1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 /* 261 * if we go over the memory footprint limit more than once in this msec 262 * interval, we'll start pruning aggressively. 263 */ 264 int ip_min_frag_prune_time = 0; 265 266 /* 267 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 268 * and the IPsec DOI 269 */ 270 #define MAX_IPSEC_ALGS 256 271 272 #define BITSPERBYTE 8 273 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 274 275 #define IPSEC_ALG_ENABLE(algs, algid) \ 276 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 277 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 278 279 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 typedef uint8_t ipsec_capab_elem_t; 284 285 /* 286 * Per-algorithm parameters. Note that at present, only encryption 287 * algorithms have variable keysize (IKE does not provide a way to negotiate 288 * auth algorithm keysize). 289 * 290 * All sizes here are in bits. 291 */ 292 typedef struct 293 { 294 uint16_t minkeylen; 295 uint16_t maxkeylen; 296 } ipsec_capab_algparm_t; 297 298 /* 299 * Per-ill capabilities. 300 */ 301 struct ill_ipsec_capab_s { 302 ipsec_capab_elem_t *encr_hw_algs; 303 ipsec_capab_elem_t *auth_hw_algs; 304 uint32_t algs_size; /* size of _hw_algs in bytes */ 305 /* algorithm key lengths */ 306 ipsec_capab_algparm_t *encr_algparm; 307 uint32_t encr_algparm_size; 308 uint32_t encr_algparm_end; 309 }; 310 311 /* 312 * The field values are larger than strictly necessary for simple 313 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 314 */ 315 static area_t ip_area_template = { 316 AR_ENTRY_ADD, /* area_cmd */ 317 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 318 /* area_name_offset */ 319 /* area_name_length temporarily holds this structure length */ 320 sizeof (area_t), /* area_name_length */ 321 IP_ARP_PROTO_TYPE, /* area_proto */ 322 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 323 IP_ADDR_LEN, /* area_proto_addr_length */ 324 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 325 /* area_proto_mask_offset */ 326 0, /* area_flags */ 327 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 328 /* area_hw_addr_offset */ 329 /* Zero length hw_addr_length means 'use your idea of the address' */ 330 0 /* area_hw_addr_length */ 331 }; 332 333 /* 334 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 335 * support 336 */ 337 static area_t ip6_area_template = { 338 AR_ENTRY_ADD, /* area_cmd */ 339 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 340 /* area_name_offset */ 341 /* area_name_length temporarily holds this structure length */ 342 sizeof (area_t), /* area_name_length */ 343 IP_ARP_PROTO_TYPE, /* area_proto */ 344 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 345 IPV6_ADDR_LEN, /* area_proto_addr_length */ 346 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 347 /* area_proto_mask_offset */ 348 0, /* area_flags */ 349 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 350 /* area_hw_addr_offset */ 351 /* Zero length hw_addr_length means 'use your idea of the address' */ 352 0 /* area_hw_addr_length */ 353 }; 354 355 static ared_t ip_ared_template = { 356 AR_ENTRY_DELETE, 357 sizeof (ared_t) + IP_ADDR_LEN, 358 sizeof (ared_t), 359 IP_ARP_PROTO_TYPE, 360 sizeof (ared_t), 361 IP_ADDR_LEN 362 }; 363 364 static ared_t ip6_ared_template = { 365 AR_ENTRY_DELETE, 366 sizeof (ared_t) + IPV6_ADDR_LEN, 367 sizeof (ared_t), 368 IP_ARP_PROTO_TYPE, 369 sizeof (ared_t), 370 IPV6_ADDR_LEN 371 }; 372 373 /* 374 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 375 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 376 * areq is used). 377 */ 378 static areq_t ip_areq_template = { 379 AR_ENTRY_QUERY, /* cmd */ 380 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 381 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 382 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 383 sizeof (areq_t), /* target addr offset */ 384 IP_ADDR_LEN, /* target addr_length */ 385 0, /* flags */ 386 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 387 IP_ADDR_LEN, /* sender addr length */ 388 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 389 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 390 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 391 /* anything else filled in by the code */ 392 }; 393 394 static arc_t ip_aru_template = { 395 AR_INTERFACE_UP, 396 sizeof (arc_t), /* Name offset */ 397 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 398 }; 399 400 static arc_t ip_ard_template = { 401 AR_INTERFACE_DOWN, 402 sizeof (arc_t), /* Name offset */ 403 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 404 }; 405 406 static arc_t ip_aron_template = { 407 AR_INTERFACE_ON, 408 sizeof (arc_t), /* Name offset */ 409 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 410 }; 411 412 static arc_t ip_aroff_template = { 413 AR_INTERFACE_OFF, 414 sizeof (arc_t), /* Name offset */ 415 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 416 }; 417 418 419 static arma_t ip_arma_multi_template = { 420 AR_MAPPING_ADD, 421 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 422 /* Name offset */ 423 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 424 IP_ARP_PROTO_TYPE, 425 sizeof (arma_t), /* proto_addr_offset */ 426 IP_ADDR_LEN, /* proto_addr_length */ 427 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 428 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 429 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 430 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 431 IP_MAX_HW_LEN, /* hw_addr_length */ 432 0, /* hw_mapping_start */ 433 }; 434 435 static ipft_t ip_ioctl_ftbl[] = { 436 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 437 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 440 IPFT_F_NO_REPLY }, 441 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 442 { 0 } 443 }; 444 445 /* Simple ICMP IP Header Template */ 446 static ipha_t icmp_ipha = { 447 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 448 }; 449 450 /* Flag descriptors for ip_ipif_report */ 451 static nv_t ipif_nv_tbl[] = { 452 { IPIF_UP, "UP" }, 453 { IPIF_BROADCAST, "BROADCAST" }, 454 { ILLF_DEBUG, "DEBUG" }, 455 { PHYI_LOOPBACK, "LOOPBACK" }, 456 { IPIF_POINTOPOINT, "POINTOPOINT" }, 457 { ILLF_NOTRAILERS, "NOTRAILERS" }, 458 { PHYI_RUNNING, "RUNNING" }, 459 { ILLF_NOARP, "NOARP" }, 460 { PHYI_PROMISC, "PROMISC" }, 461 { PHYI_ALLMULTI, "ALLMULTI" }, 462 { PHYI_INTELLIGENT, "INTELLIGENT" }, 463 { ILLF_MULTICAST, "MULTICAST" }, 464 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 465 { IPIF_UNNUMBERED, "UNNUMBERED" }, 466 { IPIF_DHCPRUNNING, "DHCP" }, 467 { IPIF_PRIVATE, "PRIVATE" }, 468 { IPIF_NOXMIT, "NOXMIT" }, 469 { IPIF_NOLOCAL, "NOLOCAL" }, 470 { IPIF_DEPRECATED, "DEPRECATED" }, 471 { IPIF_PREFERRED, "PREFERRED" }, 472 { IPIF_TEMPORARY, "TEMPORARY" }, 473 { IPIF_ADDRCONF, "ADDRCONF" }, 474 { PHYI_VIRTUAL, "VIRTUAL" }, 475 { ILLF_ROUTER, "ROUTER" }, 476 { ILLF_NONUD, "NONUD" }, 477 { IPIF_ANYCAST, "ANYCAST" }, 478 { ILLF_NORTEXCH, "NORTEXCH" }, 479 { ILLF_IPV4, "IPV4" }, 480 { ILLF_IPV6, "IPV6" }, 481 { IPIF_NOFAILOVER, "NOFAILOVER" }, 482 { PHYI_FAILED, "FAILED" }, 483 { PHYI_STANDBY, "STANDBY" }, 484 { PHYI_INACTIVE, "INACTIVE" }, 485 { PHYI_OFFLINE, "OFFLINE" }, 486 }; 487 488 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 489 490 static ip_m_t ip_m_tbl[] = { 491 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 492 ip_ether_v6intfid }, 493 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_nodef_v6intfid }, 495 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_nodef_v6intfid }, 497 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 502 ip_ib_v6intfid }, 503 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 504 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid } 506 }; 507 508 static ill_t ill_null; /* Empty ILL for init. */ 509 char ipif_loopback_name[] = "lo0"; 510 static char *ipv4_forward_suffix = ":ip_forwarding"; 511 static char *ipv6_forward_suffix = ":ip6_forwarding"; 512 static sin6_t sin6_null; /* Zero address for quick clears */ 513 static sin_t sin_null; /* Zero address for quick clears */ 514 515 /* When set search for unused ipif_seqid */ 516 static ipif_t ipif_zero; 517 518 /* 519 * ppa arena is created after these many 520 * interfaces have been plumbed. 521 */ 522 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 523 524 /* 525 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 526 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 527 * set through platform specific code (Niagara/Ontario). 528 */ 529 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 530 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 531 532 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 533 534 static uint_t 535 ipif_rand(ip_stack_t *ipst) 536 { 537 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 538 12345; 539 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 540 } 541 542 /* 543 * Allocate per-interface mibs. 544 * Returns true if ok. False otherwise. 545 * ipsq may not yet be allocated (loopback case ). 546 */ 547 static boolean_t 548 ill_allocate_mibs(ill_t *ill) 549 { 550 /* Already allocated? */ 551 if (ill->ill_ip_mib != NULL) { 552 if (ill->ill_isv6) 553 ASSERT(ill->ill_icmp6_mib != NULL); 554 return (B_TRUE); 555 } 556 557 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 558 KM_NOSLEEP); 559 if (ill->ill_ip_mib == NULL) { 560 return (B_FALSE); 561 } 562 563 /* Setup static information */ 564 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 565 sizeof (mib2_ipIfStatsEntry_t)); 566 if (ill->ill_isv6) { 567 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 568 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 569 sizeof (mib2_ipv6AddrEntry_t)); 570 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 571 sizeof (mib2_ipv6RouteEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 573 sizeof (mib2_ipv6NetToMediaEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 575 sizeof (ipv6_member_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 577 sizeof (ipv6_grpsrc_t)); 578 } else { 579 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 580 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 581 sizeof (mib2_ipAddrEntry_t)); 582 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 583 sizeof (mib2_ipRouteEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 585 sizeof (mib2_ipNetToMediaEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 587 sizeof (ip_member_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 589 sizeof (ip_grpsrc_t)); 590 591 /* 592 * For a v4 ill, we are done at this point, because per ill 593 * icmp mibs are only used for v6. 594 */ 595 return (B_TRUE); 596 } 597 598 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 599 KM_NOSLEEP); 600 if (ill->ill_icmp6_mib == NULL) { 601 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 602 ill->ill_ip_mib = NULL; 603 return (B_FALSE); 604 } 605 /* static icmp info */ 606 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 607 sizeof (mib2_ipv6IfIcmpEntry_t); 608 /* 609 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 mblk_t * 674 ipif_area_alloc(ipif_t *ipif) 675 { 676 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 677 (char *)&ipif->ipif_lcl_addr)); 678 } 679 680 mblk_t * 681 ipif_ared_alloc(ipif_t *ipif) 682 { 683 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 684 (char *)&ipif->ipif_lcl_addr)); 685 } 686 687 mblk_t * 688 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 689 { 690 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 691 (char *)&addr)); 692 } 693 694 /* 695 * Completely vaporize a lower level tap and all associated interfaces. 696 * ill_delete is called only out of ip_close when the device control 697 * stream is being closed. 698 */ 699 void 700 ill_delete(ill_t *ill) 701 { 702 ipif_t *ipif; 703 ill_t *prev_ill; 704 ip_stack_t *ipst = ill->ill_ipst; 705 706 /* 707 * ill_delete may be forcibly entering the ipsq. The previous 708 * ioctl may not have completed and may need to be aborted. 709 * ipsq_flush takes care of it. If we don't need to enter the 710 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 711 * ill_delete_tail is sufficient. 712 */ 713 ipsq_flush(ill); 714 715 /* 716 * Nuke all interfaces. ipif_free will take down the interface, 717 * remove it from the list, and free the data structure. 718 * Walk down the ipif list and remove the logical interfaces 719 * first before removing the main ipif. We can't unplumb 720 * zeroth interface first in the case of IPv6 as reset_conn_ill 721 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 722 * POINTOPOINT. 723 * 724 * If ill_ipif was not properly initialized (i.e low on memory), 725 * then no interfaces to clean up. In this case just clean up the 726 * ill. 727 */ 728 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 729 ipif_free(ipif); 730 731 /* 732 * Used only by ill_arp_on and ill_arp_off, which are writers. 733 * So nobody can be using this mp now. Free the mp allocated for 734 * honoring ILLF_NOARP 735 */ 736 freemsg(ill->ill_arp_on_mp); 737 ill->ill_arp_on_mp = NULL; 738 739 /* Clean up msgs on pending upcalls for mrouted */ 740 reset_mrt_ill(ill); 741 742 /* 743 * ipif_free -> reset_conn_ipif will remove all multicast 744 * references for IPv4. For IPv6, we need to do it here as 745 * it points only at ills. 746 */ 747 reset_conn_ill(ill); 748 749 /* 750 * ill_down will arrange to blow off any IRE's dependent on this 751 * ILL, and shut down fragmentation reassembly. 752 */ 753 ill_down(ill); 754 755 /* Let SCTP know, so that it can remove this from its list. */ 756 sctp_update_ill(ill, SCTP_ILL_REMOVE); 757 758 /* 759 * If an address on this ILL is being used as a source address then 760 * clear out the pointers in other ILLs that point to this ILL. 761 */ 762 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 763 if (ill->ill_usesrc_grp_next != NULL) { 764 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 765 ill_disband_usesrc_group(ill); 766 } else { /* consumer of the usesrc ILL */ 767 prev_ill = ill_prev_usesrc(ill); 768 prev_ill->ill_usesrc_grp_next = 769 ill->ill_usesrc_grp_next; 770 } 771 } 772 rw_exit(&ipst->ips_ill_g_usesrc_lock); 773 } 774 775 static void 776 ipif_non_duplicate(ipif_t *ipif) 777 { 778 ill_t *ill = ipif->ipif_ill; 779 mutex_enter(&ill->ill_lock); 780 if (ipif->ipif_flags & IPIF_DUPLICATE) { 781 ipif->ipif_flags &= ~IPIF_DUPLICATE; 782 ASSERT(ill->ill_ipif_dup_count > 0); 783 ill->ill_ipif_dup_count--; 784 } 785 mutex_exit(&ill->ill_lock); 786 } 787 788 /* 789 * ill_delete_tail is called from ip_modclose after all references 790 * to the closing ill are gone. The wait is done in ip_modclose 791 */ 792 void 793 ill_delete_tail(ill_t *ill) 794 { 795 mblk_t **mpp; 796 ipif_t *ipif; 797 ip_stack_t *ipst = ill->ill_ipst; 798 799 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 800 ipif_non_duplicate(ipif); 801 ipif_down_tail(ipif); 802 } 803 804 ASSERT(ill->ill_ipif_dup_count == 0 && 805 ill->ill_arp_down_mp == NULL && 806 ill->ill_arp_del_mapping_mp == NULL); 807 808 /* 809 * If polling capability is enabled (which signifies direct 810 * upcall into IP and driver has ill saved as a handle), 811 * we need to make sure that unbind has completed before we 812 * let the ill disappear and driver no longer has any reference 813 * to this ill. 814 */ 815 mutex_enter(&ill->ill_lock); 816 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 817 cv_wait(&ill->ill_cv, &ill->ill_lock); 818 mutex_exit(&ill->ill_lock); 819 820 /* 821 * Clean up polling and soft ring capabilities 822 */ 823 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 824 ill_capability_dls_disable(ill); 825 826 if (ill->ill_net_type != IRE_LOOPBACK) 827 qprocsoff(ill->ill_rq); 828 829 /* 830 * We do an ipsq_flush once again now. New messages could have 831 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 832 * could also have landed up if an ioctl thread had looked up 833 * the ill before we set the ILL_CONDEMNED flag, but not yet 834 * enqueued the ioctl when we did the ipsq_flush last time. 835 */ 836 ipsq_flush(ill); 837 838 /* 839 * Free capabilities. 840 */ 841 if (ill->ill_ipsec_capab_ah != NULL) { 842 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 843 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 844 ill->ill_ipsec_capab_ah = NULL; 845 } 846 847 if (ill->ill_ipsec_capab_esp != NULL) { 848 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 849 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 850 ill->ill_ipsec_capab_esp = NULL; 851 } 852 853 if (ill->ill_mdt_capab != NULL) { 854 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 855 ill->ill_mdt_capab = NULL; 856 } 857 858 if (ill->ill_hcksum_capab != NULL) { 859 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 860 ill->ill_hcksum_capab = NULL; 861 } 862 863 if (ill->ill_zerocopy_capab != NULL) { 864 kmem_free(ill->ill_zerocopy_capab, 865 sizeof (ill_zerocopy_capab_t)); 866 ill->ill_zerocopy_capab = NULL; 867 } 868 869 if (ill->ill_lso_capab != NULL) { 870 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 871 ill->ill_lso_capab = NULL; 872 } 873 874 if (ill->ill_dls_capab != NULL) { 875 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 876 ill->ill_dls_capab->ill_unbind_conn = NULL; 877 kmem_free(ill->ill_dls_capab, 878 sizeof (ill_dls_capab_t) + 879 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 880 ill->ill_dls_capab = NULL; 881 } 882 883 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 884 885 while (ill->ill_ipif != NULL) 886 ipif_free_tail(ill->ill_ipif); 887 888 /* 889 * We have removed all references to ilm from conn and the ones joined 890 * within the kernel. 891 * 892 * We don't walk conns, mrts and ires because 893 * 894 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 895 * 2) ill_down ->ill_downi walks all the ires and cleans up 896 * ill references. 897 */ 898 ASSERT(ilm_walk_ill(ill) == 0); 899 /* 900 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 901 * could free the phyint. No more reference to the phyint after this 902 * point. 903 */ 904 (void) ill_glist_delete(ill); 905 906 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 907 if (ill->ill_ndd_name != NULL) 908 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 909 rw_exit(&ipst->ips_ip_g_nd_lock); 910 911 912 if (ill->ill_frag_ptr != NULL) { 913 uint_t count; 914 915 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 916 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 917 } 918 mi_free(ill->ill_frag_ptr); 919 ill->ill_frag_ptr = NULL; 920 ill->ill_frag_hash_tbl = NULL; 921 } 922 923 freemsg(ill->ill_nd_lla_mp); 924 /* Free all retained control messages. */ 925 mpp = &ill->ill_first_mp_to_free; 926 do { 927 while (mpp[0]) { 928 mblk_t *mp; 929 mblk_t *mp1; 930 931 mp = mpp[0]; 932 mpp[0] = mp->b_next; 933 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 934 mp1->b_next = NULL; 935 mp1->b_prev = NULL; 936 } 937 freemsg(mp); 938 } 939 } while (mpp++ != &ill->ill_last_mp_to_free); 940 941 ill_free_mib(ill); 942 /* Drop refcnt here */ 943 netstack_rele(ill->ill_ipst->ips_netstack); 944 ill->ill_ipst = NULL; 945 946 ILL_TRACE_CLEANUP(ill); 947 } 948 949 static void 950 ill_free_mib(ill_t *ill) 951 { 952 ip_stack_t *ipst = ill->ill_ipst; 953 954 /* 955 * MIB statistics must not be lost, so when an interface 956 * goes away the counter values will be added to the global 957 * MIBs. 958 */ 959 if (ill->ill_ip_mib != NULL) { 960 if (ill->ill_isv6) { 961 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 962 ill->ill_ip_mib); 963 } else { 964 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 965 ill->ill_ip_mib); 966 } 967 968 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 969 ill->ill_ip_mib = NULL; 970 } 971 if (ill->ill_icmp6_mib != NULL) { 972 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 973 ill->ill_icmp6_mib); 974 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 975 ill->ill_icmp6_mib = NULL; 976 } 977 } 978 979 /* 980 * Concatenate together a physical address and a sap. 981 * 982 * Sap_lengths are interpreted as follows: 983 * sap_length == 0 ==> no sap 984 * sap_length > 0 ==> sap is at the head of the dlpi address 985 * sap_length < 0 ==> sap is at the tail of the dlpi address 986 */ 987 static void 988 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 989 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 990 { 991 uint16_t sap_addr = (uint16_t)sap_src; 992 993 if (sap_length == 0) { 994 if (phys_src == NULL) 995 bzero(dst, phys_length); 996 else 997 bcopy(phys_src, dst, phys_length); 998 } else if (sap_length < 0) { 999 if (phys_src == NULL) 1000 bzero(dst, phys_length); 1001 else 1002 bcopy(phys_src, dst, phys_length); 1003 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1004 } else { 1005 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1006 if (phys_src == NULL) 1007 bzero((char *)dst + sap_length, phys_length); 1008 else 1009 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1010 } 1011 } 1012 1013 /* 1014 * Generate a dl_unitdata_req mblk for the device and address given. 1015 * addr_length is the length of the physical portion of the address. 1016 * If addr is NULL include an all zero address of the specified length. 1017 * TRUE? In any case, addr_length is taken to be the entire length of the 1018 * dlpi address, including the absolute value of sap_length. 1019 */ 1020 mblk_t * 1021 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1022 t_scalar_t sap_length) 1023 { 1024 dl_unitdata_req_t *dlur; 1025 mblk_t *mp; 1026 t_scalar_t abs_sap_length; /* absolute value */ 1027 1028 abs_sap_length = ABS(sap_length); 1029 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1030 DL_UNITDATA_REQ); 1031 if (mp == NULL) 1032 return (NULL); 1033 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1034 /* HACK: accomodate incompatible DLPI drivers */ 1035 if (addr_length == 8) 1036 addr_length = 6; 1037 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1038 dlur->dl_dest_addr_offset = sizeof (*dlur); 1039 dlur->dl_priority.dl_min = 0; 1040 dlur->dl_priority.dl_max = 0; 1041 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1042 (uchar_t *)&dlur[1]); 1043 return (mp); 1044 } 1045 1046 /* 1047 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1048 * Return an error if we already have 1 or more ioctls in progress. 1049 * This is used only for non-exclusive ioctls. Currently this is used 1050 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1051 * and thus need to use ipsq_pending_mp_add. 1052 */ 1053 boolean_t 1054 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1055 { 1056 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1057 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1058 /* 1059 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1060 */ 1061 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1062 (add_mp->b_datap->db_type == M_IOCTL)); 1063 1064 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1065 /* 1066 * Return error if the conn has started closing. The conn 1067 * could have finished cleaning up the pending mp list, 1068 * If so we should not add another mp to the list negating 1069 * the cleanup. 1070 */ 1071 if (connp->conn_state_flags & CONN_CLOSING) 1072 return (B_FALSE); 1073 /* 1074 * Add the pending mp to the head of the list, chained by b_next. 1075 * Note down the conn on which the ioctl request came, in b_prev. 1076 * This will be used to later get the conn, when we get a response 1077 * on the ill queue, from some other module (typically arp) 1078 */ 1079 add_mp->b_next = (void *)ill->ill_pending_mp; 1080 add_mp->b_queue = CONNP_TO_WQ(connp); 1081 ill->ill_pending_mp = add_mp; 1082 if (connp != NULL) 1083 connp->conn_oper_pending_ill = ill; 1084 return (B_TRUE); 1085 } 1086 1087 /* 1088 * Retrieve the ill_pending_mp and return it. We have to walk the list 1089 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1090 */ 1091 mblk_t * 1092 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1093 { 1094 mblk_t *prev = NULL; 1095 mblk_t *curr = NULL; 1096 uint_t id; 1097 conn_t *connp; 1098 1099 /* 1100 * When the conn closes, conn_ioctl_cleanup needs to clean 1101 * up the pending mp, but it does not know the ioc_id and 1102 * passes in a zero for it. 1103 */ 1104 mutex_enter(&ill->ill_lock); 1105 if (ioc_id != 0) 1106 *connpp = NULL; 1107 1108 /* Search the list for the appropriate ioctl based on ioc_id */ 1109 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1110 prev = curr, curr = curr->b_next) { 1111 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1112 connp = Q_TO_CONN(curr->b_queue); 1113 /* Match based on the ioc_id or based on the conn */ 1114 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1115 break; 1116 } 1117 1118 if (curr != NULL) { 1119 /* Unlink the mblk from the pending mp list */ 1120 if (prev != NULL) { 1121 prev->b_next = curr->b_next; 1122 } else { 1123 ASSERT(ill->ill_pending_mp == curr); 1124 ill->ill_pending_mp = curr->b_next; 1125 } 1126 1127 /* 1128 * conn refcnt must have been bumped up at the start of 1129 * the ioctl. So we can safely access the conn. 1130 */ 1131 ASSERT(CONN_Q(curr->b_queue)); 1132 *connpp = Q_TO_CONN(curr->b_queue); 1133 curr->b_next = NULL; 1134 curr->b_queue = NULL; 1135 } 1136 1137 mutex_exit(&ill->ill_lock); 1138 1139 return (curr); 1140 } 1141 1142 /* 1143 * Add the pending mp to the list. There can be only 1 pending mp 1144 * in the list. Any exclusive ioctl that needs to wait for a response 1145 * from another module or driver needs to use this function to set 1146 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1147 * the other module/driver. This is also used while waiting for the 1148 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1149 */ 1150 boolean_t 1151 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1152 int waitfor) 1153 { 1154 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1155 1156 ASSERT(IAM_WRITER_IPIF(ipif)); 1157 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1158 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1159 ASSERT(ipsq->ipsq_pending_mp == NULL); 1160 /* 1161 * The caller may be using a different ipif than the one passed into 1162 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1163 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1164 * that `ipsq_current_ipif == ipif'. 1165 */ 1166 ASSERT(ipsq->ipsq_current_ipif != NULL); 1167 1168 /* 1169 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1170 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1171 */ 1172 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1173 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1174 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1175 1176 if (connp != NULL) { 1177 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1178 /* 1179 * Return error if the conn has started closing. The conn 1180 * could have finished cleaning up the pending mp list, 1181 * If so we should not add another mp to the list negating 1182 * the cleanup. 1183 */ 1184 if (connp->conn_state_flags & CONN_CLOSING) 1185 return (B_FALSE); 1186 } 1187 mutex_enter(&ipsq->ipsq_lock); 1188 ipsq->ipsq_pending_ipif = ipif; 1189 /* 1190 * Note down the queue in b_queue. This will be returned by 1191 * ipsq_pending_mp_get. Caller will then use these values to restart 1192 * the processing 1193 */ 1194 add_mp->b_next = NULL; 1195 add_mp->b_queue = q; 1196 ipsq->ipsq_pending_mp = add_mp; 1197 ipsq->ipsq_waitfor = waitfor; 1198 1199 if (connp != NULL) 1200 connp->conn_oper_pending_ill = ipif->ipif_ill; 1201 mutex_exit(&ipsq->ipsq_lock); 1202 return (B_TRUE); 1203 } 1204 1205 /* 1206 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1207 * queued in the list. 1208 */ 1209 mblk_t * 1210 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1211 { 1212 mblk_t *curr = NULL; 1213 1214 mutex_enter(&ipsq->ipsq_lock); 1215 *connpp = NULL; 1216 if (ipsq->ipsq_pending_mp == NULL) { 1217 mutex_exit(&ipsq->ipsq_lock); 1218 return (NULL); 1219 } 1220 1221 /* There can be only 1 such excl message */ 1222 curr = ipsq->ipsq_pending_mp; 1223 ASSERT(curr != NULL && curr->b_next == NULL); 1224 ipsq->ipsq_pending_ipif = NULL; 1225 ipsq->ipsq_pending_mp = NULL; 1226 ipsq->ipsq_waitfor = 0; 1227 mutex_exit(&ipsq->ipsq_lock); 1228 1229 if (CONN_Q(curr->b_queue)) { 1230 /* 1231 * This mp did a refhold on the conn, at the start of the ioctl. 1232 * So we can safely return a pointer to the conn to the caller. 1233 */ 1234 *connpp = Q_TO_CONN(curr->b_queue); 1235 } else { 1236 *connpp = NULL; 1237 } 1238 curr->b_next = NULL; 1239 curr->b_prev = NULL; 1240 return (curr); 1241 } 1242 1243 /* 1244 * Cleanup the ioctl mp queued in ipsq_pending_mp 1245 * - Called in the ill_delete path 1246 * - Called in the M_ERROR or M_HANGUP path on the ill. 1247 * - Called in the conn close path. 1248 */ 1249 boolean_t 1250 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1251 { 1252 mblk_t *mp; 1253 ipsq_t *ipsq; 1254 queue_t *q; 1255 ipif_t *ipif; 1256 1257 ASSERT(IAM_WRITER_ILL(ill)); 1258 ipsq = ill->ill_phyint->phyint_ipsq; 1259 mutex_enter(&ipsq->ipsq_lock); 1260 /* 1261 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1262 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1263 * even if it is meant for another ill, since we have to enqueue 1264 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1265 * If connp is non-null we are called from the conn close path. 1266 */ 1267 mp = ipsq->ipsq_pending_mp; 1268 if (mp == NULL || (connp != NULL && 1269 mp->b_queue != CONNP_TO_WQ(connp))) { 1270 mutex_exit(&ipsq->ipsq_lock); 1271 return (B_FALSE); 1272 } 1273 /* Now remove from the ipsq_pending_mp */ 1274 ipsq->ipsq_pending_mp = NULL; 1275 q = mp->b_queue; 1276 mp->b_next = NULL; 1277 mp->b_prev = NULL; 1278 mp->b_queue = NULL; 1279 1280 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1281 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1282 if (ill->ill_move_in_progress) { 1283 ILL_CLEAR_MOVE(ill); 1284 } else if (ill->ill_up_ipifs) { 1285 ill_group_cleanup(ill); 1286 } 1287 1288 ipif = ipsq->ipsq_pending_ipif; 1289 ipsq->ipsq_pending_ipif = NULL; 1290 ipsq->ipsq_waitfor = 0; 1291 ipsq->ipsq_current_ipif = NULL; 1292 ipsq->ipsq_current_ioctl = 0; 1293 mutex_exit(&ipsq->ipsq_lock); 1294 1295 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1296 if (connp == NULL) { 1297 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1298 } else { 1299 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1300 mutex_enter(&ipif->ipif_ill->ill_lock); 1301 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1302 mutex_exit(&ipif->ipif_ill->ill_lock); 1303 } 1304 } else { 1305 /* 1306 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1307 * be just inet_freemsg. we have to restart it 1308 * otherwise the thread will be stuck. 1309 */ 1310 inet_freemsg(mp); 1311 } 1312 return (B_TRUE); 1313 } 1314 1315 /* 1316 * The ill is closing. Cleanup all the pending mps. Called exclusively 1317 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1318 * knows this ill, and hence nobody can add an mp to this list 1319 */ 1320 static void 1321 ill_pending_mp_cleanup(ill_t *ill) 1322 { 1323 mblk_t *mp; 1324 queue_t *q; 1325 1326 ASSERT(IAM_WRITER_ILL(ill)); 1327 1328 mutex_enter(&ill->ill_lock); 1329 /* 1330 * Every mp on the pending mp list originating from an ioctl 1331 * added 1 to the conn refcnt, at the start of the ioctl. 1332 * So bump it down now. See comments in ip_wput_nondata() 1333 */ 1334 while (ill->ill_pending_mp != NULL) { 1335 mp = ill->ill_pending_mp; 1336 ill->ill_pending_mp = mp->b_next; 1337 mutex_exit(&ill->ill_lock); 1338 1339 q = mp->b_queue; 1340 ASSERT(CONN_Q(q)); 1341 mp->b_next = NULL; 1342 mp->b_prev = NULL; 1343 mp->b_queue = NULL; 1344 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1345 mutex_enter(&ill->ill_lock); 1346 } 1347 ill->ill_pending_ipif = NULL; 1348 1349 mutex_exit(&ill->ill_lock); 1350 } 1351 1352 /* 1353 * Called in the conn close path and ill delete path 1354 */ 1355 static void 1356 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1357 { 1358 ipsq_t *ipsq; 1359 mblk_t *prev; 1360 mblk_t *curr; 1361 mblk_t *next; 1362 queue_t *q; 1363 mblk_t *tmp_list = NULL; 1364 1365 ASSERT(IAM_WRITER_ILL(ill)); 1366 if (connp != NULL) 1367 q = CONNP_TO_WQ(connp); 1368 else 1369 q = ill->ill_wq; 1370 1371 ipsq = ill->ill_phyint->phyint_ipsq; 1372 /* 1373 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1374 * In the case of ioctl from a conn, there can be only 1 mp 1375 * queued on the ipsq. If an ill is being unplumbed, only messages 1376 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1377 * ioctls meant for this ill form conn's are not flushed. They will 1378 * be processed during ipsq_exit and will not find the ill and will 1379 * return error. 1380 */ 1381 mutex_enter(&ipsq->ipsq_lock); 1382 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1383 curr = next) { 1384 next = curr->b_next; 1385 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1386 /* Unlink the mblk from the pending mp list */ 1387 if (prev != NULL) { 1388 prev->b_next = curr->b_next; 1389 } else { 1390 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1391 ipsq->ipsq_xopq_mphead = curr->b_next; 1392 } 1393 if (ipsq->ipsq_xopq_mptail == curr) 1394 ipsq->ipsq_xopq_mptail = prev; 1395 /* 1396 * Create a temporary list and release the ipsq lock 1397 * New elements are added to the head of the tmp_list 1398 */ 1399 curr->b_next = tmp_list; 1400 tmp_list = curr; 1401 } else { 1402 prev = curr; 1403 } 1404 } 1405 mutex_exit(&ipsq->ipsq_lock); 1406 1407 while (tmp_list != NULL) { 1408 curr = tmp_list; 1409 tmp_list = curr->b_next; 1410 curr->b_next = NULL; 1411 curr->b_prev = NULL; 1412 curr->b_queue = NULL; 1413 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1414 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1415 CONN_CLOSE : NO_COPYOUT, NULL); 1416 } else { 1417 /* 1418 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1419 * this can't be just inet_freemsg. we have to 1420 * restart it otherwise the thread will be stuck. 1421 */ 1422 inet_freemsg(curr); 1423 } 1424 } 1425 } 1426 1427 /* 1428 * This conn has started closing. Cleanup any pending ioctl from this conn. 1429 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1430 */ 1431 void 1432 conn_ioctl_cleanup(conn_t *connp) 1433 { 1434 mblk_t *curr; 1435 ipsq_t *ipsq; 1436 ill_t *ill; 1437 boolean_t refheld; 1438 1439 /* 1440 * Is any exclusive ioctl pending ? If so clean it up. If the 1441 * ioctl has not yet started, the mp is pending in the list headed by 1442 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1443 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1444 * is currently executing now the mp is not queued anywhere but 1445 * conn_oper_pending_ill is null. The conn close will wait 1446 * till the conn_ref drops to zero. 1447 */ 1448 mutex_enter(&connp->conn_lock); 1449 ill = connp->conn_oper_pending_ill; 1450 if (ill == NULL) { 1451 mutex_exit(&connp->conn_lock); 1452 return; 1453 } 1454 1455 curr = ill_pending_mp_get(ill, &connp, 0); 1456 if (curr != NULL) { 1457 mutex_exit(&connp->conn_lock); 1458 CONN_DEC_REF(connp); 1459 inet_freemsg(curr); 1460 return; 1461 } 1462 /* 1463 * We may not be able to refhold the ill if the ill/ipif 1464 * is changing. But we need to make sure that the ill will 1465 * not vanish. So we just bump up the ill_waiter count. 1466 */ 1467 refheld = ill_waiter_inc(ill); 1468 mutex_exit(&connp->conn_lock); 1469 if (refheld) { 1470 if (ipsq_enter(ill, B_TRUE)) { 1471 ill_waiter_dcr(ill); 1472 /* 1473 * Check whether this ioctl has started and is 1474 * pending now in ipsq_pending_mp. If it is not 1475 * found there then check whether this ioctl has 1476 * not even started and is in the ipsq_xopq list. 1477 */ 1478 if (!ipsq_pending_mp_cleanup(ill, connp)) 1479 ipsq_xopq_mp_cleanup(ill, connp); 1480 ipsq = ill->ill_phyint->phyint_ipsq; 1481 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1482 return; 1483 } 1484 } 1485 1486 /* 1487 * The ill is also closing and we could not bump up the 1488 * ill_waiter_count or we could not enter the ipsq. Leave 1489 * the cleanup to ill_delete 1490 */ 1491 mutex_enter(&connp->conn_lock); 1492 while (connp->conn_oper_pending_ill != NULL) 1493 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1494 mutex_exit(&connp->conn_lock); 1495 if (refheld) 1496 ill_waiter_dcr(ill); 1497 } 1498 1499 /* 1500 * ipcl_walk function for cleaning up conn_*_ill fields. 1501 */ 1502 static void 1503 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1504 { 1505 ill_t *ill = (ill_t *)arg; 1506 ire_t *ire; 1507 1508 mutex_enter(&connp->conn_lock); 1509 if (connp->conn_multicast_ill == ill) { 1510 /* Revert to late binding */ 1511 connp->conn_multicast_ill = NULL; 1512 connp->conn_orig_multicast_ifindex = 0; 1513 } 1514 if (connp->conn_incoming_ill == ill) 1515 connp->conn_incoming_ill = NULL; 1516 if (connp->conn_outgoing_ill == ill) 1517 connp->conn_outgoing_ill = NULL; 1518 if (connp->conn_outgoing_pill == ill) 1519 connp->conn_outgoing_pill = NULL; 1520 if (connp->conn_nofailover_ill == ill) 1521 connp->conn_nofailover_ill = NULL; 1522 if (connp->conn_xmit_if_ill == ill) 1523 connp->conn_xmit_if_ill = NULL; 1524 if (connp->conn_ire_cache != NULL) { 1525 ire = connp->conn_ire_cache; 1526 /* 1527 * ip_newroute creates IRE_CACHE with ire_stq coming from 1528 * interface X and ipif coming from interface Y, if interface 1529 * X and Y are part of the same IPMPgroup. Thus whenever 1530 * interface X goes down, remove all references to it by 1531 * checking both on ire_ipif and ire_stq. 1532 */ 1533 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1534 (ire->ire_type == IRE_CACHE && 1535 ire->ire_stq == ill->ill_wq)) { 1536 connp->conn_ire_cache = NULL; 1537 mutex_exit(&connp->conn_lock); 1538 ire_refrele_notr(ire); 1539 return; 1540 } 1541 } 1542 mutex_exit(&connp->conn_lock); 1543 1544 } 1545 1546 /* ARGSUSED */ 1547 void 1548 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1549 { 1550 ill_t *ill = q->q_ptr; 1551 ipif_t *ipif; 1552 1553 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1554 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1555 ipif_non_duplicate(ipif); 1556 ipif_down_tail(ipif); 1557 } 1558 freemsg(mp); 1559 ipsq_current_finish(ipsq); 1560 } 1561 1562 /* 1563 * ill_down_start is called when we want to down this ill and bring it up again 1564 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1565 * all interfaces, but don't tear down any plumbing. 1566 */ 1567 boolean_t 1568 ill_down_start(queue_t *q, mblk_t *mp) 1569 { 1570 ill_t *ill = q->q_ptr; 1571 ipif_t *ipif; 1572 1573 ASSERT(IAM_WRITER_ILL(ill)); 1574 1575 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1576 (void) ipif_down(ipif, NULL, NULL); 1577 1578 ill_down(ill); 1579 1580 (void) ipsq_pending_mp_cleanup(ill, NULL); 1581 1582 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1583 1584 /* 1585 * Atomically test and add the pending mp if references are active. 1586 */ 1587 mutex_enter(&ill->ill_lock); 1588 if (!ill_is_quiescent(ill)) { 1589 /* call cannot fail since `conn_t *' argument is NULL */ 1590 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1591 mp, ILL_DOWN); 1592 mutex_exit(&ill->ill_lock); 1593 return (B_FALSE); 1594 } 1595 mutex_exit(&ill->ill_lock); 1596 return (B_TRUE); 1597 } 1598 1599 static void 1600 ill_down(ill_t *ill) 1601 { 1602 ip_stack_t *ipst = ill->ill_ipst; 1603 1604 /* Blow off any IREs dependent on this ILL. */ 1605 ire_walk(ill_downi, (char *)ill, ipst); 1606 1607 /* Remove any conn_*_ill depending on this ill */ 1608 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1609 1610 if (ill->ill_group != NULL) { 1611 illgrp_delete(ill); 1612 } 1613 } 1614 1615 /* 1616 * ire_walk routine used to delete every IRE that depends on queues 1617 * associated with 'ill'. (Always called as writer.) 1618 */ 1619 static void 1620 ill_downi(ire_t *ire, char *ill_arg) 1621 { 1622 ill_t *ill = (ill_t *)ill_arg; 1623 1624 /* 1625 * ip_newroute creates IRE_CACHE with ire_stq coming from 1626 * interface X and ipif coming from interface Y, if interface 1627 * X and Y are part of the same IPMP group. Thus whenever interface 1628 * X goes down, remove all references to it by checking both 1629 * on ire_ipif and ire_stq. 1630 */ 1631 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1632 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1633 ire_delete(ire); 1634 } 1635 } 1636 1637 /* 1638 * Remove ire/nce from the fastpath list. 1639 */ 1640 void 1641 ill_fastpath_nack(ill_t *ill) 1642 { 1643 nce_fastpath_list_dispatch(ill, NULL, NULL); 1644 } 1645 1646 /* Consume an M_IOCACK of the fastpath probe. */ 1647 void 1648 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1649 { 1650 mblk_t *mp1 = mp; 1651 1652 /* 1653 * If this was the first attempt turn on the fastpath probing. 1654 */ 1655 mutex_enter(&ill->ill_lock); 1656 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1657 ill->ill_dlpi_fastpath_state = IDS_OK; 1658 mutex_exit(&ill->ill_lock); 1659 1660 /* Free the M_IOCACK mblk, hold on to the data */ 1661 mp = mp->b_cont; 1662 freeb(mp1); 1663 if (mp == NULL) 1664 return; 1665 if (mp->b_cont != NULL) { 1666 /* 1667 * Update all IRE's or NCE's that are waiting for 1668 * fastpath update. 1669 */ 1670 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1671 mp1 = mp->b_cont; 1672 freeb(mp); 1673 mp = mp1; 1674 } else { 1675 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1676 } 1677 1678 freeb(mp); 1679 } 1680 1681 /* 1682 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1683 * The data portion of the request is a dl_unitdata_req_t template for 1684 * what we would send downstream in the absence of a fastpath confirmation. 1685 */ 1686 int 1687 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1688 { 1689 struct iocblk *ioc; 1690 mblk_t *mp; 1691 1692 if (dlur_mp == NULL) 1693 return (EINVAL); 1694 1695 mutex_enter(&ill->ill_lock); 1696 switch (ill->ill_dlpi_fastpath_state) { 1697 case IDS_FAILED: 1698 /* 1699 * Driver NAKed the first fastpath ioctl - assume it doesn't 1700 * support it. 1701 */ 1702 mutex_exit(&ill->ill_lock); 1703 return (ENOTSUP); 1704 case IDS_UNKNOWN: 1705 /* This is the first probe */ 1706 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1707 break; 1708 default: 1709 break; 1710 } 1711 mutex_exit(&ill->ill_lock); 1712 1713 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1714 return (EAGAIN); 1715 1716 mp->b_cont = copyb(dlur_mp); 1717 if (mp->b_cont == NULL) { 1718 freeb(mp); 1719 return (EAGAIN); 1720 } 1721 1722 ioc = (struct iocblk *)mp->b_rptr; 1723 ioc->ioc_count = msgdsize(mp->b_cont); 1724 1725 putnext(ill->ill_wq, mp); 1726 return (0); 1727 } 1728 1729 void 1730 ill_capability_probe(ill_t *ill) 1731 { 1732 /* 1733 * Do so only if negotiation is enabled, capabilities are unknown, 1734 * and a capability negotiation is not already in progress. 1735 */ 1736 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1737 ill->ill_dlpi_capab_state != IDS_RENEG) 1738 return; 1739 1740 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1741 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1742 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1743 } 1744 1745 void 1746 ill_capability_reset(ill_t *ill) 1747 { 1748 mblk_t *sc_mp = NULL; 1749 mblk_t *tmp; 1750 1751 /* 1752 * Note here that we reset the state to UNKNOWN, and later send 1753 * down the DL_CAPABILITY_REQ without first setting the state to 1754 * INPROGRESS. We do this in order to distinguish the 1755 * DL_CAPABILITY_ACK response which may come back in response to 1756 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1757 * also handle the case where the driver doesn't send us back 1758 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1759 * requires the state to be in UNKNOWN anyway. In any case, all 1760 * features are turned off until the state reaches IDS_OK. 1761 */ 1762 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1763 1764 /* 1765 * Disable sub-capabilities and request a list of sub-capability 1766 * messages which will be sent down to the driver. Each handler 1767 * allocates the corresponding dl_capability_sub_t inside an 1768 * mblk, and links it to the existing sc_mp mblk, or return it 1769 * as sc_mp if it's the first sub-capability (the passed in 1770 * sc_mp is NULL). Upon returning from all capability handlers, 1771 * sc_mp will be pulled-up, before passing it downstream. 1772 */ 1773 ill_capability_mdt_reset(ill, &sc_mp); 1774 ill_capability_hcksum_reset(ill, &sc_mp); 1775 ill_capability_zerocopy_reset(ill, &sc_mp); 1776 ill_capability_ipsec_reset(ill, &sc_mp); 1777 ill_capability_dls_reset(ill, &sc_mp); 1778 ill_capability_lso_reset(ill, &sc_mp); 1779 1780 /* Nothing to send down in order to disable the capabilities? */ 1781 if (sc_mp == NULL) 1782 return; 1783 1784 tmp = msgpullup(sc_mp, -1); 1785 freemsg(sc_mp); 1786 if ((sc_mp = tmp) == NULL) { 1787 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1788 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1789 return; 1790 } 1791 1792 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1793 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1794 } 1795 1796 /* 1797 * Request or set new-style hardware capabilities supported by DLS provider. 1798 */ 1799 static void 1800 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1801 { 1802 mblk_t *mp; 1803 dl_capability_req_t *capb; 1804 size_t size = 0; 1805 uint8_t *ptr; 1806 1807 if (reqp != NULL) 1808 size = MBLKL(reqp); 1809 1810 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1811 if (mp == NULL) { 1812 freemsg(reqp); 1813 return; 1814 } 1815 ptr = mp->b_rptr; 1816 1817 capb = (dl_capability_req_t *)ptr; 1818 ptr += sizeof (dl_capability_req_t); 1819 1820 if (reqp != NULL) { 1821 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1822 capb->dl_sub_length = size; 1823 bcopy(reqp->b_rptr, ptr, size); 1824 ptr += size; 1825 mp->b_cont = reqp->b_cont; 1826 freeb(reqp); 1827 } 1828 ASSERT(ptr == mp->b_wptr); 1829 1830 ill_dlpi_send(ill, mp); 1831 } 1832 1833 static void 1834 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1835 { 1836 dl_capab_id_t *id_ic; 1837 uint_t sub_dl_cap = outers->dl_cap; 1838 dl_capability_sub_t *inners; 1839 uint8_t *capend; 1840 1841 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1842 1843 /* 1844 * Note: range checks here are not absolutely sufficient to 1845 * make us robust against malformed messages sent by drivers; 1846 * this is in keeping with the rest of IP's dlpi handling. 1847 * (Remember, it's coming from something else in the kernel 1848 * address space) 1849 */ 1850 1851 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1852 if (capend > mp->b_wptr) { 1853 cmn_err(CE_WARN, "ill_capability_id_ack: " 1854 "malformed sub-capability too long for mblk"); 1855 return; 1856 } 1857 1858 id_ic = (dl_capab_id_t *)(outers + 1); 1859 1860 if (outers->dl_length < sizeof (*id_ic) || 1861 (inners = &id_ic->id_subcap, 1862 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1863 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1864 "encapsulated capab type %d too long for mblk", 1865 inners->dl_cap); 1866 return; 1867 } 1868 1869 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1870 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1871 "isn't as expected; pass-thru module(s) detected, " 1872 "discarding capability\n", inners->dl_cap)); 1873 return; 1874 } 1875 1876 /* Process the encapsulated sub-capability */ 1877 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1878 } 1879 1880 /* 1881 * Process Multidata Transmit capability negotiation ack received from a 1882 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1883 * DL_CAPABILITY_ACK message. 1884 */ 1885 static void 1886 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1887 { 1888 mblk_t *nmp = NULL; 1889 dl_capability_req_t *oc; 1890 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1891 ill_mdt_capab_t **ill_mdt_capab; 1892 uint_t sub_dl_cap = isub->dl_cap; 1893 uint8_t *capend; 1894 1895 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1896 1897 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1898 1899 /* 1900 * Note: range checks here are not absolutely sufficient to 1901 * make us robust against malformed messages sent by drivers; 1902 * this is in keeping with the rest of IP's dlpi handling. 1903 * (Remember, it's coming from something else in the kernel 1904 * address space) 1905 */ 1906 1907 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1908 if (capend > mp->b_wptr) { 1909 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1910 "malformed sub-capability too long for mblk"); 1911 return; 1912 } 1913 1914 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1915 1916 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1917 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1918 "unsupported MDT sub-capability (version %d, expected %d)", 1919 mdt_ic->mdt_version, MDT_VERSION_2); 1920 return; 1921 } 1922 1923 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1924 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1925 "capability isn't as expected; pass-thru module(s) " 1926 "detected, discarding capability\n")); 1927 return; 1928 } 1929 1930 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1931 1932 if (*ill_mdt_capab == NULL) { 1933 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1934 KM_NOSLEEP); 1935 1936 if (*ill_mdt_capab == NULL) { 1937 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1938 "could not enable MDT version %d " 1939 "for %s (ENOMEM)\n", MDT_VERSION_2, 1940 ill->ill_name); 1941 return; 1942 } 1943 } 1944 1945 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1946 "MDT version %d (%d bytes leading, %d bytes trailing " 1947 "header spaces, %d max pld bufs, %d span limit)\n", 1948 ill->ill_name, MDT_VERSION_2, 1949 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1950 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1951 1952 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1953 (*ill_mdt_capab)->ill_mdt_on = 1; 1954 /* 1955 * Round the following values to the nearest 32-bit; ULP 1956 * may further adjust them to accomodate for additional 1957 * protocol headers. We pass these values to ULP during 1958 * bind time. 1959 */ 1960 (*ill_mdt_capab)->ill_mdt_hdr_head = 1961 roundup(mdt_ic->mdt_hdr_head, 4); 1962 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1963 roundup(mdt_ic->mdt_hdr_tail, 4); 1964 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1965 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1966 1967 ill->ill_capabilities |= ILL_CAPAB_MDT; 1968 } else { 1969 uint_t size; 1970 uchar_t *rptr; 1971 1972 size = sizeof (dl_capability_req_t) + 1973 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1974 1975 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1976 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1977 "could not enable MDT for %s (ENOMEM)\n", 1978 ill->ill_name); 1979 return; 1980 } 1981 1982 rptr = nmp->b_rptr; 1983 /* initialize dl_capability_req_t */ 1984 oc = (dl_capability_req_t *)nmp->b_rptr; 1985 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1986 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1987 sizeof (dl_capab_mdt_t); 1988 nmp->b_rptr += sizeof (dl_capability_req_t); 1989 1990 /* initialize dl_capability_sub_t */ 1991 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1992 nmp->b_rptr += sizeof (*isub); 1993 1994 /* initialize dl_capab_mdt_t */ 1995 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 1996 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 1997 1998 nmp->b_rptr = rptr; 1999 2000 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2001 "to enable MDT version %d\n", ill->ill_name, 2002 MDT_VERSION_2)); 2003 2004 /* set ENABLE flag */ 2005 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2006 2007 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2008 ill_dlpi_send(ill, nmp); 2009 } 2010 } 2011 2012 static void 2013 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2014 { 2015 mblk_t *mp; 2016 dl_capab_mdt_t *mdt_subcap; 2017 dl_capability_sub_t *dl_subcap; 2018 int size; 2019 2020 if (!ILL_MDT_CAPABLE(ill)) 2021 return; 2022 2023 ASSERT(ill->ill_mdt_capab != NULL); 2024 /* 2025 * Clear the capability flag for MDT but retain the ill_mdt_capab 2026 * structure since it's possible that another thread is still 2027 * referring to it. The structure only gets deallocated when 2028 * we destroy the ill. 2029 */ 2030 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2031 2032 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2033 2034 mp = allocb(size, BPRI_HI); 2035 if (mp == NULL) { 2036 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2037 "request to disable MDT\n")); 2038 return; 2039 } 2040 2041 mp->b_wptr = mp->b_rptr + size; 2042 2043 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2044 dl_subcap->dl_cap = DL_CAPAB_MDT; 2045 dl_subcap->dl_length = sizeof (*mdt_subcap); 2046 2047 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2048 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2049 mdt_subcap->mdt_flags = 0; 2050 mdt_subcap->mdt_hdr_head = 0; 2051 mdt_subcap->mdt_hdr_tail = 0; 2052 2053 if (*sc_mp != NULL) 2054 linkb(*sc_mp, mp); 2055 else 2056 *sc_mp = mp; 2057 } 2058 2059 /* 2060 * Send a DL_NOTIFY_REQ to the specified ill to enable 2061 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2062 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2063 * acceleration. 2064 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2065 */ 2066 static boolean_t 2067 ill_enable_promisc_notify(ill_t *ill) 2068 { 2069 mblk_t *mp; 2070 dl_notify_req_t *req; 2071 2072 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2073 2074 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2075 if (mp == NULL) 2076 return (B_FALSE); 2077 2078 req = (dl_notify_req_t *)mp->b_rptr; 2079 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2080 DL_NOTE_PROMISC_OFF_PHYS; 2081 2082 ill_dlpi_send(ill, mp); 2083 2084 return (B_TRUE); 2085 } 2086 2087 2088 /* 2089 * Allocate an IPsec capability request which will be filled by our 2090 * caller to turn on support for one or more algorithms. 2091 */ 2092 static mblk_t * 2093 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2094 { 2095 mblk_t *nmp; 2096 dl_capability_req_t *ocap; 2097 dl_capab_ipsec_t *ocip; 2098 dl_capab_ipsec_t *icip; 2099 uint8_t *ptr; 2100 icip = (dl_capab_ipsec_t *)(isub + 1); 2101 2102 /* 2103 * The first time around, we send a DL_NOTIFY_REQ to enable 2104 * PROMISC_ON/OFF notification from the provider. We need to 2105 * do this before enabling the algorithms to avoid leakage of 2106 * cleartext packets. 2107 */ 2108 2109 if (!ill_enable_promisc_notify(ill)) 2110 return (NULL); 2111 2112 /* 2113 * Allocate new mblk which will contain a new capability 2114 * request to enable the capabilities. 2115 */ 2116 2117 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2118 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2119 if (nmp == NULL) 2120 return (NULL); 2121 2122 ptr = nmp->b_rptr; 2123 2124 /* initialize dl_capability_req_t */ 2125 ocap = (dl_capability_req_t *)ptr; 2126 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2127 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2128 ptr += sizeof (dl_capability_req_t); 2129 2130 /* initialize dl_capability_sub_t */ 2131 bcopy(isub, ptr, sizeof (*isub)); 2132 ptr += sizeof (*isub); 2133 2134 /* initialize dl_capab_ipsec_t */ 2135 ocip = (dl_capab_ipsec_t *)ptr; 2136 bcopy(icip, ocip, sizeof (*icip)); 2137 2138 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2139 return (nmp); 2140 } 2141 2142 /* 2143 * Process an IPsec capability negotiation ack received from a DLS Provider. 2144 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2145 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2146 */ 2147 static void 2148 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2149 { 2150 dl_capab_ipsec_t *icip; 2151 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2152 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2153 uint_t cipher, nciphers; 2154 mblk_t *nmp; 2155 uint_t alg_len; 2156 boolean_t need_sadb_dump; 2157 uint_t sub_dl_cap = isub->dl_cap; 2158 ill_ipsec_capab_t **ill_capab; 2159 uint64_t ill_capab_flag; 2160 uint8_t *capend, *ciphend; 2161 boolean_t sadb_resync; 2162 2163 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2164 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2165 2166 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2167 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2168 ill_capab_flag = ILL_CAPAB_AH; 2169 } else { 2170 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2171 ill_capab_flag = ILL_CAPAB_ESP; 2172 } 2173 2174 /* 2175 * If the ill capability structure exists, then this incoming 2176 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2177 * If this is so, then we'd need to resynchronize the SADB 2178 * after re-enabling the offloaded ciphers. 2179 */ 2180 sadb_resync = (*ill_capab != NULL); 2181 2182 /* 2183 * Note: range checks here are not absolutely sufficient to 2184 * make us robust against malformed messages sent by drivers; 2185 * this is in keeping with the rest of IP's dlpi handling. 2186 * (Remember, it's coming from something else in the kernel 2187 * address space) 2188 */ 2189 2190 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2191 if (capend > mp->b_wptr) { 2192 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2193 "malformed sub-capability too long for mblk"); 2194 return; 2195 } 2196 2197 /* 2198 * There are two types of acks we process here: 2199 * 1. acks in reply to a (first form) generic capability req 2200 * (no ENABLE flag set) 2201 * 2. acks in reply to a ENABLE capability req. 2202 * (ENABLE flag set) 2203 * 2204 * We process the subcapability passed as argument as follows: 2205 * 1 do initializations 2206 * 1.1 initialize nmp = NULL 2207 * 1.2 set need_sadb_dump to B_FALSE 2208 * 2 for each cipher in subcapability: 2209 * 2.1 if ENABLE flag is set: 2210 * 2.1.1 update per-ill ipsec capabilities info 2211 * 2.1.2 set need_sadb_dump to B_TRUE 2212 * 2.2 if ENABLE flag is not set: 2213 * 2.2.1 if nmp is NULL: 2214 * 2.2.1.1 allocate and initialize nmp 2215 * 2.2.1.2 init current pos in nmp 2216 * 2.2.2 copy current cipher to current pos in nmp 2217 * 2.2.3 set ENABLE flag in nmp 2218 * 2.2.4 update current pos 2219 * 3 if nmp is not equal to NULL, send enable request 2220 * 3.1 send capability request 2221 * 4 if need_sadb_dump is B_TRUE 2222 * 4.1 enable promiscuous on/off notifications 2223 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2224 * AH or ESP SA's to interface. 2225 */ 2226 2227 nmp = NULL; 2228 oalg = NULL; 2229 need_sadb_dump = B_FALSE; 2230 icip = (dl_capab_ipsec_t *)(isub + 1); 2231 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2232 2233 nciphers = icip->cip_nciphers; 2234 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2235 2236 if (ciphend > capend) { 2237 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2238 "too many ciphers for sub-capability len"); 2239 return; 2240 } 2241 2242 for (cipher = 0; cipher < nciphers; cipher++) { 2243 alg_len = sizeof (dl_capab_ipsec_alg_t); 2244 2245 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2246 /* 2247 * TBD: when we provide a way to disable capabilities 2248 * from above, need to manage the request-pending state 2249 * and fail if we were not expecting this ACK. 2250 */ 2251 IPSECHW_DEBUG(IPSECHW_CAPAB, 2252 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2253 2254 /* 2255 * Update IPsec capabilities for this ill 2256 */ 2257 2258 if (*ill_capab == NULL) { 2259 IPSECHW_DEBUG(IPSECHW_CAPAB, 2260 ("ill_capability_ipsec_ack: " 2261 "allocating ipsec_capab for ill\n")); 2262 *ill_capab = ill_ipsec_capab_alloc(); 2263 2264 if (*ill_capab == NULL) { 2265 cmn_err(CE_WARN, 2266 "ill_capability_ipsec_ack: " 2267 "could not enable IPsec Hardware " 2268 "acceleration for %s (ENOMEM)\n", 2269 ill->ill_name); 2270 return; 2271 } 2272 } 2273 2274 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2275 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2276 2277 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2278 cmn_err(CE_WARN, 2279 "ill_capability_ipsec_ack: " 2280 "malformed IPsec algorithm id %d", 2281 ialg->alg_prim); 2282 continue; 2283 } 2284 2285 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2286 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2287 ialg->alg_prim); 2288 } else { 2289 ipsec_capab_algparm_t *alp; 2290 2291 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2292 ialg->alg_prim); 2293 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2294 ialg->alg_prim)) { 2295 cmn_err(CE_WARN, 2296 "ill_capability_ipsec_ack: " 2297 "no space for IPsec alg id %d", 2298 ialg->alg_prim); 2299 continue; 2300 } 2301 alp = &((*ill_capab)->encr_algparm[ 2302 ialg->alg_prim]); 2303 alp->minkeylen = ialg->alg_minbits; 2304 alp->maxkeylen = ialg->alg_maxbits; 2305 } 2306 ill->ill_capabilities |= ill_capab_flag; 2307 /* 2308 * indicate that a capability was enabled, which 2309 * will be used below to kick off a SADB dump 2310 * to the ill. 2311 */ 2312 need_sadb_dump = B_TRUE; 2313 } else { 2314 IPSECHW_DEBUG(IPSECHW_CAPAB, 2315 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2316 ialg->alg_prim)); 2317 2318 if (nmp == NULL) { 2319 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2320 if (nmp == NULL) { 2321 /* 2322 * Sending the PROMISC_ON/OFF 2323 * notification request failed. 2324 * We cannot enable the algorithms 2325 * since the Provider will not 2326 * notify IP of promiscous mode 2327 * changes, which could lead 2328 * to leakage of packets. 2329 */ 2330 cmn_err(CE_WARN, 2331 "ill_capability_ipsec_ack: " 2332 "could not enable IPsec Hardware " 2333 "acceleration for %s (ENOMEM)\n", 2334 ill->ill_name); 2335 return; 2336 } 2337 /* ptr to current output alg specifier */ 2338 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2339 } 2340 2341 /* 2342 * Copy current alg specifier, set ENABLE 2343 * flag, and advance to next output alg. 2344 * For now we enable all IPsec capabilities. 2345 */ 2346 ASSERT(oalg != NULL); 2347 bcopy(ialg, oalg, alg_len); 2348 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2349 nmp->b_wptr += alg_len; 2350 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2351 } 2352 2353 /* move to next input algorithm specifier */ 2354 ialg = (dl_capab_ipsec_alg_t *) 2355 ((char *)ialg + alg_len); 2356 } 2357 2358 if (nmp != NULL) 2359 /* 2360 * nmp points to a DL_CAPABILITY_REQ message to enable 2361 * IPsec hardware acceleration. 2362 */ 2363 ill_dlpi_send(ill, nmp); 2364 2365 if (need_sadb_dump) 2366 /* 2367 * An acknowledgement corresponding to a request to 2368 * enable acceleration was received, notify SADB. 2369 */ 2370 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2371 } 2372 2373 /* 2374 * Given an mblk with enough space in it, create sub-capability entries for 2375 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2376 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2377 * in preparation for the reset the DL_CAPABILITY_REQ message. 2378 */ 2379 static void 2380 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2381 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2382 { 2383 dl_capab_ipsec_t *oipsec; 2384 dl_capab_ipsec_alg_t *oalg; 2385 dl_capability_sub_t *dl_subcap; 2386 int i, k; 2387 2388 ASSERT(nciphers > 0); 2389 ASSERT(ill_cap != NULL); 2390 ASSERT(mp != NULL); 2391 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2392 2393 /* dl_capability_sub_t for "stype" */ 2394 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2395 dl_subcap->dl_cap = stype; 2396 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2397 mp->b_wptr += sizeof (dl_capability_sub_t); 2398 2399 /* dl_capab_ipsec_t for "stype" */ 2400 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2401 oipsec->cip_version = 1; 2402 oipsec->cip_nciphers = nciphers; 2403 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2404 2405 /* create entries for "stype" AUTH ciphers */ 2406 for (i = 0; i < ill_cap->algs_size; i++) { 2407 for (k = 0; k < BITSPERBYTE; k++) { 2408 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2409 continue; 2410 2411 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2412 bzero((void *)oalg, sizeof (*oalg)); 2413 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2414 oalg->alg_prim = k + (BITSPERBYTE * i); 2415 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2416 } 2417 } 2418 /* create entries for "stype" ENCR ciphers */ 2419 for (i = 0; i < ill_cap->algs_size; i++) { 2420 for (k = 0; k < BITSPERBYTE; k++) { 2421 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2422 continue; 2423 2424 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2425 bzero((void *)oalg, sizeof (*oalg)); 2426 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2427 oalg->alg_prim = k + (BITSPERBYTE * i); 2428 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2429 } 2430 } 2431 } 2432 2433 /* 2434 * Macro to count number of 1s in a byte (8-bit word). The total count is 2435 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2436 * POPC instruction, but our macro is more flexible for an arbitrary length 2437 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2438 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2439 * stays that way, we can reduce the number of iterations required. 2440 */ 2441 #define COUNT_1S(val, sum) { \ 2442 uint8_t x = val & 0xff; \ 2443 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2444 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2445 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2446 } 2447 2448 /* ARGSUSED */ 2449 static void 2450 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2451 { 2452 mblk_t *mp; 2453 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2454 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2455 uint64_t ill_capabilities = ill->ill_capabilities; 2456 int ah_cnt = 0, esp_cnt = 0; 2457 int ah_len = 0, esp_len = 0; 2458 int i, size = 0; 2459 2460 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2461 return; 2462 2463 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2464 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2465 2466 /* Find out the number of ciphers for AH */ 2467 if (cap_ah != NULL) { 2468 for (i = 0; i < cap_ah->algs_size; i++) { 2469 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2470 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2471 } 2472 if (ah_cnt > 0) { 2473 size += sizeof (dl_capability_sub_t) + 2474 sizeof (dl_capab_ipsec_t); 2475 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2476 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2477 size += ah_len; 2478 } 2479 } 2480 2481 /* Find out the number of ciphers for ESP */ 2482 if (cap_esp != NULL) { 2483 for (i = 0; i < cap_esp->algs_size; i++) { 2484 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2485 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2486 } 2487 if (esp_cnt > 0) { 2488 size += sizeof (dl_capability_sub_t) + 2489 sizeof (dl_capab_ipsec_t); 2490 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2491 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2492 size += esp_len; 2493 } 2494 } 2495 2496 if (size == 0) { 2497 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2498 "there's nothing to reset\n")); 2499 return; 2500 } 2501 2502 mp = allocb(size, BPRI_HI); 2503 if (mp == NULL) { 2504 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2505 "request to disable IPSEC Hardware Acceleration\n")); 2506 return; 2507 } 2508 2509 /* 2510 * Clear the capability flags for IPSec HA but retain the ill 2511 * capability structures since it's possible that another thread 2512 * is still referring to them. The structures only get deallocated 2513 * when we destroy the ill. 2514 * 2515 * Various places check the flags to see if the ill is capable of 2516 * hardware acceleration, and by clearing them we ensure that new 2517 * outbound IPSec packets are sent down encrypted. 2518 */ 2519 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2520 2521 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2522 if (ah_cnt > 0) { 2523 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2524 cap_ah, mp); 2525 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2526 } 2527 2528 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2529 if (esp_cnt > 0) { 2530 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2531 cap_esp, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* 2536 * At this point we've composed a bunch of sub-capabilities to be 2537 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2538 * by the caller. Upon receiving this reset message, the driver 2539 * must stop inbound decryption (by destroying all inbound SAs) 2540 * and let the corresponding packets come in encrypted. 2541 */ 2542 2543 if (*sc_mp != NULL) 2544 linkb(*sc_mp, mp); 2545 else 2546 *sc_mp = mp; 2547 } 2548 2549 static void 2550 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2551 boolean_t encapsulated) 2552 { 2553 boolean_t legacy = B_FALSE; 2554 2555 /* 2556 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2557 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2558 * instructed the driver to disable its advertised capabilities, 2559 * so there's no point in accepting any response at this moment. 2560 */ 2561 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2562 return; 2563 2564 /* 2565 * Note that only the following two sub-capabilities may be 2566 * considered as "legacy", since their original definitions 2567 * do not incorporate the dl_mid_t module ID token, and hence 2568 * may require the use of the wrapper sub-capability. 2569 */ 2570 switch (subp->dl_cap) { 2571 case DL_CAPAB_IPSEC_AH: 2572 case DL_CAPAB_IPSEC_ESP: 2573 legacy = B_TRUE; 2574 break; 2575 } 2576 2577 /* 2578 * For legacy sub-capabilities which don't incorporate a queue_t 2579 * pointer in their structures, discard them if we detect that 2580 * there are intermediate modules in between IP and the driver. 2581 */ 2582 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2583 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2584 "%d discarded; %d module(s) present below IP\n", 2585 subp->dl_cap, ill->ill_lmod_cnt)); 2586 return; 2587 } 2588 2589 switch (subp->dl_cap) { 2590 case DL_CAPAB_IPSEC_AH: 2591 case DL_CAPAB_IPSEC_ESP: 2592 ill_capability_ipsec_ack(ill, mp, subp); 2593 break; 2594 case DL_CAPAB_MDT: 2595 ill_capability_mdt_ack(ill, mp, subp); 2596 break; 2597 case DL_CAPAB_HCKSUM: 2598 ill_capability_hcksum_ack(ill, mp, subp); 2599 break; 2600 case DL_CAPAB_ZEROCOPY: 2601 ill_capability_zerocopy_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_POLL: 2604 if (!SOFT_RINGS_ENABLED()) 2605 ill_capability_dls_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_SOFT_RING: 2608 if (SOFT_RINGS_ENABLED()) 2609 ill_capability_dls_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_LSO: 2612 ill_capability_lso_ack(ill, mp, subp); 2613 break; 2614 default: 2615 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2616 subp->dl_cap)); 2617 } 2618 } 2619 2620 /* 2621 * As part of negotiating polling capability, the driver tells us 2622 * the default (or normal) blanking interval and packet threshold 2623 * (the receive timer fires if blanking interval is reached or 2624 * the packet threshold is reached). 2625 * 2626 * As part of manipulating the polling interval, we always use our 2627 * estimated interval (avg service time * number of packets queued 2628 * on the squeue) but we try to blank for a minimum of 2629 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2630 * packet threshold during this time. When we are not in polling mode 2631 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2632 * rr_min_blank_ratio but up the packet cnt by a ratio of 2633 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2634 * possible although for a shorter interval. 2635 */ 2636 #define RR_MAX_BLANK_RATIO 20 2637 #define RR_MIN_BLANK_RATIO 10 2638 #define RR_MAX_PKT_CNT_RATIO 3 2639 #define RR_MIN_PKT_CNT_RATIO 3 2640 2641 /* 2642 * These can be tuned via /etc/system. 2643 */ 2644 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2645 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2646 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2647 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2648 2649 static mac_resource_handle_t 2650 ill_ring_add(void *arg, mac_resource_t *mrp) 2651 { 2652 ill_t *ill = (ill_t *)arg; 2653 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2654 ill_rx_ring_t *rx_ring; 2655 int ip_rx_index; 2656 2657 ASSERT(mrp != NULL); 2658 if (mrp->mr_type != MAC_RX_FIFO) { 2659 return (NULL); 2660 } 2661 ASSERT(ill != NULL); 2662 ASSERT(ill->ill_dls_capab != NULL); 2663 2664 mutex_enter(&ill->ill_lock); 2665 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2666 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2667 ASSERT(rx_ring != NULL); 2668 2669 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2670 time_t normal_blank_time = 2671 mrfp->mrf_normal_blank_time; 2672 uint_t normal_pkt_cnt = 2673 mrfp->mrf_normal_pkt_count; 2674 2675 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2676 2677 rx_ring->rr_blank = mrfp->mrf_blank; 2678 rx_ring->rr_handle = mrfp->mrf_arg; 2679 rx_ring->rr_ill = ill; 2680 rx_ring->rr_normal_blank_time = normal_blank_time; 2681 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2682 2683 rx_ring->rr_max_blank_time = 2684 normal_blank_time * rr_max_blank_ratio; 2685 rx_ring->rr_min_blank_time = 2686 normal_blank_time * rr_min_blank_ratio; 2687 rx_ring->rr_max_pkt_cnt = 2688 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2689 rx_ring->rr_min_pkt_cnt = 2690 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2691 2692 rx_ring->rr_ring_state = ILL_RING_INUSE; 2693 mutex_exit(&ill->ill_lock); 2694 2695 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2696 (int), ip_rx_index); 2697 return ((mac_resource_handle_t)rx_ring); 2698 } 2699 } 2700 2701 /* 2702 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2703 * we have devices which can overwhelm this limit, ILL_MAX_RING 2704 * should be made configurable. Meanwhile it cause no panic because 2705 * driver will pass ip_input a NULL handle which will make 2706 * IP allocate the default squeue and Polling mode will not 2707 * be used for this ring. 2708 */ 2709 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2710 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2711 2712 mutex_exit(&ill->ill_lock); 2713 return (NULL); 2714 } 2715 2716 static boolean_t 2717 ill_capability_dls_init(ill_t *ill) 2718 { 2719 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2720 conn_t *connp; 2721 size_t sz; 2722 ip_stack_t *ipst = ill->ill_ipst; 2723 2724 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2725 if (ill_dls == NULL) { 2726 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2727 "soft_ring enabled for ill=%s (%p) but data " 2728 "structs uninitialized\n", ill->ill_name, 2729 (void *)ill); 2730 } 2731 return (B_TRUE); 2732 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2733 if (ill_dls == NULL) { 2734 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2735 "polling enabled for ill=%s (%p) but data " 2736 "structs uninitialized\n", ill->ill_name, 2737 (void *)ill); 2738 } 2739 return (B_TRUE); 2740 } 2741 2742 if (ill_dls != NULL) { 2743 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2744 /* Soft_Ring or polling is being re-enabled */ 2745 2746 connp = ill_dls->ill_unbind_conn; 2747 ASSERT(rx_ring != NULL); 2748 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2749 bzero((void *)rx_ring, 2750 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2751 ill_dls->ill_ring_tbl = rx_ring; 2752 ill_dls->ill_unbind_conn = connp; 2753 return (B_TRUE); 2754 } 2755 2756 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2757 ipst->ips_netstack)) == NULL) 2758 return (B_FALSE); 2759 2760 sz = sizeof (ill_dls_capab_t); 2761 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2762 2763 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2764 if (ill_dls == NULL) { 2765 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2766 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2767 (void *)ill); 2768 CONN_DEC_REF(connp); 2769 return (B_FALSE); 2770 } 2771 2772 /* Allocate space to hold ring table */ 2773 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2774 ill->ill_dls_capab = ill_dls; 2775 ill_dls->ill_unbind_conn = connp; 2776 return (B_TRUE); 2777 } 2778 2779 /* 2780 * ill_capability_dls_disable: disable soft_ring and/or polling 2781 * capability. Since any of the rings might already be in use, need 2782 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2783 * direct calls if necessary. 2784 */ 2785 static void 2786 ill_capability_dls_disable(ill_t *ill) 2787 { 2788 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2789 2790 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2791 ip_squeue_clean_all(ill); 2792 ill_dls->ill_tx = NULL; 2793 ill_dls->ill_tx_handle = NULL; 2794 ill_dls->ill_dls_change_status = NULL; 2795 ill_dls->ill_dls_bind = NULL; 2796 ill_dls->ill_dls_unbind = NULL; 2797 } 2798 2799 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2800 } 2801 2802 static void 2803 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2804 dl_capability_sub_t *isub) 2805 { 2806 uint_t size; 2807 uchar_t *rptr; 2808 dl_capab_dls_t dls, *odls; 2809 ill_dls_capab_t *ill_dls; 2810 mblk_t *nmp = NULL; 2811 dl_capability_req_t *ocap; 2812 uint_t sub_dl_cap = isub->dl_cap; 2813 2814 if (!ill_capability_dls_init(ill)) 2815 return; 2816 ill_dls = ill->ill_dls_capab; 2817 2818 /* Copy locally to get the members aligned */ 2819 bcopy((void *)idls, (void *)&dls, 2820 sizeof (dl_capab_dls_t)); 2821 2822 /* Get the tx function and handle from dld */ 2823 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2824 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2825 2826 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2827 ill_dls->ill_dls_change_status = 2828 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2829 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2830 ill_dls->ill_dls_unbind = 2831 (ip_dls_unbind_t)dls.dls_ring_unbind; 2832 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2833 } 2834 2835 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2836 isub->dl_length; 2837 2838 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2839 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2840 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2841 ill->ill_name, (void *)ill); 2842 return; 2843 } 2844 2845 /* initialize dl_capability_req_t */ 2846 rptr = nmp->b_rptr; 2847 ocap = (dl_capability_req_t *)rptr; 2848 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2849 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2850 rptr += sizeof (dl_capability_req_t); 2851 2852 /* initialize dl_capability_sub_t */ 2853 bcopy(isub, rptr, sizeof (*isub)); 2854 rptr += sizeof (*isub); 2855 2856 odls = (dl_capab_dls_t *)rptr; 2857 rptr += sizeof (dl_capab_dls_t); 2858 2859 /* initialize dl_capab_dls_t to be sent down */ 2860 dls.dls_rx_handle = (uintptr_t)ill; 2861 dls.dls_rx = (uintptr_t)ip_input; 2862 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2863 2864 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2865 dls.dls_ring_cnt = ip_soft_rings_cnt; 2866 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2867 dls.dls_flags = SOFT_RING_ENABLE; 2868 } else { 2869 dls.dls_flags = POLL_ENABLE; 2870 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2871 "to enable polling\n", ill->ill_name)); 2872 } 2873 bcopy((void *)&dls, (void *)odls, 2874 sizeof (dl_capab_dls_t)); 2875 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2876 /* 2877 * nmp points to a DL_CAPABILITY_REQ message to 2878 * enable either soft_ring or polling 2879 */ 2880 ill_dlpi_send(ill, nmp); 2881 } 2882 2883 static void 2884 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2885 { 2886 mblk_t *mp; 2887 dl_capab_dls_t *idls; 2888 dl_capability_sub_t *dl_subcap; 2889 int size; 2890 2891 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2892 return; 2893 2894 ASSERT(ill->ill_dls_capab != NULL); 2895 2896 size = sizeof (*dl_subcap) + sizeof (*idls); 2897 2898 mp = allocb(size, BPRI_HI); 2899 if (mp == NULL) { 2900 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2901 "request to disable soft_ring\n")); 2902 return; 2903 } 2904 2905 mp->b_wptr = mp->b_rptr + size; 2906 2907 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2908 dl_subcap->dl_length = sizeof (*idls); 2909 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2910 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2911 else 2912 dl_subcap->dl_cap = DL_CAPAB_POLL; 2913 2914 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2915 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2916 idls->dls_flags = SOFT_RING_DISABLE; 2917 else 2918 idls->dls_flags = POLL_DISABLE; 2919 2920 if (*sc_mp != NULL) 2921 linkb(*sc_mp, mp); 2922 else 2923 *sc_mp = mp; 2924 } 2925 2926 /* 2927 * Process a soft_ring/poll capability negotiation ack received 2928 * from a DLS Provider.isub must point to the sub-capability 2929 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2930 */ 2931 static void 2932 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2933 { 2934 dl_capab_dls_t *idls; 2935 uint_t sub_dl_cap = isub->dl_cap; 2936 uint8_t *capend; 2937 2938 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2939 sub_dl_cap == DL_CAPAB_POLL); 2940 2941 if (ill->ill_isv6) 2942 return; 2943 2944 /* 2945 * Note: range checks here are not absolutely sufficient to 2946 * make us robust against malformed messages sent by drivers; 2947 * this is in keeping with the rest of IP's dlpi handling. 2948 * (Remember, it's coming from something else in the kernel 2949 * address space) 2950 */ 2951 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2952 if (capend > mp->b_wptr) { 2953 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2954 "malformed sub-capability too long for mblk"); 2955 return; 2956 } 2957 2958 /* 2959 * There are two types of acks we process here: 2960 * 1. acks in reply to a (first form) generic capability req 2961 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2962 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2963 * capability req. 2964 */ 2965 idls = (dl_capab_dls_t *)(isub + 1); 2966 2967 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2968 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2969 "capability isn't as expected; pass-thru " 2970 "module(s) detected, discarding capability\n")); 2971 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2972 /* 2973 * This is a capability renegotitation case. 2974 * The interface better be unusable at this 2975 * point other wise bad things will happen 2976 * if we disable direct calls on a running 2977 * and up interface. 2978 */ 2979 ill_capability_dls_disable(ill); 2980 } 2981 return; 2982 } 2983 2984 switch (idls->dls_flags) { 2985 default: 2986 /* Disable if unknown flag */ 2987 case SOFT_RING_DISABLE: 2988 case POLL_DISABLE: 2989 ill_capability_dls_disable(ill); 2990 break; 2991 case SOFT_RING_CAPABLE: 2992 case POLL_CAPABLE: 2993 /* 2994 * If the capability was already enabled, its safe 2995 * to disable it first to get rid of stale information 2996 * and then start enabling it again. 2997 */ 2998 ill_capability_dls_disable(ill); 2999 ill_capability_dls_capable(ill, idls, isub); 3000 break; 3001 case SOFT_RING_ENABLE: 3002 case POLL_ENABLE: 3003 mutex_enter(&ill->ill_lock); 3004 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3005 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3006 ASSERT(ill->ill_dls_capab != NULL); 3007 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3008 } 3009 if (sub_dl_cap == DL_CAPAB_POLL && 3010 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3011 ASSERT(ill->ill_dls_capab != NULL); 3012 ill->ill_capabilities |= ILL_CAPAB_POLL; 3013 ip1dbg(("ill_capability_dls_ack: interface %s " 3014 "has enabled polling\n", ill->ill_name)); 3015 } 3016 mutex_exit(&ill->ill_lock); 3017 break; 3018 } 3019 } 3020 3021 /* 3022 * Process a hardware checksum offload capability negotiation ack received 3023 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3024 * of a DL_CAPABILITY_ACK message. 3025 */ 3026 static void 3027 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3028 { 3029 dl_capability_req_t *ocap; 3030 dl_capab_hcksum_t *ihck, *ohck; 3031 ill_hcksum_capab_t **ill_hcksum; 3032 mblk_t *nmp = NULL; 3033 uint_t sub_dl_cap = isub->dl_cap; 3034 uint8_t *capend; 3035 3036 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3037 3038 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (no ENABLE flag set) 3058 * 2. acks in reply to a ENABLE capability req. 3059 * (ENABLE flag set) 3060 */ 3061 ihck = (dl_capab_hcksum_t *)(isub + 1); 3062 3063 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3064 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3065 "unsupported hardware checksum " 3066 "sub-capability (version %d, expected %d)", 3067 ihck->hcksum_version, HCKSUM_VERSION_1); 3068 return; 3069 } 3070 3071 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3072 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3073 "checksum capability isn't as expected; pass-thru " 3074 "module(s) detected, discarding capability\n")); 3075 return; 3076 } 3077 3078 #define CURR_HCKSUM_CAPAB \ 3079 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3080 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3081 3082 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3083 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3084 /* do ENABLE processing */ 3085 if (*ill_hcksum == NULL) { 3086 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3087 KM_NOSLEEP); 3088 3089 if (*ill_hcksum == NULL) { 3090 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3091 "could not enable hcksum version %d " 3092 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3093 ill->ill_name); 3094 return; 3095 } 3096 } 3097 3098 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3099 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3100 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3101 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3102 "has enabled hardware checksumming\n ", 3103 ill->ill_name)); 3104 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3105 /* 3106 * Enabling hardware checksum offload 3107 * Currently IP supports {TCP,UDP}/IPv4 3108 * partial and full cksum offload and 3109 * IPv4 header checksum offload. 3110 * Allocate new mblk which will 3111 * contain a new capability request 3112 * to enable hardware checksum offload. 3113 */ 3114 uint_t size; 3115 uchar_t *rptr; 3116 3117 size = sizeof (dl_capability_req_t) + 3118 sizeof (dl_capability_sub_t) + isub->dl_length; 3119 3120 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3121 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3122 "could not enable hardware cksum for %s (ENOMEM)\n", 3123 ill->ill_name); 3124 return; 3125 } 3126 3127 rptr = nmp->b_rptr; 3128 /* initialize dl_capability_req_t */ 3129 ocap = (dl_capability_req_t *)nmp->b_rptr; 3130 ocap->dl_sub_offset = 3131 sizeof (dl_capability_req_t); 3132 ocap->dl_sub_length = 3133 sizeof (dl_capability_sub_t) + 3134 isub->dl_length; 3135 nmp->b_rptr += sizeof (dl_capability_req_t); 3136 3137 /* initialize dl_capability_sub_t */ 3138 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3139 nmp->b_rptr += sizeof (*isub); 3140 3141 /* initialize dl_capab_hcksum_t */ 3142 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3143 bcopy(ihck, ohck, sizeof (*ihck)); 3144 3145 nmp->b_rptr = rptr; 3146 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3147 3148 /* Set ENABLE flag */ 3149 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3150 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3151 3152 /* 3153 * nmp points to a DL_CAPABILITY_REQ message to enable 3154 * hardware checksum acceleration. 3155 */ 3156 ill_dlpi_send(ill, nmp); 3157 } else { 3158 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3159 "advertised %x hardware checksum capability flags\n", 3160 ill->ill_name, ihck->hcksum_txflags)); 3161 } 3162 } 3163 3164 static void 3165 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3166 { 3167 mblk_t *mp; 3168 dl_capab_hcksum_t *hck_subcap; 3169 dl_capability_sub_t *dl_subcap; 3170 int size; 3171 3172 if (!ILL_HCKSUM_CAPABLE(ill)) 3173 return; 3174 3175 ASSERT(ill->ill_hcksum_capab != NULL); 3176 /* 3177 * Clear the capability flag for hardware checksum offload but 3178 * retain the ill_hcksum_capab structure since it's possible that 3179 * another thread is still referring to it. The structure only 3180 * gets deallocated when we destroy the ill. 3181 */ 3182 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3183 3184 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3185 3186 mp = allocb(size, BPRI_HI); 3187 if (mp == NULL) { 3188 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3189 "request to disable hardware checksum offload\n")); 3190 return; 3191 } 3192 3193 mp->b_wptr = mp->b_rptr + size; 3194 3195 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3196 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3197 dl_subcap->dl_length = sizeof (*hck_subcap); 3198 3199 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3200 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3201 hck_subcap->hcksum_txflags = 0; 3202 3203 if (*sc_mp != NULL) 3204 linkb(*sc_mp, mp); 3205 else 3206 *sc_mp = mp; 3207 } 3208 3209 static void 3210 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3211 { 3212 mblk_t *nmp = NULL; 3213 dl_capability_req_t *oc; 3214 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3215 ill_zerocopy_capab_t **ill_zerocopy_capab; 3216 uint_t sub_dl_cap = isub->dl_cap; 3217 uint8_t *capend; 3218 3219 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3220 3221 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3222 3223 /* 3224 * Note: range checks here are not absolutely sufficient to 3225 * make us robust against malformed messages sent by drivers; 3226 * this is in keeping with the rest of IP's dlpi handling. 3227 * (Remember, it's coming from something else in the kernel 3228 * address space) 3229 */ 3230 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3231 if (capend > mp->b_wptr) { 3232 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3233 "malformed sub-capability too long for mblk"); 3234 return; 3235 } 3236 3237 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3238 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3239 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3240 "unsupported ZEROCOPY sub-capability (version %d, " 3241 "expected %d)", zc_ic->zerocopy_version, 3242 ZEROCOPY_VERSION_1); 3243 return; 3244 } 3245 3246 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3247 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3248 "capability isn't as expected; pass-thru module(s) " 3249 "detected, discarding capability\n")); 3250 return; 3251 } 3252 3253 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3254 if (*ill_zerocopy_capab == NULL) { 3255 *ill_zerocopy_capab = 3256 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3257 KM_NOSLEEP); 3258 3259 if (*ill_zerocopy_capab == NULL) { 3260 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3261 "could not enable Zero-copy version %d " 3262 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3263 ill->ill_name); 3264 return; 3265 } 3266 } 3267 3268 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3269 "supports Zero-copy version %d\n", ill->ill_name, 3270 ZEROCOPY_VERSION_1)); 3271 3272 (*ill_zerocopy_capab)->ill_zerocopy_version = 3273 zc_ic->zerocopy_version; 3274 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3275 zc_ic->zerocopy_flags; 3276 3277 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3278 } else { 3279 uint_t size; 3280 uchar_t *rptr; 3281 3282 size = sizeof (dl_capability_req_t) + 3283 sizeof (dl_capability_sub_t) + 3284 sizeof (dl_capab_zerocopy_t); 3285 3286 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3287 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3288 "could not enable zerocopy for %s (ENOMEM)\n", 3289 ill->ill_name); 3290 return; 3291 } 3292 3293 rptr = nmp->b_rptr; 3294 /* initialize dl_capability_req_t */ 3295 oc = (dl_capability_req_t *)rptr; 3296 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3297 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3298 sizeof (dl_capab_zerocopy_t); 3299 rptr += sizeof (dl_capability_req_t); 3300 3301 /* initialize dl_capability_sub_t */ 3302 bcopy(isub, rptr, sizeof (*isub)); 3303 rptr += sizeof (*isub); 3304 3305 /* initialize dl_capab_zerocopy_t */ 3306 zc_oc = (dl_capab_zerocopy_t *)rptr; 3307 *zc_oc = *zc_ic; 3308 3309 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3310 "to enable zero-copy version %d\n", ill->ill_name, 3311 ZEROCOPY_VERSION_1)); 3312 3313 /* set VMSAFE_MEM flag */ 3314 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3315 3316 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3317 ill_dlpi_send(ill, nmp); 3318 } 3319 } 3320 3321 static void 3322 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3323 { 3324 mblk_t *mp; 3325 dl_capab_zerocopy_t *zerocopy_subcap; 3326 dl_capability_sub_t *dl_subcap; 3327 int size; 3328 3329 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3330 return; 3331 3332 ASSERT(ill->ill_zerocopy_capab != NULL); 3333 /* 3334 * Clear the capability flag for Zero-copy but retain the 3335 * ill_zerocopy_capab structure since it's possible that another 3336 * thread is still referring to it. The structure only gets 3337 * deallocated when we destroy the ill. 3338 */ 3339 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3340 3341 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3342 3343 mp = allocb(size, BPRI_HI); 3344 if (mp == NULL) { 3345 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3346 "request to disable Zero-copy\n")); 3347 return; 3348 } 3349 3350 mp->b_wptr = mp->b_rptr + size; 3351 3352 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3353 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3354 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3355 3356 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3357 zerocopy_subcap->zerocopy_version = 3358 ill->ill_zerocopy_capab->ill_zerocopy_version; 3359 zerocopy_subcap->zerocopy_flags = 0; 3360 3361 if (*sc_mp != NULL) 3362 linkb(*sc_mp, mp); 3363 else 3364 *sc_mp = mp; 3365 } 3366 3367 /* 3368 * Process Large Segment Offload capability negotiation ack received from a 3369 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3370 * DL_CAPABILITY_ACK message. 