xref: /titanic_50/usr/src/uts/common/inet/ip/ip_if.c (revision 493b288bfa6457233965c2608004f57f53101440)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/arp.h>
75 #include <inet/ip_arp.h>
76 #include <inet/mib2.h>
77 #include <inet/ip.h>
78 #include <inet/ip6.h>
79 #include <inet/ip6_asp.h>
80 #include <inet/tcp.h>
81 #include <inet/ip_multi.h>
82 #include <inet/ip_ire.h>
83 #include <inet/ip_ftable.h>
84 #include <inet/ip_rts.h>
85 #include <inet/ip_ndp.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_impl.h>
88 #include <inet/sctp_ip.h>
89 #include <inet/ip_netinfo.h>
90 #include <inet/ilb_ip.h>
91 
92 #include <netinet/igmp.h>
93 #include <inet/ip_listutils.h>
94 #include <inet/ipclassifier.h>
95 #include <sys/mac_client.h>
96 #include <sys/dld.h>
97 
98 #include <sys/systeminfo.h>
99 #include <sys/bootconf.h>
100 
101 #include <sys/tsol/tndb.h>
102 #include <sys/tsol/tnet.h>
103 
104 /* The character which tells where the ill_name ends */
105 #define	IPIF_SEPARATOR_CHAR	':'
106 
107 /* IP ioctl function table entry */
108 typedef struct ipft_s {
109 	int	ipft_cmd;
110 	pfi_t	ipft_pfi;
111 	int	ipft_min_size;
112 	int	ipft_flags;
113 } ipft_t;
114 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
115 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
116 
117 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
118 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
119 		    char *value, caddr_t cp, cred_t *ioc_cr);
120 
121 static boolean_t ill_is_quiescent(ill_t *);
122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
123 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
124 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
125     mblk_t *mp, boolean_t need_up);
126 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
127     mblk_t *mp, boolean_t need_up);
128 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
129     queue_t *q, mblk_t *mp, boolean_t need_up);
130 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
131     mblk_t *mp);
132 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
133     mblk_t *mp);
134 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
135     queue_t *q, mblk_t *mp, boolean_t need_up);
136 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
137     int ioccmd, struct linkblk *li);
138 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
139 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
140 static void	ipsq_flush(ill_t *ill);
141 
142 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
143     queue_t *q, mblk_t *mp, boolean_t need_up);
144 static void	ipsq_delete(ipsq_t *);
145 
146 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
147     boolean_t initialize, boolean_t insert, int *errorp);
148 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
149 static void	ipif_delete_bcast_ires(ipif_t *ipif);
150 static int	ipif_add_ires_v4(ipif_t *, boolean_t);
151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
152 		    boolean_t isv6);
153 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
154 static void	ipif_free(ipif_t *ipif);
155 static void	ipif_free_tail(ipif_t *ipif);
156 static void	ipif_set_default(ipif_t *ipif);
157 static int	ipif_set_values(queue_t *q, mblk_t *mp,
158     char *interf_name, uint_t *ppa);
159 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
160     queue_t *q);
161 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
162     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
163     ip_stack_t *);
164 
165 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
166 static void	ill_delete_interface_type(ill_if_t *);
167 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
168 static void	ill_dl_down(ill_t *ill);
169 static void	ill_down(ill_t *ill);
170 static void	ill_down_ipifs(ill_t *, boolean_t);
171 static void	ill_free_mib(ill_t *ill);
172 static void	ill_glist_delete(ill_t *);
173 static void	ill_phyint_reinit(ill_t *ill);
174 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
175 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
176 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
177 
178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
182 static ip_v4mapinfo_func_t ip_ether_v4_mapping;
183 static ip_v6mapinfo_func_t ip_ether_v6_mapping;
184 static ip_v4mapinfo_func_t ip_ib_v4_mapping;
185 static ip_v6mapinfo_func_t ip_ib_v6_mapping;
186 static ip_v4mapinfo_func_t ip_mbcast_mapping;
187 static void 	ip_cgtp_bcast_add(ire_t *, ip_stack_t *);
188 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
189 static void	phyint_free(phyint_t *);
190 
191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *);
192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
197     dl_capability_sub_t *);
198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
199 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
200 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
201 		    dl_capability_sub_t *);
202 static void	ill_capability_dld_enable(ill_t *);
203 static void	ill_capability_ack_thr(void *);
204 static void	ill_capability_lso_enable(ill_t *);
205 
206 static ill_t	*ill_prev_usesrc(ill_t *);
207 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
208 static void	ill_disband_usesrc_group(ill_t *);
209 static void	ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int);
210 
211 #ifdef DEBUG
212 static	void	ill_trace_cleanup(const ill_t *);
213 static	void	ipif_trace_cleanup(const ipif_t *);
214 #endif
215 
216 /*
217  * if we go over the memory footprint limit more than once in this msec
218  * interval, we'll start pruning aggressively.
219  */
220 int ip_min_frag_prune_time = 0;
221 
222 static ipft_t	ip_ioctl_ftbl[] = {
223 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
224 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
225 		IPFT_F_NO_REPLY },
226 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
227 	{ 0 }
228 };
229 
230 /* Simple ICMP IP Header Template */
231 static ipha_t icmp_ipha = {
232 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
233 };
234 
235 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
236 
237 static ip_m_t   ip_m_tbl[] = {
238 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
239 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
240 	    ip_nodef_v6intfid },
241 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
242 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
243 	    ip_nodef_v6intfid },
244 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
245 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
246 	    ip_nodef_v6intfid },
247 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
248 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
249 	    ip_nodef_v6intfid },
250 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
251 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid,
252 	    ip_nodef_v6intfid },
253 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
254 	    ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid,
255 	    ip_nodef_v6intfid },
256 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6,
257 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
258 	    ip_ipv4_v6destintfid },
259 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6,
260 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid,
261 	    ip_ipv6_v6destintfid },
262 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6,
263 	    ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid,
264 	    ip_nodef_v6intfid },
265 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
266 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
267 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
268 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
269 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
270 	    ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid,
271 	    ip_nodef_v6intfid }
272 };
273 
274 static ill_t	ill_null;		/* Empty ILL for init. */
275 char	ipif_loopback_name[] = "lo0";
276 static char *ipv4_forward_suffix = ":ip_forwarding";
277 static char *ipv6_forward_suffix = ":ip6_forwarding";
278 static	sin6_t	sin6_null;	/* Zero address for quick clears */
279 static	sin_t	sin_null;	/* Zero address for quick clears */
280 
281 /* When set search for unused ipif_seqid */
282 static ipif_t	ipif_zero;
283 
284 /*
285  * ppa arena is created after these many
286  * interfaces have been plumbed.
287  */
288 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
289 
290 /*
291  * Allocate per-interface mibs.
292  * Returns true if ok. False otherwise.
293  *  ipsq  may not yet be allocated (loopback case ).
294  */
295 static boolean_t
296 ill_allocate_mibs(ill_t *ill)
297 {
298 	/* Already allocated? */
299 	if (ill->ill_ip_mib != NULL) {
300 		if (ill->ill_isv6)
301 			ASSERT(ill->ill_icmp6_mib != NULL);
302 		return (B_TRUE);
303 	}
304 
305 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
306 	    KM_NOSLEEP);
307 	if (ill->ill_ip_mib == NULL) {
308 		return (B_FALSE);
309 	}
310 
311 	/* Setup static information */
312 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
313 	    sizeof (mib2_ipIfStatsEntry_t));
314 	if (ill->ill_isv6) {
315 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
316 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
317 		    sizeof (mib2_ipv6AddrEntry_t));
318 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
319 		    sizeof (mib2_ipv6RouteEntry_t));
320 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
321 		    sizeof (mib2_ipv6NetToMediaEntry_t));
322 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
323 		    sizeof (ipv6_member_t));
324 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
325 		    sizeof (ipv6_grpsrc_t));
326 	} else {
327 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
328 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
329 		    sizeof (mib2_ipAddrEntry_t));
330 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
331 		    sizeof (mib2_ipRouteEntry_t));
332 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
333 		    sizeof (mib2_ipNetToMediaEntry_t));
334 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
335 		    sizeof (ip_member_t));
336 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
337 		    sizeof (ip_grpsrc_t));
338 
339 		/*
340 		 * For a v4 ill, we are done at this point, because per ill
341 		 * icmp mibs are only used for v6.
342 		 */
343 		return (B_TRUE);
344 	}
345 
346 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
347 	    KM_NOSLEEP);
348 	if (ill->ill_icmp6_mib == NULL) {
349 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
350 		ill->ill_ip_mib = NULL;
351 		return (B_FALSE);
352 	}
353 	/* static icmp info */
354 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
355 	    sizeof (mib2_ipv6IfIcmpEntry_t);
356 	/*
357 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
358 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
359 	 * -> ill_phyint_reinit
360 	 */
361 	return (B_TRUE);
362 }
363 
364 /*
365  * Completely vaporize a lower level tap and all associated interfaces.
366  * ill_delete is called only out of ip_close when the device control
367  * stream is being closed.
368  */
369 void
370 ill_delete(ill_t *ill)
371 {
372 	ipif_t	*ipif;
373 	ill_t	*prev_ill;
374 	ip_stack_t	*ipst = ill->ill_ipst;
375 
376 	/*
377 	 * ill_delete may be forcibly entering the ipsq. The previous
378 	 * ioctl may not have completed and may need to be aborted.
379 	 * ipsq_flush takes care of it. If we don't need to enter the
380 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
381 	 * ill_delete_tail is sufficient.
382 	 */
383 	ipsq_flush(ill);
384 
385 	/*
386 	 * Nuke all interfaces.  ipif_free will take down the interface,
387 	 * remove it from the list, and free the data structure.
388 	 * Walk down the ipif list and remove the logical interfaces
389 	 * first before removing the main ipif. We can't unplumb
390 	 * zeroth interface first in the case of IPv6 as update_conn_ill
391 	 * -> ip_ll_multireq de-references ill_ipif for checking
392 	 * POINTOPOINT.
393 	 *
394 	 * If ill_ipif was not properly initialized (i.e low on memory),
395 	 * then no interfaces to clean up. In this case just clean up the
396 	 * ill.
397 	 */
398 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
399 		ipif_free(ipif);
400 
401 	/*
402 	 * clean out all the nce_t entries that depend on this
403 	 * ill for the ill_phys_addr.
404 	 */
405 	nce_flush(ill, B_TRUE);
406 
407 	/* Clean up msgs on pending upcalls for mrouted */
408 	reset_mrt_ill(ill);
409 
410 	update_conn_ill(ill, ipst);
411 
412 	/*
413 	 * Remove multicast references added as a result of calls to
414 	 * ip_join_allmulti().
415 	 */
416 	ip_purge_allmulti(ill);
417 
418 	/*
419 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
420 	 */
421 	if (IS_UNDER_IPMP(ill))
422 		ipmp_ill_leave_illgrp(ill);
423 
424 	/*
425 	 * ill_down will arrange to blow off any IRE's dependent on this
426 	 * ILL, and shut down fragmentation reassembly.
427 	 */
428 	ill_down(ill);
429 
430 	/* Let SCTP know, so that it can remove this from its list. */
431 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
432 
433 	/*
434 	 * Walk all CONNs that can have a reference on an ire or nce for this
435 	 * ill (we actually walk all that now have stale references).
436 	 */
437 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
438 
439 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
440 	if (ill->ill_isv6)
441 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst);
442 
443 	/*
444 	 * If an address on this ILL is being used as a source address then
445 	 * clear out the pointers in other ILLs that point to this ILL.
446 	 */
447 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
448 	if (ill->ill_usesrc_grp_next != NULL) {
449 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
450 			ill_disband_usesrc_group(ill);
451 		} else {	/* consumer of the usesrc ILL */
452 			prev_ill = ill_prev_usesrc(ill);
453 			prev_ill->ill_usesrc_grp_next =
454 			    ill->ill_usesrc_grp_next;
455 		}
456 	}
457 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
458 }
459 
460 static void
461 ipif_non_duplicate(ipif_t *ipif)
462 {
463 	ill_t *ill = ipif->ipif_ill;
464 	mutex_enter(&ill->ill_lock);
465 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
466 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
467 		ASSERT(ill->ill_ipif_dup_count > 0);
468 		ill->ill_ipif_dup_count--;
469 	}
470 	mutex_exit(&ill->ill_lock);
471 }
472 
473 /*
474  * ill_delete_tail is called from ip_modclose after all references
475  * to the closing ill are gone. The wait is done in ip_modclose
476  */
477 void
478 ill_delete_tail(ill_t *ill)
479 {
480 	mblk_t	**mpp;
481 	ipif_t	*ipif;
482 	ip_stack_t	*ipst = ill->ill_ipst;
483 
484 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
485 		ipif_non_duplicate(ipif);
486 		(void) ipif_down_tail(ipif);
487 	}
488 
489 	ASSERT(ill->ill_ipif_dup_count == 0);
490 
491 	/*
492 	 * If polling capability is enabled (which signifies direct
493 	 * upcall into IP and driver has ill saved as a handle),
494 	 * we need to make sure that unbind has completed before we
495 	 * let the ill disappear and driver no longer has any reference
496 	 * to this ill.
497 	 */
498 	mutex_enter(&ill->ill_lock);
499 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
500 		cv_wait(&ill->ill_cv, &ill->ill_lock);
501 	mutex_exit(&ill->ill_lock);
502 	ASSERT(!(ill->ill_capabilities &
503 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
504 
505 	if (ill->ill_net_type != IRE_LOOPBACK)
506 		qprocsoff(ill->ill_rq);
507 
508 	/*
509 	 * We do an ipsq_flush once again now. New messages could have
510 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
511 	 * could also have landed up if an ioctl thread had looked up
512 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
513 	 * enqueued the ioctl when we did the ipsq_flush last time.
514 	 */
515 	ipsq_flush(ill);
516 
517 	/*
518 	 * Free capabilities.
519 	 */
520 	if (ill->ill_hcksum_capab != NULL) {
521 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
522 		ill->ill_hcksum_capab = NULL;
523 	}
524 
525 	if (ill->ill_zerocopy_capab != NULL) {
526 		kmem_free(ill->ill_zerocopy_capab,
527 		    sizeof (ill_zerocopy_capab_t));
528 		ill->ill_zerocopy_capab = NULL;
529 	}
530 
531 	if (ill->ill_lso_capab != NULL) {
532 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
533 		ill->ill_lso_capab = NULL;
534 	}
535 
536 	if (ill->ill_dld_capab != NULL) {
537 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
538 		ill->ill_dld_capab = NULL;
539 	}
540 
541 	while (ill->ill_ipif != NULL)
542 		ipif_free_tail(ill->ill_ipif);
543 
544 	/*
545 	 * We have removed all references to ilm from conn and the ones joined
546 	 * within the kernel.
547 	 *
548 	 * We don't walk conns, mrts and ires because
549 	 *
550 	 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts.
551 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
552 	 *    ill references.
553 	 */
554 
555 	/*
556 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
557 	 * is safe to do because the illgrp has already been unlinked from the
558 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
559 	 */
560 	if (IS_IPMP(ill)) {
561 		ipmp_illgrp_destroy(ill->ill_grp);
562 		ill->ill_grp = NULL;
563 	}
564 
565 	/*
566 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
567 	 * could free the phyint. No more reference to the phyint after this
568 	 * point.
569 	 */
570 	(void) ill_glist_delete(ill);
571 
572 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
573 	if (ill->ill_ndd_name != NULL)
574 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
575 	rw_exit(&ipst->ips_ip_g_nd_lock);
576 
577 	if (ill->ill_frag_ptr != NULL) {
578 		uint_t count;
579 
580 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
581 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
582 		}
583 		mi_free(ill->ill_frag_ptr);
584 		ill->ill_frag_ptr = NULL;
585 		ill->ill_frag_hash_tbl = NULL;
586 	}
587 
588 	freemsg(ill->ill_nd_lla_mp);
589 	/* Free all retained control messages. */
590 	mpp = &ill->ill_first_mp_to_free;
591 	do {
592 		while (mpp[0]) {
593 			mblk_t  *mp;
594 			mblk_t  *mp1;
595 
596 			mp = mpp[0];
597 			mpp[0] = mp->b_next;
598 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
599 				mp1->b_next = NULL;
600 				mp1->b_prev = NULL;
601 			}
602 			freemsg(mp);
603 		}
604 	} while (mpp++ != &ill->ill_last_mp_to_free);
605 
606 	ill_free_mib(ill);
607 
608 #ifdef DEBUG
609 	ill_trace_cleanup(ill);
610 #endif
611 
612 	/* The default multicast interface might have changed */
613 	ire_increment_multicast_generation(ipst, ill->ill_isv6);
614 
615 	/* Drop refcnt here */
616 	netstack_rele(ill->ill_ipst->ips_netstack);
617 	ill->ill_ipst = NULL;
618 }
619 
620 static void
621 ill_free_mib(ill_t *ill)
622 {
623 	ip_stack_t *ipst = ill->ill_ipst;
624 
625 	/*
626 	 * MIB statistics must not be lost, so when an interface
627 	 * goes away the counter values will be added to the global
628 	 * MIBs.
629 	 */
630 	if (ill->ill_ip_mib != NULL) {
631 		if (ill->ill_isv6) {
632 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
633 			    ill->ill_ip_mib);
634 		} else {
635 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
636 			    ill->ill_ip_mib);
637 		}
638 
639 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
640 		ill->ill_ip_mib = NULL;
641 	}
642 	if (ill->ill_icmp6_mib != NULL) {
643 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
644 		    ill->ill_icmp6_mib);
645 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
646 		ill->ill_icmp6_mib = NULL;
647 	}
648 }
649 
650 /*
651  * Concatenate together a physical address and a sap.
652  *
653  * Sap_lengths are interpreted as follows:
654  *   sap_length == 0	==>	no sap
655  *   sap_length > 0	==>	sap is at the head of the dlpi address
656  *   sap_length < 0	==>	sap is at the tail of the dlpi address
657  */
658 static void
659 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
660     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
661 {
662 	uint16_t sap_addr = (uint16_t)sap_src;
663 
664 	if (sap_length == 0) {
665 		if (phys_src == NULL)
666 			bzero(dst, phys_length);
667 		else
668 			bcopy(phys_src, dst, phys_length);
669 	} else if (sap_length < 0) {
670 		if (phys_src == NULL)
671 			bzero(dst, phys_length);
672 		else
673 			bcopy(phys_src, dst, phys_length);
674 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
675 	} else {
676 		bcopy(&sap_addr, dst, sizeof (sap_addr));
677 		if (phys_src == NULL)
678 			bzero((char *)dst + sap_length, phys_length);
679 		else
680 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
681 	}
682 }
683 
684 /*
685  * Generate a dl_unitdata_req mblk for the device and address given.
686  * addr_length is the length of the physical portion of the address.
687  * If addr is NULL include an all zero address of the specified length.
688  * TRUE? In any case, addr_length is taken to be the entire length of the
689  * dlpi address, including the absolute value of sap_length.
690  */
691 mblk_t *
692 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
693 		t_scalar_t sap_length)
694 {
695 	dl_unitdata_req_t *dlur;
696 	mblk_t	*mp;
697 	t_scalar_t	abs_sap_length;		/* absolute value */
698 
699 	abs_sap_length = ABS(sap_length);
700 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
701 	    DL_UNITDATA_REQ);
702 	if (mp == NULL)
703 		return (NULL);
704 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
705 	/* HACK: accomodate incompatible DLPI drivers */
706 	if (addr_length == 8)
707 		addr_length = 6;
708 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
709 	dlur->dl_dest_addr_offset = sizeof (*dlur);
710 	dlur->dl_priority.dl_min = 0;
711 	dlur->dl_priority.dl_max = 0;
712 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
713 	    (uchar_t *)&dlur[1]);
714 	return (mp);
715 }
716 
717 /*
718  * Add the pending mp to the list. There can be only 1 pending mp
719  * in the list. Any exclusive ioctl that needs to wait for a response
720  * from another module or driver needs to use this function to set
721  * the ipx_pending_mp to the ioctl mblk and wait for the response from
722  * the other module/driver. This is also used while waiting for the
723  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
724  */
725 boolean_t
726 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
727     int waitfor)
728 {
729 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
730 
731 	ASSERT(IAM_WRITER_IPIF(ipif));
732 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
733 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
734 	ASSERT(ipx->ipx_pending_mp == NULL);
735 	/*
736 	 * The caller may be using a different ipif than the one passed into
737 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
738 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
739 	 * that `ipx_current_ipif == ipif'.
740 	 */
741 	ASSERT(ipx->ipx_current_ipif != NULL);
742 
743 	/*
744 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
745 	 * driver.
746 	 */
747 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
748 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
749 	    (DB_TYPE(add_mp) == M_PCPROTO));
750 
751 	if (connp != NULL) {
752 		ASSERT(MUTEX_HELD(&connp->conn_lock));
753 		/*
754 		 * Return error if the conn has started closing. The conn
755 		 * could have finished cleaning up the pending mp list,
756 		 * If so we should not add another mp to the list negating
757 		 * the cleanup.
758 		 */
759 		if (connp->conn_state_flags & CONN_CLOSING)
760 			return (B_FALSE);
761 	}
762 	mutex_enter(&ipx->ipx_lock);
763 	ipx->ipx_pending_ipif = ipif;
764 	/*
765 	 * Note down the queue in b_queue. This will be returned by
766 	 * ipsq_pending_mp_get. Caller will then use these values to restart
767 	 * the processing
768 	 */
769 	add_mp->b_next = NULL;
770 	add_mp->b_queue = q;
771 	ipx->ipx_pending_mp = add_mp;
772 	ipx->ipx_waitfor = waitfor;
773 	mutex_exit(&ipx->ipx_lock);
774 
775 	if (connp != NULL)
776 		connp->conn_oper_pending_ill = ipif->ipif_ill;
777 
778 	return (B_TRUE);
779 }
780 
781 /*
782  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
783  * queued in the list.
784  */
785 mblk_t *
786 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
787 {
788 	mblk_t	*curr = NULL;
789 	ipxop_t	*ipx = ipsq->ipsq_xop;
790 
791 	*connpp = NULL;
792 	mutex_enter(&ipx->ipx_lock);
793 	if (ipx->ipx_pending_mp == NULL) {
794 		mutex_exit(&ipx->ipx_lock);
795 		return (NULL);
796 	}
797 
798 	/* There can be only 1 such excl message */
799 	curr = ipx->ipx_pending_mp;
800 	ASSERT(curr->b_next == NULL);
801 	ipx->ipx_pending_ipif = NULL;
802 	ipx->ipx_pending_mp = NULL;
803 	ipx->ipx_waitfor = 0;
804 	mutex_exit(&ipx->ipx_lock);
805 
806 	if (CONN_Q(curr->b_queue)) {
807 		/*
808 		 * This mp did a refhold on the conn, at the start of the ioctl.
809 		 * So we can safely return a pointer to the conn to the caller.
810 		 */
811 		*connpp = Q_TO_CONN(curr->b_queue);
812 	} else {
813 		*connpp = NULL;
814 	}
815 	curr->b_next = NULL;
816 	curr->b_prev = NULL;
817 	return (curr);
818 }
819 
820 /*
821  * Cleanup the ioctl mp queued in ipx_pending_mp
822  * - Called in the ill_delete path
823  * - Called in the M_ERROR or M_HANGUP path on the ill.
824  * - Called in the conn close path.
825  */
826 boolean_t
827 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
828 {
829 	mblk_t	*mp;
830 	ipxop_t	*ipx;
831 	queue_t	*q;
832 	ipif_t	*ipif;
833 	int	cmd;
834 
835 	ASSERT(IAM_WRITER_ILL(ill));
836 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
837 
838 	/*
839 	 * If connp is null, unconditionally clean up the ipx_pending_mp.
840 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
841 	 * even if it is meant for another ill, since we have to enqueue
842 	 * a new mp now in ipx_pending_mp to complete the ipif_down.
843 	 * If connp is non-null we are called from the conn close path.
844 	 */
845 	mutex_enter(&ipx->ipx_lock);
846 	mp = ipx->ipx_pending_mp;
847 	if (mp == NULL || (connp != NULL &&
848 	    mp->b_queue != CONNP_TO_WQ(connp))) {
849 		mutex_exit(&ipx->ipx_lock);
850 		return (B_FALSE);
851 	}
852 	/* Now remove from the ipx_pending_mp */
853 	ipx->ipx_pending_mp = NULL;
854 	q = mp->b_queue;
855 	mp->b_next = NULL;
856 	mp->b_prev = NULL;
857 	mp->b_queue = NULL;
858 
859 	ipif = ipx->ipx_pending_ipif;
860 	ipx->ipx_pending_ipif = NULL;
861 	ipx->ipx_waitfor = 0;
862 	ipx->ipx_current_ipif = NULL;
863 	cmd = ipx->ipx_current_ioctl;
864 	ipx->ipx_current_ioctl = 0;
865 	ipx->ipx_current_done = B_TRUE;
866 	mutex_exit(&ipx->ipx_lock);
867 
868 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
869 		DTRACE_PROBE4(ipif__ioctl,
870 		    char *, "ipsq_pending_mp_cleanup",
871 		    int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill,
872 		    ipif_t *, ipif);
873 		if (connp == NULL) {
874 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
875 		} else {
876 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
877 			mutex_enter(&ipif->ipif_ill->ill_lock);
878 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
879 			mutex_exit(&ipif->ipif_ill->ill_lock);
880 		}
881 	} else {
882 		/*
883 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
884 		 * be just inet_freemsg. we have to restart it
885 		 * otherwise the thread will be stuck.
886 		 */
887 		inet_freemsg(mp);
888 	}
889 	return (B_TRUE);
890 }
891 
892 /*
893  * Called in the conn close path and ill delete path
894  */
895 static void
896 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
897 {
898 	ipsq_t	*ipsq;
899 	mblk_t	*prev;
900 	mblk_t	*curr;
901 	mblk_t	*next;
902 	queue_t	*q;
903 	mblk_t	*tmp_list = NULL;
904 
905 	ASSERT(IAM_WRITER_ILL(ill));
906 	if (connp != NULL)
907 		q = CONNP_TO_WQ(connp);
908 	else
909 		q = ill->ill_wq;
910 
911 	ipsq = ill->ill_phyint->phyint_ipsq;
912 	/*
913 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
914 	 * In the case of ioctl from a conn, there can be only 1 mp
915 	 * queued on the ipsq. If an ill is being unplumbed, only messages
916 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
917 	 * ioctls meant for this ill form conn's are not flushed. They will
918 	 * be processed during ipsq_exit and will not find the ill and will
919 	 * return error.
920 	 */
921 	mutex_enter(&ipsq->ipsq_lock);
922 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
923 	    curr = next) {
924 		next = curr->b_next;
925 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
926 			/* Unlink the mblk from the pending mp list */
927 			if (prev != NULL) {
928 				prev->b_next = curr->b_next;
929 			} else {
930 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
931 				ipsq->ipsq_xopq_mphead = curr->b_next;
932 			}
933 			if (ipsq->ipsq_xopq_mptail == curr)
934 				ipsq->ipsq_xopq_mptail = prev;
935 			/*
936 			 * Create a temporary list and release the ipsq lock
937 			 * New elements are added to the head of the tmp_list
938 			 */
939 			curr->b_next = tmp_list;
940 			tmp_list = curr;
941 		} else {
942 			prev = curr;
943 		}
944 	}
945 	mutex_exit(&ipsq->ipsq_lock);
946 
947 	while (tmp_list != NULL) {
948 		curr = tmp_list;
949 		tmp_list = curr->b_next;
950 		curr->b_next = NULL;
951 		curr->b_prev = NULL;
952 		curr->b_queue = NULL;
953 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
954 			DTRACE_PROBE4(ipif__ioctl,
955 			    char *, "ipsq_xopq_mp_cleanup",
956 			    int, 0, ill_t *, NULL, ipif_t *, NULL);
957 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
958 			    CONN_CLOSE : NO_COPYOUT, NULL);
959 		} else {
960 			/*
961 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
962 			 * this can't be just inet_freemsg. we have to
963 			 * restart it otherwise the thread will be stuck.
964 			 */
965 			inet_freemsg(curr);
966 		}
967 	}
968 }
969 
970 /*
971  * This conn has started closing. Cleanup any pending ioctl from this conn.
972  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
973  */
974 void
975 conn_ioctl_cleanup(conn_t *connp)
976 {
977 	ipsq_t	*ipsq;
978 	ill_t	*ill;
979 	boolean_t refheld;
980 
981 	/*
982 	 * Is any exclusive ioctl pending ? If so clean it up. If the
983 	 * ioctl has not yet started, the mp is pending in the list headed by
984 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
985 	 * ipx_pending_mp. If the ioctl timed out in the streamhead but
986 	 * is currently executing now the mp is not queued anywhere but
987 	 * conn_oper_pending_ill is null. The conn close will wait
988 	 * till the conn_ref drops to zero.
989 	 */
990 	mutex_enter(&connp->conn_lock);
991 	ill = connp->conn_oper_pending_ill;
992 	if (ill == NULL) {
993 		mutex_exit(&connp->conn_lock);
994 		return;
995 	}
996 
997 	/*
998 	 * We may not be able to refhold the ill if the ill/ipif
999 	 * is changing. But we need to make sure that the ill will
1000 	 * not vanish. So we just bump up the ill_waiter count.
1001 	 */
1002 	refheld = ill_waiter_inc(ill);
1003 	mutex_exit(&connp->conn_lock);
1004 	if (refheld) {
1005 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1006 			ill_waiter_dcr(ill);
1007 			/*
1008 			 * Check whether this ioctl has started and is
1009 			 * pending. If it is not found there then check
1010 			 * whether this ioctl has not even started and is in
1011 			 * the ipsq_xopq list.
1012 			 */
1013 			if (!ipsq_pending_mp_cleanup(ill, connp))
1014 				ipsq_xopq_mp_cleanup(ill, connp);
1015 			ipsq = ill->ill_phyint->phyint_ipsq;
1016 			ipsq_exit(ipsq);
1017 			return;
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * The ill is also closing and we could not bump up the
1023 	 * ill_waiter_count or we could not enter the ipsq. Leave
1024 	 * the cleanup to ill_delete
1025 	 */
1026 	mutex_enter(&connp->conn_lock);
1027 	while (connp->conn_oper_pending_ill != NULL)
1028 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1029 	mutex_exit(&connp->conn_lock);
1030 	if (refheld)
1031 		ill_waiter_dcr(ill);
1032 }
1033 
1034 /*
1035  * ipcl_walk function for cleaning up conn_*_ill fields.
1036  * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and
1037  * conn_bound_if in place. We prefer dropping
1038  * packets instead of sending them out the wrong interface, or accepting
1039  * packets from the wrong ifindex.
1040  */
1041 static void
1042 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1043 {
1044 	ill_t	*ill = (ill_t *)arg;
1045 
1046 	mutex_enter(&connp->conn_lock);
1047 	if (connp->conn_dhcpinit_ill == ill) {
1048 		connp->conn_dhcpinit_ill = NULL;
1049 		ASSERT(ill->ill_dhcpinit != 0);
1050 		atomic_dec_32(&ill->ill_dhcpinit);
1051 		ill_set_inputfn(ill);
1052 	}
1053 	mutex_exit(&connp->conn_lock);
1054 }
1055 
1056 static int
1057 ill_down_ipifs_tail(ill_t *ill)
1058 {
1059 	ipif_t	*ipif;
1060 	int err;
1061 
1062 	ASSERT(IAM_WRITER_ILL(ill));
1063 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1064 		ipif_non_duplicate(ipif);
1065 		/*
1066 		 * ipif_down_tail will call arp_ll_down on the last ipif
1067 		 * and typically return EINPROGRESS when the DL_UNBIND is sent.
1068 		 */
1069 		if ((err = ipif_down_tail(ipif)) != 0)
1070 			return (err);
1071 	}
1072 	return (0);
1073 }
1074 
1075 /* ARGSUSED */
1076 void
1077 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1078 {
1079 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1080 	(void) ill_down_ipifs_tail(q->q_ptr);
1081 	freemsg(mp);
1082 	ipsq_current_finish(ipsq);
1083 }
1084 
1085 /*
1086  * ill_down_start is called when we want to down this ill and bring it up again
1087  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1088  * all interfaces, but don't tear down any plumbing.
1089  */
1090 boolean_t
1091 ill_down_start(queue_t *q, mblk_t *mp)
1092 {
1093 	ill_t	*ill = q->q_ptr;
1094 	ipif_t	*ipif;
1095 
1096 	ASSERT(IAM_WRITER_ILL(ill));
1097 	mutex_enter(&ill->ill_lock);
1098 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
1099 	/* no more nce addition allowed */
1100 	mutex_exit(&ill->ill_lock);
1101 
1102 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1103 		(void) ipif_down(ipif, NULL, NULL);
1104 
1105 	ill_down(ill);
1106 
1107 	/*
1108 	 * Walk all CONNs that can have a reference on an ire or nce for this
1109 	 * ill (we actually walk all that now have stale references).
1110 	 */
1111 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst);
1112 
1113 	/* With IPv6 we have dce_ifindex. Cleanup for neatness */
1114 	if (ill->ill_isv6)
1115 		dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst);
1116 
1117 
1118 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1119 
1120 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1121 
1122 	/*
1123 	 * Atomically test and add the pending mp if references are active.
1124 	 */
1125 	mutex_enter(&ill->ill_lock);
1126 	if (!ill_is_quiescent(ill)) {
1127 		/* call cannot fail since `conn_t *' argument is NULL */
1128 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1129 		    mp, ILL_DOWN);
1130 		mutex_exit(&ill->ill_lock);
1131 		return (B_FALSE);
1132 	}
1133 	mutex_exit(&ill->ill_lock);
1134 	return (B_TRUE);
1135 }
1136 
1137 static void
1138 ill_down(ill_t *ill)
1139 {
1140 	mblk_t	*mp;
1141 	ip_stack_t	*ipst = ill->ill_ipst;
1142 
1143 	/*
1144 	 * Blow off any IREs dependent on this ILL.
1145 	 * The caller needs to handle conn_ixa_cleanup
1146 	 */
1147 	ill_delete_ires(ill);
1148 
1149 	ire_walk_ill(0, 0, ill_downi, ill, ill);
1150 
1151 	/* Remove any conn_*_ill depending on this ill */
1152 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1153 
1154 	/*
1155 	 * Free state for additional IREs.
1156 	 */
1157 	mutex_enter(&ill->ill_saved_ire_lock);
1158 	mp = ill->ill_saved_ire_mp;
1159 	ill->ill_saved_ire_mp = NULL;
1160 	ill->ill_saved_ire_cnt = 0;
1161 	mutex_exit(&ill->ill_saved_ire_lock);
1162 	freemsg(mp);
1163 }
1164 
1165 /*
1166  * ire_walk routine used to delete every IRE that depends on
1167  * 'ill'.  (Always called as writer.)
1168  *
1169  * Note: since the routes added by the kernel are deleted separately,
1170  * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE.
1171  *
1172  * We also remove references on ire_nce_cache entries that refer to the ill.
1173  */
1174 void
1175 ill_downi(ire_t *ire, char *ill_arg)
1176 {
1177 	ill_t	*ill = (ill_t *)ill_arg;
1178 	nce_t	*nce;
1179 
1180 	mutex_enter(&ire->ire_lock);
1181 	nce = ire->ire_nce_cache;
1182 	if (nce != NULL && nce->nce_ill == ill)
1183 		ire->ire_nce_cache = NULL;
1184 	else
1185 		nce = NULL;
1186 	mutex_exit(&ire->ire_lock);
1187 	if (nce != NULL)
1188 		nce_refrele(nce);
1189 	if (ire->ire_ill == ill)
1190 		ire_delete(ire);
1191 }
1192 
1193 /* Remove IRE_IF_CLONE on this ill */
1194 void
1195 ill_downi_if_clone(ire_t *ire, char *ill_arg)
1196 {
1197 	ill_t	*ill = (ill_t *)ill_arg;
1198 
1199 	ASSERT(ire->ire_type & IRE_IF_CLONE);
1200 	if (ire->ire_ill == ill)
1201 		ire_delete(ire);
1202 }
1203 
1204 /* Consume an M_IOCACK of the fastpath probe. */
1205 void
1206 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1207 {
1208 	mblk_t	*mp1 = mp;
1209 
1210 	/*
1211 	 * If this was the first attempt turn on the fastpath probing.
1212 	 */
1213 	mutex_enter(&ill->ill_lock);
1214 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1215 		ill->ill_dlpi_fastpath_state = IDS_OK;
1216 	mutex_exit(&ill->ill_lock);
1217 
1218 	/* Free the M_IOCACK mblk, hold on to the data */
1219 	mp = mp->b_cont;
1220 	freeb(mp1);
1221 	if (mp == NULL)
1222 		return;
1223 	if (mp->b_cont != NULL)
1224 		nce_fastpath_update(ill, mp);
1225 	else
1226 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1227 	freemsg(mp);
1228 }
1229 
1230 /*
1231  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1232  * The data portion of the request is a dl_unitdata_req_t template for
1233  * what we would send downstream in the absence of a fastpath confirmation.
1234  */
1235 int
1236 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1237 {
1238 	struct iocblk	*ioc;
1239 	mblk_t	*mp;
1240 
1241 	if (dlur_mp == NULL)
1242 		return (EINVAL);
1243 
1244 	mutex_enter(&ill->ill_lock);
1245 	switch (ill->ill_dlpi_fastpath_state) {
1246 	case IDS_FAILED:
1247 		/*
1248 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1249 		 * support it.
1250 		 */
1251 		mutex_exit(&ill->ill_lock);
1252 		return (ENOTSUP);
1253 	case IDS_UNKNOWN:
1254 		/* This is the first probe */
1255 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1256 		break;
1257 	default:
1258 		break;
1259 	}
1260 	mutex_exit(&ill->ill_lock);
1261 
1262 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1263 		return (EAGAIN);
1264 
1265 	mp->b_cont = copyb(dlur_mp);
1266 	if (mp->b_cont == NULL) {
1267 		freeb(mp);
1268 		return (EAGAIN);
1269 	}
1270 
1271 	ioc = (struct iocblk *)mp->b_rptr;
1272 	ioc->ioc_count = msgdsize(mp->b_cont);
1273 
1274 	DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe",
1275 	    char *, "DL_IOC_HDR_INFO", ill_t *, ill);
1276 	putnext(ill->ill_wq, mp);
1277 	return (0);
1278 }
1279 
1280 void
1281 ill_capability_probe(ill_t *ill)
1282 {
1283 	mblk_t	*mp;
1284 
1285 	ASSERT(IAM_WRITER_ILL(ill));
1286 
1287 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1288 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1289 		return;
1290 
1291 	/*
1292 	 * We are starting a new cycle of capability negotiation.
1293 	 * Free up the capab reset messages of any previous incarnation.
1294 	 * We will do a fresh allocation when we get the response to our probe
1295 	 */
1296 	if (ill->ill_capab_reset_mp != NULL) {
1297 		freemsg(ill->ill_capab_reset_mp);
1298 		ill->ill_capab_reset_mp = NULL;
1299 	}
1300 
1301 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1302 
1303 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1304 	if (mp == NULL)
1305 		return;
1306 
1307 	ill_capability_send(ill, mp);
1308 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1309 }
1310 
1311 void
1312 ill_capability_reset(ill_t *ill, boolean_t reneg)
1313 {
1314 	ASSERT(IAM_WRITER_ILL(ill));
1315 
1316 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1317 		return;
1318 
1319 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1320 
1321 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1322 	ill->ill_capab_reset_mp = NULL;
1323 	/*
1324 	 * We turn off all capabilities except those pertaining to
1325 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1326 	 * which will be turned off by the corresponding reset functions.
1327 	 */
1328 	ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM  | ILL_CAPAB_ZEROCOPY);
1329 }
1330 
1331 static void
1332 ill_capability_reset_alloc(ill_t *ill)
1333 {
1334 	mblk_t *mp;
1335 	size_t	size = 0;
1336 	int	err;
1337 	dl_capability_req_t	*capb;
1338 
1339 	ASSERT(IAM_WRITER_ILL(ill));
1340 	ASSERT(ill->ill_capab_reset_mp == NULL);
1341 
1342 	if (ILL_HCKSUM_CAPABLE(ill)) {
1343 		size += sizeof (dl_capability_sub_t) +
1344 		    sizeof (dl_capab_hcksum_t);
1345 	}
1346 
1347 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1348 		size += sizeof (dl_capability_sub_t) +
1349 		    sizeof (dl_capab_zerocopy_t);
1350 	}
1351 
1352 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1353 		size += sizeof (dl_capability_sub_t) +
1354 		    sizeof (dl_capab_dld_t);
1355 	}
1356 
1357 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1358 	    STR_NOSIG, &err);
1359 
1360 	mp->b_datap->db_type = M_PROTO;
1361 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1362 
1363 	capb = (dl_capability_req_t *)mp->b_rptr;
1364 	capb->dl_primitive = DL_CAPABILITY_REQ;
1365 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1366 	capb->dl_sub_length = size;
1367 
1368 	mp->b_wptr += sizeof (dl_capability_req_t);
1369 
1370 	/*
1371 	 * Each handler fills in the corresponding dl_capability_sub_t
1372 	 * inside the mblk,
1373 	 */
1374 	ill_capability_hcksum_reset_fill(ill, mp);
1375 	ill_capability_zerocopy_reset_fill(ill, mp);
1376 	ill_capability_dld_reset_fill(ill, mp);
1377 
1378 	ill->ill_capab_reset_mp = mp;
1379 }
1380 
1381 static void
1382 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1383 {
1384 	dl_capab_id_t *id_ic;
1385 	uint_t sub_dl_cap = outers->dl_cap;
1386 	dl_capability_sub_t *inners;
1387 	uint8_t *capend;
1388 
1389 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1390 
1391 	/*
1392 	 * Note: range checks here are not absolutely sufficient to
1393 	 * make us robust against malformed messages sent by drivers;
1394 	 * this is in keeping with the rest of IP's dlpi handling.
1395 	 * (Remember, it's coming from something else in the kernel
1396 	 * address space)
1397 	 */
1398 
1399 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1400 	if (capend > mp->b_wptr) {
1401 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1402 		    "malformed sub-capability too long for mblk");
1403 		return;
1404 	}
1405 
1406 	id_ic = (dl_capab_id_t *)(outers + 1);
1407 
1408 	if (outers->dl_length < sizeof (*id_ic) ||
1409 	    (inners = &id_ic->id_subcap,
1410 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1411 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1412 		    "encapsulated capab type %d too long for mblk",
1413 		    inners->dl_cap);
1414 		return;
1415 	}
1416 
1417 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1418 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1419 		    "isn't as expected; pass-thru module(s) detected, "
1420 		    "discarding capability\n", inners->dl_cap));
1421 		return;
1422 	}
1423 
1424 	/* Process the encapsulated sub-capability */
1425 	ill_capability_dispatch(ill, mp, inners);
1426 }
1427 
1428 static void
1429 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
1430 {
1431 	dl_capability_sub_t *dl_subcap;
1432 
1433 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
1434 		return;
1435 
1436 	/*
1437 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
1438 	 * initialized below since it is not used by DLD.
1439 	 */
1440 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1441 	dl_subcap->dl_cap = DL_CAPAB_DLD;
1442 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
1443 
1444 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
1445 }
1446 
1447 static void
1448 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp)
1449 {
1450 	/*
1451 	 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK
1452 	 * is only to get the VRRP capability.
1453 	 *
1454 	 * Note that we cannot check ill_ipif_up_count here since
1455 	 * ill_ipif_up_count is only incremented when the resolver is setup.
1456 	 * That is done asynchronously, and can race with this function.
1457 	 */
1458 	if (!ill->ill_dl_up) {
1459 		if (subp->dl_cap == DL_CAPAB_VRRP)
1460 			ill_capability_vrrp_ack(ill, mp, subp);
1461 		return;
1462 	}
1463 
1464 	switch (subp->dl_cap) {
1465 	case DL_CAPAB_HCKSUM:
1466 		ill_capability_hcksum_ack(ill, mp, subp);
1467 		break;
1468 	case DL_CAPAB_ZEROCOPY:
1469 		ill_capability_zerocopy_ack(ill, mp, subp);
1470 		break;
1471 	case DL_CAPAB_DLD:
1472 		ill_capability_dld_ack(ill, mp, subp);
1473 		break;
1474 	case DL_CAPAB_VRRP:
1475 		break;
1476 	default:
1477 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
1478 		    subp->dl_cap));
1479 	}
1480 }
1481 
1482 /*
1483  * Process the vrrp capability received from a DLS Provider. isub must point
1484  * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message.
1485  */
1486 static void
1487 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1488 {
1489 	dl_capab_vrrp_t	*vrrp;
1490 	uint_t		sub_dl_cap = isub->dl_cap;
1491 	uint8_t		*capend;
1492 
1493 	ASSERT(IAM_WRITER_ILL(ill));
1494 	ASSERT(sub_dl_cap == DL_CAPAB_VRRP);
1495 
1496 	/*
1497 	 * Note: range checks here are not absolutely sufficient to
1498 	 * make us robust against malformed messages sent by drivers;
1499 	 * this is in keeping with the rest of IP's dlpi handling.
1500 	 * (Remember, it's coming from something else in the kernel
1501 	 * address space)
1502 	 */
1503 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1504 	if (capend > mp->b_wptr) {
1505 		cmn_err(CE_WARN, "ill_capability_vrrp_ack: "
1506 		    "malformed sub-capability too long for mblk");
1507 		return;
1508 	}
1509 	vrrp = (dl_capab_vrrp_t *)(isub + 1);
1510 
1511 	/*
1512 	 * Compare the IP address family and set ILLF_VRRP for the right ill.
1513 	 */
1514 	if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) ||
1515 	    (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) {
1516 		ill->ill_flags |= ILLF_VRRP;
1517 	}
1518 }
1519 
1520 /*
1521  * Process a hardware checksum offload capability negotiation ack received
1522  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
1523  * of a DL_CAPABILITY_ACK message.
1524  */
1525 static void
1526 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1527 {
1528 	dl_capability_req_t	*ocap;
1529 	dl_capab_hcksum_t	*ihck, *ohck;
1530 	ill_hcksum_capab_t	**ill_hcksum;
1531 	mblk_t			*nmp = NULL;
1532 	uint_t			sub_dl_cap = isub->dl_cap;
1533 	uint8_t			*capend;
1534 
1535 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
1536 
1537 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
1538 
1539 	/*
1540 	 * Note: range checks here are not absolutely sufficient to
1541 	 * make us robust against malformed messages sent by drivers;
1542 	 * this is in keeping with the rest of IP's dlpi handling.
1543 	 * (Remember, it's coming from something else in the kernel
1544 	 * address space)
1545 	 */
1546 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1547 	if (capend > mp->b_wptr) {
1548 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1549 		    "malformed sub-capability too long for mblk");
1550 		return;
1551 	}
1552 
1553 	/*
1554 	 * There are two types of acks we process here:
1555 	 * 1. acks in reply to a (first form) generic capability req
1556 	 *    (no ENABLE flag set)
1557 	 * 2. acks in reply to a ENABLE capability req.
1558 	 *    (ENABLE flag set)
1559 	 */
1560 	ihck = (dl_capab_hcksum_t *)(isub + 1);
1561 
1562 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
1563 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
1564 		    "unsupported hardware checksum "
1565 		    "sub-capability (version %d, expected %d)",
1566 		    ihck->hcksum_version, HCKSUM_VERSION_1);
1567 		return;
1568 	}
1569 
1570 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
1571 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
1572 		    "checksum capability isn't as expected; pass-thru "
1573 		    "module(s) detected, discarding capability\n"));
1574 		return;
1575 	}
1576 
1577 #define	CURR_HCKSUM_CAPAB				\
1578 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
1579 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
1580 
1581 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
1582 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
1583 		/* do ENABLE processing */
1584 		if (*ill_hcksum == NULL) {
1585 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
1586 			    KM_NOSLEEP);
1587 
1588 			if (*ill_hcksum == NULL) {
1589 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1590 				    "could not enable hcksum version %d "
1591 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
1592 				    ill->ill_name);
1593 				return;
1594 			}
1595 		}
1596 
1597 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
1598 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
1599 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
1600 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
1601 		    "has enabled hardware checksumming\n ",
1602 		    ill->ill_name));
1603 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
1604 		/*
1605 		 * Enabling hardware checksum offload
1606 		 * Currently IP supports {TCP,UDP}/IPv4
1607 		 * partial and full cksum offload and
1608 		 * IPv4 header checksum offload.
1609 		 * Allocate new mblk which will
1610 		 * contain a new capability request
1611 		 * to enable hardware checksum offload.
1612 		 */
1613 		uint_t	size;
1614 		uchar_t	*rptr;
1615 
1616 		size = sizeof (dl_capability_req_t) +
1617 		    sizeof (dl_capability_sub_t) + isub->dl_length;
1618 
1619 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1620 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
1621 			    "could not enable hardware cksum for %s (ENOMEM)\n",
1622 			    ill->ill_name);
1623 			return;
1624 		}
1625 
1626 		rptr = nmp->b_rptr;
1627 		/* initialize dl_capability_req_t */
1628 		ocap = (dl_capability_req_t *)nmp->b_rptr;
1629 		ocap->dl_sub_offset =
1630 		    sizeof (dl_capability_req_t);
1631 		ocap->dl_sub_length =
1632 		    sizeof (dl_capability_sub_t) +
1633 		    isub->dl_length;
1634 		nmp->b_rptr += sizeof (dl_capability_req_t);
1635 
1636 		/* initialize dl_capability_sub_t */
1637 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
1638 		nmp->b_rptr += sizeof (*isub);
1639 
1640 		/* initialize dl_capab_hcksum_t */
1641 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
1642 		bcopy(ihck, ohck, sizeof (*ihck));
1643 
1644 		nmp->b_rptr = rptr;
1645 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
1646 
1647 		/* Set ENABLE flag */
1648 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
1649 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
1650 
1651 		/*
1652 		 * nmp points to a DL_CAPABILITY_REQ message to enable
1653 		 * hardware checksum acceleration.
1654 		 */
1655 		ill_capability_send(ill, nmp);
1656 	} else {
1657 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
1658 		    "advertised %x hardware checksum capability flags\n",
1659 		    ill->ill_name, ihck->hcksum_txflags));
1660 	}
1661 }
1662 
1663 static void
1664 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
1665 {
1666 	dl_capab_hcksum_t *hck_subcap;
1667 	dl_capability_sub_t *dl_subcap;
1668 
1669 	if (!ILL_HCKSUM_CAPABLE(ill))
1670 		return;
1671 
1672 	ASSERT(ill->ill_hcksum_capab != NULL);
1673 
1674 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1675 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
1676 	dl_subcap->dl_length = sizeof (*hck_subcap);
1677 
1678 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
1679 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
1680 	hck_subcap->hcksum_txflags = 0;
1681 
1682 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
1683 }
1684 
1685 static void
1686 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1687 {
1688 	mblk_t *nmp = NULL;
1689 	dl_capability_req_t *oc;
1690 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
1691 	ill_zerocopy_capab_t **ill_zerocopy_capab;
1692 	uint_t sub_dl_cap = isub->dl_cap;
1693 	uint8_t *capend;
1694 
1695 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
1696 
1697 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
1698 
1699 	/*
1700 	 * Note: range checks here are not absolutely sufficient to
1701 	 * make us robust against malformed messages sent by drivers;
1702 	 * this is in keeping with the rest of IP's dlpi handling.
1703 	 * (Remember, it's coming from something else in the kernel
1704 	 * address space)
1705 	 */
1706 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1707 	if (capend > mp->b_wptr) {
1708 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1709 		    "malformed sub-capability too long for mblk");
1710 		return;
1711 	}
1712 
1713 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
1714 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
1715 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
1716 		    "unsupported ZEROCOPY sub-capability (version %d, "
1717 		    "expected %d)", zc_ic->zerocopy_version,
1718 		    ZEROCOPY_VERSION_1);
1719 		return;
1720 	}
1721 
1722 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
1723 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
1724 		    "capability isn't as expected; pass-thru module(s) "
1725 		    "detected, discarding capability\n"));
1726 		return;
1727 	}
1728 
1729 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
1730 		if (*ill_zerocopy_capab == NULL) {
1731 			*ill_zerocopy_capab =
1732 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
1733 			    KM_NOSLEEP);
1734 
1735 			if (*ill_zerocopy_capab == NULL) {
1736 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1737 				    "could not enable Zero-copy version %d "
1738 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
1739 				    ill->ill_name);
1740 				return;
1741 			}
1742 		}
1743 
1744 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
1745 		    "supports Zero-copy version %d\n", ill->ill_name,
1746 		    ZEROCOPY_VERSION_1));
1747 
1748 		(*ill_zerocopy_capab)->ill_zerocopy_version =
1749 		    zc_ic->zerocopy_version;
1750 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
1751 		    zc_ic->zerocopy_flags;
1752 
1753 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
1754 	} else {
1755 		uint_t size;
1756 		uchar_t *rptr;
1757 
1758 		size = sizeof (dl_capability_req_t) +
1759 		    sizeof (dl_capability_sub_t) +
1760 		    sizeof (dl_capab_zerocopy_t);
1761 
1762 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1763 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
1764 			    "could not enable zerocopy for %s (ENOMEM)\n",
1765 			    ill->ill_name);
1766 			return;
1767 		}
1768 
1769 		rptr = nmp->b_rptr;
1770 		/* initialize dl_capability_req_t */
1771 		oc = (dl_capability_req_t *)rptr;
1772 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
1773 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1774 		    sizeof (dl_capab_zerocopy_t);
1775 		rptr += sizeof (dl_capability_req_t);
1776 
1777 		/* initialize dl_capability_sub_t */
1778 		bcopy(isub, rptr, sizeof (*isub));
1779 		rptr += sizeof (*isub);
1780 
1781 		/* initialize dl_capab_zerocopy_t */
1782 		zc_oc = (dl_capab_zerocopy_t *)rptr;
1783 		*zc_oc = *zc_ic;
1784 
1785 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
1786 		    "to enable zero-copy version %d\n", ill->ill_name,
1787 		    ZEROCOPY_VERSION_1));
1788 
1789 		/* set VMSAFE_MEM flag */
1790 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
1791 
1792 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
1793 		ill_capability_send(ill, nmp);
1794 	}
1795 }
1796 
1797 static void
1798 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
1799 {
1800 	dl_capab_zerocopy_t *zerocopy_subcap;
1801 	dl_capability_sub_t *dl_subcap;
1802 
1803 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
1804 		return;
1805 
1806 	ASSERT(ill->ill_zerocopy_capab != NULL);
1807 
1808 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
1809 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
1810 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
1811 
1812 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
1813 	zerocopy_subcap->zerocopy_version =
1814 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
1815 	zerocopy_subcap->zerocopy_flags = 0;
1816 
1817 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
1818 }
1819 
1820 /*
1821  * DLD capability
1822  * Refer to dld.h for more information regarding the purpose and usage
1823  * of this capability.
1824  */
1825 static void
1826 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1827 {
1828 	dl_capab_dld_t		*dld_ic, dld;
1829 	uint_t			sub_dl_cap = isub->dl_cap;
1830 	uint8_t			*capend;
1831 	ill_dld_capab_t		*idc;
1832 
1833 	ASSERT(IAM_WRITER_ILL(ill));
1834 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
1835 
1836 	/*
1837 	 * Note: range checks here are not absolutely sufficient to
1838 	 * make us robust against malformed messages sent by drivers;
1839 	 * this is in keeping with the rest of IP's dlpi handling.
1840 	 * (Remember, it's coming from something else in the kernel
1841 	 * address space)
1842 	 */
1843 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1844 	if (capend > mp->b_wptr) {
1845 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
1846 		    "malformed sub-capability too long for mblk");
1847 		return;
1848 	}
1849 	dld_ic = (dl_capab_dld_t *)(isub + 1);
1850 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
1851 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
1852 		    "unsupported DLD sub-capability (version %d, "
1853 		    "expected %d)", dld_ic->dld_version,
1854 		    DLD_CURRENT_VERSION);
1855 		return;
1856 	}
1857 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
1858 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
1859 		    "capability isn't as expected; pass-thru module(s) "
1860 		    "detected, discarding capability\n"));
1861 		return;
1862 	}
1863 
1864 	/*
1865 	 * Copy locally to ensure alignment.
1866 	 */
1867 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
1868 
1869 	if ((idc = ill->ill_dld_capab) == NULL) {
1870 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
1871 		if (idc == NULL) {
1872 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
1873 			    "could not enable DLD version %d "
1874 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
1875 			    ill->ill_name);
1876 			return;
1877 		}
1878 		ill->ill_dld_capab = idc;
1879 	}
1880 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
1881 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
1882 	ip1dbg(("ill_capability_dld_ack: interface %s "
1883 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
1884 
1885 	ill_capability_dld_enable(ill);
1886 }
1887 
1888 /*
1889  * Typically capability negotiation between IP and the driver happens via
1890  * DLPI message exchange. However GLD also offers a direct function call
1891  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
1892  * But arbitrary function calls into IP or GLD are not permitted, since both
1893  * of them are protected by their own perimeter mechanism. The perimeter can
1894  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
1895  * these perimeters is IP -> MAC. Thus for example to enable the squeue
1896  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
1897  * to enter the mac perimeter and then do the direct function calls into
1898  * GLD to enable squeue polling. The ring related callbacks from the mac into
1899  * the stack to add, bind, quiesce, restart or cleanup a ring are all
1900  * protected by the mac perimeter.
1901  */
1902 static void
1903 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
1904 {
1905 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1906 	int			err;
1907 
1908 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
1909 	    DLD_ENABLE);
1910 	ASSERT(err == 0);
1911 }
1912 
1913 static void
1914 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
1915 {
1916 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1917 	int			err;
1918 
1919 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
1920 	    DLD_DISABLE);
1921 	ASSERT(err == 0);
1922 }
1923 
1924 boolean_t
1925 ill_mac_perim_held(ill_t *ill)
1926 {
1927 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1928 
1929 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
1930 	    DLD_QUERY));
1931 }
1932 
1933 static void
1934 ill_capability_direct_enable(ill_t *ill)
1935 {
1936 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1937 	ill_dld_direct_t	*idd = &idc->idc_direct;
1938 	dld_capab_direct_t	direct;
1939 	int			rc;
1940 
1941 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1942 
1943 	bzero(&direct, sizeof (direct));
1944 	direct.di_rx_cf = (uintptr_t)ip_input;
1945 	direct.di_rx_ch = ill;
1946 
1947 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
1948 	    DLD_ENABLE);
1949 	if (rc == 0) {
1950 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
1951 		idd->idd_tx_dh = direct.di_tx_dh;
1952 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
1953 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
1954 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
1955 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
1956 		ASSERT(idd->idd_tx_cb_df != NULL);
1957 		ASSERT(idd->idd_tx_fctl_df != NULL);
1958 		ASSERT(idd->idd_tx_df != NULL);
1959 		/*
1960 		 * One time registration of flow enable callback function
1961 		 */
1962 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
1963 		    ill_flow_enable, ill);
1964 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
1965 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
1966 	} else {
1967 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
1968 		    "capability, rc = %d\n", rc);
1969 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
1970 	}
1971 }
1972 
1973 static void
1974 ill_capability_poll_enable(ill_t *ill)
1975 {
1976 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
1977 	dld_capab_poll_t	poll;
1978 	int			rc;
1979 
1980 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
1981 
1982 	bzero(&poll, sizeof (poll));
1983 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
1984 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
1985 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
1986 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
1987 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
1988 	poll.poll_ring_ch = ill;
1989 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
1990 	    DLD_ENABLE);
1991 	if (rc == 0) {
1992 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
1993 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
1994 	} else {
1995 		ip1dbg(("warning: could not enable POLL "
1996 		    "capability, rc = %d\n", rc));
1997 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
1998 	}
1999 }
2000 
2001 /*
2002  * Enable the LSO capability.
2003  */
2004 static void
2005 ill_capability_lso_enable(ill_t *ill)
2006 {
2007 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
2008 	dld_capab_lso_t	lso;
2009 	int rc;
2010 
2011 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
2012 
2013 	if (ill->ill_lso_capab == NULL) {
2014 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
2015 		    KM_NOSLEEP);
2016 		if (ill->ill_lso_capab == NULL) {
2017 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
2018 			    "could not enable LSO for %s (ENOMEM)\n",
2019 			    ill->ill_name);
2020 			return;
2021 		}
2022 	}
2023 
2024 	bzero(&lso, sizeof (lso));
2025 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
2026 	    DLD_ENABLE)) == 0) {
2027 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
2028 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
2029 		ill->ill_capabilities |= ILL_CAPAB_LSO;
2030 		ip1dbg(("ill_capability_lso_enable: interface %s "
2031 		    "has enabled LSO\n ", ill->ill_name));
2032 	} else {
2033 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
2034 		ill->ill_lso_capab = NULL;
2035 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
2036 	}
2037 }
2038 
2039 static void
2040 ill_capability_dld_enable(ill_t *ill)
2041 {
2042 	mac_perim_handle_t mph;
2043 
2044 	ASSERT(IAM_WRITER_ILL(ill));
2045 
2046 	if (ill->ill_isv6)
2047 		return;
2048 
2049 	ill_mac_perim_enter(ill, &mph);
2050 	if (!ill->ill_isv6) {
2051 		ill_capability_direct_enable(ill);
2052 		ill_capability_poll_enable(ill);
2053 		ill_capability_lso_enable(ill);
2054 	}
2055 	ill->ill_capabilities |= ILL_CAPAB_DLD;
2056 	ill_mac_perim_exit(ill, mph);
2057 }
2058 
2059 static void
2060 ill_capability_dld_disable(ill_t *ill)
2061 {
2062 	ill_dld_capab_t	*idc;
2063 	ill_dld_direct_t *idd;
2064 	mac_perim_handle_t	mph;
2065 
2066 	ASSERT(IAM_WRITER_ILL(ill));
2067 
2068 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2069 		return;
2070 
2071 	ill_mac_perim_enter(ill, &mph);
2072 
2073 	idc = ill->ill_dld_capab;
2074 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
2075 		/*
2076 		 * For performance we avoid locks in the transmit data path
2077 		 * and don't maintain a count of the number of threads using
2078 		 * direct calls. Thus some threads could be using direct
2079 		 * transmit calls to GLD, even after the capability mechanism
2080 		 * turns it off. This is still safe since the handles used in
2081 		 * the direct calls continue to be valid until the unplumb is
2082 		 * completed. Remove the callback that was added (1-time) at
2083 		 * capab enable time.
2084 		 */
2085 		mutex_enter(&ill->ill_lock);
2086 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
2087 		mutex_exit(&ill->ill_lock);
2088 		if (ill->ill_flownotify_mh != NULL) {
2089 			idd = &idc->idc_direct;
2090 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
2091 			    ill->ill_flownotify_mh);
2092 			ill->ill_flownotify_mh = NULL;
2093 		}
2094 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
2095 		    NULL, DLD_DISABLE);
2096 	}
2097 
2098 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
2099 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
2100 		ip_squeue_clean_all(ill);
2101 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
2102 		    NULL, DLD_DISABLE);
2103 	}
2104 
2105 	if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) {
2106 		ASSERT(ill->ill_lso_capab != NULL);
2107 		/*
2108 		 * Clear the capability flag for LSO but retain the
2109 		 * ill_lso_capab structure since it's possible that another
2110 		 * thread is still referring to it.  The structure only gets
2111 		 * deallocated when we destroy the ill.
2112 		 */
2113 
2114 		ill->ill_capabilities &= ~ILL_CAPAB_LSO;
2115 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
2116 		    NULL, DLD_DISABLE);
2117 	}
2118 
2119 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
2120 	ill_mac_perim_exit(ill, mph);
2121 }
2122 
2123 /*
2124  * Capability Negotiation protocol
2125  *
2126  * We don't wait for DLPI capability operations to finish during interface
2127  * bringup or teardown. Doing so would introduce more asynchrony and the
2128  * interface up/down operations will need multiple return and restarts.
2129  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
2130  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
2131  * exclusive operation won't start until the DLPI operations of the previous
2132  * exclusive operation complete.
2133  *
2134  * The capability state machine is shown below.
2135  *
2136  * state		next state		event, action
2137  *
2138  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
2139  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
2140  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
2141  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
2142  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
2143  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
2144  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
2145  *						    ill_capability_probe.
2146  */
2147 
2148 /*
2149  * Dedicated thread started from ip_stack_init that handles capability
2150  * disable. This thread ensures the taskq dispatch does not fail by waiting
2151  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
2152  * that direct calls to DLD are done in a cv_waitable context.
2153  */
2154 void
2155 ill_taskq_dispatch(ip_stack_t *ipst)
2156 {
2157 	callb_cpr_t cprinfo;
2158 	char 	name[64];
2159 	mblk_t	*mp;
2160 
2161 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
2162 	    ipst->ips_netstack->netstack_stackid);
2163 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
2164 	    name);
2165 	mutex_enter(&ipst->ips_capab_taskq_lock);
2166 
2167 	for (;;) {
2168 		mp = ipst->ips_capab_taskq_head;
2169 		while (mp != NULL) {
2170 			ipst->ips_capab_taskq_head = mp->b_next;
2171 			if (ipst->ips_capab_taskq_head == NULL)
2172 				ipst->ips_capab_taskq_tail = NULL;
2173 			mutex_exit(&ipst->ips_capab_taskq_lock);
2174 			mp->b_next = NULL;
2175 
2176 			VERIFY(taskq_dispatch(system_taskq,
2177 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
2178 			mutex_enter(&ipst->ips_capab_taskq_lock);
2179 			mp = ipst->ips_capab_taskq_head;
2180 		}
2181 
2182 		if (ipst->ips_capab_taskq_quit)
2183 			break;
2184 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2185 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
2186 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
2187 	}
2188 	VERIFY(ipst->ips_capab_taskq_head == NULL);
2189 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
2190 	CALLB_CPR_EXIT(&cprinfo);
2191 	thread_exit();
2192 }
2193 
2194 /*
2195  * Consume a new-style hardware capabilities negotiation ack.
2196  * Called via taskq on receipt of DL_CAPABILITY_ACK.
2197  */
2198 static void
2199 ill_capability_ack_thr(void *arg)
2200 {
2201 	mblk_t	*mp = arg;
2202 	dl_capability_ack_t *capp;
2203 	dl_capability_sub_t *subp, *endp;
2204 	ill_t	*ill;
2205 	boolean_t reneg;
2206 
2207 	ill = (ill_t *)mp->b_prev;
2208 	mp->b_prev = NULL;
2209 
2210 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
2211 
2212 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
2213 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
2214 		/*
2215 		 * We have received the ack for our DL_CAPAB reset request.
2216 		 * There isnt' anything in the message that needs processing.
2217 		 * All message based capabilities have been disabled, now
2218 		 * do the function call based capability disable.
2219 		 */
2220 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
2221 		ill_capability_dld_disable(ill);
2222 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
2223 		if (reneg)
2224 			ill_capability_probe(ill);
2225 		goto done;
2226 	}
2227 
2228 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
2229 		ill->ill_dlpi_capab_state = IDCS_OK;
2230 
2231 	capp = (dl_capability_ack_t *)mp->b_rptr;
2232 
2233 	if (capp->dl_sub_length == 0) {
2234 		/* no new-style capabilities */
2235 		goto done;
2236 	}
2237 
2238 	/* make sure the driver supplied correct dl_sub_length */
2239 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
2240 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
2241 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
2242 		goto done;
2243 	}
2244 
2245 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
2246 	/*
2247 	 * There are sub-capabilities. Process the ones we know about.
2248 	 * Loop until we don't have room for another sub-cap header..
2249 	 */
2250 	for (subp = SC(capp, capp->dl_sub_offset),
2251 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
2252 	    subp <= endp;
2253 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
2254 
2255 		switch (subp->dl_cap) {
2256 		case DL_CAPAB_ID_WRAPPER:
2257 			ill_capability_id_ack(ill, mp, subp);
2258 			break;
2259 		default:
2260 			ill_capability_dispatch(ill, mp, subp);
2261 			break;
2262 		}
2263 	}
2264 #undef SC
2265 done:
2266 	inet_freemsg(mp);
2267 	ill_capability_done(ill);
2268 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
2269 }
2270 
2271 /*
2272  * This needs to be started in a taskq thread to provide a cv_waitable
2273  * context.
