xref: /titanic_50/usr/src/uts/common/inet/ip/ip_if.c (revision d95706ae611eae3b5322f74a123e10949d9d7d5d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 #include <sys/bitmap.h>
49 
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/strsun.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 
69 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
70 #include <inet/mi.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/mib2.h>
74 #include <inet/ip.h>
75 #include <inet/ip6.h>
76 #include <inet/ip6_asp.h>
77 #include <inet/tcp.h>
78 #include <inet/ip_multi.h>
79 #include <inet/ip_ire.h>
80 #include <inet/ip_ftable.h>
81 #include <inet/ip_rts.h>
82 #include <inet/ip_ndp.h>
83 #include <inet/ip_if.h>
84 #include <inet/ip_impl.h>
85 #include <inet/tun.h>
86 #include <inet/sctp_ip.h>
87 #include <inet/ip_netinfo.h>
88 #include <inet/mib2.h>
89 
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/sadb.h>
93 #include <inet/ipsec_impl.h>
94 #include <sys/iphada.h>
95 
96 
97 #include <netinet/igmp.h>
98 #include <inet/ip_listutils.h>
99 #include <inet/ipclassifier.h>
100 #include <sys/mac.h>
101 
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
104 
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
107 
108 /* The character which tells where the ill_name ends */
109 #define	IPIF_SEPARATOR_CHAR	':'
110 
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 	int	ipft_cmd;
114 	pfi_t	ipft_pfi;
115 	int	ipft_min_size;
116 	int	ipft_flags;
117 } ipft_t;
118 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
119 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
120 
121 typedef struct ip_sock_ar_s {
122 	union {
123 		area_t	ip_sock_area;
124 		ared_t	ip_sock_ared;
125 		areq_t	ip_sock_areq;
126 	} ip_sock_ar_u;
127 	queue_t	*ip_sock_ar_q;
128 } ip_sock_ar_t;
129 
130 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
131 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
132 		    char *value, caddr_t cp, cred_t *ioc_cr);
133 
134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
135 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
136 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
137     mblk_t *mp, boolean_t need_up);
138 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139     mblk_t *mp, boolean_t need_up);
140 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
141     queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
143     mblk_t *mp, boolean_t need_up);
144 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
145     mblk_t *mp);
146 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
147     queue_t *q, mblk_t *mp, boolean_t need_up);
148 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
149     int ioccmd, struct linkblk *li, boolean_t doconsist);
150 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
151 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
152 static void	ipsq_flush(ill_t *ill);
153 
154 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
155     queue_t *q, mblk_t *mp, boolean_t need_up);
156 static void	ipsq_delete(ipsq_t *);
157 
158 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
159 		    boolean_t initialize);
160 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
161 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
163 		    boolean_t isv6);
164 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
165 static void	ipif_delete_cache_ire(ire_t *, char *);
166 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
167 static void	ipif_free(ipif_t *ipif);
168 static void	ipif_free_tail(ipif_t *ipif);
169 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
170 static void	ipif_multicast_down(ipif_t *ipif);
171 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
172 static void	ipif_set_default(ipif_t *ipif);
173 static int	ipif_set_values(queue_t *q, mblk_t *mp,
174     char *interf_name, uint_t *ppa);
175 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
176     queue_t *q);
177 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
178     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
179     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
180 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
181 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
182 
183 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
184 static int	ill_arp_off(ill_t *ill);
185 static int	ill_arp_on(ill_t *ill);
186 static void	ill_delete_interface_type(ill_if_t *);
187 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
188 static void	ill_dl_down(ill_t *ill);
189 static void	ill_down(ill_t *ill);
190 static void	ill_downi(ire_t *ire, char *ill_arg);
191 static void	ill_free_mib(ill_t *ill);
192 static void	ill_glist_delete(ill_t *);
193 static boolean_t ill_has_usable_ipif(ill_t *);
194 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
195 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
196 static void	ill_phyint_free(ill_t *ill);
197 static void	ill_phyint_reinit(ill_t *ill);
198 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
199 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
200 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
202 static void	ill_stq_cache_delete(ire_t *, char *);
203 
204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
207     in6_addr_t *);
208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209     ipaddr_t *);
210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
212     in6_addr_t *);
213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
214     ipaddr_t *);
215 
216 static void	ipif_save_ire(ipif_t *, ire_t *);
217 static void	ipif_remove_ire(ipif_t *, ire_t *);
218 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
219 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
220 
221 /*
222  * Per-ill IPsec capabilities management.
223  */
224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
225 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
226 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
227 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
229 static void ill_capability_proto(ill_t *, int, mblk_t *);
230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
231     boolean_t);
232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
234 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
240     dl_capability_sub_t *);
241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
243 static void ill_capability_lso_reset(ill_t *, mblk_t **);
244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
246 static void	ill_capability_dls_reset(ill_t *, mblk_t **);
247 static void	ill_capability_dls_disable(ill_t *);
248 
249 static void	illgrp_cache_delete(ire_t *, char *);
250 static void	illgrp_delete(ill_t *ill);
251 static void	illgrp_reset_schednext(ill_t *ill);
252 
253 static ill_t	*ill_prev_usesrc(ill_t *);
254 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
255 static void	ill_disband_usesrc_group(ill_t *);
256 
257 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
258 
259 #ifdef DEBUG
260 static	void	ill_trace_cleanup(const ill_t *);
261 static	void	ipif_trace_cleanup(const ipif_t *);
262 #endif
263 
264 /*
265  * if we go over the memory footprint limit more than once in this msec
266  * interval, we'll start pruning aggressively.
267  */
268 int ip_min_frag_prune_time = 0;
269 
270 /*
271  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
272  * and the IPsec DOI
273  */
274 #define	MAX_IPSEC_ALGS	256
275 
276 #define	BITSPERBYTE	8
277 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
278 
279 #define	IPSEC_ALG_ENABLE(algs, algid) \
280 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
281 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
282 
283 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
284 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
285 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
286 
287 typedef uint8_t ipsec_capab_elem_t;
288 
289 /*
290  * Per-algorithm parameters.  Note that at present, only encryption
291  * algorithms have variable keysize (IKE does not provide a way to negotiate
292  * auth algorithm keysize).
293  *
294  * All sizes here are in bits.
295  */
296 typedef struct
297 {
298 	uint16_t	minkeylen;
299 	uint16_t	maxkeylen;
300 } ipsec_capab_algparm_t;
301 
302 /*
303  * Per-ill capabilities.
304  */
305 struct ill_ipsec_capab_s {
306 	ipsec_capab_elem_t *encr_hw_algs;
307 	ipsec_capab_elem_t *auth_hw_algs;
308 	uint32_t algs_size;	/* size of _hw_algs in bytes */
309 	/* algorithm key lengths */
310 	ipsec_capab_algparm_t *encr_algparm;
311 	uint32_t encr_algparm_size;
312 	uint32_t encr_algparm_end;
313 };
314 
315 /*
316  * The field values are larger than strictly necessary for simple
317  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
318  */
319 static area_t	ip_area_template = {
320 	AR_ENTRY_ADD,			/* area_cmd */
321 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
322 					/* area_name_offset */
323 	/* area_name_length temporarily holds this structure length */
324 	sizeof (area_t),			/* area_name_length */
325 	IP_ARP_PROTO_TYPE,		/* area_proto */
326 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
327 	IP_ADDR_LEN,			/* area_proto_addr_length */
328 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
329 					/* area_proto_mask_offset */
330 	0,				/* area_flags */
331 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
332 					/* area_hw_addr_offset */
333 	/* Zero length hw_addr_length means 'use your idea of the address' */
334 	0				/* area_hw_addr_length */
335 };
336 
337 /*
338  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
339  * support
340  */
341 static area_t	ip6_area_template = {
342 	AR_ENTRY_ADD,			/* area_cmd */
343 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
344 					/* area_name_offset */
345 	/* area_name_length temporarily holds this structure length */
346 	sizeof (area_t),			/* area_name_length */
347 	IP_ARP_PROTO_TYPE,		/* area_proto */
348 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
349 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
350 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
351 					/* area_proto_mask_offset */
352 	0,				/* area_flags */
353 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
354 					/* area_hw_addr_offset */
355 	/* Zero length hw_addr_length means 'use your idea of the address' */
356 	0				/* area_hw_addr_length */
357 };
358 
359 static ared_t	ip_ared_template = {
360 	AR_ENTRY_DELETE,
361 	sizeof (ared_t) + IP_ADDR_LEN,
362 	sizeof (ared_t),
363 	IP_ARP_PROTO_TYPE,
364 	sizeof (ared_t),
365 	IP_ADDR_LEN
366 };
367 
368 static ared_t	ip6_ared_template = {
369 	AR_ENTRY_DELETE,
370 	sizeof (ared_t) + IPV6_ADDR_LEN,
371 	sizeof (ared_t),
372 	IP_ARP_PROTO_TYPE,
373 	sizeof (ared_t),
374 	IPV6_ADDR_LEN
375 };
376 
377 /*
378  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
379  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
380  * areq is used).
381  */
382 static areq_t	ip_areq_template = {
383 	AR_ENTRY_QUERY,			/* cmd */
384 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
385 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
386 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
387 	sizeof (areq_t),			/* target addr offset */
388 	IP_ADDR_LEN,			/* target addr_length */
389 	0,				/* flags */
390 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
391 	IP_ADDR_LEN,			/* sender addr length */
392 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
393 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
394 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
395 	/* anything else filled in by the code */
396 };
397 
398 static arc_t	ip_aru_template = {
399 	AR_INTERFACE_UP,
400 	sizeof (arc_t),		/* Name offset */
401 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
402 };
403 
404 static arc_t	ip_ard_template = {
405 	AR_INTERFACE_DOWN,
406 	sizeof (arc_t),		/* Name offset */
407 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
408 };
409 
410 static arc_t	ip_aron_template = {
411 	AR_INTERFACE_ON,
412 	sizeof (arc_t),		/* Name offset */
413 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
414 };
415 
416 static arc_t	ip_aroff_template = {
417 	AR_INTERFACE_OFF,
418 	sizeof (arc_t),		/* Name offset */
419 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
420 };
421 
422 
423 static arma_t	ip_arma_multi_template = {
424 	AR_MAPPING_ADD,
425 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
426 				/* Name offset */
427 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
428 	IP_ARP_PROTO_TYPE,
429 	sizeof (arma_t),			/* proto_addr_offset */
430 	IP_ADDR_LEN,				/* proto_addr_length */
431 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
432 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
433 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
434 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
435 	IP_MAX_HW_LEN,				/* hw_addr_length */
436 	0,					/* hw_mapping_start */
437 };
438 
439 static ipft_t	ip_ioctl_ftbl[] = {
440 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
441 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
442 		IPFT_F_NO_REPLY },
443 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
444 		IPFT_F_NO_REPLY },
445 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
446 	{ 0 }
447 };
448 
449 /* Simple ICMP IP Header Template */
450 static ipha_t icmp_ipha = {
451 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
452 };
453 
454 /* Flag descriptors for ip_ipif_report */
455 static nv_t	ipif_nv_tbl[] = {
456 	{ IPIF_UP,		"UP" },
457 	{ IPIF_BROADCAST,	"BROADCAST" },
458 	{ ILLF_DEBUG,		"DEBUG" },
459 	{ PHYI_LOOPBACK,	"LOOPBACK" },
460 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
461 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
462 	{ PHYI_RUNNING,		"RUNNING" },
463 	{ ILLF_NOARP,		"NOARP" },
464 	{ PHYI_PROMISC,		"PROMISC" },
465 	{ PHYI_ALLMULTI,	"ALLMULTI" },
466 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
467 	{ ILLF_MULTICAST,	"MULTICAST" },
468 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
469 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
470 	{ IPIF_DHCPRUNNING,	"DHCP" },
471 	{ IPIF_PRIVATE,		"PRIVATE" },
472 	{ IPIF_NOXMIT,		"NOXMIT" },
473 	{ IPIF_NOLOCAL,		"NOLOCAL" },
474 	{ IPIF_DEPRECATED,	"DEPRECATED" },
475 	{ IPIF_PREFERRED,	"PREFERRED" },
476 	{ IPIF_TEMPORARY,	"TEMPORARY" },
477 	{ IPIF_ADDRCONF,	"ADDRCONF" },
478 	{ PHYI_VIRTUAL,		"VIRTUAL" },
479 	{ ILLF_ROUTER,		"ROUTER" },
480 	{ ILLF_NONUD,		"NONUD" },
481 	{ IPIF_ANYCAST,		"ANYCAST" },
482 	{ ILLF_NORTEXCH,	"NORTEXCH" },
483 	{ ILLF_IPV4,		"IPV4" },
484 	{ ILLF_IPV6,		"IPV6" },
485 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
486 	{ PHYI_FAILED,		"FAILED" },
487 	{ PHYI_STANDBY,		"STANDBY" },
488 	{ PHYI_INACTIVE,	"INACTIVE" },
489 	{ PHYI_OFFLINE,		"OFFLINE" },
490 };
491 
492 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
493 
494 static ip_m_t	ip_m_tbl[] = {
495 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
496 	    ip_ether_v6intfid },
497 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
498 	    ip_nodef_v6intfid },
499 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
500 	    ip_nodef_v6intfid },
501 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
502 	    ip_nodef_v6intfid },
503 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 	    ip_ether_v6intfid },
505 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
506 	    ip_ib_v6intfid },
507 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
508 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
509 	    ip_nodef_v6intfid }
510 };
511 
512 static ill_t	ill_null;		/* Empty ILL for init. */
513 char	ipif_loopback_name[] = "lo0";
514 static char *ipv4_forward_suffix = ":ip_forwarding";
515 static char *ipv6_forward_suffix = ":ip6_forwarding";
516 static	sin6_t	sin6_null;	/* Zero address for quick clears */
517 static	sin_t	sin_null;	/* Zero address for quick clears */
518 
519 /* When set search for unused ipif_seqid */
520 static ipif_t	ipif_zero;
521 
522 /*
523  * ppa arena is created after these many
524  * interfaces have been plumbed.
525  */
526 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
527 
528 /*
529  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
530  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
531  * set through platform specific code (Niagara/Ontario).
532  */
533 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
534 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
535 
536 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
537 
538 static uint_t
539 ipif_rand(ip_stack_t *ipst)
540 {
541 	ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
542 	    12345;
543 	return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
544 }
545 
546 /*
547  * Allocate per-interface mibs.
548  * Returns true if ok. False otherwise.
549  *  ipsq  may not yet be allocated (loopback case ).
550  */
551 static boolean_t
552 ill_allocate_mibs(ill_t *ill)
553 {
554 	/* Already allocated? */
555 	if (ill->ill_ip_mib != NULL) {
556 		if (ill->ill_isv6)
557 			ASSERT(ill->ill_icmp6_mib != NULL);
558 		return (B_TRUE);
559 	}
560 
561 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
562 	    KM_NOSLEEP);
563 	if (ill->ill_ip_mib == NULL) {
564 		return (B_FALSE);
565 	}
566 
567 	/* Setup static information */
568 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
569 	    sizeof (mib2_ipIfStatsEntry_t));
570 	if (ill->ill_isv6) {
571 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
572 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
573 		    sizeof (mib2_ipv6AddrEntry_t));
574 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
575 		    sizeof (mib2_ipv6RouteEntry_t));
576 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
577 		    sizeof (mib2_ipv6NetToMediaEntry_t));
578 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
579 		    sizeof (ipv6_member_t));
580 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
581 		    sizeof (ipv6_grpsrc_t));
582 	} else {
583 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
584 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
585 		    sizeof (mib2_ipAddrEntry_t));
586 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
587 		    sizeof (mib2_ipRouteEntry_t));
588 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
589 		    sizeof (mib2_ipNetToMediaEntry_t));
590 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
591 		    sizeof (ip_member_t));
592 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
593 		    sizeof (ip_grpsrc_t));
594 
595 		/*
596 		 * For a v4 ill, we are done at this point, because per ill
597 		 * icmp mibs are only used for v6.
598 		 */
599 		return (B_TRUE);
600 	}
601 
602 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
603 	    KM_NOSLEEP);
604 	if (ill->ill_icmp6_mib == NULL) {
605 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
606 		ill->ill_ip_mib = NULL;
607 		return (B_FALSE);
608 	}
609 	/* static icmp info */
610 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
611 	    sizeof (mib2_ipv6IfIcmpEntry_t);
612 	/*
613 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
614 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
615 	 * -> ill_phyint_reinit
616 	 */
617 	return (B_TRUE);
618 }
619 
620 /*
621  * Common code for preparation of ARP commands.  Two points to remember:
622  * 	1) The ill_name is tacked on at the end of the allocated space so
623  *	   the templates name_offset field must contain the total space
624  *	   to allocate less the name length.
625  *
626  *	2) The templates name_length field should contain the *template*
627  *	   length.  We use it as a parameter to bcopy() and then write
628  *	   the real ill_name_length into the name_length field of the copy.
629  * (Always called as writer.)
630  */
631 mblk_t *
632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
633 {
634 	arc_t	*arc = (arc_t *)template;
635 	char	*cp;
636 	int	len;
637 	mblk_t	*mp;
638 	uint_t	name_length = ill->ill_name_length;
639 	uint_t	template_len = arc->arc_name_length;
640 
641 	len = arc->arc_name_offset + name_length;
642 	mp = allocb(len, BPRI_HI);
643 	if (mp == NULL)
644 		return (NULL);
645 	cp = (char *)mp->b_rptr;
646 	mp->b_wptr = (uchar_t *)&cp[len];
647 	if (template_len)
648 		bcopy(template, cp, template_len);
649 	if (len > template_len)
650 		bzero(&cp[template_len], len - template_len);
651 	mp->b_datap->db_type = M_PROTO;
652 
653 	arc = (arc_t *)cp;
654 	arc->arc_name_length = name_length;
655 	cp = (char *)arc + arc->arc_name_offset;
656 	bcopy(ill->ill_name, cp, name_length);
657 
658 	if (addr) {
659 		area_t	*area = (area_t *)mp->b_rptr;
660 
661 		cp = (char *)area + area->area_proto_addr_offset;
662 		bcopy(addr, cp, area->area_proto_addr_length);
663 		if (area->area_cmd == AR_ENTRY_ADD) {
664 			cp = (char *)area;
665 			len = area->area_proto_addr_length;
666 			if (area->area_proto_mask_offset)
667 				cp += area->area_proto_mask_offset;
668 			else
669 				cp += area->area_proto_addr_offset + len;
670 			while (len-- > 0)
671 				*cp++ = (char)~0;
672 		}
673 	}
674 	return (mp);
675 }
676 
677 mblk_t *
678 ipif_area_alloc(ipif_t *ipif)
679 {
680 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
681 	    (char *)&ipif->ipif_lcl_addr));
682 }
683 
684 mblk_t *
685 ipif_ared_alloc(ipif_t *ipif)
686 {
687 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
688 	    (char *)&ipif->ipif_lcl_addr));
689 }
690 
691 mblk_t *
692 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
693 {
694 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
695 	    (char *)&addr));
696 }
697 
698 /*
699  * Completely vaporize a lower level tap and all associated interfaces.
700  * ill_delete is called only out of ip_close when the device control
701  * stream is being closed.
702  */
703 void
704 ill_delete(ill_t *ill)
705 {
706 	ipif_t	*ipif;
707 	ill_t	*prev_ill;
708 	ip_stack_t	*ipst = ill->ill_ipst;
709 
710 	/*
711 	 * ill_delete may be forcibly entering the ipsq. The previous
712 	 * ioctl may not have completed and may need to be aborted.
713 	 * ipsq_flush takes care of it. If we don't need to enter the
714 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
715 	 * ill_delete_tail is sufficient.
716 	 */
717 	ipsq_flush(ill);
718 
719 	/*
720 	 * Nuke all interfaces.  ipif_free will take down the interface,
721 	 * remove it from the list, and free the data structure.
722 	 * Walk down the ipif list and remove the logical interfaces
723 	 * first before removing the main ipif. We can't unplumb
724 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
725 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
726 	 * POINTOPOINT.
727 	 *
728 	 * If ill_ipif was not properly initialized (i.e low on memory),
729 	 * then no interfaces to clean up. In this case just clean up the
730 	 * ill.
731 	 */
732 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
733 		ipif_free(ipif);
734 
735 	/*
736 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
737 	 * So nobody can be using this mp now. Free the mp allocated for
738 	 * honoring ILLF_NOARP
739 	 */
740 	freemsg(ill->ill_arp_on_mp);
741 	ill->ill_arp_on_mp = NULL;
742 
743 	/* Clean up msgs on pending upcalls for mrouted */
744 	reset_mrt_ill(ill);
745 
746 	/*
747 	 * ipif_free -> reset_conn_ipif will remove all multicast
748 	 * references for IPv4. For IPv6, we need to do it here as
749 	 * it points only at ills.
750 	 */
751 	reset_conn_ill(ill);
752 
753 	/*
754 	 * ill_down will arrange to blow off any IRE's dependent on this
755 	 * ILL, and shut down fragmentation reassembly.
756 	 */
757 	ill_down(ill);
758 
759 	/* Let SCTP know, so that it can remove this from its list. */
760 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
761 
762 	/*
763 	 * If an address on this ILL is being used as a source address then
764 	 * clear out the pointers in other ILLs that point to this ILL.
765 	 */
766 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
767 	if (ill->ill_usesrc_grp_next != NULL) {
768 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
769 			ill_disband_usesrc_group(ill);
770 		} else {	/* consumer of the usesrc ILL */
771 			prev_ill = ill_prev_usesrc(ill);
772 			prev_ill->ill_usesrc_grp_next =
773 			    ill->ill_usesrc_grp_next;
774 		}
775 	}
776 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
777 }
778 
779 static void
780 ipif_non_duplicate(ipif_t *ipif)
781 {
782 	ill_t *ill = ipif->ipif_ill;
783 	mutex_enter(&ill->ill_lock);
784 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
785 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
786 		ASSERT(ill->ill_ipif_dup_count > 0);
787 		ill->ill_ipif_dup_count--;
788 	}
789 	mutex_exit(&ill->ill_lock);
790 }
791 
792 /*
793  * ill_delete_tail is called from ip_modclose after all references
794  * to the closing ill are gone. The wait is done in ip_modclose
795  */
796 void
797 ill_delete_tail(ill_t *ill)
798 {
799 	mblk_t	**mpp;
800 	ipif_t	*ipif;
801 	ip_stack_t	*ipst = ill->ill_ipst;
802 
803 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
804 		ipif_non_duplicate(ipif);
805 		ipif_down_tail(ipif);
806 	}
807 
808 	ASSERT(ill->ill_ipif_dup_count == 0 &&
809 	    ill->ill_arp_down_mp == NULL &&
810 	    ill->ill_arp_del_mapping_mp == NULL);
811 
812 	/*
813 	 * If polling capability is enabled (which signifies direct
814 	 * upcall into IP and driver has ill saved as a handle),
815 	 * we need to make sure that unbind has completed before we
816 	 * let the ill disappear and driver no longer has any reference
817 	 * to this ill.
818 	 */
819 	mutex_enter(&ill->ill_lock);
820 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
821 		cv_wait(&ill->ill_cv, &ill->ill_lock);
822 	mutex_exit(&ill->ill_lock);
823 
824 	/*
825 	 * Clean up polling and soft ring capabilities
826 	 */
827 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
828 		ill_capability_dls_disable(ill);
829 
830 	if (ill->ill_net_type != IRE_LOOPBACK)
831 		qprocsoff(ill->ill_rq);
832 
833 	/*
834 	 * We do an ipsq_flush once again now. New messages could have
835 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
836 	 * could also have landed up if an ioctl thread had looked up
837 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
838 	 * enqueued the ioctl when we did the ipsq_flush last time.
839 	 */
840 	ipsq_flush(ill);
841 
842 	/*
843 	 * Free capabilities.
844 	 */
845 	if (ill->ill_ipsec_capab_ah != NULL) {
846 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
847 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
848 		ill->ill_ipsec_capab_ah = NULL;
849 	}
850 
851 	if (ill->ill_ipsec_capab_esp != NULL) {
852 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
853 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
854 		ill->ill_ipsec_capab_esp = NULL;
855 	}
856 
857 	if (ill->ill_mdt_capab != NULL) {
858 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
859 		ill->ill_mdt_capab = NULL;
860 	}
861 
862 	if (ill->ill_hcksum_capab != NULL) {
863 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
864 		ill->ill_hcksum_capab = NULL;
865 	}
866 
867 	if (ill->ill_zerocopy_capab != NULL) {
868 		kmem_free(ill->ill_zerocopy_capab,
869 		    sizeof (ill_zerocopy_capab_t));
870 		ill->ill_zerocopy_capab = NULL;
871 	}
872 
873 	if (ill->ill_lso_capab != NULL) {
874 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
875 		ill->ill_lso_capab = NULL;
876 	}
877 
878 	if (ill->ill_dls_capab != NULL) {
879 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
880 		ill->ill_dls_capab->ill_unbind_conn = NULL;
881 		kmem_free(ill->ill_dls_capab,
882 		    sizeof (ill_dls_capab_t) +
883 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
884 		ill->ill_dls_capab = NULL;
885 	}
886 
887 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
888 
889 	while (ill->ill_ipif != NULL)
890 		ipif_free_tail(ill->ill_ipif);
891 
892 	/*
893 	 * We have removed all references to ilm from conn and the ones joined
894 	 * within the kernel.
895 	 *
896 	 * We don't walk conns, mrts and ires because
897 	 *
898 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
899 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
900 	 *    ill references.
901 	 */
902 	ASSERT(ilm_walk_ill(ill) == 0);
903 	/*
904 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
905 	 * could free the phyint. No more reference to the phyint after this
906 	 * point.
907 	 */
908 	(void) ill_glist_delete(ill);
909 
910 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
911 	if (ill->ill_ndd_name != NULL)
912 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
913 	rw_exit(&ipst->ips_ip_g_nd_lock);
914 
915 
916 	if (ill->ill_frag_ptr != NULL) {
917 		uint_t count;
918 
919 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
920 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
921 		}
922 		mi_free(ill->ill_frag_ptr);
923 		ill->ill_frag_ptr = NULL;
924 		ill->ill_frag_hash_tbl = NULL;
925 	}
926 
927 	freemsg(ill->ill_nd_lla_mp);
928 	/* Free all retained control messages. */
929 	mpp = &ill->ill_first_mp_to_free;
930 	do {
931 		while (mpp[0]) {
932 			mblk_t  *mp;
933 			mblk_t  *mp1;
934 
935 			mp = mpp[0];
936 			mpp[0] = mp->b_next;
937 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
938 				mp1->b_next = NULL;
939 				mp1->b_prev = NULL;
940 			}
941 			freemsg(mp);
942 		}
943 	} while (mpp++ != &ill->ill_last_mp_to_free);
944 
945 	ill_free_mib(ill);
946 
947 #ifdef DEBUG
948 	ill_trace_cleanup(ill);
949 #endif
950 
951 	/* Drop refcnt here */
952 	netstack_rele(ill->ill_ipst->ips_netstack);
953 	ill->ill_ipst = NULL;
954 }
955 
956 static void
957 ill_free_mib(ill_t *ill)
958 {
959 	ip_stack_t *ipst = ill->ill_ipst;
960 
961 	/*
962 	 * MIB statistics must not be lost, so when an interface
963 	 * goes away the counter values will be added to the global
964 	 * MIBs.
965 	 */
966 	if (ill->ill_ip_mib != NULL) {
967 		if (ill->ill_isv6) {
968 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
969 			    ill->ill_ip_mib);
970 		} else {
971 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
972 			    ill->ill_ip_mib);
973 		}
974 
975 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
976 		ill->ill_ip_mib = NULL;
977 	}
978 	if (ill->ill_icmp6_mib != NULL) {
979 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
980 		    ill->ill_icmp6_mib);
981 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
982 		ill->ill_icmp6_mib = NULL;
983 	}
984 }
985 
986 /*
987  * Concatenate together a physical address and a sap.
988  *
989  * Sap_lengths are interpreted as follows:
990  *   sap_length == 0	==>	no sap
991  *   sap_length > 0	==>	sap is at the head of the dlpi address
992  *   sap_length < 0	==>	sap is at the tail of the dlpi address
993  */
994 static void
995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
996     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
997 {
998 	uint16_t sap_addr = (uint16_t)sap_src;
999 
1000 	if (sap_length == 0) {
1001 		if (phys_src == NULL)
1002 			bzero(dst, phys_length);
1003 		else
1004 			bcopy(phys_src, dst, phys_length);
1005 	} else if (sap_length < 0) {
1006 		if (phys_src == NULL)
1007 			bzero(dst, phys_length);
1008 		else
1009 			bcopy(phys_src, dst, phys_length);
1010 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1011 	} else {
1012 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1013 		if (phys_src == NULL)
1014 			bzero((char *)dst + sap_length, phys_length);
1015 		else
1016 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1017 	}
1018 }
1019 
1020 /*
1021  * Generate a dl_unitdata_req mblk for the device and address given.
1022  * addr_length is the length of the physical portion of the address.
1023  * If addr is NULL include an all zero address of the specified length.
1024  * TRUE? In any case, addr_length is taken to be the entire length of the
1025  * dlpi address, including the absolute value of sap_length.
1026  */
1027 mblk_t *
1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1029 		t_scalar_t sap_length)
1030 {
1031 	dl_unitdata_req_t *dlur;
1032 	mblk_t	*mp;
1033 	t_scalar_t	abs_sap_length;		/* absolute value */
1034 
1035 	abs_sap_length = ABS(sap_length);
1036 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1037 	    DL_UNITDATA_REQ);
1038 	if (mp == NULL)
1039 		return (NULL);
1040 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1041 	/* HACK: accomodate incompatible DLPI drivers */
1042 	if (addr_length == 8)
1043 		addr_length = 6;
1044 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1045 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1046 	dlur->dl_priority.dl_min = 0;
1047 	dlur->dl_priority.dl_max = 0;
1048 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1049 	    (uchar_t *)&dlur[1]);
1050 	return (mp);
1051 }
1052 
1053 /*
1054  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1055  * Return an error if we already have 1 or more ioctls in progress.
1056  * This is used only for non-exclusive ioctls. Currently this is used
1057  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1058  * and thus need to use ipsq_pending_mp_add.
1059  */
1060 boolean_t
1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1062 {
1063 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1064 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1065 	/*
1066 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1067 	 */
1068 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1069 	    (add_mp->b_datap->db_type == M_IOCTL));
1070 
1071 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1072 	/*
1073 	 * Return error if the conn has started closing. The conn
1074 	 * could have finished cleaning up the pending mp list,
1075 	 * If so we should not add another mp to the list negating
1076 	 * the cleanup.
1077 	 */
1078 	if (connp->conn_state_flags & CONN_CLOSING)
1079 		return (B_FALSE);
1080 	/*
1081 	 * Add the pending mp to the head of the list, chained by b_next.
1082 	 * Note down the conn on which the ioctl request came, in b_prev.
1083 	 * This will be used to later get the conn, when we get a response
1084 	 * on the ill queue, from some other module (typically arp)
1085 	 */
1086 	add_mp->b_next = (void *)ill->ill_pending_mp;
1087 	add_mp->b_queue = CONNP_TO_WQ(connp);
1088 	ill->ill_pending_mp = add_mp;
1089 	if (connp != NULL)
1090 		connp->conn_oper_pending_ill = ill;
1091 	return (B_TRUE);
1092 }
1093 
1094 /*
1095  * Retrieve the ill_pending_mp and return it. We have to walk the list
1096  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1097  */
1098 mblk_t *
1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1100 {
1101 	mblk_t	*prev = NULL;
1102 	mblk_t	*curr = NULL;
1103 	uint_t	id;
1104 	conn_t	*connp;
1105 
1106 	/*
1107 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1108 	 * up the pending mp, but it does not know the ioc_id and
1109 	 * passes in a zero for it.
1110 	 */
1111 	mutex_enter(&ill->ill_lock);
1112 	if (ioc_id != 0)
1113 		*connpp = NULL;
1114 
1115 	/* Search the list for the appropriate ioctl based on ioc_id */
1116 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1117 	    prev = curr, curr = curr->b_next) {
1118 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1119 		connp = Q_TO_CONN(curr->b_queue);
1120 		/* Match based on the ioc_id or based on the conn */
1121 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1122 			break;
1123 	}
1124 
1125 	if (curr != NULL) {
1126 		/* Unlink the mblk from the pending mp list */
1127 		if (prev != NULL) {
1128 			prev->b_next = curr->b_next;
1129 		} else {
1130 			ASSERT(ill->ill_pending_mp == curr);
1131 			ill->ill_pending_mp = curr->b_next;
1132 		}
1133 
1134 		/*
1135 		 * conn refcnt must have been bumped up at the start of
1136 		 * the ioctl. So we can safely access the conn.
1137 		 */
1138 		ASSERT(CONN_Q(curr->b_queue));
1139 		*connpp = Q_TO_CONN(curr->b_queue);
1140 		curr->b_next = NULL;
1141 		curr->b_queue = NULL;
1142 	}
1143 
1144 	mutex_exit(&ill->ill_lock);
1145 
1146 	return (curr);
1147 }
1148 
1149 /*
1150  * Add the pending mp to the list. There can be only 1 pending mp
1151  * in the list. Any exclusive ioctl that needs to wait for a response
1152  * from another module or driver needs to use this function to set
1153  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1154  * the other module/driver. This is also used while waiting for the
1155  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1156  */
1157 boolean_t
1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1159     int waitfor)
1160 {
1161 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1162 
1163 	ASSERT(IAM_WRITER_IPIF(ipif));
1164 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1165 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1166 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1167 	/*
1168 	 * The caller may be using a different ipif than the one passed into
1169 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1170 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1171 	 * that `ipsq_current_ipif == ipif'.
1172 	 */
1173 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1174 
1175 	/*
1176 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1177 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1178 	 */
1179 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1180 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1181 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1182 
1183 	if (connp != NULL) {
1184 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1185 		/*
1186 		 * Return error if the conn has started closing. The conn
1187 		 * could have finished cleaning up the pending mp list,
1188 		 * If so we should not add another mp to the list negating
1189 		 * the cleanup.
1190 		 */
1191 		if (connp->conn_state_flags & CONN_CLOSING)
1192 			return (B_FALSE);
1193 	}
1194 	mutex_enter(&ipsq->ipsq_lock);
1195 	ipsq->ipsq_pending_ipif = ipif;
1196 	/*
1197 	 * Note down the queue in b_queue. This will be returned by
1198 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1199 	 * the processing
1200 	 */
1201 	add_mp->b_next = NULL;
1202 	add_mp->b_queue = q;
1203 	ipsq->ipsq_pending_mp = add_mp;
1204 	ipsq->ipsq_waitfor = waitfor;
1205 
1206 	if (connp != NULL)
1207 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1208 	mutex_exit(&ipsq->ipsq_lock);
1209 	return (B_TRUE);
1210 }
1211 
1212 /*
1213  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1214  * queued in the list.
1215  */
1216 mblk_t *
1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1218 {
1219 	mblk_t	*curr = NULL;
1220 
1221 	mutex_enter(&ipsq->ipsq_lock);
1222 	*connpp = NULL;
1223 	if (ipsq->ipsq_pending_mp == NULL) {
1224 		mutex_exit(&ipsq->ipsq_lock);
1225 		return (NULL);
1226 	}
1227 
1228 	/* There can be only 1 such excl message */
1229 	curr = ipsq->ipsq_pending_mp;
1230 	ASSERT(curr != NULL && curr->b_next == NULL);
1231 	ipsq->ipsq_pending_ipif = NULL;
1232 	ipsq->ipsq_pending_mp = NULL;
1233 	ipsq->ipsq_waitfor = 0;
1234 	mutex_exit(&ipsq->ipsq_lock);
1235 
1236 	if (CONN_Q(curr->b_queue)) {
1237 		/*
1238 		 * This mp did a refhold on the conn, at the start of the ioctl.
1239 		 * So we can safely return a pointer to the conn to the caller.
1240 		 */
1241 		*connpp = Q_TO_CONN(curr->b_queue);
1242 	} else {
1243 		*connpp = NULL;
1244 	}
1245 	curr->b_next = NULL;
1246 	curr->b_prev = NULL;
1247 	return (curr);
1248 }
1249 
1250 /*
1251  * Cleanup the ioctl mp queued in ipsq_pending_mp
1252  * - Called in the ill_delete path
1253  * - Called in the M_ERROR or M_HANGUP path on the ill.
1254  * - Called in the conn close path.
1255  */
1256 boolean_t
1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1258 {
1259 	mblk_t	*mp;
1260 	ipsq_t	*ipsq;
1261 	queue_t	*q;
1262 	ipif_t	*ipif;
1263 
1264 	ASSERT(IAM_WRITER_ILL(ill));
1265 	ipsq = ill->ill_phyint->phyint_ipsq;
1266 	mutex_enter(&ipsq->ipsq_lock);
1267 	/*
1268 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1269 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1270 	 * even if it is meant for another ill, since we have to enqueue
1271 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1272 	 * If connp is non-null we are called from the conn close path.
1273 	 */
1274 	mp = ipsq->ipsq_pending_mp;
1275 	if (mp == NULL || (connp != NULL &&
1276 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1277 		mutex_exit(&ipsq->ipsq_lock);
1278 		return (B_FALSE);
1279 	}
1280 	/* Now remove from the ipsq_pending_mp */
1281 	ipsq->ipsq_pending_mp = NULL;
1282 	q = mp->b_queue;
1283 	mp->b_next = NULL;
1284 	mp->b_prev = NULL;
1285 	mp->b_queue = NULL;
1286 
1287 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1288 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1289 	if (ill->ill_move_in_progress) {
1290 		ILL_CLEAR_MOVE(ill);
1291 	} else if (ill->ill_up_ipifs) {
1292 		ill_group_cleanup(ill);
1293 	}
1294 
1295 	ipif = ipsq->ipsq_pending_ipif;
1296 	ipsq->ipsq_pending_ipif = NULL;
1297 	ipsq->ipsq_waitfor = 0;
1298 	ipsq->ipsq_current_ipif = NULL;
1299 	ipsq->ipsq_current_ioctl = 0;
1300 	mutex_exit(&ipsq->ipsq_lock);
1301 
1302 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1303 		if (connp == NULL) {
1304 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1305 		} else {
1306 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1307 			mutex_enter(&ipif->ipif_ill->ill_lock);
1308 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1309 			mutex_exit(&ipif->ipif_ill->ill_lock);
1310 		}
1311 	} else {
1312 		/*
1313 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1314 		 * be just inet_freemsg. we have to restart it
1315 		 * otherwise the thread will be stuck.
1316 		 */
1317 		inet_freemsg(mp);
1318 	}
1319 	return (B_TRUE);
1320 }
1321 
1322 /*
1323  * The ill is closing. Cleanup all the pending mps. Called exclusively
1324  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1325  * knows this ill, and hence nobody can add an mp to this list
1326  */
1327 static void
1328 ill_pending_mp_cleanup(ill_t *ill)
1329 {
1330 	mblk_t	*mp;
1331 	queue_t	*q;
1332 
1333 	ASSERT(IAM_WRITER_ILL(ill));
1334 
1335 	mutex_enter(&ill->ill_lock);
1336 	/*
1337 	 * Every mp on the pending mp list originating from an ioctl
1338 	 * added 1 to the conn refcnt, at the start of the ioctl.
1339 	 * So bump it down now.  See comments in ip_wput_nondata()
1340 	 */
1341 	while (ill->ill_pending_mp != NULL) {
1342 		mp = ill->ill_pending_mp;
1343 		ill->ill_pending_mp = mp->b_next;
1344 		mutex_exit(&ill->ill_lock);
1345 
1346 		q = mp->b_queue;
1347 		ASSERT(CONN_Q(q));
1348 		mp->b_next = NULL;
1349 		mp->b_prev = NULL;
1350 		mp->b_queue = NULL;
1351 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1352 		mutex_enter(&ill->ill_lock);
1353 	}
1354 	ill->ill_pending_ipif = NULL;
1355 
1356 	mutex_exit(&ill->ill_lock);
1357 }
1358 
1359 /*
1360  * Called in the conn close path and ill delete path
1361  */
1362 static void
1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1364 {
1365 	ipsq_t	*ipsq;
1366 	mblk_t	*prev;
1367 	mblk_t	*curr;
1368 	mblk_t	*next;
1369 	queue_t	*q;
1370 	mblk_t	*tmp_list = NULL;
1371 
1372 	ASSERT(IAM_WRITER_ILL(ill));
1373 	if (connp != NULL)
1374 		q = CONNP_TO_WQ(connp);
1375 	else
1376 		q = ill->ill_wq;
1377 
1378 	ipsq = ill->ill_phyint->phyint_ipsq;
1379 	/*
1380 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1381 	 * In the case of ioctl from a conn, there can be only 1 mp
1382 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1383 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1384 	 * ioctls meant for this ill form conn's are not flushed. They will
1385 	 * be processed during ipsq_exit and will not find the ill and will
1386 	 * return error.
1387 	 */
1388 	mutex_enter(&ipsq->ipsq_lock);
1389 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1390 	    curr = next) {
1391 		next = curr->b_next;
1392 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1393 			/* Unlink the mblk from the pending mp list */
1394 			if (prev != NULL) {
1395 				prev->b_next = curr->b_next;
1396 			} else {
1397 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1398 				ipsq->ipsq_xopq_mphead = curr->b_next;
1399 			}
1400 			if (ipsq->ipsq_xopq_mptail == curr)
1401 				ipsq->ipsq_xopq_mptail = prev;
1402 			/*
1403 			 * Create a temporary list and release the ipsq lock
1404 			 * New elements are added to the head of the tmp_list
1405 			 */
1406 			curr->b_next = tmp_list;
1407 			tmp_list = curr;
1408 		} else {
1409 			prev = curr;
1410 		}
1411 	}
1412 	mutex_exit(&ipsq->ipsq_lock);
1413 
1414 	while (tmp_list != NULL) {
1415 		curr = tmp_list;
1416 		tmp_list = curr->b_next;
1417 		curr->b_next = NULL;
1418 		curr->b_prev = NULL;
1419 		curr->b_queue = NULL;
1420 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1421 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1422 			    CONN_CLOSE : NO_COPYOUT, NULL);
1423 		} else {
1424 			/*
1425 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1426 			 * this can't be just inet_freemsg. we have to
1427 			 * restart it otherwise the thread will be stuck.
1428 			 */
1429 			inet_freemsg(curr);
1430 		}
1431 	}
1432 }
1433 
1434 /*
1435  * This conn has started closing. Cleanup any pending ioctl from this conn.
1436  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1437  */
1438 void
1439 conn_ioctl_cleanup(conn_t *connp)
1440 {
1441 	mblk_t *curr;
1442 	ipsq_t	*ipsq;
1443 	ill_t	*ill;
1444 	boolean_t refheld;
1445 
1446 	/*
1447 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1448 	 * ioctl has not yet started, the mp is pending in the list headed by
1449 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1450 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1451 	 * is currently executing now the mp is not queued anywhere but
1452 	 * conn_oper_pending_ill is null. The conn close will wait
1453 	 * till the conn_ref drops to zero.
1454 	 */
1455 	mutex_enter(&connp->conn_lock);
1456 	ill = connp->conn_oper_pending_ill;
1457 	if (ill == NULL) {
1458 		mutex_exit(&connp->conn_lock);
1459 		return;
1460 	}
1461 
1462 	curr = ill_pending_mp_get(ill, &connp, 0);
1463 	if (curr != NULL) {
1464 		mutex_exit(&connp->conn_lock);
1465 		CONN_DEC_REF(connp);
1466 		inet_freemsg(curr);
1467 		return;
1468 	}
1469 	/*
1470 	 * We may not be able to refhold the ill if the ill/ipif
1471 	 * is changing. But we need to make sure that the ill will
1472 	 * not vanish. So we just bump up the ill_waiter count.
1473 	 */
1474 	refheld = ill_waiter_inc(ill);
1475 	mutex_exit(&connp->conn_lock);
1476 	if (refheld) {
1477 		if (ipsq_enter(ill, B_TRUE)) {
1478 			ill_waiter_dcr(ill);
1479 			/*
1480 			 * Check whether this ioctl has started and is
1481 			 * pending now in ipsq_pending_mp. If it is not
1482 			 * found there then check whether this ioctl has
1483 			 * not even started and is in the ipsq_xopq list.
1484 			 */
1485 			if (!ipsq_pending_mp_cleanup(ill, connp))
1486 				ipsq_xopq_mp_cleanup(ill, connp);
1487 			ipsq = ill->ill_phyint->phyint_ipsq;
1488 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1489 			return;
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * The ill is also closing and we could not bump up the
1495 	 * ill_waiter_count or we could not enter the ipsq. Leave
1496 	 * the cleanup to ill_delete
1497 	 */
1498 	mutex_enter(&connp->conn_lock);
1499 	while (connp->conn_oper_pending_ill != NULL)
1500 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1501 	mutex_exit(&connp->conn_lock);
1502 	if (refheld)
1503 		ill_waiter_dcr(ill);
1504 }
1505 
1506 /*
1507  * ipcl_walk function for cleaning up conn_*_ill fields.
1508  */
1509 static void
1510 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1511 {
1512 	ill_t	*ill = (ill_t *)arg;
1513 	ire_t	*ire;
1514 
1515 	mutex_enter(&connp->conn_lock);
1516 	if (connp->conn_multicast_ill == ill) {
1517 		/* Revert to late binding */
1518 		connp->conn_multicast_ill = NULL;
1519 		connp->conn_orig_multicast_ifindex = 0;
1520 	}
1521 	if (connp->conn_incoming_ill == ill)
1522 		connp->conn_incoming_ill = NULL;
1523 	if (connp->conn_outgoing_ill == ill)
1524 		connp->conn_outgoing_ill = NULL;
1525 	if (connp->conn_outgoing_pill == ill)
1526 		connp->conn_outgoing_pill = NULL;
1527 	if (connp->conn_nofailover_ill == ill)
1528 		connp->conn_nofailover_ill = NULL;
1529 	if (connp->conn_xmit_if_ill == ill)
1530 		connp->conn_xmit_if_ill = NULL;
1531 	if (connp->conn_ire_cache != NULL) {
1532 		ire = connp->conn_ire_cache;
1533 		/*
1534 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1535 		 * interface X and ipif coming from interface Y, if interface
1536 		 * X and Y are part of the same IPMPgroup. Thus whenever
1537 		 * interface X goes down, remove all references to it by
1538 		 * checking both on ire_ipif and ire_stq.
1539 		 */
1540 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1541 		    (ire->ire_type == IRE_CACHE &&
1542 		    ire->ire_stq == ill->ill_wq)) {
1543 			connp->conn_ire_cache = NULL;
1544 			mutex_exit(&connp->conn_lock);
1545 			ire_refrele_notr(ire);
1546 			return;
1547 		}
1548 	}
1549 	mutex_exit(&connp->conn_lock);
1550 
1551 }
1552 
1553 /* ARGSUSED */
1554 void
1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1556 {
1557 	ill_t	*ill = q->q_ptr;
1558 	ipif_t	*ipif;
1559 
1560 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1561 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1562 		ipif_non_duplicate(ipif);
1563 		ipif_down_tail(ipif);
1564 	}
1565 	freemsg(mp);
1566 	ipsq_current_finish(ipsq);
1567 }
1568 
1569 /*
1570  * ill_down_start is called when we want to down this ill and bring it up again
1571  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1572  * all interfaces, but don't tear down any plumbing.
1573  */
1574 boolean_t
1575 ill_down_start(queue_t *q, mblk_t *mp)
1576 {
1577 	ill_t	*ill = q->q_ptr;
1578 	ipif_t	*ipif;
1579 
1580 	ASSERT(IAM_WRITER_ILL(ill));
1581 
1582 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1583 		(void) ipif_down(ipif, NULL, NULL);
1584 
1585 	ill_down(ill);
1586 
1587 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1588 
1589 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1590 
1591 	/*
1592 	 * Atomically test and add the pending mp if references are active.
1593 	 */
1594 	mutex_enter(&ill->ill_lock);
1595 	if (!ill_is_quiescent(ill)) {
1596 		/* call cannot fail since `conn_t *' argument is NULL */
1597 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1598 		    mp, ILL_DOWN);
1599 		mutex_exit(&ill->ill_lock);
1600 		return (B_FALSE);
1601 	}
1602 	mutex_exit(&ill->ill_lock);
1603 	return (B_TRUE);
1604 }
1605 
1606 static void
1607 ill_down(ill_t *ill)
1608 {
1609 	ip_stack_t	*ipst = ill->ill_ipst;
1610 
1611 	/* Blow off any IREs dependent on this ILL. */
1612 	ire_walk(ill_downi, (char *)ill, ipst);
1613 
1614 	/* Remove any conn_*_ill depending on this ill */
1615 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1616 
1617 	if (ill->ill_group != NULL) {
1618 		illgrp_delete(ill);
1619 	}
1620 }
1621 
1622 /*
1623  * ire_walk routine used to delete every IRE that depends on queues
1624  * associated with 'ill'.  (Always called as writer.)
1625  */
1626 static void
1627 ill_downi(ire_t *ire, char *ill_arg)
1628 {
1629 	ill_t	*ill = (ill_t *)ill_arg;
1630 
1631 	/*
1632 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1633 	 * interface X and ipif coming from interface Y, if interface
1634 	 * X and Y are part of the same IPMP group. Thus whenever interface
1635 	 * X goes down, remove all references to it by checking both
1636 	 * on ire_ipif and ire_stq.
1637 	 */
1638 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1639 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1640 		ire_delete(ire);
1641 	}
1642 }
1643 
1644 /*
1645  * Remove ire/nce from the fastpath list.
1646  */
1647 void
1648 ill_fastpath_nack(ill_t *ill)
1649 {
1650 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1651 }
1652 
1653 /* Consume an M_IOCACK of the fastpath probe. */
1654 void
1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1656 {
1657 	mblk_t	*mp1 = mp;
1658 
1659 	/*
1660 	 * If this was the first attempt turn on the fastpath probing.
1661 	 */
1662 	mutex_enter(&ill->ill_lock);
1663 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1664 		ill->ill_dlpi_fastpath_state = IDS_OK;
1665 	mutex_exit(&ill->ill_lock);
1666 
1667 	/* Free the M_IOCACK mblk, hold on to the data */
1668 	mp = mp->b_cont;
1669 	freeb(mp1);
1670 	if (mp == NULL)
1671 		return;
1672 	if (mp->b_cont != NULL) {
1673 		/*
1674 		 * Update all IRE's or NCE's that are waiting for
1675 		 * fastpath update.
1676 		 */
1677 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1678 		mp1 = mp->b_cont;
1679 		freeb(mp);
1680 		mp = mp1;
1681 	} else {
1682 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1683 	}
1684 
1685 	freeb(mp);
1686 }
1687 
1688 /*
1689  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1690  * The data portion of the request is a dl_unitdata_req_t template for
1691  * what we would send downstream in the absence of a fastpath confirmation.
1692  */
1693 int
1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1695 {
1696 	struct iocblk	*ioc;
1697 	mblk_t	*mp;
1698 
1699 	if (dlur_mp == NULL)
1700 		return (EINVAL);
1701 
1702 	mutex_enter(&ill->ill_lock);
1703 	switch (ill->ill_dlpi_fastpath_state) {
1704 	case IDS_FAILED:
1705 		/*
1706 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1707 		 * support it.
1708 		 */
1709 		mutex_exit(&ill->ill_lock);
1710 		return (ENOTSUP);
1711 	case IDS_UNKNOWN:
1712 		/* This is the first probe */
1713 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1714 		break;
1715 	default:
1716 		break;
1717 	}
1718 	mutex_exit(&ill->ill_lock);
1719 
1720 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1721 		return (EAGAIN);
1722 
1723 	mp->b_cont = copyb(dlur_mp);
1724 	if (mp->b_cont == NULL) {
1725 		freeb(mp);
1726 		return (EAGAIN);
1727 	}
1728 
1729 	ioc = (struct iocblk *)mp->b_rptr;
1730 	ioc->ioc_count = msgdsize(mp->b_cont);
1731 
1732 	putnext(ill->ill_wq, mp);
1733 	return (0);
1734 }
1735 
1736 void
1737 ill_capability_probe(ill_t *ill)
1738 {
1739 	/*
1740 	 * Do so only if capabilities are still unknown.
1741 	 */
1742 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
1743 		return;
1744 
1745 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1746 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1747 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1748 }
1749 
1750 void
1751 ill_capability_reset(ill_t *ill)
1752 {
1753 	mblk_t *sc_mp = NULL;
1754 	mblk_t *tmp;
1755 
1756 	/*
1757 	 * Note here that we reset the state to UNKNOWN, and later send
1758 	 * down the DL_CAPABILITY_REQ without first setting the state to
1759 	 * INPROGRESS.  We do this in order to distinguish the
1760 	 * DL_CAPABILITY_ACK response which may come back in response to
1761 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1762 	 * also handle the case where the driver doesn't send us back
1763 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1764 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1765 	 * features are turned off until the state reaches IDS_OK.
1766 	 */
1767 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1768 	ill->ill_capab_reneg = B_FALSE;
1769 
1770 	/*
1771 	 * Disable sub-capabilities and request a list of sub-capability
1772 	 * messages which will be sent down to the driver.  Each handler
1773 	 * allocates the corresponding dl_capability_sub_t inside an
1774 	 * mblk, and links it to the existing sc_mp mblk, or return it
1775 	 * as sc_mp if it's the first sub-capability (the passed in
1776 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1777 	 * sc_mp will be pulled-up, before passing it downstream.
1778 	 */
1779 	ill_capability_mdt_reset(ill, &sc_mp);
1780 	ill_capability_hcksum_reset(ill, &sc_mp);
1781 	ill_capability_zerocopy_reset(ill, &sc_mp);
1782 	ill_capability_ipsec_reset(ill, &sc_mp);
1783 	ill_capability_dls_reset(ill, &sc_mp);
1784 	ill_capability_lso_reset(ill, &sc_mp);
1785 
1786 	/* Nothing to send down in order to disable the capabilities? */
1787 	if (sc_mp == NULL)
1788 		return;
1789 
1790 	tmp = msgpullup(sc_mp, -1);
1791 	freemsg(sc_mp);
1792 	if ((sc_mp = tmp) == NULL) {
1793 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1794 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1795 		return;
1796 	}
1797 
1798 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1799 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1800 }
1801 
1802 /*
1803  * Request or set new-style hardware capabilities supported by DLS provider.
1804  */
1805 static void
1806 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1807 {
1808 	mblk_t *mp;
1809 	dl_capability_req_t *capb;
1810 	size_t size = 0;
1811 	uint8_t *ptr;
1812 
1813 	if (reqp != NULL)
1814 		size = MBLKL(reqp);
1815 
1816 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1817 	if (mp == NULL) {
1818 		freemsg(reqp);
1819 		return;
1820 	}
1821 	ptr = mp->b_rptr;
1822 
1823 	capb = (dl_capability_req_t *)ptr;
1824 	ptr += sizeof (dl_capability_req_t);
1825 
1826 	if (reqp != NULL) {
1827 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1828 		capb->dl_sub_length = size;
1829 		bcopy(reqp->b_rptr, ptr, size);
1830 		ptr += size;
1831 		mp->b_cont = reqp->b_cont;
1832 		freeb(reqp);
1833 	}
1834 	ASSERT(ptr == mp->b_wptr);
1835 
1836 	ill_dlpi_send(ill, mp);
1837 }
1838 
1839 static void
1840 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1841 {
1842 	dl_capab_id_t *id_ic;
1843 	uint_t sub_dl_cap = outers->dl_cap;
1844 	dl_capability_sub_t *inners;
1845 	uint8_t *capend;
1846 
1847 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1848 
1849 	/*
1850 	 * Note: range checks here are not absolutely sufficient to
1851 	 * make us robust against malformed messages sent by drivers;
1852 	 * this is in keeping with the rest of IP's dlpi handling.
1853 	 * (Remember, it's coming from something else in the kernel
1854 	 * address space)
1855 	 */
1856 
1857 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1858 	if (capend > mp->b_wptr) {
1859 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1860 		    "malformed sub-capability too long for mblk");
1861 		return;
1862 	}
1863 
1864 	id_ic = (dl_capab_id_t *)(outers + 1);
1865 
1866 	if (outers->dl_length < sizeof (*id_ic) ||
1867 	    (inners = &id_ic->id_subcap,
1868 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1869 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1870 		    "encapsulated capab type %d too long for mblk",
1871 		    inners->dl_cap);
1872 		return;
1873 	}
1874 
1875 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1876 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1877 		    "isn't as expected; pass-thru module(s) detected, "
1878 		    "discarding capability\n", inners->dl_cap));
1879 		return;
1880 	}
1881 
1882 	/* Process the encapsulated sub-capability */
1883 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1884 }
1885 
1886 /*
1887  * Process Multidata Transmit capability negotiation ack received from a
1888  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1889  * DL_CAPABILITY_ACK message.
1890  */
1891 static void
1892 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1893 {
1894 	mblk_t *nmp = NULL;
1895 	dl_capability_req_t *oc;
1896 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1897 	ill_mdt_capab_t **ill_mdt_capab;
1898 	uint_t sub_dl_cap = isub->dl_cap;
1899 	uint8_t *capend;
1900 
1901 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1902 
1903 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1904 
1905 	/*
1906 	 * Note: range checks here are not absolutely sufficient to
1907 	 * make us robust against malformed messages sent by drivers;
1908 	 * this is in keeping with the rest of IP's dlpi handling.
1909 	 * (Remember, it's coming from something else in the kernel
1910 	 * address space)
1911 	 */
1912 
1913 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1914 	if (capend > mp->b_wptr) {
1915 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1916 		    "malformed sub-capability too long for mblk");
1917 		return;
1918 	}
1919 
1920 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1921 
1922 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1923 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1924 		    "unsupported MDT sub-capability (version %d, expected %d)",
1925 		    mdt_ic->mdt_version, MDT_VERSION_2);
1926 		return;
1927 	}
1928 
1929 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1930 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1931 		    "capability isn't as expected; pass-thru module(s) "
1932 		    "detected, discarding capability\n"));
1933 		return;
1934 	}
1935 
1936 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1937 
1938 		if (*ill_mdt_capab == NULL) {
1939 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1940 			    KM_NOSLEEP);
1941 
1942 			if (*ill_mdt_capab == NULL) {
1943 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1944 				    "could not enable MDT version %d "
1945 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
1946 				    ill->ill_name);
1947 				return;
1948 			}
1949 		}
1950 
1951 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1952 		    "MDT version %d (%d bytes leading, %d bytes trailing "
1953 		    "header spaces, %d max pld bufs, %d span limit)\n",
1954 		    ill->ill_name, MDT_VERSION_2,
1955 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1956 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1957 
1958 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1959 		(*ill_mdt_capab)->ill_mdt_on = 1;
1960 		/*
1961 		 * Round the following values to the nearest 32-bit; ULP
1962 		 * may further adjust them to accomodate for additional
1963 		 * protocol headers.  We pass these values to ULP during
1964 		 * bind time.
1965 		 */
1966 		(*ill_mdt_capab)->ill_mdt_hdr_head =
1967 		    roundup(mdt_ic->mdt_hdr_head, 4);
1968 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
1969 		    roundup(mdt_ic->mdt_hdr_tail, 4);
1970 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1971 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1972 
1973 		ill->ill_capabilities |= ILL_CAPAB_MDT;
1974 	} else {
1975 		uint_t size;
1976 		uchar_t *rptr;
1977 
1978 		size = sizeof (dl_capability_req_t) +
1979 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1980 
1981 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1982 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1983 			    "could not enable MDT for %s (ENOMEM)\n",
1984 			    ill->ill_name);
1985 			return;
1986 		}
1987 
1988 		rptr = nmp->b_rptr;
1989 		/* initialize dl_capability_req_t */
1990 		oc = (dl_capability_req_t *)nmp->b_rptr;
1991 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1992 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1993 		    sizeof (dl_capab_mdt_t);
1994 		nmp->b_rptr += sizeof (dl_capability_req_t);
1995 
1996 		/* initialize dl_capability_sub_t */
1997 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1998 		nmp->b_rptr += sizeof (*isub);
1999 
2000 		/* initialize dl_capab_mdt_t */
2001 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2002 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2003 
2004 		nmp->b_rptr = rptr;
2005 
2006 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2007 		    "to enable MDT version %d\n", ill->ill_name,
2008 		    MDT_VERSION_2));
2009 
2010 		/* set ENABLE flag */
2011 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2012 
2013 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2014 		ill_dlpi_send(ill, nmp);
2015 	}
2016 }
2017 
2018 static void
2019 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2020 {
2021 	mblk_t *mp;
2022 	dl_capab_mdt_t *mdt_subcap;
2023 	dl_capability_sub_t *dl_subcap;
2024 	int size;
2025 
2026 	if (!ILL_MDT_CAPABLE(ill))
2027 		return;
2028 
2029 	ASSERT(ill->ill_mdt_capab != NULL);
2030 	/*
2031 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2032 	 * structure since it's possible that another thread is still
2033 	 * referring to it.  The structure only gets deallocated when
2034 	 * we destroy the ill.
2035 	 */
2036 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2037 
2038 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2039 
2040 	mp = allocb(size, BPRI_HI);
2041 	if (mp == NULL) {
2042 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2043 		    "request to disable MDT\n"));
2044 		return;
2045 	}
2046 
2047 	mp->b_wptr = mp->b_rptr + size;
2048 
2049 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2050 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2051 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2052 
2053 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2054 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2055 	mdt_subcap->mdt_flags = 0;
2056 	mdt_subcap->mdt_hdr_head = 0;
2057 	mdt_subcap->mdt_hdr_tail = 0;
2058 
2059 	if (*sc_mp != NULL)
2060 		linkb(*sc_mp, mp);
2061 	else
2062 		*sc_mp = mp;
2063 }
2064 
2065 /*
2066  * Send a DL_NOTIFY_REQ to the specified ill to enable
2067  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2068  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2069  * acceleration.
2070  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2071  */
2072 static boolean_t
2073 ill_enable_promisc_notify(ill_t *ill)
2074 {
2075 	mblk_t *mp;
2076 	dl_notify_req_t *req;
2077 
2078 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2079 
2080 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2081 	if (mp == NULL)
2082 		return (B_FALSE);
2083 
2084 	req = (dl_notify_req_t *)mp->b_rptr;
2085 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2086 	    DL_NOTE_PROMISC_OFF_PHYS;
2087 
2088 	ill_dlpi_send(ill, mp);
2089 
2090 	return (B_TRUE);
2091 }
2092 
2093 
2094 /*
2095  * Allocate an IPsec capability request which will be filled by our
2096  * caller to turn on support for one or more algorithms.
2097  */
2098 static mblk_t *
2099 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2100 {
2101 	mblk_t *nmp;
2102 	dl_capability_req_t	*ocap;
2103 	dl_capab_ipsec_t	*ocip;
2104 	dl_capab_ipsec_t	*icip;
2105 	uint8_t			*ptr;
2106 	icip = (dl_capab_ipsec_t *)(isub + 1);
2107 
2108 	/*
2109 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2110 	 * PROMISC_ON/OFF notification from the provider. We need to
2111 	 * do this before enabling the algorithms to avoid leakage of
2112 	 * cleartext packets.
2113 	 */
2114 
2115 	if (!ill_enable_promisc_notify(ill))
2116 		return (NULL);
2117 
2118 	/*
2119 	 * Allocate new mblk which will contain a new capability
2120 	 * request to enable the capabilities.
2121 	 */
2122 
2123 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2124 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2125 	if (nmp == NULL)
2126 		return (NULL);
2127 
2128 	ptr = nmp->b_rptr;
2129 
2130 	/* initialize dl_capability_req_t */
2131 	ocap = (dl_capability_req_t *)ptr;
2132 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2133 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2134 	ptr += sizeof (dl_capability_req_t);
2135 
2136 	/* initialize dl_capability_sub_t */
2137 	bcopy(isub, ptr, sizeof (*isub));
2138 	ptr += sizeof (*isub);
2139 
2140 	/* initialize dl_capab_ipsec_t */
2141 	ocip = (dl_capab_ipsec_t *)ptr;
2142 	bcopy(icip, ocip, sizeof (*icip));
2143 
2144 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2145 	return (nmp);
2146 }
2147 
2148 /*
2149  * Process an IPsec capability negotiation ack received from a DLS Provider.
2150  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2151  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2152  */
2153 static void
2154 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2155 {
2156 	dl_capab_ipsec_t	*icip;
2157 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2158 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2159 	uint_t cipher, nciphers;
2160 	mblk_t *nmp;
2161 	uint_t alg_len;
2162 	boolean_t need_sadb_dump;
2163 	uint_t sub_dl_cap = isub->dl_cap;
2164 	ill_ipsec_capab_t **ill_capab;
2165 	uint64_t ill_capab_flag;
2166 	uint8_t *capend, *ciphend;
2167 	boolean_t sadb_resync;
2168 
2169 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2170 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2171 
2172 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2173 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2174 		ill_capab_flag = ILL_CAPAB_AH;
2175 	} else {
2176 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2177 		ill_capab_flag = ILL_CAPAB_ESP;
2178 	}
2179 
2180 	/*
2181 	 * If the ill capability structure exists, then this incoming
2182 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2183 	 * If this is so, then we'd need to resynchronize the SADB
2184 	 * after re-enabling the offloaded ciphers.
2185 	 */
2186 	sadb_resync = (*ill_capab != NULL);
2187 
2188 	/*
2189 	 * Note: range checks here are not absolutely sufficient to
2190 	 * make us robust against malformed messages sent by drivers;
2191 	 * this is in keeping with the rest of IP's dlpi handling.
2192 	 * (Remember, it's coming from something else in the kernel
2193 	 * address space)
2194 	 */
2195 
2196 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2197 	if (capend > mp->b_wptr) {
2198 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2199 		    "malformed sub-capability too long for mblk");
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * There are two types of acks we process here:
2205 	 * 1. acks in reply to a (first form) generic capability req
2206 	 *    (no ENABLE flag set)
2207 	 * 2. acks in reply to a ENABLE capability req.
2208 	 *    (ENABLE flag set)
2209 	 *
2210 	 * We process the subcapability passed as argument as follows:
2211 	 * 1 do initializations
2212 	 *   1.1 initialize nmp = NULL
2213 	 *   1.2 set need_sadb_dump to B_FALSE
2214 	 * 2 for each cipher in subcapability:
2215 	 *   2.1 if ENABLE flag is set:
2216 	 *	2.1.1 update per-ill ipsec capabilities info
2217 	 *	2.1.2 set need_sadb_dump to B_TRUE
2218 	 *   2.2 if ENABLE flag is not set:
2219 	 *	2.2.1 if nmp is NULL:
2220 	 *		2.2.1.1 allocate and initialize nmp
2221 	 *		2.2.1.2 init current pos in nmp
2222 	 *	2.2.2 copy current cipher to current pos in nmp
2223 	 *	2.2.3 set ENABLE flag in nmp
2224 	 *	2.2.4 update current pos
2225 	 * 3 if nmp is not equal to NULL, send enable request
2226 	 *   3.1 send capability request
2227 	 * 4 if need_sadb_dump is B_TRUE
2228 	 *   4.1 enable promiscuous on/off notifications
2229 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2230 	 *	AH or ESP SA's to interface.
2231 	 */
2232 
2233 	nmp = NULL;
2234 	oalg = NULL;
2235 	need_sadb_dump = B_FALSE;
2236 	icip = (dl_capab_ipsec_t *)(isub + 1);
2237 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2238 
2239 	nciphers = icip->cip_nciphers;
2240 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2241 
2242 	if (ciphend > capend) {
2243 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2244 		    "too many ciphers for sub-capability len");
2245 		return;
2246 	}
2247 
2248 	for (cipher = 0; cipher < nciphers; cipher++) {
2249 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2250 
2251 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2252 			/*
2253 			 * TBD: when we provide a way to disable capabilities
2254 			 * from above, need to manage the request-pending state
2255 			 * and fail if we were not expecting this ACK.
2256 			 */
2257 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2258 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2259 
2260 			/*
2261 			 * Update IPsec capabilities for this ill
2262 			 */
2263 
2264 			if (*ill_capab == NULL) {
2265 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2266 				    ("ill_capability_ipsec_ack: "
2267 				    "allocating ipsec_capab for ill\n"));
2268 				*ill_capab = ill_ipsec_capab_alloc();
2269 
2270 				if (*ill_capab == NULL) {
2271 					cmn_err(CE_WARN,
2272 					    "ill_capability_ipsec_ack: "
2273 					    "could not enable IPsec Hardware "
2274 					    "acceleration for %s (ENOMEM)\n",
2275 					    ill->ill_name);
2276 					return;
2277 				}
2278 			}
2279 
2280 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2281 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2282 
2283 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2284 				cmn_err(CE_WARN,
2285 				    "ill_capability_ipsec_ack: "
2286 				    "malformed IPsec algorithm id %d",
2287 				    ialg->alg_prim);
2288 				continue;
2289 			}
2290 
2291 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2292 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2293 				    ialg->alg_prim);
2294 			} else {
2295 				ipsec_capab_algparm_t *alp;
2296 
2297 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2298 				    ialg->alg_prim);
2299 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2300 				    ialg->alg_prim)) {
2301 					cmn_err(CE_WARN,
2302 					    "ill_capability_ipsec_ack: "
2303 					    "no space for IPsec alg id %d",
2304 					    ialg->alg_prim);
2305 					continue;
2306 				}
2307 				alp = &((*ill_capab)->encr_algparm[
2308 				    ialg->alg_prim]);
2309 				alp->minkeylen = ialg->alg_minbits;
2310 				alp->maxkeylen = ialg->alg_maxbits;
2311 			}
2312 			ill->ill_capabilities |= ill_capab_flag;
2313 			/*
2314 			 * indicate that a capability was enabled, which
2315 			 * will be used below to kick off a SADB dump
2316 			 * to the ill.
2317 			 */
2318 			need_sadb_dump = B_TRUE;
2319 		} else {
2320 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2321 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2322 			    ialg->alg_prim));
2323 
2324 			if (nmp == NULL) {
2325 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2326 				if (nmp == NULL) {
2327 					/*
2328 					 * Sending the PROMISC_ON/OFF
2329 					 * notification request failed.
2330 					 * We cannot enable the algorithms
2331 					 * since the Provider will not
2332 					 * notify IP of promiscous mode
2333 					 * changes, which could lead
2334 					 * to leakage of packets.
2335 					 */
2336 					cmn_err(CE_WARN,
2337 					    "ill_capability_ipsec_ack: "
2338 					    "could not enable IPsec Hardware "
2339 					    "acceleration for %s (ENOMEM)\n",
2340 					    ill->ill_name);
2341 					return;
2342 				}
2343 				/* ptr to current output alg specifier */
2344 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2345 			}
2346 
2347 			/*
2348 			 * Copy current alg specifier, set ENABLE
2349 			 * flag, and advance to next output alg.
2350 			 * For now we enable all IPsec capabilities.
2351 			 */
2352 			ASSERT(oalg != NULL);
2353 			bcopy(ialg, oalg, alg_len);
2354 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2355 			nmp->b_wptr += alg_len;
2356 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2357 		}
2358 
2359 		/* move to next input algorithm specifier */
2360 		ialg = (dl_capab_ipsec_alg_t *)
2361 		    ((char *)ialg + alg_len);
2362 	}
2363 
2364 	if (nmp != NULL)
2365 		/*
2366 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2367 		 * IPsec hardware acceleration.
2368 		 */
2369 		ill_dlpi_send(ill, nmp);
2370 
2371 	if (need_sadb_dump)
2372 		/*
2373 		 * An acknowledgement corresponding to a request to
2374 		 * enable acceleration was received, notify SADB.
2375 		 */
2376 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2377 }
2378 
2379 /*
2380  * Given an mblk with enough space in it, create sub-capability entries for
2381  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2382  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2383  * in preparation for the reset the DL_CAPABILITY_REQ message.
2384  */
2385 static void
2386 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2387     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2388 {
2389 	dl_capab_ipsec_t *oipsec;
2390 	dl_capab_ipsec_alg_t *oalg;
2391 	dl_capability_sub_t *dl_subcap;
2392 	int i, k;
2393 
2394 	ASSERT(nciphers > 0);
2395 	ASSERT(ill_cap != NULL);
2396 	ASSERT(mp != NULL);
2397 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2398 
2399 	/* dl_capability_sub_t for "stype" */
2400 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2401 	dl_subcap->dl_cap = stype;
2402 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2403 	mp->b_wptr += sizeof (dl_capability_sub_t);
2404 
2405 	/* dl_capab_ipsec_t for "stype" */
2406 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2407 	oipsec->cip_version = 1;
2408 	oipsec->cip_nciphers = nciphers;
2409 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2410 
2411 	/* create entries for "stype" AUTH ciphers */
2412 	for (i = 0; i < ill_cap->algs_size; i++) {
2413 		for (k = 0; k < BITSPERBYTE; k++) {
2414 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2415 				continue;
2416 
2417 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2418 			bzero((void *)oalg, sizeof (*oalg));
2419 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2420 			oalg->alg_prim = k + (BITSPERBYTE * i);
2421 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2422 		}
2423 	}
2424 	/* create entries for "stype" ENCR ciphers */
2425 	for (i = 0; i < ill_cap->algs_size; i++) {
2426 		for (k = 0; k < BITSPERBYTE; k++) {
2427 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2428 				continue;
2429 
2430 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2431 			bzero((void *)oalg, sizeof (*oalg));
2432 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2433 			oalg->alg_prim = k + (BITSPERBYTE * i);
2434 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2435 		}
2436 	}
2437 }
2438 
2439 /*
2440  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2441  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2442  * POPC instruction, but our macro is more flexible for an arbitrary length
2443  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2444  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2445  * stays that way, we can reduce the number of iterations required.
2446  */
2447 #define	COUNT_1S(val, sum) {					\
2448 	uint8_t x = val & 0xff;					\
2449 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2450 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2451 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2452 }
2453 
2454 /* ARGSUSED */
2455 static void
2456 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2457 {
2458 	mblk_t *mp;
2459 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2460 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2461 	uint64_t ill_capabilities = ill->ill_capabilities;
2462 	int ah_cnt = 0, esp_cnt = 0;
2463 	int ah_len = 0, esp_len = 0;
2464 	int i, size = 0;
2465 
2466 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2467 		return;
2468 
2469 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2470 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2471 
2472 	/* Find out the number of ciphers for AH */
2473 	if (cap_ah != NULL) {
2474 		for (i = 0; i < cap_ah->algs_size; i++) {
2475 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2476 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2477 		}
2478 		if (ah_cnt > 0) {
2479 			size += sizeof (dl_capability_sub_t) +
2480 			    sizeof (dl_capab_ipsec_t);
2481 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2482 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2483 			size += ah_len;
2484 		}
2485 	}
2486 
2487 	/* Find out the number of ciphers for ESP */
2488 	if (cap_esp != NULL) {
2489 		for (i = 0; i < cap_esp->algs_size; i++) {
2490 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2491 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2492 		}
2493 		if (esp_cnt > 0) {
2494 			size += sizeof (dl_capability_sub_t) +
2495 			    sizeof (dl_capab_ipsec_t);
2496 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2497 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2498 			size += esp_len;
2499 		}
2500 	}
2501 
2502 	if (size == 0) {
2503 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2504 		    "there's nothing to reset\n"));
2505 		return;
2506 	}
2507 
2508 	mp = allocb(size, BPRI_HI);
2509 	if (mp == NULL) {
2510 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2511 		    "request to disable IPSEC Hardware Acceleration\n"));
2512 		return;
2513 	}
2514 
2515 	/*
2516 	 * Clear the capability flags for IPsec HA but retain the ill
2517 	 * capability structures since it's possible that another thread
2518 	 * is still referring to them.  The structures only get deallocated
2519 	 * when we destroy the ill.
2520 	 *
2521 	 * Various places check the flags to see if the ill is capable of
2522 	 * hardware acceleration, and by clearing them we ensure that new
2523 	 * outbound IPsec packets are sent down encrypted.
2524 	 */
2525 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2526 
2527 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2528 	if (ah_cnt > 0) {
2529 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2530 		    cap_ah, mp);
2531 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2532 	}
2533 
2534 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2535 	if (esp_cnt > 0) {
2536 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2537 		    cap_esp, mp);
2538 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2539 	}
2540 
2541 	/*
2542 	 * At this point we've composed a bunch of sub-capabilities to be
2543 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2544 	 * by the caller.  Upon receiving this reset message, the driver
2545 	 * must stop inbound decryption (by destroying all inbound SAs)
2546 	 * and let the corresponding packets come in encrypted.
2547 	 */
2548 
2549 	if (*sc_mp != NULL)
2550 		linkb(*sc_mp, mp);
2551 	else
2552 		*sc_mp = mp;
2553 }
2554 
2555 static void
2556 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2557     boolean_t encapsulated)
2558 {
2559 	boolean_t legacy = B_FALSE;
2560 
2561 	/*
2562 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2563 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2564 	 * instructed the driver to disable its advertised capabilities,
2565 	 * so there's no point in accepting any response at this moment.
2566 	 */
2567 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2568 		return;
2569 
2570 	/*
2571 	 * Note that only the following two sub-capabilities may be
2572 	 * considered as "legacy", since their original definitions
2573 	 * do not incorporate the dl_mid_t module ID token, and hence
2574 	 * may require the use of the wrapper sub-capability.
2575 	 */
2576 	switch (subp->dl_cap) {
2577 	case DL_CAPAB_IPSEC_AH:
2578 	case DL_CAPAB_IPSEC_ESP:
2579 		legacy = B_TRUE;
2580 		break;
2581 	}
2582 
2583 	/*
2584 	 * For legacy sub-capabilities which don't incorporate a queue_t
2585 	 * pointer in their structures, discard them if we detect that
2586 	 * there are intermediate modules in between IP and the driver.
2587 	 */
2588 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2589 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2590 		    "%d discarded; %d module(s) present below IP\n",
2591 		    subp->dl_cap, ill->ill_lmod_cnt));
2592 		return;
2593 	}
2594 
2595 	switch (subp->dl_cap) {
2596 	case DL_CAPAB_IPSEC_AH:
2597 	case DL_CAPAB_IPSEC_ESP:
2598 		ill_capability_ipsec_ack(ill, mp, subp);
2599 		break;
2600 	case DL_CAPAB_MDT:
2601 		ill_capability_mdt_ack(ill, mp, subp);
2602 		break;
2603 	case DL_CAPAB_HCKSUM:
2604 		ill_capability_hcksum_ack(ill, mp, subp);
2605 		break;
2606 	case DL_CAPAB_ZEROCOPY:
2607 		ill_capability_zerocopy_ack(ill, mp, subp);
2608 		break;
2609 	case DL_CAPAB_POLL:
2610 		if (!SOFT_RINGS_ENABLED())
2611 			ill_capability_dls_ack(ill, mp, subp);
2612 		break;
2613 	case DL_CAPAB_SOFT_RING:
2614 		if (SOFT_RINGS_ENABLED())
2615 			ill_capability_dls_ack(ill, mp, subp);
2616 		break;
2617 	case DL_CAPAB_LSO:
2618 		ill_capability_lso_ack(ill, mp, subp);
2619 		break;
2620 	default:
2621 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2622 		    subp->dl_cap));
2623 	}
2624 }
2625 
2626 /*
2627  * As part of negotiating polling capability, the driver tells us
2628  * the default (or normal) blanking interval and packet threshold
2629  * (the receive timer fires if blanking interval is reached or
2630  * the packet threshold is reached).
2631  *
2632  * As part of manipulating the polling interval, we always use our
2633  * estimated interval (avg service time * number of packets queued
2634  * on the squeue) but we try to blank for a minimum of
2635  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2636  * packet threshold during this time. When we are not in polling mode
2637  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2638  * rr_min_blank_ratio but up the packet cnt by a ratio of
2639  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2640  * possible although for a shorter interval.
2641  */
2642 #define	RR_MAX_BLANK_RATIO	20
2643 #define	RR_MIN_BLANK_RATIO	10
2644 #define	RR_MAX_PKT_CNT_RATIO	3
2645 #define	RR_MIN_PKT_CNT_RATIO	3
2646 
2647 /*
2648  * These can be tuned via /etc/system.
2649  */
2650 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2651 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2652 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2653 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2654 
2655 static mac_resource_handle_t
2656 ill_ring_add(void *arg, mac_resource_t *mrp)
2657 {
2658 	ill_t			*ill = (ill_t *)arg;
2659 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2660 	ill_rx_ring_t		*rx_ring;
2661 	int			ip_rx_index;
2662 
2663 	ASSERT(mrp != NULL);
2664 	if (mrp->mr_type != MAC_RX_FIFO) {
2665 		return (NULL);
2666 	}
2667 	ASSERT(ill != NULL);
2668 	ASSERT(ill->ill_dls_capab != NULL);
2669 
2670 	mutex_enter(&ill->ill_lock);
2671 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2672 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2673 		ASSERT(rx_ring != NULL);
2674 
2675 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2676 			time_t normal_blank_time =
2677 			    mrfp->mrf_normal_blank_time;
2678 			uint_t normal_pkt_cnt =
2679 			    mrfp->mrf_normal_pkt_count;
2680 
2681 	bzero(rx_ring, sizeof (ill_rx_ring_t));
2682 
2683 	rx_ring->rr_blank = mrfp->mrf_blank;
2684 	rx_ring->rr_handle = mrfp->mrf_arg;
2685 	rx_ring->rr_ill = ill;
2686 	rx_ring->rr_normal_blank_time = normal_blank_time;
2687 	rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2688 
2689 			rx_ring->rr_max_blank_time =
2690 			    normal_blank_time * rr_max_blank_ratio;
2691 			rx_ring->rr_min_blank_time =
2692 			    normal_blank_time * rr_min_blank_ratio;
2693 			rx_ring->rr_max_pkt_cnt =
2694 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2695 			rx_ring->rr_min_pkt_cnt =
2696 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2697 
2698 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2699 			mutex_exit(&ill->ill_lock);
2700 
2701 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2702 			    (int), ip_rx_index);
2703 			return ((mac_resource_handle_t)rx_ring);
2704 		}
2705 	}
2706 
2707 	/*
2708 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2709 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2710 	 * should be made configurable. Meanwhile it cause no panic because
2711 	 * driver will pass ip_input a NULL handle which will make
2712 	 * IP allocate the default squeue and Polling mode will not
2713 	 * be used for this ring.
2714 	 */
2715 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2716 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2717 
2718 	mutex_exit(&ill->ill_lock);
2719 	return (NULL);
2720 }
2721 
2722 static boolean_t
2723 ill_capability_dls_init(ill_t *ill)
2724 {
2725 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2726 	conn_t 			*connp;
2727 	size_t			sz;
2728 	ip_stack_t *ipst = ill->ill_ipst;
2729 
2730 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2731 		if (ill_dls == NULL) {
2732 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2733 			    "soft_ring enabled for ill=%s (%p) but data "
2734 			    "structs uninitialized\n", ill->ill_name,
2735 			    (void *)ill);
2736 		}
2737 		return (B_TRUE);
2738 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2739 		if (ill_dls == NULL) {
2740 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2741 			    "polling enabled for ill=%s (%p) but data "
2742 			    "structs uninitialized\n", ill->ill_name,
2743 			    (void *)ill);
2744 		}
2745 		return (B_TRUE);
2746 	}
2747 
2748 	if (ill_dls != NULL) {
2749 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2750 		/* Soft_Ring or polling is being re-enabled */
2751 
2752 		connp = ill_dls->ill_unbind_conn;
2753 		ASSERT(rx_ring != NULL);
2754 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2755 		bzero((void *)rx_ring,
2756 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2757 		ill_dls->ill_ring_tbl = rx_ring;
2758 		ill_dls->ill_unbind_conn = connp;
2759 		return (B_TRUE);
2760 	}
2761 
2762 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2763 	    ipst->ips_netstack)) == NULL)
2764 		return (B_FALSE);
2765 
2766 	sz = sizeof (ill_dls_capab_t);
2767 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2768 
2769 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2770 	if (ill_dls == NULL) {
2771 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2772 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2773 		    (void *)ill);
2774 		CONN_DEC_REF(connp);
2775 		return (B_FALSE);
2776 	}
2777 
2778 	/* Allocate space to hold ring table */
2779 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2780 	ill->ill_dls_capab = ill_dls;
2781 	ill_dls->ill_unbind_conn = connp;
2782 	return (B_TRUE);
2783 }
2784 
2785 /*
2786  * ill_capability_dls_disable: disable soft_ring and/or polling
2787  * capability. Since any of the rings might already be in use, need
2788  * to call ip_squeue_clean_all() which gets behind the squeue to disable
2789  * direct calls if necessary.
2790  */
2791 static void
2792 ill_capability_dls_disable(ill_t *ill)
2793 {
2794 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2795 
2796 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2797 		ip_squeue_clean_all(ill);
2798 		ill_dls->ill_tx = NULL;
2799 		ill_dls->ill_tx_handle = NULL;
2800 		ill_dls->ill_dls_change_status = NULL;
2801 		ill_dls->ill_dls_bind = NULL;
2802 		ill_dls->ill_dls_unbind = NULL;
2803 	}
2804 
2805 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2806 }
2807 
2808 static void
2809 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2810     dl_capability_sub_t *isub)
2811 {
2812 	uint_t			size;
2813 	uchar_t			*rptr;
2814 	dl_capab_dls_t	dls, *odls;
2815 	ill_dls_capab_t	*ill_dls;
2816 	mblk_t			*nmp = NULL;
2817 	dl_capability_req_t	*ocap;
2818 	uint_t			sub_dl_cap = isub->dl_cap;
2819 
2820 	if (!ill_capability_dls_init(ill))
2821 		return;
2822 	ill_dls = ill->ill_dls_capab;
2823 
2824 	/* Copy locally to get the members aligned */
2825 	bcopy((void *)idls, (void *)&dls,
2826 	    sizeof (dl_capab_dls_t));
2827 
2828 	/* Get the tx function and handle from dld */
2829 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2830 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2831 
2832 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2833 		ill_dls->ill_dls_change_status =
2834 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2835 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2836 		ill_dls->ill_dls_unbind =
2837 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2838 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2839 	}
2840 
2841 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2842 	    isub->dl_length;
2843 
2844 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2845 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2846 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2847 		    ill->ill_name, (void *)ill);
2848 		return;
2849 	}
2850 
2851 	/* initialize dl_capability_req_t */
2852 	rptr = nmp->b_rptr;
2853 	ocap = (dl_capability_req_t *)rptr;
2854 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2855 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2856 	rptr += sizeof (dl_capability_req_t);
2857 
2858 	/* initialize dl_capability_sub_t */
2859 	bcopy(isub, rptr, sizeof (*isub));
2860 	rptr += sizeof (*isub);
2861 
2862 	odls = (dl_capab_dls_t *)rptr;
2863 	rptr += sizeof (dl_capab_dls_t);
2864 
2865 	/* initialize dl_capab_dls_t to be sent down */
2866 	dls.dls_rx_handle = (uintptr_t)ill;
2867 	dls.dls_rx = (uintptr_t)ip_input;
2868 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2869 
2870 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2871 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2872 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2873 		dls.dls_flags = SOFT_RING_ENABLE;
2874 	} else {
2875 		dls.dls_flags = POLL_ENABLE;
2876 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2877 		    "to enable polling\n", ill->ill_name));
2878 	}
2879 	bcopy((void *)&dls, (void *)odls,
2880 	    sizeof (dl_capab_dls_t));
2881 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2882 	/*
2883 	 * nmp points to a DL_CAPABILITY_REQ message to
2884 	 * enable either soft_ring or polling
2885 	 */
2886 	ill_dlpi_send(ill, nmp);
2887 }
2888 
2889 static void
2890 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2891 {
2892 	mblk_t *mp;
2893 	dl_capab_dls_t *idls;
2894 	dl_capability_sub_t *dl_subcap;
2895 	int size;
2896 
2897 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2898 		return;
2899 
2900 	ASSERT(ill->ill_dls_capab != NULL);
2901 
2902 	size = sizeof (*dl_subcap) + sizeof (*idls);
2903 
2904 	mp = allocb(size, BPRI_HI);
2905 	if (mp == NULL) {
2906 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2907 		    "request to disable soft_ring\n"));
2908 		return;
2909 	}
2910 
2911 	mp->b_wptr = mp->b_rptr + size;
2912 
2913 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2914 	dl_subcap->dl_length = sizeof (*idls);
2915 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2916 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
2917 	else
2918 		dl_subcap->dl_cap = DL_CAPAB_POLL;
2919 
2920 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
2921 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2922 		idls->dls_flags = SOFT_RING_DISABLE;
2923 	else
2924 		idls->dls_flags = POLL_DISABLE;
2925 
2926 	if (*sc_mp != NULL)
2927 		linkb(*sc_mp, mp);
2928 	else
2929 		*sc_mp = mp;
2930 }
2931 
2932 /*
2933  * Process a soft_ring/poll capability negotiation ack received
2934  * from a DLS Provider.isub must point to the sub-capability
2935  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
2936  */
2937 static void
2938 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2939 {
2940 	dl_capab_dls_t		*idls;
2941 	uint_t			sub_dl_cap = isub->dl_cap;
2942 	uint8_t			*capend;
2943 
2944 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
2945 	    sub_dl_cap == DL_CAPAB_POLL);
2946 
2947 	if (ill->ill_isv6)
2948 		return;
2949 
2950 	/*
2951 	 * Note: range checks here are not absolutely sufficient to
2952 	 * make us robust against malformed messages sent by drivers;
2953 	 * this is in keeping with the rest of IP's dlpi handling.
2954 	 * (Remember, it's coming from something else in the kernel
2955 	 * address space)
2956 	 */
2957 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2958 	if (capend > mp->b_wptr) {
2959 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
2960 		    "malformed sub-capability too long for mblk");
2961 		return;
2962 	}
2963 
2964 	/*
2965 	 * There are two types of acks we process here:
2966 	 * 1. acks in reply to a (first form) generic capability req
2967 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
2968 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
2969 	 *    capability req.
2970 	 */
2971 	idls = (dl_capab_dls_t *)(isub + 1);
2972 
2973 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
2974 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
2975 		    "capability isn't as expected; pass-thru "
2976 		    "module(s) detected, discarding capability\n"));
2977 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2978 			/*
2979 			 * This is a capability renegotitation case.
2980 			 * The interface better be unusable at this
2981 			 * point other wise bad things will happen
2982 			 * if we disable direct calls on a running
2983 			 * and up interface.
2984 			 */
2985 			ill_capability_dls_disable(ill);
2986 		}
2987 		return;
2988 	}
2989 
2990 	switch (idls->dls_flags) {
2991 	default:
2992 		/* Disable if unknown flag */
2993 	case SOFT_RING_DISABLE:
2994 	case POLL_DISABLE:
2995 		ill_capability_dls_disable(ill);
2996 		break;
2997 	case SOFT_RING_CAPABLE:
2998 	case POLL_CAPABLE:
2999 		/*
3000 		 * If the capability was already enabled, its safe
3001 		 * to disable it first to get rid of stale information
3002 		 * and then start enabling it again.
3003 		 */
3004 		ill_capability_dls_disable(ill);
3005 		ill_capability_dls_capable(ill, idls, isub);
3006 		break;
3007 	case SOFT_RING_ENABLE:
3008 	case POLL_ENABLE:
3009 		mutex_enter(&ill->ill_lock);
3010 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3011 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3012 			ASSERT(ill->ill_dls_capab != NULL);
3013 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3014 		}
3015 		if (sub_dl_cap == DL_CAPAB_POLL &&
3016 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3017 			ASSERT(ill->ill_dls_capab != NULL);
3018 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3019 			ip1dbg(("ill_capability_dls_ack: interface %s "
3020 			    "has enabled polling\n", ill->ill_name));
3021 		}
3022 		mutex_exit(&ill->ill_lock);
3023 		break;
3024 	}
3025 }
3026 
3027 /*
3028  * Process a hardware checksum offload capability negotiation ack received
3029  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3030  * of a DL_CAPABILITY_ACK message.
3031  */
3032 static void
3033 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3034 {
3035 	dl_capability_req_t	*ocap;
3036 	dl_capab_hcksum_t	*ihck, *ohck;
3037 	ill_hcksum_capab_t	**ill_hcksum;
3038 	mblk_t			*nmp = NULL;
3039 	uint_t			sub_dl_cap = isub->dl_cap;
3040 	uint8_t			*capend;
3041 
3042 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3043 
3044 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3045 
3046 	/*
3047 	 * Note: range checks here are not absolutely sufficient to
3048 	 * make us robust against malformed messages sent by drivers;
3049 	 * this is in keeping with the rest of IP's dlpi handling.
3050 	 * (Remember, it's coming from something else in the kernel
3051 	 * address space)
3052 	 */
3053 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3054 	if (capend > mp->b_wptr) {
3055 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3056 		    "malformed sub-capability too long for mblk");
3057 		return;
3058 	}
3059 
3060 	/*
3061 	 * There are two types of acks we process here:
3062 	 * 1. acks in reply to a (first form) generic capability req
3063 	 *    (no ENABLE flag set)
3064 	 * 2. acks in reply to a ENABLE capability req.
3065 	 *    (ENABLE flag set)
3066 	 */
3067 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3068 
3069 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3070 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3071 		    "unsupported hardware checksum "
3072 		    "sub-capability (version %d, expected %d)",
3073 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3074 		return;
3075 	}
3076 
3077 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3078 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3079 		    "checksum capability isn't as expected; pass-thru "
3080 		    "module(s) detected, discarding capability\n"));
3081 		return;
3082 	}
3083 
3084 #define	CURR_HCKSUM_CAPAB				\
3085 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3086 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3087 
3088 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3089 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3090 		/* do ENABLE processing */
3091 		if (*ill_hcksum == NULL) {
3092 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3093 			    KM_NOSLEEP);
3094 
3095 			if (*ill_hcksum == NULL) {
3096 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3097 				    "could not enable hcksum version %d "
3098 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3099 				    ill->ill_name);
3100 				return;
3101 			}
3102 		}
3103 
3104 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3105 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3106 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3107 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3108 		    "has enabled hardware checksumming\n ",
3109 		    ill->ill_name));
3110 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3111 		/*
3112 		 * Enabling hardware checksum offload
3113 		 * Currently IP supports {TCP,UDP}/IPv4
3114 		 * partial and full cksum offload and
3115 		 * IPv4 header checksum offload.
3116 		 * Allocate new mblk which will
3117 		 * contain a new capability request
3118 		 * to enable hardware checksum offload.
3119 		 */
3120 		uint_t	size;
3121 		uchar_t	*rptr;
3122 
3123 		size = sizeof (dl_capability_req_t) +
3124 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3125 
3126 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3127 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3128 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3129 			    ill->ill_name);
3130 			return;
3131 		}
3132 
3133 		rptr = nmp->b_rptr;
3134 		/* initialize dl_capability_req_t */
3135 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3136 		ocap->dl_sub_offset =
3137 		    sizeof (dl_capability_req_t);
3138 		ocap->dl_sub_length =
3139 		    sizeof (dl_capability_sub_t) +
3140 		    isub->dl_length;
3141 		nmp->b_rptr += sizeof (dl_capability_req_t);
3142 
3143 		/* initialize dl_capability_sub_t */
3144 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3145 		nmp->b_rptr += sizeof (*isub);
3146 
3147 		/* initialize dl_capab_hcksum_t */
3148 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3149 		bcopy(ihck, ohck, sizeof (*ihck));
3150 
3151 		nmp->b_rptr = rptr;
3152 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3153 
3154 		/* Set ENABLE flag */
3155 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3156 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3157 
3158 		/*
3159 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3160 		 * hardware checksum acceleration.
3161 		 */
3162 		ill_dlpi_send(ill, nmp);
3163 	} else {
3164 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3165 		    "advertised %x hardware checksum capability flags\n",
3166 		    ill->ill_name, ihck->hcksum_txflags));
3167 	}
3168 }
3169 
3170 static void
3171 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3172 {
3173 	mblk_t *mp;
3174 	dl_capab_hcksum_t *hck_subcap;
3175 	dl_capability_sub_t *dl_subcap;
3176 	int size;
3177 
3178 	if (!ILL_HCKSUM_CAPABLE(ill))
3179 		return;
3180 
3181 	ASSERT(ill->ill_hcksum_capab != NULL);
3182 	/*
3183 	 * Clear the capability flag for hardware checksum offload but
3184 	 * retain the ill_hcksum_capab structure since it's possible that
3185 	 * another thread is still referring to it.  The structure only
3186 	 * gets deallocated when we destroy the ill.
3187 	 */
3188 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3189 
3190 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3191 
3192 	mp = allocb(size, BPRI_HI);
3193 	if (mp == NULL) {
3194 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3195 		    "request to disable hardware checksum offload\n"));
3196 		return;
3197 	}
3198 
3199 	mp->b_wptr = mp->b_rptr + size;
3200 
3201 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3202 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3203 	dl_subcap->dl_length = sizeof (*hck_subcap);
3204 
3205 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3206 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3207 	hck_subcap->hcksum_txflags = 0;
3208 
3209 	if (*sc_mp != NULL)
3210 		linkb(*sc_mp, mp);
3211 	else
3212 		*sc_mp = mp;
3213 }
3214 
3215 static void
3216 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3217 {
3218 	mblk_t *nmp = NULL;
3219 	dl_capability_req_t *oc;
3220 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3221 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3222 	uint_t sub_dl_cap = isub->dl_cap;
3223 	uint8_t *capend;
3224 
3225 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3226 
3227 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3228 
3229 	/*
3230 	 * Note: range checks here are not absolutely sufficient to
3231 	 * make us robust against malformed messages sent by drivers;
3232 	 * this is in keeping with the rest of IP's dlpi handling.
