1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_free_mib(ill_t *ill); 171 static void ill_glist_delete(ill_t *); 172 static void ill_phyint_reinit(ill_t *ill); 173 static void ill_set_nce_router_flags(ill_t *, boolean_t); 174 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 175 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 177 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 178 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 179 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 180 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 181 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 182 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 183 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 184 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 185 static ip_v4mapinfo_func_t ip_mbcast_mapping; 186 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 187 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 188 static void phyint_free(phyint_t *); 189 190 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 191 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 194 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 195 dl_capability_sub_t *); 196 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 197 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 198 static void ill_capability_dld_ack(ill_t *, mblk_t *, 199 dl_capability_sub_t *); 200 static void ill_capability_dld_enable(ill_t *); 201 static void ill_capability_ack_thr(void *); 202 static void ill_capability_lso_enable(ill_t *); 203 static void ill_capability_send(ill_t *, mblk_t *); 204 205 static ill_t *ill_prev_usesrc(ill_t *); 206 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 207 static void ill_disband_usesrc_group(ill_t *); 208 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 209 210 #ifdef DEBUG 211 static void ill_trace_cleanup(const ill_t *); 212 static void ipif_trace_cleanup(const ipif_t *); 213 #endif 214 215 /* 216 * if we go over the memory footprint limit more than once in this msec 217 * interval, we'll start pruning aggressively. 218 */ 219 int ip_min_frag_prune_time = 0; 220 221 static ipft_t ip_ioctl_ftbl[] = { 222 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 223 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 224 IPFT_F_NO_REPLY }, 225 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 226 { 0 } 227 }; 228 229 /* Simple ICMP IP Header Template */ 230 static ipha_t icmp_ipha = { 231 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 232 }; 233 234 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 235 236 static ip_m_t ip_m_tbl[] = { 237 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 238 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 239 ip_nodef_v6intfid }, 240 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 256 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 257 ip_ipv4_v6destintfid }, 258 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 260 ip_ipv6_v6destintfid }, 261 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 263 ip_nodef_v6intfid }, 264 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 266 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 267 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 268 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 269 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 270 ip_nodef_v6intfid } 271 }; 272 273 static ill_t ill_null; /* Empty ILL for init. */ 274 char ipif_loopback_name[] = "lo0"; 275 static char *ipv4_forward_suffix = ":ip_forwarding"; 276 static char *ipv6_forward_suffix = ":ip6_forwarding"; 277 static sin6_t sin6_null; /* Zero address for quick clears */ 278 static sin_t sin_null; /* Zero address for quick clears */ 279 280 /* When set search for unused ipif_seqid */ 281 static ipif_t ipif_zero; 282 283 /* 284 * ppa arena is created after these many 285 * interfaces have been plumbed. 286 */ 287 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 288 289 /* 290 * Allocate per-interface mibs. 291 * Returns true if ok. False otherwise. 292 * ipsq may not yet be allocated (loopback case ). 293 */ 294 static boolean_t 295 ill_allocate_mibs(ill_t *ill) 296 { 297 /* Already allocated? */ 298 if (ill->ill_ip_mib != NULL) { 299 if (ill->ill_isv6) 300 ASSERT(ill->ill_icmp6_mib != NULL); 301 return (B_TRUE); 302 } 303 304 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 305 KM_NOSLEEP); 306 if (ill->ill_ip_mib == NULL) { 307 return (B_FALSE); 308 } 309 310 /* Setup static information */ 311 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 312 sizeof (mib2_ipIfStatsEntry_t)); 313 if (ill->ill_isv6) { 314 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 315 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 316 sizeof (mib2_ipv6AddrEntry_t)); 317 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 318 sizeof (mib2_ipv6RouteEntry_t)); 319 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 320 sizeof (mib2_ipv6NetToMediaEntry_t)); 321 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 322 sizeof (ipv6_member_t)); 323 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 324 sizeof (ipv6_grpsrc_t)); 325 } else { 326 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 327 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 328 sizeof (mib2_ipAddrEntry_t)); 329 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 330 sizeof (mib2_ipRouteEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 332 sizeof (mib2_ipNetToMediaEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 334 sizeof (ip_member_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 336 sizeof (ip_grpsrc_t)); 337 338 /* 339 * For a v4 ill, we are done at this point, because per ill 340 * icmp mibs are only used for v6. 341 */ 342 return (B_TRUE); 343 } 344 345 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 346 KM_NOSLEEP); 347 if (ill->ill_icmp6_mib == NULL) { 348 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 349 ill->ill_ip_mib = NULL; 350 return (B_FALSE); 351 } 352 /* static icmp info */ 353 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 354 sizeof (mib2_ipv6IfIcmpEntry_t); 355 /* 356 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 357 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 358 * -> ill_phyint_reinit 359 */ 360 return (B_TRUE); 361 } 362 363 /* 364 * Completely vaporize a lower level tap and all associated interfaces. 365 * ill_delete is called only out of ip_close when the device control 366 * stream is being closed. 367 */ 368 void 369 ill_delete(ill_t *ill) 370 { 371 ipif_t *ipif; 372 ill_t *prev_ill; 373 ip_stack_t *ipst = ill->ill_ipst; 374 375 /* 376 * ill_delete may be forcibly entering the ipsq. The previous 377 * ioctl may not have completed and may need to be aborted. 378 * ipsq_flush takes care of it. If we don't need to enter the 379 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 380 * ill_delete_tail is sufficient. 381 */ 382 ipsq_flush(ill); 383 384 /* 385 * Nuke all interfaces. ipif_free will take down the interface, 386 * remove it from the list, and free the data structure. 387 * Walk down the ipif list and remove the logical interfaces 388 * first before removing the main ipif. We can't unplumb 389 * zeroth interface first in the case of IPv6 as update_conn_ill 390 * -> ip_ll_multireq de-references ill_ipif for checking 391 * POINTOPOINT. 392 * 393 * If ill_ipif was not properly initialized (i.e low on memory), 394 * then no interfaces to clean up. In this case just clean up the 395 * ill. 396 */ 397 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 398 ipif_free(ipif); 399 400 /* 401 * clean out all the nce_t entries that depend on this 402 * ill for the ill_phys_addr. 403 */ 404 nce_flush(ill, B_TRUE); 405 406 /* Clean up msgs on pending upcalls for mrouted */ 407 reset_mrt_ill(ill); 408 409 update_conn_ill(ill, ipst); 410 411 /* 412 * Remove multicast references added as a result of calls to 413 * ip_join_allmulti(). 414 */ 415 ip_purge_allmulti(ill); 416 417 /* 418 * If the ill being deleted is under IPMP, boot it out of the illgrp. 419 */ 420 if (IS_UNDER_IPMP(ill)) 421 ipmp_ill_leave_illgrp(ill); 422 423 /* 424 * ill_down will arrange to blow off any IRE's dependent on this 425 * ILL, and shut down fragmentation reassembly. 426 */ 427 ill_down(ill); 428 429 /* Let SCTP know, so that it can remove this from its list. */ 430 sctp_update_ill(ill, SCTP_ILL_REMOVE); 431 432 /* 433 * Walk all CONNs that can have a reference on an ire or nce for this 434 * ill (we actually walk all that now have stale references). 435 */ 436 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 437 438 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 439 if (ill->ill_isv6) 440 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 441 442 /* 443 * If an address on this ILL is being used as a source address then 444 * clear out the pointers in other ILLs that point to this ILL. 445 */ 446 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 447 if (ill->ill_usesrc_grp_next != NULL) { 448 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 449 ill_disband_usesrc_group(ill); 450 } else { /* consumer of the usesrc ILL */ 451 prev_ill = ill_prev_usesrc(ill); 452 prev_ill->ill_usesrc_grp_next = 453 ill->ill_usesrc_grp_next; 454 } 455 } 456 rw_exit(&ipst->ips_ill_g_usesrc_lock); 457 } 458 459 static void 460 ipif_non_duplicate(ipif_t *ipif) 461 { 462 ill_t *ill = ipif->ipif_ill; 463 mutex_enter(&ill->ill_lock); 464 if (ipif->ipif_flags & IPIF_DUPLICATE) { 465 ipif->ipif_flags &= ~IPIF_DUPLICATE; 466 ASSERT(ill->ill_ipif_dup_count > 0); 467 ill->ill_ipif_dup_count--; 468 } 469 mutex_exit(&ill->ill_lock); 470 } 471 472 /* 473 * ill_delete_tail is called from ip_modclose after all references 474 * to the closing ill are gone. The wait is done in ip_modclose 475 */ 476 void 477 ill_delete_tail(ill_t *ill) 478 { 479 mblk_t **mpp; 480 ipif_t *ipif; 481 ip_stack_t *ipst = ill->ill_ipst; 482 483 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 484 ipif_non_duplicate(ipif); 485 (void) ipif_down_tail(ipif); 486 } 487 488 ASSERT(ill->ill_ipif_dup_count == 0); 489 490 /* 491 * If polling capability is enabled (which signifies direct 492 * upcall into IP and driver has ill saved as a handle), 493 * we need to make sure that unbind has completed before we 494 * let the ill disappear and driver no longer has any reference 495 * to this ill. 496 */ 497 mutex_enter(&ill->ill_lock); 498 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 499 cv_wait(&ill->ill_cv, &ill->ill_lock); 500 mutex_exit(&ill->ill_lock); 501 ASSERT(!(ill->ill_capabilities & 502 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 503 504 if (ill->ill_net_type != IRE_LOOPBACK) 505 qprocsoff(ill->ill_rq); 506 507 /* 508 * We do an ipsq_flush once again now. New messages could have 509 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 510 * could also have landed up if an ioctl thread had looked up 511 * the ill before we set the ILL_CONDEMNED flag, but not yet 512 * enqueued the ioctl when we did the ipsq_flush last time. 513 */ 514 ipsq_flush(ill); 515 516 /* 517 * Free capabilities. 518 */ 519 if (ill->ill_hcksum_capab != NULL) { 520 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 521 ill->ill_hcksum_capab = NULL; 522 } 523 524 if (ill->ill_zerocopy_capab != NULL) { 525 kmem_free(ill->ill_zerocopy_capab, 526 sizeof (ill_zerocopy_capab_t)); 527 ill->ill_zerocopy_capab = NULL; 528 } 529 530 if (ill->ill_lso_capab != NULL) { 531 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 532 ill->ill_lso_capab = NULL; 533 } 534 535 if (ill->ill_dld_capab != NULL) { 536 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 537 ill->ill_dld_capab = NULL; 538 } 539 540 while (ill->ill_ipif != NULL) 541 ipif_free_tail(ill->ill_ipif); 542 543 /* 544 * We have removed all references to ilm from conn and the ones joined 545 * within the kernel. 546 * 547 * We don't walk conns, mrts and ires because 548 * 549 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 550 * 2) ill_down ->ill_downi walks all the ires and cleans up 551 * ill references. 552 */ 553 554 /* 555 * If this ill is an IPMP meta-interface, blow away the illgrp. This 556 * is safe to do because the illgrp has already been unlinked from the 557 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 558 */ 559 if (IS_IPMP(ill)) { 560 ipmp_illgrp_destroy(ill->ill_grp); 561 ill->ill_grp = NULL; 562 } 563 564 /* 565 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 566 * could free the phyint. No more reference to the phyint after this 567 * point. 568 */ 569 (void) ill_glist_delete(ill); 570 571 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 572 if (ill->ill_ndd_name != NULL) 573 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 574 rw_exit(&ipst->ips_ip_g_nd_lock); 575 576 if (ill->ill_frag_ptr != NULL) { 577 uint_t count; 578 579 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 580 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 581 } 582 mi_free(ill->ill_frag_ptr); 583 ill->ill_frag_ptr = NULL; 584 ill->ill_frag_hash_tbl = NULL; 585 } 586 587 freemsg(ill->ill_nd_lla_mp); 588 /* Free all retained control messages. */ 589 mpp = &ill->ill_first_mp_to_free; 590 do { 591 while (mpp[0]) { 592 mblk_t *mp; 593 mblk_t *mp1; 594 595 mp = mpp[0]; 596 mpp[0] = mp->b_next; 597 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 598 mp1->b_next = NULL; 599 mp1->b_prev = NULL; 600 } 601 freemsg(mp); 602 } 603 } while (mpp++ != &ill->ill_last_mp_to_free); 604 605 ill_free_mib(ill); 606 607 #ifdef DEBUG 608 ill_trace_cleanup(ill); 609 #endif 610 611 /* The default multicast interface might have changed */ 612 ire_increment_multicast_generation(ipst, ill->ill_isv6); 613 614 /* Drop refcnt here */ 615 netstack_rele(ill->ill_ipst->ips_netstack); 616 ill->ill_ipst = NULL; 617 } 618 619 static void 620 ill_free_mib(ill_t *ill) 621 { 622 ip_stack_t *ipst = ill->ill_ipst; 623 624 /* 625 * MIB statistics must not be lost, so when an interface 626 * goes away the counter values will be added to the global 627 * MIBs. 628 */ 629 if (ill->ill_ip_mib != NULL) { 630 if (ill->ill_isv6) { 631 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 632 ill->ill_ip_mib); 633 } else { 634 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 635 ill->ill_ip_mib); 636 } 637 638 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 639 ill->ill_ip_mib = NULL; 640 } 641 if (ill->ill_icmp6_mib != NULL) { 642 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 643 ill->ill_icmp6_mib); 644 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 645 ill->ill_icmp6_mib = NULL; 646 } 647 } 648 649 /* 650 * Concatenate together a physical address and a sap. 651 * 652 * Sap_lengths are interpreted as follows: 653 * sap_length == 0 ==> no sap 654 * sap_length > 0 ==> sap is at the head of the dlpi address 655 * sap_length < 0 ==> sap is at the tail of the dlpi address 656 */ 657 static void 658 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 659 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 660 { 661 uint16_t sap_addr = (uint16_t)sap_src; 662 663 if (sap_length == 0) { 664 if (phys_src == NULL) 665 bzero(dst, phys_length); 666 else 667 bcopy(phys_src, dst, phys_length); 668 } else if (sap_length < 0) { 669 if (phys_src == NULL) 670 bzero(dst, phys_length); 671 else 672 bcopy(phys_src, dst, phys_length); 673 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 674 } else { 675 bcopy(&sap_addr, dst, sizeof (sap_addr)); 676 if (phys_src == NULL) 677 bzero((char *)dst + sap_length, phys_length); 678 else 679 bcopy(phys_src, (char *)dst + sap_length, phys_length); 680 } 681 } 682 683 /* 684 * Generate a dl_unitdata_req mblk for the device and address given. 685 * addr_length is the length of the physical portion of the address. 686 * If addr is NULL include an all zero address of the specified length. 687 * TRUE? In any case, addr_length is taken to be the entire length of the 688 * dlpi address, including the absolute value of sap_length. 689 */ 690 mblk_t * 691 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 692 t_scalar_t sap_length) 693 { 694 dl_unitdata_req_t *dlur; 695 mblk_t *mp; 696 t_scalar_t abs_sap_length; /* absolute value */ 697 698 abs_sap_length = ABS(sap_length); 699 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 700 DL_UNITDATA_REQ); 701 if (mp == NULL) 702 return (NULL); 703 dlur = (dl_unitdata_req_t *)mp->b_rptr; 704 /* HACK: accomodate incompatible DLPI drivers */ 705 if (addr_length == 8) 706 addr_length = 6; 707 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 708 dlur->dl_dest_addr_offset = sizeof (*dlur); 709 dlur->dl_priority.dl_min = 0; 710 dlur->dl_priority.dl_max = 0; 711 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 712 (uchar_t *)&dlur[1]); 713 return (mp); 714 } 715 716 /* 717 * Add the pending mp to the list. There can be only 1 pending mp 718 * in the list. Any exclusive ioctl that needs to wait for a response 719 * from another module or driver needs to use this function to set 720 * the ipx_pending_mp to the ioctl mblk and wait for the response from 721 * the other module/driver. This is also used while waiting for the 722 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 723 */ 724 boolean_t 725 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 726 int waitfor) 727 { 728 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 729 730 ASSERT(IAM_WRITER_IPIF(ipif)); 731 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 732 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 733 ASSERT(ipx->ipx_pending_mp == NULL); 734 /* 735 * The caller may be using a different ipif than the one passed into 736 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 737 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 738 * that `ipx_current_ipif == ipif'. 739 */ 740 ASSERT(ipx->ipx_current_ipif != NULL); 741 742 /* 743 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 744 * driver. 745 */ 746 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 747 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 748 (DB_TYPE(add_mp) == M_PCPROTO)); 749 750 if (connp != NULL) { 751 ASSERT(MUTEX_HELD(&connp->conn_lock)); 752 /* 753 * Return error if the conn has started closing. The conn 754 * could have finished cleaning up the pending mp list, 755 * If so we should not add another mp to the list negating 756 * the cleanup. 757 */ 758 if (connp->conn_state_flags & CONN_CLOSING) 759 return (B_FALSE); 760 } 761 mutex_enter(&ipx->ipx_lock); 762 ipx->ipx_pending_ipif = ipif; 763 /* 764 * Note down the queue in b_queue. This will be returned by 765 * ipsq_pending_mp_get. Caller will then use these values to restart 766 * the processing 767 */ 768 add_mp->b_next = NULL; 769 add_mp->b_queue = q; 770 ipx->ipx_pending_mp = add_mp; 771 ipx->ipx_waitfor = waitfor; 772 mutex_exit(&ipx->ipx_lock); 773 774 if (connp != NULL) 775 connp->conn_oper_pending_ill = ipif->ipif_ill; 776 777 return (B_TRUE); 778 } 779 780 /* 781 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 782 * queued in the list. 783 */ 784 mblk_t * 785 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 786 { 787 mblk_t *curr = NULL; 788 ipxop_t *ipx = ipsq->ipsq_xop; 789 790 *connpp = NULL; 791 mutex_enter(&ipx->ipx_lock); 792 if (ipx->ipx_pending_mp == NULL) { 793 mutex_exit(&ipx->ipx_lock); 794 return (NULL); 795 } 796 797 /* There can be only 1 such excl message */ 798 curr = ipx->ipx_pending_mp; 799 ASSERT(curr->b_next == NULL); 800 ipx->ipx_pending_ipif = NULL; 801 ipx->ipx_pending_mp = NULL; 802 ipx->ipx_waitfor = 0; 803 mutex_exit(&ipx->ipx_lock); 804 805 if (CONN_Q(curr->b_queue)) { 806 /* 807 * This mp did a refhold on the conn, at the start of the ioctl. 808 * So we can safely return a pointer to the conn to the caller. 809 */ 810 *connpp = Q_TO_CONN(curr->b_queue); 811 } else { 812 *connpp = NULL; 813 } 814 curr->b_next = NULL; 815 curr->b_prev = NULL; 816 return (curr); 817 } 818 819 /* 820 * Cleanup the ioctl mp queued in ipx_pending_mp 821 * - Called in the ill_delete path 822 * - Called in the M_ERROR or M_HANGUP path on the ill. 823 * - Called in the conn close path. 824 */ 825 boolean_t 826 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 827 { 828 mblk_t *mp; 829 ipxop_t *ipx; 830 queue_t *q; 831 ipif_t *ipif; 832 int cmd; 833 834 ASSERT(IAM_WRITER_ILL(ill)); 835 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 836 837 /* 838 * If connp is null, unconditionally clean up the ipx_pending_mp. 839 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 840 * even if it is meant for another ill, since we have to enqueue 841 * a new mp now in ipx_pending_mp to complete the ipif_down. 842 * If connp is non-null we are called from the conn close path. 843 */ 844 mutex_enter(&ipx->ipx_lock); 845 mp = ipx->ipx_pending_mp; 846 if (mp == NULL || (connp != NULL && 847 mp->b_queue != CONNP_TO_WQ(connp))) { 848 mutex_exit(&ipx->ipx_lock); 849 return (B_FALSE); 850 } 851 /* Now remove from the ipx_pending_mp */ 852 ipx->ipx_pending_mp = NULL; 853 q = mp->b_queue; 854 mp->b_next = NULL; 855 mp->b_prev = NULL; 856 mp->b_queue = NULL; 857 858 ipif = ipx->ipx_pending_ipif; 859 ipx->ipx_pending_ipif = NULL; 860 ipx->ipx_waitfor = 0; 861 ipx->ipx_current_ipif = NULL; 862 cmd = ipx->ipx_current_ioctl; 863 ipx->ipx_current_ioctl = 0; 864 ipx->ipx_current_done = B_TRUE; 865 mutex_exit(&ipx->ipx_lock); 866 867 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 868 DTRACE_PROBE4(ipif__ioctl, 869 char *, "ipsq_pending_mp_cleanup", 870 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 871 ipif_t *, ipif); 872 if (connp == NULL) { 873 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 874 } else { 875 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 876 mutex_enter(&ipif->ipif_ill->ill_lock); 877 ipif->ipif_state_flags &= ~IPIF_CHANGING; 878 mutex_exit(&ipif->ipif_ill->ill_lock); 879 } 880 } else { 881 /* 882 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 883 * be just inet_freemsg. we have to restart it 884 * otherwise the thread will be stuck. 885 */ 886 inet_freemsg(mp); 887 } 888 return (B_TRUE); 889 } 890 891 /* 892 * Called in the conn close path and ill delete path 893 */ 894 static void 895 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 896 { 897 ipsq_t *ipsq; 898 mblk_t *prev; 899 mblk_t *curr; 900 mblk_t *next; 901 queue_t *q; 902 mblk_t *tmp_list = NULL; 903 904 ASSERT(IAM_WRITER_ILL(ill)); 905 if (connp != NULL) 906 q = CONNP_TO_WQ(connp); 907 else 908 q = ill->ill_wq; 909 910 ipsq = ill->ill_phyint->phyint_ipsq; 911 /* 912 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 913 * In the case of ioctl from a conn, there can be only 1 mp 914 * queued on the ipsq. If an ill is being unplumbed, only messages 915 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 916 * ioctls meant for this ill form conn's are not flushed. They will 917 * be processed during ipsq_exit and will not find the ill and will 918 * return error. 919 */ 920 mutex_enter(&ipsq->ipsq_lock); 921 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 922 curr = next) { 923 next = curr->b_next; 924 if (curr->b_queue == q || curr->b_queue == RD(q)) { 925 /* Unlink the mblk from the pending mp list */ 926 if (prev != NULL) { 927 prev->b_next = curr->b_next; 928 } else { 929 ASSERT(ipsq->ipsq_xopq_mphead == curr); 930 ipsq->ipsq_xopq_mphead = curr->b_next; 931 } 932 if (ipsq->ipsq_xopq_mptail == curr) 933 ipsq->ipsq_xopq_mptail = prev; 934 /* 935 * Create a temporary list and release the ipsq lock 936 * New elements are added to the head of the tmp_list 937 */ 938 curr->b_next = tmp_list; 939 tmp_list = curr; 940 } else { 941 prev = curr; 942 } 943 } 944 mutex_exit(&ipsq->ipsq_lock); 945 946 while (tmp_list != NULL) { 947 curr = tmp_list; 948 tmp_list = curr->b_next; 949 curr->b_next = NULL; 950 curr->b_prev = NULL; 951 curr->b_queue = NULL; 952 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 953 DTRACE_PROBE4(ipif__ioctl, 954 char *, "ipsq_xopq_mp_cleanup", 955 int, 0, ill_t *, NULL, ipif_t *, NULL); 956 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 957 CONN_CLOSE : NO_COPYOUT, NULL); 958 } else { 959 /* 960 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 961 * this can't be just inet_freemsg. we have to 962 * restart it otherwise the thread will be stuck. 963 */ 964 inet_freemsg(curr); 965 } 966 } 967 } 968 969 /* 970 * This conn has started closing. Cleanup any pending ioctl from this conn. 971 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 972 */ 973 void 974 conn_ioctl_cleanup(conn_t *connp) 975 { 976 ipsq_t *ipsq; 977 ill_t *ill; 978 boolean_t refheld; 979 980 /* 981 * Is any exclusive ioctl pending ? If so clean it up. If the 982 * ioctl has not yet started, the mp is pending in the list headed by 983 * ipsq_xopq_head. If the ioctl has started the mp could be present in 984 * ipx_pending_mp. If the ioctl timed out in the streamhead but 985 * is currently executing now the mp is not queued anywhere but 986 * conn_oper_pending_ill is null. The conn close will wait 987 * till the conn_ref drops to zero. 988 */ 989 mutex_enter(&connp->conn_lock); 990 ill = connp->conn_oper_pending_ill; 991 if (ill == NULL) { 992 mutex_exit(&connp->conn_lock); 993 return; 994 } 995 996 /* 997 * We may not be able to refhold the ill if the ill/ipif 998 * is changing. But we need to make sure that the ill will 999 * not vanish. So we just bump up the ill_waiter count. 1000 */ 1001 refheld = ill_waiter_inc(ill); 1002 mutex_exit(&connp->conn_lock); 1003 if (refheld) { 1004 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1005 ill_waiter_dcr(ill); 1006 /* 1007 * Check whether this ioctl has started and is 1008 * pending. If it is not found there then check 1009 * whether this ioctl has not even started and is in 1010 * the ipsq_xopq list. 1011 */ 1012 if (!ipsq_pending_mp_cleanup(ill, connp)) 1013 ipsq_xopq_mp_cleanup(ill, connp); 1014 ipsq = ill->ill_phyint->phyint_ipsq; 1015 ipsq_exit(ipsq); 1016 return; 1017 } 1018 } 1019 1020 /* 1021 * The ill is also closing and we could not bump up the 1022 * ill_waiter_count or we could not enter the ipsq. Leave 1023 * the cleanup to ill_delete 1024 */ 1025 mutex_enter(&connp->conn_lock); 1026 while (connp->conn_oper_pending_ill != NULL) 1027 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1028 mutex_exit(&connp->conn_lock); 1029 if (refheld) 1030 ill_waiter_dcr(ill); 1031 } 1032 1033 /* 1034 * ipcl_walk function for cleaning up conn_*_ill fields. 1035 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1036 * conn_bound_if in place. We prefer dropping 1037 * packets instead of sending them out the wrong interface, or accepting 1038 * packets from the wrong ifindex. 1039 */ 1040 static void 1041 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1042 { 1043 ill_t *ill = (ill_t *)arg; 1044 1045 mutex_enter(&connp->conn_lock); 1046 if (connp->conn_dhcpinit_ill == ill) { 1047 connp->conn_dhcpinit_ill = NULL; 1048 ASSERT(ill->ill_dhcpinit != 0); 1049 atomic_dec_32(&ill->ill_dhcpinit); 1050 ill_set_inputfn(ill); 1051 } 1052 mutex_exit(&connp->conn_lock); 1053 } 1054 1055 static int 1056 ill_down_ipifs_tail(ill_t *ill) 1057 { 1058 ipif_t *ipif; 1059 int err; 1060 1061 ASSERT(IAM_WRITER_ILL(ill)); 1062 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1063 ipif_non_duplicate(ipif); 1064 /* 1065 * ipif_down_tail will call arp_ll_down on the last ipif 1066 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1067 */ 1068 if ((err = ipif_down_tail(ipif)) != 0) 1069 return (err); 1070 } 1071 return (0); 1072 } 1073 1074 /* ARGSUSED */ 1075 void 1076 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1077 { 1078 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1079 (void) ill_down_ipifs_tail(q->q_ptr); 1080 freemsg(mp); 1081 ipsq_current_finish(ipsq); 1082 } 1083 1084 /* 1085 * ill_down_start is called when we want to down this ill and bring it up again 1086 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1087 * all interfaces, but don't tear down any plumbing. 1088 */ 1089 boolean_t 1090 ill_down_start(queue_t *q, mblk_t *mp) 1091 { 1092 ill_t *ill = q->q_ptr; 1093 ipif_t *ipif; 1094 1095 ASSERT(IAM_WRITER_ILL(ill)); 1096 mutex_enter(&ill->ill_lock); 1097 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1098 /* no more nce addition allowed */ 1099 mutex_exit(&ill->ill_lock); 1100 1101 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1102 (void) ipif_down(ipif, NULL, NULL); 1103 1104 ill_down(ill); 1105 1106 /* 1107 * Walk all CONNs that can have a reference on an ire or nce for this 1108 * ill (we actually walk all that now have stale references). 1109 */ 1110 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1111 1112 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1113 if (ill->ill_isv6) 1114 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1115 1116 1117 (void) ipsq_pending_mp_cleanup(ill, NULL); 1118 1119 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1120 1121 /* 1122 * Atomically test and add the pending mp if references are active. 1123 */ 1124 mutex_enter(&ill->ill_lock); 1125 if (!ill_is_quiescent(ill)) { 1126 /* call cannot fail since `conn_t *' argument is NULL */ 1127 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1128 mp, ILL_DOWN); 1129 mutex_exit(&ill->ill_lock); 1130 return (B_FALSE); 1131 } 1132 mutex_exit(&ill->ill_lock); 1133 return (B_TRUE); 1134 } 1135 1136 static void 1137 ill_down(ill_t *ill) 1138 { 1139 mblk_t *mp; 1140 ip_stack_t *ipst = ill->ill_ipst; 1141 1142 /* 1143 * Blow off any IREs dependent on this ILL. 1144 * The caller needs to handle conn_ixa_cleanup 1145 */ 1146 ill_delete_ires(ill); 1147 1148 ire_walk_ill(0, 0, ill_downi, ill, ill); 1149 1150 /* Remove any conn_*_ill depending on this ill */ 1151 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1152 1153 /* 1154 * Free state for additional IREs. 1155 */ 1156 mutex_enter(&ill->ill_saved_ire_lock); 1157 mp = ill->ill_saved_ire_mp; 1158 ill->ill_saved_ire_mp = NULL; 1159 ill->ill_saved_ire_cnt = 0; 1160 mutex_exit(&ill->ill_saved_ire_lock); 1161 freemsg(mp); 1162 } 1163 1164 /* 1165 * ire_walk routine used to delete every IRE that depends on 1166 * 'ill'. (Always called as writer.) 1167 * 1168 * Note: since the routes added by the kernel are deleted separately, 1169 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1170 * 1171 * We also remove references on ire_nce_cache entries that refer to the ill. 1172 */ 1173 void 1174 ill_downi(ire_t *ire, char *ill_arg) 1175 { 1176 ill_t *ill = (ill_t *)ill_arg; 1177 nce_t *nce; 1178 1179 mutex_enter(&ire->ire_lock); 1180 nce = ire->ire_nce_cache; 1181 if (nce != NULL && nce->nce_ill == ill) 1182 ire->ire_nce_cache = NULL; 1183 else 1184 nce = NULL; 1185 mutex_exit(&ire->ire_lock); 1186 if (nce != NULL) 1187 nce_refrele(nce); 1188 if (ire->ire_ill == ill) 1189 ire_delete(ire); 1190 } 1191 1192 /* Remove IRE_IF_CLONE on this ill */ 1193 void 1194 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1195 { 1196 ill_t *ill = (ill_t *)ill_arg; 1197 1198 ASSERT(ire->ire_type & IRE_IF_CLONE); 1199 if (ire->ire_ill == ill) 1200 ire_delete(ire); 1201 } 1202 1203 /* Consume an M_IOCACK of the fastpath probe. */ 1204 void 1205 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1206 { 1207 mblk_t *mp1 = mp; 1208 1209 /* 1210 * If this was the first attempt turn on the fastpath probing. 1211 */ 1212 mutex_enter(&ill->ill_lock); 1213 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1214 ill->ill_dlpi_fastpath_state = IDS_OK; 1215 mutex_exit(&ill->ill_lock); 1216 1217 /* Free the M_IOCACK mblk, hold on to the data */ 1218 mp = mp->b_cont; 1219 freeb(mp1); 1220 if (mp == NULL) 1221 return; 1222 if (mp->b_cont != NULL) 1223 nce_fastpath_update(ill, mp); 1224 else 1225 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1226 freemsg(mp); 1227 } 1228 1229 /* 1230 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1231 * The data portion of the request is a dl_unitdata_req_t template for 1232 * what we would send downstream in the absence of a fastpath confirmation. 1233 */ 1234 int 1235 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1236 { 1237 struct iocblk *ioc; 1238 mblk_t *mp; 1239 1240 if (dlur_mp == NULL) 1241 return (EINVAL); 1242 1243 mutex_enter(&ill->ill_lock); 1244 switch (ill->ill_dlpi_fastpath_state) { 1245 case IDS_FAILED: 1246 /* 1247 * Driver NAKed the first fastpath ioctl - assume it doesn't 1248 * support it. 1249 */ 1250 mutex_exit(&ill->ill_lock); 1251 return (ENOTSUP); 1252 case IDS_UNKNOWN: 1253 /* This is the first probe */ 1254 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1255 break; 1256 default: 1257 break; 1258 } 1259 mutex_exit(&ill->ill_lock); 1260 1261 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1262 return (EAGAIN); 1263 1264 mp->b_cont = copyb(dlur_mp); 1265 if (mp->b_cont == NULL) { 1266 freeb(mp); 1267 return (EAGAIN); 1268 } 1269 1270 ioc = (struct iocblk *)mp->b_rptr; 1271 ioc->ioc_count = msgdsize(mp->b_cont); 1272 1273 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1274 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1275 putnext(ill->ill_wq, mp); 1276 return (0); 1277 } 1278 1279 void 1280 ill_capability_probe(ill_t *ill) 1281 { 1282 mblk_t *mp; 1283 1284 ASSERT(IAM_WRITER_ILL(ill)); 1285 1286 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1287 ill->ill_dlpi_capab_state != IDCS_FAILED) 1288 return; 1289 1290 /* 1291 * We are starting a new cycle of capability negotiation. 1292 * Free up the capab reset messages of any previous incarnation. 1293 * We will do a fresh allocation when we get the response to our probe 1294 */ 1295 if (ill->ill_capab_reset_mp != NULL) { 1296 freemsg(ill->ill_capab_reset_mp); 1297 ill->ill_capab_reset_mp = NULL; 1298 } 1299 1300 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1301 1302 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1303 if (mp == NULL) 1304 return; 1305 1306 ill_capability_send(ill, mp); 1307 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1308 } 1309 1310 void 1311 ill_capability_reset(ill_t *ill, boolean_t reneg) 1312 { 1313 ASSERT(IAM_WRITER_ILL(ill)); 1314 1315 if (ill->ill_dlpi_capab_state != IDCS_OK) 1316 return; 1317 1318 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1319 1320 ill_capability_send(ill, ill->ill_capab_reset_mp); 1321 ill->ill_capab_reset_mp = NULL; 1322 /* 1323 * We turn off all capabilities except those pertaining to 1324 * direct function call capabilities viz. ILL_CAPAB_DLD* 1325 * which will be turned off by the corresponding reset functions. 1326 */ 1327 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1328 } 1329 1330 static void 1331 ill_capability_reset_alloc(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 size_t size = 0; 1335 int err; 1336 dl_capability_req_t *capb; 1337 1338 ASSERT(IAM_WRITER_ILL(ill)); 1339 ASSERT(ill->ill_capab_reset_mp == NULL); 1340 1341 if (ILL_HCKSUM_CAPABLE(ill)) { 1342 size += sizeof (dl_capability_sub_t) + 1343 sizeof (dl_capab_hcksum_t); 1344 } 1345 1346 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1347 size += sizeof (dl_capability_sub_t) + 1348 sizeof (dl_capab_zerocopy_t); 1349 } 1350 1351 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1352 size += sizeof (dl_capability_sub_t) + 1353 sizeof (dl_capab_dld_t); 1354 } 1355 1356 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1357 STR_NOSIG, &err); 1358 1359 mp->b_datap->db_type = M_PROTO; 1360 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1361 1362 capb = (dl_capability_req_t *)mp->b_rptr; 1363 capb->dl_primitive = DL_CAPABILITY_REQ; 1364 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1365 capb->dl_sub_length = size; 1366 1367 mp->b_wptr += sizeof (dl_capability_req_t); 1368 1369 /* 1370 * Each handler fills in the corresponding dl_capability_sub_t 1371 * inside the mblk, 1372 */ 1373 ill_capability_hcksum_reset_fill(ill, mp); 1374 ill_capability_zerocopy_reset_fill(ill, mp); 1375 ill_capability_dld_reset_fill(ill, mp); 1376 1377 ill->ill_capab_reset_mp = mp; 1378 } 1379 1380 static void 1381 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1382 { 1383 dl_capab_id_t *id_ic; 1384 uint_t sub_dl_cap = outers->dl_cap; 1385 dl_capability_sub_t *inners; 1386 uint8_t *capend; 1387 1388 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1389 1390 /* 1391 * Note: range checks here are not absolutely sufficient to 1392 * make us robust against malformed messages sent by drivers; 1393 * this is in keeping with the rest of IP's dlpi handling. 1394 * (Remember, it's coming from something else in the kernel 1395 * address space) 1396 */ 1397 1398 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1399 if (capend > mp->b_wptr) { 1400 cmn_err(CE_WARN, "ill_capability_id_ack: " 1401 "malformed sub-capability too long for mblk"); 1402 return; 1403 } 1404 1405 id_ic = (dl_capab_id_t *)(outers + 1); 1406 1407 if (outers->dl_length < sizeof (*id_ic) || 1408 (inners = &id_ic->id_subcap, 1409 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1410 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1411 "encapsulated capab type %d too long for mblk", 1412 inners->dl_cap); 1413 return; 1414 } 1415 1416 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1417 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1418 "isn't as expected; pass-thru module(s) detected, " 1419 "discarding capability\n", inners->dl_cap)); 1420 return; 1421 } 1422 1423 /* Process the encapsulated sub-capability */ 1424 ill_capability_dispatch(ill, mp, inners); 1425 } 1426 1427 static void 1428 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1429 { 1430 dl_capability_sub_t *dl_subcap; 1431 1432 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1433 return; 1434 1435 /* 1436 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1437 * initialized below since it is not used by DLD. 1438 */ 1439 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1440 dl_subcap->dl_cap = DL_CAPAB_DLD; 1441 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1442 1443 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1444 } 1445 1446 static void 1447 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1448 { 1449 switch (subp->dl_cap) { 1450 case DL_CAPAB_HCKSUM: 1451 ill_capability_hcksum_ack(ill, mp, subp); 1452 break; 1453 case DL_CAPAB_ZEROCOPY: 1454 ill_capability_zerocopy_ack(ill, mp, subp); 1455 break; 1456 case DL_CAPAB_DLD: 1457 ill_capability_dld_ack(ill, mp, subp); 1458 break; 1459 default: 1460 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1461 subp->dl_cap)); 1462 } 1463 } 1464 1465 /* 1466 * Process a hardware checksum offload capability negotiation ack received 1467 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1468 * of a DL_CAPABILITY_ACK message. 1469 */ 1470 static void 1471 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1472 { 1473 dl_capability_req_t *ocap; 1474 dl_capab_hcksum_t *ihck, *ohck; 1475 ill_hcksum_capab_t **ill_hcksum; 1476 mblk_t *nmp = NULL; 1477 uint_t sub_dl_cap = isub->dl_cap; 1478 uint8_t *capend; 1479 1480 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1481 1482 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1483 1484 /* 1485 * Note: range checks here are not absolutely sufficient to 1486 * make us robust against malformed messages sent by drivers; 1487 * this is in keeping with the rest of IP's dlpi handling. 1488 * (Remember, it's coming from something else in the kernel 1489 * address space) 1490 */ 1491 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1492 if (capend > mp->b_wptr) { 1493 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1494 "malformed sub-capability too long for mblk"); 1495 return; 1496 } 1497 1498 /* 1499 * There are two types of acks we process here: 1500 * 1. acks in reply to a (first form) generic capability req 1501 * (no ENABLE flag set) 1502 * 2. acks in reply to a ENABLE capability req. 1503 * (ENABLE flag set) 1504 */ 1505 ihck = (dl_capab_hcksum_t *)(isub + 1); 1506 1507 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1508 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1509 "unsupported hardware checksum " 1510 "sub-capability (version %d, expected %d)", 1511 ihck->hcksum_version, HCKSUM_VERSION_1); 1512 return; 1513 } 1514 1515 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1516 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1517 "checksum capability isn't as expected; pass-thru " 1518 "module(s) detected, discarding capability\n")); 1519 return; 1520 } 1521 1522 #define CURR_HCKSUM_CAPAB \ 1523 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1524 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1525 1526 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1527 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1528 /* do ENABLE processing */ 1529 if (*ill_hcksum == NULL) { 1530 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1531 KM_NOSLEEP); 1532 1533 if (*ill_hcksum == NULL) { 1534 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1535 "could not enable hcksum version %d " 1536 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1537 ill->ill_name); 1538 return; 1539 } 1540 } 1541 1542 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1543 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1544 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1545 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1546 "has enabled hardware checksumming\n ", 1547 ill->ill_name)); 1548 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1549 /* 1550 * Enabling hardware checksum offload 1551 * Currently IP supports {TCP,UDP}/IPv4 1552 * partial and full cksum offload and 1553 * IPv4 header checksum offload. 1554 * Allocate new mblk which will 1555 * contain a new capability request 1556 * to enable hardware checksum offload. 1557 */ 1558 uint_t size; 1559 uchar_t *rptr; 1560 1561 size = sizeof (dl_capability_req_t) + 1562 sizeof (dl_capability_sub_t) + isub->dl_length; 1563 1564 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1565 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1566 "could not enable hardware cksum for %s (ENOMEM)\n", 1567 ill->ill_name); 1568 return; 1569 } 1570 1571 rptr = nmp->b_rptr; 1572 /* initialize dl_capability_req_t */ 1573 ocap = (dl_capability_req_t *)nmp->b_rptr; 1574 ocap->dl_sub_offset = 1575 sizeof (dl_capability_req_t); 1576 ocap->dl_sub_length = 1577 sizeof (dl_capability_sub_t) + 1578 isub->dl_length; 1579 nmp->b_rptr += sizeof (dl_capability_req_t); 1580 1581 /* initialize dl_capability_sub_t */ 1582 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1583 nmp->b_rptr += sizeof (*isub); 1584 1585 /* initialize dl_capab_hcksum_t */ 1586 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1587 bcopy(ihck, ohck, sizeof (*ihck)); 1588 1589 nmp->b_rptr = rptr; 1590 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1591 1592 /* Set ENABLE flag */ 1593 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1594 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1595 1596 /* 1597 * nmp points to a DL_CAPABILITY_REQ message to enable 1598 * hardware checksum acceleration. 1599 */ 1600 ill_capability_send(ill, nmp); 1601 } else { 1602 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1603 "advertised %x hardware checksum capability flags\n", 1604 ill->ill_name, ihck->hcksum_txflags)); 1605 } 1606 } 1607 1608 static void 1609 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1610 { 1611 dl_capab_hcksum_t *hck_subcap; 1612 dl_capability_sub_t *dl_subcap; 1613 1614 if (!ILL_HCKSUM_CAPABLE(ill)) 1615 return; 1616 1617 ASSERT(ill->ill_hcksum_capab != NULL); 1618 1619 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1620 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1621 dl_subcap->dl_length = sizeof (*hck_subcap); 1622 1623 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1624 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1625 hck_subcap->hcksum_txflags = 0; 1626 1627 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1628 } 1629 1630 static void 1631 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1632 { 1633 mblk_t *nmp = NULL; 1634 dl_capability_req_t *oc; 1635 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1636 ill_zerocopy_capab_t **ill_zerocopy_capab; 1637 uint_t sub_dl_cap = isub->dl_cap; 1638 uint8_t *capend; 1639 1640 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1641 1642 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1643 1644 /* 1645 * Note: range checks here are not absolutely sufficient to 1646 * make us robust against malformed messages sent by drivers; 1647 * this is in keeping with the rest of IP's dlpi handling. 1648 * (Remember, it's coming from something else in the kernel 1649 * address space) 1650 */ 1651 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1652 if (capend > mp->b_wptr) { 1653 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1654 "malformed sub-capability too long for mblk"); 1655 return; 1656 } 1657 1658 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1659 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1660 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1661 "unsupported ZEROCOPY sub-capability (version %d, " 1662 "expected %d)", zc_ic->zerocopy_version, 1663 ZEROCOPY_VERSION_1); 1664 return; 1665 } 1666 1667 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1668 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1669 "capability isn't as expected; pass-thru module(s) " 1670 "detected, discarding capability\n")); 1671 return; 1672 } 1673 1674 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1675 if (*ill_zerocopy_capab == NULL) { 1676 *ill_zerocopy_capab = 1677 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1678 KM_NOSLEEP); 1679 1680 if (*ill_zerocopy_capab == NULL) { 1681 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1682 "could not enable Zero-copy version %d " 1683 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1684 ill->ill_name); 1685 return; 1686 } 1687 } 1688 1689 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1690 "supports Zero-copy version %d\n", ill->ill_name, 1691 ZEROCOPY_VERSION_1)); 1692 1693 (*ill_zerocopy_capab)->ill_zerocopy_version = 1694 zc_ic->zerocopy_version; 1695 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1696 zc_ic->zerocopy_flags; 1697 1698 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1699 } else { 1700 uint_t size; 1701 uchar_t *rptr; 1702 1703 size = sizeof (dl_capability_req_t) + 1704 sizeof (dl_capability_sub_t) + 1705 sizeof (dl_capab_zerocopy_t); 1706 1707 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1708 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1709 "could not enable zerocopy for %s (ENOMEM)\n", 1710 ill->ill_name); 1711 return; 1712 } 1713 1714 rptr = nmp->b_rptr; 1715 /* initialize dl_capability_req_t */ 1716 oc = (dl_capability_req_t *)rptr; 1717 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1718 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1719 sizeof (dl_capab_zerocopy_t); 1720 rptr += sizeof (dl_capability_req_t); 1721 1722 /* initialize dl_capability_sub_t */ 1723 bcopy(isub, rptr, sizeof (*isub)); 1724 rptr += sizeof (*isub); 1725 1726 /* initialize dl_capab_zerocopy_t */ 1727 zc_oc = (dl_capab_zerocopy_t *)rptr; 1728 *zc_oc = *zc_ic; 1729 1730 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1731 "to enable zero-copy version %d\n", ill->ill_name, 1732 ZEROCOPY_VERSION_1)); 1733 1734 /* set VMSAFE_MEM flag */ 1735 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1736 1737 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1738 ill_capability_send(ill, nmp); 1739 } 1740 } 1741 1742 static void 1743 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1744 { 1745 dl_capab_zerocopy_t *zerocopy_subcap; 1746 dl_capability_sub_t *dl_subcap; 1747 1748 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1749 return; 1750 1751 ASSERT(ill->ill_zerocopy_capab != NULL); 1752 1753 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1754 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1755 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1756 1757 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1758 zerocopy_subcap->zerocopy_version = 1759 ill->ill_zerocopy_capab->ill_zerocopy_version; 1760 zerocopy_subcap->zerocopy_flags = 0; 1761 1762 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1763 } 1764 1765 /* 1766 * DLD capability 1767 * Refer to dld.h for more information regarding the purpose and usage 1768 * of this capability. 1769 */ 1770 static void 1771 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1772 { 1773 dl_capab_dld_t *dld_ic, dld; 1774 uint_t sub_dl_cap = isub->dl_cap; 1775 uint8_t *capend; 1776 ill_dld_capab_t *idc; 1777 1778 ASSERT(IAM_WRITER_ILL(ill)); 1779 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1780 1781 /* 1782 * Note: range checks here are not absolutely sufficient to 1783 * make us robust against malformed messages sent by drivers; 1784 * this is in keeping with the rest of IP's dlpi handling. 1785 * (Remember, it's coming from something else in the kernel 1786 * address space) 1787 */ 1788 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1789 if (capend > mp->b_wptr) { 1790 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1791 "malformed sub-capability too long for mblk"); 1792 return; 1793 } 1794 dld_ic = (dl_capab_dld_t *)(isub + 1); 1795 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1796 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1797 "unsupported DLD sub-capability (version %d, " 1798 "expected %d)", dld_ic->dld_version, 1799 DLD_CURRENT_VERSION); 1800 return; 1801 } 1802 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1803 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1804 "capability isn't as expected; pass-thru module(s) " 1805 "detected, discarding capability\n")); 1806 return; 1807 } 1808 1809 /* 1810 * Copy locally to ensure alignment. 1811 */ 1812 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1813 1814 if ((idc = ill->ill_dld_capab) == NULL) { 1815 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1816 if (idc == NULL) { 1817 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1818 "could not enable DLD version %d " 1819 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1820 ill->ill_name); 1821 return; 1822 } 1823 ill->ill_dld_capab = idc; 1824 } 1825 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1826 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1827 ip1dbg(("ill_capability_dld_ack: interface %s " 1828 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1829 1830 ill_capability_dld_enable(ill); 1831 } 1832 1833 /* 1834 * Typically capability negotiation between IP and the driver happens via 1835 * DLPI message exchange. However GLD also offers a direct function call 1836 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1837 * But arbitrary function calls into IP or GLD are not permitted, since both 1838 * of them are protected by their own perimeter mechanism. The perimeter can 1839 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1840 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1841 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1842 * to enter the mac perimeter and then do the direct function calls into 1843 * GLD to enable squeue polling. The ring related callbacks from the mac into 1844 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1845 * protected by the mac perimeter. 1846 */ 1847 static void 1848 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1849 { 1850 ill_dld_capab_t *idc = ill->ill_dld_capab; 1851 int err; 1852 1853 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1854 DLD_ENABLE); 1855 ASSERT(err == 0); 1856 } 1857 1858 static void 1859 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1860 { 1861 ill_dld_capab_t *idc = ill->ill_dld_capab; 1862 int err; 1863 1864 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1865 DLD_DISABLE); 1866 ASSERT(err == 0); 1867 } 1868 1869 boolean_t 1870 ill_mac_perim_held(ill_t *ill) 1871 { 1872 ill_dld_capab_t *idc = ill->ill_dld_capab; 1873 1874 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1875 DLD_QUERY)); 1876 } 1877 1878 static void 1879 ill_capability_direct_enable(ill_t *ill) 1880 { 1881 ill_dld_capab_t *idc = ill->ill_dld_capab; 1882 ill_dld_direct_t *idd = &idc->idc_direct; 1883 dld_capab_direct_t direct; 1884 int rc; 1885 1886 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1887 1888 bzero(&direct, sizeof (direct)); 1889 direct.di_rx_cf = (uintptr_t)ip_input; 1890 direct.di_rx_ch = ill; 1891 1892 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1893 DLD_ENABLE); 1894 if (rc == 0) { 1895 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 1896 idd->idd_tx_dh = direct.di_tx_dh; 1897 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 1898 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 1899 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 1900 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 1901 ASSERT(idd->idd_tx_cb_df != NULL); 1902 ASSERT(idd->idd_tx_fctl_df != NULL); 1903 ASSERT(idd->idd_tx_df != NULL); 1904 /* 1905 * One time registration of flow enable callback function 1906 */ 1907 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 1908 ill_flow_enable, ill); 1909 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 1910 DTRACE_PROBE1(direct_on, (ill_t *), ill); 1911 } else { 1912 cmn_err(CE_WARN, "warning: could not enable DIRECT " 1913 "capability, rc = %d\n", rc); 1914 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 1915 } 1916 } 1917 1918 static void 1919 ill_capability_poll_enable(ill_t *ill) 1920 { 1921 ill_dld_capab_t *idc = ill->ill_dld_capab; 1922 dld_capab_poll_t poll; 1923 int rc; 1924 1925 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1926 1927 bzero(&poll, sizeof (poll)); 1928 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 1929 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 1930 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 1931 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 1932 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 1933 poll.poll_ring_ch = ill; 1934 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 1935 DLD_ENABLE); 1936 if (rc == 0) { 1937 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 1938 DTRACE_PROBE1(poll_on, (ill_t *), ill); 1939 } else { 1940 ip1dbg(("warning: could not enable POLL " 1941 "capability, rc = %d\n", rc)); 1942 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 1943 } 1944 } 1945 1946 /* 1947 * Enable the LSO capability. 1948 */ 1949 static void 1950 ill_capability_lso_enable(ill_t *ill) 1951 { 1952 ill_dld_capab_t *idc = ill->ill_dld_capab; 1953 dld_capab_lso_t lso; 1954 int rc; 1955 1956 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1957 1958 if (ill->ill_lso_capab == NULL) { 1959 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 1960 KM_NOSLEEP); 1961 if (ill->ill_lso_capab == NULL) { 1962 cmn_err(CE_WARN, "ill_capability_lso_enable: " 1963 "could not enable LSO for %s (ENOMEM)\n", 1964 ill->ill_name); 1965 return; 1966 } 1967 } 1968 1969 bzero(&lso, sizeof (lso)); 1970 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 1971 DLD_ENABLE)) == 0) { 1972 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 1973 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 1974 ill->ill_capabilities |= ILL_CAPAB_LSO; 1975 ip1dbg(("ill_capability_lso_enable: interface %s " 1976 "has enabled LSO\n ", ill->ill_name)); 1977 } else { 1978 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 1979 ill->ill_lso_capab = NULL; 1980 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 1981 } 1982 } 1983 1984 static void 1985 ill_capability_dld_enable(ill_t *ill) 1986 { 1987 mac_perim_handle_t mph; 1988 1989 ASSERT(IAM_WRITER_ILL(ill)); 1990 1991 if (ill->ill_isv6) 1992 return; 1993 1994 ill_mac_perim_enter(ill, &mph); 1995 if (!ill->ill_isv6) { 1996 ill_capability_direct_enable(ill); 1997 ill_capability_poll_enable(ill); 1998 ill_capability_lso_enable(ill); 1999 } 2000 ill->ill_capabilities |= ILL_CAPAB_DLD; 2001 ill_mac_perim_exit(ill, mph); 2002 } 2003 2004 static void 2005 ill_capability_dld_disable(ill_t *ill) 2006 { 2007 ill_dld_capab_t *idc; 2008 ill_dld_direct_t *idd; 2009 mac_perim_handle_t mph; 2010 2011 ASSERT(IAM_WRITER_ILL(ill)); 2012 2013 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2014 return; 2015 2016 ill_mac_perim_enter(ill, &mph); 2017 2018 idc = ill->ill_dld_capab; 2019 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2020 /* 2021 * For performance we avoid locks in the transmit data path 2022 * and don't maintain a count of the number of threads using 2023 * direct calls. Thus some threads could be using direct 2024 * transmit calls to GLD, even after the capability mechanism 2025 * turns it off. This is still safe since the handles used in 2026 * the direct calls continue to be valid until the unplumb is 2027 * completed. Remove the callback that was added (1-time) at 2028 * capab enable time. 2029 */ 2030 mutex_enter(&ill->ill_lock); 2031 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2032 mutex_exit(&ill->ill_lock); 2033 if (ill->ill_flownotify_mh != NULL) { 2034 idd = &idc->idc_direct; 2035 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2036 ill->ill_flownotify_mh); 2037 ill->ill_flownotify_mh = NULL; 2038 } 2039 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2040 NULL, DLD_DISABLE); 2041 } 2042 2043 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2044 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2045 ip_squeue_clean_all(ill); 2046 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2047 NULL, DLD_DISABLE); 2048 } 2049 2050 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2051 ASSERT(ill->ill_lso_capab != NULL); 2052 /* 2053 * Clear the capability flag for LSO but retain the 2054 * ill_lso_capab structure since it's possible that another 2055 * thread is still referring to it. The structure only gets 2056 * deallocated when we destroy the ill. 2057 */ 2058 2059 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2060 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2061 NULL, DLD_DISABLE); 2062 } 2063 2064 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2065 ill_mac_perim_exit(ill, mph); 2066 } 2067 2068 /* 2069 * Capability Negotiation protocol 2070 * 2071 * We don't wait for DLPI capability operations to finish during interface 2072 * bringup or teardown. Doing so would introduce more asynchrony and the 2073 * interface up/down operations will need multiple return and restarts. 2074 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2075 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2076 * exclusive operation won't start until the DLPI operations of the previous 2077 * exclusive operation complete. 2078 * 2079 * The capability state machine is shown below. 2080 * 2081 * state next state event, action 2082 * 2083 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2084 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2085 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2086 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2087 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2088 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2089 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2090 * ill_capability_probe. 2091 */ 2092 2093 /* 2094 * Dedicated thread started from ip_stack_init that handles capability 2095 * disable. This thread ensures the taskq dispatch does not fail by waiting 2096 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2097 * that direct calls to DLD are done in a cv_waitable context. 2098 */ 2099 void 2100 ill_taskq_dispatch(ip_stack_t *ipst) 2101 { 2102 callb_cpr_t cprinfo; 2103 char name[64]; 2104 mblk_t *mp; 2105 2106 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2107 ipst->ips_netstack->netstack_stackid); 2108 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2109 name); 2110 mutex_enter(&ipst->ips_capab_taskq_lock); 2111 2112 for (;;) { 2113 mp = ipst->ips_capab_taskq_head; 2114 while (mp != NULL) { 2115 ipst->ips_capab_taskq_head = mp->b_next; 2116 if (ipst->ips_capab_taskq_head == NULL) 2117 ipst->ips_capab_taskq_tail = NULL; 2118 mutex_exit(&ipst->ips_capab_taskq_lock); 2119 mp->b_next = NULL; 2120 2121 VERIFY(taskq_dispatch(system_taskq, 2122 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2123 mutex_enter(&ipst->ips_capab_taskq_lock); 2124 mp = ipst->ips_capab_taskq_head; 2125 } 2126 2127 if (ipst->ips_capab_taskq_quit) 2128 break; 2129 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2130 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2131 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2132 } 2133 VERIFY(ipst->ips_capab_taskq_head == NULL); 2134 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2135 CALLB_CPR_EXIT(&cprinfo); 2136 thread_exit(); 2137 } 2138 2139 /* 2140 * Consume a new-style hardware capabilities negotiation ack. 2141 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 2142 */ 2143 static void 2144 ill_capability_ack_thr(void *arg) 2145 { 2146 mblk_t *mp = arg; 2147 dl_capability_ack_t *capp; 2148 dl_capability_sub_t *subp, *endp; 2149 ill_t *ill; 2150 boolean_t reneg; 2151 2152 ill = (ill_t *)mp->b_prev; 2153 mp->b_prev = NULL; 2154 2155 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2156 2157 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2158 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2159 /* 2160 * We have received the ack for our DL_CAPAB reset request. 2161 * There isnt' anything in the message that needs processing. 2162 * All message based capabilities have been disabled, now 2163 * do the function call based capability disable. 2164 */ 2165 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2166 ill_capability_dld_disable(ill); 2167 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2168 if (reneg) 2169 ill_capability_probe(ill); 2170 goto done; 2171 } 2172 2173 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2174 ill->ill_dlpi_capab_state = IDCS_OK; 2175 2176 capp = (dl_capability_ack_t *)mp->b_rptr; 2177 2178 if (capp->dl_sub_length == 0) { 2179 /* no new-style capabilities */ 2180 goto done; 2181 } 2182 2183 /* make sure the driver supplied correct dl_sub_length */ 2184 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2185 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2186 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2187 goto done; 2188 } 2189 2190 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2191 /* 2192 * There are sub-capabilities. Process the ones we know about. 2193 * Loop until we don't have room for another sub-cap header.. 2194 */ 2195 for (subp = SC(capp, capp->dl_sub_offset), 2196 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2197 subp <= endp; 2198 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2199 2200 switch (subp->dl_cap) { 2201 case DL_CAPAB_ID_WRAPPER: 2202 ill_capability_id_ack(ill, mp, subp); 2203 break; 2204 default: 2205 ill_capability_dispatch(ill, mp, subp); 2206 break; 2207 } 2208 } 2209 #undef SC 2210 done: 2211 inet_freemsg(mp); 2212 ill_capability_done(ill); 2213 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2214 } 2215 2216 /* 2217 * This needs to be started in a taskq thread to provide a cv_waitable 2218 * context. 2219 */ 2220 void 2221 ill_capability_ack(ill_t *ill, mblk_t *mp) 2222 { 2223 ip_stack_t *ipst = ill->ill_ipst; 2224 2225 mp->b_prev = (mblk_t *)ill; 2226 ASSERT(mp->b_next == NULL); 2227 2228 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2229 TQ_NOSLEEP) != 0) 2230 return; 2231 2232 /* 2233 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2234 * which will do the dispatch using TQ_SLEEP to guarantee success. 2235 */ 2236 mutex_enter(&ipst->ips_capab_taskq_lock); 2237 if (ipst->ips_capab_taskq_head == NULL) { 2238 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2239 ipst->ips_capab_taskq_head = mp; 2240 } else { 2241 ipst->ips_capab_taskq_tail->b_next = mp; 2242 } 2243 ipst->ips_capab_taskq_tail = mp; 2244 2245 cv_signal(&ipst->ips_capab_taskq_cv); 2246 mutex_exit(&ipst->ips_capab_taskq_lock); 2247 } 2248 2249 /* 2250 * This routine is called to scan the fragmentation reassembly table for 2251 * the specified ILL for any packets that are starting to smell. 2252 * dead_interval is the maximum time in seconds that will be tolerated. It 2253 * will either be the value specified in ip_g_frag_timeout, or zero if the 2254 * ILL is shutting down and it is time to blow everything off. 2255 * 2256 * It returns the number of seconds (as a time_t) that the next frag timer 2257 * should be scheduled for, 0 meaning that the timer doesn't need to be 2258 * re-started. Note that the method of calculating next_timeout isn't 2259 * entirely accurate since time will flow between the time we grab 2260 * current_time and the time we schedule the next timeout. This isn't a 2261 * big problem since this is the timer for sending an ICMP reassembly time 2262 * exceeded messages, and it doesn't have to be exactly accurate. 2263 * 2264 * This function is 2265 * sometimes called as writer, although this is not required. 2266 */ 2267 time_t 2268 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2269 { 2270 ipfb_t *ipfb; 2271 ipfb_t *endp; 2272 ipf_t *ipf; 2273 ipf_t *ipfnext; 2274 mblk_t *mp; 2275 time_t current_time = gethrestime_sec(); 2276 time_t next_timeout = 0; 2277 uint32_t hdr_length; 2278 mblk_t *send_icmp_head; 2279 mblk_t *send_icmp_head_v6; 2280 ip_stack_t *ipst = ill->ill_ipst; 2281 ip_recv_attr_t iras; 2282 2283 bzero(&iras, sizeof (iras)); 2284 iras.ira_flags = 0; 2285 iras.ira_ill = iras.ira_rill = ill; 2286 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2287 iras.ira_rifindex = iras.ira_ruifindex; 2288 2289 ipfb = ill->ill_frag_hash_tbl; 2290 if (ipfb == NULL) 2291 return (B_FALSE); 2292 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2293 /* Walk the frag hash table. */ 2294 for (; ipfb < endp; ipfb++) { 2295 send_icmp_head = NULL; 2296 send_icmp_head_v6 = NULL; 2297 mutex_enter(&ipfb->ipfb_lock); 2298 while ((ipf = ipfb->ipfb_ipf) != 0) { 2299 time_t frag_time = current_time - ipf->ipf_timestamp; 2300 time_t frag_timeout; 2301 2302 if (frag_time < dead_interval) { 2303 /* 2304 * There are some outstanding fragments 2305 * that will timeout later. Make note of 2306 * the time so that we can reschedule the 2307 * next timeout appropriately. 2308 */ 2309 frag_timeout = dead_interval - frag_time; 2310 if (next_timeout == 0 || 2311 frag_timeout < next_timeout) { 2312 next_timeout = frag_timeout; 2313 } 2314 break; 2315 } 2316 /* Time's up. Get it out of here. */ 2317 hdr_length = ipf->ipf_nf_hdr_len; 2318 ipfnext = ipf->ipf_hash_next; 2319 if (ipfnext) 2320 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2321 *ipf->ipf_ptphn = ipfnext; 2322 mp = ipf->ipf_mp->b_cont; 2323 for (; mp; mp = mp->b_cont) { 2324 /* Extra points for neatness. */ 2325 IP_REASS_SET_START(mp, 0); 2326 IP_REASS_SET_END(mp, 0); 2327 } 2328 mp = ipf->ipf_mp->b_cont; 2329 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2330 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2331 ipfb->ipfb_count -= ipf->ipf_count; 2332 ASSERT(ipfb->ipfb_frag_pkts > 0); 2333 ipfb->ipfb_frag_pkts--; 2334 /* 2335 * We do not send any icmp message from here because 2336 * we currently are holding the ipfb_lock for this 2337 * hash chain. If we try and send any icmp messages 2338 * from here we may end up via a put back into ip 2339 * trying to get the same lock, causing a recursive 2340 * mutex panic. Instead we build a list and send all 2341 * the icmp messages after we have dropped the lock. 2342 */ 2343 if (ill->ill_isv6) { 2344 if (hdr_length != 0) { 2345 mp->b_next = send_icmp_head_v6; 2346 send_icmp_head_v6 = mp; 2347 } else { 2348 freemsg(mp); 2349 } 2350 } else { 2351 if (hdr_length != 0) { 2352 mp->b_next = send_icmp_head; 2353 send_icmp_head = mp; 2354 } else { 2355 freemsg(mp); 2356 } 2357 } 2358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2359 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2360 freeb(ipf->ipf_mp); 2361 } 2362 mutex_exit(&ipfb->ipfb_lock); 2363 /* 2364 * Now need to send any icmp messages that we delayed from 2365 * above. 2366 */ 2367 while (send_icmp_head_v6 != NULL) { 2368 ip6_t *ip6h; 2369 2370 mp = send_icmp_head_v6; 2371 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2372 mp->b_next = NULL; 2373 ip6h = (ip6_t *)mp->b_rptr; 2374 iras.ira_flags = 0; 2375 /* 2376 * This will result in an incorrect ALL_ZONES zoneid 2377 * for multicast packets, but we 2378 * don't send ICMP errors for those in any case. 2379 */ 2380 iras.ira_zoneid = 2381 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2382 ill, ipst); 2383 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2384 icmp_time_exceeded_v6(mp, 2385 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2386 &iras); 2387 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2388 } 2389 while (send_icmp_head != NULL) { 2390 ipaddr_t dst; 2391 2392 mp = send_icmp_head; 2393 send_icmp_head = send_icmp_head->b_next; 2394 mp->b_next = NULL; 2395 2396 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2397 2398 iras.ira_flags = IRAF_IS_IPV4; 2399 /* 2400 * This will result in an incorrect ALL_ZONES zoneid 2401 * for broadcast and multicast packets, but we 2402 * don't send ICMP errors for those in any case. 2403 */ 2404 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2405 ill, ipst); 2406 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2407 icmp_time_exceeded(mp, 2408 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2409 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2410 } 2411 } 2412 /* 2413 * A non-dying ILL will use the return value to decide whether to 2414 * restart the frag timer, and for how long. 2415 */ 2416 return (next_timeout); 2417 } 2418 2419 /* 2420 * This routine is called when the approximate count of mblk memory used 2421 * for the specified ILL has exceeded max_count. 