADDRNOTAVAIL;
5923 			}
5924 			if (res != 0) {
5925 				if (ipif != NULL)
5926 					ipif_refrele(ipif);
5927 				ire_refrele(gw_ire);
5928 				ire_delete(ire);
5929 				ire_refrele(ire);	/* Held in ire_add */
5930 				return (res);
5931 			}
5932 		}
5933 	}
5934 
5935 save_ire:
5936 	if (gw_ire != NULL) {
5937 		ire_refrele(gw_ire);
5938 		gw_ire = NULL;
5939 	}
5940 	if (ill != NULL) {
5941 		/*
5942 		 * Save enough information so that we can recreate the IRE if
5943 		 * the interface goes down and then up.  The metrics associated
5944 		 * with the route will be saved as well when rts_setmetrics() is
5945 		 * called after the IRE has been created.  In the case where
5946 		 * memory cannot be allocated, none of this information will be
5947 		 * saved.
5948 		 */
5949 		ill_save_ire(ill, ire);
5950 	}
5951 	if (ioctl_msg)
5952 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5953 	if (ire_arg != NULL) {
5954 		/*
5955 		 * Store the ire that was successfully added into where ire_arg
5956 		 * points to so that callers don't have to look it up
5957 		 * themselves (but they are responsible for ire_refrele()ing
5958 		 * the ire when they are finished with it).
5959 		 */
5960 		*ire_arg = ire;
5961 	} else {
5962 		ire_refrele(ire);		/* Held in ire_add */
5963 	}
5964 	if (ipif != NULL)
5965 		ipif_refrele(ipif);
5966 	return (0);
5967 }
5968 
5969 /*
5970  * ip_rt_delete is called to delete an IPv4 route.
5971  * ill is passed in to associate it with the correct interface.
5972  */
5973 /* ARGSUSED4 */
5974 int
5975 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5976     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5977     ip_stack_t *ipst, zoneid_t zoneid)
5978 {
5979 	ire_t	*ire = NULL;
5980 	ipif_t	*ipif;
5981 	uint_t	type;
5982 	uint_t	match_flags = MATCH_IRE_TYPE;
5983 	int	err = 0;
5984 
5985 	ip1dbg(("ip_rt_delete:"));
5986 	/*
5987 	 * If this is the case of RTF_HOST being set, then we set the netmask
5988 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5989 	 */
5990 	if (flags & RTF_HOST) {
5991 		mask = IP_HOST_MASK;
5992 		match_flags |= MATCH_IRE_MASK;
5993 	} else if (rtm_addrs & RTA_NETMASK) {
5994 		match_flags |= MATCH_IRE_MASK;
5995 	}
5996 
5997 	/*
5998 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5999 	 * we check if the gateway address is one of our interfaces first,
6000 	 * and fall back on RTF_GATEWAY routes.
6001 	 *
6002 	 * This makes it possible to delete an original
6003 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
6004 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
6005 	 * and those can not be deleted here.
6006 	 *
6007 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
6008 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
6009 	 * otherwise we use the ill derived from the gateway address.
6010 	 * We can always match the gateway address since we record it
6011 	 * in ire_gateway_addr.
6012 	 *
6013 	 * For more detail on specifying routes by gateway address and by
6014 	 * interface index, see the comments in ip_rt_add().
6015 	 */
6016 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
6017 	if (ipif != NULL) {
6018 		ill_t	*ill_match;
6019 
6020 		if (ill != NULL)
6021 			ill_match = ill;
6022 		else
6023 			ill_match = ipif->ipif_ill;
6024 
6025 		match_flags |= MATCH_IRE_ILL;
6026 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
6027 			ire = ire_ftable_lookup_v4(dst_addr, mask, 0,
6028 			    IRE_LOOPBACK, ill_match, ALL_ZONES, NULL,
6029 			    match_flags, 0, ipst, NULL);
6030 		}
6031 		if (ire == NULL) {
6032 			match_flags |= MATCH_IRE_GW;
6033 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
6034 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
6035 			    match_flags, 0, ipst, NULL);
6036 		}
6037 		/* Avoid deleting routes created by kernel from an ipif */
6038 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6039 			ire_refrele(ire);
6040 			ire = NULL;
6041 		}
6042 
6043 		/* Restore in case we didn't find a match */
6044 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6045 	}
6046 
6047 	if (ire == NULL) {
6048 		/*
6049 		 * At this point, the gateway address is not one of our own
6050 		 * addresses or a matching interface route was not found.  We
6051 		 * set the IRE type to lookup based on whether
6052 		 * this is a host route, a default route or just a prefix.
6053 		 *
6054 		 * If an ill was passed in, then the lookup is based on an
6055 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6056 		 */
6057 		match_flags |= MATCH_IRE_GW;
6058 		if (ill != NULL)
6059 			match_flags |= MATCH_IRE_ILL;
6060 		if (mask == IP_HOST_MASK)
6061 			type = IRE_HOST;
6062 		else if (mask == 0)
6063 			type = IRE_DEFAULT;
6064 		else
6065 			type = IRE_PREFIX;
6066 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6067 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6068 	}
6069 
6070 	if (ipif != NULL) {
6071 		ipif_refrele(ipif);
6072 		ipif = NULL;
6073 	}
6074 
6075 	if (ire == NULL)
6076 		return (ESRCH);
6077 
6078 	if (ire->ire_flags & RTF_MULTIRT) {
6079 		/*
6080 		 * Invoke the CGTP (multirouting) filtering module
6081 		 * to remove the dst address from the filtering database.
6082 		 * Packets coming from that address will no longer be
6083 		 * filtered to remove duplicates.
6084 		 */
6085 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6086 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6087 			    ipst->ips_netstack->netstack_stackid,
6088 			    ire->ire_addr, ire->ire_gateway_addr);
6089 		}
6090 		ip_cgtp_bcast_delete(ire, ipst);
6091 	}
6092 
6093 	ill = ire->ire_ill;
6094 	if (ill != NULL)
6095 		ill_remove_saved_ire(ill, ire);
6096 	if (ioctl_msg)
6097 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6098 	ire_delete(ire);
6099 	ire_refrele(ire);
6100 	return (err);
6101 }
6102 
6103 /*
6104  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6105  */
6106 /* ARGSUSED */
6107 int
6108 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6109     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6110 {
6111 	ipaddr_t dst_addr;
6112 	ipaddr_t gw_addr;
6113 	ipaddr_t mask;
6114 	int error = 0;
6115 	mblk_t *mp1;
6116 	struct rtentry *rt;
6117 	ipif_t *ipif = NULL;
6118 	ip_stack_t	*ipst;
6119 
6120 	ASSERT(q->q_next == NULL);
6121 	ipst = CONNQ_TO_IPST(q);
6122 
6123 	ip1dbg(("ip_siocaddrt:"));
6124 	/* Existence of mp1 verified in ip_wput_nondata */
6125 	mp1 = mp->b_cont->b_cont;
6126 	rt = (struct rtentry *)mp1->b_rptr;
6127 
6128 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6129 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6130 
6131 	/*
6132 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6133 	 * to a particular host address.  In this case, we set the netmask to
6134 	 * all ones for the particular destination address.  Otherwise,
6135 	 * determine the netmask to be used based on dst_addr and the interfaces
6136 	 * in use.
6137 	 */
6138 	if (rt->rt_flags & RTF_HOST) {
6139 		mask = IP_HOST_MASK;
6140 	} else {
6141 		/*
6142 		 * Note that ip_subnet_mask returns a zero mask in the case of
6143 		 * default (an all-zeroes address).
6144 		 */
6145 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6146 	}
6147 
6148 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6149 	    B_TRUE, NULL, ipst, ALL_ZONES);
6150 	if (ipif != NULL)
6151 		ipif_refrele(ipif);
6152 	return (error);
6153 }
6154 
6155 /*
6156  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6157  */
6158 /* ARGSUSED */
6159 int
6160 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6161     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6162 {
6163 	ipaddr_t dst_addr;
6164 	ipaddr_t gw_addr;
6165 	ipaddr_t mask;
6166 	int error;
6167 	mblk_t *mp1;
6168 	struct rtentry *rt;
6169 	ipif_t *ipif = NULL;
6170 	ip_stack_t	*ipst;
6171 
6172 	ASSERT(q->q_next == NULL);
6173 	ipst = CONNQ_TO_IPST(q);
6174 
6175 	ip1dbg(("ip_siocdelrt:"));
6176 	/* Existence of mp1 verified in ip_wput_nondata */
6177 	mp1 = mp->b_cont->b_cont;
6178 	rt = (struct rtentry *)mp1->b_rptr;
6179 
6180 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6181 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6182 
6183 	/*
6184 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6185 	 * to a particular host address.  In this case, we set the netmask to
6186 	 * all ones for the particular destination address.  Otherwise,
6187 	 * determine the netmask to be used based on dst_addr and the interfaces
6188 	 * in use.
6189 	 */
6190 	if (rt->rt_flags & RTF_HOST) {
6191 		mask = IP_HOST_MASK;
6192 	} else {
6193 		/*
6194 		 * Note that ip_subnet_mask returns a zero mask in the case of
6195 		 * default (an all-zeroes address).
6196 		 */
6197 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6198 	}
6199 
6200 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6201 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6202 	    ipst, ALL_ZONES);
6203 	if (ipif != NULL)
6204 		ipif_refrele(ipif);
6205 	return (error);
6206 }
6207 
6208 /*
6209  * Enqueue the mp onto the ipsq, chained by b_next.
6210  * b_prev stores the function to be executed later, and b_queue the queue
6211  * where this mp originated.
6212  */
6213 void
6214 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6215     ill_t *pending_ill)
6216 {
6217 	conn_t	*connp;
6218 	ipxop_t *ipx = ipsq->ipsq_xop;
6219 
6220 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6221 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6222 	ASSERT(func != NULL);
6223 
6224 	mp->b_queue = q;
6225 	mp->b_prev = (void *)func;
6226 	mp->b_next = NULL;
6227 
6228 	switch (type) {
6229 	case CUR_OP:
6230 		if (ipx->ipx_mptail != NULL) {
6231 			ASSERT(ipx->ipx_mphead != NULL);
6232 			ipx->ipx_mptail->b_next = mp;
6233 		} else {
6234 			ASSERT(ipx->ipx_mphead == NULL);
6235 			ipx->ipx_mphead = mp;
6236 		}
6237 		ipx->ipx_mptail = mp;
6238 		break;
6239 
6240 	case NEW_OP:
6241 		if (ipsq->ipsq_xopq_mptail != NULL) {
6242 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6243 			ipsq->ipsq_xopq_mptail->b_next = mp;
6244 		} else {
6245 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6246 			ipsq->ipsq_xopq_mphead = mp;
6247 		}
6248 		ipsq->ipsq_xopq_mptail = mp;
6249 		ipx->ipx_ipsq_queued = B_TRUE;
6250 		break;
6251 
6252 	case SWITCH_OP:
6253 		ASSERT(ipsq->ipsq_swxop != NULL);
6254 		/* only one switch operation is currently allowed */
6255 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6256 		ipsq->ipsq_switch_mp = mp;
6257 		ipx->ipx_ipsq_queued = B_TRUE;
6258 		break;
6259 	default:
6260 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6261 	}
6262 
6263 	if (CONN_Q(q) && pending_ill != NULL) {
6264 		connp = Q_TO_CONN(q);
6265 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6266 		connp->conn_oper_pending_ill = pending_ill;
6267 	}
6268 }
6269 
6270 /*
6271  * Dequeue the next message that requested exclusive access to this IPSQ's
6272  * xop.  Specifically:
6273  *
6274  *  1. If we're still processing the current operation on `ipsq', then
6275  *     dequeue the next message for the operation (from ipx_mphead), or
6276  *     return NULL if there are no queued messages for the operation.
6277  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6278  *
6279  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6280  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6281  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6282  *     leaving IPMP groups and require a careful dance -- see the comments
6283  *     in-line below for details.  If we're leaving a group xop or if we're
6284  *     joining a group xop and become writer on it, then we proceed to (3).
6285  *     Otherwise, we return NULL and exit the xop.
6286  *
6287  *  3. For each IPSQ in the xop, return any switch operation stored on
6288  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6289  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6290  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6291  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6292  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6293  *     each phyint in the group, including the IPMP meta-interface phyint.
6294  */
6295 static mblk_t *
6296 ipsq_dq(ipsq_t *ipsq)
6297 {
6298 	ill_t	*illv4, *illv6;
6299 	mblk_t	*mp;
6300 	ipsq_t	*xopipsq;
6301 	ipsq_t	*leftipsq = NULL;
6302 	ipxop_t *ipx;
6303 	phyint_t *phyi = ipsq->ipsq_phyint;
6304 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6305 	boolean_t emptied = B_FALSE;
6306 
6307 	/*
6308 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6309 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6310 	 */
6311 	rw_enter(&ipst->ips_ill_g_lock,
6312 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6313 	mutex_enter(&ipsq->ipsq_lock);
6314 	ipx = ipsq->ipsq_xop;
6315 	mutex_enter(&ipx->ipx_lock);
6316 
6317 	/*
6318 	 * Dequeue the next message associated with the current exclusive
6319 	 * operation, if any.
6320 	 */
6321 	if ((mp = ipx->ipx_mphead) != NULL) {
6322 		ipx->ipx_mphead = mp->b_next;
6323 		if (ipx->ipx_mphead == NULL)
6324 			ipx->ipx_mptail = NULL;
6325 		mp->b_next = (void *)ipsq;
6326 		goto out;
6327 	}
6328 
6329 	if (ipx->ipx_current_ipif != NULL)
6330 		goto empty;
6331 
6332 	if (ipsq->ipsq_swxop != NULL) {
6333 		/*
6334 		 * The exclusive operation that is now being completed has
6335 		 * requested a switch to a different xop.  This happens
6336 		 * when an interface joins or leaves an IPMP group.  Joins
6337 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6338 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6339 		 * (phyint_free()), or interface plumb for an ill type
6340 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6341 		 *
6342 		 * Xop switches are not allowed on the IPMP meta-interface.
6343 		 */
6344 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6345 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6346 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6347 
6348 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6349 			/*
6350 			 * We're switching back to our own xop, so we have two
6351 			 * xop's to drain/exit: our own, and the group xop
6352 			 * that we are leaving.
6353 			 *
6354 			 * First, pull ourselves out of the group ipsq list.
6355 			 * This is safe since we're writer on ill_g_lock.
6356 			 */
6357 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6358 
6359 			xopipsq = ipx->ipx_ipsq;
6360 			while (xopipsq->ipsq_next != ipsq)
6361 				xopipsq = xopipsq->ipsq_next;
6362 
6363 			xopipsq->ipsq_next = ipsq->ipsq_next;
6364 			ipsq->ipsq_next = ipsq;
6365 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6366 			ipsq->ipsq_swxop = NULL;
6367 
6368 			/*
6369 			 * Second, prepare to exit the group xop.  The actual
6370 			 * ipsq_exit() is done at the end of this function
6371 			 * since we cannot hold any locks across ipsq_exit().
6372 			 * Note that although we drop the group's ipx_lock, no
6373 			 * threads can proceed since we're still ipx_writer.
6374 			 */
6375 			leftipsq = xopipsq;
6376 			mutex_exit(&ipx->ipx_lock);
6377 
6378 			/*
6379 			 * Third, set ipx to point to our own xop (which was
6380 			 * inactive and therefore can be entered).
6381 			 */
6382 			ipx = ipsq->ipsq_xop;
6383 			mutex_enter(&ipx->ipx_lock);
6384 			ASSERT(ipx->ipx_writer == NULL);
6385 			ASSERT(ipx->ipx_current_ipif == NULL);
6386 		} else {
6387 			/*
6388 			 * We're switching from our own xop to a group xop.
6389 			 * The requestor of the switch must ensure that the
6390 			 * group xop cannot go away (e.g. by ensuring the
6391 			 * phyint associated with the xop cannot go away).
6392 			 *
6393 			 * If we can become writer on our new xop, then we'll
6394 			 * do the drain.  Otherwise, the current writer of our
6395 			 * new xop will do the drain when it exits.
6396 			 *
6397 			 * First, splice ourselves into the group IPSQ list.
6398 			 * This is safe since we're writer on ill_g_lock.
6399 			 */
6400 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6401 
6402 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6403 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6404 				xopipsq = xopipsq->ipsq_next;
6405 
6406 			xopipsq->ipsq_next = ipsq;
6407 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6408 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6409 			ipsq->ipsq_swxop = NULL;
6410 
6411 			/*
6412 			 * Second, exit our own xop, since it's now unused.
6413 			 * This is safe since we've got the only reference.
6414 			 */
6415 			ASSERT(ipx->ipx_writer == curthread);
6416 			ipx->ipx_writer = NULL;
6417 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6418 			ipx->ipx_ipsq_queued = B_FALSE;
6419 			mutex_exit(&ipx->ipx_lock);
6420 
6421 			/*
6422 			 * Third, set ipx to point to our new xop, and check
6423 			 * if we can become writer on it.  If we cannot, then
6424 			 * the current writer will drain the IPSQ group when
6425 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6426 			 * because we're still holding ipsq_lock.
6427 			 */
6428 			ipx = ipsq->ipsq_xop;
6429 			mutex_enter(&ipx->ipx_lock);
6430 			if (ipx->ipx_writer != NULL ||
6431 			    ipx->ipx_current_ipif != NULL) {
6432 				goto out;
6433 			}
6434 		}
6435 
6436 		/*
6437 		 * Fourth, become writer on our new ipx before we continue
6438 		 * with the drain.  Note that we never dropped ipsq_lock
6439 		 * above, so no other thread could've raced with us to
6440 		 * become writer first.  Also, we're holding ipx_lock, so
6441 		 * no other thread can examine the ipx right now.
6442 		 */
6443 		ASSERT(ipx->ipx_current_ipif == NULL);
6444 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6445 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6446 		ipx->ipx_writer = curthread;
6447 		ipx->ipx_forced = B_FALSE;
6448 #ifdef DEBUG
6449 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6450 #endif
6451 	}
6452 
6453 	xopipsq = ipsq;
6454 	do {
6455 		/*
6456 		 * So that other operations operate on a consistent and
6457 		 * complete phyint, a switch message on an IPSQ must be
6458 		 * handled prior to any other operations on that IPSQ.
6459 		 */
6460 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6461 			xopipsq->ipsq_switch_mp = NULL;
6462 			ASSERT(mp->b_next == NULL);
6463 			mp->b_next = (void *)xopipsq;
6464 			goto out;
6465 		}
6466 
6467 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6468 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6469 			if (xopipsq->ipsq_xopq_mphead == NULL)
6470 				xopipsq->ipsq_xopq_mptail = NULL;
6471 			mp->b_next = (void *)xopipsq;
6472 			goto out;
6473 		}
6474 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6475 empty:
6476 	/*
6477 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6478 	 * new messages can end up on any IPSQ in the xop.
6479 	 */
6480 	ipx->ipx_writer = NULL;
6481 	ipx->ipx_forced = B_FALSE;
6482 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6483 	ipx->ipx_ipsq_queued = B_FALSE;
6484 	emptied = B_TRUE;
6485 #ifdef	DEBUG
6486 	ipx->ipx_depth = 0;
6487 #endif
6488 out:
6489 	mutex_exit(&ipx->ipx_lock);
6490 	mutex_exit(&ipsq->ipsq_lock);
6491 
6492 	/*
6493 	 * If we completely emptied the xop, then wake up any threads waiting
6494 	 * to enter any of the IPSQ's associated with it.
6495 	 */
6496 	if (emptied) {
6497 		xopipsq = ipsq;
6498 		do {
6499 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6500 				continue;
6501 
6502 			illv4 = phyi->phyint_illv4;
6503 			illv6 = phyi->phyint_illv6;
6504 
6505 			GRAB_ILL_LOCKS(illv4, illv6);
6506 			if (illv4 != NULL)
6507 				cv_broadcast(&illv4->ill_cv);
6508 			if (illv6 != NULL)
6509 				cv_broadcast(&illv6->ill_cv);
6510 			RELEASE_ILL_LOCKS(illv4, illv6);
6511 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6512 	}
6513 	rw_exit(&ipst->ips_ill_g_lock);
6514 
6515 	/*
6516 	 * Now that all locks are dropped, exit the IPSQ we left.
6517 	 */
6518 	if (leftipsq != NULL)
6519 		ipsq_exit(leftipsq);
6520 
6521 	return (mp);
6522 }
6523 
6524 /*
6525  * Return completion status of previously initiated DLPI operations on
6526  * ills in the purview of an ipsq.
6527  */
6528 static boolean_t
6529 ipsq_dlpi_done(ipsq_t *ipsq)
6530 {
6531 	ipsq_t		*ipsq_start;
6532 	phyint_t	*phyi;
6533 	ill_t		*ill;
6534 
6535 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6536 	ipsq_start = ipsq;
6537 
6538 	do {
6539 		/*
6540 		 * The only current users of this function are ipsq_try_enter
6541 		 * and ipsq_enter which have made sure that ipsq_writer is
6542 		 * NULL before we reach here. ill_dlpi_pending is modified
6543 		 * only by an ipsq writer
6544 		 */
6545 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6546 		phyi = ipsq->ipsq_phyint;
6547 		/*
6548 		 * phyi could be NULL if a phyint that is part of an
6549 		 * IPMP group is being unplumbed. A more detailed
6550 		 * comment is in ipmp_grp_update_kstats()
6551 		 */
6552 		if (phyi != NULL) {
6553 			ill = phyi->phyint_illv4;
6554 			if (ill != NULL &&
6555 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6556 			    ill->ill_arl_dlpi_pending))
6557 				return (B_FALSE);
6558 
6559 			ill = phyi->phyint_illv6;
6560 			if (ill != NULL &&
6561 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6562 				return (B_FALSE);
6563 		}
6564 
6565 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6566 
6567 	return (B_TRUE);
6568 }
6569 
6570 /*
6571  * Enter the ipsq corresponding to ill, by waiting synchronously till
6572  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6573  * will have to drain completely before ipsq_enter returns success.
6574  * ipx_current_ipif will be set if some exclusive op is in progress,
6575  * and the ipsq_exit logic will start the next enqueued op after
6576  * completion of the current op. If 'force' is used, we don't wait
6577  * for the enqueued ops. This is needed when a conn_close wants to
6578  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6579  * of an ill can also use this option. But we dont' use it currently.
6580  */
6581 #define	ENTER_SQ_WAIT_TICKS 100
6582 boolean_t
6583 ipsq_enter(ill_t *ill, boolean_t force, int type)
6584 {
6585 	ipsq_t	*ipsq;
6586 	ipxop_t *ipx;
6587 	boolean_t waited_enough = B_FALSE;
6588 	ip_stack_t *ipst = ill->ill_ipst;
6589 
6590 	/*
6591 	 * Note that the relationship between ill and ipsq is fixed as long as
6592 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6593 	 * relationship between the IPSQ and xop cannot change.  However,
6594 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6595 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6596 	 * waking up all ills in the xop when it becomes available.
6597 	 */
6598 	for (;;) {
6599 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6600 		mutex_enter(&ill->ill_lock);
6601 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6602 			mutex_exit(&ill->ill_lock);
6603 			rw_exit(&ipst->ips_ill_g_lock);
6604 			return (B_FALSE);
6605 		}
6606 
6607 		ipsq = ill->ill_phyint->phyint_ipsq;
6608 		mutex_enter(&ipsq->ipsq_lock);
6609 		ipx = ipsq->ipsq_xop;
6610 		mutex_enter(&ipx->ipx_lock);
6611 
6612 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6613 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6614 		    waited_enough))
6615 			break;
6616 
6617 		rw_exit(&ipst->ips_ill_g_lock);
6618 
6619 		if (!force || ipx->ipx_writer != NULL) {
6620 			mutex_exit(&ipx->ipx_lock);
6621 			mutex_exit(&ipsq->ipsq_lock);
6622 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6623 		} else {
6624 			mutex_exit(&ipx->ipx_lock);
6625 			mutex_exit(&ipsq->ipsq_lock);
6626 			(void) cv_reltimedwait(&ill->ill_cv,
6627 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6628 			waited_enough = B_TRUE;
6629 		}
6630 		mutex_exit(&ill->ill_lock);
6631 	}
6632 
6633 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6634 	ASSERT(ipx->ipx_reentry_cnt == 0);
6635 	ipx->ipx_writer = curthread;
6636 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6637 	ipx->ipx_reentry_cnt++;
6638 #ifdef DEBUG
6639 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6640 #endif
6641 	mutex_exit(&ipx->ipx_lock);
6642 	mutex_exit(&ipsq->ipsq_lock);
6643 	mutex_exit(&ill->ill_lock);
6644 	rw_exit(&ipst->ips_ill_g_lock);
6645 
6646 	return (B_TRUE);
6647 }
6648 
6649 /*
6650  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6651  * across the call to the core interface ipsq_try_enter() and hence calls this
6652  * function directly. This is explained more fully in ipif_set_values().
6653  * In order to support the above constraint, ipsq_try_enter is implemented as
6654  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6655  */
6656 static ipsq_t *
6657 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6658     int type, boolean_t reentry_ok)
6659 {
6660 	ipsq_t	*ipsq;
6661 	ipxop_t	*ipx;
6662 	ip_stack_t *ipst = ill->ill_ipst;
6663 
6664 	/*
6665 	 * lock ordering:
6666 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6667 	 *
6668 	 * ipx of an ipsq can't change when ipsq_lock is held.
6669 	 */
6670 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6671 	GRAB_CONN_LOCK(q);
6672 	mutex_enter(&ill->ill_lock);
6673 	ipsq = ill->ill_phyint->phyint_ipsq;
6674 	mutex_enter(&ipsq->ipsq_lock);
6675 	ipx = ipsq->ipsq_xop;
6676 	mutex_enter(&ipx->ipx_lock);
6677 
6678 	/*
6679 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6680 	 *    (Note: If the caller does not specify reentry_ok then neither
6681 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6682 	 *    again. Otherwise it can lead to an infinite loop
6683 	 * 2. Enter the ipsq if there is no current writer and this attempted
6684 	 *    entry is part of the current operation
6685 	 * 3. Enter the ipsq if there is no current writer and this is a new
6686 	 *    operation and the operation queue is empty and there is no
6687 	 *    operation currently in progress and if all previously initiated
6688 	 *    DLPI operations have completed.
6689 	 */
6690 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6691 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6692 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6693 	    ipsq_dlpi_done(ipsq))))) {
6694 		/* Success. */
6695 		ipx->ipx_reentry_cnt++;
6696 		ipx->ipx_writer = curthread;
6697 		ipx->ipx_forced = B_FALSE;
6698 		mutex_exit(&ipx->ipx_lock);
6699 		mutex_exit(&ipsq->ipsq_lock);
6700 		mutex_exit(&ill->ill_lock);
6701 		RELEASE_CONN_LOCK(q);
6702 #ifdef DEBUG
6703 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6704 #endif
6705 		return (ipsq);
6706 	}
6707 
6708 	if (func != NULL)
6709 		ipsq_enq(ipsq, q, mp, func, type, ill);
6710 
6711 	mutex_exit(&ipx->ipx_lock);
6712 	mutex_exit(&ipsq->ipsq_lock);
6713 	mutex_exit(&ill->ill_lock);
6714 	RELEASE_CONN_LOCK(q);
6715 	return (NULL);
6716 }
6717 
6718 /*
6719  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6720  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6721  * There is one ipsq per phyint. The ipsq
6722  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6723  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6724  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6725  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6726  * up the interface) and are enqueued in ipx_mphead.
6727  *
6728  * If a thread does not want to reenter the ipsq when it is already writer,
6729  * it must make sure that the specified reentry point to be called later
6730  * when the ipsq is empty, nor any code path starting from the specified reentry
6731  * point must never ever try to enter the ipsq again. Otherwise it can lead
6732  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6733  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6734  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6735  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6736  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6737  * ioctl if the current ioctl has completed. If the current ioctl is still
6738  * in progress it simply returns. The current ioctl could be waiting for
6739  * a response from another module (the driver or could be waiting for
6740  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6741  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6742  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6743  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6744  * all associated DLPI operations have completed.
6745  */
6746 
6747 /*
6748  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6749  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6750  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6751  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6752  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6753  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6754  */
6755 ipsq_t *
6756 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6757     ipsq_func_t func, int type, boolean_t reentry_ok)
6758 {
6759 	ip_stack_t	*ipst;
6760 	ipsq_t		*ipsq;
6761 
6762 	/* Only 1 of ipif or ill can be specified */
6763 	ASSERT((ipif != NULL) ^ (ill != NULL));
6764 
6765 	if (ipif != NULL)
6766 		ill = ipif->ipif_ill;
6767 	ipst = ill->ill_ipst;
6768 
6769 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6770 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6771 	rw_exit(&ipst->ips_ill_g_lock);
6772 
6773 	return (ipsq);
6774 }
6775 
6776 /*
6777  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6778  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6779  * cannot be entered, the mp is queued for completion.
6780  */
6781 void
6782 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6783     boolean_t reentry_ok)
6784 {
6785 	ipsq_t	*ipsq;
6786 
6787 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6788 
6789 	/*
6790 	 * Drop the caller's refhold on the ill.  This is safe since we either
6791 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6792 	 * IPSQ, in which case we return without accessing ill anymore.  This
6793 	 * is needed because func needs to see the correct refcount.
6794 	 * e.g. removeif can work only then.
6795 	 */
6796 	ill_refrele(ill);
6797 	if (ipsq != NULL) {
6798 		(*func)(ipsq, q, mp, NULL);
6799 		ipsq_exit(ipsq);
6800 	}
6801 }
6802 
6803 /*
6804  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6805  * prior to exiting.  Caller must be writer on the specified IPSQ.
6806  */
6807 void
6808 ipsq_exit(ipsq_t *ipsq)
6809 {
6810 	mblk_t *mp;
6811 	ipsq_t *mp_ipsq;
6812 	queue_t	*q;
6813 	phyint_t *phyi;
6814 	ipsq_func_t func;
6815 
6816 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6817 
6818 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6819 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6820 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6821 		return;
6822 	}
6823 
6824 	for (;;) {
6825 		phyi = ipsq->ipsq_phyint;
6826 		mp = ipsq_dq(ipsq);
6827 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6828 
6829 		/*
6830 		 * If we've changed to a new IPSQ, and the phyint associated
6831 		 * with the old one has gone away, free the old IPSQ.  Note
6832 		 * that this cannot happen while the IPSQ is in a group.
6833 		 */
6834 		if (mp_ipsq != ipsq && phyi == NULL) {
6835 			ASSERT(ipsq->ipsq_next == ipsq);
6836 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6837 			ipsq_delete(ipsq);
6838 		}
6839 
6840 		if (mp == NULL)
6841 			break;
6842 
6843 		q = mp->b_queue;
6844 		func = (ipsq_func_t)mp->b_prev;
6845 		ipsq = mp_ipsq;
6846 		mp->b_next = mp->b_prev = NULL;
6847 		mp->b_queue = NULL;
6848 
6849 		/*
6850 		 * If 'q' is an conn queue, it is valid, since we did a
6851 		 * a refhold on the conn at the start of the ioctl.
6852 		 * If 'q' is an ill queue, it is valid, since close of an
6853 		 * ill will clean up its IPSQ.
6854 		 */
6855 		(*func)(ipsq, q, mp, NULL);
6856 	}
6857 }
6858 
6859 /*
6860  * Used to start any igmp or mld timers that could not be started
6861  * while holding ill_mcast_lock. The timers can't be started while holding
6862  * the lock, since mld/igmp_start_timers may need to call untimeout()
6863  * which can't be done while holding the lock which the timeout handler
6864  * acquires. Otherwise
6865  * there could be a deadlock since the timeout handlers
6866  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6867  * ill_mcast_lock.
6868  */
6869 void
6870 ill_mcast_timer_start(ip_stack_t *ipst)
6871 {
6872 	int		next;
6873 
6874 	mutex_enter(&ipst->ips_igmp_timer_lock);
6875 	next = ipst->ips_igmp_deferred_next;
6876 	ipst->ips_igmp_deferred_next = INFINITY;
6877 	mutex_exit(&ipst->ips_igmp_timer_lock);
6878 
6879 	if (next != INFINITY)
6880 		igmp_start_timers(next, ipst);
6881 
6882 	mutex_enter(&ipst->ips_mld_timer_lock);
6883 	next = ipst->ips_mld_deferred_next;
6884 	ipst->ips_mld_deferred_next = INFINITY;
6885 	mutex_exit(&ipst->ips_mld_timer_lock);
6886 
6887 	if (next != INFINITY)
6888 		mld_start_timers(next, ipst);
6889 }
6890 
6891 /*
6892  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6893  * and `ioccmd'.
6894  */
6895 void
6896 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6897 {
6898 	ill_t *ill = ipif->ipif_ill;
6899 	ipxop_t *ipx = ipsq->ipsq_xop;
6900 
6901 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6902 	ASSERT(ipx->ipx_current_ipif == NULL);
6903 	ASSERT(ipx->ipx_current_ioctl == 0);
6904 
6905 	ipx->ipx_current_done = B_FALSE;
6906 	ipx->ipx_current_ioctl = ioccmd;
6907 	mutex_enter(&ipx->ipx_lock);
6908 	ipx->ipx_current_ipif = ipif;
6909 	mutex_exit(&ipx->ipx_lock);
6910 
6911 	/*
6912 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6913 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6914 	 * references to the ipif (so that the references will eventually
6915 	 * drop to zero) and also prevents any "get" operations (e.g.,
6916 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6917 	 * operation has completed and the ipif is again in a stable state.
6918 	 *
6919 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6920 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6921 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6922 	 * ipifs will be affected.
6923 	 *
6924 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6925 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6926 	 * operate on.
6927 	 */
6928 	switch (ioccmd) {
6929 	case SIOCLIFREMOVEIF:
6930 		break;
6931 	case 0:
6932 		mutex_enter(&ill->ill_lock);
6933 		ipif = ipif->ipif_ill->ill_ipif;
6934 		for (; ipif != NULL; ipif = ipif->ipif_next)
6935 			ipif->ipif_state_flags |= IPIF_CHANGING;
6936 		mutex_exit(&ill->ill_lock);
6937 		break;
6938 	default:
6939 		mutex_enter(&ill->ill_lock);
6940 		ipif->ipif_state_flags |= IPIF_CHANGING;
6941 		mutex_exit(&ill->ill_lock);
6942 	}
6943 }
6944 
6945 /*
6946  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6947  * the next exclusive operation to begin once we ipsq_exit().  However, if
6948  * pending DLPI operations remain, then we will wait for the queue to drain
6949  * before allowing the next exclusive operation to begin.  This ensures that
6950  * DLPI operations from one exclusive operation are never improperly processed
6951  * as part of a subsequent exclusive operation.
6952  */
6953 void
6954 ipsq_current_finish(ipsq_t *ipsq)
6955 {
6956 	ipxop_t	*ipx = ipsq->ipsq_xop;
6957 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6958 	ipif_t	*ipif = ipx->ipx_current_ipif;
6959 
6960 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6961 
6962 	/*
6963 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6964 	 * (but in that case, IPIF_CHANGING will already be clear and no
6965 	 * pending DLPI messages can remain).
6966 	 */
6967 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6968 		ill_t *ill = ipif->ipif_ill;
6969 
6970 		mutex_enter(&ill->ill_lock);
6971 		dlpi_pending = ill->ill_dlpi_pending;
6972 		if (ipx->ipx_current_ioctl == 0) {
6973 			ipif = ill->ill_ipif;
6974 			for (; ipif != NULL; ipif = ipif->ipif_next)
6975 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6976 		} else {
6977 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6978 		}
6979 		mutex_exit(&ill->ill_lock);
6980 	}
6981 
6982 	ASSERT(!ipx->ipx_current_done);
6983 	ipx->ipx_current_done = B_TRUE;
6984 	ipx->ipx_current_ioctl = 0;
6985 	if (dlpi_pending == DL_PRIM_INVAL) {
6986 		mutex_enter(&ipx->ipx_lock);
6987 		ipx->ipx_current_ipif = NULL;
6988 		mutex_exit(&ipx->ipx_lock);
6989 	}
6990 }
6991 
6992 /*
6993  * The ill is closing. Flush all messages on the ipsq that originated
6994  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6995  * for this ill since ipsq_enter could not have entered until then.
6996  * New messages can't be queued since the CONDEMNED flag is set.
6997  */
6998 static void
6999 ipsq_flush(ill_t *ill)
7000 {
7001 	queue_t	*q;
7002 	mblk_t	*prev;
7003 	mblk_t	*mp;
7004 	mblk_t	*mp_next;
7005 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
7006 
7007 	ASSERT(IAM_WRITER_ILL(ill));
7008 
7009 	/*
7010 	 * Flush any messages sent up by the driver.
7011 	 */
7012 	mutex_enter(&ipx->ipx_lock);
7013 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
7014 		mp_next = mp->b_next;
7015 		q = mp->b_queue;
7016 		if (q == ill->ill_rq || q == ill->ill_wq) {
7017 			/* dequeue mp */
7018 			if (prev == NULL)
7019 				ipx->ipx_mphead = mp->b_next;
7020 			else
7021 				prev->b_next = mp->b_next;
7022 			if (ipx->ipx_mptail == mp) {
7023 				ASSERT(mp_next == NULL);
7024 				ipx->ipx_mptail = prev;
7025 			}
7026 			inet_freemsg(mp);
7027 		} else {
7028 			prev = mp;
7029 		}
7030 	}
7031 	mutex_exit(&ipx->ipx_lock);
7032 	(void) ipsq_pending_mp_cleanup(ill, NULL);
7033 	ipsq_xopq_mp_cleanup(ill, NULL);
7034 }
7035 
7036 /*
7037  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7038  * and return the associated ipif.
7039  * Return value:
7040  *	Non zero: An error has occurred. ci may not be filled out.
7041  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7042  *	a held ipif in ci.ci_ipif.
7043  */
7044 int
7045 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7046     cmd_info_t *ci)
7047 {
7048 	char		*name;
7049 	struct ifreq    *ifr;
7050 	struct lifreq    *lifr;
7051 	ipif_t		*ipif = NULL;
7052 	ill_t		*ill;
7053 	conn_t		*connp;
7054 	boolean_t	isv6;
7055 	int		err;
7056 	mblk_t		*mp1;
7057 	zoneid_t	zoneid;
7058 	ip_stack_t	*ipst;
7059 
7060 	if (q->q_next != NULL) {
7061 		ill = (ill_t *)q->q_ptr;
7062 		isv6 = ill->ill_isv6;
7063 		connp = NULL;
7064 		zoneid = ALL_ZONES;
7065 		ipst = ill->ill_ipst;
7066 	} else {
7067 		ill = NULL;
7068 		connp = Q_TO_CONN(q);
7069 		isv6 = (connp->conn_family == AF_INET6);
7070 		zoneid = connp->conn_zoneid;
7071 		if (zoneid == GLOBAL_ZONEID) {
7072 			/* global zone can access ipifs in all zones */
7073 			zoneid = ALL_ZONES;
7074 		}
7075 		ipst = connp->conn_netstack->netstack_ip;
7076 	}
7077 
7078 	/* Has been checked in ip_wput_nondata */
7079 	mp1 = mp->b_cont->b_cont;
7080 
7081 	if (ipip->ipi_cmd_type == IF_CMD) {
7082 		/* This a old style SIOC[GS]IF* command */
7083 		ifr = (struct ifreq *)mp1->b_rptr;
7084 		/*
7085 		 * Null terminate the string to protect against buffer
7086 		 * overrun. String was generated by user code and may not
7087 		 * be trusted.
7088 		 */
7089 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7090 		name = ifr->ifr_name;
7091 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7092 		ci->ci_sin6 = NULL;
7093 		ci->ci_lifr = (struct lifreq *)ifr;
7094 	} else {
7095 		/* This a new style SIOC[GS]LIF* command */
7096 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7097 		lifr = (struct lifreq *)mp1->b_rptr;
7098 		/*
7099 		 * Null terminate the string to protect against buffer
7100 		 * overrun. String was generated by user code and may not
7101 		 * be trusted.
7102 		 */
7103 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7104 		name = lifr->lifr_name;
7105 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7106 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7107 		ci->ci_lifr = lifr;
7108 	}
7109 
7110 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7111 		/*
7112 		 * The ioctl will be failed if the ioctl comes down
7113 		 * an conn stream
7114 		 */
7115 		if (ill == NULL) {
7116 			/*
7117 			 * Not an ill queue, return EINVAL same as the
7118 			 * old error code.
7119 			 */
7120 			return (ENXIO);
7121 		}
7122 		ipif = ill->ill_ipif;
7123 		ipif_refhold(ipif);
7124 	} else {
7125 		/*
7126 		 * Ensure that ioctls don't see any internal state changes
7127 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7128 		 * set.
7129 		 */
7130 		ipif = ipif_lookup_on_name_async(name, mi_strlen(name),
7131 		    isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst);
7132 		if (ipif == NULL) {
7133 			if (err == EINPROGRESS)
7134 				return (err);
7135 			err = 0;	/* Ensure we don't use it below */
7136 		}
7137 	}
7138 
7139 	/*
7140 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7141 	 */
7142 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7143 		ipif_refrele(ipif);
7144 		return (ENXIO);
7145 	}
7146 
7147 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7148 	    name[0] == '\0') {
7149 		/*
7150 		 * Handle a or a SIOC?IF* with a null name
7151 		 * during plumb (on the ill queue before the I_PLINK).
7152 		 */
7153 		ipif = ill->ill_ipif;
7154 		ipif_refhold(ipif);
7155 	}
7156 
7157 	if (ipif == NULL)
7158 		return (ENXIO);
7159 
7160 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7161 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7162 
7163 	ci->ci_ipif = ipif;
7164 	return (0);
7165 }
7166 
7167 /*
7168  * Return the total number of ipifs.
7169  */
7170 static uint_t
7171 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7172 {
7173 	uint_t numifs = 0;
7174 	ill_t	*ill;
7175 	ill_walk_context_t	ctx;
7176 	ipif_t	*ipif;
7177 
7178 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7179 	ill = ILL_START_WALK_V4(&ctx, ipst);
7180 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7181 		if (IS_UNDER_IPMP(ill))
7182 			continue;
7183 		for (ipif = ill->ill_ipif; ipif != NULL;
7184 		    ipif = ipif->ipif_next) {
7185 			if (ipif->ipif_zoneid == zoneid ||
7186 			    ipif->ipif_zoneid == ALL_ZONES)
7187 				numifs++;
7188 		}
7189 	}
7190 	rw_exit(&ipst->ips_ill_g_lock);
7191 	return (numifs);
7192 }
7193 
7194 /*
7195  * Return the total number of ipifs.
7196  */
7197 static uint_t
7198 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7199 {
7200 	uint_t numifs = 0;
7201 	ill_t	*ill;
7202 	ipif_t	*ipif;
7203 	ill_walk_context_t	ctx;
7204 
7205 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7206 
7207 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7208 	if (family == AF_INET)
7209 		ill = ILL_START_WALK_V4(&ctx, ipst);
7210 	else if (family == AF_INET6)
7211 		ill = ILL_START_WALK_V6(&ctx, ipst);
7212 	else
7213 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7214 
7215 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7216 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7217 			continue;
7218 
7219 		for (ipif = ill->ill_ipif; ipif != NULL;
7220 		    ipif = ipif->ipif_next) {
7221 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7222 			    !(lifn_flags & LIFC_NOXMIT))
7223 				continue;
7224 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7225 			    !(lifn_flags & LIFC_TEMPORARY))
7226 				continue;
7227 			if (((ipif->ipif_flags &
7228 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7229 			    IPIF_DEPRECATED)) ||
7230 			    IS_LOOPBACK(ill) ||
7231 			    !(ipif->ipif_flags & IPIF_UP)) &&
7232 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7233 				continue;
7234 
7235 			if (zoneid != ipif->ipif_zoneid &&
7236 			    ipif->ipif_zoneid != ALL_ZONES &&
7237 			    (zoneid != GLOBAL_ZONEID ||
7238 			    !(lifn_flags & LIFC_ALLZONES)))
7239 				continue;
7240 
7241 			numifs++;
7242 		}
7243 	}
7244 	rw_exit(&ipst->ips_ill_g_lock);
7245 	return (numifs);
7246 }
7247 
7248 uint_t
7249 ip_get_lifsrcofnum(ill_t *ill)
7250 {
7251 	uint_t numifs = 0;
7252 	ill_t	*ill_head = ill;
7253 	ip_stack_t	*ipst = ill->ill_ipst;
7254 
7255 	/*
7256 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7257 	 * other thread may be trying to relink the ILLs in this usesrc group
7258 	 * and adjusting the ill_usesrc_grp_next pointers
7259 	 */
7260 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7261 	if ((ill->ill_usesrc_ifindex == 0) &&
7262 	    (ill->ill_usesrc_grp_next != NULL)) {
7263 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7264 		    ill = ill->ill_usesrc_grp_next)
7265 			numifs++;
7266 	}
7267 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7268 
7269 	return (numifs);
7270 }
7271 
7272 /* Null values are passed in for ipif, sin, and ifreq */
7273 /* ARGSUSED */
7274 int
7275 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7276     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7277 {
7278 	int *nump;
7279 	conn_t *connp = Q_TO_CONN(q);
7280 
7281 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7282 
7283 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7284 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7285 
7286 	*nump = ip_get_numifs(connp->conn_zoneid,
7287 	    connp->conn_netstack->netstack_ip);
7288 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7289 	return (0);
7290 }
7291 
7292 /* Null values are passed in for ipif, sin, and ifreq */
7293 /* ARGSUSED */
7294 int
7295 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7296     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7297 {
7298 	struct lifnum *lifn;
7299 	mblk_t	*mp1;
7300 	conn_t *connp = Q_TO_CONN(q);
7301 
7302 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7303 
7304 	/* Existence checked in ip_wput_nondata */
7305 	mp1 = mp->b_cont->b_cont;
7306 
7307 	lifn = (struct lifnum *)mp1->b_rptr;
7308 	switch (lifn->lifn_family) {
7309 	case AF_UNSPEC:
7310 	case AF_INET:
7311 	case AF_INET6:
7312 		break;
7313 	default:
7314 		return (EAFNOSUPPORT);
7315 	}
7316 
7317 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7318 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7319 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7320 	return (0);
7321 }
7322 
7323 /* ARGSUSED */
7324 int
7325 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7326     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7327 {
7328 	STRUCT_HANDLE(ifconf, ifc);
7329 	mblk_t *mp1;
7330 	struct iocblk *iocp;
7331 	struct ifreq *ifr;
7332 	ill_walk_context_t	ctx;
7333 	ill_t	*ill;
7334 	ipif_t	*ipif;
7335 	struct sockaddr_in *sin;
7336 	int32_t	ifclen;
7337 	zoneid_t zoneid;
7338 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7339 
7340 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7341 
7342 	ip1dbg(("ip_sioctl_get_ifconf"));
7343 	/* Existence verified in ip_wput_nondata */
7344 	mp1 = mp->b_cont->b_cont;
7345 	iocp = (struct iocblk *)mp->b_rptr;
7346 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7347 
7348 	/*
7349 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7350 	 * the user buffer address and length into which the list of struct
7351 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7352 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7353 	 * the SIOCGIFCONF operation was redefined to simply provide
7354 	 * a large output buffer into which we are supposed to jam the ifreq
7355 	 * array.  The same ioctl command code was used, despite the fact that
7356 	 * both the applications and the kernel code had to change, thus making
7357 	 * it impossible to support both interfaces.
7358 	 *
7359 	 * For reasons not good enough to try to explain, the following
7360 	 * algorithm is used for deciding what to do with one of these:
7361 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7362 	 * form with the output buffer coming down as the continuation message.
7363 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7364 	 * and we have to copy in the ifconf structure to find out how big the
7365 	 * output buffer is and where to copy out to.  Sure no problem...
7366 	 *
7367 	 */
7368 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7369 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7370 		int numifs = 0;
7371 		size_t ifc_bufsize;
7372 
7373 		/*
7374 		 * Must be (better be!) continuation of a TRANSPARENT
7375 		 * IOCTL.  We just copied in the ifconf structure.
7376 		 */
7377 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7378 		    (struct ifconf *)mp1->b_rptr);
7379 
7380 		/*
7381 		 * Allocate a buffer to hold requested information.
7382 		 *
7383 		 * If ifc_len is larger than what is needed, we only
7384 		 * allocate what we will use.
7385 		 *
7386 		 * If ifc_len is smaller than what is needed, return
7387 		 * EINVAL.
7388 		 *
7389 		 * XXX: the ill_t structure can hava 2 counters, for
7390 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7391 		 * number of interfaces for a device, so we don't need
7392 		 * to count them here...
7393 		 */
7394 		numifs = ip_get_numifs(zoneid, ipst);
7395 
7396 		ifclen = STRUCT_FGET(ifc, ifc_len);
7397 		ifc_bufsize = numifs * sizeof (struct ifreq);
7398 		if (ifc_bufsize > ifclen) {
7399 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7400 				/* old behaviour */
7401 				return (EINVAL);
7402 			} else {
7403 				ifc_bufsize = ifclen;
7404 			}
7405 		}
7406 
7407 		mp1 = mi_copyout_alloc(q, mp,
7408 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7409 		if (mp1 == NULL)
7410 			return (ENOMEM);
7411 
7412 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7413 	}
7414 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7415 	/*
7416 	 * the SIOCGIFCONF ioctl only knows about
7417 	 * IPv4 addresses, so don't try to tell
7418 	 * it about interfaces with IPv6-only
7419 	 * addresses. (Last parm 'isv6' is B_FALSE)
7420 	 */
7421 
7422 	ifr = (struct ifreq *)mp1->b_rptr;
7423 
7424 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7425 	ill = ILL_START_WALK_V4(&ctx, ipst);
7426 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7427 		if (IS_UNDER_IPMP(ill))
7428 			continue;
7429 		for (ipif = ill->ill_ipif; ipif != NULL;
7430 		    ipif = ipif->ipif_next) {
7431 			if (zoneid != ipif->ipif_zoneid &&
7432 			    ipif->ipif_zoneid != ALL_ZONES)
7433 				continue;
7434 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7435 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7436 					/* old behaviour */
7437 					rw_exit(&ipst->ips_ill_g_lock);
7438 					return (EINVAL);
7439 				} else {
7440 					goto if_copydone;
7441 				}
7442 			}
7443 			ipif_get_name(ipif, ifr->ifr_name,
7444 			    sizeof (ifr->ifr_name));
7445 			sin = (sin_t *)&ifr->ifr_addr;
7446 			*sin = sin_null;
7447 			sin->sin_family = AF_INET;
7448 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7449 			ifr++;
7450 		}
7451 	}
7452 if_copydone:
7453 	rw_exit(&ipst->ips_ill_g_lock);
7454 	mp1->b_wptr = (uchar_t *)ifr;
7455 
7456 	if (STRUCT_BUF(ifc) != NULL) {
7457 		STRUCT_FSET(ifc, ifc_len,
7458 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7459 	}
7460 	return (0);
7461 }
7462 
7463 /*
7464  * Get the interfaces using the address hosted on the interface passed in,
7465  * as a source adddress
7466  */
7467 /* ARGSUSED */
7468 int
7469 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7470     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7471 {
7472 	mblk_t *mp1;
7473 	ill_t	*ill, *ill_head;
7474 	ipif_t	*ipif, *orig_ipif;
7475 	int	numlifs = 0;
7476 	size_t	lifs_bufsize, lifsmaxlen;
7477 	struct	lifreq *lifr;
7478 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7479 	uint_t	ifindex;
7480 	zoneid_t zoneid;
7481 	boolean_t isv6 = B_FALSE;
7482 	struct	sockaddr_in	*sin;
7483 	struct	sockaddr_in6	*sin6;
7484 	STRUCT_HANDLE(lifsrcof, lifs);
7485 	ip_stack_t		*ipst;
7486 
7487 	ipst = CONNQ_TO_IPST(q);
7488 
7489 	ASSERT(q->q_next == NULL);
7490 
7491 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7492 
7493 	/* Existence verified in ip_wput_nondata */
7494 	mp1 = mp->b_cont->b_cont;
7495 
7496 	/*
7497 	 * Must be (better be!) continuation of a TRANSPARENT
7498 	 * IOCTL.  We just copied in the lifsrcof structure.
