1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 #include <inet/ip_netinfo.h> 85 #include <inet/mib2.h> 86 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/sadb.h> 90 #include <inet/ipsec_impl.h> 91 #include <sys/iphada.h> 92 93 94 #include <netinet/igmp.h> 95 #include <inet/ip_listutils.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 /* The character which tells where the ill_name ends */ 106 #define IPIF_SEPARATOR_CHAR ':' 107 108 /* IP ioctl function table entry */ 109 typedef struct ipft_s { 110 int ipft_cmd; 111 pfi_t ipft_pfi; 112 int ipft_min_size; 113 int ipft_flags; 114 } ipft_t; 115 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 116 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 117 118 typedef struct ip_sock_ar_s { 119 union { 120 area_t ip_sock_area; 121 ared_t ip_sock_ared; 122 areq_t ip_sock_areq; 123 } ip_sock_ar_u; 124 queue_t *ip_sock_ar_q; 125 } ip_sock_ar_t; 126 127 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 128 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 129 char *value, caddr_t cp, cred_t *ioc_cr); 130 131 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 132 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 133 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 138 queue_t *q, mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 142 mblk_t *mp); 143 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 144 queue_t *q, mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 146 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 147 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 148 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 149 static void ipsq_flush(ill_t *ill); 150 static void ipsq_clean_all(ill_t *ill); 151 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 152 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 153 queue_t *q, mblk_t *mp, boolean_t need_up); 154 static void ipsq_delete(ipsq_t *); 155 156 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 157 boolean_t initialize); 158 static void ipif_check_bcast_ires(ipif_t *test_ipif); 159 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 160 static void ipif_delete_cache_ire(ire_t *, char *); 161 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 162 static void ipif_free(ipif_t *ipif); 163 static void ipif_free_tail(ipif_t *ipif); 164 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 165 static void ipif_multicast_down(ipif_t *ipif); 166 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 167 static void ipif_set_default(ipif_t *ipif); 168 static int ipif_set_values(queue_t *q, mblk_t *mp, 169 char *interf_name, uint_t *ppa); 170 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 171 queue_t *q); 172 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 173 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 174 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 175 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 176 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 177 178 static int ill_alloc_ppa(ill_if_t *, ill_t *); 179 static int ill_arp_off(ill_t *ill); 180 static int ill_arp_on(ill_t *ill); 181 static void ill_delete_interface_type(ill_if_t *); 182 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 183 static void ill_dl_down(ill_t *ill); 184 static void ill_down(ill_t *ill); 185 static void ill_downi(ire_t *ire, char *ill_arg); 186 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 187 static void ill_down_tail(ill_t *ill); 188 static void ill_free_mib(ill_t *ill); 189 static void ill_glist_delete(ill_t *); 190 static boolean_t ill_has_usable_ipif(ill_t *); 191 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 192 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 193 static void ill_phyint_free(ill_t *ill); 194 static void ill_phyint_reinit(ill_t *ill); 195 static void ill_set_nce_router_flags(ill_t *, boolean_t); 196 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 197 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 198 static void ill_stq_cache_delete(ire_t *, char *); 199 200 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 201 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 202 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 in6_addr_t *); 204 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 205 ipaddr_t *); 206 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 212 static void ipif_save_ire(ipif_t *, ire_t *); 213 static void ipif_remove_ire(ipif_t *, ire_t *); 214 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 215 static void ip_cgtp_bcast_delete(ire_t *); 216 217 /* 218 * Per-ill IPsec capabilities management. 219 */ 220 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 221 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 222 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 223 static void ill_ipsec_capab_delete(ill_t *, uint_t); 224 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 225 static void ill_capability_proto(ill_t *, int, mblk_t *); 226 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 227 boolean_t); 228 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 229 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 231 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 233 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 235 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 236 dl_capability_sub_t *); 237 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 238 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_lso_reset(ill_t *, mblk_t **); 240 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 241 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 242 static void ill_capability_dls_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_disable(ill_t *); 244 245 static void illgrp_cache_delete(ire_t *, char *); 246 static void illgrp_delete(ill_t *ill); 247 static void illgrp_reset_schednext(ill_t *ill); 248 249 static ill_t *ill_prev_usesrc(ill_t *); 250 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 251 static void ill_disband_usesrc_group(ill_t *); 252 253 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 254 255 /* 256 * if we go over the memory footprint limit more than once in this msec 257 * interval, we'll start pruning aggressively. 258 */ 259 int ip_min_frag_prune_time = 0; 260 261 /* 262 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 263 * and the IPsec DOI 264 */ 265 #define MAX_IPSEC_ALGS 256 266 267 #define BITSPERBYTE 8 268 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 269 270 #define IPSEC_ALG_ENABLE(algs, algid) \ 271 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 272 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 273 274 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 275 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 276 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 277 278 typedef uint8_t ipsec_capab_elem_t; 279 280 /* 281 * Per-algorithm parameters. Note that at present, only encryption 282 * algorithms have variable keysize (IKE does not provide a way to negotiate 283 * auth algorithm keysize). 284 * 285 * All sizes here are in bits. 286 */ 287 typedef struct 288 { 289 uint16_t minkeylen; 290 uint16_t maxkeylen; 291 } ipsec_capab_algparm_t; 292 293 /* 294 * Per-ill capabilities. 295 */ 296 struct ill_ipsec_capab_s { 297 ipsec_capab_elem_t *encr_hw_algs; 298 ipsec_capab_elem_t *auth_hw_algs; 299 uint32_t algs_size; /* size of _hw_algs in bytes */ 300 /* algorithm key lengths */ 301 ipsec_capab_algparm_t *encr_algparm; 302 uint32_t encr_algparm_size; 303 uint32_t encr_algparm_end; 304 }; 305 306 /* 307 * List of AH and ESP IPsec acceleration capable ills 308 */ 309 typedef struct ipsec_capab_ill_s { 310 uint_t ill_index; 311 boolean_t ill_isv6; 312 struct ipsec_capab_ill_s *next; 313 } ipsec_capab_ill_t; 314 315 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 316 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 317 krwlock_t ipsec_capab_ills_lock; 318 319 /* 320 * The field values are larger than strictly necessary for simple 321 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 322 */ 323 static area_t ip_area_template = { 324 AR_ENTRY_ADD, /* area_cmd */ 325 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 326 /* area_name_offset */ 327 /* area_name_length temporarily holds this structure length */ 328 sizeof (area_t), /* area_name_length */ 329 IP_ARP_PROTO_TYPE, /* area_proto */ 330 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 331 IP_ADDR_LEN, /* area_proto_addr_length */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 333 /* area_proto_mask_offset */ 334 0, /* area_flags */ 335 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 336 /* area_hw_addr_offset */ 337 /* Zero length hw_addr_length means 'use your idea of the address' */ 338 0 /* area_hw_addr_length */ 339 }; 340 341 /* 342 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 343 * support 344 */ 345 static area_t ip6_area_template = { 346 AR_ENTRY_ADD, /* area_cmd */ 347 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 348 /* area_name_offset */ 349 /* area_name_length temporarily holds this structure length */ 350 sizeof (area_t), /* area_name_length */ 351 IP_ARP_PROTO_TYPE, /* area_proto */ 352 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 353 IPV6_ADDR_LEN, /* area_proto_addr_length */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 355 /* area_proto_mask_offset */ 356 0, /* area_flags */ 357 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 358 /* area_hw_addr_offset */ 359 /* Zero length hw_addr_length means 'use your idea of the address' */ 360 0 /* area_hw_addr_length */ 361 }; 362 363 static ared_t ip_ared_template = { 364 AR_ENTRY_DELETE, 365 sizeof (ared_t) + IP_ADDR_LEN, 366 sizeof (ared_t), 367 IP_ARP_PROTO_TYPE, 368 sizeof (ared_t), 369 IP_ADDR_LEN 370 }; 371 372 static ared_t ip6_ared_template = { 373 AR_ENTRY_DELETE, 374 sizeof (ared_t) + IPV6_ADDR_LEN, 375 sizeof (ared_t), 376 IP_ARP_PROTO_TYPE, 377 sizeof (ared_t), 378 IPV6_ADDR_LEN 379 }; 380 381 /* 382 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 383 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 384 * areq is used). 385 */ 386 static areq_t ip_areq_template = { 387 AR_ENTRY_QUERY, /* cmd */ 388 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 389 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 390 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 391 sizeof (areq_t), /* target addr offset */ 392 IP_ADDR_LEN, /* target addr_length */ 393 0, /* flags */ 394 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 395 IP_ADDR_LEN, /* sender addr length */ 396 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 397 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 398 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 399 /* anything else filled in by the code */ 400 }; 401 402 static arc_t ip_aru_template = { 403 AR_INTERFACE_UP, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arc_t ip_ard_template = { 409 AR_INTERFACE_DOWN, 410 sizeof (arc_t), /* Name offset */ 411 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 412 }; 413 414 static arc_t ip_aron_template = { 415 AR_INTERFACE_ON, 416 sizeof (arc_t), /* Name offset */ 417 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 418 }; 419 420 static arc_t ip_aroff_template = { 421 AR_INTERFACE_OFF, 422 sizeof (arc_t), /* Name offset */ 423 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 424 }; 425 426 427 static arma_t ip_arma_multi_template = { 428 AR_MAPPING_ADD, 429 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 430 /* Name offset */ 431 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 432 IP_ARP_PROTO_TYPE, 433 sizeof (arma_t), /* proto_addr_offset */ 434 IP_ADDR_LEN, /* proto_addr_length */ 435 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 436 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 437 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 438 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 439 IP_MAX_HW_LEN, /* hw_addr_length */ 440 0, /* hw_mapping_start */ 441 }; 442 443 static ipft_t ip_ioctl_ftbl[] = { 444 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 445 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 446 IPFT_F_NO_REPLY }, 447 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 448 IPFT_F_NO_REPLY }, 449 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 450 { 0 } 451 }; 452 453 /* Simple ICMP IP Header Template */ 454 static ipha_t icmp_ipha = { 455 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 456 }; 457 458 /* Flag descriptors for ip_ipif_report */ 459 static nv_t ipif_nv_tbl[] = { 460 { IPIF_UP, "UP" }, 461 { IPIF_BROADCAST, "BROADCAST" }, 462 { ILLF_DEBUG, "DEBUG" }, 463 { PHYI_LOOPBACK, "LOOPBACK" }, 464 { IPIF_POINTOPOINT, "POINTOPOINT" }, 465 { ILLF_NOTRAILERS, "NOTRAILERS" }, 466 { PHYI_RUNNING, "RUNNING" }, 467 { ILLF_NOARP, "NOARP" }, 468 { PHYI_PROMISC, "PROMISC" }, 469 { PHYI_ALLMULTI, "ALLMULTI" }, 470 { PHYI_INTELLIGENT, "INTELLIGENT" }, 471 { ILLF_MULTICAST, "MULTICAST" }, 472 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 473 { IPIF_UNNUMBERED, "UNNUMBERED" }, 474 { IPIF_DHCPRUNNING, "DHCP" }, 475 { IPIF_PRIVATE, "PRIVATE" }, 476 { IPIF_NOXMIT, "NOXMIT" }, 477 { IPIF_NOLOCAL, "NOLOCAL" }, 478 { IPIF_DEPRECATED, "DEPRECATED" }, 479 { IPIF_PREFERRED, "PREFERRED" }, 480 { IPIF_TEMPORARY, "TEMPORARY" }, 481 { IPIF_ADDRCONF, "ADDRCONF" }, 482 { PHYI_VIRTUAL, "VIRTUAL" }, 483 { ILLF_ROUTER, "ROUTER" }, 484 { ILLF_NONUD, "NONUD" }, 485 { IPIF_ANYCAST, "ANYCAST" }, 486 { ILLF_NORTEXCH, "NORTEXCH" }, 487 { ILLF_IPV4, "IPV4" }, 488 { ILLF_IPV6, "IPV6" }, 489 { IPIF_MIPRUNNING, "MIP" }, 490 { IPIF_NOFAILOVER, "NOFAILOVER" }, 491 { PHYI_FAILED, "FAILED" }, 492 { PHYI_STANDBY, "STANDBY" }, 493 { PHYI_INACTIVE, "INACTIVE" }, 494 { PHYI_OFFLINE, "OFFLINE" }, 495 }; 496 497 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 498 499 static ip_m_t ip_m_tbl[] = { 500 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_ether_v6intfid }, 502 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid }, 506 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 507 ip_nodef_v6intfid }, 508 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_ether_v6intfid }, 510 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 511 ip_ib_v6intfid }, 512 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 513 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 514 ip_nodef_v6intfid } 515 }; 516 517 static ill_t ill_null; /* Empty ILL for init. */ 518 char ipif_loopback_name[] = "lo0"; 519 static char *ipv4_forward_suffix = ":ip_forwarding"; 520 static char *ipv6_forward_suffix = ":ip6_forwarding"; 521 static kstat_t *loopback_ksp = NULL; 522 static sin6_t sin6_null; /* Zero address for quick clears */ 523 static sin_t sin_null; /* Zero address for quick clears */ 524 static uint_t ill_index = 1; /* Used to assign interface indicies */ 525 /* When set search for unused index */ 526 static boolean_t ill_index_wrap = B_FALSE; 527 /* When set search for unused ipif_seqid */ 528 static ipif_t ipif_zero; 529 uint_t ipif_src_random; 530 531 /* 532 * For details on the protection offered by these locks please refer 533 * to the notes under the Synchronization section at the start of ip.c 534 */ 535 krwlock_t ill_g_lock; /* The global ill_g_lock */ 536 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 537 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 538 539 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 540 541 /* 542 * illgrp_head/ifgrp_head is protected by IP's perimeter. 543 */ 544 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 545 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 546 547 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 548 549 /* 550 * ppa arena is created after these many 551 * interfaces have been plumbed. 552 */ 553 uint_t ill_no_arena = 12; 554 555 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 556 static phyint_list_t phyint_g_list; /* start of phyint list */ 557 558 /* 559 * Reflects value of FAILBACK variable in IPMP config file 560 * /etc/default/mpathd. Default value is B_TRUE. 561 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 562 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 563 */ 564 static boolean_t ipmp_enable_failback = B_TRUE; 565 566 /* 567 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 568 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 569 * set through platform specific code (Niagara/Ontario). 570 */ 571 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 572 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 573 574 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 575 576 static uint_t 577 ipif_rand(void) 578 { 579 ipif_src_random = ipif_src_random * 1103515245 + 12345; 580 return ((ipif_src_random >> 16) & 0x7fff); 581 } 582 583 /* 584 * Allocate per-interface mibs. 585 * Returns true if ok. False otherwise. 586 * ipsq may not yet be allocated (loopback case ). 587 */ 588 static boolean_t 589 ill_allocate_mibs(ill_t *ill) 590 { 591 /* Already allocated? */ 592 if (ill->ill_ip_mib != NULL) { 593 if (ill->ill_isv6) 594 ASSERT(ill->ill_icmp6_mib != NULL); 595 return (B_TRUE); 596 } 597 598 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 599 KM_NOSLEEP); 600 if (ill->ill_ip_mib == NULL) { 601 return (B_FALSE); 602 } 603 604 /* Setup static information */ 605 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 606 sizeof (mib2_ipIfStatsEntry_t)); 607 if (ill->ill_isv6) { 608 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 609 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 610 sizeof (mib2_ipv6AddrEntry_t)); 611 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 612 sizeof (mib2_ipv6RouteEntry_t)); 613 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 614 sizeof (mib2_ipv6NetToMediaEntry_t)); 615 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 616 sizeof (ipv6_member_t)); 617 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 618 sizeof (ipv6_grpsrc_t)); 619 } else { 620 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 621 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 622 sizeof (mib2_ipAddrEntry_t)); 623 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 624 sizeof (mib2_ipRouteEntry_t)); 625 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 626 sizeof (mib2_ipNetToMediaEntry_t)); 627 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 628 sizeof (ip_member_t)); 629 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 630 sizeof (ip_grpsrc_t)); 631 632 /* 633 * For a v4 ill, we are done at this point, because per ill 634 * icmp mibs are only used for v6. 635 */ 636 return (B_TRUE); 637 } 638 639 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 640 KM_NOSLEEP); 641 if (ill->ill_icmp6_mib == NULL) { 642 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 643 ill->ill_ip_mib = NULL; 644 return (B_FALSE); 645 } 646 /* static icmp info */ 647 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 648 sizeof (mib2_ipv6IfIcmpEntry_t); 649 /* 650 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 651 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 652 * -> ill_phyint_reinit 653 */ 654 return (B_TRUE); 655 } 656 657 /* 658 * Common code for preparation of ARP commands. Two points to remember: 659 * 1) The ill_name is tacked on at the end of the allocated space so 660 * the templates name_offset field must contain the total space 661 * to allocate less the name length. 662 * 663 * 2) The templates name_length field should contain the *template* 664 * length. We use it as a parameter to bcopy() and then write 665 * the real ill_name_length into the name_length field of the copy. 666 * (Always called as writer.) 667 */ 668 mblk_t * 669 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 670 { 671 arc_t *arc = (arc_t *)template; 672 char *cp; 673 int len; 674 mblk_t *mp; 675 uint_t name_length = ill->ill_name_length; 676 uint_t template_len = arc->arc_name_length; 677 678 len = arc->arc_name_offset + name_length; 679 mp = allocb(len, BPRI_HI); 680 if (mp == NULL) 681 return (NULL); 682 cp = (char *)mp->b_rptr; 683 mp->b_wptr = (uchar_t *)&cp[len]; 684 if (template_len) 685 bcopy(template, cp, template_len); 686 if (len > template_len) 687 bzero(&cp[template_len], len - template_len); 688 mp->b_datap->db_type = M_PROTO; 689 690 arc = (arc_t *)cp; 691 arc->arc_name_length = name_length; 692 cp = (char *)arc + arc->arc_name_offset; 693 bcopy(ill->ill_name, cp, name_length); 694 695 if (addr) { 696 area_t *area = (area_t *)mp->b_rptr; 697 698 cp = (char *)area + area->area_proto_addr_offset; 699 bcopy(addr, cp, area->area_proto_addr_length); 700 if (area->area_cmd == AR_ENTRY_ADD) { 701 cp = (char *)area; 702 len = area->area_proto_addr_length; 703 if (area->area_proto_mask_offset) 704 cp += area->area_proto_mask_offset; 705 else 706 cp += area->area_proto_addr_offset + len; 707 while (len-- > 0) 708 *cp++ = (char)~0; 709 } 710 } 711 return (mp); 712 } 713 714 mblk_t * 715 ipif_area_alloc(ipif_t *ipif) 716 { 717 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 718 (char *)&ipif->ipif_lcl_addr)); 719 } 720 721 mblk_t * 722 ipif_ared_alloc(ipif_t *ipif) 723 { 724 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 725 (char *)&ipif->ipif_lcl_addr)); 726 } 727 728 mblk_t * 729 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 730 { 731 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 732 (char *)&addr)); 733 } 734 735 /* 736 * Completely vaporize a lower level tap and all associated interfaces. 737 * ill_delete is called only out of ip_close when the device control 738 * stream is being closed. 739 */ 740 void 741 ill_delete(ill_t *ill) 742 { 743 ipif_t *ipif; 744 ill_t *prev_ill; 745 746 /* 747 * ill_delete may be forcibly entering the ipsq. The previous 748 * ioctl may not have completed and may need to be aborted. 749 * ipsq_flush takes care of it. If we don't need to enter the 750 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 751 * ill_delete_tail is sufficient. 752 */ 753 ipsq_flush(ill); 754 755 /* 756 * Nuke all interfaces. ipif_free will take down the interface, 757 * remove it from the list, and free the data structure. 758 * Walk down the ipif list and remove the logical interfaces 759 * first before removing the main ipif. We can't unplumb 760 * zeroth interface first in the case of IPv6 as reset_conn_ill 761 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 762 * POINTOPOINT. 763 * 764 * If ill_ipif was not properly initialized (i.e low on memory), 765 * then no interfaces to clean up. In this case just clean up the 766 * ill. 767 */ 768 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 769 ipif_free(ipif); 770 771 /* 772 * Used only by ill_arp_on and ill_arp_off, which are writers. 773 * So nobody can be using this mp now. Free the mp allocated for 774 * honoring ILLF_NOARP 775 */ 776 freemsg(ill->ill_arp_on_mp); 777 ill->ill_arp_on_mp = NULL; 778 779 /* Clean up msgs on pending upcalls for mrouted */ 780 reset_mrt_ill(ill); 781 782 /* 783 * ipif_free -> reset_conn_ipif will remove all multicast 784 * references for IPv4. For IPv6, we need to do it here as 785 * it points only at ills. 786 */ 787 reset_conn_ill(ill); 788 789 /* 790 * ill_down will arrange to blow off any IRE's dependent on this 791 * ILL, and shut down fragmentation reassembly. 792 */ 793 ill_down(ill); 794 795 /* Let SCTP know, so that it can remove this from its list. */ 796 sctp_update_ill(ill, SCTP_ILL_REMOVE); 797 798 /* 799 * If an address on this ILL is being used as a source address then 800 * clear out the pointers in other ILLs that point to this ILL. 801 */ 802 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 803 if (ill->ill_usesrc_grp_next != NULL) { 804 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 805 ill_disband_usesrc_group(ill); 806 } else { /* consumer of the usesrc ILL */ 807 prev_ill = ill_prev_usesrc(ill); 808 prev_ill->ill_usesrc_grp_next = 809 ill->ill_usesrc_grp_next; 810 } 811 } 812 rw_exit(&ill_g_usesrc_lock); 813 } 814 815 static void 816 ipif_non_duplicate(ipif_t *ipif) 817 { 818 ill_t *ill = ipif->ipif_ill; 819 mutex_enter(&ill->ill_lock); 820 if (ipif->ipif_flags & IPIF_DUPLICATE) { 821 ipif->ipif_flags &= ~IPIF_DUPLICATE; 822 ASSERT(ill->ill_ipif_dup_count > 0); 823 ill->ill_ipif_dup_count--; 824 } 825 mutex_exit(&ill->ill_lock); 826 } 827 828 /* 829 * Send all deferred messages without waiting for their ACKs. 830 */ 831 void 832 ill_send_all_deferred_mp(ill_t *ill) 833 { 834 mblk_t *mp, *next; 835 836 /* 837 * Clear ill_dlpi_pending so that the message is not queued in 838 * ill_dlpi_send(). 839 */ 840 ill->ill_dlpi_pending = DL_PRIM_INVAL; 841 842 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 843 next = mp->b_next; 844 mp->b_next = NULL; 845 ill_dlpi_send(ill, mp); 846 } 847 ill->ill_dlpi_deferred = NULL; 848 } 849 850 /* 851 * ill_delete_tail is called from ip_modclose after all references 852 * to the closing ill are gone. The wait is done in ip_modclose 853 */ 854 void 855 ill_delete_tail(ill_t *ill) 856 { 857 mblk_t **mpp; 858 ipif_t *ipif; 859 860 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 861 ipif_non_duplicate(ipif); 862 ipif_down_tail(ipif); 863 } 864 865 ASSERT(ill->ill_ipif_dup_count == 0 && 866 ill->ill_arp_down_mp == NULL && 867 ill->ill_arp_del_mapping_mp == NULL); 868 869 /* 870 * If polling capability is enabled (which signifies direct 871 * upcall into IP and driver has ill saved as a handle), 872 * we need to make sure that unbind has completed before we 873 * let the ill disappear and driver no longer has any reference 874 * to this ill. 875 */ 876 mutex_enter(&ill->ill_lock); 877 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 878 cv_wait(&ill->ill_cv, &ill->ill_lock); 879 mutex_exit(&ill->ill_lock); 880 881 /* 882 * Clean up polling and soft ring capabilities 883 */ 884 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 885 ill_capability_dls_disable(ill); 886 887 /* 888 * Send the detach if there's one to send (i.e., if we're above a 889 * style 2 DLPI driver). 890 */ 891 if (ill->ill_detach_mp != NULL) { 892 ill_dlpi_send(ill, ill->ill_detach_mp); 893 ill->ill_detach_mp = NULL; 894 } 895 896 if (ill->ill_net_type != IRE_LOOPBACK) 897 qprocsoff(ill->ill_rq); 898 899 /* 900 * We do an ipsq_flush once again now. New messages could have 901 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 902 * could also have landed up if an ioctl thread had looked up 903 * the ill before we set the ILL_CONDEMNED flag, but not yet 904 * enqueued the ioctl when we did the ipsq_flush last time. 905 */ 906 ipsq_flush(ill); 907 908 /* 909 * Free capabilities. 910 */ 911 if (ill->ill_ipsec_capab_ah != NULL) { 912 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 913 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 914 ill->ill_ipsec_capab_ah = NULL; 915 } 916 917 if (ill->ill_ipsec_capab_esp != NULL) { 918 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 919 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 920 ill->ill_ipsec_capab_esp = NULL; 921 } 922 923 if (ill->ill_mdt_capab != NULL) { 924 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 925 ill->ill_mdt_capab = NULL; 926 } 927 928 if (ill->ill_hcksum_capab != NULL) { 929 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 930 ill->ill_hcksum_capab = NULL; 931 } 932 933 if (ill->ill_zerocopy_capab != NULL) { 934 kmem_free(ill->ill_zerocopy_capab, 935 sizeof (ill_zerocopy_capab_t)); 936 ill->ill_zerocopy_capab = NULL; 937 } 938 939 if (ill->ill_lso_capab != NULL) { 940 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 941 ill->ill_lso_capab = NULL; 942 } 943 944 if (ill->ill_dls_capab != NULL) { 945 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 946 ill->ill_dls_capab->ill_unbind_conn = NULL; 947 kmem_free(ill->ill_dls_capab, 948 sizeof (ill_dls_capab_t) + 949 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 950 ill->ill_dls_capab = NULL; 951 } 952 953 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 954 955 while (ill->ill_ipif != NULL) 956 ipif_free_tail(ill->ill_ipif); 957 958 ill_down_tail(ill); 959 960 /* 961 * We have removed all references to ilm from conn and the ones joined 962 * within the kernel. 963 * 964 * We don't walk conns, mrts and ires because 965 * 966 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 967 * 2) ill_down ->ill_downi walks all the ires and cleans up 968 * ill references. 969 */ 970 ASSERT(ilm_walk_ill(ill) == 0); 971 /* 972 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 973 * could free the phyint. No more reference to the phyint after this 974 * point. 975 */ 976 (void) ill_glist_delete(ill); 977 978 rw_enter(&ip_g_nd_lock, RW_WRITER); 979 if (ill->ill_ndd_name != NULL) 980 nd_unload(&ip_g_nd, ill->ill_ndd_name); 981 rw_exit(&ip_g_nd_lock); 982 983 984 if (ill->ill_frag_ptr != NULL) { 985 uint_t count; 986 987 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 988 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 989 } 990 mi_free(ill->ill_frag_ptr); 991 ill->ill_frag_ptr = NULL; 992 ill->ill_frag_hash_tbl = NULL; 993 } 994 if (ill->ill_nd_lla_mp != NULL) 995 freemsg(ill->ill_nd_lla_mp); 996 /* Free all retained control messages. */ 997 mpp = &ill->ill_first_mp_to_free; 998 do { 999 while (mpp[0]) { 1000 mblk_t *mp; 1001 mblk_t *mp1; 1002 1003 mp = mpp[0]; 1004 mpp[0] = mp->b_next; 1005 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 1006 mp1->b_next = NULL; 1007 mp1->b_prev = NULL; 1008 } 1009 freemsg(mp); 1010 } 1011 } while (mpp++ != &ill->ill_last_mp_to_free); 1012 1013 ill_free_mib(ill); 1014 ILL_TRACE_CLEANUP(ill); 1015 } 1016 1017 static void 1018 ill_free_mib(ill_t *ill) 1019 { 1020 /* 1021 * MIB statistics must not be lost, so when an interface 1022 * goes away the counter values will be added to the global 1023 * MIBs. 1024 */ 1025 if (ill->ill_ip_mib != NULL) { 1026 if (ill->ill_isv6) 1027 ip_mib2_add_ip_stats(&ip6_mib, ill->ill_ip_mib); 1028 else 1029 ip_mib2_add_ip_stats(&ip_mib, ill->ill_ip_mib); 1030 1031 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1032 ill->ill_ip_mib = NULL; 1033 } 1034 if (ill->ill_icmp6_mib != NULL) { 1035 ip_mib2_add_icmp6_stats(&icmp6_mib, ill->ill_icmp6_mib); 1036 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1037 ill->ill_icmp6_mib = NULL; 1038 } 1039 } 1040 1041 /* 1042 * Concatenate together a physical address and a sap. 1043 * 1044 * Sap_lengths are interpreted as follows: 1045 * sap_length == 0 ==> no sap 1046 * sap_length > 0 ==> sap is at the head of the dlpi address 1047 * sap_length < 0 ==> sap is at the tail of the dlpi address 1048 */ 1049 static void 1050 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1051 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1052 { 1053 uint16_t sap_addr = (uint16_t)sap_src; 1054 1055 if (sap_length == 0) { 1056 if (phys_src == NULL) 1057 bzero(dst, phys_length); 1058 else 1059 bcopy(phys_src, dst, phys_length); 1060 } else if (sap_length < 0) { 1061 if (phys_src == NULL) 1062 bzero(dst, phys_length); 1063 else 1064 bcopy(phys_src, dst, phys_length); 1065 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1066 } else { 1067 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1068 if (phys_src == NULL) 1069 bzero((char *)dst + sap_length, phys_length); 1070 else 1071 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1072 } 1073 } 1074 1075 /* 1076 * Generate a dl_unitdata_req mblk for the device and address given. 1077 * addr_length is the length of the physical portion of the address. 1078 * If addr is NULL include an all zero address of the specified length. 1079 * TRUE? In any case, addr_length is taken to be the entire length of the 1080 * dlpi address, including the absolute value of sap_length. 1081 */ 1082 mblk_t * 1083 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1084 t_scalar_t sap_length) 1085 { 1086 dl_unitdata_req_t *dlur; 1087 mblk_t *mp; 1088 t_scalar_t abs_sap_length; /* absolute value */ 1089 1090 abs_sap_length = ABS(sap_length); 1091 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1092 DL_UNITDATA_REQ); 1093 if (mp == NULL) 1094 return (NULL); 1095 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1096 /* HACK: accomodate incompatible DLPI drivers */ 1097 if (addr_length == 8) 1098 addr_length = 6; 1099 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1100 dlur->dl_dest_addr_offset = sizeof (*dlur); 1101 dlur->dl_priority.dl_min = 0; 1102 dlur->dl_priority.dl_max = 0; 1103 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1104 (uchar_t *)&dlur[1]); 1105 return (mp); 1106 } 1107 1108 /* 1109 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1110 * Return an error if we already have 1 or more ioctls in progress. 1111 * This is used only for non-exclusive ioctls. Currently this is used 1112 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1113 * and thus need to use ipsq_pending_mp_add. 1114 */ 1115 boolean_t 1116 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1117 { 1118 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1119 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1120 /* 1121 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1122 */ 1123 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1124 (add_mp->b_datap->db_type == M_IOCTL)); 1125 1126 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1127 /* 1128 * Return error if the conn has started closing. The conn 1129 * could have finished cleaning up the pending mp list, 1130 * If so we should not add another mp to the list negating 1131 * the cleanup. 1132 */ 1133 if (connp->conn_state_flags & CONN_CLOSING) 1134 return (B_FALSE); 1135 /* 1136 * Add the pending mp to the head of the list, chained by b_next. 1137 * Note down the conn on which the ioctl request came, in b_prev. 1138 * This will be used to later get the conn, when we get a response 1139 * on the ill queue, from some other module (typically arp) 1140 */ 1141 add_mp->b_next = (void *)ill->ill_pending_mp; 1142 add_mp->b_queue = CONNP_TO_WQ(connp); 1143 ill->ill_pending_mp = add_mp; 1144 if (connp != NULL) 1145 connp->conn_oper_pending_ill = ill; 1146 return (B_TRUE); 1147 } 1148 1149 /* 1150 * Retrieve the ill_pending_mp and return it. We have to walk the list 1151 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1152 */ 1153 mblk_t * 1154 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1155 { 1156 mblk_t *prev = NULL; 1157 mblk_t *curr = NULL; 1158 uint_t id; 1159 conn_t *connp; 1160 1161 /* 1162 * When the conn closes, conn_ioctl_cleanup needs to clean 1163 * up the pending mp, but it does not know the ioc_id and 1164 * passes in a zero for it. 1165 */ 1166 mutex_enter(&ill->ill_lock); 1167 if (ioc_id != 0) 1168 *connpp = NULL; 1169 1170 /* Search the list for the appropriate ioctl based on ioc_id */ 1171 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1172 prev = curr, curr = curr->b_next) { 1173 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1174 connp = Q_TO_CONN(curr->b_queue); 1175 /* Match based on the ioc_id or based on the conn */ 1176 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1177 break; 1178 } 1179 1180 if (curr != NULL) { 1181 /* Unlink the mblk from the pending mp list */ 1182 if (prev != NULL) { 1183 prev->b_next = curr->b_next; 1184 } else { 1185 ASSERT(ill->ill_pending_mp == curr); 1186 ill->ill_pending_mp = curr->b_next; 1187 } 1188 1189 /* 1190 * conn refcnt must have been bumped up at the start of 1191 * the ioctl. So we can safely access the conn. 1192 */ 1193 ASSERT(CONN_Q(curr->b_queue)); 1194 *connpp = Q_TO_CONN(curr->b_queue); 1195 curr->b_next = NULL; 1196 curr->b_queue = NULL; 1197 } 1198 1199 mutex_exit(&ill->ill_lock); 1200 1201 return (curr); 1202 } 1203 1204 /* 1205 * Add the pending mp to the list. There can be only 1 pending mp 1206 * in the list. Any exclusive ioctl that needs to wait for a response 1207 * from another module or driver needs to use this function to set 1208 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1209 * the other module/driver. This is also used while waiting for the 1210 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1211 */ 1212 boolean_t 1213 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1214 int waitfor) 1215 { 1216 ipsq_t *ipsq; 1217 1218 ASSERT(IAM_WRITER_IPIF(ipif)); 1219 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1220 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1221 /* 1222 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1223 * M_ERROR/M_HANGUP from driver 1224 */ 1225 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1226 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1227 1228 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1229 if (connp != NULL) { 1230 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1231 /* 1232 * Return error if the conn has started closing. The conn 1233 * could have finished cleaning up the pending mp list, 1234 * If so we should not add another mp to the list negating 1235 * the cleanup. 1236 */ 1237 if (connp->conn_state_flags & CONN_CLOSING) 1238 return (B_FALSE); 1239 } 1240 mutex_enter(&ipsq->ipsq_lock); 1241 ipsq->ipsq_pending_ipif = ipif; 1242 /* 1243 * Note down the queue in b_queue. This will be returned by 1244 * ipsq_pending_mp_get. Caller will then use these values to restart 1245 * the processing 1246 */ 1247 add_mp->b_next = NULL; 1248 add_mp->b_queue = q; 1249 ipsq->ipsq_pending_mp = add_mp; 1250 ipsq->ipsq_waitfor = waitfor; 1251 /* 1252 * ipsq_current_ipif is needed to restart the operation from 1253 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1254 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1255 * been set until now. 1256 */ 1257 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1258 ASSERT(ipsq->ipsq_current_ipif == NULL); 1259 ipsq->ipsq_current_ipif = ipif; 1260 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1261 } 1262 if (connp != NULL) 1263 connp->conn_oper_pending_ill = ipif->ipif_ill; 1264 mutex_exit(&ipsq->ipsq_lock); 1265 return (B_TRUE); 1266 } 1267 1268 /* 1269 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1270 * queued in the list. 1271 */ 1272 mblk_t * 1273 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1274 { 1275 mblk_t *curr = NULL; 1276 1277 mutex_enter(&ipsq->ipsq_lock); 1278 *connpp = NULL; 1279 if (ipsq->ipsq_pending_mp == NULL) { 1280 mutex_exit(&ipsq->ipsq_lock); 1281 return (NULL); 1282 } 1283 1284 /* There can be only 1 such excl message */ 1285 curr = ipsq->ipsq_pending_mp; 1286 ASSERT(curr != NULL && curr->b_next == NULL); 1287 ipsq->ipsq_pending_ipif = NULL; 1288 ipsq->ipsq_pending_mp = NULL; 1289 ipsq->ipsq_waitfor = 0; 1290 mutex_exit(&ipsq->ipsq_lock); 1291 1292 if (CONN_Q(curr->b_queue)) { 1293 /* 1294 * This mp did a refhold on the conn, at the start of the ioctl. 1295 * So we can safely return a pointer to the conn to the caller. 1296 */ 1297 *connpp = Q_TO_CONN(curr->b_queue); 1298 } else { 1299 *connpp = NULL; 1300 } 1301 curr->b_next = NULL; 1302 curr->b_prev = NULL; 1303 return (curr); 1304 } 1305 1306 /* 1307 * Cleanup the ioctl mp queued in ipsq_pending_mp 1308 * - Called in the ill_delete path 1309 * - Called in the M_ERROR or M_HANGUP path on the ill. 1310 * - Called in the conn close path. 1311 */ 1312 boolean_t 1313 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1314 { 1315 mblk_t *mp; 1316 ipsq_t *ipsq; 1317 queue_t *q; 1318 ipif_t *ipif; 1319 1320 ASSERT(IAM_WRITER_ILL(ill)); 1321 ipsq = ill->ill_phyint->phyint_ipsq; 1322 mutex_enter(&ipsq->ipsq_lock); 1323 /* 1324 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1325 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1326 * even if it is meant for another ill, since we have to enqueue 1327 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1328 * If connp is non-null we are called from the conn close path. 1329 */ 1330 mp = ipsq->ipsq_pending_mp; 1331 if (mp == NULL || (connp != NULL && 1332 mp->b_queue != CONNP_TO_WQ(connp))) { 1333 mutex_exit(&ipsq->ipsq_lock); 1334 return (B_FALSE); 1335 } 1336 /* Now remove from the ipsq_pending_mp */ 1337 ipsq->ipsq_pending_mp = NULL; 1338 q = mp->b_queue; 1339 mp->b_next = NULL; 1340 mp->b_prev = NULL; 1341 mp->b_queue = NULL; 1342 1343 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1344 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1345 if (ill->ill_move_in_progress) { 1346 ILL_CLEAR_MOVE(ill); 1347 } else if (ill->ill_up_ipifs) { 1348 ill_group_cleanup(ill); 1349 } 1350 1351 ipif = ipsq->ipsq_pending_ipif; 1352 ipsq->ipsq_pending_ipif = NULL; 1353 ipsq->ipsq_waitfor = 0; 1354 ipsq->ipsq_current_ipif = NULL; 1355 mutex_exit(&ipsq->ipsq_lock); 1356 1357 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1358 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1359 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1360 } else { 1361 /* 1362 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1363 * be just inet_freemsg. we have to restart it 1364 * otherwise the thread will be stuck. 1365 */ 1366 inet_freemsg(mp); 1367 } 1368 return (B_TRUE); 1369 } 1370 1371 /* 1372 * The ill is closing. Cleanup all the pending mps. Called exclusively 1373 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1374 * knows this ill, and hence nobody can add an mp to this list 1375 */ 1376 static void 1377 ill_pending_mp_cleanup(ill_t *ill) 1378 { 1379 mblk_t *mp; 1380 queue_t *q; 1381 1382 ASSERT(IAM_WRITER_ILL(ill)); 1383 1384 mutex_enter(&ill->ill_lock); 1385 /* 1386 * Every mp on the pending mp list originating from an ioctl 1387 * added 1 to the conn refcnt, at the start of the ioctl. 1388 * So bump it down now. See comments in ip_wput_nondata() 1389 */ 1390 while (ill->ill_pending_mp != NULL) { 1391 mp = ill->ill_pending_mp; 1392 ill->ill_pending_mp = mp->b_next; 1393 mutex_exit(&ill->ill_lock); 1394 1395 q = mp->b_queue; 1396 ASSERT(CONN_Q(q)); 1397 mp->b_next = NULL; 1398 mp->b_prev = NULL; 1399 mp->b_queue = NULL; 1400 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1401 mutex_enter(&ill->ill_lock); 1402 } 1403 ill->ill_pending_ipif = NULL; 1404 1405 mutex_exit(&ill->ill_lock); 1406 } 1407 1408 /* 1409 * Called in the conn close path and ill delete path 1410 */ 1411 static void 1412 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1413 { 1414 ipsq_t *ipsq; 1415 mblk_t *prev; 1416 mblk_t *curr; 1417 mblk_t *next; 1418 queue_t *q; 1419 mblk_t *tmp_list = NULL; 1420 1421 ASSERT(IAM_WRITER_ILL(ill)); 1422 if (connp != NULL) 1423 q = CONNP_TO_WQ(connp); 1424 else 1425 q = ill->ill_wq; 1426 1427 ipsq = ill->ill_phyint->phyint_ipsq; 1428 /* 1429 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1430 * In the case of ioctl from a conn, there can be only 1 mp 1431 * queued on the ipsq. If an ill is being unplumbed, only messages 1432 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1433 * ioctls meant for this ill form conn's are not flushed. They will 1434 * be processed during ipsq_exit and will not find the ill and will 1435 * return error. 1436 */ 1437 mutex_enter(&ipsq->ipsq_lock); 1438 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1439 curr = next) { 1440 next = curr->b_next; 1441 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1442 /* Unlink the mblk from the pending mp list */ 1443 if (prev != NULL) { 1444 prev->b_next = curr->b_next; 1445 } else { 1446 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1447 ipsq->ipsq_xopq_mphead = curr->b_next; 1448 } 1449 if (ipsq->ipsq_xopq_mptail == curr) 1450 ipsq->ipsq_xopq_mptail = prev; 1451 /* 1452 * Create a temporary list and release the ipsq lock 1453 * New elements are added to the head of the tmp_list 1454 */ 1455 curr->b_next = tmp_list; 1456 tmp_list = curr; 1457 } else { 1458 prev = curr; 1459 } 1460 } 1461 mutex_exit(&ipsq->ipsq_lock); 1462 1463 while (tmp_list != NULL) { 1464 curr = tmp_list; 1465 tmp_list = curr->b_next; 1466 curr->b_next = NULL; 1467 curr->b_prev = NULL; 1468 curr->b_queue = NULL; 1469 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1470 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1471 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1472 } else { 1473 /* 1474 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1475 * this can't be just inet_freemsg. we have to 1476 * restart it otherwise the thread will be stuck. 1477 */ 1478 inet_freemsg(curr); 1479 } 1480 } 1481 } 1482 1483 /* 1484 * This conn has started closing. Cleanup any pending ioctl from this conn. 1485 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1486 */ 1487 void 1488 conn_ioctl_cleanup(conn_t *connp) 1489 { 1490 mblk_t *curr; 1491 ipsq_t *ipsq; 1492 ill_t *ill; 1493 boolean_t refheld; 1494 1495 /* 1496 * Is any exclusive ioctl pending ? If so clean it up. If the 1497 * ioctl has not yet started, the mp is pending in the list headed by 1498 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1499 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1500 * is currently executing now the mp is not queued anywhere but 1501 * conn_oper_pending_ill is null. The conn close will wait 1502 * till the conn_ref drops to zero. 1503 */ 1504 mutex_enter(&connp->conn_lock); 1505 ill = connp->conn_oper_pending_ill; 1506 if (ill == NULL) { 1507 mutex_exit(&connp->conn_lock); 1508 return; 1509 } 1510 1511 curr = ill_pending_mp_get(ill, &connp, 0); 1512 if (curr != NULL) { 1513 mutex_exit(&connp->conn_lock); 1514 CONN_DEC_REF(connp); 1515 inet_freemsg(curr); 1516 return; 1517 } 1518 /* 1519 * We may not be able to refhold the ill if the ill/ipif 1520 * is changing. But we need to make sure that the ill will 1521 * not vanish. So we just bump up the ill_waiter count. 1522 */ 1523 refheld = ill_waiter_inc(ill); 1524 mutex_exit(&connp->conn_lock); 1525 if (refheld) { 1526 if (ipsq_enter(ill, B_TRUE)) { 1527 ill_waiter_dcr(ill); 1528 /* 1529 * Check whether this ioctl has started and is 1530 * pending now in ipsq_pending_mp. If it is not 1531 * found there then check whether this ioctl has 1532 * not even started and is in the ipsq_xopq list. 1533 */ 1534 if (!ipsq_pending_mp_cleanup(ill, connp)) 1535 ipsq_xopq_mp_cleanup(ill, connp); 1536 ipsq = ill->ill_phyint->phyint_ipsq; 1537 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1538 return; 1539 } 1540 } 1541 1542 /* 1543 * The ill is also closing and we could not bump up the 1544 * ill_waiter_count or we could not enter the ipsq. Leave 1545 * the cleanup to ill_delete 1546 */ 1547 mutex_enter(&connp->conn_lock); 1548 while (connp->conn_oper_pending_ill != NULL) 1549 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1550 mutex_exit(&connp->conn_lock); 1551 if (refheld) 1552 ill_waiter_dcr(ill); 1553 } 1554 1555 /* 1556 * ipcl_walk function for cleaning up conn_*_ill fields. 1557 */ 1558 static void 1559 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1560 { 1561 ill_t *ill = (ill_t *)arg; 1562 ire_t *ire; 1563 1564 mutex_enter(&connp->conn_lock); 1565 if (connp->conn_multicast_ill == ill) { 1566 /* Revert to late binding */ 1567 connp->conn_multicast_ill = NULL; 1568 connp->conn_orig_multicast_ifindex = 0; 1569 } 1570 if (connp->conn_incoming_ill == ill) 1571 connp->conn_incoming_ill = NULL; 1572 if (connp->conn_outgoing_ill == ill) 1573 connp->conn_outgoing_ill = NULL; 1574 if (connp->conn_outgoing_pill == ill) 1575 connp->conn_outgoing_pill = NULL; 1576 if (connp->conn_nofailover_ill == ill) 1577 connp->conn_nofailover_ill = NULL; 1578 if (connp->conn_xmit_if_ill == ill) 1579 connp->conn_xmit_if_ill = NULL; 1580 if (connp->conn_ire_cache != NULL) { 1581 ire = connp->conn_ire_cache; 1582 /* 1583 * ip_newroute creates IRE_CACHE with ire_stq coming from 1584 * interface X and ipif coming from interface Y, if interface 1585 * X and Y are part of the same IPMPgroup. Thus whenever 1586 * interface X goes down, remove all references to it by 1587 * checking both on ire_ipif and ire_stq. 1588 */ 1589 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1590 (ire->ire_type == IRE_CACHE && 1591 ire->ire_stq == ill->ill_wq)) { 1592 connp->conn_ire_cache = NULL; 1593 mutex_exit(&connp->conn_lock); 1594 ire_refrele_notr(ire); 1595 return; 1596 } 1597 } 1598 mutex_exit(&connp->conn_lock); 1599 1600 } 1601 1602 /* ARGSUSED */ 1603 void 1604 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1605 { 1606 ill_t *ill = q->q_ptr; 1607 ipif_t *ipif; 1608 1609 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1610 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1611 ipif_non_duplicate(ipif); 1612 ipif_down_tail(ipif); 1613 } 1614 ill_down_tail(ill); 1615 freemsg(mp); 1616 ipsq->ipsq_current_ipif = NULL; 1617 } 1618 1619 /* 1620 * ill_down_start is called when we want to down this ill and bring it up again 1621 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1622 * all interfaces, but don't tear down any plumbing. 1623 */ 1624 boolean_t 1625 ill_down_start(queue_t *q, mblk_t *mp) 1626 { 1627 ill_t *ill; 1628 ipif_t *ipif; 1629 1630 ill = q->q_ptr; 1631 1632 ASSERT(IAM_WRITER_ILL(ill)); 1633 1634 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1635 (void) ipif_down(ipif, NULL, NULL); 1636 1637 ill_down(ill); 1638 1639 (void) ipsq_pending_mp_cleanup(ill, NULL); 1640 mutex_enter(&ill->ill_lock); 1641 /* 1642 * Atomically test and add the pending mp if references are 1643 * still active. 1644 */ 1645 if (!ill_is_quiescent(ill)) { 1646 /* 1647 * Get rid of any pending mps and cleanup. Call will 1648 * not fail since we are passing a null connp. 1649 */ 1650 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1651 mp, ILL_DOWN); 1652 mutex_exit(&ill->ill_lock); 1653 return (B_FALSE); 1654 } 1655 mutex_exit(&ill->ill_lock); 1656 return (B_TRUE); 1657 } 1658 1659 static void 1660 ill_down(ill_t *ill) 1661 { 1662 /* Blow off any IREs dependent on this ILL. */ 1663 ire_walk(ill_downi, (char *)ill); 1664 1665 mutex_enter(&ire_mrtun_lock); 1666 if (ire_mrtun_count != 0) { 1667 mutex_exit(&ire_mrtun_lock); 1668 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1669 (char *)ill, NULL); 1670 } else { 1671 mutex_exit(&ire_mrtun_lock); 1672 } 1673 1674 /* 1675 * If any interface based forwarding table exists 1676 * Blow off the ires there dependent on this ill 1677 */ 1678 mutex_enter(&ire_srcif_table_lock); 1679 if (ire_srcif_table_count > 0) { 1680 mutex_exit(&ire_srcif_table_lock); 1681 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1682 } else { 1683 mutex_exit(&ire_srcif_table_lock); 1684 } 1685 1686 /* Remove any conn_*_ill depending on this ill */ 1687 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1688 1689 if (ill->ill_group != NULL) { 1690 illgrp_delete(ill); 1691 } 1692 1693 } 1694 1695 static void 1696 ill_down_tail(ill_t *ill) 1697 { 1698 int i; 1699 1700 /* Destroy ill_srcif_table if it exists */ 1701 /* Lock not reqd really because nobody should be able to access */ 1702 mutex_enter(&ill->ill_lock); 1703 if (ill->ill_srcif_table != NULL) { 1704 ill->ill_srcif_refcnt = 0; 1705 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1706 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1707 } 1708 kmem_free(ill->ill_srcif_table, 1709 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1710 ill->ill_srcif_table = NULL; 1711 ill->ill_srcif_refcnt = 0; 1712 ill->ill_mrtun_refcnt = 0; 1713 } 1714 mutex_exit(&ill->ill_lock); 1715 } 1716 1717 /* 1718 * ire_walk routine used to delete every IRE that depends on queues 1719 * associated with 'ill'. (Always called as writer.) 1720 */ 1721 static void 1722 ill_downi(ire_t *ire, char *ill_arg) 1723 { 1724 ill_t *ill = (ill_t *)ill_arg; 1725 1726 /* 1727 * ip_newroute creates IRE_CACHE with ire_stq coming from 1728 * interface X and ipif coming from interface Y, if interface 1729 * X and Y are part of the same IPMP group. Thus whenever interface 1730 * X goes down, remove all references to it by checking both 1731 * on ire_ipif and ire_stq. 1732 */ 1733 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1734 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1735 ire_delete(ire); 1736 } 1737 } 1738 1739 /* 1740 * A seperate routine for deleting revtun and srcif based routes 1741 * are needed because the ires only deleted when the interface 1742 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1743 * we want to keep mobile IP specific code separate. 1744 */ 1745 static void 1746 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1747 { 1748 ill_t *ill = (ill_t *)ill_arg; 1749 1750 ASSERT(ire->ire_in_ill != NULL); 1751 1752 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1753 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1754 ire_delete(ire); 1755 } 1756 } 1757 1758 /* 1759 * Remove ire/nce from the fastpath list. 1760 */ 1761 void 1762 ill_fastpath_nack(ill_t *ill) 1763 { 1764 if (ill->ill_isv6) { 1765 nce_fastpath_list_dispatch(ill, NULL, NULL); 1766 } else { 1767 ire_fastpath_list_dispatch(ill, NULL, NULL); 1768 } 1769 } 1770 1771 /* Consume an M_IOCACK of the fastpath probe. */ 1772 void 1773 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1774 { 1775 mblk_t *mp1 = mp; 1776 1777 /* 1778 * If this was the first attempt turn on the fastpath probing. 1779 */ 1780 mutex_enter(&ill->ill_lock); 1781 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1782 ill->ill_dlpi_fastpath_state = IDS_OK; 1783 mutex_exit(&ill->ill_lock); 1784 1785 /* Free the M_IOCACK mblk, hold on to the data */ 1786 mp = mp->b_cont; 1787 freeb(mp1); 1788 if (mp == NULL) 1789 return; 1790 if (mp->b_cont != NULL) { 1791 /* 1792 * Update all IRE's or NCE's that are waiting for 1793 * fastpath update. 1794 */ 1795 if (ill->ill_isv6) { 1796 /* 1797 * update nce's in the fastpath list. 1798 */ 1799 nce_fastpath_list_dispatch(ill, 1800 ndp_fastpath_update, mp); 1801 } else { 1802 1803 /* 1804 * update ire's in the fastpath list. 1805 */ 1806 ire_fastpath_list_dispatch(ill, 1807 ire_fastpath_update, mp); 1808 /* 1809 * Check if we need to traverse reverse tunnel table. 1810 * Since there is only single ire_type (IRE_MIPRTUN) 1811 * in the table, we don't need to match on ire_type. 1812 * We have to check ire_mrtun_count and not the 1813 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1814 * on the incoming ill and here we are dealing with 1815 * outgoing ill. 1816 */ 1817 mutex_enter(&ire_mrtun_lock); 1818 if (ire_mrtun_count != 0) { 1819 mutex_exit(&ire_mrtun_lock); 1820 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1821 (void (*)(ire_t *, void *)) 1822 ire_fastpath_update, mp, ill); 1823 } else { 1824 mutex_exit(&ire_mrtun_lock); 1825 } 1826 } 1827 mp1 = mp->b_cont; 1828 freeb(mp); 1829 mp = mp1; 1830 } else { 1831 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1832 } 1833 1834 freeb(mp); 1835 } 1836 1837 /* 1838 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1839 * The data portion of the request is a dl_unitdata_req_t template for 1840 * what we would send downstream in the absence of a fastpath confirmation. 1841 */ 1842 int 1843 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1844 { 1845 struct iocblk *ioc; 1846 mblk_t *mp; 1847 1848 if (dlur_mp == NULL) 1849 return (EINVAL); 1850 1851 mutex_enter(&ill->ill_lock); 1852 switch (ill->ill_dlpi_fastpath_state) { 1853 case IDS_FAILED: 1854 /* 1855 * Driver NAKed the first fastpath ioctl - assume it doesn't 1856 * support it. 1857 */ 1858 mutex_exit(&ill->ill_lock); 1859 return (ENOTSUP); 1860 case IDS_UNKNOWN: 1861 /* This is the first probe */ 1862 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1863 break; 1864 default: 1865 break; 1866 } 1867 mutex_exit(&ill->ill_lock); 1868 1869 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1870 return (EAGAIN); 1871 1872 mp->b_cont = copyb(dlur_mp); 1873 if (mp->b_cont == NULL) { 1874 freeb(mp); 1875 return (EAGAIN); 1876 } 1877 1878 ioc = (struct iocblk *)mp->b_rptr; 1879 ioc->ioc_count = msgdsize(mp->b_cont); 1880 1881 putnext(ill->ill_wq, mp); 1882 return (0); 1883 } 1884 1885 void 1886 ill_capability_probe(ill_t *ill) 1887 { 1888 /* 1889 * Do so only if negotiation is enabled, capabilities are unknown, 1890 * and a capability negotiation is not already in progress. 1891 */ 1892 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1893 ill->ill_dlpi_capab_state != IDS_RENEG) 1894 return; 1895 1896 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1897 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1898 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1899 } 1900 1901 void 1902 ill_capability_reset(ill_t *ill) 1903 { 1904 mblk_t *sc_mp = NULL; 1905 mblk_t *tmp; 1906 1907 /* 1908 * Note here that we reset the state to UNKNOWN, and later send 1909 * down the DL_CAPABILITY_REQ without first setting the state to 1910 * INPROGRESS. We do this in order to distinguish the 1911 * DL_CAPABILITY_ACK response which may come back in response to 1912 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1913 * also handle the case where the driver doesn't send us back 1914 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1915 * requires the state to be in UNKNOWN anyway. In any case, all 1916 * features are turned off until the state reaches IDS_OK. 1917 */ 1918 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1919 1920 /* 1921 * Disable sub-capabilities and request a list of sub-capability 1922 * messages which will be sent down to the driver. Each handler 1923 * allocates the corresponding dl_capability_sub_t inside an 1924 * mblk, and links it to the existing sc_mp mblk, or return it 1925 * as sc_mp if it's the first sub-capability (the passed in 1926 * sc_mp is NULL). Upon returning from all capability handlers, 1927 * sc_mp will be pulled-up, before passing it downstream. 1928 */ 1929 ill_capability_mdt_reset(ill, &sc_mp); 1930 ill_capability_hcksum_reset(ill, &sc_mp); 1931 ill_capability_zerocopy_reset(ill, &sc_mp); 1932 ill_capability_ipsec_reset(ill, &sc_mp); 1933 ill_capability_dls_reset(ill, &sc_mp); 1934 ill_capability_lso_reset(ill, &sc_mp); 1935 1936 /* Nothing to send down in order to disable the capabilities? */ 1937 if (sc_mp == NULL) 1938 return; 1939 1940 tmp = msgpullup(sc_mp, -1); 1941 freemsg(sc_mp); 1942 if ((sc_mp = tmp) == NULL) { 1943 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1944 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1945 return; 1946 } 1947 1948 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1949 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1950 } 1951 1952 /* 1953 * Request or set new-style hardware capabilities supported by DLS provider. 1954 */ 1955 static void 1956 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1957 { 1958 mblk_t *mp; 1959 dl_capability_req_t *capb; 1960 size_t size = 0; 1961 uint8_t *ptr; 1962 1963 if (reqp != NULL) 1964 size = MBLKL(reqp); 1965 1966 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1967 if (mp == NULL) { 1968 freemsg(reqp); 1969 return; 1970 } 1971 ptr = mp->b_rptr; 1972 1973 capb = (dl_capability_req_t *)ptr; 1974 ptr += sizeof (dl_capability_req_t); 1975 1976 if (reqp != NULL) { 1977 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1978 capb->dl_sub_length = size; 1979 bcopy(reqp->b_rptr, ptr, size); 1980 ptr += size; 1981 mp->b_cont = reqp->b_cont; 1982 freeb(reqp); 1983 } 1984 ASSERT(ptr == mp->b_wptr); 1985 1986 ill_dlpi_send(ill, mp); 1987 } 1988 1989 static void 1990 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1991 { 1992 dl_capab_id_t *id_ic; 1993 uint_t sub_dl_cap = outers->dl_cap; 1994 dl_capability_sub_t *inners; 1995 uint8_t *capend; 1996 1997 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1998 1999 /* 2000 * Note: range checks here are not absolutely sufficient to 2001 * make us robust against malformed messages sent by drivers; 2002 * this is in keeping with the rest of IP's dlpi handling. 2003 * (Remember, it's coming from something else in the kernel 2004 * address space) 2005 */ 2006 2007 capend = (uint8_t *)(outers + 1) + outers->dl_length; 2008 if (capend > mp->b_wptr) { 2009 cmn_err(CE_WARN, "ill_capability_id_ack: " 2010 "malformed sub-capability too long for mblk"); 2011 return; 2012 } 2013 2014 id_ic = (dl_capab_id_t *)(outers + 1); 2015 2016 if (outers->dl_length < sizeof (*id_ic) || 2017 (inners = &id_ic->id_subcap, 2018 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 2019 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 2020 "encapsulated capab type %d too long for mblk", 2021 inners->dl_cap); 2022 return; 2023 } 2024 2025 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 2026 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 2027 "isn't as expected; pass-thru module(s) detected, " 2028 "discarding capability\n", inners->dl_cap)); 2029 return; 2030 } 2031 2032 /* Process the encapsulated sub-capability */ 2033 ill_capability_dispatch(ill, mp, inners, B_TRUE); 2034 } 2035 2036 /* 2037 * Process Multidata Transmit capability negotiation ack received from a 2038 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 2039 * DL_CAPABILITY_ACK message. 2040 */ 2041 static void 2042 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2043 { 2044 mblk_t *nmp = NULL; 2045 dl_capability_req_t *oc; 2046 dl_capab_mdt_t *mdt_ic, *mdt_oc; 2047 ill_mdt_capab_t **ill_mdt_capab; 2048 uint_t sub_dl_cap = isub->dl_cap; 2049 uint8_t *capend; 2050 2051 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 2052 2053 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 2054 2055 /* 2056 * Note: range checks here are not absolutely sufficient to 2057 * make us robust against malformed messages sent by drivers; 2058 * this is in keeping with the rest of IP's dlpi handling. 2059 * (Remember, it's coming from something else in the kernel 2060 * address space) 2061 */ 2062 2063 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2064 if (capend > mp->b_wptr) { 2065 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2066 "malformed sub-capability too long for mblk"); 2067 return; 2068 } 2069 2070 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2071 2072 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2073 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2074 "unsupported MDT sub-capability (version %d, expected %d)", 2075 mdt_ic->mdt_version, MDT_VERSION_2); 2076 return; 2077 } 2078 2079 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2080 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2081 "capability isn't as expected; pass-thru module(s) " 2082 "detected, discarding capability\n")); 2083 return; 2084 } 2085 2086 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2087 2088 if (*ill_mdt_capab == NULL) { 2089 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2090 KM_NOSLEEP); 2091 2092 if (*ill_mdt_capab == NULL) { 2093 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2094 "could not enable MDT version %d " 2095 "for %s (ENOMEM)\n", MDT_VERSION_2, 2096 ill->ill_name); 2097 return; 2098 } 2099 } 2100 2101 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2102 "MDT version %d (%d bytes leading, %d bytes trailing " 2103 "header spaces, %d max pld bufs, %d span limit)\n", 2104 ill->ill_name, MDT_VERSION_2, 2105 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2106 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2107 2108 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2109 (*ill_mdt_capab)->ill_mdt_on = 1; 2110 /* 2111 * Round the following values to the nearest 32-bit; ULP 2112 * may further adjust them to accomodate for additional 2113 * protocol headers. We pass these values to ULP during 2114 * bind time. 2115 */ 2116 (*ill_mdt_capab)->ill_mdt_hdr_head = 2117 roundup(mdt_ic->mdt_hdr_head, 4); 2118 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2119 roundup(mdt_ic->mdt_hdr_tail, 4); 2120 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2121 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2122 2123 ill->ill_capabilities |= ILL_CAPAB_MDT; 2124 } else { 2125 uint_t size; 2126 uchar_t *rptr; 2127 2128 size = sizeof (dl_capability_req_t) + 2129 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2130 2131 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2132 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2133 "could not enable MDT for %s (ENOMEM)\n", 2134 ill->ill_name); 2135 return; 2136 } 2137 2138 rptr = nmp->b_rptr; 2139 /* initialize dl_capability_req_t */ 2140 oc = (dl_capability_req_t *)nmp->b_rptr; 2141 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2142 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2143 sizeof (dl_capab_mdt_t); 2144 nmp->b_rptr += sizeof (dl_capability_req_t); 2145 2146 /* initialize dl_capability_sub_t */ 2147 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2148 nmp->b_rptr += sizeof (*isub); 2149 2150 /* initialize dl_capab_mdt_t */ 2151 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2152 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2153 2154 nmp->b_rptr = rptr; 2155 2156 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2157 "to enable MDT version %d\n", ill->ill_name, 2158 MDT_VERSION_2)); 2159 2160 /* set ENABLE flag */ 2161 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2162 2163 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2164 ill_dlpi_send(ill, nmp); 2165 } 2166 } 2167 2168 static void 2169 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2170 { 2171 mblk_t *mp; 2172 dl_capab_mdt_t *mdt_subcap; 2173 dl_capability_sub_t *dl_subcap; 2174 int size; 2175 2176 if (!ILL_MDT_CAPABLE(ill)) 2177 return; 2178 2179 ASSERT(ill->ill_mdt_capab != NULL); 2180 /* 2181 * Clear the capability flag for MDT but retain the ill_mdt_capab 2182 * structure since it's possible that another thread is still 2183 * referring to it. The structure only gets deallocated when 2184 * we destroy the ill. 2185 */ 2186 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2187 2188 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2189 2190 mp = allocb(size, BPRI_HI); 2191 if (mp == NULL) { 2192 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2193 "request to disable MDT\n")); 2194 return; 2195 } 2196 2197 mp->b_wptr = mp->b_rptr + size; 2198 2199 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2200 dl_subcap->dl_cap = DL_CAPAB_MDT; 2201 dl_subcap->dl_length = sizeof (*mdt_subcap); 2202 2203 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2204 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2205 mdt_subcap->mdt_flags = 0; 2206 mdt_subcap->mdt_hdr_head = 0; 2207 mdt_subcap->mdt_hdr_tail = 0; 2208 2209 if (*sc_mp != NULL) 2210 linkb(*sc_mp, mp); 2211 else 2212 *sc_mp = mp; 2213 } 2214 2215 /* 2216 * Send a DL_NOTIFY_REQ to the specified ill to enable 2217 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2218 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2219 * acceleration. 2220 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2221 */ 2222 static boolean_t 2223 ill_enable_promisc_notify(ill_t *ill) 2224 { 2225 mblk_t *mp; 2226 dl_notify_req_t *req; 2227 2228 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2229 2230 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2231 if (mp == NULL) 2232 return (B_FALSE); 2233 2234 req = (dl_notify_req_t *)mp->b_rptr; 2235 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2236 DL_NOTE_PROMISC_OFF_PHYS; 2237 2238 ill_dlpi_send(ill, mp); 2239 2240 return (B_TRUE); 2241 } 2242 2243 2244 /* 2245 * Allocate an IPsec capability request which will be filled by our 2246 * caller to turn on support for one or more algorithms. 2247 */ 2248 static mblk_t * 2249 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2250 { 2251 mblk_t *nmp; 2252 dl_capability_req_t *ocap; 2253 dl_capab_ipsec_t *ocip; 2254 dl_capab_ipsec_t *icip; 2255 uint8_t *ptr; 2256 icip = (dl_capab_ipsec_t *)(isub + 1); 2257 2258 /* 2259 * The first time around, we send a DL_NOTIFY_REQ to enable 2260 * PROMISC_ON/OFF notification from the provider. We need to 2261 * do this before enabling the algorithms to avoid leakage of 2262 * cleartext packets. 2263 */ 2264 2265 if (!ill_enable_promisc_notify(ill)) 2266 return (NULL); 2267 2268 /* 2269 * Allocate new mblk which will contain a new capability 2270 * request to enable the capabilities. 2271 */ 2272 2273 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2274 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2275 if (nmp == NULL) 2276 return (NULL); 2277 2278 ptr = nmp->b_rptr; 2279 2280 /* initialize dl_capability_req_t */ 2281 ocap = (dl_capability_req_t *)ptr; 2282 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2283 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2284 ptr += sizeof (dl_capability_req_t); 2285 2286 /* initialize dl_capability_sub_t */ 2287 bcopy(isub, ptr, sizeof (*isub)); 2288 ptr += sizeof (*isub); 2289 2290 /* initialize dl_capab_ipsec_t */ 2291 ocip = (dl_capab_ipsec_t *)ptr; 2292 bcopy(icip, ocip, sizeof (*icip)); 2293 2294 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2295 return (nmp); 2296 } 2297 2298 /* 2299 * Process an IPsec capability negotiation ack received from a DLS Provider. 2300 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2301 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2302 */ 2303 static void 2304 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2305 { 2306 dl_capab_ipsec_t *icip; 2307 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2308 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2309 uint_t cipher, nciphers; 2310 mblk_t *nmp; 2311 uint_t alg_len; 2312 boolean_t need_sadb_dump; 2313 uint_t sub_dl_cap = isub->dl_cap; 2314 ill_ipsec_capab_t **ill_capab; 2315 uint64_t ill_capab_flag; 2316 uint8_t *capend, *ciphend; 2317 boolean_t sadb_resync; 2318 2319 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2320 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2321 2322 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2323 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2324 ill_capab_flag = ILL_CAPAB_AH; 2325 } else { 2326 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2327 ill_capab_flag = ILL_CAPAB_ESP; 2328 } 2329 2330 /* 2331 * If the ill capability structure exists, then this incoming 2332 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2333 * If this is so, then we'd need to resynchronize the SADB 2334 * after re-enabling the offloaded ciphers. 2335 */ 2336 sadb_resync = (*ill_capab != NULL); 2337 2338 /* 2339 * Note: range checks here are not absolutely sufficient to 2340 * make us robust against malformed messages sent by drivers; 2341 * this is in keeping with the rest of IP's dlpi handling. 2342 * (Remember, it's coming from something else in the kernel 2343 * address space) 2344 */ 2345 2346 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2347 if (capend > mp->b_wptr) { 2348 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2349 "malformed sub-capability too long for mblk"); 2350 return; 2351 } 2352 2353 /* 2354 * There are two types of acks we process here: 2355 * 1. acks in reply to a (first form) generic capability req 2356 * (no ENABLE flag set) 2357 * 2. acks in reply to a ENABLE capability req. 2358 * (ENABLE flag set) 2359 * 2360 * We process the subcapability passed as argument as follows: 2361 * 1 do initializations 2362 * 1.1 initialize nmp = NULL 2363 * 1.2 set need_sadb_dump to B_FALSE 2364 * 2 for each cipher in subcapability: 2365 * 2.1 if ENABLE flag is set: 2366 * 2.1.1 update per-ill ipsec capabilities info 2367 * 2.1.2 set need_sadb_dump to B_TRUE 2368 * 2.2 if ENABLE flag is not set: 2369 * 2.2.1 if nmp is NULL: 2370 * 2.2.1.1 allocate and initialize nmp 2371 * 2.2.1.2 init current pos in nmp 2372 * 2.2.2 copy current cipher to current pos in nmp 2373 * 2.2.3 set ENABLE flag in nmp 2374 * 2.2.4 update current pos 2375 * 3 if nmp is not equal to NULL, send enable request 2376 * 3.1 send capability request 2377 * 4 if need_sadb_dump is B_TRUE 2378 * 4.1 enable promiscuous on/off notifications 2379 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2380 * AH or ESP SA's to interface. 2381 */ 2382 2383 nmp = NULL; 2384 oalg = NULL; 2385 need_sadb_dump = B_FALSE; 2386 icip = (dl_capab_ipsec_t *)(isub + 1); 2387 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2388 2389 nciphers = icip->cip_nciphers; 2390 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2391 2392 if (ciphend > capend) { 2393 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2394 "too many ciphers for sub-capability len"); 2395 return; 2396 } 2397 2398 for (cipher = 0; cipher < nciphers; cipher++) { 2399 alg_len = sizeof (dl_capab_ipsec_alg_t); 2400 2401 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2402 /* 2403 * TBD: when we provide a way to disable capabilities 2404 * from above, need to manage the request-pending state 2405 * and fail if we were not expecting this ACK. 2406 */ 2407 IPSECHW_DEBUG(IPSECHW_CAPAB, 2408 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2409 2410 /* 2411 * Update IPsec capabilities for this ill 2412 */ 2413 2414 if (*ill_capab == NULL) { 2415 IPSECHW_DEBUG(IPSECHW_CAPAB, 2416 ("ill_capability_ipsec_ack: " 2417 "allocating ipsec_capab for ill\n")); 2418 *ill_capab = ill_ipsec_capab_alloc(); 2419 2420 if (*ill_capab == NULL) { 2421 cmn_err(CE_WARN, 2422 "ill_capability_ipsec_ack: " 2423 "could not enable IPsec Hardware " 2424 "acceleration for %s (ENOMEM)\n", 2425 ill->ill_name); 2426 return; 2427 } 2428 } 2429 2430 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2431 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2432 2433 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2434 cmn_err(CE_WARN, 2435 "ill_capability_ipsec_ack: " 2436 "malformed IPsec algorithm id %d", 2437 ialg->alg_prim); 2438 continue; 2439 } 2440 2441 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2442 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2443 ialg->alg_prim); 2444 } else { 2445 ipsec_capab_algparm_t *alp; 2446 2447 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2448 ialg->alg_prim); 2449 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2450 ialg->alg_prim)) { 2451 cmn_err(CE_WARN, 2452 "ill_capability_ipsec_ack: " 2453 "no space for IPsec alg id %d", 2454 ialg->alg_prim); 2455 continue; 2456 } 2457 alp = &((*ill_capab)->encr_algparm[ 2458 ialg->alg_prim]); 2459 alp->minkeylen = ialg->alg_minbits; 2460 alp->maxkeylen = ialg->alg_maxbits; 2461 } 2462 ill->ill_capabilities |= ill_capab_flag; 2463 /* 2464 * indicate that a capability was enabled, which 2465 * will be used below to kick off a SADB dump 2466 * to the ill. 2467 */ 2468 need_sadb_dump = B_TRUE; 2469 } else { 2470 IPSECHW_DEBUG(IPSECHW_CAPAB, 2471 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2472 ialg->alg_prim)); 2473 2474 if (nmp == NULL) { 2475 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2476 if (nmp == NULL) { 2477 /* 2478 * Sending the PROMISC_ON/OFF 2479 * notification request failed. 2480 * We cannot enable the algorithms 2481 * since the Provider will not 2482 * notify IP of promiscous mode 2483 * changes, which could lead 2484 * to leakage of packets. 2485 */ 2486 cmn_err(CE_WARN, 2487 "ill_capability_ipsec_ack: " 2488 "could not enable IPsec Hardware " 2489 "acceleration for %s (ENOMEM)\n", 2490 ill->ill_name); 2491 return; 2492 } 2493 /* ptr to current output alg specifier */ 2494 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2495 } 2496 2497 /* 2498 * Copy current alg specifier, set ENABLE 2499 * flag, and advance to next output alg. 2500 * For now we enable all IPsec capabilities. 2501 */ 2502 ASSERT(oalg != NULL); 2503 bcopy(ialg, oalg, alg_len); 2504 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2505 nmp->b_wptr += alg_len; 2506 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2507 } 2508 2509 /* move to next input algorithm specifier */ 2510 ialg = (dl_capab_ipsec_alg_t *) 2511 ((char *)ialg + alg_len); 2512 } 2513 2514 if (nmp != NULL) 2515 /* 2516 * nmp points to a DL_CAPABILITY_REQ message to enable 2517 * IPsec hardware acceleration. 2518 */ 2519 ill_dlpi_send(ill, nmp); 2520 2521 if (need_sadb_dump) 2522 /* 2523 * An acknowledgement corresponding to a request to 2524 * enable acceleration was received, notify SADB. 2525 */ 2526 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2527 } 2528 2529 /* 2530 * Given an mblk with enough space in it, create sub-capability entries for 2531 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2532 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2533 * in preparation for the reset the DL_CAPABILITY_REQ message. 2534 */ 2535 static void 2536 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2537 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2538 { 2539 dl_capab_ipsec_t *oipsec; 2540 dl_capab_ipsec_alg_t *oalg; 2541 dl_capability_sub_t *dl_subcap; 2542 int i, k; 2543 2544 ASSERT(nciphers > 0); 2545 ASSERT(ill_cap != NULL); 2546 ASSERT(mp != NULL); 2547 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2548 2549 /* dl_capability_sub_t for "stype" */ 2550 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2551 dl_subcap->dl_cap = stype; 2552 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2553 mp->b_wptr += sizeof (dl_capability_sub_t); 2554 2555 /* dl_capab_ipsec_t for "stype" */ 2556 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2557 oipsec->cip_version = 1; 2558 oipsec->cip_nciphers = nciphers; 2559 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2560 2561 /* create entries for "stype" AUTH ciphers */ 2562 for (i = 0; i < ill_cap->algs_size; i++) { 2563 for (k = 0; k < BITSPERBYTE; k++) { 2564 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2565 continue; 2566 2567 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2568 bzero((void *)oalg, sizeof (*oalg)); 2569 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2570 oalg->alg_prim = k + (BITSPERBYTE * i); 2571 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2572 } 2573 } 2574 /* create entries for "stype" ENCR ciphers */ 2575 for (i = 0; i < ill_cap->algs_size; i++) { 2576 for (k = 0; k < BITSPERBYTE; k++) { 2577 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2578 continue; 2579 2580 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2581 bzero((void *)oalg, sizeof (*oalg)); 2582 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2583 oalg->alg_prim = k + (BITSPERBYTE * i); 2584 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2585 } 2586 } 2587 } 2588 2589 /* 2590 * Macro to count number of 1s in a byte (8-bit word). The total count is 2591 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2592 * POPC instruction, but our macro is more flexible for an arbitrary length 2593 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2594 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2595 * stays that way, we can reduce the number of iterations required. 2596 */ 2597 #define COUNT_1S(val, sum) { \ 2598 uint8_t x = val & 0xff; \ 2599 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2600 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2601 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2602 } 2603 2604 /* ARGSUSED */ 2605 static void 2606 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2607 { 2608 mblk_t *mp; 2609 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2610 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2611 uint64_t ill_capabilities = ill->ill_capabilities; 2612 int ah_cnt = 0, esp_cnt = 0; 2613 int ah_len = 0, esp_len = 0; 2614 int i, size = 0; 2615 2616 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2617 return; 2618 2619 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2620 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2621 2622 /* Find out the number of ciphers for AH */ 2623 if (cap_ah != NULL) { 2624 for (i = 0; i < cap_ah->algs_size; i++) { 2625 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2626 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2627 } 2628 if (ah_cnt > 0) { 2629 size += sizeof (dl_capability_sub_t) + 2630 sizeof (dl_capab_ipsec_t); 2631 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2632 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2633 size += ah_len; 2634 } 2635 } 2636 2637 /* Find out the number of ciphers for ESP */ 2638 if (cap_esp != NULL) { 2639 for (i = 0; i < cap_esp->algs_size; i++) { 2640 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2641 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2642 } 2643 if (esp_cnt > 0) { 2644 size += sizeof (dl_capability_sub_t) + 2645 sizeof (dl_capab_ipsec_t); 2646 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2647 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2648 size += esp_len; 2649 } 2650 } 2651 2652 if (size == 0) { 2653 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2654 "there's nothing to reset\n")); 2655 return; 2656 } 2657 2658 mp = allocb(size, BPRI_HI); 2659 if (mp == NULL) { 2660 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2661 "request to disable IPSEC Hardware Acceleration\n")); 2662 return; 2663 } 2664 2665 /* 2666 * Clear the capability flags for IPSec HA but retain the ill 2667 * capability structures since it's possible that another thread 2668 * is still referring to them. The structures only get deallocated 2669 * when we destroy the ill. 2670 * 2671 * Various places check the flags to see if the ill is capable of 2672 * hardware acceleration, and by clearing them we ensure that new 2673 * outbound IPSec packets are sent down encrypted. 2674 */ 2675 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2676 2677 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2678 if (ah_cnt > 0) { 2679 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2680 cap_ah, mp); 2681 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2682 } 2683 2684 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2685 if (esp_cnt > 0) { 2686 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2687 cap_esp, mp); 2688 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2689 } 2690 2691 /* 2692 * At this point we've composed a bunch of sub-capabilities to be 2693 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2694 * by the caller. Upon receiving this reset message, the driver 2695 * must stop inbound decryption (by destroying all inbound SAs) 2696 * and let the corresponding packets come in encrypted. 2697 */ 2698 2699 if (*sc_mp != NULL) 2700 linkb(*sc_mp, mp); 2701 else 2702 *sc_mp = mp; 2703 } 2704 2705 static void 2706 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2707 boolean_t encapsulated) 2708 { 2709 boolean_t legacy = B_FALSE; 2710 2711 /* 2712 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2713 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2714 * instructed the driver to disable its advertised capabilities, 2715 * so there's no point in accepting any response at this moment. 2716 */ 2717 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2718 return; 2719 2720 /* 2721 * Note that only the following two sub-capabilities may be 2722 * considered as "legacy", since their original definitions 2723 * do not incorporate the dl_mid_t module ID token, and hence 2724 * may require the use of the wrapper sub-capability. 2725 */ 2726 switch (subp->dl_cap) { 2727 case DL_CAPAB_IPSEC_AH: 2728 case DL_CAPAB_IPSEC_ESP: 2729 legacy = B_TRUE; 2730 break; 2731 } 2732 2733 /* 2734 * For legacy sub-capabilities which don't incorporate a queue_t 2735 * pointer in their structures, discard them if we detect that 2736 * there are intermediate modules in between IP and the driver. 2737 */ 2738 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2739 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2740 "%d discarded; %d module(s) present below IP\n", 2741 subp->dl_cap, ill->ill_lmod_cnt)); 2742 return; 2743 } 2744 2745 switch (subp->dl_cap) { 2746 case DL_CAPAB_IPSEC_AH: 2747 case DL_CAPAB_IPSEC_ESP: 2748 ill_capability_ipsec_ack(ill, mp, subp); 2749 break; 2750 case DL_CAPAB_MDT: 2751 ill_capability_mdt_ack(ill, mp, subp); 2752 break; 2753 case DL_CAPAB_HCKSUM: 2754 ill_capability_hcksum_ack(ill, mp, subp); 2755 break; 2756 case DL_CAPAB_ZEROCOPY: 2757 ill_capability_zerocopy_ack(ill, mp, subp); 2758 break; 2759 case DL_CAPAB_POLL: 2760 if (!SOFT_RINGS_ENABLED()) 2761 ill_capability_dls_ack(ill, mp, subp); 2762 break; 2763 case DL_CAPAB_SOFT_RING: 2764 if (SOFT_RINGS_ENABLED()) 2765 ill_capability_dls_ack(ill, mp, subp); 2766 break; 2767 case DL_CAPAB_LSO: 2768 ill_capability_lso_ack(ill, mp, subp); 2769 break; 2770 default: 2771 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2772 subp->dl_cap)); 2773 } 2774 } 2775 2776 /* 2777 * As part of negotiating polling capability, the driver tells us 2778 * the default (or normal) blanking interval and packet threshold 2779 * (the receive timer fires if blanking interval is reached or 2780 * the packet threshold is reached). 2781 * 2782 * As part of manipulating the polling interval, we always use our 2783 * estimated interval (avg service time * number of packets queued 2784 * on the squeue) but we try to blank for a minimum of 2785 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2786 * packet threshold during this time. When we are not in polling mode 2787 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2788 * rr_min_blank_ratio but up the packet cnt by a ratio of 2789 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2790 * possible although for a shorter interval. 2791 */ 2792 #define RR_MAX_BLANK_RATIO 20 2793 #define RR_MIN_BLANK_RATIO 10 2794 #define RR_MAX_PKT_CNT_RATIO 3 2795 #define RR_MIN_PKT_CNT_RATIO 3 2796 2797 /* 2798 * These can be tuned via /etc/system. 2799 */ 2800 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2801 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2802 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2803 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2804 2805 static mac_resource_handle_t 2806 ill_ring_add(void *arg, mac_resource_t *mrp) 2807 { 2808 ill_t *ill = (ill_t *)arg; 2809 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2810 ill_rx_ring_t *rx_ring; 2811 int ip_rx_index; 2812 2813 ASSERT(mrp != NULL); 2814 if (mrp->mr_type != MAC_RX_FIFO) { 2815 return (NULL); 2816 } 2817 ASSERT(ill != NULL); 2818 ASSERT(ill->ill_dls_capab != NULL); 2819 2820 mutex_enter(&ill->ill_lock); 2821 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2822 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2823 ASSERT(rx_ring != NULL); 2824 2825 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2826 time_t normal_blank_time = 2827 mrfp->mrf_normal_blank_time; 2828 uint_t normal_pkt_cnt = 2829 mrfp->mrf_normal_pkt_count; 2830 2831 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2832 2833 rx_ring->rr_blank = mrfp->mrf_blank; 2834 rx_ring->rr_handle = mrfp->mrf_arg; 2835 rx_ring->rr_ill = ill; 2836 rx_ring->rr_normal_blank_time = normal_blank_time; 2837 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2838 2839 rx_ring->rr_max_blank_time = 2840 normal_blank_time * rr_max_blank_ratio; 2841 rx_ring->rr_min_blank_time = 2842 normal_blank_time * rr_min_blank_ratio; 2843 rx_ring->rr_max_pkt_cnt = 2844 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2845 rx_ring->rr_min_pkt_cnt = 2846 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2847 2848 rx_ring->rr_ring_state = ILL_RING_INUSE; 2849 mutex_exit(&ill->ill_lock); 2850 2851 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2852 (int), ip_rx_index); 2853 return ((mac_resource_handle_t)rx_ring); 2854 } 2855 } 2856 2857 /* 2858 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2859 * we have devices which can overwhelm this limit, ILL_MAX_RING 2860 * should be made configurable. Meanwhile it cause no panic because 2861 * driver will pass ip_input a NULL handle which will make 2862 * IP allocate the default squeue and Polling mode will not 2863 * be used for this ring. 2864 */ 2865 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2866 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2867 2868 mutex_exit(&ill->ill_lock); 2869 return (NULL); 2870 } 2871 2872 static boolean_t 2873 ill_capability_dls_init(ill_t *ill) 2874 { 2875 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2876 conn_t *connp; 2877 size_t sz; 2878 2879 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2880 if (ill_dls == NULL) { 2881 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2882 "soft_ring enabled for ill=%s (%p) but data " 2883 "structs uninitialized\n", ill->ill_name, 2884 (void *)ill); 2885 } 2886 return (B_TRUE); 2887 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2888 if (ill_dls == NULL) { 2889 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2890 "polling enabled for ill=%s (%p) but data " 2891 "structs uninitialized\n", ill->ill_name, 2892 (void *)ill); 2893 } 2894 return (B_TRUE); 2895 } 2896 2897 if (ill_dls != NULL) { 2898 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2899 /* Soft_Ring or polling is being re-enabled */ 2900 2901 connp = ill_dls->ill_unbind_conn; 2902 ASSERT(rx_ring != NULL); 2903 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2904 bzero((void *)rx_ring, 2905 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2906 ill_dls->ill_ring_tbl = rx_ring; 2907 ill_dls->ill_unbind_conn = connp; 2908 return (B_TRUE); 2909 } 2910 2911 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2912 return (B_FALSE); 2913 2914 sz = sizeof (ill_dls_capab_t); 2915 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2916 2917 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2918 if (ill_dls == NULL) { 2919 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2920 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2921 (void *)ill); 2922 CONN_DEC_REF(connp); 2923 return (B_FALSE); 2924 } 2925 2926 /* Allocate space to hold ring table */ 2927 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2928 ill->ill_dls_capab = ill_dls; 2929 ill_dls->ill_unbind_conn = connp; 2930 return (B_TRUE); 2931 } 2932 2933 /* 2934 * ill_capability_dls_disable: disable soft_ring and/or polling 2935 * capability. Since any of the rings might already be in use, need 2936 * to call ipsq_clean_all() which gets behind the squeue to disable 2937 * direct calls if necessary. 2938 */ 2939 static void 2940 ill_capability_dls_disable(ill_t *ill) 2941 { 2942 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2943 2944 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2945 ipsq_clean_all(ill); 2946 ill_dls->ill_tx = NULL; 2947 ill_dls->ill_tx_handle = NULL; 2948 ill_dls->ill_dls_change_status = NULL; 2949 ill_dls->ill_dls_bind = NULL; 2950 ill_dls->ill_dls_unbind = NULL; 2951 } 2952 2953 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2954 } 2955 2956 static void 2957 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2958 dl_capability_sub_t *isub) 2959 { 2960 uint_t size; 2961 uchar_t *rptr; 2962 dl_capab_dls_t dls, *odls; 2963 ill_dls_capab_t *ill_dls; 2964 mblk_t *nmp = NULL; 2965 dl_capability_req_t *ocap; 2966 uint_t sub_dl_cap = isub->dl_cap; 2967 2968 if (!ill_capability_dls_init(ill)) 2969 return; 2970 ill_dls = ill->ill_dls_capab; 2971 2972 /* Copy locally to get the members aligned */ 2973 bcopy((void *)idls, (void *)&dls, 2974 sizeof (dl_capab_dls_t)); 2975 2976 /* Get the tx function and handle from dld */ 2977 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2978 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2979 2980 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2981 ill_dls->ill_dls_change_status = 2982 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2983 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2984 ill_dls->ill_dls_unbind = 2985 (ip_dls_unbind_t)dls.dls_ring_unbind; 2986 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2987 } 2988 2989 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2990 isub->dl_length; 2991 2992 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2993 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2994 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2995 ill->ill_name, (void *)ill); 2996 return; 2997 } 2998 2999 /* initialize dl_capability_req_t */ 3000 rptr = nmp->b_rptr; 3001 ocap = (dl_capability_req_t *)rptr; 3002 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 3003 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 3004 rptr += sizeof (dl_capability_req_t); 3005 3006 /* initialize dl_capability_sub_t */ 3007 bcopy(isub, rptr, sizeof (*isub)); 3008 rptr += sizeof (*isub); 3009 3010 odls = (dl_capab_dls_t *)rptr; 3011 rptr += sizeof (dl_capab_dls_t); 3012 3013 /* initialize dl_capab_dls_t to be sent down */ 3014 dls.dls_rx_handle = (uintptr_t)ill; 3015 dls.dls_rx = (uintptr_t)ip_input; 3016 dls.dls_ring_add = (uintptr_t)ill_ring_add; 3017 3018 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 3019 dls.dls_ring_cnt = ip_soft_rings_cnt; 3020 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 3021 dls.dls_flags = SOFT_RING_ENABLE; 3022 } else { 3023 dls.dls_flags = POLL_ENABLE; 3024 ip1dbg(("ill_capability_dls_capable: asking interface %s " 3025 "to enable polling\n", ill->ill_name)); 3026 } 3027 bcopy((void *)&dls, (void *)odls, 3028 sizeof (dl_capab_dls_t)); 3029 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3030 /* 3031 * nmp points to a DL_CAPABILITY_REQ message to 3032 * enable either soft_ring or polling 3033 */ 3034 ill_dlpi_send(ill, nmp); 3035 } 3036 3037 static void 3038 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 3039 { 3040 mblk_t *mp; 3041 dl_capab_dls_t *idls; 3042 dl_capability_sub_t *dl_subcap; 3043 int size; 3044 3045 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 3046 return; 3047 3048 ASSERT(ill->ill_dls_capab != NULL); 3049 3050 size = sizeof (*dl_subcap) + sizeof (*idls); 3051 3052 mp = allocb(size, BPRI_HI); 3053 if (mp == NULL) { 3054 ip1dbg(("ill_capability_dls_reset: unable to allocate " 3055 "request to disable soft_ring\n")); 3056 return; 3057 } 3058 3059 mp->b_wptr = mp->b_rptr + size; 3060 3061 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3062 dl_subcap->dl_length = sizeof (*idls); 3063 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3064 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3065 else 3066 dl_subcap->dl_cap = DL_CAPAB_POLL; 3067 3068 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3069 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3070 idls->dls_flags = SOFT_RING_DISABLE; 3071 else 3072 idls->dls_flags = POLL_DISABLE; 3073 3074 if (*sc_mp != NULL) 3075 linkb(*sc_mp, mp); 3076 else 3077 *sc_mp = mp; 3078 } 3079 3080 /* 3081 * Process a soft_ring/poll capability negotiation ack received 3082 * from a DLS Provider.isub must point to the sub-capability 3083 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3084 */ 3085 static void 3086 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3087 { 3088 dl_capab_dls_t *idls; 3089 uint_t sub_dl_cap = isub->dl_cap; 3090 uint8_t *capend; 3091 3092 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3093 sub_dl_cap == DL_CAPAB_POLL); 3094 3095 if (ill->ill_isv6) 3096 return; 3097 3098 /* 3099 * Note: range checks here are not absolutely sufficient to 3100 * make us robust against malformed messages sent by drivers; 3101 * this is in keeping with the rest of IP's dlpi handling. 