2422 */ 2423 void 2424 ill_frag_prune(ill_t *ill, uint_t max_count) 2425 { 2426 ipfb_t *ipfb; 2427 ipf_t *ipf; 2428 size_t count; 2429 2430 /* 2431 * If we are here within ip_min_frag_prune_time msecs remove 2432 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2433 * ill_frag_free_num_pkts. 2434 */ 2435 mutex_enter(&ill->ill_lock); 2436 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 2437 (ip_min_frag_prune_time != 0 ? 2438 ip_min_frag_prune_time : msec_per_tick)) { 2439 2440 ill->ill_frag_free_num_pkts++; 2441 2442 } else { 2443 ill->ill_frag_free_num_pkts = 0; 2444 } 2445 ill->ill_last_frag_clean_time = lbolt; 2446 mutex_exit(&ill->ill_lock); 2447 2448 /* 2449 * free ill_frag_free_num_pkts oldest packets from each bucket. 2450 */ 2451 if (ill->ill_frag_free_num_pkts != 0) { 2452 int ix; 2453 2454 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2455 ipfb = &ill->ill_frag_hash_tbl[ix]; 2456 mutex_enter(&ipfb->ipfb_lock); 2457 if (ipfb->ipfb_ipf != NULL) { 2458 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2459 ill->ill_frag_free_num_pkts); 2460 } 2461 mutex_exit(&ipfb->ipfb_lock); 2462 } 2463 } 2464 /* 2465 * While the reassembly list for this ILL is too big, prune a fragment 2466 * queue by age, oldest first. 2467 */ 2468 while (ill->ill_frag_count > max_count) { 2469 int ix; 2470 ipfb_t *oipfb = NULL; 2471 uint_t oldest = UINT_MAX; 2472 2473 count = 0; 2474 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2475 ipfb = &ill->ill_frag_hash_tbl[ix]; 2476 mutex_enter(&ipfb->ipfb_lock); 2477 ipf = ipfb->ipfb_ipf; 2478 if (ipf != NULL && ipf->ipf_gen < oldest) { 2479 oldest = ipf->ipf_gen; 2480 oipfb = ipfb; 2481 } 2482 count += ipfb->ipfb_count; 2483 mutex_exit(&ipfb->ipfb_lock); 2484 } 2485 if (oipfb == NULL) 2486 break; 2487 2488 if (count <= max_count) 2489 return; /* Somebody beat us to it, nothing to do */ 2490 mutex_enter(&oipfb->ipfb_lock); 2491 ipf = oipfb->ipfb_ipf; 2492 if (ipf != NULL) { 2493 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2494 } 2495 mutex_exit(&oipfb->ipfb_lock); 2496 } 2497 } 2498 2499 /* 2500 * free 'free_cnt' fragmented packets starting at ipf. 2501 */ 2502 void 2503 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2504 { 2505 size_t count; 2506 mblk_t *mp; 2507 mblk_t *tmp; 2508 ipf_t **ipfp = ipf->ipf_ptphn; 2509 2510 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2511 ASSERT(ipfp != NULL); 2512 ASSERT(ipf != NULL); 2513 2514 while (ipf != NULL && free_cnt-- > 0) { 2515 count = ipf->ipf_count; 2516 mp = ipf->ipf_mp; 2517 ipf = ipf->ipf_hash_next; 2518 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2519 IP_REASS_SET_START(tmp, 0); 2520 IP_REASS_SET_END(tmp, 0); 2521 } 2522 atomic_add_32(&ill->ill_frag_count, -count); 2523 ASSERT(ipfb->ipfb_count >= count); 2524 ipfb->ipfb_count -= count; 2525 ASSERT(ipfb->ipfb_frag_pkts > 0); 2526 ipfb->ipfb_frag_pkts--; 2527 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2528 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2529 freemsg(mp); 2530 } 2531 2532 if (ipf) 2533 ipf->ipf_ptphn = ipfp; 2534 ipfp[0] = ipf; 2535 } 2536 2537 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2538 "obsolete and may be removed in a future release of Solaris. Use " \ 2539 "ifconfig(1M) to manipulate the forwarding status of an interface." 2540 2541 /* 2542 * For obsolete per-interface forwarding configuration; 2543 * called in response to ND_GET. 2544 */ 2545 /* ARGSUSED */ 2546 static int 2547 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2548 { 2549 ill_t *ill = (ill_t *)cp; 2550 2551 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2552 2553 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2554 return (0); 2555 } 2556 2557 /* 2558 * For obsolete per-interface forwarding configuration; 2559 * called in response to ND_SET. 2560 */ 2561 /* ARGSUSED */ 2562 static int 2563 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2564 cred_t *ioc_cr) 2565 { 2566 long value; 2567 int retval; 2568 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2569 2570 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2571 2572 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2573 value < 0 || value > 1) { 2574 return (EINVAL); 2575 } 2576 2577 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2578 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2579 rw_exit(&ipst->ips_ill_g_lock); 2580 return (retval); 2581 } 2582 2583 /* 2584 * Helper function for ill_forward_set(). 2585 */ 2586 static void 2587 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2588 { 2589 ip_stack_t *ipst = ill->ill_ipst; 2590 2591 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2592 2593 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2594 (enable ? "Enabling" : "Disabling"), 2595 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2596 mutex_enter(&ill->ill_lock); 2597 if (enable) 2598 ill->ill_flags |= ILLF_ROUTER; 2599 else 2600 ill->ill_flags &= ~ILLF_ROUTER; 2601 mutex_exit(&ill->ill_lock); 2602 if (ill->ill_isv6) 2603 ill_set_nce_router_flags(ill, enable); 2604 /* Notify routing socket listeners of this change. */ 2605 if (ill->ill_ipif != NULL) 2606 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2607 } 2608 2609 /* 2610 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2611 * socket messages for each interface whose flags we change. 2612 */ 2613 int 2614 ill_forward_set(ill_t *ill, boolean_t enable) 2615 { 2616 ipmp_illgrp_t *illg; 2617 ip_stack_t *ipst = ill->ill_ipst; 2618 2619 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2620 2621 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2622 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2623 return (0); 2624 2625 if (IS_LOOPBACK(ill)) 2626 return (EINVAL); 2627 2628 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2629 /* 2630 * Update all of the interfaces in the group. 2631 */ 2632 illg = ill->ill_grp; 2633 ill = list_head(&illg->ig_if); 2634 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2635 ill_forward_set_on_ill(ill, enable); 2636 2637 /* 2638 * Update the IPMP meta-interface. 2639 */ 2640 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2641 return (0); 2642 } 2643 2644 ill_forward_set_on_ill(ill, enable); 2645 return (0); 2646 } 2647 2648 /* 2649 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2650 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2651 * set or clear. 2652 */ 2653 static void 2654 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2655 { 2656 ipif_t *ipif; 2657 ncec_t *ncec; 2658 nce_t *nce; 2659 2660 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2661 /* 2662 * NOTE: we match across the illgrp because nce's for 2663 * addresses on IPMP interfaces have an nce_ill that points to 2664 * the bound underlying ill. 2665 */ 2666 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2667 if (nce != NULL) { 2668 ncec = nce->nce_common; 2669 mutex_enter(&ncec->ncec_lock); 2670 if (enable) 2671 ncec->ncec_flags |= NCE_F_ISROUTER; 2672 else 2673 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2674 mutex_exit(&ncec->ncec_lock); 2675 nce_refrele(nce); 2676 } 2677 } 2678 } 2679 2680 /* 2681 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2682 * for this ill. Make sure the v6/v4 question has been answered about this 2683 * ill. The creation of this ndd variable is only for backwards compatibility. 2684 * The preferred way to control per-interface IP forwarding is through the 2685 * ILLF_ROUTER interface flag. 2686 */ 2687 static int 2688 ill_set_ndd_name(ill_t *ill) 2689 { 2690 char *suffix; 2691 ip_stack_t *ipst = ill->ill_ipst; 2692 2693 ASSERT(IAM_WRITER_ILL(ill)); 2694 2695 if (ill->ill_isv6) 2696 suffix = ipv6_forward_suffix; 2697 else 2698 suffix = ipv4_forward_suffix; 2699 2700 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2701 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2702 /* 2703 * Copies over the '\0'. 2704 * Note that strlen(suffix) is always bounded. 2705 */ 2706 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2707 strlen(suffix) + 1); 2708 2709 /* 2710 * Use of the nd table requires holding the reader lock. 2711 * Modifying the nd table thru nd_load/nd_unload requires 2712 * the writer lock. 2713 */ 2714 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2715 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2716 nd_ill_forward_set, (caddr_t)ill)) { 2717 /* 2718 * If the nd_load failed, it only meant that it could not 2719 * allocate a new bunch of room for further NDD expansion. 2720 * Because of that, the ill_ndd_name will be set to 0, and 2721 * this interface is at the mercy of the global ip_forwarding 2722 * variable. 2723 */ 2724 rw_exit(&ipst->ips_ip_g_nd_lock); 2725 ill->ill_ndd_name = NULL; 2726 return (ENOMEM); 2727 } 2728 rw_exit(&ipst->ips_ip_g_nd_lock); 2729 return (0); 2730 } 2731 2732 /* 2733 * Intializes the context structure and returns the first ill in the list 2734 * cuurently start_list and end_list can have values: 2735 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2736 * IP_V4_G_HEAD Traverse IPV4 list only. 2737 * IP_V6_G_HEAD Traverse IPV6 list only. 2738 */ 2739 2740 /* 2741 * We don't check for CONDEMNED ills here. Caller must do that if 2742 * necessary under the ill lock. 2743 */ 2744 ill_t * 2745 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2746 ip_stack_t *ipst) 2747 { 2748 ill_if_t *ifp; 2749 ill_t *ill; 2750 avl_tree_t *avl_tree; 2751 2752 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2753 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2754 2755 /* 2756 * setup the lists to search 2757 */ 2758 if (end_list != MAX_G_HEADS) { 2759 ctx->ctx_current_list = start_list; 2760 ctx->ctx_last_list = end_list; 2761 } else { 2762 ctx->ctx_last_list = MAX_G_HEADS - 1; 2763 ctx->ctx_current_list = 0; 2764 } 2765 2766 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2767 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2768 if (ifp != (ill_if_t *) 2769 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2770 avl_tree = &ifp->illif_avl_by_ppa; 2771 ill = avl_first(avl_tree); 2772 /* 2773 * ill is guaranteed to be non NULL or ifp should have 2774 * not existed. 2775 */ 2776 ASSERT(ill != NULL); 2777 return (ill); 2778 } 2779 ctx->ctx_current_list++; 2780 } 2781 2782 return (NULL); 2783 } 2784 2785 /* 2786 * returns the next ill in the list. ill_first() must have been called 2787 * before calling ill_next() or bad things will happen. 2788 */ 2789 2790 /* 2791 * We don't check for CONDEMNED ills here. Caller must do that if 2792 * necessary under the ill lock. 2793 */ 2794 ill_t * 2795 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2796 { 2797 ill_if_t *ifp; 2798 ill_t *ill; 2799 ip_stack_t *ipst = lastill->ill_ipst; 2800 2801 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2802 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2803 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2804 AVL_AFTER)) != NULL) { 2805 return (ill); 2806 } 2807 2808 /* goto next ill_ifp in the list. */ 2809 ifp = lastill->ill_ifptr->illif_next; 2810 2811 /* make sure not at end of circular list */ 2812 while (ifp == 2813 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2814 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2815 return (NULL); 2816 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2817 } 2818 2819 return (avl_first(&ifp->illif_avl_by_ppa)); 2820 } 2821 2822 /* 2823 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2824 * The final number (PPA) must not have any leading zeros. Upon success, a 2825 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2826 */ 2827 static char * 2828 ill_get_ppa_ptr(char *name) 2829 { 2830 int namelen = strlen(name); 2831 int end_ndx = namelen - 1; 2832 int ppa_ndx, i; 2833 2834 /* 2835 * Check that the first character is [a-zA-Z], and that the last 2836 * character is [0-9]. 2837 */ 2838 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2839 return (NULL); 2840 2841 /* 2842 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2843 */ 2844 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2845 if (!isdigit(name[ppa_ndx - 1])) 2846 break; 2847 2848 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2849 return (NULL); 2850 2851 /* 2852 * Check that the intermediate characters are [a-z0-9.] 2853 */ 2854 for (i = 1; i < ppa_ndx; i++) { 2855 if (!isalpha(name[i]) && !isdigit(name[i]) && 2856 name[i] != '.' && name[i] != '_') { 2857 return (NULL); 2858 } 2859 } 2860 2861 return (name + ppa_ndx); 2862 } 2863 2864 /* 2865 * use avl tree to locate the ill. 2866 */ 2867 static ill_t * 2868 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2869 { 2870 char *ppa_ptr = NULL; 2871 int len; 2872 uint_t ppa; 2873 ill_t *ill = NULL; 2874 ill_if_t *ifp; 2875 int list; 2876 2877 /* 2878 * get ppa ptr 2879 */ 2880 if (isv6) 2881 list = IP_V6_G_HEAD; 2882 else 2883 list = IP_V4_G_HEAD; 2884 2885 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2886 return (NULL); 2887 } 2888 2889 len = ppa_ptr - name + 1; 2890 2891 ppa = stoi(&ppa_ptr); 2892 2893 ifp = IP_VX_ILL_G_LIST(list, ipst); 2894 2895 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2896 /* 2897 * match is done on len - 1 as the name is not null 2898 * terminated it contains ppa in addition to the interface 2899 * name. 2900 */ 2901 if ((ifp->illif_name_len == len) && 2902 bcmp(ifp->illif_name, name, len - 1) == 0) { 2903 break; 2904 } else { 2905 ifp = ifp->illif_next; 2906 } 2907 } 2908 2909 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2910 /* 2911 * Even the interface type does not exist. 2912 */ 2913 return (NULL); 2914 } 2915 2916 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2917 if (ill != NULL) { 2918 mutex_enter(&ill->ill_lock); 2919 if (ILL_CAN_LOOKUP(ill)) { 2920 ill_refhold_locked(ill); 2921 mutex_exit(&ill->ill_lock); 2922 return (ill); 2923 } 2924 mutex_exit(&ill->ill_lock); 2925 } 2926 return (NULL); 2927 } 2928 2929 /* 2930 * comparison function for use with avl. 2931 */ 2932 static int 2933 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2934 { 2935 uint_t ppa; 2936 uint_t ill_ppa; 2937 2938 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2939 2940 ppa = *((uint_t *)ppa_ptr); 2941 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2942 /* 2943 * We want the ill with the lowest ppa to be on the 2944 * top. 2945 */ 2946 if (ill_ppa < ppa) 2947 return (1); 2948 if (ill_ppa > ppa) 2949 return (-1); 2950 return (0); 2951 } 2952 2953 /* 2954 * remove an interface type from the global list. 2955 */ 2956 static void 2957 ill_delete_interface_type(ill_if_t *interface) 2958 { 2959 ASSERT(interface != NULL); 2960 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2961 2962 avl_destroy(&interface->illif_avl_by_ppa); 2963 if (interface->illif_ppa_arena != NULL) 2964 vmem_destroy(interface->illif_ppa_arena); 2965 2966 remque(interface); 2967 2968 mi_free(interface); 2969 } 2970 2971 /* 2972 * remove ill from the global list. 2973 */ 2974 static void 2975 ill_glist_delete(ill_t *ill) 2976 { 2977 ip_stack_t *ipst; 2978 phyint_t *phyi; 2979 2980 if (ill == NULL) 2981 return; 2982 ipst = ill->ill_ipst; 2983 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 2984 2985 /* 2986 * If the ill was never inserted into the AVL tree 2987 * we skip the if branch. 2988 */ 2989 if (ill->ill_ifptr != NULL) { 2990 /* 2991 * remove from AVL tree and free ppa number 2992 */ 2993 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 2994 2995 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 2996 vmem_free(ill->ill_ifptr->illif_ppa_arena, 2997 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 2998 } 2999 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3000 ill_delete_interface_type(ill->ill_ifptr); 3001 } 3002 3003 /* 3004 * Indicate ill is no longer in the list. 3005 */ 3006 ill->ill_ifptr = NULL; 3007 ill->ill_name_length = 0; 3008 ill->ill_name[0] = '\0'; 3009 ill->ill_ppa = UINT_MAX; 3010 } 3011 3012 /* Generate one last event for this ill. */ 3013 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3014 ill->ill_name_length); 3015 3016 ASSERT(ill->ill_phyint != NULL); 3017 phyi = ill->ill_phyint; 3018 ill->ill_phyint = NULL; 3019 3020 /* 3021 * ill_init allocates a phyint always to store the copy 3022 * of flags relevant to phyint. At that point in time, we could 3023 * not assign the name and hence phyint_illv4/v6 could not be 3024 * initialized. Later in ipif_set_values, we assign the name to 3025 * the ill, at which point in time we assign phyint_illv4/v6. 3026 * Thus we don't rely on phyint_illv6 to be initialized always. 3027 */ 3028 if (ill->ill_flags & ILLF_IPV6) 3029 phyi->phyint_illv6 = NULL; 3030 else 3031 phyi->phyint_illv4 = NULL; 3032 3033 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3034 rw_exit(&ipst->ips_ill_g_lock); 3035 return; 3036 } 3037 3038 /* 3039 * There are no ills left on this phyint; pull it out of the phyint 3040 * avl trees, and free it. 3041 */ 3042 if (phyi->phyint_ifindex > 0) { 3043 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3044 phyi); 3045 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3046 phyi); 3047 } 3048 rw_exit(&ipst->ips_ill_g_lock); 3049 3050 phyint_free(phyi); 3051 } 3052 3053 /* 3054 * allocate a ppa, if the number of plumbed interfaces of this type are 3055 * less than ill_no_arena do a linear search to find a unused ppa. 3056 * When the number goes beyond ill_no_arena switch to using an arena. 3057 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3058 * is the return value for an error condition, so allocation starts at one 3059 * and is decremented by one. 3060 */ 3061 static int 3062 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3063 { 3064 ill_t *tmp_ill; 3065 uint_t start, end; 3066 int ppa; 3067 3068 if (ifp->illif_ppa_arena == NULL && 3069 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3070 /* 3071 * Create an arena. 3072 */ 3073 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3074 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3075 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3076 /* allocate what has already been assigned */ 3077 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3078 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3079 tmp_ill, AVL_AFTER)) { 3080 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3081 1, /* size */ 3082 1, /* align/quantum */ 3083 0, /* phase */ 3084 0, /* nocross */ 3085 /* minaddr */ 3086 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3087 /* maxaddr */ 3088 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3089 VM_NOSLEEP|VM_FIRSTFIT); 3090 if (ppa == 0) { 3091 ip1dbg(("ill_alloc_ppa: ppa allocation" 3092 " failed while switching")); 3093 vmem_destroy(ifp->illif_ppa_arena); 3094 ifp->illif_ppa_arena = NULL; 3095 break; 3096 } 3097 } 3098 } 3099 3100 if (ifp->illif_ppa_arena != NULL) { 3101 if (ill->ill_ppa == UINT_MAX) { 3102 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3103 1, VM_NOSLEEP|VM_FIRSTFIT); 3104 if (ppa == 0) 3105 return (EAGAIN); 3106 ill->ill_ppa = --ppa; 3107 } else { 3108 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3109 1, /* size */ 3110 1, /* align/quantum */ 3111 0, /* phase */ 3112 0, /* nocross */ 3113 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3114 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3115 VM_NOSLEEP|VM_FIRSTFIT); 3116 /* 3117 * Most likely the allocation failed because 3118 * the requested ppa was in use. 3119 */ 3120 if (ppa == 0) 3121 return (EEXIST); 3122 } 3123 return (0); 3124 } 3125 3126 /* 3127 * No arena is in use and not enough (>ill_no_arena) interfaces have 3128 * been plumbed to create one. Do a linear search to get a unused ppa. 3129 */ 3130 if (ill->ill_ppa == UINT_MAX) { 3131 end = UINT_MAX - 1; 3132 start = 0; 3133 } else { 3134 end = start = ill->ill_ppa; 3135 } 3136 3137 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3138 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3139 if (start++ >= end) { 3140 if (ill->ill_ppa == UINT_MAX) 3141 return (EAGAIN); 3142 else 3143 return (EEXIST); 3144 } 3145 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3146 } 3147 ill->ill_ppa = start; 3148 return (0); 3149 } 3150 3151 /* 3152 * Insert ill into the list of configured ill's. Once this function completes, 3153 * the ill is globally visible and is available through lookups. More precisely 3154 * this happens after the caller drops the ill_g_lock. 3155 */ 3156 static int 3157 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3158 { 3159 ill_if_t *ill_interface; 3160 avl_index_t where = 0; 3161 int error; 3162 int name_length; 3163 int index; 3164 boolean_t check_length = B_FALSE; 3165 ip_stack_t *ipst = ill->ill_ipst; 3166 3167 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3168 3169 name_length = mi_strlen(name) + 1; 3170 3171 if (isv6) 3172 index = IP_V6_G_HEAD; 3173 else 3174 index = IP_V4_G_HEAD; 3175 3176 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3177 /* 3178 * Search for interface type based on name 3179 */ 3180 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3181 if ((ill_interface->illif_name_len == name_length) && 3182 (strcmp(ill_interface->illif_name, name) == 0)) { 3183 break; 3184 } 3185 ill_interface = ill_interface->illif_next; 3186 } 3187 3188 /* 3189 * Interface type not found, create one. 3190 */ 3191 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3192 ill_g_head_t ghead; 3193 3194 /* 3195 * allocate ill_if_t structure 3196 */ 3197 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3198 if (ill_interface == NULL) { 3199 return (ENOMEM); 3200 } 3201 3202 (void) strcpy(ill_interface->illif_name, name); 3203 ill_interface->illif_name_len = name_length; 3204 3205 avl_create(&ill_interface->illif_avl_by_ppa, 3206 ill_compare_ppa, sizeof (ill_t), 3207 offsetof(struct ill_s, ill_avl_byppa)); 3208 3209 /* 3210 * link the structure in the back to maintain order 3211 * of configuration for ifconfig output. 3212 */ 3213 ghead = ipst->ips_ill_g_heads[index]; 3214 insque(ill_interface, ghead.ill_g_list_tail); 3215 } 3216 3217 if (ill->ill_ppa == UINT_MAX) 3218 check_length = B_TRUE; 3219 3220 error = ill_alloc_ppa(ill_interface, ill); 3221 if (error != 0) { 3222 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3223 ill_delete_interface_type(ill->ill_ifptr); 3224 return (error); 3225 } 3226 3227 /* 3228 * When the ppa is choosen by the system, check that there is 3229 * enough space to insert ppa. if a specific ppa was passed in this 3230 * check is not required as the interface name passed in will have 3231 * the right ppa in it. 3232 */ 3233 if (check_length) { 3234 /* 3235 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3236 */ 3237 char buf[sizeof (uint_t) * 3]; 3238 3239 /* 3240 * convert ppa to string to calculate the amount of space 3241 * required for it in the name. 3242 */ 3243 numtos(ill->ill_ppa, buf); 3244 3245 /* Do we have enough space to insert ppa ? */ 3246 3247 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3248 /* Free ppa and interface type struct */ 3249 if (ill_interface->illif_ppa_arena != NULL) { 3250 vmem_free(ill_interface->illif_ppa_arena, 3251 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3252 } 3253 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3254 ill_delete_interface_type(ill->ill_ifptr); 3255 3256 return (EINVAL); 3257 } 3258 } 3259 3260 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3261 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3262 3263 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3264 &where); 3265 ill->ill_ifptr = ill_interface; 3266 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3267 3268 ill_phyint_reinit(ill); 3269 return (0); 3270 } 3271 3272 /* Initialize the per phyint ipsq used for serialization */ 3273 static boolean_t 3274 ipsq_init(ill_t *ill, boolean_t enter) 3275 { 3276 ipsq_t *ipsq; 3277 ipxop_t *ipx; 3278 3279 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3280 return (B_FALSE); 3281 3282 ill->ill_phyint->phyint_ipsq = ipsq; 3283 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3284 ipx->ipx_ipsq = ipsq; 3285 ipsq->ipsq_next = ipsq; 3286 ipsq->ipsq_phyint = ill->ill_phyint; 3287 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3288 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3289 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3290 if (enter) { 3291 ipx->ipx_writer = curthread; 3292 ipx->ipx_forced = B_FALSE; 3293 ipx->ipx_reentry_cnt = 1; 3294 #ifdef DEBUG 3295 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3296 #endif 3297 } 3298 return (B_TRUE); 3299 } 3300 3301 /* 3302 * ill_init is called by ip_open when a device control stream is opened. 3303 * It does a few initializations, and shoots a DL_INFO_REQ message down 3304 * to the driver. The response is later picked up in ip_rput_dlpi and 3305 * used to set up default mechanisms for talking to the driver. (Always 3306 * called as writer.) 3307 * 3308 * If this function returns error, ip_open will call ip_close which in 3309 * turn will call ill_delete to clean up any memory allocated here that 3310 * is not yet freed. 3311 */ 3312 int 3313 ill_init(queue_t *q, ill_t *ill) 3314 { 3315 int count; 3316 dl_info_req_t *dlir; 3317 mblk_t *info_mp; 3318 uchar_t *frag_ptr; 3319 3320 /* 3321 * The ill is initialized to zero by mi_alloc*(). In addition 3322 * some fields already contain valid values, initialized in 3323 * ip_open(), before we reach here. 3324 */ 3325 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3326 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3327 ill->ill_saved_ire_cnt = 0; 3328 3329 ill->ill_rq = q; 3330 ill->ill_wq = WR(q); 3331 3332 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3333 BPRI_HI); 3334 if (info_mp == NULL) 3335 return (ENOMEM); 3336 3337 /* 3338 * Allocate sufficient space to contain our fragment hash table and 3339 * the device name. 3340 */ 3341 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3342 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 3343 if (frag_ptr == NULL) { 3344 freemsg(info_mp); 3345 return (ENOMEM); 3346 } 3347 ill->ill_frag_ptr = frag_ptr; 3348 ill->ill_frag_free_num_pkts = 0; 3349 ill->ill_last_frag_clean_time = 0; 3350 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3351 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3352 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3353 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3354 NULL, MUTEX_DEFAULT, NULL); 3355 } 3356 3357 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3358 if (ill->ill_phyint == NULL) { 3359 freemsg(info_mp); 3360 mi_free(frag_ptr); 3361 return (ENOMEM); 3362 } 3363 3364 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3365 /* 3366 * For now pretend this is a v4 ill. We need to set phyint_ill* 3367 * at this point because of the following reason. If we can't 3368 * enter the ipsq at some point and cv_wait, the writer that 3369 * wakes us up tries to locate us using the list of all phyints 3370 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3371 * If we don't set it now, we risk a missed wakeup. 3372 */ 3373 ill->ill_phyint->phyint_illv4 = ill; 3374 ill->ill_ppa = UINT_MAX; 3375 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3376 3377 ill_set_inputfn(ill); 3378 3379 if (!ipsq_init(ill, B_TRUE)) { 3380 freemsg(info_mp); 3381 mi_free(frag_ptr); 3382 mi_free(ill->ill_phyint); 3383 return (ENOMEM); 3384 } 3385 3386 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3387 3388 /* Frag queue limit stuff */ 3389 ill->ill_frag_count = 0; 3390 ill->ill_ipf_gen = 0; 3391 3392 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3393 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3394 ill->ill_global_timer = INFINITY; 3395 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3396 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3397 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3398 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3399 3400 /* 3401 * Initialize IPv6 configuration variables. The IP module is always 3402 * opened as an IPv4 module. Instead tracking down the cases where 3403 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3404 * here for convenience, this has no effect until the ill is set to do 3405 * IPv6. 3406 */ 3407 ill->ill_reachable_time = ND_REACHABLE_TIME; 3408 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3409 ill->ill_max_buf = ND_MAX_Q; 3410 ill->ill_refcnt = 0; 3411 3412 /* Send down the Info Request to the driver. */ 3413 info_mp->b_datap->db_type = M_PCPROTO; 3414 dlir = (dl_info_req_t *)info_mp->b_rptr; 3415 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3416 dlir->dl_primitive = DL_INFO_REQ; 3417 3418 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3419 3420 qprocson(q); 3421 ill_dlpi_send(ill, info_mp); 3422 3423 return (0); 3424 } 3425 3426 /* 3427 * ill_dls_info 3428 * creates datalink socket info from the device. 3429 */ 3430 int 3431 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3432 { 3433 size_t len; 3434 3435 sdl->sdl_family = AF_LINK; 3436 sdl->sdl_index = ill_get_upper_ifindex(ill); 3437 sdl->sdl_type = ill->ill_type; 3438 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3439 len = strlen(sdl->sdl_data); 3440 ASSERT(len < 256); 3441 sdl->sdl_nlen = (uchar_t)len; 3442 sdl->sdl_alen = ill->ill_phys_addr_length; 3443 sdl->sdl_slen = 0; 3444 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3445 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3446 3447 return (sizeof (struct sockaddr_dl)); 3448 } 3449 3450 /* 3451 * ill_xarp_info 3452 * creates xarp info from the device. 3453 */ 3454 static int 3455 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3456 { 3457 sdl->sdl_family = AF_LINK; 3458 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3459 sdl->sdl_type = ill->ill_type; 3460 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3461 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3462 sdl->sdl_alen = ill->ill_phys_addr_length; 3463 sdl->sdl_slen = 0; 3464 return (sdl->sdl_nlen); 3465 } 3466 3467 static int 3468 loopback_kstat_update(kstat_t *ksp, int rw) 3469 { 3470 kstat_named_t *kn; 3471 netstackid_t stackid; 3472 netstack_t *ns; 3473 ip_stack_t *ipst; 3474 3475 if (ksp == NULL || ksp->ks_data == NULL) 3476 return (EIO); 3477 3478 if (rw == KSTAT_WRITE) 3479 return (EACCES); 3480 3481 kn = KSTAT_NAMED_PTR(ksp); 3482 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3483 3484 ns = netstack_find_by_stackid(stackid); 3485 if (ns == NULL) 3486 return (-1); 3487 3488 ipst = ns->netstack_ip; 3489 if (ipst == NULL) { 3490 netstack_rele(ns); 3491 return (-1); 3492 } 3493 kn[0].value.ui32 = ipst->ips_loopback_packets; 3494 kn[1].value.ui32 = ipst->ips_loopback_packets; 3495 netstack_rele(ns); 3496 return (0); 3497 } 3498 3499 /* 3500 * Has ifindex been plumbed already? 3501 */ 3502 static boolean_t 3503 phyint_exists(uint_t index, ip_stack_t *ipst) 3504 { 3505 ASSERT(index != 0); 3506 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3507 3508 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3509 &index, NULL) != NULL); 3510 } 3511 3512 /* Pick a unique ifindex */ 3513 boolean_t 3514 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3515 { 3516 uint_t starting_index; 3517 3518 if (!ipst->ips_ill_index_wrap) { 3519 *indexp = ipst->ips_ill_index++; 3520 if (ipst->ips_ill_index == 0) { 3521 /* Reached the uint_t limit Next time wrap */ 3522 ipst->ips_ill_index_wrap = B_TRUE; 3523 } 3524 return (B_TRUE); 3525 } 3526 3527 /* 3528 * Start reusing unused indexes. Note that we hold the ill_g_lock 3529 * at this point and don't want to call any function that attempts 3530 * to get the lock again. 3531 */ 3532 starting_index = ipst->ips_ill_index++; 3533 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3534 if (ipst->ips_ill_index != 0 && 3535 !phyint_exists(ipst->ips_ill_index, ipst)) { 3536 /* found unused index - use it */ 3537 *indexp = ipst->ips_ill_index; 3538 return (B_TRUE); 3539 } 3540 } 3541 3542 /* 3543 * all interface indicies are inuse. 3544 */ 3545 return (B_FALSE); 3546 } 3547 3548 /* 3549 * Assign a unique interface index for the phyint. 3550 */ 3551 static boolean_t 3552 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3553 { 3554 ASSERT(phyi->phyint_ifindex == 0); 3555 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3556 } 3557 3558 /* 3559 * Initialize the flags on `phyi' as per the provided mactype. 3560 */ 3561 static void 3562 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3563 { 3564 uint64_t flags = 0; 3565 3566 /* 3567 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3568 * we always presume the underlying hardware is working and set 3569 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3570 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3571 * there are no active interfaces in the group so we set PHYI_FAILED. 3572 */ 3573 if (mactype == SUNW_DL_IPMP) 3574 flags |= PHYI_FAILED; 3575 else 3576 flags |= PHYI_RUNNING; 3577 3578 switch (mactype) { 3579 case SUNW_DL_VNI: 3580 flags |= PHYI_VIRTUAL; 3581 break; 3582 case SUNW_DL_IPMP: 3583 flags |= PHYI_IPMP; 3584 break; 3585 case DL_LOOP: 3586 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3587 break; 3588 } 3589 3590 mutex_enter(&phyi->phyint_lock); 3591 phyi->phyint_flags |= flags; 3592 mutex_exit(&phyi->phyint_lock); 3593 } 3594 3595 /* 3596 * Return a pointer to the ill which matches the supplied name. Note that 3597 * the ill name length includes the null termination character. (May be 3598 * called as writer.) 3599 * If do_alloc and the interface is "lo0" it will be automatically created. 3600 * Cannot bump up reference on condemned ills. So dup detect can't be done 3601 * using this func. 3602 */ 3603 ill_t * 3604 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3605 boolean_t *did_alloc, ip_stack_t *ipst) 3606 { 3607 ill_t *ill; 3608 ipif_t *ipif; 3609 ipsq_t *ipsq; 3610 kstat_named_t *kn; 3611 boolean_t isloopback; 3612 in6_addr_t ov6addr; 3613 3614 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3615 3616 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3617 ill = ill_find_by_name(name, isv6, ipst); 3618 rw_exit(&ipst->ips_ill_g_lock); 3619 if (ill != NULL) 3620 return (ill); 3621 3622 /* 3623 * Couldn't find it. Does this happen to be a lookup for the 3624 * loopback device and are we allowed to allocate it? 3625 */ 3626 if (!isloopback || !do_alloc) 3627 return (NULL); 3628 3629 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3630 ill = ill_find_by_name(name, isv6, ipst); 3631 if (ill != NULL) { 3632 rw_exit(&ipst->ips_ill_g_lock); 3633 return (ill); 3634 } 3635 3636 /* Create the loopback device on demand */ 3637 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3638 sizeof (ipif_loopback_name), BPRI_MED)); 3639 if (ill == NULL) 3640 goto done; 3641 3642 *ill = ill_null; 3643 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3644 ill->ill_ipst = ipst; 3645 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3646 netstack_hold(ipst->ips_netstack); 3647 /* 3648 * For exclusive stacks we set the zoneid to zero 3649 * to make IP operate as if in the global zone. 3650 */ 3651 ill->ill_zoneid = GLOBAL_ZONEID; 3652 3653 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3654 if (ill->ill_phyint == NULL) 3655 goto done; 3656 3657 if (isv6) 3658 ill->ill_phyint->phyint_illv6 = ill; 3659 else 3660 ill->ill_phyint->phyint_illv4 = ill; 3661 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3662 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3663 3664 if (isv6) { 3665 ill->ill_isv6 = B_TRUE; 3666 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3667 } else { 3668 ill->ill_max_frag = ip_loopback_mtuplus; 3669 } 3670 if (!ill_allocate_mibs(ill)) 3671 goto done; 3672 ill->ill_current_frag = ill->ill_max_frag; 3673 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3674 /* 3675 * ipif_loopback_name can't be pointed at directly because its used 3676 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3677 * from the glist, ill_glist_delete() sets the first character of 3678 * ill_name to '\0'. 3679 */ 3680 ill->ill_name = (char *)ill + sizeof (*ill); 3681 (void) strcpy(ill->ill_name, ipif_loopback_name); 3682 ill->ill_name_length = sizeof (ipif_loopback_name); 3683 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3684 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3685 3686 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3687 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3688 ill->ill_global_timer = INFINITY; 3689 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3690 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3691 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3692 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3693 3694 /* No resolver here. */ 3695 ill->ill_net_type = IRE_LOOPBACK; 3696 3697 /* Initialize the ipsq */ 3698 if (!ipsq_init(ill, B_FALSE)) 3699 goto done; 3700 3701 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 3702 if (ipif == NULL) 3703 goto done; 3704 3705 ill->ill_flags = ILLF_MULTICAST; 3706 3707 ov6addr = ipif->ipif_v6lcl_addr; 3708 /* Set up default loopback address and mask. */ 3709 if (!isv6) { 3710 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3711 3712 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3713 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3714 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3715 ipif->ipif_v6subnet); 3716 ill->ill_flags |= ILLF_IPV4; 3717 } else { 3718 ipif->ipif_v6lcl_addr = ipv6_loopback; 3719 ipif->ipif_v6net_mask = ipv6_all_ones; 3720 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3721 ipif->ipif_v6subnet); 3722 ill->ill_flags |= ILLF_IPV6; 3723 } 3724 3725 /* 3726 * Chain us in at the end of the ill list. hold the ill 3727 * before we make it globally visible. 1 for the lookup. 3728 */ 3729 ill->ill_refcnt = 0; 3730 ill_refhold(ill); 3731 3732 ill->ill_frag_count = 0; 3733 ill->ill_frag_free_num_pkts = 0; 3734 ill->ill_last_frag_clean_time = 0; 3735 3736 ipsq = ill->ill_phyint->phyint_ipsq; 3737 3738 ill_set_inputfn(ill); 3739 3740 if (ill_glist_insert(ill, "lo", isv6) != 0) 3741 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3742 3743 /* Let SCTP know so that it can add this to its list */ 3744 sctp_update_ill(ill, SCTP_ILL_INSERT); 3745 3746 /* 3747 * We have already assigned ipif_v6lcl_addr above, but we need to 3748 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3749 * requires to be after ill_glist_insert() since we need the 3750 * ill_index set. Pass on ipv6_loopback as the old address. 3751 */ 3752 sctp_update_ipif_addr(ipif, ov6addr); 3753 3754 /* 3755 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3756 * If so, free our original one. 3757 */ 3758 if (ipsq != ill->ill_phyint->phyint_ipsq) 3759 ipsq_delete(ipsq); 3760 3761 if (ipst->ips_loopback_ksp == NULL) { 3762 /* Export loopback interface statistics */ 3763 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3764 ipif_loopback_name, "net", 3765 KSTAT_TYPE_NAMED, 2, 0, 3766 ipst->ips_netstack->netstack_stackid); 3767 if (ipst->ips_loopback_ksp != NULL) { 3768 ipst->ips_loopback_ksp->ks_update = 3769 loopback_kstat_update; 3770 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3771 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3772 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3773 ipst->ips_loopback_ksp->ks_private = 3774 (void *)(uintptr_t)ipst->ips_netstack-> 3775 netstack_stackid; 3776 kstat_install(ipst->ips_loopback_ksp); 3777 } 3778 } 3779 3780 *did_alloc = B_TRUE; 3781 rw_exit(&ipst->ips_ill_g_lock); 3782 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3783 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3784 return (ill); 3785 done: 3786 if (ill != NULL) { 3787 if (ill->ill_phyint != NULL) { 3788 ipsq = ill->ill_phyint->phyint_ipsq; 3789 if (ipsq != NULL) { 3790 ipsq->ipsq_phyint = NULL; 3791 ipsq_delete(ipsq); 3792 } 3793 mi_free(ill->ill_phyint); 3794 } 3795 ill_free_mib(ill); 3796 if (ill->ill_ipst != NULL) 3797 netstack_rele(ill->ill_ipst->ips_netstack); 3798 mi_free(ill); 3799 } 3800 rw_exit(&ipst->ips_ill_g_lock); 3801 return (NULL); 3802 } 3803 3804 /* 3805 * For IPP calls - use the ip_stack_t for global stack. 3806 */ 3807 ill_t * 3808 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3809 { 3810 ip_stack_t *ipst; 3811 ill_t *ill; 3812 3813 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3814 if (ipst == NULL) { 3815 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3816 return (NULL); 3817 } 3818 3819 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3820 netstack_rele(ipst->ips_netstack); 3821 return (ill); 3822 } 3823 3824 /* 3825 * Return a pointer to the ill which matches the index and IP version type. 3826 */ 3827 ill_t * 3828 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3829 { 3830 ill_t *ill; 3831 phyint_t *phyi; 3832 3833 /* 3834 * Indexes are stored in the phyint - a common structure 3835 * to both IPv4 and IPv6. 3836 */ 3837 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3838 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3839 (void *) &index, NULL); 3840 if (phyi != NULL) { 3841 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3842 if (ill != NULL) { 3843 mutex_enter(&ill->ill_lock); 3844 if (!ILL_IS_CONDEMNED(ill)) { 3845 ill_refhold_locked(ill); 3846 mutex_exit(&ill->ill_lock); 3847 rw_exit(&ipst->ips_ill_g_lock); 3848 return (ill); 3849 } 3850 mutex_exit(&ill->ill_lock); 3851 } 3852 } 3853 rw_exit(&ipst->ips_ill_g_lock); 3854 return (NULL); 3855 } 3856 3857 /* 3858 * Verify whether or not an interface index is valid. 3859 * It can be zero (meaning "reset") or an interface index assigned 3860 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3861 */ 3862 boolean_t 3863 ip_ifindex_valid(uint_t ifindex, boolean_t isv6, ip_stack_t *ipst) 3864 { 3865 ill_t *ill; 3866 3867 if (ifindex == 0) 3868 return (B_TRUE); 3869 3870 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 3871 if (ill == NULL) 3872 return (B_FALSE); 3873 if (IS_VNI(ill)) { 3874 ill_refrele(ill); 3875 return (B_FALSE); 3876 } 3877 ill_refrele(ill); 3878 return (B_TRUE); 3879 } 3880 3881 /* 3882 * Return the ifindex next in sequence after the passed in ifindex. 3883 * If there is no next ifindex for the given protocol, return 0. 3884 */ 3885 uint_t 3886 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3887 { 3888 phyint_t *phyi; 3889 phyint_t *phyi_initial; 3890 uint_t ifindex; 3891 3892 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3893 3894 if (index == 0) { 3895 phyi = avl_first( 3896 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3897 } else { 3898 phyi = phyi_initial = avl_find( 3899 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3900 (void *) &index, NULL); 3901 } 3902 3903 for (; phyi != NULL; 3904 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3905 phyi, AVL_AFTER)) { 3906 /* 3907 * If we're not returning the first interface in the tree 3908 * and we still haven't moved past the phyint_t that 3909 * corresponds to index, avl_walk needs to be called again 3910 */ 3911 if (!((index != 0) && (phyi == phyi_initial))) { 3912 if (isv6) { 3913 if ((phyi->phyint_illv6) && 3914 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3915 (phyi->phyint_illv6->ill_isv6 == 1)) 3916 break; 3917 } else { 3918 if ((phyi->phyint_illv4) && 3919 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3920 (phyi->phyint_illv4->ill_isv6 == 0)) 3921 break; 3922 } 3923 } 3924 } 3925 3926 rw_exit(&ipst->ips_ill_g_lock); 3927 3928 if (phyi != NULL) 3929 ifindex = phyi->phyint_ifindex; 3930 else 3931 ifindex = 0; 3932 3933 return (ifindex); 3934 } 3935 3936 /* 3937 * Return the ifindex for the named interface. 3938 * If there is no next ifindex for the interface, return 0. 3939 */ 3940 uint_t 3941 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3942 { 3943 phyint_t *phyi; 3944 avl_index_t where = 0; 3945 uint_t ifindex; 3946 3947 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3948 3949 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3950 name, &where)) == NULL) { 3951 rw_exit(&ipst->ips_ill_g_lock); 3952 return (0); 3953 } 3954 3955 ifindex = phyi->phyint_ifindex; 3956 3957 rw_exit(&ipst->ips_ill_g_lock); 3958 3959 return (ifindex); 3960 } 3961 3962 /* 3963 * Return the ifindex to be used by upper layer protocols for instance 3964 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 3965 */ 3966 uint_t 3967 ill_get_upper_ifindex(const ill_t *ill) 3968 { 3969 if (IS_UNDER_IPMP(ill)) 3970 return (ipmp_ill_get_ipmp_ifindex(ill)); 3971 else 3972 return (ill->ill_phyint->phyint_ifindex); 3973 } 3974 3975 3976 /* 3977 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 3978 * that gives a running thread a reference to the ill. This reference must be 3979 * released by the thread when it is done accessing the ill and related 3980 * objects. ill_refcnt can not be used to account for static references 3981 * such as other structures pointing to an ill. Callers must generally 3982 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 3983 * or be sure that the ill is not being deleted or changing state before 3984 * calling the refhold functions. A non-zero ill_refcnt ensures that the 3985 * ill won't change any of its critical state such as address, netmask etc. 3986 */ 3987 void 3988 ill_refhold(ill_t *ill) 3989 { 3990 mutex_enter(&ill->ill_lock); 3991 ill->ill_refcnt++; 3992 ILL_TRACE_REF(ill); 3993 mutex_exit(&ill->ill_lock); 3994 } 3995 3996 void 3997 ill_refhold_locked(ill_t *ill) 3998 { 3999 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4000 ill->ill_refcnt++; 4001 ILL_TRACE_REF(ill); 4002 } 4003 4004 /* Returns true if we managed to get a refhold */ 4005 boolean_t 4006 ill_check_and_refhold(ill_t *ill) 4007 { 4008 mutex_enter(&ill->ill_lock); 4009 if (!ILL_IS_CONDEMNED(ill)) { 4010 ill_refhold_locked(ill); 4011 mutex_exit(&ill->ill_lock); 4012 return (B_TRUE); 4013 } 4014 mutex_exit(&ill->ill_lock); 4015 return (B_FALSE); 4016 } 4017 4018 /* 4019 * Must not be called while holding any locks. Otherwise if this is 4020 * the last reference to be released, there is a chance of recursive mutex 4021 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4022 * to restart an ioctl. 4023 */ 4024 void 4025 ill_refrele(ill_t *ill) 4026 { 4027 mutex_enter(&ill->ill_lock); 4028 ASSERT(ill->ill_refcnt != 0); 4029 ill->ill_refcnt--; 4030 ILL_UNTRACE_REF(ill); 4031 if (ill->ill_refcnt != 0) { 4032 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4033 mutex_exit(&ill->ill_lock); 4034 return; 4035 } 4036 4037 /* Drops the ill_lock */ 4038 ipif_ill_refrele_tail(ill); 4039 } 4040 4041 /* 4042 * Obtain a weak reference count on the ill. This reference ensures the 4043 * ill won't be freed, but the ill may change any of its critical state 4044 * such as netmask, address etc. Returns an error if the ill has started 4045 * closing. 4046 */ 4047 boolean_t 4048 ill_waiter_inc(ill_t *ill) 4049 { 4050 mutex_enter(&ill->ill_lock); 4051 if (ill->ill_state_flags & ILL_CONDEMNED) { 4052 mutex_exit(&ill->ill_lock); 4053 return (B_FALSE); 4054 } 4055 ill->ill_waiters++; 4056 mutex_exit(&ill->ill_lock); 4057 return (B_TRUE); 4058 } 4059 4060 void 4061 ill_waiter_dcr(ill_t *ill) 4062 { 4063 mutex_enter(&ill->ill_lock); 4064 ill->ill_waiters--; 4065 if (ill->ill_waiters == 0) 4066 cv_broadcast(&ill->ill_cv); 4067 mutex_exit(&ill->ill_lock); 4068 } 4069 4070 /* 4071 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4072 * driver. We construct best guess defaults for lower level information that 4073 * we need. If an interface is brought up without injection of any overriding 4074 * information from outside, we have to be ready to go with these defaults. 4075 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4076 * we primarely want the dl_provider_style. 4077 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4078 * at which point we assume the other part of the information is valid. 4079 */ 4080 void 4081 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4082 { 4083 uchar_t *brdcst_addr; 4084 uint_t brdcst_addr_length, phys_addr_length; 4085 t_scalar_t sap_length; 4086 dl_info_ack_t *dlia; 4087 ip_m_t *ipm; 4088 dl_qos_cl_sel1_t *sel1; 4089 int min_mtu; 4090 4091 ASSERT(IAM_WRITER_ILL(ill)); 4092 4093 /* 4094 * Till the ill is fully up the ill is not globally visible. 4095 * So no need for a lock. 4096 */ 4097 dlia = (dl_info_ack_t *)mp->b_rptr; 4098 ill->ill_mactype = dlia->dl_mac_type; 4099 4100 ipm = ip_m_lookup(dlia->dl_mac_type); 4101 if (ipm == NULL) { 4102 ipm = ip_m_lookup(DL_OTHER); 4103 ASSERT(ipm != NULL); 4104 } 4105 ill->ill_media = ipm; 4106 4107 /* 4108 * When the new DLPI stuff is ready we'll pull lengths 4109 * from dlia. 4110 */ 4111 if (dlia->dl_version == DL_VERSION_2) { 4112 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4113 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4114 brdcst_addr_length); 4115 if (brdcst_addr == NULL) { 4116 brdcst_addr_length = 0; 4117 } 4118 sap_length = dlia->dl_sap_length; 4119 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4120 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4121 brdcst_addr_length, sap_length, phys_addr_length)); 4122 } else { 4123 brdcst_addr_length = 6; 4124 brdcst_addr = ip_six_byte_all_ones; 4125 sap_length = -2; 4126 phys_addr_length = brdcst_addr_length; 4127 } 4128 4129 ill->ill_bcast_addr_length = brdcst_addr_length; 4130 ill->ill_phys_addr_length = phys_addr_length; 4131 ill->ill_sap_length = sap_length; 4132 4133 /* 4134 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4135 * but we must ensure a minimum IP MTU is used since other bits of 4136 * IP will fly apart otherwise. 4137 */ 4138 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4139 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4140 ill->ill_current_frag = ill->ill_max_frag; 4141 ill->ill_mtu = ill->ill_max_frag; 4142 4143 ill->ill_type = ipm->ip_m_type; 4144 4145 if (!ill->ill_dlpi_style_set) { 4146 if (dlia->dl_provider_style == DL_STYLE2) 4147 ill->ill_needs_attach = 1; 4148 4149 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4150 4151 /* 4152 * Allocate the first ipif on this ill. We don't delay it 4153 * further as ioctl handling assumes at least one ipif exists. 4154 * 4155 * At this point we don't know whether the ill is v4 or v6. 4156 * We will know this whan the SIOCSLIFNAME happens and 4157 * the correct value for ill_isv6 will be assigned in 4158 * ipif_set_values(). We need to hold the ill lock and 4159 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4160 * the wakeup. 4161 */ 4162 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4163 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 4164 mutex_enter(&ill->ill_lock); 4165 ASSERT(ill->ill_dlpi_style_set == 0); 4166 ill->ill_dlpi_style_set = 1; 4167 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4168 cv_broadcast(&ill->ill_cv); 4169 mutex_exit(&ill->ill_lock); 4170 freemsg(mp); 4171 return; 4172 } 4173 ASSERT(ill->ill_ipif != NULL); 4174 /* 4175 * We know whether it is IPv4 or IPv6 now, as this is the 4176 * second DL_INFO_ACK we are recieving in response to the 4177 * DL_INFO_REQ sent in ipif_set_values. 4178 */ 4179 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4180 /* 4181 * Clear all the flags that were set based on ill_bcast_addr_length 4182 * and ill_phys_addr_length (in ipif_set_values) as these could have 4183 * changed now and we need to re-evaluate. 4184 */ 4185 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4186 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4187 4188 /* 4189 * Free ill_bcast_mp as things could have changed now. 4190 * 4191 * NOTE: The IPMP meta-interface is special-cased because it starts 4192 * with no underlying interfaces (and thus an unknown broadcast 4193 * address length), but we enforce that an interface is broadcast- 4194 * capable as part of allowing it to join a group. 4195 */ 4196 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4197 if (ill->ill_bcast_mp != NULL) 4198 freemsg(ill->ill_bcast_mp); 4199 ill->ill_net_type = IRE_IF_NORESOLVER; 4200 4201 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4202 ill->ill_phys_addr_length, 4203 ill->ill_sap, 4204 ill->ill_sap_length); 4205 4206 if (ill->ill_isv6) 4207 /* 4208 * Note: xresolv interfaces will eventually need NOARP 4209 * set here as well, but that will require those 4210 * external resolvers to have some knowledge of 4211 * that flag and act appropriately. Not to be changed 4212 * at present. 4213 */ 4214 ill->ill_flags |= ILLF_NONUD; 4215 else 4216 ill->ill_flags |= ILLF_NOARP; 4217 4218 if (ill->ill_mactype == SUNW_DL_VNI) { 4219 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4220 } else if (ill->ill_phys_addr_length == 0 || 4221 ill->ill_mactype == DL_IPV4 || 4222 ill->ill_mactype == DL_IPV6) { 4223 /* 4224 * The underying link is point-to-point, so mark the 4225 * interface as such. We can do IP multicast over 4226 * such a link since it transmits all network-layer 4227 * packets to the remote side the same way. 4228 */ 4229 ill->ill_flags |= ILLF_MULTICAST; 4230 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4231 } 4232 } else { 4233 ill->ill_net_type = IRE_IF_RESOLVER; 4234 if (ill->ill_bcast_mp != NULL) 4235 freemsg(ill->ill_bcast_mp); 4236 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4237 ill->ill_bcast_addr_length, ill->ill_sap, 4238 ill->ill_sap_length); 4239 /* 4240 * Later detect lack of DLPI driver multicast 4241 * capability by catching DL_ENABMULTI errors in 4242 * ip_rput_dlpi. 4243 */ 4244 ill->ill_flags |= ILLF_MULTICAST; 4245 if (!ill->ill_isv6) 4246 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4247 } 4248 4249 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4250 if (ill->ill_mactype == SUNW_DL_IPMP) 4251 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4252 4253 /* By default an interface does not support any CoS marking */ 4254 ill->ill_flags &= ~ILLF_COS_ENABLED; 4255 4256 /* 4257 * If we get QoS information in DL_INFO_ACK, the device supports 4258 * some form of CoS marking, set ILLF_COS_ENABLED. 4259 */ 4260 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4261 dlia->dl_qos_length); 4262 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4263 ill->ill_flags |= ILLF_COS_ENABLED; 4264 } 4265 4266 /* Clear any previous error indication. */ 4267 ill->ill_error = 0; 4268 freemsg(mp); 4269 } 4270 4271 /* 4272 * Perform various checks to verify that an address would make sense as a 4273 * local, remote, or subnet interface address. 4274 */ 4275 static boolean_t 4276 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4277 { 4278 ipaddr_t net_mask; 4279 4280 /* 4281 * Don't allow all zeroes, or all ones, but allow 4282 * all ones netmask. 4283 */ 4284 if ((net_mask = ip_net_mask(addr)) == 0) 4285 return (B_FALSE); 4286 /* A given netmask overrides the "guess" netmask */ 4287 if (subnet_mask != 0) 4288 net_mask = subnet_mask; 4289 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4290 (addr == (addr | ~net_mask)))) { 4291 return (B_FALSE); 4292 } 4293 4294 /* 4295 * Even if the netmask is all ones, we do not allow address to be 4296 * 255.255.255.255 4297 */ 4298 if (addr == INADDR_BROADCAST) 4299 return (B_FALSE); 4300 4301 if (CLASSD(addr)) 4302 return (B_FALSE); 4303 4304 return (B_TRUE); 4305 } 4306 4307 #define V6_IPIF_LINKLOCAL(p) \ 4308 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4309 4310 /* 4311 * Compare two given ipifs and check if the second one is better than 4312 * the first one using the order of preference (not taking deprecated 4313 * into acount) specified in ipif_lookup_multicast(). 4314 */ 4315 static boolean_t 4316 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4317 { 4318 /* Check the least preferred first. */ 4319 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4320 /* If both ipifs are the same, use the first one. */ 4321 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4322 return (B_FALSE); 4323 else 4324 return (B_TRUE); 4325 } 4326 4327 /* For IPv6, check for link local address. */ 4328 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4329 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4330 V6_IPIF_LINKLOCAL(new_ipif)) { 4331 /* The second one is equal or less preferred. */ 4332 return (B_FALSE); 4333 } else { 4334 return (B_TRUE); 4335 } 4336 } 4337 4338 /* Then check for point to point interface. */ 4339 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4340 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4341 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4342 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4343 return (B_FALSE); 4344 } else { 4345 return (B_TRUE); 4346 } 4347 } 4348 4349 /* old_ipif is a normal interface, so no need to use the new one. */ 4350 return (B_FALSE); 4351 } 4352 4353 /* 4354 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4355 * The ipif must be up, and its ill must multicast-capable, not 4356 * condemned, not an underlying interface in an IPMP group, and 4357 * not a VNI interface. Order of preference: 4358 * 4359 * 1a. normal 4360 * 1b. normal, but deprecated 4361 * 2a. point to point 4362 * 2b. point to point, but deprecated 4363 * 3a. link local 4364 * 3b. link local, but deprecated 4365 * 4. loopback. 4366 */ 4367 static ipif_t * 4368 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4369 { 4370 ill_t *ill; 4371 ill_walk_context_t ctx; 4372 ipif_t *ipif; 4373 ipif_t *saved_ipif = NULL; 4374 ipif_t *dep_ipif = NULL; 4375 4376 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4377 if (isv6) 4378 ill = ILL_START_WALK_V6(&ctx, ipst); 4379 else 4380 ill = ILL_START_WALK_V4(&ctx, ipst); 4381 4382 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4383 mutex_enter(&ill->ill_lock); 4384 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4385 ILL_IS_CONDEMNED(ill) || 4386 !(ill->ill_flags & ILLF_MULTICAST)) { 4387 mutex_exit(&ill->ill_lock); 4388 continue; 4389 } 4390 for (ipif = ill->ill_ipif; ipif != NULL; 4391 ipif = ipif->ipif_next) { 4392 if (zoneid != ipif->ipif_zoneid && 4393 zoneid != ALL_ZONES && 4394 ipif->ipif_zoneid != ALL_ZONES) { 4395 continue; 4396 } 4397 if (!(ipif->ipif_flags & IPIF_UP) || 4398 IPIF_IS_CONDEMNED(ipif)) { 4399 continue; 4400 } 4401 4402 /* 4403 * Found one candidate. If it is deprecated, 4404 * remember it in dep_ipif. If it is not deprecated, 4405 * remember it in saved_ipif. 4406 */ 4407 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4408 if (dep_ipif == NULL) { 4409 dep_ipif = ipif; 4410 } else if (ipif_comp_multi(dep_ipif, ipif, 4411 isv6)) { 4412 /* 4413 * If the previous dep_ipif does not 4414 * belong to the same ill, we've done 4415 * a ipif_refhold() on it. So we need 4416 * to release it. 4417 */ 4418 if (dep_ipif->ipif_ill != ill) 4419 ipif_refrele(dep_ipif); 4420 dep_ipif = ipif; 4421 } 4422 continue; 4423 } 4424 if (saved_ipif == NULL) { 4425 saved_ipif = ipif; 4426 } else { 4427 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4428 if (saved_ipif->ipif_ill != ill) 4429 ipif_refrele(saved_ipif); 4430 saved_ipif = ipif; 4431 } 4432 } 4433 } 4434 /* 4435 * Before going to the next ill, do a ipif_refhold() on the 4436 * saved ones. 4437 */ 4438 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4439 ipif_refhold_locked(saved_ipif); 4440 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4441 ipif_refhold_locked(dep_ipif); 4442 mutex_exit(&ill->ill_lock); 4443 } 4444 rw_exit(&ipst->ips_ill_g_lock); 4445 4446 /* 4447 * If we have only the saved_ipif, return it. But if we have both 4448 * saved_ipif and dep_ipif, check to see which one is better. 4449 */ 4450 if (saved_ipif != NULL) { 4451 if (dep_ipif != NULL) { 4452 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4453 ipif_refrele(saved_ipif); 4454 return (dep_ipif); 4455 } else { 4456 ipif_refrele(dep_ipif); 4457 return (saved_ipif); 4458 } 4459 } 4460 return (saved_ipif); 4461 } else { 4462 return (dep_ipif); 4463 } 4464 } 4465 4466 ill_t * 4467 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4468 { 4469 ipif_t *ipif; 4470 ill_t *ill; 4471 4472 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4473 if (ipif == NULL) 4474 return (NULL); 4475 4476 ill = ipif->ipif_ill; 4477 ill_refhold(ill); 4478 ipif_refrele(ipif); 4479 return (ill); 4480 } 4481 4482 /* 4483 * This function is called when an application does not specify an interface 4484 * to be used for multicast traffic (joining a group/sending data). It 4485 * calls ire_lookup_multi() to look for an interface route for the 4486 * specified multicast group. Doing this allows the administrator to add 4487 * prefix routes for multicast to indicate which interface to be used for 4488 * multicast traffic in the above scenario. The route could be for all 4489 * multicast (224.0/4), for a single multicast group (a /32 route) or 4490 * anything in between. If there is no such multicast route, we just find 4491 * any multicast capable interface and return it. The returned ipif 4492 * is refhold'ed. 4493 * 4494 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4495 * unicast table. This is used by CGTP. 4496 */ 4497 ill_t * 4498 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4499 boolean_t *multirtp, ipaddr_t *setsrcp) 4500 { 4501 ill_t *ill; 4502 4503 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4504 if (ill != NULL) 4505 return (ill); 4506 4507 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4508 } 4509 4510 /* 4511 * Look for an ipif with the specified interface address and destination. 4512 * The destination address is used only for matching point-to-point interfaces. 4513 */ 4514 ipif_t * 4515 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4516 { 4517 ipif_t *ipif; 4518 ill_t *ill; 4519 ill_walk_context_t ctx; 4520 4521 /* 4522 * First match all the point-to-point interfaces 4523 * before looking at non-point-to-point interfaces. 4524 * This is done to avoid returning non-point-to-point 4525 * ipif instead of unnumbered point-to-point ipif. 4526 */ 4527 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4528 ill = ILL_START_WALK_V4(&ctx, ipst); 4529 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4530 mutex_enter(&ill->ill_lock); 4531 for (ipif = ill->ill_ipif; ipif != NULL; 4532 ipif = ipif->ipif_next) { 4533 /* Allow the ipif to be down */ 4534 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4535 (ipif->ipif_lcl_addr == if_addr) && 4536 (ipif->ipif_pp_dst_addr == dst)) { 4537 if (!IPIF_IS_CONDEMNED(ipif)) { 4538 ipif_refhold_locked(ipif); 4539 mutex_exit(&ill->ill_lock); 4540 rw_exit(&ipst->ips_ill_g_lock); 4541 return (ipif); 4542 } 4543 } 4544 } 4545 mutex_exit(&ill->ill_lock); 4546 } 4547 rw_exit(&ipst->ips_ill_g_lock); 4548 4549 /* lookup the ipif based on interface address */ 4550 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4551 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4552 return (ipif); 4553 } 4554 4555 /* 4556 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4557 */ 4558 static ipif_t * 4559 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4560 zoneid_t zoneid, ip_stack_t *ipst) 4561 { 4562 ipif_t *ipif; 4563 ill_t *ill; 4564 boolean_t ptp = B_FALSE; 4565 ill_walk_context_t ctx; 4566 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4567 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4568 4569 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4570 /* 4571 * Repeat twice, first based on local addresses and 4572 * next time for pointopoint. 4573 */ 4574 repeat: 4575 ill = ILL_START_WALK_V4(&ctx, ipst); 4576 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4577 if (match_ill != NULL && ill != match_ill && 4578 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4579 continue; 4580 } 4581 mutex_enter(&ill->ill_lock); 4582 for (ipif = ill->ill_ipif; ipif != NULL; 4583 ipif = ipif->ipif_next) { 4584 if (zoneid != ALL_ZONES && 4585 zoneid != ipif->ipif_zoneid && 4586 ipif->ipif_zoneid != ALL_ZONES) 4587 continue; 4588 4589 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4590 continue; 4591 4592 /* Allow the ipif to be down */ 4593 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4594 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4595 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4596 (ipif->ipif_pp_dst_addr == addr))) { 4597 if (!IPIF_IS_CONDEMNED(ipif)) { 4598 ipif_refhold_locked(ipif); 4599 mutex_exit(&ill->ill_lock); 4600 rw_exit(&ipst->ips_ill_g_lock); 4601 return (ipif); 4602 } 4603 } 4604 } 4605 mutex_exit(&ill->ill_lock); 4606 } 4607 4608 /* If we already did the ptp case, then we are done */ 4609 if (ptp) { 4610 rw_exit(&ipst->ips_ill_g_lock); 4611 return (NULL); 4612 } 4613 ptp = B_TRUE; 4614 goto repeat; 4615 } 4616 4617 /* 4618 * Lookup an ipif with the specified address. For point-to-point links we 4619 * look for matches on either the destination address or the local address, 4620 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4621 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4622 * (or illgrp if `match_ill' is in an IPMP group). 4623 */ 4624 ipif_t * 4625 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4626 ip_stack_t *ipst) 4627 { 4628 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4629 zoneid, ipst)); 4630 } 4631 4632 /* 4633 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4634 * except that we will only return an address if it is not marked as 4635 * IPIF_DUPLICATE 4636 */ 4637 ipif_t * 4638 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4639 ip_stack_t *ipst) 4640 { 4641 return (ipif_lookup_addr_common(addr, match_ill, 4642 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4643 zoneid, ipst)); 4644 } 4645 4646 /* 4647 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4648 * `match_ill' across the IPMP group. This function is only needed in some 4649 * corner-cases; almost everything should use ipif_lookup_addr(). 4650 */ 4651 ipif_t * 4652 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4653 { 4654 ASSERT(match_ill != NULL); 4655 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4656 ipst)); 4657 } 4658 4659 /* 4660 * Look for an ipif with the specified address. For point-point links 4661 * we look for matches on either the destination address and the local 4662 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4663 * is set. 4664 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4665 * ill (or illgrp if `match_ill' is in an IPMP group). 4666 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4667 */ 4668 zoneid_t 4669 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4670 { 4671 zoneid_t zoneid; 4672 ipif_t *ipif; 4673 ill_t *ill; 4674 boolean_t ptp = B_FALSE; 4675 ill_walk_context_t ctx; 4676 4677 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4678 /* 4679 * Repeat twice, first based on local addresses and 4680 * next time for pointopoint. 4681 */ 4682 repeat: 4683 ill = ILL_START_WALK_V4(&ctx, ipst); 4684 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4685 if (match_ill != NULL && ill != match_ill && 4686 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4687 continue; 4688 } 4689 mutex_enter(&ill->ill_lock); 4690 for (ipif = ill->ill_ipif; ipif != NULL; 4691 ipif = ipif->ipif_next) { 4692 /* Allow the ipif to be down */ 4693 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4694 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4695 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4696 (ipif->ipif_pp_dst_addr == addr)) && 4697 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4698 zoneid = ipif->ipif_zoneid; 4699 mutex_exit(&ill->ill_lock); 4700 rw_exit(&ipst->ips_ill_g_lock); 4701 /* 4702 * If ipif_zoneid was ALL_ZONES then we have 4703 * a trusted extensions shared IP address. 4704 * In that case GLOBAL_ZONEID works to send. 4705 */ 4706 if (zoneid == ALL_ZONES) 4707 zoneid = GLOBAL_ZONEID; 4708 return (zoneid); 4709 } 4710 } 4711 mutex_exit(&ill->ill_lock); 4712 } 4713 4714 /* If we already did the ptp case, then we are done */ 4715 if (ptp) { 4716 rw_exit(&ipst->ips_ill_g_lock); 4717 return (ALL_ZONES); 4718 } 4719 ptp = B_TRUE; 4720 goto repeat; 4721 } 4722 4723 /* 4724 * Look for an ipif that matches the specified remote address i.e. the 4725 * ipif that would receive the specified packet. 4726 * First look for directly connected interfaces and then do a recursive 4727 * IRE lookup and pick the first ipif corresponding to the source address in the 4728 * ire. 4729 * Returns: held ipif 4730 * 4731 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4732 */ 4733 ipif_t * 4734 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4735 { 4736 ipif_t *ipif; 4737 4738 ASSERT(!ill->ill_isv6); 4739 4740 /* 4741 * Someone could be changing this ipif currently or change it 4742 * after we return this. Thus a few packets could use the old 4743 * old values. However structure updates/creates (ire, ilg, ilm etc) 4744 * will atomically be updated or cleaned up with the new value 4745 * Thus we don't need a lock to check the flags or other attrs below. 