3371 */ 3372 static void 3373 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3374 { 3375 mblk_t *nmp = NULL; 3376 dl_capability_req_t *oc; 3377 dl_capab_lso_t *lso_ic, *lso_oc; 3378 ill_lso_capab_t **ill_lso_capab; 3379 uint_t sub_dl_cap = isub->dl_cap; 3380 uint8_t *capend; 3381 3382 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3383 3384 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3385 3386 /* 3387 * Note: range checks here are not absolutely sufficient to 3388 * make us robust against malformed messages sent by drivers; 3389 * this is in keeping with the rest of IP's dlpi handling. 3390 * (Remember, it's coming from something else in the kernel 3391 * address space) 3392 */ 3393 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3394 if (capend > mp->b_wptr) { 3395 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3396 "malformed sub-capability too long for mblk"); 3397 return; 3398 } 3399 3400 lso_ic = (dl_capab_lso_t *)(isub + 1); 3401 3402 if (lso_ic->lso_version != LSO_VERSION_1) { 3403 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3404 "unsupported LSO sub-capability (version %d, expected %d)", 3405 lso_ic->lso_version, LSO_VERSION_1); 3406 return; 3407 } 3408 3409 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3410 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3411 "capability isn't as expected; pass-thru module(s) " 3412 "detected, discarding capability\n")); 3413 return; 3414 } 3415 3416 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3417 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3418 if (*ill_lso_capab == NULL) { 3419 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3420 KM_NOSLEEP); 3421 3422 if (*ill_lso_capab == NULL) { 3423 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3424 "could not enable LSO version %d " 3425 "for %s (ENOMEM)\n", LSO_VERSION_1, 3426 ill->ill_name); 3427 return; 3428 } 3429 } 3430 3431 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3432 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3433 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3434 ill->ill_capabilities |= ILL_CAPAB_LSO; 3435 3436 ip1dbg(("ill_capability_lso_ack: interface %s " 3437 "has enabled LSO\n ", ill->ill_name)); 3438 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3439 uint_t size; 3440 uchar_t *rptr; 3441 3442 size = sizeof (dl_capability_req_t) + 3443 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3444 3445 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3446 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3447 "could not enable LSO for %s (ENOMEM)\n", 3448 ill->ill_name); 3449 return; 3450 } 3451 3452 rptr = nmp->b_rptr; 3453 /* initialize dl_capability_req_t */ 3454 oc = (dl_capability_req_t *)nmp->b_rptr; 3455 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3456 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3457 sizeof (dl_capab_lso_t); 3458 nmp->b_rptr += sizeof (dl_capability_req_t); 3459 3460 /* initialize dl_capability_sub_t */ 3461 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3462 nmp->b_rptr += sizeof (*isub); 3463 3464 /* initialize dl_capab_lso_t */ 3465 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3466 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3467 3468 nmp->b_rptr = rptr; 3469 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3470 3471 /* set ENABLE flag */ 3472 lso_oc->lso_flags |= LSO_TX_ENABLE; 3473 3474 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3475 ill_dlpi_send(ill, nmp); 3476 } else { 3477 ip1dbg(("ill_capability_lso_ack: interface %s has " 3478 "advertised %x LSO capability flags\n", 3479 ill->ill_name, lso_ic->lso_flags)); 3480 } 3481 } 3482 3483 3484 static void 3485 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3486 { 3487 mblk_t *mp; 3488 dl_capab_lso_t *lso_subcap; 3489 dl_capability_sub_t *dl_subcap; 3490 int size; 3491 3492 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3493 return; 3494 3495 ASSERT(ill->ill_lso_capab != NULL); 3496 /* 3497 * Clear the capability flag for LSO but retain the 3498 * ill_lso_capab structure since it's possible that another 3499 * thread is still referring to it. The structure only gets 3500 * deallocated when we destroy the ill. 3501 */ 3502 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3503 3504 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3505 3506 mp = allocb(size, BPRI_HI); 3507 if (mp == NULL) { 3508 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3509 "request to disable LSO\n")); 3510 return; 3511 } 3512 3513 mp->b_wptr = mp->b_rptr + size; 3514 3515 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3516 dl_subcap->dl_cap = DL_CAPAB_LSO; 3517 dl_subcap->dl_length = sizeof (*lso_subcap); 3518 3519 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3520 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3521 lso_subcap->lso_flags = 0; 3522 3523 if (*sc_mp != NULL) 3524 linkb(*sc_mp, mp); 3525 else 3526 *sc_mp = mp; 3527 } 3528 3529 /* 3530 * Consume a new-style hardware capabilities negotiation ack. 3531 * Called from ip_rput_dlpi_writer(). 3532 */ 3533 void 3534 ill_capability_ack(ill_t *ill, mblk_t *mp) 3535 { 3536 dl_capability_ack_t *capp; 3537 dl_capability_sub_t *subp, *endp; 3538 3539 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3540 ill->ill_dlpi_capab_state = IDS_OK; 3541 3542 capp = (dl_capability_ack_t *)mp->b_rptr; 3543 3544 if (capp->dl_sub_length == 0) 3545 /* no new-style capabilities */ 3546 return; 3547 3548 /* make sure the driver supplied correct dl_sub_length */ 3549 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3550 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3551 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3552 return; 3553 } 3554 3555 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3556 /* 3557 * There are sub-capabilities. Process the ones we know about. 3558 * Loop until we don't have room for another sub-cap header.. 3559 */ 3560 for (subp = SC(capp, capp->dl_sub_offset), 3561 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3562 subp <= endp; 3563 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3564 3565 switch (subp->dl_cap) { 3566 case DL_CAPAB_ID_WRAPPER: 3567 ill_capability_id_ack(ill, mp, subp); 3568 break; 3569 default: 3570 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3571 break; 3572 } 3573 } 3574 #undef SC 3575 } 3576 3577 /* 3578 * This routine is called to scan the fragmentation reassembly table for 3579 * the specified ILL for any packets that are starting to smell. 3580 * dead_interval is the maximum time in seconds that will be tolerated. It 3581 * will either be the value specified in ip_g_frag_timeout, or zero if the 3582 * ILL is shutting down and it is time to blow everything off. 3583 * 3584 * It returns the number of seconds (as a time_t) that the next frag timer 3585 * should be scheduled for, 0 meaning that the timer doesn't need to be 3586 * re-started. Note that the method of calculating next_timeout isn't 3587 * entirely accurate since time will flow between the time we grab 3588 * current_time and the time we schedule the next timeout. This isn't a 3589 * big problem since this is the timer for sending an ICMP reassembly time 3590 * exceeded messages, and it doesn't have to be exactly accurate. 3591 * 3592 * This function is 3593 * sometimes called as writer, although this is not required. 3594 */ 3595 time_t 3596 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3597 { 3598 ipfb_t *ipfb; 3599 ipfb_t *endp; 3600 ipf_t *ipf; 3601 ipf_t *ipfnext; 3602 mblk_t *mp; 3603 time_t current_time = gethrestime_sec(); 3604 time_t next_timeout = 0; 3605 uint32_t hdr_length; 3606 mblk_t *send_icmp_head; 3607 mblk_t *send_icmp_head_v6; 3608 zoneid_t zoneid; 3609 ip_stack_t *ipst = ill->ill_ipst; 3610 3611 ipfb = ill->ill_frag_hash_tbl; 3612 if (ipfb == NULL) 3613 return (B_FALSE); 3614 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3615 /* Walk the frag hash table. */ 3616 for (; ipfb < endp; ipfb++) { 3617 send_icmp_head = NULL; 3618 send_icmp_head_v6 = NULL; 3619 mutex_enter(&ipfb->ipfb_lock); 3620 while ((ipf = ipfb->ipfb_ipf) != 0) { 3621 time_t frag_time = current_time - ipf->ipf_timestamp; 3622 time_t frag_timeout; 3623 3624 if (frag_time < dead_interval) { 3625 /* 3626 * There are some outstanding fragments 3627 * that will timeout later. Make note of 3628 * the time so that we can reschedule the 3629 * next timeout appropriately. 3630 */ 3631 frag_timeout = dead_interval - frag_time; 3632 if (next_timeout == 0 || 3633 frag_timeout < next_timeout) { 3634 next_timeout = frag_timeout; 3635 } 3636 break; 3637 } 3638 /* Time's up. Get it out of here. */ 3639 hdr_length = ipf->ipf_nf_hdr_len; 3640 ipfnext = ipf->ipf_hash_next; 3641 if (ipfnext) 3642 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3643 *ipf->ipf_ptphn = ipfnext; 3644 mp = ipf->ipf_mp->b_cont; 3645 for (; mp; mp = mp->b_cont) { 3646 /* Extra points for neatness. */ 3647 IP_REASS_SET_START(mp, 0); 3648 IP_REASS_SET_END(mp, 0); 3649 } 3650 mp = ipf->ipf_mp->b_cont; 3651 ill->ill_frag_count -= ipf->ipf_count; 3652 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3653 ipfb->ipfb_count -= ipf->ipf_count; 3654 ASSERT(ipfb->ipfb_frag_pkts > 0); 3655 ipfb->ipfb_frag_pkts--; 3656 /* 3657 * We do not send any icmp message from here because 3658 * we currently are holding the ipfb_lock for this 3659 * hash chain. If we try and send any icmp messages 3660 * from here we may end up via a put back into ip 3661 * trying to get the same lock, causing a recursive 3662 * mutex panic. Instead we build a list and send all 3663 * the icmp messages after we have dropped the lock. 3664 */ 3665 if (ill->ill_isv6) { 3666 if (hdr_length != 0) { 3667 mp->b_next = send_icmp_head_v6; 3668 send_icmp_head_v6 = mp; 3669 } else { 3670 freemsg(mp); 3671 } 3672 } else { 3673 if (hdr_length != 0) { 3674 mp->b_next = send_icmp_head; 3675 send_icmp_head = mp; 3676 } else { 3677 freemsg(mp); 3678 } 3679 } 3680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3681 freeb(ipf->ipf_mp); 3682 } 3683 mutex_exit(&ipfb->ipfb_lock); 3684 /* 3685 * Now need to send any icmp messages that we delayed from 3686 * above. 3687 */ 3688 while (send_icmp_head_v6 != NULL) { 3689 ip6_t *ip6h; 3690 3691 mp = send_icmp_head_v6; 3692 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3693 mp->b_next = NULL; 3694 if (mp->b_datap->db_type == M_CTL) 3695 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3696 else 3697 ip6h = (ip6_t *)mp->b_rptr; 3698 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3699 ill, ipst); 3700 if (zoneid == ALL_ZONES) { 3701 freemsg(mp); 3702 } else { 3703 icmp_time_exceeded_v6(ill->ill_wq, mp, 3704 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3705 B_FALSE, zoneid, ipst); 3706 } 3707 } 3708 while (send_icmp_head != NULL) { 3709 ipaddr_t dst; 3710 3711 mp = send_icmp_head; 3712 send_icmp_head = send_icmp_head->b_next; 3713 mp->b_next = NULL; 3714 3715 if (mp->b_datap->db_type == M_CTL) 3716 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3717 else 3718 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3719 3720 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3721 if (zoneid == ALL_ZONES) { 3722 freemsg(mp); 3723 } else { 3724 icmp_time_exceeded(ill->ill_wq, mp, 3725 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3726 ipst); 3727 } 3728 } 3729 } 3730 /* 3731 * A non-dying ILL will use the return value to decide whether to 3732 * restart the frag timer, and for how long. 3733 */ 3734 return (next_timeout); 3735 } 3736 3737 /* 3738 * This routine is called when the approximate count of mblk memory used 3739 * for the specified ILL has exceeded max_count. 3740 */ 3741 void 3742 ill_frag_prune(ill_t *ill, uint_t max_count) 3743 { 3744 ipfb_t *ipfb; 3745 ipf_t *ipf; 3746 size_t count; 3747 3748 /* 3749 * If we are here within ip_min_frag_prune_time msecs remove 3750 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3751 * ill_frag_free_num_pkts. 3752 */ 3753 mutex_enter(&ill->ill_lock); 3754 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3755 (ip_min_frag_prune_time != 0 ? 3756 ip_min_frag_prune_time : msec_per_tick)) { 3757 3758 ill->ill_frag_free_num_pkts++; 3759 3760 } else { 3761 ill->ill_frag_free_num_pkts = 0; 3762 } 3763 ill->ill_last_frag_clean_time = lbolt; 3764 mutex_exit(&ill->ill_lock); 3765 3766 /* 3767 * free ill_frag_free_num_pkts oldest packets from each bucket. 3768 */ 3769 if (ill->ill_frag_free_num_pkts != 0) { 3770 int ix; 3771 3772 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3773 ipfb = &ill->ill_frag_hash_tbl[ix]; 3774 mutex_enter(&ipfb->ipfb_lock); 3775 if (ipfb->ipfb_ipf != NULL) { 3776 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3777 ill->ill_frag_free_num_pkts); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 } 3781 } 3782 /* 3783 * While the reassembly list for this ILL is too big, prune a fragment 3784 * queue by age, oldest first. Note that the per ILL count is 3785 * approximate, while the per frag hash bucket counts are accurate. 3786 */ 3787 while (ill->ill_frag_count > max_count) { 3788 int ix; 3789 ipfb_t *oipfb = NULL; 3790 uint_t oldest = UINT_MAX; 3791 3792 count = 0; 3793 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3794 ipfb = &ill->ill_frag_hash_tbl[ix]; 3795 mutex_enter(&ipfb->ipfb_lock); 3796 ipf = ipfb->ipfb_ipf; 3797 if (ipf != NULL && ipf->ipf_gen < oldest) { 3798 oldest = ipf->ipf_gen; 3799 oipfb = ipfb; 3800 } 3801 count += ipfb->ipfb_count; 3802 mutex_exit(&ipfb->ipfb_lock); 3803 } 3804 /* Refresh the per ILL count */ 3805 ill->ill_frag_count = count; 3806 if (oipfb == NULL) { 3807 ill->ill_frag_count = 0; 3808 break; 3809 } 3810 if (count <= max_count) 3811 return; /* Somebody beat us to it, nothing to do */ 3812 mutex_enter(&oipfb->ipfb_lock); 3813 ipf = oipfb->ipfb_ipf; 3814 if (ipf != NULL) { 3815 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3816 } 3817 mutex_exit(&oipfb->ipfb_lock); 3818 } 3819 } 3820 3821 /* 3822 * free 'free_cnt' fragmented packets starting at ipf. 3823 */ 3824 void 3825 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3826 { 3827 size_t count; 3828 mblk_t *mp; 3829 mblk_t *tmp; 3830 ipf_t **ipfp = ipf->ipf_ptphn; 3831 3832 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3833 ASSERT(ipfp != NULL); 3834 ASSERT(ipf != NULL); 3835 3836 while (ipf != NULL && free_cnt-- > 0) { 3837 count = ipf->ipf_count; 3838 mp = ipf->ipf_mp; 3839 ipf = ipf->ipf_hash_next; 3840 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3841 IP_REASS_SET_START(tmp, 0); 3842 IP_REASS_SET_END(tmp, 0); 3843 } 3844 ill->ill_frag_count -= count; 3845 ASSERT(ipfb->ipfb_count >= count); 3846 ipfb->ipfb_count -= count; 3847 ASSERT(ipfb->ipfb_frag_pkts > 0); 3848 ipfb->ipfb_frag_pkts--; 3849 freemsg(mp); 3850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3851 } 3852 3853 if (ipf) 3854 ipf->ipf_ptphn = ipfp; 3855 ipfp[0] = ipf; 3856 } 3857 3858 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3859 "obsolete and may be removed in a future release of Solaris. Use " \ 3860 "ifconfig(1M) to manipulate the forwarding status of an interface." 3861 3862 /* 3863 * For obsolete per-interface forwarding configuration; 3864 * called in response to ND_GET. 3865 */ 3866 /* ARGSUSED */ 3867 static int 3868 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3869 { 3870 ill_t *ill = (ill_t *)cp; 3871 3872 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3873 3874 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3875 return (0); 3876 } 3877 3878 /* 3879 * For obsolete per-interface forwarding configuration; 3880 * called in response to ND_SET. 3881 */ 3882 /* ARGSUSED */ 3883 static int 3884 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3885 cred_t *ioc_cr) 3886 { 3887 long value; 3888 int retval; 3889 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3890 3891 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3892 3893 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3894 value < 0 || value > 1) { 3895 return (EINVAL); 3896 } 3897 3898 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3899 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3900 rw_exit(&ipst->ips_ill_g_lock); 3901 return (retval); 3902 } 3903 3904 /* 3905 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3906 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3907 * up RTS_IFINFO routing socket messages for each interface whose flags we 3908 * change. 3909 */ 3910 int 3911 ill_forward_set(ill_t *ill, boolean_t enable) 3912 { 3913 ill_group_t *illgrp; 3914 ip_stack_t *ipst = ill->ill_ipst; 3915 3916 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3917 3918 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3919 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3920 return (0); 3921 3922 if (IS_LOOPBACK(ill)) 3923 return (EINVAL); 3924 3925 /* 3926 * If the ill is in an IPMP group, set the forwarding policy on all 3927 * members of the group to the same value. 3928 */ 3929 illgrp = ill->ill_group; 3930 if (illgrp != NULL) { 3931 ill_t *tmp_ill; 3932 3933 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3934 tmp_ill = tmp_ill->ill_group_next) { 3935 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3936 (enable ? "Enabling" : "Disabling"), 3937 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3938 tmp_ill->ill_name)); 3939 mutex_enter(&tmp_ill->ill_lock); 3940 if (enable) 3941 tmp_ill->ill_flags |= ILLF_ROUTER; 3942 else 3943 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3944 mutex_exit(&tmp_ill->ill_lock); 3945 if (tmp_ill->ill_isv6) 3946 ill_set_nce_router_flags(tmp_ill, enable); 3947 /* Notify routing socket listeners of this change. */ 3948 ip_rts_ifmsg(tmp_ill->ill_ipif); 3949 } 3950 } else { 3951 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3952 (enable ? "Enabling" : "Disabling"), 3953 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3954 mutex_enter(&ill->ill_lock); 3955 if (enable) 3956 ill->ill_flags |= ILLF_ROUTER; 3957 else 3958 ill->ill_flags &= ~ILLF_ROUTER; 3959 mutex_exit(&ill->ill_lock); 3960 if (ill->ill_isv6) 3961 ill_set_nce_router_flags(ill, enable); 3962 /* Notify routing socket listeners of this change. */ 3963 ip_rts_ifmsg(ill->ill_ipif); 3964 } 3965 3966 return (0); 3967 } 3968 3969 /* 3970 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3971 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3972 * set or clear. 3973 */ 3974 static void 3975 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3976 { 3977 ipif_t *ipif; 3978 nce_t *nce; 3979 3980 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3981 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3982 if (nce != NULL) { 3983 mutex_enter(&nce->nce_lock); 3984 if (enable) 3985 nce->nce_flags |= NCE_F_ISROUTER; 3986 else 3987 nce->nce_flags &= ~NCE_F_ISROUTER; 3988 mutex_exit(&nce->nce_lock); 3989 NCE_REFRELE(nce); 3990 } 3991 } 3992 } 3993 3994 /* 3995 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3996 * for this ill. Make sure the v6/v4 question has been answered about this 3997 * ill. The creation of this ndd variable is only for backwards compatibility. 3998 * The preferred way to control per-interface IP forwarding is through the 3999 * ILLF_ROUTER interface flag. 4000 */ 4001 static int 4002 ill_set_ndd_name(ill_t *ill) 4003 { 4004 char *suffix; 4005 ip_stack_t *ipst = ill->ill_ipst; 4006 4007 ASSERT(IAM_WRITER_ILL(ill)); 4008 4009 if (ill->ill_isv6) 4010 suffix = ipv6_forward_suffix; 4011 else 4012 suffix = ipv4_forward_suffix; 4013 4014 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4015 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4016 /* 4017 * Copies over the '\0'. 4018 * Note that strlen(suffix) is always bounded. 4019 */ 4020 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4021 strlen(suffix) + 1); 4022 4023 /* 4024 * Use of the nd table requires holding the reader lock. 4025 * Modifying the nd table thru nd_load/nd_unload requires 4026 * the writer lock. 4027 */ 4028 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4029 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4030 nd_ill_forward_set, (caddr_t)ill)) { 4031 /* 4032 * If the nd_load failed, it only meant that it could not 4033 * allocate a new bunch of room for further NDD expansion. 4034 * Because of that, the ill_ndd_name will be set to 0, and 4035 * this interface is at the mercy of the global ip_forwarding 4036 * variable. 4037 */ 4038 rw_exit(&ipst->ips_ip_g_nd_lock); 4039 ill->ill_ndd_name = NULL; 4040 return (ENOMEM); 4041 } 4042 rw_exit(&ipst->ips_ip_g_nd_lock); 4043 return (0); 4044 } 4045 4046 /* 4047 * Intializes the context structure and returns the first ill in the list 4048 * cuurently start_list and end_list can have values: 4049 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4050 * IP_V4_G_HEAD Traverse IPV4 list only. 4051 * IP_V6_G_HEAD Traverse IPV6 list only. 4052 */ 4053 4054 /* 4055 * We don't check for CONDEMNED ills here. Caller must do that if 4056 * necessary under the ill lock. 4057 */ 4058 ill_t * 4059 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4060 ip_stack_t *ipst) 4061 { 4062 ill_if_t *ifp; 4063 ill_t *ill; 4064 avl_tree_t *avl_tree; 4065 4066 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4067 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4068 4069 /* 4070 * setup the lists to search 4071 */ 4072 if (end_list != MAX_G_HEADS) { 4073 ctx->ctx_current_list = start_list; 4074 ctx->ctx_last_list = end_list; 4075 } else { 4076 ctx->ctx_last_list = MAX_G_HEADS - 1; 4077 ctx->ctx_current_list = 0; 4078 } 4079 4080 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4081 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4082 if (ifp != (ill_if_t *) 4083 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4084 avl_tree = &ifp->illif_avl_by_ppa; 4085 ill = avl_first(avl_tree); 4086 /* 4087 * ill is guaranteed to be non NULL or ifp should have 4088 * not existed. 4089 */ 4090 ASSERT(ill != NULL); 4091 return (ill); 4092 } 4093 ctx->ctx_current_list++; 4094 } 4095 4096 return (NULL); 4097 } 4098 4099 /* 4100 * returns the next ill in the list. ill_first() must have been called 4101 * before calling ill_next() or bad things will happen. 4102 */ 4103 4104 /* 4105 * We don't check for CONDEMNED ills here. Caller must do that if 4106 * necessary under the ill lock. 4107 */ 4108 ill_t * 4109 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4110 { 4111 ill_if_t *ifp; 4112 ill_t *ill; 4113 ip_stack_t *ipst = lastill->ill_ipst; 4114 4115 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4116 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4117 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4118 AVL_AFTER)) != NULL) { 4119 return (ill); 4120 } 4121 4122 /* goto next ill_ifp in the list. */ 4123 ifp = lastill->ill_ifptr->illif_next; 4124 4125 /* make sure not at end of circular list */ 4126 while (ifp == 4127 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4128 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4129 return (NULL); 4130 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4131 } 4132 4133 return (avl_first(&ifp->illif_avl_by_ppa)); 4134 } 4135 4136 /* 4137 * Check interface name for correct format which is name+ppa. 4138 * name can contain characters and digits, the right most digits 4139 * make up the ppa number. use of octal is not allowed, name must contain 4140 * a ppa, return pointer to the start of ppa. 4141 * In case of error return NULL. 4142 */ 4143 static char * 4144 ill_get_ppa_ptr(char *name) 4145 { 4146 int namelen = mi_strlen(name); 4147 4148 int len = namelen; 4149 4150 name += len; 4151 while (len > 0) { 4152 name--; 4153 if (*name < '0' || *name > '9') 4154 break; 4155 len--; 4156 } 4157 4158 /* empty string, all digits, or no trailing digits */ 4159 if (len == 0 || len == (int)namelen) 4160 return (NULL); 4161 4162 name++; 4163 /* check for attempted use of octal */ 4164 if (*name == '0' && len != (int)namelen - 1) 4165 return (NULL); 4166 return (name); 4167 } 4168 4169 /* 4170 * use avl tree to locate the ill. 4171 */ 4172 static ill_t * 4173 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4174 ipsq_func_t func, int *error, ip_stack_t *ipst) 4175 { 4176 char *ppa_ptr = NULL; 4177 int len; 4178 uint_t ppa; 4179 ill_t *ill = NULL; 4180 ill_if_t *ifp; 4181 int list; 4182 ipsq_t *ipsq; 4183 4184 if (error != NULL) 4185 *error = 0; 4186 4187 /* 4188 * get ppa ptr 4189 */ 4190 if (isv6) 4191 list = IP_V6_G_HEAD; 4192 else 4193 list = IP_V4_G_HEAD; 4194 4195 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4196 if (error != NULL) 4197 *error = ENXIO; 4198 return (NULL); 4199 } 4200 4201 len = ppa_ptr - name + 1; 4202 4203 ppa = stoi(&ppa_ptr); 4204 4205 ifp = IP_VX_ILL_G_LIST(list, ipst); 4206 4207 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4208 /* 4209 * match is done on len - 1 as the name is not null 4210 * terminated it contains ppa in addition to the interface 4211 * name. 4212 */ 4213 if ((ifp->illif_name_len == len) && 4214 bcmp(ifp->illif_name, name, len - 1) == 0) { 4215 break; 4216 } else { 4217 ifp = ifp->illif_next; 4218 } 4219 } 4220 4221 4222 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4223 /* 4224 * Even the interface type does not exist. 4225 */ 4226 if (error != NULL) 4227 *error = ENXIO; 4228 return (NULL); 4229 } 4230 4231 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4232 if (ill != NULL) { 4233 /* 4234 * The block comment at the start of ipif_down 4235 * explains the use of the macros used below 4236 */ 4237 GRAB_CONN_LOCK(q); 4238 mutex_enter(&ill->ill_lock); 4239 if (ILL_CAN_LOOKUP(ill)) { 4240 ill_refhold_locked(ill); 4241 mutex_exit(&ill->ill_lock); 4242 RELEASE_CONN_LOCK(q); 4243 return (ill); 4244 } else if (ILL_CAN_WAIT(ill, q)) { 4245 ipsq = ill->ill_phyint->phyint_ipsq; 4246 mutex_enter(&ipsq->ipsq_lock); 4247 mutex_exit(&ill->ill_lock); 4248 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4249 mutex_exit(&ipsq->ipsq_lock); 4250 RELEASE_CONN_LOCK(q); 4251 *error = EINPROGRESS; 4252 return (NULL); 4253 } 4254 mutex_exit(&ill->ill_lock); 4255 RELEASE_CONN_LOCK(q); 4256 } 4257 if (error != NULL) 4258 *error = ENXIO; 4259 return (NULL); 4260 } 4261 4262 /* 4263 * comparison function for use with avl. 4264 */ 4265 static int 4266 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4267 { 4268 uint_t ppa; 4269 uint_t ill_ppa; 4270 4271 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4272 4273 ppa = *((uint_t *)ppa_ptr); 4274 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4275 /* 4276 * We want the ill with the lowest ppa to be on the 4277 * top. 4278 */ 4279 if (ill_ppa < ppa) 4280 return (1); 4281 if (ill_ppa > ppa) 4282 return (-1); 4283 return (0); 4284 } 4285 4286 /* 4287 * remove an interface type from the global list. 4288 */ 4289 static void 4290 ill_delete_interface_type(ill_if_t *interface) 4291 { 4292 ASSERT(interface != NULL); 4293 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4294 4295 avl_destroy(&interface->illif_avl_by_ppa); 4296 if (interface->illif_ppa_arena != NULL) 4297 vmem_destroy(interface->illif_ppa_arena); 4298 4299 remque(interface); 4300 4301 mi_free(interface); 4302 } 4303 4304 /* Defined in ip_netinfo.c */ 4305 extern ddi_taskq_t *eventq_queue_nic; 4306 4307 /* 4308 * remove ill from the global list. 4309 */ 4310 static void 4311 ill_glist_delete(ill_t *ill) 4312 { 4313 char *nicname; 4314 size_t nicnamelen; 4315 hook_nic_event_t *info; 4316 ip_stack_t *ipst; 4317 4318 if (ill == NULL) 4319 return; 4320 ipst = ill->ill_ipst; 4321 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4322 4323 if (ill->ill_name != NULL) { 4324 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4325 if (nicname != NULL) { 4326 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4327 nicnamelen = ill->ill_name_length; 4328 } 4329 } else { 4330 nicname = NULL; 4331 nicnamelen = 0; 4332 } 4333 4334 /* 4335 * If the ill was never inserted into the AVL tree 4336 * we skip the if branch. 4337 */ 4338 if (ill->ill_ifptr != NULL) { 4339 /* 4340 * remove from AVL tree and free ppa number 4341 */ 4342 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4343 4344 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4345 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4346 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4347 } 4348 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4349 ill_delete_interface_type(ill->ill_ifptr); 4350 } 4351 4352 /* 4353 * Indicate ill is no longer in the list. 4354 */ 4355 ill->ill_ifptr = NULL; 4356 ill->ill_name_length = 0; 4357 ill->ill_name[0] = '\0'; 4358 ill->ill_ppa = UINT_MAX; 4359 } 4360 4361 /* 4362 * Run the unplumb hook after the NIC has disappeared from being 4363 * visible so that attempts to revalidate its existance will fail. 4364 * 4365 * This needs to be run inside the ill_g_lock perimeter to ensure 4366 * that the ordering of delivered events to listeners matches the 4367 * order of them in the kernel. 4368 */ 4369 if ((info = ill->ill_nic_event_info) != NULL) { 4370 if (info->hne_event != NE_DOWN) { 4371 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4372 "attached for %s\n", info->hne_event, 4373 ill->ill_name)); 4374 if (info->hne_data != NULL) 4375 kmem_free(info->hne_data, info->hne_datalen); 4376 kmem_free(info, sizeof (hook_nic_event_t)); 4377 } else { 4378 if (ddi_taskq_dispatch(eventq_queue_nic, 4379 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4380 == DDI_FAILURE) { 4381 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4382 "failed\n")); 4383 if (info->hne_data != NULL) 4384 kmem_free(info->hne_data, 4385 info->hne_datalen); 4386 kmem_free(info, sizeof (hook_nic_event_t)); 4387 } 4388 } 4389 } 4390 4391 /* Generate NE_UNPLUMB event for ill_name. */ 4392 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4393 if (info != NULL) { 4394 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4395 info->hne_lif = 0; 4396 info->hne_event = NE_UNPLUMB; 4397 info->hne_data = nicname; 4398 info->hne_datalen = nicnamelen; 4399 info->hne_family = ill->ill_isv6 ? 4400 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4401 } else { 4402 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4403 "information for %s (ENOMEM)\n", ill->ill_name)); 4404 if (nicname != NULL) 4405 kmem_free(nicname, nicnamelen); 4406 } 4407 4408 ill->ill_nic_event_info = info; 4409 4410 ill_phyint_free(ill); 4411 rw_exit(&ipst->ips_ill_g_lock); 4412 } 4413 4414 /* 4415 * allocate a ppa, if the number of plumbed interfaces of this type are 4416 * less than ill_no_arena do a linear search to find a unused ppa. 4417 * When the number goes beyond ill_no_arena switch to using an arena. 4418 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4419 * is the return value for an error condition, so allocation starts at one 4420 * and is decremented by one. 4421 */ 4422 static int 4423 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4424 { 4425 ill_t *tmp_ill; 4426 uint_t start, end; 4427 int ppa; 4428 4429 if (ifp->illif_ppa_arena == NULL && 4430 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4431 /* 4432 * Create an arena. 4433 */ 4434 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4435 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4436 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4437 /* allocate what has already been assigned */ 4438 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4439 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4440 tmp_ill, AVL_AFTER)) { 4441 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4442 1, /* size */ 4443 1, /* align/quantum */ 4444 0, /* phase */ 4445 0, /* nocross */ 4446 /* minaddr */ 4447 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4448 /* maxaddr */ 4449 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4450 VM_NOSLEEP|VM_FIRSTFIT); 4451 if (ppa == 0) { 4452 ip1dbg(("ill_alloc_ppa: ppa allocation" 4453 " failed while switching")); 4454 vmem_destroy(ifp->illif_ppa_arena); 4455 ifp->illif_ppa_arena = NULL; 4456 break; 4457 } 4458 } 4459 } 4460 4461 if (ifp->illif_ppa_arena != NULL) { 4462 if (ill->ill_ppa == UINT_MAX) { 4463 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4464 1, VM_NOSLEEP|VM_FIRSTFIT); 4465 if (ppa == 0) 4466 return (EAGAIN); 4467 ill->ill_ppa = --ppa; 4468 } else { 4469 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4470 1, /* size */ 4471 1, /* align/quantum */ 4472 0, /* phase */ 4473 0, /* nocross */ 4474 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4475 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4476 VM_NOSLEEP|VM_FIRSTFIT); 4477 /* 4478 * Most likely the allocation failed because 4479 * the requested ppa was in use. 4480 */ 4481 if (ppa == 0) 4482 return (EEXIST); 4483 } 4484 return (0); 4485 } 4486 4487 /* 4488 * No arena is in use and not enough (>ill_no_arena) interfaces have 4489 * been plumbed to create one. Do a linear search to get a unused ppa. 4490 */ 4491 if (ill->ill_ppa == UINT_MAX) { 4492 end = UINT_MAX - 1; 4493 start = 0; 4494 } else { 4495 end = start = ill->ill_ppa; 4496 } 4497 4498 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4499 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4500 if (start++ >= end) { 4501 if (ill->ill_ppa == UINT_MAX) 4502 return (EAGAIN); 4503 else 4504 return (EEXIST); 4505 } 4506 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4507 } 4508 ill->ill_ppa = start; 4509 return (0); 4510 } 4511 4512 /* 4513 * Insert ill into the list of configured ill's. Once this function completes, 4514 * the ill is globally visible and is available through lookups. More precisely 4515 * this happens after the caller drops the ill_g_lock. 4516 */ 4517 static int 4518 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4519 { 4520 ill_if_t *ill_interface; 4521 avl_index_t where = 0; 4522 int error; 4523 int name_length; 4524 int index; 4525 boolean_t check_length = B_FALSE; 4526 ip_stack_t *ipst = ill->ill_ipst; 4527 4528 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4529 4530 name_length = mi_strlen(name) + 1; 4531 4532 if (isv6) 4533 index = IP_V6_G_HEAD; 4534 else 4535 index = IP_V4_G_HEAD; 4536 4537 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4538 /* 4539 * Search for interface type based on name 4540 */ 4541 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4542 if ((ill_interface->illif_name_len == name_length) && 4543 (strcmp(ill_interface->illif_name, name) == 0)) { 4544 break; 4545 } 4546 ill_interface = ill_interface->illif_next; 4547 } 4548 4549 /* 4550 * Interface type not found, create one. 4551 */ 4552 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4553 4554 ill_g_head_t ghead; 4555 4556 /* 4557 * allocate ill_if_t structure 4558 */ 4559 4560 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4561 if (ill_interface == NULL) { 4562 return (ENOMEM); 4563 } 4564 4565 4566 4567 (void) strcpy(ill_interface->illif_name, name); 4568 ill_interface->illif_name_len = name_length; 4569 4570 avl_create(&ill_interface->illif_avl_by_ppa, 4571 ill_compare_ppa, sizeof (ill_t), 4572 offsetof(struct ill_s, ill_avl_byppa)); 4573 4574 /* 4575 * link the structure in the back to maintain order 4576 * of configuration for ifconfig output. 4577 */ 4578 ghead = ipst->ips_ill_g_heads[index]; 4579 insque(ill_interface, ghead.ill_g_list_tail); 4580 4581 } 4582 4583 if (ill->ill_ppa == UINT_MAX) 4584 check_length = B_TRUE; 4585 4586 error = ill_alloc_ppa(ill_interface, ill); 4587 if (error != 0) { 4588 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4589 ill_delete_interface_type(ill->ill_ifptr); 4590 return (error); 4591 } 4592 4593 /* 4594 * When the ppa is choosen by the system, check that there is 4595 * enough space to insert ppa. if a specific ppa was passed in this 4596 * check is not required as the interface name passed in will have 4597 * the right ppa in it. 4598 */ 4599 if (check_length) { 4600 /* 4601 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4602 */ 4603 char buf[sizeof (uint_t) * 3]; 4604 4605 /* 4606 * convert ppa to string to calculate the amount of space 4607 * required for it in the name. 4608 */ 4609 numtos(ill->ill_ppa, buf); 4610 4611 /* Do we have enough space to insert ppa ? */ 4612 4613 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4614 /* Free ppa and interface type struct */ 4615 if (ill_interface->illif_ppa_arena != NULL) { 4616 vmem_free(ill_interface->illif_ppa_arena, 4617 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4618 } 4619 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4620 0) { 4621 ill_delete_interface_type(ill->ill_ifptr); 4622 } 4623 4624 return (EINVAL); 4625 } 4626 } 4627 4628 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4629 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4630 4631 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4632 &where); 4633 ill->ill_ifptr = ill_interface; 4634 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4635 4636 ill_phyint_reinit(ill); 4637 return (0); 4638 } 4639 4640 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4641 static boolean_t 4642 ipsq_init(ill_t *ill) 4643 { 4644 ipsq_t *ipsq; 4645 4646 /* Init the ipsq and impicitly enter as writer */ 4647 ill->ill_phyint->phyint_ipsq = 4648 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4649 if (ill->ill_phyint->phyint_ipsq == NULL) 4650 return (B_FALSE); 4651 ipsq = ill->ill_phyint->phyint_ipsq; 4652 ipsq->ipsq_phyint_list = ill->ill_phyint; 4653 ill->ill_phyint->phyint_ipsq_next = NULL; 4654 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4655 ipsq->ipsq_refs = 1; 4656 ipsq->ipsq_writer = curthread; 4657 ipsq->ipsq_reentry_cnt = 1; 4658 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4659 #ifdef ILL_DEBUG 4660 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4661 #endif 4662 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4663 return (B_TRUE); 4664 } 4665 4666 /* 4667 * ill_init is called by ip_open when a device control stream is opened. 4668 * It does a few initializations, and shoots a DL_INFO_REQ message down 4669 * to the driver. The response is later picked up in ip_rput_dlpi and 4670 * used to set up default mechanisms for talking to the driver. (Always 4671 * called as writer.) 4672 * 4673 * If this function returns error, ip_open will call ip_close which in 4674 * turn will call ill_delete to clean up any memory allocated here that 4675 * is not yet freed. 4676 */ 4677 int 4678 ill_init(queue_t *q, ill_t *ill) 4679 { 4680 int count; 4681 dl_info_req_t *dlir; 4682 mblk_t *info_mp; 4683 uchar_t *frag_ptr; 4684 4685 /* 4686 * The ill is initialized to zero by mi_alloc*(). In addition 4687 * some fields already contain valid values, initialized in 4688 * ip_open(), before we reach here. 4689 */ 4690 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4691 4692 ill->ill_rq = q; 4693 ill->ill_wq = WR(q); 4694 4695 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4696 BPRI_HI); 4697 if (info_mp == NULL) 4698 return (ENOMEM); 4699 4700 /* 4701 * Allocate sufficient space to contain our fragment hash table and 4702 * the device name. 4703 */ 4704 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4705 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4706 if (frag_ptr == NULL) { 4707 freemsg(info_mp); 4708 return (ENOMEM); 4709 } 4710 ill->ill_frag_ptr = frag_ptr; 4711 ill->ill_frag_free_num_pkts = 0; 4712 ill->ill_last_frag_clean_time = 0; 4713 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4714 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4715 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4716 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4717 NULL, MUTEX_DEFAULT, NULL); 4718 } 4719 4720 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4721 if (ill->ill_phyint == NULL) { 4722 freemsg(info_mp); 4723 mi_free(frag_ptr); 4724 return (ENOMEM); 4725 } 4726 4727 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4728 /* 4729 * For now pretend this is a v4 ill. We need to set phyint_ill* 4730 * at this point because of the following reason. If we can't 4731 * enter the ipsq at some point and cv_wait, the writer that 4732 * wakes us up tries to locate us using the list of all phyints 4733 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4734 * If we don't set it now, we risk a missed wakeup. 4735 */ 4736 ill->ill_phyint->phyint_illv4 = ill; 4737 ill->ill_ppa = UINT_MAX; 4738 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4739 4740 if (!ipsq_init(ill)) { 4741 freemsg(info_mp); 4742 mi_free(frag_ptr); 4743 mi_free(ill->ill_phyint); 4744 return (ENOMEM); 4745 } 4746 4747 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4748 4749 4750 /* Frag queue limit stuff */ 4751 ill->ill_frag_count = 0; 4752 ill->ill_ipf_gen = 0; 4753 4754 ill->ill_global_timer = INFINITY; 4755 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4756 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4757 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4758 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4759 4760 /* 4761 * Initialize IPv6 configuration variables. The IP module is always 4762 * opened as an IPv4 module. Instead tracking down the cases where 4763 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4764 * here for convenience, this has no effect until the ill is set to do 4765 * IPv6. 4766 */ 4767 ill->ill_reachable_time = ND_REACHABLE_TIME; 4768 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4769 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4770 ill->ill_max_buf = ND_MAX_Q; 4771 ill->ill_refcnt = 0; 4772 4773 /* Send down the Info Request to the driver. */ 4774 info_mp->b_datap->db_type = M_PCPROTO; 4775 dlir = (dl_info_req_t *)info_mp->b_rptr; 4776 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4777 dlir->dl_primitive = DL_INFO_REQ; 4778 4779 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4780 4781 qprocson(q); 4782 ill_dlpi_send(ill, info_mp); 4783 4784 return (0); 4785 } 4786 4787 /* 4788 * ill_dls_info 4789 * creates datalink socket info from the device. 4790 */ 4791 int 4792 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4793 { 4794 size_t len; 4795 ill_t *ill = ipif->ipif_ill; 4796 4797 sdl->sdl_family = AF_LINK; 4798 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4799 sdl->sdl_type = ill->ill_type; 4800 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4801 len = strlen(sdl->sdl_data); 4802 ASSERT(len < 256); 4803 sdl->sdl_nlen = (uchar_t)len; 4804 sdl->sdl_alen = ill->ill_phys_addr_length; 4805 sdl->sdl_slen = 0; 4806 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4807 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4808 4809 return (sizeof (struct sockaddr_dl)); 4810 } 4811 4812 /* 4813 * ill_xarp_info 4814 * creates xarp info from the device. 4815 */ 4816 static int 4817 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4818 { 4819 sdl->sdl_family = AF_LINK; 4820 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4821 sdl->sdl_type = ill->ill_type; 4822 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4823 sizeof (sdl->sdl_data)); 4824 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4825 sdl->sdl_alen = ill->ill_phys_addr_length; 4826 sdl->sdl_slen = 0; 4827 return (sdl->sdl_nlen); 4828 } 4829 4830 static int 4831 loopback_kstat_update(kstat_t *ksp, int rw) 4832 { 4833 kstat_named_t *kn; 4834 netstackid_t stackid; 4835 netstack_t *ns; 4836 ip_stack_t *ipst; 4837 4838 if (ksp == NULL || ksp->ks_data == NULL) 4839 return (EIO); 4840 4841 if (rw == KSTAT_WRITE) 4842 return (EACCES); 4843 4844 kn = KSTAT_NAMED_PTR(ksp); 4845 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4846 4847 ns = netstack_find_by_stackid(stackid); 4848 if (ns == NULL) 4849 return (-1); 4850 4851 ipst = ns->netstack_ip; 4852 if (ipst == NULL) { 4853 netstack_rele(ns); 4854 return (-1); 4855 } 4856 kn[0].value.ui32 = ipst->ips_loopback_packets; 4857 kn[1].value.ui32 = ipst->ips_loopback_packets; 4858 netstack_rele(ns); 4859 return (0); 4860 } 4861 4862 4863 /* 4864 * Has ifindex been plumbed already. 4865 * Compares both phyint_ifindex and phyint_group_ifindex. 4866 */ 4867 static boolean_t 4868 phyint_exists(uint_t index, ip_stack_t *ipst) 4869 { 4870 phyint_t *phyi; 4871 4872 ASSERT(index != 0); 4873 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4874 /* 4875 * Indexes are stored in the phyint - a common structure 4876 * to both IPv4 and IPv6. 4877 */ 4878 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4879 for (; phyi != NULL; 4880 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4881 phyi, AVL_AFTER)) { 4882 if (phyi->phyint_ifindex == index || 4883 phyi->phyint_group_ifindex == index) 4884 return (B_TRUE); 4885 } 4886 return (B_FALSE); 4887 } 4888 4889 /* Pick a unique ifindex */ 4890 boolean_t 4891 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4892 { 4893 uint_t starting_index; 4894 4895 if (!ipst->ips_ill_index_wrap) { 4896 *indexp = ipst->ips_ill_index++; 4897 if (ipst->ips_ill_index == 0) { 4898 /* Reached the uint_t limit Next time wrap */ 4899 ipst->ips_ill_index_wrap = B_TRUE; 4900 } 4901 return (B_TRUE); 4902 } 4903 4904 /* 4905 * Start reusing unused indexes. Note that we hold the ill_g_lock 4906 * at this point and don't want to call any function that attempts 4907 * to get the lock again. 4908 */ 4909 starting_index = ipst->ips_ill_index++; 4910 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4911 if (ipst->ips_ill_index != 0 && 4912 !phyint_exists(ipst->ips_ill_index, ipst)) { 4913 /* found unused index - use it */ 4914 *indexp = ipst->ips_ill_index; 4915 return (B_TRUE); 4916 } 4917 } 4918 4919 /* 4920 * all interface indicies are inuse. 4921 */ 4922 return (B_FALSE); 4923 } 4924 4925 /* 4926 * Assign a unique interface index for the phyint. 4927 */ 4928 static boolean_t 4929 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4930 { 4931 ASSERT(phyi->phyint_ifindex == 0); 4932 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4933 } 4934 4935 /* 4936 * Return a pointer to the ill which matches the supplied name. Note that 4937 * the ill name length includes the null termination character. (May be 4938 * called as writer.) 4939 * If do_alloc and the interface is "lo0" it will be automatically created. 4940 * Cannot bump up reference on condemned ills. So dup detect can't be done 4941 * using this func. 4942 */ 4943 ill_t * 4944 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4945 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4946 ip_stack_t *ipst) 4947 { 4948 ill_t *ill; 4949 ipif_t *ipif; 4950 kstat_named_t *kn; 4951 boolean_t isloopback; 4952 ipsq_t *old_ipsq; 4953 in6_addr_t ov6addr; 4954 4955 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4956 4957 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4958 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4959 rw_exit(&ipst->ips_ill_g_lock); 4960 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4961 return (ill); 4962 4963 /* 4964 * Couldn't find it. Does this happen to be a lookup for the 4965 * loopback device and are we allowed to allocate it? 4966 */ 4967 if (!isloopback || !do_alloc) 4968 return (NULL); 4969 4970 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4971 4972 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4973 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4974 rw_exit(&ipst->ips_ill_g_lock); 4975 return (ill); 4976 } 4977 4978 /* Create the loopback device on demand */ 4979 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4980 sizeof (ipif_loopback_name), BPRI_MED)); 4981 if (ill == NULL) 4982 goto done; 4983 4984 *ill = ill_null; 4985 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4986 ill->ill_ipst = ipst; 4987 netstack_hold(ipst->ips_netstack); 4988 /* 4989 * For exclusive stacks we set the zoneid to zero 4990 * to make IP operate as if in the global zone. 4991 */ 4992 ill->ill_zoneid = GLOBAL_ZONEID; 4993 4994 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4995 if (ill->ill_phyint == NULL) 4996 goto done; 4997 4998 if (isv6) 4999 ill->ill_phyint->phyint_illv6 = ill; 5000 else 5001 ill->ill_phyint->phyint_illv4 = ill; 5002 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5003 ill->ill_max_frag = IP_LOOPBACK_MTU; 5004 /* Add room for tcp+ip headers */ 5005 if (isv6) { 5006 ill->ill_isv6 = B_TRUE; 5007 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5008 } else { 5009 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5010 } 5011 if (!ill_allocate_mibs(ill)) 5012 goto done; 5013 ill->ill_max_mtu = ill->ill_max_frag; 5014 /* 5015 * ipif_loopback_name can't be pointed at directly because its used 5016 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5017 * from the glist, ill_glist_delete() sets the first character of 5018 * ill_name to '\0'. 5019 */ 5020 ill->ill_name = (char *)ill + sizeof (*ill); 5021 (void) strcpy(ill->ill_name, ipif_loopback_name); 5022 ill->ill_name_length = sizeof (ipif_loopback_name); 5023 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5024 5025 ill->ill_global_timer = INFINITY; 5026 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5027 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5028 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5029 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5030 5031 /* No resolver here. */ 5032 ill->ill_net_type = IRE_LOOPBACK; 5033 5034 /* Initialize the ipsq */ 5035 if (!ipsq_init(ill)) 5036 goto done; 5037 5038 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5039 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5040 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5041 #ifdef ILL_DEBUG 5042 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5043 #endif 5044 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5045 if (ipif == NULL) 5046 goto done; 5047 5048 ill->ill_flags = ILLF_MULTICAST; 5049 5050 ov6addr = ipif->ipif_v6lcl_addr; 5051 /* Set up default loopback address and mask. */ 5052 if (!isv6) { 5053 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5054 5055 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5056 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5057 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5058 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5059 ipif->ipif_v6subnet); 5060 ill->ill_flags |= ILLF_IPV4; 5061 } else { 5062 ipif->ipif_v6lcl_addr = ipv6_loopback; 5063 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5064 ipif->ipif_v6net_mask = ipv6_all_ones; 5065 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5066 ipif->ipif_v6subnet); 5067 ill->ill_flags |= ILLF_IPV6; 5068 } 5069 5070 /* 5071 * Chain us in at the end of the ill list. hold the ill 5072 * before we make it globally visible. 1 for the lookup. 5073 */ 5074 ill->ill_refcnt = 0; 5075 ill_refhold(ill); 5076 5077 ill->ill_frag_count = 0; 5078 ill->ill_frag_free_num_pkts = 0; 5079 ill->ill_last_frag_clean_time = 0; 5080 5081 old_ipsq = ill->ill_phyint->phyint_ipsq; 5082 5083 if (ill_glist_insert(ill, "lo", isv6) != 0) 5084 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5085 5086 /* Let SCTP know so that it can add this to its list */ 5087 sctp_update_ill(ill, SCTP_ILL_INSERT); 5088 5089 /* 5090 * We have already assigned ipif_v6lcl_addr above, but we need to 5091 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5092 * requires to be after ill_glist_insert() since we need the 5093 * ill_index set. Pass on ipv6_loopback as the old address. 5094 */ 5095 sctp_update_ipif_addr(ipif, ov6addr); 5096 5097 /* 5098 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5099 */ 5100 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5101 /* Loopback ills aren't in any IPMP group */ 5102 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5103 ipsq_delete(old_ipsq); 5104 } 5105 5106 /* 5107 * Delay this till the ipif is allocated as ipif_allocate 5108 * de-references ill_phyint for getting the ifindex. We 5109 * can't do this before ipif_allocate because ill_phyint_reinit 5110 * -> phyint_assign_ifindex expects ipif to be present. 5111 */ 5112 mutex_enter(&ill->ill_phyint->phyint_lock); 5113 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5114 mutex_exit(&ill->ill_phyint->phyint_lock); 5115 5116 if (ipst->ips_loopback_ksp == NULL) { 5117 /* Export loopback interface statistics */ 5118 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5119 ipif_loopback_name, "net", 5120 KSTAT_TYPE_NAMED, 2, 0, 5121 ipst->ips_netstack->netstack_stackid); 5122 if (ipst->ips_loopback_ksp != NULL) { 5123 ipst->ips_loopback_ksp->ks_update = 5124 loopback_kstat_update; 5125 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5126 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5127 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5128 ipst->ips_loopback_ksp->ks_private = 5129 (void *)(uintptr_t)ipst->ips_netstack-> 5130 netstack_stackid; 5131 kstat_install(ipst->ips_loopback_ksp); 5132 } 5133 } 5134 5135 if (error != NULL) 5136 *error = 0; 5137 *did_alloc = B_TRUE; 5138 rw_exit(&ipst->ips_ill_g_lock); 5139 return (ill); 5140 done: 5141 if (ill != NULL) { 5142 if (ill->ill_phyint != NULL) { 5143 ipsq_t *ipsq; 5144 5145 ipsq = ill->ill_phyint->phyint_ipsq; 5146 if (ipsq != NULL) { 5147 ipsq->ipsq_ipst = NULL; 5148 kmem_free(ipsq, sizeof (ipsq_t)); 5149 } 5150 mi_free(ill->ill_phyint); 5151 } 5152 ill_free_mib(ill); 5153 if (ill->ill_ipst != NULL) 5154 netstack_rele(ill->ill_ipst->ips_netstack); 5155 mi_free(ill); 5156 } 5157 rw_exit(&ipst->ips_ill_g_lock); 5158 if (error != NULL) 5159 *error = ENOMEM; 5160 return (NULL); 5161 } 5162 5163 /* 5164 * For IPP calls - use the ip_stack_t for global stack. 5165 */ 5166 ill_t * 5167 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5168 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5169 { 5170 ip_stack_t *ipst; 5171 ill_t *ill; 5172 5173 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5174 if (ipst == NULL) { 5175 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5176 return (NULL); 5177 } 5178 5179 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5180 netstack_rele(ipst->ips_netstack); 5181 return (ill); 5182 } 5183 5184 /* 5185 * Return a pointer to the ill which matches the index and IP version type. 5186 */ 5187 ill_t * 5188 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5189 ipsq_func_t func, int *err, ip_stack_t *ipst) 5190 { 5191 ill_t *ill; 5192 ipsq_t *ipsq; 5193 phyint_t *phyi; 5194 5195 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5196 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5197 5198 if (err != NULL) 5199 *err = 0; 5200 5201 /* 5202 * Indexes are stored in the phyint - a common structure 5203 * to both IPv4 and IPv6. 5204 */ 5205 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5206 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5207 (void *) &index, NULL); 5208 if (phyi != NULL) { 5209 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5210 if (ill != NULL) { 5211 /* 5212 * The block comment at the start of ipif_down 5213 * explains the use of the macros used below 5214 */ 5215 GRAB_CONN_LOCK(q); 5216 mutex_enter(&ill->ill_lock); 5217 if (ILL_CAN_LOOKUP(ill)) { 5218 ill_refhold_locked(ill); 5219 mutex_exit(&ill->ill_lock); 5220 RELEASE_CONN_LOCK(q); 5221 rw_exit(&ipst->ips_ill_g_lock); 5222 return (ill); 5223 } else if (ILL_CAN_WAIT(ill, q)) { 5224 ipsq = ill->ill_phyint->phyint_ipsq; 5225 mutex_enter(&ipsq->ipsq_lock); 5226 rw_exit(&ipst->ips_ill_g_lock); 5227 mutex_exit(&ill->ill_lock); 5228 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5229 mutex_exit(&ipsq->ipsq_lock); 5230 RELEASE_CONN_LOCK(q); 5231 *err = EINPROGRESS; 5232 return (NULL); 5233 } 5234 RELEASE_CONN_LOCK(q); 5235 mutex_exit(&ill->ill_lock); 5236 } 5237 } 5238 rw_exit(&ipst->ips_ill_g_lock); 5239 if (err != NULL) 5240 *err = ENXIO; 5241 return (NULL); 5242 } 5243 5244 /* 5245 * Return the ifindex next in sequence after the passed in ifindex. 5246 * If there is no next ifindex for the given protocol, return 0. 5247 */ 5248 uint_t 5249 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5250 { 5251 phyint_t *phyi; 5252 phyint_t *phyi_initial; 5253 uint_t ifindex; 5254 5255 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5256 5257 if (index == 0) { 5258 phyi = avl_first( 5259 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5260 } else { 5261 phyi = phyi_initial = avl_find( 5262 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5263 (void *) &index, NULL); 5264 } 5265 5266 for (; phyi != NULL; 5267 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5268 phyi, AVL_AFTER)) { 5269 /* 5270 * If we're not returning the first interface in the tree 5271 * and we still haven't moved past the phyint_t that 5272 * corresponds to index, avl_walk needs to be called again 5273 */ 5274 if (!((index != 0) && (phyi == phyi_initial))) { 5275 if (isv6) { 5276 if ((phyi->phyint_illv6) && 5277 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5278 (phyi->phyint_illv6->ill_isv6 == 1)) 5279 break; 5280 } else { 5281 if ((phyi->phyint_illv4) && 5282 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5283 (phyi->phyint_illv4->ill_isv6 == 0)) 5284 break; 5285 } 5286 } 5287 } 5288 5289 rw_exit(&ipst->ips_ill_g_lock); 5290 5291 if (phyi != NULL) 5292 ifindex = phyi->phyint_ifindex; 5293 else 5294 ifindex = 0; 5295 5296 return (ifindex); 5297 } 5298 5299 5300 /* 5301 * Return the ifindex for the named interface. 5302 * If there is no next ifindex for the interface, return 0. 5303 */ 5304 uint_t 5305 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5306 { 5307 phyint_t *phyi; 5308 avl_index_t where = 0; 5309 uint_t ifindex; 5310 5311 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5312 5313 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5314 name, &where)) == NULL) { 5315 rw_exit(&ipst->ips_ill_g_lock); 5316 return (0); 5317 } 5318 5319 ifindex = phyi->phyint_ifindex; 5320 5321 rw_exit(&ipst->ips_ill_g_lock); 5322 5323 return (ifindex); 5324 } 5325 5326 5327 /* 5328 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5329 * that gives a running thread a reference to the ill. This reference must be 5330 * released by the thread when it is done accessing the ill and related 5331 * objects. ill_refcnt can not be used to account for static references 5332 * such as other structures pointing to an ill. Callers must generally 5333 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5334 * or be sure that the ill is not being deleted or changing state before 5335 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5336 * ill won't change any of its critical state such as address, netmask etc. 5337 */ 5338 void 5339 ill_refhold(ill_t *ill) 5340 { 5341 mutex_enter(&ill->ill_lock); 5342 ill->ill_refcnt++; 5343 ILL_TRACE_REF(ill); 5344 mutex_exit(&ill->ill_lock); 5345 } 5346 5347 void 5348 ill_refhold_locked(ill_t *ill) 5349 { 5350 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5351 ill->ill_refcnt++; 5352 ILL_TRACE_REF(ill); 5353 } 5354 5355 int 5356 ill_check_and_refhold(ill_t *ill) 5357 { 5358 mutex_enter(&ill->ill_lock); 5359 if (ILL_CAN_LOOKUP(ill)) { 5360 ill_refhold_locked(ill); 5361 mutex_exit(&ill->ill_lock); 5362 return (0); 5363 } 5364 mutex_exit(&ill->ill_lock); 5365 return (ILL_LOOKUP_FAILED); 5366 } 5367 5368 /* 5369 * Must not be called while holding any locks. Otherwise if this is 5370 * the last reference to be released, there is a chance of recursive mutex 5371 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5372 * to restart an ioctl. 5373 */ 5374 void 5375 ill_refrele(ill_t *ill) 5376 { 5377 mutex_enter(&ill->ill_lock); 5378 ASSERT(ill->ill_refcnt != 0); 5379 ill->ill_refcnt--; 5380 ILL_UNTRACE_REF(ill); 5381 if (ill->ill_refcnt != 0) { 5382 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5383 mutex_exit(&ill->ill_lock); 5384 return; 5385 } 5386 5387 /* Drops the ill_lock */ 5388 ipif_ill_refrele_tail(ill); 5389 } 5390 5391 /* 5392 * Obtain a weak reference count on the ill. This reference ensures the 5393 * ill won't be freed, but the ill may change any of its critical state 5394 * such as netmask, address etc. Returns an error if the ill has started 5395 * closing. 5396 */ 5397 boolean_t 5398 ill_waiter_inc(ill_t *ill) 5399 { 5400 mutex_enter(&ill->ill_lock); 5401 if (ill->ill_state_flags & ILL_CONDEMNED) { 5402 mutex_exit(&ill->ill_lock); 5403 return (B_FALSE); 5404 } 5405 ill->ill_waiters++; 5406 mutex_exit(&ill->ill_lock); 5407 return (B_TRUE); 5408 } 5409 5410 void 5411 ill_waiter_dcr(ill_t *ill) 5412 { 5413 mutex_enter(&ill->ill_lock); 5414 ill->ill_waiters--; 5415 if (ill->ill_waiters == 0) 5416 cv_broadcast(&ill->ill_cv); 5417 mutex_exit(&ill->ill_lock); 5418 } 5419 5420 /* 5421 * Named Dispatch routine to produce a formatted report on all ILLs. 5422 * This report is accessed by using the ndd utility to "get" ND variable 5423 * "ip_ill_status". 5424 */ 5425 /* ARGSUSED */ 5426 int 5427 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5428 { 5429 ill_t *ill; 5430 ill_walk_context_t ctx; 5431 ip_stack_t *ipst; 5432 5433 ipst = CONNQ_TO_IPST(q); 5434 5435 (void) mi_mpprintf(mp, 5436 "ILL " MI_COL_HDRPAD_STR 5437 /* 01234567[89ABCDEF] */ 5438 "rq " MI_COL_HDRPAD_STR 5439 /* 01234567[89ABCDEF] */ 5440 "wq " MI_COL_HDRPAD_STR 5441 /* 01234567[89ABCDEF] */ 5442 "upcnt mxfrg err name"); 5443 /* 12345 12345 123 xxxxxxxx */ 5444 5445 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5446 ill = ILL_START_WALK_ALL(&ctx, ipst); 5447 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5448 (void) mi_mpprintf(mp, 5449 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5450 "%05u %05u %03d %s", 5451 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5452 ill->ill_ipif_up_count, 5453 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5454 } 5455 rw_exit(&ipst->ips_ill_g_lock); 5456 5457 return (0); 5458 } 5459 5460 /* 5461 * Named Dispatch routine to produce a formatted report on all IPIFs. 5462 * This report is accessed by using the ndd utility to "get" ND variable 5463 * "ip_ipif_status". 5464 */ 5465 /* ARGSUSED */ 5466 int 5467 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5468 { 5469 char buf1[INET6_ADDRSTRLEN]; 5470 char buf2[INET6_ADDRSTRLEN]; 5471 char buf3[INET6_ADDRSTRLEN]; 5472 char buf4[INET6_ADDRSTRLEN]; 5473 char buf5[INET6_ADDRSTRLEN]; 5474 char buf6[INET6_ADDRSTRLEN]; 5475 char buf[LIFNAMSIZ]; 5476 ill_t *ill; 5477 ipif_t *ipif; 5478 nv_t *nvp; 5479 uint64_t flags; 5480 zoneid_t zoneid; 5481 ill_walk_context_t ctx; 5482 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5483 5484 (void) mi_mpprintf(mp, 5485 "IPIF metric mtu in/out/forward name zone flags...\n" 5486 "\tlocal address\n" 5487 "\tsrc address\n" 5488 "\tsubnet\n" 5489 "\tmask\n" 5490 "\tbroadcast\n" 5491 "\tp-p-dst"); 5492 5493 ASSERT(q->q_next == NULL); 5494 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5495 5496 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5497 ill = ILL_START_WALK_ALL(&ctx, ipst); 5498 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5499 for (ipif = ill->ill_ipif; ipif != NULL; 5500 ipif = ipif->ipif_next) { 5501 if (zoneid != GLOBAL_ZONEID && 5502 zoneid != ipif->ipif_zoneid && 5503 ipif->ipif_zoneid != ALL_ZONES) 5504 continue; 5505 (void) mi_mpprintf(mp, 5506 MI_COL_PTRFMT_STR 5507 "%04u %05u %u/%u/%u %s %d", 5508 (void *)ipif, 5509 ipif->ipif_metric, ipif->ipif_mtu, 5510 ipif->ipif_ib_pkt_count, 5511 ipif->ipif_ob_pkt_count, 5512 ipif->ipif_fo_pkt_count, 5513 ipif_get_name(ipif, buf, sizeof (buf)), 5514 ipif->ipif_zoneid); 5515 5516 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5517 ipif->ipif_ill->ill_phyint->phyint_flags; 5518 5519 /* Tack on text strings for any flags. */ 5520 nvp = ipif_nv_tbl; 5521 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5522 if (nvp->nv_value & flags) 5523 (void) mi_mpprintf_nr(mp, " %s", 5524 nvp->nv_name); 5525 } 5526 (void) mi_mpprintf(mp, 5527 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5528 inet_ntop(AF_INET6, 5529 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5530 inet_ntop(AF_INET6, 5531 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5532 inet_ntop(AF_INET6, 5533 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5534 inet_ntop(AF_INET6, 5535 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5536 inet_ntop(AF_INET6, 5537 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5538 inet_ntop(AF_INET6, 5539 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5540 } 5541 } 5542 rw_exit(&ipst->ips_ill_g_lock); 5543 return (0); 5544 } 5545 5546 /* 5547 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5548 * driver. We construct best guess defaults for lower level information that 5549 * we need. If an interface is brought up without injection of any overriding 5550 * information from outside, we have to be ready to go with these defaults. 5551 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5552 * we primarely want the dl_provider_style. 5553 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5554 * at which point we assume the other part of the information is valid. 5555 */ 5556 void 5557 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5558 { 5559 uchar_t *brdcst_addr; 5560 uint_t brdcst_addr_length, phys_addr_length; 5561 t_scalar_t sap_length; 5562 dl_info_ack_t *dlia; 5563 ip_m_t *ipm; 5564 dl_qos_cl_sel1_t *sel1; 5565 5566 ASSERT(IAM_WRITER_ILL(ill)); 5567 5568 /* 5569 * Till the ill is fully up ILL_CHANGING will be set and 5570 * the ill is not globally visible. So no need for a lock. 5571 */ 5572 dlia = (dl_info_ack_t *)mp->b_rptr; 5573 ill->ill_mactype = dlia->dl_mac_type; 5574 5575 ipm = ip_m_lookup(dlia->dl_mac_type); 5576 if (ipm == NULL) { 5577 ipm = ip_m_lookup(DL_OTHER); 5578 ASSERT(ipm != NULL); 5579 } 5580 ill->ill_media = ipm; 5581 5582 /* 5583 * When the new DLPI stuff is ready we'll pull lengths 5584 * from dlia. 5585 */ 5586 if (dlia->dl_version == DL_VERSION_2) { 5587 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5588 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5589 brdcst_addr_length); 5590 if (brdcst_addr == NULL) { 5591 brdcst_addr_length = 0; 5592 } 5593 sap_length = dlia->dl_sap_length; 5594 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5595 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5596 brdcst_addr_length, sap_length, phys_addr_length)); 5597 } else { 5598 brdcst_addr_length = 6; 5599 brdcst_addr = ip_six_byte_all_ones; 5600 sap_length = -2; 5601 phys_addr_length = brdcst_addr_length; 5602 } 5603 5604 ill->ill_bcast_addr_length = brdcst_addr_length; 5605 ill->ill_phys_addr_length = phys_addr_length; 5606 ill->ill_sap_length = sap_length; 5607 ill->ill_max_frag = dlia->dl_max_sdu; 5608 ill->ill_max_mtu = ill->ill_max_frag; 5609 5610 ill->ill_type = ipm->ip_m_type; 5611 5612 if (!ill->ill_dlpi_style_set) { 5613 if (dlia->dl_provider_style == DL_STYLE2) 5614 ill->ill_needs_attach = 1; 5615 5616 /* 5617 * Allocate the first ipif on this ill. We don't delay it 5618 * further as ioctl handling assumes atleast one ipif to 5619 * be present. 5620 * 5621 * At this point we don't know whether the ill is v4 or v6. 5622 * We will know this whan the SIOCSLIFNAME happens and 5623 * the correct value for ill_isv6 will be assigned in 5624 * ipif_set_values(). We need to hold the ill lock and 5625 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5626 * the wakeup. 5627 */ 5628 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5629 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5630 mutex_enter(&ill->ill_lock); 5631 ASSERT(ill->ill_dlpi_style_set == 0); 5632 ill->ill_dlpi_style_set = 1; 5633 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5634 cv_broadcast(&ill->ill_cv); 5635 mutex_exit(&ill->ill_lock); 5636 freemsg(mp); 5637 return; 5638 } 5639 ASSERT(ill->ill_ipif != NULL); 5640 /* 5641 * We know whether it is IPv4 or IPv6 now, as this is the 5642 * second DL_INFO_ACK we are recieving in response to the 5643 * DL_INFO_REQ sent in ipif_set_values. 5644 */ 5645 if (ill->ill_isv6) 5646 ill->ill_sap = IP6_DL_SAP; 5647 else 5648 ill->ill_sap = IP_DL_SAP; 5649 /* 5650 * Set ipif_mtu which is used to set the IRE's 5651 * ire_max_frag value. The driver could have sent 5652 * a different mtu from what it sent last time. No 5653 * need to call ipif_mtu_change because IREs have 5654 * not yet been created. 5655 */ 5656 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5657 /* 5658 * Clear all the flags that were set based on ill_bcast_addr_length 5659 * and ill_phys_addr_length (in ipif_set_values) as these could have 5660 * changed now and we need to re-evaluate. 5661 */ 5662 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5663 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5664 5665 /* 5666 * Free ill_resolver_mp and ill_bcast_mp as things could have 5667 * changed now. 5668 */ 5669 if (ill->ill_bcast_addr_length == 0) { 5670 if (ill->ill_resolver_mp != NULL) 5671 freemsg(ill->ill_resolver_mp); 5672 if (ill->ill_bcast_mp != NULL) 5673 freemsg(ill->ill_bcast_mp); 5674 if (ill->ill_flags & ILLF_XRESOLV) 5675 ill->ill_net_type = IRE_IF_RESOLVER; 5676 else 5677 ill->ill_net_type = IRE_IF_NORESOLVER; 5678 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5679 ill->ill_phys_addr_length, 5680 ill->ill_sap, 5681 ill->ill_sap_length); 5682 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5683 5684 if (ill->ill_isv6) 5685 /* 5686 * Note: xresolv interfaces will eventually need NOARP 5687 * set here as well, but that will require those 5688 * external resolvers to have some knowledge of 5689 * that flag and act appropriately. Not to be changed 5690 * at present. 5691 */ 5692 ill->ill_flags |= ILLF_NONUD; 5693 else 5694 ill->ill_flags |= ILLF_NOARP; 5695 5696 if (ill->ill_phys_addr_length == 0) { 5697 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5698 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5699 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5700 } else { 5701 /* pt-pt supports multicast. */ 5702 ill->ill_flags |= ILLF_MULTICAST; 5703 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5704 } 5705 } 5706 } else { 5707 ill->ill_net_type = IRE_IF_RESOLVER; 5708 if (ill->ill_bcast_mp != NULL) 5709 freemsg(ill->ill_bcast_mp); 5710 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5711 ill->ill_bcast_addr_length, ill->ill_sap, 5712 ill->ill_sap_length); 5713 /* 5714 * Later detect lack of DLPI driver multicast 5715 * capability by catching DL_ENABMULTI errors in 5716 * ip_rput_dlpi. 5717 */ 5718 ill->ill_flags |= ILLF_MULTICAST; 5719 if (!ill->ill_isv6) 5720 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5721 } 5722 /* By default an interface does not support any CoS marking */ 5723 ill->ill_flags &= ~ILLF_COS_ENABLED; 5724 5725 /* 5726 * If we get QoS information in DL_INFO_ACK, the device supports 5727 * some form of CoS marking, set ILLF_COS_ENABLED. 5728 */ 5729 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5730 dlia->dl_qos_length); 5731 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5732 ill->ill_flags |= ILLF_COS_ENABLED; 5733 } 5734 5735 /* Clear any previous error indication. */ 5736 ill->ill_error = 0; 5737 freemsg(mp); 5738 } 5739 5740 /* 5741 * Perform various checks to verify that an address would make sense as a 5742 * local, remote, or subnet interface address. 5743 */ 5744 static boolean_t 5745 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5746 { 5747 ipaddr_t net_mask; 5748 5749 /* 5750 * Don't allow all zeroes, all ones or experimental address, but allow 5751 * all ones netmask. 5752 */ 5753 if ((net_mask = ip_net_mask(addr)) == 0) 5754 return (B_FALSE); 5755 /* A given netmask overrides the "guess" netmask */ 5756 if (subnet_mask != 0) 5757 net_mask = subnet_mask; 5758 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5759 (addr == (addr | ~net_mask)))) { 5760 return (B_FALSE); 5761 } 5762 if (CLASSD(addr)) 5763 return (B_FALSE); 5764 5765 return (B_TRUE); 5766 } 5767 5768 #define V6_IPIF_LINKLOCAL(p) \ 5769 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5770 5771 /* 5772 * Compare two given ipifs and check if the second one is better than 5773 * the first one using the order of preference (not taking deprecated 5774 * into acount) specified in ipif_lookup_multicast(). 5775 */ 5776 static boolean_t 5777 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5778 { 5779 /* Check the least preferred first. */ 5780 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5781 /* If both ipifs are the same, use the first one. */ 5782 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5783 return (B_FALSE); 5784 else 5785 return (B_TRUE); 5786 } 5787 5788 /* For IPv6, check for link local address. */ 5789 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5790 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5791 V6_IPIF_LINKLOCAL(new_ipif)) { 5792 /* The second one is equal or less preferred. */ 5793 return (B_FALSE); 5794 } else { 5795 return (B_TRUE); 5796 } 5797 } 5798 5799 /* Then check for point to point interface. */ 5800 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5801 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5802 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5803 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5804 return (B_FALSE); 5805 } else { 5806 return (B_TRUE); 5807 } 5808 } 5809 5810 /* old_ipif is a normal interface, so no need to use the new one. */ 5811 return (B_FALSE); 5812 } 5813 5814 /* 5815 * Find any non-virtual, not condemned, and up multicast capable interface 5816 * given an IP instance and zoneid. Order of preference is: 5817 * 5818 * 1. normal 5819 * 1.1 normal, but deprecated 5820 * 2. point to point 5821 * 2.1 point to point, but deprecated 5822 * 3. link local 5823 * 3.1 link local, but deprecated 5824 * 4. loopback. 5825 */ 5826 ipif_t * 5827 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5828 { 5829 ill_t *ill; 5830 ill_walk_context_t ctx; 5831 ipif_t *ipif; 5832 ipif_t *saved_ipif = NULL; 5833 ipif_t *dep_ipif = NULL; 5834 5835 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5836 if (isv6) 5837 ill = ILL_START_WALK_V6(&ctx, ipst); 5838 else 5839 ill = ILL_START_WALK_V4(&ctx, ipst); 5840 5841 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5842 mutex_enter(&ill->ill_lock); 5843 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5844 !(ill->ill_flags & ILLF_MULTICAST)) { 5845 mutex_exit(&ill->ill_lock); 5846 continue; 5847 } 5848 for (ipif = ill->ill_ipif; ipif != NULL; 5849 ipif = ipif->ipif_next) { 5850 if (zoneid != ipif->ipif_zoneid && 5851 zoneid != ALL_ZONES && 5852 ipif->ipif_zoneid != ALL_ZONES) { 5853 continue; 5854 } 5855 if (!(ipif->ipif_flags & IPIF_UP) || 5856 !IPIF_CAN_LOOKUP(ipif)) { 5857 continue; 5858 } 5859 5860 /* 5861 * Found one candidate. If it is deprecated, 5862 * remember it in dep_ipif. If it is not deprecated, 5863 * remember it in saved_ipif. 5864 */ 5865 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5866 if (dep_ipif == NULL) { 5867 dep_ipif = ipif; 5868 } else if (ipif_comp_multi(dep_ipif, ipif, 5869 isv6)) { 5870 /* 5871 * If the previous dep_ipif does not 5872 * belong to the same ill, we've done 5873 * a ipif_refhold() on it. So we need 5874 * to release it. 5875 */ 5876 if (dep_ipif->ipif_ill != ill) 5877 ipif_refrele(dep_ipif); 5878 dep_ipif = ipif; 5879 } 5880 continue; 5881 } 5882 if (saved_ipif == NULL) { 5883 saved_ipif = ipif; 5884 } else { 5885 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5886 if (saved_ipif->ipif_ill != ill) 5887 ipif_refrele(saved_ipif); 5888 saved_ipif = ipif; 5889 } 5890 } 5891 } 5892 /* 5893 * Before going to the next ill, do a ipif_refhold() on the 5894 * saved ones. 5895 */ 5896 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5897 ipif_refhold_locked(saved_ipif); 5898 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5899 ipif_refhold_locked(dep_ipif); 5900 mutex_exit(&ill->ill_lock); 5901 } 5902 rw_exit(&ipst->ips_ill_g_lock); 5903 5904 /* 5905 * If we have only the saved_ipif, return it. But if we have both 5906 * saved_ipif and dep_ipif, check to see which one is better. 5907 */ 5908 if (saved_ipif != NULL) { 5909 if (dep_ipif != NULL) { 5910 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5911 ipif_refrele(saved_ipif); 5912 return (dep_ipif); 5913 } else { 5914 ipif_refrele(dep_ipif); 5915 return (saved_ipif); 5916 } 5917 } 5918 return (saved_ipif); 5919 } else { 5920 return (dep_ipif); 5921 } 5922 } 5923 5924 /* 5925 * This function is called when an application does not specify an interface 5926 * to be used for multicast traffic (joining a group/sending data). It 5927 * calls ire_lookup_multi() to look for an interface route for the 5928 * specified multicast group. Doing this allows the administrator to add 5929 * prefix routes for multicast to indicate which interface to be used for 5930 * multicast traffic in the above scenario. The route could be for all 5931 * multicast (224.0/4), for a single multicast group (a /32 route) or 5932 * anything in between. If there is no such multicast route, we just find 5933 * any multicast capable interface and return it. The returned ipif 5934 * is refhold'ed. 5935 */ 5936 ipif_t * 5937 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5938 { 5939 ire_t *ire; 5940 ipif_t *ipif; 5941 5942 ire = ire_lookup_multi(group, zoneid, ipst); 5943 if (ire != NULL) { 5944 ipif = ire->ire_ipif; 5945 ipif_refhold(ipif); 5946 ire_refrele(ire); 5947 return (ipif); 5948 } 5949 5950 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5951 } 5952 5953 /* 5954 * Look for an ipif with the specified interface address and destination. 5955 * The destination address is used only for matching point-to-point interfaces. 5956 */ 5957 ipif_t * 5958 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5959 ipsq_func_t func, int *error, ip_stack_t *ipst) 5960 { 5961 ipif_t *ipif; 5962 ill_t *ill; 5963 ill_walk_context_t ctx; 5964 ipsq_t *ipsq; 5965 5966 if (error != NULL) 5967 *error = 0; 5968 5969 /* 5970 * First match all the point-to-point interfaces 5971 * before looking at non-point-to-point interfaces. 5972 * This is done to avoid returning non-point-to-point 5973 * ipif instead of unnumbered point-to-point ipif. 5974 */ 5975 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5976 ill = ILL_START_WALK_V4(&ctx, ipst); 5977 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5978 GRAB_CONN_LOCK(q); 5979 mutex_enter(&ill->ill_lock); 5980 for (ipif = ill->ill_ipif; ipif != NULL; 5981 ipif = ipif->ipif_next) { 5982 /* Allow the ipif to be down */ 5983 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5984 (ipif->ipif_lcl_addr == if_addr) && 5985 (ipif->ipif_pp_dst_addr == dst)) { 5986 /* 5987 * The block comment at the start of ipif_down 5988 * explains the use of the macros used below 5989 */ 5990 if (IPIF_CAN_LOOKUP(ipif)) { 5991 ipif_refhold_locked(ipif); 5992 mutex_exit(&ill->ill_lock); 5993 RELEASE_CONN_LOCK(q); 5994 rw_exit(&ipst->ips_ill_g_lock); 5995 return (ipif); 5996 } else if (IPIF_CAN_WAIT(ipif, q)) { 5997 ipsq = ill->ill_phyint->phyint_ipsq; 5998 mutex_enter(&ipsq->ipsq_lock); 5999 mutex_exit(&ill->ill_lock); 6000 rw_exit(&ipst->ips_ill_g_lock); 6001 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6002 ill); 6003 mutex_exit(&ipsq->ipsq_lock); 6004 RELEASE_CONN_LOCK(q); 6005 *error = EINPROGRESS; 6006 return (NULL); 6007 } 6008 } 6009 } 6010 mutex_exit(&ill->ill_lock); 6011 RELEASE_CONN_LOCK(q); 6012 } 6013 rw_exit(&ipst->ips_ill_g_lock); 6014 6015 /* lookup the ipif based on interface address */ 6016 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6017 ipst); 6018 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6019 return (ipif); 6020 } 6021 6022 /* 6023 * Look for an ipif with the specified address. For point-point links 6024 * we look for matches on either the destination address and the local 6025 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6026 * is set. 6027 * Matches on a specific ill if match_ill is set. 6028 */ 6029 ipif_t * 6030 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6031 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6032 { 6033 ipif_t *ipif; 6034 ill_t *ill; 6035 boolean_t ptp = B_FALSE; 6036 ipsq_t *ipsq; 6037 ill_walk_context_t ctx; 6038 6039 if (error != NULL) 6040 *error = 0; 6041 6042 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6043 /* 6044 * Repeat twice, first based on local addresses and 6045 * next time for pointopoint. 6046 */ 6047 repeat: 6048 ill = ILL_START_WALK_V4(&ctx, ipst); 6049 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6050 if (match_ill != NULL && ill != match_ill) { 6051 continue; 6052 } 6053 GRAB_CONN_LOCK(q); 6054 mutex_enter(&ill->ill_lock); 6055 for (ipif = ill->ill_ipif; ipif != NULL; 6056 ipif = ipif->ipif_next) { 6057 if (zoneid != ALL_ZONES && 6058 zoneid != ipif->ipif_zoneid && 6059 ipif->ipif_zoneid != ALL_ZONES) 6060 continue; 6061 /* Allow the ipif to be down */ 6062 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6063 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6064 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6065 (ipif->ipif_pp_dst_addr == addr))) { 6066 /* 6067 * The block comment at the start of ipif_down 6068 * explains the use of the macros used below 6069 */ 6070 if (IPIF_CAN_LOOKUP(ipif)) { 6071 ipif_refhold_locked(ipif); 6072 mutex_exit(&ill->ill_lock); 6073 RELEASE_CONN_LOCK(q); 6074 rw_exit(&ipst->ips_ill_g_lock); 6075 return (ipif); 6076 } else if (IPIF_CAN_WAIT(ipif, q)) { 6077 ipsq = ill->ill_phyint->phyint_ipsq; 6078 mutex_enter(&ipsq->ipsq_lock); 6079 mutex_exit(&ill->ill_lock); 6080 rw_exit(&ipst->ips_ill_g_lock); 6081 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6082 ill); 6083 mutex_exit(&ipsq->ipsq_lock); 6084 RELEASE_CONN_LOCK(q); 6085 *error = EINPROGRESS; 6086 return (NULL); 6087 } 6088 } 6089 } 6090 mutex_exit(&ill->ill_lock); 6091 RELEASE_CONN_LOCK(q); 6092 } 6093 6094 /* If we already did the ptp case, then we are done */ 6095 if (ptp) { 6096 rw_exit(&ipst->ips_ill_g_lock); 6097 if (error != NULL) 6098 *error = ENXIO; 6099 return (NULL); 6100 } 6101 ptp = B_TRUE; 6102 goto repeat; 6103 } 6104 6105 /* 6106 * Look for an ipif with the specified address. For point-point links 6107 * we look for matches on either the destination address and the local 6108 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6109 * is set. 6110 * Matches on a specific ill if match_ill is set. 6111 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6112 */ 6113 zoneid_t 6114 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6115 { 6116 zoneid_t zoneid; 6117 ipif_t *ipif; 6118 ill_t *ill; 6119 boolean_t ptp = B_FALSE; 6120 ill_walk_context_t ctx; 6121 6122 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6123 /* 6124 * Repeat twice, first based on local addresses and 6125 * next time for pointopoint. 6126 */ 6127 repeat: 6128 ill = ILL_START_WALK_V4(&ctx, ipst); 6129 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6130 if (match_ill != NULL && ill != match_ill) { 6131 continue; 6132 } 6133 mutex_enter(&ill->ill_lock); 6134 for (ipif = ill->ill_ipif; ipif != NULL; 6135 ipif = ipif->ipif_next) { 6136 /* Allow the ipif to be down */ 6137 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6138 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6139 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6140 (ipif->ipif_pp_dst_addr == addr)) && 6141 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6142 zoneid = ipif->ipif_zoneid; 6143 mutex_exit(&ill->ill_lock); 6144 rw_exit(&ipst->ips_ill_g_lock); 6145 /* 6146 * If ipif_zoneid was ALL_ZONES then we have 6147 * a trusted extensions shared IP address. 6148 * In that case GLOBAL_ZONEID works to send. 6149 */ 6150 if (zoneid == ALL_ZONES) 6151 zoneid = GLOBAL_ZONEID; 6152 return (zoneid); 6153 } 6154 } 6155 mutex_exit(&ill->ill_lock); 6156 } 6157 6158 /* If we already did the ptp case, then we are done */ 6159 if (ptp) { 6160 rw_exit(&ipst->ips_ill_g_lock); 6161 return (ALL_ZONES); 6162 } 6163 ptp = B_TRUE; 6164 goto repeat; 6165 } 6166 6167 /* 6168 * Look for an ipif that matches the specified remote address i.e. the 6169 * ipif that would receive the specified packet. 6170 * First look for directly connected interfaces and then do a recursive 6171 * IRE lookup and pick the first ipif corresponding to the source address in the 6172 * ire. 6173 * Returns: held ipif 6174 */ 6175 ipif_t * 6176 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6177 { 6178 ipif_t *ipif; 6179 ire_t *ire; 6180 ip_stack_t *ipst = ill->ill_ipst; 6181 6182 ASSERT(!ill->ill_isv6); 6183 6184 /* 6185 * Someone could be changing this ipif currently or change it 6186 * after we return this. Thus a few packets could use the old 6187 * old values. However structure updates/creates (ire, ilg, ilm etc) 6188 * will atomically be updated or cleaned up with the new value 6189 * Thus we don't need a lock to check the flags or other attrs below. 6190 */ 6191 mutex_enter(&ill->ill_lock); 6192 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6193 if (!IPIF_CAN_LOOKUP(ipif)) 6194 continue; 6195 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6196 ipif->ipif_zoneid != ALL_ZONES) 6197 continue; 6198 /* Allow the ipif to be down */ 6199 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6200 if ((ipif->ipif_pp_dst_addr == addr) || 6201 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6202 ipif->ipif_lcl_addr == addr)) { 6203 ipif_refhold_locked(ipif); 6204 mutex_exit(&ill->ill_lock); 6205 return (ipif); 6206 } 6207 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6208 ipif_refhold_locked(ipif); 6209 mutex_exit(&ill->ill_lock); 6210 return (ipif); 6211 } 6212 } 6213 mutex_exit(&ill->ill_lock); 6214 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6215 NULL, MATCH_IRE_RECURSIVE, ipst); 6216 if (ire != NULL) { 6217 /* 6218 * The callers of this function wants to know the 6219 * interface on which they have to send the replies 6220 * back. For IRE_CACHES that have ire_stq and ire_ipif 6221 * derived from different ills, we really don't care 6222 * what we return here. 6223 */ 6224 ipif = ire->ire_ipif; 6225 if (ipif != NULL) { 6226 ipif_refhold(ipif); 6227 ire_refrele(ire); 6228 return (ipif); 6229 } 6230 ire_refrele(ire); 6231 } 6232 /* Pick the first interface */ 6233 ipif = ipif_get_next_ipif(NULL, ill); 6234 return (ipif); 6235 } 6236 6237 /* 6238 * This func does not prevent refcnt from increasing. But if 6239 * the caller has taken steps to that effect, then this func 6240 * can be used to determine whether the ill has become quiescent 6241 */ 6242 boolean_t 6243 ill_is_quiescent(ill_t *ill) 6244 { 6245 ipif_t *ipif; 6246 6247 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6248 6249 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6250 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6251 return (B_FALSE); 6252 } 6253 } 6254 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6255 ill->ill_nce_cnt != 0) { 6256 return (B_FALSE); 6257 } 6258 return (B_TRUE); 6259 } 6260 6261 /* 6262 * This func does not prevent refcnt from increasing. But if 6263 * the caller has taken steps to that effect, then this func 6264 * can be used to determine whether the ipif has become quiescent 6265 */ 6266 static boolean_t 6267 ipif_is_quiescent(ipif_t *ipif) 6268 { 6269 ill_t *ill; 6270 6271 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6272 6273 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6274 return (B_FALSE); 6275 } 6276 6277 ill = ipif->ipif_ill; 6278 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6279 ill->ill_logical_down) { 6280 return (B_TRUE); 6281 } 6282 6283 /* This is the last ipif going down or being deleted on this ill */ 6284 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6285 return (B_FALSE); 6286 } 6287 6288 return (B_TRUE); 6289 } 6290 6291 /* 6292 * This func does not prevent refcnt from increasing. But if 6293 * the caller has taken steps to that effect, then this func 6294 * can be used to determine whether the ipifs marked with IPIF_MOVING 6295 * have become quiescent and can be moved in a failover/failback. 6296 */ 6297 static ipif_t * 6298 ill_quiescent_to_move(ill_t *ill) 6299 { 6300 ipif_t *ipif; 6301 6302 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6303 6304 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6305 if (ipif->ipif_state_flags & IPIF_MOVING) { 6306 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6307 return (ipif); 6308 } 6309 } 6310 } 6311 return (NULL); 6312 } 6313 6314 /* 6315 * The ipif/ill/ire has been refreled. Do the tail processing. 6316 * Determine if the ipif or ill in question has become quiescent and if so 6317 * wakeup close and/or restart any queued pending ioctl that is waiting 6318 * for the ipif_down (or ill_down) 6319 */ 6320 void 6321 ipif_ill_refrele_tail(ill_t *ill) 6322 { 6323 mblk_t *mp; 6324 conn_t *connp; 6325 ipsq_t *ipsq; 6326 ipif_t *ipif; 6327 dl_notify_ind_t *dlindp; 6328 6329 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6330 6331 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6332 ill_is_quiescent(ill)) { 6333 /* ill_close may be waiting */ 6334 cv_broadcast(&ill->ill_cv); 6335 } 6336 6337 /* ipsq can't change because ill_lock is held */ 6338 ipsq = ill->ill_phyint->phyint_ipsq; 6339 if (ipsq->ipsq_waitfor == 0) { 6340 /* Not waiting for anything, just return. */ 6341 mutex_exit(&ill->ill_lock); 6342 return; 6343 } 6344 ASSERT(ipsq->ipsq_pending_mp != NULL && 6345 ipsq->ipsq_pending_ipif != NULL); 6346 /* 6347 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6348 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6349 * be zero for restarting an ioctl that ends up downing the ill. 6350 */ 6351 ipif = ipsq->ipsq_pending_ipif; 6352 if (ipif->ipif_ill != ill) { 6353 /* The ioctl is pending on some other ill. */ 6354 mutex_exit(&ill->ill_lock); 6355 return; 6356 } 6357 6358 switch (ipsq->ipsq_waitfor) { 6359 case IPIF_DOWN: 6360 case IPIF_FREE: 6361 if (!ipif_is_quiescent(ipif)) { 6362 mutex_exit(&ill->ill_lock); 6363 return; 6364 } 6365 break; 6366 6367 case ILL_DOWN: 6368 case ILL_FREE: 6369 /* 6370 * case ILL_FREE arises only for loopback. otherwise ill_delete 6371 * waits synchronously in ip_close, and no message is queued in 6372 * ipsq_pending_mp at all in this case 6373 */ 6374 if (!ill_is_quiescent(ill)) { 6375 mutex_exit(&ill->ill_lock); 6376 return; 6377 } 6378 6379 break; 6380 6381 case ILL_MOVE_OK: 6382 if (ill_quiescent_to_move(ill) != NULL) { 6383 mutex_exit(&ill->ill_lock); 6384 return; 6385 } 6386 6387 break; 6388 default: 6389 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6390 (void *)ipsq, ipsq->ipsq_waitfor); 6391 } 6392 6393 /* 6394 * Incr refcnt for the qwriter_ip call below which 6395 * does a refrele 6396 */ 6397 ill_refhold_locked(ill); 6398 mutex_exit(&ill->ill_lock); 6399 6400 mp = ipsq_pending_mp_get(ipsq, &connp); 6401 ASSERT(mp != NULL); 6402 6403 /* 6404 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6405 * we can only get here when the current operation decides it 6406 * it needs to quiesce via ipsq_pending_mp_add(). 6407 */ 6408 switch (mp->b_datap->db_type) { 6409 case M_PCPROTO: 6410 case M_PROTO: 6411 /* 6412 * For now, only DL_NOTIFY_IND messages can use this facility. 6413 */ 6414 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6415 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6416 6417 switch (dlindp->dl_notification) { 6418 case DL_NOTE_PHYS_ADDR: 6419 qwriter_ip(ill, ill->ill_rq, mp, 6420 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6421 return; 6422 default: 6423 ASSERT(0); 6424 } 6425 break; 6426 6427 case M_ERROR: 6428 case M_HANGUP: 6429 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6430 B_TRUE); 6431 return; 6432 6433 case M_IOCTL: 6434 case M_IOCDATA: 6435 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6436 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6437 return; 6438 6439 default: 6440 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6441 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6442 } 6443 } 6444 6445 #ifdef ILL_DEBUG 6446 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6447 void 6448 th_trace_rrecord(th_trace_t *th_trace) 6449 { 6450 tr_buf_t *tr_buf; 6451 uint_t lastref; 6452 6453 lastref = th_trace->th_trace_lastref; 6454 lastref++; 6455 if (lastref == TR_BUF_MAX) 6456 lastref = 0; 6457 th_trace->th_trace_lastref = lastref; 6458 tr_buf = &th_trace->th_trbuf[lastref]; 6459 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6460 } 6461 6462 th_trace_t * 6463 th_trace_ipif_lookup(ipif_t *ipif) 6464 { 6465 int bucket_id; 6466 th_trace_t *th_trace; 6467 6468 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6469 6470 bucket_id = IP_TR_HASH(curthread); 6471 ASSERT(bucket_id < IP_TR_HASH_MAX); 6472 6473 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6474 th_trace = th_trace->th_next) { 6475 if (th_trace->th_id == curthread) 6476 return (th_trace); 6477 } 6478 return (NULL); 6479 } 6480 6481 void 6482 ipif_trace_ref(ipif_t *ipif) 6483 { 6484 int bucket_id; 6485 th_trace_t *th_trace; 6486 6487 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6488 6489 if (ipif->ipif_trace_disable) 6490 return; 6491 6492 /* 6493 * Attempt to locate the trace buffer for the curthread. 6494 * If it does not exist, then allocate a new trace buffer 6495 * and link it in list of trace bufs for this ipif, at the head 6496 */ 6497 th_trace = th_trace_ipif_lookup(ipif); 6498 if (th_trace == NULL) { 6499 bucket_id = IP_TR_HASH(curthread); 6500 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6501 KM_NOSLEEP); 6502 if (th_trace == NULL) { 6503 ipif->ipif_trace_disable = B_TRUE; 6504 ipif_trace_cleanup(ipif); 6505 return; 6506 } 6507 th_trace->th_id = curthread; 6508 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6509 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6510 if (th_trace->th_next != NULL) 6511 th_trace->th_next->th_prev = &th_trace->th_next; 6512 ipif->ipif_trace[bucket_id] = th_trace; 6513 } 6514 ASSERT(th_trace->th_refcnt >= 0 && 6515 th_trace->th_refcnt < TR_BUF_MAX -1); 6516 th_trace->th_refcnt++; 6517 th_trace_rrecord(th_trace); 6518 } 6519 6520 void 6521 ipif_untrace_ref(ipif_t *ipif) 6522 { 6523 th_trace_t *th_trace; 6524 6525 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6526 6527 if (ipif->ipif_trace_disable) 6528 return; 6529 th_trace = th_trace_ipif_lookup(ipif); 6530 ASSERT(th_trace != NULL); 6531 ASSERT(th_trace->th_refcnt > 0); 6532 6533 th_trace->th_refcnt--; 6534 th_trace_rrecord(th_trace); 6535 } 6536 6537 th_trace_t * 6538 th_trace_ill_lookup(ill_t *ill) 6539 { 6540 th_trace_t *th_trace; 6541 int bucket_id; 6542 6543 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6544 6545 bucket_id = IP_TR_HASH(curthread); 6546 ASSERT(bucket_id < IP_TR_HASH_MAX); 6547 6548 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6549 th_trace = th_trace->th_next) { 6550 if (th_trace->th_id == curthread) 6551 return (th_trace); 6552 } 6553 return (NULL); 6554 } 6555 6556 void 6557 ill_trace_ref(ill_t *ill) 6558 { 6559 int bucket_id; 6560 th_trace_t *th_trace; 6561 6562 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6563 if (ill->ill_trace_disable) 6564 return; 6565 /* 6566 * Attempt to locate the trace buffer for the curthread. 