3102 * (Remember, it's coming from something else in the kernel 3103 * address space) 3104 */ 3105 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3106 if (capend > mp->b_wptr) { 3107 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3108 "malformed sub-capability too long for mblk"); 3109 return; 3110 } 3111 3112 /* 3113 * There are two types of acks we process here: 3114 * 1. acks in reply to a (first form) generic capability req 3115 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3116 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3117 * capability req. 3118 */ 3119 idls = (dl_capab_dls_t *)(isub + 1); 3120 3121 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3122 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3123 "capability isn't as expected; pass-thru " 3124 "module(s) detected, discarding capability\n")); 3125 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3126 /* 3127 * This is a capability renegotitation case. 3128 * The interface better be unusable at this 3129 * point other wise bad things will happen 3130 * if we disable direct calls on a running 3131 * and up interface. 3132 */ 3133 ill_capability_dls_disable(ill); 3134 } 3135 return; 3136 } 3137 3138 switch (idls->dls_flags) { 3139 default: 3140 /* Disable if unknown flag */ 3141 case SOFT_RING_DISABLE: 3142 case POLL_DISABLE: 3143 ill_capability_dls_disable(ill); 3144 break; 3145 case SOFT_RING_CAPABLE: 3146 case POLL_CAPABLE: 3147 /* 3148 * If the capability was already enabled, its safe 3149 * to disable it first to get rid of stale information 3150 * and then start enabling it again. 3151 */ 3152 ill_capability_dls_disable(ill); 3153 ill_capability_dls_capable(ill, idls, isub); 3154 break; 3155 case SOFT_RING_ENABLE: 3156 case POLL_ENABLE: 3157 mutex_enter(&ill->ill_lock); 3158 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3159 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3160 ASSERT(ill->ill_dls_capab != NULL); 3161 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3162 } 3163 if (sub_dl_cap == DL_CAPAB_POLL && 3164 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3165 ASSERT(ill->ill_dls_capab != NULL); 3166 ill->ill_capabilities |= ILL_CAPAB_POLL; 3167 ip1dbg(("ill_capability_dls_ack: interface %s " 3168 "has enabled polling\n", ill->ill_name)); 3169 } 3170 mutex_exit(&ill->ill_lock); 3171 break; 3172 } 3173 } 3174 3175 /* 3176 * Process a hardware checksum offload capability negotiation ack received 3177 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3178 * of a DL_CAPABILITY_ACK message. 3179 */ 3180 static void 3181 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3182 { 3183 dl_capability_req_t *ocap; 3184 dl_capab_hcksum_t *ihck, *ohck; 3185 ill_hcksum_capab_t **ill_hcksum; 3186 mblk_t *nmp = NULL; 3187 uint_t sub_dl_cap = isub->dl_cap; 3188 uint8_t *capend; 3189 3190 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3191 3192 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3193 3194 /* 3195 * Note: range checks here are not absolutely sufficient to 3196 * make us robust against malformed messages sent by drivers; 3197 * this is in keeping with the rest of IP's dlpi handling. 3198 * (Remember, it's coming from something else in the kernel 3199 * address space) 3200 */ 3201 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3202 if (capend > mp->b_wptr) { 3203 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3204 "malformed sub-capability too long for mblk"); 3205 return; 3206 } 3207 3208 /* 3209 * There are two types of acks we process here: 3210 * 1. acks in reply to a (first form) generic capability req 3211 * (no ENABLE flag set) 3212 * 2. acks in reply to a ENABLE capability req. 3213 * (ENABLE flag set) 3214 */ 3215 ihck = (dl_capab_hcksum_t *)(isub + 1); 3216 3217 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3218 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3219 "unsupported hardware checksum " 3220 "sub-capability (version %d, expected %d)", 3221 ihck->hcksum_version, HCKSUM_VERSION_1); 3222 return; 3223 } 3224 3225 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3226 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3227 "checksum capability isn't as expected; pass-thru " 3228 "module(s) detected, discarding capability\n")); 3229 return; 3230 } 3231 3232 #define CURR_HCKSUM_CAPAB \ 3233 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3234 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3235 3236 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3237 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3238 /* do ENABLE processing */ 3239 if (*ill_hcksum == NULL) { 3240 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3241 KM_NOSLEEP); 3242 3243 if (*ill_hcksum == NULL) { 3244 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3245 "could not enable hcksum version %d " 3246 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3247 ill->ill_name); 3248 return; 3249 } 3250 } 3251 3252 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3253 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3254 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3255 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3256 "has enabled hardware checksumming\n ", 3257 ill->ill_name)); 3258 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3259 /* 3260 * Enabling hardware checksum offload 3261 * Currently IP supports {TCP,UDP}/IPv4 3262 * partial and full cksum offload and 3263 * IPv4 header checksum offload. 3264 * Allocate new mblk which will 3265 * contain a new capability request 3266 * to enable hardware checksum offload. 3267 */ 3268 uint_t size; 3269 uchar_t *rptr; 3270 3271 size = sizeof (dl_capability_req_t) + 3272 sizeof (dl_capability_sub_t) + isub->dl_length; 3273 3274 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3275 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3276 "could not enable hardware cksum for %s (ENOMEM)\n", 3277 ill->ill_name); 3278 return; 3279 } 3280 3281 rptr = nmp->b_rptr; 3282 /* initialize dl_capability_req_t */ 3283 ocap = (dl_capability_req_t *)nmp->b_rptr; 3284 ocap->dl_sub_offset = 3285 sizeof (dl_capability_req_t); 3286 ocap->dl_sub_length = 3287 sizeof (dl_capability_sub_t) + 3288 isub->dl_length; 3289 nmp->b_rptr += sizeof (dl_capability_req_t); 3290 3291 /* initialize dl_capability_sub_t */ 3292 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3293 nmp->b_rptr += sizeof (*isub); 3294 3295 /* initialize dl_capab_hcksum_t */ 3296 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3297 bcopy(ihck, ohck, sizeof (*ihck)); 3298 3299 nmp->b_rptr = rptr; 3300 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3301 3302 /* Set ENABLE flag */ 3303 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3304 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3305 3306 /* 3307 * nmp points to a DL_CAPABILITY_REQ message to enable 3308 * hardware checksum acceleration. 3309 */ 3310 ill_dlpi_send(ill, nmp); 3311 } else { 3312 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3313 "advertised %x hardware checksum capability flags\n", 3314 ill->ill_name, ihck->hcksum_txflags)); 3315 } 3316 } 3317 3318 static void 3319 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3320 { 3321 mblk_t *mp; 3322 dl_capab_hcksum_t *hck_subcap; 3323 dl_capability_sub_t *dl_subcap; 3324 int size; 3325 3326 if (!ILL_HCKSUM_CAPABLE(ill)) 3327 return; 3328 3329 ASSERT(ill->ill_hcksum_capab != NULL); 3330 /* 3331 * Clear the capability flag for hardware checksum offload but 3332 * retain the ill_hcksum_capab structure since it's possible that 3333 * another thread is still referring to it. The structure only 3334 * gets deallocated when we destroy the ill. 3335 */ 3336 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3337 3338 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3339 3340 mp = allocb(size, BPRI_HI); 3341 if (mp == NULL) { 3342 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3343 "request to disable hardware checksum offload\n")); 3344 return; 3345 } 3346 3347 mp->b_wptr = mp->b_rptr + size; 3348 3349 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3350 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3351 dl_subcap->dl_length = sizeof (*hck_subcap); 3352 3353 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3354 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3355 hck_subcap->hcksum_txflags = 0; 3356 3357 if (*sc_mp != NULL) 3358 linkb(*sc_mp, mp); 3359 else 3360 *sc_mp = mp; 3361 } 3362 3363 static void 3364 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3365 { 3366 mblk_t *nmp = NULL; 3367 dl_capability_req_t *oc; 3368 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3369 ill_zerocopy_capab_t **ill_zerocopy_capab; 3370 uint_t sub_dl_cap = isub->dl_cap; 3371 uint8_t *capend; 3372 3373 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3374 3375 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3376 3377 /* 3378 * Note: range checks here are not absolutely sufficient to 3379 * make us robust against malformed messages sent by drivers; 3380 * this is in keeping with the rest of IP's dlpi handling. 3381 * (Remember, it's coming from something else in the kernel 3382 * address space) 3383 */ 3384 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3385 if (capend > mp->b_wptr) { 3386 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3387 "malformed sub-capability too long for mblk"); 3388 return; 3389 } 3390 3391 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3392 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3393 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3394 "unsupported ZEROCOPY sub-capability (version %d, " 3395 "expected %d)", zc_ic->zerocopy_version, 3396 ZEROCOPY_VERSION_1); 3397 return; 3398 } 3399 3400 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3401 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3402 "capability isn't as expected; pass-thru module(s) " 3403 "detected, discarding capability\n")); 3404 return; 3405 } 3406 3407 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3408 if (*ill_zerocopy_capab == NULL) { 3409 *ill_zerocopy_capab = 3410 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3411 KM_NOSLEEP); 3412 3413 if (*ill_zerocopy_capab == NULL) { 3414 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3415 "could not enable Zero-copy version %d " 3416 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3417 ill->ill_name); 3418 return; 3419 } 3420 } 3421 3422 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3423 "supports Zero-copy version %d\n", ill->ill_name, 3424 ZEROCOPY_VERSION_1)); 3425 3426 (*ill_zerocopy_capab)->ill_zerocopy_version = 3427 zc_ic->zerocopy_version; 3428 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3429 zc_ic->zerocopy_flags; 3430 3431 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3432 } else { 3433 uint_t size; 3434 uchar_t *rptr; 3435 3436 size = sizeof (dl_capability_req_t) + 3437 sizeof (dl_capability_sub_t) + 3438 sizeof (dl_capab_zerocopy_t); 3439 3440 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3441 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3442 "could not enable zerocopy for %s (ENOMEM)\n", 3443 ill->ill_name); 3444 return; 3445 } 3446 3447 rptr = nmp->b_rptr; 3448 /* initialize dl_capability_req_t */ 3449 oc = (dl_capability_req_t *)rptr; 3450 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3451 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3452 sizeof (dl_capab_zerocopy_t); 3453 rptr += sizeof (dl_capability_req_t); 3454 3455 /* initialize dl_capability_sub_t */ 3456 bcopy(isub, rptr, sizeof (*isub)); 3457 rptr += sizeof (*isub); 3458 3459 /* initialize dl_capab_zerocopy_t */ 3460 zc_oc = (dl_capab_zerocopy_t *)rptr; 3461 *zc_oc = *zc_ic; 3462 3463 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3464 "to enable zero-copy version %d\n", ill->ill_name, 3465 ZEROCOPY_VERSION_1)); 3466 3467 /* set VMSAFE_MEM flag */ 3468 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3469 3470 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3471 ill_dlpi_send(ill, nmp); 3472 } 3473 } 3474 3475 static void 3476 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3477 { 3478 mblk_t *mp; 3479 dl_capab_zerocopy_t *zerocopy_subcap; 3480 dl_capability_sub_t *dl_subcap; 3481 int size; 3482 3483 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3484 return; 3485 3486 ASSERT(ill->ill_zerocopy_capab != NULL); 3487 /* 3488 * Clear the capability flag for Zero-copy but retain the 3489 * ill_zerocopy_capab structure since it's possible that another 3490 * thread is still referring to it. The structure only gets 3491 * deallocated when we destroy the ill. 3492 */ 3493 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3494 3495 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3496 3497 mp = allocb(size, BPRI_HI); 3498 if (mp == NULL) { 3499 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3500 "request to disable Zero-copy\n")); 3501 return; 3502 } 3503 3504 mp->b_wptr = mp->b_rptr + size; 3505 3506 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3507 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3508 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3509 3510 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3511 zerocopy_subcap->zerocopy_version = 3512 ill->ill_zerocopy_capab->ill_zerocopy_version; 3513 zerocopy_subcap->zerocopy_flags = 0; 3514 3515 if (*sc_mp != NULL) 3516 linkb(*sc_mp, mp); 3517 else 3518 *sc_mp = mp; 3519 } 3520 3521 /* 3522 * Process Large Segment Offload capability negotiation ack received from a 3523 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3524 * DL_CAPABILITY_ACK message. 3525 */ 3526 static void 3527 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3528 { 3529 mblk_t *nmp = NULL; 3530 dl_capability_req_t *oc; 3531 dl_capab_lso_t *lso_ic, *lso_oc; 3532 ill_lso_capab_t **ill_lso_capab; 3533 uint_t sub_dl_cap = isub->dl_cap; 3534 uint8_t *capend; 3535 3536 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3537 3538 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3539 3540 /* 3541 * Note: range checks here are not absolutely sufficient to 3542 * make us robust against malformed messages sent by drivers; 3543 * this is in keeping with the rest of IP's dlpi handling. 3544 * (Remember, it's coming from something else in the kernel 3545 * address space) 3546 */ 3547 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3548 if (capend > mp->b_wptr) { 3549 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3550 "malformed sub-capability too long for mblk"); 3551 return; 3552 } 3553 3554 lso_ic = (dl_capab_lso_t *)(isub + 1); 3555 3556 if (lso_ic->lso_version != LSO_VERSION_1) { 3557 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3558 "unsupported LSO sub-capability (version %d, expected %d)", 3559 lso_ic->lso_version, LSO_VERSION_1); 3560 return; 3561 } 3562 3563 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3564 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3565 "capability isn't as expected; pass-thru module(s) " 3566 "detected, discarding capability\n")); 3567 return; 3568 } 3569 3570 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3571 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3572 if (*ill_lso_capab == NULL) { 3573 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3574 KM_NOSLEEP); 3575 3576 if (*ill_lso_capab == NULL) { 3577 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3578 "could not enable LSO version %d " 3579 "for %s (ENOMEM)\n", LSO_VERSION_1, 3580 ill->ill_name); 3581 return; 3582 } 3583 } 3584 3585 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3586 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3587 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3588 ill->ill_capabilities |= ILL_CAPAB_LSO; 3589 3590 ip1dbg(("ill_capability_lso_ack: interface %s " 3591 "has enabled LSO\n ", ill->ill_name)); 3592 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3593 uint_t size; 3594 uchar_t *rptr; 3595 3596 size = sizeof (dl_capability_req_t) + 3597 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3598 3599 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3600 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3601 "could not enable LSO for %s (ENOMEM)\n", 3602 ill->ill_name); 3603 return; 3604 } 3605 3606 rptr = nmp->b_rptr; 3607 /* initialize dl_capability_req_t */ 3608 oc = (dl_capability_req_t *)nmp->b_rptr; 3609 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3610 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3611 sizeof (dl_capab_lso_t); 3612 nmp->b_rptr += sizeof (dl_capability_req_t); 3613 3614 /* initialize dl_capability_sub_t */ 3615 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3616 nmp->b_rptr += sizeof (*isub); 3617 3618 /* initialize dl_capab_lso_t */ 3619 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3620 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3621 3622 nmp->b_rptr = rptr; 3623 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3624 3625 /* set ENABLE flag */ 3626 lso_oc->lso_flags |= LSO_TX_ENABLE; 3627 3628 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3629 ill_dlpi_send(ill, nmp); 3630 } else { 3631 ip1dbg(("ill_capability_lso_ack: interface %s has " 3632 "advertised %x LSO capability flags\n", 3633 ill->ill_name, lso_ic->lso_flags)); 3634 } 3635 } 3636 3637 3638 static void 3639 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3640 { 3641 mblk_t *mp; 3642 dl_capab_lso_t *lso_subcap; 3643 dl_capability_sub_t *dl_subcap; 3644 int size; 3645 3646 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3647 return; 3648 3649 ASSERT(ill->ill_lso_capab != NULL); 3650 /* 3651 * Clear the capability flag for LSO but retain the 3652 * ill_lso_capab structure since it's possible that another 3653 * thread is still referring to it. The structure only gets 3654 * deallocated when we destroy the ill. 3655 */ 3656 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3657 3658 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3659 3660 mp = allocb(size, BPRI_HI); 3661 if (mp == NULL) { 3662 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3663 "request to disable LSO\n")); 3664 return; 3665 } 3666 3667 mp->b_wptr = mp->b_rptr + size; 3668 3669 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3670 dl_subcap->dl_cap = DL_CAPAB_LSO; 3671 dl_subcap->dl_length = sizeof (*lso_subcap); 3672 3673 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3674 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3675 lso_subcap->lso_flags = 0; 3676 3677 if (*sc_mp != NULL) 3678 linkb(*sc_mp, mp); 3679 else 3680 *sc_mp = mp; 3681 } 3682 3683 /* 3684 * Consume a new-style hardware capabilities negotiation ack. 3685 * Called from ip_rput_dlpi_writer(). 3686 */ 3687 void 3688 ill_capability_ack(ill_t *ill, mblk_t *mp) 3689 { 3690 dl_capability_ack_t *capp; 3691 dl_capability_sub_t *subp, *endp; 3692 3693 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3694 ill->ill_dlpi_capab_state = IDS_OK; 3695 3696 capp = (dl_capability_ack_t *)mp->b_rptr; 3697 3698 if (capp->dl_sub_length == 0) 3699 /* no new-style capabilities */ 3700 return; 3701 3702 /* make sure the driver supplied correct dl_sub_length */ 3703 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3704 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3705 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3706 return; 3707 } 3708 3709 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3710 /* 3711 * There are sub-capabilities. Process the ones we know about. 3712 * Loop until we don't have room for another sub-cap header.. 3713 */ 3714 for (subp = SC(capp, capp->dl_sub_offset), 3715 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3716 subp <= endp; 3717 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3718 3719 switch (subp->dl_cap) { 3720 case DL_CAPAB_ID_WRAPPER: 3721 ill_capability_id_ack(ill, mp, subp); 3722 break; 3723 default: 3724 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3725 break; 3726 } 3727 } 3728 #undef SC 3729 } 3730 3731 /* 3732 * This routine is called to scan the fragmentation reassembly table for 3733 * the specified ILL for any packets that are starting to smell. 3734 * dead_interval is the maximum time in seconds that will be tolerated. It 3735 * will either be the value specified in ip_g_frag_timeout, or zero if the 3736 * ILL is shutting down and it is time to blow everything off. 3737 * 3738 * It returns the number of seconds (as a time_t) that the next frag timer 3739 * should be scheduled for, 0 meaning that the timer doesn't need to be 3740 * re-started. Note that the method of calculating next_timeout isn't 3741 * entirely accurate since time will flow between the time we grab 3742 * current_time and the time we schedule the next timeout. This isn't a 3743 * big problem since this is the timer for sending an ICMP reassembly time 3744 * exceeded messages, and it doesn't have to be exactly accurate. 3745 * 3746 * This function is 3747 * sometimes called as writer, although this is not required. 3748 */ 3749 time_t 3750 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3751 { 3752 ipfb_t *ipfb; 3753 ipfb_t *endp; 3754 ipf_t *ipf; 3755 ipf_t *ipfnext; 3756 mblk_t *mp; 3757 time_t current_time = gethrestime_sec(); 3758 time_t next_timeout = 0; 3759 uint32_t hdr_length; 3760 mblk_t *send_icmp_head; 3761 mblk_t *send_icmp_head_v6; 3762 zoneid_t zoneid; 3763 3764 ipfb = ill->ill_frag_hash_tbl; 3765 if (ipfb == NULL) 3766 return (B_FALSE); 3767 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3768 /* Walk the frag hash table. */ 3769 for (; ipfb < endp; ipfb++) { 3770 send_icmp_head = NULL; 3771 send_icmp_head_v6 = NULL; 3772 mutex_enter(&ipfb->ipfb_lock); 3773 while ((ipf = ipfb->ipfb_ipf) != 0) { 3774 time_t frag_time = current_time - ipf->ipf_timestamp; 3775 time_t frag_timeout; 3776 3777 if (frag_time < dead_interval) { 3778 /* 3779 * There are some outstanding fragments 3780 * that will timeout later. Make note of 3781 * the time so that we can reschedule the 3782 * next timeout appropriately. 3783 */ 3784 frag_timeout = dead_interval - frag_time; 3785 if (next_timeout == 0 || 3786 frag_timeout < next_timeout) { 3787 next_timeout = frag_timeout; 3788 } 3789 break; 3790 } 3791 /* Time's up. Get it out of here. */ 3792 hdr_length = ipf->ipf_nf_hdr_len; 3793 ipfnext = ipf->ipf_hash_next; 3794 if (ipfnext) 3795 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3796 *ipf->ipf_ptphn = ipfnext; 3797 mp = ipf->ipf_mp->b_cont; 3798 for (; mp; mp = mp->b_cont) { 3799 /* Extra points for neatness. */ 3800 IP_REASS_SET_START(mp, 0); 3801 IP_REASS_SET_END(mp, 0); 3802 } 3803 mp = ipf->ipf_mp->b_cont; 3804 ill->ill_frag_count -= ipf->ipf_count; 3805 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3806 ipfb->ipfb_count -= ipf->ipf_count; 3807 ASSERT(ipfb->ipfb_frag_pkts > 0); 3808 ipfb->ipfb_frag_pkts--; 3809 /* 3810 * We do not send any icmp message from here because 3811 * we currently are holding the ipfb_lock for this 3812 * hash chain. If we try and send any icmp messages 3813 * from here we may end up via a put back into ip 3814 * trying to get the same lock, causing a recursive 3815 * mutex panic. Instead we build a list and send all 3816 * the icmp messages after we have dropped the lock. 3817 */ 3818 if (ill->ill_isv6) { 3819 if (hdr_length != 0) { 3820 mp->b_next = send_icmp_head_v6; 3821 send_icmp_head_v6 = mp; 3822 } else { 3823 freemsg(mp); 3824 } 3825 } else { 3826 if (hdr_length != 0) { 3827 mp->b_next = send_icmp_head; 3828 send_icmp_head = mp; 3829 } else { 3830 freemsg(mp); 3831 } 3832 } 3833 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3834 freeb(ipf->ipf_mp); 3835 } 3836 mutex_exit(&ipfb->ipfb_lock); 3837 /* 3838 * Now need to send any icmp messages that we delayed from 3839 * above. 3840 */ 3841 while (send_icmp_head_v6 != NULL) { 3842 ip6_t *ip6h; 3843 3844 mp = send_icmp_head_v6; 3845 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3846 mp->b_next = NULL; 3847 if (mp->b_datap->db_type == M_CTL) 3848 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3849 else 3850 ip6h = (ip6_t *)mp->b_rptr; 3851 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3852 ill); 3853 if (zoneid == ALL_ZONES) { 3854 freemsg(mp); 3855 } else { 3856 icmp_time_exceeded_v6(ill->ill_wq, mp, 3857 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3858 B_FALSE, zoneid); 3859 } 3860 } 3861 while (send_icmp_head != NULL) { 3862 ipaddr_t dst; 3863 3864 mp = send_icmp_head; 3865 send_icmp_head = send_icmp_head->b_next; 3866 mp->b_next = NULL; 3867 3868 if (mp->b_datap->db_type == M_CTL) 3869 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3870 else 3871 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3872 3873 zoneid = ipif_lookup_addr_zoneid(dst, ill); 3874 if (zoneid == ALL_ZONES) { 3875 freemsg(mp); 3876 } else { 3877 icmp_time_exceeded(ill->ill_wq, mp, 3878 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid); 3879 } 3880 } 3881 } 3882 /* 3883 * A non-dying ILL will use the return value to decide whether to 3884 * restart the frag timer, and for how long. 3885 */ 3886 return (next_timeout); 3887 } 3888 3889 /* 3890 * This routine is called when the approximate count of mblk memory used 3891 * for the specified ILL has exceeded max_count. 3892 */ 3893 void 3894 ill_frag_prune(ill_t *ill, uint_t max_count) 3895 { 3896 ipfb_t *ipfb; 3897 ipf_t *ipf; 3898 size_t count; 3899 3900 /* 3901 * If we are here within ip_min_frag_prune_time msecs remove 3902 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3903 * ill_frag_free_num_pkts. 3904 */ 3905 mutex_enter(&ill->ill_lock); 3906 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3907 (ip_min_frag_prune_time != 0 ? 3908 ip_min_frag_prune_time : msec_per_tick)) { 3909 3910 ill->ill_frag_free_num_pkts++; 3911 3912 } else { 3913 ill->ill_frag_free_num_pkts = 0; 3914 } 3915 ill->ill_last_frag_clean_time = lbolt; 3916 mutex_exit(&ill->ill_lock); 3917 3918 /* 3919 * free ill_frag_free_num_pkts oldest packets from each bucket. 3920 */ 3921 if (ill->ill_frag_free_num_pkts != 0) { 3922 int ix; 3923 3924 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3925 ipfb = &ill->ill_frag_hash_tbl[ix]; 3926 mutex_enter(&ipfb->ipfb_lock); 3927 if (ipfb->ipfb_ipf != NULL) { 3928 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3929 ill->ill_frag_free_num_pkts); 3930 } 3931 mutex_exit(&ipfb->ipfb_lock); 3932 } 3933 } 3934 /* 3935 * While the reassembly list for this ILL is too big, prune a fragment 3936 * queue by age, oldest first. Note that the per ILL count is 3937 * approximate, while the per frag hash bucket counts are accurate. 3938 */ 3939 while (ill->ill_frag_count > max_count) { 3940 int ix; 3941 ipfb_t *oipfb = NULL; 3942 uint_t oldest = UINT_MAX; 3943 3944 count = 0; 3945 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3946 ipfb = &ill->ill_frag_hash_tbl[ix]; 3947 mutex_enter(&ipfb->ipfb_lock); 3948 ipf = ipfb->ipfb_ipf; 3949 if (ipf != NULL && ipf->ipf_gen < oldest) { 3950 oldest = ipf->ipf_gen; 3951 oipfb = ipfb; 3952 } 3953 count += ipfb->ipfb_count; 3954 mutex_exit(&ipfb->ipfb_lock); 3955 } 3956 /* Refresh the per ILL count */ 3957 ill->ill_frag_count = count; 3958 if (oipfb == NULL) { 3959 ill->ill_frag_count = 0; 3960 break; 3961 } 3962 if (count <= max_count) 3963 return; /* Somebody beat us to it, nothing to do */ 3964 mutex_enter(&oipfb->ipfb_lock); 3965 ipf = oipfb->ipfb_ipf; 3966 if (ipf != NULL) { 3967 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3968 } 3969 mutex_exit(&oipfb->ipfb_lock); 3970 } 3971 } 3972 3973 /* 3974 * free 'free_cnt' fragmented packets starting at ipf. 3975 */ 3976 void 3977 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3978 { 3979 size_t count; 3980 mblk_t *mp; 3981 mblk_t *tmp; 3982 ipf_t **ipfp = ipf->ipf_ptphn; 3983 3984 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3985 ASSERT(ipfp != NULL); 3986 ASSERT(ipf != NULL); 3987 3988 while (ipf != NULL && free_cnt-- > 0) { 3989 count = ipf->ipf_count; 3990 mp = ipf->ipf_mp; 3991 ipf = ipf->ipf_hash_next; 3992 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3993 IP_REASS_SET_START(tmp, 0); 3994 IP_REASS_SET_END(tmp, 0); 3995 } 3996 ill->ill_frag_count -= count; 3997 ASSERT(ipfb->ipfb_count >= count); 3998 ipfb->ipfb_count -= count; 3999 ASSERT(ipfb->ipfb_frag_pkts > 0); 4000 ipfb->ipfb_frag_pkts--; 4001 freemsg(mp); 4002 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 4003 } 4004 4005 if (ipf) 4006 ipf->ipf_ptphn = ipfp; 4007 ipfp[0] = ipf; 4008 } 4009 4010 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 4011 "obsolete and may be removed in a future release of Solaris. Use " \ 4012 "ifconfig(1M) to manipulate the forwarding status of an interface." 4013 4014 /* 4015 * For obsolete per-interface forwarding configuration; 4016 * called in response to ND_GET. 4017 */ 4018 /* ARGSUSED */ 4019 static int 4020 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 4021 { 4022 ill_t *ill = (ill_t *)cp; 4023 4024 cmn_err(CE_WARN, ND_FORWARD_WARNING); 4025 4026 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 4027 return (0); 4028 } 4029 4030 /* 4031 * For obsolete per-interface forwarding configuration; 4032 * called in response to ND_SET. 4033 */ 4034 /* ARGSUSED */ 4035 static int 4036 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 4037 cred_t *ioc_cr) 4038 { 4039 long value; 4040 int retval; 4041 4042 cmn_err(CE_WARN, ND_FORWARD_WARNING); 4043 4044 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 4045 value < 0 || value > 1) { 4046 return (EINVAL); 4047 } 4048 4049 rw_enter(&ill_g_lock, RW_READER); 4050 retval = ill_forward_set(q, mp, (value != 0), cp); 4051 rw_exit(&ill_g_lock); 4052 return (retval); 4053 } 4054 4055 /* 4056 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4057 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4058 * up RTS_IFINFO routing socket messages for each interface whose flags we 4059 * change. 4060 */ 4061 /* ARGSUSED */ 4062 int 4063 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4064 { 4065 ill_t *ill = (ill_t *)cp; 4066 ill_group_t *illgrp; 4067 4068 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 4069 4070 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4071 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4072 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4073 return (EINVAL); 4074 4075 /* 4076 * If the ill is in an IPMP group, set the forwarding policy on all 4077 * members of the group to the same value. 4078 */ 4079 illgrp = ill->ill_group; 4080 if (illgrp != NULL) { 4081 ill_t *tmp_ill; 4082 4083 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4084 tmp_ill = tmp_ill->ill_group_next) { 4085 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4086 (enable ? "Enabling" : "Disabling"), 4087 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4088 tmp_ill->ill_name)); 4089 mutex_enter(&tmp_ill->ill_lock); 4090 if (enable) 4091 tmp_ill->ill_flags |= ILLF_ROUTER; 4092 else 4093 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4094 mutex_exit(&tmp_ill->ill_lock); 4095 if (tmp_ill->ill_isv6) 4096 ill_set_nce_router_flags(tmp_ill, enable); 4097 /* Notify routing socket listeners of this change. */ 4098 ip_rts_ifmsg(tmp_ill->ill_ipif); 4099 } 4100 } else { 4101 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4102 (enable ? "Enabling" : "Disabling"), 4103 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4104 mutex_enter(&ill->ill_lock); 4105 if (enable) 4106 ill->ill_flags |= ILLF_ROUTER; 4107 else 4108 ill->ill_flags &= ~ILLF_ROUTER; 4109 mutex_exit(&ill->ill_lock); 4110 if (ill->ill_isv6) 4111 ill_set_nce_router_flags(ill, enable); 4112 /* Notify routing socket listeners of this change. */ 4113 ip_rts_ifmsg(ill->ill_ipif); 4114 } 4115 4116 return (0); 4117 } 4118 4119 /* 4120 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4121 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4122 * set or clear. 4123 */ 4124 static void 4125 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4126 { 4127 ipif_t *ipif; 4128 nce_t *nce; 4129 4130 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4131 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4132 if (nce != NULL) { 4133 mutex_enter(&nce->nce_lock); 4134 if (enable) 4135 nce->nce_flags |= NCE_F_ISROUTER; 4136 else 4137 nce->nce_flags &= ~NCE_F_ISROUTER; 4138 mutex_exit(&nce->nce_lock); 4139 NCE_REFRELE(nce); 4140 } 4141 } 4142 } 4143 4144 /* 4145 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4146 * for this ill. Make sure the v6/v4 question has been answered about this 4147 * ill. The creation of this ndd variable is only for backwards compatibility. 4148 * The preferred way to control per-interface IP forwarding is through the 4149 * ILLF_ROUTER interface flag. 4150 */ 4151 static int 4152 ill_set_ndd_name(ill_t *ill) 4153 { 4154 char *suffix; 4155 4156 ASSERT(IAM_WRITER_ILL(ill)); 4157 4158 if (ill->ill_isv6) 4159 suffix = ipv6_forward_suffix; 4160 else 4161 suffix = ipv4_forward_suffix; 4162 4163 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4164 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4165 /* 4166 * Copies over the '\0'. 4167 * Note that strlen(suffix) is always bounded. 4168 */ 4169 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4170 strlen(suffix) + 1); 4171 4172 /* 4173 * Use of the nd table requires holding the reader lock. 4174 * Modifying the nd table thru nd_load/nd_unload requires 4175 * the writer lock. 4176 */ 4177 rw_enter(&ip_g_nd_lock, RW_WRITER); 4178 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4179 nd_ill_forward_set, (caddr_t)ill)) { 4180 /* 4181 * If the nd_load failed, it only meant that it could not 4182 * allocate a new bunch of room for further NDD expansion. 4183 * Because of that, the ill_ndd_name will be set to 0, and 4184 * this interface is at the mercy of the global ip_forwarding 4185 * variable. 4186 */ 4187 rw_exit(&ip_g_nd_lock); 4188 ill->ill_ndd_name = NULL; 4189 return (ENOMEM); 4190 } 4191 rw_exit(&ip_g_nd_lock); 4192 return (0); 4193 } 4194 4195 /* 4196 * Intializes the context structure and returns the first ill in the list 4197 * cuurently start_list and end_list can have values: 4198 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4199 * IP_V4_G_HEAD Traverse IPV4 list only. 4200 * IP_V6_G_HEAD Traverse IPV6 list only. 4201 */ 4202 4203 /* 4204 * We don't check for CONDEMNED ills here. Caller must do that if 4205 * necessary under the ill lock. 4206 */ 4207 ill_t * 4208 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 4209 { 4210 ill_if_t *ifp; 4211 ill_t *ill; 4212 avl_tree_t *avl_tree; 4213 4214 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4215 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4216 4217 /* 4218 * setup the lists to search 4219 */ 4220 if (end_list != MAX_G_HEADS) { 4221 ctx->ctx_current_list = start_list; 4222 ctx->ctx_last_list = end_list; 4223 } else { 4224 ctx->ctx_last_list = MAX_G_HEADS - 1; 4225 ctx->ctx_current_list = 0; 4226 } 4227 4228 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4229 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4230 if (ifp != (ill_if_t *) 4231 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4232 avl_tree = &ifp->illif_avl_by_ppa; 4233 ill = avl_first(avl_tree); 4234 /* 4235 * ill is guaranteed to be non NULL or ifp should have 4236 * not existed. 4237 */ 4238 ASSERT(ill != NULL); 4239 return (ill); 4240 } 4241 ctx->ctx_current_list++; 4242 } 4243 4244 return (NULL); 4245 } 4246 4247 /* 4248 * returns the next ill in the list. ill_first() must have been called 4249 * before calling ill_next() or bad things will happen. 4250 */ 4251 4252 /* 4253 * We don't check for CONDEMNED ills here. Caller must do that if 4254 * necessary under the ill lock. 4255 */ 4256 ill_t * 4257 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4258 { 4259 ill_if_t *ifp; 4260 ill_t *ill; 4261 4262 4263 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4264 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4265 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 4266 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4267 AVL_AFTER)) != NULL) { 4268 return (ill); 4269 } 4270 4271 /* goto next ill_ifp in the list. */ 4272 ifp = lastill->ill_ifptr->illif_next; 4273 4274 /* make sure not at end of circular list */ 4275 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 4276 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4277 return (NULL); 4278 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4279 } 4280 4281 return (avl_first(&ifp->illif_avl_by_ppa)); 4282 } 4283 4284 /* 4285 * Check interface name for correct format which is name+ppa. 4286 * name can contain characters and digits, the right most digits 4287 * make up the ppa number. use of octal is not allowed, name must contain 4288 * a ppa, return pointer to the start of ppa. 4289 * In case of error return NULL. 4290 */ 4291 static char * 4292 ill_get_ppa_ptr(char *name) 4293 { 4294 int namelen = mi_strlen(name); 4295 4296 int len = namelen; 4297 4298 name += len; 4299 while (len > 0) { 4300 name--; 4301 if (*name < '0' || *name > '9') 4302 break; 4303 len--; 4304 } 4305 4306 /* empty string, all digits, or no trailing digits */ 4307 if (len == 0 || len == (int)namelen) 4308 return (NULL); 4309 4310 name++; 4311 /* check for attempted use of octal */ 4312 if (*name == '0' && len != (int)namelen - 1) 4313 return (NULL); 4314 return (name); 4315 } 4316 4317 /* 4318 * use avl tree to locate the ill. 4319 */ 4320 static ill_t * 4321 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4322 ipsq_func_t func, int *error) 4323 { 4324 char *ppa_ptr = NULL; 4325 int len; 4326 uint_t ppa; 4327 ill_t *ill = NULL; 4328 ill_if_t *ifp; 4329 int list; 4330 ipsq_t *ipsq; 4331 4332 if (error != NULL) 4333 *error = 0; 4334 4335 /* 4336 * get ppa ptr 4337 */ 4338 if (isv6) 4339 list = IP_V6_G_HEAD; 4340 else 4341 list = IP_V4_G_HEAD; 4342 4343 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4344 if (error != NULL) 4345 *error = ENXIO; 4346 return (NULL); 4347 } 4348 4349 len = ppa_ptr - name + 1; 4350 4351 ppa = stoi(&ppa_ptr); 4352 4353 ifp = IP_VX_ILL_G_LIST(list); 4354 4355 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4356 /* 4357 * match is done on len - 1 as the name is not null 4358 * terminated it contains ppa in addition to the interface 4359 * name. 4360 */ 4361 if ((ifp->illif_name_len == len) && 4362 bcmp(ifp->illif_name, name, len - 1) == 0) { 4363 break; 4364 } else { 4365 ifp = ifp->illif_next; 4366 } 4367 } 4368 4369 4370 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4371 /* 4372 * Even the interface type does not exist. 4373 */ 4374 if (error != NULL) 4375 *error = ENXIO; 4376 return (NULL); 4377 } 4378 4379 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4380 if (ill != NULL) { 4381 /* 4382 * The block comment at the start of ipif_down 4383 * explains the use of the macros used below 4384 */ 4385 GRAB_CONN_LOCK(q); 4386 mutex_enter(&ill->ill_lock); 4387 if (ILL_CAN_LOOKUP(ill)) { 4388 ill_refhold_locked(ill); 4389 mutex_exit(&ill->ill_lock); 4390 RELEASE_CONN_LOCK(q); 4391 return (ill); 4392 } else if (ILL_CAN_WAIT(ill, q)) { 4393 ipsq = ill->ill_phyint->phyint_ipsq; 4394 mutex_enter(&ipsq->ipsq_lock); 4395 mutex_exit(&ill->ill_lock); 4396 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4397 mutex_exit(&ipsq->ipsq_lock); 4398 RELEASE_CONN_LOCK(q); 4399 *error = EINPROGRESS; 4400 return (NULL); 4401 } 4402 mutex_exit(&ill->ill_lock); 4403 RELEASE_CONN_LOCK(q); 4404 } 4405 if (error != NULL) 4406 *error = ENXIO; 4407 return (NULL); 4408 } 4409 4410 /* 4411 * comparison function for use with avl. 4412 */ 4413 static int 4414 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4415 { 4416 uint_t ppa; 4417 uint_t ill_ppa; 4418 4419 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4420 4421 ppa = *((uint_t *)ppa_ptr); 4422 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4423 /* 4424 * We want the ill with the lowest ppa to be on the 4425 * top. 4426 */ 4427 if (ill_ppa < ppa) 4428 return (1); 4429 if (ill_ppa > ppa) 4430 return (-1); 4431 return (0); 4432 } 4433 4434 /* 4435 * remove an interface type from the global list. 4436 */ 4437 static void 4438 ill_delete_interface_type(ill_if_t *interface) 4439 { 4440 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4441 4442 ASSERT(interface != NULL); 4443 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4444 4445 avl_destroy(&interface->illif_avl_by_ppa); 4446 if (interface->illif_ppa_arena != NULL) 4447 vmem_destroy(interface->illif_ppa_arena); 4448 4449 remque(interface); 4450 4451 mi_free(interface); 4452 } 4453 4454 /* Defined in ip_netinfo.c */ 4455 extern ddi_taskq_t *eventq_queue_nic; 4456 4457 /* 4458 * remove ill from the global list. 4459 */ 4460 static void 4461 ill_glist_delete(ill_t *ill) 4462 { 4463 char *nicname; 4464 size_t nicnamelen; 4465 hook_nic_event_t *info; 4466 4467 if (ill == NULL) 4468 return; 4469 4470 rw_enter(&ill_g_lock, RW_WRITER); 4471 4472 if (ill->ill_name != NULL) { 4473 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4474 if (nicname != NULL) { 4475 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4476 nicnamelen = ill->ill_name_length; 4477 } 4478 } else { 4479 nicname = NULL; 4480 nicnamelen = 0; 4481 } 4482 4483 /* 4484 * If the ill was never inserted into the AVL tree 4485 * we skip the if branch. 4486 */ 4487 if (ill->ill_ifptr != NULL) { 4488 /* 4489 * remove from AVL tree and free ppa number 4490 */ 4491 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4492 4493 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4494 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4495 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4496 } 4497 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4498 ill_delete_interface_type(ill->ill_ifptr); 4499 } 4500 4501 /* 4502 * Indicate ill is no longer in the list. 4503 */ 4504 ill->ill_ifptr = NULL; 4505 ill->ill_name_length = 0; 4506 ill->ill_name[0] = '\0'; 4507 ill->ill_ppa = UINT_MAX; 4508 } 4509 4510 /* 4511 * Run the unplumb hook after the NIC has disappeared from being 4512 * visible so that attempts to revalidate its existance will fail. 4513 * 4514 * This needs to be run inside the ill_g_lock perimeter to ensure 4515 * that the ordering of delivered events to listeners matches the 4516 * order of them in the kernel. 4517 */ 4518 if ((info = ill->ill_nic_event_info) != NULL) { 4519 if (info->hne_event != NE_DOWN) { 4520 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4521 "attached for %s\n", info->hne_event, 4522 ill->ill_name)); 4523 if (info->hne_data != NULL) 4524 kmem_free(info->hne_data, info->hne_datalen); 4525 kmem_free(info, sizeof (hook_nic_event_t)); 4526 } else { 4527 if (ddi_taskq_dispatch(eventq_queue_nic, 4528 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4529 == DDI_FAILURE) { 4530 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4531 "failed\n")); 4532 if (info->hne_data != NULL) 4533 kmem_free(info->hne_data, 4534 info->hne_datalen); 4535 kmem_free(info, sizeof (hook_nic_event_t)); 4536 } 4537 } 4538 } 4539 4540 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4541 if (info != NULL) { 4542 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4543 info->hne_lif = 0; 4544 info->hne_event = NE_UNPLUMB; 4545 info->hne_data = nicname; 4546 info->hne_datalen = nicnamelen; 4547 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 4548 } else { 4549 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4550 "information for %s (ENOMEM)\n", ill->ill_name)); 4551 if (nicname != NULL) 4552 kmem_free(nicname, nicnamelen); 4553 } 4554 4555 ill->ill_nic_event_info = info; 4556 4557 ill_phyint_free(ill); 4558 4559 rw_exit(&ill_g_lock); 4560 } 4561 4562 /* 4563 * allocate a ppa, if the number of plumbed interfaces of this type are 4564 * less than ill_no_arena do a linear search to find a unused ppa. 4565 * When the number goes beyond ill_no_arena switch to using an arena. 4566 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4567 * is the return value for an error condition, so allocation starts at one 4568 * and is decremented by one. 4569 */ 4570 static int 4571 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4572 { 4573 ill_t *tmp_ill; 4574 uint_t start, end; 4575 int ppa; 4576 4577 if (ifp->illif_ppa_arena == NULL && 4578 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4579 /* 4580 * Create an arena. 4581 */ 4582 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4583 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4584 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4585 /* allocate what has already been assigned */ 4586 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4587 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4588 tmp_ill, AVL_AFTER)) { 4589 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4590 1, /* size */ 4591 1, /* align/quantum */ 4592 0, /* phase */ 4593 0, /* nocross */ 4594 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4595 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4596 VM_NOSLEEP|VM_FIRSTFIT); 4597 if (ppa == 0) { 4598 ip1dbg(("ill_alloc_ppa: ppa allocation" 4599 " failed while switching")); 4600 vmem_destroy(ifp->illif_ppa_arena); 4601 ifp->illif_ppa_arena = NULL; 4602 break; 4603 } 4604 } 4605 } 4606 4607 if (ifp->illif_ppa_arena != NULL) { 4608 if (ill->ill_ppa == UINT_MAX) { 4609 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4610 1, VM_NOSLEEP|VM_FIRSTFIT); 4611 if (ppa == 0) 4612 return (EAGAIN); 4613 ill->ill_ppa = --ppa; 4614 } else { 4615 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4616 1, /* size */ 4617 1, /* align/quantum */ 4618 0, /* phase */ 4619 0, /* nocross */ 4620 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4621 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4622 VM_NOSLEEP|VM_FIRSTFIT); 4623 /* 4624 * Most likely the allocation failed because 4625 * the requested ppa was in use. 4626 */ 4627 if (ppa == 0) 4628 return (EEXIST); 4629 } 4630 return (0); 4631 } 4632 4633 /* 4634 * No arena is in use and not enough (>ill_no_arena) interfaces have 4635 * been plumbed to create one. Do a linear search to get a unused ppa. 4636 */ 4637 if (ill->ill_ppa == UINT_MAX) { 4638 end = UINT_MAX - 1; 4639 start = 0; 4640 } else { 4641 end = start = ill->ill_ppa; 4642 } 4643 4644 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4645 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4646 if (start++ >= end) { 4647 if (ill->ill_ppa == UINT_MAX) 4648 return (EAGAIN); 4649 else 4650 return (EEXIST); 4651 } 4652 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4653 } 4654 ill->ill_ppa = start; 4655 return (0); 4656 } 4657 4658 /* 4659 * Insert ill into the list of configured ill's. Once this function completes, 4660 * the ill is globally visible and is available through lookups. More precisely 4661 * this happens after the caller drops the ill_g_lock. 4662 */ 4663 static int 4664 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4665 { 4666 ill_if_t *ill_interface; 4667 avl_index_t where = 0; 4668 int error; 4669 int name_length; 4670 int index; 4671 boolean_t check_length = B_FALSE; 4672 4673 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4674 4675 name_length = mi_strlen(name) + 1; 4676 4677 if (isv6) 4678 index = IP_V6_G_HEAD; 4679 else 4680 index = IP_V4_G_HEAD; 4681 4682 ill_interface = IP_VX_ILL_G_LIST(index); 4683 /* 4684 * Search for interface type based on name 4685 */ 4686 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4687 if ((ill_interface->illif_name_len == name_length) && 4688 (strcmp(ill_interface->illif_name, name) == 0)) { 4689 break; 4690 } 4691 ill_interface = ill_interface->illif_next; 4692 } 4693 4694 /* 4695 * Interface type not found, create one. 4696 */ 4697 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4698 4699 ill_g_head_t ghead; 4700 4701 /* 4702 * allocate ill_if_t structure 4703 */ 4704 4705 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4706 if (ill_interface == NULL) { 4707 return (ENOMEM); 4708 } 4709 4710 4711 4712 (void) strcpy(ill_interface->illif_name, name); 4713 ill_interface->illif_name_len = name_length; 4714 4715 avl_create(&ill_interface->illif_avl_by_ppa, 4716 ill_compare_ppa, sizeof (ill_t), 4717 offsetof(struct ill_s, ill_avl_byppa)); 4718 4719 /* 4720 * link the structure in the back to maintain order 4721 * of configuration for ifconfig output. 4722 */ 4723 ghead = ill_g_heads[index]; 4724 insque(ill_interface, ghead.ill_g_list_tail); 4725 4726 } 4727 4728 if (ill->ill_ppa == UINT_MAX) 4729 check_length = B_TRUE; 4730 4731 error = ill_alloc_ppa(ill_interface, ill); 4732 if (error != 0) { 4733 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4734 ill_delete_interface_type(ill->ill_ifptr); 4735 return (error); 4736 } 4737 4738 /* 4739 * When the ppa is choosen by the system, check that there is 4740 * enough space to insert ppa. if a specific ppa was passed in this 4741 * check is not required as the interface name passed in will have 4742 * the right ppa in it. 4743 */ 4744 if (check_length) { 4745 /* 4746 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4747 */ 4748 char buf[sizeof (uint_t) * 3]; 4749 4750 /* 4751 * convert ppa to string to calculate the amount of space 4752 * required for it in the name. 4753 */ 4754 numtos(ill->ill_ppa, buf); 4755 4756 /* Do we have enough space to insert ppa ? */ 4757 4758 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4759 /* Free ppa and interface type struct */ 4760 if (ill_interface->illif_ppa_arena != NULL) { 4761 vmem_free(ill_interface->illif_ppa_arena, 4762 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4763 } 4764 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4765 0) { 4766 ill_delete_interface_type(ill->ill_ifptr); 4767 } 4768 4769 return (EINVAL); 4770 } 4771 } 4772 4773 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4774 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4775 4776 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4777 &where); 4778 ill->ill_ifptr = ill_interface; 4779 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4780 4781 ill_phyint_reinit(ill); 4782 return (0); 4783 } 4784 4785 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4786 static boolean_t 4787 ipsq_init(ill_t *ill) 4788 { 4789 ipsq_t *ipsq; 4790 4791 /* Init the ipsq and impicitly enter as writer */ 4792 ill->ill_phyint->phyint_ipsq = 4793 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4794 if (ill->ill_phyint->phyint_ipsq == NULL) 4795 return (B_FALSE); 4796 ipsq = ill->ill_phyint->phyint_ipsq; 4797 ipsq->ipsq_phyint_list = ill->ill_phyint; 4798 ill->ill_phyint->phyint_ipsq_next = NULL; 4799 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4800 ipsq->ipsq_refs = 1; 4801 ipsq->ipsq_writer = curthread; 4802 ipsq->ipsq_reentry_cnt = 1; 4803 #ifdef ILL_DEBUG 4804 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4805 #endif 4806 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4807 return (B_TRUE); 4808 } 4809 4810 /* 4811 * ill_init is called by ip_open when a device control stream is opened. 4812 * It does a few initializations, and shoots a DL_INFO_REQ message down 4813 * to the driver. The response is later picked up in ip_rput_dlpi and 4814 * used to set up default mechanisms for talking to the driver. (Always 4815 * called as writer.) 4816 * 4817 * If this function returns error, ip_open will call ip_close which in 4818 * turn will call ill_delete to clean up any memory allocated here that 4819 * is not yet freed. 4820 */ 4821 int 4822 ill_init(queue_t *q, ill_t *ill) 4823 { 4824 int count; 4825 dl_info_req_t *dlir; 4826 mblk_t *info_mp; 4827 uchar_t *frag_ptr; 4828 4829 /* 4830 * The ill is initialized to zero by mi_alloc*(). In addition 4831 * some fields already contain valid values, initialized in 4832 * ip_open(), before we reach here. 4833 */ 4834 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4835 4836 ill->ill_rq = q; 4837 ill->ill_wq = WR(q); 4838 4839 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4840 BPRI_HI); 4841 if (info_mp == NULL) 4842 return (ENOMEM); 4843 4844 /* 4845 * Allocate sufficient space to contain our fragment hash table and 4846 * the device name. 4847 */ 4848 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4849 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4850 if (frag_ptr == NULL) { 4851 freemsg(info_mp); 4852 return (ENOMEM); 4853 } 4854 ill->ill_frag_ptr = frag_ptr; 4855 ill->ill_frag_free_num_pkts = 0; 4856 ill->ill_last_frag_clean_time = 0; 4857 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4858 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4859 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4860 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4861 NULL, MUTEX_DEFAULT, NULL); 4862 } 4863 4864 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4865 if (ill->ill_phyint == NULL) { 4866 freemsg(info_mp); 4867 mi_free(frag_ptr); 4868 return (ENOMEM); 4869 } 4870 4871 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4872 /* 4873 * For now pretend this is a v4 ill. We need to set phyint_ill* 4874 * at this point because of the following reason. If we can't 4875 * enter the ipsq at some point and cv_wait, the writer that 4876 * wakes us up tries to locate us using the list of all phyints 4877 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4878 * If we don't set it now, we risk a missed wakeup. 4879 */ 4880 ill->ill_phyint->phyint_illv4 = ill; 4881 ill->ill_ppa = UINT_MAX; 4882 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4883 4884 if (!ipsq_init(ill)) { 4885 freemsg(info_mp); 4886 mi_free(frag_ptr); 4887 mi_free(ill->ill_phyint); 4888 return (ENOMEM); 4889 } 4890 4891 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4892 4893 4894 /* Frag queue limit stuff */ 4895 ill->ill_frag_count = 0; 4896 ill->ill_ipf_gen = 0; 4897 4898 ill->ill_global_timer = INFINITY; 4899 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4900 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4901 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4902 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4903 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4904 4905 /* 4906 * Initialize IPv6 configuration variables. The IP module is always 4907 * opened as an IPv4 module. Instead tracking down the cases where 4908 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4909 * here for convenience, this has no effect until the ill is set to do 4910 * IPv6. 4911 */ 4912 ill->ill_reachable_time = ND_REACHABLE_TIME; 4913 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4914 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4915 ill->ill_max_buf = ND_MAX_Q; 4916 ill->ill_refcnt = 0; 4917 4918 /* Send down the Info Request to the driver. */ 4919 info_mp->b_datap->db_type = M_PCPROTO; 4920 dlir = (dl_info_req_t *)info_mp->b_rptr; 4921 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4922 dlir->dl_primitive = DL_INFO_REQ; 4923 4924 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4925 4926 qprocson(q); 4927 ill_dlpi_send(ill, info_mp); 4928 4929 return (0); 4930 } 4931 4932 /* 4933 * ill_dls_info 4934 * creates datalink socket info from the device. 4935 */ 4936 int 4937 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4938 { 4939 size_t length; 4940 ill_t *ill = ipif->ipif_ill; 4941 4942 sdl->sdl_family = AF_LINK; 4943 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4944 sdl->sdl_type = ipif->ipif_type; 4945 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4946 length = mi_strlen(sdl->sdl_data); 4947 ASSERT(length < 256); 4948 sdl->sdl_nlen = (uchar_t)length; 4949 sdl->sdl_alen = ill->ill_phys_addr_length; 4950 mutex_enter(&ill->ill_lock); 4951 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4952 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4953 ill->ill_phys_addr_length); 4954 } 4955 mutex_exit(&ill->ill_lock); 4956 sdl->sdl_slen = 0; 4957 return (sizeof (struct sockaddr_dl)); 4958 } 4959 4960 /* 4961 * ill_xarp_info 4962 * creates xarp info from the device. 4963 */ 4964 static int 4965 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4966 { 4967 sdl->sdl_family = AF_LINK; 4968 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4969 sdl->sdl_type = ill->ill_type; 4970 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4971 sizeof (sdl->sdl_data)); 4972 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4973 sdl->sdl_alen = ill->ill_phys_addr_length; 4974 sdl->sdl_slen = 0; 4975 return (sdl->sdl_nlen); 4976 } 4977 4978 static int 4979 loopback_kstat_update(kstat_t *ksp, int rw) 4980 { 4981 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4982 4983 if (rw == KSTAT_WRITE) 4984 return (EACCES); 4985 kn[0].value.ui32 = loopback_packets; 4986 kn[1].value.ui32 = loopback_packets; 4987 return (0); 4988 } 4989 4990 4991 /* 4992 * Has ifindex been plumbed already. 4993 */ 4994 static boolean_t 4995 phyint_exists(uint_t index) 4996 { 4997 phyint_t *phyi; 4998 4999 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 5000 /* 5001 * Indexes are stored in the phyint - a common structure 5002 * to both IPv4 and IPv6. 5003 */ 5004 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 5005 (void *) &index, NULL); 5006 return (phyi != NULL); 5007 } 5008 5009 /* 5010 * Assign a unique interface index for the phyint. 5011 */ 5012 static boolean_t 5013 phyint_assign_ifindex(phyint_t *phyi) 5014 { 5015 uint_t starting_index; 5016 5017 ASSERT(phyi->phyint_ifindex == 0); 5018 if (!ill_index_wrap) { 5019 phyi->phyint_ifindex = ill_index++; 5020 if (ill_index == 0) { 5021 /* Reached the uint_t limit Next time wrap */ 5022 ill_index_wrap = B_TRUE; 5023 } 5024 return (B_TRUE); 5025 } 5026 5027 /* 5028 * Start reusing unused indexes. Note that we hold the ill_g_lock 5029 * at this point and don't want to call any function that attempts 5030 * to get the lock again. 5031 */ 5032 starting_index = ill_index++; 5033 for (; ill_index != starting_index; ill_index++) { 5034 if (ill_index != 0 && !phyint_exists(ill_index)) { 5035 /* found unused index - use it */ 5036 phyi->phyint_ifindex = ill_index; 5037 return (B_TRUE); 5038 } 5039 } 5040 5041 /* 5042 * all interface indicies are inuse. 5043 */ 5044 return (B_FALSE); 5045 } 5046 5047 /* 5048 * Return a pointer to the ill which matches the supplied name. Note that 5049 * the ill name length includes the null termination character. (May be 5050 * called as writer.) 5051 * If do_alloc and the interface is "lo0" it will be automatically created. 5052 * Cannot bump up reference on condemned ills. So dup detect can't be done 5053 * using this func. 5054 */ 5055 ill_t * 5056 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5057 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 5058 { 5059 ill_t *ill; 5060 ipif_t *ipif; 5061 kstat_named_t *kn; 5062 boolean_t isloopback; 5063 ipsq_t *old_ipsq; 5064 5065 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5066 5067 rw_enter(&ill_g_lock, RW_READER); 5068 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5069 rw_exit(&ill_g_lock); 5070 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5071 return (ill); 5072 5073 /* 5074 * Couldn't find it. Does this happen to be a lookup for the 5075 * loopback device and are we allowed to allocate it? 5076 */ 5077 if (!isloopback || !do_alloc) 5078 return (NULL); 5079 5080 rw_enter(&ill_g_lock, RW_WRITER); 5081 5082 ill = ill_find_by_name(name, isv6, q, mp, func, error); 5083 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5084 rw_exit(&ill_g_lock); 5085 return (ill); 5086 } 5087 5088 /* Create the loopback device on demand */ 5089 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5090 sizeof (ipif_loopback_name), BPRI_MED)); 5091 if (ill == NULL) 5092 goto done; 5093 5094 *ill = ill_null; 5095 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5096 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5097 if (ill->ill_phyint == NULL) 5098 goto done; 5099 5100 if (isv6) 5101 ill->ill_phyint->phyint_illv6 = ill; 5102 else 5103 ill->ill_phyint->phyint_illv4 = ill; 5104 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5105 ill->ill_max_frag = IP_LOOPBACK_MTU; 5106 /* Add room for tcp+ip headers */ 5107 if (isv6) { 5108 ill->ill_isv6 = B_TRUE; 5109 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5110 } else { 5111 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5112 } 5113 if (!ill_allocate_mibs(ill)) 5114 goto done; 5115 ill->ill_max_mtu = ill->ill_max_frag; 5116 /* 5117 * ipif_loopback_name can't be pointed at directly because its used 5118 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5119 * from the glist, ill_glist_delete() sets the first character of 5120 * ill_name to '\0'. 5121 */ 5122 ill->ill_name = (char *)ill + sizeof (*ill); 5123 (void) strcpy(ill->ill_name, ipif_loopback_name); 5124 ill->ill_name_length = sizeof (ipif_loopback_name); 5125 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5126 5127 ill->ill_global_timer = INFINITY; 5128 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5129 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5130 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5131 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5132 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5133 5134 /* No resolver here. */ 5135 ill->ill_net_type = IRE_LOOPBACK; 5136 5137 /* Initialize the ipsq */ 5138 if (!ipsq_init(ill)) 5139 goto done; 5140 5141 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5142 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5143 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5144 #ifdef ILL_DEBUG 5145 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5146 #endif 5147 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5148 if (ipif == NULL) 5149 goto done; 5150 5151 ill->ill_flags = ILLF_MULTICAST; 5152 5153 /* Set up default loopback address and mask. */ 5154 if (!isv6) { 5155 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5156 5157 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5158 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5159 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5160 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5161 ipif->ipif_v6subnet); 5162 ill->ill_flags |= ILLF_IPV4; 5163 } else { 5164 ipif->ipif_v6lcl_addr = ipv6_loopback; 5165 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5166 ipif->ipif_v6net_mask = ipv6_all_ones; 5167 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5168 ipif->ipif_v6subnet); 5169 ill->ill_flags |= ILLF_IPV6; 5170 } 5171 5172 /* 5173 * Chain us in at the end of the ill list. hold the ill 5174 * before we make it globally visible. 1 for the lookup. 5175 */ 5176 ill->ill_refcnt = 0; 5177 ill_refhold(ill); 5178 5179 ill->ill_frag_count = 0; 5180 ill->ill_frag_free_num_pkts = 0; 5181 ill->ill_last_frag_clean_time = 0; 5182 5183 old_ipsq = ill->ill_phyint->phyint_ipsq; 5184 5185 if (ill_glist_insert(ill, "lo", isv6) != 0) 5186 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5187 5188 /* Let SCTP know so that it can add this to its list */ 5189 sctp_update_ill(ill, SCTP_ILL_INSERT); 5190 5191 /* Let SCTP know about this IPIF, so that it can add it to its list */ 5192 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 5193 5194 /* 5195 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5196 */ 5197 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5198 /* Loopback ills aren't in any IPMP group */ 5199 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5200 ipsq_delete(old_ipsq); 5201 } 5202 5203 /* 5204 * Delay this till the ipif is allocated as ipif_allocate 5205 * de-references ill_phyint for getting the ifindex. We 5206 * can't do this before ipif_allocate because ill_phyint_reinit 5207 * -> phyint_assign_ifindex expects ipif to be present. 5208 */ 5209 mutex_enter(&ill->ill_phyint->phyint_lock); 5210 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5211 mutex_exit(&ill->ill_phyint->phyint_lock); 5212 5213 if (loopback_ksp == NULL) { 5214 /* Export loopback interface statistics */ 5215 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 5216 KSTAT_TYPE_NAMED, 2, 0); 5217 if (loopback_ksp != NULL) { 5218 loopback_ksp->ks_update = loopback_kstat_update; 5219 kn = KSTAT_NAMED_PTR(loopback_ksp); 5220 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5221 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5222 kstat_install(loopback_ksp); 5223 } 5224 } 5225 5226 if (error != NULL) 5227 *error = 0; 5228 *did_alloc = B_TRUE; 5229 rw_exit(&ill_g_lock); 5230 return (ill); 5231 done: 5232 if (ill != NULL) { 5233 if (ill->ill_phyint != NULL) { 5234 ipsq_t *ipsq; 5235 5236 ipsq = ill->ill_phyint->phyint_ipsq; 5237 if (ipsq != NULL) 5238 kmem_free(ipsq, sizeof (ipsq_t)); 5239 mi_free(ill->ill_phyint); 5240 } 5241 ill_free_mib(ill); 5242 mi_free(ill); 5243 } 5244 rw_exit(&ill_g_lock); 5245 if (error != NULL) 5246 *error = ENOMEM; 5247 return (NULL); 5248 } 5249 5250 /* 5251 * Return a pointer to the ill which matches the index and IP version type. 5252 */ 5253 ill_t * 5254 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5255 ipsq_func_t func, int *err) 5256 { 5257 ill_t *ill; 5258 ipsq_t *ipsq; 5259 phyint_t *phyi; 5260 5261 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5262 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5263 5264 if (err != NULL) 5265 *err = 0; 5266 5267 /* 5268 * Indexes are stored in the phyint - a common structure 5269 * to both IPv4 and IPv6. 5270 */ 5271 rw_enter(&ill_g_lock, RW_READER); 5272 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 5273 (void *) &index, NULL); 5274 if (phyi != NULL) { 5275 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5276 if (ill != NULL) { 5277 /* 5278 * The block comment at the start of ipif_down 5279 * explains the use of the macros used below 5280 */ 5281 GRAB_CONN_LOCK(q); 5282 mutex_enter(&ill->ill_lock); 5283 if (ILL_CAN_LOOKUP(ill)) { 5284 ill_refhold_locked(ill); 5285 mutex_exit(&ill->ill_lock); 5286 RELEASE_CONN_LOCK(q); 5287 rw_exit(&ill_g_lock); 5288 return (ill); 5289 } else if (ILL_CAN_WAIT(ill, q)) { 5290 ipsq = ill->ill_phyint->phyint_ipsq; 5291 mutex_enter(&ipsq->ipsq_lock); 5292 rw_exit(&ill_g_lock); 5293 mutex_exit(&ill->ill_lock); 5294 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5295 mutex_exit(&ipsq->ipsq_lock); 5296 RELEASE_CONN_LOCK(q); 5297 *err = EINPROGRESS; 5298 return (NULL); 5299 } 5300 RELEASE_CONN_LOCK(q); 5301 mutex_exit(&ill->ill_lock); 5302 } 5303 } 5304 rw_exit(&ill_g_lock); 5305 if (err != NULL) 5306 *err = ENXIO; 5307 return (NULL); 5308 } 5309 5310 /* 5311 * Return the ifindex next in sequence after the passed in ifindex. 5312 * If there is no next ifindex for the given protocol, return 0. 5313 */ 5314 uint_t 5315 ill_get_next_ifindex(uint_t index, boolean_t isv6) 5316 { 5317 phyint_t *phyi; 5318 phyint_t *phyi_initial; 5319 uint_t ifindex; 5320 5321 rw_enter(&ill_g_lock, RW_READER); 5322 5323 if (index == 0) { 5324 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 5325 } else { 5326 phyi = phyi_initial = avl_find( 5327 &phyint_g_list.phyint_list_avl_by_index, 5328 (void *) &index, NULL); 5329 } 5330 5331 for (; phyi != NULL; 5332 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 5333 phyi, AVL_AFTER)) { 5334 /* 5335 * If we're not returning the first interface in the tree 5336 * and we still haven't moved past the phyint_t that 5337 * corresponds to index, avl_walk needs to be called again 5338 */ 5339 if (!((index != 0) && (phyi == phyi_initial))) { 5340 if (isv6) { 5341 if ((phyi->phyint_illv6) && 5342 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5343 (phyi->phyint_illv6->ill_isv6 == 1)) 5344 break; 5345 } else { 5346 if ((phyi->phyint_illv4) && 5347 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5348 (phyi->phyint_illv4->ill_isv6 == 0)) 5349 break; 5350 } 5351 } 5352 } 5353 5354 rw_exit(&ill_g_lock); 5355 5356 if (phyi != NULL) 5357 ifindex = phyi->phyint_ifindex; 5358 else 5359 ifindex = 0; 5360 5361 return (ifindex); 5362 } 5363 5364 5365 /* 5366 * Return the ifindex for the named interface. 5367 * If there is no next ifindex for the interface, return 0. 5368 */ 5369 uint_t 5370 ill_get_ifindex_by_name(char *name) 5371 { 5372 phyint_t *phyi; 5373 avl_index_t where = 0; 5374 uint_t ifindex; 5375 5376 rw_enter(&ill_g_lock, RW_READER); 5377 5378 if ((phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 5379 name, &where)) == NULL) { 5380 rw_exit(&ill_g_lock); 5381 return (0); 5382 } 5383 5384 ifindex = phyi->phyint_ifindex; 5385 5386 rw_exit(&ill_g_lock); 5387 5388 return (ifindex); 5389 } 5390 5391 5392 /* 5393 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5394 * that gives a running thread a reference to the ill. This reference must be 5395 * released by the thread when it is done accessing the ill and related 5396 * objects. ill_refcnt can not be used to account for static references 5397 * such as other structures pointing to an ill. Callers must generally 5398 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5399 * or be sure that the ill is not being deleted or changing state before 5400 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5401 * ill won't change any of its critical state such as address, netmask etc. 5402 */ 5403 void 5404 ill_refhold(ill_t *ill) 5405 { 5406 mutex_enter(&ill->ill_lock); 5407 ill->ill_refcnt++; 5408 ILL_TRACE_REF(ill); 5409 mutex_exit(&ill->ill_lock); 5410 } 5411 5412 void 5413 ill_refhold_locked(ill_t *ill) 5414 { 5415 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5416 ill->ill_refcnt++; 5417 ILL_TRACE_REF(ill); 5418 } 5419 5420 int 5421 ill_check_and_refhold(ill_t *ill) 5422 { 5423 mutex_enter(&ill->ill_lock); 5424 if (ILL_CAN_LOOKUP(ill)) { 5425 ill_refhold_locked(ill); 5426 mutex_exit(&ill->ill_lock); 5427 return (0); 5428 } 5429 mutex_exit(&ill->ill_lock); 5430 return (ILL_LOOKUP_FAILED); 5431 } 5432 5433 /* 5434 * Must not be called while holding any locks. Otherwise if this is 5435 * the last reference to be released, there is a chance of recursive mutex 5436 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5437 * to restart an ioctl. 5438 */ 5439 void 5440 ill_refrele(ill_t *ill) 5441 { 5442 mutex_enter(&ill->ill_lock); 5443 ASSERT(ill->ill_refcnt != 0); 5444 ill->ill_refcnt--; 5445 ILL_UNTRACE_REF(ill); 5446 if (ill->ill_refcnt != 0) { 5447 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5448 mutex_exit(&ill->ill_lock); 5449 return; 5450 } 5451 5452 /* Drops the ill_lock */ 5453 ipif_ill_refrele_tail(ill); 5454 } 5455 5456 /* 5457 * Obtain a weak reference count on the ill. This reference ensures the 5458 * ill won't be freed, but the ill may change any of its critical state 5459 * such as netmask, address etc. Returns an error if the ill has started 5460 * closing. 5461 */ 5462 boolean_t 5463 ill_waiter_inc(ill_t *ill) 5464 { 5465 mutex_enter(&ill->ill_lock); 5466 if (ill->ill_state_flags & ILL_CONDEMNED) { 5467 mutex_exit(&ill->ill_lock); 5468 return (B_FALSE); 5469 } 5470 ill->ill_waiters++; 5471 mutex_exit(&ill->ill_lock); 5472 return (B_TRUE); 5473 } 5474 5475 void 5476 ill_waiter_dcr(ill_t *ill) 5477 { 5478 mutex_enter(&ill->ill_lock); 5479 ill->ill_waiters--; 5480 if (ill->ill_waiters == 0) 5481 cv_broadcast(&ill->ill_cv); 5482 mutex_exit(&ill->ill_lock); 5483 } 5484 5485 /* 5486 * Named Dispatch routine to produce a formatted report on all ILLs. 5487 * This report is accessed by using the ndd utility to "get" ND variable 5488 * "ip_ill_status". 5489 */ 5490 /* ARGSUSED */ 5491 int 5492 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5493 { 5494 ill_t *ill; 5495 ill_walk_context_t ctx; 5496 5497 (void) mi_mpprintf(mp, 5498 "ILL " MI_COL_HDRPAD_STR 5499 /* 01234567[89ABCDEF] */ 5500 "rq " MI_COL_HDRPAD_STR 5501 /* 01234567[89ABCDEF] */ 5502 "wq " MI_COL_HDRPAD_STR 5503 /* 01234567[89ABCDEF] */ 5504 "upcnt mxfrg err name"); 5505 /* 12345 12345 123 xxxxxxxx */ 5506 5507 rw_enter(&ill_g_lock, RW_READER); 5508 ill = ILL_START_WALK_ALL(&ctx); 5509 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5510 (void) mi_mpprintf(mp, 5511 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5512 "%05u %05u %03d %s", 5513 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5514 ill->ill_ipif_up_count, 5515 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5516 } 5517 rw_exit(&ill_g_lock); 5518 5519 return (0); 5520 } 5521 5522 /* 5523 * Named Dispatch routine to produce a formatted report on all IPIFs. 5524 * This report is accessed by using the ndd utility to "get" ND variable 5525 * "ip_ipif_status". 5526 */ 5527 /* ARGSUSED */ 5528 int 5529 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5530 { 5531 char buf1[INET6_ADDRSTRLEN]; 5532 char buf2[INET6_ADDRSTRLEN]; 5533 char buf3[INET6_ADDRSTRLEN]; 5534 char buf4[INET6_ADDRSTRLEN]; 5535 char buf5[INET6_ADDRSTRLEN]; 5536 char buf6[INET6_ADDRSTRLEN]; 5537 char buf[LIFNAMSIZ]; 5538 ill_t *ill; 5539 ipif_t *ipif; 5540 nv_t *nvp; 5541 uint64_t flags; 5542 zoneid_t zoneid; 5543 ill_walk_context_t ctx; 5544 5545 (void) mi_mpprintf(mp, 5546 "IPIF metric mtu in/out/forward name zone flags...\n" 5547 "\tlocal address\n" 5548 "\tsrc address\n" 5549 "\tsubnet\n" 5550 "\tmask\n" 5551 "\tbroadcast\n" 5552 "\tp-p-dst"); 5553 5554 ASSERT(q->q_next == NULL); 5555 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5556 5557 rw_enter(&ill_g_lock, RW_READER); 5558 ill = ILL_START_WALK_ALL(&ctx); 5559 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5560 for (ipif = ill->ill_ipif; ipif != NULL; 5561 ipif = ipif->ipif_next) { 5562 if (zoneid != GLOBAL_ZONEID && 5563 zoneid != ipif->ipif_zoneid && 5564 ipif->ipif_zoneid != ALL_ZONES) 5565 continue; 5566 (void) mi_mpprintf(mp, 5567 MI_COL_PTRFMT_STR 5568 "%04u %05u %u/%u/%u %s %d", 5569 (void *)ipif, 5570 ipif->ipif_metric, ipif->ipif_mtu, 5571 ipif->ipif_ib_pkt_count, 5572 ipif->ipif_ob_pkt_count, 5573 ipif->ipif_fo_pkt_count, 5574 ipif_get_name(ipif, buf, sizeof (buf)), 5575 ipif->ipif_zoneid); 5576 5577 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5578 ipif->ipif_ill->ill_phyint->phyint_flags; 5579 5580 /* Tack on text strings for any flags. */ 5581 nvp = ipif_nv_tbl; 5582 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5583 if (nvp->nv_value & flags) 5584 (void) mi_mpprintf_nr(mp, " %s", 5585 nvp->nv_name); 5586 } 5587 (void) mi_mpprintf(mp, 5588 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5589 inet_ntop(AF_INET6, 5590 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5591 inet_ntop(AF_INET6, 5592 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5593 inet_ntop(AF_INET6, 5594 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5595 inet_ntop(AF_INET6, 5596 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5597 inet_ntop(AF_INET6, 5598 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5599 inet_ntop(AF_INET6, 5600 &ipif->ipif_v6pp_dst_addr, 5601 buf6, sizeof (buf6))); 5602 } 5603 } 5604 rw_exit(&ill_g_lock); 5605 return (0); 5606 } 5607 5608 /* 5609 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5610 * driver. We construct best guess defaults for lower level information that 5611 * we need. If an interface is brought up without injection of any overriding 5612 * information from outside, we have to be ready to go with these defaults. 5613 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5614 * we primarely want the dl_provider_style. 5615 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5616 * at which point we assume the other part of the information is valid. 5617 */ 5618 void 5619 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5620 { 5621 uchar_t *brdcst_addr; 5622 uint_t brdcst_addr_length, phys_addr_length; 5623 t_scalar_t sap_length; 5624 dl_info_ack_t *dlia; 5625 ip_m_t *ipm; 5626 dl_qos_cl_sel1_t *sel1; 5627 5628 ASSERT(IAM_WRITER_ILL(ill)); 5629 5630 /* 5631 * Till the ill is fully up ILL_CHANGING will be set and 5632 * the ill is not globally visible. So no need for a lock. 5633 */ 5634 dlia = (dl_info_ack_t *)mp->b_rptr; 5635 ill->ill_mactype = dlia->dl_mac_type; 5636 5637 ipm = ip_m_lookup(dlia->dl_mac_type); 5638 if (ipm == NULL) { 5639 ipm = ip_m_lookup(DL_OTHER); 5640 ASSERT(ipm != NULL); 5641 } 5642 ill->ill_media = ipm; 5643 5644 /* 5645 * When the new DLPI stuff is ready we'll pull lengths 5646 * from dlia. 5647 */ 5648 if (dlia->dl_version == DL_VERSION_2) { 5649 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5650 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5651 brdcst_addr_length); 5652 if (brdcst_addr == NULL) { 5653 brdcst_addr_length = 0; 5654 } 5655 sap_length = dlia->dl_sap_length; 5656 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5657 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5658 brdcst_addr_length, sap_length, phys_addr_length)); 5659 } else { 5660 brdcst_addr_length = 6; 5661 brdcst_addr = ip_six_byte_all_ones; 5662 sap_length = -2; 5663 phys_addr_length = brdcst_addr_length; 5664 } 5665 5666 ill->ill_bcast_addr_length = brdcst_addr_length; 5667 ill->ill_phys_addr_length = phys_addr_length; 5668 ill->ill_sap_length = sap_length; 5669 ill->ill_max_frag = dlia->dl_max_sdu; 5670 ill->ill_max_mtu = ill->ill_max_frag; 5671 5672 ill->ill_type = ipm->ip_m_type; 5673 5674 if (!ill->ill_dlpi_style_set) { 5675 if (dlia->dl_provider_style == DL_STYLE2) 5676 ill->ill_needs_attach = 1; 5677 5678 /* 5679 * Allocate the first ipif on this ill. We don't delay it 5680 * further as ioctl handling assumes atleast one ipif to 5681 * be present. 5682 * 5683 * At this point we don't know whether the ill is v4 or v6. 5684 * We will know this whan the SIOCSLIFNAME happens and 5685 * the correct value for ill_isv6 will be assigned in 5686 * ipif_set_values(). We need to hold the ill lock and 5687 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5688 * the wakeup. 5689 */ 5690 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5691 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5692 mutex_enter(&ill->ill_lock); 5693 ASSERT(ill->ill_dlpi_style_set == 0); 5694 ill->ill_dlpi_style_set = 1; 5695 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5696 cv_broadcast(&ill->ill_cv); 5697 mutex_exit(&ill->ill_lock); 5698 freemsg(mp); 5699 return; 5700 } 5701 ASSERT(ill->ill_ipif != NULL); 5702 /* 5703 * We know whether it is IPv4 or IPv6 now, as this is the 5704 * second DL_INFO_ACK we are recieving in response to the 5705 * DL_INFO_REQ sent in ipif_set_values. 5706 */ 5707 if (ill->ill_isv6) 5708 ill->ill_sap = IP6_DL_SAP; 5709 else 5710 ill->ill_sap = IP_DL_SAP; 5711 /* 5712 * Set ipif_mtu which is used to set the IRE's 5713 * ire_max_frag value. The driver could have sent 5714 * a different mtu from what it sent last time. No 5715 * need to call ipif_mtu_change because IREs have 5716 * not yet been created. 5717 */ 5718 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5719 /* 5720 * Clear all the flags that were set based on ill_bcast_addr_length 5721 * and ill_phys_addr_length (in ipif_set_values) as these could have 5722 * changed now and we need to re-evaluate. 5723 */ 5724 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5725 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5726 5727 /* 5728 * Free ill_resolver_mp and ill_bcast_mp as things could have 5729 * changed now. 5730 */ 5731 if (ill->ill_bcast_addr_length == 0) { 5732 if (ill->ill_resolver_mp != NULL) 5733 freemsg(ill->ill_resolver_mp); 5734 if (ill->ill_bcast_mp != NULL) 5735 freemsg(ill->ill_bcast_mp); 5736 if (ill->ill_flags & ILLF_XRESOLV) 5737 ill->ill_net_type = IRE_IF_RESOLVER; 5738 else 5739 ill->ill_net_type = IRE_IF_NORESOLVER; 5740 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5741 ill->ill_phys_addr_length, 5742 ill->ill_sap, 5743 ill->ill_sap_length); 5744 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5745 5746 if (ill->ill_isv6) 5747 /* 5748 * Note: xresolv interfaces will eventually need NOARP 5749 * set here as well, but that will require those 5750 * external resolvers to have some knowledge of 5751 * that flag and act appropriately. Not to be changed 5752 * at present. 5753 */ 5754 ill->ill_flags |= ILLF_NONUD; 5755 else 5756 ill->ill_flags |= ILLF_NOARP; 5757 5758 if (ill->ill_phys_addr_length == 0) { 5759 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5760 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5761 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5762 } else { 5763 /* pt-pt supports multicast. */ 5764 ill->ill_flags |= ILLF_MULTICAST; 5765 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5766 } 5767 } 5768 } else { 5769 ill->ill_net_type = IRE_IF_RESOLVER; 5770 if (ill->ill_bcast_mp != NULL) 5771 freemsg(ill->ill_bcast_mp); 5772 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5773 ill->ill_bcast_addr_length, ill->ill_sap, 5774 ill->ill_sap_length); 5775 /* 5776 * Later detect lack of DLPI driver multicast 5777 * capability by catching DL_ENABMULTI errors in 5778 * ip_rput_dlpi. 5779 */ 5780 ill->ill_flags |= ILLF_MULTICAST; 5781 if (!ill->ill_isv6) 5782 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5783 } 5784 /* By default an interface does not support any CoS marking */ 5785 ill->ill_flags &= ~ILLF_COS_ENABLED; 5786 5787 /* 5788 * If we get QoS information in DL_INFO_ACK, the device supports 5789 * some form of CoS marking, set ILLF_COS_ENABLED. 5790 */ 5791 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5792 dlia->dl_qos_length); 5793 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5794 ill->ill_flags |= ILLF_COS_ENABLED; 5795 } 5796 5797 /* Clear any previous error indication. */ 5798 ill->ill_error = 0; 5799 freemsg(mp); 5800 } 5801 5802 /* 5803 * Perform various checks to verify that an address would make sense as a 5804 * local, remote, or subnet interface address. 5805 */ 5806 static boolean_t 5807 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5808 { 5809 ipaddr_t net_mask; 5810 5811 /* 5812 * Don't allow all zeroes, all ones or experimental address, but allow 5813 * all ones netmask. 5814 */ 5815 if ((net_mask = ip_net_mask(addr)) == 0) 5816 return (B_FALSE); 5817 /* A given netmask overrides the "guess" netmask */ 5818 if (subnet_mask != 0) 5819 net_mask = subnet_mask; 5820 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5821 (addr == (addr | ~net_mask)))) { 5822 return (B_FALSE); 5823 } 5824 if (CLASSD(addr)) 5825 return (B_FALSE); 5826 5827 return (B_TRUE); 5828 } 5829 5830 /* 5831 * ipif_lookup_group 5832 * Returns held ipif 5833 */ 5834 ipif_t * 5835 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5836 { 5837 ire_t *ire; 5838 ipif_t *ipif; 5839 5840 ire = ire_lookup_multi(group, zoneid); 5841 if (ire == NULL) 5842 return (NULL); 5843 ipif = ire->ire_ipif; 5844 ipif_refhold(ipif); 5845 ire_refrele(ire); 5846 return (ipif); 5847 } 5848 5849 /* 5850 * Look for an ipif with the specified interface address and destination. 5851 * The destination address is used only for matching point-to-point interfaces. 5852 */ 5853 ipif_t * 5854 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5855 ipsq_func_t func, int *error) 5856 { 5857 ipif_t *ipif; 5858 ill_t *ill; 5859 ill_walk_context_t ctx; 5860 ipsq_t *ipsq; 5861 5862 if (error != NULL) 5863 *error = 0; 5864 5865 /* 5866 * First match all the point-to-point interfaces 5867 * before looking at non-point-to-point interfaces. 5868 * This is done to avoid returning non-point-to-point 5869 * ipif instead of unnumbered point-to-point ipif. 5870 */ 5871 rw_enter(&ill_g_lock, RW_READER); 5872 ill = ILL_START_WALK_V4(&ctx); 5873 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5874 GRAB_CONN_LOCK(q); 5875 mutex_enter(&ill->ill_lock); 5876 for (ipif = ill->ill_ipif; ipif != NULL; 5877 ipif = ipif->ipif_next) { 5878 /* Allow the ipif to be down */ 5879 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5880 (ipif->ipif_lcl_addr == if_addr) && 5881 (ipif->ipif_pp_dst_addr == dst)) { 5882 /* 5883 * The block comment at the start of ipif_down 5884 * explains the use of the macros used below 5885 */ 5886 if (IPIF_CAN_LOOKUP(ipif)) { 5887 ipif_refhold_locked(ipif); 5888 mutex_exit(&ill->ill_lock); 5889 RELEASE_CONN_LOCK(q); 5890 rw_exit(&ill_g_lock); 5891 return (ipif); 5892 } else if (IPIF_CAN_WAIT(ipif, q)) { 5893 ipsq = ill->ill_phyint->phyint_ipsq; 5894 mutex_enter(&ipsq->ipsq_lock); 5895 mutex_exit(&ill->ill_lock); 5896 rw_exit(&ill_g_lock); 5897 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5898 ill); 5899 mutex_exit(&ipsq->ipsq_lock); 5900 RELEASE_CONN_LOCK(q); 5901 *error = EINPROGRESS; 5902 return (NULL); 5903 } 5904 } 5905 } 5906 mutex_exit(&ill->ill_lock); 5907 RELEASE_CONN_LOCK(q); 5908 } 5909 rw_exit(&ill_g_lock); 5910 5911 /* lookup the ipif based on interface address */ 5912 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5913 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5914 return (ipif); 5915 } 5916 5917 /* 5918 * Look for an ipif with the specified address. For point-point links 5919 * we look for matches on either the destination address and the local 5920 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5921 * is set. 5922 * Matches on a specific ill if match_ill is set. 5923 */ 5924 ipif_t * 5925 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5926 mblk_t *mp, ipsq_func_t func, int *error) 5927 { 5928 ipif_t *ipif; 5929 ill_t *ill; 5930 boolean_t ptp = B_FALSE; 5931 ipsq_t *ipsq; 5932 ill_walk_context_t ctx; 5933 5934 if (error != NULL) 5935 *error = 0; 5936 5937 rw_enter(&ill_g_lock, RW_READER); 5938 /* 5939 * Repeat twice, first based on local addresses and 5940 * next time for pointopoint. 5941 */ 5942 repeat: 5943 ill = ILL_START_WALK_V4(&ctx); 5944 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5945 if (match_ill != NULL && ill != match_ill) { 5946 continue; 5947 } 5948 GRAB_CONN_LOCK(q); 5949 mutex_enter(&ill->ill_lock); 5950 for (ipif = ill->ill_ipif; ipif != NULL; 5951 ipif = ipif->ipif_next) { 5952 if (zoneid != ALL_ZONES && 5953 zoneid != ipif->ipif_zoneid && 5954 ipif->ipif_zoneid != ALL_ZONES) 5955 continue; 5956 /* Allow the ipif to be down */ 5957 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5958 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5959 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5960 (ipif->ipif_pp_dst_addr == addr))) { 5961 /* 5962 * The block comment at the start of ipif_down 5963 * explains the use of the macros used below 5964 */ 5965 if (IPIF_CAN_LOOKUP(ipif)) { 5966 ipif_refhold_locked(ipif); 5967 mutex_exit(&ill->ill_lock); 5968 RELEASE_CONN_LOCK(q); 5969 rw_exit(&ill_g_lock); 5970 return (ipif); 5971 } else if (IPIF_CAN_WAIT(ipif, q)) { 5972 ipsq = ill->ill_phyint->phyint_ipsq; 5973 mutex_enter(&ipsq->ipsq_lock); 5974 mutex_exit(&ill->ill_lock); 5975 rw_exit(&ill_g_lock); 5976 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5977 ill); 5978 mutex_exit(&ipsq->ipsq_lock); 5979 RELEASE_CONN_LOCK(q); 5980 *error = EINPROGRESS; 5981 return (NULL); 5982 } 5983 } 5984 } 5985 mutex_exit(&ill->ill_lock); 5986 RELEASE_CONN_LOCK(q); 5987 } 5988 5989 /* If we already did the ptp case, then we are done */ 5990 if (ptp) { 5991 rw_exit(&ill_g_lock); 5992 if (error != NULL) 5993 *error = ENXIO; 5994 return (NULL); 5995 } 5996 ptp = B_TRUE; 5997 goto repeat; 5998 } 5999 6000 /* 6001 * Look for an ipif with the specified address. For point-point links 6002 * we look for matches on either the destination address and the local 6003 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6004 * is set. 6005 * Matches on a specific ill if match_ill is set. 6006 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6007 */ 6008 zoneid_t 6009 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill) 6010 { 6011 zoneid_t zoneid; 6012 ipif_t *ipif; 6013 ill_t *ill; 6014 boolean_t ptp = B_FALSE; 6015 ill_walk_context_t ctx; 6016 6017 rw_enter(&ill_g_lock, RW_READER); 6018 /* 6019 * Repeat twice, first based on local addresses and 6020 * next time for pointopoint. 6021 */ 6022 repeat: 6023 ill = ILL_START_WALK_V4(&ctx); 6024 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6025 if (match_ill != NULL && ill != match_ill) { 6026 continue; 6027 } 6028 mutex_enter(&ill->ill_lock); 6029 for (ipif = ill->ill_ipif; ipif != NULL; 6030 ipif = ipif->ipif_next) { 6031 /* Allow the ipif to be down */ 6032 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6033 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6034 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6035 (ipif->ipif_pp_dst_addr == addr)) && 6036 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6037 zoneid = ipif->ipif_zoneid; 6038 mutex_exit(&ill->ill_lock); 6039 rw_exit(&ill_g_lock); 6040 /* 6041 * If ipif_zoneid was ALL_ZONES then we have 6042 * a trusted extensions shared IP address. 6043 * In that case GLOBAL_ZONEID works to send. 6044 */ 6045 if (zoneid == ALL_ZONES) 6046 zoneid = GLOBAL_ZONEID; 6047 return (zoneid); 6048 } 6049 } 6050 mutex_exit(&ill->ill_lock); 6051 } 6052 6053 /* If we already did the ptp case, then we are done */ 6054 if (ptp) { 6055 rw_exit(&ill_g_lock); 6056 return (ALL_ZONES); 6057 } 6058 ptp = B_TRUE; 6059 goto repeat; 6060 } 6061 6062 /* 6063 * Look for an ipif that matches the specified remote address i.e. the 6064 * ipif that would receive the specified packet. 6065 * First look for directly connected interfaces and then do a recursive 6066 * IRE lookup and pick the first ipif corresponding to the source address in the 6067 * ire. 6068 * Returns: held ipif 6069 */ 6070 ipif_t * 6071 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6072 { 6073 ipif_t *ipif; 6074 ire_t *ire; 6075 6076 ASSERT(!ill->ill_isv6); 6077 6078 /* 6079 * Someone could be changing this ipif currently or change it 6080 * after we return this. Thus a few packets could use the old 6081 * old values. However structure updates/creates (ire, ilg, ilm etc) 6082 * will atomically be updated or cleaned up with the new value 6083 * Thus we don't need a lock to check the flags or other attrs below. 6084 */ 6085 mutex_enter(&ill->ill_lock); 6086 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6087 if (!IPIF_CAN_LOOKUP(ipif)) 6088 continue; 6089 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6090 ipif->ipif_zoneid != ALL_ZONES) 6091 continue; 6092 /* Allow the ipif to be down */ 6093 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6094 if ((ipif->ipif_pp_dst_addr == addr) || 6095 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6096 ipif->ipif_lcl_addr == addr)) { 6097 ipif_refhold_locked(ipif); 6098 mutex_exit(&ill->ill_lock); 6099 return (ipif); 6100 } 6101 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6102 ipif_refhold_locked(ipif); 6103 mutex_exit(&ill->ill_lock); 6104 return (ipif); 6105 } 6106 } 6107 mutex_exit(&ill->ill_lock); 6108 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6109 NULL, MATCH_IRE_RECURSIVE); 6110 if (ire != NULL) { 6111 /* 6112 * The callers of this function wants to know the 6113 * interface on which they have to send the replies 6114 * back. For IRE_CACHES that have ire_stq and ire_ipif 6115 * derived from different ills, we really don't care 6116 * what we return here. 6117 */ 6118 ipif = ire->ire_ipif; 6119 if (ipif != NULL) { 6120 ipif_refhold(ipif); 6121 ire_refrele(ire); 6122 return (ipif); 6123 } 6124 ire_refrele(ire); 6125 } 6126 /* Pick the first interface */ 6127 ipif = ipif_get_next_ipif(NULL, ill); 6128 return (ipif); 6129 } 6130 6131 /* 6132 * This func does not prevent refcnt from increasing. But if 6133 * the caller has taken steps to that effect, then this func 6134 * can be used to determine whether the ill has become quiescent 6135 */ 6136 boolean_t 6137 ill_is_quiescent(ill_t *ill) 6138 { 6139 ipif_t *ipif; 6140 6141 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6142 6143 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6144 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6145 return (B_FALSE); 6146 } 6147 } 6148 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6149 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6150 ill->ill_mrtun_refcnt != 0) { 6151 return (B_FALSE); 6152 } 6153 return (B_TRUE); 6154 } 6155 6156 /* 6157 * This func does not prevent refcnt from increasing. But if 6158 * the caller has taken steps to that effect, then this func 6159 * can be used to determine whether the ipif has become quiescent 6160 */ 6161 static boolean_t 6162 ipif_is_quiescent(ipif_t *ipif) 6163 { 6164 ill_t *ill; 6165 6166 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6167 6168 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6169 return (B_FALSE); 6170 } 6171 6172 ill = ipif->ipif_ill; 6173 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6174 ill->ill_logical_down) { 6175 return (B_TRUE); 6176 } 6177 6178 /* This is the last ipif going down or being deleted on this ill */ 6179 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6180 return (B_FALSE); 6181 } 6182 6183 return (B_TRUE); 6184 } 6185 6186 /* 6187 * This func does not prevent refcnt from increasing. But if 6188 * the caller has taken steps to that effect, then this func 6189 * can be used to determine whether the ipifs marked with IPIF_MOVING 6190 * have become quiescent and can be moved in a failover/failback. 6191 */ 6192 static ipif_t * 6193 ill_quiescent_to_move(ill_t *ill) 6194 { 6195 ipif_t *ipif; 6196 6197 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6198 6199 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6200 if (ipif->ipif_state_flags & IPIF_MOVING) { 6201 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6202 return (ipif); 6203 } 6204 } 6205 } 6206 return (NULL); 6207 } 6208 6209 /* 6210 * The ipif/ill/ire has been refreled. Do the tail processing. 