4746 */ 4747 mutex_enter(&ill->ill_lock); 4748 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4749 if (IPIF_IS_CONDEMNED(ipif)) 4750 continue; 4751 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4752 ipif->ipif_zoneid != ALL_ZONES) 4753 continue; 4754 /* Allow the ipif to be down */ 4755 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4756 if ((ipif->ipif_pp_dst_addr == addr) || 4757 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4758 ipif->ipif_lcl_addr == addr)) { 4759 ipif_refhold_locked(ipif); 4760 mutex_exit(&ill->ill_lock); 4761 return (ipif); 4762 } 4763 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4764 ipif_refhold_locked(ipif); 4765 mutex_exit(&ill->ill_lock); 4766 return (ipif); 4767 } 4768 } 4769 mutex_exit(&ill->ill_lock); 4770 /* 4771 * For a remote destination it isn't possible to nail down a particular 4772 * ipif. 4773 */ 4774 4775 /* Pick the first interface */ 4776 ipif = ipif_get_next_ipif(NULL, ill); 4777 return (ipif); 4778 } 4779 4780 /* 4781 * This func does not prevent refcnt from increasing. But if 4782 * the caller has taken steps to that effect, then this func 4783 * can be used to determine whether the ill has become quiescent 4784 */ 4785 static boolean_t 4786 ill_is_quiescent(ill_t *ill) 4787 { 4788 ipif_t *ipif; 4789 4790 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4791 4792 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4793 if (ipif->ipif_refcnt != 0) 4794 return (B_FALSE); 4795 } 4796 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4797 return (B_FALSE); 4798 } 4799 return (B_TRUE); 4800 } 4801 4802 boolean_t 4803 ill_is_freeable(ill_t *ill) 4804 { 4805 ipif_t *ipif; 4806 4807 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4808 4809 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4810 if (ipif->ipif_refcnt != 0) { 4811 return (B_FALSE); 4812 } 4813 } 4814 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4815 return (B_FALSE); 4816 } 4817 return (B_TRUE); 4818 } 4819 4820 /* 4821 * This func does not prevent refcnt from increasing. But if 4822 * the caller has taken steps to that effect, then this func 4823 * can be used to determine whether the ipif has become quiescent 4824 */ 4825 static boolean_t 4826 ipif_is_quiescent(ipif_t *ipif) 4827 { 4828 ill_t *ill; 4829 4830 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4831 4832 if (ipif->ipif_refcnt != 0) 4833 return (B_FALSE); 4834 4835 ill = ipif->ipif_ill; 4836 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4837 ill->ill_logical_down) { 4838 return (B_TRUE); 4839 } 4840 4841 /* This is the last ipif going down or being deleted on this ill */ 4842 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4843 return (B_FALSE); 4844 } 4845 4846 return (B_TRUE); 4847 } 4848 4849 /* 4850 * return true if the ipif can be destroyed: the ipif has to be quiescent 4851 * with zero references from ire/ilm to it. 4852 */ 4853 static boolean_t 4854 ipif_is_freeable(ipif_t *ipif) 4855 { 4856 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4857 ASSERT(ipif->ipif_id != 0); 4858 return (ipif->ipif_refcnt == 0); 4859 } 4860 4861 /* 4862 * The ipif/ill/ire has been refreled. Do the tail processing. 4863 * Determine if the ipif or ill in question has become quiescent and if so 4864 * wakeup close and/or restart any queued pending ioctl that is waiting 4865 * for the ipif_down (or ill_down) 4866 */ 4867 void 4868 ipif_ill_refrele_tail(ill_t *ill) 4869 { 4870 mblk_t *mp; 4871 conn_t *connp; 4872 ipsq_t *ipsq; 4873 ipxop_t *ipx; 4874 ipif_t *ipif; 4875 dl_notify_ind_t *dlindp; 4876 4877 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4878 4879 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4880 /* ip_modclose() may be waiting */ 4881 cv_broadcast(&ill->ill_cv); 4882 } 4883 4884 ipsq = ill->ill_phyint->phyint_ipsq; 4885 mutex_enter(&ipsq->ipsq_lock); 4886 ipx = ipsq->ipsq_xop; 4887 mutex_enter(&ipx->ipx_lock); 4888 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4889 goto unlock; 4890 4891 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4892 4893 ipif = ipx->ipx_pending_ipif; 4894 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4895 goto unlock; 4896 4897 switch (ipx->ipx_waitfor) { 4898 case IPIF_DOWN: 4899 if (!ipif_is_quiescent(ipif)) 4900 goto unlock; 4901 break; 4902 case IPIF_FREE: 4903 if (!ipif_is_freeable(ipif)) 4904 goto unlock; 4905 break; 4906 case ILL_DOWN: 4907 if (!ill_is_quiescent(ill)) 4908 goto unlock; 4909 break; 4910 case ILL_FREE: 4911 /* 4912 * ILL_FREE is only for loopback; normal ill teardown waits 4913 * synchronously in ip_modclose() without using ipx_waitfor, 4914 * handled by the cv_broadcast() at the top of this function. 4915 */ 4916 if (!ill_is_freeable(ill)) 4917 goto unlock; 4918 break; 4919 default: 4920 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4921 (void *)ipsq, ipx->ipx_waitfor); 4922 } 4923 4924 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4925 mutex_exit(&ipx->ipx_lock); 4926 mp = ipsq_pending_mp_get(ipsq, &connp); 4927 mutex_exit(&ipsq->ipsq_lock); 4928 mutex_exit(&ill->ill_lock); 4929 4930 ASSERT(mp != NULL); 4931 /* 4932 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4933 * we can only get here when the current operation decides it 4934 * it needs to quiesce via ipsq_pending_mp_add(). 4935 */ 4936 switch (mp->b_datap->db_type) { 4937 case M_PCPROTO: 4938 case M_PROTO: 4939 /* 4940 * For now, only DL_NOTIFY_IND messages can use this facility. 4941 */ 4942 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4943 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4944 4945 switch (dlindp->dl_notification) { 4946 case DL_NOTE_PHYS_ADDR: 4947 qwriter_ip(ill, ill->ill_rq, mp, 4948 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4949 return; 4950 case DL_NOTE_REPLUMB: 4951 qwriter_ip(ill, ill->ill_rq, mp, 4952 ill_replumb_tail, CUR_OP, B_TRUE); 4953 return; 4954 default: 4955 ASSERT(0); 4956 ill_refrele(ill); 4957 } 4958 break; 4959 4960 case M_ERROR: 4961 case M_HANGUP: 4962 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 4963 B_TRUE); 4964 return; 4965 4966 case M_IOCTL: 4967 case M_IOCDATA: 4968 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 4969 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 4970 return; 4971 4972 default: 4973 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 4974 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 4975 } 4976 return; 4977 unlock: 4978 mutex_exit(&ipsq->ipsq_lock); 4979 mutex_exit(&ipx->ipx_lock); 4980 mutex_exit(&ill->ill_lock); 4981 } 4982 4983 #ifdef DEBUG 4984 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 4985 static void 4986 th_trace_rrecord(th_trace_t *th_trace) 4987 { 4988 tr_buf_t *tr_buf; 4989 uint_t lastref; 4990 4991 lastref = th_trace->th_trace_lastref; 4992 lastref++; 4993 if (lastref == TR_BUF_MAX) 4994 lastref = 0; 4995 th_trace->th_trace_lastref = lastref; 4996 tr_buf = &th_trace->th_trbuf[lastref]; 4997 tr_buf->tr_time = lbolt; 4998 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 4999 } 5000 5001 static void 5002 th_trace_free(void *value) 5003 { 5004 th_trace_t *th_trace = value; 5005 5006 ASSERT(th_trace->th_refcnt == 0); 5007 kmem_free(th_trace, sizeof (*th_trace)); 5008 } 5009 5010 /* 5011 * Find or create the per-thread hash table used to track object references. 5012 * The ipst argument is NULL if we shouldn't allocate. 5013 * 5014 * Accesses per-thread data, so there's no need to lock here. 5015 */ 5016 static mod_hash_t * 5017 th_trace_gethash(ip_stack_t *ipst) 5018 { 5019 th_hash_t *thh; 5020 5021 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5022 mod_hash_t *mh; 5023 char name[256]; 5024 size_t objsize, rshift; 5025 int retv; 5026 5027 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5028 return (NULL); 5029 (void) snprintf(name, sizeof (name), "th_trace_%p", 5030 (void *)curthread); 5031 5032 /* 5033 * We use mod_hash_create_extended here rather than the more 5034 * obvious mod_hash_create_ptrhash because the latter has a 5035 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5036 * block. 5037 */ 5038 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5039 MAX(sizeof (ire_t), sizeof (ncec_t))); 5040 rshift = highbit(objsize); 5041 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5042 th_trace_free, mod_hash_byptr, (void *)rshift, 5043 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5044 if (mh == NULL) { 5045 kmem_free(thh, sizeof (*thh)); 5046 return (NULL); 5047 } 5048 thh->thh_hash = mh; 5049 thh->thh_ipst = ipst; 5050 /* 5051 * We trace ills, ipifs, ires, and nces. All of these are 5052 * per-IP-stack, so the lock on the thread list is as well. 5053 */ 5054 rw_enter(&ip_thread_rwlock, RW_WRITER); 5055 list_insert_tail(&ip_thread_list, thh); 5056 rw_exit(&ip_thread_rwlock); 5057 retv = tsd_set(ip_thread_data, thh); 5058 ASSERT(retv == 0); 5059 } 5060 return (thh != NULL ? thh->thh_hash : NULL); 5061 } 5062 5063 boolean_t 5064 th_trace_ref(const void *obj, ip_stack_t *ipst) 5065 { 5066 th_trace_t *th_trace; 5067 mod_hash_t *mh; 5068 mod_hash_val_t val; 5069 5070 if ((mh = th_trace_gethash(ipst)) == NULL) 5071 return (B_FALSE); 5072 5073 /* 5074 * Attempt to locate the trace buffer for this obj and thread. 5075 * If it does not exist, then allocate a new trace buffer and 5076 * insert into the hash. 5077 */ 5078 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5079 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5080 if (th_trace == NULL) 5081 return (B_FALSE); 5082 5083 th_trace->th_id = curthread; 5084 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5085 (mod_hash_val_t)th_trace) != 0) { 5086 kmem_free(th_trace, sizeof (th_trace_t)); 5087 return (B_FALSE); 5088 } 5089 } else { 5090 th_trace = (th_trace_t *)val; 5091 } 5092 5093 ASSERT(th_trace->th_refcnt >= 0 && 5094 th_trace->th_refcnt < TR_BUF_MAX - 1); 5095 5096 th_trace->th_refcnt++; 5097 th_trace_rrecord(th_trace); 5098 return (B_TRUE); 5099 } 5100 5101 /* 5102 * For the purpose of tracing a reference release, we assume that global 5103 * tracing is always on and that the same thread initiated the reference hold 5104 * is releasing. 5105 */ 5106 void 5107 th_trace_unref(const void *obj) 5108 { 5109 int retv; 5110 mod_hash_t *mh; 5111 th_trace_t *th_trace; 5112 mod_hash_val_t val; 5113 5114 mh = th_trace_gethash(NULL); 5115 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5116 ASSERT(retv == 0); 5117 th_trace = (th_trace_t *)val; 5118 5119 ASSERT(th_trace->th_refcnt > 0); 5120 th_trace->th_refcnt--; 5121 th_trace_rrecord(th_trace); 5122 } 5123 5124 /* 5125 * If tracing has been disabled, then we assume that the reference counts are 5126 * now useless, and we clear them out before destroying the entries. 5127 */ 5128 void 5129 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5130 { 5131 th_hash_t *thh; 5132 mod_hash_t *mh; 5133 mod_hash_val_t val; 5134 th_trace_t *th_trace; 5135 int retv; 5136 5137 rw_enter(&ip_thread_rwlock, RW_READER); 5138 for (thh = list_head(&ip_thread_list); thh != NULL; 5139 thh = list_next(&ip_thread_list, thh)) { 5140 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5141 &val) == 0) { 5142 th_trace = (th_trace_t *)val; 5143 if (trace_disable) 5144 th_trace->th_refcnt = 0; 5145 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5146 ASSERT(retv == 0); 5147 } 5148 } 5149 rw_exit(&ip_thread_rwlock); 5150 } 5151 5152 void 5153 ipif_trace_ref(ipif_t *ipif) 5154 { 5155 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5156 5157 if (ipif->ipif_trace_disable) 5158 return; 5159 5160 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5161 ipif->ipif_trace_disable = B_TRUE; 5162 ipif_trace_cleanup(ipif); 5163 } 5164 } 5165 5166 void 5167 ipif_untrace_ref(ipif_t *ipif) 5168 { 5169 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5170 5171 if (!ipif->ipif_trace_disable) 5172 th_trace_unref(ipif); 5173 } 5174 5175 void 5176 ill_trace_ref(ill_t *ill) 5177 { 5178 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5179 5180 if (ill->ill_trace_disable) 5181 return; 5182 5183 if (!th_trace_ref(ill, ill->ill_ipst)) { 5184 ill->ill_trace_disable = B_TRUE; 5185 ill_trace_cleanup(ill); 5186 } 5187 } 5188 5189 void 5190 ill_untrace_ref(ill_t *ill) 5191 { 5192 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5193 5194 if (!ill->ill_trace_disable) 5195 th_trace_unref(ill); 5196 } 5197 5198 /* 5199 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5200 * failure, ipif_trace_disable is set. 5201 */ 5202 static void 5203 ipif_trace_cleanup(const ipif_t *ipif) 5204 { 5205 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5206 } 5207 5208 /* 5209 * Called when ill is unplumbed or when memory alloc fails. Note that on 5210 * failure, ill_trace_disable is set. 5211 */ 5212 static void 5213 ill_trace_cleanup(const ill_t *ill) 5214 { 5215 th_trace_cleanup(ill, ill->ill_trace_disable); 5216 } 5217 #endif /* DEBUG */ 5218 5219 void 5220 ipif_refhold_locked(ipif_t *ipif) 5221 { 5222 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5223 ipif->ipif_refcnt++; 5224 IPIF_TRACE_REF(ipif); 5225 } 5226 5227 void 5228 ipif_refhold(ipif_t *ipif) 5229 { 5230 ill_t *ill; 5231 5232 ill = ipif->ipif_ill; 5233 mutex_enter(&ill->ill_lock); 5234 ipif->ipif_refcnt++; 5235 IPIF_TRACE_REF(ipif); 5236 mutex_exit(&ill->ill_lock); 5237 } 5238 5239 /* 5240 * Must not be called while holding any locks. Otherwise if this is 5241 * the last reference to be released there is a chance of recursive mutex 5242 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5243 * to restart an ioctl. 5244 */ 5245 void 5246 ipif_refrele(ipif_t *ipif) 5247 { 5248 ill_t *ill; 5249 5250 ill = ipif->ipif_ill; 5251 5252 mutex_enter(&ill->ill_lock); 5253 ASSERT(ipif->ipif_refcnt != 0); 5254 ipif->ipif_refcnt--; 5255 IPIF_UNTRACE_REF(ipif); 5256 if (ipif->ipif_refcnt != 0) { 5257 mutex_exit(&ill->ill_lock); 5258 return; 5259 } 5260 5261 /* Drops the ill_lock */ 5262 ipif_ill_refrele_tail(ill); 5263 } 5264 5265 ipif_t * 5266 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5267 { 5268 ipif_t *ipif; 5269 5270 mutex_enter(&ill->ill_lock); 5271 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5272 ipif != NULL; ipif = ipif->ipif_next) { 5273 if (IPIF_IS_CONDEMNED(ipif)) 5274 continue; 5275 ipif_refhold_locked(ipif); 5276 mutex_exit(&ill->ill_lock); 5277 return (ipif); 5278 } 5279 mutex_exit(&ill->ill_lock); 5280 return (NULL); 5281 } 5282 5283 /* 5284 * TODO: make this table extendible at run time 5285 * Return a pointer to the mac type info for 'mac_type' 5286 */ 5287 static ip_m_t * 5288 ip_m_lookup(t_uscalar_t mac_type) 5289 { 5290 ip_m_t *ipm; 5291 5292 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5293 if (ipm->ip_m_mac_type == mac_type) 5294 return (ipm); 5295 return (NULL); 5296 } 5297 5298 /* 5299 * Make a link layer address from the multicast IP address *addr. 5300 * To form the link layer address, invoke the ip_m_v*mapping function 5301 * associated with the link-layer type. 5302 */ 5303 void 5304 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5305 { 5306 ip_m_t *ipm; 5307 5308 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5309 return; 5310 5311 ASSERT(addr != NULL); 5312 5313 ipm = ip_m_lookup(ill->ill_mactype); 5314 if (ipm == NULL || 5315 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5316 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5317 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5318 ill->ill_name, ill->ill_mactype)); 5319 return; 5320 } 5321 if (ill->ill_isv6) 5322 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5323 else 5324 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5325 } 5326 5327 /* 5328 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5329 * ill is passed in to associate it with the correct interface. 5330 * If ire_arg is set, then we return the held IRE in that location. 5331 */ 5332 int 5333 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5334 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5335 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5336 { 5337 ire_t *ire, *nire; 5338 ire_t *gw_ire = NULL; 5339 ipif_t *ipif = NULL; 5340 uint_t type; 5341 int match_flags = MATCH_IRE_TYPE; 5342 tsol_gc_t *gc = NULL; 5343 tsol_gcgrp_t *gcgrp = NULL; 5344 boolean_t gcgrp_xtraref = B_FALSE; 5345 boolean_t cgtp_broadcast; 5346 5347 ip1dbg(("ip_rt_add:")); 5348 5349 if (ire_arg != NULL) 5350 *ire_arg = NULL; 5351 5352 /* 5353 * If this is the case of RTF_HOST being set, then we set the netmask 5354 * to all ones (regardless if one was supplied). 5355 */ 5356 if (flags & RTF_HOST) 5357 mask = IP_HOST_MASK; 5358 5359 /* 5360 * Prevent routes with a zero gateway from being created (since 5361 * interfaces can currently be plumbed and brought up no assigned 5362 * address). 5363 */ 5364 if (gw_addr == 0) 5365 return (ENETUNREACH); 5366 /* 5367 * Get the ipif, if any, corresponding to the gw_addr 5368 * If -ifp was specified we restrict ourselves to the ill, otherwise 5369 * we match on the gatway and destination to handle unnumbered pt-pt 5370 * interfaces. 5371 */ 5372 if (ill != NULL) 5373 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5374 else 5375 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5376 if (ipif != NULL) { 5377 if (IS_VNI(ipif->ipif_ill)) { 5378 ipif_refrele(ipif); 5379 return (EINVAL); 5380 } 5381 } 5382 5383 /* 5384 * GateD will attempt to create routes with a loopback interface 5385 * address as the gateway and with RTF_GATEWAY set. We allow 5386 * these routes to be added, but create them as interface routes 5387 * since the gateway is an interface address. 5388 */ 5389 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5390 flags &= ~RTF_GATEWAY; 5391 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5392 mask == IP_HOST_MASK) { 5393 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5394 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5395 NULL); 5396 if (ire != NULL) { 5397 ire_refrele(ire); 5398 ipif_refrele(ipif); 5399 return (EEXIST); 5400 } 5401 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5402 "for 0x%x\n", (void *)ipif, 5403 ipif->ipif_ire_type, 5404 ntohl(ipif->ipif_lcl_addr))); 5405 ire = ire_create( 5406 (uchar_t *)&dst_addr, /* dest address */ 5407 (uchar_t *)&mask, /* mask */ 5408 NULL, /* no gateway */ 5409 ipif->ipif_ire_type, /* LOOPBACK */ 5410 ipif->ipif_ill, 5411 zoneid, 5412 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5413 NULL, 5414 ipst); 5415 5416 if (ire == NULL) { 5417 ipif_refrele(ipif); 5418 return (ENOMEM); 5419 } 5420 /* src address assigned by the caller? */ 5421 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5422 ire->ire_setsrc_addr = src_addr; 5423 5424 nire = ire_add(ire); 5425 if (nire == NULL) { 5426 /* 5427 * In the result of failure, ire_add() will have 5428 * already deleted the ire in question, so there 5429 * is no need to do that here. 5430 */ 5431 ipif_refrele(ipif); 5432 return (ENOMEM); 5433 } 5434 /* 5435 * Check if it was a duplicate entry. This handles 5436 * the case of two racing route adds for the same route 5437 */ 5438 if (nire != ire) { 5439 ASSERT(nire->ire_identical_ref > 1); 5440 ire_delete(nire); 5441 ire_refrele(nire); 5442 ipif_refrele(ipif); 5443 return (EEXIST); 5444 } 5445 ire = nire; 5446 goto save_ire; 5447 } 5448 } 5449 5450 /* 5451 * The routes for multicast with CGTP are quite special in that 5452 * the gateway is the local interface address, yet RTF_GATEWAY 5453 * is set. We turn off RTF_GATEWAY to provide compatibility with 5454 * this undocumented and unusual use of multicast routes. 5455 */ 5456 if ((flags & RTF_MULTIRT) && ipif != NULL) 5457 flags &= ~RTF_GATEWAY; 5458 5459 /* 5460 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5461 * and the gateway address provided is one of the system's interface 5462 * addresses. By using the routing socket interface and supplying an 5463 * RTA_IFP sockaddr with an interface index, an alternate method of 5464 * specifying an interface route to be created is available which uses 5465 * the interface index that specifies the outgoing interface rather than 5466 * the address of an outgoing interface (which may not be able to 5467 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5468 * flag, routes can be specified which not only specify the next-hop to 5469 * be used when routing to a certain prefix, but also which outgoing 5470 * interface should be used. 5471 * 5472 * Previously, interfaces would have unique addresses assigned to them 5473 * and so the address assigned to a particular interface could be used 5474 * to identify a particular interface. One exception to this was the 5475 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5476 * 5477 * With the advent of IPv6 and its link-local addresses, this 5478 * restriction was relaxed and interfaces could share addresses between 5479 * themselves. In fact, typically all of the link-local interfaces on 5480 * an IPv6 node or router will have the same link-local address. In 5481 * order to differentiate between these interfaces, the use of an 5482 * interface index is necessary and this index can be carried inside a 5483 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5484 * of using the interface index, however, is that all of the ipif's that 5485 * are part of an ill have the same index and so the RTA_IFP sockaddr 5486 * cannot be used to differentiate between ipif's (or logical 5487 * interfaces) that belong to the same ill (physical interface). 5488 * 5489 * For example, in the following case involving IPv4 interfaces and 5490 * logical interfaces 5491 * 5492 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5493 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5494 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5495 * 5496 * the ipif's corresponding to each of these interface routes can be 5497 * uniquely identified by the "gateway" (actually interface address). 5498 * 5499 * In this case involving multiple IPv6 default routes to a particular 5500 * link-local gateway, the use of RTA_IFP is necessary to specify which 5501 * default route is of interest: 5502 * 5503 * default fe80::123:4567:89ab:cdef U if0 5504 * default fe80::123:4567:89ab:cdef U if1 5505 */ 5506 5507 /* RTF_GATEWAY not set */ 5508 if (!(flags & RTF_GATEWAY)) { 5509 if (sp != NULL) { 5510 ip2dbg(("ip_rt_add: gateway security attributes " 5511 "cannot be set with interface route\n")); 5512 if (ipif != NULL) 5513 ipif_refrele(ipif); 5514 return (EINVAL); 5515 } 5516 5517 /* 5518 * Whether or not ill (RTA_IFP) is set, we require that 5519 * the gateway is one of our local addresses. 5520 */ 5521 if (ipif == NULL) 5522 return (ENETUNREACH); 5523 5524 /* 5525 * We use MATCH_IRE_ILL here. If the caller specified an 5526 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5527 * we use the ill derived from the gateway address. 5528 * We can always match the gateway address since we record it 5529 * in ire_gateway_addr. 5530 * We don't allow RTA_IFP to specify a different ill than the 5531 * one matching the ipif to make sure we can delete the route. 5532 */ 5533 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5534 if (ill == NULL) { 5535 ill = ipif->ipif_ill; 5536 } else if (ill != ipif->ipif_ill) { 5537 ipif_refrele(ipif); 5538 return (EINVAL); 5539 } 5540 5541 /* 5542 * We check for an existing entry at this point. 5543 * 5544 * Since a netmask isn't passed in via the ioctl interface 5545 * (SIOCADDRT), we don't check for a matching netmask in that 5546 * case. 5547 */ 5548 if (!ioctl_msg) 5549 match_flags |= MATCH_IRE_MASK; 5550 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5551 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5552 NULL); 5553 if (ire != NULL) { 5554 ire_refrele(ire); 5555 ipif_refrele(ipif); 5556 return (EEXIST); 5557 } 5558 5559 /* 5560 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 5561 * IRE_IF_RESOLVER with the modified address, netmask, and 5562 * gateway. 5563 */ 5564 ire = ire_create( 5565 (uchar_t *)&dst_addr, 5566 (uint8_t *)&mask, 5567 (uint8_t *)&gw_addr, 5568 ill->ill_net_type, 5569 ill, 5570 zoneid, 5571 flags, 5572 NULL, 5573 ipst); 5574 if (ire == NULL) { 5575 ipif_refrele(ipif); 5576 return (ENOMEM); 5577 } 5578 5579 /* 5580 * Some software (for example, GateD and Sun Cluster) attempts 5581 * to create (what amount to) IRE_PREFIX routes with the 5582 * loopback address as the gateway. This is primarily done to 5583 * set up prefixes with the RTF_REJECT flag set (for example, 5584 * when generating aggregate routes.) 5585 * 5586 * If the IRE type (as defined by ill->ill_net_type) is 5587 * IRE_LOOPBACK, then we map the request into a 5588 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5589 * these interface routes, by definition, can only be that. 5590 * 5591 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5592 * routine, but rather using ire_create() directly. 5593 * 5594 */ 5595 if (ill->ill_net_type == IRE_LOOPBACK) { 5596 ire->ire_type = IRE_IF_NORESOLVER; 5597 ire->ire_flags |= RTF_BLACKHOLE; 5598 } 5599 5600 /* src address assigned by the caller? */ 5601 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5602 ire->ire_setsrc_addr = src_addr; 5603 5604 nire = ire_add(ire); 5605 if (nire == NULL) { 5606 /* 5607 * In the result of failure, ire_add() will have 5608 * already deleted the ire in question, so there 5609 * is no need to do that here. 5610 */ 5611 ipif_refrele(ipif); 5612 return (ENOMEM); 5613 } 5614 /* 5615 * Check if it was a duplicate entry. This handles 5616 * the case of two racing route adds for the same route 5617 */ 5618 if (nire != ire) { 5619 ire_delete(nire); 5620 ire_refrele(nire); 5621 ipif_refrele(ipif); 5622 return (EEXIST); 5623 } 5624 ire = nire; 5625 goto save_ire; 5626 } 5627 5628 /* 5629 * Get an interface IRE for the specified gateway. 5630 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5631 * gateway, it is currently unreachable and we fail the request 5632 * accordingly. 5633 * If RTA_IFP was specified we look on that particular ill. 5634 */ 5635 if (ill != NULL) 5636 match_flags |= MATCH_IRE_ILL; 5637 5638 /* Check whether the gateway is reachable. */ 5639 again: 5640 type = IRE_INTERFACE; 5641 if (flags & RTF_INDIRECT) 5642 type |= IRE_OFFLINK; 5643 5644 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5645 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5646 if (gw_ire == NULL) { 5647 /* 5648 * With IPMP, we allow host routes to influence in.mpathd's 5649 * target selection. However, if the test addresses are on 5650 * their own network, the above lookup will fail since the 5651 * underlying IRE_INTERFACEs are marked hidden. So allow 5652 * hidden test IREs to be found and try again. 5653 */ 5654 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5655 match_flags |= MATCH_IRE_TESTHIDDEN; 5656 goto again; 5657 } 5658 5659 if (ipif != NULL) 5660 ipif_refrele(ipif); 5661 return (ENETUNREACH); 5662 } 5663 5664 /* 5665 * We create one of three types of IREs as a result of this request 5666 * based on the netmask. A netmask of all ones (which is automatically 5667 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5668 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5669 * created. Otherwise, an IRE_PREFIX route is created for the 5670 * destination prefix. 5671 */ 5672 if (mask == IP_HOST_MASK) 5673 type = IRE_HOST; 5674 else if (mask == 0) 5675 type = IRE_DEFAULT; 5676 else 5677 type = IRE_PREFIX; 5678 5679 /* check for a duplicate entry */ 5680 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5681 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5682 0, ipst, NULL); 5683 if (ire != NULL) { 5684 if (ipif != NULL) 5685 ipif_refrele(ipif); 5686 ire_refrele(gw_ire); 5687 ire_refrele(ire); 5688 return (EEXIST); 5689 } 5690 5691 /* Security attribute exists */ 5692 if (sp != NULL) { 5693 tsol_gcgrp_addr_t ga; 5694 5695 /* find or create the gateway credentials group */ 5696 ga.ga_af = AF_INET; 5697 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5698 5699 /* we hold reference to it upon success */ 5700 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5701 if (gcgrp == NULL) { 5702 if (ipif != NULL) 5703 ipif_refrele(ipif); 5704 ire_refrele(gw_ire); 5705 return (ENOMEM); 5706 } 5707 5708 /* 5709 * Create and add the security attribute to the group; a 5710 * reference to the group is made upon allocating a new 5711 * entry successfully. If it finds an already-existing 5712 * entry for the security attribute in the group, it simply 5713 * returns it and no new reference is made to the group. 5714 */ 5715 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5716 if (gc == NULL) { 5717 if (ipif != NULL) 5718 ipif_refrele(ipif); 5719 /* release reference held by gcgrp_lookup */ 5720 GCGRP_REFRELE(gcgrp); 5721 ire_refrele(gw_ire); 5722 return (ENOMEM); 5723 } 5724 } 5725 5726 /* Create the IRE. */ 5727 ire = ire_create( 5728 (uchar_t *)&dst_addr, /* dest address */ 5729 (uchar_t *)&mask, /* mask */ 5730 (uchar_t *)&gw_addr, /* gateway address */ 5731 (ushort_t)type, /* IRE type */ 5732 ill, 5733 zoneid, 5734 flags, 5735 gc, /* security attribute */ 5736 ipst); 5737 5738 /* 5739 * The ire holds a reference to the 'gc' and the 'gc' holds a 5740 * reference to the 'gcgrp'. We can now release the extra reference 5741 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5742 */ 5743 if (gcgrp_xtraref) 5744 GCGRP_REFRELE(gcgrp); 5745 if (ire == NULL) { 5746 if (gc != NULL) 5747 GC_REFRELE(gc); 5748 if (ipif != NULL) 5749 ipif_refrele(ipif); 5750 ire_refrele(gw_ire); 5751 return (ENOMEM); 5752 } 5753 5754 /* Before we add, check if an extra CGTP broadcast is needed */ 5755 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5756 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5757 5758 /* src address assigned by the caller? */ 5759 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5760 ire->ire_setsrc_addr = src_addr; 5761 5762 /* 5763 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5764 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5765 */ 5766 5767 /* Add the new IRE. */ 5768 nire = ire_add(ire); 5769 if (nire == NULL) { 5770 /* 5771 * In the result of failure, ire_add() will have 5772 * already deleted the ire in question, so there 5773 * is no need to do that here. 5774 */ 5775 if (ipif != NULL) 5776 ipif_refrele(ipif); 5777 ire_refrele(gw_ire); 5778 return (ENOMEM); 5779 } 5780 /* 5781 * Check if it was a duplicate entry. This handles 5782 * the case of two racing route adds for the same route 5783 */ 5784 if (nire != ire) { 5785 ire_delete(nire); 5786 ire_refrele(nire); 5787 if (ipif != NULL) 5788 ipif_refrele(ipif); 5789 ire_refrele(gw_ire); 5790 return (EEXIST); 5791 } 5792 ire = nire; 5793 5794 if (flags & RTF_MULTIRT) { 5795 /* 5796 * Invoke the CGTP (multirouting) filtering module 5797 * to add the dst address in the filtering database. 5798 * Replicated inbound packets coming from that address 5799 * will be filtered to discard the duplicates. 5800 * It is not necessary to call the CGTP filter hook 5801 * when the dst address is a broadcast or multicast, 5802 * because an IP source address cannot be a broadcast 5803 * or a multicast. 5804 */ 5805 if (cgtp_broadcast) { 5806 ip_cgtp_bcast_add(ire, ipst); 5807 goto save_ire; 5808 } 5809 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5810 !CLASSD(ire->ire_addr)) { 5811 int res; 5812 ipif_t *src_ipif; 5813 5814 /* Find the source address corresponding to gw_ire */ 5815 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5816 NULL, zoneid, ipst); 5817 if (src_ipif != NULL) { 5818 res = ipst->ips_ip_cgtp_filter_ops-> 5819 cfo_add_dest_v4( 5820 ipst->ips_netstack->netstack_stackid, 5821 ire->ire_addr, 5822 ire->ire_gateway_addr, 5823 ire->ire_setsrc_addr, 5824 src_ipif->ipif_lcl_addr); 5825 ipif_refrele(src_ipif); 5826 } else { 5827 res = EADDRNOTAVAIL; 5828 } 5829 if (res != 0) { 5830 if (ipif != NULL) 5831 ipif_refrele(ipif); 5832 ire_refrele(gw_ire); 5833 ire_delete(ire); 5834 ire_refrele(ire); /* Held in ire_add */ 5835 return (res); 5836 } 5837 } 5838 } 5839 5840 save_ire: 5841 if (gw_ire != NULL) { 5842 ire_refrele(gw_ire); 5843 gw_ire = NULL; 5844 } 5845 if (ill != NULL) { 5846 /* 5847 * Save enough information so that we can recreate the IRE if 5848 * the interface goes down and then up. The metrics associated 5849 * with the route will be saved as well when rts_setmetrics() is 5850 * called after the IRE has been created. In the case where 5851 * memory cannot be allocated, none of this information will be 5852 * saved. 5853 */ 5854 ill_save_ire(ill, ire); 5855 } 5856 if (ioctl_msg) 5857 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5858 if (ire_arg != NULL) { 5859 /* 5860 * Store the ire that was successfully added into where ire_arg 5861 * points to so that callers don't have to look it up 5862 * themselves (but they are responsible for ire_refrele()ing 5863 * the ire when they are finished with it). 5864 */ 5865 *ire_arg = ire; 5866 } else { 5867 ire_refrele(ire); /* Held in ire_add */ 5868 } 5869 if (ipif != NULL) 5870 ipif_refrele(ipif); 5871 return (0); 5872 } 5873 5874 /* 5875 * ip_rt_delete is called to delete an IPv4 route. 5876 * ill is passed in to associate it with the correct interface. 5877 */ 5878 /* ARGSUSED4 */ 5879 int 5880 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5881 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5882 ip_stack_t *ipst, zoneid_t zoneid) 5883 { 5884 ire_t *ire = NULL; 5885 ipif_t *ipif; 5886 uint_t type; 5887 uint_t match_flags = MATCH_IRE_TYPE; 5888 int err = 0; 5889 5890 ip1dbg(("ip_rt_delete:")); 5891 /* 5892 * If this is the case of RTF_HOST being set, then we set the netmask 5893 * to all ones. Otherwise, we use the netmask if one was supplied. 5894 */ 5895 if (flags & RTF_HOST) { 5896 mask = IP_HOST_MASK; 5897 match_flags |= MATCH_IRE_MASK; 5898 } else if (rtm_addrs & RTA_NETMASK) { 5899 match_flags |= MATCH_IRE_MASK; 5900 } 5901 5902 /* 5903 * Note that RTF_GATEWAY is never set on a delete, therefore 5904 * we check if the gateway address is one of our interfaces first, 5905 * and fall back on RTF_GATEWAY routes. 5906 * 5907 * This makes it possible to delete an original 5908 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5909 * However, we have RTF_KERNEL set on the ones created by ipif_up 5910 * and those can not be deleted here. 5911 * 5912 * We use MATCH_IRE_ILL if we know the interface. If the caller 5913 * specified an interface (from the RTA_IFP sockaddr) we use it, 5914 * otherwise we use the ill derived from the gateway address. 5915 * We can always match the gateway address since we record it 5916 * in ire_gateway_addr. 5917 * 5918 * For more detail on specifying routes by gateway address and by 5919 * interface index, see the comments in ip_rt_add(). 5920 */ 5921 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5922 if (ipif != NULL) { 5923 ill_t *ill_match; 5924 5925 if (ill != NULL) 5926 ill_match = ill; 5927 else 5928 ill_match = ipif->ipif_ill; 5929 5930 match_flags |= MATCH_IRE_ILL; 5931 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 5932 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5933 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 5934 NULL); 5935 } 5936 if (ire == NULL) { 5937 match_flags |= MATCH_IRE_GW; 5938 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5939 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 5940 match_flags, 0, ipst, NULL); 5941 } 5942 /* Avoid deleting routes created by kernel from an ipif */ 5943 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 5944 ire_refrele(ire); 5945 ire = NULL; 5946 } 5947 5948 /* Restore in case we didn't find a match */ 5949 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 5950 } 5951 5952 if (ire == NULL) { 5953 /* 5954 * At this point, the gateway address is not one of our own 5955 * addresses or a matching interface route was not found. We 5956 * set the IRE type to lookup based on whether 5957 * this is a host route, a default route or just a prefix. 5958 * 5959 * If an ill was passed in, then the lookup is based on an 5960 * interface index so MATCH_IRE_ILL is added to match_flags. 5961 */ 5962 match_flags |= MATCH_IRE_GW; 5963 if (ill != NULL) 5964 match_flags |= MATCH_IRE_ILL; 5965 if (mask == IP_HOST_MASK) 5966 type = IRE_HOST; 5967 else if (mask == 0) 5968 type = IRE_DEFAULT; 5969 else 5970 type = IRE_PREFIX; 5971 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5972 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5973 } 5974 5975 if (ipif != NULL) { 5976 ipif_refrele(ipif); 5977 ipif = NULL; 5978 } 5979 5980 if (ire == NULL) 5981 return (ESRCH); 5982 5983 if (ire->ire_flags & RTF_MULTIRT) { 5984 /* 5985 * Invoke the CGTP (multirouting) filtering module 5986 * to remove the dst address from the filtering database. 5987 * Packets coming from that address will no longer be 5988 * filtered to remove duplicates. 5989 */ 5990 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 5991 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 5992 ipst->ips_netstack->netstack_stackid, 5993 ire->ire_addr, ire->ire_gateway_addr); 5994 } 5995 ip_cgtp_bcast_delete(ire, ipst); 5996 } 5997 5998 ill = ire->ire_ill; 5999 if (ill != NULL) 6000 ill_remove_saved_ire(ill, ire); 6001 if (ioctl_msg) 6002 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6003 ire_delete(ire); 6004 ire_refrele(ire); 6005 return (err); 6006 } 6007 6008 /* 6009 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6010 */ 6011 /* ARGSUSED */ 6012 int 6013 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6014 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6015 { 6016 ipaddr_t dst_addr; 6017 ipaddr_t gw_addr; 6018 ipaddr_t mask; 6019 int error = 0; 6020 mblk_t *mp1; 6021 struct rtentry *rt; 6022 ipif_t *ipif = NULL; 6023 ip_stack_t *ipst; 6024 6025 ASSERT(q->q_next == NULL); 6026 ipst = CONNQ_TO_IPST(q); 6027 6028 ip1dbg(("ip_siocaddrt:")); 6029 /* Existence of mp1 verified in ip_wput_nondata */ 6030 mp1 = mp->b_cont->b_cont; 6031 rt = (struct rtentry *)mp1->b_rptr; 6032 6033 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6034 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6035 6036 /* 6037 * If the RTF_HOST flag is on, this is a request to assign a gateway 6038 * to a particular host address. In this case, we set the netmask to 6039 * all ones for the particular destination address. Otherwise, 6040 * determine the netmask to be used based on dst_addr and the interfaces 6041 * in use. 6042 */ 6043 if (rt->rt_flags & RTF_HOST) { 6044 mask = IP_HOST_MASK; 6045 } else { 6046 /* 6047 * Note that ip_subnet_mask returns a zero mask in the case of 6048 * default (an all-zeroes address). 6049 */ 6050 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6051 } 6052 6053 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6054 B_TRUE, NULL, ipst, ALL_ZONES); 6055 if (ipif != NULL) 6056 ipif_refrele(ipif); 6057 return (error); 6058 } 6059 6060 /* 6061 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6062 */ 6063 /* ARGSUSED */ 6064 int 6065 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6066 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6067 { 6068 ipaddr_t dst_addr; 6069 ipaddr_t gw_addr; 6070 ipaddr_t mask; 6071 int error; 6072 mblk_t *mp1; 6073 struct rtentry *rt; 6074 ipif_t *ipif = NULL; 6075 ip_stack_t *ipst; 6076 6077 ASSERT(q->q_next == NULL); 6078 ipst = CONNQ_TO_IPST(q); 6079 6080 ip1dbg(("ip_siocdelrt:")); 6081 /* Existence of mp1 verified in ip_wput_nondata */ 6082 mp1 = mp->b_cont->b_cont; 6083 rt = (struct rtentry *)mp1->b_rptr; 6084 6085 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6086 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6087 6088 /* 6089 * If the RTF_HOST flag is on, this is a request to delete a gateway 6090 * to a particular host address. In this case, we set the netmask to 6091 * all ones for the particular destination address. Otherwise, 6092 * determine the netmask to be used based on dst_addr and the interfaces 6093 * in use. 6094 */ 6095 if (rt->rt_flags & RTF_HOST) { 6096 mask = IP_HOST_MASK; 6097 } else { 6098 /* 6099 * Note that ip_subnet_mask returns a zero mask in the case of 6100 * default (an all-zeroes address). 6101 */ 6102 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6103 } 6104 6105 error = ip_rt_delete(dst_addr, mask, gw_addr, 6106 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6107 ipst, ALL_ZONES); 6108 if (ipif != NULL) 6109 ipif_refrele(ipif); 6110 return (error); 6111 } 6112 6113 /* 6114 * Enqueue the mp onto the ipsq, chained by b_next. 6115 * b_prev stores the function to be executed later, and b_queue the queue 6116 * where this mp originated. 6117 */ 6118 void 6119 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6120 ill_t *pending_ill) 6121 { 6122 conn_t *connp; 6123 ipxop_t *ipx = ipsq->ipsq_xop; 6124 6125 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6126 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6127 ASSERT(func != NULL); 6128 6129 mp->b_queue = q; 6130 mp->b_prev = (void *)func; 6131 mp->b_next = NULL; 6132 6133 switch (type) { 6134 case CUR_OP: 6135 if (ipx->ipx_mptail != NULL) { 6136 ASSERT(ipx->ipx_mphead != NULL); 6137 ipx->ipx_mptail->b_next = mp; 6138 } else { 6139 ASSERT(ipx->ipx_mphead == NULL); 6140 ipx->ipx_mphead = mp; 6141 } 6142 ipx->ipx_mptail = mp; 6143 break; 6144 6145 case NEW_OP: 6146 if (ipsq->ipsq_xopq_mptail != NULL) { 6147 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6148 ipsq->ipsq_xopq_mptail->b_next = mp; 6149 } else { 6150 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6151 ipsq->ipsq_xopq_mphead = mp; 6152 } 6153 ipsq->ipsq_xopq_mptail = mp; 6154 ipx->ipx_ipsq_queued = B_TRUE; 6155 break; 6156 6157 case SWITCH_OP: 6158 ASSERT(ipsq->ipsq_swxop != NULL); 6159 /* only one switch operation is currently allowed */ 6160 ASSERT(ipsq->ipsq_switch_mp == NULL); 6161 ipsq->ipsq_switch_mp = mp; 6162 ipx->ipx_ipsq_queued = B_TRUE; 6163 break; 6164 default: 6165 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6166 } 6167 6168 if (CONN_Q(q) && pending_ill != NULL) { 6169 connp = Q_TO_CONN(q); 6170 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6171 connp->conn_oper_pending_ill = pending_ill; 6172 } 6173 } 6174 6175 /* 6176 * Dequeue the next message that requested exclusive access to this IPSQ's 6177 * xop. Specifically: 6178 * 6179 * 1. If we're still processing the current operation on `ipsq', then 6180 * dequeue the next message for the operation (from ipx_mphead), or 6181 * return NULL if there are no queued messages for the operation. 6182 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6183 * 6184 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6185 * not set) see if the ipsq has requested an xop switch. If so, switch 6186 * `ipsq' to a different xop. Xop switches only happen when joining or 6187 * leaving IPMP groups and require a careful dance -- see the comments 6188 * in-line below for details. If we're leaving a group xop or if we're 6189 * joining a group xop and become writer on it, then we proceed to (3). 6190 * Otherwise, we return NULL and exit the xop. 6191 * 6192 * 3. For each IPSQ in the xop, return any switch operation stored on 6193 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6194 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6195 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6196 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6197 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6198 * each phyint in the group, including the IPMP meta-interface phyint. 6199 */ 6200 static mblk_t * 6201 ipsq_dq(ipsq_t *ipsq) 6202 { 6203 ill_t *illv4, *illv6; 6204 mblk_t *mp; 6205 ipsq_t *xopipsq; 6206 ipsq_t *leftipsq = NULL; 6207 ipxop_t *ipx; 6208 phyint_t *phyi = ipsq->ipsq_phyint; 6209 ip_stack_t *ipst = ipsq->ipsq_ipst; 6210 boolean_t emptied = B_FALSE; 6211 6212 /* 6213 * Grab all the locks we need in the defined order (ill_g_lock -> 6214 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6215 */ 6216 rw_enter(&ipst->ips_ill_g_lock, 6217 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6218 mutex_enter(&ipsq->ipsq_lock); 6219 ipx = ipsq->ipsq_xop; 6220 mutex_enter(&ipx->ipx_lock); 6221 6222 /* 6223 * Dequeue the next message associated with the current exclusive 6224 * operation, if any. 6225 */ 6226 if ((mp = ipx->ipx_mphead) != NULL) { 6227 ipx->ipx_mphead = mp->b_next; 6228 if (ipx->ipx_mphead == NULL) 6229 ipx->ipx_mptail = NULL; 6230 mp->b_next = (void *)ipsq; 6231 goto out; 6232 } 6233 6234 if (ipx->ipx_current_ipif != NULL) 6235 goto empty; 6236 6237 if (ipsq->ipsq_swxop != NULL) { 6238 /* 6239 * The exclusive operation that is now being completed has 6240 * requested a switch to a different xop. This happens 6241 * when an interface joins or leaves an IPMP group. Joins 6242 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6243 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6244 * (phyint_free()), or interface plumb for an ill type 6245 * not in the IPMP group (ip_rput_dlpi_writer()). 6246 * 6247 * Xop switches are not allowed on the IPMP meta-interface. 6248 */ 6249 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6250 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6251 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6252 6253 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6254 /* 6255 * We're switching back to our own xop, so we have two 6256 * xop's to drain/exit: our own, and the group xop 6257 * that we are leaving. 6258 * 6259 * First, pull ourselves out of the group ipsq list. 6260 * This is safe since we're writer on ill_g_lock. 6261 */ 6262 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6263 6264 xopipsq = ipx->ipx_ipsq; 6265 while (xopipsq->ipsq_next != ipsq) 6266 xopipsq = xopipsq->ipsq_next; 6267 6268 xopipsq->ipsq_next = ipsq->ipsq_next; 6269 ipsq->ipsq_next = ipsq; 6270 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6271 ipsq->ipsq_swxop = NULL; 6272 6273 /* 6274 * Second, prepare to exit the group xop. The actual 6275 * ipsq_exit() is done at the end of this function 6276 * since we cannot hold any locks across ipsq_exit(). 6277 * Note that although we drop the group's ipx_lock, no 6278 * threads can proceed since we're still ipx_writer. 6279 */ 6280 leftipsq = xopipsq; 6281 mutex_exit(&ipx->ipx_lock); 6282 6283 /* 6284 * Third, set ipx to point to our own xop (which was 6285 * inactive and therefore can be entered). 6286 */ 6287 ipx = ipsq->ipsq_xop; 6288 mutex_enter(&ipx->ipx_lock); 6289 ASSERT(ipx->ipx_writer == NULL); 6290 ASSERT(ipx->ipx_current_ipif == NULL); 6291 } else { 6292 /* 6293 * We're switching from our own xop to a group xop. 6294 * The requestor of the switch must ensure that the 6295 * group xop cannot go away (e.g. by ensuring the 6296 * phyint associated with the xop cannot go away). 6297 * 6298 * If we can become writer on our new xop, then we'll 6299 * do the drain. Otherwise, the current writer of our 6300 * new xop will do the drain when it exits. 6301 * 6302 * First, splice ourselves into the group IPSQ list. 6303 * This is safe since we're writer on ill_g_lock. 6304 */ 6305 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6306 6307 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6308 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6309 xopipsq = xopipsq->ipsq_next; 6310 6311 xopipsq->ipsq_next = ipsq; 6312 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6313 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6314 ipsq->ipsq_swxop = NULL; 6315 6316 /* 6317 * Second, exit our own xop, since it's now unused. 6318 * This is safe since we've got the only reference. 6319 */ 6320 ASSERT(ipx->ipx_writer == curthread); 6321 ipx->ipx_writer = NULL; 6322 VERIFY(--ipx->ipx_reentry_cnt == 0); 6323 ipx->ipx_ipsq_queued = B_FALSE; 6324 mutex_exit(&ipx->ipx_lock); 6325 6326 /* 6327 * Third, set ipx to point to our new xop, and check 6328 * if we can become writer on it. If we cannot, then 6329 * the current writer will drain the IPSQ group when 6330 * it exits. Our ipsq_xop is guaranteed to be stable 6331 * because we're still holding ipsq_lock. 6332 */ 6333 ipx = ipsq->ipsq_xop; 6334 mutex_enter(&ipx->ipx_lock); 6335 if (ipx->ipx_writer != NULL || 6336 ipx->ipx_current_ipif != NULL) { 6337 goto out; 6338 } 6339 } 6340 6341 /* 6342 * Fourth, become writer on our new ipx before we continue 6343 * with the drain. Note that we never dropped ipsq_lock 6344 * above, so no other thread could've raced with us to 6345 * become writer first. Also, we're holding ipx_lock, so 6346 * no other thread can examine the ipx right now. 6347 */ 6348 ASSERT(ipx->ipx_current_ipif == NULL); 6349 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6350 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6351 ipx->ipx_writer = curthread; 6352 ipx->ipx_forced = B_FALSE; 6353 #ifdef DEBUG 6354 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6355 #endif 6356 } 6357 6358 xopipsq = ipsq; 6359 do { 6360 /* 6361 * So that other operations operate on a consistent and 6362 * complete phyint, a switch message on an IPSQ must be 6363 * handled prior to any other operations on that IPSQ. 6364 */ 6365 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6366 xopipsq->ipsq_switch_mp = NULL; 6367 ASSERT(mp->b_next == NULL); 6368 mp->b_next = (void *)xopipsq; 6369 goto out; 6370 } 6371 6372 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6373 xopipsq->ipsq_xopq_mphead = mp->b_next; 6374 if (xopipsq->ipsq_xopq_mphead == NULL) 6375 xopipsq->ipsq_xopq_mptail = NULL; 6376 mp->b_next = (void *)xopipsq; 6377 goto out; 6378 } 6379 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6380 empty: 6381 /* 6382 * There are no messages. Further, we are holding ipx_lock, hence no 6383 * new messages can end up on any IPSQ in the xop. 6384 */ 6385 ipx->ipx_writer = NULL; 6386 ipx->ipx_forced = B_FALSE; 6387 VERIFY(--ipx->ipx_reentry_cnt == 0); 6388 ipx->ipx_ipsq_queued = B_FALSE; 6389 emptied = B_TRUE; 6390 #ifdef DEBUG 6391 ipx->ipx_depth = 0; 6392 #endif 6393 out: 6394 mutex_exit(&ipx->ipx_lock); 6395 mutex_exit(&ipsq->ipsq_lock); 6396 6397 /* 6398 * If we completely emptied the xop, then wake up any threads waiting 6399 * to enter any of the IPSQ's associated with it. 6400 */ 6401 if (emptied) { 6402 xopipsq = ipsq; 6403 do { 6404 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6405 continue; 6406 6407 illv4 = phyi->phyint_illv4; 6408 illv6 = phyi->phyint_illv6; 6409 6410 GRAB_ILL_LOCKS(illv4, illv6); 6411 if (illv4 != NULL) 6412 cv_broadcast(&illv4->ill_cv); 6413 if (illv6 != NULL) 6414 cv_broadcast(&illv6->ill_cv); 6415 RELEASE_ILL_LOCKS(illv4, illv6); 6416 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6417 } 6418 rw_exit(&ipst->ips_ill_g_lock); 6419 6420 /* 6421 * Now that all locks are dropped, exit the IPSQ we left. 6422 */ 6423 if (leftipsq != NULL) 6424 ipsq_exit(leftipsq); 6425 6426 return (mp); 6427 } 6428 6429 /* 6430 * Return completion status of previously initiated DLPI operations on 6431 * ills in the purview of an ipsq. 6432 */ 6433 static boolean_t 6434 ipsq_dlpi_done(ipsq_t *ipsq) 6435 { 6436 ipsq_t *ipsq_start; 6437 phyint_t *phyi; 6438 ill_t *ill; 6439 6440 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6441 ipsq_start = ipsq; 6442 6443 do { 6444 /* 6445 * The only current users of this function are ipsq_try_enter 6446 * and ipsq_enter which have made sure that ipsq_writer is 6447 * NULL before we reach here. ill_dlpi_pending is modified 6448 * only by an ipsq writer 6449 */ 6450 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6451 phyi = ipsq->ipsq_phyint; 6452 /* 6453 * phyi could be NULL if a phyint that is part of an 6454 * IPMP group is being unplumbed. A more detailed 6455 * comment is in ipmp_grp_update_kstats() 6456 */ 6457 if (phyi != NULL) { 6458 ill = phyi->phyint_illv4; 6459 if (ill != NULL && 6460 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6461 ill->ill_arl_dlpi_pending)) 6462 return (B_FALSE); 6463 6464 ill = phyi->phyint_illv6; 6465 if (ill != NULL && 6466 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6467 return (B_FALSE); 6468 } 6469 6470 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6471 6472 return (B_TRUE); 6473 } 6474 6475 /* 6476 * Enter the ipsq corresponding to ill, by waiting synchronously till 6477 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6478 * will have to drain completely before ipsq_enter returns success. 6479 * ipx_current_ipif will be set if some exclusive op is in progress, 6480 * and the ipsq_exit logic will start the next enqueued op after 6481 * completion of the current op. If 'force' is used, we don't wait 6482 * for the enqueued ops. This is needed when a conn_close wants to 6483 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6484 * of an ill can also use this option. But we dont' use it currently. 6485 */ 6486 #define ENTER_SQ_WAIT_TICKS 100 6487 boolean_t 6488 ipsq_enter(ill_t *ill, boolean_t force, int type) 6489 { 6490 ipsq_t *ipsq; 6491 ipxop_t *ipx; 6492 boolean_t waited_enough = B_FALSE; 6493 ip_stack_t *ipst = ill->ill_ipst; 6494 6495 /* 6496 * Note that the relationship between ill and ipsq is fixed as long as 6497 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6498 * relationship between the IPSQ and xop cannot change. However, 6499 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6500 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6501 * waking up all ills in the xop when it becomes available. 6502 */ 6503 for (;;) { 6504 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6505 mutex_enter(&ill->ill_lock); 6506 if (ill->ill_state_flags & ILL_CONDEMNED) { 6507 mutex_exit(&ill->ill_lock); 6508 rw_exit(&ipst->ips_ill_g_lock); 6509 return (B_FALSE); 6510 } 6511 6512 ipsq = ill->ill_phyint->phyint_ipsq; 6513 mutex_enter(&ipsq->ipsq_lock); 6514 ipx = ipsq->ipsq_xop; 6515 mutex_enter(&ipx->ipx_lock); 6516 6517 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6518 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6519 waited_enough)) 6520 break; 6521 6522 rw_exit(&ipst->ips_ill_g_lock); 6523 6524 if (!force || ipx->ipx_writer != NULL) { 6525 mutex_exit(&ipx->ipx_lock); 6526 mutex_exit(&ipsq->ipsq_lock); 6527 cv_wait(&ill->ill_cv, &ill->ill_lock); 6528 } else { 6529 mutex_exit(&ipx->ipx_lock); 6530 mutex_exit(&ipsq->ipsq_lock); 6531 (void) cv_timedwait(&ill->ill_cv, 6532 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 6533 waited_enough = B_TRUE; 6534 } 6535 mutex_exit(&ill->ill_lock); 6536 } 6537 6538 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6539 ASSERT(ipx->ipx_reentry_cnt == 0); 6540 ipx->ipx_writer = curthread; 6541 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6542 ipx->ipx_reentry_cnt++; 6543 #ifdef DEBUG 6544 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6545 #endif 6546 mutex_exit(&ipx->ipx_lock); 6547 mutex_exit(&ipsq->ipsq_lock); 6548 mutex_exit(&ill->ill_lock); 6549 rw_exit(&ipst->ips_ill_g_lock); 6550 6551 return (B_TRUE); 6552 } 6553 6554 /* 6555 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6556 * across the call to the core interface ipsq_try_enter() and hence calls this 6557 * function directly. This is explained more fully in ipif_set_values(). 6558 * In order to support the above constraint, ipsq_try_enter is implemented as 6559 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6560 */ 6561 static ipsq_t * 6562 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6563 int type, boolean_t reentry_ok) 6564 { 6565 ipsq_t *ipsq; 6566 ipxop_t *ipx; 6567 ip_stack_t *ipst = ill->ill_ipst; 6568 6569 /* 6570 * lock ordering: 6571 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6572 * 6573 * ipx of an ipsq can't change when ipsq_lock is held. 6574 */ 6575 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6576 GRAB_CONN_LOCK(q); 6577 mutex_enter(&ill->ill_lock); 6578 ipsq = ill->ill_phyint->phyint_ipsq; 6579 mutex_enter(&ipsq->ipsq_lock); 6580 ipx = ipsq->ipsq_xop; 6581 mutex_enter(&ipx->ipx_lock); 6582 6583 /* 6584 * 1. Enter the ipsq if we are already writer and reentry is ok. 6585 * (Note: If the caller does not specify reentry_ok then neither 6586 * 'func' nor any of its callees must ever attempt to enter the ipsq 6587 * again. Otherwise it can lead to an infinite loop 6588 * 2. Enter the ipsq if there is no current writer and this attempted 6589 * entry is part of the current operation 6590 * 3. Enter the ipsq if there is no current writer and this is a new 6591 * operation and the operation queue is empty and there is no 6592 * operation currently in progress and if all previously initiated 6593 * DLPI operations have completed. 6594 */ 6595 if ((ipx->ipx_writer == curthread && reentry_ok) || 6596 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6597 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6598 ipsq_dlpi_done(ipsq))))) { 6599 /* Success. */ 6600 ipx->ipx_reentry_cnt++; 6601 ipx->ipx_writer = curthread; 6602 ipx->ipx_forced = B_FALSE; 6603 mutex_exit(&ipx->ipx_lock); 6604 mutex_exit(&ipsq->ipsq_lock); 6605 mutex_exit(&ill->ill_lock); 6606 RELEASE_CONN_LOCK(q); 6607 #ifdef DEBUG 6608 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6609 #endif 6610 return (ipsq); 6611 } 6612 6613 if (func != NULL) 6614 ipsq_enq(ipsq, q, mp, func, type, ill); 6615 6616 mutex_exit(&ipx->ipx_lock); 6617 mutex_exit(&ipsq->ipsq_lock); 6618 mutex_exit(&ill->ill_lock); 6619 RELEASE_CONN_LOCK(q); 6620 return (NULL); 6621 } 6622 6623 /* 6624 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6625 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6626 * There is one ipsq per phyint. The ipsq 6627 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6628 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6629 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6630 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6631 * up the interface) and are enqueued in ipx_mphead. 6632 * 6633 * If a thread does not want to reenter the ipsq when it is already writer, 6634 * it must make sure that the specified reentry point to be called later 6635 * when the ipsq is empty, nor any code path starting from the specified reentry 6636 * point must never ever try to enter the ipsq again. Otherwise it can lead 6637 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6638 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6639 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6640 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6641 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6642 * ioctl if the current ioctl has completed. If the current ioctl is still 6643 * in progress it simply returns. The current ioctl could be waiting for 6644 * a response from another module (the driver or could be waiting for 6645 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6646 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6647 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6648 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6649 * all associated DLPI operations have completed. 6650 */ 6651 6652 /* 6653 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6654 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6655 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6656 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6657 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6658 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6659 */ 6660 ipsq_t * 6661 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6662 ipsq_func_t func, int type, boolean_t reentry_ok) 6663 { 6664 ip_stack_t *ipst; 6665 ipsq_t *ipsq; 6666 6667 /* Only 1 of ipif or ill can be specified */ 6668 ASSERT((ipif != NULL) ^ (ill != NULL)); 6669 6670 if (ipif != NULL) 6671 ill = ipif->ipif_ill; 6672 ipst = ill->ill_ipst; 6673 6674 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6675 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6676 rw_exit(&ipst->ips_ill_g_lock); 6677 6678 return (ipsq); 6679 } 6680 6681 /* 6682 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6683 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6684 * cannot be entered, the mp is queued for completion. 6685 */ 6686 void 6687 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6688 boolean_t reentry_ok) 6689 { 6690 ipsq_t *ipsq; 6691 6692 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6693 6694 /* 6695 * Drop the caller's refhold on the ill. This is safe since we either 6696 * entered the IPSQ (and thus are exclusive), or failed to enter the 6697 * IPSQ, in which case we return without accessing ill anymore. This 6698 * is needed because func needs to see the correct refcount. 6699 * e.g. removeif can work only then. 6700 */ 6701 ill_refrele(ill); 6702 if (ipsq != NULL) { 6703 (*func)(ipsq, q, mp, NULL); 6704 ipsq_exit(ipsq); 6705 } 6706 } 6707 6708 /* 6709 * Exit the specified IPSQ. If this is the final exit on it then drain it 6710 * prior to exiting. Caller must be writer on the specified IPSQ. 6711 */ 6712 void 6713 ipsq_exit(ipsq_t *ipsq) 6714 { 6715 mblk_t *mp; 6716 ipsq_t *mp_ipsq; 6717 queue_t *q; 6718 phyint_t *phyi; 6719 ipsq_func_t func; 6720 6721 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6722 6723 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6724 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6725 ipsq->ipsq_xop->ipx_reentry_cnt--; 6726 return; 6727 } 6728 6729 for (;;) { 6730 phyi = ipsq->ipsq_phyint; 6731 mp = ipsq_dq(ipsq); 6732 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6733 6734 /* 6735 * If we've changed to a new IPSQ, and the phyint associated 6736 * with the old one has gone away, free the old IPSQ. Note 6737 * that this cannot happen while the IPSQ is in a group. 6738 */ 6739 if (mp_ipsq != ipsq && phyi == NULL) { 6740 ASSERT(ipsq->ipsq_next == ipsq); 6741 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6742 ipsq_delete(ipsq); 6743 } 6744 6745 if (mp == NULL) 6746 break; 6747 6748 q = mp->b_queue; 6749 func = (ipsq_func_t)mp->b_prev; 6750 ipsq = mp_ipsq; 6751 mp->b_next = mp->b_prev = NULL; 6752 mp->b_queue = NULL; 6753 6754 /* 6755 * If 'q' is an conn queue, it is valid, since we did a 6756 * a refhold on the conn at the start of the ioctl. 6757 * If 'q' is an ill queue, it is valid, since close of an 6758 * ill will clean up its IPSQ. 6759 */ 6760 (*func)(ipsq, q, mp, NULL); 6761 } 6762 } 6763 6764 /* 6765 * Used to start any igmp or mld timers that could not be started 6766 * while holding ill_mcast_lock. The timers can't be started while holding 6767 * the lock, since mld/igmp_start_timers may need to call untimeout() 6768 * which can't be done while holding the lock which the timeout handler 6769 * acquires. Otherwise 6770 * there could be a deadlock since the timeout handlers 6771 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6772 * ill_mcast_lock. 6773 */ 6774 void 6775 ill_mcast_timer_start(ip_stack_t *ipst) 6776 { 6777 int next; 6778 6779 mutex_enter(&ipst->ips_igmp_timer_lock); 6780 next = ipst->ips_igmp_deferred_next; 6781 ipst->ips_igmp_deferred_next = INFINITY; 6782 mutex_exit(&ipst->ips_igmp_timer_lock); 6783 6784 if (next != INFINITY) 6785 igmp_start_timers(next, ipst); 6786 6787 mutex_enter(&ipst->ips_mld_timer_lock); 6788 next = ipst->ips_mld_deferred_next; 6789 ipst->ips_mld_deferred_next = INFINITY; 6790 mutex_exit(&ipst->ips_mld_timer_lock); 6791 6792 if (next != INFINITY) 6793 mld_start_timers(next, ipst); 6794 } 6795 6796 /* 6797 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6798 * and `ioccmd'. 6799 */ 6800 void 6801 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6802 { 6803 ill_t *ill = ipif->ipif_ill; 6804 ipxop_t *ipx = ipsq->ipsq_xop; 6805 6806 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6807 ASSERT(ipx->ipx_current_ipif == NULL); 6808 ASSERT(ipx->ipx_current_ioctl == 0); 6809 6810 ipx->ipx_current_done = B_FALSE; 6811 ipx->ipx_current_ioctl = ioccmd; 6812 mutex_enter(&ipx->ipx_lock); 6813 ipx->ipx_current_ipif = ipif; 6814 mutex_exit(&ipx->ipx_lock); 6815 6816 /* 6817 * Set IPIF_CHANGING on one or more ipifs associated with the 6818 * current exclusive operation. IPIF_CHANGING prevents any new 6819 * references to the ipif (so that the references will eventually 6820 * drop to zero) and also prevents any "get" operations (e.g., 6821 * SIOCGLIFFLAGS) from being able to access the ipif until the 6822 * operation has completed and the ipif is again in a stable state. 6823 * 6824 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6825 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6826 * on the ill are marked with IPIF_CHANGING since it's unclear which 6827 * ipifs will be affected. 6828 * 6829 * Note that SIOCLIFREMOVEIF is a special case as it sets 6830 * IPIF_CONDEMNED internally after identifying the right ipif to 6831 * operate on. 6832 */ 6833 switch (ioccmd) { 6834 case SIOCLIFREMOVEIF: 6835 break; 6836 case 0: 6837 mutex_enter(&ill->ill_lock); 6838 ipif = ipif->ipif_ill->ill_ipif; 6839 for (; ipif != NULL; ipif = ipif->ipif_next) 6840 ipif->ipif_state_flags |= IPIF_CHANGING; 6841 mutex_exit(&ill->ill_lock); 6842 break; 6843 default: 6844 mutex_enter(&ill->ill_lock); 6845 ipif->ipif_state_flags |= IPIF_CHANGING; 6846 mutex_exit(&ill->ill_lock); 6847 } 6848 } 6849 6850 /* 6851 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6852 * the next exclusive operation to begin once we ipsq_exit(). However, if 6853 * pending DLPI operations remain, then we will wait for the queue to drain 6854 * before allowing the next exclusive operation to begin. This ensures that 6855 * DLPI operations from one exclusive operation are never improperly processed 6856 * as part of a subsequent exclusive operation. 6857 */ 6858 void 6859 ipsq_current_finish(ipsq_t *ipsq) 6860 { 6861 ipxop_t *ipx = ipsq->ipsq_xop; 6862 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6863 ipif_t *ipif = ipx->ipx_current_ipif; 6864 6865 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6866 6867 /* 6868 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6869 * (but in that case, IPIF_CHANGING will already be clear and no 6870 * pending DLPI messages can remain). 6871 */ 6872 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6873 ill_t *ill = ipif->ipif_ill; 6874 6875 mutex_enter(&ill->ill_lock); 6876 dlpi_pending = ill->ill_dlpi_pending; 6877 if (ipx->ipx_current_ioctl == 0) { 6878 ipif = ill->ill_ipif; 6879 for (; ipif != NULL; ipif = ipif->ipif_next) 6880 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6881 } else { 6882 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6883 } 6884 mutex_exit(&ill->ill_lock); 6885 } 6886 6887 ASSERT(!ipx->ipx_current_done); 6888 ipx->ipx_current_done = B_TRUE; 6889 ipx->ipx_current_ioctl = 0; 6890 if (dlpi_pending == DL_PRIM_INVAL) { 6891 mutex_enter(&ipx->ipx_lock); 6892 ipx->ipx_current_ipif = NULL; 6893 mutex_exit(&ipx->ipx_lock); 6894 } 6895 } 6896 6897 /* 6898 * The ill is closing. Flush all messages on the ipsq that originated 6899 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6900 * for this ill since ipsq_enter could not have entered until then. 6901 * New messages can't be queued since the CONDEMNED flag is set. 6902 */ 6903 static void 6904 ipsq_flush(ill_t *ill) 6905 { 6906 queue_t *q; 6907 mblk_t *prev; 6908 mblk_t *mp; 6909 mblk_t *mp_next; 6910 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6911 6912 ASSERT(IAM_WRITER_ILL(ill)); 6913 6914 /* 6915 * Flush any messages sent up by the driver. 6916 */ 6917 mutex_enter(&ipx->ipx_lock); 6918 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6919 mp_next = mp->b_next; 6920 q = mp->b_queue; 6921 if (q == ill->ill_rq || q == ill->ill_wq) { 6922 /* dequeue mp */ 6923 if (prev == NULL) 6924 ipx->ipx_mphead = mp->b_next; 6925 else 6926 prev->b_next = mp->b_next; 6927 if (ipx->ipx_mptail == mp) { 6928 ASSERT(mp_next == NULL); 6929 ipx->ipx_mptail = prev; 6930 } 6931 inet_freemsg(mp); 6932 } else { 6933 prev = mp; 6934 } 6935 } 6936 mutex_exit(&ipx->ipx_lock); 6937 (void) ipsq_pending_mp_cleanup(ill, NULL); 6938 ipsq_xopq_mp_cleanup(ill, NULL); 6939 } 6940 6941 /* 6942 * Parse an ifreq or lifreq struct coming down ioctls and refhold 6943 * and return the associated ipif. 6944 * Return value: 6945 * Non zero: An error has occurred. ci may not be filled out. 6946 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 6947 * a held ipif in ci.ci_ipif. 6948 */ 6949 int 6950 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 6951 cmd_info_t *ci) 6952 { 6953 char *name; 6954 struct ifreq *ifr; 6955 struct lifreq *lifr; 6956 ipif_t *ipif = NULL; 6957 ill_t *ill; 6958 conn_t *connp; 6959 boolean_t isv6; 6960 boolean_t exists; 6961 mblk_t *mp1; 6962 zoneid_t zoneid; 6963 ip_stack_t *ipst; 6964 6965 if (q->q_next != NULL) { 6966 ill = (ill_t *)q->q_ptr; 6967 isv6 = ill->ill_isv6; 6968 connp = NULL; 6969 zoneid = ALL_ZONES; 6970 ipst = ill->ill_ipst; 6971 } else { 6972 ill = NULL; 6973 connp = Q_TO_CONN(q); 6974 isv6 = (connp->conn_family == AF_INET6); 6975 zoneid = connp->conn_zoneid; 6976 if (zoneid == GLOBAL_ZONEID) { 6977 /* global zone can access ipifs in all zones */ 6978 zoneid = ALL_ZONES; 6979 } 6980 ipst = connp->conn_netstack->netstack_ip; 6981 } 6982 6983 /* Has been checked in ip_wput_nondata */ 6984 mp1 = mp->b_cont->b_cont; 6985 6986 if (ipip->ipi_cmd_type == IF_CMD) { 6987 /* This a old style SIOC[GS]IF* command */ 6988 ifr = (struct ifreq *)mp1->b_rptr; 6989 /* 6990 * Null terminate the string to protect against buffer 6991 * overrun. String was generated by user code and may not 6992 * be trusted. 6993 */ 6994 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 6995 name = ifr->ifr_name; 6996 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 6997 ci->ci_sin6 = NULL; 6998 ci->ci_lifr = (struct lifreq *)ifr; 6999 } else { 7000 /* This a new style SIOC[GS]LIF* command */ 7001 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7002 lifr = (struct lifreq *)mp1->b_rptr; 7003 /* 7004 * Null terminate the string to protect against buffer 7005 * overrun. String was generated by user code and may not 7006 * be trusted. 