2274  */
2275 void
2276 ill_capability_ack(ill_t *ill, mblk_t *mp)
2277 {
2278 	ip_stack_t	*ipst = ill->ill_ipst;
2279 
2280 	mp->b_prev = (mblk_t *)ill;
2281 	ASSERT(mp->b_next == NULL);
2282 
2283 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
2284 	    TQ_NOSLEEP) != 0)
2285 		return;
2286 
2287 	/*
2288 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
2289 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
2290 	 */
2291 	mutex_enter(&ipst->ips_capab_taskq_lock);
2292 	if (ipst->ips_capab_taskq_head == NULL) {
2293 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
2294 		ipst->ips_capab_taskq_head = mp;
2295 	} else {
2296 		ipst->ips_capab_taskq_tail->b_next = mp;
2297 	}
2298 	ipst->ips_capab_taskq_tail = mp;
2299 
2300 	cv_signal(&ipst->ips_capab_taskq_cv);
2301 	mutex_exit(&ipst->ips_capab_taskq_lock);
2302 }
2303 
2304 /*
2305  * This routine is called to scan the fragmentation reassembly table for
2306  * the specified ILL for any packets that are starting to smell.
2307  * dead_interval is the maximum time in seconds that will be tolerated.  It
2308  * will either be the value specified in ip_g_frag_timeout, or zero if the
2309  * ILL is shutting down and it is time to blow everything off.
2310  *
2311  * It returns the number of seconds (as a time_t) that the next frag timer
2312  * should be scheduled for, 0 meaning that the timer doesn't need to be
2313  * re-started.  Note that the method of calculating next_timeout isn't
2314  * entirely accurate since time will flow between the time we grab
2315  * current_time and the time we schedule the next timeout.  This isn't a
2316  * big problem since this is the timer for sending an ICMP reassembly time
2317  * exceeded messages, and it doesn't have to be exactly accurate.
2318  *
2319  * This function is
2320  * sometimes called as writer, although this is not required.
2321  */
2322 time_t
2323 ill_frag_timeout(ill_t *ill, time_t dead_interval)
2324 {
2325 	ipfb_t	*ipfb;
2326 	ipfb_t	*endp;
2327 	ipf_t	*ipf;
2328 	ipf_t	*ipfnext;
2329 	mblk_t	*mp;
2330 	time_t	current_time = gethrestime_sec();
2331 	time_t	next_timeout = 0;
2332 	uint32_t	hdr_length;
2333 	mblk_t	*send_icmp_head;
2334 	mblk_t	*send_icmp_head_v6;
2335 	ip_stack_t *ipst = ill->ill_ipst;
2336 	ip_recv_attr_t iras;
2337 
2338 	bzero(&iras, sizeof (iras));
2339 	iras.ira_flags = 0;
2340 	iras.ira_ill = iras.ira_rill = ill;
2341 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
2342 	iras.ira_rifindex = iras.ira_ruifindex;
2343 
2344 	ipfb = ill->ill_frag_hash_tbl;
2345 	if (ipfb == NULL)
2346 		return (B_FALSE);
2347 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
2348 	/* Walk the frag hash table. */
2349 	for (; ipfb < endp; ipfb++) {
2350 		send_icmp_head = NULL;
2351 		send_icmp_head_v6 = NULL;
2352 		mutex_enter(&ipfb->ipfb_lock);
2353 		while ((ipf = ipfb->ipfb_ipf) != 0) {
2354 			time_t frag_time = current_time - ipf->ipf_timestamp;
2355 			time_t frag_timeout;
2356 
2357 			if (frag_time < dead_interval) {
2358 				/*
2359 				 * There are some outstanding fragments
2360 				 * that will timeout later.  Make note of
2361 				 * the time so that we can reschedule the
2362 				 * next timeout appropriately.
2363 				 */
2364 				frag_timeout = dead_interval - frag_time;
2365 				if (next_timeout == 0 ||
2366 				    frag_timeout < next_timeout) {
2367 					next_timeout = frag_timeout;
2368 				}
2369 				break;
2370 			}
2371 			/* Time's up.  Get it out of here. */
2372 			hdr_length = ipf->ipf_nf_hdr_len;
2373 			ipfnext = ipf->ipf_hash_next;
2374 			if (ipfnext)
2375 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
2376 			*ipf->ipf_ptphn = ipfnext;
2377 			mp = ipf->ipf_mp->b_cont;
2378 			for (; mp; mp = mp->b_cont) {
2379 				/* Extra points for neatness. */
2380 				IP_REASS_SET_START(mp, 0);
2381 				IP_REASS_SET_END(mp, 0);
2382 			}
2383 			mp = ipf->ipf_mp->b_cont;
2384 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
2385 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
2386 			ipfb->ipfb_count -= ipf->ipf_count;
2387 			ASSERT(ipfb->ipfb_frag_pkts > 0);
2388 			ipfb->ipfb_frag_pkts--;
2389 			/*
2390 			 * We do not send any icmp message from here because
2391 			 * we currently are holding the ipfb_lock for this
2392 			 * hash chain. If we try and send any icmp messages
2393 			 * from here we may end up via a put back into ip
2394 			 * trying to get the same lock, causing a recursive
2395 			 * mutex panic. Instead we build a list and send all
2396 			 * the icmp messages after we have dropped the lock.
2397 			 */
2398 			if (ill->ill_isv6) {
2399 				if (hdr_length != 0) {
2400 					mp->b_next = send_icmp_head_v6;
2401 					send_icmp_head_v6 = mp;
2402 				} else {
2403 					freemsg(mp);
2404 				}
2405 			} else {
2406 				if (hdr_length != 0) {
2407 					mp->b_next = send_icmp_head;
2408 					send_icmp_head = mp;
2409 				} else {
2410 					freemsg(mp);
2411 				}
2412 			}
2413 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2414 			ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill);
2415 			freeb(ipf->ipf_mp);
2416 		}
2417 		mutex_exit(&ipfb->ipfb_lock);
2418 		/*
2419 		 * Now need to send any icmp messages that we delayed from
2420 		 * above.
2421 		 */
2422 		while (send_icmp_head_v6 != NULL) {
2423 			ip6_t *ip6h;
2424 
2425 			mp = send_icmp_head_v6;
2426 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
2427 			mp->b_next = NULL;
2428 			ip6h = (ip6_t *)mp->b_rptr;
2429 			iras.ira_flags = 0;
2430 			/*
2431 			 * This will result in an incorrect ALL_ZONES zoneid
2432 			 * for multicast packets, but we
2433 			 * don't send ICMP errors for those in any case.
2434 			 */
2435 			iras.ira_zoneid =
2436 			    ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
2437 			    ill, ipst);
2438 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2439 			icmp_time_exceeded_v6(mp,
2440 			    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
2441 			    &iras);
2442 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2443 		}
2444 		while (send_icmp_head != NULL) {
2445 			ipaddr_t dst;
2446 
2447 			mp = send_icmp_head;
2448 			send_icmp_head = send_icmp_head->b_next;
2449 			mp->b_next = NULL;
2450 
2451 			dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
2452 
2453 			iras.ira_flags = IRAF_IS_IPV4;
2454 			/*
2455 			 * This will result in an incorrect ALL_ZONES zoneid
2456 			 * for broadcast and multicast packets, but we
2457 			 * don't send ICMP errors for those in any case.
2458 			 */
2459 			iras.ira_zoneid = ipif_lookup_addr_zoneid(dst,
2460 			    ill, ipst);
2461 			ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill);
2462 			icmp_time_exceeded(mp,
2463 			    ICMP_REASSEMBLY_TIME_EXCEEDED, &iras);
2464 			ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
2465 		}
2466 	}
2467 	/*
2468 	 * A non-dying ILL will use the return value to decide whether to
2469 	 * restart the frag timer, and for how long.
2470 	 */
2471 	return (next_timeout);
2472 }
2473 
2474 /*
2475  * This routine is called when the approximate count of mblk memory used
2476  * for the specified ILL has exceeded max_count.
2477  */
2478 void
2479 ill_frag_prune(ill_t *ill, uint_t max_count)
2480 {
2481 	ipfb_t	*ipfb;
2482 	ipf_t	*ipf;
2483 	size_t	count;
2484 	clock_t now;
2485 
2486 	/*
2487 	 * If we are here within ip_min_frag_prune_time msecs remove
2488 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
2489 	 * ill_frag_free_num_pkts.
2490 	 */
2491 	mutex_enter(&ill->ill_lock);
2492 	now = ddi_get_lbolt();
2493 	if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <=
2494 	    (ip_min_frag_prune_time != 0 ?
2495 	    ip_min_frag_prune_time : msec_per_tick)) {
2496 
2497 		ill->ill_frag_free_num_pkts++;
2498 
2499 	} else {
2500 		ill->ill_frag_free_num_pkts = 0;
2501 	}
2502 	ill->ill_last_frag_clean_time = now;
2503 	mutex_exit(&ill->ill_lock);
2504 
2505 	/*
2506 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
2507 	 */
2508 	if (ill->ill_frag_free_num_pkts != 0) {
2509 		int ix;
2510 
2511 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2512 			ipfb = &ill->ill_frag_hash_tbl[ix];
2513 			mutex_enter(&ipfb->ipfb_lock);
2514 			if (ipfb->ipfb_ipf != NULL) {
2515 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
2516 				    ill->ill_frag_free_num_pkts);
2517 			}
2518 			mutex_exit(&ipfb->ipfb_lock);
2519 		}
2520 	}
2521 	/*
2522 	 * While the reassembly list for this ILL is too big, prune a fragment
2523 	 * queue by age, oldest first.
2524 	 */
2525 	while (ill->ill_frag_count > max_count) {
2526 		int	ix;
2527 		ipfb_t	*oipfb = NULL;
2528 		uint_t	oldest = UINT_MAX;
2529 
2530 		count = 0;
2531 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
2532 			ipfb = &ill->ill_frag_hash_tbl[ix];
2533 			mutex_enter(&ipfb->ipfb_lock);
2534 			ipf = ipfb->ipfb_ipf;
2535 			if (ipf != NULL && ipf->ipf_gen < oldest) {
2536 				oldest = ipf->ipf_gen;
2537 				oipfb = ipfb;
2538 			}
2539 			count += ipfb->ipfb_count;
2540 			mutex_exit(&ipfb->ipfb_lock);
2541 		}
2542 		if (oipfb == NULL)
2543 			break;
2544 
2545 		if (count <= max_count)
2546 			return;	/* Somebody beat us to it, nothing to do */
2547 		mutex_enter(&oipfb->ipfb_lock);
2548 		ipf = oipfb->ipfb_ipf;
2549 		if (ipf != NULL) {
2550 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
2551 		}
2552 		mutex_exit(&oipfb->ipfb_lock);
2553 	}
2554 }
2555 
2556 /*
2557  * free 'free_cnt' fragmented packets starting at ipf.
2558  */
2559 void
2560 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
2561 {
2562 	size_t	count;
2563 	mblk_t	*mp;
2564 	mblk_t	*tmp;
2565 	ipf_t **ipfp = ipf->ipf_ptphn;
2566 
2567 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
2568 	ASSERT(ipfp != NULL);
2569 	ASSERT(ipf != NULL);
2570 
2571 	while (ipf != NULL && free_cnt-- > 0) {
2572 		count = ipf->ipf_count;
2573 		mp = ipf->ipf_mp;
2574 		ipf = ipf->ipf_hash_next;
2575 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
2576 			IP_REASS_SET_START(tmp, 0);
2577 			IP_REASS_SET_END(tmp, 0);
2578 		}
2579 		atomic_add_32(&ill->ill_frag_count, -count);
2580 		ASSERT(ipfb->ipfb_count >= count);
2581 		ipfb->ipfb_count -= count;
2582 		ASSERT(ipfb->ipfb_frag_pkts > 0);
2583 		ipfb->ipfb_frag_pkts--;
2584 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
2585 		ip_drop_input("ipIfStatsReasmFails", mp, ill);
2586 		freemsg(mp);
2587 	}
2588 
2589 	if (ipf)
2590 		ipf->ipf_ptphn = ipfp;
2591 	ipfp[0] = ipf;
2592 }
2593 
2594 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
2595 	"obsolete and may be removed in a future release of Solaris.  Use " \
2596 	"ifconfig(1M) to manipulate the forwarding status of an interface."
2597 
2598 /*
2599  * For obsolete per-interface forwarding configuration;
2600  * called in response to ND_GET.
2601  */
2602 /* ARGSUSED */
2603 static int
2604 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
2605 {
2606 	ill_t *ill = (ill_t *)cp;
2607 
2608 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2609 
2610 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
2611 	return (0);
2612 }
2613 
2614 /*
2615  * For obsolete per-interface forwarding configuration;
2616  * called in response to ND_SET.
2617  */
2618 /* ARGSUSED */
2619 static int
2620 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
2621     cred_t *ioc_cr)
2622 {
2623 	long value;
2624 	int retval;
2625 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
2626 
2627 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
2628 
2629 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
2630 	    value < 0 || value > 1) {
2631 		return (EINVAL);
2632 	}
2633 
2634 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
2635 	retval = ill_forward_set((ill_t *)cp, (value != 0));
2636 	rw_exit(&ipst->ips_ill_g_lock);
2637 	return (retval);
2638 }
2639 
2640 /*
2641  * Helper function for ill_forward_set().
2642  */
2643 static void
2644 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
2645 {
2646 	ip_stack_t	*ipst = ill->ill_ipst;
2647 
2648 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2649 
2650 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
2651 	    (enable ? "Enabling" : "Disabling"),
2652 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
2653 	mutex_enter(&ill->ill_lock);
2654 	if (enable)
2655 		ill->ill_flags |= ILLF_ROUTER;
2656 	else
2657 		ill->ill_flags &= ~ILLF_ROUTER;
2658 	mutex_exit(&ill->ill_lock);
2659 	if (ill->ill_isv6)
2660 		ill_set_nce_router_flags(ill, enable);
2661 	/* Notify routing socket listeners of this change. */
2662 	if (ill->ill_ipif != NULL)
2663 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
2664 }
2665 
2666 /*
2667  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
2668  * socket messages for each interface whose flags we change.
2669  */
2670 int
2671 ill_forward_set(ill_t *ill, boolean_t enable)
2672 {
2673 	ipmp_illgrp_t *illg;
2674 	ip_stack_t *ipst = ill->ill_ipst;
2675 
2676 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
2677 
2678 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
2679 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
2680 		return (0);
2681 
2682 	if (IS_LOOPBACK(ill))
2683 		return (EINVAL);
2684 
2685 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
2686 		/*
2687 		 * Update all of the interfaces in the group.
2688 		 */
2689 		illg = ill->ill_grp;
2690 		ill = list_head(&illg->ig_if);
2691 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
2692 			ill_forward_set_on_ill(ill, enable);
2693 
2694 		/*
2695 		 * Update the IPMP meta-interface.
2696 		 */
2697 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
2698 		return (0);
2699 	}
2700 
2701 	ill_forward_set_on_ill(ill, enable);
2702 	return (0);
2703 }
2704 
2705 /*
2706  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
2707  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
2708  * set or clear.
2709  */
2710 static void
2711 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
2712 {
2713 	ipif_t *ipif;
2714 	ncec_t *ncec;
2715 	nce_t *nce;
2716 
2717 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
2718 		/*
2719 		 * NOTE: we match across the illgrp because nce's for
2720 		 * addresses on IPMP interfaces have an nce_ill that points to
2721 		 * the bound underlying ill.
2722 		 */
2723 		nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
2724 		if (nce != NULL) {
2725 			ncec = nce->nce_common;
2726 			mutex_enter(&ncec->ncec_lock);
2727 			if (enable)
2728 				ncec->ncec_flags |= NCE_F_ISROUTER;
2729 			else
2730 				ncec->ncec_flags &= ~NCE_F_ISROUTER;
2731 			mutex_exit(&ncec->ncec_lock);
2732 			nce_refrele(nce);
2733 		}
2734 	}
2735 }
2736 
2737 /*
2738  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
2739  * for this ill.  Make sure the v6/v4 question has been answered about this
2740  * ill.  The creation of this ndd variable is only for backwards compatibility.
2741  * The preferred way to control per-interface IP forwarding is through the
2742  * ILLF_ROUTER interface flag.
2743  */
2744 static int
2745 ill_set_ndd_name(ill_t *ill)
2746 {
2747 	char *suffix;
2748 	ip_stack_t	*ipst = ill->ill_ipst;
2749 
2750 	ASSERT(IAM_WRITER_ILL(ill));
2751 
2752 	if (ill->ill_isv6)
2753 		suffix = ipv6_forward_suffix;
2754 	else
2755 		suffix = ipv4_forward_suffix;
2756 
2757 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
2758 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
2759 	/*
2760 	 * Copies over the '\0'.
2761 	 * Note that strlen(suffix) is always bounded.
2762 	 */
2763 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
2764 	    strlen(suffix) + 1);
2765 
2766 	/*
2767 	 * Use of the nd table requires holding the reader lock.
2768 	 * Modifying the nd table thru nd_load/nd_unload requires
2769 	 * the writer lock.
2770 	 */
2771 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
2772 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
2773 	    nd_ill_forward_set, (caddr_t)ill)) {
2774 		/*
2775 		 * If the nd_load failed, it only meant that it could not
2776 		 * allocate a new bunch of room for further NDD expansion.
2777 		 * Because of that, the ill_ndd_name will be set to 0, and
2778 		 * this interface is at the mercy of the global ip_forwarding
2779 		 * variable.
2780 		 */
2781 		rw_exit(&ipst->ips_ip_g_nd_lock);
2782 		ill->ill_ndd_name = NULL;
2783 		return (ENOMEM);
2784 	}
2785 	rw_exit(&ipst->ips_ip_g_nd_lock);
2786 	return (0);
2787 }
2788 
2789 /*
2790  * Intializes the context structure and returns the first ill in the list
2791  * cuurently start_list and end_list can have values:
2792  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
2793  * IP_V4_G_HEAD		Traverse IPV4 list only.
2794  * IP_V6_G_HEAD		Traverse IPV6 list only.
2795  */
2796 
2797 /*
2798  * We don't check for CONDEMNED ills here. Caller must do that if
2799  * necessary under the ill lock.
2800  */
2801 ill_t *
2802 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
2803     ip_stack_t *ipst)
2804 {
2805 	ill_if_t *ifp;
2806 	ill_t *ill;
2807 	avl_tree_t *avl_tree;
2808 
2809 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
2810 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
2811 
2812 	/*
2813 	 * setup the lists to search
2814 	 */
2815 	if (end_list != MAX_G_HEADS) {
2816 		ctx->ctx_current_list = start_list;
2817 		ctx->ctx_last_list = end_list;
2818 	} else {
2819 		ctx->ctx_last_list = MAX_G_HEADS - 1;
2820 		ctx->ctx_current_list = 0;
2821 	}
2822 
2823 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
2824 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2825 		if (ifp != (ill_if_t *)
2826 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2827 			avl_tree = &ifp->illif_avl_by_ppa;
2828 			ill = avl_first(avl_tree);
2829 			/*
2830 			 * ill is guaranteed to be non NULL or ifp should have
2831 			 * not existed.
2832 			 */
2833 			ASSERT(ill != NULL);
2834 			return (ill);
2835 		}
2836 		ctx->ctx_current_list++;
2837 	}
2838 
2839 	return (NULL);
2840 }
2841 
2842 /*
2843  * returns the next ill in the list. ill_first() must have been called
2844  * before calling ill_next() or bad things will happen.
2845  */
2846 
2847 /*
2848  * We don't check for CONDEMNED ills here. Caller must do that if
2849  * necessary under the ill lock.
2850  */
2851 ill_t *
2852 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
2853 {
2854 	ill_if_t *ifp;
2855 	ill_t *ill;
2856 	ip_stack_t	*ipst = lastill->ill_ipst;
2857 
2858 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
2859 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
2860 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
2861 	    AVL_AFTER)) != NULL) {
2862 		return (ill);
2863 	}
2864 
2865 	/* goto next ill_ifp in the list. */
2866 	ifp = lastill->ill_ifptr->illif_next;
2867 
2868 	/* make sure not at end of circular list */
2869 	while (ifp ==
2870 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
2871 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
2872 			return (NULL);
2873 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
2874 	}
2875 
2876 	return (avl_first(&ifp->illif_avl_by_ppa));
2877 }
2878 
2879 /*
2880  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
2881  * The final number (PPA) must not have any leading zeros.  Upon success, a
2882  * pointer to the start of the PPA is returned; otherwise NULL is returned.
2883  */
2884 static char *
2885 ill_get_ppa_ptr(char *name)
2886 {
2887 	int namelen = strlen(name);
2888 	int end_ndx = namelen - 1;
2889 	int ppa_ndx, i;
2890 
2891 	/*
2892 	 * Check that the first character is [a-zA-Z], and that the last
2893 	 * character is [0-9].
2894 	 */
2895 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
2896 		return (NULL);
2897 
2898 	/*
2899 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
2900 	 */
2901 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
2902 		if (!isdigit(name[ppa_ndx - 1]))
2903 			break;
2904 
2905 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
2906 		return (NULL);
2907 
2908 	/*
2909 	 * Check that the intermediate characters are [a-z0-9.]
2910 	 */
2911 	for (i = 1; i < ppa_ndx; i++) {
2912 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
2913 		    name[i] != '.' && name[i] != '_') {
2914 			return (NULL);
2915 		}
2916 	}
2917 
2918 	return (name + ppa_ndx);
2919 }
2920 
2921 /*
2922  * use avl tree to locate the ill.
2923  */
2924 static ill_t *
2925 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst)
2926 {
2927 	char *ppa_ptr = NULL;
2928 	int len;
2929 	uint_t ppa;
2930 	ill_t *ill = NULL;
2931 	ill_if_t *ifp;
2932 	int list;
2933 
2934 	/*
2935 	 * get ppa ptr
2936 	 */
2937 	if (isv6)
2938 		list = IP_V6_G_HEAD;
2939 	else
2940 		list = IP_V4_G_HEAD;
2941 
2942 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
2943 		return (NULL);
2944 	}
2945 
2946 	len = ppa_ptr - name + 1;
2947 
2948 	ppa = stoi(&ppa_ptr);
2949 
2950 	ifp = IP_VX_ILL_G_LIST(list, ipst);
2951 
2952 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2953 		/*
2954 		 * match is done on len - 1 as the name is not null
2955 		 * terminated it contains ppa in addition to the interface
2956 		 * name.
2957 		 */
2958 		if ((ifp->illif_name_len == len) &&
2959 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
2960 			break;
2961 		} else {
2962 			ifp = ifp->illif_next;
2963 		}
2964 	}
2965 
2966 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
2967 		/*
2968 		 * Even the interface type does not exist.
2969 		 */
2970 		return (NULL);
2971 	}
2972 
2973 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
2974 	if (ill != NULL) {
2975 		mutex_enter(&ill->ill_lock);
2976 		if (ILL_CAN_LOOKUP(ill)) {
2977 			ill_refhold_locked(ill);
2978 			mutex_exit(&ill->ill_lock);
2979 			return (ill);
2980 		}
2981 		mutex_exit(&ill->ill_lock);
2982 	}
2983 	return (NULL);
2984 }
2985 
2986 /*
2987  * comparison function for use with avl.
2988  */
2989 static int
2990 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
2991 {
2992 	uint_t ppa;
2993 	uint_t ill_ppa;
2994 
2995 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
2996 
2997 	ppa = *((uint_t *)ppa_ptr);
2998 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
2999 	/*
3000 	 * We want the ill with the lowest ppa to be on the
3001 	 * top.
3002 	 */
3003 	if (ill_ppa < ppa)
3004 		return (1);
3005 	if (ill_ppa > ppa)
3006 		return (-1);
3007 	return (0);
3008 }
3009 
3010 /*
3011  * remove an interface type from the global list.
3012  */
3013 static void
3014 ill_delete_interface_type(ill_if_t *interface)
3015 {
3016 	ASSERT(interface != NULL);
3017 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
3018 
3019 	avl_destroy(&interface->illif_avl_by_ppa);
3020 	if (interface->illif_ppa_arena != NULL)
3021 		vmem_destroy(interface->illif_ppa_arena);
3022 
3023 	remque(interface);
3024 
3025 	mi_free(interface);
3026 }
3027 
3028 /*
3029  * remove ill from the global list.
3030  */
3031 static void
3032 ill_glist_delete(ill_t *ill)
3033 {
3034 	ip_stack_t	*ipst;
3035 	phyint_t	*phyi;
3036 
3037 	if (ill == NULL)
3038 		return;
3039 	ipst = ill->ill_ipst;
3040 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3041 
3042 	/*
3043 	 * If the ill was never inserted into the AVL tree
3044 	 * we skip the if branch.
3045 	 */
3046 	if (ill->ill_ifptr != NULL) {
3047 		/*
3048 		 * remove from AVL tree and free ppa number
3049 		 */
3050 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
3051 
3052 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
3053 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
3054 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3055 		}
3056 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
3057 			ill_delete_interface_type(ill->ill_ifptr);
3058 		}
3059 
3060 		/*
3061 		 * Indicate ill is no longer in the list.
3062 		 */
3063 		ill->ill_ifptr = NULL;
3064 		ill->ill_name_length = 0;
3065 		ill->ill_name[0] = '\0';
3066 		ill->ill_ppa = UINT_MAX;
3067 	}
3068 
3069 	/* Generate one last event for this ill. */
3070 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
3071 	    ill->ill_name_length);
3072 
3073 	ASSERT(ill->ill_phyint != NULL);
3074 	phyi = ill->ill_phyint;
3075 	ill->ill_phyint = NULL;
3076 
3077 	/*
3078 	 * ill_init allocates a phyint always to store the copy
3079 	 * of flags relevant to phyint. At that point in time, we could
3080 	 * not assign the name and hence phyint_illv4/v6 could not be
3081 	 * initialized. Later in ipif_set_values, we assign the name to
3082 	 * the ill, at which point in time we assign phyint_illv4/v6.
3083 	 * Thus we don't rely on phyint_illv6 to be initialized always.
3084 	 */
3085 	if (ill->ill_flags & ILLF_IPV6)
3086 		phyi->phyint_illv6 = NULL;
3087 	else
3088 		phyi->phyint_illv4 = NULL;
3089 
3090 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
3091 		rw_exit(&ipst->ips_ill_g_lock);
3092 		return;
3093 	}
3094 
3095 	/*
3096 	 * There are no ills left on this phyint; pull it out of the phyint
3097 	 * avl trees, and free it.
3098 	 */
3099 	if (phyi->phyint_ifindex > 0) {
3100 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3101 		    phyi);
3102 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
3103 		    phyi);
3104 	}
3105 	rw_exit(&ipst->ips_ill_g_lock);
3106 
3107 	phyint_free(phyi);
3108 }
3109 
3110 /*
3111  * allocate a ppa, if the number of plumbed interfaces of this type are
3112  * less than ill_no_arena do a linear search to find a unused ppa.
3113  * When the number goes beyond ill_no_arena switch to using an arena.
3114  * Note: ppa value of zero cannot be allocated from vmem_arena as it
3115  * is the return value for an error condition, so allocation starts at one
3116  * and is decremented by one.
3117  */
3118 static int
3119 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
3120 {
3121 	ill_t *tmp_ill;
3122 	uint_t start, end;
3123 	int ppa;
3124 
3125 	if (ifp->illif_ppa_arena == NULL &&
3126 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
3127 		/*
3128 		 * Create an arena.
3129 		 */
3130 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
3131 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
3132 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
3133 			/* allocate what has already been assigned */
3134 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
3135 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
3136 		    tmp_ill, AVL_AFTER)) {
3137 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3138 			    1,		/* size */
3139 			    1,		/* align/quantum */
3140 			    0,		/* phase */
3141 			    0,		/* nocross */
3142 			    /* minaddr */
3143 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
3144 			    /* maxaddr */
3145 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
3146 			    VM_NOSLEEP|VM_FIRSTFIT);
3147 			if (ppa == 0) {
3148 				ip1dbg(("ill_alloc_ppa: ppa allocation"
3149 				    " failed while switching"));
3150 				vmem_destroy(ifp->illif_ppa_arena);
3151 				ifp->illif_ppa_arena = NULL;
3152 				break;
3153 			}
3154 		}
3155 	}
3156 
3157 	if (ifp->illif_ppa_arena != NULL) {
3158 		if (ill->ill_ppa == UINT_MAX) {
3159 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
3160 			    1, VM_NOSLEEP|VM_FIRSTFIT);
3161 			if (ppa == 0)
3162 				return (EAGAIN);
3163 			ill->ill_ppa = --ppa;
3164 		} else {
3165 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
3166 			    1, 		/* size */
3167 			    1, 		/* align/quantum */
3168 			    0, 		/* phase */
3169 			    0, 		/* nocross */
3170 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
3171 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
3172 			    VM_NOSLEEP|VM_FIRSTFIT);
3173 			/*
3174 			 * Most likely the allocation failed because
3175 			 * the requested ppa was in use.
3176 			 */
3177 			if (ppa == 0)
3178 				return (EEXIST);
3179 		}
3180 		return (0);
3181 	}
3182 
3183 	/*
3184 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
3185 	 * been plumbed to create one. Do a linear search to get a unused ppa.
3186 	 */
3187 	if (ill->ill_ppa == UINT_MAX) {
3188 		end = UINT_MAX - 1;
3189 		start = 0;
3190 	} else {
3191 		end = start = ill->ill_ppa;
3192 	}
3193 
3194 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
3195 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
3196 		if (start++ >= end) {
3197 			if (ill->ill_ppa == UINT_MAX)
3198 				return (EAGAIN);
3199 			else
3200 				return (EEXIST);
3201 		}
3202 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
3203 	}
3204 	ill->ill_ppa = start;
3205 	return (0);
3206 }
3207 
3208 /*
3209  * Insert ill into the list of configured ill's. Once this function completes,
3210  * the ill is globally visible and is available through lookups. More precisely
3211  * this happens after the caller drops the ill_g_lock.
3212  */
3213 static int
3214 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
3215 {
3216 	ill_if_t *ill_interface;
3217 	avl_index_t where = 0;
3218 	int error;
3219 	int name_length;
3220 	int index;
3221 	boolean_t check_length = B_FALSE;
3222 	ip_stack_t	*ipst = ill->ill_ipst;
3223 
3224 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
3225 
3226 	name_length = mi_strlen(name) + 1;
3227 
3228 	if (isv6)
3229 		index = IP_V6_G_HEAD;
3230 	else
3231 		index = IP_V4_G_HEAD;
3232 
3233 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
3234 	/*
3235 	 * Search for interface type based on name
3236 	 */
3237 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3238 		if ((ill_interface->illif_name_len == name_length) &&
3239 		    (strcmp(ill_interface->illif_name, name) == 0)) {
3240 			break;
3241 		}
3242 		ill_interface = ill_interface->illif_next;
3243 	}
3244 
3245 	/*
3246 	 * Interface type not found, create one.
3247 	 */
3248 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
3249 		ill_g_head_t ghead;
3250 
3251 		/*
3252 		 * allocate ill_if_t structure
3253 		 */
3254 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
3255 		if (ill_interface == NULL) {
3256 			return (ENOMEM);
3257 		}
3258 
3259 		(void) strcpy(ill_interface->illif_name, name);
3260 		ill_interface->illif_name_len = name_length;
3261 
3262 		avl_create(&ill_interface->illif_avl_by_ppa,
3263 		    ill_compare_ppa, sizeof (ill_t),
3264 		    offsetof(struct ill_s, ill_avl_byppa));
3265 
3266 		/*
3267 		 * link the structure in the back to maintain order
3268 		 * of configuration for ifconfig output.
3269 		 */
3270 		ghead = ipst->ips_ill_g_heads[index];
3271 		insque(ill_interface, ghead.ill_g_list_tail);
3272 	}
3273 
3274 	if (ill->ill_ppa == UINT_MAX)
3275 		check_length = B_TRUE;
3276 
3277 	error = ill_alloc_ppa(ill_interface, ill);
3278 	if (error != 0) {
3279 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3280 			ill_delete_interface_type(ill->ill_ifptr);
3281 		return (error);
3282 	}
3283 
3284 	/*
3285 	 * When the ppa is choosen by the system, check that there is
3286 	 * enough space to insert ppa. if a specific ppa was passed in this
3287 	 * check is not required as the interface name passed in will have
3288 	 * the right ppa in it.
3289 	 */
3290 	if (check_length) {
3291 		/*
3292 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
3293 		 */
3294 		char buf[sizeof (uint_t) * 3];
3295 
3296 		/*
3297 		 * convert ppa to string to calculate the amount of space
3298 		 * required for it in the name.
3299 		 */
3300 		numtos(ill->ill_ppa, buf);
3301 
3302 		/* Do we have enough space to insert ppa ? */
3303 
3304 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
3305 			/* Free ppa and interface type struct */
3306 			if (ill_interface->illif_ppa_arena != NULL) {
3307 				vmem_free(ill_interface->illif_ppa_arena,
3308 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
3309 			}
3310 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
3311 				ill_delete_interface_type(ill->ill_ifptr);
3312 
3313 			return (EINVAL);
3314 		}
3315 	}
3316 
3317 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
3318 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
3319 
3320 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
3321 	    &where);
3322 	ill->ill_ifptr = ill_interface;
3323 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
3324 
3325 	ill_phyint_reinit(ill);
3326 	return (0);
3327 }
3328 
3329 /* Initialize the per phyint ipsq used for serialization */
3330 static boolean_t
3331 ipsq_init(ill_t *ill, boolean_t enter)
3332 {
3333 	ipsq_t  *ipsq;
3334 	ipxop_t	*ipx;
3335 
3336 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
3337 		return (B_FALSE);
3338 
3339 	ill->ill_phyint->phyint_ipsq = ipsq;
3340 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
3341 	ipx->ipx_ipsq = ipsq;
3342 	ipsq->ipsq_next = ipsq;
3343 	ipsq->ipsq_phyint = ill->ill_phyint;
3344 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
3345 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
3346 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
3347 	if (enter) {
3348 		ipx->ipx_writer = curthread;
3349 		ipx->ipx_forced = B_FALSE;
3350 		ipx->ipx_reentry_cnt = 1;
3351 #ifdef DEBUG
3352 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
3353 #endif
3354 	}
3355 	return (B_TRUE);
3356 }
3357 
3358 /*
3359  * ill_init is called by ip_open when a device control stream is opened.
3360  * It does a few initializations, and shoots a DL_INFO_REQ message down
3361  * to the driver.  The response is later picked up in ip_rput_dlpi and
3362  * used to set up default mechanisms for talking to the driver.  (Always
3363  * called as writer.)
3364  *
3365  * If this function returns error, ip_open will call ip_close which in
3366  * turn will call ill_delete to clean up any memory allocated here that
3367  * is not yet freed.
3368  */
3369 int
3370 ill_init(queue_t *q, ill_t *ill)
3371 {
3372 	int	count;
3373 	dl_info_req_t	*dlir;
3374 	mblk_t	*info_mp;
3375 	uchar_t *frag_ptr;
3376 
3377 	/*
3378 	 * The ill is initialized to zero by mi_alloc*(). In addition
3379 	 * some fields already contain valid values, initialized in
3380 	 * ip_open(), before we reach here.
3381 	 */
3382 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
3383 	mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
3384 	ill->ill_saved_ire_cnt = 0;
3385 
3386 	ill->ill_rq = q;
3387 	ill->ill_wq = WR(q);
3388 
3389 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
3390 	    BPRI_HI);
3391 	if (info_mp == NULL)
3392 		return (ENOMEM);
3393 
3394 	/*
3395 	 * Allocate sufficient space to contain our fragment hash table and
3396 	 * the device name.
3397 	 */
3398 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
3399 	    2 * LIFNAMSIZ + strlen(ipv6_forward_suffix));
3400 	if (frag_ptr == NULL) {
3401 		freemsg(info_mp);
3402 		return (ENOMEM);
3403 	}
3404 	ill->ill_frag_ptr = frag_ptr;
3405 	ill->ill_frag_free_num_pkts = 0;
3406 	ill->ill_last_frag_clean_time = 0;
3407 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
3408 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
3409 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
3410 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
3411 		    NULL, MUTEX_DEFAULT, NULL);
3412 	}
3413 
3414 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3415 	if (ill->ill_phyint == NULL) {
3416 		freemsg(info_mp);
3417 		mi_free(frag_ptr);
3418 		return (ENOMEM);
3419 	}
3420 
3421 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3422 	/*
3423 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
3424 	 * at this point because of the following reason. If we can't
3425 	 * enter the ipsq at some point and cv_wait, the writer that
3426 	 * wakes us up tries to locate us using the list of all phyints
3427 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
3428 	 * If we don't set it now, we risk a missed wakeup.
3429 	 */
3430 	ill->ill_phyint->phyint_illv4 = ill;
3431 	ill->ill_ppa = UINT_MAX;
3432 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3433 
3434 	ill_set_inputfn(ill);
3435 
3436 	if (!ipsq_init(ill, B_TRUE)) {
3437 		freemsg(info_mp);
3438 		mi_free(frag_ptr);
3439 		mi_free(ill->ill_phyint);
3440 		return (ENOMEM);
3441 	}
3442 
3443 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
3444 
3445 	/* Frag queue limit stuff */
3446 	ill->ill_frag_count = 0;
3447 	ill->ill_ipf_gen = 0;
3448 
3449 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3450 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3451 	ill->ill_global_timer = INFINITY;
3452 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3453 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3454 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3455 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3456 
3457 	/*
3458 	 * Initialize IPv6 configuration variables.  The IP module is always
3459 	 * opened as an IPv4 module.  Instead tracking down the cases where
3460 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
3461 	 * here for convenience, this has no effect until the ill is set to do
3462 	 * IPv6.
3463 	 */
3464 	ill->ill_reachable_time = ND_REACHABLE_TIME;
3465 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
3466 	ill->ill_max_buf = ND_MAX_Q;
3467 	ill->ill_refcnt = 0;
3468 
3469 	/* Send down the Info Request to the driver. */
3470 	info_mp->b_datap->db_type = M_PCPROTO;
3471 	dlir = (dl_info_req_t *)info_mp->b_rptr;
3472 	info_mp->b_wptr = (uchar_t *)&dlir[1];
3473 	dlir->dl_primitive = DL_INFO_REQ;
3474 
3475 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3476 
3477 	qprocson(q);
3478 	ill_dlpi_send(ill, info_mp);
3479 
3480 	return (0);
3481 }
3482 
3483 /*
3484  * ill_dls_info
3485  * creates datalink socket info from the device.
3486  */
3487 int
3488 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill)
3489 {
3490 	size_t	len;
3491 
3492 	sdl->sdl_family = AF_LINK;
3493 	sdl->sdl_index = ill_get_upper_ifindex(ill);
3494 	sdl->sdl_type = ill->ill_type;
3495 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3496 	len = strlen(sdl->sdl_data);
3497 	ASSERT(len < 256);
3498 	sdl->sdl_nlen = (uchar_t)len;
3499 	sdl->sdl_alen = ill->ill_phys_addr_length;
3500 	sdl->sdl_slen = 0;
3501 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
3502 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
3503 
3504 	return (sizeof (struct sockaddr_dl));
3505 }
3506 
3507 /*
3508  * ill_xarp_info
3509  * creates xarp info from the device.
3510  */
3511 static int
3512 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
3513 {
3514 	sdl->sdl_family = AF_LINK;
3515 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
3516 	sdl->sdl_type = ill->ill_type;
3517 	ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data));
3518 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
3519 	sdl->sdl_alen = ill->ill_phys_addr_length;
3520 	sdl->sdl_slen = 0;
3521 	return (sdl->sdl_nlen);
3522 }
3523 
3524 static int
3525 loopback_kstat_update(kstat_t *ksp, int rw)
3526 {
3527 	kstat_named_t *kn;
3528 	netstackid_t	stackid;
3529 	netstack_t	*ns;
3530 	ip_stack_t	*ipst;
3531 
3532 	if (ksp == NULL || ksp->ks_data == NULL)
3533 		return (EIO);
3534 
3535 	if (rw == KSTAT_WRITE)
3536 		return (EACCES);
3537 
3538 	kn = KSTAT_NAMED_PTR(ksp);
3539 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
3540 
3541 	ns = netstack_find_by_stackid(stackid);
3542 	if (ns == NULL)
3543 		return (-1);
3544 
3545 	ipst = ns->netstack_ip;
3546 	if (ipst == NULL) {
3547 		netstack_rele(ns);
3548 		return (-1);
3549 	}
3550 	kn[0].value.ui32 = ipst->ips_loopback_packets;
3551 	kn[1].value.ui32 = ipst->ips_loopback_packets;
3552 	netstack_rele(ns);
3553 	return (0);
3554 }
3555 
3556 /*
3557  * Has ifindex been plumbed already?
3558  */
3559 static boolean_t
3560 phyint_exists(uint_t index, ip_stack_t *ipst)
3561 {
3562 	ASSERT(index != 0);
3563 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3564 
3565 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3566 	    &index, NULL) != NULL);
3567 }
3568 
3569 /* Pick a unique ifindex */
3570 boolean_t
3571 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
3572 {
3573 	uint_t starting_index;
3574 
3575 	if (!ipst->ips_ill_index_wrap) {
3576 		*indexp = ipst->ips_ill_index++;
3577 		if (ipst->ips_ill_index == 0) {
3578 			/* Reached the uint_t limit Next time wrap  */
3579 			ipst->ips_ill_index_wrap = B_TRUE;
3580 		}
3581 		return (B_TRUE);
3582 	}
3583 
3584 	/*
3585 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
3586 	 * at this point and don't want to call any function that attempts
3587 	 * to get the lock again.
3588 	 */
3589 	starting_index = ipst->ips_ill_index++;
3590 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
3591 		if (ipst->ips_ill_index != 0 &&
3592 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
3593 			/* found unused index - use it */
3594 			*indexp = ipst->ips_ill_index;
3595 			return (B_TRUE);
3596 		}
3597 	}
3598 
3599 	/*
3600 	 * all interface indicies are inuse.
3601 	 */
3602 	return (B_FALSE);
3603 }
3604 
3605 /*
3606  * Assign a unique interface index for the phyint.
3607  */
3608 static boolean_t
3609 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
3610 {
3611 	ASSERT(phyi->phyint_ifindex == 0);
3612 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
3613 }
3614 
3615 /*
3616  * Initialize the flags on `phyi' as per the provided mactype.
3617  */
3618 static void
3619 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
3620 {
3621 	uint64_t flags = 0;
3622 
3623 	/*
3624 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
3625 	 * we always presume the underlying hardware is working and set
3626 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
3627 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
3628 	 * there are no active interfaces in the group so we set PHYI_FAILED.
3629 	 */
3630 	if (mactype == SUNW_DL_IPMP)
3631 		flags |= PHYI_FAILED;
3632 	else
3633 		flags |= PHYI_RUNNING;
3634 
3635 	switch (mactype) {
3636 	case SUNW_DL_VNI:
3637 		flags |= PHYI_VIRTUAL;
3638 		break;
3639 	case SUNW_DL_IPMP:
3640 		flags |= PHYI_IPMP;
3641 		break;
3642 	case DL_LOOP:
3643 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
3644 		break;
3645 	}
3646 
3647 	mutex_enter(&phyi->phyint_lock);
3648 	phyi->phyint_flags |= flags;
3649 	mutex_exit(&phyi->phyint_lock);
3650 }
3651 
3652 /*
3653  * Return a pointer to the ill which matches the supplied name.  Note that
3654  * the ill name length includes the null termination character.  (May be
3655  * called as writer.)
3656  * If do_alloc and the interface is "lo0" it will be automatically created.
3657  * Cannot bump up reference on condemned ills. So dup detect can't be done
3658  * using this func.
3659  */
3660 ill_t *
3661 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
3662     boolean_t *did_alloc, ip_stack_t *ipst)
3663 {
3664 	ill_t	*ill;
3665 	ipif_t	*ipif;
3666 	ipsq_t	*ipsq;
3667 	kstat_named_t	*kn;
3668 	boolean_t isloopback;
3669 	in6_addr_t ov6addr;
3670 
3671 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
3672 
3673 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3674 	ill = ill_find_by_name(name, isv6, ipst);
3675 	rw_exit(&ipst->ips_ill_g_lock);
3676 	if (ill != NULL)
3677 		return (ill);
3678 
3679 	/*
3680 	 * Couldn't find it.  Does this happen to be a lookup for the
3681 	 * loopback device and are we allowed to allocate it?
3682 	 */
3683 	if (!isloopback || !do_alloc)
3684 		return (NULL);
3685 
3686 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
3687 	ill = ill_find_by_name(name, isv6, ipst);
3688 	if (ill != NULL) {
3689 		rw_exit(&ipst->ips_ill_g_lock);
3690 		return (ill);
3691 	}
3692 
3693 	/* Create the loopback device on demand */
3694 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
3695 	    sizeof (ipif_loopback_name), BPRI_MED));
3696 	if (ill == NULL)
3697 		goto done;
3698 
3699 	*ill = ill_null;
3700 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
3701 	ill->ill_ipst = ipst;
3702 	list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node));
3703 	netstack_hold(ipst->ips_netstack);
3704 	/*
3705 	 * For exclusive stacks we set the zoneid to zero
3706 	 * to make IP operate as if in the global zone.
3707 	 */
3708 	ill->ill_zoneid = GLOBAL_ZONEID;
3709 
3710 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
3711 	if (ill->ill_phyint == NULL)
3712 		goto done;
3713 
3714 	if (isv6)
3715 		ill->ill_phyint->phyint_illv6 = ill;
3716 	else
3717 		ill->ill_phyint->phyint_illv4 = ill;
3718 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
3719 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
3720 
3721 	if (isv6) {
3722 		ill->ill_isv6 = B_TRUE;
3723 		ill->ill_max_frag = ip_loopback_mtu_v6plus;
3724 	} else {
3725 		ill->ill_max_frag = ip_loopback_mtuplus;
3726 	}
3727 	if (!ill_allocate_mibs(ill))
3728 		goto done;
3729 	ill->ill_current_frag = ill->ill_max_frag;
3730 	ill->ill_mtu = ill->ill_max_frag;	/* Initial value */
3731 	/*
3732 	 * ipif_loopback_name can't be pointed at directly because its used
3733 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
3734 	 * from the glist, ill_glist_delete() sets the first character of
3735 	 * ill_name to '\0'.
3736 	 */
3737 	ill->ill_name = (char *)ill + sizeof (*ill);
3738 	(void) strcpy(ill->ill_name, ipif_loopback_name);
3739 	ill->ill_name_length = sizeof (ipif_loopback_name);
3740 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
3741 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
3742 
3743 	rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL);
3744 	mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL);
3745 	ill->ill_global_timer = INFINITY;
3746 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
3747 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
3748 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
3749 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
3750 
3751 	/* No resolver here. */
3752 	ill->ill_net_type = IRE_LOOPBACK;
3753 
3754 	/* Initialize the ipsq */
3755 	if (!ipsq_init(ill, B_FALSE))
3756 		goto done;
3757 
3758 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL);
3759 	if (ipif == NULL)
3760 		goto done;
3761 
3762 	ill->ill_flags = ILLF_MULTICAST;
3763 
3764 	ov6addr = ipif->ipif_v6lcl_addr;
3765 	/* Set up default loopback address and mask. */
3766 	if (!isv6) {
3767 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
3768 
3769 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
3770 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
3771 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3772 		    ipif->ipif_v6subnet);
3773 		ill->ill_flags |= ILLF_IPV4;
3774 	} else {
3775 		ipif->ipif_v6lcl_addr = ipv6_loopback;
3776 		ipif->ipif_v6net_mask = ipv6_all_ones;
3777 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
3778 		    ipif->ipif_v6subnet);
3779 		ill->ill_flags |= ILLF_IPV6;
3780 	}
3781 
3782 	/*
3783 	 * Chain us in at the end of the ill list. hold the ill
3784 	 * before we make it globally visible. 1 for the lookup.
3785 	 */
3786 	ill->ill_refcnt = 0;
3787 	ill_refhold(ill);
3788 
3789 	ill->ill_frag_count = 0;
3790 	ill->ill_frag_free_num_pkts = 0;
3791 	ill->ill_last_frag_clean_time = 0;
3792 
3793 	ipsq = ill->ill_phyint->phyint_ipsq;
3794 
3795 	ill_set_inputfn(ill);
3796 
3797 	if (ill_glist_insert(ill, "lo", isv6) != 0)
3798 		cmn_err(CE_PANIC, "cannot insert loopback interface");
3799 
3800 	/* Let SCTP know so that it can add this to its list */
3801 	sctp_update_ill(ill, SCTP_ILL_INSERT);
3802 
3803 	/*
3804 	 * We have already assigned ipif_v6lcl_addr above, but we need to
3805 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
3806 	 * requires to be after ill_glist_insert() since we need the
3807 	 * ill_index set. Pass on ipv6_loopback as the old address.
3808 	 */
3809 	sctp_update_ipif_addr(ipif, ov6addr);
3810 
3811 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
3812 
3813 	/*
3814 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
3815 	 * If so, free our original one.
3816 	 */
3817 	if (ipsq != ill->ill_phyint->phyint_ipsq)
3818 		ipsq_delete(ipsq);
3819 
3820 	if (ipst->ips_loopback_ksp == NULL) {
3821 		/* Export loopback interface statistics */
3822 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
3823 		    ipif_loopback_name, "net",
3824 		    KSTAT_TYPE_NAMED, 2, 0,
3825 		    ipst->ips_netstack->netstack_stackid);
3826 		if (ipst->ips_loopback_ksp != NULL) {
3827 			ipst->ips_loopback_ksp->ks_update =
3828 			    loopback_kstat_update;
3829 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
3830 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
3831 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
3832 			ipst->ips_loopback_ksp->ks_private =
3833 			    (void *)(uintptr_t)ipst->ips_netstack->
3834 			    netstack_stackid;
3835 			kstat_install(ipst->ips_loopback_ksp);
3836 		}
3837 	}
3838 
3839 	*did_alloc = B_TRUE;
3840 	rw_exit(&ipst->ips_ill_g_lock);
3841 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
3842 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
3843 	return (ill);
3844 done:
3845 	if (ill != NULL) {
3846 		if (ill->ill_phyint != NULL) {
3847 			ipsq = ill->ill_phyint->phyint_ipsq;
3848 			if (ipsq != NULL) {
3849 				ipsq->ipsq_phyint = NULL;
3850 				ipsq_delete(ipsq);
3851 			}
3852 			mi_free(ill->ill_phyint);
3853 		}
3854 		ill_free_mib(ill);
3855 		if (ill->ill_ipst != NULL)
3856 			netstack_rele(ill->ill_ipst->ips_netstack);
3857 		mi_free(ill);
3858 	}
3859 	rw_exit(&ipst->ips_ill_g_lock);
3860 	return (NULL);
3861 }
3862 
3863 /*
3864  * For IPP calls - use the ip_stack_t for global stack.
3865  */
3866 ill_t *
3867 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6)
3868 {
3869 	ip_stack_t	*ipst;
3870 	ill_t		*ill;
3871 
3872 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
3873 	if (ipst == NULL) {
3874 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
3875 		return (NULL);
3876 	}
3877 
3878 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
3879 	netstack_rele(ipst->ips_netstack);
3880 	return (ill);
3881 }
3882 
3883 /*
3884  * Return a pointer to the ill which matches the index and IP version type.
3885  */
3886 ill_t *
3887 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3888 {
3889 	ill_t	*ill;
3890 	phyint_t *phyi;
3891 
3892 	/*
3893 	 * Indexes are stored in the phyint - a common structure
3894 	 * to both IPv4 and IPv6.
3895 	 */
3896 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3897 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3898 	    (void *) &index, NULL);
3899 	if (phyi != NULL) {
3900 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
3901 		if (ill != NULL) {
3902 			mutex_enter(&ill->ill_lock);
3903 			if (!ILL_IS_CONDEMNED(ill)) {
3904 				ill_refhold_locked(ill);
3905 				mutex_exit(&ill->ill_lock);
3906 				rw_exit(&ipst->ips_ill_g_lock);
3907 				return (ill);
3908 			}
3909 			mutex_exit(&ill->ill_lock);
3910 		}
3911 	}
3912 	rw_exit(&ipst->ips_ill_g_lock);
3913 	return (NULL);
3914 }
3915 
3916 /*
3917  * Verify whether or not an interface index is valid.
3918  * It can be zero (meaning "reset") or an interface index assigned
3919  * to a non-VNI interface. (We don't use VNI interface to send packets.)
3920  */
3921 boolean_t
3922 ip_ifindex_valid(uint_t ifindex, boolean_t isv6, ip_stack_t *ipst)
3923 {
3924 	ill_t		*ill;
3925 
3926 	if (ifindex == 0)
3927 		return (B_TRUE);
3928 
3929 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
3930 	if (ill == NULL)
3931 		return (B_FALSE);
3932 	if (IS_VNI(ill)) {
3933 		ill_refrele(ill);
3934 		return (B_FALSE);
3935 	}
3936 	ill_refrele(ill);
3937 	return (B_TRUE);
3938 }
3939 
3940 /*
3941  * Return the ifindex next in sequence after the passed in ifindex.
3942  * If there is no next ifindex for the given protocol, return 0.
3943  */
3944 uint_t
3945 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
3946 {
3947 	phyint_t *phyi;
3948 	phyint_t *phyi_initial;
3949 	uint_t   ifindex;
3950 
3951 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3952 
3953 	if (index == 0) {
3954 		phyi = avl_first(
3955 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
3956 	} else {
3957 		phyi = phyi_initial = avl_find(
3958 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3959 		    (void *) &index, NULL);
3960 	}
3961 
3962 	for (; phyi != NULL;
3963 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
3964 	    phyi, AVL_AFTER)) {
3965 		/*
3966 		 * If we're not returning the first interface in the tree
3967 		 * and we still haven't moved past the phyint_t that
3968 		 * corresponds to index, avl_walk needs to be called again
3969 		 */
3970 		if (!((index != 0) && (phyi == phyi_initial))) {
3971 			if (isv6) {
3972 				if ((phyi->phyint_illv6) &&
3973 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
3974 				    (phyi->phyint_illv6->ill_isv6 == 1))
3975 					break;
3976 			} else {
3977 				if ((phyi->phyint_illv4) &&
3978 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
3979 				    (phyi->phyint_illv4->ill_isv6 == 0))
3980 					break;
3981 			}
3982 		}
3983 	}
3984 
3985 	rw_exit(&ipst->ips_ill_g_lock);
3986 
3987 	if (phyi != NULL)
3988 		ifindex = phyi->phyint_ifindex;
3989 	else
3990 		ifindex = 0;
3991 
3992 	return (ifindex);
3993 }
3994 
3995 /*
3996  * Return the ifindex for the named interface.
3997  * If there is no next ifindex for the interface, return 0.
3998  */
3999 uint_t
4000 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
4001 {
4002 	phyint_t	*phyi;
4003 	avl_index_t	where = 0;
4004 	uint_t		ifindex;
4005 
4006 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4007 
4008 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4009 	    name, &where)) == NULL) {
4010 		rw_exit(&ipst->ips_ill_g_lock);
4011 		return (0);
4012 	}
4013 
4014 	ifindex = phyi->phyint_ifindex;
4015 
4016 	rw_exit(&ipst->ips_ill_g_lock);
4017 
4018 	return (ifindex);
4019 }
4020 
4021 /*
4022  * Return the ifindex to be used by upper layer protocols for instance
4023  * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill.
4024  */
4025 uint_t
4026 ill_get_upper_ifindex(const ill_t *ill)
4027 {
4028 	if (IS_UNDER_IPMP(ill))
4029 		return (ipmp_ill_get_ipmp_ifindex(ill));
4030 	else
4031 		return (ill->ill_phyint->phyint_ifindex);
4032 }
4033 
4034 
4035 /*
4036  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
4037  * that gives a running thread a reference to the ill. This reference must be
4038  * released by the thread when it is done accessing the ill and related
4039  * objects. ill_refcnt can not be used to account for static references
4040  * such as other structures pointing to an ill. Callers must generally
4041  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
4042  * or be sure that the ill is not being deleted or changing state before
4043  * calling the refhold functions. A non-zero ill_refcnt ensures that the
4044  * ill won't change any of its critical state such as address, netmask etc.
4045  */
4046 void
4047 ill_refhold(ill_t *ill)
4048 {
4049 	mutex_enter(&ill->ill_lock);
4050 	ill->ill_refcnt++;
4051 	ILL_TRACE_REF(ill);
4052 	mutex_exit(&ill->ill_lock);
4053 }
4054 
4055 void
4056 ill_refhold_locked(ill_t *ill)
4057 {
4058 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4059 	ill->ill_refcnt++;
4060 	ILL_TRACE_REF(ill);
4061 }
4062 
4063 /* Returns true if we managed to get a refhold */
4064 boolean_t
4065 ill_check_and_refhold(ill_t *ill)
4066 {
4067 	mutex_enter(&ill->ill_lock);
4068 	if (!ILL_IS_CONDEMNED(ill)) {
4069 		ill_refhold_locked(ill);
4070 		mutex_exit(&ill->ill_lock);
4071 		return (B_TRUE);
4072 	}
4073 	mutex_exit(&ill->ill_lock);
4074 	return (B_FALSE);
4075 }
4076 
4077 /*
4078  * Must not be called while holding any locks. Otherwise if this is
4079  * the last reference to be released, there is a chance of recursive mutex
4080  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
4081  * to restart an ioctl.
4082  */
4083 void
4084 ill_refrele(ill_t *ill)
4085 {
4086 	mutex_enter(&ill->ill_lock);
4087 	ASSERT(ill->ill_refcnt != 0);
4088 	ill->ill_refcnt--;
4089 	ILL_UNTRACE_REF(ill);
4090 	if (ill->ill_refcnt != 0) {
4091 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
4092 		mutex_exit(&ill->ill_lock);
4093 		return;
4094 	}
4095 
4096 	/* Drops the ill_lock */
4097 	ipif_ill_refrele_tail(ill);
4098 }
4099 
4100 /*
4101  * Obtain a weak reference count on the ill. This reference ensures the
4102  * ill won't be freed, but the ill may change any of its critical state
4103  * such as netmask, address etc. Returns an error if the ill has started
4104  * closing.
4105  */
4106 boolean_t
4107 ill_waiter_inc(ill_t *ill)
4108 {
4109 	mutex_enter(&ill->ill_lock);
4110 	if (ill->ill_state_flags & ILL_CONDEMNED) {
4111 		mutex_exit(&ill->ill_lock);
4112 		return (B_FALSE);
4113 	}
4114 	ill->ill_waiters++;
4115 	mutex_exit(&ill->ill_lock);
4116 	return (B_TRUE);
4117 }
4118 
4119 void
4120 ill_waiter_dcr(ill_t *ill)
4121 {
4122 	mutex_enter(&ill->ill_lock);
4123 	ill->ill_waiters--;
4124 	if (ill->ill_waiters == 0)
4125 		cv_broadcast(&ill->ill_cv);
4126 	mutex_exit(&ill->ill_lock);
4127 }
4128 
4129 /*
4130  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
4131  * driver.  We construct best guess defaults for lower level information that
4132  * we need.  If an interface is brought up without injection of any overriding
4133  * information from outside, we have to be ready to go with these defaults.
4134  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
4135  * we primarely want the dl_provider_style.
4136  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
4137  * at which point we assume the other part of the information is valid.
4138  */
4139 void
4140 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
4141 {
4142 	uchar_t		*brdcst_addr;
4143 	uint_t		brdcst_addr_length, phys_addr_length;
4144 	t_scalar_t	sap_length;
4145 	dl_info_ack_t	*dlia;
4146 	ip_m_t		*ipm;
4147 	dl_qos_cl_sel1_t *sel1;
4148 	int		min_mtu;
4149 
4150 	ASSERT(IAM_WRITER_ILL(ill));
4151 
4152 	/*
4153 	 * Till the ill is fully up  the ill is not globally visible.
4154 	 * So no need for a lock.
4155 	 */
4156 	dlia = (dl_info_ack_t *)mp->b_rptr;
4157 	ill->ill_mactype = dlia->dl_mac_type;
4158 
4159 	ipm = ip_m_lookup(dlia->dl_mac_type);
4160 	if (ipm == NULL) {
4161 		ipm = ip_m_lookup(DL_OTHER);
4162 		ASSERT(ipm != NULL);
4163 	}
4164 	ill->ill_media = ipm;
4165 
4166 	/*
4167 	 * When the new DLPI stuff is ready we'll pull lengths
4168 	 * from dlia.
4169 	 */
4170 	if (dlia->dl_version == DL_VERSION_2) {
4171 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
4172 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
4173 		    brdcst_addr_length);
4174 		if (brdcst_addr == NULL) {
4175 			brdcst_addr_length = 0;
4176 		}
4177 		sap_length = dlia->dl_sap_length;
4178 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
4179 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
4180 		    brdcst_addr_length, sap_length, phys_addr_length));
4181 	} else {
4182 		brdcst_addr_length = 6;
4183 		brdcst_addr = ip_six_byte_all_ones;
4184 		sap_length = -2;
4185 		phys_addr_length = brdcst_addr_length;
4186 	}
4187 
4188 	ill->ill_bcast_addr_length = brdcst_addr_length;
4189 	ill->ill_phys_addr_length = phys_addr_length;
4190 	ill->ill_sap_length = sap_length;
4191 
4192 	/*
4193 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
4194 	 * but we must ensure a minimum IP MTU is used since other bits of
4195 	 * IP will fly apart otherwise.
4196 	 */
4197 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
4198 	ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu);
4199 	ill->ill_current_frag = ill->ill_max_frag;
4200 	ill->ill_mtu = ill->ill_max_frag;
4201 
4202 	ill->ill_type = ipm->ip_m_type;
4203 
4204 	if (!ill->ill_dlpi_style_set) {
4205 		if (dlia->dl_provider_style == DL_STYLE2)
4206 			ill->ill_needs_attach = 1;
4207 
4208 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
4209 
4210 		/*
4211 		 * Allocate the first ipif on this ill.  We don't delay it
4212 		 * further as ioctl handling assumes at least one ipif exists.
4213 		 *
4214 		 * At this point we don't know whether the ill is v4 or v6.
4215 		 * We will know this whan the SIOCSLIFNAME happens and
4216 		 * the correct value for ill_isv6 will be assigned in
4217 		 * ipif_set_values(). We need to hold the ill lock and
4218 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
4219 		 * the wakeup.
4220 		 */
4221 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
4222 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL);
4223 		mutex_enter(&ill->ill_lock);
4224 		ASSERT(ill->ill_dlpi_style_set == 0);
4225 		ill->ill_dlpi_style_set = 1;
4226 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
4227 		cv_broadcast(&ill->ill_cv);
4228 		mutex_exit(&ill->ill_lock);
4229 		freemsg(mp);
4230 		return;
4231 	}
4232 	ASSERT(ill->ill_ipif != NULL);
4233 	/*
4234 	 * We know whether it is IPv4 or IPv6 now, as this is the
4235 	 * second DL_INFO_ACK we are recieving in response to the
4236 	 * DL_INFO_REQ sent in ipif_set_values.
4237 	 */
4238 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
4239 	/*
4240 	 * Clear all the flags that were set based on ill_bcast_addr_length
4241 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
4242 	 * changed now and we need to re-evaluate.
4243 	 */
4244 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
4245 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
4246 
4247 	/*
4248 	 * Free ill_bcast_mp as things could have changed now.
4249 	 *
4250 	 * NOTE: The IPMP meta-interface is special-cased because it starts
4251 	 * with no underlying interfaces (and thus an unknown broadcast
4252 	 * address length), but we enforce that an interface is broadcast-
4253 	 * capable as part of allowing it to join a group.
4254 	 */
4255 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
4256 		if (ill->ill_bcast_mp != NULL)
4257 			freemsg(ill->ill_bcast_mp);
4258 		ill->ill_net_type = IRE_IF_NORESOLVER;
4259 
4260 		ill->ill_bcast_mp = ill_dlur_gen(NULL,
4261 		    ill->ill_phys_addr_length,
4262 		    ill->ill_sap,
4263 		    ill->ill_sap_length);
4264 
4265 		if (ill->ill_isv6)
4266 			/*
4267 			 * Note: xresolv interfaces will eventually need NOARP
4268 			 * set here as well, but that will require those
4269 			 * external resolvers to have some knowledge of
4270 			 * that flag and act appropriately. Not to be changed
4271 			 * at present.
4272 			 */
4273 			ill->ill_flags |= ILLF_NONUD;
4274 		else
4275 			ill->ill_flags |= ILLF_NOARP;
4276 
4277 		if (ill->ill_mactype == SUNW_DL_VNI) {
4278 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
4279 		} else if (ill->ill_phys_addr_length == 0 ||
4280 		    ill->ill_mactype == DL_IPV4 ||
4281 		    ill->ill_mactype == DL_IPV6) {
4282 			/*
4283 			 * The underying link is point-to-point, so mark the
4284 			 * interface as such.  We can do IP multicast over
4285 			 * such a link since it transmits all network-layer
4286 			 * packets to the remote side the same way.
4287 			 */
4288 			ill->ill_flags |= ILLF_MULTICAST;
4289 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
4290 		}
4291 	} else {
4292 		ill->ill_net_type = IRE_IF_RESOLVER;
4293 		if (ill->ill_bcast_mp != NULL)
4294 			freemsg(ill->ill_bcast_mp);
4295 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
4296 		    ill->ill_bcast_addr_length, ill->ill_sap,
4297 		    ill->ill_sap_length);
4298 		/*
4299 		 * Later detect lack of DLPI driver multicast
4300 		 * capability by catching DL_ENABMULTI errors in
4301 		 * ip_rput_dlpi.
4302 		 */
4303 		ill->ill_flags |= ILLF_MULTICAST;
4304 		if (!ill->ill_isv6)
4305 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
4306 	}
4307 
4308 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
4309 	if (ill->ill_mactype == SUNW_DL_IPMP)
4310 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
4311 
4312 	/* By default an interface does not support any CoS marking */
4313 	ill->ill_flags &= ~ILLF_COS_ENABLED;
4314 
4315 	/*
4316 	 * If we get QoS information in DL_INFO_ACK, the device supports
4317 	 * some form of CoS marking, set ILLF_COS_ENABLED.
4318 	 */
4319 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
4320 	    dlia->dl_qos_length);
4321 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
4322 		ill->ill_flags |= ILLF_COS_ENABLED;
4323 	}
4324 
4325 	/* Clear any previous error indication. */
4326 	ill->ill_error = 0;
4327 	freemsg(mp);
4328 }
4329 
4330 /*
4331  * Perform various checks to verify that an address would make sense as a
4332  * local, remote, or subnet interface address.
4333  */
4334 static boolean_t
4335 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
4336 {
4337 	ipaddr_t	net_mask;
4338 
4339 	/*
4340 	 * Don't allow all zeroes, or all ones, but allow
4341 	 * all ones netmask.
4342 	 */
4343 	if ((net_mask = ip_net_mask(addr)) == 0)
4344 		return (B_FALSE);
4345 	/* A given netmask overrides the "guess" netmask */
4346 	if (subnet_mask != 0)
4347 		net_mask = subnet_mask;
4348 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
4349 	    (addr == (addr | ~net_mask)))) {
4350 		return (B_FALSE);
4351 	}
4352 
4353 	/*
4354 	 * Even if the netmask is all ones, we do not allow address to be
4355 	 * 255.255.255.255
4356 	 */
4357 	if (addr == INADDR_BROADCAST)
4358 		return (B_FALSE);
4359 
4360 	if (CLASSD(addr))
4361 		return (B_FALSE);
4362 
4363 	return (B_TRUE);
4364 }
4365 
4366 #define	V6_IPIF_LINKLOCAL(p)	\
4367 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
4368 
4369 /*
4370  * Compare two given ipifs and check if the second one is better than
4371  * the first one using the order of preference (not taking deprecated
4372  * into acount) specified in ipif_lookup_multicast().
4373  */
4374 static boolean_t
4375 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
4376 {
4377 	/* Check the least preferred first. */
4378 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
4379 		/* If both ipifs are the same, use the first one. */
4380 		if (IS_LOOPBACK(new_ipif->ipif_ill))
4381 			return (B_FALSE);
4382 		else
4383 			return (B_TRUE);
4384 	}
4385 
4386 	/* For IPv6, check for link local address. */
4387 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
4388 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4389 		    V6_IPIF_LINKLOCAL(new_ipif)) {
4390 			/* The second one is equal or less preferred. */
4391 			return (B_FALSE);
4392 		} else {
4393 			return (B_TRUE);
4394 		}
4395 	}
4396 
4397 	/* Then check for point to point interface. */
4398 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
4399 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
4400 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
4401 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
4402 			return (B_FALSE);
4403 		} else {
4404 			return (B_TRUE);
4405 		}
4406 	}
4407 
4408 	/* old_ipif is a normal interface, so no need to use the new one. */
4409 	return (B_FALSE);
4410 }
4411 
4412 /*
4413  * Find a mulitcast-capable ipif given an IP instance and zoneid.