3233 	 * (Remember, it's coming from something else in the kernel
3234 	 * address space)
3235 	 */
3236 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3237 	if (capend > mp->b_wptr) {
3238 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3239 		    "malformed sub-capability too long for mblk");
3240 		return;
3241 	}
3242 
3243 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3244 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3245 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3246 		    "unsupported ZEROCOPY sub-capability (version %d, "
3247 		    "expected %d)", zc_ic->zerocopy_version,
3248 		    ZEROCOPY_VERSION_1);
3249 		return;
3250 	}
3251 
3252 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3253 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3254 		    "capability isn't as expected; pass-thru module(s) "
3255 		    "detected, discarding capability\n"));
3256 		return;
3257 	}
3258 
3259 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3260 		if (*ill_zerocopy_capab == NULL) {
3261 			*ill_zerocopy_capab =
3262 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3263 			    KM_NOSLEEP);
3264 
3265 			if (*ill_zerocopy_capab == NULL) {
3266 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3267 				    "could not enable Zero-copy version %d "
3268 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3269 				    ill->ill_name);
3270 				return;
3271 			}
3272 		}
3273 
3274 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3275 		    "supports Zero-copy version %d\n", ill->ill_name,
3276 		    ZEROCOPY_VERSION_1));
3277 
3278 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3279 		    zc_ic->zerocopy_version;
3280 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3281 		    zc_ic->zerocopy_flags;
3282 
3283 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3284 	} else {
3285 		uint_t size;
3286 		uchar_t *rptr;
3287 
3288 		size = sizeof (dl_capability_req_t) +
3289 		    sizeof (dl_capability_sub_t) +
3290 		    sizeof (dl_capab_zerocopy_t);
3291 
3292 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3293 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3294 			    "could not enable zerocopy for %s (ENOMEM)\n",
3295 			    ill->ill_name);
3296 			return;
3297 		}
3298 
3299 		rptr = nmp->b_rptr;
3300 		/* initialize dl_capability_req_t */
3301 		oc = (dl_capability_req_t *)rptr;
3302 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3303 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3304 		    sizeof (dl_capab_zerocopy_t);
3305 		rptr += sizeof (dl_capability_req_t);
3306 
3307 		/* initialize dl_capability_sub_t */
3308 		bcopy(isub, rptr, sizeof (*isub));
3309 		rptr += sizeof (*isub);
3310 
3311 		/* initialize dl_capab_zerocopy_t */
3312 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3313 		*zc_oc = *zc_ic;
3314 
3315 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3316 		    "to enable zero-copy version %d\n", ill->ill_name,
3317 		    ZEROCOPY_VERSION_1));
3318 
3319 		/* set VMSAFE_MEM flag */
3320 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3321 
3322 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3323 		ill_dlpi_send(ill, nmp);
3324 	}
3325 }
3326 
3327 static void
3328 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3329 {
3330 	mblk_t *mp;
3331 	dl_capab_zerocopy_t *zerocopy_subcap;
3332 	dl_capability_sub_t *dl_subcap;
3333 	int size;
3334 
3335 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3336 		return;
3337 
3338 	ASSERT(ill->ill_zerocopy_capab != NULL);
3339 	/*
3340 	 * Clear the capability flag for Zero-copy but retain the
3341 	 * ill_zerocopy_capab structure since it's possible that another
3342 	 * thread is still referring to it.  The structure only gets
3343 	 * deallocated when we destroy the ill.
3344 	 */
3345 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3346 
3347 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3348 
3349 	mp = allocb(size, BPRI_HI);
3350 	if (mp == NULL) {
3351 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3352 		    "request to disable Zero-copy\n"));
3353 		return;
3354 	}
3355 
3356 	mp->b_wptr = mp->b_rptr + size;
3357 
3358 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3359 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3360 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3361 
3362 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3363 	zerocopy_subcap->zerocopy_version =
3364 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3365 	zerocopy_subcap->zerocopy_flags = 0;
3366 
3367 	if (*sc_mp != NULL)
3368 		linkb(*sc_mp, mp);
3369 	else
3370 		*sc_mp = mp;
3371 }
3372 
3373 /*
3374  * Process Large Segment Offload capability negotiation ack received from a
3375  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3376  * DL_CAPABILITY_ACK message.
3377  */
3378 static void
3379 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3380 {
3381 	mblk_t *nmp = NULL;
3382 	dl_capability_req_t *oc;
3383 	dl_capab_lso_t *lso_ic, *lso_oc;
3384 	ill_lso_capab_t **ill_lso_capab;
3385 	uint_t sub_dl_cap = isub->dl_cap;
3386 	uint8_t *capend;
3387 
3388 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3389 
3390 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3391 
3392 	/*
3393 	 * Note: range checks here are not absolutely sufficient to
3394 	 * make us robust against malformed messages sent by drivers;
3395 	 * this is in keeping with the rest of IP's dlpi handling.
3396 	 * (Remember, it's coming from something else in the kernel
3397 	 * address space)
3398 	 */
3399 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3400 	if (capend > mp->b_wptr) {
3401 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3402 		    "malformed sub-capability too long for mblk");
3403 		return;
3404 	}
3405 
3406 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3407 
3408 	if (lso_ic->lso_version != LSO_VERSION_1) {
3409 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3410 		    "unsupported LSO sub-capability (version %d, expected %d)",
3411 		    lso_ic->lso_version, LSO_VERSION_1);
3412 		return;
3413 	}
3414 
3415 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3416 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3417 		    "capability isn't as expected; pass-thru module(s) "
3418 		    "detected, discarding capability\n"));
3419 		return;
3420 	}
3421 
3422 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3423 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3424 		if (*ill_lso_capab == NULL) {
3425 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3426 			    KM_NOSLEEP);
3427 
3428 			if (*ill_lso_capab == NULL) {
3429 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3430 				    "could not enable LSO version %d "
3431 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3432 				    ill->ill_name);
3433 				return;
3434 			}
3435 		}
3436 
3437 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3438 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3439 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3440 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3441 
3442 		ip1dbg(("ill_capability_lso_ack: interface %s "
3443 		    "has enabled LSO\n ", ill->ill_name));
3444 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3445 		uint_t size;
3446 		uchar_t *rptr;
3447 
3448 		size = sizeof (dl_capability_req_t) +
3449 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3450 
3451 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3452 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3453 			    "could not enable LSO for %s (ENOMEM)\n",
3454 			    ill->ill_name);
3455 			return;
3456 		}
3457 
3458 		rptr = nmp->b_rptr;
3459 		/* initialize dl_capability_req_t */
3460 		oc = (dl_capability_req_t *)nmp->b_rptr;
3461 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3462 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3463 		    sizeof (dl_capab_lso_t);
3464 		nmp->b_rptr += sizeof (dl_capability_req_t);
3465 
3466 		/* initialize dl_capability_sub_t */
3467 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3468 		nmp->b_rptr += sizeof (*isub);
3469 
3470 		/* initialize dl_capab_lso_t */
3471 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3472 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3473 
3474 		nmp->b_rptr = rptr;
3475 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3476 
3477 		/* set ENABLE flag */
3478 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3479 
3480 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3481 		ill_dlpi_send(ill, nmp);
3482 	} else {
3483 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3484 		    "advertised %x LSO capability flags\n",
3485 		    ill->ill_name, lso_ic->lso_flags));
3486 	}
3487 }
3488 
3489 
3490 static void
3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3492 {
3493 	mblk_t *mp;
3494 	dl_capab_lso_t *lso_subcap;
3495 	dl_capability_sub_t *dl_subcap;
3496 	int size;
3497 
3498 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3499 		return;
3500 
3501 	ASSERT(ill->ill_lso_capab != NULL);
3502 	/*
3503 	 * Clear the capability flag for LSO but retain the
3504 	 * ill_lso_capab structure since it's possible that another
3505 	 * thread is still referring to it.  The structure only gets
3506 	 * deallocated when we destroy the ill.
3507 	 */
3508 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3509 
3510 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3511 
3512 	mp = allocb(size, BPRI_HI);
3513 	if (mp == NULL) {
3514 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3515 		    "request to disable LSO\n"));
3516 		return;
3517 	}
3518 
3519 	mp->b_wptr = mp->b_rptr + size;
3520 
3521 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3522 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3523 	dl_subcap->dl_length = sizeof (*lso_subcap);
3524 
3525 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3526 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3527 	lso_subcap->lso_flags = 0;
3528 
3529 	if (*sc_mp != NULL)
3530 		linkb(*sc_mp, mp);
3531 	else
3532 		*sc_mp = mp;
3533 }
3534 
3535 /*
3536  * Consume a new-style hardware capabilities negotiation ack.
3537  * Called from ip_rput_dlpi_writer().
3538  */
3539 void
3540 ill_capability_ack(ill_t *ill, mblk_t *mp)
3541 {
3542 	dl_capability_ack_t *capp;
3543 	dl_capability_sub_t *subp, *endp;
3544 
3545 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3546 		ill->ill_dlpi_capab_state = IDS_OK;
3547 
3548 	capp = (dl_capability_ack_t *)mp->b_rptr;
3549 
3550 	if (capp->dl_sub_length == 0)
3551 		/* no new-style capabilities */
3552 		return;
3553 
3554 	/* make sure the driver supplied correct dl_sub_length */
3555 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3556 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3557 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3558 		return;
3559 	}
3560 
3561 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3562 	/*
3563 	 * There are sub-capabilities. Process the ones we know about.
3564 	 * Loop until we don't have room for another sub-cap header..
3565 	 */
3566 	for (subp = SC(capp, capp->dl_sub_offset),
3567 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3568 	    subp <= endp;
3569 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3570 
3571 		switch (subp->dl_cap) {
3572 		case DL_CAPAB_ID_WRAPPER:
3573 			ill_capability_id_ack(ill, mp, subp);
3574 			break;
3575 		default:
3576 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3577 			break;
3578 		}
3579 	}
3580 #undef SC
3581 }
3582 
3583 /*
3584  * This routine is called to scan the fragmentation reassembly table for
3585  * the specified ILL for any packets that are starting to smell.
3586  * dead_interval is the maximum time in seconds that will be tolerated.  It
3587  * will either be the value specified in ip_g_frag_timeout, or zero if the
3588  * ILL is shutting down and it is time to blow everything off.
3589  *
3590  * It returns the number of seconds (as a time_t) that the next frag timer
3591  * should be scheduled for, 0 meaning that the timer doesn't need to be
3592  * re-started.  Note that the method of calculating next_timeout isn't
3593  * entirely accurate since time will flow between the time we grab
3594  * current_time and the time we schedule the next timeout.  This isn't a
3595  * big problem since this is the timer for sending an ICMP reassembly time
3596  * exceeded messages, and it doesn't have to be exactly accurate.
3597  *
3598  * This function is
3599  * sometimes called as writer, although this is not required.
3600  */
3601 time_t
3602 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3603 {
3604 	ipfb_t	*ipfb;
3605 	ipfb_t	*endp;
3606 	ipf_t	*ipf;
3607 	ipf_t	*ipfnext;
3608 	mblk_t	*mp;
3609 	time_t	current_time = gethrestime_sec();
3610 	time_t	next_timeout = 0;
3611 	uint32_t	hdr_length;
3612 	mblk_t	*send_icmp_head;
3613 	mblk_t	*send_icmp_head_v6;
3614 	zoneid_t zoneid;
3615 	ip_stack_t *ipst = ill->ill_ipst;
3616 
3617 	ipfb = ill->ill_frag_hash_tbl;
3618 	if (ipfb == NULL)
3619 		return (B_FALSE);
3620 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3621 	/* Walk the frag hash table. */
3622 	for (; ipfb < endp; ipfb++) {
3623 		send_icmp_head = NULL;
3624 		send_icmp_head_v6 = NULL;
3625 		mutex_enter(&ipfb->ipfb_lock);
3626 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3627 			time_t frag_time = current_time - ipf->ipf_timestamp;
3628 			time_t frag_timeout;
3629 
3630 			if (frag_time < dead_interval) {
3631 				/*
3632 				 * There are some outstanding fragments
3633 				 * that will timeout later.  Make note of
3634 				 * the time so that we can reschedule the
3635 				 * next timeout appropriately.
3636 				 */
3637 				frag_timeout = dead_interval - frag_time;
3638 				if (next_timeout == 0 ||
3639 				    frag_timeout < next_timeout) {
3640 					next_timeout = frag_timeout;
3641 				}
3642 				break;
3643 			}
3644 			/* Time's up.  Get it out of here. */
3645 			hdr_length = ipf->ipf_nf_hdr_len;
3646 			ipfnext = ipf->ipf_hash_next;
3647 			if (ipfnext)
3648 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3649 			*ipf->ipf_ptphn = ipfnext;
3650 			mp = ipf->ipf_mp->b_cont;
3651 			for (; mp; mp = mp->b_cont) {
3652 				/* Extra points for neatness. */
3653 				IP_REASS_SET_START(mp, 0);
3654 				IP_REASS_SET_END(mp, 0);
3655 			}
3656 			mp = ipf->ipf_mp->b_cont;
3657 			ill->ill_frag_count -= ipf->ipf_count;
3658 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3659 			ipfb->ipfb_count -= ipf->ipf_count;
3660 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3661 			ipfb->ipfb_frag_pkts--;
3662 			/*
3663 			 * We do not send any icmp message from here because
3664 			 * we currently are holding the ipfb_lock for this
3665 			 * hash chain. If we try and send any icmp messages
3666 			 * from here we may end up via a put back into ip
3667 			 * trying to get the same lock, causing a recursive
3668 			 * mutex panic. Instead we build a list and send all
3669 			 * the icmp messages after we have dropped the lock.
3670 			 */
3671 			if (ill->ill_isv6) {
3672 				if (hdr_length != 0) {
3673 					mp->b_next = send_icmp_head_v6;
3674 					send_icmp_head_v6 = mp;
3675 				} else {
3676 					freemsg(mp);
3677 				}
3678 			} else {
3679 				if (hdr_length != 0) {
3680 					mp->b_next = send_icmp_head;
3681 					send_icmp_head = mp;
3682 				} else {
3683 					freemsg(mp);
3684 				}
3685 			}
3686 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3687 			freeb(ipf->ipf_mp);
3688 		}
3689 		mutex_exit(&ipfb->ipfb_lock);
3690 		/*
3691 		 * Now need to send any icmp messages that we delayed from
3692 		 * above.
3693 		 */
3694 		while (send_icmp_head_v6 != NULL) {
3695 			ip6_t *ip6h;
3696 
3697 			mp = send_icmp_head_v6;
3698 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3699 			mp->b_next = NULL;
3700 			if (mp->b_datap->db_type == M_CTL)
3701 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3702 			else
3703 				ip6h = (ip6_t *)mp->b_rptr;
3704 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3705 			    ill, ipst);
3706 			if (zoneid == ALL_ZONES) {
3707 				freemsg(mp);
3708 			} else {
3709 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3710 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3711 				    B_FALSE, zoneid, ipst);
3712 			}
3713 		}
3714 		while (send_icmp_head != NULL) {
3715 			ipaddr_t dst;
3716 
3717 			mp = send_icmp_head;
3718 			send_icmp_head = send_icmp_head->b_next;
3719 			mp->b_next = NULL;
3720 
3721 			if (mp->b_datap->db_type == M_CTL)
3722 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3723 			else
3724 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3725 
3726 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3727 			if (zoneid == ALL_ZONES) {
3728 				freemsg(mp);
3729 			} else {
3730 				icmp_time_exceeded(ill->ill_wq, mp,
3731 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3732 				    ipst);
3733 			}
3734 		}
3735 	}
3736 	/*
3737 	 * A non-dying ILL will use the return value to decide whether to
3738 	 * restart the frag timer, and for how long.
3739 	 */
3740 	return (next_timeout);
3741 }
3742 
3743 /*
3744  * This routine is called when the approximate count of mblk memory used
3745  * for the specified ILL has exceeded max_count.
3746  */
3747 void
3748 ill_frag_prune(ill_t *ill, uint_t max_count)
3749 {
3750 	ipfb_t	*ipfb;
3751 	ipf_t	*ipf;
3752 	size_t	count;
3753 
3754 	/*
3755 	 * If we are here within ip_min_frag_prune_time msecs remove
3756 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3757 	 * ill_frag_free_num_pkts.
3758 	 */
3759 	mutex_enter(&ill->ill_lock);
3760 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3761 	    (ip_min_frag_prune_time != 0 ?
3762 	    ip_min_frag_prune_time : msec_per_tick)) {
3763 
3764 		ill->ill_frag_free_num_pkts++;
3765 
3766 	} else {
3767 		ill->ill_frag_free_num_pkts = 0;
3768 	}
3769 	ill->ill_last_frag_clean_time = lbolt;
3770 	mutex_exit(&ill->ill_lock);
3771 
3772 	/*
3773 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3774 	 */
3775 	if (ill->ill_frag_free_num_pkts != 0) {
3776 		int ix;
3777 
3778 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3779 			ipfb = &ill->ill_frag_hash_tbl[ix];
3780 			mutex_enter(&ipfb->ipfb_lock);
3781 			if (ipfb->ipfb_ipf != NULL) {
3782 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3783 				    ill->ill_frag_free_num_pkts);
3784 			}
3785 			mutex_exit(&ipfb->ipfb_lock);
3786 		}
3787 	}
3788 	/*
3789 	 * While the reassembly list for this ILL is too big, prune a fragment
3790 	 * queue by age, oldest first.  Note that the per ILL count is
3791 	 * approximate, while the per frag hash bucket counts are accurate.
3792 	 */
3793 	while (ill->ill_frag_count > max_count) {
3794 		int	ix;
3795 		ipfb_t	*oipfb = NULL;
3796 		uint_t	oldest = UINT_MAX;
3797 
3798 		count = 0;
3799 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3800 			ipfb = &ill->ill_frag_hash_tbl[ix];
3801 			mutex_enter(&ipfb->ipfb_lock);
3802 			ipf = ipfb->ipfb_ipf;
3803 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3804 				oldest = ipf->ipf_gen;
3805 				oipfb = ipfb;
3806 			}
3807 			count += ipfb->ipfb_count;
3808 			mutex_exit(&ipfb->ipfb_lock);
3809 		}
3810 		/* Refresh the per ILL count */
3811 		ill->ill_frag_count = count;
3812 		if (oipfb == NULL) {
3813 			ill->ill_frag_count = 0;
3814 			break;
3815 		}
3816 		if (count <= max_count)
3817 			return;	/* Somebody beat us to it, nothing to do */
3818 		mutex_enter(&oipfb->ipfb_lock);
3819 		ipf = oipfb->ipfb_ipf;
3820 		if (ipf != NULL) {
3821 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3822 		}
3823 		mutex_exit(&oipfb->ipfb_lock);
3824 	}
3825 }
3826 
3827 /*
3828  * free 'free_cnt' fragmented packets starting at ipf.
3829  */
3830 void
3831 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3832 {
3833 	size_t	count;
3834 	mblk_t	*mp;
3835 	mblk_t	*tmp;
3836 	ipf_t **ipfp = ipf->ipf_ptphn;
3837 
3838 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3839 	ASSERT(ipfp != NULL);
3840 	ASSERT(ipf != NULL);
3841 
3842 	while (ipf != NULL && free_cnt-- > 0) {
3843 		count = ipf->ipf_count;
3844 		mp = ipf->ipf_mp;
3845 		ipf = ipf->ipf_hash_next;
3846 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3847 			IP_REASS_SET_START(tmp, 0);
3848 			IP_REASS_SET_END(tmp, 0);
3849 		}
3850 		ill->ill_frag_count -= count;
3851 		ASSERT(ipfb->ipfb_count >= count);
3852 		ipfb->ipfb_count -= count;
3853 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3854 		ipfb->ipfb_frag_pkts--;
3855 		freemsg(mp);
3856 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3857 	}
3858 
3859 	if (ipf)
3860 		ipf->ipf_ptphn = ipfp;
3861 	ipfp[0] = ipf;
3862 }
3863 
3864 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3865 	"obsolete and may be removed in a future release of Solaris.  Use " \
3866 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3867 
3868 /*
3869  * For obsolete per-interface forwarding configuration;
3870  * called in response to ND_GET.
3871  */
3872 /* ARGSUSED */
3873 static int
3874 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3875 {
3876 	ill_t *ill = (ill_t *)cp;
3877 
3878 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3879 
3880 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3881 	return (0);
3882 }
3883 
3884 /*
3885  * For obsolete per-interface forwarding configuration;
3886  * called in response to ND_SET.
3887  */
3888 /* ARGSUSED */
3889 static int
3890 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3891     cred_t *ioc_cr)
3892 {
3893 	long value;
3894 	int retval;
3895 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3896 
3897 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3898 
3899 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3900 	    value < 0 || value > 1) {
3901 		return (EINVAL);
3902 	}
3903 
3904 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3905 	retval = ill_forward_set((ill_t *)cp, (value != 0));
3906 	rw_exit(&ipst->ips_ill_g_lock);
3907 	return (retval);
3908 }
3909 
3910 /*
3911  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
3912  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
3913  * up RTS_IFINFO routing socket messages for each interface whose flags we
3914  * change.
3915  */
3916 int
3917 ill_forward_set(ill_t *ill, boolean_t enable)
3918 {
3919 	ill_group_t *illgrp;
3920 	ip_stack_t	*ipst = ill->ill_ipst;
3921 
3922 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3923 
3924 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3925 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3926 		return (0);
3927 
3928 	if (IS_LOOPBACK(ill))
3929 		return (EINVAL);
3930 
3931 	/*
3932 	 * If the ill is in an IPMP group, set the forwarding policy on all
3933 	 * members of the group to the same value.
3934 	 */
3935 	illgrp = ill->ill_group;
3936 	if (illgrp != NULL) {
3937 		ill_t *tmp_ill;
3938 
3939 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
3940 		    tmp_ill = tmp_ill->ill_group_next) {
3941 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3942 			    (enable ? "Enabling" : "Disabling"),
3943 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
3944 			    tmp_ill->ill_name));
3945 			mutex_enter(&tmp_ill->ill_lock);
3946 			if (enable)
3947 				tmp_ill->ill_flags |= ILLF_ROUTER;
3948 			else
3949 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
3950 			mutex_exit(&tmp_ill->ill_lock);
3951 			if (tmp_ill->ill_isv6)
3952 				ill_set_nce_router_flags(tmp_ill, enable);
3953 			/* Notify routing socket listeners of this change. */
3954 			ip_rts_ifmsg(tmp_ill->ill_ipif);
3955 		}
3956 	} else {
3957 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3958 		    (enable ? "Enabling" : "Disabling"),
3959 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3960 		mutex_enter(&ill->ill_lock);
3961 		if (enable)
3962 			ill->ill_flags |= ILLF_ROUTER;
3963 		else
3964 			ill->ill_flags &= ~ILLF_ROUTER;
3965 		mutex_exit(&ill->ill_lock);
3966 		if (ill->ill_isv6)
3967 			ill_set_nce_router_flags(ill, enable);
3968 		/* Notify routing socket listeners of this change. */
3969 		ip_rts_ifmsg(ill->ill_ipif);
3970 	}
3971 
3972 	return (0);
3973 }
3974 
3975 /*
3976  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3977  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3978  * set or clear.
3979  */
3980 static void
3981 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3982 {
3983 	ipif_t *ipif;
3984 	nce_t *nce;
3985 
3986 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3987 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
3988 		if (nce != NULL) {
3989 			mutex_enter(&nce->nce_lock);
3990 			if (enable)
3991 				nce->nce_flags |= NCE_F_ISROUTER;
3992 			else
3993 				nce->nce_flags &= ~NCE_F_ISROUTER;
3994 			mutex_exit(&nce->nce_lock);
3995 			NCE_REFRELE(nce);
3996 		}
3997 	}
3998 }
3999 
4000 /*
4001  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4002  * for this ill.  Make sure the v6/v4 question has been answered about this
4003  * ill.  The creation of this ndd variable is only for backwards compatibility.
4004  * The preferred way to control per-interface IP forwarding is through the
4005  * ILLF_ROUTER interface flag.
4006  */
4007 static int
4008 ill_set_ndd_name(ill_t *ill)
4009 {
4010 	char *suffix;
4011 	ip_stack_t	*ipst = ill->ill_ipst;
4012 
4013 	ASSERT(IAM_WRITER_ILL(ill));
4014 
4015 	if (ill->ill_isv6)
4016 		suffix = ipv6_forward_suffix;
4017 	else
4018 		suffix = ipv4_forward_suffix;
4019 
4020 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4021 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4022 	/*
4023 	 * Copies over the '\0'.
4024 	 * Note that strlen(suffix) is always bounded.
4025 	 */
4026 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4027 	    strlen(suffix) + 1);
4028 
4029 	/*
4030 	 * Use of the nd table requires holding the reader lock.
4031 	 * Modifying the nd table thru nd_load/nd_unload requires
4032 	 * the writer lock.
4033 	 */
4034 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4035 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4036 	    nd_ill_forward_set, (caddr_t)ill)) {
4037 		/*
4038 		 * If the nd_load failed, it only meant that it could not
4039 		 * allocate a new bunch of room for further NDD expansion.
4040 		 * Because of that, the ill_ndd_name will be set to 0, and
4041 		 * this interface is at the mercy of the global ip_forwarding
4042 		 * variable.
4043 		 */
4044 		rw_exit(&ipst->ips_ip_g_nd_lock);
4045 		ill->ill_ndd_name = NULL;
4046 		return (ENOMEM);
4047 	}
4048 	rw_exit(&ipst->ips_ip_g_nd_lock);
4049 	return (0);
4050 }
4051 
4052 /*
4053  * Intializes the context structure and returns the first ill in the list
4054  * cuurently start_list and end_list can have values:
4055  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4056  * IP_V4_G_HEAD		Traverse IPV4 list only.
4057  * IP_V6_G_HEAD		Traverse IPV6 list only.
4058  */
4059 
4060 /*
4061  * We don't check for CONDEMNED ills here. Caller must do that if
4062  * necessary under the ill lock.
4063  */
4064 ill_t *
4065 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4066     ip_stack_t *ipst)
4067 {
4068 	ill_if_t *ifp;
4069 	ill_t *ill;
4070 	avl_tree_t *avl_tree;
4071 
4072 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4073 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4074 
4075 	/*
4076 	 * setup the lists to search
4077 	 */
4078 	if (end_list != MAX_G_HEADS) {
4079 		ctx->ctx_current_list = start_list;
4080 		ctx->ctx_last_list = end_list;
4081 	} else {
4082 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4083 		ctx->ctx_current_list = 0;
4084 	}
4085 
4086 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4087 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4088 		if (ifp != (ill_if_t *)
4089 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4090 			avl_tree = &ifp->illif_avl_by_ppa;
4091 			ill = avl_first(avl_tree);
4092 			/*
4093 			 * ill is guaranteed to be non NULL or ifp should have
4094 			 * not existed.
4095 			 */
4096 			ASSERT(ill != NULL);
4097 			return (ill);
4098 		}
4099 		ctx->ctx_current_list++;
4100 	}
4101 
4102 	return (NULL);
4103 }
4104 
4105 /*
4106  * returns the next ill in the list. ill_first() must have been called
4107  * before calling ill_next() or bad things will happen.
4108  */
4109 
4110 /*
4111  * We don't check for CONDEMNED ills here. Caller must do that if
4112  * necessary under the ill lock.
4113  */
4114 ill_t *
4115 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4116 {
4117 	ill_if_t *ifp;
4118 	ill_t *ill;
4119 	ip_stack_t	*ipst = lastill->ill_ipst;
4120 
4121 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4122 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4123 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4124 	    AVL_AFTER)) != NULL) {
4125 		return (ill);
4126 	}
4127 
4128 	/* goto next ill_ifp in the list. */
4129 	ifp = lastill->ill_ifptr->illif_next;
4130 
4131 	/* make sure not at end of circular list */
4132 	while (ifp ==
4133 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4134 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4135 			return (NULL);
4136 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4137 	}
4138 
4139 	return (avl_first(&ifp->illif_avl_by_ppa));
4140 }
4141 
4142 /*
4143  * Check interface name for correct format which is name+ppa.
4144  * name can contain characters and digits, the right most digits
4145  * make up the ppa number. use of octal is not allowed, name must contain
4146  * a ppa, return pointer to the start of ppa.
4147  * In case of error return NULL.
4148  */
4149 static char *
4150 ill_get_ppa_ptr(char *name)
4151 {
4152 	int namelen = mi_strlen(name);
4153 
4154 	int len = namelen;
4155 
4156 	name += len;
4157 	while (len > 0) {
4158 		name--;
4159 		if (*name < '0' || *name > '9')
4160 			break;
4161 		len--;
4162 	}
4163 
4164 	/* empty string, all digits, or no trailing digits */
4165 	if (len == 0 || len == (int)namelen)
4166 		return (NULL);
4167 
4168 	name++;
4169 	/* check for attempted use of octal */
4170 	if (*name == '0' && len != (int)namelen - 1)
4171 		return (NULL);
4172 	return (name);
4173 }
4174 
4175 /*
4176  * use avl tree to locate the ill.
4177  */
4178 static ill_t *
4179 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4180     ipsq_func_t func, int *error, ip_stack_t *ipst)
4181 {
4182 	char *ppa_ptr = NULL;
4183 	int len;
4184 	uint_t ppa;
4185 	ill_t *ill = NULL;
4186 	ill_if_t *ifp;
4187 	int list;
4188 	ipsq_t *ipsq;
4189 
4190 	if (error != NULL)
4191 		*error = 0;
4192 
4193 	/*
4194 	 * get ppa ptr
4195 	 */
4196 	if (isv6)
4197 		list = IP_V6_G_HEAD;
4198 	else
4199 		list = IP_V4_G_HEAD;
4200 
4201 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4202 		if (error != NULL)
4203 			*error = ENXIO;
4204 		return (NULL);
4205 	}
4206 
4207 	len = ppa_ptr - name + 1;
4208 
4209 	ppa = stoi(&ppa_ptr);
4210 
4211 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4212 
4213 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4214 		/*
4215 		 * match is done on len - 1 as the name is not null
4216 		 * terminated it contains ppa in addition to the interface
4217 		 * name.
4218 		 */
4219 		if ((ifp->illif_name_len == len) &&
4220 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4221 			break;
4222 		} else {
4223 			ifp = ifp->illif_next;
4224 		}
4225 	}
4226 
4227 
4228 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4229 		/*
4230 		 * Even the interface type does not exist.
4231 		 */
4232 		if (error != NULL)
4233 			*error = ENXIO;
4234 		return (NULL);
4235 	}
4236 
4237 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4238 	if (ill != NULL) {
4239 		/*
4240 		 * The block comment at the start of ipif_down
4241 		 * explains the use of the macros used below
4242 		 */
4243 		GRAB_CONN_LOCK(q);
4244 		mutex_enter(&ill->ill_lock);
4245 		if (ILL_CAN_LOOKUP(ill)) {
4246 			ill_refhold_locked(ill);
4247 			mutex_exit(&ill->ill_lock);
4248 			RELEASE_CONN_LOCK(q);
4249 			return (ill);
4250 		} else if (ILL_CAN_WAIT(ill, q)) {
4251 			ipsq = ill->ill_phyint->phyint_ipsq;
4252 			mutex_enter(&ipsq->ipsq_lock);
4253 			mutex_exit(&ill->ill_lock);
4254 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4255 			mutex_exit(&ipsq->ipsq_lock);
4256 			RELEASE_CONN_LOCK(q);
4257 			*error = EINPROGRESS;
4258 			return (NULL);
4259 		}
4260 		mutex_exit(&ill->ill_lock);
4261 		RELEASE_CONN_LOCK(q);
4262 	}
4263 	if (error != NULL)
4264 		*error = ENXIO;
4265 	return (NULL);
4266 }
4267 
4268 /*
4269  * comparison function for use with avl.
4270  */
4271 static int
4272 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4273 {
4274 	uint_t ppa;
4275 	uint_t ill_ppa;
4276 
4277 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4278 
4279 	ppa = *((uint_t *)ppa_ptr);
4280 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4281 	/*
4282 	 * We want the ill with the lowest ppa to be on the
4283 	 * top.
4284 	 */
4285 	if (ill_ppa < ppa)
4286 		return (1);
4287 	if (ill_ppa > ppa)
4288 		return (-1);
4289 	return (0);
4290 }
4291 
4292 /*
4293  * remove an interface type from the global list.
4294  */
4295 static void
4296 ill_delete_interface_type(ill_if_t *interface)
4297 {
4298 	ASSERT(interface != NULL);
4299 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4300 
4301 	avl_destroy(&interface->illif_avl_by_ppa);
4302 	if (interface->illif_ppa_arena != NULL)
4303 		vmem_destroy(interface->illif_ppa_arena);
4304 
4305 	remque(interface);
4306 
4307 	mi_free(interface);
4308 }
4309 
4310 /* Defined in ip_netinfo.c */
4311 extern ddi_taskq_t	*eventq_queue_nic;
4312 
4313 /*
4314  * remove ill from the global list.
4315  */
4316 static void
4317 ill_glist_delete(ill_t *ill)
4318 {
4319 	char *nicname;
4320 	size_t nicnamelen;
4321 	hook_nic_event_t *info;
4322 	ip_stack_t	*ipst;
4323 
4324 	if (ill == NULL)
4325 		return;
4326 	ipst = ill->ill_ipst;
4327 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4328 
4329 	if (ill->ill_name != NULL) {
4330 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4331 		if (nicname != NULL) {
4332 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4333 			nicnamelen = ill->ill_name_length;
4334 		}
4335 	} else {
4336 		nicname = NULL;
4337 		nicnamelen = 0;
4338 	}
4339 
4340 	/*
4341 	 * If the ill was never inserted into the AVL tree
4342 	 * we skip the if branch.
4343 	 */
4344 	if (ill->ill_ifptr != NULL) {
4345 		/*
4346 		 * remove from AVL tree and free ppa number
4347 		 */
4348 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4349 
4350 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4351 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4352 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4353 		}
4354 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4355 			ill_delete_interface_type(ill->ill_ifptr);
4356 		}
4357 
4358 		/*
4359 		 * Indicate ill is no longer in the list.
4360 		 */
4361 		ill->ill_ifptr = NULL;
4362 		ill->ill_name_length = 0;
4363 		ill->ill_name[0] = '\0';
4364 		ill->ill_ppa = UINT_MAX;
4365 	}
4366 
4367 	/*
4368 	 * Run the unplumb hook after the NIC has disappeared from being
4369 	 * visible so that attempts to revalidate its existance will fail.
4370 	 *
4371 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4372 	 * that the ordering of delivered events to listeners matches the
4373 	 * order of them in the kernel.
4374 	 */
4375 	if ((info = ill->ill_nic_event_info) != NULL) {
4376 		if (info->hne_event != NE_DOWN) {
4377 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4378 			    "attached for %s\n", info->hne_event,
4379 			    ill->ill_name));
4380 			if (info->hne_data != NULL)
4381 				kmem_free(info->hne_data, info->hne_datalen);
4382 			kmem_free(info, sizeof (hook_nic_event_t));
4383 		} else {
4384 			if (ddi_taskq_dispatch(eventq_queue_nic,
4385 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4386 			    == DDI_FAILURE) {
4387 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4388 				    "failed\n"));
4389 				if (info->hne_data != NULL)
4390 					kmem_free(info->hne_data,
4391 					    info->hne_datalen);
4392 				kmem_free(info, sizeof (hook_nic_event_t));
4393 			}
4394 		}
4395 	}
4396 
4397 	/* Generate NE_UNPLUMB event for ill_name. */
4398 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4399 	if (info != NULL) {
4400 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4401 		info->hne_lif = 0;
4402 		info->hne_event = NE_UNPLUMB;
4403 		info->hne_data = nicname;
4404 		info->hne_datalen = nicnamelen;
4405 		info->hne_family = ill->ill_isv6 ?
4406 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4407 	} else {
4408 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4409 		    "information for %s (ENOMEM)\n", ill->ill_name));
4410 		if (nicname != NULL)
4411 			kmem_free(nicname, nicnamelen);
4412 	}
4413 
4414 	ill->ill_nic_event_info = info;
4415 
4416 	ill_phyint_free(ill);
4417 	rw_exit(&ipst->ips_ill_g_lock);
4418 }
4419 
4420 /*
4421  * allocate a ppa, if the number of plumbed interfaces of this type are
4422  * less than ill_no_arena do a linear search to find a unused ppa.
4423  * When the number goes beyond ill_no_arena switch to using an arena.
4424  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4425  * is the return value for an error condition, so allocation starts at one
4426  * and is decremented by one.
4427  */
4428 static int
4429 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4430 {
4431 	ill_t *tmp_ill;
4432 	uint_t start, end;
4433 	int ppa;
4434 
4435 	if (ifp->illif_ppa_arena == NULL &&
4436 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4437 		/*
4438 		 * Create an arena.
4439 		 */
4440 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4441 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4442 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4443 			/* allocate what has already been assigned */
4444 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4445 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4446 		    tmp_ill, AVL_AFTER)) {
4447 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4448 			    1,		/* size */
4449 			    1,		/* align/quantum */
4450 			    0,		/* phase */
4451 			    0,		/* nocross */
4452 			    /* minaddr */
4453 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4454 			    /* maxaddr */
4455 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4456 			    VM_NOSLEEP|VM_FIRSTFIT);
4457 			if (ppa == 0) {
4458 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4459 				    " failed while switching"));
4460 				vmem_destroy(ifp->illif_ppa_arena);
4461 				ifp->illif_ppa_arena = NULL;
4462 				break;
4463 			}
4464 		}
4465 	}
4466 
4467 	if (ifp->illif_ppa_arena != NULL) {
4468 		if (ill->ill_ppa == UINT_MAX) {
4469 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4470 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4471 			if (ppa == 0)
4472 				return (EAGAIN);
4473 			ill->ill_ppa = --ppa;
4474 		} else {
4475 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4476 			    1, 		/* size */
4477 			    1, 		/* align/quantum */
4478 			    0, 		/* phase */
4479 			    0, 		/* nocross */
4480 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4481 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4482 			    VM_NOSLEEP|VM_FIRSTFIT);
4483 			/*
4484 			 * Most likely the allocation failed because
4485 			 * the requested ppa was in use.
4486 			 */
4487 			if (ppa == 0)
4488 				return (EEXIST);
4489 		}
4490 		return (0);
4491 	}
4492 
4493 	/*
4494 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4495 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4496 	 */
4497 	if (ill->ill_ppa == UINT_MAX) {
4498 		end = UINT_MAX - 1;
4499 		start = 0;
4500 	} else {
4501 		end = start = ill->ill_ppa;
4502 	}
4503 
4504 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4505 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4506 		if (start++ >= end) {
4507 			if (ill->ill_ppa == UINT_MAX)
4508 				return (EAGAIN);
4509 			else
4510 				return (EEXIST);
4511 		}
4512 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4513 	}
4514 	ill->ill_ppa = start;
4515 	return (0);
4516 }
4517 
4518 /*
4519  * Insert ill into the list of configured ill's. Once this function completes,
4520  * the ill is globally visible and is available through lookups. More precisely
4521  * this happens after the caller drops the ill_g_lock.
4522  */
4523 static int
4524 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4525 {
4526 	ill_if_t *ill_interface;
4527 	avl_index_t where = 0;
4528 	int error;
4529 	int name_length;
4530 	int index;
4531 	boolean_t check_length = B_FALSE;
4532 	ip_stack_t	*ipst = ill->ill_ipst;
4533 
4534 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4535 
4536 	name_length = mi_strlen(name) + 1;
4537 
4538 	if (isv6)
4539 		index = IP_V6_G_HEAD;
4540 	else
4541 		index = IP_V4_G_HEAD;
4542 
4543 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4544 	/*
4545 	 * Search for interface type based on name
4546 	 */
4547 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4548 		if ((ill_interface->illif_name_len == name_length) &&
4549 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4550 			break;
4551 		}
4552 		ill_interface = ill_interface->illif_next;
4553 	}
4554 
4555 	/*
4556 	 * Interface type not found, create one.
4557 	 */
4558 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4559 
4560 		ill_g_head_t ghead;
4561 
4562 		/*
4563 		 * allocate ill_if_t structure
4564 		 */
4565 
4566 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4567 		if (ill_interface == NULL) {
4568 			return (ENOMEM);
4569 		}
4570 
4571 
4572 
4573 		(void) strcpy(ill_interface->illif_name, name);
4574 		ill_interface->illif_name_len = name_length;
4575 
4576 		avl_create(&ill_interface->illif_avl_by_ppa,
4577 		    ill_compare_ppa, sizeof (ill_t),
4578 		    offsetof(struct ill_s, ill_avl_byppa));
4579 
4580 		/*
4581 		 * link the structure in the back to maintain order
4582 		 * of configuration for ifconfig output.
4583 		 */
4584 		ghead = ipst->ips_ill_g_heads[index];
4585 		insque(ill_interface, ghead.ill_g_list_tail);
4586 
4587 	}
4588 
4589 	if (ill->ill_ppa == UINT_MAX)
4590 		check_length = B_TRUE;
4591 
4592 	error = ill_alloc_ppa(ill_interface, ill);
4593 	if (error != 0) {
4594 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4595 			ill_delete_interface_type(ill->ill_ifptr);
4596 		return (error);
4597 	}
4598 
4599 	/*
4600 	 * When the ppa is choosen by the system, check that there is
4601 	 * enough space to insert ppa. if a specific ppa was passed in this
4602 	 * check is not required as the interface name passed in will have
4603 	 * the right ppa in it.
4604 	 */
4605 	if (check_length) {
4606 		/*
4607 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4608 		 */
4609 		char buf[sizeof (uint_t) * 3];
4610 
4611 		/*
4612 		 * convert ppa to string to calculate the amount of space
4613 		 * required for it in the name.
4614 		 */
4615 		numtos(ill->ill_ppa, buf);
4616 
4617 		/* Do we have enough space to insert ppa ? */
4618 
4619 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4620 			/* Free ppa and interface type struct */
4621 			if (ill_interface->illif_ppa_arena != NULL) {
4622 				vmem_free(ill_interface->illif_ppa_arena,
4623 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4624 			}
4625 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4626 			    0) {
4627 				ill_delete_interface_type(ill->ill_ifptr);
4628 			}
4629 
4630 			return (EINVAL);
4631 		}
4632 	}
4633 
4634 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4635 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4636 
4637 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4638 	    &where);
4639 	ill->ill_ifptr = ill_interface;
4640 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4641 
4642 	ill_phyint_reinit(ill);
4643 	return (0);
4644 }
4645 
4646 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4647 static boolean_t
4648 ipsq_init(ill_t *ill)
4649 {
4650 	ipsq_t  *ipsq;
4651 
4652 	/* Init the ipsq and impicitly enter as writer */
4653 	ill->ill_phyint->phyint_ipsq =
4654 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4655 	if (ill->ill_phyint->phyint_ipsq == NULL)
4656 		return (B_FALSE);
4657 	ipsq = ill->ill_phyint->phyint_ipsq;
4658 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4659 	ill->ill_phyint->phyint_ipsq_next = NULL;
4660 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4661 	ipsq->ipsq_refs = 1;
4662 	ipsq->ipsq_writer = curthread;
4663 	ipsq->ipsq_reentry_cnt = 1;
4664 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4665 #ifdef DEBUG
4666 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack,
4667 	    IPSQ_STACK_DEPTH);
4668 #endif
4669 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4670 	return (B_TRUE);
4671 }
4672 
4673 /*
4674  * ill_init is called by ip_open when a device control stream is opened.
4675  * It does a few initializations, and shoots a DL_INFO_REQ message down
4676  * to the driver.  The response is later picked up in ip_rput_dlpi and
4677  * used to set up default mechanisms for talking to the driver.  (Always
4678  * called as writer.)
4679  *
4680  * If this function returns error, ip_open will call ip_close which in
4681  * turn will call ill_delete to clean up any memory allocated here that
4682  * is not yet freed.
4683  */
4684 int
4685 ill_init(queue_t *q, ill_t *ill)
4686 {
4687 	int	count;
4688 	dl_info_req_t	*dlir;
4689 	mblk_t	*info_mp;
4690 	uchar_t *frag_ptr;
4691 
4692 	/*
4693 	 * The ill is initialized to zero by mi_alloc*(). In addition
4694 	 * some fields already contain valid values, initialized in
4695 	 * ip_open(), before we reach here.
4696 	 */
4697 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4698 
4699 	ill->ill_rq = q;
4700 	ill->ill_wq = WR(q);
4701 
4702 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4703 	    BPRI_HI);
4704 	if (info_mp == NULL)
4705 		return (ENOMEM);
4706 
4707 	/*
4708 	 * Allocate sufficient space to contain our fragment hash table and
4709 	 * the device name.
4710 	 */
4711 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4712 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4713 	if (frag_ptr == NULL) {
4714 		freemsg(info_mp);
4715 		return (ENOMEM);
4716 	}
4717 	ill->ill_frag_ptr = frag_ptr;
4718 	ill->ill_frag_free_num_pkts = 0;
4719 	ill->ill_last_frag_clean_time = 0;
4720 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4721 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4722 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4723 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4724 		    NULL, MUTEX_DEFAULT, NULL);
4725 	}
4726 
4727 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4728 	if (ill->ill_phyint == NULL) {
4729 		freemsg(info_mp);
4730 		mi_free(frag_ptr);
4731 		return (ENOMEM);
4732 	}
4733 
4734 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4735 	/*
4736 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4737 	 * at this point because of the following reason. If we can't
4738 	 * enter the ipsq at some point and cv_wait, the writer that
4739 	 * wakes us up tries to locate us using the list of all phyints
4740 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4741 	 * If we don't set it now, we risk a missed wakeup.
4742 	 */
4743 	ill->ill_phyint->phyint_illv4 = ill;
4744 	ill->ill_ppa = UINT_MAX;
4745 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4746 
4747 	if (!ipsq_init(ill)) {
4748 		freemsg(info_mp);
4749 		mi_free(frag_ptr);
4750 		mi_free(ill->ill_phyint);
4751 		return (ENOMEM);
4752 	}
4753 
4754 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4755 
4756 
4757 	/* Frag queue limit stuff */
4758 	ill->ill_frag_count = 0;
4759 	ill->ill_ipf_gen = 0;
4760 
4761 	ill->ill_global_timer = INFINITY;
4762 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4763 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4764 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4765 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4766 
4767 	/*
4768 	 * Initialize IPv6 configuration variables.  The IP module is always
4769 	 * opened as an IPv4 module.  Instead tracking down the cases where
4770 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4771 	 * here for convenience, this has no effect until the ill is set to do
4772 	 * IPv6.
4773 	 */
4774 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4775 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4776 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4777 	ill->ill_max_buf = ND_MAX_Q;
4778 	ill->ill_refcnt = 0;
4779 
4780 	/* Send down the Info Request to the driver. */
4781 	info_mp->b_datap->db_type = M_PCPROTO;
4782 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4783 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4784 	dlir->dl_primitive = DL_INFO_REQ;
4785 
4786 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4787 
4788 	qprocson(q);
4789 	ill_dlpi_send(ill, info_mp);
4790 
4791 	return (0);
4792 }
4793 
4794 /*
4795  * ill_dls_info
4796  * creates datalink socket info from the device.
4797  */
4798 int
4799 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4800 {
4801 	size_t	len;
4802 	ill_t	*ill = ipif->ipif_ill;
4803 
4804 	sdl->sdl_family = AF_LINK;
4805 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4806 	sdl->sdl_type = ill->ill_type;
4807 	ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4808 	len = strlen(sdl->sdl_data);
4809 	ASSERT(len < 256);
4810 	sdl->sdl_nlen = (uchar_t)len;
4811 	sdl->sdl_alen = ill->ill_phys_addr_length;
4812 	sdl->sdl_slen = 0;
4813 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4814 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4815 
4816 	return (sizeof (struct sockaddr_dl));
4817 }
4818 
4819 /*
4820  * ill_xarp_info
4821  * creates xarp info from the device.
4822  */
4823 static int
4824 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4825 {
4826 	sdl->sdl_family = AF_LINK;
4827 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4828 	sdl->sdl_type = ill->ill_type;
4829 	ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4830 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4831 	sdl->sdl_alen = ill->ill_phys_addr_length;
4832 	sdl->sdl_slen = 0;
4833 	return (sdl->sdl_nlen);
4834 }
4835 
4836 static int
4837 loopback_kstat_update(kstat_t *ksp, int rw)
4838 {
4839 	kstat_named_t *kn;
4840 	netstackid_t	stackid;
4841 	netstack_t	*ns;
4842 	ip_stack_t	*ipst;
4843 
4844 	if (ksp == NULL || ksp->ks_data == NULL)
4845 		return (EIO);
4846 
4847 	if (rw == KSTAT_WRITE)
4848 		return (EACCES);
4849 
4850 	kn = KSTAT_NAMED_PTR(ksp);
4851 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4852 
4853 	ns = netstack_find_by_stackid(stackid);
4854 	if (ns == NULL)
4855 		return (-1);
4856 
4857 	ipst = ns->netstack_ip;
4858 	if (ipst == NULL) {
4859 		netstack_rele(ns);
4860 		return (-1);
4861 	}
4862 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4863 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4864 	netstack_rele(ns);
4865 	return (0);
4866 }
4867 
4868 
4869 /*
4870  * Has ifindex been plumbed already.
4871  * Compares both phyint_ifindex and phyint_group_ifindex.
4872  */
4873 static boolean_t
4874 phyint_exists(uint_t index, ip_stack_t *ipst)
4875 {
4876 	phyint_t *phyi;
4877 
4878 	ASSERT(index != 0);
4879 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4880 	/*
4881 	 * Indexes are stored in the phyint - a common structure
4882 	 * to both IPv4 and IPv6.
4883 	 */
4884 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4885 	for (; phyi != NULL;
4886 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4887 	    phyi, AVL_AFTER)) {
4888 		if (phyi->phyint_ifindex == index ||
4889 		    phyi->phyint_group_ifindex == index)
4890 			return (B_TRUE);
4891 	}
4892 	return (B_FALSE);
4893 }
4894 
4895 /* Pick a unique ifindex */
4896 boolean_t
4897 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4898 {
4899 	uint_t starting_index;
4900 
4901 	if (!ipst->ips_ill_index_wrap) {
4902 		*indexp = ipst->ips_ill_index++;
4903 		if (ipst->ips_ill_index == 0) {
4904 			/* Reached the uint_t limit Next time wrap  */
4905 			ipst->ips_ill_index_wrap = B_TRUE;
4906 		}
4907 		return (B_TRUE);
4908 	}
4909 
4910 	/*
4911 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4912 	 * at this point and don't want to call any function that attempts
4913 	 * to get the lock again.
4914 	 */
4915 	starting_index = ipst->ips_ill_index++;
4916 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4917 		if (ipst->ips_ill_index != 0 &&
4918 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4919 			/* found unused index - use it */
4920 			*indexp = ipst->ips_ill_index;
4921 			return (B_TRUE);
4922 		}
4923 	}
4924 
4925 	/*
4926 	 * all interface indicies are inuse.
4927 	 */
4928 	return (B_FALSE);
4929 }
4930 
4931 /*
4932  * Assign a unique interface index for the phyint.
4933  */
4934 static boolean_t
4935 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4936 {
4937 	ASSERT(phyi->phyint_ifindex == 0);
4938 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4939 }
4940 
4941 /*
4942  * Return a pointer to the ill which matches the supplied name.  Note that
4943  * the ill name length includes the null termination character.  (May be
4944  * called as writer.)
4945  * If do_alloc and the interface is "lo0" it will be automatically created.
4946  * Cannot bump up reference on condemned ills. So dup detect can't be done
4947  * using this func.
4948  */
4949 ill_t *
4950 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4951     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4952     ip_stack_t *ipst)
4953 {
4954 	ill_t	*ill;
4955 	ipif_t	*ipif;
4956 	kstat_named_t	*kn;
4957 	boolean_t isloopback;
4958 	ipsq_t *old_ipsq;
4959 	in6_addr_t ov6addr;
4960 
4961 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4962 
4963 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4964 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4965 	rw_exit(&ipst->ips_ill_g_lock);
4966 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4967 		return (ill);
4968 
4969 	/*
4970 	 * Couldn't find it.  Does this happen to be a lookup for the
4971 	 * loopback device and are we allowed to allocate it?
4972 	 */
4973 	if (!isloopback || !do_alloc)
4974 		return (NULL);
4975 
4976 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4977 
4978 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4979 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4980 		rw_exit(&ipst->ips_ill_g_lock);
4981 		return (ill);
4982 	}
4983 
4984 	/* Create the loopback device on demand */
4985 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4986 	    sizeof (ipif_loopback_name), BPRI_MED));
4987 	if (ill == NULL)
4988 		goto done;
4989 
4990 	*ill = ill_null;
4991 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4992 	ill->ill_ipst = ipst;
4993 	netstack_hold(ipst->ips_netstack);
4994 	/*
4995 	 * For exclusive stacks we set the zoneid to zero
4996 	 * to make IP operate as if in the global zone.
4997 	 */
4998 	ill->ill_zoneid = GLOBAL_ZONEID;
4999 
5000 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5001 	if (ill->ill_phyint == NULL)
5002 		goto done;
5003 
5004 	if (isv6)
5005 		ill->ill_phyint->phyint_illv6 = ill;
5006 	else
5007 		ill->ill_phyint->phyint_illv4 = ill;
5008 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5009 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5010 	/* Add room for tcp+ip headers */
5011 	if (isv6) {
5012 		ill->ill_isv6 = B_TRUE;
5013 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5014 	} else {
5015 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5016 	}
5017 	if (!ill_allocate_mibs(ill))
5018 		goto done;
5019 	ill->ill_max_mtu = ill->ill_max_frag;
5020 	/*
5021 	 * ipif_loopback_name can't be pointed at directly because its used
5022 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5023 	 * from the glist, ill_glist_delete() sets the first character of
5024 	 * ill_name to '\0'.
5025 	 */
5026 	ill->ill_name = (char *)ill + sizeof (*ill);
5027 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5028 	ill->ill_name_length = sizeof (ipif_loopback_name);
5029 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5030 
5031 	ill->ill_global_timer = INFINITY;
5032 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5033 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5034 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5035 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5036 
5037 	/* No resolver here. */
5038 	ill->ill_net_type = IRE_LOOPBACK;
5039 
5040 	/* Initialize the ipsq */
5041 	if (!ipsq_init(ill))
5042 		goto done;
5043 
5044 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5045 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5046 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5047 #ifdef DEBUG
5048 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5049 #endif
5050 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5051 	if (ipif == NULL)
5052 		goto done;
5053 
5054 	ill->ill_flags = ILLF_MULTICAST;
5055 
5056 	ov6addr = ipif->ipif_v6lcl_addr;
5057 	/* Set up default loopback address and mask. */
5058 	if (!isv6) {
5059 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5060 
5061 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5062 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5063 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5064 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5065 		    ipif->ipif_v6subnet);
5066 		ill->ill_flags |= ILLF_IPV4;
5067 	} else {
5068 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5069 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5070 		ipif->ipif_v6net_mask = ipv6_all_ones;
5071 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5072 		    ipif->ipif_v6subnet);
5073 		ill->ill_flags |= ILLF_IPV6;
5074 	}
5075 
5076 	/*
5077 	 * Chain us in at the end of the ill list. hold the ill
5078 	 * before we make it globally visible. 1 for the lookup.
5079 	 */
5080 	ill->ill_refcnt = 0;
5081 	ill_refhold(ill);
5082 
5083 	ill->ill_frag_count = 0;
5084 	ill->ill_frag_free_num_pkts = 0;
5085 	ill->ill_last_frag_clean_time = 0;
5086 
5087 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5088 
5089 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5090 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5091 
5092 	/* Let SCTP know so that it can add this to its list */
5093 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5094 
5095 	/*
5096 	 * We have already assigned ipif_v6lcl_addr above, but we need to
5097 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5098 	 * requires to be after ill_glist_insert() since we need the
5099 	 * ill_index set. Pass on ipv6_loopback as the old address.
5100 	 */
5101 	sctp_update_ipif_addr(ipif, ov6addr);
5102 
5103 	/*
5104 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5105 	 */
5106 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5107 		/* Loopback ills aren't in any IPMP group */
5108 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5109 		ipsq_delete(old_ipsq);
5110 	}
5111 
5112 	/*
5113 	 * Delay this till the ipif is allocated as ipif_allocate
5114 	 * de-references ill_phyint for getting the ifindex. We
5115 	 * can't do this before ipif_allocate because ill_phyint_reinit
5116 	 * -> phyint_assign_ifindex expects ipif to be present.
5117 	 */
5118 	mutex_enter(&ill->ill_phyint->phyint_lock);
5119 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5120 	mutex_exit(&ill->ill_phyint->phyint_lock);
5121 
5122 	if (ipst->ips_loopback_ksp == NULL) {
5123 		/* Export loopback interface statistics */
5124 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5125 		    ipif_loopback_name, "net",
5126 		    KSTAT_TYPE_NAMED, 2, 0,
5127 		    ipst->ips_netstack->netstack_stackid);
5128 		if (ipst->ips_loopback_ksp != NULL) {
5129 			ipst->ips_loopback_ksp->ks_update =
5130 			    loopback_kstat_update;
5131 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5132 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5133 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5134 			ipst->ips_loopback_ksp->ks_private =
5135 			    (void *)(uintptr_t)ipst->ips_netstack->
5136 			    netstack_stackid;
5137 			kstat_install(ipst->ips_loopback_ksp);
5138 		}
5139 	}
5140 
5141 	if (error != NULL)
5142 		*error = 0;
5143 	*did_alloc = B_TRUE;
5144 	rw_exit(&ipst->ips_ill_g_lock);
5145 	return (ill);
5146 done:
5147 	if (ill != NULL) {
5148 		if (ill->ill_phyint != NULL) {
5149 			ipsq_t	*ipsq;
5150 
5151 			ipsq = ill->ill_phyint->phyint_ipsq;
5152 			if (ipsq != NULL) {
5153 				ipsq->ipsq_ipst = NULL;
5154 				kmem_free(ipsq, sizeof (ipsq_t));
5155 			}
5156 			mi_free(ill->ill_phyint);
5157 		}
5158 		ill_free_mib(ill);
5159 		if (ill->ill_ipst != NULL)
5160 			netstack_rele(ill->ill_ipst->ips_netstack);
5161 		mi_free(ill);
5162 	}
5163 	rw_exit(&ipst->ips_ill_g_lock);
5164 	if (error != NULL)
5165 		*error = ENOMEM;
5166 	return (NULL);
5167 }
5168 
5169 /*
5170  * For IPP calls - use the ip_stack_t for global stack.
5171  */
5172 ill_t *
5173 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5174     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5175 {
5176 	ip_stack_t	*ipst;
5177 	ill_t		*ill;
5178 
5179 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5180 	if (ipst == NULL) {
5181 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5182 		return (NULL);
5183 	}
5184 
5185 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5186 	netstack_rele(ipst->ips_netstack);
5187 	return (ill);
5188 }
5189 
5190 /*
5191  * Return a pointer to the ill which matches the index and IP version type.
5192  */
5193 ill_t *
5194 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5195     ipsq_func_t func, int *err, ip_stack_t *ipst)
5196 {
5197 	ill_t	*ill;
5198 	ipsq_t  *ipsq;
5199 	phyint_t *phyi;
5200 
5201 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5202 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5203 
5204 	if (err != NULL)
5205 		*err = 0;
5206 
5207 	/*
5208 	 * Indexes are stored in the phyint - a common structure
5209 	 * to both IPv4 and IPv6.
5210 	 */
5211 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5212 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5213 	    (void *) &index, NULL);
5214 	if (phyi != NULL) {
5215 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5216 		if (ill != NULL) {
5217 			/*
5218 			 * The block comment at the start of ipif_down
5219 			 * explains the use of the macros used below
5220 			 */
5221 			GRAB_CONN_LOCK(q);
5222 			mutex_enter(&ill->ill_lock);
5223 			if (ILL_CAN_LOOKUP(ill)) {
5224 				ill_refhold_locked(ill);
5225 				mutex_exit(&ill->ill_lock);
5226 				RELEASE_CONN_LOCK(q);
5227 				rw_exit(&ipst->ips_ill_g_lock);
5228 				return (ill);
5229 			} else if (ILL_CAN_WAIT(ill, q)) {
5230 				ipsq = ill->ill_phyint->phyint_ipsq;
5231 				mutex_enter(&ipsq->ipsq_lock);
5232 				rw_exit(&ipst->ips_ill_g_lock);
5233 				mutex_exit(&ill->ill_lock);
5234 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5235 				mutex_exit(&ipsq->ipsq_lock);
5236 				RELEASE_CONN_LOCK(q);
5237 				*err = EINPROGRESS;
5238 				return (NULL);
5239 			}
5240 			RELEASE_CONN_LOCK(q);
5241 			mutex_exit(&ill->ill_lock);
5242 		}
5243 	}
5244 	rw_exit(&ipst->ips_ill_g_lock);
5245 	if (err != NULL)
5246 		*err = ENXIO;
5247 	return (NULL);
5248 }
5249 
5250 /*
5251  * Return the ifindex next in sequence after the passed in ifindex.
5252  * If there is no next ifindex for the given protocol, return 0.
5253  */
5254 uint_t
5255 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5256 {
5257 	phyint_t *phyi;
5258 	phyint_t *phyi_initial;
5259 	uint_t   ifindex;
5260 
5261 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5262 
5263 	if (index == 0) {
5264 		phyi = avl_first(
5265 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5266 	} else {
5267 		phyi = phyi_initial = avl_find(
5268 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5269 		    (void *) &index, NULL);
5270 	}
5271 
5272 	for (; phyi != NULL;
5273 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5274 	    phyi, AVL_AFTER)) {
5275 		/*
5276 		 * If we're not returning the first interface in the tree
5277 		 * and we still haven't moved past the phyint_t that
5278 		 * corresponds to index, avl_walk needs to be called again
5279 		 */
5280 		if (!((index != 0) && (phyi == phyi_initial))) {
5281 			if (isv6) {
5282 				if ((phyi->phyint_illv6) &&
5283 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5284 				    (phyi->phyint_illv6->ill_isv6 == 1))
5285 					break;
5286 			} else {
5287 				if ((phyi->phyint_illv4) &&
5288 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5289 				    (phyi->phyint_illv4->ill_isv6 == 0))
5290 					break;
5291 			}
5292 		}
5293 	}
5294 
5295 	rw_exit(&ipst->ips_ill_g_lock);
5296 
5297 	if (phyi != NULL)
5298 		ifindex = phyi->phyint_ifindex;
5299 	else
5300 		ifindex = 0;
5301 
5302 	return (ifindex);
5303 }
5304 
5305 
5306 /*
5307  * Return the ifindex for the named interface.
5308  * If there is no next ifindex for the interface, return 0.
5309  */
5310 uint_t
5311 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5312 {
5313 	phyint_t	*phyi;
5314 	avl_index_t	where = 0;
5315 	uint_t		ifindex;
5316 
5317 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5318 
5319 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5320 	    name, &where)) == NULL) {
5321 		rw_exit(&ipst->ips_ill_g_lock);
5322 		return (0);
5323 	}
5324 
5325 	ifindex = phyi->phyint_ifindex;
5326 
5327 	rw_exit(&ipst->ips_ill_g_lock);
5328 
5329 	return (ifindex);
5330 }
5331 
5332 
5333 /*
5334  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5335  * that gives a running thread a reference to the ill. This reference must be
5336  * released by the thread when it is done accessing the ill and related
5337  * objects. ill_refcnt can not be used to account for static references
5338  * such as other structures pointing to an ill. Callers must generally
5339  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5340  * or be sure that the ill is not being deleted or changing state before
5341  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5342  * ill won't change any of its critical state such as address, netmask etc.
5343  */
5344 void
5345 ill_refhold(ill_t *ill)
5346 {
5347 	mutex_enter(&ill->ill_lock);
5348 	ill->ill_refcnt++;
5349 	ILL_TRACE_REF(ill);
5350 	mutex_exit(&ill->ill_lock);
5351 }
5352 
5353 void
5354 ill_refhold_locked(ill_t *ill)
5355 {
5356 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5357 	ill->ill_refcnt++;
5358 	ILL_TRACE_REF(ill);
5359 }
5360 
5361 int
5362 ill_check_and_refhold(ill_t *ill)
5363 {
5364 	mutex_enter(&ill->ill_lock);
5365 	if (ILL_CAN_LOOKUP(ill)) {
5366 		ill_refhold_locked(ill);
5367 		mutex_exit(&ill->ill_lock);
5368 		return (0);
5369 	}
5370 	mutex_exit(&ill->ill_lock);
5371 	return (ILL_LOOKUP_FAILED);
5372 }
5373 
5374 /*
5375  * Must not be called while holding any locks. Otherwise if this is
5376  * the last reference to be released, there is a chance of recursive mutex
5377  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5378  * to restart an ioctl.
5379  */
5380 void
5381 ill_refrele(ill_t *ill)
5382 {
5383 	mutex_enter(&ill->ill_lock);
5384 	ASSERT(ill->ill_refcnt != 0);
5385 	ill->ill_refcnt--;
5386 	ILL_UNTRACE_REF(ill);
5387 	if (ill->ill_refcnt != 0) {
5388 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5389 		mutex_exit(&ill->ill_lock);
5390 		return;
5391 	}
5392 
5393 	/* Drops the ill_lock */
5394 	ipif_ill_refrele_tail(ill);
5395 }
5396 
5397 /*
5398  * Obtain a weak reference count on the ill. This reference ensures the
5399  * ill won't be freed, but the ill may change any of its critical state
5400  * such as netmask, address etc. Returns an error if the ill has started
5401  * closing.
5402  */
5403 boolean_t
5404 ill_waiter_inc(ill_t *ill)
5405 {
5406 	mutex_enter(&ill->ill_lock);
5407 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5408 		mutex_exit(&ill->ill_lock);
5409 		return (B_FALSE);
5410 	}
5411 	ill->ill_waiters++;
5412 	mutex_exit(&ill->ill_lock);
5413 	return (B_TRUE);
5414 }
5415 
5416 void
5417 ill_waiter_dcr(ill_t *ill)
5418 {
5419 	mutex_enter(&ill->ill_lock);
5420 	ill->ill_waiters--;
5421 	if (ill->ill_waiters == 0)
5422 		cv_broadcast(&ill->ill_cv);
5423 	mutex_exit(&ill->ill_lock);
5424 }
5425 
5426 /*
5427  * Named Dispatch routine to produce a formatted report on all ILLs.
5428  * This report is accessed by using the ndd utility to "get" ND variable
5429  * "ip_ill_status".
5430  */
5431 /* ARGSUSED */
5432 int
5433 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5434 {
5435 	ill_t		*ill;
5436 	ill_walk_context_t ctx;
5437 	ip_stack_t	*ipst;
5438 
5439 	ipst = CONNQ_TO_IPST(q);
5440 
5441 	(void) mi_mpprintf(mp,
5442 	    "ILL      " MI_COL_HDRPAD_STR
5443 	/*   01234567[89ABCDEF] */
5444 	    "rq       " MI_COL_HDRPAD_STR
5445 	/*   01234567[89ABCDEF] */
5446 	    "wq       " MI_COL_HDRPAD_STR
5447 	/*   01234567[89ABCDEF] */
5448 	    "upcnt mxfrg err name");
5449 	/*   12345 12345 123 xxxxxxxx  */
5450 
5451 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5452 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5453 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5454 		(void) mi_mpprintf(mp,
5455 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5456 		    "%05u %05u %03d %s",
5457 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5458 		    ill->ill_ipif_up_count,
5459 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5460 	}
5461 	rw_exit(&ipst->ips_ill_g_lock);
5462 
5463 	return (0);
5464 }
5465 
5466 /*
5467  * Named Dispatch routine to produce a formatted report on all IPIFs.
5468  * This report is accessed by using the ndd utility to "get" ND variable
5469  * "ip_ipif_status".
5470  */
5471 /* ARGSUSED */
5472 int
5473 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5474 {
5475 	char	buf1[INET6_ADDRSTRLEN];
5476 	char	buf2[INET6_ADDRSTRLEN];
5477 	char	buf3[INET6_ADDRSTRLEN];
5478 	char	buf4[INET6_ADDRSTRLEN];
5479 	char	buf5[INET6_ADDRSTRLEN];
5480 	char	buf6[INET6_ADDRSTRLEN];
5481 	char	buf[LIFNAMSIZ];
5482 	ill_t	*ill;
5483 	ipif_t	*ipif;
5484 	nv_t	*nvp;
5485 	uint64_t flags;
5486 	zoneid_t zoneid;
5487 	ill_walk_context_t ctx;
5488 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
5489 
5490 	(void) mi_mpprintf(mp,
5491 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5492 	    "\tlocal address\n"
5493 	    "\tsrc address\n"
5494 	    "\tsubnet\n"
5495 	    "\tmask\n"
5496 	    "\tbroadcast\n"
5497 	    "\tp-p-dst");
5498 
5499 	ASSERT(q->q_next == NULL);
5500 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5501 
5502 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5503 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5504 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5505 		for (ipif = ill->ill_ipif; ipif != NULL;
5506 		    ipif = ipif->ipif_next) {
5507 			if (zoneid != GLOBAL_ZONEID &&
5508 			    zoneid != ipif->ipif_zoneid &&
5509 			    ipif->ipif_zoneid != ALL_ZONES)
5510 				continue;
5511 
5512 			ipif_get_name(ipif, buf, sizeof (buf));
5513 			(void) mi_mpprintf(mp,
5514 			    MI_COL_PTRFMT_STR
5515 			    "%04u %05u %u/%u/%u %s %d",
5516 			    (void *)ipif,
5517 			    ipif->ipif_metric, ipif->ipif_mtu,
5518 			    ipif->ipif_ib_pkt_count,
5519 			    ipif->ipif_ob_pkt_count,
5520 			    ipif->ipif_fo_pkt_count,
5521 			    buf,
5522 			    ipif->ipif_zoneid);
5523 
5524 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5525 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5526 
5527 		/* Tack on text strings for any flags. */
5528 		nvp = ipif_nv_tbl;
5529 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5530 			if (nvp->nv_value & flags)
5531 				(void) mi_mpprintf_nr(mp, " %s",
5532 				    nvp->nv_name);
5533 		}
5534 		(void) mi_mpprintf(mp,
5535 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5536 		    inet_ntop(AF_INET6,
5537 		    &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5538 		    inet_ntop(AF_INET6,
5539 		    &ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5540 		    inet_ntop(AF_INET6,
5541 		    &ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5542 		    inet_ntop(AF_INET6,
5543 		    &ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5544 		    inet_ntop(AF_INET6,
5545 		    &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5546 		    inet_ntop(AF_INET6,
5547 		    &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6)));
5548 		}
5549 	}
5550 	rw_exit(&ipst->ips_ill_g_lock);
5551 	return (0);
5552 }
5553 
5554 /*
5555  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5556  * driver.  We construct best guess defaults for lower level information that
5557  * we need.  If an interface is brought up without injection of any overriding
5558  * information from outside, we have to be ready to go with these defaults.
5559  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5560  * we primarely want the dl_provider_style.
5561  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5562  * at which point we assume the other part of the information is valid.
5563  */
5564 void
5565 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5566 {
5567 	uchar_t		*brdcst_addr;
5568 	uint_t		brdcst_addr_length, phys_addr_length;
5569 	t_scalar_t	sap_length;
5570 	dl_info_ack_t	*dlia;
5571 	ip_m_t		*ipm;
5572 	dl_qos_cl_sel1_t *sel1;
5573 
5574 	ASSERT(IAM_WRITER_ILL(ill));
5575 
5576 	/*
5577 	 * Till the ill is fully up ILL_CHANGING will be set and
5578 	 * the ill is not globally visible. So no need for a lock.
5579 	 */
5580 	dlia = (dl_info_ack_t *)mp->b_rptr;
5581 	ill->ill_mactype = dlia->dl_mac_type;
5582 
5583 	ipm = ip_m_lookup(dlia->dl_mac_type);
5584 	if (ipm == NULL) {
5585 		ipm = ip_m_lookup(DL_OTHER);
5586 		ASSERT(ipm != NULL);
5587 	}
5588 	ill->ill_media = ipm;
5589 
5590 	/*
5591 	 * When the new DLPI stuff is ready we'll pull lengths
5592 	 * from dlia.
5593 	 */
5594 	if (dlia->dl_version == DL_VERSION_2) {
5595 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5596 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5597 		    brdcst_addr_length);
5598 		if (brdcst_addr == NULL) {
5599 			brdcst_addr_length = 0;
5600 		}
5601 		sap_length = dlia->dl_sap_length;
5602 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5603 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5604 		    brdcst_addr_length, sap_length, phys_addr_length));
5605 	} else {
5606 		brdcst_addr_length = 6;
5607 		brdcst_addr = ip_six_byte_all_ones;
5608 		sap_length = -2;
5609 		phys_addr_length = brdcst_addr_length;
5610 	}
5611 
5612 	ill->ill_bcast_addr_length = brdcst_addr_length;
5613 	ill->ill_phys_addr_length = phys_addr_length;
5614 	ill->ill_sap_length = sap_length;
5615 	ill->ill_max_frag = dlia->dl_max_sdu;
5616 	ill->ill_max_mtu = ill->ill_max_frag;
5617 
5618 	ill->ill_type = ipm->ip_m_type;
5619 
5620 	if (!ill->ill_dlpi_style_set) {
5621 		if (dlia->dl_provider_style == DL_STYLE2)
5622 			ill->ill_needs_attach = 1;
5623 
5624 		/*
5625 		 * Allocate the first ipif on this ill. We don't delay it
5626 		 * further as ioctl handling assumes atleast one ipif to
5627 		 * be present.
5628 		 *
5629 		 * At this point we don't know whether the ill is v4 or v6.
5630 		 * We will know this whan the SIOCSLIFNAME happens and
5631 		 * the correct value for ill_isv6 will be assigned in
5632 		 * ipif_set_values(). We need to hold the ill lock and
5633 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5634 		 * the wakeup.
5635 		 */
5636 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5637 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5638 		mutex_enter(&ill->ill_lock);
5639 		ASSERT(ill->ill_dlpi_style_set == 0);
5640 		ill->ill_dlpi_style_set = 1;
5641 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5642 		cv_broadcast(&ill->ill_cv);
5643 		mutex_exit(&ill->ill_lock);
5644 		freemsg(mp);
5645 		return;
5646 	}
5647 	ASSERT(ill->ill_ipif != NULL);
5648 	/*
5649 	 * We know whether it is IPv4 or IPv6 now, as this is the
5650 	 * second DL_INFO_ACK we are recieving in response to the
5651 	 * DL_INFO_REQ sent in ipif_set_values.
5652 	 */
5653 	if (ill->ill_isv6)
5654 		ill->ill_sap = IP6_DL_SAP;
5655 	else
5656 		ill->ill_sap = IP_DL_SAP;
5657 	/*
5658 	 * Set ipif_mtu which is used to set the IRE's
5659 	 * ire_max_frag value. The driver could have sent
5660 	 * a different mtu from what it sent last time. No
5661 	 * need to call ipif_mtu_change because IREs have
5662 	 * not yet been created.
5663 	 */
5664 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5665 	/*
5666 	 * Clear all the flags that were set based on ill_bcast_addr_length
5667 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5668 	 * changed now and we need to re-evaluate.
5669 	 */
5670 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5671 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5672 
5673 	/*
5674 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5675 	 * changed now.
5676 	 */
5677 	if (ill->ill_bcast_addr_length == 0) {
5678 		if (ill->ill_resolver_mp != NULL)
5679 			freemsg(ill->ill_resolver_mp);
5680 		if (ill->ill_bcast_mp != NULL)
5681 			freemsg(ill->ill_bcast_mp);
5682 		if (ill->ill_flags & ILLF_XRESOLV)
5683 			ill->ill_net_type = IRE_IF_RESOLVER;
5684 		else
5685 			ill->ill_net_type = IRE_IF_NORESOLVER;
5686 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5687 		    ill->ill_phys_addr_length,
5688 		    ill->ill_sap,
5689 		    ill->ill_sap_length);
5690 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5691 
5692 		if (ill->ill_isv6)
5693 			/*
5694 			 * Note: xresolv interfaces will eventually need NOARP
5695 			 * set here as well, but that will require those
5696 			 * external resolvers to have some knowledge of
5697 			 * that flag and act appropriately. Not to be changed
5698 			 * at present.
5699 			 */
5700 			ill->ill_flags |= ILLF_NONUD;
5701 		else
5702 			ill->ill_flags |= ILLF_NOARP;
5703 
5704 		if (ill->ill_phys_addr_length == 0) {
5705 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5706 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5707 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5708 			} else {
5709 				/* pt-pt supports multicast. */
5710 				ill->ill_flags |= ILLF_MULTICAST;
5711 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5712 			}
5713 		}
5714 	} else {
5715 		ill->ill_net_type = IRE_IF_RESOLVER;
5716 		if (ill->ill_bcast_mp != NULL)
5717 			freemsg(ill->ill_bcast_mp);
5718 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5719 		    ill->ill_bcast_addr_length, ill->ill_sap,
5720 		    ill->ill_sap_length);
5721 		/*
5722 		 * Later detect lack of DLPI driver multicast
5723 		 * capability by catching DL_ENABMULTI errors in
5724 		 * ip_rput_dlpi.
5725 		 */
5726 		ill->ill_flags |= ILLF_MULTICAST;
5727 		if (!ill->ill_isv6)
5728 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5729 	}
5730 	/* By default an interface does not support any CoS marking */
5731 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5732 
5733 	/*
5734 	 * If we get QoS information in DL_INFO_ACK, the device supports
5735 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5736 	 */
5737 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5738 	    dlia->dl_qos_length);
5739 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5740 		ill->ill_flags |= ILLF_COS_ENABLED;
5741 	}
5742 
5743 	/* Clear any previous error indication. */
5744 	ill->ill_error = 0;
5745 	freemsg(mp);
5746 }
5747 
5748 /*
5749  * Perform various checks to verify that an address would make sense as a
5750  * local, remote, or subnet interface address.
5751  */
5752 static boolean_t
5753 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5754 {
5755 	ipaddr_t	net_mask;
5756 
5757 	/*
5758 	 * Don't allow all zeroes, all ones or experimental address, but allow
5759 	 * all ones netmask.
5760 	 */
5761 	if ((net_mask = ip_net_mask(addr)) == 0)
5762 		return (B_FALSE);
5763 	/* A given netmask overrides the "guess" netmask */
5764 	if (subnet_mask != 0)
5765 		net_mask = subnet_mask;
5766 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5767 	    (addr == (addr | ~net_mask)))) {
5768 		return (B_FALSE);
5769 	}
5770 	if (CLASSD(addr))
5771 		return (B_FALSE);
5772 
5773 	return (B_TRUE);
5774 }
5775 
5776 #define	V6_IPIF_LINKLOCAL(p)	\
5777 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5778 
5779 /*
5780  * Compare two given ipifs and check if the second one is better than
5781  * the first one using the order of preference (not taking deprecated
5782  * into acount) specified in ipif_lookup_multicast().
5783  */
5784 static boolean_t
5785 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5786 {
5787 	/* Check the least preferred first. */
5788 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5789 		/* If both ipifs are the same, use the first one. */
5790 		if (IS_LOOPBACK(new_ipif->ipif_ill))
5791 			return (B_FALSE);
5792 		else
5793 			return (B_TRUE);
5794 	}
5795 
5796 	/* For IPv6, check for link local address. */
5797 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5798 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5799 		    V6_IPIF_LINKLOCAL(new_ipif)) {
5800 			/* The second one is equal or less preferred. */
5801 			return (B_FALSE);
5802 		} else {
5803 			return (B_TRUE);
5804 		}
5805 	}
5806 
5807 	/* Then check for point to point interface. */
5808 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5809 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5810 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5811 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5812 			return (B_FALSE);
5813 		} else {
5814 			return (B_TRUE);
5815 		}
5816 	}
5817 
5818 	/* old_ipif is a normal interface, so no need to use the new one. */
5819 	return (B_FALSE);
5820 }
5821 
5822 /*
5823  * Find any non-virtual, not condemned, and up multicast capable interface
5824  * given an IP instance and zoneid.  Order of preference is:
5825  *
5826  * 1. normal
5827  * 1.1 normal, but deprecated
5828  * 2. point to point
5829  * 2.1 point to point, but deprecated
5830  * 3. link local
5831  * 3.1 link local, but deprecated
5832  * 4. loopback.
5833  */
5834 ipif_t *
5835 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5836 {
5837 	ill_t			*ill;
5838 	ill_walk_context_t	ctx;
5839 	ipif_t			*ipif;
5840 	ipif_t			*saved_ipif = NULL;
5841 	ipif_t			*dep_ipif = NULL;
5842 
5843 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5844 	if (isv6)
5845 		ill = ILL_START_WALK_V6(&ctx, ipst);
5846 	else
5847 		ill = ILL_START_WALK_V4(&ctx, ipst);
5848 
5849 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5850 		mutex_enter(&ill->ill_lock);
5851 		if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) ||
5852 		    !(ill->ill_flags & ILLF_MULTICAST)) {
5853 			mutex_exit(&ill->ill_lock);
5854 			continue;
5855 		}
5856 		for (ipif = ill->ill_ipif; ipif != NULL;
5857 		    ipif = ipif->ipif_next) {
5858 			if (zoneid != ipif->ipif_zoneid &&
5859 			    zoneid != ALL_ZONES &&
5860 			    ipif->ipif_zoneid != ALL_ZONES) {
5861 				continue;
5862 			}
5863 			if (!(ipif->ipif_flags & IPIF_UP) ||
5864 			    !IPIF_CAN_LOOKUP(ipif)) {
5865 				continue;
5866 			}
5867 
5868 			/*
5869 			 * Found one candidate.  If it is deprecated,
5870 			 * remember it in dep_ipif.  If it is not deprecated,
5871 			 * remember it in saved_ipif.
5872 			 */
5873 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5874 				if (dep_ipif == NULL) {
5875 					dep_ipif = ipif;
5876 				} else if (ipif_comp_multi(dep_ipif, ipif,
5877 				    isv6)) {
5878 					/*
5879 					 * If the previous dep_ipif does not
5880 					 * belong to the same ill, we've done
5881 					 * a ipif_refhold() on it.  So we need
5882 					 * to release it.
5883 					 */
5884 					if (dep_ipif->ipif_ill != ill)
5885 						ipif_refrele(dep_ipif);
5886 					dep_ipif = ipif;
5887 				}
5888 				continue;
5889 			}
5890 			if (saved_ipif == NULL) {
5891 				saved_ipif = ipif;
5892 			} else {
5893 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5894 					if (saved_ipif->ipif_ill != ill)
5895 						ipif_refrele(saved_ipif);
5896 					saved_ipif = ipif;
5897 				}
5898 			}
5899 		}
5900 		/*
5901 		 * Before going to the next ill, do a ipif_refhold() on the
5902 		 * saved ones.
5903 		 */
5904 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5905 			ipif_refhold_locked(saved_ipif);
5906 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5907 			ipif_refhold_locked(dep_ipif);
5908 		mutex_exit(&ill->ill_lock);
5909 	}
5910 	rw_exit(&ipst->ips_ill_g_lock);
5911 
5912 	/*
5913 	 * If we have only the saved_ipif, return it.  But if we have both
5914 	 * saved_ipif and dep_ipif, check to see which one is better.
5915 	 */
5916 	if (saved_ipif != NULL) {
5917 		if (dep_ipif != NULL) {
5918 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5919 				ipif_refrele(saved_ipif);
5920 				return (dep_ipif);
5921 			} else {
5922 				ipif_refrele(dep_ipif);
5923 				return (saved_ipif);
5924 			}
5925 		}
5926 		return (saved_ipif);
5927 	} else {
5928 		return (dep_ipif);
5929 	}
5930 }
5931 
5932 /*
5933  * This function is called when an application does not specify an interface
5934  * to be used for multicast traffic (joining a group/sending data).  It
5935  * calls ire_lookup_multi() to look for an interface route for the
5936  * specified multicast group.  Doing this allows the administrator to add
5937  * prefix routes for multicast to indicate which interface to be used for
5938  * multicast traffic in the above scenario.  The route could be for all
5939  * multicast (224.0/4), for a single multicast group (a /32 route) or
5940  * anything in between.  If there is no such multicast route, we just find
5941  * any multicast capable interface and return it.  The returned ipif
5942  * is refhold'ed.
5943  */
5944 ipif_t *
5945 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5946 {
5947 	ire_t			*ire;
5948 	ipif_t			*ipif;
5949 
5950 	ire = ire_lookup_multi(group, zoneid, ipst);
5951 	if (ire != NULL) {
5952 		ipif = ire->ire_ipif;
5953 		ipif_refhold(ipif);
5954 		ire_refrele(ire);
5955 		return (ipif);
5956 	}
5957 
5958 	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5959 }
5960 
5961 /*
5962  * Look for an ipif with the specified interface address and destination.
5963  * The destination address is used only for matching point-to-point interfaces.
5964  */
5965 ipif_t *
5966 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5967     ipsq_func_t func, int *error, ip_stack_t *ipst)
5968 {
5969 	ipif_t	*ipif;
5970 	ill_t	*ill;
5971 	ill_walk_context_t ctx;
5972 	ipsq_t	*ipsq;
5973 
5974 	if (error != NULL)
5975 		*error = 0;
5976 
5977 	/*
5978 	 * First match all the point-to-point interfaces
5979 	 * before looking at non-point-to-point interfaces.
5980 	 * This is done to avoid returning non-point-to-point
5981 	 * ipif instead of unnumbered point-to-point ipif.
5982 	 */
5983 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5984 	ill = ILL_START_WALK_V4(&ctx, ipst);
5985 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5986 		GRAB_CONN_LOCK(q);
5987 		mutex_enter(&ill->ill_lock);
5988 		for (ipif = ill->ill_ipif; ipif != NULL;
5989 		    ipif = ipif->ipif_next) {
5990 			/* Allow the ipif to be down */
5991 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5992 			    (ipif->ipif_lcl_addr == if_addr) &&
5993 			    (ipif->ipif_pp_dst_addr == dst)) {
5994 				/*
5995 				 * The block comment at the start of ipif_down
5996 				 * explains the use of the macros used below
5997 				 */
5998 				if (IPIF_CAN_LOOKUP(ipif)) {
5999 					ipif_refhold_locked(ipif);
6000 					mutex_exit(&ill->ill_lock);
6001 					RELEASE_CONN_LOCK(q);
6002 					rw_exit(&ipst->ips_ill_g_lock);
6003 					return (ipif);
6004 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6005 					ipsq = ill->ill_phyint->phyint_ipsq;
6006 					mutex_enter(&ipsq->ipsq_lock);
6007 					mutex_exit(&ill->ill_lock);
6008 					rw_exit(&ipst->ips_ill_g_lock);
6009 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6010 					    ill);
6011 					mutex_exit(&ipsq->ipsq_lock);
6012 					RELEASE_CONN_LOCK(q);
6013 					*error = EINPROGRESS;
6014 					return (NULL);
6015 				}
6016 			}
6017 		}
6018 		mutex_exit(&ill->ill_lock);
6019 		RELEASE_CONN_LOCK(q);
6020 	}
6021 	rw_exit(&ipst->ips_ill_g_lock);
6022 
6023 	/* lookup the ipif based on interface address */
6024 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
6025 	    ipst);
6026 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
6027 	return (ipif);
6028 }
6029 
6030 /*
6031  * Look for an ipif with the specified address. For point-point links
6032  * we look for matches on either the destination address and the local
6033  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6034  * is set.
6035  * Matches on a specific ill if match_ill is set.
6036  */
6037 ipif_t *
6038 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
6039     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
6040 {
6041 	ipif_t  *ipif;
6042 	ill_t   *ill;
6043 	boolean_t ptp = B_FALSE;
6044 	ipsq_t	*ipsq;
6045 	ill_walk_context_t	ctx;
6046 
6047 	if (error != NULL)
6048 		*error = 0;
6049 
6050 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6051 	/*
6052 	 * Repeat twice, first based on local addresses and
6053 	 * next time for pointopoint.
6054 	 */
6055 repeat:
6056 	ill = ILL_START_WALK_V4(&ctx, ipst);
6057 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6058 		if (match_ill != NULL && ill != match_ill) {
6059 			continue;
6060 		}
6061 		GRAB_CONN_LOCK(q);
6062 		mutex_enter(&ill->ill_lock);
6063 		for (ipif = ill->ill_ipif; ipif != NULL;
6064 		    ipif = ipif->ipif_next) {
6065 			if (zoneid != ALL_ZONES &&
6066 			    zoneid != ipif->ipif_zoneid &&
6067 			    ipif->ipif_zoneid != ALL_ZONES)
6068 				continue;
6069 			/* Allow the ipif to be down */
6070 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6071 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6072 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6073 			    (ipif->ipif_pp_dst_addr == addr))) {
6074 				/*
6075 				 * The block comment at the start of ipif_down
6076 				 * explains the use of the macros used below
6077 				 */
6078 				if (IPIF_CAN_LOOKUP(ipif)) {
6079 					ipif_refhold_locked(ipif);
6080 					mutex_exit(&ill->ill_lock);
6081 					RELEASE_CONN_LOCK(q);
6082 					rw_exit(&ipst->ips_ill_g_lock);
6083 					return (ipif);
6084 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6085 					ipsq = ill->ill_phyint->phyint_ipsq;
6086 					mutex_enter(&ipsq->ipsq_lock);
6087 					mutex_exit(&ill->ill_lock);
6088 					rw_exit(&ipst->ips_ill_g_lock);
6089 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6090 					    ill);
6091 					mutex_exit(&ipsq->ipsq_lock);
6092 					RELEASE_CONN_LOCK(q);
6093 					*error = EINPROGRESS;
6094 					return (NULL);
6095 				}
6096 			}
6097 		}
6098 		mutex_exit(&ill->ill_lock);
6099 		RELEASE_CONN_LOCK(q);
6100 	}
6101 
6102 	/* If we already did the ptp case, then we are done */
6103 	if (ptp) {
6104 		rw_exit(&ipst->ips_ill_g_lock);
6105 		if (error != NULL)
6106 			*error = ENXIO;
6107 		return (NULL);
6108 	}
6109 	ptp = B_TRUE;
6110 	goto repeat;
6111 }
6112 
6113 /*
6114  * Look for an ipif with the specified address. For point-point links
6115  * we look for matches on either the destination address and the local
6116  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6117  * is set.
6118  * Matches on a specific ill if match_ill is set.
6119  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6120  */
6121 zoneid_t
6122 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6123 {
6124 	zoneid_t zoneid;
6125 	ipif_t  *ipif;
6126 	ill_t   *ill;
6127 	boolean_t ptp = B_FALSE;
6128 	ill_walk_context_t	ctx;
6129 
6130 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6131 	/*
6132 	 * Repeat twice, first based on local addresses and
6133 	 * next time for pointopoint.
6134 	 */
6135 repeat:
6136 	ill = ILL_START_WALK_V4(&ctx, ipst);
6137 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6138 		if (match_ill != NULL && ill != match_ill) {
6139 			continue;
6140 		}
6141 		mutex_enter(&ill->ill_lock);
6142 		for (ipif = ill->ill_ipif; ipif != NULL;
6143 		    ipif = ipif->ipif_next) {
6144 			/* Allow the ipif to be down */
6145 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6146 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6147 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6148 			    (ipif->ipif_pp_dst_addr == addr)) &&
6149 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6150 				zoneid = ipif->ipif_zoneid;
6151 				mutex_exit(&ill->ill_lock);
6152 				rw_exit(&ipst->ips_ill_g_lock);
6153 				/*
6154 				 * If ipif_zoneid was ALL_ZONES then we have
6155 				 * a trusted extensions shared IP address.
6156 				 * In that case GLOBAL_ZONEID works to send.
6157 				 */
6158 				if (zoneid == ALL_ZONES)
6159 					zoneid = GLOBAL_ZONEID;
6160 				return (zoneid);
6161 			}
6162 		}
6163 		mutex_exit(&ill->ill_lock);
6164 	}
6165 
6166 	/* If we already did the ptp case, then we are done */
6167 	if (ptp) {
6168 		rw_exit(&ipst->ips_ill_g_lock);
6169 		return (ALL_ZONES);
6170 	}
6171 	ptp = B_TRUE;
6172 	goto repeat;
6173 }
6174 
6175 /*
6176  * Look for an ipif that matches the specified remote address i.e. the
6177  * ipif that would receive the specified packet.
6178  * First look for directly connected interfaces and then do a recursive
6179  * IRE lookup and pick the first ipif corresponding to the source address in the
6180  * ire.
6181  * Returns: held ipif
6182  */
6183 ipif_t *
6184 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6185 {
6186 	ipif_t	*ipif;
6187 	ire_t	*ire;
6188 	ip_stack_t	*ipst = ill->ill_ipst;
6189 
6190 	ASSERT(!ill->ill_isv6);
6191 
6192 	/*
6193 	 * Someone could be changing this ipif currently or change it
6194 	 * after we return this. Thus  a few packets could use the old
6195 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6196 	 * will atomically be updated or cleaned up with the new value
6197 	 * Thus we don't need a lock to check the flags or other attrs below.
6198 	 */
6199 	mutex_enter(&ill->ill_lock);
6200 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6201 		if (!IPIF_CAN_LOOKUP(ipif))
6202 			continue;
6203 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6204 		    ipif->ipif_zoneid != ALL_ZONES)
6205 			continue;
6206 		/* Allow the ipif to be down */
6207 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6208 			if ((ipif->ipif_pp_dst_addr == addr) ||
6209 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6210 			    ipif->ipif_lcl_addr == addr)) {
6211 				ipif_refhold_locked(ipif);
6212 				mutex_exit(&ill->ill_lock);
6213 				return (ipif);
6214 			}
6215 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6216 			ipif_refhold_locked(ipif);
6217 			mutex_exit(&ill->ill_lock);
6218 			return (ipif);
6219 		}
6220 	}
6221 	mutex_exit(&ill->ill_lock);
6222 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6223 	    NULL, MATCH_IRE_RECURSIVE, ipst);
6224 	if (ire != NULL) {
6225 		/*
6226 		 * The callers of this function wants to know the
6227 		 * interface on which they have to send the replies
6228 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6229 		 * derived from different ills, we really don't care
6230 		 * what we return here.
6231 		 */
6232 		ipif = ire->ire_ipif;
6233 		if (ipif != NULL) {
6234 			ipif_refhold(ipif);
6235 			ire_refrele(ire);
6236 			return (ipif);
6237 		}
6238 		ire_refrele(ire);
6239 	}
6240 	/* Pick the first interface */
6241 	ipif = ipif_get_next_ipif(NULL, ill);
6242 	return (ipif);
6243 }
6244 
6245 /*
6246  * This func does not prevent refcnt from increasing. But if
6247  * the caller has taken steps to that effect, then this func
6248  * can be used to determine whether the ill has become quiescent
6249  */
6250 boolean_t
6251 ill_is_quiescent(ill_t *ill)
6252 {
6253 	ipif_t	*ipif;
6254 
6255 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6256 
6257 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6258 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6259 			return (B_FALSE);
6260 		}
6261 	}
6262 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6263 	    ill->ill_nce_cnt != 0) {
6264 		return (B_FALSE);
6265 	}
6266 	return (B_TRUE);
6267 }
6268 
6269 /*
6270  * This func does not prevent refcnt from increasing. But if
6271  * the caller has taken steps to that effect, then this func
6272  * can be used to determine whether the ipif has become quiescent
6273  */
6274 static boolean_t
6275 ipif_is_quiescent(ipif_t *ipif)
6276 {
6277 	ill_t *ill;
6278 
6279 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6280 
6281 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6282 		return (B_FALSE);
6283 	}
6284 
6285 	ill = ipif->ipif_ill;
6286 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6287 	    ill->ill_logical_down) {
6288 		return (B_TRUE);
6289 	}
6290 
6291 	/* This is the last ipif going down or being deleted on this ill */
6292 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6293 		return (B_FALSE);
6294 	}
6295 
6296 	return (B_TRUE);
6297 }
6298 
6299 /*
6300  * This func does not prevent refcnt from increasing. But if
6301  * the caller has taken steps to that effect, then this func
6302  * can be used to determine whether the ipifs marked with IPIF_MOVING
6303  * have become quiescent and can be moved in a failover/failback.
6304  */
6305 static ipif_t *
6306 ill_quiescent_to_move(ill_t *ill)
6307 {
6308 	ipif_t  *ipif;
6309 
6310 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6311 
6312 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6313 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6314 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6315 				return (ipif);
6316 			}
6317 		}
6318 	}
6319 	return (NULL);
6320 }
6321 
6322 /*
6323  * The ipif/ill/ire has been refreled. Do the tail processing.
6324  * Determine if the ipif or ill in question has become quiescent and if so
6325  * wakeup close and/or restart any queued pending ioctl that is waiting
6326  * for the ipif_down (or ill_down)
6327  */
6328 void
6329 ipif_ill_refrele_tail(ill_t *ill)
6330 {
6331 	mblk_t	*mp;
6332 	conn_t	*connp;
6333 	ipsq_t	*ipsq;
6334 	ipif_t	*ipif;
6335 	dl_notify_ind_t *dlindp;
6336 
6337 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6338 
6339 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6340 	    ill_is_quiescent(ill)) {
6341 		/* ill_close may be waiting */
6342 		cv_broadcast(&ill->ill_cv);
6343 	}
6344 
6345 	/* ipsq can't change because ill_lock  is held */
6346 	ipsq = ill->ill_phyint->phyint_ipsq;
6347 	if (ipsq->ipsq_waitfor == 0) {
6348 		/* Not waiting for anything, just return. */
6349 		mutex_exit(&ill->ill_lock);
6350 		return;
6351 	}
6352 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6353 	    ipsq->ipsq_pending_ipif != NULL);
6354 	/*
6355 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6356 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6357 	 * be zero for restarting an ioctl that ends up downing the ill.