6211 * Determine if the ipif or ill in question has become quiescent and if so 6212 * wakeup close and/or restart any queued pending ioctl that is waiting 6213 * for the ipif_down (or ill_down) 6214 */ 6215 void 6216 ipif_ill_refrele_tail(ill_t *ill) 6217 { 6218 mblk_t *mp; 6219 conn_t *connp; 6220 ipsq_t *ipsq; 6221 ipif_t *ipif; 6222 6223 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6224 6225 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6226 ill_is_quiescent(ill)) { 6227 /* ill_close may be waiting */ 6228 cv_broadcast(&ill->ill_cv); 6229 } 6230 6231 /* ipsq can't change because ill_lock is held */ 6232 ipsq = ill->ill_phyint->phyint_ipsq; 6233 if (ipsq->ipsq_waitfor == 0) { 6234 /* Not waiting for anything, just return. */ 6235 mutex_exit(&ill->ill_lock); 6236 return; 6237 } 6238 ASSERT(ipsq->ipsq_pending_mp != NULL && 6239 ipsq->ipsq_pending_ipif != NULL); 6240 /* 6241 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6242 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6243 * be zero for restarting an ioctl that ends up downing the ill. 6244 */ 6245 ipif = ipsq->ipsq_pending_ipif; 6246 if (ipif->ipif_ill != ill) { 6247 /* The ioctl is pending on some other ill. */ 6248 mutex_exit(&ill->ill_lock); 6249 return; 6250 } 6251 6252 switch (ipsq->ipsq_waitfor) { 6253 case IPIF_DOWN: 6254 case IPIF_FREE: 6255 if (!ipif_is_quiescent(ipif)) { 6256 mutex_exit(&ill->ill_lock); 6257 return; 6258 } 6259 break; 6260 6261 case ILL_DOWN: 6262 case ILL_FREE: 6263 /* 6264 * case ILL_FREE arises only for loopback. otherwise ill_delete 6265 * waits synchronously in ip_close, and no message is queued in 6266 * ipsq_pending_mp at all in this case 6267 */ 6268 if (!ill_is_quiescent(ill)) { 6269 mutex_exit(&ill->ill_lock); 6270 return; 6271 } 6272 6273 break; 6274 6275 case ILL_MOVE_OK: 6276 if (ill_quiescent_to_move(ill) != NULL) { 6277 mutex_exit(&ill->ill_lock); 6278 return; 6279 } 6280 6281 break; 6282 default: 6283 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6284 (void *)ipsq, ipsq->ipsq_waitfor); 6285 } 6286 6287 /* 6288 * Incr refcnt for the qwriter_ip call below which 6289 * does a refrele 6290 */ 6291 ill_refhold_locked(ill); 6292 mutex_exit(&ill->ill_lock); 6293 6294 mp = ipsq_pending_mp_get(ipsq, &connp); 6295 ASSERT(mp != NULL); 6296 6297 switch (mp->b_datap->db_type) { 6298 case M_ERROR: 6299 case M_HANGUP: 6300 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 6301 ipif_all_down_tail, CUR_OP, B_TRUE); 6302 return; 6303 6304 case M_IOCTL: 6305 case M_IOCDATA: 6306 (void) qwriter_ip(NULL, ill, 6307 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 6308 ip_reprocess_ioctl, CUR_OP, B_TRUE); 6309 return; 6310 6311 default: 6312 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6313 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6314 } 6315 } 6316 6317 #ifdef ILL_DEBUG 6318 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6319 void 6320 th_trace_rrecord(th_trace_t *th_trace) 6321 { 6322 tr_buf_t *tr_buf; 6323 uint_t lastref; 6324 6325 lastref = th_trace->th_trace_lastref; 6326 lastref++; 6327 if (lastref == TR_BUF_MAX) 6328 lastref = 0; 6329 th_trace->th_trace_lastref = lastref; 6330 tr_buf = &th_trace->th_trbuf[lastref]; 6331 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6332 } 6333 6334 th_trace_t * 6335 th_trace_ipif_lookup(ipif_t *ipif) 6336 { 6337 int bucket_id; 6338 th_trace_t *th_trace; 6339 6340 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6341 6342 bucket_id = IP_TR_HASH(curthread); 6343 ASSERT(bucket_id < IP_TR_HASH_MAX); 6344 6345 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6346 th_trace = th_trace->th_next) { 6347 if (th_trace->th_id == curthread) 6348 return (th_trace); 6349 } 6350 return (NULL); 6351 } 6352 6353 void 6354 ipif_trace_ref(ipif_t *ipif) 6355 { 6356 int bucket_id; 6357 th_trace_t *th_trace; 6358 6359 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6360 6361 if (ipif->ipif_trace_disable) 6362 return; 6363 6364 /* 6365 * Attempt to locate the trace buffer for the curthread. 6366 * If it does not exist, then allocate a new trace buffer 6367 * and link it in list of trace bufs for this ipif, at the head 6368 */ 6369 th_trace = th_trace_ipif_lookup(ipif); 6370 if (th_trace == NULL) { 6371 bucket_id = IP_TR_HASH(curthread); 6372 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6373 KM_NOSLEEP); 6374 if (th_trace == NULL) { 6375 ipif->ipif_trace_disable = B_TRUE; 6376 ipif_trace_cleanup(ipif); 6377 return; 6378 } 6379 th_trace->th_id = curthread; 6380 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6381 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6382 if (th_trace->th_next != NULL) 6383 th_trace->th_next->th_prev = &th_trace->th_next; 6384 ipif->ipif_trace[bucket_id] = th_trace; 6385 } 6386 ASSERT(th_trace->th_refcnt >= 0 && 6387 th_trace->th_refcnt < TR_BUF_MAX -1); 6388 th_trace->th_refcnt++; 6389 th_trace_rrecord(th_trace); 6390 } 6391 6392 void 6393 ipif_untrace_ref(ipif_t *ipif) 6394 { 6395 th_trace_t *th_trace; 6396 6397 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6398 6399 if (ipif->ipif_trace_disable) 6400 return; 6401 th_trace = th_trace_ipif_lookup(ipif); 6402 ASSERT(th_trace != NULL); 6403 ASSERT(th_trace->th_refcnt > 0); 6404 6405 th_trace->th_refcnt--; 6406 th_trace_rrecord(th_trace); 6407 } 6408 6409 th_trace_t * 6410 th_trace_ill_lookup(ill_t *ill) 6411 { 6412 th_trace_t *th_trace; 6413 int bucket_id; 6414 6415 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6416 6417 bucket_id = IP_TR_HASH(curthread); 6418 ASSERT(bucket_id < IP_TR_HASH_MAX); 6419 6420 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6421 th_trace = th_trace->th_next) { 6422 if (th_trace->th_id == curthread) 6423 return (th_trace); 6424 } 6425 return (NULL); 6426 } 6427 6428 void 6429 ill_trace_ref(ill_t *ill) 6430 { 6431 int bucket_id; 6432 th_trace_t *th_trace; 6433 6434 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6435 if (ill->ill_trace_disable) 6436 return; 6437 /* 6438 * Attempt to locate the trace buffer for the curthread. 6439 * If it does not exist, then allocate a new trace buffer 6440 * and link it in list of trace bufs for this ill, at the head 6441 */ 6442 th_trace = th_trace_ill_lookup(ill); 6443 if (th_trace == NULL) { 6444 bucket_id = IP_TR_HASH(curthread); 6445 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6446 KM_NOSLEEP); 6447 if (th_trace == NULL) { 6448 ill->ill_trace_disable = B_TRUE; 6449 ill_trace_cleanup(ill); 6450 return; 6451 } 6452 th_trace->th_id = curthread; 6453 th_trace->th_next = ill->ill_trace[bucket_id]; 6454 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6455 if (th_trace->th_next != NULL) 6456 th_trace->th_next->th_prev = &th_trace->th_next; 6457 ill->ill_trace[bucket_id] = th_trace; 6458 } 6459 ASSERT(th_trace->th_refcnt >= 0 && 6460 th_trace->th_refcnt < TR_BUF_MAX - 1); 6461 6462 th_trace->th_refcnt++; 6463 th_trace_rrecord(th_trace); 6464 } 6465 6466 void 6467 ill_untrace_ref(ill_t *ill) 6468 { 6469 th_trace_t *th_trace; 6470 6471 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6472 6473 if (ill->ill_trace_disable) 6474 return; 6475 th_trace = th_trace_ill_lookup(ill); 6476 ASSERT(th_trace != NULL); 6477 ASSERT(th_trace->th_refcnt > 0); 6478 6479 th_trace->th_refcnt--; 6480 th_trace_rrecord(th_trace); 6481 } 6482 6483 /* 6484 * Verify that this thread has no refs to the ipif and free 6485 * the trace buffers 6486 */ 6487 /* ARGSUSED */ 6488 void 6489 ipif_thread_exit(ipif_t *ipif, void *dummy) 6490 { 6491 th_trace_t *th_trace; 6492 6493 mutex_enter(&ipif->ipif_ill->ill_lock); 6494 6495 th_trace = th_trace_ipif_lookup(ipif); 6496 if (th_trace == NULL) { 6497 mutex_exit(&ipif->ipif_ill->ill_lock); 6498 return; 6499 } 6500 ASSERT(th_trace->th_refcnt == 0); 6501 /* unlink th_trace and free it */ 6502 *th_trace->th_prev = th_trace->th_next; 6503 if (th_trace->th_next != NULL) 6504 th_trace->th_next->th_prev = th_trace->th_prev; 6505 th_trace->th_next = NULL; 6506 th_trace->th_prev = NULL; 6507 kmem_free(th_trace, sizeof (th_trace_t)); 6508 6509 mutex_exit(&ipif->ipif_ill->ill_lock); 6510 } 6511 6512 /* 6513 * Verify that this thread has no refs to the ill and free 6514 * the trace buffers 6515 */ 6516 /* ARGSUSED */ 6517 void 6518 ill_thread_exit(ill_t *ill, void *dummy) 6519 { 6520 th_trace_t *th_trace; 6521 6522 mutex_enter(&ill->ill_lock); 6523 6524 th_trace = th_trace_ill_lookup(ill); 6525 if (th_trace == NULL) { 6526 mutex_exit(&ill->ill_lock); 6527 return; 6528 } 6529 ASSERT(th_trace->th_refcnt == 0); 6530 /* unlink th_trace and free it */ 6531 *th_trace->th_prev = th_trace->th_next; 6532 if (th_trace->th_next != NULL) 6533 th_trace->th_next->th_prev = th_trace->th_prev; 6534 th_trace->th_next = NULL; 6535 th_trace->th_prev = NULL; 6536 kmem_free(th_trace, sizeof (th_trace_t)); 6537 6538 mutex_exit(&ill->ill_lock); 6539 } 6540 #endif 6541 6542 #ifdef ILL_DEBUG 6543 void 6544 ip_thread_exit(void) 6545 { 6546 ill_t *ill; 6547 ipif_t *ipif; 6548 ill_walk_context_t ctx; 6549 6550 rw_enter(&ill_g_lock, RW_READER); 6551 ill = ILL_START_WALK_ALL(&ctx); 6552 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6553 for (ipif = ill->ill_ipif; ipif != NULL; 6554 ipif = ipif->ipif_next) { 6555 ipif_thread_exit(ipif, NULL); 6556 } 6557 ill_thread_exit(ill, NULL); 6558 } 6559 rw_exit(&ill_g_lock); 6560 6561 ire_walk(ire_thread_exit, NULL); 6562 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6563 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6564 } 6565 6566 /* 6567 * Called when ipif is unplumbed or when memory alloc fails 6568 */ 6569 void 6570 ipif_trace_cleanup(ipif_t *ipif) 6571 { 6572 int i; 6573 th_trace_t *th_trace; 6574 th_trace_t *th_trace_next; 6575 6576 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6577 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6578 th_trace = th_trace_next) { 6579 th_trace_next = th_trace->th_next; 6580 kmem_free(th_trace, sizeof (th_trace_t)); 6581 } 6582 ipif->ipif_trace[i] = NULL; 6583 } 6584 } 6585 6586 /* 6587 * Called when ill is unplumbed or when memory alloc fails 6588 */ 6589 void 6590 ill_trace_cleanup(ill_t *ill) 6591 { 6592 int i; 6593 th_trace_t *th_trace; 6594 th_trace_t *th_trace_next; 6595 6596 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6597 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6598 th_trace = th_trace_next) { 6599 th_trace_next = th_trace->th_next; 6600 kmem_free(th_trace, sizeof (th_trace_t)); 6601 } 6602 ill->ill_trace[i] = NULL; 6603 } 6604 } 6605 6606 #else 6607 void ip_thread_exit(void) {} 6608 #endif 6609 6610 void 6611 ipif_refhold_locked(ipif_t *ipif) 6612 { 6613 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6614 ipif->ipif_refcnt++; 6615 IPIF_TRACE_REF(ipif); 6616 } 6617 6618 void 6619 ipif_refhold(ipif_t *ipif) 6620 { 6621 ill_t *ill; 6622 6623 ill = ipif->ipif_ill; 6624 mutex_enter(&ill->ill_lock); 6625 ipif->ipif_refcnt++; 6626 IPIF_TRACE_REF(ipif); 6627 mutex_exit(&ill->ill_lock); 6628 } 6629 6630 /* 6631 * Must not be called while holding any locks. Otherwise if this is 6632 * the last reference to be released there is a chance of recursive mutex 6633 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6634 * to restart an ioctl. 6635 */ 6636 void 6637 ipif_refrele(ipif_t *ipif) 6638 { 6639 ill_t *ill; 6640 6641 ill = ipif->ipif_ill; 6642 6643 mutex_enter(&ill->ill_lock); 6644 ASSERT(ipif->ipif_refcnt != 0); 6645 ipif->ipif_refcnt--; 6646 IPIF_UNTRACE_REF(ipif); 6647 if (ipif->ipif_refcnt != 0) { 6648 mutex_exit(&ill->ill_lock); 6649 return; 6650 } 6651 6652 /* Drops the ill_lock */ 6653 ipif_ill_refrele_tail(ill); 6654 } 6655 6656 ipif_t * 6657 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6658 { 6659 ipif_t *ipif; 6660 6661 mutex_enter(&ill->ill_lock); 6662 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6663 ipif != NULL; ipif = ipif->ipif_next) { 6664 if (!IPIF_CAN_LOOKUP(ipif)) 6665 continue; 6666 ipif_refhold_locked(ipif); 6667 mutex_exit(&ill->ill_lock); 6668 return (ipif); 6669 } 6670 mutex_exit(&ill->ill_lock); 6671 return (NULL); 6672 } 6673 6674 /* 6675 * TODO: make this table extendible at run time 6676 * Return a pointer to the mac type info for 'mac_type' 6677 */ 6678 static ip_m_t * 6679 ip_m_lookup(t_uscalar_t mac_type) 6680 { 6681 ip_m_t *ipm; 6682 6683 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6684 if (ipm->ip_m_mac_type == mac_type) 6685 return (ipm); 6686 return (NULL); 6687 } 6688 6689 /* 6690 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6691 * ipif_arg is passed in to associate it with the correct interface. 6692 * We may need to restart this operation if the ipif cannot be looked up 6693 * due to an exclusive operation that is currently in progress. The restart 6694 * entry point is specified by 'func' 6695 */ 6696 int 6697 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6698 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6699 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6700 ipsq_func_t func, struct rtsa_s *sp) 6701 { 6702 ire_t *ire; 6703 ire_t *gw_ire = NULL; 6704 ipif_t *ipif = NULL; 6705 boolean_t ipif_refheld = B_FALSE; 6706 uint_t type; 6707 int match_flags = MATCH_IRE_TYPE; 6708 int error; 6709 tsol_gc_t *gc = NULL; 6710 tsol_gcgrp_t *gcgrp = NULL; 6711 boolean_t gcgrp_xtraref = B_FALSE; 6712 6713 ip1dbg(("ip_rt_add:")); 6714 6715 if (ire_arg != NULL) 6716 *ire_arg = NULL; 6717 6718 /* 6719 * If this is the case of RTF_HOST being set, then we set the netmask 6720 * to all ones (regardless if one was supplied). 6721 */ 6722 if (flags & RTF_HOST) 6723 mask = IP_HOST_MASK; 6724 6725 /* 6726 * Prevent routes with a zero gateway from being created (since 6727 * interfaces can currently be plumbed and brought up no assigned 6728 * address). 6729 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6730 */ 6731 if (gw_addr == 0 && src_ipif == NULL) 6732 return (ENETUNREACH); 6733 /* 6734 * Get the ipif, if any, corresponding to the gw_addr 6735 */ 6736 if (gw_addr != 0) { 6737 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6738 &error); 6739 if (ipif != NULL) { 6740 if (IS_VNI(ipif->ipif_ill)) { 6741 ipif_refrele(ipif); 6742 return (EINVAL); 6743 } 6744 ipif_refheld = B_TRUE; 6745 } else if (error == EINPROGRESS) { 6746 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6747 return (EINPROGRESS); 6748 } else { 6749 error = 0; 6750 } 6751 } 6752 6753 if (ipif != NULL) { 6754 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6755 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6756 } else { 6757 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6758 } 6759 6760 /* 6761 * GateD will attempt to create routes with a loopback interface 6762 * address as the gateway and with RTF_GATEWAY set. We allow 6763 * these routes to be added, but create them as interface routes 6764 * since the gateway is an interface address. 6765 */ 6766 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6767 flags &= ~RTF_GATEWAY; 6768 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6769 mask == IP_HOST_MASK) { 6770 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6771 ALL_ZONES, NULL, match_flags); 6772 if (ire != NULL) { 6773 ire_refrele(ire); 6774 if (ipif_refheld) 6775 ipif_refrele(ipif); 6776 return (EEXIST); 6777 } 6778 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6779 "for 0x%x\n", (void *)ipif, 6780 ipif->ipif_ire_type, 6781 ntohl(ipif->ipif_lcl_addr))); 6782 ire = ire_create( 6783 (uchar_t *)&dst_addr, /* dest address */ 6784 (uchar_t *)&mask, /* mask */ 6785 (uchar_t *)&ipif->ipif_src_addr, 6786 NULL, /* no gateway */ 6787 NULL, 6788 &ipif->ipif_mtu, 6789 NULL, 6790 ipif->ipif_rq, /* recv-from queue */ 6791 NULL, /* no send-to queue */ 6792 ipif->ipif_ire_type, /* LOOPBACK */ 6793 NULL, 6794 ipif, 6795 NULL, 6796 0, 6797 0, 6798 0, 6799 (ipif->ipif_flags & IPIF_PRIVATE) ? 6800 RTF_PRIVATE : 0, 6801 &ire_uinfo_null, 6802 NULL, 6803 NULL); 6804 6805 if (ire == NULL) { 6806 if (ipif_refheld) 6807 ipif_refrele(ipif); 6808 return (ENOMEM); 6809 } 6810 error = ire_add(&ire, q, mp, func, B_FALSE); 6811 if (error == 0) 6812 goto save_ire; 6813 if (ipif_refheld) 6814 ipif_refrele(ipif); 6815 return (error); 6816 6817 } 6818 } 6819 6820 /* 6821 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6822 * and the gateway address provided is one of the system's interface 6823 * addresses. By using the routing socket interface and supplying an 6824 * RTA_IFP sockaddr with an interface index, an alternate method of 6825 * specifying an interface route to be created is available which uses 6826 * the interface index that specifies the outgoing interface rather than 6827 * the address of an outgoing interface (which may not be able to 6828 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6829 * flag, routes can be specified which not only specify the next-hop to 6830 * be used when routing to a certain prefix, but also which outgoing 6831 * interface should be used. 6832 * 6833 * Previously, interfaces would have unique addresses assigned to them 6834 * and so the address assigned to a particular interface could be used 6835 * to identify a particular interface. One exception to this was the 6836 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6837 * 6838 * With the advent of IPv6 and its link-local addresses, this 6839 * restriction was relaxed and interfaces could share addresses between 6840 * themselves. In fact, typically all of the link-local interfaces on 6841 * an IPv6 node or router will have the same link-local address. In 6842 * order to differentiate between these interfaces, the use of an 6843 * interface index is necessary and this index can be carried inside a 6844 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6845 * of using the interface index, however, is that all of the ipif's that 6846 * are part of an ill have the same index and so the RTA_IFP sockaddr 6847 * cannot be used to differentiate between ipif's (or logical 6848 * interfaces) that belong to the same ill (physical interface). 6849 * 6850 * For example, in the following case involving IPv4 interfaces and 6851 * logical interfaces 6852 * 6853 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6854 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6855 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6856 * 6857 * the ipif's corresponding to each of these interface routes can be 6858 * uniquely identified by the "gateway" (actually interface address). 6859 * 6860 * In this case involving multiple IPv6 default routes to a particular 6861 * link-local gateway, the use of RTA_IFP is necessary to specify which 6862 * default route is of interest: 6863 * 6864 * default fe80::123:4567:89ab:cdef U if0 6865 * default fe80::123:4567:89ab:cdef U if1 6866 */ 6867 6868 /* RTF_GATEWAY not set */ 6869 if (!(flags & RTF_GATEWAY)) { 6870 queue_t *stq; 6871 queue_t *rfq = NULL; 6872 ill_t *in_ill = NULL; 6873 6874 if (sp != NULL) { 6875 ip2dbg(("ip_rt_add: gateway security attributes " 6876 "cannot be set with interface route\n")); 6877 if (ipif_refheld) 6878 ipif_refrele(ipif); 6879 return (EINVAL); 6880 } 6881 6882 /* 6883 * As the interface index specified with the RTA_IFP sockaddr is 6884 * the same for all ipif's off of an ill, the matching logic 6885 * below uses MATCH_IRE_ILL if such an index was specified. 6886 * This means that routes sharing the same prefix when added 6887 * using a RTA_IFP sockaddr must have distinct interface 6888 * indices (namely, they must be on distinct ill's). 6889 * 6890 * On the other hand, since the gateway address will usually be 6891 * different for each ipif on the system, the matching logic 6892 * uses MATCH_IRE_IPIF in the case of a traditional interface 6893 * route. This means that interface routes for the same prefix 6894 * can be created if they belong to distinct ipif's and if a 6895 * RTA_IFP sockaddr is not present. 6896 */ 6897 if (ipif_arg != NULL) { 6898 if (ipif_refheld) { 6899 ipif_refrele(ipif); 6900 ipif_refheld = B_FALSE; 6901 } 6902 ipif = ipif_arg; 6903 match_flags |= MATCH_IRE_ILL; 6904 } else { 6905 /* 6906 * Check the ipif corresponding to the gw_addr 6907 */ 6908 if (ipif == NULL) 6909 return (ENETUNREACH); 6910 match_flags |= MATCH_IRE_IPIF; 6911 } 6912 ASSERT(ipif != NULL); 6913 /* 6914 * If src_ipif is not NULL, we have to create 6915 * an ire with non-null ire_in_ill value 6916 */ 6917 if (src_ipif != NULL) { 6918 in_ill = src_ipif->ipif_ill; 6919 } 6920 6921 /* 6922 * We check for an existing entry at this point. 6923 * 6924 * Since a netmask isn't passed in via the ioctl interface 6925 * (SIOCADDRT), we don't check for a matching netmask in that 6926 * case. 6927 */ 6928 if (!ioctl_msg) 6929 match_flags |= MATCH_IRE_MASK; 6930 if (src_ipif != NULL) { 6931 /* Look up in the special table */ 6932 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6933 ipif, src_ipif->ipif_ill, match_flags); 6934 } else { 6935 ire = ire_ftable_lookup(dst_addr, mask, 0, 6936 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6937 NULL, match_flags); 6938 } 6939 if (ire != NULL) { 6940 ire_refrele(ire); 6941 if (ipif_refheld) 6942 ipif_refrele(ipif); 6943 return (EEXIST); 6944 } 6945 6946 if (src_ipif != NULL) { 6947 /* 6948 * Create the special ire for the IRE table 6949 * which hangs out of ire_in_ill. This ire 6950 * is in-between IRE_CACHE and IRE_INTERFACE. 6951 * Thus rfq is non-NULL. 6952 */ 6953 rfq = ipif->ipif_rq; 6954 } 6955 /* Create the usual interface ires */ 6956 6957 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6958 ? ipif->ipif_rq : ipif->ipif_wq; 6959 6960 /* 6961 * Create a copy of the IRE_LOOPBACK, 6962 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6963 * the modified address and netmask. 6964 */ 6965 ire = ire_create( 6966 (uchar_t *)&dst_addr, 6967 (uint8_t *)&mask, 6968 (uint8_t *)&ipif->ipif_src_addr, 6969 NULL, 6970 NULL, 6971 &ipif->ipif_mtu, 6972 NULL, 6973 rfq, 6974 stq, 6975 ipif->ipif_net_type, 6976 ipif->ipif_resolver_mp, 6977 ipif, 6978 in_ill, 6979 0, 6980 0, 6981 0, 6982 flags, 6983 &ire_uinfo_null, 6984 NULL, 6985 NULL); 6986 if (ire == NULL) { 6987 if (ipif_refheld) 6988 ipif_refrele(ipif); 6989 return (ENOMEM); 6990 } 6991 6992 /* 6993 * Some software (for example, GateD and Sun Cluster) attempts 6994 * to create (what amount to) IRE_PREFIX routes with the 6995 * loopback address as the gateway. This is primarily done to 6996 * set up prefixes with the RTF_REJECT flag set (for example, 6997 * when generating aggregate routes.) 6998 * 6999 * If the IRE type (as defined by ipif->ipif_net_type) is 7000 * IRE_LOOPBACK, then we map the request into a 7001 * IRE_IF_NORESOLVER. 7002 * 7003 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7004 * routine, but rather using ire_create() directly. 7005 * 7006 */ 7007 if (ipif->ipif_net_type == IRE_LOOPBACK) 7008 ire->ire_type = IRE_IF_NORESOLVER; 7009 7010 error = ire_add(&ire, q, mp, func, B_FALSE); 7011 if (error == 0) 7012 goto save_ire; 7013 7014 /* 7015 * In the result of failure, ire_add() will have already 7016 * deleted the ire in question, so there is no need to 7017 * do that here. 7018 */ 7019 if (ipif_refheld) 7020 ipif_refrele(ipif); 7021 return (error); 7022 } 7023 if (ipif_refheld) { 7024 ipif_refrele(ipif); 7025 ipif_refheld = B_FALSE; 7026 } 7027 7028 if (src_ipif != NULL) { 7029 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7030 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7031 return (EINVAL); 7032 } 7033 /* 7034 * Get an interface IRE for the specified gateway. 7035 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7036 * gateway, it is currently unreachable and we fail the request 7037 * accordingly. 7038 */ 7039 ipif = ipif_arg; 7040 if (ipif_arg != NULL) 7041 match_flags |= MATCH_IRE_ILL; 7042 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7043 ALL_ZONES, 0, NULL, match_flags); 7044 if (gw_ire == NULL) 7045 return (ENETUNREACH); 7046 7047 /* 7048 * We create one of three types of IREs as a result of this request 7049 * based on the netmask. A netmask of all ones (which is automatically 7050 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7051 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7052 * created. Otherwise, an IRE_PREFIX route is created for the 7053 * destination prefix. 7054 */ 7055 if (mask == IP_HOST_MASK) 7056 type = IRE_HOST; 7057 else if (mask == 0) 7058 type = IRE_DEFAULT; 7059 else 7060 type = IRE_PREFIX; 7061 7062 /* check for a duplicate entry */ 7063 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7064 NULL, ALL_ZONES, 0, NULL, 7065 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 7066 if (ire != NULL) { 7067 ire_refrele(gw_ire); 7068 ire_refrele(ire); 7069 return (EEXIST); 7070 } 7071 7072 /* Security attribute exists */ 7073 if (sp != NULL) { 7074 tsol_gcgrp_addr_t ga; 7075 7076 /* find or create the gateway credentials group */ 7077 ga.ga_af = AF_INET; 7078 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7079 7080 /* we hold reference to it upon success */ 7081 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7082 if (gcgrp == NULL) { 7083 ire_refrele(gw_ire); 7084 return (ENOMEM); 7085 } 7086 7087 /* 7088 * Create and add the security attribute to the group; a 7089 * reference to the group is made upon allocating a new 7090 * entry successfully. If it finds an already-existing 7091 * entry for the security attribute in the group, it simply 7092 * returns it and no new reference is made to the group. 7093 */ 7094 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7095 if (gc == NULL) { 7096 /* release reference held by gcgrp_lookup */ 7097 GCGRP_REFRELE(gcgrp); 7098 ire_refrele(gw_ire); 7099 return (ENOMEM); 7100 } 7101 } 7102 7103 /* Create the IRE. */ 7104 ire = ire_create( 7105 (uchar_t *)&dst_addr, /* dest address */ 7106 (uchar_t *)&mask, /* mask */ 7107 /* src address assigned by the caller? */ 7108 (uchar_t *)(((src_addr != INADDR_ANY) && 7109 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7110 (uchar_t *)&gw_addr, /* gateway address */ 7111 NULL, /* no in-srcaddress */ 7112 &gw_ire->ire_max_frag, 7113 NULL, /* no Fast Path header */ 7114 NULL, /* no recv-from queue */ 7115 NULL, /* no send-to queue */ 7116 (ushort_t)type, /* IRE type */ 7117 NULL, 7118 ipif_arg, 7119 NULL, 7120 0, 7121 0, 7122 0, 7123 flags, 7124 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7125 gc, /* security attribute */ 7126 NULL); 7127 /* 7128 * The ire holds a reference to the 'gc' and the 'gc' holds a 7129 * reference to the 'gcgrp'. We can now release the extra reference 7130 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7131 */ 7132 if (gcgrp_xtraref) 7133 GCGRP_REFRELE(gcgrp); 7134 if (ire == NULL) { 7135 if (gc != NULL) 7136 GC_REFRELE(gc); 7137 ire_refrele(gw_ire); 7138 return (ENOMEM); 7139 } 7140 7141 /* 7142 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7143 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7144 */ 7145 7146 /* Add the new IRE. */ 7147 error = ire_add(&ire, q, mp, func, B_FALSE); 7148 if (error != 0) { 7149 /* 7150 * In the result of failure, ire_add() will have already 7151 * deleted the ire in question, so there is no need to 7152 * do that here. 7153 */ 7154 ire_refrele(gw_ire); 7155 return (error); 7156 } 7157 7158 if (flags & RTF_MULTIRT) { 7159 /* 7160 * Invoke the CGTP (multirouting) filtering module 7161 * to add the dst address in the filtering database. 7162 * Replicated inbound packets coming from that address 7163 * will be filtered to discard the duplicates. 7164 * It is not necessary to call the CGTP filter hook 7165 * when the dst address is a broadcast or multicast, 7166 * because an IP source address cannot be a broadcast 7167 * or a multicast. 7168 */ 7169 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7170 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 7171 if (ire_dst != NULL) { 7172 ip_cgtp_bcast_add(ire, ire_dst); 7173 ire_refrele(ire_dst); 7174 goto save_ire; 7175 } 7176 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 7177 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7178 ire->ire_addr, 7179 ire->ire_gateway_addr, 7180 ire->ire_src_addr, 7181 gw_ire->ire_src_addr); 7182 if (res != 0) { 7183 ire_refrele(gw_ire); 7184 ire_delete(ire); 7185 return (res); 7186 } 7187 } 7188 } 7189 7190 /* 7191 * Now that the prefix IRE entry has been created, delete any 7192 * existing gateway IRE cache entries as well as any IRE caches 7193 * using the gateway, and force them to be created through 7194 * ip_newroute. 7195 */ 7196 if (gc != NULL) { 7197 ASSERT(gcgrp != NULL); 7198 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 7199 } 7200 7201 save_ire: 7202 if (gw_ire != NULL) { 7203 ire_refrele(gw_ire); 7204 } 7205 /* 7206 * We do not do save_ire for the routes added with RTA_SRCIFP 7207 * flag. This route is only added and deleted by mipagent. 7208 * So, for simplicity of design, we refrain from saving 7209 * ires that are created with srcif value. This may change 7210 * in future if we find more usage of srcifp feature. 7211 */ 7212 if (ipif != NULL && src_ipif == NULL) { 7213 /* 7214 * Save enough information so that we can recreate the IRE if 7215 * the interface goes down and then up. The metrics associated 7216 * with the route will be saved as well when rts_setmetrics() is 7217 * called after the IRE has been created. In the case where 7218 * memory cannot be allocated, none of this information will be 7219 * saved. 7220 */ 7221 ipif_save_ire(ipif, ire); 7222 } 7223 if (ioctl_msg) 7224 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 7225 if (ire_arg != NULL) { 7226 /* 7227 * Store the ire that was successfully added into where ire_arg 7228 * points to so that callers don't have to look it up 7229 * themselves (but they are responsible for ire_refrele()ing 7230 * the ire when they are finished with it). 7231 */ 7232 *ire_arg = ire; 7233 } else { 7234 ire_refrele(ire); /* Held in ire_add */ 7235 } 7236 if (ipif_refheld) 7237 ipif_refrele(ipif); 7238 return (0); 7239 } 7240 7241 /* 7242 * ip_rt_delete is called to delete an IPv4 route. 7243 * ipif_arg is passed in to associate it with the correct interface. 7244 * src_ipif is passed to associate the incoming interface of the packet. 7245 * We may need to restart this operation if the ipif cannot be looked up 7246 * due to an exclusive operation that is currently in progress. The restart 7247 * entry point is specified by 'func' 7248 */ 7249 /* ARGSUSED4 */ 7250 int 7251 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7252 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7253 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 7254 { 7255 ire_t *ire = NULL; 7256 ipif_t *ipif; 7257 boolean_t ipif_refheld = B_FALSE; 7258 uint_t type; 7259 uint_t match_flags = MATCH_IRE_TYPE; 7260 int err = 0; 7261 7262 ip1dbg(("ip_rt_delete:")); 7263 /* 7264 * If this is the case of RTF_HOST being set, then we set the netmask 7265 * to all ones. Otherwise, we use the netmask if one was supplied. 7266 */ 7267 if (flags & RTF_HOST) { 7268 mask = IP_HOST_MASK; 7269 match_flags |= MATCH_IRE_MASK; 7270 } else if (rtm_addrs & RTA_NETMASK) { 7271 match_flags |= MATCH_IRE_MASK; 7272 } 7273 7274 /* 7275 * Note that RTF_GATEWAY is never set on a delete, therefore 7276 * we check if the gateway address is one of our interfaces first, 7277 * and fall back on RTF_GATEWAY routes. 7278 * 7279 * This makes it possible to delete an original 7280 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7281 * 7282 * As the interface index specified with the RTA_IFP sockaddr is the 7283 * same for all ipif's off of an ill, the matching logic below uses 7284 * MATCH_IRE_ILL if such an index was specified. This means a route 7285 * sharing the same prefix and interface index as the the route 7286 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7287 * is specified in the request. 7288 * 7289 * On the other hand, since the gateway address will usually be 7290 * different for each ipif on the system, the matching logic 7291 * uses MATCH_IRE_IPIF in the case of a traditional interface 7292 * route. This means that interface routes for the same prefix can be 7293 * uniquely identified if they belong to distinct ipif's and if a 7294 * RTA_IFP sockaddr is not present. 7295 * 7296 * For more detail on specifying routes by gateway address and by 7297 * interface index, see the comments in ip_rt_add(). 7298 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7299 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7300 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7301 * succeed. 7302 */ 7303 if (src_ipif != NULL) { 7304 if (ipif_arg == NULL && gw_addr != 0) { 7305 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7306 q, mp, func, &err); 7307 if (ipif_arg != NULL) 7308 ipif_refheld = B_TRUE; 7309 } 7310 if (ipif_arg == NULL) { 7311 err = (err == EINPROGRESS) ? err : ESRCH; 7312 return (err); 7313 } 7314 ipif = ipif_arg; 7315 } else { 7316 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7317 q, mp, func, &err); 7318 if (ipif != NULL) 7319 ipif_refheld = B_TRUE; 7320 else if (err == EINPROGRESS) 7321 return (err); 7322 else 7323 err = 0; 7324 } 7325 if (ipif != NULL) { 7326 if (ipif_arg != NULL) { 7327 if (ipif_refheld) { 7328 ipif_refrele(ipif); 7329 ipif_refheld = B_FALSE; 7330 } 7331 ipif = ipif_arg; 7332 match_flags |= MATCH_IRE_ILL; 7333 } else { 7334 match_flags |= MATCH_IRE_IPIF; 7335 } 7336 if (src_ipif != NULL) { 7337 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7338 ipif, src_ipif->ipif_ill, match_flags); 7339 } else { 7340 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7341 ire = ire_ctable_lookup(dst_addr, 0, 7342 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7343 match_flags); 7344 } 7345 if (ire == NULL) { 7346 ire = ire_ftable_lookup(dst_addr, mask, 0, 7347 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7348 NULL, match_flags); 7349 } 7350 } 7351 } 7352 7353 if (ire == NULL) { 7354 /* 7355 * At this point, the gateway address is not one of our own 7356 * addresses or a matching interface route was not found. We 7357 * set the IRE type to lookup based on whether 7358 * this is a host route, a default route or just a prefix. 7359 * 7360 * If an ipif_arg was passed in, then the lookup is based on an 7361 * interface index so MATCH_IRE_ILL is added to match_flags. 7362 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7363 * set as the route being looked up is not a traditional 7364 * interface route. 7365 * Since we do not add gateway route with srcipif, we don't 7366 * expect to find it either. 7367 */ 7368 if (src_ipif != NULL) { 7369 if (ipif_refheld) 7370 ipif_refrele(ipif); 7371 return (ESRCH); 7372 } else { 7373 match_flags &= ~MATCH_IRE_IPIF; 7374 match_flags |= MATCH_IRE_GW; 7375 if (ipif_arg != NULL) 7376 match_flags |= MATCH_IRE_ILL; 7377 if (mask == IP_HOST_MASK) 7378 type = IRE_HOST; 7379 else if (mask == 0) 7380 type = IRE_DEFAULT; 7381 else 7382 type = IRE_PREFIX; 7383 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7384 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 7385 } 7386 } 7387 7388 if (ipif_refheld) 7389 ipif_refrele(ipif); 7390 7391 /* ipif is not refheld anymore */ 7392 if (ire == NULL) 7393 return (ESRCH); 7394 7395 if (ire->ire_flags & RTF_MULTIRT) { 7396 /* 7397 * Invoke the CGTP (multirouting) filtering module 7398 * to remove the dst address from the filtering database. 7399 * Packets coming from that address will no longer be 7400 * filtered to remove duplicates. 7401 */ 7402 if (ip_cgtp_filter_ops != NULL) { 7403 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 7404 ire->ire_gateway_addr); 7405 } 7406 ip_cgtp_bcast_delete(ire); 7407 } 7408 7409 ipif = ire->ire_ipif; 7410 /* 7411 * Removing from ipif_saved_ire_mp is not necessary 7412 * when src_ipif being non-NULL. ip_rt_add does not 7413 * save the ires which src_ipif being non-NULL. 7414 */ 7415 if (ipif != NULL && src_ipif == NULL) { 7416 ipif_remove_ire(ipif, ire); 7417 } 7418 if (ioctl_msg) 7419 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 7420 ire_delete(ire); 7421 ire_refrele(ire); 7422 return (err); 7423 } 7424 7425 /* 7426 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7427 */ 7428 /* ARGSUSED */ 7429 int 7430 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7431 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7432 { 7433 ipaddr_t dst_addr; 7434 ipaddr_t gw_addr; 7435 ipaddr_t mask; 7436 int error = 0; 7437 mblk_t *mp1; 7438 struct rtentry *rt; 7439 ipif_t *ipif = NULL; 7440 7441 ip1dbg(("ip_siocaddrt:")); 7442 /* Existence of mp1 verified in ip_wput_nondata */ 7443 mp1 = mp->b_cont->b_cont; 7444 rt = (struct rtentry *)mp1->b_rptr; 7445 7446 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7447 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7448 7449 /* 7450 * If the RTF_HOST flag is on, this is a request to assign a gateway 7451 * to a particular host address. In this case, we set the netmask to 7452 * all ones for the particular destination address. Otherwise, 7453 * determine the netmask to be used based on dst_addr and the interfaces 7454 * in use. 7455 */ 7456 if (rt->rt_flags & RTF_HOST) { 7457 mask = IP_HOST_MASK; 7458 } else { 7459 /* 7460 * Note that ip_subnet_mask returns a zero mask in the case of 7461 * default (an all-zeroes address). 7462 */ 7463 mask = ip_subnet_mask(dst_addr, &ipif); 7464 } 7465 7466 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7467 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 7468 if (ipif != NULL) 7469 ipif_refrele(ipif); 7470 return (error); 7471 } 7472 7473 /* 7474 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7475 */ 7476 /* ARGSUSED */ 7477 int 7478 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7479 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7480 { 7481 ipaddr_t dst_addr; 7482 ipaddr_t gw_addr; 7483 ipaddr_t mask; 7484 int error; 7485 mblk_t *mp1; 7486 struct rtentry *rt; 7487 ipif_t *ipif = NULL; 7488 7489 ip1dbg(("ip_siocdelrt:")); 7490 /* Existence of mp1 verified in ip_wput_nondata */ 7491 mp1 = mp->b_cont->b_cont; 7492 rt = (struct rtentry *)mp1->b_rptr; 7493 7494 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7495 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7496 7497 /* 7498 * If the RTF_HOST flag is on, this is a request to delete a gateway 7499 * to a particular host address. In this case, we set the netmask to 7500 * all ones for the particular destination address. Otherwise, 7501 * determine the netmask to be used based on dst_addr and the interfaces 7502 * in use. 7503 */ 7504 if (rt->rt_flags & RTF_HOST) { 7505 mask = IP_HOST_MASK; 7506 } else { 7507 /* 7508 * Note that ip_subnet_mask returns a zero mask in the case of 7509 * default (an all-zeroes address). 7510 */ 7511 mask = ip_subnet_mask(dst_addr, &ipif); 7512 } 7513 7514 error = ip_rt_delete(dst_addr, mask, gw_addr, 7515 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7516 B_TRUE, q, mp, ip_process_ioctl); 7517 if (ipif != NULL) 7518 ipif_refrele(ipif); 7519 return (error); 7520 } 7521 7522 /* 7523 * Enqueue the mp onto the ipsq, chained by b_next. 7524 * b_prev stores the function to be executed later, and b_queue the queue 7525 * where this mp originated. 7526 */ 7527 void 7528 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7529 ill_t *pending_ill) 7530 { 7531 conn_t *connp = NULL; 7532 7533 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7534 ASSERT(func != NULL); 7535 7536 mp->b_queue = q; 7537 mp->b_prev = (void *)func; 7538 mp->b_next = NULL; 7539 7540 switch (type) { 7541 case CUR_OP: 7542 if (ipsq->ipsq_mptail != NULL) { 7543 ASSERT(ipsq->ipsq_mphead != NULL); 7544 ipsq->ipsq_mptail->b_next = mp; 7545 } else { 7546 ASSERT(ipsq->ipsq_mphead == NULL); 7547 ipsq->ipsq_mphead = mp; 7548 } 7549 ipsq->ipsq_mptail = mp; 7550 break; 7551 7552 case NEW_OP: 7553 if (ipsq->ipsq_xopq_mptail != NULL) { 7554 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7555 ipsq->ipsq_xopq_mptail->b_next = mp; 7556 } else { 7557 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7558 ipsq->ipsq_xopq_mphead = mp; 7559 } 7560 ipsq->ipsq_xopq_mptail = mp; 7561 break; 7562 default: 7563 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7564 } 7565 7566 if (CONN_Q(q) && pending_ill != NULL) { 7567 connp = Q_TO_CONN(q); 7568 7569 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7570 connp->conn_oper_pending_ill = pending_ill; 7571 } 7572 } 7573 7574 /* 7575 * Return the mp at the head of the ipsq. After emptying the ipsq 7576 * look at the next ioctl, if this ioctl is complete. Otherwise 7577 * return, we will resume when we complete the current ioctl. 7578 * The current ioctl will wait till it gets a response from the 7579 * driver below. 7580 */ 7581 static mblk_t * 7582 ipsq_dq(ipsq_t *ipsq) 7583 { 7584 mblk_t *mp; 7585 7586 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7587 7588 mp = ipsq->ipsq_mphead; 7589 if (mp != NULL) { 7590 ipsq->ipsq_mphead = mp->b_next; 7591 if (ipsq->ipsq_mphead == NULL) 7592 ipsq->ipsq_mptail = NULL; 7593 mp->b_next = NULL; 7594 return (mp); 7595 } 7596 if (ipsq->ipsq_current_ipif != NULL) 7597 return (NULL); 7598 mp = ipsq->ipsq_xopq_mphead; 7599 if (mp != NULL) { 7600 ipsq->ipsq_xopq_mphead = mp->b_next; 7601 if (ipsq->ipsq_xopq_mphead == NULL) 7602 ipsq->ipsq_xopq_mptail = NULL; 7603 mp->b_next = NULL; 7604 return (mp); 7605 } 7606 return (NULL); 7607 } 7608 7609 /* 7610 * Enter the ipsq corresponding to ill, by waiting synchronously till 7611 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7612 * will have to drain completely before ipsq_enter returns success. 7613 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7614 * and the ipsq_exit logic will start the next enqueued ioctl after 7615 * completion of the current ioctl. If 'force' is used, we don't wait 7616 * for the enqueued ioctls. This is needed when a conn_close wants to 7617 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7618 * of an ill can also use this option. But we dont' use it currently. 7619 */ 7620 #define ENTER_SQ_WAIT_TICKS 100 7621 boolean_t 7622 ipsq_enter(ill_t *ill, boolean_t force) 7623 { 7624 ipsq_t *ipsq; 7625 boolean_t waited_enough = B_FALSE; 7626 7627 /* 7628 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7629 * Since the <ill-ipsq> assocs could change while we wait for the 7630 * writer, it is easier to wait on a fixed global rather than try to 7631 * cv_wait on a changing ipsq. 7632 */ 7633 mutex_enter(&ill->ill_lock); 7634 for (;;) { 7635 if (ill->ill_state_flags & ILL_CONDEMNED) { 7636 mutex_exit(&ill->ill_lock); 7637 return (B_FALSE); 7638 } 7639 7640 ipsq = ill->ill_phyint->phyint_ipsq; 7641 mutex_enter(&ipsq->ipsq_lock); 7642 if (ipsq->ipsq_writer == NULL && 7643 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7644 break; 7645 } else if (ipsq->ipsq_writer != NULL) { 7646 mutex_exit(&ipsq->ipsq_lock); 7647 cv_wait(&ill->ill_cv, &ill->ill_lock); 7648 } else { 7649 mutex_exit(&ipsq->ipsq_lock); 7650 if (force) { 7651 (void) cv_timedwait(&ill->ill_cv, 7652 &ill->ill_lock, 7653 lbolt + ENTER_SQ_WAIT_TICKS); 7654 waited_enough = B_TRUE; 7655 continue; 7656 } else { 7657 cv_wait(&ill->ill_cv, &ill->ill_lock); 7658 } 7659 } 7660 } 7661 7662 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7663 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7664 ipsq->ipsq_writer = curthread; 7665 ipsq->ipsq_reentry_cnt++; 7666 #ifdef ILL_DEBUG 7667 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7668 #endif 7669 mutex_exit(&ipsq->ipsq_lock); 7670 mutex_exit(&ill->ill_lock); 7671 return (B_TRUE); 7672 } 7673 7674 /* 7675 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7676 * certain critical operations like plumbing (i.e. most set ioctls), 7677 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7678 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7679 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7680 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7681 * threads executing in the ipsq. Responses from the driver pertain to the 7682 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7683 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7684 * 7685 * If a thread does not want to reenter the ipsq when it is already writer, 7686 * it must make sure that the specified reentry point to be called later 7687 * when the ipsq is empty, nor any code path starting from the specified reentry 7688 * point must never ever try to enter the ipsq again. Otherwise it can lead 7689 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7690 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7691 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7692 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7693 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7694 * ioctl if the current ioctl has completed. If the current ioctl is still 7695 * in progress it simply returns. The current ioctl could be waiting for 7696 * a response from another module (arp_ or the driver or could be waiting for 7697 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7698 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7699 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7700 * ipsq_current_ipif is clear which happens only on ioctl completion. 7701 */ 7702 7703 /* 7704 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7705 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7706 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7707 * completion. 7708 */ 7709 ipsq_t * 7710 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7711 ipsq_func_t func, int type, boolean_t reentry_ok) 7712 { 7713 ipsq_t *ipsq; 7714 7715 /* Only 1 of ipif or ill can be specified */ 7716 ASSERT((ipif != NULL) ^ (ill != NULL)); 7717 if (ipif != NULL) 7718 ill = ipif->ipif_ill; 7719 7720 /* 7721 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7722 * ipsq of an ill can't change when ill_lock is held. 7723 */ 7724 GRAB_CONN_LOCK(q); 7725 mutex_enter(&ill->ill_lock); 7726 ipsq = ill->ill_phyint->phyint_ipsq; 7727 mutex_enter(&ipsq->ipsq_lock); 7728 7729 /* 7730 * 1. Enter the ipsq if we are already writer and reentry is ok. 7731 * (Note: If the caller does not specify reentry_ok then neither 7732 * 'func' nor any of its callees must ever attempt to enter the ipsq 7733 * again. Otherwise it can lead to an infinite loop 7734 * 2. Enter the ipsq if there is no current writer and this attempted 7735 * entry is part of the current ioctl or operation 7736 * 3. Enter the ipsq if there is no current writer and this is a new 7737 * ioctl (or operation) and the ioctl (or operation) queue is 7738 * empty and there is no ioctl (or operation) currently in progress 7739 */ 7740 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7741 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7742 ipsq->ipsq_current_ipif == NULL))) || 7743 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7744 /* Success. */ 7745 ipsq->ipsq_reentry_cnt++; 7746 ipsq->ipsq_writer = curthread; 7747 mutex_exit(&ipsq->ipsq_lock); 7748 mutex_exit(&ill->ill_lock); 7749 RELEASE_CONN_LOCK(q); 7750 #ifdef ILL_DEBUG 7751 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7752 #endif 7753 return (ipsq); 7754 } 7755 7756 ipsq_enq(ipsq, q, mp, func, type, ill); 7757 7758 mutex_exit(&ipsq->ipsq_lock); 7759 mutex_exit(&ill->ill_lock); 7760 RELEASE_CONN_LOCK(q); 7761 return (NULL); 7762 } 7763 7764 /* 7765 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7766 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7767 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7768 * completion. 7769 * 7770 * This function does a refrele on the ipif/ill. 7771 */ 7772 void 7773 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7774 ipsq_func_t func, int type, boolean_t reentry_ok) 7775 { 7776 ipsq_t *ipsq; 7777 7778 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7779 /* 7780 * Caller must have done a refhold on the ipif. ipif_refrele 7781 * happens on the passed ipif. We can do this since we are 7782 * already exclusive, or we won't access ipif henceforth, Both 7783 * this func and caller will just return if we ipsq_try_enter 7784 * fails above. This is needed because func needs to 7785 * see the correct refcount. Eg. removeif can work only then. 7786 */ 7787 if (ipif != NULL) 7788 ipif_refrele(ipif); 7789 else 7790 ill_refrele(ill); 7791 if (ipsq != NULL) { 7792 (*func)(ipsq, q, mp, NULL); 7793 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7794 } 7795 } 7796 7797 /* 7798 * If there are more than ILL_GRP_CNT ills in a group, 7799 * we use kmem alloc'd buffers, else use the stack 7800 */ 7801 #define ILL_GRP_CNT 14 7802 /* 7803 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7804 * Called by a thread that is currently exclusive on this ipsq. 7805 */ 7806 void 7807 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7808 { 7809 queue_t *q; 7810 mblk_t *mp; 7811 ipsq_func_t func; 7812 int next; 7813 ill_t **ill_list = NULL; 7814 size_t ill_list_size = 0; 7815 int cnt = 0; 7816 boolean_t need_ipsq_free = B_FALSE; 7817 7818 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7819 mutex_enter(&ipsq->ipsq_lock); 7820 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7821 if (ipsq->ipsq_reentry_cnt != 1) { 7822 ipsq->ipsq_reentry_cnt--; 7823 mutex_exit(&ipsq->ipsq_lock); 7824 return; 7825 } 7826 7827 mp = ipsq_dq(ipsq); 7828 while (mp != NULL) { 7829 again: 7830 mutex_exit(&ipsq->ipsq_lock); 7831 func = (ipsq_func_t)mp->b_prev; 7832 q = (queue_t *)mp->b_queue; 7833 mp->b_prev = NULL; 7834 mp->b_queue = NULL; 7835 7836 /* 7837 * If 'q' is an conn queue, it is valid, since we did a 7838 * a refhold on the connp, at the start of the ioctl. 7839 * If 'q' is an ill queue, it is valid, since close of an 7840 * ill will clean up the 'ipsq'. 7841 */ 7842 (*func)(ipsq, q, mp, NULL); 7843 7844 mutex_enter(&ipsq->ipsq_lock); 7845 mp = ipsq_dq(ipsq); 7846 } 7847 7848 mutex_exit(&ipsq->ipsq_lock); 7849 7850 /* 7851 * Need to grab the locks in the right order. Need to 7852 * atomically check (under ipsq_lock) that there are no 7853 * messages before relinquishing the ipsq. Also need to 7854 * atomically wakeup waiters on ill_cv while holding ill_lock. 7855 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7856 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7857 * to grab ill_g_lock as writer. 7858 */ 7859 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7860 7861 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7862 if (ipsq->ipsq_refs != 0) { 7863 /* At most 2 ills v4/v6 per phyint */ 7864 cnt = ipsq->ipsq_refs << 1; 7865 ill_list_size = cnt * sizeof (ill_t *); 7866 /* 7867 * If memory allocation fails, we will do the split 7868 * the next time ipsq_exit is called for whatever reason. 7869 * As long as the ipsq_split flag is set the need to 7870 * split is remembered. 7871 */ 7872 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7873 if (ill_list != NULL) 7874 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7875 } 7876 mutex_enter(&ipsq->ipsq_lock); 7877 mp = ipsq_dq(ipsq); 7878 if (mp != NULL) { 7879 /* oops, some message has landed up, we can't get out */ 7880 if (ill_list != NULL) 7881 ill_unlock_ills(ill_list, cnt); 7882 rw_exit(&ill_g_lock); 7883 if (ill_list != NULL) 7884 kmem_free(ill_list, ill_list_size); 7885 ill_list = NULL; 7886 ill_list_size = 0; 7887 cnt = 0; 7888 goto again; 7889 } 7890 7891 /* 7892 * Split only if no ioctl is pending and if memory alloc succeeded 7893 * above. 7894 */ 7895 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7896 ill_list != NULL) { 7897 /* 7898 * No new ill can join this ipsq since we are holding the 7899 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7900 * ipsq. ill_split_ipsq may fail due to memory shortage. 7901 * If so we will retry on the next ipsq_exit. 7902 */ 7903 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7904 } 7905 7906 /* 7907 * We are holding the ipsq lock, hence no new messages can 7908 * land up on the ipsq, and there are no messages currently. 7909 * Now safe to get out. Wake up waiters and relinquish ipsq 7910 * atomically while holding ill locks. 7911 */ 7912 ipsq->ipsq_writer = NULL; 7913 ipsq->ipsq_reentry_cnt--; 7914 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7915 #ifdef ILL_DEBUG 7916 ipsq->ipsq_depth = 0; 7917 #endif 7918 mutex_exit(&ipsq->ipsq_lock); 7919 /* 7920 * For IPMP this should wake up all ills in this ipsq. 7921 * We need to hold the ill_lock while waking up waiters to 7922 * avoid missed wakeups. But there is no need to acquire all 7923 * the ill locks and then wakeup. If we have not acquired all 7924 * the locks (due to memory failure above) ill_signal_ipsq_ills 7925 * wakes up ills one at a time after getting the right ill_lock 7926 */ 7927 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7928 if (ill_list != NULL) 7929 ill_unlock_ills(ill_list, cnt); 7930 if (ipsq->ipsq_refs == 0) 7931 need_ipsq_free = B_TRUE; 7932 rw_exit(&ill_g_lock); 7933 if (ill_list != 0) 7934 kmem_free(ill_list, ill_list_size); 7935 7936 if (need_ipsq_free) { 7937 /* 7938 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7939 * looked up. ipsq can be looked up only thru ill or phyint 7940 * and there are no ills/phyint on this ipsq. 7941 */ 7942 ipsq_delete(ipsq); 7943 } 7944 /* 7945 * Now start any igmp or mld timers that could not be started 7946 * while inside the ipsq. The timers can't be started while inside 7947 * the ipsq, since igmp_start_timers may need to call untimeout() 7948 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7949 * there could be a deadlock since the timeout handlers 7950 * mld_timeout_handler / igmp_timeout_handler also synchronously 7951 * wait in ipsq_enter() trying to get the ipsq. 7952 * 7953 * However there is one exception to the above. If this thread is 7954 * itself the igmp/mld timeout handler thread, then we don't want 7955 * to start any new timer until the current handler is done. The 7956 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7957 * all others pass B_TRUE. 7958 */ 7959 if (start_igmp_timer) { 7960 mutex_enter(&igmp_timer_lock); 7961 next = igmp_deferred_next; 7962 igmp_deferred_next = INFINITY; 7963 mutex_exit(&igmp_timer_lock); 7964 7965 if (next != INFINITY) 7966 igmp_start_timers(next); 7967 } 7968 7969 if (start_mld_timer) { 7970 mutex_enter(&mld_timer_lock); 7971 next = mld_deferred_next; 7972 mld_deferred_next = INFINITY; 7973 mutex_exit(&mld_timer_lock); 7974 7975 if (next != INFINITY) 7976 mld_start_timers(next); 7977 } 7978 } 7979 7980 /* 7981 * The ill is closing. Flush all messages on the ipsq that originated 7982 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7983 * for this ill since ipsq_enter could not have entered until then. 7984 * New messages can't be queued since the CONDEMNED flag is set. 7985 */ 7986 static void 7987 ipsq_flush(ill_t *ill) 7988 { 7989 queue_t *q; 7990 mblk_t *prev; 7991 mblk_t *mp; 7992 mblk_t *mp_next; 7993 ipsq_t *ipsq; 7994 7995 ASSERT(IAM_WRITER_ILL(ill)); 7996 ipsq = ill->ill_phyint->phyint_ipsq; 7997 /* 7998 * Flush any messages sent up by the driver. 7999 */ 8000 mutex_enter(&ipsq->ipsq_lock); 8001 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8002 mp_next = mp->b_next; 8003 q = mp->b_queue; 8004 if (q == ill->ill_rq || q == ill->ill_wq) { 8005 /* Remove the mp from the ipsq */ 8006 if (prev == NULL) 8007 ipsq->ipsq_mphead = mp->b_next; 8008 else 8009 prev->b_next = mp->b_next; 8010 if (ipsq->ipsq_mptail == mp) { 8011 ASSERT(mp_next == NULL); 8012 ipsq->ipsq_mptail = prev; 8013 } 8014 inet_freemsg(mp); 8015 } else { 8016 prev = mp; 8017 } 8018 } 8019 mutex_exit(&ipsq->ipsq_lock); 8020 (void) ipsq_pending_mp_cleanup(ill, NULL); 8021 ipsq_xopq_mp_cleanup(ill, NULL); 8022 ill_pending_mp_cleanup(ill); 8023 } 8024 8025 /* 8026 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8027 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8028 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8029 * time (possible with one port going down for aggr and someone tearing down the 8030 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8031 * to indicate when the cleanup has started (1 ref) and when the cleanup 8032 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8033 * putting 2 ref on ill_inuse_ref. 8034 */ 8035 static void 8036 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8037 { 8038 conn_t *connp; 8039 squeue_t *sqp; 8040 mblk_t *mp; 8041 8042 ASSERT(rx_ring != NULL); 8043 8044 /* Just clean one squeue */ 8045 mutex_enter(&ill->ill_lock); 8046 /* 8047 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8048 * ip_squeue_soft_ring_affinty() will not go 8049 * ahead with assigning rings. 8050 */ 8051 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8052 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8053 /* Some operations pending on the ring. Wait */ 8054 cv_wait(&ill->ill_cv, &ill->ill_lock); 8055 8056 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8057 /* 8058 * Someone already trying to clean 8059 * this squeue or its already been cleaned. 8060 */ 8061 mutex_exit(&ill->ill_lock); 8062 return; 8063 } 8064 sqp = rx_ring->rr_sqp; 8065 8066 if (sqp == NULL) { 8067 /* 8068 * The rx_ring never had a squeue assigned to it. 8069 * We are under ill_lock so we can clean it up 8070 * here itself since no one can get to it. 8071 */ 8072 rx_ring->rr_blank = NULL; 8073 rx_ring->rr_handle = NULL; 8074 rx_ring->rr_sqp = NULL; 8075 rx_ring->rr_ring_state = ILL_RING_FREE; 8076 mutex_exit(&ill->ill_lock); 8077 return; 8078 } 8079 8080 /* Set the state that its being cleaned */ 8081 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8082 ASSERT(sqp != NULL); 8083 mutex_exit(&ill->ill_lock); 8084 8085 /* 8086 * Use the preallocated ill_unbind_conn for this purpose 8087 */ 8088 connp = ill->ill_dls_capab->ill_unbind_conn; 8089 8090 ASSERT(!connp->conn_tcp->tcp_closemp.b_prev); 8091 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8092 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8093 connp->conn_tcp->tcp_closemp_used = 1; 8094 else 8095 connp->conn_tcp->tcp_closemp_used++; 8096 mp = &connp->conn_tcp->tcp_closemp; 8097 CONN_INC_REF(connp); 8098 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8099 8100 mutex_enter(&ill->ill_lock); 8101 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8102 cv_wait(&ill->ill_cv, &ill->ill_lock); 8103 8104 mutex_exit(&ill->ill_lock); 8105 } 8106 8107 static void 8108 ipsq_clean_all(ill_t *ill) 8109 { 8110 int idx; 8111 8112 /* 8113 * No need to clean if poll_capab isn't set for this ill 8114 */ 8115 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8116 return; 8117 8118 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8119 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8120 ipsq_clean_ring(ill, ipr); 8121 } 8122 8123 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8124 } 8125 8126 /* ARGSUSED */ 8127 int 8128 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8129 ip_ioctl_cmd_t *ipip, void *ifreq) 8130 { 8131 ill_t *ill; 8132 struct lifreq *lifr = (struct lifreq *)ifreq; 8133 boolean_t isv6; 8134 conn_t *connp; 8135 8136 connp = Q_TO_CONN(q); 8137 isv6 = connp->conn_af_isv6; 8138 /* 8139 * Set original index. 8140 * Failover and failback move logical interfaces 8141 * from one physical interface to another. The 8142 * original index indicates the parent of a logical 8143 * interface, in other words, the physical interface 8144 * the logical interface will be moved back to on 8145 * failback. 8146 */ 8147 8148 /* 8149 * Don't allow the original index to be changed 8150 * for non-failover addresses, autoconfigured 8151 * addresses, or IPv6 link local addresses. 8152 */ 8153 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8154 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8155 return (EINVAL); 8156 } 8157 /* 8158 * The new original index must be in use by some 8159 * physical interface. 8160 */ 8161 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8162 NULL, NULL); 8163 if (ill == NULL) 8164 return (ENXIO); 8165 ill_refrele(ill); 8166 8167 ipif->ipif_orig_ifindex = lifr->lifr_index; 8168 /* 8169 * When this ipif gets failed back, don't 8170 * preserve the original id, as it is no 8171 * longer applicable. 8172 */ 8173 ipif->ipif_orig_ipifid = 0; 8174 /* 8175 * For IPv4, change the original index of any 8176 * multicast addresses associated with the 8177 * ipif to the new value. 8178 */ 8179 if (!isv6) { 8180 ilm_t *ilm; 8181 8182 mutex_enter(&ipif->ipif_ill->ill_lock); 8183 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8184 ilm = ilm->ilm_next) { 8185 if (ilm->ilm_ipif == ipif) { 8186 ilm->ilm_orig_ifindex = lifr->lifr_index; 8187 } 8188 } 8189 mutex_exit(&ipif->ipif_ill->ill_lock); 8190 } 8191 return (0); 8192 } 8193 8194 /* ARGSUSED */ 8195 int 8196 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8197 ip_ioctl_cmd_t *ipip, void *ifreq) 8198 { 8199 struct lifreq *lifr = (struct lifreq *)ifreq; 8200 8201 /* 8202 * Get the original interface index i.e the one 8203 * before FAILOVER if it ever happened. 8204 */ 8205 lifr->lifr_index = ipif->ipif_orig_ifindex; 8206 return (0); 8207 } 8208 8209 /* 8210 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8211 * refhold and return the associated ipif 8212 */ 8213 int 8214 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8215 { 8216 boolean_t exists; 8217 struct iftun_req *ta; 8218 ipif_t *ipif; 8219 ill_t *ill; 8220 boolean_t isv6; 8221 mblk_t *mp1; 8222 int error; 8223 conn_t *connp; 8224 8225 /* Existence verified in ip_wput_nondata */ 8226 mp1 = mp->b_cont->b_cont; 8227 ta = (struct iftun_req *)mp1->b_rptr; 8228 /* 8229 * Null terminate the string to protect against buffer 8230 * overrun. String was generated by user code and may not 8231 * be trusted. 8232 */ 8233 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8234 8235 connp = Q_TO_CONN(q); 8236 isv6 = connp->conn_af_isv6; 8237 8238 /* Disallows implicit create */ 8239 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8240 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8241 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 8242 if (ipif == NULL) 8243 return (error); 8244 8245 if (ipif->ipif_id != 0) { 8246 /* 8247 * We really don't want to set/get tunnel parameters 8248 * on virtual tunnel interfaces. Only allow the 8249 * base tunnel to do these. 8250 */ 8251 ipif_refrele(ipif); 8252 return (EINVAL); 8253 } 8254 8255 /* 8256 * Send down to tunnel mod for ioctl processing. 8257 * Will finish ioctl in ip_rput_other(). 8258 */ 8259 ill = ipif->ipif_ill; 8260 if (ill->ill_net_type == IRE_LOOPBACK) { 8261 ipif_refrele(ipif); 8262 return (EOPNOTSUPP); 8263 } 8264 8265 if (ill->ill_wq == NULL) { 8266 ipif_refrele(ipif); 8267 return (ENXIO); 8268 } 8269 /* 8270 * Mark the ioctl as coming from an IPv6 interface for 8271 * tun's convenience. 8272 */ 8273 if (ill->ill_isv6) 8274 ta->ifta_flags |= 0x80000000; 8275 *ipifp = ipif; 8276 return (0); 8277 } 8278 8279 /* 8280 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8281 * and return the associated ipif. 8282 * Return value: 8283 * Non zero: An error has occurred. ci may not be filled out. 8284 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8285 * a held ipif in ci.ci_ipif. 8286 */ 8287 int 8288 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8289 cmd_info_t *ci, ipsq_func_t func) 8290 { 8291 sin_t *sin; 8292 sin6_t *sin6; 8293 char *name; 8294 struct ifreq *ifr; 8295 struct lifreq *lifr; 8296 ipif_t *ipif = NULL; 8297 ill_t *ill; 8298 conn_t *connp; 8299 boolean_t isv6; 8300 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8301 boolean_t exists; 8302 int err; 8303 mblk_t *mp1; 8304 zoneid_t zoneid; 8305 8306 if (q->q_next != NULL) { 8307 ill = (ill_t *)q->q_ptr; 8308 isv6 = ill->ill_isv6; 8309 connp = NULL; 8310 zoneid = ALL_ZONES; 8311 } else { 8312 ill = NULL; 8313 connp = Q_TO_CONN(q); 8314 isv6 = connp->conn_af_isv6; 8315 zoneid = connp->conn_zoneid; 8316 if (zoneid == GLOBAL_ZONEID) { 8317 /* global zone can access ipifs in all zones */ 8318 zoneid = ALL_ZONES; 8319 } 8320 } 8321 8322 /* Has been checked in ip_wput_nondata */ 8323 mp1 = mp->b_cont->b_cont; 8324 8325 8326 if (cmd_type == IF_CMD) { 8327 /* This a old style SIOC[GS]IF* command */ 8328 ifr = (struct ifreq *)mp1->b_rptr; 8329 /* 8330 * Null terminate the string to protect against buffer 8331 * overrun. String was generated by user code and may not 8332 * be trusted. 8333 */ 8334 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8335 sin = (sin_t *)&ifr->ifr_addr; 8336 name = ifr->ifr_name; 8337 ci->ci_sin = sin; 8338 ci->ci_sin6 = NULL; 8339 ci->ci_lifr = (struct lifreq *)ifr; 8340 } else { 8341 /* This a new style SIOC[GS]LIF* command */ 8342 ASSERT(cmd_type == LIF_CMD); 8343 lifr = (struct lifreq *)mp1->b_rptr; 8344 /* 8345 * Null terminate the string to protect against buffer 8346 * overrun. String was generated by user code and may not 8347 * be trusted. 8348 */ 8349 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8350 name = lifr->lifr_name; 8351 sin = (sin_t *)&lifr->lifr_addr; 8352 sin6 = (sin6_t *)&lifr->lifr_addr; 8353 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8354 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8355 LIFNAMSIZ); 8356 } 8357 ci->ci_sin = sin; 8358 ci->ci_sin6 = sin6; 8359 ci->ci_lifr = lifr; 8360 } 8361 8362 8363 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8364 /* 8365 * The ioctl will be failed if the ioctl comes down 8366 * an conn stream 8367 */ 8368 if (ill == NULL) { 8369 /* 8370 * Not an ill queue, return EINVAL same as the 8371 * old error code. 8372 */ 8373 return (ENXIO); 8374 } 8375 ipif = ill->ill_ipif; 8376 ipif_refhold(ipif); 8377 } else { 8378 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8379 &exists, isv6, zoneid, 8380 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 8381 if (ipif == NULL) { 8382 if (err == EINPROGRESS) 8383 return (err); 8384 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8385 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8386 /* 8387 * Need to try both v4 and v6 since this 8388 * ioctl can come down either v4 or v6 8389 * socket. The lifreq.lifr_family passed 8390 * down by this ioctl is AF_UNSPEC. 8391 */ 8392 ipif = ipif_lookup_on_name(name, 8393 mi_strlen(name), B_FALSE, &exists, !isv6, 8394 zoneid, (connp == NULL) ? q : 8395 CONNP_TO_WQ(connp), mp, func, &err); 8396 if (err == EINPROGRESS) 8397 return (err); 8398 } 8399 err = 0; /* Ensure we don't use it below */ 8400 } 8401 } 8402 8403 /* 8404 * Old style [GS]IFCMD does not admit IPv6 ipif 8405 */ 8406 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8407 ipif_refrele(ipif); 8408 return (ENXIO); 8409 } 8410 8411 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8412 name[0] == '\0') { 8413 /* 8414 * Handle a or a SIOC?IF* with a null name 8415 * during plumb (on the ill queue before the I_PLINK). 8416 */ 8417 ipif = ill->ill_ipif; 8418 ipif_refhold(ipif); 8419 } 8420 8421 if (ipif == NULL) 8422 return (ENXIO); 8423 8424 /* 8425 * Allow only GET operations if this ipif has been created 8426 * temporarily due to a MOVE operation. 8427 */ 8428 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8429 ipif_refrele(ipif); 8430 return (EINVAL); 8431 } 8432 8433 ci->ci_ipif = ipif; 8434 return (0); 8435 } 8436 8437 /* 8438 * Return the total number of ipifs. 8439 */ 8440 static uint_t 8441 ip_get_numifs(zoneid_t zoneid) 8442 { 8443 uint_t numifs = 0; 8444 ill_t *ill; 8445 ill_walk_context_t ctx; 8446 ipif_t *ipif; 8447 8448 rw_enter(&ill_g_lock, RW_READER); 8449 ill = ILL_START_WALK_V4(&ctx); 8450 8451 while (ill != NULL) { 8452 for (ipif = ill->ill_ipif; ipif != NULL; 8453 ipif = ipif->ipif_next) { 8454 if (ipif->ipif_zoneid == zoneid || 8455 ipif->ipif_zoneid == ALL_ZONES) 8456 numifs++; 8457 } 8458 ill = ill_next(&ctx, ill); 8459 } 8460 rw_exit(&ill_g_lock); 8461 return (numifs); 8462 } 8463 8464 /* 8465 * Return the total number of ipifs. 8466 */ 8467 static uint_t 8468 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 8469 { 8470 uint_t numifs = 0; 8471 ill_t *ill; 8472 ipif_t *ipif; 8473 ill_walk_context_t ctx; 8474 8475 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8476 8477 rw_enter(&ill_g_lock, RW_READER); 8478 if (family == AF_INET) 8479 ill = ILL_START_WALK_V4(&ctx); 8480 else if (family == AF_INET6) 8481 ill = ILL_START_WALK_V6(&ctx); 8482 else 8483 ill = ILL_START_WALK_ALL(&ctx); 8484 8485 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8486 for (ipif = ill->ill_ipif; ipif != NULL; 8487 ipif = ipif->ipif_next) { 8488 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8489 !(lifn_flags & LIFC_NOXMIT)) 8490 continue; 8491 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8492 !(lifn_flags & LIFC_TEMPORARY)) 8493 continue; 8494 if (((ipif->ipif_flags & 8495 (IPIF_NOXMIT|IPIF_NOLOCAL| 8496 IPIF_DEPRECATED)) || 8497 (ill->ill_phyint->phyint_flags & 8498 PHYI_LOOPBACK) || 8499 !(ipif->ipif_flags & IPIF_UP)) && 8500 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8501 continue; 8502 8503 if (zoneid != ipif->ipif_zoneid && 8504 ipif->ipif_zoneid != ALL_ZONES && 8505 (zoneid != GLOBAL_ZONEID || 8506 !(lifn_flags & LIFC_ALLZONES))) 8507 continue; 8508 8509 numifs++; 8510 } 8511 } 8512 rw_exit(&ill_g_lock); 8513 return (numifs); 8514 } 8515 8516 uint_t 8517 ip_get_lifsrcofnum(ill_t *ill) 8518 { 8519 uint_t numifs = 0; 8520 ill_t *ill_head = ill; 8521 8522 /* 8523 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8524 * other thread may be trying to relink the ILLs in this usesrc group 8525 * and adjusting the ill_usesrc_grp_next pointers 8526 */ 8527 rw_enter(&ill_g_usesrc_lock, RW_READER); 8528 if ((ill->ill_usesrc_ifindex == 0) && 8529 (ill->ill_usesrc_grp_next != NULL)) { 8530 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8531 ill = ill->ill_usesrc_grp_next) 8532 numifs++; 8533 } 8534 rw_exit(&ill_g_usesrc_lock); 8535 8536 return (numifs); 8537 } 8538 8539 /* Null values are passed in for ipif, sin, and ifreq */ 8540 /* ARGSUSED */ 8541 int 8542 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8543 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8544 { 8545 int *nump; 8546 8547 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8548 8549 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8550 nump = (int *)mp->b_cont->b_cont->b_rptr; 8551 8552 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8553 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8554 return (0); 8555 } 8556 8557 /* Null values are passed in for ipif, sin, and ifreq */ 8558 /* ARGSUSED */ 8559 int 8560 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8561 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8562 { 8563 struct lifnum *lifn; 8564 mblk_t *mp1; 8565 8566 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8567 8568 /* Existence checked in ip_wput_nondata */ 8569 mp1 = mp->b_cont->b_cont; 8570 8571 lifn = (struct lifnum *)mp1->b_rptr; 8572 switch (lifn->lifn_family) { 8573 case AF_UNSPEC: 8574 case AF_INET: 8575 case AF_INET6: 8576 break; 8577 default: 8578 return (EAFNOSUPPORT); 8579 } 8580 8581 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8582 Q_TO_CONN(q)->conn_zoneid); 8583 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8584 return (0); 8585 } 8586 8587 /* ARGSUSED */ 8588 int 8589 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8590 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8591 { 8592 STRUCT_HANDLE(ifconf, ifc); 8593 mblk_t *mp1; 8594 struct iocblk *iocp; 8595 struct ifreq *ifr; 8596 ill_walk_context_t ctx; 8597 ill_t *ill; 8598 ipif_t *ipif; 8599 struct sockaddr_in *sin; 8600 int32_t ifclen; 8601 zoneid_t zoneid; 8602 8603 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8604 8605 ip1dbg(("ip_sioctl_get_ifconf")); 8606 /* Existence verified in ip_wput_nondata */ 8607 mp1 = mp->b_cont->b_cont; 8608 iocp = (struct iocblk *)mp->b_rptr; 8609 zoneid = Q_TO_CONN(q)->conn_zoneid; 8610 8611 /* 8612 * The original SIOCGIFCONF passed in a struct ifconf which specified 8613 * the user buffer address and length into which the list of struct 8614 * ifreqs was to be copied. Since AT&T Streams does not seem to 8615 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8616 * the SIOCGIFCONF operation was redefined to simply provide 8617 * a large output buffer into which we are supposed to jam the ifreq 8618 * array. The same ioctl command code was used, despite the fact that 8619 * both the applications and the kernel code had to change, thus making 8620 * it impossible to support both interfaces. 8621 * 8622 * For reasons not good enough to try to explain, the following 8623 * algorithm is used for deciding what to do with one of these: 8624 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8625 * form with the output buffer coming down as the continuation message. 8626 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8627 * and we have to copy in the ifconf structure to find out how big the 8628 * output buffer is and where to copy out to. Sure no problem... 8629 * 8630 */ 8631 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8632 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8633 int numifs = 0; 8634 size_t ifc_bufsize; 8635 8636 /* 8637 * Must be (better be!) continuation of a TRANSPARENT 8638 * IOCTL. We just copied in the ifconf structure. 8639 */ 8640 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8641 (struct ifconf *)mp1->b_rptr); 8642 8643 /* 8644 * Allocate a buffer to hold requested information. 8645 * 8646 * If ifc_len is larger than what is needed, we only 8647 * allocate what we will use. 8648 * 8649 * If ifc_len is smaller than what is needed, return 8650 * EINVAL. 8651 * 8652 * XXX: the ill_t structure can hava 2 counters, for 8653 * v4 and v6 (not just ill_ipif_up_count) to store the 8654 * number of interfaces for a device, so we don't need 8655 * to count them here... 8656 */ 8657 numifs = ip_get_numifs(zoneid); 8658 8659 ifclen = STRUCT_FGET(ifc, ifc_len); 8660 ifc_bufsize = numifs * sizeof (struct ifreq); 8661 if (ifc_bufsize > ifclen) { 8662 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8663 /* old behaviour */ 8664 return (EINVAL); 8665 } else { 8666 ifc_bufsize = ifclen; 8667 } 8668 } 8669 8670 mp1 = mi_copyout_alloc(q, mp, 8671 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8672 if (mp1 == NULL) 8673 return (ENOMEM); 8674 8675 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8676 } 8677 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8678 /* 8679 * the SIOCGIFCONF ioctl only knows about 8680 * IPv4 addresses, so don't try to tell 8681 * it about interfaces with IPv6-only 8682 * addresses. (Last parm 'isv6' is B_FALSE) 8683 */ 8684 8685 ifr = (struct ifreq *)mp1->b_rptr; 8686 8687 rw_enter(&ill_g_lock, RW_READER); 8688 ill = ILL_START_WALK_V4(&ctx); 8689 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8690 for (ipif = ill->ill_ipif; ipif != NULL; 8691 ipif = ipif->ipif_next) { 8692 if (zoneid != ipif->ipif_zoneid && 8693 ipif->ipif_zoneid != ALL_ZONES) 8694 continue; 8695 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8696 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8697 /* old behaviour */ 8698 rw_exit(&ill_g_lock); 8699 return (EINVAL); 8700 } else { 8701 goto if_copydone; 8702 } 8703 } 8704 (void) ipif_get_name(ipif, 8705 ifr->ifr_name, 8706 sizeof (ifr->ifr_name)); 8707 sin = (sin_t *)&ifr->ifr_addr; 8708 *sin = sin_null; 8709 sin->sin_family = AF_INET; 8710 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8711 ifr++; 8712 } 8713 } 8714 if_copydone: 8715 rw_exit(&ill_g_lock); 8716 mp1->b_wptr = (uchar_t *)ifr; 8717 8718 if (STRUCT_BUF(ifc) != NULL) { 8719 STRUCT_FSET(ifc, ifc_len, 8720 (int)((uchar_t *)ifr - mp1->b_rptr)); 8721 } 8722 return (0); 8723 } 8724 8725 /* 8726 * Get the interfaces using the address hosted on the interface passed in, 8727 * as a source adddress 8728 */ 8729 /* ARGSUSED */ 8730 int 8731 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8732 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8733 { 8734 mblk_t *mp1; 8735 ill_t *ill, *ill_head; 8736 ipif_t *ipif, *orig_ipif; 8737 int numlifs = 0; 8738 size_t lifs_bufsize, lifsmaxlen; 8739 struct lifreq *lifr; 8740 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8741 uint_t ifindex; 8742 zoneid_t zoneid; 8743 int err = 0; 8744 boolean_t isv6 = B_FALSE; 8745 struct sockaddr_in *sin; 8746 struct sockaddr_in6 *sin6; 8747 8748 STRUCT_HANDLE(lifsrcof, lifs); 8749 8750 ASSERT(q->q_next == NULL); 8751 8752 zoneid = Q_TO_CONN(q)->conn_zoneid; 8753 8754 /* Existence verified in ip_wput_nondata */ 8755 mp1 = mp->b_cont->b_cont; 8756 8757 /* 8758 * Must be (better be!) continuation of a TRANSPARENT 8759 * IOCTL. We just copied in the lifsrcof structure. 8760 */ 8761 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8762 (struct lifsrcof *)mp1->b_rptr); 8763 8764 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8765 return (EINVAL); 8766 8767 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8768 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8769 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8770 ip_process_ioctl, &err); 8771 if (ipif == NULL) { 8772 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8773 ifindex)); 8774 return (err); 8775 } 8776 8777 8778 /* Allocate a buffer to hold requested information */ 8779 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8780 lifs_bufsize = numlifs * sizeof (struct lifreq); 8781 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8782 /* The actual size needed is always returned in lifs_len */ 8783 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8784 8785 /* If the amount we need is more than what is passed in, abort */ 8786 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8787 ipif_refrele(ipif); 8788 return (0); 8789 } 8790 8791 mp1 = mi_copyout_alloc(q, mp, 8792 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8793 if (mp1 == NULL) { 8794 ipif_refrele(ipif); 8795 return (ENOMEM); 8796 } 8797 8798 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8799 bzero(mp1->b_rptr, lifs_bufsize); 8800 8801 lifr = (struct lifreq *)mp1->b_rptr; 8802 8803 ill = ill_head = ipif->ipif_ill; 8804 orig_ipif = ipif; 8805 8806 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8807 rw_enter(&ill_g_usesrc_lock, RW_READER); 8808 rw_enter(&ill_g_lock, RW_READER); 8809 8810 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8811 for (; (ill != NULL) && (ill != ill_head); 8812 ill = ill->ill_usesrc_grp_next) { 8813 8814 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8815 break; 8816 8817 ipif = ill->ill_ipif; 8818 (void) ipif_get_name(ipif, 8819 lifr->lifr_name, sizeof (lifr->lifr_name)); 8820 if (ipif->ipif_isv6) { 8821 sin6 = (sin6_t *)&lifr->lifr_addr; 8822 *sin6 = sin6_null; 8823 sin6->sin6_family = AF_INET6; 8824 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8825 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8826 &ipif->ipif_v6net_mask); 8827 } else { 8828 sin = (sin_t *)&lifr->lifr_addr; 8829 *sin = sin_null; 8830 sin->sin_family = AF_INET; 8831 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8832 lifr->lifr_addrlen = ip_mask_to_plen( 8833 ipif->ipif_net_mask); 8834 } 8835 lifr++; 8836 } 8837 rw_exit(&ill_g_usesrc_lock); 8838 rw_exit(&ill_g_lock); 8839 ipif_refrele(orig_ipif); 8840 mp1->b_wptr = (uchar_t *)lifr; 8841 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8842 8843 return (0); 8844 } 8845 8846 /* ARGSUSED */ 8847 int 8848 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8849 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8850 { 8851 mblk_t *mp1; 8852 int list; 8853 ill_t *ill; 8854 ipif_t *ipif; 8855 int flags; 8856 int numlifs = 0; 8857 size_t lifc_bufsize; 8858 struct lifreq *lifr; 8859 sa_family_t family; 8860 struct sockaddr_in *sin; 8861 struct sockaddr_in6 *sin6; 8862 ill_walk_context_t ctx; 8863 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8864 int32_t lifclen; 8865 zoneid_t zoneid; 8866 STRUCT_HANDLE(lifconf, lifc); 8867 8868 ip1dbg(("ip_sioctl_get_lifconf")); 8869 8870 ASSERT(q->q_next == NULL); 8871 8872 zoneid = Q_TO_CONN(q)->conn_zoneid; 8873 8874 /* Existence verified in ip_wput_nondata */ 8875 mp1 = mp->b_cont->b_cont; 8876 8877 /* 8878 * An extended version of SIOCGIFCONF that takes an 8879 * additional address family and flags field. 8880 * AF_UNSPEC retrieve both IPv4 and IPv6. 8881 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8882 * interfaces are omitted. 8883 * Similarly, IPIF_TEMPORARY interfaces are omitted 8884 * unless LIFC_TEMPORARY is specified. 8885 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8886 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8887 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8888 * has priority over LIFC_NOXMIT. 8889 */ 8890 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8891 8892 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8893 return (EINVAL); 8894 8895 /* 8896 * Must be (better be!) continuation of a TRANSPARENT 8897 * IOCTL. We just copied in the lifconf structure. 8898 */ 8899 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8900 8901 family = STRUCT_FGET(lifc, lifc_family); 8902 flags = STRUCT_FGET(lifc, lifc_flags); 8903 8904 switch (family) { 8905 case AF_UNSPEC: 8906 /* 8907 * walk all ILL's. 8908 */ 8909 list = MAX_G_HEADS; 8910 break; 8911 case AF_INET: 8912 /* 8913 * walk only IPV4 ILL's. 8914 */ 8915 list = IP_V4_G_HEAD; 8916 break; 8917 case AF_INET6: 8918 /* 8919 * walk only IPV6 ILL's. 8920 */ 8921 list = IP_V6_G_HEAD; 8922 break; 8923 default: 8924 return (EAFNOSUPPORT); 8925 } 8926 8927 /* 8928 * Allocate a buffer to hold requested information. 8929 * 8930 * If lifc_len is larger than what is needed, we only 8931 * allocate what we will use. 8932 * 8933 * If lifc_len is smaller than what is needed, return 8934 * EINVAL. 8935 */ 8936 numlifs = ip_get_numlifs(family, flags, zoneid); 8937 lifc_bufsize = numlifs * sizeof (struct lifreq); 8938 lifclen = STRUCT_FGET(lifc, lifc_len); 8939 if (lifc_bufsize > lifclen) { 8940 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8941 return (EINVAL); 8942 else 8943 lifc_bufsize = lifclen; 8944 } 8945 8946 mp1 = mi_copyout_alloc(q, mp, 8947 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8948 if (mp1 == NULL) 8949 return (ENOMEM); 8950 8951 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8952 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8953 8954 lifr = (struct lifreq *)mp1->b_rptr; 8955 8956 rw_enter(&ill_g_lock, RW_READER); 8957 ill = ill_first(list, list, &ctx); 8958 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8959 for (ipif = ill->ill_ipif; ipif != NULL; 8960 ipif = ipif->ipif_next) { 8961 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8962 !(flags & LIFC_NOXMIT)) 8963 continue; 8964 8965 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8966 !(flags & LIFC_TEMPORARY)) 8967 continue; 8968 8969 if (((ipif->ipif_flags & 8970 (IPIF_NOXMIT|IPIF_NOLOCAL| 8971 IPIF_DEPRECATED)) || 8972 (ill->ill_phyint->phyint_flags & 8973 PHYI_LOOPBACK) || 8974 !(ipif->ipif_flags & IPIF_UP)) && 8975 (flags & LIFC_EXTERNAL_SOURCE)) 8976 continue; 8977 8978 if (zoneid != ipif->ipif_zoneid && 8979 ipif->ipif_zoneid != ALL_ZONES && 8980 (zoneid != GLOBAL_ZONEID || 8981 !(flags & LIFC_ALLZONES))) 8982 continue; 8983 8984 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8985 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8986 rw_exit(&ill_g_lock); 8987 return (EINVAL); 8988 } else { 8989 goto lif_copydone; 8990 } 8991 } 8992 8993 (void) ipif_get_name(ipif, 8994 lifr->lifr_name, 8995 sizeof (lifr->lifr_name)); 8996 if (ipif->ipif_isv6) { 8997 sin6 = (sin6_t *)&lifr->lifr_addr; 8998 *sin6 = sin6_null; 8999 sin6->sin6_family = AF_INET6; 9000 sin6->sin6_addr = 9001 ipif->ipif_v6lcl_addr; 9002 lifr->lifr_addrlen = 9003 ip_mask_to_plen_v6( 9004 &ipif->ipif_v6net_mask); 9005 } else { 9006 sin = (sin_t *)&lifr->lifr_addr; 9007 *sin = sin_null; 9008 sin->sin_family = AF_INET; 9009 sin->sin_addr.s_addr = 9010 ipif->ipif_lcl_addr; 9011 lifr->lifr_addrlen = 9012 ip_mask_to_plen( 9013 ipif->ipif_net_mask); 9014 } 9015 lifr++; 9016 } 9017 } 9018 lif_copydone: 9019 rw_exit(&ill_g_lock); 9020 9021 mp1->b_wptr = (uchar_t *)lifr; 9022 if (STRUCT_BUF(lifc) != NULL) { 9023 STRUCT_FSET(lifc, lifc_len, 9024 (int)((uchar_t *)lifr - mp1->b_rptr)); 9025 } 9026 return (0); 9027 } 9028 9029 /* ARGSUSED */ 9030 int 9031 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9032 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9033 { 9034 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9035 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9036 return (0); 9037 } 9038 9039 static void 9040 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9041 { 9042 ip6_asp_t *table; 9043 size_t table_size; 9044 mblk_t *data_mp; 9045 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9046 9047 /* These two ioctls are I_STR only */ 9048 if (iocp->ioc_count == TRANSPARENT) { 9049 miocnak(q, mp, 0, EINVAL); 9050 return; 9051 } 9052 9053 data_mp = mp->b_cont; 9054 if (data_mp == NULL) { 9055 /* The user passed us a NULL argument */ 9056 table = NULL; 9057 table_size = iocp->ioc_count; 9058 } else { 9059 /* 9060 * The user provided a table. The stream head 9061 * may have copied in the user data in chunks, 9062 * so make sure everything is pulled up 9063 * properly. 9064 */ 9065 if (MBLKL(data_mp) < iocp->ioc_count) { 9066 mblk_t *new_data_mp; 9067 if ((new_data_mp = msgpullup(data_mp, -1)) == 9068 NULL) { 9069 miocnak(q, mp, 0, ENOMEM); 9070 return; 9071 } 9072 freemsg(data_mp); 9073 data_mp = new_data_mp; 9074 mp->b_cont = data_mp; 9075 } 9076 table = (ip6_asp_t *)data_mp->b_rptr; 9077 table_size = iocp->ioc_count; 9078 } 9079 9080 switch (iocp->ioc_cmd) { 9081 case SIOCGIP6ADDRPOLICY: 9082 iocp->ioc_rval = ip6_asp_get(table, table_size); 9083 if (iocp->ioc_rval == -1) 9084 iocp->ioc_error = EINVAL; 9085 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9086 else if (table != NULL && 9087 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9088 ip6_asp_t *src = table; 9089 ip6_asp32_t *dst = (void *)table; 9090 int count = table_size / sizeof (ip6_asp_t); 9091 int i; 9092 9093 /* 9094 * We need to do an in-place shrink of the array 9095 * to match the alignment attributes of the 9096 * 32-bit ABI looking at it. 9097 */ 9098 /* LINTED: logical expression always true: op "||" */ 9099 ASSERT(sizeof (*src) > sizeof (*dst)); 9100 for (i = 1; i < count; i++) 9101 bcopy(src + i, dst + i, sizeof (*dst)); 9102 } 9103 #endif 9104 break; 9105 9106 case SIOCSIP6ADDRPOLICY: 9107 ASSERT(mp->b_prev == NULL); 9108 mp->b_prev = (void *)q; 9109 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9110 /* 9111 * We pass in the datamodel here so that the ip6_asp_replace() 9112 * routine can handle converting from 32-bit to native formats 9113 * where necessary. 9114 * 9115 * A better way to handle this might be to convert the inbound 9116 * data structure here, and hang it off a new 'mp'; thus the 9117 * ip6_asp_replace() logic would always be dealing with native 9118 * format data structures.. 9119 * 9120 * (An even simpler way to handle these ioctls is to just 9121 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9122 * and just recompile everything that depends on it.) 9123 */ 9124 #endif 9125 ip6_asp_replace(mp, table, table_size, B_FALSE, 9126 iocp->ioc_flag & IOC_MODELS); 9127 return; 9128 } 9129 9130 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9131 qreply(q, mp); 9132 } 9133 9134 static void 9135 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9136 { 9137 mblk_t *data_mp; 9138 struct dstinforeq *dir; 9139 uint8_t *end, *cur; 9140 in6_addr_t *daddr, *saddr; 9141 ipaddr_t v4daddr; 9142 ire_t *ire; 9143 char *slabel, *dlabel; 9144 boolean_t isipv4; 9145 int match_ire; 9146 ill_t *dst_ill; 9147 ipif_t *src_ipif, *ire_ipif; 9148 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9149 zoneid_t zoneid; 9150 9151 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9152 zoneid = Q_TO_CONN(q)->conn_zoneid; 9153 9154 /* 9155 * This ioctl is I_STR only, and must have a 9156 * data mblk following the M_IOCTL mblk. 9157 */ 9158 data_mp = mp->b_cont; 9159 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9160 miocnak(q, mp, 0, EINVAL); 9161 return; 9162 } 9163 9164 if (MBLKL(data_mp) < iocp->ioc_count) { 9165 mblk_t *new_data_mp; 9166 9167 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9168 miocnak(q, mp, 0, ENOMEM); 9169 return; 9170 } 9171 freemsg(data_mp); 9172 data_mp = new_data_mp; 9173 mp->b_cont = data_mp; 9174 } 9175 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9176 9177 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9178 end - cur >= sizeof (struct dstinforeq); 9179 cur += sizeof (struct dstinforeq)) { 9180 dir = (struct dstinforeq *)cur; 9181 daddr = &dir->dir_daddr; 9182 saddr = &dir->dir_saddr; 9183 9184 /* 9185 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9186 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9187 * and ipif_select_source[_v6]() do not. 9188 */ 9189 dir->dir_dscope = ip_addr_scope_v6(daddr); 9190 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 9191 9192 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9193 if (isipv4) { 9194 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9195 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9196 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9197 } else { 9198 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9199 0, NULL, NULL, zoneid, 0, NULL, match_ire); 9200 } 9201 if (ire == NULL) { 9202 dir->dir_dreachable = 0; 9203 9204 /* move on to next dst addr */ 9205 continue; 9206 } 9207 dir->dir_dreachable = 1; 9208 9209 ire_ipif = ire->ire_ipif; 9210 if (ire_ipif == NULL) 9211 goto next_dst; 9212 9213 /* 9214 * We expect to get back an interface ire or a 9215 * gateway ire cache entry. For both types, the 9216 * output interface is ire_ipif->ipif_ill. 9217 */ 9218 dst_ill = ire_ipif->ipif_ill; 9219 dir->dir_dmactype = dst_ill->ill_mactype; 9220 9221 if (isipv4) { 9222 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9223 } else { 9224 src_ipif = ipif_select_source_v6(dst_ill, 9225 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9226 zoneid); 9227 } 9228 if (src_ipif == NULL) 9229 goto next_dst; 9230 9231 *saddr = src_ipif->ipif_v6lcl_addr; 9232 dir->dir_sscope = ip_addr_scope_v6(saddr); 9233 slabel = ip6_asp_lookup(saddr, NULL); 9234 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9235 dir->dir_sdeprecated = 9236 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9237 ipif_refrele(src_ipif); 9238 next_dst: 9239 ire_refrele(ire); 9240 } 9241 miocack(q, mp, iocp->ioc_count, 0); 9242 } 9243 9244 9245 /* 9246 * Check if this is an address assigned to this machine. 9247 * Skips interfaces that are down by using ire checks. 9248 * Translates mapped addresses to v4 addresses and then 9249 * treats them as such, returning true if the v4 address 9250 * associated with this mapped address is configured. 9251 * Note: Applications will have to be careful what they do 9252 * with the response; use of mapped addresses limits 9253 * what can be done with the socket, especially with 9254 * respect to socket options and ioctls - neither IPv4 9255 * options nor IPv6 sticky options/ancillary data options 9256 * may be used. 9257 */ 9258 /* ARGSUSED */ 9259 int 9260 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9261 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9262 { 9263 struct sioc_addrreq *sia; 9264 sin_t *sin; 9265 ire_t *ire; 9266 mblk_t *mp1; 9267 zoneid_t zoneid; 9268 9269 ip1dbg(("ip_sioctl_tmyaddr")); 9270 9271 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9272 zoneid = Q_TO_CONN(q)->conn_zoneid; 9273 9274 /* Existence verified in ip_wput_nondata */ 9275 mp1 = mp->b_cont->b_cont; 9276 sia = (struct sioc_addrreq *)mp1->b_rptr; 9277 sin = (sin_t *)&sia->sa_addr; 9278 switch (sin->sin_family) { 9279 case AF_INET6: { 9280 sin6_t *sin6 = (sin6_t *)sin; 9281 9282 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9283 ipaddr_t v4_addr; 9284 9285 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9286 v4_addr); 9287 ire = ire_ctable_lookup(v4_addr, 0, 9288 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9289 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9290 } else { 9291 in6_addr_t v6addr; 9292 9293 v6addr = sin6->sin6_addr; 9294 ire = ire_ctable_lookup_v6(&v6addr, 0, 9295 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9296 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9297 } 9298 break; 9299 } 9300 case AF_INET: { 9301 ipaddr_t v4addr; 9302 9303 v4addr = sin->sin_addr.s_addr; 9304 ire = ire_ctable_lookup(v4addr, 0, 9305 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9306 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 9307 break; 9308 } 9309 default: 9310 return (EAFNOSUPPORT); 9311 } 9312 if (ire != NULL) { 9313 sia->sa_res = 1; 9314 ire_refrele(ire); 9315 } else { 9316 sia->sa_res = 0; 9317 } 9318 return (0); 9319 } 9320 9321 /* 9322 * Check if this is an address assigned on-link i.e. neighbor, 9323 * and makes sure it's reachable from the current zone. 9324 * Returns true for my addresses as well. 9325 * Translates mapped addresses to v4 addresses and then 9326 * treats them as such, returning true if the v4 address 9327 * associated with this mapped address is configured. 9328 * Note: Applications will have to be careful what they do 9329 * with the response; use of mapped addresses limits 9330 * what can be done with the socket, especially with 9331 * respect to socket options and ioctls - neither IPv4 9332 * options nor IPv6 sticky options/ancillary data options 9333 * may be used. 9334 */ 9335 /* ARGSUSED */ 9336 int 9337 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9338 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9339 { 9340 struct sioc_addrreq *sia; 9341 sin_t *sin; 9342 mblk_t *mp1; 9343 ire_t *ire = NULL; 9344 zoneid_t zoneid; 9345 9346 ip1dbg(("ip_sioctl_tonlink")); 9347 9348 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9349 zoneid = Q_TO_CONN(q)->conn_zoneid; 9350 9351 /* Existence verified in ip_wput_nondata */ 9352 mp1 = mp->b_cont->b_cont; 9353 sia = (struct sioc_addrreq *)mp1->b_rptr; 9354 sin = (sin_t *)&sia->sa_addr; 9355 9356 /* 9357 * Match addresses with a zero gateway field to avoid 9358 * routes going through a router. 9359 * Exclude broadcast and multicast addresses. 9360 */ 9361 switch (sin->sin_family) { 9362 case AF_INET6: { 9363 sin6_t *sin6 = (sin6_t *)sin; 9364 9365 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9366 ipaddr_t v4_addr; 9367 9368 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9369 v4_addr); 9370 if (!CLASSD(v4_addr)) { 9371 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9372 NULL, NULL, zoneid, NULL, 9373 MATCH_IRE_GW); 9374 } 9375 } else { 9376 in6_addr_t v6addr; 9377 in6_addr_t v6gw; 9378 9379 v6addr = sin6->sin6_addr; 9380 v6gw = ipv6_all_zeros; 9381 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9382 ire = ire_route_lookup_v6(&v6addr, 0, 9383 &v6gw, 0, NULL, NULL, zoneid, 9384 NULL, MATCH_IRE_GW); 9385 } 9386 } 9387 break; 9388 } 9389 case AF_INET: { 9390 ipaddr_t v4addr; 9391 9392 v4addr = sin->sin_addr.s_addr; 9393 if (!CLASSD(v4addr)) { 9394 ire = ire_route_lookup(v4addr, 0, 0, 0, 9395 NULL, NULL, zoneid, NULL, 9396 MATCH_IRE_GW); 9397 } 9398 break; 9399 } 9400 default: 9401 return (EAFNOSUPPORT); 9402 } 9403 sia->sa_res = 0; 9404 if (ire != NULL) { 9405 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9406 IRE_LOCAL|IRE_LOOPBACK)) { 9407 sia->sa_res = 1; 9408 } 9409 ire_refrele(ire); 9410 } 9411 return (0); 9412 } 9413 9414 /* 9415 * TBD: implement when kernel maintaines a list of site prefixes. 