4414  * The ipif must be up, and its ill must multicast-capable, not
4415  * condemned, not an underlying interface in an IPMP group, and
4416  * not a VNI interface.  Order of preference:
4417  *
4418  * 	1a. normal
4419  * 	1b. normal, but deprecated
4420  * 	2a. point to point
4421  * 	2b. point to point, but deprecated
4422  * 	3a. link local
4423  * 	3b. link local, but deprecated
4424  * 	4. loopback.
4425  */
4426 static ipif_t *
4427 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4428 {
4429 	ill_t			*ill;
4430 	ill_walk_context_t	ctx;
4431 	ipif_t			*ipif;
4432 	ipif_t			*saved_ipif = NULL;
4433 	ipif_t			*dep_ipif = NULL;
4434 
4435 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4436 	if (isv6)
4437 		ill = ILL_START_WALK_V6(&ctx, ipst);
4438 	else
4439 		ill = ILL_START_WALK_V4(&ctx, ipst);
4440 
4441 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4442 		mutex_enter(&ill->ill_lock);
4443 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) ||
4444 		    ILL_IS_CONDEMNED(ill) ||
4445 		    !(ill->ill_flags & ILLF_MULTICAST)) {
4446 			mutex_exit(&ill->ill_lock);
4447 			continue;
4448 		}
4449 		for (ipif = ill->ill_ipif; ipif != NULL;
4450 		    ipif = ipif->ipif_next) {
4451 			if (zoneid != ipif->ipif_zoneid &&
4452 			    zoneid != ALL_ZONES &&
4453 			    ipif->ipif_zoneid != ALL_ZONES) {
4454 				continue;
4455 			}
4456 			if (!(ipif->ipif_flags & IPIF_UP) ||
4457 			    IPIF_IS_CONDEMNED(ipif)) {
4458 				continue;
4459 			}
4460 
4461 			/*
4462 			 * Found one candidate.  If it is deprecated,
4463 			 * remember it in dep_ipif.  If it is not deprecated,
4464 			 * remember it in saved_ipif.
4465 			 */
4466 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
4467 				if (dep_ipif == NULL) {
4468 					dep_ipif = ipif;
4469 				} else if (ipif_comp_multi(dep_ipif, ipif,
4470 				    isv6)) {
4471 					/*
4472 					 * If the previous dep_ipif does not
4473 					 * belong to the same ill, we've done
4474 					 * a ipif_refhold() on it.  So we need
4475 					 * to release it.
4476 					 */
4477 					if (dep_ipif->ipif_ill != ill)
4478 						ipif_refrele(dep_ipif);
4479 					dep_ipif = ipif;
4480 				}
4481 				continue;
4482 			}
4483 			if (saved_ipif == NULL) {
4484 				saved_ipif = ipif;
4485 			} else {
4486 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
4487 					if (saved_ipif->ipif_ill != ill)
4488 						ipif_refrele(saved_ipif);
4489 					saved_ipif = ipif;
4490 				}
4491 			}
4492 		}
4493 		/*
4494 		 * Before going to the next ill, do a ipif_refhold() on the
4495 		 * saved ones.
4496 		 */
4497 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
4498 			ipif_refhold_locked(saved_ipif);
4499 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
4500 			ipif_refhold_locked(dep_ipif);
4501 		mutex_exit(&ill->ill_lock);
4502 	}
4503 	rw_exit(&ipst->ips_ill_g_lock);
4504 
4505 	/*
4506 	 * If we have only the saved_ipif, return it.  But if we have both
4507 	 * saved_ipif and dep_ipif, check to see which one is better.
4508 	 */
4509 	if (saved_ipif != NULL) {
4510 		if (dep_ipif != NULL) {
4511 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
4512 				ipif_refrele(saved_ipif);
4513 				return (dep_ipif);
4514 			} else {
4515 				ipif_refrele(dep_ipif);
4516 				return (saved_ipif);
4517 			}
4518 		}
4519 		return (saved_ipif);
4520 	} else {
4521 		return (dep_ipif);
4522 	}
4523 }
4524 
4525 ill_t *
4526 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
4527 {
4528 	ipif_t *ipif;
4529 	ill_t *ill;
4530 
4531 	ipif = ipif_lookup_multicast(ipst, zoneid, isv6);
4532 	if (ipif == NULL)
4533 		return (NULL);
4534 
4535 	ill = ipif->ipif_ill;
4536 	ill_refhold(ill);
4537 	ipif_refrele(ipif);
4538 	return (ill);
4539 }
4540 
4541 /*
4542  * This function is called when an application does not specify an interface
4543  * to be used for multicast traffic (joining a group/sending data).  It
4544  * calls ire_lookup_multi() to look for an interface route for the
4545  * specified multicast group.  Doing this allows the administrator to add
4546  * prefix routes for multicast to indicate which interface to be used for
4547  * multicast traffic in the above scenario.  The route could be for all
4548  * multicast (224.0/4), for a single multicast group (a /32 route) or
4549  * anything in between.  If there is no such multicast route, we just find
4550  * any multicast capable interface and return it.  The returned ipif
4551  * is refhold'ed.
4552  *
4553  * We support MULTIRT and RTF_SETSRC on the multicast routes added to the
4554  * unicast table. This is used by CGTP.
4555  */
4556 ill_t *
4557 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst,
4558     boolean_t *multirtp, ipaddr_t *setsrcp)
4559 {
4560 	ill_t			*ill;
4561 
4562 	ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp);
4563 	if (ill != NULL)
4564 		return (ill);
4565 
4566 	return (ill_lookup_multicast(ipst, zoneid, B_FALSE));
4567 }
4568 
4569 /*
4570  * Look for an ipif with the specified interface address and destination.
4571  * The destination address is used only for matching point-to-point interfaces.
4572  */
4573 ipif_t *
4574 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst)
4575 {
4576 	ipif_t	*ipif;
4577 	ill_t	*ill;
4578 	ill_walk_context_t ctx;
4579 
4580 	/*
4581 	 * First match all the point-to-point interfaces
4582 	 * before looking at non-point-to-point interfaces.
4583 	 * This is done to avoid returning non-point-to-point
4584 	 * ipif instead of unnumbered point-to-point ipif.
4585 	 */
4586 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4587 	ill = ILL_START_WALK_V4(&ctx, ipst);
4588 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4589 		mutex_enter(&ill->ill_lock);
4590 		for (ipif = ill->ill_ipif; ipif != NULL;
4591 		    ipif = ipif->ipif_next) {
4592 			/* Allow the ipif to be down */
4593 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
4594 			    (ipif->ipif_lcl_addr == if_addr) &&
4595 			    (ipif->ipif_pp_dst_addr == dst)) {
4596 				if (!IPIF_IS_CONDEMNED(ipif)) {
4597 					ipif_refhold_locked(ipif);
4598 					mutex_exit(&ill->ill_lock);
4599 					rw_exit(&ipst->ips_ill_g_lock);
4600 					return (ipif);
4601 				}
4602 			}
4603 		}
4604 		mutex_exit(&ill->ill_lock);
4605 	}
4606 	rw_exit(&ipst->ips_ill_g_lock);
4607 
4608 	/* lookup the ipif based on interface address */
4609 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst);
4610 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
4611 	return (ipif);
4612 }
4613 
4614 /*
4615  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
4616  */
4617 static ipif_t *
4618 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags,
4619     zoneid_t zoneid, ip_stack_t *ipst)
4620 {
4621 	ipif_t  *ipif;
4622 	ill_t   *ill;
4623 	boolean_t ptp = B_FALSE;
4624 	ill_walk_context_t	ctx;
4625 	boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP);
4626 	boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP);
4627 
4628 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4629 	/*
4630 	 * Repeat twice, first based on local addresses and
4631 	 * next time for pointopoint.
4632 	 */
4633 repeat:
4634 	ill = ILL_START_WALK_V4(&ctx, ipst);
4635 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4636 		if (match_ill != NULL && ill != match_ill &&
4637 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
4638 			continue;
4639 		}
4640 		mutex_enter(&ill->ill_lock);
4641 		for (ipif = ill->ill_ipif; ipif != NULL;
4642 		    ipif = ipif->ipif_next) {
4643 			if (zoneid != ALL_ZONES &&
4644 			    zoneid != ipif->ipif_zoneid &&
4645 			    ipif->ipif_zoneid != ALL_ZONES)
4646 				continue;
4647 
4648 			if (no_duplicate && !(ipif->ipif_flags & IPIF_UP))
4649 				continue;
4650 
4651 			/* Allow the ipif to be down */
4652 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4653 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4654 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4655 			    (ipif->ipif_pp_dst_addr == addr))) {
4656 				if (!IPIF_IS_CONDEMNED(ipif)) {
4657 					ipif_refhold_locked(ipif);
4658 					mutex_exit(&ill->ill_lock);
4659 					rw_exit(&ipst->ips_ill_g_lock);
4660 					return (ipif);
4661 				}
4662 			}
4663 		}
4664 		mutex_exit(&ill->ill_lock);
4665 	}
4666 
4667 	/* If we already did the ptp case, then we are done */
4668 	if (ptp) {
4669 		rw_exit(&ipst->ips_ill_g_lock);
4670 		return (NULL);
4671 	}
4672 	ptp = B_TRUE;
4673 	goto repeat;
4674 }
4675 
4676 /*
4677  * Lookup an ipif with the specified address.  For point-to-point links we
4678  * look for matches on either the destination address or the local address,
4679  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
4680  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
4681  * (or illgrp if `match_ill' is in an IPMP group).
4682  */
4683 ipif_t *
4684 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4685     ip_stack_t *ipst)
4686 {
4687 	return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP,
4688 	    zoneid, ipst));
4689 }
4690 
4691 /*
4692  * Lookup an ipif with the specified address. Similar to ipif_lookup_addr,
4693  * except that we will only return an address if it is not marked as
4694  * IPIF_DUPLICATE
4695  */
4696 ipif_t *
4697 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid,
4698     ip_stack_t *ipst)
4699 {
4700 	return (ipif_lookup_addr_common(addr, match_ill,
4701 	    (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP),
4702 	    zoneid, ipst));
4703 }
4704 
4705 /*
4706  * Special abbreviated version of ipif_lookup_addr() that doesn't match
4707  * `match_ill' across the IPMP group.  This function is only needed in some
4708  * corner-cases; almost everything should use ipif_lookup_addr().
4709  */
4710 ipif_t *
4711 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4712 {
4713 	ASSERT(match_ill != NULL);
4714 	return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES,
4715 	    ipst));
4716 }
4717 
4718 /*
4719  * Look for an ipif with the specified address. For point-point links
4720  * we look for matches on either the destination address and the local
4721  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
4722  * is set.
4723  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
4724  * ill (or illgrp if `match_ill' is in an IPMP group).
4725  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
4726  */
4727 zoneid_t
4728 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
4729 {
4730 	zoneid_t zoneid;
4731 	ipif_t  *ipif;
4732 	ill_t   *ill;
4733 	boolean_t ptp = B_FALSE;
4734 	ill_walk_context_t	ctx;
4735 
4736 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4737 	/*
4738 	 * Repeat twice, first based on local addresses and
4739 	 * next time for pointopoint.
4740 	 */
4741 repeat:
4742 	ill = ILL_START_WALK_V4(&ctx, ipst);
4743 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
4744 		if (match_ill != NULL && ill != match_ill &&
4745 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
4746 			continue;
4747 		}
4748 		mutex_enter(&ill->ill_lock);
4749 		for (ipif = ill->ill_ipif; ipif != NULL;
4750 		    ipif = ipif->ipif_next) {
4751 			/* Allow the ipif to be down */
4752 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
4753 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
4754 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
4755 			    (ipif->ipif_pp_dst_addr == addr)) &&
4756 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
4757 				zoneid = ipif->ipif_zoneid;
4758 				mutex_exit(&ill->ill_lock);
4759 				rw_exit(&ipst->ips_ill_g_lock);
4760 				/*
4761 				 * If ipif_zoneid was ALL_ZONES then we have
4762 				 * a trusted extensions shared IP address.
4763 				 * In that case GLOBAL_ZONEID works to send.
4764 				 */
4765 				if (zoneid == ALL_ZONES)
4766 					zoneid = GLOBAL_ZONEID;
4767 				return (zoneid);
4768 			}
4769 		}
4770 		mutex_exit(&ill->ill_lock);
4771 	}
4772 
4773 	/* If we already did the ptp case, then we are done */
4774 	if (ptp) {
4775 		rw_exit(&ipst->ips_ill_g_lock);
4776 		return (ALL_ZONES);
4777 	}
4778 	ptp = B_TRUE;
4779 	goto repeat;
4780 }
4781 
4782 /*
4783  * Look for an ipif that matches the specified remote address i.e. the
4784  * ipif that would receive the specified packet.
4785  * First look for directly connected interfaces and then do a recursive
4786  * IRE lookup and pick the first ipif corresponding to the source address in the
4787  * ire.
4788  * Returns: held ipif
4789  *
4790  * This is only used for ICMP_ADDRESS_MASK_REQUESTs
4791  */
4792 ipif_t *
4793 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
4794 {
4795 	ipif_t	*ipif;
4796 
4797 	ASSERT(!ill->ill_isv6);
4798 
4799 	/*
4800 	 * Someone could be changing this ipif currently or change it
4801 	 * after we return this. Thus  a few packets could use the old
4802 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
4803 	 * will atomically be updated or cleaned up with the new value
4804 	 * Thus we don't need a lock to check the flags or other attrs below.
4805 	 */
4806 	mutex_enter(&ill->ill_lock);
4807 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4808 		if (IPIF_IS_CONDEMNED(ipif))
4809 			continue;
4810 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
4811 		    ipif->ipif_zoneid != ALL_ZONES)
4812 			continue;
4813 		/* Allow the ipif to be down */
4814 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
4815 			if ((ipif->ipif_pp_dst_addr == addr) ||
4816 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
4817 			    ipif->ipif_lcl_addr == addr)) {
4818 				ipif_refhold_locked(ipif);
4819 				mutex_exit(&ill->ill_lock);
4820 				return (ipif);
4821 			}
4822 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
4823 			ipif_refhold_locked(ipif);
4824 			mutex_exit(&ill->ill_lock);
4825 			return (ipif);
4826 		}
4827 	}
4828 	mutex_exit(&ill->ill_lock);
4829 	/*
4830 	 * For a remote destination it isn't possible to nail down a particular
4831 	 * ipif.
4832 	 */
4833 
4834 	/* Pick the first interface */
4835 	ipif = ipif_get_next_ipif(NULL, ill);
4836 	return (ipif);
4837 }
4838 
4839 /*
4840  * This func does not prevent refcnt from increasing. But if
4841  * the caller has taken steps to that effect, then this func
4842  * can be used to determine whether the ill has become quiescent
4843  */
4844 static boolean_t
4845 ill_is_quiescent(ill_t *ill)
4846 {
4847 	ipif_t	*ipif;
4848 
4849 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4850 
4851 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4852 		if (ipif->ipif_refcnt != 0)
4853 			return (B_FALSE);
4854 	}
4855 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
4856 		return (B_FALSE);
4857 	}
4858 	return (B_TRUE);
4859 }
4860 
4861 boolean_t
4862 ill_is_freeable(ill_t *ill)
4863 {
4864 	ipif_t	*ipif;
4865 
4866 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4867 
4868 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4869 		if (ipif->ipif_refcnt != 0) {
4870 			return (B_FALSE);
4871 		}
4872 	}
4873 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
4874 		return (B_FALSE);
4875 	}
4876 	return (B_TRUE);
4877 }
4878 
4879 /*
4880  * This func does not prevent refcnt from increasing. But if
4881  * the caller has taken steps to that effect, then this func
4882  * can be used to determine whether the ipif has become quiescent
4883  */
4884 static boolean_t
4885 ipif_is_quiescent(ipif_t *ipif)
4886 {
4887 	ill_t *ill;
4888 
4889 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4890 
4891 	if (ipif->ipif_refcnt != 0)
4892 		return (B_FALSE);
4893 
4894 	ill = ipif->ipif_ill;
4895 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
4896 	    ill->ill_logical_down) {
4897 		return (B_TRUE);
4898 	}
4899 
4900 	/* This is the last ipif going down or being deleted on this ill */
4901 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
4902 		return (B_FALSE);
4903 	}
4904 
4905 	return (B_TRUE);
4906 }
4907 
4908 /*
4909  * return true if the ipif can be destroyed: the ipif has to be quiescent
4910  * with zero references from ire/ilm to it.
4911  */
4912 static boolean_t
4913 ipif_is_freeable(ipif_t *ipif)
4914 {
4915 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
4916 	ASSERT(ipif->ipif_id != 0);
4917 	return (ipif->ipif_refcnt == 0);
4918 }
4919 
4920 /*
4921  * The ipif/ill/ire has been refreled. Do the tail processing.
4922  * Determine if the ipif or ill in question has become quiescent and if so
4923  * wakeup close and/or restart any queued pending ioctl that is waiting
4924  * for the ipif_down (or ill_down)
4925  */
4926 void
4927 ipif_ill_refrele_tail(ill_t *ill)
4928 {
4929 	mblk_t	*mp;
4930 	conn_t	*connp;
4931 	ipsq_t	*ipsq;
4932 	ipxop_t	*ipx;
4933 	ipif_t	*ipif;
4934 	dl_notify_ind_t *dlindp;
4935 
4936 	ASSERT(MUTEX_HELD(&ill->ill_lock));
4937 
4938 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
4939 		/* ip_modclose() may be waiting */
4940 		cv_broadcast(&ill->ill_cv);
4941 	}
4942 
4943 	ipsq = ill->ill_phyint->phyint_ipsq;
4944 	mutex_enter(&ipsq->ipsq_lock);
4945 	ipx = ipsq->ipsq_xop;
4946 	mutex_enter(&ipx->ipx_lock);
4947 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
4948 		goto unlock;
4949 
4950 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
4951 
4952 	ipif = ipx->ipx_pending_ipif;
4953 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
4954 		goto unlock;
4955 
4956 	switch (ipx->ipx_waitfor) {
4957 	case IPIF_DOWN:
4958 		if (!ipif_is_quiescent(ipif))
4959 			goto unlock;
4960 		break;
4961 	case IPIF_FREE:
4962 		if (!ipif_is_freeable(ipif))
4963 			goto unlock;
4964 		break;
4965 	case ILL_DOWN:
4966 		if (!ill_is_quiescent(ill))
4967 			goto unlock;
4968 		break;
4969 	case ILL_FREE:
4970 		/*
4971 		 * ILL_FREE is only for loopback; normal ill teardown waits
4972 		 * synchronously in ip_modclose() without using ipx_waitfor,
4973 		 * handled by the cv_broadcast() at the top of this function.
4974 		 */
4975 		if (!ill_is_freeable(ill))
4976 			goto unlock;
4977 		break;
4978 	default:
4979 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
4980 		    (void *)ipsq, ipx->ipx_waitfor);
4981 	}
4982 
4983 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
4984 	mutex_exit(&ipx->ipx_lock);
4985 	mp = ipsq_pending_mp_get(ipsq, &connp);
4986 	mutex_exit(&ipsq->ipsq_lock);
4987 	mutex_exit(&ill->ill_lock);
4988 
4989 	ASSERT(mp != NULL);
4990 	/*
4991 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
4992 	 * we can only get here when the current operation decides it
4993 	 * it needs to quiesce via ipsq_pending_mp_add().
4994 	 */
4995 	switch (mp->b_datap->db_type) {
4996 	case M_PCPROTO:
4997 	case M_PROTO:
4998 		/*
4999 		 * For now, only DL_NOTIFY_IND messages can use this facility.
5000 		 */
5001 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
5002 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
5003 
5004 		switch (dlindp->dl_notification) {
5005 		case DL_NOTE_PHYS_ADDR:
5006 			qwriter_ip(ill, ill->ill_rq, mp,
5007 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
5008 			return;
5009 		case DL_NOTE_REPLUMB:
5010 			qwriter_ip(ill, ill->ill_rq, mp,
5011 			    ill_replumb_tail, CUR_OP, B_TRUE);
5012 			return;
5013 		default:
5014 			ASSERT(0);
5015 			ill_refrele(ill);
5016 		}
5017 		break;
5018 
5019 	case M_ERROR:
5020 	case M_HANGUP:
5021 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
5022 		    B_TRUE);
5023 		return;
5024 
5025 	case M_IOCTL:
5026 	case M_IOCDATA:
5027 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
5028 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
5029 		return;
5030 
5031 	default:
5032 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
5033 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
5034 	}
5035 	return;
5036 unlock:
5037 	mutex_exit(&ipsq->ipsq_lock);
5038 	mutex_exit(&ipx->ipx_lock);
5039 	mutex_exit(&ill->ill_lock);
5040 }
5041 
5042 #ifdef DEBUG
5043 /* Reuse trace buffer from beginning (if reached the end) and record trace */
5044 static void
5045 th_trace_rrecord(th_trace_t *th_trace)
5046 {
5047 	tr_buf_t *tr_buf;
5048 	uint_t lastref;
5049 
5050 	lastref = th_trace->th_trace_lastref;
5051 	lastref++;
5052 	if (lastref == TR_BUF_MAX)
5053 		lastref = 0;
5054 	th_trace->th_trace_lastref = lastref;
5055 	tr_buf = &th_trace->th_trbuf[lastref];
5056 	tr_buf->tr_time = ddi_get_lbolt();
5057 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
5058 }
5059 
5060 static void
5061 th_trace_free(void *value)
5062 {
5063 	th_trace_t *th_trace = value;
5064 
5065 	ASSERT(th_trace->th_refcnt == 0);
5066 	kmem_free(th_trace, sizeof (*th_trace));
5067 }
5068 
5069 /*
5070  * Find or create the per-thread hash table used to track object references.
5071  * The ipst argument is NULL if we shouldn't allocate.
5072  *
5073  * Accesses per-thread data, so there's no need to lock here.
5074  */
5075 static mod_hash_t *
5076 th_trace_gethash(ip_stack_t *ipst)
5077 {
5078 	th_hash_t *thh;
5079 
5080 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
5081 		mod_hash_t *mh;
5082 		char name[256];
5083 		size_t objsize, rshift;
5084 		int retv;
5085 
5086 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
5087 			return (NULL);
5088 		(void) snprintf(name, sizeof (name), "th_trace_%p",
5089 		    (void *)curthread);
5090 
5091 		/*
5092 		 * We use mod_hash_create_extended here rather than the more
5093 		 * obvious mod_hash_create_ptrhash because the latter has a
5094 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
5095 		 * block.
5096 		 */
5097 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
5098 		    MAX(sizeof (ire_t), sizeof (ncec_t)));
5099 		rshift = highbit(objsize);
5100 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
5101 		    th_trace_free, mod_hash_byptr, (void *)rshift,
5102 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
5103 		if (mh == NULL) {
5104 			kmem_free(thh, sizeof (*thh));
5105 			return (NULL);
5106 		}
5107 		thh->thh_hash = mh;
5108 		thh->thh_ipst = ipst;
5109 		/*
5110 		 * We trace ills, ipifs, ires, and nces.  All of these are
5111 		 * per-IP-stack, so the lock on the thread list is as well.
5112 		 */
5113 		rw_enter(&ip_thread_rwlock, RW_WRITER);
5114 		list_insert_tail(&ip_thread_list, thh);
5115 		rw_exit(&ip_thread_rwlock);
5116 		retv = tsd_set(ip_thread_data, thh);
5117 		ASSERT(retv == 0);
5118 	}
5119 	return (thh != NULL ? thh->thh_hash : NULL);
5120 }
5121 
5122 boolean_t
5123 th_trace_ref(const void *obj, ip_stack_t *ipst)
5124 {
5125 	th_trace_t *th_trace;
5126 	mod_hash_t *mh;
5127 	mod_hash_val_t val;
5128 
5129 	if ((mh = th_trace_gethash(ipst)) == NULL)
5130 		return (B_FALSE);
5131 
5132 	/*
5133 	 * Attempt to locate the trace buffer for this obj and thread.
5134 	 * If it does not exist, then allocate a new trace buffer and
5135 	 * insert into the hash.
5136 	 */
5137 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
5138 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
5139 		if (th_trace == NULL)
5140 			return (B_FALSE);
5141 
5142 		th_trace->th_id = curthread;
5143 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
5144 		    (mod_hash_val_t)th_trace) != 0) {
5145 			kmem_free(th_trace, sizeof (th_trace_t));
5146 			return (B_FALSE);
5147 		}
5148 	} else {
5149 		th_trace = (th_trace_t *)val;
5150 	}
5151 
5152 	ASSERT(th_trace->th_refcnt >= 0 &&
5153 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
5154 
5155 	th_trace->th_refcnt++;
5156 	th_trace_rrecord(th_trace);
5157 	return (B_TRUE);
5158 }
5159 
5160 /*
5161  * For the purpose of tracing a reference release, we assume that global
5162  * tracing is always on and that the same thread initiated the reference hold
5163  * is releasing.
5164  */
5165 void
5166 th_trace_unref(const void *obj)
5167 {
5168 	int retv;
5169 	mod_hash_t *mh;
5170 	th_trace_t *th_trace;
5171 	mod_hash_val_t val;
5172 
5173 	mh = th_trace_gethash(NULL);
5174 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
5175 	ASSERT(retv == 0);
5176 	th_trace = (th_trace_t *)val;
5177 
5178 	ASSERT(th_trace->th_refcnt > 0);
5179 	th_trace->th_refcnt--;
5180 	th_trace_rrecord(th_trace);
5181 }
5182 
5183 /*
5184  * If tracing has been disabled, then we assume that the reference counts are
5185  * now useless, and we clear them out before destroying the entries.
5186  */
5187 void
5188 th_trace_cleanup(const void *obj, boolean_t trace_disable)
5189 {
5190 	th_hash_t	*thh;
5191 	mod_hash_t	*mh;
5192 	mod_hash_val_t	val;
5193 	th_trace_t	*th_trace;
5194 	int		retv;
5195 
5196 	rw_enter(&ip_thread_rwlock, RW_READER);
5197 	for (thh = list_head(&ip_thread_list); thh != NULL;
5198 	    thh = list_next(&ip_thread_list, thh)) {
5199 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
5200 		    &val) == 0) {
5201 			th_trace = (th_trace_t *)val;
5202 			if (trace_disable)
5203 				th_trace->th_refcnt = 0;
5204 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
5205 			ASSERT(retv == 0);
5206 		}
5207 	}
5208 	rw_exit(&ip_thread_rwlock);
5209 }
5210 
5211 void
5212 ipif_trace_ref(ipif_t *ipif)
5213 {
5214 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5215 
5216 	if (ipif->ipif_trace_disable)
5217 		return;
5218 
5219 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
5220 		ipif->ipif_trace_disable = B_TRUE;
5221 		ipif_trace_cleanup(ipif);
5222 	}
5223 }
5224 
5225 void
5226 ipif_untrace_ref(ipif_t *ipif)
5227 {
5228 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5229 
5230 	if (!ipif->ipif_trace_disable)
5231 		th_trace_unref(ipif);
5232 }
5233 
5234 void
5235 ill_trace_ref(ill_t *ill)
5236 {
5237 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5238 
5239 	if (ill->ill_trace_disable)
5240 		return;
5241 
5242 	if (!th_trace_ref(ill, ill->ill_ipst)) {
5243 		ill->ill_trace_disable = B_TRUE;
5244 		ill_trace_cleanup(ill);
5245 	}
5246 }
5247 
5248 void
5249 ill_untrace_ref(ill_t *ill)
5250 {
5251 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5252 
5253 	if (!ill->ill_trace_disable)
5254 		th_trace_unref(ill);
5255 }
5256 
5257 /*
5258  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
5259  * failure, ipif_trace_disable is set.
5260  */
5261 static void
5262 ipif_trace_cleanup(const ipif_t *ipif)
5263 {
5264 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
5265 }
5266 
5267 /*
5268  * Called when ill is unplumbed or when memory alloc fails.  Note that on
5269  * failure, ill_trace_disable is set.
5270  */
5271 static void
5272 ill_trace_cleanup(const ill_t *ill)
5273 {
5274 	th_trace_cleanup(ill, ill->ill_trace_disable);
5275 }
5276 #endif /* DEBUG */
5277 
5278 void
5279 ipif_refhold_locked(ipif_t *ipif)
5280 {
5281 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
5282 	ipif->ipif_refcnt++;
5283 	IPIF_TRACE_REF(ipif);
5284 }
5285 
5286 void
5287 ipif_refhold(ipif_t *ipif)
5288 {
5289 	ill_t	*ill;
5290 
5291 	ill = ipif->ipif_ill;
5292 	mutex_enter(&ill->ill_lock);
5293 	ipif->ipif_refcnt++;
5294 	IPIF_TRACE_REF(ipif);
5295 	mutex_exit(&ill->ill_lock);
5296 }
5297 
5298 /*
5299  * Must not be called while holding any locks. Otherwise if this is
5300  * the last reference to be released there is a chance of recursive mutex
5301  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5302  * to restart an ioctl.
5303  */
5304 void
5305 ipif_refrele(ipif_t *ipif)
5306 {
5307 	ill_t	*ill;
5308 
5309 	ill = ipif->ipif_ill;
5310 
5311 	mutex_enter(&ill->ill_lock);
5312 	ASSERT(ipif->ipif_refcnt != 0);
5313 	ipif->ipif_refcnt--;
5314 	IPIF_UNTRACE_REF(ipif);
5315 	if (ipif->ipif_refcnt != 0) {
5316 		mutex_exit(&ill->ill_lock);
5317 		return;
5318 	}
5319 
5320 	/* Drops the ill_lock */
5321 	ipif_ill_refrele_tail(ill);
5322 }
5323 
5324 ipif_t *
5325 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
5326 {
5327 	ipif_t	*ipif;
5328 
5329 	mutex_enter(&ill->ill_lock);
5330 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
5331 	    ipif != NULL; ipif = ipif->ipif_next) {
5332 		if (IPIF_IS_CONDEMNED(ipif))
5333 			continue;
5334 		ipif_refhold_locked(ipif);
5335 		mutex_exit(&ill->ill_lock);
5336 		return (ipif);
5337 	}
5338 	mutex_exit(&ill->ill_lock);
5339 	return (NULL);
5340 }
5341 
5342 /*
5343  * TODO: make this table extendible at run time
5344  * Return a pointer to the mac type info for 'mac_type'
5345  */
5346 static ip_m_t *
5347 ip_m_lookup(t_uscalar_t mac_type)
5348 {
5349 	ip_m_t	*ipm;
5350 
5351 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
5352 		if (ipm->ip_m_mac_type == mac_type)
5353 			return (ipm);
5354 	return (NULL);
5355 }
5356 
5357 /*
5358  * Make a link layer address from the multicast IP address *addr.
5359  * To form the link layer address, invoke the ip_m_v*mapping function
5360  * associated with the link-layer type.
5361  */
5362 void
5363 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr)
5364 {
5365 	ip_m_t *ipm;
5366 
5367 	if (ill->ill_net_type == IRE_IF_NORESOLVER)
5368 		return;
5369 
5370 	ASSERT(addr != NULL);
5371 
5372 	ipm = ip_m_lookup(ill->ill_mactype);
5373 	if (ipm == NULL ||
5374 	    (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) ||
5375 	    (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) {
5376 		ip0dbg(("no mapping for ill %s mactype 0x%x\n",
5377 		    ill->ill_name, ill->ill_mactype));
5378 		return;
5379 	}
5380 	if (ill->ill_isv6)
5381 		(*ipm->ip_m_v6mapping)(ill, addr, hwaddr);
5382 	else
5383 		(*ipm->ip_m_v4mapping)(ill, addr, hwaddr);
5384 }
5385 
5386 /*
5387  * ip_rt_add is called to add an IPv4 route to the forwarding table.
5388  * ill is passed in to associate it with the correct interface.
5389  * If ire_arg is set, then we return the held IRE in that location.
5390  */
5391 int
5392 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5393     ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg,
5394     boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid)
5395 {
5396 	ire_t	*ire, *nire;
5397 	ire_t	*gw_ire = NULL;
5398 	ipif_t	*ipif = NULL;
5399 	uint_t	type;
5400 	int	match_flags = MATCH_IRE_TYPE;
5401 	tsol_gc_t *gc = NULL;
5402 	tsol_gcgrp_t *gcgrp = NULL;
5403 	boolean_t gcgrp_xtraref = B_FALSE;
5404 	boolean_t cgtp_broadcast;
5405 
5406 	ip1dbg(("ip_rt_add:"));
5407 
5408 	if (ire_arg != NULL)
5409 		*ire_arg = NULL;
5410 
5411 	/*
5412 	 * If this is the case of RTF_HOST being set, then we set the netmask
5413 	 * to all ones (regardless if one was supplied).
5414 	 */
5415 	if (flags & RTF_HOST)
5416 		mask = IP_HOST_MASK;
5417 
5418 	/*
5419 	 * Prevent routes with a zero gateway from being created (since
5420 	 * interfaces can currently be plumbed and brought up no assigned
5421 	 * address).
5422 	 */
5423 	if (gw_addr == 0)
5424 		return (ENETUNREACH);
5425 	/*
5426 	 * Get the ipif, if any, corresponding to the gw_addr
5427 	 * If -ifp was specified we restrict ourselves to the ill, otherwise
5428 	 * we match on the gatway and destination to handle unnumbered pt-pt
5429 	 * interfaces.
5430 	 */
5431 	if (ill != NULL)
5432 		ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst);
5433 	else
5434 		ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5435 	if (ipif != NULL) {
5436 		if (IS_VNI(ipif->ipif_ill)) {
5437 			ipif_refrele(ipif);
5438 			return (EINVAL);
5439 		}
5440 	}
5441 
5442 	/*
5443 	 * GateD will attempt to create routes with a loopback interface
5444 	 * address as the gateway and with RTF_GATEWAY set.  We allow
5445 	 * these routes to be added, but create them as interface routes
5446 	 * since the gateway is an interface address.
5447 	 */
5448 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
5449 		flags &= ~RTF_GATEWAY;
5450 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
5451 		    mask == IP_HOST_MASK) {
5452 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5453 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
5454 			    NULL);
5455 			if (ire != NULL) {
5456 				ire_refrele(ire);
5457 				ipif_refrele(ipif);
5458 				return (EEXIST);
5459 			}
5460 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
5461 			    "for 0x%x\n", (void *)ipif,
5462 			    ipif->ipif_ire_type,
5463 			    ntohl(ipif->ipif_lcl_addr)));
5464 			ire = ire_create(
5465 			    (uchar_t *)&dst_addr,	/* dest address */
5466 			    (uchar_t *)&mask,		/* mask */
5467 			    NULL,			/* no gateway */
5468 			    ipif->ipif_ire_type,	/* LOOPBACK */
5469 			    ipif->ipif_ill,
5470 			    zoneid,
5471 			    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0,
5472 			    NULL,
5473 			    ipst);
5474 
5475 			if (ire == NULL) {
5476 				ipif_refrele(ipif);
5477 				return (ENOMEM);
5478 			}
5479 			/* src address assigned by the caller? */
5480 			if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5481 				ire->ire_setsrc_addr = src_addr;
5482 
5483 			nire = ire_add(ire);
5484 			if (nire == NULL) {
5485 				/*
5486 				 * In the result of failure, ire_add() will have
5487 				 * already deleted the ire in question, so there
5488 				 * is no need to do that here.
5489 				 */
5490 				ipif_refrele(ipif);
5491 				return (ENOMEM);
5492 			}
5493 			/*
5494 			 * Check if it was a duplicate entry. This handles
5495 			 * the case of two racing route adds for the same route
5496 			 */
5497 			if (nire != ire) {
5498 				ASSERT(nire->ire_identical_ref > 1);
5499 				ire_delete(nire);
5500 				ire_refrele(nire);
5501 				ipif_refrele(ipif);
5502 				return (EEXIST);
5503 			}
5504 			ire = nire;
5505 			goto save_ire;
5506 		}
5507 	}
5508 
5509 	/*
5510 	 * The routes for multicast with CGTP are quite special in that
5511 	 * the gateway is the local interface address, yet RTF_GATEWAY
5512 	 * is set. We turn off RTF_GATEWAY to provide compatibility with
5513 	 * this undocumented and unusual use of multicast routes.
5514 	 */
5515 	if ((flags & RTF_MULTIRT) && ipif != NULL)
5516 		flags &= ~RTF_GATEWAY;
5517 
5518 	/*
5519 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
5520 	 * and the gateway address provided is one of the system's interface
5521 	 * addresses.  By using the routing socket interface and supplying an
5522 	 * RTA_IFP sockaddr with an interface index, an alternate method of
5523 	 * specifying an interface route to be created is available which uses
5524 	 * the interface index that specifies the outgoing interface rather than
5525 	 * the address of an outgoing interface (which may not be able to
5526 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
5527 	 * flag, routes can be specified which not only specify the next-hop to
5528 	 * be used when routing to a certain prefix, but also which outgoing
5529 	 * interface should be used.
5530 	 *
5531 	 * Previously, interfaces would have unique addresses assigned to them
5532 	 * and so the address assigned to a particular interface could be used
5533 	 * to identify a particular interface.  One exception to this was the
5534 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
5535 	 *
5536 	 * With the advent of IPv6 and its link-local addresses, this
5537 	 * restriction was relaxed and interfaces could share addresses between
5538 	 * themselves.  In fact, typically all of the link-local interfaces on
5539 	 * an IPv6 node or router will have the same link-local address.  In
5540 	 * order to differentiate between these interfaces, the use of an
5541 	 * interface index is necessary and this index can be carried inside a
5542 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
5543 	 * of using the interface index, however, is that all of the ipif's that
5544 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
5545 	 * cannot be used to differentiate between ipif's (or logical
5546 	 * interfaces) that belong to the same ill (physical interface).
5547 	 *
5548 	 * For example, in the following case involving IPv4 interfaces and
5549 	 * logical interfaces
5550 	 *
5551 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
5552 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0
5553 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0
5554 	 *
5555 	 * the ipif's corresponding to each of these interface routes can be
5556 	 * uniquely identified by the "gateway" (actually interface address).
5557 	 *
5558 	 * In this case involving multiple IPv6 default routes to a particular
5559 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
5560 	 * default route is of interest:
5561 	 *
5562 	 *	default		fe80::123:4567:89ab:cdef	U	if0
5563 	 *	default		fe80::123:4567:89ab:cdef	U	if1
5564 	 */
5565 
5566 	/* RTF_GATEWAY not set */
5567 	if (!(flags & RTF_GATEWAY)) {
5568 		if (sp != NULL) {
5569 			ip2dbg(("ip_rt_add: gateway security attributes "
5570 			    "cannot be set with interface route\n"));
5571 			if (ipif != NULL)
5572 				ipif_refrele(ipif);
5573 			return (EINVAL);
5574 		}
5575 
5576 		/*
5577 		 * Whether or not ill (RTA_IFP) is set, we require that
5578 		 * the gateway is one of our local addresses.
5579 		 */
5580 		if (ipif == NULL)
5581 			return (ENETUNREACH);
5582 
5583 		/*
5584 		 * We use MATCH_IRE_ILL here. If the caller specified an
5585 		 * interface (from the RTA_IFP sockaddr) we use it, otherwise
5586 		 * we use the ill derived from the gateway address.
5587 		 * We can always match the gateway address since we record it
5588 		 * in ire_gateway_addr.
5589 		 * We don't allow RTA_IFP to specify a different ill than the
5590 		 * one matching the ipif to make sure we can delete the route.
5591 		 */
5592 		match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL;
5593 		if (ill == NULL) {
5594 			ill = ipif->ipif_ill;
5595 		} else if (ill != ipif->ipif_ill) {
5596 			ipif_refrele(ipif);
5597 			return (EINVAL);
5598 		}
5599 
5600 		/*
5601 		 * We check for an existing entry at this point.
5602 		 *
5603 		 * Since a netmask isn't passed in via the ioctl interface
5604 		 * (SIOCADDRT), we don't check for a matching netmask in that
5605 		 * case.
5606 		 */
5607 		if (!ioctl_msg)
5608 			match_flags |= MATCH_IRE_MASK;
5609 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5610 		    IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst,
5611 		    NULL);
5612 		if (ire != NULL) {
5613 			ire_refrele(ire);
5614 			ipif_refrele(ipif);
5615 			return (EEXIST);
5616 		}
5617 
5618 		/*
5619 		 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or
5620 		 * IRE_IF_RESOLVER with the modified address, netmask, and
5621 		 * gateway.
5622 		 */
5623 		ire = ire_create(
5624 		    (uchar_t *)&dst_addr,
5625 		    (uint8_t *)&mask,
5626 		    (uint8_t *)&gw_addr,
5627 		    ill->ill_net_type,
5628 		    ill,
5629 		    zoneid,
5630 		    flags,
5631 		    NULL,
5632 		    ipst);
5633 		if (ire == NULL) {
5634 			ipif_refrele(ipif);
5635 			return (ENOMEM);
5636 		}
5637 
5638 		/*
5639 		 * Some software (for example, GateD and Sun Cluster) attempts
5640 		 * to create (what amount to) IRE_PREFIX routes with the
5641 		 * loopback address as the gateway.  This is primarily done to
5642 		 * set up prefixes with the RTF_REJECT flag set (for example,
5643 		 * when generating aggregate routes.)
5644 		 *
5645 		 * If the IRE type (as defined by ill->ill_net_type) is
5646 		 * IRE_LOOPBACK, then we map the request into a
5647 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
5648 		 * these interface routes, by definition, can only be that.
5649 		 *
5650 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
5651 		 * routine, but rather using ire_create() directly.
5652 		 *
5653 		 */
5654 		if (ill->ill_net_type == IRE_LOOPBACK) {
5655 			ire->ire_type = IRE_IF_NORESOLVER;
5656 			ire->ire_flags |= RTF_BLACKHOLE;
5657 		}
5658 
5659 		/* src address assigned by the caller? */
5660 		if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5661 			ire->ire_setsrc_addr = src_addr;
5662 
5663 		nire = ire_add(ire);
5664 		if (nire == NULL) {
5665 			/*
5666 			 * In the result of failure, ire_add() will have
5667 			 * already deleted the ire in question, so there
5668 			 * is no need to do that here.
5669 			 */
5670 			ipif_refrele(ipif);
5671 			return (ENOMEM);
5672 		}
5673 		/*
5674 		 * Check if it was a duplicate entry. This handles
5675 		 * the case of two racing route adds for the same route
5676 		 */
5677 		if (nire != ire) {
5678 			ire_delete(nire);
5679 			ire_refrele(nire);
5680 			ipif_refrele(ipif);
5681 			return (EEXIST);
5682 		}
5683 		ire = nire;
5684 		goto save_ire;
5685 	}
5686 
5687 	/*
5688 	 * Get an interface IRE for the specified gateway.
5689 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
5690 	 * gateway, it is currently unreachable and we fail the request
5691 	 * accordingly.
5692 	 * If RTA_IFP was specified we look on that particular ill.
5693 	 */
5694 	if (ill != NULL)
5695 		match_flags |= MATCH_IRE_ILL;
5696 
5697 	/* Check whether the gateway is reachable. */
5698 again:
5699 	type = IRE_INTERFACE;
5700 	if (flags & RTF_INDIRECT)
5701 		type |= IRE_OFFLINK;
5702 
5703 	gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill,
5704 	    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
5705 	if (gw_ire == NULL) {
5706 		/*
5707 		 * With IPMP, we allow host routes to influence in.mpathd's
5708 		 * target selection.  However, if the test addresses are on
5709 		 * their own network, the above lookup will fail since the
5710 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
5711 		 * hidden test IREs to be found and try again.
5712 		 */
5713 		if (!(match_flags & MATCH_IRE_TESTHIDDEN))  {
5714 			match_flags |= MATCH_IRE_TESTHIDDEN;
5715 			goto again;
5716 		}
5717 
5718 		if (ipif != NULL)
5719 			ipif_refrele(ipif);
5720 		return (ENETUNREACH);
5721 	}
5722 
5723 	/*
5724 	 * We create one of three types of IREs as a result of this request
5725 	 * based on the netmask.  A netmask of all ones (which is automatically
5726 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
5727 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
5728 	 * created.  Otherwise, an IRE_PREFIX route is created for the
5729 	 * destination prefix.
5730 	 */
5731 	if (mask == IP_HOST_MASK)
5732 		type = IRE_HOST;
5733 	else if (mask == 0)
5734 		type = IRE_DEFAULT;
5735 	else
5736 		type = IRE_PREFIX;
5737 
5738 	/* check for a duplicate entry */
5739 	ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
5740 	    ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW,
5741 	    0, ipst, NULL);
5742 	if (ire != NULL) {
5743 		if (ipif != NULL)
5744 			ipif_refrele(ipif);
5745 		ire_refrele(gw_ire);
5746 		ire_refrele(ire);
5747 		return (EEXIST);
5748 	}
5749 
5750 	/* Security attribute exists */
5751 	if (sp != NULL) {
5752 		tsol_gcgrp_addr_t ga;
5753 
5754 		/* find or create the gateway credentials group */
5755 		ga.ga_af = AF_INET;
5756 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
5757 
5758 		/* we hold reference to it upon success */
5759 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
5760 		if (gcgrp == NULL) {
5761 			if (ipif != NULL)
5762 				ipif_refrele(ipif);
5763 			ire_refrele(gw_ire);
5764 			return (ENOMEM);
5765 		}
5766 
5767 		/*
5768 		 * Create and add the security attribute to the group; a
5769 		 * reference to the group is made upon allocating a new
5770 		 * entry successfully.  If it finds an already-existing
5771 		 * entry for the security attribute in the group, it simply
5772 		 * returns it and no new reference is made to the group.
5773 		 */
5774 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
5775 		if (gc == NULL) {
5776 			if (ipif != NULL)
5777 				ipif_refrele(ipif);
5778 			/* release reference held by gcgrp_lookup */
5779 			GCGRP_REFRELE(gcgrp);
5780 			ire_refrele(gw_ire);
5781 			return (ENOMEM);
5782 		}
5783 	}
5784 
5785 	/* Create the IRE. */
5786 	ire = ire_create(
5787 	    (uchar_t *)&dst_addr,		/* dest address */
5788 	    (uchar_t *)&mask,			/* mask */
5789 	    (uchar_t *)&gw_addr,		/* gateway address */
5790 	    (ushort_t)type,			/* IRE type */
5791 	    ill,
5792 	    zoneid,
5793 	    flags,
5794 	    gc,					/* security attribute */
5795 	    ipst);
5796 
5797 	/*
5798 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
5799 	 * reference to the 'gcgrp'. We can now release the extra reference
5800 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
5801 	 */
5802 	if (gcgrp_xtraref)
5803 		GCGRP_REFRELE(gcgrp);
5804 	if (ire == NULL) {
5805 		if (gc != NULL)
5806 			GC_REFRELE(gc);
5807 		if (ipif != NULL)
5808 			ipif_refrele(ipif);
5809 		ire_refrele(gw_ire);
5810 		return (ENOMEM);
5811 	}
5812 
5813 	/* Before we add, check if an extra CGTP broadcast is needed */
5814 	cgtp_broadcast = ((flags & RTF_MULTIRT) &&
5815 	    ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST);
5816 
5817 	/* src address assigned by the caller? */
5818 	if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC))
5819 		ire->ire_setsrc_addr = src_addr;
5820 
5821 	/*
5822 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
5823 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
5824 	 */
5825 
5826 	/* Add the new IRE. */
5827 	nire = ire_add(ire);
5828 	if (nire == NULL) {
5829 		/*
5830 		 * In the result of failure, ire_add() will have
5831 		 * already deleted the ire in question, so there
5832 		 * is no need to do that here.
5833 		 */
5834 		if (ipif != NULL)
5835 			ipif_refrele(ipif);
5836 		ire_refrele(gw_ire);
5837 		return (ENOMEM);
5838 	}
5839 	/*
5840 	 * Check if it was a duplicate entry. This handles
5841 	 * the case of two racing route adds for the same route
5842 	 */
5843 	if (nire != ire) {
5844 		ire_delete(nire);
5845 		ire_refrele(nire);
5846 		if (ipif != NULL)
5847 			ipif_refrele(ipif);
5848 		ire_refrele(gw_ire);
5849 		return (EEXIST);
5850 	}
5851 	ire = nire;
5852 
5853 	if (flags & RTF_MULTIRT) {
5854 		/*
5855 		 * Invoke the CGTP (multirouting) filtering module
5856 		 * to add the dst address in the filtering database.
5857 		 * Replicated inbound packets coming from that address
5858 		 * will be filtered to discard the duplicates.
5859 		 * It is not necessary to call the CGTP filter hook
5860 		 * when the dst address is a broadcast or multicast,
5861 		 * because an IP source address cannot be a broadcast
5862 		 * or a multicast.
5863 		 */
5864 		if (cgtp_broadcast) {
5865 			ip_cgtp_bcast_add(ire, ipst);
5866 			goto save_ire;
5867 		}
5868 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
5869 		    !CLASSD(ire->ire_addr)) {
5870 			int res;
5871 			ipif_t *src_ipif;
5872 
5873 			/* Find the source address corresponding to gw_ire */
5874 			src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr,
5875 			    NULL, zoneid, ipst);
5876 			if (src_ipif != NULL) {
5877 				res = ipst->ips_ip_cgtp_filter_ops->
5878 				    cfo_add_dest_v4(
5879 				    ipst->ips_netstack->netstack_stackid,
5880 				    ire->ire_addr,
5881 				    ire->ire_gateway_addr,
5882 				    ire->ire_setsrc_addr,
5883 				    src_ipif->ipif_lcl_addr);
5884 				ipif_refrele(src_ipif);
5885 			} else {
5886 				res = EADDRNOTAVAIL;
5887 			}
5888 			if (res != 0) {
5889 				if (ipif != NULL)
5890 					ipif_refrele(ipif);
5891 				ire_refrele(gw_ire);
5892 				ire_delete(ire);
5893 				ire_refrele(ire);	/* Held in ire_add */
5894 				return (res);
5895 			}
5896 		}
5897 	}
5898 
5899 save_ire:
5900 	if (gw_ire != NULL) {
5901 		ire_refrele(gw_ire);
5902 		gw_ire = NULL;
5903 	}
5904 	if (ill != NULL) {
5905 		/*
5906 		 * Save enough information so that we can recreate the IRE if
5907 		 * the interface goes down and then up.  The metrics associated
5908 		 * with the route will be saved as well when rts_setmetrics() is
5909 		 * called after the IRE has been created.  In the case where
5910 		 * memory cannot be allocated, none of this information will be
5911 		 * saved.
5912 		 */
5913 		ill_save_ire(ill, ire);
5914 	}
5915 	if (ioctl_msg)
5916 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
5917 	if (ire_arg != NULL) {
5918 		/*
5919 		 * Store the ire that was successfully added into where ire_arg
5920 		 * points to so that callers don't have to look it up
5921 		 * themselves (but they are responsible for ire_refrele()ing
5922 		 * the ire when they are finished with it).
5923 		 */
5924 		*ire_arg = ire;
5925 	} else {
5926 		ire_refrele(ire);		/* Held in ire_add */
5927 	}
5928 	if (ipif != NULL)
5929 		ipif_refrele(ipif);
5930 	return (0);
5931 }
5932 
5933 /*
5934  * ip_rt_delete is called to delete an IPv4 route.
5935  * ill is passed in to associate it with the correct interface.
5936  */
5937 /* ARGSUSED4 */
5938 int
5939 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
5940     uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg,
5941     ip_stack_t *ipst, zoneid_t zoneid)
5942 {
5943 	ire_t	*ire = NULL;
5944 	ipif_t	*ipif;
5945 	uint_t	type;
5946 	uint_t	match_flags = MATCH_IRE_TYPE;
5947 	int	err = 0;
5948 
5949 	ip1dbg(("ip_rt_delete:"));
5950 	/*
5951 	 * If this is the case of RTF_HOST being set, then we set the netmask
5952 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
5953 	 */
5954 	if (flags & RTF_HOST) {
5955 		mask = IP_HOST_MASK;
5956 		match_flags |= MATCH_IRE_MASK;
5957 	} else if (rtm_addrs & RTA_NETMASK) {
5958 		match_flags |= MATCH_IRE_MASK;
5959 	}
5960 
5961 	/*
5962 	 * Note that RTF_GATEWAY is never set on a delete, therefore
5963 	 * we check if the gateway address is one of our interfaces first,
5964 	 * and fall back on RTF_GATEWAY routes.
5965 	 *
5966 	 * This makes it possible to delete an original
5967 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
5968 	 * However, we have RTF_KERNEL set on the ones created by ipif_up
5969 	 * and those can not be deleted here.
5970 	 *
5971 	 * We use MATCH_IRE_ILL if we know the interface. If the caller
5972 	 * specified an interface (from the RTA_IFP sockaddr) we use it,
5973 	 * otherwise we use the ill derived from the gateway address.
5974 	 * We can always match the gateway address since we record it
5975 	 * in ire_gateway_addr.
5976 	 *
5977 	 * For more detail on specifying routes by gateway address and by
5978 	 * interface index, see the comments in ip_rt_add().
5979 	 */
5980 	ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst);
5981 	if (ipif != NULL) {
5982 		ill_t	*ill_match;
5983 
5984 		if (ill != NULL)
5985 			ill_match = ill;
5986 		else
5987 			ill_match = ipif->ipif_ill;
5988 
5989 		match_flags |= MATCH_IRE_ILL;
5990 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
5991 			ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK,
5992 			    ill_match, ALL_ZONES, NULL, match_flags, 0, ipst,
5993 			    NULL);
5994 		}
5995 		if (ire == NULL) {
5996 			match_flags |= MATCH_IRE_GW;
5997 			ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr,
5998 			    IRE_INTERFACE, ill_match, ALL_ZONES, NULL,
5999 			    match_flags, 0, ipst, NULL);
6000 		}
6001 		/* Avoid deleting routes created by kernel from an ipif */
6002 		if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) {
6003 			ire_refrele(ire);
6004 			ire = NULL;
6005 		}
6006 
6007 		/* Restore in case we didn't find a match */
6008 		match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL);
6009 	}
6010 
6011 	if (ire == NULL) {
6012 		/*
6013 		 * At this point, the gateway address is not one of our own
6014 		 * addresses or a matching interface route was not found.  We
6015 		 * set the IRE type to lookup based on whether
6016 		 * this is a host route, a default route or just a prefix.
6017 		 *
6018 		 * If an ill was passed in, then the lookup is based on an
6019 		 * interface index so MATCH_IRE_ILL is added to match_flags.
6020 		 */
6021 		match_flags |= MATCH_IRE_GW;
6022 		if (ill != NULL)
6023 			match_flags |= MATCH_IRE_ILL;
6024 		if (mask == IP_HOST_MASK)
6025 			type = IRE_HOST;
6026 		else if (mask == 0)
6027 			type = IRE_DEFAULT;
6028 		else
6029 			type = IRE_PREFIX;
6030 		ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill,
6031 		    ALL_ZONES, NULL, match_flags, 0, ipst, NULL);
6032 	}
6033 
6034 	if (ipif != NULL) {
6035 		ipif_refrele(ipif);
6036 		ipif = NULL;
6037 	}
6038 
6039 	if (ire == NULL)
6040 		return (ESRCH);
6041 
6042 	if (ire->ire_flags & RTF_MULTIRT) {
6043 		/*
6044 		 * Invoke the CGTP (multirouting) filtering module
6045 		 * to remove the dst address from the filtering database.
6046 		 * Packets coming from that address will no longer be
6047 		 * filtered to remove duplicates.
6048 		 */
6049 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
6050 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
6051 			    ipst->ips_netstack->netstack_stackid,
6052 			    ire->ire_addr, ire->ire_gateway_addr);
6053 		}
6054 		ip_cgtp_bcast_delete(ire, ipst);
6055 	}
6056 
6057 	ill = ire->ire_ill;
6058 	if (ill != NULL)
6059 		ill_remove_saved_ire(ill, ire);
6060 	if (ioctl_msg)
6061 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
6062 	ire_delete(ire);
6063 	ire_refrele(ire);
6064 	return (err);
6065 }
6066 
6067 /*
6068  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
6069  */
6070 /* ARGSUSED */
6071 int
6072 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6073     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6074 {
6075 	ipaddr_t dst_addr;
6076 	ipaddr_t gw_addr;
6077 	ipaddr_t mask;
6078 	int error = 0;
6079 	mblk_t *mp1;
6080 	struct rtentry *rt;
6081 	ipif_t *ipif = NULL;
6082 	ip_stack_t	*ipst;
6083 
6084 	ASSERT(q->q_next == NULL);
6085 	ipst = CONNQ_TO_IPST(q);
6086 
6087 	ip1dbg(("ip_siocaddrt:"));
6088 	/* Existence of mp1 verified in ip_wput_nondata */
6089 	mp1 = mp->b_cont->b_cont;
6090 	rt = (struct rtentry *)mp1->b_rptr;
6091 
6092 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6093 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6094 
6095 	/*
6096 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
6097 	 * to a particular host address.  In this case, we set the netmask to
6098 	 * all ones for the particular destination address.  Otherwise,
6099 	 * determine the netmask to be used based on dst_addr and the interfaces
6100 	 * in use.
6101 	 */
6102 	if (rt->rt_flags & RTF_HOST) {
6103 		mask = IP_HOST_MASK;
6104 	} else {
6105 		/*
6106 		 * Note that ip_subnet_mask returns a zero mask in the case of
6107 		 * default (an all-zeroes address).
6108 		 */
6109 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6110 	}
6111 
6112 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
6113 	    B_TRUE, NULL, ipst, ALL_ZONES);
6114 	if (ipif != NULL)
6115 		ipif_refrele(ipif);
6116 	return (error);
6117 }
6118 
6119 /*
6120  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
6121  */
6122 /* ARGSUSED */
6123 int
6124 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
6125     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
6126 {
6127 	ipaddr_t dst_addr;
6128 	ipaddr_t gw_addr;
6129 	ipaddr_t mask;
6130 	int error;
6131 	mblk_t *mp1;
6132 	struct rtentry *rt;
6133 	ipif_t *ipif = NULL;
6134 	ip_stack_t	*ipst;
6135 
6136 	ASSERT(q->q_next == NULL);
6137 	ipst = CONNQ_TO_IPST(q);
6138 
6139 	ip1dbg(("ip_siocdelrt:"));
6140 	/* Existence of mp1 verified in ip_wput_nondata */
6141 	mp1 = mp->b_cont->b_cont;
6142 	rt = (struct rtentry *)mp1->b_rptr;
6143 
6144 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
6145 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
6146 
6147 	/*
6148 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
6149 	 * to a particular host address.  In this case, we set the netmask to
6150 	 * all ones for the particular destination address.  Otherwise,
6151 	 * determine the netmask to be used based on dst_addr and the interfaces
6152 	 * in use.
6153 	 */
6154 	if (rt->rt_flags & RTF_HOST) {
6155 		mask = IP_HOST_MASK;
6156 	} else {
6157 		/*
6158 		 * Note that ip_subnet_mask returns a zero mask in the case of
6159 		 * default (an all-zeroes address).
6160 		 */
6161 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
6162 	}
6163 
6164 	error = ip_rt_delete(dst_addr, mask, gw_addr,
6165 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE,
6166 	    ipst, ALL_ZONES);
6167 	if (ipif != NULL)
6168 		ipif_refrele(ipif);
6169 	return (error);
6170 }
6171 
6172 /*
6173  * Enqueue the mp onto the ipsq, chained by b_next.
6174  * b_prev stores the function to be executed later, and b_queue the queue
6175  * where this mp originated.
6176  */
6177 void
6178 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6179     ill_t *pending_ill)
6180 {
6181 	conn_t	*connp;
6182 	ipxop_t *ipx = ipsq->ipsq_xop;
6183 
6184 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
6185 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
6186 	ASSERT(func != NULL);
6187 
6188 	mp->b_queue = q;
6189 	mp->b_prev = (void *)func;
6190 	mp->b_next = NULL;
6191 
6192 	switch (type) {
6193 	case CUR_OP:
6194 		if (ipx->ipx_mptail != NULL) {
6195 			ASSERT(ipx->ipx_mphead != NULL);
6196 			ipx->ipx_mptail->b_next = mp;
6197 		} else {
6198 			ASSERT(ipx->ipx_mphead == NULL);
6199 			ipx->ipx_mphead = mp;
6200 		}
6201 		ipx->ipx_mptail = mp;
6202 		break;
6203 
6204 	case NEW_OP:
6205 		if (ipsq->ipsq_xopq_mptail != NULL) {
6206 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
6207 			ipsq->ipsq_xopq_mptail->b_next = mp;
6208 		} else {
6209 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
6210 			ipsq->ipsq_xopq_mphead = mp;
6211 		}
6212 		ipsq->ipsq_xopq_mptail = mp;
6213 		ipx->ipx_ipsq_queued = B_TRUE;
6214 		break;
6215 
6216 	case SWITCH_OP:
6217 		ASSERT(ipsq->ipsq_swxop != NULL);
6218 		/* only one switch operation is currently allowed */
6219 		ASSERT(ipsq->ipsq_switch_mp == NULL);
6220 		ipsq->ipsq_switch_mp = mp;
6221 		ipx->ipx_ipsq_queued = B_TRUE;
6222 		break;
6223 	default:
6224 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
6225 	}
6226 
6227 	if (CONN_Q(q) && pending_ill != NULL) {
6228 		connp = Q_TO_CONN(q);
6229 		ASSERT(MUTEX_HELD(&connp->conn_lock));
6230 		connp->conn_oper_pending_ill = pending_ill;
6231 	}
6232 }
6233 
6234 /*
6235  * Dequeue the next message that requested exclusive access to this IPSQ's
6236  * xop.  Specifically:
6237  *
6238  *  1. If we're still processing the current operation on `ipsq', then
6239  *     dequeue the next message for the operation (from ipx_mphead), or
6240  *     return NULL if there are no queued messages for the operation.
6241  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
6242  *
6243  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
6244  *     not set) see if the ipsq has requested an xop switch.  If so, switch
6245  *     `ipsq' to a different xop.  Xop switches only happen when joining or
6246  *     leaving IPMP groups and require a careful dance -- see the comments
6247  *     in-line below for details.  If we're leaving a group xop or if we're
6248  *     joining a group xop and become writer on it, then we proceed to (3).
6249  *     Otherwise, we return NULL and exit the xop.
6250  *
6251  *  3. For each IPSQ in the xop, return any switch operation stored on
6252  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
6253  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
6254  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
6255  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
6256  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
6257  *     each phyint in the group, including the IPMP meta-interface phyint.
6258  */
6259 static mblk_t *
6260 ipsq_dq(ipsq_t *ipsq)
6261 {
6262 	ill_t	*illv4, *illv6;
6263 	mblk_t	*mp;
6264 	ipsq_t	*xopipsq;
6265 	ipsq_t	*leftipsq = NULL;
6266 	ipxop_t *ipx;
6267 	phyint_t *phyi = ipsq->ipsq_phyint;
6268 	ip_stack_t *ipst = ipsq->ipsq_ipst;
6269 	boolean_t emptied = B_FALSE;
6270 
6271 	/*
6272 	 * Grab all the locks we need in the defined order (ill_g_lock ->
6273 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
6274 	 */
6275 	rw_enter(&ipst->ips_ill_g_lock,
6276 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
6277 	mutex_enter(&ipsq->ipsq_lock);
6278 	ipx = ipsq->ipsq_xop;
6279 	mutex_enter(&ipx->ipx_lock);
6280 
6281 	/*
6282 	 * Dequeue the next message associated with the current exclusive
6283 	 * operation, if any.
6284 	 */
6285 	if ((mp = ipx->ipx_mphead) != NULL) {
6286 		ipx->ipx_mphead = mp->b_next;
6287 		if (ipx->ipx_mphead == NULL)
6288 			ipx->ipx_mptail = NULL;
6289 		mp->b_next = (void *)ipsq;
6290 		goto out;
6291 	}
6292 
6293 	if (ipx->ipx_current_ipif != NULL)
6294 		goto empty;
6295 
6296 	if (ipsq->ipsq_swxop != NULL) {
6297 		/*
6298 		 * The exclusive operation that is now being completed has
6299 		 * requested a switch to a different xop.  This happens
6300 		 * when an interface joins or leaves an IPMP group.  Joins
6301 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
6302 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
6303 		 * (phyint_free()), or interface plumb for an ill type
6304 		 * not in the IPMP group (ip_rput_dlpi_writer()).
6305 		 *
6306 		 * Xop switches are not allowed on the IPMP meta-interface.
6307 		 */
6308 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
6309 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
6310 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
6311 
6312 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
6313 			/*
6314 			 * We're switching back to our own xop, so we have two
6315 			 * xop's to drain/exit: our own, and the group xop
6316 			 * that we are leaving.
6317 			 *
6318 			 * First, pull ourselves out of the group ipsq list.
6319 			 * This is safe since we're writer on ill_g_lock.
6320 			 */
6321 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
6322 
6323 			xopipsq = ipx->ipx_ipsq;
6324 			while (xopipsq->ipsq_next != ipsq)
6325 				xopipsq = xopipsq->ipsq_next;
6326 
6327 			xopipsq->ipsq_next = ipsq->ipsq_next;
6328 			ipsq->ipsq_next = ipsq;
6329 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6330 			ipsq->ipsq_swxop = NULL;
6331 
6332 			/*
6333 			 * Second, prepare to exit the group xop.  The actual
6334 			 * ipsq_exit() is done at the end of this function
6335 			 * since we cannot hold any locks across ipsq_exit().
6336 			 * Note that although we drop the group's ipx_lock, no
6337 			 * threads can proceed since we're still ipx_writer.
6338 			 */
6339 			leftipsq = xopipsq;
6340 			mutex_exit(&ipx->ipx_lock);
6341 
6342 			/*
6343 			 * Third, set ipx to point to our own xop (which was
6344 			 * inactive and therefore can be entered).
6345 			 */
6346 			ipx = ipsq->ipsq_xop;
6347 			mutex_enter(&ipx->ipx_lock);
6348 			ASSERT(ipx->ipx_writer == NULL);
6349 			ASSERT(ipx->ipx_current_ipif == NULL);
6350 		} else {
6351 			/*
6352 			 * We're switching from our own xop to a group xop.
6353 			 * The requestor of the switch must ensure that the
6354 			 * group xop cannot go away (e.g. by ensuring the
6355 			 * phyint associated with the xop cannot go away).
6356 			 *
6357 			 * If we can become writer on our new xop, then we'll
6358 			 * do the drain.  Otherwise, the current writer of our
6359 			 * new xop will do the drain when it exits.
6360 			 *
6361 			 * First, splice ourselves into the group IPSQ list.
6362 			 * This is safe since we're writer on ill_g_lock.
6363 			 */
6364 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6365 
6366 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
6367 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
6368 				xopipsq = xopipsq->ipsq_next;
6369 
6370 			xopipsq->ipsq_next = ipsq;
6371 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
6372 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
6373 			ipsq->ipsq_swxop = NULL;
6374 
6375 			/*
6376 			 * Second, exit our own xop, since it's now unused.
6377 			 * This is safe since we've got the only reference.
6378 			 */
6379 			ASSERT(ipx->ipx_writer == curthread);
6380 			ipx->ipx_writer = NULL;
6381 			VERIFY(--ipx->ipx_reentry_cnt == 0);
6382 			ipx->ipx_ipsq_queued = B_FALSE;
6383 			mutex_exit(&ipx->ipx_lock);
6384 
6385 			/*
6386 			 * Third, set ipx to point to our new xop, and check
6387 			 * if we can become writer on it.  If we cannot, then
6388 			 * the current writer will drain the IPSQ group when
6389 			 * it exits.  Our ipsq_xop is guaranteed to be stable
6390 			 * because we're still holding ipsq_lock.
6391 			 */
6392 			ipx = ipsq->ipsq_xop;
6393 			mutex_enter(&ipx->ipx_lock);
6394 			if (ipx->ipx_writer != NULL ||
6395 			    ipx->ipx_current_ipif != NULL) {
6396 				goto out;
6397 			}
6398 		}
6399 
6400 		/*
6401 		 * Fourth, become writer on our new ipx before we continue
6402 		 * with the drain.  Note that we never dropped ipsq_lock
6403 		 * above, so no other thread could've raced with us to
6404 		 * become writer first.  Also, we're holding ipx_lock, so
6405 		 * no other thread can examine the ipx right now.