6358 	 */
6359 	ipif = ipsq->ipsq_pending_ipif;
6360 	if (ipif->ipif_ill != ill) {
6361 		/* The ioctl is pending on some other ill. */
6362 		mutex_exit(&ill->ill_lock);
6363 		return;
6364 	}
6365 
6366 	switch (ipsq->ipsq_waitfor) {
6367 	case IPIF_DOWN:
6368 	case IPIF_FREE:
6369 		if (!ipif_is_quiescent(ipif)) {
6370 			mutex_exit(&ill->ill_lock);
6371 			return;
6372 		}
6373 		break;
6374 
6375 	case ILL_DOWN:
6376 	case ILL_FREE:
6377 		/*
6378 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6379 		 * waits synchronously in ip_close, and no message is queued in
6380 		 * ipsq_pending_mp at all in this case
6381 		 */
6382 		if (!ill_is_quiescent(ill)) {
6383 			mutex_exit(&ill->ill_lock);
6384 			return;
6385 		}
6386 
6387 		break;
6388 
6389 	case ILL_MOVE_OK:
6390 		if (ill_quiescent_to_move(ill) != NULL) {
6391 			mutex_exit(&ill->ill_lock);
6392 			return;
6393 		}
6394 
6395 		break;
6396 	default:
6397 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6398 		    (void *)ipsq, ipsq->ipsq_waitfor);
6399 	}
6400 
6401 	/*
6402 	 * Incr refcnt for the qwriter_ip call below which
6403 	 * does a refrele
6404 	 */
6405 	ill_refhold_locked(ill);
6406 	mutex_exit(&ill->ill_lock);
6407 
6408 	mp = ipsq_pending_mp_get(ipsq, &connp);
6409 	ASSERT(mp != NULL);
6410 
6411 	/*
6412 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6413 	 * we can only get here when the current operation decides it
6414 	 * it needs to quiesce via ipsq_pending_mp_add().
6415 	 */
6416 	switch (mp->b_datap->db_type) {
6417 	case M_PCPROTO:
6418 	case M_PROTO:
6419 		/*
6420 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6421 		 */
6422 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6423 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6424 
6425 		switch (dlindp->dl_notification) {
6426 		case DL_NOTE_PHYS_ADDR:
6427 			qwriter_ip(ill, ill->ill_rq, mp,
6428 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6429 			return;
6430 		default:
6431 			ASSERT(0);
6432 		}
6433 		break;
6434 
6435 	case M_ERROR:
6436 	case M_HANGUP:
6437 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6438 		    B_TRUE);
6439 		return;
6440 
6441 	case M_IOCTL:
6442 	case M_IOCDATA:
6443 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6444 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6445 		return;
6446 
6447 	default:
6448 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6449 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6450 	}
6451 }
6452 
6453 #ifdef DEBUG
6454 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6455 static void
6456 th_trace_rrecord(th_trace_t *th_trace)
6457 {
6458 	tr_buf_t *tr_buf;
6459 	uint_t lastref;
6460 
6461 	lastref = th_trace->th_trace_lastref;
6462 	lastref++;
6463 	if (lastref == TR_BUF_MAX)
6464 		lastref = 0;
6465 	th_trace->th_trace_lastref = lastref;
6466 	tr_buf = &th_trace->th_trbuf[lastref];
6467 	tr_buf->tr_time = lbolt;
6468 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6469 }
6470 
6471 static void
6472 th_trace_free(void *value)
6473 {
6474 	th_trace_t *th_trace = value;
6475 
6476 	ASSERT(th_trace->th_refcnt == 0);
6477 	kmem_free(th_trace, sizeof (*th_trace));
6478 }
6479 
6480 /*
6481  * Find or create the per-thread hash table used to track object references.
6482  * The ipst argument is NULL if we shouldn't allocate.
6483  *
6484  * Accesses per-thread data, so there's no need to lock here.
6485  */
6486 static mod_hash_t *
6487 th_trace_gethash(ip_stack_t *ipst)
6488 {
6489 	th_hash_t *thh;
6490 
6491 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6492 		mod_hash_t *mh;
6493 		char name[256];
6494 		size_t objsize, rshift;
6495 		int retv;
6496 
6497 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6498 			return (NULL);
6499 		(void) snprintf(name, sizeof (name), "th_trace_%p", curthread);
6500 
6501 		/*
6502 		 * We use mod_hash_create_extended here rather than the more
6503 		 * obvious mod_hash_create_ptrhash because the latter has a
6504 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6505 		 * block.
6506 		 */
6507 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6508 		    MAX(sizeof (ire_t), sizeof (nce_t)));
6509 		rshift = highbit(objsize);
6510 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6511 		    th_trace_free, mod_hash_byptr, (void *)rshift,
6512 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
6513 		if (mh == NULL) {
6514 			kmem_free(thh, sizeof (*thh));
6515 			return (NULL);
6516 		}
6517 		thh->thh_hash = mh;
6518 		thh->thh_ipst = ipst;
6519 		/*
6520 		 * We trace ills, ipifs, ires, and nces.  All of these are
6521 		 * per-IP-stack, so the lock on the thread list is as well.
6522 		 */
6523 		rw_enter(&ip_thread_rwlock, RW_WRITER);
6524 		list_insert_tail(&ip_thread_list, thh);
6525 		rw_exit(&ip_thread_rwlock);
6526 		retv = tsd_set(ip_thread_data, thh);
6527 		ASSERT(retv == 0);
6528 	}
6529 	return (thh != NULL ? thh->thh_hash : NULL);
6530 }
6531 
6532 boolean_t
6533 th_trace_ref(const void *obj, ip_stack_t *ipst)
6534 {
6535 	th_trace_t *th_trace;
6536 	mod_hash_t *mh;
6537 	mod_hash_val_t val;
6538 
6539 	if ((mh = th_trace_gethash(ipst)) == NULL)
6540 		return (B_FALSE);
6541 
6542 	/*
6543 	 * Attempt to locate the trace buffer for this obj and thread.
6544 	 * If it does not exist, then allocate a new trace buffer and
6545 	 * insert into the hash.
6546 	 */
6547 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6548 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6549 		if (th_trace == NULL)
6550 			return (B_FALSE);
6551 
6552 		th_trace->th_id = curthread;
6553 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6554 		    (mod_hash_val_t)th_trace) != 0) {
6555 			kmem_free(th_trace, sizeof (th_trace_t));
6556 			return (B_FALSE);
6557 		}
6558 	} else {
6559 		th_trace = (th_trace_t *)val;
6560 	}
6561 
6562 	ASSERT(th_trace->th_refcnt >= 0 &&
6563 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6564 
6565 	th_trace->th_refcnt++;
6566 	th_trace_rrecord(th_trace);
6567 	return (B_TRUE);
6568 }
6569 
6570 /*
6571  * For the purpose of tracing a reference release, we assume that global
6572  * tracing is always on and that the same thread initiated the reference hold
6573  * is releasing.
6574  */
6575 void
6576 th_trace_unref(const void *obj)
6577 {
6578 	int retv;
6579 	mod_hash_t *mh;
6580 	th_trace_t *th_trace;
6581 	mod_hash_val_t val;
6582 
6583 	mh = th_trace_gethash(NULL);
6584 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6585 	ASSERT(retv == 0);
6586 	th_trace = (th_trace_t *)val;
6587 
6588 	ASSERT(th_trace->th_refcnt > 0);
6589 	th_trace->th_refcnt--;
6590 	th_trace_rrecord(th_trace);
6591 }
6592 
6593 /*
6594  * If tracing has been disabled, then we assume that the reference counts are
6595  * now useless, and we clear them out before destroying the entries.
6596  */
6597 void
6598 th_trace_cleanup(const void *obj, boolean_t trace_disable)
6599 {
6600 	th_hash_t	*thh;
6601 	mod_hash_t	*mh;
6602 	mod_hash_val_t	val;
6603 	th_trace_t	*th_trace;
6604 	int		retv;
6605 
6606 	rw_enter(&ip_thread_rwlock, RW_READER);
6607 	for (thh = list_head(&ip_thread_list); thh != NULL;
6608 	    thh = list_next(&ip_thread_list, thh)) {
6609 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6610 		    &val) == 0) {
6611 			th_trace = (th_trace_t *)val;
6612 			if (trace_disable)
6613 				th_trace->th_refcnt = 0;
6614 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6615 			ASSERT(retv == 0);
6616 		}
6617 	}
6618 	rw_exit(&ip_thread_rwlock);
6619 }
6620 
6621 void
6622 ipif_trace_ref(ipif_t *ipif)
6623 {
6624 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6625 
6626 	if (ipif->ipif_trace_disable)
6627 		return;
6628 
6629 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6630 		ipif->ipif_trace_disable = B_TRUE;
6631 		ipif_trace_cleanup(ipif);
6632 	}
6633 }
6634 
6635 void
6636 ipif_untrace_ref(ipif_t *ipif)
6637 {
6638 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6639 
6640 	if (!ipif->ipif_trace_disable)
6641 		th_trace_unref(ipif);
6642 }
6643 
6644 void
6645 ill_trace_ref(ill_t *ill)
6646 {
6647 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6648 
6649 	if (ill->ill_trace_disable)
6650 		return;
6651 
6652 	if (!th_trace_ref(ill, ill->ill_ipst)) {
6653 		ill->ill_trace_disable = B_TRUE;
6654 		ill_trace_cleanup(ill);
6655 	}
6656 }
6657 
6658 void
6659 ill_untrace_ref(ill_t *ill)
6660 {
6661 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6662 
6663 	if (!ill->ill_trace_disable)
6664 		th_trace_unref(ill);
6665 }
6666 
6667 /*
6668  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
6669  * failure, ipif_trace_disable is set.
6670  */
6671 static void
6672 ipif_trace_cleanup(const ipif_t *ipif)
6673 {
6674 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6675 }
6676 
6677 /*
6678  * Called when ill is unplumbed or when memory alloc fails.  Note that on
6679  * failure, ill_trace_disable is set.
6680  */
6681 static void
6682 ill_trace_cleanup(const ill_t *ill)
6683 {
6684 	th_trace_cleanup(ill, ill->ill_trace_disable);
6685 }
6686 #endif /* DEBUG */
6687 
6688 void
6689 ipif_refhold_locked(ipif_t *ipif)
6690 {
6691 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6692 	ipif->ipif_refcnt++;
6693 	IPIF_TRACE_REF(ipif);
6694 }
6695 
6696 void
6697 ipif_refhold(ipif_t *ipif)
6698 {
6699 	ill_t	*ill;
6700 
6701 	ill = ipif->ipif_ill;
6702 	mutex_enter(&ill->ill_lock);
6703 	ipif->ipif_refcnt++;
6704 	IPIF_TRACE_REF(ipif);
6705 	mutex_exit(&ill->ill_lock);
6706 }
6707 
6708 /*
6709  * Must not be called while holding any locks. Otherwise if this is
6710  * the last reference to be released there is a chance of recursive mutex
6711  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6712  * to restart an ioctl.
6713  */
6714 void
6715 ipif_refrele(ipif_t *ipif)
6716 {
6717 	ill_t	*ill;
6718 
6719 	ill = ipif->ipif_ill;
6720 
6721 	mutex_enter(&ill->ill_lock);
6722 	ASSERT(ipif->ipif_refcnt != 0);
6723 	ipif->ipif_refcnt--;
6724 	IPIF_UNTRACE_REF(ipif);
6725 	if (ipif->ipif_refcnt != 0) {
6726 		mutex_exit(&ill->ill_lock);
6727 		return;
6728 	}
6729 
6730 	/* Drops the ill_lock */
6731 	ipif_ill_refrele_tail(ill);
6732 }
6733 
6734 ipif_t *
6735 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6736 {
6737 	ipif_t	*ipif;
6738 
6739 	mutex_enter(&ill->ill_lock);
6740 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6741 	    ipif != NULL; ipif = ipif->ipif_next) {
6742 		if (!IPIF_CAN_LOOKUP(ipif))
6743 			continue;
6744 		ipif_refhold_locked(ipif);
6745 		mutex_exit(&ill->ill_lock);
6746 		return (ipif);
6747 	}
6748 	mutex_exit(&ill->ill_lock);
6749 	return (NULL);
6750 }
6751 
6752 /*
6753  * TODO: make this table extendible at run time
6754  * Return a pointer to the mac type info for 'mac_type'
6755  */
6756 static ip_m_t *
6757 ip_m_lookup(t_uscalar_t mac_type)
6758 {
6759 	ip_m_t	*ipm;
6760 
6761 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6762 		if (ipm->ip_m_mac_type == mac_type)
6763 			return (ipm);
6764 	return (NULL);
6765 }
6766 
6767 /*
6768  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6769  * ipif_arg is passed in to associate it with the correct interface.
6770  * We may need to restart this operation if the ipif cannot be looked up
6771  * due to an exclusive operation that is currently in progress. The restart
6772  * entry point is specified by 'func'
6773  */
6774 int
6775 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6776     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6777     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6778     struct rtsa_s *sp, ip_stack_t *ipst)
6779 {
6780 	ire_t	*ire;
6781 	ire_t	*gw_ire = NULL;
6782 	ipif_t	*ipif = NULL;
6783 	boolean_t ipif_refheld = B_FALSE;
6784 	uint_t	type;
6785 	int	match_flags = MATCH_IRE_TYPE;
6786 	int	error;
6787 	tsol_gc_t *gc = NULL;
6788 	tsol_gcgrp_t *gcgrp = NULL;
6789 	boolean_t gcgrp_xtraref = B_FALSE;
6790 
6791 	ip1dbg(("ip_rt_add:"));
6792 
6793 	if (ire_arg != NULL)
6794 		*ire_arg = NULL;
6795 
6796 	/*
6797 	 * If this is the case of RTF_HOST being set, then we set the netmask
6798 	 * to all ones (regardless if one was supplied).
6799 	 */
6800 	if (flags & RTF_HOST)
6801 		mask = IP_HOST_MASK;
6802 
6803 	/*
6804 	 * Prevent routes with a zero gateway from being created (since
6805 	 * interfaces can currently be plumbed and brought up no assigned
6806 	 * address).
6807 	 */
6808 	if (gw_addr == 0)
6809 		return (ENETUNREACH);
6810 	/*
6811 	 * Get the ipif, if any, corresponding to the gw_addr
6812 	 */
6813 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6814 	    ipst);
6815 	if (ipif != NULL) {
6816 		if (IS_VNI(ipif->ipif_ill)) {
6817 			ipif_refrele(ipif);
6818 			return (EINVAL);
6819 		}
6820 		ipif_refheld = B_TRUE;
6821 	} else if (error == EINPROGRESS) {
6822 		ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6823 		return (EINPROGRESS);
6824 	} else {
6825 		error = 0;
6826 	}
6827 
6828 	if (ipif != NULL) {
6829 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6830 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6831 	} else {
6832 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6833 	}
6834 
6835 	/*
6836 	 * GateD will attempt to create routes with a loopback interface
6837 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6838 	 * these routes to be added, but create them as interface routes
6839 	 * since the gateway is an interface address.
6840 	 */
6841 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6842 		flags &= ~RTF_GATEWAY;
6843 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6844 		    mask == IP_HOST_MASK) {
6845 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6846 			    ALL_ZONES, NULL, match_flags, ipst);
6847 			if (ire != NULL) {
6848 				ire_refrele(ire);
6849 				if (ipif_refheld)
6850 					ipif_refrele(ipif);
6851 				return (EEXIST);
6852 			}
6853 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6854 			    "for 0x%x\n", (void *)ipif,
6855 			    ipif->ipif_ire_type,
6856 			    ntohl(ipif->ipif_lcl_addr)));
6857 			ire = ire_create(
6858 			    (uchar_t *)&dst_addr,	/* dest address */
6859 			    (uchar_t *)&mask,		/* mask */
6860 			    (uchar_t *)&ipif->ipif_src_addr,
6861 			    NULL,			/* no gateway */
6862 			    &ipif->ipif_mtu,
6863 			    NULL,
6864 			    ipif->ipif_rq,		/* recv-from queue */
6865 			    NULL,			/* no send-to queue */
6866 			    ipif->ipif_ire_type,	/* LOOPBACK */
6867 			    ipif,
6868 			    0,
6869 			    0,
6870 			    0,
6871 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6872 			    RTF_PRIVATE : 0,
6873 			    &ire_uinfo_null,
6874 			    NULL,
6875 			    NULL,
6876 			    ipst);
6877 
6878 			if (ire == NULL) {
6879 				if (ipif_refheld)
6880 					ipif_refrele(ipif);
6881 				return (ENOMEM);
6882 			}
6883 			error = ire_add(&ire, q, mp, func, B_FALSE);
6884 			if (error == 0)
6885 				goto save_ire;
6886 			if (ipif_refheld)
6887 				ipif_refrele(ipif);
6888 			return (error);
6889 
6890 		}
6891 	}
6892 
6893 	/*
6894 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6895 	 * and the gateway address provided is one of the system's interface
6896 	 * addresses.  By using the routing socket interface and supplying an
6897 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6898 	 * specifying an interface route to be created is available which uses
6899 	 * the interface index that specifies the outgoing interface rather than
6900 	 * the address of an outgoing interface (which may not be able to
6901 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6902 	 * flag, routes can be specified which not only specify the next-hop to
6903 	 * be used when routing to a certain prefix, but also which outgoing
6904 	 * interface should be used.
6905 	 *
6906 	 * Previously, interfaces would have unique addresses assigned to them
6907 	 * and so the address assigned to a particular interface could be used
6908 	 * to identify a particular interface.  One exception to this was the
6909 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6910 	 *
6911 	 * With the advent of IPv6 and its link-local addresses, this
6912 	 * restriction was relaxed and interfaces could share addresses between
6913 	 * themselves.  In fact, typically all of the link-local interfaces on
6914 	 * an IPv6 node or router will have the same link-local address.  In
6915 	 * order to differentiate between these interfaces, the use of an
6916 	 * interface index is necessary and this index can be carried inside a
6917 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6918 	 * of using the interface index, however, is that all of the ipif's that
6919 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6920 	 * cannot be used to differentiate between ipif's (or logical
6921 	 * interfaces) that belong to the same ill (physical interface).
6922 	 *
6923 	 * For example, in the following case involving IPv4 interfaces and
6924 	 * logical interfaces
6925 	 *
6926 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6927 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6928 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6929 	 *
6930 	 * the ipif's corresponding to each of these interface routes can be
6931 	 * uniquely identified by the "gateway" (actually interface address).
6932 	 *
6933 	 * In this case involving multiple IPv6 default routes to a particular
6934 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6935 	 * default route is of interest:
6936 	 *
6937 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6938 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6939 	 */
6940 
6941 	/* RTF_GATEWAY not set */
6942 	if (!(flags & RTF_GATEWAY)) {
6943 		queue_t	*stq;
6944 
6945 		if (sp != NULL) {
6946 			ip2dbg(("ip_rt_add: gateway security attributes "
6947 			    "cannot be set with interface route\n"));
6948 			if (ipif_refheld)
6949 				ipif_refrele(ipif);
6950 			return (EINVAL);
6951 		}
6952 
6953 		/*
6954 		 * As the interface index specified with the RTA_IFP sockaddr is
6955 		 * the same for all ipif's off of an ill, the matching logic
6956 		 * below uses MATCH_IRE_ILL if such an index was specified.
6957 		 * This means that routes sharing the same prefix when added
6958 		 * using a RTA_IFP sockaddr must have distinct interface
6959 		 * indices (namely, they must be on distinct ill's).
6960 		 *
6961 		 * On the other hand, since the gateway address will usually be
6962 		 * different for each ipif on the system, the matching logic
6963 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6964 		 * route.  This means that interface routes for the same prefix
6965 		 * can be created if they belong to distinct ipif's and if a
6966 		 * RTA_IFP sockaddr is not present.
6967 		 */
6968 		if (ipif_arg != NULL) {
6969 			if (ipif_refheld)  {
6970 				ipif_refrele(ipif);
6971 				ipif_refheld = B_FALSE;
6972 			}
6973 			ipif = ipif_arg;
6974 			match_flags |= MATCH_IRE_ILL;
6975 		} else {
6976 			/*
6977 			 * Check the ipif corresponding to the gw_addr
6978 			 */
6979 			if (ipif == NULL)
6980 				return (ENETUNREACH);
6981 			match_flags |= MATCH_IRE_IPIF;
6982 		}
6983 		ASSERT(ipif != NULL);
6984 
6985 		/*
6986 		 * We check for an existing entry at this point.
6987 		 *
6988 		 * Since a netmask isn't passed in via the ioctl interface
6989 		 * (SIOCADDRT), we don't check for a matching netmask in that
6990 		 * case.
6991 		 */
6992 		if (!ioctl_msg)
6993 			match_flags |= MATCH_IRE_MASK;
6994 		ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
6995 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
6996 		if (ire != NULL) {
6997 			ire_refrele(ire);
6998 			if (ipif_refheld)
6999 				ipif_refrele(ipif);
7000 			return (EEXIST);
7001 		}
7002 
7003 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7004 		    ? ipif->ipif_rq : ipif->ipif_wq;
7005 
7006 		/*
7007 		 * Create a copy of the IRE_LOOPBACK,
7008 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7009 		 * the modified address and netmask.
7010 		 */
7011 		ire = ire_create(
7012 		    (uchar_t *)&dst_addr,
7013 		    (uint8_t *)&mask,
7014 		    (uint8_t *)&ipif->ipif_src_addr,
7015 		    NULL,
7016 		    &ipif->ipif_mtu,
7017 		    NULL,
7018 		    NULL,
7019 		    stq,
7020 		    ipif->ipif_net_type,
7021 		    ipif,
7022 		    0,
7023 		    0,
7024 		    0,
7025 		    flags,
7026 		    &ire_uinfo_null,
7027 		    NULL,
7028 		    NULL,
7029 		    ipst);
7030 		if (ire == NULL) {
7031 			if (ipif_refheld)
7032 				ipif_refrele(ipif);
7033 			return (ENOMEM);
7034 		}
7035 
7036 		/*
7037 		 * Some software (for example, GateD and Sun Cluster) attempts
7038 		 * to create (what amount to) IRE_PREFIX routes with the
7039 		 * loopback address as the gateway.  This is primarily done to
7040 		 * set up prefixes with the RTF_REJECT flag set (for example,
7041 		 * when generating aggregate routes.)
7042 		 *
7043 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7044 		 * IRE_LOOPBACK, then we map the request into a
7045 		 * IRE_IF_NORESOLVER.
7046 		 *
7047 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7048 		 * routine, but rather using ire_create() directly.
7049 		 *
7050 		 */
7051 		if (ipif->ipif_net_type == IRE_LOOPBACK)
7052 			ire->ire_type = IRE_IF_NORESOLVER;
7053 
7054 		error = ire_add(&ire, q, mp, func, B_FALSE);
7055 		if (error == 0)
7056 			goto save_ire;
7057 
7058 		/*
7059 		 * In the result of failure, ire_add() will have already
7060 		 * deleted the ire in question, so there is no need to
7061 		 * do that here.
7062 		 */
7063 		if (ipif_refheld)
7064 			ipif_refrele(ipif);
7065 		return (error);
7066 	}
7067 	if (ipif_refheld) {
7068 		ipif_refrele(ipif);
7069 		ipif_refheld = B_FALSE;
7070 	}
7071 
7072 	/*
7073 	 * Get an interface IRE for the specified gateway.
7074 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7075 	 * gateway, it is currently unreachable and we fail the request
7076 	 * accordingly.
7077 	 */
7078 	ipif = ipif_arg;
7079 	if (ipif_arg != NULL)
7080 		match_flags |= MATCH_IRE_ILL;
7081 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7082 	    ALL_ZONES, 0, NULL, match_flags, ipst);
7083 	if (gw_ire == NULL)
7084 		return (ENETUNREACH);
7085 
7086 	/*
7087 	 * We create one of three types of IREs as a result of this request
7088 	 * based on the netmask.  A netmask of all ones (which is automatically
7089 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7090 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7091 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7092 	 * destination prefix.
7093 	 */
7094 	if (mask == IP_HOST_MASK)
7095 		type = IRE_HOST;
7096 	else if (mask == 0)
7097 		type = IRE_DEFAULT;
7098 	else
7099 		type = IRE_PREFIX;
7100 
7101 	/* check for a duplicate entry */
7102 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7103 	    NULL, ALL_ZONES, 0, NULL,
7104 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7105 	if (ire != NULL) {
7106 		ire_refrele(gw_ire);
7107 		ire_refrele(ire);
7108 		return (EEXIST);
7109 	}
7110 
7111 	/* Security attribute exists */
7112 	if (sp != NULL) {
7113 		tsol_gcgrp_addr_t ga;
7114 
7115 		/* find or create the gateway credentials group */
7116 		ga.ga_af = AF_INET;
7117 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7118 
7119 		/* we hold reference to it upon success */
7120 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7121 		if (gcgrp == NULL) {
7122 			ire_refrele(gw_ire);
7123 			return (ENOMEM);
7124 		}
7125 
7126 		/*
7127 		 * Create and add the security attribute to the group; a
7128 		 * reference to the group is made upon allocating a new
7129 		 * entry successfully.  If it finds an already-existing
7130 		 * entry for the security attribute in the group, it simply
7131 		 * returns it and no new reference is made to the group.
7132 		 */
7133 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7134 		if (gc == NULL) {
7135 			/* release reference held by gcgrp_lookup */
7136 			GCGRP_REFRELE(gcgrp);
7137 			ire_refrele(gw_ire);
7138 			return (ENOMEM);
7139 		}
7140 	}
7141 
7142 	/* Create the IRE. */
7143 	ire = ire_create(
7144 	    (uchar_t *)&dst_addr,		/* dest address */
7145 	    (uchar_t *)&mask,			/* mask */
7146 	    /* src address assigned by the caller? */
7147 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7148 	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
7149 	    (uchar_t *)&gw_addr,		/* gateway address */
7150 	    &gw_ire->ire_max_frag,
7151 	    NULL,				/* no src nce */
7152 	    NULL,				/* no recv-from queue */
7153 	    NULL,				/* no send-to queue */
7154 	    (ushort_t)type,			/* IRE type */
7155 	    ipif_arg,
7156 	    0,
7157 	    0,
7158 	    0,
7159 	    flags,
7160 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7161 	    gc,					/* security attribute */
7162 	    NULL,
7163 	    ipst);
7164 
7165 	/*
7166 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7167 	 * reference to the 'gcgrp'. We can now release the extra reference
7168 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7169 	 */
7170 	if (gcgrp_xtraref)
7171 		GCGRP_REFRELE(gcgrp);
7172 	if (ire == NULL) {
7173 		if (gc != NULL)
7174 			GC_REFRELE(gc);
7175 		ire_refrele(gw_ire);
7176 		return (ENOMEM);
7177 	}
7178 
7179 	/*
7180 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7181 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7182 	 */
7183 
7184 	/* Add the new IRE. */
7185 	error = ire_add(&ire, q, mp, func, B_FALSE);
7186 	if (error != 0) {
7187 		/*
7188 		 * In the result of failure, ire_add() will have already
7189 		 * deleted the ire in question, so there is no need to
7190 		 * do that here.
7191 		 */
7192 		ire_refrele(gw_ire);
7193 		return (error);
7194 	}
7195 
7196 	if (flags & RTF_MULTIRT) {
7197 		/*
7198 		 * Invoke the CGTP (multirouting) filtering module
7199 		 * to add the dst address in the filtering database.
7200 		 * Replicated inbound packets coming from that address
7201 		 * will be filtered to discard the duplicates.
7202 		 * It is not necessary to call the CGTP filter hook
7203 		 * when the dst address is a broadcast or multicast,
7204 		 * because an IP source address cannot be a broadcast
7205 		 * or a multicast.
7206 		 */
7207 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7208 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7209 		if (ire_dst != NULL) {
7210 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
7211 			ire_refrele(ire_dst);
7212 			goto save_ire;
7213 		}
7214 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7215 		    !CLASSD(ire->ire_addr)) {
7216 			int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7217 			    ipst->ips_netstack->netstack_stackid,
7218 			    ire->ire_addr,
7219 			    ire->ire_gateway_addr,
7220 			    ire->ire_src_addr,
7221 			    gw_ire->ire_src_addr);
7222 			if (res != 0) {
7223 				ire_refrele(gw_ire);
7224 				ire_delete(ire);
7225 				return (res);
7226 			}
7227 		}
7228 	}
7229 
7230 	/*
7231 	 * Now that the prefix IRE entry has been created, delete any
7232 	 * existing gateway IRE cache entries as well as any IRE caches
7233 	 * using the gateway, and force them to be created through
7234 	 * ip_newroute.
7235 	 */
7236 	if (gc != NULL) {
7237 		ASSERT(gcgrp != NULL);
7238 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7239 	}
7240 
7241 save_ire:
7242 	if (gw_ire != NULL) {
7243 		ire_refrele(gw_ire);
7244 	}
7245 	if (ipif != NULL) {
7246 		/*
7247 		 * Save enough information so that we can recreate the IRE if
7248 		 * the interface goes down and then up.  The metrics associated
7249 		 * with the route will be saved as well when rts_setmetrics() is
7250 		 * called after the IRE has been created.  In the case where
7251 		 * memory cannot be allocated, none of this information will be
7252 		 * saved.
7253 		 */
7254 		ipif_save_ire(ipif, ire);
7255 	}
7256 	if (ioctl_msg)
7257 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7258 	if (ire_arg != NULL) {
7259 		/*
7260 		 * Store the ire that was successfully added into where ire_arg
7261 		 * points to so that callers don't have to look it up
7262 		 * themselves (but they are responsible for ire_refrele()ing
7263 		 * the ire when they are finished with it).
7264 		 */
7265 		*ire_arg = ire;
7266 	} else {
7267 		ire_refrele(ire);		/* Held in ire_add */
7268 	}
7269 	if (ipif_refheld)
7270 		ipif_refrele(ipif);
7271 	return (0);
7272 }
7273 
7274 /*
7275  * ip_rt_delete is called to delete an IPv4 route.
7276  * ipif_arg is passed in to associate it with the correct interface.
7277  * We may need to restart this operation if the ipif cannot be looked up
7278  * due to an exclusive operation that is currently in progress. The restart
7279  * entry point is specified by 'func'
7280  */
7281 /* ARGSUSED4 */
7282 int
7283 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7284     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7285     queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7286 {
7287 	ire_t	*ire = NULL;
7288 	ipif_t	*ipif;
7289 	boolean_t ipif_refheld = B_FALSE;
7290 	uint_t	type;
7291 	uint_t	match_flags = MATCH_IRE_TYPE;
7292 	int	err = 0;
7293 
7294 	ip1dbg(("ip_rt_delete:"));
7295 	/*
7296 	 * If this is the case of RTF_HOST being set, then we set the netmask
7297 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7298 	 */
7299 	if (flags & RTF_HOST) {
7300 		mask = IP_HOST_MASK;
7301 		match_flags |= MATCH_IRE_MASK;
7302 	} else if (rtm_addrs & RTA_NETMASK) {
7303 		match_flags |= MATCH_IRE_MASK;
7304 	}
7305 
7306 	/*
7307 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7308 	 * we check if the gateway address is one of our interfaces first,
7309 	 * and fall back on RTF_GATEWAY routes.
7310 	 *
7311 	 * This makes it possible to delete an original
7312 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7313 	 *
7314 	 * As the interface index specified with the RTA_IFP sockaddr is the
7315 	 * same for all ipif's off of an ill, the matching logic below uses
7316 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7317 	 * sharing the same prefix and interface index as the the route
7318 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7319 	 * is specified in the request.
7320 	 *
7321 	 * On the other hand, since the gateway address will usually be
7322 	 * different for each ipif on the system, the matching logic
7323 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7324 	 * route.  This means that interface routes for the same prefix can be
7325 	 * uniquely identified if they belong to distinct ipif's and if a
7326 	 * RTA_IFP sockaddr is not present.
7327 	 *
7328 	 * For more detail on specifying routes by gateway address and by
7329 	 * interface index, see the comments in ip_rt_add().
7330 	 */
7331 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7332 	    ipst);
7333 	if (ipif != NULL)
7334 		ipif_refheld = B_TRUE;
7335 	else if (err == EINPROGRESS)
7336 		return (err);
7337 	else
7338 		err = 0;
7339 	if (ipif != NULL) {
7340 		if (ipif_arg != NULL) {
7341 			if (ipif_refheld) {
7342 				ipif_refrele(ipif);
7343 				ipif_refheld = B_FALSE;
7344 			}
7345 			ipif = ipif_arg;
7346 			match_flags |= MATCH_IRE_ILL;
7347 		} else {
7348 			match_flags |= MATCH_IRE_IPIF;
7349 		}
7350 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7351 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7352 			    ALL_ZONES, NULL, match_flags, ipst);
7353 		}
7354 		if (ire == NULL) {
7355 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7356 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7357 			    match_flags, ipst);
7358 		}
7359 	}
7360 
7361 	if (ire == NULL) {
7362 		/*
7363 		 * At this point, the gateway address is not one of our own
7364 		 * addresses or a matching interface route was not found.  We
7365 		 * set the IRE type to lookup based on whether
7366 		 * this is a host route, a default route or just a prefix.
7367 		 *
7368 		 * If an ipif_arg was passed in, then the lookup is based on an
7369 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7370 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7371 		 * set as the route being looked up is not a traditional
7372 		 * interface route.
7373 		 */
7374 		match_flags &= ~MATCH_IRE_IPIF;
7375 		match_flags |= MATCH_IRE_GW;
7376 		if (ipif_arg != NULL)
7377 			match_flags |= MATCH_IRE_ILL;
7378 		if (mask == IP_HOST_MASK)
7379 			type = IRE_HOST;
7380 		else if (mask == 0)
7381 			type = IRE_DEFAULT;
7382 		else
7383 			type = IRE_PREFIX;
7384 		ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7385 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7386 	}
7387 
7388 	if (ipif_refheld)
7389 		ipif_refrele(ipif);
7390 
7391 	/* ipif is not refheld anymore */
7392 	if (ire == NULL)
7393 		return (ESRCH);
7394 
7395 	if (ire->ire_flags & RTF_MULTIRT) {
7396 		/*
7397 		 * Invoke the CGTP (multirouting) filtering module
7398 		 * to remove the dst address from the filtering database.
7399 		 * Packets coming from that address will no longer be
7400 		 * filtered to remove duplicates.
7401 		 */
7402 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7403 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7404 			    ipst->ips_netstack->netstack_stackid,
7405 			    ire->ire_addr, ire->ire_gateway_addr);
7406 		}
7407 		ip_cgtp_bcast_delete(ire, ipst);
7408 	}
7409 
7410 	ipif = ire->ire_ipif;
7411 	if (ipif != NULL)
7412 		ipif_remove_ire(ipif, ire);
7413 	if (ioctl_msg)
7414 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7415 	ire_delete(ire);
7416 	ire_refrele(ire);
7417 	return (err);
7418 }
7419 
7420 /*
7421  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7422  */
7423 /* ARGSUSED */
7424 int
7425 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7426     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7427 {
7428 	ipaddr_t dst_addr;
7429 	ipaddr_t gw_addr;
7430 	ipaddr_t mask;
7431 	int error = 0;
7432 	mblk_t *mp1;
7433 	struct rtentry *rt;
7434 	ipif_t *ipif = NULL;
7435 	ip_stack_t	*ipst;
7436 
7437 	ASSERT(q->q_next == NULL);
7438 	ipst = CONNQ_TO_IPST(q);
7439 
7440 	ip1dbg(("ip_siocaddrt:"));
7441 	/* Existence of mp1 verified in ip_wput_nondata */
7442 	mp1 = mp->b_cont->b_cont;
7443 	rt = (struct rtentry *)mp1->b_rptr;
7444 
7445 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7446 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7447 
7448 	/*
7449 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7450 	 * to a particular host address.  In this case, we set the netmask to
7451 	 * all ones for the particular destination address.  Otherwise,
7452 	 * determine the netmask to be used based on dst_addr and the interfaces
7453 	 * in use.
7454 	 */
7455 	if (rt->rt_flags & RTF_HOST) {
7456 		mask = IP_HOST_MASK;
7457 	} else {
7458 		/*
7459 		 * Note that ip_subnet_mask returns a zero mask in the case of
7460 		 * default (an all-zeroes address).
7461 		 */
7462 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7463 	}
7464 
7465 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7466 	    B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7467 	if (ipif != NULL)
7468 		ipif_refrele(ipif);
7469 	return (error);
7470 }
7471 
7472 /*
7473  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7474  */
7475 /* ARGSUSED */
7476 int
7477 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7478     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7479 {
7480 	ipaddr_t dst_addr;
7481 	ipaddr_t gw_addr;
7482 	ipaddr_t mask;
7483 	int error;
7484 	mblk_t *mp1;
7485 	struct rtentry *rt;
7486 	ipif_t *ipif = NULL;
7487 	ip_stack_t	*ipst;
7488 
7489 	ASSERT(q->q_next == NULL);
7490 	ipst = CONNQ_TO_IPST(q);
7491 
7492 	ip1dbg(("ip_siocdelrt:"));
7493 	/* Existence of mp1 verified in ip_wput_nondata */
7494 	mp1 = mp->b_cont->b_cont;
7495 	rt = (struct rtentry *)mp1->b_rptr;
7496 
7497 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7498 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7499 
7500 	/*
7501 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7502 	 * to a particular host address.  In this case, we set the netmask to
7503 	 * all ones for the particular destination address.  Otherwise,
7504 	 * determine the netmask to be used based on dst_addr and the interfaces
7505 	 * in use.
7506 	 */
7507 	if (rt->rt_flags & RTF_HOST) {
7508 		mask = IP_HOST_MASK;
7509 	} else {
7510 		/*
7511 		 * Note that ip_subnet_mask returns a zero mask in the case of
7512 		 * default (an all-zeroes address).
7513 		 */
7514 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7515 	}
7516 
7517 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7518 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7519 	    mp, ip_process_ioctl, ipst);
7520 	if (ipif != NULL)
7521 		ipif_refrele(ipif);
7522 	return (error);
7523 }
7524 
7525 /*
7526  * Enqueue the mp onto the ipsq, chained by b_next.
7527  * b_prev stores the function to be executed later, and b_queue the queue
7528  * where this mp originated.
7529  */
7530 void
7531 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7532     ill_t *pending_ill)
7533 {
7534 	conn_t	*connp = NULL;
7535 
7536 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7537 	ASSERT(func != NULL);
7538 
7539 	mp->b_queue = q;
7540 	mp->b_prev = (void *)func;
7541 	mp->b_next = NULL;
7542 
7543 	switch (type) {
7544 	case CUR_OP:
7545 		if (ipsq->ipsq_mptail != NULL) {
7546 			ASSERT(ipsq->ipsq_mphead != NULL);
7547 			ipsq->ipsq_mptail->b_next = mp;
7548 		} else {
7549 			ASSERT(ipsq->ipsq_mphead == NULL);
7550 			ipsq->ipsq_mphead = mp;
7551 		}
7552 		ipsq->ipsq_mptail = mp;
7553 		break;
7554 
7555 	case NEW_OP:
7556 		if (ipsq->ipsq_xopq_mptail != NULL) {
7557 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7558 			ipsq->ipsq_xopq_mptail->b_next = mp;
7559 		} else {
7560 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7561 			ipsq->ipsq_xopq_mphead = mp;
7562 		}
7563 		ipsq->ipsq_xopq_mptail = mp;
7564 		break;
7565 	default:
7566 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7567 	}
7568 
7569 	if (CONN_Q(q) && pending_ill != NULL) {
7570 		connp = Q_TO_CONN(q);
7571 
7572 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7573 		connp->conn_oper_pending_ill = pending_ill;
7574 	}
7575 }
7576 
7577 /*
7578  * Return the mp at the head of the ipsq. After emptying the ipsq
7579  * look at the next ioctl, if this ioctl is complete. Otherwise
7580  * return, we will resume when we complete the current ioctl.
7581  * The current ioctl will wait till it gets a response from the
7582  * driver below.
7583  */
7584 static mblk_t *
7585 ipsq_dq(ipsq_t *ipsq)
7586 {
7587 	mblk_t	*mp;
7588 
7589 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7590 
7591 	mp = ipsq->ipsq_mphead;
7592 	if (mp != NULL) {
7593 		ipsq->ipsq_mphead = mp->b_next;
7594 		if (ipsq->ipsq_mphead == NULL)
7595 			ipsq->ipsq_mptail = NULL;
7596 		mp->b_next = NULL;
7597 		return (mp);
7598 	}
7599 	if (ipsq->ipsq_current_ipif != NULL)
7600 		return (NULL);
7601 	mp = ipsq->ipsq_xopq_mphead;
7602 	if (mp != NULL) {
7603 		ipsq->ipsq_xopq_mphead = mp->b_next;
7604 		if (ipsq->ipsq_xopq_mphead == NULL)
7605 			ipsq->ipsq_xopq_mptail = NULL;
7606 		mp->b_next = NULL;
7607 		return (mp);
7608 	}
7609 	return (NULL);
7610 }
7611 
7612 /*
7613  * Enter the ipsq corresponding to ill, by waiting synchronously till
7614  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7615  * will have to drain completely before ipsq_enter returns success.
7616  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7617  * and the ipsq_exit logic will start the next enqueued ioctl after
7618  * completion of the current ioctl. If 'force' is used, we don't wait
7619  * for the enqueued ioctls. This is needed when a conn_close wants to
7620  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7621  * of an ill can also use this option. But we dont' use it currently.
7622  */
7623 #define	ENTER_SQ_WAIT_TICKS 100
7624 boolean_t
7625 ipsq_enter(ill_t *ill, boolean_t force)
7626 {
7627 	ipsq_t	*ipsq;
7628 	boolean_t waited_enough = B_FALSE;
7629 
7630 	/*
7631 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7632 	 * Since the <ill-ipsq> assocs could change while we wait for the
7633 	 * writer, it is easier to wait on a fixed global rather than try to
7634 	 * cv_wait on a changing ipsq.
7635 	 */
7636 	mutex_enter(&ill->ill_lock);
7637 	for (;;) {
7638 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7639 			mutex_exit(&ill->ill_lock);
7640 			return (B_FALSE);
7641 		}
7642 
7643 		ipsq = ill->ill_phyint->phyint_ipsq;
7644 		mutex_enter(&ipsq->ipsq_lock);
7645 		if (ipsq->ipsq_writer == NULL &&
7646 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7647 			break;
7648 		} else if (ipsq->ipsq_writer != NULL) {
7649 			mutex_exit(&ipsq->ipsq_lock);
7650 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7651 		} else {
7652 			mutex_exit(&ipsq->ipsq_lock);
7653 			if (force) {
7654 				(void) cv_timedwait(&ill->ill_cv,
7655 				    &ill->ill_lock,
7656 				    lbolt + ENTER_SQ_WAIT_TICKS);
7657 				waited_enough = B_TRUE;
7658 				continue;
7659 			} else {
7660 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7661 			}
7662 		}
7663 	}
7664 
7665 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7666 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7667 	ipsq->ipsq_writer = curthread;
7668 	ipsq->ipsq_reentry_cnt++;
7669 #ifdef DEBUG
7670 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH);
7671 #endif
7672 	mutex_exit(&ipsq->ipsq_lock);
7673 	mutex_exit(&ill->ill_lock);
7674 	return (B_TRUE);
7675 }
7676 
7677 /*
7678  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7679  * certain critical operations like plumbing (i.e. most set ioctls),
7680  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7681  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7682  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7683  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7684  * threads executing in the ipsq. Responses from the driver pertain to the
7685  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7686  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7687  *
7688  * If a thread does not want to reenter the ipsq when it is already writer,
7689  * it must make sure that the specified reentry point to be called later
7690  * when the ipsq is empty, nor any code path starting from the specified reentry
7691  * point must never ever try to enter the ipsq again. Otherwise it can lead
7692  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7693  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7694  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7695  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7696  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7697  * ioctl if the current ioctl has completed. If the current ioctl is still
7698  * in progress it simply returns. The current ioctl could be waiting for
7699  * a response from another module (arp_ or the driver or could be waiting for
7700  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7701  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7702  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7703  * ipsq_current_ipif is clear which happens only on ioctl completion.
7704  */
7705 
7706 /*
7707  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7708  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7709  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7710  * completion.
7711  */
7712 ipsq_t *
7713 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7714     ipsq_func_t func, int type, boolean_t reentry_ok)
7715 {
7716 	ipsq_t	*ipsq;
7717 
7718 	/* Only 1 of ipif or ill can be specified */
7719 	ASSERT((ipif != NULL) ^ (ill != NULL));
7720 	if (ipif != NULL)
7721 		ill = ipif->ipif_ill;
7722 
7723 	/*
7724 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7725 	 * ipsq of an ill can't change when ill_lock is held.
7726 	 */
7727 	GRAB_CONN_LOCK(q);
7728 	mutex_enter(&ill->ill_lock);
7729 	ipsq = ill->ill_phyint->phyint_ipsq;
7730 	mutex_enter(&ipsq->ipsq_lock);
7731 
7732 	/*
7733 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7734 	 *    (Note: If the caller does not specify reentry_ok then neither
7735 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7736 	 *    again. Otherwise it can lead to an infinite loop
7737 	 * 2. Enter the ipsq if there is no current writer and this attempted
7738 	 *    entry is part of the current ioctl or operation
7739 	 * 3. Enter the ipsq if there is no current writer and this is a new
7740 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7741 	 *    empty and there is no ioctl (or operation) currently in progress
7742 	 */
7743 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7744 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7745 	    ipsq->ipsq_current_ipif == NULL))) ||
7746 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7747 		/* Success. */
7748 		ipsq->ipsq_reentry_cnt++;
7749 		ipsq->ipsq_writer = curthread;
7750 		mutex_exit(&ipsq->ipsq_lock);
7751 		mutex_exit(&ill->ill_lock);
7752 		RELEASE_CONN_LOCK(q);
7753 #ifdef DEBUG
7754 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack,
7755 		    IPSQ_STACK_DEPTH);
7756 #endif
7757 		return (ipsq);
7758 	}
7759 
7760 	ipsq_enq(ipsq, q, mp, func, type, ill);
7761 
7762 	mutex_exit(&ipsq->ipsq_lock);
7763 	mutex_exit(&ill->ill_lock);
7764 	RELEASE_CONN_LOCK(q);
7765 	return (NULL);
7766 }
7767 
7768 /*
7769  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7770  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7771  * cannot be entered, the mp is queued for completion.
7772  */
7773 void
7774 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7775     boolean_t reentry_ok)
7776 {
7777 	ipsq_t	*ipsq;
7778 
7779 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7780 
7781 	/*
7782 	 * Drop the caller's refhold on the ill.  This is safe since we either
7783 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
7784 	 * IPSQ, in which case we return without accessing ill anymore.  This
7785 	 * is needed because func needs to see the correct refcount.
7786 	 * e.g. removeif can work only then.
7787 	 */
7788 	ill_refrele(ill);
7789 	if (ipsq != NULL) {
7790 		(*func)(ipsq, q, mp, NULL);
7791 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7792 	}
7793 }
7794 
7795 /*
7796  * If there are more than ILL_GRP_CNT ills in a group,
7797  * we use kmem alloc'd buffers, else use the stack
7798  */
7799 #define	ILL_GRP_CNT	14
7800 /*
7801  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7802  * Called by a thread that is currently exclusive on this ipsq.
7803  */
7804 void
7805 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7806 {
7807 	queue_t	*q;
7808 	mblk_t	*mp;
7809 	ipsq_func_t	func;
7810 	int	next;
7811 	ill_t	**ill_list = NULL;
7812 	size_t	ill_list_size = 0;
7813 	int	cnt = 0;
7814 	boolean_t need_ipsq_free = B_FALSE;
7815 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
7816 
7817 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7818 	mutex_enter(&ipsq->ipsq_lock);
7819 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7820 	if (ipsq->ipsq_reentry_cnt != 1) {
7821 		ipsq->ipsq_reentry_cnt--;
7822 		mutex_exit(&ipsq->ipsq_lock);
7823 		return;
7824 	}
7825 
7826 	mp = ipsq_dq(ipsq);
7827 	while (mp != NULL) {
7828 again:
7829 		mutex_exit(&ipsq->ipsq_lock);
7830 		func = (ipsq_func_t)mp->b_prev;
7831 		q = (queue_t *)mp->b_queue;
7832 		mp->b_prev = NULL;
7833 		mp->b_queue = NULL;
7834 
7835 		/*
7836 		 * If 'q' is an conn queue, it is valid, since we did a
7837 		 * a refhold on the connp, at the start of the ioctl.
7838 		 * If 'q' is an ill queue, it is valid, since close of an
7839 		 * ill will clean up the 'ipsq'.
7840 		 */
7841 		(*func)(ipsq, q, mp, NULL);
7842 
7843 		mutex_enter(&ipsq->ipsq_lock);
7844 		mp = ipsq_dq(ipsq);
7845 	}
7846 
7847 	mutex_exit(&ipsq->ipsq_lock);
7848 
7849 	/*
7850 	 * Need to grab the locks in the right order. Need to
7851 	 * atomically check (under ipsq_lock) that there are no
7852 	 * messages before relinquishing the ipsq. Also need to
7853 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7854 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7855 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7856 	 * to grab ill_g_lock as writer.
7857 	 */
7858 	rw_enter(&ipst->ips_ill_g_lock,
7859 	    ipsq->ipsq_split ? RW_WRITER : RW_READER);
7860 
7861 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7862 	if (ipsq->ipsq_refs != 0) {
7863 		/* At most 2 ills v4/v6 per phyint */
7864 		cnt = ipsq->ipsq_refs << 1;
7865 		ill_list_size = cnt * sizeof (ill_t *);
7866 		/*
7867 		 * If memory allocation fails, we will do the split
7868 		 * the next time ipsq_exit is called for whatever reason.
7869 		 * As long as the ipsq_split flag is set the need to
7870 		 * split is remembered.
7871 		 */
7872 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7873 		if (ill_list != NULL)
7874 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7875 	}
7876 	mutex_enter(&ipsq->ipsq_lock);
7877 	mp = ipsq_dq(ipsq);
7878 	if (mp != NULL) {
7879 		/* oops, some message has landed up, we can't get out */
7880 		if (ill_list != NULL)
7881 			ill_unlock_ills(ill_list, cnt);
7882 		rw_exit(&ipst->ips_ill_g_lock);
7883 		if (ill_list != NULL)
7884 			kmem_free(ill_list, ill_list_size);
7885 		ill_list = NULL;
7886 		ill_list_size = 0;
7887 		cnt = 0;
7888 		goto again;
7889 	}
7890 
7891 	/*
7892 	 * Split only if no ioctl is pending and if memory alloc succeeded
7893 	 * above.
7894 	 */
7895 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7896 	    ill_list != NULL) {
7897 		/*
7898 		 * No new ill can join this ipsq since we are holding the
7899 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7900 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7901 		 * If so we will retry on the next ipsq_exit.
7902 		 */
7903 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7904 	}
7905 
7906 	/*
7907 	 * We are holding the ipsq lock, hence no new messages can
7908 	 * land up on the ipsq, and there are no messages currently.
7909 	 * Now safe to get out. Wake up waiters and relinquish ipsq
7910 	 * atomically while holding ill locks.
7911 	 */
7912 	ipsq->ipsq_writer = NULL;
7913 	ipsq->ipsq_reentry_cnt--;
7914 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7915 #ifdef DEBUG
7916 	ipsq->ipsq_depth = 0;
7917 #endif
7918 	mutex_exit(&ipsq->ipsq_lock);
7919 	/*
7920 	 * For IPMP this should wake up all ills in this ipsq.
7921 	 * We need to hold the ill_lock while waking up waiters to
7922 	 * avoid missed wakeups. But there is no need to acquire all
7923 	 * the ill locks and then wakeup. If we have not acquired all
7924 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
7925 	 * wakes up ills one at a time after getting the right ill_lock
7926 	 */
7927 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
7928 	if (ill_list != NULL)
7929 		ill_unlock_ills(ill_list, cnt);
7930 	if (ipsq->ipsq_refs == 0)
7931 		need_ipsq_free = B_TRUE;
7932 	rw_exit(&ipst->ips_ill_g_lock);
7933 	if (ill_list != 0)
7934 		kmem_free(ill_list, ill_list_size);
7935 
7936 	if (need_ipsq_free) {
7937 		/*
7938 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
7939 		 * looked up. ipsq can be looked up only thru ill or phyint
7940 		 * and there are no ills/phyint on this ipsq.
7941 		 */
7942 		ipsq_delete(ipsq);
7943 	}
7944 	/*
7945 	 * Now start any igmp or mld timers that could not be started
7946 	 * while inside the ipsq. The timers can't be started while inside
7947 	 * the ipsq, since igmp_start_timers may need to call untimeout()
7948 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
7949 	 * there could be a deadlock since the timeout handlers
7950 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
7951 	 * wait in ipsq_enter() trying to get the ipsq.
7952 	 *
7953 	 * However there is one exception to the above. If this thread is
7954 	 * itself the igmp/mld timeout handler thread, then we don't want
7955 	 * to start any new timer until the current handler is done. The
7956 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
7957 	 * all others pass B_TRUE.
7958 	 */
7959 	if (start_igmp_timer) {
7960 		mutex_enter(&ipst->ips_igmp_timer_lock);
7961 		next = ipst->ips_igmp_deferred_next;
7962 		ipst->ips_igmp_deferred_next = INFINITY;
7963 		mutex_exit(&ipst->ips_igmp_timer_lock);
7964 
7965 		if (next != INFINITY)
7966 			igmp_start_timers(next, ipst);
7967 	}
7968 
7969 	if (start_mld_timer) {
7970 		mutex_enter(&ipst->ips_mld_timer_lock);
7971 		next = ipst->ips_mld_deferred_next;
7972 		ipst->ips_mld_deferred_next = INFINITY;
7973 		mutex_exit(&ipst->ips_mld_timer_lock);
7974 
7975 		if (next != INFINITY)
7976 			mld_start_timers(next, ipst);
7977 	}
7978 }
7979 
7980 /*
7981  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
7982  * and `ioccmd'.
7983  */
7984 void
7985 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
7986 {
7987 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7988 
7989 	mutex_enter(&ipsq->ipsq_lock);
7990 	ASSERT(ipsq->ipsq_current_ipif == NULL);
7991 	ASSERT(ipsq->ipsq_current_ioctl == 0);
7992 	ipsq->ipsq_current_ipif = ipif;
7993 	ipsq->ipsq_current_ioctl = ioccmd;
7994 	mutex_exit(&ipsq->ipsq_lock);
7995 }
7996 
7997 /*
7998  * Finish the current exclusive operation on `ipsq'.  Note that other
7999  * operations will not be able to proceed until an ipsq_exit() is done.
8000  */
8001 void
8002 ipsq_current_finish(ipsq_t *ipsq)
8003 {
8004 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8005 
8006 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8007 
8008 	/*
8009 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8010 	 * (but we're careful to never set IPIF_CHANGING in that case).
8011 	 */
8012 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8013 		mutex_enter(&ipif->ipif_ill->ill_lock);
8014 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8015 
8016 		/* Send any queued event */
8017 		ill_nic_info_dispatch(ipif->ipif_ill);
8018 		mutex_exit(&ipif->ipif_ill->ill_lock);
8019 	}
8020 
8021 	mutex_enter(&ipsq->ipsq_lock);
8022 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8023 	ipsq->ipsq_current_ipif = NULL;
8024 	ipsq->ipsq_current_ioctl = 0;
8025 	mutex_exit(&ipsq->ipsq_lock);
8026 }
8027 
8028 /*
8029  * The ill is closing. Flush all messages on the ipsq that originated
8030  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8031  * for this ill since ipsq_enter could not have entered until then.
8032  * New messages can't be queued since the CONDEMNED flag is set.
8033  */
8034 static void
8035 ipsq_flush(ill_t *ill)
8036 {
8037 	queue_t	*q;
8038 	mblk_t	*prev;
8039 	mblk_t	*mp;
8040 	mblk_t	*mp_next;
8041 	ipsq_t	*ipsq;
8042 
8043 	ASSERT(IAM_WRITER_ILL(ill));
8044 	ipsq = ill->ill_phyint->phyint_ipsq;
8045 	/*
8046 	 * Flush any messages sent up by the driver.
8047 	 */
8048 	mutex_enter(&ipsq->ipsq_lock);
8049 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8050 		mp_next = mp->b_next;
8051 		q = mp->b_queue;
8052 		if (q == ill->ill_rq || q == ill->ill_wq) {
8053 			/* Remove the mp from the ipsq */
8054 			if (prev == NULL)
8055 				ipsq->ipsq_mphead = mp->b_next;
8056 			else
8057 				prev->b_next = mp->b_next;
8058 			if (ipsq->ipsq_mptail == mp) {
8059 				ASSERT(mp_next == NULL);
8060 				ipsq->ipsq_mptail = prev;
8061 			}
8062 			inet_freemsg(mp);
8063 		} else {
8064 			prev = mp;
8065 		}
8066 	}
8067 	mutex_exit(&ipsq->ipsq_lock);
8068 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8069 	ipsq_xopq_mp_cleanup(ill, NULL);
8070 	ill_pending_mp_cleanup(ill);
8071 }
8072 
8073 /* ARGSUSED */
8074 int
8075 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8076     ip_ioctl_cmd_t *ipip, void *ifreq)
8077 {
8078 	ill_t	*ill;
8079 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8080 	boolean_t isv6;
8081 	conn_t	*connp;
8082 	ip_stack_t	*ipst;
8083 
8084 	connp = Q_TO_CONN(q);
8085 	ipst = connp->conn_netstack->netstack_ip;
8086 	isv6 = connp->conn_af_isv6;
8087 	/*
8088 	 * Set original index.
8089 	 * Failover and failback move logical interfaces
8090 	 * from one physical interface to another.  The
8091 	 * original index indicates the parent of a logical
8092 	 * interface, in other words, the physical interface
8093 	 * the logical interface will be moved back to on
8094 	 * failback.
8095 	 */
8096 
8097 	/*
8098 	 * Don't allow the original index to be changed
8099 	 * for non-failover addresses, autoconfigured
8100 	 * addresses, or IPv6 link local addresses.
8101 	 */
8102 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8103 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8104 		return (EINVAL);
8105 	}
8106 	/*
8107 	 * The new original index must be in use by some
8108 	 * physical interface.
8109 	 */
8110 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8111 	    NULL, NULL, ipst);
8112 	if (ill == NULL)
8113 		return (ENXIO);
8114 	ill_refrele(ill);
8115 
8116 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8117 	/*
8118 	 * When this ipif gets failed back, don't
8119 	 * preserve the original id, as it is no
8120 	 * longer applicable.
8121 	 */
8122 	ipif->ipif_orig_ipifid = 0;
8123 	/*
8124 	 * For IPv4, change the original index of any
8125 	 * multicast addresses associated with the
8126 	 * ipif to the new value.
8127 	 */
8128 	if (!isv6) {
8129 		ilm_t *ilm;
8130 
8131 		mutex_enter(&ipif->ipif_ill->ill_lock);
8132 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8133 		    ilm = ilm->ilm_next) {
8134 			if (ilm->ilm_ipif == ipif) {
8135 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8136 			}
8137 		}
8138 		mutex_exit(&ipif->ipif_ill->ill_lock);
8139 	}
8140 	return (0);
8141 }
8142 
8143 /* ARGSUSED */
8144 int
8145 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8146     ip_ioctl_cmd_t *ipip, void *ifreq)
8147 {
8148 	struct lifreq *lifr = (struct lifreq *)ifreq;
8149 
8150 	/*
8151 	 * Get the original interface index i.e the one
8152 	 * before FAILOVER if it ever happened.
8153 	 */
8154 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8155 	return (0);
8156 }
8157 
8158 /*
8159  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8160  * refhold and return the associated ipif
8161  */
8162 /* ARGSUSED */
8163 int
8164 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8165     cmd_info_t *ci, ipsq_func_t func)
8166 {
8167 	boolean_t exists;
8168 	struct iftun_req *ta;
8169 	ipif_t	*ipif;
8170 	ill_t	*ill;
8171 	boolean_t isv6;
8172 	mblk_t	*mp1;
8173 	int	error;
8174 	conn_t	*connp;
8175 	ip_stack_t	*ipst;
8176 
8177 	/* Existence verified in ip_wput_nondata */
8178 	mp1 = mp->b_cont->b_cont;
8179 	ta = (struct iftun_req *)mp1->b_rptr;
8180 	/*
8181 	 * Null terminate the string to protect against buffer
8182 	 * overrun. String was generated by user code and may not
8183 	 * be trusted.
8184 	 */
8185 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8186 
8187 	connp = Q_TO_CONN(q);
8188 	isv6 = connp->conn_af_isv6;
8189 	ipst = connp->conn_netstack->netstack_ip;
8190 
8191 	/* Disallows implicit create */
8192 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8193 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8194 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8195 	if (ipif == NULL)
8196 		return (error);
8197 
8198 	if (ipif->ipif_id != 0) {
8199 		/*
8200 		 * We really don't want to set/get tunnel parameters
8201 		 * on virtual tunnel interfaces.  Only allow the
8202 		 * base tunnel to do these.
8203 		 */
8204 		ipif_refrele(ipif);
8205 		return (EINVAL);
8206 	}
8207 
8208 	/*
8209 	 * Send down to tunnel mod for ioctl processing.
8210 	 * Will finish ioctl in ip_rput_other().
8211 	 */
8212 	ill = ipif->ipif_ill;
8213 	if (ill->ill_net_type == IRE_LOOPBACK) {
8214 		ipif_refrele(ipif);
8215 		return (EOPNOTSUPP);
8216 	}
8217 
8218 	if (ill->ill_wq == NULL) {
8219 		ipif_refrele(ipif);
8220 		return (ENXIO);
8221 	}
8222 	/*
8223 	 * Mark the ioctl as coming from an IPv6 interface for
8224 	 * tun's convenience.
8225 	 */
8226 	if (ill->ill_isv6)
8227 		ta->ifta_flags |= 0x80000000;
8228 	ci->ci_ipif = ipif;
8229 	return (0);
8230 }
8231 
8232 /*
8233  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8234  * and return the associated ipif.
8235  * Return value:
8236  *	Non zero: An error has occurred. ci may not be filled out.
8237  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8238  *	a held ipif in ci.ci_ipif.
8239  */
8240 int
8241 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8242     cmd_info_t *ci, ipsq_func_t func)
8243 {
8244 	sin_t		*sin;
8245 	sin6_t		*sin6;
8246 	char		*name;
8247 	struct ifreq    *ifr;
8248 	struct lifreq    *lifr;
8249 	ipif_t		*ipif = NULL;
8250 	ill_t		*ill;
8251 	conn_t		*connp;
8252 	boolean_t	isv6;
8253 	boolean_t	exists;
8254 	int		err;
8255 	mblk_t		*mp1;
8256 	zoneid_t	zoneid;
8257 	ip_stack_t	*ipst;
8258 
8259 	if (q->q_next != NULL) {
8260 		ill = (ill_t *)q->q_ptr;
8261 		isv6 = ill->ill_isv6;
8262 		connp = NULL;
8263 		zoneid = ALL_ZONES;
8264 		ipst = ill->ill_ipst;
8265 	} else {
8266 		ill = NULL;
8267 		connp = Q_TO_CONN(q);
8268 		isv6 = connp->conn_af_isv6;
8269 		zoneid = connp->conn_zoneid;
8270 		if (zoneid == GLOBAL_ZONEID) {
8271 			/* global zone can access ipifs in all zones */
8272 			zoneid = ALL_ZONES;
8273 		}
8274 		ipst = connp->conn_netstack->netstack_ip;
8275 	}
8276 
8277 	/* Has been checked in ip_wput_nondata */
8278 	mp1 = mp->b_cont->b_cont;
8279 
8280 	if (ipip->ipi_cmd_type == IF_CMD) {
8281 		/* This a old style SIOC[GS]IF* command */
8282 		ifr = (struct ifreq *)mp1->b_rptr;
8283 		/*
8284 		 * Null terminate the string to protect against buffer
8285 		 * overrun. String was generated by user code and may not
8286 		 * be trusted.
8287 		 */
8288 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8289 		sin = (sin_t *)&ifr->ifr_addr;
8290 		name = ifr->ifr_name;
8291 		ci->ci_sin = sin;
8292 		ci->ci_sin6 = NULL;
8293 		ci->ci_lifr = (struct lifreq *)ifr;
8294 	} else {
8295 		/* This a new style SIOC[GS]LIF* command */
8296 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8297 		lifr = (struct lifreq *)mp1->b_rptr;
8298 		/*
8299 		 * Null terminate the string to protect against buffer
8300 		 * overrun. String was generated by user code and may not
8301 		 * be trusted.
8302 		 */
8303 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8304 		name = lifr->lifr_name;
8305 		sin = (sin_t *)&lifr->lifr_addr;
8306 		sin6 = (sin6_t *)&lifr->lifr_addr;
8307 		if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) {
8308 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8309 			    LIFNAMSIZ);
8310 		}
8311 		ci->ci_sin = sin;
8312 		ci->ci_sin6 = sin6;
8313 		ci->ci_lifr = lifr;
8314 	}
8315 
8316 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
8317 		/*
8318 		 * The ioctl will be failed if the ioctl comes down
8319 		 * an conn stream
8320 		 */
8321 		if (ill == NULL) {
8322 			/*
8323 			 * Not an ill queue, return EINVAL same as the
8324 			 * old error code.
8325 			 */
8326 			return (ENXIO);
8327 		}
8328 		ipif = ill->ill_ipif;
8329 		ipif_refhold(ipif);
8330 	} else {
8331 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8332 		    &exists, isv6, zoneid,
8333 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8334 		    ipst);
8335 		if (ipif == NULL) {
8336 			if (err == EINPROGRESS)
8337 				return (err);
8338 			if (ipip->ipi_cmd == SIOCLIFFAILOVER ||
8339 			    ipip->ipi_cmd == SIOCLIFFAILBACK) {
8340 				/*
8341 				 * Need to try both v4 and v6 since this
8342 				 * ioctl can come down either v4 or v6
8343 				 * socket. The lifreq.lifr_family passed
8344 				 * down by this ioctl is AF_UNSPEC.
8345 				 */
8346 				ipif = ipif_lookup_on_name(name,
8347 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8348 				    zoneid, (connp == NULL) ? q :
8349 				    CONNP_TO_WQ(connp), mp, func, &err, ipst);
8350 				if (err == EINPROGRESS)
8351 					return (err);
8352 			}
8353 			err = 0;	/* Ensure we don't use it below */
8354 		}
8355 	}
8356 
8357 	/*
8358 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8359 	 */
8360 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8361 		ipif_refrele(ipif);
8362 		return (ENXIO);
8363 	}
8364 
8365 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8366 	    name[0] == '\0') {
8367 		/*
8368 		 * Handle a or a SIOC?IF* with a null name
8369 		 * during plumb (on the ill queue before the I_PLINK).
8370 		 */
8371 		ipif = ill->ill_ipif;
8372 		ipif_refhold(ipif);
8373 	}
8374 
8375 	if (ipif == NULL)
8376 		return (ENXIO);
8377 
8378 	/*
8379 	 * Allow only GET operations if this ipif has been created
8380 	 * temporarily due to a MOVE operation.
8381 	 */
8382 	if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) {
8383 		ipif_refrele(ipif);
8384 		return (EINVAL);
8385 	}
8386 
8387 	ci->ci_ipif = ipif;
8388 	return (0);
8389 }
8390 
8391 /*
8392  * Return the total number of ipifs.
8393  */
8394 static uint_t
8395 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8396 {
8397 	uint_t numifs = 0;
8398 	ill_t	*ill;
8399 	ill_walk_context_t	ctx;
8400 	ipif_t	*ipif;
8401 
8402 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8403 	ill = ILL_START_WALK_V4(&ctx, ipst);
8404 
8405 	while (ill != NULL) {
8406 		for (ipif = ill->ill_ipif; ipif != NULL;
8407 		    ipif = ipif->ipif_next) {
8408 			if (ipif->ipif_zoneid == zoneid ||
8409 			    ipif->ipif_zoneid == ALL_ZONES)
8410 				numifs++;
8411 		}
8412 		ill = ill_next(&ctx, ill);
8413 	}
8414 	rw_exit(&ipst->ips_ill_g_lock);
8415 	return (numifs);
8416 }
8417 
8418 /*
8419  * Return the total number of ipifs.
8420  */
8421 static uint_t
8422 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8423 {
8424 	uint_t numifs = 0;
8425 	ill_t	*ill;
8426 	ipif_t	*ipif;
8427 	ill_walk_context_t	ctx;
8428 
8429 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8430 
8431 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8432 	if (family == AF_INET)
8433 		ill = ILL_START_WALK_V4(&ctx, ipst);
8434 	else if (family == AF_INET6)
8435 		ill = ILL_START_WALK_V6(&ctx, ipst);
8436 	else
8437 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8438 
8439 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8440 		for (ipif = ill->ill_ipif; ipif != NULL;
8441 		    ipif = ipif->ipif_next) {
8442 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8443 			    !(lifn_flags & LIFC_NOXMIT))
8444 				continue;
8445 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8446 			    !(lifn_flags & LIFC_TEMPORARY))
8447 				continue;
8448 			if (((ipif->ipif_flags &
8449 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8450 			    IPIF_DEPRECATED)) ||
8451 			    IS_LOOPBACK(ill) ||
8452 			    !(ipif->ipif_flags & IPIF_UP)) &&
8453 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8454 				continue;
8455 
8456 			if (zoneid != ipif->ipif_zoneid &&
8457 			    ipif->ipif_zoneid != ALL_ZONES &&
8458 			    (zoneid != GLOBAL_ZONEID ||
8459 			    !(lifn_flags & LIFC_ALLZONES)))
8460 				continue;
8461 
8462 			numifs++;
8463 		}
8464 	}
8465 	rw_exit(&ipst->ips_ill_g_lock);
8466 	return (numifs);
8467 }
8468 
8469 uint_t
8470 ip_get_lifsrcofnum(ill_t *ill)
8471 {
8472 	uint_t numifs = 0;
8473 	ill_t	*ill_head = ill;
8474 	ip_stack_t	*ipst = ill->ill_ipst;
8475 
8476 	/*
8477 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8478 	 * other thread may be trying to relink the ILLs in this usesrc group
8479 	 * and adjusting the ill_usesrc_grp_next pointers
8480 	 */
8481 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8482 	if ((ill->ill_usesrc_ifindex == 0) &&
8483 	    (ill->ill_usesrc_grp_next != NULL)) {
8484 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8485 		    ill = ill->ill_usesrc_grp_next)
8486 			numifs++;
8487 	}
8488 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8489 
8490 	return (numifs);
8491 }
8492 
8493 /* Null values are passed in for ipif, sin, and ifreq */
8494 /* ARGSUSED */
8495 int
8496 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8497     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8498 {
8499 	int *nump;
8500 	conn_t *connp = Q_TO_CONN(q);
8501 
8502 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8503 
8504 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8505 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8506 
8507 	*nump = ip_get_numifs(connp->conn_zoneid,
8508 	    connp->conn_netstack->netstack_ip);
8509 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8510 	return (0);
8511 }
8512 
8513 /* Null values are passed in for ipif, sin, and ifreq */
8514 /* ARGSUSED */
8515 int
8516 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8517     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8518 {
8519 	struct lifnum *lifn;
8520 	mblk_t	*mp1;
8521 	conn_t *connp = Q_TO_CONN(q);
8522 
8523 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8524 
8525 	/* Existence checked in ip_wput_nondata */
8526 	mp1 = mp->b_cont->b_cont;
8527 
8528 	lifn = (struct lifnum *)mp1->b_rptr;
8529 	switch (lifn->lifn_family) {
8530 	case AF_UNSPEC:
8531 	case AF_INET:
8532 	case AF_INET6:
8533 		break;
8534 	default:
8535 		return (EAFNOSUPPORT);
8536 	}
8537 
8538 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8539 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8540 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8541 	return (0);
8542 }
8543 
8544 /* ARGSUSED */
8545 int
8546 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8547     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8548 {
8549 	STRUCT_HANDLE(ifconf, ifc);
8550 	mblk_t *mp1;
8551 	struct iocblk *iocp;
8552 	struct ifreq *ifr;
8553 	ill_walk_context_t	ctx;
8554 	ill_t	*ill;
8555 	ipif_t	*ipif;
8556 	struct sockaddr_in *sin;
8557 	int32_t	ifclen;
8558 	zoneid_t zoneid;
8559 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8560 
8561 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8562 
8563 	ip1dbg(("ip_sioctl_get_ifconf"));
8564 	/* Existence verified in ip_wput_nondata */
8565 	mp1 = mp->b_cont->b_cont;
8566 	iocp = (struct iocblk *)mp->b_rptr;
8567 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8568 
8569 	/*
8570 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8571 	 * the user buffer address and length into which the list of struct
8572 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8573 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8574 	 * the SIOCGIFCONF operation was redefined to simply provide
8575 	 * a large output buffer into which we are supposed to jam the ifreq
8576 	 * array.  The same ioctl command code was used, despite the fact that
8577 	 * both the applications and the kernel code had to change, thus making
8578 	 * it impossible to support both interfaces.
8579 	 *
8580 	 * For reasons not good enough to try to explain, the following
8581 	 * algorithm is used for deciding what to do with one of these:
8582 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8583 	 * form with the output buffer coming down as the continuation message.
8584 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8585 	 * and we have to copy in the ifconf structure to find out how big the
8586 	 * output buffer is and where to copy out to.  Sure no problem...
8587 	 *
8588 	 */
8589 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8590 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8591 		int numifs = 0;
8592 		size_t ifc_bufsize;
8593 
8594 		/*
8595 		 * Must be (better be!) continuation of a TRANSPARENT
8596 		 * IOCTL.  We just copied in the ifconf structure.
8597 		 */
8598 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8599 		    (struct ifconf *)mp1->b_rptr);
8600 
8601 		/*
8602 		 * Allocate a buffer to hold requested information.
8603 		 *
8604 		 * If ifc_len is larger than what is needed, we only
8605 		 * allocate what we will use.
8606 		 *
8607 		 * If ifc_len is smaller than what is needed, return
8608 		 * EINVAL.
8609 		 *
8610 		 * XXX: the ill_t structure can hava 2 counters, for
8611 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8612 		 * number of interfaces for a device, so we don't need
8613 		 * to count them here...
8614 		 */
8615 		numifs = ip_get_numifs(zoneid, ipst);
8616 
8617 		ifclen = STRUCT_FGET(ifc, ifc_len);
8618 		ifc_bufsize = numifs * sizeof (struct ifreq);
8619 		if (ifc_bufsize > ifclen) {
8620 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8621 				/* old behaviour */
8622 				return (EINVAL);
8623 			} else {
8624 				ifc_bufsize = ifclen;
8625 			}
8626 		}
8627 
8628 		mp1 = mi_copyout_alloc(q, mp,
8629 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8630 		if (mp1 == NULL)
8631 			return (ENOMEM);
8632 
8633 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8634 	}
8635 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8636 	/*
8637 	 * the SIOCGIFCONF ioctl only knows about
8638 	 * IPv4 addresses, so don't try to tell
8639 	 * it about interfaces with IPv6-only
8640 	 * addresses. (Last parm 'isv6' is B_FALSE)
8641 	 */
8642 
8643 	ifr = (struct ifreq *)mp1->b_rptr;
8644 
8645 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8646 	ill = ILL_START_WALK_V4(&ctx, ipst);
8647 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8648 		for (ipif = ill->ill_ipif; ipif != NULL;
8649 		    ipif = ipif->ipif_next) {
8650 			if (zoneid != ipif->ipif_zoneid &&
8651 			    ipif->ipif_zoneid != ALL_ZONES)
8652 				continue;
8653 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8654 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8655 					/* old behaviour */
8656 					rw_exit(&ipst->ips_ill_g_lock);
8657 					return (EINVAL);
8658 				} else {
8659 					goto if_copydone;
8660 				}
8661 			}
8662 			ipif_get_name(ipif, ifr->ifr_name,
8663 			    sizeof (ifr->ifr_name));
8664 			sin = (sin_t *)&ifr->ifr_addr;
8665 			*sin = sin_null;
8666 			sin->sin_family = AF_INET;
8667 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8668 			ifr++;
8669 		}
8670 	}
8671 if_copydone:
8672 	rw_exit(&ipst->ips_ill_g_lock);
8673 	mp1->b_wptr = (uchar_t *)ifr;
8674 
8675 	if (STRUCT_BUF(ifc) != NULL) {
8676 		STRUCT_FSET(ifc, ifc_len,
8677 		    (int)((uchar_t *)ifr - mp1->b_rptr));
8678 	}
8679 	return (0);
8680 }
8681 
8682 /*
8683  * Get the interfaces using the address hosted on the interface passed in,
8684  * as a source adddress
8685  */
8686 /* ARGSUSED */
8687 int
8688 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8689     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8690 {
8691 	mblk_t *mp1;
8692 	ill_t	*ill, *ill_head;
8693 	ipif_t	*ipif, *orig_ipif;
8694 	int	numlifs = 0;
8695 	size_t	lifs_bufsize, lifsmaxlen;
8696 	struct	lifreq *lifr;
8697 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8698 	uint_t	ifindex;
8699 	zoneid_t zoneid;
8700 	int err = 0;
8701 	boolean_t isv6 = B_FALSE;
8702 	struct	sockaddr_in	*sin;
8703 	struct	sockaddr_in6	*sin6;
8704 	STRUCT_HANDLE(lifsrcof, lifs);
8705 	ip_stack_t		*ipst;
8706 
8707 	ipst = CONNQ_TO_IPST(q);
8708 
8709 	ASSERT(q->q_next == NULL);
8710 
8711 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8712 
8713 	/* Existence verified in ip_wput_nondata */
8714 	mp1 = mp->b_cont->b_cont;
8715 
8716 	/*
8717 	 * Must be (better be!) continuation of a TRANSPARENT
8718 	 * IOCTL.  We just copied in the lifsrcof structure.
8719 	 */
8720 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8721 	    (struct lifsrcof *)mp1->b_rptr);
8722 
8723 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8724 		return (EINVAL);
8725 
8726 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8727 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8728 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8729 	    ip_process_ioctl, &err, ipst);
8730 	if (ipif == NULL) {
8731 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8732 		    ifindex));
8733 		return (err);
8734 	}
8735 
8736 
8737 	/* Allocate a buffer to hold requested information */
8738 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8739 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8740 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8741 	/* The actual size needed is always returned in lifs_len */
8742 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8743 
8744 	/* If the amount we need is more than what is passed in, abort */
8745 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8746 		ipif_refrele(ipif);
8747 		return (0);
8748 	}
8749 
8750 	mp1 = mi_copyout_alloc(q, mp,
8751 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8752 	if (mp1 == NULL) {
8753 		ipif_refrele(ipif);
8754 		return (ENOMEM);
8755 	}
8756 
8757 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8758 	bzero(mp1->b_rptr, lifs_bufsize);
8759 
8760 	lifr = (struct lifreq *)mp1->b_rptr;
8761 
8762 	ill = ill_head = ipif->ipif_ill;
8763 	orig_ipif = ipif;
8764 
8765 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8766 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8767 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8768 
8769 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8770 	for (; (ill != NULL) && (ill != ill_head);
8771 	    ill = ill->ill_usesrc_grp_next) {
8772 
8773 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8774 			break;
8775 
8776 		ipif = ill->ill_ipif;
8777 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8778 		if (ipif->ipif_isv6) {
8779 			sin6 = (sin6_t *)&lifr->lifr_addr;
8780 			*sin6 = sin6_null;
8781 			sin6->sin6_family = AF_INET6;
8782 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8783 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8784 			    &ipif->ipif_v6net_mask);
8785 		} else {
8786 			sin = (sin_t *)&lifr->lifr_addr;
8787 			*sin = sin_null;
8788 			sin->sin_family = AF_INET;
8789 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8790 			lifr->lifr_addrlen = ip_mask_to_plen(
8791 			    ipif->ipif_net_mask);
8792 		}
8793 		lifr++;
8794 	}
8795 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8796 	rw_exit(&ipst->ips_ill_g_lock);
8797 	ipif_refrele(orig_ipif);
8798 	mp1->b_wptr = (uchar_t *)lifr;
8799 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8800 
8801 	return (0);
8802 }
8803 
8804 /* ARGSUSED */
8805 int
8806 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8807     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8808 {
8809 	mblk_t *mp1;
8810 	int	list;
8811 	ill_t	*ill;
8812 	ipif_t	*ipif;
8813 	int	flags;
8814 	int	numlifs = 0;
8815 	size_t	lifc_bufsize;
8816 	struct	lifreq *lifr;
8817 	sa_family_t	family;
8818 	struct	sockaddr_in	*sin;
8819 	struct	sockaddr_in6	*sin6;
8820 	ill_walk_context_t	ctx;
8821 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8822 	int32_t	lifclen;
8823 	zoneid_t zoneid;
8824 	STRUCT_HANDLE(lifconf, lifc);
8825 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8826 
8827 	ip1dbg(("ip_sioctl_get_lifconf"));
8828 
8829 	ASSERT(q->q_next == NULL);
8830 
8831 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8832 
8833 	/* Existence verified in ip_wput_nondata */
8834 	mp1 = mp->b_cont->b_cont;
8835 
8836 	/*
8837 	 * An extended version of SIOCGIFCONF that takes an
8838 	 * additional address family and flags field.
8839 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8840 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8841 	 * interfaces are omitted.
8842 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8843 	 * unless LIFC_TEMPORARY is specified.
8844 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8845 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8846 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8847 	 * has priority over LIFC_NOXMIT.
8848 	 */
8849 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8850 
8851 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8852 		return (EINVAL);
8853 
8854 	/*
8855 	 * Must be (better be!) continuation of a TRANSPARENT
8856 	 * IOCTL.  We just copied in the lifconf structure.
8857 	 */
8858 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8859 
8860 	family = STRUCT_FGET(lifc, lifc_family);
8861 	flags = STRUCT_FGET(lifc, lifc_flags);
8862 
8863 	switch (family) {
8864 	case AF_UNSPEC:
8865 		/*
8866 		 * walk all ILL's.
8867 		 */
8868 		list = MAX_G_HEADS;
8869 		break;
8870 	case AF_INET:
8871 		/*
8872 		 * walk only IPV4 ILL's.
8873 		 */
8874 		list = IP_V4_G_HEAD;
8875 		break;
8876 	case AF_INET6:
8877 		/*
8878 		 * walk only IPV6 ILL's.
8879 		 */
8880 		list = IP_V6_G_HEAD;
8881 		break;
8882 	default:
8883 		return (EAFNOSUPPORT);
8884 	}
8885 
8886 	/*
8887 	 * Allocate a buffer to hold requested information.
8888 	 *
8889 	 * If lifc_len is larger than what is needed, we only
8890 	 * allocate what we will use.
8891 	 *
8892 	 * If lifc_len is smaller than what is needed, return
8893 	 * EINVAL.
8894 	 */
8895 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8896 	lifc_bufsize = numlifs * sizeof (struct lifreq);
8897 	lifclen = STRUCT_FGET(lifc, lifc_len);
8898 	if (lifc_bufsize > lifclen) {
8899 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8900 			return (EINVAL);
8901 		else
8902 			lifc_bufsize = lifclen;
8903 	}
8904 
8905 	mp1 = mi_copyout_alloc(q, mp,
8906 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8907 	if (mp1 == NULL)
8908 		return (ENOMEM);
8909 
8910 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8911 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8912 
8913 	lifr = (struct lifreq *)mp1->b_rptr;
8914 
8915 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8916 	ill = ill_first(list, list, &ctx, ipst);
8917 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8918 		for (ipif = ill->ill_ipif; ipif != NULL;
8919 		    ipif = ipif->ipif_next) {
8920 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8921 			    !(flags & LIFC_NOXMIT))
8922 				continue;
8923 
8924 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8925 			    !(flags & LIFC_TEMPORARY))
8926 				continue;
8927 
8928 			if (((ipif->ipif_flags &
8929 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8930 			    IPIF_DEPRECATED)) ||
8931 			    IS_LOOPBACK(ill) ||
8932 			    !(ipif->ipif_flags & IPIF_UP)) &&
8933 			    (flags & LIFC_EXTERNAL_SOURCE))
8934 				continue;
8935 
8936 			if (zoneid != ipif->ipif_zoneid &&
8937 			    ipif->ipif_zoneid != ALL_ZONES &&
8938 			    (zoneid != GLOBAL_ZONEID ||
8939 			    !(flags & LIFC_ALLZONES)))
8940 				continue;
8941 
8942 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8943 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8944 					rw_exit(&ipst->ips_ill_g_lock);
8945 					return (EINVAL);
8946 				} else {
8947 					goto lif_copydone;
8948 				}
8949 			}
8950 
8951 			ipif_get_name(ipif, lifr->lifr_name,
8952 			    sizeof (lifr->lifr_name));
8953 			if (ipif->ipif_isv6) {
8954 				sin6 = (sin6_t *)&lifr->lifr_addr;
8955 				*sin6 = sin6_null;
8956 				sin6->sin6_family = AF_INET6;
8957 				sin6->sin6_addr =
8958 				    ipif->ipif_v6lcl_addr;
8959 				lifr->lifr_addrlen =
8960 				    ip_mask_to_plen_v6(
8961 				    &ipif->ipif_v6net_mask);
8962 			} else {
8963 				sin = (sin_t *)&lifr->lifr_addr;
8964 				*sin = sin_null;
8965 				sin->sin_family = AF_INET;
8966 				sin->sin_addr.s_addr =
8967 				    ipif->ipif_lcl_addr;
8968 				lifr->lifr_addrlen =
8969 				    ip_mask_to_plen(
8970 				    ipif->ipif_net_mask);
8971 			}
8972 			lifr++;
8973 		}
8974 	}
8975 lif_copydone:
8976 	rw_exit(&ipst->ips_ill_g_lock);
8977 
8978 	mp1->b_wptr = (uchar_t *)lifr;
8979 	if (STRUCT_BUF(lifc) != NULL) {
8980 		STRUCT_FSET(lifc, lifc_len,
8981 		    (int)((uchar_t *)lifr - mp1->b_rptr));
8982 	}
8983 	return (0);
8984 }
8985 
8986 /* ARGSUSED */
8987 int
8988 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
8989     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8990 {
8991 	ip_stack_t	*ipst;
8992 
8993 	if (q->q_next == NULL)
8994 		ipst = CONNQ_TO_IPST(q);
8995 	else
8996 		ipst = ILLQ_TO_IPST(q);
8997 
8998 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8999 	ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9000 	return (0);
9001 }
9002 
9003 static void
9004 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9005 {
9006 	ip6_asp_t *table;
9007 	size_t table_size;
9008 	mblk_t *data_mp;
9009 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9010 	ip_stack_t	*ipst;
9011 
9012 	if (q->q_next == NULL)
9013 		ipst = CONNQ_TO_IPST(q);
9014 	else
9015 		ipst = ILLQ_TO_IPST(q);
9016 
9017 	/* These two ioctls are I_STR only */
9018 	if (iocp->ioc_count == TRANSPARENT) {
9019 		miocnak(q, mp, 0, EINVAL);
9020 		return;
9021 	}
9022 
9023 	data_mp = mp->b_cont;
9024 	if (data_mp == NULL) {
9025 		/* The user passed us a NULL argument */
9026 		table = NULL;
9027 		table_size = iocp->ioc_count;
9028 	} else {
9029 		/*
9030 		 * The user provided a table.  The stream head
9031 		 * may have copied in the user data in chunks,
9032 		 * so make sure everything is pulled up
9033 		 * properly.
9034 		 */
9035 		if (MBLKL(data_mp) < iocp->ioc_count) {
9036 			mblk_t *new_data_mp;
9037 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9038 			    NULL) {
9039 				miocnak(q, mp, 0, ENOMEM);
9040 				return;
9041 			}
9042 			freemsg(data_mp);
9043 			data_mp = new_data_mp;
9044 			mp->b_cont = data_mp;
9045 		}
9046 		table = (ip6_asp_t *)data_mp->b_rptr;
9047 		table_size = iocp->ioc_count;
9048 	}
9049 
9050 	switch (iocp->ioc_cmd) {
9051 	case SIOCGIP6ADDRPOLICY:
9052 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9053 		if (iocp->ioc_rval == -1)
9054 			iocp->ioc_error = EINVAL;
9055 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9056 		else if (table != NULL &&
9057 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9058 			ip6_asp_t *src = table;
9059 			ip6_asp32_t *dst = (void *)table;
9060 			int count = table_size / sizeof (ip6_asp_t);
9061 			int i;
9062 
9063 			/*
9064 			 * We need to do an in-place shrink of the array
9065 			 * to match the alignment attributes of the
9066 			 * 32-bit ABI looking at it.
9067 			 */
9068 			/* LINTED: logical expression always true: op "||" */
9069 			ASSERT(sizeof (*src) > sizeof (*dst));
9070 			for (i = 1; i < count; i++)
9071 				bcopy(src + i, dst + i, sizeof (*dst));
9072 		}
9073 #endif
9074 		break;
9075 
9076 	case SIOCSIP6ADDRPOLICY:
9077 		ASSERT(mp->b_prev == NULL);
9078 		mp->b_prev = (void *)q;
9079 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9080 		/*
9081 		 * We pass in the datamodel here so that the ip6_asp_replace()
9082 		 * routine can handle converting from 32-bit to native formats
9083 		 * where necessary.
9084 		 *
9085 		 * A better way to handle this might be to convert the inbound
9086 		 * data structure here, and hang it off a new 'mp'; thus the
9087 		 * ip6_asp_replace() logic would always be dealing with native
9088 		 * format data structures..
9089 		 *
9090 		 * (An even simpler way to handle these ioctls is to just
9091 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9092 		 * and just recompile everything that depends on it.)
9093 		 */
9094 #endif
9095 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9096 		    iocp->ioc_flag & IOC_MODELS);
9097 		return;
9098 	}
9099 
9100 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9101 	qreply(q, mp);
9102 }
9103 
9104 static void
9105 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9106 {
9107 	mblk_t 		*data_mp;
9108 	struct dstinforeq	*dir;
9109 	uint8_t		*end, *cur;
9110 	in6_addr_t	*daddr, *saddr;
9111 	ipaddr_t	v4daddr;
9112 	ire_t		*ire;
9113 	char		*slabel, *dlabel;
9114 	boolean_t	isipv4;
9115 	int		match_ire;
9116 	ill_t		*dst_ill;
9117 	ipif_t		*src_ipif, *ire_ipif;
9118 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9119 	zoneid_t	zoneid;
9120 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
9121 
9122 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9123 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9124 
9125 	/*
9126 	 * This ioctl is I_STR only, and must have a
9127 	 * data mblk following the M_IOCTL mblk.
9128 	 */
9129 	data_mp = mp->b_cont;
9130 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9131 		miocnak(q, mp, 0, EINVAL);
9132 		return;
9133 	}
9134 
9135 	if (MBLKL(data_mp) < iocp->ioc_count) {
9136 		mblk_t *new_data_mp;
9137 
9138 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9139 			miocnak(q, mp, 0, ENOMEM);
9140 			return;
9141 		}
9142 		freemsg(data_mp);
9143 		data_mp = new_data_mp;
9144 		mp->b_cont = data_mp;
9145 	}
9146 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9147 
9148 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9149 	    end - cur >= sizeof (struct dstinforeq);
9150 	    cur += sizeof (struct dstinforeq)) {
9151 		dir = (struct dstinforeq *)cur;
9152 		daddr = &dir->dir_daddr;
9153 		saddr = &dir->dir_saddr;
9154 
9155 		/*
9156 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9157 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9158 		 * and ipif_select_source[_v6]() do not.
9159 		 */
9160 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9161 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9162 
9163 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9164 		if (isipv4) {
9165 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9166 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9167 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9168 		} else {
9169 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9170 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9171 		}
9172 		if (ire == NULL) {
9173 			dir->dir_dreachable = 0;
9174 
9175 			/* move on to next dst addr */
9176 			continue;
9177 		}
9178 		dir->dir_dreachable = 1;
9179 
9180 		ire_ipif = ire->ire_ipif;
9181 		if (ire_ipif == NULL)
9182 			goto next_dst;
9183 
9184 		/*
9185 		 * We expect to get back an interface ire or a
9186 		 * gateway ire cache entry.  For both types, the
9187 		 * output interface is ire_ipif->ipif_ill.
9188 		 */
9189 		dst_ill = ire_ipif->ipif_ill;
9190 		dir->dir_dmactype = dst_ill->ill_mactype;
9191 
9192 		if (isipv4) {
9193 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9194 		} else {
9195 			src_ipif = ipif_select_source_v6(dst_ill,
9196 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9197 			    zoneid);
9198 		}
9199 		if (src_ipif == NULL)
9200 			goto next_dst;
9201 
9202 		*saddr = src_ipif->ipif_v6lcl_addr;
9203 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9204 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9205 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9206 		dir->dir_sdeprecated =
9207 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9208 		ipif_refrele(src_ipif);
9209 next_dst:
9210 		ire_refrele(ire);
9211 	}
9212 	miocack(q, mp, iocp->ioc_count, 0);
9213 }
9214 
9215 
9216 /*
9217  * Check if this is an address assigned to this machine.
9218  * Skips interfaces that are down by using ire checks.
9219  * Translates mapped addresses to v4 addresses and then
9220  * treats them as such, returning true if the v4 address
9221  * associated with this mapped address is configured.
9222  * Note: Applications will have to be careful what they do
9223  * with the response; use of mapped addresses limits
9224  * what can be done with the socket, especially with
9225  * respect to socket options and ioctls - neither IPv4
9226  * options nor IPv6 sticky options/ancillary data options
9227  * may be used.
9228  */
9229 /* ARGSUSED */
9230 int
9231 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9232     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9233 {
9234 	struct sioc_addrreq *sia;
9235 	sin_t *sin;
9236 	ire_t *ire;
9237 	mblk_t *mp1;
9238 	zoneid_t zoneid;
9239 	ip_stack_t	*ipst;
9240 
9241 	ip1dbg(("ip_sioctl_tmyaddr"));
9242 
9243 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9244 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9245 	ipst = CONNQ_TO_IPST(q);
9246 
9247 	/* Existence verified in ip_wput_nondata */
9248 	mp1 = mp->b_cont->b_cont;
9249 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9250 	sin = (sin_t *)&sia->sa_addr;
9251 	switch (sin->sin_family) {
9252 	case AF_INET6: {
9253 		sin6_t *sin6 = (sin6_t *)sin;
9254 
9255 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9256 			ipaddr_t v4_addr;
9257 
9258 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9259 			    v4_addr);
9260 			ire = ire_ctable_lookup(v4_addr, 0,
9261 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9262 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9263 		} else {
9264 			in6_addr_t v6addr;
9265 
9266 			v6addr = sin6->sin6_addr;
9267 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9268 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9269 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9270 		}
9271 		break;
9272 	}
9273 	case AF_INET: {
9274 		ipaddr_t v4addr;
9275 
9276 		v4addr = sin->sin_addr.s_addr;
9277 		ire = ire_ctable_lookup(v4addr, 0,
9278 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9279 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9280 		break;
9281 	}
9282 	default:
9283 		return (EAFNOSUPPORT);
9284 	}
9285 	if (ire != NULL) {
9286 		sia->sa_res = 1;
9287 		ire_refrele(ire);
9288 	} else {
9289 		sia->sa_res = 0;
9290 	}
9291 	return (0);
9292 }
9293 
9294 /*
9295  * Check if this is an address assigned on-link i.e. neighbor,
9296  * and makes sure it's reachable from the current zone.
9297  * Returns true for my addresses as well.
9298  * Translates mapped addresses to v4 addresses and then
9299  * treats them as such, returning true if the v4 address
9300  * associated with this mapped address is configured.
9301  * Note: Applications will have to be careful what they do
9302  * with the response; use of mapped addresses limits
9303  * what can be done with the socket, especially with
9304  * respect to socket options and ioctls - neither IPv4
9305  * options nor IPv6 sticky options/ancillary data options
9306  * may be used.
9307  */
9308 /* ARGSUSED */
9309 int
9310 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9311     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9312 {
9313 	struct sioc_addrreq *sia;
9314 	sin_t *sin;
9315 	mblk_t	*mp1;
9316 	ire_t *ire = NULL;
9317 	zoneid_t zoneid;
9318 	ip_stack_t	*ipst;
9319 
9320 	ip1dbg(("ip_sioctl_tonlink"));
9321 
9322 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9323 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9324 	ipst = CONNQ_TO_IPST(q);
9325 
9326 	/* Existence verified in ip_wput_nondata */
9327 	mp1 = mp->b_cont->b_cont;
9328 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9329 	sin = (sin_t *)&sia->sa_addr;
9330 
9331 	/*
9332 	 * Match addresses with a zero gateway field to avoid
9333 	 * routes going through a router.
9334 	 * Exclude broadcast and multicast addresses.
9335 	 */
9336 	switch (sin->sin_family) {
9337 	case AF_INET6: {
9338 		sin6_t *sin6 = (sin6_t *)sin;
9339 
9340 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9341 			ipaddr_t v4_addr;
9342 
9343 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9344 			    v4_addr);
9345 			if (!CLASSD(v4_addr)) {
9346 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9347 				    NULL, NULL, zoneid, NULL,
9348 				    MATCH_IRE_GW, ipst);
9349 			}
9350 		} else {
9351 			in6_addr_t v6addr;
9352 			in6_addr_t v6gw;
9353 
9354 			v6addr = sin6->sin6_addr;
9355 			v6gw = ipv6_all_zeros;
9356 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9357 				ire = ire_route_lookup_v6(&v6addr, 0,
9358 				    &v6gw, 0, NULL, NULL, zoneid,
9359 				    NULL, MATCH_IRE_GW, ipst);
9360 			}
9361 		}
9362 		break;
9363 	}
9364 	case AF_INET: {
9365 		ipaddr_t v4addr;
9366 
9367 		v4addr = sin->sin_addr.s_addr;
9368 		if (!CLASSD(v4addr)) {
9369 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9370 			    NULL, NULL, zoneid, NULL,
9371 			    MATCH_IRE_GW, ipst);
9372 		}
9373 		break;
9374 	}
9375 	default:
9376 		return (EAFNOSUPPORT);
9377 	}
9378 	sia->sa_res = 0;
9379 	if (ire != NULL) {
9380 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9381 		    IRE_LOCAL|IRE_LOOPBACK)) {
9382 			sia->sa_res = 1;
9383 		}
9384 		ire_refrele(ire);
9385 	}
9386 	return (0);
9387 }
9388 
9389 /*
9390  * TBD: implement when kernel maintaines a list of site prefixes.