9416 */ 9417 /* ARGSUSED */ 9418 int 9419 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9420 ip_ioctl_cmd_t *ipip, void *ifreq) 9421 { 9422 return (ENXIO); 9423 } 9424 9425 /* ARGSUSED */ 9426 int 9427 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9428 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9429 { 9430 ill_t *ill; 9431 mblk_t *mp1; 9432 conn_t *connp; 9433 boolean_t success; 9434 9435 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9436 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9437 /* ioctl comes down on an conn */ 9438 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9439 connp = Q_TO_CONN(q); 9440 9441 mp->b_datap->db_type = M_IOCTL; 9442 9443 /* 9444 * Send down a copy. (copymsg does not copy b_next/b_prev). 9445 * The original mp contains contaminated b_next values due to 'mi', 9446 * which is needed to do the mi_copy_done. Unfortunately if we 9447 * send down the original mblk itself and if we are popped due to an 9448 * an unplumb before the response comes back from tunnel, 9449 * the streamhead (which does a freemsg) will see this contaminated 9450 * message and the assertion in freemsg about non-null b_next/b_prev 9451 * will panic a DEBUG kernel. 9452 */ 9453 mp1 = copymsg(mp); 9454 if (mp1 == NULL) 9455 return (ENOMEM); 9456 9457 ill = ipif->ipif_ill; 9458 mutex_enter(&connp->conn_lock); 9459 mutex_enter(&ill->ill_lock); 9460 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9461 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9462 mp, 0); 9463 } else { 9464 success = ill_pending_mp_add(ill, connp, mp); 9465 } 9466 mutex_exit(&ill->ill_lock); 9467 mutex_exit(&connp->conn_lock); 9468 9469 if (success) { 9470 ip1dbg(("sending down tunparam request ")); 9471 putnext(ill->ill_wq, mp1); 9472 return (EINPROGRESS); 9473 } else { 9474 /* The conn has started closing */ 9475 freemsg(mp1); 9476 return (EINTR); 9477 } 9478 } 9479 9480 static int 9481 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9482 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9483 { 9484 mblk_t *mp1; 9485 mblk_t *mp2; 9486 mblk_t *pending_mp; 9487 ipaddr_t ipaddr; 9488 area_t *area; 9489 struct iocblk *iocp; 9490 conn_t *connp; 9491 struct arpreq *ar; 9492 struct xarpreq *xar; 9493 boolean_t success; 9494 int flags, alength; 9495 char *lladdr; 9496 9497 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9498 connp = Q_TO_CONN(q); 9499 9500 iocp = (struct iocblk *)mp->b_rptr; 9501 /* 9502 * ill has already been set depending on whether 9503 * bsd style or interface style ioctl. 9504 */ 9505 ASSERT(ill != NULL); 9506 9507 /* 9508 * Is this one of the new SIOC*XARP ioctls? 9509 */ 9510 if (x_arp_ioctl) { 9511 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9512 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9513 ar = NULL; 9514 9515 flags = xar->xarp_flags; 9516 lladdr = LLADDR(&xar->xarp_ha); 9517 /* 9518 * Validate against user's link layer address length 9519 * input and name and addr length limits. 9520 */ 9521 alength = ill->ill_phys_addr_length; 9522 if (iocp->ioc_cmd == SIOCSXARP) { 9523 if (alength != xar->xarp_ha.sdl_alen || 9524 (alength + xar->xarp_ha.sdl_nlen > 9525 sizeof (xar->xarp_ha.sdl_data))) 9526 return (EINVAL); 9527 } 9528 } else { 9529 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9530 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9531 xar = NULL; 9532 9533 flags = ar->arp_flags; 9534 lladdr = ar->arp_ha.sa_data; 9535 /* 9536 * Theoretically, the sa_family could tell us what link 9537 * layer type this operation is trying to deal with. By 9538 * common usage AF_UNSPEC means ethernet. We'll assume 9539 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9540 * for now. Our new SIOC*XARP ioctls can be used more 9541 * generally. 9542 * 9543 * If the underlying media happens to have a non 6 byte 9544 * address, arp module will fail set/get, but the del 9545 * operation will succeed. 9546 */ 9547 alength = 6; 9548 if ((iocp->ioc_cmd != SIOCDARP) && 9549 (alength != ill->ill_phys_addr_length)) { 9550 return (EINVAL); 9551 } 9552 } 9553 9554 /* 9555 * We are going to pass up to ARP a packet chain that looks 9556 * like: 9557 * 9558 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9559 * 9560 * Get a copy of the original IOCTL mblk to head the chain, 9561 * to be sent up (in mp1). Also get another copy to store 9562 * in the ill_pending_mp list, for matching the response 9563 * when it comes back from ARP. 9564 */ 9565 mp1 = copyb(mp); 9566 pending_mp = copymsg(mp); 9567 if (mp1 == NULL || pending_mp == NULL) { 9568 if (mp1 != NULL) 9569 freeb(mp1); 9570 if (pending_mp != NULL) 9571 inet_freemsg(pending_mp); 9572 return (ENOMEM); 9573 } 9574 9575 ipaddr = sin->sin_addr.s_addr; 9576 9577 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9578 (caddr_t)&ipaddr); 9579 if (mp2 == NULL) { 9580 freeb(mp1); 9581 inet_freemsg(pending_mp); 9582 return (ENOMEM); 9583 } 9584 /* Put together the chain. */ 9585 mp1->b_cont = mp2; 9586 mp1->b_datap->db_type = M_IOCTL; 9587 mp2->b_cont = mp; 9588 mp2->b_datap->db_type = M_DATA; 9589 9590 iocp = (struct iocblk *)mp1->b_rptr; 9591 9592 /* 9593 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9594 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9595 * cp_private field (or cp_rval on 32-bit systems) in place of the 9596 * ioc_count field; set ioc_count to be correct. 9597 */ 9598 iocp->ioc_count = MBLKL(mp1->b_cont); 9599 9600 /* 9601 * Set the proper command in the ARP message. 9602 * Convert the SIOC{G|S|D}ARP calls into our 9603 * AR_ENTRY_xxx calls. 9604 */ 9605 area = (area_t *)mp2->b_rptr; 9606 switch (iocp->ioc_cmd) { 9607 case SIOCDARP: 9608 case SIOCDXARP: 9609 /* 9610 * We defer deleting the corresponding IRE until 9611 * we return from arp. 9612 */ 9613 area->area_cmd = AR_ENTRY_DELETE; 9614 area->area_proto_mask_offset = 0; 9615 break; 9616 case SIOCGARP: 9617 case SIOCGXARP: 9618 area->area_cmd = AR_ENTRY_SQUERY; 9619 area->area_proto_mask_offset = 0; 9620 break; 9621 case SIOCSARP: 9622 case SIOCSXARP: { 9623 /* 9624 * Delete the corresponding ire to make sure IP will 9625 * pick up any change from arp. 9626 */ 9627 if (!if_arp_ioctl) { 9628 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9629 break; 9630 } else { 9631 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9632 if (ipif != NULL) { 9633 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9634 ipif_refrele(ipif); 9635 } 9636 break; 9637 } 9638 } 9639 } 9640 iocp->ioc_cmd = area->area_cmd; 9641 9642 /* 9643 * Before sending 'mp' to ARP, we have to clear the b_next 9644 * and b_prev. Otherwise if STREAMS encounters such a message 9645 * in freemsg(), (because ARP can close any time) it can cause 9646 * a panic. But mi code needs the b_next and b_prev values of 9647 * mp->b_cont, to complete the ioctl. So we store it here 9648 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9649 * when the response comes down from ARP. 9650 */ 9651 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9652 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9653 mp->b_cont->b_next = NULL; 9654 mp->b_cont->b_prev = NULL; 9655 9656 mutex_enter(&connp->conn_lock); 9657 mutex_enter(&ill->ill_lock); 9658 /* conn has not yet started closing, hence this can't fail */ 9659 success = ill_pending_mp_add(ill, connp, pending_mp); 9660 ASSERT(success); 9661 mutex_exit(&ill->ill_lock); 9662 mutex_exit(&connp->conn_lock); 9663 9664 /* 9665 * Fill in the rest of the ARP operation fields. 9666 */ 9667 area->area_hw_addr_length = alength; 9668 bcopy(lladdr, 9669 (char *)area + area->area_hw_addr_offset, 9670 area->area_hw_addr_length); 9671 /* Translate the flags. */ 9672 if (flags & ATF_PERM) 9673 area->area_flags |= ACE_F_PERMANENT; 9674 if (flags & ATF_PUBL) 9675 area->area_flags |= ACE_F_PUBLISH; 9676 if (flags & ATF_AUTHORITY) 9677 area->area_flags |= ACE_F_AUTHORITY; 9678 9679 /* 9680 * Up to ARP it goes. The response will come 9681 * back in ip_wput as an M_IOCACK message, and 9682 * will be handed to ip_sioctl_iocack for 9683 * completion. 9684 */ 9685 putnext(ill->ill_rq, mp1); 9686 return (EINPROGRESS); 9687 } 9688 9689 /* ARGSUSED */ 9690 int 9691 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9692 ip_ioctl_cmd_t *ipip, void *ifreq) 9693 { 9694 struct xarpreq *xar; 9695 boolean_t isv6; 9696 mblk_t *mp1; 9697 int err; 9698 conn_t *connp; 9699 int ifnamelen; 9700 ire_t *ire = NULL; 9701 ill_t *ill = NULL; 9702 struct sockaddr_in *sin; 9703 boolean_t if_arp_ioctl = B_FALSE; 9704 9705 /* ioctl comes down on an conn */ 9706 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9707 connp = Q_TO_CONN(q); 9708 isv6 = connp->conn_af_isv6; 9709 9710 /* Existance verified in ip_wput_nondata */ 9711 mp1 = mp->b_cont->b_cont; 9712 9713 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9714 xar = (struct xarpreq *)mp1->b_rptr; 9715 sin = (sin_t *)&xar->xarp_pa; 9716 9717 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9718 (xar->xarp_pa.ss_family != AF_INET)) 9719 return (ENXIO); 9720 9721 ifnamelen = xar->xarp_ha.sdl_nlen; 9722 if (ifnamelen != 0) { 9723 char *cptr, cval; 9724 9725 if (ifnamelen >= LIFNAMSIZ) 9726 return (EINVAL); 9727 9728 /* 9729 * Instead of bcopying a bunch of bytes, 9730 * null-terminate the string in-situ. 9731 */ 9732 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9733 cval = *cptr; 9734 *cptr = '\0'; 9735 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9736 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9737 &err, NULL); 9738 *cptr = cval; 9739 if (ill == NULL) 9740 return (err); 9741 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9742 ill_refrele(ill); 9743 return (ENXIO); 9744 } 9745 9746 if_arp_ioctl = B_TRUE; 9747 } else { 9748 /* 9749 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9750 * as an extended BSD ioctl. The kernel uses the IP address 9751 * to figure out the network interface. 9752 */ 9753 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9754 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9755 ((ill = ire_to_ill(ire)) == NULL) || 9756 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9757 if (ire != NULL) 9758 ire_refrele(ire); 9759 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9760 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9761 NULL, MATCH_IRE_TYPE); 9762 if ((ire == NULL) || 9763 ((ill = ire_to_ill(ire)) == NULL)) { 9764 if (ire != NULL) 9765 ire_refrele(ire); 9766 return (ENXIO); 9767 } 9768 } 9769 ASSERT(ire != NULL && ill != NULL); 9770 } 9771 9772 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9773 if (if_arp_ioctl) 9774 ill_refrele(ill); 9775 if (ire != NULL) 9776 ire_refrele(ire); 9777 9778 return (err); 9779 } 9780 9781 /* 9782 * ARP IOCTLs. 9783 * How does IP get in the business of fronting ARP configuration/queries? 9784 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9785 * are by tradition passed in through a datagram socket. That lands in IP. 9786 * As it happens, this is just as well since the interface is quite crude in 9787 * that it passes in no information about protocol or hardware types, or 9788 * interface association. After making the protocol assumption, IP is in 9789 * the position to look up the name of the ILL, which ARP will need, and 9790 * format a request that can be handled by ARP. The request is passed up 9791 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9792 * back a response. ARP supports its own set of more general IOCTLs, in 9793 * case anyone is interested. 9794 */ 9795 /* ARGSUSED */ 9796 int 9797 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9798 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9799 { 9800 struct arpreq *ar; 9801 struct sockaddr_in *sin; 9802 ire_t *ire; 9803 boolean_t isv6; 9804 mblk_t *mp1; 9805 int err; 9806 conn_t *connp; 9807 ill_t *ill; 9808 9809 /* ioctl comes down on an conn */ 9810 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9811 connp = Q_TO_CONN(q); 9812 isv6 = connp->conn_af_isv6; 9813 if (isv6) 9814 return (ENXIO); 9815 9816 /* Existance verified in ip_wput_nondata */ 9817 mp1 = mp->b_cont->b_cont; 9818 9819 ar = (struct arpreq *)mp1->b_rptr; 9820 sin = (sin_t *)&ar->arp_pa; 9821 9822 /* 9823 * We need to let ARP know on which interface the IP 9824 * address has an ARP mapping. In the IPMP case, a 9825 * simple forwarding table lookup will return the 9826 * IRE_IF_RESOLVER for the first interface in the group, 9827 * which might not be the interface on which the 9828 * requested IP address was resolved due to the ill 9829 * selection algorithm (see ip_newroute_get_dst_ill()). 9830 * So we do a cache table lookup first: if the IRE cache 9831 * entry for the IP address is still there, it will 9832 * contain the ill pointer for the right interface, so 9833 * we use that. If the cache entry has been flushed, we 9834 * fall back to the forwarding table lookup. This should 9835 * be rare enough since IRE cache entries have a longer 9836 * life expectancy than ARP cache entries. 9837 */ 9838 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9839 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9840 ((ill = ire_to_ill(ire)) == NULL)) { 9841 if (ire != NULL) 9842 ire_refrele(ire); 9843 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9844 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9845 NULL, MATCH_IRE_TYPE); 9846 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9847 if (ire != NULL) 9848 ire_refrele(ire); 9849 return (ENXIO); 9850 } 9851 } 9852 ASSERT(ire != NULL && ill != NULL); 9853 9854 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9855 ire_refrele(ire); 9856 return (err); 9857 } 9858 9859 /* 9860 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9861 * atomically set/clear the muxids. Also complete the ioctl by acking or 9862 * naking it. Note that the code is structured such that the link type, 9863 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9864 * its clones use the persistent link, while pppd(1M) and perhaps many 9865 * other daemons may use non-persistent link. When combined with some 9866 * ill_t states, linking and unlinking lower streams may be used as 9867 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9868 */ 9869 /* ARGSUSED */ 9870 void 9871 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9872 { 9873 mblk_t *mp1; 9874 mblk_t *mp2; 9875 struct linkblk *li; 9876 queue_t *ipwq; 9877 char *name; 9878 struct qinit *qinfo; 9879 struct ipmx_s *ipmxp; 9880 ill_t *ill = NULL; 9881 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9882 int err = 0; 9883 boolean_t entered_ipsq = B_FALSE; 9884 boolean_t islink; 9885 queue_t *dwq = NULL; 9886 9887 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9888 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9889 9890 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9891 B_TRUE : B_FALSE; 9892 9893 mp1 = mp->b_cont; /* This is the linkblk info */ 9894 li = (struct linkblk *)mp1->b_rptr; 9895 9896 /* 9897 * ARP has added this special mblk, and the utility is asking us 9898 * to perform consistency checks, and also atomically set the 9899 * muxid. Ifconfig is an example. It achieves this by using 9900 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9901 * to /dev/udp[6] stream for use as the mux when plinking the IP 9902 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9903 * and other comments in this routine for more details. 9904 */ 9905 mp2 = mp1->b_cont; /* This is added by ARP */ 9906 9907 /* 9908 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9909 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9910 * get the special mblk above. For backward compatibility, we just 9911 * return success. The utility will use SIOCSLIFMUXID to store 9912 * the muxids. This is not atomic, and can leave the streams 9913 * unplumbable if the utility is interrrupted, before it does the 9914 * SIOCSLIFMUXID. 9915 */ 9916 if (mp2 == NULL) { 9917 /* 9918 * At this point we don't know whether or not this is the 9919 * IP module stream or the ARP device stream. We need to 9920 * walk the lower stream in order to find this out, since 9921 * the capability negotiation is done only on the IP module 9922 * stream. IP module instance is identified by the module 9923 * name IP, non-null q_next, and it's wput not being ip_lwput. 9924 * STREAMS ensures that the lower stream (l_qbot) will not 9925 * vanish until this ioctl completes. So we can safely walk 9926 * the stream or refer to the q_ptr. 9927 */ 9928 ipwq = li->l_qbot; 9929 while (ipwq != NULL) { 9930 qinfo = ipwq->q_qinfo; 9931 name = qinfo->qi_minfo->mi_idname; 9932 if (name != NULL && name[0] != NULL && 9933 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9934 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9935 (ipwq->q_next != NULL)) { 9936 break; 9937 } 9938 ipwq = ipwq->q_next; 9939 } 9940 /* 9941 * This looks like an IP module stream, so trigger 9942 * the capability reset or re-negotiation if necessary. 9943 */ 9944 if (ipwq != NULL) { 9945 ill = ipwq->q_ptr; 9946 ASSERT(ill != NULL); 9947 9948 if (ipsq == NULL) { 9949 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9950 ip_sioctl_plink, NEW_OP, B_TRUE); 9951 if (ipsq == NULL) 9952 return; 9953 entered_ipsq = B_TRUE; 9954 } 9955 ASSERT(IAM_WRITER_ILL(ill)); 9956 /* 9957 * Store the upper read queue of the module 9958 * immediately below IP, and count the total 9959 * number of lower modules. Do this only 9960 * for I_PLINK or I_LINK event. 9961 */ 9962 ill->ill_lmod_rq = NULL; 9963 ill->ill_lmod_cnt = 0; 9964 if (islink && (dwq = ipwq->q_next) != NULL) { 9965 ill->ill_lmod_rq = RD(dwq); 9966 9967 while (dwq != NULL) { 9968 ill->ill_lmod_cnt++; 9969 dwq = dwq->q_next; 9970 } 9971 } 9972 /* 9973 * There's no point in resetting or re-negotiating if 9974 * we are not bound to the driver, so only do this if 9975 * the DLPI state is idle (up); we assume such state 9976 * since ill_ipif_up_count gets incremented in 9977 * ipif_up_done(), which is after we are bound to the 9978 * driver. Note that in the case of logical 9979 * interfaces, IP won't rebind to the driver unless 9980 * the ill_ipif_up_count is 0, meaning that all other 9981 * IP interfaces (including the main ipif) are in the 9982 * down state. Because of this, we use such counter 9983 * as an indicator, instead of relying on the IPIF_UP 9984 * flag, which is per ipif instance. 9985 */ 9986 if (ill->ill_ipif_up_count > 0) { 9987 if (islink) 9988 ill_capability_probe(ill); 9989 else 9990 ill_capability_reset(ill); 9991 } 9992 } 9993 goto done; 9994 } 9995 9996 /* 9997 * This is an I_{P}LINK sent down by ifconfig on 9998 * /dev/arp. ARP has appended this last (3rd) mblk, 9999 * giving more info. STREAMS ensures that the lower 10000 * stream (l_qbot) will not vanish until this ioctl 10001 * completes. So we can safely walk the stream or refer 10002 * to the q_ptr. 10003 */ 10004 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10005 if (ipmxp->ipmx_arpdev_stream) { 10006 /* 10007 * The operation is occuring on the arp-device 10008 * stream. 10009 */ 10010 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10011 q, mp, ip_sioctl_plink, &err, NULL); 10012 if (ill == NULL) { 10013 if (err == EINPROGRESS) { 10014 return; 10015 } else { 10016 err = EINVAL; 10017 goto done; 10018 } 10019 } 10020 10021 if (ipsq == NULL) { 10022 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10023 NEW_OP, B_TRUE); 10024 if (ipsq == NULL) { 10025 ill_refrele(ill); 10026 return; 10027 } 10028 entered_ipsq = B_TRUE; 10029 } 10030 ASSERT(IAM_WRITER_ILL(ill)); 10031 ill_refrele(ill); 10032 /* 10033 * To ensure consistency between IP and ARP, 10034 * the following LIFO scheme is used in 10035 * plink/punlink. (IP first, ARP last). 10036 * This is because the muxid's are stored 10037 * in the IP stream on the ill. 10038 * 10039 * I_{P}LINK: ifconfig plinks the IP stream before 10040 * plinking the ARP stream. On an arp-dev 10041 * stream, IP checks that it is not yet 10042 * plinked, and it also checks that the 10043 * corresponding IP stream is already plinked. 10044 * 10045 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10046 * before punlinking the IP stream. IP does 10047 * not allow punlink of the IP stream unless 10048 * the arp stream has been punlinked. 10049 * 10050 */ 10051 if ((islink && 10052 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10053 (!islink && 10054 ill->ill_arp_muxid != li->l_index)) { 10055 err = EINVAL; 10056 goto done; 10057 } 10058 if (islink) { 10059 ill->ill_arp_muxid = li->l_index; 10060 } else { 10061 ill->ill_arp_muxid = 0; 10062 } 10063 } else { 10064 /* 10065 * This must be the IP module stream with or 10066 * without arp. Walk the stream and locate the 10067 * IP module. An IP module instance is 10068 * identified by the module name IP, non-null 10069 * q_next, and it's wput not being ip_lwput. 10070 */ 10071 ipwq = li->l_qbot; 10072 while (ipwq != NULL) { 10073 qinfo = ipwq->q_qinfo; 10074 name = qinfo->qi_minfo->mi_idname; 10075 if (name != NULL && name[0] != NULL && 10076 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10077 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10078 (ipwq->q_next != NULL)) { 10079 break; 10080 } 10081 ipwq = ipwq->q_next; 10082 } 10083 if (ipwq != NULL) { 10084 ill = ipwq->q_ptr; 10085 ASSERT(ill != NULL); 10086 10087 if (ipsq == NULL) { 10088 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10089 ip_sioctl_plink, NEW_OP, B_TRUE); 10090 if (ipsq == NULL) 10091 return; 10092 entered_ipsq = B_TRUE; 10093 } 10094 ASSERT(IAM_WRITER_ILL(ill)); 10095 /* 10096 * Return error if the ip_mux_id is 10097 * non-zero and command is I_{P}LINK. 10098 * If command is I_{P}UNLINK, return 10099 * error if the arp-devstr is not 10100 * yet punlinked. 10101 */ 10102 if ((islink && ill->ill_ip_muxid != 0) || 10103 (!islink && ill->ill_arp_muxid != 0)) { 10104 err = EINVAL; 10105 goto done; 10106 } 10107 ill->ill_lmod_rq = NULL; 10108 ill->ill_lmod_cnt = 0; 10109 if (islink) { 10110 /* 10111 * Store the upper read queue of the module 10112 * immediately below IP, and count the total 10113 * number of lower modules. 10114 */ 10115 if ((dwq = ipwq->q_next) != NULL) { 10116 ill->ill_lmod_rq = RD(dwq); 10117 10118 while (dwq != NULL) { 10119 ill->ill_lmod_cnt++; 10120 dwq = dwq->q_next; 10121 } 10122 } 10123 ill->ill_ip_muxid = li->l_index; 10124 } else { 10125 ill->ill_ip_muxid = 0; 10126 } 10127 10128 /* 10129 * See comments above about resetting/re- 10130 * negotiating driver sub-capabilities. 10131 */ 10132 if (ill->ill_ipif_up_count > 0) { 10133 if (islink) 10134 ill_capability_probe(ill); 10135 else 10136 ill_capability_reset(ill); 10137 } 10138 } 10139 } 10140 done: 10141 iocp->ioc_count = 0; 10142 iocp->ioc_error = err; 10143 if (err == 0) 10144 mp->b_datap->db_type = M_IOCACK; 10145 else 10146 mp->b_datap->db_type = M_IOCNAK; 10147 qreply(q, mp); 10148 10149 /* Conn was refheld in ip_sioctl_copyin_setup */ 10150 if (CONN_Q(q)) 10151 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10152 if (entered_ipsq) 10153 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10154 } 10155 10156 /* 10157 * Search the ioctl command in the ioctl tables and return a pointer 10158 * to the ioctl command information. The ioctl command tables are 10159 * static and fully populated at compile time. 10160 */ 10161 ip_ioctl_cmd_t * 10162 ip_sioctl_lookup(int ioc_cmd) 10163 { 10164 int index; 10165 ip_ioctl_cmd_t *ipip; 10166 ip_ioctl_cmd_t *ipip_end; 10167 10168 if (ioc_cmd == IPI_DONTCARE) 10169 return (NULL); 10170 10171 /* 10172 * Do a 2 step search. First search the indexed table 10173 * based on the least significant byte of the ioctl cmd. 10174 * If we don't find a match, then search the misc table 10175 * serially. 10176 */ 10177 index = ioc_cmd & 0xFF; 10178 if (index < ip_ndx_ioctl_count) { 10179 ipip = &ip_ndx_ioctl_table[index]; 10180 if (ipip->ipi_cmd == ioc_cmd) { 10181 /* Found a match in the ndx table */ 10182 return (ipip); 10183 } 10184 } 10185 10186 /* Search the misc table */ 10187 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10188 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10189 if (ipip->ipi_cmd == ioc_cmd) 10190 /* Found a match in the misc table */ 10191 return (ipip); 10192 } 10193 10194 return (NULL); 10195 } 10196 10197 /* 10198 * Wrapper function for resuming deferred ioctl processing 10199 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10200 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10201 */ 10202 /* ARGSUSED */ 10203 void 10204 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10205 void *dummy_arg) 10206 { 10207 ip_sioctl_copyin_setup(q, mp); 10208 } 10209 10210 /* 10211 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10212 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10213 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10214 * We establish here the size of the block to be copied in. mi_copyin 10215 * arranges for this to happen, an processing continues in ip_wput with 10216 * an M_IOCDATA message. 10217 */ 10218 void 10219 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10220 { 10221 int copyin_size; 10222 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10223 ip_ioctl_cmd_t *ipip; 10224 cred_t *cr; 10225 10226 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10227 if (ipip == NULL) { 10228 /* 10229 * The ioctl is not one we understand or own. 10230 * Pass it along to be processed down stream, 10231 * if this is a module instance of IP, else nak 10232 * the ioctl. 10233 */ 10234 if (q->q_next == NULL) { 10235 goto nak; 10236 } else { 10237 putnext(q, mp); 10238 return; 10239 } 10240 } 10241 10242 /* 10243 * If this is deferred, then we will do all the checks when we 10244 * come back. 10245 */ 10246 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10247 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 10248 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10249 return; 10250 } 10251 10252 /* 10253 * Only allow a very small subset of IP ioctls on this stream if 10254 * IP is a module and not a driver. Allowing ioctls to be processed 10255 * in this case may cause assert failures or data corruption. 10256 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10257 * ioctls allowed on an IP module stream, after which this stream 10258 * normally becomes a multiplexor (at which time the stream head 10259 * will fail all ioctls). 10260 */ 10261 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10262 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10263 /* 10264 * Pass common Streams ioctls which the IP 10265 * module does not own or consume along to 10266 * be processed down stream. 10267 */ 10268 putnext(q, mp); 10269 return; 10270 } else { 10271 goto nak; 10272 } 10273 } 10274 10275 /* Make sure we have ioctl data to process. */ 10276 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10277 goto nak; 10278 10279 /* 10280 * Prefer dblk credential over ioctl credential; some synthesized 10281 * ioctls have kcred set because there's no way to crhold() 10282 * a credential in some contexts. (ioc_cr is not crfree() by 10283 * the framework; the caller of ioctl needs to hold the reference 10284 * for the duration of the call). 10285 */ 10286 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10287 10288 /* Make sure normal users don't send down privileged ioctls */ 10289 if ((ipip->ipi_flags & IPI_PRIV) && 10290 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 10291 /* We checked the privilege earlier but log it here */ 10292 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 10293 return; 10294 } 10295 10296 /* 10297 * The ioctl command tables can only encode fixed length 10298 * ioctl data. If the length is variable, the table will 10299 * encode the length as zero. Such special cases are handled 10300 * below in the switch. 10301 */ 10302 if (ipip->ipi_copyin_size != 0) { 10303 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10304 return; 10305 } 10306 10307 switch (iocp->ioc_cmd) { 10308 case O_SIOCGIFCONF: 10309 case SIOCGIFCONF: 10310 /* 10311 * This IOCTL is hilarious. See comments in 10312 * ip_sioctl_get_ifconf for the story. 10313 */ 10314 if (iocp->ioc_count == TRANSPARENT) 10315 copyin_size = SIZEOF_STRUCT(ifconf, 10316 iocp->ioc_flag); 10317 else 10318 copyin_size = iocp->ioc_count; 10319 mi_copyin(q, mp, NULL, copyin_size); 10320 return; 10321 10322 case O_SIOCGLIFCONF: 10323 case SIOCGLIFCONF: 10324 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10325 mi_copyin(q, mp, NULL, copyin_size); 10326 return; 10327 10328 case SIOCGLIFSRCOF: 10329 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10330 mi_copyin(q, mp, NULL, copyin_size); 10331 return; 10332 case SIOCGIP6ADDRPOLICY: 10333 ip_sioctl_ip6addrpolicy(q, mp); 10334 ip6_asp_table_refrele(); 10335 return; 10336 10337 case SIOCSIP6ADDRPOLICY: 10338 ip_sioctl_ip6addrpolicy(q, mp); 10339 return; 10340 10341 case SIOCGDSTINFO: 10342 ip_sioctl_dstinfo(q, mp); 10343 ip6_asp_table_refrele(); 10344 return; 10345 10346 case I_PLINK: 10347 case I_PUNLINK: 10348 case I_LINK: 10349 case I_UNLINK: 10350 /* 10351 * We treat non-persistent link similarly as the persistent 10352 * link case, in terms of plumbing/unplumbing, as well as 10353 * dynamic re-plumbing events indicator. See comments 10354 * in ip_sioctl_plink() for more. 10355 * 10356 * Request can be enqueued in the 'ipsq' while waiting 10357 * to become exclusive. So bump up the conn ref. 10358 */ 10359 if (CONN_Q(q)) 10360 CONN_INC_REF(Q_TO_CONN(q)); 10361 ip_sioctl_plink(NULL, q, mp, NULL); 10362 return; 10363 10364 case ND_GET: 10365 case ND_SET: 10366 /* 10367 * Use of the nd table requires holding the reader lock. 10368 * Modifying the nd table thru nd_load/nd_unload requires 10369 * the writer lock. 10370 */ 10371 rw_enter(&ip_g_nd_lock, RW_READER); 10372 if (nd_getset(q, ip_g_nd, mp)) { 10373 rw_exit(&ip_g_nd_lock); 10374 10375 if (iocp->ioc_error) 10376 iocp->ioc_count = 0; 10377 mp->b_datap->db_type = M_IOCACK; 10378 qreply(q, mp); 10379 return; 10380 } 10381 rw_exit(&ip_g_nd_lock); 10382 /* 10383 * We don't understand this subioctl of ND_GET / ND_SET. 10384 * Maybe intended for some driver / module below us 10385 */ 10386 if (q->q_next) { 10387 putnext(q, mp); 10388 } else { 10389 iocp->ioc_error = ENOENT; 10390 mp->b_datap->db_type = M_IOCNAK; 10391 iocp->ioc_count = 0; 10392 qreply(q, mp); 10393 } 10394 return; 10395 10396 case IP_IOCTL: 10397 ip_wput_ioctl(q, mp); 10398 return; 10399 default: 10400 cmn_err(CE_PANIC, "should not happen "); 10401 } 10402 nak: 10403 if (mp->b_cont != NULL) { 10404 freemsg(mp->b_cont); 10405 mp->b_cont = NULL; 10406 } 10407 iocp->ioc_error = EINVAL; 10408 mp->b_datap->db_type = M_IOCNAK; 10409 iocp->ioc_count = 0; 10410 qreply(q, mp); 10411 } 10412 10413 /* ip_wput hands off ARP IOCTL responses to us */ 10414 void 10415 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10416 { 10417 struct arpreq *ar; 10418 struct xarpreq *xar; 10419 area_t *area; 10420 mblk_t *area_mp; 10421 struct iocblk *iocp; 10422 mblk_t *orig_ioc_mp, *tmp; 10423 struct iocblk *orig_iocp; 10424 ill_t *ill; 10425 conn_t *connp = NULL; 10426 uint_t ioc_id; 10427 mblk_t *pending_mp; 10428 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10429 int *flagsp; 10430 char *storage = NULL; 10431 sin_t *sin; 10432 ipaddr_t addr; 10433 int err; 10434 10435 ill = q->q_ptr; 10436 ASSERT(ill != NULL); 10437 10438 /* 10439 * We should get back from ARP a packet chain that looks like: 10440 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10441 */ 10442 if (!(area_mp = mp->b_cont) || 10443 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10444 !(orig_ioc_mp = area_mp->b_cont) || 10445 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10446 freemsg(mp); 10447 return; 10448 } 10449 10450 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10451 10452 tmp = (orig_ioc_mp->b_cont)->b_cont; 10453 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10454 (orig_iocp->ioc_cmd == SIOCSXARP) || 10455 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10456 x_arp_ioctl = B_TRUE; 10457 xar = (struct xarpreq *)tmp->b_rptr; 10458 sin = (sin_t *)&xar->xarp_pa; 10459 flagsp = &xar->xarp_flags; 10460 storage = xar->xarp_ha.sdl_data; 10461 if (xar->xarp_ha.sdl_nlen != 0) 10462 ifx_arp_ioctl = B_TRUE; 10463 } else { 10464 ar = (struct arpreq *)tmp->b_rptr; 10465 sin = (sin_t *)&ar->arp_pa; 10466 flagsp = &ar->arp_flags; 10467 storage = ar->arp_ha.sa_data; 10468 } 10469 10470 iocp = (struct iocblk *)mp->b_rptr; 10471 10472 /* 10473 * Pick out the originating queue based on the ioc_id. 10474 */ 10475 ioc_id = iocp->ioc_id; 10476 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10477 if (pending_mp == NULL) { 10478 ASSERT(connp == NULL); 10479 inet_freemsg(mp); 10480 return; 10481 } 10482 ASSERT(connp != NULL); 10483 q = CONNP_TO_WQ(connp); 10484 10485 /* Uncouple the internally generated IOCTL from the original one */ 10486 area = (area_t *)area_mp->b_rptr; 10487 area_mp->b_cont = NULL; 10488 10489 /* 10490 * Restore the b_next and b_prev used by mi code. This is needed 10491 * to complete the ioctl using mi* functions. We stored them in 10492 * the pending mp prior to sending the request to ARP. 10493 */ 10494 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10495 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10496 inet_freemsg(pending_mp); 10497 10498 /* 10499 * We're done if there was an error or if this is not an SIOCG{X}ARP 10500 * Catch the case where there is an IRE_CACHE by no entry in the 10501 * arp table. 10502 */ 10503 addr = sin->sin_addr.s_addr; 10504 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10505 ire_t *ire; 10506 dl_unitdata_req_t *dlup; 10507 mblk_t *llmp; 10508 int addr_len; 10509 ill_t *ipsqill = NULL; 10510 10511 if (ifx_arp_ioctl) { 10512 /* 10513 * There's no need to lookup the ill, since 10514 * we've already done that when we started 10515 * processing the ioctl and sent the message 10516 * to ARP on that ill. So use the ill that 10517 * is stored in q->q_ptr. 10518 */ 10519 ipsqill = ill; 10520 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10521 ipsqill->ill_ipif, ALL_ZONES, 10522 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10523 } else { 10524 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10525 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10526 if (ire != NULL) 10527 ipsqill = ire_to_ill(ire); 10528 } 10529 10530 if ((x_arp_ioctl) && (ipsqill != NULL)) 10531 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10532 10533 if (ire != NULL) { 10534 /* 10535 * Since the ire obtained from cachetable is used for 10536 * mac addr copying below, treat an incomplete ire as if 10537 * as if we never found it. 10538 */ 10539 if (ire->ire_nce != NULL && 10540 ire->ire_nce->nce_state != ND_REACHABLE) { 10541 ire_refrele(ire); 10542 ire = NULL; 10543 ipsqill = NULL; 10544 goto errack; 10545 } 10546 *flagsp = ATF_INUSE; 10547 llmp = (ire->ire_nce != NULL ? 10548 ire->ire_nce->nce_res_mp : NULL); 10549 if (llmp != NULL && ipsqill != NULL) { 10550 uchar_t *macaddr; 10551 10552 addr_len = ipsqill->ill_phys_addr_length; 10553 if (x_arp_ioctl && ((addr_len + 10554 ipsqill->ill_name_length) > 10555 sizeof (xar->xarp_ha.sdl_data))) { 10556 ire_refrele(ire); 10557 freemsg(mp); 10558 ip_ioctl_finish(q, orig_ioc_mp, 10559 EINVAL, NO_COPYOUT, NULL, NULL); 10560 return; 10561 } 10562 *flagsp |= ATF_COM; 10563 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10564 if (ipsqill->ill_sap_length < 0) 10565 macaddr = llmp->b_rptr + 10566 dlup->dl_dest_addr_offset; 10567 else 10568 macaddr = llmp->b_rptr + 10569 dlup->dl_dest_addr_offset + 10570 ipsqill->ill_sap_length; 10571 /* 10572 * For SIOCGARP, MAC address length 10573 * validation has already been done 10574 * before the ioctl was issued to ARP to 10575 * allow it to progress only on 6 byte 10576 * addressable (ethernet like) media. Thus 10577 * the mac address copying can not overwrite 10578 * the sa_data area below. 10579 */ 10580 bcopy(macaddr, storage, addr_len); 10581 } 10582 /* Ditch the internal IOCTL. */ 10583 freemsg(mp); 10584 ire_refrele(ire); 10585 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10586 return; 10587 } 10588 } 10589 10590 /* 10591 * Delete the coresponding IRE_CACHE if any. 10592 * Reset the error if there was one (in case there was no entry 10593 * in arp.) 10594 */ 10595 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10596 ipif_t *ipintf = NULL; 10597 10598 if (ifx_arp_ioctl) { 10599 /* 10600 * There's no need to lookup the ill, since 10601 * we've already done that when we started 10602 * processing the ioctl and sent the message 10603 * to ARP on that ill. So use the ill that 10604 * is stored in q->q_ptr. 10605 */ 10606 ipintf = ill->ill_ipif; 10607 } 10608 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10609 /* 10610 * The address in "addr" may be an entry for a 10611 * router. If that's true, then any off-net 10612 * IRE_CACHE entries that go through the router 10613 * with address "addr" must be clobbered. Use 10614 * ire_walk to achieve this goal. 10615 */ 10616 if (ifx_arp_ioctl) 10617 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10618 ire_delete_cache_gw, (char *)&addr, ill); 10619 else 10620 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10621 ALL_ZONES); 10622 iocp->ioc_error = 0; 10623 } 10624 } 10625 errack: 10626 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10627 err = iocp->ioc_error; 10628 freemsg(mp); 10629 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10630 return; 10631 } 10632 10633 /* 10634 * Completion of an SIOCG{X}ARP. Translate the information from 10635 * the area_t into the struct {x}arpreq. 10636 */ 10637 if (x_arp_ioctl) { 10638 storage += ill_xarp_info(&xar->xarp_ha, ill); 10639 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10640 sizeof (xar->xarp_ha.sdl_data)) { 10641 freemsg(mp); 10642 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10643 NO_COPYOUT, NULL, NULL); 10644 return; 10645 } 10646 } 10647 *flagsp = ATF_INUSE; 10648 if (area->area_flags & ACE_F_PERMANENT) 10649 *flagsp |= ATF_PERM; 10650 if (area->area_flags & ACE_F_PUBLISH) 10651 *flagsp |= ATF_PUBL; 10652 if (area->area_flags & ACE_F_AUTHORITY) 10653 *flagsp |= ATF_AUTHORITY; 10654 if (area->area_hw_addr_length != 0) { 10655 *flagsp |= ATF_COM; 10656 /* 10657 * For SIOCGARP, MAC address length validation has 10658 * already been done before the ioctl was issued to ARP 10659 * to allow it to progress only on 6 byte addressable 10660 * (ethernet like) media. Thus the mac address copying 10661 * can not overwrite the sa_data area below. 10662 */ 10663 bcopy((char *)area + area->area_hw_addr_offset, 10664 storage, area->area_hw_addr_length); 10665 } 10666 10667 /* Ditch the internal IOCTL. */ 10668 freemsg(mp); 10669 /* Complete the original. */ 10670 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10671 } 10672 10673 /* 10674 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10675 * interface) create the next available logical interface for this 10676 * physical interface. 10677 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10678 * ipif with the specified name. 10679 * 10680 * If the address family is not AF_UNSPEC then set the address as well. 10681 * 10682 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10683 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10684 * 10685 * Executed as a writer on the ill or ill group. 10686 * So no lock is needed to traverse the ipif chain, or examine the 10687 * phyint flags. 10688 */ 10689 /* ARGSUSED */ 10690 int 10691 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10692 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10693 { 10694 mblk_t *mp1; 10695 struct lifreq *lifr; 10696 boolean_t isv6; 10697 boolean_t exists; 10698 char *name; 10699 char *endp; 10700 char *cp; 10701 int namelen; 10702 ipif_t *ipif; 10703 long id; 10704 ipsq_t *ipsq; 10705 ill_t *ill; 10706 sin_t *sin; 10707 int err = 0; 10708 boolean_t found_sep = B_FALSE; 10709 conn_t *connp; 10710 zoneid_t zoneid; 10711 int orig_ifindex = 0; 10712 10713 ip1dbg(("ip_sioctl_addif\n")); 10714 /* Existence of mp1 has been checked in ip_wput_nondata */ 10715 mp1 = mp->b_cont->b_cont; 10716 /* 10717 * Null terminate the string to protect against buffer 10718 * overrun. String was generated by user code and may not 10719 * be trusted. 10720 */ 10721 lifr = (struct lifreq *)mp1->b_rptr; 10722 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10723 name = lifr->lifr_name; 10724 ASSERT(CONN_Q(q)); 10725 connp = Q_TO_CONN(q); 10726 isv6 = connp->conn_af_isv6; 10727 zoneid = connp->conn_zoneid; 10728 namelen = mi_strlen(name); 10729 if (namelen == 0) 10730 return (EINVAL); 10731 10732 exists = B_FALSE; 10733 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10734 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10735 /* 10736 * Allow creating lo0 using SIOCLIFADDIF. 10737 * can't be any other writer thread. So can pass null below 10738 * for the last 4 args to ipif_lookup_name. 10739 */ 10740 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10741 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10742 /* Prevent any further action */ 10743 if (ipif == NULL) { 10744 return (ENOBUFS); 10745 } else if (!exists) { 10746 /* We created the ipif now and as writer */ 10747 ipif_refrele(ipif); 10748 return (0); 10749 } else { 10750 ill = ipif->ipif_ill; 10751 ill_refhold(ill); 10752 ipif_refrele(ipif); 10753 } 10754 } else { 10755 /* Look for a colon in the name. */ 10756 endp = &name[namelen]; 10757 for (cp = endp; --cp > name; ) { 10758 if (*cp == IPIF_SEPARATOR_CHAR) { 10759 found_sep = B_TRUE; 10760 /* 10761 * Reject any non-decimal aliases for plumbing 10762 * of logical interfaces. Aliases with leading 10763 * zeroes are also rejected as they introduce 10764 * ambiguity in the naming of the interfaces. 10765 * Comparing with "0" takes care of all such 10766 * cases. 10767 */ 10768 if ((strncmp("0", cp+1, 1)) == 0) 10769 return (EINVAL); 10770 10771 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10772 id <= 0 || *endp != '\0') { 10773 return (EINVAL); 10774 } 10775 *cp = '\0'; 10776 break; 10777 } 10778 } 10779 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10780 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10781 if (found_sep) 10782 *cp = IPIF_SEPARATOR_CHAR; 10783 if (ill == NULL) 10784 return (err); 10785 } 10786 10787 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10788 B_TRUE); 10789 10790 /* 10791 * Release the refhold due to the lookup, now that we are excl 10792 * or we are just returning 10793 */ 10794 ill_refrele(ill); 10795 10796 if (ipsq == NULL) 10797 return (EINPROGRESS); 10798 10799 /* 10800 * If the interface is failed, inactive or offlined, look for a working 10801 * interface in the ill group and create the ipif there. If we can't 10802 * find a good interface, create the ipif anyway so that in.mpathd can 10803 * move it to the first repaired interface. 10804 */ 10805 if ((ill->ill_phyint->phyint_flags & 10806 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10807 ill->ill_phyint->phyint_groupname_len != 0) { 10808 phyint_t *phyi; 10809 char *groupname = ill->ill_phyint->phyint_groupname; 10810 10811 /* 10812 * We're looking for a working interface, but it doesn't matter 10813 * if it's up or down; so instead of following the group lists, 10814 * we look at each physical interface and compare the groupname. 10815 * We're only interested in interfaces with IPv4 (resp. IPv6) 10816 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10817 * Otherwise we create the ipif on the failed interface. 10818 */ 10819 rw_enter(&ill_g_lock, RW_READER); 10820 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10821 for (; phyi != NULL; 10822 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10823 phyi, AVL_AFTER)) { 10824 if (phyi->phyint_groupname_len == 0) 10825 continue; 10826 ASSERT(phyi->phyint_groupname != NULL); 10827 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10828 !(phyi->phyint_flags & 10829 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10830 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10831 (phyi->phyint_illv4 != NULL))) { 10832 break; 10833 } 10834 } 10835 rw_exit(&ill_g_lock); 10836 10837 if (phyi != NULL) { 10838 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10839 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10840 phyi->phyint_illv4); 10841 } 10842 } 10843 10844 /* 10845 * We are now exclusive on the ipsq, so an ill move will be serialized 10846 * before or after us. 10847 */ 10848 ASSERT(IAM_WRITER_ILL(ill)); 10849 ASSERT(ill->ill_move_in_progress == B_FALSE); 10850 10851 if (found_sep && orig_ifindex == 0) { 10852 /* Now see if there is an IPIF with this unit number. */ 10853 for (ipif = ill->ill_ipif; ipif != NULL; 10854 ipif = ipif->ipif_next) { 10855 if (ipif->ipif_id == id) { 10856 err = EEXIST; 10857 goto done; 10858 } 10859 } 10860 } 10861 10862 /* 10863 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10864 * of lo0. We never come here when we plumb lo0:0. It 10865 * happens in ipif_lookup_on_name. 10866 * The specified unit number is ignored when we create the ipif on a 10867 * different interface. However, we save it in ipif_orig_ipifid below so 10868 * that the ipif fails back to the right position. 10869 */ 10870 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10871 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10872 err = ENOBUFS; 10873 goto done; 10874 } 10875 10876 /* Return created name with ioctl */ 10877 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10878 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10879 ip1dbg(("created %s\n", lifr->lifr_name)); 10880 10881 /* Set address */ 10882 sin = (sin_t *)&lifr->lifr_addr; 10883 if (sin->sin_family != AF_UNSPEC) { 10884 err = ip_sioctl_addr(ipif, sin, q, mp, 10885 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10886 } 10887 10888 /* Set ifindex and unit number for failback */ 10889 if (err == 0 && orig_ifindex != 0) { 10890 ipif->ipif_orig_ifindex = orig_ifindex; 10891 if (found_sep) { 10892 ipif->ipif_orig_ipifid = id; 10893 } 10894 } 10895 10896 done: 10897 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10898 return (err); 10899 } 10900 10901 /* 10902 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10903 * interface) delete it based on the IP address (on this physical interface). 10904 * Otherwise delete it based on the ipif_id. 10905 * Also, special handling to allow a removeif of lo0. 10906 */ 10907 /* ARGSUSED */ 10908 int 10909 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10910 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10911 { 10912 conn_t *connp; 10913 ill_t *ill = ipif->ipif_ill; 10914 boolean_t success; 10915 10916 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10917 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10918 ASSERT(IAM_WRITER_IPIF(ipif)); 10919 10920 connp = Q_TO_CONN(q); 10921 /* 10922 * Special case for unplumbing lo0 (the loopback physical interface). 10923 * If unplumbing lo0, the incoming address structure has been 10924 * initialized to all zeros. When unplumbing lo0, all its logical 10925 * interfaces must be removed too. 10926 * 10927 * Note that this interface may be called to remove a specific 10928 * loopback logical interface (eg, lo0:1). But in that case 10929 * ipif->ipif_id != 0 so that the code path for that case is the 10930 * same as any other interface (meaning it skips the code directly 10931 * below). 10932 */ 10933 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10934 if (sin->sin_family == AF_UNSPEC && 10935 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10936 /* 10937 * Mark it condemned. No new ref. will be made to ill. 10938 */ 10939 mutex_enter(&ill->ill_lock); 10940 ill->ill_state_flags |= ILL_CONDEMNED; 10941 for (ipif = ill->ill_ipif; ipif != NULL; 10942 ipif = ipif->ipif_next) { 10943 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10944 } 10945 mutex_exit(&ill->ill_lock); 10946 10947 ipif = ill->ill_ipif; 10948 /* unplumb the loopback interface */ 10949 ill_delete(ill); 10950 mutex_enter(&connp->conn_lock); 10951 mutex_enter(&ill->ill_lock); 10952 ASSERT(ill->ill_group == NULL); 10953 10954 /* Are any references to this ill active */ 10955 if (ill_is_quiescent(ill)) { 10956 mutex_exit(&ill->ill_lock); 10957 mutex_exit(&connp->conn_lock); 10958 ill_delete_tail(ill); 10959 mi_free(ill); 10960 return (0); 10961 } 10962 success = ipsq_pending_mp_add(connp, ipif, 10963 CONNP_TO_WQ(connp), mp, ILL_FREE); 10964 mutex_exit(&connp->conn_lock); 10965 mutex_exit(&ill->ill_lock); 10966 if (success) 10967 return (EINPROGRESS); 10968 else 10969 return (EINTR); 10970 } 10971 } 10972 10973 /* 10974 * We are exclusive on the ipsq, so an ill move will be serialized 10975 * before or after us. 10976 */ 10977 ASSERT(ill->ill_move_in_progress == B_FALSE); 10978 10979 if (ipif->ipif_id == 0) { 10980 /* Find based on address */ 10981 if (ipif->ipif_isv6) { 10982 sin6_t *sin6; 10983 10984 if (sin->sin_family != AF_INET6) 10985 return (EAFNOSUPPORT); 10986 10987 sin6 = (sin6_t *)sin; 10988 /* We are a writer, so we should be able to lookup */ 10989 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10990 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10991 if (ipif == NULL) { 10992 /* 10993 * Maybe the address in on another interface in 10994 * the same IPMP group? We check this below. 10995 */ 10996 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10997 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10998 } 10999 } else { 11000 ipaddr_t addr; 11001 11002 if (sin->sin_family != AF_INET) 11003 return (EAFNOSUPPORT); 11004 11005 addr = sin->sin_addr.s_addr; 11006 /* We are a writer, so we should be able to lookup */ 11007 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11008 NULL, NULL, NULL); 11009 if (ipif == NULL) { 11010 /* 11011 * Maybe the address in on another interface in 11012 * the same IPMP group? We check this below. 11013 */ 11014 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11015 NULL, NULL, NULL, NULL); 11016 } 11017 } 11018 if (ipif == NULL) { 11019 return (EADDRNOTAVAIL); 11020 } 11021 /* 11022 * When the address to be removed is hosted on a different 11023 * interface, we check if the interface is in the same IPMP 11024 * group as the specified one; if so we proceed with the 11025 * removal. 11026 * ill->ill_group is NULL when the ill is down, so we have to 11027 * compare the group names instead. 11028 */ 11029 if (ipif->ipif_ill != ill && 11030 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11031 ill->ill_phyint->phyint_groupname_len == 0 || 11032 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11033 ill->ill_phyint->phyint_groupname) != 0)) { 11034 ipif_refrele(ipif); 11035 return (EADDRNOTAVAIL); 11036 } 11037 11038 /* This is a writer */ 11039 ipif_refrele(ipif); 11040 } 11041 11042 /* 11043 * Can not delete instance zero since it is tied to the ill. 11044 */ 11045 if (ipif->ipif_id == 0) 11046 return (EBUSY); 11047 11048 mutex_enter(&ill->ill_lock); 11049 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11050 mutex_exit(&ill->ill_lock); 11051 11052 ipif_free(ipif); 11053 11054 mutex_enter(&connp->conn_lock); 11055 mutex_enter(&ill->ill_lock); 11056 11057 /* Are any references to this ipif active */ 11058 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11059 mutex_exit(&ill->ill_lock); 11060 mutex_exit(&connp->conn_lock); 11061 ipif_non_duplicate(ipif); 11062 ipif_down_tail(ipif); 11063 ipif_free_tail(ipif); 11064 return (0); 11065 } 11066 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11067 IPIF_FREE); 11068 mutex_exit(&ill->ill_lock); 11069 mutex_exit(&connp->conn_lock); 11070 if (success) 11071 return (EINPROGRESS); 11072 else 11073 return (EINTR); 11074 } 11075 11076 /* 11077 * Restart the removeif ioctl. The refcnt has gone down to 0. 11078 * The ipif is already condemned. So can't find it thru lookups. 11079 */ 11080 /* ARGSUSED */ 11081 int 11082 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11083 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11084 { 11085 ill_t *ill; 11086 11087 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11088 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11089 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11090 ill = ipif->ipif_ill; 11091 ASSERT(IAM_WRITER_ILL(ill)); 11092 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11093 (ill->ill_state_flags & IPIF_CONDEMNED)); 11094 ill_delete_tail(ill); 11095 mi_free(ill); 11096 return (0); 11097 } 11098 11099 ill = ipif->ipif_ill; 11100 ASSERT(IAM_WRITER_IPIF(ipif)); 11101 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11102 11103 ipif_non_duplicate(ipif); 11104 ipif_down_tail(ipif); 11105 ipif_free_tail(ipif); 11106 11107 ILL_UNMARK_CHANGING(ill); 11108 return (0); 11109 } 11110 11111 /* 11112 * Set the local interface address. 11113 * Allow an address of all zero when the interface is down. 11114 */ 11115 /* ARGSUSED */ 11116 int 11117 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11118 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11119 { 11120 int err = 0; 11121 in6_addr_t v6addr; 11122 boolean_t need_up = B_FALSE; 11123 11124 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11126 11127 ASSERT(IAM_WRITER_IPIF(ipif)); 11128 11129 if (ipif->ipif_isv6) { 11130 sin6_t *sin6; 11131 ill_t *ill; 11132 phyint_t *phyi; 11133 11134 if (sin->sin_family != AF_INET6) 11135 return (EAFNOSUPPORT); 11136 11137 sin6 = (sin6_t *)sin; 11138 v6addr = sin6->sin6_addr; 11139 ill = ipif->ipif_ill; 11140 phyi = ill->ill_phyint; 11141 11142 /* 11143 * Enforce that true multicast interfaces have a link-local 11144 * address for logical unit 0. 11145 */ 11146 if (ipif->ipif_id == 0 && 11147 (ill->ill_flags & ILLF_MULTICAST) && 11148 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11149 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11150 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11151 return (EADDRNOTAVAIL); 11152 } 11153 11154 /* 11155 * up interfaces shouldn't have the unspecified address 11156 * unless they also have the IPIF_NOLOCAL flags set and 11157 * have a subnet assigned. 11158 */ 11159 if ((ipif->ipif_flags & IPIF_UP) && 11160 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11161 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11162 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11163 return (EADDRNOTAVAIL); 11164 } 11165 11166 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11167 return (EADDRNOTAVAIL); 11168 } else { 11169 ipaddr_t addr; 11170 11171 if (sin->sin_family != AF_INET) 11172 return (EAFNOSUPPORT); 11173 11174 addr = sin->sin_addr.s_addr; 11175 11176 /* Allow 0 as the local address. */ 11177 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11178 return (EADDRNOTAVAIL); 11179 11180 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11181 } 11182 11183 11184 /* 11185 * Even if there is no change we redo things just to rerun 11186 * ipif_set_default. 11187 */ 11188 if (ipif->ipif_flags & IPIF_UP) { 11189 /* 11190 * Setting a new local address, make sure 11191 * we have net and subnet bcast ire's for 11192 * the old address if we need them. 11193 */ 11194 if (!ipif->ipif_isv6) 11195 ipif_check_bcast_ires(ipif); 11196 /* 11197 * If the interface is already marked up, 11198 * we call ipif_down which will take care 11199 * of ditching any IREs that have been set 11200 * up based on the old interface address. 11201 */ 11202 err = ipif_logical_down(ipif, q, mp); 11203 if (err == EINPROGRESS) 11204 return (err); 11205 ipif_down_tail(ipif); 11206 need_up = 1; 11207 } 11208 11209 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11210 return (err); 11211 } 11212 11213 int 11214 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11215 boolean_t need_up) 11216 { 11217 in6_addr_t v6addr; 11218 ipaddr_t addr; 11219 sin6_t *sin6; 11220 int sinlen; 11221 int err = 0; 11222 ill_t *ill = ipif->ipif_ill; 11223 boolean_t need_dl_down; 11224 boolean_t need_arp_down; 11225 struct iocblk *iocp; 11226 11227 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11228 11229 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11230 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11231 ASSERT(IAM_WRITER_IPIF(ipif)); 11232 11233 /* Must cancel any pending timer before taking the ill_lock */ 11234 if (ipif->ipif_recovery_id != 0) 11235 (void) untimeout(ipif->ipif_recovery_id); 11236 ipif->ipif_recovery_id = 0; 11237 11238 if (ipif->ipif_isv6) { 11239 sin6 = (sin6_t *)sin; 11240 v6addr = sin6->sin6_addr; 11241 sinlen = sizeof (struct sockaddr_in6); 11242 } else { 11243 addr = sin->sin_addr.s_addr; 11244 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11245 sinlen = sizeof (struct sockaddr_in); 11246 } 11247 mutex_enter(&ill->ill_lock); 11248 ipif->ipif_v6lcl_addr = v6addr; 11249 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11250 ipif->ipif_v6src_addr = ipv6_all_zeros; 11251 } else { 11252 ipif->ipif_v6src_addr = v6addr; 11253 } 11254 ipif->ipif_addr_ready = 0; 11255 11256 /* 11257 * If the interface was previously marked as a duplicate, then since 11258 * we've now got a "new" address, it should no longer be considered a 11259 * duplicate -- even if the "new" address is the same as the old one. 11260 * Note that if all ipifs are down, we may have a pending ARP down 11261 * event to handle. This is because we want to recover from duplicates 11262 * and thus delay tearing down ARP until the duplicates have been 11263 * removed or disabled. 11264 */ 11265 need_dl_down = need_arp_down = B_FALSE; 11266 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11267 need_arp_down = !need_up; 11268 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11269 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11270 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11271 need_dl_down = B_TRUE; 11272 } 11273 } 11274 11275 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11276 !ill->ill_is_6to4tun) { 11277 queue_t *wqp = ill->ill_wq; 11278 11279 /* 11280 * The local address of this interface is a 6to4 address, 11281 * check if this interface is in fact a 6to4 tunnel or just 11282 * an interface configured with a 6to4 address. We are only 11283 * interested in the former. 11284 */ 11285 if (wqp != NULL) { 11286 while ((wqp->q_next != NULL) && 11287 (wqp->q_next->q_qinfo != NULL) && 11288 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11289 11290 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11291 == TUN6TO4_MODID) { 11292 /* set for use in IP */ 11293 ill->ill_is_6to4tun = 1; 11294 break; 11295 } 11296 wqp = wqp->q_next; 11297 } 11298 } 11299 } 11300 11301 ipif_set_default(ipif); 11302 11303 /* 11304 * When publishing an interface address change event, we only notify 11305 * the event listeners of the new address. It is assumed that if they 11306 * actively care about the addresses assigned that they will have 11307 * already discovered the previous address assigned (if there was one.) 11308 * 11309 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11310 */ 11311 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11312 hook_nic_event_t *info; 11313 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11314 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11315 "attached for %s\n", info->hne_event, 11316 ill->ill_name)); 11317 if (info->hne_data != NULL) 11318 kmem_free(info->hne_data, info->hne_datalen); 11319 kmem_free(info, sizeof (hook_nic_event_t)); 11320 } 11321 11322 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11323 if (info != NULL) { 11324 info->hne_nic = 11325 ipif->ipif_ill->ill_phyint->phyint_ifindex; 11326 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11327 info->hne_event = NE_ADDRESS_CHANGE; 11328 info->hne_family = ipif->ipif_isv6 ? ipv6 : ipv4; 11329 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11330 if (info->hne_data != NULL) { 11331 info->hne_datalen = sinlen; 11332 bcopy(sin, info->hne_data, sinlen); 11333 } else { 11334 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11335 "address information for ADDRESS_CHANGE nic" 11336 " event of %s (ENOMEM)\n", 11337 ipif->ipif_ill->ill_name)); 11338 kmem_free(info, sizeof (hook_nic_event_t)); 11339 } 11340 } else 11341 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11342 "ADDRESS_CHANGE nic event information for %s " 11343 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11344 11345 ipif->ipif_ill->ill_nic_event_info = info; 11346 } 11347 11348 mutex_exit(&ipif->ipif_ill->ill_lock); 11349 11350 if (need_up) { 11351 /* 11352 * Now bring the interface back up. If this 11353 * is the only IPIF for the ILL, ipif_up 11354 * will have to re-bind to the device, so 11355 * we may get back EINPROGRESS, in which 11356 * case, this IOCTL will get completed in 11357 * ip_rput_dlpi when we see the DL_BIND_ACK. 11358 */ 11359 err = ipif_up(ipif, q, mp); 11360 } else { 11361 /* 11362 * Update the IPIF list in SCTP, ipif_up_done() will do it 11363 * if need_up is true. 11364 */ 11365 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11366 } 11367 11368 if (need_dl_down) 11369 ill_dl_down(ill); 11370 if (need_arp_down) 11371 ipif_arp_down(ipif); 11372 11373 return (err); 11374 } 11375 11376 11377 /* 11378 * Restart entry point to restart the address set operation after the 11379 * refcounts have dropped to zero. 11380 */ 11381 /* ARGSUSED */ 11382 int 11383 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11384 ip_ioctl_cmd_t *ipip, void *ifreq) 11385 { 11386 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11387 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11388 ASSERT(IAM_WRITER_IPIF(ipif)); 11389 ipif_down_tail(ipif); 11390 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11391 } 11392 11393 /* ARGSUSED */ 11394 int 11395 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11396 ip_ioctl_cmd_t *ipip, void *if_req) 11397 { 11398 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11399 struct lifreq *lifr = (struct lifreq *)if_req; 11400 11401 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11402 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11403 /* 11404 * The net mask and address can't change since we have a 11405 * reference to the ipif. So no lock is necessary. 11406 */ 11407 if (ipif->ipif_isv6) { 11408 *sin6 = sin6_null; 11409 sin6->sin6_family = AF_INET6; 11410 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11411 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11412 lifr->lifr_addrlen = 11413 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11414 } else { 11415 *sin = sin_null; 11416 sin->sin_family = AF_INET; 11417 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11418 if (ipip->ipi_cmd_type == LIF_CMD) { 11419 lifr->lifr_addrlen = 11420 ip_mask_to_plen(ipif->ipif_net_mask); 11421 } 11422 } 11423 return (0); 11424 } 11425 11426 /* 11427 * Set the destination address for a pt-pt interface. 11428 */ 11429 /* ARGSUSED */ 11430 int 11431 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11432 ip_ioctl_cmd_t *ipip, void *if_req) 11433 { 11434 int err = 0; 11435 in6_addr_t v6addr; 11436 boolean_t need_up = B_FALSE; 11437 11438 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11440 ASSERT(IAM_WRITER_IPIF(ipif)); 11441 11442 if (ipif->ipif_isv6) { 11443 sin6_t *sin6; 11444 11445 if (sin->sin_family != AF_INET6) 11446 return (EAFNOSUPPORT); 11447 11448 sin6 = (sin6_t *)sin; 11449 v6addr = sin6->sin6_addr; 11450 11451 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11452 return (EADDRNOTAVAIL); 11453 } else { 11454 ipaddr_t addr; 11455 11456 if (sin->sin_family != AF_INET) 11457 return (EAFNOSUPPORT); 11458 11459 addr = sin->sin_addr.s_addr; 11460 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11461 return (EADDRNOTAVAIL); 11462 11463 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11464 } 11465 11466 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11467 return (0); /* No change */ 11468 11469 if (ipif->ipif_flags & IPIF_UP) { 11470 /* 11471 * If the interface is already marked up, 11472 * we call ipif_down which will take care 11473 * of ditching any IREs that have been set 11474 * up based on the old pp dst address. 11475 */ 11476 err = ipif_logical_down(ipif, q, mp); 11477 if (err == EINPROGRESS) 11478 return (err); 11479 ipif_down_tail(ipif); 11480 need_up = B_TRUE; 11481 } 11482 /* 11483 * could return EINPROGRESS. If so ioctl will complete in 11484 * ip_rput_dlpi_writer 11485 */ 11486 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11487 return (err); 11488 } 11489 11490 static int 11491 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11492 boolean_t need_up) 11493 { 11494 in6_addr_t v6addr; 11495 ill_t *ill = ipif->ipif_ill; 11496 int err = 0; 11497 boolean_t need_dl_down; 11498 boolean_t need_arp_down; 11499 11500 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11501 ipif->ipif_id, (void *)ipif)); 11502 11503 /* Must cancel any pending timer before taking the ill_lock */ 11504 if (ipif->ipif_recovery_id != 0) 11505 (void) untimeout(ipif->ipif_recovery_id); 11506 ipif->ipif_recovery_id = 0; 11507 11508 if (ipif->ipif_isv6) { 11509 sin6_t *sin6; 11510 11511 sin6 = (sin6_t *)sin; 11512 v6addr = sin6->sin6_addr; 11513 } else { 11514 ipaddr_t addr; 11515 11516 addr = sin->sin_addr.s_addr; 11517 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11518 } 11519 mutex_enter(&ill->ill_lock); 11520 /* Set point to point destination address. */ 11521 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11522 /* 11523 * Allow this as a means of creating logical 11524 * pt-pt interfaces on top of e.g. an Ethernet. 11525 * XXX Undocumented HACK for testing. 11526 * pt-pt interfaces are created with NUD disabled. 11527 */ 11528 ipif->ipif_flags |= IPIF_POINTOPOINT; 11529 ipif->ipif_flags &= ~IPIF_BROADCAST; 11530 if (ipif->ipif_isv6) 11531 ill->ill_flags |= ILLF_NONUD; 11532 } 11533 11534 /* 11535 * If the interface was previously marked as a duplicate, then since 11536 * we've now got a "new" address, it should no longer be considered a 11537 * duplicate -- even if the "new" address is the same as the old one. 11538 * Note that if all ipifs are down, we may have a pending ARP down 11539 * event to handle. 11540 */ 11541 need_dl_down = need_arp_down = B_FALSE; 11542 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11543 need_arp_down = !need_up; 11544 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11545 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11546 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11547 need_dl_down = B_TRUE; 11548 } 11549 } 11550 11551 /* Set the new address. */ 11552 ipif->ipif_v6pp_dst_addr = v6addr; 11553 /* Make sure subnet tracks pp_dst */ 11554 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11555 mutex_exit(&ill->ill_lock); 11556 11557 if (need_up) { 11558 /* 11559 * Now bring the interface back up. If this 11560 * is the only IPIF for the ILL, ipif_up 11561 * will have to re-bind to the device, so 11562 * we may get back EINPROGRESS, in which 11563 * case, this IOCTL will get completed in 11564 * ip_rput_dlpi when we see the DL_BIND_ACK. 11565 */ 11566 err = ipif_up(ipif, q, mp); 11567 } 11568 11569 if (need_dl_down) 11570 ill_dl_down(ill); 11571 11572 if (need_arp_down) 11573 ipif_arp_down(ipif); 11574 return (err); 11575 } 11576 11577 /* 11578 * Restart entry point to restart the dstaddress set operation after the 11579 * refcounts have dropped to zero. 11580 */ 11581 /* ARGSUSED */ 11582 int 11583 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11584 ip_ioctl_cmd_t *ipip, void *ifreq) 11585 { 11586 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11587 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11588 ipif_down_tail(ipif); 11589 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11590 } 11591 11592 /* ARGSUSED */ 11593 int 11594 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11595 ip_ioctl_cmd_t *ipip, void *if_req) 11596 { 11597 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11598 11599 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11600 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11601 /* 11602 * Get point to point destination address. The addresses can't 11603 * change since we hold a reference to the ipif. 11604 */ 11605 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11606 return (EADDRNOTAVAIL); 11607 11608 if (ipif->ipif_isv6) { 11609 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11610 *sin6 = sin6_null; 11611 sin6->sin6_family = AF_INET6; 11612 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11613 } else { 11614 *sin = sin_null; 11615 sin->sin_family = AF_INET; 11616 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11617 } 11618 return (0); 11619 } 11620 11621 /* 11622 * part of ipmp, make this func return the active/inactive state and 11623 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11624 */ 11625 /* 11626 * This function either sets or clears the IFF_INACTIVE flag. 11627 * 11628 * As long as there are some addresses or multicast memberships on the 11629 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11630 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11631 * will be used for outbound packets. 11632 * 11633 * Caller needs to verify the validity of setting IFF_INACTIVE. 11634 */ 11635 static void 11636 phyint_inactive(phyint_t *phyi) 11637 { 11638 ill_t *ill_v4; 11639 ill_t *ill_v6; 11640 ipif_t *ipif; 11641 ilm_t *ilm; 11642 11643 ill_v4 = phyi->phyint_illv4; 11644 ill_v6 = phyi->phyint_illv6; 11645 11646 /* 11647 * No need for a lock while traversing the list since iam 11648 * a writer 11649 */ 11650 if (ill_v4 != NULL) { 11651 ASSERT(IAM_WRITER_ILL(ill_v4)); 11652 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11653 ipif = ipif->ipif_next) { 11654 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11655 mutex_enter(&phyi->phyint_lock); 11656 phyi->phyint_flags &= ~PHYI_INACTIVE; 11657 mutex_exit(&phyi->phyint_lock); 11658 return; 11659 } 11660 } 11661 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11662 ilm = ilm->ilm_next) { 11663 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11664 mutex_enter(&phyi->phyint_lock); 11665 phyi->phyint_flags &= ~PHYI_INACTIVE; 11666 mutex_exit(&phyi->phyint_lock); 11667 return; 11668 } 11669 } 11670 } 11671 if (ill_v6 != NULL) { 11672 ill_v6 = phyi->phyint_illv6; 11673 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11674 ipif = ipif->ipif_next) { 11675 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11676 mutex_enter(&phyi->phyint_lock); 11677 phyi->phyint_flags &= ~PHYI_INACTIVE; 11678 mutex_exit(&phyi->phyint_lock); 11679 return; 11680 } 11681 } 11682 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11683 ilm = ilm->ilm_next) { 11684 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11685 mutex_enter(&phyi->phyint_lock); 11686 phyi->phyint_flags &= ~PHYI_INACTIVE; 11687 mutex_exit(&phyi->phyint_lock); 11688 return; 11689 } 11690 } 11691 } 11692 mutex_enter(&phyi->phyint_lock); 11693 phyi->phyint_flags |= PHYI_INACTIVE; 11694 mutex_exit(&phyi->phyint_lock); 11695 } 11696 11697 /* 11698 * This function is called only when the phyint flags change. Currently 11699 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11700 * that we can select a good ill. 11701 */ 11702 static void 11703 ip_redo_nomination(phyint_t *phyi) 11704 { 11705 ill_t *ill_v4; 11706 11707 ill_v4 = phyi->phyint_illv4; 11708 11709 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11710 ASSERT(IAM_WRITER_ILL(ill_v4)); 11711 if (ill_v4->ill_group->illgrp_ill_count > 1) 11712 ill_nominate_bcast_rcv(ill_v4->ill_group); 11713 } 11714 } 11715 11716 /* 11717 * Heuristic to check if ill is INACTIVE. 11718 * Checks if ill has an ipif with an usable ip address. 11719 * 11720 * Return values: 11721 * B_TRUE - ill is INACTIVE; has no usable ipif 11722 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11723 */ 11724 static boolean_t 11725 ill_is_inactive(ill_t *ill) 11726 { 11727 ipif_t *ipif; 11728 11729 /* Check whether it is in an IPMP group */ 11730 if (ill->ill_phyint->phyint_groupname == NULL) 11731 return (B_FALSE); 11732 11733 if (ill->ill_ipif_up_count == 0) 11734 return (B_TRUE); 11735 11736 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11737 uint64_t flags = ipif->ipif_flags; 11738 11739 /* 11740 * This ipif is usable if it is IPIF_UP and not a 11741 * dedicated test address. A dedicated test address 11742 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11743 * (note in particular that V6 test addresses are 11744 * link-local data addresses and thus are marked 11745 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11746 */ 11747 if ((flags & IPIF_UP) && 11748 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11749 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11750 return (B_FALSE); 11751 } 11752 return (B_TRUE); 11753 } 11754 11755 /* 11756 * Set interface flags. 11757 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11758 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11759 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11760 * 11761 * NOTE : We really don't enforce that ipif_id zero should be used 11762 * for setting any flags other than IFF_LOGINT_FLAGS. This 11763 * is because applications generally does SICGLIFFLAGS and 11764 * ORs in the new flags (that affects the logical) and does a 11765 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11766 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11767 * flags that will be turned on is correct with respect to 11768 * ipif_id 0. For backward compatibility reasons, it is not done. 11769 */ 11770 /* ARGSUSED */ 11771 int 11772 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11773 ip_ioctl_cmd_t *ipip, void *if_req) 11774 { 11775 uint64_t turn_on; 11776 uint64_t turn_off; 11777 int err; 11778 boolean_t need_up = B_FALSE; 11779 phyint_t *phyi; 11780 ill_t *ill; 11781 uint64_t intf_flags; 11782 boolean_t phyint_flags_modified = B_FALSE; 11783 uint64_t flags; 11784 struct ifreq *ifr; 11785 struct lifreq *lifr; 11786 boolean_t set_linklocal = B_FALSE; 11787 boolean_t zero_source = B_FALSE; 11788 11789 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11790 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11791 11792 ASSERT(IAM_WRITER_IPIF(ipif)); 11793 11794 ill = ipif->ipif_ill; 11795 phyi = ill->ill_phyint; 11796 11797 if (ipip->ipi_cmd_type == IF_CMD) { 11798 ifr = (struct ifreq *)if_req; 11799 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11800 } else { 11801 lifr = (struct lifreq *)if_req; 11802 flags = lifr->lifr_flags; 11803 } 11804 11805 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11806 11807 /* 11808 * Has the flags been set correctly till now ? 11809 */ 11810 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11811 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11812 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11813 /* 11814 * Compare the new flags to the old, and partition 11815 * into those coming on and those going off. 11816 * For the 16 bit command keep the bits above bit 16 unchanged. 11817 */ 11818 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11819 flags |= intf_flags & ~0xFFFF; 11820 11821 /* 11822 * First check which bits will change and then which will 11823 * go on and off 11824 */ 11825 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11826 if (!turn_on) 11827 return (0); /* No change */ 11828 11829 turn_off = intf_flags & turn_on; 11830 turn_on ^= turn_off; 11831 err = 0; 11832 11833 /* 11834 * Don't allow any bits belonging to the logical interface 11835 * to be set or cleared on the replacement ipif that was 11836 * created temporarily during a MOVE. 11837 */ 11838 if (ipif->ipif_replace_zero && 11839 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11840 return (EINVAL); 11841 } 11842 11843 /* 11844 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11845 * IPv6 interfaces. 11846 */ 11847 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11848 return (EINVAL); 11849 11850 /* 11851 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11852 * interfaces. It makes no sense in that context. 11853 */ 11854 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11855 return (EINVAL); 11856 11857 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11858 zero_source = B_TRUE; 11859 11860 /* 11861 * For IPv6 ipif_id 0, don't allow the interface to be up without 11862 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11863 * If the link local address isn't set, and can be set, it will get 11864 * set later on in this function. 11865 */ 11866 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11867 (flags & IFF_UP) && !zero_source && 11868 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11869 if (ipif_cant_setlinklocal(ipif)) 11870 return (EINVAL); 11871 set_linklocal = B_TRUE; 11872 } 11873 11874 /* 11875 * ILL cannot be part of a usesrc group and and IPMP group at the 11876 * same time. No need to grab ill_g_usesrc_lock here, see 11877 * synchronization notes in ip.c 11878 */ 11879 if (turn_on & PHYI_STANDBY && 11880 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11881 return (EINVAL); 11882 } 11883 11884 /* 11885 * If we modify physical interface flags, we'll potentially need to 11886 * send up two routing socket messages for the changes (one for the 11887 * IPv4 ill, and another for the IPv6 ill). Note that here. 11888 */ 11889 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11890 phyint_flags_modified = B_TRUE; 11891 11892 /* 11893 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11894 * we need to flush the IRE_CACHES belonging to this ill. 11895 * We handle this case here without doing the DOWN/UP dance 11896 * like it is done for other flags. If some other flags are 11897 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11898 * below will handle it by bringing it down and then 11899 * bringing it UP. 11900 */ 11901 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11902 ill_t *ill_v4, *ill_v6; 11903 11904 ill_v4 = phyi->phyint_illv4; 11905 ill_v6 = phyi->phyint_illv6; 11906 11907 /* 11908 * First set the INACTIVE flag if needed. Then delete the ires. 11909 * ire_add will atomically prevent creating new IRE_CACHEs 11910 * unless hidden flag is set. 11911 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11912 */ 11913 if ((turn_on & PHYI_FAILED) && 11914 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11915 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11916 phyi->phyint_flags &= ~PHYI_INACTIVE; 11917 } 11918 if ((turn_off & PHYI_FAILED) && 11919 ((intf_flags & PHYI_STANDBY) || 11920 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11921 phyint_inactive(phyi); 11922 } 11923 11924 if (turn_on & PHYI_STANDBY) { 11925 /* 11926 * We implicitly set INACTIVE only when STANDBY is set. 11927 * INACTIVE is also set on non-STANDBY phyint when user 11928 * disables FAILBACK using configuration file. 11929 * Do not allow STANDBY to be set on such INACTIVE 11930 * phyint 11931 */ 11932 if (phyi->phyint_flags & PHYI_INACTIVE) 11933 return (EINVAL); 11934 if (!(phyi->phyint_flags & PHYI_FAILED)) 11935 phyint_inactive(phyi); 11936 } 11937 if (turn_off & PHYI_STANDBY) { 11938 if (ipmp_enable_failback) { 11939 /* 11940 * Reset PHYI_INACTIVE. 11941 */ 11942 phyi->phyint_flags &= ~PHYI_INACTIVE; 11943 } else if (ill_is_inactive(ill) && 11944 !(phyi->phyint_flags & PHYI_FAILED)) { 11945 /* 11946 * Need to set INACTIVE, when user sets 11947 * STANDBY on a non-STANDBY phyint and 11948 * later resets STANDBY 11949 */ 11950 phyint_inactive(phyi); 11951 } 11952 } 11953 /* 11954 * We should always send up a message so that the 11955 * daemons come to know of it. Note that the zeroth 11956 * interface can be down and the check below for IPIF_UP 11957 * will not make sense as we are actually setting 11958 * a phyint flag here. We assume that the ipif used 11959 * is always the zeroth ipif. (ip_rts_ifmsg does not 11960 * send up any message for non-zero ipifs). 11961 */ 11962 phyint_flags_modified = B_TRUE; 11963 11964 if (ill_v4 != NULL) { 11965 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11966 IRE_CACHE, ill_stq_cache_delete, 11967 (char *)ill_v4, ill_v4); 11968 illgrp_reset_schednext(ill_v4); 11969 } 11970 if (ill_v6 != NULL) { 11971 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11972 IRE_CACHE, ill_stq_cache_delete, 11973 (char *)ill_v6, ill_v6); 11974 illgrp_reset_schednext(ill_v6); 11975 } 11976 } 11977 11978 /* 11979 * If ILLF_ROUTER changes, we need to change the ip forwarding 11980 * status of the interface and, if the interface is part of an IPMP 11981 * group, all other interfaces that are part of the same IPMP 11982 * group. 11983 */ 11984 if ((turn_on | turn_off) & ILLF_ROUTER) { 11985 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11986 (caddr_t)ill); 11987 } 11988 11989 /* 11990 * If the interface is not UP and we are not going to 11991 * bring it UP, record the flags and return. When the 11992 * interface comes UP later, the right actions will be 11993 * taken. 11994 */ 11995 if (!(ipif->ipif_flags & IPIF_UP) && 11996 !(turn_on & IPIF_UP)) { 11997 /* Record new flags in their respective places. */ 11998 mutex_enter(&ill->ill_lock); 11999 mutex_enter(&ill->ill_phyint->phyint_lock); 12000 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12001 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12002 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12003 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12004 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12005 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12006 mutex_exit(&ill->ill_lock); 12007 mutex_exit(&ill->ill_phyint->phyint_lock); 12008 12009 /* 12010 * We do the broadcast and nomination here rather 12011 * than waiting for a FAILOVER/FAILBACK to happen. In 12012 * the case of FAILBACK from INACTIVE standby to the 12013 * interface that has been repaired, PHYI_FAILED has not 12014 * been cleared yet. If there are only two interfaces in 12015 * that group, all we have is a FAILED and INACTIVE 12016 * interface. If we do the nomination soon after a failback, 12017 * the broadcast nomination code would select the 12018 * INACTIVE interface for receiving broadcasts as FAILED is 12019 * not yet cleared. As we don't want STANDBY/INACTIVE to 12020 * receive broadcast packets, we need to redo nomination 12021 * when the FAILED is cleared here. Thus, in general we 12022 * always do the nomination here for FAILED, STANDBY 12023 * and OFFLINE. 12024 */ 12025 if (((turn_on | turn_off) & 12026 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12027 ip_redo_nomination(phyi); 12028 } 12029 if (phyint_flags_modified) { 12030 if (phyi->phyint_illv4 != NULL) { 12031 ip_rts_ifmsg(phyi->phyint_illv4-> 12032 ill_ipif); 12033 } 12034 if (phyi->phyint_illv6 != NULL) { 12035 ip_rts_ifmsg(phyi->phyint_illv6-> 12036 ill_ipif); 12037 } 12038 } 12039 return (0); 12040 } else if (set_linklocal || zero_source) { 12041 mutex_enter(&ill->ill_lock); 12042 if (set_linklocal) 12043 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12044 if (zero_source) 12045 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12046 mutex_exit(&ill->ill_lock); 12047 } 12048 12049 /* 12050 * Disallow IPv6 interfaces coming up that have the unspecified address, 12051 * or point-to-point interfaces with an unspecified destination. We do 12052 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12053 * have a subnet assigned, which is how in.ndpd currently manages its 12054 * onlink prefix list when no addresses are configured with those 12055 * prefixes. 12056 */ 12057 if (ipif->ipif_isv6 && 12058 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12059 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12060 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12061 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12062 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12063 return (EINVAL); 12064 } 12065 12066 /* 12067 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12068 * from being brought up. 12069 */ 12070 if (!ipif->ipif_isv6 && 12071 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12072 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12073 return (EINVAL); 12074 } 12075 12076 /* 12077 * The only flag changes that we currently take specific action on 12078 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12079 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12080 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12081 * the flags and bringing it back up again. 12082 */ 12083 if ((turn_on|turn_off) & 12084 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12085 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12086 /* 12087 * Taking this ipif down, make sure we have 12088 * valid net and subnet bcast ire's for other 12089 * logical interfaces, if we need them. 12090 */ 12091 if (!ipif->ipif_isv6) 12092 ipif_check_bcast_ires(ipif); 12093 12094 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12095 !(turn_off & IPIF_UP)) { 12096 need_up = B_TRUE; 12097 if (ipif->ipif_flags & IPIF_UP) 12098 ill->ill_logical_down = 1; 12099 turn_on &= ~IPIF_UP; 12100 } 12101 err = ipif_down(ipif, q, mp); 12102 ip1dbg(("ipif_down returns %d err ", err)); 12103 if (err == EINPROGRESS) 12104 return (err); 12105 ipif_down_tail(ipif); 12106 } 12107 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12108 } 12109 12110 static int 12111 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12112 boolean_t need_up) 12113 { 12114 ill_t *ill; 12115 phyint_t *phyi; 12116 uint64_t turn_on; 12117 uint64_t turn_off; 12118 uint64_t intf_flags; 12119 boolean_t phyint_flags_modified = B_FALSE; 12120 int err = 0; 12121 boolean_t set_linklocal = B_FALSE; 12122 boolean_t zero_source = B_FALSE; 12123 12124 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12125 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12126 12127 ASSERT(IAM_WRITER_IPIF(ipif)); 12128 12129 ill = ipif->ipif_ill; 12130 phyi = ill->ill_phyint; 12131 12132 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12133 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12134 12135 turn_off = intf_flags & turn_on; 12136 turn_on ^= turn_off; 12137 12138 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12139 phyint_flags_modified = B_TRUE; 12140 12141 /* 12142 * Now we change the flags. Track current value of 12143 * other flags in their respective places. 12144 */ 12145 mutex_enter(&ill->ill_lock); 12146 mutex_enter(&phyi->phyint_lock); 12147 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12148 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12149 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12150 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12151 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12152 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12153 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12154 set_linklocal = B_TRUE; 12155 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12156 } 12157 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12158 zero_source = B_TRUE; 12159 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12160 } 12161 mutex_exit(&ill->ill_lock); 12162 mutex_exit(&phyi->phyint_lock); 12163 12164 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12165 ip_redo_nomination(phyi); 12166 12167 if (set_linklocal) 12168 (void) ipif_setlinklocal(ipif); 12169 12170 if (zero_source) 12171 ipif->ipif_v6src_addr = ipv6_all_zeros; 12172 else 12173 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12174 12175 if (need_up) { 12176 /* 12177 * XXX ipif_up really does not know whether a phyint flags 12178 * was modified or not. So, it sends up information on 12179 * only one routing sockets message. As we don't bring up 12180 * the interface and also set STANDBY/FAILED simultaneously 12181 * it should be okay. 12182 */ 12183 err = ipif_up(ipif, q, mp); 12184 } else { 12185 /* 12186 * Make sure routing socket sees all changes to the flags. 12187 * ipif_up_done* handles this when we use ipif_up. 12188 */ 12189 if (phyint_flags_modified) { 12190 if (phyi->phyint_illv4 != NULL) { 12191 ip_rts_ifmsg(phyi->phyint_illv4-> 12192 ill_ipif); 12193 } 12194 if (phyi->phyint_illv6 != NULL) { 12195 ip_rts_ifmsg(phyi->phyint_illv6-> 12196 ill_ipif); 12197 } 12198 } else { 12199 ip_rts_ifmsg(ipif); 12200 } 12201 } 12202 return (err); 12203 } 12204 12205 /* 12206 * Restart entry point to restart the flags restart operation after the 12207 * refcounts have dropped to zero. 12208 */ 12209 /* ARGSUSED */ 12210 int 12211 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12212 ip_ioctl_cmd_t *ipip, void *if_req) 12213 { 12214 int err; 12215 struct ifreq *ifr = (struct ifreq *)if_req; 12216 struct lifreq *lifr = (struct lifreq *)if_req; 12217 12218 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12219 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12220 12221 ipif_down_tail(ipif); 12222 if (ipip->ipi_cmd_type == IF_CMD) { 12223 /* 12224 * Since ip_sioctl_flags expects an int and ifr_flags 12225 * is a short we need to cast ifr_flags into an int 12226 * to avoid having sign extension cause bits to get 12227 * set that should not be. 12228 */ 12229 err = ip_sioctl_flags_tail(ipif, 12230 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12231 q, mp, B_TRUE); 12232 } else { 12233 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12234 q, mp, B_TRUE); 12235 } 12236 return (err); 12237 } 12238 12239 /* ARGSUSED */ 12240 int 12241 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12242 ip_ioctl_cmd_t *ipip, void *if_req) 12243 { 12244 /* 12245 * Has the flags been set correctly till now ? 12246 */ 12247 ill_t *ill = ipif->ipif_ill; 12248 phyint_t *phyi = ill->ill_phyint; 12249 12250 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12251 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12252 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12253 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12254 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12255 12256 /* 12257 * Need a lock since some flags can be set even when there are 12258 * references to the ipif. 12259 */ 12260 mutex_enter(&ill->ill_lock); 12261 if (ipip->ipi_cmd_type == IF_CMD) { 12262 struct ifreq *ifr = (struct ifreq *)if_req; 12263 12264 /* Get interface flags (low 16 only). */ 12265 ifr->ifr_flags = ((ipif->ipif_flags | 12266 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12267 } else { 12268 struct lifreq *lifr = (struct lifreq *)if_req; 12269 12270 /* Get interface flags. */ 12271 lifr->lifr_flags = ipif->ipif_flags | 12272 ill->ill_flags | phyi->phyint_flags; 12273 } 12274 mutex_exit(&ill->ill_lock); 12275 return (0); 12276 } 12277 12278 /* ARGSUSED */ 12279 int 12280 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12281 ip_ioctl_cmd_t *ipip, void *if_req) 12282 { 12283 int mtu; 12284 int ip_min_mtu; 12285 struct ifreq *ifr; 12286 struct lifreq *lifr; 12287 ire_t *ire; 12288 12289 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12290 ipif->ipif_id, (void *)ipif)); 12291 if (ipip->ipi_cmd_type == IF_CMD) { 12292 ifr = (struct ifreq *)if_req; 12293 mtu = ifr->ifr_metric; 12294 } else { 12295 lifr = (struct lifreq *)if_req; 12296 mtu = lifr->lifr_mtu; 12297 } 12298 12299 if (ipif->ipif_isv6) 12300 ip_min_mtu = IPV6_MIN_MTU; 12301 else 12302 ip_min_mtu = IP_MIN_MTU; 12303 12304 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12305 return (EINVAL); 12306 12307 /* 12308 * Change the MTU size in all relevant ire's. 12309 * Mtu change Vs. new ire creation - protocol below. 12310 * First change ipif_mtu and the ire_max_frag of the 12311 * interface ire. Then do an ire walk and change the 12312 * ire_max_frag of all affected ires. During ire_add 12313 * under the bucket lock, set the ire_max_frag of the 12314 * new ire being created from the ipif/ire from which 12315 * it is being derived. If an mtu change happens after 12316 * the ire is added, the new ire will be cleaned up. 12317 * Conversely if the mtu change happens before the ire 12318 * is added, ire_add will see the new value of the mtu. 12319 */ 12320 ipif->ipif_mtu = mtu; 12321 ipif->ipif_flags |= IPIF_FIXEDMTU; 12322 12323 if (ipif->ipif_isv6) 12324 ire = ipif_to_ire_v6(ipif); 12325 else 12326 ire = ipif_to_ire(ipif); 12327 if (ire != NULL) { 12328 ire->ire_max_frag = ipif->ipif_mtu; 12329 ire_refrele(ire); 12330 } 12331 if (ipif->ipif_flags & IPIF_UP) { 12332 if (ipif->ipif_isv6) 12333 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12334 else 12335 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 12336 } 12337 /* Update the MTU in SCTP's list */ 12338 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12339 return (0); 12340 } 12341 12342 /* Get interface MTU. */ 12343 /* ARGSUSED */ 12344 int 12345 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12346 ip_ioctl_cmd_t *ipip, void *if_req) 12347 { 12348 struct ifreq *ifr; 12349 struct lifreq *lifr; 12350 12351 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12352 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12353 if (ipip->ipi_cmd_type == IF_CMD) { 12354 ifr = (struct ifreq *)if_req; 12355 ifr->ifr_metric = ipif->ipif_mtu; 12356 } else { 12357 lifr = (struct lifreq *)if_req; 12358 lifr->lifr_mtu = ipif->ipif_mtu; 12359 } 12360 return (0); 12361 } 12362 12363 /* Set interface broadcast address. */ 12364 /* ARGSUSED2 */ 12365 int 12366 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12367 ip_ioctl_cmd_t *ipip, void *if_req) 12368 { 12369 ipaddr_t addr; 12370 ire_t *ire; 12371 12372 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12373 ipif->ipif_id)); 12374 12375 ASSERT(IAM_WRITER_IPIF(ipif)); 12376 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12377 return (EADDRNOTAVAIL); 12378 12379 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12380 12381 if (sin->sin_family != AF_INET) 12382 return (EAFNOSUPPORT); 12383 12384 addr = sin->sin_addr.s_addr; 12385 if (ipif->ipif_flags & IPIF_UP) { 12386 /* 12387 * If we are already up, make sure the new 12388 * broadcast address makes sense. If it does, 12389 * there should be an IRE for it already. 12390 * Don't match on ipif, only on the ill 12391 * since we are sharing these now. Don't use 12392 * MATCH_IRE_ILL_GROUP as we are looking for 12393 * the broadcast ire on this ill and each ill 12394 * in the group has its own broadcast ire. 12395 */ 12396 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12397 ipif, ALL_ZONES, NULL, 12398 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 12399 if (ire == NULL) { 12400 return (EINVAL); 12401 } else { 12402 ire_refrele(ire); 12403 } 12404 } 12405 /* 12406 * Changing the broadcast addr for this ipif. 12407 * Make sure we have valid net and subnet bcast 12408 * ire's for other logical interfaces, if needed. 