6567 * If it does not exist, then allocate a new trace buffer 6568 * and link it in list of trace bufs for this ill, at the head 6569 */ 6570 th_trace = th_trace_ill_lookup(ill); 6571 if (th_trace == NULL) { 6572 bucket_id = IP_TR_HASH(curthread); 6573 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6574 KM_NOSLEEP); 6575 if (th_trace == NULL) { 6576 ill->ill_trace_disable = B_TRUE; 6577 ill_trace_cleanup(ill); 6578 return; 6579 } 6580 th_trace->th_id = curthread; 6581 th_trace->th_next = ill->ill_trace[bucket_id]; 6582 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6583 if (th_trace->th_next != NULL) 6584 th_trace->th_next->th_prev = &th_trace->th_next; 6585 ill->ill_trace[bucket_id] = th_trace; 6586 } 6587 ASSERT(th_trace->th_refcnt >= 0 && 6588 th_trace->th_refcnt < TR_BUF_MAX - 1); 6589 6590 th_trace->th_refcnt++; 6591 th_trace_rrecord(th_trace); 6592 } 6593 6594 void 6595 ill_untrace_ref(ill_t *ill) 6596 { 6597 th_trace_t *th_trace; 6598 6599 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6600 6601 if (ill->ill_trace_disable) 6602 return; 6603 th_trace = th_trace_ill_lookup(ill); 6604 ASSERT(th_trace != NULL); 6605 ASSERT(th_trace->th_refcnt > 0); 6606 6607 th_trace->th_refcnt--; 6608 th_trace_rrecord(th_trace); 6609 } 6610 6611 /* 6612 * Verify that this thread has no refs to the ipif and free 6613 * the trace buffers 6614 */ 6615 /* ARGSUSED */ 6616 void 6617 ipif_thread_exit(ipif_t *ipif, void *dummy) 6618 { 6619 th_trace_t *th_trace; 6620 6621 mutex_enter(&ipif->ipif_ill->ill_lock); 6622 6623 th_trace = th_trace_ipif_lookup(ipif); 6624 if (th_trace == NULL) { 6625 mutex_exit(&ipif->ipif_ill->ill_lock); 6626 return; 6627 } 6628 ASSERT(th_trace->th_refcnt == 0); 6629 /* unlink th_trace and free it */ 6630 *th_trace->th_prev = th_trace->th_next; 6631 if (th_trace->th_next != NULL) 6632 th_trace->th_next->th_prev = th_trace->th_prev; 6633 th_trace->th_next = NULL; 6634 th_trace->th_prev = NULL; 6635 kmem_free(th_trace, sizeof (th_trace_t)); 6636 6637 mutex_exit(&ipif->ipif_ill->ill_lock); 6638 } 6639 6640 /* 6641 * Verify that this thread has no refs to the ill and free 6642 * the trace buffers 6643 */ 6644 /* ARGSUSED */ 6645 void 6646 ill_thread_exit(ill_t *ill, void *dummy) 6647 { 6648 th_trace_t *th_trace; 6649 6650 mutex_enter(&ill->ill_lock); 6651 6652 th_trace = th_trace_ill_lookup(ill); 6653 if (th_trace == NULL) { 6654 mutex_exit(&ill->ill_lock); 6655 return; 6656 } 6657 ASSERT(th_trace->th_refcnt == 0); 6658 /* unlink th_trace and free it */ 6659 *th_trace->th_prev = th_trace->th_next; 6660 if (th_trace->th_next != NULL) 6661 th_trace->th_next->th_prev = th_trace->th_prev; 6662 th_trace->th_next = NULL; 6663 th_trace->th_prev = NULL; 6664 kmem_free(th_trace, sizeof (th_trace_t)); 6665 6666 mutex_exit(&ill->ill_lock); 6667 } 6668 #endif 6669 6670 #ifdef ILL_DEBUG 6671 void 6672 ip_thread_exit_stack(ip_stack_t *ipst) 6673 { 6674 ill_t *ill; 6675 ipif_t *ipif; 6676 ill_walk_context_t ctx; 6677 6678 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6679 ill = ILL_START_WALK_ALL(&ctx, ipst); 6680 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6681 for (ipif = ill->ill_ipif; ipif != NULL; 6682 ipif = ipif->ipif_next) { 6683 ipif_thread_exit(ipif, NULL); 6684 } 6685 ill_thread_exit(ill, NULL); 6686 } 6687 rw_exit(&ipst->ips_ill_g_lock); 6688 6689 ire_walk(ire_thread_exit, NULL, ipst); 6690 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6691 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6692 } 6693 6694 /* 6695 * This is a function which is called from thread_exit 6696 * that can be used to debug reference count issues in IP. See comment in 6697 * <inet/ip.h> on how it is used. 6698 */ 6699 void 6700 ip_thread_exit(void) 6701 { 6702 netstack_t *ns; 6703 6704 ns = netstack_get_current(); 6705 if (ns != NULL) { 6706 ip_thread_exit_stack(ns->netstack_ip); 6707 netstack_rele(ns); 6708 } 6709 } 6710 6711 /* 6712 * Called when ipif is unplumbed or when memory alloc fails 6713 */ 6714 void 6715 ipif_trace_cleanup(ipif_t *ipif) 6716 { 6717 int i; 6718 th_trace_t *th_trace; 6719 th_trace_t *th_trace_next; 6720 6721 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6722 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6723 th_trace = th_trace_next) { 6724 th_trace_next = th_trace->th_next; 6725 kmem_free(th_trace, sizeof (th_trace_t)); 6726 } 6727 ipif->ipif_trace[i] = NULL; 6728 } 6729 } 6730 6731 /* 6732 * Called when ill is unplumbed or when memory alloc fails 6733 */ 6734 void 6735 ill_trace_cleanup(ill_t *ill) 6736 { 6737 int i; 6738 th_trace_t *th_trace; 6739 th_trace_t *th_trace_next; 6740 6741 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6742 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6743 th_trace = th_trace_next) { 6744 th_trace_next = th_trace->th_next; 6745 kmem_free(th_trace, sizeof (th_trace_t)); 6746 } 6747 ill->ill_trace[i] = NULL; 6748 } 6749 } 6750 6751 #else 6752 void ip_thread_exit(void) {} 6753 #endif 6754 6755 void 6756 ipif_refhold_locked(ipif_t *ipif) 6757 { 6758 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6759 ipif->ipif_refcnt++; 6760 IPIF_TRACE_REF(ipif); 6761 } 6762 6763 void 6764 ipif_refhold(ipif_t *ipif) 6765 { 6766 ill_t *ill; 6767 6768 ill = ipif->ipif_ill; 6769 mutex_enter(&ill->ill_lock); 6770 ipif->ipif_refcnt++; 6771 IPIF_TRACE_REF(ipif); 6772 mutex_exit(&ill->ill_lock); 6773 } 6774 6775 /* 6776 * Must not be called while holding any locks. Otherwise if this is 6777 * the last reference to be released there is a chance of recursive mutex 6778 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6779 * to restart an ioctl. 6780 */ 6781 void 6782 ipif_refrele(ipif_t *ipif) 6783 { 6784 ill_t *ill; 6785 6786 ill = ipif->ipif_ill; 6787 6788 mutex_enter(&ill->ill_lock); 6789 ASSERT(ipif->ipif_refcnt != 0); 6790 ipif->ipif_refcnt--; 6791 IPIF_UNTRACE_REF(ipif); 6792 if (ipif->ipif_refcnt != 0) { 6793 mutex_exit(&ill->ill_lock); 6794 return; 6795 } 6796 6797 /* Drops the ill_lock */ 6798 ipif_ill_refrele_tail(ill); 6799 } 6800 6801 ipif_t * 6802 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6803 { 6804 ipif_t *ipif; 6805 6806 mutex_enter(&ill->ill_lock); 6807 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6808 ipif != NULL; ipif = ipif->ipif_next) { 6809 if (!IPIF_CAN_LOOKUP(ipif)) 6810 continue; 6811 ipif_refhold_locked(ipif); 6812 mutex_exit(&ill->ill_lock); 6813 return (ipif); 6814 } 6815 mutex_exit(&ill->ill_lock); 6816 return (NULL); 6817 } 6818 6819 /* 6820 * TODO: make this table extendible at run time 6821 * Return a pointer to the mac type info for 'mac_type' 6822 */ 6823 static ip_m_t * 6824 ip_m_lookup(t_uscalar_t mac_type) 6825 { 6826 ip_m_t *ipm; 6827 6828 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6829 if (ipm->ip_m_mac_type == mac_type) 6830 return (ipm); 6831 return (NULL); 6832 } 6833 6834 /* 6835 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6836 * ipif_arg is passed in to associate it with the correct interface. 6837 * We may need to restart this operation if the ipif cannot be looked up 6838 * due to an exclusive operation that is currently in progress. The restart 6839 * entry point is specified by 'func' 6840 */ 6841 int 6842 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6843 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6844 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6845 struct rtsa_s *sp, ip_stack_t *ipst) 6846 { 6847 ire_t *ire; 6848 ire_t *gw_ire = NULL; 6849 ipif_t *ipif = NULL; 6850 boolean_t ipif_refheld = B_FALSE; 6851 uint_t type; 6852 int match_flags = MATCH_IRE_TYPE; 6853 int error; 6854 tsol_gc_t *gc = NULL; 6855 tsol_gcgrp_t *gcgrp = NULL; 6856 boolean_t gcgrp_xtraref = B_FALSE; 6857 6858 ip1dbg(("ip_rt_add:")); 6859 6860 if (ire_arg != NULL) 6861 *ire_arg = NULL; 6862 6863 /* 6864 * If this is the case of RTF_HOST being set, then we set the netmask 6865 * to all ones (regardless if one was supplied). 6866 */ 6867 if (flags & RTF_HOST) 6868 mask = IP_HOST_MASK; 6869 6870 /* 6871 * Prevent routes with a zero gateway from being created (since 6872 * interfaces can currently be plumbed and brought up no assigned 6873 * address). 6874 */ 6875 if (gw_addr == 0) 6876 return (ENETUNREACH); 6877 /* 6878 * Get the ipif, if any, corresponding to the gw_addr 6879 */ 6880 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6881 ipst); 6882 if (ipif != NULL) { 6883 if (IS_VNI(ipif->ipif_ill)) { 6884 ipif_refrele(ipif); 6885 return (EINVAL); 6886 } 6887 ipif_refheld = B_TRUE; 6888 } else if (error == EINPROGRESS) { 6889 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6890 return (EINPROGRESS); 6891 } else { 6892 error = 0; 6893 } 6894 6895 if (ipif != NULL) { 6896 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6897 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6898 } else { 6899 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6900 } 6901 6902 /* 6903 * GateD will attempt to create routes with a loopback interface 6904 * address as the gateway and with RTF_GATEWAY set. We allow 6905 * these routes to be added, but create them as interface routes 6906 * since the gateway is an interface address. 6907 */ 6908 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6909 flags &= ~RTF_GATEWAY; 6910 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6911 mask == IP_HOST_MASK) { 6912 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6913 ALL_ZONES, NULL, match_flags, ipst); 6914 if (ire != NULL) { 6915 ire_refrele(ire); 6916 if (ipif_refheld) 6917 ipif_refrele(ipif); 6918 return (EEXIST); 6919 } 6920 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6921 "for 0x%x\n", (void *)ipif, 6922 ipif->ipif_ire_type, 6923 ntohl(ipif->ipif_lcl_addr))); 6924 ire = ire_create( 6925 (uchar_t *)&dst_addr, /* dest address */ 6926 (uchar_t *)&mask, /* mask */ 6927 (uchar_t *)&ipif->ipif_src_addr, 6928 NULL, /* no gateway */ 6929 &ipif->ipif_mtu, 6930 NULL, 6931 ipif->ipif_rq, /* recv-from queue */ 6932 NULL, /* no send-to queue */ 6933 ipif->ipif_ire_type, /* LOOPBACK */ 6934 ipif, 6935 0, 6936 0, 6937 0, 6938 (ipif->ipif_flags & IPIF_PRIVATE) ? 6939 RTF_PRIVATE : 0, 6940 &ire_uinfo_null, 6941 NULL, 6942 NULL, 6943 ipst); 6944 6945 if (ire == NULL) { 6946 if (ipif_refheld) 6947 ipif_refrele(ipif); 6948 return (ENOMEM); 6949 } 6950 error = ire_add(&ire, q, mp, func, B_FALSE); 6951 if (error == 0) 6952 goto save_ire; 6953 if (ipif_refheld) 6954 ipif_refrele(ipif); 6955 return (error); 6956 6957 } 6958 } 6959 6960 /* 6961 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6962 * and the gateway address provided is one of the system's interface 6963 * addresses. By using the routing socket interface and supplying an 6964 * RTA_IFP sockaddr with an interface index, an alternate method of 6965 * specifying an interface route to be created is available which uses 6966 * the interface index that specifies the outgoing interface rather than 6967 * the address of an outgoing interface (which may not be able to 6968 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6969 * flag, routes can be specified which not only specify the next-hop to 6970 * be used when routing to a certain prefix, but also which outgoing 6971 * interface should be used. 6972 * 6973 * Previously, interfaces would have unique addresses assigned to them 6974 * and so the address assigned to a particular interface could be used 6975 * to identify a particular interface. One exception to this was the 6976 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6977 * 6978 * With the advent of IPv6 and its link-local addresses, this 6979 * restriction was relaxed and interfaces could share addresses between 6980 * themselves. In fact, typically all of the link-local interfaces on 6981 * an IPv6 node or router will have the same link-local address. In 6982 * order to differentiate between these interfaces, the use of an 6983 * interface index is necessary and this index can be carried inside a 6984 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6985 * of using the interface index, however, is that all of the ipif's that 6986 * are part of an ill have the same index and so the RTA_IFP sockaddr 6987 * cannot be used to differentiate between ipif's (or logical 6988 * interfaces) that belong to the same ill (physical interface). 6989 * 6990 * For example, in the following case involving IPv4 interfaces and 6991 * logical interfaces 6992 * 6993 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6994 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6995 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6996 * 6997 * the ipif's corresponding to each of these interface routes can be 6998 * uniquely identified by the "gateway" (actually interface address). 6999 * 7000 * In this case involving multiple IPv6 default routes to a particular 7001 * link-local gateway, the use of RTA_IFP is necessary to specify which 7002 * default route is of interest: 7003 * 7004 * default fe80::123:4567:89ab:cdef U if0 7005 * default fe80::123:4567:89ab:cdef U if1 7006 */ 7007 7008 /* RTF_GATEWAY not set */ 7009 if (!(flags & RTF_GATEWAY)) { 7010 queue_t *stq; 7011 7012 if (sp != NULL) { 7013 ip2dbg(("ip_rt_add: gateway security attributes " 7014 "cannot be set with interface route\n")); 7015 if (ipif_refheld) 7016 ipif_refrele(ipif); 7017 return (EINVAL); 7018 } 7019 7020 /* 7021 * As the interface index specified with the RTA_IFP sockaddr is 7022 * the same for all ipif's off of an ill, the matching logic 7023 * below uses MATCH_IRE_ILL if such an index was specified. 7024 * This means that routes sharing the same prefix when added 7025 * using a RTA_IFP sockaddr must have distinct interface 7026 * indices (namely, they must be on distinct ill's). 7027 * 7028 * On the other hand, since the gateway address will usually be 7029 * different for each ipif on the system, the matching logic 7030 * uses MATCH_IRE_IPIF in the case of a traditional interface 7031 * route. This means that interface routes for the same prefix 7032 * can be created if they belong to distinct ipif's and if a 7033 * RTA_IFP sockaddr is not present. 7034 */ 7035 if (ipif_arg != NULL) { 7036 if (ipif_refheld) { 7037 ipif_refrele(ipif); 7038 ipif_refheld = B_FALSE; 7039 } 7040 ipif = ipif_arg; 7041 match_flags |= MATCH_IRE_ILL; 7042 } else { 7043 /* 7044 * Check the ipif corresponding to the gw_addr 7045 */ 7046 if (ipif == NULL) 7047 return (ENETUNREACH); 7048 match_flags |= MATCH_IRE_IPIF; 7049 } 7050 ASSERT(ipif != NULL); 7051 7052 /* 7053 * We check for an existing entry at this point. 7054 * 7055 * Since a netmask isn't passed in via the ioctl interface 7056 * (SIOCADDRT), we don't check for a matching netmask in that 7057 * case. 7058 */ 7059 if (!ioctl_msg) 7060 match_flags |= MATCH_IRE_MASK; 7061 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7062 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7063 if (ire != NULL) { 7064 ire_refrele(ire); 7065 if (ipif_refheld) 7066 ipif_refrele(ipif); 7067 return (EEXIST); 7068 } 7069 7070 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7071 ? ipif->ipif_rq : ipif->ipif_wq; 7072 7073 /* 7074 * Create a copy of the IRE_LOOPBACK, 7075 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7076 * the modified address and netmask. 7077 */ 7078 ire = ire_create( 7079 (uchar_t *)&dst_addr, 7080 (uint8_t *)&mask, 7081 (uint8_t *)&ipif->ipif_src_addr, 7082 NULL, 7083 &ipif->ipif_mtu, 7084 NULL, 7085 NULL, 7086 stq, 7087 ipif->ipif_net_type, 7088 ipif, 7089 0, 7090 0, 7091 0, 7092 flags, 7093 &ire_uinfo_null, 7094 NULL, 7095 NULL, 7096 ipst); 7097 if (ire == NULL) { 7098 if (ipif_refheld) 7099 ipif_refrele(ipif); 7100 return (ENOMEM); 7101 } 7102 7103 /* 7104 * Some software (for example, GateD and Sun Cluster) attempts 7105 * to create (what amount to) IRE_PREFIX routes with the 7106 * loopback address as the gateway. This is primarily done to 7107 * set up prefixes with the RTF_REJECT flag set (for example, 7108 * when generating aggregate routes.) 7109 * 7110 * If the IRE type (as defined by ipif->ipif_net_type) is 7111 * IRE_LOOPBACK, then we map the request into a 7112 * IRE_IF_NORESOLVER. 7113 * 7114 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7115 * routine, but rather using ire_create() directly. 7116 * 7117 */ 7118 if (ipif->ipif_net_type == IRE_LOOPBACK) 7119 ire->ire_type = IRE_IF_NORESOLVER; 7120 7121 error = ire_add(&ire, q, mp, func, B_FALSE); 7122 if (error == 0) 7123 goto save_ire; 7124 7125 /* 7126 * In the result of failure, ire_add() will have already 7127 * deleted the ire in question, so there is no need to 7128 * do that here. 7129 */ 7130 if (ipif_refheld) 7131 ipif_refrele(ipif); 7132 return (error); 7133 } 7134 if (ipif_refheld) { 7135 ipif_refrele(ipif); 7136 ipif_refheld = B_FALSE; 7137 } 7138 7139 /* 7140 * Get an interface IRE for the specified gateway. 7141 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7142 * gateway, it is currently unreachable and we fail the request 7143 * accordingly. 7144 */ 7145 ipif = ipif_arg; 7146 if (ipif_arg != NULL) 7147 match_flags |= MATCH_IRE_ILL; 7148 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7149 ALL_ZONES, 0, NULL, match_flags, ipst); 7150 if (gw_ire == NULL) 7151 return (ENETUNREACH); 7152 7153 /* 7154 * We create one of three types of IREs as a result of this request 7155 * based on the netmask. A netmask of all ones (which is automatically 7156 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7157 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7158 * created. Otherwise, an IRE_PREFIX route is created for the 7159 * destination prefix. 7160 */ 7161 if (mask == IP_HOST_MASK) 7162 type = IRE_HOST; 7163 else if (mask == 0) 7164 type = IRE_DEFAULT; 7165 else 7166 type = IRE_PREFIX; 7167 7168 /* check for a duplicate entry */ 7169 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7170 NULL, ALL_ZONES, 0, NULL, 7171 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7172 if (ire != NULL) { 7173 ire_refrele(gw_ire); 7174 ire_refrele(ire); 7175 return (EEXIST); 7176 } 7177 7178 /* Security attribute exists */ 7179 if (sp != NULL) { 7180 tsol_gcgrp_addr_t ga; 7181 7182 /* find or create the gateway credentials group */ 7183 ga.ga_af = AF_INET; 7184 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7185 7186 /* we hold reference to it upon success */ 7187 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7188 if (gcgrp == NULL) { 7189 ire_refrele(gw_ire); 7190 return (ENOMEM); 7191 } 7192 7193 /* 7194 * Create and add the security attribute to the group; a 7195 * reference to the group is made upon allocating a new 7196 * entry successfully. If it finds an already-existing 7197 * entry for the security attribute in the group, it simply 7198 * returns it and no new reference is made to the group. 7199 */ 7200 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7201 if (gc == NULL) { 7202 /* release reference held by gcgrp_lookup */ 7203 GCGRP_REFRELE(gcgrp); 7204 ire_refrele(gw_ire); 7205 return (ENOMEM); 7206 } 7207 } 7208 7209 /* Create the IRE. */ 7210 ire = ire_create( 7211 (uchar_t *)&dst_addr, /* dest address */ 7212 (uchar_t *)&mask, /* mask */ 7213 /* src address assigned by the caller? */ 7214 (uchar_t *)(((src_addr != INADDR_ANY) && 7215 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7216 (uchar_t *)&gw_addr, /* gateway address */ 7217 &gw_ire->ire_max_frag, 7218 NULL, /* no src nce */ 7219 NULL, /* no recv-from queue */ 7220 NULL, /* no send-to queue */ 7221 (ushort_t)type, /* IRE type */ 7222 ipif_arg, 7223 0, 7224 0, 7225 0, 7226 flags, 7227 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7228 gc, /* security attribute */ 7229 NULL, 7230 ipst); 7231 7232 /* 7233 * The ire holds a reference to the 'gc' and the 'gc' holds a 7234 * reference to the 'gcgrp'. We can now release the extra reference 7235 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7236 */ 7237 if (gcgrp_xtraref) 7238 GCGRP_REFRELE(gcgrp); 7239 if (ire == NULL) { 7240 if (gc != NULL) 7241 GC_REFRELE(gc); 7242 ire_refrele(gw_ire); 7243 return (ENOMEM); 7244 } 7245 7246 /* 7247 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7248 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7249 */ 7250 7251 /* Add the new IRE. */ 7252 error = ire_add(&ire, q, mp, func, B_FALSE); 7253 if (error != 0) { 7254 /* 7255 * In the result of failure, ire_add() will have already 7256 * deleted the ire in question, so there is no need to 7257 * do that here. 7258 */ 7259 ire_refrele(gw_ire); 7260 return (error); 7261 } 7262 7263 if (flags & RTF_MULTIRT) { 7264 /* 7265 * Invoke the CGTP (multirouting) filtering module 7266 * to add the dst address in the filtering database. 7267 * Replicated inbound packets coming from that address 7268 * will be filtered to discard the duplicates. 7269 * It is not necessary to call the CGTP filter hook 7270 * when the dst address is a broadcast or multicast, 7271 * because an IP source address cannot be a broadcast 7272 * or a multicast. 7273 */ 7274 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7275 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7276 if (ire_dst != NULL) { 7277 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7278 ire_refrele(ire_dst); 7279 goto save_ire; 7280 } 7281 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7282 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7283 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7284 ire->ire_addr, 7285 ire->ire_gateway_addr, 7286 ire->ire_src_addr, 7287 gw_ire->ire_src_addr); 7288 if (res != 0) { 7289 ire_refrele(gw_ire); 7290 ire_delete(ire); 7291 return (res); 7292 } 7293 } 7294 } 7295 7296 /* 7297 * Now that the prefix IRE entry has been created, delete any 7298 * existing gateway IRE cache entries as well as any IRE caches 7299 * using the gateway, and force them to be created through 7300 * ip_newroute. 7301 */ 7302 if (gc != NULL) { 7303 ASSERT(gcgrp != NULL); 7304 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7305 } 7306 7307 save_ire: 7308 if (gw_ire != NULL) { 7309 ire_refrele(gw_ire); 7310 } 7311 if (ipif != NULL) { 7312 /* 7313 * Save enough information so that we can recreate the IRE if 7314 * the interface goes down and then up. The metrics associated 7315 * with the route will be saved as well when rts_setmetrics() is 7316 * called after the IRE has been created. In the case where 7317 * memory cannot be allocated, none of this information will be 7318 * saved. 7319 */ 7320 ipif_save_ire(ipif, ire); 7321 } 7322 if (ioctl_msg) 7323 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7324 if (ire_arg != NULL) { 7325 /* 7326 * Store the ire that was successfully added into where ire_arg 7327 * points to so that callers don't have to look it up 7328 * themselves (but they are responsible for ire_refrele()ing 7329 * the ire when they are finished with it). 7330 */ 7331 *ire_arg = ire; 7332 } else { 7333 ire_refrele(ire); /* Held in ire_add */ 7334 } 7335 if (ipif_refheld) 7336 ipif_refrele(ipif); 7337 return (0); 7338 } 7339 7340 /* 7341 * ip_rt_delete is called to delete an IPv4 route. 7342 * ipif_arg is passed in to associate it with the correct interface. 7343 * We may need to restart this operation if the ipif cannot be looked up 7344 * due to an exclusive operation that is currently in progress. The restart 7345 * entry point is specified by 'func' 7346 */ 7347 /* ARGSUSED4 */ 7348 int 7349 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7350 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7351 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7352 { 7353 ire_t *ire = NULL; 7354 ipif_t *ipif; 7355 boolean_t ipif_refheld = B_FALSE; 7356 uint_t type; 7357 uint_t match_flags = MATCH_IRE_TYPE; 7358 int err = 0; 7359 7360 ip1dbg(("ip_rt_delete:")); 7361 /* 7362 * If this is the case of RTF_HOST being set, then we set the netmask 7363 * to all ones. Otherwise, we use the netmask if one was supplied. 7364 */ 7365 if (flags & RTF_HOST) { 7366 mask = IP_HOST_MASK; 7367 match_flags |= MATCH_IRE_MASK; 7368 } else if (rtm_addrs & RTA_NETMASK) { 7369 match_flags |= MATCH_IRE_MASK; 7370 } 7371 7372 /* 7373 * Note that RTF_GATEWAY is never set on a delete, therefore 7374 * we check if the gateway address is one of our interfaces first, 7375 * and fall back on RTF_GATEWAY routes. 7376 * 7377 * This makes it possible to delete an original 7378 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7379 * 7380 * As the interface index specified with the RTA_IFP sockaddr is the 7381 * same for all ipif's off of an ill, the matching logic below uses 7382 * MATCH_IRE_ILL if such an index was specified. This means a route 7383 * sharing the same prefix and interface index as the the route 7384 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7385 * is specified in the request. 7386 * 7387 * On the other hand, since the gateway address will usually be 7388 * different for each ipif on the system, the matching logic 7389 * uses MATCH_IRE_IPIF in the case of a traditional interface 7390 * route. This means that interface routes for the same prefix can be 7391 * uniquely identified if they belong to distinct ipif's and if a 7392 * RTA_IFP sockaddr is not present. 7393 * 7394 * For more detail on specifying routes by gateway address and by 7395 * interface index, see the comments in ip_rt_add(). 7396 */ 7397 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7398 ipst); 7399 if (ipif != NULL) 7400 ipif_refheld = B_TRUE; 7401 else if (err == EINPROGRESS) 7402 return (err); 7403 else 7404 err = 0; 7405 if (ipif != NULL) { 7406 if (ipif_arg != NULL) { 7407 if (ipif_refheld) { 7408 ipif_refrele(ipif); 7409 ipif_refheld = B_FALSE; 7410 } 7411 ipif = ipif_arg; 7412 match_flags |= MATCH_IRE_ILL; 7413 } else { 7414 match_flags |= MATCH_IRE_IPIF; 7415 } 7416 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7417 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7418 ALL_ZONES, NULL, match_flags, ipst); 7419 } 7420 if (ire == NULL) { 7421 ire = ire_ftable_lookup(dst_addr, mask, 0, 7422 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7423 match_flags, ipst); 7424 } 7425 } 7426 7427 if (ire == NULL) { 7428 /* 7429 * At this point, the gateway address is not one of our own 7430 * addresses or a matching interface route was not found. We 7431 * set the IRE type to lookup based on whether 7432 * this is a host route, a default route or just a prefix. 7433 * 7434 * If an ipif_arg was passed in, then the lookup is based on an 7435 * interface index so MATCH_IRE_ILL is added to match_flags. 7436 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7437 * set as the route being looked up is not a traditional 7438 * interface route. 7439 */ 7440 match_flags &= ~MATCH_IRE_IPIF; 7441 match_flags |= MATCH_IRE_GW; 7442 if (ipif_arg != NULL) 7443 match_flags |= MATCH_IRE_ILL; 7444 if (mask == IP_HOST_MASK) 7445 type = IRE_HOST; 7446 else if (mask == 0) 7447 type = IRE_DEFAULT; 7448 else 7449 type = IRE_PREFIX; 7450 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7451 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7452 } 7453 7454 if (ipif_refheld) 7455 ipif_refrele(ipif); 7456 7457 /* ipif is not refheld anymore */ 7458 if (ire == NULL) 7459 return (ESRCH); 7460 7461 if (ire->ire_flags & RTF_MULTIRT) { 7462 /* 7463 * Invoke the CGTP (multirouting) filtering module 7464 * to remove the dst address from the filtering database. 7465 * Packets coming from that address will no longer be 7466 * filtered to remove duplicates. 7467 */ 7468 if (ip_cgtp_filter_ops != NULL && 7469 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7470 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7471 ire->ire_addr, ire->ire_gateway_addr); 7472 } 7473 ip_cgtp_bcast_delete(ire, ipst); 7474 } 7475 7476 ipif = ire->ire_ipif; 7477 if (ipif != NULL) 7478 ipif_remove_ire(ipif, ire); 7479 if (ioctl_msg) 7480 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7481 ire_delete(ire); 7482 ire_refrele(ire); 7483 return (err); 7484 } 7485 7486 /* 7487 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7488 */ 7489 /* ARGSUSED */ 7490 int 7491 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7492 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7493 { 7494 ipaddr_t dst_addr; 7495 ipaddr_t gw_addr; 7496 ipaddr_t mask; 7497 int error = 0; 7498 mblk_t *mp1; 7499 struct rtentry *rt; 7500 ipif_t *ipif = NULL; 7501 ip_stack_t *ipst; 7502 7503 ASSERT(q->q_next == NULL); 7504 ipst = CONNQ_TO_IPST(q); 7505 7506 ip1dbg(("ip_siocaddrt:")); 7507 /* Existence of mp1 verified in ip_wput_nondata */ 7508 mp1 = mp->b_cont->b_cont; 7509 rt = (struct rtentry *)mp1->b_rptr; 7510 7511 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7512 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7513 7514 /* 7515 * If the RTF_HOST flag is on, this is a request to assign a gateway 7516 * to a particular host address. In this case, we set the netmask to 7517 * all ones for the particular destination address. Otherwise, 7518 * determine the netmask to be used based on dst_addr and the interfaces 7519 * in use. 7520 */ 7521 if (rt->rt_flags & RTF_HOST) { 7522 mask = IP_HOST_MASK; 7523 } else { 7524 /* 7525 * Note that ip_subnet_mask returns a zero mask in the case of 7526 * default (an all-zeroes address). 7527 */ 7528 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7529 } 7530 7531 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7532 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7533 if (ipif != NULL) 7534 ipif_refrele(ipif); 7535 return (error); 7536 } 7537 7538 /* 7539 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7540 */ 7541 /* ARGSUSED */ 7542 int 7543 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7544 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7545 { 7546 ipaddr_t dst_addr; 7547 ipaddr_t gw_addr; 7548 ipaddr_t mask; 7549 int error; 7550 mblk_t *mp1; 7551 struct rtentry *rt; 7552 ipif_t *ipif = NULL; 7553 ip_stack_t *ipst; 7554 7555 ASSERT(q->q_next == NULL); 7556 ipst = CONNQ_TO_IPST(q); 7557 7558 ip1dbg(("ip_siocdelrt:")); 7559 /* Existence of mp1 verified in ip_wput_nondata */ 7560 mp1 = mp->b_cont->b_cont; 7561 rt = (struct rtentry *)mp1->b_rptr; 7562 7563 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7564 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7565 7566 /* 7567 * If the RTF_HOST flag is on, this is a request to delete a gateway 7568 * to a particular host address. In this case, we set the netmask to 7569 * all ones for the particular destination address. Otherwise, 7570 * determine the netmask to be used based on dst_addr and the interfaces 7571 * in use. 7572 */ 7573 if (rt->rt_flags & RTF_HOST) { 7574 mask = IP_HOST_MASK; 7575 } else { 7576 /* 7577 * Note that ip_subnet_mask returns a zero mask in the case of 7578 * default (an all-zeroes address). 7579 */ 7580 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7581 } 7582 7583 error = ip_rt_delete(dst_addr, mask, gw_addr, 7584 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7585 mp, ip_process_ioctl, ipst); 7586 if (ipif != NULL) 7587 ipif_refrele(ipif); 7588 return (error); 7589 } 7590 7591 /* 7592 * Enqueue the mp onto the ipsq, chained by b_next. 7593 * b_prev stores the function to be executed later, and b_queue the queue 7594 * where this mp originated. 7595 */ 7596 void 7597 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7598 ill_t *pending_ill) 7599 { 7600 conn_t *connp = NULL; 7601 7602 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7603 ASSERT(func != NULL); 7604 7605 mp->b_queue = q; 7606 mp->b_prev = (void *)func; 7607 mp->b_next = NULL; 7608 7609 switch (type) { 7610 case CUR_OP: 7611 if (ipsq->ipsq_mptail != NULL) { 7612 ASSERT(ipsq->ipsq_mphead != NULL); 7613 ipsq->ipsq_mptail->b_next = mp; 7614 } else { 7615 ASSERT(ipsq->ipsq_mphead == NULL); 7616 ipsq->ipsq_mphead = mp; 7617 } 7618 ipsq->ipsq_mptail = mp; 7619 break; 7620 7621 case NEW_OP: 7622 if (ipsq->ipsq_xopq_mptail != NULL) { 7623 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7624 ipsq->ipsq_xopq_mptail->b_next = mp; 7625 } else { 7626 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7627 ipsq->ipsq_xopq_mphead = mp; 7628 } 7629 ipsq->ipsq_xopq_mptail = mp; 7630 break; 7631 default: 7632 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7633 } 7634 7635 if (CONN_Q(q) && pending_ill != NULL) { 7636 connp = Q_TO_CONN(q); 7637 7638 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7639 connp->conn_oper_pending_ill = pending_ill; 7640 } 7641 } 7642 7643 /* 7644 * Return the mp at the head of the ipsq. After emptying the ipsq 7645 * look at the next ioctl, if this ioctl is complete. Otherwise 7646 * return, we will resume when we complete the current ioctl. 7647 * The current ioctl will wait till it gets a response from the 7648 * driver below. 7649 */ 7650 static mblk_t * 7651 ipsq_dq(ipsq_t *ipsq) 7652 { 7653 mblk_t *mp; 7654 7655 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7656 7657 mp = ipsq->ipsq_mphead; 7658 if (mp != NULL) { 7659 ipsq->ipsq_mphead = mp->b_next; 7660 if (ipsq->ipsq_mphead == NULL) 7661 ipsq->ipsq_mptail = NULL; 7662 mp->b_next = NULL; 7663 return (mp); 7664 } 7665 if (ipsq->ipsq_current_ipif != NULL) 7666 return (NULL); 7667 mp = ipsq->ipsq_xopq_mphead; 7668 if (mp != NULL) { 7669 ipsq->ipsq_xopq_mphead = mp->b_next; 7670 if (ipsq->ipsq_xopq_mphead == NULL) 7671 ipsq->ipsq_xopq_mptail = NULL; 7672 mp->b_next = NULL; 7673 return (mp); 7674 } 7675 return (NULL); 7676 } 7677 7678 /* 7679 * Enter the ipsq corresponding to ill, by waiting synchronously till 7680 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7681 * will have to drain completely before ipsq_enter returns success. 7682 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7683 * and the ipsq_exit logic will start the next enqueued ioctl after 7684 * completion of the current ioctl. If 'force' is used, we don't wait 7685 * for the enqueued ioctls. This is needed when a conn_close wants to 7686 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7687 * of an ill can also use this option. But we dont' use it currently. 7688 */ 7689 #define ENTER_SQ_WAIT_TICKS 100 7690 boolean_t 7691 ipsq_enter(ill_t *ill, boolean_t force) 7692 { 7693 ipsq_t *ipsq; 7694 boolean_t waited_enough = B_FALSE; 7695 7696 /* 7697 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7698 * Since the <ill-ipsq> assocs could change while we wait for the 7699 * writer, it is easier to wait on a fixed global rather than try to 7700 * cv_wait on a changing ipsq. 7701 */ 7702 mutex_enter(&ill->ill_lock); 7703 for (;;) { 7704 if (ill->ill_state_flags & ILL_CONDEMNED) { 7705 mutex_exit(&ill->ill_lock); 7706 return (B_FALSE); 7707 } 7708 7709 ipsq = ill->ill_phyint->phyint_ipsq; 7710 mutex_enter(&ipsq->ipsq_lock); 7711 if (ipsq->ipsq_writer == NULL && 7712 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7713 break; 7714 } else if (ipsq->ipsq_writer != NULL) { 7715 mutex_exit(&ipsq->ipsq_lock); 7716 cv_wait(&ill->ill_cv, &ill->ill_lock); 7717 } else { 7718 mutex_exit(&ipsq->ipsq_lock); 7719 if (force) { 7720 (void) cv_timedwait(&ill->ill_cv, 7721 &ill->ill_lock, 7722 lbolt + ENTER_SQ_WAIT_TICKS); 7723 waited_enough = B_TRUE; 7724 continue; 7725 } else { 7726 cv_wait(&ill->ill_cv, &ill->ill_lock); 7727 } 7728 } 7729 } 7730 7731 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7732 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7733 ipsq->ipsq_writer = curthread; 7734 ipsq->ipsq_reentry_cnt++; 7735 #ifdef ILL_DEBUG 7736 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7737 #endif 7738 mutex_exit(&ipsq->ipsq_lock); 7739 mutex_exit(&ill->ill_lock); 7740 return (B_TRUE); 7741 } 7742 7743 /* 7744 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7745 * certain critical operations like plumbing (i.e. most set ioctls), 7746 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7747 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7748 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7749 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7750 * threads executing in the ipsq. Responses from the driver pertain to the 7751 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7752 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7753 * 7754 * If a thread does not want to reenter the ipsq when it is already writer, 7755 * it must make sure that the specified reentry point to be called later 7756 * when the ipsq is empty, nor any code path starting from the specified reentry 7757 * point must never ever try to enter the ipsq again. Otherwise it can lead 7758 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7759 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7760 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7761 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7762 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7763 * ioctl if the current ioctl has completed. If the current ioctl is still 7764 * in progress it simply returns. The current ioctl could be waiting for 7765 * a response from another module (arp_ or the driver or could be waiting for 7766 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7767 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7768 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7769 * ipsq_current_ipif is clear which happens only on ioctl completion. 7770 */ 7771 7772 /* 7773 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7774 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7775 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7776 * completion. 7777 */ 7778 ipsq_t * 7779 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7780 ipsq_func_t func, int type, boolean_t reentry_ok) 7781 { 7782 ipsq_t *ipsq; 7783 7784 /* Only 1 of ipif or ill can be specified */ 7785 ASSERT((ipif != NULL) ^ (ill != NULL)); 7786 if (ipif != NULL) 7787 ill = ipif->ipif_ill; 7788 7789 /* 7790 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7791 * ipsq of an ill can't change when ill_lock is held. 7792 */ 7793 GRAB_CONN_LOCK(q); 7794 mutex_enter(&ill->ill_lock); 7795 ipsq = ill->ill_phyint->phyint_ipsq; 7796 mutex_enter(&ipsq->ipsq_lock); 7797 7798 /* 7799 * 1. Enter the ipsq if we are already writer and reentry is ok. 7800 * (Note: If the caller does not specify reentry_ok then neither 7801 * 'func' nor any of its callees must ever attempt to enter the ipsq 7802 * again. Otherwise it can lead to an infinite loop 7803 * 2. Enter the ipsq if there is no current writer and this attempted 7804 * entry is part of the current ioctl or operation 7805 * 3. Enter the ipsq if there is no current writer and this is a new 7806 * ioctl (or operation) and the ioctl (or operation) queue is 7807 * empty and there is no ioctl (or operation) currently in progress 7808 */ 7809 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7810 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7811 ipsq->ipsq_current_ipif == NULL))) || 7812 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7813 /* Success. */ 7814 ipsq->ipsq_reentry_cnt++; 7815 ipsq->ipsq_writer = curthread; 7816 mutex_exit(&ipsq->ipsq_lock); 7817 mutex_exit(&ill->ill_lock); 7818 RELEASE_CONN_LOCK(q); 7819 #ifdef ILL_DEBUG 7820 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7821 #endif 7822 return (ipsq); 7823 } 7824 7825 ipsq_enq(ipsq, q, mp, func, type, ill); 7826 7827 mutex_exit(&ipsq->ipsq_lock); 7828 mutex_exit(&ill->ill_lock); 7829 RELEASE_CONN_LOCK(q); 7830 return (NULL); 7831 } 7832 7833 /* 7834 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7835 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7836 * cannot be entered, the mp is queued for completion. 7837 */ 7838 void 7839 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7840 boolean_t reentry_ok) 7841 { 7842 ipsq_t *ipsq; 7843 7844 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7845 7846 /* 7847 * Drop the caller's refhold on the ill. This is safe since we either 7848 * entered the IPSQ (and thus are exclusive), or failed to enter the 7849 * IPSQ, in which case we return without accessing ill anymore. This 7850 * is needed because func needs to see the correct refcount. 7851 * e.g. removeif can work only then. 7852 */ 7853 ill_refrele(ill); 7854 if (ipsq != NULL) { 7855 (*func)(ipsq, q, mp, NULL); 7856 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7857 } 7858 } 7859 7860 /* 7861 * If there are more than ILL_GRP_CNT ills in a group, 7862 * we use kmem alloc'd buffers, else use the stack 7863 */ 7864 #define ILL_GRP_CNT 14 7865 /* 7866 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7867 * Called by a thread that is currently exclusive on this ipsq. 7868 */ 7869 void 7870 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7871 { 7872 queue_t *q; 7873 mblk_t *mp; 7874 ipsq_func_t func; 7875 int next; 7876 ill_t **ill_list = NULL; 7877 size_t ill_list_size = 0; 7878 int cnt = 0; 7879 boolean_t need_ipsq_free = B_FALSE; 7880 ip_stack_t *ipst = ipsq->ipsq_ipst; 7881 7882 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7883 mutex_enter(&ipsq->ipsq_lock); 7884 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7885 if (ipsq->ipsq_reentry_cnt != 1) { 7886 ipsq->ipsq_reentry_cnt--; 7887 mutex_exit(&ipsq->ipsq_lock); 7888 return; 7889 } 7890 7891 mp = ipsq_dq(ipsq); 7892 while (mp != NULL) { 7893 again: 7894 mutex_exit(&ipsq->ipsq_lock); 7895 func = (ipsq_func_t)mp->b_prev; 7896 q = (queue_t *)mp->b_queue; 7897 mp->b_prev = NULL; 7898 mp->b_queue = NULL; 7899 7900 /* 7901 * If 'q' is an conn queue, it is valid, since we did a 7902 * a refhold on the connp, at the start of the ioctl. 7903 * If 'q' is an ill queue, it is valid, since close of an 7904 * ill will clean up the 'ipsq'. 7905 */ 7906 (*func)(ipsq, q, mp, NULL); 7907 7908 mutex_enter(&ipsq->ipsq_lock); 7909 mp = ipsq_dq(ipsq); 7910 } 7911 7912 mutex_exit(&ipsq->ipsq_lock); 7913 7914 /* 7915 * Need to grab the locks in the right order. Need to 7916 * atomically check (under ipsq_lock) that there are no 7917 * messages before relinquishing the ipsq. Also need to 7918 * atomically wakeup waiters on ill_cv while holding ill_lock. 7919 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7920 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7921 * to grab ill_g_lock as writer. 7922 */ 7923 rw_enter(&ipst->ips_ill_g_lock, 7924 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7925 7926 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7927 if (ipsq->ipsq_refs != 0) { 7928 /* At most 2 ills v4/v6 per phyint */ 7929 cnt = ipsq->ipsq_refs << 1; 7930 ill_list_size = cnt * sizeof (ill_t *); 7931 /* 7932 * If memory allocation fails, we will do the split 7933 * the next time ipsq_exit is called for whatever reason. 7934 * As long as the ipsq_split flag is set the need to 7935 * split is remembered. 7936 */ 7937 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7938 if (ill_list != NULL) 7939 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7940 } 7941 mutex_enter(&ipsq->ipsq_lock); 7942 mp = ipsq_dq(ipsq); 7943 if (mp != NULL) { 7944 /* oops, some message has landed up, we can't get out */ 7945 if (ill_list != NULL) 7946 ill_unlock_ills(ill_list, cnt); 7947 rw_exit(&ipst->ips_ill_g_lock); 7948 if (ill_list != NULL) 7949 kmem_free(ill_list, ill_list_size); 7950 ill_list = NULL; 7951 ill_list_size = 0; 7952 cnt = 0; 7953 goto again; 7954 } 7955 7956 /* 7957 * Split only if no ioctl is pending and if memory alloc succeeded 7958 * above. 7959 */ 7960 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7961 ill_list != NULL) { 7962 /* 7963 * No new ill can join this ipsq since we are holding the 7964 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7965 * ipsq. ill_split_ipsq may fail due to memory shortage. 7966 * If so we will retry on the next ipsq_exit. 7967 */ 7968 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7969 } 7970 7971 /* 7972 * We are holding the ipsq lock, hence no new messages can 7973 * land up on the ipsq, and there are no messages currently. 7974 * Now safe to get out. Wake up waiters and relinquish ipsq 7975 * atomically while holding ill locks. 7976 */ 7977 ipsq->ipsq_writer = NULL; 7978 ipsq->ipsq_reentry_cnt--; 7979 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7980 #ifdef ILL_DEBUG 7981 ipsq->ipsq_depth = 0; 7982 #endif 7983 mutex_exit(&ipsq->ipsq_lock); 7984 /* 7985 * For IPMP this should wake up all ills in this ipsq. 7986 * We need to hold the ill_lock while waking up waiters to 7987 * avoid missed wakeups. But there is no need to acquire all 7988 * the ill locks and then wakeup. If we have not acquired all 7989 * the locks (due to memory failure above) ill_signal_ipsq_ills 7990 * wakes up ills one at a time after getting the right ill_lock 7991 */ 7992 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7993 if (ill_list != NULL) 7994 ill_unlock_ills(ill_list, cnt); 7995 if (ipsq->ipsq_refs == 0) 7996 need_ipsq_free = B_TRUE; 7997 rw_exit(&ipst->ips_ill_g_lock); 7998 if (ill_list != 0) 7999 kmem_free(ill_list, ill_list_size); 8000 8001 if (need_ipsq_free) { 8002 /* 8003 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8004 * looked up. ipsq can be looked up only thru ill or phyint 8005 * and there are no ills/phyint on this ipsq. 8006 */ 8007 ipsq_delete(ipsq); 8008 } 8009 /* 8010 * Now start any igmp or mld timers that could not be started 8011 * while inside the ipsq. The timers can't be started while inside 8012 * the ipsq, since igmp_start_timers may need to call untimeout() 8013 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8014 * there could be a deadlock since the timeout handlers 8015 * mld_timeout_handler / igmp_timeout_handler also synchronously 8016 * wait in ipsq_enter() trying to get the ipsq. 8017 * 8018 * However there is one exception to the above. If this thread is 8019 * itself the igmp/mld timeout handler thread, then we don't want 8020 * to start any new timer until the current handler is done. The 8021 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8022 * all others pass B_TRUE. 8023 */ 8024 if (start_igmp_timer) { 8025 mutex_enter(&ipst->ips_igmp_timer_lock); 8026 next = ipst->ips_igmp_deferred_next; 8027 ipst->ips_igmp_deferred_next = INFINITY; 8028 mutex_exit(&ipst->ips_igmp_timer_lock); 8029 8030 if (next != INFINITY) 8031 igmp_start_timers(next, ipst); 8032 } 8033 8034 if (start_mld_timer) { 8035 mutex_enter(&ipst->ips_mld_timer_lock); 8036 next = ipst->ips_mld_deferred_next; 8037 ipst->ips_mld_deferred_next = INFINITY; 8038 mutex_exit(&ipst->ips_mld_timer_lock); 8039 8040 if (next != INFINITY) 8041 mld_start_timers(next, ipst); 8042 } 8043 } 8044 8045 /* 8046 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8047 * and `ioccmd'. 8048 */ 8049 void 8050 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8051 { 8052 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8053 8054 mutex_enter(&ipsq->ipsq_lock); 8055 ASSERT(ipsq->ipsq_current_ipif == NULL); 8056 ASSERT(ipsq->ipsq_current_ioctl == 0); 8057 ipsq->ipsq_current_ipif = ipif; 8058 ipsq->ipsq_current_ioctl = ioccmd; 8059 mutex_exit(&ipsq->ipsq_lock); 8060 } 8061 8062 /* 8063 * Finish the current exclusive operation on `ipsq'. Note that other 8064 * operations will not be able to proceed until an ipsq_exit() is done. 8065 */ 8066 void 8067 ipsq_current_finish(ipsq_t *ipsq) 8068 { 8069 ipif_t *ipif = ipsq->ipsq_current_ipif; 8070 8071 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8072 8073 /* 8074 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8075 * (but we're careful to never set IPIF_CHANGING in that case). 8076 */ 8077 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8078 mutex_enter(&ipif->ipif_ill->ill_lock); 8079 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8080 8081 /* Send any queued event */ 8082 ill_nic_info_dispatch(ipif->ipif_ill); 8083 mutex_exit(&ipif->ipif_ill->ill_lock); 8084 } 8085 8086 mutex_enter(&ipsq->ipsq_lock); 8087 ASSERT(ipsq->ipsq_current_ipif != NULL); 8088 ipsq->ipsq_current_ipif = NULL; 8089 ipsq->ipsq_current_ioctl = 0; 8090 mutex_exit(&ipsq->ipsq_lock); 8091 } 8092 8093 /* 8094 * The ill is closing. Flush all messages on the ipsq that originated 8095 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8096 * for this ill since ipsq_enter could not have entered until then. 8097 * New messages can't be queued since the CONDEMNED flag is set. 8098 */ 8099 static void 8100 ipsq_flush(ill_t *ill) 8101 { 8102 queue_t *q; 8103 mblk_t *prev; 8104 mblk_t *mp; 8105 mblk_t *mp_next; 8106 ipsq_t *ipsq; 8107 8108 ASSERT(IAM_WRITER_ILL(ill)); 8109 ipsq = ill->ill_phyint->phyint_ipsq; 8110 /* 8111 * Flush any messages sent up by the driver. 8112 */ 8113 mutex_enter(&ipsq->ipsq_lock); 8114 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8115 mp_next = mp->b_next; 8116 q = mp->b_queue; 8117 if (q == ill->ill_rq || q == ill->ill_wq) { 8118 /* Remove the mp from the ipsq */ 8119 if (prev == NULL) 8120 ipsq->ipsq_mphead = mp->b_next; 8121 else 8122 prev->b_next = mp->b_next; 8123 if (ipsq->ipsq_mptail == mp) { 8124 ASSERT(mp_next == NULL); 8125 ipsq->ipsq_mptail = prev; 8126 } 8127 inet_freemsg(mp); 8128 } else { 8129 prev = mp; 8130 } 8131 } 8132 mutex_exit(&ipsq->ipsq_lock); 8133 (void) ipsq_pending_mp_cleanup(ill, NULL); 8134 ipsq_xopq_mp_cleanup(ill, NULL); 8135 ill_pending_mp_cleanup(ill); 8136 } 8137 8138 /* ARGSUSED */ 8139 int 8140 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8141 ip_ioctl_cmd_t *ipip, void *ifreq) 8142 { 8143 ill_t *ill; 8144 struct lifreq *lifr = (struct lifreq *)ifreq; 8145 boolean_t isv6; 8146 conn_t *connp; 8147 ip_stack_t *ipst; 8148 8149 connp = Q_TO_CONN(q); 8150 ipst = connp->conn_netstack->netstack_ip; 8151 isv6 = connp->conn_af_isv6; 8152 /* 8153 * Set original index. 8154 * Failover and failback move logical interfaces 8155 * from one physical interface to another. The 8156 * original index indicates the parent of a logical 8157 * interface, in other words, the physical interface 8158 * the logical interface will be moved back to on 8159 * failback. 8160 */ 8161 8162 /* 8163 * Don't allow the original index to be changed 8164 * for non-failover addresses, autoconfigured 8165 * addresses, or IPv6 link local addresses. 8166 */ 8167 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8168 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8169 return (EINVAL); 8170 } 8171 /* 8172 * The new original index must be in use by some 8173 * physical interface. 8174 */ 8175 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8176 NULL, NULL, ipst); 8177 if (ill == NULL) 8178 return (ENXIO); 8179 ill_refrele(ill); 8180 8181 ipif->ipif_orig_ifindex = lifr->lifr_index; 8182 /* 8183 * When this ipif gets failed back, don't 8184 * preserve the original id, as it is no 8185 * longer applicable. 8186 */ 8187 ipif->ipif_orig_ipifid = 0; 8188 /* 8189 * For IPv4, change the original index of any 8190 * multicast addresses associated with the 8191 * ipif to the new value. 8192 */ 8193 if (!isv6) { 8194 ilm_t *ilm; 8195 8196 mutex_enter(&ipif->ipif_ill->ill_lock); 8197 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8198 ilm = ilm->ilm_next) { 8199 if (ilm->ilm_ipif == ipif) { 8200 ilm->ilm_orig_ifindex = lifr->lifr_index; 8201 } 8202 } 8203 mutex_exit(&ipif->ipif_ill->ill_lock); 8204 } 8205 return (0); 8206 } 8207 8208 /* ARGSUSED */ 8209 int 8210 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8211 ip_ioctl_cmd_t *ipip, void *ifreq) 8212 { 8213 struct lifreq *lifr = (struct lifreq *)ifreq; 8214 8215 /* 8216 * Get the original interface index i.e the one 8217 * before FAILOVER if it ever happened. 8218 */ 8219 lifr->lifr_index = ipif->ipif_orig_ifindex; 8220 return (0); 8221 } 8222 8223 /* 8224 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8225 * refhold and return the associated ipif 8226 */ 8227 int 8228 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8229 { 8230 boolean_t exists; 8231 struct iftun_req *ta; 8232 ipif_t *ipif; 8233 ill_t *ill; 8234 boolean_t isv6; 8235 mblk_t *mp1; 8236 int error; 8237 conn_t *connp; 8238 ip_stack_t *ipst; 8239 8240 /* Existence verified in ip_wput_nondata */ 8241 mp1 = mp->b_cont->b_cont; 8242 ta = (struct iftun_req *)mp1->b_rptr; 8243 /* 8244 * Null terminate the string to protect against buffer 8245 * overrun. String was generated by user code and may not 8246 * be trusted. 8247 */ 8248 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8249 8250 connp = Q_TO_CONN(q); 8251 isv6 = connp->conn_af_isv6; 8252 ipst = connp->conn_netstack->netstack_ip; 8253 8254 /* Disallows implicit create */ 8255 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8256 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8257 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8258 if (ipif == NULL) 8259 return (error); 8260 8261 if (ipif->ipif_id != 0) { 8262 /* 8263 * We really don't want to set/get tunnel parameters 8264 * on virtual tunnel interfaces. Only allow the 8265 * base tunnel to do these. 8266 */ 8267 ipif_refrele(ipif); 8268 return (EINVAL); 8269 } 8270 8271 /* 8272 * Send down to tunnel mod for ioctl processing. 8273 * Will finish ioctl in ip_rput_other(). 8274 */ 8275 ill = ipif->ipif_ill; 8276 if (ill->ill_net_type == IRE_LOOPBACK) { 8277 ipif_refrele(ipif); 8278 return (EOPNOTSUPP); 8279 } 8280 8281 if (ill->ill_wq == NULL) { 8282 ipif_refrele(ipif); 8283 return (ENXIO); 8284 } 8285 /* 8286 * Mark the ioctl as coming from an IPv6 interface for 8287 * tun's convenience. 8288 */ 8289 if (ill->ill_isv6) 8290 ta->ifta_flags |= 0x80000000; 8291 *ipifp = ipif; 8292 return (0); 8293 } 8294 8295 /* 8296 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8297 * and return the associated ipif. 8298 * Return value: 8299 * Non zero: An error has occurred. ci may not be filled out. 8300 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8301 * a held ipif in ci.ci_ipif. 8302 */ 8303 int 8304 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8305 cmd_info_t *ci, ipsq_func_t func) 8306 { 8307 sin_t *sin; 8308 sin6_t *sin6; 8309 char *name; 8310 struct ifreq *ifr; 8311 struct lifreq *lifr; 8312 ipif_t *ipif = NULL; 8313 ill_t *ill; 8314 conn_t *connp; 8315 boolean_t isv6; 8316 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8317 boolean_t exists; 8318 int err; 8319 mblk_t *mp1; 8320 zoneid_t zoneid; 8321 ip_stack_t *ipst; 8322 8323 if (q->q_next != NULL) { 8324 ill = (ill_t *)q->q_ptr; 8325 isv6 = ill->ill_isv6; 8326 connp = NULL; 8327 zoneid = ALL_ZONES; 8328 ipst = ill->ill_ipst; 8329 } else { 8330 ill = NULL; 8331 connp = Q_TO_CONN(q); 8332 isv6 = connp->conn_af_isv6; 8333 zoneid = connp->conn_zoneid; 8334 if (zoneid == GLOBAL_ZONEID) { 8335 /* global zone can access ipifs in all zones */ 8336 zoneid = ALL_ZONES; 8337 } 8338 ipst = connp->conn_netstack->netstack_ip; 8339 } 8340 8341 /* Has been checked in ip_wput_nondata */ 8342 mp1 = mp->b_cont->b_cont; 8343 8344 8345 if (cmd_type == IF_CMD) { 8346 /* This a old style SIOC[GS]IF* command */ 8347 ifr = (struct ifreq *)mp1->b_rptr; 8348 /* 8349 * Null terminate the string to protect against buffer 8350 * overrun. String was generated by user code and may not 8351 * be trusted. 8352 */ 8353 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8354 sin = (sin_t *)&ifr->ifr_addr; 8355 name = ifr->ifr_name; 8356 ci->ci_sin = sin; 8357 ci->ci_sin6 = NULL; 8358 ci->ci_lifr = (struct lifreq *)ifr; 8359 } else { 8360 /* This a new style SIOC[GS]LIF* command */ 8361 ASSERT(cmd_type == LIF_CMD); 8362 lifr = (struct lifreq *)mp1->b_rptr; 8363 /* 8364 * Null terminate the string to protect against buffer 8365 * overrun. String was generated by user code and may not 8366 * be trusted. 8367 */ 8368 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8369 name = lifr->lifr_name; 8370 sin = (sin_t *)&lifr->lifr_addr; 8371 sin6 = (sin6_t *)&lifr->lifr_addr; 8372 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8373 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8374 LIFNAMSIZ); 8375 } 8376 ci->ci_sin = sin; 8377 ci->ci_sin6 = sin6; 8378 ci->ci_lifr = lifr; 8379 } 8380 8381 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8382 /* 8383 * The ioctl will be failed if the ioctl comes down 8384 * an conn stream 8385 */ 8386 if (ill == NULL) { 8387 /* 8388 * Not an ill queue, return EINVAL same as the 8389 * old error code. 8390 */ 8391 return (ENXIO); 8392 } 8393 ipif = ill->ill_ipif; 8394 ipif_refhold(ipif); 8395 } else { 8396 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8397 &exists, isv6, zoneid, 8398 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8399 ipst); 8400 if (ipif == NULL) { 8401 if (err == EINPROGRESS) 8402 return (err); 8403 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8404 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8405 /* 8406 * Need to try both v4 and v6 since this 8407 * ioctl can come down either v4 or v6 8408 * socket. The lifreq.lifr_family passed 8409 * down by this ioctl is AF_UNSPEC. 8410 */ 8411 ipif = ipif_lookup_on_name(name, 8412 mi_strlen(name), B_FALSE, &exists, !isv6, 8413 zoneid, (connp == NULL) ? q : 8414 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8415 if (err == EINPROGRESS) 8416 return (err); 8417 } 8418 err = 0; /* Ensure we don't use it below */ 8419 } 8420 } 8421 8422 /* 8423 * Old style [GS]IFCMD does not admit IPv6 ipif 8424 */ 8425 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8426 ipif_refrele(ipif); 8427 return (ENXIO); 8428 } 8429 8430 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8431 name[0] == '\0') { 8432 /* 8433 * Handle a or a SIOC?IF* with a null name 8434 * during plumb (on the ill queue before the I_PLINK). 8435 */ 8436 ipif = ill->ill_ipif; 8437 ipif_refhold(ipif); 8438 } 8439 8440 if (ipif == NULL) 8441 return (ENXIO); 8442 8443 /* 8444 * Allow only GET operations if this ipif has been created 8445 * temporarily due to a MOVE operation. 8446 */ 8447 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8448 ipif_refrele(ipif); 8449 return (EINVAL); 8450 } 8451 8452 ci->ci_ipif = ipif; 8453 return (0); 8454 } 8455 8456 /* 8457 * Return the total number of ipifs. 8458 */ 8459 static uint_t 8460 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8461 { 8462 uint_t numifs = 0; 8463 ill_t *ill; 8464 ill_walk_context_t ctx; 8465 ipif_t *ipif; 8466 8467 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8468 ill = ILL_START_WALK_V4(&ctx, ipst); 8469 8470 while (ill != NULL) { 8471 for (ipif = ill->ill_ipif; ipif != NULL; 8472 ipif = ipif->ipif_next) { 8473 if (ipif->ipif_zoneid == zoneid || 8474 ipif->ipif_zoneid == ALL_ZONES) 8475 numifs++; 8476 } 8477 ill = ill_next(&ctx, ill); 8478 } 8479 rw_exit(&ipst->ips_ill_g_lock); 8480 return (numifs); 8481 } 8482 8483 /* 8484 * Return the total number of ipifs. 8485 */ 8486 static uint_t 8487 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8488 { 8489 uint_t numifs = 0; 8490 ill_t *ill; 8491 ipif_t *ipif; 8492 ill_walk_context_t ctx; 8493 8494 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8495 8496 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8497 if (family == AF_INET) 8498 ill = ILL_START_WALK_V4(&ctx, ipst); 8499 else if (family == AF_INET6) 8500 ill = ILL_START_WALK_V6(&ctx, ipst); 8501 else 8502 ill = ILL_START_WALK_ALL(&ctx, ipst); 8503 8504 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8505 for (ipif = ill->ill_ipif; ipif != NULL; 8506 ipif = ipif->ipif_next) { 8507 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8508 !(lifn_flags & LIFC_NOXMIT)) 8509 continue; 8510 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8511 !(lifn_flags & LIFC_TEMPORARY)) 8512 continue; 8513 if (((ipif->ipif_flags & 8514 (IPIF_NOXMIT|IPIF_NOLOCAL| 8515 IPIF_DEPRECATED)) || 8516 IS_LOOPBACK(ill) || 8517 !(ipif->ipif_flags & IPIF_UP)) && 8518 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8519 continue; 8520 8521 if (zoneid != ipif->ipif_zoneid && 8522 ipif->ipif_zoneid != ALL_ZONES && 8523 (zoneid != GLOBAL_ZONEID || 8524 !(lifn_flags & LIFC_ALLZONES))) 8525 continue; 8526 8527 numifs++; 8528 } 8529 } 8530 rw_exit(&ipst->ips_ill_g_lock); 8531 return (numifs); 8532 } 8533 8534 uint_t 8535 ip_get_lifsrcofnum(ill_t *ill) 8536 { 8537 uint_t numifs = 0; 8538 ill_t *ill_head = ill; 8539 ip_stack_t *ipst = ill->ill_ipst; 8540 8541 /* 8542 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8543 * other thread may be trying to relink the ILLs in this usesrc group 8544 * and adjusting the ill_usesrc_grp_next pointers 8545 */ 8546 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8547 if ((ill->ill_usesrc_ifindex == 0) && 8548 (ill->ill_usesrc_grp_next != NULL)) { 8549 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8550 ill = ill->ill_usesrc_grp_next) 8551 numifs++; 8552 } 8553 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8554 8555 return (numifs); 8556 } 8557 8558 /* Null values are passed in for ipif, sin, and ifreq */ 8559 /* ARGSUSED */ 8560 int 8561 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8562 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8563 { 8564 int *nump; 8565 conn_t *connp = Q_TO_CONN(q); 8566 8567 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8568 8569 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8570 nump = (int *)mp->b_cont->b_cont->b_rptr; 8571 8572 *nump = ip_get_numifs(connp->conn_zoneid, 8573 connp->conn_netstack->netstack_ip); 8574 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8575 return (0); 8576 } 8577 8578 /* Null values are passed in for ipif, sin, and ifreq */ 8579 /* ARGSUSED */ 8580 int 8581 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8582 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8583 { 8584 struct lifnum *lifn; 8585 mblk_t *mp1; 8586 conn_t *connp = Q_TO_CONN(q); 8587 8588 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8589 8590 /* Existence checked in ip_wput_nondata */ 8591 mp1 = mp->b_cont->b_cont; 8592 8593 lifn = (struct lifnum *)mp1->b_rptr; 8594 switch (lifn->lifn_family) { 8595 case AF_UNSPEC: 8596 case AF_INET: 8597 case AF_INET6: 8598 break; 8599 default: 8600 return (EAFNOSUPPORT); 8601 } 8602 8603 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8604 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8605 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8606 return (0); 8607 } 8608 8609 /* ARGSUSED */ 8610 int 8611 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8612 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8613 { 8614 STRUCT_HANDLE(ifconf, ifc); 8615 mblk_t *mp1; 8616 struct iocblk *iocp; 8617 struct ifreq *ifr; 8618 ill_walk_context_t ctx; 8619 ill_t *ill; 8620 ipif_t *ipif; 8621 struct sockaddr_in *sin; 8622 int32_t ifclen; 8623 zoneid_t zoneid; 8624 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8625 8626 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8627 8628 ip1dbg(("ip_sioctl_get_ifconf")); 8629 /* Existence verified in ip_wput_nondata */ 8630 mp1 = mp->b_cont->b_cont; 8631 iocp = (struct iocblk *)mp->b_rptr; 8632 zoneid = Q_TO_CONN(q)->conn_zoneid; 8633 8634 /* 8635 * The original SIOCGIFCONF passed in a struct ifconf which specified 8636 * the user buffer address and length into which the list of struct 8637 * ifreqs was to be copied. Since AT&T Streams does not seem to 8638 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8639 * the SIOCGIFCONF operation was redefined to simply provide 8640 * a large output buffer into which we are supposed to jam the ifreq 8641 * array. The same ioctl command code was used, despite the fact that 8642 * both the applications and the kernel code had to change, thus making 8643 * it impossible to support both interfaces. 8644 * 8645 * For reasons not good enough to try to explain, the following 8646 * algorithm is used for deciding what to do with one of these: 8647 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8648 * form with the output buffer coming down as the continuation message. 8649 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8650 * and we have to copy in the ifconf structure to find out how big the 8651 * output buffer is and where to copy out to. Sure no problem... 8652 * 8653 */ 8654 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8655 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8656 int numifs = 0; 8657 size_t ifc_bufsize; 8658 8659 /* 8660 * Must be (better be!) continuation of a TRANSPARENT 8661 * IOCTL. We just copied in the ifconf structure. 8662 */ 8663 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8664 (struct ifconf *)mp1->b_rptr); 8665 8666 /* 8667 * Allocate a buffer to hold requested information. 8668 * 8669 * If ifc_len is larger than what is needed, we only 8670 * allocate what we will use. 8671 * 8672 * If ifc_len is smaller than what is needed, return 8673 * EINVAL. 8674 * 8675 * XXX: the ill_t structure can hava 2 counters, for 8676 * v4 and v6 (not just ill_ipif_up_count) to store the 8677 * number of interfaces for a device, so we don't need 8678 * to count them here... 8679 */ 8680 numifs = ip_get_numifs(zoneid, ipst); 8681 8682 ifclen = STRUCT_FGET(ifc, ifc_len); 8683 ifc_bufsize = numifs * sizeof (struct ifreq); 8684 if (ifc_bufsize > ifclen) { 8685 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8686 /* old behaviour */ 8687 return (EINVAL); 8688 } else { 8689 ifc_bufsize = ifclen; 8690 } 8691 } 8692 8693 mp1 = mi_copyout_alloc(q, mp, 8694 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8695 if (mp1 == NULL) 8696 return (ENOMEM); 8697 8698 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8699 } 8700 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8701 /* 8702 * the SIOCGIFCONF ioctl only knows about 8703 * IPv4 addresses, so don't try to tell 8704 * it about interfaces with IPv6-only 8705 * addresses. (Last parm 'isv6' is B_FALSE) 8706 */ 8707 8708 ifr = (struct ifreq *)mp1->b_rptr; 8709 8710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8711 ill = ILL_START_WALK_V4(&ctx, ipst); 8712 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8713 for (ipif = ill->ill_ipif; ipif != NULL; 8714 ipif = ipif->ipif_next) { 8715 if (zoneid != ipif->ipif_zoneid && 8716 ipif->ipif_zoneid != ALL_ZONES) 8717 continue; 8718 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8719 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8720 /* old behaviour */ 8721 rw_exit(&ipst->ips_ill_g_lock); 8722 return (EINVAL); 8723 } else { 8724 goto if_copydone; 8725 } 8726 } 8727 (void) ipif_get_name(ipif, 8728 ifr->ifr_name, 8729 sizeof (ifr->ifr_name)); 8730 sin = (sin_t *)&ifr->ifr_addr; 8731 *sin = sin_null; 8732 sin->sin_family = AF_INET; 8733 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8734 ifr++; 8735 } 8736 } 8737 if_copydone: 8738 rw_exit(&ipst->ips_ill_g_lock); 8739 mp1->b_wptr = (uchar_t *)ifr; 8740 8741 if (STRUCT_BUF(ifc) != NULL) { 8742 STRUCT_FSET(ifc, ifc_len, 8743 (int)((uchar_t *)ifr - mp1->b_rptr)); 8744 } 8745 return (0); 8746 } 8747 8748 /* 8749 * Get the interfaces using the address hosted on the interface passed in, 8750 * as a source adddress 8751 */ 8752 /* ARGSUSED */ 8753 int 8754 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8755 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8756 { 8757 mblk_t *mp1; 8758 ill_t *ill, *ill_head; 8759 ipif_t *ipif, *orig_ipif; 8760 int numlifs = 0; 8761 size_t lifs_bufsize, lifsmaxlen; 8762 struct lifreq *lifr; 8763 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8764 uint_t ifindex; 8765 zoneid_t zoneid; 8766 int err = 0; 8767 boolean_t isv6 = B_FALSE; 8768 struct sockaddr_in *sin; 8769 struct sockaddr_in6 *sin6; 8770 STRUCT_HANDLE(lifsrcof, lifs); 8771 ip_stack_t *ipst; 8772 8773 ipst = CONNQ_TO_IPST(q); 8774 8775 ASSERT(q->q_next == NULL); 8776 8777 zoneid = Q_TO_CONN(q)->conn_zoneid; 8778 8779 /* Existence verified in ip_wput_nondata */ 8780 mp1 = mp->b_cont->b_cont; 8781 8782 /* 8783 * Must be (better be!) continuation of a TRANSPARENT 8784 * IOCTL. We just copied in the lifsrcof structure. 8785 */ 8786 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8787 (struct lifsrcof *)mp1->b_rptr); 8788 8789 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8790 return (EINVAL); 8791 8792 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8793 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8794 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8795 ip_process_ioctl, &err, ipst); 8796 if (ipif == NULL) { 8797 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8798 ifindex)); 8799 return (err); 8800 } 8801 8802 8803 /* Allocate a buffer to hold requested information */ 8804 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8805 lifs_bufsize = numlifs * sizeof (struct lifreq); 8806 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8807 /* The actual size needed is always returned in lifs_len */ 8808 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8809 8810 /* If the amount we need is more than what is passed in, abort */ 8811 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8812 ipif_refrele(ipif); 8813 return (0); 8814 } 8815 8816 mp1 = mi_copyout_alloc(q, mp, 8817 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8818 if (mp1 == NULL) { 8819 ipif_refrele(ipif); 8820 return (ENOMEM); 8821 } 8822 8823 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8824 bzero(mp1->b_rptr, lifs_bufsize); 8825 8826 lifr = (struct lifreq *)mp1->b_rptr; 8827 8828 ill = ill_head = ipif->ipif_ill; 8829 orig_ipif = ipif; 8830 8831 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8832 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8833 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8834 8835 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8836 for (; (ill != NULL) && (ill != ill_head); 8837 ill = ill->ill_usesrc_grp_next) { 8838 8839 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8840 break; 8841 8842 ipif = ill->ill_ipif; 8843 (void) ipif_get_name(ipif, 8844 lifr->lifr_name, sizeof (lifr->lifr_name)); 8845 if (ipif->ipif_isv6) { 8846 sin6 = (sin6_t *)&lifr->lifr_addr; 8847 *sin6 = sin6_null; 8848 sin6->sin6_family = AF_INET6; 8849 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8850 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8851 &ipif->ipif_v6net_mask); 8852 } else { 8853 sin = (sin_t *)&lifr->lifr_addr; 8854 *sin = sin_null; 8855 sin->sin_family = AF_INET; 8856 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8857 lifr->lifr_addrlen = ip_mask_to_plen( 8858 ipif->ipif_net_mask); 8859 } 8860 lifr++; 8861 } 8862 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8863 rw_exit(&ipst->ips_ill_g_lock); 8864 ipif_refrele(orig_ipif); 8865 mp1->b_wptr = (uchar_t *)lifr; 8866 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8867 8868 return (0); 8869 } 8870 8871 /* ARGSUSED */ 8872 int 8873 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8874 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8875 { 8876 mblk_t *mp1; 8877 int list; 8878 ill_t *ill; 8879 ipif_t *ipif; 8880 int flags; 8881 int numlifs = 0; 8882 size_t lifc_bufsize; 8883 struct lifreq *lifr; 8884 sa_family_t family; 8885 struct sockaddr_in *sin; 8886 struct sockaddr_in6 *sin6; 8887 ill_walk_context_t ctx; 8888 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8889 int32_t lifclen; 8890 zoneid_t zoneid; 8891 STRUCT_HANDLE(lifconf, lifc); 8892 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8893 8894 ip1dbg(("ip_sioctl_get_lifconf")); 8895 8896 ASSERT(q->q_next == NULL); 8897 8898 zoneid = Q_TO_CONN(q)->conn_zoneid; 8899 8900 /* Existence verified in ip_wput_nondata */ 8901 mp1 = mp->b_cont->b_cont; 8902 8903 /* 8904 * An extended version of SIOCGIFCONF that takes an 8905 * additional address family and flags field. 8906 * AF_UNSPEC retrieve both IPv4 and IPv6. 8907 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8908 * interfaces are omitted. 8909 * Similarly, IPIF_TEMPORARY interfaces are omitted 8910 * unless LIFC_TEMPORARY is specified. 8911 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8912 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8913 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8914 * has priority over LIFC_NOXMIT. 8915 */ 8916 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8917 8918 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8919 return (EINVAL); 8920 8921 /* 8922 * Must be (better be!) continuation of a TRANSPARENT 8923 * IOCTL. We just copied in the lifconf structure. 8924 */ 8925 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8926 8927 family = STRUCT_FGET(lifc, lifc_family); 8928 flags = STRUCT_FGET(lifc, lifc_flags); 8929 8930 switch (family) { 8931 case AF_UNSPEC: 8932 /* 8933 * walk all ILL's. 8934 */ 8935 list = MAX_G_HEADS; 8936 break; 8937 case AF_INET: 8938 /* 8939 * walk only IPV4 ILL's. 8940 */ 8941 list = IP_V4_G_HEAD; 8942 break; 8943 case AF_INET6: 8944 /* 8945 * walk only IPV6 ILL's. 8946 */ 8947 list = IP_V6_G_HEAD; 8948 break; 8949 default: 8950 return (EAFNOSUPPORT); 8951 } 8952 8953 /* 8954 * Allocate a buffer to hold requested information. 8955 * 8956 * If lifc_len is larger than what is needed, we only 8957 * allocate what we will use. 8958 * 8959 * If lifc_len is smaller than what is needed, return 8960 * EINVAL. 8961 */ 8962 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8963 lifc_bufsize = numlifs * sizeof (struct lifreq); 8964 lifclen = STRUCT_FGET(lifc, lifc_len); 8965 if (lifc_bufsize > lifclen) { 8966 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8967 return (EINVAL); 8968 else 8969 lifc_bufsize = lifclen; 8970 } 8971 8972 mp1 = mi_copyout_alloc(q, mp, 8973 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8974 if (mp1 == NULL) 8975 return (ENOMEM); 8976 8977 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8978 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8979 8980 lifr = (struct lifreq *)mp1->b_rptr; 8981 8982 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8983 ill = ill_first(list, list, &ctx, ipst); 8984 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8985 for (ipif = ill->ill_ipif; ipif != NULL; 8986 ipif = ipif->ipif_next) { 8987 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8988 !(flags & LIFC_NOXMIT)) 8989 continue; 8990 8991 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8992 !(flags & LIFC_TEMPORARY)) 8993 continue; 8994 8995 if (((ipif->ipif_flags & 8996 (IPIF_NOXMIT|IPIF_NOLOCAL| 8997 IPIF_DEPRECATED)) || 8998 IS_LOOPBACK(ill) || 8999 !(ipif->ipif_flags & IPIF_UP)) && 9000 (flags & LIFC_EXTERNAL_SOURCE)) 9001 continue; 9002 9003 if (zoneid != ipif->ipif_zoneid && 9004 ipif->ipif_zoneid != ALL_ZONES && 9005 (zoneid != GLOBAL_ZONEID || 9006 !(flags & LIFC_ALLZONES))) 9007 continue; 9008 9009 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9010 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9011 rw_exit(&ipst->ips_ill_g_lock); 9012 return (EINVAL); 9013 } else { 9014 goto lif_copydone; 9015 } 9016 } 9017 9018 (void) ipif_get_name(ipif, lifr->lifr_name, 9019 sizeof (lifr->lifr_name)); 9020 if (ipif->ipif_isv6) { 9021 sin6 = (sin6_t *)&lifr->lifr_addr; 9022 *sin6 = sin6_null; 9023 sin6->sin6_family = AF_INET6; 9024 sin6->sin6_addr = 9025 ipif->ipif_v6lcl_addr; 9026 lifr->lifr_addrlen = 9027 ip_mask_to_plen_v6( 9028 &ipif->ipif_v6net_mask); 9029 } else { 9030 sin = (sin_t *)&lifr->lifr_addr; 9031 *sin = sin_null; 9032 sin->sin_family = AF_INET; 9033 sin->sin_addr.s_addr = 9034 ipif->ipif_lcl_addr; 9035 lifr->lifr_addrlen = 9036 ip_mask_to_plen( 9037 ipif->ipif_net_mask); 9038 } 9039 lifr++; 9040 } 9041 } 9042 lif_copydone: 9043 rw_exit(&ipst->ips_ill_g_lock); 9044 9045 mp1->b_wptr = (uchar_t *)lifr; 9046 if (STRUCT_BUF(lifc) != NULL) { 9047 STRUCT_FSET(lifc, lifc_len, 9048 (int)((uchar_t *)lifr - mp1->b_rptr)); 9049 } 9050 return (0); 9051 } 9052 9053 /* ARGSUSED */ 9054 int 9055 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9056 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9057 { 9058 ip_stack_t *ipst; 9059 9060 if (q->q_next == NULL) 9061 ipst = CONNQ_TO_IPST(q); 9062 else 9063 ipst = ILLQ_TO_IPST(q); 9064 9065 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9066 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9067 return (0); 9068 } 9069 9070 static void 9071 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9072 { 9073 ip6_asp_t *table; 9074 size_t table_size; 9075 mblk_t *data_mp; 9076 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9077 ip_stack_t *ipst; 9078 9079 if (q->q_next == NULL) 9080 ipst = CONNQ_TO_IPST(q); 9081 else 9082 ipst = ILLQ_TO_IPST(q); 9083 9084 /* These two ioctls are I_STR only */ 9085 if (iocp->ioc_count == TRANSPARENT) { 9086 miocnak(q, mp, 0, EINVAL); 9087 return; 9088 } 9089 9090 data_mp = mp->b_cont; 9091 if (data_mp == NULL) { 9092 /* The user passed us a NULL argument */ 9093 table = NULL; 9094 table_size = iocp->ioc_count; 9095 } else { 9096 /* 9097 * The user provided a table. The stream head 9098 * may have copied in the user data in chunks, 9099 * so make sure everything is pulled up 9100 * properly. 9101 */ 9102 if (MBLKL(data_mp) < iocp->ioc_count) { 9103 mblk_t *new_data_mp; 9104 if ((new_data_mp = msgpullup(data_mp, -1)) == 9105 NULL) { 9106 miocnak(q, mp, 0, ENOMEM); 9107 return; 9108 } 9109 freemsg(data_mp); 9110 data_mp = new_data_mp; 9111 mp->b_cont = data_mp; 9112 } 9113 table = (ip6_asp_t *)data_mp->b_rptr; 9114 table_size = iocp->ioc_count; 9115 } 9116 9117 switch (iocp->ioc_cmd) { 9118 case SIOCGIP6ADDRPOLICY: 9119 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9120 if (iocp->ioc_rval == -1) 9121 iocp->ioc_error = EINVAL; 9122 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9123 else if (table != NULL && 9124 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9125 ip6_asp_t *src = table; 9126 ip6_asp32_t *dst = (void *)table; 9127 int count = table_size / sizeof (ip6_asp_t); 9128 int i; 9129 9130 /* 9131 * We need to do an in-place shrink of the array 9132 * to match the alignment attributes of the 9133 * 32-bit ABI looking at it. 9134 */ 9135 /* LINTED: logical expression always true: op "||" */ 9136 ASSERT(sizeof (*src) > sizeof (*dst)); 9137 for (i = 1; i < count; i++) 9138 bcopy(src + i, dst + i, sizeof (*dst)); 9139 } 9140 #endif 9141 break; 9142 9143 case SIOCSIP6ADDRPOLICY: 9144 ASSERT(mp->b_prev == NULL); 9145 mp->b_prev = (void *)q; 9146 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9147 /* 9148 * We pass in the datamodel here so that the ip6_asp_replace() 9149 * routine can handle converting from 32-bit to native formats 9150 * where necessary. 9151 * 9152 * A better way to handle this might be to convert the inbound 9153 * data structure here, and hang it off a new 'mp'; thus the 9154 * ip6_asp_replace() logic would always be dealing with native 9155 * format data structures.. 9156 * 9157 * (An even simpler way to handle these ioctls is to just 9158 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9159 * and just recompile everything that depends on it.) 9160 */ 9161 #endif 9162 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9163 iocp->ioc_flag & IOC_MODELS); 9164 return; 9165 } 9166 9167 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9168 qreply(q, mp); 9169 } 9170 9171 static void 9172 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9173 { 9174 mblk_t *data_mp; 9175 struct dstinforeq *dir; 9176 uint8_t *end, *cur; 9177 in6_addr_t *daddr, *saddr; 9178 ipaddr_t v4daddr; 9179 ire_t *ire; 9180 char *slabel, *dlabel; 9181 boolean_t isipv4; 9182 int match_ire; 9183 ill_t *dst_ill; 9184 ipif_t *src_ipif, *ire_ipif; 9185 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9186 zoneid_t zoneid; 9187 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9188 9189 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9190 zoneid = Q_TO_CONN(q)->conn_zoneid; 9191 9192 /* 9193 * This ioctl is I_STR only, and must have a 9194 * data mblk following the M_IOCTL mblk. 9195 */ 9196 data_mp = mp->b_cont; 9197 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9198 miocnak(q, mp, 0, EINVAL); 9199 return; 9200 } 9201 9202 if (MBLKL(data_mp) < iocp->ioc_count) { 9203 mblk_t *new_data_mp; 9204 9205 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9206 miocnak(q, mp, 0, ENOMEM); 9207 return; 9208 } 9209 freemsg(data_mp); 9210 data_mp = new_data_mp; 9211 mp->b_cont = data_mp; 9212 } 9213 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9214 9215 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9216 end - cur >= sizeof (struct dstinforeq); 9217 cur += sizeof (struct dstinforeq)) { 9218 dir = (struct dstinforeq *)cur; 9219 daddr = &dir->dir_daddr; 9220 saddr = &dir->dir_saddr; 9221 9222 /* 9223 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9224 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9225 * and ipif_select_source[_v6]() do not. 9226 */ 9227 dir->dir_dscope = ip_addr_scope_v6(daddr); 9228 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9229 9230 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9231 if (isipv4) { 9232 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9233 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9234 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9235 } else { 9236 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9237 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9238 } 9239 if (ire == NULL) { 9240 dir->dir_dreachable = 0; 9241 9242 /* move on to next dst addr */ 9243 continue; 9244 } 9245 dir->dir_dreachable = 1; 9246 9247 ire_ipif = ire->ire_ipif; 9248 if (ire_ipif == NULL) 9249 goto next_dst; 9250 9251 /* 9252 * We expect to get back an interface ire or a 9253 * gateway ire cache entry. For both types, the 9254 * output interface is ire_ipif->ipif_ill. 9255 */ 9256 dst_ill = ire_ipif->ipif_ill; 9257 dir->dir_dmactype = dst_ill->ill_mactype; 9258 9259 if (isipv4) { 9260 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9261 } else { 9262 src_ipif = ipif_select_source_v6(dst_ill, 9263 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9264 zoneid); 9265 } 9266 if (src_ipif == NULL) 9267 goto next_dst; 9268 9269 *saddr = src_ipif->ipif_v6lcl_addr; 9270 dir->dir_sscope = ip_addr_scope_v6(saddr); 9271 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9272 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9273 dir->dir_sdeprecated = 9274 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9275 ipif_refrele(src_ipif); 9276 next_dst: 9277 ire_refrele(ire); 9278 } 9279 miocack(q, mp, iocp->ioc_count, 0); 9280 } 9281 9282 9283 /* 9284 * Check if this is an address assigned to this machine. 9285 * Skips interfaces that are down by using ire checks. 9286 * Translates mapped addresses to v4 addresses and then 9287 * treats them as such, returning true if the v4 address 9288 * associated with this mapped address is configured. 9289 * Note: Applications will have to be careful what they do 9290 * with the response; use of mapped addresses limits 9291 * what can be done with the socket, especially with 9292 * respect to socket options and ioctls - neither IPv4 9293 * options nor IPv6 sticky options/ancillary data options 9294 * may be used. 9295 */ 9296 /* ARGSUSED */ 9297 int 9298 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9299 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9300 { 9301 struct sioc_addrreq *sia; 9302 sin_t *sin; 9303 ire_t *ire; 9304 mblk_t *mp1; 9305 zoneid_t zoneid; 9306 ip_stack_t *ipst; 9307 9308 ip1dbg(("ip_sioctl_tmyaddr")); 9309 9310 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9311 zoneid = Q_TO_CONN(q)->conn_zoneid; 9312 ipst = CONNQ_TO_IPST(q); 9313 9314 /* Existence verified in ip_wput_nondata */ 9315 mp1 = mp->b_cont->b_cont; 9316 sia = (struct sioc_addrreq *)mp1->b_rptr; 9317 sin = (sin_t *)&sia->sa_addr; 9318 switch (sin->sin_family) { 9319 case AF_INET6: { 9320 sin6_t *sin6 = (sin6_t *)sin; 9321 9322 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9323 ipaddr_t v4_addr; 9324 9325 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9326 v4_addr); 9327 ire = ire_ctable_lookup(v4_addr, 0, 9328 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9329 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9330 } else { 9331 in6_addr_t v6addr; 9332 9333 v6addr = sin6->sin6_addr; 9334 ire = ire_ctable_lookup_v6(&v6addr, 0, 9335 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9336 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9337 } 9338 break; 9339 } 9340 case AF_INET: { 9341 ipaddr_t v4addr; 9342 9343 v4addr = sin->sin_addr.s_addr; 9344 ire = ire_ctable_lookup(v4addr, 0, 9345 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9346 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9347 break; 9348 } 9349 default: 9350 return (EAFNOSUPPORT); 9351 } 9352 if (ire != NULL) { 9353 sia->sa_res = 1; 9354 ire_refrele(ire); 9355 } else { 9356 sia->sa_res = 0; 9357 } 9358 return (0); 9359 } 9360 9361 /* 9362 * Check if this is an address assigned on-link i.e. neighbor, 9363 * and makes sure it's reachable from the current zone. 9364 * Returns true for my addresses as well. 9365 * Translates mapped addresses to v4 addresses and then 9366 * treats them as such, returning true if the v4 address 9367 * associated with this mapped address is configured. 9368 * Note: Applications will have to be careful what they do 9369 * with the response; use of mapped addresses limits 9370 * what can be done with the socket, especially with 9371 * respect to socket options and ioctls - neither IPv4 9372 * options nor IPv6 sticky options/ancillary data options 9373 * may be used. 9374 */ 9375 /* ARGSUSED */ 9376 int 9377 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9378 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9379 { 9380 struct sioc_addrreq *sia; 9381 sin_t *sin; 9382 mblk_t *mp1; 9383 ire_t *ire = NULL; 9384 zoneid_t zoneid; 9385 ip_stack_t *ipst; 9386 9387 ip1dbg(("ip_sioctl_tonlink")); 9388 9389 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9390 zoneid = Q_TO_CONN(q)->conn_zoneid; 9391 ipst = CONNQ_TO_IPST(q); 9392 9393 /* Existence verified in ip_wput_nondata */ 9394 mp1 = mp->b_cont->b_cont; 9395 sia = (struct sioc_addrreq *)mp1->b_rptr; 9396 sin = (sin_t *)&sia->sa_addr; 9397 9398 /* 9399 * Match addresses with a zero gateway field to avoid 9400 * routes going through a router. 9401 * Exclude broadcast and multicast addresses. 9402 */ 9403 switch (sin->sin_family) { 9404 case AF_INET6: { 9405 sin6_t *sin6 = (sin6_t *)sin; 9406 9407 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9408 ipaddr_t v4_addr; 9409 9410 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9411 v4_addr); 9412 if (!CLASSD(v4_addr)) { 9413 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9414 NULL, NULL, zoneid, NULL, 9415 MATCH_IRE_GW, ipst); 9416 } 9417 } else { 9418 in6_addr_t v6addr; 9419 in6_addr_t v6gw; 9420 9421 v6addr = sin6->sin6_addr; 9422 v6gw = ipv6_all_zeros; 9423 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9424 ire = ire_route_lookup_v6(&v6addr, 0, 9425 &v6gw, 0, NULL, NULL, zoneid, 9426 NULL, MATCH_IRE_GW, ipst); 9427 } 9428 } 9429 break; 9430 } 9431 case AF_INET: { 9432 ipaddr_t v4addr; 9433 9434 v4addr = sin->sin_addr.s_addr; 9435 if (!CLASSD(v4addr)) { 9436 ire = ire_route_lookup(v4addr, 0, 0, 0, 9437 NULL, NULL, zoneid, NULL, 9438 MATCH_IRE_GW, ipst); 9439 } 9440 break; 9441 } 9442 default: 9443 return (EAFNOSUPPORT); 9444 } 9445 sia->sa_res = 0; 9446 if (ire != NULL) { 9447 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9448 IRE_LOCAL|IRE_LOOPBACK)) { 9449 sia->sa_res = 1; 9450 } 9451 ire_refrele(ire); 9452 } 9453 return (0); 9454 } 9455 9456 /* 9457 * TBD: implement when kernel maintaines a list of site prefixes. 9458 */ 9459 /* ARGSUSED */ 9460 int 9461 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9462 ip_ioctl_cmd_t *ipip, void *ifreq) 9463 { 9464 return (ENXIO); 9465 } 9466 9467 /* ARGSUSED */ 9468 int 9469 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9470 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9471 { 9472 ill_t *ill; 9473 mblk_t *mp1; 9474 conn_t *connp; 9475 boolean_t success; 9476 9477 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9478 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9479 /* ioctl comes down on an conn */ 9480 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9481 connp = Q_TO_CONN(q); 9482 9483 mp->b_datap->db_type = M_IOCTL; 9484 9485 /* 9486 * Send down a copy. (copymsg does not copy b_next/b_prev). 9487 * The original mp contains contaminated b_next values due to 'mi', 9488 * which is needed to do the mi_copy_done. Unfortunately if we 9489 * send down the original mblk itself and if we are popped due to an 9490 * an unplumb before the response comes back from tunnel, 9491 * the streamhead (which does a freemsg) will see this contaminated 9492 * message and the assertion in freemsg about non-null b_next/b_prev 9493 * will panic a DEBUG kernel. 9494 */ 9495 mp1 = copymsg(mp); 9496 if (mp1 == NULL) 9497 return (ENOMEM); 9498 9499 ill = ipif->ipif_ill; 9500 mutex_enter(&connp->conn_lock); 9501 mutex_enter(&ill->ill_lock); 9502 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9503 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9504 mp, 0); 9505 } else { 9506 success = ill_pending_mp_add(ill, connp, mp); 9507 } 9508 mutex_exit(&ill->ill_lock); 9509 mutex_exit(&connp->conn_lock); 9510 9511 if (success) { 9512 ip1dbg(("sending down tunparam request ")); 9513 putnext(ill->ill_wq, mp1); 9514 return (EINPROGRESS); 9515 } else { 9516 /* The conn has started closing */ 9517 freemsg(mp1); 9518 return (EINTR); 9519 } 9520 } 9521 9522 static int 9523 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9524 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9525 { 9526 mblk_t *mp1; 9527 mblk_t *mp2; 9528 mblk_t *pending_mp; 9529 ipaddr_t ipaddr; 9530 area_t *area; 9531 struct iocblk *iocp; 9532 conn_t *connp; 9533 struct arpreq *ar; 9534 struct xarpreq *xar; 9535 boolean_t success; 9536 int flags, alength; 9537 char *lladdr; 9538 ip_stack_t *ipst; 9539 9540 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9541 connp = Q_TO_CONN(q); 9542 ipst = connp->conn_netstack->netstack_ip; 9543 9544 iocp = (struct iocblk *)mp->b_rptr; 9545 /* 9546 * ill has already been set depending on whether 9547 * bsd style or interface style ioctl. 9548 */ 9549 ASSERT(ill != NULL); 9550 9551 /* 9552 * Is this one of the new SIOC*XARP ioctls? 9553 */ 9554 if (x_arp_ioctl) { 9555 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9556 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9557 ar = NULL; 9558 9559 flags = xar->xarp_flags; 9560 lladdr = LLADDR(&xar->xarp_ha); 9561 /* 9562 * Validate against user's link layer address length 9563 * input and name and addr length limits. 9564 */ 9565 alength = ill->ill_phys_addr_length; 9566 if (iocp->ioc_cmd == SIOCSXARP) { 9567 if (alength != xar->xarp_ha.sdl_alen || 9568 (alength + xar->xarp_ha.sdl_nlen > 9569 sizeof (xar->xarp_ha.sdl_data))) 9570 return (EINVAL); 9571 } 9572 } else { 9573 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9574 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9575 xar = NULL; 9576 9577 flags = ar->arp_flags; 9578 lladdr = ar->arp_ha.sa_data; 9579 /* 9580 * Theoretically, the sa_family could tell us what link 9581 * layer type this operation is trying to deal with. By 9582 * common usage AF_UNSPEC means ethernet. We'll assume 9583 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9584 * for now. Our new SIOC*XARP ioctls can be used more 9585 * generally. 9586 * 9587 * If the underlying media happens to have a non 6 byte 9588 * address, arp module will fail set/get, but the del 9589 * operation will succeed. 9590 */ 9591 alength = 6; 9592 if ((iocp->ioc_cmd != SIOCDARP) && 9593 (alength != ill->ill_phys_addr_length)) { 9594 return (EINVAL); 9595 } 9596 } 9597 9598 /* 9599 * We are going to pass up to ARP a packet chain that looks 9600 * like: 9601 * 9602 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9603 * 9604 * Get a copy of the original IOCTL mblk to head the chain, 9605 * to be sent up (in mp1). Also get another copy to store 9606 * in the ill_pending_mp list, for matching the response 9607 * when it comes back from ARP. 9608 */ 9609 mp1 = copyb(mp); 9610 pending_mp = copymsg(mp); 9611 if (mp1 == NULL || pending_mp == NULL) { 9612 if (mp1 != NULL) 9613 freeb(mp1); 9614 if (pending_mp != NULL) 9615 inet_freemsg(pending_mp); 9616 return (ENOMEM); 9617 } 9618 9619 ipaddr = sin->sin_addr.s_addr; 9620 9621 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9622 (caddr_t)&ipaddr); 9623 if (mp2 == NULL) { 9624 freeb(mp1); 9625 inet_freemsg(pending_mp); 9626 return (ENOMEM); 9627 } 9628 /* Put together the chain. */ 9629 mp1->b_cont = mp2; 9630 mp1->b_datap->db_type = M_IOCTL; 9631 mp2->b_cont = mp; 9632 mp2->b_datap->db_type = M_DATA; 9633 9634 iocp = (struct iocblk *)mp1->b_rptr; 9635 9636 /* 9637 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9638 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9639 * cp_private field (or cp_rval on 32-bit systems) in place of the 9640 * ioc_count field; set ioc_count to be correct. 9641 */ 9642 iocp->ioc_count = MBLKL(mp1->b_cont); 9643 9644 /* 9645 * Set the proper command in the ARP message. 9646 * Convert the SIOC{G|S|D}ARP calls into our 9647 * AR_ENTRY_xxx calls. 9648 */ 9649 area = (area_t *)mp2->b_rptr; 9650 switch (iocp->ioc_cmd) { 9651 case SIOCDARP: 9652 case SIOCDXARP: 9653 /* 9654 * We defer deleting the corresponding IRE until 9655 * we return from arp. 9656 */ 9657 area->area_cmd = AR_ENTRY_DELETE; 9658 area->area_proto_mask_offset = 0; 9659 break; 9660 case SIOCGARP: 9661 case SIOCGXARP: 9662 area->area_cmd = AR_ENTRY_SQUERY; 9663 area->area_proto_mask_offset = 0; 9664 break; 9665 case SIOCSARP: 9666 case SIOCSXARP: { 9667 /* 9668 * Delete the corresponding ire to make sure IP will 9669 * pick up any change from arp. 9670 */ 9671 if (!if_arp_ioctl) { 9672 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9673 break; 9674 } else { 9675 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9676 if (ipif != NULL) { 9677 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9678 ipst); 9679 ipif_refrele(ipif); 9680 } 9681 break; 9682 } 9683 } 9684 } 9685 iocp->ioc_cmd = area->area_cmd; 9686 9687 /* 9688 * Before sending 'mp' to ARP, we have to clear the b_next 9689 * and b_prev. Otherwise if STREAMS encounters such a message 9690 * in freemsg(), (because ARP can close any time) it can cause 9691 * a panic. But mi code needs the b_next and b_prev values of 9692 * mp->b_cont, to complete the ioctl. So we store it here 9693 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9694 * when the response comes down from ARP. 9695 */ 9696 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9697 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9698 mp->b_cont->b_next = NULL; 9699 mp->b_cont->b_prev = NULL; 9700 9701 mutex_enter(&connp->conn_lock); 9702 mutex_enter(&ill->ill_lock); 9703 /* conn has not yet started closing, hence this can't fail */ 9704 success = ill_pending_mp_add(ill, connp, pending_mp); 9705 ASSERT(success); 9706 mutex_exit(&ill->ill_lock); 9707 mutex_exit(&connp->conn_lock); 9708 9709 /* 9710 * Fill in the rest of the ARP operation fields. 