6406 		 */
6407 		ASSERT(ipx->ipx_current_ipif == NULL);
6408 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6409 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
6410 		ipx->ipx_writer = curthread;
6411 		ipx->ipx_forced = B_FALSE;
6412 #ifdef DEBUG
6413 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6414 #endif
6415 	}
6416 
6417 	xopipsq = ipsq;
6418 	do {
6419 		/*
6420 		 * So that other operations operate on a consistent and
6421 		 * complete phyint, a switch message on an IPSQ must be
6422 		 * handled prior to any other operations on that IPSQ.
6423 		 */
6424 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
6425 			xopipsq->ipsq_switch_mp = NULL;
6426 			ASSERT(mp->b_next == NULL);
6427 			mp->b_next = (void *)xopipsq;
6428 			goto out;
6429 		}
6430 
6431 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
6432 			xopipsq->ipsq_xopq_mphead = mp->b_next;
6433 			if (xopipsq->ipsq_xopq_mphead == NULL)
6434 				xopipsq->ipsq_xopq_mptail = NULL;
6435 			mp->b_next = (void *)xopipsq;
6436 			goto out;
6437 		}
6438 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6439 empty:
6440 	/*
6441 	 * There are no messages.  Further, we are holding ipx_lock, hence no
6442 	 * new messages can end up on any IPSQ in the xop.
6443 	 */
6444 	ipx->ipx_writer = NULL;
6445 	ipx->ipx_forced = B_FALSE;
6446 	VERIFY(--ipx->ipx_reentry_cnt == 0);
6447 	ipx->ipx_ipsq_queued = B_FALSE;
6448 	emptied = B_TRUE;
6449 #ifdef	DEBUG
6450 	ipx->ipx_depth = 0;
6451 #endif
6452 out:
6453 	mutex_exit(&ipx->ipx_lock);
6454 	mutex_exit(&ipsq->ipsq_lock);
6455 
6456 	/*
6457 	 * If we completely emptied the xop, then wake up any threads waiting
6458 	 * to enter any of the IPSQ's associated with it.
6459 	 */
6460 	if (emptied) {
6461 		xopipsq = ipsq;
6462 		do {
6463 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
6464 				continue;
6465 
6466 			illv4 = phyi->phyint_illv4;
6467 			illv6 = phyi->phyint_illv6;
6468 
6469 			GRAB_ILL_LOCKS(illv4, illv6);
6470 			if (illv4 != NULL)
6471 				cv_broadcast(&illv4->ill_cv);
6472 			if (illv6 != NULL)
6473 				cv_broadcast(&illv6->ill_cv);
6474 			RELEASE_ILL_LOCKS(illv4, illv6);
6475 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
6476 	}
6477 	rw_exit(&ipst->ips_ill_g_lock);
6478 
6479 	/*
6480 	 * Now that all locks are dropped, exit the IPSQ we left.
6481 	 */
6482 	if (leftipsq != NULL)
6483 		ipsq_exit(leftipsq);
6484 
6485 	return (mp);
6486 }
6487 
6488 /*
6489  * Return completion status of previously initiated DLPI operations on
6490  * ills in the purview of an ipsq.
6491  */
6492 static boolean_t
6493 ipsq_dlpi_done(ipsq_t *ipsq)
6494 {
6495 	ipsq_t		*ipsq_start;
6496 	phyint_t	*phyi;
6497 	ill_t		*ill;
6498 
6499 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
6500 	ipsq_start = ipsq;
6501 
6502 	do {
6503 		/*
6504 		 * The only current users of this function are ipsq_try_enter
6505 		 * and ipsq_enter which have made sure that ipsq_writer is
6506 		 * NULL before we reach here. ill_dlpi_pending is modified
6507 		 * only by an ipsq writer
6508 		 */
6509 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
6510 		phyi = ipsq->ipsq_phyint;
6511 		/*
6512 		 * phyi could be NULL if a phyint that is part of an
6513 		 * IPMP group is being unplumbed. A more detailed
6514 		 * comment is in ipmp_grp_update_kstats()
6515 		 */
6516 		if (phyi != NULL) {
6517 			ill = phyi->phyint_illv4;
6518 			if (ill != NULL &&
6519 			    (ill->ill_dlpi_pending != DL_PRIM_INVAL ||
6520 			    ill->ill_arl_dlpi_pending))
6521 				return (B_FALSE);
6522 
6523 			ill = phyi->phyint_illv6;
6524 			if (ill != NULL &&
6525 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
6526 				return (B_FALSE);
6527 		}
6528 
6529 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
6530 
6531 	return (B_TRUE);
6532 }
6533 
6534 /*
6535  * Enter the ipsq corresponding to ill, by waiting synchronously till
6536  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
6537  * will have to drain completely before ipsq_enter returns success.
6538  * ipx_current_ipif will be set if some exclusive op is in progress,
6539  * and the ipsq_exit logic will start the next enqueued op after
6540  * completion of the current op. If 'force' is used, we don't wait
6541  * for the enqueued ops. This is needed when a conn_close wants to
6542  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
6543  * of an ill can also use this option. But we dont' use it currently.
6544  */
6545 #define	ENTER_SQ_WAIT_TICKS 100
6546 boolean_t
6547 ipsq_enter(ill_t *ill, boolean_t force, int type)
6548 {
6549 	ipsq_t	*ipsq;
6550 	ipxop_t *ipx;
6551 	boolean_t waited_enough = B_FALSE;
6552 	ip_stack_t *ipst = ill->ill_ipst;
6553 
6554 	/*
6555 	 * Note that the relationship between ill and ipsq is fixed as long as
6556 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
6557 	 * relationship between the IPSQ and xop cannot change.  However,
6558 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
6559 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
6560 	 * waking up all ills in the xop when it becomes available.
6561 	 */
6562 	for (;;) {
6563 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6564 		mutex_enter(&ill->ill_lock);
6565 		if (ill->ill_state_flags & ILL_CONDEMNED) {
6566 			mutex_exit(&ill->ill_lock);
6567 			rw_exit(&ipst->ips_ill_g_lock);
6568 			return (B_FALSE);
6569 		}
6570 
6571 		ipsq = ill->ill_phyint->phyint_ipsq;
6572 		mutex_enter(&ipsq->ipsq_lock);
6573 		ipx = ipsq->ipsq_xop;
6574 		mutex_enter(&ipx->ipx_lock);
6575 
6576 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
6577 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
6578 		    waited_enough))
6579 			break;
6580 
6581 		rw_exit(&ipst->ips_ill_g_lock);
6582 
6583 		if (!force || ipx->ipx_writer != NULL) {
6584 			mutex_exit(&ipx->ipx_lock);
6585 			mutex_exit(&ipsq->ipsq_lock);
6586 			cv_wait(&ill->ill_cv, &ill->ill_lock);
6587 		} else {
6588 			mutex_exit(&ipx->ipx_lock);
6589 			mutex_exit(&ipsq->ipsq_lock);
6590 			(void) cv_reltimedwait(&ill->ill_cv,
6591 			    &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK);
6592 			waited_enough = B_TRUE;
6593 		}
6594 		mutex_exit(&ill->ill_lock);
6595 	}
6596 
6597 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
6598 	ASSERT(ipx->ipx_reentry_cnt == 0);
6599 	ipx->ipx_writer = curthread;
6600 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
6601 	ipx->ipx_reentry_cnt++;
6602 #ifdef DEBUG
6603 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6604 #endif
6605 	mutex_exit(&ipx->ipx_lock);
6606 	mutex_exit(&ipsq->ipsq_lock);
6607 	mutex_exit(&ill->ill_lock);
6608 	rw_exit(&ipst->ips_ill_g_lock);
6609 
6610 	return (B_TRUE);
6611 }
6612 
6613 /*
6614  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
6615  * across the call to the core interface ipsq_try_enter() and hence calls this
6616  * function directly. This is explained more fully in ipif_set_values().
6617  * In order to support the above constraint, ipsq_try_enter is implemented as
6618  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
6619  */
6620 static ipsq_t *
6621 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
6622     int type, boolean_t reentry_ok)
6623 {
6624 	ipsq_t	*ipsq;
6625 	ipxop_t	*ipx;
6626 	ip_stack_t *ipst = ill->ill_ipst;
6627 
6628 	/*
6629 	 * lock ordering:
6630 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
6631 	 *
6632 	 * ipx of an ipsq can't change when ipsq_lock is held.
6633 	 */
6634 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
6635 	GRAB_CONN_LOCK(q);
6636 	mutex_enter(&ill->ill_lock);
6637 	ipsq = ill->ill_phyint->phyint_ipsq;
6638 	mutex_enter(&ipsq->ipsq_lock);
6639 	ipx = ipsq->ipsq_xop;
6640 	mutex_enter(&ipx->ipx_lock);
6641 
6642 	/*
6643 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
6644 	 *    (Note: If the caller does not specify reentry_ok then neither
6645 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
6646 	 *    again. Otherwise it can lead to an infinite loop
6647 	 * 2. Enter the ipsq if there is no current writer and this attempted
6648 	 *    entry is part of the current operation
6649 	 * 3. Enter the ipsq if there is no current writer and this is a new
6650 	 *    operation and the operation queue is empty and there is no
6651 	 *    operation currently in progress and if all previously initiated
6652 	 *    DLPI operations have completed.
6653 	 */
6654 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
6655 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
6656 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
6657 	    ipsq_dlpi_done(ipsq))))) {
6658 		/* Success. */
6659 		ipx->ipx_reentry_cnt++;
6660 		ipx->ipx_writer = curthread;
6661 		ipx->ipx_forced = B_FALSE;
6662 		mutex_exit(&ipx->ipx_lock);
6663 		mutex_exit(&ipsq->ipsq_lock);
6664 		mutex_exit(&ill->ill_lock);
6665 		RELEASE_CONN_LOCK(q);
6666 #ifdef DEBUG
6667 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
6668 #endif
6669 		return (ipsq);
6670 	}
6671 
6672 	if (func != NULL)
6673 		ipsq_enq(ipsq, q, mp, func, type, ill);
6674 
6675 	mutex_exit(&ipx->ipx_lock);
6676 	mutex_exit(&ipsq->ipsq_lock);
6677 	mutex_exit(&ill->ill_lock);
6678 	RELEASE_CONN_LOCK(q);
6679 	return (NULL);
6680 }
6681 
6682 /*
6683  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
6684  * certain critical operations like plumbing (i.e. most set ioctls), etc.
6685  * There is one ipsq per phyint. The ipsq
6686  * serializes exclusive ioctls issued by applications on a per ipsq basis in
6687  * ipsq_xopq_mphead. It also protects against multiple threads executing in
6688  * the ipsq. Responses from the driver pertain to the current ioctl (say a
6689  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
6690  * up the interface) and are enqueued in ipx_mphead.
6691  *
6692  * If a thread does not want to reenter the ipsq when it is already writer,
6693  * it must make sure that the specified reentry point to be called later
6694  * when the ipsq is empty, nor any code path starting from the specified reentry
6695  * point must never ever try to enter the ipsq again. Otherwise it can lead
6696  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
6697  * When the thread that is currently exclusive finishes, it (ipsq_exit)
6698  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
6699  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
6700  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
6701  * ioctl if the current ioctl has completed. If the current ioctl is still
6702  * in progress it simply returns. The current ioctl could be waiting for
6703  * a response from another module (the driver or could be waiting for
6704  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
6705  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
6706  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
6707  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
6708  * all associated DLPI operations have completed.
6709  */
6710 
6711 /*
6712  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
6713  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
6714  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
6715  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
6716  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
6717  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
6718  */
6719 ipsq_t *
6720 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
6721     ipsq_func_t func, int type, boolean_t reentry_ok)
6722 {
6723 	ip_stack_t	*ipst;
6724 	ipsq_t		*ipsq;
6725 
6726 	/* Only 1 of ipif or ill can be specified */
6727 	ASSERT((ipif != NULL) ^ (ill != NULL));
6728 
6729 	if (ipif != NULL)
6730 		ill = ipif->ipif_ill;
6731 	ipst = ill->ill_ipst;
6732 
6733 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6734 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
6735 	rw_exit(&ipst->ips_ill_g_lock);
6736 
6737 	return (ipsq);
6738 }
6739 
6740 /*
6741  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
6742  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
6743  * cannot be entered, the mp is queued for completion.
6744  */
6745 void
6746 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
6747     boolean_t reentry_ok)
6748 {
6749 	ipsq_t	*ipsq;
6750 
6751 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
6752 
6753 	/*
6754 	 * Drop the caller's refhold on the ill.  This is safe since we either
6755 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
6756 	 * IPSQ, in which case we return without accessing ill anymore.  This
6757 	 * is needed because func needs to see the correct refcount.
6758 	 * e.g. removeif can work only then.
6759 	 */
6760 	ill_refrele(ill);
6761 	if (ipsq != NULL) {
6762 		(*func)(ipsq, q, mp, NULL);
6763 		ipsq_exit(ipsq);
6764 	}
6765 }
6766 
6767 /*
6768  * Exit the specified IPSQ.  If this is the final exit on it then drain it
6769  * prior to exiting.  Caller must be writer on the specified IPSQ.
6770  */
6771 void
6772 ipsq_exit(ipsq_t *ipsq)
6773 {
6774 	mblk_t *mp;
6775 	ipsq_t *mp_ipsq;
6776 	queue_t	*q;
6777 	phyint_t *phyi;
6778 	ipsq_func_t func;
6779 
6780 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6781 
6782 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
6783 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
6784 		ipsq->ipsq_xop->ipx_reentry_cnt--;
6785 		return;
6786 	}
6787 
6788 	for (;;) {
6789 		phyi = ipsq->ipsq_phyint;
6790 		mp = ipsq_dq(ipsq);
6791 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
6792 
6793 		/*
6794 		 * If we've changed to a new IPSQ, and the phyint associated
6795 		 * with the old one has gone away, free the old IPSQ.  Note
6796 		 * that this cannot happen while the IPSQ is in a group.
6797 		 */
6798 		if (mp_ipsq != ipsq && phyi == NULL) {
6799 			ASSERT(ipsq->ipsq_next == ipsq);
6800 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
6801 			ipsq_delete(ipsq);
6802 		}
6803 
6804 		if (mp == NULL)
6805 			break;
6806 
6807 		q = mp->b_queue;
6808 		func = (ipsq_func_t)mp->b_prev;
6809 		ipsq = mp_ipsq;
6810 		mp->b_next = mp->b_prev = NULL;
6811 		mp->b_queue = NULL;
6812 
6813 		/*
6814 		 * If 'q' is an conn queue, it is valid, since we did a
6815 		 * a refhold on the conn at the start of the ioctl.
6816 		 * If 'q' is an ill queue, it is valid, since close of an
6817 		 * ill will clean up its IPSQ.
6818 		 */
6819 		(*func)(ipsq, q, mp, NULL);
6820 	}
6821 }
6822 
6823 /*
6824  * Used to start any igmp or mld timers that could not be started
6825  * while holding ill_mcast_lock. The timers can't be started while holding
6826  * the lock, since mld/igmp_start_timers may need to call untimeout()
6827  * which can't be done while holding the lock which the timeout handler
6828  * acquires. Otherwise
6829  * there could be a deadlock since the timeout handlers
6830  * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire
6831  * ill_mcast_lock.
6832  */
6833 void
6834 ill_mcast_timer_start(ip_stack_t *ipst)
6835 {
6836 	int		next;
6837 
6838 	mutex_enter(&ipst->ips_igmp_timer_lock);
6839 	next = ipst->ips_igmp_deferred_next;
6840 	ipst->ips_igmp_deferred_next = INFINITY;
6841 	mutex_exit(&ipst->ips_igmp_timer_lock);
6842 
6843 	if (next != INFINITY)
6844 		igmp_start_timers(next, ipst);
6845 
6846 	mutex_enter(&ipst->ips_mld_timer_lock);
6847 	next = ipst->ips_mld_deferred_next;
6848 	ipst->ips_mld_deferred_next = INFINITY;
6849 	mutex_exit(&ipst->ips_mld_timer_lock);
6850 
6851 	if (next != INFINITY)
6852 		mld_start_timers(next, ipst);
6853 }
6854 
6855 /*
6856  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
6857  * and `ioccmd'.
6858  */
6859 void
6860 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
6861 {
6862 	ill_t *ill = ipif->ipif_ill;
6863 	ipxop_t *ipx = ipsq->ipsq_xop;
6864 
6865 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6866 	ASSERT(ipx->ipx_current_ipif == NULL);
6867 	ASSERT(ipx->ipx_current_ioctl == 0);
6868 
6869 	ipx->ipx_current_done = B_FALSE;
6870 	ipx->ipx_current_ioctl = ioccmd;
6871 	mutex_enter(&ipx->ipx_lock);
6872 	ipx->ipx_current_ipif = ipif;
6873 	mutex_exit(&ipx->ipx_lock);
6874 
6875 	/*
6876 	 * Set IPIF_CHANGING on one or more ipifs associated with the
6877 	 * current exclusive operation.  IPIF_CHANGING prevents any new
6878 	 * references to the ipif (so that the references will eventually
6879 	 * drop to zero) and also prevents any "get" operations (e.g.,
6880 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
6881 	 * operation has completed and the ipif is again in a stable state.
6882 	 *
6883 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
6884 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
6885 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
6886 	 * ipifs will be affected.
6887 	 *
6888 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
6889 	 * IPIF_CONDEMNED internally after identifying the right ipif to
6890 	 * operate on.
6891 	 */
6892 	switch (ioccmd) {
6893 	case SIOCLIFREMOVEIF:
6894 		break;
6895 	case 0:
6896 		mutex_enter(&ill->ill_lock);
6897 		ipif = ipif->ipif_ill->ill_ipif;
6898 		for (; ipif != NULL; ipif = ipif->ipif_next)
6899 			ipif->ipif_state_flags |= IPIF_CHANGING;
6900 		mutex_exit(&ill->ill_lock);
6901 		break;
6902 	default:
6903 		mutex_enter(&ill->ill_lock);
6904 		ipif->ipif_state_flags |= IPIF_CHANGING;
6905 		mutex_exit(&ill->ill_lock);
6906 	}
6907 }
6908 
6909 /*
6910  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
6911  * the next exclusive operation to begin once we ipsq_exit().  However, if
6912  * pending DLPI operations remain, then we will wait for the queue to drain
6913  * before allowing the next exclusive operation to begin.  This ensures that
6914  * DLPI operations from one exclusive operation are never improperly processed
6915  * as part of a subsequent exclusive operation.
6916  */
6917 void
6918 ipsq_current_finish(ipsq_t *ipsq)
6919 {
6920 	ipxop_t	*ipx = ipsq->ipsq_xop;
6921 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
6922 	ipif_t	*ipif = ipx->ipx_current_ipif;
6923 
6924 	ASSERT(IAM_WRITER_IPSQ(ipsq));
6925 
6926 	/*
6927 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
6928 	 * (but in that case, IPIF_CHANGING will already be clear and no
6929 	 * pending DLPI messages can remain).
6930 	 */
6931 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
6932 		ill_t *ill = ipif->ipif_ill;
6933 
6934 		mutex_enter(&ill->ill_lock);
6935 		dlpi_pending = ill->ill_dlpi_pending;
6936 		if (ipx->ipx_current_ioctl == 0) {
6937 			ipif = ill->ill_ipif;
6938 			for (; ipif != NULL; ipif = ipif->ipif_next)
6939 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
6940 		} else {
6941 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
6942 		}
6943 		mutex_exit(&ill->ill_lock);
6944 	}
6945 
6946 	ASSERT(!ipx->ipx_current_done);
6947 	ipx->ipx_current_done = B_TRUE;
6948 	ipx->ipx_current_ioctl = 0;
6949 	if (dlpi_pending == DL_PRIM_INVAL) {
6950 		mutex_enter(&ipx->ipx_lock);
6951 		ipx->ipx_current_ipif = NULL;
6952 		mutex_exit(&ipx->ipx_lock);
6953 	}
6954 }
6955 
6956 /*
6957  * The ill is closing. Flush all messages on the ipsq that originated
6958  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
6959  * for this ill since ipsq_enter could not have entered until then.
6960  * New messages can't be queued since the CONDEMNED flag is set.
6961  */
6962 static void
6963 ipsq_flush(ill_t *ill)
6964 {
6965 	queue_t	*q;
6966 	mblk_t	*prev;
6967 	mblk_t	*mp;
6968 	mblk_t	*mp_next;
6969 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
6970 
6971 	ASSERT(IAM_WRITER_ILL(ill));
6972 
6973 	/*
6974 	 * Flush any messages sent up by the driver.
6975 	 */
6976 	mutex_enter(&ipx->ipx_lock);
6977 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
6978 		mp_next = mp->b_next;
6979 		q = mp->b_queue;
6980 		if (q == ill->ill_rq || q == ill->ill_wq) {
6981 			/* dequeue mp */
6982 			if (prev == NULL)
6983 				ipx->ipx_mphead = mp->b_next;
6984 			else
6985 				prev->b_next = mp->b_next;
6986 			if (ipx->ipx_mptail == mp) {
6987 				ASSERT(mp_next == NULL);
6988 				ipx->ipx_mptail = prev;
6989 			}
6990 			inet_freemsg(mp);
6991 		} else {
6992 			prev = mp;
6993 		}
6994 	}
6995 	mutex_exit(&ipx->ipx_lock);
6996 	(void) ipsq_pending_mp_cleanup(ill, NULL);
6997 	ipsq_xopq_mp_cleanup(ill, NULL);
6998 }
6999 
7000 /*
7001  * Parse an ifreq or lifreq struct coming down ioctls and refhold
7002  * and return the associated ipif.
7003  * Return value:
7004  *	Non zero: An error has occurred. ci may not be filled out.
7005  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
7006  *	a held ipif in ci.ci_ipif.
7007  */
7008 int
7009 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
7010     cmd_info_t *ci)
7011 {
7012 	char		*name;
7013 	struct ifreq    *ifr;
7014 	struct lifreq    *lifr;
7015 	ipif_t		*ipif = NULL;
7016 	ill_t		*ill;
7017 	conn_t		*connp;
7018 	boolean_t	isv6;
7019 	boolean_t	exists;
7020 	mblk_t		*mp1;
7021 	zoneid_t	zoneid;
7022 	ip_stack_t	*ipst;
7023 
7024 	if (q->q_next != NULL) {
7025 		ill = (ill_t *)q->q_ptr;
7026 		isv6 = ill->ill_isv6;
7027 		connp = NULL;
7028 		zoneid = ALL_ZONES;
7029 		ipst = ill->ill_ipst;
7030 	} else {
7031 		ill = NULL;
7032 		connp = Q_TO_CONN(q);
7033 		isv6 = (connp->conn_family == AF_INET6);
7034 		zoneid = connp->conn_zoneid;
7035 		if (zoneid == GLOBAL_ZONEID) {
7036 			/* global zone can access ipifs in all zones */
7037 			zoneid = ALL_ZONES;
7038 		}
7039 		ipst = connp->conn_netstack->netstack_ip;
7040 	}
7041 
7042 	/* Has been checked in ip_wput_nondata */
7043 	mp1 = mp->b_cont->b_cont;
7044 
7045 	if (ipip->ipi_cmd_type == IF_CMD) {
7046 		/* This a old style SIOC[GS]IF* command */
7047 		ifr = (struct ifreq *)mp1->b_rptr;
7048 		/*
7049 		 * Null terminate the string to protect against buffer
7050 		 * overrun. String was generated by user code and may not
7051 		 * be trusted.
7052 		 */
7053 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
7054 		name = ifr->ifr_name;
7055 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
7056 		ci->ci_sin6 = NULL;
7057 		ci->ci_lifr = (struct lifreq *)ifr;
7058 	} else {
7059 		/* This a new style SIOC[GS]LIF* command */
7060 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
7061 		lifr = (struct lifreq *)mp1->b_rptr;
7062 		/*
7063 		 * Null terminate the string to protect against buffer
7064 		 * overrun. String was generated by user code and may not
7065 		 * be trusted.
7066 		 */
7067 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
7068 		name = lifr->lifr_name;
7069 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
7070 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
7071 		ci->ci_lifr = lifr;
7072 	}
7073 
7074 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
7075 		/*
7076 		 * The ioctl will be failed if the ioctl comes down
7077 		 * an conn stream
7078 		 */
7079 		if (ill == NULL) {
7080 			/*
7081 			 * Not an ill queue, return EINVAL same as the
7082 			 * old error code.
7083 			 */
7084 			return (ENXIO);
7085 		}
7086 		ipif = ill->ill_ipif;
7087 		ipif_refhold(ipif);
7088 	} else {
7089 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
7090 		    &exists, isv6, zoneid, ipst);
7091 
7092 		/*
7093 		 * Ensure that get ioctls don't see any internal state changes
7094 		 * caused by set ioctls by deferring them if IPIF_CHANGING is
7095 		 * set.
7096 		 */
7097 		if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) &&
7098 		    !IAM_WRITER_IPIF(ipif)) {
7099 			ipsq_t	*ipsq;
7100 
7101 			if (connp != NULL)
7102 				mutex_enter(&connp->conn_lock);
7103 			mutex_enter(&ipif->ipif_ill->ill_lock);
7104 			if (IPIF_IS_CHANGING(ipif) &&
7105 			    !IPIF_IS_CONDEMNED(ipif)) {
7106 				ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
7107 				mutex_enter(&ipsq->ipsq_lock);
7108 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
7109 				mutex_exit(&ipif->ipif_ill->ill_lock);
7110 				ipsq_enq(ipsq, q, mp, ip_process_ioctl,
7111 				    NEW_OP, ipif->ipif_ill);
7112 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
7113 				mutex_exit(&ipsq->ipsq_lock);
7114 				if (connp != NULL)
7115 					mutex_exit(&connp->conn_lock);
7116 				ipif_refrele(ipif);
7117 				return (EINPROGRESS);
7118 			}
7119 			mutex_exit(&ipif->ipif_ill->ill_lock);
7120 			if (connp != NULL)
7121 				mutex_exit(&connp->conn_lock);
7122 		}
7123 	}
7124 
7125 	/*
7126 	 * Old style [GS]IFCMD does not admit IPv6 ipif
7127 	 */
7128 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
7129 		ipif_refrele(ipif);
7130 		return (ENXIO);
7131 	}
7132 
7133 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
7134 	    name[0] == '\0') {
7135 		/*
7136 		 * Handle a or a SIOC?IF* with a null name
7137 		 * during plumb (on the ill queue before the I_PLINK).
7138 		 */
7139 		ipif = ill->ill_ipif;
7140 		ipif_refhold(ipif);
7141 	}
7142 
7143 	if (ipif == NULL)
7144 		return (ENXIO);
7145 
7146 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq",
7147 	    int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif);
7148 
7149 	ci->ci_ipif = ipif;
7150 	return (0);
7151 }
7152 
7153 /*
7154  * Return the total number of ipifs.
7155  */
7156 static uint_t
7157 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
7158 {
7159 	uint_t numifs = 0;
7160 	ill_t	*ill;
7161 	ill_walk_context_t	ctx;
7162 	ipif_t	*ipif;
7163 
7164 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7165 	ill = ILL_START_WALK_V4(&ctx, ipst);
7166 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7167 		if (IS_UNDER_IPMP(ill))
7168 			continue;
7169 		for (ipif = ill->ill_ipif; ipif != NULL;
7170 		    ipif = ipif->ipif_next) {
7171 			if (ipif->ipif_zoneid == zoneid ||
7172 			    ipif->ipif_zoneid == ALL_ZONES)
7173 				numifs++;
7174 		}
7175 	}
7176 	rw_exit(&ipst->ips_ill_g_lock);
7177 	return (numifs);
7178 }
7179 
7180 /*
7181  * Return the total number of ipifs.
7182  */
7183 static uint_t
7184 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
7185 {
7186 	uint_t numifs = 0;
7187 	ill_t	*ill;
7188 	ipif_t	*ipif;
7189 	ill_walk_context_t	ctx;
7190 
7191 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
7192 
7193 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7194 	if (family == AF_INET)
7195 		ill = ILL_START_WALK_V4(&ctx, ipst);
7196 	else if (family == AF_INET6)
7197 		ill = ILL_START_WALK_V6(&ctx, ipst);
7198 	else
7199 		ill = ILL_START_WALK_ALL(&ctx, ipst);
7200 
7201 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7202 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
7203 			continue;
7204 
7205 		for (ipif = ill->ill_ipif; ipif != NULL;
7206 		    ipif = ipif->ipif_next) {
7207 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7208 			    !(lifn_flags & LIFC_NOXMIT))
7209 				continue;
7210 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7211 			    !(lifn_flags & LIFC_TEMPORARY))
7212 				continue;
7213 			if (((ipif->ipif_flags &
7214 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7215 			    IPIF_DEPRECATED)) ||
7216 			    IS_LOOPBACK(ill) ||
7217 			    !(ipif->ipif_flags & IPIF_UP)) &&
7218 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
7219 				continue;
7220 
7221 			if (zoneid != ipif->ipif_zoneid &&
7222 			    ipif->ipif_zoneid != ALL_ZONES &&
7223 			    (zoneid != GLOBAL_ZONEID ||
7224 			    !(lifn_flags & LIFC_ALLZONES)))
7225 				continue;
7226 
7227 			numifs++;
7228 		}
7229 	}
7230 	rw_exit(&ipst->ips_ill_g_lock);
7231 	return (numifs);
7232 }
7233 
7234 uint_t
7235 ip_get_lifsrcofnum(ill_t *ill)
7236 {
7237 	uint_t numifs = 0;
7238 	ill_t	*ill_head = ill;
7239 	ip_stack_t	*ipst = ill->ill_ipst;
7240 
7241 	/*
7242 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
7243 	 * other thread may be trying to relink the ILLs in this usesrc group
7244 	 * and adjusting the ill_usesrc_grp_next pointers
7245 	 */
7246 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7247 	if ((ill->ill_usesrc_ifindex == 0) &&
7248 	    (ill->ill_usesrc_grp_next != NULL)) {
7249 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
7250 		    ill = ill->ill_usesrc_grp_next)
7251 			numifs++;
7252 	}
7253 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7254 
7255 	return (numifs);
7256 }
7257 
7258 /* Null values are passed in for ipif, sin, and ifreq */
7259 /* ARGSUSED */
7260 int
7261 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7262     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7263 {
7264 	int *nump;
7265 	conn_t *connp = Q_TO_CONN(q);
7266 
7267 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7268 
7269 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
7270 	nump = (int *)mp->b_cont->b_cont->b_rptr;
7271 
7272 	*nump = ip_get_numifs(connp->conn_zoneid,
7273 	    connp->conn_netstack->netstack_ip);
7274 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
7275 	return (0);
7276 }
7277 
7278 /* Null values are passed in for ipif, sin, and ifreq */
7279 /* ARGSUSED */
7280 int
7281 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
7282     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7283 {
7284 	struct lifnum *lifn;
7285 	mblk_t	*mp1;
7286 	conn_t *connp = Q_TO_CONN(q);
7287 
7288 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
7289 
7290 	/* Existence checked in ip_wput_nondata */
7291 	mp1 = mp->b_cont->b_cont;
7292 
7293 	lifn = (struct lifnum *)mp1->b_rptr;
7294 	switch (lifn->lifn_family) {
7295 	case AF_UNSPEC:
7296 	case AF_INET:
7297 	case AF_INET6:
7298 		break;
7299 	default:
7300 		return (EAFNOSUPPORT);
7301 	}
7302 
7303 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
7304 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
7305 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
7306 	return (0);
7307 }
7308 
7309 /* ARGSUSED */
7310 int
7311 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7312     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7313 {
7314 	STRUCT_HANDLE(ifconf, ifc);
7315 	mblk_t *mp1;
7316 	struct iocblk *iocp;
7317 	struct ifreq *ifr;
7318 	ill_walk_context_t	ctx;
7319 	ill_t	*ill;
7320 	ipif_t	*ipif;
7321 	struct sockaddr_in *sin;
7322 	int32_t	ifclen;
7323 	zoneid_t zoneid;
7324 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7325 
7326 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
7327 
7328 	ip1dbg(("ip_sioctl_get_ifconf"));
7329 	/* Existence verified in ip_wput_nondata */
7330 	mp1 = mp->b_cont->b_cont;
7331 	iocp = (struct iocblk *)mp->b_rptr;
7332 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7333 
7334 	/*
7335 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
7336 	 * the user buffer address and length into which the list of struct
7337 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
7338 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
7339 	 * the SIOCGIFCONF operation was redefined to simply provide
7340 	 * a large output buffer into which we are supposed to jam the ifreq
7341 	 * array.  The same ioctl command code was used, despite the fact that
7342 	 * both the applications and the kernel code had to change, thus making
7343 	 * it impossible to support both interfaces.
7344 	 *
7345 	 * For reasons not good enough to try to explain, the following
7346 	 * algorithm is used for deciding what to do with one of these:
7347 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
7348 	 * form with the output buffer coming down as the continuation message.
7349 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
7350 	 * and we have to copy in the ifconf structure to find out how big the
7351 	 * output buffer is and where to copy out to.  Sure no problem...
7352 	 *
7353 	 */
7354 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
7355 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
7356 		int numifs = 0;
7357 		size_t ifc_bufsize;
7358 
7359 		/*
7360 		 * Must be (better be!) continuation of a TRANSPARENT
7361 		 * IOCTL.  We just copied in the ifconf structure.
7362 		 */
7363 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
7364 		    (struct ifconf *)mp1->b_rptr);
7365 
7366 		/*
7367 		 * Allocate a buffer to hold requested information.
7368 		 *
7369 		 * If ifc_len is larger than what is needed, we only
7370 		 * allocate what we will use.
7371 		 *
7372 		 * If ifc_len is smaller than what is needed, return
7373 		 * EINVAL.
7374 		 *
7375 		 * XXX: the ill_t structure can hava 2 counters, for
7376 		 * v4 and v6 (not just ill_ipif_up_count) to store the
7377 		 * number of interfaces for a device, so we don't need
7378 		 * to count them here...
7379 		 */
7380 		numifs = ip_get_numifs(zoneid, ipst);
7381 
7382 		ifclen = STRUCT_FGET(ifc, ifc_len);
7383 		ifc_bufsize = numifs * sizeof (struct ifreq);
7384 		if (ifc_bufsize > ifclen) {
7385 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7386 				/* old behaviour */
7387 				return (EINVAL);
7388 			} else {
7389 				ifc_bufsize = ifclen;
7390 			}
7391 		}
7392 
7393 		mp1 = mi_copyout_alloc(q, mp,
7394 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
7395 		if (mp1 == NULL)
7396 			return (ENOMEM);
7397 
7398 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
7399 	}
7400 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7401 	/*
7402 	 * the SIOCGIFCONF ioctl only knows about
7403 	 * IPv4 addresses, so don't try to tell
7404 	 * it about interfaces with IPv6-only
7405 	 * addresses. (Last parm 'isv6' is B_FALSE)
7406 	 */
7407 
7408 	ifr = (struct ifreq *)mp1->b_rptr;
7409 
7410 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7411 	ill = ILL_START_WALK_V4(&ctx, ipst);
7412 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7413 		if (IS_UNDER_IPMP(ill))
7414 			continue;
7415 		for (ipif = ill->ill_ipif; ipif != NULL;
7416 		    ipif = ipif->ipif_next) {
7417 			if (zoneid != ipif->ipif_zoneid &&
7418 			    ipif->ipif_zoneid != ALL_ZONES)
7419 				continue;
7420 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
7421 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
7422 					/* old behaviour */
7423 					rw_exit(&ipst->ips_ill_g_lock);
7424 					return (EINVAL);
7425 				} else {
7426 					goto if_copydone;
7427 				}
7428 			}
7429 			ipif_get_name(ipif, ifr->ifr_name,
7430 			    sizeof (ifr->ifr_name));
7431 			sin = (sin_t *)&ifr->ifr_addr;
7432 			*sin = sin_null;
7433 			sin->sin_family = AF_INET;
7434 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7435 			ifr++;
7436 		}
7437 	}
7438 if_copydone:
7439 	rw_exit(&ipst->ips_ill_g_lock);
7440 	mp1->b_wptr = (uchar_t *)ifr;
7441 
7442 	if (STRUCT_BUF(ifc) != NULL) {
7443 		STRUCT_FSET(ifc, ifc_len,
7444 		    (int)((uchar_t *)ifr - mp1->b_rptr));
7445 	}
7446 	return (0);
7447 }
7448 
7449 /*
7450  * Get the interfaces using the address hosted on the interface passed in,
7451  * as a source adddress
7452  */
7453 /* ARGSUSED */
7454 int
7455 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7456     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7457 {
7458 	mblk_t *mp1;
7459 	ill_t	*ill, *ill_head;
7460 	ipif_t	*ipif, *orig_ipif;
7461 	int	numlifs = 0;
7462 	size_t	lifs_bufsize, lifsmaxlen;
7463 	struct	lifreq *lifr;
7464 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7465 	uint_t	ifindex;
7466 	zoneid_t zoneid;
7467 	boolean_t isv6 = B_FALSE;
7468 	struct	sockaddr_in	*sin;
7469 	struct	sockaddr_in6	*sin6;
7470 	STRUCT_HANDLE(lifsrcof, lifs);
7471 	ip_stack_t		*ipst;
7472 
7473 	ipst = CONNQ_TO_IPST(q);
7474 
7475 	ASSERT(q->q_next == NULL);
7476 
7477 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7478 
7479 	/* Existence verified in ip_wput_nondata */
7480 	mp1 = mp->b_cont->b_cont;
7481 
7482 	/*
7483 	 * Must be (better be!) continuation of a TRANSPARENT
7484 	 * IOCTL.  We just copied in the lifsrcof structure.
7485 	 */
7486 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
7487 	    (struct lifsrcof *)mp1->b_rptr);
7488 
7489 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
7490 		return (EINVAL);
7491 
7492 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
7493 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
7494 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst);
7495 	if (ipif == NULL) {
7496 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
7497 		    ifindex));
7498 		return (ENXIO);
7499 	}
7500 
7501 	/* Allocate a buffer to hold requested information */
7502 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
7503 	lifs_bufsize = numlifs * sizeof (struct lifreq);
7504 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
7505 	/* The actual size needed is always returned in lifs_len */
7506 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
7507 
7508 	/* If the amount we need is more than what is passed in, abort */
7509 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
7510 		ipif_refrele(ipif);
7511 		return (0);
7512 	}
7513 
7514 	mp1 = mi_copyout_alloc(q, mp,
7515 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
7516 	if (mp1 == NULL) {
7517 		ipif_refrele(ipif);
7518 		return (ENOMEM);
7519 	}
7520 
7521 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
7522 	bzero(mp1->b_rptr, lifs_bufsize);
7523 
7524 	lifr = (struct lifreq *)mp1->b_rptr;
7525 
7526 	ill = ill_head = ipif->ipif_ill;
7527 	orig_ipif = ipif;
7528 
7529 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
7530 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
7531 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7532 
7533 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
7534 	for (; (ill != NULL) && (ill != ill_head);
7535 	    ill = ill->ill_usesrc_grp_next) {
7536 
7537 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
7538 			break;
7539 
7540 		ipif = ill->ill_ipif;
7541 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
7542 		if (ipif->ipif_isv6) {
7543 			sin6 = (sin6_t *)&lifr->lifr_addr;
7544 			*sin6 = sin6_null;
7545 			sin6->sin6_family = AF_INET6;
7546 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
7547 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
7548 			    &ipif->ipif_v6net_mask);
7549 		} else {
7550 			sin = (sin_t *)&lifr->lifr_addr;
7551 			*sin = sin_null;
7552 			sin->sin_family = AF_INET;
7553 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
7554 			lifr->lifr_addrlen = ip_mask_to_plen(
7555 			    ipif->ipif_net_mask);
7556 		}
7557 		lifr++;
7558 	}
7559 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
7560 	rw_exit(&ipst->ips_ill_g_lock);
7561 	ipif_refrele(orig_ipif);
7562 	mp1->b_wptr = (uchar_t *)lifr;
7563 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
7564 
7565 	return (0);
7566 }
7567 
7568 /* ARGSUSED */
7569 int
7570 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
7571     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
7572 {
7573 	mblk_t *mp1;
7574 	int	list;
7575 	ill_t	*ill;
7576 	ipif_t	*ipif;
7577 	int	flags;
7578 	int	numlifs = 0;
7579 	size_t	lifc_bufsize;
7580 	struct	lifreq *lifr;
7581 	sa_family_t	family;
7582 	struct	sockaddr_in	*sin;
7583 	struct	sockaddr_in6	*sin6;
7584 	ill_walk_context_t	ctx;
7585 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7586 	int32_t	lifclen;
7587 	zoneid_t zoneid;
7588 	STRUCT_HANDLE(lifconf, lifc);
7589 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
7590 
7591 	ip1dbg(("ip_sioctl_get_lifconf"));
7592 
7593 	ASSERT(q->q_next == NULL);
7594 
7595 	zoneid = Q_TO_CONN(q)->conn_zoneid;
7596 
7597 	/* Existence verified in ip_wput_nondata */
7598 	mp1 = mp->b_cont->b_cont;
7599 
7600 	/*
7601 	 * An extended version of SIOCGIFCONF that takes an
7602 	 * additional address family and flags field.
7603 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
7604 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
7605 	 * interfaces are omitted.
7606 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
7607 	 * unless LIFC_TEMPORARY is specified.
7608 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
7609 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
7610 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
7611 	 * has priority over LIFC_NOXMIT.
7612 	 */
7613 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
7614 
7615 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
7616 		return (EINVAL);
7617 
7618 	/*
7619 	 * Must be (better be!) continuation of a TRANSPARENT
7620 	 * IOCTL.  We just copied in the lifconf structure.
7621 	 */
7622 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
7623 
7624 	family = STRUCT_FGET(lifc, lifc_family);
7625 	flags = STRUCT_FGET(lifc, lifc_flags);
7626 
7627 	switch (family) {
7628 	case AF_UNSPEC:
7629 		/*
7630 		 * walk all ILL's.
7631 		 */
7632 		list = MAX_G_HEADS;
7633 		break;
7634 	case AF_INET:
7635 		/*
7636 		 * walk only IPV4 ILL's.
7637 		 */
7638 		list = IP_V4_G_HEAD;
7639 		break;
7640 	case AF_INET6:
7641 		/*
7642 		 * walk only IPV6 ILL's.
7643 		 */
7644 		list = IP_V6_G_HEAD;
7645 		break;
7646 	default:
7647 		return (EAFNOSUPPORT);
7648 	}
7649 
7650 	/*
7651 	 * Allocate a buffer to hold requested information.
7652 	 *
7653 	 * If lifc_len is larger than what is needed, we only
7654 	 * allocate what we will use.
7655 	 *
7656 	 * If lifc_len is smaller than what is needed, return
7657 	 * EINVAL.
7658 	 */
7659 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
7660 	lifc_bufsize = numlifs * sizeof (struct lifreq);
7661 	lifclen = STRUCT_FGET(lifc, lifc_len);
7662 	if (lifc_bufsize > lifclen) {
7663 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
7664 			return (EINVAL);
7665 		else
7666 			lifc_bufsize = lifclen;
7667 	}
7668 
7669 	mp1 = mi_copyout_alloc(q, mp,
7670 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
7671 	if (mp1 == NULL)
7672 		return (ENOMEM);
7673 
7674 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
7675 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
7676 
7677 	lifr = (struct lifreq *)mp1->b_rptr;
7678 
7679 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7680 	ill = ill_first(list, list, &ctx, ipst);
7681 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
7682 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
7683 			continue;
7684 
7685 		for (ipif = ill->ill_ipif; ipif != NULL;
7686 		    ipif = ipif->ipif_next) {
7687 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
7688 			    !(flags & LIFC_NOXMIT))
7689 				continue;
7690 
7691 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
7692 			    !(flags & LIFC_TEMPORARY))
7693 				continue;
7694 
7695 			if (((ipif->ipif_flags &
7696 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
7697 			    IPIF_DEPRECATED)) ||
7698 			    IS_LOOPBACK(ill) ||
7699 			    !(ipif->ipif_flags & IPIF_UP)) &&
7700 			    (flags & LIFC_EXTERNAL_SOURCE))
7701 				continue;
7702 
7703 			if (zoneid != ipif->ipif_zoneid &&
7704 			    ipif->ipif_zoneid != ALL_ZONES &&
7705 			    (zoneid != GLOBAL_ZONEID ||
7706 			    !(flags & LIFC_ALLZONES)))
7707 				continue;
7708 
7709 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
7710 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
7711 					rw_exit(&ipst->ips_ill_g_lock);
7712 					return (EINVAL);
7713 				} else {
7714 					goto lif_copydone;
7715 				}
7716 			}
7717 
7718 			ipif_get_name(ipif, lifr->lifr_name,
7719 			    sizeof (lifr->lifr_name));
7720 			lifr->lifr_type = ill->ill_type;
7721 			if (ipif->ipif_isv6) {
7722 				sin6 = (sin6_t *)&lifr->lifr_addr;
7723 				*sin6 = sin6_null;
7724 				sin6->sin6_family = AF_INET6;
7725 				sin6->sin6_addr =
7726 				    ipif->ipif_v6lcl_addr;
7727 				lifr->lifr_addrlen =
7728 				    ip_mask_to_plen_v6(
7729 				    &ipif->ipif_v6net_mask);
7730 			} else {
7731 				sin = (sin_t *)&lifr->lifr_addr;
7732 				*sin = sin_null;
7733 				sin->sin_family = AF_INET;
7734 				sin->sin_addr.s_addr =
7735 				    ipif->ipif_lcl_addr;
7736 				lifr->lifr_addrlen =
7737 				    ip_mask_to_plen(
7738 				    ipif->ipif_net_mask);
7739 			}
7740 			lifr++;
7741 		}
7742 	}
7743 lif_copydone:
7744 	rw_exit(&ipst->ips_ill_g_lock);
7745 
7746 	mp1->b_wptr = (uchar_t *)lifr;
7747 	if (STRUCT_BUF(lifc) != NULL) {
7748 		STRUCT_FSET(lifc, lifc_len,
7749 		    (int)((uchar_t *)lifr - mp1->b_rptr));
7750 	}
7751 	return (0);
7752 }
7753 
7754 static void
7755 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
7756 {
7757 	ip6_asp_t *table;
7758 	size_t table_size;
7759 	mblk_t *data_mp;
7760 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7761 	ip_stack_t	*ipst;
7762 
7763 	if (q->q_next == NULL)
7764 		ipst = CONNQ_TO_IPST(q);
7765 	else
7766 		ipst = ILLQ_TO_IPST(q);
7767 
7768 	/* These two ioctls are I_STR only */
7769 	if (iocp->ioc_count == TRANSPARENT) {
7770 		miocnak(q, mp, 0, EINVAL);
7771 		return;
7772 	}
7773 
7774 	data_mp = mp->b_cont;
7775 	if (data_mp == NULL) {
7776 		/* The user passed us a NULL argument */
7777 		table = NULL;
7778 		table_size = iocp->ioc_count;
7779 	} else {
7780 		/*
7781 		 * The user provided a table.  The stream head
7782 		 * may have copied in the user data in chunks,
7783 		 * so make sure everything is pulled up
7784 		 * properly.
7785 		 */
7786 		if (MBLKL(data_mp) < iocp->ioc_count) {
7787 			mblk_t *new_data_mp;
7788 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
7789 			    NULL) {
7790 				miocnak(q, mp, 0, ENOMEM);
7791 				return;
7792 			}
7793 			freemsg(data_mp);
7794 			data_mp = new_data_mp;
7795 			mp->b_cont = data_mp;
7796 		}
7797 		table = (ip6_asp_t *)data_mp->b_rptr;
7798 		table_size = iocp->ioc_count;
7799 	}
7800 
7801 	switch (iocp->ioc_cmd) {
7802 	case SIOCGIP6ADDRPOLICY:
7803 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
7804 		if (iocp->ioc_rval == -1)
7805 			iocp->ioc_error = EINVAL;
7806 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7807 		else if (table != NULL &&
7808 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
7809 			ip6_asp_t *src = table;
7810 			ip6_asp32_t *dst = (void *)table;
7811 			int count = table_size / sizeof (ip6_asp_t);
7812 			int i;
7813 
7814 			/*
7815 			 * We need to do an in-place shrink of the array
7816 			 * to match the alignment attributes of the
7817 			 * 32-bit ABI looking at it.
7818 			 */
7819 			/* LINTED: logical expression always true: op "||" */
7820 			ASSERT(sizeof (*src) > sizeof (*dst));
7821 			for (i = 1; i < count; i++)
7822 				bcopy(src + i, dst + i, sizeof (*dst));
7823 		}
7824 #endif
7825 		break;
7826 
7827 	case SIOCSIP6ADDRPOLICY:
7828 		ASSERT(mp->b_prev == NULL);
7829 		mp->b_prev = (void *)q;
7830 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
7831 		/*
7832 		 * We pass in the datamodel here so that the ip6_asp_replace()
7833 		 * routine can handle converting from 32-bit to native formats
7834 		 * where necessary.
7835 		 *
7836 		 * A better way to handle this might be to convert the inbound
7837 		 * data structure here, and hang it off a new 'mp'; thus the
7838 		 * ip6_asp_replace() logic would always be dealing with native
7839 		 * format data structures..
7840 		 *
7841 		 * (An even simpler way to handle these ioctls is to just
7842 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
7843 		 * and just recompile everything that depends on it.)
7844 		 */
7845 #endif
7846 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
7847 		    iocp->ioc_flag & IOC_MODELS);
7848 		return;
7849 	}
7850 
7851 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
7852 	qreply(q, mp);
7853 }
7854 
7855 static void
7856 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
7857 {
7858 	mblk_t 		*data_mp;
7859 	struct dstinforeq	*dir;
7860 	uint8_t		*end, *cur;
7861 	in6_addr_t	*daddr, *saddr;
7862 	ipaddr_t	v4daddr;
7863 	ire_t		*ire;
7864 	ipaddr_t	v4setsrc;
7865 	in6_addr_t	v6setsrc;
7866 	char		*slabel, *dlabel;
7867 	boolean_t	isipv4;
7868 	int		match_ire;
7869 	ill_t		*dst_ill;
7870 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7871 	conn_t		*connp = Q_TO_CONN(q);
7872 	zoneid_t	zoneid = IPCL_ZONEID(connp);
7873 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
7874 	uint64_t	ipif_flags;
7875 
7876 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
7877 
7878 	/*
7879 	 * This ioctl is I_STR only, and must have a
7880 	 * data mblk following the M_IOCTL mblk.
7881 	 */
7882 	data_mp = mp->b_cont;
7883 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
7884 		miocnak(q, mp, 0, EINVAL);
7885 		return;
7886 	}
7887 
7888 	if (MBLKL(data_mp) < iocp->ioc_count) {
7889 		mblk_t *new_data_mp;
7890 
7891 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
7892 			miocnak(q, mp, 0, ENOMEM);
7893 			return;
7894 		}
7895 		freemsg(data_mp);
7896 		data_mp = new_data_mp;
7897 		mp->b_cont = data_mp;
7898 	}
7899 	match_ire = MATCH_IRE_DSTONLY;
7900 
7901 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
7902 	    end - cur >= sizeof (struct dstinforeq);
7903 	    cur += sizeof (struct dstinforeq)) {
7904 		dir = (struct dstinforeq *)cur;
7905 		daddr = &dir->dir_daddr;
7906 		saddr = &dir->dir_saddr;
7907 
7908 		/*
7909 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
7910 		 * v4 mapped addresses; ire_ftable_lookup_v6()
7911 		 * and ip_select_source_v6() do not.
7912 		 */
7913 		dir->dir_dscope = ip_addr_scope_v6(daddr);
7914 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
7915 
7916 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
7917 		if (isipv4) {
7918 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
7919 			v4setsrc = INADDR_ANY;
7920 			ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid,
7921 			    NULL, match_ire, B_TRUE, 0, ipst, &v4setsrc, NULL,
7922 			    NULL);
7923 		} else {
7924 			v6setsrc = ipv6_all_zeros;
7925 			ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid,
7926 			    NULL, match_ire, B_TRUE, 0, ipst, &v6setsrc, NULL,
7927 			    NULL);
7928 		}
7929 		ASSERT(ire != NULL);
7930 		if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
7931 			ire_refrele(ire);
7932 			dir->dir_dreachable = 0;
7933 
7934 			/* move on to next dst addr */
7935 			continue;
7936 		}
7937 		dir->dir_dreachable = 1;
7938 
7939 		dst_ill = ire_nexthop_ill(ire);
7940 		if (dst_ill == NULL) {
7941 			ire_refrele(ire);
7942 			continue;
7943 		}
7944 
7945 		/* With ipmp we most likely look at the ipmp ill here */
7946 		dir->dir_dmactype = dst_ill->ill_mactype;
7947 
7948 		if (isipv4) {
7949 			ipaddr_t v4saddr;
7950 
7951 			if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr,
7952 			    connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst,
7953 			    &v4saddr, NULL, &ipif_flags) != 0) {
7954 				v4saddr = INADDR_ANY;
7955 				ipif_flags = 0;
7956 			}
7957 			IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr);
7958 		} else {
7959 			if (ip_select_source_v6(dst_ill, &v6setsrc, daddr,
7960 			    zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT,
7961 			    saddr, NULL, &ipif_flags) != 0) {
7962 				*saddr = ipv6_all_zeros;
7963 				ipif_flags = 0;
7964 			}
7965 		}
7966 
7967 		dir->dir_sscope = ip_addr_scope_v6(saddr);
7968 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
7969 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
7970 		dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
7971 		ire_refrele(ire);
7972 		ill_refrele(dst_ill);
7973 	}
7974 	miocack(q, mp, iocp->ioc_count, 0);
7975 }
7976 
7977 /*
7978  * Check if this is an address assigned to this machine.
7979  * Skips interfaces that are down by using ire checks.
7980  * Translates mapped addresses to v4 addresses and then
7981  * treats them as such, returning true if the v4 address
7982  * associated with this mapped address is configured.
7983  * Note: Applications will have to be careful what they do
7984  * with the response; use of mapped addresses limits
7985  * what can be done with the socket, especially with
7986  * respect to socket options and ioctls - neither IPv4
7987  * options nor IPv6 sticky options/ancillary data options
7988  * may be used.
7989  */
7990 /* ARGSUSED */
7991 int
7992 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7993     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
7994 {
7995 	struct sioc_addrreq *sia;
7996 	sin_t *sin;
7997 	ire_t *ire;
7998 	mblk_t *mp1;
7999 	zoneid_t zoneid;
8000 	ip_stack_t	*ipst;
8001 
8002 	ip1dbg(("ip_sioctl_tmyaddr"));
8003 
8004 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8005 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8006 	ipst = CONNQ_TO_IPST(q);
8007 
8008 	/* Existence verified in ip_wput_nondata */
8009 	mp1 = mp->b_cont->b_cont;
8010 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8011 	sin = (sin_t *)&sia->sa_addr;
8012 	switch (sin->sin_family) {
8013 	case AF_INET6: {
8014 		sin6_t *sin6 = (sin6_t *)sin;
8015 
8016 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8017 			ipaddr_t v4_addr;
8018 
8019 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8020 			    v4_addr);
8021 			ire = ire_ftable_lookup_v4(v4_addr, 0, 0,
8022 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8023 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8024 		} else {
8025 			in6_addr_t v6addr;
8026 
8027 			v6addr = sin6->sin6_addr;
8028 			ire = ire_ftable_lookup_v6(&v6addr, 0, 0,
8029 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL,
8030 			    MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8031 		}
8032 		break;
8033 	}
8034 	case AF_INET: {
8035 		ipaddr_t v4addr;
8036 
8037 		v4addr = sin->sin_addr.s_addr;
8038 		ire = ire_ftable_lookup_v4(v4addr, 0, 0,
8039 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
8040 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL);
8041 		break;
8042 	}
8043 	default:
8044 		return (EAFNOSUPPORT);
8045 	}
8046 	if (ire != NULL) {
8047 		sia->sa_res = 1;
8048 		ire_refrele(ire);
8049 	} else {
8050 		sia->sa_res = 0;
8051 	}
8052 	return (0);
8053 }
8054 
8055 /*
8056  * Check if this is an address assigned on-link i.e. neighbor,
8057  * and makes sure it's reachable from the current zone.
8058  * Returns true for my addresses as well.
8059  * Translates mapped addresses to v4 addresses and then
8060  * treats them as such, returning true if the v4 address
8061  * associated with this mapped address is configured.
8062  * Note: Applications will have to be careful what they do
8063  * with the response; use of mapped addresses limits
8064  * what can be done with the socket, especially with
8065  * respect to socket options and ioctls - neither IPv4
8066  * options nor IPv6 sticky options/ancillary data options
8067  * may be used.
8068  */
8069 /* ARGSUSED */
8070 int
8071 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
8072     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
8073 {
8074 	struct sioc_addrreq *sia;
8075 	sin_t *sin;
8076 	mblk_t	*mp1;
8077 	ire_t *ire = NULL;
8078 	zoneid_t zoneid;
8079 	ip_stack_t	*ipst;
8080 
8081 	ip1dbg(("ip_sioctl_tonlink"));
8082 
8083 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8084 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8085 	ipst = CONNQ_TO_IPST(q);
8086 
8087 	/* Existence verified in ip_wput_nondata */
8088 	mp1 = mp->b_cont->b_cont;
8089 	sia = (struct sioc_addrreq *)mp1->b_rptr;
8090 	sin = (sin_t *)&sia->sa_addr;
8091 
8092 	/*
8093 	 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST
8094 	 * to make sure we only look at on-link unicast address.
8095 	 */
8096 	switch (sin->sin_family) {
8097 	case AF_INET6: {
8098 		sin6_t *sin6 = (sin6_t *)sin;
8099 
8100 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
8101 			ipaddr_t v4_addr;
8102 
8103 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
8104 			    v4_addr);
8105 			if (!CLASSD(v4_addr)) {
8106 				ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0,
8107 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY,
8108 				    0, ipst, NULL);
8109 			}
8110 		} else {
8111 			in6_addr_t v6addr;
8112 
8113 			v6addr = sin6->sin6_addr;
8114 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
8115 				ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0,
8116 				    NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0,
8117 				    ipst, NULL);
8118 			}
8119 		}
8120 		break;
8121 	}
8122 	case AF_INET: {
8123 		ipaddr_t v4addr;
8124 
8125 		v4addr = sin->sin_addr.s_addr;
8126 		if (!CLASSD(v4addr)) {
8127 			ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL,
8128 			    zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
8129 		}
8130 		break;
8131 	}
8132 	default:
8133 		return (EAFNOSUPPORT);
8134 	}
8135 	sia->sa_res = 0;
8136 	if (ire != NULL) {
8137 		ASSERT(!(ire->ire_type & IRE_MULTICAST));
8138 
8139 		if ((ire->ire_type & IRE_ONLINK) &&
8140 		    !(ire->ire_type & IRE_BROADCAST))
8141 			sia->sa_res = 1;
8142 		ire_refrele(ire);
8143 	}
8144 	return (0);
8145 }
8146 
8147 /*
8148  * TBD: implement when kernel maintaines a list of site prefixes.
8149  */
8150 /* ARGSUSED */
8151 int
8152 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8153     ip_ioctl_cmd_t *ipip, void *ifreq)
8154 {
8155 	return (ENXIO);
8156 }
8157 
8158 /* ARP IOCTLs. */
8159 /* ARGSUSED */
8160 int
8161 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8162     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
8163 {
8164 	int		err;
8165 	ipaddr_t	ipaddr;
8166 	struct iocblk	*iocp;
8167 	conn_t		*connp;
8168 	struct arpreq	*ar;
8169 	struct xarpreq	*xar;
8170 	int		arp_flags, flags, alength;
8171 	uchar_t		*lladdr;
8172 	ip_stack_t	*ipst;
8173 	ill_t		*ill = ipif->ipif_ill;
8174 	ill_t		*proxy_ill = NULL;
8175 	ipmp_arpent_t	*entp = NULL;
8176 	boolean_t	proxyarp = B_FALSE;
8177 	boolean_t	if_arp_ioctl = B_FALSE;
8178 	ncec_t		*ncec = NULL;
8179 	nce_t		*nce;
8180 
8181 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8182 	connp = Q_TO_CONN(q);
8183 	ipst = connp->conn_netstack->netstack_ip;
8184 	iocp = (struct iocblk *)mp->b_rptr;
8185 
8186 	if (ipip->ipi_cmd_type == XARP_CMD) {
8187 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
8188 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
8189 		ar = NULL;
8190 
8191 		arp_flags = xar->xarp_flags;
8192 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
8193 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
8194 		/*
8195 		 * Validate against user's link layer address length
8196 		 * input and name and addr length limits.
8197 		 */
8198 		alength = ill->ill_phys_addr_length;
8199 		if (ipip->ipi_cmd == SIOCSXARP) {
8200 			if (alength != xar->xarp_ha.sdl_alen ||
8201 			    (alength + xar->xarp_ha.sdl_nlen >
8202 			    sizeof (xar->xarp_ha.sdl_data)))
8203 				return (EINVAL);
8204 		}
8205 	} else {
8206 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
8207 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
8208 		xar = NULL;
8209 
8210 		arp_flags = ar->arp_flags;
8211 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
8212 		/*
8213 		 * Theoretically, the sa_family could tell us what link
8214 		 * layer type this operation is trying to deal with. By
8215 		 * common usage AF_UNSPEC means ethernet. We'll assume
8216 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
8217 		 * for now. Our new SIOC*XARP ioctls can be used more
8218 		 * generally.
8219 		 *
8220 		 * If the underlying media happens to have a non 6 byte
8221 		 * address, arp module will fail set/get, but the del
8222 		 * operation will succeed.
8223 		 */
8224 		alength = 6;
8225 		if ((ipip->ipi_cmd != SIOCDARP) &&
8226 		    (alength != ill->ill_phys_addr_length)) {
8227 			return (EINVAL);
8228 		}
8229 	}
8230 
8231 	/* Translate ATF* flags to NCE* flags */
8232 	flags = 0;
8233 	if (arp_flags & ATF_AUTHORITY)
8234 		flags |= NCE_F_AUTHORITY;
8235 	if (arp_flags & ATF_PERM)
8236 		flags |= NCE_F_NONUD; /* not subject to aging */
8237 	if (arp_flags & ATF_PUBL)
8238 		flags |= NCE_F_PUBLISH;
8239 
8240 	/*
8241 	 * IPMP ARP special handling:
8242 	 *
8243 	 * 1. Since ARP mappings must appear consistent across the group,
8244 	 *    prohibit changing ARP mappings on the underlying interfaces.
8245 	 *
8246 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
8247 	 *    IP itself, prohibit changing them.
8248 	 *
8249 	 * 3. For proxy ARP, use a functioning hardware address in the group,
8250 	 *    provided one exists.  If one doesn't, just add the entry as-is;
8251 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
8252 	 */
8253 	if (IS_UNDER_IPMP(ill)) {
8254 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
8255 			return (EPERM);
8256 	}
8257 	if (IS_IPMP(ill)) {
8258 		ipmp_illgrp_t *illg = ill->ill_grp;
8259 
8260 		switch (ipip->ipi_cmd) {
8261 		case SIOCSARP:
8262 		case SIOCSXARP:
8263 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
8264 			if (proxy_ill != NULL) {
8265 				proxyarp = B_TRUE;
8266 				if (!ipmp_ill_is_active(proxy_ill))
8267 					proxy_ill = ipmp_illgrp_next_ill(illg);
8268 				if (proxy_ill != NULL)
8269 					lladdr = proxy_ill->ill_phys_addr;
8270 			}
8271 			/* FALLTHRU */
8272 		}
8273 	}
8274 
8275 	ipaddr = sin->sin_addr.s_addr;
8276 	/*
8277 	 * don't match across illgrp per case (1) and (2).
8278 	 * XXX use IS_IPMP(ill) like ndp_sioc_update?
8279 	 */
8280 	nce = nce_lookup_v4(ill, &ipaddr);
8281 	if (nce != NULL)
8282 		ncec = nce->nce_common;
8283 
8284 	switch (iocp->ioc_cmd) {
8285 	case SIOCDARP:
8286 	case SIOCDXARP: {
8287 		/*
8288 		 * Delete the NCE if any.
8289 		 */
8290 		if (ncec == NULL) {
8291 			iocp->ioc_error = ENXIO;
8292 			break;
8293 		}
8294 		/* Don't allow changes to arp mappings of local addresses. */
8295 		if (NCE_MYADDR(ncec)) {
8296 			nce_refrele(nce);
8297 			return (ENOTSUP);
8298 		}
8299 		iocp->ioc_error = 0;
8300 
8301 		/*
8302 		 * Delete the nce_common which has ncec_ill set to ipmp_ill.
8303 		 * This will delete all the nce entries on the under_ills.
8304 		 */
8305 		ncec_delete(ncec);
8306 		/*
8307 		 * Once the NCE has been deleted, then the ire_dep* consistency
8308 		 * mechanism will find any IRE which depended on the now
8309 		 * condemned NCE (as part of sending packets).
8310 		 * That mechanism handles redirects by deleting redirects
8311 		 * that refer to UNREACHABLE nces.
8312 		 */
8313 		break;
8314 	}
8315 	case SIOCGARP:
8316 	case SIOCGXARP:
8317 		if (ncec != NULL) {
8318 			lladdr = ncec->ncec_lladdr;
8319 			flags = ncec->ncec_flags;
8320 			iocp->ioc_error = 0;
8321 			ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags);
8322 		} else {
8323 			iocp->ioc_error = ENXIO;
8324 		}
8325 		break;
8326 	case SIOCSARP:
8327 	case SIOCSXARP:
8328 		/* Don't allow changes to arp mappings of local addresses. */
8329 		if (ncec != NULL && NCE_MYADDR(ncec)) {
8330 			nce_refrele(nce);
8331 			return (ENOTSUP);
8332 		}
8333 
8334 		/* static arp entries will undergo NUD if ATF_PERM is not set */
8335 		flags |= NCE_F_STATIC;
8336 		if (!if_arp_ioctl) {
8337 			ip_nce_lookup_and_update(&ipaddr, NULL, ipst,
8338 			    lladdr, alength, flags);
8339 		} else {
8340 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
8341 			if (ipif != NULL) {
8342 				ip_nce_lookup_and_update(&ipaddr, ipif, ipst,
8343 				    lladdr, alength, flags);
8344 				ipif_refrele(ipif);
8345 			}
8346 		}
8347 		if (nce != NULL) {
8348 			nce_refrele(nce);
8349 			nce = NULL;
8350 		}
8351 		/*
8352 		 * NCE_F_STATIC entries will be added in state ND_REACHABLE
8353 		 * by nce_add_common()
8354 		 */
8355 		err = nce_lookup_then_add_v4(ill, lladdr,
8356 		    ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED,
8357 		    &nce);
8358 		if (err == EEXIST) {
8359 			ncec = nce->nce_common;
8360 			mutex_enter(&ncec->ncec_lock);
8361 			ncec->ncec_state = ND_REACHABLE;
8362 			ncec->ncec_flags = flags;
8363 			nce_update(ncec, ND_UNCHANGED, lladdr);
8364 			mutex_exit(&ncec->ncec_lock);
8365 			err = 0;
8366 		}
8367 		if (nce != NULL) {
8368 			nce_refrele(nce);
8369 			nce = NULL;
8370 		}
8371 		if (IS_IPMP(ill) && err == 0) {
8372 			entp = ipmp_illgrp_create_arpent(ill->ill_grp,
8373 			    proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length,
8374 			    flags);
8375 			if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
8376 				iocp->ioc_error = (entp == NULL ? ENOMEM : 0);
8377 				break;
8378 			}
8379 		}
8380 		iocp->ioc_error = err;
8381 	}
8382 
8383 	if (nce != NULL) {
8384 		nce_refrele(nce);
8385 	}
8386 
8387 	/*
8388 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
8389 	 */
8390 	if (entp != NULL)
8391 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
8392 
8393 	return (iocp->ioc_error);
8394 }
8395 
8396 /*
8397  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
8398  * the associated sin and refhold and return the associated ipif via `ci'.