12409 */ 12410 if (addr != ipif->ipif_brd_addr) 12411 ipif_check_bcast_ires(ipif); 12412 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12413 return (0); 12414 } 12415 12416 /* Get interface broadcast address. */ 12417 /* ARGSUSED */ 12418 int 12419 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12420 ip_ioctl_cmd_t *ipip, void *if_req) 12421 { 12422 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12423 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12424 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12425 return (EADDRNOTAVAIL); 12426 12427 /* IPIF_BROADCAST not possible with IPv6 */ 12428 ASSERT(!ipif->ipif_isv6); 12429 *sin = sin_null; 12430 sin->sin_family = AF_INET; 12431 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12432 return (0); 12433 } 12434 12435 /* 12436 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12437 */ 12438 /* ARGSUSED */ 12439 int 12440 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12441 ip_ioctl_cmd_t *ipip, void *if_req) 12442 { 12443 int err = 0; 12444 in6_addr_t v6mask; 12445 12446 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12447 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12448 12449 ASSERT(IAM_WRITER_IPIF(ipif)); 12450 12451 if (ipif->ipif_isv6) { 12452 sin6_t *sin6; 12453 12454 if (sin->sin_family != AF_INET6) 12455 return (EAFNOSUPPORT); 12456 12457 sin6 = (sin6_t *)sin; 12458 v6mask = sin6->sin6_addr; 12459 } else { 12460 ipaddr_t mask; 12461 12462 if (sin->sin_family != AF_INET) 12463 return (EAFNOSUPPORT); 12464 12465 mask = sin->sin_addr.s_addr; 12466 V4MASK_TO_V6(mask, v6mask); 12467 } 12468 12469 /* 12470 * No big deal if the interface isn't already up, or the mask 12471 * isn't really changing, or this is pt-pt. 12472 */ 12473 if (!(ipif->ipif_flags & IPIF_UP) || 12474 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12475 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12476 ipif->ipif_v6net_mask = v6mask; 12477 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12478 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12479 ipif->ipif_v6net_mask, 12480 ipif->ipif_v6subnet); 12481 } 12482 return (0); 12483 } 12484 /* 12485 * Make sure we have valid net and subnet broadcast ire's 12486 * for the old netmask, if needed by other logical interfaces. 12487 */ 12488 if (!ipif->ipif_isv6) 12489 ipif_check_bcast_ires(ipif); 12490 12491 err = ipif_logical_down(ipif, q, mp); 12492 if (err == EINPROGRESS) 12493 return (err); 12494 ipif_down_tail(ipif); 12495 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12496 return (err); 12497 } 12498 12499 static int 12500 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12501 { 12502 in6_addr_t v6mask; 12503 int err = 0; 12504 12505 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12506 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12507 12508 if (ipif->ipif_isv6) { 12509 sin6_t *sin6; 12510 12511 sin6 = (sin6_t *)sin; 12512 v6mask = sin6->sin6_addr; 12513 } else { 12514 ipaddr_t mask; 12515 12516 mask = sin->sin_addr.s_addr; 12517 V4MASK_TO_V6(mask, v6mask); 12518 } 12519 12520 ipif->ipif_v6net_mask = v6mask; 12521 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12522 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12523 ipif->ipif_v6subnet); 12524 } 12525 err = ipif_up(ipif, q, mp); 12526 12527 if (err == 0 || err == EINPROGRESS) { 12528 /* 12529 * The interface must be DL_BOUND if this packet has to 12530 * go out on the wire. Since we only go through a logical 12531 * down and are bound with the driver during an internal 12532 * down/up that is satisfied. 12533 */ 12534 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12535 /* Potentially broadcast an address mask reply. */ 12536 ipif_mask_reply(ipif); 12537 } 12538 } 12539 return (err); 12540 } 12541 12542 /* ARGSUSED */ 12543 int 12544 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12545 ip_ioctl_cmd_t *ipip, void *if_req) 12546 { 12547 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12548 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12549 ipif_down_tail(ipif); 12550 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12551 } 12552 12553 /* Get interface net mask. */ 12554 /* ARGSUSED */ 12555 int 12556 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12557 ip_ioctl_cmd_t *ipip, void *if_req) 12558 { 12559 struct lifreq *lifr = (struct lifreq *)if_req; 12560 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12561 12562 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12563 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12564 12565 /* 12566 * net mask can't change since we have a reference to the ipif. 12567 */ 12568 if (ipif->ipif_isv6) { 12569 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12570 *sin6 = sin6_null; 12571 sin6->sin6_family = AF_INET6; 12572 sin6->sin6_addr = ipif->ipif_v6net_mask; 12573 lifr->lifr_addrlen = 12574 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12575 } else { 12576 *sin = sin_null; 12577 sin->sin_family = AF_INET; 12578 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12579 if (ipip->ipi_cmd_type == LIF_CMD) { 12580 lifr->lifr_addrlen = 12581 ip_mask_to_plen(ipif->ipif_net_mask); 12582 } 12583 } 12584 return (0); 12585 } 12586 12587 /* ARGSUSED */ 12588 int 12589 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12590 ip_ioctl_cmd_t *ipip, void *if_req) 12591 { 12592 12593 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12594 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12595 /* 12596 * Set interface metric. We don't use this for 12597 * anything but we keep track of it in case it is 12598 * important to routing applications or such. 12599 */ 12600 if (ipip->ipi_cmd_type == IF_CMD) { 12601 struct ifreq *ifr; 12602 12603 ifr = (struct ifreq *)if_req; 12604 ipif->ipif_metric = ifr->ifr_metric; 12605 } else { 12606 struct lifreq *lifr; 12607 12608 lifr = (struct lifreq *)if_req; 12609 ipif->ipif_metric = lifr->lifr_metric; 12610 } 12611 return (0); 12612 } 12613 12614 12615 /* ARGSUSED */ 12616 int 12617 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12618 ip_ioctl_cmd_t *ipip, void *if_req) 12619 { 12620 12621 /* Get interface metric. */ 12622 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12623 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12624 if (ipip->ipi_cmd_type == IF_CMD) { 12625 struct ifreq *ifr; 12626 12627 ifr = (struct ifreq *)if_req; 12628 ifr->ifr_metric = ipif->ipif_metric; 12629 } else { 12630 struct lifreq *lifr; 12631 12632 lifr = (struct lifreq *)if_req; 12633 lifr->lifr_metric = ipif->ipif_metric; 12634 } 12635 12636 return (0); 12637 } 12638 12639 /* ARGSUSED */ 12640 int 12641 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12642 ip_ioctl_cmd_t *ipip, void *if_req) 12643 { 12644 12645 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12646 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12647 /* 12648 * Set the muxid returned from I_PLINK. 12649 */ 12650 if (ipip->ipi_cmd_type == IF_CMD) { 12651 struct ifreq *ifr = (struct ifreq *)if_req; 12652 12653 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12654 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12655 } else { 12656 struct lifreq *lifr = (struct lifreq *)if_req; 12657 12658 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12659 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12660 } 12661 return (0); 12662 } 12663 12664 /* ARGSUSED */ 12665 int 12666 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12667 ip_ioctl_cmd_t *ipip, void *if_req) 12668 { 12669 12670 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12671 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12672 /* 12673 * Get the muxid saved in ill for I_PUNLINK. 12674 */ 12675 if (ipip->ipi_cmd_type == IF_CMD) { 12676 struct ifreq *ifr = (struct ifreq *)if_req; 12677 12678 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12679 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12680 } else { 12681 struct lifreq *lifr = (struct lifreq *)if_req; 12682 12683 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12684 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12685 } 12686 return (0); 12687 } 12688 12689 /* 12690 * Set the subnet prefix. Does not modify the broadcast address. 12691 */ 12692 /* ARGSUSED */ 12693 int 12694 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12695 ip_ioctl_cmd_t *ipip, void *if_req) 12696 { 12697 int err = 0; 12698 in6_addr_t v6addr; 12699 in6_addr_t v6mask; 12700 boolean_t need_up = B_FALSE; 12701 int addrlen; 12702 12703 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12704 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12705 12706 ASSERT(IAM_WRITER_IPIF(ipif)); 12707 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12708 12709 if (ipif->ipif_isv6) { 12710 sin6_t *sin6; 12711 12712 if (sin->sin_family != AF_INET6) 12713 return (EAFNOSUPPORT); 12714 12715 sin6 = (sin6_t *)sin; 12716 v6addr = sin6->sin6_addr; 12717 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12718 return (EADDRNOTAVAIL); 12719 } else { 12720 ipaddr_t addr; 12721 12722 if (sin->sin_family != AF_INET) 12723 return (EAFNOSUPPORT); 12724 12725 addr = sin->sin_addr.s_addr; 12726 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12727 return (EADDRNOTAVAIL); 12728 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12729 /* Add 96 bits */ 12730 addrlen += IPV6_ABITS - IP_ABITS; 12731 } 12732 12733 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12734 return (EINVAL); 12735 12736 /* Check if bits in the address is set past the mask */ 12737 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12738 return (EINVAL); 12739 12740 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12741 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12742 return (0); /* No change */ 12743 12744 if (ipif->ipif_flags & IPIF_UP) { 12745 /* 12746 * If the interface is already marked up, 12747 * we call ipif_down which will take care 12748 * of ditching any IREs that have been set 12749 * up based on the old interface address. 12750 */ 12751 err = ipif_logical_down(ipif, q, mp); 12752 if (err == EINPROGRESS) 12753 return (err); 12754 ipif_down_tail(ipif); 12755 need_up = B_TRUE; 12756 } 12757 12758 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12759 return (err); 12760 } 12761 12762 static int 12763 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12764 queue_t *q, mblk_t *mp, boolean_t need_up) 12765 { 12766 ill_t *ill = ipif->ipif_ill; 12767 int err = 0; 12768 12769 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12770 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12771 12772 /* Set the new address. */ 12773 mutex_enter(&ill->ill_lock); 12774 ipif->ipif_v6net_mask = v6mask; 12775 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12776 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12777 ipif->ipif_v6subnet); 12778 } 12779 mutex_exit(&ill->ill_lock); 12780 12781 if (need_up) { 12782 /* 12783 * Now bring the interface back up. If this 12784 * is the only IPIF for the ILL, ipif_up 12785 * will have to re-bind to the device, so 12786 * we may get back EINPROGRESS, in which 12787 * case, this IOCTL will get completed in 12788 * ip_rput_dlpi when we see the DL_BIND_ACK. 12789 */ 12790 err = ipif_up(ipif, q, mp); 12791 if (err == EINPROGRESS) 12792 return (err); 12793 } 12794 return (err); 12795 } 12796 12797 /* ARGSUSED */ 12798 int 12799 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12800 ip_ioctl_cmd_t *ipip, void *if_req) 12801 { 12802 int addrlen; 12803 in6_addr_t v6addr; 12804 in6_addr_t v6mask; 12805 struct lifreq *lifr = (struct lifreq *)if_req; 12806 12807 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12808 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12809 ipif_down_tail(ipif); 12810 12811 addrlen = lifr->lifr_addrlen; 12812 if (ipif->ipif_isv6) { 12813 sin6_t *sin6; 12814 12815 sin6 = (sin6_t *)sin; 12816 v6addr = sin6->sin6_addr; 12817 } else { 12818 ipaddr_t addr; 12819 12820 addr = sin->sin_addr.s_addr; 12821 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12822 addrlen += IPV6_ABITS - IP_ABITS; 12823 } 12824 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12825 12826 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12827 } 12828 12829 /* ARGSUSED */ 12830 int 12831 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12832 ip_ioctl_cmd_t *ipip, void *if_req) 12833 { 12834 struct lifreq *lifr = (struct lifreq *)if_req; 12835 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12836 12837 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12838 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12839 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12840 12841 if (ipif->ipif_isv6) { 12842 *sin6 = sin6_null; 12843 sin6->sin6_family = AF_INET6; 12844 sin6->sin6_addr = ipif->ipif_v6subnet; 12845 lifr->lifr_addrlen = 12846 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12847 } else { 12848 *sin = sin_null; 12849 sin->sin_family = AF_INET; 12850 sin->sin_addr.s_addr = ipif->ipif_subnet; 12851 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12852 } 12853 return (0); 12854 } 12855 12856 /* 12857 * Set the IPv6 address token. 12858 */ 12859 /* ARGSUSED */ 12860 int 12861 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12862 ip_ioctl_cmd_t *ipi, void *if_req) 12863 { 12864 ill_t *ill = ipif->ipif_ill; 12865 int err; 12866 in6_addr_t v6addr; 12867 in6_addr_t v6mask; 12868 boolean_t need_up = B_FALSE; 12869 int i; 12870 sin6_t *sin6 = (sin6_t *)sin; 12871 struct lifreq *lifr = (struct lifreq *)if_req; 12872 int addrlen; 12873 12874 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12875 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12876 ASSERT(IAM_WRITER_IPIF(ipif)); 12877 12878 addrlen = lifr->lifr_addrlen; 12879 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12880 if (ipif->ipif_id != 0) 12881 return (EINVAL); 12882 12883 if (!ipif->ipif_isv6) 12884 return (EINVAL); 12885 12886 if (addrlen > IPV6_ABITS) 12887 return (EINVAL); 12888 12889 v6addr = sin6->sin6_addr; 12890 12891 /* 12892 * The length of the token is the length from the end. To get 12893 * the proper mask for this, compute the mask of the bits not 12894 * in the token; ie. the prefix, and then xor to get the mask. 12895 */ 12896 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12897 return (EINVAL); 12898 for (i = 0; i < 4; i++) { 12899 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12900 } 12901 12902 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12903 ill->ill_token_length == addrlen) 12904 return (0); /* No change */ 12905 12906 if (ipif->ipif_flags & IPIF_UP) { 12907 err = ipif_logical_down(ipif, q, mp); 12908 if (err == EINPROGRESS) 12909 return (err); 12910 ipif_down_tail(ipif); 12911 need_up = B_TRUE; 12912 } 12913 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12914 return (err); 12915 } 12916 12917 static int 12918 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12919 mblk_t *mp, boolean_t need_up) 12920 { 12921 in6_addr_t v6addr; 12922 in6_addr_t v6mask; 12923 ill_t *ill = ipif->ipif_ill; 12924 int i; 12925 int err = 0; 12926 12927 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12928 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12929 v6addr = sin6->sin6_addr; 12930 /* 12931 * The length of the token is the length from the end. To get 12932 * the proper mask for this, compute the mask of the bits not 12933 * in the token; ie. the prefix, and then xor to get the mask. 12934 */ 12935 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12936 for (i = 0; i < 4; i++) 12937 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12938 12939 mutex_enter(&ill->ill_lock); 12940 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12941 ill->ill_token_length = addrlen; 12942 mutex_exit(&ill->ill_lock); 12943 12944 if (need_up) { 12945 /* 12946 * Now bring the interface back up. If this 12947 * is the only IPIF for the ILL, ipif_up 12948 * will have to re-bind to the device, so 12949 * we may get back EINPROGRESS, in which 12950 * case, this IOCTL will get completed in 12951 * ip_rput_dlpi when we see the DL_BIND_ACK. 12952 */ 12953 err = ipif_up(ipif, q, mp); 12954 if (err == EINPROGRESS) 12955 return (err); 12956 } 12957 return (err); 12958 } 12959 12960 /* ARGSUSED */ 12961 int 12962 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12963 ip_ioctl_cmd_t *ipi, void *if_req) 12964 { 12965 ill_t *ill; 12966 sin6_t *sin6 = (sin6_t *)sin; 12967 struct lifreq *lifr = (struct lifreq *)if_req; 12968 12969 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12970 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12971 if (ipif->ipif_id != 0) 12972 return (EINVAL); 12973 12974 ill = ipif->ipif_ill; 12975 if (!ill->ill_isv6) 12976 return (ENXIO); 12977 12978 *sin6 = sin6_null; 12979 sin6->sin6_family = AF_INET6; 12980 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12981 sin6->sin6_addr = ill->ill_token; 12982 lifr->lifr_addrlen = ill->ill_token_length; 12983 return (0); 12984 } 12985 12986 /* 12987 * Set (hardware) link specific information that might override 12988 * what was acquired through the DL_INFO_ACK. 12989 * The logic is as follows. 12990 * 12991 * become exclusive 12992 * set CHANGING flag 12993 * change mtu on affected IREs 12994 * clear CHANGING flag 12995 * 12996 * An ire add that occurs before the CHANGING flag is set will have its mtu 12997 * changed by the ip_sioctl_lnkinfo. 12998 * 12999 * During the time the CHANGING flag is set, no new ires will be added to the 13000 * bucket, and ire add will fail (due the CHANGING flag). 13001 * 13002 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13003 * before it is added to the bucket. 13004 * 13005 * Obviously only 1 thread can set the CHANGING flag and we need to become 13006 * exclusive to set the flag. 13007 */ 13008 /* ARGSUSED */ 13009 int 13010 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13011 ip_ioctl_cmd_t *ipi, void *if_req) 13012 { 13013 ill_t *ill = ipif->ipif_ill; 13014 ipif_t *nipif; 13015 int ip_min_mtu; 13016 boolean_t mtu_walk = B_FALSE; 13017 struct lifreq *lifr = (struct lifreq *)if_req; 13018 lif_ifinfo_req_t *lir; 13019 ire_t *ire; 13020 13021 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13022 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13023 lir = &lifr->lifr_ifinfo; 13024 ASSERT(IAM_WRITER_IPIF(ipif)); 13025 13026 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13027 if (ipif->ipif_id != 0) 13028 return (EINVAL); 13029 13030 /* Set interface MTU. */ 13031 if (ipif->ipif_isv6) 13032 ip_min_mtu = IPV6_MIN_MTU; 13033 else 13034 ip_min_mtu = IP_MIN_MTU; 13035 13036 /* 13037 * Verify values before we set anything. Allow zero to 13038 * mean unspecified. 13039 */ 13040 if (lir->lir_maxmtu != 0 && 13041 (lir->lir_maxmtu > ill->ill_max_frag || 13042 lir->lir_maxmtu < ip_min_mtu)) 13043 return (EINVAL); 13044 if (lir->lir_reachtime != 0 && 13045 lir->lir_reachtime > ND_MAX_REACHTIME) 13046 return (EINVAL); 13047 if (lir->lir_reachretrans != 0 && 13048 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13049 return (EINVAL); 13050 13051 mutex_enter(&ill->ill_lock); 13052 ill->ill_state_flags |= ILL_CHANGING; 13053 for (nipif = ill->ill_ipif; nipif != NULL; 13054 nipif = nipif->ipif_next) { 13055 nipif->ipif_state_flags |= IPIF_CHANGING; 13056 } 13057 13058 mutex_exit(&ill->ill_lock); 13059 13060 if (lir->lir_maxmtu != 0) { 13061 ill->ill_max_mtu = lir->lir_maxmtu; 13062 ill->ill_mtu_userspecified = 1; 13063 mtu_walk = B_TRUE; 13064 } 13065 13066 if (lir->lir_reachtime != 0) 13067 ill->ill_reachable_time = lir->lir_reachtime; 13068 13069 if (lir->lir_reachretrans != 0) 13070 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13071 13072 ill->ill_max_hops = lir->lir_maxhops; 13073 13074 ill->ill_max_buf = ND_MAX_Q; 13075 13076 if (mtu_walk) { 13077 /* 13078 * Set the MTU on all ipifs associated with this ill except 13079 * for those whose MTU was fixed via SIOCSLIFMTU. 13080 */ 13081 for (nipif = ill->ill_ipif; nipif != NULL; 13082 nipif = nipif->ipif_next) { 13083 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13084 continue; 13085 13086 nipif->ipif_mtu = ill->ill_max_mtu; 13087 13088 if (!(nipif->ipif_flags & IPIF_UP)) 13089 continue; 13090 13091 if (nipif->ipif_isv6) 13092 ire = ipif_to_ire_v6(nipif); 13093 else 13094 ire = ipif_to_ire(nipif); 13095 if (ire != NULL) { 13096 ire->ire_max_frag = ipif->ipif_mtu; 13097 ire_refrele(ire); 13098 } 13099 if (ill->ill_isv6) { 13100 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13101 ipif_mtu_change, (char *)nipif, 13102 ill); 13103 } else { 13104 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13105 ipif_mtu_change, (char *)nipif, 13106 ill); 13107 } 13108 } 13109 } 13110 13111 mutex_enter(&ill->ill_lock); 13112 for (nipif = ill->ill_ipif; nipif != NULL; 13113 nipif = nipif->ipif_next) { 13114 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13115 } 13116 ILL_UNMARK_CHANGING(ill); 13117 mutex_exit(&ill->ill_lock); 13118 13119 return (0); 13120 } 13121 13122 /* ARGSUSED */ 13123 int 13124 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13125 ip_ioctl_cmd_t *ipi, void *if_req) 13126 { 13127 struct lif_ifinfo_req *lir; 13128 ill_t *ill = ipif->ipif_ill; 13129 13130 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13131 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13132 if (ipif->ipif_id != 0) 13133 return (EINVAL); 13134 13135 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13136 lir->lir_maxhops = ill->ill_max_hops; 13137 lir->lir_reachtime = ill->ill_reachable_time; 13138 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13139 lir->lir_maxmtu = ill->ill_max_mtu; 13140 13141 return (0); 13142 } 13143 13144 /* 13145 * Return best guess as to the subnet mask for the specified address. 13146 * Based on the subnet masks for all the configured interfaces. 13147 * 13148 * We end up returning a zero mask in the case of default, multicast or 13149 * experimental. 13150 */ 13151 static ipaddr_t 13152 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 13153 { 13154 ipaddr_t net_mask; 13155 ill_t *ill; 13156 ipif_t *ipif; 13157 ill_walk_context_t ctx; 13158 ipif_t *fallback_ipif = NULL; 13159 13160 net_mask = ip_net_mask(addr); 13161 if (net_mask == 0) { 13162 *ipifp = NULL; 13163 return (0); 13164 } 13165 13166 /* Let's check to see if this is maybe a local subnet route. */ 13167 /* this function only applies to IPv4 interfaces */ 13168 rw_enter(&ill_g_lock, RW_READER); 13169 ill = ILL_START_WALK_V4(&ctx); 13170 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13171 mutex_enter(&ill->ill_lock); 13172 for (ipif = ill->ill_ipif; ipif != NULL; 13173 ipif = ipif->ipif_next) { 13174 if (!IPIF_CAN_LOOKUP(ipif)) 13175 continue; 13176 if (!(ipif->ipif_flags & IPIF_UP)) 13177 continue; 13178 if ((ipif->ipif_subnet & net_mask) == 13179 (addr & net_mask)) { 13180 /* 13181 * Don't trust pt-pt interfaces if there are 13182 * other interfaces. 13183 */ 13184 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13185 if (fallback_ipif == NULL) { 13186 ipif_refhold_locked(ipif); 13187 fallback_ipif = ipif; 13188 } 13189 continue; 13190 } 13191 13192 /* 13193 * Fine. Just assume the same net mask as the 13194 * directly attached subnet interface is using. 13195 */ 13196 ipif_refhold_locked(ipif); 13197 mutex_exit(&ill->ill_lock); 13198 rw_exit(&ill_g_lock); 13199 if (fallback_ipif != NULL) 13200 ipif_refrele(fallback_ipif); 13201 *ipifp = ipif; 13202 return (ipif->ipif_net_mask); 13203 } 13204 } 13205 mutex_exit(&ill->ill_lock); 13206 } 13207 rw_exit(&ill_g_lock); 13208 13209 *ipifp = fallback_ipif; 13210 return ((fallback_ipif != NULL) ? 13211 fallback_ipif->ipif_net_mask : net_mask); 13212 } 13213 13214 /* 13215 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13216 */ 13217 static void 13218 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13219 { 13220 IOCP iocp; 13221 ipft_t *ipft; 13222 ipllc_t *ipllc; 13223 mblk_t *mp1; 13224 cred_t *cr; 13225 int error = 0; 13226 conn_t *connp; 13227 13228 ip1dbg(("ip_wput_ioctl")); 13229 iocp = (IOCP)mp->b_rptr; 13230 mp1 = mp->b_cont; 13231 if (mp1 == NULL) { 13232 iocp->ioc_error = EINVAL; 13233 mp->b_datap->db_type = M_IOCNAK; 13234 iocp->ioc_count = 0; 13235 qreply(q, mp); 13236 return; 13237 } 13238 13239 /* 13240 * These IOCTLs provide various control capabilities to 13241 * upstream agents such as ULPs and processes. There 13242 * are currently two such IOCTLs implemented. They 13243 * are used by TCP to provide update information for 13244 * existing IREs and to forcibly delete an IRE for a 13245 * host that is not responding, thereby forcing an 13246 * attempt at a new route. 13247 */ 13248 iocp->ioc_error = EINVAL; 13249 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13250 goto done; 13251 13252 ipllc = (ipllc_t *)mp1->b_rptr; 13253 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13254 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13255 break; 13256 } 13257 /* 13258 * prefer credential from mblk over ioctl; 13259 * see ip_sioctl_copyin_setup 13260 */ 13261 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13262 13263 /* 13264 * Refhold the conn in case the request gets queued up in some lookup 13265 */ 13266 ASSERT(CONN_Q(q)); 13267 connp = Q_TO_CONN(q); 13268 CONN_INC_REF(connp); 13269 if (ipft->ipft_pfi && 13270 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13271 pullupmsg(mp1, ipft->ipft_min_size))) { 13272 error = (*ipft->ipft_pfi)(q, 13273 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13274 } 13275 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13276 /* 13277 * CONN_OPER_PENDING_DONE happens in the function called 13278 * through ipft_pfi above. 13279 */ 13280 return; 13281 } 13282 13283 CONN_OPER_PENDING_DONE(connp); 13284 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13285 freemsg(mp); 13286 return; 13287 } 13288 iocp->ioc_error = error; 13289 13290 done: 13291 mp->b_datap->db_type = M_IOCACK; 13292 if (iocp->ioc_error) 13293 iocp->ioc_count = 0; 13294 qreply(q, mp); 13295 } 13296 13297 /* 13298 * Lookup an ipif using the sequence id (ipif_seqid) 13299 */ 13300 ipif_t * 13301 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13302 { 13303 ipif_t *ipif; 13304 13305 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13306 13307 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13308 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13309 return (ipif); 13310 } 13311 return (NULL); 13312 } 13313 13314 uint64_t ipif_g_seqid; 13315 13316 /* 13317 * Assign a unique id for the ipif. This is used later when we send 13318 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13319 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13320 * IRE is added, we verify that ipif has not disappeared. 13321 */ 13322 13323 static void 13324 ipif_assign_seqid(ipif_t *ipif) 13325 { 13326 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 13327 } 13328 13329 /* 13330 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13331 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13332 * be inserted into the first space available in the list. The value of 13333 * ipif_id will then be set to the appropriate value for its position. 13334 */ 13335 static int 13336 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13337 { 13338 ill_t *ill; 13339 ipif_t *tipif; 13340 ipif_t **tipifp; 13341 int id; 13342 13343 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13344 IAM_WRITER_IPIF(ipif)); 13345 13346 ill = ipif->ipif_ill; 13347 ASSERT(ill != NULL); 13348 13349 /* 13350 * In the case of lo0:0 we already hold the ill_g_lock. 13351 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13352 * ipif_insert. Another such caller is ipif_move. 13353 */ 13354 if (acquire_g_lock) 13355 rw_enter(&ill_g_lock, RW_WRITER); 13356 if (acquire_ill_lock) 13357 mutex_enter(&ill->ill_lock); 13358 id = ipif->ipif_id; 13359 tipifp = &(ill->ill_ipif); 13360 if (id == -1) { /* need to find a real id */ 13361 id = 0; 13362 while ((tipif = *tipifp) != NULL) { 13363 ASSERT(tipif->ipif_id >= id); 13364 if (tipif->ipif_id != id) 13365 break; /* non-consecutive id */ 13366 id++; 13367 tipifp = &(tipif->ipif_next); 13368 } 13369 /* limit number of logical interfaces */ 13370 if (id >= ip_addrs_per_if) { 13371 if (acquire_ill_lock) 13372 mutex_exit(&ill->ill_lock); 13373 if (acquire_g_lock) 13374 rw_exit(&ill_g_lock); 13375 return (-1); 13376 } 13377 ipif->ipif_id = id; /* assign new id */ 13378 } else if (id < ip_addrs_per_if) { 13379 /* we have a real id; insert ipif in the right place */ 13380 while ((tipif = *tipifp) != NULL) { 13381 ASSERT(tipif->ipif_id != id); 13382 if (tipif->ipif_id > id) 13383 break; /* found correct location */ 13384 tipifp = &(tipif->ipif_next); 13385 } 13386 } else { 13387 if (acquire_ill_lock) 13388 mutex_exit(&ill->ill_lock); 13389 if (acquire_g_lock) 13390 rw_exit(&ill_g_lock); 13391 return (-1); 13392 } 13393 13394 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13395 13396 ipif->ipif_next = tipif; 13397 *tipifp = ipif; 13398 if (acquire_ill_lock) 13399 mutex_exit(&ill->ill_lock); 13400 if (acquire_g_lock) 13401 rw_exit(&ill_g_lock); 13402 return (0); 13403 } 13404 13405 /* 13406 * Allocate and initialize a new interface control structure. (Always 13407 * called as writer.) 13408 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13409 * is not part of the global linked list of ills. ipif_seqid is unique 13410 * in the system and to preserve the uniqueness, it is assigned only 13411 * when ill becomes part of the global list. At that point ill will 13412 * have a name. If it doesn't get assigned here, it will get assigned 13413 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13414 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13415 * the interface flags or any other information from the DL_INFO_ACK for 13416 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13417 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13418 * second DL_INFO_ACK comes in from the driver. 13419 */ 13420 static ipif_t * 13421 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13422 { 13423 ipif_t *ipif; 13424 phyint_t *phyi; 13425 13426 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13427 ill->ill_name, id, (void *)ill)); 13428 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13429 13430 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13431 return (NULL); 13432 *ipif = ipif_zero; /* start clean */ 13433 13434 ipif->ipif_ill = ill; 13435 ipif->ipif_id = id; /* could be -1 */ 13436 ipif->ipif_zoneid = GLOBAL_ZONEID; 13437 13438 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13439 13440 ipif->ipif_refcnt = 0; 13441 ipif->ipif_saved_ire_cnt = 0; 13442 13443 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13444 mi_free(ipif); 13445 return (NULL); 13446 } 13447 /* -1 id should have been replaced by real id */ 13448 id = ipif->ipif_id; 13449 ASSERT(id >= 0); 13450 13451 if (ill->ill_name[0] != '\0') { 13452 ipif_assign_seqid(ipif); 13453 if (ill->ill_phyint->phyint_ifindex != 0) 13454 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 13455 } 13456 /* 13457 * Keep a copy of original id in ipif_orig_ipifid. Failback 13458 * will attempt to restore the original id. The SIOCSLIFOINDEX 13459 * ioctl sets ipif_orig_ipifid to zero. 13460 */ 13461 ipif->ipif_orig_ipifid = id; 13462 13463 /* 13464 * We grab the ill_lock and phyint_lock to protect the flag changes. 13465 * The ipif is still not up and can't be looked up until the 13466 * ioctl completes and the IPIF_CHANGING flag is cleared. 13467 */ 13468 mutex_enter(&ill->ill_lock); 13469 mutex_enter(&ill->ill_phyint->phyint_lock); 13470 /* 13471 * Set the running flag when logical interface zero is created. 13472 * For subsequent logical interfaces, a DLPI link down 13473 * notification message may have cleared the running flag to 13474 * indicate the link is down, so we shouldn't just blindly set it. 13475 */ 13476 if (id == 0) 13477 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13478 ipif->ipif_ire_type = ire_type; 13479 phyi = ill->ill_phyint; 13480 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13481 13482 if (ipif->ipif_isv6) { 13483 ill->ill_flags |= ILLF_IPV6; 13484 } else { 13485 ipaddr_t inaddr_any = INADDR_ANY; 13486 13487 ill->ill_flags |= ILLF_IPV4; 13488 13489 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13490 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13491 &ipif->ipif_v6lcl_addr); 13492 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13493 &ipif->ipif_v6src_addr); 13494 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13495 &ipif->ipif_v6subnet); 13496 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13497 &ipif->ipif_v6net_mask); 13498 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13499 &ipif->ipif_v6brd_addr); 13500 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13501 &ipif->ipif_v6pp_dst_addr); 13502 } 13503 13504 /* 13505 * Don't set the interface flags etc. now, will do it in 13506 * ip_ll_subnet_defaults. 13507 */ 13508 if (!initialize) { 13509 mutex_exit(&ill->ill_lock); 13510 mutex_exit(&ill->ill_phyint->phyint_lock); 13511 return (ipif); 13512 } 13513 ipif->ipif_mtu = ill->ill_max_mtu; 13514 13515 if (ill->ill_bcast_addr_length != 0) { 13516 /* 13517 * Later detect lack of DLPI driver multicast 13518 * capability by catching DL_ENABMULTI errors in 13519 * ip_rput_dlpi. 13520 */ 13521 ill->ill_flags |= ILLF_MULTICAST; 13522 if (!ipif->ipif_isv6) 13523 ipif->ipif_flags |= IPIF_BROADCAST; 13524 } else { 13525 if (ill->ill_net_type != IRE_LOOPBACK) { 13526 if (ipif->ipif_isv6) 13527 /* 13528 * Note: xresolv interfaces will eventually need 13529 * NOARP set here as well, but that will require 13530 * those external resolvers to have some 13531 * knowledge of that flag and act appropriately. 13532 * Not to be changed at present. 13533 */ 13534 ill->ill_flags |= ILLF_NONUD; 13535 else 13536 ill->ill_flags |= ILLF_NOARP; 13537 } 13538 if (ill->ill_phys_addr_length == 0) { 13539 if (ill->ill_media && 13540 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13541 ipif->ipif_flags |= IPIF_NOXMIT; 13542 phyi->phyint_flags |= PHYI_VIRTUAL; 13543 } else { 13544 /* pt-pt supports multicast. */ 13545 ill->ill_flags |= ILLF_MULTICAST; 13546 if (ill->ill_net_type == IRE_LOOPBACK) { 13547 phyi->phyint_flags |= 13548 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13549 } else { 13550 ipif->ipif_flags |= IPIF_POINTOPOINT; 13551 } 13552 } 13553 } 13554 } 13555 mutex_exit(&ill->ill_lock); 13556 mutex_exit(&ill->ill_phyint->phyint_lock); 13557 return (ipif); 13558 } 13559 13560 /* 13561 * If appropriate, send a message up to the resolver delete the entry 13562 * for the address of this interface which is going out of business. 13563 * (Always called as writer). 13564 * 13565 * NOTE : We need to check for NULL mps as some of the fields are 13566 * initialized only for some interface types. See ipif_resolver_up() 13567 * for details. 13568 */ 13569 void 13570 ipif_arp_down(ipif_t *ipif) 13571 { 13572 mblk_t *mp; 13573 ill_t *ill = ipif->ipif_ill; 13574 13575 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13576 ASSERT(IAM_WRITER_IPIF(ipif)); 13577 13578 /* Delete the mapping for the local address */ 13579 mp = ipif->ipif_arp_del_mp; 13580 if (mp != NULL) { 13581 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13582 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13583 putnext(ill->ill_rq, mp); 13584 ipif->ipif_arp_del_mp = NULL; 13585 } 13586 13587 /* 13588 * If this is the last ipif that is going down and there are no 13589 * duplicate addresses we may yet attempt to re-probe, then we need to 13590 * clean up ARP completely. 13591 */ 13592 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13593 13594 /* Send up AR_INTERFACE_DOWN message */ 13595 mp = ill->ill_arp_down_mp; 13596 if (mp != NULL) { 13597 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13598 *(unsigned *)mp->b_rptr, ill->ill_name, 13599 ipif->ipif_id)); 13600 putnext(ill->ill_rq, mp); 13601 ill->ill_arp_down_mp = NULL; 13602 } 13603 13604 /* Tell ARP to delete the multicast mappings */ 13605 mp = ill->ill_arp_del_mapping_mp; 13606 if (mp != NULL) { 13607 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13608 *(unsigned *)mp->b_rptr, ill->ill_name, 13609 ipif->ipif_id)); 13610 putnext(ill->ill_rq, mp); 13611 ill->ill_arp_del_mapping_mp = NULL; 13612 } 13613 } 13614 } 13615 13616 /* 13617 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13618 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13619 * that it wants the add_mp allocated in this function to be returned 13620 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13621 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13622 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13623 * as it does a ipif_arp_down after calling this function - which will 13624 * remove what we add here. 13625 * 13626 * Returns -1 on failures and 0 on success. 13627 */ 13628 int 13629 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13630 { 13631 mblk_t *del_mp = NULL; 13632 mblk_t *add_mp = NULL; 13633 mblk_t *mp; 13634 ill_t *ill = ipif->ipif_ill; 13635 phyint_t *phyi = ill->ill_phyint; 13636 ipaddr_t addr, mask, extract_mask = 0; 13637 arma_t *arma; 13638 uint8_t *maddr, *bphys_addr; 13639 uint32_t hw_start; 13640 dl_unitdata_req_t *dlur; 13641 13642 ASSERT(IAM_WRITER_IPIF(ipif)); 13643 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13644 return (0); 13645 13646 /* 13647 * Delete the existing mapping from ARP. Normally ipif_down 13648 * -> ipif_arp_down should send this up to ARP. The only 13649 * reason we would find this when we are switching from 13650 * Multicast to Broadcast where we did not do a down. 13651 */ 13652 mp = ill->ill_arp_del_mapping_mp; 13653 if (mp != NULL) { 13654 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13655 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13656 putnext(ill->ill_rq, mp); 13657 ill->ill_arp_del_mapping_mp = NULL; 13658 } 13659 13660 if (arp_add_mapping_mp != NULL) 13661 *arp_add_mapping_mp = NULL; 13662 13663 /* 13664 * Check that the address is not to long for the constant 13665 * length reserved in the template arma_t. 13666 */ 13667 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13668 return (-1); 13669 13670 /* Add mapping mblk */ 13671 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13672 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13673 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13674 (caddr_t)&addr); 13675 if (add_mp == NULL) 13676 return (-1); 13677 arma = (arma_t *)add_mp->b_rptr; 13678 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13679 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13680 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13681 13682 /* 13683 * Determine the broadcast address. 13684 */ 13685 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13686 if (ill->ill_sap_length < 0) 13687 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13688 else 13689 bphys_addr = (uchar_t *)dlur + 13690 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13691 /* 13692 * Check PHYI_MULTI_BCAST and length of physical 13693 * address to determine if we use the mapping or the 13694 * broadcast address. 13695 */ 13696 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13697 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13698 bphys_addr, maddr, &hw_start, &extract_mask)) 13699 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13700 13701 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13702 (ill->ill_flags & ILLF_MULTICAST)) { 13703 /* Make sure this will not match the "exact" entry. */ 13704 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13705 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13706 (caddr_t)&addr); 13707 if (del_mp == NULL) { 13708 freemsg(add_mp); 13709 return (-1); 13710 } 13711 bcopy(&extract_mask, (char *)arma + 13712 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13713 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13714 /* Use link-layer broadcast address for MULTI_BCAST */ 13715 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13716 ip2dbg(("ipif_arp_setup_multicast: adding" 13717 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13718 } else { 13719 arma->arma_hw_mapping_start = hw_start; 13720 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13721 " ARP setup for %s\n", ill->ill_name)); 13722 } 13723 } else { 13724 freemsg(add_mp); 13725 ASSERT(del_mp == NULL); 13726 /* It is neither MULTICAST nor MULTI_BCAST */ 13727 return (0); 13728 } 13729 ASSERT(add_mp != NULL && del_mp != NULL); 13730 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13731 ill->ill_arp_del_mapping_mp = del_mp; 13732 if (arp_add_mapping_mp != NULL) { 13733 /* The caller just wants the mblks allocated */ 13734 *arp_add_mapping_mp = add_mp; 13735 } else { 13736 /* The caller wants us to send it to arp */ 13737 putnext(ill->ill_rq, add_mp); 13738 } 13739 return (0); 13740 } 13741 13742 /* 13743 * Get the resolver set up for a new interface address. 13744 * (Always called as writer.) 13745 * Called both for IPv4 and IPv6 interfaces, 13746 * though it only sets up the resolver for v6 13747 * if it's an xresolv interface (one using an external resolver). 13748 * Honors ILLF_NOARP. 13749 * The enumerated value res_act is used to tune the behavior. 13750 * If set to Res_act_initial, then we set up all the resolver 13751 * structures for a new interface. If set to Res_act_move, then 13752 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13753 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13754 * asynchronous hardware address change notification. If set to 13755 * Res_act_defend, then we tell ARP that it needs to send a single 13756 * gratuitous message in defense of the address. 13757 * Returns error on failure. 13758 */ 13759 int 13760 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13761 { 13762 caddr_t addr; 13763 mblk_t *arp_up_mp = NULL; 13764 mblk_t *arp_down_mp = NULL; 13765 mblk_t *arp_add_mp = NULL; 13766 mblk_t *arp_del_mp = NULL; 13767 mblk_t *arp_add_mapping_mp = NULL; 13768 mblk_t *arp_del_mapping_mp = NULL; 13769 ill_t *ill = ipif->ipif_ill; 13770 uchar_t *area_p = NULL; 13771 uchar_t *ared_p = NULL; 13772 int err = ENOMEM; 13773 boolean_t was_dup; 13774 13775 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13776 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13777 ASSERT(IAM_WRITER_IPIF(ipif)); 13778 13779 was_dup = B_FALSE; 13780 if (res_act == Res_act_initial) { 13781 ipif->ipif_addr_ready = 0; 13782 /* 13783 * We're bringing an interface up here. There's no way that we 13784 * should need to shut down ARP now. 13785 */ 13786 mutex_enter(&ill->ill_lock); 13787 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13788 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13789 ill->ill_ipif_dup_count--; 13790 was_dup = B_TRUE; 13791 } 13792 mutex_exit(&ill->ill_lock); 13793 } 13794 if (ipif->ipif_recovery_id != 0) 13795 (void) untimeout(ipif->ipif_recovery_id); 13796 ipif->ipif_recovery_id = 0; 13797 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13798 ipif->ipif_addr_ready = 1; 13799 return (0); 13800 } 13801 /* NDP will set the ipif_addr_ready flag when it's ready */ 13802 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13803 return (0); 13804 13805 if (ill->ill_isv6) { 13806 /* 13807 * External resolver for IPv6 13808 */ 13809 ASSERT(res_act == Res_act_initial); 13810 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13811 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13812 area_p = (uchar_t *)&ip6_area_template; 13813 ared_p = (uchar_t *)&ip6_ared_template; 13814 } 13815 } else { 13816 /* 13817 * IPv4 arp case. If the ARP stream has already started 13818 * closing, fail this request for ARP bringup. Else 13819 * record the fact that an ARP bringup is pending. 13820 */ 13821 mutex_enter(&ill->ill_lock); 13822 if (ill->ill_arp_closing) { 13823 mutex_exit(&ill->ill_lock); 13824 err = EINVAL; 13825 goto failed; 13826 } else { 13827 if (ill->ill_ipif_up_count == 0 && 13828 ill->ill_ipif_dup_count == 0 && !was_dup) 13829 ill->ill_arp_bringup_pending = 1; 13830 mutex_exit(&ill->ill_lock); 13831 } 13832 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13833 addr = (caddr_t)&ipif->ipif_lcl_addr; 13834 area_p = (uchar_t *)&ip_area_template; 13835 ared_p = (uchar_t *)&ip_ared_template; 13836 } 13837 } 13838 13839 /* 13840 * Add an entry for the local address in ARP only if it 13841 * is not UNNUMBERED and the address is not INADDR_ANY. 13842 */ 13843 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13844 area_t *area; 13845 13846 /* Now ask ARP to publish our address. */ 13847 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13848 if (arp_add_mp == NULL) 13849 goto failed; 13850 area = (area_t *)arp_add_mp->b_rptr; 13851 if (res_act != Res_act_initial) { 13852 /* 13853 * Copy the new hardware address and length into 13854 * arp_add_mp to be sent to ARP. 13855 */ 13856 area->area_hw_addr_length = 13857 ill->ill_phys_addr_length; 13858 bcopy((char *)ill->ill_phys_addr, 13859 ((char *)area + area->area_hw_addr_offset), 13860 area->area_hw_addr_length); 13861 } 13862 13863 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13864 ACE_F_MYADDR; 13865 13866 if (res_act == Res_act_defend) { 13867 area->area_flags |= ACE_F_DEFEND; 13868 /* 13869 * If we're just defending our address now, then 13870 * there's no need to set up ARP multicast mappings. 13871 * The publish command is enough. 13872 */ 13873 goto done; 13874 } 13875 13876 if (res_act != Res_act_initial) 13877 goto arp_setup_multicast; 13878 13879 /* 13880 * Allocate an ARP deletion message so we know we can tell ARP 13881 * when the interface goes down. 13882 */ 13883 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13884 if (arp_del_mp == NULL) 13885 goto failed; 13886 13887 } else { 13888 if (res_act != Res_act_initial) 13889 goto done; 13890 } 13891 /* 13892 * Need to bring up ARP or setup multicast mapping only 13893 * when the first interface is coming UP. 13894 */ 13895 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13896 was_dup) { 13897 goto done; 13898 } 13899 13900 /* 13901 * Allocate an ARP down message (to be saved) and an ARP up 13902 * message. 13903 */ 13904 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13905 if (arp_down_mp == NULL) 13906 goto failed; 13907 13908 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13909 if (arp_up_mp == NULL) 13910 goto failed; 13911 13912 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13913 goto done; 13914 13915 arp_setup_multicast: 13916 /* 13917 * Setup the multicast mappings. This function initializes 13918 * ill_arp_del_mapping_mp also. This does not need to be done for 13919 * IPv6. 13920 */ 13921 if (!ill->ill_isv6) { 13922 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13923 if (err != 0) 13924 goto failed; 13925 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13926 ASSERT(arp_add_mapping_mp != NULL); 13927 } 13928 13929 done: 13930 if (arp_del_mp != NULL) { 13931 ASSERT(ipif->ipif_arp_del_mp == NULL); 13932 ipif->ipif_arp_del_mp = arp_del_mp; 13933 } 13934 if (arp_down_mp != NULL) { 13935 ASSERT(ill->ill_arp_down_mp == NULL); 13936 ill->ill_arp_down_mp = arp_down_mp; 13937 } 13938 if (arp_del_mapping_mp != NULL) { 13939 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13940 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13941 } 13942 if (arp_up_mp != NULL) { 13943 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13944 ill->ill_name, ipif->ipif_id)); 13945 putnext(ill->ill_rq, arp_up_mp); 13946 } 13947 if (arp_add_mp != NULL) { 13948 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13949 ill->ill_name, ipif->ipif_id)); 13950 /* 13951 * If it's an extended ARP implementation, then we'll wait to 13952 * hear that DAD has finished before using the interface. 13953 */ 13954 if (!ill->ill_arp_extend) 13955 ipif->ipif_addr_ready = 1; 13956 putnext(ill->ill_rq, arp_add_mp); 13957 } else { 13958 ipif->ipif_addr_ready = 1; 13959 } 13960 if (arp_add_mapping_mp != NULL) { 13961 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13962 ill->ill_name, ipif->ipif_id)); 13963 putnext(ill->ill_rq, arp_add_mapping_mp); 13964 } 13965 if (res_act != Res_act_initial) 13966 return (0); 13967 13968 if (ill->ill_flags & ILLF_NOARP) 13969 err = ill_arp_off(ill); 13970 else 13971 err = ill_arp_on(ill); 13972 if (err != 0) { 13973 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13974 freemsg(ipif->ipif_arp_del_mp); 13975 freemsg(ill->ill_arp_down_mp); 13976 freemsg(ill->ill_arp_del_mapping_mp); 13977 ipif->ipif_arp_del_mp = NULL; 13978 ill->ill_arp_down_mp = NULL; 13979 ill->ill_arp_del_mapping_mp = NULL; 13980 return (err); 13981 } 13982 return ((ill->ill_ipif_up_count != 0 || was_dup || 13983 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13984 13985 failed: 13986 ip1dbg(("ipif_resolver_up: FAILED\n")); 13987 freemsg(arp_add_mp); 13988 freemsg(arp_del_mp); 13989 freemsg(arp_add_mapping_mp); 13990 freemsg(arp_up_mp); 13991 freemsg(arp_down_mp); 13992 ill->ill_arp_bringup_pending = 0; 13993 return (err); 13994 } 13995 13996 /* 13997 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13998 * just gone back up. 13999 */ 14000 static void 14001 ipif_arp_start_dad(ipif_t *ipif) 14002 { 14003 ill_t *ill = ipif->ipif_ill; 14004 mblk_t *arp_add_mp; 14005 area_t *area; 14006 14007 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14008 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14009 ipif->ipif_lcl_addr == INADDR_ANY || 14010 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14011 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14012 /* 14013 * If we can't contact ARP for some reason, that's not really a 14014 * problem. Just send out the routing socket notification that 14015 * DAD completion would have done, and continue. 14016 */ 14017 ipif_mask_reply(ipif); 14018 ip_rts_ifmsg(ipif); 14019 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14020 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14021 ipif->ipif_addr_ready = 1; 14022 return; 14023 } 14024 14025 /* Setting the 'unverified' flag restarts DAD */ 14026 area = (area_t *)arp_add_mp->b_rptr; 14027 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14028 ACE_F_UNVERIFIED; 14029 putnext(ill->ill_rq, arp_add_mp); 14030 } 14031 14032 static void 14033 ipif_ndp_start_dad(ipif_t *ipif) 14034 { 14035 nce_t *nce; 14036 14037 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14038 if (nce == NULL) 14039 return; 14040 14041 if (!ndp_restart_dad(nce)) { 14042 /* 14043 * If we can't restart DAD for some reason, that's not really a 14044 * problem. Just send out the routing socket notification that 14045 * DAD completion would have done, and continue. 14046 */ 14047 ip_rts_ifmsg(ipif); 14048 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14049 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14050 ipif->ipif_addr_ready = 1; 14051 } 14052 NCE_REFRELE(nce); 14053 } 14054 14055 /* 14056 * Restart duplicate address detection on all interfaces on the given ill. 14057 * 14058 * This is called when an interface transitions from down to up 14059 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14060 * 14061 * Note that since the underlying physical link has transitioned, we must cause 14062 * at least one routing socket message to be sent here, either via DAD 14063 * completion or just by default on the first ipif. (If we don't do this, then 14064 * in.mpathd will see long delays when doing link-based failure recovery.) 14065 */ 14066 void 14067 ill_restart_dad(ill_t *ill, boolean_t went_up) 14068 { 14069 ipif_t *ipif; 14070 14071 if (ill == NULL) 14072 return; 14073 14074 /* 14075 * If layer two doesn't support duplicate address detection, then just 14076 * send the routing socket message now and be done with it. 14077 */ 14078 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14079 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14080 ip_rts_ifmsg(ill->ill_ipif); 14081 return; 14082 } 14083 14084 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14085 if (went_up) { 14086 if (ipif->ipif_flags & IPIF_UP) { 14087 if (ill->ill_isv6) 14088 ipif_ndp_start_dad(ipif); 14089 else 14090 ipif_arp_start_dad(ipif); 14091 } else if (ill->ill_isv6 && 14092 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14093 /* 14094 * For IPv4, the ARP module itself will 14095 * automatically start the DAD process when it 14096 * sees DL_NOTE_LINK_UP. We respond to the 14097 * AR_CN_READY at the completion of that task. 14098 * For IPv6, we must kick off the bring-up 14099 * process now. 14100 */ 14101 ndp_do_recovery(ipif); 14102 } else { 14103 /* 14104 * Unfortunately, the first ipif is "special" 14105 * and represents the underlying ill in the 14106 * routing socket messages. Thus, when this 14107 * one ipif is down, we must still notify so 14108 * that the user knows the IFF_RUNNING status 14109 * change. (If the first ipif is up, then 14110 * we'll handle eventual routing socket 14111 * notification via DAD completion.) 14112 */ 14113 if (ipif == ill->ill_ipif) 14114 ip_rts_ifmsg(ill->ill_ipif); 14115 } 14116 } else { 14117 /* 14118 * After link down, we'll need to send a new routing 14119 * message when the link comes back, so clear 14120 * ipif_addr_ready. 14121 */ 14122 ipif->ipif_addr_ready = 0; 14123 } 14124 } 14125 14126 /* 14127 * If we've torn down links, then notify the user right away. 14128 */ 14129 if (!went_up) 14130 ip_rts_ifmsg(ill->ill_ipif); 14131 } 14132 14133 /* 14134 * Wakeup all threads waiting to enter the ipsq, and sleeping 14135 * on any of the ills in this ipsq. The ill_lock of the ill 14136 * must be held so that waiters don't miss wakeups 14137 */ 14138 static void 14139 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14140 { 14141 phyint_t *phyint; 14142 14143 phyint = ipsq->ipsq_phyint_list; 14144 while (phyint != NULL) { 14145 if (phyint->phyint_illv4) { 14146 if (!caller_holds_lock) 14147 mutex_enter(&phyint->phyint_illv4->ill_lock); 14148 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14149 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14150 if (!caller_holds_lock) 14151 mutex_exit(&phyint->phyint_illv4->ill_lock); 14152 } 14153 if (phyint->phyint_illv6) { 14154 if (!caller_holds_lock) 14155 mutex_enter(&phyint->phyint_illv6->ill_lock); 14156 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14157 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14158 if (!caller_holds_lock) 14159 mutex_exit(&phyint->phyint_illv6->ill_lock); 14160 } 14161 phyint = phyint->phyint_ipsq_next; 14162 } 14163 } 14164 14165 static ipsq_t * 14166 ipsq_create(char *groupname) 14167 { 14168 ipsq_t *ipsq; 14169 14170 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14171 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14172 if (ipsq == NULL) { 14173 return (NULL); 14174 } 14175 14176 if (groupname != NULL) 14177 (void) strcpy(ipsq->ipsq_name, groupname); 14178 else 14179 ipsq->ipsq_name[0] = '\0'; 14180 14181 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14182 ipsq->ipsq_flags |= IPSQ_GROUP; 14183 ipsq->ipsq_next = ipsq_g_head; 14184 ipsq_g_head = ipsq; 14185 return (ipsq); 14186 } 14187 14188 /* 14189 * Return an ipsq correspoding to the groupname. If 'create' is true 14190 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14191 * uniquely with an IPMP group. However during IPMP groupname operations, 14192 * multiple IPMP groups may be associated with a single ipsq. But no 14193 * IPMP group can be associated with more than 1 ipsq at any time. 14194 * For example 14195 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14196 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14197 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14198 * 14199 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14200 * status shown below during the execution of the above command. 14201 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14202 * 14203 * After the completion of the above groupname command we return to the stable 14204 * state shown below. 14205 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14206 * hme4 mpk17-85 ipsq2 mpk17-85 1 14207 * 14208 * Because of the above, we don't search based on the ipsq_name since that 14209 * would miss the correct ipsq during certain windows as shown above. 14210 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14211 * natural state. 14212 */ 14213 static ipsq_t * 14214 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 14215 { 14216 ipsq_t *ipsq; 14217 int group_len; 14218 phyint_t *phyint; 14219 14220 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14221 14222 group_len = strlen(groupname); 14223 ASSERT(group_len != 0); 14224 group_len++; 14225 14226 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 14227 /* 14228 * When an ipsq is being split, and ill_split_ipsq 14229 * calls this function, we exclude it from being considered. 14230 */ 14231 if (ipsq == exclude_ipsq) 14232 continue; 14233 14234 /* 14235 * Compare against the ipsq_name. The groupname change happens 14236 * in 2 phases. The 1st phase merges the from group into 14237 * the to group's ipsq, by calling ill_merge_groups and restarts 14238 * the ioctl. The 2nd phase then locates the ipsq again thru 14239 * ipsq_name. At this point the phyint_groupname has not been 14240 * updated. 14241 */ 14242 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14243 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14244 /* 14245 * Verify that an ipmp groupname is exactly 14246 * part of 1 ipsq and is not found in any other 14247 * ipsq. 14248 */ 14249 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 14250 NULL); 14251 return (ipsq); 14252 } 14253 14254 /* 14255 * Comparison against ipsq_name alone is not sufficient. 14256 * In the case when groups are currently being 14257 * merged, the ipsq could hold other IPMP groups temporarily. 14258 * so we walk the phyint list and compare against the 14259 * phyint_groupname as well. 14260 */ 14261 phyint = ipsq->ipsq_phyint_list; 14262 while (phyint != NULL) { 14263 if ((group_len == phyint->phyint_groupname_len) && 14264 (bcmp(phyint->phyint_groupname, groupname, 14265 group_len) == 0)) { 14266 /* 14267 * Verify that an ipmp groupname is exactly 14268 * part of 1 ipsq and is not found in any other 14269 * ipsq. 14270 */ 14271 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 14272 == NULL); 14273 return (ipsq); 14274 } 14275 phyint = phyint->phyint_ipsq_next; 14276 } 14277 } 14278 if (create) 14279 ipsq = ipsq_create(groupname); 14280 return (ipsq); 14281 } 14282 14283 static void 14284 ipsq_delete(ipsq_t *ipsq) 14285 { 14286 ipsq_t *nipsq; 14287 ipsq_t *pipsq = NULL; 14288 14289 /* 14290 * We don't hold the ipsq lock, but we are sure no new 14291 * messages can land up, since the ipsq_refs is zero. 14292 * i.e. this ipsq is unnamed and no phyint or phyint group 14293 * is associated with this ipsq. (Lookups are based on ill_name 14294 * or phyint_group_name) 14295 */ 14296 ASSERT(ipsq->ipsq_refs == 0); 14297 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14298 ASSERT(ipsq->ipsq_pending_mp == NULL); 14299 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14300 /* 14301 * This is not the ipsq of an IPMP group. 14302 */ 14303 kmem_free(ipsq, sizeof (ipsq_t)); 14304 return; 14305 } 14306 14307 rw_enter(&ill_g_lock, RW_WRITER); 14308 14309 /* 14310 * Locate the ipsq before we can remove it from 14311 * the singly linked list of ipsq's. 14312 */ 14313 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 14314 if (nipsq == ipsq) { 14315 break; 14316 } 14317 pipsq = nipsq; 14318 } 14319 14320 ASSERT(nipsq == ipsq); 14321 14322 /* unlink ipsq from the list */ 14323 if (pipsq != NULL) 14324 pipsq->ipsq_next = ipsq->ipsq_next; 14325 else 14326 ipsq_g_head = ipsq->ipsq_next; 14327 kmem_free(ipsq, sizeof (ipsq_t)); 14328 rw_exit(&ill_g_lock); 14329 } 14330 14331 static void 14332 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14333 queue_t *q) 14334 14335 { 14336 14337 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14338 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14339 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14340 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14341 ASSERT(current_mp != NULL); 14342 14343 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14344 NEW_OP, NULL); 14345 14346 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14347 new_ipsq->ipsq_xopq_mphead != NULL); 14348 14349 /* 14350 * move from old ipsq to the new ipsq. 14351 */ 14352 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14353 if (old_ipsq->ipsq_xopq_mphead != NULL) 14354 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14355 14356 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14357 } 14358 14359 void 14360 ill_group_cleanup(ill_t *ill) 14361 { 14362 ill_t *ill_v4; 14363 ill_t *ill_v6; 14364 ipif_t *ipif; 14365 14366 ill_v4 = ill->ill_phyint->phyint_illv4; 14367 ill_v6 = ill->ill_phyint->phyint_illv6; 14368 14369 if (ill_v4 != NULL) { 14370 mutex_enter(&ill_v4->ill_lock); 14371 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14372 ipif = ipif->ipif_next) { 14373 IPIF_UNMARK_MOVING(ipif); 14374 } 14375 ill_v4->ill_up_ipifs = B_FALSE; 14376 mutex_exit(&ill_v4->ill_lock); 14377 } 14378 14379 if (ill_v6 != NULL) { 14380 mutex_enter(&ill_v6->ill_lock); 14381 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14382 ipif = ipif->ipif_next) { 14383 IPIF_UNMARK_MOVING(ipif); 14384 } 14385 ill_v6->ill_up_ipifs = B_FALSE; 14386 mutex_exit(&ill_v6->ill_lock); 14387 } 14388 } 14389 /* 14390 * This function is called when an ill has had a change in its group status 14391 * to bring up all the ipifs that were up before the change. 14392 */ 14393 int 14394 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14395 { 14396 ipif_t *ipif; 14397 ill_t *ill_v4; 14398 ill_t *ill_v6; 14399 ill_t *from_ill; 14400 int err = 0; 14401 14402 14403 ASSERT(IAM_WRITER_ILL(ill)); 14404 14405 /* 14406 * Except for ipif_state_flags and ill_state_flags the other 14407 * fields of the ipif/ill that are modified below are protected 14408 * implicitly since we are a writer. We would have tried to down 14409 * even an ipif that was already down, in ill_down_ipifs. So we 14410 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14411 */ 14412 ill_v4 = ill->ill_phyint->phyint_illv4; 14413 ill_v6 = ill->ill_phyint->phyint_illv6; 14414 if (ill_v4 != NULL) { 14415 ill_v4->ill_up_ipifs = B_TRUE; 14416 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14417 ipif = ipif->ipif_next) { 14418 mutex_enter(&ill_v4->ill_lock); 14419 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14420 IPIF_UNMARK_MOVING(ipif); 14421 mutex_exit(&ill_v4->ill_lock); 14422 if (ipif->ipif_was_up) { 14423 if (!(ipif->ipif_flags & IPIF_UP)) 14424 err = ipif_up(ipif, q, mp); 14425 ipif->ipif_was_up = B_FALSE; 14426 if (err != 0) { 14427 /* 14428 * Can there be any other error ? 14429 */ 14430 ASSERT(err == EINPROGRESS); 14431 return (err); 14432 } 14433 } 14434 } 14435 mutex_enter(&ill_v4->ill_lock); 14436 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14437 mutex_exit(&ill_v4->ill_lock); 14438 ill_v4->ill_up_ipifs = B_FALSE; 14439 if (ill_v4->ill_move_in_progress) { 14440 ASSERT(ill_v4->ill_move_peer != NULL); 14441 ill_v4->ill_move_in_progress = B_FALSE; 14442 from_ill = ill_v4->ill_move_peer; 14443 from_ill->ill_move_in_progress = B_FALSE; 14444 from_ill->ill_move_peer = NULL; 14445 mutex_enter(&from_ill->ill_lock); 14446 from_ill->ill_state_flags &= ~ILL_CHANGING; 14447 mutex_exit(&from_ill->ill_lock); 14448 if (ill_v6 == NULL) { 14449 if (from_ill->ill_phyint->phyint_flags & 14450 PHYI_STANDBY) { 14451 phyint_inactive(from_ill->ill_phyint); 14452 } 14453 if (ill_v4->ill_phyint->phyint_flags & 14454 PHYI_STANDBY) { 14455 phyint_inactive(ill_v4->ill_phyint); 14456 } 14457 } 14458 ill_v4->ill_move_peer = NULL; 14459 } 14460 } 14461 14462 if (ill_v6 != NULL) { 14463 ill_v6->ill_up_ipifs = B_TRUE; 14464 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14465 ipif = ipif->ipif_next) { 14466 mutex_enter(&ill_v6->ill_lock); 14467 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14468 IPIF_UNMARK_MOVING(ipif); 14469 mutex_exit(&ill_v6->ill_lock); 14470 if (ipif->ipif_was_up) { 14471 if (!(ipif->ipif_flags & IPIF_UP)) 14472 err = ipif_up(ipif, q, mp); 14473 ipif->ipif_was_up = B_FALSE; 14474 if (err != 0) { 14475 /* 14476 * Can there be any other error ? 14477 */ 14478 ASSERT(err == EINPROGRESS); 14479 return (err); 14480 } 14481 } 14482 } 14483 mutex_enter(&ill_v6->ill_lock); 14484 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14485 mutex_exit(&ill_v6->ill_lock); 14486 ill_v6->ill_up_ipifs = B_FALSE; 14487 if (ill_v6->ill_move_in_progress) { 14488 ASSERT(ill_v6->ill_move_peer != NULL); 14489 ill_v6->ill_move_in_progress = B_FALSE; 14490 from_ill = ill_v6->ill_move_peer; 14491 from_ill->ill_move_in_progress = B_FALSE; 14492 from_ill->ill_move_peer = NULL; 14493 mutex_enter(&from_ill->ill_lock); 14494 from_ill->ill_state_flags &= ~ILL_CHANGING; 14495 mutex_exit(&from_ill->ill_lock); 14496 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14497 phyint_inactive(from_ill->ill_phyint); 14498 } 14499 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14500 phyint_inactive(ill_v6->ill_phyint); 14501 } 14502 ill_v6->ill_move_peer = NULL; 14503 } 14504 } 14505 return (0); 14506 } 14507 14508 /* 14509 * bring down all the approriate ipifs. 14510 */ 14511 /* ARGSUSED */ 14512 static void 14513 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14514 { 14515 ipif_t *ipif; 14516 14517 ASSERT(IAM_WRITER_ILL(ill)); 14518 14519 /* 14520 * Except for ipif_state_flags the other fields of the ipif/ill that 14521 * are modified below are protected implicitly since we are a writer 14522 */ 14523 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14524 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14525 continue; 14526 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14527 /* 14528 * We go through the ipif_down logic even if the ipif 14529 * is already down, since routes can be added based 14530 * on down ipifs. Going through ipif_down once again 14531 * will delete any IREs created based on these routes. 14532 */ 14533 if (ipif->ipif_flags & IPIF_UP) 14534 ipif->ipif_was_up = B_TRUE; 14535 /* 14536 * If called with chk_nofailover true ipif is moving. 14537 */ 14538 mutex_enter(&ill->ill_lock); 14539 if (chk_nofailover) { 14540 ipif->ipif_state_flags |= 14541 IPIF_MOVING | IPIF_CHANGING; 14542 } else { 14543 ipif->ipif_state_flags |= IPIF_CHANGING; 14544 } 14545 mutex_exit(&ill->ill_lock); 14546 /* 14547 * Need to re-create net/subnet bcast ires if 14548 * they are dependent on ipif. 14549 */ 14550 if (!ipif->ipif_isv6) 14551 ipif_check_bcast_ires(ipif); 14552 (void) ipif_logical_down(ipif, NULL, NULL); 14553 ipif_non_duplicate(ipif); 14554 ipif_down_tail(ipif); 14555 /* 14556 * We don't do ipif_multicast_down for IPv4 in 14557 * ipif_down. We need to set this so that 14558 * ipif_multicast_up will join the 14559 * ALLHOSTS_GROUP on to_ill. 14560 */ 14561 ipif->ipif_multicast_up = B_FALSE; 14562 } 14563 } 14564 } 14565 14566 #define IPSQ_INC_REF(ipsq) { \ 14567 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14568 (ipsq)->ipsq_refs++; \ 14569 } 14570 14571 #define IPSQ_DEC_REF(ipsq) { \ 14572 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14573 (ipsq)->ipsq_refs--; \ 14574 if ((ipsq)->ipsq_refs == 0) \ 14575 (ipsq)->ipsq_name[0] = '\0'; \ 14576 } 14577 14578 /* 14579 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14580 * new_ipsq. 14581 */ 14582 static void 14583 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14584 { 14585 phyint_t *phyint; 14586 phyint_t *next_phyint; 14587 14588 /* 14589 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14590 * writer and the ill_lock of the ill in question. Also the dest 14591 * ipsq can't vanish while we hold the ill_g_lock as writer. 14592 */ 14593 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14594 14595 phyint = cur_ipsq->ipsq_phyint_list; 14596 cur_ipsq->ipsq_phyint_list = NULL; 14597 while (phyint != NULL) { 14598 next_phyint = phyint->phyint_ipsq_next; 14599 IPSQ_DEC_REF(cur_ipsq); 14600 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14601 new_ipsq->ipsq_phyint_list = phyint; 14602 IPSQ_INC_REF(new_ipsq); 14603 phyint->phyint_ipsq = new_ipsq; 14604 phyint = next_phyint; 14605 } 14606 } 14607 14608 #define SPLIT_SUCCESS 0 14609 #define SPLIT_NOT_NEEDED 1 14610 #define SPLIT_FAILED 2 14611 14612 int 14613 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14614 { 14615 ipsq_t *newipsq = NULL; 14616 14617 /* 14618 * Assertions denote pre-requisites for changing the ipsq of 14619 * a phyint 14620 */ 14621 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14622 /* 14623 * <ill-phyint> assocs can't change while ill_g_lock 14624 * is held as writer. See ill_phyint_reinit() 14625 */ 14626 ASSERT(phyint->phyint_illv4 == NULL || 14627 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14628 ASSERT(phyint->phyint_illv6 == NULL || 14629 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14630 14631 if ((phyint->phyint_groupname_len != 14632 (strlen(cur_ipsq->ipsq_name) + 1) || 14633 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14634 phyint->phyint_groupname_len) != 0)) { 14635 /* 14636 * Once we fail in creating a new ipsq due to memory shortage, 14637 * don't attempt to create new ipsq again, based on another 14638 * phyint, since we want all phyints belonging to an IPMP group 14639 * to be in the same ipsq even in the event of mem alloc fails. 14640 */ 14641 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14642 cur_ipsq); 14643 if (newipsq == NULL) { 14644 /* Memory allocation failure */ 14645 return (SPLIT_FAILED); 14646 } else { 14647 /* ipsq_refs protected by ill_g_lock (writer) */ 14648 IPSQ_DEC_REF(cur_ipsq); 14649 phyint->phyint_ipsq = newipsq; 14650 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14651 newipsq->ipsq_phyint_list = phyint; 14652 IPSQ_INC_REF(newipsq); 14653 return (SPLIT_SUCCESS); 14654 } 14655 } 14656 return (SPLIT_NOT_NEEDED); 14657 } 14658 14659 /* 14660 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14661 * to do this split 14662 */ 14663 static int 14664 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14665 { 14666 ipsq_t *newipsq; 14667 14668 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14669 /* 14670 * <ill-phyint> assocs can't change while ill_g_lock 14671 * is held as writer. See ill_phyint_reinit() 14672 */ 14673 14674 ASSERT(phyint->phyint_illv4 == NULL || 14675 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14676 ASSERT(phyint->phyint_illv6 == NULL || 14677 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14678 14679 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14680 phyint->phyint_illv4: phyint->phyint_illv6)) { 14681 /* 14682 * ipsq_init failed due to no memory 14683 * caller will use the same ipsq 14684 */ 14685 return (SPLIT_FAILED); 14686 } 14687 14688 /* ipsq_ref is protected by ill_g_lock (writer) */ 14689 IPSQ_DEC_REF(cur_ipsq); 14690 14691 /* 14692 * This is a new ipsq that is unknown to the world. 14693 * So we don't need to hold ipsq_lock, 14694 */ 14695 newipsq = phyint->phyint_ipsq; 14696 newipsq->ipsq_writer = NULL; 14697 newipsq->ipsq_reentry_cnt--; 14698 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14699 #ifdef ILL_DEBUG 14700 newipsq->ipsq_depth = 0; 14701 #endif 14702 14703 return (SPLIT_SUCCESS); 14704 } 14705 14706 /* 14707 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14708 * ipsq's representing their individual groups or themselves. Return 14709 * whether split needs to be retried again later. 14710 */ 14711 static boolean_t 14712 ill_split_ipsq(ipsq_t *cur_ipsq) 14713 { 14714 phyint_t *phyint; 14715 phyint_t *next_phyint; 14716 int error; 14717 boolean_t need_retry = B_FALSE; 14718 14719 phyint = cur_ipsq->ipsq_phyint_list; 14720 cur_ipsq->ipsq_phyint_list = NULL; 14721 while (phyint != NULL) { 14722 next_phyint = phyint->phyint_ipsq_next; 14723 /* 14724 * 'created' will tell us whether the callee actually 14725 * created an ipsq. Lack of memory may force the callee 14726 * to return without creating an ipsq. 14727 */ 14728 if (phyint->phyint_groupname == NULL) { 14729 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14730 } else { 14731 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14732 need_retry); 14733 } 14734 14735 switch (error) { 14736 case SPLIT_FAILED: 14737 need_retry = B_TRUE; 14738 /* FALLTHRU */ 14739 case SPLIT_NOT_NEEDED: 14740 /* 14741 * Keep it on the list. 14742 */ 14743 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14744 cur_ipsq->ipsq_phyint_list = phyint; 14745 break; 14746 case SPLIT_SUCCESS: 14747 break; 14748 default: 14749 ASSERT(0); 14750 } 14751 14752 phyint = next_phyint; 14753 } 14754 return (need_retry); 14755 } 14756 14757 /* 14758 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14759 * and return the ills in the list. This list will be 14760 * needed to unlock all the ills later on by the caller. 14761 * The <ill-ipsq> associations could change between the 14762 * lock and unlock. Hence the unlock can't traverse the 14763 * ipsq to get the list of ills. 14764 */ 14765 static int 14766 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14767 { 14768 int cnt = 0; 14769 phyint_t *phyint; 14770 14771 /* 14772 * The caller holds ill_g_lock to ensure that the ill memberships 14773 * of the ipsq don't change 14774 */ 14775 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14776 14777 phyint = ipsq->ipsq_phyint_list; 14778 while (phyint != NULL) { 14779 if (phyint->phyint_illv4 != NULL) { 14780 ASSERT(cnt < list_max); 14781 list[cnt++] = phyint->phyint_illv4; 14782 } 14783 if (phyint->phyint_illv6 != NULL) { 14784 ASSERT(cnt < list_max); 14785 list[cnt++] = phyint->phyint_illv6; 14786 } 14787 phyint = phyint->phyint_ipsq_next; 14788 } 14789 ill_lock_ills(list, cnt); 14790 return (cnt); 14791 } 14792 14793 void 14794 ill_lock_ills(ill_t **list, int cnt) 14795 { 14796 int i; 14797 14798 if (cnt > 1) { 14799 boolean_t try_again; 14800 do { 14801 try_again = B_FALSE; 14802 for (i = 0; i < cnt - 1; i++) { 14803 if (list[i] < list[i + 1]) { 14804 ill_t *tmp; 14805 14806 /* swap the elements */ 14807 tmp = list[i]; 14808 list[i] = list[i + 1]; 14809 list[i + 1] = tmp; 14810 try_again = B_TRUE; 14811 } 14812 } 14813 } while (try_again); 14814 } 14815 14816 for (i = 0; i < cnt; i++) { 14817 if (i == 0) { 14818 if (list[i] != NULL) 14819 mutex_enter(&list[i]->ill_lock); 14820 else 14821 return; 14822 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14823 mutex_enter(&list[i]->ill_lock); 14824 } 14825 } 14826 } 14827 14828 void 14829 ill_unlock_ills(ill_t **list, int cnt) 14830 { 14831 int i; 14832 14833 for (i = 0; i < cnt; i++) { 14834 if ((i == 0) && (list[i] != NULL)) { 14835 mutex_exit(&list[i]->ill_lock); 14836 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14837 mutex_exit(&list[i]->ill_lock); 14838 } 14839 } 14840 } 14841 14842 /* 14843 * Merge all the ills from 1 ipsq group into another ipsq group. 14844 * The source ipsq group is specified by the ipsq associated with 14845 * 'from_ill'. The destination ipsq group is specified by the ipsq 14846 * associated with 'to_ill' or 'groupname' respectively. 14847 * Note that ipsq itself does not have a reference count mechanism 14848 * and functions don't look up an ipsq and pass it around. Instead 14849 * functions pass around an ill or groupname, and the ipsq is looked 14850 * up from the ill or groupname and the required operation performed 14851 * atomically with the lookup on the ipsq. 14852 */ 14853 static int 14854 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14855 queue_t *q) 14856 { 14857 ipsq_t *old_ipsq; 14858 ipsq_t *new_ipsq; 14859 ill_t **ill_list; 14860 int cnt; 14861 size_t ill_list_size; 14862 boolean_t became_writer_on_new_sq = B_FALSE; 14863 14864 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14865 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14866 14867 /* 14868 * Need to hold ill_g_lock as writer and also the ill_lock to 14869 * change the <ill-ipsq> assoc of an ill. Need to hold the 14870 * ipsq_lock to prevent new messages from landing on an ipsq. 14871 */ 14872 rw_enter(&ill_g_lock, RW_WRITER); 14873 14874 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14875 if (groupname != NULL) 14876 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14877 else { 14878 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14879 } 14880 14881 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14882 14883 /* 14884 * both groups are on the same ipsq. 14885 */ 14886 if (old_ipsq == new_ipsq) { 14887 rw_exit(&ill_g_lock); 14888 return (0); 14889 } 14890 14891 cnt = old_ipsq->ipsq_refs << 1; 14892 ill_list_size = cnt * sizeof (ill_t *); 14893 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14894 if (ill_list == NULL) { 14895 rw_exit(&ill_g_lock); 14896 return (ENOMEM); 14897 } 14898 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14899 14900 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14901 mutex_enter(&new_ipsq->ipsq_lock); 14902 if ((new_ipsq->ipsq_writer == NULL && 14903 new_ipsq->ipsq_current_ipif == NULL) || 14904 (new_ipsq->ipsq_writer == curthread)) { 14905 new_ipsq->ipsq_writer = curthread; 14906 new_ipsq->ipsq_reentry_cnt++; 14907 became_writer_on_new_sq = B_TRUE; 14908 } 14909 14910 /* 14911 * We are holding ill_g_lock as writer and all the ill locks of 14912 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14913 * message can land up on the old ipsq even though we don't hold the 14914 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14915 */ 14916 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14917 14918 /* 14919 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14920 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14921 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14922 */ 14923 ill_merge_ipsq(old_ipsq, new_ipsq); 14924 14925 /* 14926 * Mark the new ipsq as needing a split since it is currently 14927 * being shared by more than 1 IPMP group. The split will 14928 * occur at the end of ipsq_exit 14929 */ 14930 new_ipsq->ipsq_split = B_TRUE; 14931 14932 /* Now release all the locks */ 14933 mutex_exit(&new_ipsq->ipsq_lock); 14934 ill_unlock_ills(ill_list, cnt); 14935 rw_exit(&ill_g_lock); 14936 14937 kmem_free(ill_list, ill_list_size); 14938 14939 /* 14940 * If we succeeded in becoming writer on the new ipsq, then 14941 * drain the new ipsq and start processing all enqueued messages 14942 * including the current ioctl we are processing which is either 14943 * a set groupname or failover/failback. 14944 */ 14945 if (became_writer_on_new_sq) 14946 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14947 14948 /* 14949 * syncq has been changed and all the messages have been moved. 14950 */ 14951 mutex_enter(&old_ipsq->ipsq_lock); 14952 old_ipsq->ipsq_current_ipif = NULL; 14953 mutex_exit(&old_ipsq->ipsq_lock); 14954 return (EINPROGRESS); 14955 } 14956 14957 /* 14958 * Delete and add the loopback copy and non-loopback copy of 14959 * the BROADCAST ire corresponding to ill and addr. Used to 14960 * group broadcast ires together when ill becomes part of 14961 * a group. 14962 * 14963 * This function is also called when ill is leaving the group 14964 * so that the ires belonging to the group gets re-grouped. 14965 */ 14966 static void 14967 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14968 { 14969 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14970 ire_t **ire_ptpn = &ire_head; 14971 14972 /* 14973 * The loopback and non-loopback IREs are inserted in the order in which 14974 * they're found, on the basis that they are correctly ordered (loopback 14975 * first). 14976 */ 14977 for (;;) { 14978 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14979 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14980 if (ire == NULL) 14981 break; 14982 14983 /* 14984 * we are passing in KM_SLEEP because it is not easy to 14985 * go back to a sane state in case of memory failure. 14986 */ 14987 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14988 ASSERT(nire != NULL); 14989 bzero(nire, sizeof (ire_t)); 14990 /* 14991 * Don't use ire_max_frag directly since we don't 14992 * hold on to 'ire' until we add the new ire 'nire' and 14993 * we don't want the new ire to have a dangling reference 14994 * to 'ire'. The ire_max_frag of a broadcast ire must 14995 * be in sync with the ipif_mtu of the associate ipif. 14996 * For eg. this happens as a result of SIOCSLIFNAME, 14997 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14998 * the driver. A change in ire_max_frag triggered as 14999 * as a result of path mtu discovery, or due to an 15000 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15001 * route change -mtu command does not apply to broadcast ires. 15002 * 15003 * XXX We need a recovery strategy here if ire_init fails 15004 */ 15005 if (ire_init(nire, 15006 (uchar_t *)&ire->ire_addr, 15007 (uchar_t *)&ire->ire_mask, 15008 (uchar_t *)&ire->ire_src_addr, 15009 (uchar_t *)&ire->ire_gateway_addr, 15010 (uchar_t *)&ire->ire_in_src_addr, 15011 ire->ire_stq == NULL ? &ip_loopback_mtu : 15012 &ire->ire_ipif->ipif_mtu, 15013 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15014 ire->ire_rfq, 15015 ire->ire_stq, 15016 ire->ire_type, 15017 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15018 ire->ire_ipif, 15019 ire->ire_in_ill, 15020 ire->ire_cmask, 15021 ire->ire_phandle, 15022 ire->ire_ihandle, 15023 ire->ire_flags, 15024 &ire->ire_uinfo, 15025 NULL, 15026 NULL) == NULL) { 15027 cmn_err(CE_PANIC, "ire_init() failed"); 15028 } 15029 ire_delete(ire); 15030 ire_refrele(ire); 15031 15032 /* 15033 * The newly created IREs are inserted at the tail of the list 15034 * starting with ire_head. As we've just allocated them no one 15035 * knows about them so it's safe. 15036 */ 15037 *ire_ptpn = nire; 15038 ire_ptpn = &nire->ire_next; 15039 } 15040 15041 for (nire = ire_head; nire != NULL; nire = nire_next) { 15042 int error; 15043 ire_t *oire; 15044 /* unlink the IRE from our list before calling ire_add() */ 15045 nire_next = nire->ire_next; 15046 nire->ire_next = NULL; 15047 15048 /* ire_add adds the ire at the right place in the list */ 15049 oire = nire; 15050 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15051 ASSERT(error == 0); 15052 ASSERT(oire == nire); 15053 ire_refrele(nire); /* Held in ire_add */ 15054 } 15055 } 15056 15057 /* 15058 * This function is usually called when an ill is inserted in 15059 * a group and all the ipifs are already UP. As all the ipifs 15060 * are already UP, the broadcast ires have already been created 15061 * and been inserted. But, ire_add_v4 would not have grouped properly. 15062 * We need to re-group for the benefit of ip_wput_ire which 15063 * expects BROADCAST ires to be grouped properly to avoid sending 15064 * more than one copy of the broadcast packet per group. 15065 * 15066 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15067 * because when ipif_up_done ends up calling this, ires have 15068 * already been added before illgrp_insert i.e before ill_group 15069 * has been initialized. 15070 */ 15071 static void 15072 ill_group_bcast_for_xmit(ill_t *ill) 15073 { 15074 ill_group_t *illgrp; 15075 ipif_t *ipif; 15076 ipaddr_t addr; 15077 ipaddr_t net_mask; 15078 ipaddr_t subnet_netmask; 15079 15080 illgrp = ill->ill_group; 15081 15082 /* 15083 * This function is called even when an ill is deleted from 15084 * the group. Hence, illgrp could be null. 15085 */ 15086 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15087 return; 15088 15089 /* 15090 * Delete all the BROADCAST ires matching this ill and add 15091 * them back. This time, ire_add_v4 should take care of 15092 * grouping them with others because ill is part of the 15093 * group. 15094 */ 15095 ill_bcast_delete_and_add(ill, 0); 15096 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15097 15098 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15099 15100 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15101 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15102 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15103 } else { 15104 net_mask = htonl(IN_CLASSA_NET); 15105 } 15106 addr = net_mask & ipif->ipif_subnet; 15107 ill_bcast_delete_and_add(ill, addr); 15108 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15109 15110 subnet_netmask = ipif->ipif_net_mask; 15111 addr = ipif->ipif_subnet; 15112 ill_bcast_delete_and_add(ill, addr); 15113 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15114 } 15115 } 15116 15117 /* 15118 * This function is called from illgrp_delete when ill is being deleted 15119 * from the group. 15120 * 15121 * As ill is not there in the group anymore, any address belonging 15122 * to this ill should be cleared of IRE_MARK_NORECV. 15123 */ 15124 static void 15125 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15126 { 15127 ire_t *ire; 15128 irb_t *irb; 15129 15130 ASSERT(ill->ill_group == NULL); 15131 15132 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15133 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 15134 15135 if (ire != NULL) { 15136 /* 15137 * IPMP and plumbing operations are serialized on the ipsq, so 15138 * no one will insert or delete a broadcast ire under our feet. 15139 */ 15140 irb = ire->ire_bucket; 15141 rw_enter(&irb->irb_lock, RW_READER); 15142 ire_refrele(ire); 15143 15144 for (; ire != NULL; ire = ire->ire_next) { 15145 if (ire->ire_addr != addr) 15146 break; 15147 if (ire_to_ill(ire) != ill) 15148 continue; 15149 15150 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15151 ire->ire_marks &= ~IRE_MARK_NORECV; 15152 } 15153 rw_exit(&irb->irb_lock); 15154 } 15155 } 15156 15157 /* 15158 * This function must be called only after the broadcast ires 15159 * have been grouped together. For a given address addr, nominate 15160 * only one of the ires whose interface is not FAILED or OFFLINE. 15161 * 15162 * This is also called when an ipif goes down, so that we can nominate 15163 * a different ire with the same address for receiving. 15164 */ 15165 static void 15166 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 15167 { 15168 irb_t *irb; 15169 ire_t *ire; 15170 ire_t *ire1; 15171 ire_t *save_ire; 15172 ire_t **irep = NULL; 15173 boolean_t first = B_TRUE; 15174 ire_t *clear_ire = NULL; 15175 ire_t *start_ire = NULL; 15176 ire_t *new_lb_ire; 15177 ire_t *new_nlb_ire; 15178 boolean_t new_lb_ire_used = B_FALSE; 15179 boolean_t new_nlb_ire_used = B_FALSE; 15180 uint64_t match_flags; 15181 uint64_t phyi_flags; 15182 boolean_t fallback = B_FALSE; 15183 15184 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15185 NULL, MATCH_IRE_TYPE); 15186 /* 15187 * We may not be able to find some ires if a previous 15188 * ire_create failed. This happens when an ipif goes 15189 * down and we are unable to create BROADCAST ires due 15190 * to memory failure. Thus, we have to check for NULL 15191 * below. This should handle the case for LOOPBACK, 15192 * POINTOPOINT and interfaces with some POINTOPOINT 15193 * logicals for which there are no BROADCAST ires. 15194 */ 15195 if (ire == NULL) 15196 return; 15197 /* 15198 * Currently IRE_BROADCASTS are deleted when an ipif 15199 * goes down which runs exclusively. Thus, setting 15200 * IRE_MARK_RCVD should not race with ire_delete marking 15201 * IRE_MARK_CONDEMNED. We grab the lock below just to 15202 * be consistent with other parts of the code that walks 15203 * a given bucket. 15204 */ 15205 save_ire = ire; 15206 irb = ire->ire_bucket; 15207 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15208 if (new_lb_ire == NULL) { 15209 ire_refrele(ire); 15210 return; 15211 } 15212 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15213 if (new_nlb_ire == NULL) { 15214 ire_refrele(ire); 15215 kmem_cache_free(ire_cache, new_lb_ire); 15216 return; 15217 } 15218 IRB_REFHOLD(irb); 15219 rw_enter(&irb->irb_lock, RW_WRITER); 15220 /* 15221 * Get to the first ire matching the address and the 15222 * group. If the address does not match we are done 15223 * as we could not find the IRE. If the address matches 15224 * we should get to the first one matching the group. 15225 */ 15226 while (ire != NULL) { 15227 if (ire->ire_addr != addr || 15228 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15229 break; 15230 } 15231 ire = ire->ire_next; 15232 } 15233 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15234 start_ire = ire; 15235 redo: 15236 while (ire != NULL && ire->ire_addr == addr && 15237 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15238 /* 15239 * The first ire for any address within a group 15240 * should always be the one with IRE_MARK_NORECV cleared 15241 * so that ip_wput_ire can avoid searching for one. 15242 * Note down the insertion point which will be used 15243 * later. 15244 */ 15245 if (first && (irep == NULL)) 15246 irep = ire->ire_ptpn; 15247 /* 15248 * PHYI_FAILED is set when the interface fails. 15249 * This interface might have become good, but the 15250 * daemon has not yet detected. We should still 15251 * not receive on this. PHYI_OFFLINE should never 15252 * be picked as this has been offlined and soon 15253 * be removed. 15254 */ 15255 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15256 if (phyi_flags & PHYI_OFFLINE) { 15257 ire->ire_marks |= IRE_MARK_NORECV; 15258 ire = ire->ire_next; 15259 continue; 15260 } 15261 if (phyi_flags & match_flags) { 15262 ire->ire_marks |= IRE_MARK_NORECV; 15263 ire = ire->ire_next; 15264 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15265 PHYI_INACTIVE) { 15266 fallback = B_TRUE; 15267 } 15268 continue; 15269 } 15270 if (first) { 15271 /* 15272 * We will move this to the front of the list later 15273 * on. 15274 */ 15275 clear_ire = ire; 15276 ire->ire_marks &= ~IRE_MARK_NORECV; 15277 } else { 15278 ire->ire_marks |= IRE_MARK_NORECV; 15279 } 15280 first = B_FALSE; 15281 ire = ire->ire_next; 15282 } 15283 /* 15284 * If we never nominated anybody, try nominating at least 15285 * an INACTIVE, if we found one. Do it only once though. 15286 */ 15287 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15288 fallback) { 15289 match_flags = PHYI_FAILED; 15290 ire = start_ire; 15291 irep = NULL; 15292 goto redo; 15293 } 15294 ire_refrele(save_ire); 15295 15296 /* 15297 * irep non-NULL indicates that we entered the while loop 15298 * above. If clear_ire is at the insertion point, we don't 15299 * have to do anything. clear_ire will be NULL if all the 15300 * interfaces are failed. 15301 * 15302 * We cannot unlink and reinsert the ire at the right place 15303 * in the list since there can be other walkers of this bucket. 15304 * Instead we delete and recreate the ire 15305 */ 15306 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15307 ire_t *clear_ire_stq = NULL; 15308 mblk_t *fp_mp = NULL, *res_mp = NULL; 15309 15310 bzero(new_lb_ire, sizeof (ire_t)); 15311 if (clear_ire->ire_nce != NULL) { 15312 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15313 res_mp = clear_ire->ire_nce->nce_res_mp; 15314 } 15315 /* XXX We need a recovery strategy here. */ 15316 if (ire_init(new_lb_ire, 15317 (uchar_t *)&clear_ire->ire_addr, 15318 (uchar_t *)&clear_ire->ire_mask, 15319 (uchar_t *)&clear_ire->ire_src_addr, 15320 (uchar_t *)&clear_ire->ire_gateway_addr, 15321 (uchar_t *)&clear_ire->ire_in_src_addr, 15322 &clear_ire->ire_max_frag, 15323 fp_mp, 15324 clear_ire->ire_rfq, 15325 clear_ire->ire_stq, 15326 clear_ire->ire_type, 15327 res_mp, 15328 clear_ire->ire_ipif, 15329 clear_ire->ire_in_ill, 15330 clear_ire->ire_cmask, 15331 clear_ire->ire_phandle, 15332 clear_ire->ire_ihandle, 15333 clear_ire->ire_flags, 15334 &clear_ire->ire_uinfo, 15335 NULL, 15336 NULL) == NULL) 15337 cmn_err(CE_PANIC, "ire_init() failed"); 15338 if (clear_ire->ire_stq == NULL) { 15339 ire_t *ire_next = clear_ire->ire_next; 15340 if (ire_next != NULL && 15341 ire_next->ire_stq != NULL && 15342 ire_next->ire_addr == clear_ire->ire_addr && 15343 ire_next->ire_ipif->ipif_ill == 15344 clear_ire->ire_ipif->ipif_ill) { 15345 clear_ire_stq = ire_next; 15346 15347 bzero(new_nlb_ire, sizeof (ire_t)); 15348 if (clear_ire_stq->ire_nce != NULL) { 15349 fp_mp = 15350 clear_ire_stq->ire_nce->nce_fp_mp; 15351 res_mp = 15352 clear_ire_stq->ire_nce->nce_res_mp; 15353 } else { 15354 fp_mp = res_mp = NULL; 15355 } 15356 /* XXX We need a recovery strategy here. */ 15357 if (ire_init(new_nlb_ire, 15358 (uchar_t *)&clear_ire_stq->ire_addr, 15359 (uchar_t *)&clear_ire_stq->ire_mask, 15360 (uchar_t *)&clear_ire_stq->ire_src_addr, 15361 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15362 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15363 &clear_ire_stq->ire_max_frag, 15364 fp_mp, 15365 clear_ire_stq->ire_rfq, 15366 clear_ire_stq->ire_stq, 15367 clear_ire_stq->ire_type, 15368 res_mp, 15369 clear_ire_stq->ire_ipif, 15370 clear_ire_stq->ire_in_ill, 15371 clear_ire_stq->ire_cmask, 15372 clear_ire_stq->ire_phandle, 15373 clear_ire_stq->ire_ihandle, 15374 clear_ire_stq->ire_flags, 15375 &clear_ire_stq->ire_uinfo, 15376 NULL, 15377 NULL) == NULL) 15378 cmn_err(CE_PANIC, "ire_init() failed"); 15379 } 15380 } 15381 15382 /* 15383 * Delete the ire. We can't call ire_delete() since 15384 * we are holding the bucket lock. We can't release the 15385 * bucket lock since we can't allow irep to change. So just 15386 * mark it CONDEMNED. The IRB_REFRELE will delete the 15387 * ire from the list and do the refrele. 