7007 */ 7008 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7009 name = lifr->lifr_name; 7010 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7011 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7012 ci->ci_lifr = lifr; 7013 } 7014 7015 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7016 /* 7017 * The ioctl will be failed if the ioctl comes down 7018 * an conn stream 7019 */ 7020 if (ill == NULL) { 7021 /* 7022 * Not an ill queue, return EINVAL same as the 7023 * old error code. 7024 */ 7025 return (ENXIO); 7026 } 7027 ipif = ill->ill_ipif; 7028 ipif_refhold(ipif); 7029 } else { 7030 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7031 &exists, isv6, zoneid, ipst); 7032 7033 /* 7034 * Ensure that get ioctls don't see any internal state changes 7035 * caused by set ioctls by deferring them if IPIF_CHANGING is 7036 * set. 7037 */ 7038 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7039 !IAM_WRITER_IPIF(ipif)) { 7040 ipsq_t *ipsq; 7041 7042 if (connp != NULL) 7043 mutex_enter(&connp->conn_lock); 7044 mutex_enter(&ipif->ipif_ill->ill_lock); 7045 if (IPIF_IS_CHANGING(ipif) && 7046 !IPIF_IS_CONDEMNED(ipif)) { 7047 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7048 mutex_enter(&ipsq->ipsq_lock); 7049 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7050 mutex_exit(&ipif->ipif_ill->ill_lock); 7051 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7052 NEW_OP, ipif->ipif_ill); 7053 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7054 mutex_exit(&ipsq->ipsq_lock); 7055 if (connp != NULL) 7056 mutex_exit(&connp->conn_lock); 7057 ipif_refrele(ipif); 7058 return (EINPROGRESS); 7059 } 7060 mutex_exit(&ipif->ipif_ill->ill_lock); 7061 if (connp != NULL) 7062 mutex_exit(&connp->conn_lock); 7063 } 7064 } 7065 7066 /* 7067 * Old style [GS]IFCMD does not admit IPv6 ipif 7068 */ 7069 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7070 ipif_refrele(ipif); 7071 return (ENXIO); 7072 } 7073 7074 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7075 name[0] == '\0') { 7076 /* 7077 * Handle a or a SIOC?IF* with a null name 7078 * during plumb (on the ill queue before the I_PLINK). 7079 */ 7080 ipif = ill->ill_ipif; 7081 ipif_refhold(ipif); 7082 } 7083 7084 if (ipif == NULL) 7085 return (ENXIO); 7086 7087 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7088 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7089 7090 ci->ci_ipif = ipif; 7091 return (0); 7092 } 7093 7094 /* 7095 * Return the total number of ipifs. 7096 */ 7097 static uint_t 7098 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7099 { 7100 uint_t numifs = 0; 7101 ill_t *ill; 7102 ill_walk_context_t ctx; 7103 ipif_t *ipif; 7104 7105 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7106 ill = ILL_START_WALK_V4(&ctx, ipst); 7107 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7108 if (IS_UNDER_IPMP(ill)) 7109 continue; 7110 for (ipif = ill->ill_ipif; ipif != NULL; 7111 ipif = ipif->ipif_next) { 7112 if (ipif->ipif_zoneid == zoneid || 7113 ipif->ipif_zoneid == ALL_ZONES) 7114 numifs++; 7115 } 7116 } 7117 rw_exit(&ipst->ips_ill_g_lock); 7118 return (numifs); 7119 } 7120 7121 /* 7122 * Return the total number of ipifs. 7123 */ 7124 static uint_t 7125 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7126 { 7127 uint_t numifs = 0; 7128 ill_t *ill; 7129 ipif_t *ipif; 7130 ill_walk_context_t ctx; 7131 7132 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7133 7134 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7135 if (family == AF_INET) 7136 ill = ILL_START_WALK_V4(&ctx, ipst); 7137 else if (family == AF_INET6) 7138 ill = ILL_START_WALK_V6(&ctx, ipst); 7139 else 7140 ill = ILL_START_WALK_ALL(&ctx, ipst); 7141 7142 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7143 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7144 continue; 7145 7146 for (ipif = ill->ill_ipif; ipif != NULL; 7147 ipif = ipif->ipif_next) { 7148 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7149 !(lifn_flags & LIFC_NOXMIT)) 7150 continue; 7151 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7152 !(lifn_flags & LIFC_TEMPORARY)) 7153 continue; 7154 if (((ipif->ipif_flags & 7155 (IPIF_NOXMIT|IPIF_NOLOCAL| 7156 IPIF_DEPRECATED)) || 7157 IS_LOOPBACK(ill) || 7158 !(ipif->ipif_flags & IPIF_UP)) && 7159 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7160 continue; 7161 7162 if (zoneid != ipif->ipif_zoneid && 7163 ipif->ipif_zoneid != ALL_ZONES && 7164 (zoneid != GLOBAL_ZONEID || 7165 !(lifn_flags & LIFC_ALLZONES))) 7166 continue; 7167 7168 numifs++; 7169 } 7170 } 7171 rw_exit(&ipst->ips_ill_g_lock); 7172 return (numifs); 7173 } 7174 7175 uint_t 7176 ip_get_lifsrcofnum(ill_t *ill) 7177 { 7178 uint_t numifs = 0; 7179 ill_t *ill_head = ill; 7180 ip_stack_t *ipst = ill->ill_ipst; 7181 7182 /* 7183 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7184 * other thread may be trying to relink the ILLs in this usesrc group 7185 * and adjusting the ill_usesrc_grp_next pointers 7186 */ 7187 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7188 if ((ill->ill_usesrc_ifindex == 0) && 7189 (ill->ill_usesrc_grp_next != NULL)) { 7190 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7191 ill = ill->ill_usesrc_grp_next) 7192 numifs++; 7193 } 7194 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7195 7196 return (numifs); 7197 } 7198 7199 /* Null values are passed in for ipif, sin, and ifreq */ 7200 /* ARGSUSED */ 7201 int 7202 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7203 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7204 { 7205 int *nump; 7206 conn_t *connp = Q_TO_CONN(q); 7207 7208 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7209 7210 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7211 nump = (int *)mp->b_cont->b_cont->b_rptr; 7212 7213 *nump = ip_get_numifs(connp->conn_zoneid, 7214 connp->conn_netstack->netstack_ip); 7215 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7216 return (0); 7217 } 7218 7219 /* Null values are passed in for ipif, sin, and ifreq */ 7220 /* ARGSUSED */ 7221 int 7222 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7223 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7224 { 7225 struct lifnum *lifn; 7226 mblk_t *mp1; 7227 conn_t *connp = Q_TO_CONN(q); 7228 7229 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7230 7231 /* Existence checked in ip_wput_nondata */ 7232 mp1 = mp->b_cont->b_cont; 7233 7234 lifn = (struct lifnum *)mp1->b_rptr; 7235 switch (lifn->lifn_family) { 7236 case AF_UNSPEC: 7237 case AF_INET: 7238 case AF_INET6: 7239 break; 7240 default: 7241 return (EAFNOSUPPORT); 7242 } 7243 7244 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7245 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7246 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7247 return (0); 7248 } 7249 7250 /* ARGSUSED */ 7251 int 7252 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7253 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7254 { 7255 STRUCT_HANDLE(ifconf, ifc); 7256 mblk_t *mp1; 7257 struct iocblk *iocp; 7258 struct ifreq *ifr; 7259 ill_walk_context_t ctx; 7260 ill_t *ill; 7261 ipif_t *ipif; 7262 struct sockaddr_in *sin; 7263 int32_t ifclen; 7264 zoneid_t zoneid; 7265 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7266 7267 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7268 7269 ip1dbg(("ip_sioctl_get_ifconf")); 7270 /* Existence verified in ip_wput_nondata */ 7271 mp1 = mp->b_cont->b_cont; 7272 iocp = (struct iocblk *)mp->b_rptr; 7273 zoneid = Q_TO_CONN(q)->conn_zoneid; 7274 7275 /* 7276 * The original SIOCGIFCONF passed in a struct ifconf which specified 7277 * the user buffer address and length into which the list of struct 7278 * ifreqs was to be copied. Since AT&T Streams does not seem to 7279 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7280 * the SIOCGIFCONF operation was redefined to simply provide 7281 * a large output buffer into which we are supposed to jam the ifreq 7282 * array. The same ioctl command code was used, despite the fact that 7283 * both the applications and the kernel code had to change, thus making 7284 * it impossible to support both interfaces. 7285 * 7286 * For reasons not good enough to try to explain, the following 7287 * algorithm is used for deciding what to do with one of these: 7288 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7289 * form with the output buffer coming down as the continuation message. 7290 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7291 * and we have to copy in the ifconf structure to find out how big the 7292 * output buffer is and where to copy out to. Sure no problem... 7293 * 7294 */ 7295 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7296 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7297 int numifs = 0; 7298 size_t ifc_bufsize; 7299 7300 /* 7301 * Must be (better be!) continuation of a TRANSPARENT 7302 * IOCTL. We just copied in the ifconf structure. 7303 */ 7304 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7305 (struct ifconf *)mp1->b_rptr); 7306 7307 /* 7308 * Allocate a buffer to hold requested information. 7309 * 7310 * If ifc_len is larger than what is needed, we only 7311 * allocate what we will use. 7312 * 7313 * If ifc_len is smaller than what is needed, return 7314 * EINVAL. 7315 * 7316 * XXX: the ill_t structure can hava 2 counters, for 7317 * v4 and v6 (not just ill_ipif_up_count) to store the 7318 * number of interfaces for a device, so we don't need 7319 * to count them here... 7320 */ 7321 numifs = ip_get_numifs(zoneid, ipst); 7322 7323 ifclen = STRUCT_FGET(ifc, ifc_len); 7324 ifc_bufsize = numifs * sizeof (struct ifreq); 7325 if (ifc_bufsize > ifclen) { 7326 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7327 /* old behaviour */ 7328 return (EINVAL); 7329 } else { 7330 ifc_bufsize = ifclen; 7331 } 7332 } 7333 7334 mp1 = mi_copyout_alloc(q, mp, 7335 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7336 if (mp1 == NULL) 7337 return (ENOMEM); 7338 7339 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7340 } 7341 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7342 /* 7343 * the SIOCGIFCONF ioctl only knows about 7344 * IPv4 addresses, so don't try to tell 7345 * it about interfaces with IPv6-only 7346 * addresses. (Last parm 'isv6' is B_FALSE) 7347 */ 7348 7349 ifr = (struct ifreq *)mp1->b_rptr; 7350 7351 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7352 ill = ILL_START_WALK_V4(&ctx, ipst); 7353 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7354 if (IS_UNDER_IPMP(ill)) 7355 continue; 7356 for (ipif = ill->ill_ipif; ipif != NULL; 7357 ipif = ipif->ipif_next) { 7358 if (zoneid != ipif->ipif_zoneid && 7359 ipif->ipif_zoneid != ALL_ZONES) 7360 continue; 7361 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7362 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7363 /* old behaviour */ 7364 rw_exit(&ipst->ips_ill_g_lock); 7365 return (EINVAL); 7366 } else { 7367 goto if_copydone; 7368 } 7369 } 7370 ipif_get_name(ipif, ifr->ifr_name, 7371 sizeof (ifr->ifr_name)); 7372 sin = (sin_t *)&ifr->ifr_addr; 7373 *sin = sin_null; 7374 sin->sin_family = AF_INET; 7375 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7376 ifr++; 7377 } 7378 } 7379 if_copydone: 7380 rw_exit(&ipst->ips_ill_g_lock); 7381 mp1->b_wptr = (uchar_t *)ifr; 7382 7383 if (STRUCT_BUF(ifc) != NULL) { 7384 STRUCT_FSET(ifc, ifc_len, 7385 (int)((uchar_t *)ifr - mp1->b_rptr)); 7386 } 7387 return (0); 7388 } 7389 7390 /* 7391 * Get the interfaces using the address hosted on the interface passed in, 7392 * as a source adddress 7393 */ 7394 /* ARGSUSED */ 7395 int 7396 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7397 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7398 { 7399 mblk_t *mp1; 7400 ill_t *ill, *ill_head; 7401 ipif_t *ipif, *orig_ipif; 7402 int numlifs = 0; 7403 size_t lifs_bufsize, lifsmaxlen; 7404 struct lifreq *lifr; 7405 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7406 uint_t ifindex; 7407 zoneid_t zoneid; 7408 boolean_t isv6 = B_FALSE; 7409 struct sockaddr_in *sin; 7410 struct sockaddr_in6 *sin6; 7411 STRUCT_HANDLE(lifsrcof, lifs); 7412 ip_stack_t *ipst; 7413 7414 ipst = CONNQ_TO_IPST(q); 7415 7416 ASSERT(q->q_next == NULL); 7417 7418 zoneid = Q_TO_CONN(q)->conn_zoneid; 7419 7420 /* Existence verified in ip_wput_nondata */ 7421 mp1 = mp->b_cont->b_cont; 7422 7423 /* 7424 * Must be (better be!) continuation of a TRANSPARENT 7425 * IOCTL. We just copied in the lifsrcof structure. 7426 */ 7427 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7428 (struct lifsrcof *)mp1->b_rptr); 7429 7430 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7431 return (EINVAL); 7432 7433 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7434 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7435 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7436 if (ipif == NULL) { 7437 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7438 ifindex)); 7439 return (ENXIO); 7440 } 7441 7442 /* Allocate a buffer to hold requested information */ 7443 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7444 lifs_bufsize = numlifs * sizeof (struct lifreq); 7445 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7446 /* The actual size needed is always returned in lifs_len */ 7447 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7448 7449 /* If the amount we need is more than what is passed in, abort */ 7450 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7451 ipif_refrele(ipif); 7452 return (0); 7453 } 7454 7455 mp1 = mi_copyout_alloc(q, mp, 7456 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7457 if (mp1 == NULL) { 7458 ipif_refrele(ipif); 7459 return (ENOMEM); 7460 } 7461 7462 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7463 bzero(mp1->b_rptr, lifs_bufsize); 7464 7465 lifr = (struct lifreq *)mp1->b_rptr; 7466 7467 ill = ill_head = ipif->ipif_ill; 7468 orig_ipif = ipif; 7469 7470 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7471 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7472 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7473 7474 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7475 for (; (ill != NULL) && (ill != ill_head); 7476 ill = ill->ill_usesrc_grp_next) { 7477 7478 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7479 break; 7480 7481 ipif = ill->ill_ipif; 7482 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7483 if (ipif->ipif_isv6) { 7484 sin6 = (sin6_t *)&lifr->lifr_addr; 7485 *sin6 = sin6_null; 7486 sin6->sin6_family = AF_INET6; 7487 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7488 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7489 &ipif->ipif_v6net_mask); 7490 } else { 7491 sin = (sin_t *)&lifr->lifr_addr; 7492 *sin = sin_null; 7493 sin->sin_family = AF_INET; 7494 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7495 lifr->lifr_addrlen = ip_mask_to_plen( 7496 ipif->ipif_net_mask); 7497 } 7498 lifr++; 7499 } 7500 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7501 rw_exit(&ipst->ips_ill_g_lock); 7502 ipif_refrele(orig_ipif); 7503 mp1->b_wptr = (uchar_t *)lifr; 7504 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7505 7506 return (0); 7507 } 7508 7509 /* ARGSUSED */ 7510 int 7511 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7512 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7513 { 7514 mblk_t *mp1; 7515 int list; 7516 ill_t *ill; 7517 ipif_t *ipif; 7518 int flags; 7519 int numlifs = 0; 7520 size_t lifc_bufsize; 7521 struct lifreq *lifr; 7522 sa_family_t family; 7523 struct sockaddr_in *sin; 7524 struct sockaddr_in6 *sin6; 7525 ill_walk_context_t ctx; 7526 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7527 int32_t lifclen; 7528 zoneid_t zoneid; 7529 STRUCT_HANDLE(lifconf, lifc); 7530 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7531 7532 ip1dbg(("ip_sioctl_get_lifconf")); 7533 7534 ASSERT(q->q_next == NULL); 7535 7536 zoneid = Q_TO_CONN(q)->conn_zoneid; 7537 7538 /* Existence verified in ip_wput_nondata */ 7539 mp1 = mp->b_cont->b_cont; 7540 7541 /* 7542 * An extended version of SIOCGIFCONF that takes an 7543 * additional address family and flags field. 7544 * AF_UNSPEC retrieve both IPv4 and IPv6. 7545 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7546 * interfaces are omitted. 7547 * Similarly, IPIF_TEMPORARY interfaces are omitted 7548 * unless LIFC_TEMPORARY is specified. 7549 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7550 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7551 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7552 * has priority over LIFC_NOXMIT. 7553 */ 7554 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7555 7556 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7557 return (EINVAL); 7558 7559 /* 7560 * Must be (better be!) continuation of a TRANSPARENT 7561 * IOCTL. We just copied in the lifconf structure. 7562 */ 7563 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7564 7565 family = STRUCT_FGET(lifc, lifc_family); 7566 flags = STRUCT_FGET(lifc, lifc_flags); 7567 7568 switch (family) { 7569 case AF_UNSPEC: 7570 /* 7571 * walk all ILL's. 7572 */ 7573 list = MAX_G_HEADS; 7574 break; 7575 case AF_INET: 7576 /* 7577 * walk only IPV4 ILL's. 7578 */ 7579 list = IP_V4_G_HEAD; 7580 break; 7581 case AF_INET6: 7582 /* 7583 * walk only IPV6 ILL's. 7584 */ 7585 list = IP_V6_G_HEAD; 7586 break; 7587 default: 7588 return (EAFNOSUPPORT); 7589 } 7590 7591 /* 7592 * Allocate a buffer to hold requested information. 7593 * 7594 * If lifc_len is larger than what is needed, we only 7595 * allocate what we will use. 7596 * 7597 * If lifc_len is smaller than what is needed, return 7598 * EINVAL. 7599 */ 7600 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7601 lifc_bufsize = numlifs * sizeof (struct lifreq); 7602 lifclen = STRUCT_FGET(lifc, lifc_len); 7603 if (lifc_bufsize > lifclen) { 7604 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7605 return (EINVAL); 7606 else 7607 lifc_bufsize = lifclen; 7608 } 7609 7610 mp1 = mi_copyout_alloc(q, mp, 7611 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7612 if (mp1 == NULL) 7613 return (ENOMEM); 7614 7615 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7616 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7617 7618 lifr = (struct lifreq *)mp1->b_rptr; 7619 7620 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7621 ill = ill_first(list, list, &ctx, ipst); 7622 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7623 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7624 continue; 7625 7626 for (ipif = ill->ill_ipif; ipif != NULL; 7627 ipif = ipif->ipif_next) { 7628 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7629 !(flags & LIFC_NOXMIT)) 7630 continue; 7631 7632 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7633 !(flags & LIFC_TEMPORARY)) 7634 continue; 7635 7636 if (((ipif->ipif_flags & 7637 (IPIF_NOXMIT|IPIF_NOLOCAL| 7638 IPIF_DEPRECATED)) || 7639 IS_LOOPBACK(ill) || 7640 !(ipif->ipif_flags & IPIF_UP)) && 7641 (flags & LIFC_EXTERNAL_SOURCE)) 7642 continue; 7643 7644 if (zoneid != ipif->ipif_zoneid && 7645 ipif->ipif_zoneid != ALL_ZONES && 7646 (zoneid != GLOBAL_ZONEID || 7647 !(flags & LIFC_ALLZONES))) 7648 continue; 7649 7650 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7651 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7652 rw_exit(&ipst->ips_ill_g_lock); 7653 return (EINVAL); 7654 } else { 7655 goto lif_copydone; 7656 } 7657 } 7658 7659 ipif_get_name(ipif, lifr->lifr_name, 7660 sizeof (lifr->lifr_name)); 7661 lifr->lifr_type = ill->ill_type; 7662 if (ipif->ipif_isv6) { 7663 sin6 = (sin6_t *)&lifr->lifr_addr; 7664 *sin6 = sin6_null; 7665 sin6->sin6_family = AF_INET6; 7666 sin6->sin6_addr = 7667 ipif->ipif_v6lcl_addr; 7668 lifr->lifr_addrlen = 7669 ip_mask_to_plen_v6( 7670 &ipif->ipif_v6net_mask); 7671 } else { 7672 sin = (sin_t *)&lifr->lifr_addr; 7673 *sin = sin_null; 7674 sin->sin_family = AF_INET; 7675 sin->sin_addr.s_addr = 7676 ipif->ipif_lcl_addr; 7677 lifr->lifr_addrlen = 7678 ip_mask_to_plen( 7679 ipif->ipif_net_mask); 7680 } 7681 lifr++; 7682 } 7683 } 7684 lif_copydone: 7685 rw_exit(&ipst->ips_ill_g_lock); 7686 7687 mp1->b_wptr = (uchar_t *)lifr; 7688 if (STRUCT_BUF(lifc) != NULL) { 7689 STRUCT_FSET(lifc, lifc_len, 7690 (int)((uchar_t *)lifr - mp1->b_rptr)); 7691 } 7692 return (0); 7693 } 7694 7695 static void 7696 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7697 { 7698 ip6_asp_t *table; 7699 size_t table_size; 7700 mblk_t *data_mp; 7701 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7702 ip_stack_t *ipst; 7703 7704 if (q->q_next == NULL) 7705 ipst = CONNQ_TO_IPST(q); 7706 else 7707 ipst = ILLQ_TO_IPST(q); 7708 7709 /* These two ioctls are I_STR only */ 7710 if (iocp->ioc_count == TRANSPARENT) { 7711 miocnak(q, mp, 0, EINVAL); 7712 return; 7713 } 7714 7715 data_mp = mp->b_cont; 7716 if (data_mp == NULL) { 7717 /* The user passed us a NULL argument */ 7718 table = NULL; 7719 table_size = iocp->ioc_count; 7720 } else { 7721 /* 7722 * The user provided a table. The stream head 7723 * may have copied in the user data in chunks, 7724 * so make sure everything is pulled up 7725 * properly. 7726 */ 7727 if (MBLKL(data_mp) < iocp->ioc_count) { 7728 mblk_t *new_data_mp; 7729 if ((new_data_mp = msgpullup(data_mp, -1)) == 7730 NULL) { 7731 miocnak(q, mp, 0, ENOMEM); 7732 return; 7733 } 7734 freemsg(data_mp); 7735 data_mp = new_data_mp; 7736 mp->b_cont = data_mp; 7737 } 7738 table = (ip6_asp_t *)data_mp->b_rptr; 7739 table_size = iocp->ioc_count; 7740 } 7741 7742 switch (iocp->ioc_cmd) { 7743 case SIOCGIP6ADDRPOLICY: 7744 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7745 if (iocp->ioc_rval == -1) 7746 iocp->ioc_error = EINVAL; 7747 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7748 else if (table != NULL && 7749 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7750 ip6_asp_t *src = table; 7751 ip6_asp32_t *dst = (void *)table; 7752 int count = table_size / sizeof (ip6_asp_t); 7753 int i; 7754 7755 /* 7756 * We need to do an in-place shrink of the array 7757 * to match the alignment attributes of the 7758 * 32-bit ABI looking at it. 7759 */ 7760 /* LINTED: logical expression always true: op "||" */ 7761 ASSERT(sizeof (*src) > sizeof (*dst)); 7762 for (i = 1; i < count; i++) 7763 bcopy(src + i, dst + i, sizeof (*dst)); 7764 } 7765 #endif 7766 break; 7767 7768 case SIOCSIP6ADDRPOLICY: 7769 ASSERT(mp->b_prev == NULL); 7770 mp->b_prev = (void *)q; 7771 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7772 /* 7773 * We pass in the datamodel here so that the ip6_asp_replace() 7774 * routine can handle converting from 32-bit to native formats 7775 * where necessary. 7776 * 7777 * A better way to handle this might be to convert the inbound 7778 * data structure here, and hang it off a new 'mp'; thus the 7779 * ip6_asp_replace() logic would always be dealing with native 7780 * format data structures.. 7781 * 7782 * (An even simpler way to handle these ioctls is to just 7783 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7784 * and just recompile everything that depends on it.) 7785 */ 7786 #endif 7787 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7788 iocp->ioc_flag & IOC_MODELS); 7789 return; 7790 } 7791 7792 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7793 qreply(q, mp); 7794 } 7795 7796 static void 7797 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7798 { 7799 mblk_t *data_mp; 7800 struct dstinforeq *dir; 7801 uint8_t *end, *cur; 7802 in6_addr_t *daddr, *saddr; 7803 ipaddr_t v4daddr; 7804 ire_t *ire; 7805 ipaddr_t v4setsrc; 7806 in6_addr_t v6setsrc; 7807 char *slabel, *dlabel; 7808 boolean_t isipv4; 7809 int match_ire; 7810 ill_t *dst_ill; 7811 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7812 conn_t *connp = Q_TO_CONN(q); 7813 zoneid_t zoneid = IPCL_ZONEID(connp); 7814 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7815 uint64_t ipif_flags; 7816 7817 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7818 7819 /* 7820 * This ioctl is I_STR only, and must have a 7821 * data mblk following the M_IOCTL mblk. 7822 */ 7823 data_mp = mp->b_cont; 7824 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7825 miocnak(q, mp, 0, EINVAL); 7826 return; 7827 } 7828 7829 if (MBLKL(data_mp) < iocp->ioc_count) { 7830 mblk_t *new_data_mp; 7831 7832 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7833 miocnak(q, mp, 0, ENOMEM); 7834 return; 7835 } 7836 freemsg(data_mp); 7837 data_mp = new_data_mp; 7838 mp->b_cont = data_mp; 7839 } 7840 match_ire = MATCH_IRE_DSTONLY; 7841 7842 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7843 end - cur >= sizeof (struct dstinforeq); 7844 cur += sizeof (struct dstinforeq)) { 7845 dir = (struct dstinforeq *)cur; 7846 daddr = &dir->dir_daddr; 7847 saddr = &dir->dir_saddr; 7848 7849 /* 7850 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7851 * v4 mapped addresses; ire_ftable_lookup_v6() 7852 * and ip_select_source_v6() do not. 7853 */ 7854 dir->dir_dscope = ip_addr_scope_v6(daddr); 7855 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7856 7857 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7858 if (isipv4) { 7859 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7860 v4setsrc = INADDR_ANY; 7861 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7862 NULL, match_ire, B_TRUE, 0, ipst, &v4setsrc, NULL, 7863 NULL); 7864 } else { 7865 v6setsrc = ipv6_all_zeros; 7866 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7867 NULL, match_ire, B_TRUE, 0, ipst, &v6setsrc, NULL, 7868 NULL); 7869 } 7870 ASSERT(ire != NULL); 7871 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7872 ire_refrele(ire); 7873 dir->dir_dreachable = 0; 7874 7875 /* move on to next dst addr */ 7876 continue; 7877 } 7878 dir->dir_dreachable = 1; 7879 7880 dst_ill = ire_nexthop_ill(ire); 7881 if (dst_ill == NULL) { 7882 ire_refrele(ire); 7883 continue; 7884 } 7885 7886 /* With ipmp we most likely look at the ipmp ill here */ 7887 dir->dir_dmactype = dst_ill->ill_mactype; 7888 7889 if (isipv4) { 7890 ipaddr_t v4saddr; 7891 7892 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7893 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7894 &v4saddr, NULL, &ipif_flags) != 0) { 7895 v4saddr = INADDR_ANY; 7896 ipif_flags = 0; 7897 } 7898 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7899 } else { 7900 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7901 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7902 saddr, NULL, &ipif_flags) != 0) { 7903 *saddr = ipv6_all_zeros; 7904 ipif_flags = 0; 7905 } 7906 } 7907 7908 dir->dir_sscope = ip_addr_scope_v6(saddr); 7909 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7910 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7911 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7912 ire_refrele(ire); 7913 ill_refrele(dst_ill); 7914 } 7915 miocack(q, mp, iocp->ioc_count, 0); 7916 } 7917 7918 /* 7919 * Check if this is an address assigned to this machine. 7920 * Skips interfaces that are down by using ire checks. 7921 * Translates mapped addresses to v4 addresses and then 7922 * treats them as such, returning true if the v4 address 7923 * associated with this mapped address is configured. 7924 * Note: Applications will have to be careful what they do 7925 * with the response; use of mapped addresses limits 7926 * what can be done with the socket, especially with 7927 * respect to socket options and ioctls - neither IPv4 7928 * options nor IPv6 sticky options/ancillary data options 7929 * may be used. 7930 */ 7931 /* ARGSUSED */ 7932 int 7933 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7934 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7935 { 7936 struct sioc_addrreq *sia; 7937 sin_t *sin; 7938 ire_t *ire; 7939 mblk_t *mp1; 7940 zoneid_t zoneid; 7941 ip_stack_t *ipst; 7942 7943 ip1dbg(("ip_sioctl_tmyaddr")); 7944 7945 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7946 zoneid = Q_TO_CONN(q)->conn_zoneid; 7947 ipst = CONNQ_TO_IPST(q); 7948 7949 /* Existence verified in ip_wput_nondata */ 7950 mp1 = mp->b_cont->b_cont; 7951 sia = (struct sioc_addrreq *)mp1->b_rptr; 7952 sin = (sin_t *)&sia->sa_addr; 7953 switch (sin->sin_family) { 7954 case AF_INET6: { 7955 sin6_t *sin6 = (sin6_t *)sin; 7956 7957 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 7958 ipaddr_t v4_addr; 7959 7960 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 7961 v4_addr); 7962 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 7963 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 7964 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7965 } else { 7966 in6_addr_t v6addr; 7967 7968 v6addr = sin6->sin6_addr; 7969 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 7970 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 7971 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7972 } 7973 break; 7974 } 7975 case AF_INET: { 7976 ipaddr_t v4addr; 7977 7978 v4addr = sin->sin_addr.s_addr; 7979 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 7980 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 7981 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 7982 break; 7983 } 7984 default: 7985 return (EAFNOSUPPORT); 7986 } 7987 if (ire != NULL) { 7988 sia->sa_res = 1; 7989 ire_refrele(ire); 7990 } else { 7991 sia->sa_res = 0; 7992 } 7993 return (0); 7994 } 7995 7996 /* 7997 * Check if this is an address assigned on-link i.e. neighbor, 7998 * and makes sure it's reachable from the current zone. 7999 * Returns true for my addresses as well. 8000 * Translates mapped addresses to v4 addresses and then 8001 * treats them as such, returning true if the v4 address 8002 * associated with this mapped address is configured. 8003 * Note: Applications will have to be careful what they do 8004 * with the response; use of mapped addresses limits 8005 * what can be done with the socket, especially with 8006 * respect to socket options and ioctls - neither IPv4 8007 * options nor IPv6 sticky options/ancillary data options 8008 * may be used. 8009 */ 8010 /* ARGSUSED */ 8011 int 8012 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8013 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8014 { 8015 struct sioc_addrreq *sia; 8016 sin_t *sin; 8017 mblk_t *mp1; 8018 ire_t *ire = NULL; 8019 zoneid_t zoneid; 8020 ip_stack_t *ipst; 8021 8022 ip1dbg(("ip_sioctl_tonlink")); 8023 8024 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8025 zoneid = Q_TO_CONN(q)->conn_zoneid; 8026 ipst = CONNQ_TO_IPST(q); 8027 8028 /* Existence verified in ip_wput_nondata */ 8029 mp1 = mp->b_cont->b_cont; 8030 sia = (struct sioc_addrreq *)mp1->b_rptr; 8031 sin = (sin_t *)&sia->sa_addr; 8032 8033 /* 8034 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8035 * to make sure we only look at on-link unicast address. 8036 */ 8037 switch (sin->sin_family) { 8038 case AF_INET6: { 8039 sin6_t *sin6 = (sin6_t *)sin; 8040 8041 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8042 ipaddr_t v4_addr; 8043 8044 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8045 v4_addr); 8046 if (!CLASSD(v4_addr)) { 8047 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8048 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8049 0, ipst, NULL); 8050 } 8051 } else { 8052 in6_addr_t v6addr; 8053 8054 v6addr = sin6->sin6_addr; 8055 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8056 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8057 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8058 ipst, NULL); 8059 } 8060 } 8061 break; 8062 } 8063 case AF_INET: { 8064 ipaddr_t v4addr; 8065 8066 v4addr = sin->sin_addr.s_addr; 8067 if (!CLASSD(v4addr)) { 8068 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8069 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8070 } 8071 break; 8072 } 8073 default: 8074 return (EAFNOSUPPORT); 8075 } 8076 sia->sa_res = 0; 8077 if (ire != NULL) { 8078 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8079 8080 if ((ire->ire_type & IRE_ONLINK) && 8081 !(ire->ire_type & IRE_BROADCAST)) 8082 sia->sa_res = 1; 8083 ire_refrele(ire); 8084 } 8085 return (0); 8086 } 8087 8088 /* 8089 * TBD: implement when kernel maintaines a list of site prefixes. 8090 */ 8091 /* ARGSUSED */ 8092 int 8093 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8094 ip_ioctl_cmd_t *ipip, void *ifreq) 8095 { 8096 return (ENXIO); 8097 } 8098 8099 /* ARP IOCTLs. */ 8100 /* ARGSUSED */ 8101 int 8102 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8103 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8104 { 8105 int err; 8106 ipaddr_t ipaddr; 8107 struct iocblk *iocp; 8108 conn_t *connp; 8109 struct arpreq *ar; 8110 struct xarpreq *xar; 8111 int arp_flags, flags, alength; 8112 uchar_t *lladdr; 8113 ip_stack_t *ipst; 8114 ill_t *ill = ipif->ipif_ill; 8115 ill_t *proxy_ill = NULL; 8116 ipmp_arpent_t *entp = NULL; 8117 boolean_t proxyarp = B_FALSE; 8118 boolean_t if_arp_ioctl = B_FALSE; 8119 ncec_t *ncec = NULL; 8120 nce_t *nce; 8121 8122 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8123 connp = Q_TO_CONN(q); 8124 ipst = connp->conn_netstack->netstack_ip; 8125 iocp = (struct iocblk *)mp->b_rptr; 8126 8127 if (ipip->ipi_cmd_type == XARP_CMD) { 8128 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8129 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8130 ar = NULL; 8131 8132 arp_flags = xar->xarp_flags; 8133 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8134 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8135 /* 8136 * Validate against user's link layer address length 8137 * input and name and addr length limits. 8138 */ 8139 alength = ill->ill_phys_addr_length; 8140 if (ipip->ipi_cmd == SIOCSXARP) { 8141 if (alength != xar->xarp_ha.sdl_alen || 8142 (alength + xar->xarp_ha.sdl_nlen > 8143 sizeof (xar->xarp_ha.sdl_data))) 8144 return (EINVAL); 8145 } 8146 } else { 8147 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8148 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8149 xar = NULL; 8150 8151 arp_flags = ar->arp_flags; 8152 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8153 /* 8154 * Theoretically, the sa_family could tell us what link 8155 * layer type this operation is trying to deal with. By 8156 * common usage AF_UNSPEC means ethernet. We'll assume 8157 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8158 * for now. Our new SIOC*XARP ioctls can be used more 8159 * generally. 8160 * 8161 * If the underlying media happens to have a non 6 byte 8162 * address, arp module will fail set/get, but the del 8163 * operation will succeed. 8164 */ 8165 alength = 6; 8166 if ((ipip->ipi_cmd != SIOCDARP) && 8167 (alength != ill->ill_phys_addr_length)) { 8168 return (EINVAL); 8169 } 8170 } 8171 8172 /* Translate ATF* flags to NCE* flags */ 8173 flags = 0; 8174 if (arp_flags & ATF_AUTHORITY) 8175 flags |= NCE_F_AUTHORITY; 8176 if (arp_flags & ATF_PERM) 8177 flags |= NCE_F_NONUD; /* not subject to aging */ 8178 if (arp_flags & ATF_PUBL) 8179 flags |= NCE_F_PUBLISH; 8180 8181 /* 8182 * IPMP ARP special handling: 8183 * 8184 * 1. Since ARP mappings must appear consistent across the group, 8185 * prohibit changing ARP mappings on the underlying interfaces. 8186 * 8187 * 2. Since ARP mappings for IPMP data addresses are maintained by 8188 * IP itself, prohibit changing them. 8189 * 8190 * 3. For proxy ARP, use a functioning hardware address in the group, 8191 * provided one exists. If one doesn't, just add the entry as-is; 8192 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8193 */ 8194 if (IS_UNDER_IPMP(ill)) { 8195 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8196 return (EPERM); 8197 } 8198 if (IS_IPMP(ill)) { 8199 ipmp_illgrp_t *illg = ill->ill_grp; 8200 8201 switch (ipip->ipi_cmd) { 8202 case SIOCSARP: 8203 case SIOCSXARP: 8204 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8205 if (proxy_ill != NULL) { 8206 proxyarp = B_TRUE; 8207 if (!ipmp_ill_is_active(proxy_ill)) 8208 proxy_ill = ipmp_illgrp_next_ill(illg); 8209 if (proxy_ill != NULL) 8210 lladdr = proxy_ill->ill_phys_addr; 8211 } 8212 /* FALLTHRU */ 8213 } 8214 } 8215 8216 ipaddr = sin->sin_addr.s_addr; 8217 /* 8218 * don't match across illgrp per case (1) and (2). 8219 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8220 */ 8221 nce = nce_lookup_v4(ill, &ipaddr); 8222 if (nce != NULL) 8223 ncec = nce->nce_common; 8224 8225 switch (iocp->ioc_cmd) { 8226 case SIOCDARP: 8227 case SIOCDXARP: { 8228 /* 8229 * Delete the NCE if any. 8230 */ 8231 if (ncec == NULL) { 8232 iocp->ioc_error = ENXIO; 8233 break; 8234 } 8235 /* Don't allow changes to arp mappings of local addresses. */ 8236 if (NCE_MYADDR(ncec)) { 8237 nce_refrele(nce); 8238 return (ENOTSUP); 8239 } 8240 iocp->ioc_error = 0; 8241 8242 /* 8243 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8244 * This will delete all the nce entries on the under_ills. 8245 */ 8246 ncec_delete(ncec); 8247 /* 8248 * Once the NCE has been deleted, then the ire_dep* consistency 8249 * mechanism will find any IRE which depended on the now 8250 * condemned NCE (as part of sending packets). 8251 * That mechanism handles redirects by deleting redirects 8252 * that refer to UNREACHABLE nces. 8253 */ 8254 break; 8255 } 8256 case SIOCGARP: 8257 case SIOCGXARP: 8258 if (ncec != NULL) { 8259 lladdr = ncec->ncec_lladdr; 8260 flags = ncec->ncec_flags; 8261 iocp->ioc_error = 0; 8262 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8263 } else { 8264 iocp->ioc_error = ENXIO; 8265 } 8266 break; 8267 case SIOCSARP: 8268 case SIOCSXARP: 8269 /* Don't allow changes to arp mappings of local addresses. */ 8270 if (ncec != NULL && NCE_MYADDR(ncec)) { 8271 nce_refrele(nce); 8272 return (ENOTSUP); 8273 } 8274 8275 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8276 flags |= NCE_F_STATIC; 8277 if (!if_arp_ioctl) { 8278 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8279 lladdr, alength, flags); 8280 } else { 8281 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8282 if (ipif != NULL) { 8283 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8284 lladdr, alength, flags); 8285 ipif_refrele(ipif); 8286 } 8287 } 8288 if (nce != NULL) { 8289 nce_refrele(nce); 8290 nce = NULL; 8291 } 8292 /* 8293 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8294 * by nce_add_common() 8295 */ 8296 err = nce_lookup_then_add_v4(ill, lladdr, 8297 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8298 &nce); 8299 if (err == EEXIST) { 8300 ncec = nce->nce_common; 8301 mutex_enter(&ncec->ncec_lock); 8302 ncec->ncec_state = ND_REACHABLE; 8303 ncec->ncec_flags = flags; 8304 nce_update(ncec, ND_UNCHANGED, lladdr); 8305 mutex_exit(&ncec->ncec_lock); 8306 err = 0; 8307 } 8308 if (nce != NULL) { 8309 nce_refrele(nce); 8310 nce = NULL; 8311 } 8312 if (IS_IPMP(ill) && err == 0) { 8313 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8314 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8315 flags); 8316 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8317 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8318 break; 8319 } 8320 } 8321 iocp->ioc_error = err; 8322 } 8323 8324 if (nce != NULL) { 8325 nce_refrele(nce); 8326 } 8327 8328 /* 8329 * If we created an IPMP ARP entry, mark that we've notified ARP. 8330 */ 8331 if (entp != NULL) 8332 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8333 8334 return (iocp->ioc_error); 8335 } 8336 8337 /* 8338 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8339 * the associated sin and refhold and return the associated ipif via `ci'. 8340 */ 8341 int 8342 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8343 cmd_info_t *ci) 8344 { 8345 mblk_t *mp1; 8346 sin_t *sin; 8347 conn_t *connp; 8348 ipif_t *ipif; 8349 ire_t *ire = NULL; 8350 ill_t *ill = NULL; 8351 boolean_t exists; 8352 ip_stack_t *ipst; 8353 struct arpreq *ar; 8354 struct xarpreq *xar; 8355 struct sockaddr_dl *sdl; 8356 8357 /* ioctl comes down on a conn */ 8358 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8359 connp = Q_TO_CONN(q); 8360 if (connp->conn_family == AF_INET6) 8361 return (ENXIO); 8362 8363 ipst = connp->conn_netstack->netstack_ip; 8364 8365 /* Verified in ip_wput_nondata */ 8366 mp1 = mp->b_cont->b_cont; 8367 8368 if (ipip->ipi_cmd_type == XARP_CMD) { 8369 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8370 xar = (struct xarpreq *)mp1->b_rptr; 8371 sin = (sin_t *)&xar->xarp_pa; 8372 sdl = &xar->xarp_ha; 8373 8374 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8375 return (ENXIO); 8376 if (sdl->sdl_nlen >= LIFNAMSIZ) 8377 return (EINVAL); 8378 } else { 8379 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8380 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8381 ar = (struct arpreq *)mp1->b_rptr; 8382 sin = (sin_t *)&ar->arp_pa; 8383 } 8384 8385 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8386 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8387 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8388 if (ipif == NULL) 8389 return (ENXIO); 8390 if (ipif->ipif_id != 0) { 8391 ipif_refrele(ipif); 8392 return (ENXIO); 8393 } 8394 } else { 8395 /* 8396 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8397 * of 0: use the IP address to find the ipif. If the IP 8398 * address is an IPMP test address, ire_ftable_lookup() will 8399 * find the wrong ill, so we first do an ipif_lookup_addr(). 8400 */ 8401 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8402 ipst); 8403 if (ipif == NULL) { 8404 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8405 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8406 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8407 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8408 if (ire != NULL) 8409 ire_refrele(ire); 8410 return (ENXIO); 8411 } 8412 ASSERT(ire != NULL && ill != NULL); 8413 ipif = ill->ill_ipif; 8414 ipif_refhold(ipif); 8415 ire_refrele(ire); 8416 } 8417 } 8418 8419 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8420 ipif_refrele(ipif); 8421 return (ENXIO); 8422 } 8423 8424 ci->ci_sin = sin; 8425 ci->ci_ipif = ipif; 8426 return (0); 8427 } 8428 8429 /* 8430 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8431 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8432 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8433 * up and thus an ill can join that illgrp. 8434 * 8435 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8436 * open()/close() primarily because close() is not allowed to fail or block 8437 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8438 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8439 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8440 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8441 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8442 * state if I_UNLINK didn't occur. 8443 * 8444 * Note that for each plumb/unplumb operation, we may end up here more than 8445 * once because of the way ifconfig works. However, it's OK to link the same 8446 * illgrp more than once, or unlink an illgrp that's already unlinked. 8447 */ 8448 static int 8449 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8450 { 8451 int err; 8452 ip_stack_t *ipst = ill->ill_ipst; 8453 8454 ASSERT(IS_IPMP(ill)); 8455 ASSERT(IAM_WRITER_ILL(ill)); 8456 8457 switch (ioccmd) { 8458 case I_LINK: 8459 return (ENOTSUP); 8460 8461 case I_PLINK: 8462 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8463 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8464 rw_exit(&ipst->ips_ipmp_lock); 8465 break; 8466 8467 case I_PUNLINK: 8468 /* 8469 * Require all UP ipifs be brought down prior to unlinking the 8470 * illgrp so any associated IREs (and other state) is torched. 8471 */ 8472 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8473 return (EBUSY); 8474 8475 /* 8476 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8477 * with an SIOCSLIFGROUPNAME request from an ill trying to 8478 * join this group. Specifically: ills trying to join grab 8479 * ipmp_lock and bump a "pending join" counter checked by 8480 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8481 * joins can occur (since we have ipmp_lock). Once we drop 8482 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8483 * find the illgrp (since we unlinked it) and will return 8484 * EAFNOSUPPORT. This will then take them back through the 8485 * IPMP meta-interface plumbing logic in ifconfig, and thus 8486 * back through I_PLINK above. 8487 */ 8488 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8489 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8490 rw_exit(&ipst->ips_ipmp_lock); 8491 return (err); 8492 default: 8493 break; 8494 } 8495 return (0); 8496 } 8497 8498 /* 8499 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8500 * atomically set/clear the muxids. Also complete the ioctl by acking or 8501 * naking it. Note that the code is structured such that the link type, 8502 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8503 * its clones use the persistent link, while pppd(1M) and perhaps many 8504 * other daemons may use non-persistent link. When combined with some 8505 * ill_t states, linking and unlinking lower streams may be used as 8506 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8507 */ 8508 /* ARGSUSED */ 8509 void 8510 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8511 { 8512 mblk_t *mp1; 8513 struct linkblk *li; 8514 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8515 int err = 0; 8516 8517 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8518 ioccmd == I_LINK || ioccmd == I_UNLINK); 8519 8520 mp1 = mp->b_cont; /* This is the linkblk info */ 8521 li = (struct linkblk *)mp1->b_rptr; 8522 8523 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8524 if (err == EINPROGRESS) 8525 return; 8526 done: 8527 if (err == 0) 8528 miocack(q, mp, 0, 0); 8529 else 8530 miocnak(q, mp, 0, err); 8531 8532 /* Conn was refheld in ip_sioctl_copyin_setup */ 8533 if (CONN_Q(q)) 8534 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8535 } 8536 8537 /* 8538 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8539 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8540 * module stream). If `doconsist' is set, then do the extended consistency 8541 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8542 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8543 * an error code on failure. 8544 */ 8545 static int 8546 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8547 struct linkblk *li) 8548 { 8549 int err = 0; 8550 ill_t *ill; 8551 queue_t *ipwq, *dwq; 8552 const char *name; 8553 struct qinit *qinfo; 8554 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8555 boolean_t entered_ipsq = B_FALSE; 8556 boolean_t is_ip = B_FALSE; 8557 arl_t *arl; 8558 8559 /* 8560 * Walk the lower stream to verify it's the IP module stream. 8561 * The IP module is identified by its name, wput function, 8562 * and non-NULL q_next. STREAMS ensures that the lower stream 8563 * (li->l_qbot) will not vanish until this ioctl completes. 8564 */ 8565 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8566 qinfo = ipwq->q_qinfo; 8567 name = qinfo->qi_minfo->mi_idname; 8568 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8569 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8570 is_ip = B_TRUE; 8571 break; 8572 } 8573 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8574 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8575 break; 8576 } 8577 } 8578 8579 /* 8580 * If this isn't an IP module stream, bail. 8581 */ 8582 if (ipwq == NULL) 8583 return (0); 8584 8585 if (!is_ip) { 8586 arl = (arl_t *)ipwq->q_ptr; 8587 ill = arl_to_ill(arl); 8588 if (ill == NULL) 8589 return (0); 8590 } else { 8591 ill = ipwq->q_ptr; 8592 } 8593 ASSERT(ill != NULL); 8594 8595 if (ipsq == NULL) { 8596 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8597 NEW_OP, B_FALSE); 8598 if (ipsq == NULL) { 8599 if (!is_ip) 8600 ill_refrele(ill); 8601 return (EINPROGRESS); 8602 } 8603 entered_ipsq = B_TRUE; 8604 } 8605 ASSERT(IAM_WRITER_ILL(ill)); 8606 mutex_enter(&ill->ill_lock); 8607 if (!is_ip) { 8608 if (islink && ill->ill_muxid == 0) { 8609 /* 8610 * Plumbing has to be done with IP plumbed first, arp 8611 * second, but here we have arp being plumbed first. 8612 */ 8613 mutex_exit(&ill->ill_lock); 8614 ipsq_exit(ipsq); 8615 ill_refrele(ill); 8616 return (EINVAL); 8617 } 8618 } 8619 mutex_exit(&ill->ill_lock); 8620 if (!is_ip) { 8621 arl->arl_muxid = islink ? li->l_index : 0; 8622 ill_refrele(ill); 8623 goto done; 8624 } 8625 8626 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8627 goto done; 8628 8629 /* 8630 * As part of I_{P}LINKing, stash the number of downstream modules and 8631 * the read queue of the module immediately below IP in the ill. 8632 * These are used during the capability negotiation below. 8633 */ 8634 ill->ill_lmod_rq = NULL; 8635 ill->ill_lmod_cnt = 0; 8636 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8637 ill->ill_lmod_rq = RD(dwq); 8638 for (; dwq != NULL; dwq = dwq->q_next) 8639 ill->ill_lmod_cnt++; 8640 } 8641 8642 ill->ill_muxid = islink ? li->l_index : 0; 8643 8644 /* 8645 * Mark the ipsq busy until the capability operations initiated below 8646 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8647 * returns, but the capability operation may complete asynchronously 8648 * much later. 8649 */ 8650 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8651 /* 8652 * If there's at least one up ipif on this ill, then we're bound to 8653 * the underlying driver via DLPI. In that case, renegotiate 8654 * capabilities to account for any possible change in modules 8655 * interposed between IP and the driver. 8656 */ 8657 if (ill->ill_ipif_up_count > 0) { 8658 if (islink) 8659 ill_capability_probe(ill); 8660 else 8661 ill_capability_reset(ill, B_FALSE); 8662 } 8663 ipsq_current_finish(ipsq); 8664 done: 8665 if (entered_ipsq) 8666 ipsq_exit(ipsq); 8667 8668 return (err); 8669 } 8670 8671 /* 8672 * Search the ioctl command in the ioctl tables and return a pointer 8673 * to the ioctl command information. The ioctl command tables are 8674 * static and fully populated at compile time. 8675 */ 8676 ip_ioctl_cmd_t * 8677 ip_sioctl_lookup(int ioc_cmd) 8678 { 8679 int index; 8680 ip_ioctl_cmd_t *ipip; 8681 ip_ioctl_cmd_t *ipip_end; 8682 8683 if (ioc_cmd == IPI_DONTCARE) 8684 return (NULL); 8685 8686 /* 8687 * Do a 2 step search. First search the indexed table 8688 * based on the least significant byte of the ioctl cmd. 8689 * If we don't find a match, then search the misc table 8690 * serially. 8691 */ 8692 index = ioc_cmd & 0xFF; 8693 if (index < ip_ndx_ioctl_count) { 8694 ipip = &ip_ndx_ioctl_table[index]; 8695 if (ipip->ipi_cmd == ioc_cmd) { 8696 /* Found a match in the ndx table */ 8697 return (ipip); 8698 } 8699 } 8700 8701 /* Search the misc table */ 8702 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8703 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8704 if (ipip->ipi_cmd == ioc_cmd) 8705 /* Found a match in the misc table */ 8706 return (ipip); 8707 } 8708 8709 return (NULL); 8710 } 8711 8712 /* 8713 * Wrapper function for resuming deferred ioctl processing 8714 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8715 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8716 */ 8717 /* ARGSUSED */ 8718 void 8719 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8720 void *dummy_arg) 8721 { 8722 ip_sioctl_copyin_setup(q, mp); 8723 } 8724 8725 /* 8726 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8727 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8728 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8729 * We establish here the size of the block to be copied in. mi_copyin 8730 * arranges for this to happen, an processing continues in ip_wput_nondata with 8731 * an M_IOCDATA message. 8732 */ 8733 void 8734 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8735 { 8736 int copyin_size; 8737 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8738 ip_ioctl_cmd_t *ipip; 8739 cred_t *cr; 8740 ip_stack_t *ipst; 8741 8742 if (CONN_Q(q)) 8743 ipst = CONNQ_TO_IPST(q); 8744 else 8745 ipst = ILLQ_TO_IPST(q); 8746 8747 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8748 if (ipip == NULL) { 8749 /* 8750 * The ioctl is not one we understand or own. 8751 * Pass it along to be processed down stream, 8752 * if this is a module instance of IP, else nak 8753 * the ioctl. 8754 */ 8755 if (q->q_next == NULL) { 8756 goto nak; 8757 } else { 8758 putnext(q, mp); 8759 return; 8760 } 8761 } 8762 8763 /* 8764 * If this is deferred, then we will do all the checks when we 8765 * come back. 8766 */ 8767 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8768 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8769 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8770 return; 8771 } 8772 8773 /* 8774 * Only allow a very small subset of IP ioctls on this stream if 8775 * IP is a module and not a driver. Allowing ioctls to be processed 8776 * in this case may cause assert failures or data corruption. 8777 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8778 * ioctls allowed on an IP module stream, after which this stream 8779 * normally becomes a multiplexor (at which time the stream head 8780 * will fail all ioctls). 8781 */ 8782 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8783 goto nak; 8784 } 8785 8786 /* Make sure we have ioctl data to process. */ 8787 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8788 goto nak; 8789 8790 /* 8791 * Prefer dblk credential over ioctl credential; some synthesized 8792 * ioctls have kcred set because there's no way to crhold() 8793 * a credential in some contexts. (ioc_cr is not crfree() by 8794 * the framework; the caller of ioctl needs to hold the reference 8795 * for the duration of the call). 8796 */ 8797 cr = msg_getcred(mp, NULL); 8798 if (cr == NULL) 8799 cr = iocp->ioc_cr; 8800 8801 /* Make sure normal users don't send down privileged ioctls */ 8802 if ((ipip->ipi_flags & IPI_PRIV) && 8803 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8804 /* We checked the privilege earlier but log it here */ 8805 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8806 return; 8807 } 8808 8809 /* 8810 * The ioctl command tables can only encode fixed length 8811 * ioctl data. If the length is variable, the table will 8812 * encode the length as zero. Such special cases are handled 8813 * below in the switch. 8814 */ 8815 if (ipip->ipi_copyin_size != 0) { 8816 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8817 return; 8818 } 8819 8820 switch (iocp->ioc_cmd) { 8821 case O_SIOCGIFCONF: 8822 case SIOCGIFCONF: 8823 /* 8824 * This IOCTL is hilarious. See comments in 8825 * ip_sioctl_get_ifconf for the story. 8826 */ 8827 if (iocp->ioc_count == TRANSPARENT) 8828 copyin_size = SIZEOF_STRUCT(ifconf, 8829 iocp->ioc_flag); 8830 else 8831 copyin_size = iocp->ioc_count; 8832 mi_copyin(q, mp, NULL, copyin_size); 8833 return; 8834 8835 case O_SIOCGLIFCONF: 8836 case SIOCGLIFCONF: 8837 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8838 mi_copyin(q, mp, NULL, copyin_size); 8839 return; 8840 8841 case SIOCGLIFSRCOF: 8842 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8843 mi_copyin(q, mp, NULL, copyin_size); 8844 return; 8845 case SIOCGIP6ADDRPOLICY: 8846 ip_sioctl_ip6addrpolicy(q, mp); 8847 ip6_asp_table_refrele(ipst); 8848 return; 8849 8850 case SIOCSIP6ADDRPOLICY: 8851 ip_sioctl_ip6addrpolicy(q, mp); 8852 return; 8853 8854 case SIOCGDSTINFO: 8855 ip_sioctl_dstinfo(q, mp); 8856 ip6_asp_table_refrele(ipst); 8857 return; 8858 8859 case I_PLINK: 8860 case I_PUNLINK: 8861 case I_LINK: 8862 case I_UNLINK: 8863 /* 8864 * We treat non-persistent link similarly as the persistent 8865 * link case, in terms of plumbing/unplumbing, as well as 8866 * dynamic re-plumbing events indicator. See comments 8867 * in ip_sioctl_plink() for more. 8868 * 8869 * Request can be enqueued in the 'ipsq' while waiting 8870 * to become exclusive. So bump up the conn ref. 8871 */ 8872 if (CONN_Q(q)) 8873 CONN_INC_REF(Q_TO_CONN(q)); 8874 ip_sioctl_plink(NULL, q, mp, NULL); 8875 return; 8876 8877 case ND_GET: 8878 case ND_SET: 8879 /* 8880 * Use of the nd table requires holding the reader lock. 8881 * Modifying the nd table thru nd_load/nd_unload requires 8882 * the writer lock. 8883 */ 8884 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 8885 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 8886 rw_exit(&ipst->ips_ip_g_nd_lock); 8887 8888 if (iocp->ioc_error) 8889 iocp->ioc_count = 0; 8890 mp->b_datap->db_type = M_IOCACK; 8891 qreply(q, mp); 8892 return; 8893 } 8894 rw_exit(&ipst->ips_ip_g_nd_lock); 8895 /* 8896 * We don't understand this subioctl of ND_GET / ND_SET. 8897 * Maybe intended for some driver / module below us 8898 */ 8899 if (q->q_next) { 8900 putnext(q, mp); 8901 } else { 8902 iocp->ioc_error = ENOENT; 8903 mp->b_datap->db_type = M_IOCNAK; 8904 iocp->ioc_count = 0; 8905 qreply(q, mp); 8906 } 8907 return; 8908 8909 case IP_IOCTL: 8910 ip_wput_ioctl(q, mp); 8911 return; 8912 8913 case SIOCILB: 8914 /* The ioctl length varies depending on the ILB command. */ 8915 copyin_size = iocp->ioc_count; 8916 if (copyin_size < sizeof (ilb_cmd_t)) 8917 goto nak; 8918 mi_copyin(q, mp, NULL, copyin_size); 8919 return; 8920 8921 default: 8922 cmn_err(CE_PANIC, "should not happen "); 8923 } 8924 nak: 8925 if (mp->b_cont != NULL) { 8926 freemsg(mp->b_cont); 8927 mp->b_cont = NULL; 8928 } 8929 iocp->ioc_error = EINVAL; 8930 mp->b_datap->db_type = M_IOCNAK; 8931 iocp->ioc_count = 0; 8932 qreply(q, mp); 8933 } 8934 8935 static void 8936 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 8937 { 8938 struct arpreq *ar; 8939 struct xarpreq *xar; 8940 mblk_t *tmp; 8941 struct iocblk *iocp; 8942 int x_arp_ioctl = B_FALSE; 8943 int *flagsp; 8944 char *storage = NULL; 8945 8946 ASSERT(ill != NULL); 8947 8948 iocp = (struct iocblk *)mp->b_rptr; 8949 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 8950 8951 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 8952 if ((iocp->ioc_cmd == SIOCGXARP) || 8953 (iocp->ioc_cmd == SIOCSXARP)) { 8954 x_arp_ioctl = B_TRUE; 8955 xar = (struct xarpreq *)tmp->b_rptr; 8956 flagsp = &xar->xarp_flags; 8957 storage = xar->xarp_ha.sdl_data; 8958 } else { 8959 ar = (struct arpreq *)tmp->b_rptr; 8960 flagsp = &ar->arp_flags; 8961 storage = ar->arp_ha.sa_data; 8962 } 8963 8964 /* 8965 * We're done if this is not an SIOCG{X}ARP 8966 */ 8967 if (x_arp_ioctl) { 8968 storage += ill_xarp_info(&xar->xarp_ha, ill); 8969 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 8970 sizeof (xar->xarp_ha.sdl_data)) { 8971 iocp->ioc_error = EINVAL; 8972 return; 8973 } 8974 } 8975 *flagsp = ATF_INUSE; 8976 /* 8977 * If /sbin/arp told us we are the authority using the "permanent" 8978 * flag, or if this is one of my addresses print "permanent" 8979 * in the /sbin/arp output. 8980 */ 8981 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 8982 *flagsp |= ATF_AUTHORITY; 8983 if (flags & NCE_F_NONUD) 8984 *flagsp |= ATF_PERM; /* not subject to aging */ 8985 if (flags & NCE_F_PUBLISH) 8986 *flagsp |= ATF_PUBL; 8987 if (hwaddr != NULL) { 8988 *flagsp |= ATF_COM; 8989 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 8990 } 8991 } 8992 8993 /* 8994 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 8995 * interface) create the next available logical interface for this 8996 * physical interface. 8997 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 8998 * ipif with the specified name. 8999 * 9000 * If the address family is not AF_UNSPEC then set the address as well. 9001 * 9002 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9003 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9004 * 9005 * Executed as a writer on the ill. 9006 * So no lock is needed to traverse the ipif chain, or examine the 9007 * phyint flags. 9008 */ 9009 /* ARGSUSED */ 9010 int 9011 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9012 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9013 { 9014 mblk_t *mp1; 9015 struct lifreq *lifr; 9016 boolean_t isv6; 9017 boolean_t exists; 9018 char *name; 9019 char *endp; 9020 char *cp; 9021 int namelen; 9022 ipif_t *ipif; 9023 long id; 9024 ipsq_t *ipsq; 9025 ill_t *ill; 9026 sin_t *sin; 9027 int err = 0; 9028 boolean_t found_sep = B_FALSE; 9029 conn_t *connp; 9030 zoneid_t zoneid; 9031 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9032 9033 ASSERT(q->q_next == NULL); 9034 ip1dbg(("ip_sioctl_addif\n")); 9035 /* Existence of mp1 has been checked in ip_wput_nondata */ 9036 mp1 = mp->b_cont->b_cont; 9037 /* 9038 * Null terminate the string to protect against buffer 9039 * overrun. String was generated by user code and may not 9040 * be trusted. 9041 */ 9042 lifr = (struct lifreq *)mp1->b_rptr; 9043 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9044 name = lifr->lifr_name; 9045 ASSERT(CONN_Q(q)); 9046 connp = Q_TO_CONN(q); 9047 isv6 = (connp->conn_family == AF_INET6); 9048 zoneid = connp->conn_zoneid; 9049 namelen = mi_strlen(name); 9050 if (namelen == 0) 9051 return (EINVAL); 9052 9053 exists = B_FALSE; 9054 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9055 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9056 /* 9057 * Allow creating lo0 using SIOCLIFADDIF. 9058 * can't be any other writer thread. So can pass null below 9059 * for the last 4 args to ipif_lookup_name. 9060 */ 9061 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9062 &exists, isv6, zoneid, ipst); 9063 /* Prevent any further action */ 9064 if (ipif == NULL) { 9065 return (ENOBUFS); 9066 } else if (!exists) { 9067 /* We created the ipif now and as writer */ 9068 ipif_refrele(ipif); 9069 return (0); 9070 } else { 9071 ill = ipif->ipif_ill; 9072 ill_refhold(ill); 9073 ipif_refrele(ipif); 9074 } 9075 } else { 9076 /* Look for a colon in the name. */ 9077 endp = &name[namelen]; 9078 for (cp = endp; --cp > name; ) { 9079 if (*cp == IPIF_SEPARATOR_CHAR) { 9080 found_sep = B_TRUE; 9081 /* 9082 * Reject any non-decimal aliases for plumbing 9083 * of logical interfaces. Aliases with leading 9084 * zeroes are also rejected as they introduce 9085 * ambiguity in the naming of the interfaces. 9086 * Comparing with "0" takes care of all such 9087 * cases. 9088 */ 9089 if ((strncmp("0", cp+1, 1)) == 0) 9090 return (EINVAL); 9091 9092 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9093 id <= 0 || *endp != '\0') { 9094 return (EINVAL); 9095 } 9096 *cp = '\0'; 9097 break; 9098 } 9099 } 9100 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9101 if (found_sep) 9102 *cp = IPIF_SEPARATOR_CHAR; 9103 if (ill == NULL) 9104 return (ENXIO); 9105 } 9106 9107 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9108 B_TRUE); 9109 9110 /* 9111 * Release the refhold due to the lookup, now that we are excl 9112 * or we are just returning 9113 */ 9114 ill_refrele(ill); 9115 9116 if (ipsq == NULL) 9117 return (EINPROGRESS); 9118 9119 /* We are now exclusive on the IPSQ */ 9120 ASSERT(IAM_WRITER_ILL(ill)); 9121 9122 if (found_sep) { 9123 /* Now see if there is an IPIF with this unit number. */ 9124 for (ipif = ill->ill_ipif; ipif != NULL; 9125 ipif = ipif->ipif_next) { 9126 if (ipif->ipif_id == id) { 9127 err = EEXIST; 9128 goto done; 9129 } 9130 } 9131 } 9132 9133 /* 9134 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9135 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9136 * instead. 9137 */ 9138 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9139 B_TRUE, B_TRUE)) == NULL) { 9140 err = ENOBUFS; 9141 goto done; 9142 } 9143 9144 /* Return created name with ioctl */ 9145 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9146 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9147 ip1dbg(("created %s\n", lifr->lifr_name)); 9148 9149 /* Set address */ 9150 sin = (sin_t *)&lifr->lifr_addr; 9151 if (sin->sin_family != AF_UNSPEC) { 9152 err = ip_sioctl_addr(ipif, sin, q, mp, 9153 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9154 } 9155 9156 done: 9157 ipsq_exit(ipsq); 9158 return (err); 9159 } 9160 9161 /* 9162 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9163 * interface) delete it based on the IP address (on this physical interface). 9164 * Otherwise delete it based on the ipif_id. 9165 * Also, special handling to allow a removeif of lo0. 9166 */ 9167 /* ARGSUSED */ 9168 int 9169 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9170 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9171 { 9172 conn_t *connp; 9173 ill_t *ill = ipif->ipif_ill; 9174 boolean_t success; 9175 ip_stack_t *ipst; 9176 9177 ipst = CONNQ_TO_IPST(q); 9178 9179 ASSERT(q->q_next == NULL); 9180 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9181 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9182 ASSERT(IAM_WRITER_IPIF(ipif)); 9183 9184 connp = Q_TO_CONN(q); 9185 /* 9186 * Special case for unplumbing lo0 (the loopback physical interface). 9187 * If unplumbing lo0, the incoming address structure has been 9188 * initialized to all zeros. When unplumbing lo0, all its logical 9189 * interfaces must be removed too. 9190 * 9191 * Note that this interface may be called to remove a specific 9192 * loopback logical interface (eg, lo0:1). But in that case 9193 * ipif->ipif_id != 0 so that the code path for that case is the 9194 * same as any other interface (meaning it skips the code directly 9195 * below). 9196 */ 9197 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9198 if (sin->sin_family == AF_UNSPEC && 9199 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9200 /* 9201 * Mark it condemned. No new ref. will be made to ill. 9202 */ 9203 mutex_enter(&ill->ill_lock); 9204 ill->ill_state_flags |= ILL_CONDEMNED; 9205 for (ipif = ill->ill_ipif; ipif != NULL; 9206 ipif = ipif->ipif_next) { 9207 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9208 } 9209 mutex_exit(&ill->ill_lock); 9210 9211 ipif = ill->ill_ipif; 9212 /* unplumb the loopback interface */ 9213 ill_delete(ill); 9214 mutex_enter(&connp->conn_lock); 9215 mutex_enter(&ill->ill_lock); 9216 9217 /* Are any references to this ill active */ 9218 if (ill_is_freeable(ill)) { 9219 mutex_exit(&ill->ill_lock); 9220 mutex_exit(&connp->conn_lock); 9221 ill_delete_tail(ill); 9222 mi_free(ill); 9223 return (0); 9224 } 9225 success = ipsq_pending_mp_add(connp, ipif, 9226 CONNP_TO_WQ(connp), mp, ILL_FREE); 9227 mutex_exit(&connp->conn_lock); 9228 mutex_exit(&ill->ill_lock); 9229 if (success) 9230 return (EINPROGRESS); 9231 else 9232 return (EINTR); 9233 } 9234 } 9235 9236 if (ipif->ipif_id == 0) { 9237 ipsq_t *ipsq; 9238 9239 /* Find based on address */ 9240 if (ipif->ipif_isv6) { 9241 sin6_t *sin6; 9242 9243 if (sin->sin_family != AF_INET6) 9244 return (EAFNOSUPPORT); 9245 9246 sin6 = (sin6_t *)sin; 9247 /* We are a writer, so we should be able to lookup */ 9248 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9249 ipst); 9250 } else { 9251 if (sin->sin_family != AF_INET) 9252 return (EAFNOSUPPORT); 9253 9254 /* We are a writer, so we should be able to lookup */ 9255 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9256 ipst); 9257 } 9258 if (ipif == NULL) { 9259 return (EADDRNOTAVAIL); 9260 } 9261 9262 /* 9263 * It is possible for a user to send an SIOCLIFREMOVEIF with 9264 * lifr_name of the physical interface but with an ip address 9265 * lifr_addr of a logical interface plumbed over it. 9266 * So update ipx_current_ipif now that ipif points to the 9267 * correct one. 9268 */ 9269 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9270 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9271 9272 /* This is a writer */ 9273 ipif_refrele(ipif); 9274 } 9275 9276 /* 9277 * Can not delete instance zero since it is tied to the ill. 9278 */ 9279 if (ipif->ipif_id == 0) 9280 return (EBUSY); 9281 9282 mutex_enter(&ill->ill_lock); 9283 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9284 mutex_exit(&ill->ill_lock); 9285 9286 ipif_free(ipif); 9287 9288 mutex_enter(&connp->conn_lock); 9289 mutex_enter(&ill->ill_lock); 9290 9291 /* Are any references to this ipif active */ 9292 if (ipif_is_freeable(ipif)) { 9293 mutex_exit(&ill->ill_lock); 9294 mutex_exit(&connp->conn_lock); 9295 ipif_non_duplicate(ipif); 9296 (void) ipif_down_tail(ipif); 9297 ipif_free_tail(ipif); /* frees ipif */ 9298 return (0); 9299 } 9300 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9301 IPIF_FREE); 9302 mutex_exit(&ill->ill_lock); 9303 mutex_exit(&connp->conn_lock); 9304 if (success) 9305 return (EINPROGRESS); 9306 else 9307 return (EINTR); 9308 } 9309 9310 /* 9311 * Restart the removeif ioctl. The refcnt has gone down to 0. 9312 * The ipif is already condemned. So can't find it thru lookups. 9313 */ 9314 /* ARGSUSED */ 9315 int 9316 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9317 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9318 { 9319 ill_t *ill = ipif->ipif_ill; 9320 9321 ASSERT(IAM_WRITER_IPIF(ipif)); 9322 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9323 9324 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9325 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9326 9327 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9328 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9329 ill_delete_tail(ill); 9330 mi_free(ill); 9331 return (0); 9332 } 9333 9334 ipif_non_duplicate(ipif); 9335 (void) ipif_down_tail(ipif); 9336 ipif_free_tail(ipif); 9337 9338 return (0); 9339 } 9340 9341 /* 9342 * Set the local interface address. 9343 * Allow an address of all zero when the interface is down. 9344 */ 9345 /* ARGSUSED */ 9346 int 9347 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9348 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9349 { 9350 int err = 0; 9351 in6_addr_t v6addr; 9352 boolean_t need_up = B_FALSE; 9353 9354 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9355 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9356 9357 ASSERT(IAM_WRITER_IPIF(ipif)); 9358 9359 if (ipif->ipif_isv6) { 9360 sin6_t *sin6; 9361 ill_t *ill; 9362 phyint_t *phyi; 9363 9364 if (sin->sin_family != AF_INET6) 9365 return (EAFNOSUPPORT); 9366 9367 sin6 = (sin6_t *)sin; 9368 v6addr = sin6->sin6_addr; 9369 ill = ipif->ipif_ill; 9370 phyi = ill->ill_phyint; 9371 9372 /* 9373 * Enforce that true multicast interfaces have a link-local 9374 * address for logical unit 0. 9375 */ 9376 if (ipif->ipif_id == 0 && 9377 (ill->ill_flags & ILLF_MULTICAST) && 9378 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9379 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9380 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9381 return (EADDRNOTAVAIL); 9382 } 9383 9384 /* 9385 * up interfaces shouldn't have the unspecified address 9386 * unless they also have the IPIF_NOLOCAL flags set and 9387 * have a subnet assigned. 