9711 */ 9712 area->area_hw_addr_length = alength; 9713 bcopy(lladdr, 9714 (char *)area + area->area_hw_addr_offset, 9715 area->area_hw_addr_length); 9716 /* Translate the flags. */ 9717 if (flags & ATF_PERM) 9718 area->area_flags |= ACE_F_PERMANENT; 9719 if (flags & ATF_PUBL) 9720 area->area_flags |= ACE_F_PUBLISH; 9721 if (flags & ATF_AUTHORITY) 9722 area->area_flags |= ACE_F_AUTHORITY; 9723 9724 /* 9725 * Up to ARP it goes. The response will come 9726 * back in ip_wput as an M_IOCACK message, and 9727 * will be handed to ip_sioctl_iocack for 9728 * completion. 9729 */ 9730 putnext(ill->ill_rq, mp1); 9731 return (EINPROGRESS); 9732 } 9733 9734 /* ARGSUSED */ 9735 int 9736 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9737 ip_ioctl_cmd_t *ipip, void *ifreq) 9738 { 9739 struct xarpreq *xar; 9740 boolean_t isv6; 9741 mblk_t *mp1; 9742 int err; 9743 conn_t *connp; 9744 int ifnamelen; 9745 ire_t *ire = NULL; 9746 ill_t *ill = NULL; 9747 struct sockaddr_in *sin; 9748 boolean_t if_arp_ioctl = B_FALSE; 9749 ip_stack_t *ipst; 9750 9751 /* ioctl comes down on an conn */ 9752 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9753 connp = Q_TO_CONN(q); 9754 isv6 = connp->conn_af_isv6; 9755 ipst = connp->conn_netstack->netstack_ip; 9756 9757 /* Existance verified in ip_wput_nondata */ 9758 mp1 = mp->b_cont->b_cont; 9759 9760 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9761 xar = (struct xarpreq *)mp1->b_rptr; 9762 sin = (sin_t *)&xar->xarp_pa; 9763 9764 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9765 (xar->xarp_pa.ss_family != AF_INET)) 9766 return (ENXIO); 9767 9768 ifnamelen = xar->xarp_ha.sdl_nlen; 9769 if (ifnamelen != 0) { 9770 char *cptr, cval; 9771 9772 if (ifnamelen >= LIFNAMSIZ) 9773 return (EINVAL); 9774 9775 /* 9776 * Instead of bcopying a bunch of bytes, 9777 * null-terminate the string in-situ. 9778 */ 9779 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9780 cval = *cptr; 9781 *cptr = '\0'; 9782 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9783 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9784 &err, NULL, ipst); 9785 *cptr = cval; 9786 if (ill == NULL) 9787 return (err); 9788 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9789 ill_refrele(ill); 9790 return (ENXIO); 9791 } 9792 9793 if_arp_ioctl = B_TRUE; 9794 } else { 9795 /* 9796 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9797 * as an extended BSD ioctl. The kernel uses the IP address 9798 * to figure out the network interface. 9799 */ 9800 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9801 ipst); 9802 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9803 ((ill = ire_to_ill(ire)) == NULL) || 9804 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9805 if (ire != NULL) 9806 ire_refrele(ire); 9807 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9808 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9809 NULL, MATCH_IRE_TYPE, ipst); 9810 if ((ire == NULL) || 9811 ((ill = ire_to_ill(ire)) == NULL)) { 9812 if (ire != NULL) 9813 ire_refrele(ire); 9814 return (ENXIO); 9815 } 9816 } 9817 ASSERT(ire != NULL && ill != NULL); 9818 } 9819 9820 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9821 if (if_arp_ioctl) 9822 ill_refrele(ill); 9823 if (ire != NULL) 9824 ire_refrele(ire); 9825 9826 return (err); 9827 } 9828 9829 /* 9830 * ARP IOCTLs. 9831 * How does IP get in the business of fronting ARP configuration/queries? 9832 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9833 * are by tradition passed in through a datagram socket. That lands in IP. 9834 * As it happens, this is just as well since the interface is quite crude in 9835 * that it passes in no information about protocol or hardware types, or 9836 * interface association. After making the protocol assumption, IP is in 9837 * the position to look up the name of the ILL, which ARP will need, and 9838 * format a request that can be handled by ARP. The request is passed up 9839 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9840 * back a response. ARP supports its own set of more general IOCTLs, in 9841 * case anyone is interested. 9842 */ 9843 /* ARGSUSED */ 9844 int 9845 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9846 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9847 { 9848 struct arpreq *ar; 9849 struct sockaddr_in *sin; 9850 ire_t *ire; 9851 boolean_t isv6; 9852 mblk_t *mp1; 9853 int err; 9854 conn_t *connp; 9855 ill_t *ill; 9856 ip_stack_t *ipst; 9857 9858 /* ioctl comes down on an conn */ 9859 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9860 connp = Q_TO_CONN(q); 9861 ipst = CONNQ_TO_IPST(q); 9862 isv6 = connp->conn_af_isv6; 9863 if (isv6) 9864 return (ENXIO); 9865 9866 /* Existance verified in ip_wput_nondata */ 9867 mp1 = mp->b_cont->b_cont; 9868 9869 ar = (struct arpreq *)mp1->b_rptr; 9870 sin = (sin_t *)&ar->arp_pa; 9871 9872 /* 9873 * We need to let ARP know on which interface the IP 9874 * address has an ARP mapping. In the IPMP case, a 9875 * simple forwarding table lookup will return the 9876 * IRE_IF_RESOLVER for the first interface in the group, 9877 * which might not be the interface on which the 9878 * requested IP address was resolved due to the ill 9879 * selection algorithm (see ip_newroute_get_dst_ill()). 9880 * So we do a cache table lookup first: if the IRE cache 9881 * entry for the IP address is still there, it will 9882 * contain the ill pointer for the right interface, so 9883 * we use that. If the cache entry has been flushed, we 9884 * fall back to the forwarding table lookup. This should 9885 * be rare enough since IRE cache entries have a longer 9886 * life expectancy than ARP cache entries. 9887 */ 9888 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 9889 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9890 ((ill = ire_to_ill(ire)) == NULL)) { 9891 if (ire != NULL) 9892 ire_refrele(ire); 9893 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9894 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9895 NULL, MATCH_IRE_TYPE, ipst); 9896 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9897 if (ire != NULL) 9898 ire_refrele(ire); 9899 return (ENXIO); 9900 } 9901 } 9902 ASSERT(ire != NULL && ill != NULL); 9903 9904 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9905 ire_refrele(ire); 9906 return (err); 9907 } 9908 9909 /* 9910 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9911 * atomically set/clear the muxids. Also complete the ioctl by acking or 9912 * naking it. Note that the code is structured such that the link type, 9913 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9914 * its clones use the persistent link, while pppd(1M) and perhaps many 9915 * other daemons may use non-persistent link. When combined with some 9916 * ill_t states, linking and unlinking lower streams may be used as 9917 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9918 */ 9919 /* ARGSUSED */ 9920 void 9921 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9922 { 9923 mblk_t *mp1, *mp2; 9924 struct linkblk *li; 9925 struct ipmx_s *ipmxp; 9926 ill_t *ill; 9927 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9928 int err = 0; 9929 boolean_t entered_ipsq = B_FALSE; 9930 boolean_t islink; 9931 ip_stack_t *ipst; 9932 9933 if (CONN_Q(q)) 9934 ipst = CONNQ_TO_IPST(q); 9935 else 9936 ipst = ILLQ_TO_IPST(q); 9937 9938 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9939 ioccmd == I_LINK || ioccmd == I_UNLINK); 9940 9941 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9942 9943 mp1 = mp->b_cont; /* This is the linkblk info */ 9944 li = (struct linkblk *)mp1->b_rptr; 9945 9946 /* 9947 * ARP has added this special mblk, and the utility is asking us 9948 * to perform consistency checks, and also atomically set the 9949 * muxid. Ifconfig is an example. It achieves this by using 9950 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9951 * to /dev/udp[6] stream for use as the mux when plinking the IP 9952 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9953 * and other comments in this routine for more details. 9954 */ 9955 mp2 = mp1->b_cont; /* This is added by ARP */ 9956 9957 /* 9958 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9959 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9960 * get the special mblk above. For backward compatibility, we 9961 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9962 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9963 * not atomic, and can leave the streams unplumbable if the utility 9964 * is interrupted before it does the SIOCSLIFMUXID. 9965 */ 9966 if (mp2 == NULL) { 9967 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9968 if (err == EINPROGRESS) 9969 return; 9970 goto done; 9971 } 9972 9973 /* 9974 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9975 * ARP has appended this last mblk to tell us whether the lower stream 9976 * is an arp-dev stream or an IP module stream. 9977 */ 9978 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9979 if (ipmxp->ipmx_arpdev_stream) { 9980 /* 9981 * The lower stream is the arp-dev stream. 9982 */ 9983 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9984 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9985 if (ill == NULL) { 9986 if (err == EINPROGRESS) 9987 return; 9988 err = EINVAL; 9989 goto done; 9990 } 9991 9992 if (ipsq == NULL) { 9993 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9994 NEW_OP, B_TRUE); 9995 if (ipsq == NULL) { 9996 ill_refrele(ill); 9997 return; 9998 } 9999 entered_ipsq = B_TRUE; 10000 } 10001 ASSERT(IAM_WRITER_ILL(ill)); 10002 ill_refrele(ill); 10003 10004 /* 10005 * To ensure consistency between IP and ARP, the following 10006 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 10007 * This is because the muxid's are stored in the IP stream on 10008 * the ill. 10009 * 10010 * I_{P}LINK: ifconfig plinks the IP stream before plinking 10011 * the ARP stream. On an arp-dev stream, IP checks that it is 10012 * not yet plinked, and it also checks that the corresponding 10013 * IP stream is already plinked. 10014 * 10015 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 10016 * punlinking the IP stream. IP does not allow punlink of the 10017 * IP stream unless the arp stream has been punlinked. 10018 */ 10019 if ((islink && 10020 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10021 (!islink && ill->ill_arp_muxid != li->l_index)) { 10022 err = EINVAL; 10023 goto done; 10024 } 10025 ill->ill_arp_muxid = islink ? li->l_index : 0; 10026 } else { 10027 /* 10028 * The lower stream is probably an IP module stream. Do 10029 * consistency checking. 10030 */ 10031 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 10032 if (err == EINPROGRESS) 10033 return; 10034 } 10035 done: 10036 if (err == 0) 10037 miocack(q, mp, 0, 0); 10038 else 10039 miocnak(q, mp, 0, err); 10040 10041 /* Conn was refheld in ip_sioctl_copyin_setup */ 10042 if (CONN_Q(q)) 10043 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10044 if (entered_ipsq) 10045 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10046 } 10047 10048 /* 10049 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 10050 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 10051 * module stream). If `doconsist' is set, then do the extended consistency 10052 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 10053 * Returns zero on success, EINPROGRESS if the operation is still pending, or 10054 * an error code on failure. 10055 */ 10056 static int 10057 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 10058 struct linkblk *li, boolean_t doconsist) 10059 { 10060 ill_t *ill; 10061 queue_t *ipwq, *dwq; 10062 const char *name; 10063 struct qinit *qinfo; 10064 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 10065 boolean_t entered_ipsq = B_FALSE; 10066 10067 /* 10068 * Walk the lower stream to verify it's the IP module stream. 10069 * The IP module is identified by its name, wput function, 10070 * and non-NULL q_next. STREAMS ensures that the lower stream 10071 * (li->l_qbot) will not vanish until this ioctl completes. 10072 */ 10073 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10074 qinfo = ipwq->q_qinfo; 10075 name = qinfo->qi_minfo->mi_idname; 10076 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10077 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10078 break; 10079 } 10080 } 10081 10082 /* 10083 * If this isn't an IP module stream, bail. 10084 */ 10085 if (ipwq == NULL) 10086 return (0); 10087 10088 ill = ipwq->q_ptr; 10089 ASSERT(ill != NULL); 10090 10091 if (ipsq == NULL) { 10092 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10093 NEW_OP, B_TRUE); 10094 if (ipsq == NULL) 10095 return (EINPROGRESS); 10096 entered_ipsq = B_TRUE; 10097 } 10098 ASSERT(IAM_WRITER_ILL(ill)); 10099 10100 if (doconsist) { 10101 /* 10102 * Consistency checking requires that I_{P}LINK occurs 10103 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10104 * occurs prior to clearing ill_arp_muxid. 10105 */ 10106 if ((islink && ill->ill_ip_muxid != 0) || 10107 (!islink && ill->ill_arp_muxid != 0)) { 10108 if (entered_ipsq) 10109 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10110 return (EINVAL); 10111 } 10112 } 10113 10114 /* 10115 * As part of I_{P}LINKing, stash the number of downstream modules and 10116 * the read queue of the module immediately below IP in the ill. 10117 * These are used during the capability negotiation below. 10118 */ 10119 ill->ill_lmod_rq = NULL; 10120 ill->ill_lmod_cnt = 0; 10121 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10122 ill->ill_lmod_rq = RD(dwq); 10123 for (; dwq != NULL; dwq = dwq->q_next) 10124 ill->ill_lmod_cnt++; 10125 } 10126 10127 if (doconsist) 10128 ill->ill_ip_muxid = islink ? li->l_index : 0; 10129 10130 /* 10131 * If there's at least one up ipif on this ill, then we're bound to 10132 * the underlying driver via DLPI. In that case, renegotiate 10133 * capabilities to account for any possible change in modules 10134 * interposed between IP and the driver. 10135 */ 10136 if (ill->ill_ipif_up_count > 0) { 10137 if (islink) 10138 ill_capability_probe(ill); 10139 else 10140 ill_capability_reset(ill); 10141 } 10142 10143 if (entered_ipsq) 10144 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10145 10146 return (0); 10147 } 10148 10149 /* 10150 * Search the ioctl command in the ioctl tables and return a pointer 10151 * to the ioctl command information. The ioctl command tables are 10152 * static and fully populated at compile time. 10153 */ 10154 ip_ioctl_cmd_t * 10155 ip_sioctl_lookup(int ioc_cmd) 10156 { 10157 int index; 10158 ip_ioctl_cmd_t *ipip; 10159 ip_ioctl_cmd_t *ipip_end; 10160 10161 if (ioc_cmd == IPI_DONTCARE) 10162 return (NULL); 10163 10164 /* 10165 * Do a 2 step search. First search the indexed table 10166 * based on the least significant byte of the ioctl cmd. 10167 * If we don't find a match, then search the misc table 10168 * serially. 10169 */ 10170 index = ioc_cmd & 0xFF; 10171 if (index < ip_ndx_ioctl_count) { 10172 ipip = &ip_ndx_ioctl_table[index]; 10173 if (ipip->ipi_cmd == ioc_cmd) { 10174 /* Found a match in the ndx table */ 10175 return (ipip); 10176 } 10177 } 10178 10179 /* Search the misc table */ 10180 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10181 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10182 if (ipip->ipi_cmd == ioc_cmd) 10183 /* Found a match in the misc table */ 10184 return (ipip); 10185 } 10186 10187 return (NULL); 10188 } 10189 10190 /* 10191 * Wrapper function for resuming deferred ioctl processing 10192 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10193 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10194 */ 10195 /* ARGSUSED */ 10196 void 10197 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10198 void *dummy_arg) 10199 { 10200 ip_sioctl_copyin_setup(q, mp); 10201 } 10202 10203 /* 10204 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10205 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10206 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10207 * We establish here the size of the block to be copied in. mi_copyin 10208 * arranges for this to happen, an processing continues in ip_wput with 10209 * an M_IOCDATA message. 10210 */ 10211 void 10212 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10213 { 10214 int copyin_size; 10215 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10216 ip_ioctl_cmd_t *ipip; 10217 cred_t *cr; 10218 ip_stack_t *ipst; 10219 10220 if (CONN_Q(q)) 10221 ipst = CONNQ_TO_IPST(q); 10222 else 10223 ipst = ILLQ_TO_IPST(q); 10224 10225 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10226 if (ipip == NULL) { 10227 /* 10228 * The ioctl is not one we understand or own. 10229 * Pass it along to be processed down stream, 10230 * if this is a module instance of IP, else nak 10231 * the ioctl. 10232 */ 10233 if (q->q_next == NULL) { 10234 goto nak; 10235 } else { 10236 putnext(q, mp); 10237 return; 10238 } 10239 } 10240 10241 /* 10242 * If this is deferred, then we will do all the checks when we 10243 * come back. 10244 */ 10245 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10246 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10247 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10248 return; 10249 } 10250 10251 /* 10252 * Only allow a very small subset of IP ioctls on this stream if 10253 * IP is a module and not a driver. Allowing ioctls to be processed 10254 * in this case may cause assert failures or data corruption. 10255 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10256 * ioctls allowed on an IP module stream, after which this stream 10257 * normally becomes a multiplexor (at which time the stream head 10258 * will fail all ioctls). 10259 */ 10260 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10261 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10262 /* 10263 * Pass common Streams ioctls which the IP 10264 * module does not own or consume along to 10265 * be processed down stream. 10266 */ 10267 putnext(q, mp); 10268 return; 10269 } else { 10270 goto nak; 10271 } 10272 } 10273 10274 /* Make sure we have ioctl data to process. */ 10275 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10276 goto nak; 10277 10278 /* 10279 * Prefer dblk credential over ioctl credential; some synthesized 10280 * ioctls have kcred set because there's no way to crhold() 10281 * a credential in some contexts. (ioc_cr is not crfree() by 10282 * the framework; the caller of ioctl needs to hold the reference 10283 * for the duration of the call). 10284 */ 10285 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10286 10287 /* Make sure normal users don't send down privileged ioctls */ 10288 if ((ipip->ipi_flags & IPI_PRIV) && 10289 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10290 /* We checked the privilege earlier but log it here */ 10291 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10292 return; 10293 } 10294 10295 /* 10296 * The ioctl command tables can only encode fixed length 10297 * ioctl data. If the length is variable, the table will 10298 * encode the length as zero. Such special cases are handled 10299 * below in the switch. 10300 */ 10301 if (ipip->ipi_copyin_size != 0) { 10302 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10303 return; 10304 } 10305 10306 switch (iocp->ioc_cmd) { 10307 case O_SIOCGIFCONF: 10308 case SIOCGIFCONF: 10309 /* 10310 * This IOCTL is hilarious. See comments in 10311 * ip_sioctl_get_ifconf for the story. 10312 */ 10313 if (iocp->ioc_count == TRANSPARENT) 10314 copyin_size = SIZEOF_STRUCT(ifconf, 10315 iocp->ioc_flag); 10316 else 10317 copyin_size = iocp->ioc_count; 10318 mi_copyin(q, mp, NULL, copyin_size); 10319 return; 10320 10321 case O_SIOCGLIFCONF: 10322 case SIOCGLIFCONF: 10323 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10324 mi_copyin(q, mp, NULL, copyin_size); 10325 return; 10326 10327 case SIOCGLIFSRCOF: 10328 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10329 mi_copyin(q, mp, NULL, copyin_size); 10330 return; 10331 case SIOCGIP6ADDRPOLICY: 10332 ip_sioctl_ip6addrpolicy(q, mp); 10333 ip6_asp_table_refrele(ipst); 10334 return; 10335 10336 case SIOCSIP6ADDRPOLICY: 10337 ip_sioctl_ip6addrpolicy(q, mp); 10338 return; 10339 10340 case SIOCGDSTINFO: 10341 ip_sioctl_dstinfo(q, mp); 10342 ip6_asp_table_refrele(ipst); 10343 return; 10344 10345 case I_PLINK: 10346 case I_PUNLINK: 10347 case I_LINK: 10348 case I_UNLINK: 10349 /* 10350 * We treat non-persistent link similarly as the persistent 10351 * link case, in terms of plumbing/unplumbing, as well as 10352 * dynamic re-plumbing events indicator. See comments 10353 * in ip_sioctl_plink() for more. 10354 * 10355 * Request can be enqueued in the 'ipsq' while waiting 10356 * to become exclusive. So bump up the conn ref. 10357 */ 10358 if (CONN_Q(q)) 10359 CONN_INC_REF(Q_TO_CONN(q)); 10360 ip_sioctl_plink(NULL, q, mp, NULL); 10361 return; 10362 10363 case ND_GET: 10364 case ND_SET: 10365 /* 10366 * Use of the nd table requires holding the reader lock. 10367 * Modifying the nd table thru nd_load/nd_unload requires 10368 * the writer lock. 10369 */ 10370 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10371 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10372 rw_exit(&ipst->ips_ip_g_nd_lock); 10373 10374 if (iocp->ioc_error) 10375 iocp->ioc_count = 0; 10376 mp->b_datap->db_type = M_IOCACK; 10377 qreply(q, mp); 10378 return; 10379 } 10380 rw_exit(&ipst->ips_ip_g_nd_lock); 10381 /* 10382 * We don't understand this subioctl of ND_GET / ND_SET. 10383 * Maybe intended for some driver / module below us 10384 */ 10385 if (q->q_next) { 10386 putnext(q, mp); 10387 } else { 10388 iocp->ioc_error = ENOENT; 10389 mp->b_datap->db_type = M_IOCNAK; 10390 iocp->ioc_count = 0; 10391 qreply(q, mp); 10392 } 10393 return; 10394 10395 case IP_IOCTL: 10396 ip_wput_ioctl(q, mp); 10397 return; 10398 default: 10399 cmn_err(CE_PANIC, "should not happen "); 10400 } 10401 nak: 10402 if (mp->b_cont != NULL) { 10403 freemsg(mp->b_cont); 10404 mp->b_cont = NULL; 10405 } 10406 iocp->ioc_error = EINVAL; 10407 mp->b_datap->db_type = M_IOCNAK; 10408 iocp->ioc_count = 0; 10409 qreply(q, mp); 10410 } 10411 10412 /* ip_wput hands off ARP IOCTL responses to us */ 10413 void 10414 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10415 { 10416 struct arpreq *ar; 10417 struct xarpreq *xar; 10418 area_t *area; 10419 mblk_t *area_mp; 10420 struct iocblk *iocp; 10421 mblk_t *orig_ioc_mp, *tmp; 10422 struct iocblk *orig_iocp; 10423 ill_t *ill; 10424 conn_t *connp = NULL; 10425 uint_t ioc_id; 10426 mblk_t *pending_mp; 10427 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10428 int *flagsp; 10429 char *storage = NULL; 10430 sin_t *sin; 10431 ipaddr_t addr; 10432 int err; 10433 ip_stack_t *ipst; 10434 10435 ill = q->q_ptr; 10436 ASSERT(ill != NULL); 10437 ipst = ill->ill_ipst; 10438 10439 /* 10440 * We should get back from ARP a packet chain that looks like: 10441 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10442 */ 10443 if (!(area_mp = mp->b_cont) || 10444 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10445 !(orig_ioc_mp = area_mp->b_cont) || 10446 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10447 freemsg(mp); 10448 return; 10449 } 10450 10451 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10452 10453 tmp = (orig_ioc_mp->b_cont)->b_cont; 10454 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10455 (orig_iocp->ioc_cmd == SIOCSXARP) || 10456 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10457 x_arp_ioctl = B_TRUE; 10458 xar = (struct xarpreq *)tmp->b_rptr; 10459 sin = (sin_t *)&xar->xarp_pa; 10460 flagsp = &xar->xarp_flags; 10461 storage = xar->xarp_ha.sdl_data; 10462 if (xar->xarp_ha.sdl_nlen != 0) 10463 ifx_arp_ioctl = B_TRUE; 10464 } else { 10465 ar = (struct arpreq *)tmp->b_rptr; 10466 sin = (sin_t *)&ar->arp_pa; 10467 flagsp = &ar->arp_flags; 10468 storage = ar->arp_ha.sa_data; 10469 } 10470 10471 iocp = (struct iocblk *)mp->b_rptr; 10472 10473 /* 10474 * Pick out the originating queue based on the ioc_id. 10475 */ 10476 ioc_id = iocp->ioc_id; 10477 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10478 if (pending_mp == NULL) { 10479 ASSERT(connp == NULL); 10480 inet_freemsg(mp); 10481 return; 10482 } 10483 ASSERT(connp != NULL); 10484 q = CONNP_TO_WQ(connp); 10485 10486 /* Uncouple the internally generated IOCTL from the original one */ 10487 area = (area_t *)area_mp->b_rptr; 10488 area_mp->b_cont = NULL; 10489 10490 /* 10491 * Restore the b_next and b_prev used by mi code. This is needed 10492 * to complete the ioctl using mi* functions. We stored them in 10493 * the pending mp prior to sending the request to ARP. 10494 */ 10495 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10496 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10497 inet_freemsg(pending_mp); 10498 10499 /* 10500 * We're done if there was an error or if this is not an SIOCG{X}ARP 10501 * Catch the case where there is an IRE_CACHE by no entry in the 10502 * arp table. 10503 */ 10504 addr = sin->sin_addr.s_addr; 10505 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10506 ire_t *ire; 10507 dl_unitdata_req_t *dlup; 10508 mblk_t *llmp; 10509 int addr_len; 10510 ill_t *ipsqill = NULL; 10511 10512 if (ifx_arp_ioctl) { 10513 /* 10514 * There's no need to lookup the ill, since 10515 * we've already done that when we started 10516 * processing the ioctl and sent the message 10517 * to ARP on that ill. So use the ill that 10518 * is stored in q->q_ptr. 10519 */ 10520 ipsqill = ill; 10521 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10522 ipsqill->ill_ipif, ALL_ZONES, 10523 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10524 } else { 10525 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10526 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10527 if (ire != NULL) 10528 ipsqill = ire_to_ill(ire); 10529 } 10530 10531 if ((x_arp_ioctl) && (ipsqill != NULL)) 10532 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10533 10534 if (ire != NULL) { 10535 /* 10536 * Since the ire obtained from cachetable is used for 10537 * mac addr copying below, treat an incomplete ire as if 10538 * as if we never found it. 10539 */ 10540 if (ire->ire_nce != NULL && 10541 ire->ire_nce->nce_state != ND_REACHABLE) { 10542 ire_refrele(ire); 10543 ire = NULL; 10544 ipsqill = NULL; 10545 goto errack; 10546 } 10547 *flagsp = ATF_INUSE; 10548 llmp = (ire->ire_nce != NULL ? 10549 ire->ire_nce->nce_res_mp : NULL); 10550 if (llmp != NULL && ipsqill != NULL) { 10551 uchar_t *macaddr; 10552 10553 addr_len = ipsqill->ill_phys_addr_length; 10554 if (x_arp_ioctl && ((addr_len + 10555 ipsqill->ill_name_length) > 10556 sizeof (xar->xarp_ha.sdl_data))) { 10557 ire_refrele(ire); 10558 freemsg(mp); 10559 ip_ioctl_finish(q, orig_ioc_mp, 10560 EINVAL, NO_COPYOUT, NULL); 10561 return; 10562 } 10563 *flagsp |= ATF_COM; 10564 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10565 if (ipsqill->ill_sap_length < 0) 10566 macaddr = llmp->b_rptr + 10567 dlup->dl_dest_addr_offset; 10568 else 10569 macaddr = llmp->b_rptr + 10570 dlup->dl_dest_addr_offset + 10571 ipsqill->ill_sap_length; 10572 /* 10573 * For SIOCGARP, MAC address length 10574 * validation has already been done 10575 * before the ioctl was issued to ARP to 10576 * allow it to progress only on 6 byte 10577 * addressable (ethernet like) media. Thus 10578 * the mac address copying can not overwrite 10579 * the sa_data area below. 10580 */ 10581 bcopy(macaddr, storage, addr_len); 10582 } 10583 /* Ditch the internal IOCTL. */ 10584 freemsg(mp); 10585 ire_refrele(ire); 10586 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10587 return; 10588 } 10589 } 10590 10591 /* 10592 * Delete the coresponding IRE_CACHE if any. 10593 * Reset the error if there was one (in case there was no entry 10594 * in arp.) 10595 */ 10596 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10597 ipif_t *ipintf = NULL; 10598 10599 if (ifx_arp_ioctl) { 10600 /* 10601 * There's no need to lookup the ill, since 10602 * we've already done that when we started 10603 * processing the ioctl and sent the message 10604 * to ARP on that ill. So use the ill that 10605 * is stored in q->q_ptr. 10606 */ 10607 ipintf = ill->ill_ipif; 10608 } 10609 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10610 /* 10611 * The address in "addr" may be an entry for a 10612 * router. If that's true, then any off-net 10613 * IRE_CACHE entries that go through the router 10614 * with address "addr" must be clobbered. Use 10615 * ire_walk to achieve this goal. 10616 */ 10617 if (ifx_arp_ioctl) 10618 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10619 ire_delete_cache_gw, (char *)&addr, ill); 10620 else 10621 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10622 ALL_ZONES, ipst); 10623 iocp->ioc_error = 0; 10624 } 10625 } 10626 errack: 10627 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10628 err = iocp->ioc_error; 10629 freemsg(mp); 10630 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10631 return; 10632 } 10633 10634 /* 10635 * Completion of an SIOCG{X}ARP. Translate the information from 10636 * the area_t into the struct {x}arpreq. 10637 */ 10638 if (x_arp_ioctl) { 10639 storage += ill_xarp_info(&xar->xarp_ha, ill); 10640 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10641 sizeof (xar->xarp_ha.sdl_data)) { 10642 freemsg(mp); 10643 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10644 NULL); 10645 return; 10646 } 10647 } 10648 *flagsp = ATF_INUSE; 10649 if (area->area_flags & ACE_F_PERMANENT) 10650 *flagsp |= ATF_PERM; 10651 if (area->area_flags & ACE_F_PUBLISH) 10652 *flagsp |= ATF_PUBL; 10653 if (area->area_flags & ACE_F_AUTHORITY) 10654 *flagsp |= ATF_AUTHORITY; 10655 if (area->area_hw_addr_length != 0) { 10656 *flagsp |= ATF_COM; 10657 /* 10658 * For SIOCGARP, MAC address length validation has 10659 * already been done before the ioctl was issued to ARP 10660 * to allow it to progress only on 6 byte addressable 10661 * (ethernet like) media. Thus the mac address copying 10662 * can not overwrite the sa_data area below. 10663 */ 10664 bcopy((char *)area + area->area_hw_addr_offset, 10665 storage, area->area_hw_addr_length); 10666 } 10667 10668 /* Ditch the internal IOCTL. */ 10669 freemsg(mp); 10670 /* Complete the original. */ 10671 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10672 } 10673 10674 /* 10675 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10676 * interface) create the next available logical interface for this 10677 * physical interface. 10678 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10679 * ipif with the specified name. 10680 * 10681 * If the address family is not AF_UNSPEC then set the address as well. 10682 * 10683 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10684 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10685 * 10686 * Executed as a writer on the ill or ill group. 10687 * So no lock is needed to traverse the ipif chain, or examine the 10688 * phyint flags. 10689 */ 10690 /* ARGSUSED */ 10691 int 10692 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10693 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10694 { 10695 mblk_t *mp1; 10696 struct lifreq *lifr; 10697 boolean_t isv6; 10698 boolean_t exists; 10699 char *name; 10700 char *endp; 10701 char *cp; 10702 int namelen; 10703 ipif_t *ipif; 10704 long id; 10705 ipsq_t *ipsq; 10706 ill_t *ill; 10707 sin_t *sin; 10708 int err = 0; 10709 boolean_t found_sep = B_FALSE; 10710 conn_t *connp; 10711 zoneid_t zoneid; 10712 int orig_ifindex = 0; 10713 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10714 10715 ASSERT(q->q_next == NULL); 10716 ip1dbg(("ip_sioctl_addif\n")); 10717 /* Existence of mp1 has been checked in ip_wput_nondata */ 10718 mp1 = mp->b_cont->b_cont; 10719 /* 10720 * Null terminate the string to protect against buffer 10721 * overrun. String was generated by user code and may not 10722 * be trusted. 10723 */ 10724 lifr = (struct lifreq *)mp1->b_rptr; 10725 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10726 name = lifr->lifr_name; 10727 ASSERT(CONN_Q(q)); 10728 connp = Q_TO_CONN(q); 10729 isv6 = connp->conn_af_isv6; 10730 zoneid = connp->conn_zoneid; 10731 namelen = mi_strlen(name); 10732 if (namelen == 0) 10733 return (EINVAL); 10734 10735 exists = B_FALSE; 10736 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10737 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10738 /* 10739 * Allow creating lo0 using SIOCLIFADDIF. 10740 * can't be any other writer thread. So can pass null below 10741 * for the last 4 args to ipif_lookup_name. 10742 */ 10743 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10744 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10745 /* Prevent any further action */ 10746 if (ipif == NULL) { 10747 return (ENOBUFS); 10748 } else if (!exists) { 10749 /* We created the ipif now and as writer */ 10750 ipif_refrele(ipif); 10751 return (0); 10752 } else { 10753 ill = ipif->ipif_ill; 10754 ill_refhold(ill); 10755 ipif_refrele(ipif); 10756 } 10757 } else { 10758 /* Look for a colon in the name. */ 10759 endp = &name[namelen]; 10760 for (cp = endp; --cp > name; ) { 10761 if (*cp == IPIF_SEPARATOR_CHAR) { 10762 found_sep = B_TRUE; 10763 /* 10764 * Reject any non-decimal aliases for plumbing 10765 * of logical interfaces. Aliases with leading 10766 * zeroes are also rejected as they introduce 10767 * ambiguity in the naming of the interfaces. 10768 * Comparing with "0" takes care of all such 10769 * cases. 10770 */ 10771 if ((strncmp("0", cp+1, 1)) == 0) 10772 return (EINVAL); 10773 10774 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10775 id <= 0 || *endp != '\0') { 10776 return (EINVAL); 10777 } 10778 *cp = '\0'; 10779 break; 10780 } 10781 } 10782 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10783 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10784 if (found_sep) 10785 *cp = IPIF_SEPARATOR_CHAR; 10786 if (ill == NULL) 10787 return (err); 10788 } 10789 10790 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10791 B_TRUE); 10792 10793 /* 10794 * Release the refhold due to the lookup, now that we are excl 10795 * or we are just returning 10796 */ 10797 ill_refrele(ill); 10798 10799 if (ipsq == NULL) 10800 return (EINPROGRESS); 10801 10802 /* 10803 * If the interface is failed, inactive or offlined, look for a working 10804 * interface in the ill group and create the ipif there. If we can't 10805 * find a good interface, create the ipif anyway so that in.mpathd can 10806 * move it to the first repaired interface. 10807 */ 10808 if ((ill->ill_phyint->phyint_flags & 10809 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10810 ill->ill_phyint->phyint_groupname_len != 0) { 10811 phyint_t *phyi; 10812 char *groupname = ill->ill_phyint->phyint_groupname; 10813 10814 /* 10815 * We're looking for a working interface, but it doesn't matter 10816 * if it's up or down; so instead of following the group lists, 10817 * we look at each physical interface and compare the groupname. 10818 * We're only interested in interfaces with IPv4 (resp. IPv6) 10819 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10820 * Otherwise we create the ipif on the failed interface. 10821 */ 10822 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10823 phyi = avl_first(&ipst->ips_phyint_g_list-> 10824 phyint_list_avl_by_index); 10825 for (; phyi != NULL; 10826 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10827 phyint_list_avl_by_index, 10828 phyi, AVL_AFTER)) { 10829 if (phyi->phyint_groupname_len == 0) 10830 continue; 10831 ASSERT(phyi->phyint_groupname != NULL); 10832 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10833 !(phyi->phyint_flags & 10834 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10835 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10836 (phyi->phyint_illv4 != NULL))) { 10837 break; 10838 } 10839 } 10840 rw_exit(&ipst->ips_ill_g_lock); 10841 10842 if (phyi != NULL) { 10843 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10844 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10845 phyi->phyint_illv4); 10846 } 10847 } 10848 10849 /* 10850 * We are now exclusive on the ipsq, so an ill move will be serialized 10851 * before or after us. 10852 */ 10853 ASSERT(IAM_WRITER_ILL(ill)); 10854 ASSERT(ill->ill_move_in_progress == B_FALSE); 10855 10856 if (found_sep && orig_ifindex == 0) { 10857 /* Now see if there is an IPIF with this unit number. */ 10858 for (ipif = ill->ill_ipif; ipif != NULL; 10859 ipif = ipif->ipif_next) { 10860 if (ipif->ipif_id == id) { 10861 err = EEXIST; 10862 goto done; 10863 } 10864 } 10865 } 10866 10867 /* 10868 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10869 * of lo0. We never come here when we plumb lo0:0. It 10870 * happens in ipif_lookup_on_name. 10871 * The specified unit number is ignored when we create the ipif on a 10872 * different interface. However, we save it in ipif_orig_ipifid below so 10873 * that the ipif fails back to the right position. 10874 */ 10875 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10876 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10877 err = ENOBUFS; 10878 goto done; 10879 } 10880 10881 /* Return created name with ioctl */ 10882 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10883 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10884 ip1dbg(("created %s\n", lifr->lifr_name)); 10885 10886 /* Set address */ 10887 sin = (sin_t *)&lifr->lifr_addr; 10888 if (sin->sin_family != AF_UNSPEC) { 10889 err = ip_sioctl_addr(ipif, sin, q, mp, 10890 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10891 } 10892 10893 /* Set ifindex and unit number for failback */ 10894 if (err == 0 && orig_ifindex != 0) { 10895 ipif->ipif_orig_ifindex = orig_ifindex; 10896 if (found_sep) { 10897 ipif->ipif_orig_ipifid = id; 10898 } 10899 } 10900 10901 done: 10902 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10903 return (err); 10904 } 10905 10906 /* 10907 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10908 * interface) delete it based on the IP address (on this physical interface). 10909 * Otherwise delete it based on the ipif_id. 10910 * Also, special handling to allow a removeif of lo0. 10911 */ 10912 /* ARGSUSED */ 10913 int 10914 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10915 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10916 { 10917 conn_t *connp; 10918 ill_t *ill = ipif->ipif_ill; 10919 boolean_t success; 10920 ip_stack_t *ipst; 10921 10922 ipst = CONNQ_TO_IPST(q); 10923 10924 ASSERT(q->q_next == NULL); 10925 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10926 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10927 ASSERT(IAM_WRITER_IPIF(ipif)); 10928 10929 connp = Q_TO_CONN(q); 10930 /* 10931 * Special case for unplumbing lo0 (the loopback physical interface). 10932 * If unplumbing lo0, the incoming address structure has been 10933 * initialized to all zeros. When unplumbing lo0, all its logical 10934 * interfaces must be removed too. 10935 * 10936 * Note that this interface may be called to remove a specific 10937 * loopback logical interface (eg, lo0:1). But in that case 10938 * ipif->ipif_id != 0 so that the code path for that case is the 10939 * same as any other interface (meaning it skips the code directly 10940 * below). 10941 */ 10942 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10943 if (sin->sin_family == AF_UNSPEC && 10944 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10945 /* 10946 * Mark it condemned. No new ref. will be made to ill. 10947 */ 10948 mutex_enter(&ill->ill_lock); 10949 ill->ill_state_flags |= ILL_CONDEMNED; 10950 for (ipif = ill->ill_ipif; ipif != NULL; 10951 ipif = ipif->ipif_next) { 10952 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10953 } 10954 mutex_exit(&ill->ill_lock); 10955 10956 ipif = ill->ill_ipif; 10957 /* unplumb the loopback interface */ 10958 ill_delete(ill); 10959 mutex_enter(&connp->conn_lock); 10960 mutex_enter(&ill->ill_lock); 10961 ASSERT(ill->ill_group == NULL); 10962 10963 /* Are any references to this ill active */ 10964 if (ill_is_quiescent(ill)) { 10965 mutex_exit(&ill->ill_lock); 10966 mutex_exit(&connp->conn_lock); 10967 ill_delete_tail(ill); 10968 mi_free(ill); 10969 return (0); 10970 } 10971 success = ipsq_pending_mp_add(connp, ipif, 10972 CONNP_TO_WQ(connp), mp, ILL_FREE); 10973 mutex_exit(&connp->conn_lock); 10974 mutex_exit(&ill->ill_lock); 10975 if (success) 10976 return (EINPROGRESS); 10977 else 10978 return (EINTR); 10979 } 10980 } 10981 10982 /* 10983 * We are exclusive on the ipsq, so an ill move will be serialized 10984 * before or after us. 10985 */ 10986 ASSERT(ill->ill_move_in_progress == B_FALSE); 10987 10988 if (ipif->ipif_id == 0) { 10989 /* Find based on address */ 10990 if (ipif->ipif_isv6) { 10991 sin6_t *sin6; 10992 10993 if (sin->sin_family != AF_INET6) 10994 return (EAFNOSUPPORT); 10995 10996 sin6 = (sin6_t *)sin; 10997 /* We are a writer, so we should be able to lookup */ 10998 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10999 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11000 if (ipif == NULL) { 11001 /* 11002 * Maybe the address in on another interface in 11003 * the same IPMP group? We check this below. 11004 */ 11005 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11006 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11007 ipst); 11008 } 11009 } else { 11010 ipaddr_t addr; 11011 11012 if (sin->sin_family != AF_INET) 11013 return (EAFNOSUPPORT); 11014 11015 addr = sin->sin_addr.s_addr; 11016 /* We are a writer, so we should be able to lookup */ 11017 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11018 NULL, NULL, NULL, ipst); 11019 if (ipif == NULL) { 11020 /* 11021 * Maybe the address in on another interface in 11022 * the same IPMP group? We check this below. 11023 */ 11024 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11025 NULL, NULL, NULL, NULL, ipst); 11026 } 11027 } 11028 if (ipif == NULL) { 11029 return (EADDRNOTAVAIL); 11030 } 11031 /* 11032 * When the address to be removed is hosted on a different 11033 * interface, we check if the interface is in the same IPMP 11034 * group as the specified one; if so we proceed with the 11035 * removal. 11036 * ill->ill_group is NULL when the ill is down, so we have to 11037 * compare the group names instead. 11038 */ 11039 if (ipif->ipif_ill != ill && 11040 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11041 ill->ill_phyint->phyint_groupname_len == 0 || 11042 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11043 ill->ill_phyint->phyint_groupname) != 0)) { 11044 ipif_refrele(ipif); 11045 return (EADDRNOTAVAIL); 11046 } 11047 11048 /* This is a writer */ 11049 ipif_refrele(ipif); 11050 } 11051 11052 /* 11053 * Can not delete instance zero since it is tied to the ill. 11054 */ 11055 if (ipif->ipif_id == 0) 11056 return (EBUSY); 11057 11058 mutex_enter(&ill->ill_lock); 11059 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11060 mutex_exit(&ill->ill_lock); 11061 11062 ipif_free(ipif); 11063 11064 mutex_enter(&connp->conn_lock); 11065 mutex_enter(&ill->ill_lock); 11066 11067 /* Are any references to this ipif active */ 11068 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11069 mutex_exit(&ill->ill_lock); 11070 mutex_exit(&connp->conn_lock); 11071 ipif_non_duplicate(ipif); 11072 ipif_down_tail(ipif); 11073 ipif_free_tail(ipif); 11074 return (0); 11075 } 11076 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11077 IPIF_FREE); 11078 mutex_exit(&ill->ill_lock); 11079 mutex_exit(&connp->conn_lock); 11080 if (success) 11081 return (EINPROGRESS); 11082 else 11083 return (EINTR); 11084 } 11085 11086 /* 11087 * Restart the removeif ioctl. The refcnt has gone down to 0. 11088 * The ipif is already condemned. So can't find it thru lookups. 11089 */ 11090 /* ARGSUSED */ 11091 int 11092 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11093 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11094 { 11095 ill_t *ill; 11096 11097 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11098 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11099 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11100 ill = ipif->ipif_ill; 11101 ASSERT(IAM_WRITER_ILL(ill)); 11102 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11103 (ill->ill_state_flags & IPIF_CONDEMNED)); 11104 ill_delete_tail(ill); 11105 mi_free(ill); 11106 return (0); 11107 } 11108 11109 ill = ipif->ipif_ill; 11110 ASSERT(IAM_WRITER_IPIF(ipif)); 11111 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11112 11113 ipif_non_duplicate(ipif); 11114 ipif_down_tail(ipif); 11115 ipif_free_tail(ipif); 11116 11117 ILL_UNMARK_CHANGING(ill); 11118 return (0); 11119 } 11120 11121 /* 11122 * Set the local interface address. 11123 * Allow an address of all zero when the interface is down. 11124 */ 11125 /* ARGSUSED */ 11126 int 11127 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11128 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11129 { 11130 int err = 0; 11131 in6_addr_t v6addr; 11132 boolean_t need_up = B_FALSE; 11133 11134 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11135 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11136 11137 ASSERT(IAM_WRITER_IPIF(ipif)); 11138 11139 if (ipif->ipif_isv6) { 11140 sin6_t *sin6; 11141 ill_t *ill; 11142 phyint_t *phyi; 11143 11144 if (sin->sin_family != AF_INET6) 11145 return (EAFNOSUPPORT); 11146 11147 sin6 = (sin6_t *)sin; 11148 v6addr = sin6->sin6_addr; 11149 ill = ipif->ipif_ill; 11150 phyi = ill->ill_phyint; 11151 11152 /* 11153 * Enforce that true multicast interfaces have a link-local 11154 * address for logical unit 0. 11155 */ 11156 if (ipif->ipif_id == 0 && 11157 (ill->ill_flags & ILLF_MULTICAST) && 11158 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11159 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11160 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11161 return (EADDRNOTAVAIL); 11162 } 11163 11164 /* 11165 * up interfaces shouldn't have the unspecified address 11166 * unless they also have the IPIF_NOLOCAL flags set and 11167 * have a subnet assigned. 11168 */ 11169 if ((ipif->ipif_flags & IPIF_UP) && 11170 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11171 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11172 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11173 return (EADDRNOTAVAIL); 11174 } 11175 11176 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11177 return (EADDRNOTAVAIL); 11178 } else { 11179 ipaddr_t addr; 11180 11181 if (sin->sin_family != AF_INET) 11182 return (EAFNOSUPPORT); 11183 11184 addr = sin->sin_addr.s_addr; 11185 11186 /* Allow 0 as the local address. */ 11187 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11188 return (EADDRNOTAVAIL); 11189 11190 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11191 } 11192 11193 11194 /* 11195 * Even if there is no change we redo things just to rerun 11196 * ipif_set_default. 11197 */ 11198 if (ipif->ipif_flags & IPIF_UP) { 11199 /* 11200 * Setting a new local address, make sure 11201 * we have net and subnet bcast ire's for 11202 * the old address if we need them. 11203 */ 11204 if (!ipif->ipif_isv6) 11205 ipif_check_bcast_ires(ipif); 11206 /* 11207 * If the interface is already marked up, 11208 * we call ipif_down which will take care 11209 * of ditching any IREs that have been set 11210 * up based on the old interface address. 11211 */ 11212 err = ipif_logical_down(ipif, q, mp); 11213 if (err == EINPROGRESS) 11214 return (err); 11215 ipif_down_tail(ipif); 11216 need_up = 1; 11217 } 11218 11219 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11220 return (err); 11221 } 11222 11223 int 11224 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11225 boolean_t need_up) 11226 { 11227 in6_addr_t v6addr; 11228 in6_addr_t ov6addr; 11229 ipaddr_t addr; 11230 sin6_t *sin6; 11231 int sinlen; 11232 int err = 0; 11233 ill_t *ill = ipif->ipif_ill; 11234 boolean_t need_dl_down; 11235 boolean_t need_arp_down; 11236 struct iocblk *iocp; 11237 11238 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11239 11240 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11241 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11242 ASSERT(IAM_WRITER_IPIF(ipif)); 11243 11244 /* Must cancel any pending timer before taking the ill_lock */ 11245 if (ipif->ipif_recovery_id != 0) 11246 (void) untimeout(ipif->ipif_recovery_id); 11247 ipif->ipif_recovery_id = 0; 11248 11249 if (ipif->ipif_isv6) { 11250 sin6 = (sin6_t *)sin; 11251 v6addr = sin6->sin6_addr; 11252 sinlen = sizeof (struct sockaddr_in6); 11253 } else { 11254 addr = sin->sin_addr.s_addr; 11255 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11256 sinlen = sizeof (struct sockaddr_in); 11257 } 11258 mutex_enter(&ill->ill_lock); 11259 ov6addr = ipif->ipif_v6lcl_addr; 11260 ipif->ipif_v6lcl_addr = v6addr; 11261 sctp_update_ipif_addr(ipif, ov6addr); 11262 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11263 ipif->ipif_v6src_addr = ipv6_all_zeros; 11264 } else { 11265 ipif->ipif_v6src_addr = v6addr; 11266 } 11267 ipif->ipif_addr_ready = 0; 11268 11269 /* 11270 * If the interface was previously marked as a duplicate, then since 11271 * we've now got a "new" address, it should no longer be considered a 11272 * duplicate -- even if the "new" address is the same as the old one. 11273 * Note that if all ipifs are down, we may have a pending ARP down 11274 * event to handle. This is because we want to recover from duplicates 11275 * and thus delay tearing down ARP until the duplicates have been 11276 * removed or disabled. 11277 */ 11278 need_dl_down = need_arp_down = B_FALSE; 11279 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11280 need_arp_down = !need_up; 11281 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11282 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11283 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11284 need_dl_down = B_TRUE; 11285 } 11286 } 11287 11288 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11289 !ill->ill_is_6to4tun) { 11290 queue_t *wqp = ill->ill_wq; 11291 11292 /* 11293 * The local address of this interface is a 6to4 address, 11294 * check if this interface is in fact a 6to4 tunnel or just 11295 * an interface configured with a 6to4 address. We are only 11296 * interested in the former. 11297 */ 11298 if (wqp != NULL) { 11299 while ((wqp->q_next != NULL) && 11300 (wqp->q_next->q_qinfo != NULL) && 11301 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11302 11303 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11304 == TUN6TO4_MODID) { 11305 /* set for use in IP */ 11306 ill->ill_is_6to4tun = 1; 11307 break; 11308 } 11309 wqp = wqp->q_next; 11310 } 11311 } 11312 } 11313 11314 ipif_set_default(ipif); 11315 11316 /* 11317 * When publishing an interface address change event, we only notify 11318 * the event listeners of the new address. It is assumed that if they 11319 * actively care about the addresses assigned that they will have 11320 * already discovered the previous address assigned (if there was one.) 11321 * 11322 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11323 */ 11324 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11325 hook_nic_event_t *info; 11326 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11327 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11328 "attached for %s\n", info->hne_event, 11329 ill->ill_name)); 11330 if (info->hne_data != NULL) 11331 kmem_free(info->hne_data, info->hne_datalen); 11332 kmem_free(info, sizeof (hook_nic_event_t)); 11333 } 11334 11335 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11336 if (info != NULL) { 11337 ip_stack_t *ipst = ill->ill_ipst; 11338 11339 info->hne_nic = 11340 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11341 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11342 info->hne_event = NE_ADDRESS_CHANGE; 11343 info->hne_family = ipif->ipif_isv6 ? 11344 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11345 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11346 if (info->hne_data != NULL) { 11347 info->hne_datalen = sinlen; 11348 bcopy(sin, info->hne_data, sinlen); 11349 } else { 11350 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11351 "address information for ADDRESS_CHANGE nic" 11352 " event of %s (ENOMEM)\n", 11353 ipif->ipif_ill->ill_name)); 11354 kmem_free(info, sizeof (hook_nic_event_t)); 11355 } 11356 } else 11357 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11358 "ADDRESS_CHANGE nic event information for %s " 11359 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11360 11361 ipif->ipif_ill->ill_nic_event_info = info; 11362 } 11363 11364 mutex_exit(&ill->ill_lock); 11365 11366 if (need_up) { 11367 /* 11368 * Now bring the interface back up. If this 11369 * is the only IPIF for the ILL, ipif_up 11370 * will have to re-bind to the device, so 11371 * we may get back EINPROGRESS, in which 11372 * case, this IOCTL will get completed in 11373 * ip_rput_dlpi when we see the DL_BIND_ACK. 11374 */ 11375 err = ipif_up(ipif, q, mp); 11376 } 11377 11378 if (need_dl_down) 11379 ill_dl_down(ill); 11380 if (need_arp_down) 11381 ipif_arp_down(ipif); 11382 11383 return (err); 11384 } 11385 11386 11387 /* 11388 * Restart entry point to restart the address set operation after the 11389 * refcounts have dropped to zero. 11390 */ 11391 /* ARGSUSED */ 11392 int 11393 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11394 ip_ioctl_cmd_t *ipip, void *ifreq) 11395 { 11396 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11397 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11398 ASSERT(IAM_WRITER_IPIF(ipif)); 11399 ipif_down_tail(ipif); 11400 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11401 } 11402 11403 /* ARGSUSED */ 11404 int 11405 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11406 ip_ioctl_cmd_t *ipip, void *if_req) 11407 { 11408 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11409 struct lifreq *lifr = (struct lifreq *)if_req; 11410 11411 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11412 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11413 /* 11414 * The net mask and address can't change since we have a 11415 * reference to the ipif. So no lock is necessary. 11416 */ 11417 if (ipif->ipif_isv6) { 11418 *sin6 = sin6_null; 11419 sin6->sin6_family = AF_INET6; 11420 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11421 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11422 lifr->lifr_addrlen = 11423 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11424 } else { 11425 *sin = sin_null; 11426 sin->sin_family = AF_INET; 11427 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11428 if (ipip->ipi_cmd_type == LIF_CMD) { 11429 lifr->lifr_addrlen = 11430 ip_mask_to_plen(ipif->ipif_net_mask); 11431 } 11432 } 11433 return (0); 11434 } 11435 11436 /* 11437 * Set the destination address for a pt-pt interface. 11438 */ 11439 /* ARGSUSED */ 11440 int 11441 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11442 ip_ioctl_cmd_t *ipip, void *if_req) 11443 { 11444 int err = 0; 11445 in6_addr_t v6addr; 11446 boolean_t need_up = B_FALSE; 11447 11448 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11449 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11450 ASSERT(IAM_WRITER_IPIF(ipif)); 11451 11452 if (ipif->ipif_isv6) { 11453 sin6_t *sin6; 11454 11455 if (sin->sin_family != AF_INET6) 11456 return (EAFNOSUPPORT); 11457 11458 sin6 = (sin6_t *)sin; 11459 v6addr = sin6->sin6_addr; 11460 11461 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11462 return (EADDRNOTAVAIL); 11463 } else { 11464 ipaddr_t addr; 11465 11466 if (sin->sin_family != AF_INET) 11467 return (EAFNOSUPPORT); 11468 11469 addr = sin->sin_addr.s_addr; 11470 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11471 return (EADDRNOTAVAIL); 11472 11473 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11474 } 11475 11476 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11477 return (0); /* No change */ 11478 11479 if (ipif->ipif_flags & IPIF_UP) { 11480 /* 11481 * If the interface is already marked up, 11482 * we call ipif_down which will take care 11483 * of ditching any IREs that have been set 11484 * up based on the old pp dst address. 11485 */ 11486 err = ipif_logical_down(ipif, q, mp); 11487 if (err == EINPROGRESS) 11488 return (err); 11489 ipif_down_tail(ipif); 11490 need_up = B_TRUE; 11491 } 11492 /* 11493 * could return EINPROGRESS. If so ioctl will complete in 11494 * ip_rput_dlpi_writer 11495 */ 11496 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11497 return (err); 11498 } 11499 11500 static int 11501 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11502 boolean_t need_up) 11503 { 11504 in6_addr_t v6addr; 11505 ill_t *ill = ipif->ipif_ill; 11506 int err = 0; 11507 boolean_t need_dl_down; 11508 boolean_t need_arp_down; 11509 11510 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11511 ipif->ipif_id, (void *)ipif)); 11512 11513 /* Must cancel any pending timer before taking the ill_lock */ 11514 if (ipif->ipif_recovery_id != 0) 11515 (void) untimeout(ipif->ipif_recovery_id); 11516 ipif->ipif_recovery_id = 0; 11517 11518 if (ipif->ipif_isv6) { 11519 sin6_t *sin6; 11520 11521 sin6 = (sin6_t *)sin; 11522 v6addr = sin6->sin6_addr; 11523 } else { 11524 ipaddr_t addr; 11525 11526 addr = sin->sin_addr.s_addr; 11527 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11528 } 11529 mutex_enter(&ill->ill_lock); 11530 /* Set point to point destination address. */ 11531 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11532 /* 11533 * Allow this as a means of creating logical 11534 * pt-pt interfaces on top of e.g. an Ethernet. 11535 * XXX Undocumented HACK for testing. 11536 * pt-pt interfaces are created with NUD disabled. 11537 */ 11538 ipif->ipif_flags |= IPIF_POINTOPOINT; 11539 ipif->ipif_flags &= ~IPIF_BROADCAST; 11540 if (ipif->ipif_isv6) 11541 ill->ill_flags |= ILLF_NONUD; 11542 } 11543 11544 /* 11545 * If the interface was previously marked as a duplicate, then since 11546 * we've now got a "new" address, it should no longer be considered a 11547 * duplicate -- even if the "new" address is the same as the old one. 11548 * Note that if all ipifs are down, we may have a pending ARP down 11549 * event to handle. 11550 */ 11551 need_dl_down = need_arp_down = B_FALSE; 11552 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11553 need_arp_down = !need_up; 11554 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11555 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11556 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11557 need_dl_down = B_TRUE; 11558 } 11559 } 11560 11561 /* Set the new address. */ 11562 ipif->ipif_v6pp_dst_addr = v6addr; 11563 /* Make sure subnet tracks pp_dst */ 11564 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11565 mutex_exit(&ill->ill_lock); 11566 11567 if (need_up) { 11568 /* 11569 * Now bring the interface back up. If this 11570 * is the only IPIF for the ILL, ipif_up 11571 * will have to re-bind to the device, so 11572 * we may get back EINPROGRESS, in which 11573 * case, this IOCTL will get completed in 11574 * ip_rput_dlpi when we see the DL_BIND_ACK. 11575 */ 11576 err = ipif_up(ipif, q, mp); 11577 } 11578 11579 if (need_dl_down) 11580 ill_dl_down(ill); 11581 11582 if (need_arp_down) 11583 ipif_arp_down(ipif); 11584 return (err); 11585 } 11586 11587 /* 11588 * Restart entry point to restart the dstaddress set operation after the 11589 * refcounts have dropped to zero. 11590 */ 11591 /* ARGSUSED */ 11592 int 11593 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11594 ip_ioctl_cmd_t *ipip, void *ifreq) 11595 { 11596 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11597 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11598 ipif_down_tail(ipif); 11599 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11600 } 11601 11602 /* ARGSUSED */ 11603 int 11604 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11605 ip_ioctl_cmd_t *ipip, void *if_req) 11606 { 11607 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11608 11609 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11610 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11611 /* 11612 * Get point to point destination address. The addresses can't 11613 * change since we hold a reference to the ipif. 11614 */ 11615 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11616 return (EADDRNOTAVAIL); 11617 11618 if (ipif->ipif_isv6) { 11619 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11620 *sin6 = sin6_null; 11621 sin6->sin6_family = AF_INET6; 11622 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11623 } else { 11624 *sin = sin_null; 11625 sin->sin_family = AF_INET; 11626 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11627 } 11628 return (0); 11629 } 11630 11631 /* 11632 * part of ipmp, make this func return the active/inactive state and 11633 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11634 */ 11635 /* 11636 * This function either sets or clears the IFF_INACTIVE flag. 11637 * 11638 * As long as there are some addresses or multicast memberships on the 11639 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11640 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11641 * will be used for outbound packets. 11642 * 11643 * Caller needs to verify the validity of setting IFF_INACTIVE. 11644 */ 11645 static void 11646 phyint_inactive(phyint_t *phyi) 11647 { 11648 ill_t *ill_v4; 11649 ill_t *ill_v6; 11650 ipif_t *ipif; 11651 ilm_t *ilm; 11652 11653 ill_v4 = phyi->phyint_illv4; 11654 ill_v6 = phyi->phyint_illv6; 11655 11656 /* 11657 * No need for a lock while traversing the list since iam 11658 * a writer 11659 */ 11660 if (ill_v4 != NULL) { 11661 ASSERT(IAM_WRITER_ILL(ill_v4)); 11662 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11663 ipif = ipif->ipif_next) { 11664 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11665 mutex_enter(&phyi->phyint_lock); 11666 phyi->phyint_flags &= ~PHYI_INACTIVE; 11667 mutex_exit(&phyi->phyint_lock); 11668 return; 11669 } 11670 } 11671 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11672 ilm = ilm->ilm_next) { 11673 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11674 mutex_enter(&phyi->phyint_lock); 11675 phyi->phyint_flags &= ~PHYI_INACTIVE; 11676 mutex_exit(&phyi->phyint_lock); 11677 return; 11678 } 11679 } 11680 } 11681 if (ill_v6 != NULL) { 11682 ill_v6 = phyi->phyint_illv6; 11683 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11684 ipif = ipif->ipif_next) { 11685 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11686 mutex_enter(&phyi->phyint_lock); 11687 phyi->phyint_flags &= ~PHYI_INACTIVE; 11688 mutex_exit(&phyi->phyint_lock); 11689 return; 11690 } 11691 } 11692 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11693 ilm = ilm->ilm_next) { 11694 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11695 mutex_enter(&phyi->phyint_lock); 11696 phyi->phyint_flags &= ~PHYI_INACTIVE; 11697 mutex_exit(&phyi->phyint_lock); 11698 return; 11699 } 11700 } 11701 } 11702 mutex_enter(&phyi->phyint_lock); 11703 phyi->phyint_flags |= PHYI_INACTIVE; 11704 mutex_exit(&phyi->phyint_lock); 11705 } 11706 11707 /* 11708 * This function is called only when the phyint flags change. Currently 11709 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11710 * that we can select a good ill. 11711 */ 11712 static void 11713 ip_redo_nomination(phyint_t *phyi) 11714 { 11715 ill_t *ill_v4; 11716 11717 ill_v4 = phyi->phyint_illv4; 11718 11719 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11720 ASSERT(IAM_WRITER_ILL(ill_v4)); 11721 if (ill_v4->ill_group->illgrp_ill_count > 1) 11722 ill_nominate_bcast_rcv(ill_v4->ill_group); 11723 } 11724 } 11725 11726 /* 11727 * Heuristic to check if ill is INACTIVE. 11728 * Checks if ill has an ipif with an usable ip address. 11729 * 11730 * Return values: 11731 * B_TRUE - ill is INACTIVE; has no usable ipif 11732 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11733 */ 11734 static boolean_t 11735 ill_is_inactive(ill_t *ill) 11736 { 11737 ipif_t *ipif; 11738 11739 /* Check whether it is in an IPMP group */ 11740 if (ill->ill_phyint->phyint_groupname == NULL) 11741 return (B_FALSE); 11742 11743 if (ill->ill_ipif_up_count == 0) 11744 return (B_TRUE); 11745 11746 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11747 uint64_t flags = ipif->ipif_flags; 11748 11749 /* 11750 * This ipif is usable if it is IPIF_UP and not a 11751 * dedicated test address. A dedicated test address 11752 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11753 * (note in particular that V6 test addresses are 11754 * link-local data addresses and thus are marked 11755 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11756 */ 11757 if ((flags & IPIF_UP) && 11758 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11759 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11760 return (B_FALSE); 11761 } 11762 return (B_TRUE); 11763 } 11764 11765 /* 11766 * Set interface flags. 11767 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11768 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11769 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11770 * 11771 * NOTE : We really don't enforce that ipif_id zero should be used 11772 * for setting any flags other than IFF_LOGINT_FLAGS. This 11773 * is because applications generally does SICGLIFFLAGS and 11774 * ORs in the new flags (that affects the logical) and does a 11775 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11776 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11777 * flags that will be turned on is correct with respect to 11778 * ipif_id 0. For backward compatibility reasons, it is not done. 11779 */ 11780 /* ARGSUSED */ 11781 int 11782 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11783 ip_ioctl_cmd_t *ipip, void *if_req) 11784 { 11785 uint64_t turn_on; 11786 uint64_t turn_off; 11787 int err; 11788 boolean_t need_up = B_FALSE; 11789 phyint_t *phyi; 11790 ill_t *ill; 11791 uint64_t intf_flags; 11792 boolean_t phyint_flags_modified = B_FALSE; 11793 uint64_t flags; 11794 struct ifreq *ifr; 11795 struct lifreq *lifr; 11796 boolean_t set_linklocal = B_FALSE; 11797 boolean_t zero_source = B_FALSE; 11798 ip_stack_t *ipst; 11799 11800 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11801 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11802 11803 ASSERT(IAM_WRITER_IPIF(ipif)); 11804 11805 ill = ipif->ipif_ill; 11806 phyi = ill->ill_phyint; 11807 ipst = ill->ill_ipst; 11808 11809 if (ipip->ipi_cmd_type == IF_CMD) { 11810 ifr = (struct ifreq *)if_req; 11811 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11812 } else { 11813 lifr = (struct lifreq *)if_req; 11814 flags = lifr->lifr_flags; 11815 } 11816 11817 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11818 11819 /* 11820 * Has the flags been set correctly till now ? 11821 */ 11822 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11823 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11824 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11825 /* 11826 * Compare the new flags to the old, and partition 11827 * into those coming on and those going off. 11828 * For the 16 bit command keep the bits above bit 16 unchanged. 11829 */ 11830 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11831 flags |= intf_flags & ~0xFFFF; 11832 11833 /* 11834 * First check which bits will change and then which will 11835 * go on and off 11836 */ 11837 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11838 if (!turn_on) 11839 return (0); /* No change */ 11840 11841 turn_off = intf_flags & turn_on; 11842 turn_on ^= turn_off; 11843 err = 0; 11844 11845 /* 11846 * Don't allow any bits belonging to the logical interface 11847 * to be set or cleared on the replacement ipif that was 11848 * created temporarily during a MOVE. 11849 */ 11850 if (ipif->ipif_replace_zero && 11851 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11852 return (EINVAL); 11853 } 11854 11855 /* 11856 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11857 * IPv6 interfaces. 11858 */ 11859 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11860 return (EINVAL); 11861 11862 /* 11863 * cannot turn off IFF_NOXMIT on VNI interfaces. 11864 */ 11865 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11866 return (EINVAL); 11867 11868 /* 11869 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11870 * interfaces. It makes no sense in that context. 11871 */ 11872 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11873 return (EINVAL); 11874 11875 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11876 zero_source = B_TRUE; 11877 11878 /* 11879 * For IPv6 ipif_id 0, don't allow the interface to be up without 11880 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11881 * If the link local address isn't set, and can be set, it will get 11882 * set later on in this function. 11883 */ 11884 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11885 (flags & IFF_UP) && !zero_source && 11886 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11887 if (ipif_cant_setlinklocal(ipif)) 11888 return (EINVAL); 11889 set_linklocal = B_TRUE; 11890 } 11891 11892 /* 11893 * ILL cannot be part of a usesrc group and and IPMP group at the 11894 * same time. No need to grab ill_g_usesrc_lock here, see 11895 * synchronization notes in ip.c 11896 */ 11897 if (turn_on & PHYI_STANDBY && 11898 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11899 return (EINVAL); 11900 } 11901 11902 /* 11903 * If we modify physical interface flags, we'll potentially need to 11904 * send up two routing socket messages for the changes (one for the 11905 * IPv4 ill, and another for the IPv6 ill). Note that here. 11906 */ 11907 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11908 phyint_flags_modified = B_TRUE; 11909 11910 /* 11911 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11912 * we need to flush the IRE_CACHES belonging to this ill. 11913 * We handle this case here without doing the DOWN/UP dance 11914 * like it is done for other flags. If some other flags are 11915 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11916 * below will handle it by bringing it down and then 11917 * bringing it UP. 11918 */ 11919 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11920 ill_t *ill_v4, *ill_v6; 11921 11922 ill_v4 = phyi->phyint_illv4; 11923 ill_v6 = phyi->phyint_illv6; 11924 11925 /* 11926 * First set the INACTIVE flag if needed. Then delete the ires. 11927 * ire_add will atomically prevent creating new IRE_CACHEs 11928 * unless hidden flag is set. 11929 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11930 */ 11931 if ((turn_on & PHYI_FAILED) && 11932 ((intf_flags & PHYI_STANDBY) || 11933 !ipst->ips_ipmp_enable_failback)) { 11934 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11935 phyi->phyint_flags &= ~PHYI_INACTIVE; 11936 } 11937 if ((turn_off & PHYI_FAILED) && 11938 ((intf_flags & PHYI_STANDBY) || 11939 (!ipst->ips_ipmp_enable_failback && 11940 ill_is_inactive(ill)))) { 11941 phyint_inactive(phyi); 11942 } 11943 11944 if (turn_on & PHYI_STANDBY) { 11945 /* 11946 * We implicitly set INACTIVE only when STANDBY is set. 11947 * INACTIVE is also set on non-STANDBY phyint when user 11948 * disables FAILBACK using configuration file. 11949 * Do not allow STANDBY to be set on such INACTIVE 11950 * phyint 11951 */ 11952 if (phyi->phyint_flags & PHYI_INACTIVE) 11953 return (EINVAL); 11954 if (!(phyi->phyint_flags & PHYI_FAILED)) 11955 phyint_inactive(phyi); 11956 } 11957 if (turn_off & PHYI_STANDBY) { 11958 if (ipst->ips_ipmp_enable_failback) { 11959 /* 11960 * Reset PHYI_INACTIVE. 11961 */ 11962 phyi->phyint_flags &= ~PHYI_INACTIVE; 11963 } else if (ill_is_inactive(ill) && 11964 !(phyi->phyint_flags & PHYI_FAILED)) { 11965 /* 11966 * Need to set INACTIVE, when user sets 11967 * STANDBY on a non-STANDBY phyint and 11968 * later resets STANDBY 11969 */ 11970 phyint_inactive(phyi); 11971 } 11972 } 11973 /* 11974 * We should always send up a message so that the 11975 * daemons come to know of it. Note that the zeroth 11976 * interface can be down and the check below for IPIF_UP 11977 * will not make sense as we are actually setting 11978 * a phyint flag here. We assume that the ipif used 11979 * is always the zeroth ipif. (ip_rts_ifmsg does not 11980 * send up any message for non-zero ipifs). 11981 */ 11982 phyint_flags_modified = B_TRUE; 11983 11984 if (ill_v4 != NULL) { 11985 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11986 IRE_CACHE, ill_stq_cache_delete, 11987 (char *)ill_v4, ill_v4); 11988 illgrp_reset_schednext(ill_v4); 11989 } 11990 if (ill_v6 != NULL) { 11991 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11992 IRE_CACHE, ill_stq_cache_delete, 11993 (char *)ill_v6, ill_v6); 11994 illgrp_reset_schednext(ill_v6); 11995 } 11996 } 11997 11998 /* 11999 * If ILLF_ROUTER changes, we need to change the ip forwarding 12000 * status of the interface and, if the interface is part of an IPMP 12001 * group, all other interfaces that are part of the same IPMP 12002 * group. 12003 */ 12004 if ((turn_on | turn_off) & ILLF_ROUTER) 12005 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 12006 12007 /* 12008 * If the interface is not UP and we are not going to 12009 * bring it UP, record the flags and return. When the 12010 * interface comes UP later, the right actions will be 12011 * taken. 12012 */ 12013 if (!(ipif->ipif_flags & IPIF_UP) && 12014 !(turn_on & IPIF_UP)) { 12015 /* Record new flags in their respective places. */ 12016 mutex_enter(&ill->ill_lock); 12017 mutex_enter(&ill->ill_phyint->phyint_lock); 12018 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12019 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12020 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12021 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12022 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12023 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12024 mutex_exit(&ill->ill_lock); 12025 mutex_exit(&ill->ill_phyint->phyint_lock); 12026 12027 /* 12028 * We do the broadcast and nomination here rather 12029 * than waiting for a FAILOVER/FAILBACK to happen. In 12030 * the case of FAILBACK from INACTIVE standby to the 12031 * interface that has been repaired, PHYI_FAILED has not 12032 * been cleared yet. If there are only two interfaces in 12033 * that group, all we have is a FAILED and INACTIVE 12034 * interface. If we do the nomination soon after a failback, 12035 * the broadcast nomination code would select the 12036 * INACTIVE interface for receiving broadcasts as FAILED is 12037 * not yet cleared. As we don't want STANDBY/INACTIVE to 12038 * receive broadcast packets, we need to redo nomination 12039 * when the FAILED is cleared here. Thus, in general we 12040 * always do the nomination here for FAILED, STANDBY 12041 * and OFFLINE. 12042 */ 12043 if (((turn_on | turn_off) & 12044 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12045 ip_redo_nomination(phyi); 12046 } 12047 if (phyint_flags_modified) { 12048 if (phyi->phyint_illv4 != NULL) { 12049 ip_rts_ifmsg(phyi->phyint_illv4-> 12050 ill_ipif); 12051 } 12052 if (phyi->phyint_illv6 != NULL) { 12053 ip_rts_ifmsg(phyi->phyint_illv6-> 12054 ill_ipif); 12055 } 12056 } 12057 return (0); 12058 } else if (set_linklocal || zero_source) { 12059 mutex_enter(&ill->ill_lock); 12060 if (set_linklocal) 12061 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12062 if (zero_source) 12063 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12064 mutex_exit(&ill->ill_lock); 12065 } 12066 12067 /* 12068 * Disallow IPv6 interfaces coming up that have the unspecified address, 12069 * or point-to-point interfaces with an unspecified destination. We do 12070 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12071 * have a subnet assigned, which is how in.ndpd currently manages its 12072 * onlink prefix list when no addresses are configured with those 12073 * prefixes. 12074 */ 12075 if (ipif->ipif_isv6 && 12076 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12077 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12078 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12079 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12080 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12081 return (EINVAL); 12082 } 12083 12084 /* 12085 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12086 * from being brought up. 12087 */ 12088 if (!ipif->ipif_isv6 && 12089 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12090 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12091 return (EINVAL); 12092 } 12093 12094 /* 12095 * The only flag changes that we currently take specific action on 12096 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12097 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12098 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12099 * the flags and bringing it back up again. 12100 */ 12101 if ((turn_on|turn_off) & 12102 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12103 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12104 /* 12105 * Taking this ipif down, make sure we have 12106 * valid net and subnet bcast ire's for other 12107 * logical interfaces, if we need them. 12108 */ 12109 if (!ipif->ipif_isv6) 12110 ipif_check_bcast_ires(ipif); 12111 12112 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12113 !(turn_off & IPIF_UP)) { 12114 need_up = B_TRUE; 12115 if (ipif->ipif_flags & IPIF_UP) 12116 ill->ill_logical_down = 1; 12117 turn_on &= ~IPIF_UP; 12118 } 12119 err = ipif_down(ipif, q, mp); 12120 ip1dbg(("ipif_down returns %d err ", err)); 12121 if (err == EINPROGRESS) 12122 return (err); 12123 ipif_down_tail(ipif); 12124 } 12125 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12126 } 12127 12128 static int 12129 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12130 boolean_t need_up) 12131 { 12132 ill_t *ill; 12133 phyint_t *phyi; 12134 uint64_t turn_on; 12135 uint64_t turn_off; 12136 uint64_t intf_flags; 12137 boolean_t phyint_flags_modified = B_FALSE; 12138 int err = 0; 12139 boolean_t set_linklocal = B_FALSE; 12140 boolean_t zero_source = B_FALSE; 12141 12142 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12143 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12144 12145 ASSERT(IAM_WRITER_IPIF(ipif)); 12146 12147 ill = ipif->ipif_ill; 12148 phyi = ill->ill_phyint; 12149 12150 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12151 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12152 12153 turn_off = intf_flags & turn_on; 12154 turn_on ^= turn_off; 12155 12156 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12157 phyint_flags_modified = B_TRUE; 12158 12159 /* 12160 * Now we change the flags. Track current value of 12161 * other flags in their respective places. 12162 */ 12163 mutex_enter(&ill->ill_lock); 12164 mutex_enter(&phyi->phyint_lock); 12165 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12166 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12167 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12168 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12169 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12170 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12171 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12172 set_linklocal = B_TRUE; 12173 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12174 } 12175 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12176 zero_source = B_TRUE; 12177 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12178 } 12179 mutex_exit(&ill->ill_lock); 12180 mutex_exit(&phyi->phyint_lock); 12181 12182 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12183 ip_redo_nomination(phyi); 12184 12185 if (set_linklocal) 12186 (void) ipif_setlinklocal(ipif); 12187 12188 if (zero_source) 12189 ipif->ipif_v6src_addr = ipv6_all_zeros; 12190 else 12191 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12192 12193 if (need_up) { 12194 /* 12195 * XXX ipif_up really does not know whether a phyint flags 12196 * was modified or not. So, it sends up information on 12197 * only one routing sockets message. As we don't bring up 12198 * the interface and also set STANDBY/FAILED simultaneously 12199 * it should be okay. 12200 */ 12201 err = ipif_up(ipif, q, mp); 12202 } else { 12203 /* 12204 * Make sure routing socket sees all changes to the flags. 12205 * ipif_up_done* handles this when we use ipif_up. 12206 */ 12207 if (phyint_flags_modified) { 12208 if (phyi->phyint_illv4 != NULL) { 12209 ip_rts_ifmsg(phyi->phyint_illv4-> 12210 ill_ipif); 12211 } 12212 if (phyi->phyint_illv6 != NULL) { 12213 ip_rts_ifmsg(phyi->phyint_illv6-> 12214 ill_ipif); 12215 } 12216 } else { 12217 ip_rts_ifmsg(ipif); 12218 } 12219 /* 12220 * Update the flags in SCTP's IPIF list, ipif_up() will do 12221 * this in need_up case. 12222 */ 12223 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12224 } 12225 return (err); 12226 } 12227 12228 /* 12229 * Restart entry point to restart the flags restart operation after the 12230 * refcounts have dropped to zero. 12231 */ 12232 /* ARGSUSED */ 12233 int 12234 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12235 ip_ioctl_cmd_t *ipip, void *if_req) 12236 { 12237 int err; 12238 struct ifreq *ifr = (struct ifreq *)if_req; 12239 struct lifreq *lifr = (struct lifreq *)if_req; 12240 12241 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12242 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12243 12244 ipif_down_tail(ipif); 12245 if (ipip->ipi_cmd_type == IF_CMD) { 12246 /* 12247 * Since ip_sioctl_flags expects an int and ifr_flags 12248 * is a short we need to cast ifr_flags into an int 12249 * to avoid having sign extension cause bits to get 12250 * set that should not be. 12251 */ 12252 err = ip_sioctl_flags_tail(ipif, 12253 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12254 q, mp, B_TRUE); 12255 } else { 12256 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12257 q, mp, B_TRUE); 12258 } 12259 return (err); 12260 } 12261 12262 /* 12263 * Can operate on either a module or a driver queue. 12264 */ 12265 /* ARGSUSED */ 12266 int 12267 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12268 ip_ioctl_cmd_t *ipip, void *if_req) 12269 { 12270 /* 12271 * Has the flags been set correctly till now ? 12272 */ 12273 ill_t *ill = ipif->ipif_ill; 12274 phyint_t *phyi = ill->ill_phyint; 12275 12276 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12277 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12278 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12279 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12280 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12281 12282 /* 12283 * Need a lock since some flags can be set even when there are 12284 * references to the ipif. 12285 */ 12286 mutex_enter(&ill->ill_lock); 12287 if (ipip->ipi_cmd_type == IF_CMD) { 12288 struct ifreq *ifr = (struct ifreq *)if_req; 12289 12290 /* Get interface flags (low 16 only). */ 12291 ifr->ifr_flags = ((ipif->ipif_flags | 12292 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12293 } else { 12294 struct lifreq *lifr = (struct lifreq *)if_req; 12295 12296 /* Get interface flags. */ 12297 lifr->lifr_flags = ipif->ipif_flags | 12298 ill->ill_flags | phyi->phyint_flags; 12299 } 12300 mutex_exit(&ill->ill_lock); 12301 return (0); 12302 } 12303 12304 /* ARGSUSED */ 12305 int 12306 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12307 ip_ioctl_cmd_t *ipip, void *if_req) 12308 { 12309 int mtu; 12310 int ip_min_mtu; 12311 struct ifreq *ifr; 12312 struct lifreq *lifr; 12313 ire_t *ire; 12314 ip_stack_t *ipst; 12315 12316 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12317 ipif->ipif_id, (void *)ipif)); 12318 if (ipip->ipi_cmd_type == IF_CMD) { 12319 ifr = (struct ifreq *)if_req; 12320 mtu = ifr->ifr_metric; 12321 } else { 12322 lifr = (struct lifreq *)if_req; 12323 mtu = lifr->lifr_mtu; 12324 } 12325 12326 if (ipif->ipif_isv6) 12327 ip_min_mtu = IPV6_MIN_MTU; 12328 else 12329 ip_min_mtu = IP_MIN_MTU; 12330 12331 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12332 return (EINVAL); 12333 12334 /* 12335 * Change the MTU size in all relevant ire's. 12336 * Mtu change Vs. new ire creation - protocol below. 12337 * First change ipif_mtu and the ire_max_frag of the 12338 * interface ire. Then do an ire walk and change the 12339 * ire_max_frag of all affected ires. During ire_add 12340 * under the bucket lock, set the ire_max_frag of the 12341 * new ire being created from the ipif/ire from which 12342 * it is being derived. If an mtu change happens after 12343 * the ire is added, the new ire will be cleaned up. 12344 * Conversely if the mtu change happens before the ire 12345 * is added, ire_add will see the new value of the mtu. 12346 */ 12347 ipif->ipif_mtu = mtu; 12348 ipif->ipif_flags |= IPIF_FIXEDMTU; 12349 12350 if (ipif->ipif_isv6) 12351 ire = ipif_to_ire_v6(ipif); 12352 else 12353 ire = ipif_to_ire(ipif); 12354 if (ire != NULL) { 12355 ire->ire_max_frag = ipif->ipif_mtu; 12356 ire_refrele(ire); 12357 } 12358 ipst = ipif->ipif_ill->ill_ipst; 12359 if (ipif->ipif_flags & IPIF_UP) { 12360 if (ipif->ipif_isv6) 12361 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12362 ipst); 12363 else 12364 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12365 ipst); 12366 } 12367 /* Update the MTU in SCTP's list */ 12368 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12369 return (0); 12370 } 12371 12372 /* Get interface MTU. */ 12373 /* ARGSUSED */ 12374 int 12375 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12376 ip_ioctl_cmd_t *ipip, void *if_req) 12377 { 12378 struct ifreq *ifr; 12379 struct lifreq *lifr; 12380 12381 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12382 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12383 if (ipip->ipi_cmd_type == IF_CMD) { 12384 ifr = (struct ifreq *)if_req; 12385 ifr->ifr_metric = ipif->ipif_mtu; 12386 } else { 12387 lifr = (struct lifreq *)if_req; 12388 lifr->lifr_mtu = ipif->ipif_mtu; 12389 } 12390 return (0); 12391 } 12392 12393 /* Set interface broadcast address. */ 12394 /* ARGSUSED2 */ 12395 int 12396 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12397 ip_ioctl_cmd_t *ipip, void *if_req) 12398 { 12399 ipaddr_t addr; 12400 ire_t *ire; 12401 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12402 12403 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12404 ipif->ipif_id)); 12405 12406 ASSERT(IAM_WRITER_IPIF(ipif)); 12407 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12408 return (EADDRNOTAVAIL); 12409 12410 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12411 12412 if (sin->sin_family != AF_INET) 12413 return (EAFNOSUPPORT); 12414 12415 addr = sin->sin_addr.s_addr; 12416 if (ipif->ipif_flags & IPIF_UP) { 12417 /* 12418 * If we are already up, make sure the new 12419 * broadcast address makes sense. If it does, 12420 * there should be an IRE for it already. 12421 * Don't match on ipif, only on the ill 12422 * since we are sharing these now. Don't use 12423 * MATCH_IRE_ILL_GROUP as we are looking for 12424 * the broadcast ire on this ill and each ill 12425 * in the group has its own broadcast ire. 12426 */ 12427 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12428 ipif, ALL_ZONES, NULL, 12429 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12430 if (ire == NULL) { 12431 return (EINVAL); 12432 } else { 12433 ire_refrele(ire); 12434 } 12435 } 12436 /* 12437 * Changing the broadcast addr for this ipif. 12438 * Make sure we have valid net and subnet bcast 12439 * ire's for other logical interfaces, if needed. 12440 */ 12441 if (addr != ipif->ipif_brd_addr) 12442 ipif_check_bcast_ires(ipif); 12443 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12444 return (0); 12445 } 12446 12447 /* Get interface broadcast address. */ 12448 /* ARGSUSED */ 12449 int 12450 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12451 ip_ioctl_cmd_t *ipip, void *if_req) 12452 { 12453 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12454 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12455 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12456 return (EADDRNOTAVAIL); 12457 12458 /* IPIF_BROADCAST not possible with IPv6 */ 12459 ASSERT(!ipif->ipif_isv6); 12460 *sin = sin_null; 12461 sin->sin_family = AF_INET; 12462 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12463 return (0); 12464 } 12465 12466 /* 12467 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12468 */ 12469 /* ARGSUSED */ 12470 int 12471 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12472 ip_ioctl_cmd_t *ipip, void *if_req) 12473 { 12474 int err = 0; 12475 in6_addr_t v6mask; 12476 12477 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12478 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12479 12480 ASSERT(IAM_WRITER_IPIF(ipif)); 12481 12482 if (ipif->ipif_isv6) { 12483 sin6_t *sin6; 12484 12485 if (sin->sin_family != AF_INET6) 12486 return (EAFNOSUPPORT); 12487 12488 sin6 = (sin6_t *)sin; 12489 v6mask = sin6->sin6_addr; 12490 } else { 12491 ipaddr_t mask; 12492 12493 if (sin->sin_family != AF_INET) 12494 return (EAFNOSUPPORT); 12495 12496 mask = sin->sin_addr.s_addr; 12497 V4MASK_TO_V6(mask, v6mask); 12498 } 12499 12500 /* 12501 * No big deal if the interface isn't already up, or the mask 12502 * isn't really changing, or this is pt-pt. 12503 */ 12504 if (!(ipif->ipif_flags & IPIF_UP) || 12505 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12506 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12507 ipif->ipif_v6net_mask = v6mask; 12508 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12509 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12510 ipif->ipif_v6net_mask, 12511 ipif->ipif_v6subnet); 12512 } 12513 return (0); 12514 } 12515 /* 12516 * Make sure we have valid net and subnet broadcast ire's 12517 * for the old netmask, if needed by other logical interfaces. 12518 */ 12519 if (!ipif->ipif_isv6) 12520 ipif_check_bcast_ires(ipif); 12521 12522 err = ipif_logical_down(ipif, q, mp); 12523 if (err == EINPROGRESS) 12524 return (err); 12525 ipif_down_tail(ipif); 12526 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12527 return (err); 12528 } 12529 12530 static int 12531 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12532 { 12533 in6_addr_t v6mask; 12534 int err = 0; 12535 12536 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12537 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12538 12539 if (ipif->ipif_isv6) { 12540 sin6_t *sin6; 12541 12542 sin6 = (sin6_t *)sin; 12543 v6mask = sin6->sin6_addr; 12544 } else { 12545 ipaddr_t mask; 12546 12547 mask = sin->sin_addr.s_addr; 12548 V4MASK_TO_V6(mask, v6mask); 12549 } 12550 12551 ipif->ipif_v6net_mask = v6mask; 12552 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12553 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12554 ipif->ipif_v6subnet); 12555 } 12556 err = ipif_up(ipif, q, mp); 12557 12558 if (err == 0 || err == EINPROGRESS) { 12559 /* 12560 * The interface must be DL_BOUND if this packet has to 12561 * go out on the wire. Since we only go through a logical 12562 * down and are bound with the driver during an internal 12563 * down/up that is satisfied. 12564 */ 12565 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12566 /* Potentially broadcast an address mask reply. */ 12567 ipif_mask_reply(ipif); 12568 } 12569 } 12570 return (err); 12571 } 12572 12573 /* ARGSUSED */ 12574 int 12575 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12576 ip_ioctl_cmd_t *ipip, void *if_req) 12577 { 12578 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12579 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12580 ipif_down_tail(ipif); 12581 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12582 } 12583 12584 /* Get interface net mask. */ 12585 /* ARGSUSED */ 12586 int 12587 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12588 ip_ioctl_cmd_t *ipip, void *if_req) 12589 { 12590 struct lifreq *lifr = (struct lifreq *)if_req; 12591 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12592 12593 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12594 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12595 12596 /* 12597 * net mask can't change since we have a reference to the ipif. 12598 */ 12599 if (ipif->ipif_isv6) { 12600 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12601 *sin6 = sin6_null; 12602 sin6->sin6_family = AF_INET6; 12603 sin6->sin6_addr = ipif->ipif_v6net_mask; 12604 lifr->lifr_addrlen = 12605 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12606 } else { 12607 *sin = sin_null; 12608 sin->sin_family = AF_INET; 12609 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12610 if (ipip->ipi_cmd_type == LIF_CMD) { 12611 lifr->lifr_addrlen = 12612 ip_mask_to_plen(ipif->ipif_net_mask); 12613 } 12614 } 12615 return (0); 12616 } 12617 12618 /* ARGSUSED */ 12619 int 12620 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12621 ip_ioctl_cmd_t *ipip, void *if_req) 12622 { 12623 12624 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12625 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12626 /* 12627 * Set interface metric. We don't use this for 12628 * anything but we keep track of it in case it is 12629 * important to routing applications or such. 12630 */ 12631 if (ipip->ipi_cmd_type == IF_CMD) { 12632 struct ifreq *ifr; 12633 12634 ifr = (struct ifreq *)if_req; 12635 ipif->ipif_metric = ifr->ifr_metric; 12636 } else { 12637 struct lifreq *lifr; 12638 12639 lifr = (struct lifreq *)if_req; 12640 ipif->ipif_metric = lifr->lifr_metric; 12641 } 12642 return (0); 12643 } 12644 12645 12646 /* ARGSUSED */ 12647 int 12648 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12649 ip_ioctl_cmd_t *ipip, void *if_req) 12650 { 12651 12652 /* Get interface metric. */ 12653 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12654 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12655 if (ipip->ipi_cmd_type == IF_CMD) { 12656 struct ifreq *ifr; 12657 12658 ifr = (struct ifreq *)if_req; 12659 ifr->ifr_metric = ipif->ipif_metric; 12660 } else { 12661 struct lifreq *lifr; 12662 12663 lifr = (struct lifreq *)if_req; 12664 lifr->lifr_metric = ipif->ipif_metric; 12665 } 12666 12667 return (0); 12668 } 12669 12670 /* ARGSUSED */ 12671 int 12672 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12673 ip_ioctl_cmd_t *ipip, void *if_req) 12674 { 12675 12676 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12677 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12678 /* 12679 * Set the muxid returned from I_PLINK. 12680 */ 12681 if (ipip->ipi_cmd_type == IF_CMD) { 12682 struct ifreq *ifr = (struct ifreq *)if_req; 12683 12684 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12685 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12686 } else { 12687 struct lifreq *lifr = (struct lifreq *)if_req; 12688 12689 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12690 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12691 } 12692 return (0); 12693 } 12694 12695 /* ARGSUSED */ 12696 int 12697 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12698 ip_ioctl_cmd_t *ipip, void *if_req) 12699 { 12700 12701 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12703 /* 12704 * Get the muxid saved in ill for I_PUNLINK. 