15388 */ 15389 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15390 irb->irb_marks |= IRB_MARK_CONDEMNED; 15391 15392 if (clear_ire_stq != NULL) { 15393 ire_fastpath_list_delete( 15394 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 15395 clear_ire_stq); 15396 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15397 } 15398 15399 /* 15400 * Also take care of otherfields like ib/ob pkt count 15401 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15402 */ 15403 15404 /* Add the new ire's. Insert at *irep */ 15405 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15406 ire1 = *irep; 15407 if (ire1 != NULL) 15408 ire1->ire_ptpn = &new_lb_ire->ire_next; 15409 new_lb_ire->ire_next = ire1; 15410 /* Link the new one in. */ 15411 new_lb_ire->ire_ptpn = irep; 15412 membar_producer(); 15413 *irep = new_lb_ire; 15414 new_lb_ire_used = B_TRUE; 15415 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15416 new_lb_ire->ire_bucket->irb_ire_cnt++; 15417 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15418 15419 if (clear_ire_stq != NULL) { 15420 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15421 irep = &new_lb_ire->ire_next; 15422 /* Add the new ire. Insert at *irep */ 15423 ire1 = *irep; 15424 if (ire1 != NULL) 15425 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15426 new_nlb_ire->ire_next = ire1; 15427 /* Link the new one in. */ 15428 new_nlb_ire->ire_ptpn = irep; 15429 membar_producer(); 15430 *irep = new_nlb_ire; 15431 new_nlb_ire_used = B_TRUE; 15432 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 15433 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15434 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15435 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15436 } 15437 } 15438 rw_exit(&irb->irb_lock); 15439 if (!new_lb_ire_used) 15440 kmem_cache_free(ire_cache, new_lb_ire); 15441 if (!new_nlb_ire_used) 15442 kmem_cache_free(ire_cache, new_nlb_ire); 15443 IRB_REFRELE(irb); 15444 } 15445 15446 /* 15447 * Whenever an ipif goes down we have to renominate a different 15448 * broadcast ire to receive. Whenever an ipif comes up, we need 15449 * to make sure that we have only one nominated to receive. 15450 */ 15451 static void 15452 ipif_renominate_bcast(ipif_t *ipif) 15453 { 15454 ill_t *ill = ipif->ipif_ill; 15455 ipaddr_t subnet_addr; 15456 ipaddr_t net_addr; 15457 ipaddr_t net_mask = 0; 15458 ipaddr_t subnet_netmask; 15459 ipaddr_t addr; 15460 ill_group_t *illgrp; 15461 15462 illgrp = ill->ill_group; 15463 /* 15464 * If this is the last ipif going down, it might take 15465 * the ill out of the group. In that case ipif_down -> 15466 * illgrp_delete takes care of doing the nomination. 15467 * ipif_down does not call for this case. 15468 */ 15469 ASSERT(illgrp != NULL); 15470 15471 /* There could not have been any ires associated with this */ 15472 if (ipif->ipif_subnet == 0) 15473 return; 15474 15475 ill_mark_bcast(illgrp, 0); 15476 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15477 15478 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15479 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15480 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15481 } else { 15482 net_mask = htonl(IN_CLASSA_NET); 15483 } 15484 addr = net_mask & ipif->ipif_subnet; 15485 ill_mark_bcast(illgrp, addr); 15486 15487 net_addr = ~net_mask | addr; 15488 ill_mark_bcast(illgrp, net_addr); 15489 15490 subnet_netmask = ipif->ipif_net_mask; 15491 addr = ipif->ipif_subnet; 15492 ill_mark_bcast(illgrp, addr); 15493 15494 subnet_addr = ~subnet_netmask | addr; 15495 ill_mark_bcast(illgrp, subnet_addr); 15496 } 15497 15498 /* 15499 * Whenever we form or delete ill groups, we need to nominate one set of 15500 * BROADCAST ires for receiving in the group. 15501 * 15502 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15503 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15504 * for ill_ipif_up_count to be non-zero. This is the only case where 15505 * ill_ipif_up_count is zero and we would still find the ires. 15506 * 15507 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15508 * ipif is UP and we just have to do the nomination. 15509 * 15510 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15511 * from the group. So, we have to do the nomination. 15512 * 15513 * Because of (3), there could be just one ill in the group. But we have 15514 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15515 * Thus, this function does not optimize when there is only one ill as 15516 * it is not correct for (3). 15517 */ 15518 static void 15519 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15520 { 15521 ill_t *ill; 15522 ipif_t *ipif; 15523 ipaddr_t subnet_addr; 15524 ipaddr_t prev_subnet_addr = 0; 15525 ipaddr_t net_addr; 15526 ipaddr_t prev_net_addr = 0; 15527 ipaddr_t net_mask = 0; 15528 ipaddr_t subnet_netmask; 15529 ipaddr_t addr; 15530 15531 /* 15532 * When the last memeber is leaving, there is nothing to 15533 * nominate. 15534 */ 15535 if (illgrp->illgrp_ill_count == 0) { 15536 ASSERT(illgrp->illgrp_ill == NULL); 15537 return; 15538 } 15539 15540 ill = illgrp->illgrp_ill; 15541 ASSERT(!ill->ill_isv6); 15542 /* 15543 * We assume that ires with same address and belonging to the 15544 * same group, has been grouped together. Nominating a *single* 15545 * ill in the group for sending and receiving broadcast is done 15546 * by making sure that the first BROADCAST ire (which will be 15547 * the one returned by ire_ctable_lookup for ip_rput and the 15548 * one that will be used in ip_wput_ire) will be the one that 15549 * will not have IRE_MARK_NORECV set. 15550 * 15551 * 1) ip_rput checks and discards packets received on ires marked 15552 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15553 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15554 * first ire in the group for every broadcast address in the group. 15555 * ip_rput will accept packets only on the first ire i.e only 15556 * one copy of the ill. 15557 * 15558 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15559 * packet for the whole group. It needs to send out on the ill 15560 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15561 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15562 * the copy echoed back on other port where the ire is not marked 15563 * with IRE_MARK_NORECV. 15564 * 15565 * Note that we just need to have the first IRE either loopback or 15566 * non-loopback (either of them may not exist if ire_create failed 15567 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15568 * always hit the first one and hence will always accept one copy. 15569 * 15570 * We have a broadcast ire per ill for all the unique prefixes 15571 * hosted on that ill. As we don't have a way of knowing the 15572 * unique prefixes on a given ill and hence in the whole group, 15573 * we just call ill_mark_bcast on all the prefixes that exist 15574 * in the group. For the common case of one prefix, the code 15575 * below optimizes by remebering the last address used for 15576 * markng. In the case of multiple prefixes, this will still 15577 * optimize depending the order of prefixes. 15578 * 15579 * The only unique address across the whole group is 0.0.0.0 and 15580 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15581 * the first ire in the bucket for receiving and disables the 15582 * others. 15583 */ 15584 ill_mark_bcast(illgrp, 0); 15585 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15586 for (; ill != NULL; ill = ill->ill_group_next) { 15587 15588 for (ipif = ill->ill_ipif; ipif != NULL; 15589 ipif = ipif->ipif_next) { 15590 15591 if (!(ipif->ipif_flags & IPIF_UP) || 15592 ipif->ipif_subnet == 0) { 15593 continue; 15594 } 15595 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15596 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15597 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15598 } else { 15599 net_mask = htonl(IN_CLASSA_NET); 15600 } 15601 addr = net_mask & ipif->ipif_subnet; 15602 if (prev_net_addr == 0 || prev_net_addr != addr) { 15603 ill_mark_bcast(illgrp, addr); 15604 net_addr = ~net_mask | addr; 15605 ill_mark_bcast(illgrp, net_addr); 15606 } 15607 prev_net_addr = addr; 15608 15609 subnet_netmask = ipif->ipif_net_mask; 15610 addr = ipif->ipif_subnet; 15611 if (prev_subnet_addr == 0 || 15612 prev_subnet_addr != addr) { 15613 ill_mark_bcast(illgrp, addr); 15614 subnet_addr = ~subnet_netmask | addr; 15615 ill_mark_bcast(illgrp, subnet_addr); 15616 } 15617 prev_subnet_addr = addr; 15618 } 15619 } 15620 } 15621 15622 /* 15623 * This function is called while forming ill groups. 15624 * 15625 * Currently, we handle only allmulti groups. We want to join 15626 * allmulti on only one of the ills in the groups. In future, 15627 * when we have link aggregation, we may have to join normal 15628 * multicast groups on multiple ills as switch does inbound load 15629 * balancing. Following are the functions that calls this 15630 * function : 15631 * 15632 * 1) ill_recover_multicast : Interface is coming back UP. 15633 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15634 * will call ill_recover_multicast to recover all the multicast 15635 * groups. We need to make sure that only one member is joined 15636 * in the ill group. 15637 * 15638 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15639 * Somebody is joining allmulti. We need to make sure that only one 15640 * member is joined in the group. 15641 * 15642 * 3) illgrp_insert : If allmulti has already joined, we need to make 15643 * sure that only one member is joined in the group. 15644 * 15645 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15646 * allmulti who we have nominated. We need to pick someother ill. 15647 * 15648 * 5) illgrp_delete : The ill we nominated is leaving the group, 15649 * we need to pick a new ill to join the group. 15650 * 15651 * For (1), (2), (5) - we just have to check whether there is 15652 * a good ill joined in the group. If we could not find any ills 15653 * joined the group, we should join. 15654 * 15655 * For (4), the one that was nominated to receive, left the group. 15656 * There could be nobody joined in the group when this function is 15657 * called. 15658 * 15659 * For (3) - we need to explicitly check whether there are multiple 15660 * ills joined in the group. 15661 * 15662 * For simplicity, we don't differentiate any of the above cases. We 15663 * just leave the group if it is joined on any of them and join on 15664 * the first good ill. 15665 */ 15666 int 15667 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15668 { 15669 ilm_t *ilm; 15670 ill_t *ill; 15671 ill_t *fallback_inactive_ill = NULL; 15672 ill_t *fallback_failed_ill = NULL; 15673 int ret = 0; 15674 15675 /* 15676 * Leave the allmulti on all the ills and start fresh. 15677 */ 15678 for (ill = illgrp->illgrp_ill; ill != NULL; 15679 ill = ill->ill_group_next) { 15680 if (ill->ill_join_allmulti) 15681 (void) ip_leave_allmulti(ill->ill_ipif); 15682 } 15683 15684 /* 15685 * Choose a good ill. Fallback to inactive or failed if 15686 * none available. We need to fallback to FAILED in the 15687 * case where we have 2 interfaces in a group - where 15688 * one of them is failed and another is a good one and 15689 * the good one (not marked inactive) is leaving the group. 15690 */ 15691 ret = 0; 15692 for (ill = illgrp->illgrp_ill; ill != NULL; 15693 ill = ill->ill_group_next) { 15694 /* Never pick an offline interface */ 15695 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15696 continue; 15697 15698 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15699 fallback_failed_ill = ill; 15700 continue; 15701 } 15702 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15703 fallback_inactive_ill = ill; 15704 continue; 15705 } 15706 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15707 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15708 ret = ip_join_allmulti(ill->ill_ipif); 15709 /* 15710 * ip_join_allmulti can fail because of memory 15711 * failures. So, make sure we join at least 15712 * on one ill. 15713 */ 15714 if (ill->ill_join_allmulti) 15715 return (0); 15716 } 15717 } 15718 } 15719 if (ret != 0) { 15720 /* 15721 * If we tried nominating above and failed to do so, 15722 * return error. We might have tried multiple times. 15723 * But, return the latest error. 15724 */ 15725 return (ret); 15726 } 15727 if ((ill = fallback_inactive_ill) != NULL) { 15728 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15729 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15730 ret = ip_join_allmulti(ill->ill_ipif); 15731 return (ret); 15732 } 15733 } 15734 } else if ((ill = fallback_failed_ill) != NULL) { 15735 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15736 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15737 ret = ip_join_allmulti(ill->ill_ipif); 15738 return (ret); 15739 } 15740 } 15741 } 15742 return (0); 15743 } 15744 15745 /* 15746 * This function is called from illgrp_delete after it is 15747 * deleted from the group to reschedule responsibilities 15748 * to a different ill. 15749 */ 15750 static void 15751 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15752 { 15753 ilm_t *ilm; 15754 ipif_t *ipif; 15755 ipaddr_t subnet_addr; 15756 ipaddr_t net_addr; 15757 ipaddr_t net_mask = 0; 15758 ipaddr_t subnet_netmask; 15759 ipaddr_t addr; 15760 15761 ASSERT(ill->ill_group == NULL); 15762 /* 15763 * Broadcast Responsibility: 15764 * 15765 * 1. If this ill has been nominated for receiving broadcast 15766 * packets, we need to find a new one. Before we find a new 15767 * one, we need to re-group the ires that are part of this new 15768 * group (assumed by ill_nominate_bcast_rcv). We do this by 15769 * calling ill_group_bcast_for_xmit(ill) which will do the right 15770 * thing for us. 15771 * 15772 * 2. If this ill was not nominated for receiving broadcast 15773 * packets, we need to clear the IRE_MARK_NORECV flag 15774 * so that we continue to send up broadcast packets. 15775 */ 15776 if (!ill->ill_isv6) { 15777 /* 15778 * Case 1 above : No optimization here. Just redo the 15779 * nomination. 15780 */ 15781 ill_group_bcast_for_xmit(ill); 15782 ill_nominate_bcast_rcv(illgrp); 15783 15784 /* 15785 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15786 */ 15787 ill_clear_bcast_mark(ill, 0); 15788 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15789 15790 for (ipif = ill->ill_ipif; ipif != NULL; 15791 ipif = ipif->ipif_next) { 15792 15793 if (!(ipif->ipif_flags & IPIF_UP) || 15794 ipif->ipif_subnet == 0) { 15795 continue; 15796 } 15797 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15798 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15799 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15800 } else { 15801 net_mask = htonl(IN_CLASSA_NET); 15802 } 15803 addr = net_mask & ipif->ipif_subnet; 15804 ill_clear_bcast_mark(ill, addr); 15805 15806 net_addr = ~net_mask | addr; 15807 ill_clear_bcast_mark(ill, net_addr); 15808 15809 subnet_netmask = ipif->ipif_net_mask; 15810 addr = ipif->ipif_subnet; 15811 ill_clear_bcast_mark(ill, addr); 15812 15813 subnet_addr = ~subnet_netmask | addr; 15814 ill_clear_bcast_mark(ill, subnet_addr); 15815 } 15816 } 15817 15818 /* 15819 * Multicast Responsibility. 15820 * 15821 * If we have joined allmulti on this one, find a new member 15822 * in the group to join allmulti. As this ill is already part 15823 * of allmulti, we don't have to join on this one. 15824 * 15825 * If we have not joined allmulti on this one, there is no 15826 * responsibility to handoff. But we need to take new 15827 * responsibility i.e, join allmulti on this one if we need 15828 * to. 15829 */ 15830 if (ill->ill_join_allmulti) { 15831 (void) ill_nominate_mcast_rcv(illgrp); 15832 } else { 15833 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15834 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15835 (void) ip_join_allmulti(ill->ill_ipif); 15836 break; 15837 } 15838 } 15839 } 15840 15841 /* 15842 * We intentionally do the flushing of IRE_CACHES only matching 15843 * on the ill and not on groups. Note that we are already deleted 15844 * from the group. 15845 * 15846 * This will make sure that all IRE_CACHES whose stq is pointing 15847 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15848 * deleted and IRE_CACHES that are not pointing at this ill will 15849 * be left alone. 15850 */ 15851 if (ill->ill_isv6) { 15852 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15853 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15854 } else { 15855 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15856 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15857 } 15858 15859 /* 15860 * Some conn may have cached one of the IREs deleted above. By removing 15861 * the ire reference, we clean up the extra reference to the ill held in 15862 * ire->ire_stq. 15863 */ 15864 ipcl_walk(conn_cleanup_stale_ire, NULL); 15865 15866 /* 15867 * Re-do source address selection for all the members in the 15868 * group, if they borrowed source address from one of the ipifs 15869 * in this ill. 15870 */ 15871 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15872 if (ill->ill_isv6) { 15873 ipif_update_other_ipifs_v6(ipif, illgrp); 15874 } else { 15875 ipif_update_other_ipifs(ipif, illgrp); 15876 } 15877 } 15878 } 15879 15880 /* 15881 * Delete the ill from the group. The caller makes sure that it is 15882 * in a group and it okay to delete from the group. So, we always 15883 * delete here. 15884 */ 15885 static void 15886 illgrp_delete(ill_t *ill) 15887 { 15888 ill_group_t *illgrp; 15889 ill_group_t *tmpg; 15890 ill_t *tmp_ill; 15891 15892 /* 15893 * Reset illgrp_ill_schednext if it was pointing at us. 15894 * We need to do this before we set ill_group to NULL. 15895 */ 15896 rw_enter(&ill_g_lock, RW_WRITER); 15897 mutex_enter(&ill->ill_lock); 15898 15899 illgrp_reset_schednext(ill); 15900 15901 illgrp = ill->ill_group; 15902 15903 /* Delete the ill from illgrp. */ 15904 if (illgrp->illgrp_ill == ill) { 15905 illgrp->illgrp_ill = ill->ill_group_next; 15906 } else { 15907 tmp_ill = illgrp->illgrp_ill; 15908 while (tmp_ill->ill_group_next != ill) { 15909 tmp_ill = tmp_ill->ill_group_next; 15910 ASSERT(tmp_ill != NULL); 15911 } 15912 tmp_ill->ill_group_next = ill->ill_group_next; 15913 } 15914 ill->ill_group = NULL; 15915 ill->ill_group_next = NULL; 15916 15917 illgrp->illgrp_ill_count--; 15918 mutex_exit(&ill->ill_lock); 15919 rw_exit(&ill_g_lock); 15920 15921 /* 15922 * As this ill is leaving the group, we need to hand off 15923 * the responsibilities to the other ills in the group, if 15924 * this ill had some responsibilities. 15925 */ 15926 15927 ill_handoff_responsibility(ill, illgrp); 15928 15929 rw_enter(&ill_g_lock, RW_WRITER); 15930 15931 if (illgrp->illgrp_ill_count == 0) { 15932 15933 ASSERT(illgrp->illgrp_ill == NULL); 15934 if (ill->ill_isv6) { 15935 if (illgrp == illgrp_head_v6) { 15936 illgrp_head_v6 = illgrp->illgrp_next; 15937 } else { 15938 tmpg = illgrp_head_v6; 15939 while (tmpg->illgrp_next != illgrp) { 15940 tmpg = tmpg->illgrp_next; 15941 ASSERT(tmpg != NULL); 15942 } 15943 tmpg->illgrp_next = illgrp->illgrp_next; 15944 } 15945 } else { 15946 if (illgrp == illgrp_head_v4) { 15947 illgrp_head_v4 = illgrp->illgrp_next; 15948 } else { 15949 tmpg = illgrp_head_v4; 15950 while (tmpg->illgrp_next != illgrp) { 15951 tmpg = tmpg->illgrp_next; 15952 ASSERT(tmpg != NULL); 15953 } 15954 tmpg->illgrp_next = illgrp->illgrp_next; 15955 } 15956 } 15957 mutex_destroy(&illgrp->illgrp_lock); 15958 mi_free(illgrp); 15959 } 15960 rw_exit(&ill_g_lock); 15961 15962 /* 15963 * Even though the ill is out of the group its not necessary 15964 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15965 * We will split the ipsq when phyint_groupname is set to NULL. 15966 */ 15967 15968 /* 15969 * Send a routing sockets message if we are deleting from 15970 * groups with names. 15971 */ 15972 if (ill->ill_phyint->phyint_groupname_len != 0) 15973 ip_rts_ifmsg(ill->ill_ipif); 15974 } 15975 15976 /* 15977 * Re-do source address selection. This is normally called when 15978 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15979 * ipif comes up. 15980 */ 15981 void 15982 ill_update_source_selection(ill_t *ill) 15983 { 15984 ipif_t *ipif; 15985 15986 ASSERT(IAM_WRITER_ILL(ill)); 15987 15988 if (ill->ill_group != NULL) 15989 ill = ill->ill_group->illgrp_ill; 15990 15991 for (; ill != NULL; ill = ill->ill_group_next) { 15992 for (ipif = ill->ill_ipif; ipif != NULL; 15993 ipif = ipif->ipif_next) { 15994 if (ill->ill_isv6) 15995 ipif_recreate_interface_routes_v6(NULL, ipif); 15996 else 15997 ipif_recreate_interface_routes(NULL, ipif); 15998 } 15999 } 16000 } 16001 16002 /* 16003 * Insert ill in a group headed by illgrp_head. The caller can either 16004 * pass a groupname in which case we search for a group with the 16005 * same name to insert in or pass a group to insert in. This function 16006 * would only search groups with names. 16007 * 16008 * NOTE : The caller should make sure that there is at least one ipif 16009 * UP on this ill so that illgrp_scheduler can pick this ill 16010 * for outbound packets. If ill_ipif_up_count is zero, we have 16011 * already sent a DL_UNBIND to the driver and we don't want to 16012 * send anymore packets. We don't assert for ipif_up_count 16013 * to be greater than zero, because ipif_up_done wants to call 16014 * this function before bumping up the ipif_up_count. See 16015 * ipif_up_done() for details. 16016 */ 16017 int 16018 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16019 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16020 { 16021 ill_group_t *illgrp; 16022 ill_t *prev_ill; 16023 phyint_t *phyi; 16024 16025 ASSERT(ill->ill_group == NULL); 16026 16027 rw_enter(&ill_g_lock, RW_WRITER); 16028 mutex_enter(&ill->ill_lock); 16029 16030 if (groupname != NULL) { 16031 /* 16032 * Look for a group with a matching groupname to insert. 16033 */ 16034 for (illgrp = *illgrp_head; illgrp != NULL; 16035 illgrp = illgrp->illgrp_next) { 16036 16037 ill_t *tmp_ill; 16038 16039 /* 16040 * If we have an ill_group_t in the list which has 16041 * no ill_t assigned then we must be in the process of 16042 * removing this group. We skip this as illgrp_delete() 16043 * will remove it from the list. 16044 */ 16045 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16046 ASSERT(illgrp->illgrp_ill_count == 0); 16047 continue; 16048 } 16049 16050 ASSERT(tmp_ill->ill_phyint != NULL); 16051 phyi = tmp_ill->ill_phyint; 16052 /* 16053 * Look at groups which has names only. 16054 */ 16055 if (phyi->phyint_groupname_len == 0) 16056 continue; 16057 /* 16058 * Names are stored in the phyint common to both 16059 * IPv4 and IPv6. 16060 */ 16061 if (mi_strcmp(phyi->phyint_groupname, 16062 groupname) == 0) { 16063 break; 16064 } 16065 } 16066 } else { 16067 /* 16068 * If the caller passes in a NULL "grp_to_insert", we 16069 * allocate one below and insert this singleton. 16070 */ 16071 illgrp = grp_to_insert; 16072 } 16073 16074 ill->ill_group_next = NULL; 16075 16076 if (illgrp == NULL) { 16077 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16078 if (illgrp == NULL) { 16079 return (ENOMEM); 16080 } 16081 illgrp->illgrp_next = *illgrp_head; 16082 *illgrp_head = illgrp; 16083 illgrp->illgrp_ill = ill; 16084 illgrp->illgrp_ill_count = 1; 16085 ill->ill_group = illgrp; 16086 /* 16087 * Used in illgrp_scheduler to protect multiple threads 16088 * from traversing the list. 16089 */ 16090 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16091 } else { 16092 ASSERT(ill->ill_net_type == 16093 illgrp->illgrp_ill->ill_net_type); 16094 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16095 16096 /* Insert ill at tail of this group */ 16097 prev_ill = illgrp->illgrp_ill; 16098 while (prev_ill->ill_group_next != NULL) 16099 prev_ill = prev_ill->ill_group_next; 16100 prev_ill->ill_group_next = ill; 16101 ill->ill_group = illgrp; 16102 illgrp->illgrp_ill_count++; 16103 /* 16104 * Inherit group properties. Currently only forwarding 16105 * is the property we try to keep the same with all the 16106 * ills. When there are more, we will abstract this into 16107 * a function. 16108 */ 16109 ill->ill_flags &= ~ILLF_ROUTER; 16110 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16111 } 16112 mutex_exit(&ill->ill_lock); 16113 rw_exit(&ill_g_lock); 16114 16115 /* 16116 * 1) When ipif_up_done() calls this function, ipif_up_count 16117 * may be zero as it has not yet been bumped. But the ires 16118 * have already been added. So, we do the nomination here 16119 * itself. But, when ip_sioctl_groupname calls this, it checks 16120 * for ill_ipif_up_count != 0. Thus we don't check for 16121 * ill_ipif_up_count here while nominating broadcast ires for 16122 * receive. 16123 * 16124 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16125 * to group them properly as ire_add() has already happened 16126 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16127 * case, we need to do it here anyway. 16128 */ 16129 if (!ill->ill_isv6) { 16130 ill_group_bcast_for_xmit(ill); 16131 ill_nominate_bcast_rcv(illgrp); 16132 } 16133 16134 if (!ipif_is_coming_up) { 16135 /* 16136 * When ipif_up_done() calls this function, the multicast 16137 * groups have not been joined yet. So, there is no point in 16138 * nomination. ip_join_allmulti will handle groups when 16139 * ill_recover_multicast is called from ipif_up_done() later. 16140 */ 16141 (void) ill_nominate_mcast_rcv(illgrp); 16142 /* 16143 * ipif_up_done calls ill_update_source_selection 16144 * anyway. Moreover, we don't want to re-create 16145 * interface routes while ipif_up_done() still has reference 16146 * to them. Refer to ipif_up_done() for more details. 16147 */ 16148 ill_update_source_selection(ill); 16149 } 16150 16151 /* 16152 * Send a routing sockets message if we are inserting into 16153 * groups with names. 16154 */ 16155 if (groupname != NULL) 16156 ip_rts_ifmsg(ill->ill_ipif); 16157 return (0); 16158 } 16159 16160 /* 16161 * Return the first phyint matching the groupname. There could 16162 * be more than one when there are ill groups. 16163 * 16164 * Needs work: called only from ip_sioctl_groupname 16165 */ 16166 static phyint_t * 16167 phyint_lookup_group(char *groupname) 16168 { 16169 phyint_t *phyi; 16170 16171 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 16172 /* 16173 * Group names are stored in the phyint - a common structure 16174 * to both IPv4 and IPv6. 16175 */ 16176 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 16177 for (; phyi != NULL; 16178 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 16179 phyi, AVL_AFTER)) { 16180 if (phyi->phyint_groupname_len == 0) 16181 continue; 16182 ASSERT(phyi->phyint_groupname != NULL); 16183 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16184 return (phyi); 16185 } 16186 return (NULL); 16187 } 16188 16189 16190 16191 /* 16192 * MT notes on creation and deletion of IPMP groups 16193 * 16194 * Creation and deletion of IPMP groups introduce the need to merge or 16195 * split the associated serialization objects i.e the ipsq's. Normally all 16196 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16197 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16198 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16199 * is a need to change the <ill-ipsq> association and we have to operate on both 16200 * the source and destination IPMP groups. For eg. attempting to set the 16201 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16202 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16203 * source or destination IPMP group are mapped to a single ipsq for executing 16204 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16205 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16206 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16207 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16208 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16209 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16210 * 16211 * In the above example the ioctl handling code locates the current ipsq of hme0 16212 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16213 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16214 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16215 * the destination ipsq. If the destination ipsq is not busy, it also enters 16216 * the destination ipsq exclusively. Now the actual groupname setting operation 16217 * can proceed. If the destination ipsq is busy, the operation is enqueued 16218 * on the destination (merged) ipsq and will be handled in the unwind from 16219 * ipsq_exit. 16220 * 16221 * To prevent other threads accessing the ill while the group name change is 16222 * in progres, we bring down the ipifs which also removes the ill from the 16223 * group. The group is changed in phyint and when the first ipif on the ill 16224 * is brought up, the ill is inserted into the right IPMP group by 16225 * illgrp_insert. 16226 */ 16227 /* ARGSUSED */ 16228 int 16229 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16230 ip_ioctl_cmd_t *ipip, void *ifreq) 16231 { 16232 int i; 16233 char *tmp; 16234 int namelen; 16235 ill_t *ill = ipif->ipif_ill; 16236 ill_t *ill_v4, *ill_v6; 16237 int err = 0; 16238 phyint_t *phyi; 16239 phyint_t *phyi_tmp; 16240 struct lifreq *lifr; 16241 mblk_t *mp1; 16242 char *groupname; 16243 ipsq_t *ipsq; 16244 16245 ASSERT(IAM_WRITER_IPIF(ipif)); 16246 16247 /* Existance verified in ip_wput_nondata */ 16248 mp1 = mp->b_cont->b_cont; 16249 lifr = (struct lifreq *)mp1->b_rptr; 16250 groupname = lifr->lifr_groupname; 16251 16252 if (ipif->ipif_id != 0) 16253 return (EINVAL); 16254 16255 phyi = ill->ill_phyint; 16256 ASSERT(phyi != NULL); 16257 16258 if (phyi->phyint_flags & PHYI_VIRTUAL) 16259 return (EINVAL); 16260 16261 tmp = groupname; 16262 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16263 ; 16264 16265 if (i == LIFNAMSIZ) { 16266 /* no null termination */ 16267 return (EINVAL); 16268 } 16269 16270 /* 16271 * Calculate the namelen exclusive of the null 16272 * termination character. 16273 */ 16274 namelen = tmp - groupname; 16275 16276 ill_v4 = phyi->phyint_illv4; 16277 ill_v6 = phyi->phyint_illv6; 16278 16279 /* 16280 * ILL cannot be part of a usesrc group and and IPMP group at the 16281 * same time. No need to grab the ill_g_usesrc_lock here, see 16282 * synchronization notes in ip.c 16283 */ 16284 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16285 return (EINVAL); 16286 } 16287 16288 /* 16289 * mark the ill as changing. 16290 * this should queue all new requests on the syncq. 16291 */ 16292 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16293 16294 if (ill_v4 != NULL) 16295 ill_v4->ill_state_flags |= ILL_CHANGING; 16296 if (ill_v6 != NULL) 16297 ill_v6->ill_state_flags |= ILL_CHANGING; 16298 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16299 16300 if (namelen == 0) { 16301 /* 16302 * Null string means remove this interface from the 16303 * existing group. 16304 */ 16305 if (phyi->phyint_groupname_len == 0) { 16306 /* 16307 * Never was in a group. 16308 */ 16309 err = 0; 16310 goto done; 16311 } 16312 16313 /* 16314 * IPv4 or IPv6 may be temporarily out of the group when all 16315 * the ipifs are down. Thus, we need to check for ill_group to 16316 * be non-NULL. 16317 */ 16318 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16319 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16320 mutex_enter(&ill_v4->ill_lock); 16321 if (!ill_is_quiescent(ill_v4)) { 16322 /* 16323 * ipsq_pending_mp_add will not fail since 16324 * connp is NULL 16325 */ 16326 (void) ipsq_pending_mp_add(NULL, 16327 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16328 mutex_exit(&ill_v4->ill_lock); 16329 err = EINPROGRESS; 16330 goto done; 16331 } 16332 mutex_exit(&ill_v4->ill_lock); 16333 } 16334 16335 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16336 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16337 mutex_enter(&ill_v6->ill_lock); 16338 if (!ill_is_quiescent(ill_v6)) { 16339 (void) ipsq_pending_mp_add(NULL, 16340 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16341 mutex_exit(&ill_v6->ill_lock); 16342 err = EINPROGRESS; 16343 goto done; 16344 } 16345 mutex_exit(&ill_v6->ill_lock); 16346 } 16347 16348 rw_enter(&ill_g_lock, RW_WRITER); 16349 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16350 mutex_enter(&phyi->phyint_lock); 16351 ASSERT(phyi->phyint_groupname != NULL); 16352 mi_free(phyi->phyint_groupname); 16353 phyi->phyint_groupname = NULL; 16354 phyi->phyint_groupname_len = 0; 16355 mutex_exit(&phyi->phyint_lock); 16356 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16357 rw_exit(&ill_g_lock); 16358 err = ill_up_ipifs(ill, q, mp); 16359 16360 /* 16361 * set the split flag so that the ipsq can be split 16362 */ 16363 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16364 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16365 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16366 16367 } else { 16368 if (phyi->phyint_groupname_len != 0) { 16369 ASSERT(phyi->phyint_groupname != NULL); 16370 /* Are we inserting in the same group ? */ 16371 if (mi_strcmp(groupname, 16372 phyi->phyint_groupname) == 0) { 16373 err = 0; 16374 goto done; 16375 } 16376 } 16377 16378 rw_enter(&ill_g_lock, RW_READER); 16379 /* 16380 * Merge ipsq for the group's. 16381 * This check is here as multiple groups/ills might be 16382 * sharing the same ipsq. 16383 * If we have to merege than the operation is restarted 16384 * on the new ipsq. 16385 */ 16386 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 16387 if (phyi->phyint_ipsq != ipsq) { 16388 rw_exit(&ill_g_lock); 16389 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16390 goto done; 16391 } 16392 /* 16393 * Running exclusive on new ipsq. 16394 */ 16395 16396 ASSERT(ipsq != NULL); 16397 ASSERT(ipsq->ipsq_writer == curthread); 16398 16399 /* 16400 * Check whether the ill_type and ill_net_type matches before 16401 * we allocate any memory so that the cleanup is easier. 16402 * 16403 * We can't group dissimilar ones as we can't load spread 16404 * packets across the group because of potential link-level 16405 * header differences. 16406 */ 16407 phyi_tmp = phyint_lookup_group(groupname); 16408 if (phyi_tmp != NULL) { 16409 if ((ill_v4 != NULL && 16410 phyi_tmp->phyint_illv4 != NULL) && 16411 ((ill_v4->ill_net_type != 16412 phyi_tmp->phyint_illv4->ill_net_type) || 16413 (ill_v4->ill_type != 16414 phyi_tmp->phyint_illv4->ill_type))) { 16415 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16416 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16417 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16418 rw_exit(&ill_g_lock); 16419 return (EINVAL); 16420 } 16421 if ((ill_v6 != NULL && 16422 phyi_tmp->phyint_illv6 != NULL) && 16423 ((ill_v6->ill_net_type != 16424 phyi_tmp->phyint_illv6->ill_net_type) || 16425 (ill_v6->ill_type != 16426 phyi_tmp->phyint_illv6->ill_type))) { 16427 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16428 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16429 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16430 rw_exit(&ill_g_lock); 16431 return (EINVAL); 16432 } 16433 } 16434 16435 rw_exit(&ill_g_lock); 16436 16437 /* 16438 * bring down all v4 ipifs. 16439 */ 16440 if (ill_v4 != NULL) { 16441 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16442 } 16443 16444 /* 16445 * bring down all v6 ipifs. 16446 */ 16447 if (ill_v6 != NULL) { 16448 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16449 } 16450 16451 /* 16452 * make sure all ipifs are down and there are no active 16453 * references. Call to ipsq_pending_mp_add will not fail 16454 * since connp is NULL. 16455 */ 16456 if (ill_v4 != NULL) { 16457 mutex_enter(&ill_v4->ill_lock); 16458 if (!ill_is_quiescent(ill_v4)) { 16459 (void) ipsq_pending_mp_add(NULL, 16460 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16461 mutex_exit(&ill_v4->ill_lock); 16462 err = EINPROGRESS; 16463 goto done; 16464 } 16465 mutex_exit(&ill_v4->ill_lock); 16466 } 16467 16468 if (ill_v6 != NULL) { 16469 mutex_enter(&ill_v6->ill_lock); 16470 if (!ill_is_quiescent(ill_v6)) { 16471 (void) ipsq_pending_mp_add(NULL, 16472 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16473 mutex_exit(&ill_v6->ill_lock); 16474 err = EINPROGRESS; 16475 goto done; 16476 } 16477 mutex_exit(&ill_v6->ill_lock); 16478 } 16479 16480 /* 16481 * allocate including space for null terminator 16482 * before we insert. 16483 */ 16484 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16485 if (tmp == NULL) 16486 return (ENOMEM); 16487 16488 rw_enter(&ill_g_lock, RW_WRITER); 16489 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16490 mutex_enter(&phyi->phyint_lock); 16491 if (phyi->phyint_groupname_len != 0) { 16492 ASSERT(phyi->phyint_groupname != NULL); 16493 mi_free(phyi->phyint_groupname); 16494 } 16495 16496 /* 16497 * setup the new group name. 16498 */ 16499 phyi->phyint_groupname = tmp; 16500 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16501 phyi->phyint_groupname_len = namelen + 1; 16502 mutex_exit(&phyi->phyint_lock); 16503 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16504 rw_exit(&ill_g_lock); 16505 16506 err = ill_up_ipifs(ill, q, mp); 16507 } 16508 16509 done: 16510 /* 16511 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16512 */ 16513 if (err != EINPROGRESS) { 16514 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16515 if (ill_v4 != NULL) 16516 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16517 if (ill_v6 != NULL) 16518 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16519 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16520 } 16521 return (err); 16522 } 16523 16524 /* ARGSUSED */ 16525 int 16526 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16527 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16528 { 16529 ill_t *ill; 16530 phyint_t *phyi; 16531 struct lifreq *lifr; 16532 mblk_t *mp1; 16533 16534 /* Existence verified in ip_wput_nondata */ 16535 mp1 = mp->b_cont->b_cont; 16536 lifr = (struct lifreq *)mp1->b_rptr; 16537 ill = ipif->ipif_ill; 16538 phyi = ill->ill_phyint; 16539 16540 lifr->lifr_groupname[0] = '\0'; 16541 /* 16542 * ill_group may be null if all the interfaces 16543 * are down. But still, the phyint should always 16544 * hold the name. 16545 */ 16546 if (phyi->phyint_groupname_len != 0) { 16547 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16548 phyi->phyint_groupname_len); 16549 } 16550 16551 return (0); 16552 } 16553 16554 16555 typedef struct conn_move_s { 16556 ill_t *cm_from_ill; 16557 ill_t *cm_to_ill; 16558 int cm_ifindex; 16559 } conn_move_t; 16560 16561 /* 16562 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16563 */ 16564 static void 16565 conn_move(conn_t *connp, caddr_t arg) 16566 { 16567 conn_move_t *connm; 16568 int ifindex; 16569 int i; 16570 ill_t *from_ill; 16571 ill_t *to_ill; 16572 ilg_t *ilg; 16573 ilm_t *ret_ilm; 16574 16575 connm = (conn_move_t *)arg; 16576 ifindex = connm->cm_ifindex; 16577 from_ill = connm->cm_from_ill; 16578 to_ill = connm->cm_to_ill; 16579 16580 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16581 16582 /* All multicast fields protected by conn_lock */ 16583 mutex_enter(&connp->conn_lock); 16584 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16585 if ((connp->conn_outgoing_ill == from_ill) && 16586 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16587 connp->conn_outgoing_ill = to_ill; 16588 connp->conn_incoming_ill = to_ill; 16589 } 16590 16591 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16592 16593 if ((connp->conn_multicast_ill == from_ill) && 16594 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16595 connp->conn_multicast_ill = connm->cm_to_ill; 16596 } 16597 16598 /* Change IP_XMIT_IF associations */ 16599 if ((connp->conn_xmit_if_ill == from_ill) && 16600 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16601 connp->conn_xmit_if_ill = to_ill; 16602 } 16603 /* 16604 * Change the ilg_ill to point to the new one. This assumes 16605 * ilm_move_v6 has moved the ilms to new_ill and the driver 16606 * has been told to receive packets on this interface. 16607 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16608 * But when doing a FAILOVER, it might fail with ENOMEM and so 16609 * some ilms may not have moved. We check to see whether 16610 * the ilms have moved to to_ill. We can't check on from_ill 16611 * as in the process of moving, we could have split an ilm 16612 * in to two - which has the same orig_ifindex and v6group. 16613 * 16614 * For IPv4, ilg_ipif moves implicitly. The code below really 16615 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16616 */ 16617 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16618 ilg = &connp->conn_ilg[i]; 16619 if ((ilg->ilg_ill == from_ill) && 16620 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16621 /* ifindex != 0 indicates failback */ 16622 if (ifindex != 0) { 16623 connp->conn_ilg[i].ilg_ill = to_ill; 16624 continue; 16625 } 16626 16627 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16628 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16629 connp->conn_zoneid); 16630 16631 if (ret_ilm != NULL) 16632 connp->conn_ilg[i].ilg_ill = to_ill; 16633 } 16634 } 16635 mutex_exit(&connp->conn_lock); 16636 } 16637 16638 static void 16639 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16640 { 16641 conn_move_t connm; 16642 16643 connm.cm_from_ill = from_ill; 16644 connm.cm_to_ill = to_ill; 16645 connm.cm_ifindex = ifindex; 16646 16647 ipcl_walk(conn_move, (caddr_t)&connm); 16648 } 16649 16650 /* 16651 * ilm has been moved from from_ill to to_ill. 16652 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16653 * appropriately. 16654 * 16655 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16656 * the code there de-references ipif_ill to get the ill to 16657 * send multicast requests. It does not work as ipif is on its 16658 * move and already moved when this function is called. 16659 * Thus, we need to use from_ill and to_ill send down multicast 16660 * requests. 16661 */ 16662 static void 16663 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16664 { 16665 ipif_t *ipif; 16666 ilm_t *ilm; 16667 16668 /* 16669 * See whether we need to send down DL_ENABMULTI_REQ on 16670 * to_ill as ilm has just been added. 16671 */ 16672 ASSERT(IAM_WRITER_ILL(to_ill)); 16673 ASSERT(IAM_WRITER_ILL(from_ill)); 16674 16675 ILM_WALKER_HOLD(to_ill); 16676 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16677 16678 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16679 continue; 16680 /* 16681 * no locks held, ill/ipif cannot dissappear as long 16682 * as we are writer. 16683 */ 16684 ipif = to_ill->ill_ipif; 16685 /* 16686 * No need to hold any lock as we are the writer and this 16687 * can only be changed by a writer. 16688 */ 16689 ilm->ilm_is_new = B_FALSE; 16690 16691 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16692 ipif->ipif_flags & IPIF_POINTOPOINT) { 16693 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16694 "resolver\n")); 16695 continue; /* Must be IRE_IF_NORESOLVER */ 16696 } 16697 16698 16699 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16700 ip1dbg(("ilm_send_multicast_reqs: " 16701 "to_ill MULTI_BCAST\n")); 16702 goto from; 16703 } 16704 16705 if (to_ill->ill_isv6) 16706 mld_joingroup(ilm); 16707 else 16708 igmp_joingroup(ilm); 16709 16710 if (to_ill->ill_ipif_up_count == 0) { 16711 /* 16712 * Nobody there. All multicast addresses will be 16713 * re-joined when we get the DL_BIND_ACK bringing the 16714 * interface up. 16715 */ 16716 ilm->ilm_notify_driver = B_FALSE; 16717 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16718 goto from; 16719 } 16720 16721 /* 16722 * For allmulti address, we want to join on only one interface. 16723 * Checking for ilm_numentries_v6 is not correct as you may 16724 * find an ilm with zero address on to_ill, but we may not 16725 * have nominated to_ill for receiving. Thus, if we have 16726 * nominated from_ill (ill_join_allmulti is set), nominate 16727 * only if to_ill is not already nominated (to_ill normally 16728 * should not have been nominated if "from_ill" has already 16729 * been nominated. As we don't prevent failovers from happening 16730 * across groups, we don't assert). 16731 */ 16732 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16733 /* 16734 * There is no need to hold ill locks as we are 16735 * writer on both ills and when ill_join_allmulti 16736 * is changed the thread is always a writer. 16737 */ 16738 if (from_ill->ill_join_allmulti && 16739 !to_ill->ill_join_allmulti) { 16740 (void) ip_join_allmulti(to_ill->ill_ipif); 16741 } 16742 } else if (ilm->ilm_notify_driver) { 16743 16744 /* 16745 * This is a newly moved ilm so we need to tell the 16746 * driver about the new group. There can be more than 16747 * one ilm's for the same group in the list each with a 16748 * different orig_ifindex. We have to inform the driver 16749 * once. In ilm_move_v[4,6] we only set the flag 16750 * ilm_notify_driver for the first ilm. 16751 */ 16752 16753 (void) ip_ll_send_enabmulti_req(to_ill, 16754 &ilm->ilm_v6addr); 16755 } 16756 16757 ilm->ilm_notify_driver = B_FALSE; 16758 16759 /* 16760 * See whether we need to send down DL_DISABMULTI_REQ on 16761 * from_ill as ilm has just been removed. 16762 */ 16763 from: 16764 ipif = from_ill->ill_ipif; 16765 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16766 ipif->ipif_flags & IPIF_POINTOPOINT) { 16767 ip1dbg(("ilm_send_multicast_reqs: " 16768 "from_ill not resolver\n")); 16769 continue; /* Must be IRE_IF_NORESOLVER */ 16770 } 16771 16772 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16773 ip1dbg(("ilm_send_multicast_reqs: " 16774 "from_ill MULTI_BCAST\n")); 16775 continue; 16776 } 16777 16778 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16779 if (from_ill->ill_join_allmulti) 16780 (void) ip_leave_allmulti(from_ill->ill_ipif); 16781 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16782 (void) ip_ll_send_disabmulti_req(from_ill, 16783 &ilm->ilm_v6addr); 16784 } 16785 } 16786 ILM_WALKER_RELE(to_ill); 16787 } 16788 16789 /* 16790 * This function is called when all multicast memberships needs 16791 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16792 * called only once unlike the IPv4 counterpart where it is called after 16793 * every logical interface is moved. The reason is due to multicast 16794 * memberships are joined using an interface address in IPv4 while in 16795 * IPv6, interface index is used. 16796 */ 16797 static void 16798 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16799 { 16800 ilm_t *ilm; 16801 ilm_t *ilm_next; 16802 ilm_t *new_ilm; 16803 ilm_t **ilmp; 16804 int count; 16805 char buf[INET6_ADDRSTRLEN]; 16806 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16807 16808 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16809 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16810 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16811 16812 if (ifindex == 0) { 16813 /* 16814 * Form the solicited node mcast address which is used later. 16815 */ 16816 ipif_t *ipif; 16817 16818 ipif = from_ill->ill_ipif; 16819 ASSERT(ipif->ipif_id == 0); 16820 16821 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16822 } 16823 16824 ilmp = &from_ill->ill_ilm; 16825 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16826 ilm_next = ilm->ilm_next; 16827 16828 if (ilm->ilm_flags & ILM_DELETED) { 16829 ilmp = &ilm->ilm_next; 16830 continue; 16831 } 16832 16833 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16834 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16835 ASSERT(ilm->ilm_orig_ifindex != 0); 16836 if (ilm->ilm_orig_ifindex == ifindex) { 16837 /* 16838 * We are failing back multicast memberships. 16839 * If the same ilm exists in to_ill, it means somebody 16840 * has joined the same group there e.g. ff02::1 16841 * is joined within the kernel when the interfaces 16842 * came UP. 16843 */ 16844 ASSERT(ilm->ilm_ipif == NULL); 16845 if (new_ilm != NULL) { 16846 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16847 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16848 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16849 new_ilm->ilm_is_new = B_TRUE; 16850 } 16851 } else { 16852 /* 16853 * check if we can just move the ilm 16854 */ 16855 if (from_ill->ill_ilm_walker_cnt != 0) { 16856 /* 16857 * We have walkers we cannot move 16858 * the ilm, so allocate a new ilm, 16859 * this (old) ilm will be marked 16860 * ILM_DELETED at the end of the loop 16861 * and will be freed when the 16862 * last walker exits. 16863 */ 16864 new_ilm = (ilm_t *)mi_zalloc 16865 (sizeof (ilm_t)); 16866 if (new_ilm == NULL) { 16867 ip0dbg(("ilm_move_v6: " 16868 "FAILBACK of IPv6" 16869 " multicast address %s : " 16870 "from %s to" 16871 " %s failed : ENOMEM \n", 16872 inet_ntop(AF_INET6, 16873 &ilm->ilm_v6addr, buf, 16874 sizeof (buf)), 16875 from_ill->ill_name, 16876 to_ill->ill_name)); 16877 16878 ilmp = &ilm->ilm_next; 16879 continue; 16880 } 16881 *new_ilm = *ilm; 16882 /* 16883 * we don't want new_ilm linked to 16884 * ilm's filter list. 16885 */ 16886 new_ilm->ilm_filter = NULL; 16887 } else { 16888 /* 16889 * No walkers we can move the ilm. 16890 * lets take it out of the list. 16891 */ 16892 *ilmp = ilm->ilm_next; 16893 ilm->ilm_next = NULL; 16894 new_ilm = ilm; 16895 } 16896 16897 /* 16898 * if this is the first ilm for the group 16899 * set ilm_notify_driver so that we notify the 16900 * driver in ilm_send_multicast_reqs. 16901 */ 16902 if (ilm_lookup_ill_v6(to_ill, 16903 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16904 new_ilm->ilm_notify_driver = B_TRUE; 16905 16906 new_ilm->ilm_ill = to_ill; 16907 /* Add to the to_ill's list */ 16908 new_ilm->ilm_next = to_ill->ill_ilm; 16909 to_ill->ill_ilm = new_ilm; 16910 /* 16911 * set the flag so that mld_joingroup is 16912 * called in ilm_send_multicast_reqs(). 16913 */ 16914 new_ilm->ilm_is_new = B_TRUE; 16915 } 16916 goto bottom; 16917 } else if (ifindex != 0) { 16918 /* 16919 * If this is FAILBACK (ifindex != 0) and the ifindex 16920 * has not matched above, look at the next ilm. 16921 */ 16922 ilmp = &ilm->ilm_next; 16923 continue; 16924 } 16925 /* 16926 * If we are here, it means ifindex is 0. Failover 16927 * everything. 16928 * 16929 * We need to handle solicited node mcast address 16930 * and all_nodes mcast address differently as they 16931 * are joined witin the kenrel (ipif_multicast_up) 16932 * and potentially from the userland. We are called 16933 * after the ipifs of from_ill has been moved. 16934 * If we still find ilms on ill with solicited node 16935 * mcast address or all_nodes mcast address, it must 16936 * belong to the UP interface that has not moved e.g. 16937 * ipif_id 0 with the link local prefix does not move. 16938 * We join this on the new ill accounting for all the 16939 * userland memberships so that applications don't 16940 * see any failure. 16941 * 16942 * We need to make sure that we account only for the 16943 * solicited node and all node multicast addresses 16944 * that was brought UP on these. In the case of 16945 * a failover from A to B, we might have ilms belonging 16946 * to A (ilm_orig_ifindex pointing at A) on B accounting 16947 * for the membership from the userland. If we are failing 16948 * over from B to C now, we will find the ones belonging 16949 * to A on B. These don't account for the ill_ipif_up_count. 16950 * They just move from B to C. The check below on 16951 * ilm_orig_ifindex ensures that. 16952 */ 16953 if ((ilm->ilm_orig_ifindex == 16954 from_ill->ill_phyint->phyint_ifindex) && 16955 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16956 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16957 &ilm->ilm_v6addr))) { 16958 ASSERT(ilm->ilm_refcnt > 0); 16959 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16960 /* 16961 * For indentation reasons, we are not using a 16962 * "else" here. 16963 */ 16964 if (count == 0) { 16965 ilmp = &ilm->ilm_next; 16966 continue; 16967 } 16968 ilm->ilm_refcnt -= count; 16969 if (new_ilm != NULL) { 16970 /* 16971 * Can find one with the same 16972 * ilm_orig_ifindex, if we are failing 16973 * over to a STANDBY. This happens 16974 * when somebody wants to join a group 16975 * on a STANDBY interface and we 16976 * internally join on a different one. 16977 * If we had joined on from_ill then, a 16978 * failover now will find a new ilm 16979 * with this index. 16980 */ 16981 ip1dbg(("ilm_move_v6: FAILOVER, found" 16982 " new ilm on %s, group address %s\n", 16983 to_ill->ill_name, 16984 inet_ntop(AF_INET6, 16985 &ilm->ilm_v6addr, buf, 16986 sizeof (buf)))); 16987 new_ilm->ilm_refcnt += count; 16988 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16989 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16990 new_ilm->ilm_is_new = B_TRUE; 16991 } 16992 } else { 16993 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16994 if (new_ilm == NULL) { 16995 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16996 " multicast address %s : from %s to" 16997 " %s failed : ENOMEM \n", 16998 inet_ntop(AF_INET6, 16999 &ilm->ilm_v6addr, buf, 17000 sizeof (buf)), from_ill->ill_name, 17001 to_ill->ill_name)); 17002 ilmp = &ilm->ilm_next; 17003 continue; 17004 } 17005 *new_ilm = *ilm; 17006 new_ilm->ilm_filter = NULL; 17007 new_ilm->ilm_refcnt = count; 17008 new_ilm->ilm_timer = INFINITY; 17009 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17010 new_ilm->ilm_is_new = B_TRUE; 17011 /* 17012 * If the to_ill has not joined this 17013 * group we need to tell the driver in 17014 * ill_send_multicast_reqs. 17015 */ 17016 if (ilm_lookup_ill_v6(to_ill, 17017 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17018 new_ilm->ilm_notify_driver = B_TRUE; 17019 17020 new_ilm->ilm_ill = to_ill; 17021 /* Add to the to_ill's list */ 17022 new_ilm->ilm_next = to_ill->ill_ilm; 17023 to_ill->ill_ilm = new_ilm; 17024 ASSERT(new_ilm->ilm_ipif == NULL); 17025 } 17026 if (ilm->ilm_refcnt == 0) { 17027 goto bottom; 17028 } else { 17029 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17030 CLEAR_SLIST(new_ilm->ilm_filter); 17031 ilmp = &ilm->ilm_next; 17032 } 17033 continue; 17034 } else { 17035 /* 17036 * ifindex = 0 means, move everything pointing at 17037 * from_ill. We are doing this becuase ill has 17038 * either FAILED or became INACTIVE. 17039 * 17040 * As we would like to move things later back to 17041 * from_ill, we want to retain the identity of this 17042 * ilm. Thus, we don't blindly increment the reference 17043 * count on the ilms matching the address alone. We 17044 * need to match on the ilm_orig_index also. new_ilm 17045 * was obtained by matching ilm_orig_index also. 17046 */ 17047 if (new_ilm != NULL) { 17048 /* 17049 * This is possible only if a previous restore 17050 * was incomplete i.e restore to 17051 * ilm_orig_ifindex left some ilms because 17052 * of some failures. Thus when we are failing 17053 * again, we might find our old friends there. 17054 */ 17055 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17056 " on %s, group address %s\n", 17057 to_ill->ill_name, 17058 inet_ntop(AF_INET6, 17059 &ilm->ilm_v6addr, buf, 17060 sizeof (buf)))); 17061 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17062 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17063 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17064 new_ilm->ilm_is_new = B_TRUE; 17065 } 17066 } else { 17067 if (from_ill->ill_ilm_walker_cnt != 0) { 17068 new_ilm = (ilm_t *) 17069 mi_zalloc(sizeof (ilm_t)); 17070 if (new_ilm == NULL) { 17071 ip0dbg(("ilm_move_v6: " 17072 "FAILOVER of IPv6" 17073 " multicast address %s : " 17074 "from %s to" 17075 " %s failed : ENOMEM \n", 17076 inet_ntop(AF_INET6, 17077 &ilm->ilm_v6addr, buf, 17078 sizeof (buf)), 17079 from_ill->ill_name, 17080 to_ill->ill_name)); 17081 17082 ilmp = &ilm->ilm_next; 17083 continue; 17084 } 17085 *new_ilm = *ilm; 17086 new_ilm->ilm_filter = NULL; 17087 } else { 17088 *ilmp = ilm->ilm_next; 17089 new_ilm = ilm; 17090 } 17091 /* 17092 * If the to_ill has not joined this 17093 * group we need to tell the driver in 17094 * ill_send_multicast_reqs. 17095 */ 17096 if (ilm_lookup_ill_v6(to_ill, 17097 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17098 new_ilm->ilm_notify_driver = B_TRUE; 17099 17100 /* Add to the to_ill's list */ 17101 new_ilm->ilm_next = to_ill->ill_ilm; 17102 to_ill->ill_ilm = new_ilm; 17103 ASSERT(ilm->ilm_ipif == NULL); 17104 new_ilm->ilm_ill = to_ill; 17105 new_ilm->ilm_is_new = B_TRUE; 17106 } 17107 17108 } 17109 17110 bottom: 17111 /* 17112 * Revert multicast filter state to (EXCLUDE, NULL). 17113 * new_ilm->ilm_is_new should already be set if needed. 17114 */ 17115 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17116 CLEAR_SLIST(new_ilm->ilm_filter); 17117 /* 17118 * We allocated/got a new ilm, free the old one. 17119 */ 17120 if (new_ilm != ilm) { 17121 if (from_ill->ill_ilm_walker_cnt == 0) { 17122 *ilmp = ilm->ilm_next; 17123 ilm->ilm_next = NULL; 17124 FREE_SLIST(ilm->ilm_filter); 17125 FREE_SLIST(ilm->ilm_pendsrcs); 17126 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17127 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17128 mi_free((char *)ilm); 17129 } else { 17130 ilm->ilm_flags |= ILM_DELETED; 17131 from_ill->ill_ilm_cleanup_reqd = 1; 17132 ilmp = &ilm->ilm_next; 17133 } 17134 } 17135 } 17136 } 17137 17138 /* 17139 * Move all the multicast memberships to to_ill. Called when 17140 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17141 * different from IPv6 counterpart as multicast memberships are associated 17142 * with ills in IPv6. This function is called after every ipif is moved 17143 * unlike IPv6, where it is moved only once. 17144 */ 17145 static void 17146 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17147 { 17148 ilm_t *ilm; 17149 ilm_t *ilm_next; 17150 ilm_t *new_ilm; 17151 ilm_t **ilmp; 17152 17153 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17154 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17155 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17156 17157 ilmp = &from_ill->ill_ilm; 17158 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17159 ilm_next = ilm->ilm_next; 17160 17161 if (ilm->ilm_flags & ILM_DELETED) { 17162 ilmp = &ilm->ilm_next; 17163 continue; 17164 } 17165 17166 ASSERT(ilm->ilm_ipif != NULL); 17167 17168 if (ilm->ilm_ipif != ipif) { 17169 ilmp = &ilm->ilm_next; 17170 continue; 17171 } 17172 17173 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17174 htonl(INADDR_ALLHOSTS_GROUP)) { 17175 /* 17176 * We joined this in ipif_multicast_up 17177 * and we never did an ipif_multicast_down 17178 * for IPv4. If nobody else from the userland 17179 * has reference, we free the ilm, and later 17180 * when this ipif comes up on the new ill, 17181 * we will join this again. 17182 */ 17183 if (--ilm->ilm_refcnt == 0) 17184 goto delete_ilm; 17185 17186 new_ilm = ilm_lookup_ipif(ipif, 17187 V4_PART_OF_V6(ilm->ilm_v6addr)); 17188 if (new_ilm != NULL) { 17189 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17190 /* 17191 * We still need to deal with the from_ill. 17192 */ 17193 new_ilm->ilm_is_new = B_TRUE; 17194 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17195 CLEAR_SLIST(new_ilm->ilm_filter); 17196 goto delete_ilm; 17197 } 17198 /* 17199 * If we could not find one e.g. ipif is 17200 * still down on to_ill, we add this ilm 17201 * on ill_new to preserve the reference 17202 * count. 17203 */ 17204 } 17205 /* 17206 * When ipifs move, ilms always move with it 17207 * to the NEW ill. Thus we should never be 17208 * able to find ilm till we really move it here. 17209 */ 17210 ASSERT(ilm_lookup_ipif(ipif, 17211 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17212 17213 if (from_ill->ill_ilm_walker_cnt != 0) { 17214 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17215 if (new_ilm == NULL) { 17216 char buf[INET6_ADDRSTRLEN]; 17217 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17218 " multicast address %s : " 17219 "from %s to" 17220 " %s failed : ENOMEM \n", 17221 inet_ntop(AF_INET, 17222 &ilm->ilm_v6addr, buf, 17223 sizeof (buf)), 17224 from_ill->ill_name, 17225 to_ill->ill_name)); 17226 17227 ilmp = &ilm->ilm_next; 17228 continue; 17229 } 17230 *new_ilm = *ilm; 17231 /* We don't want new_ilm linked to ilm's filter list */ 17232 new_ilm->ilm_filter = NULL; 17233 } else { 17234 /* Remove from the list */ 17235 *ilmp = ilm->ilm_next; 17236 new_ilm = ilm; 17237 } 17238 17239 /* 17240 * If we have never joined this group on the to_ill 17241 * make sure we tell the driver. 17242 */ 17243 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17244 ALL_ZONES) == NULL) 17245 new_ilm->ilm_notify_driver = B_TRUE; 17246 17247 /* Add to the to_ill's list */ 17248 new_ilm->ilm_next = to_ill->ill_ilm; 17249 to_ill->ill_ilm = new_ilm; 17250 new_ilm->ilm_is_new = B_TRUE; 17251 17252 /* 17253 * Revert multicast filter state to (EXCLUDE, NULL) 17254 */ 17255 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17256 CLEAR_SLIST(new_ilm->ilm_filter); 17257 17258 /* 17259 * Delete only if we have allocated a new ilm. 17260 */ 17261 if (new_ilm != ilm) { 17262 delete_ilm: 17263 if (from_ill->ill_ilm_walker_cnt == 0) { 17264 /* Remove from the list */ 17265 *ilmp = ilm->ilm_next; 17266 ilm->ilm_next = NULL; 17267 FREE_SLIST(ilm->ilm_filter); 17268 FREE_SLIST(ilm->ilm_pendsrcs); 17269 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17270 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17271 mi_free((char *)ilm); 17272 } else { 17273 ilm->ilm_flags |= ILM_DELETED; 17274 from_ill->ill_ilm_cleanup_reqd = 1; 17275 ilmp = &ilm->ilm_next; 17276 } 17277 } 17278 } 17279 } 17280 17281 static uint_t 17282 ipif_get_id(ill_t *ill, uint_t id) 17283 { 17284 uint_t unit; 17285 ipif_t *tipif; 17286 boolean_t found = B_FALSE; 17287 17288 /* 17289 * During failback, we want to go back to the same id 17290 * instead of the smallest id so that the original 17291 * configuration is maintained. id is non-zero in that 17292 * case. 17293 */ 17294 if (id != 0) { 17295 /* 17296 * While failing back, if we still have an ipif with 17297 * MAX_ADDRS_PER_IF, it means this will be replaced 17298 * as soon as we return from this function. It was 17299 * to set to MAX_ADDRS_PER_IF by the caller so that 17300 * we can choose the smallest id. Thus we return zero 17301 * in that case ignoring the hint. 17302 */ 17303 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17304 return (0); 17305 for (tipif = ill->ill_ipif; tipif != NULL; 17306 tipif = tipif->ipif_next) { 17307 if (tipif->ipif_id == id) { 17308 found = B_TRUE; 17309 break; 17310 } 17311 } 17312 /* 17313 * If somebody already plumbed another logical 17314 * with the same id, we won't be able to find it. 17315 */ 17316 if (!found) 17317 return (id); 17318 } 17319 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 17320 found = B_FALSE; 17321 for (tipif = ill->ill_ipif; tipif != NULL; 17322 tipif = tipif->ipif_next) { 17323 if (tipif->ipif_id == unit) { 17324 found = B_TRUE; 17325 break; 17326 } 17327 } 17328 if (!found) 17329 break; 17330 } 17331 return (unit); 17332 } 17333 17334 /* ARGSUSED */ 17335 static int 17336 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17337 ipif_t **rep_ipif_ptr) 17338 { 17339 ill_t *from_ill; 17340 ipif_t *rep_ipif; 17341 ipif_t **ipifp; 17342 uint_t unit; 17343 int err = 0; 17344 ipif_t *to_ipif; 17345 struct iocblk *iocp; 17346 boolean_t failback_cmd; 17347 boolean_t remove_ipif; 17348 int rc; 17349 17350 ASSERT(IAM_WRITER_ILL(to_ill)); 17351 ASSERT(IAM_WRITER_IPIF(ipif)); 17352 17353 iocp = (struct iocblk *)mp->b_rptr; 17354 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17355 remove_ipif = B_FALSE; 17356 17357 from_ill = ipif->ipif_ill; 17358 17359 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17360 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17361 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 17362 17363 /* 17364 * Don't move LINK LOCAL addresses as they are tied to 17365 * physical interface. 17366 */ 17367 if (from_ill->ill_isv6 && 17368 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17369 ipif->ipif_was_up = B_FALSE; 17370 IPIF_UNMARK_MOVING(ipif); 17371 return (0); 17372 } 17373 17374 /* 17375 * We set the ipif_id to maximum so that the search for 17376 * ipif_id will pick the lowest number i.e 0 in the 17377 * following 2 cases : 17378 * 17379 * 1) We have a replacement ipif at the head of to_ill. 17380 * We can't remove it yet as we can exceed ip_addrs_per_if 17381 * on to_ill and hence the MOVE might fail. We want to 17382 * remove it only if we could move the ipif. Thus, by 17383 * setting it to the MAX value, we make the search in 17384 * ipif_get_id return the zeroth id. 17385 * 17386 * 2) When DR pulls out the NIC and re-plumbs the interface, 17387 * we might just have a zero address plumbed on the ipif 17388 * with zero id in the case of IPv4. We remove that while 17389 * doing the failback. We want to remove it only if we 17390 * could move the ipif. Thus, by setting it to the MAX 17391 * value, we make the search in ipif_get_id return the 17392 * zeroth id. 17393 * 17394 * Both (1) and (2) are done only when when we are moving 17395 * an ipif (either due to failover/failback) which originally 17396 * belonged to this interface i.e the ipif_orig_ifindex is 17397 * the same as to_ill's ifindex. This is needed so that 17398 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17399 * from B -> A (B is being removed from the group) and 17400 * FAILBACK from A -> B restores the original configuration. 17401 * Without the check for orig_ifindex, the second FAILOVER 17402 * could make the ipif belonging to B replace the A's zeroth 17403 * ipif and the subsequent failback re-creating the replacement 17404 * ipif again. 17405 * 17406 * NOTE : We created the replacement ipif when we did a 17407 * FAILOVER (See below). We could check for FAILBACK and 17408 * then look for replacement ipif to be removed. But we don't 17409 * want to do that because we wan't to allow the possibility 17410 * of a FAILOVER from A -> B (which creates the replacement ipif), 17411 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17412 * from B -> A. 17413 */ 17414 to_ipif = to_ill->ill_ipif; 17415 if ((to_ill->ill_phyint->phyint_ifindex == 17416 ipif->ipif_orig_ifindex) && 17417 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17418 ASSERT(to_ipif->ipif_id == 0); 17419 remove_ipif = B_TRUE; 17420 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17421 } 17422 /* 17423 * Find the lowest logical unit number on the to_ill. 17424 * If we are failing back, try to get the original id 17425 * rather than the lowest one so that the original 17426 * configuration is maintained. 17427 * 17428 * XXX need a better scheme for this. 17429 */ 17430 if (failback_cmd) { 17431 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17432 } else { 17433 unit = ipif_get_id(to_ill, 0); 17434 } 17435 17436 /* Reset back to zero in case we fail below */ 17437 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17438 to_ipif->ipif_id = 0; 17439 17440 if (unit == ip_addrs_per_if) { 17441 ipif->ipif_was_up = B_FALSE; 17442 IPIF_UNMARK_MOVING(ipif); 17443 return (EINVAL); 17444 } 17445 17446 /* 17447 * ipif is ready to move from "from_ill" to "to_ill". 17448 * 17449 * 1) If we are moving ipif with id zero, create a 17450 * replacement ipif for this ipif on from_ill. If this fails 17451 * fail the MOVE operation. 17452 * 17453 * 2) Remove the replacement ipif on to_ill if any. 17454 * We could remove the replacement ipif when we are moving 17455 * the ipif with id zero. But what if somebody already 17456 * unplumbed it ? Thus we always remove it if it is present. 17457 * We want to do it only if we are sure we are going to 17458 * move the ipif to to_ill which is why there are no 17459 * returns due to error till ipif is linked to to_ill. 17460 * Note that the first ipif that we failback will always 17461 * be zero if it is present. 17462 */ 17463 if (ipif->ipif_id == 0) { 17464 ipaddr_t inaddr_any = INADDR_ANY; 17465 17466 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17467 if (rep_ipif == NULL) { 17468 ipif->ipif_was_up = B_FALSE; 17469 IPIF_UNMARK_MOVING(ipif); 17470 return (ENOMEM); 17471 } 17472 *rep_ipif = ipif_zero; 17473 /* 17474 * Before we put the ipif on the list, store the addresses 17475 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17476 * assumes so. This logic is not any different from what 17477 * ipif_allocate does. 17478 */ 17479 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17480 &rep_ipif->ipif_v6lcl_addr); 17481 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17482 &rep_ipif->ipif_v6src_addr); 17483 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17484 &rep_ipif->ipif_v6subnet); 17485 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17486 &rep_ipif->ipif_v6net_mask); 17487 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17488 &rep_ipif->ipif_v6brd_addr); 17489 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17490 &rep_ipif->ipif_v6pp_dst_addr); 17491 /* 17492 * We mark IPIF_NOFAILOVER so that this can never 17493 * move. 17494 */ 17495 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17496 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17497 rep_ipif->ipif_replace_zero = B_TRUE; 17498 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17499 MUTEX_DEFAULT, NULL); 17500 rep_ipif->ipif_id = 0; 17501 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17502 rep_ipif->ipif_ill = from_ill; 17503 rep_ipif->ipif_orig_ifindex = 17504 from_ill->ill_phyint->phyint_ifindex; 17505 /* Insert at head */ 17506 rep_ipif->ipif_next = from_ill->ill_ipif; 17507 from_ill->ill_ipif = rep_ipif; 17508 /* 17509 * We don't really care to let apps know about 17510 * this interface. 17511 */ 17512 } 17513 17514 if (remove_ipif) { 17515 /* 17516 * We set to a max value above for this case to get 17517 * id zero. ASSERT that we did get one. 17518 */ 17519 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17520 rep_ipif = to_ipif; 17521 to_ill->ill_ipif = rep_ipif->ipif_next; 17522 rep_ipif->ipif_next = NULL; 17523 /* 17524 * If some apps scanned and find this interface, 17525 * it is time to let them know, so that they can 17526 * delete it. 17527 */ 17528 17529 *rep_ipif_ptr = rep_ipif; 17530 } 17531 17532 /* Get it out of the ILL interface list. */ 17533 ipifp = &ipif->ipif_ill->ill_ipif; 17534 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17535 if (*ipifp == ipif) { 17536 *ipifp = ipif->ipif_next; 17537 break; 17538 } 17539 } 17540 17541 /* Assign the new ill */ 17542 ipif->ipif_ill = to_ill; 17543 ipif->ipif_id = unit; 17544 /* id has already been checked */ 17545 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17546 ASSERT(rc == 0); 17547 /* Let SCTP update its list */ 17548 sctp_move_ipif(ipif, from_ill, to_ill); 17549 /* 17550 * Handle the failover and failback of ipif_t between 17551 * ill_t that have differing maximum mtu values. 17552 */ 17553 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17554 if (ipif->ipif_saved_mtu == 0) { 17555 /* 17556 * As this ipif_t is moving to an ill_t 17557 * that has a lower ill_max_mtu, its 17558 * ipif_mtu needs to be saved so it can 17559 * be restored during failback or during 17560 * failover to an ill_t which has a 17561 * higher ill_max_mtu. 17562 */ 17563 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17564 ipif->ipif_mtu = to_ill->ill_max_mtu; 17565 } else { 17566 /* 17567 * The ipif_t is, once again, moving to 17568 * an ill_t that has a lower maximum mtu 17569 * value. 17570 */ 17571 ipif->ipif_mtu = to_ill->ill_max_mtu; 17572 } 17573 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17574 ipif->ipif_saved_mtu != 0) { 17575 /* 17576 * The mtu of this ipif_t had to be reduced 17577 * during an earlier failover; this is an 17578 * opportunity for it to be increased (either as 17579 * part of another failover or a failback). 17580 */ 17581 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17582 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17583 ipif->ipif_saved_mtu = 0; 17584 } else { 17585 ipif->ipif_mtu = to_ill->ill_max_mtu; 17586 } 17587 } 17588 17589 /* 17590 * We preserve all the other fields of the ipif including 17591 * ipif_saved_ire_mp. The routes that are saved here will 17592 * be recreated on the new interface and back on the old 17593 * interface when we move back. 17594 */ 17595 ASSERT(ipif->ipif_arp_del_mp == NULL); 17596 17597 return (err); 17598 } 17599 17600 static int 17601 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17602 int ifindex, ipif_t **rep_ipif_ptr) 17603 { 17604 ipif_t *mipif; 17605 ipif_t *ipif_next; 17606 int err; 17607 17608 /* 17609 * We don't really try to MOVE back things if some of the 17610 * operations fail. The daemon will take care of moving again 17611 * later on. 17612 */ 17613 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17614 ipif_next = mipif->ipif_next; 17615 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17616 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17617 17618 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17619 17620 /* 17621 * When the MOVE fails, it is the job of the 17622 * application to take care of this properly 17623 * i.e try again if it is ENOMEM. 17624 */ 17625 if (mipif->ipif_ill != from_ill) { 17626 /* 17627 * ipif has moved. 17628 * 17629 * Move the multicast memberships associated 17630 * with this ipif to the new ill. For IPv6, we 17631 * do it once after all the ipifs are moved 17632 * (in ill_move) as they are not associated 17633 * with ipifs. 17634 * 17635 * We need to move the ilms as the ipif has 17636 * already been moved to a new ill even 17637 * in the case of errors. Neither 17638 * ilm_free(ipif) will find the ilm 17639 * when somebody unplumbs this ipif nor 17640 * ilm_delete(ilm) will be able to find the 17641 * ilm, if we don't move now. 17642 */ 17643 if (!from_ill->ill_isv6) 17644 ilm_move_v4(from_ill, to_ill, mipif); 17645 } 17646 17647 if (err != 0) 17648 return (err); 17649 } 17650 } 17651 return (0); 17652 } 17653 17654 static int 17655 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17656 { 17657 int ifindex; 17658 int err; 17659 struct iocblk *iocp; 17660 ipif_t *ipif; 17661 ipif_t *rep_ipif_ptr = NULL; 17662 ipif_t *from_ipif = NULL; 17663 boolean_t check_rep_if = B_FALSE; 17664 17665 iocp = (struct iocblk *)mp->b_rptr; 17666 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17667 /* 17668 * Move everything pointing at from_ill to to_ill. 17669 * We acheive this by passing in 0 as ifindex. 17670 */ 17671 ifindex = 0; 17672 } else { 17673 /* 17674 * Move everything pointing at from_ill whose original 17675 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17676 * We acheive this by passing in ifindex rather than 0. 17677 * Multicast vifs, ilgs move implicitly because ipifs move. 17678 */ 17679 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17680 ifindex = to_ill->ill_phyint->phyint_ifindex; 17681 } 17682 17683 /* 17684 * Determine if there is at least one ipif that would move from 17685 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17686 * ipif (if it exists) on the to_ill would be consumed as a result of 17687 * the move, in which case we need to quiesce the replacement ipif also. 17688 */ 17689 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17690 from_ipif = from_ipif->ipif_next) { 17691 if (((ifindex == 0) || 17692 (ifindex == from_ipif->ipif_orig_ifindex)) && 17693 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17694 check_rep_if = B_TRUE; 17695 break; 17696 } 17697 } 17698 17699 17700 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17701 17702 GRAB_ILL_LOCKS(from_ill, to_ill); 17703 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17704 (void) ipsq_pending_mp_add(NULL, ipif, q, 17705 mp, ILL_MOVE_OK); 17706 RELEASE_ILL_LOCKS(from_ill, to_ill); 17707 return (EINPROGRESS); 17708 } 17709 17710 /* Check if the replacement ipif is quiescent to delete */ 17711 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17712 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17713 to_ill->ill_ipif->ipif_state_flags |= 17714 IPIF_MOVING | IPIF_CHANGING; 17715 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17716 (void) ipsq_pending_mp_add(NULL, ipif, q, 17717 mp, ILL_MOVE_OK); 17718 RELEASE_ILL_LOCKS(from_ill, to_ill); 17719 return (EINPROGRESS); 17720 } 17721 } 17722 RELEASE_ILL_LOCKS(from_ill, to_ill); 17723 17724 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17725 rw_enter(&ill_g_lock, RW_WRITER); 17726 GRAB_ILL_LOCKS(from_ill, to_ill); 17727 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17728 17729 /* ilm_move is done inside ipif_move for IPv4 */ 17730 if (err == 0 && from_ill->ill_isv6) 17731 ilm_move_v6(from_ill, to_ill, ifindex); 17732 17733 RELEASE_ILL_LOCKS(from_ill, to_ill); 17734 rw_exit(&ill_g_lock); 17735 17736 /* 17737 * send rts messages and multicast messages. 17738 */ 17739 if (rep_ipif_ptr != NULL) { 17740 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17741 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17742 rep_ipif_ptr->ipif_recovery_id = 0; 17743 } 17744 ip_rts_ifmsg(rep_ipif_ptr); 17745 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17746 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17747 mi_free(rep_ipif_ptr); 17748 } 17749 17750 conn_move_ill(from_ill, to_ill, ifindex); 17751 17752 return (err); 17753 } 17754 17755 /* 17756 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17757 * Also checks for the validity of the arguments. 17758 * Note: We are already exclusive inside the from group. 17759 * It is upto the caller to release refcnt on the to_ill's. 17760 */ 17761 static int 17762 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17763 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17764 { 17765 int dst_index; 17766 ipif_t *ipif_v4, *ipif_v6; 17767 struct lifreq *lifr; 17768 mblk_t *mp1; 17769 boolean_t exists; 17770 sin_t *sin; 17771 int err = 0; 17772 17773 if ((mp1 = mp->b_cont) == NULL) 17774 return (EPROTO); 17775 17776 if ((mp1 = mp1->b_cont) == NULL) 17777 return (EPROTO); 17778 17779 lifr = (struct lifreq *)mp1->b_rptr; 17780 sin = (sin_t *)&lifr->lifr_addr; 17781 17782 /* 17783 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17784 * specific operations. 17785 */ 17786 if (sin->sin_family != AF_UNSPEC) 17787 return (EINVAL); 17788 17789 /* 17790 * Get ipif with id 0. We are writer on the from ill. So we can pass 17791 * NULLs for the last 4 args and we know the lookup won't fail 17792 * with EINPROGRESS. 17793 */ 17794 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17795 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17796 ALL_ZONES, NULL, NULL, NULL, NULL); 17797 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17798 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17799 ALL_ZONES, NULL, NULL, NULL, NULL); 17800 17801 if (ipif_v4 == NULL && ipif_v6 == NULL) 17802 return (ENXIO); 17803 17804 if (ipif_v4 != NULL) { 17805 ASSERT(ipif_v4->ipif_refcnt != 0); 17806 if (ipif_v4->ipif_id != 0) { 17807 err = EINVAL; 17808 goto done; 17809 } 17810 17811 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17812 *ill_from_v4 = ipif_v4->ipif_ill; 17813 } 17814 17815 if (ipif_v6 != NULL) { 17816 ASSERT(ipif_v6->ipif_refcnt != 0); 17817 if (ipif_v6->ipif_id != 0) { 17818 err = EINVAL; 17819 goto done; 17820 } 17821 17822 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17823 *ill_from_v6 = ipif_v6->ipif_ill; 17824 } 17825 17826 err = 0; 17827 dst_index = lifr->lifr_movetoindex; 17828 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17829 q, mp, ip_process_ioctl, &err); 17830 if (err != 0) { 17831 /* 17832 * There could be only v6. 17833 */ 17834 if (err != ENXIO) 17835 goto done; 17836 err = 0; 17837 } 17838 17839 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17840 q, mp, ip_process_ioctl, &err); 17841 if (err != 0) { 17842 if (err != ENXIO) 17843 goto done; 17844 if (*ill_to_v4 == NULL) { 17845 err = ENXIO; 17846 goto done; 17847 } 17848 err = 0; 17849 } 17850 17851 /* 17852 * If we have something to MOVE i.e "from" not NULL, 17853 * "to" should be non-NULL. 17854 */ 17855 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17856 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17857 err = EINVAL; 17858 } 17859 17860 done: 17861 if (ipif_v4 != NULL) 17862 ipif_refrele(ipif_v4); 17863 if (ipif_v6 != NULL) 17864 ipif_refrele(ipif_v6); 17865 return (err); 17866 } 17867 17868 /* 17869 * FAILOVER and FAILBACK are modelled as MOVE operations. 17870 * 17871 * We don't check whether the MOVE is within the same group or 17872 * not, because this ioctl can be used as a generic mechanism 17873 * to failover from interface A to B, though things will function 17874 * only if they are really part of the same group. Moreover, 17875 * all ipifs may be down and hence temporarily out of the group. 17876 * 17877 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17878 * down first and then V6. For each we wait for the ipif's to become quiescent. 17879 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17880 * have been deleted and there are no active references. Once quiescent the 17881 * ipif's are moved and brought up on the new ill. 17882 * 17883 * Normally the source ill and destination ill belong to the same IPMP group 17884 * and hence the same ipsq_t. In the event they don't belong to the same 17885 * same group the two ipsq's are first merged into one ipsq - that of the 17886 * to_ill. The multicast memberships on the source and destination ill cannot 17887 * change during the move operation since multicast joins/leaves also have to 17888 * execute on the same ipsq and are hence serialized. 17889 */ 17890 /* ARGSUSED */ 17891 int 17892 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17893 ip_ioctl_cmd_t *ipip, void *ifreq) 17894 { 17895 ill_t *ill_to_v4 = NULL; 17896 ill_t *ill_to_v6 = NULL; 17897 ill_t *ill_from_v4 = NULL; 17898 ill_t *ill_from_v6 = NULL; 17899 int err = 0; 17900 17901 /* 17902 * setup from and to ill's, we can get EINPROGRESS only for 17903 * to_ill's. 17904 */ 17905 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17906 &ill_to_v4, &ill_to_v6); 17907 17908 if (err != 0) { 17909 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17910 goto done; 17911 } 17912 17913 /* 17914 * nothing to do. 17915 */ 17916 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17917 goto done; 17918 } 17919 17920 /* 17921 * nothing to do. 17922 */ 17923 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17924 goto done; 17925 } 17926 17927 /* 17928 * Mark the ill as changing. 17929 * ILL_CHANGING flag is cleared when the ipif's are brought up 17930 * in ill_up_ipifs in case of error they are cleared below. 17931 */ 17932 17933 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17934 if (ill_from_v4 != NULL) 17935 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17936 if (ill_from_v6 != NULL) 17937 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17938 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17939 17940 /* 17941 * Make sure that both src and dst are 17942 * in the same syncq group. If not make it happen. 17943 * We are not holding any locks because we are the writer 17944 * on the from_ipsq and we will hold locks in ill_merge_groups 17945 * to protect to_ipsq against changing. 17946 */ 17947 if (ill_from_v4 != NULL) { 17948 if (ill_from_v4->ill_phyint->phyint_ipsq != 17949 ill_to_v4->ill_phyint->phyint_ipsq) { 17950 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17951 NULL, mp, q); 17952 goto err_ret; 17953 17954 } 17955 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17956 } else { 17957 17958 if (ill_from_v6->ill_phyint->phyint_ipsq != 17959 ill_to_v6->ill_phyint->phyint_ipsq) { 17960 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17961 NULL, mp, q); 17962 goto err_ret; 17963 17964 } 17965 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17966 } 17967 17968 /* 17969 * Now that the ipsq's have been merged and we are the writer 17970 * lets mark to_ill as changing as well. 17971 */ 17972 17973 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17974 if (ill_to_v4 != NULL) 17975 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17976 if (ill_to_v6 != NULL) 17977 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17978 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17979 17980 /* 17981 * Its ok for us to proceed with the move even if 17982 * ill_pending_mp is non null on one of the from ill's as the reply 17983 * should not be looking at the ipif, it should only care about the 17984 * ill itself. 17985 */ 17986 17987 /* 17988 * lets move ipv4 first. 17989 */ 17990 if (ill_from_v4 != NULL) { 17991 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17992 ill_from_v4->ill_move_in_progress = B_TRUE; 17993 ill_to_v4->ill_move_in_progress = B_TRUE; 17994 ill_to_v4->ill_move_peer = ill_from_v4; 17995 ill_from_v4->ill_move_peer = ill_to_v4; 17996 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17997 } 17998 17999 /* 18000 * Now lets move ipv6. 18001 */ 18002 if (err == 0 && ill_from_v6 != NULL) { 18003 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18004 ill_from_v6->ill_move_in_progress = B_TRUE; 18005 ill_to_v6->ill_move_in_progress = B_TRUE; 18006 ill_to_v6->ill_move_peer = ill_from_v6; 18007 ill_from_v6->ill_move_peer = ill_to_v6; 18008 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18009 } 18010 18011 err_ret: 18012 /* 18013 * EINPROGRESS means we are waiting for the ipif's that need to be 18014 * moved to become quiescent. 18015 */ 18016 if (err == EINPROGRESS) { 18017 goto done; 18018 } 18019 18020 /* 18021 * if err is set ill_up_ipifs will not be called 18022 * lets clear the flags. 18023 */ 18024 18025 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18026 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18027 /* 18028 * Some of the clearing may be redundant. But it is simple 18029 * not making any extra checks. 18030 */ 18031 if (ill_from_v6 != NULL) { 18032 ill_from_v6->ill_move_in_progress = B_FALSE; 18033 ill_from_v6->ill_move_peer = NULL; 18034 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18035 } 18036 if (ill_from_v4 != NULL) { 18037 ill_from_v4->ill_move_in_progress = B_FALSE; 18038 ill_from_v4->ill_move_peer = NULL; 18039 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18040 } 18041 if (ill_to_v6 != NULL) { 18042 ill_to_v6->ill_move_in_progress = B_FALSE; 18043 ill_to_v6->ill_move_peer = NULL; 18044 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18045 } 18046 if (ill_to_v4 != NULL) { 18047 ill_to_v4->ill_move_in_progress = B_FALSE; 18048 ill_to_v4->ill_move_peer = NULL; 18049 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18050 } 18051 18052 /* 18053 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18054 * Do this always to maintain proper state i.e even in case of errors. 18055 * As phyint_inactive looks at both v4 and v6 interfaces, 18056 * we need not call on both v4 and v6 interfaces. 18057 */ 18058 if (ill_from_v4 != NULL) { 18059 if ((ill_from_v4->ill_phyint->phyint_flags & 18060 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18061 phyint_inactive(ill_from_v4->ill_phyint); 18062 } 18063 } else if (ill_from_v6 != NULL) { 18064 if ((ill_from_v6->ill_phyint->phyint_flags & 18065 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18066 phyint_inactive(ill_from_v6->ill_phyint); 18067 } 18068 } 18069 18070 if (ill_to_v4 != NULL) { 18071 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18072 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18073 } 18074 } else if (ill_to_v6 != NULL) { 18075 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18076 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18077 } 18078 } 18079 18080 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18081 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18082 18083 no_err: 18084 /* 18085 * lets bring the interfaces up on the to_ill. 18086 */ 18087 if (err == 0) { 18088 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18089 q, mp); 18090 } 18091 18092 if (err == 0) { 18093 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18094 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18095 18096 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18097 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18098 } 18099 done: 18100 18101 if (ill_to_v4 != NULL) { 18102 ill_refrele(ill_to_v4); 18103 } 18104 if (ill_to_v6 != NULL) { 18105 ill_refrele(ill_to_v6); 18106 } 18107 18108 return (err); 18109 } 18110 18111 static void 18112 ill_dl_down(ill_t *ill) 18113 { 18114 /* 18115 * The ill is down; unbind but stay attached since we're still 18116 * associated with a PPA. If we have negotiated DLPI capabilites 18117 * with the data link service provider (IDS_OK) then reset them. 18118 * The interval between unbinding and rebinding is potentially 18119 * unbounded hence we cannot assume things will be the same. 18120 * The DLPI capabilities will be probed again when the data link 18121 * is brought up. 18122 */ 18123 mblk_t *mp = ill->ill_unbind_mp; 18124 hook_nic_event_t *info; 18125 18126 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18127 18128 ill->ill_unbind_mp = NULL; 18129 if (mp != NULL) { 18130 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18131 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18132 ill->ill_name)); 18133 mutex_enter(&ill->ill_lock); 18134 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18135 mutex_exit(&ill->ill_lock); 18136 if (ill->ill_dlpi_capab_state == IDS_OK) 18137 ill_capability_reset(ill); 18138 ill_dlpi_send(ill, mp); 18139 } 18140 18141 /* 18142 * Toss all of our multicast memberships. We could keep them, but 18143 * then we'd have to do bookkeeping of any joins and leaves performed 18144 * by the application while the the interface is down (we can't just 18145 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18146 * on a downed interface). 18147 */ 18148 ill_leave_multicast(ill); 18149 18150 mutex_enter(&ill->ill_lock); 18151 18152 ill->ill_dl_up = 0; 18153 18154 if ((info = ill->ill_nic_event_info) != NULL) { 18155 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18156 info->hne_event, ill->ill_name)); 18157 if (info->hne_data != NULL) 18158 kmem_free(info->hne_data, info->hne_datalen); 18159 kmem_free(info, sizeof (hook_nic_event_t)); 18160 } 18161 18162 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18163 if (info != NULL) { 18164 info->hne_nic = ill->ill_phyint->phyint_ifindex; 18165 info->hne_lif = 0; 18166 info->hne_event = NE_DOWN; 18167 info->hne_data = NULL; 18168 info->hne_datalen = 0; 18169 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 18170 } else 18171 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18172 "information for %s (ENOMEM)\n", ill->ill_name)); 18173 18174 ill->ill_nic_event_info = info; 18175 18176 mutex_exit(&ill->ill_lock); 18177 } 18178 18179 void 18180 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18181 { 18182 union DL_primitives *dlp; 18183 t_uscalar_t prim; 18184 18185 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18186 18187 dlp = (union DL_primitives *)mp->b_rptr; 18188 prim = dlp->dl_primitive; 18189 18190 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18191 dlpi_prim_str(prim), prim, ill->ill_name)); 18192 18193 switch (prim) { 18194 case DL_PHYS_ADDR_REQ: 18195 { 18196 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18197 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18198 break; 18199 } 18200 case DL_BIND_REQ: 18201 mutex_enter(&ill->ill_lock); 18202 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18203 mutex_exit(&ill->ill_lock); 18204 break; 18205 } 18206 18207 /* 18208 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18209 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18210 * we only wait for the ACK of the DL_UNBIND_REQ. 18211 */ 18212 mutex_enter(&ill->ill_lock); 18213 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18214 (prim == DL_UNBIND_REQ)) { 18215 ill->ill_dlpi_pending = prim; 18216 } 18217 mutex_exit(&ill->ill_lock); 18218 18219 /* 18220 * Some drivers send M_FLUSH up to IP as part of unbind 18221 * request. When this M_FLUSH is sent back to the driver, 18222 * this can go after we send the detach request if the 18223 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18224 * to the M_FLUSH in ip_rput and locally generate another 18225 * M_FLUSH for the correctness. This will get freed in 18226 * ip_wput_nondata. 18227 */ 18228 if (prim == DL_UNBIND_REQ) 18229 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18230 18231 putnext(ill->ill_wq, mp); 18232 } 18233 18234 /* 18235 * Send a DLPI control message to the driver but make sure there 18236 * is only one outstanding message. Uses ill_dlpi_pending to tell 18237 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18238 * when an ACK or a NAK is received to process the next queued message. 18239 * 18240 * We don't protect ill_dlpi_pending with any lock. This is okay as 18241 * every place where its accessed, ip is exclusive while accessing 18242 * ill_dlpi_pending except when this function is called from ill_init() 18243 */ 18244 void 18245 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18246 { 18247 mblk_t **mpp; 18248 18249 ASSERT(IAM_WRITER_ILL(ill)); 18250 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18251 18252 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18253 /* Must queue message. Tail insertion */ 18254 mpp = &ill->ill_dlpi_deferred; 18255 while (*mpp != NULL) 18256 mpp = &((*mpp)->b_next); 18257 18258 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18259 ill->ill_name)); 18260 18261 *mpp = mp; 18262 return; 18263 } 18264 18265 ill_dlpi_dispatch(ill, mp); 18266 } 18267 18268 /* 18269 * Called when an DLPI control message has been acked or nacked to 18270 * send down the next queued message (if any). 18271 */ 18272 void 18273 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18274 { 18275 mblk_t *mp; 18276 18277 ASSERT(IAM_WRITER_ILL(ill)); 18278 18279 ASSERT(prim != DL_PRIM_INVAL); 18280 if (ill->ill_dlpi_pending != prim) { 18281 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18282 (void) mi_strlog(ill->ill_rq, 1, 18283 SL_CONSOLE|SL_ERROR|SL_TRACE, 18284 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18285 dlpi_prim_str(prim), ill->ill_name); 18286 } else { 18287 (void) mi_strlog(ill->ill_rq, 1, 18288 SL_CONSOLE|SL_ERROR|SL_TRACE, 18289 "ill_dlpi_done: unexpected ack for %s from %s " 18290 "(expecting ack for %s)\n", 18291 dlpi_prim_str(prim), ill->ill_name, 18292 dlpi_prim_str(ill->ill_dlpi_pending)); 18293 } 18294 return; 18295 } 18296 18297 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18298 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18299 18300 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18301 mutex_enter(&ill->ill_lock); 18302 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18303 cv_signal(&ill->ill_cv); 18304 mutex_exit(&ill->ill_lock); 18305 return; 18306 } 18307 18308 ill->ill_dlpi_deferred = mp->b_next; 18309 mp->b_next = NULL; 18310 18311 ill_dlpi_dispatch(ill, mp); 18312 } 18313 18314 void 18315 conn_delete_ire(conn_t *connp, caddr_t arg) 18316 { 18317 ipif_t *ipif = (ipif_t *)arg; 18318 ire_t *ire; 18319 18320 /* 18321 * Look at the cached ires on conns which has pointers to ipifs. 