8399  */
8400 int
8401 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8402     cmd_info_t *ci)
8403 {
8404 	mblk_t	*mp1;
8405 	sin_t	*sin;
8406 	conn_t	*connp;
8407 	ipif_t	*ipif;
8408 	ire_t	*ire = NULL;
8409 	ill_t	*ill = NULL;
8410 	boolean_t exists;
8411 	ip_stack_t *ipst;
8412 	struct arpreq *ar;
8413 	struct xarpreq *xar;
8414 	struct sockaddr_dl *sdl;
8415 
8416 	/* ioctl comes down on a conn */
8417 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
8418 	connp = Q_TO_CONN(q);
8419 	if (connp->conn_family == AF_INET6)
8420 		return (ENXIO);
8421 
8422 	ipst = connp->conn_netstack->netstack_ip;
8423 
8424 	/* Verified in ip_wput_nondata */
8425 	mp1 = mp->b_cont->b_cont;
8426 
8427 	if (ipip->ipi_cmd_type == XARP_CMD) {
8428 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
8429 		xar = (struct xarpreq *)mp1->b_rptr;
8430 		sin = (sin_t *)&xar->xarp_pa;
8431 		sdl = &xar->xarp_ha;
8432 
8433 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
8434 			return (ENXIO);
8435 		if (sdl->sdl_nlen >= LIFNAMSIZ)
8436 			return (EINVAL);
8437 	} else {
8438 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
8439 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
8440 		ar = (struct arpreq *)mp1->b_rptr;
8441 		sin = (sin_t *)&ar->arp_pa;
8442 	}
8443 
8444 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
8445 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
8446 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst);
8447 		if (ipif == NULL)
8448 			return (ENXIO);
8449 		if (ipif->ipif_id != 0) {
8450 			ipif_refrele(ipif);
8451 			return (ENXIO);
8452 		}
8453 	} else {
8454 		/*
8455 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
8456 		 * of 0: use the IP address to find the ipif.  If the IP
8457 		 * address is an IPMP test address, ire_ftable_lookup() will
8458 		 * find the wrong ill, so we first do an ipif_lookup_addr().
8459 		 */
8460 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
8461 		    ipst);
8462 		if (ipif == NULL) {
8463 			ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr,
8464 			    0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES,
8465 			    NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
8466 			if (ire == NULL || ((ill = ire->ire_ill) == NULL)) {
8467 				if (ire != NULL)
8468 					ire_refrele(ire);
8469 				return (ENXIO);
8470 			}
8471 			ASSERT(ire != NULL && ill != NULL);
8472 			ipif = ill->ill_ipif;
8473 			ipif_refhold(ipif);
8474 			ire_refrele(ire);
8475 		}
8476 	}
8477 
8478 	if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) {
8479 		ipif_refrele(ipif);
8480 		return (ENXIO);
8481 	}
8482 
8483 	ci->ci_sin = sin;
8484 	ci->ci_ipif = ipif;
8485 	return (0);
8486 }
8487 
8488 /*
8489  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
8490  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
8491  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
8492  * up and thus an ill can join that illgrp.
8493  *
8494  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
8495  * open()/close() primarily because close() is not allowed to fail or block
8496  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
8497  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
8498  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
8499  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
8500  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
8501  * state if I_UNLINK didn't occur.
8502  *
8503  * Note that for each plumb/unplumb operation, we may end up here more than
8504  * once because of the way ifconfig works.  However, it's OK to link the same
8505  * illgrp more than once, or unlink an illgrp that's already unlinked.
8506  */
8507 static int
8508 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
8509 {
8510 	int err;
8511 	ip_stack_t *ipst = ill->ill_ipst;
8512 
8513 	ASSERT(IS_IPMP(ill));
8514 	ASSERT(IAM_WRITER_ILL(ill));
8515 
8516 	switch (ioccmd) {
8517 	case I_LINK:
8518 		return (ENOTSUP);
8519 
8520 	case I_PLINK:
8521 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8522 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
8523 		rw_exit(&ipst->ips_ipmp_lock);
8524 		break;
8525 
8526 	case I_PUNLINK:
8527 		/*
8528 		 * Require all UP ipifs be brought down prior to unlinking the
8529 		 * illgrp so any associated IREs (and other state) is torched.
8530 		 */
8531 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
8532 			return (EBUSY);
8533 
8534 		/*
8535 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
8536 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
8537 		 * join this group.  Specifically: ills trying to join grab
8538 		 * ipmp_lock and bump a "pending join" counter checked by
8539 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
8540 		 * joins can occur (since we have ipmp_lock).  Once we drop
8541 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
8542 		 * find the illgrp (since we unlinked it) and will return
8543 		 * EAFNOSUPPORT.  This will then take them back through the
8544 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
8545 		 * back through I_PLINK above.
8546 		 */
8547 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
8548 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
8549 		rw_exit(&ipst->ips_ipmp_lock);
8550 		return (err);
8551 	default:
8552 		break;
8553 	}
8554 	return (0);
8555 }
8556 
8557 /*
8558  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
8559  * atomically set/clear the muxids. Also complete the ioctl by acking or
8560  * naking it.  Note that the code is structured such that the link type,
8561  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
8562  * its clones use the persistent link, while pppd(1M) and perhaps many
8563  * other daemons may use non-persistent link.  When combined with some
8564  * ill_t states, linking and unlinking lower streams may be used as
8565  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
8566  */
8567 /* ARGSUSED */
8568 void
8569 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8570 {
8571 	mblk_t		*mp1;
8572 	struct linkblk	*li;
8573 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
8574 	int		err = 0;
8575 
8576 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
8577 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
8578 
8579 	mp1 = mp->b_cont;	/* This is the linkblk info */
8580 	li = (struct linkblk *)mp1->b_rptr;
8581 
8582 	err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li);
8583 	if (err == EINPROGRESS)
8584 		return;
8585 done:
8586 	if (err == 0)
8587 		miocack(q, mp, 0, 0);
8588 	else
8589 		miocnak(q, mp, 0, err);
8590 
8591 	/* Conn was refheld in ip_sioctl_copyin_setup */
8592 	if (CONN_Q(q))
8593 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
8594 }
8595 
8596 /*
8597  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
8598  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
8599  * module stream).  If `doconsist' is set, then do the extended consistency
8600  * checks requested by ifconfig(1M) and (atomically) set ill_muxid here.
8601  * Returns zero on success, EINPROGRESS if the operation is still pending, or
8602  * an error code on failure.
8603  */
8604 static int
8605 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
8606     struct linkblk *li)
8607 {
8608 	int		err = 0;
8609 	ill_t  		*ill;
8610 	queue_t		*ipwq, *dwq;
8611 	const char	*name;
8612 	struct qinit	*qinfo;
8613 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
8614 	boolean_t	entered_ipsq = B_FALSE;
8615 	boolean_t	is_ip = B_FALSE;
8616 	arl_t		*arl;
8617 
8618 	/*
8619 	 * Walk the lower stream to verify it's the IP module stream.
8620 	 * The IP module is identified by its name, wput function,
8621 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
8622 	 * (li->l_qbot) will not vanish until this ioctl completes.
8623 	 */
8624 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
8625 		qinfo = ipwq->q_qinfo;
8626 		name = qinfo->qi_minfo->mi_idname;
8627 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
8628 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8629 			is_ip = B_TRUE;
8630 			break;
8631 		}
8632 		if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 &&
8633 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
8634 			break;
8635 		}
8636 	}
8637 
8638 	/*
8639 	 * If this isn't an IP module stream, bail.
8640 	 */
8641 	if (ipwq == NULL)
8642 		return (0);
8643 
8644 	if (!is_ip) {
8645 		arl = (arl_t *)ipwq->q_ptr;
8646 		ill = arl_to_ill(arl);
8647 		if (ill == NULL)
8648 			return (0);
8649 	} else {
8650 		ill = ipwq->q_ptr;
8651 	}
8652 	ASSERT(ill != NULL);
8653 
8654 	if (ipsq == NULL) {
8655 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
8656 		    NEW_OP, B_FALSE);
8657 		if (ipsq == NULL) {
8658 			if (!is_ip)
8659 				ill_refrele(ill);
8660 			return (EINPROGRESS);
8661 		}
8662 		entered_ipsq = B_TRUE;
8663 	}
8664 	ASSERT(IAM_WRITER_ILL(ill));
8665 	mutex_enter(&ill->ill_lock);
8666 	if (!is_ip) {
8667 		if (islink && ill->ill_muxid == 0) {
8668 			/*
8669 			 * Plumbing has to be done with IP plumbed first, arp
8670 			 * second, but here we have arp being plumbed first.
8671 			 */
8672 			mutex_exit(&ill->ill_lock);
8673 			ipsq_exit(ipsq);
8674 			ill_refrele(ill);
8675 			return (EINVAL);
8676 		}
8677 	}
8678 	mutex_exit(&ill->ill_lock);
8679 	if (!is_ip) {
8680 		arl->arl_muxid = islink ? li->l_index : 0;
8681 		ill_refrele(ill);
8682 		goto done;
8683 	}
8684 
8685 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
8686 		goto done;
8687 
8688 	/*
8689 	 * As part of I_{P}LINKing, stash the number of downstream modules and
8690 	 * the read queue of the module immediately below IP in the ill.
8691 	 * These are used during the capability negotiation below.
8692 	 */
8693 	ill->ill_lmod_rq = NULL;
8694 	ill->ill_lmod_cnt = 0;
8695 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
8696 		ill->ill_lmod_rq = RD(dwq);
8697 		for (; dwq != NULL; dwq = dwq->q_next)
8698 			ill->ill_lmod_cnt++;
8699 	}
8700 
8701 	ill->ill_muxid = islink ? li->l_index : 0;
8702 
8703 	/*
8704 	 * Mark the ipsq busy until the capability operations initiated below
8705 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
8706 	 * returns, but the capability operation may complete asynchronously
8707 	 * much later.
8708 	 */
8709 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
8710 	/*
8711 	 * If there's at least one up ipif on this ill, then we're bound to
8712 	 * the underlying driver via DLPI.  In that case, renegotiate
8713 	 * capabilities to account for any possible change in modules
8714 	 * interposed between IP and the driver.
8715 	 */
8716 	if (ill->ill_ipif_up_count > 0) {
8717 		if (islink)
8718 			ill_capability_probe(ill);
8719 		else
8720 			ill_capability_reset(ill, B_FALSE);
8721 	}
8722 	ipsq_current_finish(ipsq);
8723 done:
8724 	if (entered_ipsq)
8725 		ipsq_exit(ipsq);
8726 
8727 	return (err);
8728 }
8729 
8730 /*
8731  * Search the ioctl command in the ioctl tables and return a pointer
8732  * to the ioctl command information. The ioctl command tables are
8733  * static and fully populated at compile time.
8734  */
8735 ip_ioctl_cmd_t *
8736 ip_sioctl_lookup(int ioc_cmd)
8737 {
8738 	int index;
8739 	ip_ioctl_cmd_t *ipip;
8740 	ip_ioctl_cmd_t *ipip_end;
8741 
8742 	if (ioc_cmd == IPI_DONTCARE)
8743 		return (NULL);
8744 
8745 	/*
8746 	 * Do a 2 step search. First search the indexed table
8747 	 * based on the least significant byte of the ioctl cmd.
8748 	 * If we don't find a match, then search the misc table
8749 	 * serially.
8750 	 */
8751 	index = ioc_cmd & 0xFF;
8752 	if (index < ip_ndx_ioctl_count) {
8753 		ipip = &ip_ndx_ioctl_table[index];
8754 		if (ipip->ipi_cmd == ioc_cmd) {
8755 			/* Found a match in the ndx table */
8756 			return (ipip);
8757 		}
8758 	}
8759 
8760 	/* Search the misc table */
8761 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
8762 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
8763 		if (ipip->ipi_cmd == ioc_cmd)
8764 			/* Found a match in the misc table */
8765 			return (ipip);
8766 	}
8767 
8768 	return (NULL);
8769 }
8770 
8771 /*
8772  * Wrapper function for resuming deferred ioctl processing
8773  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
8774  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
8775  */
8776 /* ARGSUSED */
8777 void
8778 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
8779     void *dummy_arg)
8780 {
8781 	ip_sioctl_copyin_setup(q, mp);
8782 }
8783 
8784 /*
8785  * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message
8786  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
8787  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
8788  * We establish here the size of the block to be copied in.  mi_copyin
8789  * arranges for this to happen, an processing continues in ip_wput_nondata with
8790  * an M_IOCDATA message.
8791  */
8792 void
8793 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
8794 {
8795 	int	copyin_size;
8796 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8797 	ip_ioctl_cmd_t *ipip;
8798 	cred_t *cr;
8799 	ip_stack_t	*ipst;
8800 
8801 	if (CONN_Q(q))
8802 		ipst = CONNQ_TO_IPST(q);
8803 	else
8804 		ipst = ILLQ_TO_IPST(q);
8805 
8806 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
8807 	if (ipip == NULL) {
8808 		/*
8809 		 * The ioctl is not one we understand or own.
8810 		 * Pass it along to be processed down stream,
8811 		 * if this is a module instance of IP, else nak
8812 		 * the ioctl.
8813 		 */
8814 		if (q->q_next == NULL) {
8815 			goto nak;
8816 		} else {
8817 			putnext(q, mp);
8818 			return;
8819 		}
8820 	}
8821 
8822 	/*
8823 	 * If this is deferred, then we will do all the checks when we
8824 	 * come back.
8825 	 */
8826 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
8827 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
8828 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
8829 		return;
8830 	}
8831 
8832 	/*
8833 	 * Only allow a very small subset of IP ioctls on this stream if
8834 	 * IP is a module and not a driver. Allowing ioctls to be processed
8835 	 * in this case may cause assert failures or data corruption.
8836 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
8837 	 * ioctls allowed on an IP module stream, after which this stream
8838 	 * normally becomes a multiplexor (at which time the stream head
8839 	 * will fail all ioctls).
8840 	 */
8841 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
8842 		goto nak;
8843 	}
8844 
8845 	/* Make sure we have ioctl data to process. */
8846 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
8847 		goto nak;
8848 
8849 	/*
8850 	 * Prefer dblk credential over ioctl credential; some synthesized
8851 	 * ioctls have kcred set because there's no way to crhold()
8852 	 * a credential in some contexts.  (ioc_cr is not crfree() by
8853 	 * the framework; the caller of ioctl needs to hold the reference
8854 	 * for the duration of the call).
8855 	 */
8856 	cr = msg_getcred(mp, NULL);
8857 	if (cr == NULL)
8858 		cr = iocp->ioc_cr;
8859 
8860 	/* Make sure normal users don't send down privileged ioctls */
8861 	if ((ipip->ipi_flags & IPI_PRIV) &&
8862 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
8863 		/* We checked the privilege earlier but log it here */
8864 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
8865 		return;
8866 	}
8867 
8868 	/*
8869 	 * The ioctl command tables can only encode fixed length
8870 	 * ioctl data. If the length is variable, the table will
8871 	 * encode the length as zero. Such special cases are handled
8872 	 * below in the switch.
8873 	 */
8874 	if (ipip->ipi_copyin_size != 0) {
8875 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
8876 		return;
8877 	}
8878 
8879 	switch (iocp->ioc_cmd) {
8880 	case O_SIOCGIFCONF:
8881 	case SIOCGIFCONF:
8882 		/*
8883 		 * This IOCTL is hilarious.  See comments in
8884 		 * ip_sioctl_get_ifconf for the story.
8885 		 */
8886 		if (iocp->ioc_count == TRANSPARENT)
8887 			copyin_size = SIZEOF_STRUCT(ifconf,
8888 			    iocp->ioc_flag);
8889 		else
8890 			copyin_size = iocp->ioc_count;
8891 		mi_copyin(q, mp, NULL, copyin_size);
8892 		return;
8893 
8894 	case O_SIOCGLIFCONF:
8895 	case SIOCGLIFCONF:
8896 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
8897 		mi_copyin(q, mp, NULL, copyin_size);
8898 		return;
8899 
8900 	case SIOCGLIFSRCOF:
8901 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
8902 		mi_copyin(q, mp, NULL, copyin_size);
8903 		return;
8904 	case SIOCGIP6ADDRPOLICY:
8905 		ip_sioctl_ip6addrpolicy(q, mp);
8906 		ip6_asp_table_refrele(ipst);
8907 		return;
8908 
8909 	case SIOCSIP6ADDRPOLICY:
8910 		ip_sioctl_ip6addrpolicy(q, mp);
8911 		return;
8912 
8913 	case SIOCGDSTINFO:
8914 		ip_sioctl_dstinfo(q, mp);
8915 		ip6_asp_table_refrele(ipst);
8916 		return;
8917 
8918 	case I_PLINK:
8919 	case I_PUNLINK:
8920 	case I_LINK:
8921 	case I_UNLINK:
8922 		/*
8923 		 * We treat non-persistent link similarly as the persistent
8924 		 * link case, in terms of plumbing/unplumbing, as well as
8925 		 * dynamic re-plumbing events indicator.  See comments
8926 		 * in ip_sioctl_plink() for more.
8927 		 *
8928 		 * Request can be enqueued in the 'ipsq' while waiting
8929 		 * to become exclusive. So bump up the conn ref.
8930 		 */
8931 		if (CONN_Q(q))
8932 			CONN_INC_REF(Q_TO_CONN(q));
8933 		ip_sioctl_plink(NULL, q, mp, NULL);
8934 		return;
8935 
8936 	case ND_GET:
8937 	case ND_SET:
8938 		/*
8939 		 * Use of the nd table requires holding the reader lock.
8940 		 * Modifying the nd table thru nd_load/nd_unload requires
8941 		 * the writer lock.
8942 		 */
8943 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
8944 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
8945 			rw_exit(&ipst->ips_ip_g_nd_lock);
8946 
8947 			if (iocp->ioc_error)
8948 				iocp->ioc_count = 0;
8949 			mp->b_datap->db_type = M_IOCACK;
8950 			qreply(q, mp);
8951 			return;
8952 		}
8953 		rw_exit(&ipst->ips_ip_g_nd_lock);
8954 		/*
8955 		 * We don't understand this subioctl of ND_GET / ND_SET.
8956 		 * Maybe intended for some driver / module below us
8957 		 */
8958 		if (q->q_next) {
8959 			putnext(q, mp);
8960 		} else {
8961 			iocp->ioc_error = ENOENT;
8962 			mp->b_datap->db_type = M_IOCNAK;
8963 			iocp->ioc_count = 0;
8964 			qreply(q, mp);
8965 		}
8966 		return;
8967 
8968 	case IP_IOCTL:
8969 		ip_wput_ioctl(q, mp);
8970 		return;
8971 
8972 	case SIOCILB:
8973 		/* The ioctl length varies depending on the ILB command. */
8974 		copyin_size = iocp->ioc_count;
8975 		if (copyin_size < sizeof (ilb_cmd_t))
8976 			goto nak;
8977 		mi_copyin(q, mp, NULL, copyin_size);
8978 		return;
8979 
8980 	default:
8981 		cmn_err(CE_PANIC, "should not happen ");
8982 	}
8983 nak:
8984 	if (mp->b_cont != NULL) {
8985 		freemsg(mp->b_cont);
8986 		mp->b_cont = NULL;
8987 	}
8988 	iocp->ioc_error = EINVAL;
8989 	mp->b_datap->db_type = M_IOCNAK;
8990 	iocp->ioc_count = 0;
8991 	qreply(q, mp);
8992 }
8993 
8994 static void
8995 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags)
8996 {
8997 	struct arpreq *ar;
8998 	struct xarpreq *xar;
8999 	mblk_t	*tmp;
9000 	struct iocblk *iocp;
9001 	int x_arp_ioctl = B_FALSE;
9002 	int *flagsp;
9003 	char *storage = NULL;
9004 
9005 	ASSERT(ill != NULL);
9006 
9007 	iocp = (struct iocblk *)mp->b_rptr;
9008 	ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP);
9009 
9010 	tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */
9011 	if ((iocp->ioc_cmd == SIOCGXARP) ||
9012 	    (iocp->ioc_cmd == SIOCSXARP)) {
9013 		x_arp_ioctl = B_TRUE;
9014 		xar = (struct xarpreq *)tmp->b_rptr;
9015 		flagsp = &xar->xarp_flags;
9016 		storage = xar->xarp_ha.sdl_data;
9017 	} else {
9018 		ar = (struct arpreq *)tmp->b_rptr;
9019 		flagsp = &ar->arp_flags;
9020 		storage = ar->arp_ha.sa_data;
9021 	}
9022 
9023 	/*
9024 	 * We're done if this is not an SIOCG{X}ARP
9025 	 */
9026 	if (x_arp_ioctl) {
9027 		storage += ill_xarp_info(&xar->xarp_ha, ill);
9028 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
9029 		    sizeof (xar->xarp_ha.sdl_data)) {
9030 			iocp->ioc_error = EINVAL;
9031 			return;
9032 		}
9033 	}
9034 	*flagsp = ATF_INUSE;
9035 	/*
9036 	 * If /sbin/arp told us we are the authority using the "permanent"
9037 	 * flag, or if this is one of my addresses print "permanent"
9038 	 * in the /sbin/arp output.
9039 	 */
9040 	if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY))
9041 		*flagsp |= ATF_AUTHORITY;
9042 	if (flags & NCE_F_NONUD)
9043 		*flagsp |= ATF_PERM; /* not subject to aging */
9044 	if (flags & NCE_F_PUBLISH)
9045 		*flagsp |= ATF_PUBL;
9046 	if (hwaddr != NULL) {
9047 		*flagsp |= ATF_COM;
9048 		bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length);
9049 	}
9050 }
9051 
9052 /*
9053  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
9054  * interface) create the next available logical interface for this
9055  * physical interface.
9056  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
9057  * ipif with the specified name.
9058  *
9059  * If the address family is not AF_UNSPEC then set the address as well.
9060  *
9061  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
9062  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
9063  *
9064  * Executed as a writer on the ill.
9065  * So no lock is needed to traverse the ipif chain, or examine the
9066  * phyint flags.
9067  */
9068 /* ARGSUSED */
9069 int
9070 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9071     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9072 {
9073 	mblk_t	*mp1;
9074 	struct lifreq *lifr;
9075 	boolean_t	isv6;
9076 	boolean_t	exists;
9077 	char 	*name;
9078 	char	*endp;
9079 	char	*cp;
9080 	int	namelen;
9081 	ipif_t	*ipif;
9082 	long	id;
9083 	ipsq_t	*ipsq;
9084 	ill_t	*ill;
9085 	sin_t	*sin;
9086 	int	err = 0;
9087 	boolean_t found_sep = B_FALSE;
9088 	conn_t	*connp;
9089 	zoneid_t zoneid;
9090 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9091 
9092 	ASSERT(q->q_next == NULL);
9093 	ip1dbg(("ip_sioctl_addif\n"));
9094 	/* Existence of mp1 has been checked in ip_wput_nondata */
9095 	mp1 = mp->b_cont->b_cont;
9096 	/*
9097 	 * Null terminate the string to protect against buffer
9098 	 * overrun. String was generated by user code and may not
9099 	 * be trusted.
9100 	 */
9101 	lifr = (struct lifreq *)mp1->b_rptr;
9102 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
9103 	name = lifr->lifr_name;
9104 	ASSERT(CONN_Q(q));
9105 	connp = Q_TO_CONN(q);
9106 	isv6 = (connp->conn_family == AF_INET6);
9107 	zoneid = connp->conn_zoneid;
9108 	namelen = mi_strlen(name);
9109 	if (namelen == 0)
9110 		return (EINVAL);
9111 
9112 	exists = B_FALSE;
9113 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
9114 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
9115 		/*
9116 		 * Allow creating lo0 using SIOCLIFADDIF.
9117 		 * can't be any other writer thread. So can pass null below
9118 		 * for the last 4 args to ipif_lookup_name.
9119 		 */
9120 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
9121 		    &exists, isv6, zoneid, ipst);
9122 		/* Prevent any further action */
9123 		if (ipif == NULL) {
9124 			return (ENOBUFS);
9125 		} else if (!exists) {
9126 			/* We created the ipif now and as writer */
9127 			ipif_refrele(ipif);
9128 			return (0);
9129 		} else {
9130 			ill = ipif->ipif_ill;
9131 			ill_refhold(ill);
9132 			ipif_refrele(ipif);
9133 		}
9134 	} else {
9135 		/* Look for a colon in the name. */
9136 		endp = &name[namelen];
9137 		for (cp = endp; --cp > name; ) {
9138 			if (*cp == IPIF_SEPARATOR_CHAR) {
9139 				found_sep = B_TRUE;
9140 				/*
9141 				 * Reject any non-decimal aliases for plumbing
9142 				 * of logical interfaces. Aliases with leading
9143 				 * zeroes are also rejected as they introduce
9144 				 * ambiguity in the naming of the interfaces.
9145 				 * Comparing with "0" takes care of all such
9146 				 * cases.
9147 				 */
9148 				if ((strncmp("0", cp+1, 1)) == 0)
9149 					return (EINVAL);
9150 
9151 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
9152 				    id <= 0 || *endp != '\0') {
9153 					return (EINVAL);
9154 				}
9155 				*cp = '\0';
9156 				break;
9157 			}
9158 		}
9159 		ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst);
9160 		if (found_sep)
9161 			*cp = IPIF_SEPARATOR_CHAR;
9162 		if (ill == NULL)
9163 			return (ENXIO);
9164 	}
9165 
9166 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
9167 	    B_TRUE);
9168 
9169 	/*
9170 	 * Release the refhold due to the lookup, now that we are excl
9171 	 * or we are just returning
9172 	 */
9173 	ill_refrele(ill);
9174 
9175 	if (ipsq == NULL)
9176 		return (EINPROGRESS);
9177 
9178 	/* We are now exclusive on the IPSQ */
9179 	ASSERT(IAM_WRITER_ILL(ill));
9180 
9181 	if (found_sep) {
9182 		/* Now see if there is an IPIF with this unit number. */
9183 		for (ipif = ill->ill_ipif; ipif != NULL;
9184 		    ipif = ipif->ipif_next) {
9185 			if (ipif->ipif_id == id) {
9186 				err = EEXIST;
9187 				goto done;
9188 			}
9189 		}
9190 	}
9191 
9192 	/*
9193 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
9194 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
9195 	 * instead.
9196 	 */
9197 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
9198 	    B_TRUE, B_TRUE, &err)) == NULL) {
9199 		goto done;
9200 	}
9201 
9202 	/* Return created name with ioctl */
9203 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
9204 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
9205 	ip1dbg(("created %s\n", lifr->lifr_name));
9206 
9207 	/* Set address */
9208 	sin = (sin_t *)&lifr->lifr_addr;
9209 	if (sin->sin_family != AF_UNSPEC) {
9210 		err = ip_sioctl_addr(ipif, sin, q, mp,
9211 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
9212 	}
9213 
9214 done:
9215 	ipsq_exit(ipsq);
9216 	return (err);
9217 }
9218 
9219 /*
9220  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
9221  * interface) delete it based on the IP address (on this physical interface).
9222  * Otherwise delete it based on the ipif_id.
9223  * Also, special handling to allow a removeif of lo0.
9224  */
9225 /* ARGSUSED */
9226 int
9227 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9228     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9229 {
9230 	conn_t		*connp;
9231 	ill_t		*ill = ipif->ipif_ill;
9232 	boolean_t	 success;
9233 	ip_stack_t	*ipst;
9234 
9235 	ipst = CONNQ_TO_IPST(q);
9236 
9237 	ASSERT(q->q_next == NULL);
9238 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
9239 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9240 	ASSERT(IAM_WRITER_IPIF(ipif));
9241 
9242 	connp = Q_TO_CONN(q);
9243 	/*
9244 	 * Special case for unplumbing lo0 (the loopback physical interface).
9245 	 * If unplumbing lo0, the incoming address structure has been
9246 	 * initialized to all zeros. When unplumbing lo0, all its logical
9247 	 * interfaces must be removed too.
9248 	 *
9249 	 * Note that this interface may be called to remove a specific
9250 	 * loopback logical interface (eg, lo0:1). But in that case
9251 	 * ipif->ipif_id != 0 so that the code path for that case is the
9252 	 * same as any other interface (meaning it skips the code directly
9253 	 * below).
9254 	 */
9255 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9256 		if (sin->sin_family == AF_UNSPEC &&
9257 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
9258 			/*
9259 			 * Mark it condemned. No new ref. will be made to ill.
9260 			 */
9261 			mutex_enter(&ill->ill_lock);
9262 			ill->ill_state_flags |= ILL_CONDEMNED;
9263 			for (ipif = ill->ill_ipif; ipif != NULL;
9264 			    ipif = ipif->ipif_next) {
9265 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
9266 			}
9267 			mutex_exit(&ill->ill_lock);
9268 
9269 			ipif = ill->ill_ipif;
9270 			/* unplumb the loopback interface */
9271 			ill_delete(ill);
9272 			mutex_enter(&connp->conn_lock);
9273 			mutex_enter(&ill->ill_lock);
9274 
9275 			/* Are any references to this ill active */
9276 			if (ill_is_freeable(ill)) {
9277 				mutex_exit(&ill->ill_lock);
9278 				mutex_exit(&connp->conn_lock);
9279 				ill_delete_tail(ill);
9280 				mi_free(ill);
9281 				return (0);
9282 			}
9283 			success = ipsq_pending_mp_add(connp, ipif,
9284 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
9285 			mutex_exit(&connp->conn_lock);
9286 			mutex_exit(&ill->ill_lock);
9287 			if (success)
9288 				return (EINPROGRESS);
9289 			else
9290 				return (EINTR);
9291 		}
9292 	}
9293 
9294 	if (ipif->ipif_id == 0) {
9295 		ipsq_t *ipsq;
9296 
9297 		/* Find based on address */
9298 		if (ipif->ipif_isv6) {
9299 			sin6_t *sin6;
9300 
9301 			if (sin->sin_family != AF_INET6)
9302 				return (EAFNOSUPPORT);
9303 
9304 			sin6 = (sin6_t *)sin;
9305 			/* We are a writer, so we should be able to lookup */
9306 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
9307 			    ipst);
9308 		} else {
9309 			if (sin->sin_family != AF_INET)
9310 				return (EAFNOSUPPORT);
9311 
9312 			/* We are a writer, so we should be able to lookup */
9313 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
9314 			    ipst);
9315 		}
9316 		if (ipif == NULL) {
9317 			return (EADDRNOTAVAIL);
9318 		}
9319 
9320 		/*
9321 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
9322 		 * lifr_name of the physical interface but with an ip address
9323 		 * lifr_addr of a logical interface plumbed over it.
9324 		 * So update ipx_current_ipif now that ipif points to the
9325 		 * correct one.
9326 		 */
9327 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
9328 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
9329 
9330 		/* This is a writer */
9331 		ipif_refrele(ipif);
9332 	}
9333 
9334 	/*
9335 	 * Can not delete instance zero since it is tied to the ill.
9336 	 */
9337 	if (ipif->ipif_id == 0)
9338 		return (EBUSY);
9339 
9340 	mutex_enter(&ill->ill_lock);
9341 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
9342 	mutex_exit(&ill->ill_lock);
9343 
9344 	ipif_free(ipif);
9345 
9346 	mutex_enter(&connp->conn_lock);
9347 	mutex_enter(&ill->ill_lock);
9348 
9349 	/* Are any references to this ipif active */
9350 	if (ipif_is_freeable(ipif)) {
9351 		mutex_exit(&ill->ill_lock);
9352 		mutex_exit(&connp->conn_lock);
9353 		ipif_non_duplicate(ipif);
9354 		(void) ipif_down_tail(ipif);
9355 		ipif_free_tail(ipif); /* frees ipif */
9356 		return (0);
9357 	}
9358 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
9359 	    IPIF_FREE);
9360 	mutex_exit(&ill->ill_lock);
9361 	mutex_exit(&connp->conn_lock);
9362 	if (success)
9363 		return (EINPROGRESS);
9364 	else
9365 		return (EINTR);
9366 }
9367 
9368 /*
9369  * Restart the removeif ioctl. The refcnt has gone down to 0.
9370  * The ipif is already condemned. So can't find it thru lookups.
9371  */
9372 /* ARGSUSED */
9373 int
9374 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
9375     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
9376 {
9377 	ill_t *ill = ipif->ipif_ill;
9378 
9379 	ASSERT(IAM_WRITER_IPIF(ipif));
9380 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
9381 
9382 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
9383 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9384 
9385 	if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) {
9386 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
9387 		ill_delete_tail(ill);
9388 		mi_free(ill);
9389 		return (0);
9390 	}
9391 
9392 	ipif_non_duplicate(ipif);
9393 	(void) ipif_down_tail(ipif);
9394 	ipif_free_tail(ipif);
9395 
9396 	return (0);
9397 }
9398 
9399 /*
9400  * Set the local interface address.
9401  * Allow an address of all zero when the interface is down.
9402  */
9403 /* ARGSUSED */
9404 int
9405 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9406     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
9407 {
9408 	int err = 0;
9409 	in6_addr_t v6addr;
9410 	boolean_t need_up = B_FALSE;
9411 
9412 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
9413 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9414 
9415 	ASSERT(IAM_WRITER_IPIF(ipif));
9416 
9417 	if (ipif->ipif_isv6) {
9418 		sin6_t *sin6;
9419 		ill_t *ill;
9420 		phyint_t *phyi;
9421 
9422 		if (sin->sin_family != AF_INET6)
9423 			return (EAFNOSUPPORT);
9424 
9425 		sin6 = (sin6_t *)sin;
9426 		v6addr = sin6->sin6_addr;
9427 		ill = ipif->ipif_ill;
9428 		phyi = ill->ill_phyint;
9429 
9430 		/*
9431 		 * Enforce that true multicast interfaces have a link-local
9432 		 * address for logical unit 0.
9433 		 */
9434 		if (ipif->ipif_id == 0 &&
9435 		    (ill->ill_flags & ILLF_MULTICAST) &&
9436 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
9437 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
9438 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
9439 			return (EADDRNOTAVAIL);
9440 		}
9441 
9442 		/*
9443 		 * up interfaces shouldn't have the unspecified address
9444 		 * unless they also have the IPIF_NOLOCAL flags set and
9445 		 * have a subnet assigned.
9446 		 */
9447 		if ((ipif->ipif_flags & IPIF_UP) &&
9448 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
9449 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
9450 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
9451 			return (EADDRNOTAVAIL);
9452 		}
9453 
9454 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9455 			return (EADDRNOTAVAIL);
9456 	} else {
9457 		ipaddr_t addr;
9458 
9459 		if (sin->sin_family != AF_INET)
9460 			return (EAFNOSUPPORT);
9461 
9462 		addr = sin->sin_addr.s_addr;
9463 
9464 		/* Allow 0 as the local address. */
9465 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9466 			return (EADDRNOTAVAIL);
9467 
9468 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9469 	}
9470 
9471 	/*
9472 	 * Even if there is no change we redo things just to rerun
9473 	 * ipif_set_default.
9474 	 */
9475 	if (ipif->ipif_flags & IPIF_UP) {
9476 		/*
9477 		 * Setting a new local address, make sure
9478 		 * we have net and subnet bcast ire's for
9479 		 * the old address if we need them.
9480 		 */
9481 		/*
9482 		 * If the interface is already marked up,
9483 		 * we call ipif_down which will take care
9484 		 * of ditching any IREs that have been set
9485 		 * up based on the old interface address.
9486 		 */
9487 		err = ipif_logical_down(ipif, q, mp);
9488 		if (err == EINPROGRESS)
9489 			return (err);
9490 		(void) ipif_down_tail(ipif);
9491 		need_up = 1;
9492 	}
9493 
9494 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
9495 	return (err);
9496 }
9497 
9498 int
9499 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9500     boolean_t need_up)
9501 {
9502 	in6_addr_t v6addr;
9503 	in6_addr_t ov6addr;
9504 	ipaddr_t addr;
9505 	sin6_t	*sin6;
9506 	int	sinlen;
9507 	int	err = 0;
9508 	ill_t	*ill = ipif->ipif_ill;
9509 	boolean_t need_dl_down;
9510 	boolean_t need_arp_down;
9511 	struct iocblk *iocp;
9512 
9513 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
9514 
9515 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
9516 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
9517 	ASSERT(IAM_WRITER_IPIF(ipif));
9518 
9519 	/* Must cancel any pending timer before taking the ill_lock */
9520 	if (ipif->ipif_recovery_id != 0)
9521 		(void) untimeout(ipif->ipif_recovery_id);
9522 	ipif->ipif_recovery_id = 0;
9523 
9524 	if (ipif->ipif_isv6) {
9525 		sin6 = (sin6_t *)sin;
9526 		v6addr = sin6->sin6_addr;
9527 		sinlen = sizeof (struct sockaddr_in6);
9528 	} else {
9529 		addr = sin->sin_addr.s_addr;
9530 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9531 		sinlen = sizeof (struct sockaddr_in);
9532 	}
9533 	mutex_enter(&ill->ill_lock);
9534 	ov6addr = ipif->ipif_v6lcl_addr;
9535 	ipif->ipif_v6lcl_addr = v6addr;
9536 	sctp_update_ipif_addr(ipif, ov6addr);
9537 	ipif->ipif_addr_ready = 0;
9538 
9539 	ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT);
9540 
9541 	/*
9542 	 * If the interface was previously marked as a duplicate, then since
9543 	 * we've now got a "new" address, it should no longer be considered a
9544 	 * duplicate -- even if the "new" address is the same as the old one.
9545 	 * Note that if all ipifs are down, we may have a pending ARP down
9546 	 * event to handle.  This is because we want to recover from duplicates
9547 	 * and thus delay tearing down ARP until the duplicates have been
9548 	 * removed or disabled.
9549 	 */
9550 	need_dl_down = need_arp_down = B_FALSE;
9551 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9552 		need_arp_down = !need_up;
9553 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9554 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9555 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9556 			need_dl_down = B_TRUE;
9557 		}
9558 	}
9559 
9560 	ipif_set_default(ipif);
9561 
9562 	/*
9563 	 * If we've just manually set the IPv6 link-local address (0th ipif),
9564 	 * tag the ill so that future updates to the interface ID don't result
9565 	 * in this address getting automatically reconfigured from under the
9566 	 * administrator.
9567 	 */
9568 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
9569 		ill->ill_manual_linklocal = 1;
9570 
9571 	/*
9572 	 * When publishing an interface address change event, we only notify
9573 	 * the event listeners of the new address.  It is assumed that if they
9574 	 * actively care about the addresses assigned that they will have
9575 	 * already discovered the previous address assigned (if there was one.)
9576 	 *
9577 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
9578 	 */
9579 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
9580 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
9581 		    NE_ADDRESS_CHANGE, sin, sinlen);
9582 	}
9583 
9584 	mutex_exit(&ill->ill_lock);
9585 
9586 	if (need_up) {
9587 		/*
9588 		 * Now bring the interface back up.  If this
9589 		 * is the only IPIF for the ILL, ipif_up
9590 		 * will have to re-bind to the device, so
9591 		 * we may get back EINPROGRESS, in which
9592 		 * case, this IOCTL will get completed in
9593 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9594 		 */
9595 		err = ipif_up(ipif, q, mp);
9596 	} else {
9597 		/* Perhaps ilgs should use this ill */
9598 		update_conn_ill(NULL, ill->ill_ipst);
9599 	}
9600 
9601 	if (need_dl_down)
9602 		ill_dl_down(ill);
9603 
9604 	if (need_arp_down && !ill->ill_isv6)
9605 		(void) ipif_arp_down(ipif);
9606 
9607 	/*
9608 	 * The default multicast interface might have changed (for
9609 	 * instance if the IPv6 scope of the address changed)
9610 	 */
9611 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
9612 
9613 	return (err);
9614 }
9615 
9616 /*
9617  * Restart entry point to restart the address set operation after the
9618  * refcounts have dropped to zero.
9619  */
9620 /* ARGSUSED */
9621 int
9622 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9623     ip_ioctl_cmd_t *ipip, void *ifreq)
9624 {
9625 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
9626 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9627 	ASSERT(IAM_WRITER_IPIF(ipif));
9628 	(void) ipif_down_tail(ipif);
9629 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
9630 }
9631 
9632 /* ARGSUSED */
9633 int
9634 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9635     ip_ioctl_cmd_t *ipip, void *if_req)
9636 {
9637 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
9638 	struct lifreq *lifr = (struct lifreq *)if_req;
9639 
9640 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
9641 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9642 	/*
9643 	 * The net mask and address can't change since we have a
9644 	 * reference to the ipif. So no lock is necessary.
9645 	 */
9646 	if (ipif->ipif_isv6) {
9647 		*sin6 = sin6_null;
9648 		sin6->sin6_family = AF_INET6;
9649 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
9650 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9651 		lifr->lifr_addrlen =
9652 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
9653 	} else {
9654 		*sin = sin_null;
9655 		sin->sin_family = AF_INET;
9656 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
9657 		if (ipip->ipi_cmd_type == LIF_CMD) {
9658 			lifr->lifr_addrlen =
9659 			    ip_mask_to_plen(ipif->ipif_net_mask);
9660 		}
9661 	}
9662 	return (0);
9663 }
9664 
9665 /*
9666  * Set the destination address for a pt-pt interface.
9667  */
9668 /* ARGSUSED */
9669 int
9670 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9671     ip_ioctl_cmd_t *ipip, void *if_req)
9672 {
9673 	int err = 0;
9674 	in6_addr_t v6addr;
9675 	boolean_t need_up = B_FALSE;
9676 
9677 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
9678 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9679 	ASSERT(IAM_WRITER_IPIF(ipif));
9680 
9681 	if (ipif->ipif_isv6) {
9682 		sin6_t *sin6;
9683 
9684 		if (sin->sin_family != AF_INET6)
9685 			return (EAFNOSUPPORT);
9686 
9687 		sin6 = (sin6_t *)sin;
9688 		v6addr = sin6->sin6_addr;
9689 
9690 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
9691 			return (EADDRNOTAVAIL);
9692 	} else {
9693 		ipaddr_t addr;
9694 
9695 		if (sin->sin_family != AF_INET)
9696 			return (EAFNOSUPPORT);
9697 
9698 		addr = sin->sin_addr.s_addr;
9699 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
9700 			return (EADDRNOTAVAIL);
9701 
9702 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9703 	}
9704 
9705 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
9706 		return (0);	/* No change */
9707 
9708 	if (ipif->ipif_flags & IPIF_UP) {
9709 		/*
9710 		 * If the interface is already marked up,
9711 		 * we call ipif_down which will take care
9712 		 * of ditching any IREs that have been set
9713 		 * up based on the old pp dst address.
9714 		 */
9715 		err = ipif_logical_down(ipif, q, mp);
9716 		if (err == EINPROGRESS)
9717 			return (err);
9718 		(void) ipif_down_tail(ipif);
9719 		need_up = B_TRUE;
9720 	}
9721 	/*
9722 	 * could return EINPROGRESS. If so ioctl will complete in
9723 	 * ip_rput_dlpi_writer
9724 	 */
9725 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
9726 	return (err);
9727 }
9728 
9729 static int
9730 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9731     boolean_t need_up)
9732 {
9733 	in6_addr_t v6addr;
9734 	ill_t	*ill = ipif->ipif_ill;
9735 	int	err = 0;
9736 	boolean_t need_dl_down;
9737 	boolean_t need_arp_down;
9738 
9739 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
9740 	    ipif->ipif_id, (void *)ipif));
9741 
9742 	/* Must cancel any pending timer before taking the ill_lock */
9743 	if (ipif->ipif_recovery_id != 0)
9744 		(void) untimeout(ipif->ipif_recovery_id);
9745 	ipif->ipif_recovery_id = 0;
9746 
9747 	if (ipif->ipif_isv6) {
9748 		sin6_t *sin6;
9749 
9750 		sin6 = (sin6_t *)sin;
9751 		v6addr = sin6->sin6_addr;
9752 	} else {
9753 		ipaddr_t addr;
9754 
9755 		addr = sin->sin_addr.s_addr;
9756 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
9757 	}
9758 	mutex_enter(&ill->ill_lock);
9759 	/* Set point to point destination address. */
9760 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
9761 		/*
9762 		 * Allow this as a means of creating logical
9763 		 * pt-pt interfaces on top of e.g. an Ethernet.
9764 		 * XXX Undocumented HACK for testing.
9765 		 * pt-pt interfaces are created with NUD disabled.
9766 		 */
9767 		ipif->ipif_flags |= IPIF_POINTOPOINT;
9768 		ipif->ipif_flags &= ~IPIF_BROADCAST;
9769 		if (ipif->ipif_isv6)
9770 			ill->ill_flags |= ILLF_NONUD;
9771 	}
9772 
9773 	/*
9774 	 * If the interface was previously marked as a duplicate, then since
9775 	 * we've now got a "new" address, it should no longer be considered a
9776 	 * duplicate -- even if the "new" address is the same as the old one.
9777 	 * Note that if all ipifs are down, we may have a pending ARP down
9778 	 * event to handle.
9779 	 */
9780 	need_dl_down = need_arp_down = B_FALSE;
9781 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
9782 		need_arp_down = !need_up;
9783 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
9784 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
9785 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
9786 			need_dl_down = B_TRUE;
9787 		}
9788 	}
9789 
9790 	/* Set the new address. */
9791 	ipif->ipif_v6pp_dst_addr = v6addr;
9792 	/* Make sure subnet tracks pp_dst */
9793 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
9794 	mutex_exit(&ill->ill_lock);
9795 
9796 	if (need_up) {
9797 		/*
9798 		 * Now bring the interface back up.  If this
9799 		 * is the only IPIF for the ILL, ipif_up
9800 		 * will have to re-bind to the device, so
9801 		 * we may get back EINPROGRESS, in which
9802 		 * case, this IOCTL will get completed in
9803 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
9804 		 */
9805 		err = ipif_up(ipif, q, mp);
9806 	}
9807 
9808 	if (need_dl_down)
9809 		ill_dl_down(ill);
9810 	if (need_arp_down && !ipif->ipif_isv6)
9811 		(void) ipif_arp_down(ipif);
9812 
9813 	return (err);
9814 }
9815 
9816 /*
9817  * Restart entry point to restart the dstaddress set operation after the
9818  * refcounts have dropped to zero.
9819  */
9820 /* ARGSUSED */
9821 int
9822 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9823     ip_ioctl_cmd_t *ipip, void *ifreq)
9824 {
9825 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
9826 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9827 	(void) ipif_down_tail(ipif);
9828 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
9829 }
9830 
9831 /* ARGSUSED */
9832 int
9833 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9834     ip_ioctl_cmd_t *ipip, void *if_req)
9835 {
9836 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
9837 
9838 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
9839 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9840 	/*
9841 	 * Get point to point destination address. The addresses can't
9842 	 * change since we hold a reference to the ipif.
9843 	 */
9844 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
9845 		return (EADDRNOTAVAIL);
9846 
9847 	if (ipif->ipif_isv6) {
9848 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
9849 		*sin6 = sin6_null;
9850 		sin6->sin6_family = AF_INET6;
9851 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
9852 	} else {
9853 		*sin = sin_null;
9854 		sin->sin_family = AF_INET;
9855 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
9856 	}
9857 	return (0);
9858 }
9859 
9860 /*
9861  * Check which flags will change by the given flags being set
9862  * silently ignore flags which userland is not allowed to control.
9863  * (Because these flags may change between SIOCGLIFFLAGS and
9864  * SIOCSLIFFLAGS, and that's outside of userland's control,
9865  * we need to silently ignore them rather than fail.)
9866  */
9867 static void
9868 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp,
9869     uint64_t *offp)
9870 {
9871 	ill_t		*ill = ipif->ipif_ill;
9872 	phyint_t 	*phyi = ill->ill_phyint;
9873 	uint64_t	cantchange_flags, intf_flags;
9874 	uint64_t	turn_on, turn_off;
9875 
9876 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9877 	cantchange_flags = IFF_CANTCHANGE;
9878 	if (IS_IPMP(ill))
9879 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
9880 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
9881 	turn_off = intf_flags & turn_on;
9882 	turn_on ^= turn_off;
9883 	*onp = turn_on;
9884 	*offp = turn_off;
9885 }
9886 
9887 /*
9888  * Set interface flags.  Many flags require special handling (e.g.,
9889  * bringing the interface down); see below for details.
9890  *
9891  * NOTE : We really don't enforce that ipif_id zero should be used
9892  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
9893  *	  is because applications generally does SICGLIFFLAGS and
9894  *	  ORs in the new flags (that affects the logical) and does a
9895  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
9896  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
9897  *	  flags that will be turned on is correct with respect to
9898  *	  ipif_id 0. For backward compatibility reasons, it is not done.
9899  */
9900 /* ARGSUSED */
9901 int
9902 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9903     ip_ioctl_cmd_t *ipip, void *if_req)
9904 {
9905 	uint64_t turn_on;
9906 	uint64_t turn_off;
9907 	int	err = 0;
9908 	phyint_t *phyi;
9909 	ill_t *ill;
9910 	conn_t *connp;
9911 	uint64_t intf_flags;
9912 	boolean_t phyint_flags_modified = B_FALSE;
9913 	uint64_t flags;
9914 	struct ifreq *ifr;
9915 	struct lifreq *lifr;
9916 	boolean_t set_linklocal = B_FALSE;
9917 
9918 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
9919 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9920 
9921 	ASSERT(IAM_WRITER_IPIF(ipif));
9922 
9923 	ill = ipif->ipif_ill;
9924 	phyi = ill->ill_phyint;
9925 
9926 	if (ipip->ipi_cmd_type == IF_CMD) {
9927 		ifr = (struct ifreq *)if_req;
9928 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
9929 	} else {
9930 		lifr = (struct lifreq *)if_req;
9931 		flags = lifr->lifr_flags;
9932 	}
9933 
9934 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
9935 
9936 	/*
9937 	 * Have the flags been set correctly until now?
9938 	 */
9939 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
9940 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
9941 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
9942 	/*
9943 	 * Compare the new flags to the old, and partition
9944 	 * into those coming on and those going off.
9945 	 * For the 16 bit command keep the bits above bit 16 unchanged.
9946 	 */
9947 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
9948 		flags |= intf_flags & ~0xFFFF;
9949 
9950 	/*
9951 	 * Explicitly fail attempts to change flags that are always invalid on
9952 	 * an IPMP meta-interface.
9953 	 */
9954 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
9955 		return (EINVAL);
9956 
9957 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
9958 	if ((turn_on|turn_off) == 0)
9959 		return (0);	/* No change */
9960 
9961 	/*
9962 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
9963 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
9964 	 * allow it to be turned off.
9965 	 */
9966 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
9967 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
9968 		return (EINVAL);
9969 
9970 	if ((connp = Q_TO_CONN(q)) == NULL)
9971 		return (EINVAL);
9972 
9973 	/*
9974 	 * Only vrrp control socket is allowed to change IFF_UP and
9975 	 * IFF_NOACCEPT flags when IFF_VRRP is set.
9976 	 */
9977 	if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) {
9978 		if (!connp->conn_isvrrp)
9979 			return (EINVAL);
9980 	}
9981 
9982 	/*
9983 	 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by
9984 	 * VRRP control socket.
9985 	 */
9986 	if ((turn_off | turn_on) & IFF_NOACCEPT) {
9987 		if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP))
9988 			return (EINVAL);
9989 	}
9990 
9991 	if (turn_on & IFF_NOFAILOVER) {
9992 		turn_on |= IFF_DEPRECATED;
9993 		flags |= IFF_DEPRECATED;
9994 	}
9995 
9996 	/*
9997 	 * On underlying interfaces, only allow applications to manage test
9998 	 * addresses -- otherwise, they may get confused when the address
9999 	 * moves as part of being brought up.  Likewise, prevent an
10000 	 * application-managed test address from being converted to a data
10001 	 * address.  To prevent migration of administratively up addresses in
10002 	 * the kernel, we don't allow them to be converted either.
10003 	 */
10004 	if (IS_UNDER_IPMP(ill)) {
10005 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
10006 
10007 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
10008 			return (EINVAL);
10009 
10010 		if ((turn_off & IFF_NOFAILOVER) &&
10011 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
10012 			return (EINVAL);
10013 	}
10014 
10015 	/*
10016 	 * Only allow IFF_TEMPORARY flag to be set on
10017 	 * IPv6 interfaces.
10018 	 */
10019 	if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6))
10020 		return (EINVAL);
10021 
10022 	/*
10023 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
10024 	 */
10025 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
10026 		return (EINVAL);
10027 
10028 	/*
10029 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
10030 	 * interfaces.  It makes no sense in that context.
10031 	 */
10032 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
10033 		return (EINVAL);
10034 
10035 	/*
10036 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
10037 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
10038 	 * If the link local address isn't set, and can be set, it will get
10039 	 * set later on in this function.
10040 	 */
10041 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
10042 	    (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) &&
10043 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
10044 		if (ipif_cant_setlinklocal(ipif))
10045 			return (EINVAL);
10046 		set_linklocal = B_TRUE;
10047 	}
10048 
10049 	/*
10050 	 * If we modify physical interface flags, we'll potentially need to
10051 	 * send up two routing socket messages for the changes (one for the
10052 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
10053 	 */
10054 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10055 		phyint_flags_modified = B_TRUE;
10056 
10057 	/*
10058 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
10059 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
10060 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
10061 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
10062 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
10063 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
10064 	 * will not be honored.
10065 	 */
10066 	if (turn_on & PHYI_STANDBY) {
10067 		/*
10068 		 * No need to grab ill_g_usesrc_lock here; see the
10069 		 * synchronization notes in ip.c.
10070 		 */
10071 		if (ill->ill_usesrc_grp_next != NULL ||
10072 		    intf_flags & PHYI_INACTIVE)
10073 			return (EINVAL);
10074 		if (!(flags & PHYI_FAILED)) {
10075 			flags |= PHYI_INACTIVE;
10076 			turn_on |= PHYI_INACTIVE;
10077 		}
10078 	}
10079 
10080 	if (turn_off & PHYI_STANDBY) {
10081 		flags &= ~PHYI_INACTIVE;
10082 		turn_off |= PHYI_INACTIVE;
10083 	}
10084 
10085 	/*
10086 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
10087 	 * would end up on.
10088 	 */
10089 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
10090 	    (PHYI_FAILED | PHYI_INACTIVE))
10091 		return (EINVAL);
10092 
10093 	/*
10094 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
10095 	 * status of the interface.
10096 	 */
10097 	if ((turn_on | turn_off) & ILLF_ROUTER)
10098 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
10099 
10100 	/*
10101 	 * If the interface is not UP and we are not going to
10102 	 * bring it UP, record the flags and return. When the
10103 	 * interface comes UP later, the right actions will be
10104 	 * taken.
10105 	 */
10106 	if (!(ipif->ipif_flags & IPIF_UP) &&
10107 	    !(turn_on & IPIF_UP)) {
10108 		/* Record new flags in their respective places. */
10109 		mutex_enter(&ill->ill_lock);
10110 		mutex_enter(&ill->ill_phyint->phyint_lock);
10111 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10112 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10113 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10114 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10115 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10116 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10117 		mutex_exit(&ill->ill_lock);
10118 		mutex_exit(&ill->ill_phyint->phyint_lock);
10119 
10120 		/*
10121 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
10122 		 * same to the kernel: if any of them has been set by
10123 		 * userland, the interface cannot be used for data traffic.
10124 		 */
10125 		if ((turn_on|turn_off) &
10126 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10127 			ASSERT(!IS_IPMP(ill));
10128 			/*
10129 			 * It's possible the ill is part of an "anonymous"
10130 			 * IPMP group rather than a real group.  In that case,
10131 			 * there are no other interfaces in the group and thus
10132 			 * no need to call ipmp_phyint_refresh_active().
10133 			 */
10134 			if (IS_UNDER_IPMP(ill))
10135 				ipmp_phyint_refresh_active(phyi);
10136 		}
10137 
10138 		if (phyint_flags_modified) {
10139 			if (phyi->phyint_illv4 != NULL) {
10140 				ip_rts_ifmsg(phyi->phyint_illv4->
10141 				    ill_ipif, RTSQ_DEFAULT);
10142 			}
10143 			if (phyi->phyint_illv6 != NULL) {
10144 				ip_rts_ifmsg(phyi->phyint_illv6->
10145 				    ill_ipif, RTSQ_DEFAULT);
10146 			}
10147 		}
10148 		/* The default multicast interface might have changed */
10149 		ire_increment_multicast_generation(ill->ill_ipst,
10150 		    ill->ill_isv6);
10151 
10152 		return (0);
10153 	} else if (set_linklocal) {
10154 		mutex_enter(&ill->ill_lock);
10155 		if (set_linklocal)
10156 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
10157 		mutex_exit(&ill->ill_lock);
10158 	}
10159 
10160 	/*
10161 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
10162 	 * or point-to-point interfaces with an unspecified destination. We do
10163 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
10164 	 * have a subnet assigned, which is how in.ndpd currently manages its
10165 	 * onlink prefix list when no addresses are configured with those
10166 	 * prefixes.
10167 	 */
10168 	if (ipif->ipif_isv6 &&
10169 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
10170 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
10171 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
10172 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10173 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
10174 		return (EINVAL);
10175 	}
10176 
10177 	/*
10178 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
10179 	 * from being brought up.
10180 	 */
10181 	if (!ipif->ipif_isv6 &&
10182 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
10183 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
10184 		return (EINVAL);
10185 	}
10186 
10187 	/*
10188 	 * If we are going to change one or more of the flags that are
10189 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
10190 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
10191 	 * IPIF_NOFAILOVER, we will take special action.  This is
10192 	 * done by bring the ipif down, changing the flags and bringing
10193 	 * it back up again.  For IPIF_NOFAILOVER, the act of bringing it
10194 	 * back up will trigger the address to be moved.
10195 	 *
10196 	 * If we are going to change IFF_NOACCEPT, we need to bring
10197 	 * all the ipifs down then bring them up again.	 The act of
10198 	 * bringing all the ipifs back up will trigger the local
10199 	 * ires being recreated with "no_accept" set/cleared.
10200 	 *
10201 	 * Note that ILLF_NOACCEPT is always set separately from the
10202 	 * other flags.
10203 	 */
10204 	if ((turn_on|turn_off) &
10205 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
10206 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
10207 	    IPIF_NOFAILOVER)) {
10208 		/*
10209 		 * ipif_down() will ire_delete bcast ire's for the subnet,
10210 		 * while the ire_identical_ref tracks the case of IRE_BROADCAST
10211 		 * entries shared between multiple ipifs on the same subnet.
10212 		 */
10213 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
10214 		    !(turn_off & IPIF_UP)) {
10215 			if (ipif->ipif_flags & IPIF_UP)
10216 				ill->ill_logical_down = 1;
10217 			turn_on &= ~IPIF_UP;
10218 		}
10219 		err = ipif_down(ipif, q, mp);
10220 		ip1dbg(("ipif_down returns %d err ", err));
10221 		if (err == EINPROGRESS)
10222 			return (err);
10223 		(void) ipif_down_tail(ipif);
10224 	} else if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10225 		/*
10226 		 * If we can quiesce the ill, then continue.  If not, then
10227 		 * ip_sioctl_flags_tail() will be called from
10228 		 * ipif_ill_refrele_tail().
10229 		 */
10230 		ill_down_ipifs(ill, B_TRUE);
10231 
10232 		mutex_enter(&connp->conn_lock);
10233 		mutex_enter(&ill->ill_lock);
10234 		if (!ill_is_quiescent(ill)) {
10235 			boolean_t success;
10236 
10237 			success = ipsq_pending_mp_add(connp, ill->ill_ipif,
10238 			    q, mp, ILL_DOWN);
10239 			mutex_exit(&ill->ill_lock);
10240 			mutex_exit(&connp->conn_lock);
10241 			return (success ? EINPROGRESS : EINTR);
10242 		}
10243 		mutex_exit(&ill->ill_lock);
10244 		mutex_exit(&connp->conn_lock);
10245 	}
10246 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10247 }
10248 
10249 static int
10250 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
10251 {
10252 	ill_t	*ill;
10253 	phyint_t *phyi;
10254 	uint64_t turn_on, turn_off;
10255 	boolean_t phyint_flags_modified = B_FALSE;
10256 	int	err = 0;
10257 	boolean_t set_linklocal = B_FALSE;
10258 
10259 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
10260 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
10261 
10262 	ASSERT(IAM_WRITER_IPIF(ipif));
10263 
10264 	ill = ipif->ipif_ill;
10265 	phyi = ill->ill_phyint;
10266 
10267 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10268 
10269 	/*
10270 	 * IFF_UP is handled separately.
10271 	 */
10272 	turn_on &= ~IFF_UP;
10273 	turn_off &= ~IFF_UP;
10274 
10275 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
10276 		phyint_flags_modified = B_TRUE;
10277 
10278 	/*
10279 	 * Now we change the flags. Track current value of
10280 	 * other flags in their respective places.
10281 	 */
10282 	mutex_enter(&ill->ill_lock);
10283 	mutex_enter(&phyi->phyint_lock);
10284 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
10285 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
10286 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
10287 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
10288 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
10289 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
10290 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
10291 		set_linklocal = B_TRUE;
10292 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
10293 	}
10294 
10295 	mutex_exit(&ill->ill_lock);
10296 	mutex_exit(&phyi->phyint_lock);
10297 
10298 	if (set_linklocal)
10299 		(void) ipif_setlinklocal(ipif);
10300 
10301 	/*
10302 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
10303 	 * the kernel: if any of them has been set by userland, the interface
10304 	 * cannot be used for data traffic.
10305 	 */
10306 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
10307 		ASSERT(!IS_IPMP(ill));
10308 		/*
10309 		 * It's possible the ill is part of an "anonymous" IPMP group
10310 		 * rather than a real group.  In that case, there are no other
10311 		 * interfaces in the group and thus no need for us to call
10312 		 * ipmp_phyint_refresh_active().
10313 		 */
10314 		if (IS_UNDER_IPMP(ill))
10315 			ipmp_phyint_refresh_active(phyi);
10316 	}
10317 
10318 	if ((turn_on|turn_off) & ILLF_NOACCEPT) {
10319 		/*
10320 		 * If the ILLF_NOACCEPT flag is changed, bring up all the
10321 		 * ipifs that were brought down.
10322 		 *
10323 		 * The routing sockets messages are sent as the result
10324 		 * of ill_up_ipifs(), further, SCTP's IPIF list was updated
10325 		 * as well.
10326 		 */
10327 		err = ill_up_ipifs(ill, q, mp);
10328 	} else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
10329 		/*
10330 		 * XXX ipif_up really does not know whether a phyint flags
10331 		 * was modified or not. So, it sends up information on
10332 		 * only one routing sockets message. As we don't bring up
10333 		 * the interface and also set PHYI_ flags simultaneously
10334 		 * it should be okay.
10335 		 */
10336 		err = ipif_up(ipif, q, mp);
10337 	} else {
10338 		/*
10339 		 * Make sure routing socket sees all changes to the flags.
10340 		 * ipif_up_done* handles this when we use ipif_up.
10341 		 */
10342 		if (phyint_flags_modified) {
10343 			if (phyi->phyint_illv4 != NULL) {
10344 				ip_rts_ifmsg(phyi->phyint_illv4->
10345 				    ill_ipif, RTSQ_DEFAULT);
10346 			}
10347 			if (phyi->phyint_illv6 != NULL) {
10348 				ip_rts_ifmsg(phyi->phyint_illv6->
10349 				    ill_ipif, RTSQ_DEFAULT);
10350 			}
10351 		} else {
10352 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
10353 		}
10354 		/*
10355 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
10356 		 * this in need_up case.
10357 		 */
10358 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10359 	}
10360 
10361 	/* The default multicast interface might have changed */
10362 	ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6);
10363 	return (err);
10364 }
10365 
10366 /*
10367  * Restart the flags operation now that the refcounts have dropped to zero.
10368  */
10369 /* ARGSUSED */
10370 int
10371 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10372     ip_ioctl_cmd_t *ipip, void *if_req)
10373 {
10374 	uint64_t flags;
10375 	struct ifreq *ifr = if_req;
10376 	struct lifreq *lifr = if_req;
10377 	uint64_t turn_on, turn_off;
10378 
10379 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
10380 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10381 
10382 	if (ipip->ipi_cmd_type == IF_CMD) {
10383 		/* cast to uint16_t prevents unwanted sign extension */
10384 		flags = (uint16_t)ifr->ifr_flags;
10385 	} else {
10386 		flags = lifr->lifr_flags;
10387 	}
10388 
10389 	/*
10390 	 * If this function call is a result of the ILLF_NOACCEPT flag
10391 	 * change, do not call ipif_down_tail(). See ip_sioctl_flags().
10392 	 */
10393 	ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off);
10394 	if (!((turn_on|turn_off) & ILLF_NOACCEPT))
10395 		(void) ipif_down_tail(ipif);
10396 
10397 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
10398 }
10399 
10400 /*
10401  * Can operate on either a module or a driver queue.
10402  */
10403 /* ARGSUSED */
10404 int
10405 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10406     ip_ioctl_cmd_t *ipip, void *if_req)
10407 {
10408 	/*
10409 	 * Has the flags been set correctly till now ?
10410 	 */
10411 	ill_t *ill = ipif->ipif_ill;
10412 	phyint_t *phyi = ill->ill_phyint;
10413 
10414 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
10415 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10416 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
10417 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
10418 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
10419 
10420 	/*
10421 	 * Need a lock since some flags can be set even when there are
10422 	 * references to the ipif.
10423 	 */
10424 	mutex_enter(&ill->ill_lock);
10425 	if (ipip->ipi_cmd_type == IF_CMD) {
10426 		struct ifreq *ifr = (struct ifreq *)if_req;
10427 
10428 		/* Get interface flags (low 16 only). */
10429 		ifr->ifr_flags = ((ipif->ipif_flags |
10430 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
10431 	} else {
10432 		struct lifreq *lifr = (struct lifreq *)if_req;
10433 
10434 		/* Get interface flags. */
10435 		lifr->lifr_flags = ipif->ipif_flags |
10436 		    ill->ill_flags | phyi->phyint_flags;
10437 	}
10438 	mutex_exit(&ill->ill_lock);
10439 	return (0);
10440 }
10441 
10442 /*
10443  * We allow the MTU to be set on an ILL, but not have it be different
10444  * for different IPIFs since we don't actually send packets on IPIFs.
10445  */
10446 /* ARGSUSED */
10447 int
10448 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10449     ip_ioctl_cmd_t *ipip, void *if_req)
10450 {
10451 	int mtu;
10452 	int ip_min_mtu;
10453 	struct ifreq	*ifr;
10454 	struct lifreq *lifr;
10455 	ill_t	*ill;
10456 
10457 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
10458 	    ipif->ipif_id, (void *)ipif));
10459 	if (ipip->ipi_cmd_type == IF_CMD) {
10460 		ifr = (struct ifreq *)if_req;
10461 		mtu = ifr->ifr_metric;
10462 	} else {
10463 		lifr = (struct lifreq *)if_req;
10464 		mtu = lifr->lifr_mtu;
10465 	}
10466 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
10467 	if (ipif->ipif_id != 0)
10468 		return (EINVAL);
10469 
10470 	ill = ipif->ipif_ill;
10471 	if (ipif->ipif_isv6)
10472 		ip_min_mtu = IPV6_MIN_MTU;
10473 	else
10474 		ip_min_mtu = IP_MIN_MTU;
10475 
10476 	mutex_enter(&ill->ill_lock);
10477 	if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) {
10478 		mutex_exit(&ill->ill_lock);
10479 		return (EINVAL);
10480 	}
10481 	/*
10482 	 * The dce and fragmentation code can handle changes to ill_mtu
10483 	 * concurrent with sending/fragmenting packets.
10484 	 */
10485 	ill->ill_mtu = mtu;
10486 	ill->ill_flags |= ILLF_FIXEDMTU;
10487 	mutex_exit(&ill->ill_lock);
10488 
10489 	/*
10490 	 * Make sure all dce_generation checks find out
10491 	 * that ill_mtu has changed.
10492 	 */
10493 	dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
10494 
10495 	/* Update the MTU in SCTP's list */
10496 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
10497 	return (0);
10498 }
10499 
10500 /* Get interface MTU. */
10501 /* ARGSUSED */
10502 int
10503 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10504 	ip_ioctl_cmd_t *ipip, void *if_req)
10505 {
10506 	struct ifreq	*ifr;
10507 	struct lifreq	*lifr;
10508 
10509 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
10510 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10511 
10512 	/*
10513 	 * We allow a get on any logical interface even though the set
10514 	 * can only be done on logical unit 0.
10515 	 */
10516 	if (ipip->ipi_cmd_type == IF_CMD) {
10517 		ifr = (struct ifreq *)if_req;
10518 		ifr->ifr_metric = ipif->ipif_ill->ill_mtu;
10519 	} else {
10520 		lifr = (struct lifreq *)if_req;
10521 		lifr->lifr_mtu = ipif->ipif_ill->ill_mtu;
10522 	}
10523 	return (0);
10524 }
10525 
10526 /* Set interface broadcast address. */
10527 /* ARGSUSED2 */
10528 int
10529 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10530 	ip_ioctl_cmd_t *ipip, void *if_req)
10531 {
10532 	ipaddr_t addr;
10533 	ire_t	*ire;
10534 	ill_t		*ill = ipif->ipif_ill;
10535 	ip_stack_t	*ipst = ill->ill_ipst;
10536 
10537 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name,
10538 	    ipif->ipif_id));
10539 
10540 	ASSERT(IAM_WRITER_IPIF(ipif));
10541 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10542 		return (EADDRNOTAVAIL);
10543 
10544 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
10545 
10546 	if (sin->sin_family != AF_INET)
10547 		return (EAFNOSUPPORT);
10548 
10549 	addr = sin->sin_addr.s_addr;
10550 	if (ipif->ipif_flags & IPIF_UP) {
10551 		/*
10552 		 * If we are already up, make sure the new
10553 		 * broadcast address makes sense.  If it does,
10554 		 * there should be an IRE for it already.