7499 	 */
7500 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7501 	    (struct lifsrcof *)mp1->b_rptr);
7502 
7503 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7504 		return (EINVAL);
7505 
7506 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7507 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7508 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7509 	if (ipif == NULL) {
7510 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7511 		    ifindex));
7512 		return (ENXIO);
7513 	}
7514 
7515 	/* Allocate a buffer to hold requested information */
7516 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7517 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7518 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7519 	/* The actual size needed is always returned in lifs_len */
7520 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7521 
7522 	/* If the amount we need is more than what is passed in, abort */
7523 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7524 		ipif_refrele(ipif);
7525 		return (0);
7526 	}
7527 
7528 	mp1 = mi_copyout_alloc(q, mp,
7529 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7530 	if (mp1 == NULL) {
7531 		ipif_refrele(ipif);
7532 		return (ENOMEM);
7533 	}
7534 
7535 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7536 	bzero(mp1->b_rptr, lifs_bufsize);
7537 
7538 	lifr = (struct lifreq *)mp1->b_rptr;
7539 
7540 	ill = ill_head = ipif->ipif_ill;
7541 	orig_ipif = ipif;
7542 
7543 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7544 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7545 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7546 
7547 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7548 	for (; (ill != NULL) && (ill != ill_head);
7549 	    ill = ill->ill_usesrc_grp_next) {
7550 
7551 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7552 			break;
7553 
7554 		ipif = ill->ill_ipif;
7555 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7556 		if (ipif->ipif_isv6) {
7557 			sin6 = (sin6_t *)&lifr->lifr_addr;
7558 			*sin6 = sin6_null;
7559 			sin6->sin6_family = AF_INET6;
7560 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7561 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7562 			    &ipif->ipif_v6net_mask);
7563 		} else {
7564 			sin = (sin_t *)&lifr->lifr_addr;
7565 			*sin = sin_null;
7566 			sin->sin_family = AF_INET;
7567 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7568 			lifr->lifr_addrlen = ip_mask_to_plen(
7569 			    ipif->ipif_net_mask);
7570 		}
7571 		lifr++;
7572 	}
7573 	rw_exit(&ipst->ips_ill_g_lock);
7574 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7575 	ipif_refrele(orig_ipif);
7576 	mp1->b_wptr = (uchar_t *)lifr;
7577 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7578 
7579 	return (0);
7580 }
7581 
7582 /* ARGSUSED */
7583 int
7584 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7585     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7586 {
7587 	mblk_t *mp1;
7588 	int	list;
7589 	ill_t	*ill;
7590 	ipif_t	*ipif;
7591 	int	flags;
7592 	int	numlifs = 0;
7593 	size_t	lifc_bufsize;
7594 	struct	lifreq *lifr;
7595 	sa_family_t	family;
7596 	struct	sockaddr_in	*sin;
7597 	struct	sockaddr_in6	*sin6;
7598 	ill_walk_context_t	ctx;
7599 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7600 	int32_t	lifclen;
7601 	zoneid_t zoneid;
7602 	STRUCT_HANDLE(lifconf, lifc);
7603 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7604 
7605 	ip1dbg(("ip_sioctl_get_lifconf"));
7606 
7607 	ASSERT(q->q_next == NULL);
7608 
7609 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7610 
7611 	/* Existence verified in ip_wput_nondata */
7612 	mp1 = mp->b_cont->b_cont;
7613 
7614 	/*
7615 	 * An extended version of SIOCGIFCONF that takes an
7616 	 * additional address family and flags field.
7617 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7618 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7619 	 * interfaces are omitted.
7620 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7621 	 * unless LIFC_TEMPORARY is specified.
7622 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7623 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7624 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7625 	 * has priority over LIFC_NOXMIT.
7626 	 */
7627 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7628 
7629 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7630 		return (EINVAL);
7631 
7632 	/*
7633 	 * Must be (better be!) continuation of a TRANSPARENT
7634 	 * IOCTL.  We just copied in the lifconf structure.
7635 	 */
7636 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7637 
7638 	family = STRUCT_FGET(lifc, lifc_family);
7639 	flags = STRUCT_FGET(lifc, lifc_flags);
7640 
7641 	switch (family) {
7642 	case AF_UNSPEC:
7643 		/*
7644 		 * walk all ILL's.
7645 		 */
7646 		list = MAX_G_HEADS;
7647 		break;
7648 	case AF_INET:
7649 		/*
7650 		 * walk only IPV4 ILL's.
7651 		 */
7652 		list = IP_V4_G_HEAD;
7653 		break;
7654 	case AF_INET6:
7655 		/*
7656 		 * walk only IPV6 ILL's.
7657 		 */
7658 		list = IP_V6_G_HEAD;
7659 		break;
7660 	default:
7661 		return (EAFNOSUPPORT);
7662 	}
7663 
7664 	/*
7665 	 * Allocate a buffer to hold requested information.
7666 	 *
7667 	 * If lifc_len is larger than what is needed, we only
7668 	 * allocate what we will use.
7669 	 *
7670 	 * If lifc_len is smaller than what is needed, return
7671 	 * EINVAL.
7672 	 */
7673 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7674 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7675 	lifclen = STRUCT_FGET(lifc, lifc_len);
7676 	if (lifc_bufsize > lifclen) {
7677 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7678 			return (EINVAL);
7679 		else
7680 			lifc_bufsize = lifclen;
7681 	}
7682 
7683 	mp1 = mi_copyout_alloc(q, mp,
7684 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7685 	if (mp1 == NULL)
7686 		return (ENOMEM);
7687 
7688 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7689 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7690 
7691 	lifr = (struct lifreq *)mp1->b_rptr;
7692 
7693 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7694 	ill = ill_first(list, list, &ctx, ipst);
7695 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7696 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7697 			continue;
7698 
7699 		for (ipif = ill->ill_ipif; ipif != NULL;
7700 		    ipif = ipif->ipif_next) {
7701 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7702 			    !(flags & LIFC_NOXMIT))
7703 				continue;
7704 
7705 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7706 			    !(flags & LIFC_TEMPORARY))
7707 				continue;
7708 
7709 			if (((ipif->ipif_flags &
7710 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7711 			    IPIF_DEPRECATED)) ||
7712 			    IS_LOOPBACK(ill) ||
7713 			    !(ipif->ipif_flags & IPIF_UP)) &&
7714 			    (flags & LIFC_EXTERNAL_SOURCE))
7715 				continue;
7716 
7717 			if (zoneid != ipif->ipif_zoneid &&
7718 			    ipif->ipif_zoneid != ALL_ZONES &&
7719 			    (zoneid != GLOBAL_ZONEID ||
7720 			    !(flags & LIFC_ALLZONES)))
7721 				continue;
7722 
7723 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7724 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7725 					rw_exit(&ipst->ips_ill_g_lock);
7726 					return (EINVAL);
7727 				} else {
7728 					goto lif_copydone;
7729 				}
7730 			}
7731 
7732 			ipif_get_name(ipif, lifr->lifr_name,
7733 			    sizeof (lifr->lifr_name));
7734 			lifr->lifr_type = ill->ill_type;
7735 			if (ipif->ipif_isv6) {
7736 				sin6 = (sin6_t *)&lifr->lifr_addr;
7737 				*sin6 = sin6_null;
7738 				sin6->sin6_family = AF_INET6;
7739 				sin6->sin6_addr =
7740 				    ipif->ipif_v6lcl_addr;
7741 				lifr->lifr_addrlen =
7742 				    ip_mask_to_plen_v6(
7743 				    &ipif->ipif_v6net_mask);
7744 			} else {
7745 				sin = (sin_t *)&lifr->lifr_addr;
7746 				*sin = sin_null;
7747 				sin->sin_family = AF_INET;
7748 				sin->sin_addr.s_addr =
7749 				    ipif->ipif_lcl_addr;
7750 				lifr->lifr_addrlen =
7751 				    ip_mask_to_plen(
7752 				    ipif->ipif_net_mask);
7753 			}
7754 			lifr++;
7755 		}
7756 	}
7757 lif_copydone:
7758 	rw_exit(&ipst->ips_ill_g_lock);
7759 
7760 	mp1->b_wptr = (uchar_t *)lifr;
7761 	if (STRUCT_BUF(lifc) != NULL) {
7762 		STRUCT_FSET(lifc, lifc_len,
7763 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7764 	}
7765 	return (0);
7766 }
7767 
7768 static void
7769 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7770 {
7771 	ip6_asp_t *table;
7772 	size_t table_size;
7773 	mblk_t *data_mp;
7774 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7775 	ip_stack_t	*ipst;
7776 
7777 	if (q->q_next == NULL)
7778 		ipst = CONNQ_TO_IPST(q);
7779 	else
7780 		ipst = ILLQ_TO_IPST(q);
7781 
7782 	/* These two ioctls are I_STR only */
7783 	if (iocp->ioc_count == TRANSPARENT) {
7784 		miocnak(q, mp, 0, EINVAL);
7785 		return;
7786 	}
7787 
7788 	data_mp = mp->b_cont;
7789 	if (data_mp == NULL) {
7790 		/* The user passed us a NULL argument */
7791 		table = NULL;
7792 		table_size = iocp->ioc_count;
7793 	} else {
7794 		/*
7795 		 * The user provided a table.  The stream head
7796 		 * may have copied in the user data in chunks,
7797 		 * so make sure everything is pulled up
7798 		 * properly.
7799 		 */
7800 		if (MBLKL(data_mp) < iocp->ioc_count) {
7801 			mblk_t *new_data_mp;
7802 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7803 			    NULL) {
7804 				miocnak(q, mp, 0, ENOMEM);
7805 				return;
7806 			}
7807 			freemsg(data_mp);
7808 			data_mp = new_data_mp;
7809 			mp->b_cont = data_mp;
7810 		}
7811 		table = (ip6_asp_t *)data_mp->b_rptr;
7812 		table_size = iocp->ioc_count;
7813 	}
7814 
7815 	switch (iocp->ioc_cmd) {
7816 	case SIOCGIP6ADDRPOLICY:
7817 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7818 		if (iocp->ioc_rval == -1)
7819 			iocp->ioc_error = EINVAL;
7820 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7821 		else if (table != NULL &&
7822 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7823 			ip6_asp_t *src = table;
7824 			ip6_asp32_t *dst = (void *)table;
7825 			int count = table_size / sizeof (ip6_asp_t);
7826 			int i;
7827 
7828 			/*
7829 			 * We need to do an in-place shrink of the array
7830 			 * to match the alignment attributes of the
7831 			 * 32-bit ABI looking at it.
7832 			 */
7833 			/* LINTED: logical expression always true: op "||" */
7834 			ASSERT(sizeof (*src) > sizeof (*dst));
7835 			for (i = 1; i < count; i++)
7836 				bcopy(src + i, dst + i, sizeof (*dst));
7837 		}
7838 #endif
7839 		break;
7840 
7841 	case SIOCSIP6ADDRPOLICY:
7842 		ASSERT(mp->b_prev == NULL);
7843 		mp->b_prev = (void *)q;
7844 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7845 		/*
7846 		 * We pass in the datamodel here so that the ip6_asp_replace()
7847 		 * routine can handle converting from 32-bit to native formats
7848 		 * where necessary.
7849 		 *
7850 		 * A better way to handle this might be to convert the inbound
7851 		 * data structure here, and hang it off a new 'mp'; thus the
7852 		 * ip6_asp_replace() logic would always be dealing with native
7853 		 * format data structures..
7854 		 *
7855 		 * (An even simpler way to handle these ioctls is to just
7856 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7857 		 * and just recompile everything that depends on it.)
7858 		 */
7859 #endif
7860 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7861 		    iocp->ioc_flag & IOC_MODELS);
7862 		return;
7863 	}
7864 
7865 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7866 	qreply(q, mp);
7867 }
7868 
7869 static void
7870 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7871 {
7872 	mblk_t 		*data_mp;
7873 	struct dstinforeq	*dir;
7874 	uint8_t		*end, *cur;
7875 	in6_addr_t	*daddr, *saddr;
7876 	ipaddr_t	v4daddr;
7877 	ire_t		*ire;
7878 	ipaddr_t	v4setsrc;
7879 	in6_addr_t	v6setsrc;
7880 	char		*slabel, *dlabel;
7881 	boolean_t	isipv4;
7882 	int		match_ire;
7883 	ill_t		*dst_ill;
7884 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7885 	conn_t		*connp = Q_TO_CONN(q);
7886 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7887 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7888 	uint64_t	ipif_flags;
7889 
7890 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7891 
7892 	/*
7893 	 * This ioctl is I_STR only, and must have a
7894 	 * data mblk following the M_IOCTL mblk.
7895 	 */
7896 	data_mp = mp->b_cont;
7897 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7898 		miocnak(q, mp, 0, EINVAL);
7899 		return;
7900 	}
7901 
7902 	if (MBLKL(data_mp) < iocp->ioc_count) {
7903 		mblk_t *new_data_mp;
7904 
7905 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7906 			miocnak(q, mp, 0, ENOMEM);
7907 			return;
7908 		}
7909 		freemsg(data_mp);
7910 		data_mp = new_data_mp;
7911 		mp->b_cont = data_mp;
7912 	}
7913 	match_ire = MATCH_IRE_DSTONLY;
7914 
7915 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7916 	    end - cur >= sizeof (struct dstinforeq);
7917 	    cur += sizeof (struct dstinforeq)) {
7918 		dir = (struct dstinforeq *)cur;
7919 		daddr = &dir->dir_daddr;
7920 		saddr = &dir->dir_saddr;
7921 
7922 		/*
7923 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7924 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7925 		 * and ip_select_source_v6() do not.
7926 		 */
7927 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7928 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7929 
7930 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7931 		if (isipv4) {
7932 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7933 			v4setsrc = INADDR_ANY;
7934 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7935 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc,
7936 			    NULL, NULL);
7937 		} else {
7938 			v6setsrc = ipv6_all_zeros;
7939 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7940 			    NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc,
7941 			    NULL, NULL);
7942 		}
7943 		ASSERT(ire != NULL);
7944 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7945 			ire_refrele(ire);
7946 			dir->dir_dreachable = 0;
7947 
7948 			/* move on to next dst addr */
7949 			continue;
7950 		}
7951 		dir->dir_dreachable = 1;
7952 
7953 		dst_ill = ire_nexthop_ill(ire);
7954 		if (dst_ill == NULL) {
7955 			ire_refrele(ire);
7956 			continue;
7957 		}
7958 
7959 		/* With ipmp we most likely look at the ipmp ill here */
7960 		dir->dir_dmactype = dst_ill->ill_mactype;
7961 
7962 		if (isipv4) {
7963 			ipaddr_t v4saddr;
7964 
7965 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7966 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7967 			    &v4saddr, NULL, &ipif_flags) != 0) {
7968 				v4saddr = INADDR_ANY;
7969 				ipif_flags = 0;
7970 			}
7971 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7972 		} else {
7973 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7974 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7975 			    saddr, NULL, &ipif_flags) != 0) {
7976 				*saddr = ipv6_all_zeros;
7977 				ipif_flags = 0;
7978 			}
7979 		}
7980 
7981 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7982 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7983 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7984 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7985 		ire_refrele(ire);
7986 		ill_refrele(dst_ill);
7987 	}
7988 	miocack(q, mp, iocp->ioc_count, 0);
7989 }
7990 
7991 /*
7992  * Check if this is an address assigned to this machine.
7993  * Skips interfaces that are down by using ire checks.
7994  * Translates mapped addresses to v4 addresses and then
7995  * treats them as such, returning true if the v4 address
7996  * associated with this mapped address is configured.
7997  * Note: Applications will have to be careful what they do
7998  * with the response; use of mapped addresses limits
7999  * what can be done with the socket, especially with
8000  * respect to socket options and ioctls - neither IPv4
8001  * options nor IPv6 sticky options/ancillary data options
8002  * may be used.
8003  */
8004 /* ARGSUSED */
8005 int
8006 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8007     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8008 {
8009 	struct sioc_addrreq *sia;
8010 	sin_t *sin;
8011 	ire_t *ire;
8012 	mblk_t *mp1;
8013 	zoneid_t zoneid;
8014 	ip_stack_t	*ipst;
8015 
8016 	ip1dbg(("ip_sioctl_tmyaddr"));
8017 
8018 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8019 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8020 	ipst = CONNQ_TO_IPST(q);
8021 
8022 	/* Existence verified in ip_wput_nondata */
8023 	mp1 = mp->b_cont->b_cont;
8024 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8025 	sin = (sin_t *)&sia->sa_addr;
8026 	switch (sin->sin_family) {
8027 	case AF_INET6: {
8028 		sin6_t *sin6 = (sin6_t *)sin;
8029 
8030 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8031 			ipaddr_t v4_addr;
8032 
8033 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8034 			    v4_addr);
8035 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8036 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8037 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8038 		} else {
8039 			in6_addr_t v6addr;
8040 
8041 			v6addr = sin6->sin6_addr;
8042 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8043 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8044 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8045 		}
8046 		break;
8047 	}
8048 	case AF_INET: {
8049 		ipaddr_t v4addr;
8050 
8051 		v4addr = sin->sin_addr.s_addr;
8052 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8053 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8054 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8055 		break;
8056 	}
8057 	default:
8058 		return (EAFNOSUPPORT);
8059 	}
8060 	if (ire != NULL) {
8061 		sia->sa_res = 1;
8062 		ire_refrele(ire);
8063 	} else {
8064 		sia->sa_res = 0;
8065 	}
8066 	return (0);
8067 }
8068 
8069 /*
8070  * Check if this is an address assigned on-link i.e. neighbor,
8071  * and makes sure it's reachable from the current zone.
8072  * Returns true for my addresses as well.
8073  * Translates mapped addresses to v4 addresses and then
8074  * treats them as such, returning true if the v4 address
8075  * associated with this mapped address is configured.
8076  * Note: Applications will have to be careful what they do
8077  * with the response; use of mapped addresses limits
8078  * what can be done with the socket, especially with
8079  * respect to socket options and ioctls - neither IPv4
8080  * options nor IPv6 sticky options/ancillary data options
8081  * may be used.
8082  */
8083 /* ARGSUSED */
8084 int
8085 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8086     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8087 {
8088 	struct sioc_addrreq *sia;
8089 	sin_t *sin;
8090 	mblk_t	*mp1;
8091 	ire_t *ire = NULL;
8092 	zoneid_t zoneid;
8093 	ip_stack_t	*ipst;
8094 
8095 	ip1dbg(("ip_sioctl_tonlink"));
8096 
8097 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8098 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8099 	ipst = CONNQ_TO_IPST(q);
8100 
8101 	/* Existence verified in ip_wput_nondata */
8102 	mp1 = mp->b_cont->b_cont;
8103 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8104 	sin = (sin_t *)&sia->sa_addr;
8105 
8106 	/*
8107 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8108 	 * to make sure we only look at on-link unicast address.
8109 	 */
8110 	switch (sin->sin_family) {
8111 	case AF_INET6: {
8112 		sin6_t *sin6 = (sin6_t *)sin;
8113 
8114 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8115 			ipaddr_t v4_addr;
8116 
8117 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8118 			    v4_addr);
8119 			if (!CLASSD(v4_addr)) {
8120 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8121 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8122 				    0, ipst, NULL);
8123 			}
8124 		} else {
8125 			in6_addr_t v6addr;
8126 
8127 			v6addr = sin6->sin6_addr;
8128 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8129 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8130 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8131 				    ipst, NULL);
8132 			}
8133 		}
8134 		break;
8135 	}
8136 	case AF_INET: {
8137 		ipaddr_t v4addr;
8138 
8139 		v4addr = sin->sin_addr.s_addr;
8140 		if (!CLASSD(v4addr)) {
8141 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8142 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8143 		}
8144 		break;
8145 	}
8146 	default:
8147 		return (EAFNOSUPPORT);
8148 	}
8149 	sia->sa_res = 0;
8150 	if (ire != NULL) {
8151 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8152 
8153 		if ((ire->ire_type & IRE_ONLINK) &&
8154 		    !(ire->ire_type & IRE_BROADCAST))
8155 			sia->sa_res = 1;
8156 		ire_refrele(ire);
8157 	}
8158 	return (0);
8159 }
8160 
8161 /*
8162  * TBD: implement when kernel maintaines a list of site prefixes.
8163  */
8164 /* ARGSUSED */
8165 int
8166 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8167     ip_ioctl_cmd_t *ipip, void *ifreq)
8168 {
8169 	return (ENXIO);
8170 }
8171 
8172 /* ARP IOCTLs. */
8173 /* ARGSUSED */
8174 int
8175 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8176     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8177 {
8178 	int		err;
8179 	ipaddr_t	ipaddr;
8180 	struct iocblk	*iocp;
8181 	conn_t		*connp;
8182 	struct arpreq	*ar;
8183 	struct xarpreq	*xar;
8184 	int		arp_flags, flags, alength;
8185 	uchar_t		*lladdr;
8186 	ip_stack_t	*ipst;
8187 	ill_t		*ill = ipif->ipif_ill;
8188 	ill_t		*proxy_ill = NULL;
8189 	ipmp_arpent_t	*entp = NULL;
8190 	boolean_t	proxyarp = B_FALSE;
8191 	boolean_t	if_arp_ioctl = B_FALSE;
8192 	ncec_t		*ncec = NULL;
8193 	nce_t		*nce;
8194 
8195 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8196 	connp = Q_TO_CONN(q);
8197 	ipst = connp->conn_netstack->netstack_ip;
8198 	iocp = (struct iocblk *)mp->b_rptr;
8199 
8200 	if (ipip->ipi_cmd_type == XARP_CMD) {
8201 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8202 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8203 		ar = NULL;
8204 
8205 		arp_flags = xar->xarp_flags;
8206 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8207 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8208 		/*
8209 		 * Validate against user's link layer address length
8210 		 * input and name and addr length limits.
8211 		 */
8212 		alength = ill->ill_phys_addr_length;
8213 		if (ipip->ipi_cmd == SIOCSXARP) {
8214 			if (alength != xar->xarp_ha.sdl_alen ||
8215 			    (alength + xar->xarp_ha.sdl_nlen >
8216 			    sizeof (xar->xarp_ha.sdl_data)))
8217 				return (EINVAL);
8218 		}
8219 	} else {
8220 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8221 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8222 		xar = NULL;
8223 
8224 		arp_flags = ar->arp_flags;
8225 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8226 		/*
8227 		 * Theoretically, the sa_family could tell us what link
8228 		 * layer type this operation is trying to deal with. By
8229 		 * common usage AF_UNSPEC means ethernet. We'll assume
8230 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8231 		 * for now. Our new SIOC*XARP ioctls can be used more
8232 		 * generally.
8233 		 *
8234 		 * If the underlying media happens to have a non 6 byte
8235 		 * address, arp module will fail set/get, but the del
8236 		 * operation will succeed.
8237 		 */
8238 		alength = 6;
8239 		if ((ipip->ipi_cmd != SIOCDARP) &&
8240 		    (alength != ill->ill_phys_addr_length)) {
8241 			return (EINVAL);
8242 		}
8243 	}
8244 
8245 	/* Translate ATF* flags to NCE* flags */
8246 	flags = 0;
8247 	if (arp_flags & ATF_AUTHORITY)
8248 		flags |= NCE_F_AUTHORITY;
8249 	if (arp_flags & ATF_PERM)
8250 		flags |= NCE_F_NONUD; /* not subject to aging */
8251 	if (arp_flags & ATF_PUBL)
8252 		flags |= NCE_F_PUBLISH;
8253 
8254 	/*
8255 	 * IPMP ARP special handling:
8256 	 *
8257 	 * 1. Since ARP mappings must appear consistent across the group,
8258 	 *    prohibit changing ARP mappings on the underlying interfaces.
8259 	 *
8260 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8261 	 *    IP itself, prohibit changing them.
8262 	 *
8263 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8264 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8265 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8266 	 */
8267 	if (IS_UNDER_IPMP(ill)) {
8268 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8269 			return (EPERM);
8270 	}
8271 	if (IS_IPMP(ill)) {
8272 		ipmp_illgrp_t *illg = ill->ill_grp;
8273 
8274 		switch (ipip->ipi_cmd) {
8275 		case SIOCSARP:
8276 		case SIOCSXARP:
8277 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8278 			if (proxy_ill != NULL) {
8279 				proxyarp = B_TRUE;
8280 				if (!ipmp_ill_is_active(proxy_ill))
8281 					proxy_ill = ipmp_illgrp_next_ill(illg);
8282 				if (proxy_ill != NULL)
8283 					lladdr = proxy_ill->ill_phys_addr;
8284 			}
8285 			/* FALLTHRU */
8286 		}
8287 	}
8288 
8289 	ipaddr = sin->sin_addr.s_addr;
8290 	/*
8291 	 * don't match across illgrp per case (1) and (2).
8292 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8293 	 */
8294 	nce = nce_lookup_v4(ill, &ipaddr);
8295 	if (nce != NULL)
8296 		ncec = nce->nce_common;
8297 
8298 	switch (iocp->ioc_cmd) {
8299 	case SIOCDARP:
8300 	case SIOCDXARP: {
8301 		/*
8302 		 * Delete the NCE if any.
8303 		 */
8304 		if (ncec == NULL) {
8305 			iocp->ioc_error = ENXIO;
8306 			break;
8307 		}
8308 		/* Don't allow changes to arp mappings of local addresses. */
8309 		if (NCE_MYADDR(ncec)) {
8310 			nce_refrele(nce);
8311 			return (ENOTSUP);
8312 		}
8313 		iocp->ioc_error = 0;
8314 
8315 		/*
8316 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8317 		 * This will delete all the nce entries on the under_ills.
8318 		 */
8319 		ncec_delete(ncec);
8320 		/*
8321 		 * Once the NCE has been deleted, then the ire_dep* consistency
8322 		 * mechanism will find any IRE which depended on the now
8323 		 * condemned NCE (as part of sending packets).
8324 		 * That mechanism handles redirects by deleting redirects
8325 		 * that refer to UNREACHABLE nces.
8326 		 */
8327 		break;
8328 	}
8329 	case SIOCGARP:
8330 	case SIOCGXARP:
8331 		if (ncec != NULL) {
8332 			lladdr = ncec->ncec_lladdr;
8333 			flags = ncec->ncec_flags;
8334 			iocp->ioc_error = 0;
8335 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8336 		} else {
8337 			iocp->ioc_error = ENXIO;
8338 		}
8339 		break;
8340 	case SIOCSARP:
8341 	case SIOCSXARP:
8342 		/* Don't allow changes to arp mappings of local addresses. */
8343 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8344 			nce_refrele(nce);
8345 			return (ENOTSUP);
8346 		}
8347 
8348 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8349 		flags |= NCE_F_STATIC;
8350 		if (!if_arp_ioctl) {
8351 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8352 			    lladdr, alength, flags);
8353 		} else {
8354 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8355 			if (ipif != NULL) {
8356 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8357 				    lladdr, alength, flags);
8358 				ipif_refrele(ipif);
8359 			}
8360 		}
8361 		if (nce != NULL) {
8362 			nce_refrele(nce);
8363 			nce = NULL;
8364 		}
8365 		/*
8366 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8367 		 * by nce_add_common()
8368 		 */
8369 		err = nce_lookup_then_add_v4(ill, lladdr,
8370 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8371 		    &nce);
8372 		if (err == EEXIST) {
8373 			ncec = nce->nce_common;
8374 			mutex_enter(&ncec->ncec_lock);
8375 			ncec->ncec_state = ND_REACHABLE;
8376 			ncec->ncec_flags = flags;
8377 			nce_update(ncec, ND_UNCHANGED, lladdr);
8378 			mutex_exit(&ncec->ncec_lock);
8379 			err = 0;
8380 		}
8381 		if (nce != NULL) {
8382 			nce_refrele(nce);
8383 			nce = NULL;
8384 		}
8385 		if (IS_IPMP(ill) && err == 0) {
8386 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8387 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8388 			    flags);
8389 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8390 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8391 				break;
8392 			}
8393 		}
8394 		iocp->ioc_error = err;
8395 	}
8396 
8397 	if (nce != NULL) {
8398 		nce_refrele(nce);
8399 	}
8400 
8401 	/*
8402 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8403 	 */
8404 	if (entp != NULL)
8405 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8406 
8407 	return (iocp->ioc_error);
8408 }
8409 
8410 /*
8411  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8412  * the associated sin and refhold and return the associated ipif via `ci'.
8413  */
8414 int
8415 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8416     cmd_info_t *ci)
8417 {
8418 	mblk_t	*mp1;
8419 	sin_t	*sin;
8420 	conn_t	*connp;
8421 	ipif_t	*ipif;
8422 	ire_t	*ire = NULL;
8423 	ill_t	*ill = NULL;
8424 	boolean_t exists;
8425 	ip_stack_t *ipst;
8426 	struct arpreq *ar;
8427 	struct xarpreq *xar;
8428 	struct sockaddr_dl *sdl;
8429 
8430 	/* ioctl comes down on a conn */
8431 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8432 	connp = Q_TO_CONN(q);
8433 	if (connp->conn_family == AF_INET6)
8434 		return (ENXIO);
8435 
8436 	ipst = connp->conn_netstack->netstack_ip;
8437 
8438 	/* Verified in ip_wput_nondata */
8439 	mp1 = mp->b_cont->b_cont;
8440 
8441 	if (ipip->ipi_cmd_type == XARP_CMD) {
8442 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8443 		xar = (struct xarpreq *)mp1->b_rptr;
8444 		sin = (sin_t *)&xar->xarp_pa;
8445 		sdl = &xar->xarp_ha;
8446 
8447 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8448 			return (ENXIO);
8449 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8450 			return (EINVAL);
8451 	} else {
8452 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8453 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8454 		ar = (struct arpreq *)mp1->b_rptr;
8455 		sin = (sin_t *)&ar->arp_pa;
8456 	}
8457 
8458 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8459 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8460 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8461 		if (ipif == NULL)
8462 			return (ENXIO);
8463 		if (ipif->ipif_id != 0) {
8464 			ipif_refrele(ipif);
8465 			return (ENXIO);
8466 		}
8467 	} else {
8468 		/*
8469 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8470 		 * of 0: use the IP address to find the ipif.  If the IP
8471 		 * address is an IPMP test address, ire_ftable_lookup() will
8472 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8473 		 */
8474 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8475 		    ipst);
8476 		if (ipif == NULL) {
8477 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8478 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8479 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8480 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8481 				if (ire != NULL)
8482 					ire_refrele(ire);
8483 				return (ENXIO);
8484 			}
8485 			ASSERT(ire != NULL && ill != NULL);
8486 			ipif = ill->ill_ipif;
8487 			ipif_refhold(ipif);
8488 			ire_refrele(ire);
8489 		}
8490 	}
8491 
8492 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8493 		ipif_refrele(ipif);
8494 		return (ENXIO);
8495 	}
8496 
8497 	ci->ci_sin = sin;
8498 	ci->ci_ipif = ipif;
8499 	return (0);
8500 }
8501 
8502 /*
8503  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8504  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8505  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8506  * up and thus an ill can join that illgrp.
8507  *
8508  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8509  * open()/close() primarily because close() is not allowed to fail or block
8510  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8511  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8512  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8513  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8514  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8515  * state if I_UNLINK didn't occur.
8516  *
8517  * Note that for each plumb/unplumb operation, we may end up here more than
8518  * once because of the way ifconfig works.  However, it's OK to link the same
8519  * illgrp more than once, or unlink an illgrp that's already unlinked.
8520  */
8521 static int
8522 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8523 {
8524 	int err;
8525 	ip_stack_t *ipst = ill->ill_ipst;
8526 
8527 	ASSERT(IS_IPMP(ill));
8528 	ASSERT(IAM_WRITER_ILL(ill));
8529 
8530 	switch (ioccmd) {
8531 	case I_LINK:
8532 		return (ENOTSUP);
8533 
8534 	case I_PLINK:
8535 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8536 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8537 		rw_exit(&ipst->ips_ipmp_lock);
8538 		break;
8539 
8540 	case I_PUNLINK:
8541 		/*
8542 		 * Require all UP ipifs be brought down prior to unlinking the
8543 		 * illgrp so any associated IREs (and other state) is torched.
8544 		 */
8545 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8546 			return (EBUSY);
8547 
8548 		/*
8549 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8550 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8551 		 * join this group.  Specifically: ills trying to join grab
8552 		 * ipmp_lock and bump a "pending join" counter checked by
8553 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8554 		 * joins can occur (since we have ipmp_lock).  Once we drop
8555 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8556 		 * find the illgrp (since we unlinked it) and will return
8557 		 * EAFNOSUPPORT.  This will then take them back through the
8558 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8559 		 * back through I_PLINK above.
8560 		 */
8561 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8562 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8563 		rw_exit(&ipst->ips_ipmp_lock);
8564 		return (err);
8565 	default:
8566 		break;
8567 	}
8568 	return (0);
8569 }
8570 
8571 /*
8572  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8573  * atomically set/clear the muxids. Also complete the ioctl by acking or
8574  * naking it.  Note that the code is structured such that the link type,
8575  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8576  * its clones use the persistent link, while pppd(1M) and perhaps many
8577  * other daemons may use non-persistent link.  When combined with some
8578  * ill_t states, linking and unlinking lower streams may be used as
8579  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8580  */
8581 /* ARGSUSED */
8582 void
8583 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8584 {
8585 	mblk_t		*mp1;
8586 	struct linkblk	*li;
8587 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8588 	int		err = 0;
8589 
8590 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8591 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8592 
8593 	mp1 = mp->b_cont;	/* This is the linkblk info */
8594 	li = (struct linkblk *)mp1->b_rptr;
8595 
8596 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8597 	if (err == EINPROGRESS)
8598 		return;
8599 	if (err == 0)
8600 		miocack(q, mp, 0, 0);
8601 	else
8602 		miocnak(q, mp, 0, err);
8603 
8604 	/* Conn was refheld in ip_sioctl_copyin_setup */
8605 	if (CONN_Q(q)) {
8606 		CONN_DEC_IOCTLREF(Q_TO_CONN(q));
8607 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8608 	}
8609 }
8610 
8611 /*
8612  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8613  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8614  * module stream).
8615  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8616  * an error code on failure.
8617  */
8618 static int
8619 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8620     struct linkblk *li)
8621 {
8622 	int		err = 0;
8623 	ill_t  		*ill;
8624 	queue_t		*ipwq, *dwq;
8625 	const char	*name;
8626 	struct qinit	*qinfo;
8627 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8628 	boolean_t	entered_ipsq = B_FALSE;
8629 	boolean_t	is_ip = B_FALSE;
8630 	arl_t		*arl;
8631 
8632 	/*
8633 	 * Walk the lower stream to verify it's the IP module stream.
8634 	 * The IP module is identified by its name, wput function,
8635 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8636 	 * (li->l_qbot) will not vanish until this ioctl completes.
8637 	 */
8638 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8639 		qinfo = ipwq->q_qinfo;
8640 		name = qinfo->qi_minfo->mi_idname;
8641 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8642 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8643 			is_ip = B_TRUE;
8644 			break;
8645 		}
8646 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8647 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8648 			break;
8649 		}
8650 	}
8651 
8652 	/*
8653 	 * If this isn't an IP module stream, bail.
8654 	 */
8655 	if (ipwq == NULL)
8656 		return (0);
8657 
8658 	if (!is_ip) {
8659 		arl = (arl_t *)ipwq->q_ptr;
8660 		ill = arl_to_ill(arl);
8661 		if (ill == NULL)
8662 			return (0);
8663 	} else {
8664 		ill = ipwq->q_ptr;
8665 	}
8666 	ASSERT(ill != NULL);
8667 
8668 	if (ipsq == NULL) {
8669 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8670 		    NEW_OP, B_FALSE);
8671 		if (ipsq == NULL) {
8672 			if (!is_ip)
8673 				ill_refrele(ill);
8674 			return (EINPROGRESS);
8675 		}
8676 		entered_ipsq = B_TRUE;
8677 	}
8678 	ASSERT(IAM_WRITER_ILL(ill));
8679 	mutex_enter(&ill->ill_lock);
8680 	if (!is_ip) {
8681 		if (islink && ill->ill_muxid == 0) {
8682 			/*
8683 			 * Plumbing has to be done with IP plumbed first, arp
8684 			 * second, but here we have arp being plumbed first.
8685 			 */
8686 			mutex_exit(&ill->ill_lock);
8687 			if (entered_ipsq)
8688 				ipsq_exit(ipsq);
8689 			ill_refrele(ill);
8690 			return (EINVAL);
8691 		}
8692 	}
8693 	mutex_exit(&ill->ill_lock);
8694 	if (!is_ip) {
8695 		arl->arl_muxid = islink ? li->l_index : 0;
8696 		ill_refrele(ill);
8697 		goto done;
8698 	}
8699 
8700 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8701 		goto done;
8702 
8703 	/*
8704 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8705 	 * the read queue of the module immediately below IP in the ill.
8706 	 * These are used during the capability negotiation below.
8707 	 */
8708 	ill->ill_lmod_rq = NULL;
8709 	ill->ill_lmod_cnt = 0;
8710 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8711 		ill->ill_lmod_rq = RD(dwq);
8712 		for (; dwq != NULL; dwq = dwq->q_next)
8713 			ill->ill_lmod_cnt++;
8714 	}
8715 
8716 	ill->ill_muxid = islink ? li->l_index : 0;
8717 
8718 	/*
8719 	 * Mark the ipsq busy until the capability operations initiated below
8720 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8721 	 * returns, but the capability operation may complete asynchronously
8722 	 * much later.
8723 	 */
8724 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8725 	/*
8726 	 * If there's at least one up ipif on this ill, then we're bound to
8727 	 * the underlying driver via DLPI.  In that case, renegotiate
8728 	 * capabilities to account for any possible change in modules
8729 	 * interposed between IP and the driver.
8730 	 */
8731 	if (ill->ill_ipif_up_count > 0) {
8732 		if (islink)
8733 			ill_capability_probe(ill);
8734 		else
8735 			ill_capability_reset(ill, B_FALSE);
8736 	}
8737 	ipsq_current_finish(ipsq);
8738 done:
8739 	if (entered_ipsq)
8740 		ipsq_exit(ipsq);
8741 
8742 	return (err);
8743 }
8744 
8745 /*
8746  * Search the ioctl command in the ioctl tables and return a pointer
8747  * to the ioctl command information. The ioctl command tables are
8748  * static and fully populated at compile time.
8749  */
8750 ip_ioctl_cmd_t *
8751 ip_sioctl_lookup(int ioc_cmd)
8752 {
8753 	int index;
8754 	ip_ioctl_cmd_t *ipip;
8755 	ip_ioctl_cmd_t *ipip_end;
8756 
8757 	if (ioc_cmd == IPI_DONTCARE)
8758 		return (NULL);
8759 
8760 	/*
8761 	 * Do a 2 step search. First search the indexed table
8762 	 * based on the least significant byte of the ioctl cmd.
8763 	 * If we don't find a match, then search the misc table
8764 	 * serially.
8765 	 */
8766 	index = ioc_cmd & 0xFF;
8767 	if (index < ip_ndx_ioctl_count) {
8768 		ipip = &ip_ndx_ioctl_table[index];
8769 		if (ipip->ipi_cmd == ioc_cmd) {
8770 			/* Found a match in the ndx table */
8771 			return (ipip);
8772 		}
8773 	}
8774 
8775 	/* Search the misc table */
8776 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8777 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8778 		if (ipip->ipi_cmd == ioc_cmd)
8779 			/* Found a match in the misc table */
8780 			return (ipip);
8781 	}
8782 
8783 	return (NULL);
8784 }
8785 
8786 /*
8787  * helper function for ip_sioctl_getsetprop(), which does some sanity checks
8788  */
8789 static boolean_t
8790 getset_ioctl_checks(mblk_t *mp)
8791 {
8792 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8793 	mblk_t		*mp1 = mp->b_cont;
8794 	mod_ioc_prop_t	*pioc;
8795 	uint_t		flags;
8796 	uint_t		pioc_size;
8797 
8798 	/* do sanity checks on various arguments */
8799 	if (mp1 == NULL || iocp->ioc_count == 0 ||
8800 	    iocp->ioc_count == TRANSPARENT) {
8801 		return (B_FALSE);
8802 	}
8803 	if (msgdsize(mp1) < iocp->ioc_count) {
8804 		if (!pullupmsg(mp1, iocp->ioc_count))
8805 			return (B_FALSE);
8806 	}
8807 
8808 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8809 
8810 	/* sanity checks on mpr_valsize */
8811 	pioc_size = sizeof (mod_ioc_prop_t);
8812 	if (pioc->mpr_valsize != 0)
8813 		pioc_size += pioc->mpr_valsize - 1;
8814 
8815 	if (iocp->ioc_count != pioc_size)
8816 		return (B_FALSE);
8817 
8818 	flags = pioc->mpr_flags;
8819 	if (iocp->ioc_cmd == SIOCSETPROP) {
8820 		/*
8821 		 * One can either reset the value to it's default value or
8822 		 * change the current value or append/remove the value from
8823 		 * a multi-valued properties.
8824 		 */
8825 		if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8826 		    flags != MOD_PROP_ACTIVE &&
8827 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) &&
8828 		    flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE))
8829 			return (B_FALSE);
8830 	} else {
8831 		ASSERT(iocp->ioc_cmd == SIOCGETPROP);
8832 
8833 		/*
8834 		 * One can retrieve only one kind of property information
8835 		 * at a time.
8836 		 */
8837 		if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE &&
8838 		    (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT &&
8839 		    (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE &&
8840 		    (flags & MOD_PROP_PERM) != MOD_PROP_PERM)
8841 			return (B_FALSE);
8842 	}
8843 
8844 	return (B_TRUE);
8845 }
8846 
8847 /*
8848  * process the SIOC{SET|GET}PROP ioctl's
8849  */
8850 /* ARGSUSED */
8851 static void
8852 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp)
8853 {
8854 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8855 	mblk_t		*mp1 = mp->b_cont;
8856 	mod_ioc_prop_t	*pioc;
8857 	mod_prop_info_t *ptbl = NULL, *pinfo = NULL;
8858 	ip_stack_t	*ipst;
8859 	netstack_t	*stack;
8860 	cred_t		*cr;
8861 	boolean_t	set;
8862 	int		err;
8863 
8864 	ASSERT(q->q_next == NULL);
8865 	ASSERT(CONN_Q(q));
8866 
8867 	if (!getset_ioctl_checks(mp)) {
8868 		miocnak(q, mp, 0, EINVAL);
8869 		return;
8870 	}
8871 	ipst = CONNQ_TO_IPST(q);
8872 	stack = ipst->ips_netstack;
8873 	pioc = (mod_ioc_prop_t *)mp1->b_rptr;
8874 
8875 	switch (pioc->mpr_proto) {
8876 	case MOD_PROTO_IP:
8877 	case MOD_PROTO_IPV4:
8878 	case MOD_PROTO_IPV6:
8879 		ptbl = ipst->ips_propinfo_tbl;
8880 		break;
8881 	case MOD_PROTO_RAWIP:
8882 		ptbl = stack->netstack_icmp->is_propinfo_tbl;
8883 		break;
8884 	case MOD_PROTO_TCP:
8885 		ptbl = stack->netstack_tcp->tcps_propinfo_tbl;
8886 		break;
8887 	case MOD_PROTO_UDP:
8888 		ptbl = stack->netstack_udp->us_propinfo_tbl;
8889 		break;
8890 	case MOD_PROTO_SCTP:
8891 		ptbl = stack->netstack_sctp->sctps_propinfo_tbl;
8892 		break;
8893 	default:
8894 		miocnak(q, mp, 0, EINVAL);
8895 		return;
8896 	}
8897 
8898 	pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto);
8899 	if (pinfo == NULL) {
8900 		miocnak(q, mp, 0, ENOENT);
8901 		return;
8902 	}
8903 
8904 	set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE;
8905 	if (set && pinfo->mpi_setf != NULL) {
8906 		cr = msg_getcred(mp, NULL);
8907 		if (cr == NULL)
8908 			cr = iocp->ioc_cr;
8909 		err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname,
8910 		    pioc->mpr_val, pioc->mpr_flags);
8911 	} else if (!set && pinfo->mpi_getf != NULL) {
8912 		err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname,
8913 		    pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags);
8914 	} else {
8915 		err = EPERM;
8916 	}
8917 
8918 	if (err != 0) {
8919 		miocnak(q, mp, 0, err);
8920 	} else {
8921 		if (set)
8922 			miocack(q, mp, 0, 0);
8923 		else    /* For get, we need to return back the data */
8924 			miocack(q, mp, iocp->ioc_count, 0);
8925 	}
8926 }
8927 
8928 /*
8929  * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding
8930  * as several routing daemons have unfortunately used this 'unpublished'
8931  * but well-known ioctls.
8932  */
8933 /* ARGSUSED */
8934 static void
8935 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp)
8936 {
8937 	struct iocblk	*iocp = (struct iocblk *)mp->b_rptr;
8938 	mblk_t		*mp1 = mp->b_cont;
8939 	char		*pname, *pval, *buf;
8940 	uint_t		bufsize, proto;
8941 	mod_prop_info_t *pinfo = NULL;
8942 	ip_stack_t	*ipst;
8943 	int		err = 0;
8944 
8945 	ASSERT(CONN_Q(q));
8946 	ipst = CONNQ_TO_IPST(q);
8947 
8948 	if (iocp->ioc_count == 0 || mp1 == NULL) {
8949 		miocnak(q, mp, 0, EINVAL);
8950 		return;
8951 	}
8952 
8953 	mp1->b_datap->db_lim[-1] = '\0';	/* Force null termination */
8954 	pval = buf = pname = (char *)mp1->b_rptr;
8955 	bufsize = MBLKL(mp1);
8956 
8957 	if (strcmp(pname, "ip_forwarding") == 0) {
8958 		pname = "forwarding";
8959 		proto = MOD_PROTO_IPV4;
8960 	} else if (strcmp(pname, "ip6_forwarding") == 0) {
8961 		pname = "forwarding";
8962 		proto = MOD_PROTO_IPV6;
8963 	} else {
8964 		miocnak(q, mp, 0, EINVAL);
8965 		return;
8966 	}
8967 
8968 	pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto);
8969 
8970 	switch (iocp->ioc_cmd) {
8971 	case ND_GET:
8972 		if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf,
8973 		    bufsize, 0)) == 0) {
8974 			miocack(q, mp, iocp->ioc_count, 0);
8975 			return;
8976 		}
8977 		break;
8978 	case ND_SET:
8979 		/*
8980 		 * buffer will have property name and value in the following
8981 		 * format,
8982 		 * <property name>'\0'<property value>'\0', extract them;
8983 		 */
8984 		while (*pval++)
8985 			noop;
8986 
8987 		if (!*pval || pval >= (char *)mp1->b_wptr) {
8988 			err = EINVAL;
8989 		} else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL,
8990 		    pinfo, NULL, pval, 0)) == 0) {
8991 			miocack(q, mp, 0, 0);
8992 			return;
8993 		}
8994 		break;
8995 	default:
8996 		err = EINVAL;
8997 		break;
8998 	}
8999 	miocnak(q, mp, 0, err);
9000 }
9001 
9002 /*
9003  * Wrapper function for resuming deferred ioctl processing
9004  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9005  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9006  */
9007 /* ARGSUSED */
9008 void
9009 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9010     void *dummy_arg)
9011 {
9012 	ip_sioctl_copyin_setup(q, mp);
9013 }
9014 
9015 /*
9016  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
9017  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
9018  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
9019  * We establish here the size of the block to be copied in.  mi_copyin
9020  * arranges for this to happen, an processing continues in ip_wput_nondata with
9021  * an M_IOCDATA message.
9022  */
9023 void
9024 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
9025 {
9026 	int	copyin_size;
9027 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9028 	ip_ioctl_cmd_t *ipip;
9029 	cred_t *cr;
9030 	ip_stack_t	*ipst;
9031 
9032 	if (CONN_Q(q))
9033 		ipst = CONNQ_TO_IPST(q);
9034 	else
9035 		ipst = ILLQ_TO_IPST(q);
9036 
9037 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
9038 	if (ipip == NULL) {
9039 		/*
9040 		 * The ioctl is not one we understand or own.
9041 		 * Pass it along to be processed down stream,
9042 		 * if this is a module instance of IP, else nak
9043 		 * the ioctl.
9044 		 */
9045 		if (q->q_next == NULL) {
9046 			goto nak;
9047 		} else {
9048 			putnext(q, mp);
9049 			return;
9050 		}
9051 	}
9052 
9053 	/*
9054 	 * If this is deferred, then we will do all the checks when we
9055 	 * come back.
9056 	 */
9057 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
9058 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
9059 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
9060 		return;
9061 	}
9062 
9063 	/*
9064 	 * Only allow a very small subset of IP ioctls on this stream if
9065 	 * IP is a module and not a driver. Allowing ioctls to be processed
9066 	 * in this case may cause assert failures or data corruption.
9067 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
9068 	 * ioctls allowed on an IP module stream, after which this stream
9069 	 * normally becomes a multiplexor (at which time the stream head
9070 	 * will fail all ioctls).
9071 	 */
9072 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
9073 		goto nak;
9074 	}
9075 
9076 	/* Make sure we have ioctl data to process. */
9077 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
9078 		goto nak;
9079 
9080 	/*
9081 	 * Prefer dblk credential over ioctl credential; some synthesized
9082 	 * ioctls have kcred set because there's no way to crhold()
9083 	 * a credential in some contexts.  (ioc_cr is not crfree() by
9084 	 * the framework; the caller of ioctl needs to hold the reference
9085 	 * for the duration of the call).
9086 	 */
9087 	cr = msg_getcred(mp, NULL);
9088 	if (cr == NULL)
9089 		cr = iocp->ioc_cr;
9090 
9091 	/* Make sure normal users don't send down privileged ioctls */
9092 	if ((ipip->ipi_flags & IPI_PRIV) &&
9093 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
9094 		/* We checked the privilege earlier but log it here */
9095 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
9096 		return;
9097 	}
9098 
9099 	/*
9100 	 * The ioctl command tables can only encode fixed length
9101 	 * ioctl data. If the length is variable, the table will
9102 	 * encode the length as zero. Such special cases are handled
9103 	 * below in the switch.
9104 	 */
9105 	if (ipip->ipi_copyin_size != 0) {
9106 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
9107 		return;
9108 	}
9109 
9110 	switch (iocp->ioc_cmd) {
9111 	case O_SIOCGIFCONF:
9112 	case SIOCGIFCONF:
9113 		/*
9114 		 * This IOCTL is hilarious.  See comments in
9115 		 * ip_sioctl_get_ifconf for the story.
9116 		 */
9117 		if (iocp->ioc_count == TRANSPARENT)
9118 			copyin_size = SIZEOF_STRUCT(ifconf,
9119 			    iocp->ioc_flag);
9120 		else
9121 			copyin_size = iocp->ioc_count;
9122 		mi_copyin(q, mp, NULL, copyin_size);
9123 		return;
9124 
9125 	case O_SIOCGLIFCONF:
9126 	case SIOCGLIFCONF:
9127 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
9128 		mi_copyin(q, mp, NULL, copyin_size);
9129 		return;
9130 
9131 	case SIOCGLIFSRCOF:
9132 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
9133 		mi_copyin(q, mp, NULL, copyin_size);
9134 		return;
9135 
9136 	case SIOCGIP6ADDRPOLICY:
9137 		ip_sioctl_ip6addrpolicy(q, mp);
9138 		ip6_asp_table_refrele(ipst);
9139 		return;
9140 
9141 	case SIOCSIP6ADDRPOLICY:
9142 		ip_sioctl_ip6addrpolicy(q, mp);
9143 		return;
9144 
9145 	case SIOCGDSTINFO:
9146 		ip_sioctl_dstinfo(q, mp);
9147 		ip6_asp_table_refrele(ipst);
9148 		return;
9149 
9150 	case ND_SET:
9151 	case ND_GET:
9152 		ip_process_legacy_nddprop(q, mp);
9153 		return;
9154 
9155 	case SIOCSETPROP:
9156 	case SIOCGETPROP:
9157 		ip_sioctl_getsetprop(q, mp);
9158 		return;
9159 
9160 	case I_PLINK:
9161 	case I_PUNLINK:
9162 	case I_LINK:
9163 	case I_UNLINK:
9164 		/*
9165 		 * We treat non-persistent link similarly as the persistent
9166 		 * link case, in terms of plumbing/unplumbing, as well as
9167 		 * dynamic re-plumbing events indicator.  See comments
9168 		 * in ip_sioctl_plink() for more.