18322 * We just call ire_refrele which clears up the reference 18323 * to ire. Called when a conn closes. Also called from ipif_free 18324 * to cleanup indirect references to the stale ipif via the cached ire. 18325 */ 18326 mutex_enter(&connp->conn_lock); 18327 ire = connp->conn_ire_cache; 18328 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18329 connp->conn_ire_cache = NULL; 18330 mutex_exit(&connp->conn_lock); 18331 IRE_REFRELE_NOTR(ire); 18332 return; 18333 } 18334 mutex_exit(&connp->conn_lock); 18335 18336 } 18337 18338 /* 18339 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18340 * of IREs. Those IREs may have been previously cached in the conn structure. 18341 * This ipcl_walk() walker function releases all references to such IREs based 18342 * on the condemned flag. 18343 */ 18344 /* ARGSUSED */ 18345 void 18346 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18347 { 18348 ire_t *ire; 18349 18350 mutex_enter(&connp->conn_lock); 18351 ire = connp->conn_ire_cache; 18352 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18353 connp->conn_ire_cache = NULL; 18354 mutex_exit(&connp->conn_lock); 18355 IRE_REFRELE_NOTR(ire); 18356 return; 18357 } 18358 mutex_exit(&connp->conn_lock); 18359 } 18360 18361 /* 18362 * Take down a specific interface, but don't lose any information about it. 18363 * Also delete interface from its interface group (ifgrp). 18364 * (Always called as writer.) 18365 * This function goes through the down sequence even if the interface is 18366 * already down. There are 2 reasons. 18367 * a. Currently we permit interface routes that depend on down interfaces 18368 * to be added. This behaviour itself is questionable. However it appears 18369 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18370 * time. We go thru the cleanup in order to remove these routes. 18371 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18372 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18373 * down, but we need to cleanup i.e. do ill_dl_down and 18374 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18375 * 18376 * IP-MT notes: 18377 * 18378 * Model of reference to interfaces. 18379 * 18380 * The following members in ipif_t track references to the ipif. 18381 * int ipif_refcnt; Active reference count 18382 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18383 * The following members in ill_t track references to the ill. 18384 * int ill_refcnt; active refcnt 18385 * uint_t ill_ire_cnt; Number of ires referencing ill 18386 * uint_t ill_nce_cnt; Number of nces referencing ill 18387 * 18388 * Reference to an ipif or ill can be obtained in any of the following ways. 18389 * 18390 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18391 * Pointers to ipif / ill from other data structures viz ire and conn. 18392 * Implicit reference to the ipif / ill by holding a reference to the ire. 18393 * 18394 * The ipif/ill lookup functions return a reference held ipif / ill. 18395 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18396 * This is a purely dynamic reference count associated with threads holding 18397 * references to the ipif / ill. Pointers from other structures do not 18398 * count towards this reference count. 18399 * 18400 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18401 * ipif/ill. This is incremented whenever a new ire is created referencing the 18402 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18403 * actually added to the ire hash table. The count is decremented in 18404 * ire_inactive where the ire is destroyed. 18405 * 18406 * nce's reference ill's thru nce_ill and the count of nce's associated with 18407 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18408 * ndp_add() where the nce is actually added to the table. Similarly it is 18409 * decremented in ndp_inactive where the nce is destroyed. 18410 * 18411 * Flow of ioctls involving interface down/up 18412 * 18413 * The following is the sequence of an attempt to set some critical flags on an 18414 * up interface. 18415 * ip_sioctl_flags 18416 * ipif_down 18417 * wait for ipif to be quiescent 18418 * ipif_down_tail 18419 * ip_sioctl_flags_tail 18420 * 18421 * All set ioctls that involve down/up sequence would have a skeleton similar 18422 * to the above. All the *tail functions are called after the refcounts have 18423 * dropped to the appropriate values. 18424 * 18425 * The mechanism to quiesce an ipif is as follows. 18426 * 18427 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18428 * on the ipif. Callers either pass a flag requesting wait or the lookup 18429 * functions will return NULL. 18430 * 18431 * Delete all ires referencing this ipif 18432 * 18433 * Any thread attempting to do an ipif_refhold on an ipif that has been 18434 * obtained thru a cached pointer will first make sure that 18435 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18436 * increment the refcount. 18437 * 18438 * The above guarantees that the ipif refcount will eventually come down to 18439 * zero and the ipif will quiesce, once all threads that currently hold a 18440 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18441 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18442 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18443 * drop to zero. 18444 * 18445 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18446 * 18447 * Threads trying to lookup an ipif or ill can pass a flag requesting 18448 * wait and restart if the ipif / ill cannot be looked up currently. 18449 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18450 * failure if the ipif is currently undergoing an exclusive operation, and 18451 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18452 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18453 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18454 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18455 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18456 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18457 * until we release the ipsq_lock, even though the the ill/ipif state flags 18458 * can change after we drop the ill_lock. 18459 * 18460 * An attempt to send out a packet using an ipif that is currently 18461 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18462 * operation and restart it later when the exclusive condition on the ipif ends. 18463 * This is an example of not passing the wait flag to the lookup functions. For 18464 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18465 * out a multicast packet on that ipif will fail while the ipif is 18466 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18467 * currently IPIF_CHANGING will also fail. 18468 */ 18469 int 18470 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18471 { 18472 ill_t *ill = ipif->ipif_ill; 18473 phyint_t *phyi; 18474 conn_t *connp; 18475 boolean_t success; 18476 boolean_t ipif_was_up = B_FALSE; 18477 18478 ASSERT(IAM_WRITER_IPIF(ipif)); 18479 18480 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18481 18482 if (ipif->ipif_flags & IPIF_UP) { 18483 mutex_enter(&ill->ill_lock); 18484 ipif->ipif_flags &= ~IPIF_UP; 18485 ASSERT(ill->ill_ipif_up_count > 0); 18486 --ill->ill_ipif_up_count; 18487 mutex_exit(&ill->ill_lock); 18488 ipif_was_up = B_TRUE; 18489 /* Update status in SCTP's list */ 18490 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18491 } 18492 18493 /* 18494 * Blow away v6 memberships we established in ipif_multicast_up(); the 18495 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18496 * know not to rejoin when the interface is brought back up). 18497 */ 18498 if (ipif->ipif_isv6) 18499 ipif_multicast_down(ipif); 18500 /* 18501 * Remove from the mapping for __sin6_src_id. We insert only 18502 * when the address is not INADDR_ANY. As IPv4 addresses are 18503 * stored as mapped addresses, we need to check for mapped 18504 * INADDR_ANY also. 18505 */ 18506 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18507 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18508 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18509 int err; 18510 18511 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18512 ipif->ipif_zoneid); 18513 if (err != 0) { 18514 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18515 } 18516 } 18517 18518 /* 18519 * Before we delete the ill from the group (if any), we need 18520 * to make sure that we delete all the routes dependent on 18521 * this and also any ipifs dependent on this ipif for 18522 * source address. We need to do before we delete from 18523 * the group because 18524 * 18525 * 1) ipif_down_delete_ire de-references ill->ill_group. 18526 * 18527 * 2) ipif_update_other_ipifs needs to walk the whole group 18528 * for re-doing source address selection. Note that 18529 * ipif_select_source[_v6] called from 18530 * ipif_update_other_ipifs[_v6] will not pick this ipif 18531 * because we have already marked down here i.e cleared 18532 * IPIF_UP. 18533 */ 18534 if (ipif->ipif_isv6) 18535 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18536 else 18537 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 18538 18539 /* 18540 * Need to add these also to be saved and restored when the 18541 * ipif is brought down and up 18542 */ 18543 mutex_enter(&ire_mrtun_lock); 18544 if (ire_mrtun_count != 0) { 18545 mutex_exit(&ire_mrtun_lock); 18546 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18547 (char *)ipif, NULL); 18548 } else { 18549 mutex_exit(&ire_mrtun_lock); 18550 } 18551 18552 mutex_enter(&ire_srcif_table_lock); 18553 if (ire_srcif_table_count > 0) { 18554 mutex_exit(&ire_srcif_table_lock); 18555 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 18556 } else { 18557 mutex_exit(&ire_srcif_table_lock); 18558 } 18559 18560 /* 18561 * Cleaning up the conn_ire_cache or conns must be done only after the 18562 * ires have been deleted above. Otherwise a thread could end up 18563 * caching an ire in a conn after we have finished the cleanup of the 18564 * conn. The caching is done after making sure that the ire is not yet 18565 * condemned. Also documented in the block comment above ip_output 18566 */ 18567 ipcl_walk(conn_cleanup_stale_ire, NULL); 18568 /* Also, delete the ires cached in SCTP */ 18569 sctp_ire_cache_flush(ipif); 18570 18571 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18572 nattymod_clean_ipif(ipif); 18573 18574 /* 18575 * Update any other ipifs which have used "our" local address as 18576 * a source address. This entails removing and recreating IRE_INTERFACE 18577 * entries for such ipifs. 18578 */ 18579 if (ipif->ipif_isv6) 18580 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18581 else 18582 ipif_update_other_ipifs(ipif, ill->ill_group); 18583 18584 if (ipif_was_up) { 18585 /* 18586 * Check whether it is last ipif to leave this group. 18587 * If this is the last ipif to leave, we should remove 18588 * this ill from the group as ipif_select_source will not 18589 * be able to find any useful ipifs if this ill is selected 18590 * for load balancing. 18591 * 18592 * For nameless groups, we should call ifgrp_delete if this 18593 * belongs to some group. As this ipif is going down, we may 18594 * need to reconstruct groups. 18595 */ 18596 phyi = ill->ill_phyint; 18597 /* 18598 * If the phyint_groupname_len is 0, it may or may not 18599 * be in the nameless group. If the phyint_groupname_len is 18600 * not 0, then this ill should be part of some group. 18601 * As we always insert this ill in the group if 18602 * phyint_groupname_len is not zero when the first ipif 18603 * comes up (in ipif_up_done), it should be in a group 18604 * when the namelen is not 0. 18605 * 18606 * NOTE : When we delete the ill from the group,it will 18607 * blow away all the IRE_CACHES pointing either at this ipif or 18608 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18609 * should be pointing at this ill. 18610 */ 18611 ASSERT(phyi->phyint_groupname_len == 0 || 18612 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18613 18614 if (phyi->phyint_groupname_len != 0) { 18615 if (ill->ill_ipif_up_count == 0) 18616 illgrp_delete(ill); 18617 } 18618 18619 /* 18620 * If we have deleted some of the broadcast ires associated 18621 * with this ipif, we need to re-nominate somebody else if 18622 * the ires that we deleted were the nominated ones. 18623 */ 18624 if (ill->ill_group != NULL && !ill->ill_isv6) 18625 ipif_renominate_bcast(ipif); 18626 } 18627 18628 /* 18629 * neighbor-discovery or arp entries for this interface. 18630 */ 18631 ipif_ndp_down(ipif); 18632 18633 /* 18634 * If mp is NULL the caller will wait for the appropriate refcnt. 18635 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18636 * and ill_delete -> ipif_free -> ipif_down 18637 */ 18638 if (mp == NULL) { 18639 ASSERT(q == NULL); 18640 return (0); 18641 } 18642 18643 if (CONN_Q(q)) { 18644 connp = Q_TO_CONN(q); 18645 mutex_enter(&connp->conn_lock); 18646 } else { 18647 connp = NULL; 18648 } 18649 mutex_enter(&ill->ill_lock); 18650 /* 18651 * Are there any ire's pointing to this ipif that are still active ? 18652 * If this is the last ipif going down, are there any ire's pointing 18653 * to this ill that are still active ? 18654 */ 18655 if (ipif_is_quiescent(ipif)) { 18656 mutex_exit(&ill->ill_lock); 18657 if (connp != NULL) 18658 mutex_exit(&connp->conn_lock); 18659 return (0); 18660 } 18661 18662 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18663 ill->ill_name, (void *)ill)); 18664 /* 18665 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18666 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18667 * which in turn is called by the last refrele on the ipif/ill/ire. 18668 */ 18669 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18670 if (!success) { 18671 /* The conn is closing. So just return */ 18672 ASSERT(connp != NULL); 18673 mutex_exit(&ill->ill_lock); 18674 mutex_exit(&connp->conn_lock); 18675 return (EINTR); 18676 } 18677 18678 mutex_exit(&ill->ill_lock); 18679 if (connp != NULL) 18680 mutex_exit(&connp->conn_lock); 18681 return (EINPROGRESS); 18682 } 18683 18684 void 18685 ipif_down_tail(ipif_t *ipif) 18686 { 18687 ill_t *ill = ipif->ipif_ill; 18688 18689 /* 18690 * Skip any loopback interface (null wq). 18691 * If this is the last logical interface on the ill 18692 * have ill_dl_down tell the driver we are gone (unbind) 18693 * Note that lun 0 can ipif_down even though 18694 * there are other logical units that are up. 18695 * This occurs e.g. when we change a "significant" IFF_ flag. 18696 */ 18697 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18698 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18699 ill->ill_dl_up) { 18700 ill_dl_down(ill); 18701 } 18702 ill->ill_logical_down = 0; 18703 18704 /* 18705 * Have to be after removing the routes in ipif_down_delete_ire. 18706 */ 18707 if (ipif->ipif_isv6) { 18708 if (ill->ill_flags & ILLF_XRESOLV) 18709 ipif_arp_down(ipif); 18710 } else { 18711 ipif_arp_down(ipif); 18712 } 18713 18714 ip_rts_ifmsg(ipif); 18715 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18716 } 18717 18718 /* 18719 * Bring interface logically down without bringing the physical interface 18720 * down e.g. when the netmask is changed. This avoids long lasting link 18721 * negotiations between an ethernet interface and a certain switches. 18722 */ 18723 static int 18724 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18725 { 18726 /* 18727 * The ill_logical_down flag is a transient flag. It is set here 18728 * and is cleared once the down has completed in ipif_down_tail. 18729 * This flag does not indicate whether the ill stream is in the 18730 * DL_BOUND state with the driver. Instead this flag is used by 18731 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18732 * the driver. The state of the ill stream i.e. whether it is 18733 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18734 */ 18735 ipif->ipif_ill->ill_logical_down = 1; 18736 return (ipif_down(ipif, q, mp)); 18737 } 18738 18739 /* 18740 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18741 * If the usesrc client ILL is already part of a usesrc group or not, 18742 * in either case a ire_stq with the matching usesrc client ILL will 18743 * locate the IRE's that need to be deleted. We want IREs to be created 18744 * with the new source address. 18745 */ 18746 static void 18747 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18748 { 18749 ill_t *ucill = (ill_t *)ill_arg; 18750 18751 ASSERT(IAM_WRITER_ILL(ucill)); 18752 18753 if (ire->ire_stq == NULL) 18754 return; 18755 18756 if ((ire->ire_type == IRE_CACHE) && 18757 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18758 ire_delete(ire); 18759 } 18760 18761 /* 18762 * ire_walk routine to delete every IRE dependent on the interface 18763 * address that is going down. (Always called as writer.) 18764 * Works for both v4 and v6. 18765 * In addition for checking for ire_ipif matches it also checks for 18766 * IRE_CACHE entries which have the same source address as the 18767 * disappearing ipif since ipif_select_source might have picked 18768 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18769 * care of any IRE_INTERFACE with the disappearing source address. 18770 */ 18771 static void 18772 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18773 { 18774 ipif_t *ipif = (ipif_t *)ipif_arg; 18775 ill_t *ire_ill; 18776 ill_t *ipif_ill; 18777 18778 ASSERT(IAM_WRITER_IPIF(ipif)); 18779 if (ire->ire_ipif == NULL) 18780 return; 18781 18782 /* 18783 * For IPv4, we derive source addresses for an IRE from ipif's 18784 * belonging to the same IPMP group as the IRE's outgoing 18785 * interface. If an IRE's outgoing interface isn't in the 18786 * same IPMP group as a particular ipif, then that ipif 18787 * couldn't have been used as a source address for this IRE. 18788 * 18789 * For IPv6, source addresses are only restricted to the IPMP group 18790 * if the IRE is for a link-local address or a multicast address. 18791 * Otherwise, source addresses for an IRE can be chosen from 18792 * interfaces other than the the outgoing interface for that IRE. 18793 * 18794 * For source address selection details, see ipif_select_source() 18795 * and ipif_select_source_v6(). 18796 */ 18797 if (ire->ire_ipversion == IPV4_VERSION || 18798 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18799 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18800 ire_ill = ire->ire_ipif->ipif_ill; 18801 ipif_ill = ipif->ipif_ill; 18802 18803 if (ire_ill->ill_group != ipif_ill->ill_group) { 18804 return; 18805 } 18806 } 18807 18808 18809 if (ire->ire_ipif != ipif) { 18810 /* 18811 * Look for a matching source address. 18812 */ 18813 if (ire->ire_type != IRE_CACHE) 18814 return; 18815 if (ipif->ipif_flags & IPIF_NOLOCAL) 18816 return; 18817 18818 if (ire->ire_ipversion == IPV4_VERSION) { 18819 if (ire->ire_src_addr != ipif->ipif_src_addr) 18820 return; 18821 } else { 18822 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18823 &ipif->ipif_v6lcl_addr)) 18824 return; 18825 } 18826 ire_delete(ire); 18827 return; 18828 } 18829 /* 18830 * ire_delete() will do an ire_flush_cache which will delete 18831 * all ire_ipif matches 18832 */ 18833 ire_delete(ire); 18834 } 18835 18836 /* 18837 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18838 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18839 * 2) when an interface is brought up or down (on that ill). 18840 * This ensures that the IRE_CACHE entries don't retain stale source 18841 * address selection results. 18842 */ 18843 void 18844 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18845 { 18846 ill_t *ill = (ill_t *)ill_arg; 18847 ill_t *ipif_ill; 18848 18849 ASSERT(IAM_WRITER_ILL(ill)); 18850 /* 18851 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18852 * Hence this should be IRE_CACHE. 18853 */ 18854 ASSERT(ire->ire_type == IRE_CACHE); 18855 18856 /* 18857 * We are called for IRE_CACHES whose ire_ipif matches ill. 18858 * We are only interested in IRE_CACHES that has borrowed 18859 * the source address from ill_arg e.g. ipif_up_done[_v6] 18860 * for which we need to look at ire_ipif->ipif_ill match 18861 * with ill. 18862 */ 18863 ASSERT(ire->ire_ipif != NULL); 18864 ipif_ill = ire->ire_ipif->ipif_ill; 18865 if (ipif_ill == ill || (ill->ill_group != NULL && 18866 ipif_ill->ill_group == ill->ill_group)) { 18867 ire_delete(ire); 18868 } 18869 } 18870 18871 /* 18872 * Delete all the ire whose stq references ill_arg. 18873 */ 18874 static void 18875 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18876 { 18877 ill_t *ill = (ill_t *)ill_arg; 18878 ill_t *ire_ill; 18879 18880 ASSERT(IAM_WRITER_ILL(ill)); 18881 /* 18882 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18883 * Hence this should be IRE_CACHE. 18884 */ 18885 ASSERT(ire->ire_type == IRE_CACHE); 18886 18887 /* 18888 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18889 * matches ill. We are only interested in IRE_CACHES that 18890 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18891 * filtering here. 18892 */ 18893 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18894 18895 if (ire_ill == ill) 18896 ire_delete(ire); 18897 } 18898 18899 /* 18900 * This is called when an ill leaves the group. We want to delete 18901 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18902 * pointing at ill. 18903 */ 18904 static void 18905 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18906 { 18907 ill_t *ill = (ill_t *)ill_arg; 18908 18909 ASSERT(IAM_WRITER_ILL(ill)); 18910 ASSERT(ill->ill_group == NULL); 18911 /* 18912 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18913 * Hence this should be IRE_CACHE. 18914 */ 18915 ASSERT(ire->ire_type == IRE_CACHE); 18916 /* 18917 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18918 * matches ill. We are interested in both. 18919 */ 18920 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18921 (ire->ire_ipif->ipif_ill == ill)); 18922 18923 ire_delete(ire); 18924 } 18925 18926 /* 18927 * Initiate deallocate of an IPIF. Always called as writer. Called by 18928 * ill_delete or ip_sioctl_removeif. 18929 */ 18930 static void 18931 ipif_free(ipif_t *ipif) 18932 { 18933 ASSERT(IAM_WRITER_IPIF(ipif)); 18934 18935 if (ipif->ipif_recovery_id != 0) 18936 (void) untimeout(ipif->ipif_recovery_id); 18937 ipif->ipif_recovery_id = 0; 18938 18939 /* Remove conn references */ 18940 reset_conn_ipif(ipif); 18941 18942 /* 18943 * Make sure we have valid net and subnet broadcast ire's for the 18944 * other ipif's which share them with this ipif. 18945 */ 18946 if (!ipif->ipif_isv6) 18947 ipif_check_bcast_ires(ipif); 18948 18949 /* 18950 * Take down the interface. We can be called either from ill_delete 18951 * or from ip_sioctl_removeif. 18952 */ 18953 (void) ipif_down(ipif, NULL, NULL); 18954 18955 /* 18956 * Now that the interface is down, there's no chance it can still 18957 * become a duplicate. Cancel any timer that may have been set while 18958 * tearing down. 18959 */ 18960 if (ipif->ipif_recovery_id != 0) 18961 (void) untimeout(ipif->ipif_recovery_id); 18962 ipif->ipif_recovery_id = 0; 18963 18964 rw_enter(&ill_g_lock, RW_WRITER); 18965 /* Remove pointers to this ill in the multicast routing tables */ 18966 reset_mrt_vif_ipif(ipif); 18967 rw_exit(&ill_g_lock); 18968 } 18969 18970 /* 18971 * Warning: this is not the only function that calls mi_free on an ipif_t. See 18972 * also ill_move(). 18973 */ 18974 static void 18975 ipif_free_tail(ipif_t *ipif) 18976 { 18977 mblk_t *mp; 18978 ipif_t **ipifp; 18979 18980 /* 18981 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18982 */ 18983 mutex_enter(&ipif->ipif_saved_ire_lock); 18984 mp = ipif->ipif_saved_ire_mp; 18985 ipif->ipif_saved_ire_mp = NULL; 18986 mutex_exit(&ipif->ipif_saved_ire_lock); 18987 freemsg(mp); 18988 18989 /* 18990 * Need to hold both ill_g_lock and ill_lock while 18991 * inserting or removing an ipif from the linked list 18992 * of ipifs hanging off the ill. 18993 */ 18994 rw_enter(&ill_g_lock, RW_WRITER); 18995 /* 18996 * Remove all multicast memberships on the interface now. 18997 * This removes IPv4 multicast memberships joined within 18998 * the kernel as ipif_down does not do ipif_multicast_down 18999 * for IPv4. IPv6 is not handled here as the multicast memberships 19000 * are based on ill and not on ipif. 19001 */ 19002 ilm_free(ipif); 19003 19004 /* 19005 * Since we held the ill_g_lock while doing the ilm_free above, 19006 * we can assert the ilms were really deleted and not just marked 19007 * ILM_DELETED. 19008 */ 19009 ASSERT(ilm_walk_ipif(ipif) == 0); 19010 19011 19012 IPIF_TRACE_CLEANUP(ipif); 19013 19014 /* Ask SCTP to take it out of it list */ 19015 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19016 19017 mutex_enter(&ipif->ipif_ill->ill_lock); 19018 /* Get it out of the ILL interface list. */ 19019 ipifp = &ipif->ipif_ill->ill_ipif; 19020 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19021 if (*ipifp == ipif) { 19022 *ipifp = ipif->ipif_next; 19023 break; 19024 } 19025 } 19026 19027 mutex_exit(&ipif->ipif_ill->ill_lock); 19028 rw_exit(&ill_g_lock); 19029 19030 mutex_destroy(&ipif->ipif_saved_ire_lock); 19031 19032 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19033 ASSERT(ipif->ipif_recovery_id == 0); 19034 19035 /* Free the memory. */ 19036 mi_free((char *)ipif); 19037 } 19038 19039 /* 19040 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19041 * "ill_name" otherwise. 19042 */ 19043 char * 19044 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19045 { 19046 char lbuf[32]; 19047 char *name; 19048 size_t name_len; 19049 19050 buf[0] = '\0'; 19051 if (!ipif) 19052 return (buf); 19053 name = ipif->ipif_ill->ill_name; 19054 name_len = ipif->ipif_ill->ill_name_length; 19055 if (ipif->ipif_id != 0) { 19056 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19057 ipif->ipif_id); 19058 name = lbuf; 19059 name_len = mi_strlen(name) + 1; 19060 } 19061 len -= 1; 19062 buf[len] = '\0'; 19063 len = MIN(len, name_len); 19064 bcopy(name, buf, len); 19065 return (buf); 19066 } 19067 19068 /* 19069 * Find an IPIF based on the name passed in. Names can be of the 19070 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19071 * The <phys> string can have forms like <dev><#> (e.g., le0), 19072 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19073 * When there is no colon, the implied unit id is zero. <phys> must 19074 * correspond to the name of an ILL. (May be called as writer.) 19075 */ 19076 static ipif_t * 19077 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19078 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19079 mblk_t *mp, ipsq_func_t func, int *error) 19080 { 19081 char *cp; 19082 char *endp; 19083 long id; 19084 ill_t *ill; 19085 ipif_t *ipif; 19086 uint_t ire_type; 19087 boolean_t did_alloc = B_FALSE; 19088 ipsq_t *ipsq; 19089 19090 if (error != NULL) 19091 *error = 0; 19092 19093 /* 19094 * If the caller wants to us to create the ipif, make sure we have a 19095 * valid zoneid 19096 */ 19097 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19098 19099 if (namelen == 0) { 19100 if (error != NULL) 19101 *error = ENXIO; 19102 return (NULL); 19103 } 19104 19105 *exists = B_FALSE; 19106 /* Look for a colon in the name. */ 19107 endp = &name[namelen]; 19108 for (cp = endp; --cp > name; ) { 19109 if (*cp == IPIF_SEPARATOR_CHAR) 19110 break; 19111 } 19112 19113 if (*cp == IPIF_SEPARATOR_CHAR) { 19114 /* 19115 * Reject any non-decimal aliases for logical 19116 * interfaces. Aliases with leading zeroes 19117 * are also rejected as they introduce ambiguity 19118 * in the naming of the interfaces. 19119 * In order to confirm with existing semantics, 19120 * and to not break any programs/script relying 19121 * on that behaviour, if<0>:0 is considered to be 19122 * a valid interface. 19123 * 19124 * If alias has two or more digits and the first 19125 * is zero, fail. 19126 */ 19127 if (&cp[2] < endp && cp[1] == '0') 19128 return (NULL); 19129 } 19130 19131 if (cp <= name) { 19132 cp = endp; 19133 } else { 19134 *cp = '\0'; 19135 } 19136 19137 /* 19138 * Look up the ILL, based on the portion of the name 19139 * before the slash. ill_lookup_on_name returns a held ill. 19140 * Temporary to check whether ill exists already. If so 19141 * ill_lookup_on_name will clear it. 19142 */ 19143 ill = ill_lookup_on_name(name, do_alloc, isv6, 19144 q, mp, func, error, &did_alloc); 19145 if (cp != endp) 19146 *cp = IPIF_SEPARATOR_CHAR; 19147 if (ill == NULL) 19148 return (NULL); 19149 19150 /* Establish the unit number in the name. */ 19151 id = 0; 19152 if (cp < endp && *endp == '\0') { 19153 /* If there was a colon, the unit number follows. */ 19154 cp++; 19155 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19156 ill_refrele(ill); 19157 if (error != NULL) 19158 *error = ENXIO; 19159 return (NULL); 19160 } 19161 } 19162 19163 GRAB_CONN_LOCK(q); 19164 mutex_enter(&ill->ill_lock); 19165 /* Now see if there is an IPIF with this unit number. */ 19166 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19167 if (ipif->ipif_id == id) { 19168 if (zoneid != ALL_ZONES && 19169 zoneid != ipif->ipif_zoneid && 19170 ipif->ipif_zoneid != ALL_ZONES) { 19171 mutex_exit(&ill->ill_lock); 19172 RELEASE_CONN_LOCK(q); 19173 ill_refrele(ill); 19174 if (error != NULL) 19175 *error = ENXIO; 19176 return (NULL); 19177 } 19178 /* 19179 * The block comment at the start of ipif_down 19180 * explains the use of the macros used below 19181 */ 19182 if (IPIF_CAN_LOOKUP(ipif)) { 19183 ipif_refhold_locked(ipif); 19184 mutex_exit(&ill->ill_lock); 19185 if (!did_alloc) 19186 *exists = B_TRUE; 19187 /* 19188 * Drop locks before calling ill_refrele 19189 * since it can potentially call into 19190 * ipif_ill_refrele_tail which can end up 19191 * in trying to acquire any lock. 19192 */ 19193 RELEASE_CONN_LOCK(q); 19194 ill_refrele(ill); 19195 return (ipif); 19196 } else if (IPIF_CAN_WAIT(ipif, q)) { 19197 ipsq = ill->ill_phyint->phyint_ipsq; 19198 mutex_enter(&ipsq->ipsq_lock); 19199 mutex_exit(&ill->ill_lock); 19200 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19201 mutex_exit(&ipsq->ipsq_lock); 19202 RELEASE_CONN_LOCK(q); 19203 ill_refrele(ill); 19204 *error = EINPROGRESS; 19205 return (NULL); 19206 } 19207 } 19208 } 19209 RELEASE_CONN_LOCK(q); 19210 19211 if (!do_alloc) { 19212 mutex_exit(&ill->ill_lock); 19213 ill_refrele(ill); 19214 if (error != NULL) 19215 *error = ENXIO; 19216 return (NULL); 19217 } 19218 19219 /* 19220 * If none found, atomically allocate and return a new one. 19221 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19222 * to support "receive only" use of lo0:1 etc. as is still done 19223 * below as an initial guess. 19224 * However, this is now likely to be overriden later in ipif_up_done() 19225 * when we know for sure what address has been configured on the 19226 * interface, since we might have more than one loopback interface 19227 * with a loopback address, e.g. in the case of zones, and all the 19228 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19229 */ 19230 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19231 ire_type = IRE_LOOPBACK; 19232 else 19233 ire_type = IRE_LOCAL; 19234 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19235 if (ipif != NULL) 19236 ipif_refhold_locked(ipif); 19237 else if (error != NULL) 19238 *error = ENOMEM; 19239 mutex_exit(&ill->ill_lock); 19240 ill_refrele(ill); 19241 return (ipif); 19242 } 19243 19244 /* 19245 * This routine is called whenever a new address comes up on an ipif. If 19246 * we are configured to respond to address mask requests, then we are supposed 19247 * to broadcast an address mask reply at this time. This routine is also 19248 * called if we are already up, but a netmask change is made. This is legal 19249 * but might not make the system manager very popular. (May be called 19250 * as writer.) 19251 */ 19252 void 19253 ipif_mask_reply(ipif_t *ipif) 19254 { 19255 icmph_t *icmph; 19256 ipha_t *ipha; 19257 mblk_t *mp; 19258 19259 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19260 19261 if (!ip_respond_to_address_mask_broadcast) 19262 return; 19263 19264 /* ICMP mask reply is IPv4 only */ 19265 ASSERT(!ipif->ipif_isv6); 19266 /* ICMP mask reply is not for a loopback interface */ 19267 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19268 19269 mp = allocb(REPLY_LEN, BPRI_HI); 19270 if (mp == NULL) 19271 return; 19272 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19273 19274 ipha = (ipha_t *)mp->b_rptr; 19275 bzero(ipha, REPLY_LEN); 19276 *ipha = icmp_ipha; 19277 ipha->ipha_ttl = ip_broadcast_ttl; 19278 ipha->ipha_src = ipif->ipif_src_addr; 19279 ipha->ipha_dst = ipif->ipif_brd_addr; 19280 ipha->ipha_length = htons(REPLY_LEN); 19281 ipha->ipha_ident = 0; 19282 19283 icmph = (icmph_t *)&ipha[1]; 19284 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19285 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19286 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19287 if (icmph->icmph_checksum == 0) 19288 icmph->icmph_checksum = 0xffff; 19289 19290 put(ipif->ipif_wq, mp); 19291 19292 #undef REPLY_LEN 19293 } 19294 19295 /* 19296 * When the mtu in the ipif changes, we call this routine through ire_walk 19297 * to update all the relevant IREs. 19298 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19299 */ 19300 static void 19301 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19302 { 19303 ipif_t *ipif = (ipif_t *)ipif_arg; 19304 19305 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19306 return; 19307 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19308 } 19309 19310 /* 19311 * When the mtu in the ill changes, we call this routine through ire_walk 19312 * to update all the relevant IREs. 19313 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19314 */ 19315 void 19316 ill_mtu_change(ire_t *ire, char *ill_arg) 19317 { 19318 ill_t *ill = (ill_t *)ill_arg; 19319 19320 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19321 return; 19322 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19323 } 19324 19325 /* 19326 * Join the ipif specific multicast groups. 19327 * Must be called after a mapping has been set up in the resolver. (Always 19328 * called as writer.) 19329 */ 19330 void 19331 ipif_multicast_up(ipif_t *ipif) 19332 { 19333 int err, index; 19334 ill_t *ill; 19335 19336 ASSERT(IAM_WRITER_IPIF(ipif)); 19337 19338 ill = ipif->ipif_ill; 19339 index = ill->ill_phyint->phyint_ifindex; 19340 19341 ip1dbg(("ipif_multicast_up\n")); 19342 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19343 return; 19344 19345 if (ipif->ipif_isv6) { 19346 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19347 return; 19348 19349 /* Join the all hosts multicast address */ 19350 ip1dbg(("ipif_multicast_up - addmulti\n")); 19351 /* 19352 * Passing B_TRUE means we have to join the multicast 19353 * membership on this interface even though this is 19354 * FAILED. If we join on a different one in the group, 19355 * we will not be able to delete the membership later 19356 * as we currently don't track where we join when we 19357 * join within the kernel unlike applications where 19358 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19359 * for more on this. 19360 */ 19361 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19362 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19363 if (err != 0) { 19364 ip0dbg(("ipif_multicast_up: " 19365 "all_hosts_mcast failed %d\n", 19366 err)); 19367 return; 19368 } 19369 /* 19370 * Enable multicast for the solicited node multicast address 19371 */ 19372 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19373 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19374 19375 ipv6_multi.s6_addr32[3] |= 19376 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19377 19378 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19379 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19380 NULL); 19381 if (err != 0) { 19382 ip0dbg(("ipif_multicast_up: solicited MC" 19383 " failed %d\n", err)); 19384 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19385 ill, ill->ill_phyint->phyint_ifindex, 19386 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19387 return; 19388 } 19389 } 19390 } else { 19391 if (ipif->ipif_lcl_addr == INADDR_ANY) 19392 return; 19393 19394 /* Join the all hosts multicast address */ 19395 ip1dbg(("ipif_multicast_up - addmulti\n")); 19396 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19397 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19398 if (err) { 19399 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19400 return; 19401 } 19402 } 19403 ipif->ipif_multicast_up = 1; 19404 } 19405 19406 /* 19407 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19408 * any explicit memberships are blown away in ill_leave_multicast() when the 19409 * ill is brought down. 19410 */ 19411 static void 19412 ipif_multicast_down(ipif_t *ipif) 19413 { 19414 int err; 19415 19416 ASSERT(IAM_WRITER_IPIF(ipif)); 19417 19418 ip1dbg(("ipif_multicast_down\n")); 19419 if (!ipif->ipif_multicast_up) 19420 return; 19421 19422 ASSERT(ipif->ipif_isv6); 19423 19424 ip1dbg(("ipif_multicast_down - delmulti\n")); 19425 19426 /* 19427 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19428 * we should look for ilms on this ill rather than the ones that have 19429 * been failed over here. They are here temporarily. As 19430 * ipif_multicast_up has joined on this ill, we should delete only 19431 * from this ill. 19432 */ 19433 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19434 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19435 B_TRUE, B_TRUE); 19436 if (err != 0) { 19437 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19438 err)); 19439 } 19440 /* 19441 * Disable multicast for the solicited node multicast address 19442 */ 19443 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19444 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19445 19446 ipv6_multi.s6_addr32[3] |= 19447 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19448 19449 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19450 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19451 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19452 19453 if (err != 0) { 19454 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19455 err)); 19456 } 19457 } 19458 19459 ipif->ipif_multicast_up = 0; 19460 } 19461 19462 /* 19463 * Used when an interface comes up to recreate any extra routes on this 19464 * interface. 19465 */ 19466 static ire_t ** 19467 ipif_recover_ire(ipif_t *ipif) 19468 { 19469 mblk_t *mp; 19470 ire_t **ipif_saved_irep; 19471 ire_t **irep; 19472 19473 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19474 ipif->ipif_id)); 19475 19476 mutex_enter(&ipif->ipif_saved_ire_lock); 19477 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19478 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19479 if (ipif_saved_irep == NULL) { 19480 mutex_exit(&ipif->ipif_saved_ire_lock); 19481 return (NULL); 19482 } 19483 19484 irep = ipif_saved_irep; 19485 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19486 ire_t *ire; 19487 queue_t *rfq; 19488 queue_t *stq; 19489 ifrt_t *ifrt; 19490 uchar_t *src_addr; 19491 uchar_t *gateway_addr; 19492 mblk_t *resolver_mp; 19493 ushort_t type; 19494 19495 /* 19496 * When the ire was initially created and then added in 19497 * ip_rt_add(), it was created either using ipif->ipif_net_type 19498 * in the case of a traditional interface route, or as one of 19499 * the IRE_OFFSUBNET types (with the exception of 19500 * IRE_HOST types ire which is created by icmp_redirect() and 19501 * which we don't need to save or recover). In the case where 19502 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19503 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19504 * to satisfy software like GateD and Sun Cluster which creates 19505 * routes using the the loopback interface's address as a 19506 * gateway. 19507 * 19508 * As ifrt->ifrt_type reflects the already updated ire_type and 19509 * since ire_create() expects that IRE_IF_NORESOLVER will have 19510 * a valid nce_res_mp field (which doesn't make sense for a 19511 * IRE_LOOPBACK), ire_create() will be called in the same way 19512 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19513 * the route looks like a traditional interface route (where 19514 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19515 * the saved ifrt->ifrt_type. This means that in the case where 19516 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19517 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19518 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19519 */ 19520 ifrt = (ifrt_t *)mp->b_rptr; 19521 if (ifrt->ifrt_type & IRE_INTERFACE) { 19522 rfq = NULL; 19523 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19524 ? ipif->ipif_rq : ipif->ipif_wq; 19525 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19526 ? (uint8_t *)&ifrt->ifrt_src_addr 19527 : (uint8_t *)&ipif->ipif_src_addr; 19528 gateway_addr = NULL; 19529 resolver_mp = ipif->ipif_resolver_mp; 19530 type = ipif->ipif_net_type; 19531 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19532 /* Recover multiroute broadcast IRE. */ 19533 rfq = ipif->ipif_rq; 19534 stq = ipif->ipif_wq; 19535 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19536 ? (uint8_t *)&ifrt->ifrt_src_addr 19537 : (uint8_t *)&ipif->ipif_src_addr; 19538 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19539 resolver_mp = ipif->ipif_bcast_mp; 19540 type = ifrt->ifrt_type; 19541 } else { 19542 rfq = NULL; 19543 stq = NULL; 19544 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19545 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19546 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19547 resolver_mp = NULL; 19548 type = ifrt->ifrt_type; 19549 } 19550 19551 /* 19552 * Create a copy of the IRE with the saved address and netmask. 19553 */ 19554 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19555 "0x%x/0x%x\n", 19556 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19557 ntohl(ifrt->ifrt_addr), 19558 ntohl(ifrt->ifrt_mask))); 19559 ire = ire_create( 19560 (uint8_t *)&ifrt->ifrt_addr, 19561 (uint8_t *)&ifrt->ifrt_mask, 19562 src_addr, 19563 gateway_addr, 19564 NULL, 19565 &ifrt->ifrt_max_frag, 19566 NULL, 19567 rfq, 19568 stq, 19569 type, 19570 resolver_mp, 19571 ipif, 19572 NULL, 19573 0, 19574 0, 19575 0, 19576 ifrt->ifrt_flags, 19577 &ifrt->ifrt_iulp_info, 19578 NULL, 19579 NULL); 19580 19581 if (ire == NULL) { 19582 mutex_exit(&ipif->ipif_saved_ire_lock); 19583 kmem_free(ipif_saved_irep, 19584 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19585 return (NULL); 19586 } 19587 19588 /* 19589 * Some software (for example, GateD and Sun Cluster) attempts 19590 * to create (what amount to) IRE_PREFIX routes with the 19591 * loopback address as the gateway. This is primarily done to 19592 * set up prefixes with the RTF_REJECT flag set (for example, 19593 * when generating aggregate routes.) 19594 * 19595 * If the IRE type (as defined by ipif->ipif_net_type) is 19596 * IRE_LOOPBACK, then we map the request into a 19597 * IRE_IF_NORESOLVER. 19598 */ 19599 if (ipif->ipif_net_type == IRE_LOOPBACK) 19600 ire->ire_type = IRE_IF_NORESOLVER; 19601 /* 19602 * ire held by ire_add, will be refreled' towards the 19603 * the end of ipif_up_done 19604 */ 19605 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19606 *irep = ire; 19607 irep++; 19608 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19609 } 19610 mutex_exit(&ipif->ipif_saved_ire_lock); 19611 return (ipif_saved_irep); 19612 } 19613 19614 /* 19615 * Used to set the netmask and broadcast address to default values when the 19616 * interface is brought up. (Always called as writer.) 19617 */ 19618 static void 19619 ipif_set_default(ipif_t *ipif) 19620 { 19621 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19622 19623 if (!ipif->ipif_isv6) { 19624 /* 19625 * Interface holds an IPv4 address. Default 19626 * mask is the natural netmask. 19627 */ 19628 if (!ipif->ipif_net_mask) { 19629 ipaddr_t v4mask; 19630 19631 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19632 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19633 } 19634 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19635 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19636 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19637 } else { 19638 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19639 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19640 } 19641 /* 19642 * NOTE: SunOS 4.X does this even if the broadcast address 19643 * has been already set thus we do the same here. 19644 */ 19645 if (ipif->ipif_flags & IPIF_BROADCAST) { 19646 ipaddr_t v4addr; 19647 19648 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19649 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19650 } 19651 } else { 19652 /* 19653 * Interface holds an IPv6-only address. Default 19654 * mask is all-ones. 19655 */ 19656 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19657 ipif->ipif_v6net_mask = ipv6_all_ones; 19658 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19659 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19660 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19661 } else { 19662 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19663 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19664 } 19665 } 19666 } 19667 19668 /* 19669 * Return 0 if this address can be used as local address without causing 19670 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19671 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19672 * Special checks are needed to allow the same IPv6 link-local address 19673 * on different ills. 19674 * TODO: allowing the same site-local address on different ill's. 19675 */ 19676 int 19677 ip_addr_availability_check(ipif_t *new_ipif) 19678 { 19679 in6_addr_t our_v6addr; 19680 ill_t *ill; 19681 ipif_t *ipif; 19682 ill_walk_context_t ctx; 19683 19684 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19685 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19686 ASSERT(RW_READ_HELD(&ill_g_lock)); 19687 19688 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19689 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19690 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19691 return (0); 19692 19693 our_v6addr = new_ipif->ipif_v6lcl_addr; 19694 19695 if (new_ipif->ipif_isv6) 19696 ill = ILL_START_WALK_V6(&ctx); 19697 else 19698 ill = ILL_START_WALK_V4(&ctx); 19699 19700 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19701 for (ipif = ill->ill_ipif; ipif != NULL; 19702 ipif = ipif->ipif_next) { 19703 if ((ipif == new_ipif) || 19704 !(ipif->ipif_flags & IPIF_UP) || 19705 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19706 continue; 19707 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19708 &our_v6addr)) { 19709 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19710 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19711 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19712 ipif->ipif_flags |= IPIF_UNNUMBERED; 19713 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19714 new_ipif->ipif_ill != ill) 19715 continue; 19716 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19717 new_ipif->ipif_ill != ill) 19718 continue; 19719 else if (new_ipif->ipif_zoneid != 19720 ipif->ipif_zoneid && 19721 ipif->ipif_zoneid != ALL_ZONES && 19722 (ill->ill_phyint->phyint_flags & 19723 PHYI_LOOPBACK)) 19724 continue; 19725 else if (new_ipif->ipif_ill == ill) 19726 return (EADDRINUSE); 19727 else 19728 return (EADDRNOTAVAIL); 19729 } 19730 } 19731 } 19732 19733 return (0); 19734 } 19735 19736 /* 19737 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19738 * IREs for the ipif. 19739 * When the routine returns EINPROGRESS then mp has been consumed and 19740 * the ioctl will be acked from ip_rput_dlpi. 19741 */ 19742 static int 19743 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19744 { 19745 ill_t *ill = ipif->ipif_ill; 19746 boolean_t isv6 = ipif->ipif_isv6; 19747 int err = 0; 19748 boolean_t success; 19749 19750 ASSERT(IAM_WRITER_IPIF(ipif)); 19751 19752 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19753 19754 /* Shouldn't get here if it is already up. */ 19755 if (ipif->ipif_flags & IPIF_UP) 19756 return (EALREADY); 19757 19758 /* Skip arp/ndp for any loopback interface. */ 19759 if (ill->ill_wq != NULL) { 19760 conn_t *connp = Q_TO_CONN(q); 19761 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19762 19763 if (!ill->ill_dl_up) { 19764 /* 19765 * ill_dl_up is not yet set. i.e. we are yet to 19766 * DL_BIND with the driver and this is the first 19767 * logical interface on the ill to become "up". 19768 * Tell the driver to get going (via DL_BIND_REQ). 19769 * Note that changing "significant" IFF_ flags 19770 * address/netmask etc cause a down/up dance, but 19771 * does not cause an unbind (DL_UNBIND) with the driver 19772 */ 19773 return (ill_dl_up(ill, ipif, mp, q)); 19774 } 19775 19776 /* 19777 * ipif_resolver_up may end up sending an 19778 * AR_INTERFACE_UP message to ARP, which would, in 19779 * turn send a DLPI message to the driver. ioctls are 19780 * serialized and so we cannot send more than one 19781 * interface up message at a time. If ipif_resolver_up 19782 * does send an interface up message to ARP, we get 19783 * EINPROGRESS and we will complete in ip_arp_done. 19784 */ 19785 19786 ASSERT(connp != NULL); 19787 ASSERT(ipsq->ipsq_pending_mp == NULL); 19788 mutex_enter(&connp->conn_lock); 19789 mutex_enter(&ill->ill_lock); 19790 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19791 mutex_exit(&ill->ill_lock); 19792 mutex_exit(&connp->conn_lock); 19793 if (!success) 19794 return (EINTR); 19795 19796 /* 19797 * Crank up IPv6 neighbor discovery 19798 * Unlike ARP, this should complete when 19799 * ipif_ndp_up returns. However, for 19800 * ILLF_XRESOLV interfaces we also send a 19801 * AR_INTERFACE_UP to the external resolver. 19802 * That ioctl will complete in ip_rput. 19803 */ 19804 if (isv6) { 19805 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 19806 B_FALSE); 19807 if (err != 0) { 19808 if (err != EINPROGRESS) 19809 mp = ipsq_pending_mp_get(ipsq, &connp); 19810 return (err); 19811 } 19812 } 19813 /* Now, ARP */ 19814 err = ipif_resolver_up(ipif, Res_act_initial); 19815 if (err == EINPROGRESS) { 19816 /* We will complete it in ip_arp_done */ 19817 return (err); 19818 } 19819 mp = ipsq_pending_mp_get(ipsq, &connp); 19820 ASSERT(mp != NULL); 19821 if (err != 0) 19822 return (err); 19823 } else { 19824 /* 19825 * Interfaces without underlying hardware don't do duplicate 19826 * address detection. 19827 */ 19828 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19829 ipif->ipif_addr_ready = 1; 19830 } 19831 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19832 } 19833 19834 /* 19835 * Perform a bind for the physical device. 19836 * When the routine returns EINPROGRESS then mp has been consumed and 19837 * the ioctl will be acked from ip_rput_dlpi. 19838 * Allocate an unbind message and save it until ipif_down. 19839 */ 19840 static int 19841 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19842 { 19843 mblk_t *areq_mp = NULL; 19844 mblk_t *bind_mp = NULL; 19845 mblk_t *unbind_mp = NULL; 19846 conn_t *connp; 19847 boolean_t success; 19848 19849 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19850 ASSERT(IAM_WRITER_ILL(ill)); 19851 19852 ASSERT(mp != NULL); 19853 19854 /* Create a resolver cookie for ARP */ 19855 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19856 areq_t *areq; 19857 uint16_t sap_addr; 19858 19859 areq_mp = ill_arp_alloc(ill, 19860 (uchar_t *)&ip_areq_template, 0); 19861 if (areq_mp == NULL) { 19862 return (ENOMEM); 19863 } 19864 freemsg(ill->ill_resolver_mp); 19865 ill->ill_resolver_mp = areq_mp; 19866 areq = (areq_t *)areq_mp->b_rptr; 19867 sap_addr = ill->ill_sap; 19868 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19869 /* 19870 * Wait till we call ill_pending_mp_add to determine 19871 * the success before we free the ill_resolver_mp and 19872 * attach areq_mp in it's place. 19873 */ 19874 } 19875 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19876 DL_BIND_REQ); 19877 if (bind_mp == NULL) 19878 goto bad; 19879 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19880 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19881 19882 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19883 if (unbind_mp == NULL) 19884 goto bad; 19885 19886 /* 19887 * Record state needed to complete this operation when the 19888 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19889 */ 19890 if (WR(q)->q_next == NULL) { 19891 connp = Q_TO_CONN(q); 19892 mutex_enter(&connp->conn_lock); 19893 } else { 19894 connp = NULL; 19895 } 19896 mutex_enter(&ipif->ipif_ill->ill_lock); 19897 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19898 mutex_exit(&ipif->ipif_ill->ill_lock); 19899 if (connp != NULL) 19900 mutex_exit(&connp->conn_lock); 19901 if (!success) 19902 goto bad; 19903 19904 /* 19905 * Save the unbind message for ill_dl_down(); it will be consumed when 19906 * the interface goes down. 19907 */ 19908 ASSERT(ill->ill_unbind_mp == NULL); 19909 ill->ill_unbind_mp = unbind_mp; 19910 19911 ill_dlpi_send(ill, bind_mp); 19912 /* Send down link-layer capabilities probe if not already done. */ 19913 ill_capability_probe(ill); 19914 19915 /* 19916 * Sysid used to rely on the fact that netboots set domainname 19917 * and the like. Now that miniroot boots aren't strictly netboots 19918 * and miniroot network configuration is driven from userland 19919 * these things still need to be set. This situation can be detected 19920 * by comparing the interface being configured here to the one 19921 * dhcack was set to reference by the boot loader. Once sysid is 19922 * converted to use dhcp_ipc_getinfo() this call can go away. 19923 */ 19924 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19925 (strcmp(ill->ill_name, dhcack) == 0) && 19926 (strlen(srpc_domain) == 0)) { 19927 if (dhcpinit() != 0) 19928 cmn_err(CE_WARN, "no cached dhcp response"); 19929 } 19930 19931 /* 19932 * This operation will complete in ip_rput_dlpi with either 19933 * a DL_BIND_ACK or DL_ERROR_ACK. 19934 */ 19935 return (EINPROGRESS); 19936 bad: 19937 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19938 /* 19939 * We don't have to check for possible removal from illgrp 19940 * as we have not yet inserted in illgrp. For groups 19941 * without names, this ipif is still not UP and hence 19942 * this could not have possibly had any influence in forming 19943 * groups. 19944 */ 19945 19946 if (bind_mp != NULL) 19947 freemsg(bind_mp); 19948 if (unbind_mp != NULL) 19949 freemsg(unbind_mp); 19950 return (ENOMEM); 19951 } 19952 19953 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19954 19955 /* 19956 * DLPI and ARP is up. 19957 * Create all the IREs associated with an interface bring up multicast. 19958 * Set the interface flag and finish other initialization 19959 * that potentially had to be differed to after DL_BIND_ACK. 19960 */ 19961 int 19962 ipif_up_done(ipif_t *ipif) 19963 { 19964 ire_t *ire_array[20]; 19965 ire_t **irep = ire_array; 19966 ire_t **irep1; 19967 ipaddr_t net_mask = 0; 19968 ipaddr_t subnet_mask, route_mask; 19969 ill_t *ill = ipif->ipif_ill; 19970 queue_t *stq; 19971 ipif_t *src_ipif; 19972 ipif_t *tmp_ipif; 19973 boolean_t flush_ire_cache = B_TRUE; 19974 int err = 0; 19975 phyint_t *phyi; 19976 ire_t **ipif_saved_irep = NULL; 19977 int ipif_saved_ire_cnt; 19978 int cnt; 19979 boolean_t src_ipif_held = B_FALSE; 19980 boolean_t ire_added = B_FALSE; 19981 boolean_t loopback = B_FALSE; 19982 19983 ip1dbg(("ipif_up_done(%s:%u)\n", 19984 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19985 /* Check if this is a loopback interface */ 19986 if (ipif->ipif_ill->ill_wq == NULL) 19987 loopback = B_TRUE; 19988 19989 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19990 /* 19991 * If all other interfaces for this ill are down or DEPRECATED, 19992 * or otherwise unsuitable for source address selection, remove 19993 * any IRE_CACHE entries for this ill to make sure source 19994 * address selection gets to take this new ipif into account. 19995 * No need to hold ill_lock while traversing the ipif list since 19996 * we are writer 19997 */ 19998 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19999 tmp_ipif = tmp_ipif->ipif_next) { 20000 if (((tmp_ipif->ipif_flags & 20001 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20002 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20003 (tmp_ipif == ipif)) 20004 continue; 20005 /* first useable pre-existing interface */ 20006 flush_ire_cache = B_FALSE; 20007 break; 20008 } 20009 if (flush_ire_cache) 20010 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20011 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20012 20013 /* 20014 * Figure out which way the send-to queue should go. Only 20015 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20016 * should show up here. 20017 */ 20018 switch (ill->ill_net_type) { 20019 case IRE_IF_RESOLVER: 20020 stq = ill->ill_rq; 20021 break; 20022 case IRE_IF_NORESOLVER: 20023 case IRE_LOOPBACK: 20024 stq = ill->ill_wq; 20025 break; 20026 default: 20027 return (EINVAL); 20028 } 20029 20030 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20031 /* 20032 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20033 * ipif_lookup_on_name(), but in the case of zones we can have 20034 * several loopback addresses on lo0. So all the interfaces with 20035 * loopback addresses need to be marked IRE_LOOPBACK. 20036 */ 20037 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20038 htonl(INADDR_LOOPBACK)) 20039 ipif->ipif_ire_type = IRE_LOOPBACK; 20040 else 20041 ipif->ipif_ire_type = IRE_LOCAL; 20042 } 20043 20044 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20045 /* 20046 * Can't use our source address. Select a different 20047 * source address for the IRE_INTERFACE and IRE_LOCAL 20048 */ 20049 src_ipif = ipif_select_source(ipif->ipif_ill, 20050 ipif->ipif_subnet, ipif->ipif_zoneid); 20051 if (src_ipif == NULL) 20052 src_ipif = ipif; /* Last resort */ 20053 else 20054 src_ipif_held = B_TRUE; 20055 } else { 20056 src_ipif = ipif; 20057 } 20058 20059 /* Create all the IREs associated with this interface */ 20060 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20061 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20062 20063 /* 20064 * If we're on a labeled system then make sure that zone- 20065 * private addresses have proper remote host database entries. 20066 */ 20067 if (is_system_labeled() && 20068 ipif->ipif_ire_type != IRE_LOOPBACK && 20069 !tsol_check_interface_address(ipif)) 20070 return (EINVAL); 20071 20072 /* Register the source address for __sin6_src_id */ 20073 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20074 ipif->ipif_zoneid); 20075 if (err != 0) { 20076 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20077 return (err); 20078 } 20079 20080 /* If the interface address is set, create the local IRE. */ 20081 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20082 (void *)ipif, 20083 ipif->ipif_ire_type, 20084 ntohl(ipif->ipif_lcl_addr))); 20085 *irep++ = ire_create( 20086 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20087 (uchar_t *)&ip_g_all_ones, /* mask */ 20088 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20089 NULL, /* no gateway */ 20090 NULL, 20091 &ip_loopback_mtuplus, /* max frag size */ 20092 NULL, 20093 ipif->ipif_rq, /* recv-from queue */ 20094 NULL, /* no send-to queue */ 20095 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20096 NULL, 20097 ipif, 20098 NULL, 20099 0, 20100 0, 20101 0, 20102 (ipif->ipif_flags & IPIF_PRIVATE) ? 20103 RTF_PRIVATE : 0, 20104 &ire_uinfo_null, 20105 NULL, 20106 NULL); 20107 } else { 20108 ip1dbg(( 20109 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20110 ipif->ipif_ire_type, 20111 ntohl(ipif->ipif_lcl_addr), 20112 (uint_t)ipif->ipif_flags)); 20113 } 20114 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20115 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20116 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20117 } else { 20118 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20119 } 20120 20121 subnet_mask = ipif->ipif_net_mask; 20122 20123 /* 20124 * If mask was not specified, use natural netmask of 20125 * interface address. Also, store this mask back into the 20126 * ipif struct. 20127 */ 20128 if (subnet_mask == 0) { 20129 subnet_mask = net_mask; 20130 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20131 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20132 ipif->ipif_v6subnet); 20133 } 20134 20135 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20136 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20137 ipif->ipif_subnet != INADDR_ANY) { 20138 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20139 20140 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20141 route_mask = IP_HOST_MASK; 20142 } else { 20143 route_mask = subnet_mask; 20144 } 20145 20146 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20147 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20148 (void *)ipif, (void *)ill, 20149 ill->ill_net_type, 20150 ntohl(ipif->ipif_subnet))); 20151 *irep++ = ire_create( 20152 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20153 (uchar_t *)&route_mask, /* mask */ 20154 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20155 NULL, /* no gateway */ 20156 NULL, 20157 &ipif->ipif_mtu, /* max frag */ 20158 NULL, 20159 NULL, /* no recv queue */ 20160 stq, /* send-to queue */ 20161 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20162 ill->ill_resolver_mp, /* xmit header */ 20163 ipif, 20164 NULL, 20165 0, 20166 0, 20167 0, 20168 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20169 &ire_uinfo_null, 20170 NULL, 20171 NULL); 20172 } 20173 20174 /* 20175 * If the interface address is set, create the broadcast IREs. 20176 * 20177 * ire_create_bcast checks if the proposed new IRE matches 20178 * any existing IRE's with the same physical interface (ILL). 20179 * This should get rid of duplicates. 20180 * ire_create_bcast also check IPIF_NOXMIT and does not create 20181 * any broadcast ires. 20182 */ 20183 if ((ipif->ipif_subnet != INADDR_ANY) && 20184 (ipif->ipif_flags & IPIF_BROADCAST)) { 20185 ipaddr_t addr; 20186 20187 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20188 irep = ire_check_and_create_bcast(ipif, 0, irep, 20189 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20190 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20191 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20192 20193 /* 20194 * For backward compatibility, we need to create net 20195 * broadcast ire's based on the old "IP address class 20196 * system." The reason is that some old machines only 20197 * respond to these class derived net broadcast. 20198 * 20199 * But we should not create these net broadcast ire's if 20200 * the subnet_mask is shorter than the IP address class based 20201 * derived netmask. Otherwise, we may create a net 20202 * broadcast address which is the same as an IP address 20203 * on the subnet. Then TCP will refuse to talk to that 20204 * address. 20205 * 20206 * Nor do we need IRE_BROADCAST ire's for the interface 20207 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20208 * interface is already created. Creating these broadcast 20209 * ire's will only create confusion as the "addr" is going 20210 * to be same as that of the IP address of the interface. 20211 */ 20212 if (net_mask < subnet_mask) { 20213 addr = net_mask & ipif->ipif_subnet; 20214 irep = ire_check_and_create_bcast(ipif, addr, irep, 20215 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20216 irep = ire_check_and_create_bcast(ipif, 20217 ~net_mask | addr, irep, 20218 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20219 } 20220 20221 if (subnet_mask != 0xFFFFFFFF) { 20222 addr = ipif->ipif_subnet; 20223 irep = ire_check_and_create_bcast(ipif, addr, irep, 20224 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20225 irep = ire_check_and_create_bcast(ipif, 20226 ~subnet_mask|addr, irep, 20227 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20228 } 20229 } 20230 20231 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20232 20233 /* If an earlier ire_create failed, get out now */ 20234 for (irep1 = irep; irep1 > ire_array; ) { 20235 irep1--; 20236 if (*irep1 == NULL) { 20237 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20238 err = ENOMEM; 20239 goto bad; 20240 } 20241 } 20242 20243 /* 20244 * Need to atomically check for ip_addr_availablity_check 20245 * under ip_addr_avail_lock, and if it fails got bad, and remove 20246 * from group also.The ill_g_lock is grabbed as reader 20247 * just to make sure no new ills or new ipifs are being added 20248 * to the system while we are checking the uniqueness of addresses. 20249 */ 20250 rw_enter(&ill_g_lock, RW_READER); 20251 mutex_enter(&ip_addr_avail_lock); 20252 /* Mark it up, and increment counters. */ 20253 ipif->ipif_flags |= IPIF_UP; 20254 ill->ill_ipif_up_count++; 20255 err = ip_addr_availability_check(ipif); 20256 mutex_exit(&ip_addr_avail_lock); 20257 rw_exit(&ill_g_lock); 20258 20259 if (err != 0) { 20260 /* 20261 * Our address may already be up on the same ill. In this case, 20262 * the ARP entry for our ipif replaced the one for the other 20263 * ipif. So we don't want to delete it (otherwise the other ipif 20264 * would be unable to send packets). 20265 * ip_addr_availability_check() identifies this case for us and 20266 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20267 * which is the expected error code. 20268 */ 20269 if (err == EADDRINUSE) { 20270 freemsg(ipif->ipif_arp_del_mp); 20271 ipif->ipif_arp_del_mp = NULL; 20272 err = EADDRNOTAVAIL; 20273 } 20274 ill->ill_ipif_up_count--; 20275 ipif->ipif_flags &= ~IPIF_UP; 20276 goto bad; 20277 } 20278 20279 /* 20280 * Add in all newly created IREs. ire_create_bcast() has 20281 * already checked for duplicates of the IRE_BROADCAST type. 20282 * We want to add before we call ifgrp_insert which wants 20283 * to know whether IRE_IF_RESOLVER exists or not. 20284 * 20285 * NOTE : We refrele the ire though we may branch to "bad" 20286 * later on where we do ire_delete. This is okay 20287 * because nobody can delete it as we are running 20288 * exclusively. 20289 */ 20290 for (irep1 = irep; irep1 > ire_array; ) { 20291 irep1--; 20292 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20293 /* 20294 * refheld by ire_add. refele towards the end of the func 20295 */ 20296 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20297 } 20298 ire_added = B_TRUE; 20299 /* 20300 * Form groups if possible. 20301 * 20302 * If we are supposed to be in a ill_group with a name, insert it 20303 * now as we know that at least one ipif is UP. Otherwise form 20304 * nameless groups. 20305 * 20306 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20307 * this ipif into the appropriate interface group, or create a 20308 * new one. If this is already in a nameless group, we try to form 20309 * a bigger group looking at other ills potentially sharing this 20310 * ipif's prefix. 20311 */ 20312 phyi = ill->ill_phyint; 20313 if (phyi->phyint_groupname_len != 0) { 20314 ASSERT(phyi->phyint_groupname != NULL); 20315 if (ill->ill_ipif_up_count == 1) { 20316 ASSERT(ill->ill_group == NULL); 20317 err = illgrp_insert(&illgrp_head_v4, ill, 20318 phyi->phyint_groupname, NULL, B_TRUE); 20319 if (err != 0) { 20320 ip1dbg(("ipif_up_done: illgrp allocation " 20321 "failed, error %d\n", err)); 20322 goto bad; 20323 } 20324 } 20325 ASSERT(ill->ill_group != NULL); 20326 } 20327 20328 /* 20329 * When this is part of group, we need to make sure that 20330 * any broadcast ires created because of this ipif coming 20331 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20332 * so that we don't receive duplicate broadcast packets. 20333 */ 20334 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20335 ipif_renominate_bcast(ipif); 20336 20337 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20338 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20339 ipif_saved_irep = ipif_recover_ire(ipif); 20340 20341 if (!loopback) { 20342 /* 20343 * If the broadcast address has been set, make sure it makes 20344 * sense based on the interface address. 20345 * Only match on ill since we are sharing broadcast addresses. 20346 */ 20347 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20348 (ipif->ipif_flags & IPIF_BROADCAST)) { 20349 ire_t *ire; 20350 20351 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20352 IRE_BROADCAST, ipif, ALL_ZONES, 20353 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20354 20355 if (ire == NULL) { 20356 /* 20357 * If there isn't a matching broadcast IRE, 20358 * revert to the default for this netmask. 20359 */ 20360 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20361 mutex_enter(&ipif->ipif_ill->ill_lock); 20362 ipif_set_default(ipif); 20363 mutex_exit(&ipif->ipif_ill->ill_lock); 20364 } else { 20365 ire_refrele(ire); 20366 } 20367 } 20368 20369 } 20370 20371 /* This is the first interface on this ill */ 20372 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20373 /* 20374 * Need to recover all multicast memberships in the driver. 20375 * This had to be deferred until we had attached. 20376 */ 20377 ill_recover_multicast(ill); 20378 } 20379 /* Join the allhosts multicast address */ 20380 ipif_multicast_up(ipif); 20381 20382 if (!loopback) { 20383 /* 20384 * See whether anybody else would benefit from the 20385 * new ipif that we added. We call this always rather 20386 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20387 * ipif is for the benefit of illgrp_insert (done above) 20388 * which does not do source address selection as it does 20389 * not want to re-create interface routes that we are 20390 * having reference to it here. 20391 */ 20392 ill_update_source_selection(ill); 20393 } 20394 20395 for (irep1 = irep; irep1 > ire_array; ) { 20396 irep1--; 20397 if (*irep1 != NULL) { 20398 /* was held in ire_add */ 20399 ire_refrele(*irep1); 20400 } 20401 } 20402 20403 cnt = ipif_saved_ire_cnt; 20404 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20405 if (*irep1 != NULL) { 20406 /* was held in ire_add */ 20407 ire_refrele(*irep1); 20408 } 20409 } 20410 20411 if (!loopback && ipif->ipif_addr_ready) { 20412 /* Broadcast an address mask reply. */ 20413 ipif_mask_reply(ipif); 20414 } 20415 if (ipif_saved_irep != NULL) { 20416 kmem_free(ipif_saved_irep, 20417 ipif_saved_ire_cnt * sizeof (ire_t *)); 20418 } 20419 if (src_ipif_held) 20420 ipif_refrele(src_ipif); 20421 20422 /* 20423 * This had to be deferred until we had bound. Tell routing sockets and 20424 * others that this interface is up if it looks like the address has 20425 * been validated. Otherwise, if it isn't ready yet, wait for 20426 * duplicate address detection to do its thing. 20427 */ 20428 if (ipif->ipif_addr_ready) { 20429 ip_rts_ifmsg(ipif); 20430 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20431 /* Let SCTP update the status for this ipif */ 20432 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20433 } 20434 return (0); 20435 20436 bad: 20437 ip1dbg(("ipif_up_done: FAILED \n")); 20438 /* 20439 * We don't have to bother removing from ill groups because 20440 * 20441 * 1) For groups with names, we insert only when the first ipif 20442 * comes up. In that case if it fails, it will not be in any 20443 * group. So, we need not try to remove for that case. 20444 * 20445 * 2) For groups without names, either we tried to insert ipif_ill 20446 * in a group as singleton or found some other group to become 20447 * a bigger group. For the former, if it fails we don't have 20448 * anything to do as ipif_ill is not in the group and for the 20449 * latter, there are no failures in illgrp_insert/illgrp_delete 20450 * (ENOMEM can't occur for this. Check ifgrp_insert). 20451 */ 20452 while (irep > ire_array) { 20453 irep--; 20454 if (*irep != NULL) { 20455 ire_delete(*irep); 20456 if (ire_added) 20457 ire_refrele(*irep); 20458 } 20459 } 20460 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 20461 20462 if (ipif_saved_irep != NULL) { 20463 kmem_free(ipif_saved_irep, 20464 ipif_saved_ire_cnt * sizeof (ire_t *)); 20465 } 20466 if (src_ipif_held) 20467 ipif_refrele(src_ipif); 20468 20469 ipif_arp_down(ipif); 20470 return (err); 20471 } 20472 20473 /* 20474 * Turn off the ARP with the ILLF_NOARP flag. 20475 */ 20476 static int 20477 ill_arp_off(ill_t *ill) 20478 { 20479 mblk_t *arp_off_mp = NULL; 20480 mblk_t *arp_on_mp = NULL; 20481 20482 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20483 20484 ASSERT(IAM_WRITER_ILL(ill)); 20485 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20486 20487 /* 20488 * If the on message is still around we've already done 20489 * an arp_off without doing an arp_on thus there is no 20490 * work needed. 20491 */ 20492 if (ill->ill_arp_on_mp != NULL) 20493 return (0); 20494 20495 /* 20496 * Allocate an ARP on message (to be saved) and an ARP off message 20497 */ 20498 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20499 if (!arp_off_mp) 20500 return (ENOMEM); 20501 20502 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20503 if (!arp_on_mp) 20504 goto failed; 20505 20506 ASSERT(ill->ill_arp_on_mp == NULL); 20507 ill->ill_arp_on_mp = arp_on_mp; 20508 20509 /* Send an AR_INTERFACE_OFF request */ 20510 putnext(ill->ill_rq, arp_off_mp); 20511 return (0); 20512 failed: 20513 20514 if (arp_off_mp) 20515 freemsg(arp_off_mp); 20516 return (ENOMEM); 20517 } 20518 20519 /* 20520 * Turn on ARP by turning off the ILLF_NOARP flag. 20521 */ 20522 static int 20523 ill_arp_on(ill_t *ill) 20524 { 20525 mblk_t *mp; 20526 20527 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20528 20529 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20530 20531 ASSERT(IAM_WRITER_ILL(ill)); 20532 /* 20533 * Send an AR_INTERFACE_ON request if we have already done 20534 * an arp_off (which allocated the message). 20535 */ 20536 if (ill->ill_arp_on_mp != NULL) { 20537 mp = ill->ill_arp_on_mp; 20538 ill->ill_arp_on_mp = NULL; 20539 putnext(ill->ill_rq, mp); 20540 } 20541 return (0); 20542 } 20543 20544 /* 20545 * Called after either deleting ill from the group or when setting 20546 * FAILED or STANDBY on the interface. 20547 */ 20548 static void 20549 illgrp_reset_schednext(ill_t *ill) 20550 { 20551 ill_group_t *illgrp; 20552 ill_t *save_ill; 20553 20554 ASSERT(IAM_WRITER_ILL(ill)); 20555 /* 20556 * When called from illgrp_delete, ill_group will be non-NULL. 20557 * But when called from ip_sioctl_flags, it could be NULL if 20558 * somebody is setting FAILED/INACTIVE on some interface which 20559 * is not part of a group. 20560 */ 20561 illgrp = ill->ill_group; 20562 if (illgrp == NULL) 20563 return; 20564 if (illgrp->illgrp_ill_schednext != ill) 20565 return; 20566 20567 illgrp->illgrp_ill_schednext = NULL; 20568 save_ill = ill; 20569 /* 20570 * Choose a good ill to be the next one for 20571 * outbound traffic. As the flags FAILED/STANDBY is 20572 * not yet marked when called from ip_sioctl_flags, 20573 * we check for ill separately. 20574 */ 20575 for (ill = illgrp->illgrp_ill; ill != NULL; 20576 ill = ill->ill_group_next) { 20577 if ((ill != save_ill) && 20578 !(ill->ill_phyint->phyint_flags & 20579 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20580 illgrp->illgrp_ill_schednext = ill; 20581 return; 20582 } 20583 } 20584 } 20585 20586 /* 20587 * Given an ill, find the next ill in the group to be scheduled. 20588 * (This should be called by ip_newroute() before ire_create().) 20589 * The passed in ill may be pulled out of the group, after we have picked 20590 * up a different outgoing ill from the same group. However ire add will 20591 * atomically check this. 20592 */ 20593 ill_t * 20594 illgrp_scheduler(ill_t *ill) 20595 { 20596 ill_t *retill; 20597 ill_group_t *illgrp; 20598 int illcnt; 20599 int i; 20600 uint64_t flags; 20601 20602 /* 20603 * We don't use a lock to check for the ill_group. If this ill 20604 * is currently being inserted we may end up just returning this 20605 * ill itself. That is ok. 20606 */ 20607 if (ill->ill_group == NULL) { 20608 ill_refhold(ill); 20609 return (ill); 20610 } 20611 20612 /* 20613 * Grab the ill_g_lock as reader to make sure we are dealing with 20614 * a set of stable ills. No ill can be added or deleted or change 20615 * group while we hold the reader lock. 20616 */ 20617 rw_enter(&ill_g_lock, RW_READER); 20618 if ((illgrp = ill->ill_group) == NULL) { 20619 rw_exit(&ill_g_lock); 20620 ill_refhold(ill); 20621 return (ill); 20622 } 20623 20624 illcnt = illgrp->illgrp_ill_count; 20625 mutex_enter(&illgrp->illgrp_lock); 20626 retill = illgrp->illgrp_ill_schednext; 20627 20628 if (retill == NULL) 20629 retill = illgrp->illgrp_ill; 20630 20631 /* 20632 * We do a circular search beginning at illgrp_ill_schednext 20633 * or illgrp_ill. We don't check the flags against the ill lock 20634 * since it can change anytime. The ire creation will be atomic 20635 * and will fail if the ill is FAILED or OFFLINE. 20636 */ 20637 for (i = 0; i < illcnt; i++) { 20638 flags = retill->ill_phyint->phyint_flags; 20639 20640 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20641 ILL_CAN_LOOKUP(retill)) { 20642 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20643 ill_refhold(retill); 20644 break; 20645 } 20646 retill = retill->ill_group_next; 20647 if (retill == NULL) 20648 retill = illgrp->illgrp_ill; 20649 } 20650 mutex_exit(&illgrp->illgrp_lock); 20651 rw_exit(&ill_g_lock); 20652 20653 return (i == illcnt ? NULL : retill); 20654 } 20655 20656 /* 20657 * Checks for availbility of a usable source address (if there is one) when the 20658 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20659 * this selection is done regardless of the destination. 20660 */ 20661 boolean_t 20662 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20663 { 20664 uint_t ifindex; 20665 ipif_t *ipif = NULL; 20666 ill_t *uill; 20667 boolean_t isv6; 20668 20669 ASSERT(ill != NULL); 20670 20671 isv6 = ill->ill_isv6; 20672 ifindex = ill->ill_usesrc_ifindex; 20673 if (ifindex != 0) { 20674 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20675 NULL); 20676 if (uill == NULL) 20677 return (NULL); 20678 mutex_enter(&uill->ill_lock); 20679 for (ipif = uill->ill_ipif; ipif != NULL; 20680 ipif = ipif->ipif_next) { 20681 if (!IPIF_CAN_LOOKUP(ipif)) 20682 continue; 20683 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20684 continue; 20685 if (!(ipif->ipif_flags & IPIF_UP)) 20686 continue; 20687 if (ipif->ipif_zoneid != zoneid) 20688 continue; 20689 if ((isv6 && 20690 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20691 (ipif->ipif_lcl_addr == INADDR_ANY)) 20692 continue; 20693 mutex_exit(&uill->ill_lock); 20694 ill_refrele(uill); 20695 return (B_TRUE); 20696 } 20697 mutex_exit(&uill->ill_lock); 20698 ill_refrele(uill); 20699 } 20700 return (B_FALSE); 20701 } 20702 20703 /* 20704 * Determine the best source address given a destination address and an ill. 20705 * Prefers non-deprecated over deprecated but will return a deprecated 20706 * address if there is no other choice. If there is a usable source address 20707 * on the interface pointed to by ill_usesrc_ifindex then that is given 20708 * first preference. 20709 * 20710 * Returns NULL if there is no suitable source address for the ill. 20711 * This only occurs when there is no valid source address for the ill. 20712 */ 20713 ipif_t * 20714 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20715 { 20716 ipif_t *ipif; 20717 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20718 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20719 int index = 0; 20720 boolean_t wrapped = B_FALSE; 20721 boolean_t same_subnet_only = B_FALSE; 20722 boolean_t ipif_same_found, ipif_other_found; 20723 boolean_t specific_found; 20724 ill_t *till, *usill = NULL; 20725 tsol_tpc_t *src_rhtp, *dst_rhtp; 20726 20727 if (ill->ill_usesrc_ifindex != 0) { 20728 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20729 NULL, NULL, NULL, NULL); 20730 if (usill != NULL) 20731 ill = usill; /* Select source from usesrc ILL */ 20732 else 20733 return (NULL); 20734 } 20735 20736 /* 20737 * If we're dealing with an unlabeled destination on a labeled system, 20738 * make sure that we ignore source addresses that are incompatible with 20739 * the destination's default label. That destination's default label 20740 * must dominate the minimum label on the source address. 20741 */ 20742 dst_rhtp = NULL; 20743 if (is_system_labeled()) { 20744 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20745 if (dst_rhtp == NULL) 20746 return (NULL); 20747 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20748 TPC_RELE(dst_rhtp); 20749 dst_rhtp = NULL; 20750 } 20751 } 20752 20753 /* 20754 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20755 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20756 * After selecting the right ipif, under ill_lock make sure ipif is 20757 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20758 * we retry. Inside the loop we still need to check for CONDEMNED, 20759 * but not under a lock. 20760 */ 20761 rw_enter(&ill_g_lock, RW_READER); 20762 20763 retry: 20764 till = ill; 20765 ipif_arr[0] = NULL; 20766 20767 if (till->ill_group != NULL) 20768 till = till->ill_group->illgrp_ill; 20769 20770 /* 20771 * Choose one good source address from each ill across the group. 20772 * If possible choose a source address in the same subnet as 20773 * the destination address. 20774 * 20775 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20776 * This is okay because of the following. 20777 * 20778 * If PHYI_FAILED is set and we still have non-deprecated 20779 * addresses, it means the addresses have not yet been 20780 * failed over to a different interface. We potentially 20781 * select them to create IRE_CACHES, which will be later 20782 * flushed when the addresses move over. 20783 * 20784 * If PHYI_INACTIVE is set and we still have non-deprecated 20785 * addresses, it means either the user has configured them 20786 * or PHYI_INACTIVE has not been cleared after the addresses 20787 * been moved over. For the former, in.mpathd does a failover 20788 * when the interface becomes INACTIVE and hence we should 20789 * not find them. Once INACTIVE is set, we don't allow them 20790 * to create logical interfaces anymore. For the latter, a 20791 * flush will happen when INACTIVE is cleared which will 20792 * flush the IRE_CACHES. 20793 * 20794 * If PHYI_OFFLINE is set, all the addresses will be failed 20795 * over soon. We potentially select them to create IRE_CACHEs, 20796 * which will be later flushed when the addresses move over. 20797 * 20798 * NOTE : As ipif_select_source is called to borrow source address 20799 * for an ipif that is part of a group, source address selection 20800 * will be re-done whenever the group changes i.e either an 20801 * insertion/deletion in the group. 20802 * 20803 * Fill ipif_arr[] with source addresses, using these rules: 20804 * 20805 * 1. At most one source address from a given ill ends up 20806 * in ipif_arr[] -- that is, at most one of the ipif's 20807 * associated with a given ill ends up in ipif_arr[]. 20808 * 20809 * 2. If there is at least one non-deprecated ipif in the 20810 * IPMP group with a source address on the same subnet as 20811 * our destination, then fill ipif_arr[] only with 20812 * source addresses on the same subnet as our destination. 20813 * Note that because of (1), only the first 20814 * non-deprecated ipif found with a source address 20815 * matching the destination ends up in ipif_arr[]. 20816 * 20817 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20818 * addresses not in the same subnet as our destination. 20819 * Again, because of (1), only the first off-subnet source 20820 * address will be chosen. 20821 * 20822 * 4. If there are no non-deprecated ipifs, then just use 20823 * the source address associated with the last deprecated 20824 * one we find that happens to be on the same subnet, 20825 * otherwise the first one not in the same subnet. 20826 */ 20827 specific_found = B_FALSE; 20828 for (; till != NULL; till = till->ill_group_next) { 20829 ipif_same_found = B_FALSE; 20830 ipif_other_found = B_FALSE; 20831 for (ipif = till->ill_ipif; ipif != NULL; 20832 ipif = ipif->ipif_next) { 20833 if (!IPIF_CAN_LOOKUP(ipif)) 20834 continue; 20835 /* Always skip NOLOCAL and ANYCAST interfaces */ 20836 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20837 continue; 20838 if (!(ipif->ipif_flags & IPIF_UP) || 20839 !ipif->ipif_addr_ready) 20840 continue; 20841 if (ipif->ipif_zoneid != zoneid && 20842 ipif->ipif_zoneid != ALL_ZONES) 20843 continue; 20844 /* 20845 * Interfaces with 0.0.0.0 address are allowed to be UP, 20846 * but are not valid as source addresses. 20847 */ 20848 if (ipif->ipif_lcl_addr == INADDR_ANY) 20849 continue; 20850 20851 /* 20852 * Check compatibility of local address for 20853 * destination's default label if we're on a labeled 20854 * system. Incompatible addresses can't be used at 20855 * all. 20856 */ 20857 if (dst_rhtp != NULL) { 20858 boolean_t incompat; 20859 20860 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20861 IPV4_VERSION, B_FALSE); 20862 if (src_rhtp == NULL) 20863 continue; 20864 incompat = 20865 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20866 src_rhtp->tpc_tp.tp_doi != 20867 dst_rhtp->tpc_tp.tp_doi || 20868 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20869 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20870 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20871 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20872 TPC_RELE(src_rhtp); 20873 if (incompat) 20874 continue; 20875 } 20876 20877 /* 20878 * We prefer not to use all all-zones addresses, if we 20879 * can avoid it, as they pose problems with unlabeled 20880 * destinations. 20881 */ 20882 if (ipif->ipif_zoneid != ALL_ZONES) { 20883 if (!specific_found && 20884 (!same_subnet_only || 20885 (ipif->ipif_net_mask & dst) == 20886 ipif->ipif_subnet)) { 20887 index = 0; 20888 specific_found = B_TRUE; 20889 ipif_other_found = B_FALSE; 20890 } 20891 } else { 20892 if (specific_found) 20893 continue; 20894 } 20895 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20896 if (ipif_dep == NULL || 20897 (ipif->ipif_net_mask & dst) == 20898 ipif->ipif_subnet) 20899 ipif_dep = ipif; 20900 continue; 20901 } 20902 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20903 /* found a source address in the same subnet */ 20904 if (!same_subnet_only) { 20905 same_subnet_only = B_TRUE; 20906 index = 0; 20907 } 20908 ipif_same_found = B_TRUE; 20909 } else { 20910 if (same_subnet_only || ipif_other_found) 20911 continue; 20912 ipif_other_found = B_TRUE; 20913 } 20914 ipif_arr[index++] = ipif; 20915 if (index == MAX_IPIF_SELECT_SOURCE) { 20916 wrapped = B_TRUE; 20917 index = 0; 20918 } 20919 if (ipif_same_found) 20920 break; 20921 } 20922 } 20923 20924 if (ipif_arr[0] == NULL) { 20925 ipif = ipif_dep; 20926 } else { 20927 if (wrapped) 20928 index = MAX_IPIF_SELECT_SOURCE; 20929 ipif = ipif_arr[ipif_rand() % index]; 20930 ASSERT(ipif != NULL); 20931 } 20932 20933 if (ipif != NULL) { 20934 mutex_enter(&ipif->ipif_ill->ill_lock); 20935 if (!IPIF_CAN_LOOKUP(ipif)) { 20936 mutex_exit(&ipif->ipif_ill->ill_lock); 20937 goto retry; 20938 } 20939 ipif_refhold_locked(ipif); 20940 mutex_exit(&ipif->ipif_ill->ill_lock); 20941 } 20942 20943 rw_exit(&ill_g_lock); 20944 if (usill != NULL) 20945 ill_refrele(usill); 20946 if (dst_rhtp != NULL) 20947 TPC_RELE(dst_rhtp); 20948 20949 #ifdef DEBUG 20950 if (ipif == NULL) { 20951 char buf1[INET6_ADDRSTRLEN]; 20952 20953 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20954 ill->ill_name, 20955 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20956 } else { 20957 char buf1[INET6_ADDRSTRLEN]; 20958 char buf2[INET6_ADDRSTRLEN]; 20959 20960 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20961 ipif->ipif_ill->ill_name, 20962 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20963 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20964 buf2, sizeof (buf2)))); 20965 } 20966 #endif /* DEBUG */ 20967 return (ipif); 20968 } 20969 20970 20971 /* 20972 * If old_ipif is not NULL, see if ipif was derived from old 20973 * ipif and if so, recreate the interface route by re-doing 20974 * source address selection. This happens when ipif_down -> 20975 * ipif_update_other_ipifs calls us. 20976 * 20977 * If old_ipif is NULL, just redo the source address selection 20978 * if needed. This happens when illgrp_insert or ipif_up_done 20979 * calls us. 20980 */ 20981 static void 20982 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20983 { 20984 ire_t *ire; 20985 ire_t *ipif_ire; 20986 queue_t *stq; 20987 ipif_t *nipif; 20988 ill_t *ill; 20989 boolean_t need_rele = B_FALSE; 20990 20991 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20992 ASSERT(IAM_WRITER_IPIF(ipif)); 20993 20994 ill = ipif->ipif_ill; 20995 if (!(ipif->ipif_flags & 20996 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20997 /* 20998 * Can't possibly have borrowed the source 20999 * from old_ipif. 21000 */ 21001 return; 21002 } 21003 21004 /* 21005 * Is there any work to be done? No work if the address 21006 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21007 * ipif_select_source() does not borrow addresses from 21008 * NOLOCAL and ANYCAST interfaces). 21009 */ 21010 if ((old_ipif != NULL) && 21011 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21012 (old_ipif->ipif_ill->ill_wq == NULL) || 21013 (old_ipif->ipif_flags & 21014 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21015 return; 21016 } 21017 21018 /* 21019 * Perform the same checks as when creating the 21020 * IRE_INTERFACE in ipif_up_done. 21021 */ 21022 if (!(ipif->ipif_flags & IPIF_UP)) 21023 return; 21024 21025 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21026 (ipif->ipif_subnet == INADDR_ANY)) 21027 return; 21028 21029 ipif_ire = ipif_to_ire(ipif); 21030 if (ipif_ire == NULL) 21031 return; 21032 21033 /* 21034 * We know that ipif uses some other source for its 21035 * IRE_INTERFACE. Is it using the source of this 21036 * old_ipif? 21037 */ 21038 if (old_ipif != NULL && 21039 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21040 ire_refrele(ipif_ire); 21041 return; 21042 } 21043 if (ip_debug > 2) { 21044 /* ip1dbg */ 21045 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21046 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21047 } 21048 21049 stq = ipif_ire->ire_stq; 21050 21051 /* 21052 * Can't use our source address. Select a different 21053 * source address for the IRE_INTERFACE. 21054 */ 21055 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21056 if (nipif == NULL) { 21057 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21058 nipif = ipif; 21059 } else { 21060 need_rele = B_TRUE; 21061 } 21062 21063 ire = ire_create( 21064 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21065 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21066 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21067 NULL, /* no gateway */ 21068 NULL, 21069 &ipif->ipif_mtu, /* max frag */ 21070 NULL, /* fast path header */ 21071 NULL, /* no recv from queue */ 21072 stq, /* send-to queue */ 21073 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21074 ill->ill_resolver_mp, /* xmit header */ 21075 ipif, 21076 NULL, 21077 0, 21078 0, 21079 0, 21080 0, 21081 &ire_uinfo_null, 21082 NULL, 21083 NULL); 21084 21085 if (ire != NULL) { 21086 ire_t *ret_ire; 21087 int error; 21088 21089 /* 21090 * We don't need ipif_ire anymore. We need to delete 21091 * before we add so that ire_add does not detect 21092 * duplicates. 21093 */ 21094 ire_delete(ipif_ire); 21095 ret_ire = ire; 21096 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21097 ASSERT(error == 0); 21098 ASSERT(ire == ret_ire); 21099 /* Held in ire_add */ 21100 ire_refrele(ret_ire); 21101 } 21102 /* 21103 * Either we are falling through from above or could not 21104 * allocate a replacement. 21105 */ 21106 ire_refrele(ipif_ire); 21107 if (need_rele) 21108 ipif_refrele(nipif); 21109 } 21110 21111 /* 21112 * This old_ipif is going away. 21113 * 21114 * Determine if any other ipif's is using our address as 21115 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21116 * IPIF_DEPRECATED). 21117 * Find the IRE_INTERFACE for such ipifs and recreate them 21118 * to use an different source address following the rules in 21119 * ipif_up_done. 21120 * 21121 * This function takes an illgrp as an argument so that illgrp_delete 21122 * can call this to update source address even after deleting the 21123 * old_ipif->ipif_ill from the ill group. 21124 */ 21125 static void 21126 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21127 { 21128 ipif_t *ipif; 21129 ill_t *ill; 21130 char buf[INET6_ADDRSTRLEN]; 21131 21132 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21133 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21134 21135 ill = old_ipif->ipif_ill; 21136 21137 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21138 ill->ill_name, 21139 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21140 buf, sizeof (buf)))); 21141 /* 21142 * If this part of a group, look at all ills as ipif_select_source 21143 * borrows source address across all the ills in the group. 21144 */ 21145 if (illgrp != NULL) 21146 ill = illgrp->illgrp_ill; 21147 21148 for (; ill != NULL; ill = ill->ill_group_next) { 21149 for (ipif = ill->ill_ipif; ipif != NULL; 21150 ipif = ipif->ipif_next) { 21151 21152 if (ipif == old_ipif) 21153 continue; 21154 21155 ipif_recreate_interface_routes(old_ipif, ipif); 21156 } 21157 } 21158 } 21159 21160 /* ARGSUSED */ 21161 int 21162 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21163 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21164 { 21165 /* 21166 * ill_phyint_reinit merged the v4 and v6 into a single 21167 * ipsq. Could also have become part of a ipmp group in the 21168 * process, and we might not have been able to complete the 21169 * operation in ipif_set_values, if we could not become 21170 * exclusive. If so restart it here. 21171 */ 21172 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21173 } 21174 21175 21176 /* ARGSUSED */ 21177 int 21178 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21179 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21180 { 21181 queue_t *q1 = q; 21182 char *cp; 21183 char interf_name[LIFNAMSIZ]; 21184 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21185 21186 if (!q->q_next) { 21187 ip1dbg(( 21188 "if_unitsel: IF_UNITSEL: no q_next\n")); 21189 return (EINVAL); 21190 } 21191 21192 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21193 return (EALREADY); 21194 21195 do { 21196 q1 = q1->q_next; 21197 } while (q1->q_next); 21198 cp = q1->q_qinfo->qi_minfo->mi_idname; 21199 (void) sprintf(interf_name, "%s%d", cp, ppa); 21200 21201 /* 21202 * Here we are not going to delay the ioack until after 21203 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21204 * original ioctl message before sending the requests. 