10555 		 */
10556 		ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST,
10557 		    ill, ipif->ipif_zoneid, NULL,
10558 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL);
10559 		if (ire == NULL) {
10560 			return (EINVAL);
10561 		} else {
10562 			ire_refrele(ire);
10563 		}
10564 	}
10565 	/*
10566 	 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST
10567 	 * needs to already exist we never need to change the set of
10568 	 * IRE_BROADCASTs when we are UP.
10569 	 */
10570 	if (addr != ipif->ipif_brd_addr)
10571 		IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
10572 
10573 	return (0);
10574 }
10575 
10576 /* Get interface broadcast address. */
10577 /* ARGSUSED */
10578 int
10579 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10580     ip_ioctl_cmd_t *ipip, void *if_req)
10581 {
10582 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
10583 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10584 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
10585 		return (EADDRNOTAVAIL);
10586 
10587 	/* IPIF_BROADCAST not possible with IPv6 */
10588 	ASSERT(!ipif->ipif_isv6);
10589 	*sin = sin_null;
10590 	sin->sin_family = AF_INET;
10591 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
10592 	return (0);
10593 }
10594 
10595 /*
10596  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
10597  */
10598 /* ARGSUSED */
10599 int
10600 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10601     ip_ioctl_cmd_t *ipip, void *if_req)
10602 {
10603 	int err = 0;
10604 	in6_addr_t v6mask;
10605 
10606 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
10607 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10608 
10609 	ASSERT(IAM_WRITER_IPIF(ipif));
10610 
10611 	if (ipif->ipif_isv6) {
10612 		sin6_t *sin6;
10613 
10614 		if (sin->sin_family != AF_INET6)
10615 			return (EAFNOSUPPORT);
10616 
10617 		sin6 = (sin6_t *)sin;
10618 		v6mask = sin6->sin6_addr;
10619 	} else {
10620 		ipaddr_t mask;
10621 
10622 		if (sin->sin_family != AF_INET)
10623 			return (EAFNOSUPPORT);
10624 
10625 		mask = sin->sin_addr.s_addr;
10626 		V4MASK_TO_V6(mask, v6mask);
10627 	}
10628 
10629 	/*
10630 	 * No big deal if the interface isn't already up, or the mask
10631 	 * isn't really changing, or this is pt-pt.
10632 	 */
10633 	if (!(ipif->ipif_flags & IPIF_UP) ||
10634 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
10635 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
10636 		ipif->ipif_v6net_mask = v6mask;
10637 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10638 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
10639 			    ipif->ipif_v6net_mask,
10640 			    ipif->ipif_v6subnet);
10641 		}
10642 		return (0);
10643 	}
10644 	/*
10645 	 * Make sure we have valid net and subnet broadcast ire's
10646 	 * for the old netmask, if needed by other logical interfaces.
10647 	 */
10648 	err = ipif_logical_down(ipif, q, mp);
10649 	if (err == EINPROGRESS)
10650 		return (err);
10651 	(void) ipif_down_tail(ipif);
10652 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
10653 	return (err);
10654 }
10655 
10656 static int
10657 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
10658 {
10659 	in6_addr_t v6mask;
10660 	int err = 0;
10661 
10662 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
10663 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10664 
10665 	if (ipif->ipif_isv6) {
10666 		sin6_t *sin6;
10667 
10668 		sin6 = (sin6_t *)sin;
10669 		v6mask = sin6->sin6_addr;
10670 	} else {
10671 		ipaddr_t mask;
10672 
10673 		mask = sin->sin_addr.s_addr;
10674 		V4MASK_TO_V6(mask, v6mask);
10675 	}
10676 
10677 	ipif->ipif_v6net_mask = v6mask;
10678 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10679 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
10680 		    ipif->ipif_v6subnet);
10681 	}
10682 	err = ipif_up(ipif, q, mp);
10683 
10684 	if (err == 0 || err == EINPROGRESS) {
10685 		/*
10686 		 * The interface must be DL_BOUND if this packet has to
10687 		 * go out on the wire. Since we only go through a logical
10688 		 * down and are bound with the driver during an internal
10689 		 * down/up that is satisfied.
10690 		 */
10691 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
10692 			/* Potentially broadcast an address mask reply. */
10693 			ipif_mask_reply(ipif);
10694 		}
10695 	}
10696 	return (err);
10697 }
10698 
10699 /* ARGSUSED */
10700 int
10701 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10702     ip_ioctl_cmd_t *ipip, void *if_req)
10703 {
10704 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
10705 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10706 	(void) ipif_down_tail(ipif);
10707 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
10708 }
10709 
10710 /* Get interface net mask. */
10711 /* ARGSUSED */
10712 int
10713 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10714     ip_ioctl_cmd_t *ipip, void *if_req)
10715 {
10716 	struct lifreq *lifr = (struct lifreq *)if_req;
10717 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
10718 
10719 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
10720 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10721 
10722 	/*
10723 	 * net mask can't change since we have a reference to the ipif.
10724 	 */
10725 	if (ipif->ipif_isv6) {
10726 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
10727 		*sin6 = sin6_null;
10728 		sin6->sin6_family = AF_INET6;
10729 		sin6->sin6_addr = ipif->ipif_v6net_mask;
10730 		lifr->lifr_addrlen =
10731 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10732 	} else {
10733 		*sin = sin_null;
10734 		sin->sin_family = AF_INET;
10735 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
10736 		if (ipip->ipi_cmd_type == LIF_CMD) {
10737 			lifr->lifr_addrlen =
10738 			    ip_mask_to_plen(ipif->ipif_net_mask);
10739 		}
10740 	}
10741 	return (0);
10742 }
10743 
10744 /* ARGSUSED */
10745 int
10746 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10747     ip_ioctl_cmd_t *ipip, void *if_req)
10748 {
10749 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
10750 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10751 
10752 	/*
10753 	 * Since no applications should ever be setting metrics on underlying
10754 	 * interfaces, we explicitly fail to smoke 'em out.
10755 	 */
10756 	if (IS_UNDER_IPMP(ipif->ipif_ill))
10757 		return (EINVAL);
10758 
10759 	/*
10760 	 * Set interface metric.  We don't use this for
10761 	 * anything but we keep track of it in case it is
10762 	 * important to routing applications or such.
10763 	 */
10764 	if (ipip->ipi_cmd_type == IF_CMD) {
10765 		struct ifreq    *ifr;
10766 
10767 		ifr = (struct ifreq *)if_req;
10768 		ipif->ipif_metric = ifr->ifr_metric;
10769 	} else {
10770 		struct lifreq   *lifr;
10771 
10772 		lifr = (struct lifreq *)if_req;
10773 		ipif->ipif_metric = lifr->lifr_metric;
10774 	}
10775 	return (0);
10776 }
10777 
10778 /* ARGSUSED */
10779 int
10780 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10781     ip_ioctl_cmd_t *ipip, void *if_req)
10782 {
10783 	/* Get interface metric. */
10784 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
10785 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10786 
10787 	if (ipip->ipi_cmd_type == IF_CMD) {
10788 		struct ifreq    *ifr;
10789 
10790 		ifr = (struct ifreq *)if_req;
10791 		ifr->ifr_metric = ipif->ipif_metric;
10792 	} else {
10793 		struct lifreq   *lifr;
10794 
10795 		lifr = (struct lifreq *)if_req;
10796 		lifr->lifr_metric = ipif->ipif_metric;
10797 	}
10798 
10799 	return (0);
10800 }
10801 
10802 /* ARGSUSED */
10803 int
10804 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10805     ip_ioctl_cmd_t *ipip, void *if_req)
10806 {
10807 	int	arp_muxid;
10808 
10809 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
10810 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10811 	/*
10812 	 * Set the muxid returned from I_PLINK.
10813 	 */
10814 	if (ipip->ipi_cmd_type == IF_CMD) {
10815 		struct ifreq *ifr = (struct ifreq *)if_req;
10816 
10817 		ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid;
10818 		arp_muxid = ifr->ifr_arp_muxid;
10819 	} else {
10820 		struct lifreq *lifr = (struct lifreq *)if_req;
10821 
10822 		ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid;
10823 		arp_muxid = lifr->lifr_arp_muxid;
10824 	}
10825 	arl_set_muxid(ipif->ipif_ill, arp_muxid);
10826 	return (0);
10827 }
10828 
10829 /* ARGSUSED */
10830 int
10831 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10832     ip_ioctl_cmd_t *ipip, void *if_req)
10833 {
10834 	int	arp_muxid = 0;
10835 
10836 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
10837 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10838 	/*
10839 	 * Get the muxid saved in ill for I_PUNLINK.
10840 	 */
10841 	arp_muxid = arl_get_muxid(ipif->ipif_ill);
10842 	if (ipip->ipi_cmd_type == IF_CMD) {
10843 		struct ifreq *ifr = (struct ifreq *)if_req;
10844 
10845 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10846 		ifr->ifr_arp_muxid = arp_muxid;
10847 	} else {
10848 		struct lifreq *lifr = (struct lifreq *)if_req;
10849 
10850 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid;
10851 		lifr->lifr_arp_muxid = arp_muxid;
10852 	}
10853 	return (0);
10854 }
10855 
10856 /*
10857  * Set the subnet prefix. Does not modify the broadcast address.
10858  */
10859 /* ARGSUSED */
10860 int
10861 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10862     ip_ioctl_cmd_t *ipip, void *if_req)
10863 {
10864 	int err = 0;
10865 	in6_addr_t v6addr;
10866 	in6_addr_t v6mask;
10867 	boolean_t need_up = B_FALSE;
10868 	int addrlen;
10869 
10870 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
10871 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10872 
10873 	ASSERT(IAM_WRITER_IPIF(ipif));
10874 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
10875 
10876 	if (ipif->ipif_isv6) {
10877 		sin6_t *sin6;
10878 
10879 		if (sin->sin_family != AF_INET6)
10880 			return (EAFNOSUPPORT);
10881 
10882 		sin6 = (sin6_t *)sin;
10883 		v6addr = sin6->sin6_addr;
10884 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
10885 			return (EADDRNOTAVAIL);
10886 	} else {
10887 		ipaddr_t addr;
10888 
10889 		if (sin->sin_family != AF_INET)
10890 			return (EAFNOSUPPORT);
10891 
10892 		addr = sin->sin_addr.s_addr;
10893 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
10894 			return (EADDRNOTAVAIL);
10895 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10896 		/* Add 96 bits */
10897 		addrlen += IPV6_ABITS - IP_ABITS;
10898 	}
10899 
10900 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
10901 		return (EINVAL);
10902 
10903 	/* Check if bits in the address is set past the mask */
10904 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
10905 		return (EINVAL);
10906 
10907 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
10908 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
10909 		return (0);	/* No change */
10910 
10911 	if (ipif->ipif_flags & IPIF_UP) {
10912 		/*
10913 		 * If the interface is already marked up,
10914 		 * we call ipif_down which will take care
10915 		 * of ditching any IREs that have been set
10916 		 * up based on the old interface address.
10917 		 */
10918 		err = ipif_logical_down(ipif, q, mp);
10919 		if (err == EINPROGRESS)
10920 			return (err);
10921 		(void) ipif_down_tail(ipif);
10922 		need_up = B_TRUE;
10923 	}
10924 
10925 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
10926 	return (err);
10927 }
10928 
10929 static int
10930 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
10931     queue_t *q, mblk_t *mp, boolean_t need_up)
10932 {
10933 	ill_t	*ill = ipif->ipif_ill;
10934 	int	err = 0;
10935 
10936 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
10937 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10938 
10939 	/* Set the new address. */
10940 	mutex_enter(&ill->ill_lock);
10941 	ipif->ipif_v6net_mask = v6mask;
10942 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
10943 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
10944 		    ipif->ipif_v6subnet);
10945 	}
10946 	mutex_exit(&ill->ill_lock);
10947 
10948 	if (need_up) {
10949 		/*
10950 		 * Now bring the interface back up.  If this
10951 		 * is the only IPIF for the ILL, ipif_up
10952 		 * will have to re-bind to the device, so
10953 		 * we may get back EINPROGRESS, in which
10954 		 * case, this IOCTL will get completed in
10955 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
10956 		 */
10957 		err = ipif_up(ipif, q, mp);
10958 		if (err == EINPROGRESS)
10959 			return (err);
10960 	}
10961 	return (err);
10962 }
10963 
10964 /* ARGSUSED */
10965 int
10966 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10967     ip_ioctl_cmd_t *ipip, void *if_req)
10968 {
10969 	int	addrlen;
10970 	in6_addr_t v6addr;
10971 	in6_addr_t v6mask;
10972 	struct lifreq *lifr = (struct lifreq *)if_req;
10973 
10974 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
10975 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10976 	(void) ipif_down_tail(ipif);
10977 
10978 	addrlen = lifr->lifr_addrlen;
10979 	if (ipif->ipif_isv6) {
10980 		sin6_t *sin6;
10981 
10982 		sin6 = (sin6_t *)sin;
10983 		v6addr = sin6->sin6_addr;
10984 	} else {
10985 		ipaddr_t addr;
10986 
10987 		addr = sin->sin_addr.s_addr;
10988 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10989 		addrlen += IPV6_ABITS - IP_ABITS;
10990 	}
10991 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
10992 
10993 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
10994 }
10995 
10996 /* ARGSUSED */
10997 int
10998 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10999     ip_ioctl_cmd_t *ipip, void *if_req)
11000 {
11001 	struct lifreq *lifr = (struct lifreq *)if_req;
11002 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
11003 
11004 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
11005 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11006 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11007 
11008 	if (ipif->ipif_isv6) {
11009 		*sin6 = sin6_null;
11010 		sin6->sin6_family = AF_INET6;
11011 		sin6->sin6_addr = ipif->ipif_v6subnet;
11012 		lifr->lifr_addrlen =
11013 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11014 	} else {
11015 		*sin = sin_null;
11016 		sin->sin_family = AF_INET;
11017 		sin->sin_addr.s_addr = ipif->ipif_subnet;
11018 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
11019 	}
11020 	return (0);
11021 }
11022 
11023 /*
11024  * Set the IPv6 address token.
11025  */
11026 /* ARGSUSED */
11027 int
11028 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11029     ip_ioctl_cmd_t *ipi, void *if_req)
11030 {
11031 	ill_t *ill = ipif->ipif_ill;
11032 	int err;
11033 	in6_addr_t v6addr;
11034 	in6_addr_t v6mask;
11035 	boolean_t need_up = B_FALSE;
11036 	int i;
11037 	sin6_t *sin6 = (sin6_t *)sin;
11038 	struct lifreq *lifr = (struct lifreq *)if_req;
11039 	int addrlen;
11040 
11041 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
11042 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11043 	ASSERT(IAM_WRITER_IPIF(ipif));
11044 
11045 	addrlen = lifr->lifr_addrlen;
11046 	/* Only allow for logical unit zero i.e. not on "le0:17" */
11047 	if (ipif->ipif_id != 0)
11048 		return (EINVAL);
11049 
11050 	if (!ipif->ipif_isv6)
11051 		return (EINVAL);
11052 
11053 	if (addrlen > IPV6_ABITS)
11054 		return (EINVAL);
11055 
11056 	v6addr = sin6->sin6_addr;
11057 
11058 	/*
11059 	 * The length of the token is the length from the end.  To get
11060 	 * the proper mask for this, compute the mask of the bits not
11061 	 * in the token; ie. the prefix, and then xor to get the mask.
11062 	 */
11063 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
11064 		return (EINVAL);
11065 	for (i = 0; i < 4; i++) {
11066 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11067 	}
11068 
11069 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
11070 	    ill->ill_token_length == addrlen)
11071 		return (0);	/* No change */
11072 
11073 	if (ipif->ipif_flags & IPIF_UP) {
11074 		err = ipif_logical_down(ipif, q, mp);
11075 		if (err == EINPROGRESS)
11076 			return (err);
11077 		(void) ipif_down_tail(ipif);
11078 		need_up = B_TRUE;
11079 	}
11080 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
11081 	return (err);
11082 }
11083 
11084 static int
11085 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
11086     mblk_t *mp, boolean_t need_up)
11087 {
11088 	in6_addr_t v6addr;
11089 	in6_addr_t v6mask;
11090 	ill_t	*ill = ipif->ipif_ill;
11091 	int	i;
11092 	int	err = 0;
11093 
11094 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
11095 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11096 	v6addr = sin6->sin6_addr;
11097 	/*
11098 	 * The length of the token is the length from the end.  To get
11099 	 * the proper mask for this, compute the mask of the bits not
11100 	 * in the token; ie. the prefix, and then xor to get the mask.
11101 	 */
11102 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
11103 	for (i = 0; i < 4; i++)
11104 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
11105 
11106 	mutex_enter(&ill->ill_lock);
11107 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
11108 	ill->ill_token_length = addrlen;
11109 	ill->ill_manual_token = 1;
11110 
11111 	/* Reconfigure the link-local address based on this new token */
11112 	ipif_setlinklocal(ill->ill_ipif);
11113 
11114 	mutex_exit(&ill->ill_lock);
11115 
11116 	if (need_up) {
11117 		/*
11118 		 * Now bring the interface back up.  If this
11119 		 * is the only IPIF for the ILL, ipif_up
11120 		 * will have to re-bind to the device, so
11121 		 * we may get back EINPROGRESS, in which
11122 		 * case, this IOCTL will get completed in
11123 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11124 		 */
11125 		err = ipif_up(ipif, q, mp);
11126 		if (err == EINPROGRESS)
11127 			return (err);
11128 	}
11129 	return (err);
11130 }
11131 
11132 /* ARGSUSED */
11133 int
11134 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11135     ip_ioctl_cmd_t *ipi, void *if_req)
11136 {
11137 	ill_t *ill;
11138 	sin6_t *sin6 = (sin6_t *)sin;
11139 	struct lifreq *lifr = (struct lifreq *)if_req;
11140 
11141 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
11142 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11143 	if (ipif->ipif_id != 0)
11144 		return (EINVAL);
11145 
11146 	ill = ipif->ipif_ill;
11147 	if (!ill->ill_isv6)
11148 		return (ENXIO);
11149 
11150 	*sin6 = sin6_null;
11151 	sin6->sin6_family = AF_INET6;
11152 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
11153 	sin6->sin6_addr = ill->ill_token;
11154 	lifr->lifr_addrlen = ill->ill_token_length;
11155 	return (0);
11156 }
11157 
11158 /*
11159  * Set (hardware) link specific information that might override
11160  * what was acquired through the DL_INFO_ACK.
11161  */
11162 /* ARGSUSED */
11163 int
11164 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11165     ip_ioctl_cmd_t *ipi, void *if_req)
11166 {
11167 	ill_t		*ill = ipif->ipif_ill;
11168 	int		ip_min_mtu;
11169 	struct lifreq	*lifr = (struct lifreq *)if_req;
11170 	lif_ifinfo_req_t *lir;
11171 
11172 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
11173 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11174 	lir = &lifr->lifr_ifinfo;
11175 	ASSERT(IAM_WRITER_IPIF(ipif));
11176 
11177 	/* Only allow for logical unit zero i.e. not on "bge0:17" */
11178 	if (ipif->ipif_id != 0)
11179 		return (EINVAL);
11180 
11181 	/* Set interface MTU. */
11182 	if (ipif->ipif_isv6)
11183 		ip_min_mtu = IPV6_MIN_MTU;
11184 	else
11185 		ip_min_mtu = IP_MIN_MTU;
11186 
11187 	/*
11188 	 * Verify values before we set anything. Allow zero to
11189 	 * mean unspecified.
11190 	 *
11191 	 * XXX We should be able to set the user-defined lir_mtu to some value
11192 	 * that is greater than ill_current_frag but less than ill_max_frag- the
11193 	 * ill_max_frag value tells us the max MTU that can be handled by the
11194 	 * datalink, whereas the ill_current_frag is dynamically computed for
11195 	 * some link-types like tunnels, based on the tunnel PMTU. However,
11196 	 * since there is currently no way of distinguishing between
11197 	 * administratively fixed link mtu values (e.g., those set via
11198 	 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered
11199 	 * for tunnels) we conservatively choose the  ill_current_frag as the
11200 	 * upper-bound.
11201 	 */
11202 	if (lir->lir_maxmtu != 0 &&
11203 	    (lir->lir_maxmtu > ill->ill_current_frag ||
11204 	    lir->lir_maxmtu < ip_min_mtu))
11205 		return (EINVAL);
11206 	if (lir->lir_reachtime != 0 &&
11207 	    lir->lir_reachtime > ND_MAX_REACHTIME)
11208 		return (EINVAL);
11209 	if (lir->lir_reachretrans != 0 &&
11210 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
11211 		return (EINVAL);
11212 
11213 	mutex_enter(&ill->ill_lock);
11214 	/*
11215 	 * The dce and fragmentation code can handle changes to ill_mtu
11216 	 * concurrent with sending/fragmenting packets.
11217 	 */
11218 	if (lir->lir_maxmtu != 0)
11219 		ill->ill_user_mtu = lir->lir_maxmtu;
11220 
11221 	if (lir->lir_reachtime != 0)
11222 		ill->ill_reachable_time = lir->lir_reachtime;
11223 
11224 	if (lir->lir_reachretrans != 0)
11225 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
11226 
11227 	ill->ill_max_hops = lir->lir_maxhops;
11228 	ill->ill_max_buf = ND_MAX_Q;
11229 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) {
11230 		/*
11231 		 * ill_mtu is the actual interface MTU, obtained as the min
11232 		 * of user-configured mtu and the value announced by the
11233 		 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since
11234 		 * we have already made the choice of requiring
11235 		 * ill_user_mtu < ill_current_frag by the time we get here,
11236 		 * the ill_mtu effectively gets assigned to the ill_user_mtu
11237 		 * here.
11238 		 */
11239 		ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu);
11240 	}
11241 	mutex_exit(&ill->ill_lock);
11242 
11243 	/*
11244 	 * Make sure all dce_generation checks find out
11245 	 * that ill_mtu has changed.
11246 	 */
11247 	if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0))
11248 		dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst);
11249 
11250 	/*
11251 	 * Refresh IPMP meta-interface MTU if necessary.
11252 	 */
11253 	if (IS_UNDER_IPMP(ill))
11254 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
11255 
11256 	return (0);
11257 }
11258 
11259 /* ARGSUSED */
11260 int
11261 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11262     ip_ioctl_cmd_t *ipi, void *if_req)
11263 {
11264 	struct lif_ifinfo_req *lir;
11265 	ill_t *ill = ipif->ipif_ill;
11266 
11267 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
11268 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11269 	if (ipif->ipif_id != 0)
11270 		return (EINVAL);
11271 
11272 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
11273 	lir->lir_maxhops = ill->ill_max_hops;
11274 	lir->lir_reachtime = ill->ill_reachable_time;
11275 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
11276 	lir->lir_maxmtu = ill->ill_mtu;
11277 
11278 	return (0);
11279 }
11280 
11281 /*
11282  * Return best guess as to the subnet mask for the specified address.
11283  * Based on the subnet masks for all the configured interfaces.
11284  *
11285  * We end up returning a zero mask in the case of default, multicast or
11286  * experimental.
11287  */
11288 static ipaddr_t
11289 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
11290 {
11291 	ipaddr_t net_mask;
11292 	ill_t	*ill;
11293 	ipif_t	*ipif;
11294 	ill_walk_context_t ctx;
11295 	ipif_t	*fallback_ipif = NULL;
11296 
11297 	net_mask = ip_net_mask(addr);
11298 	if (net_mask == 0) {
11299 		*ipifp = NULL;
11300 		return (0);
11301 	}
11302 
11303 	/* Let's check to see if this is maybe a local subnet route. */
11304 	/* this function only applies to IPv4 interfaces */
11305 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11306 	ill = ILL_START_WALK_V4(&ctx, ipst);
11307 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
11308 		mutex_enter(&ill->ill_lock);
11309 		for (ipif = ill->ill_ipif; ipif != NULL;
11310 		    ipif = ipif->ipif_next) {
11311 			if (IPIF_IS_CONDEMNED(ipif))
11312 				continue;
11313 			if (!(ipif->ipif_flags & IPIF_UP))
11314 				continue;
11315 			if ((ipif->ipif_subnet & net_mask) ==
11316 			    (addr & net_mask)) {
11317 				/*
11318 				 * Don't trust pt-pt interfaces if there are
11319 				 * other interfaces.
11320 				 */
11321 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
11322 					if (fallback_ipif == NULL) {
11323 						ipif_refhold_locked(ipif);
11324 						fallback_ipif = ipif;
11325 					}
11326 					continue;
11327 				}
11328 
11329 				/*
11330 				 * Fine. Just assume the same net mask as the
11331 				 * directly attached subnet interface is using.
11332 				 */
11333 				ipif_refhold_locked(ipif);
11334 				mutex_exit(&ill->ill_lock);
11335 				rw_exit(&ipst->ips_ill_g_lock);
11336 				if (fallback_ipif != NULL)
11337 					ipif_refrele(fallback_ipif);
11338 				*ipifp = ipif;
11339 				return (ipif->ipif_net_mask);
11340 			}
11341 		}
11342 		mutex_exit(&ill->ill_lock);
11343 	}
11344 	rw_exit(&ipst->ips_ill_g_lock);
11345 
11346 	*ipifp = fallback_ipif;
11347 	return ((fallback_ipif != NULL) ?
11348 	    fallback_ipif->ipif_net_mask : net_mask);
11349 }
11350 
11351 /*
11352  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
11353  */
11354 static void
11355 ip_wput_ioctl(queue_t *q, mblk_t *mp)
11356 {
11357 	IOCP	iocp;
11358 	ipft_t	*ipft;
11359 	ipllc_t	*ipllc;
11360 	mblk_t	*mp1;
11361 	cred_t	*cr;
11362 	int	error = 0;
11363 	conn_t	*connp;
11364 
11365 	ip1dbg(("ip_wput_ioctl"));
11366 	iocp = (IOCP)mp->b_rptr;
11367 	mp1 = mp->b_cont;
11368 	if (mp1 == NULL) {
11369 		iocp->ioc_error = EINVAL;
11370 		mp->b_datap->db_type = M_IOCNAK;
11371 		iocp->ioc_count = 0;
11372 		qreply(q, mp);
11373 		return;
11374 	}
11375 
11376 	/*
11377 	 * These IOCTLs provide various control capabilities to
11378 	 * upstream agents such as ULPs and processes.	There
11379 	 * are currently two such IOCTLs implemented.  They
11380 	 * are used by TCP to provide update information for
11381 	 * existing IREs and to forcibly delete an IRE for a
11382 	 * host that is not responding, thereby forcing an
11383 	 * attempt at a new route.
11384 	 */
11385 	iocp->ioc_error = EINVAL;
11386 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
11387 		goto done;
11388 
11389 	ipllc = (ipllc_t *)mp1->b_rptr;
11390 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
11391 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
11392 			break;
11393 	}
11394 	/*
11395 	 * prefer credential from mblk over ioctl;
11396 	 * see ip_sioctl_copyin_setup
11397 	 */
11398 	cr = msg_getcred(mp, NULL);
11399 	if (cr == NULL)
11400 		cr = iocp->ioc_cr;
11401 
11402 	/*
11403 	 * Refhold the conn in case the request gets queued up in some lookup
11404 	 */
11405 	ASSERT(CONN_Q(q));
11406 	connp = Q_TO_CONN(q);
11407 	CONN_INC_REF(connp);
11408 	if (ipft->ipft_pfi &&
11409 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
11410 	    pullupmsg(mp1, ipft->ipft_min_size))) {
11411 		error = (*ipft->ipft_pfi)(q,
11412 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
11413 	}
11414 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
11415 		/*
11416 		 * CONN_OPER_PENDING_DONE happens in the function called
11417 		 * through ipft_pfi above.
11418 		 */
11419 		return;
11420 	}
11421 
11422 	CONN_OPER_PENDING_DONE(connp);
11423 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
11424 		freemsg(mp);
11425 		return;
11426 	}
11427 	iocp->ioc_error = error;
11428 
11429 done:
11430 	mp->b_datap->db_type = M_IOCACK;
11431 	if (iocp->ioc_error)
11432 		iocp->ioc_count = 0;
11433 	qreply(q, mp);
11434 }
11435 
11436 /*
11437  * Assign a unique id for the ipif. This is used by sctp_addr.c
11438  * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures.
11439  */
11440 static void
11441 ipif_assign_seqid(ipif_t *ipif)
11442 {
11443 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11444 
11445 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
11446 }
11447 
11448 /*
11449  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
11450  * administratively down (i.e., no DAD), of the same type, and locked.  Note
11451  * that the clone is complete -- including the seqid -- and the expectation is
11452  * that the caller will either free or overwrite `sipif' before it's unlocked.
11453  */
11454 static void
11455 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
11456 {
11457 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
11458 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
11459 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11460 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
11461 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
11462 
11463 	dipif->ipif_flags = sipif->ipif_flags;
11464 	dipif->ipif_metric = sipif->ipif_metric;
11465 	dipif->ipif_zoneid = sipif->ipif_zoneid;
11466 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
11467 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
11468 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
11469 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
11470 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
11471 
11472 	/*
11473 	 * As per the comment atop the function, we assume that these sipif
11474 	 * fields will be changed before sipif is unlocked.
11475 	 */
11476 	dipif->ipif_seqid = sipif->ipif_seqid;
11477 	dipif->ipif_state_flags = sipif->ipif_state_flags;
11478 }
11479 
11480 /*
11481  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
11482  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
11483  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
11484  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
11485  * down (i.e., no DAD), of the same type, and unlocked.
11486  */
11487 static void
11488 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
11489 {
11490 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
11491 	ipxop_t *ipx = ipsq->ipsq_xop;
11492 
11493 	ASSERT(sipif != dipif);
11494 	ASSERT(sipif != virgipif);
11495 
11496 	/*
11497 	 * Grab all of the locks that protect the ipif in a defined order.
11498 	 */
11499 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11500 
11501 	ipif_clone(sipif, dipif);
11502 	if (virgipif != NULL) {
11503 		ipif_clone(virgipif, sipif);
11504 		mi_free(virgipif);
11505 	}
11506 
11507 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
11508 
11509 	/*
11510 	 * Transfer ownership of the current xop, if necessary.
11511 	 */
11512 	if (ipx->ipx_current_ipif == sipif) {
11513 		ASSERT(ipx->ipx_pending_ipif == NULL);
11514 		mutex_enter(&ipx->ipx_lock);
11515 		ipx->ipx_current_ipif = dipif;
11516 		mutex_exit(&ipx->ipx_lock);
11517 	}
11518 
11519 	if (virgipif == NULL)
11520 		mi_free(sipif);
11521 }
11522 
11523 /*
11524  * checks if:
11525  *	- <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and
11526  *	- logical interface is within the allowed range
11527  */
11528 static int
11529 is_lifname_valid(ill_t *ill, unsigned int ipif_id)
11530 {
11531 	if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ)
11532 		return (ENAMETOOLONG);
11533 
11534 	if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if)
11535 		return (ERANGE);
11536 	return (0);
11537 }
11538 
11539 /*
11540  * Insert the ipif, so that the list of ipifs on the ill will be sorted
11541  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
11542  * be inserted into the first space available in the list. The value of
11543  * ipif_id will then be set to the appropriate value for its position.
11544  */
11545 static int
11546 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
11547 {
11548 	ill_t *ill;
11549 	ipif_t *tipif;
11550 	ipif_t **tipifp;
11551 	int id, err;
11552 	ip_stack_t	*ipst;
11553 
11554 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
11555 	    IAM_WRITER_IPIF(ipif));
11556 
11557 	ill = ipif->ipif_ill;
11558 	ASSERT(ill != NULL);
11559 	ipst = ill->ill_ipst;
11560 
11561 	/*
11562 	 * In the case of lo0:0 we already hold the ill_g_lock.
11563 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
11564 	 * ipif_insert.
11565 	 */
11566 	if (acquire_g_lock)
11567 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11568 	mutex_enter(&ill->ill_lock);
11569 	id = ipif->ipif_id;
11570 	tipifp = &(ill->ill_ipif);
11571 	if (id == -1) {	/* need to find a real id */
11572 		id = 0;
11573 		while ((tipif = *tipifp) != NULL) {
11574 			ASSERT(tipif->ipif_id >= id);
11575 			if (tipif->ipif_id != id)
11576 				break; /* non-consecutive id */
11577 			id++;
11578 			tipifp = &(tipif->ipif_next);
11579 		}
11580 		if ((err = is_lifname_valid(ill, id)) != 0) {
11581 			mutex_exit(&ill->ill_lock);
11582 			if (acquire_g_lock)
11583 				rw_exit(&ipst->ips_ill_g_lock);
11584 			return (err);
11585 		}
11586 		ipif->ipif_id = id; /* assign new id */
11587 	} else if ((err = is_lifname_valid(ill, id)) == 0) {
11588 		/* we have a real id; insert ipif in the right place */
11589 		while ((tipif = *tipifp) != NULL) {
11590 			ASSERT(tipif->ipif_id != id);
11591 			if (tipif->ipif_id > id)
11592 				break; /* found correct location */
11593 			tipifp = &(tipif->ipif_next);
11594 		}
11595 	} else {
11596 		mutex_exit(&ill->ill_lock);
11597 		if (acquire_g_lock)
11598 			rw_exit(&ipst->ips_ill_g_lock);
11599 		return (err);
11600 	}
11601 
11602 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
11603 
11604 	ipif->ipif_next = tipif;
11605 	*tipifp = ipif;
11606 	mutex_exit(&ill->ill_lock);
11607 	if (acquire_g_lock)
11608 		rw_exit(&ipst->ips_ill_g_lock);
11609 
11610 	return (0);
11611 }
11612 
11613 static void
11614 ipif_remove(ipif_t *ipif)
11615 {
11616 	ipif_t	**ipifp;
11617 	ill_t	*ill = ipif->ipif_ill;
11618 
11619 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
11620 
11621 	mutex_enter(&ill->ill_lock);
11622 	ipifp = &ill->ill_ipif;
11623 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
11624 		if (*ipifp == ipif) {
11625 			*ipifp = ipif->ipif_next;
11626 			break;
11627 		}
11628 	}
11629 	mutex_exit(&ill->ill_lock);
11630 }
11631 
11632 /*
11633  * Allocate and initialize a new interface control structure.  (Always
11634  * called as writer.)
11635  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
11636  * is not part of the global linked list of ills. ipif_seqid is unique
11637  * in the system and to preserve the uniqueness, it is assigned only
11638  * when ill becomes part of the global list. At that point ill will
11639  * have a name. If it doesn't get assigned here, it will get assigned
11640  * in ipif_set_values() as part of SIOCSLIFNAME processing.
11641  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
11642  * the interface flags or any other information from the DL_INFO_ACK for
11643  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
11644  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
11645  * second DL_INFO_ACK comes in from the driver.
11646  */
11647 static ipif_t *
11648 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
11649     boolean_t insert, int *errorp)
11650 {
11651 	int err;
11652 	ipif_t	*ipif;
11653 	ip_stack_t *ipst = ill->ill_ipst;
11654 
11655 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
11656 	    ill->ill_name, id, (void *)ill));
11657 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
11658 
11659 	if (errorp != NULL)
11660 		*errorp = 0;
11661 
11662 	if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) {
11663 		if (errorp != NULL)
11664 			*errorp = ENOMEM;
11665 		return (NULL);
11666 	}
11667 	*ipif = ipif_zero;	/* start clean */
11668 
11669 	ipif->ipif_ill = ill;
11670 	ipif->ipif_id = id;	/* could be -1 */
11671 	/*
11672 	 * Inherit the zoneid from the ill; for the shared stack instance
11673 	 * this is always the global zone
11674 	 */
11675 	ipif->ipif_zoneid = ill->ill_zoneid;
11676 
11677 	ipif->ipif_refcnt = 0;
11678 
11679 	if (insert) {
11680 		if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) {
11681 			mi_free(ipif);
11682 			if (errorp != NULL)
11683 				*errorp = err;
11684 			return (NULL);
11685 		}
11686 		/* -1 id should have been replaced by real id */
11687 		id = ipif->ipif_id;
11688 		ASSERT(id >= 0);
11689 	}
11690 
11691 	if (ill->ill_name[0] != '\0')
11692 		ipif_assign_seqid(ipif);
11693 
11694 	/*
11695 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
11696 	 * (which must not exist yet because the zeroth ipif is created once
11697 	 * per ill).  However, do not not link it to the ipmp_grp_t until
11698 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
11699 	 */
11700 	if (id == 0 && IS_IPMP(ill)) {
11701 		if (ipmp_illgrp_create(ill) == NULL) {
11702 			if (insert) {
11703 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
11704 				ipif_remove(ipif);
11705 				rw_exit(&ipst->ips_ill_g_lock);
11706 			}
11707 			mi_free(ipif);
11708 			if (errorp != NULL)
11709 				*errorp = ENOMEM;
11710 			return (NULL);
11711 		}
11712 	}
11713 
11714 	/*
11715 	 * We grab ill_lock to protect the flag changes.  The ipif is still
11716 	 * not up and can't be looked up until the ioctl completes and the
11717 	 * IPIF_CHANGING flag is cleared.
11718 	 */
11719 	mutex_enter(&ill->ill_lock);
11720 
11721 	ipif->ipif_ire_type = ire_type;
11722 
11723 	if (ipif->ipif_isv6) {
11724 		ill->ill_flags |= ILLF_IPV6;
11725 	} else {
11726 		ipaddr_t inaddr_any = INADDR_ANY;
11727 
11728 		ill->ill_flags |= ILLF_IPV4;
11729 
11730 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
11731 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11732 		    &ipif->ipif_v6lcl_addr);
11733 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11734 		    &ipif->ipif_v6subnet);
11735 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11736 		    &ipif->ipif_v6net_mask);
11737 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11738 		    &ipif->ipif_v6brd_addr);
11739 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
11740 		    &ipif->ipif_v6pp_dst_addr);
11741 	}
11742 
11743 	/*
11744 	 * Don't set the interface flags etc. now, will do it in
11745 	 * ip_ll_subnet_defaults.
11746 	 */
11747 	if (!initialize)
11748 		goto out;
11749 
11750 	/*
11751 	 * NOTE: The IPMP meta-interface is special-cased because it starts
11752 	 * with no underlying interfaces (and thus an unknown broadcast
11753 	 * address length), but all interfaces that can be placed into an IPMP
11754 	 * group are required to be broadcast-capable.
11755 	 */
11756 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
11757 		/*
11758 		 * Later detect lack of DLPI driver multicast capability by
11759 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
11760 		 */
11761 		ill->ill_flags |= ILLF_MULTICAST;
11762 		if (!ipif->ipif_isv6)
11763 			ipif->ipif_flags |= IPIF_BROADCAST;
11764 	} else {
11765 		if (ill->ill_net_type != IRE_LOOPBACK) {
11766 			if (ipif->ipif_isv6)
11767 				/*
11768 				 * Note: xresolv interfaces will eventually need
11769 				 * NOARP set here as well, but that will require
11770 				 * those external resolvers to have some
11771 				 * knowledge of that flag and act appropriately.
11772 				 * Not to be changed at present.
11773 				 */
11774 				ill->ill_flags |= ILLF_NONUD;
11775 			else
11776 				ill->ill_flags |= ILLF_NOARP;
11777 		}
11778 		if (ill->ill_phys_addr_length == 0) {
11779 			if (IS_VNI(ill)) {
11780 				ipif->ipif_flags |= IPIF_NOXMIT;
11781 			} else {
11782 				/* pt-pt supports multicast. */
11783 				ill->ill_flags |= ILLF_MULTICAST;
11784 				if (ill->ill_net_type != IRE_LOOPBACK)
11785 					ipif->ipif_flags |= IPIF_POINTOPOINT;
11786 			}
11787 		}
11788 	}
11789 out:
11790 	mutex_exit(&ill->ill_lock);
11791 	return (ipif);
11792 }
11793 
11794 /*
11795  * Remove the neighbor cache entries associated with this logical
11796  * interface.
11797  */
11798 int
11799 ipif_arp_down(ipif_t *ipif)
11800 {
11801 	ill_t	*ill = ipif->ipif_ill;
11802 	int	err = 0;
11803 
11804 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
11805 	ASSERT(IAM_WRITER_IPIF(ipif));
11806 
11807 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down",
11808 	    ill_t *, ill, ipif_t *, ipif);
11809 	ipif_nce_down(ipif);
11810 
11811 	/*
11812 	 * If this is the last ipif that is going down and there are no
11813 	 * duplicate addresses we may yet attempt to re-probe, then we need to
11814 	 * clean up ARP completely.
11815 	 */
11816 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
11817 	    !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) {
11818 		/*
11819 		 * If this was the last ipif on an IPMP interface, purge any
11820 		 * static ARP entries associated with it.
11821 		 */
11822 		if (IS_IPMP(ill))
11823 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
11824 
11825 		/* UNBIND, DETACH */
11826 		err = arp_ll_down(ill);
11827 	}
11828 
11829 	return (err);
11830 }
11831 
11832 /*
11833  * Get the resolver set up for a new IP address.  (Always called as writer.)
11834  * Called both for IPv4 and IPv6 interfaces, though it only does some
11835  * basic DAD related initialization for IPv6. Honors ILLF_NOARP.
11836  *
11837  * The enumerated value res_act tunes the behavior:
11838  * 	* Res_act_initial: set up all the resolver structures for a new
11839  *	  IP address.
11840  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
11841  *	  ARP message in defense of the address.
11842  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
11843  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
11844  *
11845  * Returns zero on success, or an errno upon failure.
11846  */
11847 int
11848 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
11849 {
11850 	ill_t		*ill = ipif->ipif_ill;
11851 	int		err;
11852 	boolean_t	was_dup;
11853 
11854 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
11855 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
11856 	ASSERT(IAM_WRITER_IPIF(ipif));
11857 
11858 	was_dup = B_FALSE;
11859 	if (res_act == Res_act_initial) {
11860 		ipif->ipif_addr_ready = 0;
11861 		/*
11862 		 * We're bringing an interface up here.  There's no way that we
11863 		 * should need to shut down ARP now.
11864 		 */
11865 		mutex_enter(&ill->ill_lock);
11866 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
11867 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
11868 			ill->ill_ipif_dup_count--;
11869 			was_dup = B_TRUE;
11870 		}
11871 		mutex_exit(&ill->ill_lock);
11872 	}
11873 	if (ipif->ipif_recovery_id != 0)
11874 		(void) untimeout(ipif->ipif_recovery_id);
11875 	ipif->ipif_recovery_id = 0;
11876 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
11877 		ipif->ipif_addr_ready = 1;
11878 		return (0);
11879 	}
11880 	/* NDP will set the ipif_addr_ready flag when it's ready */
11881 	if (ill->ill_isv6)
11882 		return (0);
11883 
11884 	err = ipif_arp_up(ipif, res_act, was_dup);
11885 	return (err);
11886 }
11887 
11888 /*
11889  * This routine restarts IPv4/IPv6 duplicate address detection (DAD)
11890  * when a link has just gone back up.
11891  */
11892 static void
11893 ipif_nce_start_dad(ipif_t *ipif)
11894 {
11895 	ncec_t *ncec;
11896 	ill_t *ill = ipif->ipif_ill;
11897 	boolean_t isv6 = ill->ill_isv6;
11898 
11899 	if (isv6) {
11900 		ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill,
11901 		    &ipif->ipif_v6lcl_addr);
11902 	} else {
11903 		ipaddr_t v4addr;
11904 
11905 		if (ill->ill_net_type != IRE_IF_RESOLVER ||
11906 		    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
11907 		    ipif->ipif_lcl_addr == INADDR_ANY) {
11908 			/*
11909 			 * If we can't contact ARP for some reason,
11910 			 * that's not really a problem.  Just send
11911 			 * out the routing socket notification that
11912 			 * DAD completion would have done, and continue.
11913 			 */
11914 			ipif_mask_reply(ipif);
11915 			ipif_up_notify(ipif);
11916 			ipif->ipif_addr_ready = 1;
11917 			return;
11918 		}
11919 
11920 		IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr);
11921 		ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr);
11922 	}
11923 
11924 	if (ncec == NULL) {
11925 		ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n",
11926 		    (void *)ipif));
11927 		return;
11928 	}
11929 	if (!nce_restart_dad(ncec)) {
11930 		/*
11931 		 * If we can't restart DAD for some reason, that's not really a
11932 		 * problem.  Just send out the routing socket notification that
11933 		 * DAD completion would have done, and continue.
11934 		 */
11935 		ipif_up_notify(ipif);
11936 		ipif->ipif_addr_ready = 1;
11937 	}
11938 	ncec_refrele(ncec);
11939 }
11940 
11941 /*
11942  * Restart duplicate address detection on all interfaces on the given ill.
11943  *
11944  * This is called when an interface transitions from down to up
11945  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
11946  *
11947  * Note that since the underlying physical link has transitioned, we must cause
11948  * at least one routing socket message to be sent here, either via DAD
11949  * completion or just by default on the first ipif.  (If we don't do this, then
11950  * in.mpathd will see long delays when doing link-based failure recovery.)
11951  */
11952 void
11953 ill_restart_dad(ill_t *ill, boolean_t went_up)
11954 {
11955 	ipif_t *ipif;
11956 
11957 	if (ill == NULL)
11958 		return;
11959 
11960 	/*
11961 	 * If layer two doesn't support duplicate address detection, then just
11962 	 * send the routing socket message now and be done with it.
11963 	 */
11964 	if (!ill->ill_isv6 && arp_no_defense) {
11965 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
11966 		return;
11967 	}
11968 
11969 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11970 		if (went_up) {
11971 
11972 			if (ipif->ipif_flags & IPIF_UP) {
11973 				ipif_nce_start_dad(ipif);
11974 			} else if (ipif->ipif_flags & IPIF_DUPLICATE) {
11975 				/*
11976 				 * kick off the bring-up process now.
11977 				 */
11978 				ipif_do_recovery(ipif);
11979 			} else {
11980 				/*
11981 				 * Unfortunately, the first ipif is "special"
11982 				 * and represents the underlying ill in the
11983 				 * routing socket messages.  Thus, when this
11984 				 * one ipif is down, we must still notify so
11985 				 * that the user knows the IFF_RUNNING status
11986 				 * change.  (If the first ipif is up, then
11987 				 * we'll handle eventual routing socket
11988 				 * notification via DAD completion.)
11989 				 */
11990 				if (ipif == ill->ill_ipif) {
11991 					ip_rts_ifmsg(ill->ill_ipif,
11992 					    RTSQ_DEFAULT);
11993 				}
11994 			}
11995 		} else {
11996 			/*
11997 			 * After link down, we'll need to send a new routing
11998 			 * message when the link comes back, so clear
11999 			 * ipif_addr_ready.
12000 			 */
12001 			ipif->ipif_addr_ready = 0;
12002 		}
12003 	}
12004 
12005 	/*
12006 	 * If we've torn down links, then notify the user right away.
12007 	 */
12008 	if (!went_up)
12009 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
12010 }
12011 
12012 static void
12013 ipsq_delete(ipsq_t *ipsq)
12014 {
12015 	ipxop_t *ipx = ipsq->ipsq_xop;
12016 
12017 	ipsq->ipsq_ipst = NULL;
12018 	ASSERT(ipsq->ipsq_phyint == NULL);
12019 	ASSERT(ipsq->ipsq_xop != NULL);
12020 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
12021 	ASSERT(ipx->ipx_pending_mp == NULL);
12022 	kmem_free(ipsq, sizeof (ipsq_t));
12023 }
12024 
12025 static int
12026 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
12027 {
12028 	int err = 0;
12029 	ipif_t *ipif;
12030 
12031 	if (ill == NULL)
12032 		return (0);
12033 
12034 	ASSERT(IAM_WRITER_ILL(ill));
12035 	ill->ill_up_ipifs = B_TRUE;
12036 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12037 		if (ipif->ipif_was_up) {
12038 			if (!(ipif->ipif_flags & IPIF_UP))
12039 				err = ipif_up(ipif, q, mp);
12040 			ipif->ipif_was_up = B_FALSE;
12041 			if (err != 0) {
12042 				ASSERT(err == EINPROGRESS);
12043 				return (err);
12044 			}
12045 		}
12046 	}
12047 	ill->ill_up_ipifs = B_FALSE;
12048 	return (0);
12049 }
12050 
12051 /*
12052  * This function is called to bring up all the ipifs that were up before
12053  * bringing the ill down via ill_down_ipifs().
12054  */
12055 int
12056 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
12057 {
12058 	int err;
12059 
12060 	ASSERT(IAM_WRITER_ILL(ill));
12061 
12062 	if (ill->ill_replumbing) {
12063 		ill->ill_replumbing = 0;
12064 		/*
12065 		 * Send down REPLUMB_DONE notification followed by the
12066 		 * BIND_REQ on the arp stream.
12067 		 */
12068 		if (!ill->ill_isv6)
12069 			arp_send_replumb_conf(ill);
12070 	}
12071 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
12072 	if (err != 0)
12073 		return (err);
12074 
12075 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
12076 }
12077 
12078 /*
12079  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
12080  * down the ipifs without sending DL_UNBIND_REQ to the driver.
12081  */
12082 static void
12083 ill_down_ipifs(ill_t *ill, boolean_t logical)
12084 {
12085 	ipif_t *ipif;
12086 
12087 	ASSERT(IAM_WRITER_ILL(ill));
12088 
12089 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12090 		/*
12091 		 * We go through the ipif_down logic even if the ipif
12092 		 * is already down, since routes can be added based
12093 		 * on down ipifs. Going through ipif_down once again
12094 		 * will delete any IREs created based on these routes.
12095 		 */
12096 		if (ipif->ipif_flags & IPIF_UP)
12097 			ipif->ipif_was_up = B_TRUE;
12098 
12099 		if (logical) {
12100 			(void) ipif_logical_down(ipif, NULL, NULL);
12101 			ipif_non_duplicate(ipif);
12102 			(void) ipif_down_tail(ipif);
12103 		} else {
12104 			(void) ipif_down(ipif, NULL, NULL);
12105 		}
12106 	}
12107 }
12108 
12109 /*
12110  * Redo source address selection.  This makes IXAF_VERIFY_SOURCE take
12111  * a look again at valid source addresses.
12112  * This should be called each time after the set of source addresses has been
12113  * changed.
12114  */
12115 void
12116 ip_update_source_selection(ip_stack_t *ipst)
12117 {
12118 	/* We skip past SRC_GENERATION_VERIFY */
12119 	if (atomic_add_32_nv(&ipst->ips_src_generation, 1) ==
12120 	    SRC_GENERATION_VERIFY)
12121 		atomic_add_32(&ipst->ips_src_generation, 1);
12122 }
12123 
12124 /*
12125  * Finish the group join started in ip_sioctl_groupname().
12126  */
12127 /* ARGSUSED */
12128 static void
12129 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
12130 {
12131 	ill_t		*ill = q->q_ptr;
12132 	phyint_t	*phyi = ill->ill_phyint;
12133 	ipmp_grp_t	*grp = phyi->phyint_grp;
12134 	ip_stack_t	*ipst = ill->ill_ipst;
12135 
12136 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
12137 	ASSERT(!IS_IPMP(ill) && grp != NULL);
12138 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12139 
12140 	if (phyi->phyint_illv4 != NULL) {
12141 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12142 		VERIFY(grp->gr_pendv4-- > 0);
12143 		rw_exit(&ipst->ips_ipmp_lock);
12144 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
12145 	}
12146 	if (phyi->phyint_illv6 != NULL) {
12147 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12148 		VERIFY(grp->gr_pendv6-- > 0);
12149 		rw_exit(&ipst->ips_ipmp_lock);
12150 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
12151 	}
12152 	freemsg(mp);
12153 }
12154 
12155 /*
12156  * Process an SIOCSLIFGROUPNAME request.
12157  */
12158 /* ARGSUSED */
12159 int
12160 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12161     ip_ioctl_cmd_t *ipip, void *ifreq)
12162 {
12163 	struct lifreq	*lifr = ifreq;
12164 	ill_t		*ill = ipif->ipif_ill;
12165 	ip_stack_t	*ipst = ill->ill_ipst;
12166 	phyint_t	*phyi = ill->ill_phyint;
12167 	ipmp_grp_t	*grp = phyi->phyint_grp;
12168 	mblk_t		*ipsq_mp;
12169 	int		err = 0;
12170 
12171 	/*
12172 	 * Note that phyint_grp can only change here, where we're exclusive.
12173 	 */
12174 	ASSERT(IAM_WRITER_ILL(ill));
12175 
12176 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
12177 	    (phyi->phyint_flags & PHYI_VIRTUAL))
12178 		return (EINVAL);
12179 
12180 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
12181 
12182 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
12183 
12184 	/*
12185 	 * If the name hasn't changed, there's nothing to do.
12186 	 */
12187 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
12188 		goto unlock;
12189 
12190 	/*
12191 	 * Handle requests to rename an IPMP meta-interface.
12192 	 *
12193 	 * Note that creation of the IPMP meta-interface is handled in
12194 	 * userland through the standard plumbing sequence.  As part of the
12195 	 * plumbing the IPMP meta-interface, its initial groupname is set to
12196 	 * the name of the interface (see ipif_set_values_tail()).
12197 	 */
12198 	if (IS_IPMP(ill)) {
12199 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
12200 		goto unlock;
12201 	}
12202 
12203 	/*
12204 	 * Handle requests to add or remove an IP interface from a group.
12205 	 */
12206 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
12207 		/*
12208 		 * Moves are handled by first removing the interface from
12209 		 * its existing group, and then adding it to another group.
12210 		 * So, fail if it's already in a group.
12211 		 */
12212 		if (IS_UNDER_IPMP(ill)) {
12213 			err = EALREADY;
12214 			goto unlock;
12215 		}
12216 
12217 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
12218 		if (grp == NULL) {
12219 			err = ENOENT;
12220 			goto unlock;
12221 		}
12222 
12223 		/*
12224 		 * Check if the phyint and its ills are suitable for
12225 		 * inclusion into the group.
12226 		 */
12227 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
12228 			goto unlock;
12229 
12230 		/*
12231 		 * Checks pass; join the group, and enqueue the remaining
12232 		 * illgrp joins for when we've become part of the group xop
12233 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
12234 		 * requires an mblk_t to scribble on, and since `mp' will be
12235 		 * freed as part of completing the ioctl, allocate another.
12236 		 */
12237 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
12238 			err = ENOMEM;
12239 			goto unlock;
12240 		}
12241 
12242 		/*
12243 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
12244 		 * IPMP meta-interface ills needed by `phyi' cannot go away
12245 		 * before ip_join_illgrps() is called back.  See the comments
12246 		 * in ip_sioctl_plink_ipmp() for more.
12247 		 */
12248 		if (phyi->phyint_illv4 != NULL)
12249 			grp->gr_pendv4++;
12250 		if (phyi->phyint_illv6 != NULL)
12251 			grp->gr_pendv6++;
12252 
12253 		rw_exit(&ipst->ips_ipmp_lock);
12254 
12255 		ipmp_phyint_join_grp(phyi, grp);
12256 		ill_refhold(ill);
12257 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
12258 		    SWITCH_OP, B_FALSE);
12259 		return (0);
12260 	} else {
12261 		/*
12262 		 * Request to remove the interface from a group.  If the
12263 		 * interface is not in a group, this trivially succeeds.
12264 		 */
12265 		rw_exit(&ipst->ips_ipmp_lock);
12266 		if (IS_UNDER_IPMP(ill))
12267 			ipmp_phyint_leave_grp(phyi);
12268 		return (0);
12269 	}
12270 unlock:
12271 	rw_exit(&ipst->ips_ipmp_lock);
12272 	return (err);
12273 }
12274 
12275 /*
12276  * Process an SIOCGLIFBINDING request.
12277  */
12278 /* ARGSUSED */
12279 int
12280 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12281     ip_ioctl_cmd_t *ipip, void *ifreq)
12282 {
12283 	ill_t		*ill;
12284 	struct lifreq	*lifr = ifreq;
12285 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12286 
12287 	if (!IS_IPMP(ipif->ipif_ill))
12288 		return (EINVAL);
12289 
12290 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12291 	if ((ill = ipif->ipif_bound_ill) == NULL)
12292 		lifr->lifr_binding[0] = '\0';
12293 	else
12294 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
12295 	rw_exit(&ipst->ips_ipmp_lock);
12296 	return (0);
12297 }
12298 
12299 /*
12300  * Process an SIOCGLIFGROUPNAME request.
12301  */
12302 /* ARGSUSED */
12303 int
12304 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12305     ip_ioctl_cmd_t *ipip, void *ifreq)
12306 {
12307 	ipmp_grp_t	*grp;
12308 	struct lifreq	*lifr = ifreq;
12309 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12310 
12311 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12312 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
12313 		lifr->lifr_groupname[0] = '\0';
12314 	else
12315 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
12316 	rw_exit(&ipst->ips_ipmp_lock);
12317 	return (0);
12318 }
12319 
12320 /*
12321  * Process an SIOCGLIFGROUPINFO request.
12322  */
12323 /* ARGSUSED */
12324 int
12325 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12326     ip_ioctl_cmd_t *ipip, void *dummy)
12327 {
12328 	ipmp_grp_t	*grp;
12329 	lifgroupinfo_t	*lifgr;
12330 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
12331 
12332 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
12333 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
12334 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
12335 
12336 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
12337 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
12338 		rw_exit(&ipst->ips_ipmp_lock);
12339 		return (ENOENT);
12340 	}
12341 	ipmp_grp_info(grp, lifgr);
12342 	rw_exit(&ipst->ips_ipmp_lock);
12343 	return (0);
12344 }
12345 
12346 static void
12347 ill_dl_down(ill_t *ill)
12348 {
12349 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill);
12350 
12351 	/*
12352 	 * The ill is down; unbind but stay attached since we're still
12353 	 * associated with a PPA. If we have negotiated DLPI capabilites
12354 	 * with the data link service provider (IDS_OK) then reset them.
12355 	 * The interval between unbinding and rebinding is potentially
12356 	 * unbounded hence we cannot assume things will be the same.
12357 	 * The DLPI capabilities will be probed again when the data link
12358 	 * is brought up.
12359 	 */
12360 	mblk_t	*mp = ill->ill_unbind_mp;
12361 
12362 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
12363 
12364 	if (!ill->ill_replumbing) {
12365 		/* Free all ilms for this ill */
12366 		update_conn_ill(ill, ill->ill_ipst);
12367 	} else {
12368 		ill_leave_multicast(ill);
12369 	}
12370 
12371 	ill->ill_unbind_mp = NULL;
12372 	if (mp != NULL) {
12373 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
12374 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
12375 		    ill->ill_name));
12376 		mutex_enter(&ill->ill_lock);
12377 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
12378 		mutex_exit(&ill->ill_lock);
12379 		/*
12380 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
12381 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
12382 		 * ill_capability_dld_disable disable rightaway. If this is not
12383 		 * an unplumb operation then the disable happens on receipt of
12384 		 * the capab ack via ip_rput_dlpi_writer ->
12385 		 * ill_capability_ack_thr. In both cases the order of
12386 		 * the operations seen by DLD is capability disable followed
12387 		 * by DL_UNBIND. Also the DLD capability disable needs a
12388 		 * cv_wait'able context.
12389 		 */
12390 		if (ill->ill_state_flags & ILL_CONDEMNED)
12391 			ill_capability_dld_disable(ill);
12392 		ill_capability_reset(ill, B_FALSE);
12393 		ill_dlpi_send(ill, mp);
12394 	}
12395 	mutex_enter(&ill->ill_lock);
12396 	ill->ill_dl_up = 0;
12397 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
12398 	mutex_exit(&ill->ill_lock);
12399 }
12400 
12401 void
12402 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
12403 {
12404 	union DL_primitives *dlp;
12405 	t_uscalar_t prim;
12406 	boolean_t waitack = B_FALSE;
12407 
12408 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12409 
12410 	dlp = (union DL_primitives *)mp->b_rptr;
12411 	prim = dlp->dl_primitive;
12412 
12413 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
12414 	    dl_primstr(prim), prim, ill->ill_name));
12415 
12416 	switch (prim) {
12417 	case DL_PHYS_ADDR_REQ:
12418 	{
12419 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
12420 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
12421 		break;
12422 	}
12423 	case DL_BIND_REQ:
12424 		mutex_enter(&ill->ill_lock);
12425 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
12426 		mutex_exit(&ill->ill_lock);
12427 		break;
12428 	}
12429 
12430 	/*
12431 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
12432 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
12433 	 * we only wait for the ACK of the DL_UNBIND_REQ.
12434 	 */
12435 	mutex_enter(&ill->ill_lock);
12436 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12437 	    (prim == DL_UNBIND_REQ)) {
12438 		ill->ill_dlpi_pending = prim;
12439 		waitack = B_TRUE;
12440 	}
12441 
12442 	mutex_exit(&ill->ill_lock);
12443 	DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch",
12444 	    char *, dl_primstr(prim), ill_t *, ill);
12445 	putnext(ill->ill_wq, mp);
12446 
12447 	/*
12448 	 * There is no ack for DL_NOTIFY_CONF messages
12449 	 */
12450 	if (waitack && prim == DL_NOTIFY_CONF)
12451 		ill_dlpi_done(ill, prim);
12452 }
12453 
12454 /*
12455  * Helper function for ill_dlpi_send().
12456  */
12457 /* ARGSUSED */
12458 static void
12459 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12460 {
12461 	ill_dlpi_send(q->q_ptr, mp);
12462 }
12463 
12464 /*
12465  * Send a DLPI control message to the driver but make sure there
12466  * is only one outstanding message. Uses ill_dlpi_pending to tell
12467  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
12468  * when an ACK or a NAK is received to process the next queued message.
12469  */
12470 void
12471 ill_dlpi_send(ill_t *ill, mblk_t *mp)
12472 {
12473 	mblk_t **mpp;
12474 
12475 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12476 
12477 	/*
12478 	 * To ensure that any DLPI requests for current exclusive operation
12479 	 * are always completely sent before any DLPI messages for other
12480 	 * operations, require writer access before enqueuing.
12481 	 */
12482 	if (!IAM_WRITER_ILL(ill)) {
12483 		ill_refhold(ill);
12484 		/* qwriter_ip() does the ill_refrele() */
12485 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
12486 		    NEW_OP, B_TRUE);
12487 		return;
12488 	}
12489 
12490 	mutex_enter(&ill->ill_lock);
12491 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12492 		/* Must queue message. Tail insertion */
12493 		mpp = &ill->ill_dlpi_deferred;
12494 		while (*mpp != NULL)
12495 			mpp = &((*mpp)->b_next);
12496 
12497 		ip1dbg(("ill_dlpi_send: deferring request for %s "
12498 		    "while %s pending\n", ill->ill_name,
12499 		    dl_primstr(ill->ill_dlpi_pending)));
12500 
12501 		*mpp = mp;
12502 		mutex_exit(&ill->ill_lock);
12503 		return;
12504 	}
12505 	mutex_exit(&ill->ill_lock);
12506 	ill_dlpi_dispatch(ill, mp);
12507 }
12508 
12509 void
12510 ill_capability_send(ill_t *ill, mblk_t *mp)
12511 {
12512 	ill->ill_capab_pending_cnt++;
12513 	ill_dlpi_send(ill, mp);
12514 }
12515 
12516 void
12517 ill_capability_done(ill_t *ill)
12518 {
12519 	ASSERT(ill->ill_capab_pending_cnt != 0);
12520 
12521 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
12522 
12523 	ill->ill_capab_pending_cnt--;
12524 	if (ill->ill_capab_pending_cnt == 0 &&
12525 	    ill->ill_dlpi_capab_state == IDCS_OK)
12526 		ill_capability_reset_alloc(ill);
12527 }
12528 
12529 /*
12530  * Send all deferred DLPI messages without waiting for their ACKs.
12531  */
12532 void
12533 ill_dlpi_send_deferred(ill_t *ill)
12534 {
12535 	mblk_t *mp, *nextmp;
12536 
12537 	/*
12538 	 * Clear ill_dlpi_pending so that the message is not queued in
12539 	 * ill_dlpi_send().
12540 	 */
12541 	mutex_enter(&ill->ill_lock);
12542 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
12543 	mp = ill->ill_dlpi_deferred;
12544 	ill->ill_dlpi_deferred = NULL;
12545 	mutex_exit(&ill->ill_lock);
12546 
12547 	for (; mp != NULL; mp = nextmp) {
12548 		nextmp = mp->b_next;
12549 		mp->b_next = NULL;
12550 		ill_dlpi_send(ill, mp);
12551 	}
12552 }
12553 
12554 /*
12555  * Check if the DLPI primitive `prim' is pending; print a warning if not.
12556  */
12557 boolean_t
12558 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
12559 {
12560 	t_uscalar_t pending;
12561 
12562 	mutex_enter(&ill->ill_lock);
12563 	if (ill->ill_dlpi_pending == prim) {
12564 		mutex_exit(&ill->ill_lock);
12565 		return (B_TRUE);
12566 	}
12567 
12568 	/*
12569 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
12570 	 * without waiting, so don't print any warnings in that case.
12571 	 */
12572 	if (ill->ill_state_flags & ILL_CONDEMNED) {
12573 		mutex_exit(&ill->ill_lock);
12574 		return (B_FALSE);
12575 	}
12576 	pending = ill->ill_dlpi_pending;
12577 	mutex_exit(&ill->ill_lock);
12578 
12579 	if (pending == DL_PRIM_INVAL) {
12580 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12581 		    "received unsolicited ack for %s on %s\n",
12582 		    dl_primstr(prim), ill->ill_name);
12583 	} else {
12584 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
12585 		    "received unexpected ack for %s on %s (expecting %s)\n",
12586 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
12587 	}
12588 	return (B_FALSE);
12589 }
12590 
12591 /*
12592  * Complete the current DLPI operation associated with `prim' on `ill' and
12593  * start the next queued DLPI operation (if any).  If there are no queued DLPI
12594  * operations and the ill's current exclusive IPSQ operation has finished
12595  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
12596  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
12597  * the comments above ipsq_current_finish() for details.
12598  */
12599 void
12600 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
12601 {
12602 	mblk_t *mp;
12603 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
12604 	ipxop_t *ipx = ipsq->ipsq_xop;
12605 
12606 	ASSERT(IAM_WRITER_IPSQ(ipsq));
12607 	mutex_enter(&ill->ill_lock);
12608 
12609 	ASSERT(prim != DL_PRIM_INVAL);
12610 	ASSERT(ill->ill_dlpi_pending == prim);
12611 
12612 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
12613 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
12614 
12615 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
12616 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
12617 		if (ipx->ipx_current_done) {
12618 			mutex_enter(&ipx->ipx_lock);
12619 			ipx->ipx_current_ipif = NULL;
12620 			mutex_exit(&ipx->ipx_lock);
12621 		}
12622 		cv_signal(&ill->ill_cv);
12623 		mutex_exit(&ill->ill_lock);
12624 		return;
12625 	}
12626 
12627 	ill->ill_dlpi_deferred = mp->b_next;
12628 	mp->b_next = NULL;
12629 	mutex_exit(&ill->ill_lock);
12630 
12631 	ill_dlpi_dispatch(ill, mp);
12632 }
12633 
12634 /*
12635  * Queue a (multicast) DLPI control message to be sent to the driver by
12636  * later calling ill_dlpi_send_queued.
12637  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12638  * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ
12639  * for the same group to race.
12640  * We send DLPI control messages in order using ill_lock.
12641  * For IPMP we should be called on the cast_ill.
12642  */
12643 void
12644 ill_dlpi_queue(ill_t *ill, mblk_t *mp)
12645 {
12646 	mblk_t **mpp;
12647 
12648 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
12649 
12650 	mutex_enter(&ill->ill_lock);
12651 	/* Must queue message. Tail insertion */
12652 	mpp = &ill->ill_dlpi_deferred;
12653 	while (*mpp != NULL)
12654 		mpp = &((*mpp)->b_next);
12655 
12656 	*mpp = mp;
12657 	mutex_exit(&ill->ill_lock);
12658 }
12659 
12660 /*
12661  * Send the messages that were queued. Make sure there is only
12662  * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done()
12663  * when an ACK or a NAK is received to process the next queued message.