9169 		 *
9170 		 * Request can be enqueued in the 'ipsq' while waiting
9171 		 * to become exclusive. So bump up the conn ref.
9172 		 */
9173 		if (CONN_Q(q)) {
9174 			CONN_INC_REF(Q_TO_CONN(q));
9175 			CONN_INC_IOCTLREF(Q_TO_CONN(q))
9176 		}
9177 		ip_sioctl_plink(NULL, q, mp, NULL);
9178 		return;
9179 
9180 	case IP_IOCTL:
9181 		ip_wput_ioctl(q, mp);
9182 		return;
9183 
9184 	case SIOCILB:
9185 		/* The ioctl length varies depending on the ILB command. */
9186 		copyin_size = iocp->ioc_count;
9187 		if (copyin_size < sizeof (ilb_cmd_t))
9188 			goto nak;
9189 		mi_copyin(q, mp, NULL, copyin_size);
9190 		return;
9191 
9192 	default:
9193 		cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.",
9194 		    iocp->ioc_cmd, iocp->ioc_cmd);
9195 		/* FALLTHRU */
9196 	}
9197 nak:
9198 	if (mp->b_cont != NULL) {
9199 		freemsg(mp->b_cont);
9200 		mp->b_cont = NULL;
9201 	}
9202 	iocp->ioc_error = EINVAL;
9203 	mp->b_datap->db_type = M_IOCNAK;
9204 	iocp->ioc_count = 0;
9205 	qreply(q, mp);
9206 }
9207 
9208 static void
9209 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
9210 {
9211 	struct arpreq *ar;
9212 	struct xarpreq *xar;
9213 	mblk_t	*tmp;
9214 	struct iocblk *iocp;
9215 	int x_arp_ioctl = B_FALSE;
9216 	int *flagsp;
9217 	char *storage = NULL;
9218 
9219 	ASSERT(ill != NULL);
9220 
9221 	iocp = (struct iocblk *)mp->b_rptr;
9222 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9223 
9224 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9225 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9226 	    (iocp->ioc_cmd == SIOCSXARP)) {
9227 		x_arp_ioctl = B_TRUE;
9228 		xar = (struct xarpreq *)tmp->b_rptr;
9229 		flagsp = &xar->xarp_flags;
9230 		storage = xar->xarp_ha.sdl_data;
9231 	} else {
9232 		ar = (struct arpreq *)tmp->b_rptr;
9233 		flagsp = &ar->arp_flags;
9234 		storage = ar->arp_ha.sa_data;
9235 	}
9236 
9237 	/*
9238 	 * We're done if this is not an SIOCG{X}ARP
9239 	 */
9240 	if (x_arp_ioctl) {
9241 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9242 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9243 		    sizeof (xar->xarp_ha.sdl_data)) {
9244 			iocp->ioc_error = EINVAL;
9245 			return;
9246 		}
9247 	}
9248 	*flagsp = ATF_INUSE;
9249 	/*
9250 	 * If /sbin/arp told us we are the authority using the "permanent"
9251 	 * flag, or if this is one of my addresses print "permanent"
9252 	 * in the /sbin/arp output.
9253 	 */
9254 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9255 		*flagsp |= ATF_AUTHORITY;
9256 	if (flags & NCE_F_NONUD)
9257 		*flagsp |= ATF_PERM; /* not subject to aging */
9258 	if (flags & NCE_F_PUBLISH)
9259 		*flagsp |= ATF_PUBL;
9260 	if (hwaddr != NULL) {
9261 		*flagsp |= ATF_COM;
9262 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9263 	}
9264 }
9265 
9266 /*
9267  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9268  * interface) create the next available logical interface for this
9269  * physical interface.
9270  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9271  * ipif with the specified name.
9272  *
9273  * If the address family is not AF_UNSPEC then set the address as well.
9274  *
9275  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9276  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9277  *
9278  * Executed as a writer on the ill.
9279  * So no lock is needed to traverse the ipif chain, or examine the
9280  * phyint flags.
9281  */
9282 /* ARGSUSED */
9283 int
9284 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9285     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9286 {
9287 	mblk_t	*mp1;
9288 	struct lifreq *lifr;
9289 	boolean_t	isv6;
9290 	boolean_t	exists;
9291 	char 	*name;
9292 	char	*endp;
9293 	char	*cp;
9294 	int	namelen;
9295 	ipif_t	*ipif;
9296 	long	id;
9297 	ipsq_t	*ipsq;
9298 	ill_t	*ill;
9299 	sin_t	*sin;
9300 	int	err = 0;
9301 	boolean_t found_sep = B_FALSE;
9302 	conn_t	*connp;
9303 	zoneid_t zoneid;
9304 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9305 
9306 	ASSERT(q->q_next == NULL);
9307 	ip1dbg(("ip_sioctl_addif\n"));
9308 	/* Existence of mp1 has been checked in ip_wput_nondata */
9309 	mp1 = mp->b_cont->b_cont;
9310 	/*
9311 	 * Null terminate the string to protect against buffer
9312 	 * overrun. String was generated by user code and may not
9313 	 * be trusted.
9314 	 */
9315 	lifr = (struct lifreq *)mp1->b_rptr;
9316 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9317 	name = lifr->lifr_name;
9318 	ASSERT(CONN_Q(q));
9319 	connp = Q_TO_CONN(q);
9320 	isv6 = (connp->conn_family == AF_INET6);
9321 	zoneid = connp->conn_zoneid;
9322 	namelen = mi_strlen(name);
9323 	if (namelen == 0)
9324 		return (EINVAL);
9325 
9326 	exists = B_FALSE;
9327 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9328 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9329 		/*
9330 		 * Allow creating lo0 using SIOCLIFADDIF.
9331 		 * can't be any other writer thread. So can pass null below
9332 		 * for the last 4 args to ipif_lookup_name.
9333 		 */
9334 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9335 		    &exists, isv6, zoneid, ipst);
9336 		/* Prevent any further action */
9337 		if (ipif == NULL) {
9338 			return (ENOBUFS);
9339 		} else if (!exists) {
9340 			/* We created the ipif now and as writer */
9341 			ipif_refrele(ipif);
9342 			return (0);
9343 		} else {
9344 			ill = ipif->ipif_ill;
9345 			ill_refhold(ill);
9346 			ipif_refrele(ipif);
9347 		}
9348 	} else {
9349 		/* Look for a colon in the name. */
9350 		endp = &name[namelen];
9351 		for (cp = endp; --cp > name; ) {
9352 			if (*cp == IPIF_SEPARATOR_CHAR) {
9353 				found_sep = B_TRUE;
9354 				/*
9355 				 * Reject any non-decimal aliases for plumbing
9356 				 * of logical interfaces. Aliases with leading
9357 				 * zeroes are also rejected as they introduce
9358 				 * ambiguity in the naming of the interfaces.
9359 				 * Comparing with "0" takes care of all such
9360 				 * cases.
9361 				 */
9362 				if ((strncmp("0", cp+1, 1)) == 0)
9363 					return (EINVAL);
9364 
9365 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9366 				    id <= 0 || *endp != '\0') {
9367 					return (EINVAL);
9368 				}
9369 				*cp = '\0';
9370 				break;
9371 			}
9372 		}
9373 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9374 		if (found_sep)
9375 			*cp = IPIF_SEPARATOR_CHAR;
9376 		if (ill == NULL)
9377 			return (ENXIO);
9378 	}
9379 
9380 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9381 	    B_TRUE);
9382 
9383 	/*
9384 	 * Release the refhold due to the lookup, now that we are excl
9385 	 * or we are just returning
9386 	 */
9387 	ill_refrele(ill);
9388 
9389 	if (ipsq == NULL)
9390 		return (EINPROGRESS);
9391 
9392 	/* We are now exclusive on the IPSQ */
9393 	ASSERT(IAM_WRITER_ILL(ill));
9394 
9395 	if (found_sep) {
9396 		/* Now see if there is an IPIF with this unit number. */
9397 		for (ipif = ill->ill_ipif; ipif != NULL;
9398 		    ipif = ipif->ipif_next) {
9399 			if (ipif->ipif_id == id) {
9400 				err = EEXIST;
9401 				goto done;
9402 			}
9403 		}
9404 	}
9405 
9406 	/*
9407 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9408 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9409 	 * instead.
9410 	 */
9411 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9412 	    B_TRUE, B_TRUE, &err)) == NULL) {
9413 		goto done;
9414 	}
9415 
9416 	/* Return created name with ioctl */
9417 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9418 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9419 	ip1dbg(("created %s\n", lifr->lifr_name));
9420 
9421 	/* Set address */
9422 	sin = (sin_t *)&lifr->lifr_addr;
9423 	if (sin->sin_family != AF_UNSPEC) {
9424 		err = ip_sioctl_addr(ipif, sin, q, mp,
9425 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9426 	}
9427 
9428 done:
9429 	ipsq_exit(ipsq);
9430 	return (err);
9431 }
9432 
9433 /*
9434  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9435  * interface) delete it based on the IP address (on this physical interface).
9436  * Otherwise delete it based on the ipif_id.
9437  * Also, special handling to allow a removeif of lo0.
9438  */
9439 /* ARGSUSED */
9440 int
9441 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9442     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9443 {
9444 	conn_t		*connp;
9445 	ill_t		*ill = ipif->ipif_ill;
9446 	boolean_t	 success;
9447 	ip_stack_t	*ipst;
9448 
9449 	ipst = CONNQ_TO_IPST(q);
9450 
9451 	ASSERT(q->q_next == NULL);
9452 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9453 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9454 	ASSERT(IAM_WRITER_IPIF(ipif));
9455 
9456 	connp = Q_TO_CONN(q);
9457 	/*
9458 	 * Special case for unplumbing lo0 (the loopback physical interface).
9459 	 * If unplumbing lo0, the incoming address structure has been
9460 	 * initialized to all zeros. When unplumbing lo0, all its logical
9461 	 * interfaces must be removed too.
9462 	 *
9463 	 * Note that this interface may be called to remove a specific
9464 	 * loopback logical interface (eg, lo0:1). But in that case
9465 	 * ipif->ipif_id != 0 so that the code path for that case is the
9466 	 * same as any other interface (meaning it skips the code directly
9467 	 * below).
9468 	 */
9469 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9470 		if (sin->sin_family == AF_UNSPEC &&
9471 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9472 			/*
9473 			 * Mark it condemned. No new ref. will be made to ill.
9474 			 */
9475 			mutex_enter(&ill->ill_lock);
9476 			ill->ill_state_flags |= ILL_CONDEMNED;
9477 			for (ipif = ill->ill_ipif; ipif != NULL;
9478 			    ipif = ipif->ipif_next) {
9479 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9480 			}
9481 			mutex_exit(&ill->ill_lock);
9482 
9483 			ipif = ill->ill_ipif;
9484 			/* unplumb the loopback interface */
9485 			ill_delete(ill);
9486 			mutex_enter(&connp->conn_lock);
9487 			mutex_enter(&ill->ill_lock);
9488 
9489 			/* Are any references to this ill active */
9490 			if (ill_is_freeable(ill)) {
9491 				mutex_exit(&ill->ill_lock);
9492 				mutex_exit(&connp->conn_lock);
9493 				ill_delete_tail(ill);
9494 				mi_free(ill);
9495 				return (0);
9496 			}
9497 			success = ipsq_pending_mp_add(connp, ipif,
9498 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9499 			mutex_exit(&connp->conn_lock);
9500 			mutex_exit(&ill->ill_lock);
9501 			if (success)
9502 				return (EINPROGRESS);
9503 			else
9504 				return (EINTR);
9505 		}
9506 	}
9507 
9508 	if (ipif->ipif_id == 0) {
9509 		ipsq_t *ipsq;
9510 
9511 		/* Find based on address */
9512 		if (ipif->ipif_isv6) {
9513 			sin6_t *sin6;
9514 
9515 			if (sin->sin_family != AF_INET6)
9516 				return (EAFNOSUPPORT);
9517 
9518 			sin6 = (sin6_t *)sin;
9519 			/* We are a writer, so we should be able to lookup */
9520 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9521 			    ipst);
9522 		} else {
9523 			if (sin->sin_family != AF_INET)
9524 				return (EAFNOSUPPORT);
9525 
9526 			/* We are a writer, so we should be able to lookup */
9527 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9528 			    ipst);
9529 		}
9530 		if (ipif == NULL) {
9531 			return (EADDRNOTAVAIL);
9532 		}
9533 
9534 		/*
9535 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9536 		 * lifr_name of the physical interface but with an ip address
9537 		 * lifr_addr of a logical interface plumbed over it.
9538 		 * So update ipx_current_ipif now that ipif points to the
9539 		 * correct one.
9540 		 */
9541 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9542 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9543 
9544 		/* This is a writer */
9545 		ipif_refrele(ipif);
9546 	}
9547 
9548 	/*
9549 	 * Can not delete instance zero since it is tied to the ill.
9550 	 */
9551 	if (ipif->ipif_id == 0)
9552 		return (EBUSY);
9553 
9554 	mutex_enter(&ill->ill_lock);
9555 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9556 	mutex_exit(&ill->ill_lock);
9557 
9558 	ipif_free(ipif);
9559 
9560 	mutex_enter(&connp->conn_lock);
9561 	mutex_enter(&ill->ill_lock);
9562 
9563 	/* Are any references to this ipif active */
9564 	if (ipif_is_freeable(ipif)) {
9565 		mutex_exit(&ill->ill_lock);
9566 		mutex_exit(&connp->conn_lock);
9567 		ipif_non_duplicate(ipif);
9568 		(void) ipif_down_tail(ipif);
9569 		ipif_free_tail(ipif); /* frees ipif */
9570 		return (0);
9571 	}
9572 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9573 	    IPIF_FREE);
9574 	mutex_exit(&ill->ill_lock);
9575 	mutex_exit(&connp->conn_lock);
9576 	if (success)
9577 		return (EINPROGRESS);
9578 	else
9579 		return (EINTR);
9580 }
9581 
9582 /*
9583  * Restart the removeif ioctl. The refcnt has gone down to 0.
9584  * The ipif is already condemned. So can't find it thru lookups.
9585  */
9586 /* ARGSUSED */
9587 int
9588 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9589     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9590 {
9591 	ill_t *ill = ipif->ipif_ill;
9592 
9593 	ASSERT(IAM_WRITER_IPIF(ipif));
9594 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9595 
9596 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9597 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9598 
9599 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9600 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9601 		ill_delete_tail(ill);
9602 		mi_free(ill);
9603 		return (0);
9604 	}
9605 
9606 	ipif_non_duplicate(ipif);
9607 	(void) ipif_down_tail(ipif);
9608 	ipif_free_tail(ipif);
9609 
9610 	return (0);
9611 }
9612 
9613 /*
9614  * Set the local interface address using the given prefix and ill_token.
9615  */
9616 /* ARGSUSED */
9617 int
9618 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9619     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9620 {
9621 	int err;
9622 	in6_addr_t v6addr;
9623 	sin6_t *sin6;
9624 	ill_t *ill;
9625 	int i;
9626 
9627 	ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n",
9628 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9629 
9630 	ASSERT(IAM_WRITER_IPIF(ipif));
9631 
9632 	if (!ipif->ipif_isv6)
9633 		return (EINVAL);
9634 
9635 	if (sin->sin_family != AF_INET6)
9636 		return (EAFNOSUPPORT);
9637 
9638 	sin6 = (sin6_t *)sin;
9639 	v6addr = sin6->sin6_addr;
9640 	ill = ipif->ipif_ill;
9641 
9642 	if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) ||
9643 	    IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
9644 		return (EADDRNOTAVAIL);
9645 
9646 	for (i = 0; i < 4; i++)
9647 		sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i];
9648 
9649 	err = ip_sioctl_addr(ipif, sin, q, mp,
9650 	    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq);
9651 	return (err);
9652 }
9653 
9654 /*
9655  * Restart entry point to restart the address set operation after the
9656  * refcounts have dropped to zero.
9657  */
9658 /* ARGSUSED */
9659 int
9660 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9661     ip_ioctl_cmd_t *ipip, void *ifreq)
9662 {
9663 	ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n",
9664 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9665 	return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq));
9666 }
9667 
9668 /*
9669  * Set the local interface address.
9670  * Allow an address of all zero when the interface is down.
9671  */
9672 /* ARGSUSED */
9673 int
9674 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9675     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9676 {
9677 	int err = 0;
9678 	in6_addr_t v6addr;
9679 	boolean_t need_up = B_FALSE;
9680 	ill_t *ill;
9681 	int i;
9682 
9683 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9684 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9685 
9686 	ASSERT(IAM_WRITER_IPIF(ipif));
9687 
9688 	ill = ipif->ipif_ill;
9689 	if (ipif->ipif_isv6) {
9690 		sin6_t *sin6;
9691 		phyint_t *phyi;
9692 
9693 		if (sin->sin_family != AF_INET6)
9694 			return (EAFNOSUPPORT);
9695 
9696 		sin6 = (sin6_t *)sin;
9697 		v6addr = sin6->sin6_addr;
9698 		phyi = ill->ill_phyint;
9699 
9700 		/*
9701 		 * Enforce that true multicast interfaces have a link-local
9702 		 * address for logical unit 0.
9703 		 *
9704 		 * However for those ipif's for which link-local address was
9705 		 * not created by default, also allow setting :: as the address.
9706 		 * This scenario would arise, when we delete an address on ipif
9707 		 * with logical unit 0, we would want to set :: as the address.
9708 		 */
9709 		if (ipif->ipif_id == 0 &&
9710 		    (ill->ill_flags & ILLF_MULTICAST) &&
9711 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9712 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9713 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9714 
9715 			/*
9716 			 * if default link-local was not created by kernel for
9717 			 * this ill, allow setting :: as the address on ipif:0.
9718 			 */
9719 			if (ill->ill_flags & ILLF_NOLINKLOCAL) {
9720 				if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr))
9721 					return (EADDRNOTAVAIL);
9722 			} else {
9723 				return (EADDRNOTAVAIL);
9724 			}
9725 		}
9726 
9727 		/*
9728 		 * up interfaces shouldn't have the unspecified address
9729 		 * unless they also have the IPIF_NOLOCAL flags set and
9730 		 * have a subnet assigned.
9731 		 */
9732 		if ((ipif->ipif_flags & IPIF_UP) &&
9733 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9734 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9735 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9736 			return (EADDRNOTAVAIL);
9737 		}
9738 
9739 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9740 			return (EADDRNOTAVAIL);
9741 	} else {
9742 		ipaddr_t addr;
9743 
9744 		if (sin->sin_family != AF_INET)
9745 			return (EAFNOSUPPORT);
9746 
9747 		addr = sin->sin_addr.s_addr;
9748 
9749 		/* Allow INADDR_ANY as the local address. */
9750 		if (addr != INADDR_ANY &&
9751 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9752 			return (EADDRNOTAVAIL);
9753 
9754 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9755 	}
9756 	/*
9757 	 * verify that the address being configured is permitted by the
9758 	 * ill_allowed_ips[] for the interface.
9759 	 */
9760 	if (ill->ill_allowed_ips_cnt > 0) {
9761 		for (i = 0; i < ill->ill_allowed_ips_cnt; i++) {
9762 			if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i],
9763 			    &v6addr))
9764 				break;
9765 		}
9766 		if (i == ill->ill_allowed_ips_cnt) {
9767 			pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr);
9768 			return (EPERM);
9769 		}
9770 	}
9771 	/*
9772 	 * Even if there is no change we redo things just to rerun
9773 	 * ipif_set_default.
9774 	 */
9775 	if (ipif->ipif_flags & IPIF_UP) {
9776 		/*
9777 		 * Setting a new local address, make sure
9778 		 * we have net and subnet bcast ire's for
9779 		 * the old address if we need them.
9780 		 */
9781 		/*
9782 		 * If the interface is already marked up,
9783 		 * we call ipif_down which will take care
9784 		 * of ditching any IREs that have been set
9785 		 * up based on the old interface address.
9786 		 */
9787 		err = ipif_logical_down(ipif, q, mp);
9788 		if (err == EINPROGRESS)
9789 			return (err);
9790 		(void) ipif_down_tail(ipif);
9791 		need_up = 1;
9792 	}
9793 
9794 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9795 	return (err);
9796 }
9797 
9798 int
9799 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9800     boolean_t need_up)
9801 {
9802 	in6_addr_t v6addr;
9803 	in6_addr_t ov6addr;
9804 	ipaddr_t addr;
9805 	sin6_t	*sin6;
9806 	int	sinlen;
9807 	int	err = 0;
9808 	ill_t	*ill = ipif->ipif_ill;
9809 	boolean_t need_dl_down;
9810 	boolean_t need_arp_down;
9811 	struct iocblk *iocp;
9812 
9813 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9814 
9815 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9816 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9817 	ASSERT(IAM_WRITER_IPIF(ipif));
9818 
9819 	/* Must cancel any pending timer before taking the ill_lock */
9820 	if (ipif->ipif_recovery_id != 0)
9821 		(void) untimeout(ipif->ipif_recovery_id);
9822 	ipif->ipif_recovery_id = 0;
9823 
9824 	if (ipif->ipif_isv6) {
9825 		sin6 = (sin6_t *)sin;
9826 		v6addr = sin6->sin6_addr;
9827 		sinlen = sizeof (struct sockaddr_in6);
9828 	} else {
9829 		addr = sin->sin_addr.s_addr;
9830 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9831 		sinlen = sizeof (struct sockaddr_in);
9832 	}
9833 	mutex_enter(&ill->ill_lock);
9834 	ov6addr = ipif->ipif_v6lcl_addr;
9835 	ipif->ipif_v6lcl_addr = v6addr;
9836 	sctp_update_ipif_addr(ipif, ov6addr);
9837 	ipif->ipif_addr_ready = 0;
9838 
9839 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9840 
9841 	/*
9842 	 * If the interface was previously marked as a duplicate, then since
9843 	 * we've now got a "new" address, it should no longer be considered a
9844 	 * duplicate -- even if the "new" address is the same as the old one.
9845 	 * Note that if all ipifs are down, we may have a pending ARP down
9846 	 * event to handle.  This is because we want to recover from duplicates
9847 	 * and thus delay tearing down ARP until the duplicates have been
9848 	 * removed or disabled.
9849 	 */
9850 	need_dl_down = need_arp_down = B_FALSE;
9851 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9852 		need_arp_down = !need_up;
9853 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9854 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9855 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9856 			need_dl_down = B_TRUE;
9857 		}
9858 	}
9859 
9860 	ipif_set_default(ipif);
9861 
9862 	/*
9863 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9864 	 * tag the ill so that future updates to the interface ID don't result
9865 	 * in this address getting automatically reconfigured from under the
9866 	 * administrator.
9867 	 */
9868 	if (ipif->ipif_isv6 && ipif->ipif_id == 0) {
9869 		if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR &&
9870 		    !IN6_IS_ADDR_UNSPECIFIED(&v6addr)))
9871 			ill->ill_manual_linklocal = 1;
9872 	}
9873 
9874 	/*
9875 	 * When publishing an interface address change event, we only notify
9876 	 * the event listeners of the new address.  It is assumed that if they
9877 	 * actively care about the addresses assigned that they will have
9878 	 * already discovered the previous address assigned (if there was one.)
9879 	 *
9880 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9881 	 */
9882 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9883 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9884 		    NE_ADDRESS_CHANGE, sin, sinlen);
9885 	}
9886 
9887 	mutex_exit(&ill->ill_lock);
9888 
9889 	if (need_up) {
9890 		/*
9891 		 * Now bring the interface back up.  If this
9892 		 * is the only IPIF for the ILL, ipif_up
9893 		 * will have to re-bind to the device, so
9894 		 * we may get back EINPROGRESS, in which
9895 		 * case, this IOCTL will get completed in
9896 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9897 		 */
9898 		err = ipif_up(ipif, q, mp);
9899 	} else {
9900 		/* Perhaps ilgs should use this ill */
9901 		update_conn_ill(NULL, ill->ill_ipst);
9902 	}
9903 
9904 	if (need_dl_down)
9905 		ill_dl_down(ill);
9906 
9907 	if (need_arp_down && !ill->ill_isv6)
9908 		(void) ipif_arp_down(ipif);
9909 
9910 	/*
9911 	 * The default multicast interface might have changed (for
9912 	 * instance if the IPv6 scope of the address changed)
9913 	 */
9914 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9915 
9916 	return (err);
9917 }
9918 
9919 /*
9920  * Restart entry point to restart the address set operation after the
9921  * refcounts have dropped to zero.
9922  */
9923 /* ARGSUSED */
9924 int
9925 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9926     ip_ioctl_cmd_t *ipip, void *ifreq)
9927 {
9928 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9929 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9930 	ASSERT(IAM_WRITER_IPIF(ipif));
9931 	(void) ipif_down_tail(ipif);
9932 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9933 }
9934 
9935 /* ARGSUSED */
9936 int
9937 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9938     ip_ioctl_cmd_t *ipip, void *if_req)
9939 {
9940 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9941 	struct lifreq *lifr = (struct lifreq *)if_req;
9942 
9943 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9944 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9945 	/*
9946 	 * The net mask and address can't change since we have a
9947 	 * reference to the ipif. So no lock is necessary.
9948 	 */
9949 	if (ipif->ipif_isv6) {
9950 		*sin6 = sin6_null;
9951 		sin6->sin6_family = AF_INET6;
9952 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9953 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9954 		lifr->lifr_addrlen =
9955 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9956 	} else {
9957 		*sin = sin_null;
9958 		sin->sin_family = AF_INET;
9959 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9960 		if (ipip->ipi_cmd_type == LIF_CMD) {
9961 			lifr->lifr_addrlen =
9962 			    ip_mask_to_plen(ipif->ipif_net_mask);
9963 		}
9964 	}
9965 	return (0);
9966 }
9967 
9968 /*
9969  * Set the destination address for a pt-pt interface.
9970  */
9971 /* ARGSUSED */
9972 int
9973 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9974     ip_ioctl_cmd_t *ipip, void *if_req)
9975 {
9976 	int err = 0;
9977 	in6_addr_t v6addr;
9978 	boolean_t need_up = B_FALSE;
9979 
9980 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9981 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9982 	ASSERT(IAM_WRITER_IPIF(ipif));
9983 
9984 	if (ipif->ipif_isv6) {
9985 		sin6_t *sin6;
9986 
9987 		if (sin->sin_family != AF_INET6)
9988 			return (EAFNOSUPPORT);
9989 
9990 		sin6 = (sin6_t *)sin;
9991 		v6addr = sin6->sin6_addr;
9992 
9993 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9994 			return (EADDRNOTAVAIL);
9995 	} else {
9996 		ipaddr_t addr;
9997 
9998 		if (sin->sin_family != AF_INET)
9999 			return (EAFNOSUPPORT);
10000 
10001 		addr = sin->sin_addr.s_addr;
10002 		if (addr != INADDR_ANY &&
10003 		    !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) {
10004 			return (EADDRNOTAVAIL);
10005 		}
10006 
10007 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10008 	}
10009 
10010 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
10011 		return (0);	/* No change */
10012 
10013 	if (ipif->ipif_flags & IPIF_UP) {
10014 		/*
10015 		 * If the interface is already marked up,
10016 		 * we call ipif_down which will take care
10017 		 * of ditching any IREs that have been set
10018 		 * up based on the old pp dst address.
10019 		 */
10020 		err = ipif_logical_down(ipif, q, mp);
10021 		if (err == EINPROGRESS)
10022 			return (err);
10023 		(void) ipif_down_tail(ipif);
10024 		need_up = B_TRUE;
10025 	}
10026 	/*
10027 	 * could return EINPROGRESS. If so ioctl will complete in
10028 	 * ip_rput_dlpi_writer
10029 	 */
10030 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
10031 	return (err);
10032 }
10033 
10034 static int
10035 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10036     boolean_t need_up)
10037 {
10038 	in6_addr_t v6addr;
10039 	ill_t	*ill = ipif->ipif_ill;
10040 	int	err = 0;
10041 	boolean_t need_dl_down;
10042 	boolean_t need_arp_down;
10043 
10044 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
10045 	    ipif->ipif_id, (void *)ipif));
10046 
10047 	/* Must cancel any pending timer before taking the ill_lock */
10048 	if (ipif->ipif_recovery_id != 0)
10049 		(void) untimeout(ipif->ipif_recovery_id);
10050 	ipif->ipif_recovery_id = 0;
10051 
10052 	if (ipif->ipif_isv6) {
10053 		sin6_t *sin6;
10054 
10055 		sin6 = (sin6_t *)sin;
10056 		v6addr = sin6->sin6_addr;
10057 	} else {
10058 		ipaddr_t addr;
10059 
10060 		addr = sin->sin_addr.s_addr;
10061 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10062 	}
10063 	mutex_enter(&ill->ill_lock);
10064 	/* Set point to point destination address. */
10065 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10066 		/*
10067 		 * Allow this as a means of creating logical
10068 		 * pt-pt interfaces on top of e.g. an Ethernet.
10069 		 * XXX Undocumented HACK for testing.
10070 		 * pt-pt interfaces are created with NUD disabled.
10071 		 */
10072 		ipif->ipif_flags |= IPIF_POINTOPOINT;
10073 		ipif->ipif_flags &= ~IPIF_BROADCAST;
10074 		if (ipif->ipif_isv6)
10075 			ill->ill_flags |= ILLF_NONUD;
10076 	}
10077 
10078 	/*
10079 	 * If the interface was previously marked as a duplicate, then since
10080 	 * we've now got a "new" address, it should no longer be considered a
10081 	 * duplicate -- even if the "new" address is the same as the old one.
10082 	 * Note that if all ipifs are down, we may have a pending ARP down
10083 	 * event to handle.
10084 	 */
10085 	need_dl_down = need_arp_down = B_FALSE;
10086 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
10087 		need_arp_down = !need_up;
10088 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
10089 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
10090 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
10091 			need_dl_down = B_TRUE;
10092 		}
10093 	}
10094 
10095 	/*
10096 	 * If we've just manually set the IPv6 destination link-local address
10097 	 * (0th ipif), tag the ill so that future updates to the destination
10098 	 * interface ID (as can happen with interfaces over IP tunnels) don't
10099 	 * result in this address getting automatically reconfigured from
10100 	 * under the administrator.
10101 	 */
10102 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
10103 		ill->ill_manual_dst_linklocal = 1;
10104 
10105 	/* Set the new address. */
10106 	ipif->ipif_v6pp_dst_addr = v6addr;
10107 	/* Make sure subnet tracks pp_dst */
10108 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
10109 	mutex_exit(&ill->ill_lock);
10110 
10111 	if (need_up) {
10112 		/*
10113 		 * Now bring the interface back up.  If this
10114 		 * is the only IPIF for the ILL, ipif_up
10115 		 * will have to re-bind to the device, so
10116 		 * we may get back EINPROGRESS, in which
10117 		 * case, this IOCTL will get completed in
10118 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10119 		 */
10120 		err = ipif_up(ipif, q, mp);
10121 	}
10122 
10123 	if (need_dl_down)
10124 		ill_dl_down(ill);
10125 	if (need_arp_down && !ipif->ipif_isv6)
10126 		(void) ipif_arp_down(ipif);
10127 
10128 	return (err);
10129 }
10130 
10131 /*
10132  * Restart entry point to restart the dstaddress set operation after the
10133  * refcounts have dropped to zero.
10134  */
10135 /* ARGSUSED */
10136 int
10137 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10138     ip_ioctl_cmd_t *ipip, void *ifreq)
10139 {
10140 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
10141 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10142 	(void) ipif_down_tail(ipif);
10143 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
10144 }
10145 
10146 /* ARGSUSED */
10147 int
10148 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10149     ip_ioctl_cmd_t *ipip, void *if_req)
10150 {
10151 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
10152 
10153 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
10154 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10155 	/*
10156 	 * Get point to point destination address. The addresses can't
10157 	 * change since we hold a reference to the ipif.
10158 	 */
10159 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
10160 		return (EADDRNOTAVAIL);
10161 
10162 	if (ipif->ipif_isv6) {
10163 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10164 		*sin6 = sin6_null;
10165 		sin6->sin6_family = AF_INET6;
10166 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
10167 	} else {
10168 		*sin = sin_null;
10169 		sin->sin_family = AF_INET;
10170 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
10171 	}
10172 	return (0);
10173 }
10174 
10175 /*
10176  * Check which flags will change by the given flags being set
10177  * silently ignore flags which userland is not allowed to control.
10178  * (Because these flags may change between SIOCGLIFFLAGS and
10179  * SIOCSLIFFLAGS, and that's outside of userland's control,
10180  * we need to silently ignore them rather than fail.)
10181  */
10182 static void
10183 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
10184     uint64_t *offp)
10185 {
10186 	ill_t		*ill = ipif->ipif_ill;
10187 	phyint_t 	*phyi = ill->ill_phyint;
10188 	uint64_t	cantchange_flags, intf_flags;
10189 	uint64_t	turn_on, turn_off;
10190 
10191 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10192 	cantchange_flags = IFF_CANTCHANGE;
10193 	if (IS_IPMP(ill))
10194 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
10195 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
10196 	turn_off = intf_flags & turn_on;
10197 	turn_on ^= turn_off;
10198 	*onp = turn_on;
10199 	*offp = turn_off;
10200 }
10201 
10202 /*
10203  * Set interface flags.  Many flags require special handling (e.g.,
10204  * bringing the interface down); see below for details.
10205  *
10206  * NOTE : We really don't enforce that ipif_id zero should be used
10207  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
10208  *	  is because applications generally does SICGLIFFLAGS and
10209  *	  ORs in the new flags (that affects the logical) and does a
10210  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
10211  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
10212  *	  flags that will be turned on is correct with respect to
10213  *	  ipif_id 0. For backward compatibility reasons, it is not done.
10214  */
10215 /* ARGSUSED */
10216 int
10217 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10218     ip_ioctl_cmd_t *ipip, void *if_req)
10219 {
10220 	uint64_t turn_on;
10221 	uint64_t turn_off;
10222 	int	err = 0;
10223 	phyint_t *phyi;
10224 	ill_t *ill;
10225 	conn_t *connp;
10226 	uint64_t intf_flags;
10227 	boolean_t phyint_flags_modified = B_FALSE;
10228 	uint64_t flags;
10229 	struct ifreq *ifr;
10230 	struct lifreq *lifr;
10231 	boolean_t set_linklocal = B_FALSE;
10232 
10233 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
10234 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10235 
10236 	ASSERT(IAM_WRITER_IPIF(ipif));
10237 
10238 	ill = ipif->ipif_ill;
10239 	phyi = ill->ill_phyint;
10240 
10241 	if (ipip->ipi_cmd_type == IF_CMD) {
10242 		ifr = (struct ifreq *)if_req;
10243 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
10244 	} else {
10245 		lifr = (struct lifreq *)if_req;
10246 		flags = lifr->lifr_flags;
10247 	}
10248 
10249 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
10250 
10251 	/*
10252 	 * Have the flags been set correctly until now?
10253 	 */
10254 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10255 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10256 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10257 	/*
10258 	 * Compare the new flags to the old, and partition
10259 	 * into those coming on and those going off.
10260 	 * For the 16 bit command keep the bits above bit 16 unchanged.
10261 	 */
10262 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
10263 		flags |= intf_flags & ~0xFFFF;
10264 
10265 	/*
10266 	 * Explicitly fail attempts to change flags that are always invalid on
10267 	 * an IPMP meta-interface.
10268 	 */
10269 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
10270 		return (EINVAL);
10271 
10272 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10273 	if ((turn_on|turn_off) == 0)
10274 		return (0);	/* No change */
10275 
10276 	/*
10277 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
10278 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
10279 	 * allow it to be turned off.
10280 	 */
10281 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
10282 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
10283 		return (EINVAL);
10284 
10285 	if ((connp = Q_TO_CONN(q)) == NULL)
10286 		return (EINVAL);
10287 
10288 	/*
10289 	 * Only vrrp control socket is allowed to change IFF_UP and
10290 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
10291 	 */
10292 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
10293 		if (!connp->conn_isvrrp)
10294 			return (EINVAL);
10295 	}
10296 
10297 	/*
10298 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
10299 	 * VRRP control socket.
10300 	 */
10301 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
10302 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
10303 			return (EINVAL);
10304 	}
10305 
10306 	if (turn_on & IFF_NOFAILOVER) {
10307 		turn_on |= IFF_DEPRECATED;
10308 		flags |= IFF_DEPRECATED;
10309 	}
10310 
10311 	/*
10312 	 * On underlying interfaces, only allow applications to manage test
10313 	 * addresses -- otherwise, they may get confused when the address
10314 	 * moves as part of being brought up.  Likewise, prevent an
10315 	 * application-managed test address from being converted to a data
10316 	 * address.  To prevent migration of administratively up addresses in
10317 	 * the kernel, we don't allow them to be converted either.
10318 	 */
10319 	if (IS_UNDER_IPMP(ill)) {
10320 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10321 
10322 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10323 			return (EINVAL);
10324 
10325 		if ((turn_off & IFF_NOFAILOVER) &&
10326 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10327 			return (EINVAL);
10328 	}
10329 
10330 	/*
10331 	 * Only allow IFF_TEMPORARY flag to be set on
10332 	 * IPv6 interfaces.
10333 	 */
10334 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10335 		return (EINVAL);
10336 
10337 	/*
10338 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10339 	 */
10340 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10341 		return (EINVAL);
10342 
10343 	/*
10344 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10345 	 * interfaces.  It makes no sense in that context.
10346 	 */
10347 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10348 		return (EINVAL);
10349 
10350 	/*
10351 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10352 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10353 	 * If the link local address isn't set, and can be set, it will get
10354 	 * set later on in this function.
10355 	 */
10356 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10357 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10358 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10359 		if (ipif_cant_setlinklocal(ipif))
10360 			return (EINVAL);
10361 		set_linklocal = B_TRUE;
10362 	}
10363 
10364 	/*
10365 	 * If we modify physical interface flags, we'll potentially need to
10366 	 * send up two routing socket messages for the changes (one for the
10367 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10368 	 */
10369 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10370 		phyint_flags_modified = B_TRUE;
10371 
10372 	/*
10373 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10374 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10375 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10376 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10377 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10378 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10379 	 * will not be honored.
10380 	 */
10381 	if (turn_on & PHYI_STANDBY) {
10382 		/*
10383 		 * No need to grab ill_g_usesrc_lock here; see the
10384 		 * synchronization notes in ip.c.
10385 		 */
10386 		if (ill->ill_usesrc_grp_next != NULL ||
10387 		    intf_flags & PHYI_INACTIVE)
10388 			return (EINVAL);
10389 		if (!(flags & PHYI_FAILED)) {
10390 			flags |= PHYI_INACTIVE;
10391 			turn_on |= PHYI_INACTIVE;
10392 		}
10393 	}
10394 
10395 	if (turn_off & PHYI_STANDBY) {
10396 		flags &= ~PHYI_INACTIVE;
10397 		turn_off |= PHYI_INACTIVE;
10398 	}
10399 
10400 	/*
10401 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10402 	 * would end up on.
10403 	 */
10404 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10405 	    (PHYI_FAILED | PHYI_INACTIVE))
10406 		return (EINVAL);
10407 
10408 	/*
10409 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10410 	 * status of the interface.
10411 	 */
10412 	if ((turn_on | turn_off) & ILLF_ROUTER) {
10413 		err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10414 		if (err != 0)
10415 			return (err);
10416 	}
10417 
10418 	/*
10419 	 * If the interface is not UP and we are not going to
10420 	 * bring it UP, record the flags and return. When the
10421 	 * interface comes UP later, the right actions will be
10422 	 * taken.
10423 	 */
10424 	if (!(ipif->ipif_flags & IPIF_UP) &&
10425 	    !(turn_on & IPIF_UP)) {
10426 		/* Record new flags in their respective places. */
10427 		mutex_enter(&ill->ill_lock);
10428 		mutex_enter(&ill->ill_phyint->phyint_lock);
10429 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10430 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10431 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10432 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10433 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10434 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10435 		mutex_exit(&ill->ill_lock);
10436 		mutex_exit(&ill->ill_phyint->phyint_lock);
10437 
10438 		/*
10439 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10440 		 * same to the kernel: if any of them has been set by
10441 		 * userland, the interface cannot be used for data traffic.
10442 		 */
10443 		if ((turn_on|turn_off) &
10444 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10445 			ASSERT(!IS_IPMP(ill));
10446 			/*
10447 			 * It's possible the ill is part of an "anonymous"
10448 			 * IPMP group rather than a real group.  In that case,
10449 			 * there are no other interfaces in the group and thus
10450 			 * no need to call ipmp_phyint_refresh_active().
10451 			 */
10452 			if (IS_UNDER_IPMP(ill))
10453 				ipmp_phyint_refresh_active(phyi);
10454 		}
10455 
10456 		if (phyint_flags_modified) {
10457 			if (phyi->phyint_illv4 != NULL) {
10458 				ip_rts_ifmsg(phyi->phyint_illv4->
10459 				    ill_ipif, RTSQ_DEFAULT);
10460 			}
10461 			if (phyi->phyint_illv6 != NULL) {
10462 				ip_rts_ifmsg(phyi->phyint_illv6->
10463 				    ill_ipif, RTSQ_DEFAULT);
10464 			}
10465 		}
10466 		/* The default multicast interface might have changed */
10467 		ire_increment_multicast_generation(ill->ill_ipst,
10468 		    ill->ill_isv6);
10469 
10470 		return (0);
10471 	} else if (set_linklocal) {
10472 		mutex_enter(&ill->ill_lock);
10473 		if (set_linklocal)
10474 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10475 		mutex_exit(&ill->ill_lock);
10476 	}
10477 
10478 	/*
10479 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10480 	 * or point-to-point interfaces with an unspecified destination. We do
10481 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10482 	 * have a subnet assigned, which is how in.ndpd currently manages its
10483 	 * onlink prefix list when no addresses are configured with those
10484 	 * prefixes.
10485 	 */
10486 	if (ipif->ipif_isv6 &&
10487 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10488 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10489 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10490 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10491 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10492 		return (EINVAL);
10493 	}
10494 
10495 	/*
10496 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10497 	 * from being brought up.
10498 	 */
10499 	if (!ipif->ipif_isv6 &&
10500 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10501 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10502 		return (EINVAL);
10503 	}
10504 
10505 	/*
10506 	 * If we are going to change one or more of the flags that are
10507 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10508 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10509 	 * IPIF_NOFAILOVER, we will take special action.  This is
10510 	 * done by bring the ipif down, changing the flags and bringing
10511 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10512 	 * back up will trigger the address to be moved.
10513 	 *
10514 	 * If we are going to change IFF_NOACCEPT, we need to bring
10515 	 * all the ipifs down then bring them up again.	 The act of
10516 	 * bringing all the ipifs back up will trigger the local
10517 	 * ires being recreated with "no_accept" set/cleared.
10518 	 *
10519 	 * Note that ILLF_NOACCEPT is always set separately from the
10520 	 * other flags.
10521 	 */
10522 	if ((turn_on|turn_off) &
10523 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10524 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10525 	    IPIF_NOFAILOVER)) {
10526 		/*
10527 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10528 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10529 		 * entries shared between multiple ipifs on the same subnet.
10530 		 */
10531 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10532 		    !(turn_off & IPIF_UP)) {
10533 			if (ipif->ipif_flags & IPIF_UP)
10534 				ill->ill_logical_down = 1;
10535 			turn_on &= ~IPIF_UP;
10536 		}
10537 		err = ipif_down(ipif, q, mp);
10538 		ip1dbg(("ipif_down returns %d err ", err));
10539 		if (err == EINPROGRESS)
10540 			return (err);
10541 		(void) ipif_down_tail(ipif);
10542 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10543 		/*
10544 		 * If we can quiesce the ill, then continue.  If not, then
10545 		 * ip_sioctl_flags_tail() will be called from
10546 		 * ipif_ill_refrele_tail().
10547 		 */
10548 		ill_down_ipifs(ill, B_TRUE);
10549 
10550 		mutex_enter(&connp->conn_lock);
10551 		mutex_enter(&ill->ill_lock);
10552 		if (!ill_is_quiescent(ill)) {
10553 			boolean_t success;
10554 
10555 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10556 			    q, mp, ILL_DOWN);
10557 			mutex_exit(&ill->ill_lock);
10558 			mutex_exit(&connp->conn_lock);
10559 			return (success ? EINPROGRESS : EINTR);
10560 		}
10561 		mutex_exit(&ill->ill_lock);
10562 		mutex_exit(&connp->conn_lock);
10563 	}
10564 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10565 }
10566 
10567 static int
10568 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10569 {
10570 	ill_t	*ill;
10571 	phyint_t *phyi;
10572 	uint64_t turn_on, turn_off;
10573 	boolean_t phyint_flags_modified = B_FALSE;
10574 	int	err = 0;
10575 	boolean_t set_linklocal = B_FALSE;
10576 
10577 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10578 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10579 
10580 	ASSERT(IAM_WRITER_IPIF(ipif));
10581 
10582 	ill = ipif->ipif_ill;
10583 	phyi = ill->ill_phyint;
10584 
10585 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10586 
10587 	/*
10588 	 * IFF_UP is handled separately.
10589 	 */
10590 	turn_on &= ~IFF_UP;
10591 	turn_off &= ~IFF_UP;
10592 
10593 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10594 		phyint_flags_modified = B_TRUE;
10595 
10596 	/*
10597 	 * Now we change the flags. Track current value of
10598 	 * other flags in their respective places.
10599 	 */
10600 	mutex_enter(&ill->ill_lock);
10601 	mutex_enter(&phyi->phyint_lock);
10602 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10603 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10604 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10605 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10606 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10607 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10608 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10609 		set_linklocal = B_TRUE;
10610 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10611 	}
10612 
10613 	mutex_exit(&ill->ill_lock);
10614 	mutex_exit(&phyi->phyint_lock);
10615 
10616 	if (set_linklocal)
10617 		(void) ipif_setlinklocal(ipif);
10618 
10619 	/*
10620 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10621 	 * the kernel: if any of them has been set by userland, the interface
10622 	 * cannot be used for data traffic.
10623 	 */
10624 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10625 		ASSERT(!IS_IPMP(ill));
10626 		/*
10627 		 * It's possible the ill is part of an "anonymous" IPMP group
10628 		 * rather than a real group.  In that case, there are no other
10629 		 * interfaces in the group and thus no need for us to call
10630 		 * ipmp_phyint_refresh_active().
10631 		 */
10632 		if (IS_UNDER_IPMP(ill))
10633 			ipmp_phyint_refresh_active(phyi);
10634 	}
10635 
10636 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10637 		/*
10638 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10639 		 * ipifs that were brought down.
10640 		 *
10641 		 * The routing sockets messages are sent as the result
10642 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10643 		 * as well.
10644 		 */
10645 		err = ill_up_ipifs(ill, q, mp);
10646 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10647 		/*
10648 		 * XXX ipif_up really does not know whether a phyint flags
10649 		 * was modified or not. So, it sends up information on
10650 		 * only one routing sockets message. As we don't bring up
10651 		 * the interface and also set PHYI_ flags simultaneously
10652 		 * it should be okay.
10653 		 */
10654 		err = ipif_up(ipif, q, mp);
10655 	} else {
10656 		/*
10657 		 * Make sure routing socket sees all changes to the flags.
10658 		 * ipif_up_done* handles this when we use ipif_up.
10659 		 */
10660 		if (phyint_flags_modified) {
10661 			if (phyi->phyint_illv4 != NULL) {
10662 				ip_rts_ifmsg(phyi->phyint_illv4->
10663 				    ill_ipif, RTSQ_DEFAULT);
10664 			}
10665 			if (phyi->phyint_illv6 != NULL) {
10666 				ip_rts_ifmsg(phyi->phyint_illv6->
10667 				    ill_ipif, RTSQ_DEFAULT);
10668 			}
10669 		} else {
10670 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10671 		}
10672 		/*
10673 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10674 		 * this in need_up case.
10675 		 */
10676 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10677 	}
10678 
10679 	/* The default multicast interface might have changed */
10680 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10681 	return (err);
10682 }
10683 
10684 /*
10685  * Restart the flags operation now that the refcounts have dropped to zero.
10686  */
10687 /* ARGSUSED */
10688 int
10689 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10690     ip_ioctl_cmd_t *ipip, void *if_req)
10691 {
10692 	uint64_t flags;
10693 	struct ifreq *ifr = if_req;
10694 	struct lifreq *lifr = if_req;
10695 	uint64_t turn_on, turn_off;
10696 
10697 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10698 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10699 
10700 	if (ipip->ipi_cmd_type == IF_CMD) {
10701 		/* cast to uint16_t prevents unwanted sign extension */
10702 		flags = (uint16_t)ifr->ifr_flags;
10703 	} else {
10704 		flags = lifr->lifr_flags;
10705 	}
10706 
10707 	/*
10708 	 * If this function call is a result of the ILLF_NOACCEPT flag
10709 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10710 	 */
10711 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10712 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10713 		(void) ipif_down_tail(ipif);
10714 
10715 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10716 }
10717 
10718 /*
10719  * Can operate on either a module or a driver queue.
10720  */
10721 /* ARGSUSED */
10722 int
10723 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10724     ip_ioctl_cmd_t *ipip, void *if_req)
10725 {
10726 	/*
10727 	 * Has the flags been set correctly till now ?
10728 	 */
10729 	ill_t *ill = ipif->ipif_ill;
10730 	phyint_t *phyi = ill->ill_phyint;
10731 
10732 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10733 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10734 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10735 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10736 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10737 
10738 	/*
10739 	 * Need a lock since some flags can be set even when there are
10740 	 * references to the ipif.
10741 	 */
10742 	mutex_enter(&ill->ill_lock);
10743 	if (ipip->ipi_cmd_type == IF_CMD) {
10744 		struct ifreq *ifr = (struct ifreq *)if_req;
10745 
10746 		/* Get interface flags (low 16 only). */
10747 		ifr->ifr_flags = ((ipif->ipif_flags |
10748 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10749 	} else {
10750 		struct lifreq *lifr = (struct lifreq *)if_req;
10751 
10752 		/* Get interface flags. */
10753 		lifr->lifr_flags = ipif->ipif_flags |
10754 		    ill->ill_flags | phyi->phyint_flags;
10755 	}
10756 	mutex_exit(&ill->ill_lock);
10757 	return (0);
10758 }
10759 
10760 /*
10761  * We allow the MTU to be set on an ILL, but not have it be different
10762  * for different IPIFs since we don't actually send packets on IPIFs.
10763  */
10764 /* ARGSUSED */
10765 int
10766 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10767     ip_ioctl_cmd_t *ipip, void *if_req)
10768 {
10769 	int mtu;
10770 	int ip_min_mtu;
10771 	struct ifreq	*ifr;
10772 	struct lifreq *lifr;
10773 	ill_t	*ill;
10774 
10775 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10776 	    ipif->ipif_id, (void *)ipif));
10777 	if (ipip->ipi_cmd_type == IF_CMD) {
10778 		ifr = (struct ifreq *)if_req;
10779 		mtu = ifr->ifr_metric;
10780 	} else {
10781 		lifr = (struct lifreq *)if_req;
10782 		mtu = lifr->lifr_mtu;
10783 	}
10784 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10785 	if (ipif->ipif_id != 0)
10786 		return (EINVAL);
10787 
10788 	ill = ipif->ipif_ill;
10789 	if (ipif->ipif_isv6)
10790 		ip_min_mtu = IPV6_MIN_MTU;
10791 	else
10792 		ip_min_mtu = IP_MIN_MTU;
10793 
10794 	mutex_enter(&ill->ill_lock);
10795 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10796 		mutex_exit(&ill->ill_lock);
10797 		return (EINVAL);
10798 	}
10799 	/* Avoid increasing ill_mc_mtu */
10800 	if (ill->ill_mc_mtu > mtu)
10801 		ill->ill_mc_mtu = mtu;
10802 
10803 	/*
10804 	 * The dce and fragmentation code can handle changes to ill_mtu
10805 	 * concurrent with sending/fragmenting packets.