21205 */ 21206 return (ipif_set_values(q, mp, interf_name, &ppa)); 21207 } 21208 21209 /* ARGSUSED */ 21210 int 21211 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21212 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21213 { 21214 return (ENXIO); 21215 } 21216 21217 /* 21218 * Net and subnet broadcast ire's are now specific to the particular 21219 * physical interface (ill) and not to any one locigal interface (ipif). 21220 * However, if a particular logical interface is being taken down, it's 21221 * associated ire's will be taken down as well. Hence, when we go to 21222 * take down or change the local address, broadcast address or netmask 21223 * of a specific logical interface, we must check to make sure that we 21224 * have valid net and subnet broadcast ire's for the other logical 21225 * interfaces which may have been shared with the logical interface 21226 * being brought down or changed. 21227 * 21228 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21229 * is tied to the first interface coming UP. If that ipif is going down, 21230 * we need to recreate them on the next valid ipif. 21231 * 21232 * Note: assume that the ipif passed in is still up so that it's IRE 21233 * entries are still valid. 21234 */ 21235 static void 21236 ipif_check_bcast_ires(ipif_t *test_ipif) 21237 { 21238 ipif_t *ipif; 21239 ire_t *test_subnet_ire, *test_net_ire; 21240 ire_t *test_allzero_ire, *test_allone_ire; 21241 ire_t *ire_array[12]; 21242 ire_t **irep = &ire_array[0]; 21243 ire_t **irep1; 21244 21245 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21246 ipaddr_t test_net_addr, test_subnet_addr; 21247 ipaddr_t test_net_mask, test_subnet_mask; 21248 boolean_t need_net_bcast_ire = B_FALSE; 21249 boolean_t need_subnet_bcast_ire = B_FALSE; 21250 boolean_t allzero_bcast_ire_created = B_FALSE; 21251 boolean_t allone_bcast_ire_created = B_FALSE; 21252 boolean_t net_bcast_ire_created = B_FALSE; 21253 boolean_t subnet_bcast_ire_created = B_FALSE; 21254 21255 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21256 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21257 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21258 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21259 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21260 21261 ASSERT(!test_ipif->ipif_isv6); 21262 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21263 21264 /* 21265 * No broadcast IREs for the LOOPBACK interface 21266 * or others such as point to point and IPIF_NOXMIT. 21267 */ 21268 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21269 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21270 return; 21271 21272 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21273 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21274 21275 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21276 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21277 21278 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21279 test_subnet_mask = test_ipif->ipif_net_mask; 21280 21281 /* 21282 * If no net mask set, assume the default based on net class. 21283 */ 21284 if (test_subnet_mask == 0) 21285 test_subnet_mask = test_net_mask; 21286 21287 /* 21288 * Check if there is a network broadcast ire associated with this ipif 21289 */ 21290 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21291 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21292 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21293 21294 /* 21295 * Check if there is a subnet broadcast IRE associated with this ipif 21296 */ 21297 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21298 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21299 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 21300 21301 /* 21302 * No broadcast ire's associated with this ipif. 21303 */ 21304 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21305 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21306 return; 21307 } 21308 21309 /* 21310 * We have established which bcast ires have to be replaced. 21311 * Next we try to locate ipifs that match there ires. 21312 * The rules are simple: If we find an ipif that matches on the subnet 21313 * address it will also match on the net address, the allzeros and 21314 * allones address. Any ipif that matches only on the net address will 21315 * also match the allzeros and allones addresses. 21316 * The other criterion is the ipif_flags. We look for non-deprecated 21317 * (and non-anycast and non-nolocal) ipifs as the best choice. 21318 * ipifs with check_flags matching (deprecated, etc) are used only 21319 * if good ipifs are not available. While looping, we save existing 21320 * deprecated ipifs as backup_ipif. 21321 * We loop through all the ipifs for this ill looking for ipifs 21322 * whose broadcast addr match the ipif passed in, but do not have 21323 * their own broadcast ires. For creating 0.0.0.0 and 21324 * 255.255.255.255 we just need an ipif on this ill to create. 21325 */ 21326 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21327 ipif = ipif->ipif_next) { 21328 21329 ASSERT(!ipif->ipif_isv6); 21330 /* 21331 * Already checked the ipif passed in. 21332 */ 21333 if (ipif == test_ipif) { 21334 continue; 21335 } 21336 21337 /* 21338 * We only need to recreate broadcast ires if another ipif in 21339 * the same zone uses them. The new ires must be created in the 21340 * same zone. 21341 */ 21342 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21343 continue; 21344 } 21345 21346 /* 21347 * Only interested in logical interfaces with valid local 21348 * addresses or with the ability to broadcast. 21349 */ 21350 if ((ipif->ipif_subnet == 0) || 21351 !(ipif->ipif_flags & IPIF_BROADCAST) || 21352 (ipif->ipif_flags & IPIF_NOXMIT) || 21353 !(ipif->ipif_flags & IPIF_UP)) { 21354 continue; 21355 } 21356 /* 21357 * Check if there is a net broadcast ire for this 21358 * net address. If it turns out that the ipif we are 21359 * about to take down owns this ire, we must make a 21360 * new one because it is potentially going away. 21361 */ 21362 if (test_net_ire && (!net_bcast_ire_created)) { 21363 net_mask = ip_net_mask(ipif->ipif_subnet); 21364 net_addr = net_mask & ipif->ipif_subnet; 21365 if (net_addr == test_net_addr) { 21366 need_net_bcast_ire = B_TRUE; 21367 /* 21368 * Use DEPRECATED ipif only if no good 21369 * ires are available. subnet_addr is 21370 * a better match than net_addr. 21371 */ 21372 if ((ipif->ipif_flags & check_flags) && 21373 (backup_ipif_net == NULL)) { 21374 backup_ipif_net = ipif; 21375 } 21376 } 21377 } 21378 /* 21379 * Check if there is a subnet broadcast ire for this 21380 * net address. If it turns out that the ipif we are 21381 * about to take down owns this ire, we must make a 21382 * new one because it is potentially going away. 21383 */ 21384 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21385 subnet_mask = ipif->ipif_net_mask; 21386 subnet_addr = ipif->ipif_subnet; 21387 if (subnet_addr == test_subnet_addr) { 21388 need_subnet_bcast_ire = B_TRUE; 21389 if ((ipif->ipif_flags & check_flags) && 21390 (backup_ipif_subnet == NULL)) { 21391 backup_ipif_subnet = ipif; 21392 } 21393 } 21394 } 21395 21396 21397 /* Short circuit here if this ipif is deprecated */ 21398 if (ipif->ipif_flags & check_flags) { 21399 if ((test_allzero_ire != NULL) && 21400 (!allzero_bcast_ire_created) && 21401 (backup_ipif_allzeros == NULL)) { 21402 backup_ipif_allzeros = ipif; 21403 } 21404 if ((test_allone_ire != NULL) && 21405 (!allone_bcast_ire_created) && 21406 (backup_ipif_allones == NULL)) { 21407 backup_ipif_allones = ipif; 21408 } 21409 continue; 21410 } 21411 21412 /* 21413 * Found an ipif which has the same broadcast ire as the 21414 * ipif passed in and the ipif passed in "owns" the ire. 21415 * Create new broadcast ire's for this broadcast addr. 21416 */ 21417 if (need_net_bcast_ire && !net_bcast_ire_created) { 21418 irep = ire_create_bcast(ipif, net_addr, irep); 21419 irep = ire_create_bcast(ipif, 21420 ~net_mask | net_addr, irep); 21421 net_bcast_ire_created = B_TRUE; 21422 } 21423 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21424 irep = ire_create_bcast(ipif, subnet_addr, irep); 21425 irep = ire_create_bcast(ipif, 21426 ~subnet_mask | subnet_addr, irep); 21427 subnet_bcast_ire_created = B_TRUE; 21428 } 21429 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21430 irep = ire_create_bcast(ipif, 0, irep); 21431 allzero_bcast_ire_created = B_TRUE; 21432 } 21433 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21434 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21435 allone_bcast_ire_created = B_TRUE; 21436 } 21437 /* 21438 * Once we have created all the appropriate ires, we 21439 * just break out of this loop to add what we have created. 21440 * This has been indented similar to ire_match_args for 21441 * readability. 21442 */ 21443 if (((test_net_ire == NULL) || 21444 (net_bcast_ire_created)) && 21445 ((test_subnet_ire == NULL) || 21446 (subnet_bcast_ire_created)) && 21447 ((test_allzero_ire == NULL) || 21448 (allzero_bcast_ire_created)) && 21449 ((test_allone_ire == NULL) || 21450 (allone_bcast_ire_created))) { 21451 break; 21452 } 21453 } 21454 21455 /* 21456 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21457 * exist. 6 pairs of bcast ires are needed. 21458 * Note - the old ires are deleted in ipif_down. 21459 */ 21460 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21461 ipif = backup_ipif_net; 21462 irep = ire_create_bcast(ipif, net_addr, irep); 21463 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21464 net_bcast_ire_created = B_TRUE; 21465 } 21466 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21467 backup_ipif_subnet) { 21468 ipif = backup_ipif_subnet; 21469 irep = ire_create_bcast(ipif, subnet_addr, irep); 21470 irep = ire_create_bcast(ipif, 21471 ~subnet_mask | subnet_addr, irep); 21472 subnet_bcast_ire_created = B_TRUE; 21473 } 21474 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21475 backup_ipif_allzeros) { 21476 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21477 allzero_bcast_ire_created = B_TRUE; 21478 } 21479 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21480 backup_ipif_allones) { 21481 irep = ire_create_bcast(backup_ipif_allones, 21482 INADDR_BROADCAST, irep); 21483 allone_bcast_ire_created = B_TRUE; 21484 } 21485 21486 /* 21487 * If we can't create all of them, don't add any of them. 21488 * Code in ip_wput_ire and ire_to_ill assumes that we 21489 * always have a non-loopback copy and loopback copy 21490 * for a given address. 21491 */ 21492 for (irep1 = irep; irep1 > ire_array; ) { 21493 irep1--; 21494 if (*irep1 == NULL) { 21495 ip0dbg(("ipif_check_bcast_ires: can't create " 21496 "IRE_BROADCAST, memory allocation failure\n")); 21497 while (irep > ire_array) { 21498 irep--; 21499 if (*irep != NULL) 21500 ire_delete(*irep); 21501 } 21502 goto bad; 21503 } 21504 } 21505 for (irep1 = irep; irep1 > ire_array; ) { 21506 int error; 21507 21508 irep1--; 21509 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21510 if (error == 0) { 21511 ire_refrele(*irep1); /* Held in ire_add */ 21512 } 21513 } 21514 bad: 21515 if (test_allzero_ire != NULL) 21516 ire_refrele(test_allzero_ire); 21517 if (test_allone_ire != NULL) 21518 ire_refrele(test_allone_ire); 21519 if (test_net_ire != NULL) 21520 ire_refrele(test_net_ire); 21521 if (test_subnet_ire != NULL) 21522 ire_refrele(test_subnet_ire); 21523 } 21524 21525 /* 21526 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21527 * from lifr_flags and the name from lifr_name. 21528 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21529 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21530 * Returns EINPROGRESS when mp has been consumed by queueing it on 21531 * ill_pending_mp and the ioctl will complete in ip_rput. 21532 */ 21533 /* ARGSUSED */ 21534 int 21535 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21536 ip_ioctl_cmd_t *ipip, void *if_req) 21537 { 21538 int err; 21539 ill_t *ill; 21540 struct lifreq *lifr = (struct lifreq *)if_req; 21541 21542 ASSERT(ipif != NULL); 21543 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21544 ASSERT(q->q_next != NULL); 21545 21546 ill = (ill_t *)q->q_ptr; 21547 /* 21548 * If we are not writer on 'q' then this interface exists already 21549 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21550 * So return EALREADY 21551 */ 21552 if (ill != ipif->ipif_ill) 21553 return (EALREADY); 21554 21555 if (ill->ill_name[0] != '\0') 21556 return (EALREADY); 21557 21558 /* 21559 * Set all the flags. Allows all kinds of override. Provide some 21560 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21561 * unless there is either multicast/broadcast support in the driver 21562 * or it is a pt-pt link. 21563 */ 21564 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21565 /* Meaningless to IP thus don't allow them to be set. */ 21566 ip1dbg(("ip_setname: EINVAL 1\n")); 21567 return (EINVAL); 21568 } 21569 /* 21570 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21571 * ill_bcast_addr_length info. 21572 */ 21573 if (!ill->ill_needs_attach && 21574 ((lifr->lifr_flags & IFF_MULTICAST) && 21575 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21576 ill->ill_bcast_addr_length == 0)) { 21577 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21578 ip1dbg(("ip_setname: EINVAL 2\n")); 21579 return (EINVAL); 21580 } 21581 if ((lifr->lifr_flags & IFF_BROADCAST) && 21582 ((lifr->lifr_flags & IFF_IPV6) || 21583 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21584 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21585 ip1dbg(("ip_setname: EINVAL 3\n")); 21586 return (EINVAL); 21587 } 21588 if (lifr->lifr_flags & IFF_UP) { 21589 /* Can only be set with SIOCSLIFFLAGS */ 21590 ip1dbg(("ip_setname: EINVAL 4\n")); 21591 return (EINVAL); 21592 } 21593 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21594 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21595 ip1dbg(("ip_setname: EINVAL 5\n")); 21596 return (EINVAL); 21597 } 21598 /* 21599 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21600 */ 21601 if ((lifr->lifr_flags & IFF_XRESOLV) && 21602 !(lifr->lifr_flags & IFF_IPV6) && 21603 !(ipif->ipif_isv6)) { 21604 ip1dbg(("ip_setname: EINVAL 6\n")); 21605 return (EINVAL); 21606 } 21607 21608 /* 21609 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21610 * we have all the flags here. So, we assign rather than we OR. 21611 * We can't OR the flags here because we don't want to set 21612 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21613 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21614 * on lifr_flags value here. 21615 */ 21616 /* 21617 * This ill has not been inserted into the global list. 21618 * So we are still single threaded and don't need any lock 21619 */ 21620 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21621 ~IFF_DUPLICATE; 21622 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21623 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21624 21625 /* We started off as V4. */ 21626 if (ill->ill_flags & ILLF_IPV6) { 21627 ill->ill_phyint->phyint_illv6 = ill; 21628 ill->ill_phyint->phyint_illv4 = NULL; 21629 } 21630 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21631 return (err); 21632 } 21633 21634 /* ARGSUSED */ 21635 int 21636 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21637 ip_ioctl_cmd_t *ipip, void *if_req) 21638 { 21639 /* 21640 * ill_phyint_reinit merged the v4 and v6 into a single 21641 * ipsq. Could also have become part of a ipmp group in the 21642 * process, and we might not have been able to complete the 21643 * slifname in ipif_set_values, if we could not become 21644 * exclusive. If so restart it here 21645 */ 21646 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21647 } 21648 21649 /* 21650 * Return a pointer to the ipif which matches the index, IP version type and 21651 * zoneid. 21652 */ 21653 ipif_t * 21654 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21655 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21656 { 21657 ill_t *ill; 21658 ipsq_t *ipsq; 21659 phyint_t *phyi; 21660 ipif_t *ipif; 21661 21662 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21663 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21664 21665 if (err != NULL) 21666 *err = 0; 21667 21668 /* 21669 * Indexes are stored in the phyint - a common structure 21670 * to both IPv4 and IPv6. 21671 */ 21672 21673 rw_enter(&ill_g_lock, RW_READER); 21674 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21675 (void *) &index, NULL); 21676 if (phyi != NULL) { 21677 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21678 if (ill == NULL) { 21679 rw_exit(&ill_g_lock); 21680 if (err != NULL) 21681 *err = ENXIO; 21682 return (NULL); 21683 } 21684 GRAB_CONN_LOCK(q); 21685 mutex_enter(&ill->ill_lock); 21686 if (ILL_CAN_LOOKUP(ill)) { 21687 for (ipif = ill->ill_ipif; ipif != NULL; 21688 ipif = ipif->ipif_next) { 21689 if (IPIF_CAN_LOOKUP(ipif) && 21690 (zoneid == ALL_ZONES || 21691 zoneid == ipif->ipif_zoneid || 21692 ipif->ipif_zoneid == ALL_ZONES)) { 21693 ipif_refhold_locked(ipif); 21694 mutex_exit(&ill->ill_lock); 21695 RELEASE_CONN_LOCK(q); 21696 rw_exit(&ill_g_lock); 21697 return (ipif); 21698 } 21699 } 21700 } else if (ILL_CAN_WAIT(ill, q)) { 21701 ipsq = ill->ill_phyint->phyint_ipsq; 21702 mutex_enter(&ipsq->ipsq_lock); 21703 rw_exit(&ill_g_lock); 21704 mutex_exit(&ill->ill_lock); 21705 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21706 mutex_exit(&ipsq->ipsq_lock); 21707 RELEASE_CONN_LOCK(q); 21708 *err = EINPROGRESS; 21709 return (NULL); 21710 } 21711 mutex_exit(&ill->ill_lock); 21712 RELEASE_CONN_LOCK(q); 21713 } 21714 rw_exit(&ill_g_lock); 21715 if (err != NULL) 21716 *err = ENXIO; 21717 return (NULL); 21718 } 21719 21720 typedef struct conn_change_s { 21721 uint_t cc_old_ifindex; 21722 uint_t cc_new_ifindex; 21723 } conn_change_t; 21724 21725 /* 21726 * ipcl_walk function for changing interface index. 21727 */ 21728 static void 21729 conn_change_ifindex(conn_t *connp, caddr_t arg) 21730 { 21731 conn_change_t *connc; 21732 uint_t old_ifindex; 21733 uint_t new_ifindex; 21734 int i; 21735 ilg_t *ilg; 21736 21737 connc = (conn_change_t *)arg; 21738 old_ifindex = connc->cc_old_ifindex; 21739 new_ifindex = connc->cc_new_ifindex; 21740 21741 if (connp->conn_orig_bound_ifindex == old_ifindex) 21742 connp->conn_orig_bound_ifindex = new_ifindex; 21743 21744 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21745 connp->conn_orig_multicast_ifindex = new_ifindex; 21746 21747 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21748 connp->conn_orig_xmit_ifindex = new_ifindex; 21749 21750 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21751 ilg = &connp->conn_ilg[i]; 21752 if (ilg->ilg_orig_ifindex == old_ifindex) 21753 ilg->ilg_orig_ifindex = new_ifindex; 21754 } 21755 } 21756 21757 /* 21758 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21759 * to new_index if it matches the old_index. 21760 * 21761 * Failovers typically happen within a group of ills. But somebody 21762 * can remove an ill from the group after a failover happened. If 21763 * we are setting the ifindex after this, we potentially need to 21764 * look at all the ills rather than just the ones in the group. 21765 * We cut down the work by looking at matching ill_net_types 21766 * and ill_types as we could not possibly grouped them together. 21767 */ 21768 static void 21769 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21770 { 21771 ill_t *ill; 21772 ipif_t *ipif; 21773 uint_t old_ifindex; 21774 uint_t new_ifindex; 21775 ilm_t *ilm; 21776 ill_walk_context_t ctx; 21777 21778 old_ifindex = connc->cc_old_ifindex; 21779 new_ifindex = connc->cc_new_ifindex; 21780 21781 rw_enter(&ill_g_lock, RW_READER); 21782 ill = ILL_START_WALK_ALL(&ctx); 21783 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21784 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21785 (ill_orig->ill_type != ill->ill_type)) { 21786 continue; 21787 } 21788 for (ipif = ill->ill_ipif; ipif != NULL; 21789 ipif = ipif->ipif_next) { 21790 if (ipif->ipif_orig_ifindex == old_ifindex) 21791 ipif->ipif_orig_ifindex = new_ifindex; 21792 } 21793 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21794 if (ilm->ilm_orig_ifindex == old_ifindex) 21795 ilm->ilm_orig_ifindex = new_ifindex; 21796 } 21797 } 21798 rw_exit(&ill_g_lock); 21799 } 21800 21801 /* 21802 * We first need to ensure that the new index is unique, and 21803 * then carry the change across both v4 and v6 ill representation 21804 * of the physical interface. 21805 */ 21806 /* ARGSUSED */ 21807 int 21808 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21809 ip_ioctl_cmd_t *ipip, void *ifreq) 21810 { 21811 ill_t *ill; 21812 ill_t *ill_other; 21813 phyint_t *phyi; 21814 int old_index; 21815 conn_change_t connc; 21816 struct ifreq *ifr = (struct ifreq *)ifreq; 21817 struct lifreq *lifr = (struct lifreq *)ifreq; 21818 uint_t index; 21819 ill_t *ill_v4; 21820 ill_t *ill_v6; 21821 21822 if (ipip->ipi_cmd_type == IF_CMD) 21823 index = ifr->ifr_index; 21824 else 21825 index = lifr->lifr_index; 21826 21827 /* 21828 * Only allow on physical interface. Also, index zero is illegal. 21829 * 21830 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21831 * 21832 * 1) If PHYI_FAILED is set, a failover could have happened which 21833 * implies a possible failback might have to happen. As failback 21834 * depends on the old index, we should fail setting the index. 21835 * 21836 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21837 * any addresses or multicast memberships are failed over to 21838 * a non-STANDBY interface. As failback depends on the old 21839 * index, we should fail setting the index for this case also. 21840 * 21841 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21842 * Be consistent with PHYI_FAILED and fail the ioctl. 21843 */ 21844 ill = ipif->ipif_ill; 21845 phyi = ill->ill_phyint; 21846 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21847 ipif->ipif_id != 0 || index == 0) { 21848 return (EINVAL); 21849 } 21850 old_index = phyi->phyint_ifindex; 21851 21852 /* If the index is not changing, no work to do */ 21853 if (old_index == index) 21854 return (0); 21855 21856 /* 21857 * Use ill_lookup_on_ifindex to determine if the 21858 * new index is unused and if so allow the change. 21859 */ 21860 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21861 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21862 if (ill_v6 != NULL || ill_v4 != NULL) { 21863 if (ill_v4 != NULL) 21864 ill_refrele(ill_v4); 21865 if (ill_v6 != NULL) 21866 ill_refrele(ill_v6); 21867 return (EBUSY); 21868 } 21869 21870 /* 21871 * The new index is unused. Set it in the phyint. 21872 * Locate the other ill so that we can send a routing 21873 * sockets message. 21874 */ 21875 if (ill->ill_isv6) { 21876 ill_other = phyi->phyint_illv4; 21877 } else { 21878 ill_other = phyi->phyint_illv6; 21879 } 21880 21881 phyi->phyint_ifindex = index; 21882 21883 connc.cc_old_ifindex = old_index; 21884 connc.cc_new_ifindex = index; 21885 ip_change_ifindex(ill, &connc); 21886 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21887 21888 /* Send the routing sockets message */ 21889 ip_rts_ifmsg(ipif); 21890 if (ill_other != NULL) 21891 ip_rts_ifmsg(ill_other->ill_ipif); 21892 21893 return (0); 21894 } 21895 21896 /* ARGSUSED */ 21897 int 21898 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21899 ip_ioctl_cmd_t *ipip, void *ifreq) 21900 { 21901 struct ifreq *ifr = (struct ifreq *)ifreq; 21902 struct lifreq *lifr = (struct lifreq *)ifreq; 21903 21904 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21905 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21906 /* Get the interface index */ 21907 if (ipip->ipi_cmd_type == IF_CMD) { 21908 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21909 } else { 21910 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21911 } 21912 return (0); 21913 } 21914 21915 /* ARGSUSED */ 21916 int 21917 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21918 ip_ioctl_cmd_t *ipip, void *ifreq) 21919 { 21920 struct lifreq *lifr = (struct lifreq *)ifreq; 21921 21922 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21923 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21924 /* Get the interface zone */ 21925 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21926 lifr->lifr_zoneid = ipif->ipif_zoneid; 21927 return (0); 21928 } 21929 21930 /* 21931 * Set the zoneid of an interface. 21932 */ 21933 /* ARGSUSED */ 21934 int 21935 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21936 ip_ioctl_cmd_t *ipip, void *ifreq) 21937 { 21938 struct lifreq *lifr = (struct lifreq *)ifreq; 21939 int err = 0; 21940 boolean_t need_up = B_FALSE; 21941 zone_t *zptr; 21942 zone_status_t status; 21943 zoneid_t zoneid; 21944 21945 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21946 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21947 if (!is_system_labeled()) 21948 return (ENOTSUP); 21949 zoneid = GLOBAL_ZONEID; 21950 } 21951 21952 /* cannot assign instance zero to a non-global zone */ 21953 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21954 return (ENOTSUP); 21955 21956 /* 21957 * Cannot assign to a zone that doesn't exist or is shutting down. In 21958 * the event of a race with the zone shutdown processing, since IP 21959 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21960 * interface will be cleaned up even if the zone is shut down 21961 * immediately after the status check. If the interface can't be brought 21962 * down right away, and the zone is shut down before the restart 21963 * function is called, we resolve the possible races by rechecking the 21964 * zone status in the restart function. 21965 */ 21966 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21967 return (EINVAL); 21968 status = zone_status_get(zptr); 21969 zone_rele(zptr); 21970 21971 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21972 return (EINVAL); 21973 21974 if (ipif->ipif_flags & IPIF_UP) { 21975 /* 21976 * If the interface is already marked up, 21977 * we call ipif_down which will take care 21978 * of ditching any IREs that have been set 21979 * up based on the old interface address. 21980 */ 21981 err = ipif_logical_down(ipif, q, mp); 21982 if (err == EINPROGRESS) 21983 return (err); 21984 ipif_down_tail(ipif); 21985 need_up = B_TRUE; 21986 } 21987 21988 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21989 return (err); 21990 } 21991 21992 static int 21993 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21994 queue_t *q, mblk_t *mp, boolean_t need_up) 21995 { 21996 int err = 0; 21997 21998 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21999 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22000 22001 /* Set the new zone id. */ 22002 ipif->ipif_zoneid = zoneid; 22003 22004 /* Update sctp list */ 22005 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22006 22007 if (need_up) { 22008 /* 22009 * Now bring the interface back up. If this 22010 * is the only IPIF for the ILL, ipif_up 22011 * will have to re-bind to the device, so 22012 * we may get back EINPROGRESS, in which 22013 * case, this IOCTL will get completed in 22014 * ip_rput_dlpi when we see the DL_BIND_ACK. 22015 */ 22016 err = ipif_up(ipif, q, mp); 22017 } 22018 return (err); 22019 } 22020 22021 /* ARGSUSED */ 22022 int 22023 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22024 ip_ioctl_cmd_t *ipip, void *if_req) 22025 { 22026 struct lifreq *lifr = (struct lifreq *)if_req; 22027 zoneid_t zoneid; 22028 zone_t *zptr; 22029 zone_status_t status; 22030 22031 ASSERT(ipif->ipif_id != 0); 22032 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22033 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22034 zoneid = GLOBAL_ZONEID; 22035 22036 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22037 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22038 22039 /* 22040 * We recheck the zone status to resolve the following race condition: 22041 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22042 * 2) hme0:1 is up and can't be brought down right away; 22043 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22044 * 3) zone "myzone" is halted; the zone status switches to 22045 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22046 * the interfaces to remove - hme0:1 is not returned because it's not 22047 * yet in "myzone", so it won't be removed; 22048 * 4) the restart function for SIOCSLIFZONE is called; without the 22049 * status check here, we would have hme0:1 in "myzone" after it's been 22050 * destroyed. 22051 * Note that if the status check fails, we need to bring the interface 22052 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22053 * ipif_up_done[_v6](). 22054 */ 22055 status = ZONE_IS_UNINITIALIZED; 22056 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22057 status = zone_status_get(zptr); 22058 zone_rele(zptr); 22059 } 22060 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22061 if (ipif->ipif_isv6) { 22062 (void) ipif_up_done_v6(ipif); 22063 } else { 22064 (void) ipif_up_done(ipif); 22065 } 22066 return (EINVAL); 22067 } 22068 22069 ipif_down_tail(ipif); 22070 22071 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22072 B_TRUE)); 22073 } 22074 22075 /* ARGSUSED */ 22076 int 22077 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22078 ip_ioctl_cmd_t *ipip, void *ifreq) 22079 { 22080 struct lifreq *lifr = ifreq; 22081 22082 ASSERT(q->q_next == NULL); 22083 ASSERT(CONN_Q(q)); 22084 22085 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22086 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22087 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22088 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22089 22090 return (0); 22091 } 22092 22093 22094 /* Find the previous ILL in this usesrc group */ 22095 static ill_t * 22096 ill_prev_usesrc(ill_t *uill) 22097 { 22098 ill_t *ill; 22099 22100 for (ill = uill->ill_usesrc_grp_next; 22101 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22102 ill = ill->ill_usesrc_grp_next) 22103 /* do nothing */; 22104 return (ill); 22105 } 22106 22107 /* 22108 * Release all members of the usesrc group. This routine is called 22109 * from ill_delete when the interface being unplumbed is the 22110 * group head. 22111 */ 22112 static void 22113 ill_disband_usesrc_group(ill_t *uill) 22114 { 22115 ill_t *next_ill, *tmp_ill; 22116 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 22117 next_ill = uill->ill_usesrc_grp_next; 22118 22119 do { 22120 ASSERT(next_ill != NULL); 22121 tmp_ill = next_ill->ill_usesrc_grp_next; 22122 ASSERT(tmp_ill != NULL); 22123 next_ill->ill_usesrc_grp_next = NULL; 22124 next_ill->ill_usesrc_ifindex = 0; 22125 next_ill = tmp_ill; 22126 } while (next_ill->ill_usesrc_ifindex != 0); 22127 uill->ill_usesrc_grp_next = NULL; 22128 } 22129 22130 /* 22131 * Remove the client usesrc ILL from the list and relink to a new list 22132 */ 22133 int 22134 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22135 { 22136 ill_t *ill, *tmp_ill; 22137 22138 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22139 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 22140 22141 /* 22142 * Check if the usesrc client ILL passed in is not already 22143 * in use as a usesrc ILL i.e one whose source address is 22144 * in use OR a usesrc ILL is not already in use as a usesrc 22145 * client ILL 22146 */ 22147 if ((ucill->ill_usesrc_ifindex == 0) || 22148 (uill->ill_usesrc_ifindex != 0)) { 22149 return (-1); 22150 } 22151 22152 ill = ill_prev_usesrc(ucill); 22153 ASSERT(ill->ill_usesrc_grp_next != NULL); 22154 22155 /* Remove from the current list */ 22156 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22157 /* Only two elements in the list */ 22158 ASSERT(ill->ill_usesrc_ifindex == 0); 22159 ill->ill_usesrc_grp_next = NULL; 22160 } else { 22161 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22162 } 22163 22164 if (ifindex == 0) { 22165 ucill->ill_usesrc_ifindex = 0; 22166 ucill->ill_usesrc_grp_next = NULL; 22167 return (0); 22168 } 22169 22170 ucill->ill_usesrc_ifindex = ifindex; 22171 tmp_ill = uill->ill_usesrc_grp_next; 22172 uill->ill_usesrc_grp_next = ucill; 22173 ucill->ill_usesrc_grp_next = 22174 (tmp_ill != NULL) ? tmp_ill : uill; 22175 return (0); 22176 } 22177 22178 /* 22179 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22180 * ip.c for locking details. 22181 */ 22182 /* ARGSUSED */ 22183 int 22184 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22185 ip_ioctl_cmd_t *ipip, void *ifreq) 22186 { 22187 struct lifreq *lifr = (struct lifreq *)ifreq; 22188 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22189 ill_flag_changed = B_FALSE; 22190 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22191 int err = 0, ret; 22192 uint_t ifindex; 22193 phyint_t *us_phyint, *us_cli_phyint; 22194 ipsq_t *ipsq = NULL; 22195 22196 ASSERT(IAM_WRITER_IPIF(ipif)); 22197 ASSERT(q->q_next == NULL); 22198 ASSERT(CONN_Q(q)); 22199 22200 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22201 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22202 22203 ASSERT(us_cli_phyint != NULL); 22204 22205 /* 22206 * If the client ILL is being used for IPMP, abort. 22207 * Note, this can be done before ipsq_try_enter since we are already 22208 * exclusive on this ILL 22209 */ 22210 if ((us_cli_phyint->phyint_groupname != NULL) || 22211 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22212 return (EINVAL); 22213 } 22214 22215 ifindex = lifr->lifr_index; 22216 if (ifindex == 0) { 22217 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22218 /* non usesrc group interface, nothing to reset */ 22219 return (0); 22220 } 22221 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22222 /* valid reset request */ 22223 reset_flg = B_TRUE; 22224 } 22225 22226 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22227 ip_process_ioctl, &err); 22228 22229 if (usesrc_ill == NULL) { 22230 return (err); 22231 } 22232 22233 /* 22234 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22235 * group nor can either of the interfaces be used for standy. So 22236 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22237 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22238 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22239 * We are already exlusive on this ipsq i.e ipsq corresponding to 22240 * the usesrc_cli_ill 22241 */ 22242 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22243 NEW_OP, B_TRUE); 22244 if (ipsq == NULL) { 22245 err = EINPROGRESS; 22246 /* Operation enqueued on the ipsq of the usesrc ILL */ 22247 goto done; 22248 } 22249 22250 /* Check if the usesrc_ill is used for IPMP */ 22251 us_phyint = usesrc_ill->ill_phyint; 22252 if ((us_phyint->phyint_groupname != NULL) || 22253 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22254 err = EINVAL; 22255 goto done; 22256 } 22257 22258 /* 22259 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22260 * already a client then return EINVAL 22261 */ 22262 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22263 err = EINVAL; 22264 goto done; 22265 } 22266 22267 /* 22268 * If the ill_usesrc_ifindex field is already set to what it needs to 22269 * be then this is a duplicate operation. 22270 */ 22271 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22272 err = 0; 22273 goto done; 22274 } 22275 22276 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22277 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22278 usesrc_ill->ill_isv6)); 22279 22280 /* 22281 * The next step ensures that no new ires will be created referencing 22282 * the client ill, until the ILL_CHANGING flag is cleared. Then 22283 * we go through an ire walk deleting all ire caches that reference 22284 * the client ill. New ires referencing the client ill that are added 22285 * to the ire table before the ILL_CHANGING flag is set, will be 22286 * cleaned up by the ire walk below. Attempt to add new ires referencing 22287 * the client ill while the ILL_CHANGING flag is set will be failed 22288 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22289 * checks (under the ill_g_usesrc_lock) that the ire being added 22290 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22291 * belong to the same usesrc group. 22292 */ 22293 mutex_enter(&usesrc_cli_ill->ill_lock); 22294 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22295 mutex_exit(&usesrc_cli_ill->ill_lock); 22296 ill_flag_changed = B_TRUE; 22297 22298 if (ipif->ipif_isv6) 22299 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22300 ALL_ZONES); 22301 else 22302 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22303 ALL_ZONES); 22304 22305 /* 22306 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22307 * and the ill_usesrc_ifindex fields 22308 */ 22309 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 22310 22311 if (reset_flg) { 22312 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22313 if (ret != 0) { 22314 err = EINVAL; 22315 } 22316 rw_exit(&ill_g_usesrc_lock); 22317 goto done; 22318 } 22319 22320 /* 22321 * Four possibilities to consider: 22322 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22323 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22324 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22325 * 4. Both are part of their respective usesrc groups 22326 */ 22327 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22328 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22329 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22330 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22331 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22332 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22333 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22334 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22335 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22336 /* Insert at head of list */ 22337 usesrc_cli_ill->ill_usesrc_grp_next = 22338 usesrc_ill->ill_usesrc_grp_next; 22339 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22340 } else { 22341 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22342 ifindex); 22343 if (ret != 0) 22344 err = EINVAL; 22345 } 22346 rw_exit(&ill_g_usesrc_lock); 22347 22348 done: 22349 if (ill_flag_changed) { 22350 mutex_enter(&usesrc_cli_ill->ill_lock); 22351 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22352 mutex_exit(&usesrc_cli_ill->ill_lock); 22353 } 22354 if (ipsq != NULL) 22355 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22356 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22357 ill_refrele(usesrc_ill); 22358 return (err); 22359 } 22360 22361 /* 22362 * comparison function used by avl. 22363 */ 22364 static int 22365 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22366 { 22367 22368 uint_t index; 22369 22370 ASSERT(phyip != NULL && index_ptr != NULL); 22371 22372 index = *((uint_t *)index_ptr); 22373 /* 22374 * let the phyint with the lowest index be on top. 22375 */ 22376 if (((phyint_t *)phyip)->phyint_ifindex < index) 22377 return (1); 22378 if (((phyint_t *)phyip)->phyint_ifindex > index) 22379 return (-1); 22380 return (0); 22381 } 22382 22383 /* 22384 * comparison function used by avl. 22385 */ 22386 static int 22387 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22388 { 22389 ill_t *ill; 22390 int res = 0; 22391 22392 ASSERT(phyip != NULL && name_ptr != NULL); 22393 22394 if (((phyint_t *)phyip)->phyint_illv4) 22395 ill = ((phyint_t *)phyip)->phyint_illv4; 22396 else 22397 ill = ((phyint_t *)phyip)->phyint_illv6; 22398 ASSERT(ill != NULL); 22399 22400 res = strcmp(ill->ill_name, (char *)name_ptr); 22401 if (res > 0) 22402 return (1); 22403 else if (res < 0) 22404 return (-1); 22405 return (0); 22406 } 22407 /* 22408 * This function is called from ill_delete when the ill is being 22409 * unplumbed. We remove the reference from the phyint and we also 22410 * free the phyint when there are no more references to it. 22411 */ 22412 static void 22413 ill_phyint_free(ill_t *ill) 22414 { 22415 phyint_t *phyi; 22416 phyint_t *next_phyint; 22417 ipsq_t *cur_ipsq; 22418 22419 ASSERT(ill->ill_phyint != NULL); 22420 22421 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22422 phyi = ill->ill_phyint; 22423 ill->ill_phyint = NULL; 22424 /* 22425 * ill_init allocates a phyint always to store the copy 22426 * of flags relevant to phyint. At that point in time, we could 22427 * not assign the name and hence phyint_illv4/v6 could not be 22428 * initialized. Later in ipif_set_values, we assign the name to 22429 * the ill, at which point in time we assign phyint_illv4/v6. 22430 * Thus we don't rely on phyint_illv6 to be initialized always. 22431 */ 22432 if (ill->ill_flags & ILLF_IPV6) { 22433 phyi->phyint_illv6 = NULL; 22434 } else { 22435 phyi->phyint_illv4 = NULL; 22436 } 22437 /* 22438 * ipif_down removes it from the group when the last ipif goes 22439 * down. 22440 */ 22441 ASSERT(ill->ill_group == NULL); 22442 22443 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22444 return; 22445 22446 /* 22447 * Make sure this phyint was put in the list. 22448 */ 22449 if (phyi->phyint_ifindex > 0) { 22450 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 22451 phyi); 22452 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 22453 phyi); 22454 } 22455 /* 22456 * remove phyint from the ipsq list. 22457 */ 22458 cur_ipsq = phyi->phyint_ipsq; 22459 if (phyi == cur_ipsq->ipsq_phyint_list) { 22460 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22461 } else { 22462 next_phyint = cur_ipsq->ipsq_phyint_list; 22463 while (next_phyint != NULL) { 22464 if (next_phyint->phyint_ipsq_next == phyi) { 22465 next_phyint->phyint_ipsq_next = 22466 phyi->phyint_ipsq_next; 22467 break; 22468 } 22469 next_phyint = next_phyint->phyint_ipsq_next; 22470 } 22471 ASSERT(next_phyint != NULL); 22472 } 22473 IPSQ_DEC_REF(cur_ipsq); 22474 22475 if (phyi->phyint_groupname_len != 0) { 22476 ASSERT(phyi->phyint_groupname != NULL); 22477 mi_free(phyi->phyint_groupname); 22478 } 22479 mi_free(phyi); 22480 } 22481 22482 /* 22483 * Attach the ill to the phyint structure which can be shared by both 22484 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22485 * function is called from ipif_set_values and ill_lookup_on_name (for 22486 * loopback) where we know the name of the ill. We lookup the ill and if 22487 * there is one present already with the name use that phyint. Otherwise 22488 * reuse the one allocated by ill_init. 22489 */ 22490 static void 22491 ill_phyint_reinit(ill_t *ill) 22492 { 22493 boolean_t isv6 = ill->ill_isv6; 22494 phyint_t *phyi_old; 22495 phyint_t *phyi; 22496 avl_index_t where = 0; 22497 ill_t *ill_other = NULL; 22498 ipsq_t *ipsq; 22499 22500 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 22501 22502 phyi_old = ill->ill_phyint; 22503 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22504 phyi_old->phyint_illv6 == NULL)); 22505 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22506 phyi_old->phyint_illv4 == NULL)); 22507 ASSERT(phyi_old->phyint_ifindex == 0); 22508 22509 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 22510 ill->ill_name, &where); 22511 22512 /* 22513 * 1. We grabbed the ill_g_lock before inserting this ill into 22514 * the global list of ills. So no other thread could have located 22515 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22516 * 2. Now locate the other protocol instance of this ill. 22517 * 3. Now grab both ill locks in the right order, and the phyint lock of 22518 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22519 * of neither ill can change. 22520 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22521 * other ill. 22522 * 5. Release all locks. 22523 */ 22524 22525 /* 22526 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22527 * we are initializing IPv4. 22528 */ 22529 if (phyi != NULL) { 22530 ill_other = (isv6) ? phyi->phyint_illv4 : 22531 phyi->phyint_illv6; 22532 ASSERT(ill_other->ill_phyint != NULL); 22533 ASSERT((isv6 && !ill_other->ill_isv6) || 22534 (!isv6 && ill_other->ill_isv6)); 22535 GRAB_ILL_LOCKS(ill, ill_other); 22536 /* 22537 * We are potentially throwing away phyint_flags which 22538 * could be different from the one that we obtain from 22539 * ill_other->ill_phyint. But it is okay as we are assuming 22540 * that the state maintained within IP is correct. 22541 */ 22542 mutex_enter(&phyi->phyint_lock); 22543 if (isv6) { 22544 ASSERT(phyi->phyint_illv6 == NULL); 22545 phyi->phyint_illv6 = ill; 22546 } else { 22547 ASSERT(phyi->phyint_illv4 == NULL); 22548 phyi->phyint_illv4 = ill; 22549 } 22550 /* 22551 * This is a new ill, currently undergoing SLIFNAME 22552 * So we could not have joined an IPMP group until now. 22553 */ 22554 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22555 phyi_old->phyint_groupname == NULL); 22556 22557 /* 22558 * This phyi_old is going away. Decref ipsq_refs and 22559 * assert it is zero. The ipsq itself will be freed in 22560 * ipsq_exit 22561 */ 22562 ipsq = phyi_old->phyint_ipsq; 22563 IPSQ_DEC_REF(ipsq); 22564 ASSERT(ipsq->ipsq_refs == 0); 22565 /* Get the singleton phyint out of the ipsq list */ 22566 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22567 ipsq->ipsq_phyint_list = NULL; 22568 phyi_old->phyint_illv4 = NULL; 22569 phyi_old->phyint_illv6 = NULL; 22570 mi_free(phyi_old); 22571 } else { 22572 mutex_enter(&ill->ill_lock); 22573 /* 22574 * We don't need to acquire any lock, since 22575 * the ill is not yet visible globally and we 22576 * have not yet released the ill_g_lock. 22577 */ 22578 phyi = phyi_old; 22579 mutex_enter(&phyi->phyint_lock); 22580 /* XXX We need a recovery strategy here. */ 22581 if (!phyint_assign_ifindex(phyi)) 22582 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22583 22584 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 22585 (void *)phyi, where); 22586 22587 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 22588 &phyi->phyint_ifindex, &where); 22589 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 22590 (void *)phyi, where); 22591 } 22592 22593 /* 22594 * Reassigning ill_phyint automatically reassigns the ipsq also. 22595 * pending mp is not affected because that is per ill basis. 22596 */ 22597 ill->ill_phyint = phyi; 22598 22599 /* 22600 * Keep the index on ipif_orig_index to be used by FAILOVER. 22601 * We do this here as when the first ipif was allocated, 22602 * ipif_allocate does not know the right interface index. 22603 */ 22604 22605 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22606 /* 22607 * Now that the phyint's ifindex has been assigned, complete the 22608 * remaining 22609 */ 22610 22611 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22612 if (ill->ill_isv6) { 22613 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22614 ill->ill_phyint->phyint_ifindex; 22615 } 22616 22617 /* 22618 * Generate an event within the hooks framework to indicate that 22619 * a new interface has just been added to IP. For this event to 22620 * be generated, the network interface must, at least, have an 22621 * ifindex assigned to it. 22622 * 22623 * This needs to be run inside the ill_g_lock perimeter to ensure 22624 * that the ordering of delivered events to listeners matches the 22625 * order of them in the kernel. 22626 * 22627 * This function could be called from ill_lookup_on_name. In that case 22628 * the interface is loopback "lo", which will not generate a NIC event. 22629 */ 22630 if (ill->ill_name_length <= 2 || 22631 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22632 hook_nic_event_t *info; 22633 if ((info = ill->ill_nic_event_info) != NULL) { 22634 ip2dbg(("ill_phyint_reinit: unexpected nic event %d " 22635 "attached for %s\n", info->hne_event, 22636 ill->ill_name)); 22637 if (info->hne_data != NULL) 22638 kmem_free(info->hne_data, info->hne_datalen); 22639 kmem_free(info, sizeof (hook_nic_event_t)); 22640 } 22641 22642 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22643 if (info != NULL) { 22644 info->hne_nic = ill->ill_phyint->phyint_ifindex; 22645 info->hne_lif = 0; 22646 info->hne_event = NE_PLUMB; 22647 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 22648 info->hne_data = kmem_alloc(ill->ill_name_length, 22649 KM_NOSLEEP); 22650 if (info->hne_data != NULL) { 22651 info->hne_datalen = ill->ill_name_length; 22652 bcopy(ill->ill_name, info->hne_data, 22653 info->hne_datalen); 22654 } else { 22655 ip2dbg(("ill_phyint_reinit: could not attach " 22656 "ill_name information for PLUMB nic event " 22657 "of %s (ENOMEM)\n", ill->ill_name)); 22658 kmem_free(info, sizeof (hook_nic_event_t)); 22659 } 22660 } else 22661 ip2dbg(("ill_phyint_reinit: could not attach PLUMB nic " 22662 "event information for %s (ENOMEM)\n", 22663 ill->ill_name)); 22664 22665 ill->ill_nic_event_info = info; 22666 } 22667 22668 RELEASE_ILL_LOCKS(ill, ill_other); 22669 mutex_exit(&phyi->phyint_lock); 22670 } 22671 22672 /* 22673 * Notify any downstream modules of the name of this interface. 22674 * An M_IOCTL is used even though we don't expect a successful reply. 22675 * Any reply message from the driver (presumably an M_IOCNAK) will 22676 * eventually get discarded somewhere upstream. The message format is 22677 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22678 * to IP. 22679 */ 22680 static void 22681 ip_ifname_notify(ill_t *ill, queue_t *q) 22682 { 22683 mblk_t *mp1, *mp2; 22684 struct iocblk *iocp; 22685 struct lifreq *lifr; 22686 22687 mp1 = mkiocb(SIOCSLIFNAME); 22688 if (mp1 == NULL) 22689 return; 22690 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22691 if (mp2 == NULL) { 22692 freeb(mp1); 22693 return; 22694 } 22695 22696 mp1->b_cont = mp2; 22697 iocp = (struct iocblk *)mp1->b_rptr; 22698 iocp->ioc_count = sizeof (struct lifreq); 22699 22700 lifr = (struct lifreq *)mp2->b_rptr; 22701 mp2->b_wptr += sizeof (struct lifreq); 22702 bzero(lifr, sizeof (struct lifreq)); 22703 22704 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22705 lifr->lifr_ppa = ill->ill_ppa; 22706 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22707 22708 putnext(q, mp1); 22709 } 22710 22711 static boolean_t ip_trash_timer_started = B_FALSE; 22712 22713 static int 22714 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22715 { 22716 int err; 22717 22718 /* Set the obsolete NDD per-interface forwarding name. */ 22719 err = ill_set_ndd_name(ill); 22720 if (err != 0) { 22721 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22722 err); 22723 } 22724 22725 /* Tell downstream modules where they are. */ 22726 ip_ifname_notify(ill, q); 22727 22728 /* 22729 * ill_dl_phys returns EINPROGRESS in the usual case. 22730 * Error cases are ENOMEM ... 22731 */ 22732 err = ill_dl_phys(ill, ipif, mp, q); 22733 22734 /* 22735 * If there is no IRE expiration timer running, get one started. 22736 * igmp and mld timers will be triggered by the first multicast 22737 */ 22738 if (!ip_trash_timer_started) { 22739 /* 22740 * acquire the lock and check again. 22741 */ 22742 mutex_enter(&ip_trash_timer_lock); 22743 if (!ip_trash_timer_started) { 22744 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22745 MSEC_TO_TICK(ip_timer_interval)); 22746 ip_trash_timer_started = B_TRUE; 22747 } 22748 mutex_exit(&ip_trash_timer_lock); 22749 } 22750 22751 if (ill->ill_isv6) { 22752 mutex_enter(&mld_slowtimeout_lock); 22753 if (mld_slowtimeout_id == 0) { 22754 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22755 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22756 } 22757 mutex_exit(&mld_slowtimeout_lock); 22758 } else { 22759 mutex_enter(&igmp_slowtimeout_lock); 22760 if (igmp_slowtimeout_id == 0) { 22761 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22762 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22763 } 22764 mutex_exit(&igmp_slowtimeout_lock); 22765 } 22766 22767 return (err); 22768 } 22769 22770 /* 22771 * Common routine for ppa and ifname setting. Should be called exclusive. 22772 * 22773 * Returns EINPROGRESS when mp has been consumed by queueing it on 22774 * ill_pending_mp and the ioctl will complete in ip_rput. 22775 * 22776 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22777 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22778 * For SLIFNAME, we pass these values back to the userland. 22779 */ 22780 static int 22781 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22782 { 22783 ill_t *ill; 22784 ipif_t *ipif; 22785 ipsq_t *ipsq; 22786 char *ppa_ptr; 22787 char *old_ptr; 22788 char old_char; 22789 int error; 22790 22791 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22792 ASSERT(q->q_next != NULL); 22793 ASSERT(interf_name != NULL); 22794 22795 ill = (ill_t *)q->q_ptr; 22796 22797 ASSERT(ill->ill_name[0] == '\0'); 22798 ASSERT(IAM_WRITER_ILL(ill)); 22799 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22800 ASSERT(ill->ill_ppa == UINT_MAX); 22801 22802 /* The ppa is sent down by ifconfig or is chosen */ 22803 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22804 return (EINVAL); 22805 } 22806 22807 /* 22808 * make sure ppa passed in is same as ppa in the name. 22809 * This check is not made when ppa == UINT_MAX in that case ppa 22810 * in the name could be anything. System will choose a ppa and 22811 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22812 */ 22813 if (*new_ppa_ptr != UINT_MAX) { 22814 /* stoi changes the pointer */ 22815 old_ptr = ppa_ptr; 22816 /* 22817 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22818 * (they don't have an externally visible ppa). We assign one 22819 * here so that we can manage the interface. Note that in 22820 * the past this value was always 0 for DLPI 1 drivers. 22821 */ 22822 if (*new_ppa_ptr == 0) 22823 *new_ppa_ptr = stoi(&old_ptr); 22824 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22825 return (EINVAL); 22826 } 22827 /* 22828 * terminate string before ppa 22829 * save char at that location. 22830 */ 22831 old_char = ppa_ptr[0]; 22832 ppa_ptr[0] = '\0'; 22833 22834 ill->ill_ppa = *new_ppa_ptr; 22835 /* 22836 * Finish as much work now as possible before calling ill_glist_insert 22837 * which makes the ill globally visible and also merges it with the 22838 * other protocol instance of this phyint. The remaining work is 22839 * done after entering the ipsq which may happen sometime later. 22840 * ill_set_ndd_name occurs after the ill has been made globally visible. 22841 */ 22842 ipif = ill->ill_ipif; 22843 22844 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22845 ipif_assign_seqid(ipif); 22846 22847 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22848 ill->ill_flags |= ILLF_IPV4; 22849 22850 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22851 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22852 22853 if (ill->ill_flags & ILLF_IPV6) { 22854 22855 ill->ill_isv6 = B_TRUE; 22856 if (ill->ill_rq != NULL) { 22857 ill->ill_rq->q_qinfo = &rinit_ipv6; 22858 ill->ill_wq->q_qinfo = &winit_ipv6; 22859 } 22860 22861 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22862 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22863 ipif->ipif_v6src_addr = ipv6_all_zeros; 22864 ipif->ipif_v6subnet = ipv6_all_zeros; 22865 ipif->ipif_v6net_mask = ipv6_all_zeros; 22866 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22867 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22868 /* 22869 * point-to-point or Non-mulicast capable 22870 * interfaces won't do NUD unless explicitly 22871 * configured to do so. 22872 */ 22873 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22874 !(ill->ill_flags & ILLF_MULTICAST)) { 22875 ill->ill_flags |= ILLF_NONUD; 22876 } 22877 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22878 if (ill->ill_flags & ILLF_NOARP) { 22879 /* 22880 * Note: xresolv interfaces will eventually need 22881 * NOARP set here as well, but that will require 22882 * those external resolvers to have some 22883 * knowledge of that flag and act appropriately. 22884 * Not to be changed at present. 22885 */ 22886 ill->ill_flags &= ~ILLF_NOARP; 22887 } 22888 /* 22889 * Set the ILLF_ROUTER flag according to the global 22890 * IPv6 forwarding policy. 22891 */ 22892 if (ipv6_forward != 0) 22893 ill->ill_flags |= ILLF_ROUTER; 22894 } else if (ill->ill_flags & ILLF_IPV4) { 22895 ill->ill_isv6 = B_FALSE; 22896 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22897 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22898 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22899 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22900 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22901 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22902 /* 22903 * Set the ILLF_ROUTER flag according to the global 22904 * IPv4 forwarding policy. 22905 */ 22906 if (ip_g_forward != 0) 22907 ill->ill_flags |= ILLF_ROUTER; 22908 } 22909 22910 ASSERT(ill->ill_phyint != NULL); 22911 22912 /* 22913 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22914 * be completed in ill_glist_insert -> ill_phyint_reinit 22915 */ 22916 if (!ill_allocate_mibs(ill)) 22917 return (ENOMEM); 22918 22919 /* 22920 * Pick a default sap until we get the DL_INFO_ACK back from 22921 * the driver. 22922 */ 22923 if (ill->ill_sap == 0) { 22924 if (ill->ill_isv6) 22925 ill->ill_sap = IP6_DL_SAP; 22926 else 22927 ill->ill_sap = IP_DL_SAP; 22928 } 22929 22930 ill->ill_ifname_pending = 1; 22931 ill->ill_ifname_pending_err = 0; 22932 22933 ill_refhold(ill); 22934 rw_enter(&ill_g_lock, RW_WRITER); 22935 if ((error = ill_glist_insert(ill, interf_name, 22936 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22937 ill->ill_ppa = UINT_MAX; 22938 ill->ill_name[0] = '\0'; 22939 /* 22940 * undo null termination done above. 22941 */ 22942 ppa_ptr[0] = old_char; 22943 rw_exit(&ill_g_lock); 22944 ill_refrele(ill); 22945 return (error); 22946 } 22947 22948 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22949 22950 /* 22951 * When we return the buffer pointed to by interf_name should contain 22952 * the same name as in ill_name. 22953 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22954 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22955 * so copy full name and update the ppa ptr. 22956 * When ppa passed in != UINT_MAX all values are correct just undo 22957 * null termination, this saves a bcopy. 22958 */ 22959 if (*new_ppa_ptr == UINT_MAX) { 22960 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22961 *new_ppa_ptr = ill->ill_ppa; 22962 } else { 22963 /* 22964 * undo null termination done above. 22965 */ 22966 ppa_ptr[0] = old_char; 22967 } 22968 22969 /* Let SCTP know about this ILL */ 22970 sctp_update_ill(ill, SCTP_ILL_INSERT); 22971 22972 /* and also about the first ipif */ 22973 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 22974 22975 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22976 B_TRUE); 22977 22978 rw_exit(&ill_g_lock); 22979 ill_refrele(ill); 22980 if (ipsq == NULL) 22981 return (EINPROGRESS); 22982 22983 /* 22984 * Need to set the ipsq_current_ipif now, if we have changed ipsq 22985 * due to the phyint merge in ill_phyint_reinit. 22986 */ 22987 ASSERT(ipsq->ipsq_current_ipif == NULL || 22988 ipsq->ipsq_current_ipif == ipif); 22989 ipsq->ipsq_current_ipif = ipif; 22990 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 22991 error = ipif_set_values_tail(ill, ipif, mp, q); 22992 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22993 if (error != 0 && error != EINPROGRESS) { 22994 /* 22995 * restore previous values 22996 */ 22997 ill->ill_isv6 = B_FALSE; 22998 } 22999 return (error); 23000 } 23001 23002 23003 extern void (*ip_cleanup_func)(void); 23004 23005 void 23006 ipif_init(void) 23007 { 23008 hrtime_t hrt; 23009 int i; 23010 23011 /* 23012 * Can't call drv_getparm here as it is too early in the boot. 23013 * As we use ipif_src_random just for picking a different 23014 * source address everytime, this need not be really random. 23015 */ 23016 hrt = gethrtime(); 23017 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23018 23019 for (i = 0; i < MAX_G_HEADS; i++) { 23020 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 23021 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 23022 } 23023 23024 avl_create(&phyint_g_list.phyint_list_avl_by_index, 23025 ill_phyint_compare_index, 23026 sizeof (phyint_t), 23027 offsetof(struct phyint, phyint_avl_by_index)); 23028 avl_create(&phyint_g_list.phyint_list_avl_by_name, 23029 ill_phyint_compare_name, 23030 sizeof (phyint_t), 23031 offsetof(struct phyint, phyint_avl_by_name)); 23032 23033 ip_cleanup_func = ip_thread_exit; 23034 } 23035 23036 /* 23037 * This is called by ip_rt_add when src_addr value is other than zero. 23038 * src_addr signifies the source address of the incoming packet. For 23039 * reverse tunnel route we need to create a source addr based routing 23040 * table. This routine creates ip_mrtun_table if it's empty and then 23041 * it adds the route entry hashed by source address. It verifies that 23042 * the outgoing interface is always a non-resolver interface (tunnel). 23043 */ 23044 int 23045 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23046 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 23047 { 23048 ire_t *ire; 23049 ire_t *save_ire; 23050 ipif_t *ipif; 23051 ill_t *in_ill = NULL; 23052 ill_t *out_ill; 23053 queue_t *stq; 23054 mblk_t *dlureq_mp; 23055 int error; 23056 23057 if (ire_arg != NULL) 23058 *ire_arg = NULL; 23059 ASSERT(in_src_addr != INADDR_ANY); 23060 23061 ipif = ipif_arg; 23062 if (ipif != NULL) { 23063 out_ill = ipif->ipif_ill; 23064 } else { 23065 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23066 return (EINVAL); 23067 } 23068 23069 if (src_ipif == NULL) { 23070 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23071 return (EINVAL); 23072 } 23073 in_ill = src_ipif->ipif_ill; 23074 23075 /* 23076 * Check for duplicates. We don't need to 23077 * match out_ill, because the uniqueness of 23078 * a route is only dependent on src_addr and 23079 * in_ill. 23080 */ 23081 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23082 if (ire != NULL) { 23083 ire_refrele(ire); 23084 return (EEXIST); 23085 } 23086 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23087 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23088 ipif->ipif_net_type)); 23089 return (EINVAL); 23090 } 23091 23092 stq = ipif->ipif_wq; 23093 ASSERT(stq != NULL); 23094 23095 /* 23096 * The outgoing interface must be non-resolver 23097 * interface. 23098 */ 23099 dlureq_mp = ill_dlur_gen(NULL, 23100 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23101 out_ill->ill_sap_length); 23102 23103 if (dlureq_mp == NULL) { 23104 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23105 return (ENOMEM); 23106 } 23107 23108 /* Create the IRE. */ 23109 23110 ire = ire_create( 23111 NULL, /* Zero dst addr */ 23112 NULL, /* Zero mask */ 23113 NULL, /* Zero gateway addr */ 23114 NULL, /* Zero ipif_src addr */ 23115 (uint8_t *)&in_src_addr, /* in_src-addr */ 23116 &ipif->ipif_mtu, 23117 NULL, 23118 NULL, /* rfq */ 23119 stq, 23120 IRE_MIPRTUN, 23121 dlureq_mp, 23122 ipif, 23123 in_ill, 23124 0, 23125 0, 23126 0, 23127 flags, 23128 &ire_uinfo_null, 23129 NULL, 23130 NULL); 23131 23132 if (ire == NULL) { 23133 freeb(dlureq_mp); 23134 return (ENOMEM); 23135 } 23136 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23137 ire->ire_type)); 23138 save_ire = ire; 23139 ASSERT(save_ire != NULL); 23140 error = ire_add_mrtun(&ire, q, mp, func); 23141 /* 23142 * If ire_add_mrtun() failed, the ire passed in was freed 23143 * so there is no need to do so here. 23144 */ 23145 if (error != 0) { 23146 return (error); 23147 } 23148 23149 /* Duplicate check */ 23150 if (ire != save_ire) { 23151 /* route already exists by now */ 23152 ire_refrele(ire); 23153 return (EEXIST); 23154 } 23155 23156 if (ire_arg != NULL) { 23157 /* 23158 * Store the ire that was just added. the caller 23159 * ip_rts_request responsible for doing ire_refrele() 23160 * on it. 23161 */ 23162 *ire_arg = ire; 23163 } else { 23164 ire_refrele(ire); /* held in ire_add_mrtun */ 23165 } 23166 23167 return (0); 23168 } 23169 23170 /* 23171 * It is called by ip_rt_delete() only when mipagent requests to delete 23172 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23173 */ 23174 23175 int 23176 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23177 { 23178 ire_t *ire = NULL; 23179 23180 if (in_src_addr == INADDR_ANY) 23181 return (EINVAL); 23182 if (src_ipif == NULL) 23183 return (EINVAL); 23184 23185 /* search if this route exists in the ip_mrtun_table */ 23186 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23187 if (ire == NULL) { 23188 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23189 return (ESRCH); 23190 } 23191 ire_delete(ire); 23192 ire_refrele(ire); 23193 return (0); 23194 } 23195 23196 /* 23197 * Lookup the ipif corresponding to the onlink destination address. For 23198 * point-to-point interfaces, it matches with remote endpoint destination 23199 * address. For point-to-multipoint interfaces it only tries to match the 23200 * destination with the interface's subnet address. The longest, most specific 23201 * match is found to take care of such rare network configurations like - 23202 * le0: 129.146.1.1/16 23203 * le1: 129.146.2.2/24 23204 * It is used only by SO_DONTROUTE at the moment. 23205 */ 23206 ipif_t * 23207 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 23208 { 23209 ipif_t *ipif, *best_ipif; 23210 ill_t *ill; 23211 ill_walk_context_t ctx; 23212 23213 ASSERT(zoneid != ALL_ZONES); 23214 best_ipif = NULL; 23215 23216 rw_enter(&ill_g_lock, RW_READER); 23217 ill = ILL_START_WALK_V4(&ctx); 23218 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23219 mutex_enter(&ill->ill_lock); 23220 for (ipif = ill->ill_ipif; ipif != NULL; 23221 ipif = ipif->ipif_next) { 23222 if (!IPIF_CAN_LOOKUP(ipif)) 23223 continue; 23224 if (ipif->ipif_zoneid != zoneid && 23225 ipif->ipif_zoneid != ALL_ZONES) 23226 continue; 23227 /* 23228 * Point-to-point case. Look for exact match with 23229 * destination address. 23230 */ 23231 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23232 if (ipif->ipif_pp_dst_addr == addr) { 23233 ipif_refhold_locked(ipif); 23234 mutex_exit(&ill->ill_lock); 23235 rw_exit(&ill_g_lock); 23236 if (best_ipif != NULL) 23237 ipif_refrele(best_ipif); 23238 return (ipif); 23239 } 23240 } else if (ipif->ipif_subnet == (addr & 23241 ipif->ipif_net_mask)) { 23242 /* 23243 * Point-to-multipoint case. Looping through to 23244 * find the most specific match. If there are 23245 * multiple best match ipif's then prefer ipif's 23246 * that are UP. If there is only one best match 23247 * ipif and it is DOWN we must still return it. 23248 */ 23249 if ((best_ipif == NULL) || 23250 (ipif->ipif_net_mask > 23251 best_ipif->ipif_net_mask) || 23252 ((ipif->ipif_net_mask == 23253 best_ipif->ipif_net_mask) && 23254 ((ipif->ipif_flags & IPIF_UP) && 23255 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23256 ipif_refhold_locked(ipif); 23257 mutex_exit(&ill->ill_lock); 23258 rw_exit(&ill_g_lock); 23259 if (best_ipif != NULL) 23260 ipif_refrele(best_ipif); 23261 best_ipif = ipif; 23262 rw_enter(&ill_g_lock, RW_READER); 23263 mutex_enter(&ill->ill_lock); 23264 } 23265 } 23266 } 23267 mutex_exit(&ill->ill_lock); 23268 } 23269 rw_exit(&ill_g_lock); 23270 return (best_ipif); 23271 } 23272 23273 23274 /* 23275 * Save enough information so that we can recreate the IRE if 23276 * the interface goes down and then up. 23277 */ 23278 static void 23279 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23280 { 23281 mblk_t *save_mp; 23282 23283 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23284 if (save_mp != NULL) { 23285 ifrt_t *ifrt; 23286 23287 save_mp->b_wptr += sizeof (ifrt_t); 23288 ifrt = (ifrt_t *)save_mp->b_rptr; 23289 bzero(ifrt, sizeof (ifrt_t)); 23290 ifrt->ifrt_type = ire->ire_type; 23291 ifrt->ifrt_addr = ire->ire_addr; 23292 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23293 ifrt->ifrt_src_addr = ire->ire_src_addr; 23294 ifrt->ifrt_mask = ire->ire_mask; 23295 ifrt->ifrt_flags = ire->ire_flags; 23296 ifrt->ifrt_max_frag = ire->ire_max_frag; 23297 mutex_enter(&ipif->ipif_saved_ire_lock); 23298 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23299 ipif->ipif_saved_ire_mp = save_mp; 23300 ipif->ipif_saved_ire_cnt++; 23301 mutex_exit(&ipif->ipif_saved_ire_lock); 23302 } 23303 } 23304 23305 23306 static void 23307 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23308 { 23309 mblk_t **mpp; 23310 mblk_t *mp; 23311 ifrt_t *ifrt; 23312 23313 /* Remove from ipif_saved_ire_mp list if it is there */ 23314 mutex_enter(&ipif->ipif_saved_ire_lock); 23315 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23316 mpp = &(*mpp)->b_cont) { 23317 /* 23318 * On a given ipif, the triple of address, gateway and 23319 * mask is unique for each saved IRE (in the case of 23320 * ordinary interface routes, the gateway address is 23321 * all-zeroes). 23322 */ 23323 mp = *mpp; 23324 ifrt = (ifrt_t *)mp->b_rptr; 23325 if (ifrt->ifrt_addr == ire->ire_addr && 23326 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23327 ifrt->ifrt_mask == ire->ire_mask) { 23328 *mpp = mp->b_cont; 23329 ipif->ipif_saved_ire_cnt--; 23330 freeb(mp); 23331 break; 23332 } 23333 } 23334 mutex_exit(&ipif->ipif_saved_ire_lock); 23335 } 23336 23337 23338 /* 23339 * IP multirouting broadcast routes handling 23340 * Append CGTP broadcast IREs to regular ones created 23341 * at ifconfig time. 23342 */ 23343 static void 23344 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 23345 { 23346 ire_t *ire_prim; 23347 23348 ASSERT(ire != NULL); 23349 ASSERT(ire_dst != NULL); 23350 23351 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23352 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23353 if (ire_prim != NULL) { 23354 /* 23355 * We are in the special case of broadcasts for 23356 * CGTP. We add an IRE_BROADCAST that holds 23357 * the RTF_MULTIRT flag, the destination 23358 * address of ire_dst and the low level 23359 * info of ire_prim. In other words, CGTP 23360 * broadcast is added to the redundant ipif. 23361 */ 23362 ipif_t *ipif_prim; 23363 ire_t *bcast_ire; 23364 23365 ipif_prim = ire_prim->ire_ipif; 23366 23367 ip2dbg(("ip_cgtp_filter_bcast_add: " 23368 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23369 (void *)ire_dst, (void *)ire_prim, 23370 (void *)ipif_prim)); 23371 23372 bcast_ire = ire_create( 23373 (uchar_t *)&ire->ire_addr, 23374 (uchar_t *)&ip_g_all_ones, 23375 (uchar_t *)&ire_dst->ire_src_addr, 23376 (uchar_t *)&ire->ire_gateway_addr, 23377 NULL, 23378 &ipif_prim->ipif_mtu, 23379 NULL, 23380 ipif_prim->ipif_rq, 23381 ipif_prim->ipif_wq, 23382 IRE_BROADCAST, 23383 ipif_prim->ipif_bcast_mp, 23384 ipif_prim, 23385 NULL, 23386 0, 23387 0, 23388 0, 23389 ire->ire_flags, 23390 &ire_uinfo_null, 23391 NULL, 23392 NULL); 23393 23394 if (bcast_ire != NULL) { 23395 23396 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23397 B_FALSE) == 0) { 23398 ip2dbg(("ip_cgtp_filter_bcast_add: " 23399 "added bcast_ire %p\n", 23400 (void *)bcast_ire)); 23401 23402 ipif_save_ire(bcast_ire->ire_ipif, 23403 bcast_ire); 23404 ire_refrele(bcast_ire); 23405 } 23406 } 23407 ire_refrele(ire_prim); 23408 } 23409 } 23410 23411 23412 /* 23413 * IP multirouting broadcast routes handling 23414 * Remove the broadcast ire 23415 */ 23416 static void 23417 ip_cgtp_bcast_delete(ire_t *ire) 23418 { 23419 ire_t *ire_dst; 23420 23421 ASSERT(ire != NULL); 23422 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23423 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23424 if (ire_dst != NULL) { 23425 ire_t *ire_prim; 23426 23427 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23428 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 23429 if (ire_prim != NULL) { 23430 ipif_t *ipif_prim; 23431 ire_t *bcast_ire; 23432 23433 ipif_prim = ire_prim->ire_ipif; 23434 23435 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23436 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23437 (void *)ire_dst, (void *)ire_prim, 23438 (void *)ipif_prim)); 23439 23440 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23441 ire->ire_gateway_addr, 23442 IRE_BROADCAST, 23443 ipif_prim, ALL_ZONES, 23444 NULL, 23445 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23446 MATCH_IRE_MASK); 23447 23448 if (bcast_ire != NULL) { 23449 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23450 "looked up bcast_ire %p\n", 23451 (void *)bcast_ire)); 23452 ipif_remove_ire(bcast_ire->ire_ipif, 23453 bcast_ire); 23454 ire_delete(bcast_ire); 23455 } 23456 ire_refrele(ire_prim); 23457 } 23458 ire_refrele(ire_dst); 23459 } 23460 } 23461 23462 /* 23463 * IPsec hardware acceleration capabilities related functions. 23464 */ 23465 23466 /* 23467 * Free a per-ill IPsec capabilities structure. 23468 */ 23469 static void 23470 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23471 { 23472 if (capab->auth_hw_algs != NULL) 23473 kmem_free(capab->auth_hw_algs, capab->algs_size); 23474 if (capab->encr_hw_algs != NULL) 23475 kmem_free(capab->encr_hw_algs, capab->algs_size); 23476 if (capab->encr_algparm != NULL) 23477 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23478 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23479 } 23480 23481 /* 23482 * Allocate a new per-ill IPsec capabilities structure. This structure 23483 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23484 * an array which specifies, for each algorithm, whether this algorithm 23485 * is supported by the ill or not. 23486 */ 23487 static ill_ipsec_capab_t * 23488 ill_ipsec_capab_alloc(void) 23489 { 23490 ill_ipsec_capab_t *capab; 23491 uint_t nelems; 23492 23493 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23494 if (capab == NULL) 23495 return (NULL); 23496 23497 /* we need one bit per algorithm */ 23498 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23499 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23500 23501 /* allocate memory to store algorithm flags */ 23502 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23503 if (capab->encr_hw_algs == NULL) 23504 goto nomem; 23505 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23506 if (capab->auth_hw_algs == NULL) 23507 goto nomem; 23508 /* 23509 * Leave encr_algparm NULL for now since we won't need it half 23510 * the time 23511 */ 23512 return (capab); 23513 23514 nomem: 23515 ill_ipsec_capab_free(capab); 23516 return (NULL); 23517 } 23518 23519 /* 23520 * Resize capability array. Since we're exclusive, this is OK. 23521 */ 23522 static boolean_t 23523 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23524 { 23525 ipsec_capab_algparm_t *nalp, *oalp; 23526 uint32_t olen, nlen; 23527 23528 oalp = capab->encr_algparm; 23529 olen = capab->encr_algparm_size; 23530 23531 if (oalp != NULL) { 23532 if (algid < capab->encr_algparm_end) 23533 return (B_TRUE); 23534 } 23535 23536 nlen = (algid + 1) * sizeof (*nalp); 23537 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23538 if (nalp == NULL) 23539 return (B_FALSE); 23540 23541 if (oalp != NULL) { 23542 bcopy(oalp, nalp, olen); 23543 kmem_free(oalp, olen); 23544 } 23545 capab->encr_algparm = nalp; 23546 capab->encr_algparm_size = nlen; 23547 capab->encr_algparm_end = algid + 1; 23548 23549 return (B_TRUE); 23550 } 23551 23552 /* 23553 * Compare the capabilities of the specified ill with the protocol 23554 * and algorithms specified by the SA passed as argument. 23555 * If they match, returns B_TRUE, B_FALSE if they do not match. 23556 * 23557 * The ill can be passed as a pointer to it, or by specifying its index 23558 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23559 * 23560 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23561 * packet is eligible for hardware acceleration, and by 23562 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23563 * to a particular ill. 23564 */ 23565 boolean_t 23566 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23567 ipsa_t *sa) 23568 { 23569 boolean_t sa_isv6; 23570 uint_t algid; 23571 struct ill_ipsec_capab_s *cpp; 23572 boolean_t need_refrele = B_FALSE; 23573 23574 if (ill == NULL) { 23575 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23576 NULL, NULL, NULL); 23577 if (ill == NULL) { 23578 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23579 return (B_FALSE); 23580 } 23581 need_refrele = B_TRUE; 23582 } 23583 23584 /* 23585 * Use the address length specified by the SA to determine 23586 * if it corresponds to a IPv6 address, and fail the matching 23587 * if the isv6 flag passed as argument does not match. 23588 * Note: this check is used for SADB capability checking before 23589 * sending SA information to an ill. 23590 */ 23591 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23592 if (sa_isv6 != ill_isv6) 23593 /* protocol mismatch */ 23594 goto done; 23595 23596 /* 23597 * Check if the ill supports the protocol, algorithm(s) and 23598 * key size(s) specified by the SA, and get the pointers to 23599 * the algorithms supported by the ill. 23600 */ 23601 switch (sa->ipsa_type) { 23602 23603 case SADB_SATYPE_ESP: 23604 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23605 /* ill does not support ESP acceleration */ 23606 goto done; 23607 cpp = ill->ill_ipsec_capab_esp; 23608 algid = sa->ipsa_auth_alg; 23609 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23610 goto done; 23611 algid = sa->ipsa_encr_alg; 23612 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23613 goto done; 23614 if (algid < cpp->encr_algparm_end) { 23615 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23616 if (sa->ipsa_encrkeybits < alp->minkeylen) 23617 goto done; 23618 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23619 goto done; 23620 } 23621 break; 23622 23623 case SADB_SATYPE_AH: 23624 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23625 /* ill does not support AH acceleration */ 23626 goto done; 23627 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23628 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23629 goto done; 23630 break; 23631 } 23632 23633 if (need_refrele) 23634 ill_refrele(ill); 23635 return (B_TRUE); 23636 done: 23637 if (need_refrele) 23638 ill_refrele(ill); 23639 return (B_FALSE); 23640 } 23641 23642 23643 /* 23644 * Add a new ill to the list of IPsec capable ills. 23645 * Called from ill_capability_ipsec_ack() when an ACK was received 23646 * indicating that IPsec hardware processing was enabled for an ill. 23647 * 23648 * ill must point to the ill for which acceleration was enabled. 23649 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23650 */ 23651 static void 23652 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23653 { 23654 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23655 uint_t sa_type; 23656 uint_t ipproto; 23657 23658 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23659 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23660 23661 switch (dl_cap) { 23662 case DL_CAPAB_IPSEC_AH: 23663 sa_type = SADB_SATYPE_AH; 23664 ills = &ipsec_capab_ills_ah; 23665 ipproto = IPPROTO_AH; 23666 break; 23667 case DL_CAPAB_IPSEC_ESP: 23668 sa_type = SADB_SATYPE_ESP; 23669 ills = &ipsec_capab_ills_esp; 23670 ipproto = IPPROTO_ESP; 23671 break; 23672 } 23673 23674 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23675 23676 /* 23677 * Add ill index to list of hardware accelerators. If 23678 * already in list, do nothing. 23679 */ 23680 for (cur_ill = *ills; cur_ill != NULL && 23681 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23682 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23683 ; 23684 23685 if (cur_ill == NULL) { 23686 /* if this is a new entry for this ill */ 23687 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23688 if (new_ill == NULL) { 23689 rw_exit(&ipsec_capab_ills_lock); 23690 return; 23691 } 23692 23693 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23694 new_ill->ill_isv6 = ill->ill_isv6; 23695 new_ill->next = *ills; 23696 *ills = new_ill; 23697 } else if (!sadb_resync) { 23698 /* not resync'ing SADB and an entry exists for this ill */ 23699 rw_exit(&ipsec_capab_ills_lock); 23700 return; 23701 } 23702 23703 rw_exit(&ipsec_capab_ills_lock); 23704 23705 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23706 /* 23707 * IPsec module for protocol loaded, initiate dump 23708 * of the SADB to this ill. 23709 */ 23710 sadb_ill_download(ill, sa_type); 23711 } 23712 23713 /* 23714 * Remove an ill from the list of IPsec capable ills. 23715 */ 23716 static void 23717 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23718 { 23719 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23720 23721 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23722 dl_cap == DL_CAPAB_IPSEC_ESP); 23723 23724 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23725 &ipsec_capab_ills_esp; 23726 23727 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23728 23729 prev_ill = NULL; 23730 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23731 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23732 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23733 ; 23734 if (cur_ill == NULL) { 23735 /* entry not found */ 23736 rw_exit(&ipsec_capab_ills_lock); 23737 return; 23738 } 23739 if (prev_ill == NULL) { 23740 /* entry at front of list */ 23741 *ills = NULL; 23742 } else { 23743 prev_ill->next = cur_ill->next; 23744 } 23745 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23746 rw_exit(&ipsec_capab_ills_lock); 23747 } 23748 23749 23750 /* 23751 * Handling of DL_CONTROL_REQ messages that must be sent down to 23752 * an ill while having exclusive access. 23753 */ 23754 /* ARGSUSED */ 23755 static void 23756 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23757 { 23758 ill_t *ill = (ill_t *)q->q_ptr; 23759 23760 ill_dlpi_send(ill, mp); 23761 } 23762 23763 23764 /* 23765 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23766 * supporting the specified IPsec protocol acceleration. 23767 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23768 * We free the mblk and, if sa is non-null, release the held referece. 23769 */ 23770 void 23771 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23772 { 23773 ipsec_capab_ill_t *ici, *cur_ici; 23774 ill_t *ill; 23775 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23776 23777 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23778 ipsec_capab_ills_esp; 23779 23780 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23781 23782 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23783 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23784 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23785 23786 /* 23787 * Handle the case where the ill goes away while the SADB is 23788 * attempting to send messages. If it's going away, it's 23789 * nuking its shadow SADB, so we don't care.. 23790 */ 23791 23792 if (ill == NULL) 23793 continue; 23794 23795 if (sa != NULL) { 23796 /* 23797 * Make sure capabilities match before 23798 * sending SA to ill. 23799 */ 23800 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23801 cur_ici->ill_isv6, sa)) { 23802 ill_refrele(ill); 23803 continue; 23804 } 23805 23806 mutex_enter(&sa->ipsa_lock); 23807 sa->ipsa_flags |= IPSA_F_HW; 23808 mutex_exit(&sa->ipsa_lock); 23809 } 23810 23811 /* 23812 * Copy template message, and add it to the front 23813 * of the mblk ship list. We want to avoid holding 23814 * the ipsec_capab_ills_lock while sending the 23815 * message to the ills. 23816 * 23817 * The b_next and b_prev are temporarily used 23818 * to build a list of mblks to be sent down, and to 23819 * save the ill to which they must be sent. 23820 */ 23821 nmp = copymsg(mp); 23822 if (nmp == NULL) { 23823 ill_refrele(ill); 23824 continue; 23825 } 23826 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23827 nmp->b_next = mp_ship_list; 23828 mp_ship_list = nmp; 23829 nmp->b_prev = (mblk_t *)ill; 23830 } 23831 23832 rw_exit(&ipsec_capab_ills_lock); 23833 23834 nmp = mp_ship_list; 23835 while (nmp != NULL) { 23836 /* restore the mblk to a sane state */ 23837 next_mp = nmp->b_next; 23838 nmp->b_next = NULL; 23839 ill = (ill_t *)nmp->b_prev; 23840 nmp->b_prev = NULL; 23841 23842 /* 23843 * Ship the mblk to the ill, must be exclusive. Keep the 23844 * reference to the ill as qwriter_ip() does a ill_referele(). 23845 */ 23846 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23847 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23848 23849 nmp = next_mp; 23850 } 23851 23852 if (sa != NULL) 23853 IPSA_REFRELE(sa); 23854 freemsg(mp); 23855 } 23856 23857 23858 /* 23859 * Derive an interface id from the link layer address. 23860 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23861 */ 23862 static boolean_t 23863 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23864 { 23865 char *addr; 23866 23867 if (phys_length != ETHERADDRL) 23868 return (B_FALSE); 23869 23870 /* Form EUI-64 like address */ 23871 addr = (char *)&v6addr->s6_addr32[2]; 23872 bcopy((char *)phys_addr, addr, 3); 23873 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23874 addr[3] = (char)0xff; 23875 addr[4] = (char)0xfe; 23876 bcopy((char *)phys_addr + 3, addr + 5, 3); 23877 return (B_TRUE); 23878 } 23879 23880 /* ARGSUSED */ 23881 static boolean_t 23882 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23883 { 23884 return (B_FALSE); 23885 } 23886 23887 /* ARGSUSED */ 23888 static boolean_t 23889 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23890 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23891 { 23892 /* 23893 * Multicast address mappings used over Ethernet/802.X. 23894 * This address is used as a base for mappings. 23895 */ 23896 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23897 0x00, 0x00, 0x00}; 23898 23899 /* 23900 * Extract low order 32 bits from IPv6 multicast address. 23901 * Or that into the link layer address, starting from the 23902 * second byte. 23903 */ 23904 *hw_start = 2; 23905 v6_extract_mask->s6_addr32[0] = 0; 23906 v6_extract_mask->s6_addr32[1] = 0; 23907 v6_extract_mask->s6_addr32[2] = 0; 23908 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23909 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23910 return (B_TRUE); 23911 } 23912 23913 /* 23914 * Indicate by return value whether multicast is supported. If not, 23915 * this code should not touch/change any parameters. 23916 */ 23917 /* ARGSUSED */ 23918 static boolean_t 23919 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23920 uint32_t *hw_start, ipaddr_t *extract_mask) 23921 { 23922 /* 23923 * Multicast address mappings used over Ethernet/802.X. 23924 * This address is used as a base for mappings. 23925 */ 23926 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23927 0x00, 0x00, 0x00 }; 23928 23929 if (phys_length != ETHERADDRL) 23930 return (B_FALSE); 23931 23932 *extract_mask = htonl(0x007fffff); 23933 *hw_start = 2; 23934 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23935 return (B_TRUE); 23936 } 23937 23938 /* 23939 * Derive IPoIB interface id from the link layer address. 23940 */ 23941 static boolean_t 23942 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23943 { 23944 char *addr; 23945 23946 if (phys_length != 20) 23947 return (B_FALSE); 23948 addr = (char *)&v6addr->s6_addr32[2]; 23949 bcopy(phys_addr + 12, addr, 8); 23950 /* 23951 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23952 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23953 * rules. In these cases, the IBA considers these GUIDs to be in 23954 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23955 * required; vendors are required not to assign global EUI-64's 23956 * that differ only in u/l bit values, thus guaranteeing uniqueness 23957 * of the interface identifier. Whether the GUID is in modified 23958 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23959 * bit set to 1. 23960 */ 23961 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23962 return (B_TRUE); 23963 } 23964 23965 /* 23966 * Note on mapping from multicast IP addresses to IPoIB multicast link 23967 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23968 * The format of an IPoIB multicast address is: 23969 * 23970 * 4 byte QPN Scope Sign. Pkey 23971 * +--------------------------------------------+ 23972 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23973 * +--------------------------------------------+ 23974 * 23975 * The Scope and Pkey components are properties of the IBA port and 23976 * network interface. They can be ascertained from the broadcast address. 23977 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23978 */ 23979 23980 static boolean_t 23981 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23982 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23983 { 23984 /* 23985 * Base IPoIB IPv6 multicast address used for mappings. 23986 * Does not contain the IBA scope/Pkey values. 23987 */ 23988 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23989 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23990 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23991 23992 /* 23993 * Extract low order 80 bits from IPv6 multicast address. 23994 * Or that into the link layer address, starting from the 23995 * sixth byte. 23996 */ 23997 *hw_start = 6; 23998 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23999 24000 /* 24001 * Now fill in the IBA scope/Pkey values from the broadcast address. 24002 */ 24003 *(maddr + 5) = *(bphys_addr + 5); 24004 *(maddr + 8) = *(bphys_addr + 8); 24005 *(maddr + 9) = *(bphys_addr + 9); 24006 24007 v6_extract_mask->s6_addr32[0] = 0; 24008 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24009 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24010 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24011 return (B_TRUE); 24012 } 24013 24014 static boolean_t 24015 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24016 uint32_t *hw_start, ipaddr_t *extract_mask) 24017 { 24018 /* 24019 * Base IPoIB IPv4 multicast address used for mappings. 24020 * Does not contain the IBA scope/Pkey values. 24021 */ 24022 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24023 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24024 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24025 24026 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24027 return (B_FALSE); 24028 24029 /* 24030 * Extract low order 28 bits from IPv4 multicast address. 24031 * Or that into the link layer address, starting from the 24032 * sixteenth byte. 24033 */ 24034 *extract_mask = htonl(0x0fffffff); 24035 *hw_start = 16; 24036 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24037 24038 /* 24039 * Now fill in the IBA scope/Pkey values from the broadcast address. 24040 */ 24041 *(maddr + 5) = *(bphys_addr + 5); 24042 *(maddr + 8) = *(bphys_addr + 8); 24043 *(maddr + 9) = *(bphys_addr + 9); 24044 return (B_TRUE); 24045 } 24046 24047 /* 24048 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24049 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24050 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24051 * the link-local address is preferred. 24052 */ 24053 boolean_t 24054 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24055 { 24056 ipif_t *ipif; 24057 ipif_t *maybe_ipif = NULL; 24058 24059 mutex_enter(&ill->ill_lock); 24060 if (ill->ill_state_flags & ILL_CONDEMNED) { 24061 mutex_exit(&ill->ill_lock); 24062 if (ipifp != NULL) 24063 *ipifp = NULL; 24064 return (B_FALSE); 24065 } 24066 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24067 if (!IPIF_CAN_LOOKUP(ipif)) 24068 continue; 24069 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24070 ipif->ipif_zoneid != ALL_ZONES) 24071 continue; 24072 if ((ipif->ipif_flags & flags) != flags) 24073 continue; 24074 24075 if (ipifp == NULL) { 24076 mutex_exit(&ill->ill_lock); 24077 ASSERT(maybe_ipif == NULL); 24078 return (B_TRUE); 24079 } 24080 if (!ill->ill_isv6 || 24081 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24082 ipif_refhold_locked(ipif); 24083 mutex_exit(&ill->ill_lock); 24084 *ipifp = ipif; 24085 return (B_TRUE); 24086 } 24087 if (maybe_ipif == NULL) 24088 maybe_ipif = ipif; 24089 } 24090 if (ipifp != NULL) { 24091 if (maybe_ipif != NULL) 24092 ipif_refhold_locked(maybe_ipif); 24093 *ipifp = maybe_ipif; 24094 } 24095 mutex_exit(&ill->ill_lock); 24096 return (maybe_ipif != NULL); 24097 } 24098 24099 /* 24100 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24101 */ 24102 boolean_t 24103 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24104 { 24105 ill_t *illg; 24106 24107 /* 24108 * We look at the passed-in ill first without grabbing ill_g_lock. 24109 */ 24110 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24111 return (B_TRUE); 24112 } 24113 rw_enter(&ill_g_lock, RW_READER); 24114 if (ill->ill_group == NULL) { 24115 /* ill not in a group */ 24116 rw_exit(&ill_g_lock); 24117 return (B_FALSE); 24118 } 24119 24120 /* 24121 * There's no ipif in the zone on ill, however ill is part of an IPMP 24122 * group. We need to look for an ipif in the zone on all the ills in the 24123 * group. 24124 */ 24125 illg = ill->ill_group->illgrp_ill; 24126 do { 24127 /* 24128 * We don't call ipif_lookup_zoneid() on ill as we already know 24129 * that it's not there. 24130 */ 24131 if (illg != ill && 24132 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24133 break; 24134 } 24135 } while ((illg = illg->ill_group_next) != NULL); 24136 rw_exit(&ill_g_lock); 24137 return (illg != NULL); 24138 } 24139 24140 /* 24141 * Check if this ill is only being used to send ICMP probes for IPMP 24142 */ 24143 boolean_t 24144 ill_is_probeonly(ill_t *ill) 24145 { 24146 /* 24147 * Check if the interface is FAILED, or INACTIVE 24148 */ 24149 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24150 return (B_TRUE); 24151 24152 return (B_FALSE); 24153 } 24154 24155 /* 24156 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24157 * If a pointer to an ipif_t is returned then the caller will need to do 24158 * an ill_refrele(). 24159 */ 24160 ipif_t * 24161 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6) 24162 { 24163 ipif_t *ipif; 24164 ill_t *ill; 24165 24166 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 24167 24168 if (ill == NULL) 24169 return (NULL); 24170 24171 mutex_enter(&ill->ill_lock); 24172 if (ill->ill_state_flags & ILL_CONDEMNED) { 24173 mutex_exit(&ill->ill_lock); 24174 ill_refrele(ill); 24175 return (NULL); 24176 } 24177 24178 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24179 if (!IPIF_CAN_LOOKUP(ipif)) 24180 continue; 24181 if (lifidx == ipif->ipif_id) { 24182 ipif_refhold_locked(ipif); 24183 break; 24184 } 24185 } 24186 24187 mutex_exit(&ill->ill_lock); 24188 ill_refrele(ill); 24189 return (ipif); 24190 } 24191