12664  * For IPMP we are called on the upper ill, but when send what is queued
12665  * on the cast_ill.
12666  */
12667 void
12668 ill_dlpi_send_queued(ill_t *ill)
12669 {
12670 	mblk_t	*mp;
12671 	union DL_primitives *dlp;
12672 	t_uscalar_t prim;
12673 	ill_t *release_ill = NULL;
12674 
12675 	if (IS_IPMP(ill)) {
12676 		/* On the upper IPMP ill. */
12677 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12678 		if (release_ill == NULL) {
12679 			/* Avoid ever sending anything down to the ipmpstub */
12680 			return;
12681 		}
12682 		ill = release_ill;
12683 	}
12684 	mutex_enter(&ill->ill_lock);
12685 	while ((mp = ill->ill_dlpi_deferred) != NULL) {
12686 		if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
12687 			/* Can't send. Somebody else will send it */
12688 			mutex_exit(&ill->ill_lock);
12689 			goto done;
12690 		}
12691 		ill->ill_dlpi_deferred = mp->b_next;
12692 		mp->b_next = NULL;
12693 		if (!ill->ill_dl_up) {
12694 			/*
12695 			 * Nobody there. All multicast addresses will be
12696 			 * re-joined when we get the DL_BIND_ACK bringing the
12697 			 * interface up.
12698 			 */
12699 			freemsg(mp);
12700 			continue;
12701 		}
12702 		dlp = (union DL_primitives *)mp->b_rptr;
12703 		prim = dlp->dl_primitive;
12704 
12705 		if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
12706 		    (prim == DL_UNBIND_REQ)) {
12707 			ill->ill_dlpi_pending = prim;
12708 		}
12709 		mutex_exit(&ill->ill_lock);
12710 
12711 		DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued",
12712 		    char *, dl_primstr(prim), ill_t *, ill);
12713 		putnext(ill->ill_wq, mp);
12714 		mutex_enter(&ill->ill_lock);
12715 	}
12716 	mutex_exit(&ill->ill_lock);
12717 done:
12718 	if (release_ill != NULL)
12719 		ill_refrele(release_ill);
12720 }
12721 
12722 /*
12723  * Queue an IP (IGMP/MLD) message to be sent by IP from
12724  * ill_mcast_send_queued
12725  * We queue them while holding a lock (ill_mcast_lock) to ensure that they
12726  * are sent in order i.e., prevent a IGMP leave and IGMP join for the same
12727  * group to race.
12728  * We send them in order using ill_lock.
12729  * For IPMP we are called on the upper ill, but we queue on the cast_ill.
12730  */
12731 void
12732 ill_mcast_queue(ill_t *ill, mblk_t *mp)
12733 {
12734 	mblk_t **mpp;
12735 	ill_t *release_ill = NULL;
12736 
12737 	ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock));
12738 
12739 	if (IS_IPMP(ill)) {
12740 		/* On the upper IPMP ill. */
12741 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12742 		if (release_ill == NULL) {
12743 			/* Discard instead of queuing for the ipmp interface */
12744 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12745 			ip_drop_output("ipIfStatsOutDiscards - no cast_ill",
12746 			    mp, ill);
12747 			freemsg(mp);
12748 			return;
12749 		}
12750 		ill = release_ill;
12751 	}
12752 
12753 	mutex_enter(&ill->ill_lock);
12754 	/* Must queue message. Tail insertion */
12755 	mpp = &ill->ill_mcast_deferred;
12756 	while (*mpp != NULL)
12757 		mpp = &((*mpp)->b_next);
12758 
12759 	*mpp = mp;
12760 	mutex_exit(&ill->ill_lock);
12761 	if (release_ill != NULL)
12762 		ill_refrele(release_ill);
12763 }
12764 
12765 /*
12766  * Send the IP packets that were queued by ill_mcast_queue.
12767  * These are IGMP/MLD packets.
12768  *
12769  * For IPMP we are called on the upper ill, but when send what is queued
12770  * on the cast_ill.
12771  *
12772  * Request loopback of the report if we are acting as a multicast
12773  * router, so that the process-level routing demon can hear it.
12774  * This will run multiple times for the same group if there are members
12775  * on the same group for multiple ipif's on the same ill. The
12776  * igmp_input/mld_input code will suppress this due to the loopback thus we
12777  * always loopback membership report.
12778  *
12779  * We also need to make sure that this does not get load balanced
12780  * by IPMP. We do this by passing an ill to ip_output_simple.
12781  */
12782 void
12783 ill_mcast_send_queued(ill_t *ill)
12784 {
12785 	mblk_t	*mp;
12786 	ip_xmit_attr_t ixas;
12787 	ill_t *release_ill = NULL;
12788 
12789 	if (IS_IPMP(ill)) {
12790 		/* On the upper IPMP ill. */
12791 		release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp);
12792 		if (release_ill == NULL) {
12793 			/*
12794 			 * We should have no messages on the ipmp interface
12795 			 * but no point in trying to send them.
12796 			 */
12797 			return;
12798 		}
12799 		ill = release_ill;
12800 	}
12801 	bzero(&ixas, sizeof (ixas));
12802 	ixas.ixa_zoneid = ALL_ZONES;
12803 	ixas.ixa_cred = kcred;
12804 	ixas.ixa_cpid = NOPID;
12805 	ixas.ixa_tsl = NULL;
12806 	/*
12807 	 * Here we set ixa_ifindex. If IPMP it will be the lower ill which
12808 	 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill.
12809 	 * That is necessary to handle IGMP/MLD snooping switches.
12810 	 */
12811 	ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex;
12812 	ixas.ixa_ipst = ill->ill_ipst;
12813 
12814 	mutex_enter(&ill->ill_lock);
12815 	while ((mp = ill->ill_mcast_deferred) != NULL) {
12816 		ill->ill_mcast_deferred = mp->b_next;
12817 		mp->b_next = NULL;
12818 		if (!ill->ill_dl_up) {
12819 			/*
12820 			 * Nobody there. Just drop the ip packets.
12821 			 * IGMP/MLD will resend later, if this is a replumb.
12822 			 */
12823 			freemsg(mp);
12824 			continue;
12825 		}
12826 		mutex_enter(&ill->ill_phyint->phyint_lock);
12827 		if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) {
12828 			/*
12829 			 * When the ill is getting deactivated, we only want to
12830 			 * send the DLPI messages, so drop IGMP/MLD packets.
12831 			 * DLPI messages are handled by ill_dlpi_send_queued()
12832 			 */
12833 			mutex_exit(&ill->ill_phyint->phyint_lock);
12834 			freemsg(mp);
12835 			continue;
12836 		}
12837 		mutex_exit(&ill->ill_phyint->phyint_lock);
12838 		mutex_exit(&ill->ill_lock);
12839 
12840 		/* Check whether we are sending IPv4 or IPv6. */
12841 		if (ill->ill_isv6) {
12842 			ip6_t  *ip6h = (ip6_t *)mp->b_rptr;
12843 
12844 			ixas.ixa_multicast_ttl = ip6h->ip6_hops;
12845 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6;
12846 		} else {
12847 			ipha_t *ipha = (ipha_t *)mp->b_rptr;
12848 
12849 			ixas.ixa_multicast_ttl = ipha->ipha_ttl;
12850 			ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
12851 			ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM;
12852 		}
12853 
12854 		ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE;
12855 		(void) ip_output_simple(mp, &ixas);
12856 		ixa_cleanup(&ixas);
12857 
12858 		mutex_enter(&ill->ill_lock);
12859 	}
12860 	mutex_exit(&ill->ill_lock);
12861 
12862 done:
12863 	if (release_ill != NULL)
12864 		ill_refrele(release_ill);
12865 }
12866 
12867 /*
12868  * Take down a specific interface, but don't lose any information about it.
12869  * (Always called as writer.)
12870  * This function goes through the down sequence even if the interface is
12871  * already down. There are 2 reasons.
12872  * a. Currently we permit interface routes that depend on down interfaces
12873  *    to be added. This behaviour itself is questionable. However it appears
12874  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
12875  *    time. We go thru the cleanup in order to remove these routes.
12876  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
12877  *    DL_ERROR_ACK in response to the DL_BIND request. The interface is
12878  *    down, but we need to cleanup i.e. do ill_dl_down and
12879  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
12880  *
12881  * IP-MT notes:
12882  *
12883  * Model of reference to interfaces.
12884  *
12885  * The following members in ipif_t track references to the ipif.
12886  *	int     ipif_refcnt;    Active reference count
12887  *
12888  * The following members in ill_t track references to the ill.
12889  *	int             ill_refcnt;     active refcnt
12890  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
12891  *	uint_t          ill_ncec_cnt;	Number of ncecs referencing ill
12892  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
12893  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
12894  *
12895  * Reference to an ipif or ill can be obtained in any of the following ways.
12896  *
12897  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
12898  * Pointers to ipif / ill from other data structures viz ire and conn.
12899  * Implicit reference to the ipif / ill by holding a reference to the ire.
12900  *
12901  * The ipif/ill lookup functions return a reference held ipif / ill.
12902  * ipif_refcnt and ill_refcnt track the reference counts respectively.
12903  * This is a purely dynamic reference count associated with threads holding
12904  * references to the ipif / ill. Pointers from other structures do not
12905  * count towards this reference count.
12906  *
12907  * ill_ire_cnt is the number of ire's associated with the
12908  * ill. This is incremented whenever a new ire is created referencing the
12909  * ill. This is done atomically inside ire_add_v[46] where the ire is
12910  * actually added to the ire hash table. The count is decremented in
12911  * ire_inactive where the ire is destroyed.
12912  *
12913  * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill.
12914  * This is incremented atomically in
12915  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
12916  * table. Similarly it is decremented in ncec_inactive() where the ncec
12917  * is destroyed.
12918  *
12919  * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is
12920  * incremented atomically in nce_add() where the nce is actually added to the
12921  * ill_nce. Similarly it is decremented in nce_inactive() where the nce
12922  * is destroyed.
12923  *
12924  * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in
12925  * ilm_add() and decremented before the ilm is freed in ilm_delete().
12926  *
12927  * Flow of ioctls involving interface down/up
12928  *
12929  * The following is the sequence of an attempt to set some critical flags on an
12930  * up interface.
12931  * ip_sioctl_flags
12932  * ipif_down
12933  * wait for ipif to be quiescent
12934  * ipif_down_tail
12935  * ip_sioctl_flags_tail
12936  *
12937  * All set ioctls that involve down/up sequence would have a skeleton similar
12938  * to the above. All the *tail functions are called after the refcounts have
12939  * dropped to the appropriate values.
12940  *
12941  * SIOC ioctls during the IPIF_CHANGING interval.
12942  *
12943  * Threads handling SIOC set ioctls serialize on the squeue, but this
12944  * is not done for SIOC get ioctls. Since a set ioctl can cause several
12945  * steps of internal changes to the state, some of which are visible in
12946  * ipif_flags (such as IFF_UP being cleared and later set), and we want
12947  * the set ioctl to be atomic related to the get ioctls, the SIOC get code
12948  * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then
12949  * enqueued in the ipsq and the operation is restarted by ipsq_exit() when
12950  * the current exclusive operation completes. The IPIF_CHANGING check
12951  * and enqueue is atomic using the ill_lock and ipsq_lock. The
12952  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
12953  * change while the ill_lock is held. Before dropping the ill_lock we acquire
12954  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
12955  * until we release the ipsq_lock, even though the ill/ipif state flags
12956  * can change after we drop the ill_lock.
12957  */
12958 int
12959 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
12960 {
12961 	ill_t		*ill = ipif->ipif_ill;
12962 	conn_t		*connp;
12963 	boolean_t	success;
12964 	boolean_t	ipif_was_up = B_FALSE;
12965 	ip_stack_t	*ipst = ill->ill_ipst;
12966 
12967 	ASSERT(IAM_WRITER_IPIF(ipif));
12968 
12969 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
12970 
12971 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down",
12972 	    ill_t *, ill, ipif_t *, ipif);
12973 
12974 	if (ipif->ipif_flags & IPIF_UP) {
12975 		mutex_enter(&ill->ill_lock);
12976 		ipif->ipif_flags &= ~IPIF_UP;
12977 		ASSERT(ill->ill_ipif_up_count > 0);
12978 		--ill->ill_ipif_up_count;
12979 		mutex_exit(&ill->ill_lock);
12980 		ipif_was_up = B_TRUE;
12981 		/* Update status in SCTP's list */
12982 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
12983 		ill_nic_event_dispatch(ipif->ipif_ill,
12984 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
12985 	}
12986 
12987 	/*
12988 	 * Blow away memberships we established in ipif_multicast_up().
12989 	 */
12990 	ipif_multicast_down(ipif);
12991 
12992 	/*
12993 	 * Remove from the mapping for __sin6_src_id. We insert only
12994 	 * when the address is not INADDR_ANY. As IPv4 addresses are
12995 	 * stored as mapped addresses, we need to check for mapped
12996 	 * INADDR_ANY also.
12997 	 */
12998 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
12999 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
13000 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
13001 		int err;
13002 
13003 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
13004 		    ipif->ipif_zoneid, ipst);
13005 		if (err != 0) {
13006 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
13007 		}
13008 	}
13009 
13010 	if (ipif_was_up) {
13011 		/* only delete if we'd added ire's before */
13012 		if (ipif->ipif_isv6)
13013 			ipif_delete_ires_v6(ipif);
13014 		else
13015 			ipif_delete_ires_v4(ipif);
13016 	}
13017 
13018 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
13019 		/*
13020 		 * Since the interface is now down, it may have just become
13021 		 * inactive.  Note that this needs to be done even for a
13022 		 * lll_logical_down(), or ARP entries will not get correctly
13023 		 * restored when the interface comes back up.
13024 		 */
13025 		if (IS_UNDER_IPMP(ill))
13026 			ipmp_ill_refresh_active(ill);
13027 	}
13028 
13029 	/*
13030 	 * neighbor-discovery or arp entries for this interface. The ipif
13031 	 * has to be quiesced, so we walk all the nce's and delete those
13032 	 * that point at the ipif->ipif_ill. At the same time, we also
13033 	 * update IPMP so that ipifs for data addresses are unbound. We dont
13034 	 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer
13035 	 * that for ipif_down_tail()
13036 	 */
13037 	ipif_nce_down(ipif);
13038 
13039 	/*
13040 	 * If this is the last ipif on the ill, we also need to remove
13041 	 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will
13042 	 * never succeed.
13043 	 */
13044 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0)
13045 		ire_walk_ill(0, 0, ill_downi, ill, ill);
13046 
13047 	/*
13048 	 * Walk all CONNs that can have a reference on an ire for this
13049 	 * ipif (we actually walk all that now have stale references).
13050 	 */
13051 	ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst);
13052 
13053 	/*
13054 	 * If mp is NULL the caller will wait for the appropriate refcnt.
13055 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
13056 	 * and ill_delete -> ipif_free -> ipif_down
13057 	 */
13058 	if (mp == NULL) {
13059 		ASSERT(q == NULL);
13060 		return (0);
13061 	}
13062 
13063 	if (CONN_Q(q)) {
13064 		connp = Q_TO_CONN(q);
13065 		mutex_enter(&connp->conn_lock);
13066 	} else {
13067 		connp = NULL;
13068 	}
13069 	mutex_enter(&ill->ill_lock);
13070 	/*
13071 	 * Are there any ire's pointing to this ipif that are still active ?
13072 	 * If this is the last ipif going down, are there any ire's pointing
13073 	 * to this ill that are still active ?
13074 	 */
13075 	if (ipif_is_quiescent(ipif)) {
13076 		mutex_exit(&ill->ill_lock);
13077 		if (connp != NULL)
13078 			mutex_exit(&connp->conn_lock);
13079 		return (0);
13080 	}
13081 
13082 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
13083 	    ill->ill_name, (void *)ill));
13084 	/*
13085 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
13086 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
13087 	 * which in turn is called by the last refrele on the ipif/ill/ire.
13088 	 */
13089 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
13090 	if (!success) {
13091 		/* The conn is closing. So just return */
13092 		ASSERT(connp != NULL);
13093 		mutex_exit(&ill->ill_lock);
13094 		mutex_exit(&connp->conn_lock);
13095 		return (EINTR);
13096 	}
13097 
13098 	mutex_exit(&ill->ill_lock);
13099 	if (connp != NULL)
13100 		mutex_exit(&connp->conn_lock);
13101 	return (EINPROGRESS);
13102 }
13103 
13104 int
13105 ipif_down_tail(ipif_t *ipif)
13106 {
13107 	ill_t	*ill = ipif->ipif_ill;
13108 	int	err = 0;
13109 
13110 	DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail",
13111 	    ill_t *, ill, ipif_t *, ipif);
13112 
13113 	/*
13114 	 * Skip any loopback interface (null wq).
13115 	 * If this is the last logical interface on the ill
13116 	 * have ill_dl_down tell the driver we are gone (unbind)
13117 	 * Note that lun 0 can ipif_down even though
13118 	 * there are other logical units that are up.
13119 	 * This occurs e.g. when we change a "significant" IFF_ flag.
13120 	 */
13121 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
13122 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
13123 	    ill->ill_dl_up) {
13124 		ill_dl_down(ill);
13125 	}
13126 	if (!ipif->ipif_isv6)
13127 		err = ipif_arp_down(ipif);
13128 
13129 	ill->ill_logical_down = 0;
13130 
13131 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
13132 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
13133 	return (err);
13134 }
13135 
13136 /*
13137  * Bring interface logically down without bringing the physical interface
13138  * down e.g. when the netmask is changed. This avoids long lasting link
13139  * negotiations between an ethernet interface and a certain switches.
13140  */
13141 static int
13142 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
13143 {
13144 	DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down",
13145 	    ill_t *, ipif->ipif_ill, ipif_t *, ipif);
13146 
13147 	/*
13148 	 * The ill_logical_down flag is a transient flag. It is set here
13149 	 * and is cleared once the down has completed in ipif_down_tail.
13150 	 * This flag does not indicate whether the ill stream is in the
13151 	 * DL_BOUND state with the driver. Instead this flag is used by
13152 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
13153 	 * the driver. The state of the ill stream i.e. whether it is
13154 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
13155 	 */
13156 	ipif->ipif_ill->ill_logical_down = 1;
13157 	return (ipif_down(ipif, q, mp));
13158 }
13159 
13160 /*
13161  * Initiate deallocate of an IPIF. Always called as writer. Called by
13162  * ill_delete or ip_sioctl_removeif.
13163  */
13164 static void
13165 ipif_free(ipif_t *ipif)
13166 {
13167 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13168 
13169 	ASSERT(IAM_WRITER_IPIF(ipif));
13170 
13171 	if (ipif->ipif_recovery_id != 0)
13172 		(void) untimeout(ipif->ipif_recovery_id);
13173 	ipif->ipif_recovery_id = 0;
13174 
13175 	/*
13176 	 * Take down the interface. We can be called either from ill_delete
13177 	 * or from ip_sioctl_removeif.
13178 	 */
13179 	(void) ipif_down(ipif, NULL, NULL);
13180 
13181 	/*
13182 	 * Now that the interface is down, there's no chance it can still
13183 	 * become a duplicate.  Cancel any timer that may have been set while
13184 	 * tearing down.
13185 	 */
13186 	if (ipif->ipif_recovery_id != 0)
13187 		(void) untimeout(ipif->ipif_recovery_id);
13188 	ipif->ipif_recovery_id = 0;
13189 
13190 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13191 	/* Remove pointers to this ill in the multicast routing tables */
13192 	reset_mrt_vif_ipif(ipif);
13193 	/* If necessary, clear the cached source ipif rotor. */
13194 	if (ipif->ipif_ill->ill_src_ipif == ipif)
13195 		ipif->ipif_ill->ill_src_ipif = NULL;
13196 	rw_exit(&ipst->ips_ill_g_lock);
13197 }
13198 
13199 static void
13200 ipif_free_tail(ipif_t *ipif)
13201 {
13202 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13203 
13204 	/*
13205 	 * Need to hold both ill_g_lock and ill_lock while
13206 	 * inserting or removing an ipif from the linked list
13207 	 * of ipifs hanging off the ill.
13208 	 */
13209 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13210 
13211 #ifdef DEBUG
13212 	ipif_trace_cleanup(ipif);
13213 #endif
13214 
13215 	/* Ask SCTP to take it out of it list */
13216 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
13217 	ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT);
13218 
13219 	/* Get it out of the ILL interface list. */
13220 	ipif_remove(ipif);
13221 	rw_exit(&ipst->ips_ill_g_lock);
13222 
13223 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
13224 	ASSERT(ipif->ipif_recovery_id == 0);
13225 	ASSERT(ipif->ipif_ire_local == NULL);
13226 	ASSERT(ipif->ipif_ire_if == NULL);
13227 
13228 	/* Free the memory. */
13229 	mi_free(ipif);
13230 }
13231 
13232 /*
13233  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
13234  * is zero.
13235  */
13236 void
13237 ipif_get_name(const ipif_t *ipif, char *buf, int len)
13238 {
13239 	char	lbuf[LIFNAMSIZ];
13240 	char	*name;
13241 	size_t	name_len;
13242 
13243 	buf[0] = '\0';
13244 	name = ipif->ipif_ill->ill_name;
13245 	name_len = ipif->ipif_ill->ill_name_length;
13246 	if (ipif->ipif_id != 0) {
13247 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
13248 		    ipif->ipif_id);
13249 		name = lbuf;
13250 		name_len = mi_strlen(name) + 1;
13251 	}
13252 	len -= 1;
13253 	buf[len] = '\0';
13254 	len = MIN(len, name_len);
13255 	bcopy(name, buf, len);
13256 }
13257 
13258 /*
13259  * Sets `buf' to an ill name.
13260  */
13261 void
13262 ill_get_name(const ill_t *ill, char *buf, int len)
13263 {
13264 	char	*name;
13265 	size_t	name_len;
13266 
13267 	name = ill->ill_name;
13268 	name_len = ill->ill_name_length;
13269 	len -= 1;
13270 	buf[len] = '\0';
13271 	len = MIN(len, name_len);
13272 	bcopy(name, buf, len);
13273 }
13274 
13275 /*
13276  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
13277  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
13278  * implied unit id is zero. <phys> must correspond to the name of an ILL.
13279  * (May be called as writer.)
13280  */
13281 static ipif_t *
13282 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
13283     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst)
13284 {
13285 	char	*cp;
13286 	char	*endp;
13287 	long	id;
13288 	ill_t	*ill;
13289 	ipif_t	*ipif;
13290 	uint_t	ire_type;
13291 	boolean_t did_alloc = B_FALSE;
13292 
13293 	/*
13294 	 * If the caller wants to us to create the ipif, make sure we have a
13295 	 * valid zoneid
13296 	 */
13297 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
13298 
13299 	if (namelen == 0) {
13300 		return (NULL);
13301 	}
13302 
13303 	*exists = B_FALSE;
13304 	/* Look for a colon in the name. */
13305 	endp = &name[namelen];
13306 	for (cp = endp; --cp > name; ) {
13307 		if (*cp == IPIF_SEPARATOR_CHAR)
13308 			break;
13309 	}
13310 
13311 	if (*cp == IPIF_SEPARATOR_CHAR) {
13312 		/*
13313 		 * Reject any non-decimal aliases for logical
13314 		 * interfaces. Aliases with leading zeroes
13315 		 * are also rejected as they introduce ambiguity
13316 		 * in the naming of the interfaces.
13317 		 * In order to confirm with existing semantics,
13318 		 * and to not break any programs/script relying
13319 		 * on that behaviour, if<0>:0 is considered to be
13320 		 * a valid interface.
13321 		 *
13322 		 * If alias has two or more digits and the first
13323 		 * is zero, fail.
13324 		 */
13325 		if (&cp[2] < endp && cp[1] == '0') {
13326 			return (NULL);
13327 		}
13328 	}
13329 
13330 	if (cp <= name) {
13331 		cp = endp;
13332 	} else {
13333 		*cp = '\0';
13334 	}
13335 
13336 	/*
13337 	 * Look up the ILL, based on the portion of the name
13338 	 * before the slash. ill_lookup_on_name returns a held ill.
13339 	 * Temporary to check whether ill exists already. If so
13340 	 * ill_lookup_on_name will clear it.
13341 	 */
13342 	ill = ill_lookup_on_name(name, do_alloc, isv6,
13343 	    &did_alloc, ipst);
13344 	if (cp != endp)
13345 		*cp = IPIF_SEPARATOR_CHAR;
13346 	if (ill == NULL)
13347 		return (NULL);
13348 
13349 	/* Establish the unit number in the name. */
13350 	id = 0;
13351 	if (cp < endp && *endp == '\0') {
13352 		/* If there was a colon, the unit number follows. */
13353 		cp++;
13354 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
13355 			ill_refrele(ill);
13356 			return (NULL);
13357 		}
13358 	}
13359 
13360 	mutex_enter(&ill->ill_lock);
13361 	/* Now see if there is an IPIF with this unit number. */
13362 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13363 		if (ipif->ipif_id == id) {
13364 			if (zoneid != ALL_ZONES &&
13365 			    zoneid != ipif->ipif_zoneid &&
13366 			    ipif->ipif_zoneid != ALL_ZONES) {
13367 				mutex_exit(&ill->ill_lock);
13368 				ill_refrele(ill);
13369 				return (NULL);
13370 			}
13371 			if (IPIF_CAN_LOOKUP(ipif)) {
13372 				ipif_refhold_locked(ipif);
13373 				mutex_exit(&ill->ill_lock);
13374 				if (!did_alloc)
13375 					*exists = B_TRUE;
13376 				/*
13377 				 * Drop locks before calling ill_refrele
13378 				 * since it can potentially call into
13379 				 * ipif_ill_refrele_tail which can end up
13380 				 * in trying to acquire any lock.
13381 				 */
13382 				ill_refrele(ill);
13383 				return (ipif);
13384 			}
13385 		}
13386 	}
13387 
13388 	if (!do_alloc) {
13389 		mutex_exit(&ill->ill_lock);
13390 		ill_refrele(ill);
13391 		return (NULL);
13392 	}
13393 
13394 	/*
13395 	 * If none found, atomically allocate and return a new one.
13396 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
13397 	 * to support "receive only" use of lo0:1 etc. as is still done
13398 	 * below as an initial guess.
13399 	 * However, this is now likely to be overriden later in ipif_up_done()
13400 	 * when we know for sure what address has been configured on the
13401 	 * interface, since we might have more than one loopback interface
13402 	 * with a loopback address, e.g. in the case of zones, and all the
13403 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
13404 	 */
13405 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
13406 		ire_type = IRE_LOOPBACK;
13407 	else
13408 		ire_type = IRE_LOCAL;
13409 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL);
13410 	if (ipif != NULL)
13411 		ipif_refhold_locked(ipif);
13412 	mutex_exit(&ill->ill_lock);
13413 	ill_refrele(ill);
13414 	return (ipif);
13415 }
13416 
13417 /*
13418  * This routine is called whenever a new address comes up on an ipif.  If
13419  * we are configured to respond to address mask requests, then we are supposed
13420  * to broadcast an address mask reply at this time.  This routine is also
13421  * called if we are already up, but a netmask change is made.  This is legal
13422  * but might not make the system manager very popular.	(May be called
13423  * as writer.)
13424  */
13425 void
13426 ipif_mask_reply(ipif_t *ipif)
13427 {
13428 	icmph_t	*icmph;
13429 	ipha_t	*ipha;
13430 	mblk_t	*mp;
13431 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13432 	ip_xmit_attr_t ixas;
13433 
13434 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
13435 
13436 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
13437 		return;
13438 
13439 	/* ICMP mask reply is IPv4 only */
13440 	ASSERT(!ipif->ipif_isv6);
13441 	/* ICMP mask reply is not for a loopback interface */
13442 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
13443 
13444 	if (ipif->ipif_lcl_addr == INADDR_ANY)
13445 		return;
13446 
13447 	mp = allocb(REPLY_LEN, BPRI_HI);
13448 	if (mp == NULL)
13449 		return;
13450 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
13451 
13452 	ipha = (ipha_t *)mp->b_rptr;
13453 	bzero(ipha, REPLY_LEN);
13454 	*ipha = icmp_ipha;
13455 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
13456 	ipha->ipha_src = ipif->ipif_lcl_addr;
13457 	ipha->ipha_dst = ipif->ipif_brd_addr;
13458 	ipha->ipha_length = htons(REPLY_LEN);
13459 	ipha->ipha_ident = 0;
13460 
13461 	icmph = (icmph_t *)&ipha[1];
13462 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
13463 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
13464 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
13465 
13466 	bzero(&ixas, sizeof (ixas));
13467 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
13468 	ixas.ixa_flags |= IXAF_SET_SOURCE;
13469 	ixas.ixa_zoneid = ALL_ZONES;
13470 	ixas.ixa_ifindex = 0;
13471 	ixas.ixa_ipst = ipst;
13472 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
13473 	(void) ip_output_simple(mp, &ixas);
13474 	ixa_cleanup(&ixas);
13475 #undef	REPLY_LEN
13476 }
13477 
13478 /*
13479  * Join the ipif specific multicast groups.
13480  * Must be called after a mapping has been set up in the resolver.  (Always
13481  * called as writer.)
13482  */
13483 void
13484 ipif_multicast_up(ipif_t *ipif)
13485 {
13486 	int err;
13487 	ill_t *ill;
13488 	ilm_t *ilm;
13489 
13490 	ASSERT(IAM_WRITER_IPIF(ipif));
13491 
13492 	ill = ipif->ipif_ill;
13493 
13494 	ip1dbg(("ipif_multicast_up\n"));
13495 	if (!(ill->ill_flags & ILLF_MULTICAST) ||
13496 	    ipif->ipif_allhosts_ilm != NULL)
13497 		return;
13498 
13499 	if (ipif->ipif_isv6) {
13500 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
13501 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
13502 
13503 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
13504 
13505 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
13506 			return;
13507 
13508 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13509 
13510 		/*
13511 		 * Join the all hosts multicast address.  We skip this for
13512 		 * underlying IPMP interfaces since they should be invisible.
13513 		 */
13514 		if (!IS_UNDER_IPMP(ill)) {
13515 			ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid,
13516 			    &err);
13517 			if (ilm == NULL) {
13518 				ASSERT(err != 0);
13519 				ip0dbg(("ipif_multicast_up: "
13520 				    "all_hosts_mcast failed %d\n", err));
13521 				return;
13522 			}
13523 			ipif->ipif_allhosts_ilm = ilm;
13524 		}
13525 
13526 		/*
13527 		 * Enable multicast for the solicited node multicast address.
13528 		 * If IPMP we need to put the membership on the upper ill.
13529 		 */
13530 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
13531 			ill_t *mcast_ill = NULL;
13532 			boolean_t need_refrele;
13533 
13534 			if (IS_UNDER_IPMP(ill) &&
13535 			    (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) {
13536 				need_refrele = B_TRUE;
13537 			} else {
13538 				mcast_ill = ill;
13539 				need_refrele = B_FALSE;
13540 			}
13541 
13542 			ilm = ip_addmulti(&v6solmc, mcast_ill,
13543 			    ipif->ipif_zoneid, &err);
13544 			if (need_refrele)
13545 				ill_refrele(mcast_ill);
13546 
13547 			if (ilm == NULL) {
13548 				ASSERT(err != 0);
13549 				ip0dbg(("ipif_multicast_up: solicited MC"
13550 				    " failed %d\n", err));
13551 				if ((ilm = ipif->ipif_allhosts_ilm) != NULL) {
13552 					ipif->ipif_allhosts_ilm = NULL;
13553 					(void) ip_delmulti(ilm);
13554 				}
13555 				return;
13556 			}
13557 			ipif->ipif_solmulti_ilm = ilm;
13558 		}
13559 	} else {
13560 		in6_addr_t v6group;
13561 
13562 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
13563 			return;
13564 
13565 		/* Join the all hosts multicast address */
13566 		ip1dbg(("ipif_multicast_up - addmulti\n"));
13567 		IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group);
13568 
13569 		ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err);
13570 		if (ilm == NULL) {
13571 			ASSERT(err != 0);
13572 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
13573 			return;
13574 		}
13575 		ipif->ipif_allhosts_ilm = ilm;
13576 	}
13577 }
13578 
13579 /*
13580  * Blow away any multicast groups that we joined in ipif_multicast_up().
13581  * (ilms from explicit memberships are handled in conn_update_ill.)
13582  */
13583 void
13584 ipif_multicast_down(ipif_t *ipif)
13585 {
13586 	ASSERT(IAM_WRITER_IPIF(ipif));
13587 
13588 	ip1dbg(("ipif_multicast_down\n"));
13589 
13590 	if (ipif->ipif_allhosts_ilm != NULL) {
13591 		(void) ip_delmulti(ipif->ipif_allhosts_ilm);
13592 		ipif->ipif_allhosts_ilm = NULL;
13593 	}
13594 	if (ipif->ipif_solmulti_ilm != NULL) {
13595 		(void) ip_delmulti(ipif->ipif_solmulti_ilm);
13596 		ipif->ipif_solmulti_ilm = NULL;
13597 	}
13598 }
13599 
13600 /*
13601  * Used when an interface comes up to recreate any extra routes on this
13602  * interface.
13603  */
13604 int
13605 ill_recover_saved_ire(ill_t *ill)
13606 {
13607 	mblk_t		*mp;
13608 	ip_stack_t	*ipst = ill->ill_ipst;
13609 
13610 	ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name));
13611 
13612 	mutex_enter(&ill->ill_saved_ire_lock);
13613 	for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
13614 		ire_t		*ire, *nire;
13615 		ifrt_t		*ifrt;
13616 
13617 		ifrt = (ifrt_t *)mp->b_rptr;
13618 		/*
13619 		 * Create a copy of the IRE with the saved address and netmask.
13620 		 */
13621 		if (ill->ill_isv6) {
13622 			ire = ire_create_v6(
13623 			    &ifrt->ifrt_v6addr,
13624 			    &ifrt->ifrt_v6mask,
13625 			    &ifrt->ifrt_v6gateway_addr,
13626 			    ifrt->ifrt_type,
13627 			    ill,
13628 			    ifrt->ifrt_zoneid,
13629 			    ifrt->ifrt_flags,
13630 			    NULL,
13631 			    ipst);
13632 		} else {
13633 			ire = ire_create(
13634 			    (uint8_t *)&ifrt->ifrt_addr,
13635 			    (uint8_t *)&ifrt->ifrt_mask,
13636 			    (uint8_t *)&ifrt->ifrt_gateway_addr,
13637 			    ifrt->ifrt_type,
13638 			    ill,
13639 			    ifrt->ifrt_zoneid,
13640 			    ifrt->ifrt_flags,
13641 			    NULL,
13642 			    ipst);
13643 		}
13644 		if (ire == NULL) {
13645 			mutex_exit(&ill->ill_saved_ire_lock);
13646 			return (ENOMEM);
13647 		}
13648 
13649 		if (ifrt->ifrt_flags & RTF_SETSRC) {
13650 			if (ill->ill_isv6) {
13651 				ire->ire_setsrc_addr_v6 =
13652 				    ifrt->ifrt_v6setsrc_addr;
13653 			} else {
13654 				ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr;
13655 			}
13656 		}
13657 
13658 		/*
13659 		 * Some software (for example, GateD and Sun Cluster) attempts
13660 		 * to create (what amount to) IRE_PREFIX routes with the
13661 		 * loopback address as the gateway.  This is primarily done to
13662 		 * set up prefixes with the RTF_REJECT flag set (for example,
13663 		 * when generating aggregate routes.)
13664 		 *
13665 		 * If the IRE type (as defined by ill->ill_net_type) is
13666 		 * IRE_LOOPBACK, then we map the request into a
13667 		 * IRE_IF_NORESOLVER.
13668 		 */
13669 		if (ill->ill_net_type == IRE_LOOPBACK)
13670 			ire->ire_type = IRE_IF_NORESOLVER;
13671 
13672 		/*
13673 		 * ire held by ire_add, will be refreled' towards the
13674 		 * the end of ipif_up_done
13675 		 */
13676 		nire = ire_add(ire);
13677 		/*
13678 		 * Check if it was a duplicate entry. This handles
13679 		 * the case of two racing route adds for the same route
13680 		 */
13681 		if (nire == NULL) {
13682 			ip1dbg(("ill_recover_saved_ire: FAILED\n"));
13683 		} else if (nire != ire) {
13684 			ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n",
13685 			    (void *)nire));
13686 			ire_delete(nire);
13687 		} else {
13688 			ip1dbg(("ill_recover_saved_ire: added ire %p\n",
13689 			    (void *)nire));
13690 		}
13691 		if (nire != NULL)
13692 			ire_refrele(nire);
13693 	}
13694 	mutex_exit(&ill->ill_saved_ire_lock);
13695 	return (0);
13696 }
13697 
13698 /*
13699  * Used to set the netmask and broadcast address to default values when the
13700  * interface is brought up.  (Always called as writer.)
13701  */
13702 static void
13703 ipif_set_default(ipif_t *ipif)
13704 {
13705 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
13706 
13707 	if (!ipif->ipif_isv6) {
13708 		/*
13709 		 * Interface holds an IPv4 address. Default
13710 		 * mask is the natural netmask.
13711 		 */
13712 		if (!ipif->ipif_net_mask) {
13713 			ipaddr_t	v4mask;
13714 
13715 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
13716 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
13717 		}
13718 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13719 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13720 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13721 		} else {
13722 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13723 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13724 		}
13725 		/*
13726 		 * NOTE: SunOS 4.X does this even if the broadcast address
13727 		 * has been already set thus we do the same here.
13728 		 */
13729 		if (ipif->ipif_flags & IPIF_BROADCAST) {
13730 			ipaddr_t	v4addr;
13731 
13732 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
13733 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
13734 		}
13735 	} else {
13736 		/*
13737 		 * Interface holds an IPv6-only address.  Default
13738 		 * mask is all-ones.
13739 		 */
13740 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
13741 			ipif->ipif_v6net_mask = ipv6_all_ones;
13742 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13743 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
13744 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
13745 		} else {
13746 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
13747 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
13748 		}
13749 	}
13750 }
13751 
13752 /*
13753  * Return 0 if this address can be used as local address without causing
13754  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
13755  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
13756  * Note that the same IPv6 link-local address is allowed as long as the ills
13757  * are not on the same link.
13758  */
13759 int
13760 ip_addr_availability_check(ipif_t *new_ipif)
13761 {
13762 	in6_addr_t our_v6addr;
13763 	ill_t *ill;
13764 	ipif_t *ipif;
13765 	ill_walk_context_t ctx;
13766 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
13767 
13768 	ASSERT(IAM_WRITER_IPIF(new_ipif));
13769 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
13770 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
13771 
13772 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
13773 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
13774 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
13775 		return (0);
13776 
13777 	our_v6addr = new_ipif->ipif_v6lcl_addr;
13778 
13779 	if (new_ipif->ipif_isv6)
13780 		ill = ILL_START_WALK_V6(&ctx, ipst);
13781 	else
13782 		ill = ILL_START_WALK_V4(&ctx, ipst);
13783 
13784 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13785 		for (ipif = ill->ill_ipif; ipif != NULL;
13786 		    ipif = ipif->ipif_next) {
13787 			if ((ipif == new_ipif) ||
13788 			    !(ipif->ipif_flags & IPIF_UP) ||
13789 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13790 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
13791 			    &our_v6addr))
13792 				continue;
13793 
13794 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
13795 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
13796 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
13797 				ipif->ipif_flags |= IPIF_UNNUMBERED;
13798 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
13799 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
13800 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
13801 				continue;
13802 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
13803 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
13804 				continue;
13805 			else if (new_ipif->ipif_ill == ill)
13806 				return (EADDRINUSE);
13807 			else
13808 				return (EADDRNOTAVAIL);
13809 		}
13810 	}
13811 
13812 	return (0);
13813 }
13814 
13815 /*
13816  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
13817  * IREs for the ipif.
13818  * When the routine returns EINPROGRESS then mp has been consumed and
13819  * the ioctl will be acked from ip_rput_dlpi.
13820  */
13821 int
13822 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
13823 {
13824 	ill_t		*ill = ipif->ipif_ill;
13825 	boolean_t 	isv6 = ipif->ipif_isv6;
13826 	int		err = 0;
13827 	boolean_t	success;
13828 	uint_t		ipif_orig_id;
13829 	ip_stack_t	*ipst = ill->ill_ipst;
13830 
13831 	ASSERT(IAM_WRITER_IPIF(ipif));
13832 
13833 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13834 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up",
13835 	    ill_t *, ill, ipif_t *, ipif);
13836 
13837 	/* Shouldn't get here if it is already up. */
13838 	if (ipif->ipif_flags & IPIF_UP)
13839 		return (EALREADY);
13840 
13841 	/*
13842 	 * If this is a request to bring up a data address on an interface
13843 	 * under IPMP, then move the address to its IPMP meta-interface and
13844 	 * try to bring it up.  One complication is that the zeroth ipif for
13845 	 * an ill is special, in that every ill always has one, and that code
13846 	 * throughout IP deferences ill->ill_ipif without holding any locks.
13847 	 */
13848 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
13849 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
13850 		ipif_t	*stubipif = NULL, *moveipif = NULL;
13851 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
13852 
13853 		/*
13854 		 * The ipif being brought up should be quiesced.  If it's not,
13855 		 * something has gone amiss and we need to bail out.  (If it's
13856 		 * quiesced, we know it will remain so via IPIF_CONDEMNED.)
13857 		 */
13858 		mutex_enter(&ill->ill_lock);
13859 		if (!ipif_is_quiescent(ipif)) {
13860 			mutex_exit(&ill->ill_lock);
13861 			return (EINVAL);
13862 		}
13863 		mutex_exit(&ill->ill_lock);
13864 
13865 		/*
13866 		 * If we're going to need to allocate ipifs, do it prior
13867 		 * to starting the move (and grabbing locks).
13868 		 */
13869 		if (ipif->ipif_id == 0) {
13870 			if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13871 			    B_FALSE, &err)) == NULL) {
13872 				return (err);
13873 			}
13874 			if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
13875 			    B_FALSE, &err)) == NULL) {
13876 				mi_free(moveipif);
13877 				return (err);
13878 			}
13879 		}
13880 
13881 		/*
13882 		 * Grab or transfer the ipif to move.  During the move, keep
13883 		 * ill_g_lock held to prevent any ill walker threads from
13884 		 * seeing things in an inconsistent state.
13885 		 */
13886 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13887 		if (ipif->ipif_id != 0) {
13888 			ipif_remove(ipif);
13889 		} else {
13890 			ipif_transfer(ipif, moveipif, stubipif);
13891 			ipif = moveipif;
13892 		}
13893 
13894 		/*
13895 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
13896 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
13897 		 * replace that one.  Otherwise, pick the next available slot.
13898 		 */
13899 		ipif->ipif_ill = ipmp_ill;
13900 		ipif_orig_id = ipif->ipif_id;
13901 
13902 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
13903 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
13904 			ipif = ipmp_ill->ill_ipif;
13905 		} else {
13906 			ipif->ipif_id = -1;
13907 			if ((err = ipif_insert(ipif, B_FALSE)) != 0) {
13908 				/*
13909 				 * No more available ipif_id's -- put it back
13910 				 * on the original ill and fail the operation.
13911 				 * Since we're writer on the ill, we can be
13912 				 * sure our old slot is still available.
13913 				 */
13914 				ipif->ipif_id = ipif_orig_id;
13915 				ipif->ipif_ill = ill;
13916 				if (ipif_orig_id == 0) {
13917 					ipif_transfer(ipif, ill->ill_ipif,
13918 					    NULL);
13919 				} else {
13920 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
13921 				}
13922 				rw_exit(&ipst->ips_ill_g_lock);
13923 				return (err);
13924 			}
13925 		}
13926 		rw_exit(&ipst->ips_ill_g_lock);
13927 
13928 		/*
13929 		 * Tell SCTP that the ipif has moved.  Note that even if we
13930 		 * had to allocate a new ipif, the original sequence id was
13931 		 * preserved and therefore SCTP won't know.
13932 		 */
13933 		sctp_move_ipif(ipif, ill, ipmp_ill);
13934 
13935 		/*
13936 		 * If the ipif being brought up was on slot zero, then we
13937 		 * first need to bring up the placeholder we stuck there.  In
13938 		 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive
13939 		 * call to ipif_up() itself, if we successfully bring up the
13940 		 * placeholder, we'll check ill_move_ipif and bring it up too.
13941 		 */
13942 		if (ipif_orig_id == 0) {
13943 			ASSERT(ill->ill_move_ipif == NULL);
13944 			ill->ill_move_ipif = ipif;
13945 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
13946 				ASSERT(ill->ill_move_ipif == NULL);
13947 			if (err != EINPROGRESS)
13948 				ill->ill_move_ipif = NULL;
13949 			return (err);
13950 		}
13951 
13952 		/*
13953 		 * Bring it up on the IPMP ill.
13954 		 */
13955 		return (ipif_up(ipif, q, mp));
13956 	}
13957 
13958 	/* Skip arp/ndp for any loopback interface. */
13959 	if (ill->ill_wq != NULL) {
13960 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
13961 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
13962 
13963 		if (!ill->ill_dl_up) {
13964 			/*
13965 			 * ill_dl_up is not yet set. i.e. we are yet to
13966 			 * DL_BIND with the driver and this is the first
13967 			 * logical interface on the ill to become "up".
13968 			 * Tell the driver to get going (via DL_BIND_REQ).
13969 			 * Note that changing "significant" IFF_ flags
13970 			 * address/netmask etc cause a down/up dance, but
13971 			 * does not cause an unbind (DL_UNBIND) with the driver
13972 			 */
13973 			return (ill_dl_up(ill, ipif, mp, q));
13974 		}
13975 
13976 		/*
13977 		 * ipif_resolver_up may end up needeing to bind/attach
13978 		 * the ARP stream, which in turn necessitates a
13979 		 * DLPI message exchange with the driver. ioctls are
13980 		 * serialized and so we cannot send more than one
13981 		 * interface up message at a time. If ipif_resolver_up
13982 		 * does need to wait for the DLPI handshake for the ARP stream,
13983 		 * we get EINPROGRESS and we will complete in arp_bringup_done.
13984 		 */
13985 
13986 		ASSERT(connp != NULL || !CONN_Q(q));
13987 		if (connp != NULL)
13988 			mutex_enter(&connp->conn_lock);
13989 		mutex_enter(&ill->ill_lock);
13990 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
13991 		mutex_exit(&ill->ill_lock);
13992 		if (connp != NULL)
13993 			mutex_exit(&connp->conn_lock);
13994 		if (!success)
13995 			return (EINTR);
13996 
13997 		/*
13998 		 * Crank up IPv6 neighbor discovery. Unlike ARP, this should
13999 		 * complete when ipif_ndp_up returns.
14000 		 */
14001 		err = ipif_resolver_up(ipif, Res_act_initial);
14002 		if (err == EINPROGRESS) {
14003 			/* We will complete it in arp_bringup_done() */
14004 			return (err);
14005 		}
14006 
14007 		if (isv6 && err == 0)
14008 			err = ipif_ndp_up(ipif, B_TRUE);
14009 
14010 		ASSERT(err != EINPROGRESS);
14011 		mp = ipsq_pending_mp_get(ipsq, &connp);
14012 		ASSERT(mp != NULL);
14013 		if (err != 0)
14014 			return (err);
14015 	} else {
14016 		/*
14017 		 * Interfaces without underlying hardware don't do duplicate
14018 		 * address detection.
14019 		 */
14020 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
14021 		ipif->ipif_addr_ready = 1;
14022 		err = ill_add_ires(ill);
14023 		/* allocation failure? */
14024 		if (err != 0)
14025 			return (err);
14026 	}
14027 
14028 	err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
14029 	if (err == 0 && ill->ill_move_ipif != NULL) {
14030 		ipif = ill->ill_move_ipif;
14031 		ill->ill_move_ipif = NULL;
14032 		return (ipif_up(ipif, q, mp));
14033 	}
14034 	return (err);
14035 }
14036 
14037 /*
14038  * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST.
14039  * The identical set of IREs need to be removed in ill_delete_ires().
14040  */
14041 int
14042 ill_add_ires(ill_t *ill)
14043 {
14044 	ire_t	*ire;
14045 	in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1};
14046 	in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP);
14047 
14048 	if (ill->ill_ire_multicast != NULL)
14049 		return (0);
14050 
14051 	/*
14052 	 * provide some dummy ire_addr for creating the ire.
14053 	 */
14054 	if (ill->ill_isv6) {
14055 		ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill,
14056 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14057 	} else {
14058 		ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill,
14059 		    ALL_ZONES, RTF_UP, NULL, ill->ill_ipst);
14060 	}
14061 	if (ire == NULL)
14062 		return (ENOMEM);
14063 
14064 	ill->ill_ire_multicast = ire;
14065 	return (0);
14066 }
14067 
14068 void
14069 ill_delete_ires(ill_t *ill)
14070 {
14071 	if (ill->ill_ire_multicast != NULL) {
14072 		/*
14073 		 * BIND/ATTACH completed; Release the ref for ill_ire_multicast
14074 		 * which was taken without any th_tracing enabled.
14075 		 * We also mark it as condemned (note that it was never added)
14076 		 * so that caching conn's can move off of it.
14077 		 */
14078 		ire_make_condemned(ill->ill_ire_multicast);
14079 		ire_refrele_notr(ill->ill_ire_multicast);
14080 		ill->ill_ire_multicast = NULL;
14081 	}
14082 }
14083 
14084 /*
14085  * Perform a bind for the physical device.
14086  * When the routine returns EINPROGRESS then mp has been consumed and
14087  * the ioctl will be acked from ip_rput_dlpi.
14088  * Allocate an unbind message and save it until ipif_down.
14089  */
14090 static int
14091 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
14092 {
14093 	mblk_t	*bind_mp = NULL;
14094 	mblk_t	*unbind_mp = NULL;
14095 	conn_t	*connp;
14096 	boolean_t success;
14097 	int	err;
14098 
14099 	DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill);
14100 
14101 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
14102 	ASSERT(IAM_WRITER_ILL(ill));
14103 	ASSERT(mp != NULL);
14104 
14105 	/*
14106 	 * Make sure we have an IRE_MULTICAST in case we immediately
14107 	 * start receiving packets.
14108 	 */
14109 	err = ill_add_ires(ill);
14110 	if (err != 0)
14111 		goto bad;
14112 
14113 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
14114 	    DL_BIND_REQ);
14115 	if (bind_mp == NULL)
14116 		goto bad;
14117 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
14118 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
14119 
14120 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
14121 	if (unbind_mp == NULL)
14122 		goto bad;
14123 
14124 	/*
14125 	 * Record state needed to complete this operation when the
14126 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
14127 	 */
14128 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
14129 	ASSERT(connp != NULL || !CONN_Q(q));
14130 	GRAB_CONN_LOCK(q);
14131 	mutex_enter(&ipif->ipif_ill->ill_lock);
14132 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
14133 	mutex_exit(&ipif->ipif_ill->ill_lock);
14134 	RELEASE_CONN_LOCK(q);
14135 	if (!success)
14136 		goto bad;
14137 
14138 	/*
14139 	 * Save the unbind message for ill_dl_down(); it will be consumed when
14140 	 * the interface goes down.
14141 	 */
14142 	ASSERT(ill->ill_unbind_mp == NULL);
14143 	ill->ill_unbind_mp = unbind_mp;
14144 
14145 	ill_dlpi_send(ill, bind_mp);
14146 	/* Send down link-layer capabilities probe if not already done. */
14147 	ill_capability_probe(ill);
14148 
14149 	/*
14150 	 * Sysid used to rely on the fact that netboots set domainname
14151 	 * and the like. Now that miniroot boots aren't strictly netboots
14152 	 * and miniroot network configuration is driven from userland
14153 	 * these things still need to be set. This situation can be detected
14154 	 * by comparing the interface being configured here to the one
14155 	 * dhcifname was set to reference by the boot loader. Once sysid is
14156 	 * converted to use dhcp_ipc_getinfo() this call can go away.
14157 	 */
14158 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
14159 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
14160 	    (strlen(srpc_domain) == 0)) {
14161 		if (dhcpinit() != 0)
14162 			cmn_err(CE_WARN, "no cached dhcp response");
14163 	}
14164 
14165 	/*
14166 	 * This operation will complete in ip_rput_dlpi with either
14167 	 * a DL_BIND_ACK or DL_ERROR_ACK.
14168 	 */
14169 	return (EINPROGRESS);
14170 bad:
14171 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
14172 
14173 	freemsg(bind_mp);
14174 	freemsg(unbind_mp);
14175 	return (ENOMEM);
14176 }
14177 
14178 /* Add room for tcp+ip headers */
14179 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
14180 
14181 /*
14182  * DLPI and ARP is up.
14183  * Create all the IREs associated with an interface. Bring up multicast.
14184  * Set the interface flag and finish other initialization
14185  * that potentially had to be deferred to after DL_BIND_ACK.
14186  */
14187 int
14188 ipif_up_done(ipif_t *ipif)
14189 {
14190 	ill_t		*ill = ipif->ipif_ill;
14191 	int		err = 0;
14192 	boolean_t	loopback = B_FALSE;
14193 	boolean_t	update_src_selection = B_TRUE;
14194 	ipif_t		*tmp_ipif;
14195 
14196 	ip1dbg(("ipif_up_done(%s:%u)\n",
14197 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
14198 	DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done",
14199 	    ill_t *, ill, ipif_t *, ipif);
14200 
14201 	/* Check if this is a loopback interface */
14202 	if (ipif->ipif_ill->ill_wq == NULL)
14203 		loopback = B_TRUE;
14204 
14205 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
14206 
14207 	/*
14208 	 * If all other interfaces for this ill are down or DEPRECATED,
14209 	 * or otherwise unsuitable for source address selection,
14210 	 * reset the src generation numbers to make sure source
14211 	 * address selection gets to take this new ipif into account.
14212 	 * No need to hold ill_lock while traversing the ipif list since
14213 	 * we are writer
14214 	 */
14215 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
14216 	    tmp_ipif = tmp_ipif->ipif_next) {
14217 		if (((tmp_ipif->ipif_flags &
14218 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
14219 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
14220 		    (tmp_ipif == ipif))
14221 			continue;
14222 		/* first useable pre-existing interface */
14223 		update_src_selection = B_FALSE;
14224 		break;
14225 	}
14226 	if (update_src_selection)
14227 		ip_update_source_selection(ill->ill_ipst);
14228 
14229 	if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) {
14230 		nce_t *loop_nce = NULL;
14231 		uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD);
14232 
14233 		/*
14234 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
14235 		 * ipif_lookup_on_name(), but in the case of zones we can have
14236 		 * several loopback addresses on lo0. So all the interfaces with
14237 		 * loopback addresses need to be marked IRE_LOOPBACK.
14238 		 */
14239 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
14240 		    htonl(INADDR_LOOPBACK))
14241 			ipif->ipif_ire_type = IRE_LOOPBACK;
14242 		else
14243 			ipif->ipif_ire_type = IRE_LOCAL;
14244 		if (ill->ill_net_type != IRE_LOOPBACK)
14245 			flags |= NCE_F_PUBLISH;
14246 
14247 		/* add unicast nce for the local addr */
14248 		err = nce_lookup_then_add_v4(ill, NULL,
14249 		    ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags,
14250 		    ND_REACHABLE, &loop_nce);
14251 		/* A shared-IP zone sees EEXIST for lo0:N */
14252 		if (err == 0 || err == EEXIST) {
14253 			ipif->ipif_added_nce = 1;
14254 			loop_nce->nce_ipif_cnt++;
14255 			nce_refrele(loop_nce);
14256 			err = 0;
14257 		} else {
14258 			ASSERT(loop_nce == NULL);
14259 			return (err);
14260 		}
14261 	}
14262 
14263 	/* Create all the IREs associated with this interface */
14264 	err = ipif_add_ires_v4(ipif, loopback);
14265 	if (err != 0) {
14266 		/*
14267 		 * see comments about return value from
14268 		 * ip_addr_availability_check() in ipif_add_ires_v4().
14269 		 */
14270 		if (err != EADDRINUSE) {
14271 			(void) ipif_arp_down(ipif);
14272 		} else {
14273 			/*
14274 			 * Make IPMP aware of the deleted ipif so that
14275 			 * the needed ipmp cleanup (e.g., of ipif_bound_ill)
14276 			 * can be completed. Note that we do not want to
14277 			 * destroy the nce that was created on the ipmp_ill
14278 			 * for the active copy of the duplicate address in
14279 			 * use.
14280 			 */
14281 			if (IS_IPMP(ill))
14282 				ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
14283 			err = EADDRNOTAVAIL;
14284 		}
14285 		return (err);
14286 	}
14287 
14288 	if (ill->ill_ipif_up_count == 1 && !loopback) {
14289 		/* Recover any additional IREs entries for this ill */
14290 		(void) ill_recover_saved_ire(ill);
14291 	}
14292 
14293 	if (ill->ill_need_recover_multicast) {
14294 		/*
14295 		 * Need to recover all multicast memberships in the driver.
14296 		 * This had to be deferred until we had attached.  The same
14297 		 * code exists in ipif_up_done_v6() to recover IPv6
14298 		 * memberships.
14299 		 *
14300 		 * Note that it would be preferable to unconditionally do the
14301 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
14302 		 * that since ill_join_allmulti() depends on ill_dl_up being
14303 		 * set, and it is not set until we receive a DL_BIND_ACK after
14304 		 * having called ill_dl_up().
14305 		 */
14306 		ill_recover_multicast(ill);
14307 	}
14308 
14309 	if (ill->ill_ipif_up_count == 1) {
14310 		/*
14311 		 * Since the interface is now up, it may now be active.
14312 		 */
14313 		if (IS_UNDER_IPMP(ill))
14314 			ipmp_ill_refresh_active(ill);
14315 
14316 		/*
14317 		 * If this is an IPMP interface, we may now be able to
14318 		 * establish ARP entries.
14319 		 */
14320 		if (IS_IPMP(ill))
14321 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
14322 	}
14323 
14324 	/* Join the allhosts multicast address */
14325 	ipif_multicast_up(ipif);
14326 
14327 	if (!loopback && !update_src_selection &&
14328 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)))
14329 		ip_update_source_selection(ill->ill_ipst);
14330 
14331 	if (!loopback && ipif->ipif_addr_ready) {
14332 		/* Broadcast an address mask reply. */
14333 		ipif_mask_reply(ipif);
14334 	}
14335 	/* Perhaps ilgs should use this ill */
14336 	update_conn_ill(NULL, ill->ill_ipst);
14337 
14338 	/*
14339 	 * This had to be deferred until we had bound.  Tell routing sockets and
14340 	 * others that this interface is up if it looks like the address has
14341 	 * been validated.  Otherwise, if it isn't ready yet, wait for
14342 	 * duplicate address detection to do its thing.
14343 	 */
14344 	if (ipif->ipif_addr_ready)
14345 		ipif_up_notify(ipif);
14346 	return (0);
14347 }
14348 
14349 /*
14350  * Add the IREs associated with the ipif.
14351  * Those MUST be explicitly removed in ipif_delete_ires_v4.
14352  */
14353 static int
14354 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback)
14355 {
14356 	ill_t		*ill = ipif->ipif_ill;
14357 	ip_stack_t	*ipst = ill->ill_ipst;
14358 	ire_t		*ire_array[20];
14359 	ire_t		**irep = ire_array;
14360 	ire_t		**irep1;
14361 	ipaddr_t	net_mask = 0;
14362 	ipaddr_t	subnet_mask, route_mask;
14363 	int		err;
14364 	ire_t		*ire_local = NULL;	/* LOCAL or LOOPBACK */
14365 	ire_t		*ire_if = NULL;
14366 
14367 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14368 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14369 		/*
14370 		 * If we're on a labeled system then make sure that zone-
14371 		 * private addresses have proper remote host database entries.
14372 		 */
14373 		if (is_system_labeled() &&
14374 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
14375 		    !tsol_check_interface_address(ipif))
14376 			return (EINVAL);
14377 
14378 		/* Register the source address for __sin6_src_id */
14379 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
14380 		    ipif->ipif_zoneid, ipst);
14381 		if (err != 0) {
14382 			ip0dbg(("ipif_add_ires: srcid_insert %d\n", err));
14383 			return (err);
14384 		}
14385 
14386 		/* If the interface address is set, create the local IRE. */
14387 		ire_local = ire_create(
14388 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
14389 		    (uchar_t *)&ip_g_all_ones,		/* mask */
14390 		    NULL,				/* no gateway */
14391 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
14392 		    ipif->ipif_ill,
14393 		    ipif->ipif_zoneid,
14394 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14395 		    RTF_PRIVATE : 0) | RTF_KERNEL,
14396 		    NULL,
14397 		    ipst);
14398 		ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x"
14399 		    " for 0x%x\n", (void *)ipif, (void *)ire_local,
14400 		    ipif->ipif_ire_type,
14401 		    ntohl(ipif->ipif_lcl_addr)));
14402 		if (ire_local == NULL) {
14403 			ip1dbg(("ipif_up_done: NULL ire_local\n"));
14404 			err = ENOMEM;
14405 			goto bad;
14406 		}
14407 	} else {
14408 		ip1dbg((
14409 		    "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n",
14410 		    ipif->ipif_ire_type,
14411 		    ntohl(ipif->ipif_lcl_addr),
14412 		    (uint_t)ipif->ipif_flags));
14413 	}
14414 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
14415 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14416 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
14417 	} else {
14418 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
14419 	}
14420 
14421 	subnet_mask = ipif->ipif_net_mask;
14422 
14423 	/*
14424 	 * If mask was not specified, use natural netmask of
14425 	 * interface address. Also, store this mask back into the
14426 	 * ipif struct.
14427 	 */
14428 	if (subnet_mask == 0) {
14429 		subnet_mask = net_mask;
14430 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
14431 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
14432 		    ipif->ipif_v6subnet);
14433 	}
14434 
14435 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
14436 	if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) &&
14437 	    ipif->ipif_subnet != INADDR_ANY) {
14438 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
14439 
14440 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
14441 			route_mask = IP_HOST_MASK;
14442 		} else {
14443 			route_mask = subnet_mask;
14444 		}
14445 
14446 		ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p "
14447 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
14448 		    (void *)ipif, (void *)ill, ill->ill_net_type,
14449 		    ntohl(ipif->ipif_subnet)));
14450 		ire_if = ire_create(
14451 		    (uchar_t *)&ipif->ipif_subnet,
14452 		    (uchar_t *)&route_mask,
14453 		    (uchar_t *)&ipif->ipif_lcl_addr,
14454 		    ill->ill_net_type,
14455 		    ill,
14456 		    ipif->ipif_zoneid,
14457 		    ((ipif->ipif_flags & IPIF_PRIVATE) ?
14458 		    RTF_PRIVATE: 0) | RTF_KERNEL,
14459 		    NULL,
14460 		    ipst);
14461 		if (ire_if == NULL) {
14462 			ip1dbg(("ipif_up_done: NULL ire_if\n"));
14463 			err = ENOMEM;
14464 			goto bad;
14465 		}
14466 	}
14467 
14468 	/*
14469 	 * Create any necessary broadcast IREs.
14470 	 */
14471 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14472 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14473 		irep = ipif_create_bcast_ires(ipif, irep);
14474 
14475 	/* If an earlier ire_create failed, get out now */
14476 	for (irep1 = irep; irep1 > ire_array; ) {
14477 		irep1--;
14478 		if (*irep1 == NULL) {
14479 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
14480 			err = ENOMEM;
14481 			goto bad;
14482 		}
14483 	}
14484 
14485 	/*
14486 	 * Need to atomically check for IP address availability under
14487 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
14488 	 * ills or new ipifs can be added while we are checking availability.
14489 	 */
14490 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14491 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
14492 	/* Mark it up, and increment counters. */
14493 	ipif->ipif_flags |= IPIF_UP;
14494 	ill->ill_ipif_up_count++;
14495 	err = ip_addr_availability_check(ipif);
14496 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
14497 	rw_exit(&ipst->ips_ill_g_lock);
14498 
14499 	if (err != 0) {
14500 		/*
14501 		 * Our address may already be up on the same ill. In this case,
14502 		 * the ARP entry for our ipif replaced the one for the other
14503 		 * ipif. So we don't want to delete it (otherwise the other ipif
14504 		 * would be unable to send packets).
14505 		 * ip_addr_availability_check() identifies this case for us and
14506 		 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL
14507 		 * which is the expected error code.
14508 		 */
14509 		ill->ill_ipif_up_count--;
14510 		ipif->ipif_flags &= ~IPIF_UP;
14511 		goto bad;
14512 	}
14513 
14514 	/*
14515 	 * Add in all newly created IREs.  ire_create_bcast() has
14516 	 * already checked for duplicates of the IRE_BROADCAST type.
14517 	 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure
14518 	 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is
14519 	 * a /32 route.
14520 	 */
14521 	if (ire_if != NULL) {
14522 		ire_if = ire_add(ire_if);
14523 		if (ire_if == NULL) {
14524 			err = ENOMEM;
14525 			goto bad2;
14526 		}
14527 #ifdef DEBUG
14528 		ire_refhold_notr(ire_if);
14529 		ire_refrele(ire_if);
14530 #endif
14531 	}
14532 	if (ire_local != NULL) {
14533 		ire_local = ire_add(ire_local);
14534 		if (ire_local == NULL) {
14535 			err = ENOMEM;
14536 			goto bad2;
14537 		}
14538 #ifdef DEBUG
14539 		ire_refhold_notr(ire_local);
14540 		ire_refrele(ire_local);
14541 #endif
14542 	}
14543 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14544 	if (ire_local != NULL)
14545 		ipif->ipif_ire_local = ire_local;
14546 	if (ire_if != NULL)
14547 		ipif->ipif_ire_if = ire_if;
14548 	rw_exit(&ipst->ips_ill_g_lock);
14549 	ire_local = NULL;
14550 	ire_if = NULL;
14551 
14552 	/*
14553 	 * We first add all of them, and if that succeeds we refrele the
14554 	 * bunch. That enables us to delete all of them should any of the
14555 	 * ire_adds fail.
14556 	 */
14557 	for (irep1 = irep; irep1 > ire_array; ) {
14558 		irep1--;
14559 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock)));
14560 		*irep1 = ire_add(*irep1);
14561 		if (*irep1 == NULL) {
14562 			err = ENOMEM;
14563 			goto bad2;
14564 		}
14565 	}
14566 
14567 	for (irep1 = irep; irep1 > ire_array; ) {
14568 		irep1--;
14569 		/* refheld by ire_add. */
14570 		if (*irep1 != NULL) {
14571 			ire_refrele(*irep1);
14572 			*irep1 = NULL;
14573 		}
14574 	}
14575 
14576 	if (!loopback) {
14577 		/*
14578 		 * If the broadcast address has been set, make sure it makes
14579 		 * sense based on the interface address.
14580 		 * Only match on ill since we are sharing broadcast addresses.
14581 		 */
14582 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
14583 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
14584 			ire_t	*ire;
14585 
14586 			ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0,
14587 			    IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL,
14588 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL);
14589 
14590 			if (ire == NULL) {
14591 				/*
14592 				 * If there isn't a matching broadcast IRE,
14593 				 * revert to the default for this netmask.
14594 				 */
14595 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
14596 				mutex_enter(&ipif->ipif_ill->ill_lock);
14597 				ipif_set_default(ipif);
14598 				mutex_exit(&ipif->ipif_ill->ill_lock);
14599 			} else {
14600 				ire_refrele(ire);
14601 			}
14602 		}
14603 
14604 	}
14605 	return (0);
14606 
14607 bad2:
14608 	ill->ill_ipif_up_count--;
14609 	ipif->ipif_flags &= ~IPIF_UP;
14610 
14611 bad:
14612 	ip1dbg(("ipif_add_ires: FAILED \n"));
14613 	if (ire_local != NULL)
14614 		ire_delete(ire_local);
14615 	if (ire_if != NULL)
14616 		ire_delete(ire_if);
14617 
14618 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14619 	ire_local = ipif->ipif_ire_local;
14620 	ipif->ipif_ire_local = NULL;
14621 	ire_if = ipif->ipif_ire_if;
14622 	ipif->ipif_ire_if = NULL;
14623 	rw_exit(&ipst->ips_ill_g_lock);
14624 	if (ire_local != NULL) {
14625 		ire_delete(ire_local);
14626 		ire_refrele_notr(ire_local);
14627 	}
14628 	if (ire_if != NULL) {
14629 		ire_delete(ire_if);
14630 		ire_refrele_notr(ire_if);
14631 	}
14632 
14633 	while (irep > ire_array) {
14634 		irep--;
14635 		if (*irep != NULL) {
14636 			ire_delete(*irep);
14637 		}
14638 	}
14639 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
14640 
14641 	return (err);
14642 }
14643 
14644 /* Remove all the IREs created by ipif_add_ires_v4 */
14645 void
14646 ipif_delete_ires_v4(ipif_t *ipif)
14647 {
14648 	ill_t		*ill = ipif->ipif_ill;
14649 	ip_stack_t	*ipst = ill->ill_ipst;
14650 	ire_t		*ire;
14651 
14652 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14653 	ire = ipif->ipif_ire_local;
14654 	ipif->ipif_ire_local = NULL;
14655 	rw_exit(&ipst->ips_ill_g_lock);
14656 	if (ire != NULL) {
14657 		/*
14658 		 * Move count to ipif so we don't loose the count due to
14659 		 * a down/up dance.