12705 */ 12706 if (ipip->ipi_cmd_type == IF_CMD) { 12707 struct ifreq *ifr = (struct ifreq *)if_req; 12708 12709 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12710 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12711 } else { 12712 struct lifreq *lifr = (struct lifreq *)if_req; 12713 12714 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12715 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12716 } 12717 return (0); 12718 } 12719 12720 /* 12721 * Set the subnet prefix. Does not modify the broadcast address. 12722 */ 12723 /* ARGSUSED */ 12724 int 12725 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12726 ip_ioctl_cmd_t *ipip, void *if_req) 12727 { 12728 int err = 0; 12729 in6_addr_t v6addr; 12730 in6_addr_t v6mask; 12731 boolean_t need_up = B_FALSE; 12732 int addrlen; 12733 12734 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12735 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12736 12737 ASSERT(IAM_WRITER_IPIF(ipif)); 12738 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12739 12740 if (ipif->ipif_isv6) { 12741 sin6_t *sin6; 12742 12743 if (sin->sin_family != AF_INET6) 12744 return (EAFNOSUPPORT); 12745 12746 sin6 = (sin6_t *)sin; 12747 v6addr = sin6->sin6_addr; 12748 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12749 return (EADDRNOTAVAIL); 12750 } else { 12751 ipaddr_t addr; 12752 12753 if (sin->sin_family != AF_INET) 12754 return (EAFNOSUPPORT); 12755 12756 addr = sin->sin_addr.s_addr; 12757 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12758 return (EADDRNOTAVAIL); 12759 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12760 /* Add 96 bits */ 12761 addrlen += IPV6_ABITS - IP_ABITS; 12762 } 12763 12764 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12765 return (EINVAL); 12766 12767 /* Check if bits in the address is set past the mask */ 12768 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12769 return (EINVAL); 12770 12771 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12772 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12773 return (0); /* No change */ 12774 12775 if (ipif->ipif_flags & IPIF_UP) { 12776 /* 12777 * If the interface is already marked up, 12778 * we call ipif_down which will take care 12779 * of ditching any IREs that have been set 12780 * up based on the old interface address. 12781 */ 12782 err = ipif_logical_down(ipif, q, mp); 12783 if (err == EINPROGRESS) 12784 return (err); 12785 ipif_down_tail(ipif); 12786 need_up = B_TRUE; 12787 } 12788 12789 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12790 return (err); 12791 } 12792 12793 static int 12794 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12795 queue_t *q, mblk_t *mp, boolean_t need_up) 12796 { 12797 ill_t *ill = ipif->ipif_ill; 12798 int err = 0; 12799 12800 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12801 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12802 12803 /* Set the new address. */ 12804 mutex_enter(&ill->ill_lock); 12805 ipif->ipif_v6net_mask = v6mask; 12806 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12807 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12808 ipif->ipif_v6subnet); 12809 } 12810 mutex_exit(&ill->ill_lock); 12811 12812 if (need_up) { 12813 /* 12814 * Now bring the interface back up. If this 12815 * is the only IPIF for the ILL, ipif_up 12816 * will have to re-bind to the device, so 12817 * we may get back EINPROGRESS, in which 12818 * case, this IOCTL will get completed in 12819 * ip_rput_dlpi when we see the DL_BIND_ACK. 12820 */ 12821 err = ipif_up(ipif, q, mp); 12822 if (err == EINPROGRESS) 12823 return (err); 12824 } 12825 return (err); 12826 } 12827 12828 /* ARGSUSED */ 12829 int 12830 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12831 ip_ioctl_cmd_t *ipip, void *if_req) 12832 { 12833 int addrlen; 12834 in6_addr_t v6addr; 12835 in6_addr_t v6mask; 12836 struct lifreq *lifr = (struct lifreq *)if_req; 12837 12838 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12839 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12840 ipif_down_tail(ipif); 12841 12842 addrlen = lifr->lifr_addrlen; 12843 if (ipif->ipif_isv6) { 12844 sin6_t *sin6; 12845 12846 sin6 = (sin6_t *)sin; 12847 v6addr = sin6->sin6_addr; 12848 } else { 12849 ipaddr_t addr; 12850 12851 addr = sin->sin_addr.s_addr; 12852 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12853 addrlen += IPV6_ABITS - IP_ABITS; 12854 } 12855 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12856 12857 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12858 } 12859 12860 /* ARGSUSED */ 12861 int 12862 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12863 ip_ioctl_cmd_t *ipip, void *if_req) 12864 { 12865 struct lifreq *lifr = (struct lifreq *)if_req; 12866 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12867 12868 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12869 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12870 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12871 12872 if (ipif->ipif_isv6) { 12873 *sin6 = sin6_null; 12874 sin6->sin6_family = AF_INET6; 12875 sin6->sin6_addr = ipif->ipif_v6subnet; 12876 lifr->lifr_addrlen = 12877 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12878 } else { 12879 *sin = sin_null; 12880 sin->sin_family = AF_INET; 12881 sin->sin_addr.s_addr = ipif->ipif_subnet; 12882 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12883 } 12884 return (0); 12885 } 12886 12887 /* 12888 * Set the IPv6 address token. 12889 */ 12890 /* ARGSUSED */ 12891 int 12892 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12893 ip_ioctl_cmd_t *ipi, void *if_req) 12894 { 12895 ill_t *ill = ipif->ipif_ill; 12896 int err; 12897 in6_addr_t v6addr; 12898 in6_addr_t v6mask; 12899 boolean_t need_up = B_FALSE; 12900 int i; 12901 sin6_t *sin6 = (sin6_t *)sin; 12902 struct lifreq *lifr = (struct lifreq *)if_req; 12903 int addrlen; 12904 12905 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12906 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12907 ASSERT(IAM_WRITER_IPIF(ipif)); 12908 12909 addrlen = lifr->lifr_addrlen; 12910 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12911 if (ipif->ipif_id != 0) 12912 return (EINVAL); 12913 12914 if (!ipif->ipif_isv6) 12915 return (EINVAL); 12916 12917 if (addrlen > IPV6_ABITS) 12918 return (EINVAL); 12919 12920 v6addr = sin6->sin6_addr; 12921 12922 /* 12923 * The length of the token is the length from the end. To get 12924 * the proper mask for this, compute the mask of the bits not 12925 * in the token; ie. the prefix, and then xor to get the mask. 12926 */ 12927 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12928 return (EINVAL); 12929 for (i = 0; i < 4; i++) { 12930 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12931 } 12932 12933 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12934 ill->ill_token_length == addrlen) 12935 return (0); /* No change */ 12936 12937 if (ipif->ipif_flags & IPIF_UP) { 12938 err = ipif_logical_down(ipif, q, mp); 12939 if (err == EINPROGRESS) 12940 return (err); 12941 ipif_down_tail(ipif); 12942 need_up = B_TRUE; 12943 } 12944 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12945 return (err); 12946 } 12947 12948 static int 12949 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12950 mblk_t *mp, boolean_t need_up) 12951 { 12952 in6_addr_t v6addr; 12953 in6_addr_t v6mask; 12954 ill_t *ill = ipif->ipif_ill; 12955 int i; 12956 int err = 0; 12957 12958 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12959 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12960 v6addr = sin6->sin6_addr; 12961 /* 12962 * The length of the token is the length from the end. To get 12963 * the proper mask for this, compute the mask of the bits not 12964 * in the token; ie. the prefix, and then xor to get the mask. 12965 */ 12966 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12967 for (i = 0; i < 4; i++) 12968 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12969 12970 mutex_enter(&ill->ill_lock); 12971 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12972 ill->ill_token_length = addrlen; 12973 mutex_exit(&ill->ill_lock); 12974 12975 if (need_up) { 12976 /* 12977 * Now bring the interface back up. If this 12978 * is the only IPIF for the ILL, ipif_up 12979 * will have to re-bind to the device, so 12980 * we may get back EINPROGRESS, in which 12981 * case, this IOCTL will get completed in 12982 * ip_rput_dlpi when we see the DL_BIND_ACK. 12983 */ 12984 err = ipif_up(ipif, q, mp); 12985 if (err == EINPROGRESS) 12986 return (err); 12987 } 12988 return (err); 12989 } 12990 12991 /* ARGSUSED */ 12992 int 12993 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12994 ip_ioctl_cmd_t *ipi, void *if_req) 12995 { 12996 ill_t *ill; 12997 sin6_t *sin6 = (sin6_t *)sin; 12998 struct lifreq *lifr = (struct lifreq *)if_req; 12999 13000 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13002 if (ipif->ipif_id != 0) 13003 return (EINVAL); 13004 13005 ill = ipif->ipif_ill; 13006 if (!ill->ill_isv6) 13007 return (ENXIO); 13008 13009 *sin6 = sin6_null; 13010 sin6->sin6_family = AF_INET6; 13011 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13012 sin6->sin6_addr = ill->ill_token; 13013 lifr->lifr_addrlen = ill->ill_token_length; 13014 return (0); 13015 } 13016 13017 /* 13018 * Set (hardware) link specific information that might override 13019 * what was acquired through the DL_INFO_ACK. 13020 * The logic is as follows. 13021 * 13022 * become exclusive 13023 * set CHANGING flag 13024 * change mtu on affected IREs 13025 * clear CHANGING flag 13026 * 13027 * An ire add that occurs before the CHANGING flag is set will have its mtu 13028 * changed by the ip_sioctl_lnkinfo. 13029 * 13030 * During the time the CHANGING flag is set, no new ires will be added to the 13031 * bucket, and ire add will fail (due the CHANGING flag). 13032 * 13033 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13034 * before it is added to the bucket. 13035 * 13036 * Obviously only 1 thread can set the CHANGING flag and we need to become 13037 * exclusive to set the flag. 13038 */ 13039 /* ARGSUSED */ 13040 int 13041 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13042 ip_ioctl_cmd_t *ipi, void *if_req) 13043 { 13044 ill_t *ill = ipif->ipif_ill; 13045 ipif_t *nipif; 13046 int ip_min_mtu; 13047 boolean_t mtu_walk = B_FALSE; 13048 struct lifreq *lifr = (struct lifreq *)if_req; 13049 lif_ifinfo_req_t *lir; 13050 ire_t *ire; 13051 13052 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13053 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13054 lir = &lifr->lifr_ifinfo; 13055 ASSERT(IAM_WRITER_IPIF(ipif)); 13056 13057 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13058 if (ipif->ipif_id != 0) 13059 return (EINVAL); 13060 13061 /* Set interface MTU. */ 13062 if (ipif->ipif_isv6) 13063 ip_min_mtu = IPV6_MIN_MTU; 13064 else 13065 ip_min_mtu = IP_MIN_MTU; 13066 13067 /* 13068 * Verify values before we set anything. Allow zero to 13069 * mean unspecified. 13070 */ 13071 if (lir->lir_maxmtu != 0 && 13072 (lir->lir_maxmtu > ill->ill_max_frag || 13073 lir->lir_maxmtu < ip_min_mtu)) 13074 return (EINVAL); 13075 if (lir->lir_reachtime != 0 && 13076 lir->lir_reachtime > ND_MAX_REACHTIME) 13077 return (EINVAL); 13078 if (lir->lir_reachretrans != 0 && 13079 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13080 return (EINVAL); 13081 13082 mutex_enter(&ill->ill_lock); 13083 ill->ill_state_flags |= ILL_CHANGING; 13084 for (nipif = ill->ill_ipif; nipif != NULL; 13085 nipif = nipif->ipif_next) { 13086 nipif->ipif_state_flags |= IPIF_CHANGING; 13087 } 13088 13089 mutex_exit(&ill->ill_lock); 13090 13091 if (lir->lir_maxmtu != 0) { 13092 ill->ill_max_mtu = lir->lir_maxmtu; 13093 ill->ill_mtu_userspecified = 1; 13094 mtu_walk = B_TRUE; 13095 } 13096 13097 if (lir->lir_reachtime != 0) 13098 ill->ill_reachable_time = lir->lir_reachtime; 13099 13100 if (lir->lir_reachretrans != 0) 13101 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13102 13103 ill->ill_max_hops = lir->lir_maxhops; 13104 13105 ill->ill_max_buf = ND_MAX_Q; 13106 13107 if (mtu_walk) { 13108 /* 13109 * Set the MTU on all ipifs associated with this ill except 13110 * for those whose MTU was fixed via SIOCSLIFMTU. 13111 */ 13112 for (nipif = ill->ill_ipif; nipif != NULL; 13113 nipif = nipif->ipif_next) { 13114 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13115 continue; 13116 13117 nipif->ipif_mtu = ill->ill_max_mtu; 13118 13119 if (!(nipif->ipif_flags & IPIF_UP)) 13120 continue; 13121 13122 if (nipif->ipif_isv6) 13123 ire = ipif_to_ire_v6(nipif); 13124 else 13125 ire = ipif_to_ire(nipif); 13126 if (ire != NULL) { 13127 ire->ire_max_frag = ipif->ipif_mtu; 13128 ire_refrele(ire); 13129 } 13130 if (ill->ill_isv6) { 13131 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13132 ipif_mtu_change, (char *)nipif, 13133 ill); 13134 } else { 13135 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13136 ipif_mtu_change, (char *)nipif, 13137 ill); 13138 } 13139 } 13140 } 13141 13142 mutex_enter(&ill->ill_lock); 13143 for (nipif = ill->ill_ipif; nipif != NULL; 13144 nipif = nipif->ipif_next) { 13145 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13146 } 13147 ILL_UNMARK_CHANGING(ill); 13148 mutex_exit(&ill->ill_lock); 13149 13150 return (0); 13151 } 13152 13153 /* ARGSUSED */ 13154 int 13155 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13156 ip_ioctl_cmd_t *ipi, void *if_req) 13157 { 13158 struct lif_ifinfo_req *lir; 13159 ill_t *ill = ipif->ipif_ill; 13160 13161 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13162 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13163 if (ipif->ipif_id != 0) 13164 return (EINVAL); 13165 13166 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13167 lir->lir_maxhops = ill->ill_max_hops; 13168 lir->lir_reachtime = ill->ill_reachable_time; 13169 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13170 lir->lir_maxmtu = ill->ill_max_mtu; 13171 13172 return (0); 13173 } 13174 13175 /* 13176 * Return best guess as to the subnet mask for the specified address. 13177 * Based on the subnet masks for all the configured interfaces. 13178 * 13179 * We end up returning a zero mask in the case of default, multicast or 13180 * experimental. 13181 */ 13182 static ipaddr_t 13183 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13184 { 13185 ipaddr_t net_mask; 13186 ill_t *ill; 13187 ipif_t *ipif; 13188 ill_walk_context_t ctx; 13189 ipif_t *fallback_ipif = NULL; 13190 13191 net_mask = ip_net_mask(addr); 13192 if (net_mask == 0) { 13193 *ipifp = NULL; 13194 return (0); 13195 } 13196 13197 /* Let's check to see if this is maybe a local subnet route. */ 13198 /* this function only applies to IPv4 interfaces */ 13199 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13200 ill = ILL_START_WALK_V4(&ctx, ipst); 13201 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13202 mutex_enter(&ill->ill_lock); 13203 for (ipif = ill->ill_ipif; ipif != NULL; 13204 ipif = ipif->ipif_next) { 13205 if (!IPIF_CAN_LOOKUP(ipif)) 13206 continue; 13207 if (!(ipif->ipif_flags & IPIF_UP)) 13208 continue; 13209 if ((ipif->ipif_subnet & net_mask) == 13210 (addr & net_mask)) { 13211 /* 13212 * Don't trust pt-pt interfaces if there are 13213 * other interfaces. 13214 */ 13215 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13216 if (fallback_ipif == NULL) { 13217 ipif_refhold_locked(ipif); 13218 fallback_ipif = ipif; 13219 } 13220 continue; 13221 } 13222 13223 /* 13224 * Fine. Just assume the same net mask as the 13225 * directly attached subnet interface is using. 13226 */ 13227 ipif_refhold_locked(ipif); 13228 mutex_exit(&ill->ill_lock); 13229 rw_exit(&ipst->ips_ill_g_lock); 13230 if (fallback_ipif != NULL) 13231 ipif_refrele(fallback_ipif); 13232 *ipifp = ipif; 13233 return (ipif->ipif_net_mask); 13234 } 13235 } 13236 mutex_exit(&ill->ill_lock); 13237 } 13238 rw_exit(&ipst->ips_ill_g_lock); 13239 13240 *ipifp = fallback_ipif; 13241 return ((fallback_ipif != NULL) ? 13242 fallback_ipif->ipif_net_mask : net_mask); 13243 } 13244 13245 /* 13246 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13247 */ 13248 static void 13249 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13250 { 13251 IOCP iocp; 13252 ipft_t *ipft; 13253 ipllc_t *ipllc; 13254 mblk_t *mp1; 13255 cred_t *cr; 13256 int error = 0; 13257 conn_t *connp; 13258 13259 ip1dbg(("ip_wput_ioctl")); 13260 iocp = (IOCP)mp->b_rptr; 13261 mp1 = mp->b_cont; 13262 if (mp1 == NULL) { 13263 iocp->ioc_error = EINVAL; 13264 mp->b_datap->db_type = M_IOCNAK; 13265 iocp->ioc_count = 0; 13266 qreply(q, mp); 13267 return; 13268 } 13269 13270 /* 13271 * These IOCTLs provide various control capabilities to 13272 * upstream agents such as ULPs and processes. There 13273 * are currently two such IOCTLs implemented. They 13274 * are used by TCP to provide update information for 13275 * existing IREs and to forcibly delete an IRE for a 13276 * host that is not responding, thereby forcing an 13277 * attempt at a new route. 13278 */ 13279 iocp->ioc_error = EINVAL; 13280 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13281 goto done; 13282 13283 ipllc = (ipllc_t *)mp1->b_rptr; 13284 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13285 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13286 break; 13287 } 13288 /* 13289 * prefer credential from mblk over ioctl; 13290 * see ip_sioctl_copyin_setup 13291 */ 13292 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13293 13294 /* 13295 * Refhold the conn in case the request gets queued up in some lookup 13296 */ 13297 ASSERT(CONN_Q(q)); 13298 connp = Q_TO_CONN(q); 13299 CONN_INC_REF(connp); 13300 if (ipft->ipft_pfi && 13301 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13302 pullupmsg(mp1, ipft->ipft_min_size))) { 13303 error = (*ipft->ipft_pfi)(q, 13304 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13305 } 13306 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13307 /* 13308 * CONN_OPER_PENDING_DONE happens in the function called 13309 * through ipft_pfi above. 13310 */ 13311 return; 13312 } 13313 13314 CONN_OPER_PENDING_DONE(connp); 13315 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13316 freemsg(mp); 13317 return; 13318 } 13319 iocp->ioc_error = error; 13320 13321 done: 13322 mp->b_datap->db_type = M_IOCACK; 13323 if (iocp->ioc_error) 13324 iocp->ioc_count = 0; 13325 qreply(q, mp); 13326 } 13327 13328 /* 13329 * Lookup an ipif using the sequence id (ipif_seqid) 13330 */ 13331 ipif_t * 13332 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13333 { 13334 ipif_t *ipif; 13335 13336 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13337 13338 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13339 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13340 return (ipif); 13341 } 13342 return (NULL); 13343 } 13344 13345 /* 13346 * Assign a unique id for the ipif. This is used later when we send 13347 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13348 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13349 * IRE is added, we verify that ipif has not disappeared. 13350 */ 13351 13352 static void 13353 ipif_assign_seqid(ipif_t *ipif) 13354 { 13355 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13356 13357 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13358 } 13359 13360 /* 13361 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13362 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13363 * be inserted into the first space available in the list. The value of 13364 * ipif_id will then be set to the appropriate value for its position. 13365 */ 13366 static int 13367 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13368 { 13369 ill_t *ill; 13370 ipif_t *tipif; 13371 ipif_t **tipifp; 13372 int id; 13373 ip_stack_t *ipst; 13374 13375 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13376 IAM_WRITER_IPIF(ipif)); 13377 13378 ill = ipif->ipif_ill; 13379 ASSERT(ill != NULL); 13380 ipst = ill->ill_ipst; 13381 13382 /* 13383 * In the case of lo0:0 we already hold the ill_g_lock. 13384 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13385 * ipif_insert. Another such caller is ipif_move. 13386 */ 13387 if (acquire_g_lock) 13388 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13389 if (acquire_ill_lock) 13390 mutex_enter(&ill->ill_lock); 13391 id = ipif->ipif_id; 13392 tipifp = &(ill->ill_ipif); 13393 if (id == -1) { /* need to find a real id */ 13394 id = 0; 13395 while ((tipif = *tipifp) != NULL) { 13396 ASSERT(tipif->ipif_id >= id); 13397 if (tipif->ipif_id != id) 13398 break; /* non-consecutive id */ 13399 id++; 13400 tipifp = &(tipif->ipif_next); 13401 } 13402 /* limit number of logical interfaces */ 13403 if (id >= ipst->ips_ip_addrs_per_if) { 13404 if (acquire_ill_lock) 13405 mutex_exit(&ill->ill_lock); 13406 if (acquire_g_lock) 13407 rw_exit(&ipst->ips_ill_g_lock); 13408 return (-1); 13409 } 13410 ipif->ipif_id = id; /* assign new id */ 13411 } else if (id < ipst->ips_ip_addrs_per_if) { 13412 /* we have a real id; insert ipif in the right place */ 13413 while ((tipif = *tipifp) != NULL) { 13414 ASSERT(tipif->ipif_id != id); 13415 if (tipif->ipif_id > id) 13416 break; /* found correct location */ 13417 tipifp = &(tipif->ipif_next); 13418 } 13419 } else { 13420 if (acquire_ill_lock) 13421 mutex_exit(&ill->ill_lock); 13422 if (acquire_g_lock) 13423 rw_exit(&ipst->ips_ill_g_lock); 13424 return (-1); 13425 } 13426 13427 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13428 13429 ipif->ipif_next = tipif; 13430 *tipifp = ipif; 13431 if (acquire_ill_lock) 13432 mutex_exit(&ill->ill_lock); 13433 if (acquire_g_lock) 13434 rw_exit(&ipst->ips_ill_g_lock); 13435 return (0); 13436 } 13437 13438 static void 13439 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13440 { 13441 ipif_t **ipifp; 13442 ill_t *ill = ipif->ipif_ill; 13443 13444 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13445 if (acquire_ill_lock) 13446 mutex_enter(&ill->ill_lock); 13447 else 13448 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13449 13450 ipifp = &ill->ill_ipif; 13451 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13452 if (*ipifp == ipif) { 13453 *ipifp = ipif->ipif_next; 13454 break; 13455 } 13456 } 13457 13458 if (acquire_ill_lock) 13459 mutex_exit(&ill->ill_lock); 13460 } 13461 13462 /* 13463 * Allocate and initialize a new interface control structure. (Always 13464 * called as writer.) 13465 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13466 * is not part of the global linked list of ills. ipif_seqid is unique 13467 * in the system and to preserve the uniqueness, it is assigned only 13468 * when ill becomes part of the global list. At that point ill will 13469 * have a name. If it doesn't get assigned here, it will get assigned 13470 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13471 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13472 * the interface flags or any other information from the DL_INFO_ACK for 13473 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13474 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13475 * second DL_INFO_ACK comes in from the driver. 13476 */ 13477 static ipif_t * 13478 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13479 { 13480 ipif_t *ipif; 13481 phyint_t *phyi; 13482 13483 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13484 ill->ill_name, id, (void *)ill)); 13485 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13486 13487 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13488 return (NULL); 13489 *ipif = ipif_zero; /* start clean */ 13490 13491 ipif->ipif_ill = ill; 13492 ipif->ipif_id = id; /* could be -1 */ 13493 /* 13494 * Inherit the zoneid from the ill; for the shared stack instance 13495 * this is always the global zone 13496 */ 13497 ipif->ipif_zoneid = ill->ill_zoneid; 13498 13499 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13500 13501 ipif->ipif_refcnt = 0; 13502 ipif->ipif_saved_ire_cnt = 0; 13503 13504 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13505 mi_free(ipif); 13506 return (NULL); 13507 } 13508 /* -1 id should have been replaced by real id */ 13509 id = ipif->ipif_id; 13510 ASSERT(id >= 0); 13511 13512 if (ill->ill_name[0] != '\0') 13513 ipif_assign_seqid(ipif); 13514 13515 /* 13516 * Keep a copy of original id in ipif_orig_ipifid. Failback 13517 * will attempt to restore the original id. The SIOCSLIFOINDEX 13518 * ioctl sets ipif_orig_ipifid to zero. 13519 */ 13520 ipif->ipif_orig_ipifid = id; 13521 13522 /* 13523 * We grab the ill_lock and phyint_lock to protect the flag changes. 13524 * The ipif is still not up and can't be looked up until the 13525 * ioctl completes and the IPIF_CHANGING flag is cleared. 13526 */ 13527 mutex_enter(&ill->ill_lock); 13528 mutex_enter(&ill->ill_phyint->phyint_lock); 13529 /* 13530 * Set the running flag when logical interface zero is created. 13531 * For subsequent logical interfaces, a DLPI link down 13532 * notification message may have cleared the running flag to 13533 * indicate the link is down, so we shouldn't just blindly set it. 13534 */ 13535 if (id == 0) 13536 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13537 ipif->ipif_ire_type = ire_type; 13538 phyi = ill->ill_phyint; 13539 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13540 13541 if (ipif->ipif_isv6) { 13542 ill->ill_flags |= ILLF_IPV6; 13543 } else { 13544 ipaddr_t inaddr_any = INADDR_ANY; 13545 13546 ill->ill_flags |= ILLF_IPV4; 13547 13548 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13549 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13550 &ipif->ipif_v6lcl_addr); 13551 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13552 &ipif->ipif_v6src_addr); 13553 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13554 &ipif->ipif_v6subnet); 13555 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13556 &ipif->ipif_v6net_mask); 13557 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13558 &ipif->ipif_v6brd_addr); 13559 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13560 &ipif->ipif_v6pp_dst_addr); 13561 } 13562 13563 /* 13564 * Don't set the interface flags etc. now, will do it in 13565 * ip_ll_subnet_defaults. 13566 */ 13567 if (!initialize) { 13568 mutex_exit(&ill->ill_lock); 13569 mutex_exit(&ill->ill_phyint->phyint_lock); 13570 return (ipif); 13571 } 13572 ipif->ipif_mtu = ill->ill_max_mtu; 13573 13574 if (ill->ill_bcast_addr_length != 0) { 13575 /* 13576 * Later detect lack of DLPI driver multicast 13577 * capability by catching DL_ENABMULTI errors in 13578 * ip_rput_dlpi. 13579 */ 13580 ill->ill_flags |= ILLF_MULTICAST; 13581 if (!ipif->ipif_isv6) 13582 ipif->ipif_flags |= IPIF_BROADCAST; 13583 } else { 13584 if (ill->ill_net_type != IRE_LOOPBACK) { 13585 if (ipif->ipif_isv6) 13586 /* 13587 * Note: xresolv interfaces will eventually need 13588 * NOARP set here as well, but that will require 13589 * those external resolvers to have some 13590 * knowledge of that flag and act appropriately. 13591 * Not to be changed at present. 13592 */ 13593 ill->ill_flags |= ILLF_NONUD; 13594 else 13595 ill->ill_flags |= ILLF_NOARP; 13596 } 13597 if (ill->ill_phys_addr_length == 0) { 13598 if (ill->ill_media && 13599 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13600 ipif->ipif_flags |= IPIF_NOXMIT; 13601 phyi->phyint_flags |= PHYI_VIRTUAL; 13602 } else { 13603 /* pt-pt supports multicast. */ 13604 ill->ill_flags |= ILLF_MULTICAST; 13605 if (ill->ill_net_type == IRE_LOOPBACK) { 13606 phyi->phyint_flags |= 13607 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13608 } else { 13609 ipif->ipif_flags |= IPIF_POINTOPOINT; 13610 } 13611 } 13612 } 13613 } 13614 mutex_exit(&ill->ill_lock); 13615 mutex_exit(&ill->ill_phyint->phyint_lock); 13616 return (ipif); 13617 } 13618 13619 /* 13620 * If appropriate, send a message up to the resolver delete the entry 13621 * for the address of this interface which is going out of business. 13622 * (Always called as writer). 13623 * 13624 * NOTE : We need to check for NULL mps as some of the fields are 13625 * initialized only for some interface types. See ipif_resolver_up() 13626 * for details. 13627 */ 13628 void 13629 ipif_arp_down(ipif_t *ipif) 13630 { 13631 mblk_t *mp; 13632 ill_t *ill = ipif->ipif_ill; 13633 13634 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13635 ASSERT(IAM_WRITER_IPIF(ipif)); 13636 13637 /* Delete the mapping for the local address */ 13638 mp = ipif->ipif_arp_del_mp; 13639 if (mp != NULL) { 13640 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13641 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13642 putnext(ill->ill_rq, mp); 13643 ipif->ipif_arp_del_mp = NULL; 13644 } 13645 13646 /* 13647 * If this is the last ipif that is going down and there are no 13648 * duplicate addresses we may yet attempt to re-probe, then we need to 13649 * clean up ARP completely. 13650 */ 13651 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13652 13653 /* Send up AR_INTERFACE_DOWN message */ 13654 mp = ill->ill_arp_down_mp; 13655 if (mp != NULL) { 13656 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13657 *(unsigned *)mp->b_rptr, ill->ill_name, 13658 ipif->ipif_id)); 13659 putnext(ill->ill_rq, mp); 13660 ill->ill_arp_down_mp = NULL; 13661 } 13662 13663 /* Tell ARP to delete the multicast mappings */ 13664 mp = ill->ill_arp_del_mapping_mp; 13665 if (mp != NULL) { 13666 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13667 *(unsigned *)mp->b_rptr, ill->ill_name, 13668 ipif->ipif_id)); 13669 putnext(ill->ill_rq, mp); 13670 ill->ill_arp_del_mapping_mp = NULL; 13671 } 13672 } 13673 } 13674 13675 /* 13676 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13677 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13678 * that it wants the add_mp allocated in this function to be returned 13679 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13680 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13681 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13682 * as it does a ipif_arp_down after calling this function - which will 13683 * remove what we add here. 13684 * 13685 * Returns -1 on failures and 0 on success. 13686 */ 13687 int 13688 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13689 { 13690 mblk_t *del_mp = NULL; 13691 mblk_t *add_mp = NULL; 13692 mblk_t *mp; 13693 ill_t *ill = ipif->ipif_ill; 13694 phyint_t *phyi = ill->ill_phyint; 13695 ipaddr_t addr, mask, extract_mask = 0; 13696 arma_t *arma; 13697 uint8_t *maddr, *bphys_addr; 13698 uint32_t hw_start; 13699 dl_unitdata_req_t *dlur; 13700 13701 ASSERT(IAM_WRITER_IPIF(ipif)); 13702 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13703 return (0); 13704 13705 /* 13706 * Delete the existing mapping from ARP. Normally ipif_down 13707 * -> ipif_arp_down should send this up to ARP. The only 13708 * reason we would find this when we are switching from 13709 * Multicast to Broadcast where we did not do a down. 13710 */ 13711 mp = ill->ill_arp_del_mapping_mp; 13712 if (mp != NULL) { 13713 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13714 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13715 putnext(ill->ill_rq, mp); 13716 ill->ill_arp_del_mapping_mp = NULL; 13717 } 13718 13719 if (arp_add_mapping_mp != NULL) 13720 *arp_add_mapping_mp = NULL; 13721 13722 /* 13723 * Check that the address is not to long for the constant 13724 * length reserved in the template arma_t. 13725 */ 13726 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13727 return (-1); 13728 13729 /* Add mapping mblk */ 13730 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13731 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13732 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13733 (caddr_t)&addr); 13734 if (add_mp == NULL) 13735 return (-1); 13736 arma = (arma_t *)add_mp->b_rptr; 13737 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13738 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13739 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13740 13741 /* 13742 * Determine the broadcast address. 13743 */ 13744 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13745 if (ill->ill_sap_length < 0) 13746 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13747 else 13748 bphys_addr = (uchar_t *)dlur + 13749 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13750 /* 13751 * Check PHYI_MULTI_BCAST and length of physical 13752 * address to determine if we use the mapping or the 13753 * broadcast address. 13754 */ 13755 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13756 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13757 bphys_addr, maddr, &hw_start, &extract_mask)) 13758 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13759 13760 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13761 (ill->ill_flags & ILLF_MULTICAST)) { 13762 /* Make sure this will not match the "exact" entry. */ 13763 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13764 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13765 (caddr_t)&addr); 13766 if (del_mp == NULL) { 13767 freemsg(add_mp); 13768 return (-1); 13769 } 13770 bcopy(&extract_mask, (char *)arma + 13771 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13772 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13773 /* Use link-layer broadcast address for MULTI_BCAST */ 13774 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13775 ip2dbg(("ipif_arp_setup_multicast: adding" 13776 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13777 } else { 13778 arma->arma_hw_mapping_start = hw_start; 13779 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13780 " ARP setup for %s\n", ill->ill_name)); 13781 } 13782 } else { 13783 freemsg(add_mp); 13784 ASSERT(del_mp == NULL); 13785 /* It is neither MULTICAST nor MULTI_BCAST */ 13786 return (0); 13787 } 13788 ASSERT(add_mp != NULL && del_mp != NULL); 13789 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13790 ill->ill_arp_del_mapping_mp = del_mp; 13791 if (arp_add_mapping_mp != NULL) { 13792 /* The caller just wants the mblks allocated */ 13793 *arp_add_mapping_mp = add_mp; 13794 } else { 13795 /* The caller wants us to send it to arp */ 13796 putnext(ill->ill_rq, add_mp); 13797 } 13798 return (0); 13799 } 13800 13801 /* 13802 * Get the resolver set up for a new interface address. 13803 * (Always called as writer.) 13804 * Called both for IPv4 and IPv6 interfaces, 13805 * though it only sets up the resolver for v6 13806 * if it's an xresolv interface (one using an external resolver). 13807 * Honors ILLF_NOARP. 13808 * The enumerated value res_act is used to tune the behavior. 13809 * If set to Res_act_initial, then we set up all the resolver 13810 * structures for a new interface. If set to Res_act_move, then 13811 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13812 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13813 * asynchronous hardware address change notification. If set to 13814 * Res_act_defend, then we tell ARP that it needs to send a single 13815 * gratuitous message in defense of the address. 13816 * Returns error on failure. 13817 */ 13818 int 13819 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13820 { 13821 caddr_t addr; 13822 mblk_t *arp_up_mp = NULL; 13823 mblk_t *arp_down_mp = NULL; 13824 mblk_t *arp_add_mp = NULL; 13825 mblk_t *arp_del_mp = NULL; 13826 mblk_t *arp_add_mapping_mp = NULL; 13827 mblk_t *arp_del_mapping_mp = NULL; 13828 ill_t *ill = ipif->ipif_ill; 13829 uchar_t *area_p = NULL; 13830 uchar_t *ared_p = NULL; 13831 int err = ENOMEM; 13832 boolean_t was_dup; 13833 13834 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13835 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13836 ASSERT(IAM_WRITER_IPIF(ipif)); 13837 13838 was_dup = B_FALSE; 13839 if (res_act == Res_act_initial) { 13840 ipif->ipif_addr_ready = 0; 13841 /* 13842 * We're bringing an interface up here. There's no way that we 13843 * should need to shut down ARP now. 13844 */ 13845 mutex_enter(&ill->ill_lock); 13846 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13847 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13848 ill->ill_ipif_dup_count--; 13849 was_dup = B_TRUE; 13850 } 13851 mutex_exit(&ill->ill_lock); 13852 } 13853 if (ipif->ipif_recovery_id != 0) 13854 (void) untimeout(ipif->ipif_recovery_id); 13855 ipif->ipif_recovery_id = 0; 13856 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13857 ipif->ipif_addr_ready = 1; 13858 return (0); 13859 } 13860 /* NDP will set the ipif_addr_ready flag when it's ready */ 13861 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13862 return (0); 13863 13864 if (ill->ill_isv6) { 13865 /* 13866 * External resolver for IPv6 13867 */ 13868 ASSERT(res_act == Res_act_initial); 13869 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13870 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13871 area_p = (uchar_t *)&ip6_area_template; 13872 ared_p = (uchar_t *)&ip6_ared_template; 13873 } 13874 } else { 13875 /* 13876 * IPv4 arp case. If the ARP stream has already started 13877 * closing, fail this request for ARP bringup. Else 13878 * record the fact that an ARP bringup is pending. 13879 */ 13880 mutex_enter(&ill->ill_lock); 13881 if (ill->ill_arp_closing) { 13882 mutex_exit(&ill->ill_lock); 13883 err = EINVAL; 13884 goto failed; 13885 } else { 13886 if (ill->ill_ipif_up_count == 0 && 13887 ill->ill_ipif_dup_count == 0 && !was_dup) 13888 ill->ill_arp_bringup_pending = 1; 13889 mutex_exit(&ill->ill_lock); 13890 } 13891 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13892 addr = (caddr_t)&ipif->ipif_lcl_addr; 13893 area_p = (uchar_t *)&ip_area_template; 13894 ared_p = (uchar_t *)&ip_ared_template; 13895 } 13896 } 13897 13898 /* 13899 * Add an entry for the local address in ARP only if it 13900 * is not UNNUMBERED and the address is not INADDR_ANY. 13901 */ 13902 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13903 area_t *area; 13904 13905 /* Now ask ARP to publish our address. */ 13906 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13907 if (arp_add_mp == NULL) 13908 goto failed; 13909 area = (area_t *)arp_add_mp->b_rptr; 13910 if (res_act != Res_act_initial) { 13911 /* 13912 * Copy the new hardware address and length into 13913 * arp_add_mp to be sent to ARP. 13914 */ 13915 area->area_hw_addr_length = ill->ill_phys_addr_length; 13916 bcopy(ill->ill_phys_addr, 13917 ((char *)area + area->area_hw_addr_offset), 13918 area->area_hw_addr_length); 13919 } 13920 13921 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13922 ACE_F_MYADDR; 13923 13924 if (res_act == Res_act_defend) { 13925 area->area_flags |= ACE_F_DEFEND; 13926 /* 13927 * If we're just defending our address now, then 13928 * there's no need to set up ARP multicast mappings. 13929 * The publish command is enough. 13930 */ 13931 goto done; 13932 } 13933 13934 if (res_act != Res_act_initial) 13935 goto arp_setup_multicast; 13936 13937 /* 13938 * Allocate an ARP deletion message so we know we can tell ARP 13939 * when the interface goes down. 13940 */ 13941 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13942 if (arp_del_mp == NULL) 13943 goto failed; 13944 13945 } else { 13946 if (res_act != Res_act_initial) 13947 goto done; 13948 } 13949 /* 13950 * Need to bring up ARP or setup multicast mapping only 13951 * when the first interface is coming UP. 13952 */ 13953 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13954 was_dup) { 13955 goto done; 13956 } 13957 13958 /* 13959 * Allocate an ARP down message (to be saved) and an ARP up 13960 * message. 13961 */ 13962 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13963 if (arp_down_mp == NULL) 13964 goto failed; 13965 13966 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13967 if (arp_up_mp == NULL) 13968 goto failed; 13969 13970 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13971 goto done; 13972 13973 arp_setup_multicast: 13974 /* 13975 * Setup the multicast mappings. This function initializes 13976 * ill_arp_del_mapping_mp also. This does not need to be done for 13977 * IPv6. 13978 */ 13979 if (!ill->ill_isv6) { 13980 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13981 if (err != 0) 13982 goto failed; 13983 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13984 ASSERT(arp_add_mapping_mp != NULL); 13985 } 13986 13987 done: 13988 if (arp_del_mp != NULL) { 13989 ASSERT(ipif->ipif_arp_del_mp == NULL); 13990 ipif->ipif_arp_del_mp = arp_del_mp; 13991 } 13992 if (arp_down_mp != NULL) { 13993 ASSERT(ill->ill_arp_down_mp == NULL); 13994 ill->ill_arp_down_mp = arp_down_mp; 13995 } 13996 if (arp_del_mapping_mp != NULL) { 13997 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13998 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13999 } 14000 if (arp_up_mp != NULL) { 14001 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14002 ill->ill_name, ipif->ipif_id)); 14003 putnext(ill->ill_rq, arp_up_mp); 14004 } 14005 if (arp_add_mp != NULL) { 14006 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14007 ill->ill_name, ipif->ipif_id)); 14008 /* 14009 * If it's an extended ARP implementation, then we'll wait to 14010 * hear that DAD has finished before using the interface. 14011 */ 14012 if (!ill->ill_arp_extend) 14013 ipif->ipif_addr_ready = 1; 14014 putnext(ill->ill_rq, arp_add_mp); 14015 } else { 14016 ipif->ipif_addr_ready = 1; 14017 } 14018 if (arp_add_mapping_mp != NULL) { 14019 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14020 ill->ill_name, ipif->ipif_id)); 14021 putnext(ill->ill_rq, arp_add_mapping_mp); 14022 } 14023 if (res_act != Res_act_initial) 14024 return (0); 14025 14026 if (ill->ill_flags & ILLF_NOARP) 14027 err = ill_arp_off(ill); 14028 else 14029 err = ill_arp_on(ill); 14030 if (err != 0) { 14031 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14032 freemsg(ipif->ipif_arp_del_mp); 14033 freemsg(ill->ill_arp_down_mp); 14034 freemsg(ill->ill_arp_del_mapping_mp); 14035 ipif->ipif_arp_del_mp = NULL; 14036 ill->ill_arp_down_mp = NULL; 14037 ill->ill_arp_del_mapping_mp = NULL; 14038 return (err); 14039 } 14040 return ((ill->ill_ipif_up_count != 0 || was_dup || 14041 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14042 14043 failed: 14044 ip1dbg(("ipif_resolver_up: FAILED\n")); 14045 freemsg(arp_add_mp); 14046 freemsg(arp_del_mp); 14047 freemsg(arp_add_mapping_mp); 14048 freemsg(arp_up_mp); 14049 freemsg(arp_down_mp); 14050 ill->ill_arp_bringup_pending = 0; 14051 return (err); 14052 } 14053 14054 /* 14055 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14056 * just gone back up. 14057 */ 14058 static void 14059 ipif_arp_start_dad(ipif_t *ipif) 14060 { 14061 ill_t *ill = ipif->ipif_ill; 14062 mblk_t *arp_add_mp; 14063 area_t *area; 14064 14065 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14066 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14067 ipif->ipif_lcl_addr == INADDR_ANY || 14068 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14069 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14070 /* 14071 * If we can't contact ARP for some reason, that's not really a 14072 * problem. Just send out the routing socket notification that 14073 * DAD completion would have done, and continue. 14074 */ 14075 ipif_mask_reply(ipif); 14076 ip_rts_ifmsg(ipif); 14077 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14078 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14079 ipif->ipif_addr_ready = 1; 14080 return; 14081 } 14082 14083 /* Setting the 'unverified' flag restarts DAD */ 14084 area = (area_t *)arp_add_mp->b_rptr; 14085 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14086 ACE_F_UNVERIFIED; 14087 putnext(ill->ill_rq, arp_add_mp); 14088 } 14089 14090 static void 14091 ipif_ndp_start_dad(ipif_t *ipif) 14092 { 14093 nce_t *nce; 14094 14095 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14096 if (nce == NULL) 14097 return; 14098 14099 if (!ndp_restart_dad(nce)) { 14100 /* 14101 * If we can't restart DAD for some reason, that's not really a 14102 * problem. Just send out the routing socket notification that 14103 * DAD completion would have done, and continue. 14104 */ 14105 ip_rts_ifmsg(ipif); 14106 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14107 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14108 ipif->ipif_addr_ready = 1; 14109 } 14110 NCE_REFRELE(nce); 14111 } 14112 14113 /* 14114 * Restart duplicate address detection on all interfaces on the given ill. 14115 * 14116 * This is called when an interface transitions from down to up 14117 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14118 * 14119 * Note that since the underlying physical link has transitioned, we must cause 14120 * at least one routing socket message to be sent here, either via DAD 14121 * completion or just by default on the first ipif. (If we don't do this, then 14122 * in.mpathd will see long delays when doing link-based failure recovery.) 14123 */ 14124 void 14125 ill_restart_dad(ill_t *ill, boolean_t went_up) 14126 { 14127 ipif_t *ipif; 14128 14129 if (ill == NULL) 14130 return; 14131 14132 /* 14133 * If layer two doesn't support duplicate address detection, then just 14134 * send the routing socket message now and be done with it. 14135 */ 14136 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14137 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14138 ip_rts_ifmsg(ill->ill_ipif); 14139 return; 14140 } 14141 14142 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14143 if (went_up) { 14144 if (ipif->ipif_flags & IPIF_UP) { 14145 if (ill->ill_isv6) 14146 ipif_ndp_start_dad(ipif); 14147 else 14148 ipif_arp_start_dad(ipif); 14149 } else if (ill->ill_isv6 && 14150 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14151 /* 14152 * For IPv4, the ARP module itself will 14153 * automatically start the DAD process when it 14154 * sees DL_NOTE_LINK_UP. We respond to the 14155 * AR_CN_READY at the completion of that task. 14156 * For IPv6, we must kick off the bring-up 14157 * process now. 14158 */ 14159 ndp_do_recovery(ipif); 14160 } else { 14161 /* 14162 * Unfortunately, the first ipif is "special" 14163 * and represents the underlying ill in the 14164 * routing socket messages. Thus, when this 14165 * one ipif is down, we must still notify so 14166 * that the user knows the IFF_RUNNING status 14167 * change. (If the first ipif is up, then 14168 * we'll handle eventual routing socket 14169 * notification via DAD completion.) 14170 */ 14171 if (ipif == ill->ill_ipif) 14172 ip_rts_ifmsg(ill->ill_ipif); 14173 } 14174 } else { 14175 /* 14176 * After link down, we'll need to send a new routing 14177 * message when the link comes back, so clear 14178 * ipif_addr_ready. 14179 */ 14180 ipif->ipif_addr_ready = 0; 14181 } 14182 } 14183 14184 /* 14185 * If we've torn down links, then notify the user right away. 14186 */ 14187 if (!went_up) 14188 ip_rts_ifmsg(ill->ill_ipif); 14189 } 14190 14191 /* 14192 * Wakeup all threads waiting to enter the ipsq, and sleeping 14193 * on any of the ills in this ipsq. The ill_lock of the ill 14194 * must be held so that waiters don't miss wakeups 14195 */ 14196 static void 14197 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14198 { 14199 phyint_t *phyint; 14200 14201 phyint = ipsq->ipsq_phyint_list; 14202 while (phyint != NULL) { 14203 if (phyint->phyint_illv4) { 14204 if (!caller_holds_lock) 14205 mutex_enter(&phyint->phyint_illv4->ill_lock); 14206 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14207 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14208 if (!caller_holds_lock) 14209 mutex_exit(&phyint->phyint_illv4->ill_lock); 14210 } 14211 if (phyint->phyint_illv6) { 14212 if (!caller_holds_lock) 14213 mutex_enter(&phyint->phyint_illv6->ill_lock); 14214 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14215 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14216 if (!caller_holds_lock) 14217 mutex_exit(&phyint->phyint_illv6->ill_lock); 14218 } 14219 phyint = phyint->phyint_ipsq_next; 14220 } 14221 } 14222 14223 static ipsq_t * 14224 ipsq_create(char *groupname, ip_stack_t *ipst) 14225 { 14226 ipsq_t *ipsq; 14227 14228 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14229 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14230 if (ipsq == NULL) { 14231 return (NULL); 14232 } 14233 14234 if (groupname != NULL) 14235 (void) strcpy(ipsq->ipsq_name, groupname); 14236 else 14237 ipsq->ipsq_name[0] = '\0'; 14238 14239 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14240 ipsq->ipsq_flags |= IPSQ_GROUP; 14241 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14242 ipst->ips_ipsq_g_head = ipsq; 14243 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14244 return (ipsq); 14245 } 14246 14247 /* 14248 * Return an ipsq correspoding to the groupname. If 'create' is true 14249 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14250 * uniquely with an IPMP group. However during IPMP groupname operations, 14251 * multiple IPMP groups may be associated with a single ipsq. But no 14252 * IPMP group can be associated with more than 1 ipsq at any time. 14253 * For example 14254 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14255 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14256 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14257 * 14258 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14259 * status shown below during the execution of the above command. 14260 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14261 * 14262 * After the completion of the above groupname command we return to the stable 14263 * state shown below. 14264 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14265 * hme4 mpk17-85 ipsq2 mpk17-85 1 14266 * 14267 * Because of the above, we don't search based on the ipsq_name since that 14268 * would miss the correct ipsq during certain windows as shown above. 14269 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14270 * natural state. 14271 */ 14272 static ipsq_t * 14273 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14274 ip_stack_t *ipst) 14275 { 14276 ipsq_t *ipsq; 14277 int group_len; 14278 phyint_t *phyint; 14279 14280 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14281 14282 group_len = strlen(groupname); 14283 ASSERT(group_len != 0); 14284 group_len++; 14285 14286 for (ipsq = ipst->ips_ipsq_g_head; 14287 ipsq != NULL; 14288 ipsq = ipsq->ipsq_next) { 14289 /* 14290 * When an ipsq is being split, and ill_split_ipsq 14291 * calls this function, we exclude it from being considered. 14292 */ 14293 if (ipsq == exclude_ipsq) 14294 continue; 14295 14296 /* 14297 * Compare against the ipsq_name. The groupname change happens 14298 * in 2 phases. The 1st phase merges the from group into 14299 * the to group's ipsq, by calling ill_merge_groups and restarts 14300 * the ioctl. The 2nd phase then locates the ipsq again thru 14301 * ipsq_name. At this point the phyint_groupname has not been 14302 * updated. 14303 */ 14304 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14305 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14306 /* 14307 * Verify that an ipmp groupname is exactly 14308 * part of 1 ipsq and is not found in any other 14309 * ipsq. 14310 */ 14311 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14312 NULL); 14313 return (ipsq); 14314 } 14315 14316 /* 14317 * Comparison against ipsq_name alone is not sufficient. 14318 * In the case when groups are currently being 14319 * merged, the ipsq could hold other IPMP groups temporarily. 14320 * so we walk the phyint list and compare against the 14321 * phyint_groupname as well. 14322 */ 14323 phyint = ipsq->ipsq_phyint_list; 14324 while (phyint != NULL) { 14325 if ((group_len == phyint->phyint_groupname_len) && 14326 (bcmp(phyint->phyint_groupname, groupname, 14327 group_len) == 0)) { 14328 /* 14329 * Verify that an ipmp groupname is exactly 14330 * part of 1 ipsq and is not found in any other 14331 * ipsq. 14332 */ 14333 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14334 ipst) == NULL); 14335 return (ipsq); 14336 } 14337 phyint = phyint->phyint_ipsq_next; 14338 } 14339 } 14340 if (create) 14341 ipsq = ipsq_create(groupname, ipst); 14342 return (ipsq); 14343 } 14344 14345 static void 14346 ipsq_delete(ipsq_t *ipsq) 14347 { 14348 ipsq_t *nipsq; 14349 ipsq_t *pipsq = NULL; 14350 ip_stack_t *ipst = ipsq->ipsq_ipst; 14351 14352 /* 14353 * We don't hold the ipsq lock, but we are sure no new 14354 * messages can land up, since the ipsq_refs is zero. 14355 * i.e. this ipsq is unnamed and no phyint or phyint group 14356 * is associated with this ipsq. (Lookups are based on ill_name 14357 * or phyint_groupname) 14358 */ 14359 ASSERT(ipsq->ipsq_refs == 0); 14360 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14361 ASSERT(ipsq->ipsq_pending_mp == NULL); 14362 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14363 /* 14364 * This is not the ipsq of an IPMP group. 14365 */ 14366 ipsq->ipsq_ipst = NULL; 14367 kmem_free(ipsq, sizeof (ipsq_t)); 14368 return; 14369 } 14370 14371 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14372 14373 /* 14374 * Locate the ipsq before we can remove it from 14375 * the singly linked list of ipsq's. 14376 */ 14377 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14378 nipsq = nipsq->ipsq_next) { 14379 if (nipsq == ipsq) { 14380 break; 14381 } 14382 pipsq = nipsq; 14383 } 14384 14385 ASSERT(nipsq == ipsq); 14386 14387 /* unlink ipsq from the list */ 14388 if (pipsq != NULL) 14389 pipsq->ipsq_next = ipsq->ipsq_next; 14390 else 14391 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14392 ipsq->ipsq_ipst = NULL; 14393 kmem_free(ipsq, sizeof (ipsq_t)); 14394 rw_exit(&ipst->ips_ill_g_lock); 14395 } 14396 14397 static void 14398 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14399 queue_t *q) 14400 { 14401 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14402 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14403 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14404 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14405 ASSERT(current_mp != NULL); 14406 14407 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14408 NEW_OP, NULL); 14409 14410 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14411 new_ipsq->ipsq_xopq_mphead != NULL); 14412 14413 /* 14414 * move from old ipsq to the new ipsq. 14415 */ 14416 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14417 if (old_ipsq->ipsq_xopq_mphead != NULL) 14418 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14419 14420 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14421 } 14422 14423 void 14424 ill_group_cleanup(ill_t *ill) 14425 { 14426 ill_t *ill_v4; 14427 ill_t *ill_v6; 14428 ipif_t *ipif; 14429 14430 ill_v4 = ill->ill_phyint->phyint_illv4; 14431 ill_v6 = ill->ill_phyint->phyint_illv6; 14432 14433 if (ill_v4 != NULL) { 14434 mutex_enter(&ill_v4->ill_lock); 14435 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14436 ipif = ipif->ipif_next) { 14437 IPIF_UNMARK_MOVING(ipif); 14438 } 14439 ill_v4->ill_up_ipifs = B_FALSE; 14440 mutex_exit(&ill_v4->ill_lock); 14441 } 14442 14443 if (ill_v6 != NULL) { 14444 mutex_enter(&ill_v6->ill_lock); 14445 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14446 ipif = ipif->ipif_next) { 14447 IPIF_UNMARK_MOVING(ipif); 14448 } 14449 ill_v6->ill_up_ipifs = B_FALSE; 14450 mutex_exit(&ill_v6->ill_lock); 14451 } 14452 } 14453 /* 14454 * This function is called when an ill has had a change in its group status 14455 * to bring up all the ipifs that were up before the change. 14456 */ 14457 int 14458 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14459 { 14460 ipif_t *ipif; 14461 ill_t *ill_v4; 14462 ill_t *ill_v6; 14463 ill_t *from_ill; 14464 int err = 0; 14465 14466 14467 ASSERT(IAM_WRITER_ILL(ill)); 14468 14469 /* 14470 * Except for ipif_state_flags and ill_state_flags the other 14471 * fields of the ipif/ill that are modified below are protected 14472 * implicitly since we are a writer. We would have tried to down 14473 * even an ipif that was already down, in ill_down_ipifs. So we 14474 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14475 */ 14476 ill_v4 = ill->ill_phyint->phyint_illv4; 14477 ill_v6 = ill->ill_phyint->phyint_illv6; 14478 if (ill_v4 != NULL) { 14479 ill_v4->ill_up_ipifs = B_TRUE; 14480 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14481 ipif = ipif->ipif_next) { 14482 mutex_enter(&ill_v4->ill_lock); 14483 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14484 IPIF_UNMARK_MOVING(ipif); 14485 mutex_exit(&ill_v4->ill_lock); 14486 if (ipif->ipif_was_up) { 14487 if (!(ipif->ipif_flags & IPIF_UP)) 14488 err = ipif_up(ipif, q, mp); 14489 ipif->ipif_was_up = B_FALSE; 14490 if (err != 0) { 14491 /* 14492 * Can there be any other error ? 14493 */ 14494 ASSERT(err == EINPROGRESS); 14495 return (err); 14496 } 14497 } 14498 } 14499 mutex_enter(&ill_v4->ill_lock); 14500 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14501 mutex_exit(&ill_v4->ill_lock); 14502 ill_v4->ill_up_ipifs = B_FALSE; 14503 if (ill_v4->ill_move_in_progress) { 14504 ASSERT(ill_v4->ill_move_peer != NULL); 14505 ill_v4->ill_move_in_progress = B_FALSE; 14506 from_ill = ill_v4->ill_move_peer; 14507 from_ill->ill_move_in_progress = B_FALSE; 14508 from_ill->ill_move_peer = NULL; 14509 mutex_enter(&from_ill->ill_lock); 14510 from_ill->ill_state_flags &= ~ILL_CHANGING; 14511 mutex_exit(&from_ill->ill_lock); 14512 if (ill_v6 == NULL) { 14513 if (from_ill->ill_phyint->phyint_flags & 14514 PHYI_STANDBY) { 14515 phyint_inactive(from_ill->ill_phyint); 14516 } 14517 if (ill_v4->ill_phyint->phyint_flags & 14518 PHYI_STANDBY) { 14519 phyint_inactive(ill_v4->ill_phyint); 14520 } 14521 } 14522 ill_v4->ill_move_peer = NULL; 14523 } 14524 } 14525 14526 if (ill_v6 != NULL) { 14527 ill_v6->ill_up_ipifs = B_TRUE; 14528 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14529 ipif = ipif->ipif_next) { 14530 mutex_enter(&ill_v6->ill_lock); 14531 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14532 IPIF_UNMARK_MOVING(ipif); 14533 mutex_exit(&ill_v6->ill_lock); 14534 if (ipif->ipif_was_up) { 14535 if (!(ipif->ipif_flags & IPIF_UP)) 14536 err = ipif_up(ipif, q, mp); 14537 ipif->ipif_was_up = B_FALSE; 14538 if (err != 0) { 14539 /* 14540 * Can there be any other error ? 14541 */ 14542 ASSERT(err == EINPROGRESS); 14543 return (err); 14544 } 14545 } 14546 } 14547 mutex_enter(&ill_v6->ill_lock); 14548 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14549 mutex_exit(&ill_v6->ill_lock); 14550 ill_v6->ill_up_ipifs = B_FALSE; 14551 if (ill_v6->ill_move_in_progress) { 14552 ASSERT(ill_v6->ill_move_peer != NULL); 14553 ill_v6->ill_move_in_progress = B_FALSE; 14554 from_ill = ill_v6->ill_move_peer; 14555 from_ill->ill_move_in_progress = B_FALSE; 14556 from_ill->ill_move_peer = NULL; 14557 mutex_enter(&from_ill->ill_lock); 14558 from_ill->ill_state_flags &= ~ILL_CHANGING; 14559 mutex_exit(&from_ill->ill_lock); 14560 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14561 phyint_inactive(from_ill->ill_phyint); 14562 } 14563 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14564 phyint_inactive(ill_v6->ill_phyint); 14565 } 14566 ill_v6->ill_move_peer = NULL; 14567 } 14568 } 14569 return (0); 14570 } 14571 14572 /* 14573 * bring down all the approriate ipifs. 14574 */ 14575 /* ARGSUSED */ 14576 static void 14577 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14578 { 14579 ipif_t *ipif; 14580 14581 ASSERT(IAM_WRITER_ILL(ill)); 14582 14583 /* 14584 * Except for ipif_state_flags the other fields of the ipif/ill that 14585 * are modified below are protected implicitly since we are a writer 14586 */ 14587 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14588 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14589 continue; 14590 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14591 /* 14592 * We go through the ipif_down logic even if the ipif 14593 * is already down, since routes can be added based 14594 * on down ipifs. Going through ipif_down once again 14595 * will delete any IREs created based on these routes. 14596 */ 14597 if (ipif->ipif_flags & IPIF_UP) 14598 ipif->ipif_was_up = B_TRUE; 14599 /* 14600 * If called with chk_nofailover true ipif is moving. 14601 */ 14602 mutex_enter(&ill->ill_lock); 14603 if (chk_nofailover) { 14604 ipif->ipif_state_flags |= 14605 IPIF_MOVING | IPIF_CHANGING; 14606 } else { 14607 ipif->ipif_state_flags |= IPIF_CHANGING; 14608 } 14609 mutex_exit(&ill->ill_lock); 14610 /* 14611 * Need to re-create net/subnet bcast ires if 14612 * they are dependent on ipif. 14613 */ 14614 if (!ipif->ipif_isv6) 14615 ipif_check_bcast_ires(ipif); 14616 (void) ipif_logical_down(ipif, NULL, NULL); 14617 ipif_non_duplicate(ipif); 14618 ipif_down_tail(ipif); 14619 } 14620 } 14621 } 14622 14623 #define IPSQ_INC_REF(ipsq, ipst) { \ 14624 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14625 (ipsq)->ipsq_refs++; \ 14626 } 14627 14628 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14629 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14630 (ipsq)->ipsq_refs--; \ 14631 if ((ipsq)->ipsq_refs == 0) \ 14632 (ipsq)->ipsq_name[0] = '\0'; \ 14633 } 14634 14635 /* 14636 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14637 * new_ipsq. 14638 */ 14639 static void 14640 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14641 { 14642 phyint_t *phyint; 14643 phyint_t *next_phyint; 14644 14645 /* 14646 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14647 * writer and the ill_lock of the ill in question. Also the dest 14648 * ipsq can't vanish while we hold the ill_g_lock as writer. 14649 */ 14650 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14651 14652 phyint = cur_ipsq->ipsq_phyint_list; 14653 cur_ipsq->ipsq_phyint_list = NULL; 14654 while (phyint != NULL) { 14655 next_phyint = phyint->phyint_ipsq_next; 14656 IPSQ_DEC_REF(cur_ipsq, ipst); 14657 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14658 new_ipsq->ipsq_phyint_list = phyint; 14659 IPSQ_INC_REF(new_ipsq, ipst); 14660 phyint->phyint_ipsq = new_ipsq; 14661 phyint = next_phyint; 14662 } 14663 } 14664 14665 #define SPLIT_SUCCESS 0 14666 #define SPLIT_NOT_NEEDED 1 14667 #define SPLIT_FAILED 2 14668 14669 int 14670 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14671 ip_stack_t *ipst) 14672 { 14673 ipsq_t *newipsq = NULL; 14674 14675 /* 14676 * Assertions denote pre-requisites for changing the ipsq of 14677 * a phyint 14678 */ 14679 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14680 /* 14681 * <ill-phyint> assocs can't change while ill_g_lock 14682 * is held as writer. See ill_phyint_reinit() 14683 */ 14684 ASSERT(phyint->phyint_illv4 == NULL || 14685 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14686 ASSERT(phyint->phyint_illv6 == NULL || 14687 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14688 14689 if ((phyint->phyint_groupname_len != 14690 (strlen(cur_ipsq->ipsq_name) + 1) || 14691 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14692 phyint->phyint_groupname_len) != 0)) { 14693 /* 14694 * Once we fail in creating a new ipsq due to memory shortage, 14695 * don't attempt to create new ipsq again, based on another 14696 * phyint, since we want all phyints belonging to an IPMP group 14697 * to be in the same ipsq even in the event of mem alloc fails. 14698 */ 14699 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14700 cur_ipsq, ipst); 14701 if (newipsq == NULL) { 14702 /* Memory allocation failure */ 14703 return (SPLIT_FAILED); 14704 } else { 14705 /* ipsq_refs protected by ill_g_lock (writer) */ 14706 IPSQ_DEC_REF(cur_ipsq, ipst); 14707 phyint->phyint_ipsq = newipsq; 14708 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14709 newipsq->ipsq_phyint_list = phyint; 14710 IPSQ_INC_REF(newipsq, ipst); 14711 return (SPLIT_SUCCESS); 14712 } 14713 } 14714 return (SPLIT_NOT_NEEDED); 14715 } 14716 14717 /* 14718 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14719 * to do this split 14720 */ 14721 static int 14722 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14723 { 14724 ipsq_t *newipsq; 14725 14726 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14727 /* 14728 * <ill-phyint> assocs can't change while ill_g_lock 14729 * is held as writer. See ill_phyint_reinit() 14730 */ 14731 14732 ASSERT(phyint->phyint_illv4 == NULL || 14733 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14734 ASSERT(phyint->phyint_illv6 == NULL || 14735 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14736 14737 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14738 phyint->phyint_illv4: phyint->phyint_illv6)) { 14739 /* 14740 * ipsq_init failed due to no memory 14741 * caller will use the same ipsq 14742 */ 14743 return (SPLIT_FAILED); 14744 } 14745 14746 /* ipsq_ref is protected by ill_g_lock (writer) */ 14747 IPSQ_DEC_REF(cur_ipsq, ipst); 14748 14749 /* 14750 * This is a new ipsq that is unknown to the world. 14751 * So we don't need to hold ipsq_lock, 14752 */ 14753 newipsq = phyint->phyint_ipsq; 14754 newipsq->ipsq_writer = NULL; 14755 newipsq->ipsq_reentry_cnt--; 14756 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14757 #ifdef ILL_DEBUG 14758 newipsq->ipsq_depth = 0; 14759 #endif 14760 14761 return (SPLIT_SUCCESS); 14762 } 14763 14764 /* 14765 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14766 * ipsq's representing their individual groups or themselves. Return 14767 * whether split needs to be retried again later. 14768 */ 14769 static boolean_t 14770 ill_split_ipsq(ipsq_t *cur_ipsq) 14771 { 14772 phyint_t *phyint; 14773 phyint_t *next_phyint; 14774 int error; 14775 boolean_t need_retry = B_FALSE; 14776 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14777 14778 phyint = cur_ipsq->ipsq_phyint_list; 14779 cur_ipsq->ipsq_phyint_list = NULL; 14780 while (phyint != NULL) { 14781 next_phyint = phyint->phyint_ipsq_next; 14782 /* 14783 * 'created' will tell us whether the callee actually 14784 * created an ipsq. Lack of memory may force the callee 14785 * to return without creating an ipsq. 14786 */ 14787 if (phyint->phyint_groupname == NULL) { 14788 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14789 } else { 14790 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14791 need_retry, ipst); 14792 } 14793 14794 switch (error) { 14795 case SPLIT_FAILED: 14796 need_retry = B_TRUE; 14797 /* FALLTHRU */ 14798 case SPLIT_NOT_NEEDED: 14799 /* 14800 * Keep it on the list. 14801 */ 14802 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14803 cur_ipsq->ipsq_phyint_list = phyint; 14804 break; 14805 case SPLIT_SUCCESS: 14806 break; 14807 default: 14808 ASSERT(0); 14809 } 14810 14811 phyint = next_phyint; 14812 } 14813 return (need_retry); 14814 } 14815 14816 /* 14817 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14818 * and return the ills in the list. This list will be 14819 * needed to unlock all the ills later on by the caller. 14820 * The <ill-ipsq> associations could change between the 14821 * lock and unlock. Hence the unlock can't traverse the 14822 * ipsq to get the list of ills. 14823 */ 14824 static int 14825 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14826 { 14827 int cnt = 0; 14828 phyint_t *phyint; 14829 ip_stack_t *ipst = ipsq->ipsq_ipst; 14830 14831 /* 14832 * The caller holds ill_g_lock to ensure that the ill memberships 14833 * of the ipsq don't change 14834 */ 14835 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14836 14837 phyint = ipsq->ipsq_phyint_list; 14838 while (phyint != NULL) { 14839 if (phyint->phyint_illv4 != NULL) { 14840 ASSERT(cnt < list_max); 14841 list[cnt++] = phyint->phyint_illv4; 14842 } 14843 if (phyint->phyint_illv6 != NULL) { 14844 ASSERT(cnt < list_max); 14845 list[cnt++] = phyint->phyint_illv6; 14846 } 14847 phyint = phyint->phyint_ipsq_next; 14848 } 14849 ill_lock_ills(list, cnt); 14850 return (cnt); 14851 } 14852 14853 void 14854 ill_lock_ills(ill_t **list, int cnt) 14855 { 14856 int i; 14857 14858 if (cnt > 1) { 14859 boolean_t try_again; 14860 do { 14861 try_again = B_FALSE; 14862 for (i = 0; i < cnt - 1; i++) { 14863 if (list[i] < list[i + 1]) { 14864 ill_t *tmp; 14865 14866 /* swap the elements */ 14867 tmp = list[i]; 14868 list[i] = list[i + 1]; 14869 list[i + 1] = tmp; 14870 try_again = B_TRUE; 14871 } 14872 } 14873 } while (try_again); 14874 } 14875 14876 for (i = 0; i < cnt; i++) { 14877 if (i == 0) { 14878 if (list[i] != NULL) 14879 mutex_enter(&list[i]->ill_lock); 14880 else 14881 return; 14882 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14883 mutex_enter(&list[i]->ill_lock); 14884 } 14885 } 14886 } 14887 14888 void 14889 ill_unlock_ills(ill_t **list, int cnt) 14890 { 14891 int i; 14892 14893 for (i = 0; i < cnt; i++) { 14894 if ((i == 0) && (list[i] != NULL)) { 14895 mutex_exit(&list[i]->ill_lock); 14896 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14897 mutex_exit(&list[i]->ill_lock); 14898 } 14899 } 14900 } 14901 14902 /* 14903 * Merge all the ills from 1 ipsq group into another ipsq group. 14904 * The source ipsq group is specified by the ipsq associated with 14905 * 'from_ill'. The destination ipsq group is specified by the ipsq 14906 * associated with 'to_ill' or 'groupname' respectively. 14907 * Note that ipsq itself does not have a reference count mechanism 14908 * and functions don't look up an ipsq and pass it around. Instead 14909 * functions pass around an ill or groupname, and the ipsq is looked 14910 * up from the ill or groupname and the required operation performed 14911 * atomically with the lookup on the ipsq. 14912 */ 14913 static int 14914 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14915 queue_t *q) 14916 { 14917 ipsq_t *old_ipsq; 14918 ipsq_t *new_ipsq; 14919 ill_t **ill_list; 14920 int cnt; 14921 size_t ill_list_size; 14922 boolean_t became_writer_on_new_sq = B_FALSE; 14923 ip_stack_t *ipst = from_ill->ill_ipst; 14924 14925 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14926 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14927 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14928 14929 /* 14930 * Need to hold ill_g_lock as writer and also the ill_lock to 14931 * change the <ill-ipsq> assoc of an ill. Need to hold the 14932 * ipsq_lock to prevent new messages from landing on an ipsq. 14933 */ 14934 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14935 14936 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14937 if (groupname != NULL) 14938 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14939 else { 14940 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14941 } 14942 14943 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14944 14945 /* 14946 * both groups are on the same ipsq. 14947 */ 14948 if (old_ipsq == new_ipsq) { 14949 rw_exit(&ipst->ips_ill_g_lock); 14950 return (0); 14951 } 14952 14953 cnt = old_ipsq->ipsq_refs << 1; 14954 ill_list_size = cnt * sizeof (ill_t *); 14955 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14956 if (ill_list == NULL) { 14957 rw_exit(&ipst->ips_ill_g_lock); 14958 return (ENOMEM); 14959 } 14960 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14961 14962 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14963 mutex_enter(&new_ipsq->ipsq_lock); 14964 if ((new_ipsq->ipsq_writer == NULL && 14965 new_ipsq->ipsq_current_ipif == NULL) || 14966 (new_ipsq->ipsq_writer == curthread)) { 14967 new_ipsq->ipsq_writer = curthread; 14968 new_ipsq->ipsq_reentry_cnt++; 14969 became_writer_on_new_sq = B_TRUE; 14970 } 14971 14972 /* 14973 * We are holding ill_g_lock as writer and all the ill locks of 14974 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14975 * message can land up on the old ipsq even though we don't hold the 14976 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14977 */ 14978 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14979 14980 /* 14981 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14982 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14983 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14984 */ 14985 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14986 14987 /* 14988 * Mark the new ipsq as needing a split since it is currently 14989 * being shared by more than 1 IPMP group. The split will 14990 * occur at the end of ipsq_exit 14991 */ 14992 new_ipsq->ipsq_split = B_TRUE; 14993 14994 /* Now release all the locks */ 14995 mutex_exit(&new_ipsq->ipsq_lock); 14996 ill_unlock_ills(ill_list, cnt); 14997 rw_exit(&ipst->ips_ill_g_lock); 14998 14999 kmem_free(ill_list, ill_list_size); 15000 15001 /* 15002 * If we succeeded in becoming writer on the new ipsq, then 15003 * drain the new ipsq and start processing all enqueued messages 15004 * including the current ioctl we are processing which is either 15005 * a set groupname or failover/failback. 15006 */ 15007 if (became_writer_on_new_sq) 15008 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15009 15010 /* 15011 * syncq has been changed and all the messages have been moved. 15012 */ 15013 mutex_enter(&old_ipsq->ipsq_lock); 15014 old_ipsq->ipsq_current_ipif = NULL; 15015 old_ipsq->ipsq_current_ioctl = 0; 15016 mutex_exit(&old_ipsq->ipsq_lock); 15017 return (EINPROGRESS); 15018 } 15019 15020 /* 15021 * Delete and add the loopback copy and non-loopback copy of 15022 * the BROADCAST ire corresponding to ill and addr. Used to 15023 * group broadcast ires together when ill becomes part of 15024 * a group. 15025 * 15026 * This function is also called when ill is leaving the group 15027 * so that the ires belonging to the group gets re-grouped. 15028 */ 15029 static void 15030 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15031 { 15032 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15033 ire_t **ire_ptpn = &ire_head; 15034 ip_stack_t *ipst = ill->ill_ipst; 15035 15036 /* 15037 * The loopback and non-loopback IREs are inserted in the order in which 15038 * they're found, on the basis that they are correctly ordered (loopback 15039 * first). 15040 */ 15041 for (;;) { 15042 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15043 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15044 if (ire == NULL) 15045 break; 15046 15047 /* 15048 * we are passing in KM_SLEEP because it is not easy to 15049 * go back to a sane state in case of memory failure. 15050 */ 15051 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15052 ASSERT(nire != NULL); 15053 bzero(nire, sizeof (ire_t)); 15054 /* 15055 * Don't use ire_max_frag directly since we don't 15056 * hold on to 'ire' until we add the new ire 'nire' and 15057 * we don't want the new ire to have a dangling reference 15058 * to 'ire'. The ire_max_frag of a broadcast ire must 15059 * be in sync with the ipif_mtu of the associate ipif. 15060 * For eg. this happens as a result of SIOCSLIFNAME, 15061 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15062 * the driver. A change in ire_max_frag triggered as 15063 * as a result of path mtu discovery, or due to an 15064 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15065 * route change -mtu command does not apply to broadcast ires. 15066 * 15067 * XXX We need a recovery strategy here if ire_init fails 15068 */ 15069 if (ire_init(nire, 15070 (uchar_t *)&ire->ire_addr, 15071 (uchar_t *)&ire->ire_mask, 15072 (uchar_t *)&ire->ire_src_addr, 15073 (uchar_t *)&ire->ire_gateway_addr, 15074 ire->ire_stq == NULL ? &ip_loopback_mtu : 15075 &ire->ire_ipif->ipif_mtu, 15076 ire->ire_nce, 15077 ire->ire_rfq, 15078 ire->ire_stq, 15079 ire->ire_type, 15080 ire->ire_ipif, 15081 ire->ire_cmask, 15082 ire->ire_phandle, 15083 ire->ire_ihandle, 15084 ire->ire_flags, 15085 &ire->ire_uinfo, 15086 NULL, 15087 NULL, 15088 ipst) == NULL) { 15089 cmn_err(CE_PANIC, "ire_init() failed"); 15090 } 15091 ire_delete(ire); 15092 ire_refrele(ire); 15093 15094 /* 15095 * The newly created IREs are inserted at the tail of the list 15096 * starting with ire_head. As we've just allocated them no one 15097 * knows about them so it's safe. 15098 */ 15099 *ire_ptpn = nire; 15100 ire_ptpn = &nire->ire_next; 15101 } 15102 15103 for (nire = ire_head; nire != NULL; nire = nire_next) { 15104 int error; 15105 ire_t *oire; 15106 /* unlink the IRE from our list before calling ire_add() */ 15107 nire_next = nire->ire_next; 15108 nire->ire_next = NULL; 15109 15110 /* ire_add adds the ire at the right place in the list */ 15111 oire = nire; 15112 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15113 ASSERT(error == 0); 15114 ASSERT(oire == nire); 15115 ire_refrele(nire); /* Held in ire_add */ 15116 } 15117 } 15118 15119 /* 15120 * This function is usually called when an ill is inserted in 15121 * a group and all the ipifs are already UP. As all the ipifs 15122 * are already UP, the broadcast ires have already been created 15123 * and been inserted. But, ire_add_v4 would not have grouped properly. 15124 * We need to re-group for the benefit of ip_wput_ire which 15125 * expects BROADCAST ires to be grouped properly to avoid sending 15126 * more than one copy of the broadcast packet per group. 15127 * 15128 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15129 * because when ipif_up_done ends up calling this, ires have 15130 * already been added before illgrp_insert i.e before ill_group 15131 * has been initialized. 15132 */ 15133 static void 15134 ill_group_bcast_for_xmit(ill_t *ill) 15135 { 15136 ill_group_t *illgrp; 15137 ipif_t *ipif; 15138 ipaddr_t addr; 15139 ipaddr_t net_mask; 15140 ipaddr_t subnet_netmask; 15141 15142 illgrp = ill->ill_group; 15143 15144 /* 15145 * This function is called even when an ill is deleted from 15146 * the group. Hence, illgrp could be null. 15147 */ 15148 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15149 return; 15150 15151 /* 15152 * Delete all the BROADCAST ires matching this ill and add 15153 * them back. This time, ire_add_v4 should take care of 15154 * grouping them with others because ill is part of the 15155 * group. 15156 */ 15157 ill_bcast_delete_and_add(ill, 0); 15158 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15159 15160 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15161 15162 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15163 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15164 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15165 } else { 15166 net_mask = htonl(IN_CLASSA_NET); 15167 } 15168 addr = net_mask & ipif->ipif_subnet; 15169 ill_bcast_delete_and_add(ill, addr); 15170 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15171 15172 subnet_netmask = ipif->ipif_net_mask; 15173 addr = ipif->ipif_subnet; 15174 ill_bcast_delete_and_add(ill, addr); 15175 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15176 } 15177 } 15178 15179 /* 15180 * This function is called from illgrp_delete when ill is being deleted 15181 * from the group. 15182 * 15183 * As ill is not there in the group anymore, any address belonging 15184 * to this ill should be cleared of IRE_MARK_NORECV. 15185 */ 15186 static void 15187 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15188 { 15189 ire_t *ire; 15190 irb_t *irb; 15191 ip_stack_t *ipst = ill->ill_ipst; 15192 15193 ASSERT(ill->ill_group == NULL); 15194 15195 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15196 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15197 15198 if (ire != NULL) { 15199 /* 15200 * IPMP and plumbing operations are serialized on the ipsq, so 15201 * no one will insert or delete a broadcast ire under our feet. 15202 */ 15203 irb = ire->ire_bucket; 15204 rw_enter(&irb->irb_lock, RW_READER); 15205 ire_refrele(ire); 15206 15207 for (; ire != NULL; ire = ire->ire_next) { 15208 if (ire->ire_addr != addr) 15209 break; 15210 if (ire_to_ill(ire) != ill) 15211 continue; 15212 15213 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15214 ire->ire_marks &= ~IRE_MARK_NORECV; 15215 } 15216 rw_exit(&irb->irb_lock); 15217 } 15218 } 15219 15220 /* 15221 * This function must be called only after the broadcast ires 15222 * have been grouped together. For a given address addr, nominate 15223 * only one of the ires whose interface is not FAILED or OFFLINE. 15224 * 15225 * This is also called when an ipif goes down, so that we can nominate 15226 * a different ire with the same address for receiving. 15227 */ 15228 static void 15229 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15230 { 15231 irb_t *irb; 15232 ire_t *ire; 15233 ire_t *ire1; 15234 ire_t *save_ire; 15235 ire_t **irep = NULL; 15236 boolean_t first = B_TRUE; 15237 ire_t *clear_ire = NULL; 15238 ire_t *start_ire = NULL; 15239 ire_t *new_lb_ire; 15240 ire_t *new_nlb_ire; 15241 boolean_t new_lb_ire_used = B_FALSE; 15242 boolean_t new_nlb_ire_used = B_FALSE; 15243 uint64_t match_flags; 15244 uint64_t phyi_flags; 15245 boolean_t fallback = B_FALSE; 15246 uint_t max_frag; 15247 15248 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15249 NULL, MATCH_IRE_TYPE, ipst); 15250 /* 15251 * We may not be able to find some ires if a previous 15252 * ire_create failed. This happens when an ipif goes 15253 * down and we are unable to create BROADCAST ires due 15254 * to memory failure. Thus, we have to check for NULL 15255 * below. This should handle the case for LOOPBACK, 15256 * POINTOPOINT and interfaces with some POINTOPOINT 15257 * logicals for which there are no BROADCAST ires. 15258 */ 15259 if (ire == NULL) 15260 return; 15261 /* 15262 * Currently IRE_BROADCASTS are deleted when an ipif 15263 * goes down which runs exclusively. Thus, setting 15264 * IRE_MARK_RCVD should not race with ire_delete marking 15265 * IRE_MARK_CONDEMNED. We grab the lock below just to 15266 * be consistent with other parts of the code that walks 15267 * a given bucket. 15268 */ 15269 save_ire = ire; 15270 irb = ire->ire_bucket; 15271 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15272 if (new_lb_ire == NULL) { 15273 ire_refrele(ire); 15274 return; 15275 } 15276 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15277 if (new_nlb_ire == NULL) { 15278 ire_refrele(ire); 15279 kmem_cache_free(ire_cache, new_lb_ire); 15280 return; 15281 } 15282 IRB_REFHOLD(irb); 15283 rw_enter(&irb->irb_lock, RW_WRITER); 15284 /* 15285 * Get to the first ire matching the address and the 15286 * group. If the address does not match we are done 15287 * as we could not find the IRE. If the address matches 15288 * we should get to the first one matching the group. 15289 */ 15290 while (ire != NULL) { 15291 if (ire->ire_addr != addr || 15292 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15293 break; 15294 } 15295 ire = ire->ire_next; 15296 } 15297 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15298 start_ire = ire; 15299 redo: 15300 while (ire != NULL && ire->ire_addr == addr && 15301 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15302 /* 15303 * The first ire for any address within a group 15304 * should always be the one with IRE_MARK_NORECV cleared 15305 * so that ip_wput_ire can avoid searching for one. 15306 * Note down the insertion point which will be used 15307 * later. 15308 */ 15309 if (first && (irep == NULL)) 15310 irep = ire->ire_ptpn; 15311 /* 15312 * PHYI_FAILED is set when the interface fails. 15313 * This interface might have become good, but the 15314 * daemon has not yet detected. We should still 15315 * not receive on this. PHYI_OFFLINE should never 15316 * be picked as this has been offlined and soon 15317 * be removed. 15318 */ 15319 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15320 if (phyi_flags & PHYI_OFFLINE) { 15321 ire->ire_marks |= IRE_MARK_NORECV; 15322 ire = ire->ire_next; 15323 continue; 15324 } 15325 if (phyi_flags & match_flags) { 15326 ire->ire_marks |= IRE_MARK_NORECV; 15327 ire = ire->ire_next; 15328 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15329 PHYI_INACTIVE) { 15330 fallback = B_TRUE; 15331 } 15332 continue; 15333 } 15334 if (first) { 15335 /* 15336 * We will move this to the front of the list later 15337 * on. 15338 */ 15339 clear_ire = ire; 15340 ire->ire_marks &= ~IRE_MARK_NORECV; 15341 } else { 15342 ire->ire_marks |= IRE_MARK_NORECV; 15343 } 15344 first = B_FALSE; 15345 ire = ire->ire_next; 15346 } 15347 /* 15348 * If we never nominated anybody, try nominating at least 15349 * an INACTIVE, if we found one. Do it only once though. 15350 */ 15351 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15352 fallback) { 15353 match_flags = PHYI_FAILED; 15354 ire = start_ire; 15355 irep = NULL; 15356 goto redo; 15357 } 15358 ire_refrele(save_ire); 15359 15360 /* 15361 * irep non-NULL indicates that we entered the while loop 15362 * above. If clear_ire is at the insertion point, we don't 15363 * have to do anything. clear_ire will be NULL if all the 15364 * interfaces are failed. 15365 * 15366 * We cannot unlink and reinsert the ire at the right place 15367 * in the list since there can be other walkers of this bucket. 15368 * Instead we delete and recreate the ire 15369 */ 15370 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15371 ire_t *clear_ire_stq = NULL; 15372 15373 bzero(new_lb_ire, sizeof (ire_t)); 15374 /* XXX We need a recovery strategy here. */ 15375 if (ire_init(new_lb_ire, 15376 (uchar_t *)&clear_ire->ire_addr, 15377 (uchar_t *)&clear_ire->ire_mask, 15378 (uchar_t *)&clear_ire->ire_src_addr, 15379 (uchar_t *)&clear_ire->ire_gateway_addr, 15380 &clear_ire->ire_max_frag, 15381 NULL, /* let ire_nce_init derive the resolver info */ 15382 clear_ire->ire_rfq, 15383 clear_ire->ire_stq, 15384 clear_ire->ire_type, 15385 clear_ire->ire_ipif, 15386 clear_ire->ire_cmask, 15387 clear_ire->ire_phandle, 15388 clear_ire->ire_ihandle, 15389 clear_ire->ire_flags, 15390 &clear_ire->ire_uinfo, 15391 NULL, 15392 NULL, 15393 ipst) == NULL) 15394 cmn_err(CE_PANIC, "ire_init() failed"); 15395 if (clear_ire->ire_stq == NULL) { 15396 ire_t *ire_next = clear_ire->ire_next; 15397 if (ire_next != NULL && 15398 ire_next->ire_stq != NULL && 15399 ire_next->ire_addr == clear_ire->ire_addr && 15400 ire_next->ire_ipif->ipif_ill == 15401 clear_ire->ire_ipif->ipif_ill) { 15402 clear_ire_stq = ire_next; 15403 15404 bzero(new_nlb_ire, sizeof (ire_t)); 15405 /* XXX We need a recovery strategy here. */ 15406 if (ire_init(new_nlb_ire, 15407 (uchar_t *)&clear_ire_stq->ire_addr, 15408 (uchar_t *)&clear_ire_stq->ire_mask, 15409 (uchar_t *)&clear_ire_stq->ire_src_addr, 15410 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15411 &clear_ire_stq->ire_max_frag, 15412 NULL, 15413 clear_ire_stq->ire_rfq, 15414 clear_ire_stq->ire_stq, 15415 clear_ire_stq->ire_type, 15416 clear_ire_stq->ire_ipif, 15417 clear_ire_stq->ire_cmask, 15418 clear_ire_stq->ire_phandle, 15419 clear_ire_stq->ire_ihandle, 15420 clear_ire_stq->ire_flags, 15421 &clear_ire_stq->ire_uinfo, 15422 NULL, 15423 NULL, 15424 ipst) == NULL) 15425 cmn_err(CE_PANIC, "ire_init() failed"); 15426 } 15427 } 15428 15429 /* 15430 * Delete the ire. We can't call ire_delete() since 15431 * we are holding the bucket lock. We can't release the 15432 * bucket lock since we can't allow irep to change. So just 15433 * mark it CONDEMNED. The IRB_REFRELE will delete the 15434 * ire from the list and do the refrele. 15435 */ 15436 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15437 irb->irb_marks |= IRB_MARK_CONDEMNED; 15438 15439 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15440 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15441 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15442 } 15443 15444 /* 15445 * Also take care of otherfields like ib/ob pkt count 15446 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15447 */ 15448 15449 /* Set the max_frag before adding the ire */ 15450 max_frag = *new_lb_ire->ire_max_fragp; 15451 new_lb_ire->ire_max_fragp = NULL; 15452 new_lb_ire->ire_max_frag = max_frag; 15453 15454 /* Add the new ire's. Insert at *irep */ 15455 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15456 ire1 = *irep; 15457 if (ire1 != NULL) 15458 ire1->ire_ptpn = &new_lb_ire->ire_next; 15459 new_lb_ire->ire_next = ire1; 15460 /* Link the new one in. */ 15461 new_lb_ire->ire_ptpn = irep; 15462 membar_producer(); 15463 *irep = new_lb_ire; 15464 new_lb_ire_used = B_TRUE; 15465 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15466 new_lb_ire->ire_bucket->irb_ire_cnt++; 15467 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15468 15469 if (clear_ire_stq != NULL) { 15470 /* Set the max_frag before adding the ire */ 15471 max_frag = *new_nlb_ire->ire_max_fragp; 15472 new_nlb_ire->ire_max_fragp = NULL; 15473 new_nlb_ire->ire_max_frag = max_frag; 15474 15475 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15476 irep = &new_lb_ire->ire_next; 15477 /* Add the new ire. Insert at *irep */ 15478 ire1 = *irep; 15479 if (ire1 != NULL) 15480 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15481 new_nlb_ire->ire_next = ire1; 15482 /* Link the new one in. */ 15483 new_nlb_ire->ire_ptpn = irep; 15484 membar_producer(); 15485 *irep = new_nlb_ire; 15486 new_nlb_ire_used = B_TRUE; 15487 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15488 ire_stats_inserted); 15489 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15490 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15491 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15492 } 15493 } 15494 rw_exit(&irb->irb_lock); 15495 if (!new_lb_ire_used) 15496 kmem_cache_free(ire_cache, new_lb_ire); 15497 if (!new_nlb_ire_used) 15498 kmem_cache_free(ire_cache, new_nlb_ire); 15499 IRB_REFRELE(irb); 15500 } 15501 15502 /* 15503 * Whenever an ipif goes down we have to renominate a different 15504 * broadcast ire to receive. Whenever an ipif comes up, we need 15505 * to make sure that we have only one nominated to receive. 15506 */ 15507 static void 15508 ipif_renominate_bcast(ipif_t *ipif) 15509 { 15510 ill_t *ill = ipif->ipif_ill; 15511 ipaddr_t subnet_addr; 15512 ipaddr_t net_addr; 15513 ipaddr_t net_mask = 0; 15514 ipaddr_t subnet_netmask; 15515 ipaddr_t addr; 15516 ill_group_t *illgrp; 15517 ip_stack_t *ipst = ill->ill_ipst; 15518 15519 illgrp = ill->ill_group; 15520 /* 15521 * If this is the last ipif going down, it might take 15522 * the ill out of the group. In that case ipif_down -> 15523 * illgrp_delete takes care of doing the nomination. 15524 * ipif_down does not call for this case. 15525 */ 15526 ASSERT(illgrp != NULL); 15527 15528 /* There could not have been any ires associated with this */ 15529 if (ipif->ipif_subnet == 0) 15530 return; 15531 15532 ill_mark_bcast(illgrp, 0, ipst); 15533 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15534 15535 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15536 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15537 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15538 } else { 15539 net_mask = htonl(IN_CLASSA_NET); 15540 } 15541 addr = net_mask & ipif->ipif_subnet; 15542 ill_mark_bcast(illgrp, addr, ipst); 15543 15544 net_addr = ~net_mask | addr; 15545 ill_mark_bcast(illgrp, net_addr, ipst); 15546 15547 subnet_netmask = ipif->ipif_net_mask; 15548 addr = ipif->ipif_subnet; 15549 ill_mark_bcast(illgrp, addr, ipst); 15550 15551 subnet_addr = ~subnet_netmask | addr; 15552 ill_mark_bcast(illgrp, subnet_addr, ipst); 15553 } 15554 15555 /* 15556 * Whenever we form or delete ill groups, we need to nominate one set of 15557 * BROADCAST ires for receiving in the group. 15558 * 15559 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15560 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15561 * for ill_ipif_up_count to be non-zero. This is the only case where 15562 * ill_ipif_up_count is zero and we would still find the ires. 15563 * 15564 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15565 * ipif is UP and we just have to do the nomination. 15566 * 15567 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15568 * from the group. So, we have to do the nomination. 15569 * 15570 * Because of (3), there could be just one ill in the group. But we have 15571 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15572 * Thus, this function does not optimize when there is only one ill as 15573 * it is not correct for (3). 15574 */ 15575 static void 15576 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15577 { 15578 ill_t *ill; 15579 ipif_t *ipif; 15580 ipaddr_t subnet_addr; 15581 ipaddr_t prev_subnet_addr = 0; 15582 ipaddr_t net_addr; 15583 ipaddr_t prev_net_addr = 0; 15584 ipaddr_t net_mask = 0; 15585 ipaddr_t subnet_netmask; 15586 ipaddr_t addr; 15587 ip_stack_t *ipst; 15588 15589 /* 15590 * When the last memeber is leaving, there is nothing to 15591 * nominate. 15592 */ 15593 if (illgrp->illgrp_ill_count == 0) { 15594 ASSERT(illgrp->illgrp_ill == NULL); 15595 return; 15596 } 15597 15598 ill = illgrp->illgrp_ill; 15599 ASSERT(!ill->ill_isv6); 15600 ipst = ill->ill_ipst; 15601 /* 15602 * We assume that ires with same address and belonging to the 15603 * same group, has been grouped together. Nominating a *single* 15604 * ill in the group for sending and receiving broadcast is done 15605 * by making sure that the first BROADCAST ire (which will be 15606 * the one returned by ire_ctable_lookup for ip_rput and the 15607 * one that will be used in ip_wput_ire) will be the one that 15608 * will not have IRE_MARK_NORECV set. 15609 * 15610 * 1) ip_rput checks and discards packets received on ires marked 15611 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15612 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15613 * first ire in the group for every broadcast address in the group. 15614 * ip_rput will accept packets only on the first ire i.e only 15615 * one copy of the ill. 15616 * 15617 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15618 * packet for the whole group. It needs to send out on the ill 15619 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15620 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15621 * the copy echoed back on other port where the ire is not marked 15622 * with IRE_MARK_NORECV. 15623 * 15624 * Note that we just need to have the first IRE either loopback or 15625 * non-loopback (either of them may not exist if ire_create failed 15626 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15627 * always hit the first one and hence will always accept one copy. 15628 * 15629 * We have a broadcast ire per ill for all the unique prefixes 15630 * hosted on that ill. As we don't have a way of knowing the 15631 * unique prefixes on a given ill and hence in the whole group, 15632 * we just call ill_mark_bcast on all the prefixes that exist 15633 * in the group. For the common case of one prefix, the code 15634 * below optimizes by remebering the last address used for 15635 * markng. In the case of multiple prefixes, this will still 15636 * optimize depending the order of prefixes. 15637 * 15638 * The only unique address across the whole group is 0.0.0.0 and 15639 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15640 * the first ire in the bucket for receiving and disables the 15641 * others. 15642 */ 15643 ill_mark_bcast(illgrp, 0, ipst); 15644 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15645 for (; ill != NULL; ill = ill->ill_group_next) { 15646 15647 for (ipif = ill->ill_ipif; ipif != NULL; 15648 ipif = ipif->ipif_next) { 15649 15650 if (!