9388 */ 9389 if ((ipif->ipif_flags & IPIF_UP) && 9390 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9391 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9392 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9393 return (EADDRNOTAVAIL); 9394 } 9395 9396 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9397 return (EADDRNOTAVAIL); 9398 } else { 9399 ipaddr_t addr; 9400 9401 if (sin->sin_family != AF_INET) 9402 return (EAFNOSUPPORT); 9403 9404 addr = sin->sin_addr.s_addr; 9405 9406 /* Allow 0 as the local address. */ 9407 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9408 return (EADDRNOTAVAIL); 9409 9410 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9411 } 9412 9413 /* 9414 * Even if there is no change we redo things just to rerun 9415 * ipif_set_default. 9416 */ 9417 if (ipif->ipif_flags & IPIF_UP) { 9418 /* 9419 * Setting a new local address, make sure 9420 * we have net and subnet bcast ire's for 9421 * the old address if we need them. 9422 */ 9423 /* 9424 * If the interface is already marked up, 9425 * we call ipif_down which will take care 9426 * of ditching any IREs that have been set 9427 * up based on the old interface address. 9428 */ 9429 err = ipif_logical_down(ipif, q, mp); 9430 if (err == EINPROGRESS) 9431 return (err); 9432 (void) ipif_down_tail(ipif); 9433 need_up = 1; 9434 } 9435 9436 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9437 return (err); 9438 } 9439 9440 int 9441 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9442 boolean_t need_up) 9443 { 9444 in6_addr_t v6addr; 9445 in6_addr_t ov6addr; 9446 ipaddr_t addr; 9447 sin6_t *sin6; 9448 int sinlen; 9449 int err = 0; 9450 ill_t *ill = ipif->ipif_ill; 9451 boolean_t need_dl_down; 9452 boolean_t need_arp_down; 9453 struct iocblk *iocp; 9454 9455 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9456 9457 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9458 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9459 ASSERT(IAM_WRITER_IPIF(ipif)); 9460 9461 /* Must cancel any pending timer before taking the ill_lock */ 9462 if (ipif->ipif_recovery_id != 0) 9463 (void) untimeout(ipif->ipif_recovery_id); 9464 ipif->ipif_recovery_id = 0; 9465 9466 if (ipif->ipif_isv6) { 9467 sin6 = (sin6_t *)sin; 9468 v6addr = sin6->sin6_addr; 9469 sinlen = sizeof (struct sockaddr_in6); 9470 } else { 9471 addr = sin->sin_addr.s_addr; 9472 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9473 sinlen = sizeof (struct sockaddr_in); 9474 } 9475 mutex_enter(&ill->ill_lock); 9476 ov6addr = ipif->ipif_v6lcl_addr; 9477 ipif->ipif_v6lcl_addr = v6addr; 9478 sctp_update_ipif_addr(ipif, ov6addr); 9479 ipif->ipif_addr_ready = 0; 9480 9481 /* 9482 * If the interface was previously marked as a duplicate, then since 9483 * we've now got a "new" address, it should no longer be considered a 9484 * duplicate -- even if the "new" address is the same as the old one. 9485 * Note that if all ipifs are down, we may have a pending ARP down 9486 * event to handle. This is because we want to recover from duplicates 9487 * and thus delay tearing down ARP until the duplicates have been 9488 * removed or disabled. 9489 */ 9490 need_dl_down = need_arp_down = B_FALSE; 9491 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9492 need_arp_down = !need_up; 9493 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9494 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9495 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9496 need_dl_down = B_TRUE; 9497 } 9498 } 9499 9500 ipif_set_default(ipif); 9501 9502 /* 9503 * If we've just manually set the IPv6 link-local address (0th ipif), 9504 * tag the ill so that future updates to the interface ID don't result 9505 * in this address getting automatically reconfigured from under the 9506 * administrator. 9507 */ 9508 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9509 ill->ill_manual_linklocal = 1; 9510 9511 /* 9512 * When publishing an interface address change event, we only notify 9513 * the event listeners of the new address. It is assumed that if they 9514 * actively care about the addresses assigned that they will have 9515 * already discovered the previous address assigned (if there was one.) 9516 * 9517 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9518 */ 9519 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9520 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9521 NE_ADDRESS_CHANGE, sin, sinlen); 9522 } 9523 9524 mutex_exit(&ill->ill_lock); 9525 9526 if (need_up) { 9527 /* 9528 * Now bring the interface back up. If this 9529 * is the only IPIF for the ILL, ipif_up 9530 * will have to re-bind to the device, so 9531 * we may get back EINPROGRESS, in which 9532 * case, this IOCTL will get completed in 9533 * ip_rput_dlpi when we see the DL_BIND_ACK. 9534 */ 9535 err = ipif_up(ipif, q, mp); 9536 } else { 9537 /* Perhaps ilgs should use this ill */ 9538 update_conn_ill(NULL, ill->ill_ipst); 9539 } 9540 9541 if (need_dl_down) 9542 ill_dl_down(ill); 9543 9544 if (need_arp_down && !ill->ill_isv6) 9545 (void) ipif_arp_down(ipif); 9546 9547 /* 9548 * The default multicast interface might have changed (for 9549 * instance if the IPv6 scope of the address changed) 9550 */ 9551 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9552 9553 return (err); 9554 } 9555 9556 /* 9557 * Restart entry point to restart the address set operation after the 9558 * refcounts have dropped to zero. 9559 */ 9560 /* ARGSUSED */ 9561 int 9562 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9563 ip_ioctl_cmd_t *ipip, void *ifreq) 9564 { 9565 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9566 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9567 ASSERT(IAM_WRITER_IPIF(ipif)); 9568 (void) ipif_down_tail(ipif); 9569 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9570 } 9571 9572 /* ARGSUSED */ 9573 int 9574 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9575 ip_ioctl_cmd_t *ipip, void *if_req) 9576 { 9577 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9578 struct lifreq *lifr = (struct lifreq *)if_req; 9579 9580 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9581 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9582 /* 9583 * The net mask and address can't change since we have a 9584 * reference to the ipif. So no lock is necessary. 9585 */ 9586 if (ipif->ipif_isv6) { 9587 *sin6 = sin6_null; 9588 sin6->sin6_family = AF_INET6; 9589 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9590 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9591 lifr->lifr_addrlen = 9592 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9593 } else { 9594 *sin = sin_null; 9595 sin->sin_family = AF_INET; 9596 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9597 if (ipip->ipi_cmd_type == LIF_CMD) { 9598 lifr->lifr_addrlen = 9599 ip_mask_to_plen(ipif->ipif_net_mask); 9600 } 9601 } 9602 return (0); 9603 } 9604 9605 /* 9606 * Set the destination address for a pt-pt interface. 9607 */ 9608 /* ARGSUSED */ 9609 int 9610 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9611 ip_ioctl_cmd_t *ipip, void *if_req) 9612 { 9613 int err = 0; 9614 in6_addr_t v6addr; 9615 boolean_t need_up = B_FALSE; 9616 9617 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9618 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9619 ASSERT(IAM_WRITER_IPIF(ipif)); 9620 9621 if (ipif->ipif_isv6) { 9622 sin6_t *sin6; 9623 9624 if (sin->sin_family != AF_INET6) 9625 return (EAFNOSUPPORT); 9626 9627 sin6 = (sin6_t *)sin; 9628 v6addr = sin6->sin6_addr; 9629 9630 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9631 return (EADDRNOTAVAIL); 9632 } else { 9633 ipaddr_t addr; 9634 9635 if (sin->sin_family != AF_INET) 9636 return (EAFNOSUPPORT); 9637 9638 addr = sin->sin_addr.s_addr; 9639 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9640 return (EADDRNOTAVAIL); 9641 9642 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9643 } 9644 9645 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9646 return (0); /* No change */ 9647 9648 if (ipif->ipif_flags & IPIF_UP) { 9649 /* 9650 * If the interface is already marked up, 9651 * we call ipif_down which will take care 9652 * of ditching any IREs that have been set 9653 * up based on the old pp dst address. 9654 */ 9655 err = ipif_logical_down(ipif, q, mp); 9656 if (err == EINPROGRESS) 9657 return (err); 9658 (void) ipif_down_tail(ipif); 9659 need_up = B_TRUE; 9660 } 9661 /* 9662 * could return EINPROGRESS. If so ioctl will complete in 9663 * ip_rput_dlpi_writer 9664 */ 9665 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9666 return (err); 9667 } 9668 9669 static int 9670 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9671 boolean_t need_up) 9672 { 9673 in6_addr_t v6addr; 9674 ill_t *ill = ipif->ipif_ill; 9675 int err = 0; 9676 boolean_t need_dl_down; 9677 boolean_t need_arp_down; 9678 9679 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9680 ipif->ipif_id, (void *)ipif)); 9681 9682 /* Must cancel any pending timer before taking the ill_lock */ 9683 if (ipif->ipif_recovery_id != 0) 9684 (void) untimeout(ipif->ipif_recovery_id); 9685 ipif->ipif_recovery_id = 0; 9686 9687 if (ipif->ipif_isv6) { 9688 sin6_t *sin6; 9689 9690 sin6 = (sin6_t *)sin; 9691 v6addr = sin6->sin6_addr; 9692 } else { 9693 ipaddr_t addr; 9694 9695 addr = sin->sin_addr.s_addr; 9696 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9697 } 9698 mutex_enter(&ill->ill_lock); 9699 /* Set point to point destination address. */ 9700 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9701 /* 9702 * Allow this as a means of creating logical 9703 * pt-pt interfaces on top of e.g. an Ethernet. 9704 * XXX Undocumented HACK for testing. 9705 * pt-pt interfaces are created with NUD disabled. 9706 */ 9707 ipif->ipif_flags |= IPIF_POINTOPOINT; 9708 ipif->ipif_flags &= ~IPIF_BROADCAST; 9709 if (ipif->ipif_isv6) 9710 ill->ill_flags |= ILLF_NONUD; 9711 } 9712 9713 /* 9714 * If the interface was previously marked as a duplicate, then since 9715 * we've now got a "new" address, it should no longer be considered a 9716 * duplicate -- even if the "new" address is the same as the old one. 9717 * Note that if all ipifs are down, we may have a pending ARP down 9718 * event to handle. 9719 */ 9720 need_dl_down = need_arp_down = B_FALSE; 9721 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9722 need_arp_down = !need_up; 9723 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9724 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9725 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9726 need_dl_down = B_TRUE; 9727 } 9728 } 9729 9730 /* Set the new address. */ 9731 ipif->ipif_v6pp_dst_addr = v6addr; 9732 /* Make sure subnet tracks pp_dst */ 9733 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9734 mutex_exit(&ill->ill_lock); 9735 9736 if (need_up) { 9737 /* 9738 * Now bring the interface back up. If this 9739 * is the only IPIF for the ILL, ipif_up 9740 * will have to re-bind to the device, so 9741 * we may get back EINPROGRESS, in which 9742 * case, this IOCTL will get completed in 9743 * ip_rput_dlpi when we see the DL_BIND_ACK. 9744 */ 9745 err = ipif_up(ipif, q, mp); 9746 } 9747 9748 if (need_dl_down) 9749 ill_dl_down(ill); 9750 if (need_arp_down && !ipif->ipif_isv6) 9751 (void) ipif_arp_down(ipif); 9752 9753 return (err); 9754 } 9755 9756 /* 9757 * Restart entry point to restart the dstaddress set operation after the 9758 * refcounts have dropped to zero. 9759 */ 9760 /* ARGSUSED */ 9761 int 9762 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9763 ip_ioctl_cmd_t *ipip, void *ifreq) 9764 { 9765 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9766 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9767 (void) ipif_down_tail(ipif); 9768 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9769 } 9770 9771 /* ARGSUSED */ 9772 int 9773 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9774 ip_ioctl_cmd_t *ipip, void *if_req) 9775 { 9776 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9777 9778 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9779 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9780 /* 9781 * Get point to point destination address. The addresses can't 9782 * change since we hold a reference to the ipif. 9783 */ 9784 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9785 return (EADDRNOTAVAIL); 9786 9787 if (ipif->ipif_isv6) { 9788 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9789 *sin6 = sin6_null; 9790 sin6->sin6_family = AF_INET6; 9791 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9792 } else { 9793 *sin = sin_null; 9794 sin->sin_family = AF_INET; 9795 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9796 } 9797 return (0); 9798 } 9799 9800 /* 9801 * Set interface flags. Many flags require special handling (e.g., 9802 * bringing the interface down); see below for details. 9803 * 9804 * NOTE : We really don't enforce that ipif_id zero should be used 9805 * for setting any flags other than IFF_LOGINT_FLAGS. This 9806 * is because applications generally does SICGLIFFLAGS and 9807 * ORs in the new flags (that affects the logical) and does a 9808 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9809 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9810 * flags that will be turned on is correct with respect to 9811 * ipif_id 0. For backward compatibility reasons, it is not done. 9812 */ 9813 /* ARGSUSED */ 9814 int 9815 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9816 ip_ioctl_cmd_t *ipip, void *if_req) 9817 { 9818 uint64_t turn_on; 9819 uint64_t turn_off; 9820 int err = 0; 9821 phyint_t *phyi; 9822 ill_t *ill; 9823 uint64_t intf_flags, cantchange_flags; 9824 boolean_t phyint_flags_modified = B_FALSE; 9825 uint64_t flags; 9826 struct ifreq *ifr; 9827 struct lifreq *lifr; 9828 boolean_t set_linklocal = B_FALSE; 9829 9830 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9831 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9832 9833 ASSERT(IAM_WRITER_IPIF(ipif)); 9834 9835 ill = ipif->ipif_ill; 9836 phyi = ill->ill_phyint; 9837 9838 if (ipip->ipi_cmd_type == IF_CMD) { 9839 ifr = (struct ifreq *)if_req; 9840 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 9841 } else { 9842 lifr = (struct lifreq *)if_req; 9843 flags = lifr->lifr_flags; 9844 } 9845 9846 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9847 9848 /* 9849 * Have the flags been set correctly until now? 9850 */ 9851 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 9852 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 9853 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 9854 /* 9855 * Compare the new flags to the old, and partition 9856 * into those coming on and those going off. 9857 * For the 16 bit command keep the bits above bit 16 unchanged. 9858 */ 9859 if (ipip->ipi_cmd == SIOCSIFFLAGS) 9860 flags |= intf_flags & ~0xFFFF; 9861 9862 /* 9863 * Explicitly fail attempts to change flags that are always invalid on 9864 * an IPMP meta-interface. 9865 */ 9866 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 9867 return (EINVAL); 9868 9869 /* 9870 * Check which flags will change; silently ignore flags which userland 9871 * is not allowed to control. (Because these flags may change between 9872 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 9873 * control, we need to silently ignore them rather than fail.) 9874 */ 9875 cantchange_flags = IFF_CANTCHANGE; 9876 if (IS_IPMP(ill)) 9877 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9878 9879 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9880 if (turn_on == 0) 9881 return (0); /* No change */ 9882 9883 turn_off = intf_flags & turn_on; 9884 turn_on ^= turn_off; 9885 9886 /* 9887 * All test addresses must be IFF_DEPRECATED (to ensure source address 9888 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 9889 * allow it to be turned off. 9890 */ 9891 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 9892 (turn_on|intf_flags) & IFF_NOFAILOVER) 9893 return (EINVAL); 9894 9895 if (turn_on & IFF_NOFAILOVER) { 9896 turn_on |= IFF_DEPRECATED; 9897 flags |= IFF_DEPRECATED; 9898 } 9899 9900 /* 9901 * On underlying interfaces, only allow applications to manage test 9902 * addresses -- otherwise, they may get confused when the address 9903 * moves as part of being brought up. Likewise, prevent an 9904 * application-managed test address from being converted to a data 9905 * address. To prevent migration of administratively up addresses in 9906 * the kernel, we don't allow them to be converted either. 9907 */ 9908 if (IS_UNDER_IPMP(ill)) { 9909 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 9910 9911 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 9912 return (EINVAL); 9913 9914 if ((turn_off & IFF_NOFAILOVER) && 9915 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 9916 return (EINVAL); 9917 } 9918 9919 /* 9920 * Only allow IFF_TEMPORARY flag to be set on 9921 * IPv6 interfaces. 9922 */ 9923 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 9924 return (EINVAL); 9925 9926 /* 9927 * cannot turn off IFF_NOXMIT on VNI interfaces. 9928 */ 9929 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 9930 return (EINVAL); 9931 9932 /* 9933 * Don't allow the IFF_ROUTER flag to be turned on on loopback 9934 * interfaces. It makes no sense in that context. 9935 */ 9936 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 9937 return (EINVAL); 9938 9939 /* 9940 * For IPv6 ipif_id 0, don't allow the interface to be up without 9941 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 9942 * If the link local address isn't set, and can be set, it will get 9943 * set later on in this function. 9944 */ 9945 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 9946 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 9947 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 9948 if (ipif_cant_setlinklocal(ipif)) 9949 return (EINVAL); 9950 set_linklocal = B_TRUE; 9951 } 9952 9953 /* 9954 * If we modify physical interface flags, we'll potentially need to 9955 * send up two routing socket messages for the changes (one for the 9956 * IPv4 ill, and another for the IPv6 ill). Note that here. 9957 */ 9958 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 9959 phyint_flags_modified = B_TRUE; 9960 9961 /* 9962 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 9963 * (otherwise, we'd immediately use them, defeating standby). Also, 9964 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 9965 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 9966 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 9967 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 9968 * will not be honored. 9969 */ 9970 if (turn_on & PHYI_STANDBY) { 9971 /* 9972 * No need to grab ill_g_usesrc_lock here; see the 9973 * synchronization notes in ip.c. 9974 */ 9975 if (ill->ill_usesrc_grp_next != NULL || 9976 intf_flags & PHYI_INACTIVE) 9977 return (EINVAL); 9978 if (!(flags & PHYI_FAILED)) { 9979 flags |= PHYI_INACTIVE; 9980 turn_on |= PHYI_INACTIVE; 9981 } 9982 } 9983 9984 if (turn_off & PHYI_STANDBY) { 9985 flags &= ~PHYI_INACTIVE; 9986 turn_off |= PHYI_INACTIVE; 9987 } 9988 9989 /* 9990 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 9991 * would end up on. 9992 */ 9993 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 9994 (PHYI_FAILED | PHYI_INACTIVE)) 9995 return (EINVAL); 9996 9997 /* 9998 * If ILLF_ROUTER changes, we need to change the ip forwarding 9999 * status of the interface. 10000 */ 10001 if ((turn_on | turn_off) & ILLF_ROUTER) 10002 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10003 10004 /* 10005 * If the interface is not UP and we are not going to 10006 * bring it UP, record the flags and return. When the 10007 * interface comes UP later, the right actions will be 10008 * taken. 10009 */ 10010 if (!(ipif->ipif_flags & IPIF_UP) && 10011 !(turn_on & IPIF_UP)) { 10012 /* Record new flags in their respective places. */ 10013 mutex_enter(&ill->ill_lock); 10014 mutex_enter(&ill->ill_phyint->phyint_lock); 10015 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10016 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10017 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10018 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10019 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10020 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10021 mutex_exit(&ill->ill_lock); 10022 mutex_exit(&ill->ill_phyint->phyint_lock); 10023 10024 /* 10025 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10026 * same to the kernel: if any of them has been set by 10027 * userland, the interface cannot be used for data traffic. 10028 */ 10029 if ((turn_on|turn_off) & 10030 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10031 ASSERT(!IS_IPMP(ill)); 10032 /* 10033 * It's possible the ill is part of an "anonymous" 10034 * IPMP group rather than a real group. In that case, 10035 * there are no other interfaces in the group and thus 10036 * no need to call ipmp_phyint_refresh_active(). 10037 */ 10038 if (IS_UNDER_IPMP(ill)) 10039 ipmp_phyint_refresh_active(phyi); 10040 } 10041 10042 if (phyint_flags_modified) { 10043 if (phyi->phyint_illv4 != NULL) { 10044 ip_rts_ifmsg(phyi->phyint_illv4-> 10045 ill_ipif, RTSQ_DEFAULT); 10046 } 10047 if (phyi->phyint_illv6 != NULL) { 10048 ip_rts_ifmsg(phyi->phyint_illv6-> 10049 ill_ipif, RTSQ_DEFAULT); 10050 } 10051 } 10052 /* The default multicast interface might have changed */ 10053 ire_increment_multicast_generation(ill->ill_ipst, 10054 ill->ill_isv6); 10055 10056 return (0); 10057 } else if (set_linklocal) { 10058 mutex_enter(&ill->ill_lock); 10059 if (set_linklocal) 10060 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10061 mutex_exit(&ill->ill_lock); 10062 } 10063 10064 /* 10065 * Disallow IPv6 interfaces coming up that have the unspecified address, 10066 * or point-to-point interfaces with an unspecified destination. We do 10067 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10068 * have a subnet assigned, which is how in.ndpd currently manages its 10069 * onlink prefix list when no addresses are configured with those 10070 * prefixes. 10071 */ 10072 if (ipif->ipif_isv6 && 10073 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10074 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10075 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10076 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10077 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10078 return (EINVAL); 10079 } 10080 10081 /* 10082 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10083 * from being brought up. 10084 */ 10085 if (!ipif->ipif_isv6 && 10086 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10087 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10088 return (EINVAL); 10089 } 10090 10091 /* 10092 * The only flag changes that we currently take specific action on are 10093 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10094 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10095 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 10096 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 10097 * of bringing it back up will trigger the address to be moved. 10098 */ 10099 if ((turn_on|turn_off) & 10100 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10101 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10102 IPIF_NOFAILOVER)) { 10103 /* 10104 * ipif_down() will ire_delete bcast ire's for the subnet, 10105 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10106 * entries shared between multiple ipifs on the same subnet. 10107 */ 10108 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10109 !(turn_off & IPIF_UP)) { 10110 if (ipif->ipif_flags & IPIF_UP) 10111 ill->ill_logical_down = 1; 10112 turn_on &= ~IPIF_UP; 10113 } 10114 err = ipif_down(ipif, q, mp); 10115 ip1dbg(("ipif_down returns %d err ", err)); 10116 if (err == EINPROGRESS) 10117 return (err); 10118 (void) ipif_down_tail(ipif); 10119 } 10120 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10121 } 10122 10123 static int 10124 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10125 { 10126 ill_t *ill; 10127 phyint_t *phyi; 10128 uint64_t turn_on, turn_off; 10129 uint64_t intf_flags, cantchange_flags; 10130 boolean_t phyint_flags_modified = B_FALSE; 10131 int err = 0; 10132 boolean_t set_linklocal = B_FALSE; 10133 10134 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10135 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10136 10137 ASSERT(IAM_WRITER_IPIF(ipif)); 10138 10139 ill = ipif->ipif_ill; 10140 phyi = ill->ill_phyint; 10141 10142 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10143 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 10144 if (IS_IPMP(ill)) 10145 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10146 10147 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10148 turn_off = intf_flags & turn_on; 10149 turn_on ^= turn_off; 10150 10151 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10152 phyint_flags_modified = B_TRUE; 10153 10154 /* 10155 * Now we change the flags. Track current value of 10156 * other flags in their respective places. 10157 */ 10158 mutex_enter(&ill->ill_lock); 10159 mutex_enter(&phyi->phyint_lock); 10160 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10161 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10162 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10163 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10164 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10165 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10166 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10167 set_linklocal = B_TRUE; 10168 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10169 } 10170 10171 mutex_exit(&ill->ill_lock); 10172 mutex_exit(&phyi->phyint_lock); 10173 10174 if (set_linklocal) 10175 (void) ipif_setlinklocal(ipif); 10176 10177 /* 10178 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10179 * the kernel: if any of them has been set by userland, the interface 10180 * cannot be used for data traffic. 10181 */ 10182 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10183 ASSERT(!IS_IPMP(ill)); 10184 /* 10185 * It's possible the ill is part of an "anonymous" IPMP group 10186 * rather than a real group. In that case, there are no other 10187 * interfaces in the group and thus no need for us to call 10188 * ipmp_phyint_refresh_active(). 10189 */ 10190 if (IS_UNDER_IPMP(ill)) 10191 ipmp_phyint_refresh_active(phyi); 10192 } 10193 10194 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10195 /* 10196 * XXX ipif_up really does not know whether a phyint flags 10197 * was modified or not. So, it sends up information on 10198 * only one routing sockets message. As we don't bring up 10199 * the interface and also set PHYI_ flags simultaneously 10200 * it should be okay. 10201 */ 10202 err = ipif_up(ipif, q, mp); 10203 } else { 10204 /* 10205 * Make sure routing socket sees all changes to the flags. 10206 * ipif_up_done* handles this when we use ipif_up. 10207 */ 10208 if (phyint_flags_modified) { 10209 if (phyi->phyint_illv4 != NULL) { 10210 ip_rts_ifmsg(phyi->phyint_illv4-> 10211 ill_ipif, RTSQ_DEFAULT); 10212 } 10213 if (phyi->phyint_illv6 != NULL) { 10214 ip_rts_ifmsg(phyi->phyint_illv6-> 10215 ill_ipif, RTSQ_DEFAULT); 10216 } 10217 } else { 10218 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10219 } 10220 /* 10221 * Update the flags in SCTP's IPIF list, ipif_up() will do 10222 * this in need_up case. 10223 */ 10224 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10225 } 10226 10227 /* The default multicast interface might have changed */ 10228 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10229 return (err); 10230 } 10231 10232 /* 10233 * Restart the flags operation now that the refcounts have dropped to zero. 10234 */ 10235 /* ARGSUSED */ 10236 int 10237 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10238 ip_ioctl_cmd_t *ipip, void *if_req) 10239 { 10240 uint64_t flags; 10241 struct ifreq *ifr = if_req; 10242 struct lifreq *lifr = if_req; 10243 10244 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10245 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10246 10247 (void) ipif_down_tail(ipif); 10248 if (ipip->ipi_cmd_type == IF_CMD) { 10249 /* cast to uint16_t prevents unwanted sign extension */ 10250 flags = (uint16_t)ifr->ifr_flags; 10251 } else { 10252 flags = lifr->lifr_flags; 10253 } 10254 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10255 } 10256 10257 /* 10258 * Can operate on either a module or a driver queue. 10259 */ 10260 /* ARGSUSED */ 10261 int 10262 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10263 ip_ioctl_cmd_t *ipip, void *if_req) 10264 { 10265 /* 10266 * Has the flags been set correctly till now ? 10267 */ 10268 ill_t *ill = ipif->ipif_ill; 10269 phyint_t *phyi = ill->ill_phyint; 10270 10271 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10272 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10273 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10274 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10275 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10276 10277 /* 10278 * Need a lock since some flags can be set even when there are 10279 * references to the ipif. 10280 */ 10281 mutex_enter(&ill->ill_lock); 10282 if (ipip->ipi_cmd_type == IF_CMD) { 10283 struct ifreq *ifr = (struct ifreq *)if_req; 10284 10285 /* Get interface flags (low 16 only). */ 10286 ifr->ifr_flags = ((ipif->ipif_flags | 10287 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10288 } else { 10289 struct lifreq *lifr = (struct lifreq *)if_req; 10290 10291 /* Get interface flags. */ 10292 lifr->lifr_flags = ipif->ipif_flags | 10293 ill->ill_flags | phyi->phyint_flags; 10294 } 10295 mutex_exit(&ill->ill_lock); 10296 return (0); 10297 } 10298 10299 /* 10300 * We allow the MTU to be set on an ILL, but not have it be different 10301 * for different IPIFs since we don't actually send packets on IPIFs. 10302 */ 10303 /* ARGSUSED */ 10304 int 10305 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10306 ip_ioctl_cmd_t *ipip, void *if_req) 10307 { 10308 int mtu; 10309 int ip_min_mtu; 10310 struct ifreq *ifr; 10311 struct lifreq *lifr; 10312 ill_t *ill; 10313 10314 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10315 ipif->ipif_id, (void *)ipif)); 10316 if (ipip->ipi_cmd_type == IF_CMD) { 10317 ifr = (struct ifreq *)if_req; 10318 mtu = ifr->ifr_metric; 10319 } else { 10320 lifr = (struct lifreq *)if_req; 10321 mtu = lifr->lifr_mtu; 10322 } 10323 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10324 if (ipif->ipif_id != 0) 10325 return (EINVAL); 10326 10327 ill = ipif->ipif_ill; 10328 if (ipif->ipif_isv6) 10329 ip_min_mtu = IPV6_MIN_MTU; 10330 else 10331 ip_min_mtu = IP_MIN_MTU; 10332 10333 mutex_enter(&ill->ill_lock); 10334 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10335 mutex_exit(&ill->ill_lock); 10336 return (EINVAL); 10337 } 10338 /* 10339 * The dce and fragmentation code can handle changes to ill_mtu 10340 * concurrent with sending/fragmenting packets. 10341 */ 10342 ill->ill_mtu = mtu; 10343 ill->ill_flags |= ILLF_FIXEDMTU; 10344 mutex_exit(&ill->ill_lock); 10345 10346 /* 10347 * Make sure all dce_generation checks find out 10348 * that ill_mtu has changed. 10349 */ 10350 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10351 10352 /* Update the MTU in SCTP's list */ 10353 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10354 return (0); 10355 } 10356 10357 /* Get interface MTU. */ 10358 /* ARGSUSED */ 10359 int 10360 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10361 ip_ioctl_cmd_t *ipip, void *if_req) 10362 { 10363 struct ifreq *ifr; 10364 struct lifreq *lifr; 10365 10366 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10367 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10368 10369 /* 10370 * We allow a get on any logical interface even though the set 10371 * can only be done on logical unit 0. 10372 */ 10373 if (ipip->ipi_cmd_type == IF_CMD) { 10374 ifr = (struct ifreq *)if_req; 10375 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10376 } else { 10377 lifr = (struct lifreq *)if_req; 10378 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10379 } 10380 return (0); 10381 } 10382 10383 /* Set interface broadcast address. */ 10384 /* ARGSUSED2 */ 10385 int 10386 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10387 ip_ioctl_cmd_t *ipip, void *if_req) 10388 { 10389 ipaddr_t addr; 10390 ire_t *ire; 10391 ill_t *ill = ipif->ipif_ill; 10392 ip_stack_t *ipst = ill->ill_ipst; 10393 10394 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10395 ipif->ipif_id)); 10396 10397 ASSERT(IAM_WRITER_IPIF(ipif)); 10398 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10399 return (EADDRNOTAVAIL); 10400 10401 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10402 10403 if (sin->sin_family != AF_INET) 10404 return (EAFNOSUPPORT); 10405 10406 addr = sin->sin_addr.s_addr; 10407 if (ipif->ipif_flags & IPIF_UP) { 10408 /* 10409 * If we are already up, make sure the new 10410 * broadcast address makes sense. If it does, 10411 * there should be an IRE for it already. 10412 */ 10413 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10414 ill, ipif->ipif_zoneid, NULL, 10415 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10416 if (ire == NULL) { 10417 return (EINVAL); 10418 } else { 10419 ire_refrele(ire); 10420 } 10421 } 10422 /* 10423 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10424 * needs to already exist we never need to change the set of 10425 * IRE_BROADCASTs when we are UP. 10426 */ 10427 if (addr != ipif->ipif_brd_addr) 10428 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10429 10430 return (0); 10431 } 10432 10433 /* Get interface broadcast address. */ 10434 /* ARGSUSED */ 10435 int 10436 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10437 ip_ioctl_cmd_t *ipip, void *if_req) 10438 { 10439 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10440 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10441 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10442 return (EADDRNOTAVAIL); 10443 10444 /* IPIF_BROADCAST not possible with IPv6 */ 10445 ASSERT(!ipif->ipif_isv6); 10446 *sin = sin_null; 10447 sin->sin_family = AF_INET; 10448 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10449 return (0); 10450 } 10451 10452 /* 10453 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10454 */ 10455 /* ARGSUSED */ 10456 int 10457 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10458 ip_ioctl_cmd_t *ipip, void *if_req) 10459 { 10460 int err = 0; 10461 in6_addr_t v6mask; 10462 10463 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10464 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10465 10466 ASSERT(IAM_WRITER_IPIF(ipif)); 10467 10468 if (ipif->ipif_isv6) { 10469 sin6_t *sin6; 10470 10471 if (sin->sin_family != AF_INET6) 10472 return (EAFNOSUPPORT); 10473 10474 sin6 = (sin6_t *)sin; 10475 v6mask = sin6->sin6_addr; 10476 } else { 10477 ipaddr_t mask; 10478 10479 if (sin->sin_family != AF_INET) 10480 return (EAFNOSUPPORT); 10481 10482 mask = sin->sin_addr.s_addr; 10483 V4MASK_TO_V6(mask, v6mask); 10484 } 10485 10486 /* 10487 * No big deal if the interface isn't already up, or the mask 10488 * isn't really changing, or this is pt-pt. 10489 */ 10490 if (!(ipif->ipif_flags & IPIF_UP) || 10491 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10492 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10493 ipif->ipif_v6net_mask = v6mask; 10494 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10495 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10496 ipif->ipif_v6net_mask, 10497 ipif->ipif_v6subnet); 10498 } 10499 return (0); 10500 } 10501 /* 10502 * Make sure we have valid net and subnet broadcast ire's 10503 * for the old netmask, if needed by other logical interfaces. 10504 */ 10505 err = ipif_logical_down(ipif, q, mp); 10506 if (err == EINPROGRESS) 10507 return (err); 10508 (void) ipif_down_tail(ipif); 10509 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10510 return (err); 10511 } 10512 10513 static int 10514 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10515 { 10516 in6_addr_t v6mask; 10517 int err = 0; 10518 10519 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10520 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10521 10522 if (ipif->ipif_isv6) { 10523 sin6_t *sin6; 10524 10525 sin6 = (sin6_t *)sin; 10526 v6mask = sin6->sin6_addr; 10527 } else { 10528 ipaddr_t mask; 10529 10530 mask = sin->sin_addr.s_addr; 10531 V4MASK_TO_V6(mask, v6mask); 10532 } 10533 10534 ipif->ipif_v6net_mask = v6mask; 10535 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10536 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10537 ipif->ipif_v6subnet); 10538 } 10539 err = ipif_up(ipif, q, mp); 10540 10541 if (err == 0 || err == EINPROGRESS) { 10542 /* 10543 * The interface must be DL_BOUND if this packet has to 10544 * go out on the wire. Since we only go through a logical 10545 * down and are bound with the driver during an internal 10546 * down/up that is satisfied. 10547 */ 10548 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10549 /* Potentially broadcast an address mask reply. */ 10550 ipif_mask_reply(ipif); 10551 } 10552 } 10553 return (err); 10554 } 10555 10556 /* ARGSUSED */ 10557 int 10558 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10559 ip_ioctl_cmd_t *ipip, void *if_req) 10560 { 10561 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10562 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10563 (void) ipif_down_tail(ipif); 10564 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10565 } 10566 10567 /* Get interface net mask. */ 10568 /* ARGSUSED */ 10569 int 10570 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10571 ip_ioctl_cmd_t *ipip, void *if_req) 10572 { 10573 struct lifreq *lifr = (struct lifreq *)if_req; 10574 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10575 10576 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10577 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10578 10579 /* 10580 * net mask can't change since we have a reference to the ipif. 10581 */ 10582 if (ipif->ipif_isv6) { 10583 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10584 *sin6 = sin6_null; 10585 sin6->sin6_family = AF_INET6; 10586 sin6->sin6_addr = ipif->ipif_v6net_mask; 10587 lifr->lifr_addrlen = 10588 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10589 } else { 10590 *sin = sin_null; 10591 sin->sin_family = AF_INET; 10592 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10593 if (ipip->ipi_cmd_type == LIF_CMD) { 10594 lifr->lifr_addrlen = 10595 ip_mask_to_plen(ipif->ipif_net_mask); 10596 } 10597 } 10598 return (0); 10599 } 10600 10601 /* ARGSUSED */ 10602 int 10603 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10604 ip_ioctl_cmd_t *ipip, void *if_req) 10605 { 10606 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10607 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10608 10609 /* 10610 * Since no applications should ever be setting metrics on underlying 10611 * interfaces, we explicitly fail to smoke 'em out. 10612 */ 10613 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10614 return (EINVAL); 10615 10616 /* 10617 * Set interface metric. We don't use this for 10618 * anything but we keep track of it in case it is 10619 * important to routing applications or such. 10620 */ 10621 if (ipip->ipi_cmd_type == IF_CMD) { 10622 struct ifreq *ifr; 10623 10624 ifr = (struct ifreq *)if_req; 10625 ipif->ipif_metric = ifr->ifr_metric; 10626 } else { 10627 struct lifreq *lifr; 10628 10629 lifr = (struct lifreq *)if_req; 10630 ipif->ipif_metric = lifr->lifr_metric; 10631 } 10632 return (0); 10633 } 10634 10635 /* ARGSUSED */ 10636 int 10637 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10638 ip_ioctl_cmd_t *ipip, void *if_req) 10639 { 10640 /* Get interface metric. */ 10641 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10642 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10643 10644 if (ipip->ipi_cmd_type == IF_CMD) { 10645 struct ifreq *ifr; 10646 10647 ifr = (struct ifreq *)if_req; 10648 ifr->ifr_metric = ipif->ipif_metric; 10649 } else { 10650 struct lifreq *lifr; 10651 10652 lifr = (struct lifreq *)if_req; 10653 lifr->lifr_metric = ipif->ipif_metric; 10654 } 10655 10656 return (0); 10657 } 10658 10659 /* ARGSUSED */ 10660 int 10661 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10662 ip_ioctl_cmd_t *ipip, void *if_req) 10663 { 10664 int arp_muxid; 10665 10666 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10668 /* 10669 * Set the muxid returned from I_PLINK. 10670 */ 10671 if (ipip->ipi_cmd_type == IF_CMD) { 10672 struct ifreq *ifr = (struct ifreq *)if_req; 10673 10674 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10675 arp_muxid = ifr->ifr_arp_muxid; 10676 } else { 10677 struct lifreq *lifr = (struct lifreq *)if_req; 10678 10679 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10680 arp_muxid = lifr->lifr_arp_muxid; 10681 } 10682 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10683 return (0); 10684 } 10685 10686 /* ARGSUSED */ 10687 int 10688 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10689 ip_ioctl_cmd_t *ipip, void *if_req) 10690 { 10691 int arp_muxid = 0; 10692 10693 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10694 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10695 /* 10696 * Get the muxid saved in ill for I_PUNLINK. 10697 */ 10698 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10699 if (ipip->ipi_cmd_type == IF_CMD) { 10700 struct ifreq *ifr = (struct ifreq *)if_req; 10701 10702 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10703 ifr->ifr_arp_muxid = arp_muxid; 10704 } else { 10705 struct lifreq *lifr = (struct lifreq *)if_req; 10706 10707 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10708 lifr->lifr_arp_muxid = arp_muxid; 10709 } 10710 return (0); 10711 } 10712 10713 /* 10714 * Set the subnet prefix. Does not modify the broadcast address. 10715 */ 10716 /* ARGSUSED */ 10717 int 10718 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10719 ip_ioctl_cmd_t *ipip, void *if_req) 10720 { 10721 int err = 0; 10722 in6_addr_t v6addr; 10723 in6_addr_t v6mask; 10724 boolean_t need_up = B_FALSE; 10725 int addrlen; 10726 10727 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10729 10730 ASSERT(IAM_WRITER_IPIF(ipif)); 10731 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10732 10733 if (ipif->ipif_isv6) { 10734 sin6_t *sin6; 10735 10736 if (sin->sin_family != AF_INET6) 10737 return (EAFNOSUPPORT); 10738 10739 sin6 = (sin6_t *)sin; 10740 v6addr = sin6->sin6_addr; 10741 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10742 return (EADDRNOTAVAIL); 10743 } else { 10744 ipaddr_t addr; 10745 10746 if (sin->sin_family != AF_INET) 10747 return (EAFNOSUPPORT); 10748 10749 addr = sin->sin_addr.s_addr; 10750 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10751 return (EADDRNOTAVAIL); 10752 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10753 /* Add 96 bits */ 10754 addrlen += IPV6_ABITS - IP_ABITS; 10755 } 10756 10757 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10758 return (EINVAL); 10759 10760 /* Check if bits in the address is set past the mask */ 10761 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10762 return (EINVAL); 10763 10764 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10765 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10766 return (0); /* No change */ 10767 10768 if (ipif->ipif_flags & IPIF_UP) { 10769 /* 10770 * If the interface is already marked up, 10771 * we call ipif_down which will take care 10772 * of ditching any IREs that have been set 10773 * up based on the old interface address. 10774 */ 10775 err = ipif_logical_down(ipif, q, mp); 10776 if (err == EINPROGRESS) 10777 return (err); 10778 (void) ipif_down_tail(ipif); 10779 need_up = B_TRUE; 10780 } 10781 10782 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 10783 return (err); 10784 } 10785 10786 static int 10787 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 10788 queue_t *q, mblk_t *mp, boolean_t need_up) 10789 { 10790 ill_t *ill = ipif->ipif_ill; 10791 int err = 0; 10792 10793 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 10794 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10795 10796 /* Set the new address. */ 10797 mutex_enter(&ill->ill_lock); 10798 ipif->ipif_v6net_mask = v6mask; 10799 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10800 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 10801 ipif->ipif_v6subnet); 10802 } 10803 mutex_exit(&ill->ill_lock); 10804 10805 if (need_up) { 10806 /* 10807 * Now bring the interface back up. If this 10808 * is the only IPIF for the ILL, ipif_up 10809 * will have to re-bind to the device, so 10810 * we may get back EINPROGRESS, in which 10811 * case, this IOCTL will get completed in 10812 * ip_rput_dlpi when we see the DL_BIND_ACK. 10813 */ 10814 err = ipif_up(ipif, q, mp); 10815 if (err == EINPROGRESS) 10816 return (err); 10817 } 10818 return (err); 10819 } 10820 10821 /* ARGSUSED */ 10822 int 10823 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10824 ip_ioctl_cmd_t *ipip, void *if_req) 10825 { 10826 int addrlen; 10827 in6_addr_t v6addr; 10828 in6_addr_t v6mask; 10829 struct lifreq *lifr = (struct lifreq *)if_req; 10830 10831 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 10832 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10833 (void) ipif_down_tail(ipif); 10834 10835 addrlen = lifr->lifr_addrlen; 10836 if (ipif->ipif_isv6) { 10837 sin6_t *sin6; 10838 10839 sin6 = (sin6_t *)sin; 10840 v6addr = sin6->sin6_addr; 10841 } else { 10842 ipaddr_t addr; 10843 10844 addr = sin->sin_addr.s_addr; 10845 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10846 addrlen += IPV6_ABITS - IP_ABITS; 10847 } 10848 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 10849 10850 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 10851 } 10852 10853 /* ARGSUSED */ 10854 int 10855 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10856 ip_ioctl_cmd_t *ipip, void *if_req) 10857 { 10858 struct lifreq *lifr = (struct lifreq *)if_req; 10859 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 10860 10861 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 10862 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10863 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10864 10865 if (ipif->ipif_isv6) { 10866 *sin6 = sin6_null; 10867 sin6->sin6_family = AF_INET6; 10868 sin6->sin6_addr = ipif->ipif_v6subnet; 10869 lifr->lifr_addrlen = 10870 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10871 } else { 10872 *sin = sin_null; 10873 sin->sin_family = AF_INET; 10874 sin->sin_addr.s_addr = ipif->ipif_subnet; 10875 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 10876 } 10877 return (0); 10878 } 10879 10880 /* 10881 * Set the IPv6 address token. 10882 */ 10883 /* ARGSUSED */ 10884 int 10885 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10886 ip_ioctl_cmd_t *ipi, void *if_req) 10887 { 10888 ill_t *ill = ipif->ipif_ill; 10889 int err; 10890 in6_addr_t v6addr; 10891 in6_addr_t v6mask; 10892 boolean_t need_up = B_FALSE; 10893 int i; 10894 sin6_t *sin6 = (sin6_t *)sin; 10895 struct lifreq *lifr = (struct lifreq *)if_req; 10896 int addrlen; 10897 10898 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 10899 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10900 ASSERT(IAM_WRITER_IPIF(ipif)); 10901 10902 addrlen = lifr->lifr_addrlen; 10903 /* Only allow for logical unit zero i.e. not on "le0:17" */ 10904 if (ipif->ipif_id != 0) 10905 return (EINVAL); 10906 10907 if (!ipif->ipif_isv6) 10908 return (EINVAL); 10909 10910 if (addrlen > IPV6_ABITS) 10911 return (EINVAL); 10912 10913 v6addr = sin6->sin6_addr; 10914 10915 /* 10916 * The length of the token is the length from the end. To get 10917 * the proper mask for this, compute the mask of the bits not 10918 * in the token; ie. the prefix, and then xor to get the mask. 10919 */ 10920 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 10921 return (EINVAL); 10922 for (i = 0; i < 4; i++) { 10923 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 10924 } 10925 10926 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 10927 ill->ill_token_length == addrlen) 10928 return (0); /* No change */ 10929 10930 if (ipif->ipif_flags & IPIF_UP) { 10931 err = ipif_logical_down(ipif, q, mp); 10932 if (err == EINPROGRESS) 10933 return (err); 10934 (void) ipif_down_tail(ipif); 10935 need_up = B_TRUE; 10936 } 10937 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 10938 return (err); 10939 } 10940 10941 static int 10942 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 10943 mblk_t *mp, boolean_t need_up) 10944 { 10945 in6_addr_t v6addr; 10946 in6_addr_t v6mask; 10947 ill_t *ill = ipif->ipif_ill; 10948 int i; 10949 int err = 0; 10950 10951 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 10952 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10953 v6addr = sin6->sin6_addr; 10954 /* 10955 * The length of the token is the length from the end. To get 10956 * the proper mask for this, compute the mask of the bits not 10957 * in the token; ie. the prefix, and then xor to get the mask. 10958 */ 10959 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 10960 for (i = 0; i < 4; i++) 10961 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 10962 10963 mutex_enter(&ill->ill_lock); 10964 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 10965 ill->ill_token_length = addrlen; 10966 ill->ill_manual_token = 1; 10967 10968 /* Reconfigure the link-local address based on this new token */ 10969 ipif_setlinklocal(ill->ill_ipif); 10970 10971 mutex_exit(&ill->ill_lock); 10972 10973 if (need_up) { 10974 /* 10975 * Now bring the interface back up. If this 10976 * is the only IPIF for the ILL, ipif_up 10977 * will have to re-bind to the device, so 10978 * we may get back EINPROGRESS, in which 10979 * case, this IOCTL will get completed in 10980 * ip_rput_dlpi when we see the DL_BIND_ACK. 10981 */ 10982 err = ipif_up(ipif, q, mp); 10983 if (err == EINPROGRESS) 10984 return (err); 10985 } 10986 return (err); 10987 } 10988 10989 /* ARGSUSED */ 10990 int 10991 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10992 ip_ioctl_cmd_t *ipi, void *if_req) 10993 { 10994 ill_t *ill; 10995 sin6_t *sin6 = (sin6_t *)sin; 10996 struct lifreq *lifr = (struct lifreq *)if_req; 10997 10998 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 10999 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11000 if (ipif->ipif_id != 0) 11001 return (EINVAL); 11002 11003 ill = ipif->ipif_ill; 11004 if (!ill->ill_isv6) 11005 return (ENXIO); 11006 11007 *sin6 = sin6_null; 11008 sin6->sin6_family = AF_INET6; 11009 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11010 sin6->sin6_addr = ill->ill_token; 11011 lifr->lifr_addrlen = ill->ill_token_length; 11012 return (0); 11013 } 11014 11015 /* 11016 * Set (hardware) link specific information that might override 11017 * what was acquired through the DL_INFO_ACK. 11018 */ 11019 /* ARGSUSED */ 11020 int 11021 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11022 ip_ioctl_cmd_t *ipi, void *if_req) 11023 { 11024 ill_t *ill = ipif->ipif_ill; 11025 int ip_min_mtu; 11026 struct lifreq *lifr = (struct lifreq *)if_req; 11027 lif_ifinfo_req_t *lir; 11028 11029 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11030 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11031 lir = &lifr->lifr_ifinfo; 11032 ASSERT(IAM_WRITER_IPIF(ipif)); 11033 11034 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11035 if (ipif->ipif_id != 0) 11036 return (EINVAL); 11037 11038 /* Set interface MTU. */ 11039 if (ipif->ipif_isv6) 11040 ip_min_mtu = IPV6_MIN_MTU; 11041 else 11042 ip_min_mtu = IP_MIN_MTU; 11043 11044 /* 11045 * Verify values before we set anything. Allow zero to 11046 * mean unspecified. 11047 * 11048 * XXX We should be able to set the user-defined lir_mtu to some value 11049 * that is greater than ill_current_frag but less than ill_max_frag- the 11050 * ill_max_frag value tells us the max MTU that can be handled by the 11051 * datalink, whereas the ill_current_frag is dynamically computed for 11052 * some link-types like tunnels, based on the tunnel PMTU. However, 11053 * since there is currently no way of distinguishing between 11054 * administratively fixed link mtu values (e.g., those set via 11055 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11056 * for tunnels) we conservatively choose the ill_current_frag as the 11057 * upper-bound. 11058 */ 11059 if (lir->lir_maxmtu != 0 && 11060 (lir->lir_maxmtu > ill->ill_current_frag || 11061 lir->lir_maxmtu < ip_min_mtu)) 11062 return (EINVAL); 11063 if (lir->lir_reachtime != 0 && 11064 lir->lir_reachtime > ND_MAX_REACHTIME) 11065 return (EINVAL); 11066 if (lir->lir_reachretrans != 0 && 11067 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11068 return (EINVAL); 11069 11070 mutex_enter(&ill->ill_lock); 11071 /* 11072 * The dce and fragmentation code can handle changes to ill_mtu 11073 * concurrent with sending/fragmenting packets. 11074 */ 11075 if (lir->lir_maxmtu != 0) 11076 ill->ill_user_mtu = lir->lir_maxmtu; 11077 11078 if (lir->lir_reachtime != 0) 11079 ill->ill_reachable_time = lir->lir_reachtime; 11080 11081 if (lir->lir_reachretrans != 0) 11082 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11083 11084 ill->ill_max_hops = lir->lir_maxhops; 11085 ill->ill_max_buf = ND_MAX_Q; 11086 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11087 /* 11088 * ill_mtu is the actual interface MTU, obtained as the min 11089 * of user-configured mtu and the value announced by the 11090 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11091 * we have already made the choice of requiring 11092 * ill_user_mtu < ill_current_frag by the time we get here, 11093 * the ill_mtu effectively gets assigned to the ill_user_mtu 11094 * here. 11095 */ 11096 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11097 } 11098 mutex_exit(&ill->ill_lock); 11099 11100 /* 11101 * Make sure all dce_generation checks find out 11102 * that ill_mtu has changed. 11103 */ 11104 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11105 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11106 11107 /* 11108 * Refresh IPMP meta-interface MTU if necessary. 11109 */ 11110 if (IS_UNDER_IPMP(ill)) 11111 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11112 11113 return (0); 11114 } 11115 11116 /* ARGSUSED */ 11117 int 11118 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11119 ip_ioctl_cmd_t *ipi, void *if_req) 11120 { 11121 struct lif_ifinfo_req *lir; 11122 ill_t *ill = ipif->ipif_ill; 11123 11124 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11126 if (ipif->ipif_id != 0) 11127 return (EINVAL); 11128 11129 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11130 lir->lir_maxhops = ill->ill_max_hops; 11131 lir->lir_reachtime = ill->ill_reachable_time; 11132 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11133 lir->lir_maxmtu = ill->ill_mtu; 11134 11135 return (0); 11136 } 11137 11138 /* 11139 * Return best guess as to the subnet mask for the specified address. 11140 * Based on the subnet masks for all the configured interfaces. 11141 * 11142 * We end up returning a zero mask in the case of default, multicast or 11143 * experimental. 11144 */ 11145 static ipaddr_t 11146 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11147 { 11148 ipaddr_t net_mask; 11149 ill_t *ill; 11150 ipif_t *ipif; 11151 ill_walk_context_t ctx; 11152 ipif_t *fallback_ipif = NULL; 11153 11154 net_mask = ip_net_mask(addr); 11155 if (net_mask == 0) { 11156 *ipifp = NULL; 11157 return (0); 11158 } 11159 11160 /* Let's check to see if this is maybe a local subnet route. */ 11161 /* this function only applies to IPv4 interfaces */ 11162 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11163 ill = ILL_START_WALK_V4(&ctx, ipst); 11164 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11165 mutex_enter(&ill->ill_lock); 11166 for (ipif = ill->ill_ipif; ipif != NULL; 11167 ipif = ipif->ipif_next) { 11168 if (IPIF_IS_CONDEMNED(ipif)) 11169 continue; 11170 if (!(ipif->ipif_flags & IPIF_UP)) 11171 continue; 11172 if ((ipif->ipif_subnet & net_mask) == 11173 (addr & net_mask)) { 11174 /* 11175 * Don't trust pt-pt interfaces if there are 11176 * other interfaces. 11177 */ 11178 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11179 if (fallback_ipif == NULL) { 11180 ipif_refhold_locked(ipif); 11181 fallback_ipif = ipif; 11182 } 11183 continue; 11184 } 11185 11186 /* 11187 * Fine. Just assume the same net mask as the 11188 * directly attached subnet interface is using. 11189 */ 11190 ipif_refhold_locked(ipif); 11191 mutex_exit(&ill->ill_lock); 11192 rw_exit(&ipst->ips_ill_g_lock); 11193 if (fallback_ipif != NULL) 11194 ipif_refrele(fallback_ipif); 11195 *ipifp = ipif; 11196 return (ipif->ipif_net_mask); 11197 } 11198 } 11199 mutex_exit(&ill->ill_lock); 11200 } 11201 rw_exit(&ipst->ips_ill_g_lock); 11202 11203 *ipifp = fallback_ipif; 11204 return ((fallback_ipif != NULL) ? 11205 fallback_ipif->ipif_net_mask : net_mask); 11206 } 11207 11208 /* 11209 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11210 */ 11211 static void 11212 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11213 { 11214 IOCP iocp; 11215 ipft_t *ipft; 11216 ipllc_t *ipllc; 11217 mblk_t *mp1; 11218 cred_t *cr; 11219 int error = 0; 11220 conn_t *connp; 11221 11222 ip1dbg(("ip_wput_ioctl")); 11223 iocp = (IOCP)mp->b_rptr; 11224 mp1 = mp->b_cont; 11225 if (mp1 == NULL) { 11226 iocp->ioc_error = EINVAL; 11227 mp->b_datap->db_type = M_IOCNAK; 11228 iocp->ioc_count = 0; 11229 qreply(q, mp); 11230 return; 11231 } 11232 11233 /* 11234 * These IOCTLs provide various control capabilities to 11235 * upstream agents such as ULPs and processes. There 11236 * are currently two such IOCTLs implemented. They 11237 * are used by TCP to provide update information for 11238 * existing IREs and to forcibly delete an IRE for a 11239 * host that is not responding, thereby forcing an 11240 * attempt at a new route. 11241 */ 11242 iocp->ioc_error = EINVAL; 11243 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11244 goto done; 11245 11246 ipllc = (ipllc_t *)mp1->b_rptr; 11247 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11248 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11249 break; 11250 } 11251 /* 11252 * prefer credential from mblk over ioctl; 11253 * see ip_sioctl_copyin_setup 11254 */ 11255 cr = msg_getcred(mp, NULL); 11256 if (cr == NULL) 11257 cr = iocp->ioc_cr; 11258 11259 /* 11260 * Refhold the conn in case the request gets queued up in some lookup 11261 */ 11262 ASSERT(CONN_Q(q)); 11263 connp = Q_TO_CONN(q); 11264 CONN_INC_REF(connp); 11265 if (ipft->ipft_pfi && 11266 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11267 pullupmsg(mp1, ipft->ipft_min_size))) { 11268 error = (*ipft->ipft_pfi)(q, 11269 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11270 } 11271 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11272 /* 11273 * CONN_OPER_PENDING_DONE happens in the function called 11274 * through ipft_pfi above. 11275 */ 11276 return; 11277 } 11278 11279 CONN_OPER_PENDING_DONE(connp); 11280 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11281 freemsg(mp); 11282 return; 11283 } 11284 iocp->ioc_error = error; 11285 11286 done: 11287 mp->b_datap->db_type = M_IOCACK; 11288 if (iocp->ioc_error) 11289 iocp->ioc_count = 0; 11290 qreply(q, mp); 11291 } 11292 11293 /* 11294 * Assign a unique id for the ipif. This is used by sctp_addr.c 11295 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11296 */ 11297 static void 11298 ipif_assign_seqid(ipif_t *ipif) 11299 { 11300 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11301 11302 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11303 } 11304 11305 /* 11306 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11307 * administratively down (i.e., no DAD), of the same type, and locked. Note 11308 * that the clone is complete -- including the seqid -- and the expectation is 11309 * that the caller will either free or overwrite `sipif' before it's unlocked. 11310 */ 11311 static void 11312 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11313 { 11314 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11315 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11316 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11317 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11318 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11319 11320 dipif->ipif_flags = sipif->ipif_flags; 11321 dipif->ipif_metric = sipif->ipif_metric; 11322 dipif->ipif_zoneid = sipif->ipif_zoneid; 11323 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11324 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11325 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11326 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11327 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11328 11329 /* 11330 * As per the comment atop the function, we assume that these sipif 11331 * fields will be changed before sipif is unlocked. 11332 */ 11333 dipif->ipif_seqid = sipif->ipif_seqid; 11334 dipif->ipif_state_flags = sipif->ipif_state_flags; 11335 } 11336 11337 /* 11338 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11339 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11340 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11341 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11342 * down (i.e., no DAD), of the same type, and unlocked. 11343 */ 11344 static void 11345 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11346 { 11347 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11348 ipxop_t *ipx = ipsq->ipsq_xop; 11349 11350 ASSERT(sipif != dipif); 11351 ASSERT(sipif != virgipif); 11352 11353 /* 11354 * Grab all of the locks that protect the ipif in a defined order. 11355 */ 11356 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11357 11358 ipif_clone(sipif, dipif); 11359 if (virgipif != NULL) { 11360 ipif_clone(virgipif, sipif); 11361 mi_free(virgipif); 11362 } 11363 11364 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11365 11366 /* 11367 * Transfer ownership of the current xop, if necessary. 11368 */ 11369 if (ipx->ipx_current_ipif == sipif) { 11370 ASSERT(ipx->ipx_pending_ipif == NULL); 11371 mutex_enter(&ipx->ipx_lock); 11372 ipx->ipx_current_ipif = dipif; 11373 mutex_exit(&ipx->ipx_lock); 11374 } 11375 11376 if (virgipif == NULL) 11377 mi_free(sipif); 11378 } 11379 11380 /* 11381 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11382 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11383 * be inserted into the first space available in the list. The value of 11384 * ipif_id will then be set to the appropriate value for its position. 11385 */ 11386 static int 11387 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11388 { 11389 ill_t *ill; 11390 ipif_t *tipif; 11391 ipif_t **tipifp; 11392 int id; 11393 ip_stack_t *ipst; 11394 11395 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11396 IAM_WRITER_IPIF(ipif)); 11397 11398 ill = ipif->ipif_ill; 11399 ASSERT(ill != NULL); 11400 ipst = ill->ill_ipst; 11401 11402 /* 11403 * In the case of lo0:0 we already hold the ill_g_lock. 11404 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11405 * ipif_insert. 11406 */ 11407 if (acquire_g_lock) 11408 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11409 mutex_enter(&ill->ill_lock); 11410 id = ipif->ipif_id; 11411 tipifp = &(ill->ill_ipif); 11412 if (id == -1) { /* need to find a real id */ 11413 id = 0; 11414 while ((tipif = *tipifp) != NULL) { 11415 ASSERT(tipif->ipif_id >= id); 11416 if (tipif->ipif_id != id) 11417 break; /* non-consecutive id */ 11418 id++; 11419 tipifp = &(tipif->ipif_next); 11420 } 11421 /* limit number of logical interfaces */ 11422 if (id >= ipst->ips_ip_addrs_per_if) { 11423 mutex_exit(&ill->ill_lock); 11424 if (acquire_g_lock) 11425 rw_exit(&ipst->ips_ill_g_lock); 11426 return (-1); 11427 } 11428 ipif->ipif_id = id; /* assign new id */ 11429 } else if (id < ipst->ips_ip_addrs_per_if) { 11430 /* we have a real id; insert ipif in the right place */ 11431 while ((tipif = *tipifp) != NULL) { 11432 ASSERT(tipif->ipif_id != id); 11433 if (tipif->ipif_id > id) 11434 break; /* found correct location */ 11435 tipifp = &(tipif->ipif_next); 11436 } 11437 } else { 11438 mutex_exit(&ill->ill_lock); 11439 if (acquire_g_lock) 11440 rw_exit(&ipst->ips_ill_g_lock); 11441 return (-1); 11442 } 11443 11444 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11445 11446 ipif->ipif_next = tipif; 11447 *tipifp = ipif; 11448 mutex_exit(&ill->ill_lock); 11449 if (acquire_g_lock) 11450 rw_exit(&ipst->ips_ill_g_lock); 11451 11452 return (0); 11453 } 11454 11455 static void 11456 ipif_remove(ipif_t *ipif) 11457 { 11458 ipif_t **ipifp; 11459 ill_t *ill = ipif->ipif_ill; 11460 11461 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11462 11463 mutex_enter(&ill->ill_lock); 11464 ipifp = &ill->ill_ipif; 11465 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11466 if (*ipifp == ipif) { 11467 *ipifp = ipif->ipif_next; 11468 break; 11469 } 11470 } 11471 mutex_exit(&ill->ill_lock); 11472 } 11473 11474 /* 11475 * Allocate and initialize a new interface control structure. (Always 11476 * called as writer.) 11477 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11478 * is not part of the global linked list of ills. ipif_seqid is unique 11479 * in the system and to preserve the uniqueness, it is assigned only 11480 * when ill becomes part of the global list. At that point ill will 11481 * have a name. If it doesn't get assigned here, it will get assigned 11482 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11483 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11484 * the interface flags or any other information from the DL_INFO_ACK for 11485 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11486 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11487 * second DL_INFO_ACK comes in from the driver. 11488 */ 11489 static ipif_t * 11490 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11491 boolean_t insert) 11492 { 11493 ipif_t *ipif; 11494 ip_stack_t *ipst = ill->ill_ipst; 11495 11496 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11497 ill->ill_name, id, (void *)ill)); 11498 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11499 11500 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 11501 return (NULL); 11502 *ipif = ipif_zero; /* start clean */ 11503 11504 ipif->ipif_ill = ill; 11505 ipif->ipif_id = id; /* could be -1 */ 11506 /* 11507 * Inherit the zoneid from the ill; for the shared stack instance 11508 * this is always the global zone 11509 */ 11510 ipif->ipif_zoneid = ill->ill_zoneid; 11511 11512 ipif->ipif_refcnt = 0; 11513 11514 if (insert) { 11515 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 11516 mi_free(ipif); 11517 return (NULL); 11518 } 11519 /* -1 id should have been replaced by real id */ 11520 id = ipif->ipif_id; 11521 ASSERT(id >= 0); 11522 } 11523 11524 if (ill->ill_name[0] != '\0') 11525 ipif_assign_seqid(ipif); 11526 11527 /* 11528 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11529 * (which must not exist yet because the zeroth ipif is created once 11530 * per ill). However, do not not link it to the ipmp_grp_t until 11531 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11532 */ 11533 if (id == 0 && IS_IPMP(ill)) { 11534 if (ipmp_illgrp_create(ill) == NULL) { 11535 if (insert) { 11536 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11537 ipif_remove(ipif); 11538 rw_exit(&ipst->ips_ill_g_lock); 11539 } 11540 mi_free(ipif); 11541 return (NULL); 11542 } 11543 } 11544 11545 /* 11546 * We grab ill_lock to protect the flag changes. The ipif is still 11547 * not up and can't be looked up until the ioctl completes and the 11548 * IPIF_CHANGING flag is cleared. 11549 */ 11550 mutex_enter(&ill->ill_lock); 11551 11552 ipif->ipif_ire_type = ire_type; 11553 11554 if (ipif->ipif_isv6) { 11555 ill->ill_flags |= ILLF_IPV6; 11556 } else { 11557 ipaddr_t inaddr_any = INADDR_ANY; 11558 11559 ill->ill_flags |= ILLF_IPV4; 11560 11561 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11562 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11563 &ipif->ipif_v6lcl_addr); 11564 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11565 &ipif->ipif_v6subnet); 11566 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11567 &ipif->ipif_v6net_mask); 11568 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11569 &ipif->ipif_v6brd_addr); 11570 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11571 &ipif->ipif_v6pp_dst_addr); 11572 } 11573 11574 /* 11575 * Don't set the interface flags etc. now, will do it in 11576 * ip_ll_subnet_defaults. 11577 */ 11578 if (!initialize) 11579 goto out; 11580 11581 /* 11582 * NOTE: The IPMP meta-interface is special-cased because it starts 11583 * with no underlying interfaces (and thus an unknown broadcast 11584 * address length), but all interfaces that can be placed into an IPMP 11585 * group are required to be broadcast-capable. 11586 */ 11587 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11588 /* 11589 * Later detect lack of DLPI driver multicast capability by 11590 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11591 */ 11592 ill->ill_flags |= ILLF_MULTICAST; 11593 if (!ipif->ipif_isv6) 11594 ipif->ipif_flags |= IPIF_BROADCAST; 11595 } else { 11596 if (ill->ill_net_type != IRE_LOOPBACK) { 11597 if (ipif->ipif_isv6) 11598 /* 11599 * Note: xresolv interfaces will eventually need 11600 * NOARP set here as well, but that will require 11601 * those external resolvers to have some 11602 * knowledge of that flag and act appropriately. 11603 * Not to be changed at present. 