10806 	 */
10807 	ill->ill_mtu = mtu;
10808 	ill->ill_flags |= ILLF_FIXEDMTU;
10809 	mutex_exit(&ill->ill_lock);
10810 
10811 	/*
10812 	 * Make sure all dce_generation checks find out
10813 	 * that ill_mtu/ill_mc_mtu has changed.
10814 	 */
10815 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10816 
10817 	/*
10818 	 * Refresh IPMP meta-interface MTU if necessary.
10819 	 */
10820 	if (IS_UNDER_IPMP(ill))
10821 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
10822 
10823 	/* Update the MTU in SCTP's list */
10824 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10825 	return (0);
10826 }
10827 
10828 /* Get interface MTU. */
10829 /* ARGSUSED */
10830 int
10831 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10832 	ip_ioctl_cmd_t *ipip, void *if_req)
10833 {
10834 	struct ifreq	*ifr;
10835 	struct lifreq	*lifr;
10836 
10837 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10838 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10839 
10840 	/*
10841 	 * We allow a get on any logical interface even though the set
10842 	 * can only be done on logical unit 0.
10843 	 */
10844 	if (ipip->ipi_cmd_type == IF_CMD) {
10845 		ifr = (struct ifreq *)if_req;
10846 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10847 	} else {
10848 		lifr = (struct lifreq *)if_req;
10849 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10850 	}
10851 	return (0);
10852 }
10853 
10854 /* Set interface broadcast address. */
10855 /* ARGSUSED2 */
10856 int
10857 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10858 	ip_ioctl_cmd_t *ipip, void *if_req)
10859 {
10860 	ipaddr_t addr;
10861 	ire_t	*ire;
10862 	ill_t		*ill = ipif->ipif_ill;
10863 	ip_stack_t	*ipst = ill->ill_ipst;
10864 
10865 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10866 	    ipif->ipif_id));
10867 
10868 	ASSERT(IAM_WRITER_IPIF(ipif));
10869 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10870 		return (EADDRNOTAVAIL);
10871 
10872 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10873 
10874 	if (sin->sin_family != AF_INET)
10875 		return (EAFNOSUPPORT);
10876 
10877 	addr = sin->sin_addr.s_addr;
10878 
10879 	if (ipif->ipif_flags & IPIF_UP) {
10880 		/*
10881 		 * If we are already up, make sure the new
10882 		 * broadcast address makes sense.  If it does,
10883 		 * there should be an IRE for it already.
10884 		 */
10885 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10886 		    ill, ipif->ipif_zoneid, NULL,
10887 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10888 		if (ire == NULL) {
10889 			return (EINVAL);
10890 		} else {
10891 			ire_refrele(ire);
10892 		}
10893 	}
10894 	/*
10895 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10896 	 * needs to already exist we never need to change the set of
10897 	 * IRE_BROADCASTs when we are UP.
10898 	 */
10899 	if (addr != ipif->ipif_brd_addr)
10900 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10901 
10902 	return (0);
10903 }
10904 
10905 /* Get interface broadcast address. */
10906 /* ARGSUSED */
10907 int
10908 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10909     ip_ioctl_cmd_t *ipip, void *if_req)
10910 {
10911 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10912 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10913 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10914 		return (EADDRNOTAVAIL);
10915 
10916 	/* IPIF_BROADCAST not possible with IPv6 */
10917 	ASSERT(!ipif->ipif_isv6);
10918 	*sin = sin_null;
10919 	sin->sin_family = AF_INET;
10920 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10921 	return (0);
10922 }
10923 
10924 /*
10925  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10926  */
10927 /* ARGSUSED */
10928 int
10929 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10930     ip_ioctl_cmd_t *ipip, void *if_req)
10931 {
10932 	int err = 0;
10933 	in6_addr_t v6mask;
10934 
10935 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10936 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10937 
10938 	ASSERT(IAM_WRITER_IPIF(ipif));
10939 
10940 	if (ipif->ipif_isv6) {
10941 		sin6_t *sin6;
10942 
10943 		if (sin->sin_family != AF_INET6)
10944 			return (EAFNOSUPPORT);
10945 
10946 		sin6 = (sin6_t *)sin;
10947 		v6mask = sin6->sin6_addr;
10948 	} else {
10949 		ipaddr_t mask;
10950 
10951 		if (sin->sin_family != AF_INET)
10952 			return (EAFNOSUPPORT);
10953 
10954 		mask = sin->sin_addr.s_addr;
10955 		if (!ip_contiguous_mask(ntohl(mask)))
10956 			return (ENOTSUP);
10957 		V4MASK_TO_V6(mask, v6mask);
10958 	}
10959 
10960 	/*
10961 	 * No big deal if the interface isn't already up, or the mask
10962 	 * isn't really changing, or this is pt-pt.
10963 	 */
10964 	if (!(ipif->ipif_flags & IPIF_UP) ||
10965 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10966 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10967 		ipif->ipif_v6net_mask = v6mask;
10968 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10969 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10970 			    ipif->ipif_v6net_mask,
10971 			    ipif->ipif_v6subnet);
10972 		}
10973 		return (0);
10974 	}
10975 	/*
10976 	 * Make sure we have valid net and subnet broadcast ire's
10977 	 * for the old netmask, if needed by other logical interfaces.
10978 	 */
10979 	err = ipif_logical_down(ipif, q, mp);
10980 	if (err == EINPROGRESS)
10981 		return (err);
10982 	(void) ipif_down_tail(ipif);
10983 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10984 	return (err);
10985 }
10986 
10987 static int
10988 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10989 {
10990 	in6_addr_t v6mask;
10991 	int err = 0;
10992 
10993 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10994 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10995 
10996 	if (ipif->ipif_isv6) {
10997 		sin6_t *sin6;
10998 
10999 		sin6 = (sin6_t *)sin;
11000 		v6mask = sin6->sin6_addr;
11001 	} else {
11002 		ipaddr_t mask;
11003 
11004 		mask = sin->sin_addr.s_addr;
11005 		V4MASK_TO_V6(mask, v6mask);
11006 	}
11007 
11008 	ipif->ipif_v6net_mask = v6mask;
11009 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11010 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
11011 		    ipif->ipif_v6subnet);
11012 	}
11013 	err = ipif_up(ipif, q, mp);
11014 
11015 	if (err == 0 || err == EINPROGRESS) {
11016 		/*
11017 		 * The interface must be DL_BOUND if this packet has to
11018 		 * go out on the wire. Since we only go through a logical
11019 		 * down and are bound with the driver during an internal
11020 		 * down/up that is satisfied.
11021 		 */
11022 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
11023 			/* Potentially broadcast an address mask reply. */
11024 			ipif_mask_reply(ipif);
11025 		}
11026 	}
11027 	return (err);
11028 }
11029 
11030 /* ARGSUSED */
11031 int
11032 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11033     ip_ioctl_cmd_t *ipip, void *if_req)
11034 {
11035 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
11036 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11037 	(void) ipif_down_tail(ipif);
11038 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
11039 }
11040 
11041 /* Get interface net mask. */
11042 /* ARGSUSED */
11043 int
11044 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11045     ip_ioctl_cmd_t *ipip, void *if_req)
11046 {
11047 	struct lifreq *lifr = (struct lifreq *)if_req;
11048 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
11049 
11050 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
11051 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11052 
11053 	/*
11054 	 * net mask can't change since we have a reference to the ipif.
11055 	 */
11056 	if (ipif->ipif_isv6) {
11057 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11058 		*sin6 = sin6_null;
11059 		sin6->sin6_family = AF_INET6;
11060 		sin6->sin6_addr = ipif->ipif_v6net_mask;
11061 		lifr->lifr_addrlen =
11062 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11063 	} else {
11064 		*sin = sin_null;
11065 		sin->sin_family = AF_INET;
11066 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
11067 		if (ipip->ipi_cmd_type == LIF_CMD) {
11068 			lifr->lifr_addrlen =
11069 			    ip_mask_to_plen(ipif->ipif_net_mask);
11070 		}
11071 	}
11072 	return (0);
11073 }
11074 
11075 /* ARGSUSED */
11076 int
11077 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11078     ip_ioctl_cmd_t *ipip, void *if_req)
11079 {
11080 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
11081 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11082 
11083 	/*
11084 	 * Since no applications should ever be setting metrics on underlying
11085 	 * interfaces, we explicitly fail to smoke 'em out.
11086 	 */
11087 	if (IS_UNDER_IPMP(ipif->ipif_ill))
11088 		return (EINVAL);
11089 
11090 	/*
11091 	 * Set interface metric.  We don't use this for
11092 	 * anything but we keep track of it in case it is
11093 	 * important to routing applications or such.
11094 	 */
11095 	if (ipip->ipi_cmd_type == IF_CMD) {
11096 		struct ifreq    *ifr;
11097 
11098 		ifr = (struct ifreq *)if_req;
11099 		ipif->ipif_ill->ill_metric = ifr->ifr_metric;
11100 	} else {
11101 		struct lifreq   *lifr;
11102 
11103 		lifr = (struct lifreq *)if_req;
11104 		ipif->ipif_ill->ill_metric = lifr->lifr_metric;
11105 	}
11106 	return (0);
11107 }
11108 
11109 /* ARGSUSED */
11110 int
11111 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11112     ip_ioctl_cmd_t *ipip, void *if_req)
11113 {
11114 	/* Get interface metric. */
11115 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
11116 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11117 
11118 	if (ipip->ipi_cmd_type == IF_CMD) {
11119 		struct ifreq    *ifr;
11120 
11121 		ifr = (struct ifreq *)if_req;
11122 		ifr->ifr_metric = ipif->ipif_ill->ill_metric;
11123 	} else {
11124 		struct lifreq   *lifr;
11125 
11126 		lifr = (struct lifreq *)if_req;
11127 		lifr->lifr_metric = ipif->ipif_ill->ill_metric;
11128 	}
11129 
11130 	return (0);
11131 }
11132 
11133 /* ARGSUSED */
11134 int
11135 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11136     ip_ioctl_cmd_t *ipip, void *if_req)
11137 {
11138 	int	arp_muxid;
11139 
11140 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
11141 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11142 	/*
11143 	 * Set the muxid returned from I_PLINK.
11144 	 */
11145 	if (ipip->ipi_cmd_type == IF_CMD) {
11146 		struct ifreq *ifr = (struct ifreq *)if_req;
11147 
11148 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
11149 		arp_muxid = ifr->ifr_arp_muxid;
11150 	} else {
11151 		struct lifreq *lifr = (struct lifreq *)if_req;
11152 
11153 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
11154 		arp_muxid = lifr->lifr_arp_muxid;
11155 	}
11156 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
11157 	return (0);
11158 }
11159 
11160 /* ARGSUSED */
11161 int
11162 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11163     ip_ioctl_cmd_t *ipip, void *if_req)
11164 {
11165 	int	arp_muxid = 0;
11166 
11167 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
11168 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11169 	/*
11170 	 * Get the muxid saved in ill for I_PUNLINK.
11171 	 */
11172 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
11173 	if (ipip->ipi_cmd_type == IF_CMD) {
11174 		struct ifreq *ifr = (struct ifreq *)if_req;
11175 
11176 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11177 		ifr->ifr_arp_muxid = arp_muxid;
11178 	} else {
11179 		struct lifreq *lifr = (struct lifreq *)if_req;
11180 
11181 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
11182 		lifr->lifr_arp_muxid = arp_muxid;
11183 	}
11184 	return (0);
11185 }
11186 
11187 /*
11188  * Set the subnet prefix. Does not modify the broadcast address.
11189  */
11190 /* ARGSUSED */
11191 int
11192 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11193     ip_ioctl_cmd_t *ipip, void *if_req)
11194 {
11195 	int err = 0;
11196 	in6_addr_t v6addr;
11197 	in6_addr_t v6mask;
11198 	boolean_t need_up = B_FALSE;
11199 	int addrlen;
11200 
11201 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
11202 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11203 
11204 	ASSERT(IAM_WRITER_IPIF(ipif));
11205 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
11206 
11207 	if (ipif->ipif_isv6) {
11208 		sin6_t *sin6;
11209 
11210 		if (sin->sin_family != AF_INET6)
11211 			return (EAFNOSUPPORT);
11212 
11213 		sin6 = (sin6_t *)sin;
11214 		v6addr = sin6->sin6_addr;
11215 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
11216 			return (EADDRNOTAVAIL);
11217 	} else {
11218 		ipaddr_t addr;
11219 
11220 		if (sin->sin_family != AF_INET)
11221 			return (EAFNOSUPPORT);
11222 
11223 		addr = sin->sin_addr.s_addr;
11224 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
11225 			return (EADDRNOTAVAIL);
11226 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11227 		/* Add 96 bits */
11228 		addrlen += IPV6_ABITS - IP_ABITS;
11229 	}
11230 
11231 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
11232 		return (EINVAL);
11233 
11234 	/* Check if bits in the address is set past the mask */
11235 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
11236 		return (EINVAL);
11237 
11238 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
11239 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
11240 		return (0);	/* No change */
11241 
11242 	if (ipif->ipif_flags & IPIF_UP) {
11243 		/*
11244 		 * If the interface is already marked up,
11245 		 * we call ipif_down which will take care
11246 		 * of ditching any IREs that have been set
11247 		 * up based on the old interface address.
11248 		 */
11249 		err = ipif_logical_down(ipif, q, mp);
11250 		if (err == EINPROGRESS)
11251 			return (err);
11252 		(void) ipif_down_tail(ipif);
11253 		need_up = B_TRUE;
11254 	}
11255 
11256 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
11257 	return (err);
11258 }
11259 
11260 static int
11261 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
11262     queue_t *q, mblk_t *mp, boolean_t need_up)
11263 {
11264 	ill_t	*ill = ipif->ipif_ill;
11265 	int	err = 0;
11266 
11267 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
11268 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11269 
11270 	/* Set the new address. */
11271 	mutex_enter(&ill->ill_lock);
11272 	ipif->ipif_v6net_mask = v6mask;
11273 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11274 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
11275 		    ipif->ipif_v6subnet);
11276 	}
11277 	mutex_exit(&ill->ill_lock);
11278 
11279 	if (need_up) {
11280 		/*
11281 		 * Now bring the interface back up.  If this
11282 		 * is the only IPIF for the ILL, ipif_up
11283 		 * will have to re-bind to the device, so
11284 		 * we may get back EINPROGRESS, in which
11285 		 * case, this IOCTL will get completed in
11286 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11287 		 */
11288 		err = ipif_up(ipif, q, mp);
11289 		if (err == EINPROGRESS)
11290 			return (err);
11291 	}
11292 	return (err);
11293 }
11294 
11295 /* ARGSUSED */
11296 int
11297 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11298     ip_ioctl_cmd_t *ipip, void *if_req)
11299 {
11300 	int	addrlen;
11301 	in6_addr_t v6addr;
11302 	in6_addr_t v6mask;
11303 	struct lifreq *lifr = (struct lifreq *)if_req;
11304 
11305 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
11306 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11307 	(void) ipif_down_tail(ipif);
11308 
11309 	addrlen = lifr->lifr_addrlen;
11310 	if (ipif->ipif_isv6) {
11311 		sin6_t *sin6;
11312 
11313 		sin6 = (sin6_t *)sin;
11314 		v6addr = sin6->sin6_addr;
11315 	} else {
11316 		ipaddr_t addr;
11317 
11318 		addr = sin->sin_addr.s_addr;
11319 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11320 		addrlen += IPV6_ABITS - IP_ABITS;
11321 	}
11322 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
11323 
11324 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
11325 }
11326 
11327 /* ARGSUSED */
11328 int
11329 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11330     ip_ioctl_cmd_t *ipip, void *if_req)
11331 {
11332 	struct lifreq *lifr = (struct lifreq *)if_req;
11333 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11334 
11335 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11336 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11337 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11338 
11339 	if (ipif->ipif_isv6) {
11340 		*sin6 = sin6_null;
11341 		sin6->sin6_family = AF_INET6;
11342 		sin6->sin6_addr = ipif->ipif_v6subnet;
11343 		lifr->lifr_addrlen =
11344 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11345 	} else {
11346 		*sin = sin_null;
11347 		sin->sin_family = AF_INET;
11348 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11349 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11350 	}
11351 	return (0);
11352 }
11353 
11354 /*
11355  * Set the IPv6 address token.
11356  */
11357 /* ARGSUSED */
11358 int
11359 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11360     ip_ioctl_cmd_t *ipi, void *if_req)
11361 {
11362 	ill_t *ill = ipif->ipif_ill;
11363 	int err;
11364 	in6_addr_t v6addr;
11365 	in6_addr_t v6mask;
11366 	boolean_t need_up = B_FALSE;
11367 	int i;
11368 	sin6_t *sin6 = (sin6_t *)sin;
11369 	struct lifreq *lifr = (struct lifreq *)if_req;
11370 	int addrlen;
11371 
11372 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11373 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11374 	ASSERT(IAM_WRITER_IPIF(ipif));
11375 
11376 	addrlen = lifr->lifr_addrlen;
11377 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11378 	if (ipif->ipif_id != 0)
11379 		return (EINVAL);
11380 
11381 	if (!ipif->ipif_isv6)
11382 		return (EINVAL);
11383 
11384 	if (addrlen > IPV6_ABITS)
11385 		return (EINVAL);
11386 
11387 	v6addr = sin6->sin6_addr;
11388 
11389 	/*
11390 	 * The length of the token is the length from the end.  To get
11391 	 * the proper mask for this, compute the mask of the bits not
11392 	 * in the token; ie. the prefix, and then xor to get the mask.
11393 	 */
11394 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11395 		return (EINVAL);
11396 	for (i = 0; i < 4; i++) {
11397 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11398 	}
11399 
11400 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11401 	    ill->ill_token_length == addrlen)
11402 		return (0);	/* No change */
11403 
11404 	if (ipif->ipif_flags & IPIF_UP) {
11405 		err = ipif_logical_down(ipif, q, mp);
11406 		if (err == EINPROGRESS)
11407 			return (err);
11408 		(void) ipif_down_tail(ipif);
11409 		need_up = B_TRUE;
11410 	}
11411 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11412 	return (err);
11413 }
11414 
11415 static int
11416 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11417     mblk_t *mp, boolean_t need_up)
11418 {
11419 	in6_addr_t v6addr;
11420 	in6_addr_t v6mask;
11421 	ill_t	*ill = ipif->ipif_ill;
11422 	int	i;
11423 	int	err = 0;
11424 
11425 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11426 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11427 	v6addr = sin6->sin6_addr;
11428 	/*
11429 	 * The length of the token is the length from the end.  To get
11430 	 * the proper mask for this, compute the mask of the bits not
11431 	 * in the token; ie. the prefix, and then xor to get the mask.
11432 	 */
11433 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11434 	for (i = 0; i < 4; i++)
11435 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11436 
11437 	mutex_enter(&ill->ill_lock);
11438 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11439 	ill->ill_token_length = addrlen;
11440 	ill->ill_manual_token = 1;
11441 
11442 	/* Reconfigure the link-local address based on this new token */
11443 	ipif_setlinklocal(ill->ill_ipif);
11444 
11445 	mutex_exit(&ill->ill_lock);
11446 
11447 	if (need_up) {
11448 		/*
11449 		 * Now bring the interface back up.  If this
11450 		 * is the only IPIF for the ILL, ipif_up
11451 		 * will have to re-bind to the device, so
11452 		 * we may get back EINPROGRESS, in which
11453 		 * case, this IOCTL will get completed in
11454 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11455 		 */
11456 		err = ipif_up(ipif, q, mp);
11457 		if (err == EINPROGRESS)
11458 			return (err);
11459 	}
11460 	return (err);
11461 }
11462 
11463 /* ARGSUSED */
11464 int
11465 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11466     ip_ioctl_cmd_t *ipi, void *if_req)
11467 {
11468 	ill_t *ill;
11469 	sin6_t *sin6 = (sin6_t *)sin;
11470 	struct lifreq *lifr = (struct lifreq *)if_req;
11471 
11472 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11473 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11474 	if (ipif->ipif_id != 0)
11475 		return (EINVAL);
11476 
11477 	ill = ipif->ipif_ill;
11478 	if (!ill->ill_isv6)
11479 		return (ENXIO);
11480 
11481 	*sin6 = sin6_null;
11482 	sin6->sin6_family = AF_INET6;
11483 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11484 	sin6->sin6_addr = ill->ill_token;
11485 	lifr->lifr_addrlen = ill->ill_token_length;
11486 	return (0);
11487 }
11488 
11489 /*
11490  * Set (hardware) link specific information that might override
11491  * what was acquired through the DL_INFO_ACK.
11492  */
11493 /* ARGSUSED */
11494 int
11495 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11496     ip_ioctl_cmd_t *ipi, void *if_req)
11497 {
11498 	ill_t		*ill = ipif->ipif_ill;
11499 	int		ip_min_mtu;
11500 	struct lifreq	*lifr = (struct lifreq *)if_req;
11501 	lif_ifinfo_req_t *lir;
11502 
11503 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11504 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11505 	lir = &lifr->lifr_ifinfo;
11506 	ASSERT(IAM_WRITER_IPIF(ipif));
11507 
11508 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11509 	if (ipif->ipif_id != 0)
11510 		return (EINVAL);
11511 
11512 	/* Set interface MTU. */
11513 	if (ipif->ipif_isv6)
11514 		ip_min_mtu = IPV6_MIN_MTU;
11515 	else
11516 		ip_min_mtu = IP_MIN_MTU;
11517 
11518 	/*
11519 	 * Verify values before we set anything. Allow zero to
11520 	 * mean unspecified.
11521 	 *
11522 	 * XXX We should be able to set the user-defined lir_mtu to some value
11523 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11524 	 * ill_max_frag value tells us the max MTU that can be handled by the
11525 	 * datalink, whereas the ill_current_frag is dynamically computed for
11526 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11527 	 * since there is currently no way of distinguishing between
11528 	 * administratively fixed link mtu values (e.g., those set via
11529 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11530 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11531 	 * upper-bound.
11532 	 */
11533 	if (lir->lir_maxmtu != 0 &&
11534 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11535 	    lir->lir_maxmtu < ip_min_mtu))
11536 		return (EINVAL);
11537 	if (lir->lir_reachtime != 0 &&
11538 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11539 		return (EINVAL);
11540 	if (lir->lir_reachretrans != 0 &&
11541 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11542 		return (EINVAL);
11543 
11544 	mutex_enter(&ill->ill_lock);
11545 	/*
11546 	 * The dce and fragmentation code can handle changes to ill_mtu
11547 	 * concurrent with sending/fragmenting packets.
11548 	 */
11549 	if (lir->lir_maxmtu != 0)
11550 		ill->ill_user_mtu = lir->lir_maxmtu;
11551 
11552 	if (lir->lir_reachtime != 0)
11553 		ill->ill_reachable_time = lir->lir_reachtime;
11554 
11555 	if (lir->lir_reachretrans != 0)
11556 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11557 
11558 	ill->ill_max_hops = lir->lir_maxhops;
11559 	ill->ill_max_buf = ND_MAX_Q;
11560 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11561 		/*
11562 		 * ill_mtu is the actual interface MTU, obtained as the min
11563 		 * of user-configured mtu and the value announced by the
11564 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11565 		 * we have already made the choice of requiring
11566 		 * ill_user_mtu < ill_current_frag by the time we get here,
11567 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11568 		 * here.
11569 		 */
11570 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11571 		ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu);
11572 	}
11573 	mutex_exit(&ill->ill_lock);
11574 
11575 	/*
11576 	 * Make sure all dce_generation checks find out
11577 	 * that ill_mtu/ill_mc_mtu has changed.
11578 	 */
11579 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11580 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11581 
11582 	/*
11583 	 * Refresh IPMP meta-interface MTU if necessary.
11584 	 */
11585 	if (IS_UNDER_IPMP(ill))
11586 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11587 
11588 	return (0);
11589 }
11590 
11591 /* ARGSUSED */
11592 int
11593 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11594     ip_ioctl_cmd_t *ipi, void *if_req)
11595 {
11596 	struct lif_ifinfo_req *lir;
11597 	ill_t *ill = ipif->ipif_ill;
11598 
11599 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11600 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11601 	if (ipif->ipif_id != 0)
11602 		return (EINVAL);
11603 
11604 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11605 	lir->lir_maxhops = ill->ill_max_hops;
11606 	lir->lir_reachtime = ill->ill_reachable_time;
11607 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11608 	lir->lir_maxmtu = ill->ill_mtu;
11609 
11610 	return (0);
11611 }
11612 
11613 /*
11614  * Return best guess as to the subnet mask for the specified address.
11615  * Based on the subnet masks for all the configured interfaces.
11616  *
11617  * We end up returning a zero mask in the case of default, multicast or
11618  * experimental.
11619  */
11620 static ipaddr_t
11621 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11622 {
11623 	ipaddr_t net_mask;
11624 	ill_t	*ill;
11625 	ipif_t	*ipif;
11626 	ill_walk_context_t ctx;
11627 	ipif_t	*fallback_ipif = NULL;
11628 
11629 	net_mask = ip_net_mask(addr);
11630 	if (net_mask == 0) {
11631 		*ipifp = NULL;
11632 		return (0);
11633 	}
11634 
11635 	/* Let's check to see if this is maybe a local subnet route. */
11636 	/* this function only applies to IPv4 interfaces */
11637 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11638 	ill = ILL_START_WALK_V4(&ctx, ipst);
11639 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11640 		mutex_enter(&ill->ill_lock);
11641 		for (ipif = ill->ill_ipif; ipif != NULL;
11642 		    ipif = ipif->ipif_next) {
11643 			if (IPIF_IS_CONDEMNED(ipif))
11644 				continue;
11645 			if (!(ipif->ipif_flags & IPIF_UP))
11646 				continue;
11647 			if ((ipif->ipif_subnet & net_mask) ==
11648 			    (addr & net_mask)) {
11649 				/*
11650 				 * Don't trust pt-pt interfaces if there are
11651 				 * other interfaces.
11652 				 */
11653 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11654 					if (fallback_ipif == NULL) {
11655 						ipif_refhold_locked(ipif);
11656 						fallback_ipif = ipif;
11657 					}
11658 					continue;
11659 				}
11660 
11661 				/*
11662 				 * Fine. Just assume the same net mask as the
11663 				 * directly attached subnet interface is using.
11664 				 */
11665 				ipif_refhold_locked(ipif);
11666 				mutex_exit(&ill->ill_lock);
11667 				rw_exit(&ipst->ips_ill_g_lock);
11668 				if (fallback_ipif != NULL)
11669 					ipif_refrele(fallback_ipif);
11670 				*ipifp = ipif;
11671 				return (ipif->ipif_net_mask);
11672 			}
11673 		}
11674 		mutex_exit(&ill->ill_lock);
11675 	}
11676 	rw_exit(&ipst->ips_ill_g_lock);
11677 
11678 	*ipifp = fallback_ipif;
11679 	return ((fallback_ipif != NULL) ?
11680 	    fallback_ipif->ipif_net_mask : net_mask);
11681 }
11682 
11683 /*
11684  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11685  */
11686 static void
11687 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11688 {
11689 	IOCP	iocp;
11690 	ipft_t	*ipft;
11691 	ipllc_t	*ipllc;
11692 	mblk_t	*mp1;
11693 	cred_t	*cr;
11694 	int	error = 0;
11695 	conn_t	*connp;
11696 
11697 	ip1dbg(("ip_wput_ioctl"));
11698 	iocp = (IOCP)mp->b_rptr;
11699 	mp1 = mp->b_cont;
11700 	if (mp1 == NULL) {
11701 		iocp->ioc_error = EINVAL;
11702 		mp->b_datap->db_type = M_IOCNAK;
11703 		iocp->ioc_count = 0;
11704 		qreply(q, mp);
11705 		return;
11706 	}
11707 
11708 	/*
11709 	 * These IOCTLs provide various control capabilities to
11710 	 * upstream agents such as ULPs and processes.	There
11711 	 * are currently two such IOCTLs implemented.  They
11712 	 * are used by TCP to provide update information for
11713 	 * existing IREs and to forcibly delete an IRE for a
11714 	 * host that is not responding, thereby forcing an
11715 	 * attempt at a new route.
11716 	 */
11717 	iocp->ioc_error = EINVAL;
11718 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11719 		goto done;
11720 
11721 	ipllc = (ipllc_t *)mp1->b_rptr;
11722 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11723 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11724 			break;
11725 	}
11726 	/*
11727 	 * prefer credential from mblk over ioctl;
11728 	 * see ip_sioctl_copyin_setup
11729 	 */
11730 	cr = msg_getcred(mp, NULL);
11731 	if (cr == NULL)
11732 		cr = iocp->ioc_cr;
11733 
11734 	/*
11735 	 * Refhold the conn in case the request gets queued up in some lookup
11736 	 */
11737 	ASSERT(CONN_Q(q));
11738 	connp = Q_TO_CONN(q);
11739 	CONN_INC_REF(connp);
11740 	CONN_INC_IOCTLREF(connp);
11741 	if (ipft->ipft_pfi &&
11742 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11743 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11744 		error = (*ipft->ipft_pfi)(q,
11745 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11746 	}
11747 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11748 		/*
11749 		 * CONN_OPER_PENDING_DONE happens in the function called
11750 		 * through ipft_pfi above.
11751 		 */
11752 		return;
11753 	}
11754 
11755 	CONN_DEC_IOCTLREF(connp);
11756 	CONN_OPER_PENDING_DONE(connp);
11757 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11758 		freemsg(mp);
11759 		return;
11760 	}
11761 	iocp->ioc_error = error;
11762 
11763 done:
11764 	mp->b_datap->db_type = M_IOCACK;
11765 	if (iocp->ioc_error)
11766 		iocp->ioc_count = 0;
11767 	qreply(q, mp);
11768 }
11769 
11770 /*
11771  * Assign a unique id for the ipif. This is used by sctp_addr.c
11772  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11773  */
11774 static void
11775 ipif_assign_seqid(ipif_t *ipif)
11776 {
11777 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11778 
11779 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11780 }
11781 
11782 /*
11783  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11784  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11785  * that the clone is complete -- including the seqid -- and the expectation is
11786  * that the caller will either free or overwrite `sipif' before it's unlocked.
11787  */
11788 static void
11789 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11790 {
11791 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11792 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11793 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11794 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11795 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11796 
11797 	dipif->ipif_flags = sipif->ipif_flags;
11798 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11799 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11800 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11801 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11802 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11803 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11804 
11805 	/*
11806 	 * As per the comment atop the function, we assume that these sipif
11807 	 * fields will be changed before sipif is unlocked.
11808 	 */
11809 	dipif->ipif_seqid = sipif->ipif_seqid;
11810 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11811 }
11812 
11813 /*
11814  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11815  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11816  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11817  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11818  * down (i.e., no DAD), of the same type, and unlocked.
11819  */
11820 static void
11821 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11822 {
11823 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11824 	ipxop_t *ipx = ipsq->ipsq_xop;
11825 
11826 	ASSERT(sipif != dipif);
11827 	ASSERT(sipif != virgipif);
11828 
11829 	/*
11830 	 * Grab all of the locks that protect the ipif in a defined order.
11831 	 */
11832 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11833 
11834 	ipif_clone(sipif, dipif);
11835 	if (virgipif != NULL) {
11836 		ipif_clone(virgipif, sipif);
11837 		mi_free(virgipif);
11838 	}
11839 
11840 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11841 
11842 	/*
11843 	 * Transfer ownership of the current xop, if necessary.
11844 	 */
11845 	if (ipx->ipx_current_ipif == sipif) {
11846 		ASSERT(ipx->ipx_pending_ipif == NULL);
11847 		mutex_enter(&ipx->ipx_lock);
11848 		ipx->ipx_current_ipif = dipif;
11849 		mutex_exit(&ipx->ipx_lock);
11850 	}
11851 
11852 	if (virgipif == NULL)
11853 		mi_free(sipif);
11854 }
11855 
11856 /*
11857  * checks if:
11858  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11859  *	- logical interface is within the allowed range
11860  */
11861 static int
11862 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11863 {
11864 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11865 		return (ENAMETOOLONG);
11866 
11867 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11868 		return (ERANGE);
11869 	return (0);
11870 }
11871 
11872 /*
11873  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11874  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11875  * be inserted into the first space available in the list. The value of
11876  * ipif_id will then be set to the appropriate value for its position.
11877  */
11878 static int
11879 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11880 {
11881 	ill_t *ill;
11882 	ipif_t *tipif;
11883 	ipif_t **tipifp;
11884 	int id, err;
11885 	ip_stack_t	*ipst;
11886 
11887 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11888 	    IAM_WRITER_IPIF(ipif));
11889 
11890 	ill = ipif->ipif_ill;
11891 	ASSERT(ill != NULL);
11892 	ipst = ill->ill_ipst;
11893 
11894 	/*
11895 	 * In the case of lo0:0 we already hold the ill_g_lock.
11896 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11897 	 * ipif_insert.
11898 	 */
11899 	if (acquire_g_lock)
11900 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11901 	mutex_enter(&ill->ill_lock);
11902 	id = ipif->ipif_id;
11903 	tipifp = &(ill->ill_ipif);
11904 	if (id == -1) {	/* need to find a real id */
11905 		id = 0;
11906 		while ((tipif = *tipifp) != NULL) {
11907 			ASSERT(tipif->ipif_id >= id);
11908 			if (tipif->ipif_id != id)
11909 				break; /* non-consecutive id */
11910 			id++;
11911 			tipifp = &(tipif->ipif_next);
11912 		}
11913 		if ((err = is_lifname_valid(ill, id)) != 0) {
11914 			mutex_exit(&ill->ill_lock);
11915 			if (acquire_g_lock)
11916 				rw_exit(&ipst->ips_ill_g_lock);
11917 			return (err);
11918 		}
11919 		ipif->ipif_id = id; /* assign new id */
11920 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11921 		/* we have a real id; insert ipif in the right place */
11922 		while ((tipif = *tipifp) != NULL) {
11923 			ASSERT(tipif->ipif_id != id);
11924 			if (tipif->ipif_id > id)
11925 				break; /* found correct location */
11926 			tipifp = &(tipif->ipif_next);
11927 		}
11928 	} else {
11929 		mutex_exit(&ill->ill_lock);
11930 		if (acquire_g_lock)
11931 			rw_exit(&ipst->ips_ill_g_lock);
11932 		return (err);
11933 	}
11934 
11935 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11936 
11937 	ipif->ipif_next = tipif;
11938 	*tipifp = ipif;
11939 	mutex_exit(&ill->ill_lock);
11940 	if (acquire_g_lock)
11941 		rw_exit(&ipst->ips_ill_g_lock);
11942 
11943 	return (0);
11944 }
11945 
11946 static void
11947 ipif_remove(ipif_t *ipif)
11948 {
11949 	ipif_t	**ipifp;
11950 	ill_t	*ill = ipif->ipif_ill;
11951 
11952 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11953 
11954 	mutex_enter(&ill->ill_lock);
11955 	ipifp = &ill->ill_ipif;
11956 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11957 		if (*ipifp == ipif) {
11958 			*ipifp = ipif->ipif_next;
11959 			break;
11960 		}
11961 	}
11962 	mutex_exit(&ill->ill_lock);
11963 }
11964 
11965 /*
11966  * Allocate and initialize a new interface control structure.  (Always
11967  * called as writer.)
11968  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11969  * is not part of the global linked list of ills. ipif_seqid is unique
11970  * in the system and to preserve the uniqueness, it is assigned only
11971  * when ill becomes part of the global list. At that point ill will
11972  * have a name. If it doesn't get assigned here, it will get assigned
11973  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11974  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11975  * the interface flags or any other information from the DL_INFO_ACK for
11976  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11977  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11978  * second DL_INFO_ACK comes in from the driver.
11979  */
11980 static ipif_t *
11981 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11982     boolean_t insert, int *errorp)
11983 {
11984 	int err;
11985 	ipif_t	*ipif;
11986 	ip_stack_t *ipst = ill->ill_ipst;
11987 
11988 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11989 	    ill->ill_name, id, (void *)ill));
11990 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11991 
11992 	if (errorp != NULL)
11993 		*errorp = 0;
11994 
11995 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11996 		if (errorp != NULL)
11997 			*errorp = ENOMEM;
11998 		return (NULL);
11999 	}
12000 	*ipif = ipif_zero;	/* start clean */
12001 
12002 	ipif->ipif_ill = ill;
12003 	ipif->ipif_id = id;	/* could be -1 */
12004 	/*
12005 	 * Inherit the zoneid from the ill; for the shared stack instance
12006 	 * this is always the global zone
12007 	 */
12008 	ipif->ipif_zoneid = ill->ill_zoneid;
12009 
12010 	ipif->ipif_refcnt = 0;
12011 
12012 	if (insert) {
12013 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
12014 			mi_free(ipif);
12015 			if (errorp != NULL)
12016 				*errorp = err;
12017 			return (NULL);
12018 		}
12019 		/* -1 id should have been replaced by real id */
12020 		id = ipif->ipif_id;
12021 		ASSERT(id >= 0);
12022 	}
12023 
12024 	if (ill->ill_name[0] != '\0')
12025 		ipif_assign_seqid(ipif);
12026 
12027 	/*
12028 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
12029 	 * (which must not exist yet because the zeroth ipif is created once
12030 	 * per ill).  However, do not not link it to the ipmp_grp_t until
12031 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
12032 	 */
12033 	if (id == 0 && IS_IPMP(ill)) {
12034 		if (ipmp_illgrp_create(ill) == NULL) {
12035 			if (insert) {
12036 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
12037 				ipif_remove(ipif);
12038 				rw_exit(&ipst->ips_ill_g_lock);
12039 			}
12040 			mi_free(ipif);
12041 			if (errorp != NULL)
12042 				*errorp = ENOMEM;
12043 			return (NULL);
12044 		}
12045 	}
12046 
12047 	/*
12048 	 * We grab ill_lock to protect the flag changes.  The ipif is still
12049 	 * not up and can't be looked up until the ioctl completes and the
12050 	 * IPIF_CHANGING flag is cleared.
12051 	 */
12052 	mutex_enter(&ill->ill_lock);
12053 
12054 	ipif->ipif_ire_type = ire_type;
12055 
12056 	if (ipif->ipif_isv6) {
12057 		ill->ill_flags |= ILLF_IPV6;
12058 	} else {
12059 		ipaddr_t inaddr_any = INADDR_ANY;
12060 
12061 		ill->ill_flags |= ILLF_IPV4;
12062 
12063 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
12064 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12065 		    &ipif->ipif_v6lcl_addr);
12066 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12067 		    &ipif->ipif_v6subnet);
12068 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12069 		    &ipif->ipif_v6net_mask);
12070 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12071 		    &ipif->ipif_v6brd_addr);
12072 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
12073 		    &ipif->ipif_v6pp_dst_addr);
12074 	}
12075 
12076 	/*
12077 	 * Don't set the interface flags etc. now, will do it in
12078 	 * ip_ll_subnet_defaults.
12079 	 */
12080 	if (!initialize)
12081 		goto out;
12082 
12083 	/*
12084 	 * NOTE: The IPMP meta-interface is special-cased because it starts
12085 	 * with no underlying interfaces (and thus an unknown broadcast
12086 	 * address length), but all interfaces that can be placed into an IPMP
12087 	 * group are required to be broadcast-capable.
12088 	 */
12089 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
12090 		/*
12091 		 * Later detect lack of DLPI driver multicast capability by
12092 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
12093 		 */
12094 		ill->ill_flags |= ILLF_MULTICAST;
12095 		if (!ipif->ipif_isv6)
12096 			ipif->ipif_flags |= IPIF_BROADCAST;
12097 	} else {
12098 		if (ill->ill_net_type != IRE_LOOPBACK) {
12099 			if (ipif->ipif_isv6)
12100 				/*
12101 				 * Note: xresolv interfaces will eventually need
12102 				 * NOARP set here as well, but that will require
12103 				 * those external resolvers to have some
12104 				 * knowledge of that flag and act appropriately.
12105 				 * Not to be changed at present.
12106 				 */
12107 				ill->ill_flags |= ILLF_NONUD;
12108 			else
12109 				ill->ill_flags |= ILLF_NOARP;
12110 		}
12111 		if (ill->ill_phys_addr_length == 0) {
12112 			if (IS_VNI(ill)) {
12113 				ipif->ipif_flags |= IPIF_NOXMIT;
12114 			} else {
12115 				/* pt-pt supports multicast. */
12116 				ill->ill_flags |= ILLF_MULTICAST;
12117 				if (ill->ill_net_type != IRE_LOOPBACK)
12118 					ipif->ipif_flags |= IPIF_POINTOPOINT;
12119 			}
12120 		}
12121 	}
12122 out:
12123 	mutex_exit(&ill->ill_lock);
12124 	return (ipif);
12125 }
12126 
12127 /*
12128  * Remove the neighbor cache entries associated with this logical
12129  * interface.
12130  */
12131 int
12132 ipif_arp_down(ipif_t *ipif)
12133 {
12134 	ill_t	*ill = ipif->ipif_ill;
12135 	int	err = 0;
12136 
12137 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12138 	ASSERT(IAM_WRITER_IPIF(ipif));
12139 
12140 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
12141 	    ill_t *, ill, ipif_t *, ipif);
12142 	ipif_nce_down(ipif);
12143 
12144 	/*
12145 	 * If this is the last ipif that is going down and there are no
12146 	 * duplicate addresses we may yet attempt to re-probe, then we need to
12147 	 * clean up ARP completely.
12148 	 */
12149 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
12150 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
12151 		/*
12152 		 * If this was the last ipif on an IPMP interface, purge any
12153 		 * static ARP entries associated with it.
12154 		 */
12155 		if (IS_IPMP(ill))
12156 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
12157 
12158 		/* UNBIND, DETACH */
12159 		err = arp_ll_down(ill);
12160 	}
12161 
12162 	return (err);
12163 }
12164 
12165 /*
12166  * Get the resolver set up for a new IP address.  (Always called as writer.)
12167  * Called both for IPv4 and IPv6 interfaces, though it only does some
12168  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
12169  *
12170  * The enumerated value res_act tunes the behavior:
12171  * 	* Res_act_initial: set up all the resolver structures for a new
12172  *	  IP address.
12173  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
12174  *	  ARP message in defense of the address.
12175  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
12176  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
12177  *
12178  * Returns zero on success, or an errno upon failure.
12179  */
12180 int
12181 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
12182 {
12183 	ill_t		*ill = ipif->ipif_ill;
12184 	int		err;
12185 	boolean_t	was_dup;
12186 
12187 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
12188 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
12189 	ASSERT(IAM_WRITER_IPIF(ipif));
12190 
12191 	was_dup = B_FALSE;
12192 	if (res_act == Res_act_initial) {
12193 		ipif->ipif_addr_ready = 0;
12194 		/*
12195 		 * We're bringing an interface up here.  There's no way that we
12196 		 * should need to shut down ARP now.
12197 		 */
12198 		mutex_enter(&ill->ill_lock);
12199 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
12200 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
12201 			ill->ill_ipif_dup_count--;
12202 			was_dup = B_TRUE;
12203 		}
12204 		mutex_exit(&ill->ill_lock);
12205 	}
12206 	if (ipif->ipif_recovery_id != 0)
12207 		(void) untimeout(ipif->ipif_recovery_id);
12208 	ipif->ipif_recovery_id = 0;
12209 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
12210 		ipif->ipif_addr_ready = 1;
12211 		return (0);
12212 	}
12213 	/* NDP will set the ipif_addr_ready flag when it's ready */
12214 	if (ill->ill_isv6)
12215 		return (0);
12216 
12217 	err = ipif_arp_up(ipif, res_act, was_dup);
12218 	return (err);
12219 }
12220 
12221 /*
12222  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
12223  * when a link has just gone back up.
12224  */
12225 static void
12226 ipif_nce_start_dad(ipif_t *ipif)
12227 {
12228 	ncec_t *ncec;
12229 	ill_t *ill = ipif->ipif_ill;
12230 	boolean_t isv6 = ill->ill_isv6;
12231 
12232 	if (isv6) {
12233 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
12234 		    &ipif->ipif_v6lcl_addr);
12235 	} else {
12236 		ipaddr_t v4addr;
12237 
12238 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
12239 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
12240 		    ipif->ipif_lcl_addr == INADDR_ANY) {
12241 			/*
12242 			 * If we can't contact ARP for some reason,
12243 			 * that's not really a problem.  Just send
12244 			 * out the routing socket notification that
12245 			 * DAD completion would have done, and continue.
12246 			 */
12247 			ipif_mask_reply(ipif);
12248 			ipif_up_notify(ipif);
12249 			ipif->ipif_addr_ready = 1;
12250 			return;
12251 		}
12252 
12253 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
12254 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
12255 	}
12256 
12257 	if (ncec == NULL) {
12258 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
12259 		    (void *)ipif));
12260 		return;
12261 	}
12262 	if (!nce_restart_dad(ncec)) {
12263 		/*
12264 		 * If we can't restart DAD for some reason, that's not really a
12265 		 * problem.  Just send out the routing socket notification that
12266 		 * DAD completion would have done, and continue.
12267 		 */
12268 		ipif_up_notify(ipif);
12269 		ipif->ipif_addr_ready = 1;
12270 	}
12271 	ncec_refrele(ncec);
12272 }
12273 
12274 /*
12275  * Restart duplicate address detection on all interfaces on the given ill.
12276  *
12277  * This is called when an interface transitions from down to up
12278  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
12279  *
12280  * Note that since the underlying physical link has transitioned, we must cause
12281  * at least one routing socket message to be sent here, either via DAD
12282  * completion or just by default on the first ipif.  (If we don't do this, then
12283  * in.mpathd will see long delays when doing link-based failure recovery.)
12284  */
12285 void
12286 ill_restart_dad(ill_t *ill, boolean_t went_up)
12287 {
12288 	ipif_t *ipif;
12289 
12290 	if (ill == NULL)
12291 		return;
12292 
12293 	/*
12294 	 * If layer two doesn't support duplicate address detection, then just
12295 	 * send the routing socket message now and be done with it.
12296 	 */
12297 	if (!ill->ill_isv6 && arp_no_defense) {
12298 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12299 		return;
12300 	}
12301 
12302 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12303 		if (went_up) {
12304 
12305 			if (ipif->ipif_flags & IPIF_UP) {
12306 				ipif_nce_start_dad(ipif);
12307 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
12308 				/*
12309 				 * kick off the bring-up process now.
12310 				 */
12311 				ipif_do_recovery(ipif);
12312 			} else {
12313 				/*
12314 				 * Unfortunately, the first ipif is "special"
12315 				 * and represents the underlying ill in the
12316 				 * routing socket messages.  Thus, when this
12317 				 * one ipif is down, we must still notify so
12318 				 * that the user knows the IFF_RUNNING status
12319 				 * change.  (If the first ipif is up, then
12320 				 * we'll handle eventual routing socket
12321 				 * notification via DAD completion.)
12322 				 */
12323 				if (ipif == ill->ill_ipif) {
12324 					ip_rts_ifmsg(ill->ill_ipif,
12325 					    RTSQ_DEFAULT);
12326 				}
12327 			}
12328 		} else {
12329 			/*
12330 			 * After link down, we'll need to send a new routing
12331 			 * message when the link comes back, so clear
12332 			 * ipif_addr_ready.
12333 			 */
12334 			ipif->ipif_addr_ready = 0;
12335 		}
12336 	}
12337 
12338 	/*
12339 	 * If we've torn down links, then notify the user right away.
12340 	 */
12341 	if (!went_up)
12342 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12343 }
12344 
12345 static void
12346 ipsq_delete(ipsq_t *ipsq)
12347 {
12348 	ipxop_t *ipx = ipsq->ipsq_xop;
12349 
12350 	ipsq->ipsq_ipst = NULL;
12351 	ASSERT(ipsq->ipsq_phyint == NULL);
12352 	ASSERT(ipsq->ipsq_xop != NULL);
12353 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12354 	ASSERT(ipx->ipx_pending_mp == NULL);
12355 	kmem_free(ipsq, sizeof (ipsq_t));
12356 }
12357 
12358 static int
12359 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12360 {
12361 	int err = 0;
12362 	ipif_t *ipif;
12363 
12364 	if (ill == NULL)
12365 		return (0);
12366 
12367 	ASSERT(IAM_WRITER_ILL(ill));
12368 	ill->ill_up_ipifs = B_TRUE;
12369 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12370 		if (ipif->ipif_was_up) {
12371 			if (!(ipif->ipif_flags & IPIF_UP))
12372 				err = ipif_up(ipif, q, mp);
12373 			ipif->ipif_was_up = B_FALSE;
12374 			if (err != 0) {
12375 				ASSERT(err == EINPROGRESS);
12376 				return (err);
12377 			}
12378 		}
12379 	}
12380 	ill->ill_up_ipifs = B_FALSE;
12381 	return (0);
12382 }
12383 
12384 /*
12385  * This function is called to bring up all the ipifs that were up before
12386  * bringing the ill down via ill_down_ipifs().
12387  */
12388 int
12389 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12390 {
12391 	int err;
12392 
12393 	ASSERT(IAM_WRITER_ILL(ill));
12394 
12395 	if (ill->ill_replumbing) {
12396 		ill->ill_replumbing = 0;
12397 		/*
12398 		 * Send down REPLUMB_DONE notification followed by the
12399 		 * BIND_REQ on the arp stream.
12400 		 */
12401 		if (!ill->ill_isv6)
12402 			arp_send_replumb_conf(ill);
12403 	}
12404 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12405 	if (err != 0)
12406 		return (err);
12407 
12408 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12409 }
12410 
12411 /*
12412  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12413  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12414  */
12415 static void
12416 ill_down_ipifs(ill_t *ill, boolean_t logical)
12417 {
12418 	ipif_t *ipif;
12419 
12420 	ASSERT(IAM_WRITER_ILL(ill));
12421 
12422 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12423 		/*
12424 		 * We go through the ipif_down logic even if the ipif
12425 		 * is already down, since routes can be added based
12426 		 * on down ipifs. Going through ipif_down once again
12427 		 * will delete any IREs created based on these routes.
12428 		 */
12429 		if (ipif->ipif_flags & IPIF_UP)
12430 			ipif->ipif_was_up = B_TRUE;
12431 
12432 		if (logical) {
12433 			(void) ipif_logical_down(ipif, NULL, NULL);
12434 			ipif_non_duplicate(ipif);
12435 			(void) ipif_down_tail(ipif);
12436 		} else {
12437 			(void) ipif_down(ipif, NULL, NULL);
12438 		}
12439 	}
12440 }
12441 
12442 /*
12443  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12444  * a look again at valid source addresses.
12445  * This should be called each time after the set of source addresses has been
12446  * changed.
12447  */
12448 void
12449 ip_update_source_selection(ip_stack_t *ipst)
12450 {
12451 	/* We skip past SRC_GENERATION_VERIFY */
12452 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12453 	    SRC_GENERATION_VERIFY)
12454 		atomic_add_32(&ipst->ips_src_generation, 1);
12455 }
12456 
12457 /*
12458  * Finish the group join started in ip_sioctl_groupname().
12459  */
12460 /* ARGSUSED */
12461 static void
12462 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12463 {
12464 	ill_t		*ill = q->q_ptr;
12465 	phyint_t	*phyi = ill->ill_phyint;
12466 	ipmp_grp_t	*grp = phyi->phyint_grp;
12467 	ip_stack_t	*ipst = ill->ill_ipst;
12468 
12469 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12470 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12471 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12472 
12473 	if (phyi->phyint_illv4 != NULL) {
12474 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12475 		VERIFY(grp->gr_pendv4-- > 0);
12476 		rw_exit(&ipst->ips_ipmp_lock);
12477 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12478 	}
12479 	if (phyi->phyint_illv6 != NULL) {
12480 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12481 		VERIFY(grp->gr_pendv6-- > 0);
12482 		rw_exit(&ipst->ips_ipmp_lock);
12483 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12484 	}
12485 	freemsg(mp);
12486 }
12487 
12488 /*
12489  * Process an SIOCSLIFGROUPNAME request.