(ipif->ipif_flags & IPIF_UP) || 15651 ipif->ipif_subnet == 0) { 15652 continue; 15653 } 15654 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15655 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15656 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15657 } else { 15658 net_mask = htonl(IN_CLASSA_NET); 15659 } 15660 addr = net_mask & ipif->ipif_subnet; 15661 if (prev_net_addr == 0 || prev_net_addr != addr) { 15662 ill_mark_bcast(illgrp, addr, ipst); 15663 net_addr = ~net_mask | addr; 15664 ill_mark_bcast(illgrp, net_addr, ipst); 15665 } 15666 prev_net_addr = addr; 15667 15668 subnet_netmask = ipif->ipif_net_mask; 15669 addr = ipif->ipif_subnet; 15670 if (prev_subnet_addr == 0 || 15671 prev_subnet_addr != addr) { 15672 ill_mark_bcast(illgrp, addr, ipst); 15673 subnet_addr = ~subnet_netmask | addr; 15674 ill_mark_bcast(illgrp, subnet_addr, ipst); 15675 } 15676 prev_subnet_addr = addr; 15677 } 15678 } 15679 } 15680 15681 /* 15682 * This function is called while forming ill groups. 15683 * 15684 * Currently, we handle only allmulti groups. We want to join 15685 * allmulti on only one of the ills in the groups. In future, 15686 * when we have link aggregation, we may have to join normal 15687 * multicast groups on multiple ills as switch does inbound load 15688 * balancing. Following are the functions that calls this 15689 * function : 15690 * 15691 * 1) ill_recover_multicast : Interface is coming back UP. 15692 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15693 * will call ill_recover_multicast to recover all the multicast 15694 * groups. We need to make sure that only one member is joined 15695 * in the ill group. 15696 * 15697 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15698 * Somebody is joining allmulti. We need to make sure that only one 15699 * member is joined in the group. 15700 * 15701 * 3) illgrp_insert : If allmulti has already joined, we need to make 15702 * sure that only one member is joined in the group. 15703 * 15704 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15705 * allmulti who we have nominated. We need to pick someother ill. 15706 * 15707 * 5) illgrp_delete : The ill we nominated is leaving the group, 15708 * we need to pick a new ill to join the group. 15709 * 15710 * For (1), (2), (5) - we just have to check whether there is 15711 * a good ill joined in the group. If we could not find any ills 15712 * joined the group, we should join. 15713 * 15714 * For (4), the one that was nominated to receive, left the group. 15715 * There could be nobody joined in the group when this function is 15716 * called. 15717 * 15718 * For (3) - we need to explicitly check whether there are multiple 15719 * ills joined in the group. 15720 * 15721 * For simplicity, we don't differentiate any of the above cases. We 15722 * just leave the group if it is joined on any of them and join on 15723 * the first good ill. 15724 */ 15725 int 15726 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15727 { 15728 ilm_t *ilm; 15729 ill_t *ill; 15730 ill_t *fallback_inactive_ill = NULL; 15731 ill_t *fallback_failed_ill = NULL; 15732 int ret = 0; 15733 15734 /* 15735 * Leave the allmulti on all the ills and start fresh. 15736 */ 15737 for (ill = illgrp->illgrp_ill; ill != NULL; 15738 ill = ill->ill_group_next) { 15739 if (ill->ill_join_allmulti) 15740 (void) ip_leave_allmulti(ill->ill_ipif); 15741 } 15742 15743 /* 15744 * Choose a good ill. Fallback to inactive or failed if 15745 * none available. We need to fallback to FAILED in the 15746 * case where we have 2 interfaces in a group - where 15747 * one of them is failed and another is a good one and 15748 * the good one (not marked inactive) is leaving the group. 15749 */ 15750 ret = 0; 15751 for (ill = illgrp->illgrp_ill; ill != NULL; 15752 ill = ill->ill_group_next) { 15753 /* Never pick an offline interface */ 15754 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15755 continue; 15756 15757 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15758 fallback_failed_ill = ill; 15759 continue; 15760 } 15761 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15762 fallback_inactive_ill = ill; 15763 continue; 15764 } 15765 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15766 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15767 ret = ip_join_allmulti(ill->ill_ipif); 15768 /* 15769 * ip_join_allmulti can fail because of memory 15770 * failures. So, make sure we join at least 15771 * on one ill. 15772 */ 15773 if (ill->ill_join_allmulti) 15774 return (0); 15775 } 15776 } 15777 } 15778 if (ret != 0) { 15779 /* 15780 * If we tried nominating above and failed to do so, 15781 * return error. We might have tried multiple times. 15782 * But, return the latest error. 15783 */ 15784 return (ret); 15785 } 15786 if ((ill = fallback_inactive_ill) != NULL) { 15787 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15788 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15789 ret = ip_join_allmulti(ill->ill_ipif); 15790 return (ret); 15791 } 15792 } 15793 } else if ((ill = fallback_failed_ill) != NULL) { 15794 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15795 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15796 ret = ip_join_allmulti(ill->ill_ipif); 15797 return (ret); 15798 } 15799 } 15800 } 15801 return (0); 15802 } 15803 15804 /* 15805 * This function is called from illgrp_delete after it is 15806 * deleted from the group to reschedule responsibilities 15807 * to a different ill. 15808 */ 15809 static void 15810 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15811 { 15812 ilm_t *ilm; 15813 ipif_t *ipif; 15814 ipaddr_t subnet_addr; 15815 ipaddr_t net_addr; 15816 ipaddr_t net_mask = 0; 15817 ipaddr_t subnet_netmask; 15818 ipaddr_t addr; 15819 ip_stack_t *ipst = ill->ill_ipst; 15820 15821 ASSERT(ill->ill_group == NULL); 15822 /* 15823 * Broadcast Responsibility: 15824 * 15825 * 1. If this ill has been nominated for receiving broadcast 15826 * packets, we need to find a new one. Before we find a new 15827 * one, we need to re-group the ires that are part of this new 15828 * group (assumed by ill_nominate_bcast_rcv). We do this by 15829 * calling ill_group_bcast_for_xmit(ill) which will do the right 15830 * thing for us. 15831 * 15832 * 2. If this ill was not nominated for receiving broadcast 15833 * packets, we need to clear the IRE_MARK_NORECV flag 15834 * so that we continue to send up broadcast packets. 15835 */ 15836 if (!ill->ill_isv6) { 15837 /* 15838 * Case 1 above : No optimization here. Just redo the 15839 * nomination. 15840 */ 15841 ill_group_bcast_for_xmit(ill); 15842 ill_nominate_bcast_rcv(illgrp); 15843 15844 /* 15845 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15846 */ 15847 ill_clear_bcast_mark(ill, 0); 15848 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15849 15850 for (ipif = ill->ill_ipif; ipif != NULL; 15851 ipif = ipif->ipif_next) { 15852 15853 if (!(ipif->ipif_flags & IPIF_UP) || 15854 ipif->ipif_subnet == 0) { 15855 continue; 15856 } 15857 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15858 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15859 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15860 } else { 15861 net_mask = htonl(IN_CLASSA_NET); 15862 } 15863 addr = net_mask & ipif->ipif_subnet; 15864 ill_clear_bcast_mark(ill, addr); 15865 15866 net_addr = ~net_mask | addr; 15867 ill_clear_bcast_mark(ill, net_addr); 15868 15869 subnet_netmask = ipif->ipif_net_mask; 15870 addr = ipif->ipif_subnet; 15871 ill_clear_bcast_mark(ill, addr); 15872 15873 subnet_addr = ~subnet_netmask | addr; 15874 ill_clear_bcast_mark(ill, subnet_addr); 15875 } 15876 } 15877 15878 /* 15879 * Multicast Responsibility. 15880 * 15881 * If we have joined allmulti on this one, find a new member 15882 * in the group to join allmulti. As this ill is already part 15883 * of allmulti, we don't have to join on this one. 15884 * 15885 * If we have not joined allmulti on this one, there is no 15886 * responsibility to handoff. But we need to take new 15887 * responsibility i.e, join allmulti on this one if we need 15888 * to. 15889 */ 15890 if (ill->ill_join_allmulti) { 15891 (void) ill_nominate_mcast_rcv(illgrp); 15892 } else { 15893 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15894 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15895 (void) ip_join_allmulti(ill->ill_ipif); 15896 break; 15897 } 15898 } 15899 } 15900 15901 /* 15902 * We intentionally do the flushing of IRE_CACHES only matching 15903 * on the ill and not on groups. Note that we are already deleted 15904 * from the group. 15905 * 15906 * This will make sure that all IRE_CACHES whose stq is pointing 15907 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15908 * deleted and IRE_CACHES that are not pointing at this ill will 15909 * be left alone. 15910 */ 15911 if (ill->ill_isv6) { 15912 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15913 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15914 } else { 15915 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15916 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15917 } 15918 15919 /* 15920 * Some conn may have cached one of the IREs deleted above. By removing 15921 * the ire reference, we clean up the extra reference to the ill held in 15922 * ire->ire_stq. 15923 */ 15924 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15925 15926 /* 15927 * Re-do source address selection for all the members in the 15928 * group, if they borrowed source address from one of the ipifs 15929 * in this ill. 15930 */ 15931 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15932 if (ill->ill_isv6) { 15933 ipif_update_other_ipifs_v6(ipif, illgrp); 15934 } else { 15935 ipif_update_other_ipifs(ipif, illgrp); 15936 } 15937 } 15938 } 15939 15940 /* 15941 * Delete the ill from the group. The caller makes sure that it is 15942 * in a group and it okay to delete from the group. So, we always 15943 * delete here. 15944 */ 15945 static void 15946 illgrp_delete(ill_t *ill) 15947 { 15948 ill_group_t *illgrp; 15949 ill_group_t *tmpg; 15950 ill_t *tmp_ill; 15951 ip_stack_t *ipst = ill->ill_ipst; 15952 15953 /* 15954 * Reset illgrp_ill_schednext if it was pointing at us. 15955 * We need to do this before we set ill_group to NULL. 15956 */ 15957 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15958 mutex_enter(&ill->ill_lock); 15959 15960 illgrp_reset_schednext(ill); 15961 15962 illgrp = ill->ill_group; 15963 15964 /* Delete the ill from illgrp. */ 15965 if (illgrp->illgrp_ill == ill) { 15966 illgrp->illgrp_ill = ill->ill_group_next; 15967 } else { 15968 tmp_ill = illgrp->illgrp_ill; 15969 while (tmp_ill->ill_group_next != ill) { 15970 tmp_ill = tmp_ill->ill_group_next; 15971 ASSERT(tmp_ill != NULL); 15972 } 15973 tmp_ill->ill_group_next = ill->ill_group_next; 15974 } 15975 ill->ill_group = NULL; 15976 ill->ill_group_next = NULL; 15977 15978 illgrp->illgrp_ill_count--; 15979 mutex_exit(&ill->ill_lock); 15980 rw_exit(&ipst->ips_ill_g_lock); 15981 15982 /* 15983 * As this ill is leaving the group, we need to hand off 15984 * the responsibilities to the other ills in the group, if 15985 * this ill had some responsibilities. 15986 */ 15987 15988 ill_handoff_responsibility(ill, illgrp); 15989 15990 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15991 15992 if (illgrp->illgrp_ill_count == 0) { 15993 15994 ASSERT(illgrp->illgrp_ill == NULL); 15995 if (ill->ill_isv6) { 15996 if (illgrp == ipst->ips_illgrp_head_v6) { 15997 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15998 } else { 15999 tmpg = ipst->ips_illgrp_head_v6; 16000 while (tmpg->illgrp_next != illgrp) { 16001 tmpg = tmpg->illgrp_next; 16002 ASSERT(tmpg != NULL); 16003 } 16004 tmpg->illgrp_next = illgrp->illgrp_next; 16005 } 16006 } else { 16007 if (illgrp == ipst->ips_illgrp_head_v4) { 16008 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16009 } else { 16010 tmpg = ipst->ips_illgrp_head_v4; 16011 while (tmpg->illgrp_next != illgrp) { 16012 tmpg = tmpg->illgrp_next; 16013 ASSERT(tmpg != NULL); 16014 } 16015 tmpg->illgrp_next = illgrp->illgrp_next; 16016 } 16017 } 16018 mutex_destroy(&illgrp->illgrp_lock); 16019 mi_free(illgrp); 16020 } 16021 rw_exit(&ipst->ips_ill_g_lock); 16022 16023 /* 16024 * Even though the ill is out of the group its not necessary 16025 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16026 * We will split the ipsq when phyint_groupname is set to NULL. 16027 */ 16028 16029 /* 16030 * Send a routing sockets message if we are deleting from 16031 * groups with names. 16032 */ 16033 if (ill->ill_phyint->phyint_groupname_len != 0) 16034 ip_rts_ifmsg(ill->ill_ipif); 16035 } 16036 16037 /* 16038 * Re-do source address selection. This is normally called when 16039 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16040 * ipif comes up. 16041 */ 16042 void 16043 ill_update_source_selection(ill_t *ill) 16044 { 16045 ipif_t *ipif; 16046 16047 ASSERT(IAM_WRITER_ILL(ill)); 16048 16049 if (ill->ill_group != NULL) 16050 ill = ill->ill_group->illgrp_ill; 16051 16052 for (; ill != NULL; ill = ill->ill_group_next) { 16053 for (ipif = ill->ill_ipif; ipif != NULL; 16054 ipif = ipif->ipif_next) { 16055 if (ill->ill_isv6) 16056 ipif_recreate_interface_routes_v6(NULL, ipif); 16057 else 16058 ipif_recreate_interface_routes(NULL, ipif); 16059 } 16060 } 16061 } 16062 16063 /* 16064 * Insert ill in a group headed by illgrp_head. The caller can either 16065 * pass a groupname in which case we search for a group with the 16066 * same name to insert in or pass a group to insert in. This function 16067 * would only search groups with names. 16068 * 16069 * NOTE : The caller should make sure that there is at least one ipif 16070 * UP on this ill so that illgrp_scheduler can pick this ill 16071 * for outbound packets. If ill_ipif_up_count is zero, we have 16072 * already sent a DL_UNBIND to the driver and we don't want to 16073 * send anymore packets. We don't assert for ipif_up_count 16074 * to be greater than zero, because ipif_up_done wants to call 16075 * this function before bumping up the ipif_up_count. See 16076 * ipif_up_done() for details. 16077 */ 16078 int 16079 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16080 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16081 { 16082 ill_group_t *illgrp; 16083 ill_t *prev_ill; 16084 phyint_t *phyi; 16085 ip_stack_t *ipst = ill->ill_ipst; 16086 16087 ASSERT(ill->ill_group == NULL); 16088 16089 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16090 mutex_enter(&ill->ill_lock); 16091 16092 if (groupname != NULL) { 16093 /* 16094 * Look for a group with a matching groupname to insert. 16095 */ 16096 for (illgrp = *illgrp_head; illgrp != NULL; 16097 illgrp = illgrp->illgrp_next) { 16098 16099 ill_t *tmp_ill; 16100 16101 /* 16102 * If we have an ill_group_t in the list which has 16103 * no ill_t assigned then we must be in the process of 16104 * removing this group. We skip this as illgrp_delete() 16105 * will remove it from the list. 16106 */ 16107 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16108 ASSERT(illgrp->illgrp_ill_count == 0); 16109 continue; 16110 } 16111 16112 ASSERT(tmp_ill->ill_phyint != NULL); 16113 phyi = tmp_ill->ill_phyint; 16114 /* 16115 * Look at groups which has names only. 16116 */ 16117 if (phyi->phyint_groupname_len == 0) 16118 continue; 16119 /* 16120 * Names are stored in the phyint common to both 16121 * IPv4 and IPv6. 16122 */ 16123 if (mi_strcmp(phyi->phyint_groupname, 16124 groupname) == 0) { 16125 break; 16126 } 16127 } 16128 } else { 16129 /* 16130 * If the caller passes in a NULL "grp_to_insert", we 16131 * allocate one below and insert this singleton. 16132 */ 16133 illgrp = grp_to_insert; 16134 } 16135 16136 ill->ill_group_next = NULL; 16137 16138 if (illgrp == NULL) { 16139 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16140 if (illgrp == NULL) { 16141 return (ENOMEM); 16142 } 16143 illgrp->illgrp_next = *illgrp_head; 16144 *illgrp_head = illgrp; 16145 illgrp->illgrp_ill = ill; 16146 illgrp->illgrp_ill_count = 1; 16147 ill->ill_group = illgrp; 16148 /* 16149 * Used in illgrp_scheduler to protect multiple threads 16150 * from traversing the list. 16151 */ 16152 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16153 } else { 16154 ASSERT(ill->ill_net_type == 16155 illgrp->illgrp_ill->ill_net_type); 16156 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16157 16158 /* Insert ill at tail of this group */ 16159 prev_ill = illgrp->illgrp_ill; 16160 while (prev_ill->ill_group_next != NULL) 16161 prev_ill = prev_ill->ill_group_next; 16162 prev_ill->ill_group_next = ill; 16163 ill->ill_group = illgrp; 16164 illgrp->illgrp_ill_count++; 16165 /* 16166 * Inherit group properties. Currently only forwarding 16167 * is the property we try to keep the same with all the 16168 * ills. When there are more, we will abstract this into 16169 * a function. 16170 */ 16171 ill->ill_flags &= ~ILLF_ROUTER; 16172 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16173 } 16174 mutex_exit(&ill->ill_lock); 16175 rw_exit(&ipst->ips_ill_g_lock); 16176 16177 /* 16178 * 1) When ipif_up_done() calls this function, ipif_up_count 16179 * may be zero as it has not yet been bumped. But the ires 16180 * have already been added. So, we do the nomination here 16181 * itself. But, when ip_sioctl_groupname calls this, it checks 16182 * for ill_ipif_up_count != 0. Thus we don't check for 16183 * ill_ipif_up_count here while nominating broadcast ires for 16184 * receive. 16185 * 16186 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16187 * to group them properly as ire_add() has already happened 16188 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16189 * case, we need to do it here anyway. 16190 */ 16191 if (!ill->ill_isv6) { 16192 ill_group_bcast_for_xmit(ill); 16193 ill_nominate_bcast_rcv(illgrp); 16194 } 16195 16196 if (!ipif_is_coming_up) { 16197 /* 16198 * When ipif_up_done() calls this function, the multicast 16199 * groups have not been joined yet. So, there is no point in 16200 * nomination. ip_join_allmulti will handle groups when 16201 * ill_recover_multicast is called from ipif_up_done() later. 16202 */ 16203 (void) ill_nominate_mcast_rcv(illgrp); 16204 /* 16205 * ipif_up_done calls ill_update_source_selection 16206 * anyway. Moreover, we don't want to re-create 16207 * interface routes while ipif_up_done() still has reference 16208 * to them. Refer to ipif_up_done() for more details. 16209 */ 16210 ill_update_source_selection(ill); 16211 } 16212 16213 /* 16214 * Send a routing sockets message if we are inserting into 16215 * groups with names. 16216 */ 16217 if (groupname != NULL) 16218 ip_rts_ifmsg(ill->ill_ipif); 16219 return (0); 16220 } 16221 16222 /* 16223 * Return the first phyint matching the groupname. There could 16224 * be more than one when there are ill groups. 16225 * 16226 * If 'usable' is set, then we exclude ones that are marked with any of 16227 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16228 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16229 * emulation of ipmp. 16230 */ 16231 phyint_t * 16232 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16233 { 16234 phyint_t *phyi; 16235 16236 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16237 /* 16238 * Group names are stored in the phyint - a common structure 16239 * to both IPv4 and IPv6. 16240 */ 16241 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16242 for (; phyi != NULL; 16243 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16244 phyi, AVL_AFTER)) { 16245 if (phyi->phyint_groupname_len == 0) 16246 continue; 16247 /* 16248 * Skip the ones that should not be used since the callers 16249 * sometime use this for sending packets. 16250 */ 16251 if (usable && (phyi->phyint_flags & 16252 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16253 continue; 16254 16255 ASSERT(phyi->phyint_groupname != NULL); 16256 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16257 return (phyi); 16258 } 16259 return (NULL); 16260 } 16261 16262 16263 /* 16264 * Return the first usable phyint matching the group index. By 'usable' 16265 * we exclude ones that are marked ununsable with any of 16266 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16267 * 16268 * Used only for the ipmp/netinfo emulation of ipmp. 16269 */ 16270 phyint_t * 16271 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16272 { 16273 phyint_t *phyi; 16274 16275 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16276 16277 if (!ipst->ips_ipmp_hook_emulation) 16278 return (NULL); 16279 16280 /* 16281 * Group indicies are stored in the phyint - a common structure 16282 * to both IPv4 and IPv6. 16283 */ 16284 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16285 for (; phyi != NULL; 16286 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16287 phyi, AVL_AFTER)) { 16288 /* Ignore the ones that do not have a group */ 16289 if (phyi->phyint_groupname_len == 0) 16290 continue; 16291 16292 ASSERT(phyi->phyint_group_ifindex != 0); 16293 /* 16294 * Skip the ones that should not be used since the callers 16295 * sometime use this for sending packets. 16296 */ 16297 if (phyi->phyint_flags & 16298 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16299 continue; 16300 if (phyi->phyint_group_ifindex == group_ifindex) 16301 return (phyi); 16302 } 16303 return (NULL); 16304 } 16305 16306 16307 /* 16308 * MT notes on creation and deletion of IPMP groups 16309 * 16310 * Creation and deletion of IPMP groups introduce the need to merge or 16311 * split the associated serialization objects i.e the ipsq's. Normally all 16312 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16313 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16314 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16315 * is a need to change the <ill-ipsq> association and we have to operate on both 16316 * the source and destination IPMP groups. For eg. attempting to set the 16317 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16318 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16319 * source or destination IPMP group are mapped to a single ipsq for executing 16320 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16321 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16322 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16323 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16324 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16325 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16326 * 16327 * In the above example the ioctl handling code locates the current ipsq of hme0 16328 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16329 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16330 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16331 * the destination ipsq. If the destination ipsq is not busy, it also enters 16332 * the destination ipsq exclusively. Now the actual groupname setting operation 16333 * can proceed. If the destination ipsq is busy, the operation is enqueued 16334 * on the destination (merged) ipsq and will be handled in the unwind from 16335 * ipsq_exit. 16336 * 16337 * To prevent other threads accessing the ill while the group name change is 16338 * in progres, we bring down the ipifs which also removes the ill from the 16339 * group. The group is changed in phyint and when the first ipif on the ill 16340 * is brought up, the ill is inserted into the right IPMP group by 16341 * illgrp_insert. 16342 */ 16343 /* ARGSUSED */ 16344 int 16345 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16346 ip_ioctl_cmd_t *ipip, void *ifreq) 16347 { 16348 int i; 16349 char *tmp; 16350 int namelen; 16351 ill_t *ill = ipif->ipif_ill; 16352 ill_t *ill_v4, *ill_v6; 16353 int err = 0; 16354 phyint_t *phyi; 16355 phyint_t *phyi_tmp; 16356 struct lifreq *lifr; 16357 mblk_t *mp1; 16358 char *groupname; 16359 ipsq_t *ipsq; 16360 ip_stack_t *ipst = ill->ill_ipst; 16361 16362 ASSERT(IAM_WRITER_IPIF(ipif)); 16363 16364 /* Existance verified in ip_wput_nondata */ 16365 mp1 = mp->b_cont->b_cont; 16366 lifr = (struct lifreq *)mp1->b_rptr; 16367 groupname = lifr->lifr_groupname; 16368 16369 if (ipif->ipif_id != 0) 16370 return (EINVAL); 16371 16372 phyi = ill->ill_phyint; 16373 ASSERT(phyi != NULL); 16374 16375 if (phyi->phyint_flags & PHYI_VIRTUAL) 16376 return (EINVAL); 16377 16378 tmp = groupname; 16379 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16380 ; 16381 16382 if (i == LIFNAMSIZ) { 16383 /* no null termination */ 16384 return (EINVAL); 16385 } 16386 16387 /* 16388 * Calculate the namelen exclusive of the null 16389 * termination character. 16390 */ 16391 namelen = tmp - groupname; 16392 16393 ill_v4 = phyi->phyint_illv4; 16394 ill_v6 = phyi->phyint_illv6; 16395 16396 /* 16397 * ILL cannot be part of a usesrc group and and IPMP group at the 16398 * same time. No need to grab the ill_g_usesrc_lock here, see 16399 * synchronization notes in ip.c 16400 */ 16401 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16402 return (EINVAL); 16403 } 16404 16405 /* 16406 * mark the ill as changing. 16407 * this should queue all new requests on the syncq. 16408 */ 16409 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16410 16411 if (ill_v4 != NULL) 16412 ill_v4->ill_state_flags |= ILL_CHANGING; 16413 if (ill_v6 != NULL) 16414 ill_v6->ill_state_flags |= ILL_CHANGING; 16415 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16416 16417 if (namelen == 0) { 16418 /* 16419 * Null string means remove this interface from the 16420 * existing group. 16421 */ 16422 if (phyi->phyint_groupname_len == 0) { 16423 /* 16424 * Never was in a group. 16425 */ 16426 err = 0; 16427 goto done; 16428 } 16429 16430 /* 16431 * IPv4 or IPv6 may be temporarily out of the group when all 16432 * the ipifs are down. Thus, we need to check for ill_group to 16433 * be non-NULL. 16434 */ 16435 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16436 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16437 mutex_enter(&ill_v4->ill_lock); 16438 if (!ill_is_quiescent(ill_v4)) { 16439 /* 16440 * ipsq_pending_mp_add will not fail since 16441 * connp is NULL 16442 */ 16443 (void) ipsq_pending_mp_add(NULL, 16444 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16445 mutex_exit(&ill_v4->ill_lock); 16446 err = EINPROGRESS; 16447 goto done; 16448 } 16449 mutex_exit(&ill_v4->ill_lock); 16450 } 16451 16452 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16453 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16454 mutex_enter(&ill_v6->ill_lock); 16455 if (!ill_is_quiescent(ill_v6)) { 16456 (void) ipsq_pending_mp_add(NULL, 16457 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16458 mutex_exit(&ill_v6->ill_lock); 16459 err = EINPROGRESS; 16460 goto done; 16461 } 16462 mutex_exit(&ill_v6->ill_lock); 16463 } 16464 16465 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16466 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16467 mutex_enter(&phyi->phyint_lock); 16468 ASSERT(phyi->phyint_groupname != NULL); 16469 mi_free(phyi->phyint_groupname); 16470 phyi->phyint_groupname = NULL; 16471 phyi->phyint_groupname_len = 0; 16472 16473 /* Restore the ifindex used to be the per interface one */ 16474 phyi->phyint_group_ifindex = 0; 16475 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16476 mutex_exit(&phyi->phyint_lock); 16477 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16478 rw_exit(&ipst->ips_ill_g_lock); 16479 err = ill_up_ipifs(ill, q, mp); 16480 16481 /* 16482 * set the split flag so that the ipsq can be split 16483 */ 16484 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16485 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16486 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16487 16488 } else { 16489 if (phyi->phyint_groupname_len != 0) { 16490 ASSERT(phyi->phyint_groupname != NULL); 16491 /* Are we inserting in the same group ? */ 16492 if (mi_strcmp(groupname, 16493 phyi->phyint_groupname) == 0) { 16494 err = 0; 16495 goto done; 16496 } 16497 } 16498 16499 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16500 /* 16501 * Merge ipsq for the group's. 16502 * This check is here as multiple groups/ills might be 16503 * sharing the same ipsq. 16504 * If we have to merege than the operation is restarted 16505 * on the new ipsq. 16506 */ 16507 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16508 if (phyi->phyint_ipsq != ipsq) { 16509 rw_exit(&ipst->ips_ill_g_lock); 16510 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16511 goto done; 16512 } 16513 /* 16514 * Running exclusive on new ipsq. 16515 */ 16516 16517 ASSERT(ipsq != NULL); 16518 ASSERT(ipsq->ipsq_writer == curthread); 16519 16520 /* 16521 * Check whether the ill_type and ill_net_type matches before 16522 * we allocate any memory so that the cleanup is easier. 16523 * 16524 * We can't group dissimilar ones as we can't load spread 16525 * packets across the group because of potential link-level 16526 * header differences. 16527 */ 16528 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16529 if (phyi_tmp != NULL) { 16530 if ((ill_v4 != NULL && 16531 phyi_tmp->phyint_illv4 != NULL) && 16532 ((ill_v4->ill_net_type != 16533 phyi_tmp->phyint_illv4->ill_net_type) || 16534 (ill_v4->ill_type != 16535 phyi_tmp->phyint_illv4->ill_type))) { 16536 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16537 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16538 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16539 rw_exit(&ipst->ips_ill_g_lock); 16540 return (EINVAL); 16541 } 16542 if ((ill_v6 != NULL && 16543 phyi_tmp->phyint_illv6 != NULL) && 16544 ((ill_v6->ill_net_type != 16545 phyi_tmp->phyint_illv6->ill_net_type) || 16546 (ill_v6->ill_type != 16547 phyi_tmp->phyint_illv6->ill_type))) { 16548 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16549 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16550 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16551 rw_exit(&ipst->ips_ill_g_lock); 16552 return (EINVAL); 16553 } 16554 } 16555 16556 rw_exit(&ipst->ips_ill_g_lock); 16557 16558 /* 16559 * bring down all v4 ipifs. 16560 */ 16561 if (ill_v4 != NULL) { 16562 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16563 } 16564 16565 /* 16566 * bring down all v6 ipifs. 16567 */ 16568 if (ill_v6 != NULL) { 16569 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16570 } 16571 16572 /* 16573 * make sure all ipifs are down and there are no active 16574 * references. Call to ipsq_pending_mp_add will not fail 16575 * since connp is NULL. 16576 */ 16577 if (ill_v4 != NULL) { 16578 mutex_enter(&ill_v4->ill_lock); 16579 if (!ill_is_quiescent(ill_v4)) { 16580 (void) ipsq_pending_mp_add(NULL, 16581 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16582 mutex_exit(&ill_v4->ill_lock); 16583 err = EINPROGRESS; 16584 goto done; 16585 } 16586 mutex_exit(&ill_v4->ill_lock); 16587 } 16588 16589 if (ill_v6 != NULL) { 16590 mutex_enter(&ill_v6->ill_lock); 16591 if (!ill_is_quiescent(ill_v6)) { 16592 (void) ipsq_pending_mp_add(NULL, 16593 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16594 mutex_exit(&ill_v6->ill_lock); 16595 err = EINPROGRESS; 16596 goto done; 16597 } 16598 mutex_exit(&ill_v6->ill_lock); 16599 } 16600 16601 /* 16602 * allocate including space for null terminator 16603 * before we insert. 16604 */ 16605 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16606 if (tmp == NULL) 16607 return (ENOMEM); 16608 16609 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16610 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16611 mutex_enter(&phyi->phyint_lock); 16612 if (phyi->phyint_groupname_len != 0) { 16613 ASSERT(phyi->phyint_groupname != NULL); 16614 mi_free(phyi->phyint_groupname); 16615 } 16616 16617 /* 16618 * setup the new group name. 16619 */ 16620 phyi->phyint_groupname = tmp; 16621 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16622 phyi->phyint_groupname_len = namelen + 1; 16623 16624 if (ipst->ips_ipmp_hook_emulation) { 16625 /* 16626 * If the group already exists we use the existing 16627 * group_ifindex, otherwise we pick a new index here. 16628 */ 16629 if (phyi_tmp != NULL) { 16630 phyi->phyint_group_ifindex = 16631 phyi_tmp->phyint_group_ifindex; 16632 } else { 16633 /* XXX We need a recovery strategy here. */ 16634 if (!ip_assign_ifindex( 16635 &phyi->phyint_group_ifindex, ipst)) 16636 cmn_err(CE_PANIC, 16637 "ip_assign_ifindex() failed"); 16638 } 16639 } 16640 /* 16641 * Select whether the netinfo and hook use the per-interface 16642 * or per-group ifindex. 16643 */ 16644 if (ipst->ips_ipmp_hook_emulation) 16645 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16646 else 16647 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16648 16649 if (ipst->ips_ipmp_hook_emulation && 16650 phyi_tmp != NULL) { 16651 /* First phyint in group - group PLUMB event */ 16652 ill_nic_info_plumb(ill, B_TRUE); 16653 } 16654 mutex_exit(&phyi->phyint_lock); 16655 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16656 rw_exit(&ipst->ips_ill_g_lock); 16657 16658 err = ill_up_ipifs(ill, q, mp); 16659 } 16660 16661 done: 16662 /* 16663 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16664 */ 16665 if (err != EINPROGRESS) { 16666 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16667 if (ill_v4 != NULL) 16668 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16669 if (ill_v6 != NULL) 16670 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16671 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16672 } 16673 return (err); 16674 } 16675 16676 /* ARGSUSED */ 16677 int 16678 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16679 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16680 { 16681 ill_t *ill; 16682 phyint_t *phyi; 16683 struct lifreq *lifr; 16684 mblk_t *mp1; 16685 16686 /* Existence verified in ip_wput_nondata */ 16687 mp1 = mp->b_cont->b_cont; 16688 lifr = (struct lifreq *)mp1->b_rptr; 16689 ill = ipif->ipif_ill; 16690 phyi = ill->ill_phyint; 16691 16692 lifr->lifr_groupname[0] = '\0'; 16693 /* 16694 * ill_group may be null if all the interfaces 16695 * are down. But still, the phyint should always 16696 * hold the name. 16697 */ 16698 if (phyi->phyint_groupname_len != 0) { 16699 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16700 phyi->phyint_groupname_len); 16701 } 16702 16703 return (0); 16704 } 16705 16706 16707 typedef struct conn_move_s { 16708 ill_t *cm_from_ill; 16709 ill_t *cm_to_ill; 16710 int cm_ifindex; 16711 } conn_move_t; 16712 16713 /* 16714 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16715 */ 16716 static void 16717 conn_move(conn_t *connp, caddr_t arg) 16718 { 16719 conn_move_t *connm; 16720 int ifindex; 16721 int i; 16722 ill_t *from_ill; 16723 ill_t *to_ill; 16724 ilg_t *ilg; 16725 ilm_t *ret_ilm; 16726 16727 connm = (conn_move_t *)arg; 16728 ifindex = connm->cm_ifindex; 16729 from_ill = connm->cm_from_ill; 16730 to_ill = connm->cm_to_ill; 16731 16732 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16733 16734 /* All multicast fields protected by conn_lock */ 16735 mutex_enter(&connp->conn_lock); 16736 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16737 if ((connp->conn_outgoing_ill == from_ill) && 16738 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16739 connp->conn_outgoing_ill = to_ill; 16740 connp->conn_incoming_ill = to_ill; 16741 } 16742 16743 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16744 16745 if ((connp->conn_multicast_ill == from_ill) && 16746 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16747 connp->conn_multicast_ill = connm->cm_to_ill; 16748 } 16749 16750 /* Change IP_XMIT_IF associations */ 16751 if ((connp->conn_xmit_if_ill == from_ill) && 16752 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16753 connp->conn_xmit_if_ill = to_ill; 16754 } 16755 /* 16756 * Change the ilg_ill to point to the new one. This assumes 16757 * ilm_move_v6 has moved the ilms to new_ill and the driver 16758 * has been told to receive packets on this interface. 16759 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16760 * But when doing a FAILOVER, it might fail with ENOMEM and so 16761 * some ilms may not have moved. We check to see whether 16762 * the ilms have moved to to_ill. We can't check on from_ill 16763 * as in the process of moving, we could have split an ilm 16764 * in to two - which has the same orig_ifindex and v6group. 16765 * 16766 * For IPv4, ilg_ipif moves implicitly. The code below really 16767 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16768 */ 16769 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16770 ilg = &connp->conn_ilg[i]; 16771 if ((ilg->ilg_ill == from_ill) && 16772 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16773 /* ifindex != 0 indicates failback */ 16774 if (ifindex != 0) { 16775 connp->conn_ilg[i].ilg_ill = to_ill; 16776 continue; 16777 } 16778 16779 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16780 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16781 connp->conn_zoneid); 16782 16783 if (ret_ilm != NULL) 16784 connp->conn_ilg[i].ilg_ill = to_ill; 16785 } 16786 } 16787 mutex_exit(&connp->conn_lock); 16788 } 16789 16790 static void 16791 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16792 { 16793 conn_move_t connm; 16794 ip_stack_t *ipst = from_ill->ill_ipst; 16795 16796 connm.cm_from_ill = from_ill; 16797 connm.cm_to_ill = to_ill; 16798 connm.cm_ifindex = ifindex; 16799 16800 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16801 } 16802 16803 /* 16804 * ilm has been moved from from_ill to to_ill. 16805 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16806 * appropriately. 16807 * 16808 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16809 * the code there de-references ipif_ill to get the ill to 16810 * send multicast requests. It does not work as ipif is on its 16811 * move and already moved when this function is called. 16812 * Thus, we need to use from_ill and to_ill send down multicast 16813 * requests. 16814 */ 16815 static void 16816 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16817 { 16818 ipif_t *ipif; 16819 ilm_t *ilm; 16820 16821 /* 16822 * See whether we need to send down DL_ENABMULTI_REQ on 16823 * to_ill as ilm has just been added. 16824 */ 16825 ASSERT(IAM_WRITER_ILL(to_ill)); 16826 ASSERT(IAM_WRITER_ILL(from_ill)); 16827 16828 ILM_WALKER_HOLD(to_ill); 16829 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16830 16831 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16832 continue; 16833 /* 16834 * no locks held, ill/ipif cannot dissappear as long 16835 * as we are writer. 16836 */ 16837 ipif = to_ill->ill_ipif; 16838 /* 16839 * No need to hold any lock as we are the writer and this 16840 * can only be changed by a writer. 16841 */ 16842 ilm->ilm_is_new = B_FALSE; 16843 16844 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16845 ipif->ipif_flags & IPIF_POINTOPOINT) { 16846 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16847 "resolver\n")); 16848 continue; /* Must be IRE_IF_NORESOLVER */ 16849 } 16850 16851 16852 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16853 ip1dbg(("ilm_send_multicast_reqs: " 16854 "to_ill MULTI_BCAST\n")); 16855 goto from; 16856 } 16857 16858 if (to_ill->ill_isv6) 16859 mld_joingroup(ilm); 16860 else 16861 igmp_joingroup(ilm); 16862 16863 if (to_ill->ill_ipif_up_count == 0) { 16864 /* 16865 * Nobody there. All multicast addresses will be 16866 * re-joined when we get the DL_BIND_ACK bringing the 16867 * interface up. 16868 */ 16869 ilm->ilm_notify_driver = B_FALSE; 16870 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16871 goto from; 16872 } 16873 16874 /* 16875 * For allmulti address, we want to join on only one interface. 16876 * Checking for ilm_numentries_v6 is not correct as you may 16877 * find an ilm with zero address on to_ill, but we may not 16878 * have nominated to_ill for receiving. Thus, if we have 16879 * nominated from_ill (ill_join_allmulti is set), nominate 16880 * only if to_ill is not already nominated (to_ill normally 16881 * should not have been nominated if "from_ill" has already 16882 * been nominated. As we don't prevent failovers from happening 16883 * across groups, we don't assert). 16884 */ 16885 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16886 /* 16887 * There is no need to hold ill locks as we are 16888 * writer on both ills and when ill_join_allmulti 16889 * is changed the thread is always a writer. 16890 */ 16891 if (from_ill->ill_join_allmulti && 16892 !to_ill->ill_join_allmulti) { 16893 (void) ip_join_allmulti(to_ill->ill_ipif); 16894 } 16895 } else if (ilm->ilm_notify_driver) { 16896 16897 /* 16898 * This is a newly moved ilm so we need to tell the 16899 * driver about the new group. There can be more than 16900 * one ilm's for the same group in the list each with a 16901 * different orig_ifindex. We have to inform the driver 16902 * once. In ilm_move_v[4,6] we only set the flag 16903 * ilm_notify_driver for the first ilm. 16904 */ 16905 16906 (void) ip_ll_send_enabmulti_req(to_ill, 16907 &ilm->ilm_v6addr); 16908 } 16909 16910 ilm->ilm_notify_driver = B_FALSE; 16911 16912 /* 16913 * See whether we need to send down DL_DISABMULTI_REQ on 16914 * from_ill as ilm has just been removed. 16915 */ 16916 from: 16917 ipif = from_ill->ill_ipif; 16918 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16919 ipif->ipif_flags & IPIF_POINTOPOINT) { 16920 ip1dbg(("ilm_send_multicast_reqs: " 16921 "from_ill not resolver\n")); 16922 continue; /* Must be IRE_IF_NORESOLVER */ 16923 } 16924 16925 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16926 ip1dbg(("ilm_send_multicast_reqs: " 16927 "from_ill MULTI_BCAST\n")); 16928 continue; 16929 } 16930 16931 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16932 if (from_ill->ill_join_allmulti) 16933 (void) ip_leave_allmulti(from_ill->ill_ipif); 16934 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16935 (void) ip_ll_send_disabmulti_req(from_ill, 16936 &ilm->ilm_v6addr); 16937 } 16938 } 16939 ILM_WALKER_RELE(to_ill); 16940 } 16941 16942 /* 16943 * This function is called when all multicast memberships needs 16944 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16945 * called only once unlike the IPv4 counterpart where it is called after 16946 * every logical interface is moved. The reason is due to multicast 16947 * memberships are joined using an interface address in IPv4 while in 16948 * IPv6, interface index is used. 16949 */ 16950 static void 16951 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16952 { 16953 ilm_t *ilm; 16954 ilm_t *ilm_next; 16955 ilm_t *new_ilm; 16956 ilm_t **ilmp; 16957 int count; 16958 char buf[INET6_ADDRSTRLEN]; 16959 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16960 ip_stack_t *ipst = from_ill->ill_ipst; 16961 16962 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16963 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16964 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16965 16966 if (ifindex == 0) { 16967 /* 16968 * Form the solicited node mcast address which is used later. 16969 */ 16970 ipif_t *ipif; 16971 16972 ipif = from_ill->ill_ipif; 16973 ASSERT(ipif->ipif_id == 0); 16974 16975 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16976 } 16977 16978 ilmp = &from_ill->ill_ilm; 16979 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16980 ilm_next = ilm->ilm_next; 16981 16982 if (ilm->ilm_flags & ILM_DELETED) { 16983 ilmp = &ilm->ilm_next; 16984 continue; 16985 } 16986 16987 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16988 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16989 ASSERT(ilm->ilm_orig_ifindex != 0); 16990 if (ilm->ilm_orig_ifindex == ifindex) { 16991 /* 16992 * We are failing back multicast memberships. 16993 * If the same ilm exists in to_ill, it means somebody 16994 * has joined the same group there e.g. ff02::1 16995 * is joined within the kernel when the interfaces 16996 * came UP. 16997 */ 16998 ASSERT(ilm->ilm_ipif == NULL); 16999 if (new_ilm != NULL) { 17000 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17001 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17002 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17003 new_ilm->ilm_is_new = B_TRUE; 17004 } 17005 } else { 17006 /* 17007 * check if we can just move the ilm 17008 */ 17009 if (from_ill->ill_ilm_walker_cnt != 0) { 17010 /* 17011 * We have walkers we cannot move 17012 * the ilm, so allocate a new ilm, 17013 * this (old) ilm will be marked 17014 * ILM_DELETED at the end of the loop 17015 * and will be freed when the 17016 * last walker exits. 17017 */ 17018 new_ilm = (ilm_t *)mi_zalloc 17019 (sizeof (ilm_t)); 17020 if (new_ilm == NULL) { 17021 ip0dbg(("ilm_move_v6: " 17022 "FAILBACK of IPv6" 17023 " multicast address %s : " 17024 "from %s to" 17025 " %s failed : ENOMEM \n", 17026 inet_ntop(AF_INET6, 17027 &ilm->ilm_v6addr, buf, 17028 sizeof (buf)), 17029 from_ill->ill_name, 17030 to_ill->ill_name)); 17031 17032 ilmp = &ilm->ilm_next; 17033 continue; 17034 } 17035 *new_ilm = *ilm; 17036 /* 17037 * we don't want new_ilm linked to 17038 * ilm's filter list. 17039 */ 17040 new_ilm->ilm_filter = NULL; 17041 } else { 17042 /* 17043 * No walkers we can move the ilm. 17044 * lets take it out of the list. 17045 */ 17046 *ilmp = ilm->ilm_next; 17047 ilm->ilm_next = NULL; 17048 new_ilm = ilm; 17049 } 17050 17051 /* 17052 * if this is the first ilm for the group 17053 * set ilm_notify_driver so that we notify the 17054 * driver in ilm_send_multicast_reqs. 17055 */ 17056 if (ilm_lookup_ill_v6(to_ill, 17057 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17058 new_ilm->ilm_notify_driver = B_TRUE; 17059 17060 new_ilm->ilm_ill = to_ill; 17061 /* Add to the to_ill's list */ 17062 new_ilm->ilm_next = to_ill->ill_ilm; 17063 to_ill->ill_ilm = new_ilm; 17064 /* 17065 * set the flag so that mld_joingroup is 17066 * called in ilm_send_multicast_reqs(). 17067 */ 17068 new_ilm->ilm_is_new = B_TRUE; 17069 } 17070 goto bottom; 17071 } else if (ifindex != 0) { 17072 /* 17073 * If this is FAILBACK (ifindex != 0) and the ifindex 17074 * has not matched above, look at the next ilm. 17075 */ 17076 ilmp = &ilm->ilm_next; 17077 continue; 17078 } 17079 /* 17080 * If we are here, it means ifindex is 0. Failover 17081 * everything. 17082 * 17083 * We need to handle solicited node mcast address 17084 * and all_nodes mcast address differently as they 17085 * are joined witin the kenrel (ipif_multicast_up) 17086 * and potentially from the userland. We are called 17087 * after the ipifs of from_ill has been moved. 17088 * If we still find ilms on ill with solicited node 17089 * mcast address or all_nodes mcast address, it must 17090 * belong to the UP interface that has not moved e.g. 17091 * ipif_id 0 with the link local prefix does not move. 17092 * We join this on the new ill accounting for all the 17093 * userland memberships so that applications don't 17094 * see any failure. 17095 * 17096 * We need to make sure that we account only for the 17097 * solicited node and all node multicast addresses 17098 * that was brought UP on these. In the case of 17099 * a failover from A to B, we might have ilms belonging 17100 * to A (ilm_orig_ifindex pointing at A) on B accounting 17101 * for the membership from the userland. If we are failing 17102 * over from B to C now, we will find the ones belonging 17103 * to A on B. These don't account for the ill_ipif_up_count. 17104 * They just move from B to C. The check below on 17105 * ilm_orig_ifindex ensures that. 17106 */ 17107 if ((ilm->ilm_orig_ifindex == 17108 from_ill->ill_phyint->phyint_ifindex) && 17109 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17110 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17111 &ilm->ilm_v6addr))) { 17112 ASSERT(ilm->ilm_refcnt > 0); 17113 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17114 /* 17115 * For indentation reasons, we are not using a 17116 * "else" here. 17117 */ 17118 if (count == 0) { 17119 ilmp = &ilm->ilm_next; 17120 continue; 17121 } 17122 ilm->ilm_refcnt -= count; 17123 if (new_ilm != NULL) { 17124 /* 17125 * Can find one with the same 17126 * ilm_orig_ifindex, if we are failing 17127 * over to a STANDBY. This happens 17128 * when somebody wants to join a group 17129 * on a STANDBY interface and we 17130 * internally join on a different one. 17131 * If we had joined on from_ill then, a 17132 * failover now will find a new ilm 17133 * with this index. 17134 */ 17135 ip1dbg(("ilm_move_v6: FAILOVER, found" 17136 " new ilm on %s, group address %s\n", 17137 to_ill->ill_name, 17138 inet_ntop(AF_INET6, 17139 &ilm->ilm_v6addr, buf, 17140 sizeof (buf)))); 17141 new_ilm->ilm_refcnt += count; 17142 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17143 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17144 new_ilm->ilm_is_new = B_TRUE; 17145 } 17146 } else { 17147 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17148 if (new_ilm == NULL) { 17149 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17150 " multicast address %s : from %s to" 17151 " %s failed : ENOMEM \n", 17152 inet_ntop(AF_INET6, 17153 &ilm->ilm_v6addr, buf, 17154 sizeof (buf)), from_ill->ill_name, 17155 to_ill->ill_name)); 17156 ilmp = &ilm->ilm_next; 17157 continue; 17158 } 17159 *new_ilm = *ilm; 17160 new_ilm->ilm_filter = NULL; 17161 new_ilm->ilm_refcnt = count; 17162 new_ilm->ilm_timer = INFINITY; 17163 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17164 new_ilm->ilm_is_new = B_TRUE; 17165 /* 17166 * If the to_ill has not joined this 17167 * group we need to tell the driver in 17168 * ill_send_multicast_reqs. 17169 */ 17170 if (ilm_lookup_ill_v6(to_ill, 17171 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17172 new_ilm->ilm_notify_driver = B_TRUE; 17173 17174 new_ilm->ilm_ill = to_ill; 17175 /* Add to the to_ill's list */ 17176 new_ilm->ilm_next = to_ill->ill_ilm; 17177 to_ill->ill_ilm = new_ilm; 17178 ASSERT(new_ilm->ilm_ipif == NULL); 17179 } 17180 if (ilm->ilm_refcnt == 0) { 17181 goto bottom; 17182 } else { 17183 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17184 CLEAR_SLIST(new_ilm->ilm_filter); 17185 ilmp = &ilm->ilm_next; 17186 } 17187 continue; 17188 } else { 17189 /* 17190 * ifindex = 0 means, move everything pointing at 17191 * from_ill. We are doing this becuase ill has 17192 * either FAILED or became INACTIVE. 17193 * 17194 * As we would like to move things later back to 17195 * from_ill, we want to retain the identity of this 17196 * ilm. Thus, we don't blindly increment the reference 17197 * count on the ilms matching the address alone. We 17198 * need to match on the ilm_orig_index also. new_ilm 17199 * was obtained by matching ilm_orig_index also. 17200 */ 17201 if (new_ilm != NULL) { 17202 /* 17203 * This is possible only if a previous restore 17204 * was incomplete i.e restore to 17205 * ilm_orig_ifindex left some ilms because 17206 * of some failures. Thus when we are failing 17207 * again, we might find our old friends there. 17208 */ 17209 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17210 " on %s, group address %s\n", 17211 to_ill->ill_name, 17212 inet_ntop(AF_INET6, 17213 &ilm->ilm_v6addr, buf, 17214 sizeof (buf)))); 17215 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17216 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17217 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17218 new_ilm->ilm_is_new = B_TRUE; 17219 } 17220 } else { 17221 if (from_ill->ill_ilm_walker_cnt != 0) { 17222 new_ilm = (ilm_t *) 17223 mi_zalloc(sizeof (ilm_t)); 17224 if (new_ilm == NULL) { 17225 ip0dbg(("ilm_move_v6: " 17226 "FAILOVER of IPv6" 17227 " multicast address %s : " 17228 "from %s to" 17229 " %s failed : ENOMEM \n", 17230 inet_ntop(AF_INET6, 17231 &ilm->ilm_v6addr, buf, 17232 sizeof (buf)), 17233 from_ill->ill_name, 17234 to_ill->ill_name)); 17235 17236 ilmp = &ilm->ilm_next; 17237 continue; 17238 } 17239 *new_ilm = *ilm; 17240 new_ilm->ilm_filter = NULL; 17241 } else { 17242 *ilmp = ilm->ilm_next; 17243 new_ilm = ilm; 17244 } 17245 /* 17246 * If the to_ill has not joined this 17247 * group we need to tell the driver in 17248 * ill_send_multicast_reqs. 17249 */ 17250 if (ilm_lookup_ill_v6(to_ill, 17251 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17252 new_ilm->ilm_notify_driver = B_TRUE; 17253 17254 /* Add to the to_ill's list */ 17255 new_ilm->ilm_next = to_ill->ill_ilm; 17256 to_ill->ill_ilm = new_ilm; 17257 ASSERT(ilm->ilm_ipif == NULL); 17258 new_ilm->ilm_ill = to_ill; 17259 new_ilm->ilm_is_new = B_TRUE; 17260 } 17261 17262 } 17263 17264 bottom: 17265 /* 17266 * Revert multicast filter state to (EXCLUDE, NULL). 17267 * new_ilm->ilm_is_new should already be set if needed. 17268 */ 17269 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17270 CLEAR_SLIST(new_ilm->ilm_filter); 17271 /* 17272 * We allocated/got a new ilm, free the old one. 17273 */ 17274 if (new_ilm != ilm) { 17275 if (from_ill->ill_ilm_walker_cnt == 0) { 17276 *ilmp = ilm->ilm_next; 17277 ilm->ilm_next = NULL; 17278 FREE_SLIST(ilm->ilm_filter); 17279 FREE_SLIST(ilm->ilm_pendsrcs); 17280 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17281 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17282 mi_free((char *)ilm); 17283 } else { 17284 ilm->ilm_flags |= ILM_DELETED; 17285 from_ill->ill_ilm_cleanup_reqd = 1; 17286 ilmp = &ilm->ilm_next; 17287 } 17288 } 17289 } 17290 } 17291 17292 /* 17293 * Move all the multicast memberships to to_ill. Called when 17294 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17295 * different from IPv6 counterpart as multicast memberships are associated 17296 * with ills in IPv6. This function is called after every ipif is moved 17297 * unlike IPv6, where it is moved only once. 17298 */ 17299 static void 17300 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17301 { 17302 ilm_t *ilm; 17303 ilm_t *ilm_next; 17304 ilm_t *new_ilm; 17305 ilm_t **ilmp; 17306 ip_stack_t *ipst = from_ill->ill_ipst; 17307 17308 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17309 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17310 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17311 17312 ilmp = &from_ill->ill_ilm; 17313 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17314 ilm_next = ilm->ilm_next; 17315 17316 if (ilm->ilm_flags & ILM_DELETED) { 17317 ilmp = &ilm->ilm_next; 17318 continue; 17319 } 17320 17321 ASSERT(ilm->ilm_ipif != NULL); 17322 17323 if (ilm->ilm_ipif != ipif) { 17324 ilmp = &ilm->ilm_next; 17325 continue; 17326 } 17327 17328 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17329 htonl(INADDR_ALLHOSTS_GROUP)) { 17330 new_ilm = ilm_lookup_ipif(ipif, 17331 V4_PART_OF_V6(ilm->ilm_v6addr)); 17332 if (new_ilm != NULL) { 17333 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17334 /* 17335 * We still need to deal with the from_ill. 17336 */ 17337 new_ilm->ilm_is_new = B_TRUE; 17338 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17339 CLEAR_SLIST(new_ilm->ilm_filter); 17340 goto delete_ilm; 17341 } 17342 /* 17343 * If we could not find one e.g. ipif is 17344 * still down on to_ill, we add this ilm 17345 * on ill_new to preserve the reference 17346 * count. 17347 */ 17348 } 17349 /* 17350 * When ipifs move, ilms always move with it 17351 * to the NEW ill. Thus we should never be 17352 * able to find ilm till we really move it here. 17353 */ 17354 ASSERT(ilm_lookup_ipif(ipif, 17355 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17356 17357 if (from_ill->ill_ilm_walker_cnt != 0) { 17358 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17359 if (new_ilm == NULL) { 17360 char buf[INET6_ADDRSTRLEN]; 17361 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17362 " multicast address %s : " 17363 "from %s to" 17364 " %s failed : ENOMEM \n", 17365 inet_ntop(AF_INET, 17366 &ilm->ilm_v6addr, buf, 17367 sizeof (buf)), 17368 from_ill->ill_name, 17369 to_ill->ill_name)); 17370 17371 ilmp = &ilm->ilm_next; 17372 continue; 17373 } 17374 *new_ilm = *ilm; 17375 /* We don't want new_ilm linked to ilm's filter list */ 17376 new_ilm->ilm_filter = NULL; 17377 } else { 17378 /* Remove from the list */ 17379 *ilmp = ilm->ilm_next; 17380 new_ilm = ilm; 17381 } 17382 17383 /* 17384 * If we have never joined this group on the to_ill 17385 * make sure we tell the driver. 17386 */ 17387 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17388 ALL_ZONES) == NULL) 17389 new_ilm->ilm_notify_driver = B_TRUE; 17390 17391 /* Add to the to_ill's list */ 17392 new_ilm->ilm_next = to_ill->ill_ilm; 17393 to_ill->ill_ilm = new_ilm; 17394 new_ilm->ilm_is_new = B_TRUE; 17395 17396 /* 17397 * Revert multicast filter state to (EXCLUDE, NULL) 17398 */ 17399 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17400 CLEAR_SLIST(new_ilm->ilm_filter); 17401 17402 /* 17403 * Delete only if we have allocated a new ilm. 17404 */ 17405 if (new_ilm != ilm) { 17406 delete_ilm: 17407 if (from_ill->ill_ilm_walker_cnt == 0) { 17408 /* Remove from the list */ 17409 *ilmp = ilm->ilm_next; 17410 ilm->ilm_next = NULL; 17411 FREE_SLIST(ilm->ilm_filter); 17412 FREE_SLIST(ilm->ilm_pendsrcs); 17413 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17414 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17415 mi_free((char *)ilm); 17416 } else { 17417 ilm->ilm_flags |= ILM_DELETED; 17418 from_ill->ill_ilm_cleanup_reqd = 1; 17419 ilmp = &ilm->ilm_next; 17420 } 17421 } 17422 } 17423 } 17424 17425 static uint_t 17426 ipif_get_id(ill_t *ill, uint_t id) 17427 { 17428 uint_t unit; 17429 ipif_t *tipif; 17430 boolean_t found = B_FALSE; 17431 ip_stack_t *ipst = ill->ill_ipst; 17432 17433 /* 17434 * During failback, we want to go back to the same id 17435 * instead of the smallest id so that the original 17436 * configuration is maintained. id is non-zero in that 17437 * case. 17438 */ 17439 if (id != 0) { 17440 /* 17441 * While failing back, if we still have an ipif with 17442 * MAX_ADDRS_PER_IF, it means this will be replaced 17443 * as soon as we return from this function. It was 17444 * to set to MAX_ADDRS_PER_IF by the caller so that 17445 * we can choose the smallest id. Thus we return zero 17446 * in that case ignoring the hint. 17447 */ 17448 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17449 return (0); 17450 for (tipif = ill->ill_ipif; tipif != NULL; 17451 tipif = tipif->ipif_next) { 17452 if (tipif->ipif_id == id) { 17453 found = B_TRUE; 17454 break; 17455 } 17456 } 17457 /* 17458 * If somebody already plumbed another logical 17459 * with the same id, we won't be able to find it. 17460 */ 17461 if (!found) 17462 return (id); 17463 } 17464 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17465 found = B_FALSE; 17466 for (tipif = ill->ill_ipif; tipif != NULL; 17467 tipif = tipif->ipif_next) { 17468 if (tipif->ipif_id == unit) { 17469 found = B_TRUE; 17470 break; 17471 } 17472 } 17473 if (!found) 17474 break; 17475 } 17476 return (unit); 17477 } 17478 17479 /* ARGSUSED */ 17480 static int 17481 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17482 ipif_t **rep_ipif_ptr) 17483 { 17484 ill_t *from_ill; 17485 ipif_t *rep_ipif; 17486 uint_t unit; 17487 int err = 0; 17488 ipif_t *to_ipif; 17489 struct iocblk *iocp; 17490 boolean_t failback_cmd; 17491 boolean_t remove_ipif; 17492 int rc; 17493 ip_stack_t *ipst; 17494 17495 ASSERT(IAM_WRITER_ILL(to_ill)); 17496 ASSERT(IAM_WRITER_IPIF(ipif)); 17497 17498 iocp = (struct iocblk *)mp->b_rptr; 17499 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17500 remove_ipif = B_FALSE; 17501 17502 from_ill = ipif->ipif_ill; 17503 ipst = from_ill->ill_ipst; 17504 17505 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17506 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17507 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17508 17509 /* 17510 * Don't move LINK LOCAL addresses as they are tied to 17511 * physical interface. 17512 */ 17513 if (from_ill->ill_isv6 && 17514 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17515 ipif->ipif_was_up = B_FALSE; 17516 IPIF_UNMARK_MOVING(ipif); 17517 return (0); 17518 } 17519 17520 /* 17521 * We set the ipif_id to maximum so that the search for 17522 * ipif_id will pick the lowest number i.e 0 in the 17523 * following 2 cases : 17524 * 17525 * 1) We have a replacement ipif at the head of to_ill. 17526 * We can't remove it yet as we can exceed ip_addrs_per_if 17527 * on to_ill and hence the MOVE might fail. We want to 17528 * remove it only if we could move the ipif. Thus, by 17529 * setting it to the MAX value, we make the search in 17530 * ipif_get_id return the zeroth id. 17531 * 17532 * 2) When DR pulls out the NIC and re-plumbs the interface, 17533 * we might just have a zero address plumbed on the ipif 17534 * with zero id in the case of IPv4. We remove that while 17535 * doing the failback. We want to remove it only if we 17536 * could move the ipif. Thus, by setting it to the MAX 17537 * value, we make the search in ipif_get_id return the 17538 * zeroth id. 17539 * 17540 * Both (1) and (2) are done only when when we are moving 17541 * an ipif (either due to failover/failback) which originally 17542 * belonged to this interface i.e the ipif_orig_ifindex is 17543 * the same as to_ill's ifindex. This is needed so that 17544 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17545 * from B -> A (B is being removed from the group) and 17546 * FAILBACK from A -> B restores the original configuration. 17547 * Without the check for orig_ifindex, the second FAILOVER 17548 * could make the ipif belonging to B replace the A's zeroth 17549 * ipif and the subsequent failback re-creating the replacement 17550 * ipif again. 17551 * 17552 * NOTE : We created the replacement ipif when we did a 17553 * FAILOVER (See below). We could check for FAILBACK and 17554 * then look for replacement ipif to be removed. But we don't 17555 * want to do that because we wan't to allow the possibility 17556 * of a FAILOVER from A -> B (which creates the replacement ipif), 17557 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17558 * from B -> A. 17559 */ 17560 to_ipif = to_ill->ill_ipif; 17561 if ((to_ill->ill_phyint->phyint_ifindex == 17562 ipif->ipif_orig_ifindex) && 17563 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17564 ASSERT(to_ipif->ipif_id == 0); 17565 remove_ipif = B_TRUE; 17566 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17567 } 17568 /* 17569 * Find the lowest logical unit number on the to_ill. 17570 * If we are failing back, try to get the original id 17571 * rather than the lowest one so that the original 17572 * configuration is maintained. 17573 * 17574 * XXX need a better scheme for this. 17575 */ 17576 if (failback_cmd) { 17577 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17578 } else { 17579 unit = ipif_get_id(to_ill, 0); 17580 } 17581 17582 /* Reset back to zero in case we fail below */ 17583 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17584 to_ipif->ipif_id = 0; 17585 17586 if (unit == ipst->ips_ip_addrs_per_if) { 17587 ipif->ipif_was_up = B_FALSE; 17588 IPIF_UNMARK_MOVING(ipif); 17589 return (EINVAL); 17590 } 17591 17592 /* 17593 * ipif is ready to move from "from_ill" to "to_ill". 17594 * 17595 * 1) If we are moving ipif with id zero, create a 17596 * replacement ipif for this ipif on from_ill. If this fails 17597 * fail the MOVE operation. 17598 * 17599 * 2) Remove the replacement ipif on to_ill if any. 17600 * We could remove the replacement ipif when we are moving 17601 * the ipif with id zero. But what if somebody already 17602 * unplumbed it ? Thus we always remove it if it is present. 17603 * We want to do it only if we are sure we are going to 17604 * move the ipif to to_ill which is why there are no 17605 * returns due to error till ipif is linked to to_ill. 17606 * Note that the first ipif that we failback will always 17607 * be zero if it is present. 17608 */ 17609 if (ipif->ipif_id == 0) { 17610 ipaddr_t inaddr_any = INADDR_ANY; 17611 17612 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17613 if (rep_ipif == NULL) { 17614 ipif->ipif_was_up = B_FALSE; 17615 IPIF_UNMARK_MOVING(ipif); 17616 return (ENOMEM); 17617 } 17618 *rep_ipif = ipif_zero; 17619 /* 17620 * Before we put the ipif on the list, store the addresses 17621 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17622 * assumes so. This logic is not any different from what 17623 * ipif_allocate does. 17624 */ 17625 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17626 &rep_ipif->ipif_v6lcl_addr); 17627 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17628 &rep_ipif->ipif_v6src_addr); 17629 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17630 &rep_ipif->ipif_v6subnet); 17631 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17632 &rep_ipif->ipif_v6net_mask); 17633 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17634 &rep_ipif->ipif_v6brd_addr); 17635 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17636 &rep_ipif->ipif_v6pp_dst_addr); 17637 /* 17638 * We mark IPIF_NOFAILOVER so that this can never 17639 * move. 17640 */ 17641 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17642 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17643 rep_ipif->ipif_replace_zero = B_TRUE; 17644 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17645 MUTEX_DEFAULT, NULL); 17646 rep_ipif->ipif_id = 0; 17647 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17648 rep_ipif->ipif_ill = from_ill; 17649 rep_ipif->ipif_orig_ifindex = 17650 from_ill->ill_phyint->phyint_ifindex; 17651 /* Insert at head */ 17652 rep_ipif->ipif_next = from_ill->ill_ipif; 17653 from_ill->ill_ipif = rep_ipif; 17654 /* 17655 * We don't really care to let apps know about 17656 * this interface. 17657 */ 17658 } 17659 17660 if (remove_ipif) { 17661 /* 17662 * We set to a max value above for this case to get 17663 * id zero. ASSERT that we did get one. 17664 */ 17665 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17666 rep_ipif = to_ipif; 17667 to_ill->ill_ipif = rep_ipif->ipif_next; 17668 rep_ipif->ipif_next = NULL; 17669 /* 17670 * If some apps scanned and find this interface, 17671 * it is time to let them know, so that they can 17672 * delete it. 17673 */ 17674 17675 *rep_ipif_ptr = rep_ipif; 17676 } 17677 17678 /* Get it out of the ILL interface list. */ 17679 ipif_remove(ipif, B_FALSE); 17680 17681 /* Assign the new ill */ 17682 ipif->ipif_ill = to_ill; 17683 ipif->ipif_id = unit; 17684 /* id has already been checked */ 17685 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17686 ASSERT(rc == 0); 17687 /* Let SCTP update its list */ 17688 sctp_move_ipif(ipif, from_ill, to_ill); 17689 /* 17690 * Handle the failover and failback of ipif_t between 17691 * ill_t that have differing maximum mtu values. 17692 */ 17693 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17694 if (ipif->ipif_saved_mtu == 0) { 17695 /* 17696 * As this ipif_t is moving to an ill_t 17697 * that has a lower ill_max_mtu, its 17698 * ipif_mtu needs to be saved so it can 17699 * be restored during failback or during 17700 * failover to an ill_t which has a 17701 * higher ill_max_mtu. 17702 */ 17703 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17704 ipif->ipif_mtu = to_ill->ill_max_mtu; 17705 } else { 17706 /* 17707 * The ipif_t is, once again, moving to 17708 * an ill_t that has a lower maximum mtu 17709 * value. 17710 */ 17711 ipif->ipif_mtu = to_ill->ill_max_mtu; 17712 } 17713 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17714 ipif->ipif_saved_mtu != 0) { 17715 /* 17716 * The mtu of this ipif_t had to be reduced 17717 * during an earlier failover; this is an 17718 * opportunity for it to be increased (either as 17719 * part of another failover or a failback). 17720 */ 17721 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17722 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17723 ipif->ipif_saved_mtu = 0; 17724 } else { 17725 ipif->ipif_mtu = to_ill->ill_max_mtu; 17726 } 17727 } 17728 17729 /* 17730 * We preserve all the other fields of the ipif including 17731 * ipif_saved_ire_mp. The routes that are saved here will 17732 * be recreated on the new interface and back on the old 17733 * interface when we move back. 17734 */ 17735 ASSERT(ipif->ipif_arp_del_mp == NULL); 17736 17737 return (err); 17738 } 17739 17740 static int 17741 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17742 int ifindex, ipif_t **rep_ipif_ptr) 17743 { 17744 ipif_t *mipif; 17745 ipif_t *ipif_next; 17746 int err; 17747 17748 /* 17749 * We don't really try to MOVE back things if some of the 17750 * operations fail. The daemon will take care of moving again 17751 * later on. 17752 */ 17753 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17754 ipif_next = mipif->ipif_next; 17755 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17756 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17757 17758 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17759 17760 /* 17761 * When the MOVE fails, it is the job of the 17762 * application to take care of this properly 17763 * i.e try again if it is ENOMEM. 17764 */ 17765 if (mipif->ipif_ill != from_ill) { 17766 /* 17767 * ipif has moved. 17768 * 17769 * Move the multicast memberships associated 17770 * with this ipif to the new ill. For IPv6, we 17771 * do it once after all the ipifs are moved 17772 * (in ill_move) as they are not associated 17773 * with ipifs. 17774 * 17775 * We need to move the ilms as the ipif has 17776 * already been moved to a new ill even 17777 * in the case of errors. Neither 17778 * ilm_free(ipif) will find the ilm 17779 * when somebody unplumbs this ipif nor 17780 * ilm_delete(ilm) will be able to find the 17781 * ilm, if we don't move now. 17782 */ 17783 if (!from_ill->ill_isv6) 17784 ilm_move_v4(from_ill, to_ill, mipif); 17785 } 17786 17787 if (err != 0) 17788 return (err); 17789 } 17790 } 17791 return (0); 17792 } 17793 17794 static int 17795 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17796 { 17797 int ifindex; 17798 int err; 17799 struct iocblk *iocp; 17800 ipif_t *ipif; 17801 ipif_t *rep_ipif_ptr = NULL; 17802 ipif_t *from_ipif = NULL; 17803 boolean_t check_rep_if = B_FALSE; 17804 ip_stack_t *ipst = from_ill->ill_ipst; 17805 17806 iocp = (struct iocblk *)mp->b_rptr; 17807 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17808 /* 17809 * Move everything pointing at from_ill to to_ill. 17810 * We acheive this by passing in 0 as ifindex. 17811 */ 17812 ifindex = 0; 17813 } else { 17814 /* 17815 * Move everything pointing at from_ill whose original 17816 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17817 * We acheive this by passing in ifindex rather than 0. 17818 * Multicast vifs, ilgs move implicitly because ipifs move. 17819 */ 17820 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17821 ifindex = to_ill->ill_phyint->phyint_ifindex; 17822 } 17823 17824 /* 17825 * Determine if there is at least one ipif that would move from 17826 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17827 * ipif (if it exists) on the to_ill would be consumed as a result of 17828 * the move, in which case we need to quiesce the replacement ipif also. 17829 */ 17830 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17831 from_ipif = from_ipif->ipif_next) { 17832 if (((ifindex == 0) || 17833 (ifindex == from_ipif->ipif_orig_ifindex)) && 17834 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17835 check_rep_if = B_TRUE; 17836 break; 17837 } 17838 } 17839 17840 17841 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17842 17843 GRAB_ILL_LOCKS(from_ill, to_ill); 17844 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17845 (void) ipsq_pending_mp_add(NULL, ipif, q, 17846 mp, ILL_MOVE_OK); 17847 RELEASE_ILL_LOCKS(from_ill, to_ill); 17848 return (EINPROGRESS); 17849 } 17850 17851 /* Check if the replacement ipif is quiescent to delete */ 17852 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17853 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17854 to_ill->ill_ipif->ipif_state_flags |= 17855 IPIF_MOVING | IPIF_CHANGING; 17856 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17857 (void) ipsq_pending_mp_add(NULL, ipif, q, 17858 mp, ILL_MOVE_OK); 17859 RELEASE_ILL_LOCKS(from_ill, to_ill); 17860 return (EINPROGRESS); 17861 } 17862 } 17863 RELEASE_ILL_LOCKS(from_ill, to_ill); 17864 17865 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17866 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17867 GRAB_ILL_LOCKS(from_ill, to_ill); 17868 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17869 17870 /* ilm_move is done inside ipif_move for IPv4 */ 17871 if (err == 0 && from_ill->ill_isv6) 17872 ilm_move_v6(from_ill, to_ill, ifindex); 17873 17874 RELEASE_ILL_LOCKS(from_ill, to_ill); 17875 rw_exit(&ipst->ips_ill_g_lock); 17876 17877 /* 17878 * send rts messages and multicast messages. 17879 */ 17880 if (rep_ipif_ptr != NULL) { 17881 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17882 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17883 rep_ipif_ptr->ipif_recovery_id = 0; 17884 } 17885 ip_rts_ifmsg(rep_ipif_ptr); 17886 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17887 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17888 mi_free(rep_ipif_ptr); 17889 } 17890 17891 conn_move_ill(from_ill, to_ill, ifindex); 17892 17893 return (err); 17894 } 17895 17896 /* 17897 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17898 * Also checks for the validity of the arguments. 17899 * Note: We are already exclusive inside the from group. 17900 * It is upto the caller to release refcnt on the to_ill's. 17901 */ 17902 static int 17903 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17904 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17905 { 17906 int dst_index; 17907 ipif_t *ipif_v4, *ipif_v6; 17908 struct lifreq *lifr; 17909 mblk_t *mp1; 17910 boolean_t exists; 17911 sin_t *sin; 17912 int err = 0; 17913 ip_stack_t *ipst; 17914 17915 if (CONN_Q(q)) 17916 ipst = CONNQ_TO_IPST(q); 17917 else 17918 ipst = ILLQ_TO_IPST(q); 17919 17920 17921 if ((mp1 = mp->b_cont) == NULL) 17922 return (EPROTO); 17923 17924 if ((mp1 = mp1->b_cont) == NULL) 17925 return (EPROTO); 17926 17927 lifr = (struct lifreq *)mp1->b_rptr; 17928 sin = (sin_t *)&lifr->lifr_addr; 17929 17930 /* 17931 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17932 * specific operations. 17933 */ 17934 if (sin->sin_family != AF_UNSPEC) 17935 return (EINVAL); 17936 17937 /* 17938 * Get ipif with id 0. We are writer on the from ill. So we can pass 17939 * NULLs for the last 4 args and we know the lookup won't fail 17940 * with EINPROGRESS. 17941 */ 17942 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17943 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17944 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17945 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17946 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17947 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17948 17949 if (ipif_v4 == NULL && ipif_v6 == NULL) 17950 return (ENXIO); 17951 17952 if (ipif_v4 != NULL) { 17953 ASSERT(ipif_v4->ipif_refcnt != 0); 17954 if (ipif_v4->ipif_id != 0) { 17955 err = EINVAL; 17956 goto done; 17957 } 17958 17959 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17960 *ill_from_v4 = ipif_v4->ipif_ill; 17961 } 17962 17963 if (ipif_v6 != NULL) { 17964 ASSERT(ipif_v6->ipif_refcnt != 0); 17965 if (ipif_v6->ipif_id != 0) { 17966 err = EINVAL; 17967 goto done; 17968 } 17969 17970 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17971 *ill_from_v6 = ipif_v6->ipif_ill; 17972 } 17973 17974 err = 0; 17975 dst_index = lifr->lifr_movetoindex; 17976 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17977 q, mp, ip_process_ioctl, &err, ipst); 17978 if (err != 0) { 17979 /* 17980 * There could be only v6. 17981 */ 17982 if (err != ENXIO) 17983 goto done; 17984 err = 0; 17985 } 17986 17987 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17988 q, mp, ip_process_ioctl, &err, ipst); 17989 if (err != 0) { 17990 if (err != ENXIO) 17991 goto done; 17992 if (*ill_to_v4 == NULL) { 17993 err = ENXIO; 17994 goto done; 17995 } 17996 err = 0; 17997 } 17998 17999 /* 18000 * If we have something to MOVE i.e "from" not NULL, 18001 * "to" should be non-NULL. 18002 */ 18003 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18004 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18005 err = EINVAL; 18006 } 18007 18008 done: 18009 if (ipif_v4 != NULL) 18010 ipif_refrele(ipif_v4); 18011 if (ipif_v6 != NULL) 18012 ipif_refrele(ipif_v6); 18013 return (err); 18014 } 18015 18016 /* 18017 * FAILOVER and FAILBACK are modelled as MOVE operations. 18018 * 18019 * We don't check whether the MOVE is within the same group or 18020 * not, because this ioctl can be used as a generic mechanism 18021 * to failover from interface A to B, though things will function 18022 * only if they are really part of the same group. Moreover, 18023 * all ipifs may be down and hence temporarily out of the group. 18024 * 18025 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18026 * down first and then V6. For each we wait for the ipif's to become quiescent. 18027 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18028 * have been deleted and there are no active references. Once quiescent the 18029 * ipif's are moved and brought up on the new ill. 18030 * 18031 * Normally the source ill and destination ill belong to the same IPMP group 18032 * and hence the same ipsq_t. In the event they don't belong to the same 18033 * same group the two ipsq's are first merged into one ipsq - that of the 18034 * to_ill. The multicast memberships on the source and destination ill cannot 18035 * change during the move operation since multicast joins/leaves also have to 18036 * execute on the same ipsq and are hence serialized. 18037 */ 18038 /* ARGSUSED */ 18039 int 18040 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18041 ip_ioctl_cmd_t *ipip, void *ifreq) 18042 { 18043 ill_t *ill_to_v4 = NULL; 18044 ill_t *ill_to_v6 = NULL; 18045 ill_t *ill_from_v4 = NULL; 18046 ill_t *ill_from_v6 = NULL; 18047 int err = 0; 18048 18049 /* 18050 * setup from and to ill's, we can get EINPROGRESS only for 18051 * to_ill's. 18052 */ 18053 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18054 &ill_to_v4, &ill_to_v6); 18055 18056 if (err != 0) { 18057 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18058 goto done; 18059 } 18060 18061 /* 18062 * nothing to do. 18063 */ 18064 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18065 goto done; 18066 } 18067 18068 /* 18069 * nothing to do. 18070 */ 18071 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18072 goto done; 18073 } 18074 18075 /* 18076 * Mark the ill as changing. 18077 * ILL_CHANGING flag is cleared when the ipif's are brought up 18078 * in ill_up_ipifs in case of error they are cleared below. 18079 */ 18080 18081 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18082 if (ill_from_v4 != NULL) 18083 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18084 if (ill_from_v6 != NULL) 18085 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18086 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18087 18088 /* 18089 * Make sure that both src and dst are 18090 * in the same syncq group. If not make it happen. 18091 * We are not holding any locks because we are the writer 18092 * on the from_ipsq and we will hold locks in ill_merge_groups 18093 * to protect to_ipsq against changing. 18094 */ 18095 if (ill_from_v4 != NULL) { 18096 if (ill_from_v4->ill_phyint->phyint_ipsq != 18097 ill_to_v4->ill_phyint->phyint_ipsq) { 18098 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18099 NULL, mp, q); 18100 goto err_ret; 18101 18102 } 18103 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18104 } else { 18105 18106 if (ill_from_v6->ill_phyint->phyint_ipsq != 18107 ill_to_v6->ill_phyint->phyint_ipsq) { 18108 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18109 NULL, mp, q); 18110 goto err_ret; 18111 18112 } 18113 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18114 } 18115 18116 /* 18117 * Now that the ipsq's have been merged and we are the writer 18118 * lets mark to_ill as changing as well. 18119 */ 18120 18121 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18122 if (ill_to_v4 != NULL) 18123 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18124 if (ill_to_v6 != NULL) 18125 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18126 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18127 18128 /* 18129 * Its ok for us to proceed with the move even if 18130 * ill_pending_mp is non null on one of the from ill's as the reply 18131 * should not be looking at the ipif, it should only care about the 18132 * ill itself. 18133 */ 18134 18135 /* 18136 * lets move ipv4 first. 18137 */ 18138 if (ill_from_v4 != NULL) { 18139 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18140 ill_from_v4->ill_move_in_progress = B_TRUE; 18141 ill_to_v4->ill_move_in_progress = B_TRUE; 18142 ill_to_v4->ill_move_peer = ill_from_v4; 18143 ill_from_v4->ill_move_peer = ill_to_v4; 18144 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18145 } 18146 18147 /* 18148 * Now lets move ipv6. 18149 */ 18150 if (err == 0 && ill_from_v6 != NULL) { 18151 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18152 ill_from_v6->ill_move_in_progress = B_TRUE; 18153 ill_to_v6->ill_move_in_progress = B_TRUE; 18154 ill_to_v6->ill_move_peer = ill_from_v6; 18155 ill_from_v6->ill_move_peer = ill_to_v6; 18156 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18157 } 18158 18159 err_ret: 18160 /* 18161 * EINPROGRESS means we are waiting for the ipif's that need to be 18162 * moved to become quiescent. 18163 */ 18164 if (err == EINPROGRESS) { 18165 goto done; 18166 } 18167 18168 /* 18169 * if err is set ill_up_ipifs will not be called 18170 * lets clear the flags. 18171 */ 18172 18173 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18174 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18175 /* 18176 * Some of the clearing may be redundant. But it is simple 18177 * not making any extra checks. 18178 */ 18179 if (ill_from_v6 != NULL) { 18180 ill_from_v6->ill_move_in_progress = B_FALSE; 18181 ill_from_v6->ill_move_peer = NULL; 18182 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18183 } 18184 if (ill_from_v4 != NULL) { 18185 ill_from_v4->ill_move_in_progress = B_FALSE; 18186 ill_from_v4->ill_move_peer = NULL; 18187 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18188 } 18189 if (ill_to_v6 != NULL) { 18190 ill_to_v6->ill_move_in_progress = B_FALSE; 18191 ill_to_v6->ill_move_peer = NULL; 18192 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18193 } 18194 if (ill_to_v4 != NULL) { 18195 ill_to_v4->ill_move_in_progress = B_FALSE; 18196 ill_to_v4->ill_move_peer = NULL; 18197 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18198 } 18199 18200 /* 18201 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18202 * Do this always to maintain proper state i.e even in case of errors. 18203 * As phyint_inactive looks at both v4 and v6 interfaces, 18204 * we need not call on both v4 and v6 interfaces. 18205 */ 18206 if (ill_from_v4 != NULL) { 18207 if ((ill_from_v4->ill_phyint->phyint_flags & 18208 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18209 phyint_inactive(ill_from_v4->ill_phyint); 18210 } 18211 } else if (ill_from_v6 != NULL) { 18212 if ((ill_from_v6->ill_phyint->phyint_flags & 18213 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18214 phyint_inactive(ill_from_v6->ill_phyint); 18215 } 18216 } 18217 18218 if (ill_to_v4 != NULL) { 18219 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18220 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18221 } 18222 } else if (ill_to_v6 != NULL) { 18223 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18224 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18225 } 18226 } 18227 18228 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18229 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18230 18231 no_err: 18232 /* 18233 * lets bring the interfaces up on the to_ill. 18234 */ 18235 if (err == 0) { 18236 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18237 q, mp); 18238 } 18239 18240 if (err == 0) { 18241 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18242 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18243 18244 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18245 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18246 } 18247 done: 18248 18249 if (ill_to_v4 != NULL) { 18250 ill_refrele(ill_to_v4); 18251 } 18252 if (ill_to_v6 != NULL) { 18253 ill_refrele(ill_to_v6); 18254 } 18255 18256 return (err); 18257 } 18258 18259 static void 18260 ill_dl_down(ill_t *ill) 18261 { 18262 /* 18263 * The ill is down; unbind but stay attached since we're still 18264 * associated with a PPA. If we have negotiated DLPI capabilites 18265 * with the data link service provider (IDS_OK) then reset them. 18266 * The interval between unbinding and rebinding is potentially 18267 * unbounded hence we cannot assume things will be the same. 18268 * The DLPI capabilities will be probed again when the data link 18269 * is brought up. 18270 */ 18271 mblk_t *mp = ill->ill_unbind_mp; 18272 hook_nic_event_t *info; 18273 18274 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18275 18276 ill->ill_unbind_mp = NULL; 18277 if (mp != NULL) { 18278 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18279 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18280 ill->ill_name)); 18281 mutex_enter(&ill->ill_lock); 18282 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18283 mutex_exit(&ill->ill_lock); 18284 if (ill->ill_dlpi_capab_state == IDS_OK) 18285 ill_capability_reset(ill); 18286 ill_dlpi_send(ill, mp); 18287 } 18288 18289 /* 18290 * Toss all of our multicast memberships. We could keep them, but 18291 * then we'd have to do bookkeeping of any joins and leaves performed 18292 * by the application while the the interface is down (we can't just 18293 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18294 * on a downed interface). 18295 */ 18296 ill_leave_multicast(ill); 18297 18298 mutex_enter(&ill->ill_lock); 18299 18300 ill->ill_dl_up = 0; 18301 18302 if ((info = ill->ill_nic_event_info) != NULL) { 18303 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18304 info->hne_event, ill->ill_name)); 18305 if (info->hne_data != NULL) 18306 kmem_free(info->hne_data, info->hne_datalen); 18307 kmem_free(info, sizeof (hook_nic_event_t)); 18308 } 18309 18310 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18311 if (info != NULL) { 18312 ip_stack_t *ipst = ill->ill_ipst; 18313 18314 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18315 info->hne_lif = 0; 18316 info->hne_event = NE_DOWN; 18317 info->hne_data = NULL; 18318 info->hne_datalen = 0; 18319 info->hne_family = ill->ill_isv6 ? 18320 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18321 } else 18322 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18323 "information for %s (ENOMEM)\n", ill->ill_name)); 18324 18325 ill->ill_nic_event_info = info; 18326 18327 mutex_exit(&ill->ill_lock); 18328 } 18329 18330 static void 18331 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18332 { 18333 union DL_primitives *dlp; 18334 t_uscalar_t prim; 18335 18336 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18337 18338 dlp = (union DL_primitives *)mp->b_rptr; 18339 prim = dlp->dl_primitive; 18340 18341 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18342 dlpi_prim_str(prim), prim, ill->ill_name)); 18343 18344 switch (prim) { 18345 case DL_PHYS_ADDR_REQ: 18346 { 18347 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18348 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18349 break; 18350 } 18351 case DL_BIND_REQ: 18352 mutex_enter(&ill->ill_lock); 18353 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18354 mutex_exit(&ill->ill_lock); 18355 break; 18356 } 18357 18358 /* 18359 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18360 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18361 * we only wait for the ACK of the DL_UNBIND_REQ. 18362 */ 18363 mutex_enter(&ill->ill_lock); 18364 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18365 (prim == DL_UNBIND_REQ)) { 18366 ill->ill_dlpi_pending = prim; 18367 } 18368 mutex_exit(&ill->ill_lock); 18369 18370 putnext(ill->ill_wq, mp); 18371 } 18372 18373 /* 18374 * Helper function for ill_dlpi_send(). 18375 */ 18376 /* ARGSUSED */ 18377 static void 18378 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18379 { 18380 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18381 } 18382 18383 /* 18384 * Send a DLPI control message to the driver but make sure there 18385 * is only one outstanding message. Uses ill_dlpi_pending to tell 18386 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18387 * when an ACK or a NAK is received to process the next queued message. 18388 */ 18389 void 18390 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18391 { 18392 mblk_t **mpp; 18393 18394 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18395 18396 /* 18397 * To ensure that any DLPI requests for current exclusive operation 18398 * are always completely sent before any DLPI messages for other 18399 * operations, require writer access before enqueuing. 18400 */ 18401 if (!IAM_WRITER_ILL(ill)) { 18402 ill_refhold(ill); 18403 /* qwriter_ip() does the ill_refrele() */ 18404 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18405 NEW_OP, B_TRUE); 18406 return; 18407 } 18408 18409 mutex_enter(&ill->ill_lock); 18410 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18411 /* Must queue message. Tail insertion */ 18412 mpp = &ill->ill_dlpi_deferred; 18413 while (*mpp != NULL) 18414 mpp = &((*mpp)->b_next); 18415 18416 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18417 ill->ill_name)); 18418 18419 *mpp = mp; 18420 mutex_exit(&ill->ill_lock); 18421 return; 18422 } 18423 mutex_exit(&ill->ill_lock); 18424 ill_dlpi_dispatch(ill, mp); 18425 } 18426 18427 /* 18428 * Send all deferred DLPI messages without waiting for their ACKs. 18429 */ 18430 void 18431 ill_dlpi_send_deferred(ill_t *ill) 18432 { 18433 mblk_t *mp, *nextmp; 18434 18435 /* 18436 * Clear ill_dlpi_pending so that the message is not queued in 18437 * ill_dlpi_send(). 18438 */ 18439 mutex_enter(&ill->ill_lock); 18440 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18441 mp = ill->ill_dlpi_deferred; 18442 ill->ill_dlpi_deferred = NULL; 18443 mutex_exit(&ill->ill_lock); 18444 18445 for (; mp != NULL; mp = nextmp) { 18446 nextmp = mp->b_next; 18447 mp->b_next = NULL; 18448 ill_dlpi_send(ill, mp); 18449 } 18450 } 18451 18452 /* 18453 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18454 */ 18455 boolean_t 18456 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18457 { 18458 t_uscalar_t prim_pending; 18459 18460 mutex_enter(&ill->ill_lock); 18461 prim_pending = ill->ill_dlpi_pending; 18462 mutex_exit(&ill->ill_lock); 18463 18464 /* 18465 * During teardown, ill_dlpi_send_deferred() will send requests 18466 * without waiting; don't bother printing any warnings in that case. 18467 */ 18468 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18469 if (prim_pending == DL_PRIM_INVAL) { 18470 (void) mi_strlog(ill->ill_rq, 1, 18471 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18472 "unsolicited ack for %s on %s\n", 18473 dlpi_prim_str(prim), ill->ill_name); 18474 } else { 18475 (void) mi_strlog(ill->ill_rq, 1, 18476 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18477 "unexpected ack for %s on %s (expecting %s)\n", 18478 dlpi_prim_str(prim), ill->ill_name, 18479 dlpi_prim_str(prim_pending)); 18480 } 18481 } 18482 return (prim_pending == prim); 18483 } 18484 18485 /* 18486 * Called when an DLPI control message has been acked or nacked to 18487 * send down the next queued message (if any). 18488 */ 18489 void 18490 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18491 { 18492 mblk_t *mp; 18493 18494 ASSERT(IAM_WRITER_ILL(ill)); 18495 mutex_enter(&ill->ill_lock); 18496 18497 ASSERT(prim != DL_PRIM_INVAL); 18498 ASSERT(ill->ill_dlpi_pending == prim); 18499 18500 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18501 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18502 18503 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18504 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18505 cv_signal(&ill->ill_cv); 18506 mutex_exit(&ill->ill_lock); 18507 return; 18508 } 18509 18510 ill->ill_dlpi_deferred = mp->b_next; 18511 mp->b_next = NULL; 18512 mutex_exit(&ill->ill_lock); 18513 18514 ill_dlpi_dispatch(ill, mp); 18515 } 18516 18517 void 18518 conn_delete_ire(conn_t *connp, caddr_t arg) 18519 { 18520 ipif_t *ipif = (ipif_t *)arg; 18521 ire_t *ire; 18522 18523 /* 18524 * Look at the cached ires on conns which has pointers to ipifs. 18525 * We just call ire_refrele which clears up the reference 18526 * to ire. Called when a conn closes. Also called from ipif_free 18527 * to cleanup indirect references to the stale ipif via the cached ire. 18528 */ 18529 mutex_enter(&connp->conn_lock); 18530 ire = connp->conn_ire_cache; 18531 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18532 connp->conn_ire_cache = NULL; 18533 mutex_exit(&connp->conn_lock); 18534 IRE_REFRELE_NOTR(ire); 18535 return; 18536 } 18537 mutex_exit(&connp->conn_lock); 18538 18539 } 18540 18541 /* 18542 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18543 * of IREs. Those IREs may have been previously cached in the conn structure. 18544 * This ipcl_walk() walker function releases all references to such IREs based 18545 * on the condemned flag. 18546 */ 18547 /* ARGSUSED */ 18548 void 18549 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18550 { 18551 ire_t *ire; 18552 18553 mutex_enter(&connp->conn_lock); 18554 ire = connp->conn_ire_cache; 18555 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18556 connp->conn_ire_cache = NULL; 18557 mutex_exit(&connp->conn_lock); 18558 IRE_REFRELE_NOTR(ire); 18559 return; 18560 } 18561 mutex_exit(&connp->conn_lock); 18562 } 18563 18564 /* 18565 * Take down a specific interface, but don't lose any information about it. 18566 * Also delete interface from its interface group (ifgrp). 18567 * (Always called as writer.) 18568 * This function goes through the down sequence even if the interface is 18569 * already down. There are 2 reasons. 18570 * a. Currently we permit interface routes that depend on down interfaces 18571 * to be added. This behaviour itself is questionable. However it appears 18572 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18573 * time. We go thru the cleanup in order to remove these routes. 18574 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18575 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18576 * down, but we need to cleanup i.e. do ill_dl_down and 18577 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18578 * 18579 * IP-MT notes: 18580 * 18581 * Model of reference to interfaces. 18582 * 18583 * The following members in ipif_t track references to the ipif. 18584 * int ipif_refcnt; Active reference count 18585 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18586 * The following members in ill_t track references to the ill. 18587 * int ill_refcnt; active refcnt 18588 * uint_t ill_ire_cnt; Number of ires referencing ill 18589 * uint_t ill_nce_cnt; Number of nces referencing ill 18590 * 18591 * Reference to an ipif or ill can be obtained in any of the following ways. 18592 * 18593 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18594 * Pointers to ipif / ill from other data structures viz ire and conn. 18595 * Implicit reference to the ipif / ill by holding a reference to the ire. 18596 * 18597 * The ipif/ill lookup functions return a reference held ipif / ill. 18598 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18599 * This is a purely dynamic reference count associated with threads holding 18600 * references to the ipif / ill. Pointers from other structures do not 18601 * count towards this reference count. 