9391  */
9392 /* ARGSUSED */
9393 int
9394 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9395     ip_ioctl_cmd_t *ipip, void *ifreq)
9396 {
9397 	return (ENXIO);
9398 }
9399 
9400 /* ARGSUSED */
9401 int
9402 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9403     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9404 {
9405 	ill_t  		*ill;
9406 	mblk_t		*mp1;
9407 	conn_t		*connp;
9408 	boolean_t	success;
9409 
9410 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9411 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9412 	/* ioctl comes down on an conn */
9413 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9414 	connp = Q_TO_CONN(q);
9415 
9416 	mp->b_datap->db_type = M_IOCTL;
9417 
9418 	/*
9419 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9420 	 * The original mp contains contaminated b_next values due to 'mi',
9421 	 * which is needed to do the mi_copy_done. Unfortunately if we
9422 	 * send down the original mblk itself and if we are popped due to an
9423 	 * an unplumb before the response comes back from tunnel,
9424 	 * the streamhead (which does a freemsg) will see this contaminated
9425 	 * message and the assertion in freemsg about non-null b_next/b_prev
9426 	 * will panic a DEBUG kernel.
9427 	 */
9428 	mp1 = copymsg(mp);
9429 	if (mp1 == NULL)
9430 		return (ENOMEM);
9431 
9432 	ill = ipif->ipif_ill;
9433 	mutex_enter(&connp->conn_lock);
9434 	mutex_enter(&ill->ill_lock);
9435 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9436 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9437 		    mp, 0);
9438 	} else {
9439 		success = ill_pending_mp_add(ill, connp, mp);
9440 	}
9441 	mutex_exit(&ill->ill_lock);
9442 	mutex_exit(&connp->conn_lock);
9443 
9444 	if (success) {
9445 		ip1dbg(("sending down tunparam request "));
9446 		putnext(ill->ill_wq, mp1);
9447 		return (EINPROGRESS);
9448 	} else {
9449 		/* The conn has started closing */
9450 		freemsg(mp1);
9451 		return (EINTR);
9452 	}
9453 }
9454 
9455 /*
9456  * ARP IOCTLs.
9457  * How does IP get in the business of fronting ARP configuration/queries?
9458  * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9459  * are by tradition passed in through a datagram socket.  That lands in IP.
9460  * As it happens, this is just as well since the interface is quite crude in
9461  * that it passes in no information about protocol or hardware types, or
9462  * interface association.  After making the protocol assumption, IP is in
9463  * the position to look up the name of the ILL, which ARP will need, and
9464  * format a request that can be handled by ARP.  The request is passed up
9465  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9466  * back a response.  ARP supports its own set of more general IOCTLs, in
9467  * case anyone is interested.
9468  */
9469 /* ARGSUSED */
9470 int
9471 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9472     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9473 {
9474 	mblk_t *mp1;
9475 	mblk_t *mp2;
9476 	mblk_t *pending_mp;
9477 	ipaddr_t ipaddr;
9478 	area_t *area;
9479 	struct iocblk *iocp;
9480 	conn_t *connp;
9481 	struct arpreq *ar;
9482 	struct xarpreq *xar;
9483 	int flags, alength;
9484 	char *lladdr;
9485 	ip_stack_t	*ipst;
9486 	ill_t *ill = ipif->ipif_ill;
9487 	boolean_t if_arp_ioctl = B_FALSE;
9488 
9489 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9490 	connp = Q_TO_CONN(q);
9491 	ipst = connp->conn_netstack->netstack_ip;
9492 
9493 	if (ipip->ipi_cmd_type == XARP_CMD) {
9494 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9495 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9496 		ar = NULL;
9497 
9498 		flags = xar->xarp_flags;
9499 		lladdr = LLADDR(&xar->xarp_ha);
9500 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9501 		/*
9502 		 * Validate against user's link layer address length
9503 		 * input and name and addr length limits.
9504 		 */
9505 		alength = ill->ill_phys_addr_length;
9506 		if (ipip->ipi_cmd == SIOCSXARP) {
9507 			if (alength != xar->xarp_ha.sdl_alen ||
9508 			    (alength + xar->xarp_ha.sdl_nlen >
9509 			    sizeof (xar->xarp_ha.sdl_data)))
9510 				return (EINVAL);
9511 		}
9512 	} else {
9513 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9514 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9515 		xar = NULL;
9516 
9517 		flags = ar->arp_flags;
9518 		lladdr = ar->arp_ha.sa_data;
9519 		/*
9520 		 * Theoretically, the sa_family could tell us what link
9521 		 * layer type this operation is trying to deal with. By
9522 		 * common usage AF_UNSPEC means ethernet. We'll assume
9523 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9524 		 * for now. Our new SIOC*XARP ioctls can be used more
9525 		 * generally.
9526 		 *
9527 		 * If the underlying media happens to have a non 6 byte
9528 		 * address, arp module will fail set/get, but the del
9529 		 * operation will succeed.
9530 		 */
9531 		alength = 6;
9532 		if ((ipip->ipi_cmd != SIOCDARP) &&
9533 		    (alength != ill->ill_phys_addr_length)) {
9534 			return (EINVAL);
9535 		}
9536 	}
9537 
9538 	/*
9539 	 * We are going to pass up to ARP a packet chain that looks
9540 	 * like:
9541 	 *
9542 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9543 	 *
9544 	 * Get a copy of the original IOCTL mblk to head the chain,
9545 	 * to be sent up (in mp1). Also get another copy to store
9546 	 * in the ill_pending_mp list, for matching the response
9547 	 * when it comes back from ARP.
9548 	 */
9549 	mp1 = copyb(mp);
9550 	pending_mp = copymsg(mp);
9551 	if (mp1 == NULL || pending_mp == NULL) {
9552 		if (mp1 != NULL)
9553 			freeb(mp1);
9554 		if (pending_mp != NULL)
9555 			inet_freemsg(pending_mp);
9556 		return (ENOMEM);
9557 	}
9558 
9559 	ipaddr = sin->sin_addr.s_addr;
9560 
9561 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9562 	    (caddr_t)&ipaddr);
9563 	if (mp2 == NULL) {
9564 		freeb(mp1);
9565 		inet_freemsg(pending_mp);
9566 		return (ENOMEM);
9567 	}
9568 	/* Put together the chain. */
9569 	mp1->b_cont = mp2;
9570 	mp1->b_datap->db_type = M_IOCTL;
9571 	mp2->b_cont = mp;
9572 	mp2->b_datap->db_type = M_DATA;
9573 
9574 	iocp = (struct iocblk *)mp1->b_rptr;
9575 
9576 	/*
9577 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9578 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9579 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9580 	 * ioc_count field; set ioc_count to be correct.
9581 	 */
9582 	iocp->ioc_count = MBLKL(mp1->b_cont);
9583 
9584 	/*
9585 	 * Set the proper command in the ARP message.
9586 	 * Convert the SIOC{G|S|D}ARP calls into our
9587 	 * AR_ENTRY_xxx calls.
9588 	 */
9589 	area = (area_t *)mp2->b_rptr;
9590 	switch (iocp->ioc_cmd) {
9591 	case SIOCDARP:
9592 	case SIOCDXARP:
9593 		/*
9594 		 * We defer deleting the corresponding IRE until
9595 		 * we return from arp.
9596 		 */
9597 		area->area_cmd = AR_ENTRY_DELETE;
9598 		area->area_proto_mask_offset = 0;
9599 		break;
9600 	case SIOCGARP:
9601 	case SIOCGXARP:
9602 		area->area_cmd = AR_ENTRY_SQUERY;
9603 		area->area_proto_mask_offset = 0;
9604 		break;
9605 	case SIOCSARP:
9606 	case SIOCSXARP:
9607 		/*
9608 		 * Delete the corresponding ire to make sure IP will
9609 		 * pick up any change from arp.
9610 		 */
9611 		if (!if_arp_ioctl) {
9612 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9613 		} else {
9614 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9615 			if (ipif != NULL) {
9616 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9617 				    ipst);
9618 				ipif_refrele(ipif);
9619 			}
9620 		}
9621 		break;
9622 	}
9623 	iocp->ioc_cmd = area->area_cmd;
9624 
9625 	/*
9626 	 * Fill in the rest of the ARP operation fields.
9627 	 */
9628 	area->area_hw_addr_length = alength;
9629 	bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9630 
9631 	/* Translate the flags. */
9632 	if (flags & ATF_PERM)
9633 		area->area_flags |= ACE_F_PERMANENT;
9634 	if (flags & ATF_PUBL)
9635 		area->area_flags |= ACE_F_PUBLISH;
9636 	if (flags & ATF_AUTHORITY)
9637 		area->area_flags |= ACE_F_AUTHORITY;
9638 
9639 	/*
9640 	 * Before sending 'mp' to ARP, we have to clear the b_next
9641 	 * and b_prev. Otherwise if STREAMS encounters such a message
9642 	 * in freemsg(), (because ARP can close any time) it can cause
9643 	 * a panic. But mi code needs the b_next and b_prev values of
9644 	 * mp->b_cont, to complete the ioctl. So we store it here
9645 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9646 	 * when the response comes down from ARP.
9647 	 */
9648 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9649 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9650 	mp->b_cont->b_next = NULL;
9651 	mp->b_cont->b_prev = NULL;
9652 
9653 	mutex_enter(&connp->conn_lock);
9654 	mutex_enter(&ill->ill_lock);
9655 	/* conn has not yet started closing, hence this can't fail */
9656 	VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9657 	mutex_exit(&ill->ill_lock);
9658 	mutex_exit(&connp->conn_lock);
9659 
9660 	/*
9661 	 * Up to ARP it goes.  The response will come back in ip_wput() as an
9662 	 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9663 	 */
9664 	putnext(ill->ill_rq, mp1);
9665 	return (EINPROGRESS);
9666 }
9667 
9668 /*
9669  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9670  * the associated sin and refhold and return the associated ipif via `ci'.
9671  */
9672 int
9673 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9674     cmd_info_t *ci, ipsq_func_t func)
9675 {
9676 	mblk_t	*mp1;
9677 	int	err;
9678 	sin_t	*sin;
9679 	conn_t	*connp;
9680 	ipif_t	*ipif;
9681 	ire_t	*ire = NULL;
9682 	ill_t	*ill = NULL;
9683 	boolean_t exists;
9684 	ip_stack_t *ipst;
9685 	struct arpreq *ar;
9686 	struct xarpreq *xar;
9687 	struct sockaddr_dl *sdl;
9688 
9689 	/* ioctl comes down on a conn */
9690 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9691 	connp = Q_TO_CONN(q);
9692 	if (connp->conn_af_isv6)
9693 		return (ENXIO);
9694 
9695 	ipst = connp->conn_netstack->netstack_ip;
9696 
9697 	/* Verified in ip_wput_nondata */
9698 	mp1 = mp->b_cont->b_cont;
9699 
9700 	if (ipip->ipi_cmd_type == XARP_CMD) {
9701 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9702 		xar = (struct xarpreq *)mp1->b_rptr;
9703 		sin = (sin_t *)&xar->xarp_pa;
9704 		sdl = &xar->xarp_ha;
9705 
9706 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9707 			return (ENXIO);
9708 		if (sdl->sdl_nlen >= LIFNAMSIZ)
9709 			return (EINVAL);
9710 	} else {
9711 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9712 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9713 		ar = (struct arpreq *)mp1->b_rptr;
9714 		sin = (sin_t *)&ar->arp_pa;
9715 	}
9716 
9717 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9718 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9719 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9720 		    mp, func, &err, ipst);
9721 		if (ipif == NULL)
9722 			return (err);
9723 		if (ipif->ipif_id != 0 ||
9724 		    ipif->ipif_net_type != IRE_IF_RESOLVER) {
9725 			ipif_refrele(ipif);
9726 			return (ENXIO);
9727 		}
9728 	} else {
9729 		/*
9730 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen ==
9731 		 * 0: use the IP address to figure out the ill.	 In the IPMP
9732 		 * case, a simple forwarding table lookup will return the
9733 		 * IRE_IF_RESOLVER for the first interface in the group, which
9734 		 * might not be the interface on which the requested IP
9735 		 * address was resolved due to the ill selection algorithm
9736 		 * (see ip_newroute_get_dst_ill()).  So we do a cache table
9737 		 * lookup first: if the IRE cache entry for the IP address is
9738 		 * still there, it will contain the ill pointer for the right
9739 		 * interface, so we use that. If the cache entry has been
9740 		 * flushed, we fall back to the forwarding table lookup. This
9741 		 * should be rare enough since IRE cache entries have a longer
9742 		 * life expectancy than ARP cache entries.
9743 		 */
9744 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9745 		    ipst);
9746 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9747 		    ((ill = ire_to_ill(ire)) == NULL) ||
9748 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9749 			if (ire != NULL)
9750 				ire_refrele(ire);
9751 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9752 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9753 			    NULL, MATCH_IRE_TYPE, ipst);
9754 			if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9755 
9756 				if (ire != NULL)
9757 					ire_refrele(ire);
9758 				return (ENXIO);
9759 			}
9760 		}
9761 		ASSERT(ire != NULL && ill != NULL);
9762 		ipif = ill->ill_ipif;
9763 		ipif_refhold(ipif);
9764 		ire_refrele(ire);
9765 	}
9766 	ci->ci_sin = sin;
9767 	ci->ci_ipif = ipif;
9768 	return (0);
9769 }
9770 
9771 /*
9772  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9773  * atomically set/clear the muxids. Also complete the ioctl by acking or
9774  * naking it.  Note that the code is structured such that the link type,
9775  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9776  * its clones use the persistent link, while pppd(1M) and perhaps many
9777  * other daemons may use non-persistent link.  When combined with some
9778  * ill_t states, linking and unlinking lower streams may be used as
9779  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9780  */
9781 /* ARGSUSED */
9782 void
9783 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9784 {
9785 	mblk_t		*mp1, *mp2;
9786 	struct linkblk	*li;
9787 	struct ipmx_s	*ipmxp;
9788 	ill_t		*ill;
9789 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9790 	int		err = 0;
9791 	boolean_t	entered_ipsq = B_FALSE;
9792 	boolean_t	islink;
9793 	ip_stack_t	*ipst;
9794 
9795 	if (CONN_Q(q))
9796 		ipst = CONNQ_TO_IPST(q);
9797 	else
9798 		ipst = ILLQ_TO_IPST(q);
9799 
9800 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9801 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
9802 
9803 	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9804 
9805 	mp1 = mp->b_cont;	/* This is the linkblk info */
9806 	li = (struct linkblk *)mp1->b_rptr;
9807 
9808 	/*
9809 	 * ARP has added this special mblk, and the utility is asking us
9810 	 * to perform consistency checks, and also atomically set the
9811 	 * muxid. Ifconfig is an example.  It achieves this by using
9812 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9813 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9814 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9815 	 * and other comments in this routine for more details.
9816 	 */
9817 	mp2 = mp1->b_cont;	/* This is added by ARP */
9818 
9819 	/*
9820 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9821 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9822 	 * get the special mblk above.  For backward compatibility, we
9823 	 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9824 	 * The utility will use SIOCSLIFMUXID to store the muxids.  This is
9825 	 * not atomic, and can leave the streams unplumbable if the utility
9826 	 * is interrupted before it does the SIOCSLIFMUXID.
9827 	 */
9828 	if (mp2 == NULL) {
9829 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9830 		if (err == EINPROGRESS)
9831 			return;
9832 		goto done;
9833 	}
9834 
9835 	/*
9836 	 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9837 	 * ARP has appended this last mblk to tell us whether the lower stream
9838 	 * is an arp-dev stream or an IP module stream.
9839 	 */
9840 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9841 	if (ipmxp->ipmx_arpdev_stream) {
9842 		/*
9843 		 * The lower stream is the arp-dev stream.
9844 		 */
9845 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9846 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
9847 		if (ill == NULL) {
9848 			if (err == EINPROGRESS)
9849 				return;
9850 			err = EINVAL;
9851 			goto done;
9852 		}
9853 
9854 		if (ipsq == NULL) {
9855 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9856 			    NEW_OP, B_TRUE);
9857 			if (ipsq == NULL) {
9858 				ill_refrele(ill);
9859 				return;
9860 			}
9861 			entered_ipsq = B_TRUE;
9862 		}
9863 		ASSERT(IAM_WRITER_ILL(ill));
9864 		ill_refrele(ill);
9865 
9866 		/*
9867 		 * To ensure consistency between IP and ARP, the following
9868 		 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9869 		 * This is because the muxid's are stored in the IP stream on
9870 		 * the ill.
9871 		 *
9872 		 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9873 		 * the ARP stream. On an arp-dev stream, IP checks that it is
9874 		 * not yet plinked, and it also checks that the corresponding
9875 		 * IP stream is already plinked.
9876 		 *
9877 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9878 		 * punlinking the IP stream. IP does not allow punlink of the
9879 		 * IP stream unless the arp stream has been punlinked.
9880 		 */
9881 		if ((islink &&
9882 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9883 		    (!islink && ill->ill_arp_muxid != li->l_index)) {
9884 			err = EINVAL;
9885 			goto done;
9886 		}
9887 		ill->ill_arp_muxid = islink ? li->l_index : 0;
9888 	} else {
9889 		/*
9890 		 * The lower stream is probably an IP module stream.  Do
9891 		 * consistency checking.
9892 		 */
9893 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9894 		if (err == EINPROGRESS)
9895 			return;
9896 	}
9897 done:
9898 	if (err == 0)
9899 		miocack(q, mp, 0, 0);
9900 	else
9901 		miocnak(q, mp, 0, err);
9902 
9903 	/* Conn was refheld in ip_sioctl_copyin_setup */
9904 	if (CONN_Q(q))
9905 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9906 	if (entered_ipsq)
9907 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
9908 }
9909 
9910 /*
9911  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9912  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9913  * module stream).  If `doconsist' is set, then do the extended consistency
9914  * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9915  * Returns zero on success, EINPROGRESS if the operation is still pending, or
9916  * an error code on failure.
9917  */
9918 static int
9919 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9920     struct linkblk *li, boolean_t doconsist)
9921 {
9922 	ill_t  		*ill;
9923 	queue_t		*ipwq, *dwq;
9924 	const char	*name;
9925 	struct qinit	*qinfo;
9926 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9927 	boolean_t	entered_ipsq = B_FALSE;
9928 
9929 	/*
9930 	 * Walk the lower stream to verify it's the IP module stream.
9931 	 * The IP module is identified by its name, wput function,
9932 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
9933 	 * (li->l_qbot) will not vanish until this ioctl completes.
9934 	 */
9935 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9936 		qinfo = ipwq->q_qinfo;
9937 		name = qinfo->qi_minfo->mi_idname;
9938 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9939 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9940 			break;
9941 		}
9942 	}
9943 
9944 	/*
9945 	 * If this isn't an IP module stream, bail.
9946 	 */
9947 	if (ipwq == NULL)
9948 		return (0);
9949 
9950 	ill = ipwq->q_ptr;
9951 	ASSERT(ill != NULL);
9952 
9953 	if (ipsq == NULL) {
9954 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9955 		    NEW_OP, B_TRUE);
9956 		if (ipsq == NULL)
9957 			return (EINPROGRESS);
9958 		entered_ipsq = B_TRUE;
9959 	}
9960 	ASSERT(IAM_WRITER_ILL(ill));
9961 
9962 	if (doconsist) {
9963 		/*
9964 		 * Consistency checking requires that I_{P}LINK occurs
9965 		 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9966 		 * occurs prior to clearing ill_arp_muxid.
9967 		 */
9968 		if ((islink && ill->ill_ip_muxid != 0) ||
9969 		    (!islink && ill->ill_arp_muxid != 0)) {
9970 			if (entered_ipsq)
9971 				ipsq_exit(ipsq, B_TRUE, B_TRUE);
9972 			return (EINVAL);
9973 		}
9974 	}
9975 
9976 	/*
9977 	 * As part of I_{P}LINKing, stash the number of downstream modules and
9978 	 * the read queue of the module immediately below IP in the ill.
9979 	 * These are used during the capability negotiation below.
9980 	 */
9981 	ill->ill_lmod_rq = NULL;
9982 	ill->ill_lmod_cnt = 0;
9983 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
9984 		ill->ill_lmod_rq = RD(dwq);
9985 		for (; dwq != NULL; dwq = dwq->q_next)
9986 			ill->ill_lmod_cnt++;
9987 	}
9988 
9989 	if (doconsist)
9990 		ill->ill_ip_muxid = islink ? li->l_index : 0;
9991 
9992 	/*
9993 	 * If there's at least one up ipif on this ill, then we're bound to
9994 	 * the underlying driver via DLPI.  In that case, renegotiate
9995 	 * capabilities to account for any possible change in modules
9996 	 * interposed between IP and the driver.
9997 	 */
9998 	if (ill->ill_ipif_up_count > 0) {
9999 		if (islink)
10000 			ill_capability_probe(ill);
10001 		else
10002 			ill_capability_reset(ill);
10003 	}
10004 
10005 	if (entered_ipsq)
10006 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10007 
10008 	return (0);
10009 }
10010 
10011 /*
10012  * Search the ioctl command in the ioctl tables and return a pointer
10013  * to the ioctl command information. The ioctl command tables are
10014  * static and fully populated at compile time.
10015  */
10016 ip_ioctl_cmd_t *
10017 ip_sioctl_lookup(int ioc_cmd)
10018 {
10019 	int index;
10020 	ip_ioctl_cmd_t *ipip;
10021 	ip_ioctl_cmd_t *ipip_end;
10022 
10023 	if (ioc_cmd == IPI_DONTCARE)
10024 		return (NULL);
10025 
10026 	/*
10027 	 * Do a 2 step search. First search the indexed table
10028 	 * based on the least significant byte of the ioctl cmd.
10029 	 * If we don't find a match, then search the misc table
10030 	 * serially.
10031 	 */
10032 	index = ioc_cmd & 0xFF;
10033 	if (index < ip_ndx_ioctl_count) {
10034 		ipip = &ip_ndx_ioctl_table[index];
10035 		if (ipip->ipi_cmd == ioc_cmd) {
10036 			/* Found a match in the ndx table */
10037 			return (ipip);
10038 		}
10039 	}
10040 
10041 	/* Search the misc table */
10042 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10043 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10044 		if (ipip->ipi_cmd == ioc_cmd)
10045 			/* Found a match in the misc table */
10046 			return (ipip);
10047 	}
10048 
10049 	return (NULL);
10050 }
10051 
10052 /*
10053  * Wrapper function for resuming deferred ioctl processing
10054  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10055  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10056  */
10057 /* ARGSUSED */
10058 void
10059 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10060     void *dummy_arg)
10061 {
10062 	ip_sioctl_copyin_setup(q, mp);
10063 }
10064 
10065 /*
10066  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10067  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10068  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10069  * We establish here the size of the block to be copied in.  mi_copyin
10070  * arranges for this to happen, an processing continues in ip_wput with
10071  * an M_IOCDATA message.
10072  */
10073 void
10074 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10075 {
10076 	int	copyin_size;
10077 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10078 	ip_ioctl_cmd_t *ipip;
10079 	cred_t *cr;
10080 	ip_stack_t	*ipst;
10081 
10082 	if (CONN_Q(q))
10083 		ipst = CONNQ_TO_IPST(q);
10084 	else
10085 		ipst = ILLQ_TO_IPST(q);
10086 
10087 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10088 	if (ipip == NULL) {
10089 		/*
10090 		 * The ioctl is not one we understand or own.
10091 		 * Pass it along to be processed down stream,
10092 		 * if this is a module instance of IP, else nak
10093 		 * the ioctl.
10094 		 */
10095 		if (q->q_next == NULL) {
10096 			goto nak;
10097 		} else {
10098 			putnext(q, mp);
10099 			return;
10100 		}
10101 	}
10102 
10103 	/*
10104 	 * If this is deferred, then we will do all the checks when we
10105 	 * come back.
10106 	 */
10107 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10108 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10109 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10110 		return;
10111 	}
10112 
10113 	/*
10114 	 * Only allow a very small subset of IP ioctls on this stream if
10115 	 * IP is a module and not a driver. Allowing ioctls to be processed
10116 	 * in this case may cause assert failures or data corruption.
10117 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10118 	 * ioctls allowed on an IP module stream, after which this stream
10119 	 * normally becomes a multiplexor (at which time the stream head
10120 	 * will fail all ioctls).
10121 	 */
10122 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10123 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10124 			/*
10125 			 * Pass common Streams ioctls which the IP
10126 			 * module does not own or consume along to
10127 			 * be processed down stream.
10128 			 */
10129 			putnext(q, mp);
10130 			return;
10131 		} else {
10132 			goto nak;
10133 		}
10134 	}
10135 
10136 	/* Make sure we have ioctl data to process. */
10137 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10138 		goto nak;
10139 
10140 	/*
10141 	 * Prefer dblk credential over ioctl credential; some synthesized
10142 	 * ioctls have kcred set because there's no way to crhold()
10143 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10144 	 * the framework; the caller of ioctl needs to hold the reference
10145 	 * for the duration of the call).
10146 	 */
10147 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10148 
10149 	/* Make sure normal users don't send down privileged ioctls */
10150 	if ((ipip->ipi_flags & IPI_PRIV) &&
10151 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10152 		/* We checked the privilege earlier but log it here */
10153 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10154 		return;
10155 	}
10156 
10157 	/*
10158 	 * The ioctl command tables can only encode fixed length
10159 	 * ioctl data. If the length is variable, the table will
10160 	 * encode the length as zero. Such special cases are handled
10161 	 * below in the switch.
10162 	 */
10163 	if (ipip->ipi_copyin_size != 0) {
10164 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10165 		return;
10166 	}
10167 
10168 	switch (iocp->ioc_cmd) {
10169 	case O_SIOCGIFCONF:
10170 	case SIOCGIFCONF:
10171 		/*
10172 		 * This IOCTL is hilarious.  See comments in
10173 		 * ip_sioctl_get_ifconf for the story.
10174 		 */
10175 		if (iocp->ioc_count == TRANSPARENT)
10176 			copyin_size = SIZEOF_STRUCT(ifconf,
10177 			    iocp->ioc_flag);
10178 		else
10179 			copyin_size = iocp->ioc_count;
10180 		mi_copyin(q, mp, NULL, copyin_size);
10181 		return;
10182 
10183 	case O_SIOCGLIFCONF:
10184 	case SIOCGLIFCONF:
10185 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10186 		mi_copyin(q, mp, NULL, copyin_size);
10187 		return;
10188 
10189 	case SIOCGLIFSRCOF:
10190 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10191 		mi_copyin(q, mp, NULL, copyin_size);
10192 		return;
10193 	case SIOCGIP6ADDRPOLICY:
10194 		ip_sioctl_ip6addrpolicy(q, mp);
10195 		ip6_asp_table_refrele(ipst);
10196 		return;
10197 
10198 	case SIOCSIP6ADDRPOLICY:
10199 		ip_sioctl_ip6addrpolicy(q, mp);
10200 		return;
10201 
10202 	case SIOCGDSTINFO:
10203 		ip_sioctl_dstinfo(q, mp);
10204 		ip6_asp_table_refrele(ipst);
10205 		return;
10206 
10207 	case I_PLINK:
10208 	case I_PUNLINK:
10209 	case I_LINK:
10210 	case I_UNLINK:
10211 		/*
10212 		 * We treat non-persistent link similarly as the persistent
10213 		 * link case, in terms of plumbing/unplumbing, as well as
10214 		 * dynamic re-plumbing events indicator.  See comments
10215 		 * in ip_sioctl_plink() for more.
10216 		 *
10217 		 * Request can be enqueued in the 'ipsq' while waiting
10218 		 * to become exclusive. So bump up the conn ref.
10219 		 */
10220 		if (CONN_Q(q))
10221 			CONN_INC_REF(Q_TO_CONN(q));
10222 		ip_sioctl_plink(NULL, q, mp, NULL);
10223 		return;
10224 
10225 	case ND_GET:
10226 	case ND_SET:
10227 		/*
10228 		 * Use of the nd table requires holding the reader lock.
10229 		 * Modifying the nd table thru nd_load/nd_unload requires
10230 		 * the writer lock.
10231 		 */
10232 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10233 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10234 			rw_exit(&ipst->ips_ip_g_nd_lock);
10235 
10236 			if (iocp->ioc_error)
10237 				iocp->ioc_count = 0;
10238 			mp->b_datap->db_type = M_IOCACK;
10239 			qreply(q, mp);
10240 			return;
10241 		}
10242 		rw_exit(&ipst->ips_ip_g_nd_lock);
10243 		/*
10244 		 * We don't understand this subioctl of ND_GET / ND_SET.
10245 		 * Maybe intended for some driver / module below us
10246 		 */
10247 		if (q->q_next) {
10248 			putnext(q, mp);
10249 		} else {
10250 			iocp->ioc_error = ENOENT;
10251 			mp->b_datap->db_type = M_IOCNAK;
10252 			iocp->ioc_count = 0;
10253 			qreply(q, mp);
10254 		}
10255 		return;
10256 
10257 	case IP_IOCTL:
10258 		ip_wput_ioctl(q, mp);
10259 		return;
10260 	default:
10261 		cmn_err(CE_PANIC, "should not happen ");
10262 	}
10263 nak:
10264 	if (mp->b_cont != NULL) {
10265 		freemsg(mp->b_cont);
10266 		mp->b_cont = NULL;
10267 	}
10268 	iocp->ioc_error = EINVAL;
10269 	mp->b_datap->db_type = M_IOCNAK;
10270 	iocp->ioc_count = 0;
10271 	qreply(q, mp);
10272 }
10273 
10274 /* ip_wput hands off ARP IOCTL responses to us */
10275 void
10276 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10277 {
10278 	struct arpreq *ar;
10279 	struct xarpreq *xar;
10280 	area_t	*area;
10281 	mblk_t	*area_mp;
10282 	struct iocblk *iocp;
10283 	mblk_t	*orig_ioc_mp, *tmp;
10284 	struct iocblk	*orig_iocp;
10285 	ill_t *ill;
10286 	conn_t *connp = NULL;
10287 	uint_t ioc_id;
10288 	mblk_t *pending_mp;
10289 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10290 	int *flagsp;
10291 	char *storage = NULL;
10292 	sin_t *sin;
10293 	ipaddr_t addr;
10294 	int err;
10295 	ip_stack_t *ipst;
10296 
10297 	ill = q->q_ptr;
10298 	ASSERT(ill != NULL);
10299 	ipst = ill->ill_ipst;
10300 
10301 	/*
10302 	 * We should get back from ARP a packet chain that looks like:
10303 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10304 	 */
10305 	if (!(area_mp = mp->b_cont) ||
10306 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10307 	    !(orig_ioc_mp = area_mp->b_cont) ||
10308 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10309 		freemsg(mp);
10310 		return;
10311 	}
10312 
10313 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10314 
10315 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10316 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10317 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10318 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10319 		x_arp_ioctl = B_TRUE;
10320 		xar = (struct xarpreq *)tmp->b_rptr;
10321 		sin = (sin_t *)&xar->xarp_pa;
10322 		flagsp = &xar->xarp_flags;
10323 		storage = xar->xarp_ha.sdl_data;
10324 		if (xar->xarp_ha.sdl_nlen != 0)
10325 			ifx_arp_ioctl = B_TRUE;
10326 	} else {
10327 		ar = (struct arpreq *)tmp->b_rptr;
10328 		sin = (sin_t *)&ar->arp_pa;
10329 		flagsp = &ar->arp_flags;
10330 		storage = ar->arp_ha.sa_data;
10331 	}
10332 
10333 	iocp = (struct iocblk *)mp->b_rptr;
10334 
10335 	/*
10336 	 * Pick out the originating queue based on the ioc_id.
10337 	 */
10338 	ioc_id = iocp->ioc_id;
10339 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10340 	if (pending_mp == NULL) {
10341 		ASSERT(connp == NULL);
10342 		inet_freemsg(mp);
10343 		return;
10344 	}
10345 	ASSERT(connp != NULL);
10346 	q = CONNP_TO_WQ(connp);
10347 
10348 	/* Uncouple the internally generated IOCTL from the original one */
10349 	area = (area_t *)area_mp->b_rptr;
10350 	area_mp->b_cont = NULL;
10351 
10352 	/*
10353 	 * Restore the b_next and b_prev used by mi code. This is needed
10354 	 * to complete the ioctl using mi* functions. We stored them in
10355 	 * the pending mp prior to sending the request to ARP.
10356 	 */
10357 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10358 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10359 	inet_freemsg(pending_mp);
10360 
10361 	/*
10362 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10363 	 * Catch the case where there is an IRE_CACHE by no entry in the
10364 	 * arp table.
10365 	 */
10366 	addr = sin->sin_addr.s_addr;
10367 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10368 		ire_t			*ire;
10369 		dl_unitdata_req_t	*dlup;
10370 		mblk_t			*llmp;
10371 		int			addr_len;
10372 		ill_t			*ipsqill = NULL;
10373 
10374 		if (ifx_arp_ioctl) {
10375 			/*
10376 			 * There's no need to lookup the ill, since
10377 			 * we've already done that when we started
10378 			 * processing the ioctl and sent the message
10379 			 * to ARP on that ill.  So use the ill that
10380 			 * is stored in q->q_ptr.
10381 			 */
10382 			ipsqill = ill;
10383 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10384 			    ipsqill->ill_ipif, ALL_ZONES,
10385 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10386 		} else {
10387 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10388 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10389 			if (ire != NULL)
10390 				ipsqill = ire_to_ill(ire);
10391 		}
10392 
10393 		if ((x_arp_ioctl) && (ipsqill != NULL))
10394 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10395 
10396 		if (ire != NULL) {
10397 			/*
10398 			 * Since the ire obtained from cachetable is used for
10399 			 * mac addr copying below, treat an incomplete ire as if
10400 			 * as if we never found it.
10401 			 */
10402 			if (ire->ire_nce != NULL &&
10403 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10404 				ire_refrele(ire);
10405 				ire = NULL;
10406 				ipsqill = NULL;
10407 				goto errack;
10408 			}
10409 			*flagsp = ATF_INUSE;
10410 			llmp = (ire->ire_nce != NULL ?
10411 			    ire->ire_nce->nce_res_mp : NULL);
10412 			if (llmp != NULL && ipsqill != NULL) {
10413 				uchar_t *macaddr;
10414 
10415 				addr_len = ipsqill->ill_phys_addr_length;
10416 				if (x_arp_ioctl && ((addr_len +
10417 				    ipsqill->ill_name_length) >
10418 				    sizeof (xar->xarp_ha.sdl_data))) {
10419 					ire_refrele(ire);
10420 					freemsg(mp);
10421 					ip_ioctl_finish(q, orig_ioc_mp,
10422 					    EINVAL, NO_COPYOUT, NULL);
10423 					return;
10424 				}
10425 				*flagsp |= ATF_COM;
10426 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10427 				if (ipsqill->ill_sap_length < 0)
10428 					macaddr = llmp->b_rptr +
10429 					    dlup->dl_dest_addr_offset;
10430 				else
10431 					macaddr = llmp->b_rptr +
10432 					    dlup->dl_dest_addr_offset +
10433 					    ipsqill->ill_sap_length;
10434 				/*
10435 				 * For SIOCGARP, MAC address length
10436 				 * validation has already been done
10437 				 * before the ioctl was issued to ARP to
10438 				 * allow it to progress only on 6 byte
10439 				 * addressable (ethernet like) media. Thus
10440 				 * the mac address copying can not overwrite
10441 				 * the sa_data area below.
10442 				 */
10443 				bcopy(macaddr, storage, addr_len);
10444 			}
10445 			/* Ditch the internal IOCTL. */
10446 			freemsg(mp);
10447 			ire_refrele(ire);
10448 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10449 			return;
10450 		}
10451 	}
10452 
10453 	/*
10454 	 * Delete the coresponding IRE_CACHE if any.
10455 	 * Reset the error if there was one (in case there was no entry
10456 	 * in arp.)
10457 	 */
10458 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10459 		ipif_t *ipintf = NULL;
10460 
10461 		if (ifx_arp_ioctl) {
10462 			/*
10463 			 * There's no need to lookup the ill, since
10464 			 * we've already done that when we started
10465 			 * processing the ioctl and sent the message
10466 			 * to ARP on that ill.  So use the ill that
10467 			 * is stored in q->q_ptr.
10468 			 */
10469 			ipintf = ill->ill_ipif;
10470 		}
10471 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10472 			/*
10473 			 * The address in "addr" may be an entry for a
10474 			 * router. If that's true, then any off-net
10475 			 * IRE_CACHE entries that go through the router
10476 			 * with address "addr" must be clobbered. Use
10477 			 * ire_walk to achieve this goal.
10478 			 */
10479 			if (ifx_arp_ioctl)
10480 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10481 				    ire_delete_cache_gw, (char *)&addr, ill);
10482 			else
10483 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10484 				    ALL_ZONES, ipst);
10485 			iocp->ioc_error = 0;
10486 		}
10487 	}
10488 errack:
10489 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10490 		err = iocp->ioc_error;
10491 		freemsg(mp);
10492 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10493 		return;
10494 	}
10495 
10496 	/*
10497 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10498 	 * the area_t into the struct {x}arpreq.
10499 	 */
10500 	if (x_arp_ioctl) {
10501 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10502 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10503 		    sizeof (xar->xarp_ha.sdl_data)) {
10504 			freemsg(mp);
10505 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10506 			    NULL);
10507 			return;
10508 		}
10509 	}
10510 	*flagsp = ATF_INUSE;
10511 	if (area->area_flags & ACE_F_PERMANENT)
10512 		*flagsp |= ATF_PERM;
10513 	if (area->area_flags & ACE_F_PUBLISH)
10514 		*flagsp |= ATF_PUBL;
10515 	if (area->area_flags & ACE_F_AUTHORITY)
10516 		*flagsp |= ATF_AUTHORITY;
10517 	if (area->area_hw_addr_length != 0) {
10518 		*flagsp |= ATF_COM;
10519 		/*
10520 		 * For SIOCGARP, MAC address length validation has
10521 		 * already been done before the ioctl was issued to ARP
10522 		 * to allow it to progress only on 6 byte addressable
10523 		 * (ethernet like) media. Thus the mac address copying
10524 		 * can not overwrite the sa_data area below.
10525 		 */
10526 		bcopy((char *)area + area->area_hw_addr_offset,
10527 		    storage, area->area_hw_addr_length);
10528 	}
10529 
10530 	/* Ditch the internal IOCTL. */
10531 	freemsg(mp);
10532 	/* Complete the original. */
10533 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10534 }
10535 
10536 /*
10537  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10538  * interface) create the next available logical interface for this
10539  * physical interface.
10540  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10541  * ipif with the specified name.
10542  *
10543  * If the address family is not AF_UNSPEC then set the address as well.
10544  *
10545  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10546  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10547  *
10548  * Executed as a writer on the ill or ill group.
10549  * So no lock is needed to traverse the ipif chain, or examine the
10550  * phyint flags.
10551  */
10552 /* ARGSUSED */
10553 int
10554 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10555     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10556 {
10557 	mblk_t	*mp1;
10558 	struct lifreq *lifr;
10559 	boolean_t	isv6;
10560 	boolean_t	exists;
10561 	char 	*name;
10562 	char	*endp;
10563 	char	*cp;
10564 	int	namelen;
10565 	ipif_t	*ipif;
10566 	long	id;
10567 	ipsq_t	*ipsq;
10568 	ill_t	*ill;
10569 	sin_t	*sin;
10570 	int	err = 0;
10571 	boolean_t found_sep = B_FALSE;
10572 	conn_t	*connp;
10573 	zoneid_t zoneid;
10574 	int	orig_ifindex = 0;
10575 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10576 
10577 	ASSERT(q->q_next == NULL);
10578 	ip1dbg(("ip_sioctl_addif\n"));
10579 	/* Existence of mp1 has been checked in ip_wput_nondata */
10580 	mp1 = mp->b_cont->b_cont;
10581 	/*
10582 	 * Null terminate the string to protect against buffer
10583 	 * overrun. String was generated by user code and may not
10584 	 * be trusted.
10585 	 */
10586 	lifr = (struct lifreq *)mp1->b_rptr;
10587 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10588 	name = lifr->lifr_name;
10589 	ASSERT(CONN_Q(q));
10590 	connp = Q_TO_CONN(q);
10591 	isv6 = connp->conn_af_isv6;
10592 	zoneid = connp->conn_zoneid;
10593 	namelen = mi_strlen(name);
10594 	if (namelen == 0)
10595 		return (EINVAL);
10596 
10597 	exists = B_FALSE;
10598 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10599 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10600 		/*
10601 		 * Allow creating lo0 using SIOCLIFADDIF.
10602 		 * can't be any other writer thread. So can pass null below
10603 		 * for the last 4 args to ipif_lookup_name.
10604 		 */
10605 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10606 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10607 		/* Prevent any further action */
10608 		if (ipif == NULL) {
10609 			return (ENOBUFS);
10610 		} else if (!exists) {
10611 			/* We created the ipif now and as writer */
10612 			ipif_refrele(ipif);
10613 			return (0);
10614 		} else {
10615 			ill = ipif->ipif_ill;
10616 			ill_refhold(ill);
10617 			ipif_refrele(ipif);
10618 		}
10619 	} else {
10620 		/* Look for a colon in the name. */
10621 		endp = &name[namelen];
10622 		for (cp = endp; --cp > name; ) {
10623 			if (*cp == IPIF_SEPARATOR_CHAR) {
10624 				found_sep = B_TRUE;
10625 				/*
10626 				 * Reject any non-decimal aliases for plumbing
10627 				 * of logical interfaces. Aliases with leading
10628 				 * zeroes are also rejected as they introduce
10629 				 * ambiguity in the naming of the interfaces.
10630 				 * Comparing with "0" takes care of all such
10631 				 * cases.
10632 				 */
10633 				if ((strncmp("0", cp+1, 1)) == 0)
10634 					return (EINVAL);
10635 
10636 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10637 				    id <= 0 || *endp != '\0') {
10638 					return (EINVAL);
10639 				}
10640 				*cp = '\0';
10641 				break;
10642 			}
10643 		}
10644 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10645 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10646 		if (found_sep)
10647 			*cp = IPIF_SEPARATOR_CHAR;
10648 		if (ill == NULL)
10649 			return (err);
10650 	}
10651 
10652 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10653 	    B_TRUE);
10654 
10655 	/*
10656 	 * Release the refhold due to the lookup, now that we are excl
10657 	 * or we are just returning
10658 	 */
10659 	ill_refrele(ill);
10660 
10661 	if (ipsq == NULL)
10662 		return (EINPROGRESS);
10663 
10664 	/*
10665 	 * If the interface is failed, inactive or offlined, look for a working
10666 	 * interface in the ill group and create the ipif there. If we can't
10667 	 * find a good interface, create the ipif anyway so that in.mpathd can
10668 	 * move it to the first repaired interface.
10669 	 */
10670 	if ((ill->ill_phyint->phyint_flags &
10671 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10672 	    ill->ill_phyint->phyint_groupname_len != 0) {
10673 		phyint_t *phyi;
10674 		char *groupname = ill->ill_phyint->phyint_groupname;
10675 
10676 		/*
10677 		 * We're looking for a working interface, but it doesn't matter
10678 		 * if it's up or down; so instead of following the group lists,
10679 		 * we look at each physical interface and compare the groupname.
10680 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
10681 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10682 		 * Otherwise we create the ipif on the failed interface.
10683 		 */
10684 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10685 		phyi = avl_first(&ipst->ips_phyint_g_list->
10686 		    phyint_list_avl_by_index);
10687 		for (; phyi != NULL;
10688 		    phyi = avl_walk(&ipst->ips_phyint_g_list->
10689 		    phyint_list_avl_by_index,
10690 		    phyi, AVL_AFTER)) {
10691 			if (phyi->phyint_groupname_len == 0)
10692 				continue;
10693 			ASSERT(phyi->phyint_groupname != NULL);
10694 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
10695 			    !(phyi->phyint_flags &
10696 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10697 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
10698 			    (phyi->phyint_illv4 != NULL))) {
10699 				break;
10700 			}
10701 		}
10702 		rw_exit(&ipst->ips_ill_g_lock);
10703 
10704 		if (phyi != NULL) {
10705 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
10706 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
10707 			    phyi->phyint_illv4);
10708 		}
10709 	}
10710 
10711 	/*
10712 	 * We are now exclusive on the ipsq, so an ill move will be serialized
10713 	 * before or after us.
10714 	 */
10715 	ASSERT(IAM_WRITER_ILL(ill));
10716 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10717 
10718 	if (found_sep && orig_ifindex == 0) {
10719 		/* Now see if there is an IPIF with this unit number. */
10720 		for (ipif = ill->ill_ipif; ipif != NULL;
10721 		    ipif = ipif->ipif_next) {
10722 			if (ipif->ipif_id == id) {
10723 				err = EEXIST;
10724 				goto done;
10725 			}
10726 		}
10727 	}
10728 
10729 	/*
10730 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10731 	 * of lo0. We never come here when we plumb lo0:0. It
10732 	 * happens in ipif_lookup_on_name.
10733 	 * The specified unit number is ignored when we create the ipif on a
10734 	 * different interface. However, we save it in ipif_orig_ipifid below so
10735 	 * that the ipif fails back to the right position.
10736 	 */
10737 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
10738 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
10739 		err = ENOBUFS;
10740 		goto done;
10741 	}
10742 
10743 	/* Return created name with ioctl */
10744 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10745 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10746 	ip1dbg(("created %s\n", lifr->lifr_name));
10747 
10748 	/* Set address */
10749 	sin = (sin_t *)&lifr->lifr_addr;
10750 	if (sin->sin_family != AF_UNSPEC) {
10751 		err = ip_sioctl_addr(ipif, sin, q, mp,
10752 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10753 	}
10754 
10755 	/* Set ifindex and unit number for failback */
10756 	if (err == 0 && orig_ifindex != 0) {
10757 		ipif->ipif_orig_ifindex = orig_ifindex;
10758 		if (found_sep) {
10759 			ipif->ipif_orig_ipifid = id;
10760 		}
10761 	}
10762 
10763 done:
10764 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
10765 	return (err);
10766 }
10767 
10768 /*
10769  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10770  * interface) delete it based on the IP address (on this physical interface).
10771  * Otherwise delete it based on the ipif_id.
10772  * Also, special handling to allow a removeif of lo0.
10773  */
10774 /* ARGSUSED */
10775 int
10776 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10777     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10778 {
10779 	conn_t		*connp;
10780 	ill_t		*ill = ipif->ipif_ill;
10781 	boolean_t	 success;
10782 	ip_stack_t	*ipst;
10783 
10784 	ipst = CONNQ_TO_IPST(q);
10785 
10786 	ASSERT(q->q_next == NULL);
10787 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10788 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10789 	ASSERT(IAM_WRITER_IPIF(ipif));
10790 
10791 	connp = Q_TO_CONN(q);
10792 	/*
10793 	 * Special case for unplumbing lo0 (the loopback physical interface).
10794 	 * If unplumbing lo0, the incoming address structure has been
10795 	 * initialized to all zeros. When unplumbing lo0, all its logical
10796 	 * interfaces must be removed too.
10797 	 *
10798 	 * Note that this interface may be called to remove a specific
10799 	 * loopback logical interface (eg, lo0:1). But in that case
10800 	 * ipif->ipif_id != 0 so that the code path for that case is the
10801 	 * same as any other interface (meaning it skips the code directly
10802 	 * below).
10803 	 */
10804 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10805 		if (sin->sin_family == AF_UNSPEC &&
10806 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10807 			/*
10808 			 * Mark it condemned. No new ref. will be made to ill.
10809 			 */
10810 			mutex_enter(&ill->ill_lock);
10811 			ill->ill_state_flags |= ILL_CONDEMNED;
10812 			for (ipif = ill->ill_ipif; ipif != NULL;
10813 			    ipif = ipif->ipif_next) {
10814 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10815 			}
10816 			mutex_exit(&ill->ill_lock);
10817 
10818 			ipif = ill->ill_ipif;
10819 			/* unplumb the loopback interface */
10820 			ill_delete(ill);
10821 			mutex_enter(&connp->conn_lock);
10822 			mutex_enter(&ill->ill_lock);
10823 			ASSERT(ill->ill_group == NULL);
10824 
10825 			/* Are any references to this ill active */
10826 			if (ill_is_quiescent(ill)) {
10827 				mutex_exit(&ill->ill_lock);
10828 				mutex_exit(&connp->conn_lock);
10829 				ill_delete_tail(ill);
10830 				mi_free(ill);
10831 				return (0);
10832 			}
10833 			success = ipsq_pending_mp_add(connp, ipif,
10834 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10835 			mutex_exit(&connp->conn_lock);
10836 			mutex_exit(&ill->ill_lock);
10837 			if (success)
10838 				return (EINPROGRESS);
10839 			else
10840 				return (EINTR);
10841 		}
10842 	}
10843 
10844 	/*
10845 	 * We are exclusive on the ipsq, so an ill move will be serialized
10846 	 * before or after us.
10847 	 */
10848 	ASSERT(ill->ill_move_in_progress == B_FALSE);
10849 
10850 	if (ipif->ipif_id == 0) {
10851 		/* Find based on address */
10852 		if (ipif->ipif_isv6) {
10853 			sin6_t *sin6;
10854 
10855 			if (sin->sin_family != AF_INET6)
10856 				return (EAFNOSUPPORT);
10857 
10858 			sin6 = (sin6_t *)sin;
10859 			/* We are a writer, so we should be able to lookup */
10860 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10861 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
10862 			if (ipif == NULL) {
10863 				/*
10864 				 * Maybe the address in on another interface in
10865 				 * the same IPMP group? We check this below.
10866 				 */
10867 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10868 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
10869 				    ipst);
10870 			}
10871 		} else {
10872 			ipaddr_t addr;
10873 
10874 			if (sin->sin_family != AF_INET)
10875 				return (EAFNOSUPPORT);
10876 
10877 			addr = sin->sin_addr.s_addr;
10878 			/* We are a writer, so we should be able to lookup */
10879 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
10880 			    NULL, NULL, NULL, ipst);
10881 			if (ipif == NULL) {
10882 				/*
10883 				 * Maybe the address in on another interface in
10884 				 * the same IPMP group? We check this below.
10885 				 */
10886 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
10887 				    NULL, NULL, NULL, NULL, ipst);
10888 			}
10889 		}
10890 		if (ipif == NULL) {
10891 			return (EADDRNOTAVAIL);
10892 		}
10893 		/*
10894 		 * When the address to be removed is hosted on a different
10895 		 * interface, we check if the interface is in the same IPMP
10896 		 * group as the specified one; if so we proceed with the
10897 		 * removal.
10898 		 * ill->ill_group is NULL when the ill is down, so we have to
10899 		 * compare the group names instead.
10900 		 */
10901 		if (ipif->ipif_ill != ill &&
10902 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
10903 		    ill->ill_phyint->phyint_groupname_len == 0 ||
10904 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
10905 		    ill->ill_phyint->phyint_groupname) != 0)) {
10906 			ipif_refrele(ipif);
10907 			return (EADDRNOTAVAIL);
10908 		}
10909 
10910 		/* This is a writer */
10911 		ipif_refrele(ipif);
10912 	}
10913 
10914 	/*
10915 	 * Can not delete instance zero since it is tied to the ill.
10916 	 */
10917 	if (ipif->ipif_id == 0)
10918 		return (EBUSY);
10919 
10920 	mutex_enter(&ill->ill_lock);
10921 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10922 	mutex_exit(&ill->ill_lock);
10923 
10924 	ipif_free(ipif);
10925 
10926 	mutex_enter(&connp->conn_lock);
10927 	mutex_enter(&ill->ill_lock);
10928 
10929 	/* Are any references to this ipif active */
10930 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
10931 		mutex_exit(&ill->ill_lock);
10932 		mutex_exit(&connp->conn_lock);
10933 		ipif_non_duplicate(ipif);
10934 		ipif_down_tail(ipif);
10935 		ipif_free_tail(ipif);
10936 		return (0);
10937 	}
10938 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10939 	    IPIF_FREE);
10940 	mutex_exit(&ill->ill_lock);
10941 	mutex_exit(&connp->conn_lock);
10942 	if (success)
10943 		return (EINPROGRESS);
10944 	else
10945 		return (EINTR);
10946 }
10947 
10948 /*
10949  * Restart the removeif ioctl. The refcnt has gone down to 0.
10950  * The ipif is already condemned. So can't find it thru lookups.
10951  */
10952 /* ARGSUSED */
10953 int
10954 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10955     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10956 {
10957 	ill_t *ill = ipif->ipif_ill;
10958 
10959 	ASSERT(IAM_WRITER_IPIF(ipif));
10960 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10961 
10962 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10963 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10964 
10965 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10966 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10967 		ill_delete_tail(ill);
10968 		mi_free(ill);
10969 		return (0);
10970 	}
10971 
10972 	ipif_non_duplicate(ipif);
10973 	ipif_down_tail(ipif);
10974 	ipif_free_tail(ipif);
10975 
10976 	ILL_UNMARK_CHANGING(ill);
10977 	return (0);
10978 }
10979 
10980 /*
10981  * Set the local interface address.
10982  * Allow an address of all zero when the interface is down.
10983  */
10984 /* ARGSUSED */
10985 int
10986 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10987     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10988 {
10989 	int err = 0;
10990 	in6_addr_t v6addr;
10991 	boolean_t need_up = B_FALSE;
10992 
10993 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10994 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10995 
10996 	ASSERT(IAM_WRITER_IPIF(ipif));
10997 
10998 	if (ipif->ipif_isv6) {
10999 		sin6_t *sin6;
11000 		ill_t *ill;
11001 		phyint_t *phyi;
11002 
11003 		if (sin->sin_family != AF_INET6)
11004 			return (EAFNOSUPPORT);
11005 
11006 		sin6 = (sin6_t *)sin;
11007 		v6addr = sin6->sin6_addr;
11008 		ill = ipif->ipif_ill;
11009 		phyi = ill->ill_phyint;
11010 
11011 		/*
11012 		 * Enforce that true multicast interfaces have a link-local
11013 		 * address for logical unit 0.
11014 		 */
11015 		if (ipif->ipif_id == 0 &&
11016 		    (ill->ill_flags & ILLF_MULTICAST) &&
11017 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11018 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11019 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11020 			return (EADDRNOTAVAIL);
11021 		}
11022 
11023 		/*
11024 		 * up interfaces shouldn't have the unspecified address
11025 		 * unless they also have the IPIF_NOLOCAL flags set and
11026 		 * have a subnet assigned.
11027 		 */
11028 		if ((ipif->ipif_flags & IPIF_UP) &&
11029 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11030 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11031 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11032 			return (EADDRNOTAVAIL);
11033 		}
11034 
11035 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11036 			return (EADDRNOTAVAIL);
11037 	} else {
11038 		ipaddr_t addr;
11039 
11040 		if (sin->sin_family != AF_INET)
11041 			return (EAFNOSUPPORT);
11042 
11043 		addr = sin->sin_addr.s_addr;
11044 
11045 		/* Allow 0 as the local address. */
11046 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11047 			return (EADDRNOTAVAIL);
11048 
11049 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11050 	}
11051 
11052 
11053 	/*
11054 	 * Even if there is no change we redo things just to rerun
11055 	 * ipif_set_default.
11056 	 */
11057 	if (ipif->ipif_flags & IPIF_UP) {
11058 		/*
11059 		 * Setting a new local address, make sure
11060 		 * we have net and subnet bcast ire's for
11061 		 * the old address if we need them.
11062 		 */
11063 		if (!ipif->ipif_isv6)
11064 			ipif_check_bcast_ires(ipif);
11065 		/*
11066 		 * If the interface is already marked up,
11067 		 * we call ipif_down which will take care
11068 		 * of ditching any IREs that have been set
11069 		 * up based on the old interface address.
11070 		 */
11071 		err = ipif_logical_down(ipif, q, mp);
11072 		if (err == EINPROGRESS)
11073 			return (err);
11074 		ipif_down_tail(ipif);
11075 		need_up = 1;
11076 	}
11077 
11078 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11079 	return (err);
11080 }
11081 
11082 int
11083 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11084     boolean_t need_up)
11085 {
11086 	in6_addr_t v6addr;
11087 	in6_addr_t ov6addr;
11088 	ipaddr_t addr;
11089 	sin6_t	*sin6;
11090 	int	sinlen;
11091 	int	err = 0;
11092 	ill_t	*ill = ipif->ipif_ill;
11093 	boolean_t need_dl_down;
11094 	boolean_t need_arp_down;
11095 	struct iocblk *iocp;
11096 
11097 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11098 
11099 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11100 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11101 	ASSERT(IAM_WRITER_IPIF(ipif));
11102 
11103 	/* Must cancel any pending timer before taking the ill_lock */
11104 	if (ipif->ipif_recovery_id != 0)
11105 		(void) untimeout(ipif->ipif_recovery_id);
11106 	ipif->ipif_recovery_id = 0;
11107 
11108 	if (ipif->ipif_isv6) {
11109 		sin6 = (sin6_t *)sin;
11110 		v6addr = sin6->sin6_addr;
11111 		sinlen = sizeof (struct sockaddr_in6);
11112 	} else {
11113 		addr = sin->sin_addr.s_addr;
11114 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11115 		sinlen = sizeof (struct sockaddr_in);
11116 	}
11117 	mutex_enter(&ill->ill_lock);
11118 	ov6addr = ipif->ipif_v6lcl_addr;
11119 	ipif->ipif_v6lcl_addr = v6addr;
11120 	sctp_update_ipif_addr(ipif, ov6addr);
11121 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11122 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11123 	} else {
11124 		ipif->ipif_v6src_addr = v6addr;
11125 	}
11126 	ipif->ipif_addr_ready = 0;
11127 
11128 	/*
11129 	 * If the interface was previously marked as a duplicate, then since
11130 	 * we've now got a "new" address, it should no longer be considered a
11131 	 * duplicate -- even if the "new" address is the same as the old one.
11132 	 * Note that if all ipifs are down, we may have a pending ARP down
11133 	 * event to handle.  This is because we want to recover from duplicates
11134 	 * and thus delay tearing down ARP until the duplicates have been
11135 	 * removed or disabled.
11136 	 */
11137 	need_dl_down = need_arp_down = B_FALSE;
11138 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11139 		need_arp_down = !need_up;
11140 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11141 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11142 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11143 			need_dl_down = B_TRUE;
11144 		}
11145 	}
11146 
11147 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11148 	    !ill->ill_is_6to4tun) {
11149 		queue_t *wqp = ill->ill_wq;
11150 
11151 		/*
11152 		 * The local address of this interface is a 6to4 address,
11153 		 * check if this interface is in fact a 6to4 tunnel or just
11154 		 * an interface configured with a 6to4 address.  We are only
11155 		 * interested in the former.
11156 		 */
11157 		if (wqp != NULL) {
11158 			while ((wqp->q_next != NULL) &&
11159 			    (wqp->q_next->q_qinfo != NULL) &&
11160 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11161 
11162 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11163 				    == TUN6TO4_MODID) {
11164 					/* set for use in IP */
11165 					ill->ill_is_6to4tun = 1;
11166 					break;
11167 				}
11168 				wqp = wqp->q_next;
11169 			}
11170 		}
11171 	}
11172 
11173 	ipif_set_default(ipif);
11174 
11175 	/*
11176 	 * When publishing an interface address change event, we only notify
11177 	 * the event listeners of the new address.  It is assumed that if they
11178 	 * actively care about the addresses assigned that they will have
11179 	 * already discovered the previous address assigned (if there was one.)
11180 	 *
11181 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11182 	 */
11183 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11184 		hook_nic_event_t *info;
11185 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11186 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11187 			    "attached for %s\n", info->hne_event,
11188 			    ill->ill_name));
11189 			if (info->hne_data != NULL)
11190 				kmem_free(info->hne_data, info->hne_datalen);
11191 			kmem_free(info, sizeof (hook_nic_event_t));
11192 		}
11193 
11194 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11195 		if (info != NULL) {
11196 			ip_stack_t	*ipst = ill->ill_ipst;
11197 
11198 			info->hne_nic =
11199 			    ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11200 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11201 			info->hne_event = NE_ADDRESS_CHANGE;
11202 			info->hne_family = ipif->ipif_isv6 ?
11203 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11204 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11205 			if (info->hne_data != NULL) {
11206 				info->hne_datalen = sinlen;
11207 				bcopy(sin, info->hne_data, sinlen);
11208 			} else {
11209 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11210 				    "address information for ADDRESS_CHANGE nic"
11211 				    " event of %s (ENOMEM)\n",
11212 				    ipif->ipif_ill->ill_name));
11213 				kmem_free(info, sizeof (hook_nic_event_t));
11214 			}
11215 		} else
11216 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11217 			    "ADDRESS_CHANGE nic event information for %s "
11218 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11219 
11220 		ipif->ipif_ill->ill_nic_event_info = info;
11221 	}
11222 
11223 	mutex_exit(&ill->ill_lock);
11224 
11225 	if (need_up) {
11226 		/*
11227 		 * Now bring the interface back up.  If this
11228 		 * is the only IPIF for the ILL, ipif_up
11229 		 * will have to re-bind to the device, so
11230 		 * we may get back EINPROGRESS, in which
11231 		 * case, this IOCTL will get completed in
11232 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11233 		 */
11234 		err = ipif_up(ipif, q, mp);
11235 	}
11236 
11237 	if (need_dl_down)
11238 		ill_dl_down(ill);
11239 	if (need_arp_down)
11240 		ipif_arp_down(ipif);
11241 
11242 	return (err);
11243 }
11244 
11245 
11246 /*
11247  * Restart entry point to restart the address set operation after the
11248  * refcounts have dropped to zero.
11249  */
11250 /* ARGSUSED */
11251 int
11252 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11253     ip_ioctl_cmd_t *ipip, void *ifreq)
11254 {
11255 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11256 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11257 	ASSERT(IAM_WRITER_IPIF(ipif));
11258 	ipif_down_tail(ipif);
11259 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11260 }
11261 
11262 /* ARGSUSED */
11263 int
11264 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11265     ip_ioctl_cmd_t *ipip, void *if_req)
11266 {
11267 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11268 	struct lifreq *lifr = (struct lifreq *)if_req;
11269 
11270 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11271 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11272 	/*
11273 	 * The net mask and address can't change since we have a
11274 	 * reference to the ipif. So no lock is necessary.
11275 	 */
11276 	if (ipif->ipif_isv6) {
11277 		*sin6 = sin6_null;
11278 		sin6->sin6_family = AF_INET6;
11279 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11280 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11281 		lifr->lifr_addrlen =
11282 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11283 	} else {
11284 		*sin = sin_null;
11285 		sin->sin_family = AF_INET;
11286 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11287 		if (ipip->ipi_cmd_type == LIF_CMD) {
11288 			lifr->lifr_addrlen =
11289 			    ip_mask_to_plen(ipif->ipif_net_mask);
11290 		}
11291 	}
11292 	return (0);
11293 }
11294 
11295 /*
11296  * Set the destination address for a pt-pt interface.
11297  */
11298 /* ARGSUSED */
11299 int
11300 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11301     ip_ioctl_cmd_t *ipip, void *if_req)
11302 {
11303 	int err = 0;
11304 	in6_addr_t v6addr;
11305 	boolean_t need_up = B_FALSE;
11306 
11307 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11308 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11309 	ASSERT(IAM_WRITER_IPIF(ipif));
11310 
11311 	if (ipif->ipif_isv6) {
11312 		sin6_t *sin6;
11313 
11314 		if (sin->sin_family != AF_INET6)
11315 			return (EAFNOSUPPORT);
11316 
11317 		sin6 = (sin6_t *)sin;
11318 		v6addr = sin6->sin6_addr;
11319 
11320 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11321 			return (EADDRNOTAVAIL);
11322 	} else {
11323 		ipaddr_t addr;
11324 
11325 		if (sin->sin_family != AF_INET)
11326 			return (EAFNOSUPPORT);
11327 
11328 		addr = sin->sin_addr.s_addr;
11329 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11330 			return (EADDRNOTAVAIL);
11331 
11332 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11333 	}
11334 
11335 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11336 		return (0);	/* No change */
11337 
11338 	if (ipif->ipif_flags & IPIF_UP) {
11339 		/*
11340 		 * If the interface is already marked up,
11341 		 * we call ipif_down which will take care
11342 		 * of ditching any IREs that have been set
11343 		 * up based on the old pp dst address.
11344 		 */
11345 		err = ipif_logical_down(ipif, q, mp);
11346 		if (err == EINPROGRESS)
11347 			return (err);
11348 		ipif_down_tail(ipif);
11349 		need_up = B_TRUE;
11350 	}
11351 	/*
11352 	 * could return EINPROGRESS. If so ioctl will complete in
11353 	 * ip_rput_dlpi_writer
11354 	 */
11355 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11356 	return (err);
11357 }
11358 
11359 static int
11360 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11361     boolean_t need_up)
11362 {
11363 	in6_addr_t v6addr;
11364 	ill_t	*ill = ipif->ipif_ill;
11365 	int	err = 0;
11366 	boolean_t need_dl_down;
11367 	boolean_t need_arp_down;
11368 
11369 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11370 	    ipif->ipif_id, (void *)ipif));
11371 
11372 	/* Must cancel any pending timer before taking the ill_lock */
11373 	if (ipif->ipif_recovery_id != 0)
11374 		(void) untimeout(ipif->ipif_recovery_id);
11375 	ipif->ipif_recovery_id = 0;
11376 
11377 	if (ipif->ipif_isv6) {
11378 		sin6_t *sin6;
11379 
11380 		sin6 = (sin6_t *)sin;
11381 		v6addr = sin6->sin6_addr;
11382 	} else {
11383 		ipaddr_t addr;
11384 
11385 		addr = sin->sin_addr.s_addr;
11386 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11387 	}
11388 	mutex_enter(&ill->ill_lock);
11389 	/* Set point to point destination address. */
11390 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11391 		/*
11392 		 * Allow this as a means of creating logical
11393 		 * pt-pt interfaces on top of e.g. an Ethernet.
11394 		 * XXX Undocumented HACK for testing.
11395 		 * pt-pt interfaces are created with NUD disabled.
11396 		 */
11397 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11398 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11399 		if (ipif->ipif_isv6)
11400 			ill->ill_flags |= ILLF_NONUD;
11401 	}
11402 
11403 	/*
11404 	 * If the interface was previously marked as a duplicate, then since
11405 	 * we've now got a "new" address, it should no longer be considered a
11406 	 * duplicate -- even if the "new" address is the same as the old one.
11407 	 * Note that if all ipifs are down, we may have a pending ARP down
11408 	 * event to handle.
11409 	 */
11410 	need_dl_down = need_arp_down = B_FALSE;
11411 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11412 		need_arp_down = !need_up;
11413 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11414 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11415 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11416 			need_dl_down = B_TRUE;
11417 		}
11418 	}
11419 
11420 	/* Set the new address. */
11421 	ipif->ipif_v6pp_dst_addr = v6addr;
11422 	/* Make sure subnet tracks pp_dst */
11423 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11424 	mutex_exit(&ill->ill_lock);
11425 
11426 	if (need_up) {
11427 		/*
11428 		 * Now bring the interface back up.  If this
11429 		 * is the only IPIF for the ILL, ipif_up
11430 		 * will have to re-bind to the device, so
11431 		 * we may get back EINPROGRESS, in which
11432 		 * case, this IOCTL will get completed in
11433 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11434 		 */
11435 		err = ipif_up(ipif, q, mp);
11436 	}
11437 
11438 	if (need_dl_down)
11439 		ill_dl_down(ill);
11440 
11441 	if (need_arp_down)
11442 		ipif_arp_down(ipif);
11443 	return (err);
11444 }
11445 
11446 /*
11447  * Restart entry point to restart the dstaddress set operation after the
11448  * refcounts have dropped to zero.
11449  */
11450 /* ARGSUSED */
11451 int
11452 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11453     ip_ioctl_cmd_t *ipip, void *ifreq)
11454 {
11455 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11456 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11457 	ipif_down_tail(ipif);
11458 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11459 }
11460 
11461 /* ARGSUSED */
11462 int
11463 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11464     ip_ioctl_cmd_t *ipip, void *if_req)
11465 {
11466 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11467 
11468 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11469 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11470 	/*
11471 	 * Get point to point destination address. The addresses can't
11472 	 * change since we hold a reference to the ipif.
11473 	 */
11474 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11475 		return (EADDRNOTAVAIL);
11476 
11477 	if (ipif->ipif_isv6) {
11478 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11479 		*sin6 = sin6_null;
11480 		sin6->sin6_family = AF_INET6;
11481 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11482 	} else {
11483 		*sin = sin_null;
11484 		sin->sin_family = AF_INET;
11485 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11486 	}
11487 	return (0);
11488 }
11489 
11490 /*
11491  * part of ipmp, make this func return the active/inactive state and
11492  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11493  */
11494 /*
11495  * This function either sets or clears the IFF_INACTIVE flag.
11496  *
11497  * As long as there are some addresses or multicast memberships on the
11498  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11499  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11500  * will be used for outbound packets.
11501  *
11502  * Caller needs to verify the validity of setting IFF_INACTIVE.
11503  */
11504 static void
11505 phyint_inactive(phyint_t *phyi)
11506 {
11507 	ill_t *ill_v4;
11508 	ill_t *ill_v6;
11509 	ipif_t *ipif;
11510 	ilm_t *ilm;
11511 
11512 	ill_v4 = phyi->phyint_illv4;
11513 	ill_v6 = phyi->phyint_illv6;
11514 
11515 	/*
11516 	 * No need for a lock while traversing the list since iam
11517 	 * a writer
11518 	 */
11519 	if (ill_v4 != NULL) {
11520 		ASSERT(IAM_WRITER_ILL(ill_v4));
11521 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11522 		    ipif = ipif->ipif_next) {
11523 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11524 				mutex_enter(&phyi->phyint_lock);
11525 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11526 				mutex_exit(&phyi->phyint_lock);
11527 				return;
11528 			}
11529 		}
11530 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11531 		    ilm = ilm->ilm_next) {
11532 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11533 				mutex_enter(&phyi->phyint_lock);
11534 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11535 				mutex_exit(&phyi->phyint_lock);
11536 				return;
11537 			}
11538 		}
11539 	}
11540 	if (ill_v6 != NULL) {
11541 		ill_v6 = phyi->phyint_illv6;
11542 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11543 		    ipif = ipif->ipif_next) {
11544 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11545 				mutex_enter(&phyi->phyint_lock);
11546 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11547 				mutex_exit(&phyi->phyint_lock);
11548 				return;
11549 			}
11550 		}
11551 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11552 		    ilm = ilm->ilm_next) {
11553 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11554 				mutex_enter(&phyi->phyint_lock);
11555 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11556 				mutex_exit(&phyi->phyint_lock);
11557 				return;
11558 			}
11559 		}
11560 	}
11561 	mutex_enter(&phyi->phyint_lock);
11562 	phyi->phyint_flags |= PHYI_INACTIVE;
11563 	mutex_exit(&phyi->phyint_lock);
11564 }
11565 
11566 /*
11567  * This function is called only when the phyint flags change. Currently
11568  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11569  * that we can select a good ill.
11570  */
11571 static void
11572 ip_redo_nomination(phyint_t *phyi)
11573 {
11574 	ill_t *ill_v4;
11575 
11576 	ill_v4 = phyi->phyint_illv4;
11577 
11578 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11579 		ASSERT(IAM_WRITER_ILL(ill_v4));
11580 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11581 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11582 	}
11583 }
11584 
11585 /*
11586  * Heuristic to check if ill is INACTIVE.
11587  * Checks if ill has an ipif with an usable ip address.
11588  *
11589  * Return values:
11590  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11591  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11592  */
11593 static boolean_t
11594 ill_is_inactive(ill_t *ill)
11595 {
11596 	ipif_t *ipif;
11597 
11598 	/* Check whether it is in an IPMP group */
11599 	if (ill->ill_phyint->phyint_groupname == NULL)
11600 		return (B_FALSE);
11601 
11602 	if (ill->ill_ipif_up_count == 0)
11603 		return (B_TRUE);
11604 
11605 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11606 		uint64_t flags = ipif->ipif_flags;
11607 
11608 		/*
11609 		 * This ipif is usable if it is IPIF_UP and not a
11610 		 * dedicated test address.  A dedicated test address
11611 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11612 		 * (note in particular that V6 test addresses are
11613 		 * link-local data addresses and thus are marked
11614 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11615 		 */
11616 		if ((flags & IPIF_UP) &&
11617 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11618 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11619 			return (B_FALSE);
11620 	}
11621 	return (B_TRUE);
11622 }
11623 
11624 /*
11625  * Set interface flags.
11626  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11627  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11628  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11629  *
11630  * NOTE : We really don't enforce that ipif_id zero should be used
11631  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11632  *	  is because applications generally does SICGLIFFLAGS and
11633  *	  ORs in the new flags (that affects the logical) and does a
11634  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11635  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11636  *	  flags that will be turned on is correct with respect to
11637  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11638  */
11639 /* ARGSUSED */
11640 int
11641 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11642     ip_ioctl_cmd_t *ipip, void *if_req)
11643 {
11644 	uint64_t turn_on;
11645 	uint64_t turn_off;
11646 	int	err;
11647 	boolean_t need_up = B_FALSE;
11648 	phyint_t *phyi;
11649 	ill_t *ill;
11650 	uint64_t intf_flags;
11651 	boolean_t phyint_flags_modified = B_FALSE;
11652 	uint64_t flags;
11653 	struct ifreq *ifr;
11654 	struct lifreq *lifr;
11655 	boolean_t set_linklocal = B_FALSE;
11656 	boolean_t zero_source = B_FALSE;
11657 	ip_stack_t *ipst;
11658 
11659 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11660 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11661 
11662 	ASSERT(IAM_WRITER_IPIF(ipif));
11663 
11664 	ill = ipif->ipif_ill;
11665 	phyi = ill->ill_phyint;
11666 	ipst = ill->ill_ipst;
11667 
11668 	if (ipip->ipi_cmd_type == IF_CMD) {
11669 		ifr = (struct ifreq *)if_req;
11670 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11671 	} else {
11672 		lifr = (struct lifreq *)if_req;
11673 		flags = lifr->lifr_flags;
11674 	}
11675 
11676 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11677 
11678 	/*
11679 	 * Has the flags been set correctly till now ?
11680 	 */
11681 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11682 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11683 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11684 	/*
11685 	 * Compare the new flags to the old, and partition
11686 	 * into those coming on and those going off.
11687 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11688 	 */
11689 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11690 		flags |= intf_flags & ~0xFFFF;
11691 
11692 	/*
11693 	 * First check which bits will change and then which will
11694 	 * go on and off
11695 	 */
11696 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
11697 	if (!turn_on)
11698 		return (0);	/* No change */
11699 
11700 	turn_off = intf_flags & turn_on;
11701 	turn_on ^= turn_off;
11702 	err = 0;
11703 
11704 	/*
11705 	 * Don't allow any bits belonging to the logical interface
11706 	 * to be set or cleared on the replacement ipif that was
11707 	 * created temporarily during a MOVE.
11708 	 */
11709 	if (ipif->ipif_replace_zero &&
11710 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
11711 		return (EINVAL);
11712 	}
11713 
11714 	/*
11715 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11716 	 * IPv6 interfaces.
11717 	 */
11718 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11719 		return (EINVAL);
11720 
11721 	/*
11722 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
11723 	 */
11724 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11725 		return (EINVAL);
11726 
11727 	/*
11728 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11729 	 * interfaces.  It makes no sense in that context.
11730 	 */
11731 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11732 		return (EINVAL);
11733 
11734 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11735 		zero_source = B_TRUE;
11736 
11737 	/*
11738 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11739 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11740 	 * If the link local address isn't set, and can be set, it will get
11741 	 * set later on in this function.
11742 	 */
11743 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11744 	    (flags & IFF_UP) && !zero_source &&
11745 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11746 		if (ipif_cant_setlinklocal(ipif))
11747 			return (EINVAL);
11748 		set_linklocal = B_TRUE;
11749 	}
11750 
11751 	/*
11752 	 * ILL cannot be part of a usesrc group and and IPMP group at the
11753 	 * same time. No need to grab ill_g_usesrc_lock here, see
11754 	 * synchronization notes in ip.c
11755 	 */
11756 	if (turn_on & PHYI_STANDBY &&
11757 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
11758 		return (EINVAL);
11759 	}
11760 
11761 	/*
11762 	 * If we modify physical interface flags, we'll potentially need to
11763 	 * send up two routing socket messages for the changes (one for the
11764 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11765 	 */
11766 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11767 		phyint_flags_modified = B_TRUE;
11768 
11769 	/*
11770 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
11771 	 * we need to flush the IRE_CACHES belonging to this ill.
11772 	 * We handle this case here without doing the DOWN/UP dance
11773 	 * like it is done for other flags. If some other flags are
11774 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
11775 	 * below will handle it by bringing it down and then
11776 	 * bringing it UP.
11777 	 */
11778 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
11779 		ill_t *ill_v4, *ill_v6;
11780 
11781 		ill_v4 = phyi->phyint_illv4;
11782 		ill_v6 = phyi->phyint_illv6;
11783 
11784 		/*
11785 		 * First set the INACTIVE flag if needed. Then delete the ires.
11786 		 * ire_add will atomically prevent creating new IRE_CACHEs
11787 		 * unless hidden flag is set.
11788 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
11789 		 */
11790 		if ((turn_on & PHYI_FAILED) &&
11791 		    ((intf_flags & PHYI_STANDBY) ||
11792 		    !ipst->ips_ipmp_enable_failback)) {
11793 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
11794 			phyi->phyint_flags &= ~PHYI_INACTIVE;
11795 		}
11796 		if ((turn_off & PHYI_FAILED) &&
11797 		    ((intf_flags & PHYI_STANDBY) ||
11798 		    (!ipst->ips_ipmp_enable_failback &&
11799 		    ill_is_inactive(ill)))) {
11800 			phyint_inactive(phyi);
11801 		}
11802 
11803 		if (turn_on & PHYI_STANDBY) {
11804 			/*
11805 			 * We implicitly set INACTIVE only when STANDBY is set.
11806 			 * INACTIVE is also set on non-STANDBY phyint when user
11807 			 * disables FAILBACK using configuration file.
11808 			 * Do not allow STANDBY to be set on such INACTIVE
11809 			 * phyint
11810 			 */
11811 			if (phyi->phyint_flags & PHYI_INACTIVE)
11812 				return (EINVAL);
11813 			if (!(phyi->phyint_flags & PHYI_FAILED))
11814 				phyint_inactive(phyi);
11815 		}
11816 		if (turn_off & PHYI_STANDBY) {
11817 			if (ipst->ips_ipmp_enable_failback) {
11818 				/*
11819 				 * Reset PHYI_INACTIVE.
11820 				 */
11821 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11822 			} else if (ill_is_inactive(ill) &&
11823 			    !(phyi->phyint_flags & PHYI_FAILED)) {
11824 				/*
11825 				 * Need to set INACTIVE, when user sets
11826 				 * STANDBY on a non-STANDBY phyint and
11827 				 * later resets STANDBY
11828 				 */
11829 				phyint_inactive(phyi);
11830 			}
11831 		}
11832 		/*
11833 		 * We should always send up a message so that the
11834 		 * daemons come to know of it. Note that the zeroth
11835 		 * interface can be down and the check below for IPIF_UP
11836 		 * will not make sense as we are actually setting
11837 		 * a phyint flag here. We assume that the ipif used
11838 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
11839 		 * send up any message for non-zero ipifs).
11840 		 */
11841 		phyint_flags_modified = B_TRUE;
11842 
11843 		if (ill_v4 != NULL) {
11844 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11845 			    IRE_CACHE, ill_stq_cache_delete,
11846 			    (char *)ill_v4, ill_v4);
11847 			illgrp_reset_schednext(ill_v4);
11848 		}
11849 		if (ill_v6 != NULL) {
11850 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11851 			    IRE_CACHE, ill_stq_cache_delete,
11852 			    (char *)ill_v6, ill_v6);
11853 			illgrp_reset_schednext(ill_v6);
11854 		}
11855 	}
11856 
11857 	/*
11858 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11859 	 * status of the interface and, if the interface is part of an IPMP
11860 	 * group, all other interfaces that are part of the same IPMP
11861 	 * group.
11862 	 */
11863 	if ((turn_on | turn_off) & ILLF_ROUTER)
11864 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11865 
11866 	/*
11867 	 * If the interface is not UP and we are not going to
11868 	 * bring it UP, record the flags and return. When the
11869 	 * interface comes UP later, the right actions will be
11870 	 * taken.
11871 	 */
11872 	if (!(ipif->ipif_flags & IPIF_UP) &&
11873 	    !(turn_on & IPIF_UP)) {
11874 		/* Record new flags in their respective places. */
11875 		mutex_enter(&ill->ill_lock);
11876 		mutex_enter(&ill->ill_phyint->phyint_lock);
11877 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11878 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11879 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11880 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11881 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11882 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11883 		mutex_exit(&ill->ill_lock);
11884 		mutex_exit(&ill->ill_phyint->phyint_lock);
11885 
11886 		/*
11887 		 * We do the broadcast and nomination here rather
11888 		 * than waiting for a FAILOVER/FAILBACK to happen. In
11889 		 * the case of FAILBACK from INACTIVE standby to the
11890 		 * interface that has been repaired, PHYI_FAILED has not
11891 		 * been cleared yet. If there are only two interfaces in
11892 		 * that group, all we have is a FAILED and INACTIVE
11893 		 * interface. If we do the nomination soon after a failback,
11894 		 * the broadcast nomination code would select the
11895 		 * INACTIVE interface for receiving broadcasts as FAILED is
11896 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
11897 		 * receive broadcast packets, we need to redo nomination
11898 		 * when the FAILED is cleared here. Thus, in general we
11899 		 * always do the nomination here for FAILED, STANDBY
11900 		 * and OFFLINE.
11901 		 */
11902 		if (((turn_on | turn_off) &
11903 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
11904 			ip_redo_nomination(phyi);
11905 		}
11906 		if (phyint_flags_modified) {
11907 			if (phyi->phyint_illv4 != NULL) {
11908 				ip_rts_ifmsg(phyi->phyint_illv4->
11909 				    ill_ipif);
11910 			}
11911 			if (phyi->phyint_illv6 != NULL) {
11912 				ip_rts_ifmsg(phyi->phyint_illv6->
11913 				    ill_ipif);
11914 			}
11915 		}
11916 		return (0);
11917 	} else if (set_linklocal || zero_source) {
11918 		mutex_enter(&ill->ill_lock);
11919 		if (set_linklocal)
11920 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11921 		if (zero_source)
11922 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11923 		mutex_exit(&ill->ill_lock);
11924 	}
11925 
11926 	/*
11927 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11928 	 * or point-to-point interfaces with an unspecified destination. We do
11929 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11930 	 * have a subnet assigned, which is how in.ndpd currently manages its
11931 	 * onlink prefix list when no addresses are configured with those
11932 	 * prefixes.
11933 	 */
11934 	if (ipif->ipif_isv6 &&
11935 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11936 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11937 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11938 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11939 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11940 		return (EINVAL);
11941 	}
11942 
11943 	/*
11944 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11945 	 * from being brought up.
11946 	 */
11947 	if (!ipif->ipif_isv6 &&
11948 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11949 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11950 		return (EINVAL);
11951 	}
11952 
11953 	/*
11954 	 * The only flag changes that we currently take specific action on
11955 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
11956 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
11957 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
11958 	 * the flags and bringing it back up again.
11959 	 */
11960 	if ((turn_on|turn_off) &
11961 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11962 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
11963 		/*
11964 		 * Taking this ipif down, make sure we have
11965 		 * valid net and subnet bcast ire's for other
11966 		 * logical interfaces, if we need them.
11967 		 */
11968 		if (!ipif->ipif_isv6)
11969 			ipif_check_bcast_ires(ipif);
11970 
11971 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11972 		    !(turn_off & IPIF_UP)) {
11973 			need_up = B_TRUE;
11974 			if (ipif->ipif_flags & IPIF_UP)
11975 				ill->ill_logical_down = 1;
11976 			turn_on &= ~IPIF_UP;
11977 		}
11978 		err = ipif_down(ipif, q, mp);
11979 		ip1dbg(("ipif_down returns %d err ", err));
11980 		if (err == EINPROGRESS)
11981 			return (err);
11982 		ipif_down_tail(ipif);
11983 	}
11984 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
11985 }
11986 
11987 static int
11988 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
11989     boolean_t need_up)
11990 {
11991 	ill_t	*ill;
11992 	phyint_t *phyi;
11993 	uint64_t turn_on;
11994 	uint64_t turn_off;
11995 	uint64_t intf_flags;
11996 	boolean_t phyint_flags_modified = B_FALSE;
11997 	int	err = 0;
11998 	boolean_t set_linklocal = B_FALSE;
11999 	boolean_t zero_source = B_FALSE;
12000 
12001 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12002 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
12003 
12004 	ASSERT(IAM_WRITER_IPIF(ipif));
12005 
12006 	ill = ipif->ipif_ill;
12007 	phyi = ill->ill_phyint;
12008 
12009 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12010 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12011 
12012 	turn_off = intf_flags & turn_on;
12013 	turn_on ^= turn_off;
12014 
12015 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12016 		phyint_flags_modified = B_TRUE;
12017 
12018 	/*
12019 	 * Now we change the flags. Track current value of
12020 	 * other flags in their respective places.
12021 	 */
12022 	mutex_enter(&ill->ill_lock);
12023 	mutex_enter(&phyi->phyint_lock);
12024 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12025 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12026 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12027 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12028 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12029 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12030 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12031 		set_linklocal = B_TRUE;
12032 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12033 	}
12034 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12035 		zero_source = B_TRUE;
12036 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12037 	}
12038 	mutex_exit(&ill->ill_lock);
12039 	mutex_exit(&phyi->phyint_lock);
12040 
12041 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12042 		ip_redo_nomination(phyi);
12043 
12044 	if (set_linklocal)
12045 		(void) ipif_setlinklocal(ipif);
12046 
12047 	if (zero_source)
12048 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12049 	else
12050 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12051 
12052 	if (need_up) {
12053 		/*
12054 		 * XXX ipif_up really does not know whether a phyint flags
12055 		 * was modified or not. So, it sends up information on
12056 		 * only one routing sockets message. As we don't bring up
12057 		 * the interface and also set STANDBY/FAILED simultaneously
12058 		 * it should be okay.
12059 		 */
12060 		err = ipif_up(ipif, q, mp);
12061 	} else {
12062 		/*
12063 		 * Make sure routing socket sees all changes to the flags.
12064 		 * ipif_up_done* handles this when we use ipif_up.
12065 		 */
12066 		if (phyint_flags_modified) {
12067 			if (phyi->phyint_illv4 != NULL) {
12068 				ip_rts_ifmsg(phyi->phyint_illv4->
12069 				    ill_ipif);
12070 			}
12071 			if (phyi->phyint_illv6 != NULL) {
12072 				ip_rts_ifmsg(phyi->phyint_illv6->
12073 				    ill_ipif);
12074 			}
12075 		} else {
12076 			ip_rts_ifmsg(ipif);
12077 		}
12078 		/*
12079 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
12080 		 * this in need_up case.
12081 		 */
12082 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12083 	}
12084 	return (err);
12085 }
12086 
12087 /*
12088  * Restart entry point to restart the flags restart operation after the
12089  * refcounts have dropped to zero.
12090  */
12091 /* ARGSUSED */
12092 int
12093 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12094     ip_ioctl_cmd_t *ipip, void *if_req)
12095 {
12096 	int	err;
12097 	struct ifreq *ifr = (struct ifreq *)if_req;
12098 	struct lifreq *lifr = (struct lifreq *)if_req;
12099 
12100 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12101 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12102 
12103 	ipif_down_tail(ipif);
12104 	if (ipip->ipi_cmd_type == IF_CMD) {
12105 		/*
12106 		 * Since ip_sioctl_flags expects an int and ifr_flags
12107 		 * is a short we need to cast ifr_flags into an int
12108 		 * to avoid having sign extension cause bits to get
12109 		 * set that should not be.
12110 		 */
12111 		err = ip_sioctl_flags_tail(ipif,
12112 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12113 		    q, mp, B_TRUE);
12114 	} else {
12115 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12116 		    q, mp, B_TRUE);
12117 	}
12118 	return (err);
12119 }
12120 
12121 /*
12122  * Can operate on either a module or a driver queue.
12123  */
12124 /* ARGSUSED */
12125 int
12126 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12127     ip_ioctl_cmd_t *ipip, void *if_req)
12128 {
12129 	/*
12130 	 * Has the flags been set correctly till now ?
12131 	 */
12132 	ill_t *ill = ipif->ipif_ill;
12133 	phyint_t *phyi = ill->ill_phyint;
12134 
12135 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12136 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12137 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12138 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12139 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12140 
12141 	/*
12142 	 * Need a lock since some flags can be set even when there are
12143 	 * references to the ipif.
12144 	 */
12145 	mutex_enter(&ill->ill_lock);
12146 	if (ipip->ipi_cmd_type == IF_CMD) {
12147 		struct ifreq *ifr = (struct ifreq *)if_req;
12148 
12149 		/* Get interface flags (low 16 only). */
12150 		ifr->ifr_flags = ((ipif->ipif_flags |
12151 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12152 	} else {
12153 		struct lifreq *lifr = (struct lifreq *)if_req;
12154 
12155 		/* Get interface flags. */
12156 		lifr->lifr_flags = ipif->ipif_flags |
12157 		    ill->ill_flags | phyi->phyint_flags;
12158 	}
12159 	mutex_exit(&ill->ill_lock);
12160 	return (0);
12161 }
12162 
12163 /* ARGSUSED */
12164 int
12165 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12166     ip_ioctl_cmd_t *ipip, void *if_req)
12167 {
12168 	int mtu;
12169 	int ip_min_mtu;
12170 	struct ifreq	*ifr;
12171 	struct lifreq *lifr;
12172 	ire_t	*ire;
12173 	ip_stack_t *ipst;
12174 
12175 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12176 	    ipif->ipif_id, (void *)ipif));
12177 	if (ipip->ipi_cmd_type == IF_CMD) {
12178 		ifr = (struct ifreq *)if_req;
12179 		mtu = ifr->ifr_metric;
12180 	} else {
12181 		lifr = (struct lifreq *)if_req;
12182 		mtu = lifr->lifr_mtu;
12183 	}
12184 
12185 	if (ipif->ipif_isv6)
12186 		ip_min_mtu = IPV6_MIN_MTU;
12187 	else
12188 		ip_min_mtu = IP_MIN_MTU;
12189 
12190 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12191 		return (EINVAL);
12192 
12193 	/*
12194 	 * Change the MTU size in all relevant ire's.
12195 	 * Mtu change Vs. new ire creation - protocol below.
12196 	 * First change ipif_mtu and the ire_max_frag of the
12197 	 * interface ire. Then do an ire walk and change the
12198 	 * ire_max_frag of all affected ires. During ire_add
12199 	 * under the bucket lock, set the ire_max_frag of the
12200 	 * new ire being created from the ipif/ire from which
12201 	 * it is being derived. If an mtu change happens after
12202 	 * the ire is added, the new ire will be cleaned up.
12203 	 * Conversely if the mtu change happens before the ire
12204 	 * is added, ire_add will see the new value of the mtu.
12205 	 */
12206 	ipif->ipif_mtu = mtu;
12207 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12208 
12209 	if (ipif->ipif_isv6)
12210 		ire = ipif_to_ire_v6(ipif);
12211 	else
12212 		ire = ipif_to_ire(ipif);
12213 	if (ire != NULL) {
12214 		ire->ire_max_frag = ipif->ipif_mtu;
12215 		ire_refrele(ire);
12216 	}
12217 	ipst = ipif->ipif_ill->ill_ipst;
12218 	if (ipif->ipif_flags & IPIF_UP) {
12219 		if (ipif->ipif_isv6)
12220 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12221 			    ipst);
12222 		else
12223 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12224 			    ipst);
12225 	}
12226 	/* Update the MTU in SCTP's list */
12227 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12228 	return (0);
12229 }
12230 
12231 /* Get interface MTU. */
12232 /* ARGSUSED */
12233 int
12234 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12235 	ip_ioctl_cmd_t *ipip, void *if_req)
12236 {
12237 	struct ifreq	*ifr;
12238 	struct lifreq	*lifr;
12239 
12240 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12241 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12242 	if (ipip->ipi_cmd_type == IF_CMD) {
12243 		ifr = (struct ifreq *)if_req;
12244 		ifr->ifr_metric = ipif->ipif_mtu;
12245 	} else {
12246 		lifr = (struct lifreq *)if_req;
12247 		lifr->lifr_mtu = ipif->ipif_mtu;
12248 	}
12249 	return (0);
12250 }
12251 
12252 /* Set interface broadcast address. */
12253 /* ARGSUSED2 */
12254 int
12255 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12256 	ip_ioctl_cmd_t *ipip, void *if_req)
12257 {
12258 	ipaddr_t addr;
12259 	ire_t	*ire;
12260 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12261 
12262 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12263 	    ipif->ipif_id));
12264 
12265 	ASSERT(IAM_WRITER_IPIF(ipif));
12266 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12267 		return (EADDRNOTAVAIL);
12268 
12269 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12270 
12271 	if (sin->sin_family != AF_INET)
12272 		return (EAFNOSUPPORT);
12273 
12274 	addr = sin->sin_addr.s_addr;
12275 	if (ipif->ipif_flags & IPIF_UP) {
12276 		/*
12277 		 * If we are already up, make sure the new
12278 		 * broadcast address makes sense.  If it does,
12279 		 * there should be an IRE for it already.
12280 		 * Don't match on ipif, only on the ill
12281 		 * since we are sharing these now. Don't use
12282 		 * MATCH_IRE_ILL_GROUP as we are looking for
12283 		 * the broadcast ire on this ill and each ill
12284 		 * in the group has its own broadcast ire.
12285 		 */
12286 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12287 		    ipif, ALL_ZONES, NULL,
12288 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12289 		if (ire == NULL) {
12290 			return (EINVAL);
12291 		} else {
12292 			ire_refrele(ire);
12293 		}
12294 	}
12295 	/*
12296 	 * Changing the broadcast addr for this ipif.
12297 	 * Make sure we have valid net and subnet bcast
12298 	 * ire's for other logical interfaces, if needed.
12299 	 */
12300 	if (addr != ipif->ipif_brd_addr)
12301 		ipif_check_bcast_ires(ipif);
12302 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12303 	return (0);
12304 }
12305 
12306 /* Get interface broadcast address. */
12307 /* ARGSUSED */
12308 int
12309 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12310     ip_ioctl_cmd_t *ipip, void *if_req)
12311 {
12312 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12313 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12314 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12315 		return (EADDRNOTAVAIL);
12316 
12317 	/* IPIF_BROADCAST not possible with IPv6 */
12318 	ASSERT(!ipif->ipif_isv6);
12319 	*sin = sin_null;
12320 	sin->sin_family = AF_INET;
12321 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12322 	return (0);
12323 }
12324 
12325 /*
12326  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12327  */
12328 /* ARGSUSED */
12329 int
12330 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12331     ip_ioctl_cmd_t *ipip, void *if_req)
12332 {
12333 	int err = 0;
12334 	in6_addr_t v6mask;
12335 
12336 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12337 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12338 
12339 	ASSERT(IAM_WRITER_IPIF(ipif));
12340 
12341 	if (ipif->ipif_isv6) {
12342 		sin6_t *sin6;
12343 
12344 		if (sin->sin_family != AF_INET6)
12345 			return (EAFNOSUPPORT);
12346 
12347 		sin6 = (sin6_t *)sin;
12348 		v6mask = sin6->sin6_addr;
12349 	} else {
12350 		ipaddr_t mask;
12351 
12352 		if (sin->sin_family != AF_INET)
12353 			return (EAFNOSUPPORT);
12354 
12355 		mask = sin->sin_addr.s_addr;
12356 		V4MASK_TO_V6(mask, v6mask);
12357 	}
12358 
12359 	/*
12360 	 * No big deal if the interface isn't already up, or the mask
12361 	 * isn't really changing, or this is pt-pt.
12362 	 */
12363 	if (!(ipif->ipif_flags & IPIF_UP) ||
12364 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12365 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12366 		ipif->ipif_v6net_mask = v6mask;
12367 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12368 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12369 			    ipif->ipif_v6net_mask,
12370 			    ipif->ipif_v6subnet);
12371 		}
12372 		return (0);
12373 	}
12374 	/*
12375 	 * Make sure we have valid net and subnet broadcast ire's
12376 	 * for the old netmask, if needed by other logical interfaces.