12490  */
12491 /* ARGSUSED */
12492 int
12493 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12494     ip_ioctl_cmd_t *ipip, void *ifreq)
12495 {
12496 	struct lifreq	*lifr = ifreq;
12497 	ill_t		*ill = ipif->ipif_ill;
12498 	ip_stack_t	*ipst = ill->ill_ipst;
12499 	phyint_t	*phyi = ill->ill_phyint;
12500 	ipmp_grp_t	*grp = phyi->phyint_grp;
12501 	mblk_t		*ipsq_mp;
12502 	int		err = 0;
12503 
12504 	/*
12505 	 * Note that phyint_grp can only change here, where we're exclusive.
12506 	 */
12507 	ASSERT(IAM_WRITER_ILL(ill));
12508 
12509 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12510 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12511 		return (EINVAL);
12512 
12513 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12514 
12515 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12516 
12517 	/*
12518 	 * If the name hasn't changed, there's nothing to do.
12519 	 */
12520 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12521 		goto unlock;
12522 
12523 	/*
12524 	 * Handle requests to rename an IPMP meta-interface.
12525 	 *
12526 	 * Note that creation of the IPMP meta-interface is handled in
12527 	 * userland through the standard plumbing sequence.  As part of the
12528 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12529 	 * the name of the interface (see ipif_set_values_tail()).
12530 	 */
12531 	if (IS_IPMP(ill)) {
12532 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12533 		goto unlock;
12534 	}
12535 
12536 	/*
12537 	 * Handle requests to add or remove an IP interface from a group.
12538 	 */
12539 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12540 		/*
12541 		 * Moves are handled by first removing the interface from
12542 		 * its existing group, and then adding it to another group.
12543 		 * So, fail if it's already in a group.
12544 		 */
12545 		if (IS_UNDER_IPMP(ill)) {
12546 			err = EALREADY;
12547 			goto unlock;
12548 		}
12549 
12550 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12551 		if (grp == NULL) {
12552 			err = ENOENT;
12553 			goto unlock;
12554 		}
12555 
12556 		/*
12557 		 * Check if the phyint and its ills are suitable for
12558 		 * inclusion into the group.
12559 		 */
12560 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12561 			goto unlock;
12562 
12563 		/*
12564 		 * Checks pass; join the group, and enqueue the remaining
12565 		 * illgrp joins for when we've become part of the group xop
12566 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12567 		 * requires an mblk_t to scribble on, and since `mp' will be
12568 		 * freed as part of completing the ioctl, allocate another.
12569 		 */
12570 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12571 			err = ENOMEM;
12572 			goto unlock;
12573 		}
12574 
12575 		/*
12576 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12577 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12578 		 * before ip_join_illgrps() is called back.  See the comments
12579 		 * in ip_sioctl_plink_ipmp() for more.
12580 		 */
12581 		if (phyi->phyint_illv4 != NULL)
12582 			grp->gr_pendv4++;
12583 		if (phyi->phyint_illv6 != NULL)
12584 			grp->gr_pendv6++;
12585 
12586 		rw_exit(&ipst->ips_ipmp_lock);
12587 
12588 		ipmp_phyint_join_grp(phyi, grp);
12589 		ill_refhold(ill);
12590 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12591 		    SWITCH_OP, B_FALSE);
12592 		return (0);
12593 	} else {
12594 		/*
12595 		 * Request to remove the interface from a group.  If the
12596 		 * interface is not in a group, this trivially succeeds.
12597 		 */
12598 		rw_exit(&ipst->ips_ipmp_lock);
12599 		if (IS_UNDER_IPMP(ill))
12600 			ipmp_phyint_leave_grp(phyi);
12601 		return (0);
12602 	}
12603 unlock:
12604 	rw_exit(&ipst->ips_ipmp_lock);
12605 	return (err);
12606 }
12607 
12608 /*
12609  * Process an SIOCGLIFBINDING request.
12610  */
12611 /* ARGSUSED */
12612 int
12613 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12614     ip_ioctl_cmd_t *ipip, void *ifreq)
12615 {
12616 	ill_t		*ill;
12617 	struct lifreq	*lifr = ifreq;
12618 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12619 
12620 	if (!IS_IPMP(ipif->ipif_ill))
12621 		return (EINVAL);
12622 
12623 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12624 	if ((ill = ipif->ipif_bound_ill) == NULL)
12625 		lifr->lifr_binding[0] = '\0';
12626 	else
12627 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12628 	rw_exit(&ipst->ips_ipmp_lock);
12629 	return (0);
12630 }
12631 
12632 /*
12633  * Process an SIOCGLIFGROUPNAME request.
12634  */
12635 /* ARGSUSED */
12636 int
12637 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12638     ip_ioctl_cmd_t *ipip, void *ifreq)
12639 {
12640 	ipmp_grp_t	*grp;
12641 	struct lifreq	*lifr = ifreq;
12642 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12643 
12644 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12645 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12646 		lifr->lifr_groupname[0] = '\0';
12647 	else
12648 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12649 	rw_exit(&ipst->ips_ipmp_lock);
12650 	return (0);
12651 }
12652 
12653 /*
12654  * Process an SIOCGLIFGROUPINFO request.
12655  */
12656 /* ARGSUSED */
12657 int
12658 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12659     ip_ioctl_cmd_t *ipip, void *dummy)
12660 {
12661 	ipmp_grp_t	*grp;
12662 	lifgroupinfo_t	*lifgr;
12663 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12664 
12665 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12666 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12667 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12668 
12669 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12670 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12671 		rw_exit(&ipst->ips_ipmp_lock);
12672 		return (ENOENT);
12673 	}
12674 	ipmp_grp_info(grp, lifgr);
12675 	rw_exit(&ipst->ips_ipmp_lock);
12676 	return (0);
12677 }
12678 
12679 static void
12680 ill_dl_down(ill_t *ill)
12681 {
12682 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12683 
12684 	/*
12685 	 * The ill is down; unbind but stay attached since we're still
12686 	 * associated with a PPA. If we have negotiated DLPI capabilites
12687 	 * with the data link service provider (IDS_OK) then reset them.
12688 	 * The interval between unbinding and rebinding is potentially
12689 	 * unbounded hence we cannot assume things will be the same.
12690 	 * The DLPI capabilities will be probed again when the data link
12691 	 * is brought up.
12692 	 */
12693 	mblk_t	*mp = ill->ill_unbind_mp;
12694 
12695 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12696 
12697 	if (!ill->ill_replumbing) {
12698 		/* Free all ilms for this ill */
12699 		update_conn_ill(ill, ill->ill_ipst);
12700 	} else {
12701 		ill_leave_multicast(ill);
12702 	}
12703 
12704 	ill->ill_unbind_mp = NULL;
12705 	if (mp != NULL) {
12706 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12707 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12708 		    ill->ill_name));
12709 		mutex_enter(&ill->ill_lock);
12710 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12711 		mutex_exit(&ill->ill_lock);
12712 		/*
12713 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12714 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12715 		 * ill_capability_dld_disable disable rightaway. If this is not
12716 		 * an unplumb operation then the disable happens on receipt of
12717 		 * the capab ack via ip_rput_dlpi_writer ->
12718 		 * ill_capability_ack_thr. In both cases the order of
12719 		 * the operations seen by DLD is capability disable followed
12720 		 * by DL_UNBIND. Also the DLD capability disable needs a
12721 		 * cv_wait'able context.
12722 		 */
12723 		if (ill->ill_state_flags & ILL_CONDEMNED)
12724 			ill_capability_dld_disable(ill);
12725 		ill_capability_reset(ill, B_FALSE);
12726 		ill_dlpi_send(ill, mp);
12727 	}
12728 	mutex_enter(&ill->ill_lock);
12729 	ill->ill_dl_up = 0;
12730 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12731 	mutex_exit(&ill->ill_lock);
12732 }
12733 
12734 void
12735 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12736 {
12737 	union DL_primitives *dlp;
12738 	t_uscalar_t prim;
12739 	boolean_t waitack = B_FALSE;
12740 
12741 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12742 
12743 	dlp = (union DL_primitives *)mp->b_rptr;
12744 	prim = dlp->dl_primitive;
12745 
12746 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12747 	    dl_primstr(prim), prim, ill->ill_name));
12748 
12749 	switch (prim) {
12750 	case DL_PHYS_ADDR_REQ:
12751 	{
12752 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12753 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12754 		break;
12755 	}
12756 	case DL_BIND_REQ:
12757 		mutex_enter(&ill->ill_lock);
12758 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12759 		mutex_exit(&ill->ill_lock);
12760 		break;
12761 	}
12762 
12763 	/*
12764 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12765 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12766 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12767 	 */
12768 	mutex_enter(&ill->ill_lock);
12769 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12770 	    (prim == DL_UNBIND_REQ)) {
12771 		ill->ill_dlpi_pending = prim;
12772 		waitack = B_TRUE;
12773 	}
12774 
12775 	mutex_exit(&ill->ill_lock);
12776 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12777 	    char *, dl_primstr(prim), ill_t *, ill);
12778 	putnext(ill->ill_wq, mp);
12779 
12780 	/*
12781 	 * There is no ack for DL_NOTIFY_CONF messages
12782 	 */
12783 	if (waitack && prim == DL_NOTIFY_CONF)
12784 		ill_dlpi_done(ill, prim);
12785 }
12786 
12787 /*
12788  * Helper function for ill_dlpi_send().
12789  */
12790 /* ARGSUSED */
12791 static void
12792 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12793 {
12794 	ill_dlpi_send(q->q_ptr, mp);
12795 }
12796 
12797 /*
12798  * Send a DLPI control message to the driver but make sure there
12799  * is only one outstanding message. Uses ill_dlpi_pending to tell
12800  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12801  * when an ACK or a NAK is received to process the next queued message.
12802  */
12803 void
12804 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12805 {
12806 	mblk_t **mpp;
12807 
12808 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12809 
12810 	/*
12811 	 * To ensure that any DLPI requests for current exclusive operation
12812 	 * are always completely sent before any DLPI messages for other
12813 	 * operations, require writer access before enqueuing.
12814 	 */
12815 	if (!IAM_WRITER_ILL(ill)) {
12816 		ill_refhold(ill);
12817 		/* qwriter_ip() does the ill_refrele() */
12818 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12819 		    NEW_OP, B_TRUE);
12820 		return;
12821 	}
12822 
12823 	mutex_enter(&ill->ill_lock);
12824 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12825 		/* Must queue message. Tail insertion */
12826 		mpp = &ill->ill_dlpi_deferred;
12827 		while (*mpp != NULL)
12828 			mpp = &((*mpp)->b_next);
12829 
12830 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12831 		    "while %s pending\n", ill->ill_name,
12832 		    dl_primstr(ill->ill_dlpi_pending)));
12833 
12834 		*mpp = mp;
12835 		mutex_exit(&ill->ill_lock);
12836 		return;
12837 	}
12838 	mutex_exit(&ill->ill_lock);
12839 	ill_dlpi_dispatch(ill, mp);
12840 }
12841 
12842 void
12843 ill_capability_send(ill_t *ill, mblk_t *mp)
12844 {
12845 	ill->ill_capab_pending_cnt++;
12846 	ill_dlpi_send(ill, mp);
12847 }
12848 
12849 void
12850 ill_capability_done(ill_t *ill)
12851 {
12852 	ASSERT(ill->ill_capab_pending_cnt != 0);
12853 
12854 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12855 
12856 	ill->ill_capab_pending_cnt--;
12857 	if (ill->ill_capab_pending_cnt == 0 &&
12858 	    ill->ill_dlpi_capab_state == IDCS_OK)
12859 		ill_capability_reset_alloc(ill);
12860 }
12861 
12862 /*
12863  * Send all deferred DLPI messages without waiting for their ACKs.
12864  */
12865 void
12866 ill_dlpi_send_deferred(ill_t *ill)
12867 {
12868 	mblk_t *mp, *nextmp;
12869 
12870 	/*
12871 	 * Clear ill_dlpi_pending so that the message is not queued in
12872 	 * ill_dlpi_send().
12873 	 */
12874 	mutex_enter(&ill->ill_lock);
12875 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12876 	mp = ill->ill_dlpi_deferred;
12877 	ill->ill_dlpi_deferred = NULL;
12878 	mutex_exit(&ill->ill_lock);
12879 
12880 	for (; mp != NULL; mp = nextmp) {
12881 		nextmp = mp->b_next;
12882 		mp->b_next = NULL;
12883 		ill_dlpi_send(ill, mp);
12884 	}
12885 }
12886 
12887 /*
12888  * Clear all the deferred DLPI messages. Called on receiving an M_ERROR
12889  * or M_HANGUP
12890  */
12891 static void
12892 ill_dlpi_clear_deferred(ill_t *ill)
12893 {
12894 	mblk_t	*mp, *nextmp;
12895 
12896 	mutex_enter(&ill->ill_lock);
12897 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12898 	mp = ill->ill_dlpi_deferred;
12899 	ill->ill_dlpi_deferred = NULL;
12900 	mutex_exit(&ill->ill_lock);
12901 
12902 	for (; mp != NULL; mp = nextmp) {
12903 		nextmp = mp->b_next;
12904 		inet_freemsg(mp);
12905 	}
12906 }
12907 
12908 /*
12909  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12910  */
12911 boolean_t
12912 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12913 {
12914 	t_uscalar_t pending;
12915 
12916 	mutex_enter(&ill->ill_lock);
12917 	if (ill->ill_dlpi_pending == prim) {
12918 		mutex_exit(&ill->ill_lock);
12919 		return (B_TRUE);
12920 	}
12921 
12922 	/*
12923 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12924 	 * without waiting, so don't print any warnings in that case.
12925 	 */
12926 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12927 		mutex_exit(&ill->ill_lock);
12928 		return (B_FALSE);
12929 	}
12930 	pending = ill->ill_dlpi_pending;
12931 	mutex_exit(&ill->ill_lock);
12932 
12933 	if (pending == DL_PRIM_INVAL) {
12934 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12935 		    "received unsolicited ack for %s on %s\n",
12936 		    dl_primstr(prim), ill->ill_name);
12937 	} else {
12938 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12939 		    "received unexpected ack for %s on %s (expecting %s)\n",
12940 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12941 	}
12942 	return (B_FALSE);
12943 }
12944 
12945 /*
12946  * Complete the current DLPI operation associated with `prim' on `ill' and
12947  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12948  * operations and the ill's current exclusive IPSQ operation has finished
12949  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12950  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12951  * the comments above ipsq_current_finish() for details.
12952  */
12953 void
12954 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12955 {
12956 	mblk_t *mp;
12957 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12958 	ipxop_t *ipx = ipsq->ipsq_xop;
12959 
12960 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12961 	mutex_enter(&ill->ill_lock);
12962 
12963 	ASSERT(prim != DL_PRIM_INVAL);
12964 	ASSERT(ill->ill_dlpi_pending == prim);
12965 
12966 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12967 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12968 
12969 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12970 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12971 		if (ipx->ipx_current_done) {
12972 			mutex_enter(&ipx->ipx_lock);
12973 			ipx->ipx_current_ipif = NULL;
12974 			mutex_exit(&ipx->ipx_lock);
12975 		}
12976 		cv_signal(&ill->ill_cv);
12977 		mutex_exit(&ill->ill_lock);
12978 		return;
12979 	}
12980 
12981 	ill->ill_dlpi_deferred = mp->b_next;
12982 	mp->b_next = NULL;
12983 	mutex_exit(&ill->ill_lock);
12984 
12985 	ill_dlpi_dispatch(ill, mp);
12986 }
12987 
12988 /*
12989  * Queue a (multicast) DLPI control message to be sent to the driver by
12990  * later calling ill_dlpi_send_queued.
12991  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12992  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12993  * for the same group to race.
12994  * We send DLPI control messages in order using ill_lock.
12995  * For IPMP we should be called on the cast_ill.
12996  */
12997 void
12998 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12999 {
13000 	mblk_t **mpp;
13001 
13002 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
13003 
13004 	mutex_enter(&ill->ill_lock);
13005 	/* Must queue message. Tail insertion */
13006 	mpp = &ill->ill_dlpi_deferred;
13007 	while (*mpp != NULL)
13008 		mpp = &((*mpp)->b_next);
13009 
13010 	*mpp = mp;
13011 	mutex_exit(&ill->ill_lock);
13012 }
13013 
13014 /*
13015  * Send the messages that were queued. Make sure there is only
13016  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
13017  * when an ACK or a NAK is received to process the next queued message.
13018  * For IPMP we are called on the upper ill, but when send what is queued
13019  * on the cast_ill.
13020  */
13021 void
13022 ill_dlpi_send_queued(ill_t *ill)
13023 {
13024 	mblk_t	*mp;
13025 	union DL_primitives *dlp;
13026 	t_uscalar_t prim;
13027 	ill_t *release_ill = NULL;
13028 
13029 	if (IS_IPMP(ill)) {
13030 		/* On the upper IPMP ill. */
13031 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13032 		if (release_ill == NULL) {
13033 			/* Avoid ever sending anything down to the ipmpstub */
13034 			return;
13035 		}
13036 		ill = release_ill;
13037 	}
13038 	mutex_enter(&ill->ill_lock);
13039 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
13040 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
13041 			/* Can't send. Somebody else will send it */
13042 			mutex_exit(&ill->ill_lock);
13043 			goto done;
13044 		}
13045 		ill->ill_dlpi_deferred = mp->b_next;
13046 		mp->b_next = NULL;
13047 		if (!ill->ill_dl_up) {
13048 			/*
13049 			 * Nobody there. All multicast addresses will be
13050 			 * re-joined when we get the DL_BIND_ACK bringing the
13051 			 * interface up.
13052 			 */
13053 			freemsg(mp);
13054 			continue;
13055 		}
13056 		dlp = (union DL_primitives *)mp->b_rptr;
13057 		prim = dlp->dl_primitive;
13058 
13059 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
13060 		    (prim == DL_UNBIND_REQ)) {
13061 			ill->ill_dlpi_pending = prim;
13062 		}
13063 		mutex_exit(&ill->ill_lock);
13064 
13065 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
13066 		    char *, dl_primstr(prim), ill_t *, ill);
13067 		putnext(ill->ill_wq, mp);
13068 		mutex_enter(&ill->ill_lock);
13069 	}
13070 	mutex_exit(&ill->ill_lock);
13071 done:
13072 	if (release_ill != NULL)
13073 		ill_refrele(release_ill);
13074 }
13075 
13076 /*
13077  * Queue an IP (IGMP/MLD) message to be sent by IP from
13078  * ill_mcast_send_queued
13079  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
13080  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
13081  * group to race.
13082  * We send them in order using ill_lock.
13083  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
13084  */
13085 void
13086 ill_mcast_queue(ill_t *ill, mblk_t *mp)
13087 {
13088 	mblk_t **mpp;
13089 	ill_t *release_ill = NULL;
13090 
13091 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
13092 
13093 	if (IS_IPMP(ill)) {
13094 		/* On the upper IPMP ill. */
13095 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13096 		if (release_ill == NULL) {
13097 			/* Discard instead of queuing for the ipmp interface */
13098 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13099 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
13100 			    mp, ill);
13101 			freemsg(mp);
13102 			return;
13103 		}
13104 		ill = release_ill;
13105 	}
13106 
13107 	mutex_enter(&ill->ill_lock);
13108 	/* Must queue message. Tail insertion */
13109 	mpp = &ill->ill_mcast_deferred;
13110 	while (*mpp != NULL)
13111 		mpp = &((*mpp)->b_next);
13112 
13113 	*mpp = mp;
13114 	mutex_exit(&ill->ill_lock);
13115 	if (release_ill != NULL)
13116 		ill_refrele(release_ill);
13117 }
13118 
13119 /*
13120  * Send the IP packets that were queued by ill_mcast_queue.
13121  * These are IGMP/MLD packets.
13122  *
13123  * For IPMP we are called on the upper ill, but when send what is queued
13124  * on the cast_ill.
13125  *
13126  * Request loopback of the report if we are acting as a multicast
13127  * router, so that the process-level routing demon can hear it.
13128  * This will run multiple times for the same group if there are members
13129  * on the same group for multiple ipif's on the same ill. The
13130  * igmp_input/mld_input code will suppress this due to the loopback thus we
13131  * always loopback membership report.
13132  *
13133  * We also need to make sure that this does not get load balanced
13134  * by IPMP. We do this by passing an ill to ip_output_simple.
13135  */
13136 void
13137 ill_mcast_send_queued(ill_t *ill)
13138 {
13139 	mblk_t	*mp;
13140 	ip_xmit_attr_t ixas;
13141 	ill_t *release_ill = NULL;
13142 
13143 	if (IS_IPMP(ill)) {
13144 		/* On the upper IPMP ill. */
13145 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
13146 		if (release_ill == NULL) {
13147 			/*
13148 			 * We should have no messages on the ipmp interface
13149 			 * but no point in trying to send them.
13150 			 */
13151 			return;
13152 		}
13153 		ill = release_ill;
13154 	}
13155 	bzero(&ixas, sizeof (ixas));
13156 	ixas.ixa_zoneid = ALL_ZONES;
13157 	ixas.ixa_cred = kcred;
13158 	ixas.ixa_cpid = NOPID;
13159 	ixas.ixa_tsl = NULL;
13160 	/*
13161 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
13162 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
13163 	 * That is necessary to handle IGMP/MLD snooping switches.
13164 	 */
13165 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
13166 	ixas.ixa_ipst = ill->ill_ipst;
13167 
13168 	mutex_enter(&ill->ill_lock);
13169 	while ((mp = ill->ill_mcast_deferred) != NULL) {
13170 		ill->ill_mcast_deferred = mp->b_next;
13171 		mp->b_next = NULL;
13172 		if (!ill->ill_dl_up) {
13173 			/*
13174 			 * Nobody there. Just drop the ip packets.
13175 			 * IGMP/MLD will resend later, if this is a replumb.
13176 			 */
13177 			freemsg(mp);
13178 			continue;
13179 		}
13180 		mutex_enter(&ill->ill_phyint->phyint_lock);
13181 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
13182 			/*
13183 			 * When the ill is getting deactivated, we only want to
13184 			 * send the DLPI messages, so drop IGMP/MLD packets.
13185 			 * DLPI messages are handled by ill_dlpi_send_queued()
13186 			 */
13187 			mutex_exit(&ill->ill_phyint->phyint_lock);
13188 			freemsg(mp);
13189 			continue;
13190 		}
13191 		mutex_exit(&ill->ill_phyint->phyint_lock);
13192 		mutex_exit(&ill->ill_lock);
13193 
13194 		/* Check whether we are sending IPv4 or IPv6. */
13195 		if (ill->ill_isv6) {
13196 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
13197 
13198 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
13199 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
13200 		} else {
13201 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
13202 
13203 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
13204 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13205 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
13206 		}
13207 		ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE;
13208 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
13209 		(void) ip_output_simple(mp, &ixas);
13210 		ixa_cleanup(&ixas);
13211 
13212 		mutex_enter(&ill->ill_lock);
13213 	}
13214 	mutex_exit(&ill->ill_lock);
13215 
13216 done:
13217 	if (release_ill != NULL)
13218 		ill_refrele(release_ill);
13219 }
13220 
13221 /*
13222  * Take down a specific interface, but don't lose any information about it.
13223  * (Always called as writer.)
13224  * This function goes through the down sequence even if the interface is
13225  * already down. There are 2 reasons.
13226  * a. Currently we permit interface routes that depend on down interfaces
13227  *    to be added. This behaviour itself is questionable. However it appears
13228  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
13229  *    time. We go thru the cleanup in order to remove these routes.
13230  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
13231  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
13232  *    down, but we need to cleanup i.e. do ill_dl_down and
13233  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
13234  *
13235  * IP-MT notes:
13236  *
13237  * Model of reference to interfaces.
13238  *
13239  * The following members in ipif_t track references to the ipif.
13240  *	int     ipif_refcnt;    Active reference count
13241  *
13242  * The following members in ill_t track references to the ill.
13243  *	int             ill_refcnt;     active refcnt
13244  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
13245  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
13246  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
13247  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
13248  *
13249  * Reference to an ipif or ill can be obtained in any of the following ways.
13250  *
13251  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
13252  * Pointers to ipif / ill from other data structures viz ire and conn.
13253  * Implicit reference to the ipif / ill by holding a reference to the ire.
13254  *
13255  * The ipif/ill lookup functions return a reference held ipif / ill.
13256  * ipif_refcnt and ill_refcnt track the reference counts respectively.
13257  * This is a purely dynamic reference count associated with threads holding
13258  * references to the ipif / ill. Pointers from other structures do not
13259  * count towards this reference count.
13260  *
13261  * ill_ire_cnt is the number of ire's associated with the
13262  * ill. This is incremented whenever a new ire is created referencing the
13263  * ill. This is done atomically inside ire_add_v[46] where the ire is
13264  * actually added to the ire hash table. The count is decremented in
13265  * ire_inactive where the ire is destroyed.
13266  *
13267  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
13268  * This is incremented atomically in
13269  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
13270  * table. Similarly it is decremented in ncec_inactive() where the ncec
13271  * is destroyed.
13272  *
13273  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
13274  * incremented atomically in nce_add() where the nce is actually added to the
13275  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
13276  * is destroyed.
13277  *
13278  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
13279  * ilm_add() and decremented before the ilm is freed in ilm_delete().
13280  *
13281  * Flow of ioctls involving interface down/up
13282  *
13283  * The following is the sequence of an attempt to set some critical flags on an
13284  * up interface.
13285  * ip_sioctl_flags
13286  * ipif_down
13287  * wait for ipif to be quiescent
13288  * ipif_down_tail
13289  * ip_sioctl_flags_tail
13290  *
13291  * All set ioctls that involve down/up sequence would have a skeleton similar
13292  * to the above. All the *tail functions are called after the refcounts have
13293  * dropped to the appropriate values.
13294  *
13295  * SIOC ioctls during the IPIF_CHANGING interval.
13296  *
13297  * Threads handling SIOC set ioctls serialize on the squeue, but this
13298  * is not done for SIOC get ioctls. Since a set ioctl can cause several
13299  * steps of internal changes to the state, some of which are visible in
13300  * ipif_flags (such as IFF_UP being cleared and later set), and we want
13301  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
13302  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
13303  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
13304  * the current exclusive operation completes. The IPIF_CHANGING check
13305  * and enqueue is atomic using the ill_lock and ipsq_lock. The
13306  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
13307  * change while the ill_lock is held. Before dropping the ill_lock we acquire
13308  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
13309  * until we release the ipsq_lock, even though the ill/ipif state flags
13310  * can change after we drop the ill_lock.
13311  */
13312 int
13313 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13314 {
13315 	ill_t		*ill = ipif->ipif_ill;
13316 	conn_t		*connp;
13317 	boolean_t	success;
13318 	boolean_t	ipif_was_up = B_FALSE;
13319 	ip_stack_t	*ipst = ill->ill_ipst;
13320 
13321 	ASSERT(IAM_WRITER_IPIF(ipif));
13322 
13323 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13324 
13325 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
13326 	    ill_t *, ill, ipif_t *, ipif);
13327 
13328 	if (ipif->ipif_flags & IPIF_UP) {
13329 		mutex_enter(&ill->ill_lock);
13330 		ipif->ipif_flags &= ~IPIF_UP;
13331 		ASSERT(ill->ill_ipif_up_count > 0);
13332 		--ill->ill_ipif_up_count;
13333 		mutex_exit(&ill->ill_lock);
13334 		ipif_was_up = B_TRUE;
13335 		/* Update status in SCTP's list */
13336 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
13337 		ill_nic_event_dispatch(ipif->ipif_ill,
13338 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
13339 	}
13340 
13341 	/*
13342 	 * Removal of the last ipif from an ill may result in a DL_UNBIND
13343 	 * being sent to the driver, and we must not send any data packets to
13344 	 * the driver after the DL_UNBIND_REQ. To ensure this, all the
13345 	 * ire and nce entries used in the data path will be cleaned
13346 	 * up, and we also set  the ILL_DOWN_IN_PROGRESS bit to make
13347 	 * sure on new entries will be added until the ill is bound
13348 	 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon
13349 	 * receipt of a DL_BIND_ACK.
13350 	 */
13351 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13352 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13353 	    ill->ill_dl_up) {
13354 		ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
13355 	}
13356 
13357 	/*
13358 	 * Blow away memberships we established in ipif_multicast_up().
13359 	 */
13360 	ipif_multicast_down(ipif);
13361 
13362 	/*
13363 	 * Remove from the mapping for __sin6_src_id. We insert only
13364 	 * when the address is not INADDR_ANY. As IPv4 addresses are
13365 	 * stored as mapped addresses, we need to check for mapped
13366 	 * INADDR_ANY also.
13367 	 */
13368 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
13369 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13370 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13371 		int err;
13372 
13373 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13374 		    ipif->ipif_zoneid, ipst);
13375 		if (err != 0) {
13376 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13377 		}
13378 	}
13379 
13380 	if (ipif_was_up) {
13381 		/* only delete if we'd added ire's before */
13382 		if (ipif->ipif_isv6)
13383 			ipif_delete_ires_v6(ipif);
13384 		else
13385 			ipif_delete_ires_v4(ipif);
13386 	}
13387 
13388 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13389 		/*
13390 		 * Since the interface is now down, it may have just become
13391 		 * inactive.  Note that this needs to be done even for a
13392 		 * lll_logical_down(), or ARP entries will not get correctly
13393 		 * restored when the interface comes back up.
13394 		 */
13395 		if (IS_UNDER_IPMP(ill))
13396 			ipmp_ill_refresh_active(ill);
13397 	}
13398 
13399 	/*
13400 	 * neighbor-discovery or arp entries for this interface. The ipif
13401 	 * has to be quiesced, so we walk all the nce's and delete those
13402 	 * that point at the ipif->ipif_ill. At the same time, we also
13403 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13404 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13405 	 * that for ipif_down_tail()
13406 	 */
13407 	ipif_nce_down(ipif);
13408 
13409 	/*
13410 	 * If this is the last ipif on the ill, we also need to remove
13411 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13412 	 * never succeed.
13413 	 */
13414 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13415 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13416 
13417 	/*
13418 	 * Walk all CONNs that can have a reference on an ire for this
13419 	 * ipif (we actually walk all that now have stale references).
13420 	 */
13421 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13422 
13423 	/*
13424 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13425 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13426 	 * and ill_delete -> ipif_free -> ipif_down
13427 	 */
13428 	if (mp == NULL) {
13429 		ASSERT(q == NULL);
13430 		return (0);
13431 	}
13432 
13433 	if (CONN_Q(q)) {
13434 		connp = Q_TO_CONN(q);
13435 		mutex_enter(&connp->conn_lock);
13436 	} else {
13437 		connp = NULL;
13438 	}
13439 	mutex_enter(&ill->ill_lock);
13440 	/*
13441 	 * Are there any ire's pointing to this ipif that are still active ?
13442 	 * If this is the last ipif going down, are there any ire's pointing
13443 	 * to this ill that are still active ?
13444 	 */
13445 	if (ipif_is_quiescent(ipif)) {
13446 		mutex_exit(&ill->ill_lock);
13447 		if (connp != NULL)
13448 			mutex_exit(&connp->conn_lock);
13449 		return (0);
13450 	}
13451 
13452 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13453 	    ill->ill_name, (void *)ill));
13454 	/*
13455 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13456 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13457 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13458 	 */
13459 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13460 	if (!success) {
13461 		/* The conn is closing. So just return */
13462 		ASSERT(connp != NULL);
13463 		mutex_exit(&ill->ill_lock);
13464 		mutex_exit(&connp->conn_lock);
13465 		return (EINTR);
13466 	}
13467 
13468 	mutex_exit(&ill->ill_lock);
13469 	if (connp != NULL)
13470 		mutex_exit(&connp->conn_lock);
13471 	return (EINPROGRESS);
13472 }
13473 
13474 int
13475 ipif_down_tail(ipif_t *ipif)
13476 {
13477 	ill_t	*ill = ipif->ipif_ill;
13478 	int	err = 0;
13479 
13480 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13481 	    ill_t *, ill, ipif_t *, ipif);
13482 
13483 	/*
13484 	 * Skip any loopback interface (null wq).
13485 	 * If this is the last logical interface on the ill
13486 	 * have ill_dl_down tell the driver we are gone (unbind)
13487 	 * Note that lun 0 can ipif_down even though
13488 	 * there are other logical units that are up.
13489 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13490 	 */
13491 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13492 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13493 	    ill->ill_dl_up) {
13494 		ill_dl_down(ill);
13495 	}
13496 	if (!ipif->ipif_isv6)
13497 		err = ipif_arp_down(ipif);
13498 
13499 	ill->ill_logical_down = 0;
13500 
13501 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13502 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13503 	return (err);
13504 }
13505 
13506 /*
13507  * Bring interface logically down without bringing the physical interface
13508  * down e.g. when the netmask is changed. This avoids long lasting link
13509  * negotiations between an ethernet interface and a certain switches.
13510  */
13511 static int
13512 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13513 {
13514 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13515 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13516 
13517 	/*
13518 	 * The ill_logical_down flag is a transient flag. It is set here
13519 	 * and is cleared once the down has completed in ipif_down_tail.
13520 	 * This flag does not indicate whether the ill stream is in the
13521 	 * DL_BOUND state with the driver. Instead this flag is used by
13522 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13523 	 * the driver. The state of the ill stream i.e. whether it is
13524 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13525 	 */
13526 	ipif->ipif_ill->ill_logical_down = 1;
13527 	return (ipif_down(ipif, q, mp));
13528 }
13529 
13530 /*
13531  * Initiate deallocate of an IPIF. Always called as writer. Called by
13532  * ill_delete or ip_sioctl_removeif.
13533  */
13534 static void
13535 ipif_free(ipif_t *ipif)
13536 {
13537 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13538 
13539 	ASSERT(IAM_WRITER_IPIF(ipif));
13540 
13541 	if (ipif->ipif_recovery_id != 0)
13542 		(void) untimeout(ipif->ipif_recovery_id);
13543 	ipif->ipif_recovery_id = 0;
13544 
13545 	/*
13546 	 * Take down the interface. We can be called either from ill_delete
13547 	 * or from ip_sioctl_removeif.
13548 	 */
13549 	(void) ipif_down(ipif, NULL, NULL);
13550 
13551 	/*
13552 	 * Now that the interface is down, there's no chance it can still
13553 	 * become a duplicate.  Cancel any timer that may have been set while
13554 	 * tearing down.
13555 	 */
13556 	if (ipif->ipif_recovery_id != 0)
13557 		(void) untimeout(ipif->ipif_recovery_id);
13558 	ipif->ipif_recovery_id = 0;
13559 
13560 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13561 	/* Remove pointers to this ill in the multicast routing tables */
13562 	reset_mrt_vif_ipif(ipif);
13563 	/* If necessary, clear the cached source ipif rotor. */
13564 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13565 		ipif->ipif_ill->ill_src_ipif = NULL;
13566 	rw_exit(&ipst->ips_ill_g_lock);
13567 }
13568 
13569 static void
13570 ipif_free_tail(ipif_t *ipif)
13571 {
13572 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13573 
13574 	/*
13575 	 * Need to hold both ill_g_lock and ill_lock while
13576 	 * inserting or removing an ipif from the linked list
13577 	 * of ipifs hanging off the ill.
13578 	 */
13579 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13580 
13581 #ifdef DEBUG
13582 	ipif_trace_cleanup(ipif);
13583 #endif
13584 
13585 	/* Ask SCTP to take it out of it list */
13586 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13587 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13588 
13589 	/* Get it out of the ILL interface list. */
13590 	ipif_remove(ipif);
13591 	rw_exit(&ipst->ips_ill_g_lock);
13592 
13593 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13594 	ASSERT(ipif->ipif_recovery_id == 0);
13595 	ASSERT(ipif->ipif_ire_local == NULL);
13596 	ASSERT(ipif->ipif_ire_if == NULL);
13597 
13598 	/* Free the memory. */
13599 	mi_free(ipif);
13600 }
13601 
13602 /*
13603  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13604  * is zero.
13605  */
13606 void
13607 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13608 {
13609 	char	lbuf[LIFNAMSIZ];
13610 	char	*name;
13611 	size_t	name_len;
13612 
13613 	buf[0] = '\0';
13614 	name = ipif->ipif_ill->ill_name;
13615 	name_len = ipif->ipif_ill->ill_name_length;
13616 	if (ipif->ipif_id != 0) {
13617 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13618 		    ipif->ipif_id);
13619 		name = lbuf;
13620 		name_len = mi_strlen(name) + 1;
13621 	}
13622 	len -= 1;
13623 	buf[len] = '\0';
13624 	len = MIN(len, name_len);
13625 	bcopy(name, buf, len);
13626 }
13627 
13628 /*
13629  * Sets `buf' to an ill name.
13630  */
13631 void
13632 ill_get_name(const ill_t *ill, char *buf, int len)
13633 {
13634 	char	*name;
13635 	size_t	name_len;
13636 
13637 	name = ill->ill_name;
13638 	name_len = ill->ill_name_length;
13639 	len -= 1;
13640 	buf[len] = '\0';
13641 	len = MIN(len, name_len);
13642 	bcopy(name, buf, len);
13643 }
13644 
13645 /*
13646  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13647  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13648  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13649  * (May be called as writer.)
13650  */
13651 static ipif_t *
13652 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13653     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13654 {
13655 	char	*cp;
13656 	char	*endp;
13657 	long	id;
13658 	ill_t	*ill;
13659 	ipif_t	*ipif;
13660 	uint_t	ire_type;
13661 	boolean_t did_alloc = B_FALSE;
13662 	char	last;
13663 
13664 	/*
13665 	 * If the caller wants to us to create the ipif, make sure we have a
13666 	 * valid zoneid
13667 	 */
13668 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13669 
13670 	if (namelen == 0) {
13671 		return (NULL);
13672 	}
13673 
13674 	*exists = B_FALSE;
13675 	/* Look for a colon in the name. */
13676 	endp = &name[namelen];
13677 	for (cp = endp; --cp > name; ) {
13678 		if (*cp == IPIF_SEPARATOR_CHAR)
13679 			break;
13680 	}
13681 
13682 	if (*cp == IPIF_SEPARATOR_CHAR) {
13683 		/*
13684 		 * Reject any non-decimal aliases for logical
13685 		 * interfaces. Aliases with leading zeroes
13686 		 * are also rejected as they introduce ambiguity
13687 		 * in the naming of the interfaces.
13688 		 * In order to confirm with existing semantics,
13689 		 * and to not break any programs/script relying
13690 		 * on that behaviour, if<0>:0 is considered to be
13691 		 * a valid interface.
13692 		 *
13693 		 * If alias has two or more digits and the first
13694 		 * is zero, fail.
13695 		 */
13696 		if (&cp[2] < endp && cp[1] == '0') {
13697 			return (NULL);
13698 		}
13699 	}
13700 
13701 	if (cp <= name) {
13702 		cp = endp;
13703 	}
13704 	last = *cp;
13705 	*cp = '\0';
13706 
13707 	/*
13708 	 * Look up the ILL, based on the portion of the name
13709 	 * before the slash. ill_lookup_on_name returns a held ill.
13710 	 * Temporary to check whether ill exists already. If so
13711 	 * ill_lookup_on_name will clear it.
13712 	 */
13713 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13714 	    &did_alloc, ipst);
13715 	*cp = last;
13716 	if (ill == NULL)
13717 		return (NULL);
13718 
13719 	/* Establish the unit number in the name. */
13720 	id = 0;
13721 	if (cp < endp && *endp == '\0') {
13722 		/* If there was a colon, the unit number follows. */
13723 		cp++;
13724 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13725 			ill_refrele(ill);
13726 			return (NULL);
13727 		}
13728 	}
13729 
13730 	mutex_enter(&ill->ill_lock);
13731 	/* Now see if there is an IPIF with this unit number. */
13732 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13733 		if (ipif->ipif_id == id) {
13734 			if (zoneid != ALL_ZONES &&
13735 			    zoneid != ipif->ipif_zoneid &&
13736 			    ipif->ipif_zoneid != ALL_ZONES) {
13737 				mutex_exit(&ill->ill_lock);
13738 				ill_refrele(ill);
13739 				return (NULL);
13740 			}
13741 			if (IPIF_CAN_LOOKUP(ipif)) {
13742 				ipif_refhold_locked(ipif);
13743 				mutex_exit(&ill->ill_lock);
13744 				if (!did_alloc)
13745 					*exists = B_TRUE;
13746 				/*
13747 				 * Drop locks before calling ill_refrele
13748 				 * since it can potentially call into
13749 				 * ipif_ill_refrele_tail which can end up
13750 				 * in trying to acquire any lock.
13751 				 */
13752 				ill_refrele(ill);
13753 				return (ipif);
13754 			}
13755 		}
13756 	}
13757 
13758 	if (!do_alloc) {
13759 		mutex_exit(&ill->ill_lock);
13760 		ill_refrele(ill);
13761 		return (NULL);
13762 	}
13763 
13764 	/*
13765 	 * If none found, atomically allocate and return a new one.
13766 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13767 	 * to support "receive only" use of lo0:1 etc. as is still done
13768 	 * below as an initial guess.
13769 	 * However, this is now likely to be overriden later in ipif_up_done()
13770 	 * when we know for sure what address has been configured on the
13771 	 * interface, since we might have more than one loopback interface
13772 	 * with a loopback address, e.g. in the case of zones, and all the
13773 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13774 	 */
13775 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13776 		ire_type = IRE_LOOPBACK;
13777 	else
13778 		ire_type = IRE_LOCAL;
13779 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13780 	if (ipif != NULL)
13781 		ipif_refhold_locked(ipif);
13782 	mutex_exit(&ill->ill_lock);
13783 	ill_refrele(ill);
13784 	return (ipif);
13785 }
13786 
13787 /*
13788  * Variant of the above that queues the request on the ipsq when
13789  * IPIF_CHANGING is set.
13790  */
13791 static ipif_t *
13792 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6,
13793     zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
13794     ip_stack_t *ipst)
13795 {
13796 	char	*cp;
13797 	char	*endp;
13798 	long	id;
13799 	ill_t	*ill;
13800 	ipif_t	*ipif;
13801 	boolean_t did_alloc = B_FALSE;
13802 	ipsq_t	*ipsq;
13803 
13804 	if (error != NULL)
13805 		*error = 0;
13806 
13807 	if (namelen == 0) {
13808 		if (error != NULL)
13809 			*error = ENXIO;
13810 		return (NULL);
13811 	}
13812 
13813 	/* Look for a colon in the name. */
13814 	endp = &name[namelen];
13815 	for (cp = endp; --cp > name; ) {
13816 		if (*cp == IPIF_SEPARATOR_CHAR)
13817 			break;
13818 	}
13819 
13820 	if (*cp == IPIF_SEPARATOR_CHAR) {
13821 		/*
13822 		 * Reject any non-decimal aliases for logical
13823 		 * interfaces. Aliases with leading zeroes
13824 		 * are also rejected as they introduce ambiguity
13825 		 * in the naming of the interfaces.
13826 		 * In order to confirm with existing semantics,
13827 		 * and to not break any programs/script relying
13828 		 * on that behaviour, if<0>:0 is considered to be
13829 		 * a valid interface.
13830 		 *
13831 		 * If alias has two or more digits and the first
13832 		 * is zero, fail.
13833 		 */
13834 		if (&cp[2] < endp && cp[1] == '0') {
13835 			if (error != NULL)
13836 				*error = EINVAL;
13837 			return (NULL);
13838 		}
13839 	}
13840 
13841 	if (cp <= name) {
13842 		cp = endp;
13843 	} else {
13844 		*cp = '\0';
13845 	}
13846 
13847 	/*
13848 	 * Look up the ILL, based on the portion of the name
13849 	 * before the slash. ill_lookup_on_name returns a held ill.
13850 	 * Temporary to check whether ill exists already. If so
13851 	 * ill_lookup_on_name will clear it.
13852 	 */
13853 	ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst);
13854 	if (cp != endp)
13855 		*cp = IPIF_SEPARATOR_CHAR;
13856 	if (ill == NULL)
13857 		return (NULL);
13858 
13859 	/* Establish the unit number in the name. */
13860 	id = 0;
13861 	if (cp < endp && *endp == '\0') {
13862 		/* If there was a colon, the unit number follows. */
13863 		cp++;
13864 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13865 			ill_refrele(ill);
13866 			if (error != NULL)
13867 				*error = ENXIO;
13868 			return (NULL);
13869 		}
13870 	}
13871 
13872 	GRAB_CONN_LOCK(q);
13873 	mutex_enter(&ill->ill_lock);
13874 	/* Now see if there is an IPIF with this unit number. */
13875 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13876 		if (ipif->ipif_id == id) {
13877 			if (zoneid != ALL_ZONES &&
13878 			    zoneid != ipif->ipif_zoneid &&
13879 			    ipif->ipif_zoneid != ALL_ZONES) {
13880 				mutex_exit(&ill->ill_lock);
13881 				RELEASE_CONN_LOCK(q);
13882 				ill_refrele(ill);
13883 				if (error != NULL)
13884 					*error = ENXIO;
13885 				return (NULL);
13886 			}
13887 
13888 			if (!(IPIF_IS_CHANGING(ipif) ||
13889 			    IPIF_IS_CONDEMNED(ipif)) ||
13890 			    IAM_WRITER_IPIF(ipif)) {
13891 				ipif_refhold_locked(ipif);
13892 				mutex_exit(&ill->ill_lock);
13893 				/*
13894 				 * Drop locks before calling ill_refrele
13895 				 * since it can potentially call into
13896 				 * ipif_ill_refrele_tail which can end up
13897 				 * in trying to acquire any lock.
13898 				 */
13899 				RELEASE_CONN_LOCK(q);
13900 				ill_refrele(ill);
13901 				return (ipif);
13902 			} else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) {
13903 				ipsq = ill->ill_phyint->phyint_ipsq;
13904 				mutex_enter(&ipsq->ipsq_lock);
13905 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
13906 				mutex_exit(&ill->ill_lock);
13907 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
13908 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
13909 				mutex_exit(&ipsq->ipsq_lock);
13910 				RELEASE_CONN_LOCK(q);
13911 				ill_refrele(ill);
13912 				if (error != NULL)
13913 					*error = EINPROGRESS;
13914 				return (NULL);
13915 			}
13916 		}
13917 	}
13918 	RELEASE_CONN_LOCK(q);
13919 	mutex_exit(&ill->ill_lock);
13920 	ill_refrele(ill);
13921 	if (error != NULL)
13922 		*error = ENXIO;
13923 	return (NULL);
13924 }
13925 
13926 /*
13927  * This routine is called whenever a new address comes up on an ipif.  If
13928  * we are configured to respond to address mask requests, then we are supposed
13929  * to broadcast an address mask reply at this time.  This routine is also
13930  * called if we are already up, but a netmask change is made.  This is legal
13931  * but might not make the system manager very popular.	(May be called
13932  * as writer.)
13933  */
13934 void
13935 ipif_mask_reply(ipif_t *ipif)
13936 {
13937 	icmph_t	*icmph;
13938 	ipha_t	*ipha;
13939 	mblk_t	*mp;
13940 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13941 	ip_xmit_attr_t ixas;
13942 
13943 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13944 
13945 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13946 		return;
13947 
13948 	/* ICMP mask reply is IPv4 only */
13949 	ASSERT(!ipif->ipif_isv6);
13950 	/* ICMP mask reply is not for a loopback interface */
13951 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13952 
13953 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13954 		return;
13955 
13956 	mp = allocb(REPLY_LEN, BPRI_HI);
13957 	if (mp == NULL)
13958 		return;
13959 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13960 
13961 	ipha = (ipha_t *)mp->b_rptr;
13962 	bzero(ipha, REPLY_LEN);
13963 	*ipha = icmp_ipha;
13964 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13965 	ipha->ipha_src = ipif->ipif_lcl_addr;
13966 	ipha->ipha_dst = ipif->ipif_brd_addr;
13967 	ipha->ipha_length = htons(REPLY_LEN);
13968 	ipha->ipha_ident = 0;
13969 
13970 	icmph = (icmph_t *)&ipha[1];
13971 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13972 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13973 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13974 
13975 	bzero(&ixas, sizeof (ixas));
13976 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13977 	ixas.ixa_zoneid = ALL_ZONES;
13978 	ixas.ixa_ifindex = 0;
13979 	ixas.ixa_ipst = ipst;
13980 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13981 	(void) ip_output_simple(mp, &ixas);
13982 	ixa_cleanup(&ixas);
13983 #undef	REPLY_LEN
13984 }
13985 
13986 /*
13987  * Join the ipif specific multicast groups.
13988  * Must be called after a mapping has been set up in the resolver.  (Always
13989  * called as writer.)
13990  */
13991 void
13992 ipif_multicast_up(ipif_t *ipif)
13993 {
13994 	int err;
13995 	ill_t *ill;
13996 	ilm_t *ilm;
13997 
13998 	ASSERT(IAM_WRITER_IPIF(ipif));
13999 
14000 	ill = ipif->ipif_ill;
14001 
14002 	ip1dbg(("ipif_multicast_up\n"));
14003 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
14004 	    ipif->ipif_allhosts_ilm != NULL)
14005 		return;
14006 
14007 	if (ipif->ipif_isv6) {
14008 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
14009 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
14010 
14011 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
14012 
14013 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14014 			return;
14015 
14016 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14017 
14018 		/*
14019 		 * Join the all hosts multicast address.  We skip this for
14020 		 * underlying IPMP interfaces since they should be invisible.
14021 		 */
14022 		if (!IS_UNDER_IPMP(ill)) {
14023 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
14024 			    &err);
14025 			if (ilm == NULL) {
14026 				ASSERT(err != 0);
14027 				ip0dbg(("ipif_multicast_up: "
14028 				    "all_hosts_mcast failed %d\n", err));
14029 				return;
14030 			}
14031 			ipif->ipif_allhosts_ilm = ilm;
14032 		}
14033 
14034 		/*
14035 		 * Enable multicast for the solicited node multicast address.
14036 		 * If IPMP we need to put the membership on the upper ill.
14037 		 */
14038 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
14039 			ill_t *mcast_ill = NULL;
14040 			boolean_t need_refrele;
14041 
14042 			if (IS_UNDER_IPMP(ill) &&
14043 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
14044 				need_refrele = B_TRUE;
14045 			} else {
14046 				mcast_ill = ill;
14047 				need_refrele = B_FALSE;
14048 			}
14049 
14050 			ilm = ip_addmulti(&v6solmc, mcast_ill,
14051 			    ipif->ipif_zoneid, &err);
14052 			if (need_refrele)
14053 				ill_refrele(mcast_ill);
14054 
14055 			if (ilm == NULL) {
14056 				ASSERT(err != 0);
14057 				ip0dbg(("ipif_multicast_up: solicited MC"
14058 				    " failed %d\n", err));
14059 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
14060 					ipif->ipif_allhosts_ilm = NULL;
14061 					(void) ip_delmulti(ilm);
14062 				}
14063 				return;
14064 			}
14065 			ipif->ipif_solmulti_ilm = ilm;
14066 		}
14067 	} else {
14068 		in6_addr_t v6group;
14069 
14070 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
14071 			return;
14072 
14073 		/* Join the all hosts multicast address */
14074 		ip1dbg(("ipif_multicast_up - addmulti\n"));
14075 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
14076 
14077 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
14078 		if (ilm == NULL) {
14079 			ASSERT(err != 0);
14080 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
14081 			return;
14082 		}
14083 		ipif->ipif_allhosts_ilm = ilm;
14084 	}
14085 }
14086 
14087 /*
14088  * Blow away any multicast groups that we joined in ipif_multicast_up().
14089  * (ilms from explicit memberships are handled in conn_update_ill.)