18602 * 18603 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18604 * ipif/ill. This is incremented whenever a new ire is created referencing the 18605 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18606 * actually added to the ire hash table. The count is decremented in 18607 * ire_inactive where the ire is destroyed. 18608 * 18609 * nce's reference ill's thru nce_ill and the count of nce's associated with 18610 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18611 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18612 * table. Similarly it is decremented in ndp_inactive() where the nce 18613 * is destroyed. 18614 * 18615 * Flow of ioctls involving interface down/up 18616 * 18617 * The following is the sequence of an attempt to set some critical flags on an 18618 * up interface. 18619 * ip_sioctl_flags 18620 * ipif_down 18621 * wait for ipif to be quiescent 18622 * ipif_down_tail 18623 * ip_sioctl_flags_tail 18624 * 18625 * All set ioctls that involve down/up sequence would have a skeleton similar 18626 * to the above. All the *tail functions are called after the refcounts have 18627 * dropped to the appropriate values. 18628 * 18629 * The mechanism to quiesce an ipif is as follows. 18630 * 18631 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18632 * on the ipif. Callers either pass a flag requesting wait or the lookup 18633 * functions will return NULL. 18634 * 18635 * Delete all ires referencing this ipif 18636 * 18637 * Any thread attempting to do an ipif_refhold on an ipif that has been 18638 * obtained thru a cached pointer will first make sure that 18639 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18640 * increment the refcount. 18641 * 18642 * The above guarantees that the ipif refcount will eventually come down to 18643 * zero and the ipif will quiesce, once all threads that currently hold a 18644 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18645 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18646 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18647 * drop to zero. 18648 * 18649 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18650 * 18651 * Threads trying to lookup an ipif or ill can pass a flag requesting 18652 * wait and restart if the ipif / ill cannot be looked up currently. 18653 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18654 * failure if the ipif is currently undergoing an exclusive operation, and 18655 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18656 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18657 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18658 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18659 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18660 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18661 * until we release the ipsq_lock, even though the the ill/ipif state flags 18662 * can change after we drop the ill_lock. 18663 * 18664 * An attempt to send out a packet using an ipif that is currently 18665 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18666 * operation and restart it later when the exclusive condition on the ipif ends. 18667 * This is an example of not passing the wait flag to the lookup functions. For 18668 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18669 * out a multicast packet on that ipif will fail while the ipif is 18670 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18671 * currently IPIF_CHANGING will also fail. 18672 */ 18673 int 18674 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18675 { 18676 ill_t *ill = ipif->ipif_ill; 18677 phyint_t *phyi; 18678 conn_t *connp; 18679 boolean_t success; 18680 boolean_t ipif_was_up = B_FALSE; 18681 ip_stack_t *ipst = ill->ill_ipst; 18682 18683 ASSERT(IAM_WRITER_IPIF(ipif)); 18684 18685 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18686 18687 if (ipif->ipif_flags & IPIF_UP) { 18688 mutex_enter(&ill->ill_lock); 18689 ipif->ipif_flags &= ~IPIF_UP; 18690 ASSERT(ill->ill_ipif_up_count > 0); 18691 --ill->ill_ipif_up_count; 18692 mutex_exit(&ill->ill_lock); 18693 ipif_was_up = B_TRUE; 18694 /* Update status in SCTP's list */ 18695 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18696 } 18697 18698 /* 18699 * Blow away memberships we established in ipif_multicast_up(). 18700 */ 18701 ipif_multicast_down(ipif); 18702 18703 /* 18704 * Remove from the mapping for __sin6_src_id. We insert only 18705 * when the address is not INADDR_ANY. As IPv4 addresses are 18706 * stored as mapped addresses, we need to check for mapped 18707 * INADDR_ANY also. 18708 */ 18709 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18710 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18711 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18712 int err; 18713 18714 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18715 ipif->ipif_zoneid, ipst); 18716 if (err != 0) { 18717 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18718 } 18719 } 18720 18721 /* 18722 * Before we delete the ill from the group (if any), we need 18723 * to make sure that we delete all the routes dependent on 18724 * this and also any ipifs dependent on this ipif for 18725 * source address. We need to do before we delete from 18726 * the group because 18727 * 18728 * 1) ipif_down_delete_ire de-references ill->ill_group. 18729 * 18730 * 2) ipif_update_other_ipifs needs to walk the whole group 18731 * for re-doing source address selection. Note that 18732 * ipif_select_source[_v6] called from 18733 * ipif_update_other_ipifs[_v6] will not pick this ipif 18734 * because we have already marked down here i.e cleared 18735 * IPIF_UP. 18736 */ 18737 if (ipif->ipif_isv6) { 18738 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18739 ipst); 18740 } else { 18741 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18742 ipst); 18743 } 18744 18745 /* 18746 * Cleaning up the conn_ire_cache or conns must be done only after the 18747 * ires have been deleted above. Otherwise a thread could end up 18748 * caching an ire in a conn after we have finished the cleanup of the 18749 * conn. The caching is done after making sure that the ire is not yet 18750 * condemned. Also documented in the block comment above ip_output 18751 */ 18752 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18753 /* Also, delete the ires cached in SCTP */ 18754 sctp_ire_cache_flush(ipif); 18755 18756 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18757 nattymod_clean_ipif(ipif); 18758 18759 /* 18760 * Update any other ipifs which have used "our" local address as 18761 * a source address. This entails removing and recreating IRE_INTERFACE 18762 * entries for such ipifs. 18763 */ 18764 if (ipif->ipif_isv6) 18765 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18766 else 18767 ipif_update_other_ipifs(ipif, ill->ill_group); 18768 18769 if (ipif_was_up) { 18770 /* 18771 * Check whether it is last ipif to leave this group. 18772 * If this is the last ipif to leave, we should remove 18773 * this ill from the group as ipif_select_source will not 18774 * be able to find any useful ipifs if this ill is selected 18775 * for load balancing. 18776 * 18777 * For nameless groups, we should call ifgrp_delete if this 18778 * belongs to some group. As this ipif is going down, we may 18779 * need to reconstruct groups. 18780 */ 18781 phyi = ill->ill_phyint; 18782 /* 18783 * If the phyint_groupname_len is 0, it may or may not 18784 * be in the nameless group. If the phyint_groupname_len is 18785 * not 0, then this ill should be part of some group. 18786 * As we always insert this ill in the group if 18787 * phyint_groupname_len is not zero when the first ipif 18788 * comes up (in ipif_up_done), it should be in a group 18789 * when the namelen is not 0. 18790 * 18791 * NOTE : When we delete the ill from the group,it will 18792 * blow away all the IRE_CACHES pointing either at this ipif or 18793 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18794 * should be pointing at this ill. 18795 */ 18796 ASSERT(phyi->phyint_groupname_len == 0 || 18797 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18798 18799 if (phyi->phyint_groupname_len != 0) { 18800 if (ill->ill_ipif_up_count == 0) 18801 illgrp_delete(ill); 18802 } 18803 18804 /* 18805 * If we have deleted some of the broadcast ires associated 18806 * with this ipif, we need to re-nominate somebody else if 18807 * the ires that we deleted were the nominated ones. 18808 */ 18809 if (ill->ill_group != NULL && !ill->ill_isv6) 18810 ipif_renominate_bcast(ipif); 18811 } 18812 18813 /* 18814 * neighbor-discovery or arp entries for this interface. 18815 */ 18816 ipif_ndp_down(ipif); 18817 18818 /* 18819 * If mp is NULL the caller will wait for the appropriate refcnt. 18820 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18821 * and ill_delete -> ipif_free -> ipif_down 18822 */ 18823 if (mp == NULL) { 18824 ASSERT(q == NULL); 18825 return (0); 18826 } 18827 18828 if (CONN_Q(q)) { 18829 connp = Q_TO_CONN(q); 18830 mutex_enter(&connp->conn_lock); 18831 } else { 18832 connp = NULL; 18833 } 18834 mutex_enter(&ill->ill_lock); 18835 /* 18836 * Are there any ire's pointing to this ipif that are still active ? 18837 * If this is the last ipif going down, are there any ire's pointing 18838 * to this ill that are still active ? 18839 */ 18840 if (ipif_is_quiescent(ipif)) { 18841 mutex_exit(&ill->ill_lock); 18842 if (connp != NULL) 18843 mutex_exit(&connp->conn_lock); 18844 return (0); 18845 } 18846 18847 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18848 ill->ill_name, (void *)ill)); 18849 /* 18850 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18851 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18852 * which in turn is called by the last refrele on the ipif/ill/ire. 18853 */ 18854 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18855 if (!success) { 18856 /* The conn is closing. So just return */ 18857 ASSERT(connp != NULL); 18858 mutex_exit(&ill->ill_lock); 18859 mutex_exit(&connp->conn_lock); 18860 return (EINTR); 18861 } 18862 18863 mutex_exit(&ill->ill_lock); 18864 if (connp != NULL) 18865 mutex_exit(&connp->conn_lock); 18866 return (EINPROGRESS); 18867 } 18868 18869 void 18870 ipif_down_tail(ipif_t *ipif) 18871 { 18872 ill_t *ill = ipif->ipif_ill; 18873 18874 /* 18875 * Skip any loopback interface (null wq). 18876 * If this is the last logical interface on the ill 18877 * have ill_dl_down tell the driver we are gone (unbind) 18878 * Note that lun 0 can ipif_down even though 18879 * there are other logical units that are up. 18880 * This occurs e.g. when we change a "significant" IFF_ flag. 18881 */ 18882 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18883 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18884 ill->ill_dl_up) { 18885 ill_dl_down(ill); 18886 } 18887 ill->ill_logical_down = 0; 18888 18889 /* 18890 * Have to be after removing the routes in ipif_down_delete_ire. 18891 */ 18892 if (ipif->ipif_isv6) { 18893 if (ill->ill_flags & ILLF_XRESOLV) 18894 ipif_arp_down(ipif); 18895 } else { 18896 ipif_arp_down(ipif); 18897 } 18898 18899 ip_rts_ifmsg(ipif); 18900 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18901 } 18902 18903 /* 18904 * Bring interface logically down without bringing the physical interface 18905 * down e.g. when the netmask is changed. This avoids long lasting link 18906 * negotiations between an ethernet interface and a certain switches. 18907 */ 18908 static int 18909 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18910 { 18911 /* 18912 * The ill_logical_down flag is a transient flag. It is set here 18913 * and is cleared once the down has completed in ipif_down_tail. 18914 * This flag does not indicate whether the ill stream is in the 18915 * DL_BOUND state with the driver. Instead this flag is used by 18916 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18917 * the driver. The state of the ill stream i.e. whether it is 18918 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18919 */ 18920 ipif->ipif_ill->ill_logical_down = 1; 18921 return (ipif_down(ipif, q, mp)); 18922 } 18923 18924 /* 18925 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18926 * If the usesrc client ILL is already part of a usesrc group or not, 18927 * in either case a ire_stq with the matching usesrc client ILL will 18928 * locate the IRE's that need to be deleted. We want IREs to be created 18929 * with the new source address. 18930 */ 18931 static void 18932 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18933 { 18934 ill_t *ucill = (ill_t *)ill_arg; 18935 18936 ASSERT(IAM_WRITER_ILL(ucill)); 18937 18938 if (ire->ire_stq == NULL) 18939 return; 18940 18941 if ((ire->ire_type == IRE_CACHE) && 18942 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18943 ire_delete(ire); 18944 } 18945 18946 /* 18947 * ire_walk routine to delete every IRE dependent on the interface 18948 * address that is going down. (Always called as writer.) 18949 * Works for both v4 and v6. 18950 * In addition for checking for ire_ipif matches it also checks for 18951 * IRE_CACHE entries which have the same source address as the 18952 * disappearing ipif since ipif_select_source might have picked 18953 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18954 * care of any IRE_INTERFACE with the disappearing source address. 18955 */ 18956 static void 18957 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18958 { 18959 ipif_t *ipif = (ipif_t *)ipif_arg; 18960 ill_t *ire_ill; 18961 ill_t *ipif_ill; 18962 18963 ASSERT(IAM_WRITER_IPIF(ipif)); 18964 if (ire->ire_ipif == NULL) 18965 return; 18966 18967 /* 18968 * For IPv4, we derive source addresses for an IRE from ipif's 18969 * belonging to the same IPMP group as the IRE's outgoing 18970 * interface. If an IRE's outgoing interface isn't in the 18971 * same IPMP group as a particular ipif, then that ipif 18972 * couldn't have been used as a source address for this IRE. 18973 * 18974 * For IPv6, source addresses are only restricted to the IPMP group 18975 * if the IRE is for a link-local address or a multicast address. 18976 * Otherwise, source addresses for an IRE can be chosen from 18977 * interfaces other than the the outgoing interface for that IRE. 18978 * 18979 * For source address selection details, see ipif_select_source() 18980 * and ipif_select_source_v6(). 18981 */ 18982 if (ire->ire_ipversion == IPV4_VERSION || 18983 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18984 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18985 ire_ill = ire->ire_ipif->ipif_ill; 18986 ipif_ill = ipif->ipif_ill; 18987 18988 if (ire_ill->ill_group != ipif_ill->ill_group) { 18989 return; 18990 } 18991 } 18992 18993 18994 if (ire->ire_ipif != ipif) { 18995 /* 18996 * Look for a matching source address. 18997 */ 18998 if (ire->ire_type != IRE_CACHE) 18999 return; 19000 if (ipif->ipif_flags & IPIF_NOLOCAL) 19001 return; 19002 19003 if (ire->ire_ipversion == IPV4_VERSION) { 19004 if (ire->ire_src_addr != ipif->ipif_src_addr) 19005 return; 19006 } else { 19007 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19008 &ipif->ipif_v6lcl_addr)) 19009 return; 19010 } 19011 ire_delete(ire); 19012 return; 19013 } 19014 /* 19015 * ire_delete() will do an ire_flush_cache which will delete 19016 * all ire_ipif matches 19017 */ 19018 ire_delete(ire); 19019 } 19020 19021 /* 19022 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19023 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19024 * 2) when an interface is brought up or down (on that ill). 19025 * This ensures that the IRE_CACHE entries don't retain stale source 19026 * address selection results. 19027 */ 19028 void 19029 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19030 { 19031 ill_t *ill = (ill_t *)ill_arg; 19032 ill_t *ipif_ill; 19033 19034 ASSERT(IAM_WRITER_ILL(ill)); 19035 /* 19036 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19037 * Hence this should be IRE_CACHE. 19038 */ 19039 ASSERT(ire->ire_type == IRE_CACHE); 19040 19041 /* 19042 * We are called for IRE_CACHES whose ire_ipif matches ill. 19043 * We are only interested in IRE_CACHES that has borrowed 19044 * the source address from ill_arg e.g. ipif_up_done[_v6] 19045 * for which we need to look at ire_ipif->ipif_ill match 19046 * with ill. 19047 */ 19048 ASSERT(ire->ire_ipif != NULL); 19049 ipif_ill = ire->ire_ipif->ipif_ill; 19050 if (ipif_ill == ill || (ill->ill_group != NULL && 19051 ipif_ill->ill_group == ill->ill_group)) { 19052 ire_delete(ire); 19053 } 19054 } 19055 19056 /* 19057 * Delete all the ire whose stq references ill_arg. 19058 */ 19059 static void 19060 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19061 { 19062 ill_t *ill = (ill_t *)ill_arg; 19063 ill_t *ire_ill; 19064 19065 ASSERT(IAM_WRITER_ILL(ill)); 19066 /* 19067 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19068 * Hence this should be IRE_CACHE. 19069 */ 19070 ASSERT(ire->ire_type == IRE_CACHE); 19071 19072 /* 19073 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19074 * matches ill. We are only interested in IRE_CACHES that 19075 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19076 * filtering here. 19077 */ 19078 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19079 19080 if (ire_ill == ill) 19081 ire_delete(ire); 19082 } 19083 19084 /* 19085 * This is called when an ill leaves the group. We want to delete 19086 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19087 * pointing at ill. 19088 */ 19089 static void 19090 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19091 { 19092 ill_t *ill = (ill_t *)ill_arg; 19093 19094 ASSERT(IAM_WRITER_ILL(ill)); 19095 ASSERT(ill->ill_group == NULL); 19096 /* 19097 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19098 * Hence this should be IRE_CACHE. 19099 */ 19100 ASSERT(ire->ire_type == IRE_CACHE); 19101 /* 19102 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19103 * matches ill. We are interested in both. 19104 */ 19105 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19106 (ire->ire_ipif->ipif_ill == ill)); 19107 19108 ire_delete(ire); 19109 } 19110 19111 /* 19112 * Initiate deallocate of an IPIF. Always called as writer. Called by 19113 * ill_delete or ip_sioctl_removeif. 19114 */ 19115 static void 19116 ipif_free(ipif_t *ipif) 19117 { 19118 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19119 19120 ASSERT(IAM_WRITER_IPIF(ipif)); 19121 19122 if (ipif->ipif_recovery_id != 0) 19123 (void) untimeout(ipif->ipif_recovery_id); 19124 ipif->ipif_recovery_id = 0; 19125 19126 /* Remove conn references */ 19127 reset_conn_ipif(ipif); 19128 19129 /* 19130 * Make sure we have valid net and subnet broadcast ire's for the 19131 * other ipif's which share them with this ipif. 19132 */ 19133 if (!ipif->ipif_isv6) 19134 ipif_check_bcast_ires(ipif); 19135 19136 /* 19137 * Take down the interface. We can be called either from ill_delete 19138 * or from ip_sioctl_removeif. 19139 */ 19140 (void) ipif_down(ipif, NULL, NULL); 19141 19142 /* 19143 * Now that the interface is down, there's no chance it can still 19144 * become a duplicate. Cancel any timer that may have been set while 19145 * tearing down. 19146 */ 19147 if (ipif->ipif_recovery_id != 0) 19148 (void) untimeout(ipif->ipif_recovery_id); 19149 ipif->ipif_recovery_id = 0; 19150 19151 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19152 /* Remove pointers to this ill in the multicast routing tables */ 19153 reset_mrt_vif_ipif(ipif); 19154 rw_exit(&ipst->ips_ill_g_lock); 19155 } 19156 19157 /* 19158 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19159 * also ill_move(). 19160 */ 19161 static void 19162 ipif_free_tail(ipif_t *ipif) 19163 { 19164 mblk_t *mp; 19165 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19166 19167 /* 19168 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19169 */ 19170 mutex_enter(&ipif->ipif_saved_ire_lock); 19171 mp = ipif->ipif_saved_ire_mp; 19172 ipif->ipif_saved_ire_mp = NULL; 19173 mutex_exit(&ipif->ipif_saved_ire_lock); 19174 freemsg(mp); 19175 19176 /* 19177 * Need to hold both ill_g_lock and ill_lock while 19178 * inserting or removing an ipif from the linked list 19179 * of ipifs hanging off the ill. 19180 */ 19181 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19182 /* 19183 * Remove all IPv4 multicast memberships on the interface now. 19184 * IPv6 is not handled here as the multicast memberships are 19185 * tied to the ill rather than the ipif. 19186 */ 19187 ilm_free(ipif); 19188 19189 /* 19190 * Since we held the ill_g_lock while doing the ilm_free above, 19191 * we can assert the ilms were really deleted and not just marked 19192 * ILM_DELETED. 19193 */ 19194 ASSERT(ilm_walk_ipif(ipif) == 0); 19195 19196 IPIF_TRACE_CLEANUP(ipif); 19197 19198 /* Ask SCTP to take it out of it list */ 19199 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19200 19201 /* Get it out of the ILL interface list. */ 19202 ipif_remove(ipif, B_TRUE); 19203 rw_exit(&ipst->ips_ill_g_lock); 19204 19205 mutex_destroy(&ipif->ipif_saved_ire_lock); 19206 19207 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19208 ASSERT(ipif->ipif_recovery_id == 0); 19209 19210 /* Free the memory. */ 19211 mi_free(ipif); 19212 } 19213 19214 /* 19215 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19216 * "ill_name" otherwise. 19217 */ 19218 char * 19219 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19220 { 19221 char lbuf[32]; 19222 char *name; 19223 size_t name_len; 19224 19225 buf[0] = '\0'; 19226 if (!ipif) 19227 return (buf); 19228 name = ipif->ipif_ill->ill_name; 19229 name_len = ipif->ipif_ill->ill_name_length; 19230 if (ipif->ipif_id != 0) { 19231 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19232 ipif->ipif_id); 19233 name = lbuf; 19234 name_len = mi_strlen(name) + 1; 19235 } 19236 len -= 1; 19237 buf[len] = '\0'; 19238 len = MIN(len, name_len); 19239 bcopy(name, buf, len); 19240 return (buf); 19241 } 19242 19243 /* 19244 * Find an IPIF based on the name passed in. Names can be of the 19245 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19246 * The <phys> string can have forms like <dev><#> (e.g., le0), 19247 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19248 * When there is no colon, the implied unit id is zero. <phys> must 19249 * correspond to the name of an ILL. (May be called as writer.) 19250 */ 19251 static ipif_t * 19252 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19253 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19254 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19255 { 19256 char *cp; 19257 char *endp; 19258 long id; 19259 ill_t *ill; 19260 ipif_t *ipif; 19261 uint_t ire_type; 19262 boolean_t did_alloc = B_FALSE; 19263 ipsq_t *ipsq; 19264 19265 if (error != NULL) 19266 *error = 0; 19267 19268 /* 19269 * If the caller wants to us to create the ipif, make sure we have a 19270 * valid zoneid 19271 */ 19272 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19273 19274 if (namelen == 0) { 19275 if (error != NULL) 19276 *error = ENXIO; 19277 return (NULL); 19278 } 19279 19280 *exists = B_FALSE; 19281 /* Look for a colon in the name. */ 19282 endp = &name[namelen]; 19283 for (cp = endp; --cp > name; ) { 19284 if (*cp == IPIF_SEPARATOR_CHAR) 19285 break; 19286 } 19287 19288 if (*cp == IPIF_SEPARATOR_CHAR) { 19289 /* 19290 * Reject any non-decimal aliases for logical 19291 * interfaces. Aliases with leading zeroes 19292 * are also rejected as they introduce ambiguity 19293 * in the naming of the interfaces. 19294 * In order to confirm with existing semantics, 19295 * and to not break any programs/script relying 19296 * on that behaviour, if<0>:0 is considered to be 19297 * a valid interface. 19298 * 19299 * If alias has two or more digits and the first 19300 * is zero, fail. 19301 */ 19302 if (&cp[2] < endp && cp[1] == '0') 19303 return (NULL); 19304 } 19305 19306 if (cp <= name) { 19307 cp = endp; 19308 } else { 19309 *cp = '\0'; 19310 } 19311 19312 /* 19313 * Look up the ILL, based on the portion of the name 19314 * before the slash. ill_lookup_on_name returns a held ill. 19315 * Temporary to check whether ill exists already. If so 19316 * ill_lookup_on_name will clear it. 19317 */ 19318 ill = ill_lookup_on_name(name, do_alloc, isv6, 19319 q, mp, func, error, &did_alloc, ipst); 19320 if (cp != endp) 19321 *cp = IPIF_SEPARATOR_CHAR; 19322 if (ill == NULL) 19323 return (NULL); 19324 19325 /* Establish the unit number in the name. */ 19326 id = 0; 19327 if (cp < endp && *endp == '\0') { 19328 /* If there was a colon, the unit number follows. */ 19329 cp++; 19330 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19331 ill_refrele(ill); 19332 if (error != NULL) 19333 *error = ENXIO; 19334 return (NULL); 19335 } 19336 } 19337 19338 GRAB_CONN_LOCK(q); 19339 mutex_enter(&ill->ill_lock); 19340 /* Now see if there is an IPIF with this unit number. */ 19341 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19342 if (ipif->ipif_id == id) { 19343 if (zoneid != ALL_ZONES && 19344 zoneid != ipif->ipif_zoneid && 19345 ipif->ipif_zoneid != ALL_ZONES) { 19346 mutex_exit(&ill->ill_lock); 19347 RELEASE_CONN_LOCK(q); 19348 ill_refrele(ill); 19349 if (error != NULL) 19350 *error = ENXIO; 19351 return (NULL); 19352 } 19353 /* 19354 * The block comment at the start of ipif_down 19355 * explains the use of the macros used below 19356 */ 19357 if (IPIF_CAN_LOOKUP(ipif)) { 19358 ipif_refhold_locked(ipif); 19359 mutex_exit(&ill->ill_lock); 19360 if (!did_alloc) 19361 *exists = B_TRUE; 19362 /* 19363 * Drop locks before calling ill_refrele 19364 * since it can potentially call into 19365 * ipif_ill_refrele_tail which can end up 19366 * in trying to acquire any lock. 19367 */ 19368 RELEASE_CONN_LOCK(q); 19369 ill_refrele(ill); 19370 return (ipif); 19371 } else if (IPIF_CAN_WAIT(ipif, q)) { 19372 ipsq = ill->ill_phyint->phyint_ipsq; 19373 mutex_enter(&ipsq->ipsq_lock); 19374 mutex_exit(&ill->ill_lock); 19375 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19376 mutex_exit(&ipsq->ipsq_lock); 19377 RELEASE_CONN_LOCK(q); 19378 ill_refrele(ill); 19379 *error = EINPROGRESS; 19380 return (NULL); 19381 } 19382 } 19383 } 19384 RELEASE_CONN_LOCK(q); 19385 19386 if (!do_alloc) { 19387 mutex_exit(&ill->ill_lock); 19388 ill_refrele(ill); 19389 if (error != NULL) 19390 *error = ENXIO; 19391 return (NULL); 19392 } 19393 19394 /* 19395 * If none found, atomically allocate and return a new one. 19396 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19397 * to support "receive only" use of lo0:1 etc. as is still done 19398 * below as an initial guess. 19399 * However, this is now likely to be overriden later in ipif_up_done() 19400 * when we know for sure what address has been configured on the 19401 * interface, since we might have more than one loopback interface 19402 * with a loopback address, e.g. in the case of zones, and all the 19403 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19404 */ 19405 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19406 ire_type = IRE_LOOPBACK; 19407 else 19408 ire_type = IRE_LOCAL; 19409 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19410 if (ipif != NULL) 19411 ipif_refhold_locked(ipif); 19412 else if (error != NULL) 19413 *error = ENOMEM; 19414 mutex_exit(&ill->ill_lock); 19415 ill_refrele(ill); 19416 return (ipif); 19417 } 19418 19419 /* 19420 * This routine is called whenever a new address comes up on an ipif. If 19421 * we are configured to respond to address mask requests, then we are supposed 19422 * to broadcast an address mask reply at this time. This routine is also 19423 * called if we are already up, but a netmask change is made. This is legal 19424 * but might not make the system manager very popular. (May be called 19425 * as writer.) 19426 */ 19427 void 19428 ipif_mask_reply(ipif_t *ipif) 19429 { 19430 icmph_t *icmph; 19431 ipha_t *ipha; 19432 mblk_t *mp; 19433 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19434 19435 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19436 19437 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19438 return; 19439 19440 /* ICMP mask reply is IPv4 only */ 19441 ASSERT(!ipif->ipif_isv6); 19442 /* ICMP mask reply is not for a loopback interface */ 19443 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19444 19445 mp = allocb(REPLY_LEN, BPRI_HI); 19446 if (mp == NULL) 19447 return; 19448 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19449 19450 ipha = (ipha_t *)mp->b_rptr; 19451 bzero(ipha, REPLY_LEN); 19452 *ipha = icmp_ipha; 19453 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19454 ipha->ipha_src = ipif->ipif_src_addr; 19455 ipha->ipha_dst = ipif->ipif_brd_addr; 19456 ipha->ipha_length = htons(REPLY_LEN); 19457 ipha->ipha_ident = 0; 19458 19459 icmph = (icmph_t *)&ipha[1]; 19460 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19461 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19462 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19463 19464 put(ipif->ipif_wq, mp); 19465 19466 #undef REPLY_LEN 19467 } 19468 19469 /* 19470 * When the mtu in the ipif changes, we call this routine through ire_walk 19471 * to update all the relevant IREs. 19472 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19473 */ 19474 static void 19475 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19476 { 19477 ipif_t *ipif = (ipif_t *)ipif_arg; 19478 19479 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19480 return; 19481 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19482 } 19483 19484 /* 19485 * When the mtu in the ill changes, we call this routine through ire_walk 19486 * to update all the relevant IREs. 19487 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19488 */ 19489 void 19490 ill_mtu_change(ire_t *ire, char *ill_arg) 19491 { 19492 ill_t *ill = (ill_t *)ill_arg; 19493 19494 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19495 return; 19496 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19497 } 19498 19499 /* 19500 * Join the ipif specific multicast groups. 19501 * Must be called after a mapping has been set up in the resolver. (Always 19502 * called as writer.) 19503 */ 19504 void 19505 ipif_multicast_up(ipif_t *ipif) 19506 { 19507 int err, index; 19508 ill_t *ill; 19509 19510 ASSERT(IAM_WRITER_IPIF(ipif)); 19511 19512 ill = ipif->ipif_ill; 19513 index = ill->ill_phyint->phyint_ifindex; 19514 19515 ip1dbg(("ipif_multicast_up\n")); 19516 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19517 return; 19518 19519 if (ipif->ipif_isv6) { 19520 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19521 return; 19522 19523 /* Join the all hosts multicast address */ 19524 ip1dbg(("ipif_multicast_up - addmulti\n")); 19525 /* 19526 * Passing B_TRUE means we have to join the multicast 19527 * membership on this interface even though this is 19528 * FAILED. If we join on a different one in the group, 19529 * we will not be able to delete the membership later 19530 * as we currently don't track where we join when we 19531 * join within the kernel unlike applications where 19532 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19533 * for more on this. 19534 */ 19535 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19536 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19537 if (err != 0) { 19538 ip0dbg(("ipif_multicast_up: " 19539 "all_hosts_mcast failed %d\n", 19540 err)); 19541 return; 19542 } 19543 /* 19544 * Enable multicast for the solicited node multicast address 19545 */ 19546 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19547 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19548 19549 ipv6_multi.s6_addr32[3] |= 19550 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19551 19552 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19553 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19554 NULL); 19555 if (err != 0) { 19556 ip0dbg(("ipif_multicast_up: solicited MC" 19557 " failed %d\n", err)); 19558 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19559 ill, ill->ill_phyint->phyint_ifindex, 19560 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19561 return; 19562 } 19563 } 19564 } else { 19565 if (ipif->ipif_lcl_addr == INADDR_ANY) 19566 return; 19567 19568 /* Join the all hosts multicast address */ 19569 ip1dbg(("ipif_multicast_up - addmulti\n")); 19570 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19571 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19572 if (err) { 19573 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19574 return; 19575 } 19576 } 19577 ipif->ipif_multicast_up = 1; 19578 } 19579 19580 /* 19581 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19582 * (Explicit memberships are blown away in ill_leave_multicast() when the 19583 * ill is brought down.) 19584 */ 19585 static void 19586 ipif_multicast_down(ipif_t *ipif) 19587 { 19588 int err; 19589 19590 ASSERT(IAM_WRITER_IPIF(ipif)); 19591 19592 ip1dbg(("ipif_multicast_down\n")); 19593 if (!ipif->ipif_multicast_up) 19594 return; 19595 19596 ip1dbg(("ipif_multicast_down - delmulti\n")); 19597 19598 if (!ipif->ipif_isv6) { 19599 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19600 B_TRUE); 19601 if (err != 0) 19602 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19603 19604 ipif->ipif_multicast_up = 0; 19605 return; 19606 } 19607 19608 /* 19609 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19610 * we should look for ilms on this ill rather than the ones that have 19611 * been failed over here. They are here temporarily. As 19612 * ipif_multicast_up has joined on this ill, we should delete only 19613 * from this ill. 19614 */ 19615 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19616 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19617 B_TRUE, B_TRUE); 19618 if (err != 0) { 19619 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19620 err)); 19621 } 19622 /* 19623 * Disable multicast for the solicited node multicast address 19624 */ 19625 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19626 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19627 19628 ipv6_multi.s6_addr32[3] |= 19629 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19630 19631 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19632 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19633 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19634 19635 if (err != 0) { 19636 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19637 err)); 19638 } 19639 } 19640 19641 ipif->ipif_multicast_up = 0; 19642 } 19643 19644 /* 19645 * Used when an interface comes up to recreate any extra routes on this 19646 * interface. 19647 */ 19648 static ire_t ** 19649 ipif_recover_ire(ipif_t *ipif) 19650 { 19651 mblk_t *mp; 19652 ire_t **ipif_saved_irep; 19653 ire_t **irep; 19654 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19655 19656 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19657 ipif->ipif_id)); 19658 19659 mutex_enter(&ipif->ipif_saved_ire_lock); 19660 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19661 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19662 if (ipif_saved_irep == NULL) { 19663 mutex_exit(&ipif->ipif_saved_ire_lock); 19664 return (NULL); 19665 } 19666 19667 irep = ipif_saved_irep; 19668 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19669 ire_t *ire; 19670 queue_t *rfq; 19671 queue_t *stq; 19672 ifrt_t *ifrt; 19673 uchar_t *src_addr; 19674 uchar_t *gateway_addr; 19675 ushort_t type; 19676 19677 /* 19678 * When the ire was initially created and then added in 19679 * ip_rt_add(), it was created either using ipif->ipif_net_type 19680 * in the case of a traditional interface route, or as one of 19681 * the IRE_OFFSUBNET types (with the exception of 19682 * IRE_HOST types ire which is created by icmp_redirect() and 19683 * which we don't need to save or recover). In the case where 19684 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19685 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19686 * to satisfy software like GateD and Sun Cluster which creates 19687 * routes using the the loopback interface's address as a 19688 * gateway. 19689 * 19690 * As ifrt->ifrt_type reflects the already updated ire_type, 19691 * ire_create() will be called in the same way here as 19692 * in ip_rt_add(), namely using ipif->ipif_net_type when 19693 * the route looks like a traditional interface route (where 19694 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19695 * the saved ifrt->ifrt_type. This means that in the case where 19696 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19697 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19698 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19699 */ 19700 ifrt = (ifrt_t *)mp->b_rptr; 19701 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19702 if (ifrt->ifrt_type & IRE_INTERFACE) { 19703 rfq = NULL; 19704 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19705 ? ipif->ipif_rq : ipif->ipif_wq; 19706 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19707 ? (uint8_t *)&ifrt->ifrt_src_addr 19708 : (uint8_t *)&ipif->ipif_src_addr; 19709 gateway_addr = NULL; 19710 type = ipif->ipif_net_type; 19711 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19712 /* Recover multiroute broadcast IRE. */ 19713 rfq = ipif->ipif_rq; 19714 stq = ipif->ipif_wq; 19715 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19716 ? (uint8_t *)&ifrt->ifrt_src_addr 19717 : (uint8_t *)&ipif->ipif_src_addr; 19718 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19719 type = ifrt->ifrt_type; 19720 } else { 19721 rfq = NULL; 19722 stq = NULL; 19723 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19724 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19725 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19726 type = ifrt->ifrt_type; 19727 } 19728 19729 /* 19730 * Create a copy of the IRE with the saved address and netmask. 19731 */ 19732 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19733 "0x%x/0x%x\n", 19734 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19735 ntohl(ifrt->ifrt_addr), 19736 ntohl(ifrt->ifrt_mask))); 19737 ire = ire_create( 19738 (uint8_t *)&ifrt->ifrt_addr, 19739 (uint8_t *)&ifrt->ifrt_mask, 19740 src_addr, 19741 gateway_addr, 19742 &ifrt->ifrt_max_frag, 19743 NULL, 19744 rfq, 19745 stq, 19746 type, 19747 ipif, 19748 0, 19749 0, 19750 0, 19751 ifrt->ifrt_flags, 19752 &ifrt->ifrt_iulp_info, 19753 NULL, 19754 NULL, 19755 ipst); 19756 19757 if (ire == NULL) { 19758 mutex_exit(&ipif->ipif_saved_ire_lock); 19759 kmem_free(ipif_saved_irep, 19760 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19761 return (NULL); 19762 } 19763 19764 /* 19765 * Some software (for example, GateD and Sun Cluster) attempts 19766 * to create (what amount to) IRE_PREFIX routes with the 19767 * loopback address as the gateway. This is primarily done to 19768 * set up prefixes with the RTF_REJECT flag set (for example, 19769 * when generating aggregate routes.) 19770 * 19771 * If the IRE type (as defined by ipif->ipif_net_type) is 19772 * IRE_LOOPBACK, then we map the request into a 19773 * IRE_IF_NORESOLVER. 19774 */ 19775 if (ipif->ipif_net_type == IRE_LOOPBACK) 19776 ire->ire_type = IRE_IF_NORESOLVER; 19777 /* 19778 * ire held by ire_add, will be refreled' towards the 19779 * the end of ipif_up_done 19780 */ 19781 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19782 *irep = ire; 19783 irep++; 19784 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19785 } 19786 mutex_exit(&ipif->ipif_saved_ire_lock); 19787 return (ipif_saved_irep); 19788 } 19789 19790 /* 19791 * Used to set the netmask and broadcast address to default values when the 19792 * interface is brought up. (Always called as writer.) 19793 */ 19794 static void 19795 ipif_set_default(ipif_t *ipif) 19796 { 19797 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19798 19799 if (!ipif->ipif_isv6) { 19800 /* 19801 * Interface holds an IPv4 address. Default 19802 * mask is the natural netmask. 19803 */ 19804 if (!ipif->ipif_net_mask) { 19805 ipaddr_t v4mask; 19806 19807 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19808 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19809 } 19810 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19811 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19812 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19813 } else { 19814 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19815 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19816 } 19817 /* 19818 * NOTE: SunOS 4.X does this even if the broadcast address 19819 * has been already set thus we do the same here. 19820 */ 19821 if (ipif->ipif_flags & IPIF_BROADCAST) { 19822 ipaddr_t v4addr; 19823 19824 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19825 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19826 } 19827 } else { 19828 /* 19829 * Interface holds an IPv6-only address. Default 19830 * mask is all-ones. 19831 */ 19832 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19833 ipif->ipif_v6net_mask = ipv6_all_ones; 19834 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19835 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19836 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19837 } else { 19838 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19839 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19840 } 19841 } 19842 } 19843 19844 /* 19845 * Return 0 if this address can be used as local address without causing 19846 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19847 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19848 * Special checks are needed to allow the same IPv6 link-local address 19849 * on different ills. 19850 * TODO: allowing the same site-local address on different ill's. 19851 */ 19852 int 19853 ip_addr_availability_check(ipif_t *new_ipif) 19854 { 19855 in6_addr_t our_v6addr; 19856 ill_t *ill; 19857 ipif_t *ipif; 19858 ill_walk_context_t ctx; 19859 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19860 19861 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19862 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19863 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19864 19865 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19866 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19867 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19868 return (0); 19869 19870 our_v6addr = new_ipif->ipif_v6lcl_addr; 19871 19872 if (new_ipif->ipif_isv6) 19873 ill = ILL_START_WALK_V6(&ctx, ipst); 19874 else 19875 ill = ILL_START_WALK_V4(&ctx, ipst); 19876 19877 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19878 for (ipif = ill->ill_ipif; ipif != NULL; 19879 ipif = ipif->ipif_next) { 19880 if ((ipif == new_ipif) || 19881 !(ipif->ipif_flags & IPIF_UP) || 19882 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19883 continue; 19884 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19885 &our_v6addr)) { 19886 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19887 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19888 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19889 ipif->ipif_flags |= IPIF_UNNUMBERED; 19890 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19891 new_ipif->ipif_ill != ill) 19892 continue; 19893 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19894 new_ipif->ipif_ill != ill) 19895 continue; 19896 else if (new_ipif->ipif_zoneid != 19897 ipif->ipif_zoneid && 19898 ipif->ipif_zoneid != ALL_ZONES && 19899 IS_LOOPBACK(ill)) 19900 continue; 19901 else if (new_ipif->ipif_ill == ill) 19902 return (EADDRINUSE); 19903 else 19904 return (EADDRNOTAVAIL); 19905 } 19906 } 19907 } 19908 19909 return (0); 19910 } 19911 19912 /* 19913 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19914 * IREs for the ipif. 19915 * When the routine returns EINPROGRESS then mp has been consumed and 19916 * the ioctl will be acked from ip_rput_dlpi. 19917 */ 19918 static int 19919 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19920 { 19921 ill_t *ill = ipif->ipif_ill; 19922 boolean_t isv6 = ipif->ipif_isv6; 19923 int err = 0; 19924 boolean_t success; 19925 19926 ASSERT(IAM_WRITER_IPIF(ipif)); 19927 19928 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19929 19930 /* Shouldn't get here if it is already up. */ 19931 if (ipif->ipif_flags & IPIF_UP) 19932 return (EALREADY); 19933 19934 /* Skip arp/ndp for any loopback interface. */ 19935 if (ill->ill_wq != NULL) { 19936 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19937 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19938 19939 if (!ill->ill_dl_up) { 19940 /* 19941 * ill_dl_up is not yet set. i.e. we are yet to 19942 * DL_BIND with the driver and this is the first 19943 * logical interface on the ill to become "up". 19944 * Tell the driver to get going (via DL_BIND_REQ). 19945 * Note that changing "significant" IFF_ flags 19946 * address/netmask etc cause a down/up dance, but 19947 * does not cause an unbind (DL_UNBIND) with the driver 19948 */ 19949 return (ill_dl_up(ill, ipif, mp, q)); 19950 } 19951 19952 /* 19953 * ipif_resolver_up may end up sending an 19954 * AR_INTERFACE_UP message to ARP, which would, in 19955 * turn send a DLPI message to the driver. ioctls are 19956 * serialized and so we cannot send more than one 19957 * interface up message at a time. If ipif_resolver_up 19958 * does send an interface up message to ARP, we get 19959 * EINPROGRESS and we will complete in ip_arp_done. 19960 */ 19961 19962 ASSERT(connp != NULL || !CONN_Q(q)); 19963 ASSERT(ipsq->ipsq_pending_mp == NULL); 19964 if (connp != NULL) 19965 mutex_enter(&connp->conn_lock); 19966 mutex_enter(&ill->ill_lock); 19967 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19968 mutex_exit(&ill->ill_lock); 19969 if (connp != NULL) 19970 mutex_exit(&connp->conn_lock); 19971 if (!success) 19972 return (EINTR); 19973 19974 /* 19975 * Crank up IPv6 neighbor discovery 19976 * Unlike ARP, this should complete when 19977 * ipif_ndp_up returns. However, for 19978 * ILLF_XRESOLV interfaces we also send a 19979 * AR_INTERFACE_UP to the external resolver. 19980 * That ioctl will complete in ip_rput. 19981 */ 19982 if (isv6) { 19983 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 19984 if (err != 0) { 19985 if (err != EINPROGRESS) 19986 mp = ipsq_pending_mp_get(ipsq, &connp); 19987 return (err); 19988 } 19989 } 19990 /* Now, ARP */ 19991 err = ipif_resolver_up(ipif, Res_act_initial); 19992 if (err == EINPROGRESS) { 19993 /* We will complete it in ip_arp_done */ 19994 return (err); 19995 } 19996 mp = ipsq_pending_mp_get(ipsq, &connp); 19997 ASSERT(mp != NULL); 19998 if (err != 0) 19999 return (err); 20000 } else { 20001 /* 20002 * Interfaces without underlying hardware don't do duplicate 20003 * address detection. 20004 */ 20005 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20006 ipif->ipif_addr_ready = 1; 20007 } 20008 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20009 } 20010 20011 /* 20012 * Perform a bind for the physical device. 20013 * When the routine returns EINPROGRESS then mp has been consumed and 20014 * the ioctl will be acked from ip_rput_dlpi. 20015 * Allocate an unbind message and save it until ipif_down. 20016 */ 20017 static int 20018 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20019 { 20020 areq_t *areq; 20021 mblk_t *areq_mp = NULL; 20022 mblk_t *bind_mp = NULL; 20023 mblk_t *unbind_mp = NULL; 20024 conn_t *connp; 20025 boolean_t success; 20026 uint16_t sap_addr; 20027 20028 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20029 ASSERT(IAM_WRITER_ILL(ill)); 20030 ASSERT(mp != NULL); 20031 20032 /* Create a resolver cookie for ARP */ 20033 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20034 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 20035 if (areq_mp == NULL) 20036 return (ENOMEM); 20037 20038 freemsg(ill->ill_resolver_mp); 20039 ill->ill_resolver_mp = areq_mp; 20040 areq = (areq_t *)areq_mp->b_rptr; 20041 sap_addr = ill->ill_sap; 20042 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20043 } 20044 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20045 DL_BIND_REQ); 20046 if (bind_mp == NULL) 20047 goto bad; 20048 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20049 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20050 20051 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20052 if (unbind_mp == NULL) 20053 goto bad; 20054 20055 /* 20056 * Record state needed to complete this operation when the 20057 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20058 */ 20059 ASSERT(WR(q)->q_next == NULL); 20060 connp = Q_TO_CONN(q); 20061 20062 mutex_enter(&connp->conn_lock); 20063 mutex_enter(&ipif->ipif_ill->ill_lock); 20064 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20065 mutex_exit(&ipif->ipif_ill->ill_lock); 20066 mutex_exit(&connp->conn_lock); 20067 if (!success) 20068 goto bad; 20069 20070 /* 20071 * Save the unbind message for ill_dl_down(); it will be consumed when 20072 * the interface goes down. 20073 */ 20074 ASSERT(ill->ill_unbind_mp == NULL); 20075 ill->ill_unbind_mp = unbind_mp; 20076 20077 ill_dlpi_send(ill, bind_mp); 20078 /* Send down link-layer capabilities probe if not already done. */ 20079 ill_capability_probe(ill); 20080 20081 /* 20082 * Sysid used to rely on the fact that netboots set domainname 20083 * and the like. Now that miniroot boots aren't strictly netboots 20084 * and miniroot network configuration is driven from userland 20085 * these things still need to be set. This situation can be detected 20086 * by comparing the interface being configured here to the one 20087 * dhcack was set to reference by the boot loader. Once sysid is 20088 * converted to use dhcp_ipc_getinfo() this call can go away. 20089 */ 20090 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20091 (strcmp(ill->ill_name, dhcack) == 0) && 20092 (strlen(srpc_domain) == 0)) { 20093 if (dhcpinit() != 0) 20094 cmn_err(CE_WARN, "no cached dhcp response"); 20095 } 20096 20097 /* 20098 * This operation will complete in ip_rput_dlpi with either 20099 * a DL_BIND_ACK or DL_ERROR_ACK. 20100 */ 20101 return (EINPROGRESS); 20102 bad: 20103 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20104 /* 20105 * We don't have to check for possible removal from illgrp 20106 * as we have not yet inserted in illgrp. For groups 20107 * without names, this ipif is still not UP and hence 20108 * this could not have possibly had any influence in forming 20109 * groups. 20110 */ 20111 20112 freemsg(bind_mp); 20113 freemsg(unbind_mp); 20114 return (ENOMEM); 20115 } 20116 20117 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20118 20119 /* 20120 * DLPI and ARP is up. 20121 * Create all the IREs associated with an interface bring up multicast. 20122 * Set the interface flag and finish other initialization 20123 * that potentially had to be differed to after DL_BIND_ACK. 20124 */ 20125 int 20126 ipif_up_done(ipif_t *ipif) 20127 { 20128 ire_t *ire_array[20]; 20129 ire_t **irep = ire_array; 20130 ire_t **irep1; 20131 ipaddr_t net_mask = 0; 20132 ipaddr_t subnet_mask, route_mask; 20133 ill_t *ill = ipif->ipif_ill; 20134 queue_t *stq; 20135 ipif_t *src_ipif; 20136 ipif_t *tmp_ipif; 20137 boolean_t flush_ire_cache = B_TRUE; 20138 int err = 0; 20139 phyint_t *phyi; 20140 ire_t **ipif_saved_irep = NULL; 20141 int ipif_saved_ire_cnt; 20142 int cnt; 20143 boolean_t src_ipif_held = B_FALSE; 20144 boolean_t ire_added = B_FALSE; 20145 boolean_t loopback = B_FALSE; 20146 ip_stack_t *ipst = ill->ill_ipst; 20147 20148 ip1dbg(("ipif_up_done(%s:%u)\n", 20149 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20150 /* Check if this is a loopback interface */ 20151 if (ipif->ipif_ill->ill_wq == NULL) 20152 loopback = B_TRUE; 20153 20154 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20155 /* 20156 * If all other interfaces for this ill are down or DEPRECATED, 20157 * or otherwise unsuitable for source address selection, remove 20158 * any IRE_CACHE entries for this ill to make sure source 20159 * address selection gets to take this new ipif into account. 20160 * No need to hold ill_lock while traversing the ipif list since 20161 * we are writer 20162 */ 20163 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20164 tmp_ipif = tmp_ipif->ipif_next) { 20165 if (((tmp_ipif->ipif_flags & 20166 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20167 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20168 (tmp_ipif == ipif)) 20169 continue; 20170 /* first useable pre-existing interface */ 20171 flush_ire_cache = B_FALSE; 20172 break; 20173 } 20174 if (flush_ire_cache) 20175 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20176 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20177 20178 /* 20179 * Figure out which way the send-to queue should go. Only 20180 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20181 * should show up here. 20182 */ 20183 switch (ill->ill_net_type) { 20184 case IRE_IF_RESOLVER: 20185 stq = ill->ill_rq; 20186 break; 20187 case IRE_IF_NORESOLVER: 20188 case IRE_LOOPBACK: 20189 stq = ill->ill_wq; 20190 break; 20191 default: 20192 return (EINVAL); 20193 } 20194 20195 if (IS_LOOPBACK(ill)) { 20196 /* 20197 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20198 * ipif_lookup_on_name(), but in the case of zones we can have 20199 * several loopback addresses on lo0. So all the interfaces with 20200 * loopback addresses need to be marked IRE_LOOPBACK. 20201 */ 20202 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20203 htonl(INADDR_LOOPBACK)) 20204 ipif->ipif_ire_type = IRE_LOOPBACK; 20205 else 20206 ipif->ipif_ire_type = IRE_LOCAL; 20207 } 20208 20209 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20210 /* 20211 * Can't use our source address. Select a different 20212 * source address for the IRE_INTERFACE and IRE_LOCAL 20213 */ 20214 src_ipif = ipif_select_source(ipif->ipif_ill, 20215 ipif->ipif_subnet, ipif->ipif_zoneid); 20216 if (src_ipif == NULL) 20217 src_ipif = ipif; /* Last resort */ 20218 else 20219 src_ipif_held = B_TRUE; 20220 } else { 20221 src_ipif = ipif; 20222 } 20223 20224 /* Create all the IREs associated with this interface */ 20225 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20226 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20227 20228 /* 20229 * If we're on a labeled system then make sure that zone- 20230 * private addresses have proper remote host database entries. 20231 */ 20232 if (is_system_labeled() && 20233 ipif->ipif_ire_type != IRE_LOOPBACK && 20234 !tsol_check_interface_address(ipif)) 20235 return (EINVAL); 20236 20237 /* Register the source address for __sin6_src_id */ 20238 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20239 ipif->ipif_zoneid, ipst); 20240 if (err != 0) { 20241 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20242 return (err); 20243 } 20244 20245 /* If the interface address is set, create the local IRE. */ 20246 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20247 (void *)ipif, 20248 ipif->ipif_ire_type, 20249 ntohl(ipif->ipif_lcl_addr))); 20250 *irep++ = ire_create( 20251 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20252 (uchar_t *)&ip_g_all_ones, /* mask */ 20253 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20254 NULL, /* no gateway */ 20255 &ip_loopback_mtuplus, /* max frag size */ 20256 NULL, 20257 ipif->ipif_rq, /* recv-from queue */ 20258 NULL, /* no send-to queue */ 20259 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20260 ipif, 20261 0, 20262 0, 20263 0, 20264 (ipif->ipif_flags & IPIF_PRIVATE) ? 20265 RTF_PRIVATE : 0, 20266 &ire_uinfo_null, 20267 NULL, 20268 NULL, 20269 ipst); 20270 } else { 20271 ip1dbg(( 20272 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20273 ipif->ipif_ire_type, 20274 ntohl(ipif->ipif_lcl_addr), 20275 (uint_t)ipif->ipif_flags)); 20276 } 20277 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20278 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20279 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20280 } else { 20281 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20282 } 20283 20284 subnet_mask = ipif->ipif_net_mask; 20285 20286 /* 20287 * If mask was not specified, use natural netmask of 20288 * interface address. Also, store this mask back into the 20289 * ipif struct. 20290 */ 20291 if (subnet_mask == 0) { 20292 subnet_mask = net_mask; 20293 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20294 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20295 ipif->ipif_v6subnet); 20296 } 20297 20298 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20299 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20300 ipif->ipif_subnet != INADDR_ANY) { 20301 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20302 20303 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20304 route_mask = IP_HOST_MASK; 20305 } else { 20306 route_mask = subnet_mask; 20307 } 20308 20309 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20310 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20311 (void *)ipif, (void *)ill, 20312 ill->ill_net_type, 20313 ntohl(ipif->ipif_subnet))); 20314 *irep++ = ire_create( 20315 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20316 (uchar_t *)&route_mask, /* mask */ 20317 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20318 NULL, /* no gateway */ 20319 &ipif->ipif_mtu, /* max frag */ 20320 NULL, 20321 NULL, /* no recv queue */ 20322 stq, /* send-to queue */ 20323 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20324 ipif, 20325 0, 20326 0, 20327 0, 20328 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20329 &ire_uinfo_null, 20330 NULL, 20331 NULL, 20332 ipst); 20333 } 20334 20335 /* 20336 * Create any necessary broadcast IREs. 20337 */ 20338 if ((ipif->ipif_subnet != INADDR_ANY) && 20339 (ipif->ipif_flags & IPIF_BROADCAST)) 20340 irep = ipif_create_bcast_ires(ipif, irep); 20341 20342 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20343 20344 /* If an earlier ire_create failed, get out now */ 20345 for (irep1 = irep; irep1 > ire_array; ) { 20346 irep1--; 20347 if (*irep1 == NULL) { 20348 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20349 err = ENOMEM; 20350 goto bad; 20351 } 20352 } 20353 20354 /* 20355 * Need to atomically check for ip_addr_availablity_check 20356 * under ip_addr_avail_lock, and if it fails got bad, and remove 20357 * from group also.The ill_g_lock is grabbed as reader 20358 * just to make sure no new ills or new ipifs are being added 20359 * to the system while we are checking the uniqueness of addresses. 20360 */ 20361 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20362 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20363 /* Mark it up, and increment counters. */ 20364 ipif->ipif_flags |= IPIF_UP; 20365 ill->ill_ipif_up_count++; 20366 err = ip_addr_availability_check(ipif); 20367 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20368 rw_exit(&ipst->ips_ill_g_lock); 20369 20370 if (err != 0) { 20371 /* 20372 * Our address may already be up on the same ill. In this case, 20373 * the ARP entry for our ipif replaced the one for the other 20374 * ipif. So we don't want to delete it (otherwise the other ipif 20375 * would be unable to send packets). 20376 * ip_addr_availability_check() identifies this case for us and 20377 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20378 * which is the expected error code. 20379 */ 20380 if (err == EADDRINUSE) { 20381 freemsg(ipif->ipif_arp_del_mp); 20382 ipif->ipif_arp_del_mp = NULL; 20383 err = EADDRNOTAVAIL; 20384 } 20385 ill->ill_ipif_up_count--; 20386 ipif->ipif_flags &= ~IPIF_UP; 20387 goto bad; 20388 } 20389 20390 /* 20391 * Add in all newly created IREs. ire_create_bcast() has 20392 * already checked for duplicates of the IRE_BROADCAST type. 20393 * We want to add before we call ifgrp_insert which wants 20394 * to know whether IRE_IF_RESOLVER exists or not. 20395 * 20396 * NOTE : We refrele the ire though we may branch to "bad" 20397 * later on where we do ire_delete. This is okay 20398 * because nobody can delete it as we are running 20399 * exclusively. 20400 */ 20401 for (irep1 = irep; irep1 > ire_array; ) { 20402 irep1--; 20403 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20404 /* 20405 * refheld by ire_add. refele towards the end of the func 20406 */ 20407 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20408 } 20409 ire_added = B_TRUE; 20410 /* 20411 * Form groups if possible. 20412 * 20413 * If we are supposed to be in a ill_group with a name, insert it 20414 * now as we know that at least one ipif is UP. Otherwise form 20415 * nameless groups. 20416 * 20417 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20418 * this ipif into the appropriate interface group, or create a 20419 * new one. If this is already in a nameless group, we try to form 20420 * a bigger group looking at other ills potentially sharing this 20421 * ipif's prefix. 20422 */ 20423 phyi = ill->ill_phyint; 20424 if (phyi->phyint_groupname_len != 0) { 20425 ASSERT(phyi->phyint_groupname != NULL); 20426 if (ill->ill_ipif_up_count == 1) { 20427 ASSERT(ill->ill_group == NULL); 20428 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20429 phyi->phyint_groupname, NULL, B_TRUE); 20430 if (err != 0) { 20431 ip1dbg(("ipif_up_done: illgrp allocation " 20432 "failed, error %d\n", err)); 20433 goto bad; 20434 } 20435 } 20436 ASSERT(ill->ill_group != NULL); 20437 } 20438 20439 /* 20440 * When this is part of group, we need to make sure that 20441 * any broadcast ires created because of this ipif coming 20442 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20443 * so that we don't receive duplicate broadcast packets. 20444 */ 20445 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20446 ipif_renominate_bcast(ipif); 20447 20448 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20449 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20450 ipif_saved_irep = ipif_recover_ire(ipif); 20451 20452 if (!loopback) { 20453 /* 20454 * If the broadcast address has been set, make sure it makes 20455 * sense based on the interface address. 20456 * Only match on ill since we are sharing broadcast addresses. 20457 */ 20458 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20459 (ipif->ipif_flags & IPIF_BROADCAST)) { 20460 ire_t *ire; 20461 20462 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20463 IRE_BROADCAST, ipif, ALL_ZONES, 20464 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20465 20466 if (ire == NULL) { 20467 /* 20468 * If there isn't a matching broadcast IRE, 20469 * revert to the default for this netmask. 20470 */ 20471 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20472 mutex_enter(&ipif->ipif_ill->ill_lock); 20473 ipif_set_default(ipif); 20474 mutex_exit(&ipif->ipif_ill->ill_lock); 20475 } else { 20476 ire_refrele(ire); 20477 } 20478 } 20479 20480 } 20481 20482 /* This is the first interface on this ill */ 20483 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20484 /* 20485 * Need to recover all multicast memberships in the driver. 20486 * This had to be deferred until we had attached. 20487 */ 20488 ill_recover_multicast(ill); 20489 } 20490 /* Join the allhosts multicast address */ 20491 ipif_multicast_up(ipif); 20492 20493 if (!loopback) { 20494 /* 20495 * See whether anybody else would benefit from the 20496 * new ipif that we added. We call this always rather 20497 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20498 * ipif is for the benefit of illgrp_insert (done above) 20499 * which does not do source address selection as it does 20500 * not want to re-create interface routes that we are 20501 * having reference to it here. 20502 */ 20503 ill_update_source_selection(ill); 20504 } 20505 20506 for (irep1 = irep; irep1 > ire_array; ) { 20507 irep1--; 20508 if (*irep1 != NULL) { 20509 /* was held in ire_add */ 20510 ire_refrele(*irep1); 20511 } 20512 } 20513 20514 cnt = ipif_saved_ire_cnt; 20515 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20516 if (*irep1 != NULL) { 20517 /* was held in ire_add */ 20518 ire_refrele(*irep1); 20519 } 20520 } 20521 20522 if (!loopback && ipif->ipif_addr_ready) { 20523 /* Broadcast an address mask reply. */ 20524 ipif_mask_reply(ipif); 20525 } 20526 if (ipif_saved_irep != NULL) { 20527 kmem_free(ipif_saved_irep, 20528 ipif_saved_ire_cnt * sizeof (ire_t *)); 20529 } 20530 if (src_ipif_held) 20531 ipif_refrele(src_ipif); 20532 20533 /* 20534 * This had to be deferred until we had bound. Tell routing sockets and 20535 * others that this interface is up if it looks like the address has 20536 * been validated. Otherwise, if it isn't ready yet, wait for 20537 * duplicate address detection to do its thing. 20538 */ 20539 if (ipif->ipif_addr_ready) { 20540 ip_rts_ifmsg(ipif); 20541 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20542 /* Let SCTP update the status for this ipif */ 20543 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20544 } 20545 return (0); 20546 20547 bad: 20548 ip1dbg(("ipif_up_done: FAILED \n")); 20549 /* 20550 * We don't have to bother removing from ill groups because 20551 * 20552 * 1) For groups with names, we insert only when the first ipif 20553 * comes up. In that case if it fails, it will not be in any 20554 * group. So, we need not try to remove for that case. 20555 * 20556 * 2) For groups without names, either we tried to insert ipif_ill 20557 * in a group as singleton or found some other group to become 20558 * a bigger group. For the former, if it fails we don't have 20559 * anything to do as ipif_ill is not in the group and for the 20560 * latter, there are no failures in illgrp_insert/illgrp_delete 20561 * (ENOMEM can't occur for this. Check ifgrp_insert). 20562 */ 20563 while (irep > ire_array) { 20564 irep--; 20565 if (*irep != NULL) { 20566 ire_delete(*irep); 20567 if (ire_added) 20568 ire_refrele(*irep); 20569 } 20570 } 20571 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20572 20573 if (ipif_saved_irep != NULL) { 20574 kmem_free(ipif_saved_irep, 20575 ipif_saved_ire_cnt * sizeof (ire_t *)); 20576 } 20577 if (src_ipif_held) 20578 ipif_refrele(src_ipif); 20579 20580 ipif_arp_down(ipif); 20581 return (err); 20582 } 20583 20584 /* 20585 * Turn off the ARP with the ILLF_NOARP flag. 20586 */ 20587 static int 20588 ill_arp_off(ill_t *ill) 20589 { 20590 mblk_t *arp_off_mp = NULL; 20591 mblk_t *arp_on_mp = NULL; 20592 20593 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20594 20595 ASSERT(IAM_WRITER_ILL(ill)); 20596 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20597 20598 /* 20599 * If the on message is still around we've already done 20600 * an arp_off without doing an arp_on thus there is no 20601 * work needed. 20602 */ 20603 if (ill->ill_arp_on_mp != NULL) 20604 return (0); 20605 20606 /* 20607 * Allocate an ARP on message (to be saved) and an ARP off message 20608 */ 20609 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20610 if (!arp_off_mp) 20611 return (ENOMEM); 20612 20613 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20614 if (!arp_on_mp) 20615 goto failed; 20616 20617 ASSERT(ill->ill_arp_on_mp == NULL); 20618 ill->ill_arp_on_mp = arp_on_mp; 20619 20620 /* Send an AR_INTERFACE_OFF request */ 20621 putnext(ill->ill_rq, arp_off_mp); 20622 return (0); 20623 failed: 20624 20625 if (arp_off_mp) 20626 freemsg(arp_off_mp); 20627 return (ENOMEM); 20628 } 20629 20630 /* 20631 * Turn on ARP by turning off the ILLF_NOARP flag. 20632 */ 20633 static int 20634 ill_arp_on(ill_t *ill) 20635 { 20636 mblk_t *mp; 20637 20638 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20639 20640 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20641 20642 ASSERT(IAM_WRITER_ILL(ill)); 20643 /* 20644 * Send an AR_INTERFACE_ON request if we have already done 20645 * an arp_off (which allocated the message). 20646 */ 20647 if (ill->ill_arp_on_mp != NULL) { 20648 mp = ill->ill_arp_on_mp; 20649 ill->ill_arp_on_mp = NULL; 20650 putnext(ill->ill_rq, mp); 20651 } 20652 return (0); 20653 } 20654 20655 /* 20656 * Called after either deleting ill from the group or when setting 20657 * FAILED or STANDBY on the interface. 20658 */ 20659 static void 20660 illgrp_reset_schednext(ill_t *ill) 20661 { 20662 ill_group_t *illgrp; 20663 ill_t *save_ill; 20664 20665 ASSERT(IAM_WRITER_ILL(ill)); 20666 /* 20667 * When called from illgrp_delete, ill_group will be non-NULL. 20668 * But when called from ip_sioctl_flags, it could be NULL if 20669 * somebody is setting FAILED/INACTIVE on some interface which 20670 * is not part of a group. 20671 */ 20672 illgrp = ill->ill_group; 20673 if (illgrp == NULL) 20674 return; 20675 if (illgrp->illgrp_ill_schednext != ill) 20676 return; 20677 20678 illgrp->illgrp_ill_schednext = NULL; 20679 save_ill = ill; 20680 /* 20681 * Choose a good ill to be the next one for 20682 * outbound traffic. As the flags FAILED/STANDBY is 20683 * not yet marked when called from ip_sioctl_flags, 20684 * we check for ill separately. 20685 */ 20686 for (ill = illgrp->illgrp_ill; ill != NULL; 20687 ill = ill->ill_group_next) { 20688 if ((ill != save_ill) && 20689 !(ill->ill_phyint->phyint_flags & 20690 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20691 illgrp->illgrp_ill_schednext = ill; 20692 return; 20693 } 20694 } 20695 } 20696 20697 /* 20698 * Given an ill, find the next ill in the group to be scheduled. 20699 * (This should be called by ip_newroute() before ire_create().) 20700 * The passed in ill may be pulled out of the group, after we have picked 20701 * up a different outgoing ill from the same group. However ire add will 20702 * atomically check this. 20703 */ 20704 ill_t * 20705 illgrp_scheduler(ill_t *ill) 20706 { 20707 ill_t *retill; 20708 ill_group_t *illgrp; 20709 int illcnt; 20710 int i; 20711 uint64_t flags; 20712 ip_stack_t *ipst = ill->ill_ipst; 20713 20714 /* 20715 * We don't use a lock to check for the ill_group. If this ill 20716 * is currently being inserted we may end up just returning this 20717 * ill itself. That is ok. 20718 */ 20719 if (ill->ill_group == NULL) { 20720 ill_refhold(ill); 20721 return (ill); 20722 } 20723 20724 /* 20725 * Grab the ill_g_lock as reader to make sure we are dealing with 20726 * a set of stable ills. No ill can be added or deleted or change 20727 * group while we hold the reader lock. 20728 */ 20729 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20730 if ((illgrp = ill->ill_group) == NULL) { 20731 rw_exit(&ipst->ips_ill_g_lock); 20732 ill_refhold(ill); 20733 return (ill); 20734 } 20735 20736 illcnt = illgrp->illgrp_ill_count; 20737 mutex_enter(&illgrp->illgrp_lock); 20738 retill = illgrp->illgrp_ill_schednext; 20739 20740 if (retill == NULL) 20741 retill = illgrp->illgrp_ill; 20742 20743 /* 20744 * We do a circular search beginning at illgrp_ill_schednext 20745 * or illgrp_ill. We don't check the flags against the ill lock 20746 * since it can change anytime. The ire creation will be atomic 20747 * and will fail if the ill is FAILED or OFFLINE. 20748 */ 20749 for (i = 0; i < illcnt; i++) { 20750 flags = retill->ill_phyint->phyint_flags; 20751 20752 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20753 ILL_CAN_LOOKUP(retill)) { 20754 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20755 ill_refhold(retill); 20756 break; 20757 } 20758 retill = retill->ill_group_next; 20759 if (retill == NULL) 20760 retill = illgrp->illgrp_ill; 20761 } 20762 mutex_exit(&illgrp->illgrp_lock); 20763 rw_exit(&ipst->ips_ill_g_lock); 20764 20765 return (i == illcnt ? NULL : retill); 20766 } 20767 20768 /* 20769 * Checks for availbility of a usable source address (if there is one) when the 20770 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20771 * this selection is done regardless of the destination. 20772 */ 20773 boolean_t 20774 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20775 { 20776 uint_t ifindex; 20777 ipif_t *ipif = NULL; 20778 ill_t *uill; 20779 boolean_t isv6; 20780 ip_stack_t *ipst = ill->ill_ipst; 20781 20782 ASSERT(ill != NULL); 20783 20784 isv6 = ill->ill_isv6; 20785 ifindex = ill->ill_usesrc_ifindex; 20786 if (ifindex != 0) { 20787 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20788 NULL, ipst); 20789 if (uill == NULL) 20790 return (NULL); 20791 mutex_enter(&uill->ill_lock); 20792 for (ipif = uill->ill_ipif; ipif != NULL; 20793 ipif = ipif->ipif_next) { 20794 if (!IPIF_CAN_LOOKUP(ipif)) 20795 continue; 20796 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20797 continue; 20798 if (!(ipif->ipif_flags & IPIF_UP)) 20799 continue; 20800 if (ipif->ipif_zoneid != zoneid) 20801 continue; 20802 if ((isv6 && 20803 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20804 (ipif->ipif_lcl_addr == INADDR_ANY)) 20805 continue; 20806 mutex_exit(&uill->ill_lock); 20807 ill_refrele(uill); 20808 return (B_TRUE); 20809 } 20810 mutex_exit(&uill->ill_lock); 20811 ill_refrele(uill); 20812 } 20813 return (B_FALSE); 20814 } 20815 20816 /* 20817 * Determine the best source address given a destination address and an ill. 20818 * Prefers non-deprecated over deprecated but will return a deprecated 20819 * address if there is no other choice. If there is a usable source address 20820 * on the interface pointed to by ill_usesrc_ifindex then that is given 20821 * first preference. 20822 * 20823 * Returns NULL if there is no suitable source address for the ill. 20824 * This only occurs when there is no valid source address for the ill. 20825 */ 20826 ipif_t * 20827 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20828 { 20829 ipif_t *ipif; 20830 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20831 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20832 int index = 0; 20833 boolean_t wrapped = B_FALSE; 20834 boolean_t same_subnet_only = B_FALSE; 20835 boolean_t ipif_same_found, ipif_other_found; 20836 boolean_t specific_found; 20837 ill_t *till, *usill = NULL; 20838 tsol_tpc_t *src_rhtp, *dst_rhtp; 20839 ip_stack_t *ipst = ill->ill_ipst; 20840 20841 if (ill->ill_usesrc_ifindex != 0) { 20842 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20843 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20844 if (usill != NULL) 20845 ill = usill; /* Select source from usesrc ILL */ 20846 else 20847 return (NULL); 20848 } 20849 20850 /* 20851 * If we're dealing with an unlabeled destination on a labeled system, 20852 * make sure that we ignore source addresses that are incompatible with 20853 * the destination's default label. That destination's default label 20854 * must dominate the minimum label on the source address. 20855 */ 20856 dst_rhtp = NULL; 20857 if (is_system_labeled()) { 20858 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20859 if (dst_rhtp == NULL) 20860 return (NULL); 20861 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20862 TPC_RELE(dst_rhtp); 20863 dst_rhtp = NULL; 20864 } 20865 } 20866 20867 /* 20868 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20869 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20870 * After selecting the right ipif, under ill_lock make sure ipif is 20871 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20872 * we retry. Inside the loop we still need to check for CONDEMNED, 20873 * but not under a lock. 20874 */ 20875 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20876 20877 retry: 20878 till = ill; 20879 ipif_arr[0] = NULL; 20880 20881 if (till->ill_group != NULL) 20882 till = till->ill_group->illgrp_ill; 20883 20884 /* 20885 * Choose one good source address from each ill across the group. 20886 * If possible choose a source address in the same subnet as 20887 * the destination address. 20888 * 20889 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20890 * This is okay because of the following. 20891 * 20892 * If PHYI_FAILED is set and we still have non-deprecated 20893 * addresses, it means the addresses have not yet been 20894 * failed over to a different interface. We potentially 20895 * select them to create IRE_CACHES, which will be later 20896 * flushed when the addresses move over. 20897 * 20898 * If PHYI_INACTIVE is set and we still have non-deprecated 20899 * addresses, it means either the user has configured them 20900 * or PHYI_INACTIVE has not been cleared after the addresses 20901 * been moved over. For the former, in.mpathd does a failover 20902 * when the interface becomes INACTIVE and hence we should 20903 * not find them. Once INACTIVE is set, we don't allow them 20904 * to create logical interfaces anymore. For the latter, a 20905 * flush will happen when INACTIVE is cleared which will 20906 * flush the IRE_CACHES. 20907 * 20908 * If PHYI_OFFLINE is set, all the addresses will be failed 20909 * over soon. We potentially select them to create IRE_CACHEs, 20910 * which will be later flushed when the addresses move over. 20911 * 20912 * NOTE : As ipif_select_source is called to borrow source address 20913 * for an ipif that is part of a group, source address selection 20914 * will be re-done whenever the group changes i.e either an 20915 * insertion/deletion in the group. 20916 * 20917 * Fill ipif_arr[] with source addresses, using these rules: 20918 * 20919 * 1. At most one source address from a given ill ends up 20920 * in ipif_arr[] -- that is, at most one of the ipif's 20921 * associated with a given ill ends up in ipif_arr[]. 20922 * 20923 * 2. If there is at least one non-deprecated ipif in the 20924 * IPMP group with a source address on the same subnet as 20925 * our destination, then fill ipif_arr[] only with 20926 * source addresses on the same subnet as our destination. 20927 * Note that because of (1), only the first 20928 * non-deprecated ipif found with a source address 20929 * matching the destination ends up in ipif_arr[]. 20930 * 20931 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20932 * addresses not in the same subnet as our destination. 20933 * Again, because of (1), only the first off-subnet source 20934 * address will be chosen. 20935 * 20936 * 4. If there are no non-deprecated ipifs, then just use 20937 * the source address associated with the last deprecated 20938 * one we find that happens to be on the same subnet, 20939 * otherwise the first one not in the same subnet. 20940 */ 20941 specific_found = B_FALSE; 20942 for (; till != NULL; till = till->ill_group_next) { 20943 ipif_same_found = B_FALSE; 20944 ipif_other_found = B_FALSE; 20945 for (ipif = till->ill_ipif; ipif != NULL; 20946 ipif = ipif->ipif_next) { 20947 if (!IPIF_CAN_LOOKUP(ipif)) 20948 continue; 20949 /* Always skip NOLOCAL and ANYCAST interfaces */ 20950 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20951 continue; 20952 if (!(ipif->ipif_flags & IPIF_UP) || 20953 !ipif->ipif_addr_ready) 20954 continue; 20955 if (ipif->ipif_zoneid != zoneid && 20956 ipif->ipif_zoneid != ALL_ZONES) 20957 continue; 20958 /* 20959 * Interfaces with 0.0.0.0 address are allowed to be UP, 20960 * but are not valid as source addresses. 20961 */ 20962 if (ipif->ipif_lcl_addr == INADDR_ANY) 20963 continue; 20964 20965 /* 20966 * Check compatibility of local address for 20967 * destination's default label if we're on a labeled 20968 * system. Incompatible addresses can't be used at 20969 * all. 20970 */ 20971 if (dst_rhtp != NULL) { 20972 boolean_t incompat; 20973 20974 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20975 IPV4_VERSION, B_FALSE); 20976 if (src_rhtp == NULL) 20977 continue; 20978 incompat = 20979 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20980 src_rhtp->tpc_tp.tp_doi != 20981 dst_rhtp->tpc_tp.tp_doi || 20982 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20983 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20984 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20985 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20986 TPC_RELE(src_rhtp); 20987 if (incompat) 20988 continue; 20989 } 20990 20991 /* 20992 * We prefer not to use all all-zones addresses, if we 20993 * can avoid it, as they pose problems with unlabeled 20994 * destinations. 20995 */ 20996 if (ipif->ipif_zoneid != ALL_ZONES) { 20997 if (!specific_found && 20998 (!same_subnet_only || 20999 (ipif->ipif_net_mask & dst) == 21000 ipif->ipif_subnet)) { 21001 index = 0; 21002 specific_found = B_TRUE; 21003 ipif_other_found = B_FALSE; 21004 } 21005 } else { 21006 if (specific_found) 21007 continue; 21008 } 21009 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21010 if (ipif_dep == NULL || 21011 (ipif->ipif_net_mask & dst) == 21012 ipif->ipif_subnet) 21013 ipif_dep = ipif; 21014 continue; 21015 } 21016 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21017 /* found a source address in the same subnet */ 21018 if (!same_subnet_only) { 21019 same_subnet_only = B_TRUE; 21020 index = 0; 21021 } 21022 ipif_same_found = B_TRUE; 21023 } else { 21024 if (same_subnet_only || ipif_other_found) 21025 continue; 21026 ipif_other_found = B_TRUE; 21027 } 21028 ipif_arr[index++] = ipif; 21029 if (index == MAX_IPIF_SELECT_SOURCE) { 21030 wrapped = B_TRUE; 21031 index = 0; 21032 } 21033 if (ipif_same_found) 21034 break; 21035 } 21036 } 21037 21038 if (ipif_arr[0] == NULL) { 21039 ipif = ipif_dep; 21040 } else { 21041 if (wrapped) 21042 index = MAX_IPIF_SELECT_SOURCE; 21043 ipif = ipif_arr[ipif_rand(ipst) % index]; 21044 ASSERT(ipif != NULL); 21045 } 21046 21047 if (ipif != NULL) { 21048 mutex_enter(&ipif->ipif_ill->ill_lock); 21049 if (!IPIF_CAN_LOOKUP(ipif)) { 21050 mutex_exit(&ipif->ipif_ill->ill_lock); 21051 goto retry; 21052 } 21053 ipif_refhold_locked(ipif); 21054 mutex_exit(&ipif->ipif_ill->ill_lock); 21055 } 21056 21057 rw_exit(&ipst->ips_ill_g_lock); 21058 if (usill != NULL) 21059 ill_refrele(usill); 21060 if (dst_rhtp != NULL) 21061 TPC_RELE(dst_rhtp); 21062 21063 #ifdef DEBUG 21064 if (ipif == NULL) { 21065 char buf1[INET6_ADDRSTRLEN]; 21066 21067 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21068 ill->ill_name, 21069 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21070 } else { 21071 char buf1[INET6_ADDRSTRLEN]; 21072 char buf2[INET6_ADDRSTRLEN]; 21073 21074 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21075 ipif->ipif_ill->ill_name, 21076 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21077 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21078 buf2, sizeof (buf2)))); 21079 } 21080 #endif /* DEBUG */ 21081 return (ipif); 21082 } 21083 21084 21085 /* 21086 * If old_ipif is not NULL, see if ipif was derived from old 21087 * ipif and if so, recreate the interface route by re-doing 21088 * source address selection. This happens when ipif_down -> 21089 * ipif_update_other_ipifs calls us. 21090 * 21091 * If old_ipif is NULL, just redo the source address selection 21092 * if needed. This happens when illgrp_insert or ipif_up_done 21093 * calls us. 21094 */ 21095 static void 21096 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21097 { 21098 ire_t *ire; 21099 ire_t *ipif_ire; 21100 queue_t *stq; 21101 ipif_t *nipif; 21102 ill_t *ill; 21103 boolean_t need_rele = B_FALSE; 21104 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21105 21106 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21107 ASSERT(IAM_WRITER_IPIF(ipif)); 21108 21109 ill = ipif->ipif_ill; 21110 if (!(ipif->ipif_flags & 21111 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21112 /* 21113 * Can't possibly have borrowed the source 21114 * from old_ipif. 21115 */ 21116 return; 21117 } 21118 21119 /* 21120 * Is there any work to be done? No work if the address 21121 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21122 * ipif_select_source() does not borrow addresses from 21123 * NOLOCAL and ANYCAST interfaces). 21124 */ 21125 if ((old_ipif != NULL) && 21126 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21127 (old_ipif->ipif_ill->ill_wq == NULL) || 21128 (old_ipif->ipif_flags & 21129 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21130 return; 21131 } 21132 21133 /* 21134 * Perform the same checks as when creating the 21135 * IRE_INTERFACE in ipif_up_done. 21136 */ 21137 if (!(ipif->ipif_flags & IPIF_UP)) 21138 return; 21139 21140 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21141 (ipif->ipif_subnet == INADDR_ANY)) 21142 return; 21143 21144 ipif_ire = ipif_to_ire(ipif); 21145 if (ipif_ire == NULL) 21146 return; 21147 21148 /* 21149 * We know that ipif uses some other source for its 21150 * IRE_INTERFACE. Is it using the source of this 21151 * old_ipif? 21152 */ 21153 if (old_ipif != NULL && 21154 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21155 ire_refrele(ipif_ire); 21156 return; 21157 } 21158 if (ip_debug > 2) { 21159 /* ip1dbg */ 21160 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21161 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21162 } 21163 21164 stq = ipif_ire->ire_stq; 21165 21166 /* 21167 * Can't use our source address. Select a different 21168 * source address for the IRE_INTERFACE. 21169 */ 21170 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21171 if (nipif == NULL) { 21172 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21173 nipif = ipif; 21174 } else { 21175 need_rele = B_TRUE; 21176 } 21177 21178 ire = ire_create( 21179 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21180 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21181 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21182 NULL, /* no gateway */ 21183 &ipif->ipif_mtu, /* max frag */ 21184 NULL, /* no src nce */ 21185 NULL, /* no recv from queue */ 21186 stq, /* send-to queue */ 21187 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21188 ipif, 21189 0, 21190 0, 21191 0, 21192 0, 21193 &ire_uinfo_null, 21194 NULL, 21195 NULL, 21196 ipst); 21197 21198 if (ire != NULL) { 21199 ire_t *ret_ire; 21200 int error; 21201 21202 /* 21203 * We don't need ipif_ire anymore. We need to delete 21204 * before we add so that ire_add does not detect 21205 * duplicates. 21206 */ 21207 ire_delete(ipif_ire); 21208 ret_ire = ire; 21209 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21210 ASSERT(error == 0); 21211 ASSERT(ire == ret_ire); 21212 /* Held in ire_add */ 21213 ire_refrele(ret_ire); 21214 } 21215 /* 21216 * Either we are falling through from above or could not 21217 * allocate a replacement. 21218 */ 21219 ire_refrele(ipif_ire); 21220 if (need_rele) 21221 ipif_refrele(nipif); 21222 } 21223 21224 /* 21225 * This old_ipif is going away. 21226 * 21227 * Determine if any other ipif's is using our address as 21228 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21229 * IPIF_DEPRECATED). 21230 * Find the IRE_INTERFACE for such ipifs and recreate them 21231 * to use an different source address following the rules in 21232 * ipif_up_done. 21233 * 21234 * This function takes an illgrp as an argument so that illgrp_delete 21235 * can call this to update source address even after deleting the 21236 * old_ipif->ipif_ill from the ill group. 21237 */ 21238 static void 21239 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21240 { 21241 ipif_t *ipif; 21242 ill_t *ill; 21243 char buf[INET6_ADDRSTRLEN]; 21244 21245 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21246 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21247 21248 ill = old_ipif->ipif_ill; 21249 21250 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21251 ill->ill_name, 21252 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21253 buf, sizeof (buf)))); 21254 /* 21255 * If this part of a group, look at all ills as ipif_select_source 21256 * borrows source address across all the ills in the group. 21257 */ 21258 if (illgrp != NULL) 21259 ill = illgrp->illgrp_ill; 21260 21261 for (; ill != NULL; ill = ill->ill_group_next) { 21262 for (ipif = ill->ill_ipif; ipif != NULL; 21263 ipif = ipif->ipif_next) { 21264 21265 if (ipif == old_ipif) 21266 continue; 21267 21268 ipif_recreate_interface_routes(old_ipif, ipif); 21269 } 21270 } 21271 } 21272 21273 /* ARGSUSED */ 21274 int 21275 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21276 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21277 { 21278 /* 21279 * ill_phyint_reinit merged the v4 and v6 into a single 21280 * ipsq. Could also have become part of a ipmp group in the 21281 * process, and we might not have been able to complete the 21282 * operation in ipif_set_values, if we could not become 21283 * exclusive. If so restart it here. 21284 */ 21285 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21286 } 21287 21288 21289 /* 21290 * Can operate on either a module or a driver queue. 21291 * Returns an error if not a module queue. 21292 */ 21293 /* ARGSUSED */ 21294 int 21295 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21296 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21297 { 21298 queue_t *q1 = q; 21299 char *cp; 21300 char interf_name[LIFNAMSIZ]; 21301 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21302 21303 if (q->q_next == NULL) { 21304 ip1dbg(( 21305 "if_unitsel: IF_UNITSEL: no q_next\n")); 21306 return (EINVAL); 21307 } 21308 21309 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21310 return (EALREADY); 21311 21312 do { 21313 q1 = q1->q_next; 21314 } while (q1->q_next); 21315 cp = q1->q_qinfo->qi_minfo->mi_idname; 21316 (void) sprintf(interf_name, "%s%d", cp, ppa); 21317 21318 /* 21319 * Here we are not going to delay the ioack until after 21320 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21321 * original ioctl message before sending the requests. 21322 */ 21323 return (ipif_set_values(q, mp, interf_name, &ppa)); 21324 } 21325 21326 /* ARGSUSED */ 21327 int 21328 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21329 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21330 { 21331 return (ENXIO); 21332 } 21333 21334 /* 21335 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21336 * `irep'. Returns a pointer to the next free `irep' entry (just like 21337 * ire_check_and_create_bcast()). 21338 */ 21339 static ire_t ** 21340 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21341 { 21342 ipaddr_t addr; 21343 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21344 ipaddr_t subnetmask = ipif->ipif_net_mask; 21345 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21346 21347 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21348 21349 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21350 21351 if (ipif->ipif_lcl_addr == INADDR_ANY || 21352 (ipif->ipif_flags & IPIF_NOLOCAL)) 21353 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21354 21355 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21356 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21357 21358 /* 21359 * For backward compatibility, we create net broadcast IREs based on 21360 * the old "IP address class system", since some old machines only 21361 * respond to these class derived net broadcast. However, we must not 21362 * create these net broadcast IREs if the subnetmask is shorter than 21363 * the IP address class based derived netmask. Otherwise, we may 21364 * create a net broadcast address which is the same as an IP address 21365 * on the subnet -- and then TCP will refuse to talk to that address. 21366 */ 21367 if (netmask < subnetmask) { 21368 addr = netmask & ipif->ipif_subnet; 21369 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21370 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21371 flags); 21372 } 21373 21374 /* 21375 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21376 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21377 * created. Creating these broadcast IREs will only create confusion 21378 * as `addr' will be the same as the IP address. 21379 */ 21380 if (subnetmask != 0xFFFFFFFF) { 21381 addr = ipif->ipif_subnet; 21382 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21383 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21384 irep, flags); 21385 } 21386 21387 return (irep); 21388 } 21389 21390 /* 21391 * Broadcast IRE info structure used in the functions below. Since we 21392 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21393 */ 21394 typedef struct bcast_ireinfo { 21395 uchar_t bi_type; /* BCAST_* value from below */ 21396 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21397 bi_needrep:1, /* do we need to replace it? */ 21398 bi_haverep:1, /* have we replaced it? */ 21399 bi_pad:5; 21400 ipaddr_t bi_addr; /* IRE address */ 21401 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21402 } bcast_ireinfo_t; 21403 21404 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21405 21406 /* 21407 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21408 * return B_TRUE if it should immediately be used to recreate the IRE. 21409 */ 21410 static boolean_t 21411 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21412 { 21413 ipaddr_t addr; 21414 21415 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21416 21417 switch (bireinfop->bi_type) { 21418 case BCAST_NET: 21419 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21420 if (addr != bireinfop->bi_addr) 21421 return (B_FALSE); 21422 break; 21423 case BCAST_SUBNET: 21424 if (ipif->ipif_subnet != bireinfop->bi_addr) 21425 return (B_FALSE); 21426 break; 21427 } 21428 21429 bireinfop->bi_needrep = 1; 21430 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21431 if (bireinfop->bi_backup == NULL) 21432 bireinfop->bi_backup = ipif; 21433 return (B_FALSE); 21434 } 21435 return (B_TRUE); 21436 } 21437 21438 /* 21439 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21440 * them ala ire_check_and_create_bcast(). 21441 */ 21442 static ire_t ** 21443 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21444 { 21445 ipaddr_t mask, addr; 21446 21447 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21448 21449 addr = bireinfop->bi_addr; 21450 irep = ire_create_bcast(ipif, addr, irep); 21451 21452 switch (bireinfop->bi_type) { 21453 case BCAST_NET: 21454 mask = ip_net_mask(ipif->ipif_subnet); 21455 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21456 break; 21457 case BCAST_SUBNET: 21458 mask = ipif->ipif_net_mask; 21459 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21460 break; 21461 } 21462 21463 bireinfop->bi_haverep = 1; 21464 return (irep); 21465 } 21466 21467 /* 21468 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21469 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21470 * that are going away are still needed. If so, have ipif_create_bcast() 21471 * recreate them (except for the deprecated case, as explained below). 21472 */ 21473 static ire_t ** 21474 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21475 ire_t **irep) 21476 { 21477 int i; 21478 ipif_t *ipif; 21479 21480 ASSERT(!ill->ill_isv6); 21481 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21482 /* 21483 * Skip this ipif if it's (a) the one being taken down, (b) 21484 * not in the same zone, or (c) has no valid local address. 21485 */ 21486 if (ipif == test_ipif || 21487 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21488 ipif->ipif_subnet == 0 || 21489 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21490 (IPIF_UP|IPIF_BROADCAST)) 21491 continue; 21492 21493 /* 21494 * For each dying IRE that hasn't yet been replaced, see if 21495 * `ipif' needs it and whether the IRE should be recreated on 21496 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21497 * will return B_FALSE even if `ipif' needs the IRE on the 21498 * hopes that we'll later find a needy non-deprecated ipif. 21499 * However, the ipif is recorded in bi_backup for possible 21500 * subsequent use by ipif_check_bcast_ires(). 