11604 */ 11605 ill->ill_flags |= ILLF_NONUD; 11606 else 11607 ill->ill_flags |= ILLF_NOARP; 11608 } 11609 if (ill->ill_phys_addr_length == 0) { 11610 if (IS_VNI(ill)) { 11611 ipif->ipif_flags |= IPIF_NOXMIT; 11612 } else { 11613 /* pt-pt supports multicast. */ 11614 ill->ill_flags |= ILLF_MULTICAST; 11615 if (ill->ill_net_type != IRE_LOOPBACK) 11616 ipif->ipif_flags |= IPIF_POINTOPOINT; 11617 } 11618 } 11619 } 11620 out: 11621 mutex_exit(&ill->ill_lock); 11622 return (ipif); 11623 } 11624 11625 /* 11626 * Remove the neighbor cache entries associated with this logical 11627 * interface. 11628 */ 11629 int 11630 ipif_arp_down(ipif_t *ipif) 11631 { 11632 ill_t *ill = ipif->ipif_ill; 11633 int err = 0; 11634 11635 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11636 ASSERT(IAM_WRITER_IPIF(ipif)); 11637 11638 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11639 ill_t *, ill, ipif_t *, ipif); 11640 ipif_nce_down(ipif); 11641 11642 /* 11643 * If this is the last ipif that is going down and there are no 11644 * duplicate addresses we may yet attempt to re-probe, then we need to 11645 * clean up ARP completely. 11646 */ 11647 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11648 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11649 /* 11650 * If this was the last ipif on an IPMP interface, purge any 11651 * static ARP entries associated with it. 11652 */ 11653 if (IS_IPMP(ill)) 11654 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11655 11656 /* UNBIND, DETACH */ 11657 err = arp_ll_down(ill); 11658 } 11659 11660 return (err); 11661 } 11662 11663 /* 11664 * Get the resolver set up for a new IP address. (Always called as writer.) 11665 * Called both for IPv4 and IPv6 interfaces, though it only does some 11666 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11667 * 11668 * The enumerated value res_act tunes the behavior: 11669 * * Res_act_initial: set up all the resolver structures for a new 11670 * IP address. 11671 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11672 * ARP message in defense of the address. 11673 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11674 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11675 * 11676 * Returns zero on success, or an errno upon failure. 11677 */ 11678 int 11679 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11680 { 11681 ill_t *ill = ipif->ipif_ill; 11682 int err; 11683 boolean_t was_dup; 11684 11685 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11686 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11687 ASSERT(IAM_WRITER_IPIF(ipif)); 11688 11689 was_dup = B_FALSE; 11690 if (res_act == Res_act_initial) { 11691 ipif->ipif_addr_ready = 0; 11692 /* 11693 * We're bringing an interface up here. There's no way that we 11694 * should need to shut down ARP now. 11695 */ 11696 mutex_enter(&ill->ill_lock); 11697 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11698 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11699 ill->ill_ipif_dup_count--; 11700 was_dup = B_TRUE; 11701 } 11702 mutex_exit(&ill->ill_lock); 11703 } 11704 if (ipif->ipif_recovery_id != 0) 11705 (void) untimeout(ipif->ipif_recovery_id); 11706 ipif->ipif_recovery_id = 0; 11707 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11708 ipif->ipif_addr_ready = 1; 11709 return (0); 11710 } 11711 /* NDP will set the ipif_addr_ready flag when it's ready */ 11712 if (ill->ill_isv6) 11713 return (0); 11714 11715 err = ipif_arp_up(ipif, res_act, was_dup); 11716 return (err); 11717 } 11718 11719 /* 11720 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11721 * when a link has just gone back up. 11722 */ 11723 static void 11724 ipif_nce_start_dad(ipif_t *ipif) 11725 { 11726 ncec_t *ncec; 11727 ill_t *ill = ipif->ipif_ill; 11728 boolean_t isv6 = ill->ill_isv6; 11729 11730 if (isv6) { 11731 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11732 &ipif->ipif_v6lcl_addr); 11733 } else { 11734 ipaddr_t v4addr; 11735 11736 if (ill->ill_net_type != IRE_IF_RESOLVER || 11737 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11738 ipif->ipif_lcl_addr == INADDR_ANY) { 11739 /* 11740 * If we can't contact ARP for some reason, 11741 * that's not really a problem. Just send 11742 * out the routing socket notification that 11743 * DAD completion would have done, and continue. 11744 */ 11745 ipif_mask_reply(ipif); 11746 ipif_up_notify(ipif); 11747 ipif->ipif_addr_ready = 1; 11748 return; 11749 } 11750 11751 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 11752 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 11753 } 11754 11755 if (ncec == NULL) { 11756 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 11757 (void *)ipif)); 11758 return; 11759 } 11760 if (!nce_restart_dad(ncec)) { 11761 /* 11762 * If we can't restart DAD for some reason, that's not really a 11763 * problem. Just send out the routing socket notification that 11764 * DAD completion would have done, and continue. 11765 */ 11766 ipif_up_notify(ipif); 11767 ipif->ipif_addr_ready = 1; 11768 } 11769 ncec_refrele(ncec); 11770 } 11771 11772 /* 11773 * Restart duplicate address detection on all interfaces on the given ill. 11774 * 11775 * This is called when an interface transitions from down to up 11776 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 11777 * 11778 * Note that since the underlying physical link has transitioned, we must cause 11779 * at least one routing socket message to be sent here, either via DAD 11780 * completion or just by default on the first ipif. (If we don't do this, then 11781 * in.mpathd will see long delays when doing link-based failure recovery.) 11782 */ 11783 void 11784 ill_restart_dad(ill_t *ill, boolean_t went_up) 11785 { 11786 ipif_t *ipif; 11787 11788 if (ill == NULL) 11789 return; 11790 11791 /* 11792 * If layer two doesn't support duplicate address detection, then just 11793 * send the routing socket message now and be done with it. 11794 */ 11795 if (!ill->ill_isv6 && arp_no_defense) { 11796 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 11797 return; 11798 } 11799 11800 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11801 if (went_up) { 11802 11803 if (ipif->ipif_flags & IPIF_UP) { 11804 ipif_nce_start_dad(ipif); 11805 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 11806 /* 11807 * kick off the bring-up process now. 11808 */ 11809 ipif_do_recovery(ipif); 11810 } else { 11811 /* 11812 * Unfortunately, the first ipif is "special" 11813 * and represents the underlying ill in the 11814 * routing socket messages. Thus, when this 11815 * one ipif is down, we must still notify so 11816 * that the user knows the IFF_RUNNING status 11817 * change. (If the first ipif is up, then 11818 * we'll handle eventual routing socket 11819 * notification via DAD completion.) 11820 */ 11821 if (ipif == ill->ill_ipif) { 11822 ip_rts_ifmsg(ill->ill_ipif, 11823 RTSQ_DEFAULT); 11824 } 11825 } 11826 } else { 11827 /* 11828 * After link down, we'll need to send a new routing 11829 * message when the link comes back, so clear 11830 * ipif_addr_ready. 11831 */ 11832 ipif->ipif_addr_ready = 0; 11833 } 11834 } 11835 11836 /* 11837 * If we've torn down links, then notify the user right away. 11838 */ 11839 if (!went_up) 11840 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 11841 } 11842 11843 static void 11844 ipsq_delete(ipsq_t *ipsq) 11845 { 11846 ipxop_t *ipx = ipsq->ipsq_xop; 11847 11848 ipsq->ipsq_ipst = NULL; 11849 ASSERT(ipsq->ipsq_phyint == NULL); 11850 ASSERT(ipsq->ipsq_xop != NULL); 11851 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 11852 ASSERT(ipx->ipx_pending_mp == NULL); 11853 kmem_free(ipsq, sizeof (ipsq_t)); 11854 } 11855 11856 static int 11857 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 11858 { 11859 int err = 0; 11860 ipif_t *ipif; 11861 11862 if (ill == NULL) 11863 return (0); 11864 11865 ASSERT(IAM_WRITER_ILL(ill)); 11866 ill->ill_up_ipifs = B_TRUE; 11867 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11868 if (ipif->ipif_was_up) { 11869 if (!(ipif->ipif_flags & IPIF_UP)) 11870 err = ipif_up(ipif, q, mp); 11871 ipif->ipif_was_up = B_FALSE; 11872 if (err != 0) { 11873 ASSERT(err == EINPROGRESS); 11874 return (err); 11875 } 11876 } 11877 } 11878 ill->ill_up_ipifs = B_FALSE; 11879 return (0); 11880 } 11881 11882 /* 11883 * This function is called to bring up all the ipifs that were up before 11884 * bringing the ill down via ill_down_ipifs(). 11885 */ 11886 int 11887 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 11888 { 11889 int err; 11890 11891 ASSERT(IAM_WRITER_ILL(ill)); 11892 11893 if (ill->ill_replumbing) { 11894 ill->ill_replumbing = 0; 11895 /* 11896 * Send down REPLUMB_DONE notification followed by the 11897 * BIND_REQ on the arp stream. 11898 */ 11899 if (!ill->ill_isv6) 11900 arp_send_replumb_conf(ill); 11901 } 11902 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 11903 if (err != 0) 11904 return (err); 11905 11906 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 11907 } 11908 11909 /* 11910 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 11911 * down the ipifs without sending DL_UNBIND_REQ to the driver. 11912 */ 11913 static void 11914 ill_down_ipifs(ill_t *ill, boolean_t logical) 11915 { 11916 ipif_t *ipif; 11917 11918 ASSERT(IAM_WRITER_ILL(ill)); 11919 11920 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11921 /* 11922 * We go through the ipif_down logic even if the ipif 11923 * is already down, since routes can be added based 11924 * on down ipifs. Going through ipif_down once again 11925 * will delete any IREs created based on these routes. 11926 */ 11927 if (ipif->ipif_flags & IPIF_UP) 11928 ipif->ipif_was_up = B_TRUE; 11929 11930 if (logical) { 11931 (void) ipif_logical_down(ipif, NULL, NULL); 11932 ipif_non_duplicate(ipif); 11933 (void) ipif_down_tail(ipif); 11934 } else { 11935 (void) ipif_down(ipif, NULL, NULL); 11936 } 11937 } 11938 } 11939 11940 /* 11941 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 11942 * a look again at valid source addresses. 11943 * This should be called each time after the set of source addresses has been 11944 * changed. 11945 */ 11946 void 11947 ip_update_source_selection(ip_stack_t *ipst) 11948 { 11949 /* We skip past SRC_GENERATION_VERIFY */ 11950 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 11951 SRC_GENERATION_VERIFY) 11952 atomic_add_32(&ipst->ips_src_generation, 1); 11953 } 11954 11955 /* 11956 * Finish the group join started in ip_sioctl_groupname(). 11957 */ 11958 /* ARGSUSED */ 11959 static void 11960 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 11961 { 11962 ill_t *ill = q->q_ptr; 11963 phyint_t *phyi = ill->ill_phyint; 11964 ipmp_grp_t *grp = phyi->phyint_grp; 11965 ip_stack_t *ipst = ill->ill_ipst; 11966 11967 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 11968 ASSERT(!IS_IPMP(ill) && grp != NULL); 11969 ASSERT(IAM_WRITER_IPSQ(ipsq)); 11970 11971 if (phyi->phyint_illv4 != NULL) { 11972 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 11973 VERIFY(grp->gr_pendv4-- > 0); 11974 rw_exit(&ipst->ips_ipmp_lock); 11975 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 11976 } 11977 if (phyi->phyint_illv6 != NULL) { 11978 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 11979 VERIFY(grp->gr_pendv6-- > 0); 11980 rw_exit(&ipst->ips_ipmp_lock); 11981 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 11982 } 11983 freemsg(mp); 11984 } 11985 11986 /* 11987 * Process an SIOCSLIFGROUPNAME request. 11988 */ 11989 /* ARGSUSED */ 11990 int 11991 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11992 ip_ioctl_cmd_t *ipip, void *ifreq) 11993 { 11994 struct lifreq *lifr = ifreq; 11995 ill_t *ill = ipif->ipif_ill; 11996 ip_stack_t *ipst = ill->ill_ipst; 11997 phyint_t *phyi = ill->ill_phyint; 11998 ipmp_grp_t *grp = phyi->phyint_grp; 11999 mblk_t *ipsq_mp; 12000 int err = 0; 12001 12002 /* 12003 * Note that phyint_grp can only change here, where we're exclusive. 12004 */ 12005 ASSERT(IAM_WRITER_ILL(ill)); 12006 12007 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12008 (phyi->phyint_flags & PHYI_VIRTUAL)) 12009 return (EINVAL); 12010 12011 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12012 12013 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12014 12015 /* 12016 * If the name hasn't changed, there's nothing to do. 12017 */ 12018 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12019 goto unlock; 12020 12021 /* 12022 * Handle requests to rename an IPMP meta-interface. 12023 * 12024 * Note that creation of the IPMP meta-interface is handled in 12025 * userland through the standard plumbing sequence. As part of the 12026 * plumbing the IPMP meta-interface, its initial groupname is set to 12027 * the name of the interface (see ipif_set_values_tail()). 12028 */ 12029 if (IS_IPMP(ill)) { 12030 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12031 goto unlock; 12032 } 12033 12034 /* 12035 * Handle requests to add or remove an IP interface from a group. 12036 */ 12037 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12038 /* 12039 * Moves are handled by first removing the interface from 12040 * its existing group, and then adding it to another group. 12041 * So, fail if it's already in a group. 12042 */ 12043 if (IS_UNDER_IPMP(ill)) { 12044 err = EALREADY; 12045 goto unlock; 12046 } 12047 12048 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12049 if (grp == NULL) { 12050 err = ENOENT; 12051 goto unlock; 12052 } 12053 12054 /* 12055 * Check if the phyint and its ills are suitable for 12056 * inclusion into the group. 12057 */ 12058 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12059 goto unlock; 12060 12061 /* 12062 * Checks pass; join the group, and enqueue the remaining 12063 * illgrp joins for when we've become part of the group xop 12064 * and are exclusive across its IPSQs. Since qwriter_ip() 12065 * requires an mblk_t to scribble on, and since `mp' will be 12066 * freed as part of completing the ioctl, allocate another. 12067 */ 12068 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12069 err = ENOMEM; 12070 goto unlock; 12071 } 12072 12073 /* 12074 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12075 * IPMP meta-interface ills needed by `phyi' cannot go away 12076 * before ip_join_illgrps() is called back. See the comments 12077 * in ip_sioctl_plink_ipmp() for more. 12078 */ 12079 if (phyi->phyint_illv4 != NULL) 12080 grp->gr_pendv4++; 12081 if (phyi->phyint_illv6 != NULL) 12082 grp->gr_pendv6++; 12083 12084 rw_exit(&ipst->ips_ipmp_lock); 12085 12086 ipmp_phyint_join_grp(phyi, grp); 12087 ill_refhold(ill); 12088 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12089 SWITCH_OP, B_FALSE); 12090 return (0); 12091 } else { 12092 /* 12093 * Request to remove the interface from a group. If the 12094 * interface is not in a group, this trivially succeeds. 12095 */ 12096 rw_exit(&ipst->ips_ipmp_lock); 12097 if (IS_UNDER_IPMP(ill)) 12098 ipmp_phyint_leave_grp(phyi); 12099 return (0); 12100 } 12101 unlock: 12102 rw_exit(&ipst->ips_ipmp_lock); 12103 return (err); 12104 } 12105 12106 /* 12107 * Process an SIOCGLIFBINDING request. 12108 */ 12109 /* ARGSUSED */ 12110 int 12111 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12112 ip_ioctl_cmd_t *ipip, void *ifreq) 12113 { 12114 ill_t *ill; 12115 struct lifreq *lifr = ifreq; 12116 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12117 12118 if (!IS_IPMP(ipif->ipif_ill)) 12119 return (EINVAL); 12120 12121 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12122 if ((ill = ipif->ipif_bound_ill) == NULL) 12123 lifr->lifr_binding[0] = '\0'; 12124 else 12125 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12126 rw_exit(&ipst->ips_ipmp_lock); 12127 return (0); 12128 } 12129 12130 /* 12131 * Process an SIOCGLIFGROUPNAME request. 12132 */ 12133 /* ARGSUSED */ 12134 int 12135 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12136 ip_ioctl_cmd_t *ipip, void *ifreq) 12137 { 12138 ipmp_grp_t *grp; 12139 struct lifreq *lifr = ifreq; 12140 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12141 12142 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12143 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12144 lifr->lifr_groupname[0] = '\0'; 12145 else 12146 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12147 rw_exit(&ipst->ips_ipmp_lock); 12148 return (0); 12149 } 12150 12151 /* 12152 * Process an SIOCGLIFGROUPINFO request. 12153 */ 12154 /* ARGSUSED */ 12155 int 12156 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12157 ip_ioctl_cmd_t *ipip, void *dummy) 12158 { 12159 ipmp_grp_t *grp; 12160 lifgroupinfo_t *lifgr; 12161 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12162 12163 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12164 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12165 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12166 12167 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12168 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12169 rw_exit(&ipst->ips_ipmp_lock); 12170 return (ENOENT); 12171 } 12172 ipmp_grp_info(grp, lifgr); 12173 rw_exit(&ipst->ips_ipmp_lock); 12174 return (0); 12175 } 12176 12177 static void 12178 ill_dl_down(ill_t *ill) 12179 { 12180 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12181 12182 /* 12183 * The ill is down; unbind but stay attached since we're still 12184 * associated with a PPA. If we have negotiated DLPI capabilites 12185 * with the data link service provider (IDS_OK) then reset them. 12186 * The interval between unbinding and rebinding is potentially 12187 * unbounded hence we cannot assume things will be the same. 12188 * The DLPI capabilities will be probed again when the data link 12189 * is brought up. 12190 */ 12191 mblk_t *mp = ill->ill_unbind_mp; 12192 12193 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12194 12195 if (!ill->ill_replumbing) { 12196 /* Free all ilms for this ill */ 12197 update_conn_ill(ill, ill->ill_ipst); 12198 } else { 12199 ill_leave_multicast(ill); 12200 } 12201 12202 ill->ill_unbind_mp = NULL; 12203 if (mp != NULL) { 12204 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12205 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12206 ill->ill_name)); 12207 mutex_enter(&ill->ill_lock); 12208 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12209 mutex_exit(&ill->ill_lock); 12210 /* 12211 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12212 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12213 * ill_capability_dld_disable disable rightaway. If this is not 12214 * an unplumb operation then the disable happens on receipt of 12215 * the capab ack via ip_rput_dlpi_writer -> 12216 * ill_capability_ack_thr. In both cases the order of 12217 * the operations seen by DLD is capability disable followed 12218 * by DL_UNBIND. Also the DLD capability disable needs a 12219 * cv_wait'able context. 12220 */ 12221 if (ill->ill_state_flags & ILL_CONDEMNED) 12222 ill_capability_dld_disable(ill); 12223 ill_capability_reset(ill, B_FALSE); 12224 ill_dlpi_send(ill, mp); 12225 } 12226 mutex_enter(&ill->ill_lock); 12227 ill->ill_dl_up = 0; 12228 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12229 mutex_exit(&ill->ill_lock); 12230 } 12231 12232 void 12233 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12234 { 12235 union DL_primitives *dlp; 12236 t_uscalar_t prim; 12237 boolean_t waitack = B_FALSE; 12238 12239 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12240 12241 dlp = (union DL_primitives *)mp->b_rptr; 12242 prim = dlp->dl_primitive; 12243 12244 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12245 dl_primstr(prim), prim, ill->ill_name)); 12246 12247 switch (prim) { 12248 case DL_PHYS_ADDR_REQ: 12249 { 12250 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12251 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12252 break; 12253 } 12254 case DL_BIND_REQ: 12255 mutex_enter(&ill->ill_lock); 12256 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12257 mutex_exit(&ill->ill_lock); 12258 break; 12259 } 12260 12261 /* 12262 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12263 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12264 * we only wait for the ACK of the DL_UNBIND_REQ. 12265 */ 12266 mutex_enter(&ill->ill_lock); 12267 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12268 (prim == DL_UNBIND_REQ)) { 12269 ill->ill_dlpi_pending = prim; 12270 waitack = B_TRUE; 12271 } 12272 12273 mutex_exit(&ill->ill_lock); 12274 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12275 char *, dl_primstr(prim), ill_t *, ill); 12276 putnext(ill->ill_wq, mp); 12277 12278 /* 12279 * There is no ack for DL_NOTIFY_CONF messages 12280 */ 12281 if (waitack && prim == DL_NOTIFY_CONF) 12282 ill_dlpi_done(ill, prim); 12283 } 12284 12285 /* 12286 * Helper function for ill_dlpi_send(). 12287 */ 12288 /* ARGSUSED */ 12289 static void 12290 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12291 { 12292 ill_dlpi_send(q->q_ptr, mp); 12293 } 12294 12295 /* 12296 * Send a DLPI control message to the driver but make sure there 12297 * is only one outstanding message. Uses ill_dlpi_pending to tell 12298 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12299 * when an ACK or a NAK is received to process the next queued message. 12300 */ 12301 void 12302 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12303 { 12304 mblk_t **mpp; 12305 12306 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12307 12308 /* 12309 * To ensure that any DLPI requests for current exclusive operation 12310 * are always completely sent before any DLPI messages for other 12311 * operations, require writer access before enqueuing. 12312 */ 12313 if (!IAM_WRITER_ILL(ill)) { 12314 ill_refhold(ill); 12315 /* qwriter_ip() does the ill_refrele() */ 12316 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12317 NEW_OP, B_TRUE); 12318 return; 12319 } 12320 12321 mutex_enter(&ill->ill_lock); 12322 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12323 /* Must queue message. Tail insertion */ 12324 mpp = &ill->ill_dlpi_deferred; 12325 while (*mpp != NULL) 12326 mpp = &((*mpp)->b_next); 12327 12328 ip1dbg(("ill_dlpi_send: deferring request for %s " 12329 "while %s pending\n", ill->ill_name, 12330 dl_primstr(ill->ill_dlpi_pending))); 12331 12332 *mpp = mp; 12333 mutex_exit(&ill->ill_lock); 12334 return; 12335 } 12336 mutex_exit(&ill->ill_lock); 12337 ill_dlpi_dispatch(ill, mp); 12338 } 12339 12340 static void 12341 ill_capability_send(ill_t *ill, mblk_t *mp) 12342 { 12343 ill->ill_capab_pending_cnt++; 12344 ill_dlpi_send(ill, mp); 12345 } 12346 12347 void 12348 ill_capability_done(ill_t *ill) 12349 { 12350 ASSERT(ill->ill_capab_pending_cnt != 0); 12351 12352 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12353 12354 ill->ill_capab_pending_cnt--; 12355 if (ill->ill_capab_pending_cnt == 0 && 12356 ill->ill_dlpi_capab_state == IDCS_OK) 12357 ill_capability_reset_alloc(ill); 12358 } 12359 12360 /* 12361 * Send all deferred DLPI messages without waiting for their ACKs. 12362 */ 12363 void 12364 ill_dlpi_send_deferred(ill_t *ill) 12365 { 12366 mblk_t *mp, *nextmp; 12367 12368 /* 12369 * Clear ill_dlpi_pending so that the message is not queued in 12370 * ill_dlpi_send(). 12371 */ 12372 mutex_enter(&ill->ill_lock); 12373 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12374 mp = ill->ill_dlpi_deferred; 12375 ill->ill_dlpi_deferred = NULL; 12376 mutex_exit(&ill->ill_lock); 12377 12378 for (; mp != NULL; mp = nextmp) { 12379 nextmp = mp->b_next; 12380 mp->b_next = NULL; 12381 ill_dlpi_send(ill, mp); 12382 } 12383 } 12384 12385 /* 12386 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12387 */ 12388 boolean_t 12389 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12390 { 12391 t_uscalar_t pending; 12392 12393 mutex_enter(&ill->ill_lock); 12394 if (ill->ill_dlpi_pending == prim) { 12395 mutex_exit(&ill->ill_lock); 12396 return (B_TRUE); 12397 } 12398 12399 /* 12400 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12401 * without waiting, so don't print any warnings in that case. 12402 */ 12403 if (ill->ill_state_flags & ILL_CONDEMNED) { 12404 mutex_exit(&ill->ill_lock); 12405 return (B_FALSE); 12406 } 12407 pending = ill->ill_dlpi_pending; 12408 mutex_exit(&ill->ill_lock); 12409 12410 if (pending == DL_PRIM_INVAL) { 12411 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12412 "received unsolicited ack for %s on %s\n", 12413 dl_primstr(prim), ill->ill_name); 12414 } else { 12415 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12416 "received unexpected ack for %s on %s (expecting %s)\n", 12417 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12418 } 12419 return (B_FALSE); 12420 } 12421 12422 /* 12423 * Complete the current DLPI operation associated with `prim' on `ill' and 12424 * start the next queued DLPI operation (if any). If there are no queued DLPI 12425 * operations and the ill's current exclusive IPSQ operation has finished 12426 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12427 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12428 * the comments above ipsq_current_finish() for details. 12429 */ 12430 void 12431 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12432 { 12433 mblk_t *mp; 12434 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12435 ipxop_t *ipx = ipsq->ipsq_xop; 12436 12437 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12438 mutex_enter(&ill->ill_lock); 12439 12440 ASSERT(prim != DL_PRIM_INVAL); 12441 ASSERT(ill->ill_dlpi_pending == prim); 12442 12443 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12444 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12445 12446 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12447 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12448 if (ipx->ipx_current_done) { 12449 mutex_enter(&ipx->ipx_lock); 12450 ipx->ipx_current_ipif = NULL; 12451 mutex_exit(&ipx->ipx_lock); 12452 } 12453 cv_signal(&ill->ill_cv); 12454 mutex_exit(&ill->ill_lock); 12455 return; 12456 } 12457 12458 ill->ill_dlpi_deferred = mp->b_next; 12459 mp->b_next = NULL; 12460 mutex_exit(&ill->ill_lock); 12461 12462 ill_dlpi_dispatch(ill, mp); 12463 } 12464 12465 /* 12466 * Queue a (multicast) DLPI control message to be sent to the driver by 12467 * later calling ill_dlpi_send_queued. 12468 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12469 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12470 * for the same group to race. 12471 * We send DLPI control messages in order using ill_lock. 12472 * For IPMP we should be called on the cast_ill. 12473 */ 12474 void 12475 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12476 { 12477 mblk_t **mpp; 12478 12479 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12480 12481 mutex_enter(&ill->ill_lock); 12482 /* Must queue message. Tail insertion */ 12483 mpp = &ill->ill_dlpi_deferred; 12484 while (*mpp != NULL) 12485 mpp = &((*mpp)->b_next); 12486 12487 *mpp = mp; 12488 mutex_exit(&ill->ill_lock); 12489 } 12490 12491 /* 12492 * Send the messages that were queued. Make sure there is only 12493 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12494 * when an ACK or a NAK is received to process the next queued message. 12495 * For IPMP we are called on the upper ill, but when send what is queued 12496 * on the cast_ill. 12497 */ 12498 void 12499 ill_dlpi_send_queued(ill_t *ill) 12500 { 12501 mblk_t *mp; 12502 union DL_primitives *dlp; 12503 t_uscalar_t prim; 12504 ill_t *release_ill = NULL; 12505 12506 if (IS_IPMP(ill)) { 12507 /* On the upper IPMP ill. */ 12508 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12509 if (release_ill == NULL) { 12510 /* Avoid ever sending anything down to the ipmpstub */ 12511 return; 12512 } 12513 ill = release_ill; 12514 } 12515 mutex_enter(&ill->ill_lock); 12516 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12517 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12518 /* Can't send. Somebody else will send it */ 12519 mutex_exit(&ill->ill_lock); 12520 goto done; 12521 } 12522 ill->ill_dlpi_deferred = mp->b_next; 12523 mp->b_next = NULL; 12524 if (!ill->ill_dl_up) { 12525 /* 12526 * Nobody there. All multicast addresses will be 12527 * re-joined when we get the DL_BIND_ACK bringing the 12528 * interface up. 12529 */ 12530 freemsg(mp); 12531 continue; 12532 } 12533 dlp = (union DL_primitives *)mp->b_rptr; 12534 prim = dlp->dl_primitive; 12535 12536 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12537 (prim == DL_UNBIND_REQ)) { 12538 ill->ill_dlpi_pending = prim; 12539 } 12540 mutex_exit(&ill->ill_lock); 12541 12542 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12543 char *, dl_primstr(prim), ill_t *, ill); 12544 putnext(ill->ill_wq, mp); 12545 mutex_enter(&ill->ill_lock); 12546 } 12547 mutex_exit(&ill->ill_lock); 12548 done: 12549 if (release_ill != NULL) 12550 ill_refrele(release_ill); 12551 } 12552 12553 /* 12554 * Queue an IP (IGMP/MLD) message to be sent by IP from 12555 * ill_mcast_send_queued 12556 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12557 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12558 * group to race. 12559 * We send them in order using ill_lock. 12560 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12561 */ 12562 void 12563 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12564 { 12565 mblk_t **mpp; 12566 ill_t *release_ill = NULL; 12567 12568 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12569 12570 if (IS_IPMP(ill)) { 12571 /* On the upper IPMP ill. */ 12572 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12573 if (release_ill == NULL) { 12574 /* Discard instead of queuing for the ipmp interface */ 12575 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12576 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12577 mp, ill); 12578 freemsg(mp); 12579 return; 12580 } 12581 ill = release_ill; 12582 } 12583 12584 mutex_enter(&ill->ill_lock); 12585 /* Must queue message. Tail insertion */ 12586 mpp = &ill->ill_mcast_deferred; 12587 while (*mpp != NULL) 12588 mpp = &((*mpp)->b_next); 12589 12590 *mpp = mp; 12591 mutex_exit(&ill->ill_lock); 12592 if (release_ill != NULL) 12593 ill_refrele(release_ill); 12594 } 12595 12596 /* 12597 * Send the IP packets that were queued by ill_mcast_queue. 12598 * These are IGMP/MLD packets. 12599 * 12600 * For IPMP we are called on the upper ill, but when send what is queued 12601 * on the cast_ill. 12602 * 12603 * Request loopback of the report if we are acting as a multicast 12604 * router, so that the process-level routing demon can hear it. 12605 * This will run multiple times for the same group if there are members 12606 * on the same group for multiple ipif's on the same ill. The 12607 * igmp_input/mld_input code will suppress this due to the loopback thus we 12608 * always loopback membership report. 12609 * 12610 * We also need to make sure that this does not get load balanced 12611 * by IPMP. We do this by passing an ill to ip_output_simple. 12612 */ 12613 void 12614 ill_mcast_send_queued(ill_t *ill) 12615 { 12616 mblk_t *mp; 12617 ip_xmit_attr_t ixas; 12618 ill_t *release_ill = NULL; 12619 12620 if (IS_IPMP(ill)) { 12621 /* On the upper IPMP ill. */ 12622 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12623 if (release_ill == NULL) { 12624 /* 12625 * We should have no messages on the ipmp interface 12626 * but no point in trying to send them. 12627 */ 12628 return; 12629 } 12630 ill = release_ill; 12631 } 12632 bzero(&ixas, sizeof (ixas)); 12633 ixas.ixa_zoneid = ALL_ZONES; 12634 ixas.ixa_cred = kcred; 12635 ixas.ixa_cpid = NOPID; 12636 ixas.ixa_tsl = NULL; 12637 /* 12638 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12639 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12640 * That is necessary to handle IGMP/MLD snooping switches. 12641 */ 12642 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12643 ixas.ixa_ipst = ill->ill_ipst; 12644 12645 mutex_enter(&ill->ill_lock); 12646 while ((mp = ill->ill_mcast_deferred) != NULL) { 12647 ill->ill_mcast_deferred = mp->b_next; 12648 mp->b_next = NULL; 12649 if (!ill->ill_dl_up) { 12650 /* 12651 * Nobody there. Just drop the ip packets. 12652 * IGMP/MLD will resend later, if this is a replumb. 12653 */ 12654 freemsg(mp); 12655 continue; 12656 } 12657 mutex_enter(&ill->ill_phyint->phyint_lock); 12658 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12659 /* 12660 * When the ill is getting deactivated, we only want to 12661 * send the DLPI messages, so drop IGMP/MLD packets. 12662 * DLPI messages are handled by ill_dlpi_send_queued() 12663 */ 12664 mutex_exit(&ill->ill_phyint->phyint_lock); 12665 freemsg(mp); 12666 continue; 12667 } 12668 mutex_exit(&ill->ill_phyint->phyint_lock); 12669 mutex_exit(&ill->ill_lock); 12670 12671 /* Check whether we are sending IPv4 or IPv6. */ 12672 if (ill->ill_isv6) { 12673 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12674 12675 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12676 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12677 } else { 12678 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12679 12680 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12681 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12682 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12683 } 12684 12685 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12686 (void) ip_output_simple(mp, &ixas); 12687 ixa_cleanup(&ixas); 12688 12689 mutex_enter(&ill->ill_lock); 12690 } 12691 mutex_exit(&ill->ill_lock); 12692 12693 done: 12694 if (release_ill != NULL) 12695 ill_refrele(release_ill); 12696 } 12697 12698 /* 12699 * Take down a specific interface, but don't lose any information about it. 12700 * (Always called as writer.) 12701 * This function goes through the down sequence even if the interface is 12702 * already down. There are 2 reasons. 12703 * a. Currently we permit interface routes that depend on down interfaces 12704 * to be added. This behaviour itself is questionable. However it appears 12705 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12706 * time. We go thru the cleanup in order to remove these routes. 12707 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12708 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12709 * down, but we need to cleanup i.e. do ill_dl_down and 12710 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12711 * 12712 * IP-MT notes: 12713 * 12714 * Model of reference to interfaces. 12715 * 12716 * The following members in ipif_t track references to the ipif. 12717 * int ipif_refcnt; Active reference count 12718 * 12719 * The following members in ill_t track references to the ill. 12720 * int ill_refcnt; active refcnt 12721 * uint_t ill_ire_cnt; Number of ires referencing ill 12722 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12723 * uint_t ill_nce_cnt; Number of nces referencing ill 12724 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12725 * 12726 * Reference to an ipif or ill can be obtained in any of the following ways. 12727 * 12728 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12729 * Pointers to ipif / ill from other data structures viz ire and conn. 12730 * Implicit reference to the ipif / ill by holding a reference to the ire. 12731 * 12732 * The ipif/ill lookup functions return a reference held ipif / ill. 12733 * ipif_refcnt and ill_refcnt track the reference counts respectively. 12734 * This is a purely dynamic reference count associated with threads holding 12735 * references to the ipif / ill. Pointers from other structures do not 12736 * count towards this reference count. 12737 * 12738 * ill_ire_cnt is the number of ire's associated with the 12739 * ill. This is incremented whenever a new ire is created referencing the 12740 * ill. This is done atomically inside ire_add_v[46] where the ire is 12741 * actually added to the ire hash table. The count is decremented in 12742 * ire_inactive where the ire is destroyed. 12743 * 12744 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 12745 * This is incremented atomically in 12746 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 12747 * table. Similarly it is decremented in ncec_inactive() where the ncec 12748 * is destroyed. 12749 * 12750 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 12751 * incremented atomically in nce_add() where the nce is actually added to the 12752 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 12753 * is destroyed. 12754 * 12755 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 12756 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 12757 * 12758 * Flow of ioctls involving interface down/up 12759 * 12760 * The following is the sequence of an attempt to set some critical flags on an 12761 * up interface. 12762 * ip_sioctl_flags 12763 * ipif_down 12764 * wait for ipif to be quiescent 12765 * ipif_down_tail 12766 * ip_sioctl_flags_tail 12767 * 12768 * All set ioctls that involve down/up sequence would have a skeleton similar 12769 * to the above. All the *tail functions are called after the refcounts have 12770 * dropped to the appropriate values. 12771 * 12772 * SIOC ioctls during the IPIF_CHANGING interval. 12773 * 12774 * Threads handling SIOC set ioctls serialize on the squeue, but this 12775 * is not done for SIOC get ioctls. Since a set ioctl can cause several 12776 * steps of internal changes to the state, some of which are visible in 12777 * ipif_flags (such as IFF_UP being cleared and later set), and we want 12778 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 12779 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 12780 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 12781 * the current exclusive operation completes. The IPIF_CHANGING check 12782 * and enqueue is atomic using the ill_lock and ipsq_lock. The 12783 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 12784 * change while the ill_lock is held. Before dropping the ill_lock we acquire 12785 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 12786 * until we release the ipsq_lock, even though the ill/ipif state flags 12787 * can change after we drop the ill_lock. 12788 */ 12789 int 12790 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 12791 { 12792 ill_t *ill = ipif->ipif_ill; 12793 conn_t *connp; 12794 boolean_t success; 12795 boolean_t ipif_was_up = B_FALSE; 12796 ip_stack_t *ipst = ill->ill_ipst; 12797 12798 ASSERT(IAM_WRITER_IPIF(ipif)); 12799 12800 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12801 12802 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 12803 ill_t *, ill, ipif_t *, ipif); 12804 12805 if (ipif->ipif_flags & IPIF_UP) { 12806 mutex_enter(&ill->ill_lock); 12807 ipif->ipif_flags &= ~IPIF_UP; 12808 ASSERT(ill->ill_ipif_up_count > 0); 12809 --ill->ill_ipif_up_count; 12810 mutex_exit(&ill->ill_lock); 12811 ipif_was_up = B_TRUE; 12812 /* Update status in SCTP's list */ 12813 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 12814 ill_nic_event_dispatch(ipif->ipif_ill, 12815 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 12816 } 12817 12818 /* 12819 * Blow away memberships we established in ipif_multicast_up(). 12820 */ 12821 ipif_multicast_down(ipif); 12822 12823 /* 12824 * Remove from the mapping for __sin6_src_id. We insert only 12825 * when the address is not INADDR_ANY. As IPv4 addresses are 12826 * stored as mapped addresses, we need to check for mapped 12827 * INADDR_ANY also. 12828 */ 12829 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12830 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 12831 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 12832 int err; 12833 12834 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 12835 ipif->ipif_zoneid, ipst); 12836 if (err != 0) { 12837 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 12838 } 12839 } 12840 12841 if (ipif_was_up) { 12842 /* only delete if we'd added ire's before */ 12843 if (ipif->ipif_isv6) 12844 ipif_delete_ires_v6(ipif); 12845 else 12846 ipif_delete_ires_v4(ipif); 12847 } 12848 12849 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 12850 /* 12851 * Since the interface is now down, it may have just become 12852 * inactive. Note that this needs to be done even for a 12853 * lll_logical_down(), or ARP entries will not get correctly 12854 * restored when the interface comes back up. 12855 */ 12856 if (IS_UNDER_IPMP(ill)) 12857 ipmp_ill_refresh_active(ill); 12858 } 12859 12860 /* 12861 * neighbor-discovery or arp entries for this interface. The ipif 12862 * has to be quiesced, so we walk all the nce's and delete those 12863 * that point at the ipif->ipif_ill. At the same time, we also 12864 * update IPMP so that ipifs for data addresses are unbound. We dont 12865 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 12866 * that for ipif_down_tail() 12867 */ 12868 ipif_nce_down(ipif); 12869 12870 /* 12871 * If this is the last ipif on the ill, we also need to remove 12872 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 12873 * never succeed. 12874 */ 12875 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 12876 ire_walk_ill(0, 0, ill_downi, ill, ill); 12877 12878 /* 12879 * Walk all CONNs that can have a reference on an ire for this 12880 * ipif (we actually walk all that now have stale references). 12881 */ 12882 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 12883 12884 /* 12885 * If mp is NULL the caller will wait for the appropriate refcnt. 12886 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 12887 * and ill_delete -> ipif_free -> ipif_down 12888 */ 12889 if (mp == NULL) { 12890 ASSERT(q == NULL); 12891 return (0); 12892 } 12893 12894 if (CONN_Q(q)) { 12895 connp = Q_TO_CONN(q); 12896 mutex_enter(&connp->conn_lock); 12897 } else { 12898 connp = NULL; 12899 } 12900 mutex_enter(&ill->ill_lock); 12901 /* 12902 * Are there any ire's pointing to this ipif that are still active ? 12903 * If this is the last ipif going down, are there any ire's pointing 12904 * to this ill that are still active ? 12905 */ 12906 if (ipif_is_quiescent(ipif)) { 12907 mutex_exit(&ill->ill_lock); 12908 if (connp != NULL) 12909 mutex_exit(&connp->conn_lock); 12910 return (0); 12911 } 12912 12913 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 12914 ill->ill_name, (void *)ill)); 12915 /* 12916 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 12917 * drops down, the operation will be restarted by ipif_ill_refrele_tail 12918 * which in turn is called by the last refrele on the ipif/ill/ire. 12919 */ 12920 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 12921 if (!success) { 12922 /* The conn is closing. So just return */ 12923 ASSERT(connp != NULL); 12924 mutex_exit(&ill->ill_lock); 12925 mutex_exit(&connp->conn_lock); 12926 return (EINTR); 12927 } 12928 12929 mutex_exit(&ill->ill_lock); 12930 if (connp != NULL) 12931 mutex_exit(&connp->conn_lock); 12932 return (EINPROGRESS); 12933 } 12934 12935 int 12936 ipif_down_tail(ipif_t *ipif) 12937 { 12938 ill_t *ill = ipif->ipif_ill; 12939 int err = 0; 12940 12941 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 12942 ill_t *, ill, ipif_t *, ipif); 12943 12944 /* 12945 * Skip any loopback interface (null wq). 12946 * If this is the last logical interface on the ill 12947 * have ill_dl_down tell the driver we are gone (unbind) 12948 * Note that lun 0 can ipif_down even though 12949 * there are other logical units that are up. 12950 * This occurs e.g. when we change a "significant" IFF_ flag. 12951 */ 12952 if (ill->ill_wq != NULL && !ill->ill_logical_down && 12953 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12954 ill->ill_dl_up) { 12955 ill_dl_down(ill); 12956 } 12957 if (!ipif->ipif_isv6) 12958 err = ipif_arp_down(ipif); 12959 12960 ill->ill_logical_down = 0; 12961 12962 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 12963 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 12964 return (err); 12965 } 12966 12967 /* 12968 * Bring interface logically down without bringing the physical interface 12969 * down e.g. when the netmask is changed. This avoids long lasting link 12970 * negotiations between an ethernet interface and a certain switches. 12971 */ 12972 static int 12973 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 12974 { 12975 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 12976 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 12977 12978 /* 12979 * The ill_logical_down flag is a transient flag. It is set here 12980 * and is cleared once the down has completed in ipif_down_tail. 12981 * This flag does not indicate whether the ill stream is in the 12982 * DL_BOUND state with the driver. Instead this flag is used by 12983 * ipif_down_tail to determine whether to DL_UNBIND the stream with 12984 * the driver. The state of the ill stream i.e. whether it is 12985 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 12986 */ 12987 ipif->ipif_ill->ill_logical_down = 1; 12988 return (ipif_down(ipif, q, mp)); 12989 } 12990 12991 /* 12992 * Initiate deallocate of an IPIF. Always called as writer. Called by 12993 * ill_delete or ip_sioctl_removeif. 12994 */ 12995 static void 12996 ipif_free(ipif_t *ipif) 12997 { 12998 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12999 13000 ASSERT(IAM_WRITER_IPIF(ipif)); 13001 13002 if (ipif->ipif_recovery_id != 0) 13003 (void) untimeout(ipif->ipif_recovery_id); 13004 ipif->ipif_recovery_id = 0; 13005 13006 /* 13007 * Take down the interface. We can be called either from ill_delete 13008 * or from ip_sioctl_removeif. 13009 */ 13010 (void) ipif_down(ipif, NULL, NULL); 13011 13012 /* 13013 * Now that the interface is down, there's no chance it can still 13014 * become a duplicate. Cancel any timer that may have been set while 13015 * tearing down. 13016 */ 13017 if (ipif->ipif_recovery_id != 0) 13018 (void) untimeout(ipif->ipif_recovery_id); 13019 ipif->ipif_recovery_id = 0; 13020 13021 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13022 /* Remove pointers to this ill in the multicast routing tables */ 13023 reset_mrt_vif_ipif(ipif); 13024 /* If necessary, clear the cached source ipif rotor. */ 13025 if (ipif->ipif_ill->ill_src_ipif == ipif) 13026 ipif->ipif_ill->ill_src_ipif = NULL; 13027 rw_exit(&ipst->ips_ill_g_lock); 13028 } 13029 13030 static void 13031 ipif_free_tail(ipif_t *ipif) 13032 { 13033 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13034 13035 /* 13036 * Need to hold both ill_g_lock and ill_lock while 13037 * inserting or removing an ipif from the linked list 13038 * of ipifs hanging off the ill. 13039 */ 13040 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13041 13042 #ifdef DEBUG 13043 ipif_trace_cleanup(ipif); 13044 #endif 13045 13046 /* Ask SCTP to take it out of it list */ 13047 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13048 13049 /* Get it out of the ILL interface list. */ 13050 ipif_remove(ipif); 13051 rw_exit(&ipst->ips_ill_g_lock); 13052 13053 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13054 ASSERT(ipif->ipif_recovery_id == 0); 13055 ASSERT(ipif->ipif_ire_local == NULL); 13056 13057 /* Free the memory. */ 13058 mi_free(ipif); 13059 } 13060 13061 /* 13062 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13063 * is zero. 13064 */ 13065 void 13066 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13067 { 13068 char lbuf[LIFNAMSIZ]; 13069 char *name; 13070 size_t name_len; 13071 13072 buf[0] = '\0'; 13073 name = ipif->ipif_ill->ill_name; 13074 name_len = ipif->ipif_ill->ill_name_length; 13075 if (ipif->ipif_id != 0) { 13076 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13077 ipif->ipif_id); 13078 name = lbuf; 13079 name_len = mi_strlen(name) + 1; 13080 } 13081 len -= 1; 13082 buf[len] = '\0'; 13083 len = MIN(len, name_len); 13084 bcopy(name, buf, len); 13085 } 13086 13087 /* 13088 * Sets `buf' to an ill name. 13089 */ 13090 void 13091 ill_get_name(const ill_t *ill, char *buf, int len) 13092 { 13093 char *name; 13094 size_t name_len; 13095 13096 name = ill->ill_name; 13097 name_len = ill->ill_name_length; 13098 len -= 1; 13099 buf[len] = '\0'; 13100 len = MIN(len, name_len); 13101 bcopy(name, buf, len); 13102 } 13103 13104 /* 13105 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13106 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13107 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13108 * (May be called as writer.) 13109 */ 13110 static ipif_t * 13111 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13112 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13113 { 13114 char *cp; 13115 char *endp; 13116 long id; 13117 ill_t *ill; 13118 ipif_t *ipif; 13119 uint_t ire_type; 13120 boolean_t did_alloc = B_FALSE; 13121 13122 /* 13123 * If the caller wants to us to create the ipif, make sure we have a 13124 * valid zoneid 13125 */ 13126 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13127 13128 if (namelen == 0) { 13129 return (NULL); 13130 } 13131 13132 *exists = B_FALSE; 13133 /* Look for a colon in the name. */ 13134 endp = &name[namelen]; 13135 for (cp = endp; --cp > name; ) { 13136 if (*cp == IPIF_SEPARATOR_CHAR) 13137 break; 13138 } 13139 13140 if (*cp == IPIF_SEPARATOR_CHAR) { 13141 /* 13142 * Reject any non-decimal aliases for logical 13143 * interfaces. Aliases with leading zeroes 13144 * are also rejected as they introduce ambiguity 13145 * in the naming of the interfaces. 13146 * In order to confirm with existing semantics, 13147 * and to not break any programs/script relying 13148 * on that behaviour, if<0>:0 is considered to be 13149 * a valid interface. 13150 * 13151 * If alias has two or more digits and the first 13152 * is zero, fail. 13153 */ 13154 if (&cp[2] < endp && cp[1] == '0') { 13155 return (NULL); 13156 } 13157 } 13158 13159 if (cp <= name) { 13160 cp = endp; 13161 } else { 13162 *cp = '\0'; 13163 } 13164 13165 /* 13166 * Look up the ILL, based on the portion of the name 13167 * before the slash. ill_lookup_on_name returns a held ill. 13168 * Temporary to check whether ill exists already. If so 13169 * ill_lookup_on_name will clear it. 13170 */ 13171 ill = ill_lookup_on_name(name, do_alloc, isv6, 13172 &did_alloc, ipst); 13173 if (cp != endp) 13174 *cp = IPIF_SEPARATOR_CHAR; 13175 if (ill == NULL) 13176 return (NULL); 13177 13178 /* Establish the unit number in the name. */ 13179 id = 0; 13180 if (cp < endp && *endp == '\0') { 13181 /* If there was a colon, the unit number follows. */ 13182 cp++; 13183 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13184 ill_refrele(ill); 13185 return (NULL); 13186 } 13187 } 13188 13189 mutex_enter(&ill->ill_lock); 13190 /* Now see if there is an IPIF with this unit number. */ 13191 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13192 if (ipif->ipif_id == id) { 13193 if (zoneid != ALL_ZONES && 13194 zoneid != ipif->ipif_zoneid && 13195 ipif->ipif_zoneid != ALL_ZONES) { 13196 mutex_exit(&ill->ill_lock); 13197 ill_refrele(ill); 13198 return (NULL); 13199 } 13200 if (IPIF_CAN_LOOKUP(ipif)) { 13201 ipif_refhold_locked(ipif); 13202 mutex_exit(&ill->ill_lock); 13203 if (!did_alloc) 13204 *exists = B_TRUE; 13205 /* 13206 * Drop locks before calling ill_refrele 13207 * since it can potentially call into 13208 * ipif_ill_refrele_tail which can end up 13209 * in trying to acquire any lock. 13210 */ 13211 ill_refrele(ill); 13212 return (ipif); 13213 } 13214 } 13215 } 13216 13217 if (!do_alloc) { 13218 mutex_exit(&ill->ill_lock); 13219 ill_refrele(ill); 13220 return (NULL); 13221 } 13222 13223 /* 13224 * If none found, atomically allocate and return a new one. 13225 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13226 * to support "receive only" use of lo0:1 etc. as is still done 13227 * below as an initial guess. 13228 * However, this is now likely to be overriden later in ipif_up_done() 13229 * when we know for sure what address has been configured on the 13230 * interface, since we might have more than one loopback interface 13231 * with a loopback address, e.g. in the case of zones, and all the 13232 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13233 */ 13234 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13235 ire_type = IRE_LOOPBACK; 13236 else 13237 ire_type = IRE_LOCAL; 13238 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 13239 if (ipif != NULL) 13240 ipif_refhold_locked(ipif); 13241 mutex_exit(&ill->ill_lock); 13242 ill_refrele(ill); 13243 return (ipif); 13244 } 13245 13246 /* 13247 * This routine is called whenever a new address comes up on an ipif. If 13248 * we are configured to respond to address mask requests, then we are supposed 13249 * to broadcast an address mask reply at this time. This routine is also 13250 * called if we are already up, but a netmask change is made. This is legal 13251 * but might not make the system manager very popular. (May be called 13252 * as writer.) 13253 */ 13254 void 13255 ipif_mask_reply(ipif_t *ipif) 13256 { 13257 icmph_t *icmph; 13258 ipha_t *ipha; 13259 mblk_t *mp; 13260 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13261 ip_xmit_attr_t ixas; 13262 13263 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13264 13265 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13266 return; 13267 13268 /* ICMP mask reply is IPv4 only */ 13269 ASSERT(!ipif->ipif_isv6); 13270 /* ICMP mask reply is not for a loopback interface */ 13271 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13272 13273 if (ipif->ipif_lcl_addr == INADDR_ANY) 13274 return; 13275 13276 mp = allocb(REPLY_LEN, BPRI_HI); 13277 if (mp == NULL) 13278 return; 13279 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13280 13281 ipha = (ipha_t *)mp->b_rptr; 13282 bzero(ipha, REPLY_LEN); 13283 *ipha = icmp_ipha; 13284 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13285 ipha->ipha_src = ipif->ipif_lcl_addr; 13286 ipha->ipha_dst = ipif->ipif_brd_addr; 13287 ipha->ipha_length = htons(REPLY_LEN); 13288 ipha->ipha_ident = 0; 13289 13290 icmph = (icmph_t *)&ipha[1]; 13291 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13292 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13293 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13294 13295 bzero(&ixas, sizeof (ixas)); 13296 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13297 ixas.ixa_flags |= IXAF_SET_SOURCE; 13298 ixas.ixa_zoneid = ALL_ZONES; 13299 ixas.ixa_ifindex = 0; 13300 ixas.ixa_ipst = ipst; 13301 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13302 (void) ip_output_simple(mp, &ixas); 13303 ixa_cleanup(&ixas); 13304 #undef REPLY_LEN 13305 } 13306 13307 /* 13308 * Join the ipif specific multicast groups. 13309 * Must be called after a mapping has been set up in the resolver. (Always 13310 * called as writer.) 13311 */ 13312 void 13313 ipif_multicast_up(ipif_t *ipif) 13314 { 13315 int err; 13316 ill_t *ill; 13317 ilm_t *ilm; 13318 13319 ASSERT(IAM_WRITER_IPIF(ipif)); 13320 13321 ill = ipif->ipif_ill; 13322 13323 ip1dbg(("ipif_multicast_up\n")); 13324 if (!(ill->ill_flags & ILLF_MULTICAST) || 13325 ipif->ipif_allhosts_ilm != NULL) 13326 return; 13327 13328 if (ipif->ipif_isv6) { 13329 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13330 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13331 13332 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13333 13334 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13335 return; 13336 13337 ip1dbg(("ipif_multicast_up - addmulti\n")); 13338 13339 /* 13340 * Join the all hosts multicast address. We skip this for 13341 * underlying IPMP interfaces since they should be invisible. 13342 */ 13343 if (!IS_UNDER_IPMP(ill)) { 13344 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13345 &err); 13346 if (ilm == NULL) { 13347 ASSERT(err != 0); 13348 ip0dbg(("ipif_multicast_up: " 13349 "all_hosts_mcast failed %d\n", err)); 13350 return; 13351 } 13352 ipif->ipif_allhosts_ilm = ilm; 13353 } 13354 13355 /* 13356 * Enable multicast for the solicited node multicast address. 13357 * If IPMP we need to put the membership on the upper ill. 13358 */ 13359 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13360 ill_t *mcast_ill = NULL; 13361 boolean_t need_refrele; 13362 13363 if (IS_UNDER_IPMP(ill) && 13364 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13365 need_refrele = B_TRUE; 13366 } else { 13367 mcast_ill = ill; 13368 need_refrele = B_FALSE; 13369 } 13370 13371 ilm = ip_addmulti(&v6solmc, mcast_ill, 13372 ipif->ipif_zoneid, &err); 13373 if (need_refrele) 13374 ill_refrele(mcast_ill); 13375 13376 if (ilm == NULL) { 13377 ASSERT(err != 0); 13378 ip0dbg(("ipif_multicast_up: solicited MC" 13379 " failed %d\n", err)); 13380 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13381 ipif->ipif_allhosts_ilm = NULL; 13382 (void) ip_delmulti(ilm); 13383 } 13384 return; 13385 } 13386 ipif->ipif_solmulti_ilm = ilm; 13387 } 13388 } else { 13389 in6_addr_t v6group; 13390 13391 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13392 return; 13393 13394 /* Join the all hosts multicast address */ 13395 ip1dbg(("ipif_multicast_up - addmulti\n")); 13396 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13397 13398 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13399 if (ilm == NULL) { 13400 ASSERT(err != 0); 13401 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13402 return; 13403 } 13404 ipif->ipif_allhosts_ilm = ilm; 13405 } 13406 } 13407 13408 /* 13409 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13410 * (ilms from explicit memberships are handled in conn_update_ill.) 13411 */ 13412 void 13413 ipif_multicast_down(ipif_t *ipif) 13414 { 13415 ASSERT(IAM_WRITER_IPIF(ipif)); 13416 13417 ip1dbg(("ipif_multicast_down\n")); 13418 13419 if (ipif->ipif_allhosts_ilm != NULL) { 13420 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13421 ipif->ipif_allhosts_ilm = NULL; 13422 } 13423 if (ipif->ipif_solmulti_ilm != NULL) { 13424 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13425 ipif->ipif_solmulti_ilm = NULL; 13426 } 13427 } 13428 13429 /* 13430 * Used when an interface comes up to recreate any extra routes on this 13431 * interface. 13432 */ 13433 int 13434 ill_recover_saved_ire(ill_t *ill) 13435 { 13436 mblk_t *mp; 13437 ip_stack_t *ipst = ill->ill_ipst; 13438 13439 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13440 13441 mutex_enter(&ill->ill_saved_ire_lock); 13442 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13443 ire_t *ire, *nire; 13444 ifrt_t *ifrt; 13445 13446 ifrt = (ifrt_t *)mp->b_rptr; 13447 /* 13448 * Create a copy of the IRE with the saved address and netmask. 13449 */ 13450 if (ill->ill_isv6) { 13451 ire = ire_create_v6( 13452 &ifrt->ifrt_v6addr, 13453 &ifrt->ifrt_v6mask, 13454 &ifrt->ifrt_v6gateway_addr, 13455 ifrt->ifrt_type, 13456 ill, 13457 ifrt->ifrt_zoneid, 13458 ifrt->ifrt_flags, 13459 NULL, 13460 ipst); 13461 } else { 13462 ire = ire_create( 13463 (uint8_t *)&ifrt->ifrt_addr, 13464 (uint8_t *)&ifrt->ifrt_mask, 13465 (uint8_t *)&ifrt->ifrt_gateway_addr, 13466 ifrt->ifrt_type, 13467 ill, 13468 ifrt->ifrt_zoneid, 13469 ifrt->ifrt_flags, 13470 NULL, 13471 ipst); 13472 } 13473 if (ire == NULL) { 13474 mutex_exit(&ill->ill_saved_ire_lock); 13475 return (ENOMEM); 13476 } 13477 13478 if (ifrt->ifrt_flags & RTF_SETSRC) { 13479 if (ill->ill_isv6) { 13480 ire->ire_setsrc_addr_v6 = 13481 ifrt->ifrt_v6setsrc_addr; 13482 } else { 13483 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13484 } 13485 } 13486 13487 /* 13488 * Some software (for example, GateD and Sun Cluster) attempts 13489 * to create (what amount to) IRE_PREFIX routes with the 13490 * loopback address as the gateway. This is primarily done to 13491 * set up prefixes with the RTF_REJECT flag set (for example, 13492 * when generating aggregate routes.) 13493 * 13494 * If the IRE type (as defined by ill->ill_net_type) is 13495 * IRE_LOOPBACK, then we map the request into a 13496 * IRE_IF_NORESOLVER. 13497 */ 13498 if (ill->ill_net_type == IRE_LOOPBACK) 13499 ire->ire_type = IRE_IF_NORESOLVER; 13500 13501 /* 13502 * ire held by ire_add, will be refreled' towards the 13503 * the end of ipif_up_done 13504 */ 13505 nire = ire_add(ire); 13506 /* 13507 * Check if it was a duplicate entry. This handles 13508 * the case of two racing route adds for the same route 13509 */ 13510 if (nire == NULL) { 13511 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13512 } else if (nire != ire) { 13513 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13514 (void *)nire)); 13515 ire_delete(nire); 13516 } else { 13517 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13518 (void *)nire)); 13519 } 13520 if (nire != NULL) 13521 ire_refrele(nire); 13522 } 13523 mutex_exit(&ill->ill_saved_ire_lock); 13524 return (0); 13525 } 13526 13527 /* 13528 * Used to set the netmask and broadcast address to default values when the 13529 * interface is brought up. (Always called as writer.) 13530 */ 13531 static void 13532 ipif_set_default(ipif_t *ipif) 13533 { 13534 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13535 13536 if (!ipif->ipif_isv6) { 13537 /* 13538 * Interface holds an IPv4 address. Default 13539 * mask is the natural netmask. 13540 */ 13541 if (!ipif->ipif_net_mask) { 13542 ipaddr_t v4mask; 13543 13544 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13545 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13546 } 13547 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13548 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13549 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13550 } else { 13551 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13552 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13553 } 13554 /* 13555 * NOTE: SunOS 4.X does this even if the broadcast address 13556 * has been already set thus we do the same here. 13557 */ 13558 if (ipif->ipif_flags & IPIF_BROADCAST) { 13559 ipaddr_t v4addr; 13560 13561 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13562 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13563 } 13564 } else { 13565 /* 13566 * Interface holds an IPv6-only address. Default 13567 * mask is all-ones. 13568 */ 13569 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13570 ipif->ipif_v6net_mask = ipv6_all_ones; 13571 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13572 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13573 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13574 } else { 13575 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13576 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13577 } 13578 } 13579 } 13580 13581 /* 13582 * Return 0 if this address can be used as local address without causing 13583 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13584 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13585 * Note that the same IPv6 link-local address is allowed as long as the ills 13586 * are not on the same link. 13587 */ 13588 int 13589 ip_addr_availability_check(ipif_t *new_ipif) 13590 { 13591 in6_addr_t our_v6addr; 13592 ill_t *ill; 13593 ipif_t *ipif; 13594 ill_walk_context_t ctx; 13595 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13596 13597 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13598 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13599 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13600 13601 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13602 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13603 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13604 return (0); 13605 13606 our_v6addr = new_ipif->ipif_v6lcl_addr; 13607 13608 if (new_ipif->ipif_isv6) 13609 ill = ILL_START_WALK_V6(&ctx, ipst); 13610 else 13611 ill = ILL_START_WALK_V4(&ctx, ipst); 13612 13613 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13614 for (ipif = ill->ill_ipif; ipif != NULL; 13615 ipif = ipif->ipif_next) { 13616 if ((ipif == new_ipif) || 13617 !(ipif->ipif_flags & IPIF_UP) || 13618 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13619 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13620 &our_v6addr)) 13621 continue; 13622 13623 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13624 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13625 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13626 ipif->ipif_flags |= IPIF_UNNUMBERED; 13627 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13628 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13629 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13630 continue; 13631 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13632 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13633 continue; 13634 else if (new_ipif->ipif_ill == ill) 13635 return (EADDRINUSE); 13636 else 13637 return (EADDRNOTAVAIL); 13638 } 13639 } 13640 13641 return (0); 13642 } 13643 13644 /* 13645 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13646 * IREs for the ipif. 13647 * When the routine returns EINPROGRESS then mp has been consumed and 13648 * the ioctl will be acked from ip_rput_dlpi. 13649 */ 13650 int 13651 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13652 { 13653 ill_t *ill = ipif->ipif_ill; 13654 boolean_t isv6 = ipif->ipif_isv6; 13655 int err = 0; 13656 boolean_t success; 13657 uint_t ipif_orig_id; 13658 ip_stack_t *ipst = ill->ill_ipst; 13659 13660 ASSERT(IAM_WRITER_IPIF(ipif)); 13661 13662 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13663 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13664 ill_t *, ill, ipif_t *, ipif); 13665 13666 /* Shouldn't get here if it is already up. */ 13667 if (ipif->ipif_flags & IPIF_UP) 13668 return (EALREADY); 13669 13670 /* 13671 * If this is a request to bring up a data address on an interface 13672 * under IPMP, then move the address to its IPMP meta-interface and 13673 * try to bring it up. One complication is that the zeroth ipif for 13674 * an ill is special, in that every ill always has one, and that code 13675 * throughout IP deferences ill->ill_ipif without holding any locks. 13676 */ 13677 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13678 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13679 ipif_t *stubipif = NULL, *moveipif = NULL; 13680 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13681 13682 /* 13683 * The ipif being brought up should be quiesced. If it's not, 13684 * something has gone amiss and we need to bail out. (If it's 13685 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13686 */ 13687 mutex_enter(&ill->ill_lock); 13688 if (!ipif_is_quiescent(ipif)) { 13689 mutex_exit(&ill->ill_lock); 13690 return (EINVAL); 13691 } 13692 mutex_exit(&ill->ill_lock); 13693 13694 /* 13695 * If we're going to need to allocate ipifs, do it prior 13696 * to starting the move (and grabbing locks). 13697 */ 13698 if (ipif->ipif_id == 0) { 13699 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13700 B_FALSE); 13701 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13702 B_FALSE); 13703 if (moveipif == NULL || stubipif == NULL) { 13704 mi_free(moveipif); 13705 mi_free(stubipif); 13706 return (ENOMEM); 13707 } 13708 } 13709 13710 /* 13711 * Grab or transfer the ipif to move. During the move, keep 13712 * ill_g_lock held to prevent any ill walker threads from 13713 * seeing things in an inconsistent state. 13714 */ 13715 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13716 if (ipif->ipif_id != 0) { 13717 ipif_remove(ipif); 13718 } else { 13719 ipif_transfer(ipif, moveipif, stubipif); 13720 ipif = moveipif; 13721 } 13722 13723 /* 13724 * Place the ipif on the IPMP ill. If the zeroth ipif on 13725 * the IPMP ill is a stub (0.0.0.0 down address) then we 13726 * replace that one. Otherwise, pick the next available slot. 13727 */ 13728 ipif->ipif_ill = ipmp_ill; 13729 ipif_orig_id = ipif->ipif_id; 13730 13731 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 13732 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 13733 ipif = ipmp_ill->ill_ipif; 13734 } else { 13735 ipif->ipif_id = -1; 13736 if (ipif_insert(ipif, B_FALSE) != 0) { 13737 /* 13738 * No more available ipif_id's -- put it back 13739 * on the original ill and fail the operation. 13740 * Since we're writer on the ill, we can be 13741 * sure our old slot is still available. 13742 */ 13743 ipif->ipif_id = ipif_orig_id; 13744 ipif->ipif_ill = ill; 13745 if (ipif_orig_id == 0) { 13746 ipif_transfer(ipif, ill->ill_ipif, 13747 NULL); 13748 } else { 13749 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 13750 } 13751 rw_exit(&ipst->ips_ill_g_lock); 13752 return (ENOMEM); 13753 } 13754 } 13755 rw_exit(&ipst->ips_ill_g_lock); 13756 13757 /* 13758 * Tell SCTP that the ipif has moved. Note that even if we 13759 * had to allocate a new ipif, the original sequence id was 13760 * preserved and therefore SCTP won't know. 13761 */ 13762 sctp_move_ipif(ipif, ill, ipmp_ill); 13763 13764 /* 13765 * If the ipif being brought up was on slot zero, then we 13766 * first need to bring up the placeholder we stuck there. In 13767 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 13768 * call to ipif_up() itself, if we successfully bring up the 13769 * placeholder, we'll check ill_move_ipif and bring it up too. 13770 */ 13771 if (ipif_orig_id == 0) { 13772 ASSERT(ill->ill_move_ipif == NULL); 13773 ill->ill_move_ipif = ipif; 13774 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 13775 ASSERT(ill->ill_move_ipif == NULL); 13776 if (err != EINPROGRESS) 13777 ill->ill_move_ipif = NULL; 13778 return (err); 13779 } 13780 13781 /* 13782 * Bring it up on the IPMP ill. 13783 */ 13784 return (ipif_up(ipif, q, mp)); 13785 } 13786 13787 /* Skip arp/ndp for any loopback interface. */ 13788 if (ill->ill_wq != NULL) { 13789 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 13790 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 13791 13792 if (!ill->ill_dl_up) { 13793 /* 13794 * ill_dl_up is not yet set. i.e. we are yet to 13795 * DL_BIND with the driver and this is the first 13796 * logical interface on the ill to become "up". 13797 * Tell the driver to get going (via DL_BIND_REQ). 