14090  */
14091 void
14092 ipif_multicast_down(ipif_t *ipif)
14093 {
14094 	ASSERT(IAM_WRITER_IPIF(ipif));
14095 
14096 	ip1dbg(("ipif_multicast_down\n"));
14097 
14098 	if (ipif->ipif_allhosts_ilm != NULL) {
14099 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
14100 		ipif->ipif_allhosts_ilm = NULL;
14101 	}
14102 	if (ipif->ipif_solmulti_ilm != NULL) {
14103 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
14104 		ipif->ipif_solmulti_ilm = NULL;
14105 	}
14106 }
14107 
14108 /*
14109  * Used when an interface comes up to recreate any extra routes on this
14110  * interface.
14111  */
14112 int
14113 ill_recover_saved_ire(ill_t *ill)
14114 {
14115 	mblk_t		*mp;
14116 	ip_stack_t	*ipst = ill->ill_ipst;
14117 
14118 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
14119 
14120 	mutex_enter(&ill->ill_saved_ire_lock);
14121 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
14122 		ire_t		*ire, *nire;
14123 		ifrt_t		*ifrt;
14124 
14125 		ifrt = (ifrt_t *)mp->b_rptr;
14126 		/*
14127 		 * Create a copy of the IRE with the saved address and netmask.
14128 		 */
14129 		if (ill->ill_isv6) {
14130 			ire = ire_create_v6(
14131 			    &ifrt->ifrt_v6addr,
14132 			    &ifrt->ifrt_v6mask,
14133 			    &ifrt->ifrt_v6gateway_addr,
14134 			    ifrt->ifrt_type,
14135 			    ill,
14136 			    ifrt->ifrt_zoneid,
14137 			    ifrt->ifrt_flags,
14138 			    NULL,
14139 			    ipst);
14140 		} else {
14141 			ire = ire_create(
14142 			    (uint8_t *)&ifrt->ifrt_addr,
14143 			    (uint8_t *)&ifrt->ifrt_mask,
14144 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
14145 			    ifrt->ifrt_type,
14146 			    ill,
14147 			    ifrt->ifrt_zoneid,
14148 			    ifrt->ifrt_flags,
14149 			    NULL,
14150 			    ipst);
14151 		}
14152 		if (ire == NULL) {
14153 			mutex_exit(&ill->ill_saved_ire_lock);
14154 			return (ENOMEM);
14155 		}
14156 
14157 		if (ifrt->ifrt_flags & RTF_SETSRC) {
14158 			if (ill->ill_isv6) {
14159 				ire->ire_setsrc_addr_v6 =
14160 				    ifrt->ifrt_v6setsrc_addr;
14161 			} else {
14162 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
14163 			}
14164 		}
14165 
14166 		/*
14167 		 * Some software (for example, GateD and Sun Cluster) attempts
14168 		 * to create (what amount to) IRE_PREFIX routes with the
14169 		 * loopback address as the gateway.  This is primarily done to
14170 		 * set up prefixes with the RTF_REJECT flag set (for example,
14171 		 * when generating aggregate routes.)
14172 		 *
14173 		 * If the IRE type (as defined by ill->ill_net_type) is
14174 		 * IRE_LOOPBACK, then we map the request into a
14175 		 * IRE_IF_NORESOLVER.
14176 		 */
14177 		if (ill->ill_net_type == IRE_LOOPBACK)
14178 			ire->ire_type = IRE_IF_NORESOLVER;
14179 
14180 		/*
14181 		 * ire held by ire_add, will be refreled' towards the
14182 		 * the end of ipif_up_done
14183 		 */
14184 		nire = ire_add(ire);
14185 		/*
14186 		 * Check if it was a duplicate entry. This handles
14187 		 * the case of two racing route adds for the same route
14188 		 */
14189 		if (nire == NULL) {
14190 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
14191 		} else if (nire != ire) {
14192 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
14193 			    (void *)nire));
14194 			ire_delete(nire);
14195 		} else {
14196 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
14197 			    (void *)nire));
14198 		}
14199 		if (nire != NULL)
14200 			ire_refrele(nire);
14201 	}
14202 	mutex_exit(&ill->ill_saved_ire_lock);
14203 	return (0);
14204 }
14205 
14206 /*
14207  * Used to set the netmask and broadcast address to default values when the
14208  * interface is brought up.  (Always called as writer.)
14209  */
14210 static void
14211 ipif_set_default(ipif_t *ipif)
14212 {
14213 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14214 
14215 	if (!ipif->ipif_isv6) {
14216 		/*
14217 		 * Interface holds an IPv4 address. Default
14218 		 * mask is the natural netmask.
14219 		 */
14220 		if (!ipif->ipif_net_mask) {
14221 			ipaddr_t	v4mask;
14222 
14223 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
14224 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
14225 		}
14226 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14227 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14228 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14229 		} else {
14230 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14231 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14232 		}
14233 		/*
14234 		 * NOTE: SunOS 4.X does this even if the broadcast address
14235 		 * has been already set thus we do the same here.
14236 		 */
14237 		if (ipif->ipif_flags & IPIF_BROADCAST) {
14238 			ipaddr_t	v4addr;
14239 
14240 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
14241 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
14242 		}
14243 	} else {
14244 		/*
14245 		 * Interface holds an IPv6-only address.  Default
14246 		 * mask is all-ones.
14247 		 */
14248 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
14249 			ipif->ipif_v6net_mask = ipv6_all_ones;
14250 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14251 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14252 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
14253 		} else {
14254 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
14255 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
14256 		}
14257 	}
14258 }
14259 
14260 /*
14261  * Return 0 if this address can be used as local address without causing
14262  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
14263  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
14264  * Note that the same IPv6 link-local address is allowed as long as the ills
14265  * are not on the same link.
14266  */
14267 int
14268 ip_addr_availability_check(ipif_t *new_ipif)
14269 {
14270 	in6_addr_t our_v6addr;
14271 	ill_t *ill;
14272 	ipif_t *ipif;
14273 	ill_walk_context_t ctx;
14274 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
14275 
14276 	ASSERT(IAM_WRITER_IPIF(new_ipif));
14277 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
14278 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
14279 
14280 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
14281 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
14282 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
14283 		return (0);
14284 
14285 	our_v6addr = new_ipif->ipif_v6lcl_addr;
14286 
14287 	if (new_ipif->ipif_isv6)
14288 		ill = ILL_START_WALK_V6(&ctx, ipst);
14289 	else
14290 		ill = ILL_START_WALK_V4(&ctx, ipst);
14291 
14292 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
14293 		for (ipif = ill->ill_ipif; ipif != NULL;
14294 		    ipif = ipif->ipif_next) {
14295 			if ((ipif == new_ipif) ||
14296 			    !(ipif->ipif_flags & IPIF_UP) ||
14297 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14298 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
14299 			    &our_v6addr))
14300 				continue;
14301 
14302 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
14303 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
14304 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
14305 				ipif->ipif_flags |= IPIF_UNNUMBERED;
14306 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
14307 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
14308 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
14309 				continue;
14310 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
14311 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
14312 				continue;
14313 			else if (new_ipif->ipif_ill == ill)
14314 				return (EADDRINUSE);
14315 			else
14316 				return (EADDRNOTAVAIL);
14317 		}
14318 	}
14319 
14320 	return (0);
14321 }
14322 
14323 /*
14324  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
14325  * IREs for the ipif.
14326  * When the routine returns EINPROGRESS then mp has been consumed and
14327  * the ioctl will be acked from ip_rput_dlpi.
14328  */
14329 int
14330 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
14331 {
14332 	ill_t		*ill = ipif->ipif_ill;
14333 	boolean_t 	isv6 = ipif->ipif_isv6;
14334 	int		err = 0;
14335 	boolean_t	success;
14336 	uint_t		ipif_orig_id;
14337 	ip_stack_t	*ipst = ill->ill_ipst;
14338 
14339 	ASSERT(IAM_WRITER_IPIF(ipif));
14340 
14341 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14342 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
14343 	    ill_t *, ill, ipif_t *, ipif);
14344 
14345 	/* Shouldn't get here if it is already up. */
14346 	if (ipif->ipif_flags & IPIF_UP)
14347 		return (EALREADY);
14348 
14349 	/*
14350 	 * If this is a request to bring up a data address on an interface
14351 	 * under IPMP, then move the address to its IPMP meta-interface and
14352 	 * try to bring it up.  One complication is that the zeroth ipif for
14353 	 * an ill is special, in that every ill always has one, and that code
14354 	 * throughout IP deferences ill->ill_ipif without holding any locks.
14355 	 */
14356 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
14357 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
14358 		ipif_t	*stubipif = NULL, *moveipif = NULL;
14359 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
14360 
14361 		/*
14362 		 * The ipif being brought up should be quiesced.  If it's not,
14363 		 * something has gone amiss and we need to bail out.  (If it's
14364 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
14365 		 */
14366 		mutex_enter(&ill->ill_lock);
14367 		if (!ipif_is_quiescent(ipif)) {
14368 			mutex_exit(&ill->ill_lock);
14369 			return (EINVAL);
14370 		}
14371 		mutex_exit(&ill->ill_lock);
14372 
14373 		/*
14374 		 * If we're going to need to allocate ipifs, do it prior
14375 		 * to starting the move (and grabbing locks).
14376 		 */
14377 		if (ipif->ipif_id == 0) {
14378 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14379 			    B_FALSE, &err)) == NULL) {
14380 				return (err);
14381 			}
14382 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
14383 			    B_FALSE, &err)) == NULL) {
14384 				mi_free(moveipif);
14385 				return (err);
14386 			}
14387 		}
14388 
14389 		/*
14390 		 * Grab or transfer the ipif to move.  During the move, keep
14391 		 * ill_g_lock held to prevent any ill walker threads from
14392 		 * seeing things in an inconsistent state.
14393 		 */
14394 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14395 		if (ipif->ipif_id != 0) {
14396 			ipif_remove(ipif);
14397 		} else {
14398 			ipif_transfer(ipif, moveipif, stubipif);
14399 			ipif = moveipif;
14400 		}
14401 
14402 		/*
14403 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
14404 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
14405 		 * replace that one.  Otherwise, pick the next available slot.
14406 		 */
14407 		ipif->ipif_ill = ipmp_ill;
14408 		ipif_orig_id = ipif->ipif_id;
14409 
14410 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
14411 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
14412 			ipif = ipmp_ill->ill_ipif;
14413 		} else {
14414 			ipif->ipif_id = -1;
14415 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
14416 				/*
14417 				 * No more available ipif_id's -- put it back
14418 				 * on the original ill and fail the operation.
14419 				 * Since we're writer on the ill, we can be
14420 				 * sure our old slot is still available.
14421 				 */
14422 				ipif->ipif_id = ipif_orig_id;
14423 				ipif->ipif_ill = ill;
14424 				if (ipif_orig_id == 0) {
14425 					ipif_transfer(ipif, ill->ill_ipif,
14426 					    NULL);
14427 				} else {
14428 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
14429 				}
14430 				rw_exit(&ipst->ips_ill_g_lock);
14431 				return (err);
14432 			}
14433 		}
14434 		rw_exit(&ipst->ips_ill_g_lock);
14435 
14436 		/*
14437 		 * Tell SCTP that the ipif has moved.  Note that even if we
14438 		 * had to allocate a new ipif, the original sequence id was
14439 		 * preserved and therefore SCTP won't know.
14440 		 */
14441 		sctp_move_ipif(ipif, ill, ipmp_ill);
14442 
14443 		/*
14444 		 * If the ipif being brought up was on slot zero, then we
14445 		 * first need to bring up the placeholder we stuck there.  In
14446 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
14447 		 * call to ipif_up() itself, if we successfully bring up the
14448 		 * placeholder, we'll check ill_move_ipif and bring it up too.
14449 		 */
14450 		if (ipif_orig_id == 0) {
14451 			ASSERT(ill->ill_move_ipif == NULL);
14452 			ill->ill_move_ipif = ipif;
14453 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
14454 				ASSERT(ill->ill_move_ipif == NULL);
14455 			if (err != EINPROGRESS)
14456 				ill->ill_move_ipif = NULL;
14457 			return (err);
14458 		}
14459 
14460 		/*
14461 		 * Bring it up on the IPMP ill.
14462 		 */
14463 		return (ipif_up(ipif, q, mp));
14464 	}
14465 
14466 	/* Skip arp/ndp for any loopback interface. */
14467 	if (ill->ill_wq != NULL) {
14468 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14469 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
14470 
14471 		if (!ill->ill_dl_up) {
14472 			/*
14473 			 * ill_dl_up is not yet set. i.e. we are yet to
14474 			 * DL_BIND with the driver and this is the first
14475 			 * logical interface on the ill to become "up".
14476 			 * Tell the driver to get going (via DL_BIND_REQ).
14477 			 * Note that changing "significant" IFF_ flags
14478 			 * address/netmask etc cause a down/up dance, but
14479 			 * does not cause an unbind (DL_UNBIND) with the driver
14480 			 */
14481 			return (ill_dl_up(ill, ipif, mp, q));
14482 		}
14483 
14484 		/*
14485 		 * ipif_resolver_up may end up needeing to bind/attach
14486 		 * the ARP stream, which in turn necessitates a
14487 		 * DLPI message exchange with the driver. ioctls are
14488 		 * serialized and so we cannot send more than one
14489 		 * interface up message at a time. If ipif_resolver_up
14490 		 * does need to wait for the DLPI handshake for the ARP stream,
14491 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
14492 		 */
14493 
14494 		ASSERT(connp != NULL || !CONN_Q(q));
14495 		if (connp != NULL)
14496 			mutex_enter(&connp->conn_lock);
14497 		mutex_enter(&ill->ill_lock);
14498 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14499 		mutex_exit(&ill->ill_lock);
14500 		if (connp != NULL)
14501 			mutex_exit(&connp->conn_lock);
14502 		if (!success)
14503 			return (EINTR);
14504 
14505 		/*
14506 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
14507 		 * complete when ipif_ndp_up returns.
14508 		 */
14509 		err = ipif_resolver_up(ipif, Res_act_initial);
14510 		if (err == EINPROGRESS) {
14511 			/* We will complete it in arp_bringup_done() */
14512 			return (err);
14513 		}
14514 
14515 		if (isv6 && err == 0)
14516 			err = ipif_ndp_up(ipif, B_TRUE);
14517 
14518 		ASSERT(err != EINPROGRESS);
14519 		mp = ipsq_pending_mp_get(ipsq, &connp);
14520 		ASSERT(mp != NULL);
14521 		if (err != 0)
14522 			return (err);
14523 	} else {
14524 		/*
14525 		 * Interfaces without underlying hardware don't do duplicate
14526 		 * address detection.
14527 		 */
14528 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14529 		ipif->ipif_addr_ready = 1;
14530 		err = ill_add_ires(ill);
14531 		/* allocation failure? */
14532 		if (err != 0)
14533 			return (err);
14534 	}
14535 
14536 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14537 	if (err == 0 && ill->ill_move_ipif != NULL) {
14538 		ipif = ill->ill_move_ipif;
14539 		ill->ill_move_ipif = NULL;
14540 		return (ipif_up(ipif, q, mp));
14541 	}
14542 	return (err);
14543 }
14544 
14545 /*
14546  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14547  * The identical set of IREs need to be removed in ill_delete_ires().
14548  */
14549 int
14550 ill_add_ires(ill_t *ill)
14551 {
14552 	ire_t	*ire;
14553 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14554 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14555 
14556 	if (ill->ill_ire_multicast != NULL)
14557 		return (0);
14558 
14559 	/*
14560 	 * provide some dummy ire_addr for creating the ire.
14561 	 */
14562 	if (ill->ill_isv6) {
14563 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14564 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14565 	} else {
14566 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14567 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14568 	}
14569 	if (ire == NULL)
14570 		return (ENOMEM);
14571 
14572 	ill->ill_ire_multicast = ire;
14573 	return (0);
14574 }
14575 
14576 void
14577 ill_delete_ires(ill_t *ill)
14578 {
14579 	if (ill->ill_ire_multicast != NULL) {
14580 		/*
14581 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14582 		 * which was taken without any th_tracing enabled.
14583 		 * We also mark it as condemned (note that it was never added)
14584 		 * so that caching conn's can move off of it.
14585 		 */
14586 		ire_make_condemned(ill->ill_ire_multicast);
14587 		ire_refrele_notr(ill->ill_ire_multicast);
14588 		ill->ill_ire_multicast = NULL;
14589 	}
14590 }
14591 
14592 /*
14593  * Perform a bind for the physical device.
14594  * When the routine returns EINPROGRESS then mp has been consumed and
14595  * the ioctl will be acked from ip_rput_dlpi.
14596  * Allocate an unbind message and save it until ipif_down.
14597  */
14598 static int
14599 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14600 {
14601 	mblk_t	*bind_mp = NULL;
14602 	mblk_t	*unbind_mp = NULL;
14603 	conn_t	*connp;
14604 	boolean_t success;
14605 	int	err;
14606 
14607 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14608 
14609 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14610 	ASSERT(IAM_WRITER_ILL(ill));
14611 	ASSERT(mp != NULL);
14612 
14613 	/*
14614 	 * Make sure we have an IRE_MULTICAST in case we immediately
14615 	 * start receiving packets.
14616 	 */
14617 	err = ill_add_ires(ill);
14618 	if (err != 0)
14619 		goto bad;
14620 
14621 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14622 	    DL_BIND_REQ);
14623 	if (bind_mp == NULL)
14624 		goto bad;
14625 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14626 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14627 
14628 	/*
14629 	 * ill_unbind_mp would be non-null if the following sequence had
14630 	 * happened:
14631 	 * - send DL_BIND_REQ to driver, wait for response
14632 	 * - multiple ioctls that need to bring the ipif up are encountered,
14633 	 *   but they cannot enter the ipsq due to the outstanding DL_BIND_REQ.
14634 	 *   These ioctls will then be enqueued on the ipsq
14635 	 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ
14636 	 * At this point, the pending ioctls in the ipsq will be drained, and
14637 	 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with
14638 	 * a non-null ill->ill_unbind_mp
14639 	 */
14640 	if (ill->ill_unbind_mp == NULL) {
14641 		unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t),
14642 		    DL_UNBIND_REQ);
14643 		if (unbind_mp == NULL)
14644 			goto bad;
14645 	}
14646 	/*
14647 	 * Record state needed to complete this operation when the
14648 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14649 	 */
14650 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14651 	ASSERT(connp != NULL || !CONN_Q(q));
14652 	GRAB_CONN_LOCK(q);
14653 	mutex_enter(&ipif->ipif_ill->ill_lock);
14654 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14655 	mutex_exit(&ipif->ipif_ill->ill_lock);
14656 	RELEASE_CONN_LOCK(q);
14657 	if (!success)
14658 		goto bad;
14659 
14660 	/*
14661 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14662 	 * the interface goes down.
14663 	 */
14664 	if (ill->ill_unbind_mp == NULL)
14665 		ill->ill_unbind_mp = unbind_mp;
14666 
14667 	ill_dlpi_send(ill, bind_mp);
14668 	/* Send down link-layer capabilities probe if not already done. */
14669 	ill_capability_probe(ill);
14670 
14671 	/*
14672 	 * Sysid used to rely on the fact that netboots set domainname
14673 	 * and the like. Now that miniroot boots aren't strictly netboots
14674 	 * and miniroot network configuration is driven from userland
14675 	 * these things still need to be set. This situation can be detected
14676 	 * by comparing the interface being configured here to the one
14677 	 * dhcifname was set to reference by the boot loader. Once sysid is
14678 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14679 	 */
14680 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14681 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14682 	    (strlen(srpc_domain) == 0)) {
14683 		if (dhcpinit() != 0)
14684 			cmn_err(CE_WARN, "no cached dhcp response");
14685 	}
14686 
14687 	/*
14688 	 * This operation will complete in ip_rput_dlpi with either
14689 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14690 	 */
14691 	return (EINPROGRESS);
14692 bad:
14693 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14694 
14695 	freemsg(bind_mp);
14696 	freemsg(unbind_mp);
14697 	return (ENOMEM);
14698 }
14699 
14700 /* Add room for tcp+ip headers */
14701 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14702 
14703 /*
14704  * DLPI and ARP is up.
14705  * Create all the IREs associated with an interface. Bring up multicast.
14706  * Set the interface flag and finish other initialization
14707  * that potentially had to be deferred to after DL_BIND_ACK.
14708  */
14709 int
14710 ipif_up_done(ipif_t *ipif)
14711 {
14712 	ill_t		*ill = ipif->ipif_ill;
14713 	int		err = 0;
14714 	boolean_t	loopback = B_FALSE;
14715 	boolean_t	update_src_selection = B_TRUE;
14716 	ipif_t		*tmp_ipif;
14717 
14718 	ip1dbg(("ipif_up_done(%s:%u)\n",
14719 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14720 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14721 	    ill_t *, ill, ipif_t *, ipif);
14722 
14723 	/* Check if this is a loopback interface */
14724 	if (ipif->ipif_ill->ill_wq == NULL)
14725 		loopback = B_TRUE;
14726 
14727 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14728 
14729 	/*
14730 	 * If all other interfaces for this ill are down or DEPRECATED,
14731 	 * or otherwise unsuitable for source address selection,
14732 	 * reset the src generation numbers to make sure source
14733 	 * address selection gets to take this new ipif into account.
14734 	 * No need to hold ill_lock while traversing the ipif list since
14735 	 * we are writer
14736 	 */
14737 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14738 	    tmp_ipif = tmp_ipif->ipif_next) {
14739 		if (((tmp_ipif->ipif_flags &
14740 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14741 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14742 		    (tmp_ipif == ipif))
14743 			continue;
14744 		/* first useable pre-existing interface */
14745 		update_src_selection = B_FALSE;
14746 		break;
14747 	}
14748 	if (update_src_selection)
14749 		ip_update_source_selection(ill->ill_ipst);
14750 
14751 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14752 		nce_t *loop_nce = NULL;
14753 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14754 
14755 		/*
14756 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14757 		 * ipif_lookup_on_name(), but in the case of zones we can have
14758 		 * several loopback addresses on lo0. So all the interfaces with
14759 		 * loopback addresses need to be marked IRE_LOOPBACK.
14760 		 */
14761 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14762 		    htonl(INADDR_LOOPBACK))
14763 			ipif->ipif_ire_type = IRE_LOOPBACK;
14764 		else
14765 			ipif->ipif_ire_type = IRE_LOCAL;
14766 		if (ill->ill_net_type != IRE_LOOPBACK)
14767 			flags |= NCE_F_PUBLISH;
14768 
14769 		/* add unicast nce for the local addr */
14770 		err = nce_lookup_then_add_v4(ill, NULL,
14771 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14772 		    ND_REACHABLE, &loop_nce);
14773 		/* A shared-IP zone sees EEXIST for lo0:N */
14774 		if (err == 0 || err == EEXIST) {
14775 			ipif->ipif_added_nce = 1;
14776 			loop_nce->nce_ipif_cnt++;
14777 			nce_refrele(loop_nce);
14778 			err = 0;
14779 		} else {
14780 			ASSERT(loop_nce == NULL);
14781 			return (err);
14782 		}
14783 	}
14784 
14785 	/* Create all the IREs associated with this interface */
14786 	err = ipif_add_ires_v4(ipif, loopback);
14787 	if (err != 0) {
14788 		/*
14789 		 * see comments about return value from
14790 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14791 		 */
14792 		if (err != EADDRINUSE) {
14793 			(void) ipif_arp_down(ipif);
14794 		} else {
14795 			/*
14796 			 * Make IPMP aware of the deleted ipif so that
14797 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14798 			 * can be completed. Note that we do not want to
14799 			 * destroy the nce that was created on the ipmp_ill
14800 			 * for the active copy of the duplicate address in
14801 			 * use.
14802 			 */
14803 			if (IS_IPMP(ill))
14804 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14805 			err = EADDRNOTAVAIL;
14806 		}
14807 		return (err);
14808 	}
14809 
14810 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14811 		/* Recover any additional IREs entries for this ill */
14812 		(void) ill_recover_saved_ire(ill);
14813 	}
14814 
14815 	if (ill->ill_need_recover_multicast) {
14816 		/*
14817 		 * Need to recover all multicast memberships in the driver.
14818 		 * This had to be deferred until we had attached.  The same
14819 		 * code exists in ipif_up_done_v6() to recover IPv6
14820 		 * memberships.
14821 		 *
14822 		 * Note that it would be preferable to unconditionally do the
14823 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14824 		 * that since ill_join_allmulti() depends on ill_dl_up being
14825 		 * set, and it is not set until we receive a DL_BIND_ACK after
14826 		 * having called ill_dl_up().
14827 		 */
14828 		ill_recover_multicast(ill);
14829 	}
14830 
14831 	if (ill->ill_ipif_up_count == 1) {
14832 		/*
14833 		 * Since the interface is now up, it may now be active.
14834 		 */
14835 		if (IS_UNDER_IPMP(ill))
14836 			ipmp_ill_refresh_active(ill);
14837 
14838 		/*
14839 		 * If this is an IPMP interface, we may now be able to
14840 		 * establish ARP entries.
14841 		 */
14842 		if (IS_IPMP(ill))
14843 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14844 	}
14845 
14846 	/* Join the allhosts multicast address */
14847 	ipif_multicast_up(ipif);
14848 
14849 	if (!loopback && !update_src_selection &&
14850 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14851 		ip_update_source_selection(ill->ill_ipst);
14852 
14853 	if (!loopback && ipif->ipif_addr_ready) {
14854 		/* Broadcast an address mask reply. */
14855 		ipif_mask_reply(ipif);
14856 	}
14857 	/* Perhaps ilgs should use this ill */
14858 	update_conn_ill(NULL, ill->ill_ipst);
14859 
14860 	/*
14861 	 * This had to be deferred until we had bound.  Tell routing sockets and
14862 	 * others that this interface is up if it looks like the address has
14863 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14864 	 * duplicate address detection to do its thing.
14865 	 */
14866 	if (ipif->ipif_addr_ready)
14867 		ipif_up_notify(ipif);
14868 	return (0);
14869 }
14870 
14871 /*
14872  * Add the IREs associated with the ipif.
14873  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14874  */
14875 static int
14876 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14877 {
14878 	ill_t		*ill = ipif->ipif_ill;
14879 	ip_stack_t	*ipst = ill->ill_ipst;
14880 	ire_t		*ire_array[20];
14881 	ire_t		**irep = ire_array;
14882 	ire_t		**irep1;
14883 	ipaddr_t	net_mask = 0;
14884 	ipaddr_t	subnet_mask, route_mask;
14885 	int		err;
14886 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14887 	ire_t		*ire_if = NULL;
14888 	uchar_t		*gw;
14889 
14890 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14891 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14892 		/*
14893 		 * If we're on a labeled system then make sure that zone-
14894 		 * private addresses have proper remote host database entries.
14895 		 */
14896 		if (is_system_labeled() &&
14897 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14898 		    !tsol_check_interface_address(ipif))
14899 			return (EINVAL);
14900 
14901 		/* Register the source address for __sin6_src_id */
14902 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14903 		    ipif->ipif_zoneid, ipst);
14904 		if (err != 0) {
14905 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14906 			return (err);
14907 		}
14908 
14909 		if (loopback)
14910 			gw = (uchar_t *)&ipif->ipif_lcl_addr;
14911 		else
14912 			gw = NULL;
14913 
14914 		/* If the interface address is set, create the local IRE. */
14915 		ire_local = ire_create(
14916 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14917 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14918 		    gw,					/* gateway */
14919 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14920 		    ipif->ipif_ill,
14921 		    ipif->ipif_zoneid,
14922 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14923 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14924 		    NULL,
14925 		    ipst);
14926 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14927 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14928 		    ipif->ipif_ire_type,
14929 		    ntohl(ipif->ipif_lcl_addr)));
14930 		if (ire_local == NULL) {
14931 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14932 			err = ENOMEM;
14933 			goto bad;
14934 		}
14935 	} else {
14936 		ip1dbg((
14937 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14938 		    ipif->ipif_ire_type,
14939 		    ntohl(ipif->ipif_lcl_addr),
14940 		    (uint_t)ipif->ipif_flags));
14941 	}
14942 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14943 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14944 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14945 	} else {
14946 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14947 	}
14948 
14949 	subnet_mask = ipif->ipif_net_mask;
14950 
14951 	/*
14952 	 * If mask was not specified, use natural netmask of
14953 	 * interface address. Also, store this mask back into the
14954 	 * ipif struct.
14955 	 */
14956 	if (subnet_mask == 0) {
14957 		subnet_mask = net_mask;
14958 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14959 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14960 		    ipif->ipif_v6subnet);
14961 	}
14962 
14963 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14964 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14965 	    ipif->ipif_subnet != INADDR_ANY) {
14966 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14967 
14968 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14969 			route_mask = IP_HOST_MASK;
14970 		} else {
14971 			route_mask = subnet_mask;
14972 		}
14973 
14974 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14975 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14976 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14977 		    ntohl(ipif->ipif_subnet)));
14978 		ire_if = ire_create(
14979 		    (uchar_t *)&ipif->ipif_subnet,
14980 		    (uchar_t *)&route_mask,
14981 		    (uchar_t *)&ipif->ipif_lcl_addr,
14982 		    ill->ill_net_type,
14983 		    ill,
14984 		    ipif->ipif_zoneid,
14985 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14986 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14987 		    NULL,
14988 		    ipst);
14989 		if (ire_if == NULL) {
14990 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14991 			err = ENOMEM;
14992 			goto bad;
14993 		}
14994 	}
14995 
14996 	/*
14997 	 * Create any necessary broadcast IREs.
14998 	 */
14999 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15000 	    !(ipif->ipif_flags & IPIF_NOXMIT))
15001 		irep = ipif_create_bcast_ires(ipif, irep);
15002 
15003 	/* If an earlier ire_create failed, get out now */
15004 	for (irep1 = irep; irep1 > ire_array; ) {
15005 		irep1--;
15006 		if (*irep1 == NULL) {
15007 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
15008 			err = ENOMEM;
15009 			goto bad;
15010 		}
15011 	}
15012 
15013 	/*
15014 	 * Need to atomically check for IP address availability under
15015 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
15016 	 * ills or new ipifs can be added while we are checking availability.
15017 	 */
15018 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15019 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
15020 	/* Mark it up, and increment counters. */
15021 	ipif->ipif_flags |= IPIF_UP;
15022 	ill->ill_ipif_up_count++;
15023 	err = ip_addr_availability_check(ipif);
15024 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
15025 	rw_exit(&ipst->ips_ill_g_lock);
15026 
15027 	if (err != 0) {
15028 		/*
15029 		 * Our address may already be up on the same ill. In this case,
15030 		 * the ARP entry for our ipif replaced the one for the other
15031 		 * ipif. So we don't want to delete it (otherwise the other ipif
15032 		 * would be unable to send packets).
15033 		 * ip_addr_availability_check() identifies this case for us and
15034 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
15035 		 * which is the expected error code.
15036 		 */
15037 		ill->ill_ipif_up_count--;
15038 		ipif->ipif_flags &= ~IPIF_UP;
15039 		goto bad;
15040 	}
15041 
15042 	/*
15043 	 * Add in all newly created IREs.  ire_create_bcast() has
15044 	 * already checked for duplicates of the IRE_BROADCAST type.
15045 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
15046 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
15047 	 * a /32 route.
15048 	 */
15049 	if (ire_if != NULL) {
15050 		ire_if = ire_add(ire_if);
15051 		if (ire_if == NULL) {
15052 			err = ENOMEM;
15053 			goto bad2;
15054 		}
15055 #ifdef DEBUG
15056 		ire_refhold_notr(ire_if);
15057 		ire_refrele(ire_if);
15058 #endif
15059 	}
15060 	if (ire_local != NULL) {
15061 		ire_local = ire_add(ire_local);
15062 		if (ire_local == NULL) {
15063 			err = ENOMEM;
15064 			goto bad2;
15065 		}
15066 #ifdef DEBUG
15067 		ire_refhold_notr(ire_local);
15068 		ire_refrele(ire_local);
15069 #endif
15070 	}
15071 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15072 	if (ire_local != NULL)
15073 		ipif->ipif_ire_local = ire_local;
15074 	if (ire_if != NULL)
15075 		ipif->ipif_ire_if = ire_if;
15076 	rw_exit(&ipst->ips_ill_g_lock);
15077 	ire_local = NULL;
15078 	ire_if = NULL;
15079 
15080 	/*
15081 	 * We first add all of them, and if that succeeds we refrele the
15082 	 * bunch. That enables us to delete all of them should any of the
15083 	 * ire_adds fail.
15084 	 */
15085 	for (irep1 = irep; irep1 > ire_array; ) {
15086 		irep1--;
15087 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
15088 		*irep1 = ire_add(*irep1);
15089 		if (*irep1 == NULL) {
15090 			err = ENOMEM;
15091 			goto bad2;
15092 		}
15093 	}
15094 
15095 	for (irep1 = irep; irep1 > ire_array; ) {
15096 		irep1--;
15097 		/* refheld by ire_add. */
15098 		if (*irep1 != NULL) {
15099 			ire_refrele(*irep1);
15100 			*irep1 = NULL;
15101 		}
15102 	}
15103 
15104 	if (!loopback) {
15105 		/*
15106 		 * If the broadcast address has been set, make sure it makes
15107 		 * sense based on the interface address.
15108 		 * Only match on ill since we are sharing broadcast addresses.
15109 		 */
15110 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
15111 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
15112 			ire_t	*ire;
15113 
15114 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
15115 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
15116 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
15117 
15118 			if (ire == NULL) {
15119 				/*
15120 				 * If there isn't a matching broadcast IRE,
15121 				 * revert to the default for this netmask.
15122 				 */
15123 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
15124 				mutex_enter(&ipif->ipif_ill->ill_lock);
15125 				ipif_set_default(ipif);
15126 				mutex_exit(&ipif->ipif_ill->ill_lock);
15127 			} else {
15128 				ire_refrele(ire);
15129 			}
15130 		}
15131 
15132 	}
15133 	return (0);
15134 
15135 bad2:
15136 	ill->ill_ipif_up_count--;
15137 	ipif->ipif_flags &= ~IPIF_UP;
15138 
15139 bad:
15140 	ip1dbg(("ipif_add_ires: FAILED \n"));
15141 	if (ire_local != NULL)
15142 		ire_delete(ire_local);
15143 	if (ire_if != NULL)
15144 		ire_delete(ire_if);
15145 
15146 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15147 	ire_local = ipif->ipif_ire_local;
15148 	ipif->ipif_ire_local = NULL;
15149 	ire_if = ipif->ipif_ire_if;
15150 	ipif->ipif_ire_if = NULL;
15151 	rw_exit(&ipst->ips_ill_g_lock);
15152 	if (ire_local != NULL) {
15153 		ire_delete(ire_local);
15154 		ire_refrele_notr(ire_local);
15155 	}
15156 	if (ire_if != NULL) {
15157 		ire_delete(ire_if);
15158 		ire_refrele_notr(ire_if);
15159 	}
15160 
15161 	while (irep > ire_array) {
15162 		irep--;
15163 		if (*irep != NULL) {
15164 			ire_delete(*irep);
15165 		}
15166 	}
15167 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
15168 
15169 	return (err);
15170 }
15171 
15172 /* Remove all the IREs created by ipif_add_ires_v4 */
15173 void
15174 ipif_delete_ires_v4(ipif_t *ipif)
15175 {
15176 	ill_t		*ill = ipif->ipif_ill;
15177 	ip_stack_t	*ipst = ill->ill_ipst;
15178 	ire_t		*ire;
15179 
15180 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15181 	ire = ipif->ipif_ire_local;
15182 	ipif->ipif_ire_local = NULL;
15183 	rw_exit(&ipst->ips_ill_g_lock);
15184 	if (ire != NULL) {
15185 		/*
15186 		 * Move count to ipif so we don't loose the count due to
15187 		 * a down/up dance.
15188 		 */
15189 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
15190 
15191 		ire_delete(ire);
15192 		ire_refrele_notr(ire);
15193 	}
15194 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15195 	ire = ipif->ipif_ire_if;
15196 	ipif->ipif_ire_if = NULL;
15197 	rw_exit(&ipst->ips_ill_g_lock);
15198 	if (ire != NULL) {
15199 		ire_delete(ire);
15200 		ire_refrele_notr(ire);
15201 	}
15202 
15203 	/*
15204 	 * Delete the broadcast IREs.
15205 	 */
15206 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
15207 	    !(ipif->ipif_flags & IPIF_NOXMIT))
15208 		ipif_delete_bcast_ires(ipif);
15209 }
15210 
15211 /*
15212  * Checks for availbility of a usable source address (if there is one) when the
15213  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
15214  * this selection is done regardless of the destination.
15215  */
15216 boolean_t
15217 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
15218     ip_stack_t *ipst)
15219 {
15220 	ipif_t		*ipif = NULL;
15221 	ill_t		*uill;
15222 
15223 	ASSERT(ifindex != 0);
15224 
15225 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15226 	if (uill == NULL)
15227 		return (B_FALSE);
15228 
15229 	mutex_enter(&uill->ill_lock);
15230 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15231 		if (IPIF_IS_CONDEMNED(ipif))
15232 			continue;
15233 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15234 			continue;
15235 		if (!(ipif->ipif_flags & IPIF_UP))
15236 			continue;
15237 		if (ipif->ipif_zoneid != zoneid)
15238 			continue;
15239 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15240 		    ipif->ipif_lcl_addr == INADDR_ANY)
15241 			continue;
15242 		mutex_exit(&uill->ill_lock);
15243 		ill_refrele(uill);
15244 		return (B_TRUE);
15245 	}
15246 	mutex_exit(&uill->ill_lock);
15247 	ill_refrele(uill);
15248 	return (B_FALSE);
15249 }
15250 
15251 /*
15252  * Find an ipif with a good local address on the ill+zoneid.
15253  */
15254 ipif_t *
15255 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
15256 {
15257 	ipif_t		*ipif;
15258 
15259 	mutex_enter(&ill->ill_lock);
15260 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15261 		if (IPIF_IS_CONDEMNED(ipif))
15262 			continue;
15263 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15264 			continue;
15265 		if (!(ipif->ipif_flags & IPIF_UP))
15266 			continue;
15267 		if (ipif->ipif_zoneid != zoneid &&
15268 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
15269 			continue;
15270 		if (ill->ill_isv6 ?
15271 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
15272 		    ipif->ipif_lcl_addr == INADDR_ANY)
15273 			continue;
15274 		ipif_refhold_locked(ipif);
15275 		mutex_exit(&ill->ill_lock);
15276 		return (ipif);
15277 	}
15278 	mutex_exit(&ill->ill_lock);
15279 	return (NULL);
15280 }
15281 
15282 /*
15283  * IP source address type, sorted from worst to best.  For a given type,
15284  * always prefer IP addresses on the same subnet.  All-zones addresses are
15285  * suboptimal because they pose problems with unlabeled destinations.
15286  */
15287 typedef enum {
15288 	IPIF_NONE,
15289 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
15290 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
15291 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
15292 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
15293 	IPIF_DIFFNET,			/* normal and different subnet */
15294 	IPIF_SAMENET,			/* normal and same subnet */
15295 	IPIF_LOCALADDR			/* local loopback */
15296 } ipif_type_t;
15297 
15298 /*
15299  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
15300  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
15301  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
15302  * the first one, unless IPMP is used in which case we round-robin among them;
15303  * see below for more.
15304  *
15305  * Returns NULL if there is no suitable source address for the ill.
15306  * This only occurs when there is no valid source address for the ill.
15307  */
15308 ipif_t *
15309 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
15310     boolean_t allow_usesrc, boolean_t *notreadyp)
15311 {
15312 	ill_t	*usill = NULL;
15313 	ill_t	*ipmp_ill = NULL;
15314 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
15315 	ipif_type_t type, best_type;
15316 	tsol_tpc_t *src_rhtp, *dst_rhtp;
15317 	ip_stack_t *ipst = ill->ill_ipst;
15318 	boolean_t samenet;
15319 
15320 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
15321 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
15322 		    B_FALSE, ipst);
15323 		if (usill != NULL)
15324 			ill = usill;	/* Select source from usesrc ILL */
15325 		else
15326 			return (NULL);
15327 	}
15328 
15329 	/*
15330 	 * Test addresses should never be used for source address selection,
15331 	 * so if we were passed one, switch to the IPMP meta-interface.
15332 	 */
15333 	if (IS_UNDER_IPMP(ill)) {
15334 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
15335 			ill = ipmp_ill;	/* Select source from IPMP ill */
15336 		else
15337 			return (NULL);
15338 	}
15339 
15340 	/*
15341 	 * If we're dealing with an unlabeled destination on a labeled system,
15342 	 * make sure that we ignore source addresses that are incompatible with
15343 	 * the destination's default label.  That destination's default label
15344 	 * must dominate the minimum label on the source address.
15345 	 */
15346 	dst_rhtp = NULL;
15347 	if (is_system_labeled()) {
15348 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
15349 		if (dst_rhtp == NULL)
15350 			return (NULL);
15351 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
15352 			TPC_RELE(dst_rhtp);
15353 			dst_rhtp = NULL;
15354 		}
15355 	}
15356 
15357 	/*
15358 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
15359 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
15360 	 * After selecting the right ipif, under ill_lock make sure ipif is
15361 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
15362 	 * we retry. Inside the loop we still need to check for CONDEMNED,
15363 	 * but not under a lock.
15364 	 */
15365 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
15366 retry:
15367 	/*
15368 	 * For source address selection, we treat the ipif list as circular
15369 	 * and continue until we get back to where we started.  This allows
15370 	 * IPMP to vary source address selection (which improves inbound load
15371 	 * spreading) by caching its last ending point and starting from
15372 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
15373 	 * ills since that can't happen on the IPMP ill.
15374 	 */
15375 	start_ipif = ill->ill_ipif;
15376 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
15377 		start_ipif = ill->ill_src_ipif;
15378 
15379 	ipif = start_ipif;
15380 	best_ipif = NULL;
15381 	best_type = IPIF_NONE;
15382 	do {
15383 		if ((next_ipif = ipif->ipif_next) == NULL)
15384 			next_ipif = ill->ill_ipif;
15385 
15386 		if (IPIF_IS_CONDEMNED(ipif))
15387 			continue;
15388 		/* Always skip NOLOCAL and ANYCAST interfaces */
15389 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
15390 			continue;
15391 		/* Always skip NOACCEPT interfaces */
15392 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
15393 			continue;
15394 		if (!(ipif->ipif_flags & IPIF_UP))
15395 			continue;
15396 
15397 		if (!ipif->ipif_addr_ready) {
15398 			if (notreadyp != NULL)
15399 				*notreadyp = B_TRUE;
15400 			continue;
15401 		}
15402 
15403 		if (zoneid != ALL_ZONES &&
15404 		    ipif->ipif_zoneid != zoneid &&
15405 		    ipif->ipif_zoneid != ALL_ZONES)
15406 			continue;
15407 
15408 		/*
15409 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
15410 		 * are not valid as source addresses.
15411 		 */
15412 		if (ipif->ipif_lcl_addr == INADDR_ANY)
15413 			continue;
15414 
15415 		/*
15416 		 * Check compatibility of local address for destination's
15417 		 * default label if we're on a labeled system.	Incompatible
15418 		 * addresses can't be used at all.
15419 		 */
15420 		if (dst_rhtp != NULL) {
15421 			boolean_t incompat;
15422 
15423 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
15424 			    IPV4_VERSION, B_FALSE);
15425 			if (src_rhtp == NULL)
15426 				continue;
15427 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
15428 			    src_rhtp->tpc_tp.tp_doi !=
15429 			    dst_rhtp->tpc_tp.tp_doi ||
15430 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
15431 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
15432 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
15433 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
15434 			TPC_RELE(src_rhtp);
15435 			if (incompat)
15436 				continue;
15437 		}
15438 
15439 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
15440 
15441 		if (ipif->ipif_lcl_addr == dst) {
15442 			type = IPIF_LOCALADDR;
15443 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
15444 			type = samenet ? IPIF_SAMENET_DEPRECATED :
15445 			    IPIF_DIFFNET_DEPRECATED;
15446 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
15447 			type = samenet ? IPIF_SAMENET_ALLZONES :
15448 			    IPIF_DIFFNET_ALLZONES;
15449 		} else {
15450 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
15451 		}
15452 
15453 		if (type > best_type) {
15454 			best_type = type;
15455 			best_ipif = ipif;
15456 			if (best_type == IPIF_LOCALADDR)
15457 				break; /* can't get better */
15458 		}
15459 	} while ((ipif = next_ipif) != start_ipif);
15460 
15461 	if ((ipif = best_ipif) != NULL) {
15462 		mutex_enter(&ipif->ipif_ill->ill_lock);
15463 		if (IPIF_IS_CONDEMNED(ipif)) {
15464 			mutex_exit(&ipif->ipif_ill->ill_lock);
15465 			goto retry;
15466 		}
15467 		ipif_refhold_locked(ipif);
15468 
15469 		/*
15470 		 * For IPMP, update the source ipif rotor to the next ipif,
15471 		 * provided we can look it up.  (We must not use it if it's
15472 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
15473 		 * ipif_free() checked ill_src_ipif.)
15474 		 */
15475 		if (IS_IPMP(ill) && ipif != NULL) {
15476 			next_ipif = ipif->ipif_next;
15477 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
15478 				ill->ill_src_ipif = next_ipif;
15479 			else
15480 				ill->ill_src_ipif = NULL;
15481 		}
15482 		mutex_exit(&ipif->ipif_ill->ill_lock);
15483 	}
15484 
15485 	rw_exit(&ipst->ips_ill_g_lock);
15486 	if (usill != NULL)
15487 		ill_refrele(usill);
15488 	if (ipmp_ill != NULL)
15489 		ill_refrele(ipmp_ill);
15490 	if (dst_rhtp != NULL)
15491 		TPC_RELE(dst_rhtp);
15492 
15493 #ifdef DEBUG
15494 	if (ipif == NULL) {
15495 		char buf1[INET6_ADDRSTRLEN];
15496 
15497 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
15498 		    ill->ill_name,
15499 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
15500 	} else {
15501 		char buf1[INET6_ADDRSTRLEN];
15502 		char buf2[INET6_ADDRSTRLEN];
15503 
15504 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
15505 		    ipif->ipif_ill->ill_name,
15506 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
15507 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
15508 		    buf2, sizeof (buf2))));
15509 	}
15510 #endif /* DEBUG */
15511 	return (ipif);
15512 }
15513 
15514 /*
15515  * Pick a source address based on the destination ill and an optional setsrc
15516  * address.
15517  * The result is stored in srcp. If generation is set, then put the source
15518  * generation number there before we look for the source address (to avoid
15519  * missing changes in the set of source addresses.
15520  * If flagsp is set, then us it to pass back ipif_flags.
15521  *
15522  * If the caller wants to cache the returned source address and detect when
15523  * that might be stale, the caller should pass in a generation argument,
15524  * which the caller can later compare against ips_src_generation
15525  *
15526  * The precedence order for selecting an IPv4 source address is:
15527  *  - RTF_SETSRC on the offlink ire always wins.
15528  *  - If usrsrc is set, swap the ill to be the usesrc one.
15529  *  - If IPMP is used on the ill, select a random address from the most
15530  *    preferred ones below:
15531  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15532  * 2. Not deprecated, not ALL_ZONES
15533  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15534  * 4. Not deprecated, ALL_ZONES
15535  * 5. If onlink destination, same subnet and deprecated
15536  * 6. Deprecated.
15537  *
15538  * We have lower preference for ALL_ZONES IP addresses,
15539  * as they pose problems with unlabeled destinations.
15540  *
15541  * Note that when multiple IP addresses match e.g., #1 we pick
15542  * the first one if IPMP is not in use. With IPMP we randomize.
15543  */
15544 int
15545 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15546     ipaddr_t multicast_ifaddr,
15547     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15548     uint32_t *generation, uint64_t *flagsp)
15549 {
15550 	ipif_t *ipif;
15551 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15552 
15553 	if (flagsp != NULL)
15554 		*flagsp = 0;
15555 
15556 	/*
15557 	 * Need to grab the generation number before we check to
15558 	 * avoid a race with a change to the set of local addresses.
15559 	 * No lock needed since the thread which updates the set of local
15560 	 * addresses use ipif/ill locks and exit those (hence a store memory
15561 	 * barrier) before doing the atomic increase of ips_src_generation.
15562 	 */
15563 	if (generation != NULL) {
15564 		*generation = ipst->ips_src_generation;
15565 	}
15566 
15567 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15568 		*srcp = multicast_ifaddr;
15569 		return (0);
15570 	}
15571 
15572 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15573 	if (setsrc != INADDR_ANY) {
15574 		*srcp = setsrc;
15575 		return (0);
15576 	}
15577 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15578 	if (ipif == NULL) {
15579 		if (notready)
15580 			return (ENETDOWN);
15581 		else
15582 			return (EADDRNOTAVAIL);
15583 	}
15584 	*srcp = ipif->ipif_lcl_addr;
15585 	if (flagsp != NULL)
15586 		*flagsp = ipif->ipif_flags;
15587 	ipif_refrele(ipif);
15588 	return (0);
15589 }
15590 
15591 /* ARGSUSED */
15592 int
15593 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15594 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15595 {
15596 	/*
15597 	 * ill_phyint_reinit merged the v4 and v6 into a single
15598 	 * ipsq.  We might not have been able to complete the
15599 	 * operation in ipif_set_values, if we could not become
15600 	 * exclusive.  If so restart it here.
15601 	 */
15602 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15603 }
15604 
15605 /*
15606  * Can operate on either a module or a driver queue.
15607  * Returns an error if not a module queue.
15608  */
15609 /* ARGSUSED */
15610 int
15611 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15612     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15613 {
15614 	queue_t		*q1 = q;
15615 	char 		*cp;
15616 	char		interf_name[LIFNAMSIZ];
15617 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15618 
15619 	if (q->q_next == NULL) {
15620 		ip1dbg((
15621 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15622 		return (EINVAL);
15623 	}
15624 
15625 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15626 		return (EALREADY);
15627 
15628 	do {
15629 		q1 = q1->q_next;
15630 	} while (q1->q_next);
15631 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15632 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15633 
15634 	/*
15635 	 * Here we are not going to delay the ioack until after
15636 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15637 	 * original ioctl message before sending the requests.
15638 	 */
15639 	return (ipif_set_values(q, mp, interf_name, &ppa));
15640 }
15641 
15642 /* ARGSUSED */
15643 int
15644 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15645     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15646 {
15647 	return (ENXIO);
15648 }
15649 
15650 /*
15651  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15652  * `irep'.  Returns a pointer to the next free `irep' entry
15653  * A mirror exists in ipif_delete_bcast_ires().
15654  *
15655  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15656  * done in ire_add.
15657  */
15658 static ire_t **
15659 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15660 {
15661 	ipaddr_t addr;
15662 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15663 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15664 	ill_t *ill = ipif->ipif_ill;
15665 	zoneid_t zoneid = ipif->ipif_zoneid;
15666 
15667 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15668 
15669 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15670 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15671 
15672 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15673 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15674 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15675 
15676 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15677 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15678 
15679 	/*
15680 	 * For backward compatibility, we create net broadcast IREs based on
15681 	 * the old "IP address class system", since some old machines only
15682 	 * respond to these class derived net broadcast.  However, we must not
15683 	 * create these net broadcast IREs if the subnetmask is shorter than
15684 	 * the IP address class based derived netmask.  Otherwise, we may
15685 	 * create a net broadcast address which is the same as an IP address
15686 	 * on the subnet -- and then TCP will refuse to talk to that address.
15687 	 */
15688 	if (netmask < subnetmask) {
15689 		addr = netmask & ipif->ipif_subnet;
15690 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15691 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15692 	}
15693 
15694 	/*
15695 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15696 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15697 	 * created.  Creating these broadcast IREs will only create confusion
15698 	 * as `addr' will be the same as the IP address.