12377 	 */
12378 	if (!ipif->ipif_isv6)
12379 		ipif_check_bcast_ires(ipif);
12380 
12381 	err = ipif_logical_down(ipif, q, mp);
12382 	if (err == EINPROGRESS)
12383 		return (err);
12384 	ipif_down_tail(ipif);
12385 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12386 	return (err);
12387 }
12388 
12389 static int
12390 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12391 {
12392 	in6_addr_t v6mask;
12393 	int err = 0;
12394 
12395 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12396 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12397 
12398 	if (ipif->ipif_isv6) {
12399 		sin6_t *sin6;
12400 
12401 		sin6 = (sin6_t *)sin;
12402 		v6mask = sin6->sin6_addr;
12403 	} else {
12404 		ipaddr_t mask;
12405 
12406 		mask = sin->sin_addr.s_addr;
12407 		V4MASK_TO_V6(mask, v6mask);
12408 	}
12409 
12410 	ipif->ipif_v6net_mask = v6mask;
12411 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12412 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12413 		    ipif->ipif_v6subnet);
12414 	}
12415 	err = ipif_up(ipif, q, mp);
12416 
12417 	if (err == 0 || err == EINPROGRESS) {
12418 		/*
12419 		 * The interface must be DL_BOUND if this packet has to
12420 		 * go out on the wire. Since we only go through a logical
12421 		 * down and are bound with the driver during an internal
12422 		 * down/up that is satisfied.
12423 		 */
12424 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12425 			/* Potentially broadcast an address mask reply. */
12426 			ipif_mask_reply(ipif);
12427 		}
12428 	}
12429 	return (err);
12430 }
12431 
12432 /* ARGSUSED */
12433 int
12434 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12435     ip_ioctl_cmd_t *ipip, void *if_req)
12436 {
12437 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12438 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12439 	ipif_down_tail(ipif);
12440 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12441 }
12442 
12443 /* Get interface net mask. */
12444 /* ARGSUSED */
12445 int
12446 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12447     ip_ioctl_cmd_t *ipip, void *if_req)
12448 {
12449 	struct lifreq *lifr = (struct lifreq *)if_req;
12450 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12451 
12452 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12453 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12454 
12455 	/*
12456 	 * net mask can't change since we have a reference to the ipif.
12457 	 */
12458 	if (ipif->ipif_isv6) {
12459 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12460 		*sin6 = sin6_null;
12461 		sin6->sin6_family = AF_INET6;
12462 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12463 		lifr->lifr_addrlen =
12464 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12465 	} else {
12466 		*sin = sin_null;
12467 		sin->sin_family = AF_INET;
12468 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12469 		if (ipip->ipi_cmd_type == LIF_CMD) {
12470 			lifr->lifr_addrlen =
12471 			    ip_mask_to_plen(ipif->ipif_net_mask);
12472 		}
12473 	}
12474 	return (0);
12475 }
12476 
12477 /* ARGSUSED */
12478 int
12479 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12480     ip_ioctl_cmd_t *ipip, void *if_req)
12481 {
12482 
12483 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12484 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12485 	/*
12486 	 * Set interface metric.  We don't use this for
12487 	 * anything but we keep track of it in case it is
12488 	 * important to routing applications or such.
12489 	 */
12490 	if (ipip->ipi_cmd_type == IF_CMD) {
12491 		struct ifreq    *ifr;
12492 
12493 		ifr = (struct ifreq *)if_req;
12494 		ipif->ipif_metric = ifr->ifr_metric;
12495 	} else {
12496 		struct lifreq   *lifr;
12497 
12498 		lifr = (struct lifreq *)if_req;
12499 		ipif->ipif_metric = lifr->lifr_metric;
12500 	}
12501 	return (0);
12502 }
12503 
12504 
12505 /* ARGSUSED */
12506 int
12507 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12508     ip_ioctl_cmd_t *ipip, void *if_req)
12509 {
12510 
12511 	/* Get interface metric. */
12512 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12513 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12514 	if (ipip->ipi_cmd_type == IF_CMD) {
12515 		struct ifreq    *ifr;
12516 
12517 		ifr = (struct ifreq *)if_req;
12518 		ifr->ifr_metric = ipif->ipif_metric;
12519 	} else {
12520 		struct lifreq   *lifr;
12521 
12522 		lifr = (struct lifreq *)if_req;
12523 		lifr->lifr_metric = ipif->ipif_metric;
12524 	}
12525 
12526 	return (0);
12527 }
12528 
12529 /* ARGSUSED */
12530 int
12531 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12532     ip_ioctl_cmd_t *ipip, void *if_req)
12533 {
12534 
12535 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12536 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12537 	/*
12538 	 * Set the muxid returned from I_PLINK.
12539 	 */
12540 	if (ipip->ipi_cmd_type == IF_CMD) {
12541 		struct ifreq *ifr = (struct ifreq *)if_req;
12542 
12543 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12544 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12545 	} else {
12546 		struct lifreq *lifr = (struct lifreq *)if_req;
12547 
12548 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12549 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12550 	}
12551 	return (0);
12552 }
12553 
12554 /* ARGSUSED */
12555 int
12556 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12557     ip_ioctl_cmd_t *ipip, void *if_req)
12558 {
12559 
12560 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12561 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12562 	/*
12563 	 * Get the muxid saved in ill for I_PUNLINK.
12564 	 */
12565 	if (ipip->ipi_cmd_type == IF_CMD) {
12566 		struct ifreq *ifr = (struct ifreq *)if_req;
12567 
12568 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12569 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12570 	} else {
12571 		struct lifreq *lifr = (struct lifreq *)if_req;
12572 
12573 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12574 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12575 	}
12576 	return (0);
12577 }
12578 
12579 /*
12580  * Set the subnet prefix. Does not modify the broadcast address.
12581  */
12582 /* ARGSUSED */
12583 int
12584 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12585     ip_ioctl_cmd_t *ipip, void *if_req)
12586 {
12587 	int err = 0;
12588 	in6_addr_t v6addr;
12589 	in6_addr_t v6mask;
12590 	boolean_t need_up = B_FALSE;
12591 	int addrlen;
12592 
12593 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12594 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12595 
12596 	ASSERT(IAM_WRITER_IPIF(ipif));
12597 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12598 
12599 	if (ipif->ipif_isv6) {
12600 		sin6_t *sin6;
12601 
12602 		if (sin->sin_family != AF_INET6)
12603 			return (EAFNOSUPPORT);
12604 
12605 		sin6 = (sin6_t *)sin;
12606 		v6addr = sin6->sin6_addr;
12607 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12608 			return (EADDRNOTAVAIL);
12609 	} else {
12610 		ipaddr_t addr;
12611 
12612 		if (sin->sin_family != AF_INET)
12613 			return (EAFNOSUPPORT);
12614 
12615 		addr = sin->sin_addr.s_addr;
12616 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12617 			return (EADDRNOTAVAIL);
12618 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12619 		/* Add 96 bits */
12620 		addrlen += IPV6_ABITS - IP_ABITS;
12621 	}
12622 
12623 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12624 		return (EINVAL);
12625 
12626 	/* Check if bits in the address is set past the mask */
12627 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12628 		return (EINVAL);
12629 
12630 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12631 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12632 		return (0);	/* No change */
12633 
12634 	if (ipif->ipif_flags & IPIF_UP) {
12635 		/*
12636 		 * If the interface is already marked up,
12637 		 * we call ipif_down which will take care
12638 		 * of ditching any IREs that have been set
12639 		 * up based on the old interface address.
12640 		 */
12641 		err = ipif_logical_down(ipif, q, mp);
12642 		if (err == EINPROGRESS)
12643 			return (err);
12644 		ipif_down_tail(ipif);
12645 		need_up = B_TRUE;
12646 	}
12647 
12648 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12649 	return (err);
12650 }
12651 
12652 static int
12653 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12654     queue_t *q, mblk_t *mp, boolean_t need_up)
12655 {
12656 	ill_t	*ill = ipif->ipif_ill;
12657 	int	err = 0;
12658 
12659 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12660 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12661 
12662 	/* Set the new address. */
12663 	mutex_enter(&ill->ill_lock);
12664 	ipif->ipif_v6net_mask = v6mask;
12665 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12666 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12667 		    ipif->ipif_v6subnet);
12668 	}
12669 	mutex_exit(&ill->ill_lock);
12670 
12671 	if (need_up) {
12672 		/*
12673 		 * Now bring the interface back up.  If this
12674 		 * is the only IPIF for the ILL, ipif_up
12675 		 * will have to re-bind to the device, so
12676 		 * we may get back EINPROGRESS, in which
12677 		 * case, this IOCTL will get completed in
12678 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12679 		 */
12680 		err = ipif_up(ipif, q, mp);
12681 		if (err == EINPROGRESS)
12682 			return (err);
12683 	}
12684 	return (err);
12685 }
12686 
12687 /* ARGSUSED */
12688 int
12689 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12690     ip_ioctl_cmd_t *ipip, void *if_req)
12691 {
12692 	int	addrlen;
12693 	in6_addr_t v6addr;
12694 	in6_addr_t v6mask;
12695 	struct lifreq *lifr = (struct lifreq *)if_req;
12696 
12697 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12698 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12699 	ipif_down_tail(ipif);
12700 
12701 	addrlen = lifr->lifr_addrlen;
12702 	if (ipif->ipif_isv6) {
12703 		sin6_t *sin6;
12704 
12705 		sin6 = (sin6_t *)sin;
12706 		v6addr = sin6->sin6_addr;
12707 	} else {
12708 		ipaddr_t addr;
12709 
12710 		addr = sin->sin_addr.s_addr;
12711 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12712 		addrlen += IPV6_ABITS - IP_ABITS;
12713 	}
12714 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12715 
12716 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12717 }
12718 
12719 /* ARGSUSED */
12720 int
12721 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12722     ip_ioctl_cmd_t *ipip, void *if_req)
12723 {
12724 	struct lifreq *lifr = (struct lifreq *)if_req;
12725 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12726 
12727 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12728 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12729 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12730 
12731 	if (ipif->ipif_isv6) {
12732 		*sin6 = sin6_null;
12733 		sin6->sin6_family = AF_INET6;
12734 		sin6->sin6_addr = ipif->ipif_v6subnet;
12735 		lifr->lifr_addrlen =
12736 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12737 	} else {
12738 		*sin = sin_null;
12739 		sin->sin_family = AF_INET;
12740 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12741 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12742 	}
12743 	return (0);
12744 }
12745 
12746 /*
12747  * Set the IPv6 address token.
12748  */
12749 /* ARGSUSED */
12750 int
12751 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12752     ip_ioctl_cmd_t *ipi, void *if_req)
12753 {
12754 	ill_t *ill = ipif->ipif_ill;
12755 	int err;
12756 	in6_addr_t v6addr;
12757 	in6_addr_t v6mask;
12758 	boolean_t need_up = B_FALSE;
12759 	int i;
12760 	sin6_t *sin6 = (sin6_t *)sin;
12761 	struct lifreq *lifr = (struct lifreq *)if_req;
12762 	int addrlen;
12763 
12764 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12765 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12766 	ASSERT(IAM_WRITER_IPIF(ipif));
12767 
12768 	addrlen = lifr->lifr_addrlen;
12769 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12770 	if (ipif->ipif_id != 0)
12771 		return (EINVAL);
12772 
12773 	if (!ipif->ipif_isv6)
12774 		return (EINVAL);
12775 
12776 	if (addrlen > IPV6_ABITS)
12777 		return (EINVAL);
12778 
12779 	v6addr = sin6->sin6_addr;
12780 
12781 	/*
12782 	 * The length of the token is the length from the end.  To get
12783 	 * the proper mask for this, compute the mask of the bits not
12784 	 * in the token; ie. the prefix, and then xor to get the mask.
12785 	 */
12786 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12787 		return (EINVAL);
12788 	for (i = 0; i < 4; i++) {
12789 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12790 	}
12791 
12792 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12793 	    ill->ill_token_length == addrlen)
12794 		return (0);	/* No change */
12795 
12796 	if (ipif->ipif_flags & IPIF_UP) {
12797 		err = ipif_logical_down(ipif, q, mp);
12798 		if (err == EINPROGRESS)
12799 			return (err);
12800 		ipif_down_tail(ipif);
12801 		need_up = B_TRUE;
12802 	}
12803 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12804 	return (err);
12805 }
12806 
12807 static int
12808 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12809     mblk_t *mp, boolean_t need_up)
12810 {
12811 	in6_addr_t v6addr;
12812 	in6_addr_t v6mask;
12813 	ill_t	*ill = ipif->ipif_ill;
12814 	int	i;
12815 	int	err = 0;
12816 
12817 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12818 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12819 	v6addr = sin6->sin6_addr;
12820 	/*
12821 	 * The length of the token is the length from the end.  To get
12822 	 * the proper mask for this, compute the mask of the bits not
12823 	 * in the token; ie. the prefix, and then xor to get the mask.
12824 	 */
12825 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12826 	for (i = 0; i < 4; i++)
12827 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12828 
12829 	mutex_enter(&ill->ill_lock);
12830 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12831 	ill->ill_token_length = addrlen;
12832 	mutex_exit(&ill->ill_lock);
12833 
12834 	if (need_up) {
12835 		/*
12836 		 * Now bring the interface back up.  If this
12837 		 * is the only IPIF for the ILL, ipif_up
12838 		 * will have to re-bind to the device, so
12839 		 * we may get back EINPROGRESS, in which
12840 		 * case, this IOCTL will get completed in
12841 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12842 		 */
12843 		err = ipif_up(ipif, q, mp);
12844 		if (err == EINPROGRESS)
12845 			return (err);
12846 	}
12847 	return (err);
12848 }
12849 
12850 /* ARGSUSED */
12851 int
12852 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12853     ip_ioctl_cmd_t *ipi, void *if_req)
12854 {
12855 	ill_t *ill;
12856 	sin6_t *sin6 = (sin6_t *)sin;
12857 	struct lifreq *lifr = (struct lifreq *)if_req;
12858 
12859 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12860 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12861 	if (ipif->ipif_id != 0)
12862 		return (EINVAL);
12863 
12864 	ill = ipif->ipif_ill;
12865 	if (!ill->ill_isv6)
12866 		return (ENXIO);
12867 
12868 	*sin6 = sin6_null;
12869 	sin6->sin6_family = AF_INET6;
12870 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12871 	sin6->sin6_addr = ill->ill_token;
12872 	lifr->lifr_addrlen = ill->ill_token_length;
12873 	return (0);
12874 }
12875 
12876 /*
12877  * Set (hardware) link specific information that might override
12878  * what was acquired through the DL_INFO_ACK.
12879  * The logic is as follows.
12880  *
12881  * become exclusive
12882  * set CHANGING flag
12883  * change mtu on affected IREs
12884  * clear CHANGING flag
12885  *
12886  * An ire add that occurs before the CHANGING flag is set will have its mtu
12887  * changed by the ip_sioctl_lnkinfo.
12888  *
12889  * During the time the CHANGING flag is set, no new ires will be added to the
12890  * bucket, and ire add will fail (due the CHANGING flag).
12891  *
12892  * An ire add that occurs after the CHANGING flag is set will have the right mtu
12893  * before it is added to the bucket.
12894  *
12895  * Obviously only 1 thread can set the CHANGING flag and we need to become
12896  * exclusive to set the flag.
12897  */
12898 /* ARGSUSED */
12899 int
12900 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12901     ip_ioctl_cmd_t *ipi, void *if_req)
12902 {
12903 	ill_t		*ill = ipif->ipif_ill;
12904 	ipif_t		*nipif;
12905 	int		ip_min_mtu;
12906 	boolean_t	mtu_walk = B_FALSE;
12907 	struct lifreq	*lifr = (struct lifreq *)if_req;
12908 	lif_ifinfo_req_t *lir;
12909 	ire_t		*ire;
12910 
12911 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12912 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12913 	lir = &lifr->lifr_ifinfo;
12914 	ASSERT(IAM_WRITER_IPIF(ipif));
12915 
12916 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12917 	if (ipif->ipif_id != 0)
12918 		return (EINVAL);
12919 
12920 	/* Set interface MTU. */
12921 	if (ipif->ipif_isv6)
12922 		ip_min_mtu = IPV6_MIN_MTU;
12923 	else
12924 		ip_min_mtu = IP_MIN_MTU;
12925 
12926 	/*
12927 	 * Verify values before we set anything. Allow zero to
12928 	 * mean unspecified.
12929 	 */
12930 	if (lir->lir_maxmtu != 0 &&
12931 	    (lir->lir_maxmtu > ill->ill_max_frag ||
12932 	    lir->lir_maxmtu < ip_min_mtu))
12933 		return (EINVAL);
12934 	if (lir->lir_reachtime != 0 &&
12935 	    lir->lir_reachtime > ND_MAX_REACHTIME)
12936 		return (EINVAL);
12937 	if (lir->lir_reachretrans != 0 &&
12938 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12939 		return (EINVAL);
12940 
12941 	mutex_enter(&ill->ill_lock);
12942 	ill->ill_state_flags |= ILL_CHANGING;
12943 	for (nipif = ill->ill_ipif; nipif != NULL;
12944 	    nipif = nipif->ipif_next) {
12945 		nipif->ipif_state_flags |= IPIF_CHANGING;
12946 	}
12947 
12948 	mutex_exit(&ill->ill_lock);
12949 
12950 	if (lir->lir_maxmtu != 0) {
12951 		ill->ill_max_mtu = lir->lir_maxmtu;
12952 		ill->ill_mtu_userspecified = 1;
12953 		mtu_walk = B_TRUE;
12954 	}
12955 
12956 	if (lir->lir_reachtime != 0)
12957 		ill->ill_reachable_time = lir->lir_reachtime;
12958 
12959 	if (lir->lir_reachretrans != 0)
12960 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12961 
12962 	ill->ill_max_hops = lir->lir_maxhops;
12963 
12964 	ill->ill_max_buf = ND_MAX_Q;
12965 
12966 	if (mtu_walk) {
12967 		/*
12968 		 * Set the MTU on all ipifs associated with this ill except
12969 		 * for those whose MTU was fixed via SIOCSLIFMTU.
12970 		 */
12971 		for (nipif = ill->ill_ipif; nipif != NULL;
12972 		    nipif = nipif->ipif_next) {
12973 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12974 				continue;
12975 
12976 			nipif->ipif_mtu = ill->ill_max_mtu;
12977 
12978 			if (!(nipif->ipif_flags & IPIF_UP))
12979 				continue;
12980 
12981 			if (nipif->ipif_isv6)
12982 				ire = ipif_to_ire_v6(nipif);
12983 			else
12984 				ire = ipif_to_ire(nipif);
12985 			if (ire != NULL) {
12986 				ire->ire_max_frag = ipif->ipif_mtu;
12987 				ire_refrele(ire);
12988 			}
12989 			if (ill->ill_isv6) {
12990 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
12991 				    ipif_mtu_change, (char *)nipif,
12992 				    ill);
12993 			} else {
12994 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
12995 				    ipif_mtu_change, (char *)nipif,
12996 				    ill);
12997 			}
12998 		}
12999 	}
13000 
13001 	mutex_enter(&ill->ill_lock);
13002 	for (nipif = ill->ill_ipif; nipif != NULL;
13003 	    nipif = nipif->ipif_next) {
13004 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13005 	}
13006 	ILL_UNMARK_CHANGING(ill);
13007 	mutex_exit(&ill->ill_lock);
13008 
13009 	return (0);
13010 }
13011 
13012 /* ARGSUSED */
13013 int
13014 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13015     ip_ioctl_cmd_t *ipi, void *if_req)
13016 {
13017 	struct lif_ifinfo_req *lir;
13018 	ill_t *ill = ipif->ipif_ill;
13019 
13020 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13021 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13022 	if (ipif->ipif_id != 0)
13023 		return (EINVAL);
13024 
13025 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13026 	lir->lir_maxhops = ill->ill_max_hops;
13027 	lir->lir_reachtime = ill->ill_reachable_time;
13028 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13029 	lir->lir_maxmtu = ill->ill_max_mtu;
13030 
13031 	return (0);
13032 }
13033 
13034 /*
13035  * Return best guess as to the subnet mask for the specified address.
13036  * Based on the subnet masks for all the configured interfaces.
13037  *
13038  * We end up returning a zero mask in the case of default, multicast or
13039  * experimental.
13040  */
13041 static ipaddr_t
13042 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13043 {
13044 	ipaddr_t net_mask;
13045 	ill_t	*ill;
13046 	ipif_t	*ipif;
13047 	ill_walk_context_t ctx;
13048 	ipif_t	*fallback_ipif = NULL;
13049 
13050 	net_mask = ip_net_mask(addr);
13051 	if (net_mask == 0) {
13052 		*ipifp = NULL;
13053 		return (0);
13054 	}
13055 
13056 	/* Let's check to see if this is maybe a local subnet route. */
13057 	/* this function only applies to IPv4 interfaces */
13058 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13059 	ill = ILL_START_WALK_V4(&ctx, ipst);
13060 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13061 		mutex_enter(&ill->ill_lock);
13062 		for (ipif = ill->ill_ipif; ipif != NULL;
13063 		    ipif = ipif->ipif_next) {
13064 			if (!IPIF_CAN_LOOKUP(ipif))
13065 				continue;
13066 			if (!(ipif->ipif_flags & IPIF_UP))
13067 				continue;
13068 			if ((ipif->ipif_subnet & net_mask) ==
13069 			    (addr & net_mask)) {
13070 				/*
13071 				 * Don't trust pt-pt interfaces if there are
13072 				 * other interfaces.
13073 				 */
13074 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13075 					if (fallback_ipif == NULL) {
13076 						ipif_refhold_locked(ipif);
13077 						fallback_ipif = ipif;
13078 					}
13079 					continue;
13080 				}
13081 
13082 				/*
13083 				 * Fine. Just assume the same net mask as the
13084 				 * directly attached subnet interface is using.
13085 				 */
13086 				ipif_refhold_locked(ipif);
13087 				mutex_exit(&ill->ill_lock);
13088 				rw_exit(&ipst->ips_ill_g_lock);
13089 				if (fallback_ipif != NULL)
13090 					ipif_refrele(fallback_ipif);
13091 				*ipifp = ipif;
13092 				return (ipif->ipif_net_mask);
13093 			}
13094 		}
13095 		mutex_exit(&ill->ill_lock);
13096 	}
13097 	rw_exit(&ipst->ips_ill_g_lock);
13098 
13099 	*ipifp = fallback_ipif;
13100 	return ((fallback_ipif != NULL) ?
13101 	    fallback_ipif->ipif_net_mask : net_mask);
13102 }
13103 
13104 /*
13105  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13106  */
13107 static void
13108 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13109 {
13110 	IOCP	iocp;
13111 	ipft_t	*ipft;
13112 	ipllc_t	*ipllc;
13113 	mblk_t	*mp1;
13114 	cred_t	*cr;
13115 	int	error = 0;
13116 	conn_t	*connp;
13117 
13118 	ip1dbg(("ip_wput_ioctl"));
13119 	iocp = (IOCP)mp->b_rptr;
13120 	mp1 = mp->b_cont;
13121 	if (mp1 == NULL) {
13122 		iocp->ioc_error = EINVAL;
13123 		mp->b_datap->db_type = M_IOCNAK;
13124 		iocp->ioc_count = 0;
13125 		qreply(q, mp);
13126 		return;
13127 	}
13128 
13129 	/*
13130 	 * These IOCTLs provide various control capabilities to
13131 	 * upstream agents such as ULPs and processes.	There
13132 	 * are currently two such IOCTLs implemented.  They
13133 	 * are used by TCP to provide update information for
13134 	 * existing IREs and to forcibly delete an IRE for a
13135 	 * host that is not responding, thereby forcing an
13136 	 * attempt at a new route.
13137 	 */
13138 	iocp->ioc_error = EINVAL;
13139 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13140 		goto done;
13141 
13142 	ipllc = (ipllc_t *)mp1->b_rptr;
13143 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13144 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13145 			break;
13146 	}
13147 	/*
13148 	 * prefer credential from mblk over ioctl;
13149 	 * see ip_sioctl_copyin_setup
13150 	 */
13151 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13152 
13153 	/*
13154 	 * Refhold the conn in case the request gets queued up in some lookup
13155 	 */
13156 	ASSERT(CONN_Q(q));
13157 	connp = Q_TO_CONN(q);
13158 	CONN_INC_REF(connp);
13159 	if (ipft->ipft_pfi &&
13160 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13161 	    pullupmsg(mp1, ipft->ipft_min_size))) {
13162 		error = (*ipft->ipft_pfi)(q,
13163 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13164 	}
13165 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13166 		/*
13167 		 * CONN_OPER_PENDING_DONE happens in the function called
13168 		 * through ipft_pfi above.
13169 		 */
13170 		return;
13171 	}
13172 
13173 	CONN_OPER_PENDING_DONE(connp);
13174 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13175 		freemsg(mp);
13176 		return;
13177 	}
13178 	iocp->ioc_error = error;
13179 
13180 done:
13181 	mp->b_datap->db_type = M_IOCACK;
13182 	if (iocp->ioc_error)
13183 		iocp->ioc_count = 0;
13184 	qreply(q, mp);
13185 }
13186 
13187 /*
13188  * Lookup an ipif using the sequence id (ipif_seqid)
13189  */
13190 ipif_t *
13191 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13192 {
13193 	ipif_t *ipif;
13194 
13195 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13196 
13197 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13198 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13199 			return (ipif);
13200 	}
13201 	return (NULL);
13202 }
13203 
13204 /*
13205  * Assign a unique id for the ipif. This is used later when we send
13206  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13207  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13208  * IRE is added, we verify that ipif has not disappeared.
13209  */
13210 
13211 static void
13212 ipif_assign_seqid(ipif_t *ipif)
13213 {
13214 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13215 
13216 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13217 }
13218 
13219 /*
13220  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13221  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13222  * be inserted into the first space available in the list. The value of
13223  * ipif_id will then be set to the appropriate value for its position.
13224  */
13225 static int
13226 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13227 {
13228 	ill_t *ill;
13229 	ipif_t *tipif;
13230 	ipif_t **tipifp;
13231 	int id;
13232 	ip_stack_t	*ipst;
13233 
13234 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13235 	    IAM_WRITER_IPIF(ipif));
13236 
13237 	ill = ipif->ipif_ill;
13238 	ASSERT(ill != NULL);
13239 	ipst = ill->ill_ipst;
13240 
13241 	/*
13242 	 * In the case of lo0:0 we already hold the ill_g_lock.
13243 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13244 	 * ipif_insert. Another such caller is ipif_move.
13245 	 */
13246 	if (acquire_g_lock)
13247 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13248 	if (acquire_ill_lock)
13249 		mutex_enter(&ill->ill_lock);
13250 	id = ipif->ipif_id;
13251 	tipifp = &(ill->ill_ipif);
13252 	if (id == -1) {	/* need to find a real id */
13253 		id = 0;
13254 		while ((tipif = *tipifp) != NULL) {
13255 			ASSERT(tipif->ipif_id >= id);
13256 			if (tipif->ipif_id != id)
13257 				break; /* non-consecutive id */
13258 			id++;
13259 			tipifp = &(tipif->ipif_next);
13260 		}
13261 		/* limit number of logical interfaces */
13262 		if (id >= ipst->ips_ip_addrs_per_if) {
13263 			if (acquire_ill_lock)
13264 				mutex_exit(&ill->ill_lock);
13265 			if (acquire_g_lock)
13266 				rw_exit(&ipst->ips_ill_g_lock);
13267 			return (-1);
13268 		}
13269 		ipif->ipif_id = id; /* assign new id */
13270 	} else if (id < ipst->ips_ip_addrs_per_if) {
13271 		/* we have a real id; insert ipif in the right place */
13272 		while ((tipif = *tipifp) != NULL) {
13273 			ASSERT(tipif->ipif_id != id);
13274 			if (tipif->ipif_id > id)
13275 				break; /* found correct location */
13276 			tipifp = &(tipif->ipif_next);
13277 		}
13278 	} else {
13279 		if (acquire_ill_lock)
13280 			mutex_exit(&ill->ill_lock);
13281 		if (acquire_g_lock)
13282 			rw_exit(&ipst->ips_ill_g_lock);
13283 		return (-1);
13284 	}
13285 
13286 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13287 
13288 	ipif->ipif_next = tipif;
13289 	*tipifp = ipif;
13290 	if (acquire_ill_lock)
13291 		mutex_exit(&ill->ill_lock);
13292 	if (acquire_g_lock)
13293 		rw_exit(&ipst->ips_ill_g_lock);
13294 	return (0);
13295 }
13296 
13297 static void
13298 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock)
13299 {
13300 	ipif_t	**ipifp;
13301 	ill_t	*ill = ipif->ipif_ill;
13302 
13303 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13304 	if (acquire_ill_lock)
13305 		mutex_enter(&ill->ill_lock);
13306 	else
13307 		ASSERT(MUTEX_HELD(&ill->ill_lock));
13308 
13309 	ipifp = &ill->ill_ipif;
13310 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13311 		if (*ipifp == ipif) {
13312 			*ipifp = ipif->ipif_next;
13313 			break;
13314 		}
13315 	}
13316 
13317 	if (acquire_ill_lock)
13318 		mutex_exit(&ill->ill_lock);
13319 }
13320 
13321 /*
13322  * Allocate and initialize a new interface control structure.  (Always
13323  * called as writer.)
13324  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13325  * is not part of the global linked list of ills. ipif_seqid is unique
13326  * in the system and to preserve the uniqueness, it is assigned only
13327  * when ill becomes part of the global list. At that point ill will
13328  * have a name. If it doesn't get assigned here, it will get assigned
13329  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13330  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13331  * the interface flags or any other information from the DL_INFO_ACK for
13332  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13333  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13334  * second DL_INFO_ACK comes in from the driver.
13335  */
13336 static ipif_t *
13337 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13338 {
13339 	ipif_t	*ipif;
13340 	phyint_t *phyi;
13341 
13342 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13343 	    ill->ill_name, id, (void *)ill));
13344 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13345 
13346 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13347 		return (NULL);
13348 	*ipif = ipif_zero;	/* start clean */
13349 
13350 	ipif->ipif_ill = ill;
13351 	ipif->ipif_id = id;	/* could be -1 */
13352 	/*
13353 	 * Inherit the zoneid from the ill; for the shared stack instance
13354 	 * this is always the global zone
13355 	 */
13356 	ipif->ipif_zoneid = ill->ill_zoneid;
13357 
13358 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13359 
13360 	ipif->ipif_refcnt = 0;
13361 	ipif->ipif_saved_ire_cnt = 0;
13362 
13363 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13364 		mi_free(ipif);
13365 		return (NULL);
13366 	}
13367 	/* -1 id should have been replaced by real id */
13368 	id = ipif->ipif_id;
13369 	ASSERT(id >= 0);
13370 
13371 	if (ill->ill_name[0] != '\0')
13372 		ipif_assign_seqid(ipif);
13373 
13374 	/*
13375 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13376 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13377 	 * ioctl sets ipif_orig_ipifid to zero.
13378 	 */
13379 	ipif->ipif_orig_ipifid = id;
13380 
13381 	/*
13382 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13383 	 * The ipif is still not up and can't be looked up until the
13384 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13385 	 */
13386 	mutex_enter(&ill->ill_lock);
13387 	mutex_enter(&ill->ill_phyint->phyint_lock);
13388 	/*
13389 	 * Set the running flag when logical interface zero is created.
13390 	 * For subsequent logical interfaces, a DLPI link down
13391 	 * notification message may have cleared the running flag to
13392 	 * indicate the link is down, so we shouldn't just blindly set it.
13393 	 */
13394 	if (id == 0)
13395 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13396 	ipif->ipif_ire_type = ire_type;
13397 	phyi = ill->ill_phyint;
13398 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13399 
13400 	if (ipif->ipif_isv6) {
13401 		ill->ill_flags |= ILLF_IPV6;
13402 	} else {
13403 		ipaddr_t inaddr_any = INADDR_ANY;
13404 
13405 		ill->ill_flags |= ILLF_IPV4;
13406 
13407 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13408 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13409 		    &ipif->ipif_v6lcl_addr);
13410 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13411 		    &ipif->ipif_v6src_addr);
13412 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13413 		    &ipif->ipif_v6subnet);
13414 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13415 		    &ipif->ipif_v6net_mask);
13416 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13417 		    &ipif->ipif_v6brd_addr);
13418 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13419 		    &ipif->ipif_v6pp_dst_addr);
13420 	}
13421 
13422 	/*
13423 	 * Don't set the interface flags etc. now, will do it in
13424 	 * ip_ll_subnet_defaults.
13425 	 */
13426 	if (!initialize) {
13427 		mutex_exit(&ill->ill_lock);
13428 		mutex_exit(&ill->ill_phyint->phyint_lock);
13429 		return (ipif);
13430 	}
13431 	ipif->ipif_mtu = ill->ill_max_mtu;
13432 
13433 	if (ill->ill_bcast_addr_length != 0) {
13434 		/*
13435 		 * Later detect lack of DLPI driver multicast
13436 		 * capability by catching DL_ENABMULTI errors in
13437 		 * ip_rput_dlpi.
13438 		 */
13439 		ill->ill_flags |= ILLF_MULTICAST;
13440 		if (!ipif->ipif_isv6)
13441 			ipif->ipif_flags |= IPIF_BROADCAST;
13442 	} else {
13443 		if (ill->ill_net_type != IRE_LOOPBACK) {
13444 			if (ipif->ipif_isv6)
13445 				/*
13446 				 * Note: xresolv interfaces will eventually need
13447 				 * NOARP set here as well, but that will require
13448 				 * those external resolvers to have some
13449 				 * knowledge of that flag and act appropriately.
13450 				 * Not to be changed at present.
13451 				 */
13452 				ill->ill_flags |= ILLF_NONUD;
13453 			else
13454 				ill->ill_flags |= ILLF_NOARP;
13455 		}
13456 		if (ill->ill_phys_addr_length == 0) {
13457 			if (ill->ill_media &&
13458 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13459 				ipif->ipif_flags |= IPIF_NOXMIT;
13460 				phyi->phyint_flags |= PHYI_VIRTUAL;
13461 			} else {
13462 				/* pt-pt supports multicast. */
13463 				ill->ill_flags |= ILLF_MULTICAST;
13464 				if (ill->ill_net_type == IRE_LOOPBACK) {
13465 					phyi->phyint_flags |=
13466 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13467 				} else {
13468 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13469 				}
13470 			}
13471 		}
13472 	}
13473 	mutex_exit(&ill->ill_lock);
13474 	mutex_exit(&ill->ill_phyint->phyint_lock);
13475 	return (ipif);
13476 }
13477 
13478 /*
13479  * If appropriate, send a message up to the resolver delete the entry
13480  * for the address of this interface which is going out of business.
13481  * (Always called as writer).
13482  *
13483  * NOTE : We need to check for NULL mps as some of the fields are
13484  *	  initialized only for some interface types. See ipif_resolver_up()
13485  *	  for details.
13486  */
13487 void
13488 ipif_arp_down(ipif_t *ipif)
13489 {
13490 	mblk_t	*mp;
13491 	ill_t	*ill = ipif->ipif_ill;
13492 
13493 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13494 	ASSERT(IAM_WRITER_IPIF(ipif));
13495 
13496 	/* Delete the mapping for the local address */
13497 	mp = ipif->ipif_arp_del_mp;
13498 	if (mp != NULL) {
13499 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13500 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13501 		putnext(ill->ill_rq, mp);
13502 		ipif->ipif_arp_del_mp = NULL;
13503 	}
13504 
13505 	/*
13506 	 * If this is the last ipif that is going down and there are no
13507 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13508 	 * clean up ARP completely.
13509 	 */
13510 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13511 
13512 		/* Send up AR_INTERFACE_DOWN message */
13513 		mp = ill->ill_arp_down_mp;
13514 		if (mp != NULL) {
13515 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13516 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13517 			    ipif->ipif_id));
13518 			putnext(ill->ill_rq, mp);
13519 			ill->ill_arp_down_mp = NULL;
13520 		}
13521 
13522 		/* Tell ARP to delete the multicast mappings */
13523 		mp = ill->ill_arp_del_mapping_mp;
13524 		if (mp != NULL) {
13525 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13526 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13527 			    ipif->ipif_id));
13528 			putnext(ill->ill_rq, mp);
13529 			ill->ill_arp_del_mapping_mp = NULL;
13530 		}
13531 	}
13532 }
13533 
13534 /*
13535  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13536  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13537  * that it wants the add_mp allocated in this function to be returned
13538  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13539  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13540  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13541  * as it does a ipif_arp_down after calling this function - which will
13542  * remove what we add here.
13543  *
13544  * Returns -1 on failures and 0 on success.
13545  */
13546 int
13547 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13548 {
13549 	mblk_t	*del_mp = NULL;
13550 	mblk_t *add_mp = NULL;
13551 	mblk_t *mp;
13552 	ill_t	*ill = ipif->ipif_ill;
13553 	phyint_t *phyi = ill->ill_phyint;
13554 	ipaddr_t addr, mask, extract_mask = 0;
13555 	arma_t	*arma;
13556 	uint8_t *maddr, *bphys_addr;
13557 	uint32_t hw_start;
13558 	dl_unitdata_req_t *dlur;
13559 
13560 	ASSERT(IAM_WRITER_IPIF(ipif));
13561 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13562 		return (0);
13563 
13564 	/*
13565 	 * Delete the existing mapping from ARP. Normally ipif_down
13566 	 * -> ipif_arp_down should send this up to ARP. The only
13567 	 * reason we would find this when we are switching from
13568 	 * Multicast to Broadcast where we did not do a down.
13569 	 */
13570 	mp = ill->ill_arp_del_mapping_mp;
13571 	if (mp != NULL) {
13572 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13573 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13574 		putnext(ill->ill_rq, mp);
13575 		ill->ill_arp_del_mapping_mp = NULL;
13576 	}
13577 
13578 	if (arp_add_mapping_mp != NULL)
13579 		*arp_add_mapping_mp = NULL;
13580 
13581 	/*
13582 	 * Check that the address is not to long for the constant
13583 	 * length reserved in the template arma_t.
13584 	 */
13585 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13586 		return (-1);
13587 
13588 	/* Add mapping mblk */
13589 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13590 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13591 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13592 	    (caddr_t)&addr);
13593 	if (add_mp == NULL)
13594 		return (-1);
13595 	arma = (arma_t *)add_mp->b_rptr;
13596 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13597 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13598 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13599 
13600 	/*
13601 	 * Determine the broadcast address.
13602 	 */
13603 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13604 	if (ill->ill_sap_length < 0)
13605 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13606 	else
13607 		bphys_addr = (uchar_t *)dlur +
13608 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13609 	/*
13610 	 * Check PHYI_MULTI_BCAST and length of physical
13611 	 * address to determine if we use the mapping or the
13612 	 * broadcast address.
13613 	 */
13614 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13615 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13616 		    bphys_addr, maddr, &hw_start, &extract_mask))
13617 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13618 
13619 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13620 	    (ill->ill_flags & ILLF_MULTICAST)) {
13621 		/* Make sure this will not match the "exact" entry. */
13622 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13623 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13624 		    (caddr_t)&addr);
13625 		if (del_mp == NULL) {
13626 			freemsg(add_mp);
13627 			return (-1);
13628 		}
13629 		bcopy(&extract_mask, (char *)arma +
13630 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13631 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13632 			/* Use link-layer broadcast address for MULTI_BCAST */
13633 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13634 			ip2dbg(("ipif_arp_setup_multicast: adding"
13635 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13636 		} else {
13637 			arma->arma_hw_mapping_start = hw_start;
13638 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13639 			    " ARP setup for %s\n", ill->ill_name));
13640 		}
13641 	} else {
13642 		freemsg(add_mp);
13643 		ASSERT(del_mp == NULL);
13644 		/* It is neither MULTICAST nor MULTI_BCAST */
13645 		return (0);
13646 	}
13647 	ASSERT(add_mp != NULL && del_mp != NULL);
13648 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13649 	ill->ill_arp_del_mapping_mp = del_mp;
13650 	if (arp_add_mapping_mp != NULL) {
13651 		/* The caller just wants the mblks allocated */
13652 		*arp_add_mapping_mp = add_mp;
13653 	} else {
13654 		/* The caller wants us to send it to arp */
13655 		putnext(ill->ill_rq, add_mp);
13656 	}
13657 	return (0);
13658 }
13659 
13660 /*
13661  * Get the resolver set up for a new interface address.
13662  * (Always called as writer.)
13663  * Called both for IPv4 and IPv6 interfaces,
13664  * though it only sets up the resolver for v6
13665  * if it's an xresolv interface (one using an external resolver).
13666  * Honors ILLF_NOARP.
13667  * The enumerated value res_act is used to tune the behavior.
13668  * If set to Res_act_initial, then we set up all the resolver
13669  * structures for a new interface.  If set to Res_act_move, then
13670  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13671  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13672  * asynchronous hardware address change notification.  If set to
13673  * Res_act_defend, then we tell ARP that it needs to send a single
13674  * gratuitous message in defense of the address.
13675  * Returns error on failure.
13676  */
13677 int
13678 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13679 {
13680 	caddr_t	addr;
13681 	mblk_t	*arp_up_mp = NULL;
13682 	mblk_t	*arp_down_mp = NULL;
13683 	mblk_t	*arp_add_mp = NULL;
13684 	mblk_t	*arp_del_mp = NULL;
13685 	mblk_t	*arp_add_mapping_mp = NULL;
13686 	mblk_t	*arp_del_mapping_mp = NULL;
13687 	ill_t	*ill = ipif->ipif_ill;
13688 	uchar_t	*area_p = NULL;
13689 	uchar_t	*ared_p = NULL;
13690 	int	err = ENOMEM;
13691 	boolean_t was_dup;
13692 
13693 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13694 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13695 	ASSERT(IAM_WRITER_IPIF(ipif));
13696 
13697 	was_dup = B_FALSE;
13698 	if (res_act == Res_act_initial) {
13699 		ipif->ipif_addr_ready = 0;
13700 		/*
13701 		 * We're bringing an interface up here.  There's no way that we
13702 		 * should need to shut down ARP now.
13703 		 */
13704 		mutex_enter(&ill->ill_lock);
13705 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13706 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13707 			ill->ill_ipif_dup_count--;
13708 			was_dup = B_TRUE;
13709 		}
13710 		mutex_exit(&ill->ill_lock);
13711 	}
13712 	if (ipif->ipif_recovery_id != 0)
13713 		(void) untimeout(ipif->ipif_recovery_id);
13714 	ipif->ipif_recovery_id = 0;
13715 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13716 		ipif->ipif_addr_ready = 1;
13717 		return (0);
13718 	}
13719 	/* NDP will set the ipif_addr_ready flag when it's ready */
13720 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13721 		return (0);
13722 
13723 	if (ill->ill_isv6) {
13724 		/*
13725 		 * External resolver for IPv6
13726 		 */
13727 		ASSERT(res_act == Res_act_initial);
13728 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
13729 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
13730 			area_p = (uchar_t *)&ip6_area_template;
13731 			ared_p = (uchar_t *)&ip6_ared_template;
13732 		}
13733 	} else {
13734 		/*
13735 		 * IPv4 arp case. If the ARP stream has already started
13736 		 * closing, fail this request for ARP bringup. Else
13737 		 * record the fact that an ARP bringup is pending.
13738 		 */
13739 		mutex_enter(&ill->ill_lock);
13740 		if (ill->ill_arp_closing) {
13741 			mutex_exit(&ill->ill_lock);
13742 			err = EINVAL;
13743 			goto failed;
13744 		} else {
13745 			if (ill->ill_ipif_up_count == 0 &&
13746 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13747 				ill->ill_arp_bringup_pending = 1;
13748 			mutex_exit(&ill->ill_lock);
13749 		}
13750 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
13751 			addr = (caddr_t)&ipif->ipif_lcl_addr;
13752 			area_p = (uchar_t *)&ip_area_template;
13753 			ared_p = (uchar_t *)&ip_ared_template;
13754 		}
13755 	}
13756 
13757 	/*
13758 	 * Add an entry for the local address in ARP only if it
13759 	 * is not UNNUMBERED and the address is not INADDR_ANY.
13760 	 */
13761 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
13762 		area_t *area;
13763 
13764 		/* Now ask ARP to publish our address. */
13765 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
13766 		if (arp_add_mp == NULL)
13767 			goto failed;
13768 		area = (area_t *)arp_add_mp->b_rptr;
13769 		if (res_act != Res_act_initial) {
13770 			/*
13771 			 * Copy the new hardware address and length into
13772 			 * arp_add_mp to be sent to ARP.
13773 			 */
13774 			area->area_hw_addr_length = ill->ill_phys_addr_length;
13775 			bcopy(ill->ill_phys_addr,
13776 			    ((char *)area + area->area_hw_addr_offset),
13777 			    area->area_hw_addr_length);
13778 		}
13779 
13780 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
13781 		    ACE_F_MYADDR;
13782 
13783 		if (res_act == Res_act_defend) {
13784 			area->area_flags |= ACE_F_DEFEND;
13785 			/*
13786 			 * If we're just defending our address now, then
13787 			 * there's no need to set up ARP multicast mappings.
13788 			 * The publish command is enough.
13789 			 */
13790 			goto done;
13791 		}
13792 
13793 		if (res_act != Res_act_initial)
13794 			goto arp_setup_multicast;
13795 
13796 		/*
13797 		 * Allocate an ARP deletion message so we know we can tell ARP
13798 		 * when the interface goes down.
13799 		 */
13800 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
13801 		if (arp_del_mp == NULL)
13802 			goto failed;
13803 
13804 	} else {
13805 		if (res_act != Res_act_initial)
13806 			goto done;
13807 	}
13808 	/*
13809 	 * Need to bring up ARP or setup multicast mapping only
13810 	 * when the first interface is coming UP.
13811 	 */
13812 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
13813 	    was_dup) {
13814 		goto done;
13815 	}
13816 
13817 	/*
13818 	 * Allocate an ARP down message (to be saved) and an ARP up
13819 	 * message.
13820 	 */
13821 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13822 	if (arp_down_mp == NULL)
13823 		goto failed;
13824 
13825 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13826 	if (arp_up_mp == NULL)
13827 		goto failed;
13828 
13829 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13830 		goto done;
13831 
13832 arp_setup_multicast:
13833 	/*
13834 	 * Setup the multicast mappings. This function initializes
13835 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13836 	 * IPv6.
13837 	 */
13838 	if (!ill->ill_isv6) {
13839 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13840 		if (err != 0)
13841 			goto failed;
13842 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13843 		ASSERT(arp_add_mapping_mp != NULL);
13844 	}
13845 
13846 done:
13847 	if (arp_del_mp != NULL) {
13848 		ASSERT(ipif->ipif_arp_del_mp == NULL);
13849 		ipif->ipif_arp_del_mp = arp_del_mp;
13850 	}
13851 	if (arp_down_mp != NULL) {
13852 		ASSERT(ill->ill_arp_down_mp == NULL);
13853 		ill->ill_arp_down_mp = arp_down_mp;
13854 	}
13855 	if (arp_del_mapping_mp != NULL) {
13856 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13857 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13858 	}
13859 	if (arp_up_mp != NULL) {
13860 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13861 		    ill->ill_name, ipif->ipif_id));
13862 		putnext(ill->ill_rq, arp_up_mp);
13863 	}
13864 	if (arp_add_mp != NULL) {
13865 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13866 		    ill->ill_name, ipif->ipif_id));
13867 		/*
13868 		 * If it's an extended ARP implementation, then we'll wait to
13869 		 * hear that DAD has finished before using the interface.
13870 		 */
13871 		if (!ill->ill_arp_extend)
13872 			ipif->ipif_addr_ready = 1;
13873 		putnext(ill->ill_rq, arp_add_mp);
13874 	} else {
13875 		ipif->ipif_addr_ready = 1;
13876 	}
13877 	if (arp_add_mapping_mp != NULL) {
13878 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13879 		    ill->ill_name, ipif->ipif_id));
13880 		putnext(ill->ill_rq, arp_add_mapping_mp);
13881 	}
13882 	if (res_act != Res_act_initial)
13883 		return (0);
13884 
13885 	if (ill->ill_flags & ILLF_NOARP)
13886 		err = ill_arp_off(ill);
13887 	else
13888 		err = ill_arp_on(ill);
13889 	if (err != 0) {
13890 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
13891 		freemsg(ipif->ipif_arp_del_mp);
13892 		freemsg(ill->ill_arp_down_mp);
13893 		freemsg(ill->ill_arp_del_mapping_mp);
13894 		ipif->ipif_arp_del_mp = NULL;
13895 		ill->ill_arp_down_mp = NULL;
13896 		ill->ill_arp_del_mapping_mp = NULL;
13897 		return (err);
13898 	}
13899 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13900 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13901 
13902 failed:
13903 	ip1dbg(("ipif_resolver_up: FAILED\n"));
13904 	freemsg(arp_add_mp);
13905 	freemsg(arp_del_mp);
13906 	freemsg(arp_add_mapping_mp);
13907 	freemsg(arp_up_mp);
13908 	freemsg(arp_down_mp);
13909 	ill->ill_arp_bringup_pending = 0;
13910 	return (err);
13911 }
13912 
13913 /*
13914  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13915  * just gone back up.
13916  */
13917 static void
13918 ipif_arp_start_dad(ipif_t *ipif)
13919 {
13920 	ill_t *ill = ipif->ipif_ill;
13921 	mblk_t *arp_add_mp;
13922 	area_t *area;
13923 
13924 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13925 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13926 	    ipif->ipif_lcl_addr == INADDR_ANY ||
13927 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
13928 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
13929 		/*
13930 		 * If we can't contact ARP for some reason, that's not really a
13931 		 * problem.  Just send out the routing socket notification that
13932 		 * DAD completion would have done, and continue.
13933 		 */
13934 		ipif_mask_reply(ipif);
13935 		ip_rts_ifmsg(ipif);
13936 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13937 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13938 		ipif->ipif_addr_ready = 1;
13939 		return;
13940 	}
13941 
13942 	/* Setting the 'unverified' flag restarts DAD */
13943 	area = (area_t *)arp_add_mp->b_rptr;
13944 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
13945 	    ACE_F_UNVERIFIED;
13946 	putnext(ill->ill_rq, arp_add_mp);
13947 }
13948 
13949 static void
13950 ipif_ndp_start_dad(ipif_t *ipif)
13951 {
13952 	nce_t *nce;
13953 
13954 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
13955 	if (nce == NULL)
13956 		return;
13957 
13958 	if (!ndp_restart_dad(nce)) {
13959 		/*
13960 		 * If we can't restart DAD for some reason, that's not really a
13961 		 * problem.  Just send out the routing socket notification that
13962 		 * DAD completion would have done, and continue.
13963 		 */
13964 		ip_rts_ifmsg(ipif);
13965 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13966 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
13967 		ipif->ipif_addr_ready = 1;
13968 	}
13969 	NCE_REFRELE(nce);
13970 }
13971 
13972 /*
13973  * Restart duplicate address detection on all interfaces on the given ill.
13974  *
13975  * This is called when an interface transitions from down to up
13976  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13977  *
13978  * Note that since the underlying physical link has transitioned, we must cause
13979  * at least one routing socket message to be sent here, either via DAD
13980  * completion or just by default on the first ipif.  (If we don't do this, then
13981  * in.mpathd will see long delays when doing link-based failure recovery.)
13982  */
13983 void
13984 ill_restart_dad(ill_t *ill, boolean_t went_up)
13985 {
13986 	ipif_t *ipif;
13987 
13988 	if (ill == NULL)
13989 		return;
13990 
13991 	/*
13992 	 * If layer two doesn't support duplicate address detection, then just
13993 	 * send the routing socket message now and be done with it.
13994 	 */
13995 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
13996 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
13997 		ip_rts_ifmsg(ill->ill_ipif);
13998 		return;
13999 	}
14000 
14001 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14002 		if (went_up) {
14003 			if (ipif->ipif_flags & IPIF_UP) {
14004 				if (ill->ill_isv6)
14005 					ipif_ndp_start_dad(ipif);
14006 				else
14007 					ipif_arp_start_dad(ipif);
14008 			} else if (ill->ill_isv6 &&
14009 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14010 				/*
14011 				 * For IPv4, the ARP module itself will
14012 				 * automatically start the DAD process when it
14013 				 * sees DL_NOTE_LINK_UP.  We respond to the
14014 				 * AR_CN_READY at the completion of that task.
14015 				 * For IPv6, we must kick off the bring-up
14016 				 * process now.
14017 				 */
14018 				ndp_do_recovery(ipif);
14019 			} else {
14020 				/*
14021 				 * Unfortunately, the first ipif is "special"
14022 				 * and represents the underlying ill in the
14023 				 * routing socket messages.  Thus, when this
14024 				 * one ipif is down, we must still notify so
14025 				 * that the user knows the IFF_RUNNING status
14026 				 * change.  (If the first ipif is up, then
14027 				 * we'll handle eventual routing socket
14028 				 * notification via DAD completion.)
14029 				 */
14030 				if (ipif == ill->ill_ipif)
14031 					ip_rts_ifmsg(ill->ill_ipif);
14032 			}
14033 		} else {
14034 			/*
14035 			 * After link down, we'll need to send a new routing
14036 			 * message when the link comes back, so clear
14037 			 * ipif_addr_ready.
14038 			 */
14039 			ipif->ipif_addr_ready = 0;
14040 		}
14041 	}
14042 
14043 	/*
14044 	 * If we've torn down links, then notify the user right away.
14045 	 */
14046 	if (!went_up)
14047 		ip_rts_ifmsg(ill->ill_ipif);
14048 }
14049 
14050 /*
14051  * Wakeup all threads waiting to enter the ipsq, and sleeping
14052  * on any of the ills in this ipsq. The ill_lock of the ill
14053  * must be held so that waiters don't miss wakeups
14054  */
14055 static void
14056 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14057 {
14058 	phyint_t *phyint;
14059 
14060 	phyint = ipsq->ipsq_phyint_list;
14061 	while (phyint != NULL) {
14062 		if (phyint->phyint_illv4) {
14063 			if (!caller_holds_lock)
14064 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14065 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14066 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14067 			if (!caller_holds_lock)
14068 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14069 		}
14070 		if (phyint->phyint_illv6) {
14071 			if (!caller_holds_lock)
14072 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14073 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14074 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14075 			if (!caller_holds_lock)
14076 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14077 		}
14078 		phyint = phyint->phyint_ipsq_next;
14079 	}
14080 }
14081 
14082 static ipsq_t *
14083 ipsq_create(char *groupname, ip_stack_t *ipst)
14084 {
14085 	ipsq_t	*ipsq;
14086 
14087 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14088 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14089 	if (ipsq == NULL) {
14090 		return (NULL);
14091 	}
14092 
14093 	if (groupname != NULL)
14094 		(void) strcpy(ipsq->ipsq_name, groupname);
14095 	else
14096 		ipsq->ipsq_name[0] = '\0';
14097 
14098 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14099 	ipsq->ipsq_flags |= IPSQ_GROUP;
14100 	ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14101 	ipst->ips_ipsq_g_head = ipsq;
14102 	ipsq->ipsq_ipst = ipst;		/* No netstack_hold */
14103 	return (ipsq);
14104 }
14105 
14106 /*
14107  * Return an ipsq correspoding to the groupname. If 'create' is true
14108  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14109  * uniquely with an IPMP group. However during IPMP groupname operations,
14110  * multiple IPMP groups may be associated with a single ipsq. But no
14111  * IPMP group can be associated with more than 1 ipsq at any time.
14112  * For example
14113  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14114  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14115  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14116  *
14117  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14118  * status shown below during the execution of the above command.
14119  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14120  *
14121  * After the completion of the above groupname command we return to the stable
14122  * state shown below.
14123  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14124  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14125  *
14126  * Because of the above, we don't search based on the ipsq_name since that
14127  * would miss the correct ipsq during certain windows as shown above.
14128  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14129  * natural state.
14130  */
14131 static ipsq_t *
14132 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14133     ip_stack_t *ipst)
14134 {
14135 	ipsq_t	*ipsq;
14136 	int	group_len;
14137 	phyint_t *phyint;
14138 
14139 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14140 
14141 	group_len = strlen(groupname);
14142 	ASSERT(group_len != 0);
14143 	group_len++;
14144 
14145 	for (ipsq = ipst->ips_ipsq_g_head;
14146 	    ipsq != NULL;
14147 	    ipsq = ipsq->ipsq_next) {
14148 		/*
14149 		 * When an ipsq is being split, and ill_split_ipsq
14150 		 * calls this function, we exclude it from being considered.
14151 		 */
14152 		if (ipsq == exclude_ipsq)
14153 			continue;
14154 
14155 		/*
14156 		 * Compare against the ipsq_name. The groupname change happens
14157 		 * in 2 phases. The 1st phase merges the from group into
14158 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14159 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14160 		 * ipsq_name. At this point the phyint_groupname has not been
14161 		 * updated.
14162 		 */
14163 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14164 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14165 			/*
14166 			 * Verify that an ipmp groupname is exactly
14167 			 * part of 1 ipsq and is not found in any other
14168 			 * ipsq.
14169 			 */
14170 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14171 			    NULL);
14172 			return (ipsq);
14173 		}
14174 
14175 		/*
14176 		 * Comparison against ipsq_name alone is not sufficient.
14177 		 * In the case when groups are currently being
14178 		 * merged, the ipsq could hold other IPMP groups temporarily.
14179 		 * so we walk the phyint list and compare against the
14180 		 * phyint_groupname as well.
14181 		 */
14182 		phyint = ipsq->ipsq_phyint_list;
14183 		while (phyint != NULL) {
14184 			if ((group_len == phyint->phyint_groupname_len) &&
14185 			    (bcmp(phyint->phyint_groupname, groupname,
14186 			    group_len) == 0)) {
14187 				/*
14188 				 * Verify that an ipmp groupname is exactly
14189 				 * part of 1 ipsq and is not found in any other
14190 				 * ipsq.
14191 				 */
14192 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14193 				    ipst) == NULL);
14194 				return (ipsq);
14195 			}
14196 			phyint = phyint->phyint_ipsq_next;
14197 		}
14198 	}
14199 	if (create)
14200 		ipsq = ipsq_create(groupname, ipst);
14201 	return (ipsq);
14202 }
14203 
14204 static void
14205 ipsq_delete(ipsq_t *ipsq)
14206 {
14207 	ipsq_t *nipsq;
14208 	ipsq_t *pipsq = NULL;
14209 	ip_stack_t *ipst = ipsq->ipsq_ipst;
14210 
14211 	/*
14212 	 * We don't hold the ipsq lock, but we are sure no new
14213 	 * messages can land up, since the ipsq_refs is zero.
14214 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14215 	 * is associated with this ipsq. (Lookups are based on ill_name
14216 	 * or phyint_groupname)
14217 	 */
14218 	ASSERT(ipsq->ipsq_refs == 0);
14219 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14220 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14221 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14222 		/*
14223 		 * This is not the ipsq of an IPMP group.
14224 		 */
14225 		ipsq->ipsq_ipst = NULL;
14226 		kmem_free(ipsq, sizeof (ipsq_t));
14227 		return;
14228 	}
14229 
14230 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14231 
14232 	/*
14233 	 * Locate the ipsq  before we can remove it from
14234 	 * the singly linked list of ipsq's.
14235 	 */
14236 	for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14237 	    nipsq = nipsq->ipsq_next) {
14238 		if (nipsq == ipsq) {
14239 			break;
14240 		}
14241 		pipsq = nipsq;
14242 	}
14243 
14244 	ASSERT(nipsq == ipsq);
14245 
14246 	/* unlink ipsq from the list */
14247 	if (pipsq != NULL)
14248 		pipsq->ipsq_next = ipsq->ipsq_next;
14249 	else
14250 		ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14251 	ipsq->ipsq_ipst = NULL;
14252 	kmem_free(ipsq, sizeof (ipsq_t));
14253 	rw_exit(&ipst->ips_ill_g_lock);
14254 }
14255 
14256 static void
14257 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14258     queue_t *q)
14259 {
14260 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14261 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14262 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14263 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14264 	ASSERT(current_mp != NULL);
14265 
14266 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14267 	    NEW_OP, NULL);
14268 
14269 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14270 	    new_ipsq->ipsq_xopq_mphead != NULL);
14271 
14272 	/*
14273 	 * move from old ipsq to the new ipsq.
14274 	 */
14275 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14276 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14277 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14278 
14279 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14280 }
14281 
14282 void
14283 ill_group_cleanup(ill_t *ill)
14284 {
14285 	ill_t *ill_v4;
14286 	ill_t *ill_v6;
14287 	ipif_t *ipif;
14288 
14289 	ill_v4 = ill->ill_phyint->phyint_illv4;
14290 	ill_v6 = ill->ill_phyint->phyint_illv6;
14291 
14292 	if (ill_v4 != NULL) {
14293 		mutex_enter(&ill_v4->ill_lock);
14294 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14295 		    ipif = ipif->ipif_next) {
14296 			IPIF_UNMARK_MOVING(ipif);
14297 		}
14298 		ill_v4->ill_up_ipifs = B_FALSE;
14299 		mutex_exit(&ill_v4->ill_lock);
14300 	}
14301 
14302 	if (ill_v6 != NULL) {
14303 		mutex_enter(&ill_v6->ill_lock);
14304 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14305 		    ipif = ipif->ipif_next) {
14306 			IPIF_UNMARK_MOVING(ipif);
14307 		}
14308 		ill_v6->ill_up_ipifs = B_FALSE;
14309 		mutex_exit(&ill_v6->ill_lock);
14310 	}
14311 }
14312 /*
14313  * This function is called when an ill has had a change in its group status
14314  * to bring up all the ipifs that were up before the change.
14315  */
14316 int
14317 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14318 {
14319 	ipif_t *ipif;
14320 	ill_t *ill_v4;
14321 	ill_t *ill_v6;
14322 	ill_t *from_ill;
14323 	int err = 0;
14324 
14325 
14326 	ASSERT(IAM_WRITER_ILL(ill));
14327 
14328 	/*
14329 	 * Except for ipif_state_flags and ill_state_flags the other
14330 	 * fields of the ipif/ill that are modified below are protected
14331 	 * implicitly since we are a writer. We would have tried to down
14332 	 * even an ipif that was already down, in ill_down_ipifs. So we
14333 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14334 	 */
14335 	ill_v4 = ill->ill_phyint->phyint_illv4;
14336 	ill_v6 = ill->ill_phyint->phyint_illv6;
14337 	if (ill_v4 != NULL) {
14338 		ill_v4->ill_up_ipifs = B_TRUE;
14339 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14340 		    ipif = ipif->ipif_next) {
14341 			mutex_enter(&ill_v4->ill_lock);
14342 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14343 			IPIF_UNMARK_MOVING(ipif);
14344 			mutex_exit(&ill_v4->ill_lock);
14345 			if (ipif->ipif_was_up) {
14346 				if (!(ipif->ipif_flags & IPIF_UP))
14347 					err = ipif_up(ipif, q, mp);
14348 				ipif->ipif_was_up = B_FALSE;
14349 				if (err != 0) {
14350 					/*
14351 					 * Can there be any other error ?
14352 					 */
14353 					ASSERT(err == EINPROGRESS);
14354 					return (err);
14355 				}
14356 			}
14357 		}
14358 		mutex_enter(&ill_v4->ill_lock);
14359 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14360 		mutex_exit(&ill_v4->ill_lock);
14361 		ill_v4->ill_up_ipifs = B_FALSE;
14362 		if (ill_v4->ill_move_in_progress) {
14363 			ASSERT(ill_v4->ill_move_peer != NULL);
14364 			ill_v4->ill_move_in_progress = B_FALSE;
14365 			from_ill = ill_v4->ill_move_peer;
14366 			from_ill->ill_move_in_progress = B_FALSE;
14367 			from_ill->ill_move_peer = NULL;
14368 			mutex_enter(&from_ill->ill_lock);
14369 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14370 			mutex_exit(&from_ill->ill_lock);
14371 			if (ill_v6 == NULL) {
14372 				if (from_ill->ill_phyint->phyint_flags &
14373 				    PHYI_STANDBY) {
14374 					phyint_inactive(from_ill->ill_phyint);
14375 				}
14376 				if (ill_v4->ill_phyint->phyint_flags &
14377 				    PHYI_STANDBY) {
14378 					phyint_inactive(ill_v4->ill_phyint);
14379 				}
14380 			}
14381 			ill_v4->ill_move_peer = NULL;
14382 		}
14383 	}
14384 
14385 	if (ill_v6 != NULL) {
14386 		ill_v6->ill_up_ipifs = B_TRUE;
14387 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14388 		    ipif = ipif->ipif_next) {
14389 			mutex_enter(&ill_v6->ill_lock);
14390 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14391 			IPIF_UNMARK_MOVING(ipif);
14392 			mutex_exit(&ill_v6->ill_lock);
14393 			if (ipif->ipif_was_up) {
14394 				if (!(ipif->ipif_flags & IPIF_UP))
14395 					err = ipif_up(ipif, q, mp);
14396 				ipif->ipif_was_up = B_FALSE;
14397 				if (err != 0) {
14398 					/*
14399 					 * Can there be any other error ?
14400 					 */
14401 					ASSERT(err == EINPROGRESS);
14402 					return (err);
14403 				}
14404 			}
14405 		}
14406 		mutex_enter(&ill_v6->ill_lock);
14407 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14408 		mutex_exit(&ill_v6->ill_lock);
14409 		ill_v6->ill_up_ipifs = B_FALSE;
14410 		if (ill_v6->ill_move_in_progress) {
14411 			ASSERT(ill_v6->ill_move_peer != NULL);
14412 			ill_v6->ill_move_in_progress = B_FALSE;
14413 			from_ill = ill_v6->ill_move_peer;
14414 			from_ill->ill_move_in_progress = B_FALSE;
14415 			from_ill->ill_move_peer = NULL;
14416 			mutex_enter(&from_ill->ill_lock);
14417 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14418 			mutex_exit(&from_ill->ill_lock);
14419 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14420 				phyint_inactive(from_ill->ill_phyint);
14421 			}
14422 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14423 				phyint_inactive(ill_v6->ill_phyint);
14424 			}
14425 			ill_v6->ill_move_peer = NULL;
14426 		}
14427 	}
14428 	return (0);
14429 }
14430 
14431 /*
14432  * bring down all the approriate ipifs.
14433  */
14434 /* ARGSUSED */
14435 static void
14436 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14437 {
14438 	ipif_t *ipif;
14439 
14440 	ASSERT(IAM_WRITER_ILL(ill));
14441 
14442 	/*
14443 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14444 	 * are modified below are protected implicitly since we are a writer
14445 	 */
14446 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14447 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14448 			continue;
14449 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14450 			/*
14451 			 * We go through the ipif_down logic even if the ipif
14452 			 * is already down, since routes can be added based
14453 			 * on down ipifs. Going through ipif_down once again
14454 			 * will delete any IREs created based on these routes.
14455 			 */
14456 			if (ipif->ipif_flags & IPIF_UP)
14457 				ipif->ipif_was_up = B_TRUE;
14458 			/*
14459 			 * If called with chk_nofailover true ipif is moving.
14460 			 */
14461 			mutex_enter(&ill->ill_lock);
14462 			if (chk_nofailover) {
14463 				ipif->ipif_state_flags |=
14464 				    IPIF_MOVING | IPIF_CHANGING;
14465 			} else {
14466 				ipif->ipif_state_flags |= IPIF_CHANGING;
14467 			}
14468 			mutex_exit(&ill->ill_lock);
14469 			/*
14470 			 * Need to re-create net/subnet bcast ires if
14471 			 * they are dependent on ipif.
14472 			 */
14473 			if (!ipif->ipif_isv6)
14474 				ipif_check_bcast_ires(ipif);
14475 			(void) ipif_logical_down(ipif, NULL, NULL);
14476 			ipif_non_duplicate(ipif);
14477 			ipif_down_tail(ipif);
14478 		}
14479 	}
14480 }
14481 
14482 #define	IPSQ_INC_REF(ipsq, ipst)	{			\
14483 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14484 	(ipsq)->ipsq_refs++;				\
14485 }
14486 
14487 #define	IPSQ_DEC_REF(ipsq, ipst)	{			\
14488 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14489 	(ipsq)->ipsq_refs--;				\
14490 	if ((ipsq)->ipsq_refs == 0)				\
14491 		(ipsq)->ipsq_name[0] = '\0'; 		\
14492 }
14493 
14494 /*
14495  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14496  * new_ipsq.
14497  */
14498 static void
14499 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14500 {
14501 	phyint_t *phyint;
14502 	phyint_t *next_phyint;
14503 
14504 	/*
14505 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14506 	 * writer and the ill_lock of the ill in question. Also the dest
14507 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14508 	 */
14509 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14510 
14511 	phyint = cur_ipsq->ipsq_phyint_list;
14512 	cur_ipsq->ipsq_phyint_list = NULL;
14513 	while (phyint != NULL) {
14514 		next_phyint = phyint->phyint_ipsq_next;
14515 		IPSQ_DEC_REF(cur_ipsq, ipst);
14516 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14517 		new_ipsq->ipsq_phyint_list = phyint;
14518 		IPSQ_INC_REF(new_ipsq, ipst);
14519 		phyint->phyint_ipsq = new_ipsq;
14520 		phyint = next_phyint;
14521 	}
14522 }
14523 
14524 #define	SPLIT_SUCCESS		0
14525 #define	SPLIT_NOT_NEEDED	1
14526 #define	SPLIT_FAILED		2
14527 
14528 int
14529 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14530     ip_stack_t *ipst)
14531 {
14532 	ipsq_t *newipsq = NULL;
14533 
14534 	/*
14535 	 * Assertions denote pre-requisites for changing the ipsq of
14536 	 * a phyint
14537 	 */
14538 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14539 	/*
14540 	 * <ill-phyint> assocs can't change while ill_g_lock
14541 	 * is held as writer. See ill_phyint_reinit()
14542 	 */
14543 	ASSERT(phyint->phyint_illv4 == NULL ||
14544 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14545 	ASSERT(phyint->phyint_illv6 == NULL ||
14546 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14547 
14548 	if ((phyint->phyint_groupname_len !=
14549 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14550 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14551 	    phyint->phyint_groupname_len) != 0)) {
14552 		/*
14553 		 * Once we fail in creating a new ipsq due to memory shortage,
14554 		 * don't attempt to create new ipsq again, based on another
14555 		 * phyint, since we want all phyints belonging to an IPMP group
14556 		 * to be in the same ipsq even in the event of mem alloc fails.
14557 		 */
14558 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14559 		    cur_ipsq, ipst);
14560 		if (newipsq == NULL) {
14561 			/* Memory allocation failure */
14562 			return (SPLIT_FAILED);
14563 		} else {
14564 			/* ipsq_refs protected by ill_g_lock (writer) */
14565 			IPSQ_DEC_REF(cur_ipsq, ipst);
14566 			phyint->phyint_ipsq = newipsq;
14567 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14568 			newipsq->ipsq_phyint_list = phyint;
14569 			IPSQ_INC_REF(newipsq, ipst);
14570 			return (SPLIT_SUCCESS);
14571 		}
14572 	}
14573 	return (SPLIT_NOT_NEEDED);
14574 }
14575 
14576 /*
14577  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14578  * to do this split
14579  */
14580 static int
14581 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14582 {
14583 	ipsq_t *newipsq;
14584 
14585 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14586 	/*
14587 	 * <ill-phyint> assocs can't change while ill_g_lock
14588 	 * is held as writer. See ill_phyint_reinit()
14589 	 */
14590 
14591 	ASSERT(phyint->phyint_illv4 == NULL ||
14592 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14593 	ASSERT(phyint->phyint_illv6 == NULL ||
14594 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14595 
14596 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14597 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14598 		/*
14599 		 * ipsq_init failed due to no memory
14600 		 * caller will use the same ipsq
14601 		 */
14602 		return (SPLIT_FAILED);
14603 	}
14604 
14605 	/* ipsq_ref is protected by ill_g_lock (writer) */
14606 	IPSQ_DEC_REF(cur_ipsq, ipst);
14607 
14608 	/*
14609 	 * This is a new ipsq that is unknown to the world.
14610 	 * So we don't need to hold ipsq_lock,
14611 	 */
14612 	newipsq = phyint->phyint_ipsq;
14613 	newipsq->ipsq_writer = NULL;
14614 	newipsq->ipsq_reentry_cnt--;
14615 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14616 #ifdef DEBUG
14617 	newipsq->ipsq_depth = 0;
14618 #endif
14619 
14620 	return (SPLIT_SUCCESS);
14621 }
14622 
14623 /*
14624  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14625  * ipsq's representing their individual groups or themselves. Return
14626  * whether split needs to be retried again later.
14627  */
14628 static boolean_t
14629 ill_split_ipsq(ipsq_t *cur_ipsq)
14630 {
14631 	phyint_t *phyint;
14632 	phyint_t *next_phyint;
14633 	int	error;
14634 	boolean_t need_retry = B_FALSE;
14635 	ip_stack_t	*ipst = cur_ipsq->ipsq_ipst;
14636 
14637 	phyint = cur_ipsq->ipsq_phyint_list;
14638 	cur_ipsq->ipsq_phyint_list = NULL;
14639 	while (phyint != NULL) {
14640 		next_phyint = phyint->phyint_ipsq_next;
14641 		/*
14642 		 * 'created' will tell us whether the callee actually
14643 		 * created an ipsq. Lack of memory may force the callee
14644 		 * to return without creating an ipsq.
14645 		 */
14646 		if (phyint->phyint_groupname == NULL) {
14647 			error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
14648 		} else {
14649 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14650 			    need_retry, ipst);
14651 		}
14652 
14653 		switch (error) {
14654 		case SPLIT_FAILED:
14655 			need_retry = B_TRUE;
14656 			/* FALLTHRU */
14657 		case SPLIT_NOT_NEEDED:
14658 			/*
14659 			 * Keep it on the list.
14660 			 */
14661 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14662 			cur_ipsq->ipsq_phyint_list = phyint;
14663 			break;
14664 		case SPLIT_SUCCESS:
14665 			break;
14666 		default:
14667 			ASSERT(0);
14668 		}
14669 
14670 		phyint = next_phyint;
14671 	}
14672 	return (need_retry);
14673 }
14674 
14675 /*
14676  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14677  * and return the ills in the list. This list will be
14678  * needed to unlock all the ills later on by the caller.
14679  * The <ill-ipsq> associations could change between the
14680  * lock and unlock. Hence the unlock can't traverse the
14681  * ipsq to get the list of ills.
14682  */
14683 static int
14684 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14685 {
14686 	int	cnt = 0;
14687 	phyint_t	*phyint;
14688 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
14689 
14690 	/*
14691 	 * The caller holds ill_g_lock to ensure that the ill memberships
14692 	 * of the ipsq don't change
14693 	 */
14694 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14695 
14696 	phyint = ipsq->ipsq_phyint_list;
14697 	while (phyint != NULL) {
14698 		if (phyint->phyint_illv4 != NULL) {
14699 			ASSERT(cnt < list_max);
14700 			list[cnt++] = phyint->phyint_illv4;
14701 		}
14702 		if (phyint->phyint_illv6 != NULL) {
14703 			ASSERT(cnt < list_max);
14704 			list[cnt++] = phyint->phyint_illv6;
14705 		}
14706 		phyint = phyint->phyint_ipsq_next;
14707 	}
14708 	ill_lock_ills(list, cnt);
14709 	return (cnt);
14710 }
14711 
14712 void
14713 ill_lock_ills(ill_t **list, int cnt)
14714 {
14715 	int	i;
14716 
14717 	if (cnt > 1) {
14718 		boolean_t try_again;
14719 		do {
14720 			try_again = B_FALSE;
14721 			for (i = 0; i < cnt - 1; i++) {
14722 				if (list[i] < list[i + 1]) {
14723 					ill_t	*tmp;
14724 
14725 					/* swap the elements */
14726 					tmp = list[i];
14727 					list[i] = list[i + 1];
14728 					list[i + 1] = tmp;
14729 					try_again = B_TRUE;
14730 				}
14731 			}
14732 		} while (try_again);
14733 	}
14734 
14735 	for (i = 0; i < cnt; i++) {
14736 		if (i == 0) {
14737 			if (list[i] != NULL)
14738 				mutex_enter(&list[i]->ill_lock);
14739 			else
14740 				return;
14741 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14742 			mutex_enter(&list[i]->ill_lock);
14743 		}
14744 	}
14745 }
14746 
14747 void
14748 ill_unlock_ills(ill_t **list, int cnt)
14749 {
14750 	int	i;
14751 
14752 	for (i = 0; i < cnt; i++) {
14753 		if ((i == 0) && (list[i] != NULL)) {
14754 			mutex_exit(&list[i]->ill_lock);
14755 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14756 			mutex_exit(&list[i]->ill_lock);
14757 		}
14758 	}
14759 }
14760 
14761 /*
14762  * Merge all the ills from 1 ipsq group into another ipsq group.
14763  * The source ipsq group is specified by the ipsq associated with
14764  * 'from_ill'. The destination ipsq group is specified by the ipsq
14765  * associated with 'to_ill' or 'groupname' respectively.
14766  * Note that ipsq itself does not have a reference count mechanism
14767  * and functions don't look up an ipsq and pass it around. Instead
14768  * functions pass around an ill or groupname, and the ipsq is looked
14769  * up from the ill or groupname and the required operation performed
14770  * atomically with the lookup on the ipsq.
14771  */
14772 static int
14773 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
14774     queue_t *q)
14775 {
14776 	ipsq_t *old_ipsq;
14777 	ipsq_t *new_ipsq;
14778 	ill_t	**ill_list;
14779 	int	cnt;
14780 	size_t	ill_list_size;
14781 	boolean_t became_writer_on_new_sq = B_FALSE;
14782 	ip_stack_t	*ipst = from_ill->ill_ipst;
14783 
14784 	ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
14785 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
14786 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
14787 
14788 	/*
14789 	 * Need to hold ill_g_lock as writer and also the ill_lock to
14790 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
14791 	 * ipsq_lock to prevent new messages from landing on an ipsq.
14792 	 */
14793 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14794 
14795 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
14796 	if (groupname != NULL)
14797 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
14798 	else {
14799 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
14800 	}
14801 
14802 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
14803 
14804 	/*
14805 	 * both groups are on the same ipsq.
14806 	 */
14807 	if (old_ipsq == new_ipsq) {
14808 		rw_exit(&ipst->ips_ill_g_lock);
14809 		return (0);
14810 	}
14811 
14812 	cnt = old_ipsq->ipsq_refs << 1;
14813 	ill_list_size = cnt * sizeof (ill_t *);
14814 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
14815 	if (ill_list == NULL) {
14816 		rw_exit(&ipst->ips_ill_g_lock);
14817 		return (ENOMEM);
14818 	}
14819 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
14820 
14821 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
14822 	mutex_enter(&new_ipsq->ipsq_lock);
14823 	if ((new_ipsq->ipsq_writer == NULL &&
14824 	    new_ipsq->ipsq_current_ipif == NULL) ||
14825 	    (new_ipsq->ipsq_writer == curthread)) {
14826 		new_ipsq->ipsq_writer = curthread;
14827 		new_ipsq->ipsq_reentry_cnt++;
14828 		became_writer_on_new_sq = B_TRUE;
14829 	}
14830 
14831 	/*
14832 	 * We are holding ill_g_lock as writer and all the ill locks of
14833 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
14834 	 * message can land up on the old ipsq even though we don't hold the
14835 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
14836 	 */
14837 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
14838 
14839 	/*
14840 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
14841 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
14842 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
14843 	 */
14844 	ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
14845 
14846 	/*
14847 	 * Mark the new ipsq as needing a split since it is currently
14848 	 * being shared by more than 1 IPMP group. The split will
14849 	 * occur at the end of ipsq_exit
14850 	 */
14851 	new_ipsq->ipsq_split = B_TRUE;
14852 
14853 	/* Now release all the locks */
14854 	mutex_exit(&new_ipsq->ipsq_lock);
14855 	ill_unlock_ills(ill_list, cnt);
14856 	rw_exit(&ipst->ips_ill_g_lock);
14857 
14858 	kmem_free(ill_list, ill_list_size);
14859 
14860 	/*
14861 	 * If we succeeded in becoming writer on the new ipsq, then
14862 	 * drain the new ipsq and start processing  all enqueued messages
14863 	 * including the current ioctl we are processing which is either
14864 	 * a set groupname or failover/failback.
14865 	 */
14866 	if (became_writer_on_new_sq)
14867 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
14868 
14869 	/*
14870 	 * syncq has been changed and all the messages have been moved.
14871 	 */
14872 	mutex_enter(&old_ipsq->ipsq_lock);
14873 	old_ipsq->ipsq_current_ipif = NULL;
14874 	old_ipsq->ipsq_current_ioctl = 0;
14875 	mutex_exit(&old_ipsq->ipsq_lock);
14876 	return (EINPROGRESS);
14877 }
14878 
14879 /*
14880  * Delete and add the loopback copy and non-loopback copy of
14881  * the BROADCAST ire corresponding to ill and addr. Used to
14882  * group broadcast ires together when ill becomes part of
14883  * a group.
14884  *
14885  * This function is also called when ill is leaving the group
14886  * so that the ires belonging to the group gets re-grouped.
14887  */
14888 static void
14889 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
14890 {
14891 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
14892 	ire_t **ire_ptpn = &ire_head;
14893 	ip_stack_t	*ipst = ill->ill_ipst;
14894 
14895 	/*
14896 	 * The loopback and non-loopback IREs are inserted in the order in which
14897 	 * they're found, on the basis that they are correctly ordered (loopback
14898 	 * first).
14899 	 */
14900 	for (;;) {
14901 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
14902 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
14903 		if (ire == NULL)
14904 			break;
14905 
14906 		/*
14907 		 * we are passing in KM_SLEEP because it is not easy to
14908 		 * go back to a sane state in case of memory failure.
14909 		 */
14910 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
14911 		ASSERT(nire != NULL);
14912 		bzero(nire, sizeof (ire_t));
14913 		/*
14914 		 * Don't use ire_max_frag directly since we don't
14915 		 * hold on to 'ire' until we add the new ire 'nire' and
14916 		 * we don't want the new ire to have a dangling reference
14917 		 * to 'ire'. The ire_max_frag of a broadcast ire must
14918 		 * be in sync with the ipif_mtu of the associate ipif.
14919 		 * For eg. this happens as a result of SIOCSLIFNAME,
14920 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
14921 		 * the driver. A change in ire_max_frag triggered as
14922 		 * as a result of path mtu discovery, or due to an
14923 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
14924 		 * route change -mtu command does not apply to broadcast ires.
14925 		 *
14926 		 * XXX We need a recovery strategy here if ire_init fails
14927 		 */
14928 		if (ire_init(nire,
14929 		    (uchar_t *)&ire->ire_addr,
14930 		    (uchar_t *)&ire->ire_mask,
14931 		    (uchar_t *)&ire->ire_src_addr,
14932 		    (uchar_t *)&ire->ire_gateway_addr,
14933 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
14934 		    &ire->ire_ipif->ipif_mtu,
14935 		    ire->ire_nce,
14936 		    ire->ire_rfq,
14937 		    ire->ire_stq,
14938 		    ire->ire_type,
14939 		    ire->ire_ipif,
14940 		    ire->ire_cmask,
14941 		    ire->ire_phandle,
14942 		    ire->ire_ihandle,
14943 		    ire->ire_flags,
14944 		    &ire->ire_uinfo,
14945 		    NULL,
14946 		    NULL,
14947 		    ipst) == NULL) {
14948 			cmn_err(CE_PANIC, "ire_init() failed");
14949 		}
14950 		ire_delete(ire);
14951 		ire_refrele(ire);
14952 
14953 		/*
14954 		 * The newly created IREs are inserted at the tail of the list
14955 		 * starting with ire_head. As we've just allocated them no one
14956 		 * knows about them so it's safe.
14957 		 */
14958 		*ire_ptpn = nire;
14959 		ire_ptpn = &nire->ire_next;
14960 	}
14961 
14962 	for (nire = ire_head; nire != NULL; nire = nire_next) {
14963 		int error;
14964 		ire_t *oire;
14965 		/* unlink the IRE from our list before calling ire_add() */
14966 		nire_next = nire->ire_next;
14967 		nire->ire_next = NULL;
14968 
14969 		/* ire_add adds the ire at the right place in the list */
14970 		oire = nire;
14971 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
14972 		ASSERT(error == 0);
14973 		ASSERT(oire == nire);
14974 		ire_refrele(nire);	/* Held in ire_add */
14975 	}
14976 }
14977 
14978 /*
14979  * This function is usually called when an ill is inserted in
14980  * a group and all the ipifs are already UP. As all the ipifs
14981  * are already UP, the broadcast ires have already been created
14982  * and been inserted. But, ire_add_v4 would not have grouped properly.
14983  * We need to re-group for the benefit of ip_wput_ire which
14984  * expects BROADCAST ires to be grouped properly to avoid sending
14985  * more than one copy of the broadcast packet per group.
14986  *
14987  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
14988  *	  because when ipif_up_done ends up calling this, ires have
14989  *        already been added before illgrp_insert i.e before ill_group
14990  *	  has been initialized.
14991  */
14992 static void
14993 ill_group_bcast_for_xmit(ill_t *ill)
14994 {
14995 	ill_group_t *illgrp;
14996 	ipif_t *ipif;
14997 	ipaddr_t addr;
14998 	ipaddr_t net_mask;
14999 	ipaddr_t subnet_netmask;
15000 
15001 	illgrp = ill->ill_group;
15002 
15003 	/*
15004 	 * This function is called even when an ill is deleted from
15005 	 * the group. Hence, illgrp could be null.
15006 	 */
15007 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15008 		return;
15009 
15010 	/*
15011 	 * Delete all the BROADCAST ires matching this ill and add
15012 	 * them back. This time, ire_add_v4 should take care of
15013 	 * grouping them with others because ill is part of the
15014 	 * group.
15015 	 */
15016 	ill_bcast_delete_and_add(ill, 0);
15017 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15018 
15019 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15020 
15021 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15022 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15023 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15024 		} else {
15025 			net_mask = htonl(IN_CLASSA_NET);
15026 		}
15027 		addr = net_mask & ipif->ipif_subnet;
15028 		ill_bcast_delete_and_add(ill, addr);
15029 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15030 
15031 		subnet_netmask = ipif->ipif_net_mask;
15032 		addr = ipif->ipif_subnet;
15033 		ill_bcast_delete_and_add(ill, addr);
15034 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15035 	}
15036 }
15037 
15038 /*
15039  * This function is called from illgrp_delete when ill is being deleted
15040  * from the group.
15041  *
15042  * As ill is not there in the group anymore, any address belonging
15043  * to this ill should be cleared of IRE_MARK_NORECV.
15044  */
15045 static void
15046 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15047 {
15048 	ire_t *ire;
15049 	irb_t *irb;
15050 	ip_stack_t	*ipst = ill->ill_ipst;
15051 
15052 	ASSERT(ill->ill_group == NULL);
15053 
15054 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15055 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15056 
15057 	if (ire != NULL) {
15058 		/*
15059 		 * IPMP and plumbing operations are serialized on the ipsq, so
15060 		 * no one will insert or delete a broadcast ire under our feet.
15061 		 */
15062 		irb = ire->ire_bucket;
15063 		rw_enter(&irb->irb_lock, RW_READER);
15064 		ire_refrele(ire);
15065 
15066 		for (; ire != NULL; ire = ire->ire_next) {
15067 			if (ire->ire_addr != addr)
15068 				break;
15069 			if (ire_to_ill(ire) != ill)
15070 				continue;
15071 
15072 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15073 			ire->ire_marks &= ~IRE_MARK_NORECV;
15074 		}
15075 		rw_exit(&irb->irb_lock);
15076 	}
15077 }
15078 
15079 /*
15080  * This function must be called only after the broadcast ires
15081  * have been grouped together. For a given address addr, nominate
15082  * only one of the ires whose interface is not FAILED or OFFLINE.
15083  *
15084  * This is also called when an ipif goes down, so that we can nominate
15085  * a different ire with the same address for receiving.
15086  */
15087 static void
15088 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15089 {
15090 	irb_t *irb;
15091 	ire_t *ire;
15092 	ire_t *ire1;
15093 	ire_t *save_ire;
15094 	ire_t **irep = NULL;
15095 	boolean_t first = B_TRUE;
15096 	ire_t *clear_ire = NULL;
15097 	ire_t *start_ire = NULL;
15098 	ire_t	*new_lb_ire;
15099 	ire_t	*new_nlb_ire;
15100 	boolean_t new_lb_ire_used = B_FALSE;
15101 	boolean_t new_nlb_ire_used = B_FALSE;
15102 	uint64_t match_flags;
15103 	uint64_t phyi_flags;
15104 	boolean_t fallback = B_FALSE;
15105 	uint_t	max_frag;
15106 
15107 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15108 	    NULL, MATCH_IRE_TYPE, ipst);
15109 	/*
15110 	 * We may not be able to find some ires if a previous
15111 	 * ire_create failed. This happens when an ipif goes
15112 	 * down and we are unable to create BROADCAST ires due
15113 	 * to memory failure. Thus, we have to check for NULL
15114 	 * below. This should handle the case for LOOPBACK,
15115 	 * POINTOPOINT and interfaces with some POINTOPOINT
15116 	 * logicals for which there are no BROADCAST ires.
15117 	 */
15118 	if (ire == NULL)
15119 		return;
15120 	/*
15121 	 * Currently IRE_BROADCASTS are deleted when an ipif
15122 	 * goes down which runs exclusively. Thus, setting
15123 	 * IRE_MARK_RCVD should not race with ire_delete marking
15124 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15125 	 * be consistent with other parts of the code that walks
15126 	 * a given bucket.
15127 	 */
15128 	save_ire = ire;
15129 	irb = ire->ire_bucket;
15130 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15131 	if (new_lb_ire == NULL) {
15132 		ire_refrele(ire);
15133 		return;
15134 	}
15135 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15136 	if (new_nlb_ire == NULL) {
15137 		ire_refrele(ire);
15138 		kmem_cache_free(ire_cache, new_lb_ire);
15139 		return;
15140 	}
15141 	IRB_REFHOLD(irb);
15142 	rw_enter(&irb->irb_lock, RW_WRITER);
15143 	/*
15144 	 * Get to the first ire matching the address and the
15145 	 * group. If the address does not match we are done
15146 	 * as we could not find the IRE. If the address matches
15147 	 * we should get to the first one matching the group.
15148 	 */
15149 	while (ire != NULL) {
15150 		if (ire->ire_addr != addr ||
15151 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15152 			break;
15153 		}
15154 		ire = ire->ire_next;
15155 	}
15156 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15157 	start_ire = ire;
15158 redo:
15159 	while (ire != NULL && ire->ire_addr == addr &&
15160 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15161 		/*
15162 		 * The first ire for any address within a group
15163 		 * should always be the one with IRE_MARK_NORECV cleared
15164 		 * so that ip_wput_ire can avoid searching for one.
15165 		 * Note down the insertion point which will be used
15166 		 * later.
15167 		 */
15168 		if (first && (irep == NULL))
15169 			irep = ire->ire_ptpn;
15170 		/*
15171 		 * PHYI_FAILED is set when the interface fails.
15172 		 * This interface might have become good, but the
15173 		 * daemon has not yet detected. We should still
15174 		 * not receive on this. PHYI_OFFLINE should never
15175 		 * be picked as this has been offlined and soon
15176 		 * be removed.
15177 		 */
15178 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15179 		if (phyi_flags & PHYI_OFFLINE) {
15180 			ire->ire_marks |= IRE_MARK_NORECV;
15181 			ire = ire->ire_next;
15182 			continue;
15183 		}
15184 		if (phyi_flags & match_flags) {
15185 			ire->ire_marks |= IRE_MARK_NORECV;
15186 			ire = ire->ire_next;
15187 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15188 			    PHYI_INACTIVE) {
15189 				fallback = B_TRUE;
15190 			}
15191 			continue;
15192 		}
15193 		if (first) {
15194 			/*
15195 			 * We will move this to the front of the list later
15196 			 * on.
15197 			 */
15198 			clear_ire = ire;
15199 			ire->ire_marks &= ~IRE_MARK_NORECV;
15200 		} else {
15201 			ire->ire_marks |= IRE_MARK_NORECV;
15202 		}
15203 		first = B_FALSE;
15204 		ire = ire->ire_next;
15205 	}
15206 	/*
15207 	 * If we never nominated anybody, try nominating at least
15208 	 * an INACTIVE, if we found one. Do it only once though.
15209 	 */
15210 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15211 	    fallback) {
15212 		match_flags = PHYI_FAILED;
15213 		ire = start_ire;
15214 		irep = NULL;
15215 		goto redo;
15216 	}
15217 	ire_refrele(save_ire);
15218 
15219 	/*
15220 	 * irep non-NULL indicates that we entered the while loop
15221 	 * above. If clear_ire is at the insertion point, we don't
15222 	 * have to do anything. clear_ire will be NULL if all the
15223 	 * interfaces are failed.
15224 	 *
15225 	 * We cannot unlink and reinsert the ire at the right place
15226 	 * in the list since there can be other walkers of this bucket.
15227 	 * Instead we delete and recreate the ire
15228 	 */
15229 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15230 		ire_t *clear_ire_stq = NULL;
15231 
15232 		bzero(new_lb_ire, sizeof (ire_t));
15233 		/* XXX We need a recovery strategy here. */
15234 		if (ire_init(new_lb_ire,
15235 		    (uchar_t *)&clear_ire->ire_addr,
15236 		    (uchar_t *)&clear_ire->ire_mask,
15237 		    (uchar_t *)&clear_ire->ire_src_addr,
15238 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15239 		    &clear_ire->ire_max_frag,
15240 		    NULL, /* let ire_nce_init derive the resolver info */
15241 		    clear_ire->ire_rfq,
15242 		    clear_ire->ire_stq,
15243 		    clear_ire->ire_type,
15244 		    clear_ire->ire_ipif,
15245 		    clear_ire->ire_cmask,
15246 		    clear_ire->ire_phandle,
15247 		    clear_ire->ire_ihandle,
15248 		    clear_ire->ire_flags,
15249 		    &clear_ire->ire_uinfo,
15250 		    NULL,
15251 		    NULL,
15252 		    ipst) == NULL)
15253 			cmn_err(CE_PANIC, "ire_init() failed");
15254 		if (clear_ire->ire_stq == NULL) {
15255 			ire_t *ire_next = clear_ire->ire_next;
15256 			if (ire_next != NULL &&
15257 			    ire_next->ire_stq != NULL &&
15258 			    ire_next->ire_addr == clear_ire->ire_addr &&
15259 			    ire_next->ire_ipif->ipif_ill ==
15260 			    clear_ire->ire_ipif->ipif_ill) {
15261 				clear_ire_stq = ire_next;
15262 
15263 				bzero(new_nlb_ire, sizeof (ire_t));
15264 				/* XXX We need a recovery strategy here. */
15265 				if (ire_init(new_nlb_ire,
15266 				    (uchar_t *)&clear_ire_stq->ire_addr,
15267 				    (uchar_t *)&clear_ire_stq->ire_mask,
15268 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15269 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15270 				    &clear_ire_stq->ire_max_frag,
15271 				    NULL,
15272 				    clear_ire_stq->ire_rfq,
15273 				    clear_ire_stq->ire_stq,
15274 				    clear_ire_stq->ire_type,
15275 				    clear_ire_stq->ire_ipif,
15276 				    clear_ire_stq->ire_cmask,
15277 				    clear_ire_stq->ire_phandle,
15278 				    clear_ire_stq->ire_ihandle,
15279 				    clear_ire_stq->ire_flags,
15280 				    &clear_ire_stq->ire_uinfo,
15281 				    NULL,
15282 				    NULL,
15283 				    ipst) == NULL)
15284 					cmn_err(CE_PANIC, "ire_init() failed");
15285 			}
15286 		}
15287 
15288 		/*
15289 		 * Delete the ire. We can't call ire_delete() since
15290 		 * we are holding the bucket lock. We can't release the
15291 		 * bucket lock since we can't allow irep to change. So just
15292 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15293 		 * ire from the list and do the refrele.
15294 		 */
15295 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15296 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15297 
15298 		if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15299 			nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15300 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15301 		}
15302 
15303 		/*
15304 		 * Also take care of otherfields like ib/ob pkt count
15305 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15306 		 */
15307 
15308 		/* Set the max_frag before adding the ire */
15309 		max_frag = *new_lb_ire->ire_max_fragp;
15310 		new_lb_ire->ire_max_fragp = NULL;
15311 		new_lb_ire->ire_max_frag = max_frag;
15312 
15313 		/* Add the new ire's. Insert at *irep */
15314 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15315 		ire1 = *irep;
15316 		if (ire1 != NULL)
15317 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15318 		new_lb_ire->ire_next = ire1;
15319 		/* Link the new one in. */
15320 		new_lb_ire->ire_ptpn = irep;
15321 		membar_producer();
15322 		*irep = new_lb_ire;
15323 		new_lb_ire_used = B_TRUE;
15324 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15325 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15326 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15327 
15328 		if (clear_ire_stq != NULL) {
15329 			/* Set the max_frag before adding the ire */
15330 			max_frag = *new_nlb_ire->ire_max_fragp;
15331 			new_nlb_ire->ire_max_fragp = NULL;
15332 			new_nlb_ire->ire_max_frag = max_frag;
15333 
15334 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15335 			irep = &new_lb_ire->ire_next;
15336 			/* Add the new ire. Insert at *irep */
15337 			ire1 = *irep;
15338 			if (ire1 != NULL)
15339 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15340 			new_nlb_ire->ire_next = ire1;
15341 			/* Link the new one in. */
15342 			new_nlb_ire->ire_ptpn = irep;
15343 			membar_producer();
15344 			*irep = new_nlb_ire;
15345 			new_nlb_ire_used = B_TRUE;
15346 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15347 			    ire_stats_inserted);
15348 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15349 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15350 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15351 		}
15352 	}
15353 	rw_exit(&irb->irb_lock);
15354 	if (!new_lb_ire_used)
15355 		kmem_cache_free(ire_cache, new_lb_ire);
15356 	if (!new_nlb_ire_used)
15357 		kmem_cache_free(ire_cache, new_nlb_ire);
15358 	IRB_REFRELE(irb);
15359 }
15360 
15361 /*
15362  * Whenever an ipif goes down we have to renominate a different
15363  * broadcast ire to receive. Whenever an ipif comes up, we need
15364  * to make sure that we have only one nominated to receive.