21501 */ 21502 for (i = 0; i < BCAST_COUNT; i++) { 21503 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21504 continue; 21505 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21506 continue; 21507 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21508 } 21509 21510 /* 21511 * If we've replaced all of the broadcast IREs that are going 21512 * to be taken down, we know we're done. 21513 */ 21514 for (i = 0; i < BCAST_COUNT; i++) { 21515 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21516 break; 21517 } 21518 if (i == BCAST_COUNT) 21519 break; 21520 } 21521 return (irep); 21522 } 21523 21524 /* 21525 * Check if `test_ipif' (which is going away) is associated with any existing 21526 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21527 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21528 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21529 * 21530 * This is necessary because broadcast IREs are shared. In particular, a 21531 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21532 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21533 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21534 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21535 * same zone, they will share the same set of broadcast IREs. 21536 * 21537 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21538 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21539 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21540 */ 21541 static void 21542 ipif_check_bcast_ires(ipif_t *test_ipif) 21543 { 21544 ill_t *ill = test_ipif->ipif_ill; 21545 ire_t *ire, *ire_array[12]; /* see note above */ 21546 ire_t **irep1, **irep = &ire_array[0]; 21547 uint_t i, willdie; 21548 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21549 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21550 21551 ASSERT(!test_ipif->ipif_isv6); 21552 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21553 21554 /* 21555 * No broadcast IREs for the LOOPBACK interface 21556 * or others such as point to point and IPIF_NOXMIT. 21557 */ 21558 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21559 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21560 return; 21561 21562 bzero(bireinfo, sizeof (bireinfo)); 21563 bireinfo[0].bi_type = BCAST_ALLZEROES; 21564 bireinfo[0].bi_addr = 0; 21565 21566 bireinfo[1].bi_type = BCAST_ALLONES; 21567 bireinfo[1].bi_addr = INADDR_BROADCAST; 21568 21569 bireinfo[2].bi_type = BCAST_NET; 21570 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21571 21572 if (test_ipif->ipif_net_mask != 0) 21573 mask = test_ipif->ipif_net_mask; 21574 bireinfo[3].bi_type = BCAST_SUBNET; 21575 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21576 21577 /* 21578 * Figure out what (if any) broadcast IREs will die as a result of 21579 * `test_ipif' going away. If none will die, we're done. 21580 */ 21581 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21582 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21583 test_ipif, ALL_ZONES, NULL, 21584 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21585 if (ire != NULL) { 21586 willdie++; 21587 bireinfo[i].bi_willdie = 1; 21588 ire_refrele(ire); 21589 } 21590 } 21591 21592 if (willdie == 0) 21593 return; 21594 21595 /* 21596 * Walk through all the ipifs that will be affected by the dying IREs, 21597 * and recreate the IREs as necessary. 21598 */ 21599 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21600 21601 /* 21602 * Scan through the set of broadcast IREs and see if there are any 21603 * that we need to replace that have not yet been replaced. If so, 21604 * replace them using the appropriate backup ipif. 21605 */ 21606 for (i = 0; i < BCAST_COUNT; i++) { 21607 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21608 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21609 &bireinfo[i], irep); 21610 } 21611 21612 /* 21613 * If we can't create all of them, don't add any of them. (Code in 21614 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21615 * non-loopback copy and loopback copy for a given address.) 21616 */ 21617 for (irep1 = irep; irep1 > ire_array; ) { 21618 irep1--; 21619 if (*irep1 == NULL) { 21620 ip0dbg(("ipif_check_bcast_ires: can't create " 21621 "IRE_BROADCAST, memory allocation failure\n")); 21622 while (irep > ire_array) { 21623 irep--; 21624 if (*irep != NULL) 21625 ire_delete(*irep); 21626 } 21627 return; 21628 } 21629 } 21630 21631 for (irep1 = irep; irep1 > ire_array; ) { 21632 irep1--; 21633 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21634 ire_refrele(*irep1); /* Held in ire_add */ 21635 } 21636 } 21637 21638 /* 21639 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21640 * from lifr_flags and the name from lifr_name. 21641 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21642 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21643 * Returns EINPROGRESS when mp has been consumed by queueing it on 21644 * ill_pending_mp and the ioctl will complete in ip_rput. 21645 * 21646 * Can operate on either a module or a driver queue. 21647 * Returns an error if not a module queue. 21648 */ 21649 /* ARGSUSED */ 21650 int 21651 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21652 ip_ioctl_cmd_t *ipip, void *if_req) 21653 { 21654 int err; 21655 ill_t *ill; 21656 struct lifreq *lifr = (struct lifreq *)if_req; 21657 21658 ASSERT(ipif != NULL); 21659 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21660 21661 if (q->q_next == NULL) { 21662 ip1dbg(( 21663 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21664 return (EINVAL); 21665 } 21666 21667 ill = (ill_t *)q->q_ptr; 21668 /* 21669 * If we are not writer on 'q' then this interface exists already 21670 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21671 * So return EALREADY 21672 */ 21673 if (ill != ipif->ipif_ill) 21674 return (EALREADY); 21675 21676 if (ill->ill_name[0] != '\0') 21677 return (EALREADY); 21678 21679 /* 21680 * Set all the flags. Allows all kinds of override. Provide some 21681 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21682 * unless there is either multicast/broadcast support in the driver 21683 * or it is a pt-pt link. 21684 */ 21685 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21686 /* Meaningless to IP thus don't allow them to be set. */ 21687 ip1dbg(("ip_setname: EINVAL 1\n")); 21688 return (EINVAL); 21689 } 21690 /* 21691 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21692 * ill_bcast_addr_length info. 21693 */ 21694 if (!ill->ill_needs_attach && 21695 ((lifr->lifr_flags & IFF_MULTICAST) && 21696 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21697 ill->ill_bcast_addr_length == 0)) { 21698 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21699 ip1dbg(("ip_setname: EINVAL 2\n")); 21700 return (EINVAL); 21701 } 21702 if ((lifr->lifr_flags & IFF_BROADCAST) && 21703 ((lifr->lifr_flags & IFF_IPV6) || 21704 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21705 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21706 ip1dbg(("ip_setname: EINVAL 3\n")); 21707 return (EINVAL); 21708 } 21709 if (lifr->lifr_flags & IFF_UP) { 21710 /* Can only be set with SIOCSLIFFLAGS */ 21711 ip1dbg(("ip_setname: EINVAL 4\n")); 21712 return (EINVAL); 21713 } 21714 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21715 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21716 ip1dbg(("ip_setname: EINVAL 5\n")); 21717 return (EINVAL); 21718 } 21719 /* 21720 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21721 */ 21722 if ((lifr->lifr_flags & IFF_XRESOLV) && 21723 !(lifr->lifr_flags & IFF_IPV6) && 21724 !(ipif->ipif_isv6)) { 21725 ip1dbg(("ip_setname: EINVAL 6\n")); 21726 return (EINVAL); 21727 } 21728 21729 /* 21730 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21731 * we have all the flags here. So, we assign rather than we OR. 21732 * We can't OR the flags here because we don't want to set 21733 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21734 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21735 * on lifr_flags value here. 21736 */ 21737 /* 21738 * This ill has not been inserted into the global list. 21739 * So we are still single threaded and don't need any lock 21740 */ 21741 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21742 ~IFF_DUPLICATE; 21743 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21744 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21745 21746 /* We started off as V4. */ 21747 if (ill->ill_flags & ILLF_IPV6) { 21748 ill->ill_phyint->phyint_illv6 = ill; 21749 ill->ill_phyint->phyint_illv4 = NULL; 21750 } 21751 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21752 return (err); 21753 } 21754 21755 /* ARGSUSED */ 21756 int 21757 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21758 ip_ioctl_cmd_t *ipip, void *if_req) 21759 { 21760 /* 21761 * ill_phyint_reinit merged the v4 and v6 into a single 21762 * ipsq. Could also have become part of a ipmp group in the 21763 * process, and we might not have been able to complete the 21764 * slifname in ipif_set_values, if we could not become 21765 * exclusive. If so restart it here 21766 */ 21767 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21768 } 21769 21770 /* 21771 * Return a pointer to the ipif which matches the index, IP version type and 21772 * zoneid. 21773 */ 21774 ipif_t * 21775 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21776 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21777 { 21778 ill_t *ill; 21779 ipsq_t *ipsq; 21780 phyint_t *phyi; 21781 ipif_t *ipif; 21782 21783 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21784 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21785 21786 if (err != NULL) 21787 *err = 0; 21788 21789 /* 21790 * Indexes are stored in the phyint - a common structure 21791 * to both IPv4 and IPv6. 21792 */ 21793 21794 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21795 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21796 (void *) &index, NULL); 21797 if (phyi != NULL) { 21798 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21799 if (ill == NULL) { 21800 rw_exit(&ipst->ips_ill_g_lock); 21801 if (err != NULL) 21802 *err = ENXIO; 21803 return (NULL); 21804 } 21805 GRAB_CONN_LOCK(q); 21806 mutex_enter(&ill->ill_lock); 21807 if (ILL_CAN_LOOKUP(ill)) { 21808 for (ipif = ill->ill_ipif; ipif != NULL; 21809 ipif = ipif->ipif_next) { 21810 if (IPIF_CAN_LOOKUP(ipif) && 21811 (zoneid == ALL_ZONES || 21812 zoneid == ipif->ipif_zoneid || 21813 ipif->ipif_zoneid == ALL_ZONES)) { 21814 ipif_refhold_locked(ipif); 21815 mutex_exit(&ill->ill_lock); 21816 RELEASE_CONN_LOCK(q); 21817 rw_exit(&ipst->ips_ill_g_lock); 21818 return (ipif); 21819 } 21820 } 21821 } else if (ILL_CAN_WAIT(ill, q)) { 21822 ipsq = ill->ill_phyint->phyint_ipsq; 21823 mutex_enter(&ipsq->ipsq_lock); 21824 rw_exit(&ipst->ips_ill_g_lock); 21825 mutex_exit(&ill->ill_lock); 21826 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21827 mutex_exit(&ipsq->ipsq_lock); 21828 RELEASE_CONN_LOCK(q); 21829 *err = EINPROGRESS; 21830 return (NULL); 21831 } 21832 mutex_exit(&ill->ill_lock); 21833 RELEASE_CONN_LOCK(q); 21834 } 21835 rw_exit(&ipst->ips_ill_g_lock); 21836 if (err != NULL) 21837 *err = ENXIO; 21838 return (NULL); 21839 } 21840 21841 typedef struct conn_change_s { 21842 uint_t cc_old_ifindex; 21843 uint_t cc_new_ifindex; 21844 } conn_change_t; 21845 21846 /* 21847 * ipcl_walk function for changing interface index. 21848 */ 21849 static void 21850 conn_change_ifindex(conn_t *connp, caddr_t arg) 21851 { 21852 conn_change_t *connc; 21853 uint_t old_ifindex; 21854 uint_t new_ifindex; 21855 int i; 21856 ilg_t *ilg; 21857 21858 connc = (conn_change_t *)arg; 21859 old_ifindex = connc->cc_old_ifindex; 21860 new_ifindex = connc->cc_new_ifindex; 21861 21862 if (connp->conn_orig_bound_ifindex == old_ifindex) 21863 connp->conn_orig_bound_ifindex = new_ifindex; 21864 21865 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21866 connp->conn_orig_multicast_ifindex = new_ifindex; 21867 21868 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21869 connp->conn_orig_xmit_ifindex = new_ifindex; 21870 21871 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21872 ilg = &connp->conn_ilg[i]; 21873 if (ilg->ilg_orig_ifindex == old_ifindex) 21874 ilg->ilg_orig_ifindex = new_ifindex; 21875 } 21876 } 21877 21878 /* 21879 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21880 * to new_index if it matches the old_index. 21881 * 21882 * Failovers typically happen within a group of ills. But somebody 21883 * can remove an ill from the group after a failover happened. If 21884 * we are setting the ifindex after this, we potentially need to 21885 * look at all the ills rather than just the ones in the group. 21886 * We cut down the work by looking at matching ill_net_types 21887 * and ill_types as we could not possibly grouped them together. 21888 */ 21889 static void 21890 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21891 { 21892 ill_t *ill; 21893 ipif_t *ipif; 21894 uint_t old_ifindex; 21895 uint_t new_ifindex; 21896 ilm_t *ilm; 21897 ill_walk_context_t ctx; 21898 ip_stack_t *ipst = ill_orig->ill_ipst; 21899 21900 old_ifindex = connc->cc_old_ifindex; 21901 new_ifindex = connc->cc_new_ifindex; 21902 21903 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21904 ill = ILL_START_WALK_ALL(&ctx, ipst); 21905 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21906 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21907 (ill_orig->ill_type != ill->ill_type)) { 21908 continue; 21909 } 21910 for (ipif = ill->ill_ipif; ipif != NULL; 21911 ipif = ipif->ipif_next) { 21912 if (ipif->ipif_orig_ifindex == old_ifindex) 21913 ipif->ipif_orig_ifindex = new_ifindex; 21914 } 21915 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21916 if (ilm->ilm_orig_ifindex == old_ifindex) 21917 ilm->ilm_orig_ifindex = new_ifindex; 21918 } 21919 } 21920 rw_exit(&ipst->ips_ill_g_lock); 21921 } 21922 21923 /* 21924 * We first need to ensure that the new index is unique, and 21925 * then carry the change across both v4 and v6 ill representation 21926 * of the physical interface. 21927 */ 21928 /* ARGSUSED */ 21929 int 21930 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21931 ip_ioctl_cmd_t *ipip, void *ifreq) 21932 { 21933 ill_t *ill; 21934 ill_t *ill_other; 21935 phyint_t *phyi; 21936 int old_index; 21937 conn_change_t connc; 21938 struct ifreq *ifr = (struct ifreq *)ifreq; 21939 struct lifreq *lifr = (struct lifreq *)ifreq; 21940 uint_t index; 21941 ill_t *ill_v4; 21942 ill_t *ill_v6; 21943 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21944 21945 if (ipip->ipi_cmd_type == IF_CMD) 21946 index = ifr->ifr_index; 21947 else 21948 index = lifr->lifr_index; 21949 21950 /* 21951 * Only allow on physical interface. Also, index zero is illegal. 21952 * 21953 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21954 * 21955 * 1) If PHYI_FAILED is set, a failover could have happened which 21956 * implies a possible failback might have to happen. As failback 21957 * depends on the old index, we should fail setting the index. 21958 * 21959 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21960 * any addresses or multicast memberships are failed over to 21961 * a non-STANDBY interface. As failback depends on the old 21962 * index, we should fail setting the index for this case also. 21963 * 21964 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21965 * Be consistent with PHYI_FAILED and fail the ioctl. 21966 */ 21967 ill = ipif->ipif_ill; 21968 phyi = ill->ill_phyint; 21969 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21970 ipif->ipif_id != 0 || index == 0) { 21971 return (EINVAL); 21972 } 21973 old_index = phyi->phyint_ifindex; 21974 21975 /* If the index is not changing, no work to do */ 21976 if (old_index == index) 21977 return (0); 21978 21979 /* 21980 * Use ill_lookup_on_ifindex to determine if the 21981 * new index is unused and if so allow the change. 21982 */ 21983 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21984 ipst); 21985 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21986 ipst); 21987 if (ill_v6 != NULL || ill_v4 != NULL) { 21988 if (ill_v4 != NULL) 21989 ill_refrele(ill_v4); 21990 if (ill_v6 != NULL) 21991 ill_refrele(ill_v6); 21992 return (EBUSY); 21993 } 21994 21995 /* 21996 * The new index is unused. Set it in the phyint. 21997 * Locate the other ill so that we can send a routing 21998 * sockets message. 21999 */ 22000 if (ill->ill_isv6) { 22001 ill_other = phyi->phyint_illv4; 22002 } else { 22003 ill_other = phyi->phyint_illv6; 22004 } 22005 22006 phyi->phyint_ifindex = index; 22007 22008 /* Update SCTP's ILL list */ 22009 sctp_ill_reindex(ill, old_index); 22010 22011 connc.cc_old_ifindex = old_index; 22012 connc.cc_new_ifindex = index; 22013 ip_change_ifindex(ill, &connc); 22014 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22015 22016 /* Send the routing sockets message */ 22017 ip_rts_ifmsg(ipif); 22018 if (ill_other != NULL) 22019 ip_rts_ifmsg(ill_other->ill_ipif); 22020 22021 return (0); 22022 } 22023 22024 /* ARGSUSED */ 22025 int 22026 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22027 ip_ioctl_cmd_t *ipip, void *ifreq) 22028 { 22029 struct ifreq *ifr = (struct ifreq *)ifreq; 22030 struct lifreq *lifr = (struct lifreq *)ifreq; 22031 22032 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22033 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22034 /* Get the interface index */ 22035 if (ipip->ipi_cmd_type == IF_CMD) { 22036 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22037 } else { 22038 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22039 } 22040 return (0); 22041 } 22042 22043 /* ARGSUSED */ 22044 int 22045 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22046 ip_ioctl_cmd_t *ipip, void *ifreq) 22047 { 22048 struct lifreq *lifr = (struct lifreq *)ifreq; 22049 22050 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22051 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22052 /* Get the interface zone */ 22053 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22054 lifr->lifr_zoneid = ipif->ipif_zoneid; 22055 return (0); 22056 } 22057 22058 /* 22059 * Set the zoneid of an interface. 22060 */ 22061 /* ARGSUSED */ 22062 int 22063 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22064 ip_ioctl_cmd_t *ipip, void *ifreq) 22065 { 22066 struct lifreq *lifr = (struct lifreq *)ifreq; 22067 int err = 0; 22068 boolean_t need_up = B_FALSE; 22069 zone_t *zptr; 22070 zone_status_t status; 22071 zoneid_t zoneid; 22072 22073 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22074 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22075 if (!is_system_labeled()) 22076 return (ENOTSUP); 22077 zoneid = GLOBAL_ZONEID; 22078 } 22079 22080 /* cannot assign instance zero to a non-global zone */ 22081 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22082 return (ENOTSUP); 22083 22084 /* 22085 * Cannot assign to a zone that doesn't exist or is shutting down. In 22086 * the event of a race with the zone shutdown processing, since IP 22087 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22088 * interface will be cleaned up even if the zone is shut down 22089 * immediately after the status check. If the interface can't be brought 22090 * down right away, and the zone is shut down before the restart 22091 * function is called, we resolve the possible races by rechecking the 22092 * zone status in the restart function. 22093 */ 22094 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22095 return (EINVAL); 22096 status = zone_status_get(zptr); 22097 zone_rele(zptr); 22098 22099 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22100 return (EINVAL); 22101 22102 if (ipif->ipif_flags & IPIF_UP) { 22103 /* 22104 * If the interface is already marked up, 22105 * we call ipif_down which will take care 22106 * of ditching any IREs that have been set 22107 * up based on the old interface address. 22108 */ 22109 err = ipif_logical_down(ipif, q, mp); 22110 if (err == EINPROGRESS) 22111 return (err); 22112 ipif_down_tail(ipif); 22113 need_up = B_TRUE; 22114 } 22115 22116 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22117 return (err); 22118 } 22119 22120 static int 22121 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22122 queue_t *q, mblk_t *mp, boolean_t need_up) 22123 { 22124 int err = 0; 22125 ip_stack_t *ipst; 22126 22127 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22128 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22129 22130 if (CONN_Q(q)) 22131 ipst = CONNQ_TO_IPST(q); 22132 else 22133 ipst = ILLQ_TO_IPST(q); 22134 22135 /* 22136 * For exclusive stacks we don't allow a different zoneid than 22137 * global. 22138 */ 22139 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22140 zoneid != GLOBAL_ZONEID) 22141 return (EINVAL); 22142 22143 /* Set the new zone id. */ 22144 ipif->ipif_zoneid = zoneid; 22145 22146 /* Update sctp list */ 22147 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22148 22149 if (need_up) { 22150 /* 22151 * Now bring the interface back up. If this 22152 * is the only IPIF for the ILL, ipif_up 22153 * will have to re-bind to the device, so 22154 * we may get back EINPROGRESS, in which 22155 * case, this IOCTL will get completed in 22156 * ip_rput_dlpi when we see the DL_BIND_ACK. 22157 */ 22158 err = ipif_up(ipif, q, mp); 22159 } 22160 return (err); 22161 } 22162 22163 /* ARGSUSED */ 22164 int 22165 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22166 ip_ioctl_cmd_t *ipip, void *if_req) 22167 { 22168 struct lifreq *lifr = (struct lifreq *)if_req; 22169 zoneid_t zoneid; 22170 zone_t *zptr; 22171 zone_status_t status; 22172 22173 ASSERT(ipif->ipif_id != 0); 22174 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22175 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22176 zoneid = GLOBAL_ZONEID; 22177 22178 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22179 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22180 22181 /* 22182 * We recheck the zone status to resolve the following race condition: 22183 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22184 * 2) hme0:1 is up and can't be brought down right away; 22185 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22186 * 3) zone "myzone" is halted; the zone status switches to 22187 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22188 * the interfaces to remove - hme0:1 is not returned because it's not 22189 * yet in "myzone", so it won't be removed; 22190 * 4) the restart function for SIOCSLIFZONE is called; without the 22191 * status check here, we would have hme0:1 in "myzone" after it's been 22192 * destroyed. 22193 * Note that if the status check fails, we need to bring the interface 22194 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22195 * ipif_up_done[_v6](). 22196 */ 22197 status = ZONE_IS_UNINITIALIZED; 22198 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22199 status = zone_status_get(zptr); 22200 zone_rele(zptr); 22201 } 22202 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22203 if (ipif->ipif_isv6) { 22204 (void) ipif_up_done_v6(ipif); 22205 } else { 22206 (void) ipif_up_done(ipif); 22207 } 22208 return (EINVAL); 22209 } 22210 22211 ipif_down_tail(ipif); 22212 22213 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22214 B_TRUE)); 22215 } 22216 22217 /* ARGSUSED */ 22218 int 22219 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22220 ip_ioctl_cmd_t *ipip, void *ifreq) 22221 { 22222 struct lifreq *lifr = ifreq; 22223 22224 ASSERT(q->q_next == NULL); 22225 ASSERT(CONN_Q(q)); 22226 22227 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22228 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22229 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22230 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22231 22232 return (0); 22233 } 22234 22235 22236 /* Find the previous ILL in this usesrc group */ 22237 static ill_t * 22238 ill_prev_usesrc(ill_t *uill) 22239 { 22240 ill_t *ill; 22241 22242 for (ill = uill->ill_usesrc_grp_next; 22243 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22244 ill = ill->ill_usesrc_grp_next) 22245 /* do nothing */; 22246 return (ill); 22247 } 22248 22249 /* 22250 * Release all members of the usesrc group. This routine is called 22251 * from ill_delete when the interface being unplumbed is the 22252 * group head. 22253 */ 22254 static void 22255 ill_disband_usesrc_group(ill_t *uill) 22256 { 22257 ill_t *next_ill, *tmp_ill; 22258 ip_stack_t *ipst = uill->ill_ipst; 22259 22260 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22261 next_ill = uill->ill_usesrc_grp_next; 22262 22263 do { 22264 ASSERT(next_ill != NULL); 22265 tmp_ill = next_ill->ill_usesrc_grp_next; 22266 ASSERT(tmp_ill != NULL); 22267 next_ill->ill_usesrc_grp_next = NULL; 22268 next_ill->ill_usesrc_ifindex = 0; 22269 next_ill = tmp_ill; 22270 } while (next_ill->ill_usesrc_ifindex != 0); 22271 uill->ill_usesrc_grp_next = NULL; 22272 } 22273 22274 /* 22275 * Remove the client usesrc ILL from the list and relink to a new list 22276 */ 22277 int 22278 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22279 { 22280 ill_t *ill, *tmp_ill; 22281 ip_stack_t *ipst = ucill->ill_ipst; 22282 22283 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22284 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22285 22286 /* 22287 * Check if the usesrc client ILL passed in is not already 22288 * in use as a usesrc ILL i.e one whose source address is 22289 * in use OR a usesrc ILL is not already in use as a usesrc 22290 * client ILL 22291 */ 22292 if ((ucill->ill_usesrc_ifindex == 0) || 22293 (uill->ill_usesrc_ifindex != 0)) { 22294 return (-1); 22295 } 22296 22297 ill = ill_prev_usesrc(ucill); 22298 ASSERT(ill->ill_usesrc_grp_next != NULL); 22299 22300 /* Remove from the current list */ 22301 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22302 /* Only two elements in the list */ 22303 ASSERT(ill->ill_usesrc_ifindex == 0); 22304 ill->ill_usesrc_grp_next = NULL; 22305 } else { 22306 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22307 } 22308 22309 if (ifindex == 0) { 22310 ucill->ill_usesrc_ifindex = 0; 22311 ucill->ill_usesrc_grp_next = NULL; 22312 return (0); 22313 } 22314 22315 ucill->ill_usesrc_ifindex = ifindex; 22316 tmp_ill = uill->ill_usesrc_grp_next; 22317 uill->ill_usesrc_grp_next = ucill; 22318 ucill->ill_usesrc_grp_next = 22319 (tmp_ill != NULL) ? tmp_ill : uill; 22320 return (0); 22321 } 22322 22323 /* 22324 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22325 * ip.c for locking details. 22326 */ 22327 /* ARGSUSED */ 22328 int 22329 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22330 ip_ioctl_cmd_t *ipip, void *ifreq) 22331 { 22332 struct lifreq *lifr = (struct lifreq *)ifreq; 22333 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22334 ill_flag_changed = B_FALSE; 22335 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22336 int err = 0, ret; 22337 uint_t ifindex; 22338 phyint_t *us_phyint, *us_cli_phyint; 22339 ipsq_t *ipsq = NULL; 22340 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22341 22342 ASSERT(IAM_WRITER_IPIF(ipif)); 22343 ASSERT(q->q_next == NULL); 22344 ASSERT(CONN_Q(q)); 22345 22346 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22347 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22348 22349 ASSERT(us_cli_phyint != NULL); 22350 22351 /* 22352 * If the client ILL is being used for IPMP, abort. 22353 * Note, this can be done before ipsq_try_enter since we are already 22354 * exclusive on this ILL 22355 */ 22356 if ((us_cli_phyint->phyint_groupname != NULL) || 22357 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22358 return (EINVAL); 22359 } 22360 22361 ifindex = lifr->lifr_index; 22362 if (ifindex == 0) { 22363 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22364 /* non usesrc group interface, nothing to reset */ 22365 return (0); 22366 } 22367 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22368 /* valid reset request */ 22369 reset_flg = B_TRUE; 22370 } 22371 22372 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22373 ip_process_ioctl, &err, ipst); 22374 22375 if (usesrc_ill == NULL) { 22376 return (err); 22377 } 22378 22379 /* 22380 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22381 * group nor can either of the interfaces be used for standy. So 22382 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22383 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22384 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22385 * We are already exlusive on this ipsq i.e ipsq corresponding to 22386 * the usesrc_cli_ill 22387 */ 22388 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22389 NEW_OP, B_TRUE); 22390 if (ipsq == NULL) { 22391 err = EINPROGRESS; 22392 /* Operation enqueued on the ipsq of the usesrc ILL */ 22393 goto done; 22394 } 22395 22396 /* Check if the usesrc_ill is used for IPMP */ 22397 us_phyint = usesrc_ill->ill_phyint; 22398 if ((us_phyint->phyint_groupname != NULL) || 22399 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22400 err = EINVAL; 22401 goto done; 22402 } 22403 22404 /* 22405 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22406 * already a client then return EINVAL 22407 */ 22408 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22409 err = EINVAL; 22410 goto done; 22411 } 22412 22413 /* 22414 * If the ill_usesrc_ifindex field is already set to what it needs to 22415 * be then this is a duplicate operation. 22416 */ 22417 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22418 err = 0; 22419 goto done; 22420 } 22421 22422 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22423 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22424 usesrc_ill->ill_isv6)); 22425 22426 /* 22427 * The next step ensures that no new ires will be created referencing 22428 * the client ill, until the ILL_CHANGING flag is cleared. Then 22429 * we go through an ire walk deleting all ire caches that reference 22430 * the client ill. New ires referencing the client ill that are added 22431 * to the ire table before the ILL_CHANGING flag is set, will be 22432 * cleaned up by the ire walk below. Attempt to add new ires referencing 22433 * the client ill while the ILL_CHANGING flag is set will be failed 22434 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22435 * checks (under the ill_g_usesrc_lock) that the ire being added 22436 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22437 * belong to the same usesrc group. 22438 */ 22439 mutex_enter(&usesrc_cli_ill->ill_lock); 22440 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22441 mutex_exit(&usesrc_cli_ill->ill_lock); 22442 ill_flag_changed = B_TRUE; 22443 22444 if (ipif->ipif_isv6) 22445 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22446 ALL_ZONES, ipst); 22447 else 22448 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22449 ALL_ZONES, ipst); 22450 22451 /* 22452 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22453 * and the ill_usesrc_ifindex fields 22454 */ 22455 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22456 22457 if (reset_flg) { 22458 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22459 if (ret != 0) { 22460 err = EINVAL; 22461 } 22462 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22463 goto done; 22464 } 22465 22466 /* 22467 * Four possibilities to consider: 22468 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22469 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22470 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22471 * 4. Both are part of their respective usesrc groups 22472 */ 22473 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22474 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22475 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22476 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22477 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22478 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22479 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22480 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22481 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22482 /* Insert at head of list */ 22483 usesrc_cli_ill->ill_usesrc_grp_next = 22484 usesrc_ill->ill_usesrc_grp_next; 22485 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22486 } else { 22487 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22488 ifindex); 22489 if (ret != 0) 22490 err = EINVAL; 22491 } 22492 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22493 22494 done: 22495 if (ill_flag_changed) { 22496 mutex_enter(&usesrc_cli_ill->ill_lock); 22497 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22498 mutex_exit(&usesrc_cli_ill->ill_lock); 22499 } 22500 if (ipsq != NULL) 22501 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22502 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22503 ill_refrele(usesrc_ill); 22504 return (err); 22505 } 22506 22507 /* 22508 * comparison function used by avl. 22509 */ 22510 static int 22511 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22512 { 22513 22514 uint_t index; 22515 22516 ASSERT(phyip != NULL && index_ptr != NULL); 22517 22518 index = *((uint_t *)index_ptr); 22519 /* 22520 * let the phyint with the lowest index be on top. 22521 */ 22522 if (((phyint_t *)phyip)->phyint_ifindex < index) 22523 return (1); 22524 if (((phyint_t *)phyip)->phyint_ifindex > index) 22525 return (-1); 22526 return (0); 22527 } 22528 22529 /* 22530 * comparison function used by avl. 22531 */ 22532 static int 22533 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22534 { 22535 ill_t *ill; 22536 int res = 0; 22537 22538 ASSERT(phyip != NULL && name_ptr != NULL); 22539 22540 if (((phyint_t *)phyip)->phyint_illv4) 22541 ill = ((phyint_t *)phyip)->phyint_illv4; 22542 else 22543 ill = ((phyint_t *)phyip)->phyint_illv6; 22544 ASSERT(ill != NULL); 22545 22546 res = strcmp(ill->ill_name, (char *)name_ptr); 22547 if (res > 0) 22548 return (1); 22549 else if (res < 0) 22550 return (-1); 22551 return (0); 22552 } 22553 /* 22554 * This function is called from ill_delete when the ill is being 22555 * unplumbed. We remove the reference from the phyint and we also 22556 * free the phyint when there are no more references to it. 22557 */ 22558 static void 22559 ill_phyint_free(ill_t *ill) 22560 { 22561 phyint_t *phyi; 22562 phyint_t *next_phyint; 22563 ipsq_t *cur_ipsq; 22564 ip_stack_t *ipst = ill->ill_ipst; 22565 22566 ASSERT(ill->ill_phyint != NULL); 22567 22568 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22569 phyi = ill->ill_phyint; 22570 ill->ill_phyint = NULL; 22571 /* 22572 * ill_init allocates a phyint always to store the copy 22573 * of flags relevant to phyint. At that point in time, we could 22574 * not assign the name and hence phyint_illv4/v6 could not be 22575 * initialized. Later in ipif_set_values, we assign the name to 22576 * the ill, at which point in time we assign phyint_illv4/v6. 22577 * Thus we don't rely on phyint_illv6 to be initialized always. 22578 */ 22579 if (ill->ill_flags & ILLF_IPV6) { 22580 phyi->phyint_illv6 = NULL; 22581 } else { 22582 phyi->phyint_illv4 = NULL; 22583 } 22584 /* 22585 * ipif_down removes it from the group when the last ipif goes 22586 * down. 22587 */ 22588 ASSERT(ill->ill_group == NULL); 22589 22590 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22591 return; 22592 22593 /* 22594 * Make sure this phyint was put in the list. 22595 */ 22596 if (phyi->phyint_ifindex > 0) { 22597 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22598 phyi); 22599 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22600 phyi); 22601 } 22602 /* 22603 * remove phyint from the ipsq list. 22604 */ 22605 cur_ipsq = phyi->phyint_ipsq; 22606 if (phyi == cur_ipsq->ipsq_phyint_list) { 22607 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22608 } else { 22609 next_phyint = cur_ipsq->ipsq_phyint_list; 22610 while (next_phyint != NULL) { 22611 if (next_phyint->phyint_ipsq_next == phyi) { 22612 next_phyint->phyint_ipsq_next = 22613 phyi->phyint_ipsq_next; 22614 break; 22615 } 22616 next_phyint = next_phyint->phyint_ipsq_next; 22617 } 22618 ASSERT(next_phyint != NULL); 22619 } 22620 IPSQ_DEC_REF(cur_ipsq, ipst); 22621 22622 if (phyi->phyint_groupname_len != 0) { 22623 ASSERT(phyi->phyint_groupname != NULL); 22624 mi_free(phyi->phyint_groupname); 22625 } 22626 mi_free(phyi); 22627 } 22628 22629 /* 22630 * Attach the ill to the phyint structure which can be shared by both 22631 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22632 * function is called from ipif_set_values and ill_lookup_on_name (for 22633 * loopback) where we know the name of the ill. We lookup the ill and if 22634 * there is one present already with the name use that phyint. Otherwise 22635 * reuse the one allocated by ill_init. 22636 */ 22637 static void 22638 ill_phyint_reinit(ill_t *ill) 22639 { 22640 boolean_t isv6 = ill->ill_isv6; 22641 phyint_t *phyi_old; 22642 phyint_t *phyi; 22643 avl_index_t where = 0; 22644 ill_t *ill_other = NULL; 22645 ipsq_t *ipsq; 22646 ip_stack_t *ipst = ill->ill_ipst; 22647 22648 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22649 22650 phyi_old = ill->ill_phyint; 22651 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22652 phyi_old->phyint_illv6 == NULL)); 22653 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22654 phyi_old->phyint_illv4 == NULL)); 22655 ASSERT(phyi_old->phyint_ifindex == 0); 22656 22657 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22658 ill->ill_name, &where); 22659 22660 /* 22661 * 1. We grabbed the ill_g_lock before inserting this ill into 22662 * the global list of ills. So no other thread could have located 22663 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22664 * 2. Now locate the other protocol instance of this ill. 22665 * 3. Now grab both ill locks in the right order, and the phyint lock of 22666 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22667 * of neither ill can change. 22668 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22669 * other ill. 22670 * 5. Release all locks. 22671 */ 22672 22673 /* 22674 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22675 * we are initializing IPv4. 22676 */ 22677 if (phyi != NULL) { 22678 ill_other = (isv6) ? phyi->phyint_illv4 : 22679 phyi->phyint_illv6; 22680 ASSERT(ill_other->ill_phyint != NULL); 22681 ASSERT((isv6 && !ill_other->ill_isv6) || 22682 (!isv6 && ill_other->ill_isv6)); 22683 GRAB_ILL_LOCKS(ill, ill_other); 22684 /* 22685 * We are potentially throwing away phyint_flags which 22686 * could be different from the one that we obtain from 22687 * ill_other->ill_phyint. But it is okay as we are assuming 22688 * that the state maintained within IP is correct. 22689 */ 22690 mutex_enter(&phyi->phyint_lock); 22691 if (isv6) { 22692 ASSERT(phyi->phyint_illv6 == NULL); 22693 phyi->phyint_illv6 = ill; 22694 } else { 22695 ASSERT(phyi->phyint_illv4 == NULL); 22696 phyi->phyint_illv4 = ill; 22697 } 22698 /* 22699 * This is a new ill, currently undergoing SLIFNAME 22700 * So we could not have joined an IPMP group until now. 22701 */ 22702 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22703 phyi_old->phyint_groupname == NULL); 22704 22705 /* 22706 * This phyi_old is going away. Decref ipsq_refs and 22707 * assert it is zero. The ipsq itself will be freed in 22708 * ipsq_exit 22709 */ 22710 ipsq = phyi_old->phyint_ipsq; 22711 IPSQ_DEC_REF(ipsq, ipst); 22712 ASSERT(ipsq->ipsq_refs == 0); 22713 /* Get the singleton phyint out of the ipsq list */ 22714 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22715 ipsq->ipsq_phyint_list = NULL; 22716 phyi_old->phyint_illv4 = NULL; 22717 phyi_old->phyint_illv6 = NULL; 22718 mi_free(phyi_old); 22719 } else { 22720 mutex_enter(&ill->ill_lock); 22721 /* 22722 * We don't need to acquire any lock, since 22723 * the ill is not yet visible globally and we 22724 * have not yet released the ill_g_lock. 22725 */ 22726 phyi = phyi_old; 22727 mutex_enter(&phyi->phyint_lock); 22728 /* XXX We need a recovery strategy here. */ 22729 if (!phyint_assign_ifindex(phyi, ipst)) 22730 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22731 22732 /* No IPMP group yet, thus the hook uses the ifindex */ 22733 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22734 22735 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22736 (void *)phyi, where); 22737 22738 (void) avl_find(&ipst->ips_phyint_g_list-> 22739 phyint_list_avl_by_index, 22740 &phyi->phyint_ifindex, &where); 22741 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22742 (void *)phyi, where); 22743 } 22744 22745 /* 22746 * Reassigning ill_phyint automatically reassigns the ipsq also. 22747 * pending mp is not affected because that is per ill basis. 22748 */ 22749 ill->ill_phyint = phyi; 22750 22751 /* 22752 * Keep the index on ipif_orig_index to be used by FAILOVER. 22753 * We do this here as when the first ipif was allocated, 22754 * ipif_allocate does not know the right interface index. 22755 */ 22756 22757 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22758 /* 22759 * Now that the phyint's ifindex has been assigned, complete the 22760 * remaining 22761 */ 22762 22763 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22764 if (ill->ill_isv6) { 22765 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22766 ill->ill_phyint->phyint_ifindex; 22767 ill->ill_mcast_type = ipst->ips_mld_max_version; 22768 } else { 22769 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22770 } 22771 22772 /* 22773 * Generate an event within the hooks framework to indicate that 22774 * a new interface has just been added to IP. For this event to 22775 * be generated, the network interface must, at least, have an 22776 * ifindex assigned to it. 22777 * 22778 * This needs to be run inside the ill_g_lock perimeter to ensure 22779 * that the ordering of delivered events to listeners matches the 22780 * order of them in the kernel. 22781 * 22782 * This function could be called from ill_lookup_on_name. In that case 22783 * the interface is loopback "lo", which will not generate a NIC event. 22784 */ 22785 if (ill->ill_name_length <= 2 || 22786 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22787 /* 22788 * Generate nic plumb event for ill_name even if 22789 * ipmp_hook_emulation is set. That avoids generating events 22790 * for the ill_names should ipmp_hook_emulation be turned on 22791 * later. 22792 */ 22793 ill_nic_info_plumb(ill, B_FALSE); 22794 } 22795 RELEASE_ILL_LOCKS(ill, ill_other); 22796 mutex_exit(&phyi->phyint_lock); 22797 } 22798 22799 /* 22800 * Allocate a NE_PLUMB nic info event and store in the ill. 22801 * If 'group' is set we do it for the group name, otherwise the ill name. 22802 * It will be sent when we leave the ipsq. 22803 */ 22804 void 22805 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22806 { 22807 phyint_t *phyi = ill->ill_phyint; 22808 ip_stack_t *ipst = ill->ill_ipst; 22809 hook_nic_event_t *info; 22810 char *name; 22811 int namelen; 22812 22813 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22814 22815 if ((info = ill->ill_nic_event_info) != NULL) { 22816 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22817 "attached for %s\n", info->hne_event, 22818 ill->ill_name)); 22819 if (info->hne_data != NULL) 22820 kmem_free(info->hne_data, info->hne_datalen); 22821 kmem_free(info, sizeof (hook_nic_event_t)); 22822 ill->ill_nic_event_info = NULL; 22823 } 22824 22825 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22826 if (info == NULL) { 22827 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22828 "event information for %s (ENOMEM)\n", 22829 ill->ill_name)); 22830 return; 22831 } 22832 22833 if (group) { 22834 ASSERT(phyi->phyint_groupname_len != 0); 22835 namelen = phyi->phyint_groupname_len; 22836 name = phyi->phyint_groupname; 22837 } else { 22838 namelen = ill->ill_name_length; 22839 name = ill->ill_name; 22840 } 22841 22842 info->hne_nic = phyi->phyint_hook_ifindex; 22843 info->hne_lif = 0; 22844 info->hne_event = NE_PLUMB; 22845 info->hne_family = ill->ill_isv6 ? 22846 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22847 22848 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22849 if (info->hne_data != NULL) { 22850 info->hne_datalen = namelen; 22851 bcopy(name, info->hne_data, info->hne_datalen); 22852 } else { 22853 ip2dbg(("ill_nic_info_plumb: could not attach " 22854 "name information for PLUMB nic event " 22855 "of %s (ENOMEM)\n", name)); 22856 kmem_free(info, sizeof (hook_nic_event_t)); 22857 info = NULL; 22858 } 22859 ill->ill_nic_event_info = info; 22860 } 22861 22862 /* 22863 * Unhook the nic event message from the ill and enqueue it 22864 * into the nic event taskq. 22865 */ 22866 void 22867 ill_nic_info_dispatch(ill_t *ill) 22868 { 22869 hook_nic_event_t *info; 22870 22871 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22872 22873 if ((info = ill->ill_nic_event_info) != NULL) { 22874 if (ddi_taskq_dispatch(eventq_queue_nic, 22875 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22876 ip2dbg(("ill_nic_info_dispatch: " 22877 "ddi_taskq_dispatch failed\n")); 22878 if (info->hne_data != NULL) 22879 kmem_free(info->hne_data, info->hne_datalen); 22880 kmem_free(info, sizeof (hook_nic_event_t)); 22881 } 22882 ill->ill_nic_event_info = NULL; 22883 } 22884 } 22885 22886 /* 22887 * Notify any downstream modules of the name of this interface. 22888 * An M_IOCTL is used even though we don't expect a successful reply. 22889 * Any reply message from the driver (presumably an M_IOCNAK) will 22890 * eventually get discarded somewhere upstream. The message format is 22891 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22892 * to IP. 22893 */ 22894 static void 22895 ip_ifname_notify(ill_t *ill, queue_t *q) 22896 { 22897 mblk_t *mp1, *mp2; 22898 struct iocblk *iocp; 22899 struct lifreq *lifr; 22900 22901 mp1 = mkiocb(SIOCSLIFNAME); 22902 if (mp1 == NULL) 22903 return; 22904 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22905 if (mp2 == NULL) { 22906 freeb(mp1); 22907 return; 22908 } 22909 22910 mp1->b_cont = mp2; 22911 iocp = (struct iocblk *)mp1->b_rptr; 22912 iocp->ioc_count = sizeof (struct lifreq); 22913 22914 lifr = (struct lifreq *)mp2->b_rptr; 22915 mp2->b_wptr += sizeof (struct lifreq); 22916 bzero(lifr, sizeof (struct lifreq)); 22917 22918 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22919 lifr->lifr_ppa = ill->ill_ppa; 22920 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22921 22922 putnext(q, mp1); 22923 } 22924 22925 static int 22926 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22927 { 22928 int err; 22929 ip_stack_t *ipst = ill->ill_ipst; 22930 22931 /* Set the obsolete NDD per-interface forwarding name. */ 22932 err = ill_set_ndd_name(ill); 22933 if (err != 0) { 22934 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22935 err); 22936 } 22937 22938 /* Tell downstream modules where they are. */ 22939 ip_ifname_notify(ill, q); 22940 22941 /* 22942 * ill_dl_phys returns EINPROGRESS in the usual case. 22943 * Error cases are ENOMEM ... 22944 */ 22945 err = ill_dl_phys(ill, ipif, mp, q); 22946 22947 /* 22948 * If there is no IRE expiration timer running, get one started. 22949 * igmp and mld timers will be triggered by the first multicast 22950 */ 22951 if (ipst->ips_ip_ire_expire_id == 0) { 22952 /* 22953 * acquire the lock and check again. 22954 */ 22955 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22956 if (ipst->ips_ip_ire_expire_id == 0) { 22957 ipst->ips_ip_ire_expire_id = timeout( 22958 ip_trash_timer_expire, ipst, 22959 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22960 } 22961 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22962 } 22963 22964 if (ill->ill_isv6) { 22965 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22966 if (ipst->ips_mld_slowtimeout_id == 0) { 22967 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22968 (void *)ipst, 22969 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22970 } 22971 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22972 } else { 22973 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22974 if (ipst->ips_igmp_slowtimeout_id == 0) { 22975 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22976 (void *)ipst, 22977 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22978 } 22979 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22980 } 22981 22982 return (err); 22983 } 22984 22985 /* 22986 * Common routine for ppa and ifname setting. Should be called exclusive. 22987 * 22988 * Returns EINPROGRESS when mp has been consumed by queueing it on 22989 * ill_pending_mp and the ioctl will complete in ip_rput. 22990 * 22991 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22992 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22993 * For SLIFNAME, we pass these values back to the userland. 22994 */ 22995 static int 22996 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22997 { 22998 ill_t *ill; 22999 ipif_t *ipif; 23000 ipsq_t *ipsq; 23001 char *ppa_ptr; 23002 char *old_ptr; 23003 char old_char; 23004 int error; 23005 ip_stack_t *ipst; 23006 23007 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23008 ASSERT(q->q_next != NULL); 23009 ASSERT(interf_name != NULL); 23010 23011 ill = (ill_t *)q->q_ptr; 23012 ipst = ill->ill_ipst; 23013 23014 ASSERT(ill->ill_ipst != NULL); 23015 ASSERT(ill->ill_name[0] == '\0'); 23016 ASSERT(IAM_WRITER_ILL(ill)); 23017 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23018 ASSERT(ill->ill_ppa == UINT_MAX); 23019 23020 /* The ppa is sent down by ifconfig or is chosen */ 23021 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23022 return (EINVAL); 23023 } 23024 23025 /* 23026 * make sure ppa passed in is same as ppa in the name. 23027 * This check is not made when ppa == UINT_MAX in that case ppa 23028 * in the name could be anything. System will choose a ppa and 23029 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23030 */ 23031 if (*new_ppa_ptr != UINT_MAX) { 23032 /* stoi changes the pointer */ 23033 old_ptr = ppa_ptr; 23034 /* 23035 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23036 * (they don't have an externally visible ppa). We assign one 23037 * here so that we can manage the interface. Note that in 23038 * the past this value was always 0 for DLPI 1 drivers. 23039 */ 23040 if (*new_ppa_ptr == 0) 23041 *new_ppa_ptr = stoi(&old_ptr); 23042 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23043 return (EINVAL); 23044 } 23045 /* 23046 * terminate string before ppa 23047 * save char at that location. 23048 */ 23049 old_char = ppa_ptr[0]; 23050 ppa_ptr[0] = '\0'; 23051 23052 ill->ill_ppa = *new_ppa_ptr; 23053 /* 23054 * Finish as much work now as possible before calling ill_glist_insert 23055 * which makes the ill globally visible and also merges it with the 23056 * other protocol instance of this phyint. The remaining work is 23057 * done after entering the ipsq which may happen sometime later. 23058 * ill_set_ndd_name occurs after the ill has been made globally visible. 23059 */ 23060 ipif = ill->ill_ipif; 23061 23062 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23063 ipif_assign_seqid(ipif); 23064 23065 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23066 ill->ill_flags |= ILLF_IPV4; 23067 23068 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23069 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23070 23071 if (ill->ill_flags & ILLF_IPV6) { 23072 23073 ill->ill_isv6 = B_TRUE; 23074 if (ill->ill_rq != NULL) { 23075 ill->ill_rq->q_qinfo = &rinit_ipv6; 23076 ill->ill_wq->q_qinfo = &winit_ipv6; 23077 } 23078 23079 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23080 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23081 ipif->ipif_v6src_addr = ipv6_all_zeros; 23082 ipif->ipif_v6subnet = ipv6_all_zeros; 23083 ipif->ipif_v6net_mask = ipv6_all_zeros; 23084 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23085 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23086 /* 23087 * point-to-point or Non-mulicast capable 23088 * interfaces won't do NUD unless explicitly 23089 * configured to do so. 23090 */ 23091 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23092 !(ill->ill_flags & ILLF_MULTICAST)) { 23093 ill->ill_flags |= ILLF_NONUD; 23094 } 23095 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23096 if (ill->ill_flags & ILLF_NOARP) { 23097 /* 23098 * Note: xresolv interfaces will eventually need 23099 * NOARP set here as well, but that will require 23100 * those external resolvers to have some 23101 * knowledge of that flag and act appropriately. 23102 * Not to be changed at present. 23103 */ 23104 ill->ill_flags &= ~ILLF_NOARP; 23105 } 23106 /* 23107 * Set the ILLF_ROUTER flag according to the global 23108 * IPv6 forwarding policy. 23109 */ 23110 if (ipst->ips_ipv6_forward != 0) 23111 ill->ill_flags |= ILLF_ROUTER; 23112 } else if (ill->ill_flags & ILLF_IPV4) { 23113 ill->ill_isv6 = B_FALSE; 23114 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23115 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23116 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23117 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23118 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23119 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23120 /* 23121 * Set the ILLF_ROUTER flag according to the global 23122 * IPv4 forwarding policy. 23123 */ 23124 if (ipst->ips_ip_g_forward != 0) 23125 ill->ill_flags |= ILLF_ROUTER; 23126 } 23127 23128 ASSERT(ill->ill_phyint != NULL); 23129 23130 /* 23131 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23132 * be completed in ill_glist_insert -> ill_phyint_reinit 23133 */ 23134 if (!ill_allocate_mibs(ill)) 23135 return (ENOMEM); 23136 23137 /* 23138 * Pick a default sap until we get the DL_INFO_ACK back from 23139 * the driver. 23140 */ 23141 if (ill->ill_sap == 0) { 23142 if (ill->ill_isv6) 23143 ill->ill_sap = IP6_DL_SAP; 23144 else 23145 ill->ill_sap = IP_DL_SAP; 23146 } 23147 23148 ill->ill_ifname_pending = 1; 23149 ill->ill_ifname_pending_err = 0; 23150 23151 ill_refhold(ill); 23152 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23153 if ((error = ill_glist_insert(ill, interf_name, 23154 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23155 ill->ill_ppa = UINT_MAX; 23156 ill->ill_name[0] = '\0'; 23157 /* 23158 * undo null termination done above. 23159 */ 23160 ppa_ptr[0] = old_char; 23161 rw_exit(&ipst->ips_ill_g_lock); 23162 ill_refrele(ill); 23163 return (error); 23164 } 23165 23166 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23167 23168 /* 23169 * When we return the buffer pointed to by interf_name should contain 23170 * the same name as in ill_name. 23171 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23172 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23173 * so copy full name and update the ppa ptr. 23174 * When ppa passed in != UINT_MAX all values are correct just undo 23175 * null termination, this saves a bcopy. 23176 */ 23177 if (*new_ppa_ptr == UINT_MAX) { 23178 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23179 *new_ppa_ptr = ill->ill_ppa; 23180 } else { 23181 /* 23182 * undo null termination done above. 23183 */ 23184 ppa_ptr[0] = old_char; 23185 } 23186 23187 /* Let SCTP know about this ILL */ 23188 sctp_update_ill(ill, SCTP_ILL_INSERT); 23189 23190 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23191 B_TRUE); 23192 23193 rw_exit(&ipst->ips_ill_g_lock); 23194 ill_refrele(ill); 23195 if (ipsq == NULL) 23196 return (EINPROGRESS); 23197 23198 /* 23199 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23200 */ 23201 if (ipsq->ipsq_current_ipif == NULL) 23202 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23203 else 23204 ASSERT(ipsq->ipsq_current_ipif == ipif); 23205 23206 error = ipif_set_values_tail(ill, ipif, mp, q); 23207 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23208 if (error != 0 && error != EINPROGRESS) { 23209 /* 23210 * restore previous values 23211 */ 23212 ill->ill_isv6 = B_FALSE; 23213 } 23214 return (error); 23215 } 23216 23217 23218 void 23219 ipif_init(ip_stack_t *ipst) 23220 { 23221 hrtime_t hrt; 23222 int i; 23223 23224 /* 23225 * Can't call drv_getparm here as it is too early in the boot. 23226 * As we use ipif_src_random just for picking a different 23227 * source address everytime, this need not be really random. 23228 */ 23229 hrt = gethrtime(); 23230 ipst->ips_ipif_src_random = 23231 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23232 23233 for (i = 0; i < MAX_G_HEADS; i++) { 23234 ipst->ips_ill_g_heads[i].ill_g_list_head = 23235 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23236 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23237 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23238 } 23239 23240 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23241 ill_phyint_compare_index, 23242 sizeof (phyint_t), 23243 offsetof(struct phyint, phyint_avl_by_index)); 23244 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23245 ill_phyint_compare_name, 23246 sizeof (phyint_t), 23247 offsetof(struct phyint, phyint_avl_by_name)); 23248 } 23249 23250 /* 23251 * Lookup the ipif corresponding to the onlink destination address. For 23252 * point-to-point interfaces, it matches with remote endpoint destination 23253 * address. For point-to-multipoint interfaces it only tries to match the 23254 * destination with the interface's subnet address. The longest, most specific 23255 * match is found to take care of such rare network configurations like - 23256 * le0: 129.146.1.1/16 23257 * le1: 129.146.2.2/24 23258 * It is used only by SO_DONTROUTE at the moment. 23259 */ 23260 ipif_t * 23261 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23262 { 23263 ipif_t *ipif, *best_ipif; 23264 ill_t *ill; 23265 ill_walk_context_t ctx; 23266 23267 ASSERT(zoneid != ALL_ZONES); 23268 best_ipif = NULL; 23269 23270 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23271 ill = ILL_START_WALK_V4(&ctx, ipst); 23272 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23273 mutex_enter(&ill->ill_lock); 23274 for (ipif = ill->ill_ipif; ipif != NULL; 23275 ipif = ipif->ipif_next) { 23276 if (!IPIF_CAN_LOOKUP(ipif)) 23277 continue; 23278 if (ipif->ipif_zoneid != zoneid && 23279 ipif->ipif_zoneid != ALL_ZONES) 23280 continue; 23281 /* 23282 * Point-to-point case. Look for exact match with 23283 * destination address. 23284 */ 23285 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23286 if (ipif->ipif_pp_dst_addr == addr) { 23287 ipif_refhold_locked(ipif); 23288 mutex_exit(&ill->ill_lock); 23289 rw_exit(&ipst->ips_ill_g_lock); 23290 if (best_ipif != NULL) 23291 ipif_refrele(best_ipif); 23292 return (ipif); 23293 } 23294 } else if (ipif->ipif_subnet == (addr & 23295 ipif->ipif_net_mask)) { 23296 /* 23297 * Point-to-multipoint case. Looping through to 23298 * find the most specific match. If there are 23299 * multiple best match ipif's then prefer ipif's 23300 * that are UP. If there is only one best match 23301 * ipif and it is DOWN we must still return it. 23302 */ 23303 if ((best_ipif == NULL) || 23304 (ipif->ipif_net_mask > 23305 best_ipif->ipif_net_mask) || 23306 ((ipif->ipif_net_mask == 23307 best_ipif->ipif_net_mask) && 23308 ((ipif->ipif_flags & IPIF_UP) && 23309 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23310 ipif_refhold_locked(ipif); 23311 mutex_exit(&ill->ill_lock); 23312 rw_exit(&ipst->ips_ill_g_lock); 23313 if (best_ipif != NULL) 23314 ipif_refrele(best_ipif); 23315 best_ipif = ipif; 23316 rw_enter(&ipst->ips_ill_g_lock, 23317 RW_READER); 23318 mutex_enter(&ill->ill_lock); 23319 } 23320 } 23321 } 23322 mutex_exit(&ill->ill_lock); 23323 } 23324 rw_exit(&ipst->ips_ill_g_lock); 23325 return (best_ipif); 23326 } 23327 23328 23329 /* 23330 * Save enough information so that we can recreate the IRE if 23331 * the interface goes down and then up. 23332 */ 23333 static void 23334 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23335 { 23336 mblk_t *save_mp; 23337 23338 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23339 if (save_mp != NULL) { 23340 ifrt_t *ifrt; 23341 23342 save_mp->b_wptr += sizeof (ifrt_t); 23343 ifrt = (ifrt_t *)save_mp->b_rptr; 23344 bzero(ifrt, sizeof (ifrt_t)); 23345 ifrt->ifrt_type = ire->ire_type; 23346 ifrt->ifrt_addr = ire->ire_addr; 23347 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23348 ifrt->ifrt_src_addr = ire->ire_src_addr; 23349 ifrt->ifrt_mask = ire->ire_mask; 23350 ifrt->ifrt_flags = ire->ire_flags; 23351 ifrt->ifrt_max_frag = ire->ire_max_frag; 23352 mutex_enter(&ipif->ipif_saved_ire_lock); 23353 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23354 ipif->ipif_saved_ire_mp = save_mp; 23355 ipif->ipif_saved_ire_cnt++; 23356 mutex_exit(&ipif->ipif_saved_ire_lock); 23357 } 23358 } 23359 23360 23361 static void 23362 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23363 { 23364 mblk_t **mpp; 23365 mblk_t *mp; 23366 ifrt_t *ifrt; 23367 23368 /* Remove from ipif_saved_ire_mp list if it is there */ 23369 mutex_enter(&ipif->ipif_saved_ire_lock); 23370 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23371 mpp = &(*mpp)->b_cont) { 23372 /* 23373 * On a given ipif, the triple of address, gateway and 23374 * mask is unique for each saved IRE (in the case of 23375 * ordinary interface routes, the gateway address is 23376 * all-zeroes). 23377 */ 23378 mp = *mpp; 23379 ifrt = (ifrt_t *)mp->b_rptr; 23380 if (ifrt->ifrt_addr == ire->ire_addr && 23381 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23382 ifrt->ifrt_mask == ire->ire_mask) { 23383 *mpp = mp->b_cont; 23384 ipif->ipif_saved_ire_cnt--; 23385 freeb(mp); 23386 break; 23387 } 23388 } 23389 mutex_exit(&ipif->ipif_saved_ire_lock); 23390 } 23391 23392 23393 /* 23394 * IP multirouting broadcast routes handling 23395 * Append CGTP broadcast IREs to regular ones created 23396 * at ifconfig time. 23397 */ 23398 static void 23399 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23400 { 23401 ire_t *ire_prim; 23402 23403 ASSERT(ire != NULL); 23404 ASSERT(ire_dst != NULL); 23405 23406 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23407 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23408 if (ire_prim != NULL) { 23409 /* 23410 * We are in the special case of broadcasts for 23411 * CGTP. We add an IRE_BROADCAST that holds 23412 * the RTF_MULTIRT flag, the destination 23413 * address of ire_dst and the low level 23414 * info of ire_prim. In other words, CGTP 23415 * broadcast is added to the redundant ipif. 23416 */ 23417 ipif_t *ipif_prim; 23418 ire_t *bcast_ire; 23419 23420 ipif_prim = ire_prim->ire_ipif; 23421 23422 ip2dbg(("ip_cgtp_filter_bcast_add: " 23423 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23424 (void *)ire_dst, (void *)ire_prim, 23425 (void *)ipif_prim)); 23426 23427 bcast_ire = ire_create( 23428 (uchar_t *)&ire->ire_addr, 23429 (uchar_t *)&ip_g_all_ones, 23430 (uchar_t *)&ire_dst->ire_src_addr, 23431 (uchar_t *)&ire->ire_gateway_addr, 23432 &ipif_prim->ipif_mtu, 23433 NULL, 23434 ipif_prim->ipif_rq, 23435 ipif_prim->ipif_wq, 23436 IRE_BROADCAST, 23437 ipif_prim, 23438 0, 23439 0, 23440 0, 23441 ire->ire_flags, 23442 &ire_uinfo_null, 23443 NULL, 23444 NULL, 23445 ipst); 23446 23447 if (bcast_ire != NULL) { 23448 23449 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23450 B_FALSE) == 0) { 23451 ip2dbg(("ip_cgtp_filter_bcast_add: " 23452 "added bcast_ire %p\n", 23453 (void *)bcast_ire)); 23454 23455 ipif_save_ire(bcast_ire->ire_ipif, 23456 bcast_ire); 23457 ire_refrele(bcast_ire); 23458 } 23459 } 23460 ire_refrele(ire_prim); 23461 } 23462 } 23463 23464 23465 /* 23466 * IP multirouting broadcast routes handling 23467 * Remove the broadcast ire 23468 */ 23469 static void 23470 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23471 { 23472 ire_t *ire_dst; 23473 23474 ASSERT(ire != NULL); 23475 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23476 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23477 if (ire_dst != NULL) { 23478 ire_t *ire_prim; 23479 23480 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23481 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23482 if (ire_prim != NULL) { 23483 ipif_t *ipif_prim; 23484 ire_t *bcast_ire; 23485 23486 ipif_prim = ire_prim->ire_ipif; 23487 23488 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23489 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23490 (void *)ire_dst, (void *)ire_prim, 23491 (void *)ipif_prim)); 23492 23493 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23494 ire->ire_gateway_addr, 23495 IRE_BROADCAST, 23496 ipif_prim, ALL_ZONES, 23497 NULL, 23498 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23499 MATCH_IRE_MASK, ipst); 23500 23501 if (bcast_ire != NULL) { 23502 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23503 "looked up bcast_ire %p\n", 23504 (void *)bcast_ire)); 23505 ipif_remove_ire(bcast_ire->ire_ipif, 23506 bcast_ire); 23507 ire_delete(bcast_ire); 23508 } 23509 ire_refrele(ire_prim); 23510 } 23511 ire_refrele(ire_dst); 23512 } 23513 } 23514 23515 /* 23516 * IPsec hardware acceleration capabilities related functions. 23517 */ 23518 23519 /* 23520 * Free a per-ill IPsec capabilities structure. 23521 */ 23522 static void 23523 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23524 { 23525 if (capab->auth_hw_algs != NULL) 23526 kmem_free(capab->auth_hw_algs, capab->algs_size); 23527 if (capab->encr_hw_algs != NULL) 23528 kmem_free(capab->encr_hw_algs, capab->algs_size); 23529 if (capab->encr_algparm != NULL) 23530 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23531 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23532 } 23533 23534 /* 23535 * Allocate a new per-ill IPsec capabilities structure. This structure 23536 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23537 * an array which specifies, for each algorithm, whether this algorithm 23538 * is supported by the ill or not. 23539 */ 23540 static ill_ipsec_capab_t * 23541 ill_ipsec_capab_alloc(void) 23542 { 23543 ill_ipsec_capab_t *capab; 23544 uint_t nelems; 23545 23546 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23547 if (capab == NULL) 23548 return (NULL); 23549 23550 /* we need one bit per algorithm */ 23551 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23552 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23553 23554 /* allocate memory to store algorithm flags */ 23555 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23556 if (capab->encr_hw_algs == NULL) 23557 goto nomem; 23558 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23559 if (capab->auth_hw_algs == NULL) 23560 goto nomem; 23561 /* 23562 * Leave encr_algparm NULL for now since we won't need it half 23563 * the time 23564 */ 23565 return (capab); 23566 23567 nomem: 23568 ill_ipsec_capab_free(capab); 23569 return (NULL); 23570 } 23571 23572 /* 23573 * Resize capability array. Since we're exclusive, this is OK. 23574 */ 23575 static boolean_t 23576 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23577 { 23578 ipsec_capab_algparm_t *nalp, *oalp; 23579 uint32_t olen, nlen; 23580 23581 oalp = capab->encr_algparm; 23582 olen = capab->encr_algparm_size; 23583 23584 if (oalp != NULL) { 23585 if (algid < capab->encr_algparm_end) 23586 return (B_TRUE); 23587 } 23588 23589 nlen = (algid + 1) * sizeof (*nalp); 23590 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23591 if (nalp == NULL) 23592 return (B_FALSE); 23593 23594 if (oalp != NULL) { 23595 bcopy(oalp, nalp, olen); 23596 kmem_free(oalp, olen); 23597 } 23598 capab->encr_algparm = nalp; 23599 capab->encr_algparm_size = nlen; 23600 capab->encr_algparm_end = algid + 1; 23601 23602 return (B_TRUE); 23603 } 23604 23605 /* 23606 * Compare the capabilities of the specified ill with the protocol 23607 * and algorithms specified by the SA passed as argument. 23608 * If they match, returns B_TRUE, B_FALSE if they do not match. 23609 * 23610 * The ill can be passed as a pointer to it, or by specifying its index 23611 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23612 * 23613 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23614 * packet is eligible for hardware acceleration, and by 23615 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23616 * to a particular ill. 23617 */ 23618 boolean_t 23619 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23620 ipsa_t *sa, netstack_t *ns) 23621 { 23622 boolean_t sa_isv6; 23623 uint_t algid; 23624 struct ill_ipsec_capab_s *cpp; 23625 boolean_t need_refrele = B_FALSE; 23626 ip_stack_t *ipst = ns->netstack_ip; 23627 23628 if (ill == NULL) { 23629 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23630 NULL, NULL, NULL, ipst); 23631 if (ill == NULL) { 23632 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23633 return (B_FALSE); 23634 } 23635 need_refrele = B_TRUE; 23636 } 23637 23638 /* 23639 * Use the address length specified by the SA to determine 23640 * if it corresponds to a IPv6 address, and fail the matching 23641 * if the isv6 flag passed as argument does not match. 23642 * Note: this check is used for SADB capability checking before 23643 * sending SA information to an ill. 23644 */ 23645 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23646 if (sa_isv6 != ill_isv6) 23647 /* protocol mismatch */ 23648 goto done; 23649 23650 /* 23651 * Check if the ill supports the protocol, algorithm(s) and 23652 * key size(s) specified by the SA, and get the pointers to 23653 * the algorithms supported by the ill. 23654 */ 23655 switch (sa->ipsa_type) { 23656 23657 case SADB_SATYPE_ESP: 23658 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23659 /* ill does not support ESP acceleration */ 23660 goto done; 23661 cpp = ill->ill_ipsec_capab_esp; 23662 algid = sa->ipsa_auth_alg; 23663 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23664 goto done; 23665 algid = sa->ipsa_encr_alg; 23666 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23667 goto done; 23668 if (algid < cpp->encr_algparm_end) { 23669 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23670 if (sa->ipsa_encrkeybits < alp->minkeylen) 23671 goto done; 23672 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23673 goto done; 23674 } 23675 break; 23676 23677 case SADB_SATYPE_AH: 23678 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23679 /* ill does not support AH acceleration */ 23680 goto done; 23681 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23682 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23683 goto done; 23684 break; 23685 } 23686 23687 if (need_refrele) 23688 ill_refrele(ill); 23689 return (B_TRUE); 23690 done: 23691 if (need_refrele) 23692 ill_refrele(ill); 23693 return (B_FALSE); 23694 } 23695 23696 23697 /* 23698 * Add a new ill to the list of IPsec capable ills. 23699 * Called from ill_capability_ipsec_ack() when an ACK was received 23700 * indicating that IPsec hardware processing was enabled for an ill. 23701 * 23702 * ill must point to the ill for which acceleration was enabled. 23703 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23704 */ 23705 static void 23706 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23707 { 23708 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23709 uint_t sa_type; 23710 uint_t ipproto; 23711 ip_stack_t *ipst = ill->ill_ipst; 23712 23713 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23714 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23715 23716 switch (dl_cap) { 23717 case DL_CAPAB_IPSEC_AH: 23718 sa_type = SADB_SATYPE_AH; 23719 ills = &ipst->ips_ipsec_capab_ills_ah; 23720 ipproto = IPPROTO_AH; 23721 break; 23722 case DL_CAPAB_IPSEC_ESP: 23723 sa_type = SADB_SATYPE_ESP; 23724 ills = &ipst->ips_ipsec_capab_ills_esp; 23725 ipproto = IPPROTO_ESP; 23726 break; 23727 } 23728 23729 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23730 23731 /* 23732 * Add ill index to list of hardware accelerators. If 23733 * already in list, do nothing. 23734 */ 23735 for (cur_ill = *ills; cur_ill != NULL && 23736 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23737 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23738 ; 23739 23740 if (cur_ill == NULL) { 23741 /* if this is a new entry for this ill */ 23742 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23743 if (new_ill == NULL) { 23744 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23745 return; 23746 } 23747 23748 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23749 new_ill->ill_isv6 = ill->ill_isv6; 23750 new_ill->next = *ills; 23751 *ills = new_ill; 23752 } else if (!sadb_resync) { 23753 /* not resync'ing SADB and an entry exists for this ill */ 23754 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23755 return; 23756 } 23757 23758 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23759 23760 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23761 /* 23762 * IPsec module for protocol loaded, initiate dump 23763 * of the SADB to this ill. 23764 */ 23765 sadb_ill_download(ill, sa_type); 23766 } 23767 23768 /* 23769 * Remove an ill from the list of IPsec capable ills. 23770 */ 23771 static void 23772 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23773 { 23774 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23775 ip_stack_t *ipst = ill->ill_ipst; 23776 23777 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23778 dl_cap == DL_CAPAB_IPSEC_ESP); 23779 23780 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23781 &ipst->ips_ipsec_capab_ills_esp; 23782 23783 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23784 23785 prev_ill = NULL; 23786 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23787 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23788 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23789 ; 23790 if (cur_ill == NULL) { 23791 /* entry not found */ 23792 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23793 return; 23794 } 23795 if (prev_ill == NULL) { 23796 /* entry at front of list */ 23797 *ills = NULL; 23798 } else { 23799 prev_ill->next = cur_ill->next; 23800 } 23801 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23802 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23803 } 23804 23805 /* 23806 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23807 * supporting the specified IPsec protocol acceleration. 23808 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23809 * We free the mblk and, if sa is non-null, release the held referece. 23810 */ 23811 void 23812 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23813 netstack_t *ns) 23814 { 23815 ipsec_capab_ill_t *ici, *cur_ici; 23816 ill_t *ill; 23817 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23818 ip_stack_t *ipst = ns->netstack_ip; 23819 23820 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23821 ipst->ips_ipsec_capab_ills_esp; 23822 23823 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23824 23825 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23826 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23827 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23828 23829 /* 23830 * Handle the case where the ill goes away while the SADB is 23831 * attempting to send messages. If it's going away, it's 23832 * nuking its shadow SADB, so we don't care.. 23833 */ 23834 23835 if (ill == NULL) 23836 continue; 23837 23838 if (sa != NULL) { 23839 /* 23840 * Make sure capabilities match before 23841 * sending SA to ill. 23842 */ 23843 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23844 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23845 ill_refrele(ill); 23846 continue; 23847 } 23848 23849 mutex_enter(&sa->ipsa_lock); 23850 sa->ipsa_flags |= IPSA_F_HW; 23851 mutex_exit(&sa->ipsa_lock); 23852 } 23853 23854 /* 23855 * Copy template message, and add it to the front 23856 * of the mblk ship list. We want to avoid holding 23857 * the ipsec_capab_ills_lock while sending the 23858 * message to the ills. 23859 * 23860 * The b_next and b_prev are temporarily used 23861 * to build a list of mblks to be sent down, and to 23862 * save the ill to which they must be sent. 23863 */ 23864 nmp = copymsg(mp); 23865 if (nmp == NULL) { 23866 ill_refrele(ill); 23867 continue; 23868 } 23869 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23870 nmp->b_next = mp_ship_list; 23871 mp_ship_list = nmp; 23872 nmp->b_prev = (mblk_t *)ill; 23873 } 23874 23875 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23876 23877 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23878 /* restore the mblk to a sane state */ 23879 next_mp = nmp->b_next; 23880 nmp->b_next = NULL; 23881 ill = (ill_t *)nmp->b_prev; 23882 nmp->b_prev = NULL; 23883 23884 ill_dlpi_send(ill, nmp); 23885 ill_refrele(ill); 23886 } 23887 23888 if (sa != NULL) 23889 IPSA_REFRELE(sa); 23890 freemsg(mp); 23891 } 23892 23893 /* 23894 * Derive an interface id from the link layer address. 23895 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23896 */ 23897 static boolean_t 23898 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23899 { 23900 char *addr; 23901 23902 if (phys_length != ETHERADDRL) 23903 return (B_FALSE); 23904 23905 /* Form EUI-64 like address */ 23906 addr = (char *)&v6addr->s6_addr32[2]; 23907 bcopy((char *)phys_addr, addr, 3); 23908 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23909 addr[3] = (char)0xff; 23910 addr[4] = (char)0xfe; 23911 bcopy((char *)phys_addr + 3, addr + 5, 3); 23912 return (B_TRUE); 23913 } 23914 23915 /* ARGSUSED */ 23916 static boolean_t 23917 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23918 { 23919 return (B_FALSE); 23920 } 23921 23922 /* ARGSUSED */ 23923 static boolean_t 23924 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23925 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23926 { 23927 /* 23928 * Multicast address mappings used over Ethernet/802.X. 23929 * This address is used as a base for mappings. 23930 */ 23931 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23932 0x00, 0x00, 0x00}; 23933 23934 /* 23935 * Extract low order 32 bits from IPv6 multicast address. 23936 * Or that into the link layer address, starting from the 23937 * second byte. 23938 */ 23939 *hw_start = 2; 23940 v6_extract_mask->s6_addr32[0] = 0; 23941 v6_extract_mask->s6_addr32[1] = 0; 23942 v6_extract_mask->s6_addr32[2] = 0; 23943 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23944 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23945 return (B_TRUE); 23946 } 23947 23948 /* 23949 * Indicate by return value whether multicast is supported. If not, 23950 * this code should not touch/change any parameters. 23951 */ 23952 /* ARGSUSED */ 23953 static boolean_t 23954 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23955 uint32_t *hw_start, ipaddr_t *extract_mask) 23956 { 23957 /* 23958 * Multicast address mappings used over Ethernet/802.X. 23959 * This address is used as a base for mappings. 23960 */ 23961 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23962 0x00, 0x00, 0x00 }; 23963 23964 if (phys_length != ETHERADDRL) 23965 return (B_FALSE); 23966 23967 *extract_mask = htonl(0x007fffff); 23968 *hw_start = 2; 23969 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23970 return (B_TRUE); 23971 } 23972 23973 /* 23974 * Derive IPoIB interface id from the link layer address. 23975 */ 23976 static boolean_t 23977 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23978 { 23979 char *addr; 23980 23981 if (phys_length != 20) 23982 return (B_FALSE); 23983 addr = (char *)&v6addr->s6_addr32[2]; 23984 bcopy(phys_addr + 12, addr, 8); 23985 /* 23986 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23987 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23988 * rules. In these cases, the IBA considers these GUIDs to be in 23989 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23990 * required; vendors are required not to assign global EUI-64's 23991 * that differ only in u/l bit values, thus guaranteeing uniqueness 23992 * of the interface identifier. Whether the GUID is in modified 23993 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23994 * bit set to 1. 23995 */ 23996 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23997 return (B_TRUE); 23998 } 23999 24000 /* 24001 * Note on mapping from multicast IP addresses to IPoIB multicast link 24002 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24003 * The format of an IPoIB multicast address is: 24004 * 24005 * 4 byte QPN Scope Sign. Pkey 24006 * +--------------------------------------------+ 24007 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24008 * +--------------------------------------------+ 24009 * 24010 * The Scope and Pkey components are properties of the IBA port and 24011 * network interface. They can be ascertained from the broadcast address. 24012 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24013 */ 24014 24015 static boolean_t 24016 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24017 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24018 { 24019 /* 24020 * Base IPoIB IPv6 multicast address used for mappings. 24021 * Does not contain the IBA scope/Pkey values. 24022 */ 24023 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24024 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24025 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24026 24027 /* 24028 * Extract low order 80 bits from IPv6 multicast address. 24029 * Or that into the link layer address, starting from the 24030 * sixth byte. 24031 */ 24032 *hw_start = 6; 24033 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24034 24035 /* 24036 * Now fill in the IBA scope/Pkey values from the broadcast address. 24037 */ 24038 *(maddr + 5) = *(bphys_addr + 5); 24039 *(maddr + 8) = *(bphys_addr + 8); 24040 *(maddr + 9) = *(bphys_addr + 9); 24041 24042 v6_extract_mask->s6_addr32[0] = 0; 24043 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24044 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24045 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24046 return (B_TRUE); 24047 } 24048 24049 static boolean_t 24050 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24051 uint32_t *hw_start, ipaddr_t *extract_mask) 24052 { 24053 /* 24054 * Base IPoIB IPv4 multicast address used for mappings. 24055 * Does not contain the IBA scope/Pkey values. 24056 */ 24057 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24058 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24059 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24060 24061 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24062 return (B_FALSE); 24063 24064 /* 24065 * Extract low order 28 bits from IPv4 multicast address. 24066 * Or that into the link layer address, starting from the 24067 * sixteenth byte. 24068 */ 24069 *extract_mask = htonl(0x0fffffff); 24070 *hw_start = 16; 24071 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24072 24073 /* 24074 * Now fill in the IBA scope/Pkey values from the broadcast address. 24075 */ 24076 *(maddr + 5) = *(bphys_addr + 5); 24077 *(maddr + 8) = *(bphys_addr + 8); 24078 *(maddr + 9) = *(bphys_addr + 9); 24079 return (B_TRUE); 24080 } 24081 24082 /* 24083 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24084 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24085 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24086 * the link-local address is preferred. 24087 */ 24088 boolean_t 24089 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24090 { 24091 ipif_t *ipif; 24092 ipif_t *maybe_ipif = NULL; 24093 24094 mutex_enter(&ill->ill_lock); 24095 if (ill->ill_state_flags & ILL_CONDEMNED) { 24096 mutex_exit(&ill->ill_lock); 24097 if (ipifp != NULL) 24098 *ipifp = NULL; 24099 return (B_FALSE); 24100 } 24101 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24102 if (!IPIF_CAN_LOOKUP(ipif)) 24103 continue; 24104 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24105 ipif->ipif_zoneid != ALL_ZONES) 24106 continue; 24107 if ((ipif->ipif_flags & flags) != flags) 24108 continue; 24109 24110 if (ipifp == NULL) { 24111 mutex_exit(&ill->ill_lock); 24112 ASSERT(maybe_ipif == NULL); 24113 return (B_TRUE); 24114 } 24115 if (!ill->ill_isv6 || 24116 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24117 ipif_refhold_locked(ipif); 24118 mutex_exit(&ill->ill_lock); 24119 *ipifp = ipif; 24120 return (B_TRUE); 24121 } 24122 if (maybe_ipif == NULL) 24123 maybe_ipif = ipif; 24124 } 24125 if (ipifp != NULL) { 24126 if (maybe_ipif != NULL) 24127 ipif_refhold_locked(maybe_ipif); 24128 *ipifp = maybe_ipif; 24129 } 24130 mutex_exit(&ill->ill_lock); 24131 return (maybe_ipif != NULL); 24132 } 24133 24134 /* 24135 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24136 */ 24137 boolean_t 24138 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24139 { 24140 ill_t *illg; 24141 ip_stack_t *ipst = ill->ill_ipst; 24142 24143 /* 24144 * We look at the passed-in ill first without grabbing ill_g_lock. 24145 */ 24146 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24147 return (B_TRUE); 24148 } 24149 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24150 if (ill->ill_group == NULL) { 24151 /* ill not in a group */ 24152 rw_exit(&ipst->ips_ill_g_lock); 24153 return (B_FALSE); 24154 } 24155 24156 /* 24157 * There's no ipif in the zone on ill, however ill is part of an IPMP 24158 * group. We need to look for an ipif in the zone on all the ills in the 24159 * group. 24160 */ 24161 illg = ill->ill_group->illgrp_ill; 24162 do { 24163 /* 24164 * We don't call ipif_lookup_zoneid() on ill as we already know 24165 * that it's not there. 24166 */ 24167 if (illg != ill && 24168 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24169 break; 24170 } 24171 } while ((illg = illg->ill_group_next) != NULL); 24172 rw_exit(&ipst->ips_ill_g_lock); 24173 return (illg != NULL); 24174 } 24175 24176 /* 24177 * Check if this ill is only being used to send ICMP probes for IPMP 24178 */ 24179 boolean_t 24180 ill_is_probeonly(ill_t *ill) 24181 { 24182 /* 24183 * Check if the interface is FAILED, or INACTIVE 24184 */ 24185 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24186 return (B_TRUE); 24187 24188 return (B_FALSE); 24189 } 24190 24191 /* 24192 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24193 * If a pointer to an ipif_t is returned then the caller will need to do 24194 * an ill_refrele(). 24195 * 24196 * If there is no real interface which matches the ifindex, then it looks 24197 * for a group that has a matching index. In the case of a group match the 24198 * lifidx must be zero. We don't need emulate the logical interfaces 24199 * since IP Filter's use of netinfo doesn't use that. 24200 */ 24201 ipif_t * 24202 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24203 ip_stack_t *ipst) 24204 { 24205 ipif_t *ipif; 24206 ill_t *ill; 24207 24208 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24209 ipst); 24210 24211 if (ill == NULL) { 24212 /* Fallback to group names only if hook_emulation set */ 24213 if (!ipst->ips_ipmp_hook_emulation) 24214 return (NULL); 24215 24216 if (lifidx != 0) 24217 return (NULL); 24218 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24219 if (ill == NULL) 24220 return (NULL); 24221 } 24222 24223 mutex_enter(&ill->ill_lock); 24224 if (ill->ill_state_flags & ILL_CONDEMNED) { 24225 mutex_exit(&ill->ill_lock); 24226 ill_refrele(ill); 24227 return (NULL); 24228 } 24229 24230 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24231 if (!IPIF_CAN_LOOKUP(ipif)) 24232 continue; 24233 if (lifidx == ipif->ipif_id) { 24234 ipif_refhold_locked(ipif); 24235 break; 24236 } 24237 } 24238 24239 mutex_exit(&ill->ill_lock); 24240 ill_refrele(ill); 24241 return (ipif); 24242 } 24243 24244 /* 24245 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24246 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24247 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24248 * for details. 24249 */ 24250 void 24251 ill_fastpath_flush(ill_t *ill) 24252 { 24253 ip_stack_t *ipst = ill->ill_ipst; 24254 24255 nce_fastpath_list_dispatch(ill, NULL, NULL); 24256 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24257 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24258 } 24259 24260 /* 24261 * Set the physical address information for `ill' to the contents of the 24262 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24263 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24264 * EINPROGRESS will be returned. 24265 */ 24266 int 24267 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24268 { 24269 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24270 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24271 24272 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24273 24274 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24275 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24276 /* Changing DL_IPV6_TOKEN is not yet supported */ 24277 return (0); 24278 } 24279 24280 /* 24281 * We need to store up to two copies of `mp' in `ill'. Due to the 24282 * design of ipsq_pending_mp_add(), we can't pass them as separate 24283 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24284 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24285 */ 24286 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24287 freemsg(mp); 24288 return (ENOMEM); 24289 } 24290 24291 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24292 24293 /* 24294 * If we can quiesce the ill, then set the address. If not, then 24295 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24296 */ 24297 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24298 mutex_enter(&ill->ill_lock); 24299 if (!ill_is_quiescent(ill)) { 24300 /* call cannot fail since `conn_t *' argument is NULL */ 24301 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24302 mp, ILL_DOWN); 24303 mutex_exit(&ill->ill_lock); 24304 return (EINPROGRESS); 24305 } 24306 mutex_exit(&ill->ill_lock); 24307 24308 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24309 return (0); 24310 } 24311 24312 /* 24313 * Once the ill associated with `q' has quiesced, set its physical address 24314 * information to the values in `addrmp'. Note that two copies of `addrmp' 24315 * are passed (linked by b_cont), since we sometimes need to save two distinct 24316 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24317 * failure (we'll free the other copy if it's not needed). Since the ill_t 24318 * is quiesced, we know any stale IREs with the old address information have 24319 * already been removed, so we don't need to call ill_fastpath_flush(). 24320 */ 24321 /* ARGSUSED */ 24322 static void 24323 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24324 { 24325 ill_t *ill = q->q_ptr; 24326 mblk_t *addrmp2 = unlinkb(addrmp); 24327 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24328 uint_t addrlen, addroff; 24329 24330 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24331 24332 addroff = dlindp->dl_addr_offset; 24333 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24334 24335 switch (dlindp->dl_data) { 24336 case DL_IPV6_LINK_LAYER_ADDR: 24337 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24338 freemsg(addrmp2); 24339 break; 24340 24341 case DL_CURR_PHYS_ADDR: 24342 freemsg(ill->ill_phys_addr_mp); 24343 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24344 ill->ill_phys_addr_mp = addrmp; 24345 ill->ill_phys_addr_length = addrlen; 24346 24347 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24348 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24349 else 24350 freemsg(addrmp2); 24351 break; 24352 default: 24353 ASSERT(0); 24354 } 24355 24356 /* 24357 * If there are ipifs to bring up, ill_up_ipifs() will return 24358 * EINPROGRESS, and ipsq_current_finish() will be called by 24359 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24360 * brought up. 24361 */ 24362 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24363 ipsq_current_finish(ipsq); 24364 } 24365 24366 /* 24367 * Helper routine for setting the ill_nd_lla fields. 24368 */ 24369 void 24370 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24371 { 24372 freemsg(ill->ill_nd_lla_mp); 24373 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24374 ill->ill_nd_lla_mp = ndmp; 24375 ill->ill_nd_lla_len = addrlen; 24376 } 24377 24378 major_t IP_MAJ; 24379 #define IP "ip" 24380 24381 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24382 #define UDPDEV "/devices/pseudo/udp@0:udp" 24383 24384 /* 24385 * Issue REMOVEIF ioctls to have the loopback interfaces 24386 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24387 * the former going away when the user-level processes in the zone 24388 * are killed * and the latter are cleaned up by the stream head 24389 * str_stack_shutdown callback that undoes all I_PLINKs. 24390 */ 24391 void 24392 ip_loopback_cleanup(ip_stack_t *ipst) 24393 { 24394 int error; 24395 ldi_handle_t lh = NULL; 24396 ldi_ident_t li = NULL; 24397 int rval; 24398 cred_t *cr; 24399 struct strioctl iocb; 24400 struct lifreq lifreq; 24401 24402 IP_MAJ = ddi_name_to_major(IP); 24403 24404 #ifdef NS_DEBUG 24405 (void) printf("ip_loopback_cleanup() stackid %d\n", 24406 ipst->ips_netstack->netstack_stackid); 24407 #endif 24408 24409 bzero(&lifreq, sizeof (lifreq)); 24410 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24411 24412 error = ldi_ident_from_major(IP_MAJ, &li); 24413 if (error) { 24414 #ifdef DEBUG 24415 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24416 error); 24417 #endif 24418 return; 24419 } 24420 24421 cr = zone_get_kcred(netstackid_to_zoneid( 24422 ipst->ips_netstack->netstack_stackid)); 24423 ASSERT(cr != NULL); 24424 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24425 if (error) { 24426 #ifdef DEBUG 24427 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24428 error); 24429 #endif 24430 goto out; 24431 } 24432 iocb.ic_cmd = SIOCLIFREMOVEIF; 24433 iocb.ic_timout = 15; 24434 iocb.ic_len = sizeof (lifreq); 24435 iocb.ic_dp = (char *)&lifreq; 24436 24437 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24438 /* LINTED - statement has no consequent */ 24439 if (error) { 24440 #ifdef NS_DEBUG 24441 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24442 "UDP6 error %d\n", error); 24443 #endif 24444 } 24445 (void) ldi_close(lh, FREAD|FWRITE, cr); 24446 lh = NULL; 24447 24448 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24449 if (error) { 24450 #ifdef NS_DEBUG 24451 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24452 error); 24453 #endif 24454 goto out; 24455 } 24456 24457 iocb.ic_cmd = SIOCLIFREMOVEIF; 24458 iocb.ic_timout = 15; 24459 iocb.ic_len = sizeof (lifreq); 24460 iocb.ic_dp = (char *)&lifreq; 24461 24462 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24463 /* LINTED - statement has no consequent */ 24464 if (error) { 24465 #ifdef NS_DEBUG 24466 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24467 "UDP error %d\n", error); 24468 #endif 24469 } 24470 (void) ldi_close(lh, FREAD|FWRITE, cr); 24471 lh = NULL; 24472 24473 out: 24474 /* Close layered handles */ 24475 if (lh) 24476 (void) ldi_close(lh, FREAD|FWRITE, cr); 24477 if (li) 24478 ldi_ident_release(li); 24479 24480 crfree(cr); 24481 } 24482