15699 	 */
15700 	if (subnetmask != 0xFFFFFFFF) {
15701 		addr = ipif->ipif_subnet;
15702 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15703 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15704 	}
15705 
15706 	return (irep);
15707 }
15708 
15709 /*
15710  * Mirror of ipif_create_bcast_ires()
15711  */
15712 static void
15713 ipif_delete_bcast_ires(ipif_t *ipif)
15714 {
15715 	ipaddr_t	addr;
15716 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15717 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15718 	ill_t		*ill = ipif->ipif_ill;
15719 	zoneid_t	zoneid = ipif->ipif_zoneid;
15720 	ire_t		*ire;
15721 
15722 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15723 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15724 
15725 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15726 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15727 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15728 
15729 	ire = ire_lookup_bcast(ill, 0, zoneid);
15730 	ASSERT(ire != NULL);
15731 	ire_delete(ire); ire_refrele(ire);
15732 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15733 	ASSERT(ire != NULL);
15734 	ire_delete(ire); ire_refrele(ire);
15735 
15736 	/*
15737 	 * For backward compatibility, we create net broadcast IREs based on
15738 	 * the old "IP address class system", since some old machines only
15739 	 * respond to these class derived net broadcast.  However, we must not
15740 	 * create these net broadcast IREs if the subnetmask is shorter than
15741 	 * the IP address class based derived netmask.  Otherwise, we may
15742 	 * create a net broadcast address which is the same as an IP address
15743 	 * on the subnet -- and then TCP will refuse to talk to that address.
15744 	 */
15745 	if (netmask < subnetmask) {
15746 		addr = netmask & ipif->ipif_subnet;
15747 		ire = ire_lookup_bcast(ill, addr, zoneid);
15748 		ASSERT(ire != NULL);
15749 		ire_delete(ire); ire_refrele(ire);
15750 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15751 		ASSERT(ire != NULL);
15752 		ire_delete(ire); ire_refrele(ire);
15753 	}
15754 
15755 	/*
15756 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15757 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15758 	 * created.  Creating these broadcast IREs will only create confusion
15759 	 * as `addr' will be the same as the IP address.
15760 	 */
15761 	if (subnetmask != 0xFFFFFFFF) {
15762 		addr = ipif->ipif_subnet;
15763 		ire = ire_lookup_bcast(ill, addr, zoneid);
15764 		ASSERT(ire != NULL);
15765 		ire_delete(ire); ire_refrele(ire);
15766 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15767 		ASSERT(ire != NULL);
15768 		ire_delete(ire); ire_refrele(ire);
15769 	}
15770 }
15771 
15772 /*
15773  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15774  * from lifr_flags and the name from lifr_name.
15775  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15776  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15777  * Returns EINPROGRESS when mp has been consumed by queueing it on
15778  * ipx_pending_mp and the ioctl will complete in ip_rput.
15779  *
15780  * Can operate on either a module or a driver queue.
15781  * Returns an error if not a module queue.
15782  */
15783 /* ARGSUSED */
15784 int
15785 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15786     ip_ioctl_cmd_t *ipip, void *if_req)
15787 {
15788 	ill_t	*ill = q->q_ptr;
15789 	phyint_t *phyi;
15790 	ip_stack_t *ipst;
15791 	struct lifreq *lifr = if_req;
15792 	uint64_t new_flags;
15793 
15794 	ASSERT(ipif != NULL);
15795 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15796 
15797 	if (q->q_next == NULL) {
15798 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15799 		return (EINVAL);
15800 	}
15801 
15802 	/*
15803 	 * If we are not writer on 'q' then this interface exists already
15804 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15805 	 * so return EALREADY.
15806 	 */
15807 	if (ill != ipif->ipif_ill)
15808 		return (EALREADY);
15809 
15810 	if (ill->ill_name[0] != '\0')
15811 		return (EALREADY);
15812 
15813 	/*
15814 	 * If there's another ill already with the requested name, ensure
15815 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15816 	 * fuse together two unrelated ills, which will cause chaos.
15817 	 */
15818 	ipst = ill->ill_ipst;
15819 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15820 	    lifr->lifr_name, NULL);
15821 	if (phyi != NULL) {
15822 		ill_t *ill_mate = phyi->phyint_illv4;
15823 
15824 		if (ill_mate == NULL)
15825 			ill_mate = phyi->phyint_illv6;
15826 		ASSERT(ill_mate != NULL);
15827 
15828 		if (ill_mate->ill_media->ip_m_mac_type !=
15829 		    ill->ill_media->ip_m_mac_type) {
15830 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15831 			    "use the same ill name on differing media\n"));
15832 			return (EINVAL);
15833 		}
15834 	}
15835 
15836 	/*
15837 	 * We start off as IFF_IPV4 in ipif_allocate and become
15838 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15839 	 * The only flags that we read from user space are IFF_IPV4,
15840 	 * IFF_IPV6, and IFF_BROADCAST.
15841 	 *
15842 	 * This ill has not been inserted into the global list.
15843 	 * So we are still single threaded and don't need any lock
15844 	 *
15845 	 * Saniy check the flags.
15846 	 */
15847 
15848 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15849 	    ((lifr->lifr_flags & IFF_IPV6) ||
15850 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15851 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15852 		    "or IPv6 i.e., no broadcast \n"));
15853 		return (EINVAL);
15854 	}
15855 
15856 	new_flags =
15857 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15858 
15859 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15860 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15861 		    "IFF_IPV4 or IFF_IPV6\n"));
15862 		return (EINVAL);
15863 	}
15864 
15865 	/*
15866 	 * We always start off as IPv4, so only need to check for IPv6.
15867 	 */
15868 	if ((new_flags & IFF_IPV6) != 0) {
15869 		ill->ill_flags |= ILLF_IPV6;
15870 		ill->ill_flags &= ~ILLF_IPV4;
15871 
15872 		if (lifr->lifr_flags & IFF_NOLINKLOCAL)
15873 			ill->ill_flags |= ILLF_NOLINKLOCAL;
15874 	}
15875 
15876 	if ((new_flags & IFF_BROADCAST) != 0)
15877 		ipif->ipif_flags |= IPIF_BROADCAST;
15878 	else
15879 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15880 
15881 	/* We started off as V4. */
15882 	if (ill->ill_flags & ILLF_IPV6) {
15883 		ill->ill_phyint->phyint_illv6 = ill;
15884 		ill->ill_phyint->phyint_illv4 = NULL;
15885 	}
15886 
15887 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15888 }
15889 
15890 /* ARGSUSED */
15891 int
15892 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15893     ip_ioctl_cmd_t *ipip, void *if_req)
15894 {
15895 	/*
15896 	 * ill_phyint_reinit merged the v4 and v6 into a single
15897 	 * ipsq.  We might not have been able to complete the
15898 	 * slifname in ipif_set_values, if we could not become
15899 	 * exclusive.  If so restart it here
15900 	 */
15901 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15902 }
15903 
15904 /*
15905  * Return a pointer to the ipif which matches the index, IP version type and
15906  * zoneid.
15907  */
15908 ipif_t *
15909 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15910     ip_stack_t *ipst)
15911 {
15912 	ill_t	*ill;
15913 	ipif_t	*ipif = NULL;
15914 
15915 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15916 	if (ill != NULL) {
15917 		mutex_enter(&ill->ill_lock);
15918 		for (ipif = ill->ill_ipif; ipif != NULL;
15919 		    ipif = ipif->ipif_next) {
15920 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15921 			    zoneid == ipif->ipif_zoneid ||
15922 			    ipif->ipif_zoneid == ALL_ZONES)) {
15923 				ipif_refhold_locked(ipif);
15924 				break;
15925 			}
15926 		}
15927 		mutex_exit(&ill->ill_lock);
15928 		ill_refrele(ill);
15929 	}
15930 	return (ipif);
15931 }
15932 
15933 /*
15934  * Change an existing physical interface's index. If the new index
15935  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15936  * Finally, we update other systems which may have a dependence on the
15937  * index value.
15938  */
15939 /* ARGSUSED */
15940 int
15941 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15942     ip_ioctl_cmd_t *ipip, void *ifreq)
15943 {
15944 	ill_t		*ill;
15945 	phyint_t	*phyi;
15946 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15947 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15948 	uint_t	old_index, index;
15949 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15950 	avl_index_t	where;
15951 
15952 	if (ipip->ipi_cmd_type == IF_CMD)
15953 		index = ifr->ifr_index;
15954 	else
15955 		index = lifr->lifr_index;
15956 
15957 	/*
15958 	 * Only allow on physical interface. Also, index zero is illegal.
15959 	 */
15960 	ill = ipif->ipif_ill;
15961 	phyi = ill->ill_phyint;
15962 	if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) {
15963 		return (EINVAL);
15964 	}
15965 
15966 	/* If the index is not changing, no work to do */
15967 	if (phyi->phyint_ifindex == index)
15968 		return (0);
15969 
15970 	/*
15971 	 * Use phyint_exists() to determine if the new interface index
15972 	 * is already in use. If the index is unused then we need to
15973 	 * change the phyint's position in the phyint_list_avl_by_index
15974 	 * tree. If we do not do this, subsequent lookups (using the new
15975 	 * index value) will not find the phyint.
15976 	 */
15977 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15978 	if (phyint_exists(index, ipst)) {
15979 		rw_exit(&ipst->ips_ill_g_lock);
15980 		return (EEXIST);
15981 	}
15982 
15983 	/*
15984 	 * The new index is unused. Set it in the phyint. However we must not
15985 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15986 	 * changes. The event must be bound to old ifindex value.
15987 	 */
15988 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15989 	    &index, sizeof (index));
15990 
15991 	old_index = phyi->phyint_ifindex;
15992 	phyi->phyint_ifindex = index;
15993 
15994 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15995 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15996 	    &index, &where);
15997 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15998 	    phyi, where);
15999 	rw_exit(&ipst->ips_ill_g_lock);
16000 
16001 	/* Update SCTP's ILL list */
16002 	sctp_ill_reindex(ill, old_index);
16003 
16004 	/* Send the routing sockets message */
16005 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
16006 	if (ILL_OTHER(ill))
16007 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
16008 
16009 	/* Perhaps ilgs should use this ill */
16010 	update_conn_ill(NULL, ill->ill_ipst);
16011 	return (0);
16012 }
16013 
16014 /* ARGSUSED */
16015 int
16016 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16017     ip_ioctl_cmd_t *ipip, void *ifreq)
16018 {
16019 	struct ifreq	*ifr = (struct ifreq *)ifreq;
16020 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16021 
16022 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
16023 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16024 	/* Get the interface index */
16025 	if (ipip->ipi_cmd_type == IF_CMD) {
16026 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16027 	} else {
16028 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
16029 	}
16030 	return (0);
16031 }
16032 
16033 /* ARGSUSED */
16034 int
16035 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16036     ip_ioctl_cmd_t *ipip, void *ifreq)
16037 {
16038 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16039 
16040 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
16041 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16042 	/* Get the interface zone */
16043 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16044 	lifr->lifr_zoneid = ipif->ipif_zoneid;
16045 	return (0);
16046 }
16047 
16048 /*
16049  * Set the zoneid of an interface.
16050  */
16051 /* ARGSUSED */
16052 int
16053 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16054     ip_ioctl_cmd_t *ipip, void *ifreq)
16055 {
16056 	struct lifreq	*lifr = (struct lifreq *)ifreq;
16057 	int err = 0;
16058 	boolean_t need_up = B_FALSE;
16059 	zone_t *zptr;
16060 	zone_status_t status;
16061 	zoneid_t zoneid;
16062 
16063 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16064 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
16065 		if (!is_system_labeled())
16066 			return (ENOTSUP);
16067 		zoneid = GLOBAL_ZONEID;
16068 	}
16069 
16070 	/* cannot assign instance zero to a non-global zone */
16071 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
16072 		return (ENOTSUP);
16073 
16074 	/*
16075 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
16076 	 * the event of a race with the zone shutdown processing, since IP
16077 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
16078 	 * interface will be cleaned up even if the zone is shut down
16079 	 * immediately after the status check. If the interface can't be brought
16080 	 * down right away, and the zone is shut down before the restart
16081 	 * function is called, we resolve the possible races by rechecking the
16082 	 * zone status in the restart function.
16083 	 */
16084 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
16085 		return (EINVAL);
16086 	status = zone_status_get(zptr);
16087 	zone_rele(zptr);
16088 
16089 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
16090 		return (EINVAL);
16091 
16092 	if (ipif->ipif_flags & IPIF_UP) {
16093 		/*
16094 		 * If the interface is already marked up,
16095 		 * we call ipif_down which will take care
16096 		 * of ditching any IREs that have been set
16097 		 * up based on the old interface address.
16098 		 */
16099 		err = ipif_logical_down(ipif, q, mp);
16100 		if (err == EINPROGRESS)
16101 			return (err);
16102 		(void) ipif_down_tail(ipif);
16103 		need_up = B_TRUE;
16104 	}
16105 
16106 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
16107 	return (err);
16108 }
16109 
16110 static int
16111 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
16112     queue_t *q, mblk_t *mp, boolean_t need_up)
16113 {
16114 	int	err = 0;
16115 	ip_stack_t	*ipst;
16116 
16117 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
16118 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16119 
16120 	if (CONN_Q(q))
16121 		ipst = CONNQ_TO_IPST(q);
16122 	else
16123 		ipst = ILLQ_TO_IPST(q);
16124 
16125 	/*
16126 	 * For exclusive stacks we don't allow a different zoneid than
16127 	 * global.
16128 	 */
16129 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
16130 	    zoneid != GLOBAL_ZONEID)
16131 		return (EINVAL);
16132 
16133 	/* Set the new zone id. */
16134 	ipif->ipif_zoneid = zoneid;
16135 
16136 	/* Update sctp list */
16137 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
16138 
16139 	/* The default multicast interface might have changed */
16140 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
16141 
16142 	if (need_up) {
16143 		/*
16144 		 * Now bring the interface back up.  If this
16145 		 * is the only IPIF for the ILL, ipif_up
16146 		 * will have to re-bind to the device, so
16147 		 * we may get back EINPROGRESS, in which
16148 		 * case, this IOCTL will get completed in
16149 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
16150 		 */
16151 		err = ipif_up(ipif, q, mp);
16152 	}
16153 	return (err);
16154 }
16155 
16156 /* ARGSUSED */
16157 int
16158 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16159     ip_ioctl_cmd_t *ipip, void *if_req)
16160 {
16161 	struct lifreq *lifr = (struct lifreq *)if_req;
16162 	zoneid_t zoneid;
16163 	zone_t *zptr;
16164 	zone_status_t status;
16165 
16166 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
16167 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
16168 		zoneid = GLOBAL_ZONEID;
16169 
16170 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
16171 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16172 
16173 	/*
16174 	 * We recheck the zone status to resolve the following race condition:
16175 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
16176 	 * 2) hme0:1 is up and can't be brought down right away;
16177 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
16178 	 * 3) zone "myzone" is halted; the zone status switches to
16179 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
16180 	 * the interfaces to remove - hme0:1 is not returned because it's not
16181 	 * yet in "myzone", so it won't be removed;
16182 	 * 4) the restart function for SIOCSLIFZONE is called; without the
16183 	 * status check here, we would have hme0:1 in "myzone" after it's been
16184 	 * destroyed.
16185 	 * Note that if the status check fails, we need to bring the interface
16186 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
16187 	 * ipif_up_done[_v6]().
16188 	 */
16189 	status = ZONE_IS_UNINITIALIZED;
16190 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
16191 		status = zone_status_get(zptr);
16192 		zone_rele(zptr);
16193 	}
16194 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
16195 		if (ipif->ipif_isv6) {
16196 			(void) ipif_up_done_v6(ipif);
16197 		} else {
16198 			(void) ipif_up_done(ipif);
16199 		}
16200 		return (EINVAL);
16201 	}
16202 
16203 	(void) ipif_down_tail(ipif);
16204 
16205 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
16206 	    B_TRUE));
16207 }
16208 
16209 /*
16210  * Return the number of addresses on `ill' with one or more of the values
16211  * in `set' set and all of the values in `clear' clear.
16212  */
16213 static uint_t
16214 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
16215 {
16216 	ipif_t	*ipif;
16217 	uint_t	cnt = 0;
16218 
16219 	ASSERT(IAM_WRITER_ILL(ill));
16220 
16221 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
16222 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
16223 			cnt++;
16224 
16225 	return (cnt);
16226 }
16227 
16228 /*
16229  * Return the number of migratable addresses on `ill' that are under
16230  * application control.
16231  */
16232 uint_t
16233 ill_appaddr_cnt(const ill_t *ill)
16234 {
16235 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
16236 	    IPIF_NOFAILOVER));
16237 }
16238 
16239 /*
16240  * Return the number of point-to-point addresses on `ill'.
16241  */
16242 uint_t
16243 ill_ptpaddr_cnt(const ill_t *ill)
16244 {
16245 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
16246 }
16247 
16248 /* ARGSUSED */
16249 int
16250 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16251 	ip_ioctl_cmd_t *ipip, void *ifreq)
16252 {
16253 	struct lifreq	*lifr = ifreq;
16254 
16255 	ASSERT(q->q_next == NULL);
16256 	ASSERT(CONN_Q(q));
16257 
16258 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
16259 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
16260 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
16261 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
16262 
16263 	return (0);
16264 }
16265 
16266 /* Find the previous ILL in this usesrc group */
16267 static ill_t *
16268 ill_prev_usesrc(ill_t *uill)
16269 {
16270 	ill_t *ill;
16271 
16272 	for (ill = uill->ill_usesrc_grp_next;
16273 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
16274 	    ill = ill->ill_usesrc_grp_next)
16275 		/* do nothing */;
16276 	return (ill);
16277 }
16278 
16279 /*
16280  * Release all members of the usesrc group. This routine is called
16281  * from ill_delete when the interface being unplumbed is the
16282  * group head.
16283  *
16284  * This silently clears the usesrc that ifconfig setup.
16285  * An alternative would be to keep that ifindex, and drop packets on the floor
16286  * since no source address can be selected.
16287  * Even if we keep the current semantics, don't need a lock and a linked list.
16288  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
16289  * the one that is being removed. Issue is how we return the usesrc users
16290  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
16291  * ill_usesrc_ifindex matching a target ill. We could also do that with an
16292  * ill walk, but the walker would need to insert in the ioctl response.
16293  */
16294 static void
16295 ill_disband_usesrc_group(ill_t *uill)
16296 {
16297 	ill_t *next_ill, *tmp_ill;
16298 	ip_stack_t	*ipst = uill->ill_ipst;
16299 
16300 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16301 	next_ill = uill->ill_usesrc_grp_next;
16302 
16303 	do {
16304 		ASSERT(next_ill != NULL);
16305 		tmp_ill = next_ill->ill_usesrc_grp_next;
16306 		ASSERT(tmp_ill != NULL);
16307 		next_ill->ill_usesrc_grp_next = NULL;
16308 		next_ill->ill_usesrc_ifindex = 0;
16309 		next_ill = tmp_ill;
16310 	} while (next_ill->ill_usesrc_ifindex != 0);
16311 	uill->ill_usesrc_grp_next = NULL;
16312 }
16313 
16314 /*
16315  * Remove the client usesrc ILL from the list and relink to a new list
16316  */
16317 int
16318 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
16319 {
16320 	ill_t *ill, *tmp_ill;
16321 	ip_stack_t	*ipst = ucill->ill_ipst;
16322 
16323 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
16324 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
16325 
16326 	/*
16327 	 * Check if the usesrc client ILL passed in is not already
16328 	 * in use as a usesrc ILL i.e one whose source address is
16329 	 * in use OR a usesrc ILL is not already in use as a usesrc
16330 	 * client ILL
16331 	 */
16332 	if ((ucill->ill_usesrc_ifindex == 0) ||
16333 	    (uill->ill_usesrc_ifindex != 0)) {
16334 		return (-1);
16335 	}
16336 
16337 	ill = ill_prev_usesrc(ucill);
16338 	ASSERT(ill->ill_usesrc_grp_next != NULL);
16339 
16340 	/* Remove from the current list */
16341 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
16342 		/* Only two elements in the list */
16343 		ASSERT(ill->ill_usesrc_ifindex == 0);
16344 		ill->ill_usesrc_grp_next = NULL;
16345 	} else {
16346 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
16347 	}
16348 
16349 	if (ifindex == 0) {
16350 		ucill->ill_usesrc_ifindex = 0;
16351 		ucill->ill_usesrc_grp_next = NULL;
16352 		return (0);
16353 	}
16354 
16355 	ucill->ill_usesrc_ifindex = ifindex;
16356 	tmp_ill = uill->ill_usesrc_grp_next;
16357 	uill->ill_usesrc_grp_next = ucill;
16358 	ucill->ill_usesrc_grp_next =
16359 	    (tmp_ill != NULL) ? tmp_ill : uill;
16360 	return (0);
16361 }
16362 
16363 /*
16364  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
16365  * ip.c for locking details.
16366  */
16367 /* ARGSUSED */
16368 int
16369 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16370     ip_ioctl_cmd_t *ipip, void *ifreq)
16371 {
16372 	struct lifreq *lifr = (struct lifreq *)ifreq;
16373 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
16374 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
16375 	int err = 0, ret;
16376 	uint_t ifindex;
16377 	ipsq_t *ipsq = NULL;
16378 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16379 
16380 	ASSERT(IAM_WRITER_IPIF(ipif));
16381 	ASSERT(q->q_next == NULL);
16382 	ASSERT(CONN_Q(q));
16383 
16384 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
16385 
16386 	ifindex = lifr->lifr_index;
16387 	if (ifindex == 0) {
16388 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
16389 			/* non usesrc group interface, nothing to reset */
16390 			return (0);
16391 		}
16392 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
16393 		/* valid reset request */
16394 		reset_flg = B_TRUE;
16395 	}
16396 
16397 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
16398 	if (usesrc_ill == NULL)
16399 		return (ENXIO);
16400 	if (usesrc_ill == ipif->ipif_ill) {
16401 		ill_refrele(usesrc_ill);
16402 		return (EINVAL);
16403 	}
16404 
16405 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
16406 	    NEW_OP, B_TRUE);
16407 	if (ipsq == NULL) {
16408 		err = EINPROGRESS;
16409 		/* Operation enqueued on the ipsq of the usesrc ILL */
16410 		goto done;
16411 	}
16412 
16413 	/* USESRC isn't currently supported with IPMP */
16414 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
16415 		err = ENOTSUP;
16416 		goto done;
16417 	}
16418 
16419 	/*
16420 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
16421 	 * used by IPMP underlying interfaces, but someone might think it's
16422 	 * more general and try to use it independently with VNI.)
16423 	 */
16424 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
16425 		err = ENOTSUP;
16426 		goto done;
16427 	}
16428 
16429 	/*
16430 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
16431 	 * already a client then return EINVAL
16432 	 */
16433 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
16434 		err = EINVAL;
16435 		goto done;
16436 	}
16437 
16438 	/*
16439 	 * If the ill_usesrc_ifindex field is already set to what it needs to
16440 	 * be then this is a duplicate operation.
16441 	 */
16442 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
16443 		err = 0;
16444 		goto done;
16445 	}
16446 
16447 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
16448 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
16449 	    usesrc_ill->ill_isv6));
16450 
16451 	/*
16452 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
16453 	 * and the ill_usesrc_ifindex fields
16454 	 */
16455 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
16456 
16457 	if (reset_flg) {
16458 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
16459 		if (ret != 0) {
16460 			err = EINVAL;
16461 		}
16462 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
16463 		goto done;
16464 	}
16465 
16466 	/*
16467 	 * Four possibilities to consider:
16468 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
16469 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
16470 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
16471 	 * 4. Both are part of their respective usesrc groups
16472 	 */
16473 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
16474 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16475 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
16476 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16477 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16478 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
16479 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
16480 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
16481 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
16482 		/* Insert at head of list */
16483 		usesrc_cli_ill->ill_usesrc_grp_next =
16484 		    usesrc_ill->ill_usesrc_grp_next;
16485 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
16486 	} else {
16487 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
16488 		    ifindex);
16489 		if (ret != 0)
16490 			err = EINVAL;
16491 	}
16492 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
16493 
16494 done:
16495 	if (ipsq != NULL)
16496 		ipsq_exit(ipsq);
16497 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
16498 	ill_refrele(usesrc_ill);
16499 
16500 	/* Let conn_ixa caching know that source address selection changed */
16501 	ip_update_source_selection(ipst);
16502 
16503 	return (err);
16504 }
16505 
16506 /* ARGSUSED */
16507 int
16508 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16509     ip_ioctl_cmd_t *ipip, void *if_req)
16510 {
16511 	struct lifreq	*lifr = (struct lifreq *)if_req;
16512 	ill_t		*ill = ipif->ipif_ill;
16513 
16514 	/*
16515 	 * Need a lock since IFF_UP can be set even when there are
16516 	 * references to the ipif.
16517 	 */
16518 	mutex_enter(&ill->ill_lock);
16519 	if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0)
16520 		lifr->lifr_dadstate = DAD_IN_PROGRESS;
16521 	else
16522 		lifr->lifr_dadstate = DAD_DONE;
16523 	mutex_exit(&ill->ill_lock);
16524 	return (0);
16525 }
16526 
16527 /*
16528  * comparison function used by avl.
16529  */
16530 static int
16531 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
16532 {
16533 
16534 	uint_t index;
16535 
16536 	ASSERT(phyip != NULL && index_ptr != NULL);
16537 
16538 	index = *((uint_t *)index_ptr);
16539 	/*
16540 	 * let the phyint with the lowest index be on top.
16541 	 */
16542 	if (((phyint_t *)phyip)->phyint_ifindex < index)
16543 		return (1);
16544 	if (((phyint_t *)phyip)->phyint_ifindex > index)
16545 		return (-1);
16546 	return (0);
16547 }
16548 
16549 /*
16550  * comparison function used by avl.
16551  */
16552 static int
16553 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
16554 {
16555 	ill_t *ill;
16556 	int res = 0;
16557 
16558 	ASSERT(phyip != NULL && name_ptr != NULL);
16559 
16560 	if (((phyint_t *)phyip)->phyint_illv4)
16561 		ill = ((phyint_t *)phyip)->phyint_illv4;
16562 	else
16563 		ill = ((phyint_t *)phyip)->phyint_illv6;
16564 	ASSERT(ill != NULL);
16565 
16566 	res = strcmp(ill->ill_name, (char *)name_ptr);
16567 	if (res > 0)
16568 		return (1);
16569 	else if (res < 0)
16570 		return (-1);
16571 	return (0);
16572 }
16573 
16574 /*
16575  * This function is called on the unplumb path via ill_glist_delete() when
16576  * there are no ills left on the phyint and thus the phyint can be freed.
16577  */
16578 static void
16579 phyint_free(phyint_t *phyi)
16580 {
16581 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16582 
16583 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16584 
16585 	/*
16586 	 * If this phyint was an IPMP meta-interface, blow away the group.
16587 	 * This is safe to do because all of the illgrps have already been
16588 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16589 	 * If we're cleaning up as a result of failed initialization,
16590 	 * phyint_grp may be NULL.
16591 	 */
16592 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16593 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16594 		ipmp_grp_destroy(phyi->phyint_grp);
16595 		phyi->phyint_grp = NULL;
16596 		rw_exit(&ipst->ips_ipmp_lock);
16597 	}
16598 
16599 	/*
16600 	 * If this interface was under IPMP, take it out of the group.
16601 	 */
16602 	if (phyi->phyint_grp != NULL)
16603 		ipmp_phyint_leave_grp(phyi);
16604 
16605 	/*
16606 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16607 	 * will be freed in ipsq_exit().
16608 	 */
16609 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16610 	phyi->phyint_name[0] = '\0';
16611 
16612 	mi_free(phyi);
16613 }
16614 
16615 /*
16616  * Attach the ill to the phyint structure which can be shared by both
16617  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16618  * function is called from ipif_set_values and ill_lookup_on_name (for
16619  * loopback) where we know the name of the ill. We lookup the ill and if
16620  * there is one present already with the name use that phyint. Otherwise
16621  * reuse the one allocated by ill_init.
16622  */
16623 static void
16624 ill_phyint_reinit(ill_t *ill)
16625 {
16626 	boolean_t isv6 = ill->ill_isv6;
16627 	phyint_t *phyi_old;
16628 	phyint_t *phyi;
16629 	avl_index_t where = 0;
16630 	ill_t	*ill_other = NULL;
16631 	ip_stack_t	*ipst = ill->ill_ipst;
16632 
16633 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16634 
16635 	phyi_old = ill->ill_phyint;
16636 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16637 	    phyi_old->phyint_illv6 == NULL));
16638 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16639 	    phyi_old->phyint_illv4 == NULL));
16640 	ASSERT(phyi_old->phyint_ifindex == 0);
16641 
16642 	/*
16643 	 * Now that our ill has a name, set it in the phyint.
16644 	 */
16645 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16646 
16647 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16648 	    ill->ill_name, &where);
16649 
16650 	/*
16651 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16652 	 *    the global list of ills. So no other thread could have located
16653 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16654 	 * 2. Now locate the other protocol instance of this ill.
16655 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16656 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16657 	 *    of neither ill can change.
16658 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16659 	 *    other ill.
16660 	 * 5. Release all locks.
16661 	 */
16662 
16663 	/*
16664 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16665 	 * we are initializing IPv4.
16666 	 */
16667 	if (phyi != NULL) {
16668 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16669 		ASSERT(ill_other->ill_phyint != NULL);
16670 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16671 		    (!isv6 && ill_other->ill_isv6));
16672 		GRAB_ILL_LOCKS(ill, ill_other);
16673 		/*
16674 		 * We are potentially throwing away phyint_flags which
16675 		 * could be different from the one that we obtain from
16676 		 * ill_other->ill_phyint. But it is okay as we are assuming
16677 		 * that the state maintained within IP is correct.
16678 		 */
16679 		mutex_enter(&phyi->phyint_lock);
16680 		if (isv6) {
16681 			ASSERT(phyi->phyint_illv6 == NULL);
16682 			phyi->phyint_illv6 = ill;
16683 		} else {
16684 			ASSERT(phyi->phyint_illv4 == NULL);
16685 			phyi->phyint_illv4 = ill;
16686 		}
16687 
16688 		/*
16689 		 * Delete the old phyint and make its ipsq eligible
16690 		 * to be freed in ipsq_exit().
16691 		 */
16692 		phyi_old->phyint_illv4 = NULL;
16693 		phyi_old->phyint_illv6 = NULL;
16694 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16695 		phyi_old->phyint_name[0] = '\0';
16696 		mi_free(phyi_old);
16697 	} else {
16698 		mutex_enter(&ill->ill_lock);
16699 		/*
16700 		 * We don't need to acquire any lock, since
16701 		 * the ill is not yet visible globally  and we
16702 		 * have not yet released the ill_g_lock.
16703 		 */
16704 		phyi = phyi_old;
16705 		mutex_enter(&phyi->phyint_lock);
16706 		/* XXX We need a recovery strategy here. */
16707 		if (!phyint_assign_ifindex(phyi, ipst))
16708 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16709 
16710 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16711 		    (void *)phyi, where);
16712 
16713 		(void) avl_find(&ipst->ips_phyint_g_list->
16714 		    phyint_list_avl_by_index,
16715 		    &phyi->phyint_ifindex, &where);
16716 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16717 		    (void *)phyi, where);
16718 	}
16719 
16720 	/*
16721 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16722 	 * pending mp is not affected because that is per ill basis.
16723 	 */
16724 	ill->ill_phyint = phyi;
16725 
16726 	/*
16727 	 * Now that the phyint's ifindex has been assigned, complete the
16728 	 * remaining
16729 	 */
16730 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16731 	if (ill->ill_isv6) {
16732 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16733 		    ill->ill_phyint->phyint_ifindex;
16734 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16735 	} else {
16736 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16737 	}
16738 
16739 	/*
16740 	 * Generate an event within the hooks framework to indicate that
16741 	 * a new interface has just been added to IP.  For this event to
16742 	 * be generated, the network interface must, at least, have an
16743 	 * ifindex assigned to it.  (We don't generate the event for
16744 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16745 	 *
16746 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16747 	 * that the ordering of delivered events to listeners matches the
16748 	 * order of them in the kernel.
16749 	 */
16750 	if (!IS_LOOPBACK(ill)) {
16751 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16752 		    ill->ill_name_length);
16753 	}
16754 	RELEASE_ILL_LOCKS(ill, ill_other);
16755 	mutex_exit(&phyi->phyint_lock);
16756 }
16757 
16758 /*
16759  * Notify any downstream modules of the name of this interface.
16760  * An M_IOCTL is used even though we don't expect a successful reply.
16761  * Any reply message from the driver (presumably an M_IOCNAK) will
16762  * eventually get discarded somewhere upstream.  The message format is
16763  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16764  * to IP.
16765  */
16766 static void
16767 ip_ifname_notify(ill_t *ill, queue_t *q)
16768 {
16769 	mblk_t *mp1, *mp2;
16770 	struct iocblk *iocp;
16771 	struct lifreq *lifr;
16772 
16773 	mp1 = mkiocb(SIOCSLIFNAME);
16774 	if (mp1 == NULL)
16775 		return;
16776 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16777 	if (mp2 == NULL) {
16778 		freeb(mp1);
16779 		return;
16780 	}
16781 
16782 	mp1->b_cont = mp2;
16783 	iocp = (struct iocblk *)mp1->b_rptr;
16784 	iocp->ioc_count = sizeof (struct lifreq);
16785 
16786 	lifr = (struct lifreq *)mp2->b_rptr;
16787 	mp2->b_wptr += sizeof (struct lifreq);
16788 	bzero(lifr, sizeof (struct lifreq));
16789 
16790 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16791 	lifr->lifr_ppa = ill->ill_ppa;
16792 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16793 
16794 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16795 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16796 	putnext(q, mp1);
16797 }
16798 
16799 static int
16800 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16801 {
16802 	int		err;
16803 	ip_stack_t	*ipst = ill->ill_ipst;
16804 	phyint_t	*phyi = ill->ill_phyint;
16805 
16806 	/*
16807 	 * Now that ill_name is set, the configuration for the IPMP
16808 	 * meta-interface can be performed.
16809 	 */
16810 	if (IS_IPMP(ill)) {
16811 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16812 		/*
16813 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16814 		 * meta-interface and we need to create the IPMP group.
16815 		 */
16816 		if (phyi->phyint_grp == NULL) {
16817 			/*
16818 			 * If someone has renamed another IPMP group to have
16819 			 * the same name as our interface, bail.
16820 			 */
16821 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16822 				rw_exit(&ipst->ips_ipmp_lock);
16823 				return (EEXIST);
16824 			}
16825 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16826 			if (phyi->phyint_grp == NULL) {
16827 				rw_exit(&ipst->ips_ipmp_lock);
16828 				return (ENOMEM);
16829 			}
16830 		}
16831 		rw_exit(&ipst->ips_ipmp_lock);
16832 	}
16833 
16834 	/* Tell downstream modules where they are. */
16835 	ip_ifname_notify(ill, q);
16836 
16837 	/*
16838 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16839 	 * Error cases are ENOMEM ...
16840 	 */
16841 	err = ill_dl_phys(ill, ipif, mp, q);
16842 
16843 	if (ill->ill_isv6) {
16844 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16845 		if (ipst->ips_mld_slowtimeout_id == 0) {
16846 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16847 			    (void *)ipst,
16848 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16849 		}
16850 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16851 	} else {
16852 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16853 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16854 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16855 			    (void *)ipst,
16856 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16857 		}
16858 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16859 	}
16860 
16861 	return (err);
16862 }
16863 
16864 /*
16865  * Common routine for ppa and ifname setting. Should be called exclusive.
16866  *
16867  * Returns EINPROGRESS when mp has been consumed by queueing it on
16868  * ipx_pending_mp and the ioctl will complete in ip_rput.
16869  *
16870  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16871  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16872  * For SLIFNAME, we pass these values back to the userland.
16873  */
16874 static int
16875 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16876 {
16877 	ill_t	*ill;
16878 	ipif_t	*ipif;
16879 	ipsq_t	*ipsq;
16880 	char	*ppa_ptr;
16881 	char	*old_ptr;
16882 	char	old_char;
16883 	int	error;
16884 	ip_stack_t	*ipst;
16885 
16886 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16887 	ASSERT(q->q_next != NULL);
16888 	ASSERT(interf_name != NULL);
16889 
16890 	ill = (ill_t *)q->q_ptr;
16891 	ipst = ill->ill_ipst;
16892 
16893 	ASSERT(ill->ill_ipst != NULL);
16894 	ASSERT(ill->ill_name[0] == '\0');
16895 	ASSERT(IAM_WRITER_ILL(ill));
16896 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16897 	ASSERT(ill->ill_ppa == UINT_MAX);
16898 
16899 	ill->ill_defend_start = ill->ill_defend_count = 0;
16900 	/* The ppa is sent down by ifconfig or is chosen */
16901 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16902 		return (EINVAL);
16903 	}
16904 
16905 	/*
16906 	 * make sure ppa passed in is same as ppa in the name.
16907 	 * This check is not made when ppa == UINT_MAX in that case ppa
16908 	 * in the name could be anything. System will choose a ppa and
16909 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16910 	 */
16911 	if (*new_ppa_ptr != UINT_MAX) {
16912 		/* stoi changes the pointer */
16913 		old_ptr = ppa_ptr;
16914 		/*
16915 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16916 		 * (they don't have an externally visible ppa).  We assign one
16917 		 * here so that we can manage the interface.  Note that in
16918 		 * the past this value was always 0 for DLPI 1 drivers.
16919 		 */
16920 		if (*new_ppa_ptr == 0)
16921 			*new_ppa_ptr = stoi(&old_ptr);
16922 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16923 			return (EINVAL);
16924 	}
16925 	/*
16926 	 * terminate string before ppa
16927 	 * save char at that location.
16928 	 */
16929 	old_char = ppa_ptr[0];
16930 	ppa_ptr[0] = '\0';
16931 
16932 	ill->ill_ppa = *new_ppa_ptr;
16933 	/*
16934 	 * Finish as much work now as possible before calling ill_glist_insert
16935 	 * which makes the ill globally visible and also merges it with the
16936 	 * other protocol instance of this phyint. The remaining work is
16937 	 * done after entering the ipsq which may happen sometime later.
16938 	 */
16939 	ipif = ill->ill_ipif;
16940 
16941 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16942 	ipif_assign_seqid(ipif);
16943 
16944 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16945 		ill->ill_flags |= ILLF_IPV4;
16946 
16947 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16948 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16949 
16950 	if (ill->ill_flags & ILLF_IPV6) {
16951 
16952 		ill->ill_isv6 = B_TRUE;
16953 		ill_set_inputfn(ill);
16954 		if (ill->ill_rq != NULL) {
16955 			ill->ill_rq->q_qinfo = &iprinitv6;
16956 		}
16957 
16958 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16959 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16960 		ipif->ipif_v6subnet = ipv6_all_zeros;
16961 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16962 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16963 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16964 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16965 		/*
16966 		 * point-to-point or Non-mulicast capable
16967 		 * interfaces won't do NUD unless explicitly
16968 		 * configured to do so.
16969 		 */
16970 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16971 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16972 			ill->ill_flags |= ILLF_NONUD;
16973 		}
16974 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16975 		if (ill->ill_flags & ILLF_NOARP) {
16976 			/*
16977 			 * Note: xresolv interfaces will eventually need
16978 			 * NOARP set here as well, but that will require
16979 			 * those external resolvers to have some
16980 			 * knowledge of that flag and act appropriately.
16981 			 * Not to be changed at present.
16982 			 */
16983 			ill->ill_flags &= ~ILLF_NOARP;
16984 		}
16985 		/*
16986 		 * Set the ILLF_ROUTER flag according to the global
16987 		 * IPv6 forwarding policy.
16988 		 */
16989 		if (ipst->ips_ipv6_forwarding != 0)
16990 			ill->ill_flags |= ILLF_ROUTER;
16991 	} else if (ill->ill_flags & ILLF_IPV4) {
16992 		ill->ill_isv6 = B_FALSE;
16993 		ill_set_inputfn(ill);
16994 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16995 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16996 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16997 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16998 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16999 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
17000 		/*
17001 		 * Set the ILLF_ROUTER flag according to the global
17002 		 * IPv4 forwarding policy.
17003 		 */
17004 		if (ipst->ips_ip_forwarding != 0)
17005 			ill->ill_flags |= ILLF_ROUTER;
17006 	}
17007 
17008 	ASSERT(ill->ill_phyint != NULL);
17009 
17010 	/*
17011 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
17012 	 * be completed in ill_glist_insert -> ill_phyint_reinit
17013 	 */
17014 	if (!ill_allocate_mibs(ill))
17015 		return (ENOMEM);
17016 
17017 	/*
17018 	 * Pick a default sap until we get the DL_INFO_ACK back from
17019 	 * the driver.
17020 	 */
17021 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
17022 	    ill->ill_media->ip_m_ipv4sap;
17023 
17024 	ill->ill_ifname_pending = 1;
17025 	ill->ill_ifname_pending_err = 0;
17026 
17027 	/*
17028 	 * When the first ipif comes up in ipif_up_done(), multicast groups
17029 	 * that were joined while this ill was not bound to the DLPI link need
17030 	 * to be recovered by ill_recover_multicast().
17031 	 */
17032 	ill->ill_need_recover_multicast = 1;
17033 
17034 	ill_refhold(ill);
17035 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17036 	if ((error = ill_glist_insert(ill, interf_name,
17037 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
17038 		ill->ill_ppa = UINT_MAX;
17039 		ill->ill_name[0] = '\0';
17040 		/*
17041 		 * undo null termination done above.
17042 		 */
17043 		ppa_ptr[0] = old_char;
17044 		rw_exit(&ipst->ips_ill_g_lock);
17045 		ill_refrele(ill);
17046 		return (error);
17047 	}
17048 
17049 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
17050 
17051 	/*
17052 	 * When we return the buffer pointed to by interf_name should contain
17053 	 * the same name as in ill_name.
17054 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
17055 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
17056 	 * so copy full name and update the ppa ptr.
17057 	 * When ppa passed in != UINT_MAX all values are correct just undo
17058 	 * null termination, this saves a bcopy.
17059 	 */
17060 	if (*new_ppa_ptr == UINT_MAX) {
17061 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
17062 		*new_ppa_ptr = ill->ill_ppa;
17063 	} else {
17064 		/*
17065 		 * undo null termination done above.
17066 		 */
17067 		ppa_ptr[0] = old_char;
17068 	}
17069 
17070 	/* Let SCTP know about this ILL */
17071 	sctp_update_ill(ill, SCTP_ILL_INSERT);
17072 
17073 	/*
17074 	 * ill_glist_insert has made the ill visible globally, and
17075 	 * ill_phyint_reinit could have changed the ipsq. At this point,
17076 	 * we need to hold the ips_ill_g_lock across the call to enter the
17077 	 * ipsq to enforce atomicity and prevent reordering. In the event
17078 	 * the ipsq has changed, and if the new ipsq is currently busy,
17079 	 * we need to make sure that this half-completed ioctl is ahead of
17080 	 * any subsequent ioctl. We achieve this by not dropping the
17081 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
17082 	 * ensuring that new ioctls can't start.
17083 	 */
17084 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
17085 	    B_TRUE);
17086 
17087 	rw_exit(&ipst->ips_ill_g_lock);
17088 	ill_refrele(ill);
17089 	if (ipsq == NULL)
17090 		return (EINPROGRESS);
17091 
17092 	/*
17093 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
17094 	 */
17095 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
17096 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
17097 	else
17098 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
17099 
17100 	error = ipif_set_values_tail(ill, ipif, mp, q);
17101 	ipsq_exit(ipsq);
17102 	if (error != 0 && error != EINPROGRESS) {
17103 		/*
17104 		 * restore previous values
17105 		 */
17106 		ill->ill_isv6 = B_FALSE;
17107 		ill_set_inputfn(ill);
17108 	}
17109 	return (error);
17110 }
17111 
17112 void
17113 ipif_init(ip_stack_t *ipst)
17114 {
17115 	int i;
17116 
17117 	for (i = 0; i < MAX_G_HEADS; i++) {
17118 		ipst->ips_ill_g_heads[i].ill_g_list_head =
17119 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17120 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
17121 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
17122 	}
17123 
17124 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17125 	    ill_phyint_compare_index,
17126 	    sizeof (phyint_t),
17127 	    offsetof(struct phyint, phyint_avl_by_index));
17128 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17129 	    ill_phyint_compare_name,
17130 	    sizeof (phyint_t),
17131 	    offsetof(struct phyint, phyint_avl_by_name));
17132 }
17133 
17134 /*
17135  * Save enough information so that we can recreate the IRE if
17136  * the interface goes down and then up.
17137  */
17138 void
17139 ill_save_ire(ill_t *ill, ire_t *ire)
17140 {
17141 	mblk_t	*save_mp;
17142 
17143 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
17144 	if (save_mp != NULL) {
17145 		ifrt_t	*ifrt;
17146 
17147 		save_mp->b_wptr += sizeof (ifrt_t);
17148 		ifrt = (ifrt_t *)save_mp->b_rptr;
17149 		bzero(ifrt, sizeof (ifrt_t));
17150 		ifrt->ifrt_type = ire->ire_type;
17151 		if (ire->ire_ipversion == IPV4_VERSION) {
17152 			ASSERT(!ill->ill_isv6);
17153 			ifrt->ifrt_addr = ire->ire_addr;
17154 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
17155 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
17156 			ifrt->ifrt_mask = ire->ire_mask;
17157 		} else {
17158 			ASSERT(ill->ill_isv6);
17159 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
17160 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
17161 			mutex_enter(&ire->ire_lock);
17162 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
17163 			mutex_exit(&ire->ire_lock);
17164 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
17165 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
17166 		}
17167 		ifrt->ifrt_flags = ire->ire_flags;
17168 		ifrt->ifrt_zoneid = ire->ire_zoneid;
17169 		mutex_enter(&ill->ill_saved_ire_lock);
17170 		save_mp->b_cont = ill->ill_saved_ire_mp;
17171 		ill->ill_saved_ire_mp = save_mp;
17172 		ill->ill_saved_ire_cnt++;
17173 		mutex_exit(&ill->ill_saved_ire_lock);
17174 	}
17175 }
17176 
17177 /*
17178  * Remove one entry from ill_saved_ire_mp.
17179  */
17180 void
17181 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
17182 {
17183 	mblk_t	**mpp;
17184 	mblk_t	*mp;
17185 	ifrt_t	*ifrt;
17186 
17187 	/* Remove from ill_saved_ire_mp list if it is there */
17188 	mutex_enter(&ill->ill_saved_ire_lock);
17189 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
17190 	    mpp = &(*mpp)->b_cont) {
17191 		in6_addr_t	gw_addr_v6;
17192 
17193 		/*
17194 		 * On a given ill, the tuple of address, gateway, mask,
17195 		 * ire_type, and zoneid is unique for each saved IRE.
17196 		 */
17197 		mp = *mpp;
17198 		ifrt = (ifrt_t *)mp->b_rptr;
17199 		/* ire_gateway_addr_v6 can change - need lock */
17200 		mutex_enter(&ire->ire_lock);
17201 		gw_addr_v6 = ire->ire_gateway_addr_v6;
17202 		mutex_exit(&ire->ire_lock);
17203 
17204 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
17205 		    ifrt->ifrt_type != ire->ire_type)
17206 			continue;
17207 
17208 		if (ill->ill_isv6 ?
17209 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
17210 		    &ire->ire_addr_v6) &&
17211 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
17212 		    &gw_addr_v6) &&
17213 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
17214 		    &ire->ire_mask_v6)) :
17215 		    (ifrt->ifrt_addr == ire->ire_addr &&
17216 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
17217 		    ifrt->ifrt_mask == ire->ire_mask)) {
17218 			*mpp = mp->b_cont;
17219 			ill->ill_saved_ire_cnt--;
17220 			freeb(mp);
17221 			break;
17222 		}
17223 	}
17224 	mutex_exit(&ill->ill_saved_ire_lock);
17225 }
17226 
17227 /*
17228  * IP multirouting broadcast routes handling
17229  * Append CGTP broadcast IREs to regular ones created
17230  * at ifconfig time.
17231  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
17232  * the destination and the gateway are broadcast addresses.
17233  * The caller has verified that the destination is an IRE_BROADCAST and that
17234  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
17235  * we create a MULTIRT IRE_BROADCAST.
17236  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
17237  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
17238  */
17239 static void
17240 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
17241 {
17242 	ire_t *ire_prim;
17243 
17244 	ASSERT(ire != NULL);
17245 
17246 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17247 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
17248 	    NULL);
17249 	if (ire_prim != NULL) {
17250 		/*
17251 		 * We are in the special case of broadcasts for
17252 		 * CGTP. We add an IRE_BROADCAST that holds
17253 		 * the RTF_MULTIRT flag, the destination
17254 		 * address and the low level
17255 		 * info of ire_prim. In other words, CGTP
17256 		 * broadcast is added to the redundant ipif.
17257 		 */
17258 		ill_t *ill_prim;
17259 		ire_t  *bcast_ire;
17260 
17261 		ill_prim = ire_prim->ire_ill;
17262 
17263 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
17264 		    (void *)ire_prim, (void *)ill_prim));
17265 
17266 		bcast_ire = ire_create(
17267 		    (uchar_t *)&ire->ire_addr,
17268 		    (uchar_t *)&ip_g_all_ones,
17269 		    (uchar_t *)&ire->ire_gateway_addr,
17270 		    IRE_BROADCAST,
17271 		    ill_prim,
17272 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
17273 		    ire->ire_flags | RTF_KERNEL,
17274 		    NULL,
17275 		    ipst);
17276 
17277 		/*
17278 		 * Here we assume that ire_add does head insertion so that
17279 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
17280 		 */
17281 		if (bcast_ire != NULL) {
17282 			if (ire->ire_flags & RTF_SETSRC) {
17283 				bcast_ire->ire_setsrc_addr =
17284 				    ire->ire_setsrc_addr;
17285 			}
17286 			bcast_ire = ire_add(bcast_ire);
17287 			if (bcast_ire != NULL) {
17288 				ip2dbg(("ip_cgtp_filter_bcast_add: "
17289 				    "added bcast_ire %p\n",
17290 				    (void *)bcast_ire));
17291 
17292 				ill_save_ire(ill_prim, bcast_ire);
17293 				ire_refrele(bcast_ire);
17294 			}
17295 		}
17296 		ire_refrele(ire_prim);
17297 	}
17298 }
17299 
17300 /*
17301  * IP multirouting broadcast routes handling
17302  * Remove the broadcast ire.
17303  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
17304  * the destination and the gateway are broadcast addresses.
17305  * The caller has only verified that RTF_MULTIRT was set. We check
17306  * that the destination is broadcast and that the gateway is a broadcast
17307  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
17308  */
17309 static void
17310 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
17311 {
17312 	ASSERT(ire != NULL);
17313 
17314 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
17315 		ire_t *ire_prim;
17316 
17317 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
17318 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
17319 		    ipst, NULL);
17320 		if (ire_prim != NULL) {
17321 			ill_t *ill_prim;
17322 			ire_t  *bcast_ire;
17323 
17324 			ill_prim = ire_prim->ire_ill;
17325 
17326 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
17327 			    "ire_prim %p, ill_prim %p\n",
17328 			    (void *)ire_prim, (void *)ill_prim));
17329 
17330 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
17331 			    ire->ire_gateway_addr, IRE_BROADCAST,
17332 			    ill_prim, ALL_ZONES, NULL,
17333 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
17334 			    MATCH_IRE_MASK, 0, ipst, NULL);
17335 
17336 			if (bcast_ire != NULL) {
17337 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
17338 				    "looked up bcast_ire %p\n",
17339 				    (void *)bcast_ire));
17340 				ill_remove_saved_ire(bcast_ire->ire_ill,
17341 				    bcast_ire);
17342 				ire_delete(bcast_ire);
17343 				ire_refrele(bcast_ire);
17344 			}
17345 			ire_refrele(ire_prim);
17346 		}
17347 	}
17348 }
17349 
17350 /*
17351  * Derive an interface id from the link layer address.
17352  * Knows about IEEE 802 and IEEE EUI-64 mappings.
17353  */
17354 static void
17355 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17356 {
17357 	char		*addr;
17358 
17359 	/*
17360 	 * Note that some IPv6 interfaces get plumbed over links that claim to
17361 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
17362 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
17363 	 * interface ID on IPv6 interfaces above links that actually have real
17364 	 * Ethernet addresses.