15365  */
15366 static void
15367 ipif_renominate_bcast(ipif_t *ipif)
15368 {
15369 	ill_t *ill = ipif->ipif_ill;
15370 	ipaddr_t subnet_addr;
15371 	ipaddr_t net_addr;
15372 	ipaddr_t net_mask = 0;
15373 	ipaddr_t subnet_netmask;
15374 	ipaddr_t addr;
15375 	ill_group_t *illgrp;
15376 	ip_stack_t	*ipst = ill->ill_ipst;
15377 
15378 	illgrp = ill->ill_group;
15379 	/*
15380 	 * If this is the last ipif going down, it might take
15381 	 * the ill out of the group. In that case ipif_down ->
15382 	 * illgrp_delete takes care of doing the nomination.
15383 	 * ipif_down does not call for this case.
15384 	 */
15385 	ASSERT(illgrp != NULL);
15386 
15387 	/* There could not have been any ires associated with this */
15388 	if (ipif->ipif_subnet == 0)
15389 		return;
15390 
15391 	ill_mark_bcast(illgrp, 0, ipst);
15392 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15393 
15394 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15395 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15396 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15397 	} else {
15398 		net_mask = htonl(IN_CLASSA_NET);
15399 	}
15400 	addr = net_mask & ipif->ipif_subnet;
15401 	ill_mark_bcast(illgrp, addr, ipst);
15402 
15403 	net_addr = ~net_mask | addr;
15404 	ill_mark_bcast(illgrp, net_addr, ipst);
15405 
15406 	subnet_netmask = ipif->ipif_net_mask;
15407 	addr = ipif->ipif_subnet;
15408 	ill_mark_bcast(illgrp, addr, ipst);
15409 
15410 	subnet_addr = ~subnet_netmask | addr;
15411 	ill_mark_bcast(illgrp, subnet_addr, ipst);
15412 }
15413 
15414 /*
15415  * Whenever we form or delete ill groups, we need to nominate one set of
15416  * BROADCAST ires for receiving in the group.
15417  *
15418  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15419  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15420  *    for ill_ipif_up_count to be non-zero. This is the only case where
15421  *    ill_ipif_up_count is zero and we would still find the ires.
15422  *
15423  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15424  *    ipif is UP and we just have to do the nomination.
15425  *
15426  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15427  *    from the group. So, we have to do the nomination.
15428  *
15429  * Because of (3), there could be just one ill in the group. But we have
15430  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15431  * Thus, this function does not optimize when there is only one ill as
15432  * it is not correct for (3).
15433  */
15434 static void
15435 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15436 {
15437 	ill_t *ill;
15438 	ipif_t *ipif;
15439 	ipaddr_t subnet_addr;
15440 	ipaddr_t prev_subnet_addr = 0;
15441 	ipaddr_t net_addr;
15442 	ipaddr_t prev_net_addr = 0;
15443 	ipaddr_t net_mask = 0;
15444 	ipaddr_t subnet_netmask;
15445 	ipaddr_t addr;
15446 	ip_stack_t	*ipst;
15447 
15448 	/*
15449 	 * When the last memeber is leaving, there is nothing to
15450 	 * nominate.
15451 	 */
15452 	if (illgrp->illgrp_ill_count == 0) {
15453 		ASSERT(illgrp->illgrp_ill == NULL);
15454 		return;
15455 	}
15456 
15457 	ill = illgrp->illgrp_ill;
15458 	ASSERT(!ill->ill_isv6);
15459 	ipst = ill->ill_ipst;
15460 	/*
15461 	 * We assume that ires with same address and belonging to the
15462 	 * same group, has been grouped together. Nominating a *single*
15463 	 * ill in the group for sending and receiving broadcast is done
15464 	 * by making sure that the first BROADCAST ire (which will be
15465 	 * the one returned by ire_ctable_lookup for ip_rput and the
15466 	 * one that will be used in ip_wput_ire) will be the one that
15467 	 * will not have IRE_MARK_NORECV set.
15468 	 *
15469 	 * 1) ip_rput checks and discards packets received on ires marked
15470 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15471 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15472 	 *    first ire in the group for every broadcast address in the group.
15473 	 *    ip_rput will accept packets only on the first ire i.e only
15474 	 *    one copy of the ill.
15475 	 *
15476 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15477 	 *    packet for the whole group. It needs to send out on the ill
15478 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15479 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15480 	 *    the copy echoed back on other port where the ire is not marked
15481 	 *    with IRE_MARK_NORECV.
15482 	 *
15483 	 * Note that we just need to have the first IRE either loopback or
15484 	 * non-loopback (either of them may not exist if ire_create failed
15485 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15486 	 * always hit the first one and hence will always accept one copy.
15487 	 *
15488 	 * We have a broadcast ire per ill for all the unique prefixes
15489 	 * hosted on that ill. As we don't have a way of knowing the
15490 	 * unique prefixes on a given ill and hence in the whole group,
15491 	 * we just call ill_mark_bcast on all the prefixes that exist
15492 	 * in the group. For the common case of one prefix, the code
15493 	 * below optimizes by remebering the last address used for
15494 	 * markng. In the case of multiple prefixes, this will still
15495 	 * optimize depending the order of prefixes.
15496 	 *
15497 	 * The only unique address across the whole group is 0.0.0.0 and
15498 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15499 	 * the first ire in the bucket for receiving and disables the
15500 	 * others.
15501 	 */
15502 	ill_mark_bcast(illgrp, 0, ipst);
15503 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15504 	for (; ill != NULL; ill = ill->ill_group_next) {
15505 
15506 		for (ipif = ill->ill_ipif; ipif != NULL;
15507 		    ipif = ipif->ipif_next) {
15508 
15509 			if (!(ipif->ipif_flags & IPIF_UP) ||
15510 			    ipif->ipif_subnet == 0) {
15511 				continue;
15512 			}
15513 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15514 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15515 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15516 			} else {
15517 				net_mask = htonl(IN_CLASSA_NET);
15518 			}
15519 			addr = net_mask & ipif->ipif_subnet;
15520 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15521 				ill_mark_bcast(illgrp, addr, ipst);
15522 				net_addr = ~net_mask | addr;
15523 				ill_mark_bcast(illgrp, net_addr, ipst);
15524 			}
15525 			prev_net_addr = addr;
15526 
15527 			subnet_netmask = ipif->ipif_net_mask;
15528 			addr = ipif->ipif_subnet;
15529 			if (prev_subnet_addr == 0 ||
15530 			    prev_subnet_addr != addr) {
15531 				ill_mark_bcast(illgrp, addr, ipst);
15532 				subnet_addr = ~subnet_netmask | addr;
15533 				ill_mark_bcast(illgrp, subnet_addr, ipst);
15534 			}
15535 			prev_subnet_addr = addr;
15536 		}
15537 	}
15538 }
15539 
15540 /*
15541  * This function is called while forming ill groups.
15542  *
15543  * Currently, we handle only allmulti groups. We want to join
15544  * allmulti on only one of the ills in the groups. In future,
15545  * when we have link aggregation, we may have to join normal
15546  * multicast groups on multiple ills as switch does inbound load
15547  * balancing. Following are the functions that calls this
15548  * function :
15549  *
15550  * 1) ill_recover_multicast : Interface is coming back UP.
15551  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15552  *    will call ill_recover_multicast to recover all the multicast
15553  *    groups. We need to make sure that only one member is joined
15554  *    in the ill group.
15555  *
15556  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15557  *    Somebody is joining allmulti. We need to make sure that only one
15558  *    member is joined in the group.
15559  *
15560  * 3) illgrp_insert : If allmulti has already joined, we need to make
15561  *    sure that only one member is joined in the group.
15562  *
15563  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15564  *    allmulti who we have nominated. We need to pick someother ill.
15565  *
15566  * 5) illgrp_delete : The ill we nominated is leaving the group,
15567  *    we need to pick a new ill to join the group.
15568  *
15569  * For (1), (2), (5) - we just have to check whether there is
15570  * a good ill joined in the group. If we could not find any ills
15571  * joined the group, we should join.
15572  *
15573  * For (4), the one that was nominated to receive, left the group.
15574  * There could be nobody joined in the group when this function is
15575  * called.
15576  *
15577  * For (3) - we need to explicitly check whether there are multiple
15578  * ills joined in the group.
15579  *
15580  * For simplicity, we don't differentiate any of the above cases. We
15581  * just leave the group if it is joined on any of them and join on
15582  * the first good ill.
15583  */
15584 int
15585 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15586 {
15587 	ilm_t *ilm;
15588 	ill_t *ill;
15589 	ill_t *fallback_inactive_ill = NULL;
15590 	ill_t *fallback_failed_ill = NULL;
15591 	int ret = 0;
15592 
15593 	/*
15594 	 * Leave the allmulti on all the ills and start fresh.
15595 	 */
15596 	for (ill = illgrp->illgrp_ill; ill != NULL;
15597 	    ill = ill->ill_group_next) {
15598 		if (ill->ill_join_allmulti)
15599 			(void) ip_leave_allmulti(ill->ill_ipif);
15600 	}
15601 
15602 	/*
15603 	 * Choose a good ill. Fallback to inactive or failed if
15604 	 * none available. We need to fallback to FAILED in the
15605 	 * case where we have 2 interfaces in a group - where
15606 	 * one of them is failed and another is a good one and
15607 	 * the good one (not marked inactive) is leaving the group.
15608 	 */
15609 	ret = 0;
15610 	for (ill = illgrp->illgrp_ill; ill != NULL;
15611 	    ill = ill->ill_group_next) {
15612 		/* Never pick an offline interface */
15613 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15614 			continue;
15615 
15616 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15617 			fallback_failed_ill = ill;
15618 			continue;
15619 		}
15620 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15621 			fallback_inactive_ill = ill;
15622 			continue;
15623 		}
15624 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15625 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15626 				ret = ip_join_allmulti(ill->ill_ipif);
15627 				/*
15628 				 * ip_join_allmulti can fail because of memory
15629 				 * failures. So, make sure we join at least
15630 				 * on one ill.
15631 				 */
15632 				if (ill->ill_join_allmulti)
15633 					return (0);
15634 			}
15635 		}
15636 	}
15637 	if (ret != 0) {
15638 		/*
15639 		 * If we tried nominating above and failed to do so,
15640 		 * return error. We might have tried multiple times.
15641 		 * But, return the latest error.
15642 		 */
15643 		return (ret);
15644 	}
15645 	if ((ill = fallback_inactive_ill) != NULL) {
15646 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15647 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15648 				ret = ip_join_allmulti(ill->ill_ipif);
15649 				return (ret);
15650 			}
15651 		}
15652 	} else if ((ill = fallback_failed_ill) != NULL) {
15653 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15654 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15655 				ret = ip_join_allmulti(ill->ill_ipif);
15656 				return (ret);
15657 			}
15658 		}
15659 	}
15660 	return (0);
15661 }
15662 
15663 /*
15664  * This function is called from illgrp_delete after it is
15665  * deleted from the group to reschedule responsibilities
15666  * to a different ill.
15667  */
15668 static void
15669 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15670 {
15671 	ilm_t	*ilm;
15672 	ipif_t	*ipif;
15673 	ipaddr_t subnet_addr;
15674 	ipaddr_t net_addr;
15675 	ipaddr_t net_mask = 0;
15676 	ipaddr_t subnet_netmask;
15677 	ipaddr_t addr;
15678 	ip_stack_t *ipst = ill->ill_ipst;
15679 
15680 	ASSERT(ill->ill_group == NULL);
15681 	/*
15682 	 * Broadcast Responsibility:
15683 	 *
15684 	 * 1. If this ill has been nominated for receiving broadcast
15685 	 * packets, we need to find a new one. Before we find a new
15686 	 * one, we need to re-group the ires that are part of this new
15687 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
15688 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
15689 	 * thing for us.
15690 	 *
15691 	 * 2. If this ill was not nominated for receiving broadcast
15692 	 * packets, we need to clear the IRE_MARK_NORECV flag
15693 	 * so that we continue to send up broadcast packets.
15694 	 */
15695 	if (!ill->ill_isv6) {
15696 		/*
15697 		 * Case 1 above : No optimization here. Just redo the
15698 		 * nomination.
15699 		 */
15700 		ill_group_bcast_for_xmit(ill);
15701 		ill_nominate_bcast_rcv(illgrp);
15702 
15703 		/*
15704 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
15705 		 */
15706 		ill_clear_bcast_mark(ill, 0);
15707 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
15708 
15709 		for (ipif = ill->ill_ipif; ipif != NULL;
15710 		    ipif = ipif->ipif_next) {
15711 
15712 			if (!(ipif->ipif_flags & IPIF_UP) ||
15713 			    ipif->ipif_subnet == 0) {
15714 				continue;
15715 			}
15716 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15717 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15718 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15719 			} else {
15720 				net_mask = htonl(IN_CLASSA_NET);
15721 			}
15722 			addr = net_mask & ipif->ipif_subnet;
15723 			ill_clear_bcast_mark(ill, addr);
15724 
15725 			net_addr = ~net_mask | addr;
15726 			ill_clear_bcast_mark(ill, net_addr);
15727 
15728 			subnet_netmask = ipif->ipif_net_mask;
15729 			addr = ipif->ipif_subnet;
15730 			ill_clear_bcast_mark(ill, addr);
15731 
15732 			subnet_addr = ~subnet_netmask | addr;
15733 			ill_clear_bcast_mark(ill, subnet_addr);
15734 		}
15735 	}
15736 
15737 	/*
15738 	 * Multicast Responsibility.
15739 	 *
15740 	 * If we have joined allmulti on this one, find a new member
15741 	 * in the group to join allmulti. As this ill is already part
15742 	 * of allmulti, we don't have to join on this one.
15743 	 *
15744 	 * If we have not joined allmulti on this one, there is no
15745 	 * responsibility to handoff. But we need to take new
15746 	 * responsibility i.e, join allmulti on this one if we need
15747 	 * to.
15748 	 */
15749 	if (ill->ill_join_allmulti) {
15750 		(void) ill_nominate_mcast_rcv(illgrp);
15751 	} else {
15752 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15753 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15754 				(void) ip_join_allmulti(ill->ill_ipif);
15755 				break;
15756 			}
15757 		}
15758 	}
15759 
15760 	/*
15761 	 * We intentionally do the flushing of IRE_CACHES only matching
15762 	 * on the ill and not on groups. Note that we are already deleted
15763 	 * from the group.
15764 	 *
15765 	 * This will make sure that all IRE_CACHES whose stq is pointing
15766 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
15767 	 * deleted and IRE_CACHES that are not pointing at this ill will
15768 	 * be left alone.
15769 	 */
15770 	if (ill->ill_isv6) {
15771 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15772 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15773 	} else {
15774 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15775 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15776 	}
15777 
15778 	/*
15779 	 * Some conn may have cached one of the IREs deleted above. By removing
15780 	 * the ire reference, we clean up the extra reference to the ill held in
15781 	 * ire->ire_stq.
15782 	 */
15783 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
15784 
15785 	/*
15786 	 * Re-do source address selection for all the members in the
15787 	 * group, if they borrowed source address from one of the ipifs
15788 	 * in this ill.
15789 	 */
15790 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15791 		if (ill->ill_isv6) {
15792 			ipif_update_other_ipifs_v6(ipif, illgrp);
15793 		} else {
15794 			ipif_update_other_ipifs(ipif, illgrp);
15795 		}
15796 	}
15797 }
15798 
15799 /*
15800  * Delete the ill from the group. The caller makes sure that it is
15801  * in a group and it okay to delete from the group. So, we always
15802  * delete here.
15803  */
15804 static void
15805 illgrp_delete(ill_t *ill)
15806 {
15807 	ill_group_t *illgrp;
15808 	ill_group_t *tmpg;
15809 	ill_t *tmp_ill;
15810 	ip_stack_t	*ipst = ill->ill_ipst;
15811 
15812 	/*
15813 	 * Reset illgrp_ill_schednext if it was pointing at us.
15814 	 * We need to do this before we set ill_group to NULL.
15815 	 */
15816 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15817 	mutex_enter(&ill->ill_lock);
15818 
15819 	illgrp_reset_schednext(ill);
15820 
15821 	illgrp = ill->ill_group;
15822 
15823 	/* Delete the ill from illgrp. */
15824 	if (illgrp->illgrp_ill == ill) {
15825 		illgrp->illgrp_ill = ill->ill_group_next;
15826 	} else {
15827 		tmp_ill = illgrp->illgrp_ill;
15828 		while (tmp_ill->ill_group_next != ill) {
15829 			tmp_ill = tmp_ill->ill_group_next;
15830 			ASSERT(tmp_ill != NULL);
15831 		}
15832 		tmp_ill->ill_group_next = ill->ill_group_next;
15833 	}
15834 	ill->ill_group = NULL;
15835 	ill->ill_group_next = NULL;
15836 
15837 	illgrp->illgrp_ill_count--;
15838 	mutex_exit(&ill->ill_lock);
15839 	rw_exit(&ipst->ips_ill_g_lock);
15840 
15841 	/*
15842 	 * As this ill is leaving the group, we need to hand off
15843 	 * the responsibilities to the other ills in the group, if
15844 	 * this ill had some responsibilities.
15845 	 */
15846 
15847 	ill_handoff_responsibility(ill, illgrp);
15848 
15849 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15850 
15851 	if (illgrp->illgrp_ill_count == 0) {
15852 
15853 		ASSERT(illgrp->illgrp_ill == NULL);
15854 		if (ill->ill_isv6) {
15855 			if (illgrp == ipst->ips_illgrp_head_v6) {
15856 				ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
15857 			} else {
15858 				tmpg = ipst->ips_illgrp_head_v6;
15859 				while (tmpg->illgrp_next != illgrp) {
15860 					tmpg = tmpg->illgrp_next;
15861 					ASSERT(tmpg != NULL);
15862 				}
15863 				tmpg->illgrp_next = illgrp->illgrp_next;
15864 			}
15865 		} else {
15866 			if (illgrp == ipst->ips_illgrp_head_v4) {
15867 				ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
15868 			} else {
15869 				tmpg = ipst->ips_illgrp_head_v4;
15870 				while (tmpg->illgrp_next != illgrp) {
15871 					tmpg = tmpg->illgrp_next;
15872 					ASSERT(tmpg != NULL);
15873 				}
15874 				tmpg->illgrp_next = illgrp->illgrp_next;
15875 			}
15876 		}
15877 		mutex_destroy(&illgrp->illgrp_lock);
15878 		mi_free(illgrp);
15879 	}
15880 	rw_exit(&ipst->ips_ill_g_lock);
15881 
15882 	/*
15883 	 * Even though the ill is out of the group its not necessary
15884 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
15885 	 * We will split the ipsq when phyint_groupname is set to NULL.
15886 	 */
15887 
15888 	/*
15889 	 * Send a routing sockets message if we are deleting from
15890 	 * groups with names.
15891 	 */
15892 	if (ill->ill_phyint->phyint_groupname_len != 0)
15893 		ip_rts_ifmsg(ill->ill_ipif);
15894 }
15895 
15896 /*
15897  * Re-do source address selection. This is normally called when
15898  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
15899  * ipif comes up.
15900  */
15901 void
15902 ill_update_source_selection(ill_t *ill)
15903 {
15904 	ipif_t *ipif;
15905 
15906 	ASSERT(IAM_WRITER_ILL(ill));
15907 
15908 	if (ill->ill_group != NULL)
15909 		ill = ill->ill_group->illgrp_ill;
15910 
15911 	for (; ill != NULL; ill = ill->ill_group_next) {
15912 		for (ipif = ill->ill_ipif; ipif != NULL;
15913 		    ipif = ipif->ipif_next) {
15914 			if (ill->ill_isv6)
15915 				ipif_recreate_interface_routes_v6(NULL, ipif);
15916 			else
15917 				ipif_recreate_interface_routes(NULL, ipif);
15918 		}
15919 	}
15920 }
15921 
15922 /*
15923  * Insert ill in a group headed by illgrp_head. The caller can either
15924  * pass a groupname in which case we search for a group with the
15925  * same name to insert in or pass a group to insert in. This function
15926  * would only search groups with names.
15927  *
15928  * NOTE : The caller should make sure that there is at least one ipif
15929  *	  UP on this ill so that illgrp_scheduler can pick this ill
15930  *	  for outbound packets. If ill_ipif_up_count is zero, we have
15931  *	  already sent a DL_UNBIND to the driver and we don't want to
15932  *	  send anymore packets. We don't assert for ipif_up_count
15933  *	  to be greater than zero, because ipif_up_done wants to call
15934  *	  this function before bumping up the ipif_up_count. See
15935  *	  ipif_up_done() for details.
15936  */
15937 int
15938 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
15939     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
15940 {
15941 	ill_group_t *illgrp;
15942 	ill_t *prev_ill;
15943 	phyint_t *phyi;
15944 	ip_stack_t	*ipst = ill->ill_ipst;
15945 
15946 	ASSERT(ill->ill_group == NULL);
15947 
15948 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15949 	mutex_enter(&ill->ill_lock);
15950 
15951 	if (groupname != NULL) {
15952 		/*
15953 		 * Look for a group with a matching groupname to insert.
15954 		 */
15955 		for (illgrp = *illgrp_head; illgrp != NULL;
15956 		    illgrp = illgrp->illgrp_next) {
15957 
15958 			ill_t *tmp_ill;
15959 
15960 			/*
15961 			 * If we have an ill_group_t in the list which has
15962 			 * no ill_t assigned then we must be in the process of
15963 			 * removing this group. We skip this as illgrp_delete()
15964 			 * will remove it from the list.
15965 			 */
15966 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
15967 				ASSERT(illgrp->illgrp_ill_count == 0);
15968 				continue;
15969 			}
15970 
15971 			ASSERT(tmp_ill->ill_phyint != NULL);
15972 			phyi = tmp_ill->ill_phyint;
15973 			/*
15974 			 * Look at groups which has names only.
15975 			 */
15976 			if (phyi->phyint_groupname_len == 0)
15977 				continue;
15978 			/*
15979 			 * Names are stored in the phyint common to both
15980 			 * IPv4 and IPv6.
15981 			 */
15982 			if (mi_strcmp(phyi->phyint_groupname,
15983 			    groupname) == 0) {
15984 				break;
15985 			}
15986 		}
15987 	} else {
15988 		/*
15989 		 * If the caller passes in a NULL "grp_to_insert", we
15990 		 * allocate one below and insert this singleton.
15991 		 */
15992 		illgrp = grp_to_insert;
15993 	}
15994 
15995 	ill->ill_group_next = NULL;
15996 
15997 	if (illgrp == NULL) {
15998 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
15999 		if (illgrp == NULL) {
16000 			return (ENOMEM);
16001 		}
16002 		illgrp->illgrp_next = *illgrp_head;
16003 		*illgrp_head = illgrp;
16004 		illgrp->illgrp_ill = ill;
16005 		illgrp->illgrp_ill_count = 1;
16006 		ill->ill_group = illgrp;
16007 		/*
16008 		 * Used in illgrp_scheduler to protect multiple threads
16009 		 * from traversing the list.
16010 		 */
16011 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16012 	} else {
16013 		ASSERT(ill->ill_net_type ==
16014 		    illgrp->illgrp_ill->ill_net_type);
16015 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16016 
16017 		/* Insert ill at tail of this group */
16018 		prev_ill = illgrp->illgrp_ill;
16019 		while (prev_ill->ill_group_next != NULL)
16020 			prev_ill = prev_ill->ill_group_next;
16021 		prev_ill->ill_group_next = ill;
16022 		ill->ill_group = illgrp;
16023 		illgrp->illgrp_ill_count++;
16024 		/*
16025 		 * Inherit group properties. Currently only forwarding
16026 		 * is the property we try to keep the same with all the
16027 		 * ills. When there are more, we will abstract this into
16028 		 * a function.
16029 		 */
16030 		ill->ill_flags &= ~ILLF_ROUTER;
16031 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16032 	}
16033 	mutex_exit(&ill->ill_lock);
16034 	rw_exit(&ipst->ips_ill_g_lock);
16035 
16036 	/*
16037 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16038 	 *    may be zero as it has not yet been bumped. But the ires
16039 	 *    have already been added. So, we do the nomination here
16040 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16041 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16042 	 *    ill_ipif_up_count here while nominating broadcast ires for
16043 	 *    receive.
16044 	 *
16045 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16046 	 *    to group them properly as ire_add() has already happened
16047 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16048 	 *    case, we need to do it here anyway.
16049 	 */
16050 	if (!ill->ill_isv6) {
16051 		ill_group_bcast_for_xmit(ill);
16052 		ill_nominate_bcast_rcv(illgrp);
16053 	}
16054 
16055 	if (!ipif_is_coming_up) {
16056 		/*
16057 		 * When ipif_up_done() calls this function, the multicast
16058 		 * groups have not been joined yet. So, there is no point in
16059 		 * nomination. ip_join_allmulti will handle groups when
16060 		 * ill_recover_multicast is called from ipif_up_done() later.
16061 		 */
16062 		(void) ill_nominate_mcast_rcv(illgrp);
16063 		/*
16064 		 * ipif_up_done calls ill_update_source_selection
16065 		 * anyway. Moreover, we don't want to re-create
16066 		 * interface routes while ipif_up_done() still has reference
16067 		 * to them. Refer to ipif_up_done() for more details.
16068 		 */
16069 		ill_update_source_selection(ill);
16070 	}
16071 
16072 	/*
16073 	 * Send a routing sockets message if we are inserting into
16074 	 * groups with names.
16075 	 */
16076 	if (groupname != NULL)
16077 		ip_rts_ifmsg(ill->ill_ipif);
16078 	return (0);
16079 }
16080 
16081 /*
16082  * Return the first phyint matching the groupname. There could
16083  * be more than one when there are ill groups.
16084  *
16085  * If 'usable' is set, then we exclude ones that are marked with any of
16086  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16087  * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16088  * emulation of ipmp.
16089  */
16090 phyint_t *
16091 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16092 {
16093 	phyint_t *phyi;
16094 
16095 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16096 	/*
16097 	 * Group names are stored in the phyint - a common structure
16098 	 * to both IPv4 and IPv6.
16099 	 */
16100 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16101 	for (; phyi != NULL;
16102 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16103 	    phyi, AVL_AFTER)) {
16104 		if (phyi->phyint_groupname_len == 0)
16105 			continue;
16106 		/*
16107 		 * Skip the ones that should not be used since the callers
16108 		 * sometime use this for sending packets.
16109 		 */
16110 		if (usable && (phyi->phyint_flags &
16111 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)))
16112 			continue;
16113 
16114 		ASSERT(phyi->phyint_groupname != NULL);
16115 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16116 			return (phyi);
16117 	}
16118 	return (NULL);
16119 }
16120 
16121 
16122 /*
16123  * Return the first usable phyint matching the group index. By 'usable'
16124  * we exclude ones that are marked ununsable with any of
16125  * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16126  *
16127  * Used only for the ipmp/netinfo emulation of ipmp.
16128  */
16129 phyint_t *
16130 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16131 {
16132 	phyint_t *phyi;
16133 
16134 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16135 
16136 	if (!ipst->ips_ipmp_hook_emulation)
16137 		return (NULL);
16138 
16139 	/*
16140 	 * Group indicies are stored in the phyint - a common structure
16141 	 * to both IPv4 and IPv6.
16142 	 */
16143 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16144 	for (; phyi != NULL;
16145 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16146 	    phyi, AVL_AFTER)) {
16147 		/* Ignore the ones that do not have a group */
16148 		if (phyi->phyint_groupname_len == 0)
16149 			continue;
16150 
16151 		ASSERT(phyi->phyint_group_ifindex != 0);
16152 		/*
16153 		 * Skip the ones that should not be used since the callers
16154 		 * sometime use this for sending packets.
16155 		 */
16156 		if (phyi->phyint_flags &
16157 		    (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))
16158 			continue;
16159 		if (phyi->phyint_group_ifindex == group_ifindex)
16160 			return (phyi);
16161 	}
16162 	return (NULL);
16163 }
16164 
16165 
16166 /*
16167  * MT notes on creation and deletion of IPMP groups
16168  *
16169  * Creation and deletion of IPMP groups introduce the need to merge or
16170  * split the associated serialization objects i.e the ipsq's. Normally all
16171  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16172  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16173  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16174  * is a need to change the <ill-ipsq> association and we have to operate on both
16175  * the source and destination IPMP groups. For eg. attempting to set the
16176  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16177  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16178  * source or destination IPMP group are mapped to a single ipsq for executing
16179  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16180  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16181  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16182  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16183  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16184  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16185  *
16186  * In the above example the ioctl handling code locates the current ipsq of hme0
16187  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16188  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16189  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16190  * the destination ipsq. If the destination ipsq is not busy, it also enters
16191  * the destination ipsq exclusively. Now the actual groupname setting operation
16192  * can proceed. If the destination ipsq is busy, the operation is enqueued
16193  * on the destination (merged) ipsq and will be handled in the unwind from
16194  * ipsq_exit.
16195  *
16196  * To prevent other threads accessing the ill while the group name change is
16197  * in progres, we bring down the ipifs which also removes the ill from the
16198  * group. The group is changed in phyint and when the first ipif on the ill
16199  * is brought up, the ill is inserted into the right IPMP group by
16200  * illgrp_insert.
16201  */
16202 /* ARGSUSED */
16203 int
16204 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16205     ip_ioctl_cmd_t *ipip, void *ifreq)
16206 {
16207 	int i;
16208 	char *tmp;
16209 	int namelen;
16210 	ill_t *ill = ipif->ipif_ill;
16211 	ill_t *ill_v4, *ill_v6;
16212 	int err = 0;
16213 	phyint_t *phyi;
16214 	phyint_t *phyi_tmp;
16215 	struct lifreq *lifr;
16216 	mblk_t	*mp1;
16217 	char *groupname;
16218 	ipsq_t *ipsq;
16219 	ip_stack_t	*ipst = ill->ill_ipst;
16220 
16221 	ASSERT(IAM_WRITER_IPIF(ipif));
16222 
16223 	/* Existance verified in ip_wput_nondata */
16224 	mp1 = mp->b_cont->b_cont;
16225 	lifr = (struct lifreq *)mp1->b_rptr;
16226 	groupname = lifr->lifr_groupname;
16227 
16228 	if (ipif->ipif_id != 0)
16229 		return (EINVAL);
16230 
16231 	phyi = ill->ill_phyint;
16232 	ASSERT(phyi != NULL);
16233 
16234 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16235 		return (EINVAL);
16236 
16237 	tmp = groupname;
16238 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16239 		;
16240 
16241 	if (i == LIFNAMSIZ) {
16242 		/* no null termination */
16243 		return (EINVAL);
16244 	}
16245 
16246 	/*
16247 	 * Calculate the namelen exclusive of the null
16248 	 * termination character.
16249 	 */
16250 	namelen = tmp - groupname;
16251 
16252 	ill_v4 = phyi->phyint_illv4;
16253 	ill_v6 = phyi->phyint_illv6;
16254 
16255 	/*
16256 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16257 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16258 	 * synchronization notes in ip.c
16259 	 */
16260 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16261 		return (EINVAL);
16262 	}
16263 
16264 	/*
16265 	 * mark the ill as changing.
16266 	 * this should queue all new requests on the syncq.
16267 	 */
16268 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16269 
16270 	if (ill_v4 != NULL)
16271 		ill_v4->ill_state_flags |= ILL_CHANGING;
16272 	if (ill_v6 != NULL)
16273 		ill_v6->ill_state_flags |= ILL_CHANGING;
16274 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16275 
16276 	if (namelen == 0) {
16277 		/*
16278 		 * Null string means remove this interface from the
16279 		 * existing group.
16280 		 */
16281 		if (phyi->phyint_groupname_len == 0) {
16282 			/*
16283 			 * Never was in a group.
16284 			 */
16285 			err = 0;
16286 			goto done;
16287 		}
16288 
16289 		/*
16290 		 * IPv4 or IPv6 may be temporarily out of the group when all
16291 		 * the ipifs are down. Thus, we need to check for ill_group to
16292 		 * be non-NULL.
16293 		 */
16294 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16295 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16296 			mutex_enter(&ill_v4->ill_lock);
16297 			if (!ill_is_quiescent(ill_v4)) {
16298 				/*
16299 				 * ipsq_pending_mp_add will not fail since
16300 				 * connp is NULL
16301 				 */
16302 				(void) ipsq_pending_mp_add(NULL,
16303 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16304 				mutex_exit(&ill_v4->ill_lock);
16305 				err = EINPROGRESS;
16306 				goto done;
16307 			}
16308 			mutex_exit(&ill_v4->ill_lock);
16309 		}
16310 
16311 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16312 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16313 			mutex_enter(&ill_v6->ill_lock);
16314 			if (!ill_is_quiescent(ill_v6)) {
16315 				(void) ipsq_pending_mp_add(NULL,
16316 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16317 				mutex_exit(&ill_v6->ill_lock);
16318 				err = EINPROGRESS;
16319 				goto done;
16320 			}
16321 			mutex_exit(&ill_v6->ill_lock);
16322 		}
16323 
16324 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16325 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16326 		mutex_enter(&phyi->phyint_lock);
16327 		ASSERT(phyi->phyint_groupname != NULL);
16328 		mi_free(phyi->phyint_groupname);
16329 		phyi->phyint_groupname = NULL;
16330 		phyi->phyint_groupname_len = 0;
16331 
16332 		/* Restore the ifindex used to be the per interface one */
16333 		phyi->phyint_group_ifindex = 0;
16334 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16335 		mutex_exit(&phyi->phyint_lock);
16336 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16337 		rw_exit(&ipst->ips_ill_g_lock);
16338 		err = ill_up_ipifs(ill, q, mp);
16339 
16340 		/*
16341 		 * set the split flag so that the ipsq can be split
16342 		 */
16343 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16344 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16345 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16346 
16347 	} else {
16348 		if (phyi->phyint_groupname_len != 0) {
16349 			ASSERT(phyi->phyint_groupname != NULL);
16350 			/* Are we inserting in the same group ? */
16351 			if (mi_strcmp(groupname,
16352 			    phyi->phyint_groupname) == 0) {
16353 				err = 0;
16354 				goto done;
16355 			}
16356 		}
16357 
16358 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16359 		/*
16360 		 * Merge ipsq for the group's.
16361 		 * This check is here as multiple groups/ills might be
16362 		 * sharing the same ipsq.
16363 		 * If we have to merege than the operation is restarted
16364 		 * on the new ipsq.
16365 		 */
16366 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16367 		if (phyi->phyint_ipsq != ipsq) {
16368 			rw_exit(&ipst->ips_ill_g_lock);
16369 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16370 			goto done;
16371 		}
16372 		/*
16373 		 * Running exclusive on new ipsq.
16374 		 */
16375 
16376 		ASSERT(ipsq != NULL);
16377 		ASSERT(ipsq->ipsq_writer == curthread);
16378 
16379 		/*
16380 		 * Check whether the ill_type and ill_net_type matches before
16381 		 * we allocate any memory so that the cleanup is easier.
16382 		 *
16383 		 * We can't group dissimilar ones as we can't load spread
16384 		 * packets across the group because of potential link-level
16385 		 * header differences.
16386 		 */
16387 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16388 		if (phyi_tmp != NULL) {
16389 			if ((ill_v4 != NULL &&
16390 			    phyi_tmp->phyint_illv4 != NULL) &&
16391 			    ((ill_v4->ill_net_type !=
16392 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16393 			    (ill_v4->ill_type !=
16394 			    phyi_tmp->phyint_illv4->ill_type))) {
16395 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16396 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16397 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16398 				rw_exit(&ipst->ips_ill_g_lock);
16399 				return (EINVAL);
16400 			}
16401 			if ((ill_v6 != NULL &&
16402 			    phyi_tmp->phyint_illv6 != NULL) &&
16403 			    ((ill_v6->ill_net_type !=
16404 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16405 			    (ill_v6->ill_type !=
16406 			    phyi_tmp->phyint_illv6->ill_type))) {
16407 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16408 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16409 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16410 				rw_exit(&ipst->ips_ill_g_lock);
16411 				return (EINVAL);
16412 			}
16413 		}
16414 
16415 		rw_exit(&ipst->ips_ill_g_lock);
16416 
16417 		/*
16418 		 * bring down all v4 ipifs.
16419 		 */
16420 		if (ill_v4 != NULL) {
16421 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16422 		}
16423 
16424 		/*
16425 		 * bring down all v6 ipifs.
16426 		 */
16427 		if (ill_v6 != NULL) {
16428 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16429 		}
16430 
16431 		/*
16432 		 * make sure all ipifs are down and there are no active
16433 		 * references. Call to ipsq_pending_mp_add will not fail
16434 		 * since connp is NULL.
16435 		 */
16436 		if (ill_v4 != NULL) {
16437 			mutex_enter(&ill_v4->ill_lock);
16438 			if (!ill_is_quiescent(ill_v4)) {
16439 				(void) ipsq_pending_mp_add(NULL,
16440 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16441 				mutex_exit(&ill_v4->ill_lock);
16442 				err = EINPROGRESS;
16443 				goto done;
16444 			}
16445 			mutex_exit(&ill_v4->ill_lock);
16446 		}
16447 
16448 		if (ill_v6 != NULL) {
16449 			mutex_enter(&ill_v6->ill_lock);
16450 			if (!ill_is_quiescent(ill_v6)) {
16451 				(void) ipsq_pending_mp_add(NULL,
16452 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16453 				mutex_exit(&ill_v6->ill_lock);
16454 				err = EINPROGRESS;
16455 				goto done;
16456 			}
16457 			mutex_exit(&ill_v6->ill_lock);
16458 		}
16459 
16460 		/*
16461 		 * allocate including space for null terminator
16462 		 * before we insert.
16463 		 */
16464 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16465 		if (tmp == NULL)
16466 			return (ENOMEM);
16467 
16468 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16469 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16470 		mutex_enter(&phyi->phyint_lock);
16471 		if (phyi->phyint_groupname_len != 0) {
16472 			ASSERT(phyi->phyint_groupname != NULL);
16473 			mi_free(phyi->phyint_groupname);
16474 		}
16475 
16476 		/*
16477 		 * setup the new group name.
16478 		 */
16479 		phyi->phyint_groupname = tmp;
16480 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16481 		phyi->phyint_groupname_len = namelen + 1;
16482 
16483 		if (ipst->ips_ipmp_hook_emulation) {
16484 			/*
16485 			 * If the group already exists we use the existing
16486 			 * group_ifindex, otherwise we pick a new index here.
16487 			 */
16488 			if (phyi_tmp != NULL) {
16489 				phyi->phyint_group_ifindex =
16490 				    phyi_tmp->phyint_group_ifindex;
16491 			} else {
16492 				/* XXX We need a recovery strategy here. */
16493 				if (!ip_assign_ifindex(
16494 				    &phyi->phyint_group_ifindex, ipst))
16495 					cmn_err(CE_PANIC,
16496 					    "ip_assign_ifindex() failed");
16497 			}
16498 		}
16499 		/*
16500 		 * Select whether the netinfo and hook use the per-interface
16501 		 * or per-group ifindex.
16502 		 */
16503 		if (ipst->ips_ipmp_hook_emulation)
16504 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16505 		else
16506 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16507 
16508 		if (ipst->ips_ipmp_hook_emulation &&
16509 		    phyi_tmp != NULL) {
16510 			/* First phyint in group - group PLUMB event */
16511 			ill_nic_info_plumb(ill, B_TRUE);
16512 		}
16513 		mutex_exit(&phyi->phyint_lock);
16514 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16515 		rw_exit(&ipst->ips_ill_g_lock);
16516 
16517 		err = ill_up_ipifs(ill, q, mp);
16518 	}
16519 
16520 done:
16521 	/*
16522 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16523 	 */
16524 	if (err != EINPROGRESS) {
16525 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16526 		if (ill_v4 != NULL)
16527 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16528 		if (ill_v6 != NULL)
16529 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16530 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16531 	}
16532 	return (err);
16533 }
16534 
16535 /* ARGSUSED */
16536 int
16537 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16538     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16539 {
16540 	ill_t *ill;
16541 	phyint_t *phyi;
16542 	struct lifreq *lifr;
16543 	mblk_t	*mp1;
16544 
16545 	/* Existence verified in ip_wput_nondata */
16546 	mp1 = mp->b_cont->b_cont;
16547 	lifr = (struct lifreq *)mp1->b_rptr;
16548 	ill = ipif->ipif_ill;
16549 	phyi = ill->ill_phyint;
16550 
16551 	lifr->lifr_groupname[0] = '\0';
16552 	/*
16553 	 * ill_group may be null if all the interfaces
16554 	 * are down. But still, the phyint should always
16555 	 * hold the name.
16556 	 */
16557 	if (phyi->phyint_groupname_len != 0) {
16558 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16559 		    phyi->phyint_groupname_len);
16560 	}
16561 
16562 	return (0);
16563 }
16564 
16565 
16566 typedef struct conn_move_s {
16567 	ill_t	*cm_from_ill;
16568 	ill_t	*cm_to_ill;
16569 	int	cm_ifindex;
16570 } conn_move_t;
16571 
16572 /*
16573  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16574  */
16575 static void
16576 conn_move(conn_t *connp, caddr_t arg)
16577 {
16578 	conn_move_t *connm;
16579 	int ifindex;
16580 	int i;
16581 	ill_t *from_ill;
16582 	ill_t *to_ill;
16583 	ilg_t *ilg;
16584 	ilm_t *ret_ilm;
16585 
16586 	connm = (conn_move_t *)arg;
16587 	ifindex = connm->cm_ifindex;
16588 	from_ill = connm->cm_from_ill;
16589 	to_ill = connm->cm_to_ill;
16590 
16591 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16592 
16593 	/* All multicast fields protected by conn_lock */
16594 	mutex_enter(&connp->conn_lock);
16595 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16596 	if ((connp->conn_outgoing_ill == from_ill) &&
16597 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16598 		connp->conn_outgoing_ill = to_ill;
16599 		connp->conn_incoming_ill = to_ill;
16600 	}
16601 
16602 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16603 
16604 	if ((connp->conn_multicast_ill == from_ill) &&
16605 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16606 		connp->conn_multicast_ill = connm->cm_to_ill;
16607 	}
16608 
16609 	/* Change IP_XMIT_IF associations */
16610 	if ((connp->conn_xmit_if_ill == from_ill) &&
16611 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16612 		connp->conn_xmit_if_ill = to_ill;
16613 	}
16614 	/*
16615 	 * Change the ilg_ill to point to the new one. This assumes
16616 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16617 	 * has been told to receive packets on this interface.
16618 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16619 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16620 	 * some ilms may not have moved. We check to see whether
16621 	 * the ilms have moved to to_ill. We can't check on from_ill
16622 	 * as in the process of moving, we could have split an ilm
16623 	 * in to two - which has the same orig_ifindex and v6group.
16624 	 *
16625 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16626 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16627 	 */
16628 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16629 		ilg = &connp->conn_ilg[i];
16630 		if ((ilg->ilg_ill == from_ill) &&
16631 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16632 			/* ifindex != 0 indicates failback */
16633 			if (ifindex != 0) {
16634 				connp->conn_ilg[i].ilg_ill = to_ill;
16635 				continue;
16636 			}
16637 
16638 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16639 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16640 			    connp->conn_zoneid);
16641 
16642 			if (ret_ilm != NULL)
16643 				connp->conn_ilg[i].ilg_ill = to_ill;
16644 		}
16645 	}
16646 	mutex_exit(&connp->conn_lock);
16647 }
16648 
16649 static void
16650 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16651 {
16652 	conn_move_t connm;
16653 	ip_stack_t	*ipst = from_ill->ill_ipst;
16654 
16655 	connm.cm_from_ill = from_ill;
16656 	connm.cm_to_ill = to_ill;
16657 	connm.cm_ifindex = ifindex;
16658 
16659 	ipcl_walk(conn_move, (caddr_t)&connm, ipst);
16660 }
16661 
16662 /*
16663  * ilm has been moved from from_ill to to_ill.
16664  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16665  * appropriately.
16666  *
16667  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16668  *	  the code there de-references ipif_ill to get the ill to
16669  *	  send multicast requests. It does not work as ipif is on its
16670  *	  move and already moved when this function is called.
16671  *	  Thus, we need to use from_ill and to_ill send down multicast
16672  *	  requests.
16673  */
16674 static void
16675 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16676 {
16677 	ipif_t *ipif;
16678 	ilm_t *ilm;
16679 
16680 	/*
16681 	 * See whether we need to send down DL_ENABMULTI_REQ on
16682 	 * to_ill as ilm has just been added.
16683 	 */
16684 	ASSERT(IAM_WRITER_ILL(to_ill));
16685 	ASSERT(IAM_WRITER_ILL(from_ill));
16686 
16687 	ILM_WALKER_HOLD(to_ill);
16688 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16689 
16690 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
16691 			continue;
16692 		/*
16693 		 * no locks held, ill/ipif cannot dissappear as long
16694 		 * as we are writer.
16695 		 */
16696 		ipif = to_ill->ill_ipif;
16697 		/*
16698 		 * No need to hold any lock as we are the writer and this
16699 		 * can only be changed by a writer.
16700 		 */
16701 		ilm->ilm_is_new = B_FALSE;
16702 
16703 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
16704 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16705 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
16706 			    "resolver\n"));
16707 			continue;		/* Must be IRE_IF_NORESOLVER */
16708 		}
16709 
16710 
16711 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16712 			ip1dbg(("ilm_send_multicast_reqs: "
16713 			    "to_ill MULTI_BCAST\n"));
16714 			goto from;
16715 		}
16716 
16717 		if (to_ill->ill_isv6)
16718 			mld_joingroup(ilm);
16719 		else
16720 			igmp_joingroup(ilm);
16721 
16722 		if (to_ill->ill_ipif_up_count == 0) {
16723 			/*
16724 			 * Nobody there. All multicast addresses will be
16725 			 * re-joined when we get the DL_BIND_ACK bringing the
16726 			 * interface up.
16727 			 */
16728 			ilm->ilm_notify_driver = B_FALSE;
16729 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
16730 			goto from;
16731 		}
16732 
16733 		/*
16734 		 * For allmulti address, we want to join on only one interface.
16735 		 * Checking for ilm_numentries_v6 is not correct as you may
16736 		 * find an ilm with zero address on to_ill, but we may not
16737 		 * have nominated to_ill for receiving. Thus, if we have
16738 		 * nominated from_ill (ill_join_allmulti is set), nominate
16739 		 * only if to_ill is not already nominated (to_ill normally
16740 		 * should not have been nominated if "from_ill" has already
16741 		 * been nominated. As we don't prevent failovers from happening
16742 		 * across groups, we don't assert).
16743 		 */
16744 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16745 			/*
16746 			 * There is no need to hold ill locks as we are
16747 			 * writer on both ills and when ill_join_allmulti
16748 			 * is changed the thread is always a writer.
16749 			 */
16750 			if (from_ill->ill_join_allmulti &&
16751 			    !to_ill->ill_join_allmulti) {
16752 				(void) ip_join_allmulti(to_ill->ill_ipif);
16753 			}
16754 		} else if (ilm->ilm_notify_driver) {
16755 
16756 			/*
16757 			 * This is a newly moved ilm so we need to tell the
16758 			 * driver about the new group. There can be more than
16759 			 * one ilm's for the same group in the list each with a
16760 			 * different orig_ifindex. We have to inform the driver
16761 			 * once. In ilm_move_v[4,6] we only set the flag
16762 			 * ilm_notify_driver for the first ilm.
16763 			 */
16764 
16765 			(void) ip_ll_send_enabmulti_req(to_ill,
16766 			    &ilm->ilm_v6addr);
16767 		}
16768 
16769 		ilm->ilm_notify_driver = B_FALSE;
16770 
16771 		/*
16772 		 * See whether we need to send down DL_DISABMULTI_REQ on
16773 		 * from_ill as ilm has just been removed.
16774 		 */
16775 from:
16776 		ipif = from_ill->ill_ipif;
16777 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
16778 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
16779 			ip1dbg(("ilm_send_multicast_reqs: "
16780 			    "from_ill not resolver\n"));
16781 			continue;		/* Must be IRE_IF_NORESOLVER */
16782 		}
16783 
16784 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16785 			ip1dbg(("ilm_send_multicast_reqs: "
16786 			    "from_ill MULTI_BCAST\n"));
16787 			continue;
16788 		}
16789 
16790 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16791 			if (from_ill->ill_join_allmulti)
16792 				(void) ip_leave_allmulti(from_ill->ill_ipif);
16793 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
16794 			(void) ip_ll_send_disabmulti_req(from_ill,
16795 			    &ilm->ilm_v6addr);
16796 		}
16797 	}
16798 	ILM_WALKER_RELE(to_ill);
16799 }
16800 
16801 /*
16802  * This function is called when all multicast memberships needs
16803  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
16804  * called only once unlike the IPv4 counterpart where it is called after
16805  * every logical interface is moved. The reason is due to multicast
16806  * memberships are joined using an interface address in IPv4 while in
16807  * IPv6, interface index is used.
16808  */
16809 static void
16810 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
16811 {
16812 	ilm_t	*ilm;
16813 	ilm_t	*ilm_next;
16814 	ilm_t	*new_ilm;
16815 	ilm_t	**ilmp;
16816 	int	count;
16817 	char buf[INET6_ADDRSTRLEN];
16818 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
16819 	ip_stack_t	*ipst = from_ill->ill_ipst;
16820 
16821 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16822 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16823 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16824 
16825 	if (ifindex == 0) {
16826 		/*
16827 		 * Form the solicited node mcast address which is used later.
16828 		 */
16829 		ipif_t *ipif;
16830 
16831 		ipif = from_ill->ill_ipif;
16832 		ASSERT(ipif->ipif_id == 0);
16833 
16834 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
16835 	}
16836 
16837 	ilmp = &from_ill->ill_ilm;
16838 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16839 		ilm_next = ilm->ilm_next;
16840 
16841 		if (ilm->ilm_flags & ILM_DELETED) {
16842 			ilmp = &ilm->ilm_next;
16843 			continue;
16844 		}
16845 
16846 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
16847 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
16848 		ASSERT(ilm->ilm_orig_ifindex != 0);
16849 		if (ilm->ilm_orig_ifindex == ifindex) {
16850 			/*
16851 			 * We are failing back multicast memberships.
16852 			 * If the same ilm exists in to_ill, it means somebody
16853 			 * has joined the same group there e.g. ff02::1
16854 			 * is joined within the kernel when the interfaces
16855 			 * came UP.
16856 			 */
16857 			ASSERT(ilm->ilm_ipif == NULL);
16858 			if (new_ilm != NULL) {
16859 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16860 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16861 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16862 					new_ilm->ilm_is_new = B_TRUE;
16863 				}
16864 			} else {
16865 				/*
16866 				 * check if we can just move the ilm
16867 				 */
16868 				if (from_ill->ill_ilm_walker_cnt != 0) {
16869 					/*
16870 					 * We have walkers we cannot move
16871 					 * the ilm, so allocate a new ilm,
16872 					 * this (old) ilm will be marked
16873 					 * ILM_DELETED at the end of the loop
16874 					 * and will be freed when the
16875 					 * last walker exits.
16876 					 */
16877 					new_ilm = (ilm_t *)mi_zalloc
16878 					    (sizeof (ilm_t));
16879 					if (new_ilm == NULL) {
16880 						ip0dbg(("ilm_move_v6: "
16881 						    "FAILBACK of IPv6"
16882 						    " multicast address %s : "
16883 						    "from %s to"
16884 						    " %s failed : ENOMEM \n",
16885 						    inet_ntop(AF_INET6,
16886 						    &ilm->ilm_v6addr, buf,
16887 						    sizeof (buf)),
16888 						    from_ill->ill_name,
16889 						    to_ill->ill_name));
16890 
16891 							ilmp = &ilm->ilm_next;
16892 							continue;
16893 					}
16894 					*new_ilm = *ilm;
16895 					/*
16896 					 * we don't want new_ilm linked to
16897 					 * ilm's filter list.
16898 					 */
16899 					new_ilm->ilm_filter = NULL;
16900 				} else {
16901 					/*
16902 					 * No walkers we can move the ilm.
16903 					 * lets take it out of the list.
16904 					 */
16905 					*ilmp = ilm->ilm_next;
16906 					ilm->ilm_next = NULL;
16907 					new_ilm = ilm;
16908 				}
16909 
16910 				/*
16911 				 * if this is the first ilm for the group
16912 				 * set ilm_notify_driver so that we notify the
16913 				 * driver in ilm_send_multicast_reqs.
16914 				 */
16915 				if (ilm_lookup_ill_v6(to_ill,
16916 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16917 					new_ilm->ilm_notify_driver = B_TRUE;
16918 
16919 				new_ilm->ilm_ill = to_ill;
16920 				/* Add to the to_ill's list */
16921 				new_ilm->ilm_next = to_ill->ill_ilm;
16922 				to_ill->ill_ilm = new_ilm;
16923 				/*
16924 				 * set the flag so that mld_joingroup is
16925 				 * called in ilm_send_multicast_reqs().
16926 				 */
16927 				new_ilm->ilm_is_new = B_TRUE;
16928 			}
16929 			goto bottom;
16930 		} else if (ifindex != 0) {
16931 			/*
16932 			 * If this is FAILBACK (ifindex != 0) and the ifindex
16933 			 * has not matched above, look at the next ilm.
16934 			 */
16935 			ilmp = &ilm->ilm_next;
16936 			continue;
16937 		}
16938 		/*
16939 		 * If we are here, it means ifindex is 0. Failover
16940 		 * everything.
16941 		 *
16942 		 * We need to handle solicited node mcast address
16943 		 * and all_nodes mcast address differently as they
16944 		 * are joined witin the kenrel (ipif_multicast_up)
16945 		 * and potentially from the userland. We are called
16946 		 * after the ipifs of from_ill has been moved.
16947 		 * If we still find ilms on ill with solicited node
16948 		 * mcast address or all_nodes mcast address, it must
16949 		 * belong to the UP interface that has not moved e.g.
16950 		 * ipif_id 0 with the link local prefix does not move.
16951 		 * We join this on the new ill accounting for all the
16952 		 * userland memberships so that applications don't
16953 		 * see any failure.
16954 		 *
16955 		 * We need to make sure that we account only for the
16956 		 * solicited node and all node multicast addresses
16957 		 * that was brought UP on these. In the case of
16958 		 * a failover from A to B, we might have ilms belonging
16959 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
16960 		 * for the membership from the userland. If we are failing
16961 		 * over from B to C now, we will find the ones belonging
16962 		 * to A on B. These don't account for the ill_ipif_up_count.
16963 		 * They just move from B to C. The check below on
16964 		 * ilm_orig_ifindex ensures that.
16965 		 */
16966 		if ((ilm->ilm_orig_ifindex ==
16967 		    from_ill->ill_phyint->phyint_ifindex) &&
16968 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
16969 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
16970 		    &ilm->ilm_v6addr))) {
16971 			ASSERT(ilm->ilm_refcnt > 0);
16972 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
16973 			/*
16974 			 * For indentation reasons, we are not using a
16975 			 * "else" here.
16976 			 */
16977 			if (count == 0) {
16978 				ilmp = &ilm->ilm_next;
16979 				continue;
16980 			}
16981 			ilm->ilm_refcnt -= count;
16982 			if (new_ilm != NULL) {
16983 				/*
16984 				 * Can find one with the same
16985 				 * ilm_orig_ifindex, if we are failing
16986 				 * over to a STANDBY. This happens
16987 				 * when somebody wants to join a group
16988 				 * on a STANDBY interface and we
16989 				 * internally join on a different one.
16990 				 * If we had joined on from_ill then, a
16991 				 * failover now will find a new ilm
16992 				 * with this index.
16993 				 */
16994 				ip1dbg(("ilm_move_v6: FAILOVER, found"
16995 				    " new ilm on %s, group address %s\n",
16996 				    to_ill->ill_name,
16997 				    inet_ntop(AF_INET6,
16998 				    &ilm->ilm_v6addr, buf,
16999 				    sizeof (buf))));
17000 				new_ilm->ilm_refcnt += count;
17001 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17002 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17003 					new_ilm->ilm_is_new = B_TRUE;
17004 				}
17005 			} else {
17006 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17007 				if (new_ilm == NULL) {
17008 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17009 					    " multicast address %s : from %s to"
17010 					    " %s failed : ENOMEM \n",
17011 					    inet_ntop(AF_INET6,
17012 					    &ilm->ilm_v6addr, buf,
17013 					    sizeof (buf)), from_ill->ill_name,
17014 					    to_ill->ill_name));
17015 					ilmp = &ilm->ilm_next;
17016 					continue;
17017 				}
17018 				*new_ilm = *ilm;
17019 				new_ilm->ilm_filter = NULL;
17020 				new_ilm->ilm_refcnt = count;
17021 				new_ilm->ilm_timer = INFINITY;
17022 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17023 				new_ilm->ilm_is_new = B_TRUE;
17024 				/*
17025 				 * If the to_ill has not joined this
17026 				 * group we need to tell the driver in
17027 				 * ill_send_multicast_reqs.
17028 				 */
17029 				if (ilm_lookup_ill_v6(to_ill,
17030 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17031 					new_ilm->ilm_notify_driver = B_TRUE;
17032 
17033 				new_ilm->ilm_ill = to_ill;
17034 				/* Add to the to_ill's list */
17035 				new_ilm->ilm_next = to_ill->ill_ilm;
17036 				to_ill->ill_ilm = new_ilm;
17037 				ASSERT(new_ilm->ilm_ipif == NULL);
17038 			}
17039 			if (ilm->ilm_refcnt == 0) {
17040 				goto bottom;
17041 			} else {
17042 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17043 				CLEAR_SLIST(new_ilm->ilm_filter);
17044 				ilmp = &ilm->ilm_next;
17045 			}
17046 			continue;
17047 		} else {
17048 			/*
17049 			 * ifindex = 0 means, move everything pointing at
17050 			 * from_ill. We are doing this becuase ill has
17051 			 * either FAILED or became INACTIVE.
17052 			 *
17053 			 * As we would like to move things later back to
17054 			 * from_ill, we want to retain the identity of this
17055 			 * ilm. Thus, we don't blindly increment the reference
17056 			 * count on the ilms matching the address alone. We
17057 			 * need to match on the ilm_orig_index also. new_ilm
17058 			 * was obtained by matching ilm_orig_index also.
17059 			 */
17060 			if (new_ilm != NULL) {
17061 				/*
17062 				 * This is possible only if a previous restore
17063 				 * was incomplete i.e restore to
17064 				 * ilm_orig_ifindex left some ilms because
17065 				 * of some failures. Thus when we are failing
17066 				 * again, we might find our old friends there.
17067 				 */
17068 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17069 				    " on %s, group address %s\n",
17070 				    to_ill->ill_name,
17071 				    inet_ntop(AF_INET6,
17072 				    &ilm->ilm_v6addr, buf,
17073 				    sizeof (buf))));
17074 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17075 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17076 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17077 					new_ilm->ilm_is_new = B_TRUE;
17078 				}
17079 			} else {
17080 				if (from_ill->ill_ilm_walker_cnt != 0) {
17081 					new_ilm = (ilm_t *)
17082 					    mi_zalloc(sizeof (ilm_t));
17083 					if (new_ilm == NULL) {
17084 						ip0dbg(("ilm_move_v6: "
17085 						    "FAILOVER of IPv6"
17086 						    " multicast address %s : "
17087 						    "from %s to"
17088 						    " %s failed : ENOMEM \n",
17089 						    inet_ntop(AF_INET6,
17090 						    &ilm->ilm_v6addr, buf,
17091 						    sizeof (buf)),
17092 						    from_ill->ill_name,
17093 						    to_ill->ill_name));
17094 
17095 							ilmp = &ilm->ilm_next;
17096 							continue;
17097 					}
17098 					*new_ilm = *ilm;
17099 					new_ilm->ilm_filter = NULL;
17100 				} else {
17101 					*ilmp = ilm->ilm_next;
17102 					new_ilm = ilm;
17103 				}
17104 				/*
17105 				 * If the to_ill has not joined this
17106 				 * group we need to tell the driver in
17107 				 * ill_send_multicast_reqs.
17108 				 */
17109 				if (ilm_lookup_ill_v6(to_ill,
17110 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17111 					new_ilm->ilm_notify_driver = B_TRUE;
17112 
17113 				/* Add to the to_ill's list */
17114 				new_ilm->ilm_next = to_ill->ill_ilm;
17115 				to_ill->ill_ilm = new_ilm;
17116 				ASSERT(ilm->ilm_ipif == NULL);
17117 				new_ilm->ilm_ill = to_ill;
17118 				new_ilm->ilm_is_new = B_TRUE;
17119 			}
17120 
17121 		}
17122 
17123 bottom:
17124 		/*
17125 		 * Revert multicast filter state to (EXCLUDE, NULL).
17126 		 * new_ilm->ilm_is_new should already be set if needed.
17127 		 */
17128 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17129 		CLEAR_SLIST(new_ilm->ilm_filter);
17130 		/*
17131 		 * We allocated/got a new ilm, free the old one.
17132 		 */
17133 		if (new_ilm != ilm) {
17134 			if (from_ill->ill_ilm_walker_cnt == 0) {
17135 				*ilmp = ilm->ilm_next;
17136 				ilm->ilm_next = NULL;
17137 				FREE_SLIST(ilm->ilm_filter);
17138 				FREE_SLIST(ilm->ilm_pendsrcs);
17139 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17140 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17141 				mi_free((char *)ilm);
17142 			} else {
17143 				ilm->ilm_flags |= ILM_DELETED;
17144 				from_ill->ill_ilm_cleanup_reqd = 1;
17145 				ilmp = &ilm->ilm_next;
17146 			}
17147 		}
17148 	}
17149 }
17150 
17151 /*
17152  * Move all the multicast memberships to to_ill. Called when
17153  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17154  * different from IPv6 counterpart as multicast memberships are associated
17155  * with ills in IPv6. This function is called after every ipif is moved
17156  * unlike IPv6, where it is moved only once.
17157  */
17158 static void
17159 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17160 {
17161 	ilm_t	*ilm;
17162 	ilm_t	*ilm_next;
17163 	ilm_t	*new_ilm;
17164 	ilm_t	**ilmp;
17165 	ip_stack_t	*ipst = from_ill->ill_ipst;
17166 
17167 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17168 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17169 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17170 
17171 	ilmp = &from_ill->ill_ilm;
17172 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17173 		ilm_next = ilm->ilm_next;
17174 
17175 		if (ilm->ilm_flags & ILM_DELETED) {
17176 			ilmp = &ilm->ilm_next;
17177 			continue;
17178 		}
17179 
17180 		ASSERT(ilm->ilm_ipif != NULL);
17181 
17182 		if (ilm->ilm_ipif != ipif) {
17183 			ilmp = &ilm->ilm_next;
17184 			continue;
17185 		}
17186 
17187 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17188 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17189 			new_ilm = ilm_lookup_ipif(ipif,
17190 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17191 			if (new_ilm != NULL) {
17192 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17193 				/*
17194 				 * We still need to deal with the from_ill.
17195 				 */
17196 				new_ilm->ilm_is_new = B_TRUE;
17197 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17198 				CLEAR_SLIST(new_ilm->ilm_filter);
17199 				goto delete_ilm;
17200 			}
17201 			/*
17202 			 * If we could not find one e.g. ipif is
17203 			 * still down on to_ill, we add this ilm
17204 			 * on ill_new to preserve the reference
17205 			 * count.
17206 			 */
17207 		}
17208 		/*
17209 		 * When ipifs move, ilms always move with it
17210 		 * to the NEW ill. Thus we should never be
17211 		 * able to find ilm till we really move it here.
17212 		 */
17213 		ASSERT(ilm_lookup_ipif(ipif,
17214 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17215 
17216 		if (from_ill->ill_ilm_walker_cnt != 0) {
17217 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17218 			if (new_ilm == NULL) {
17219 				char buf[INET6_ADDRSTRLEN];
17220 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17221 				    " multicast address %s : "
17222 				    "from %s to"
17223 				    " %s failed : ENOMEM \n",
17224 				    inet_ntop(AF_INET,
17225 				    &ilm->ilm_v6addr, buf,
17226 				    sizeof (buf)),
17227 				    from_ill->ill_name,
17228 				    to_ill->ill_name));
17229 
17230 				ilmp = &ilm->ilm_next;
17231 				continue;
17232 			}
17233 			*new_ilm = *ilm;
17234 			/* We don't want new_ilm linked to ilm's filter list */
17235 			new_ilm->ilm_filter = NULL;
17236 		} else {
17237 			/* Remove from the list */
17238 			*ilmp = ilm->ilm_next;
17239 			new_ilm = ilm;
17240 		}
17241 
17242 		/*
17243 		 * If we have never joined this group on the to_ill
17244 		 * make sure we tell the driver.
17245 		 */
17246 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17247 		    ALL_ZONES) == NULL)
17248 			new_ilm->ilm_notify_driver = B_TRUE;
17249 
17250 		/* Add to the to_ill's list */
17251 		new_ilm->ilm_next = to_ill->ill_ilm;
17252 		to_ill->ill_ilm = new_ilm;
17253 		new_ilm->ilm_is_new = B_TRUE;
17254 
17255 		/*
17256 		 * Revert multicast filter state to (EXCLUDE, NULL)
17257 		 */
17258 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17259 		CLEAR_SLIST(new_ilm->ilm_filter);
17260 
17261 		/*
17262 		 * Delete only if we have allocated a new ilm.
17263 		 */
17264 		if (new_ilm != ilm) {
17265 delete_ilm:
17266 			if (from_ill->ill_ilm_walker_cnt == 0) {
17267 				/* Remove from the list */
17268 				*ilmp = ilm->ilm_next;
17269 				ilm->ilm_next = NULL;
17270 				FREE_SLIST(ilm->ilm_filter);
17271 				FREE_SLIST(ilm->ilm_pendsrcs);
17272 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17273 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17274 				mi_free((char *)ilm);
17275 			} else {
17276 				ilm->ilm_flags |= ILM_DELETED;
17277 				from_ill->ill_ilm_cleanup_reqd = 1;
17278 				ilmp = &ilm->ilm_next;
17279 			}
17280 		}
17281 	}
17282 }
17283 
17284 static uint_t
17285 ipif_get_id(ill_t *ill, uint_t id)
17286 {
17287 	uint_t	unit;
17288 	ipif_t	*tipif;
17289 	boolean_t found = B_FALSE;
17290 	ip_stack_t	*ipst = ill->ill_ipst;
17291 
17292 	/*
17293 	 * During failback, we want to go back to the same id
17294 	 * instead of the smallest id so that the original
17295 	 * configuration is maintained. id is non-zero in that
17296 	 * case.
17297 	 */
17298 	if (id != 0) {
17299 		/*
17300 		 * While failing back, if we still have an ipif with
17301 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17302 		 * as soon as we return from this function. It was
17303 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17304 		 * we can choose the smallest id. Thus we return zero
17305 		 * in that case ignoring the hint.
17306 		 */
17307 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17308 			return (0);
17309 		for (tipif = ill->ill_ipif; tipif != NULL;
17310 		    tipif = tipif->ipif_next) {
17311 			if (tipif->ipif_id == id) {
17312 				found = B_TRUE;
17313 				break;
17314 			}
17315 		}
17316 		/*
17317 		 * If somebody already plumbed another logical
17318 		 * with the same id, we won't be able to find it.
17319 		 */
17320 		if (!found)
17321 			return (id);
17322 	}
17323 	for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17324 		found = B_FALSE;
17325 		for (tipif = ill->ill_ipif; tipif != NULL;
17326 		    tipif = tipif->ipif_next) {
17327 			if (tipif->ipif_id == unit) {
17328 				found = B_TRUE;
17329 				break;
17330 			}
17331 		}
17332 		if (!found)
17333 			break;
17334 	}
17335 	return (unit);
17336 }
17337 
17338 /* ARGSUSED */
17339 static int
17340 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17341     ipif_t **rep_ipif_ptr)
17342 {
17343 	ill_t	*from_ill;
17344 	ipif_t	*rep_ipif;
17345 	uint_t	unit;
17346 	int err = 0;
17347 	ipif_t	*to_ipif;
17348 	struct iocblk	*iocp;
17349 	boolean_t failback_cmd;
17350 	boolean_t remove_ipif;
17351 	int	rc;
17352 	ip_stack_t	*ipst;
17353 
17354 	ASSERT(IAM_WRITER_ILL(to_ill));
17355 	ASSERT(IAM_WRITER_IPIF(ipif));
17356 
17357 	iocp = (struct iocblk *)mp->b_rptr;
17358 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17359 	remove_ipif = B_FALSE;
17360 
17361 	from_ill = ipif->ipif_ill;
17362 	ipst = from_ill->ill_ipst;
17363 
17364 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17365 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17366 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17367 
17368 	/*
17369 	 * Don't move LINK LOCAL addresses as they are tied to
17370 	 * physical interface.
17371 	 */
17372 	if (from_ill->ill_isv6 &&
17373 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17374 		ipif->ipif_was_up = B_FALSE;
17375 		IPIF_UNMARK_MOVING(ipif);
17376 		return (0);
17377 	}
17378 
17379 	/*
17380 	 * We set the ipif_id to maximum so that the search for
17381 	 * ipif_id will pick the lowest number i.e 0 in the
17382 	 * following 2 cases :
17383 	 *
17384 	 * 1) We have a replacement ipif at the head of to_ill.
17385 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17386 	 *    on to_ill and hence the MOVE might fail. We want to
17387 	 *    remove it only if we could move the ipif. Thus, by
17388 	 *    setting it to the MAX value, we make the search in
17389 	 *    ipif_get_id return the zeroth id.
17390 	 *
17391 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17392 	 *    we might just have a zero address plumbed on the ipif
17393 	 *    with zero id in the case of IPv4. We remove that while
17394 	 *    doing the failback. We want to remove it only if we
17395 	 *    could move the ipif. Thus, by setting it to the MAX
17396 	 *    value, we make the search in ipif_get_id return the
17397 	 *    zeroth id.
17398 	 *
17399 	 * Both (1) and (2) are done only when when we are moving
17400 	 * an ipif (either due to failover/failback) which originally
17401 	 * belonged to this interface i.e the ipif_orig_ifindex is
17402 	 * the same as to_ill's ifindex. This is needed so that
17403 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17404 	 * from B -> A (B is being removed from the group) and
17405 	 * FAILBACK from A -> B restores the original configuration.
17406 	 * Without the check for orig_ifindex, the second FAILOVER
17407 	 * could make the ipif belonging to B replace the A's zeroth
17408 	 * ipif and the subsequent failback re-creating the replacement
17409 	 * ipif again.
17410 	 *
17411 	 * NOTE : We created the replacement ipif when we did a
17412 	 * FAILOVER (See below). We could check for FAILBACK and
17413 	 * then look for replacement ipif to be removed. But we don't
17414 	 * want to do that because we wan't to allow the possibility
17415 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17416 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17417 	 * from B -> A.
17418 	 */
17419 	to_ipif = to_ill->ill_ipif;
17420 	if ((to_ill->ill_phyint->phyint_ifindex ==
17421 	    ipif->ipif_orig_ifindex) &&
17422 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17423 		ASSERT(to_ipif->ipif_id == 0);
17424 		remove_ipif = B_TRUE;
17425 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17426 	}
17427 	/*
17428 	 * Find the lowest logical unit number on the to_ill.
17429 	 * If we are failing back, try to get the original id
17430 	 * rather than the lowest one so that the original
17431 	 * configuration is maintained.
17432 	 *
17433 	 * XXX need a better scheme for this.
17434 	 */
17435 	if (failback_cmd) {
17436 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17437 	} else {
17438 		unit = ipif_get_id(to_ill, 0);
17439 	}
17440 
17441 	/* Reset back to zero in case we fail below */
17442 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17443 		to_ipif->ipif_id = 0;
17444 
17445 	if (unit == ipst->ips_ip_addrs_per_if) {
17446 		ipif->ipif_was_up = B_FALSE;
17447 		IPIF_UNMARK_MOVING(ipif);
17448 		return (EINVAL);
17449 	}
17450 
17451 	/*
17452 	 * ipif is ready to move from "from_ill" to "to_ill".
17453 	 *
17454 	 * 1) If we are moving ipif with id zero, create a
17455 	 *    replacement ipif for this ipif on from_ill. If this fails
17456 	 *    fail the MOVE operation.
17457 	 *
17458 	 * 2) Remove the replacement ipif on to_ill if any.
17459 	 *    We could remove the replacement ipif when we are moving
17460 	 *    the ipif with id zero. But what if somebody already
17461 	 *    unplumbed it ? Thus we always remove it if it is present.
17462 	 *    We want to do it only if we are sure we are going to
17463 	 *    move the ipif to to_ill which is why there are no
17464 	 *    returns due to error till ipif is linked to to_ill.
17465 	 *    Note that the first ipif that we failback will always
17466 	 *    be zero if it is present.
17467 	 */
17468 	if (ipif->ipif_id == 0) {
17469 		ipaddr_t inaddr_any = INADDR_ANY;
17470 
17471 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17472 		if (rep_ipif == NULL) {
17473 			ipif->ipif_was_up = B_FALSE;
17474 			IPIF_UNMARK_MOVING(ipif);
17475 			return (ENOMEM);
17476 		}
17477 		*rep_ipif = ipif_zero;
17478 		/*
17479 		 * Before we put the ipif on the list, store the addresses
17480 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17481 		 * assumes so. This logic is not any different from what
17482 		 * ipif_allocate does.
17483 		 */
17484 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17485 		    &rep_ipif->ipif_v6lcl_addr);
17486 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17487 		    &rep_ipif->ipif_v6src_addr);
17488 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17489 		    &rep_ipif->ipif_v6subnet);
17490 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17491 		    &rep_ipif->ipif_v6net_mask);
17492 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17493 		    &rep_ipif->ipif_v6brd_addr);
17494 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17495 		    &rep_ipif->ipif_v6pp_dst_addr);
17496 		/*
17497 		 * We mark IPIF_NOFAILOVER so that this can never
17498 		 * move.
17499 		 */
17500 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17501 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17502 		rep_ipif->ipif_replace_zero = B_TRUE;
17503 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17504 		    MUTEX_DEFAULT, NULL);
17505 		rep_ipif->ipif_id = 0;
17506 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17507 		rep_ipif->ipif_ill = from_ill;
17508 		rep_ipif->ipif_orig_ifindex =
17509 		    from_ill->ill_phyint->phyint_ifindex;
17510 		/* Insert at head */
17511 		rep_ipif->ipif_next = from_ill->ill_ipif;
17512 		from_ill->ill_ipif = rep_ipif;
17513 		/*
17514 		 * We don't really care to let apps know about
17515 		 * this interface.
17516 		 */
17517 	}
17518 
17519 	if (remove_ipif) {
17520 		/*
17521 		 * We set to a max value above for this case to get
17522 		 * id zero. ASSERT that we did get one.
17523 		 */
17524 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17525 		rep_ipif = to_ipif;
17526 		to_ill->ill_ipif = rep_ipif->ipif_next;
17527 		rep_ipif->ipif_next = NULL;
17528 		/*
17529 		 * If some apps scanned and find this interface,
17530 		 * it is time to let them know, so that they can
17531 		 * delete it.
17532 		 */
17533 
17534 		*rep_ipif_ptr = rep_ipif;
17535 	}
17536 
17537 	/* Get it out of the ILL interface list. */
17538 	ipif_remove(ipif, B_FALSE);
17539 
17540 	/* Assign the new ill */
17541 	ipif->ipif_ill = to_ill;
17542 	ipif->ipif_id = unit;
17543 	/* id has already been checked */
17544 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17545 	ASSERT(rc == 0);
17546 	/* Let SCTP update its list */
17547 	sctp_move_ipif(ipif, from_ill, to_ill);
17548 	/*
17549 	 * Handle the failover and failback of ipif_t between
17550 	 * ill_t that have differing maximum mtu values.
17551 	 */
17552 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17553 		if (ipif->ipif_saved_mtu == 0) {
17554 			/*
17555 			 * As this ipif_t is moving to an ill_t
17556 			 * that has a lower ill_max_mtu, its
17557 			 * ipif_mtu needs to be saved so it can
17558 			 * be restored during failback or during
17559 			 * failover to an ill_t which has a
17560 			 * higher ill_max_mtu.
17561 			 */
17562 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17563 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17564 		} else {
17565 			/*
17566 			 * The ipif_t is, once again, moving to
17567 			 * an ill_t that has a lower maximum mtu
17568 			 * value.
17569 			 */
17570 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17571 		}
17572 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17573 	    ipif->ipif_saved_mtu != 0) {
17574 		/*
17575 		 * The mtu of this ipif_t had to be reduced
17576 		 * during an earlier failover; this is an
17577 		 * opportunity for it to be increased (either as
17578 		 * part of another failover or a failback).
17579 		 */
17580 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17581 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17582 			ipif->ipif_saved_mtu = 0;
17583 		} else {
17584 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17585 		}
17586 	}
17587 
17588 	/*
17589 	 * We preserve all the other fields of the ipif including
17590 	 * ipif_saved_ire_mp. The routes that are saved here will
17591 	 * be recreated on the new interface and back on the old
17592 	 * interface when we move back.
17593 	 */
17594 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17595 
17596 	return (err);
17597 }
17598 
17599 static int
17600 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17601     int ifindex, ipif_t **rep_ipif_ptr)
17602 {
17603 	ipif_t *mipif;
17604 	ipif_t *ipif_next;
17605 	int err;
17606 
17607 	/*
17608 	 * We don't really try to MOVE back things if some of the
17609 	 * operations fail. The daemon will take care of moving again
17610 	 * later on.
17611 	 */
17612 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17613 		ipif_next = mipif->ipif_next;
17614 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17615 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17616 
17617 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17618 
17619 			/*
17620 			 * When the MOVE fails, it is the job of the
17621 			 * application to take care of this properly
17622 			 * i.e try again if it is ENOMEM.
17623 			 */
17624 			if (mipif->ipif_ill != from_ill) {
17625 				/*
17626 				 * ipif has moved.
17627 				 *
17628 				 * Move the multicast memberships associated
17629 				 * with this ipif to the new ill. For IPv6, we
17630 				 * do it once after all the ipifs are moved
17631 				 * (in ill_move) as they are not associated
17632 				 * with ipifs.
17633 				 *
17634 				 * We need to move the ilms as the ipif has
17635 				 * already been moved to a new ill even
17636 				 * in the case of errors. Neither
17637 				 * ilm_free(ipif) will find the ilm
17638 				 * when somebody unplumbs this ipif nor
17639 				 * ilm_delete(ilm) will be able to find the
17640 				 * ilm, if we don't move now.
17641 				 */
17642 				if (!from_ill->ill_isv6)
17643 					ilm_move_v4(from_ill, to_ill, mipif);
17644 			}
17645 
17646 			if (err != 0)
17647 				return (err);
17648 		}
17649 	}
17650 	return (0);
17651 }
17652 
17653 static int
17654 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17655 {
17656 	int ifindex;
17657 	int err;
17658 	struct iocblk	*iocp;
17659 	ipif_t	*ipif;
17660 	ipif_t *rep_ipif_ptr = NULL;
17661 	ipif_t	*from_ipif = NULL;
17662 	boolean_t check_rep_if = B_FALSE;
17663 	ip_stack_t	*ipst = from_ill->ill_ipst;
17664 
17665 	iocp = (struct iocblk *)mp->b_rptr;
17666 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
17667 		/*
17668 		 * Move everything pointing at from_ill to to_ill.
17669 		 * We acheive this by passing in 0 as ifindex.
17670 		 */
17671 		ifindex = 0;
17672 	} else {
17673 		/*
17674 		 * Move everything pointing at from_ill whose original
17675 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
17676 		 * We acheive this by passing in ifindex rather than 0.
17677 		 * Multicast vifs, ilgs move implicitly because ipifs move.
17678 		 */
17679 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
17680 		ifindex = to_ill->ill_phyint->phyint_ifindex;
17681 	}
17682 
17683 	/*
17684 	 * Determine if there is at least one ipif that would move from
17685 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
17686 	 * ipif (if it exists) on the to_ill would be consumed as a result of
17687 	 * the move, in which case we need to quiesce the replacement ipif also.
17688 	 */
17689 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
17690 	    from_ipif = from_ipif->ipif_next) {
17691 		if (((ifindex == 0) ||
17692 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
17693 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
17694 			check_rep_if = B_TRUE;
17695 			break;
17696 		}
17697 	}
17698 
17699 
17700 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
17701 
17702 	GRAB_ILL_LOCKS(from_ill, to_ill);
17703 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
17704 		(void) ipsq_pending_mp_add(NULL, ipif, q,
17705 		    mp, ILL_MOVE_OK);
17706 		RELEASE_ILL_LOCKS(from_ill, to_ill);
17707 		return (EINPROGRESS);
17708 	}
17709 
17710 	/* Check if the replacement ipif is quiescent to delete */
17711 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
17712 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
17713 		to_ill->ill_ipif->ipif_state_flags |=
17714 		    IPIF_MOVING | IPIF_CHANGING;
17715 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
17716 			(void) ipsq_pending_mp_add(NULL, ipif, q,
17717 			    mp, ILL_MOVE_OK);
17718 			RELEASE_ILL_LOCKS(from_ill, to_ill);
17719 			return (EINPROGRESS);
17720 		}
17721 	}
17722 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17723 
17724 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
17725 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17726 	GRAB_ILL_LOCKS(from_ill, to_ill);
17727 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
17728 
17729 	/* ilm_move is done inside ipif_move for IPv4 */
17730 	if (err == 0 && from_ill->ill_isv6)
17731 		ilm_move_v6(from_ill, to_ill, ifindex);
17732 
17733 	RELEASE_ILL_LOCKS(from_ill, to_ill);
17734 	rw_exit(&ipst->ips_ill_g_lock);
17735 
17736 	/*
17737 	 * send rts messages and multicast messages.
17738 	 */
17739 	if (rep_ipif_ptr != NULL) {
17740 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
17741 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
17742 			rep_ipif_ptr->ipif_recovery_id = 0;
17743 		}
17744 		ip_rts_ifmsg(rep_ipif_ptr);
17745 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
17746 #ifdef DEBUG
17747 		ipif_trace_cleanup(rep_ipif_ptr);
17748 #endif
17749 		mi_free(rep_ipif_ptr);
17750 	}
17751 
17752 	conn_move_ill(from_ill, to_ill, ifindex);
17753 
17754 	return (err);
17755 }
17756 
17757 /*
17758  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
17759  * Also checks for the validity of the arguments.
17760  * Note: We are already exclusive inside the from group.
17761  * It is upto the caller to release refcnt on the to_ill's.
17762  */
17763 static int
17764 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
17765     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
17766 {
17767 	int dst_index;
17768 	ipif_t *ipif_v4, *ipif_v6;
17769 	struct lifreq *lifr;
17770 	mblk_t *mp1;
17771 	boolean_t exists;
17772 	sin_t	*sin;
17773 	int	err = 0;
17774 	ip_stack_t	*ipst;
17775 
17776 	if (CONN_Q(q))
17777 		ipst = CONNQ_TO_IPST(q);
17778 	else
17779 		ipst = ILLQ_TO_IPST(q);
17780 
17781 
17782 	if ((mp1 = mp->b_cont) == NULL)
17783 		return (EPROTO);
17784 
17785 	if ((mp1 = mp1->b_cont) == NULL)
17786 		return (EPROTO);
17787 
17788 	lifr = (struct lifreq *)mp1->b_rptr;
17789 	sin = (sin_t *)&lifr->lifr_addr;
17790 
17791 	/*
17792 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
17793 	 * specific operations.
17794 	 */
17795 	if (sin->sin_family != AF_UNSPEC)
17796 		return (EINVAL);
17797 
17798 	/*
17799 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
17800 	 * NULLs for the last 4 args and we know the lookup won't fail
17801 	 * with EINPROGRESS.
17802 	 */
17803 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
17804 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
17805 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17806 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
17807 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
17808 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17809 
17810 	if (ipif_v4 == NULL && ipif_v6 == NULL)
17811 		return (ENXIO);
17812 
17813 	if (ipif_v4 != NULL) {
17814 		ASSERT(ipif_v4->ipif_refcnt != 0);
17815 		if (ipif_v4->ipif_id != 0) {
17816 			err = EINVAL;
17817 			goto done;
17818 		}
17819 
17820 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
17821 		*ill_from_v4 = ipif_v4->ipif_ill;
17822 	}
17823 
17824 	if (ipif_v6 != NULL) {
17825 		ASSERT(ipif_v6->ipif_refcnt != 0);
17826 		if (ipif_v6->ipif_id != 0) {
17827 			err = EINVAL;
17828 			goto done;
17829 		}
17830 
17831 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
17832 		*ill_from_v6 = ipif_v6->ipif_ill;
17833 	}
17834 
17835 	err = 0;
17836 	dst_index = lifr->lifr_movetoindex;
17837 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
17838 	    q, mp, ip_process_ioctl, &err, ipst);
17839 	if (err != 0) {
17840 		/*
17841 		 * There could be only v6.
17842 		 */
17843 		if (err != ENXIO)
17844 			goto done;
17845 		err = 0;
17846 	}
17847 
17848 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
17849 	    q, mp, ip_process_ioctl, &err, ipst);
17850 	if (err != 0) {
17851 		if (err != ENXIO)
17852 			goto done;
17853 		if (*ill_to_v4 == NULL) {
17854 			err = ENXIO;
17855 			goto done;
17856 		}
17857 		err = 0;
17858 	}
17859 
17860 	/*
17861 	 * If we have something to MOVE i.e "from" not NULL,
17862 	 * "to" should be non-NULL.
17863 	 */
17864 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
17865 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
17866 		err = EINVAL;
17867 	}
17868 
17869 done:
17870 	if (ipif_v4 != NULL)
17871 		ipif_refrele(ipif_v4);
17872 	if (ipif_v6 != NULL)
17873 		ipif_refrele(ipif_v6);
17874 	return (err);
17875 }
17876 
17877 /*
17878  * FAILOVER and FAILBACK are modelled as MOVE operations.
17879  *
17880  * We don't check whether the MOVE is within the same group or
17881  * not, because this ioctl can be used as a generic mechanism
17882  * to failover from interface A to B, though things will function
17883  * only if they are really part of the same group. Moreover,
17884  * all ipifs may be down and hence temporarily out of the group.
17885  *
17886  * ipif's that need to be moved are first brought down; V4 ipifs are brought
17887  * down first and then V6.  For each we wait for the ipif's to become quiescent.
17888  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
17889  * have been deleted and there are no active references. Once quiescent the
17890  * ipif's are moved and brought up on the new ill.
17891  *
17892  * Normally the source ill and destination ill belong to the same IPMP group
17893  * and hence the same ipsq_t. In the event they don't belong to the same
17894  * same group the two ipsq's are first merged into one ipsq - that of the
17895  * to_ill. The multicast memberships on the source and destination ill cannot
17896  * change during the move operation since multicast joins/leaves also have to
17897  * execute on the same ipsq and are hence serialized.
17898  */
17899 /* ARGSUSED */
17900 int
17901 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17902     ip_ioctl_cmd_t *ipip, void *ifreq)
17903 {
17904 	ill_t *ill_to_v4 = NULL;
17905 	ill_t *ill_to_v6 = NULL;
17906 	ill_t *ill_from_v4 = NULL;
17907 	ill_t *ill_from_v6 = NULL;
17908 	int err = 0;
17909 
17910 	/*
17911 	 * setup from and to ill's, we can get EINPROGRESS only for
17912 	 * to_ill's.
17913 	 */
17914 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
17915 	    &ill_to_v4, &ill_to_v6);
17916 
17917 	if (err != 0) {
17918 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
17919 		goto done;
17920 	}
17921 
17922 	/*
17923 	 * nothing to do.
17924 	 */
17925 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
17926 		goto done;
17927 	}
17928 
17929 	/*
17930 	 * nothing to do.
17931 	 */
17932 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
17933 		goto done;
17934 	}
17935 
17936 	/*
17937 	 * Mark the ill as changing.
17938 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
17939 	 * in ill_up_ipifs in case of error they are cleared below.
17940 	 */
17941 
17942 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
17943 	if (ill_from_v4 != NULL)
17944 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
17945 	if (ill_from_v6 != NULL)
17946 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
17947 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
17948 
17949 	/*
17950 	 * Make sure that both src and dst are
17951 	 * in the same syncq group. If not make it happen.
17952 	 * We are not holding any locks because we are the writer
17953 	 * on the from_ipsq and we will hold locks in ill_merge_groups
17954 	 * to protect to_ipsq against changing.
17955 	 */
17956 	if (ill_from_v4 != NULL) {
17957 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
17958 		    ill_to_v4->ill_phyint->phyint_ipsq) {
17959 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
17960 			    NULL, mp, q);
17961 			goto err_ret;
17962 
17963 		}
17964 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
17965 	} else {
17966 
17967 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
17968 		    ill_to_v6->ill_phyint->phyint_ipsq) {
17969 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
17970 			    NULL, mp, q);
17971 			goto err_ret;
17972 
17973 		}
17974 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
17975 	}
17976 
17977 	/*
17978 	 * Now that the ipsq's have been merged and we are the writer
17979 	 * lets mark to_ill as changing as well.
17980 	 */
17981 
17982 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
17983 	if (ill_to_v4 != NULL)
17984 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
17985 	if (ill_to_v6 != NULL)
17986 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
17987 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
17988 
17989 	/*
17990 	 * Its ok for us to proceed with the move even if
17991 	 * ill_pending_mp is non null on one of the from ill's as the reply
17992 	 * should not be looking at the ipif, it should only care about the
17993 	 * ill itself.
17994 	 */
17995 
17996 	/*
17997 	 * lets move ipv4 first.
17998 	 */
17999 	if (ill_from_v4 != NULL) {
18000 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18001 		ill_from_v4->ill_move_in_progress = B_TRUE;
18002 		ill_to_v4->ill_move_in_progress = B_TRUE;
18003 		ill_to_v4->ill_move_peer = ill_from_v4;
18004 		ill_from_v4->ill_move_peer = ill_to_v4;
18005 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18006 	}
18007 
18008 	/*
18009 	 * Now lets move ipv6.
18010 	 */
18011 	if (err == 0 && ill_from_v6 != NULL) {
18012 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18013 		ill_from_v6->ill_move_in_progress = B_TRUE;
18014 		ill_to_v6->ill_move_in_progress = B_TRUE;
18015 		ill_to_v6->ill_move_peer = ill_from_v6;
18016 		ill_from_v6->ill_move_peer = ill_to_v6;
18017 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18018 	}
18019 
18020 err_ret:
18021 	/*
18022 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18023 	 * moved to become quiescent.
18024 	 */
18025 	if (err == EINPROGRESS) {
18026 		goto done;
18027 	}
18028 
18029 	/*
18030 	 * if err is set ill_up_ipifs will not be called
18031 	 * lets clear the flags.
18032 	 */
18033 
18034 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18035 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18036 	/*
18037 	 * Some of the clearing may be redundant. But it is simple
18038 	 * not making any extra checks.
18039 	 */
18040 	if (ill_from_v6 != NULL) {
18041 		ill_from_v6->ill_move_in_progress = B_FALSE;
18042 		ill_from_v6->ill_move_peer = NULL;
18043 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18044 	}
18045 	if (ill_from_v4 != NULL) {
18046 		ill_from_v4->ill_move_in_progress = B_FALSE;
18047 		ill_from_v4->ill_move_peer = NULL;
18048 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18049 	}
18050 	if (ill_to_v6 != NULL) {
18051 		ill_to_v6->ill_move_in_progress = B_FALSE;
18052 		ill_to_v6->ill_move_peer = NULL;
18053 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18054 	}
18055 	if (ill_to_v4 != NULL) {
18056 		ill_to_v4->ill_move_in_progress = B_FALSE;
18057 		ill_to_v4->ill_move_peer = NULL;
18058 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18059 	}
18060 
18061 	/*
18062 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18063 	 * Do this always to maintain proper state i.e even in case of errors.
18064 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18065 	 * we need not call on both v4 and v6 interfaces.
18066 	 */
18067 	if (ill_from_v4 != NULL) {
18068 		if ((ill_from_v4->ill_phyint->phyint_flags &
18069 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18070 			phyint_inactive(ill_from_v4->ill_phyint);
18071 		}
18072 	} else if (ill_from_v6 != NULL) {
18073 		if ((ill_from_v6->ill_phyint->phyint_flags &
18074 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18075 			phyint_inactive(ill_from_v6->ill_phyint);
18076 		}
18077 	}
18078 
18079 	if (ill_to_v4 != NULL) {
18080 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18081 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18082 		}
18083 	} else if (ill_to_v6 != NULL) {
18084 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18085 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18086 		}
18087 	}
18088 
18089 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18090 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18091 
18092 no_err:
18093 	/*
18094 	 * lets bring the interfaces up on the to_ill.
18095 	 */
18096 	if (err == 0) {
18097 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18098 		    q, mp);
18099 	}
18100 
18101 	if (err == 0) {
18102 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18103 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18104 
18105 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18106 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18107 	}
18108 done:
18109 
18110 	if (ill_to_v4 != NULL) {
18111 		ill_refrele(ill_to_v4);
18112 	}
18113 	if (ill_to_v6 != NULL) {
18114 		ill_refrele(ill_to_v6);
18115 	}
18116 
18117 	return (err);
18118 }
18119 
18120 static void
18121 ill_dl_down(ill_t *ill)
18122 {
18123 	/*
18124 	 * The ill is down; unbind but stay attached since we're still
18125 	 * associated with a PPA. If we have negotiated DLPI capabilites
18126 	 * with the data link service provider (IDS_OK) then reset them.
18127 	 * The interval between unbinding and rebinding is potentially
18128 	 * unbounded hence we cannot assume things will be the same.
18129 	 * The DLPI capabilities will be probed again when the data link
18130 	 * is brought up.
18131 	 */
18132 	mblk_t	*mp = ill->ill_unbind_mp;
18133 	hook_nic_event_t *info;
18134 
18135 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18136 
18137 	ill->ill_unbind_mp = NULL;
18138 	if (mp != NULL) {
18139 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18140 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18141 		    ill->ill_name));
18142 		mutex_enter(&ill->ill_lock);
18143 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18144 		mutex_exit(&ill->ill_lock);
18145 		/*
18146 		 * Reset the capabilities if the negotiation is done or is
18147 		 * still in progress. Note that ill_capability_reset() will
18148 		 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent
18149 		 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored.
18150 		 *
18151 		 * Further, reset ill_capab_reneg to be B_FALSE so that the
18152 		 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent
18153 		 * the capabilities renegotiation from happening.
18154 		 */
18155 		if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
18156 			ill_capability_reset(ill);
18157 		ill->ill_capab_reneg = B_FALSE;
18158 
18159 		ill_dlpi_send(ill, mp);
18160 	}
18161 
18162 	/*
18163 	 * Toss all of our multicast memberships.  We could keep them, but
18164 	 * then we'd have to do bookkeeping of any joins and leaves performed
18165 	 * by the application while the the interface is down (we can't just
18166 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18167 	 * on a downed interface).
18168 	 */
18169 	ill_leave_multicast(ill);
18170 
18171 	mutex_enter(&ill->ill_lock);
18172 
18173 	ill->ill_dl_up = 0;
18174 
18175 	if ((info = ill->ill_nic_event_info) != NULL) {
18176 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18177 		    info->hne_event, ill->ill_name));
18178 		if (info->hne_data != NULL)
18179 			kmem_free(info->hne_data, info->hne_datalen);
18180 		kmem_free(info, sizeof (hook_nic_event_t));
18181 	}
18182 
18183 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18184 	if (info != NULL) {
18185 		ip_stack_t	*ipst = ill->ill_ipst;
18186 
18187 		info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18188 		info->hne_lif = 0;
18189 		info->hne_event = NE_DOWN;
18190 		info->hne_data = NULL;
18191 		info->hne_datalen = 0;
18192 		info->hne_family = ill->ill_isv6 ?
18193 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18194 	} else
18195 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18196 		    "information for %s (ENOMEM)\n", ill->ill_name));
18197 
18198 	ill->ill_nic_event_info = info;
18199 
18200 	mutex_exit(&ill->ill_lock);
18201 }
18202 
18203 static void
18204 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18205 {
18206 	union DL_primitives *dlp;
18207 	t_uscalar_t prim;
18208 
18209 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18210 
18211 	dlp = (union DL_primitives *)mp->b_rptr;
18212 	prim = dlp->dl_primitive;
18213 
18214 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18215 	    dlpi_prim_str(prim), prim, ill->ill_name));
18216 
18217 	switch (prim) {
18218 	case DL_PHYS_ADDR_REQ:
18219 	{
18220 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18221 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18222 		break;
18223 	}
18224 	case DL_BIND_REQ:
18225 		mutex_enter(&ill->ill_lock);
18226 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18227 		mutex_exit(&ill->ill_lock);
18228 		break;
18229 	}
18230 
18231 	/*
18232 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18233 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18234 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18235 	 */
18236 	mutex_enter(&ill->ill_lock);
18237 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18238 	    (prim == DL_UNBIND_REQ)) {
18239 		ill->ill_dlpi_pending = prim;
18240 	}
18241 	mutex_exit(&ill->ill_lock);
18242 
18243 	putnext(ill->ill_wq, mp);
18244 }
18245 
18246 /*
18247  * Helper function for ill_dlpi_send().
18248  */
18249 /* ARGSUSED */
18250 static void
18251 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
18252 {
18253 	ill_dlpi_send((ill_t *)q->q_ptr, mp);
18254 }
18255 
18256 /*
18257  * Send a DLPI control message to the driver but make sure there
18258  * is only one outstanding message. Uses ill_dlpi_pending to tell
18259  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18260  * when an ACK or a NAK is received to process the next queued message.