13798 * Note that changing "significant" IFF_ flags 13799 * address/netmask etc cause a down/up dance, but 13800 * does not cause an unbind (DL_UNBIND) with the driver 13801 */ 13802 return (ill_dl_up(ill, ipif, mp, q)); 13803 } 13804 13805 /* 13806 * ipif_resolver_up may end up needeing to bind/attach 13807 * the ARP stream, which in turn necessitates a 13808 * DLPI message exchange with the driver. ioctls are 13809 * serialized and so we cannot send more than one 13810 * interface up message at a time. If ipif_resolver_up 13811 * does need to wait for the DLPI handshake for the ARP stream, 13812 * we get EINPROGRESS and we will complete in arp_bringup_done. 13813 */ 13814 13815 ASSERT(connp != NULL || !CONN_Q(q)); 13816 if (connp != NULL) 13817 mutex_enter(&connp->conn_lock); 13818 mutex_enter(&ill->ill_lock); 13819 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 13820 mutex_exit(&ill->ill_lock); 13821 if (connp != NULL) 13822 mutex_exit(&connp->conn_lock); 13823 if (!success) 13824 return (EINTR); 13825 13826 /* 13827 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 13828 * complete when ipif_ndp_up returns. 13829 */ 13830 err = ipif_resolver_up(ipif, Res_act_initial); 13831 if (err == EINPROGRESS) { 13832 /* We will complete it in arp_bringup_done() */ 13833 return (err); 13834 } 13835 13836 if (isv6 && err == 0) 13837 err = ipif_ndp_up(ipif, B_TRUE); 13838 13839 ASSERT(err != EINPROGRESS); 13840 mp = ipsq_pending_mp_get(ipsq, &connp); 13841 ASSERT(mp != NULL); 13842 if (err != 0) 13843 return (err); 13844 } else { 13845 /* 13846 * Interfaces without underlying hardware don't do duplicate 13847 * address detection. 13848 */ 13849 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 13850 ipif->ipif_addr_ready = 1; 13851 err = ill_add_ires(ill); 13852 /* allocation failure? */ 13853 if (err != 0) 13854 return (err); 13855 } 13856 13857 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 13858 if (err == 0 && ill->ill_move_ipif != NULL) { 13859 ipif = ill->ill_move_ipif; 13860 ill->ill_move_ipif = NULL; 13861 return (ipif_up(ipif, q, mp)); 13862 } 13863 return (err); 13864 } 13865 13866 /* 13867 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 13868 * The identical set of IREs need to be removed in ill_delete_ires(). 13869 */ 13870 int 13871 ill_add_ires(ill_t *ill) 13872 { 13873 ire_t *ire; 13874 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 13875 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 13876 13877 if (ill->ill_ire_multicast != NULL) 13878 return (0); 13879 13880 /* 13881 * provide some dummy ire_addr for creating the ire. 13882 */ 13883 if (ill->ill_isv6) { 13884 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 13885 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 13886 } else { 13887 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 13888 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 13889 } 13890 if (ire == NULL) 13891 return (ENOMEM); 13892 13893 ill->ill_ire_multicast = ire; 13894 return (0); 13895 } 13896 13897 void 13898 ill_delete_ires(ill_t *ill) 13899 { 13900 if (ill->ill_ire_multicast != NULL) { 13901 /* 13902 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 13903 * which was taken without any th_tracing enabled. 13904 * We also mark it as condemned (note that it was never added) 13905 * so that caching conn's can move off of it. 13906 */ 13907 ire_make_condemned(ill->ill_ire_multicast); 13908 ire_refrele_notr(ill->ill_ire_multicast); 13909 ill->ill_ire_multicast = NULL; 13910 } 13911 } 13912 13913 /* 13914 * Perform a bind for the physical device. 13915 * When the routine returns EINPROGRESS then mp has been consumed and 13916 * the ioctl will be acked from ip_rput_dlpi. 13917 * Allocate an unbind message and save it until ipif_down. 13918 */ 13919 static int 13920 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 13921 { 13922 mblk_t *bind_mp = NULL; 13923 mblk_t *unbind_mp = NULL; 13924 conn_t *connp; 13925 boolean_t success; 13926 int err; 13927 13928 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 13929 13930 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 13931 ASSERT(IAM_WRITER_ILL(ill)); 13932 ASSERT(mp != NULL); 13933 13934 /* 13935 * Make sure we have an IRE_MULTICAST in case we immediately 13936 * start receiving packets. 13937 */ 13938 err = ill_add_ires(ill); 13939 if (err != 0) 13940 goto bad; 13941 13942 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 13943 DL_BIND_REQ); 13944 if (bind_mp == NULL) 13945 goto bad; 13946 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 13947 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 13948 13949 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 13950 if (unbind_mp == NULL) 13951 goto bad; 13952 13953 /* 13954 * Record state needed to complete this operation when the 13955 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 13956 */ 13957 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 13958 ASSERT(connp != NULL || !CONN_Q(q)); 13959 GRAB_CONN_LOCK(q); 13960 mutex_enter(&ipif->ipif_ill->ill_lock); 13961 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 13962 mutex_exit(&ipif->ipif_ill->ill_lock); 13963 RELEASE_CONN_LOCK(q); 13964 if (!success) 13965 goto bad; 13966 13967 /* 13968 * Save the unbind message for ill_dl_down(); it will be consumed when 13969 * the interface goes down. 13970 */ 13971 ASSERT(ill->ill_unbind_mp == NULL); 13972 ill->ill_unbind_mp = unbind_mp; 13973 13974 ill_dlpi_send(ill, bind_mp); 13975 /* Send down link-layer capabilities probe if not already done. */ 13976 ill_capability_probe(ill); 13977 13978 /* 13979 * Sysid used to rely on the fact that netboots set domainname 13980 * and the like. Now that miniroot boots aren't strictly netboots 13981 * and miniroot network configuration is driven from userland 13982 * these things still need to be set. This situation can be detected 13983 * by comparing the interface being configured here to the one 13984 * dhcifname was set to reference by the boot loader. Once sysid is 13985 * converted to use dhcp_ipc_getinfo() this call can go away. 13986 */ 13987 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 13988 (strcmp(ill->ill_name, dhcifname) == 0) && 13989 (strlen(srpc_domain) == 0)) { 13990 if (dhcpinit() != 0) 13991 cmn_err(CE_WARN, "no cached dhcp response"); 13992 } 13993 13994 /* 13995 * This operation will complete in ip_rput_dlpi with either 13996 * a DL_BIND_ACK or DL_ERROR_ACK. 13997 */ 13998 return (EINPROGRESS); 13999 bad: 14000 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14001 14002 freemsg(bind_mp); 14003 freemsg(unbind_mp); 14004 return (ENOMEM); 14005 } 14006 14007 /* Add room for tcp+ip headers */ 14008 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14009 14010 /* 14011 * DLPI and ARP is up. 14012 * Create all the IREs associated with an interface. Bring up multicast. 14013 * Set the interface flag and finish other initialization 14014 * that potentially had to be deferred to after DL_BIND_ACK. 14015 */ 14016 int 14017 ipif_up_done(ipif_t *ipif) 14018 { 14019 ill_t *ill = ipif->ipif_ill; 14020 int err = 0; 14021 boolean_t loopback = B_FALSE; 14022 boolean_t update_src_selection = B_TRUE; 14023 ipif_t *tmp_ipif; 14024 14025 ip1dbg(("ipif_up_done(%s:%u)\n", 14026 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14027 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14028 ill_t *, ill, ipif_t *, ipif); 14029 14030 /* Check if this is a loopback interface */ 14031 if (ipif->ipif_ill->ill_wq == NULL) 14032 loopback = B_TRUE; 14033 14034 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14035 14036 /* 14037 * If all other interfaces for this ill are down or DEPRECATED, 14038 * or otherwise unsuitable for source address selection, 14039 * reset the src generation numbers to make sure source 14040 * address selection gets to take this new ipif into account. 14041 * No need to hold ill_lock while traversing the ipif list since 14042 * we are writer 14043 */ 14044 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14045 tmp_ipif = tmp_ipif->ipif_next) { 14046 if (((tmp_ipif->ipif_flags & 14047 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14048 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14049 (tmp_ipif == ipif)) 14050 continue; 14051 /* first useable pre-existing interface */ 14052 update_src_selection = B_FALSE; 14053 break; 14054 } 14055 if (update_src_selection) 14056 ip_update_source_selection(ill->ill_ipst); 14057 14058 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14059 nce_t *loop_nce = NULL; 14060 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14061 14062 /* 14063 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14064 * ipif_lookup_on_name(), but in the case of zones we can have 14065 * several loopback addresses on lo0. So all the interfaces with 14066 * loopback addresses need to be marked IRE_LOOPBACK. 14067 */ 14068 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14069 htonl(INADDR_LOOPBACK)) 14070 ipif->ipif_ire_type = IRE_LOOPBACK; 14071 else 14072 ipif->ipif_ire_type = IRE_LOCAL; 14073 if (ill->ill_net_type != IRE_LOOPBACK) 14074 flags |= NCE_F_PUBLISH; 14075 14076 /* add unicast nce for the local addr */ 14077 err = nce_lookup_then_add_v4(ill, NULL, 14078 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14079 ND_REACHABLE, &loop_nce); 14080 /* A shared-IP zone sees EEXIST for lo0:N */ 14081 if (err == 0 || err == EEXIST) { 14082 ipif->ipif_added_nce = 1; 14083 loop_nce->nce_ipif_cnt++; 14084 nce_refrele(loop_nce); 14085 err = 0; 14086 } else { 14087 ASSERT(loop_nce == NULL); 14088 return (err); 14089 } 14090 } 14091 14092 /* Create all the IREs associated with this interface */ 14093 err = ipif_add_ires_v4(ipif, loopback); 14094 if (err != 0) { 14095 /* 14096 * see comments about return value from 14097 * ip_addr_availability_check() in ipif_add_ires_v4(). 14098 */ 14099 if (err != EADDRINUSE) { 14100 (void) ipif_arp_down(ipif); 14101 } else { 14102 /* 14103 * Make IPMP aware of the deleted ipif so that 14104 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14105 * can be completed. Note that we do not want to 14106 * destroy the nce that was created on the ipmp_ill 14107 * for the active copy of the duplicate address in 14108 * use. 14109 */ 14110 if (IS_IPMP(ill)) 14111 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14112 err = EADDRNOTAVAIL; 14113 } 14114 return (err); 14115 } 14116 14117 if (ill->ill_ipif_up_count == 1 && !loopback) { 14118 /* Recover any additional IREs entries for this ill */ 14119 (void) ill_recover_saved_ire(ill); 14120 } 14121 14122 if (ill->ill_need_recover_multicast) { 14123 /* 14124 * Need to recover all multicast memberships in the driver. 14125 * This had to be deferred until we had attached. The same 14126 * code exists in ipif_up_done_v6() to recover IPv6 14127 * memberships. 14128 * 14129 * Note that it would be preferable to unconditionally do the 14130 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14131 * that since ill_join_allmulti() depends on ill_dl_up being 14132 * set, and it is not set until we receive a DL_BIND_ACK after 14133 * having called ill_dl_up(). 14134 */ 14135 ill_recover_multicast(ill); 14136 } 14137 14138 if (ill->ill_ipif_up_count == 1) { 14139 /* 14140 * Since the interface is now up, it may now be active. 14141 */ 14142 if (IS_UNDER_IPMP(ill)) 14143 ipmp_ill_refresh_active(ill); 14144 14145 /* 14146 * If this is an IPMP interface, we may now be able to 14147 * establish ARP entries. 14148 */ 14149 if (IS_IPMP(ill)) 14150 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14151 } 14152 14153 /* Join the allhosts multicast address */ 14154 ipif_multicast_up(ipif); 14155 14156 if (!loopback && !update_src_selection && 14157 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14158 ip_update_source_selection(ill->ill_ipst); 14159 14160 if (!loopback && ipif->ipif_addr_ready) { 14161 /* Broadcast an address mask reply. */ 14162 ipif_mask_reply(ipif); 14163 } 14164 /* Perhaps ilgs should use this ill */ 14165 update_conn_ill(NULL, ill->ill_ipst); 14166 14167 /* 14168 * This had to be deferred until we had bound. Tell routing sockets and 14169 * others that this interface is up if it looks like the address has 14170 * been validated. Otherwise, if it isn't ready yet, wait for 14171 * duplicate address detection to do its thing. 14172 */ 14173 if (ipif->ipif_addr_ready) 14174 ipif_up_notify(ipif); 14175 return (0); 14176 } 14177 14178 /* 14179 * Add the IREs associated with the ipif. 14180 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14181 */ 14182 static int 14183 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14184 { 14185 ill_t *ill = ipif->ipif_ill; 14186 ip_stack_t *ipst = ill->ill_ipst; 14187 ire_t *ire_array[20]; 14188 ire_t **irep = ire_array; 14189 ire_t **irep1; 14190 ipaddr_t net_mask = 0; 14191 ipaddr_t subnet_mask, route_mask; 14192 int err; 14193 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14194 14195 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14196 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14197 /* 14198 * If we're on a labeled system then make sure that zone- 14199 * private addresses have proper remote host database entries. 14200 */ 14201 if (is_system_labeled() && 14202 ipif->ipif_ire_type != IRE_LOOPBACK && 14203 !tsol_check_interface_address(ipif)) 14204 return (EINVAL); 14205 14206 /* Register the source address for __sin6_src_id */ 14207 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14208 ipif->ipif_zoneid, ipst); 14209 if (err != 0) { 14210 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14211 return (err); 14212 } 14213 14214 /* If the interface address is set, create the local IRE. */ 14215 ire_local = ire_create( 14216 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14217 (uchar_t *)&ip_g_all_ones, /* mask */ 14218 NULL, /* no gateway */ 14219 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14220 ipif->ipif_ill, 14221 ipif->ipif_zoneid, 14222 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14223 RTF_PRIVATE : 0) | RTF_KERNEL, 14224 NULL, 14225 ipst); 14226 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14227 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14228 ipif->ipif_ire_type, 14229 ntohl(ipif->ipif_lcl_addr))); 14230 if (ire_local == NULL) { 14231 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14232 err = ENOMEM; 14233 goto bad; 14234 } 14235 } else { 14236 ip1dbg(( 14237 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14238 ipif->ipif_ire_type, 14239 ntohl(ipif->ipif_lcl_addr), 14240 (uint_t)ipif->ipif_flags)); 14241 } 14242 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14243 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14244 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14245 } else { 14246 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14247 } 14248 14249 subnet_mask = ipif->ipif_net_mask; 14250 14251 /* 14252 * If mask was not specified, use natural netmask of 14253 * interface address. Also, store this mask back into the 14254 * ipif struct. 14255 */ 14256 if (subnet_mask == 0) { 14257 subnet_mask = net_mask; 14258 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14259 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14260 ipif->ipif_v6subnet); 14261 } 14262 14263 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14264 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14265 ipif->ipif_subnet != INADDR_ANY) { 14266 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14267 14268 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14269 route_mask = IP_HOST_MASK; 14270 } else { 14271 route_mask = subnet_mask; 14272 } 14273 14274 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14275 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14276 (void *)ipif, (void *)ill, 14277 ill->ill_net_type, 14278 ntohl(ipif->ipif_subnet))); 14279 *irep++ = ire_create( 14280 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 14281 (uchar_t *)&route_mask, /* mask */ 14282 (uchar_t *)&ipif->ipif_lcl_addr, /* gateway */ 14283 ill->ill_net_type, /* IF_[NO]RESOLVER */ 14284 ill, 14285 ipif->ipif_zoneid, 14286 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14287 RTF_PRIVATE: 0) | RTF_KERNEL, 14288 NULL, 14289 ipst); 14290 } 14291 14292 /* 14293 * Create any necessary broadcast IREs. 14294 */ 14295 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14296 !(ipif->ipif_flags & IPIF_NOXMIT)) 14297 irep = ipif_create_bcast_ires(ipif, irep); 14298 14299 /* If an earlier ire_create failed, get out now */ 14300 for (irep1 = irep; irep1 > ire_array; ) { 14301 irep1--; 14302 if (*irep1 == NULL) { 14303 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14304 err = ENOMEM; 14305 goto bad; 14306 } 14307 } 14308 14309 /* 14310 * Need to atomically check for IP address availability under 14311 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14312 * ills or new ipifs can be added while we are checking availability. 14313 */ 14314 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14315 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14316 /* Mark it up, and increment counters. */ 14317 ipif->ipif_flags |= IPIF_UP; 14318 ill->ill_ipif_up_count++; 14319 err = ip_addr_availability_check(ipif); 14320 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14321 rw_exit(&ipst->ips_ill_g_lock); 14322 14323 if (err != 0) { 14324 /* 14325 * Our address may already be up on the same ill. In this case, 14326 * the ARP entry for our ipif replaced the one for the other 14327 * ipif. So we don't want to delete it (otherwise the other ipif 14328 * would be unable to send packets). 14329 * ip_addr_availability_check() identifies this case for us and 14330 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14331 * which is the expected error code. 14332 */ 14333 ill->ill_ipif_up_count--; 14334 ipif->ipif_flags &= ~IPIF_UP; 14335 goto bad; 14336 } 14337 14338 /* 14339 * Add in all newly created IREs. ire_create_bcast() has 14340 * already checked for duplicates of the IRE_BROADCAST type. 14341 */ 14342 if (ire_local != NULL) { 14343 ire_local = ire_add(ire_local); 14344 #ifdef DEBUG 14345 if (ire_local != NULL) { 14346 ire_refhold_notr(ire_local); 14347 ire_refrele(ire_local); 14348 } 14349 #endif 14350 } 14351 14352 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14353 if (ire_local != NULL) 14354 ipif->ipif_ire_local = ire_local; 14355 rw_exit(&ipst->ips_ill_g_lock); 14356 ire_local = NULL; 14357 14358 for (irep1 = irep; irep1 > ire_array; ) { 14359 irep1--; 14360 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14361 /* refheld by ire_add. */ 14362 *irep1 = ire_add(*irep1); 14363 if (*irep1 != NULL) { 14364 ire_refrele(*irep1); 14365 *irep1 = NULL; 14366 } 14367 } 14368 14369 if (!loopback) { 14370 /* 14371 * If the broadcast address has been set, make sure it makes 14372 * sense based on the interface address. 14373 * Only match on ill since we are sharing broadcast addresses. 14374 */ 14375 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14376 (ipif->ipif_flags & IPIF_BROADCAST)) { 14377 ire_t *ire; 14378 14379 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14380 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14381 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14382 14383 if (ire == NULL) { 14384 /* 14385 * If there isn't a matching broadcast IRE, 14386 * revert to the default for this netmask. 14387 */ 14388 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14389 mutex_enter(&ipif->ipif_ill->ill_lock); 14390 ipif_set_default(ipif); 14391 mutex_exit(&ipif->ipif_ill->ill_lock); 14392 } else { 14393 ire_refrele(ire); 14394 } 14395 } 14396 14397 } 14398 return (0); 14399 14400 bad: 14401 ip1dbg(("ipif_add_ires: FAILED \n")); 14402 if (ire_local != NULL) 14403 ire_delete(ire_local); 14404 while (irep > ire_array) { 14405 irep--; 14406 if (*irep != NULL) { 14407 ire_delete(*irep); 14408 } 14409 } 14410 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14411 14412 return (err); 14413 } 14414 14415 /* Remove all the IREs created by ipif_add_ires_v4 */ 14416 void 14417 ipif_delete_ires_v4(ipif_t *ipif) 14418 { 14419 ill_t *ill = ipif->ipif_ill; 14420 ip_stack_t *ipst = ill->ill_ipst; 14421 ipaddr_t net_mask = 0; 14422 ipaddr_t subnet_mask, route_mask; 14423 int match_args; 14424 ire_t *ire; 14425 boolean_t loopback; 14426 14427 /* Check if this is a loopback interface */ 14428 loopback = (ipif->ipif_ill->ill_wq == NULL); 14429 14430 match_args = MATCH_IRE_TYPE | MATCH_IRE_ILL | MATCH_IRE_MASK | 14431 MATCH_IRE_ZONEONLY; 14432 14433 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14434 if ((ire = ipif->ipif_ire_local) != NULL) { 14435 ipif->ipif_ire_local = NULL; 14436 rw_exit(&ipst->ips_ill_g_lock); 14437 /* 14438 * Move count to ipif so we don't loose the count due to 14439 * a down/up dance. 14440 */ 14441 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14442 14443 ire_delete(ire); 14444 ire_refrele_notr(ire); 14445 } else { 14446 rw_exit(&ipst->ips_ill_g_lock); 14447 } 14448 14449 match_args |= MATCH_IRE_GW; 14450 14451 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14452 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14453 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14454 } else { 14455 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14456 } 14457 14458 subnet_mask = ipif->ipif_net_mask; 14459 14460 /* 14461 * If mask was not specified, use natural netmask of 14462 * interface address. Also, store this mask back into the 14463 * ipif struct. 14464 */ 14465 if (subnet_mask == 0) 14466 subnet_mask = net_mask; 14467 14468 /* Delete the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14469 if (IS_UNDER_IPMP(ill)) 14470 match_args |= MATCH_IRE_TESTHIDDEN; 14471 14472 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14473 ipif->ipif_subnet != INADDR_ANY) { 14474 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14475 14476 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14477 route_mask = IP_HOST_MASK; 14478 } else { 14479 route_mask = subnet_mask; 14480 } 14481 14482 ire = ire_ftable_lookup_v4( 14483 ipif->ipif_subnet, /* dest address */ 14484 route_mask, /* mask */ 14485 ipif->ipif_lcl_addr, /* gateway */ 14486 ill->ill_net_type, /* IF_[NO]RESOLVER */ 14487 ill, 14488 ipif->ipif_zoneid, 14489 NULL, 14490 match_args, 14491 0, 14492 ipst, 14493 NULL); 14494 ASSERT(ire != NULL); 14495 ire_delete(ire); 14496 ire_refrele(ire); 14497 } 14498 14499 /* 14500 * Create any necessary broadcast IREs. 14501 */ 14502 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14503 !(ipif->ipif_flags & IPIF_NOXMIT)) 14504 ipif_delete_bcast_ires(ipif); 14505 } 14506 14507 /* 14508 * Checks for availbility of a usable source address (if there is one) when the 14509 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14510 * this selection is done regardless of the destination. 14511 */ 14512 boolean_t 14513 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14514 ip_stack_t *ipst) 14515 { 14516 ipif_t *ipif = NULL; 14517 ill_t *uill; 14518 14519 ASSERT(ifindex != 0); 14520 14521 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14522 if (uill == NULL) 14523 return (B_FALSE); 14524 14525 mutex_enter(&uill->ill_lock); 14526 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14527 if (IPIF_IS_CONDEMNED(ipif)) 14528 continue; 14529 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14530 continue; 14531 if (!(ipif->ipif_flags & IPIF_UP)) 14532 continue; 14533 if (ipif->ipif_zoneid != zoneid) 14534 continue; 14535 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14536 ipif->ipif_lcl_addr == INADDR_ANY) 14537 continue; 14538 mutex_exit(&uill->ill_lock); 14539 ill_refrele(uill); 14540 return (B_TRUE); 14541 } 14542 mutex_exit(&uill->ill_lock); 14543 ill_refrele(uill); 14544 return (B_FALSE); 14545 } 14546 14547 /* 14548 * Find an ipif with a good local address on the ill+zoneid. 14549 */ 14550 ipif_t * 14551 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14552 { 14553 ipif_t *ipif; 14554 14555 mutex_enter(&ill->ill_lock); 14556 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14557 if (IPIF_IS_CONDEMNED(ipif)) 14558 continue; 14559 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14560 continue; 14561 if (!(ipif->ipif_flags & IPIF_UP)) 14562 continue; 14563 if (ipif->ipif_zoneid != zoneid && 14564 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14565 continue; 14566 if (ill->ill_isv6 ? 14567 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14568 ipif->ipif_lcl_addr == INADDR_ANY) 14569 continue; 14570 ipif_refhold_locked(ipif); 14571 mutex_exit(&ill->ill_lock); 14572 return (ipif); 14573 } 14574 mutex_exit(&ill->ill_lock); 14575 return (NULL); 14576 } 14577 14578 /* 14579 * IP source address type, sorted from worst to best. For a given type, 14580 * always prefer IP addresses on the same subnet. All-zones addresses are 14581 * suboptimal because they pose problems with unlabeled destinations. 14582 */ 14583 typedef enum { 14584 IPIF_NONE, 14585 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14586 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14587 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14588 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14589 IPIF_DIFFNET, /* normal and different subnet */ 14590 IPIF_SAMENET, /* normal and same subnet */ 14591 IPIF_LOCALADDR /* local loopback */ 14592 } ipif_type_t; 14593 14594 /* 14595 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14596 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14597 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14598 * the first one, unless IPMP is used in which case we round-robin among them; 14599 * see below for more. 14600 * 14601 * Returns NULL if there is no suitable source address for the ill. 14602 * This only occurs when there is no valid source address for the ill. 14603 */ 14604 ipif_t * 14605 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14606 boolean_t allow_usesrc, boolean_t *notreadyp) 14607 { 14608 ill_t *usill = NULL; 14609 ill_t *ipmp_ill = NULL; 14610 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14611 ipif_type_t type, best_type; 14612 tsol_tpc_t *src_rhtp, *dst_rhtp; 14613 ip_stack_t *ipst = ill->ill_ipst; 14614 boolean_t samenet; 14615 14616 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14617 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14618 B_FALSE, ipst); 14619 if (usill != NULL) 14620 ill = usill; /* Select source from usesrc ILL */ 14621 else 14622 return (NULL); 14623 } 14624 14625 /* 14626 * Test addresses should never be used for source address selection, 14627 * so if we were passed one, switch to the IPMP meta-interface. 14628 */ 14629 if (IS_UNDER_IPMP(ill)) { 14630 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14631 ill = ipmp_ill; /* Select source from IPMP ill */ 14632 else 14633 return (NULL); 14634 } 14635 14636 /* 14637 * If we're dealing with an unlabeled destination on a labeled system, 14638 * make sure that we ignore source addresses that are incompatible with 14639 * the destination's default label. That destination's default label 14640 * must dominate the minimum label on the source address. 14641 */ 14642 dst_rhtp = NULL; 14643 if (is_system_labeled()) { 14644 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14645 if (dst_rhtp == NULL) 14646 return (NULL); 14647 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14648 TPC_RELE(dst_rhtp); 14649 dst_rhtp = NULL; 14650 } 14651 } 14652 14653 /* 14654 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14655 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14656 * After selecting the right ipif, under ill_lock make sure ipif is 14657 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14658 * we retry. Inside the loop we still need to check for CONDEMNED, 14659 * but not under a lock. 14660 */ 14661 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14662 retry: 14663 /* 14664 * For source address selection, we treat the ipif list as circular 14665 * and continue until we get back to where we started. This allows 14666 * IPMP to vary source address selection (which improves inbound load 14667 * spreading) by caching its last ending point and starting from 14668 * there. NOTE: we don't have to worry about ill_src_ipif changing 14669 * ills since that can't happen on the IPMP ill. 14670 */ 14671 start_ipif = ill->ill_ipif; 14672 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14673 start_ipif = ill->ill_src_ipif; 14674 14675 ipif = start_ipif; 14676 best_ipif = NULL; 14677 best_type = IPIF_NONE; 14678 do { 14679 if ((next_ipif = ipif->ipif_next) == NULL) 14680 next_ipif = ill->ill_ipif; 14681 14682 if (IPIF_IS_CONDEMNED(ipif)) 14683 continue; 14684 /* Always skip NOLOCAL and ANYCAST interfaces */ 14685 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14686 continue; 14687 if (!(ipif->ipif_flags & IPIF_UP)) 14688 continue; 14689 14690 if (!ipif->ipif_addr_ready) { 14691 if (notreadyp != NULL) 14692 *notreadyp = B_TRUE; 14693 continue; 14694 } 14695 14696 if (zoneid != ALL_ZONES && 14697 ipif->ipif_zoneid != zoneid && 14698 ipif->ipif_zoneid != ALL_ZONES) 14699 continue; 14700 14701 /* 14702 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14703 * are not valid as source addresses. 14704 */ 14705 if (ipif->ipif_lcl_addr == INADDR_ANY) 14706 continue; 14707 14708 /* 14709 * Check compatibility of local address for destination's 14710 * default label if we're on a labeled system. Incompatible 14711 * addresses can't be used at all. 14712 */ 14713 if (dst_rhtp != NULL) { 14714 boolean_t incompat; 14715 14716 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 14717 IPV4_VERSION, B_FALSE); 14718 if (src_rhtp == NULL) 14719 continue; 14720 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 14721 src_rhtp->tpc_tp.tp_doi != 14722 dst_rhtp->tpc_tp.tp_doi || 14723 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 14724 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 14725 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 14726 src_rhtp->tpc_tp.tp_sl_set_cipso)); 14727 TPC_RELE(src_rhtp); 14728 if (incompat) 14729 continue; 14730 } 14731 14732 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 14733 14734 if (ipif->ipif_lcl_addr == dst) { 14735 type = IPIF_LOCALADDR; 14736 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 14737 type = samenet ? IPIF_SAMENET_DEPRECATED : 14738 IPIF_DIFFNET_DEPRECATED; 14739 } else if (ipif->ipif_zoneid == ALL_ZONES) { 14740 type = samenet ? IPIF_SAMENET_ALLZONES : 14741 IPIF_DIFFNET_ALLZONES; 14742 } else { 14743 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 14744 } 14745 14746 if (type > best_type) { 14747 best_type = type; 14748 best_ipif = ipif; 14749 if (best_type == IPIF_LOCALADDR) 14750 break; /* can't get better */ 14751 } 14752 } while ((ipif = next_ipif) != start_ipif); 14753 14754 if ((ipif = best_ipif) != NULL) { 14755 mutex_enter(&ipif->ipif_ill->ill_lock); 14756 if (IPIF_IS_CONDEMNED(ipif)) { 14757 mutex_exit(&ipif->ipif_ill->ill_lock); 14758 goto retry; 14759 } 14760 ipif_refhold_locked(ipif); 14761 14762 /* 14763 * For IPMP, update the source ipif rotor to the next ipif, 14764 * provided we can look it up. (We must not use it if it's 14765 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 14766 * ipif_free() checked ill_src_ipif.) 14767 */ 14768 if (IS_IPMP(ill) && ipif != NULL) { 14769 next_ipif = ipif->ipif_next; 14770 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 14771 ill->ill_src_ipif = next_ipif; 14772 else 14773 ill->ill_src_ipif = NULL; 14774 } 14775 mutex_exit(&ipif->ipif_ill->ill_lock); 14776 } 14777 14778 rw_exit(&ipst->ips_ill_g_lock); 14779 if (usill != NULL) 14780 ill_refrele(usill); 14781 if (ipmp_ill != NULL) 14782 ill_refrele(ipmp_ill); 14783 if (dst_rhtp != NULL) 14784 TPC_RELE(dst_rhtp); 14785 14786 #ifdef DEBUG 14787 if (ipif == NULL) { 14788 char buf1[INET6_ADDRSTRLEN]; 14789 14790 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 14791 ill->ill_name, 14792 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 14793 } else { 14794 char buf1[INET6_ADDRSTRLEN]; 14795 char buf2[INET6_ADDRSTRLEN]; 14796 14797 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 14798 ipif->ipif_ill->ill_name, 14799 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 14800 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 14801 buf2, sizeof (buf2)))); 14802 } 14803 #endif /* DEBUG */ 14804 return (ipif); 14805 } 14806 14807 /* 14808 * Pick a source address based on the destination ill and an optional setsrc 14809 * address. 14810 * The result is stored in srcp. If generation is set, then put the source 14811 * generation number there before we look for the source address (to avoid 14812 * missing changes in the set of source addresses. 14813 * If flagsp is set, then us it to pass back ipif_flags. 14814 * 14815 * If the caller wants to cache the returned source address and detect when 14816 * that might be stale, the caller should pass in a generation argument, 14817 * which the caller can later compare against ips_src_generation 14818 * 14819 * The precedence order for selecting an IPv4 source address is: 14820 * - RTF_SETSRC on the offlink ire always wins. 14821 * - If usrsrc is set, swap the ill to be the usesrc one. 14822 * - If IPMP is used on the ill, select a random address from the most 14823 * preferred ones below: 14824 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 14825 * 2. Not deprecated, not ALL_ZONES 14826 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 14827 * 4. Not deprecated, ALL_ZONES 14828 * 5. If onlink destination, same subnet and deprecated 14829 * 6. Deprecated. 14830 * 14831 * We have lower preference for ALL_ZONES IP addresses, 14832 * as they pose problems with unlabeled destinations. 14833 * 14834 * Note that when multiple IP addresses match e.g., #1 we pick 14835 * the first one if IPMP is not in use. With IPMP we randomize. 14836 */ 14837 int 14838 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 14839 ipaddr_t multicast_ifaddr, 14840 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 14841 uint32_t *generation, uint64_t *flagsp) 14842 { 14843 ipif_t *ipif; 14844 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 14845 14846 if (flagsp != NULL) 14847 *flagsp = 0; 14848 14849 /* 14850 * Need to grab the generation number before we check to 14851 * avoid a race with a change to the set of local addresses. 14852 * No lock needed since the thread which updates the set of local 14853 * addresses use ipif/ill locks and exit those (hence a store memory 14854 * barrier) before doing the atomic increase of ips_src_generation. 14855 */ 14856 if (generation != NULL) { 14857 *generation = ipst->ips_src_generation; 14858 } 14859 14860 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 14861 *srcp = multicast_ifaddr; 14862 return (0); 14863 } 14864 14865 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 14866 if (setsrc != INADDR_ANY) { 14867 *srcp = setsrc; 14868 return (0); 14869 } 14870 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 14871 if (ipif == NULL) { 14872 if (notready) 14873 return (ENETDOWN); 14874 else 14875 return (EADDRNOTAVAIL); 14876 } 14877 *srcp = ipif->ipif_lcl_addr; 14878 if (flagsp != NULL) 14879 *flagsp = ipif->ipif_flags; 14880 ipif_refrele(ipif); 14881 return (0); 14882 } 14883 14884 /* ARGSUSED */ 14885 int 14886 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 14887 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 14888 { 14889 /* 14890 * ill_phyint_reinit merged the v4 and v6 into a single 14891 * ipsq. We might not have been able to complete the 14892 * operation in ipif_set_values, if we could not become 14893 * exclusive. If so restart it here. 14894 */ 14895 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 14896 } 14897 14898 /* 14899 * Can operate on either a module or a driver queue. 14900 * Returns an error if not a module queue. 14901 */ 14902 /* ARGSUSED */ 14903 int 14904 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 14905 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 14906 { 14907 queue_t *q1 = q; 14908 char *cp; 14909 char interf_name[LIFNAMSIZ]; 14910 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 14911 14912 if (q->q_next == NULL) { 14913 ip1dbg(( 14914 "if_unitsel: IF_UNITSEL: no q_next\n")); 14915 return (EINVAL); 14916 } 14917 14918 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 14919 return (EALREADY); 14920 14921 do { 14922 q1 = q1->q_next; 14923 } while (q1->q_next); 14924 cp = q1->q_qinfo->qi_minfo->mi_idname; 14925 (void) sprintf(interf_name, "%s%d", cp, ppa); 14926 14927 /* 14928 * Here we are not going to delay the ioack until after 14929 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 14930 * original ioctl message before sending the requests. 14931 */ 14932 return (ipif_set_values(q, mp, interf_name, &ppa)); 14933 } 14934 14935 /* ARGSUSED */ 14936 int 14937 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 14938 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 14939 { 14940 return (ENXIO); 14941 } 14942 14943 /* 14944 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 14945 * `irep'. Returns a pointer to the next free `irep' entry 14946 * A mirror exists in ipif_delete_bcast_ires(). 14947 * 14948 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 14949 * done in ire_add. 14950 */ 14951 static ire_t ** 14952 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 14953 { 14954 ipaddr_t addr; 14955 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 14956 ipaddr_t subnetmask = ipif->ipif_net_mask; 14957 ill_t *ill = ipif->ipif_ill; 14958 zoneid_t zoneid = ipif->ipif_zoneid; 14959 14960 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 14961 14962 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 14963 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 14964 14965 if (ipif->ipif_lcl_addr == INADDR_ANY || 14966 (ipif->ipif_flags & IPIF_NOLOCAL)) 14967 netmask = htonl(IN_CLASSA_NET); /* fallback */ 14968 14969 irep = ire_create_bcast(ill, 0, zoneid, irep); 14970 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 14971 14972 /* 14973 * For backward compatibility, we create net broadcast IREs based on 14974 * the old "IP address class system", since some old machines only 14975 * respond to these class derived net broadcast. However, we must not 14976 * create these net broadcast IREs if the subnetmask is shorter than 14977 * the IP address class based derived netmask. Otherwise, we may 14978 * create a net broadcast address which is the same as an IP address 14979 * on the subnet -- and then TCP will refuse to talk to that address. 14980 */ 14981 if (netmask < subnetmask) { 14982 addr = netmask & ipif->ipif_subnet; 14983 irep = ire_create_bcast(ill, addr, zoneid, irep); 14984 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 14985 } 14986 14987 /* 14988 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 14989 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 14990 * created. Creating these broadcast IREs will only create confusion 14991 * as `addr' will be the same as the IP address. 14992 */ 14993 if (subnetmask != 0xFFFFFFFF) { 14994 addr = ipif->ipif_subnet; 14995 irep = ire_create_bcast(ill, addr, zoneid, irep); 14996 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 14997 } 14998 14999 return (irep); 15000 } 15001 15002 /* 15003 * Mirror of ipif_create_bcast_ires() 15004 */ 15005 static void 15006 ipif_delete_bcast_ires(ipif_t *ipif) 15007 { 15008 ipaddr_t addr; 15009 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15010 ipaddr_t subnetmask = ipif->ipif_net_mask; 15011 ill_t *ill = ipif->ipif_ill; 15012 zoneid_t zoneid = ipif->ipif_zoneid; 15013 ire_t *ire; 15014 15015 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15016 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15017 15018 if (ipif->ipif_lcl_addr == INADDR_ANY || 15019 (ipif->ipif_flags & IPIF_NOLOCAL)) 15020 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15021 15022 ire = ire_lookup_bcast(ill, 0, zoneid); 15023 ASSERT(ire != NULL); 15024 ire_delete(ire); ire_refrele(ire); 15025 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15026 ASSERT(ire != NULL); 15027 ire_delete(ire); ire_refrele(ire); 15028 15029 /* 15030 * For backward compatibility, we create net broadcast IREs based on 15031 * the old "IP address class system", since some old machines only 15032 * respond to these class derived net broadcast. However, we must not 15033 * create these net broadcast IREs if the subnetmask is shorter than 15034 * the IP address class based derived netmask. Otherwise, we may 15035 * create a net broadcast address which is the same as an IP address 15036 * on the subnet -- and then TCP will refuse to talk to that address. 15037 */ 15038 if (netmask < subnetmask) { 15039 addr = netmask & ipif->ipif_subnet; 15040 ire = ire_lookup_bcast(ill, addr, zoneid); 15041 ASSERT(ire != NULL); 15042 ire_delete(ire); ire_refrele(ire); 15043 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15044 ASSERT(ire != NULL); 15045 ire_delete(ire); ire_refrele(ire); 15046 } 15047 15048 /* 15049 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15050 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15051 * created. Creating these broadcast IREs will only create confusion 15052 * as `addr' will be the same as the IP address. 15053 */ 15054 if (subnetmask != 0xFFFFFFFF) { 15055 addr = ipif->ipif_subnet; 15056 ire = ire_lookup_bcast(ill, addr, zoneid); 15057 ASSERT(ire != NULL); 15058 ire_delete(ire); ire_refrele(ire); 15059 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15060 ASSERT(ire != NULL); 15061 ire_delete(ire); ire_refrele(ire); 15062 } 15063 } 15064 15065 /* 15066 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15067 * from lifr_flags and the name from lifr_name. 15068 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15069 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15070 * Returns EINPROGRESS when mp has been consumed by queueing it on 15071 * ipx_pending_mp and the ioctl will complete in ip_rput. 15072 * 15073 * Can operate on either a module or a driver queue. 15074 * Returns an error if not a module queue. 15075 */ 15076 /* ARGSUSED */ 15077 int 15078 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15079 ip_ioctl_cmd_t *ipip, void *if_req) 15080 { 15081 ill_t *ill = q->q_ptr; 15082 phyint_t *phyi; 15083 ip_stack_t *ipst; 15084 struct lifreq *lifr = if_req; 15085 uint64_t new_flags; 15086 15087 ASSERT(ipif != NULL); 15088 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15089 15090 if (q->q_next == NULL) { 15091 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15092 return (EINVAL); 15093 } 15094 15095 /* 15096 * If we are not writer on 'q' then this interface exists already 15097 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15098 * so return EALREADY. 15099 */ 15100 if (ill != ipif->ipif_ill) 15101 return (EALREADY); 15102 15103 if (ill->ill_name[0] != '\0') 15104 return (EALREADY); 15105 15106 /* 15107 * If there's another ill already with the requested name, ensure 15108 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15109 * fuse together two unrelated ills, which will cause chaos. 15110 */ 15111 ipst = ill->ill_ipst; 15112 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15113 lifr->lifr_name, NULL); 15114 if (phyi != NULL) { 15115 ill_t *ill_mate = phyi->phyint_illv4; 15116 15117 if (ill_mate == NULL) 15118 ill_mate = phyi->phyint_illv6; 15119 ASSERT(ill_mate != NULL); 15120 15121 if (ill_mate->ill_media->ip_m_mac_type != 15122 ill->ill_media->ip_m_mac_type) { 15123 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15124 "use the same ill name on differing media\n")); 15125 return (EINVAL); 15126 } 15127 } 15128 15129 /* 15130 * We start off as IFF_IPV4 in ipif_allocate and become 15131 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15132 * The only flags that we read from user space are IFF_IPV4, 15133 * IFF_IPV6, and IFF_BROADCAST. 15134 * 15135 * This ill has not been inserted into the global list. 15136 * So we are still single threaded and don't need any lock 15137 * 15138 * Saniy check the flags. 15139 */ 15140 15141 if ((lifr->lifr_flags & IFF_BROADCAST) && 15142 ((lifr->lifr_flags & IFF_IPV6) || 15143 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15144 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15145 "or IPv6 i.e., no broadcast \n")); 15146 return (EINVAL); 15147 } 15148 15149 new_flags = 15150 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15151 15152 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15153 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15154 "IFF_IPV4 or IFF_IPV6\n")); 15155 return (EINVAL); 15156 } 15157 15158 /* 15159 * We always start off as IPv4, so only need to check for IPv6. 15160 */ 15161 if ((new_flags & IFF_IPV6) != 0) { 15162 ill->ill_flags |= ILLF_IPV6; 15163 ill->ill_flags &= ~ILLF_IPV4; 15164 } 15165 15166 if ((new_flags & IFF_BROADCAST) != 0) 15167 ipif->ipif_flags |= IPIF_BROADCAST; 15168 else 15169 ipif->ipif_flags &= ~IPIF_BROADCAST; 15170 15171 /* We started off as V4. */ 15172 if (ill->ill_flags & ILLF_IPV6) { 15173 ill->ill_phyint->phyint_illv6 = ill; 15174 ill->ill_phyint->phyint_illv4 = NULL; 15175 } 15176 15177 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15178 } 15179 15180 /* ARGSUSED */ 15181 int 15182 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15183 ip_ioctl_cmd_t *ipip, void *if_req) 15184 { 15185 /* 15186 * ill_phyint_reinit merged the v4 and v6 into a single 15187 * ipsq. We might not have been able to complete the 15188 * slifname in ipif_set_values, if we could not become 15189 * exclusive. If so restart it here 15190 */ 15191 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15192 } 15193 15194 /* 15195 * Return a pointer to the ipif which matches the index, IP version type and 15196 * zoneid. 15197 */ 15198 ipif_t * 15199 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15200 ip_stack_t *ipst) 15201 { 15202 ill_t *ill; 15203 ipif_t *ipif = NULL; 15204 15205 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15206 if (ill != NULL) { 15207 mutex_enter(&ill->ill_lock); 15208 for (ipif = ill->ill_ipif; ipif != NULL; 15209 ipif = ipif->ipif_next) { 15210 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15211 zoneid == ipif->ipif_zoneid || 15212 ipif->ipif_zoneid == ALL_ZONES)) { 15213 ipif_refhold_locked(ipif); 15214 break; 15215 } 15216 } 15217 mutex_exit(&ill->ill_lock); 15218 ill_refrele(ill); 15219 } 15220 return (ipif); 15221 } 15222 15223 /* 15224 * Change an existing physical interface's index. If the new index 15225 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15226 * Finally, we update other systems which may have a dependence on the 15227 * index value. 15228 */ 15229 /* ARGSUSED */ 15230 int 15231 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15232 ip_ioctl_cmd_t *ipip, void *ifreq) 15233 { 15234 ill_t *ill; 15235 phyint_t *phyi; 15236 struct ifreq *ifr = (struct ifreq *)ifreq; 15237 struct lifreq *lifr = (struct lifreq *)ifreq; 15238 uint_t old_index, index; 15239 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15240 avl_index_t where; 15241 15242 if (ipip->ipi_cmd_type == IF_CMD) 15243 index = ifr->ifr_index; 15244 else 15245 index = lifr->lifr_index; 15246 15247 /* 15248 * Only allow on physical interface. Also, index zero is illegal. 15249 */ 15250 ill = ipif->ipif_ill; 15251 phyi = ill->ill_phyint; 15252 if (ipif->ipif_id != 0 || index == 0) { 15253 return (EINVAL); 15254 } 15255 15256 /* If the index is not changing, no work to do */ 15257 if (phyi->phyint_ifindex == index) 15258 return (0); 15259 15260 /* 15261 * Use phyint_exists() to determine if the new interface index 15262 * is already in use. If the index is unused then we need to 15263 * change the phyint's position in the phyint_list_avl_by_index 15264 * tree. If we do not do this, subsequent lookups (using the new 15265 * index value) will not find the phyint. 15266 */ 15267 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15268 if (phyint_exists(index, ipst)) { 15269 rw_exit(&ipst->ips_ill_g_lock); 15270 return (EEXIST); 15271 } 15272 15273 /* 15274 * The new index is unused. Set it in the phyint. However we must not 15275 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15276 * changes. The event must be bound to old ifindex value. 15277 */ 15278 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15279 &index, sizeof (index)); 15280 15281 old_index = phyi->phyint_ifindex; 15282 phyi->phyint_ifindex = index; 15283 15284 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15285 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15286 &index, &where); 15287 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15288 phyi, where); 15289 rw_exit(&ipst->ips_ill_g_lock); 15290 15291 /* Update SCTP's ILL list */ 15292 sctp_ill_reindex(ill, old_index); 15293 15294 /* Send the routing sockets message */ 15295 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15296 if (ILL_OTHER(ill)) 15297 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15298 15299 /* Perhaps ilgs should use this ill */ 15300 update_conn_ill(NULL, ill->ill_ipst); 15301 return (0); 15302 } 15303 15304 /* ARGSUSED */ 15305 int 15306 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15307 ip_ioctl_cmd_t *ipip, void *ifreq) 15308 { 15309 struct ifreq *ifr = (struct ifreq *)ifreq; 15310 struct lifreq *lifr = (struct lifreq *)ifreq; 15311 15312 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15313 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15314 /* Get the interface index */ 15315 if (ipip->ipi_cmd_type == IF_CMD) { 15316 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15317 } else { 15318 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15319 } 15320 return (0); 15321 } 15322 15323 /* ARGSUSED */ 15324 int 15325 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15326 ip_ioctl_cmd_t *ipip, void *ifreq) 15327 { 15328 struct lifreq *lifr = (struct lifreq *)ifreq; 15329 15330 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15331 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15332 /* Get the interface zone */ 15333 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15334 lifr->lifr_zoneid = ipif->ipif_zoneid; 15335 return (0); 15336 } 15337 15338 /* 15339 * Set the zoneid of an interface. 15340 */ 15341 /* ARGSUSED */ 15342 int 15343 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15344 ip_ioctl_cmd_t *ipip, void *ifreq) 15345 { 15346 struct lifreq *lifr = (struct lifreq *)ifreq; 15347 int err = 0; 15348 boolean_t need_up = B_FALSE; 15349 zone_t *zptr; 15350 zone_status_t status; 15351 zoneid_t zoneid; 15352 15353 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15354 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15355 if (!is_system_labeled()) 15356 return (ENOTSUP); 15357 zoneid = GLOBAL_ZONEID; 15358 } 15359 15360 /* cannot assign instance zero to a non-global zone */ 15361 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15362 return (ENOTSUP); 15363 15364 /* 15365 * Cannot assign to a zone that doesn't exist or is shutting down. In 15366 * the event of a race with the zone shutdown processing, since IP 15367 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15368 * interface will be cleaned up even if the zone is shut down 15369 * immediately after the status check. If the interface can't be brought 15370 * down right away, and the zone is shut down before the restart 15371 * function is called, we resolve the possible races by rechecking the 15372 * zone status in the restart function. 15373 */ 15374 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15375 return (EINVAL); 15376 status = zone_status_get(zptr); 15377 zone_rele(zptr); 15378 15379 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15380 return (EINVAL); 15381 15382 if (ipif->ipif_flags & IPIF_UP) { 15383 /* 15384 * If the interface is already marked up, 15385 * we call ipif_down which will take care 15386 * of ditching any IREs that have been set 15387 * up based on the old interface address. 15388 */ 15389 err = ipif_logical_down(ipif, q, mp); 15390 if (err == EINPROGRESS) 15391 return (err); 15392 (void) ipif_down_tail(ipif); 15393 need_up = B_TRUE; 15394 } 15395 15396 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15397 return (err); 15398 } 15399 15400 static int 15401 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15402 queue_t *q, mblk_t *mp, boolean_t need_up) 15403 { 15404 int err = 0; 15405 ip_stack_t *ipst; 15406 15407 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15408 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15409 15410 if (CONN_Q(q)) 15411 ipst = CONNQ_TO_IPST(q); 15412 else 15413 ipst = ILLQ_TO_IPST(q); 15414 15415 /* 15416 * For exclusive stacks we don't allow a different zoneid than 15417 * global. 15418 */ 15419 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15420 zoneid != GLOBAL_ZONEID) 15421 return (EINVAL); 15422 15423 /* Set the new zone id. */ 15424 ipif->ipif_zoneid = zoneid; 15425 15426 /* Update sctp list */ 15427 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15428 15429 /* The default multicast interface might have changed */ 15430 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15431 15432 if (need_up) { 15433 /* 15434 * Now bring the interface back up. If this 15435 * is the only IPIF for the ILL, ipif_up 15436 * will have to re-bind to the device, so 15437 * we may get back EINPROGRESS, in which 15438 * case, this IOCTL will get completed in 15439 * ip_rput_dlpi when we see the DL_BIND_ACK. 15440 */ 15441 err = ipif_up(ipif, q, mp); 15442 } 15443 return (err); 15444 } 15445 15446 /* ARGSUSED */ 15447 int 15448 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15449 ip_ioctl_cmd_t *ipip, void *if_req) 15450 { 15451 struct lifreq *lifr = (struct lifreq *)if_req; 15452 zoneid_t zoneid; 15453 zone_t *zptr; 15454 zone_status_t status; 15455 15456 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15457 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15458 zoneid = GLOBAL_ZONEID; 15459 15460 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15461 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15462 15463 /* 15464 * We recheck the zone status to resolve the following race condition: 15465 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15466 * 2) hme0:1 is up and can't be brought down right away; 15467 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15468 * 3) zone "myzone" is halted; the zone status switches to 15469 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15470 * the interfaces to remove - hme0:1 is not returned because it's not 15471 * yet in "myzone", so it won't be removed; 15472 * 4) the restart function for SIOCSLIFZONE is called; without the 15473 * status check here, we would have hme0:1 in "myzone" after it's been 15474 * destroyed. 15475 * Note that if the status check fails, we need to bring the interface 15476 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15477 * ipif_up_done[_v6](). 15478 */ 15479 status = ZONE_IS_UNINITIALIZED; 15480 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15481 status = zone_status_get(zptr); 15482 zone_rele(zptr); 15483 } 15484 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15485 if (ipif->ipif_isv6) { 15486 (void) ipif_up_done_v6(ipif); 15487 } else { 15488 (void) ipif_up_done(ipif); 15489 } 15490 return (EINVAL); 15491 } 15492 15493 (void) ipif_down_tail(ipif); 15494 15495 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15496 B_TRUE)); 15497 } 15498 15499 /* 15500 * Return the number of addresses on `ill' with one or more of the values 15501 * in `set' set and all of the values in `clear' clear. 15502 */ 15503 static uint_t 15504 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15505 { 15506 ipif_t *ipif; 15507 uint_t cnt = 0; 15508 15509 ASSERT(IAM_WRITER_ILL(ill)); 15510 15511 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15512 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15513 cnt++; 15514 15515 return (cnt); 15516 } 15517 15518 /* 15519 * Return the number of migratable addresses on `ill' that are under 15520 * application control. 15521 */ 15522 uint_t 15523 ill_appaddr_cnt(const ill_t *ill) 15524 { 15525 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15526 IPIF_NOFAILOVER)); 15527 } 15528 15529 /* 15530 * Return the number of point-to-point addresses on `ill'. 15531 */ 15532 uint_t 15533 ill_ptpaddr_cnt(const ill_t *ill) 15534 { 15535 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15536 } 15537 15538 /* ARGSUSED */ 15539 int 15540 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15541 ip_ioctl_cmd_t *ipip, void *ifreq) 15542 { 15543 struct lifreq *lifr = ifreq; 15544 15545 ASSERT(q->q_next == NULL); 15546 ASSERT(CONN_Q(q)); 15547 15548 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15549 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15550 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15551 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15552 15553 return (0); 15554 } 15555 15556 /* Find the previous ILL in this usesrc group */ 15557 static ill_t * 15558 ill_prev_usesrc(ill_t *uill) 15559 { 15560 ill_t *ill; 15561 15562 for (ill = uill->ill_usesrc_grp_next; 15563 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15564 ill = ill->ill_usesrc_grp_next) 15565 /* do nothing */; 15566 return (ill); 15567 } 15568 15569 /* 15570 * Release all members of the usesrc group. This routine is called 15571 * from ill_delete when the interface being unplumbed is the 15572 * group head. 15573 * 15574 * This silently clears the usesrc that ifconfig setup. 15575 * An alternative would be to keep that ifindex, and drop packets on the floor 15576 * since no source address can be selected. 15577 * Even if we keep the current semantics, don't need a lock and a linked list. 15578 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15579 * the one that is being removed. Issue is how we return the usesrc users 15580 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15581 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15582 * ill walk, but the walker would need to insert in the ioctl response. 15583 */ 15584 static void 15585 ill_disband_usesrc_group(ill_t *uill) 15586 { 15587 ill_t *next_ill, *tmp_ill; 15588 ip_stack_t *ipst = uill->ill_ipst; 15589 15590 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15591 next_ill = uill->ill_usesrc_grp_next; 15592 15593 do { 15594 ASSERT(next_ill != NULL); 15595 tmp_ill = next_ill->ill_usesrc_grp_next; 15596 ASSERT(tmp_ill != NULL); 15597 next_ill->ill_usesrc_grp_next = NULL; 15598 next_ill->ill_usesrc_ifindex = 0; 15599 next_ill = tmp_ill; 15600 } while (next_ill->ill_usesrc_ifindex != 0); 15601 uill->ill_usesrc_grp_next = NULL; 15602 } 15603 15604 /* 15605 * Remove the client usesrc ILL from the list and relink to a new list 15606 */ 15607 int 15608 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15609 { 15610 ill_t *ill, *tmp_ill; 15611 ip_stack_t *ipst = ucill->ill_ipst; 15612 15613 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15614 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15615 15616 /* 15617 * Check if the usesrc client ILL passed in is not already 15618 * in use as a usesrc ILL i.e one whose source address is 15619 * in use OR a usesrc ILL is not already in use as a usesrc 15620 * client ILL 15621 */ 15622 if ((ucill->ill_usesrc_ifindex == 0) || 15623 (uill->ill_usesrc_ifindex != 0)) { 15624 return (-1); 15625 } 15626 15627 ill = ill_prev_usesrc(ucill); 15628 ASSERT(ill->ill_usesrc_grp_next != NULL); 15629 15630 /* Remove from the current list */ 15631 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15632 /* Only two elements in the list */ 15633 ASSERT(ill->ill_usesrc_ifindex == 0); 15634 ill->ill_usesrc_grp_next = NULL; 15635 } else { 15636 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15637 } 15638 15639 if (ifindex == 0) { 15640 ucill->ill_usesrc_ifindex = 0; 15641 ucill->ill_usesrc_grp_next = NULL; 15642 return (0); 15643 } 15644 15645 ucill->ill_usesrc_ifindex = ifindex; 15646 tmp_ill = uill->ill_usesrc_grp_next; 15647 uill->ill_usesrc_grp_next = ucill; 15648 ucill->ill_usesrc_grp_next = 15649 (tmp_ill != NULL) ? tmp_ill : uill; 15650 return (0); 15651 } 15652 15653 /* 15654 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15655 * ip.c for locking details. 15656 */ 15657 /* ARGSUSED */ 15658 int 15659 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15660 ip_ioctl_cmd_t *ipip, void *ifreq) 15661 { 15662 struct lifreq *lifr = (struct lifreq *)ifreq; 15663 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15664 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15665 int err = 0, ret; 15666 uint_t ifindex; 15667 ipsq_t *ipsq = NULL; 15668 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15669 15670 ASSERT(IAM_WRITER_IPIF(ipif)); 15671 ASSERT(q->q_next == NULL); 15672 ASSERT(CONN_Q(q)); 15673 15674 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15675 15676 ifindex = lifr->lifr_index; 15677 if (ifindex == 0) { 15678 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15679 /* non usesrc group interface, nothing to reset */ 15680 return (0); 15681 } 15682 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15683 /* valid reset request */ 15684 reset_flg = B_TRUE; 15685 } 15686 15687 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15688 if (usesrc_ill == NULL) { 15689 return (ENXIO); 15690 } 15691 15692 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15693 NEW_OP, B_TRUE); 15694 if (ipsq == NULL) { 15695 err = EINPROGRESS; 15696 /* Operation enqueued on the ipsq of the usesrc ILL */ 15697 goto done; 15698 } 15699 15700 /* USESRC isn't currently supported with IPMP */ 15701 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15702 err = ENOTSUP; 15703 goto done; 15704 } 15705 15706 /* 15707 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15708 * used by IPMP underlying interfaces, but someone might think it's 15709 * more general and try to use it independently with VNI.) 15710 */ 15711 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15712 err = ENOTSUP; 15713 goto done; 15714 } 15715 15716 /* 15717 * If the client is already in use as a usesrc_ill or a usesrc_ill is 15718 * already a client then return EINVAL 15719 */ 15720 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 15721 err = EINVAL; 15722 goto done; 15723 } 15724 15725 /* 15726 * If the ill_usesrc_ifindex field is already set to what it needs to 15727 * be then this is a duplicate operation. 15728 */ 15729 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 15730 err = 0; 15731 goto done; 15732 } 15733 15734 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 15735 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 15736 usesrc_ill->ill_isv6)); 15737 15738 /* 15739 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 15740 * and the ill_usesrc_ifindex fields 15741 */ 15742 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 15743 15744 if (reset_flg) { 15745 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 15746 if (ret != 0) { 15747 err = EINVAL; 15748 } 15749 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15750 goto done; 15751 } 15752 15753 /* 15754 * Four possibilities to consider: 15755 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 15756 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 15757 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 15758 * 4. Both are part of their respective usesrc groups 15759 */ 15760 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 15761 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15762 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 15763 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 15764 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 15765 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 15766 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 15767 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15768 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 15769 /* Insert at head of list */ 15770 usesrc_cli_ill->ill_usesrc_grp_next = 15771 usesrc_ill->ill_usesrc_grp_next; 15772 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 15773 } else { 15774 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 15775 ifindex); 15776 if (ret != 0) 15777 err = EINVAL; 15778 } 15779 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15780 15781 done: 15782 if (ipsq != NULL) 15783 ipsq_exit(ipsq); 15784 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 15785 ill_refrele(usesrc_ill); 15786 15787 /* Let conn_ixa caching know that source address selection changed */ 15788 ip_update_source_selection(ipst); 15789 15790 return (err); 15791 } 15792 15793 /* 15794 * comparison function used by avl. 15795 */ 15796 static int 15797 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 15798 { 15799 15800 uint_t index; 15801 15802 ASSERT(phyip != NULL && index_ptr != NULL); 15803 15804 index = *((uint_t *)index_ptr); 15805 /* 15806 * let the phyint with the lowest index be on top. 15807 */ 15808 if (((phyint_t *)phyip)->phyint_ifindex < index) 15809 return (1); 15810 if (((phyint_t *)phyip)->phyint_ifindex > index) 15811 return (-1); 15812 return (0); 15813 } 15814 15815 /* 15816 * comparison function used by avl. 15817 */ 15818 static int 15819 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 15820 { 15821 ill_t *ill; 15822 int res = 0; 15823 15824 ASSERT(phyip != NULL && name_ptr != NULL); 15825 15826 if (((phyint_t *)phyip)->phyint_illv4) 15827 ill = ((phyint_t *)phyip)->phyint_illv4; 15828 else 15829 ill = ((phyint_t *)phyip)->phyint_illv6; 15830 ASSERT(ill != NULL); 15831 15832 res = strcmp(ill->ill_name, (char *)name_ptr); 15833 if (res > 0) 15834 return (1); 15835 else if (res < 0) 15836 return (-1); 15837 return (0); 15838 } 15839 15840 /* 15841 * This function is called on the unplumb path via ill_glist_delete() when 15842 * there are no ills left on the phyint and thus the phyint can be freed. 15843 */ 15844 static void 15845 phyint_free(phyint_t *phyi) 15846 { 15847 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 15848 15849 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 15850 15851 /* 15852 * If this phyint was an IPMP meta-interface, blow away the group. 15853 * This is safe to do because all of the illgrps have already been 15854 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 15855 * If we're cleaning up as a result of failed initialization, 15856 * phyint_grp may be NULL. 15857 */ 15858 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 15859 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 15860 ipmp_grp_destroy(phyi->phyint_grp); 15861 phyi->phyint_grp = NULL; 15862 rw_exit(&ipst->ips_ipmp_lock); 15863 } 15864 15865 /* 15866 * If this interface was under IPMP, take it out of the group. 15867 */ 15868 if (phyi->phyint_grp != NULL) 15869 ipmp_phyint_leave_grp(phyi); 15870 15871 /* 15872 * Delete the phyint and disassociate its ipsq. The ipsq itself 15873 * will be freed in ipsq_exit(). 15874 */ 15875 phyi->phyint_ipsq->ipsq_phyint = NULL; 15876 phyi->phyint_name[0] = '\0'; 15877 15878 mi_free(phyi); 15879 } 15880 15881 /* 15882 * Attach the ill to the phyint structure which can be shared by both 15883 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 15884 * function is called from ipif_set_values and ill_lookup_on_name (for 15885 * loopback) where we know the name of the ill. We lookup the ill and if 15886 * there is one present already with the name use that phyint. Otherwise 15887 * reuse the one allocated by ill_init. 15888 */ 15889 static void 15890 ill_phyint_reinit(ill_t *ill) 15891 { 15892 boolean_t isv6 = ill->ill_isv6; 15893 phyint_t *phyi_old; 15894 phyint_t *phyi; 15895 avl_index_t where = 0; 15896 ill_t *ill_other = NULL; 15897 ip_stack_t *ipst = ill->ill_ipst; 15898 15899 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 15900 15901 phyi_old = ill->ill_phyint; 15902 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 15903 phyi_old->phyint_illv6 == NULL)); 15904 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 15905 phyi_old->phyint_illv4 == NULL)); 15906 ASSERT(phyi_old->phyint_ifindex == 0); 15907 15908 /* 15909 * Now that our ill has a name, set it in the phyint. 15910 */ 15911 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 15912 15913 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15914 ill->ill_name, &where); 15915 15916 /* 15917 * 1. We grabbed the ill_g_lock before inserting this ill into 15918 * the global list of ills. So no other thread could have located 15919 * this ill and hence the ipsq of this ill is guaranteed to be empty. 15920 * 2. Now locate the other protocol instance of this ill. 15921 * 3. Now grab both ill locks in the right order, and the phyint lock of 15922 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 15923 * of neither ill can change. 15924 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 15925 * other ill. 15926 * 5. Release all locks. 15927 */ 15928 15929 /* 15930 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 15931 * we are initializing IPv4. 15932 */ 15933 if (phyi != NULL) { 15934 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 15935 ASSERT(ill_other->ill_phyint != NULL); 15936 ASSERT((isv6 && !ill_other->ill_isv6) || 15937 (!isv6 && ill_other->ill_isv6)); 15938 GRAB_ILL_LOCKS(ill, ill_other); 15939 /* 15940 * We are potentially throwing away phyint_flags which 15941 * could be different from the one that we obtain from 15942 * ill_other->ill_phyint. But it is okay as we are assuming 15943 * that the state maintained within IP is correct. 15944 */ 15945 mutex_enter(&phyi->phyint_lock); 15946 if (isv6) { 15947 ASSERT(phyi->phyint_illv6 == NULL); 15948 phyi->phyint_illv6 = ill; 15949 } else { 15950 ASSERT(phyi->phyint_illv4 == NULL); 15951 phyi->phyint_illv4 = ill; 15952 } 15953 15954 /* 15955 * Delete the old phyint and make its ipsq eligible 15956 * to be freed in ipsq_exit(). 