17365 	 */
17366 	if (ill->ill_phys_addr_length == ETHERADDRL) {
17367 		/* Form EUI-64 like address */
17368 		addr = (char *)&v6addr->s6_addr32[2];
17369 		bcopy(ill->ill_phys_addr, addr, 3);
17370 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
17371 		addr[3] = (char)0xff;
17372 		addr[4] = (char)0xfe;
17373 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
17374 	}
17375 }
17376 
17377 /* ARGSUSED */
17378 static void
17379 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17380 {
17381 }
17382 
17383 typedef struct ipmp_ifcookie {
17384 	uint32_t	ic_hostid;
17385 	char		ic_ifname[LIFNAMSIZ];
17386 	char		ic_zonename[ZONENAME_MAX];
17387 } ipmp_ifcookie_t;
17388 
17389 /*
17390  * Construct a pseudo-random interface ID for the IPMP interface that's both
17391  * predictable and (almost) guaranteed to be unique.
17392  */
17393 static void
17394 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17395 {
17396 	zone_t		*zp;
17397 	uint8_t		*addr;
17398 	uchar_t		hash[16];
17399 	ulong_t 	hostid;
17400 	MD5_CTX		ctx;
17401 	ipmp_ifcookie_t	ic = { 0 };
17402 
17403 	ASSERT(IS_IPMP(ill));
17404 
17405 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
17406 	ic.ic_hostid = htonl((uint32_t)hostid);
17407 
17408 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
17409 
17410 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
17411 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
17412 		zone_rele(zp);
17413 	}
17414 
17415 	MD5Init(&ctx);
17416 	MD5Update(&ctx, &ic, sizeof (ic));
17417 	MD5Final(hash, &ctx);
17418 
17419 	/*
17420 	 * Map the hash to an interface ID per the basic approach in RFC3041.
17421 	 */
17422 	addr = &v6addr->s6_addr8[8];
17423 	bcopy(hash + 8, addr, sizeof (uint64_t));
17424 	addr[0] &= ~0x2;				/* set local bit */
17425 }
17426 
17427 /*
17428  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
17429  */
17430 static void
17431 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
17432 {
17433 	phyint_t *phyi = ill->ill_phyint;
17434 
17435 	/*
17436 	 * Check PHYI_MULTI_BCAST and length of physical
17437 	 * address to determine if we use the mapping or the
17438 	 * broadcast address.
17439 	 */
17440 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17441 	    ill->ill_phys_addr_length != ETHERADDRL) {
17442 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
17443 		return;
17444 	}
17445 	m_physaddr[0] = 0x33;
17446 	m_physaddr[1] = 0x33;
17447 	m_physaddr[2] = m_ip6addr[12];
17448 	m_physaddr[3] = m_ip6addr[13];
17449 	m_physaddr[4] = m_ip6addr[14];
17450 	m_physaddr[5] = m_ip6addr[15];
17451 }
17452 
17453 /*
17454  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
17455  */
17456 static void
17457 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17458 {
17459 	phyint_t *phyi = ill->ill_phyint;
17460 
17461 	/*
17462 	 * Check PHYI_MULTI_BCAST and length of physical
17463 	 * address to determine if we use the mapping or the
17464 	 * broadcast address.
17465 	 */
17466 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
17467 	    ill->ill_phys_addr_length != ETHERADDRL) {
17468 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
17469 		return;
17470 	}
17471 	m_physaddr[0] = 0x01;
17472 	m_physaddr[1] = 0x00;
17473 	m_physaddr[2] = 0x5e;
17474 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
17475 	m_physaddr[4] = m_ipaddr[2];
17476 	m_physaddr[5] = m_ipaddr[3];
17477 }
17478 
17479 /* ARGSUSED */
17480 static void
17481 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17482 {
17483 	/*
17484 	 * for the MULTI_BCAST case and other cases when we want to
17485 	 * use the link-layer broadcast address for multicast.
17486 	 */
17487 	uint8_t	*bphys_addr;
17488 	dl_unitdata_req_t *dlur;
17489 
17490 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17491 	if (ill->ill_sap_length < 0) {
17492 		bphys_addr = (uchar_t *)dlur +
17493 		    dlur->dl_dest_addr_offset;
17494 	} else  {
17495 		bphys_addr = (uchar_t *)dlur +
17496 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
17497 	}
17498 
17499 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
17500 }
17501 
17502 /*
17503  * Derive IPoIB interface id from the link layer address.
17504  */
17505 static void
17506 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17507 {
17508 	char		*addr;
17509 
17510 	ASSERT(ill->ill_phys_addr_length == 20);
17511 	addr = (char *)&v6addr->s6_addr32[2];
17512 	bcopy(ill->ill_phys_addr + 12, addr, 8);
17513 	/*
17514 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
17515 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
17516 	 * rules. In these cases, the IBA considers these GUIDs to be in
17517 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
17518 	 * required; vendors are required not to assign global EUI-64's
17519 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
17520 	 * of the interface identifier. Whether the GUID is in modified
17521 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
17522 	 * bit set to 1.
17523 	 */
17524 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
17525 }
17526 
17527 /*
17528  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
17529  * Note on mapping from multicast IP addresses to IPoIB multicast link
17530  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
17531  * The format of an IPoIB multicast address is:
17532  *
17533  *  4 byte QPN      Scope Sign.  Pkey
17534  * +--------------------------------------------+
17535  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
17536  * +--------------------------------------------+
17537  *
17538  * The Scope and Pkey components are properties of the IBA port and
17539  * network interface. They can be ascertained from the broadcast address.
17540  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
17541  */
17542 static void
17543 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17544 {
17545 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17546 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17547 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17548 	uint8_t	*bphys_addr;
17549 	dl_unitdata_req_t *dlur;
17550 
17551 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17552 
17553 	/*
17554 	 * RFC 4391: IPv4 MGID is 28-bit long.
17555 	 */
17556 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17557 	m_physaddr[17] = m_ipaddr[1];
17558 	m_physaddr[18] = m_ipaddr[2];
17559 	m_physaddr[19] = m_ipaddr[3];
17560 
17561 
17562 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17563 	if (ill->ill_sap_length < 0) {
17564 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17565 	} else  {
17566 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17567 		    ill->ill_sap_length;
17568 	}
17569 	/*
17570 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17571 	 */
17572 	m_physaddr[5] = bphys_addr[5];
17573 	m_physaddr[8] = bphys_addr[8];
17574 	m_physaddr[9] = bphys_addr[9];
17575 }
17576 
17577 static void
17578 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17579 {
17580 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17581 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17582 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17583 	uint8_t	*bphys_addr;
17584 	dl_unitdata_req_t *dlur;
17585 
17586 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17587 
17588 	/*
17589 	 * RFC 4391: IPv4 MGID is 80-bit long.
17590 	 */
17591 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17592 
17593 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17594 	if (ill->ill_sap_length < 0) {
17595 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17596 	} else  {
17597 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17598 		    ill->ill_sap_length;
17599 	}
17600 	/*
17601 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17602 	 */
17603 	m_physaddr[5] = bphys_addr[5];
17604 	m_physaddr[8] = bphys_addr[8];
17605 	m_physaddr[9] = bphys_addr[9];
17606 }
17607 
17608 /*
17609  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17610  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17611  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17612  * of RFC4213.
17613  */
17614 static void
17615 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17616 {
17617 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17618 	v6addr->s6_addr32[2] = 0;
17619 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17620 }
17621 
17622 /*
17623  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17624  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17625  * id.
17626  */
17627 static void
17628 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17629 {
17630 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17631 
17632 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17633 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17634 }
17635 
17636 static void
17637 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17638 {
17639 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17640 }
17641 
17642 static void
17643 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17644 {
17645 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17646 }
17647 
17648 static void
17649 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17650 {
17651 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17652 }
17653 
17654 static void
17655 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17656 {
17657 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17658 }
17659 
17660 /*
17661  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17662  * Returns an held ill, or NULL.
17663  */
17664 ill_t *
17665 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17666     ip_stack_t *ipst)
17667 {
17668 	ill_t	*ill;
17669 	ipif_t	*ipif;
17670 
17671 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17672 	if (ill == NULL)
17673 		return (NULL);
17674 
17675 	mutex_enter(&ill->ill_lock);
17676 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17677 		if (IPIF_IS_CONDEMNED(ipif))
17678 			continue;
17679 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17680 		    ipif->ipif_zoneid != ALL_ZONES)
17681 			continue;
17682 
17683 		mutex_exit(&ill->ill_lock);
17684 		return (ill);
17685 	}
17686 	mutex_exit(&ill->ill_lock);
17687 	ill_refrele(ill);
17688 	return (NULL);
17689 }
17690 
17691 /*
17692  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17693  * If a pointer to an ipif_t is returned then the caller will need to do
17694  * an ill_refrele().
17695  */
17696 ipif_t *
17697 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17698     ip_stack_t *ipst)
17699 {
17700 	ipif_t *ipif;
17701 	ill_t *ill;
17702 
17703 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17704 	if (ill == NULL)
17705 		return (NULL);
17706 
17707 	mutex_enter(&ill->ill_lock);
17708 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17709 		mutex_exit(&ill->ill_lock);
17710 		ill_refrele(ill);
17711 		return (NULL);
17712 	}
17713 
17714 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17715 		if (!IPIF_CAN_LOOKUP(ipif))
17716 			continue;
17717 		if (lifidx == ipif->ipif_id) {
17718 			ipif_refhold_locked(ipif);
17719 			break;
17720 		}
17721 	}
17722 
17723 	mutex_exit(&ill->ill_lock);
17724 	ill_refrele(ill);
17725 	return (ipif);
17726 }
17727 
17728 /*
17729  * Set ill_inputfn based on the current know state.
17730  * This needs to be called when any of the factors taken into
17731  * account changes.
17732  */
17733 void
17734 ill_set_inputfn(ill_t *ill)
17735 {
17736 	ip_stack_t	*ipst = ill->ill_ipst;
17737 
17738 	if (ill->ill_isv6) {
17739 		if (is_system_labeled())
17740 			ill->ill_inputfn = ill_input_full_v6;
17741 		else
17742 			ill->ill_inputfn = ill_input_short_v6;
17743 	} else {
17744 		if (is_system_labeled())
17745 			ill->ill_inputfn = ill_input_full_v4;
17746 		else if (ill->ill_dhcpinit != 0)
17747 			ill->ill_inputfn = ill_input_full_v4;
17748 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17749 		    != NULL)
17750 			ill->ill_inputfn = ill_input_full_v4;
17751 		else if (ipst->ips_ip_cgtp_filter &&
17752 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17753 			ill->ill_inputfn = ill_input_full_v4;
17754 		else
17755 			ill->ill_inputfn = ill_input_short_v4;
17756 	}
17757 }
17758 
17759 /*
17760  * Re-evaluate ill_inputfn for all the IPv4 ills.
17761  * Used when RSVP and CGTP comes and goes.
17762  */
17763 void
17764 ill_set_inputfn_all(ip_stack_t *ipst)
17765 {
17766 	ill_walk_context_t	ctx;
17767 	ill_t			*ill;
17768 
17769 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17770 	ill = ILL_START_WALK_V4(&ctx, ipst);
17771 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17772 		ill_set_inputfn(ill);
17773 
17774 	rw_exit(&ipst->ips_ill_g_lock);
17775 }
17776 
17777 /*
17778  * Set the physical address information for `ill' to the contents of the
17779  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17780  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17781  * EINPROGRESS will be returned.
17782  */
17783 int
17784 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17785 {
17786 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17787 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17788 
17789 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17790 
17791 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17792 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17793 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17794 		/* Changing DL_IPV6_TOKEN is not yet supported */
17795 		return (0);
17796 	}
17797 
17798 	/*
17799 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17800 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17801 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17802 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17803 	 */
17804 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17805 		freemsg(mp);
17806 		return (ENOMEM);
17807 	}
17808 
17809 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17810 
17811 	/*
17812 	 * Since we'll only do a logical down, we can't rely on ipif_down
17813 	 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset
17814 	 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this
17815 	 * case, to quiesce ire's and nce's for ill_is_quiescent.
17816 	 */
17817 	mutex_enter(&ill->ill_lock);
17818 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17819 	/* no more ire/nce addition allowed */
17820 	mutex_exit(&ill->ill_lock);
17821 
17822 	/*
17823 	 * If we can quiesce the ill, then set the address.  If not, then
17824 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17825 	 */
17826 	ill_down_ipifs(ill, B_TRUE);
17827 	mutex_enter(&ill->ill_lock);
17828 	if (!ill_is_quiescent(ill)) {
17829 		/* call cannot fail since `conn_t *' argument is NULL */
17830 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17831 		    mp, ILL_DOWN);
17832 		mutex_exit(&ill->ill_lock);
17833 		return (EINPROGRESS);
17834 	}
17835 	mutex_exit(&ill->ill_lock);
17836 
17837 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17838 	return (0);
17839 }
17840 
17841 /*
17842  * When the allowed-ips link property is set on the datalink, IP receives a
17843  * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips()
17844  * to initialize the ill_allowed_ips[] array in the ill_t. This array is then
17845  * used to vet addresses passed to ip_sioctl_addr() and to ensure that the
17846  * only IP addresses configured on the ill_t are those in the ill_allowed_ips[]
17847  * array.
17848  */
17849 void
17850 ill_set_allowed_ips(ill_t *ill, mblk_t *mp)
17851 {
17852 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17853 	dl_notify_ind_t	*dlip = (dl_notify_ind_t *)mp->b_rptr;
17854 	mac_protect_t *mrp;
17855 	int i;
17856 
17857 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17858 	mrp = (mac_protect_t *)&dlip[1];
17859 
17860 	if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */
17861 		kmem_free(ill->ill_allowed_ips,
17862 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17863 		ill->ill_allowed_ips_cnt = 0;
17864 		ill->ill_allowed_ips = NULL;
17865 		mutex_enter(&ill->ill_phyint->phyint_lock);
17866 		ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT;
17867 		mutex_exit(&ill->ill_phyint->phyint_lock);
17868 		return;
17869 	}
17870 
17871 	if (ill->ill_allowed_ips != NULL) {
17872 		kmem_free(ill->ill_allowed_ips,
17873 		    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t));
17874 	}
17875 	ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt;
17876 	ill->ill_allowed_ips = kmem_alloc(
17877 	    ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP);
17878 	for (i = 0; i < mrp->mp_ipaddrcnt;  i++)
17879 		ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr;
17880 
17881 	mutex_enter(&ill->ill_phyint->phyint_lock);
17882 	ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT;
17883 	mutex_exit(&ill->ill_phyint->phyint_lock);
17884 }
17885 
17886 /*
17887  * Once the ill associated with `q' has quiesced, set its physical address
17888  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17889  * are passed (linked by b_cont), since we sometimes need to save two distinct
17890  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17891  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17892  * is quiesced, we know any stale nce's with the old address information have
17893  * already been removed, so we don't need to call nce_flush().
17894  */
17895 /* ARGSUSED */
17896 static void
17897 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17898 {
17899 	ill_t		*ill = q->q_ptr;
17900 	mblk_t		*addrmp2 = unlinkb(addrmp);
17901 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17902 	uint_t		addrlen, addroff;
17903 	int		status;
17904 
17905 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17906 
17907 	addroff	= dlindp->dl_addr_offset;
17908 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17909 
17910 	switch (dlindp->dl_data) {
17911 	case DL_IPV6_LINK_LAYER_ADDR:
17912 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17913 		freemsg(addrmp2);
17914 		break;
17915 
17916 	case DL_CURR_DEST_ADDR:
17917 		freemsg(ill->ill_dest_addr_mp);
17918 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17919 		ill->ill_dest_addr_mp = addrmp;
17920 		if (ill->ill_isv6) {
17921 			ill_setdesttoken(ill);
17922 			ipif_setdestlinklocal(ill->ill_ipif);
17923 		}
17924 		freemsg(addrmp2);
17925 		break;
17926 
17927 	case DL_CURR_PHYS_ADDR:
17928 		freemsg(ill->ill_phys_addr_mp);
17929 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17930 		ill->ill_phys_addr_mp = addrmp;
17931 		ill->ill_phys_addr_length = addrlen;
17932 		if (ill->ill_isv6)
17933 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17934 		else
17935 			freemsg(addrmp2);
17936 		if (ill->ill_isv6) {
17937 			ill_setdefaulttoken(ill);
17938 			ipif_setlinklocal(ill->ill_ipif);
17939 		}
17940 		break;
17941 	default:
17942 		ASSERT(0);
17943 	}
17944 
17945 	/*
17946 	 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires
17947 	 * as we bring the ipifs up again.
17948 	 */
17949 	mutex_enter(&ill->ill_lock);
17950 	ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17951 	mutex_exit(&ill->ill_lock);
17952 	/*
17953 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17954 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17955 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17956 	 * brought up.
17957 	 */
17958 	status = ill_up_ipifs(ill, q, addrmp);
17959 	if (status != EINPROGRESS)
17960 		ipsq_current_finish(ipsq);
17961 }
17962 
17963 /*
17964  * Helper routine for setting the ill_nd_lla fields.
17965  */
17966 void
17967 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17968 {
17969 	freemsg(ill->ill_nd_lla_mp);
17970 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17971 	ill->ill_nd_lla_mp = ndmp;
17972 	ill->ill_nd_lla_len = addrlen;
17973 }
17974 
17975 /*
17976  * Replumb the ill.
17977  */
17978 int
17979 ill_replumb(ill_t *ill, mblk_t *mp)
17980 {
17981 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17982 
17983 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17984 
17985 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17986 
17987 	/*
17988 	 * If we can quiesce the ill, then continue.  If not, then
17989 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17990 	 */
17991 	ill_down_ipifs(ill, B_FALSE);
17992 
17993 	mutex_enter(&ill->ill_lock);
17994 	if (!ill_is_quiescent(ill)) {
17995 		/* call cannot fail since `conn_t *' argument is NULL */
17996 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17997 		    mp, ILL_DOWN);
17998 		mutex_exit(&ill->ill_lock);
17999 		return (EINPROGRESS);
18000 	}
18001 	mutex_exit(&ill->ill_lock);
18002 
18003 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
18004 	return (0);
18005 }
18006 
18007 /* ARGSUSED */
18008 static void
18009 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
18010 {
18011 	ill_t *ill = q->q_ptr;
18012 	int err;
18013 	conn_t *connp = NULL;
18014 
18015 	ASSERT(IAM_WRITER_IPSQ(ipsq));
18016 	freemsg(ill->ill_replumb_mp);
18017 	ill->ill_replumb_mp = copyb(mp);
18018 
18019 	if (ill->ill_replumb_mp == NULL) {
18020 		/* out of memory */
18021 		ipsq_current_finish(ipsq);
18022 		return;
18023 	}
18024 
18025 	mutex_enter(&ill->ill_lock);
18026 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
18027 	    ill->ill_rq, ill->ill_replumb_mp, 0);
18028 	mutex_exit(&ill->ill_lock);
18029 
18030 	if (!ill->ill_up_ipifs) {
18031 		/* already closing */
18032 		ipsq_current_finish(ipsq);
18033 		return;
18034 	}
18035 	ill->ill_replumbing = 1;
18036 	err = ill_down_ipifs_tail(ill);
18037 
18038 	/*
18039 	 * Successfully quiesced and brought down the interface, now we send
18040 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
18041 	 * DL_NOTE_REPLUMB message.
18042 	 */
18043 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
18044 	    DL_NOTIFY_CONF);
18045 	ASSERT(mp != NULL);
18046 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
18047 	    DL_NOTE_REPLUMB_DONE;
18048 	ill_dlpi_send(ill, mp);
18049 
18050 	/*
18051 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
18052 	 * streams have to be unbound. When all the DLPI exchanges are done,
18053 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
18054 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
18055 	 * arp_bringup_done().
18056 	 */
18057 	ASSERT(ill->ill_replumb_mp != NULL);
18058 	if (err == EINPROGRESS)
18059 		return;
18060 	else
18061 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
18062 	ASSERT(connp == NULL);
18063 	if (err == 0 && ill->ill_replumb_mp != NULL &&
18064 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
18065 		return;
18066 	}
18067 	ipsq_current_finish(ipsq);
18068 }
18069 
18070 /*
18071  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
18072  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
18073  * as per the ioctl.  On failure, an errno is returned.
18074  */
18075 static int
18076 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
18077 {
18078 	int rval;
18079 	struct strioctl iocb;
18080 
18081 	iocb.ic_cmd = cmd;
18082 	iocb.ic_timout = 15;
18083 	iocb.ic_len = bufsize;
18084 	iocb.ic_dp = buf;
18085 
18086 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
18087 }
18088 
18089 /*
18090  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
18091  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
18092  */
18093 static int
18094 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
18095     uint_t *bufsizep, cred_t *cr)
18096 {
18097 	int err;
18098 	struct lifnum lifn;
18099 
18100 	bzero(&lifn, sizeof (lifn));
18101 	lifn.lifn_family = af;
18102 	lifn.lifn_flags = LIFC_UNDER_IPMP;
18103 
18104 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
18105 		return (err);
18106 
18107 	/*
18108 	 * Pad the interface count to account for additional interfaces that
18109 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
18110 	 */
18111 	lifn.lifn_count += 4;
18112 	bzero(lifcp, sizeof (*lifcp));
18113 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
18114 	lifcp->lifc_family = af;
18115 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
18116 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
18117 
18118 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
18119 	if (err != 0) {
18120 		kmem_free(lifcp->lifc_buf, *bufsizep);
18121 		return (err);
18122 	}
18123 
18124 	return (0);
18125 }
18126 
18127 /*
18128  * Helper for ip_interface_cleanup() that removes the loopback interface.
18129  */
18130 static void
18131 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18132 {
18133 	int err;
18134 	struct lifreq lifr;
18135 
18136 	bzero(&lifr, sizeof (lifr));
18137 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
18138 
18139 	/*
18140 	 * Attempt to remove the interface.  It may legitimately not exist
18141 	 * (e.g. the zone administrator unplumbed it), so ignore ENXIO.
18142 	 */
18143 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
18144 	if (err != 0 && err != ENXIO) {
18145 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
18146 		    "error %d\n", isv6 ? "v6" : "v4", err));
18147 	}
18148 }
18149 
18150 /*
18151  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
18152  * groups and that IPMP data addresses are down.  These conditions must be met
18153  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
18154  */
18155 static void
18156 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
18157 {
18158 	int af = isv6 ? AF_INET6 : AF_INET;
18159 	int i, nifs;
18160 	int err;
18161 	uint_t bufsize;
18162 	uint_t lifrsize = sizeof (struct lifreq);
18163 	struct lifconf lifc;
18164 	struct lifreq *lifrp;
18165 
18166 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
18167 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
18168 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
18169 		return;
18170 	}
18171 
18172 	nifs = lifc.lifc_len / lifrsize;
18173 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
18174 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18175 		if (err != 0) {
18176 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
18177 			    "flags: error %d", lifrp->lifr_name, err);
18178 			continue;
18179 		}
18180 
18181 		if (lifrp->lifr_flags & IFF_IPMP) {
18182 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
18183 				continue;
18184 
18185 			lifrp->lifr_flags &= ~IFF_UP;
18186 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
18187 			if (err != 0) {
18188 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18189 				    "bring down (error %d); IPMP interface may "
18190 				    "not be shutdown", lifrp->lifr_name, err);
18191 			}
18192 
18193 			/*
18194 			 * Check if IFF_DUPLICATE is still set -- and if so,
18195 			 * reset the address to clear it.
18196 			 */
18197 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
18198 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
18199 				continue;
18200 
18201 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
18202 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
18203 			    lifrp, lifrsize, cr)) != 0) {
18204 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18205 				    "reset DAD (error %d); IPMP interface may "
18206 				    "not be shutdown", lifrp->lifr_name, err);
18207 			}
18208 			continue;
18209 		}
18210 
18211 		if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) {
18212 			lifrp->lifr_groupname[0] = '\0';
18213 			if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp,
18214 			    lifrsize, cr)) != 0) {
18215 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
18216 				    "leave IPMP group (error %d); associated "
18217 				    "IPMP interface may not be shutdown",
18218 				    lifrp->lifr_name, err);
18219 				continue;
18220 			}
18221 		}
18222 	}
18223 
18224 	kmem_free(lifc.lifc_buf, bufsize);
18225 }
18226 
18227 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
18228 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
18229 
18230 /*
18231  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
18232  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
18233  * when the user-level processes in the zone are killed and the latter are
18234  * cleaned up by str_stack_shutdown().
18235  */
18236 void
18237 ip_interface_cleanup(ip_stack_t *ipst)
18238 {
18239 	ldi_handle_t	lh;
18240 	ldi_ident_t	li;
18241 	cred_t		*cr;
18242 	int		err;
18243 	int		i;
18244 	char		*devs[] = { UDP6DEV, UDPDEV };
18245 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
18246 
18247 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
18248 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
18249 		    " error %d", err);
18250 		return;
18251 	}
18252 
18253 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
18254 	ASSERT(cr != NULL);
18255 
18256 	/*
18257 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
18258 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
18259 	 * the loop.)
18260 	 */
18261 	for (i = 0; i < 2; i++) {
18262 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
18263 		if (err != 0) {
18264 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
18265 			    " error %d", devs[i], err);
18266 			continue;
18267 		}
18268 
18269 		ip_loopback_removeif(lh, i == 0, cr);
18270 		ip_ipmp_cleanup(lh, i == 0, cr);
18271 
18272 		(void) ldi_close(lh, FREAD|FWRITE, cr);
18273 	}
18274 
18275 	ldi_ident_release(li);
18276 	crfree(cr);
18277 }
18278 
18279 /*
18280  * This needs to be in-sync with nic_event_t definition
18281  */
18282 static const char *
18283 ill_hook_event2str(nic_event_t event)
18284 {
18285 	switch (event) {
18286 	case NE_PLUMB:
18287 		return ("PLUMB");
18288 	case NE_UNPLUMB:
18289 		return ("UNPLUMB");
18290 	case NE_UP:
18291 		return ("UP");
18292 	case NE_DOWN:
18293 		return ("DOWN");
18294 	case NE_ADDRESS_CHANGE:
18295 		return ("ADDRESS_CHANGE");
18296 	case NE_LIF_UP:
18297 		return ("LIF_UP");
18298 	case NE_LIF_DOWN:
18299 		return ("LIF_DOWN");
18300 	case NE_IFINDEX_CHANGE:
18301 		return ("IFINDEX_CHANGE");
18302 	default:
18303 		return ("UNKNOWN");
18304 	}
18305 }
18306 
18307 void
18308 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
18309     nic_event_data_t data, size_t datalen)
18310 {
18311 	ip_stack_t		*ipst = ill->ill_ipst;
18312 	hook_nic_event_int_t	*info;
18313 	const char		*str = NULL;
18314 
18315 	/* create a new nic event info */
18316 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
18317 		goto fail;
18318 
18319 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
18320 	info->hnei_event.hne_lif = lif;
18321 	info->hnei_event.hne_event = event;
18322 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
18323 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18324 	info->hnei_event.hne_data = NULL;
18325 	info->hnei_event.hne_datalen = 0;
18326 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
18327 
18328 	if (data != NULL && datalen != 0) {
18329 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
18330 		if (info->hnei_event.hne_data == NULL)
18331 			goto fail;
18332 		bcopy(data, info->hnei_event.hne_data, datalen);
18333 		info->hnei_event.hne_datalen = datalen;
18334 	}
18335 
18336 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
18337 	    DDI_NOSLEEP) == DDI_SUCCESS)
18338 		return;
18339 
18340 fail:
18341 	if (info != NULL) {
18342 		if (info->hnei_event.hne_data != NULL) {
18343 			kmem_free(info->hnei_event.hne_data,
18344 			    info->hnei_event.hne_datalen);
18345 		}
18346 		kmem_free(info, sizeof (hook_nic_event_t));
18347 	}
18348 	str = ill_hook_event2str(event);
18349 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
18350 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
18351 }
18352 
18353 static int
18354 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
18355 {
18356 	int		err = 0;
18357 	const in_addr_t	*addr = NULL;
18358 	nce_t		*nce = NULL;
18359 	ill_t		*ill = ipif->ipif_ill;
18360 	ill_t		*bound_ill;
18361 	boolean_t	added_ipif = B_FALSE;
18362 	uint16_t	state;
18363 	uint16_t	flags;
18364 
18365 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
18366 	    ill_t *, ill, ipif_t *, ipif);
18367 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
18368 		addr = &ipif->ipif_lcl_addr;
18369 	}
18370 
18371 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
18372 		if (res_act != Res_act_initial)
18373 			return (EINVAL);
18374 	}
18375 
18376 	if (addr != NULL) {
18377 		ipmp_illgrp_t	*illg = ill->ill_grp;
18378 
18379 		/* add unicast nce for the local addr */
18380 
18381 		if (IS_IPMP(ill)) {
18382 			/*
18383 			 * If we're here via ipif_up(), then the ipif
18384 			 * won't be bound yet -- add it to the group,
18385 			 * which will bind it if possible. (We would
18386 			 * add it in ipif_up(), but deleting on failure
18387 			 * there is gruesome.)  If we're here via
18388 			 * ipmp_ill_bind_ipif(), then the ipif has
18389 			 * already been added to the group and we
18390 			 * just need to use the binding.
18391 			 */
18392 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
18393 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
18394 				if (bound_ill == NULL) {
18395 					/*
18396 					 * We couldn't bind the ipif to an ill
18397 					 * yet, so we have nothing to publish.
18398 					 * Mark the address as ready and return.
18399 					 */
18400 					ipif->ipif_addr_ready = 1;
18401 					return (0);
18402 				}
18403 				added_ipif = B_TRUE;
18404 			}
18405 		} else {
18406 			bound_ill = ill;
18407 		}
18408 
18409 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
18410 		    NCE_F_NONUD);
18411 		/*
18412 		 * If this is an initial bring-up (or the ipif was never
18413 		 * completely brought up), do DAD.  Otherwise, we're here
18414 		 * because IPMP has rebound an address to this ill: send
18415 		 * unsolicited advertisements (ARP announcements) to
18416 		 * inform others.
18417 		 */
18418 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
18419 			state = ND_UNCHANGED; /* compute in nce_add_common() */
18420 		} else {
18421 			state = ND_REACHABLE;
18422 			flags |= NCE_F_UNSOL_ADV;
18423 		}
18424 
18425 retry:
18426 		err = nce_lookup_then_add_v4(ill,
18427 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
18428 		    addr, flags, state, &nce);
18429 
18430 		/*
18431 		 * note that we may encounter EEXIST if we are moving
18432 		 * the nce as a result of a rebind operation.
18433 		 */
18434 		switch (err) {
18435 		case 0:
18436 			ipif->ipif_added_nce = 1;
18437 			nce->nce_ipif_cnt++;
18438 			break;
18439 		case EEXIST:
18440 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
18441 			    ill->ill_name));
18442 			if (!NCE_MYADDR(nce->nce_common)) {
18443 				/*
18444 				 * A leftover nce from before this address
18445 				 * existed
18446 				 */
18447 				ncec_delete(nce->nce_common);
18448 				nce_refrele(nce);
18449 				nce = NULL;
18450 				goto retry;
18451 			}
18452 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
18453 				nce_refrele(nce);
18454 				nce = NULL;
18455 				ip1dbg(("ipif_arp_up: NCE already exists "
18456 				    "for %s:%u\n", ill->ill_name,
18457 				    ipif->ipif_id));
18458 				goto arp_up_done;
18459 			}
18460 			/*
18461 			 * Duplicate local addresses are permissible for
18462 			 * IPIF_POINTOPOINT interfaces which will get marked
18463 			 * IPIF_UNNUMBERED later in
18464 			 * ip_addr_availability_check().
18465 			 *
18466 			 * The nce_ipif_cnt field tracks the number of
18467 			 * ipifs that have nce_addr as their local address.
18468 			 */
18469 			ipif->ipif_addr_ready = 1;
18470 			ipif->ipif_added_nce = 1;
18471 			nce->nce_ipif_cnt++;
18472 			err = 0;
18473 			break;
18474 		default:
18475 			ASSERT(nce == NULL);
18476 			goto arp_up_done;
18477 		}
18478 		if (arp_no_defense) {
18479 			if ((ipif->ipif_flags & IPIF_UP) &&
18480 			    !ipif->ipif_addr_ready)
18481 				ipif_up_notify(ipif);
18482 			ipif->ipif_addr_ready = 1;
18483 		}
18484 	} else {
18485 		/* zero address. nothing to publish */
18486 		ipif->ipif_addr_ready = 1;
18487 	}
18488 	if (nce != NULL)
18489 		nce_refrele(nce);
18490 arp_up_done:
18491 	if (added_ipif && err != 0)
18492 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18493 	return (err);
18494 }
18495 
18496 int
18497 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
18498 {
18499 	int 		err = 0;
18500 	ill_t 		*ill = ipif->ipif_ill;
18501 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
18502 
18503 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
18504 	    ill_t *, ill, ipif_t *, ipif);
18505 
18506 	/*
18507 	 * need to bring up ARP or setup mcast mapping only
18508 	 * when the first interface is coming UP.
18509 	 */
18510 	first_interface = (ill->ill_ipif_up_count == 0 &&
18511 	    ill->ill_ipif_dup_count == 0 && !was_dup);
18512 
18513 	if (res_act == Res_act_initial && first_interface) {
18514 		/*
18515 		 * Send ATTACH + BIND
18516 		 */
18517 		err = arp_ll_up(ill);
18518 		if (err != EINPROGRESS && err != 0)
18519 			return (err);
18520 
18521 		/*
18522 		 * Add NCE for local address. Start DAD.
18523 		 * we'll wait to hear that DAD has finished
18524 		 * before using the interface.
18525 		 */
18526 		if (err == EINPROGRESS)
18527 			wait_for_dlpi = B_TRUE;
18528 	}
18529 
18530 	if (!wait_for_dlpi)
18531 		(void) ipif_arp_up_done_tail(ipif, res_act);
18532 
18533 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
18534 }
18535 
18536 /*
18537  * Finish processing of "arp_up" after all the DLPI message
18538  * exchanges have completed between arp and the driver.
18539  */
18540 void
18541 arp_bringup_done(ill_t *ill, int err)
18542 {
18543 	mblk_t	*mp1;
18544 	ipif_t  *ipif;
18545 	conn_t *connp = NULL;
18546 	ipsq_t	*ipsq;
18547 	queue_t *q;
18548 
18549 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
18550 
18551 	ASSERT(IAM_WRITER_ILL(ill));
18552 
18553 	ipsq = ill->ill_phyint->phyint_ipsq;
18554 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18555 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18556 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18557 	if (mp1 == NULL) /* bringup was aborted by the user */
18558 		return;
18559 
18560 	/*
18561 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18562 	 * must have an associated conn_t.  Otherwise, we're bringing this
18563 	 * interface back up as part of handling an asynchronous event (e.g.,
18564 	 * physical address change).
18565 	 */
18566 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18567 		ASSERT(connp != NULL);
18568 		q = CONNP_TO_WQ(connp);
18569 	} else {
18570 		ASSERT(connp == NULL);
18571 		q = ill->ill_rq;
18572 	}
18573 	if (err == 0) {
18574 		if (ipif->ipif_isv6) {
18575 			if ((err = ipif_up_done_v6(ipif)) != 0)
18576 				ip0dbg(("arp_bringup_done: init failed\n"));
18577 		} else {
18578 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
18579 			if (err != 0 ||
18580 			    (err = ipif_up_done(ipif)) != 0) {
18581 				ip0dbg(("arp_bringup_done: "
18582 				    "init failed err %x\n", err));
18583 				(void) ipif_arp_down(ipif);
18584 			}
18585 
18586 		}
18587 	} else {
18588 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
18589 	}
18590 
18591 	if ((err == 0) && (ill->ill_up_ipifs)) {
18592 		err = ill_up_ipifs(ill, q, mp1);
18593 		if (err == EINPROGRESS)
18594 			return;
18595 	}
18596 
18597 	/*
18598 	 * If we have a moved ipif to bring up, and everything has succeeded
18599 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
18600 	 * down -- the admin can try to bring it up by hand if need be.
18601 	 */
18602 	if (ill->ill_move_ipif != NULL) {
18603 		ipif = ill->ill_move_ipif;
18604 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18605 		    ipif->ipif_ill->ill_name));
18606 		ill->ill_move_ipif = NULL;
18607 		if (err == 0) {
18608 			err = ipif_up(ipif, q, mp1);
18609 			if (err == EINPROGRESS)
18610 				return;
18611 		}
18612 	}
18613 
18614 	/*
18615 	 * The operation must complete without EINPROGRESS since
18616 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18617 	 * Otherwise, the operation will be stuck forever in the ipsq.
18618 	 */
18619 	ASSERT(err != EINPROGRESS);
18620 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18621 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18622 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18623 		    ill_t *, ill, ipif_t *, ipif);
18624 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18625 	} else {
18626 		ipsq_current_finish(ipsq);
18627 	}
18628 }
18629 
18630 /*
18631  * Finish processing of arp replumb after all the DLPI message
18632  * exchanges have completed between arp and the driver.
18633  */
18634 void
18635 arp_replumb_done(ill_t *ill, int err)
18636 {
18637 	mblk_t	*mp1;
18638 	ipif_t  *ipif;
18639 	conn_t *connp = NULL;
18640 	ipsq_t	*ipsq;
18641 	queue_t *q;
18642 
18643 	ASSERT(IAM_WRITER_ILL(ill));
18644 
18645 	ipsq = ill->ill_phyint->phyint_ipsq;
18646 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18647 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18648 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18649 	if (mp1 == NULL) {
18650 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18651 		    ipsq->ipsq_xop->ipx_current_ioctl));
18652 		/* bringup was aborted by the user */
18653 		return;
18654 	}
18655 	/*
18656 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18657 	 * must have an associated conn_t.  Otherwise, we're bringing this
18658 	 * interface back up as part of handling an asynchronous event (e.g.,
18659 	 * physical address change).
18660 	 */
18661 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18662 		ASSERT(connp != NULL);
18663 		q = CONNP_TO_WQ(connp);
18664 	} else {
18665 		ASSERT(connp == NULL);
18666 		q = ill->ill_rq;
18667 	}
18668 	if ((err == 0) && (ill->ill_up_ipifs)) {
18669 		err = ill_up_ipifs(ill, q, mp1);
18670 		if (err == EINPROGRESS)
18671 			return;
18672 	}
18673 	/*
18674 	 * The operation must complete without EINPROGRESS since
18675 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18676 	 * Otherwise, the operation will be stuck forever in the ipsq.
18677 	 */
18678 	ASSERT(err != EINPROGRESS);
18679 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18680 		DTRACE_PROBE4(ipif__ioctl, char *,
18681 		    "arp_replumb_done finish",
18682 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18683 		    ill_t *, ill, ipif_t *, ipif);
18684 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18685 	} else {
18686 		ipsq_current_finish(ipsq);
18687 	}
18688 }
18689 
18690 void
18691 ipif_up_notify(ipif_t *ipif)
18692 {
18693 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18694 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18695 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18696 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18697 	    NE_LIF_UP, NULL, 0);
18698 }
18699 
18700 /*
18701  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18702  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18703  * TPI end points with STREAMS modules pushed above.  This is assured by not
18704  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18705  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18706  * while unwinding from the ispq and that could be a thread from the bottom.
18707  */
18708 /* ARGSUSED */
18709 int
18710 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18711     ip_ioctl_cmd_t *ipip, void *arg)
18712 {
18713 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18714 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18715 	int ret = 0;
18716 	int i;
18717 	size_t size;
18718 	ip_stack_t *ipst;
18719 	zoneid_t zoneid;
18720 	ilb_stack_t *ilbs;
18721 
18722 	ipst = CONNQ_TO_IPST(q);
18723 	ilbs = ipst->ips_netstack->netstack_ilb;
18724 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18725 
18726 	switch (command) {
18727 	case ILB_CREATE_RULE: {
18728 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18729 
18730 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18731 			ret = EINVAL;
18732 			break;
18733 		}
18734 
18735 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18736 		break;
18737 	}
18738 	case ILB_DESTROY_RULE:
18739 	case ILB_ENABLE_RULE:
18740 	case ILB_DISABLE_RULE: {
18741 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18742 
18743 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18744 			ret = EINVAL;
18745 			break;
18746 		}
18747 
18748 		if (cmd->flags & ILB_RULE_ALLRULES) {
18749 			if (command == ILB_DESTROY_RULE) {
18750 				ilb_rule_del_all(ilbs, zoneid);
18751 				break;
18752 			} else if (command == ILB_ENABLE_RULE) {
18753 				ilb_rule_enable_all(ilbs, zoneid);
18754 				break;
18755 			} else if (command == ILB_DISABLE_RULE) {
18756 				ilb_rule_disable_all(ilbs, zoneid);
18757 				break;
18758 			}
18759 		} else {
18760 			if (command == ILB_DESTROY_RULE) {
18761 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18762 			} else if (command == ILB_ENABLE_RULE) {
18763 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18764 				    NULL);
18765 			} else if (command == ILB_DISABLE_RULE) {
18766 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18767 				    NULL);
18768 			}
18769 		}
18770 		break;
18771 	}
18772 	case ILB_NUM_RULES: {
18773 		ilb_num_rules_cmd_t *cmd;
18774 
18775 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18776 			ret = EINVAL;
18777 			break;
18778 		}
18779 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18780 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18781 		break;
18782 	}
18783 	case ILB_RULE_NAMES: {
18784 		ilb_rule_names_cmd_t *cmd;
18785 
18786 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18787 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18788 		    cmd->num_names == 0) {
18789 			ret = EINVAL;
18790 			break;
18791 		}
18792 		size = cmd->num_names * ILB_RULE_NAMESZ;
18793 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18794 		    size != cmd_mp->b_wptr) {
18795 			ret = EINVAL;
18796 			break;
18797 		}
18798 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18799 		break;
18800 	}
18801 	case ILB_NUM_SERVERS: {
18802 		ilb_num_servers_cmd_t *cmd;
18803 
18804 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18805 			ret = EINVAL;
18806 			break;
18807 		}
18808 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18809 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18810 		    &(cmd->num));
18811 		break;
18812 	}
18813 	case ILB_LIST_RULE: {
18814 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18815 
18816 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18817 			ret = EINVAL;
18818 			break;
18819 		}
18820 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18821 		break;
18822 	}
18823 	case ILB_LIST_SERVERS: {
18824 		ilb_servers_info_cmd_t *cmd;
18825 
18826 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18827 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18828 		    cmd->num_servers == 0) {
18829 			ret = EINVAL;
18830 			break;
18831 		}
18832 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18833 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18834 		    size != cmd_mp->b_wptr) {
18835 			ret = EINVAL;
18836 			break;
18837 		}
18838 
18839 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18840 		    &cmd->num_servers);
18841 		break;
18842 	}
18843 	case ILB_ADD_SERVERS: {
18844 		ilb_servers_info_cmd_t *cmd;
18845 		ilb_rule_t *rule;
18846 
18847 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18848 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18849 			ret = EINVAL;
18850 			break;
18851 		}
18852 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18853 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18854 		    size != cmd_mp->b_wptr) {
18855 			ret = EINVAL;
18856 			break;
18857 		}
18858 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18859 		if (rule == NULL) {
18860 			ASSERT(ret != 0);
18861 			break;
18862 		}
18863 		for (i = 0; i < cmd->num_servers; i++) {
18864 			ilb_server_info_t *s;
18865 
18866 			s = &cmd->servers[i];
18867 			s->err = ilb_server_add(ilbs, rule, s);
18868 		}
18869 		ILB_RULE_REFRELE(rule);
18870 		break;
18871 	}
18872 	case ILB_DEL_SERVERS:
18873 	case ILB_ENABLE_SERVERS:
18874 	case ILB_DISABLE_SERVERS: {
18875 		ilb_servers_cmd_t *cmd;
18876 		ilb_rule_t *rule;
18877 		int (*f)();
18878 
18879 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18880 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18881 			ret = EINVAL;
18882 			break;
18883 		}
18884 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18885 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18886 		    size != cmd_mp->b_wptr) {
18887 			ret = EINVAL;
18888 			break;
18889 		}
18890 
18891 		if (command == ILB_DEL_SERVERS)
18892 			f = ilb_server_del;
18893 		else if (command == ILB_ENABLE_SERVERS)
18894 			f = ilb_server_enable;
18895 		else if (command == ILB_DISABLE_SERVERS)
18896 			f = ilb_server_disable;
18897 
18898 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18899 		if (rule == NULL) {
18900 			ASSERT(ret != 0);
18901 			break;
18902 		}
18903 
18904 		for (i = 0; i < cmd->num_servers; i++) {
18905 			ilb_server_arg_t *s;
18906 
18907 			s = &cmd->servers[i];
18908 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18909 		}
18910 		ILB_RULE_REFRELE(rule);
18911 		break;
18912 	}
18913 	case ILB_LIST_NAT_TABLE: {
18914 		ilb_list_nat_cmd_t *cmd;
18915 
18916 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18917 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18918 			ret = EINVAL;
18919 			break;
18920 		}
18921 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18922 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18923 		    size != cmd_mp->b_wptr) {
18924 			ret = EINVAL;
18925 			break;
18926 		}
18927 
18928 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18929 		    &cmd->flags);
18930 		break;
18931 	}
18932 	case ILB_LIST_STICKY_TABLE: {
18933 		ilb_list_sticky_cmd_t *cmd;
18934 
18935 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18936 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18937 			ret = EINVAL;
18938 			break;
18939 		}
18940 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18941 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18942 		    size != cmd_mp->b_wptr) {
18943 			ret = EINVAL;
18944 			break;
18945 		}
18946 
18947 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18948 		    &cmd->num_sticky, &cmd->flags);
18949 		break;
18950 	}
18951 	default:
18952 		ret = EINVAL;
18953 		break;
18954 	}
18955 done:
18956 	return (ret);
18957 }
18958 
18959 /* Remove all cache entries for this logical interface */
18960 void
18961 ipif_nce_down(ipif_t *ipif)
18962 {
18963 	ill_t *ill = ipif->ipif_ill;
18964 	nce_t *nce;
18965 
18966 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18967 	    ill_t *, ill, ipif_t *, ipif);
18968 	if (ipif->ipif_added_nce) {
18969 		if (ipif->ipif_isv6)
18970 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18971 		else
18972 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18973 		if (nce != NULL) {
18974 			if (--nce->nce_ipif_cnt == 0)
18975 				ncec_delete(nce->nce_common);
18976 			ipif->ipif_added_nce = 0;
18977 			nce_refrele(nce);
18978 		} else {
18979 			/*
18980 			 * nce may already be NULL because it was already
18981 			 * flushed, e.g., due to a call to nce_flush
18982 			 */
18983 			ipif->ipif_added_nce = 0;
18984 		}
18985 	}
18986 	/*
18987 	 * Make IPMP aware of the deleted data address.
18988 	 */
18989 	if (IS_IPMP(ill))
18990 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18991 
18992 	/*
18993 	 * Remove all other nces dependent on this ill when the last ipif
18994 	 * is going away.
18995 	 */
18996 	if (ill->ill_ipif_up_count == 0) {
18997 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18998 		    (uchar_t *)ill, ill->ill_ipst);
18999 		if (IS_UNDER_IPMP(ill))
19000 			nce_flush(ill, B_TRUE);
19001 	}
19002 }
19003 
19004 /*
19005  * find the first interface that uses usill for its source address.
19006  */
19007 ill_t *
19008 ill_lookup_usesrc(ill_t *usill)
19009 {
19010 	ip_stack_t *ipst = usill->ill_ipst;
19011 	ill_t *ill;
19012 
19013 	ASSERT(usill != NULL);
19014 
19015 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
19016 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
19017 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19018 	for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill;
19019 	    ill = ill->ill_usesrc_grp_next) {
19020 		if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) &&
19021 		    !ILL_IS_CONDEMNED(ill)) {
19022 			ill_refhold(ill);
19023 			break;
19024 		}
19025 	}
19026 	rw_exit(&ipst->ips_ill_g_lock);
19027 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
19028 	return (ill);
19029 }
19030 
19031 /*
19032  * This comment applies to both ip_sioctl_get_ifhwaddr and
19033  * ip_sioctl_get_lifhwaddr as the basic function of these two functions
19034  * is the same.
19035  *
19036  * The goal here is to find an IP interface that corresponds to the name
19037  * provided by the caller in the ifreq/lifreq structure held in the mblk_t
19038  * chain and to fill out a sockaddr/sockaddr_storage structure with the
19039  * mac address.
19040  *
19041  * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number
19042  * of different reasons:
19043  * ENXIO - the device name is not known to IP.
19044  * EADDRNOTAVAIL - the device has no hardware address. This is indicated
19045  * by ill_phys_addr not pointing to an actual address.
19046  * EPFNOSUPPORT - this will indicate that a request is being made for a
19047  * mac address that will not fit in the data structure supplier (struct
19048  * sockaddr).
19049  *
19050  */
19051 /* ARGSUSED */
19052 int
19053 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19054     ip_ioctl_cmd_t *ipip, void *if_req)
19055 {
19056 	struct sockaddr *sock;
19057 	struct ifreq *ifr;
19058 	mblk_t *mp1;
19059 	ill_t *ill;
19060 
19061 	ASSERT(ipif != NULL);
19062 	ill = ipif->ipif_ill;
19063 
19064 	if (ill->ill_phys_addr == NULL) {
19065 		return (EADDRNOTAVAIL);
19066 	}
19067 	if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) {
19068 		return (EPFNOSUPPORT);
19069 	}
19070 
19071 	ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name));
19072 
19073 	/* Existence of mp1 has been checked in ip_wput_nondata */
19074 	mp1 = mp->b_cont->b_cont;
19075 	ifr = (struct ifreq *)mp1->b_rptr;
19076 
19077 	sock = &ifr->ifr_addr;
19078 	/*
19079 	 * The "family" field in the returned structure is set to a value
19080 	 * that represents the type of device to which the address belongs.
19081 	 * The value returned may differ to that on Linux but it will still
19082 	 * represent the correct symbol on Solaris.
19083 	 */
19084 	sock->sa_family = arp_hw_type(ill->ill_mactype);
19085 	bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length);
19086 
19087 	return (0);
19088 }
19089 
19090 /*
19091  * The expection of applications using SIOCGIFHWADDR is that data will
19092  * be returned in the sa_data field of the sockaddr structure. With
19093  * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux
19094  * equivalent. In light of this, struct sockaddr_dl is used as it
19095  * offers more space for address storage in sll_data.
19096  */
19097 /* ARGSUSED */
19098 int
19099 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
19100     ip_ioctl_cmd_t *ipip, void *if_req)
19101 {
19102 	struct sockaddr_dl *sock;
19103 	struct lifreq *lifr;
19104 	mblk_t *mp1;
19105 	ill_t *ill;
19106 
19107 	ASSERT(ipif != NULL);
19108 	ill = ipif->ipif_ill;
19109 
19110 	if (ill->ill_phys_addr == NULL) {
19111 		return (EADDRNOTAVAIL);
19112 	}
19113 	if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) {
19114 		return (EPFNOSUPPORT);
19115 	}
19116 
19117 	ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name));
19118 
19119 	/* Existence of mp1 has been checked in ip_wput_nondata */
19120 	mp1 = mp->b_cont->b_cont;
19121 	lifr = (struct lifreq *)mp1->b_rptr;
19122 
19123 	/*
19124 	 * sockaddr_ll is used here because it is also the structure used in
19125 	 * responding to the same ioctl in sockpfp. The only other choice is
19126 	 * sockaddr_dl which contains fields that are not required here
19127 	 * because its purpose is different.
19128 	 */
19129 	lifr->lifr_type = ill->ill_type;
19130 	sock = (struct sockaddr_dl *)&lifr->lifr_addr;
19131 	sock->sdl_family = AF_LINK;
19132 	sock->sdl_index = ill->ill_phyint->phyint_ifindex;
19133 	sock->sdl_type = ill->ill_mactype;
19134 	sock->sdl_nlen = 0;
19135 	sock->sdl_slen = 0;
19136 	sock->sdl_alen = ill->ill_phys_addr_length;
19137 	bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length);
19138 
19139 	return (0);
19140 }
19141