18261  */
18262 void
18263 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18264 {
18265 	mblk_t **mpp;
18266 
18267 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18268 
18269 	/*
18270 	 * To ensure that any DLPI requests for current exclusive operation
18271 	 * are always completely sent before any DLPI messages for other
18272 	 * operations, require writer access before enqueuing.
18273 	 */
18274 	if (!IAM_WRITER_ILL(ill)) {
18275 		ill_refhold(ill);
18276 		/* qwriter_ip() does the ill_refrele() */
18277 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
18278 		    NEW_OP, B_TRUE);
18279 		return;
18280 	}
18281 
18282 	mutex_enter(&ill->ill_lock);
18283 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18284 		/* Must queue message. Tail insertion */
18285 		mpp = &ill->ill_dlpi_deferred;
18286 		while (*mpp != NULL)
18287 			mpp = &((*mpp)->b_next);
18288 
18289 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18290 		    ill->ill_name));
18291 
18292 		*mpp = mp;
18293 		mutex_exit(&ill->ill_lock);
18294 		return;
18295 	}
18296 	mutex_exit(&ill->ill_lock);
18297 	ill_dlpi_dispatch(ill, mp);
18298 }
18299 
18300 /*
18301  * Send all deferred DLPI messages without waiting for their ACKs.
18302  */
18303 void
18304 ill_dlpi_send_deferred(ill_t *ill)
18305 {
18306 	mblk_t *mp, *nextmp;
18307 
18308 	/*
18309 	 * Clear ill_dlpi_pending so that the message is not queued in
18310 	 * ill_dlpi_send().
18311 	 */
18312 	mutex_enter(&ill->ill_lock);
18313 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
18314 	mp = ill->ill_dlpi_deferred;
18315 	ill->ill_dlpi_deferred = NULL;
18316 	mutex_exit(&ill->ill_lock);
18317 
18318 	for (; mp != NULL; mp = nextmp) {
18319 		nextmp = mp->b_next;
18320 		mp->b_next = NULL;
18321 		ill_dlpi_send(ill, mp);
18322 	}
18323 }
18324 
18325 /*
18326  * Check if the DLPI primitive `prim' is pending; print a warning if not.
18327  */
18328 boolean_t
18329 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
18330 {
18331 	t_uscalar_t pending;
18332 
18333 	mutex_enter(&ill->ill_lock);
18334 	if (ill->ill_dlpi_pending == prim) {
18335 		mutex_exit(&ill->ill_lock);
18336 		return (B_TRUE);
18337 	}
18338 
18339 	/*
18340 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
18341 	 * without waiting, so don't print any warnings in that case.
18342 	 */
18343 	if (ill->ill_state_flags & ILL_CONDEMNED) {
18344 		mutex_exit(&ill->ill_lock);
18345 		return (B_FALSE);
18346 	}
18347 	pending = ill->ill_dlpi_pending;
18348 	mutex_exit(&ill->ill_lock);
18349 
18350 	if (pending == DL_PRIM_INVAL) {
18351 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18352 		    "received unsolicited ack for %s on %s\n",
18353 		    dlpi_prim_str(prim), ill->ill_name);
18354 	} else {
18355 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18356 		    "received unexpected ack for %s on %s (expecting %s)\n",
18357 		    dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending));
18358 	}
18359 	return (B_FALSE);
18360 }
18361 
18362 /*
18363  * Called when an DLPI control message has been acked or nacked to
18364  * send down the next queued message (if any).
18365  */
18366 void
18367 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18368 {
18369 	mblk_t *mp;
18370 
18371 	ASSERT(IAM_WRITER_ILL(ill));
18372 	mutex_enter(&ill->ill_lock);
18373 
18374 	ASSERT(prim != DL_PRIM_INVAL);
18375 	ASSERT(ill->ill_dlpi_pending == prim);
18376 
18377 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18378 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18379 
18380 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18381 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18382 		cv_signal(&ill->ill_cv);
18383 		mutex_exit(&ill->ill_lock);
18384 		return;
18385 	}
18386 
18387 	ill->ill_dlpi_deferred = mp->b_next;
18388 	mp->b_next = NULL;
18389 	mutex_exit(&ill->ill_lock);
18390 
18391 	ill_dlpi_dispatch(ill, mp);
18392 }
18393 
18394 void
18395 conn_delete_ire(conn_t *connp, caddr_t arg)
18396 {
18397 	ipif_t	*ipif = (ipif_t *)arg;
18398 	ire_t	*ire;
18399 
18400 	/*
18401 	 * Look at the cached ires on conns which has pointers to ipifs.
18402 	 * We just call ire_refrele which clears up the reference
18403 	 * to ire. Called when a conn closes. Also called from ipif_free
18404 	 * to cleanup indirect references to the stale ipif via the cached ire.
18405 	 */
18406 	mutex_enter(&connp->conn_lock);
18407 	ire = connp->conn_ire_cache;
18408 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18409 		connp->conn_ire_cache = NULL;
18410 		mutex_exit(&connp->conn_lock);
18411 		IRE_REFRELE_NOTR(ire);
18412 		return;
18413 	}
18414 	mutex_exit(&connp->conn_lock);
18415 
18416 }
18417 
18418 /*
18419  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18420  * of IREs. Those IREs may have been previously cached in the conn structure.
18421  * This ipcl_walk() walker function releases all references to such IREs based
18422  * on the condemned flag.
18423  */
18424 /* ARGSUSED */
18425 void
18426 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18427 {
18428 	ire_t	*ire;
18429 
18430 	mutex_enter(&connp->conn_lock);
18431 	ire = connp->conn_ire_cache;
18432 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18433 		connp->conn_ire_cache = NULL;
18434 		mutex_exit(&connp->conn_lock);
18435 		IRE_REFRELE_NOTR(ire);
18436 		return;
18437 	}
18438 	mutex_exit(&connp->conn_lock);
18439 }
18440 
18441 /*
18442  * Take down a specific interface, but don't lose any information about it.
18443  * Also delete interface from its interface group (ifgrp).
18444  * (Always called as writer.)
18445  * This function goes through the down sequence even if the interface is
18446  * already down. There are 2 reasons.
18447  * a. Currently we permit interface routes that depend on down interfaces
18448  *    to be added. This behaviour itself is questionable. However it appears
18449  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18450  *    time. We go thru the cleanup in order to remove these routes.
18451  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18452  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18453  *    down, but we need to cleanup i.e. do ill_dl_down and
18454  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18455  *
18456  * IP-MT notes:
18457  *
18458  * Model of reference to interfaces.
18459  *
18460  * The following members in ipif_t track references to the ipif.
18461  *	int     ipif_refcnt;    Active reference count
18462  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18463  * The following members in ill_t track references to the ill.
18464  *	int             ill_refcnt;     active refcnt
18465  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18466  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18467  *
18468  * Reference to an ipif or ill can be obtained in any of the following ways.
18469  *
18470  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18471  * Pointers to ipif / ill from other data structures viz ire and conn.
18472  * Implicit reference to the ipif / ill by holding a reference to the ire.
18473  *
18474  * The ipif/ill lookup functions return a reference held ipif / ill.
18475  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18476  * This is a purely dynamic reference count associated with threads holding
18477  * references to the ipif / ill. Pointers from other structures do not
18478  * count towards this reference count.
18479  *
18480  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18481  * ipif/ill. This is incremented whenever a new ire is created referencing the
18482  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18483  * actually added to the ire hash table. The count is decremented in
18484  * ire_inactive where the ire is destroyed.
18485  *
18486  * nce's reference ill's thru nce_ill and the count of nce's associated with
18487  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18488  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
18489  * table. Similarly it is decremented in ndp_inactive() where the nce
18490  * is destroyed.
18491  *
18492  * Flow of ioctls involving interface down/up
18493  *
18494  * The following is the sequence of an attempt to set some critical flags on an
18495  * up interface.
18496  * ip_sioctl_flags
18497  * ipif_down
18498  * wait for ipif to be quiescent
18499  * ipif_down_tail
18500  * ip_sioctl_flags_tail
18501  *
18502  * All set ioctls that involve down/up sequence would have a skeleton similar
18503  * to the above. All the *tail functions are called after the refcounts have
18504  * dropped to the appropriate values.
18505  *
18506  * The mechanism to quiesce an ipif is as follows.
18507  *
18508  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18509  * on the ipif. Callers either pass a flag requesting wait or the lookup
18510  *  functions will return NULL.
18511  *
18512  * Delete all ires referencing this ipif
18513  *
18514  * Any thread attempting to do an ipif_refhold on an ipif that has been
18515  * obtained thru a cached pointer will first make sure that
18516  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18517  * increment the refcount.
18518  *
18519  * The above guarantees that the ipif refcount will eventually come down to
18520  * zero and the ipif will quiesce, once all threads that currently hold a
18521  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18522  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18523  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18524  * drop to zero.
18525  *
18526  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18527  *
18528  * Threads trying to lookup an ipif or ill can pass a flag requesting
18529  * wait and restart if the ipif / ill cannot be looked up currently.
18530  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18531  * failure if the ipif is currently undergoing an exclusive operation, and
18532  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18533  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18534  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18535  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18536  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18537  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18538  * until we release the ipsq_lock, even though the the ill/ipif state flags
18539  * can change after we drop the ill_lock.
18540  *
18541  * An attempt to send out a packet using an ipif that is currently
18542  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18543  * operation and restart it later when the exclusive condition on the ipif ends.
18544  * This is an example of not passing the wait flag to the lookup functions. For
18545  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18546  * out a multicast packet on that ipif will fail while the ipif is
18547  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18548  * currently IPIF_CHANGING will also fail.
18549  */
18550 int
18551 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18552 {
18553 	ill_t		*ill = ipif->ipif_ill;
18554 	phyint_t	*phyi;
18555 	conn_t		*connp;
18556 	boolean_t	success;
18557 	boolean_t	ipif_was_up = B_FALSE;
18558 	ip_stack_t	*ipst = ill->ill_ipst;
18559 
18560 	ASSERT(IAM_WRITER_IPIF(ipif));
18561 
18562 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18563 
18564 	if (ipif->ipif_flags & IPIF_UP) {
18565 		mutex_enter(&ill->ill_lock);
18566 		ipif->ipif_flags &= ~IPIF_UP;
18567 		ASSERT(ill->ill_ipif_up_count > 0);
18568 		--ill->ill_ipif_up_count;
18569 		mutex_exit(&ill->ill_lock);
18570 		ipif_was_up = B_TRUE;
18571 		/* Update status in SCTP's list */
18572 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18573 	}
18574 
18575 	/*
18576 	 * Blow away memberships we established in ipif_multicast_up().
18577 	 */
18578 	ipif_multicast_down(ipif);
18579 
18580 	/*
18581 	 * Remove from the mapping for __sin6_src_id. We insert only
18582 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18583 	 * stored as mapped addresses, we need to check for mapped
18584 	 * INADDR_ANY also.
18585 	 */
18586 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18587 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18588 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18589 		int err;
18590 
18591 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18592 		    ipif->ipif_zoneid, ipst);
18593 		if (err != 0) {
18594 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18595 		}
18596 	}
18597 
18598 	/*
18599 	 * Before we delete the ill from the group (if any), we need
18600 	 * to make sure that we delete all the routes dependent on
18601 	 * this and also any ipifs dependent on this ipif for
18602 	 * source address. We need to do before we delete from
18603 	 * the group because
18604 	 *
18605 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18606 	 *
18607 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18608 	 *    for re-doing source address selection. Note that
18609 	 *    ipif_select_source[_v6] called from
18610 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18611 	 *    because we have already marked down here i.e cleared
18612 	 *    IPIF_UP.
18613 	 */
18614 	if (ipif->ipif_isv6) {
18615 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18616 		    ipst);
18617 	} else {
18618 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18619 		    ipst);
18620 	}
18621 
18622 	/*
18623 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18624 	 * ires have been deleted above. Otherwise a thread could end up
18625 	 * caching an ire in a conn after we have finished the cleanup of the
18626 	 * conn. The caching is done after making sure that the ire is not yet
18627 	 * condemned. Also documented in the block comment above ip_output
18628 	 */
18629 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
18630 	/* Also, delete the ires cached in SCTP */
18631 	sctp_ire_cache_flush(ipif);
18632 
18633 	/*
18634 	 * Update any other ipifs which have used "our" local address as
18635 	 * a source address. This entails removing and recreating IRE_INTERFACE
18636 	 * entries for such ipifs.
18637 	 */
18638 	if (ipif->ipif_isv6)
18639 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18640 	else
18641 		ipif_update_other_ipifs(ipif, ill->ill_group);
18642 
18643 	if (ipif_was_up) {
18644 		/*
18645 		 * Check whether it is last ipif to leave this group.
18646 		 * If this is the last ipif to leave, we should remove
18647 		 * this ill from the group as ipif_select_source will not
18648 		 * be able to find any useful ipifs if this ill is selected
18649 		 * for load balancing.
18650 		 *
18651 		 * For nameless groups, we should call ifgrp_delete if this
18652 		 * belongs to some group. As this ipif is going down, we may
18653 		 * need to reconstruct groups.
18654 		 */
18655 		phyi = ill->ill_phyint;
18656 		/*
18657 		 * If the phyint_groupname_len is 0, it may or may not
18658 		 * be in the nameless group. If the phyint_groupname_len is
18659 		 * not 0, then this ill should be part of some group.
18660 		 * As we always insert this ill in the group if
18661 		 * phyint_groupname_len is not zero when the first ipif
18662 		 * comes up (in ipif_up_done), it should be in a group
18663 		 * when the namelen is not 0.
18664 		 *
18665 		 * NOTE : When we delete the ill from the group,it will
18666 		 * blow away all the IRE_CACHES pointing either at this ipif or
18667 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18668 		 * should be pointing at this ill.
18669 		 */
18670 		ASSERT(phyi->phyint_groupname_len == 0 ||
18671 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18672 
18673 		if (phyi->phyint_groupname_len != 0) {
18674 			if (ill->ill_ipif_up_count == 0)
18675 				illgrp_delete(ill);
18676 		}
18677 
18678 		/*
18679 		 * If we have deleted some of the broadcast ires associated
18680 		 * with this ipif, we need to re-nominate somebody else if
18681 		 * the ires that we deleted were the nominated ones.
18682 		 */
18683 		if (ill->ill_group != NULL && !ill->ill_isv6)
18684 			ipif_renominate_bcast(ipif);
18685 	}
18686 
18687 	/*
18688 	 * neighbor-discovery or arp entries for this interface.
18689 	 */
18690 	ipif_ndp_down(ipif);
18691 
18692 	/*
18693 	 * If mp is NULL the caller will wait for the appropriate refcnt.
18694 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
18695 	 * and ill_delete -> ipif_free -> ipif_down
18696 	 */
18697 	if (mp == NULL) {
18698 		ASSERT(q == NULL);
18699 		return (0);
18700 	}
18701 
18702 	if (CONN_Q(q)) {
18703 		connp = Q_TO_CONN(q);
18704 		mutex_enter(&connp->conn_lock);
18705 	} else {
18706 		connp = NULL;
18707 	}
18708 	mutex_enter(&ill->ill_lock);
18709 	/*
18710 	 * Are there any ire's pointing to this ipif that are still active ?
18711 	 * If this is the last ipif going down, are there any ire's pointing
18712 	 * to this ill that are still active ?
18713 	 */
18714 	if (ipif_is_quiescent(ipif)) {
18715 		mutex_exit(&ill->ill_lock);
18716 		if (connp != NULL)
18717 			mutex_exit(&connp->conn_lock);
18718 		return (0);
18719 	}
18720 
18721 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
18722 	    ill->ill_name, (void *)ill));
18723 	/*
18724 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
18725 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
18726 	 * which in turn is called by the last refrele on the ipif/ill/ire.
18727 	 */
18728 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
18729 	if (!success) {
18730 		/* The conn is closing. So just return */
18731 		ASSERT(connp != NULL);
18732 		mutex_exit(&ill->ill_lock);
18733 		mutex_exit(&connp->conn_lock);
18734 		return (EINTR);
18735 	}
18736 
18737 	mutex_exit(&ill->ill_lock);
18738 	if (connp != NULL)
18739 		mutex_exit(&connp->conn_lock);
18740 	return (EINPROGRESS);
18741 }
18742 
18743 void
18744 ipif_down_tail(ipif_t *ipif)
18745 {
18746 	ill_t	*ill = ipif->ipif_ill;
18747 
18748 	/*
18749 	 * Skip any loopback interface (null wq).
18750 	 * If this is the last logical interface on the ill
18751 	 * have ill_dl_down tell the driver we are gone (unbind)
18752 	 * Note that lun 0 can ipif_down even though
18753 	 * there are other logical units that are up.
18754 	 * This occurs e.g. when we change a "significant" IFF_ flag.
18755 	 */
18756 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
18757 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
18758 	    ill->ill_dl_up) {
18759 		ill_dl_down(ill);
18760 	}
18761 	ill->ill_logical_down = 0;
18762 
18763 	/*
18764 	 * Have to be after removing the routes in ipif_down_delete_ire.
18765 	 */
18766 	if (ipif->ipif_isv6) {
18767 		if (ill->ill_flags & ILLF_XRESOLV)
18768 			ipif_arp_down(ipif);
18769 	} else {
18770 		ipif_arp_down(ipif);
18771 	}
18772 
18773 	ip_rts_ifmsg(ipif);
18774 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
18775 }
18776 
18777 /*
18778  * Bring interface logically down without bringing the physical interface
18779  * down e.g. when the netmask is changed. This avoids long lasting link
18780  * negotiations between an ethernet interface and a certain switches.
18781  */
18782 static int
18783 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18784 {
18785 	/*
18786 	 * The ill_logical_down flag is a transient flag. It is set here
18787 	 * and is cleared once the down has completed in ipif_down_tail.
18788 	 * This flag does not indicate whether the ill stream is in the
18789 	 * DL_BOUND state with the driver. Instead this flag is used by
18790 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
18791 	 * the driver. The state of the ill stream i.e. whether it is
18792 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
18793 	 */
18794 	ipif->ipif_ill->ill_logical_down = 1;
18795 	return (ipif_down(ipif, q, mp));
18796 }
18797 
18798 /*
18799  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
18800  * If the usesrc client ILL is already part of a usesrc group or not,
18801  * in either case a ire_stq with the matching usesrc client ILL will
18802  * locate the IRE's that need to be deleted. We want IREs to be created
18803  * with the new source address.
18804  */
18805 static void
18806 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
18807 {
18808 	ill_t	*ucill = (ill_t *)ill_arg;
18809 
18810 	ASSERT(IAM_WRITER_ILL(ucill));
18811 
18812 	if (ire->ire_stq == NULL)
18813 		return;
18814 
18815 	if ((ire->ire_type == IRE_CACHE) &&
18816 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
18817 		ire_delete(ire);
18818 }
18819 
18820 /*
18821  * ire_walk routine to delete every IRE dependent on the interface
18822  * address that is going down.	(Always called as writer.)
18823  * Works for both v4 and v6.
18824  * In addition for checking for ire_ipif matches it also checks for
18825  * IRE_CACHE entries which have the same source address as the
18826  * disappearing ipif since ipif_select_source might have picked
18827  * that source. Note that ipif_down/ipif_update_other_ipifs takes
18828  * care of any IRE_INTERFACE with the disappearing source address.
18829  */
18830 static void
18831 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
18832 {
18833 	ipif_t	*ipif = (ipif_t *)ipif_arg;
18834 	ill_t *ire_ill;
18835 	ill_t *ipif_ill;
18836 
18837 	ASSERT(IAM_WRITER_IPIF(ipif));
18838 	if (ire->ire_ipif == NULL)
18839 		return;
18840 
18841 	/*
18842 	 * For IPv4, we derive source addresses for an IRE from ipif's
18843 	 * belonging to the same IPMP group as the IRE's outgoing
18844 	 * interface.  If an IRE's outgoing interface isn't in the
18845 	 * same IPMP group as a particular ipif, then that ipif
18846 	 * couldn't have been used as a source address for this IRE.
18847 	 *
18848 	 * For IPv6, source addresses are only restricted to the IPMP group
18849 	 * if the IRE is for a link-local address or a multicast address.
18850 	 * Otherwise, source addresses for an IRE can be chosen from
18851 	 * interfaces other than the the outgoing interface for that IRE.
18852 	 *
18853 	 * For source address selection details, see ipif_select_source()
18854 	 * and ipif_select_source_v6().
18855 	 */
18856 	if (ire->ire_ipversion == IPV4_VERSION ||
18857 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
18858 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
18859 		ire_ill = ire->ire_ipif->ipif_ill;
18860 		ipif_ill = ipif->ipif_ill;
18861 
18862 		if (ire_ill->ill_group != ipif_ill->ill_group) {
18863 			return;
18864 		}
18865 	}
18866 
18867 
18868 	if (ire->ire_ipif != ipif) {
18869 		/*
18870 		 * Look for a matching source address.
18871 		 */
18872 		if (ire->ire_type != IRE_CACHE)
18873 			return;
18874 		if (ipif->ipif_flags & IPIF_NOLOCAL)
18875 			return;
18876 
18877 		if (ire->ire_ipversion == IPV4_VERSION) {
18878 			if (ire->ire_src_addr != ipif->ipif_src_addr)
18879 				return;
18880 		} else {
18881 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
18882 			    &ipif->ipif_v6lcl_addr))
18883 				return;
18884 		}
18885 		ire_delete(ire);
18886 		return;
18887 	}
18888 	/*
18889 	 * ire_delete() will do an ire_flush_cache which will delete
18890 	 * all ire_ipif matches
18891 	 */
18892 	ire_delete(ire);
18893 }
18894 
18895 /*
18896  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
18897  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
18898  * 2) when an interface is brought up or down (on that ill).
18899  * This ensures that the IRE_CACHE entries don't retain stale source
18900  * address selection results.
18901  */
18902 void
18903 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
18904 {
18905 	ill_t	*ill = (ill_t *)ill_arg;
18906 	ill_t	*ipif_ill;
18907 
18908 	ASSERT(IAM_WRITER_ILL(ill));
18909 	/*
18910 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18911 	 * Hence this should be IRE_CACHE.
18912 	 */
18913 	ASSERT(ire->ire_type == IRE_CACHE);
18914 
18915 	/*
18916 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
18917 	 * We are only interested in IRE_CACHES that has borrowed
18918 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
18919 	 * for which we need to look at ire_ipif->ipif_ill match
18920 	 * with ill.
18921 	 */
18922 	ASSERT(ire->ire_ipif != NULL);
18923 	ipif_ill = ire->ire_ipif->ipif_ill;
18924 	if (ipif_ill == ill || (ill->ill_group != NULL &&
18925 	    ipif_ill->ill_group == ill->ill_group)) {
18926 		ire_delete(ire);
18927 	}
18928 }
18929 
18930 /*
18931  * Delete all the ire whose stq references ill_arg.
18932  */
18933 static void
18934 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
18935 {
18936 	ill_t	*ill = (ill_t *)ill_arg;
18937 	ill_t	*ire_ill;
18938 
18939 	ASSERT(IAM_WRITER_ILL(ill));
18940 	/*
18941 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18942 	 * Hence this should be IRE_CACHE.
18943 	 */
18944 	ASSERT(ire->ire_type == IRE_CACHE);
18945 
18946 	/*
18947 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18948 	 * matches ill. We are only interested in IRE_CACHES that
18949 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
18950 	 * filtering here.
18951 	 */
18952 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
18953 
18954 	if (ire_ill == ill)
18955 		ire_delete(ire);
18956 }
18957 
18958 /*
18959  * This is called when an ill leaves the group. We want to delete
18960  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
18961  * pointing at ill.
18962  */
18963 static void
18964 illgrp_cache_delete(ire_t *ire, char *ill_arg)
18965 {
18966 	ill_t	*ill = (ill_t *)ill_arg;
18967 
18968 	ASSERT(IAM_WRITER_ILL(ill));
18969 	ASSERT(ill->ill_group == NULL);
18970 	/*
18971 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18972 	 * Hence this should be IRE_CACHE.
18973 	 */
18974 	ASSERT(ire->ire_type == IRE_CACHE);
18975 	/*
18976 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18977 	 * matches ill. We are interested in both.
18978 	 */
18979 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
18980 	    (ire->ire_ipif->ipif_ill == ill));
18981 
18982 	ire_delete(ire);
18983 }
18984 
18985 /*
18986  * Initiate deallocate of an IPIF. Always called as writer. Called by
18987  * ill_delete or ip_sioctl_removeif.
18988  */
18989 static void
18990 ipif_free(ipif_t *ipif)
18991 {
18992 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
18993 
18994 	ASSERT(IAM_WRITER_IPIF(ipif));
18995 
18996 	if (ipif->ipif_recovery_id != 0)
18997 		(void) untimeout(ipif->ipif_recovery_id);
18998 	ipif->ipif_recovery_id = 0;
18999 
19000 	/* Remove conn references */
19001 	reset_conn_ipif(ipif);
19002 
19003 	/*
19004 	 * Make sure we have valid net and subnet broadcast ire's for the
19005 	 * other ipif's which share them with this ipif.
19006 	 */
19007 	if (!ipif->ipif_isv6)
19008 		ipif_check_bcast_ires(ipif);
19009 
19010 	/*
19011 	 * Take down the interface. We can be called either from ill_delete
19012 	 * or from ip_sioctl_removeif.
19013 	 */
19014 	(void) ipif_down(ipif, NULL, NULL);
19015 
19016 	/*
19017 	 * Now that the interface is down, there's no chance it can still
19018 	 * become a duplicate.  Cancel any timer that may have been set while
19019 	 * tearing down.
19020 	 */
19021 	if (ipif->ipif_recovery_id != 0)
19022 		(void) untimeout(ipif->ipif_recovery_id);
19023 	ipif->ipif_recovery_id = 0;
19024 
19025 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19026 	/* Remove pointers to this ill in the multicast routing tables */
19027 	reset_mrt_vif_ipif(ipif);
19028 	rw_exit(&ipst->ips_ill_g_lock);
19029 }
19030 
19031 /*
19032  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19033  * also ill_move().
19034  */
19035 static void
19036 ipif_free_tail(ipif_t *ipif)
19037 {
19038 	mblk_t	*mp;
19039 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19040 
19041 	/*
19042 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19043 	 */
19044 	mutex_enter(&ipif->ipif_saved_ire_lock);
19045 	mp = ipif->ipif_saved_ire_mp;
19046 	ipif->ipif_saved_ire_mp = NULL;
19047 	mutex_exit(&ipif->ipif_saved_ire_lock);
19048 	freemsg(mp);
19049 
19050 	/*
19051 	 * Need to hold both ill_g_lock and ill_lock while
19052 	 * inserting or removing an ipif from the linked list
19053 	 * of ipifs hanging off the ill.
19054 	 */
19055 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19056 	/*
19057 	 * Remove all IPv4 multicast memberships on the interface now.
19058 	 * IPv6 is not handled here as the multicast memberships are
19059 	 * tied to the ill rather than the ipif.
19060 	 */
19061 	ilm_free(ipif);
19062 
19063 	/*
19064 	 * Since we held the ill_g_lock while doing the ilm_free above,
19065 	 * we can assert the ilms were really deleted and not just marked
19066 	 * ILM_DELETED.
19067 	 */
19068 	ASSERT(ilm_walk_ipif(ipif) == 0);
19069 
19070 #ifdef DEBUG
19071 	ipif_trace_cleanup(ipif);
19072 #endif
19073 
19074 	/* Ask SCTP to take it out of it list */
19075 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19076 
19077 	/* Get it out of the ILL interface list. */
19078 	ipif_remove(ipif, B_TRUE);
19079 	rw_exit(&ipst->ips_ill_g_lock);
19080 
19081 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19082 
19083 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19084 	ASSERT(ipif->ipif_recovery_id == 0);
19085 
19086 	/* Free the memory. */
19087 	mi_free(ipif);
19088 }
19089 
19090 /*
19091  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
19092  * is zero.
19093  */
19094 void
19095 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19096 {
19097 	char	lbuf[LIFNAMSIZ];
19098 	char	*name;
19099 	size_t	name_len;
19100 
19101 	buf[0] = '\0';
19102 	name = ipif->ipif_ill->ill_name;
19103 	name_len = ipif->ipif_ill->ill_name_length;
19104 	if (ipif->ipif_id != 0) {
19105 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19106 		    ipif->ipif_id);
19107 		name = lbuf;
19108 		name_len = mi_strlen(name) + 1;
19109 	}
19110 	len -= 1;
19111 	buf[len] = '\0';
19112 	len = MIN(len, name_len);
19113 	bcopy(name, buf, len);
19114 }
19115 
19116 /*
19117  * Find an IPIF based on the name passed in.  Names can be of the
19118  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19119  * The <phys> string can have forms like <dev><#> (e.g., le0),
19120  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19121  * When there is no colon, the implied unit id is zero. <phys> must
19122  * correspond to the name of an ILL.  (May be called as writer.)
19123  */
19124 static ipif_t *
19125 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19126     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19127     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19128 {
19129 	char	*cp;
19130 	char	*endp;
19131 	long	id;
19132 	ill_t	*ill;
19133 	ipif_t	*ipif;
19134 	uint_t	ire_type;
19135 	boolean_t did_alloc = B_FALSE;
19136 	ipsq_t	*ipsq;
19137 
19138 	if (error != NULL)
19139 		*error = 0;
19140 
19141 	/*
19142 	 * If the caller wants to us to create the ipif, make sure we have a
19143 	 * valid zoneid
19144 	 */
19145 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19146 
19147 	if (namelen == 0) {
19148 		if (error != NULL)
19149 			*error = ENXIO;
19150 		return (NULL);
19151 	}
19152 
19153 	*exists = B_FALSE;
19154 	/* Look for a colon in the name. */
19155 	endp = &name[namelen];
19156 	for (cp = endp; --cp > name; ) {
19157 		if (*cp == IPIF_SEPARATOR_CHAR)
19158 			break;
19159 	}
19160 
19161 	if (*cp == IPIF_SEPARATOR_CHAR) {
19162 		/*
19163 		 * Reject any non-decimal aliases for logical
19164 		 * interfaces. Aliases with leading zeroes
19165 		 * are also rejected as they introduce ambiguity
19166 		 * in the naming of the interfaces.
19167 		 * In order to confirm with existing semantics,
19168 		 * and to not break any programs/script relying
19169 		 * on that behaviour, if<0>:0 is considered to be
19170 		 * a valid interface.
19171 		 *
19172 		 * If alias has two or more digits and the first
19173 		 * is zero, fail.
19174 		 */
19175 		if (&cp[2] < endp && cp[1] == '0')
19176 			return (NULL);
19177 	}
19178 
19179 	if (cp <= name) {
19180 		cp = endp;
19181 	} else {
19182 		*cp = '\0';
19183 	}
19184 
19185 	/*
19186 	 * Look up the ILL, based on the portion of the name
19187 	 * before the slash. ill_lookup_on_name returns a held ill.
19188 	 * Temporary to check whether ill exists already. If so
19189 	 * ill_lookup_on_name will clear it.
19190 	 */
19191 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19192 	    q, mp, func, error, &did_alloc, ipst);
19193 	if (cp != endp)
19194 		*cp = IPIF_SEPARATOR_CHAR;
19195 	if (ill == NULL)
19196 		return (NULL);
19197 
19198 	/* Establish the unit number in the name. */
19199 	id = 0;
19200 	if (cp < endp && *endp == '\0') {
19201 		/* If there was a colon, the unit number follows. */
19202 		cp++;
19203 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19204 			ill_refrele(ill);
19205 			if (error != NULL)
19206 				*error = ENXIO;
19207 			return (NULL);
19208 		}
19209 	}
19210 
19211 	GRAB_CONN_LOCK(q);
19212 	mutex_enter(&ill->ill_lock);
19213 	/* Now see if there is an IPIF with this unit number. */
19214 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19215 		if (ipif->ipif_id == id) {
19216 			if (zoneid != ALL_ZONES &&
19217 			    zoneid != ipif->ipif_zoneid &&
19218 			    ipif->ipif_zoneid != ALL_ZONES) {
19219 				mutex_exit(&ill->ill_lock);
19220 				RELEASE_CONN_LOCK(q);
19221 				ill_refrele(ill);
19222 				if (error != NULL)
19223 					*error = ENXIO;
19224 				return (NULL);
19225 			}
19226 			/*
19227 			 * The block comment at the start of ipif_down
19228 			 * explains the use of the macros used below
19229 			 */
19230 			if (IPIF_CAN_LOOKUP(ipif)) {
19231 				ipif_refhold_locked(ipif);
19232 				mutex_exit(&ill->ill_lock);
19233 				if (!did_alloc)
19234 					*exists = B_TRUE;
19235 				/*
19236 				 * Drop locks before calling ill_refrele
19237 				 * since it can potentially call into
19238 				 * ipif_ill_refrele_tail which can end up
19239 				 * in trying to acquire any lock.
19240 				 */
19241 				RELEASE_CONN_LOCK(q);
19242 				ill_refrele(ill);
19243 				return (ipif);
19244 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19245 				ipsq = ill->ill_phyint->phyint_ipsq;
19246 				mutex_enter(&ipsq->ipsq_lock);
19247 				mutex_exit(&ill->ill_lock);
19248 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19249 				mutex_exit(&ipsq->ipsq_lock);
19250 				RELEASE_CONN_LOCK(q);
19251 				ill_refrele(ill);
19252 				*error = EINPROGRESS;
19253 				return (NULL);
19254 			}
19255 		}
19256 	}
19257 	RELEASE_CONN_LOCK(q);
19258 
19259 	if (!do_alloc) {
19260 		mutex_exit(&ill->ill_lock);
19261 		ill_refrele(ill);
19262 		if (error != NULL)
19263 			*error = ENXIO;
19264 		return (NULL);
19265 	}
19266 
19267 	/*
19268 	 * If none found, atomically allocate and return a new one.
19269 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19270 	 * to support "receive only" use of lo0:1 etc. as is still done
19271 	 * below as an initial guess.
19272 	 * However, this is now likely to be overriden later in ipif_up_done()
19273 	 * when we know for sure what address has been configured on the
19274 	 * interface, since we might have more than one loopback interface
19275 	 * with a loopback address, e.g. in the case of zones, and all the
19276 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19277 	 */
19278 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19279 		ire_type = IRE_LOOPBACK;
19280 	else
19281 		ire_type = IRE_LOCAL;
19282 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19283 	if (ipif != NULL)
19284 		ipif_refhold_locked(ipif);
19285 	else if (error != NULL)
19286 		*error = ENOMEM;
19287 	mutex_exit(&ill->ill_lock);
19288 	ill_refrele(ill);
19289 	return (ipif);
19290 }
19291 
19292 /*
19293  * This routine is called whenever a new address comes up on an ipif.  If
19294  * we are configured to respond to address mask requests, then we are supposed
19295  * to broadcast an address mask reply at this time.  This routine is also
19296  * called if we are already up, but a netmask change is made.  This is legal
19297  * but might not make the system manager very popular.	(May be called
19298  * as writer.)
19299  */
19300 void
19301 ipif_mask_reply(ipif_t *ipif)
19302 {
19303 	icmph_t	*icmph;
19304 	ipha_t	*ipha;
19305 	mblk_t	*mp;
19306 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19307 
19308 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19309 
19310 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19311 		return;
19312 
19313 	/* ICMP mask reply is IPv4 only */
19314 	ASSERT(!ipif->ipif_isv6);
19315 	/* ICMP mask reply is not for a loopback interface */
19316 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19317 
19318 	mp = allocb(REPLY_LEN, BPRI_HI);
19319 	if (mp == NULL)
19320 		return;
19321 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19322 
19323 	ipha = (ipha_t *)mp->b_rptr;
19324 	bzero(ipha, REPLY_LEN);
19325 	*ipha = icmp_ipha;
19326 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19327 	ipha->ipha_src = ipif->ipif_src_addr;
19328 	ipha->ipha_dst = ipif->ipif_brd_addr;
19329 	ipha->ipha_length = htons(REPLY_LEN);
19330 	ipha->ipha_ident = 0;
19331 
19332 	icmph = (icmph_t *)&ipha[1];
19333 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19334 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19335 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19336 
19337 	put(ipif->ipif_wq, mp);
19338 
19339 #undef	REPLY_LEN
19340 }
19341 
19342 /*
19343  * When the mtu in the ipif changes, we call this routine through ire_walk
19344  * to update all the relevant IREs.
19345  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19346  */
19347 static void
19348 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19349 {
19350 	ipif_t *ipif = (ipif_t *)ipif_arg;
19351 
19352 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19353 		return;
19354 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19355 }
19356 
19357 /*
19358  * When the mtu in the ill changes, we call this routine through ire_walk
19359  * to update all the relevant IREs.
19360  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19361  */
19362 void
19363 ill_mtu_change(ire_t *ire, char *ill_arg)
19364 {
19365 	ill_t	*ill = (ill_t *)ill_arg;
19366 
19367 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19368 		return;
19369 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19370 }
19371 
19372 /*
19373  * Join the ipif specific multicast groups.
19374  * Must be called after a mapping has been set up in the resolver.  (Always
19375  * called as writer.)
19376  */
19377 void
19378 ipif_multicast_up(ipif_t *ipif)
19379 {
19380 	int err, index;
19381 	ill_t *ill;
19382 
19383 	ASSERT(IAM_WRITER_IPIF(ipif));
19384 
19385 	ill = ipif->ipif_ill;
19386 	index = ill->ill_phyint->phyint_ifindex;
19387 
19388 	ip1dbg(("ipif_multicast_up\n"));
19389 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19390 		return;
19391 
19392 	if (ipif->ipif_isv6) {
19393 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19394 			return;
19395 
19396 		/* Join the all hosts multicast address */
19397 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19398 		/*
19399 		 * Passing B_TRUE means we have to join the multicast
19400 		 * membership on this interface even though this is
19401 		 * FAILED. If we join on a different one in the group,
19402 		 * we will not be able to delete the membership later
19403 		 * as we currently don't track where we join when we
19404 		 * join within the kernel unlike applications where
19405 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19406 		 * for more on this.
19407 		 */
19408 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19409 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19410 		if (err != 0) {
19411 			ip0dbg(("ipif_multicast_up: "
19412 			    "all_hosts_mcast failed %d\n",
19413 			    err));
19414 			return;
19415 		}
19416 		/*
19417 		 * Enable multicast for the solicited node multicast address
19418 		 */
19419 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19420 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19421 
19422 			ipv6_multi.s6_addr32[3] |=
19423 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19424 
19425 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19426 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19427 			    NULL);
19428 			if (err != 0) {
19429 				ip0dbg(("ipif_multicast_up: solicited MC"
19430 				    " failed %d\n", err));
19431 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19432 				    ill, ill->ill_phyint->phyint_ifindex,
19433 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19434 				return;
19435 			}
19436 		}
19437 	} else {
19438 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19439 			return;
19440 
19441 		/* Join the all hosts multicast address */
19442 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19443 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19444 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19445 		if (err) {
19446 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19447 			return;
19448 		}
19449 	}
19450 	ipif->ipif_multicast_up = 1;
19451 }
19452 
19453 /*
19454  * Blow away any multicast groups that we joined in ipif_multicast_up().
19455  * (Explicit memberships are blown away in ill_leave_multicast() when the
19456  * ill is brought down.)
19457  */
19458 static void
19459 ipif_multicast_down(ipif_t *ipif)
19460 {
19461 	int err;
19462 
19463 	ASSERT(IAM_WRITER_IPIF(ipif));
19464 
19465 	ip1dbg(("ipif_multicast_down\n"));
19466 	if (!ipif->ipif_multicast_up)
19467 		return;
19468 
19469 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19470 
19471 	if (!ipif->ipif_isv6) {
19472 		err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
19473 		    B_TRUE);
19474 		if (err != 0)
19475 			ip0dbg(("ipif_multicast_down: failed %d\n", err));
19476 
19477 		ipif->ipif_multicast_up = 0;
19478 		return;
19479 	}
19480 
19481 	/*
19482 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19483 	 * we should look for ilms on this ill rather than the ones that have
19484 	 * been failed over here.  They are here temporarily. As
19485 	 * ipif_multicast_up has joined on this ill, we should delete only
19486 	 * from this ill.
19487 	 */
19488 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19489 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19490 	    B_TRUE, B_TRUE);
19491 	if (err != 0) {
19492 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19493 		    err));
19494 	}
19495 	/*
19496 	 * Disable multicast for the solicited node multicast address
19497 	 */
19498 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19499 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19500 
19501 		ipv6_multi.s6_addr32[3] |=
19502 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19503 
19504 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19505 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19506 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19507 
19508 		if (err != 0) {
19509 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19510 			    err));
19511 		}
19512 	}
19513 
19514 	ipif->ipif_multicast_up = 0;
19515 }
19516 
19517 /*
19518  * Used when an interface comes up to recreate any extra routes on this
19519  * interface.
19520  */
19521 static ire_t **
19522 ipif_recover_ire(ipif_t *ipif)
19523 {
19524 	mblk_t	*mp;
19525 	ire_t	**ipif_saved_irep;
19526 	ire_t	**irep;
19527 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19528 
19529 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19530 	    ipif->ipif_id));
19531 
19532 	mutex_enter(&ipif->ipif_saved_ire_lock);
19533 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19534 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19535 	if (ipif_saved_irep == NULL) {
19536 		mutex_exit(&ipif->ipif_saved_ire_lock);
19537 		return (NULL);
19538 	}
19539 
19540 	irep = ipif_saved_irep;
19541 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19542 		ire_t		*ire;
19543 		queue_t		*rfq;
19544 		queue_t		*stq;
19545 		ifrt_t		*ifrt;
19546 		uchar_t		*src_addr;
19547 		uchar_t		*gateway_addr;
19548 		ushort_t	type;
19549 
19550 		/*
19551 		 * When the ire was initially created and then added in
19552 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19553 		 * in the case of a traditional interface route, or as one of
19554 		 * the IRE_OFFSUBNET types (with the exception of
19555 		 * IRE_HOST types ire which is created by icmp_redirect() and
19556 		 * which we don't need to save or recover).  In the case where
19557 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19558 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19559 		 * to satisfy software like GateD and Sun Cluster which creates
19560 		 * routes using the the loopback interface's address as a
19561 		 * gateway.
19562 		 *
19563 		 * As ifrt->ifrt_type reflects the already updated ire_type,
19564 		 * ire_create() will be called in the same way here as
19565 		 * in ip_rt_add(), namely using ipif->ipif_net_type when
19566 		 * the route looks like a traditional interface route (where
19567 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19568 		 * the saved ifrt->ifrt_type.  This means that in the case where
19569 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19570 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19571 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19572 		 */
19573 		ifrt = (ifrt_t *)mp->b_rptr;
19574 		ASSERT(ifrt->ifrt_type != IRE_CACHE);
19575 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19576 			rfq = NULL;
19577 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19578 			    ? ipif->ipif_rq : ipif->ipif_wq;
19579 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19580 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19581 			    : (uint8_t *)&ipif->ipif_src_addr;
19582 			gateway_addr = NULL;
19583 			type = ipif->ipif_net_type;
19584 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19585 			/* Recover multiroute broadcast IRE. */
19586 			rfq = ipif->ipif_rq;
19587 			stq = ipif->ipif_wq;
19588 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19589 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19590 			    : (uint8_t *)&ipif->ipif_src_addr;
19591 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19592 			type = ifrt->ifrt_type;
19593 		} else {
19594 			rfq = NULL;
19595 			stq = NULL;
19596 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19597 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19598 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19599 			type = ifrt->ifrt_type;
19600 		}
19601 
19602 		/*
19603 		 * Create a copy of the IRE with the saved address and netmask.
19604 		 */
19605 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19606 		    "0x%x/0x%x\n",
19607 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19608 		    ntohl(ifrt->ifrt_addr),
19609 		    ntohl(ifrt->ifrt_mask)));
19610 		ire = ire_create(
19611 		    (uint8_t *)&ifrt->ifrt_addr,
19612 		    (uint8_t *)&ifrt->ifrt_mask,
19613 		    src_addr,
19614 		    gateway_addr,
19615 		    &ifrt->ifrt_max_frag,
19616 		    NULL,
19617 		    rfq,
19618 		    stq,
19619 		    type,
19620 		    ipif,
19621 		    0,
19622 		    0,
19623 		    0,
19624 		    ifrt->ifrt_flags,
19625 		    &ifrt->ifrt_iulp_info,
19626 		    NULL,
19627 		    NULL,
19628 		    ipst);
19629 
19630 		if (ire == NULL) {
19631 			mutex_exit(&ipif->ipif_saved_ire_lock);
19632 			kmem_free(ipif_saved_irep,
19633 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19634 			return (NULL);
19635 		}
19636 
19637 		/*
19638 		 * Some software (for example, GateD and Sun Cluster) attempts
19639 		 * to create (what amount to) IRE_PREFIX routes with the
19640 		 * loopback address as the gateway.  This is primarily done to
19641 		 * set up prefixes with the RTF_REJECT flag set (for example,
19642 		 * when generating aggregate routes.)
19643 		 *
19644 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19645 		 * IRE_LOOPBACK, then we map the request into a
19646 		 * IRE_IF_NORESOLVER.
19647 		 */
19648 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19649 			ire->ire_type = IRE_IF_NORESOLVER;
19650 		/*
19651 		 * ire held by ire_add, will be refreled' towards the
19652 		 * the end of ipif_up_done
19653 		 */
19654 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19655 		*irep = ire;
19656 		irep++;
19657 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19658 	}
19659 	mutex_exit(&ipif->ipif_saved_ire_lock);
19660 	return (ipif_saved_irep);
19661 }
19662 
19663 /*
19664  * Used to set the netmask and broadcast address to default values when the
19665  * interface is brought up.  (Always called as writer.)
19666  */
19667 static void
19668 ipif_set_default(ipif_t *ipif)
19669 {
19670 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19671 
19672 	if (!ipif->ipif_isv6) {
19673 		/*
19674 		 * Interface holds an IPv4 address. Default
19675 		 * mask is the natural netmask.
19676 		 */
19677 		if (!ipif->ipif_net_mask) {
19678 			ipaddr_t	v4mask;
19679 
19680 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19681 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19682 		}
19683 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19684 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19685 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19686 		} else {
19687 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19688 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19689 		}
19690 		/*
19691 		 * NOTE: SunOS 4.X does this even if the broadcast address
19692 		 * has been already set thus we do the same here.
19693 		 */
19694 		if (ipif->ipif_flags & IPIF_BROADCAST) {
19695 			ipaddr_t	v4addr;
19696 
19697 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
19698 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
19699 		}
19700 	} else {
19701 		/*
19702 		 * Interface holds an IPv6-only address.  Default
19703 		 * mask is all-ones.
19704 		 */
19705 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
19706 			ipif->ipif_v6net_mask = ipv6_all_ones;
19707 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19708 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19709 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19710 		} else {
19711 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19712 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19713 		}
19714 	}
19715 }
19716 
19717 /*
19718  * Return 0 if this address can be used as local address without causing
19719  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
19720  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
19721  * Special checks are needed to allow the same IPv6 link-local address
19722  * on different ills.
19723  * TODO: allowing the same site-local address on different ill's.
19724  */
19725 int
19726 ip_addr_availability_check(ipif_t *new_ipif)
19727 {
19728 	in6_addr_t our_v6addr;
19729 	ill_t *ill;
19730 	ipif_t *ipif;
19731 	ill_walk_context_t ctx;
19732 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
19733 
19734 	ASSERT(IAM_WRITER_IPIF(new_ipif));
19735 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
19736 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
19737 
19738 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
19739 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
19740 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
19741 		return (0);
19742 
19743 	our_v6addr = new_ipif->ipif_v6lcl_addr;
19744 
19745 	if (new_ipif->ipif_isv6)
19746 		ill = ILL_START_WALK_V6(&ctx, ipst);
19747 	else
19748 		ill = ILL_START_WALK_V4(&ctx, ipst);
19749 
19750 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19751 		for (ipif = ill->ill_ipif; ipif != NULL;
19752 		    ipif = ipif->ipif_next) {
19753 			if ((ipif == new_ipif) ||
19754 			    !(ipif->ipif_flags & IPIF_UP) ||
19755 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
19756 				continue;
19757 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
19758 			    &our_v6addr)) {
19759 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
19760 					new_ipif->ipif_flags |= IPIF_UNNUMBERED;
19761 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
19762 					ipif->ipif_flags |= IPIF_UNNUMBERED;
19763 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
19764 				    new_ipif->ipif_ill != ill)
19765 					continue;
19766 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
19767 				    new_ipif->ipif_ill != ill)
19768 					continue;
19769 				else if (new_ipif->ipif_zoneid !=
19770 				    ipif->ipif_zoneid &&
19771 				    ipif->ipif_zoneid != ALL_ZONES &&
19772 				    IS_LOOPBACK(ill))
19773 					continue;
19774 				else if (new_ipif->ipif_ill == ill)
19775 					return (EADDRINUSE);
19776 				else
19777 					return (EADDRNOTAVAIL);
19778 			}
19779 		}
19780 	}
19781 
19782 	return (0);
19783 }
19784 
19785 /*
19786  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
19787  * IREs for the ipif.
19788  * When the routine returns EINPROGRESS then mp has been consumed and
19789  * the ioctl will be acked from ip_rput_dlpi.
19790  */
19791 static int
19792 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
19793 {
19794 	ill_t	*ill = ipif->ipif_ill;
19795 	boolean_t isv6 = ipif->ipif_isv6;
19796 	int	err = 0;
19797 	boolean_t success;
19798 
19799 	ASSERT(IAM_WRITER_IPIF(ipif));
19800 
19801 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
19802 
19803 	/* Shouldn't get here if it is already up. */
19804 	if (ipif->ipif_flags & IPIF_UP)
19805 		return (EALREADY);
19806 
19807 	/* Skip arp/ndp for any loopback interface. */
19808 	if (ill->ill_wq != NULL) {
19809 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
19810 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
19811 
19812 		if (!ill->ill_dl_up) {
19813 			/*
19814 			 * ill_dl_up is not yet set. i.e. we are yet to
19815 			 * DL_BIND with the driver and this is the first
19816 			 * logical interface on the ill to become "up".
19817 			 * Tell the driver to get going (via DL_BIND_REQ).
19818 			 * Note that changing "significant" IFF_ flags
19819 			 * address/netmask etc cause a down/up dance, but
19820 			 * does not cause an unbind (DL_UNBIND) with the driver
19821 			 */
19822 			return (ill_dl_up(ill, ipif, mp, q));
19823 		}
19824 
19825 		/*
19826 		 * ipif_resolver_up may end up sending an
19827 		 * AR_INTERFACE_UP message to ARP, which would, in
19828 		 * turn send a DLPI message to the driver. ioctls are
19829 		 * serialized and so we cannot send more than one
19830 		 * interface up message at a time. If ipif_resolver_up
19831 		 * does send an interface up message to ARP, we get
19832 		 * EINPROGRESS and we will complete in ip_arp_done.
19833 		 */
19834 
19835 		ASSERT(connp != NULL || !CONN_Q(q));
19836 		ASSERT(ipsq->ipsq_pending_mp == NULL);
19837 		if (connp != NULL)
19838 			mutex_enter(&connp->conn_lock);
19839 		mutex_enter(&ill->ill_lock);
19840 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19841 		mutex_exit(&ill->ill_lock);
19842 		if (connp != NULL)
19843 			mutex_exit(&connp->conn_lock);
19844 		if (!success)
19845 			return (EINTR);
19846 
19847 		/*
19848 		 * Crank up IPv6 neighbor discovery
19849 		 * Unlike ARP, this should complete when
19850 		 * ipif_ndp_up returns. However, for
19851 		 * ILLF_XRESOLV interfaces we also send a
19852 		 * AR_INTERFACE_UP to the external resolver.
19853 		 * That ioctl will complete in ip_rput.
19854 		 */
19855 		if (isv6) {
19856 			err = ipif_ndp_up(ipif);
19857 			if (err != 0) {
19858 				if (err != EINPROGRESS)
19859 					mp = ipsq_pending_mp_get(ipsq, &connp);
19860 				return (err);
19861 			}
19862 		}
19863 		/* Now, ARP */
19864 		err = ipif_resolver_up(ipif, Res_act_initial);
19865 		if (err == EINPROGRESS) {
19866 			/* We will complete it in ip_arp_done */
19867 			return (err);
19868 		}
19869 		mp = ipsq_pending_mp_get(ipsq, &connp);
19870 		ASSERT(mp != NULL);
19871 		if (err != 0)
19872 			return (err);
19873 	} else {
19874 		/*
19875 		 * Interfaces without underlying hardware don't do duplicate
19876 		 * address detection.
19877 		 */
19878 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
19879 		ipif->ipif_addr_ready = 1;
19880 	}
19881 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
19882 }
19883 
19884 /*
19885  * Perform a bind for the physical device.
19886  * When the routine returns EINPROGRESS then mp has been consumed and
19887  * the ioctl will be acked from ip_rput_dlpi.
19888  * Allocate an unbind message and save it until ipif_down.
19889  */
19890 static int
19891 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
19892 {
19893 	areq_t	*areq;
19894 	mblk_t	*areq_mp = NULL;
19895 	mblk_t	*bind_mp = NULL;
19896 	mblk_t	*unbind_mp = NULL;
19897 	conn_t	*connp;
19898 	boolean_t success;
19899 	uint16_t sap_addr;
19900 
19901 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
19902 	ASSERT(IAM_WRITER_ILL(ill));
19903 	ASSERT(mp != NULL);
19904 
19905 	/* Create a resolver cookie for ARP */
19906 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
19907 		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
19908 		if (areq_mp == NULL)
19909 			return (ENOMEM);
19910 
19911 		freemsg(ill->ill_resolver_mp);
19912 		ill->ill_resolver_mp = areq_mp;
19913 		areq = (areq_t *)areq_mp->b_rptr;
19914 		sap_addr = ill->ill_sap;
19915 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
19916 	}
19917 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
19918 	    DL_BIND_REQ);
19919 	if (bind_mp == NULL)
19920 		goto bad;
19921 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
19922 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
19923 
19924 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
19925 	if (unbind_mp == NULL)
19926 		goto bad;
19927 
19928 	/*
19929 	 * Record state needed to complete this operation when the
19930 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
19931 	 */
19932 	ASSERT(WR(q)->q_next == NULL);
19933 	connp = Q_TO_CONN(q);
19934 
19935 	mutex_enter(&connp->conn_lock);
19936 	mutex_enter(&ipif->ipif_ill->ill_lock);
19937 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19938 	mutex_exit(&ipif->ipif_ill->ill_lock);
19939 	mutex_exit(&connp->conn_lock);
19940 	if (!success)
19941 		goto bad;
19942 
19943 	/*
19944 	 * Save the unbind message for ill_dl_down(); it will be consumed when
19945 	 * the interface goes down.
19946 	 */
19947 	ASSERT(ill->ill_unbind_mp == NULL);
19948 	ill->ill_unbind_mp = unbind_mp;
19949 
19950 	ill_dlpi_send(ill, bind_mp);
19951 	/* Send down link-layer capabilities probe if not already done. */
19952 	ill_capability_probe(ill);
19953 
19954 	/*
19955 	 * Sysid used to rely on the fact that netboots set domainname
19956 	 * and the like. Now that miniroot boots aren't strictly netboots
19957 	 * and miniroot network configuration is driven from userland
19958 	 * these things still need to be set. This situation can be detected
19959 	 * by comparing the interface being configured here to the one
19960 	 * dhcack was set to reference by the boot loader. Once sysid is
19961 	 * converted to use dhcp_ipc_getinfo() this call can go away.
19962 	 */
19963 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
19964 	    (strcmp(ill->ill_name, dhcack) == 0) &&
19965 	    (strlen(srpc_domain) == 0)) {
19966 		if (dhcpinit() != 0)
19967 			cmn_err(CE_WARN, "no cached dhcp response");
19968 	}
19969 
19970 	/*
19971 	 * This operation will complete in ip_rput_dlpi with either
19972 	 * a DL_BIND_ACK or DL_ERROR_ACK.
19973 	 */
19974 	return (EINPROGRESS);
19975 bad:
19976 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
19977 	/*
19978 	 * We don't have to check for possible removal from illgrp
19979 	 * as we have not yet inserted in illgrp. For groups
19980 	 * without names, this ipif is still not UP and hence
19981 	 * this could not have possibly had any influence in forming
19982 	 * groups.
19983 	 */
19984 
19985 	freemsg(bind_mp);
19986 	freemsg(unbind_mp);
19987 	return (ENOMEM);
19988 }
19989 
19990 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
19991 
19992 /*
19993  * DLPI and ARP is up.
19994  * Create all the IREs associated with an interface bring up multicast.
19995  * Set the interface flag and finish other initialization
19996  * that potentially had to be differed to after DL_BIND_ACK.
19997  */
19998 int
19999 ipif_up_done(ipif_t *ipif)
20000 {
20001 	ire_t	*ire_array[20];
20002 	ire_t	**irep = ire_array;
20003 	ire_t	**irep1;
20004 	ipaddr_t net_mask = 0;
20005 	ipaddr_t subnet_mask, route_mask;
20006 	ill_t	*ill = ipif->ipif_ill;
20007 	queue_t	*stq;
20008 	ipif_t	 *src_ipif;
20009 	ipif_t   *tmp_ipif;
20010 	boolean_t	flush_ire_cache = B_TRUE;
20011 	int	err = 0;
20012 	phyint_t *phyi;
20013 	ire_t	**ipif_saved_irep = NULL;
20014 	int ipif_saved_ire_cnt;
20015 	int	cnt;
20016 	boolean_t	src_ipif_held = B_FALSE;
20017 	boolean_t	ire_added = B_FALSE;
20018 	boolean_t	loopback = B_FALSE;
20019 	ip_stack_t	*ipst = ill->ill_ipst;
20020 
20021 	ip1dbg(("ipif_up_done(%s:%u)\n",
20022 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
20023 	/* Check if this is a loopback interface */
20024 	if (ipif->ipif_ill->ill_wq == NULL)
20025 		loopback = B_TRUE;
20026 
20027 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20028 	/*
20029 	 * If all other interfaces for this ill are down or DEPRECATED,
20030 	 * or otherwise unsuitable for source address selection, remove
20031 	 * any IRE_CACHE entries for this ill to make sure source
20032 	 * address selection gets to take this new ipif into account.
20033 	 * No need to hold ill_lock while traversing the ipif list since
20034 	 * we are writer
20035 	 */
20036 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20037 	    tmp_ipif = tmp_ipif->ipif_next) {
20038 		if (((tmp_ipif->ipif_flags &
20039 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20040 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20041 		    (tmp_ipif == ipif))
20042 			continue;
20043 		/* first useable pre-existing interface */
20044 		flush_ire_cache = B_FALSE;
20045 		break;
20046 	}
20047 	if (flush_ire_cache)
20048 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20049 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20050 
20051 	/*
20052 	 * Figure out which way the send-to queue should go.  Only
20053 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20054 	 * should show up here.
20055 	 */
20056 	switch (ill->ill_net_type) {
20057 	case IRE_IF_RESOLVER:
20058 		stq = ill->ill_rq;
20059 		break;
20060 	case IRE_IF_NORESOLVER:
20061 	case IRE_LOOPBACK:
20062 		stq = ill->ill_wq;
20063 		break;
20064 	default:
20065 		return (EINVAL);
20066 	}
20067 
20068 	if (IS_LOOPBACK(ill)) {
20069 		/*
20070 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20071 		 * ipif_lookup_on_name(), but in the case of zones we can have
20072 		 * several loopback addresses on lo0. So all the interfaces with
20073 		 * loopback addresses need to be marked IRE_LOOPBACK.
20074 		 */
20075 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20076 		    htonl(INADDR_LOOPBACK))
20077 			ipif->ipif_ire_type = IRE_LOOPBACK;
20078 		else
20079 			ipif->ipif_ire_type = IRE_LOCAL;
20080 	}
20081 
20082 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20083 		/*
20084 		 * Can't use our source address. Select a different
20085 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20086 		 */
20087 		src_ipif = ipif_select_source(ipif->ipif_ill,
20088 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20089 		if (src_ipif == NULL)
20090 			src_ipif = ipif;	/* Last resort */
20091 		else
20092 			src_ipif_held = B_TRUE;
20093 	} else {
20094 		src_ipif = ipif;
20095 	}
20096 
20097 	/* Create all the IREs associated with this interface */
20098 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20099 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20100 
20101 		/*
20102 		 * If we're on a labeled system then make sure that zone-
20103 		 * private addresses have proper remote host database entries.
20104 		 */
20105 		if (is_system_labeled() &&
20106 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20107 		    !tsol_check_interface_address(ipif))
20108 			return (EINVAL);
20109 
20110 		/* Register the source address for __sin6_src_id */
20111 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20112 		    ipif->ipif_zoneid, ipst);
20113 		if (err != 0) {
20114 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20115 			return (err);
20116 		}
20117 
20118 		/* If the interface address is set, create the local IRE. */
20119 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20120 		    (void *)ipif,
20121 		    ipif->ipif_ire_type,
20122 		    ntohl(ipif->ipif_lcl_addr)));
20123 		*irep++ = ire_create(
20124 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20125 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20126 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20127 		    NULL,				/* no gateway */
20128 		    &ip_loopback_mtuplus,		/* max frag size */
20129 		    NULL,
20130 		    ipif->ipif_rq,			/* recv-from queue */
20131 		    NULL,				/* no send-to queue */
20132 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20133 		    ipif,
20134 		    0,
20135 		    0,
20136 		    0,
20137 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20138 		    RTF_PRIVATE : 0,
20139 		    &ire_uinfo_null,
20140 		    NULL,
20141 		    NULL,
20142 		    ipst);
20143 	} else {
20144 		ip1dbg((
20145 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20146 		    ipif->ipif_ire_type,
20147 		    ntohl(ipif->ipif_lcl_addr),
20148 		    (uint_t)ipif->ipif_flags));
20149 	}
20150 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20151 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20152 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20153 	} else {
20154 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20155 	}
20156 
20157 	subnet_mask = ipif->ipif_net_mask;
20158 
20159 	/*
20160 	 * If mask was not specified, use natural netmask of
20161 	 * interface address. Also, store this mask back into the
20162 	 * ipif struct.
20163 	 */
20164 	if (subnet_mask == 0) {
20165 		subnet_mask = net_mask;
20166 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20167 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20168 		    ipif->ipif_v6subnet);
20169 	}
20170 
20171 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20172 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20173 	    ipif->ipif_subnet != INADDR_ANY) {
20174 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20175 
20176 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20177 			route_mask = IP_HOST_MASK;
20178 		} else {
20179 			route_mask = subnet_mask;
20180 		}
20181 
20182 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20183 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20184 		    (void *)ipif, (void *)ill,
20185 		    ill->ill_net_type,
20186 		    ntohl(ipif->ipif_subnet)));
20187 		*irep++ = ire_create(
20188 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20189 		    (uchar_t *)&route_mask,		/* mask */
20190 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20191 		    NULL,				/* no gateway */
20192 		    &ipif->ipif_mtu,			/* max frag */
20193 		    NULL,
20194 		    NULL,				/* no recv queue */
20195 		    stq,				/* send-to queue */
20196 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20197 		    ipif,
20198 		    0,
20199 		    0,
20200 		    0,
20201 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20202 		    &ire_uinfo_null,
20203 		    NULL,
20204 		    NULL,
20205 		    ipst);
20206 	}
20207 
20208 	/*
20209 	 * Create any necessary broadcast IREs.
20210 	 */
20211 	if ((ipif->ipif_subnet != INADDR_ANY) &&
20212 	    (ipif->ipif_flags & IPIF_BROADCAST))
20213 		irep = ipif_create_bcast_ires(ipif, irep);
20214 
20215 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20216 
20217 	/* If an earlier ire_create failed, get out now */
20218 	for (irep1 = irep; irep1 > ire_array; ) {
20219 		irep1--;
20220 		if (*irep1 == NULL) {
20221 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20222 			err = ENOMEM;
20223 			goto bad;
20224 		}
20225 	}
20226 
20227 	/*
20228 	 * Need to atomically check for ip_addr_availablity_check
20229 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20230 	 * from group also.The ill_g_lock is grabbed as reader
20231 	 * just to make sure no new ills or new ipifs are being added
20232 	 * to the system while we are checking the uniqueness of addresses.
20233 	 */
20234 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20235 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
20236 	/* Mark it up, and increment counters. */
20237 	ipif->ipif_flags |= IPIF_UP;
20238 	ill->ill_ipif_up_count++;
20239 	err = ip_addr_availability_check(ipif);
20240 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
20241 	rw_exit(&ipst->ips_ill_g_lock);
20242 
20243 	if (err != 0) {
20244 		/*
20245 		 * Our address may already be up on the same ill. In this case,
20246 		 * the ARP entry for our ipif replaced the one for the other
20247 		 * ipif. So we don't want to delete it (otherwise the other ipif
20248 		 * would be unable to send packets).
20249 		 * ip_addr_availability_check() identifies this case for us and
20250 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20251 		 * which is the expected error code.
20252 		 */
20253 		if (err == EADDRINUSE) {
20254 			freemsg(ipif->ipif_arp_del_mp);
20255 			ipif->ipif_arp_del_mp = NULL;
20256 			err = EADDRNOTAVAIL;
20257 		}
20258 		ill->ill_ipif_up_count--;
20259 		ipif->ipif_flags &= ~IPIF_UP;
20260 		goto bad;
20261 	}
20262 
20263 	/*
20264 	 * Add in all newly created IREs.  ire_create_bcast() has
20265 	 * already checked for duplicates of the IRE_BROADCAST type.
20266 	 * We want to add before we call ifgrp_insert which wants
20267 	 * to know whether IRE_IF_RESOLVER exists or not.
20268 	 *
20269 	 * NOTE : We refrele the ire though we may branch to "bad"
20270 	 *	  later on where we do ire_delete. This is okay
20271 	 *	  because nobody can delete it as we are running
20272 	 *	  exclusively.
20273 	 */
20274 	for (irep1 = irep; irep1 > ire_array; ) {
20275 		irep1--;
20276 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20277 		/*
20278 		 * refheld by ire_add. refele towards the end of the func
20279 		 */
20280 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20281 	}
20282 	ire_added = B_TRUE;
20283 	/*
20284 	 * Form groups if possible.
20285 	 *
20286 	 * If we are supposed to be in a ill_group with a name, insert it
20287 	 * now as we know that at least one ipif is UP. Otherwise form
20288 	 * nameless groups.
20289 	 *
20290 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20291 	 * this ipif into the appropriate interface group, or create a
20292 	 * new one. If this is already in a nameless group, we try to form
20293 	 * a bigger group looking at other ills potentially sharing this
20294 	 * ipif's prefix.
20295 	 */
20296 	phyi = ill->ill_phyint;
20297 	if (phyi->phyint_groupname_len != 0) {
20298 		ASSERT(phyi->phyint_groupname != NULL);
20299 		if (ill->ill_ipif_up_count == 1) {
20300 			ASSERT(ill->ill_group == NULL);
20301 			err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20302 			    phyi->phyint_groupname, NULL, B_TRUE);
20303 			if (err != 0) {
20304 				ip1dbg(("ipif_up_done: illgrp allocation "
20305 				    "failed, error %d\n", err));
20306 				goto bad;
20307 			}
20308 		}
20309 		ASSERT(ill->ill_group != NULL);
20310 	}
20311 
20312 	/*
20313 	 * When this is part of group, we need to make sure that
20314 	 * any broadcast ires created because of this ipif coming
20315 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20316 	 * so that we don't receive duplicate broadcast packets.
20317 	 */
20318 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20319 		ipif_renominate_bcast(ipif);
20320 
20321 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20322 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20323 	ipif_saved_irep = ipif_recover_ire(ipif);
20324 
20325 	if (!loopback) {
20326 		/*
20327 		 * If the broadcast address has been set, make sure it makes
20328 		 * sense based on the interface address.
20329 		 * Only match on ill since we are sharing broadcast addresses.
20330 		 */
20331 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20332 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20333 			ire_t	*ire;
20334 
20335 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20336 			    IRE_BROADCAST, ipif, ALL_ZONES,
20337 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20338 
20339 			if (ire == NULL) {
20340 				/*
20341 				 * If there isn't a matching broadcast IRE,
20342 				 * revert to the default for this netmask.
20343 				 */
20344 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20345 				mutex_enter(&ipif->ipif_ill->ill_lock);
20346 				ipif_set_default(ipif);
20347 				mutex_exit(&ipif->ipif_ill->ill_lock);
20348 			} else {
20349 				ire_refrele(ire);
20350 			}
20351 		}
20352 
20353 	}
20354 
20355 	/* This is the first interface on this ill */
20356 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20357 		/*
20358 		 * Need to recover all multicast memberships in the driver.
20359 		 * This had to be deferred until we had attached.
20360 		 */
20361 		ill_recover_multicast(ill);
20362 	}
20363 	/* Join the allhosts multicast address */
20364 	ipif_multicast_up(ipif);
20365 
20366 	if (!loopback) {
20367 		/*
20368 		 * See whether anybody else would benefit from the
20369 		 * new ipif that we added. We call this always rather
20370 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20371 		 * ipif is for the benefit of illgrp_insert (done above)
20372 		 * which does not do source address selection as it does
20373 		 * not want to re-create interface routes that we are
20374 		 * having reference to it here.
20375 		 */
20376 		ill_update_source_selection(ill);
20377 	}
20378 
20379 	for (irep1 = irep; irep1 > ire_array; ) {
20380 		irep1--;
20381 		if (*irep1 != NULL) {
20382 			/* was held in ire_add */
20383 			ire_refrele(*irep1);
20384 		}
20385 	}
20386 
20387 	cnt = ipif_saved_ire_cnt;
20388 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20389 		if (*irep1 != NULL) {
20390 			/* was held in ire_add */
20391 			ire_refrele(*irep1);
20392 		}
20393 	}
20394 
20395 	if (!loopback && ipif->ipif_addr_ready) {
20396 		/* Broadcast an address mask reply. */
20397 		ipif_mask_reply(ipif);
20398 	}
20399 	if (ipif_saved_irep != NULL) {
20400 		kmem_free(ipif_saved_irep,
20401 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20402 	}
20403 	if (src_ipif_held)
20404 		ipif_refrele(src_ipif);
20405 
20406 	/*
20407 	 * This had to be deferred until we had bound.  Tell routing sockets and
20408 	 * others that this interface is up if it looks like the address has
20409 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20410 	 * duplicate address detection to do its thing.
20411 	 */
20412 	if (ipif->ipif_addr_ready) {
20413 		ip_rts_ifmsg(ipif);
20414 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20415 		/* Let SCTP update the status for this ipif */
20416 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20417 	}
20418 	return (0);
20419 
20420 bad:
20421 	ip1dbg(("ipif_up_done: FAILED \n"));
20422 	/*
20423 	 * We don't have to bother removing from ill groups because
20424 	 *
20425 	 * 1) For groups with names, we insert only when the first ipif
20426 	 *    comes up. In that case if it fails, it will not be in any
20427 	 *    group. So, we need not try to remove for that case.
20428 	 *
20429 	 * 2) For groups without names, either we tried to insert ipif_ill
20430 	 *    in a group as singleton or found some other group to become
20431 	 *    a bigger group. For the former, if it fails we don't have
20432 	 *    anything to do as ipif_ill is not in the group and for the
20433 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20434 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20435 	 */
20436 	while (irep > ire_array) {
20437 		irep--;
20438 		if (*irep != NULL) {
20439 			ire_delete(*irep);
20440 			if (ire_added)
20441 				ire_refrele(*irep);
20442 		}
20443 	}
20444 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20445 
20446 	if (ipif_saved_irep != NULL) {
20447 		kmem_free(ipif_saved_irep,
20448 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20449 	}
20450 	if (src_ipif_held)
20451 		ipif_refrele(src_ipif);
20452 
20453 	ipif_arp_down(ipif);
20454 	return (err);
20455 }
20456 
20457 /*
20458  * Turn off the ARP with the ILLF_NOARP flag.
20459  */
20460 static int
20461 ill_arp_off(ill_t *ill)
20462 {
20463 	mblk_t	*arp_off_mp = NULL;
20464 	mblk_t	*arp_on_mp = NULL;
20465 
20466 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20467 
20468 	ASSERT(IAM_WRITER_ILL(ill));
20469 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20470 
20471 	/*
20472 	 * If the on message is still around we've already done
20473 	 * an arp_off without doing an arp_on thus there is no
20474 	 * work needed.
20475 	 */
20476 	if (ill->ill_arp_on_mp != NULL)
20477 		return (0);
20478 
20479 	/*
20480 	 * Allocate an ARP on message (to be saved) and an ARP off message
20481 	 */
20482 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20483 	if (!arp_off_mp)
20484 		return (ENOMEM);
20485 
20486 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20487 	if (!arp_on_mp)
20488 		goto failed;
20489 
20490 	ASSERT(ill->ill_arp_on_mp == NULL);
20491 	ill->ill_arp_on_mp = arp_on_mp;
20492 
20493 	/* Send an AR_INTERFACE_OFF request */
20494 	putnext(ill->ill_rq, arp_off_mp);
20495 	return (0);
20496 failed:
20497 
20498 	if (arp_off_mp)
20499 		freemsg(arp_off_mp);
20500 	return (ENOMEM);
20501 }
20502 
20503 /*
20504  * Turn on ARP by turning off the ILLF_NOARP flag.
20505  */
20506 static int
20507 ill_arp_on(ill_t *ill)
20508 {
20509 	mblk_t	*mp;
20510 
20511 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20512 
20513 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20514 
20515 	ASSERT(IAM_WRITER_ILL(ill));
20516 	/*
20517 	 * Send an AR_INTERFACE_ON request if we have already done
20518 	 * an arp_off (which allocated the message).
20519 	 */
20520 	if (ill->ill_arp_on_mp != NULL) {
20521 		mp = ill->ill_arp_on_mp;
20522 		ill->ill_arp_on_mp = NULL;
20523 		putnext(ill->ill_rq, mp);
20524 	}
20525 	return (0);
20526 }
20527 
20528 /*
20529  * Called after either deleting ill from the group or when setting
20530  * FAILED or STANDBY on the interface.
20531  */
20532 static void
20533 illgrp_reset_schednext(ill_t *ill)
20534 {
20535 	ill_group_t *illgrp;
20536 	ill_t *save_ill;
20537 
20538 	ASSERT(IAM_WRITER_ILL(ill));
20539 	/*
20540 	 * When called from illgrp_delete, ill_group will be non-NULL.
20541 	 * But when called from ip_sioctl_flags, it could be NULL if
20542 	 * somebody is setting FAILED/INACTIVE on some interface which
20543 	 * is not part of a group.
20544 	 */
20545 	illgrp = ill->ill_group;
20546 	if (illgrp == NULL)
20547 		return;
20548 	if (illgrp->illgrp_ill_schednext != ill)
20549 		return;
20550 
20551 	illgrp->illgrp_ill_schednext = NULL;
20552 	save_ill = ill;
20553 	/*
20554 	 * Choose a good ill to be the next one for
20555 	 * outbound traffic. As the flags FAILED/STANDBY is
20556 	 * not yet marked when called from ip_sioctl_flags,
20557 	 * we check for ill separately.
20558 	 */
20559 	for (ill = illgrp->illgrp_ill; ill != NULL;
20560 	    ill = ill->ill_group_next) {
20561 		if ((ill != save_ill) &&
20562 		    !(ill->ill_phyint->phyint_flags &
20563 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20564 			illgrp->illgrp_ill_schednext = ill;
20565 			return;
20566 		}
20567 	}
20568 }
20569 
20570 /*
20571  * Given an ill, find the next ill in the group to be scheduled.
20572  * (This should be called by ip_newroute() before ire_create().)
20573  * The passed in ill may be pulled out of the group, after we have picked
20574  * up a different outgoing ill from the same group. However ire add will
20575  * atomically check this.
20576  */
20577 ill_t *
20578 illgrp_scheduler(ill_t *ill)
20579 {
20580 	ill_t *retill;
20581 	ill_group_t *illgrp;
20582 	int illcnt;
20583 	int i;
20584 	uint64_t flags;
20585 	ip_stack_t	*ipst = ill->ill_ipst;
20586 
20587 	/*
20588 	 * We don't use a lock to check for the ill_group. If this ill
20589 	 * is currently being inserted we may end up just returning this
20590 	 * ill itself. That is ok.
20591 	 */
20592 	if (ill->ill_group == NULL) {
20593 		ill_refhold(ill);
20594 		return (ill);
20595 	}
20596 
20597 	/*
20598 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20599 	 * a set of stable ills. No ill can be added or deleted or change
20600 	 * group while we hold the reader lock.
20601 	 */
20602 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20603 	if ((illgrp = ill->ill_group) == NULL) {
20604 		rw_exit(&ipst->ips_ill_g_lock);
20605 		ill_refhold(ill);
20606 		return (ill);
20607 	}
20608 
20609 	illcnt = illgrp->illgrp_ill_count;
20610 	mutex_enter(&illgrp->illgrp_lock);
20611 	retill = illgrp->illgrp_ill_schednext;
20612 
20613 	if (retill == NULL)
20614 		retill = illgrp->illgrp_ill;
20615 
20616 	/*
20617 	 * We do a circular search beginning at illgrp_ill_schednext
20618 	 * or illgrp_ill. We don't check the flags against the ill lock
20619 	 * since it can change anytime. The ire creation will be atomic
20620 	 * and will fail if the ill is FAILED or OFFLINE.
20621 	 */
20622 	for (i = 0; i < illcnt; i++) {
20623 		flags = retill->ill_phyint->phyint_flags;
20624 
20625 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20626 		    ILL_CAN_LOOKUP(retill)) {
20627 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
20628 			ill_refhold(retill);
20629 			break;
20630 		}
20631 		retill = retill->ill_group_next;
20632 		if (retill == NULL)
20633 			retill = illgrp->illgrp_ill;
20634 	}
20635 	mutex_exit(&illgrp->illgrp_lock);
20636 	rw_exit(&ipst->ips_ill_g_lock);
20637 
20638 	return (i == illcnt ? NULL : retill);
20639 }
20640 
20641 /*
20642  * Checks for availbility of a usable source address (if there is one) when the
20643  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
20644  * this selection is done regardless of the destination.
20645  */
20646 boolean_t
20647 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
20648 {
20649 	uint_t	ifindex;
20650 	ipif_t	*ipif = NULL;
20651 	ill_t	*uill;
20652 	boolean_t isv6;
20653 	ip_stack_t	*ipst = ill->ill_ipst;
20654 
20655 	ASSERT(ill != NULL);
20656 
20657 	isv6 = ill->ill_isv6;
20658 	ifindex = ill->ill_usesrc_ifindex;
20659 	if (ifindex != 0) {
20660 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
20661 		    NULL, ipst);
20662 		if (uill == NULL)
20663 			return (NULL);
20664 		mutex_enter(&uill->ill_lock);
20665 		for (ipif = uill->ill_ipif; ipif != NULL;
20666 		    ipif = ipif->ipif_next) {
20667 			if (!IPIF_CAN_LOOKUP(ipif))
20668 				continue;
20669 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20670 				continue;
20671 			if (!(ipif->ipif_flags & IPIF_UP))
20672 				continue;
20673 			if (ipif->ipif_zoneid != zoneid)
20674 				continue;
20675 			if ((isv6 &&
20676 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
20677 			    (ipif->ipif_lcl_addr == INADDR_ANY))
20678 				continue;
20679 			mutex_exit(&uill->ill_lock);
20680 			ill_refrele(uill);
20681 			return (B_TRUE);
20682 		}
20683 		mutex_exit(&uill->ill_lock);
20684 		ill_refrele(uill);
20685 	}
20686 	return (B_FALSE);
20687 }
20688 
20689 /*
20690  * Determine the best source address given a destination address and an ill.
20691  * Prefers non-deprecated over deprecated but will return a deprecated
20692  * address if there is no other choice. If there is a usable source address
20693  * on the interface pointed to by ill_usesrc_ifindex then that is given
20694  * first preference.
20695  *
20696  * Returns NULL if there is no suitable source address for the ill.
20697  * This only occurs when there is no valid source address for the ill.
20698  */
20699 ipif_t *
20700 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
20701 {
20702 	ipif_t *ipif;
20703 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
20704 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
20705 	int index = 0;
20706 	boolean_t wrapped = B_FALSE;
20707 	boolean_t same_subnet_only = B_FALSE;
20708 	boolean_t ipif_same_found, ipif_other_found;
20709 	boolean_t specific_found;
20710 	ill_t	*till, *usill = NULL;
20711 	tsol_tpc_t *src_rhtp, *dst_rhtp;
20712 	ip_stack_t	*ipst = ill->ill_ipst;
20713 
20714 	if (ill->ill_usesrc_ifindex != 0) {
20715 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
20716 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
20717 		if (usill != NULL)
20718 			ill = usill;	/* Select source from usesrc ILL */
20719 		else
20720 			return (NULL);
20721 	}
20722 
20723 	/*
20724 	 * If we're dealing with an unlabeled destination on a labeled system,
20725 	 * make sure that we ignore source addresses that are incompatible with
20726 	 * the destination's default label.  That destination's default label
20727 	 * must dominate the minimum label on the source address.
20728 	 */
20729 	dst_rhtp = NULL;
20730 	if (is_system_labeled()) {
20731 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
20732 		if (dst_rhtp == NULL)
20733 			return (NULL);
20734 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
20735 			TPC_RELE(dst_rhtp);
20736 			dst_rhtp = NULL;
20737 		}
20738 	}
20739 
20740 	/*
20741 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
20742 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
20743 	 * After selecting the right ipif, under ill_lock make sure ipif is
20744 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
20745 	 * we retry. Inside the loop we still need to check for CONDEMNED,
20746 	 * but not under a lock.
20747 	 */
20748 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20749 
20750 retry:
20751 	till = ill;
20752 	ipif_arr[0] = NULL;
20753 
20754 	if (till->ill_group != NULL)
20755 		till = till->ill_group->illgrp_ill;
20756 
20757 	/*
20758 	 * Choose one good source address from each ill across the group.
20759 	 * If possible choose a source address in the same subnet as
20760 	 * the destination address.
20761 	 *
20762 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
20763 	 * This is okay because of the following.
20764 	 *
20765 	 *    If PHYI_FAILED is set and we still have non-deprecated
20766 	 *    addresses, it means the addresses have not yet been
20767 	 *    failed over to a different interface. We potentially
20768 	 *    select them to create IRE_CACHES, which will be later
20769 	 *    flushed when the addresses move over.
20770 	 *
20771 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
20772 	 *    addresses, it means either the user has configured them
20773 	 *    or PHYI_INACTIVE has not been cleared after the addresses
20774 	 *    been moved over. For the former, in.mpathd does a failover
20775 	 *    when the interface becomes INACTIVE and hence we should
20776 	 *    not find them. Once INACTIVE is set, we don't allow them
20777 	 *    to create logical interfaces anymore. For the latter, a
20778 	 *    flush will happen when INACTIVE is cleared which will
20779 	 *    flush the IRE_CACHES.
20780 	 *
20781 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
20782 	 *    over soon. We potentially select them to create IRE_CACHEs,
20783 	 *    which will be later flushed when the addresses move over.
20784 	 *
20785 	 * NOTE : As ipif_select_source is called to borrow source address
20786 	 * for an ipif that is part of a group, source address selection
20787 	 * will be re-done whenever the group changes i.e either an
20788 	 * insertion/deletion in the group.
20789 	 *
20790 	 * Fill ipif_arr[] with source addresses, using these rules:
20791 	 *
20792 	 *	1. At most one source address from a given ill ends up
20793 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
20794 	 *	   associated with a given ill ends up in ipif_arr[].
20795 	 *
20796 	 *	2. If there is at least one non-deprecated ipif in the
20797 	 *	   IPMP group with a source address on the same subnet as
20798 	 *	   our destination, then fill ipif_arr[] only with
20799 	 *	   source addresses on the same subnet as our destination.
20800 	 *	   Note that because of (1), only the first
20801 	 *	   non-deprecated ipif found with a source address
20802 	 *	   matching the destination ends up in ipif_arr[].
20803 	 *
20804 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
20805 	 *	   addresses not in the same subnet as our destination.
20806 	 *	   Again, because of (1), only the first off-subnet source
20807 	 *	   address will be chosen.
20808 	 *
20809 	 *	4. If there are no non-deprecated ipifs, then just use
20810 	 *	   the source address associated with the last deprecated
20811 	 *	   one we find that happens to be on the same subnet,
20812 	 *	   otherwise the first one not in the same subnet.
20813 	 */
20814 	specific_found = B_FALSE;
20815 	for (; till != NULL; till = till->ill_group_next) {
20816 		ipif_same_found = B_FALSE;
20817 		ipif_other_found = B_FALSE;
20818 		for (ipif = till->ill_ipif; ipif != NULL;
20819 		    ipif = ipif->ipif_next) {
20820 			if (!IPIF_CAN_LOOKUP(ipif))
20821 				continue;
20822 			/* Always skip NOLOCAL and ANYCAST interfaces */
20823 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20824 				continue;
20825 			if (!(ipif->ipif_flags & IPIF_UP) ||
20826 			    !ipif->ipif_addr_ready)
20827 				continue;
20828 			if (ipif->ipif_zoneid != zoneid &&
20829 			    ipif->ipif_zoneid != ALL_ZONES)
20830 				continue;
20831 			/*
20832 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
20833 			 * but are not valid as source addresses.
20834 			 */
20835 			if (ipif->ipif_lcl_addr == INADDR_ANY)
20836 				continue;
20837 
20838 			/*
20839 			 * Check compatibility of local address for
20840 			 * destination's default label if we're on a labeled
20841 			 * system.  Incompatible addresses can't be used at
20842 			 * all.
20843 			 */
20844 			if (dst_rhtp != NULL) {
20845 				boolean_t incompat;
20846 
20847 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
20848 				    IPV4_VERSION, B_FALSE);
20849 				if (src_rhtp == NULL)
20850 					continue;
20851 				incompat =
20852 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
20853 				    src_rhtp->tpc_tp.tp_doi !=
20854 				    dst_rhtp->tpc_tp.tp_doi ||
20855 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
20856 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
20857 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
20858 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
20859 				TPC_RELE(src_rhtp);
20860 				if (incompat)
20861 					continue;
20862 			}
20863 
20864 			/*
20865 			 * We prefer not to use all all-zones addresses, if we
20866 			 * can avoid it, as they pose problems with unlabeled
20867 			 * destinations.
20868 			 */
20869 			if (ipif->ipif_zoneid != ALL_ZONES) {
20870 				if (!specific_found &&
20871 				    (!same_subnet_only ||
20872 				    (ipif->ipif_net_mask & dst) ==
20873 				    ipif->ipif_subnet)) {
20874 					index = 0;
20875 					specific_found = B_TRUE;
20876 					ipif_other_found = B_FALSE;
20877 				}
20878 			} else {
20879 				if (specific_found)
20880 					continue;
20881 			}
20882 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
20883 				if (ipif_dep == NULL ||
20884 				    (ipif->ipif_net_mask & dst) ==
20885 				    ipif->ipif_subnet)
20886 					ipif_dep = ipif;
20887 				continue;
20888 			}
20889 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
20890 				/* found a source address in the same subnet */
20891 				if (!same_subnet_only) {
20892 					same_subnet_only = B_TRUE;
20893 					index = 0;
20894 				}
20895 				ipif_same_found = B_TRUE;
20896 			} else {
20897 				if (same_subnet_only || ipif_other_found)
20898 					continue;
20899 				ipif_other_found = B_TRUE;
20900 			}
20901 			ipif_arr[index++] = ipif;
20902 			if (index == MAX_IPIF_SELECT_SOURCE) {
20903 				wrapped = B_TRUE;
20904 				index = 0;
20905 			}
20906 			if (ipif_same_found)
20907 				break;
20908 		}
20909 	}
20910 
20911 	if (ipif_arr[0] == NULL) {
20912 		ipif = ipif_dep;
20913 	} else {
20914 		if (wrapped)
20915 			index = MAX_IPIF_SELECT_SOURCE;
20916 		ipif = ipif_arr[ipif_rand(ipst) % index];
20917 		ASSERT(ipif != NULL);
20918 	}
20919 
20920 	if (ipif != NULL) {
20921 		mutex_enter(&ipif->ipif_ill->ill_lock);
20922 		if (!IPIF_CAN_LOOKUP(ipif)) {
20923 			mutex_exit(&ipif->ipif_ill->ill_lock);
20924 			goto retry;
20925 		}
20926 		ipif_refhold_locked(ipif);
20927 		mutex_exit(&ipif->ipif_ill->ill_lock);
20928 	}
20929 
20930 	rw_exit(&ipst->ips_ill_g_lock);
20931 	if (usill != NULL)
20932 		ill_refrele(usill);
20933 	if (dst_rhtp != NULL)
20934 		TPC_RELE(dst_rhtp);
20935 
20936 #ifdef DEBUG
20937 	if (ipif == NULL) {
20938 		char buf1[INET6_ADDRSTRLEN];
20939 
20940 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
20941 		    ill->ill_name,
20942 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
20943 	} else {
20944 		char buf1[INET6_ADDRSTRLEN];
20945 		char buf2[INET6_ADDRSTRLEN];
20946 
20947 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
20948 		    ipif->ipif_ill->ill_name,
20949 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
20950 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
20951 		    buf2, sizeof (buf2))));
20952 	}
20953 #endif /* DEBUG */
20954 	return (ipif);
20955 }
20956 
20957 
20958 /*
20959  * If old_ipif is not NULL, see if ipif was derived from old
20960  * ipif and if so, recreate the interface route by re-doing
20961  * source address selection. This happens when ipif_down ->
20962  * ipif_update_other_ipifs calls us.
20963  *
20964  * If old_ipif is NULL, just redo the source address selection
20965  * if needed. This happens when illgrp_insert or ipif_up_done
20966  * calls us.
20967  */
20968 static void
20969 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
20970 {
20971 	ire_t *ire;
20972 	ire_t *ipif_ire;
20973 	queue_t *stq;
20974 	ipif_t *nipif;
20975 	ill_t *ill;
20976 	boolean_t need_rele = B_FALSE;
20977 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
20978 
20979 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
20980 	ASSERT(IAM_WRITER_IPIF(ipif));
20981 
20982 	ill = ipif->ipif_ill;
20983 	if (!(ipif->ipif_flags &
20984 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
20985 		/*
20986 		 * Can't possibly have borrowed the source
20987 		 * from old_ipif.
20988 		 */
20989 		return;
20990 	}
20991 
20992 	/*
20993 	 * Is there any work to be done? No work if the address
20994 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
20995 	 * ipif_select_source() does not borrow addresses from
20996 	 * NOLOCAL and ANYCAST interfaces).
20997 	 */
20998 	if ((old_ipif != NULL) &&
20999 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21000 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21001 	    (old_ipif->ipif_flags &
21002 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21003 		return;
21004 	}
21005 
21006 	/*
21007 	 * Perform the same checks as when creating the
21008 	 * IRE_INTERFACE in ipif_up_done.
21009 	 */
21010 	if (!(ipif->ipif_flags & IPIF_UP))
21011 		return;
21012 
21013 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21014 	    (ipif->ipif_subnet == INADDR_ANY))
21015 		return;
21016 
21017 	ipif_ire = ipif_to_ire(ipif);
21018 	if (ipif_ire == NULL)
21019 		return;
21020 
21021 	/*
21022 	 * We know that ipif uses some other source for its
21023 	 * IRE_INTERFACE. Is it using the source of this
21024 	 * old_ipif?
21025 	 */
21026 	if (old_ipif != NULL &&
21027 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21028 		ire_refrele(ipif_ire);
21029 		return;
21030 	}
21031 	if (ip_debug > 2) {
21032 		/* ip1dbg */
21033 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21034 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21035 	}
21036 
21037 	stq = ipif_ire->ire_stq;
21038 
21039 	/*
21040 	 * Can't use our source address. Select a different
21041 	 * source address for the IRE_INTERFACE.
21042 	 */
21043 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21044 	if (nipif == NULL) {
21045 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21046 		nipif = ipif;
21047 	} else {
21048 		need_rele = B_TRUE;
21049 	}
21050 
21051 	ire = ire_create(
21052 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21053 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21054 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21055 	    NULL,				/* no gateway */
21056 	    &ipif->ipif_mtu,			/* max frag */
21057 	    NULL,				/* no src nce */
21058 	    NULL,				/* no recv from queue */
21059 	    stq,				/* send-to queue */
21060 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21061 	    ipif,
21062 	    0,
21063 	    0,
21064 	    0,
21065 	    0,
21066 	    &ire_uinfo_null,
21067 	    NULL,
21068 	    NULL,
21069 	    ipst);
21070 
21071 	if (ire != NULL) {
21072 		ire_t *ret_ire;
21073 		int error;
21074 
21075 		/*
21076 		 * We don't need ipif_ire anymore. We need to delete
21077 		 * before we add so that ire_add does not detect
21078 		 * duplicates.
21079 		 */
21080 		ire_delete(ipif_ire);
21081 		ret_ire = ire;
21082 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21083 		ASSERT(error == 0);
21084 		ASSERT(ire == ret_ire);
21085 		/* Held in ire_add */
21086 		ire_refrele(ret_ire);
21087 	}
21088 	/*
21089 	 * Either we are falling through from above or could not
21090 	 * allocate a replacement.
21091 	 */
21092 	ire_refrele(ipif_ire);
21093 	if (need_rele)
21094 		ipif_refrele(nipif);
21095 }
21096 
21097 /*
21098  * This old_ipif is going away.
21099  *
21100  * Determine if any other ipif's is using our address as
21101  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21102  * IPIF_DEPRECATED).
21103  * Find the IRE_INTERFACE for such ipifs and recreate them
21104  * to use an different source address following the rules in
21105  * ipif_up_done.
21106  *
21107  * This function takes an illgrp as an argument so that illgrp_delete
21108  * can call this to update source address even after deleting the
21109  * old_ipif->ipif_ill from the ill group.
21110  */
21111 static void
21112 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21113 {
21114 	ipif_t *ipif;
21115 	ill_t *ill;
21116 	char	buf[INET6_ADDRSTRLEN];
21117 
21118 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21119 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21120 
21121 	ill = old_ipif->ipif_ill;
21122 
21123 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21124 	    ill->ill_name,
21125 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21126 	    buf, sizeof (buf))));
21127 	/*
21128 	 * If this part of a group, look at all ills as ipif_select_source
21129 	 * borrows source address across all the ills in the group.
21130 	 */
21131 	if (illgrp != NULL)
21132 		ill = illgrp->illgrp_ill;
21133 
21134 	for (; ill != NULL; ill = ill->ill_group_next) {
21135 		for (ipif = ill->ill_ipif; ipif != NULL;
21136 		    ipif = ipif->ipif_next) {
21137 
21138 			if (ipif == old_ipif)
21139 				continue;
21140 
21141 			ipif_recreate_interface_routes(old_ipif, ipif);
21142 		}
21143 	}
21144 }
21145 
21146 /* ARGSUSED */
21147 int
21148 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21149 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21150 {
21151 	/*
21152 	 * ill_phyint_reinit merged the v4 and v6 into a single
21153 	 * ipsq. Could also have become part of a ipmp group in the
21154 	 * process, and we might not have been able to complete the
21155 	 * operation in ipif_set_values, if we could not become
21156 	 * exclusive.  If so restart it here.
21157 	 */
21158 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21159 }
21160 
21161 
21162 /*
21163  * Can operate on either a module or a driver queue.
21164  * Returns an error if not a module queue.
21165  */
21166 /* ARGSUSED */
21167 int
21168 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21169     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21170 {
21171 	queue_t		*q1 = q;
21172 	char 		*cp;
21173 	char		interf_name[LIFNAMSIZ];
21174 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21175 
21176 	if (q->q_next == NULL) {
21177 		ip1dbg((
21178 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21179 		return (EINVAL);
21180 	}
21181 
21182 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21183 		return (EALREADY);
21184 
21185 	do {
21186 		q1 = q1->q_next;
21187 	} while (q1->q_next);
21188 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21189 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21190 
21191 	/*
21192 	 * Here we are not going to delay the ioack until after
21193 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21194 	 * original ioctl message before sending the requests.
21195 	 */
21196 	return (ipif_set_values(q, mp, interf_name, &ppa));
21197 }
21198 
21199 /* ARGSUSED */
21200 int
21201 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21202     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21203 {
21204 	return (ENXIO);
21205 }
21206 
21207 /*
21208  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
21209  * `irep'.  Returns a pointer to the next free `irep' entry (just like
21210  * ire_check_and_create_bcast()).
21211  */
21212 static ire_t **
21213 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
21214 {
21215 	ipaddr_t addr;
21216 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
21217 	ipaddr_t subnetmask = ipif->ipif_net_mask;
21218 	int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
21219 
21220 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
21221 
21222 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
21223 
21224 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
21225 	    (ipif->ipif_flags & IPIF_NOLOCAL))
21226 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
21227 
21228 	irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
21229 	irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
21230 
21231 	/*
21232 	 * For backward compatibility, we create net broadcast IREs based on
21233 	 * the old "IP address class system", since some old machines only
21234 	 * respond to these class derived net broadcast.  However, we must not
21235 	 * create these net broadcast IREs if the subnetmask is shorter than
21236 	 * the IP address class based derived netmask.  Otherwise, we may
21237 	 * create a net broadcast address which is the same as an IP address
21238 	 * on the subnet -- and then TCP will refuse to talk to that address.
21239 	 */
21240 	if (netmask < subnetmask) {
21241 		addr = netmask & ipif->ipif_subnet;
21242 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21243 		irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
21244 		    flags);
21245 	}
21246 
21247 	/*
21248 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
21249 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
21250 	 * created.  Creating these broadcast IREs will only create confusion
21251 	 * as `addr' will be the same as the IP address.