15957 */ 15958 phyi_old->phyint_illv4 = NULL; 15959 phyi_old->phyint_illv6 = NULL; 15960 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 15961 phyi_old->phyint_name[0] = '\0'; 15962 mi_free(phyi_old); 15963 } else { 15964 mutex_enter(&ill->ill_lock); 15965 /* 15966 * We don't need to acquire any lock, since 15967 * the ill is not yet visible globally and we 15968 * have not yet released the ill_g_lock. 15969 */ 15970 phyi = phyi_old; 15971 mutex_enter(&phyi->phyint_lock); 15972 /* XXX We need a recovery strategy here. */ 15973 if (!phyint_assign_ifindex(phyi, ipst)) 15974 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 15975 15976 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15977 (void *)phyi, where); 15978 15979 (void) avl_find(&ipst->ips_phyint_g_list-> 15980 phyint_list_avl_by_index, 15981 &phyi->phyint_ifindex, &where); 15982 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15983 (void *)phyi, where); 15984 } 15985 15986 /* 15987 * Reassigning ill_phyint automatically reassigns the ipsq also. 15988 * pending mp is not affected because that is per ill basis. 15989 */ 15990 ill->ill_phyint = phyi; 15991 15992 /* 15993 * Now that the phyint's ifindex has been assigned, complete the 15994 * remaining 15995 */ 15996 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 15997 if (ill->ill_isv6) { 15998 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 15999 ill->ill_phyint->phyint_ifindex; 16000 ill->ill_mcast_type = ipst->ips_mld_max_version; 16001 } else { 16002 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16003 } 16004 16005 /* 16006 * Generate an event within the hooks framework to indicate that 16007 * a new interface has just been added to IP. For this event to 16008 * be generated, the network interface must, at least, have an 16009 * ifindex assigned to it. (We don't generate the event for 16010 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16011 * 16012 * This needs to be run inside the ill_g_lock perimeter to ensure 16013 * that the ordering of delivered events to listeners matches the 16014 * order of them in the kernel. 16015 */ 16016 if (!IS_LOOPBACK(ill)) { 16017 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16018 ill->ill_name_length); 16019 } 16020 RELEASE_ILL_LOCKS(ill, ill_other); 16021 mutex_exit(&phyi->phyint_lock); 16022 } 16023 16024 /* 16025 * Notify any downstream modules of the name of this interface. 16026 * An M_IOCTL is used even though we don't expect a successful reply. 16027 * Any reply message from the driver (presumably an M_IOCNAK) will 16028 * eventually get discarded somewhere upstream. The message format is 16029 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16030 * to IP. 16031 */ 16032 static void 16033 ip_ifname_notify(ill_t *ill, queue_t *q) 16034 { 16035 mblk_t *mp1, *mp2; 16036 struct iocblk *iocp; 16037 struct lifreq *lifr; 16038 16039 mp1 = mkiocb(SIOCSLIFNAME); 16040 if (mp1 == NULL) 16041 return; 16042 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16043 if (mp2 == NULL) { 16044 freeb(mp1); 16045 return; 16046 } 16047 16048 mp1->b_cont = mp2; 16049 iocp = (struct iocblk *)mp1->b_rptr; 16050 iocp->ioc_count = sizeof (struct lifreq); 16051 16052 lifr = (struct lifreq *)mp2->b_rptr; 16053 mp2->b_wptr += sizeof (struct lifreq); 16054 bzero(lifr, sizeof (struct lifreq)); 16055 16056 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16057 lifr->lifr_ppa = ill->ill_ppa; 16058 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16059 16060 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16061 char *, "SIOCSLIFNAME", ill_t *, ill); 16062 putnext(q, mp1); 16063 } 16064 16065 static int 16066 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16067 { 16068 int err; 16069 ip_stack_t *ipst = ill->ill_ipst; 16070 phyint_t *phyi = ill->ill_phyint; 16071 16072 /* Set the obsolete NDD per-interface forwarding name. */ 16073 err = ill_set_ndd_name(ill); 16074 if (err != 0) { 16075 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16076 err); 16077 } 16078 16079 /* 16080 * Now that ill_name is set, the configuration for the IPMP 16081 * meta-interface can be performed. 16082 */ 16083 if (IS_IPMP(ill)) { 16084 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16085 /* 16086 * If phyi->phyint_grp is NULL, then this is the first IPMP 16087 * meta-interface and we need to create the IPMP group. 16088 */ 16089 if (phyi->phyint_grp == NULL) { 16090 /* 16091 * If someone has renamed another IPMP group to have 16092 * the same name as our interface, bail. 16093 */ 16094 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16095 rw_exit(&ipst->ips_ipmp_lock); 16096 return (EEXIST); 16097 } 16098 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16099 if (phyi->phyint_grp == NULL) { 16100 rw_exit(&ipst->ips_ipmp_lock); 16101 return (ENOMEM); 16102 } 16103 } 16104 rw_exit(&ipst->ips_ipmp_lock); 16105 } 16106 16107 /* Tell downstream modules where they are. */ 16108 ip_ifname_notify(ill, q); 16109 16110 /* 16111 * ill_dl_phys returns EINPROGRESS in the usual case. 16112 * Error cases are ENOMEM ... 16113 */ 16114 err = ill_dl_phys(ill, ipif, mp, q); 16115 16116 if (ill->ill_isv6) { 16117 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16118 if (ipst->ips_mld_slowtimeout_id == 0) { 16119 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16120 (void *)ipst, 16121 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16122 } 16123 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16124 } else { 16125 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16126 if (ipst->ips_igmp_slowtimeout_id == 0) { 16127 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16128 (void *)ipst, 16129 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16130 } 16131 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16132 } 16133 16134 return (err); 16135 } 16136 16137 /* 16138 * Common routine for ppa and ifname setting. Should be called exclusive. 16139 * 16140 * Returns EINPROGRESS when mp has been consumed by queueing it on 16141 * ipx_pending_mp and the ioctl will complete in ip_rput. 16142 * 16143 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16144 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16145 * For SLIFNAME, we pass these values back to the userland. 16146 */ 16147 static int 16148 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16149 { 16150 ill_t *ill; 16151 ipif_t *ipif; 16152 ipsq_t *ipsq; 16153 char *ppa_ptr; 16154 char *old_ptr; 16155 char old_char; 16156 int error; 16157 ip_stack_t *ipst; 16158 16159 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16160 ASSERT(q->q_next != NULL); 16161 ASSERT(interf_name != NULL); 16162 16163 ill = (ill_t *)q->q_ptr; 16164 ipst = ill->ill_ipst; 16165 16166 ASSERT(ill->ill_ipst != NULL); 16167 ASSERT(ill->ill_name[0] == '\0'); 16168 ASSERT(IAM_WRITER_ILL(ill)); 16169 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16170 ASSERT(ill->ill_ppa == UINT_MAX); 16171 16172 ill->ill_defend_start = ill->ill_defend_count = 0; 16173 /* The ppa is sent down by ifconfig or is chosen */ 16174 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16175 return (EINVAL); 16176 } 16177 16178 /* 16179 * make sure ppa passed in is same as ppa in the name. 16180 * This check is not made when ppa == UINT_MAX in that case ppa 16181 * in the name could be anything. System will choose a ppa and 16182 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16183 */ 16184 if (*new_ppa_ptr != UINT_MAX) { 16185 /* stoi changes the pointer */ 16186 old_ptr = ppa_ptr; 16187 /* 16188 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16189 * (they don't have an externally visible ppa). We assign one 16190 * here so that we can manage the interface. Note that in 16191 * the past this value was always 0 for DLPI 1 drivers. 16192 */ 16193 if (*new_ppa_ptr == 0) 16194 *new_ppa_ptr = stoi(&old_ptr); 16195 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16196 return (EINVAL); 16197 } 16198 /* 16199 * terminate string before ppa 16200 * save char at that location. 16201 */ 16202 old_char = ppa_ptr[0]; 16203 ppa_ptr[0] = '\0'; 16204 16205 ill->ill_ppa = *new_ppa_ptr; 16206 /* 16207 * Finish as much work now as possible before calling ill_glist_insert 16208 * which makes the ill globally visible and also merges it with the 16209 * other protocol instance of this phyint. The remaining work is 16210 * done after entering the ipsq which may happen sometime later. 16211 * ill_set_ndd_name occurs after the ill has been made globally visible. 16212 */ 16213 ipif = ill->ill_ipif; 16214 16215 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16216 ipif_assign_seqid(ipif); 16217 16218 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16219 ill->ill_flags |= ILLF_IPV4; 16220 16221 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16222 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16223 16224 if (ill->ill_flags & ILLF_IPV6) { 16225 16226 ill->ill_isv6 = B_TRUE; 16227 ill_set_inputfn(ill); 16228 if (ill->ill_rq != NULL) { 16229 ill->ill_rq->q_qinfo = &iprinitv6; 16230 } 16231 16232 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16233 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16234 ipif->ipif_v6subnet = ipv6_all_zeros; 16235 ipif->ipif_v6net_mask = ipv6_all_zeros; 16236 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16237 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16238 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16239 /* 16240 * point-to-point or Non-mulicast capable 16241 * interfaces won't do NUD unless explicitly 16242 * configured to do so. 16243 */ 16244 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16245 !(ill->ill_flags & ILLF_MULTICAST)) { 16246 ill->ill_flags |= ILLF_NONUD; 16247 } 16248 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16249 if (ill->ill_flags & ILLF_NOARP) { 16250 /* 16251 * Note: xresolv interfaces will eventually need 16252 * NOARP set here as well, but that will require 16253 * those external resolvers to have some 16254 * knowledge of that flag and act appropriately. 16255 * Not to be changed at present. 16256 */ 16257 ill->ill_flags &= ~ILLF_NOARP; 16258 } 16259 /* 16260 * Set the ILLF_ROUTER flag according to the global 16261 * IPv6 forwarding policy. 16262 */ 16263 if (ipst->ips_ipv6_forward != 0) 16264 ill->ill_flags |= ILLF_ROUTER; 16265 } else if (ill->ill_flags & ILLF_IPV4) { 16266 ill->ill_isv6 = B_FALSE; 16267 ill_set_inputfn(ill); 16268 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16269 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16270 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16271 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16272 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16273 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16274 /* 16275 * Set the ILLF_ROUTER flag according to the global 16276 * IPv4 forwarding policy. 16277 */ 16278 if (ipst->ips_ip_g_forward != 0) 16279 ill->ill_flags |= ILLF_ROUTER; 16280 } 16281 16282 ASSERT(ill->ill_phyint != NULL); 16283 16284 /* 16285 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16286 * be completed in ill_glist_insert -> ill_phyint_reinit 16287 */ 16288 if (!ill_allocate_mibs(ill)) 16289 return (ENOMEM); 16290 16291 /* 16292 * Pick a default sap until we get the DL_INFO_ACK back from 16293 * the driver. 16294 */ 16295 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16296 ill->ill_media->ip_m_ipv4sap; 16297 16298 ill->ill_ifname_pending = 1; 16299 ill->ill_ifname_pending_err = 0; 16300 16301 /* 16302 * When the first ipif comes up in ipif_up_done(), multicast groups 16303 * that were joined while this ill was not bound to the DLPI link need 16304 * to be recovered by ill_recover_multicast(). 16305 */ 16306 ill->ill_need_recover_multicast = 1; 16307 16308 ill_refhold(ill); 16309 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16310 if ((error = ill_glist_insert(ill, interf_name, 16311 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16312 ill->ill_ppa = UINT_MAX; 16313 ill->ill_name[0] = '\0'; 16314 /* 16315 * undo null termination done above. 16316 */ 16317 ppa_ptr[0] = old_char; 16318 rw_exit(&ipst->ips_ill_g_lock); 16319 ill_refrele(ill); 16320 return (error); 16321 } 16322 16323 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16324 16325 /* 16326 * When we return the buffer pointed to by interf_name should contain 16327 * the same name as in ill_name. 16328 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16329 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16330 * so copy full name and update the ppa ptr. 16331 * When ppa passed in != UINT_MAX all values are correct just undo 16332 * null termination, this saves a bcopy. 16333 */ 16334 if (*new_ppa_ptr == UINT_MAX) { 16335 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16336 *new_ppa_ptr = ill->ill_ppa; 16337 } else { 16338 /* 16339 * undo null termination done above. 16340 */ 16341 ppa_ptr[0] = old_char; 16342 } 16343 16344 /* Let SCTP know about this ILL */ 16345 sctp_update_ill(ill, SCTP_ILL_INSERT); 16346 16347 /* 16348 * ill_glist_insert has made the ill visible globally, and 16349 * ill_phyint_reinit could have changed the ipsq. At this point, 16350 * we need to hold the ips_ill_g_lock across the call to enter the 16351 * ipsq to enforce atomicity and prevent reordering. In the event 16352 * the ipsq has changed, and if the new ipsq is currently busy, 16353 * we need to make sure that this half-completed ioctl is ahead of 16354 * any subsequent ioctl. We achieve this by not dropping the 16355 * ips_ill_g_lock which prevents any ill lookup itself thereby 16356 * ensuring that new ioctls can't start. 16357 */ 16358 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16359 B_TRUE); 16360 16361 rw_exit(&ipst->ips_ill_g_lock); 16362 ill_refrele(ill); 16363 if (ipsq == NULL) 16364 return (EINPROGRESS); 16365 16366 /* 16367 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16368 */ 16369 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16370 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16371 else 16372 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16373 16374 error = ipif_set_values_tail(ill, ipif, mp, q); 16375 ipsq_exit(ipsq); 16376 if (error != 0 && error != EINPROGRESS) { 16377 /* 16378 * restore previous values 16379 */ 16380 ill->ill_isv6 = B_FALSE; 16381 ill_set_inputfn(ill); 16382 } 16383 return (error); 16384 } 16385 16386 void 16387 ipif_init(ip_stack_t *ipst) 16388 { 16389 int i; 16390 16391 for (i = 0; i < MAX_G_HEADS; i++) { 16392 ipst->ips_ill_g_heads[i].ill_g_list_head = 16393 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16394 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16395 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16396 } 16397 16398 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16399 ill_phyint_compare_index, 16400 sizeof (phyint_t), 16401 offsetof(struct phyint, phyint_avl_by_index)); 16402 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16403 ill_phyint_compare_name, 16404 sizeof (phyint_t), 16405 offsetof(struct phyint, phyint_avl_by_name)); 16406 } 16407 16408 /* 16409 * Save enough information so that we can recreate the IRE if 16410 * the interface goes down and then up. 16411 */ 16412 void 16413 ill_save_ire(ill_t *ill, ire_t *ire) 16414 { 16415 mblk_t *save_mp; 16416 16417 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16418 if (save_mp != NULL) { 16419 ifrt_t *ifrt; 16420 16421 save_mp->b_wptr += sizeof (ifrt_t); 16422 ifrt = (ifrt_t *)save_mp->b_rptr; 16423 bzero(ifrt, sizeof (ifrt_t)); 16424 ifrt->ifrt_type = ire->ire_type; 16425 if (ire->ire_ipversion == IPV4_VERSION) { 16426 ASSERT(!ill->ill_isv6); 16427 ifrt->ifrt_addr = ire->ire_addr; 16428 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16429 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16430 ifrt->ifrt_mask = ire->ire_mask; 16431 } else { 16432 ASSERT(ill->ill_isv6); 16433 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16434 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16435 mutex_enter(&ire->ire_lock); 16436 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16437 mutex_exit(&ire->ire_lock); 16438 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16439 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16440 } 16441 ifrt->ifrt_flags = ire->ire_flags; 16442 ifrt->ifrt_zoneid = ire->ire_zoneid; 16443 mutex_enter(&ill->ill_saved_ire_lock); 16444 save_mp->b_cont = ill->ill_saved_ire_mp; 16445 ill->ill_saved_ire_mp = save_mp; 16446 ill->ill_saved_ire_cnt++; 16447 mutex_exit(&ill->ill_saved_ire_lock); 16448 } 16449 } 16450 16451 /* 16452 * Remove one entry from ill_saved_ire_mp. 16453 */ 16454 void 16455 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16456 { 16457 mblk_t **mpp; 16458 mblk_t *mp; 16459 ifrt_t *ifrt; 16460 16461 /* Remove from ill_saved_ire_mp list if it is there */ 16462 mutex_enter(&ill->ill_saved_ire_lock); 16463 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16464 mpp = &(*mpp)->b_cont) { 16465 in6_addr_t gw_addr_v6; 16466 16467 /* 16468 * On a given ill, the tuple of address, gateway, mask, 16469 * ire_type, and zoneid is unique for each saved IRE. 16470 */ 16471 mp = *mpp; 16472 ifrt = (ifrt_t *)mp->b_rptr; 16473 /* ire_gateway_addr_v6 can change - need lock */ 16474 mutex_enter(&ire->ire_lock); 16475 gw_addr_v6 = ire->ire_gateway_addr_v6; 16476 mutex_exit(&ire->ire_lock); 16477 16478 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16479 ifrt->ifrt_type != ire->ire_type) 16480 continue; 16481 16482 if (ill->ill_isv6 ? 16483 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16484 &ire->ire_addr_v6) && 16485 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16486 &gw_addr_v6) && 16487 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16488 &ire->ire_mask_v6)) : 16489 (ifrt->ifrt_addr == ire->ire_addr && 16490 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16491 ifrt->ifrt_mask == ire->ire_mask)) { 16492 *mpp = mp->b_cont; 16493 ill->ill_saved_ire_cnt--; 16494 freeb(mp); 16495 break; 16496 } 16497 } 16498 mutex_exit(&ill->ill_saved_ire_lock); 16499 } 16500 16501 /* 16502 * IP multirouting broadcast routes handling 16503 * Append CGTP broadcast IREs to regular ones created 16504 * at ifconfig time. 16505 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16506 * the destination and the gateway are broadcast addresses. 16507 * The caller has verified that the destination is an IRE_BROADCAST and that 16508 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16509 * we create a MULTIRT IRE_BROADCAST. 16510 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16511 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16512 */ 16513 static void 16514 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16515 { 16516 ire_t *ire_prim; 16517 16518 ASSERT(ire != NULL); 16519 16520 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16521 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16522 NULL); 16523 if (ire_prim != NULL) { 16524 /* 16525 * We are in the special case of broadcasts for 16526 * CGTP. We add an IRE_BROADCAST that holds 16527 * the RTF_MULTIRT flag, the destination 16528 * address and the low level 16529 * info of ire_prim. In other words, CGTP 16530 * broadcast is added to the redundant ipif. 16531 */ 16532 ill_t *ill_prim; 16533 ire_t *bcast_ire; 16534 16535 ill_prim = ire_prim->ire_ill; 16536 16537 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16538 (void *)ire_prim, (void *)ill_prim)); 16539 16540 bcast_ire = ire_create( 16541 (uchar_t *)&ire->ire_addr, 16542 (uchar_t *)&ip_g_all_ones, 16543 (uchar_t *)&ire->ire_gateway_addr, 16544 IRE_BROADCAST, 16545 ill_prim, 16546 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16547 ire->ire_flags | RTF_KERNEL, 16548 NULL, 16549 ipst); 16550 16551 /* 16552 * Here we assume that ire_add does head insertion so that 16553 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16554 */ 16555 if (bcast_ire != NULL) { 16556 if (ire->ire_flags & RTF_SETSRC) { 16557 bcast_ire->ire_setsrc_addr = 16558 ire->ire_setsrc_addr; 16559 } 16560 bcast_ire = ire_add(bcast_ire); 16561 if (bcast_ire != NULL) { 16562 ip2dbg(("ip_cgtp_filter_bcast_add: " 16563 "added bcast_ire %p\n", 16564 (void *)bcast_ire)); 16565 16566 ill_save_ire(ill_prim, bcast_ire); 16567 ire_refrele(bcast_ire); 16568 } 16569 } 16570 ire_refrele(ire_prim); 16571 } 16572 } 16573 16574 /* 16575 * IP multirouting broadcast routes handling 16576 * Remove the broadcast ire. 16577 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16578 * the destination and the gateway are broadcast addresses. 16579 * The caller has only verified that RTF_MULTIRT was set. We check 16580 * that the destination is broadcast and that the gateway is a broadcast 16581 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16582 */ 16583 static void 16584 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16585 { 16586 ASSERT(ire != NULL); 16587 16588 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16589 ire_t *ire_prim; 16590 16591 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16592 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16593 ipst, NULL); 16594 if (ire_prim != NULL) { 16595 ill_t *ill_prim; 16596 ire_t *bcast_ire; 16597 16598 ill_prim = ire_prim->ire_ill; 16599 16600 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16601 "ire_prim %p, ill_prim %p\n", 16602 (void *)ire_prim, (void *)ill_prim)); 16603 16604 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16605 ire->ire_gateway_addr, IRE_BROADCAST, 16606 ill_prim, ALL_ZONES, NULL, 16607 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16608 MATCH_IRE_MASK, 0, ipst, NULL); 16609 16610 if (bcast_ire != NULL) { 16611 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16612 "looked up bcast_ire %p\n", 16613 (void *)bcast_ire)); 16614 ill_remove_saved_ire(bcast_ire->ire_ill, 16615 bcast_ire); 16616 ire_delete(bcast_ire); 16617 ire_refrele(bcast_ire); 16618 } 16619 ire_refrele(ire_prim); 16620 } 16621 } 16622 } 16623 16624 /* 16625 * Derive an interface id from the link layer address. 16626 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16627 */ 16628 static void 16629 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16630 { 16631 char *addr; 16632 16633 /* 16634 * Note that some IPv6 interfaces get plumbed over links that claim to 16635 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16636 * PPP links). The ETHERADDRL check here ensures that we only set the 16637 * interface ID on IPv6 interfaces above links that actually have real 16638 * Ethernet addresses. 16639 */ 16640 if (ill->ill_phys_addr_length == ETHERADDRL) { 16641 /* Form EUI-64 like address */ 16642 addr = (char *)&v6addr->s6_addr32[2]; 16643 bcopy(ill->ill_phys_addr, addr, 3); 16644 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16645 addr[3] = (char)0xff; 16646 addr[4] = (char)0xfe; 16647 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16648 } 16649 } 16650 16651 /* ARGSUSED */ 16652 static void 16653 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16654 { 16655 } 16656 16657 typedef struct ipmp_ifcookie { 16658 uint32_t ic_hostid; 16659 char ic_ifname[LIFNAMSIZ]; 16660 char ic_zonename[ZONENAME_MAX]; 16661 } ipmp_ifcookie_t; 16662 16663 /* 16664 * Construct a pseudo-random interface ID for the IPMP interface that's both 16665 * predictable and (almost) guaranteed to be unique. 16666 */ 16667 static void 16668 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16669 { 16670 zone_t *zp; 16671 uint8_t *addr; 16672 uchar_t hash[16]; 16673 ulong_t hostid; 16674 MD5_CTX ctx; 16675 ipmp_ifcookie_t ic = { 0 }; 16676 16677 ASSERT(IS_IPMP(ill)); 16678 16679 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16680 ic.ic_hostid = htonl((uint32_t)hostid); 16681 16682 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16683 16684 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16685 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16686 zone_rele(zp); 16687 } 16688 16689 MD5Init(&ctx); 16690 MD5Update(&ctx, &ic, sizeof (ic)); 16691 MD5Final(hash, &ctx); 16692 16693 /* 16694 * Map the hash to an interface ID per the basic approach in RFC3041. 16695 */ 16696 addr = &v6addr->s6_addr8[8]; 16697 bcopy(hash + 8, addr, sizeof (uint64_t)); 16698 addr[0] &= ~0x2; /* set local bit */ 16699 } 16700 16701 /* 16702 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16703 */ 16704 static void 16705 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16706 { 16707 phyint_t *phyi = ill->ill_phyint; 16708 16709 /* 16710 * Check PHYI_MULTI_BCAST and length of physical 16711 * address to determine if we use the mapping or the 16712 * broadcast address. 16713 */ 16714 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16715 ill->ill_phys_addr_length != ETHERADDRL) { 16716 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 16717 return; 16718 } 16719 m_physaddr[0] = 0x33; 16720 m_physaddr[1] = 0x33; 16721 m_physaddr[2] = m_ip6addr[12]; 16722 m_physaddr[3] = m_ip6addr[13]; 16723 m_physaddr[4] = m_ip6addr[14]; 16724 m_physaddr[5] = m_ip6addr[15]; 16725 } 16726 16727 /* 16728 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 16729 */ 16730 static void 16731 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16732 { 16733 phyint_t *phyi = ill->ill_phyint; 16734 16735 /* 16736 * Check PHYI_MULTI_BCAST and length of physical 16737 * address to determine if we use the mapping or the 16738 * broadcast address. 16739 */ 16740 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16741 ill->ill_phys_addr_length != ETHERADDRL) { 16742 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 16743 return; 16744 } 16745 m_physaddr[0] = 0x01; 16746 m_physaddr[1] = 0x00; 16747 m_physaddr[2] = 0x5e; 16748 m_physaddr[3] = m_ipaddr[1] & 0x7f; 16749 m_physaddr[4] = m_ipaddr[2]; 16750 m_physaddr[5] = m_ipaddr[3]; 16751 } 16752 16753 /* ARGSUSED */ 16754 static void 16755 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16756 { 16757 /* 16758 * for the MULTI_BCAST case and other cases when we want to 16759 * use the link-layer broadcast address for multicast. 16760 */ 16761 uint8_t *bphys_addr; 16762 dl_unitdata_req_t *dlur; 16763 16764 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16765 if (ill->ill_sap_length < 0) { 16766 bphys_addr = (uchar_t *)dlur + 16767 dlur->dl_dest_addr_offset; 16768 } else { 16769 bphys_addr = (uchar_t *)dlur + 16770 dlur->dl_dest_addr_offset + ill->ill_sap_length; 16771 } 16772 16773 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 16774 } 16775 16776 /* 16777 * Derive IPoIB interface id from the link layer address. 16778 */ 16779 static void 16780 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16781 { 16782 char *addr; 16783 16784 ASSERT(ill->ill_phys_addr_length == 20); 16785 addr = (char *)&v6addr->s6_addr32[2]; 16786 bcopy(ill->ill_phys_addr + 12, addr, 8); 16787 /* 16788 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 16789 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 16790 * rules. In these cases, the IBA considers these GUIDs to be in 16791 * "Modified EUI-64" format, and thus toggling the u/l bit is not 16792 * required; vendors are required not to assign global EUI-64's 16793 * that differ only in u/l bit values, thus guaranteeing uniqueness 16794 * of the interface identifier. Whether the GUID is in modified 16795 * or proper EUI-64 format, the ipv6 identifier must have the u/l 16796 * bit set to 1. 16797 */ 16798 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 16799 } 16800 16801 /* 16802 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 16803 * Note on mapping from multicast IP addresses to IPoIB multicast link 16804 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 16805 * The format of an IPoIB multicast address is: 16806 * 16807 * 4 byte QPN Scope Sign. Pkey 16808 * +--------------------------------------------+ 16809 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 16810 * +--------------------------------------------+ 16811 * 16812 * The Scope and Pkey components are properties of the IBA port and 16813 * network interface. They can be ascertained from the broadcast address. 16814 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 16815 */ 16816 static void 16817 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16818 { 16819 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 16820 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 16821 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 16822 uint8_t *bphys_addr; 16823 dl_unitdata_req_t *dlur; 16824 16825 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 16826 16827 /* 16828 * RFC 4391: IPv4 MGID is 28-bit long. 16829 */ 16830 m_physaddr[16] = m_ipaddr[0] & 0x0f; 16831 m_physaddr[17] = m_ipaddr[1]; 16832 m_physaddr[18] = m_ipaddr[2]; 16833 m_physaddr[19] = m_ipaddr[3]; 16834 16835 16836 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16837 if (ill->ill_sap_length < 0) { 16838 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 16839 } else { 16840 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 16841 ill->ill_sap_length; 16842 } 16843 /* 16844 * Now fill in the IBA scope/Pkey values from the broadcast address. 16845 */ 16846 m_physaddr[5] = bphys_addr[5]; 16847 m_physaddr[8] = bphys_addr[8]; 16848 m_physaddr[9] = bphys_addr[9]; 16849 } 16850 16851 static void 16852 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16853 { 16854 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 16855 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 16856 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 16857 uint8_t *bphys_addr; 16858 dl_unitdata_req_t *dlur; 16859 16860 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 16861 16862 /* 16863 * RFC 4391: IPv4 MGID is 80-bit long. 16864 */ 16865 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 16866 16867 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 16868 if (ill->ill_sap_length < 0) { 16869 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 16870 } else { 16871 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 16872 ill->ill_sap_length; 16873 } 16874 /* 16875 * Now fill in the IBA scope/Pkey values from the broadcast address. 16876 */ 16877 m_physaddr[5] = bphys_addr[5]; 16878 m_physaddr[8] = bphys_addr[8]; 16879 m_physaddr[9] = bphys_addr[9]; 16880 } 16881 16882 /* 16883 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 16884 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 16885 * IPv6 interface id. This is a suggested mechanism described in section 3.7 16886 * of RFC4213. 16887 */ 16888 static void 16889 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 16890 { 16891 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 16892 v6addr->s6_addr32[2] = 0; 16893 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 16894 } 16895 16896 /* 16897 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 16898 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 16899 * id. 16900 */ 16901 static void 16902 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 16903 { 16904 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 16905 16906 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 16907 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 16908 } 16909 16910 static void 16911 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16912 { 16913 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 16914 } 16915 16916 static void 16917 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 16918 { 16919 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 16920 } 16921 16922 static void 16923 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16924 { 16925 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 16926 } 16927 16928 static void 16929 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 16930 { 16931 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 16932 } 16933 16934 /* 16935 * Lookup an ill and verify that the zoneid has an ipif on that ill. 16936 * Returns an held ill, or NULL. 16937 */ 16938 ill_t * 16939 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 16940 ip_stack_t *ipst) 16941 { 16942 ill_t *ill; 16943 ipif_t *ipif; 16944 16945 ill = ill_lookup_on_ifindex(index, isv6, ipst); 16946 if (ill == NULL) 16947 return (NULL); 16948 16949 mutex_enter(&ill->ill_lock); 16950 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16951 if (IPIF_IS_CONDEMNED(ipif)) 16952 continue; 16953 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 16954 ipif->ipif_zoneid != ALL_ZONES) 16955 continue; 16956 16957 mutex_exit(&ill->ill_lock); 16958 return (ill); 16959 } 16960 mutex_exit(&ill->ill_lock); 16961 ill_refrele(ill); 16962 return (NULL); 16963 } 16964 16965 /* 16966 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 16967 * If a pointer to an ipif_t is returned then the caller will need to do 16968 * an ill_refrele(). 16969 */ 16970 ipif_t * 16971 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 16972 ip_stack_t *ipst) 16973 { 16974 ipif_t *ipif; 16975 ill_t *ill; 16976 16977 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16978 if (ill == NULL) 16979 return (NULL); 16980 16981 mutex_enter(&ill->ill_lock); 16982 if (ill->ill_state_flags & ILL_CONDEMNED) { 16983 mutex_exit(&ill->ill_lock); 16984 ill_refrele(ill); 16985 return (NULL); 16986 } 16987 16988 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16989 if (!IPIF_CAN_LOOKUP(ipif)) 16990 continue; 16991 if (lifidx == ipif->ipif_id) { 16992 ipif_refhold_locked(ipif); 16993 break; 16994 } 16995 } 16996 16997 mutex_exit(&ill->ill_lock); 16998 ill_refrele(ill); 16999 return (ipif); 17000 } 17001 17002 /* 17003 * Set ill_inputfn based on the current know state. 17004 * This needs to be called when any of the factors taken into 17005 * account changes. 17006 */ 17007 void 17008 ill_set_inputfn(ill_t *ill) 17009 { 17010 ip_stack_t *ipst = ill->ill_ipst; 17011 17012 if (ill->ill_isv6) { 17013 if (is_system_labeled()) 17014 ill->ill_inputfn = ill_input_full_v6; 17015 else 17016 ill->ill_inputfn = ill_input_short_v6; 17017 } else { 17018 if (is_system_labeled()) 17019 ill->ill_inputfn = ill_input_full_v4; 17020 else if (ill->ill_dhcpinit != 0) 17021 ill->ill_inputfn = ill_input_full_v4; 17022 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17023 != NULL) 17024 ill->ill_inputfn = ill_input_full_v4; 17025 else if (ipst->ips_ip_cgtp_filter && 17026 ipst->ips_ip_cgtp_filter_ops != NULL) 17027 ill->ill_inputfn = ill_input_full_v4; 17028 else 17029 ill->ill_inputfn = ill_input_short_v4; 17030 } 17031 } 17032 17033 /* 17034 * Re-evaluate ill_inputfn for all the IPv4 ills. 17035 * Used when RSVP and CGTP comes and goes. 17036 */ 17037 void 17038 ill_set_inputfn_all(ip_stack_t *ipst) 17039 { 17040 ill_walk_context_t ctx; 17041 ill_t *ill; 17042 17043 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17044 ill = ILL_START_WALK_V4(&ctx, ipst); 17045 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17046 ill_set_inputfn(ill); 17047 17048 rw_exit(&ipst->ips_ill_g_lock); 17049 } 17050 17051 /* 17052 * Set the physical address information for `ill' to the contents of the 17053 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17054 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17055 * EINPROGRESS will be returned. 17056 */ 17057 int 17058 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17059 { 17060 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17061 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17062 17063 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17064 17065 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17066 dlindp->dl_data != DL_CURR_DEST_ADDR && 17067 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17068 /* Changing DL_IPV6_TOKEN is not yet supported */ 17069 return (0); 17070 } 17071 17072 /* 17073 * We need to store up to two copies of `mp' in `ill'. Due to the 17074 * design of ipsq_pending_mp_add(), we can't pass them as separate 17075 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17076 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17077 */ 17078 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17079 freemsg(mp); 17080 return (ENOMEM); 17081 } 17082 17083 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17084 mutex_enter(&ill->ill_lock); 17085 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17086 /* no more nce addition allowed */ 17087 mutex_exit(&ill->ill_lock); 17088 17089 /* 17090 * If we can quiesce the ill, then set the address. If not, then 17091 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17092 */ 17093 ill_down_ipifs(ill, B_TRUE); 17094 mutex_enter(&ill->ill_lock); 17095 if (!ill_is_quiescent(ill)) { 17096 /* call cannot fail since `conn_t *' argument is NULL */ 17097 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17098 mp, ILL_DOWN); 17099 mutex_exit(&ill->ill_lock); 17100 return (EINPROGRESS); 17101 } 17102 mutex_exit(&ill->ill_lock); 17103 17104 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17105 return (0); 17106 } 17107 17108 /* 17109 * Once the ill associated with `q' has quiesced, set its physical address 17110 * information to the values in `addrmp'. Note that two copies of `addrmp' 17111 * are passed (linked by b_cont), since we sometimes need to save two distinct 17112 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17113 * failure (we'll free the other copy if it's not needed). Since the ill_t 17114 * is quiesced, we know any stale nce's with the old address information have 17115 * already been removed, so we don't need to call nce_flush(). 17116 */ 17117 /* ARGSUSED */ 17118 static void 17119 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17120 { 17121 ill_t *ill = q->q_ptr; 17122 mblk_t *addrmp2 = unlinkb(addrmp); 17123 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17124 uint_t addrlen, addroff; 17125 int status; 17126 17127 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17128 17129 addroff = dlindp->dl_addr_offset; 17130 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17131 17132 switch (dlindp->dl_data) { 17133 case DL_IPV6_LINK_LAYER_ADDR: 17134 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17135 freemsg(addrmp2); 17136 break; 17137 17138 case DL_CURR_DEST_ADDR: 17139 freemsg(ill->ill_dest_addr_mp); 17140 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17141 ill->ill_dest_addr_mp = addrmp; 17142 if (ill->ill_isv6) { 17143 ill_setdesttoken(ill); 17144 ipif_setdestlinklocal(ill->ill_ipif); 17145 } 17146 freemsg(addrmp2); 17147 break; 17148 17149 case DL_CURR_PHYS_ADDR: 17150 freemsg(ill->ill_phys_addr_mp); 17151 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17152 ill->ill_phys_addr_mp = addrmp; 17153 ill->ill_phys_addr_length = addrlen; 17154 if (ill->ill_isv6) 17155 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17156 else 17157 freemsg(addrmp2); 17158 if (ill->ill_isv6) { 17159 ill_setdefaulttoken(ill); 17160 ipif_setlinklocal(ill->ill_ipif); 17161 } 17162 break; 17163 default: 17164 ASSERT(0); 17165 } 17166 17167 /* 17168 * If there are ipifs to bring up, ill_up_ipifs() will return 17169 * EINPROGRESS, and ipsq_current_finish() will be called by 17170 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17171 * brought up. 17172 */ 17173 status = ill_up_ipifs(ill, q, addrmp); 17174 mutex_enter(&ill->ill_lock); 17175 if (ill->ill_dl_up) 17176 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17177 mutex_exit(&ill->ill_lock); 17178 if (status != EINPROGRESS) 17179 ipsq_current_finish(ipsq); 17180 } 17181 17182 /* 17183 * Helper routine for setting the ill_nd_lla fields. 17184 */ 17185 void 17186 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17187 { 17188 freemsg(ill->ill_nd_lla_mp); 17189 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17190 ill->ill_nd_lla_mp = ndmp; 17191 ill->ill_nd_lla_len = addrlen; 17192 } 17193 17194 /* 17195 * Replumb the ill. 17196 */ 17197 int 17198 ill_replumb(ill_t *ill, mblk_t *mp) 17199 { 17200 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17201 17202 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17203 17204 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17205 17206 mutex_enter(&ill->ill_lock); 17207 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17208 /* no more nce addition allowed */ 17209 mutex_exit(&ill->ill_lock); 17210 17211 /* 17212 * If we can quiesce the ill, then continue. If not, then 17213 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17214 */ 17215 ill_down_ipifs(ill, B_FALSE); 17216 17217 mutex_enter(&ill->ill_lock); 17218 if (!ill_is_quiescent(ill)) { 17219 /* call cannot fail since `conn_t *' argument is NULL */ 17220 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17221 mp, ILL_DOWN); 17222 mutex_exit(&ill->ill_lock); 17223 return (EINPROGRESS); 17224 } 17225 mutex_exit(&ill->ill_lock); 17226 17227 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17228 return (0); 17229 } 17230 17231 /* ARGSUSED */ 17232 static void 17233 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17234 { 17235 ill_t *ill = q->q_ptr; 17236 int err; 17237 conn_t *connp = NULL; 17238 17239 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17240 freemsg(ill->ill_replumb_mp); 17241 ill->ill_replumb_mp = copyb(mp); 17242 17243 if (ill->ill_replumb_mp == NULL) { 17244 /* out of memory */ 17245 ipsq_current_finish(ipsq); 17246 return; 17247 } 17248 17249 mutex_enter(&ill->ill_lock); 17250 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17251 ill->ill_rq, ill->ill_replumb_mp, 0); 17252 mutex_exit(&ill->ill_lock); 17253 17254 if (!ill->ill_up_ipifs) { 17255 /* already closing */ 17256 ipsq_current_finish(ipsq); 17257 return; 17258 } 17259 ill->ill_replumbing = 1; 17260 err = ill_down_ipifs_tail(ill); 17261 17262 /* 17263 * Successfully quiesced and brought down the interface, now we send 17264 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17265 * DL_NOTE_REPLUMB message. 17266 */ 17267 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17268 DL_NOTIFY_CONF); 17269 ASSERT(mp != NULL); 17270 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17271 DL_NOTE_REPLUMB_DONE; 17272 ill_dlpi_send(ill, mp); 17273 17274 /* 17275 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17276 * streams have to be unbound. When all the DLPI exchanges are done, 17277 * ipsq_current_finish() will be called by arp_bringup_done(). The 17278 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17279 * arp_bringup_done(). 17280 */ 17281 ASSERT(ill->ill_replumb_mp != NULL); 17282 if (err == EINPROGRESS) 17283 return; 17284 else 17285 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17286 ASSERT(connp == NULL); 17287 if (err == 0 && ill->ill_replumb_mp != NULL && 17288 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17289 return; 17290 } 17291 ipsq_current_finish(ipsq); 17292 } 17293 17294 /* 17295 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17296 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17297 * as per the ioctl. On failure, an errno is returned. 17298 */ 17299 static int 17300 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17301 { 17302 int rval; 17303 struct strioctl iocb; 17304 17305 iocb.ic_cmd = cmd; 17306 iocb.ic_timout = 15; 17307 iocb.ic_len = bufsize; 17308 iocb.ic_dp = buf; 17309 17310 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17311 } 17312 17313 /* 17314 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17315 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17316 */ 17317 static int 17318 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17319 uint_t *bufsizep, cred_t *cr) 17320 { 17321 int err; 17322 struct lifnum lifn; 17323 17324 bzero(&lifn, sizeof (lifn)); 17325 lifn.lifn_family = af; 17326 lifn.lifn_flags = LIFC_UNDER_IPMP; 17327 17328 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17329 return (err); 17330 17331 /* 17332 * Pad the interface count to account for additional interfaces that 17333 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17334 */ 17335 lifn.lifn_count += 4; 17336 bzero(lifcp, sizeof (*lifcp)); 17337 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17338 lifcp->lifc_family = af; 17339 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17340 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17341 17342 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17343 if (err != 0) { 17344 kmem_free(lifcp->lifc_buf, *bufsizep); 17345 return (err); 17346 } 17347 17348 return (0); 17349 } 17350 17351 /* 17352 * Helper for ip_interface_cleanup() that removes the loopback interface. 17353 */ 17354 static void 17355 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17356 { 17357 int err; 17358 struct lifreq lifr; 17359 17360 bzero(&lifr, sizeof (lifr)); 17361 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17362 17363 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17364 if (err != 0) { 17365 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17366 "error %d\n", isv6 ? "v6" : "v4", err)); 17367 } 17368 } 17369 17370 /* 17371 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17372 * groups and that IPMP data addresses are down. These conditions must be met 17373 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17374 */ 17375 static void 17376 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17377 { 17378 int af = isv6 ? AF_INET6 : AF_INET; 17379 int i, nifs; 17380 int err; 17381 uint_t bufsize; 17382 uint_t lifrsize = sizeof (struct lifreq); 17383 struct lifconf lifc; 17384 struct lifreq *lifrp; 17385 17386 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17387 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17388 "(error %d); any IPMP interfaces cannot be shutdown", err); 17389 return; 17390 } 17391 17392 nifs = lifc.lifc_len / lifrsize; 17393 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17394 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17395 if (err != 0) { 17396 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17397 "flags: error %d", lifrp->lifr_name, err); 17398 continue; 17399 } 17400 17401 if (lifrp->lifr_flags & IFF_IPMP) { 17402 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17403 continue; 17404 17405 lifrp->lifr_flags &= ~IFF_UP; 17406 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17407 if (err != 0) { 17408 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17409 "bring down (error %d); IPMP interface may " 17410 "not be shutdown", lifrp->lifr_name, err); 17411 } 17412 17413 /* 17414 * Check if IFF_DUPLICATE is still set -- and if so, 17415 * reset the address to clear it. 17416 */ 17417 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17418 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17419 continue; 17420 17421 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17422 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17423 lifrp, lifrsize, cr)) != 0) { 17424 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17425 "reset DAD (error %d); IPMP interface may " 17426 "not be shutdown", lifrp->lifr_name, err); 17427 } 17428 continue; 17429 } 17430 17431 lifrp->lifr_groupname[0] = '\0'; 17432 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17433 if (err != 0) { 17434 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17435 "IPMP group (error %d); associated IPMP interface " 17436 "may not be shutdown", lifrp->lifr_name, err); 17437 continue; 17438 } 17439 } 17440 17441 kmem_free(lifc.lifc_buf, bufsize); 17442 } 17443 17444 #define UDPDEV "/devices/pseudo/udp@0:udp" 17445 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17446 17447 /* 17448 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17449 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17450 * when the user-level processes in the zone are killed and the latter are 17451 * cleaned up by str_stack_shutdown(). 17452 */ 17453 void 17454 ip_interface_cleanup(ip_stack_t *ipst) 17455 { 17456 ldi_handle_t lh; 17457 ldi_ident_t li; 17458 cred_t *cr; 17459 int err; 17460 int i; 17461 char *devs[] = { UDP6DEV, UDPDEV }; 17462 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17463 17464 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17465 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17466 " error %d", err); 17467 return; 17468 } 17469 17470 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17471 ASSERT(cr != NULL); 17472 17473 /* 17474 * NOTE: loop executes exactly twice and is hardcoded to know that the 17475 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17476 * the loop.) 17477 */ 17478 for (i = 0; i < 2; i++) { 17479 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17480 if (err != 0) { 17481 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17482 " error %d", devs[i], err); 17483 continue; 17484 } 17485 17486 ip_loopback_removeif(lh, i == 0, cr); 17487 ip_ipmp_cleanup(lh, i == 0, cr); 17488 17489 (void) ldi_close(lh, FREAD|FWRITE, cr); 17490 } 17491 17492 ldi_ident_release(li); 17493 crfree(cr); 17494 } 17495 17496 /* 17497 * This needs to be in-sync with nic_event_t definition 17498 */ 17499 static const char * 17500 ill_hook_event2str(nic_event_t event) 17501 { 17502 switch (event) { 17503 case NE_PLUMB: 17504 return ("PLUMB"); 17505 case NE_UNPLUMB: 17506 return ("UNPLUMB"); 17507 case NE_UP: 17508 return ("UP"); 17509 case NE_DOWN: 17510 return ("DOWN"); 17511 case NE_ADDRESS_CHANGE: 17512 return ("ADDRESS_CHANGE"); 17513 case NE_LIF_UP: 17514 return ("LIF_UP"); 17515 case NE_LIF_DOWN: 17516 return ("LIF_DOWN"); 17517 case NE_IFINDEX_CHANGE: 17518 return ("IFINDEX_CHANGE"); 17519 default: 17520 return ("UNKNOWN"); 17521 } 17522 } 17523 17524 void 17525 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17526 nic_event_data_t data, size_t datalen) 17527 { 17528 ip_stack_t *ipst = ill->ill_ipst; 17529 hook_nic_event_int_t *info; 17530 const char *str = NULL; 17531 17532 /* create a new nic event info */ 17533 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17534 goto fail; 17535 17536 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17537 info->hnei_event.hne_lif = lif; 17538 info->hnei_event.hne_event = event; 17539 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17540 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17541 info->hnei_event.hne_data = NULL; 17542 info->hnei_event.hne_datalen = 0; 17543 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17544 17545 if (data != NULL && datalen != 0) { 17546 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17547 if (info->hnei_event.hne_data == NULL) 17548 goto fail; 17549 bcopy(data, info->hnei_event.hne_data, datalen); 17550 info->hnei_event.hne_datalen = datalen; 17551 } 17552 17553 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17554 DDI_NOSLEEP) == DDI_SUCCESS) 17555 return; 17556 17557 fail: 17558 if (info != NULL) { 17559 if (info->hnei_event.hne_data != NULL) { 17560 kmem_free(info->hnei_event.hne_data, 17561 info->hnei_event.hne_datalen); 17562 } 17563 kmem_free(info, sizeof (hook_nic_event_t)); 17564 } 17565 str = ill_hook_event2str(event); 17566 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17567 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17568 } 17569 17570 static int 17571 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17572 { 17573 int err = 0; 17574 const in_addr_t *addr = NULL; 17575 nce_t *nce = NULL; 17576 ill_t *ill = ipif->ipif_ill; 17577 ill_t *bound_ill; 17578 boolean_t added_ipif = B_FALSE; 17579 uint16_t state; 17580 uint16_t flags; 17581 17582 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17583 ill_t *, ill, ipif_t *, ipif); 17584 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17585 addr = &ipif->ipif_lcl_addr; 17586 } 17587 17588 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17589 if (res_act != Res_act_initial) 17590 return (EINVAL); 17591 } 17592 17593 if (addr != NULL) { 17594 ipmp_illgrp_t *illg = ill->ill_grp; 17595 17596 /* add unicast nce for the local addr */ 17597 17598 if (IS_IPMP(ill)) { 17599 /* 17600 * If we're here via ipif_up(), then the ipif 17601 * won't be bound yet -- add it to the group, 17602 * which will bind it if possible. (We would 17603 * add it in ipif_up(), but deleting on failure 17604 * there is gruesome.) If we're here via 17605 * ipmp_ill_bind_ipif(), then the ipif has 17606 * already been added to the group and we 17607 * just need to use the binding. 17608 */ 17609 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17610 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17611 if (bound_ill == NULL) { 17612 /* 17613 * We couldn't bind the ipif to an ill 17614 * yet, so we have nothing to publish. 17615 * Mark the address as ready and return. 17616 */ 17617 ipif->ipif_addr_ready = 1; 17618 return (0); 17619 } 17620 added_ipif = B_TRUE; 17621 } 17622 } else { 17623 bound_ill = ill; 17624 } 17625 17626 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17627 NCE_F_NONUD); 17628 /* 17629 * If this is an initial bring-up (or the ipif was never 17630 * completely brought up), do DAD. Otherwise, we're here 17631 * because IPMP has rebound an address to this ill: send 17632 * unsolicited advertisements (ARP announcements) to 17633 * inform others. 17634 */ 17635 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17636 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17637 } else { 17638 state = ND_REACHABLE; 17639 flags |= NCE_F_UNSOL_ADV; 17640 } 17641 17642 retry: 17643 err = nce_lookup_then_add_v4(ill, 17644 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17645 addr, flags, state, &nce); 17646 17647 /* 17648 * note that we may encounter EEXIST if we are moving 17649 * the nce as a result of a rebind operation. 17650 */ 17651 switch (err) { 17652 case 0: 17653 ipif->ipif_added_nce = 1; 17654 nce->nce_ipif_cnt++; 17655 break; 17656 case EEXIST: 17657 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17658 ill->ill_name)); 17659 if (!NCE_MYADDR(nce->nce_common)) { 17660 /* 17661 * A leftover nce from before this address 17662 * existed 17663 */ 17664 ncec_delete(nce->nce_common); 17665 nce_refrele(nce); 17666 nce = NULL; 17667 goto retry; 17668 } 17669 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17670 nce_refrele(nce); 17671 nce = NULL; 17672 ip1dbg(("ipif_arp_up: NCE already exists " 17673 "for %s:%u\n", ill->ill_name, 17674 ipif->ipif_id)); 17675 goto arp_up_done; 17676 } 17677 /* 17678 * Duplicate local addresses are permissible for 17679 * IPIF_POINTOPOINT interfaces which will get marked 17680 * IPIF_UNNUMBERED later in 17681 * ip_addr_availability_check(). 17682 * 17683 * The nce_ipif_cnt field tracks the number of 17684 * ipifs that have nce_addr as their local address. 17685 */ 17686 ipif->ipif_addr_ready = 1; 17687 ipif->ipif_added_nce = 1; 17688 nce->nce_ipif_cnt++; 17689 err = 0; 17690 break; 17691 default: 17692 ASSERT(nce == NULL); 17693 goto arp_up_done; 17694 } 17695 if (arp_no_defense) { 17696 if ((ipif->ipif_flags & IPIF_UP) && 17697 !ipif->ipif_addr_ready) 17698 ipif_up_notify(ipif); 17699 ipif->ipif_addr_ready = 1; 17700 } 17701 } else { 17702 /* zero address. nothing to publish */ 17703 ipif->ipif_addr_ready = 1; 17704 } 17705 if (nce != NULL) 17706 nce_refrele(nce); 17707 arp_up_done: 17708 if (added_ipif && err != 0) 17709 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17710 return (err); 17711 } 17712 17713 int 17714 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 17715 { 17716 int err = 0; 17717 ill_t *ill = ipif->ipif_ill; 17718 boolean_t first_interface, wait_for_dlpi = B_FALSE; 17719 17720 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 17721 ill_t *, ill, ipif_t *, ipif); 17722 17723 /* 17724 * need to bring up ARP or setup mcast mapping only 17725 * when the first interface is coming UP. 17726 */ 17727 first_interface = (ill->ill_ipif_up_count == 0 && 17728 ill->ill_ipif_dup_count == 0 && !was_dup); 17729 17730 if (res_act == Res_act_initial && first_interface) { 17731 /* 17732 * Send ATTACH + BIND 17733 */ 17734 err = arp_ll_up(ill); 17735 if (err != EINPROGRESS && err != 0) 17736 return (err); 17737 17738 /* 17739 * Add NCE for local address. Start DAD. 17740 * we'll wait to hear that DAD has finished 17741 * before using the interface. 17742 */ 17743 if (err == EINPROGRESS) 17744 wait_for_dlpi = B_TRUE; 17745 } 17746 17747 if (!wait_for_dlpi) 17748 (void) ipif_arp_up_done_tail(ipif, res_act); 17749 17750 return (!wait_for_dlpi ? 0 : EINPROGRESS); 17751 } 17752 17753 /* 17754 * Finish processing of "arp_up" after all the DLPI message 17755 * exchanges have completed between arp and the driver. 17756 */ 17757 void 17758 arp_bringup_done(ill_t *ill, int err) 17759 { 17760 mblk_t *mp1; 17761 ipif_t *ipif; 17762 conn_t *connp = NULL; 17763 ipsq_t *ipsq; 17764 queue_t *q; 17765 17766 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 17767 17768 ASSERT(IAM_WRITER_ILL(ill)); 17769 17770 ipsq = ill->ill_phyint->phyint_ipsq; 17771 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 17772 mp1 = ipsq_pending_mp_get(ipsq, &connp); 17773 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 17774 if (mp1 == NULL) /* bringup was aborted by the user */ 17775 return; 17776 17777 /* 17778 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 17779 * must have an associated conn_t. Otherwise, we're bringing this 17780 * interface back up as part of handling an asynchronous event (e.g., 17781 * physical address change). 17782 */ 17783 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17784 ASSERT(connp != NULL); 17785 q = CONNP_TO_WQ(connp); 17786 } else { 17787 ASSERT(connp == NULL); 17788 q = ill->ill_rq; 17789 } 17790 if (err == 0) { 17791 if (ipif->ipif_isv6) { 17792 if ((err = ipif_up_done_v6(ipif)) != 0) 17793 ip0dbg(("arp_bringup_done: init failed\n")); 17794 } else { 17795 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 17796 if (err != 0 || (err = ipif_up_done(ipif)) != 0) 17797 ip0dbg(("arp_bringup_done: init failed\n")); 17798 } 17799 } else { 17800 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 17801 } 17802 17803 if ((err == 0) && (ill->ill_up_ipifs)) { 17804 err = ill_up_ipifs(ill, q, mp1); 17805 if (err == EINPROGRESS) 17806 return; 17807 } 17808 17809 /* 17810 * If we have a moved ipif to bring up, and everything has succeeded 17811 * to this point, bring it up on the IPMP ill. Otherwise, leave it 17812 * down -- the admin can try to bring it up by hand if need be. 17813 */ 17814 if (ill->ill_move_ipif != NULL) { 17815 ipif = ill->ill_move_ipif; 17816 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 17817 ipif->ipif_ill->ill_name)); 17818 ill->ill_move_ipif = NULL; 17819 if (err == 0) { 17820 err = ipif_up(ipif, q, mp1); 17821 if (err == EINPROGRESS) 17822 return; 17823 } 17824 } 17825 17826 /* 17827 * The operation must complete without EINPROGRESS since 17828 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 17829 * Otherwise, the operation will be stuck forever in the ipsq. 17830 */ 17831 ASSERT(err != EINPROGRESS); 17832 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17833 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 17834 int, ipsq->ipsq_xop->ipx_current_ioctl, 17835 ill_t *, ill, ipif_t *, ipif); 17836 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 17837 } else { 17838 ipsq_current_finish(ipsq); 17839 } 17840 } 17841 17842 /* 17843 * Finish processing of arp replumb after all the DLPI message 17844 * exchanges have completed between arp and the driver. 17845 */ 17846 void 17847 arp_replumb_done(ill_t *ill, int err) 17848 { 17849 mblk_t *mp1; 17850 ipif_t *ipif; 17851 conn_t *connp = NULL; 17852 ipsq_t *ipsq; 17853 queue_t *q; 17854 17855 ASSERT(IAM_WRITER_ILL(ill)); 17856 17857 ipsq = ill->ill_phyint->phyint_ipsq; 17858 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 17859 mp1 = ipsq_pending_mp_get(ipsq, &connp); 17860 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 17861 if (mp1 == NULL) { 17862 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 17863 ipsq->ipsq_xop->ipx_current_ioctl)); 17864 /* bringup was aborted by the user */ 17865 return; 17866 } 17867 /* 17868 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 17869 * must have an associated conn_t. Otherwise, we're bringing this 17870 * interface back up as part of handling an asynchronous event (e.g., 17871 * physical address change). 17872 */ 17873 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17874 ASSERT(connp != NULL); 17875 q = CONNP_TO_WQ(connp); 17876 } else { 17877 ASSERT(connp == NULL); 17878 q = ill->ill_rq; 17879 } 17880 if ((err == 0) && (ill->ill_up_ipifs)) { 17881 err = ill_up_ipifs(ill, q, mp1); 17882 if (err == EINPROGRESS) 17883 return; 17884 } 17885 /* 17886 * The operation must complete without EINPROGRESS since 17887 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 17888 * Otherwise, the operation will be stuck forever in the ipsq. 17889 */ 17890 ASSERT(err != EINPROGRESS); 17891 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 17892 DTRACE_PROBE4(ipif__ioctl, char *, 17893 "arp_replumb_done finish", 17894 int, ipsq->ipsq_xop->ipx_current_ioctl, 17895 ill_t *, ill, ipif_t *, ipif); 17896 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 17897 } else { 17898 ipsq_current_finish(ipsq); 17899 } 17900 } 17901 17902 void 17903 ipif_up_notify(ipif_t *ipif) 17904 { 17905 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17906 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 17907 sctp_update_ipif(ipif, SCTP_IPIF_UP); 17908 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 17909 NE_LIF_UP, NULL, 0); 17910 } 17911 17912 /* 17913 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 17914 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 17915 * TPI end points with STREAMS modules pushed above. This is assured by not 17916 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 17917 * never ends up on an ipsq, otherwise we may end up processing the ioctl 17918 * while unwinding from the ispq and that could be a thread from the bottom. 17919 */ 17920 /* ARGSUSED */ 17921 int 17922 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17923 ip_ioctl_cmd_t *ipip, void *arg) 17924 { 17925 mblk_t *cmd_mp = mp->b_cont->b_cont; 17926 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 17927 int ret = 0; 17928 int i; 17929 size_t size; 17930 ip_stack_t *ipst; 17931 zoneid_t zoneid; 17932 ilb_stack_t *ilbs; 17933 17934 ipst = CONNQ_TO_IPST(q); 17935 ilbs = ipst->ips_netstack->netstack_ilb; 17936 zoneid = Q_TO_CONN(q)->conn_zoneid; 17937 17938 switch (command) { 17939 case ILB_CREATE_RULE: { 17940 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 17941 17942 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 17943 ret = EINVAL; 17944 break; 17945 } 17946 17947 ret = ilb_rule_add(ilbs, zoneid, cmd); 17948 break; 17949 } 17950 case ILB_DESTROY_RULE: 17951 case ILB_ENABLE_RULE: 17952 case ILB_DISABLE_RULE: { 17953 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 17954 17955 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 17956 ret = EINVAL; 17957 break; 17958 } 17959 17960 if (cmd->flags & ILB_RULE_ALLRULES) { 17961 if (command == ILB_DESTROY_RULE) { 17962 ilb_rule_del_all(ilbs, zoneid); 17963 break; 17964 } else if (command == ILB_ENABLE_RULE) { 17965 ilb_rule_enable_all(ilbs, zoneid); 17966 break; 17967 } else if (command == ILB_DISABLE_RULE) { 17968 ilb_rule_disable_all(ilbs, zoneid); 17969 break; 17970 } 17971 } else { 17972 if (command == ILB_DESTROY_RULE) { 17973 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 17974 } else if (command == ILB_ENABLE_RULE) { 17975 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 17976 NULL); 17977 } else if (command == ILB_DISABLE_RULE) { 17978 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 17979 NULL); 17980 } 17981 } 17982 break; 17983 } 17984 case ILB_NUM_RULES: { 17985 ilb_num_rules_cmd_t *cmd; 17986 17987 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 17988 ret = EINVAL; 17989 break; 17990 } 17991 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 17992 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 17993 break; 17994 } 17995 case ILB_RULE_NAMES: { 17996 ilb_rule_names_cmd_t *cmd; 17997 17998 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 17999 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18000 cmd->num_names == 0) { 18001 ret = EINVAL; 18002 break; 18003 } 18004 size = cmd->num_names * ILB_RULE_NAMESZ; 18005 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18006 size != cmd_mp->b_wptr) { 18007 ret = EINVAL; 18008 break; 18009 } 18010 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18011 break; 18012 } 18013 case ILB_NUM_SERVERS: { 18014 ilb_num_servers_cmd_t *cmd; 18015 18016 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18017 ret = EINVAL; 18018 break; 18019 } 18020 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18021 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18022 &(cmd->num)); 18023 break; 18024 } 18025 case ILB_LIST_RULE: { 18026 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18027 18028 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18029 ret = EINVAL; 18030 break; 18031 } 18032 ret = ilb_rule_list(ilbs, zoneid, cmd); 18033 break; 18034 } 18035 case ILB_LIST_SERVERS: { 18036 ilb_servers_info_cmd_t *cmd; 18037 18038 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18039 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18040 cmd->num_servers == 0) { 18041 ret = EINVAL; 18042 break; 18043 } 18044 size = cmd->num_servers * sizeof (ilb_server_info_t); 18045 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18046 size != cmd_mp->b_wptr) { 18047 ret = EINVAL; 18048 break; 18049 } 18050 18051 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18052 &cmd->num_servers); 18053 break; 18054 } 18055 case ILB_ADD_SERVERS: { 18056 ilb_servers_info_cmd_t *cmd; 18057 ilb_rule_t *rule; 18058 18059 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18060 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18061 ret = EINVAL; 18062 break; 18063 } 18064 size = cmd->num_servers * sizeof (ilb_server_info_t); 18065 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18066 size != cmd_mp->b_wptr) { 18067 ret = EINVAL; 18068 break; 18069 } 18070 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18071 if (rule == NULL) { 18072 ASSERT(ret != 0); 18073 break; 18074 } 18075 for (i = 0; i < cmd->num_servers; i++) { 18076 ilb_server_info_t *s; 18077 18078 s = &cmd->servers[i]; 18079 s->err = ilb_server_add(ilbs, rule, s); 18080 } 18081 ILB_RULE_REFRELE(rule); 18082 break; 18083 } 18084 case ILB_DEL_SERVERS: 18085 case ILB_ENABLE_SERVERS: 18086 case ILB_DISABLE_SERVERS: { 18087 ilb_servers_cmd_t *cmd; 18088 ilb_rule_t *rule; 18089 int (*f)(); 18090 18091 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18092 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18093 ret = EINVAL; 18094 break; 18095 } 18096 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18097 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18098 size != cmd_mp->b_wptr) { 18099 ret = EINVAL; 18100 break; 18101 } 18102 18103 if (command == ILB_DEL_SERVERS) 18104 f = ilb_server_del; 18105 else if (command == ILB_ENABLE_SERVERS) 18106 f = ilb_server_enable; 18107 else if (command == ILB_DISABLE_SERVERS) 18108 f = ilb_server_disable; 18109 18110 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18111 if (rule == NULL) { 18112 ASSERT(ret != 0); 18113 break; 18114 } 18115 18116 for (i = 0; i < cmd->num_servers; i++) { 18117 ilb_server_arg_t *s; 18118 18119 s = &cmd->servers[i]; 18120 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18121 } 18122 ILB_RULE_REFRELE(rule); 18123 break; 18124 } 18125 case ILB_LIST_NAT_TABLE: { 18126 ilb_list_nat_cmd_t *cmd; 18127 18128 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18129 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18130 ret = EINVAL; 18131 break; 18132 } 18133 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18134 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18135 size != cmd_mp->b_wptr) { 18136 ret = EINVAL; 18137 break; 18138 } 18139 18140 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18141 &cmd->flags); 18142 break; 18143 } 18144 case ILB_LIST_STICKY_TABLE: { 18145 ilb_list_sticky_cmd_t *cmd; 18146 18147 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18148 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18149 ret = EINVAL; 18150 break; 18151 } 18152 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18153 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18154 size != cmd_mp->b_wptr) { 18155 ret = EINVAL; 18156 break; 18157 } 18158 18159 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18160 &cmd->num_sticky, &cmd->flags); 18161 break; 18162 } 18163 default: 18164 ret = EINVAL; 18165 break; 18166 } 18167 done: 18168 return (ret); 18169 } 18170 18171 /* Remove all cache entries for this logical interface */ 18172 void 18173 ipif_nce_down(ipif_t *ipif) 18174 { 18175 ill_t *ill = ipif->ipif_ill; 18176 nce_t *nce; 18177 18178 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18179 ill_t *, ill, ipif_t *, ipif); 18180 if (ipif->ipif_added_nce) { 18181 if (ipif->ipif_isv6) 18182 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18183 else 18184 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18185 if (nce != NULL) { 18186 if (--nce->nce_ipif_cnt == 0) 18187 ncec_delete(nce->nce_common); 18188 ipif->ipif_added_nce = 0; 18189 nce_refrele(nce); 18190 } else { 18191 /* 18192 * nce may already be NULL because it was already 18193 * flushed, e.g., due to a call to nce_flush 18194 */ 18195 ipif->ipif_added_nce = 0; 18196 } 18197 } 18198 /* 18199 * Make IPMP aware of the deleted data address. 18200 */ 18201 if (IS_IPMP(ill)) 18202 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18203 18204 /* 18205 * Remove all other nces dependent on this ill when the last ipif 18206 * is going away. 18207 */ 18208 if (ill->ill_ipif_up_count == 0) { 18209 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18210 (uchar_t *)ill, ill->ill_ipst); 18211 if (IS_UNDER_IPMP(ill)) 18212 nce_flush(ill, B_TRUE); 18213 } 18214 } 18215