21252 	 */
21253 	if (subnetmask != 0xFFFFFFFF) {
21254 		addr = ipif->ipif_subnet;
21255 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21256 		irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
21257 		    irep, flags);
21258 	}
21259 
21260 	return (irep);
21261 }
21262 
21263 /*
21264  * Broadcast IRE info structure used in the functions below.  Since we
21265  * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
21266  */
21267 typedef struct bcast_ireinfo {
21268 	uchar_t		bi_type;	/* BCAST_* value from below */
21269 	uchar_t		bi_willdie:1, 	/* will this IRE be going away? */
21270 			bi_needrep:1,	/* do we need to replace it? */
21271 			bi_haverep:1,	/* have we replaced it? */
21272 			bi_pad:5;
21273 	ipaddr_t	bi_addr;	/* IRE address */
21274 	ipif_t		*bi_backup;	/* last-ditch ipif to replace it on */
21275 } bcast_ireinfo_t;
21276 
21277 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
21278 
21279 /*
21280  * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
21281  * return B_TRUE if it should immediately be used to recreate the IRE.
21282  */
21283 static boolean_t
21284 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
21285 {
21286 	ipaddr_t addr;
21287 
21288 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
21289 
21290 	switch (bireinfop->bi_type) {
21291 	case BCAST_NET:
21292 		addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
21293 		if (addr != bireinfop->bi_addr)
21294 			return (B_FALSE);
21295 		break;
21296 	case BCAST_SUBNET:
21297 		if (ipif->ipif_subnet != bireinfop->bi_addr)
21298 			return (B_FALSE);
21299 		break;
21300 	}
21301 
21302 	bireinfop->bi_needrep = 1;
21303 	if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
21304 		if (bireinfop->bi_backup == NULL)
21305 			bireinfop->bi_backup = ipif;
21306 		return (B_FALSE);
21307 	}
21308 	return (B_TRUE);
21309 }
21310 
21311 /*
21312  * Create the broadcast IREs described by `bireinfop' on `ipif', and return
21313  * them ala ire_check_and_create_bcast().
21314  */
21315 static ire_t **
21316 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
21317 {
21318 	ipaddr_t mask, addr;
21319 
21320 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
21321 
21322 	addr = bireinfop->bi_addr;
21323 	irep = ire_create_bcast(ipif, addr, irep);
21324 
21325 	switch (bireinfop->bi_type) {
21326 	case BCAST_NET:
21327 		mask = ip_net_mask(ipif->ipif_subnet);
21328 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
21329 		break;
21330 	case BCAST_SUBNET:
21331 		mask = ipif->ipif_net_mask;
21332 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
21333 		break;
21334 	}
21335 
21336 	bireinfop->bi_haverep = 1;
21337 	return (irep);
21338 }
21339 
21340 /*
21341  * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
21342  * going away, and determine if any of the broadcast IREs (named by `bireinfop')
21343  * that are going away are still needed.  If so, have ipif_create_bcast()
21344  * recreate them (except for the deprecated case, as explained below).
21345  */
21346 static ire_t **
21347 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
21348     ire_t **irep)
21349 {
21350 	int i;
21351 	ipif_t *ipif;
21352 
21353 	ASSERT(!ill->ill_isv6);
21354 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
21355 		/*
21356 		 * Skip this ipif if it's (a) the one being taken down, (b)
21357 		 * not in the same zone, or (c) has no valid local address.
21358 		 */
21359 		if (ipif == test_ipif ||
21360 		    ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
21361 		    ipif->ipif_subnet == 0 ||
21362 		    (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
21363 		    (IPIF_UP|IPIF_BROADCAST))
21364 			continue;
21365 
21366 		/*
21367 		 * For each dying IRE that hasn't yet been replaced, see if
21368 		 * `ipif' needs it and whether the IRE should be recreated on
21369 		 * `ipif'.  If `ipif' is deprecated, ipif_consider_bcast()
21370 		 * will return B_FALSE even if `ipif' needs the IRE on the
21371 		 * hopes that we'll later find a needy non-deprecated ipif.
21372 		 * However, the ipif is recorded in bi_backup for possible
21373 		 * subsequent use by ipif_check_bcast_ires().
21374 		 */
21375 		for (i = 0; i < BCAST_COUNT; i++) {
21376 			if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
21377 				continue;
21378 			if (!ipif_consider_bcast(ipif, &bireinfo[i]))
21379 				continue;
21380 			irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
21381 		}
21382 
21383 		/*
21384 		 * If we've replaced all of the broadcast IREs that are going
21385 		 * to be taken down, we know we're done.
21386 		 */
21387 		for (i = 0; i < BCAST_COUNT; i++) {
21388 			if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
21389 				break;
21390 		}
21391 		if (i == BCAST_COUNT)
21392 			break;
21393 	}
21394 	return (irep);
21395 }
21396 
21397 /*
21398  * Check if `test_ipif' (which is going away) is associated with any existing
21399  * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
21400  * using those broadcast IREs.  If so, recreate the broadcast IREs on one or
21401  * more of those other ipifs.  (The old IREs will be deleted in ipif_down().)
21402  *
21403  * This is necessary because broadcast IREs are shared.  In particular, a
21404  * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
21405  * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
21406  * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
21407  * ipifs on.  Thus, if there are two IPIF_UP ipifs on the same subnet with the
21408  * same zone, they will share the same set of broadcast IREs.
21409  *
21410  * Note: the upper bound of 12 IREs comes from the worst case of replacing all
21411  * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
21412  * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
21413  */
21414 static void
21415 ipif_check_bcast_ires(ipif_t *test_ipif)
21416 {
21417 	ill_t		*ill = test_ipif->ipif_ill;
21418 	ire_t		*ire, *ire_array[12]; 		/* see note above */
21419 	ire_t		**irep1, **irep = &ire_array[0];
21420 	uint_t 		i, willdie;
21421 	ipaddr_t	mask = ip_net_mask(test_ipif->ipif_subnet);
21422 	bcast_ireinfo_t	bireinfo[BCAST_COUNT];
21423 
21424 	ASSERT(!test_ipif->ipif_isv6);
21425 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21426 
21427 	/*
21428 	 * No broadcast IREs for the LOOPBACK interface
21429 	 * or others such as point to point and IPIF_NOXMIT.
21430 	 */
21431 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21432 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21433 		return;
21434 
21435 	bzero(bireinfo, sizeof (bireinfo));
21436 	bireinfo[0].bi_type = BCAST_ALLZEROES;
21437 	bireinfo[0].bi_addr = 0;
21438 
21439 	bireinfo[1].bi_type = BCAST_ALLONES;
21440 	bireinfo[1].bi_addr = INADDR_BROADCAST;
21441 
21442 	bireinfo[2].bi_type = BCAST_NET;
21443 	bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
21444 
21445 	if (test_ipif->ipif_net_mask != 0)
21446 		mask = test_ipif->ipif_net_mask;
21447 	bireinfo[3].bi_type = BCAST_SUBNET;
21448 	bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
21449 
21450 	/*
21451 	 * Figure out what (if any) broadcast IREs will die as a result of
21452 	 * `test_ipif' going away.  If none will die, we're done.
21453 	 */
21454 	for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
21455 		ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
21456 		    test_ipif, ALL_ZONES, NULL,
21457 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
21458 		if (ire != NULL) {
21459 			willdie++;
21460 			bireinfo[i].bi_willdie = 1;
21461 			ire_refrele(ire);
21462 		}
21463 	}
21464 
21465 	if (willdie == 0)
21466 		return;
21467 
21468 	/*
21469 	 * Walk through all the ipifs that will be affected by the dying IREs,
21470 	 * and recreate the IREs as necessary.
21471 	 */
21472 	irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
21473 
21474 	/*
21475 	 * Scan through the set of broadcast IREs and see if there are any
21476 	 * that we need to replace that have not yet been replaced.  If so,
21477 	 * replace them using the appropriate backup ipif.
21478 	 */
21479 	for (i = 0; i < BCAST_COUNT; i++) {
21480 		if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
21481 			irep = ipif_create_bcast(bireinfo[i].bi_backup,
21482 			    &bireinfo[i], irep);
21483 	}
21484 
21485 	/*
21486 	 * If we can't create all of them, don't add any of them.  (Code in
21487 	 * ip_wput_ire() and ire_to_ill() assumes that we always have a
21488 	 * non-loopback copy and loopback copy for a given address.)
21489 	 */
21490 	for (irep1 = irep; irep1 > ire_array; ) {
21491 		irep1--;
21492 		if (*irep1 == NULL) {
21493 			ip0dbg(("ipif_check_bcast_ires: can't create "
21494 			    "IRE_BROADCAST, memory allocation failure\n"));
21495 			while (irep > ire_array) {
21496 				irep--;
21497 				if (*irep != NULL)
21498 					ire_delete(*irep);
21499 			}
21500 			return;
21501 		}
21502 	}
21503 
21504 	for (irep1 = irep; irep1 > ire_array; ) {
21505 		irep1--;
21506 		if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
21507 			ire_refrele(*irep1);		/* Held in ire_add */
21508 	}
21509 }
21510 
21511 /*
21512  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21513  * from lifr_flags and the name from lifr_name.
21514  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21515  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21516  * Returns EINPROGRESS when mp has been consumed by queueing it on
21517  * ill_pending_mp and the ioctl will complete in ip_rput.
21518  *
21519  * Can operate on either a module or a driver queue.
21520  * Returns an error if not a module queue.
21521  */
21522 /* ARGSUSED */
21523 int
21524 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21525     ip_ioctl_cmd_t *ipip, void *if_req)
21526 {
21527 	int	err;
21528 	ill_t	*ill;
21529 	struct lifreq *lifr = (struct lifreq *)if_req;
21530 
21531 	ASSERT(ipif != NULL);
21532 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21533 
21534 	if (q->q_next == NULL) {
21535 		ip1dbg((
21536 		    "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
21537 		return (EINVAL);
21538 	}
21539 
21540 	ill = (ill_t *)q->q_ptr;
21541 	/*
21542 	 * If we are not writer on 'q' then this interface exists already
21543 	 * and previous lookups (ipif_extract_lifreq()) found this ipif.
21544 	 * So return EALREADY
21545 	 */
21546 	if (ill != ipif->ipif_ill)
21547 		return (EALREADY);
21548 
21549 	if (ill->ill_name[0] != '\0')
21550 		return (EALREADY);
21551 
21552 	/*
21553 	 * Set all the flags. Allows all kinds of override. Provide some
21554 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21555 	 * unless there is either multicast/broadcast support in the driver
21556 	 * or it is a pt-pt link.
21557 	 */
21558 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21559 		/* Meaningless to IP thus don't allow them to be set. */
21560 		ip1dbg(("ip_setname: EINVAL 1\n"));
21561 		return (EINVAL);
21562 	}
21563 	/*
21564 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21565 	 * ill_bcast_addr_length info.
21566 	 */
21567 	if (!ill->ill_needs_attach &&
21568 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21569 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21570 	    ill->ill_bcast_addr_length == 0)) {
21571 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21572 		ip1dbg(("ip_setname: EINVAL 2\n"));
21573 		return (EINVAL);
21574 	}
21575 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21576 	    ((lifr->lifr_flags & IFF_IPV6) ||
21577 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21578 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21579 		ip1dbg(("ip_setname: EINVAL 3\n"));
21580 		return (EINVAL);
21581 	}
21582 	if (lifr->lifr_flags & IFF_UP) {
21583 		/* Can only be set with SIOCSLIFFLAGS */
21584 		ip1dbg(("ip_setname: EINVAL 4\n"));
21585 		return (EINVAL);
21586 	}
21587 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21588 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21589 		ip1dbg(("ip_setname: EINVAL 5\n"));
21590 		return (EINVAL);
21591 	}
21592 	/*
21593 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21594 	 */
21595 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21596 	    !(lifr->lifr_flags & IFF_IPV6) &&
21597 	    !(ipif->ipif_isv6)) {
21598 		ip1dbg(("ip_setname: EINVAL 6\n"));
21599 		return (EINVAL);
21600 	}
21601 
21602 	/*
21603 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21604 	 * we have all the flags here. So, we assign rather than we OR.
21605 	 * We can't OR the flags here because we don't want to set
21606 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21607 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21608 	 * on lifr_flags value here.
21609 	 */
21610 	/*
21611 	 * This ill has not been inserted into the global list.
21612 	 * So we are still single threaded and don't need any lock
21613 	 */
21614 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
21615 	    ~IFF_DUPLICATE;
21616 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
21617 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
21618 
21619 	/* We started off as V4. */
21620 	if (ill->ill_flags & ILLF_IPV6) {
21621 		ill->ill_phyint->phyint_illv6 = ill;
21622 		ill->ill_phyint->phyint_illv4 = NULL;
21623 	}
21624 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
21625 	return (err);
21626 }
21627 
21628 /* ARGSUSED */
21629 int
21630 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21631     ip_ioctl_cmd_t *ipip, void *if_req)
21632 {
21633 	/*
21634 	 * ill_phyint_reinit merged the v4 and v6 into a single
21635 	 * ipsq. Could also have become part of a ipmp group in the
21636 	 * process, and we might not have been able to complete the
21637 	 * slifname in ipif_set_values, if we could not become
21638 	 * exclusive.  If so restart it here
21639 	 */
21640 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21641 }
21642 
21643 /*
21644  * Return a pointer to the ipif which matches the index, IP version type and
21645  * zoneid.
21646  */
21647 ipif_t *
21648 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
21649     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
21650 {
21651 	ill_t	*ill;
21652 	ipsq_t  *ipsq;
21653 	phyint_t *phyi;
21654 	ipif_t	*ipif;
21655 
21656 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
21657 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
21658 
21659 	if (err != NULL)
21660 		*err = 0;
21661 
21662 	/*
21663 	 * Indexes are stored in the phyint - a common structure
21664 	 * to both IPv4 and IPv6.
21665 	 */
21666 
21667 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21668 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
21669 	    (void *) &index, NULL);
21670 	if (phyi != NULL) {
21671 		ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4;
21672 		if (ill == NULL) {
21673 			rw_exit(&ipst->ips_ill_g_lock);
21674 			if (err != NULL)
21675 				*err = ENXIO;
21676 			return (NULL);
21677 		}
21678 		GRAB_CONN_LOCK(q);
21679 		mutex_enter(&ill->ill_lock);
21680 		if (ILL_CAN_LOOKUP(ill)) {
21681 			for (ipif = ill->ill_ipif; ipif != NULL;
21682 			    ipif = ipif->ipif_next) {
21683 				if (IPIF_CAN_LOOKUP(ipif) &&
21684 				    (zoneid == ALL_ZONES ||
21685 				    zoneid == ipif->ipif_zoneid ||
21686 				    ipif->ipif_zoneid == ALL_ZONES)) {
21687 					ipif_refhold_locked(ipif);
21688 					mutex_exit(&ill->ill_lock);
21689 					RELEASE_CONN_LOCK(q);
21690 					rw_exit(&ipst->ips_ill_g_lock);
21691 					return (ipif);
21692 				}
21693 			}
21694 		} else if (ILL_CAN_WAIT(ill, q)) {
21695 			ipsq = ill->ill_phyint->phyint_ipsq;
21696 			mutex_enter(&ipsq->ipsq_lock);
21697 			rw_exit(&ipst->ips_ill_g_lock);
21698 			mutex_exit(&ill->ill_lock);
21699 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
21700 			mutex_exit(&ipsq->ipsq_lock);
21701 			RELEASE_CONN_LOCK(q);
21702 			*err = EINPROGRESS;
21703 			return (NULL);
21704 		}
21705 		mutex_exit(&ill->ill_lock);
21706 		RELEASE_CONN_LOCK(q);
21707 	}
21708 	rw_exit(&ipst->ips_ill_g_lock);
21709 	if (err != NULL)
21710 		*err = ENXIO;
21711 	return (NULL);
21712 }
21713 
21714 typedef struct conn_change_s {
21715 	uint_t cc_old_ifindex;
21716 	uint_t cc_new_ifindex;
21717 } conn_change_t;
21718 
21719 /*
21720  * ipcl_walk function for changing interface index.
21721  */
21722 static void
21723 conn_change_ifindex(conn_t *connp, caddr_t arg)
21724 {
21725 	conn_change_t *connc;
21726 	uint_t old_ifindex;
21727 	uint_t new_ifindex;
21728 	int i;
21729 	ilg_t *ilg;
21730 
21731 	connc = (conn_change_t *)arg;
21732 	old_ifindex = connc->cc_old_ifindex;
21733 	new_ifindex = connc->cc_new_ifindex;
21734 
21735 	if (connp->conn_orig_bound_ifindex == old_ifindex)
21736 		connp->conn_orig_bound_ifindex = new_ifindex;
21737 
21738 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
21739 		connp->conn_orig_multicast_ifindex = new_ifindex;
21740 
21741 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
21742 		connp->conn_orig_xmit_ifindex = new_ifindex;
21743 
21744 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
21745 		ilg = &connp->conn_ilg[i];
21746 		if (ilg->ilg_orig_ifindex == old_ifindex)
21747 			ilg->ilg_orig_ifindex = new_ifindex;
21748 	}
21749 }
21750 
21751 /*
21752  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
21753  * to new_index if it matches the old_index.
21754  *
21755  * Failovers typically happen within a group of ills. But somebody
21756  * can remove an ill from the group after a failover happened. If
21757  * we are setting the ifindex after this, we potentially need to
21758  * look at all the ills rather than just the ones in the group.
21759  * We cut down the work by looking at matching ill_net_types
21760  * and ill_types as we could not possibly grouped them together.
21761  */
21762 static void
21763 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
21764 {
21765 	ill_t *ill;
21766 	ipif_t *ipif;
21767 	uint_t old_ifindex;
21768 	uint_t new_ifindex;
21769 	ilm_t *ilm;
21770 	ill_walk_context_t ctx;
21771 	ip_stack_t	*ipst = ill_orig->ill_ipst;
21772 
21773 	old_ifindex = connc->cc_old_ifindex;
21774 	new_ifindex = connc->cc_new_ifindex;
21775 
21776 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21777 	ill = ILL_START_WALK_ALL(&ctx, ipst);
21778 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
21779 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
21780 		    (ill_orig->ill_type != ill->ill_type)) {
21781 			continue;
21782 		}
21783 		for (ipif = ill->ill_ipif; ipif != NULL;
21784 		    ipif = ipif->ipif_next) {
21785 			if (ipif->ipif_orig_ifindex == old_ifindex)
21786 				ipif->ipif_orig_ifindex = new_ifindex;
21787 		}
21788 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
21789 			if (ilm->ilm_orig_ifindex == old_ifindex)
21790 				ilm->ilm_orig_ifindex = new_ifindex;
21791 		}
21792 	}
21793 	rw_exit(&ipst->ips_ill_g_lock);
21794 }
21795 
21796 /*
21797  * We first need to ensure that the new index is unique, and
21798  * then carry the change across both v4 and v6 ill representation
21799  * of the physical interface.
21800  */
21801 /* ARGSUSED */
21802 int
21803 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21804     ip_ioctl_cmd_t *ipip, void *ifreq)
21805 {
21806 	ill_t		*ill;
21807 	ill_t		*ill_other;
21808 	phyint_t	*phyi;
21809 	int		old_index;
21810 	conn_change_t	connc;
21811 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21812 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21813 	uint_t	index;
21814 	ill_t	*ill_v4;
21815 	ill_t	*ill_v6;
21816 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
21817 
21818 	if (ipip->ipi_cmd_type == IF_CMD)
21819 		index = ifr->ifr_index;
21820 	else
21821 		index = lifr->lifr_index;
21822 
21823 	/*
21824 	 * Only allow on physical interface. Also, index zero is illegal.
21825 	 *
21826 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
21827 	 *
21828 	 * 1) If PHYI_FAILED is set, a failover could have happened which
21829 	 *    implies a possible failback might have to happen. As failback
21830 	 *    depends on the old index, we should fail setting the index.
21831 	 *
21832 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
21833 	 *    any addresses or multicast memberships are failed over to
21834 	 *    a non-STANDBY interface. As failback depends on the old
21835 	 *    index, we should fail setting the index for this case also.
21836 	 *
21837 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
21838 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
21839 	 */
21840 	ill = ipif->ipif_ill;
21841 	phyi = ill->ill_phyint;
21842 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
21843 	    ipif->ipif_id != 0 || index == 0) {
21844 		return (EINVAL);
21845 	}
21846 	old_index = phyi->phyint_ifindex;
21847 
21848 	/* If the index is not changing, no work to do */
21849 	if (old_index == index)
21850 		return (0);
21851 
21852 	/*
21853 	 * Use ill_lookup_on_ifindex to determine if the
21854 	 * new index is unused and if so allow the change.
21855 	 */
21856 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
21857 	    ipst);
21858 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
21859 	    ipst);
21860 	if (ill_v6 != NULL || ill_v4 != NULL) {
21861 		if (ill_v4 != NULL)
21862 			ill_refrele(ill_v4);
21863 		if (ill_v6 != NULL)
21864 			ill_refrele(ill_v6);
21865 		return (EBUSY);
21866 	}
21867 
21868 	/*
21869 	 * The new index is unused. Set it in the phyint.
21870 	 * Locate the other ill so that we can send a routing
21871 	 * sockets message.
21872 	 */
21873 	if (ill->ill_isv6) {
21874 		ill_other = phyi->phyint_illv4;
21875 	} else {
21876 		ill_other = phyi->phyint_illv6;
21877 	}
21878 
21879 	phyi->phyint_ifindex = index;
21880 
21881 	/* Update SCTP's ILL list */
21882 	sctp_ill_reindex(ill, old_index);
21883 
21884 	connc.cc_old_ifindex = old_index;
21885 	connc.cc_new_ifindex = index;
21886 	ip_change_ifindex(ill, &connc);
21887 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
21888 
21889 	/* Send the routing sockets message */
21890 	ip_rts_ifmsg(ipif);
21891 	if (ill_other != NULL)
21892 		ip_rts_ifmsg(ill_other->ill_ipif);
21893 
21894 	return (0);
21895 }
21896 
21897 /* ARGSUSED */
21898 int
21899 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21900     ip_ioctl_cmd_t *ipip, void *ifreq)
21901 {
21902 	struct ifreq	*ifr = (struct ifreq *)ifreq;
21903 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21904 
21905 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
21906 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21907 	/* Get the interface index */
21908 	if (ipip->ipi_cmd_type == IF_CMD) {
21909 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21910 	} else {
21911 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21912 	}
21913 	return (0);
21914 }
21915 
21916 /* ARGSUSED */
21917 int
21918 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21919     ip_ioctl_cmd_t *ipip, void *ifreq)
21920 {
21921 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21922 
21923 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
21924 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21925 	/* Get the interface zone */
21926 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21927 	lifr->lifr_zoneid = ipif->ipif_zoneid;
21928 	return (0);
21929 }
21930 
21931 /*
21932  * Set the zoneid of an interface.
21933  */
21934 /* ARGSUSED */
21935 int
21936 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21937     ip_ioctl_cmd_t *ipip, void *ifreq)
21938 {
21939 	struct lifreq	*lifr = (struct lifreq *)ifreq;
21940 	int err = 0;
21941 	boolean_t need_up = B_FALSE;
21942 	zone_t *zptr;
21943 	zone_status_t status;
21944 	zoneid_t zoneid;
21945 
21946 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21947 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
21948 		if (!is_system_labeled())
21949 			return (ENOTSUP);
21950 		zoneid = GLOBAL_ZONEID;
21951 	}
21952 
21953 	/* cannot assign instance zero to a non-global zone */
21954 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
21955 		return (ENOTSUP);
21956 
21957 	/*
21958 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
21959 	 * the event of a race with the zone shutdown processing, since IP
21960 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
21961 	 * interface will be cleaned up even if the zone is shut down
21962 	 * immediately after the status check. If the interface can't be brought
21963 	 * down right away, and the zone is shut down before the restart
21964 	 * function is called, we resolve the possible races by rechecking the
21965 	 * zone status in the restart function.
21966 	 */
21967 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
21968 		return (EINVAL);
21969 	status = zone_status_get(zptr);
21970 	zone_rele(zptr);
21971 
21972 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
21973 		return (EINVAL);
21974 
21975 	if (ipif->ipif_flags & IPIF_UP) {
21976 		/*
21977 		 * If the interface is already marked up,
21978 		 * we call ipif_down which will take care
21979 		 * of ditching any IREs that have been set
21980 		 * up based on the old interface address.
21981 		 */
21982 		err = ipif_logical_down(ipif, q, mp);
21983 		if (err == EINPROGRESS)
21984 			return (err);
21985 		ipif_down_tail(ipif);
21986 		need_up = B_TRUE;
21987 	}
21988 
21989 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
21990 	return (err);
21991 }
21992 
21993 static int
21994 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
21995     queue_t *q, mblk_t *mp, boolean_t need_up)
21996 {
21997 	int	err = 0;
21998 	ip_stack_t	*ipst;
21999 
22000 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
22001 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22002 
22003 	if (CONN_Q(q))
22004 		ipst = CONNQ_TO_IPST(q);
22005 	else
22006 		ipst = ILLQ_TO_IPST(q);
22007 
22008 	/*
22009 	 * For exclusive stacks we don't allow a different zoneid than
22010 	 * global.
22011 	 */
22012 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
22013 	    zoneid != GLOBAL_ZONEID)
22014 		return (EINVAL);
22015 
22016 	/* Set the new zone id. */
22017 	ipif->ipif_zoneid = zoneid;
22018 
22019 	/* Update sctp list */
22020 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
22021 
22022 	if (need_up) {
22023 		/*
22024 		 * Now bring the interface back up.  If this
22025 		 * is the only IPIF for the ILL, ipif_up
22026 		 * will have to re-bind to the device, so
22027 		 * we may get back EINPROGRESS, in which
22028 		 * case, this IOCTL will get completed in
22029 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22030 		 */
22031 		err = ipif_up(ipif, q, mp);
22032 	}
22033 	return (err);
22034 }
22035 
22036 /* ARGSUSED */
22037 int
22038 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22039     ip_ioctl_cmd_t *ipip, void *if_req)
22040 {
22041 	struct lifreq *lifr = (struct lifreq *)if_req;
22042 	zoneid_t zoneid;
22043 	zone_t *zptr;
22044 	zone_status_t status;
22045 
22046 	ASSERT(ipif->ipif_id != 0);
22047 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22048 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22049 		zoneid = GLOBAL_ZONEID;
22050 
22051 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22052 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22053 
22054 	/*
22055 	 * We recheck the zone status to resolve the following race condition:
22056 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22057 	 * 2) hme0:1 is up and can't be brought down right away;
22058 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22059 	 * 3) zone "myzone" is halted; the zone status switches to
22060 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22061 	 * the interfaces to remove - hme0:1 is not returned because it's not
22062 	 * yet in "myzone", so it won't be removed;
22063 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22064 	 * status check here, we would have hme0:1 in "myzone" after it's been
22065 	 * destroyed.
22066 	 * Note that if the status check fails, we need to bring the interface
22067 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22068 	 * ipif_up_done[_v6]().
22069 	 */
22070 	status = ZONE_IS_UNINITIALIZED;
22071 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22072 		status = zone_status_get(zptr);
22073 		zone_rele(zptr);
22074 	}
22075 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22076 		if (ipif->ipif_isv6) {
22077 			(void) ipif_up_done_v6(ipif);
22078 		} else {
22079 			(void) ipif_up_done(ipif);
22080 		}
22081 		return (EINVAL);
22082 	}
22083 
22084 	ipif_down_tail(ipif);
22085 
22086 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22087 	    B_TRUE));
22088 }
22089 
22090 /* ARGSUSED */
22091 int
22092 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22093 	ip_ioctl_cmd_t *ipip, void *ifreq)
22094 {
22095 	struct lifreq	*lifr = ifreq;
22096 
22097 	ASSERT(q->q_next == NULL);
22098 	ASSERT(CONN_Q(q));
22099 
22100 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22101 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22102 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22103 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22104 
22105 	return (0);
22106 }
22107 
22108 
22109 /* Find the previous ILL in this usesrc group */
22110 static ill_t *
22111 ill_prev_usesrc(ill_t *uill)
22112 {
22113 	ill_t *ill;
22114 
22115 	for (ill = uill->ill_usesrc_grp_next;
22116 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22117 	    ill = ill->ill_usesrc_grp_next)
22118 		/* do nothing */;
22119 	return (ill);
22120 }
22121 
22122 /*
22123  * Release all members of the usesrc group. This routine is called
22124  * from ill_delete when the interface being unplumbed is the
22125  * group head.
22126  */
22127 static void
22128 ill_disband_usesrc_group(ill_t *uill)
22129 {
22130 	ill_t *next_ill, *tmp_ill;
22131 	ip_stack_t	*ipst = uill->ill_ipst;
22132 
22133 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22134 	next_ill = uill->ill_usesrc_grp_next;
22135 
22136 	do {
22137 		ASSERT(next_ill != NULL);
22138 		tmp_ill = next_ill->ill_usesrc_grp_next;
22139 		ASSERT(tmp_ill != NULL);
22140 		next_ill->ill_usesrc_grp_next = NULL;
22141 		next_ill->ill_usesrc_ifindex = 0;
22142 		next_ill = tmp_ill;
22143 	} while (next_ill->ill_usesrc_ifindex != 0);
22144 	uill->ill_usesrc_grp_next = NULL;
22145 }
22146 
22147 /*
22148  * Remove the client usesrc ILL from the list and relink to a new list
22149  */
22150 int
22151 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22152 {
22153 	ill_t *ill, *tmp_ill;
22154 	ip_stack_t	*ipst = ucill->ill_ipst;
22155 
22156 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22157 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22158 
22159 	/*
22160 	 * Check if the usesrc client ILL passed in is not already
22161 	 * in use as a usesrc ILL i.e one whose source address is
22162 	 * in use OR a usesrc ILL is not already in use as a usesrc
22163 	 * client ILL
22164 	 */
22165 	if ((ucill->ill_usesrc_ifindex == 0) ||
22166 	    (uill->ill_usesrc_ifindex != 0)) {
22167 		return (-1);
22168 	}
22169 
22170 	ill = ill_prev_usesrc(ucill);
22171 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22172 
22173 	/* Remove from the current list */
22174 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22175 		/* Only two elements in the list */
22176 		ASSERT(ill->ill_usesrc_ifindex == 0);
22177 		ill->ill_usesrc_grp_next = NULL;
22178 	} else {
22179 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22180 	}
22181 
22182 	if (ifindex == 0) {
22183 		ucill->ill_usesrc_ifindex = 0;
22184 		ucill->ill_usesrc_grp_next = NULL;
22185 		return (0);
22186 	}
22187 
22188 	ucill->ill_usesrc_ifindex = ifindex;
22189 	tmp_ill = uill->ill_usesrc_grp_next;
22190 	uill->ill_usesrc_grp_next = ucill;
22191 	ucill->ill_usesrc_grp_next =
22192 	    (tmp_ill != NULL) ? tmp_ill : uill;
22193 	return (0);
22194 }
22195 
22196 /*
22197  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22198  * ip.c for locking details.
22199  */
22200 /* ARGSUSED */
22201 int
22202 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22203     ip_ioctl_cmd_t *ipip, void *ifreq)
22204 {
22205 	struct lifreq *lifr = (struct lifreq *)ifreq;
22206 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22207 	    ill_flag_changed = B_FALSE;
22208 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22209 	int err = 0, ret;
22210 	uint_t ifindex;
22211 	phyint_t *us_phyint, *us_cli_phyint;
22212 	ipsq_t *ipsq = NULL;
22213 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22214 
22215 	ASSERT(IAM_WRITER_IPIF(ipif));
22216 	ASSERT(q->q_next == NULL);
22217 	ASSERT(CONN_Q(q));
22218 
22219 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22220 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22221 
22222 	ASSERT(us_cli_phyint != NULL);
22223 
22224 	/*
22225 	 * If the client ILL is being used for IPMP, abort.
22226 	 * Note, this can be done before ipsq_try_enter since we are already
22227 	 * exclusive on this ILL
22228 	 */
22229 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22230 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22231 		return (EINVAL);
22232 	}
22233 
22234 	ifindex = lifr->lifr_index;
22235 	if (ifindex == 0) {
22236 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22237 			/* non usesrc group interface, nothing to reset */
22238 			return (0);
22239 		}
22240 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22241 		/* valid reset request */
22242 		reset_flg = B_TRUE;
22243 	}
22244 
22245 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22246 	    ip_process_ioctl, &err, ipst);
22247 
22248 	if (usesrc_ill == NULL) {
22249 		return (err);
22250 	}
22251 
22252 	/*
22253 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22254 	 * group nor can either of the interfaces be used for standy. So
22255 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22256 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22257 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22258 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22259 	 * the usesrc_cli_ill
22260 	 */
22261 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22262 	    NEW_OP, B_TRUE);
22263 	if (ipsq == NULL) {
22264 		err = EINPROGRESS;
22265 		/* Operation enqueued on the ipsq of the usesrc ILL */
22266 		goto done;
22267 	}
22268 
22269 	/* Check if the usesrc_ill is used for IPMP */
22270 	us_phyint = usesrc_ill->ill_phyint;
22271 	if ((us_phyint->phyint_groupname != NULL) ||
22272 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22273 		err = EINVAL;
22274 		goto done;
22275 	}
22276 
22277 	/*
22278 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22279 	 * already a client then return EINVAL
22280 	 */
22281 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22282 		err = EINVAL;
22283 		goto done;
22284 	}
22285 
22286 	/*
22287 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22288 	 * be then this is a duplicate operation.
22289 	 */
22290 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22291 		err = 0;
22292 		goto done;
22293 	}
22294 
22295 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22296 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22297 	    usesrc_ill->ill_isv6));
22298 
22299 	/*
22300 	 * The next step ensures that no new ires will be created referencing
22301 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22302 	 * we go through an ire walk deleting all ire caches that reference
22303 	 * the client ill. New ires referencing the client ill that are added
22304 	 * to the ire table before the ILL_CHANGING flag is set, will be
22305 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22306 	 * the client ill while the ILL_CHANGING flag is set will be failed
22307 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22308 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22309 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22310 	 * belong to the same usesrc group.
22311 	 */
22312 	mutex_enter(&usesrc_cli_ill->ill_lock);
22313 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22314 	mutex_exit(&usesrc_cli_ill->ill_lock);
22315 	ill_flag_changed = B_TRUE;
22316 
22317 	if (ipif->ipif_isv6)
22318 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22319 		    ALL_ZONES, ipst);
22320 	else
22321 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22322 		    ALL_ZONES, ipst);
22323 
22324 	/*
22325 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22326 	 * and the ill_usesrc_ifindex fields
22327 	 */
22328 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22329 
22330 	if (reset_flg) {
22331 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22332 		if (ret != 0) {
22333 			err = EINVAL;
22334 		}
22335 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
22336 		goto done;
22337 	}
22338 
22339 	/*
22340 	 * Four possibilities to consider:
22341 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22342 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22343 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22344 	 * 4. Both are part of their respective usesrc groups
22345 	 */
22346 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22347 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22348 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22349 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22350 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22351 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22352 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22353 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22354 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22355 		/* Insert at head of list */
22356 		usesrc_cli_ill->ill_usesrc_grp_next =
22357 		    usesrc_ill->ill_usesrc_grp_next;
22358 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22359 	} else {
22360 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22361 		    ifindex);
22362 		if (ret != 0)
22363 			err = EINVAL;
22364 	}
22365 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
22366 
22367 done:
22368 	if (ill_flag_changed) {
22369 		mutex_enter(&usesrc_cli_ill->ill_lock);
22370 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22371 		mutex_exit(&usesrc_cli_ill->ill_lock);
22372 	}
22373 	if (ipsq != NULL)
22374 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22375 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22376 	ill_refrele(usesrc_ill);
22377 	return (err);
22378 }
22379 
22380 /*
22381  * comparison function used by avl.
22382  */
22383 static int
22384 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22385 {
22386 
22387 	uint_t index;
22388 
22389 	ASSERT(phyip != NULL && index_ptr != NULL);
22390 
22391 	index = *((uint_t *)index_ptr);
22392 	/*
22393 	 * let the phyint with the lowest index be on top.
22394 	 */
22395 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22396 		return (1);
22397 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22398 		return (-1);
22399 	return (0);
22400 }
22401 
22402 /*
22403  * comparison function used by avl.
22404  */
22405 static int
22406 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22407 {
22408 	ill_t *ill;
22409 	int res = 0;
22410 
22411 	ASSERT(phyip != NULL && name_ptr != NULL);
22412 
22413 	if (((phyint_t *)phyip)->phyint_illv4)
22414 		ill = ((phyint_t *)phyip)->phyint_illv4;
22415 	else
22416 		ill = ((phyint_t *)phyip)->phyint_illv6;
22417 	ASSERT(ill != NULL);
22418 
22419 	res = strcmp(ill->ill_name, (char *)name_ptr);
22420 	if (res > 0)
22421 		return (1);
22422 	else if (res < 0)
22423 		return (-1);
22424 	return (0);
22425 }
22426 /*
22427  * This function is called from ill_delete when the ill is being
22428  * unplumbed. We remove the reference from the phyint and we also
22429  * free the phyint when there are no more references to it.
22430  */
22431 static void
22432 ill_phyint_free(ill_t *ill)
22433 {
22434 	phyint_t *phyi;
22435 	phyint_t *next_phyint;
22436 	ipsq_t *cur_ipsq;
22437 	ip_stack_t	*ipst = ill->ill_ipst;
22438 
22439 	ASSERT(ill->ill_phyint != NULL);
22440 
22441 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22442 	phyi = ill->ill_phyint;
22443 	ill->ill_phyint = NULL;
22444 	/*
22445 	 * ill_init allocates a phyint always to store the copy
22446 	 * of flags relevant to phyint. At that point in time, we could
22447 	 * not assign the name and hence phyint_illv4/v6 could not be
22448 	 * initialized. Later in ipif_set_values, we assign the name to
22449 	 * the ill, at which point in time we assign phyint_illv4/v6.
22450 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22451 	 */
22452 	if (ill->ill_flags & ILLF_IPV6) {
22453 		phyi->phyint_illv6 = NULL;
22454 	} else {
22455 		phyi->phyint_illv4 = NULL;
22456 	}
22457 	/*
22458 	 * ipif_down removes it from the group when the last ipif goes
22459 	 * down.
22460 	 */
22461 	ASSERT(ill->ill_group == NULL);
22462 
22463 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22464 		return;
22465 
22466 	/*
22467 	 * Make sure this phyint was put in the list.
22468 	 */
22469 	if (phyi->phyint_ifindex > 0) {
22470 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22471 		    phyi);
22472 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22473 		    phyi);
22474 	}
22475 	/*
22476 	 * remove phyint from the ipsq list.
22477 	 */
22478 	cur_ipsq = phyi->phyint_ipsq;
22479 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22480 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22481 	} else {
22482 		next_phyint = cur_ipsq->ipsq_phyint_list;
22483 		while (next_phyint != NULL) {
22484 			if (next_phyint->phyint_ipsq_next == phyi) {
22485 				next_phyint->phyint_ipsq_next =
22486 				    phyi->phyint_ipsq_next;
22487 				break;
22488 			}
22489 			next_phyint = next_phyint->phyint_ipsq_next;
22490 		}
22491 		ASSERT(next_phyint != NULL);
22492 	}
22493 	IPSQ_DEC_REF(cur_ipsq, ipst);
22494 
22495 	if (phyi->phyint_groupname_len != 0) {
22496 		ASSERT(phyi->phyint_groupname != NULL);
22497 		mi_free(phyi->phyint_groupname);
22498 	}
22499 	mi_free(phyi);
22500 }
22501 
22502 /*
22503  * Attach the ill to the phyint structure which can be shared by both
22504  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22505  * function is called from ipif_set_values and ill_lookup_on_name (for
22506  * loopback) where we know the name of the ill. We lookup the ill and if
22507  * there is one present already with the name use that phyint. Otherwise
22508  * reuse the one allocated by ill_init.
22509  */
22510 static void
22511 ill_phyint_reinit(ill_t *ill)
22512 {
22513 	boolean_t isv6 = ill->ill_isv6;
22514 	phyint_t *phyi_old;
22515 	phyint_t *phyi;
22516 	avl_index_t where = 0;
22517 	ill_t	*ill_other = NULL;
22518 	ipsq_t	*ipsq;
22519 	ip_stack_t	*ipst = ill->ill_ipst;
22520 
22521 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22522 
22523 	phyi_old = ill->ill_phyint;
22524 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22525 	    phyi_old->phyint_illv6 == NULL));
22526 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22527 	    phyi_old->phyint_illv4 == NULL));
22528 	ASSERT(phyi_old->phyint_ifindex == 0);
22529 
22530 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22531 	    ill->ill_name, &where);
22532 
22533 	/*
22534 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22535 	 *    the global list of ills. So no other thread could have located
22536 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22537 	 * 2. Now locate the other protocol instance of this ill.
22538 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22539 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22540 	 *    of neither ill can change.
22541 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22542 	 *    other ill.
22543 	 * 5. Release all locks.
22544 	 */
22545 
22546 	/*
22547 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22548 	 * we are initializing IPv4.
22549 	 */
22550 	if (phyi != NULL) {
22551 		ill_other = (isv6) ? phyi->phyint_illv4 :
22552 		    phyi->phyint_illv6;
22553 		ASSERT(ill_other->ill_phyint != NULL);
22554 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22555 		    (!isv6 && ill_other->ill_isv6));
22556 		GRAB_ILL_LOCKS(ill, ill_other);
22557 		/*
22558 		 * We are potentially throwing away phyint_flags which
22559 		 * could be different from the one that we obtain from
22560 		 * ill_other->ill_phyint. But it is okay as we are assuming
22561 		 * that the state maintained within IP is correct.
22562 		 */
22563 		mutex_enter(&phyi->phyint_lock);
22564 		if (isv6) {
22565 			ASSERT(phyi->phyint_illv6 == NULL);
22566 			phyi->phyint_illv6 = ill;
22567 		} else {
22568 			ASSERT(phyi->phyint_illv4 == NULL);
22569 			phyi->phyint_illv4 = ill;
22570 		}
22571 		/*
22572 		 * This is a new ill, currently undergoing SLIFNAME
22573 		 * So we could not have joined an IPMP group until now.
22574 		 */
22575 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22576 		    phyi_old->phyint_groupname == NULL);
22577 
22578 		/*
22579 		 * This phyi_old is going away. Decref ipsq_refs and
22580 		 * assert it is zero. The ipsq itself will be freed in
22581 		 * ipsq_exit
22582 		 */
22583 		ipsq = phyi_old->phyint_ipsq;
22584 		IPSQ_DEC_REF(ipsq, ipst);
22585 		ASSERT(ipsq->ipsq_refs == 0);
22586 		/* Get the singleton phyint out of the ipsq list */
22587 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22588 		ipsq->ipsq_phyint_list = NULL;
22589 		phyi_old->phyint_illv4 = NULL;
22590 		phyi_old->phyint_illv6 = NULL;
22591 		mi_free(phyi_old);
22592 	} else {
22593 		mutex_enter(&ill->ill_lock);
22594 		/*
22595 		 * We don't need to acquire any lock, since
22596 		 * the ill is not yet visible globally  and we
22597 		 * have not yet released the ill_g_lock.
22598 		 */
22599 		phyi = phyi_old;
22600 		mutex_enter(&phyi->phyint_lock);
22601 		/* XXX We need a recovery strategy here. */
22602 		if (!phyint_assign_ifindex(phyi, ipst))
22603 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22604 
22605 		/* No IPMP group yet, thus the hook uses the ifindex */
22606 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
22607 
22608 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22609 		    (void *)phyi, where);
22610 
22611 		(void) avl_find(&ipst->ips_phyint_g_list->
22612 		    phyint_list_avl_by_index,
22613 		    &phyi->phyint_ifindex, &where);
22614 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22615 		    (void *)phyi, where);
22616 	}
22617 
22618 	/*
22619 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
22620 	 * pending mp is not affected because that is per ill basis.
22621 	 */
22622 	ill->ill_phyint = phyi;
22623 
22624 	/*
22625 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
22626 	 * We do this here as when the first ipif was allocated,
22627 	 * ipif_allocate does not know the right interface index.
22628 	 */
22629 
22630 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
22631 	/*
22632 	 * Now that the phyint's ifindex has been assigned, complete the
22633 	 * remaining
22634 	 */
22635 
22636 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
22637 	if (ill->ill_isv6) {
22638 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
22639 		    ill->ill_phyint->phyint_ifindex;
22640 		ill->ill_mcast_type = ipst->ips_mld_max_version;
22641 	} else {
22642 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
22643 	}
22644 
22645 	/*
22646 	 * Generate an event within the hooks framework to indicate that
22647 	 * a new interface has just been added to IP.  For this event to
22648 	 * be generated, the network interface must, at least, have an
22649 	 * ifindex assigned to it.
22650 	 *
22651 	 * This needs to be run inside the ill_g_lock perimeter to ensure
22652 	 * that the ordering of delivered events to listeners matches the
22653 	 * order of them in the kernel.
22654 	 *
22655 	 * This function could be called from ill_lookup_on_name. In that case
22656 	 * the interface is loopback "lo", which will not generate a NIC event.
22657 	 */
22658 	if (ill->ill_name_length <= 2 ||
22659 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
22660 		/*
22661 		 * Generate nic plumb event for ill_name even if
22662 		 * ipmp_hook_emulation is set. That avoids generating events
22663 		 * for the ill_names should ipmp_hook_emulation be turned on
22664 		 * later.
22665 		 */
22666 		ill_nic_info_plumb(ill, B_FALSE);
22667 	}
22668 	RELEASE_ILL_LOCKS(ill, ill_other);
22669 	mutex_exit(&phyi->phyint_lock);
22670 }
22671 
22672 /*
22673  * Allocate a NE_PLUMB nic info event and store in the ill.
22674  * If 'group' is set we do it for the group name, otherwise the ill name.
22675  * It will be sent when we leave the ipsq.
22676  */
22677 void
22678 ill_nic_info_plumb(ill_t *ill, boolean_t group)
22679 {
22680 	phyint_t	*phyi = ill->ill_phyint;
22681 	ip_stack_t	*ipst = ill->ill_ipst;
22682 	hook_nic_event_t *info;
22683 	char		*name;
22684 	int		namelen;
22685 
22686 	ASSERT(MUTEX_HELD(&ill->ill_lock));
22687 
22688 	if ((info = ill->ill_nic_event_info) != NULL) {
22689 		ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
22690 		    "attached for %s\n", info->hne_event,
22691 		    ill->ill_name));
22692 		if (info->hne_data != NULL)
22693 			kmem_free(info->hne_data, info->hne_datalen);
22694 		kmem_free(info, sizeof (hook_nic_event_t));
22695 		ill->ill_nic_event_info = NULL;
22696 	}
22697 
22698 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
22699 	if (info == NULL) {
22700 		ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
22701 		    "event information for %s (ENOMEM)\n",
22702 		    ill->ill_name));
22703 		return;
22704 	}
22705 
22706 	if (group) {
22707 		ASSERT(phyi->phyint_groupname_len != 0);
22708 		namelen = phyi->phyint_groupname_len;
22709 		name = phyi->phyint_groupname;
22710 	} else {
22711 		namelen = ill->ill_name_length;
22712 		name = ill->ill_name;
22713 	}
22714 
22715 	info->hne_nic = phyi->phyint_hook_ifindex;
22716 	info->hne_lif = 0;
22717 	info->hne_event = NE_PLUMB;
22718 	info->hne_family = ill->ill_isv6 ?
22719 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
22720 
22721 	info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
22722 	if (info->hne_data != NULL) {
22723 		info->hne_datalen = namelen;
22724 		bcopy(name, info->hne_data, info->hne_datalen);
22725 	} else {
22726 		ip2dbg(("ill_nic_info_plumb: could not attach "
22727 		    "name information for PLUMB nic event "
22728 		    "of %s (ENOMEM)\n", name));
22729 		kmem_free(info, sizeof (hook_nic_event_t));
22730 		info = NULL;
22731 	}
22732 	ill->ill_nic_event_info = info;
22733 }
22734 
22735 /*
22736  * Unhook the nic event message from the ill and enqueue it
22737  * into the nic event taskq.
22738  */
22739 void
22740 ill_nic_info_dispatch(ill_t *ill)
22741 {
22742 	hook_nic_event_t *info;
22743 
22744 	ASSERT(MUTEX_HELD(&ill->ill_lock));
22745 
22746 	if ((info = ill->ill_nic_event_info) != NULL) {
22747 		if (ddi_taskq_dispatch(eventq_queue_nic,
22748 		    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
22749 			ip2dbg(("ill_nic_info_dispatch: "
22750 			    "ddi_taskq_dispatch failed\n"));
22751 			if (info->hne_data != NULL)
22752 				kmem_free(info->hne_data, info->hne_datalen);
22753 			kmem_free(info, sizeof (hook_nic_event_t));
22754 		}
22755 		ill->ill_nic_event_info = NULL;
22756 	}
22757 }
22758 
22759 /*
22760  * Notify any downstream modules of the name of this interface.
22761  * An M_IOCTL is used even though we don't expect a successful reply.
22762  * Any reply message from the driver (presumably an M_IOCNAK) will
22763  * eventually get discarded somewhere upstream.  The message format is
22764  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
22765  * to IP.
22766  */
22767 static void
22768 ip_ifname_notify(ill_t *ill, queue_t *q)
22769 {
22770 	mblk_t *mp1, *mp2;
22771 	struct iocblk *iocp;
22772 	struct lifreq *lifr;
22773 
22774 	mp1 = mkiocb(SIOCSLIFNAME);
22775 	if (mp1 == NULL)
22776 		return;
22777 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
22778 	if (mp2 == NULL) {
22779 		freeb(mp1);
22780 		return;
22781 	}
22782 
22783 	mp1->b_cont = mp2;
22784 	iocp = (struct iocblk *)mp1->b_rptr;
22785 	iocp->ioc_count = sizeof (struct lifreq);
22786 
22787 	lifr = (struct lifreq *)mp2->b_rptr;
22788 	mp2->b_wptr += sizeof (struct lifreq);
22789 	bzero(lifr, sizeof (struct lifreq));
22790 
22791 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
22792 	lifr->lifr_ppa = ill->ill_ppa;
22793 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
22794 
22795 	putnext(q, mp1);
22796 }
22797 
22798 static int
22799 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
22800 {
22801 	int err;
22802 	ip_stack_t	*ipst = ill->ill_ipst;
22803 
22804 	/* Set the obsolete NDD per-interface forwarding name. */
22805 	err = ill_set_ndd_name(ill);
22806 	if (err != 0) {
22807 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
22808 		    err);
22809 	}
22810 
22811 	/* Tell downstream modules where they are. */
22812 	ip_ifname_notify(ill, q);
22813 
22814 	/*
22815 	 * ill_dl_phys returns EINPROGRESS in the usual case.
22816 	 * Error cases are ENOMEM ...
22817 	 */
22818 	err = ill_dl_phys(ill, ipif, mp, q);
22819 
22820 	/*
22821 	 * If there is no IRE expiration timer running, get one started.
22822 	 * igmp and mld timers will be triggered by the first multicast
22823 	 */
22824 	if (ipst->ips_ip_ire_expire_id == 0) {
22825 		/*
22826 		 * acquire the lock and check again.
22827 		 */
22828 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
22829 		if (ipst->ips_ip_ire_expire_id == 0) {
22830 			ipst->ips_ip_ire_expire_id = timeout(
22831 			    ip_trash_timer_expire, ipst,
22832 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
22833 		}
22834 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
22835 	}
22836 
22837 	if (ill->ill_isv6) {
22838 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
22839 		if (ipst->ips_mld_slowtimeout_id == 0) {
22840 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
22841 			    (void *)ipst,
22842 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22843 		}
22844 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
22845 	} else {
22846 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
22847 		if (ipst->ips_igmp_slowtimeout_id == 0) {
22848 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
22849 			    (void *)ipst,
22850 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22851 		}
22852 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
22853 	}
22854 
22855 	return (err);
22856 }
22857 
22858 /*
22859  * Common routine for ppa and ifname setting. Should be called exclusive.
22860  *
22861  * Returns EINPROGRESS when mp has been consumed by queueing it on
22862  * ill_pending_mp and the ioctl will complete in ip_rput.
22863  *
22864  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
22865  * the new name and new ppa in lifr_name and lifr_ppa respectively.
22866  * For SLIFNAME, we pass these values back to the userland.
22867  */
22868 static int
22869 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
22870 {
22871 	ill_t	*ill;
22872 	ipif_t	*ipif;
22873 	ipsq_t	*ipsq;
22874 	char	*ppa_ptr;
22875 	char	*old_ptr;
22876 	char	old_char;
22877 	int	error;
22878 	ip_stack_t	*ipst;
22879 
22880 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
22881 	ASSERT(q->q_next != NULL);
22882 	ASSERT(interf_name != NULL);
22883 
22884 	ill = (ill_t *)q->q_ptr;
22885 	ipst = ill->ill_ipst;
22886 
22887 	ASSERT(ill->ill_ipst != NULL);
22888 	ASSERT(ill->ill_name[0] == '\0');
22889 	ASSERT(IAM_WRITER_ILL(ill));
22890 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
22891 	ASSERT(ill->ill_ppa == UINT_MAX);
22892 
22893 	/* The ppa is sent down by ifconfig or is chosen */
22894 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
22895 		return (EINVAL);
22896 	}
22897 
22898 	/*
22899 	 * make sure ppa passed in is same as ppa in the name.
22900 	 * This check is not made when ppa == UINT_MAX in that case ppa
22901 	 * in the name could be anything. System will choose a ppa and
22902 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
22903 	 */
22904 	if (*new_ppa_ptr != UINT_MAX) {
22905 		/* stoi changes the pointer */
22906 		old_ptr = ppa_ptr;
22907 		/*
22908 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
22909 		 * (they don't have an externally visible ppa).  We assign one
22910 		 * here so that we can manage the interface.  Note that in
22911 		 * the past this value was always 0 for DLPI 1 drivers.
22912 		 */
22913 		if (*new_ppa_ptr == 0)
22914 			*new_ppa_ptr = stoi(&old_ptr);
22915 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
22916 			return (EINVAL);
22917 	}
22918 	/*
22919 	 * terminate string before ppa
22920 	 * save char at that location.
22921 	 */
22922 	old_char = ppa_ptr[0];
22923 	ppa_ptr[0] = '\0';
22924 
22925 	ill->ill_ppa = *new_ppa_ptr;
22926 	/*
22927 	 * Finish as much work now as possible before calling ill_glist_insert
22928 	 * which makes the ill globally visible and also merges it with the
22929 	 * other protocol instance of this phyint. The remaining work is
22930 	 * done after entering the ipsq which may happen sometime later.
22931 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
22932 	 */
22933 	ipif = ill->ill_ipif;
22934 
22935 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
22936 	ipif_assign_seqid(ipif);
22937 
22938 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
22939 		ill->ill_flags |= ILLF_IPV4;
22940 
22941 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
22942 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
22943 
22944 	if (ill->ill_flags & ILLF_IPV6) {
22945 
22946 		ill->ill_isv6 = B_TRUE;
22947 		if (ill->ill_rq != NULL) {
22948 			ill->ill_rq->q_qinfo = &rinit_ipv6;
22949 			ill->ill_wq->q_qinfo = &winit_ipv6;
22950 		}
22951 
22952 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
22953 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
22954 		ipif->ipif_v6src_addr = ipv6_all_zeros;
22955 		ipif->ipif_v6subnet = ipv6_all_zeros;
22956 		ipif->ipif_v6net_mask = ipv6_all_zeros;
22957 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
22958 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
22959 		/*
22960 		 * point-to-point or Non-mulicast capable
22961 		 * interfaces won't do NUD unless explicitly
22962 		 * configured to do so.
22963 		 */
22964 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
22965 		    !(ill->ill_flags & ILLF_MULTICAST)) {
22966 			ill->ill_flags |= ILLF_NONUD;
22967 		}
22968 		/* Make sure IPv4 specific flag is not set on IPv6 if */
22969 		if (ill->ill_flags & ILLF_NOARP) {
22970 			/*
22971 			 * Note: xresolv interfaces will eventually need
22972 			 * NOARP set here as well, but that will require
22973 			 * those external resolvers to have some
22974 			 * knowledge of that flag and act appropriately.
22975 			 * Not to be changed at present.
22976 			 */
22977 			ill->ill_flags &= ~ILLF_NOARP;
22978 		}
22979 		/*
22980 		 * Set the ILLF_ROUTER flag according to the global
22981 		 * IPv6 forwarding policy.
22982 		 */
22983 		if (ipst->ips_ipv6_forward != 0)
22984 			ill->ill_flags |= ILLF_ROUTER;
22985 	} else if (ill->ill_flags & ILLF_IPV4) {
22986 		ill->ill_isv6 = B_FALSE;
22987 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
22988 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
22989 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
22990 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
22991 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
22992 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
22993 		/*
22994 		 * Set the ILLF_ROUTER flag according to the global
22995 		 * IPv4 forwarding policy.
22996 		 */
22997 		if (ipst->ips_ip_g_forward != 0)
22998 			ill->ill_flags |= ILLF_ROUTER;
22999 	}
23000 
23001 	ASSERT(ill->ill_phyint != NULL);
23002 
23003 	/*
23004 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
23005 	 * be completed in ill_glist_insert -> ill_phyint_reinit
23006 	 */
23007 	if (!ill_allocate_mibs(ill))
23008 		return (ENOMEM);
23009 
23010 	/*
23011 	 * Pick a default sap until we get the DL_INFO_ACK back from
23012 	 * the driver.
23013 	 */
23014 	if (ill->ill_sap == 0) {
23015 		if (ill->ill_isv6)
23016 			ill->ill_sap  = IP6_DL_SAP;
23017 		else
23018 			ill->ill_sap  = IP_DL_SAP;
23019 	}
23020 
23021 	ill->ill_ifname_pending = 1;
23022 	ill->ill_ifname_pending_err = 0;
23023 
23024 	ill_refhold(ill);
23025 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23026 	if ((error = ill_glist_insert(ill, interf_name,
23027 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23028 		ill->ill_ppa = UINT_MAX;
23029 		ill->ill_name[0] = '\0';
23030 		/*
23031 		 * undo null termination done above.
23032 		 */
23033 		ppa_ptr[0] = old_char;
23034 		rw_exit(&ipst->ips_ill_g_lock);
23035 		ill_refrele(ill);
23036 		return (error);
23037 	}
23038 
23039 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23040 
23041 	/*
23042 	 * When we return the buffer pointed to by interf_name should contain
23043 	 * the same name as in ill_name.
23044 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23045 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23046 	 * so copy full name and update the ppa ptr.
23047 	 * When ppa passed in != UINT_MAX all values are correct just undo
23048 	 * null termination, this saves a bcopy.
23049 	 */
23050 	if (*new_ppa_ptr == UINT_MAX) {
23051 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23052 		*new_ppa_ptr = ill->ill_ppa;
23053 	} else {
23054 		/*
23055 		 * undo null termination done above.
23056 		 */
23057 		ppa_ptr[0] = old_char;
23058 	}
23059 
23060 	/* Let SCTP know about this ILL */
23061 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23062 
23063 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23064 	    B_TRUE);
23065 
23066 	rw_exit(&ipst->ips_ill_g_lock);
23067 	ill_refrele(ill);
23068 	if (ipsq == NULL)
23069 		return (EINPROGRESS);
23070 
23071 	/*
23072 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23073 	 */
23074 	if (ipsq->ipsq_current_ipif == NULL)
23075 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23076 	else
23077 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23078 
23079 	error = ipif_set_values_tail(ill, ipif, mp, q);
23080 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23081 	if (error != 0 && error != EINPROGRESS) {
23082 		/*
23083 		 * restore previous values
23084 		 */
23085 		ill->ill_isv6 = B_FALSE;
23086 	}
23087 	return (error);
23088 }
23089 
23090 
23091 void
23092 ipif_init(ip_stack_t *ipst)
23093 {
23094 	hrtime_t hrt;
23095 	int i;
23096 
23097 	/*
23098 	 * Can't call drv_getparm here as it is too early in the boot.
23099 	 * As we use ipif_src_random just for picking a different
23100 	 * source address everytime, this need not be really random.
23101 	 */
23102 	hrt = gethrtime();
23103 	ipst->ips_ipif_src_random =
23104 	    ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23105 
23106 	for (i = 0; i < MAX_G_HEADS; i++) {
23107 		ipst->ips_ill_g_heads[i].ill_g_list_head =
23108 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23109 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
23110 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23111 	}
23112 
23113 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23114 	    ill_phyint_compare_index,
23115 	    sizeof (phyint_t),
23116 	    offsetof(struct phyint, phyint_avl_by_index));
23117 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23118 	    ill_phyint_compare_name,
23119 	    sizeof (phyint_t),
23120 	    offsetof(struct phyint, phyint_avl_by_name));
23121 }
23122 
23123 /*
23124  * Lookup the ipif corresponding to the onlink destination address. For
23125  * point-to-point interfaces, it matches with remote endpoint destination
23126  * address. For point-to-multipoint interfaces it only tries to match the
23127  * destination with the interface's subnet address. The longest, most specific
23128  * match is found to take care of such rare network configurations like -
23129  * le0: 129.146.1.1/16
23130  * le1: 129.146.2.2/24
23131  * It is used only by SO_DONTROUTE at the moment.
23132  */
23133 ipif_t *
23134 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23135 {
23136 	ipif_t	*ipif, *best_ipif;
23137 	ill_t	*ill;
23138 	ill_walk_context_t ctx;
23139 
23140 	ASSERT(zoneid != ALL_ZONES);
23141 	best_ipif = NULL;
23142 
23143 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23144 	ill = ILL_START_WALK_V4(&ctx, ipst);
23145 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23146 		mutex_enter(&ill->ill_lock);
23147 		for (ipif = ill->ill_ipif; ipif != NULL;
23148 		    ipif = ipif->ipif_next) {
23149 			if (!IPIF_CAN_LOOKUP(ipif))
23150 				continue;
23151 			if (ipif->ipif_zoneid != zoneid &&
23152 			    ipif->ipif_zoneid != ALL_ZONES)
23153 				continue;
23154 			/*
23155 			 * Point-to-point case. Look for exact match with
23156 			 * destination address.
23157 			 */
23158 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23159 				if (ipif->ipif_pp_dst_addr == addr) {
23160 					ipif_refhold_locked(ipif);
23161 					mutex_exit(&ill->ill_lock);
23162 					rw_exit(&ipst->ips_ill_g_lock);
23163 					if (best_ipif != NULL)
23164 						ipif_refrele(best_ipif);
23165 					return (ipif);
23166 				}
23167 			} else if (ipif->ipif_subnet == (addr &
23168 			    ipif->ipif_net_mask)) {
23169 				/*
23170 				 * Point-to-multipoint case. Looping through to
23171 				 * find the most specific match. If there are
23172 				 * multiple best match ipif's then prefer ipif's
23173 				 * that are UP. If there is only one best match
23174 				 * ipif and it is DOWN we must still return it.
23175 				 */
23176 				if ((best_ipif == NULL) ||
23177 				    (ipif->ipif_net_mask >
23178 				    best_ipif->ipif_net_mask) ||
23179 				    ((ipif->ipif_net_mask ==
23180 				    best_ipif->ipif_net_mask) &&
23181 				    ((ipif->ipif_flags & IPIF_UP) &&
23182 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23183 					ipif_refhold_locked(ipif);
23184 					mutex_exit(&ill->ill_lock);
23185 					rw_exit(&ipst->ips_ill_g_lock);
23186 					if (best_ipif != NULL)
23187 						ipif_refrele(best_ipif);
23188 					best_ipif = ipif;
23189 					rw_enter(&ipst->ips_ill_g_lock,
23190 					    RW_READER);
23191 					mutex_enter(&ill->ill_lock);
23192 				}
23193 			}
23194 		}
23195 		mutex_exit(&ill->ill_lock);
23196 	}
23197 	rw_exit(&ipst->ips_ill_g_lock);
23198 	return (best_ipif);
23199 }
23200 
23201 
23202 /*
23203  * Save enough information so that we can recreate the IRE if
23204  * the interface goes down and then up.
23205  */
23206 static void
23207 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23208 {
23209 	mblk_t	*save_mp;
23210 
23211 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23212 	if (save_mp != NULL) {
23213 		ifrt_t	*ifrt;
23214 
23215 		save_mp->b_wptr += sizeof (ifrt_t);
23216 		ifrt = (ifrt_t *)save_mp->b_rptr;
23217 		bzero(ifrt, sizeof (ifrt_t));
23218 		ifrt->ifrt_type = ire->ire_type;
23219 		ifrt->ifrt_addr = ire->ire_addr;
23220 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23221 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23222 		ifrt->ifrt_mask = ire->ire_mask;
23223 		ifrt->ifrt_flags = ire->ire_flags;
23224 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23225 		mutex_enter(&ipif->ipif_saved_ire_lock);
23226 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23227 		ipif->ipif_saved_ire_mp = save_mp;
23228 		ipif->ipif_saved_ire_cnt++;
23229 		mutex_exit(&ipif->ipif_saved_ire_lock);
23230 	}
23231 }
23232 
23233 
23234 static void
23235 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23236 {
23237 	mblk_t	**mpp;
23238 	mblk_t	*mp;
23239 	ifrt_t	*ifrt;
23240 
23241 	/* Remove from ipif_saved_ire_mp list if it is there */
23242 	mutex_enter(&ipif->ipif_saved_ire_lock);
23243 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23244 	    mpp = &(*mpp)->b_cont) {
23245 		/*
23246 		 * On a given ipif, the triple of address, gateway and
23247 		 * mask is unique for each saved IRE (in the case of
23248 		 * ordinary interface routes, the gateway address is
23249 		 * all-zeroes).
23250 		 */
23251 		mp = *mpp;
23252 		ifrt = (ifrt_t *)mp->b_rptr;
23253 		if (ifrt->ifrt_addr == ire->ire_addr &&
23254 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23255 		    ifrt->ifrt_mask == ire->ire_mask) {
23256 			*mpp = mp->b_cont;
23257 			ipif->ipif_saved_ire_cnt--;
23258 			freeb(mp);
23259 			break;
23260 		}
23261 	}
23262 	mutex_exit(&ipif->ipif_saved_ire_lock);
23263 }
23264 
23265 
23266 /*
23267  * IP multirouting broadcast routes handling
23268  * Append CGTP broadcast IREs to regular ones created
23269  * at ifconfig time.
23270  */
23271 static void
23272 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23273 {
23274 	ire_t *ire_prim;
23275 
23276 	ASSERT(ire != NULL);
23277 	ASSERT(ire_dst != NULL);
23278 
23279 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23280 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23281 	if (ire_prim != NULL) {
23282 		/*
23283 		 * We are in the special case of broadcasts for
23284 		 * CGTP. We add an IRE_BROADCAST that holds
23285 		 * the RTF_MULTIRT flag, the destination
23286 		 * address of ire_dst and the low level
23287 		 * info of ire_prim. In other words, CGTP
23288 		 * broadcast is added to the redundant ipif.
23289 		 */
23290 		ipif_t *ipif_prim;
23291 		ire_t  *bcast_ire;
23292 
23293 		ipif_prim = ire_prim->ire_ipif;
23294 
23295 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23296 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23297 		    (void *)ire_dst, (void *)ire_prim,
23298 		    (void *)ipif_prim));
23299 
23300 		bcast_ire = ire_create(
23301 		    (uchar_t *)&ire->ire_addr,
23302 		    (uchar_t *)&ip_g_all_ones,
23303 		    (uchar_t *)&ire_dst->ire_src_addr,
23304 		    (uchar_t *)&ire->ire_gateway_addr,
23305 		    &ipif_prim->ipif_mtu,
23306 		    NULL,
23307 		    ipif_prim->ipif_rq,
23308 		    ipif_prim->ipif_wq,
23309 		    IRE_BROADCAST,
23310 		    ipif_prim,
23311 		    0,
23312 		    0,
23313 		    0,
23314 		    ire->ire_flags,
23315 		    &ire_uinfo_null,
23316 		    NULL,
23317 		    NULL,
23318 		    ipst);
23319 
23320 		if (bcast_ire != NULL) {
23321 
23322 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23323 			    B_FALSE) == 0) {
23324 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23325 				    "added bcast_ire %p\n",
23326 				    (void *)bcast_ire));
23327 
23328 				ipif_save_ire(bcast_ire->ire_ipif,
23329 				    bcast_ire);
23330 				ire_refrele(bcast_ire);
23331 			}
23332 		}
23333 		ire_refrele(ire_prim);
23334 	}
23335 }
23336 
23337 
23338 /*
23339  * IP multirouting broadcast routes handling
23340  * Remove the broadcast ire
23341  */
23342 static void
23343 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23344 {
23345 	ire_t *ire_dst;
23346 
23347 	ASSERT(ire != NULL);
23348 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23349 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23350 	if (ire_dst != NULL) {
23351 		ire_t *ire_prim;
23352 
23353 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23354 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23355 		if (ire_prim != NULL) {
23356 			ipif_t *ipif_prim;
23357 			ire_t  *bcast_ire;
23358 
23359 			ipif_prim = ire_prim->ire_ipif;
23360 
23361 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23362 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23363 			    (void *)ire_dst, (void *)ire_prim,
23364 			    (void *)ipif_prim));
23365 
23366 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23367 			    ire->ire_gateway_addr,
23368 			    IRE_BROADCAST,
23369 			    ipif_prim, ALL_ZONES,
23370 			    NULL,
23371 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23372 			    MATCH_IRE_MASK, ipst);
23373 
23374 			if (bcast_ire != NULL) {
23375 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23376 				    "looked up bcast_ire %p\n",
23377 				    (void *)bcast_ire));
23378 				ipif_remove_ire(bcast_ire->ire_ipif,
23379 				    bcast_ire);
23380 				ire_delete(bcast_ire);
23381 			}
23382 			ire_refrele(ire_prim);
23383 		}
23384 		ire_refrele(ire_dst);
23385 	}
23386 }
23387 
23388 /*
23389  * IPsec hardware acceleration capabilities related functions.
23390  */
23391 
23392 /*
23393  * Free a per-ill IPsec capabilities structure.
23394  */
23395 static void
23396 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23397 {
23398 	if (capab->auth_hw_algs != NULL)
23399 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23400 	if (capab->encr_hw_algs != NULL)
23401 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23402 	if (capab->encr_algparm != NULL)
23403 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23404 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23405 }
23406 
23407 /*
23408  * Allocate a new per-ill IPsec capabilities structure. This structure
23409  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23410  * an array which specifies, for each algorithm, whether this algorithm
23411  * is supported by the ill or not.
23412  */
23413 static ill_ipsec_capab_t *
23414 ill_ipsec_capab_alloc(void)
23415 {
23416 	ill_ipsec_capab_t *capab;
23417 	uint_t nelems;
23418 
23419 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23420 	if (capab == NULL)
23421 		return (NULL);
23422 
23423 	/* we need one bit per algorithm */
23424 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23425 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23426 
23427 	/* allocate memory to store algorithm flags */
23428 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23429 	if (capab->encr_hw_algs == NULL)
23430 		goto nomem;
23431 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23432 	if (capab->auth_hw_algs == NULL)
23433 		goto nomem;
23434 	/*
23435 	 * Leave encr_algparm NULL for now since we won't need it half
23436 	 * the time
23437 	 */
23438 	return (capab);
23439 
23440 nomem:
23441 	ill_ipsec_capab_free(capab);
23442 	return (NULL);
23443 }
23444 
23445 /*
23446  * Resize capability array.  Since we're exclusive, this is OK.
23447  */
23448 static boolean_t
23449 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23450 {
23451 	ipsec_capab_algparm_t *nalp, *oalp;
23452 	uint32_t olen, nlen;
23453 
23454 	oalp = capab->encr_algparm;
23455 	olen = capab->encr_algparm_size;
23456 
23457 	if (oalp != NULL) {
23458 		if (algid < capab->encr_algparm_end)
23459 			return (B_TRUE);
23460 	}
23461 
23462 	nlen = (algid + 1) * sizeof (*nalp);
23463 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
23464 	if (nalp == NULL)
23465 		return (B_FALSE);
23466 
23467 	if (oalp != NULL) {
23468 		bcopy(oalp, nalp, olen);
23469 		kmem_free(oalp, olen);
23470 	}
23471 	capab->encr_algparm = nalp;
23472 	capab->encr_algparm_size = nlen;
23473 	capab->encr_algparm_end = algid + 1;
23474 
23475 	return (B_TRUE);
23476 }
23477 
23478 /*
23479  * Compare the capabilities of the specified ill with the protocol
23480  * and algorithms specified by the SA passed as argument.
23481  * If they match, returns B_TRUE, B_FALSE if they do not match.
23482  *
23483  * The ill can be passed as a pointer to it, or by specifying its index
23484  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
23485  *
23486  * Called by ipsec_out_is_accelerated() do decide whether an outbound
23487  * packet is eligible for hardware acceleration, and by
23488  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
23489  * to a particular ill.
23490  */
23491 boolean_t
23492 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
23493     ipsa_t *sa, netstack_t *ns)
23494 {
23495 	boolean_t sa_isv6;
23496 	uint_t algid;
23497 	struct ill_ipsec_capab_s *cpp;
23498 	boolean_t need_refrele = B_FALSE;
23499 	ip_stack_t	*ipst = ns->netstack_ip;
23500 
23501 	if (ill == NULL) {
23502 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
23503 		    NULL, NULL, NULL, ipst);
23504 		if (ill == NULL) {
23505 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
23506 			return (B_FALSE);
23507 		}
23508 		need_refrele = B_TRUE;
23509 	}
23510 
23511 	/*
23512 	 * Use the address length specified by the SA to determine
23513 	 * if it corresponds to a IPv6 address, and fail the matching
23514 	 * if the isv6 flag passed as argument does not match.
23515 	 * Note: this check is used for SADB capability checking before
23516 	 * sending SA information to an ill.
23517 	 */
23518 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
23519 	if (sa_isv6 != ill_isv6)
23520 		/* protocol mismatch */
23521 		goto done;
23522 
23523 	/*
23524 	 * Check if the ill supports the protocol, algorithm(s) and
23525 	 * key size(s) specified by the SA, and get the pointers to
23526 	 * the algorithms supported by the ill.
23527 	 */
23528 	switch (sa->ipsa_type) {
23529 
23530 	case SADB_SATYPE_ESP:
23531 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
23532 			/* ill does not support ESP acceleration */
23533 			goto done;
23534 		cpp = ill->ill_ipsec_capab_esp;
23535 		algid = sa->ipsa_auth_alg;
23536 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
23537 			goto done;
23538 		algid = sa->ipsa_encr_alg;
23539 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
23540 			goto done;
23541 		if (algid < cpp->encr_algparm_end) {
23542 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
23543 			if (sa->ipsa_encrkeybits < alp->minkeylen)
23544 				goto done;
23545 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
23546 				goto done;
23547 		}
23548 		break;
23549 
23550 	case SADB_SATYPE_AH:
23551 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
23552 			/* ill does not support AH acceleration */
23553 			goto done;
23554 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
23555 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
23556 			goto done;
23557 		break;
23558 	}
23559 
23560 	if (need_refrele)
23561 		ill_refrele(ill);
23562 	return (B_TRUE);
23563 done:
23564 	if (need_refrele)
23565 		ill_refrele(ill);
23566 	return (B_FALSE);
23567 }
23568 
23569 
23570 /*
23571  * Add a new ill to the list of IPsec capable ills.
23572  * Called from ill_capability_ipsec_ack() when an ACK was received
23573  * indicating that IPsec hardware processing was enabled for an ill.
23574  *
23575  * ill must point to the ill for which acceleration was enabled.
23576  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
23577  */
23578 static void
23579 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
23580 {
23581 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
23582 	uint_t sa_type;
23583 	uint_t ipproto;
23584 	ip_stack_t	*ipst = ill->ill_ipst;
23585 
23586 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
23587 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
23588 
23589 	switch (dl_cap) {
23590 	case DL_CAPAB_IPSEC_AH:
23591 		sa_type = SADB_SATYPE_AH;
23592 		ills = &ipst->ips_ipsec_capab_ills_ah;
23593 		ipproto = IPPROTO_AH;
23594 		break;
23595 	case DL_CAPAB_IPSEC_ESP:
23596 		sa_type = SADB_SATYPE_ESP;
23597 		ills = &ipst->ips_ipsec_capab_ills_esp;
23598 		ipproto = IPPROTO_ESP;
23599 		break;
23600 	}
23601 
23602 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23603 
23604 	/*
23605 	 * Add ill index to list of hardware accelerators. If
23606 	 * already in list, do nothing.
23607 	 */
23608 	for (cur_ill = *ills; cur_ill != NULL &&
23609 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
23610 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
23611 		;
23612 
23613 	if (cur_ill == NULL) {
23614 		/* if this is a new entry for this ill */
23615 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
23616 		if (new_ill == NULL) {
23617 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23618 			return;
23619 		}
23620 
23621 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
23622 		new_ill->ill_isv6 = ill->ill_isv6;
23623 		new_ill->next = *ills;
23624 		*ills = new_ill;
23625 	} else if (!sadb_resync) {
23626 		/* not resync'ing SADB and an entry exists for this ill */
23627 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23628 		return;
23629 	}
23630 
23631 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23632 
23633 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
23634 		/*
23635 		 * IPsec module for protocol loaded, initiate dump
23636 		 * of the SADB to this ill.
23637 		 */
23638 		sadb_ill_download(ill, sa_type);
23639 }
23640 
23641 /*
23642  * Remove an ill from the list of IPsec capable ills.
23643  */
23644 static void
23645 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
23646 {
23647 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
23648 	ip_stack_t	*ipst = ill->ill_ipst;
23649 
23650 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
23651 	    dl_cap == DL_CAPAB_IPSEC_ESP);
23652 
23653 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
23654 	    &ipst->ips_ipsec_capab_ills_esp;
23655 
23656 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23657 
23658 	prev_ill = NULL;
23659 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
23660 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
23661 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
23662 		;
23663 	if (cur_ill == NULL) {
23664 		/* entry not found */
23665 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23666 		return;
23667 	}
23668 	if (prev_ill == NULL) {
23669 		/* entry at front of list */
23670 		*ills = NULL;
23671 	} else {
23672 		prev_ill->next = cur_ill->next;
23673 	}
23674 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
23675 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23676 }
23677 
23678 /*
23679  * Called by SADB to send a DL_CONTROL_REQ message to every ill
23680  * supporting the specified IPsec protocol acceleration.
23681  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
23682  * We free the mblk and, if sa is non-null, release the held referece.
23683  */
23684 void
23685 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
23686     netstack_t *ns)
23687 {
23688 	ipsec_capab_ill_t *ici, *cur_ici;
23689 	ill_t *ill;
23690 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
23691 	ip_stack_t	*ipst = ns->netstack_ip;
23692 
23693 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
23694 	    ipst->ips_ipsec_capab_ills_esp;
23695 
23696 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
23697 
23698 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
23699 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
23700 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
23701 
23702 		/*
23703 		 * Handle the case where the ill goes away while the SADB is
23704 		 * attempting to send messages.  If it's going away, it's
23705 		 * nuking its shadow SADB, so we don't care..
23706 		 */
23707 
23708 		if (ill == NULL)
23709 			continue;
23710 
23711 		if (sa != NULL) {
23712 			/*
23713 			 * Make sure capabilities match before
23714 			 * sending SA to ill.
23715 			 */
23716 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
23717 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
23718 				ill_refrele(ill);
23719 				continue;
23720 			}
23721 
23722 			mutex_enter(&sa->ipsa_lock);
23723 			sa->ipsa_flags |= IPSA_F_HW;
23724 			mutex_exit(&sa->ipsa_lock);
23725 		}
23726 
23727 		/*
23728 		 * Copy template message, and add it to the front
23729 		 * of the mblk ship list. We want to avoid holding
23730 		 * the ipsec_capab_ills_lock while sending the
23731 		 * message to the ills.
23732 		 *
23733 		 * The b_next and b_prev are temporarily used
23734 		 * to build a list of mblks to be sent down, and to
23735 		 * save the ill to which they must be sent.
23736 		 */
23737 		nmp = copymsg(mp);
23738 		if (nmp == NULL) {
23739 			ill_refrele(ill);
23740 			continue;
23741 		}
23742 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
23743 		nmp->b_next = mp_ship_list;
23744 		mp_ship_list = nmp;
23745 		nmp->b_prev = (mblk_t *)ill;
23746 	}
23747 
23748 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23749 
23750 	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
23751 		/* restore the mblk to a sane state */
23752 		next_mp = nmp->b_next;
23753 		nmp->b_next = NULL;
23754 		ill = (ill_t *)nmp->b_prev;
23755 		nmp->b_prev = NULL;
23756 
23757 		ill_dlpi_send(ill, nmp);
23758 		ill_refrele(ill);
23759 	}
23760 
23761 	if (sa != NULL)
23762 		IPSA_REFRELE(sa);
23763 	freemsg(mp);
23764 }
23765 
23766 /*
23767  * Derive an interface id from the link layer address.
23768  * Knows about IEEE 802 and IEEE EUI-64 mappings.
23769  */
23770 static boolean_t
23771 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23772 {
23773 	char		*addr;
23774 
23775 	if (phys_length != ETHERADDRL)
23776 		return (B_FALSE);
23777 
23778 	/* Form EUI-64 like address */
23779 	addr = (char *)&v6addr->s6_addr32[2];
23780 	bcopy((char *)phys_addr, addr, 3);
23781 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
23782 	addr[3] = (char)0xff;
23783 	addr[4] = (char)0xfe;
23784 	bcopy((char *)phys_addr + 3, addr + 5, 3);
23785 	return (B_TRUE);
23786 }
23787 
23788 /* ARGSUSED */
23789 static boolean_t
23790 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23791 {
23792 	return (B_FALSE);
23793 }
23794 
23795 /* ARGSUSED */
23796 static boolean_t
23797 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23798     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23799 {
23800 	/*
23801 	 * Multicast address mappings used over Ethernet/802.X.
23802 	 * This address is used as a base for mappings.
23803 	 */
23804 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
23805 	    0x00, 0x00, 0x00};
23806 
23807 	/*
23808 	 * Extract low order 32 bits from IPv6 multicast address.
23809 	 * Or that into the link layer address, starting from the
23810 	 * second byte.
23811 	 */
23812 	*hw_start = 2;
23813 	v6_extract_mask->s6_addr32[0] = 0;
23814 	v6_extract_mask->s6_addr32[1] = 0;
23815 	v6_extract_mask->s6_addr32[2] = 0;
23816 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23817 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
23818 	return (B_TRUE);
23819 }
23820 
23821 /*
23822  * Indicate by return value whether multicast is supported. If not,
23823  * this code should not touch/change any parameters.
23824  */
23825 /* ARGSUSED */
23826 static boolean_t
23827 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23828     uint32_t *hw_start, ipaddr_t *extract_mask)
23829 {
23830 	/*
23831 	 * Multicast address mappings used over Ethernet/802.X.
23832 	 * This address is used as a base for mappings.
23833 	 */
23834 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
23835 	    0x00, 0x00, 0x00 };
23836 
23837 	if (phys_length != ETHERADDRL)
23838 		return (B_FALSE);
23839 
23840 	*extract_mask = htonl(0x007fffff);
23841 	*hw_start = 2;
23842 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
23843 	return (B_TRUE);
23844 }
23845 
23846 /*
23847  * Derive IPoIB interface id from the link layer address.
23848  */
23849 static boolean_t
23850 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23851 {
23852 	char		*addr;
23853 
23854 	if (phys_length != 20)
23855 		return (B_FALSE);
23856 	addr = (char *)&v6addr->s6_addr32[2];
23857 	bcopy(phys_addr + 12, addr, 8);
23858 	/*
23859 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
23860 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
23861 	 * rules. In these cases, the IBA considers these GUIDs to be in
23862 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
23863 	 * required; vendors are required not to assign global EUI-64's
23864 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
23865 	 * of the interface identifier. Whether the GUID is in modified
23866 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
23867 	 * bit set to 1.
23868 	 */
23869 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
23870 	return (B_TRUE);
23871 }
23872 
23873 /*
23874  * Note on mapping from multicast IP addresses to IPoIB multicast link
23875  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
23876  * The format of an IPoIB multicast address is:
23877  *
23878  *  4 byte QPN      Scope Sign.  Pkey
23879  * +--------------------------------------------+
23880  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
23881  * +--------------------------------------------+
23882  *
23883  * The Scope and Pkey components are properties of the IBA port and
23884  * network interface. They can be ascertained from the broadcast address.
23885  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
23886  */
23887 
23888 static boolean_t
23889 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23890     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23891 {
23892 	/*
23893 	 * Base IPoIB IPv6 multicast address used for mappings.
23894 	 * Does not contain the IBA scope/Pkey values.
23895 	 */
23896 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23897 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
23898 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23899 
23900 	/*
23901 	 * Extract low order 80 bits from IPv6 multicast address.
23902 	 * Or that into the link layer address, starting from the
23903 	 * sixth byte.
23904 	 */
23905 	*hw_start = 6;
23906 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
23907 
23908 	/*
23909 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23910 	 */
23911 	*(maddr + 5) = *(bphys_addr + 5);
23912 	*(maddr + 8) = *(bphys_addr + 8);
23913 	*(maddr + 9) = *(bphys_addr + 9);
23914 
23915 	v6_extract_mask->s6_addr32[0] = 0;
23916 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
23917 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
23918 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23919 	return (B_TRUE);
23920 }
23921 
23922 static boolean_t
23923 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23924     uint32_t *hw_start, ipaddr_t *extract_mask)
23925 {
23926 	/*
23927 	 * Base IPoIB IPv4 multicast address used for mappings.
23928 	 * Does not contain the IBA scope/Pkey values.
23929 	 */
23930 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23931 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
23932 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23933 
23934 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
23935 		return (B_FALSE);
23936 
23937 	/*
23938 	 * Extract low order 28 bits from IPv4 multicast address.
23939 	 * Or that into the link layer address, starting from the
23940 	 * sixteenth byte.
23941 	 */
23942 	*extract_mask = htonl(0x0fffffff);
23943 	*hw_start = 16;
23944 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
23945 
23946 	/*
23947 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
23948 	 */
23949 	*(maddr + 5) = *(bphys_addr + 5);
23950 	*(maddr + 8) = *(bphys_addr + 8);
23951 	*(maddr + 9) = *(bphys_addr + 9);
23952 	return (B_TRUE);
23953 }
23954 
23955 /*
23956  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
23957  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
23958  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
23959  * the link-local address is preferred.
23960  */
23961 boolean_t
23962 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23963 {
23964 	ipif_t	*ipif;
23965 	ipif_t	*maybe_ipif = NULL;
23966 
23967 	mutex_enter(&ill->ill_lock);
23968 	if (ill->ill_state_flags & ILL_CONDEMNED) {
23969 		mutex_exit(&ill->ill_lock);
23970 		if (ipifp != NULL)
23971 			*ipifp = NULL;
23972 		return (B_FALSE);
23973 	}
23974 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
23975 		if (!IPIF_CAN_LOOKUP(ipif))
23976 			continue;
23977 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
23978 		    ipif->ipif_zoneid != ALL_ZONES)
23979 			continue;
23980 		if ((ipif->ipif_flags & flags) != flags)
23981 			continue;
23982 
23983 		if (ipifp == NULL) {
23984 			mutex_exit(&ill->ill_lock);
23985 			ASSERT(maybe_ipif == NULL);
23986 			return (B_TRUE);
23987 		}
23988 		if (!ill->ill_isv6 ||
23989 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
23990 			ipif_refhold_locked(ipif);
23991 			mutex_exit(&ill->ill_lock);
23992 			*ipifp = ipif;
23993 			return (B_TRUE);
23994 		}
23995 		if (maybe_ipif == NULL)
23996 			maybe_ipif = ipif;
23997 	}
23998 	if (ipifp != NULL) {
23999 		if (maybe_ipif != NULL)
24000 			ipif_refhold_locked(maybe_ipif);
24001 		*ipifp = maybe_ipif;
24002 	}
24003 	mutex_exit(&ill->ill_lock);
24004 	return (maybe_ipif != NULL);
24005 }
24006 
24007 /*
24008  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
24009  */
24010 boolean_t
24011 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24012 {
24013 	ill_t *illg;
24014 	ip_stack_t	*ipst = ill->ill_ipst;
24015 
24016 	/*
24017 	 * We look at the passed-in ill first without grabbing ill_g_lock.
24018 	 */
24019 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
24020 		return (B_TRUE);
24021 	}
24022 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
24023 	if (ill->ill_group == NULL) {
24024 		/* ill not in a group */
24025 		rw_exit(&ipst->ips_ill_g_lock);
24026 		return (B_FALSE);
24027 	}
24028 
24029 	/*
24030 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24031 	 * group. We need to look for an ipif in the zone on all the ills in the
24032 	 * group.
24033 	 */
24034 	illg = ill->ill_group->illgrp_ill;
24035 	do {
24036 		/*
24037 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24038 		 * that it's not there.
24039 		 */
24040 		if (illg != ill &&
24041 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24042 			break;
24043 		}
24044 	} while ((illg = illg->ill_group_next) != NULL);
24045 	rw_exit(&ipst->ips_ill_g_lock);
24046 	return (illg != NULL);
24047 }
24048 
24049 /*
24050  * Check if this ill is only being used to send ICMP probes for IPMP
24051  */
24052 boolean_t
24053 ill_is_probeonly(ill_t *ill)
24054 {
24055 	/*
24056 	 * Check if the interface is FAILED, or INACTIVE
24057 	 */
24058 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24059 		return (B_TRUE);
24060 
24061 	return (B_FALSE);
24062 }
24063 
24064 /*
24065  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24066  * If a pointer to an ipif_t is returned then the caller will need to do
24067  * an ill_refrele().
24068  *
24069  * If there is no real interface which matches the ifindex, then it looks
24070  * for a group that has a matching index. In the case of a group match the
24071  * lifidx must be zero. We don't need emulate the logical interfaces
24072  * since IP Filter's use of netinfo doesn't use that.
24073  */
24074 ipif_t *
24075 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24076     ip_stack_t *ipst)
24077 {
24078 	ipif_t *ipif;
24079 	ill_t *ill;
24080 
24081 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24082 	    ipst);
24083 
24084 	if (ill == NULL) {
24085 		/* Fallback to group names only if hook_emulation set */
24086 		if (!ipst->ips_ipmp_hook_emulation)
24087 			return (NULL);
24088 
24089 		if (lifidx != 0)
24090 			return (NULL);
24091 		ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24092 		if (ill == NULL)
24093 			return (NULL);
24094 	}
24095 
24096 	mutex_enter(&ill->ill_lock);
24097 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24098 		mutex_exit(&ill->ill_lock);
24099 		ill_refrele(ill);
24100 		return (NULL);
24101 	}
24102 
24103 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24104 		if (!IPIF_CAN_LOOKUP(ipif))
24105 			continue;
24106 		if (lifidx == ipif->ipif_id) {
24107 			ipif_refhold_locked(ipif);
24108 			break;
24109 		}
24110 	}
24111 
24112 	mutex_exit(&ill->ill_lock);
24113 	ill_refrele(ill);
24114 	return (ipif);
24115 }
24116 
24117 /*
24118  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24119  * There is one exceptions IRE_BROADCAST are difficult to recreate,
24120  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24121  * for details.
24122  */
24123 void
24124 ill_fastpath_flush(ill_t *ill)
24125 {
24126 	ip_stack_t *ipst = ill->ill_ipst;
24127 
24128 	nce_fastpath_list_dispatch(ill, NULL, NULL);
24129 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24130 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24131 }
24132 
24133 /*
24134  * Set the physical address information for `ill' to the contents of the
24135  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24136  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24137  * EINPROGRESS will be returned.
24138  */
24139 int
24140 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24141 {
24142 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24143 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24144 
24145 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24146 
24147 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24148 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24149 		/* Changing DL_IPV6_TOKEN is not yet supported */
24150 		return (0);
24151 	}
24152 
24153 	/*
24154 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24155 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24156 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24157 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24158 	 */
24159 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24160 		freemsg(mp);
24161 		return (ENOMEM);
24162 	}
24163 
24164 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24165 
24166 	/*
24167 	 * If we can quiesce the ill, then set the address.  If not, then
24168 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24169 	 */
24170 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24171 	mutex_enter(&ill->ill_lock);
24172 	if (!ill_is_quiescent(ill)) {
24173 		/* call cannot fail since `conn_t *' argument is NULL */
24174 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24175 		    mp, ILL_DOWN);
24176 		mutex_exit(&ill->ill_lock);
24177 		return (EINPROGRESS);
24178 	}
24179 	mutex_exit(&ill->ill_lock);
24180 
24181 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24182 	return (0);
24183 }
24184 
24185 /*
24186  * Once the ill associated with `q' has quiesced, set its physical address
24187  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24188  * are passed (linked by b_cont), since we sometimes need to save two distinct
24189  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24190  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24191  * is quiesced, we know any stale IREs with the old address information have
24192  * already been removed, so we don't need to call ill_fastpath_flush().
24193  */
24194 /* ARGSUSED */
24195 static void
24196 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24197 {
24198 	ill_t		*ill = q->q_ptr;
24199 	mblk_t		*addrmp2 = unlinkb(addrmp);
24200 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24201 	uint_t		addrlen, addroff;
24202 
24203 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24204 
24205 	addroff	= dlindp->dl_addr_offset;
24206 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24207 
24208 	switch (dlindp->dl_data) {
24209 	case DL_IPV6_LINK_LAYER_ADDR:
24210 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24211 		freemsg(addrmp2);
24212 		break;
24213 
24214 	case DL_CURR_PHYS_ADDR:
24215 		freemsg(ill->ill_phys_addr_mp);
24216 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24217 		ill->ill_phys_addr_mp = addrmp;
24218 		ill->ill_phys_addr_length = addrlen;
24219 
24220 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24221 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24222 		else
24223 			freemsg(addrmp2);
24224 		break;
24225 	default:
24226 		ASSERT(0);
24227 	}
24228 
24229 	/*
24230 	 * If there are ipifs to bring up, ill_up_ipifs() will return
24231 	 * EINPROGRESS, and ipsq_current_finish() will be called by
24232 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
24233 	 * brought up.
24234 	 */
24235 	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
24236 		ipsq_current_finish(ipsq);
24237 }
24238 
24239 /*
24240  * Helper routine for setting the ill_nd_lla fields.
24241  */
24242 void
24243 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24244 {
24245 	freemsg(ill->ill_nd_lla_mp);
24246 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24247 	ill->ill_nd_lla_mp = ndmp;
24248 	ill->ill_nd_lla_len = addrlen;
24249 }
24250 
24251 major_t IP_MAJ;
24252 #define	IP	"ip"
24253 
24254 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
24255 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
24256 
24257 /*
24258  * Issue REMOVEIF ioctls to have the loopback interfaces
24259  * go away.  Other interfaces are either I_LINKed or I_PLINKed;
24260  * the former going away when the user-level processes in the zone
24261  * are killed  * and the latter are cleaned up by the stream head
24262  * str_stack_shutdown callback that undoes all I_PLINKs.
24263  */
24264 void
24265 ip_loopback_cleanup(ip_stack_t *ipst)
24266 {
24267 	int error;
24268 	ldi_handle_t	lh = NULL;
24269 	ldi_ident_t	li = NULL;
24270 	int		rval;
24271 	cred_t		*cr;
24272 	struct strioctl iocb;
24273 	struct lifreq	lifreq;
24274 
24275 	IP_MAJ = ddi_name_to_major(IP);
24276 
24277 #ifdef NS_DEBUG
24278 	(void) printf("ip_loopback_cleanup() stackid %d\n",
24279 	    ipst->ips_netstack->netstack_stackid);
24280 #endif
24281 
24282 	bzero(&lifreq, sizeof (lifreq));
24283 	(void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24284 
24285 	error = ldi_ident_from_major(IP_MAJ, &li);
24286 	if (error) {
24287 #ifdef DEBUG
24288 		printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24289 		    error);
24290 #endif
24291 		return;
24292 	}
24293 
24294 	cr = zone_get_kcred(netstackid_to_zoneid(
24295 	    ipst->ips_netstack->netstack_stackid));
24296 	ASSERT(cr != NULL);
24297 	error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24298 	if (error) {
24299 #ifdef DEBUG
24300 		printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24301 		    error);
24302 #endif
24303 		goto out;
24304 	}
24305 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24306 	iocb.ic_timout = 15;
24307 	iocb.ic_len = sizeof (lifreq);
24308 	iocb.ic_dp = (char *)&lifreq;
24309 
24310 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24311 	/* LINTED - statement has no consequent */
24312 	if (error) {
24313 #ifdef NS_DEBUG
24314 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24315 		    "UDP6 error %d\n", error);
24316 #endif
24317 	}
24318 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24319 	lh = NULL;
24320 
24321 	error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24322 	if (error) {
24323 #ifdef NS_DEBUG
24324 		printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24325 		    error);
24326 #endif
24327 		goto out;
24328 	}
24329 
24330 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24331 	iocb.ic_timout = 15;
24332 	iocb.ic_len = sizeof (lifreq);
24333 	iocb.ic_dp = (char *)&lifreq;
24334 
24335 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24336 	/* LINTED - statement has no consequent */
24337 	if (error) {
24338 #ifdef NS_DEBUG
24339 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24340 		    "UDP error %d\n", error);
24341 #endif
24342 	}
24343 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24344 	lh = NULL;
24345 
24346 out:
24347 	/* Close layered handles */
24348 	if (lh)
24349 		(void) ldi_close(lh, FREAD|FWRITE, cr);
24350 	if (li)
24351 		ldi_ident_release(li);
24352 
24353 	crfree(cr);
24354 }
24355