14660 		 */
14661 		atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count);
14662 
14663 		ire_delete(ire);
14664 		ire_refrele_notr(ire);
14665 	}
14666 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14667 	ire = ipif->ipif_ire_if;
14668 	ipif->ipif_ire_if = NULL;
14669 	rw_exit(&ipst->ips_ill_g_lock);
14670 	if (ire != NULL) {
14671 		ire_delete(ire);
14672 		ire_refrele_notr(ire);
14673 	}
14674 
14675 	/*
14676 	 * Delete the broadcast IREs.
14677 	 */
14678 	if ((ipif->ipif_flags & IPIF_BROADCAST) &&
14679 	    !(ipif->ipif_flags & IPIF_NOXMIT))
14680 		ipif_delete_bcast_ires(ipif);
14681 }
14682 
14683 /*
14684  * Checks for availbility of a usable source address (if there is one) when the
14685  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
14686  * this selection is done regardless of the destination.
14687  */
14688 boolean_t
14689 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid,
14690     ip_stack_t *ipst)
14691 {
14692 	ipif_t		*ipif = NULL;
14693 	ill_t		*uill;
14694 
14695 	ASSERT(ifindex != 0);
14696 
14697 	uill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
14698 	if (uill == NULL)
14699 		return (B_FALSE);
14700 
14701 	mutex_enter(&uill->ill_lock);
14702 	for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14703 		if (IPIF_IS_CONDEMNED(ipif))
14704 			continue;
14705 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14706 			continue;
14707 		if (!(ipif->ipif_flags & IPIF_UP))
14708 			continue;
14709 		if (ipif->ipif_zoneid != zoneid)
14710 			continue;
14711 		if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14712 		    ipif->ipif_lcl_addr == INADDR_ANY)
14713 			continue;
14714 		mutex_exit(&uill->ill_lock);
14715 		ill_refrele(uill);
14716 		return (B_TRUE);
14717 	}
14718 	mutex_exit(&uill->ill_lock);
14719 	ill_refrele(uill);
14720 	return (B_FALSE);
14721 }
14722 
14723 /*
14724  * Find an ipif with a good local address on the ill+zoneid.
14725  */
14726 ipif_t *
14727 ipif_good_addr(ill_t *ill, zoneid_t zoneid)
14728 {
14729 	ipif_t		*ipif;
14730 
14731 	mutex_enter(&ill->ill_lock);
14732 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14733 		if (IPIF_IS_CONDEMNED(ipif))
14734 			continue;
14735 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14736 			continue;
14737 		if (!(ipif->ipif_flags & IPIF_UP))
14738 			continue;
14739 		if (ipif->ipif_zoneid != zoneid &&
14740 		    ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES)
14741 			continue;
14742 		if (ill->ill_isv6 ?
14743 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) :
14744 		    ipif->ipif_lcl_addr == INADDR_ANY)
14745 			continue;
14746 		ipif_refhold_locked(ipif);
14747 		mutex_exit(&ill->ill_lock);
14748 		return (ipif);
14749 	}
14750 	mutex_exit(&ill->ill_lock);
14751 	return (NULL);
14752 }
14753 
14754 /*
14755  * IP source address type, sorted from worst to best.  For a given type,
14756  * always prefer IP addresses on the same subnet.  All-zones addresses are
14757  * suboptimal because they pose problems with unlabeled destinations.
14758  */
14759 typedef enum {
14760 	IPIF_NONE,
14761 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
14762 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
14763 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
14764 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
14765 	IPIF_DIFFNET,			/* normal and different subnet */
14766 	IPIF_SAMENET,			/* normal and same subnet */
14767 	IPIF_LOCALADDR			/* local loopback */
14768 } ipif_type_t;
14769 
14770 /*
14771  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
14772  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
14773  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
14774  * the first one, unless IPMP is used in which case we round-robin among them;
14775  * see below for more.
14776  *
14777  * Returns NULL if there is no suitable source address for the ill.
14778  * This only occurs when there is no valid source address for the ill.
14779  */
14780 ipif_t *
14781 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid,
14782     boolean_t allow_usesrc, boolean_t *notreadyp)
14783 {
14784 	ill_t	*usill = NULL;
14785 	ill_t	*ipmp_ill = NULL;
14786 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
14787 	ipif_type_t type, best_type;
14788 	tsol_tpc_t *src_rhtp, *dst_rhtp;
14789 	ip_stack_t *ipst = ill->ill_ipst;
14790 	boolean_t samenet;
14791 
14792 	if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) {
14793 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
14794 		    B_FALSE, ipst);
14795 		if (usill != NULL)
14796 			ill = usill;	/* Select source from usesrc ILL */
14797 		else
14798 			return (NULL);
14799 	}
14800 
14801 	/*
14802 	 * Test addresses should never be used for source address selection,
14803 	 * so if we were passed one, switch to the IPMP meta-interface.
14804 	 */
14805 	if (IS_UNDER_IPMP(ill)) {
14806 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
14807 			ill = ipmp_ill;	/* Select source from IPMP ill */
14808 		else
14809 			return (NULL);
14810 	}
14811 
14812 	/*
14813 	 * If we're dealing with an unlabeled destination on a labeled system,
14814 	 * make sure that we ignore source addresses that are incompatible with
14815 	 * the destination's default label.  That destination's default label
14816 	 * must dominate the minimum label on the source address.
14817 	 */
14818 	dst_rhtp = NULL;
14819 	if (is_system_labeled()) {
14820 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
14821 		if (dst_rhtp == NULL)
14822 			return (NULL);
14823 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
14824 			TPC_RELE(dst_rhtp);
14825 			dst_rhtp = NULL;
14826 		}
14827 	}
14828 
14829 	/*
14830 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
14831 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
14832 	 * After selecting the right ipif, under ill_lock make sure ipif is
14833 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
14834 	 * we retry. Inside the loop we still need to check for CONDEMNED,
14835 	 * but not under a lock.
14836 	 */
14837 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14838 retry:
14839 	/*
14840 	 * For source address selection, we treat the ipif list as circular
14841 	 * and continue until we get back to where we started.  This allows
14842 	 * IPMP to vary source address selection (which improves inbound load
14843 	 * spreading) by caching its last ending point and starting from
14844 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
14845 	 * ills since that can't happen on the IPMP ill.
14846 	 */
14847 	start_ipif = ill->ill_ipif;
14848 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
14849 		start_ipif = ill->ill_src_ipif;
14850 
14851 	ipif = start_ipif;
14852 	best_ipif = NULL;
14853 	best_type = IPIF_NONE;
14854 	do {
14855 		if ((next_ipif = ipif->ipif_next) == NULL)
14856 			next_ipif = ill->ill_ipif;
14857 
14858 		if (IPIF_IS_CONDEMNED(ipif))
14859 			continue;
14860 		/* Always skip NOLOCAL and ANYCAST interfaces */
14861 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
14862 			continue;
14863 		/* Always skip NOACCEPT interfaces */
14864 		if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT)
14865 			continue;
14866 		if (!(ipif->ipif_flags & IPIF_UP))
14867 			continue;
14868 
14869 		if (!ipif->ipif_addr_ready) {
14870 			if (notreadyp != NULL)
14871 				*notreadyp = B_TRUE;
14872 			continue;
14873 		}
14874 
14875 		if (zoneid != ALL_ZONES &&
14876 		    ipif->ipif_zoneid != zoneid &&
14877 		    ipif->ipif_zoneid != ALL_ZONES)
14878 			continue;
14879 
14880 		/*
14881 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
14882 		 * are not valid as source addresses.
14883 		 */
14884 		if (ipif->ipif_lcl_addr == INADDR_ANY)
14885 			continue;
14886 
14887 		/*
14888 		 * Check compatibility of local address for destination's
14889 		 * default label if we're on a labeled system.	Incompatible
14890 		 * addresses can't be used at all.
14891 		 */
14892 		if (dst_rhtp != NULL) {
14893 			boolean_t incompat;
14894 
14895 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
14896 			    IPV4_VERSION, B_FALSE);
14897 			if (src_rhtp == NULL)
14898 				continue;
14899 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
14900 			    src_rhtp->tpc_tp.tp_doi !=
14901 			    dst_rhtp->tpc_tp.tp_doi ||
14902 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
14903 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
14904 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
14905 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
14906 			TPC_RELE(src_rhtp);
14907 			if (incompat)
14908 				continue;
14909 		}
14910 
14911 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
14912 
14913 		if (ipif->ipif_lcl_addr == dst) {
14914 			type = IPIF_LOCALADDR;
14915 		} else if (ipif->ipif_flags & IPIF_DEPRECATED) {
14916 			type = samenet ? IPIF_SAMENET_DEPRECATED :
14917 			    IPIF_DIFFNET_DEPRECATED;
14918 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
14919 			type = samenet ? IPIF_SAMENET_ALLZONES :
14920 			    IPIF_DIFFNET_ALLZONES;
14921 		} else {
14922 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
14923 		}
14924 
14925 		if (type > best_type) {
14926 			best_type = type;
14927 			best_ipif = ipif;
14928 			if (best_type == IPIF_LOCALADDR)
14929 				break; /* can't get better */
14930 		}
14931 	} while ((ipif = next_ipif) != start_ipif);
14932 
14933 	if ((ipif = best_ipif) != NULL) {
14934 		mutex_enter(&ipif->ipif_ill->ill_lock);
14935 		if (IPIF_IS_CONDEMNED(ipif)) {
14936 			mutex_exit(&ipif->ipif_ill->ill_lock);
14937 			goto retry;
14938 		}
14939 		ipif_refhold_locked(ipif);
14940 
14941 		/*
14942 		 * For IPMP, update the source ipif rotor to the next ipif,
14943 		 * provided we can look it up.  (We must not use it if it's
14944 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
14945 		 * ipif_free() checked ill_src_ipif.)
14946 		 */
14947 		if (IS_IPMP(ill) && ipif != NULL) {
14948 			next_ipif = ipif->ipif_next;
14949 			if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif))
14950 				ill->ill_src_ipif = next_ipif;
14951 			else
14952 				ill->ill_src_ipif = NULL;
14953 		}
14954 		mutex_exit(&ipif->ipif_ill->ill_lock);
14955 	}
14956 
14957 	rw_exit(&ipst->ips_ill_g_lock);
14958 	if (usill != NULL)
14959 		ill_refrele(usill);
14960 	if (ipmp_ill != NULL)
14961 		ill_refrele(ipmp_ill);
14962 	if (dst_rhtp != NULL)
14963 		TPC_RELE(dst_rhtp);
14964 
14965 #ifdef DEBUG
14966 	if (ipif == NULL) {
14967 		char buf1[INET6_ADDRSTRLEN];
14968 
14969 		ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n",
14970 		    ill->ill_name,
14971 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
14972 	} else {
14973 		char buf1[INET6_ADDRSTRLEN];
14974 		char buf2[INET6_ADDRSTRLEN];
14975 
14976 		ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n",
14977 		    ipif->ipif_ill->ill_name,
14978 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
14979 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
14980 		    buf2, sizeof (buf2))));
14981 	}
14982 #endif /* DEBUG */
14983 	return (ipif);
14984 }
14985 
14986 /*
14987  * Pick a source address based on the destination ill and an optional setsrc
14988  * address.
14989  * The result is stored in srcp. If generation is set, then put the source
14990  * generation number there before we look for the source address (to avoid
14991  * missing changes in the set of source addresses.
14992  * If flagsp is set, then us it to pass back ipif_flags.
14993  *
14994  * If the caller wants to cache the returned source address and detect when
14995  * that might be stale, the caller should pass in a generation argument,
14996  * which the caller can later compare against ips_src_generation
14997  *
14998  * The precedence order for selecting an IPv4 source address is:
14999  *  - RTF_SETSRC on the offlink ire always wins.
15000  *  - If usrsrc is set, swap the ill to be the usesrc one.
15001  *  - If IPMP is used on the ill, select a random address from the most
15002  *    preferred ones below:
15003  * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES
15004  * 2. Not deprecated, not ALL_ZONES
15005  * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES
15006  * 4. Not deprecated, ALL_ZONES
15007  * 5. If onlink destination, same subnet and deprecated
15008  * 6. Deprecated.
15009  *
15010  * We have lower preference for ALL_ZONES IP addresses,
15011  * as they pose problems with unlabeled destinations.
15012  *
15013  * Note that when multiple IP addresses match e.g., #1 we pick
15014  * the first one if IPMP is not in use. With IPMP we randomize.
15015  */
15016 int
15017 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst,
15018     ipaddr_t multicast_ifaddr,
15019     zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp,
15020     uint32_t *generation, uint64_t *flagsp)
15021 {
15022 	ipif_t *ipif;
15023 	boolean_t notready = B_FALSE;	/* Set if !ipif_addr_ready found */
15024 
15025 	if (flagsp != NULL)
15026 		*flagsp = 0;
15027 
15028 	/*
15029 	 * Need to grab the generation number before we check to
15030 	 * avoid a race with a change to the set of local addresses.
15031 	 * No lock needed since the thread which updates the set of local
15032 	 * addresses use ipif/ill locks and exit those (hence a store memory
15033 	 * barrier) before doing the atomic increase of ips_src_generation.
15034 	 */
15035 	if (generation != NULL) {
15036 		*generation = ipst->ips_src_generation;
15037 	}
15038 
15039 	if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) {
15040 		*srcp = multicast_ifaddr;
15041 		return (0);
15042 	}
15043 
15044 	/* Was RTF_SETSRC set on the first IRE in the recursive lookup? */
15045 	if (setsrc != INADDR_ANY) {
15046 		*srcp = setsrc;
15047 		return (0);
15048 	}
15049 	ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, &notready);
15050 	if (ipif == NULL) {
15051 		if (notready)
15052 			return (ENETDOWN);
15053 		else
15054 			return (EADDRNOTAVAIL);
15055 	}
15056 	*srcp = ipif->ipif_lcl_addr;
15057 	if (flagsp != NULL)
15058 		*flagsp = ipif->ipif_flags;
15059 	ipif_refrele(ipif);
15060 	return (0);
15061 }
15062 
15063 /* ARGSUSED */
15064 int
15065 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15066 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15067 {
15068 	/*
15069 	 * ill_phyint_reinit merged the v4 and v6 into a single
15070 	 * ipsq.  We might not have been able to complete the
15071 	 * operation in ipif_set_values, if we could not become
15072 	 * exclusive.  If so restart it here.
15073 	 */
15074 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15075 }
15076 
15077 /*
15078  * Can operate on either a module or a driver queue.
15079  * Returns an error if not a module queue.
15080  */
15081 /* ARGSUSED */
15082 int
15083 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15084     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15085 {
15086 	queue_t		*q1 = q;
15087 	char 		*cp;
15088 	char		interf_name[LIFNAMSIZ];
15089 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
15090 
15091 	if (q->q_next == NULL) {
15092 		ip1dbg((
15093 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
15094 		return (EINVAL);
15095 	}
15096 
15097 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
15098 		return (EALREADY);
15099 
15100 	do {
15101 		q1 = q1->q_next;
15102 	} while (q1->q_next);
15103 	cp = q1->q_qinfo->qi_minfo->mi_idname;
15104 	(void) sprintf(interf_name, "%s%d", cp, ppa);
15105 
15106 	/*
15107 	 * Here we are not going to delay the ioack until after
15108 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
15109 	 * original ioctl message before sending the requests.
15110 	 */
15111 	return (ipif_set_values(q, mp, interf_name, &ppa));
15112 }
15113 
15114 /* ARGSUSED */
15115 int
15116 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
15117     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
15118 {
15119 	return (ENXIO);
15120 }
15121 
15122 /*
15123  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
15124  * `irep'.  Returns a pointer to the next free `irep' entry
15125  * A mirror exists in ipif_delete_bcast_ires().
15126  *
15127  * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is
15128  * done in ire_add.
15129  */
15130 static ire_t **
15131 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
15132 {
15133 	ipaddr_t addr;
15134 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
15135 	ipaddr_t subnetmask = ipif->ipif_net_mask;
15136 	ill_t *ill = ipif->ipif_ill;
15137 	zoneid_t zoneid = ipif->ipif_zoneid;
15138 
15139 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
15140 
15141 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15142 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15143 
15144 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15145 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15146 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15147 
15148 	irep = ire_create_bcast(ill, 0, zoneid, irep);
15149 	irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep);
15150 
15151 	/*
15152 	 * For backward compatibility, we create net broadcast IREs based on
15153 	 * the old "IP address class system", since some old machines only
15154 	 * respond to these class derived net broadcast.  However, we must not
15155 	 * create these net broadcast IREs if the subnetmask is shorter than
15156 	 * the IP address class based derived netmask.  Otherwise, we may
15157 	 * create a net broadcast address which is the same as an IP address
15158 	 * on the subnet -- and then TCP will refuse to talk to that address.
15159 	 */
15160 	if (netmask < subnetmask) {
15161 		addr = netmask & ipif->ipif_subnet;
15162 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15163 		irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep);
15164 	}
15165 
15166 	/*
15167 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15168 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15169 	 * created.  Creating these broadcast IREs will only create confusion
15170 	 * as `addr' will be the same as the IP address.
15171 	 */
15172 	if (subnetmask != 0xFFFFFFFF) {
15173 		addr = ipif->ipif_subnet;
15174 		irep = ire_create_bcast(ill, addr, zoneid, irep);
15175 		irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep);
15176 	}
15177 
15178 	return (irep);
15179 }
15180 
15181 /*
15182  * Mirror of ipif_create_bcast_ires()
15183  */
15184 static void
15185 ipif_delete_bcast_ires(ipif_t *ipif)
15186 {
15187 	ipaddr_t	addr;
15188 	ipaddr_t	netmask = ip_net_mask(ipif->ipif_lcl_addr);
15189 	ipaddr_t	subnetmask = ipif->ipif_net_mask;
15190 	ill_t		*ill = ipif->ipif_ill;
15191 	zoneid_t	zoneid = ipif->ipif_zoneid;
15192 	ire_t		*ire;
15193 
15194 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
15195 	ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT));
15196 
15197 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
15198 	    (ipif->ipif_flags & IPIF_NOLOCAL))
15199 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
15200 
15201 	ire = ire_lookup_bcast(ill, 0, zoneid);
15202 	ASSERT(ire != NULL);
15203 	ire_delete(ire); ire_refrele(ire);
15204 	ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid);
15205 	ASSERT(ire != NULL);
15206 	ire_delete(ire); ire_refrele(ire);
15207 
15208 	/*
15209 	 * For backward compatibility, we create net broadcast IREs based on
15210 	 * the old "IP address class system", since some old machines only
15211 	 * respond to these class derived net broadcast.  However, we must not
15212 	 * create these net broadcast IREs if the subnetmask is shorter than
15213 	 * the IP address class based derived netmask.  Otherwise, we may
15214 	 * create a net broadcast address which is the same as an IP address
15215 	 * on the subnet -- and then TCP will refuse to talk to that address.
15216 	 */
15217 	if (netmask < subnetmask) {
15218 		addr = netmask & ipif->ipif_subnet;
15219 		ire = ire_lookup_bcast(ill, addr, zoneid);
15220 		ASSERT(ire != NULL);
15221 		ire_delete(ire); ire_refrele(ire);
15222 		ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid);
15223 		ASSERT(ire != NULL);
15224 		ire_delete(ire); ire_refrele(ire);
15225 	}
15226 
15227 	/*
15228 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
15229 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
15230 	 * created.  Creating these broadcast IREs will only create confusion
15231 	 * as `addr' will be the same as the IP address.
15232 	 */
15233 	if (subnetmask != 0xFFFFFFFF) {
15234 		addr = ipif->ipif_subnet;
15235 		ire = ire_lookup_bcast(ill, addr, zoneid);
15236 		ASSERT(ire != NULL);
15237 		ire_delete(ire); ire_refrele(ire);
15238 		ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid);
15239 		ASSERT(ire != NULL);
15240 		ire_delete(ire); ire_refrele(ire);
15241 	}
15242 }
15243 
15244 /*
15245  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
15246  * from lifr_flags and the name from lifr_name.
15247  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
15248  * since ipif_lookup_on_name uses the _isv6 flags when matching.
15249  * Returns EINPROGRESS when mp has been consumed by queueing it on
15250  * ipx_pending_mp and the ioctl will complete in ip_rput.
15251  *
15252  * Can operate on either a module or a driver queue.
15253  * Returns an error if not a module queue.
15254  */
15255 /* ARGSUSED */
15256 int
15257 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15258     ip_ioctl_cmd_t *ipip, void *if_req)
15259 {
15260 	ill_t	*ill = q->q_ptr;
15261 	phyint_t *phyi;
15262 	ip_stack_t *ipst;
15263 	struct lifreq *lifr = if_req;
15264 	uint64_t new_flags;
15265 
15266 	ASSERT(ipif != NULL);
15267 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
15268 
15269 	if (q->q_next == NULL) {
15270 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
15271 		return (EINVAL);
15272 	}
15273 
15274 	/*
15275 	 * If we are not writer on 'q' then this interface exists already
15276 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
15277 	 * so return EALREADY.
15278 	 */
15279 	if (ill != ipif->ipif_ill)
15280 		return (EALREADY);
15281 
15282 	if (ill->ill_name[0] != '\0')
15283 		return (EALREADY);
15284 
15285 	/*
15286 	 * If there's another ill already with the requested name, ensure
15287 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
15288 	 * fuse together two unrelated ills, which will cause chaos.
15289 	 */
15290 	ipst = ill->ill_ipst;
15291 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
15292 	    lifr->lifr_name, NULL);
15293 	if (phyi != NULL) {
15294 		ill_t *ill_mate = phyi->phyint_illv4;
15295 
15296 		if (ill_mate == NULL)
15297 			ill_mate = phyi->phyint_illv6;
15298 		ASSERT(ill_mate != NULL);
15299 
15300 		if (ill_mate->ill_media->ip_m_mac_type !=
15301 		    ill->ill_media->ip_m_mac_type) {
15302 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
15303 			    "use the same ill name on differing media\n"));
15304 			return (EINVAL);
15305 		}
15306 	}
15307 
15308 	/*
15309 	 * We start off as IFF_IPV4 in ipif_allocate and become
15310 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
15311 	 * The only flags that we read from user space are IFF_IPV4,
15312 	 * IFF_IPV6, and IFF_BROADCAST.
15313 	 *
15314 	 * This ill has not been inserted into the global list.
15315 	 * So we are still single threaded and don't need any lock
15316 	 *
15317 	 * Saniy check the flags.
15318 	 */
15319 
15320 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
15321 	    ((lifr->lifr_flags & IFF_IPV6) ||
15322 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
15323 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
15324 		    "or IPv6 i.e., no broadcast \n"));
15325 		return (EINVAL);
15326 	}
15327 
15328 	new_flags =
15329 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST);
15330 
15331 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
15332 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
15333 		    "IFF_IPV4 or IFF_IPV6\n"));
15334 		return (EINVAL);
15335 	}
15336 
15337 	/*
15338 	 * We always start off as IPv4, so only need to check for IPv6.
15339 	 */
15340 	if ((new_flags & IFF_IPV6) != 0) {
15341 		ill->ill_flags |= ILLF_IPV6;
15342 		ill->ill_flags &= ~ILLF_IPV4;
15343 	}
15344 
15345 	if ((new_flags & IFF_BROADCAST) != 0)
15346 		ipif->ipif_flags |= IPIF_BROADCAST;
15347 	else
15348 		ipif->ipif_flags &= ~IPIF_BROADCAST;
15349 
15350 	/* We started off as V4. */
15351 	if (ill->ill_flags & ILLF_IPV6) {
15352 		ill->ill_phyint->phyint_illv6 = ill;
15353 		ill->ill_phyint->phyint_illv4 = NULL;
15354 	}
15355 
15356 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
15357 }
15358 
15359 /* ARGSUSED */
15360 int
15361 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15362     ip_ioctl_cmd_t *ipip, void *if_req)
15363 {
15364 	/*
15365 	 * ill_phyint_reinit merged the v4 and v6 into a single
15366 	 * ipsq.  We might not have been able to complete the
15367 	 * slifname in ipif_set_values, if we could not become
15368 	 * exclusive.  If so restart it here
15369 	 */
15370 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
15371 }
15372 
15373 /*
15374  * Return a pointer to the ipif which matches the index, IP version type and
15375  * zoneid.
15376  */
15377 ipif_t *
15378 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
15379     ip_stack_t *ipst)
15380 {
15381 	ill_t	*ill;
15382 	ipif_t	*ipif = NULL;
15383 
15384 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
15385 	if (ill != NULL) {
15386 		mutex_enter(&ill->ill_lock);
15387 		for (ipif = ill->ill_ipif; ipif != NULL;
15388 		    ipif = ipif->ipif_next) {
15389 			if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES ||
15390 			    zoneid == ipif->ipif_zoneid ||
15391 			    ipif->ipif_zoneid == ALL_ZONES)) {
15392 				ipif_refhold_locked(ipif);
15393 				break;
15394 			}
15395 		}
15396 		mutex_exit(&ill->ill_lock);
15397 		ill_refrele(ill);
15398 	}
15399 	return (ipif);
15400 }
15401 
15402 /*
15403  * Change an existing physical interface's index. If the new index
15404  * is acceptable we update the index and the phyint_list_avl_by_index tree.
15405  * Finally, we update other systems which may have a dependence on the
15406  * index value.
15407  */
15408 /* ARGSUSED */
15409 int
15410 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15411     ip_ioctl_cmd_t *ipip, void *ifreq)
15412 {
15413 	ill_t		*ill;
15414 	phyint_t	*phyi;
15415 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15416 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15417 	uint_t	old_index, index;
15418 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15419 	avl_index_t	where;
15420 
15421 	if (ipip->ipi_cmd_type == IF_CMD)
15422 		index = ifr->ifr_index;
15423 	else
15424 		index = lifr->lifr_index;
15425 
15426 	/*
15427 	 * Only allow on physical interface. Also, index zero is illegal.
15428 	 */
15429 	ill = ipif->ipif_ill;
15430 	phyi = ill->ill_phyint;
15431 	if (ipif->ipif_id != 0 || index == 0) {
15432 		return (EINVAL);
15433 	}
15434 
15435 	/* If the index is not changing, no work to do */
15436 	if (phyi->phyint_ifindex == index)
15437 		return (0);
15438 
15439 	/*
15440 	 * Use phyint_exists() to determine if the new interface index
15441 	 * is already in use. If the index is unused then we need to
15442 	 * change the phyint's position in the phyint_list_avl_by_index
15443 	 * tree. If we do not do this, subsequent lookups (using the new
15444 	 * index value) will not find the phyint.
15445 	 */
15446 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15447 	if (phyint_exists(index, ipst)) {
15448 		rw_exit(&ipst->ips_ill_g_lock);
15449 		return (EEXIST);
15450 	}
15451 
15452 	/*
15453 	 * The new index is unused. Set it in the phyint. However we must not
15454 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
15455 	 * changes. The event must be bound to old ifindex value.
15456 	 */
15457 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
15458 	    &index, sizeof (index));
15459 
15460 	old_index = phyi->phyint_ifindex;
15461 	phyi->phyint_ifindex = index;
15462 
15463 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
15464 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15465 	    &index, &where);
15466 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
15467 	    phyi, where);
15468 	rw_exit(&ipst->ips_ill_g_lock);
15469 
15470 	/* Update SCTP's ILL list */
15471 	sctp_ill_reindex(ill, old_index);
15472 
15473 	/* Send the routing sockets message */
15474 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
15475 	if (ILL_OTHER(ill))
15476 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
15477 
15478 	/* Perhaps ilgs should use this ill */
15479 	update_conn_ill(NULL, ill->ill_ipst);
15480 	return (0);
15481 }
15482 
15483 /* ARGSUSED */
15484 int
15485 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15486     ip_ioctl_cmd_t *ipip, void *ifreq)
15487 {
15488 	struct ifreq	*ifr = (struct ifreq *)ifreq;
15489 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15490 
15491 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
15492 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15493 	/* Get the interface index */
15494 	if (ipip->ipi_cmd_type == IF_CMD) {
15495 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15496 	} else {
15497 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
15498 	}
15499 	return (0);
15500 }
15501 
15502 /* ARGSUSED */
15503 int
15504 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15505     ip_ioctl_cmd_t *ipip, void *ifreq)
15506 {
15507 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15508 
15509 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
15510 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15511 	/* Get the interface zone */
15512 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15513 	lifr->lifr_zoneid = ipif->ipif_zoneid;
15514 	return (0);
15515 }
15516 
15517 /*
15518  * Set the zoneid of an interface.
15519  */
15520 /* ARGSUSED */
15521 int
15522 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15523     ip_ioctl_cmd_t *ipip, void *ifreq)
15524 {
15525 	struct lifreq	*lifr = (struct lifreq *)ifreq;
15526 	int err = 0;
15527 	boolean_t need_up = B_FALSE;
15528 	zone_t *zptr;
15529 	zone_status_t status;
15530 	zoneid_t zoneid;
15531 
15532 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15533 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
15534 		if (!is_system_labeled())
15535 			return (ENOTSUP);
15536 		zoneid = GLOBAL_ZONEID;
15537 	}
15538 
15539 	/* cannot assign instance zero to a non-global zone */
15540 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
15541 		return (ENOTSUP);
15542 
15543 	/*
15544 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
15545 	 * the event of a race with the zone shutdown processing, since IP
15546 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
15547 	 * interface will be cleaned up even if the zone is shut down
15548 	 * immediately after the status check. If the interface can't be brought
15549 	 * down right away, and the zone is shut down before the restart
15550 	 * function is called, we resolve the possible races by rechecking the
15551 	 * zone status in the restart function.
15552 	 */
15553 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
15554 		return (EINVAL);
15555 	status = zone_status_get(zptr);
15556 	zone_rele(zptr);
15557 
15558 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
15559 		return (EINVAL);
15560 
15561 	if (ipif->ipif_flags & IPIF_UP) {
15562 		/*
15563 		 * If the interface is already marked up,
15564 		 * we call ipif_down which will take care
15565 		 * of ditching any IREs that have been set
15566 		 * up based on the old interface address.
15567 		 */
15568 		err = ipif_logical_down(ipif, q, mp);
15569 		if (err == EINPROGRESS)
15570 			return (err);
15571 		(void) ipif_down_tail(ipif);
15572 		need_up = B_TRUE;
15573 	}
15574 
15575 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
15576 	return (err);
15577 }
15578 
15579 static int
15580 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
15581     queue_t *q, mblk_t *mp, boolean_t need_up)
15582 {
15583 	int	err = 0;
15584 	ip_stack_t	*ipst;
15585 
15586 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
15587 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15588 
15589 	if (CONN_Q(q))
15590 		ipst = CONNQ_TO_IPST(q);
15591 	else
15592 		ipst = ILLQ_TO_IPST(q);
15593 
15594 	/*
15595 	 * For exclusive stacks we don't allow a different zoneid than
15596 	 * global.
15597 	 */
15598 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
15599 	    zoneid != GLOBAL_ZONEID)
15600 		return (EINVAL);
15601 
15602 	/* Set the new zone id. */
15603 	ipif->ipif_zoneid = zoneid;
15604 
15605 	/* Update sctp list */
15606 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
15607 
15608 	/* The default multicast interface might have changed */
15609 	ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6);
15610 
15611 	if (need_up) {
15612 		/*
15613 		 * Now bring the interface back up.  If this
15614 		 * is the only IPIF for the ILL, ipif_up
15615 		 * will have to re-bind to the device, so
15616 		 * we may get back EINPROGRESS, in which
15617 		 * case, this IOCTL will get completed in
15618 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
15619 		 */
15620 		err = ipif_up(ipif, q, mp);
15621 	}
15622 	return (err);
15623 }
15624 
15625 /* ARGSUSED */
15626 int
15627 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15628     ip_ioctl_cmd_t *ipip, void *if_req)
15629 {
15630 	struct lifreq *lifr = (struct lifreq *)if_req;
15631 	zoneid_t zoneid;
15632 	zone_t *zptr;
15633 	zone_status_t status;
15634 
15635 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
15636 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
15637 		zoneid = GLOBAL_ZONEID;
15638 
15639 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
15640 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15641 
15642 	/*
15643 	 * We recheck the zone status to resolve the following race condition:
15644 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
15645 	 * 2) hme0:1 is up and can't be brought down right away;
15646 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
15647 	 * 3) zone "myzone" is halted; the zone status switches to
15648 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
15649 	 * the interfaces to remove - hme0:1 is not returned because it's not
15650 	 * yet in "myzone", so it won't be removed;
15651 	 * 4) the restart function for SIOCSLIFZONE is called; without the
15652 	 * status check here, we would have hme0:1 in "myzone" after it's been
15653 	 * destroyed.
15654 	 * Note that if the status check fails, we need to bring the interface
15655 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
15656 	 * ipif_up_done[_v6]().
15657 	 */
15658 	status = ZONE_IS_UNINITIALIZED;
15659 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
15660 		status = zone_status_get(zptr);
15661 		zone_rele(zptr);
15662 	}
15663 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
15664 		if (ipif->ipif_isv6) {
15665 			(void) ipif_up_done_v6(ipif);
15666 		} else {
15667 			(void) ipif_up_done(ipif);
15668 		}
15669 		return (EINVAL);
15670 	}
15671 
15672 	(void) ipif_down_tail(ipif);
15673 
15674 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
15675 	    B_TRUE));
15676 }
15677 
15678 /*
15679  * Return the number of addresses on `ill' with one or more of the values
15680  * in `set' set and all of the values in `clear' clear.
15681  */
15682 static uint_t
15683 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
15684 {
15685 	ipif_t	*ipif;
15686 	uint_t	cnt = 0;
15687 
15688 	ASSERT(IAM_WRITER_ILL(ill));
15689 
15690 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
15691 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
15692 			cnt++;
15693 
15694 	return (cnt);
15695 }
15696 
15697 /*
15698  * Return the number of migratable addresses on `ill' that are under
15699  * application control.
15700  */
15701 uint_t
15702 ill_appaddr_cnt(const ill_t *ill)
15703 {
15704 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
15705 	    IPIF_NOFAILOVER));
15706 }
15707 
15708 /*
15709  * Return the number of point-to-point addresses on `ill'.
15710  */
15711 uint_t
15712 ill_ptpaddr_cnt(const ill_t *ill)
15713 {
15714 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
15715 }
15716 
15717 /* ARGSUSED */
15718 int
15719 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15720 	ip_ioctl_cmd_t *ipip, void *ifreq)
15721 {
15722 	struct lifreq	*lifr = ifreq;
15723 
15724 	ASSERT(q->q_next == NULL);
15725 	ASSERT(CONN_Q(q));
15726 
15727 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
15728 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
15729 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
15730 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
15731 
15732 	return (0);
15733 }
15734 
15735 /* Find the previous ILL in this usesrc group */
15736 static ill_t *
15737 ill_prev_usesrc(ill_t *uill)
15738 {
15739 	ill_t *ill;
15740 
15741 	for (ill = uill->ill_usesrc_grp_next;
15742 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
15743 	    ill = ill->ill_usesrc_grp_next)
15744 		/* do nothing */;
15745 	return (ill);
15746 }
15747 
15748 /*
15749  * Release all members of the usesrc group. This routine is called
15750  * from ill_delete when the interface being unplumbed is the
15751  * group head.
15752  *
15753  * This silently clears the usesrc that ifconfig setup.
15754  * An alternative would be to keep that ifindex, and drop packets on the floor
15755  * since no source address can be selected.
15756  * Even if we keep the current semantics, don't need a lock and a linked list.
15757  * Can walk all the ills checking if they have a ill_usesrc_ifindex matching
15758  * the one that is being removed. Issue is how we return the usesrc users
15759  * (SIOCGLIFSRCOF). We want to be able to find the ills which have an
15760  * ill_usesrc_ifindex matching a target ill. We could also do that with an
15761  * ill walk, but the walker would need to insert in the ioctl response.
15762  */
15763 static void
15764 ill_disband_usesrc_group(ill_t *uill)
15765 {
15766 	ill_t *next_ill, *tmp_ill;
15767 	ip_stack_t	*ipst = uill->ill_ipst;
15768 
15769 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15770 	next_ill = uill->ill_usesrc_grp_next;
15771 
15772 	do {
15773 		ASSERT(next_ill != NULL);
15774 		tmp_ill = next_ill->ill_usesrc_grp_next;
15775 		ASSERT(tmp_ill != NULL);
15776 		next_ill->ill_usesrc_grp_next = NULL;
15777 		next_ill->ill_usesrc_ifindex = 0;
15778 		next_ill = tmp_ill;
15779 	} while (next_ill->ill_usesrc_ifindex != 0);
15780 	uill->ill_usesrc_grp_next = NULL;
15781 }
15782 
15783 /*
15784  * Remove the client usesrc ILL from the list and relink to a new list
15785  */
15786 int
15787 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
15788 {
15789 	ill_t *ill, *tmp_ill;
15790 	ip_stack_t	*ipst = ucill->ill_ipst;
15791 
15792 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
15793 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
15794 
15795 	/*
15796 	 * Check if the usesrc client ILL passed in is not already
15797 	 * in use as a usesrc ILL i.e one whose source address is
15798 	 * in use OR a usesrc ILL is not already in use as a usesrc
15799 	 * client ILL
15800 	 */
15801 	if ((ucill->ill_usesrc_ifindex == 0) ||
15802 	    (uill->ill_usesrc_ifindex != 0)) {
15803 		return (-1);
15804 	}
15805 
15806 	ill = ill_prev_usesrc(ucill);
15807 	ASSERT(ill->ill_usesrc_grp_next != NULL);
15808 
15809 	/* Remove from the current list */
15810 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
15811 		/* Only two elements in the list */
15812 		ASSERT(ill->ill_usesrc_ifindex == 0);
15813 		ill->ill_usesrc_grp_next = NULL;
15814 	} else {
15815 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
15816 	}
15817 
15818 	if (ifindex == 0) {
15819 		ucill->ill_usesrc_ifindex = 0;
15820 		ucill->ill_usesrc_grp_next = NULL;
15821 		return (0);
15822 	}
15823 
15824 	ucill->ill_usesrc_ifindex = ifindex;
15825 	tmp_ill = uill->ill_usesrc_grp_next;
15826 	uill->ill_usesrc_grp_next = ucill;
15827 	ucill->ill_usesrc_grp_next =
15828 	    (tmp_ill != NULL) ? tmp_ill : uill;
15829 	return (0);
15830 }
15831 
15832 /*
15833  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
15834  * ip.c for locking details.
15835  */
15836 /* ARGSUSED */
15837 int
15838 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
15839     ip_ioctl_cmd_t *ipip, void *ifreq)
15840 {
15841 	struct lifreq *lifr = (struct lifreq *)ifreq;
15842 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE;
15843 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
15844 	int err = 0, ret;
15845 	uint_t ifindex;
15846 	ipsq_t *ipsq = NULL;
15847 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15848 
15849 	ASSERT(IAM_WRITER_IPIF(ipif));
15850 	ASSERT(q->q_next == NULL);
15851 	ASSERT(CONN_Q(q));
15852 
15853 	isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6;
15854 
15855 	ifindex = lifr->lifr_index;
15856 	if (ifindex == 0) {
15857 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
15858 			/* non usesrc group interface, nothing to reset */
15859 			return (0);
15860 		}
15861 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
15862 		/* valid reset request */
15863 		reset_flg = B_TRUE;
15864 	}
15865 
15866 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
15867 	if (usesrc_ill == NULL) {
15868 		return (ENXIO);
15869 	}
15870 
15871 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
15872 	    NEW_OP, B_TRUE);
15873 	if (ipsq == NULL) {
15874 		err = EINPROGRESS;
15875 		/* Operation enqueued on the ipsq of the usesrc ILL */
15876 		goto done;
15877 	}
15878 
15879 	/* USESRC isn't currently supported with IPMP */
15880 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
15881 		err = ENOTSUP;
15882 		goto done;
15883 	}
15884 
15885 	/*
15886 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
15887 	 * used by IPMP underlying interfaces, but someone might think it's
15888 	 * more general and try to use it independently with VNI.)
15889 	 */
15890 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
15891 		err = ENOTSUP;
15892 		goto done;
15893 	}
15894 
15895 	/*
15896 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
15897 	 * already a client then return EINVAL
15898 	 */
15899 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
15900 		err = EINVAL;
15901 		goto done;
15902 	}
15903 
15904 	/*
15905 	 * If the ill_usesrc_ifindex field is already set to what it needs to
15906 	 * be then this is a duplicate operation.
15907 	 */
15908 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
15909 		err = 0;
15910 		goto done;
15911 	}
15912 
15913 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
15914 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
15915 	    usesrc_ill->ill_isv6));
15916 
15917 	/*
15918 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
15919 	 * and the ill_usesrc_ifindex fields
15920 	 */
15921 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
15922 
15923 	if (reset_flg) {
15924 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
15925 		if (ret != 0) {
15926 			err = EINVAL;
15927 		}
15928 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
15929 		goto done;
15930 	}
15931 
15932 	/*
15933 	 * Four possibilities to consider:
15934 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
15935 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
15936 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
15937 	 * 4. Both are part of their respective usesrc groups
15938 	 */
15939 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
15940 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
15941 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
15942 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
15943 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
15944 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
15945 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
15946 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
15947 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
15948 		/* Insert at head of list */
15949 		usesrc_cli_ill->ill_usesrc_grp_next =
15950 		    usesrc_ill->ill_usesrc_grp_next;
15951 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
15952 	} else {
15953 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
15954 		    ifindex);
15955 		if (ret != 0)
15956 			err = EINVAL;
15957 	}
15958 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
15959 
15960 done:
15961 	if (ipsq != NULL)
15962 		ipsq_exit(ipsq);
15963 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
15964 	ill_refrele(usesrc_ill);
15965 
15966 	/* Let conn_ixa caching know that source address selection changed */
15967 	ip_update_source_selection(ipst);
15968 
15969 	return (err);
15970 }
15971 
15972 /*
15973  * comparison function used by avl.
15974  */
15975 static int
15976 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
15977 {
15978 
15979 	uint_t index;
15980 
15981 	ASSERT(phyip != NULL && index_ptr != NULL);
15982 
15983 	index = *((uint_t *)index_ptr);
15984 	/*
15985 	 * let the phyint with the lowest index be on top.
15986 	 */
15987 	if (((phyint_t *)phyip)->phyint_ifindex < index)
15988 		return (1);
15989 	if (((phyint_t *)phyip)->phyint_ifindex > index)
15990 		return (-1);
15991 	return (0);
15992 }
15993 
15994 /*
15995  * comparison function used by avl.
15996  */
15997 static int
15998 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
15999 {
16000 	ill_t *ill;
16001 	int res = 0;
16002 
16003 	ASSERT(phyip != NULL && name_ptr != NULL);
16004 
16005 	if (((phyint_t *)phyip)->phyint_illv4)
16006 		ill = ((phyint_t *)phyip)->phyint_illv4;
16007 	else
16008 		ill = ((phyint_t *)phyip)->phyint_illv6;
16009 	ASSERT(ill != NULL);
16010 
16011 	res = strcmp(ill->ill_name, (char *)name_ptr);
16012 	if (res > 0)
16013 		return (1);
16014 	else if (res < 0)
16015 		return (-1);
16016 	return (0);
16017 }
16018 
16019 /*
16020  * This function is called on the unplumb path via ill_glist_delete() when
16021  * there are no ills left on the phyint and thus the phyint can be freed.
16022  */
16023 static void
16024 phyint_free(phyint_t *phyi)
16025 {
16026 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
16027 
16028 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
16029 
16030 	/*
16031 	 * If this phyint was an IPMP meta-interface, blow away the group.
16032 	 * This is safe to do because all of the illgrps have already been
16033 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
16034 	 * If we're cleaning up as a result of failed initialization,
16035 	 * phyint_grp may be NULL.
16036 	 */
16037 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
16038 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16039 		ipmp_grp_destroy(phyi->phyint_grp);
16040 		phyi->phyint_grp = NULL;
16041 		rw_exit(&ipst->ips_ipmp_lock);
16042 	}
16043 
16044 	/*
16045 	 * If this interface was under IPMP, take it out of the group.
16046 	 */
16047 	if (phyi->phyint_grp != NULL)
16048 		ipmp_phyint_leave_grp(phyi);
16049 
16050 	/*
16051 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
16052 	 * will be freed in ipsq_exit().
16053 	 */
16054 	phyi->phyint_ipsq->ipsq_phyint = NULL;
16055 	phyi->phyint_name[0] = '\0';
16056 
16057 	mi_free(phyi);
16058 }
16059 
16060 /*
16061  * Attach the ill to the phyint structure which can be shared by both
16062  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
16063  * function is called from ipif_set_values and ill_lookup_on_name (for
16064  * loopback) where we know the name of the ill. We lookup the ill and if
16065  * there is one present already with the name use that phyint. Otherwise
16066  * reuse the one allocated by ill_init.
16067  */
16068 static void
16069 ill_phyint_reinit(ill_t *ill)
16070 {
16071 	boolean_t isv6 = ill->ill_isv6;
16072 	phyint_t *phyi_old;
16073 	phyint_t *phyi;
16074 	avl_index_t where = 0;
16075 	ill_t	*ill_other = NULL;
16076 	ip_stack_t	*ipst = ill->ill_ipst;
16077 
16078 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16079 
16080 	phyi_old = ill->ill_phyint;
16081 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
16082 	    phyi_old->phyint_illv6 == NULL));
16083 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
16084 	    phyi_old->phyint_illv4 == NULL));
16085 	ASSERT(phyi_old->phyint_ifindex == 0);
16086 
16087 	/*
16088 	 * Now that our ill has a name, set it in the phyint.
16089 	 */
16090 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
16091 
16092 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16093 	    ill->ill_name, &where);
16094 
16095 	/*
16096 	 * 1. We grabbed the ill_g_lock before inserting this ill into
16097 	 *    the global list of ills. So no other thread could have located
16098 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
16099 	 * 2. Now locate the other protocol instance of this ill.
16100 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
16101 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
16102 	 *    of neither ill can change.
16103 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
16104 	 *    other ill.
16105 	 * 5. Release all locks.
16106 	 */
16107 
16108 	/*
16109 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
16110 	 * we are initializing IPv4.
16111 	 */
16112 	if (phyi != NULL) {
16113 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
16114 		ASSERT(ill_other->ill_phyint != NULL);
16115 		ASSERT((isv6 && !ill_other->ill_isv6) ||
16116 		    (!isv6 && ill_other->ill_isv6));
16117 		GRAB_ILL_LOCKS(ill, ill_other);
16118 		/*
16119 		 * We are potentially throwing away phyint_flags which
16120 		 * could be different from the one that we obtain from
16121 		 * ill_other->ill_phyint. But it is okay as we are assuming
16122 		 * that the state maintained within IP is correct.
16123 		 */
16124 		mutex_enter(&phyi->phyint_lock);
16125 		if (isv6) {
16126 			ASSERT(phyi->phyint_illv6 == NULL);
16127 			phyi->phyint_illv6 = ill;
16128 		} else {
16129 			ASSERT(phyi->phyint_illv4 == NULL);
16130 			phyi->phyint_illv4 = ill;
16131 		}
16132 
16133 		/*
16134 		 * Delete the old phyint and make its ipsq eligible
16135 		 * to be freed in ipsq_exit().
16136 		 */
16137 		phyi_old->phyint_illv4 = NULL;
16138 		phyi_old->phyint_illv6 = NULL;
16139 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
16140 		phyi_old->phyint_name[0] = '\0';
16141 		mi_free(phyi_old);
16142 	} else {
16143 		mutex_enter(&ill->ill_lock);
16144 		/*
16145 		 * We don't need to acquire any lock, since
16146 		 * the ill is not yet visible globally  and we
16147 		 * have not yet released the ill_g_lock.
16148 		 */
16149 		phyi = phyi_old;
16150 		mutex_enter(&phyi->phyint_lock);
16151 		/* XXX We need a recovery strategy here. */
16152 		if (!phyint_assign_ifindex(phyi, ipst))
16153 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
16154 
16155 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16156 		    (void *)phyi, where);
16157 
16158 		(void) avl_find(&ipst->ips_phyint_g_list->
16159 		    phyint_list_avl_by_index,
16160 		    &phyi->phyint_ifindex, &where);
16161 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16162 		    (void *)phyi, where);
16163 	}
16164 
16165 	/*
16166 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
16167 	 * pending mp is not affected because that is per ill basis.
16168 	 */
16169 	ill->ill_phyint = phyi;
16170 
16171 	/*
16172 	 * Now that the phyint's ifindex has been assigned, complete the
16173 	 * remaining
16174 	 */
16175 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
16176 	if (ill->ill_isv6) {
16177 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
16178 		    ill->ill_phyint->phyint_ifindex;
16179 		ill->ill_mcast_type = ipst->ips_mld_max_version;
16180 	} else {
16181 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
16182 	}
16183 
16184 	/*
16185 	 * Generate an event within the hooks framework to indicate that
16186 	 * a new interface has just been added to IP.  For this event to
16187 	 * be generated, the network interface must, at least, have an
16188 	 * ifindex assigned to it.  (We don't generate the event for
16189 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
16190 	 *
16191 	 * This needs to be run inside the ill_g_lock perimeter to ensure
16192 	 * that the ordering of delivered events to listeners matches the
16193 	 * order of them in the kernel.
16194 	 */
16195 	if (!IS_LOOPBACK(ill)) {
16196 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
16197 		    ill->ill_name_length);
16198 	}
16199 	RELEASE_ILL_LOCKS(ill, ill_other);
16200 	mutex_exit(&phyi->phyint_lock);
16201 }
16202 
16203 /*
16204  * Notify any downstream modules of the name of this interface.
16205  * An M_IOCTL is used even though we don't expect a successful reply.
16206  * Any reply message from the driver (presumably an M_IOCNAK) will
16207  * eventually get discarded somewhere upstream.  The message format is
16208  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
16209  * to IP.
16210  */
16211 static void
16212 ip_ifname_notify(ill_t *ill, queue_t *q)
16213 {
16214 	mblk_t *mp1, *mp2;
16215 	struct iocblk *iocp;
16216 	struct lifreq *lifr;
16217 
16218 	mp1 = mkiocb(SIOCSLIFNAME);
16219 	if (mp1 == NULL)
16220 		return;
16221 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
16222 	if (mp2 == NULL) {
16223 		freeb(mp1);
16224 		return;
16225 	}
16226 
16227 	mp1->b_cont = mp2;
16228 	iocp = (struct iocblk *)mp1->b_rptr;
16229 	iocp->ioc_count = sizeof (struct lifreq);
16230 
16231 	lifr = (struct lifreq *)mp2->b_rptr;
16232 	mp2->b_wptr += sizeof (struct lifreq);
16233 	bzero(lifr, sizeof (struct lifreq));
16234 
16235 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
16236 	lifr->lifr_ppa = ill->ill_ppa;
16237 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
16238 
16239 	DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify",
16240 	    char *, "SIOCSLIFNAME", ill_t *, ill);
16241 	putnext(q, mp1);
16242 }
16243 
16244 static int
16245 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
16246 {
16247 	int		err;
16248 	ip_stack_t	*ipst = ill->ill_ipst;
16249 	phyint_t	*phyi = ill->ill_phyint;
16250 
16251 	/* Set the obsolete NDD per-interface forwarding name. */
16252 	err = ill_set_ndd_name(ill);
16253 	if (err != 0) {
16254 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
16255 		    err);
16256 	}
16257 
16258 	/*
16259 	 * Now that ill_name is set, the configuration for the IPMP
16260 	 * meta-interface can be performed.
16261 	 */
16262 	if (IS_IPMP(ill)) {
16263 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
16264 		/*
16265 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
16266 		 * meta-interface and we need to create the IPMP group.
16267 		 */
16268 		if (phyi->phyint_grp == NULL) {
16269 			/*
16270 			 * If someone has renamed another IPMP group to have
16271 			 * the same name as our interface, bail.
16272 			 */
16273 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
16274 				rw_exit(&ipst->ips_ipmp_lock);
16275 				return (EEXIST);
16276 			}
16277 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
16278 			if (phyi->phyint_grp == NULL) {
16279 				rw_exit(&ipst->ips_ipmp_lock);
16280 				return (ENOMEM);
16281 			}
16282 		}
16283 		rw_exit(&ipst->ips_ipmp_lock);
16284 	}
16285 
16286 	/* Tell downstream modules where they are. */
16287 	ip_ifname_notify(ill, q);
16288 
16289 	/*
16290 	 * ill_dl_phys returns EINPROGRESS in the usual case.
16291 	 * Error cases are ENOMEM ...
16292 	 */
16293 	err = ill_dl_phys(ill, ipif, mp, q);
16294 
16295 	if (ill->ill_isv6) {
16296 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
16297 		if (ipst->ips_mld_slowtimeout_id == 0) {
16298 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
16299 			    (void *)ipst,
16300 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16301 		}
16302 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
16303 	} else {
16304 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
16305 		if (ipst->ips_igmp_slowtimeout_id == 0) {
16306 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
16307 			    (void *)ipst,
16308 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
16309 		}
16310 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
16311 	}
16312 
16313 	return (err);
16314 }
16315 
16316 /*
16317  * Common routine for ppa and ifname setting. Should be called exclusive.
16318  *
16319  * Returns EINPROGRESS when mp has been consumed by queueing it on
16320  * ipx_pending_mp and the ioctl will complete in ip_rput.
16321  *
16322  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
16323  * the new name and new ppa in lifr_name and lifr_ppa respectively.
16324  * For SLIFNAME, we pass these values back to the userland.
16325  */
16326 static int
16327 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
16328 {
16329 	ill_t	*ill;
16330 	ipif_t	*ipif;
16331 	ipsq_t	*ipsq;
16332 	char	*ppa_ptr;
16333 	char	*old_ptr;
16334 	char	old_char;
16335 	int	error;
16336 	ip_stack_t	*ipst;
16337 
16338 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
16339 	ASSERT(q->q_next != NULL);
16340 	ASSERT(interf_name != NULL);
16341 
16342 	ill = (ill_t *)q->q_ptr;
16343 	ipst = ill->ill_ipst;
16344 
16345 	ASSERT(ill->ill_ipst != NULL);
16346 	ASSERT(ill->ill_name[0] == '\0');
16347 	ASSERT(IAM_WRITER_ILL(ill));
16348 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
16349 	ASSERT(ill->ill_ppa == UINT_MAX);
16350 
16351 	ill->ill_defend_start = ill->ill_defend_count = 0;
16352 	/* The ppa is sent down by ifconfig or is chosen */
16353 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
16354 		return (EINVAL);
16355 	}
16356 
16357 	/*
16358 	 * make sure ppa passed in is same as ppa in the name.
16359 	 * This check is not made when ppa == UINT_MAX in that case ppa
16360 	 * in the name could be anything. System will choose a ppa and
16361 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
16362 	 */
16363 	if (*new_ppa_ptr != UINT_MAX) {
16364 		/* stoi changes the pointer */
16365 		old_ptr = ppa_ptr;
16366 		/*
16367 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
16368 		 * (they don't have an externally visible ppa).  We assign one
16369 		 * here so that we can manage the interface.  Note that in
16370 		 * the past this value was always 0 for DLPI 1 drivers.
16371 		 */
16372 		if (*new_ppa_ptr == 0)
16373 			*new_ppa_ptr = stoi(&old_ptr);
16374 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
16375 			return (EINVAL);
16376 	}
16377 	/*
16378 	 * terminate string before ppa
16379 	 * save char at that location.
16380 	 */
16381 	old_char = ppa_ptr[0];
16382 	ppa_ptr[0] = '\0';
16383 
16384 	ill->ill_ppa = *new_ppa_ptr;
16385 	/*
16386 	 * Finish as much work now as possible before calling ill_glist_insert
16387 	 * which makes the ill globally visible and also merges it with the
16388 	 * other protocol instance of this phyint. The remaining work is
16389 	 * done after entering the ipsq which may happen sometime later.
16390 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
16391 	 */
16392 	ipif = ill->ill_ipif;
16393 
16394 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
16395 	ipif_assign_seqid(ipif);
16396 
16397 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
16398 		ill->ill_flags |= ILLF_IPV4;
16399 
16400 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
16401 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
16402 
16403 	if (ill->ill_flags & ILLF_IPV6) {
16404 
16405 		ill->ill_isv6 = B_TRUE;
16406 		ill_set_inputfn(ill);
16407 		if (ill->ill_rq != NULL) {
16408 			ill->ill_rq->q_qinfo = &iprinitv6;
16409 		}
16410 
16411 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
16412 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
16413 		ipif->ipif_v6subnet = ipv6_all_zeros;
16414 		ipif->ipif_v6net_mask = ipv6_all_zeros;
16415 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
16416 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
16417 		ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
16418 		/*
16419 		 * point-to-point or Non-mulicast capable
16420 		 * interfaces won't do NUD unless explicitly
16421 		 * configured to do so.
16422 		 */
16423 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
16424 		    !(ill->ill_flags & ILLF_MULTICAST)) {
16425 			ill->ill_flags |= ILLF_NONUD;
16426 		}
16427 		/* Make sure IPv4 specific flag is not set on IPv6 if */
16428 		if (ill->ill_flags & ILLF_NOARP) {
16429 			/*
16430 			 * Note: xresolv interfaces will eventually need
16431 			 * NOARP set here as well, but that will require
16432 			 * those external resolvers to have some
16433 			 * knowledge of that flag and act appropriately.
16434 			 * Not to be changed at present.
16435 			 */
16436 			ill->ill_flags &= ~ILLF_NOARP;
16437 		}
16438 		/*
16439 		 * Set the ILLF_ROUTER flag according to the global
16440 		 * IPv6 forwarding policy.
16441 		 */
16442 		if (ipst->ips_ipv6_forward != 0)
16443 			ill->ill_flags |= ILLF_ROUTER;
16444 	} else if (ill->ill_flags & ILLF_IPV4) {
16445 		ill->ill_isv6 = B_FALSE;
16446 		ill_set_inputfn(ill);
16447 		ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER;
16448 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
16449 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
16450 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
16451 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
16452 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
16453 		/*
16454 		 * Set the ILLF_ROUTER flag according to the global
16455 		 * IPv4 forwarding policy.
16456 		 */
16457 		if (ipst->ips_ip_g_forward != 0)
16458 			ill->ill_flags |= ILLF_ROUTER;
16459 	}
16460 
16461 	ASSERT(ill->ill_phyint != NULL);
16462 
16463 	/*
16464 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
16465 	 * be completed in ill_glist_insert -> ill_phyint_reinit
16466 	 */
16467 	if (!ill_allocate_mibs(ill))
16468 		return (ENOMEM);
16469 
16470 	/*
16471 	 * Pick a default sap until we get the DL_INFO_ACK back from
16472 	 * the driver.
16473 	 */
16474 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
16475 	    ill->ill_media->ip_m_ipv4sap;
16476 
16477 	ill->ill_ifname_pending = 1;
16478 	ill->ill_ifname_pending_err = 0;
16479 
16480 	/*
16481 	 * When the first ipif comes up in ipif_up_done(), multicast groups
16482 	 * that were joined while this ill was not bound to the DLPI link need
16483 	 * to be recovered by ill_recover_multicast().
16484 	 */
16485 	ill->ill_need_recover_multicast = 1;
16486 
16487 	ill_refhold(ill);
16488 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16489 	if ((error = ill_glist_insert(ill, interf_name,
16490 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
16491 		ill->ill_ppa = UINT_MAX;
16492 		ill->ill_name[0] = '\0';
16493 		/*
16494 		 * undo null termination done above.
16495 		 */
16496 		ppa_ptr[0] = old_char;
16497 		rw_exit(&ipst->ips_ill_g_lock);
16498 		ill_refrele(ill);
16499 		return (error);
16500 	}
16501 
16502 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
16503 
16504 	/*
16505 	 * When we return the buffer pointed to by interf_name should contain
16506 	 * the same name as in ill_name.
16507 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
16508 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
16509 	 * so copy full name and update the ppa ptr.
16510 	 * When ppa passed in != UINT_MAX all values are correct just undo
16511 	 * null termination, this saves a bcopy.
16512 	 */
16513 	if (*new_ppa_ptr == UINT_MAX) {
16514 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
16515 		*new_ppa_ptr = ill->ill_ppa;
16516 	} else {
16517 		/*
16518 		 * undo null termination done above.
16519 		 */
16520 		ppa_ptr[0] = old_char;
16521 	}
16522 
16523 	/* Let SCTP know about this ILL */
16524 	sctp_update_ill(ill, SCTP_ILL_INSERT);
16525 
16526 	/*
16527 	 * ill_glist_insert has made the ill visible globally, and
16528 	 * ill_phyint_reinit could have changed the ipsq. At this point,
16529 	 * we need to hold the ips_ill_g_lock across the call to enter the
16530 	 * ipsq to enforce atomicity and prevent reordering. In the event
16531 	 * the ipsq has changed, and if the new ipsq is currently busy,
16532 	 * we need to make sure that this half-completed ioctl is ahead of
16533 	 * any subsequent ioctl. We achieve this by not dropping the
16534 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
16535 	 * ensuring that new ioctls can't start.
16536 	 */
16537 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
16538 	    B_TRUE);
16539 
16540 	rw_exit(&ipst->ips_ill_g_lock);
16541 	ill_refrele(ill);
16542 	if (ipsq == NULL)
16543 		return (EINPROGRESS);
16544 
16545 	/*
16546 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
16547 	 */
16548 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
16549 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
16550 	else
16551 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
16552 
16553 	error = ipif_set_values_tail(ill, ipif, mp, q);
16554 	ipsq_exit(ipsq);
16555 	if (error != 0 && error != EINPROGRESS) {
16556 		/*
16557 		 * restore previous values
16558 		 */
16559 		ill->ill_isv6 = B_FALSE;
16560 		ill_set_inputfn(ill);
16561 	}
16562 	return (error);
16563 }
16564 
16565 void
16566 ipif_init(ip_stack_t *ipst)
16567 {
16568 	int i;
16569 
16570 	for (i = 0; i < MAX_G_HEADS; i++) {
16571 		ipst->ips_ill_g_heads[i].ill_g_list_head =
16572 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16573 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
16574 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
16575 	}
16576 
16577 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16578 	    ill_phyint_compare_index,
16579 	    sizeof (phyint_t),
16580 	    offsetof(struct phyint, phyint_avl_by_index));
16581 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
16582 	    ill_phyint_compare_name,
16583 	    sizeof (phyint_t),
16584 	    offsetof(struct phyint, phyint_avl_by_name));
16585 }
16586 
16587 /*
16588  * Save enough information so that we can recreate the IRE if
16589  * the interface goes down and then up.
16590  */
16591 void
16592 ill_save_ire(ill_t *ill, ire_t *ire)
16593 {
16594 	mblk_t	*save_mp;
16595 
16596 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
16597 	if (save_mp != NULL) {
16598 		ifrt_t	*ifrt;
16599 
16600 		save_mp->b_wptr += sizeof (ifrt_t);
16601 		ifrt = (ifrt_t *)save_mp->b_rptr;
16602 		bzero(ifrt, sizeof (ifrt_t));
16603 		ifrt->ifrt_type = ire->ire_type;
16604 		if (ire->ire_ipversion == IPV4_VERSION) {
16605 			ASSERT(!ill->ill_isv6);
16606 			ifrt->ifrt_addr = ire->ire_addr;
16607 			ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
16608 			ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr;
16609 			ifrt->ifrt_mask = ire->ire_mask;
16610 		} else {
16611 			ASSERT(ill->ill_isv6);
16612 			ifrt->ifrt_v6addr = ire->ire_addr_v6;
16613 			/* ire_gateway_addr_v6 can change due to RTM_CHANGE */
16614 			mutex_enter(&ire->ire_lock);
16615 			ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6;
16616 			mutex_exit(&ire->ire_lock);
16617 			ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6;
16618 			ifrt->ifrt_v6mask = ire->ire_mask_v6;
16619 		}
16620 		ifrt->ifrt_flags = ire->ire_flags;
16621 		ifrt->ifrt_zoneid = ire->ire_zoneid;
16622 		mutex_enter(&ill->ill_saved_ire_lock);
16623 		save_mp->b_cont = ill->ill_saved_ire_mp;
16624 		ill->ill_saved_ire_mp = save_mp;
16625 		ill->ill_saved_ire_cnt++;
16626 		mutex_exit(&ill->ill_saved_ire_lock);
16627 	}
16628 }
16629 
16630 /*
16631  * Remove one entry from ill_saved_ire_mp.
16632  */
16633 void
16634 ill_remove_saved_ire(ill_t *ill, ire_t *ire)
16635 {
16636 	mblk_t	**mpp;
16637 	mblk_t	*mp;
16638 	ifrt_t	*ifrt;
16639 
16640 	/* Remove from ill_saved_ire_mp list if it is there */
16641 	mutex_enter(&ill->ill_saved_ire_lock);
16642 	for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL;
16643 	    mpp = &(*mpp)->b_cont) {
16644 		in6_addr_t	gw_addr_v6;
16645 
16646 		/*
16647 		 * On a given ill, the tuple of address, gateway, mask,
16648 		 * ire_type, and zoneid is unique for each saved IRE.
16649 		 */
16650 		mp = *mpp;
16651 		ifrt = (ifrt_t *)mp->b_rptr;
16652 		/* ire_gateway_addr_v6 can change - need lock */
16653 		mutex_enter(&ire->ire_lock);
16654 		gw_addr_v6 = ire->ire_gateway_addr_v6;
16655 		mutex_exit(&ire->ire_lock);
16656 
16657 		if (ifrt->ifrt_zoneid != ire->ire_zoneid ||
16658 		    ifrt->ifrt_type != ire->ire_type)
16659 			continue;
16660 
16661 		if (ill->ill_isv6 ?
16662 		    (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr,
16663 		    &ire->ire_addr_v6) &&
16664 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr,
16665 		    &gw_addr_v6) &&
16666 		    IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask,
16667 		    &ire->ire_mask_v6)) :
16668 		    (ifrt->ifrt_addr == ire->ire_addr &&
16669 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
16670 		    ifrt->ifrt_mask == ire->ire_mask)) {
16671 			*mpp = mp->b_cont;
16672 			ill->ill_saved_ire_cnt--;
16673 			freeb(mp);
16674 			break;
16675 		}
16676 	}
16677 	mutex_exit(&ill->ill_saved_ire_lock);
16678 }
16679 
16680 /*
16681  * IP multirouting broadcast routes handling
16682  * Append CGTP broadcast IREs to regular ones created
16683  * at ifconfig time.
16684  * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both
16685  * the destination and the gateway are broadcast addresses.
16686  * The caller has verified that the destination is an IRE_BROADCAST and that
16687  * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then
16688  * we create a MULTIRT IRE_BROADCAST.
16689  * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything
16690  * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion.
16691  */
16692 static void
16693 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst)
16694 {
16695 	ire_t *ire_prim;
16696 
16697 	ASSERT(ire != NULL);
16698 
16699 	ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16700 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst,
16701 	    NULL);
16702 	if (ire_prim != NULL) {
16703 		/*
16704 		 * We are in the special case of broadcasts for
16705 		 * CGTP. We add an IRE_BROADCAST that holds
16706 		 * the RTF_MULTIRT flag, the destination
16707 		 * address and the low level
16708 		 * info of ire_prim. In other words, CGTP
16709 		 * broadcast is added to the redundant ipif.
16710 		 */
16711 		ill_t *ill_prim;
16712 		ire_t  *bcast_ire;
16713 
16714 		ill_prim = ire_prim->ire_ill;
16715 
16716 		ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n",
16717 		    (void *)ire_prim, (void *)ill_prim));
16718 
16719 		bcast_ire = ire_create(
16720 		    (uchar_t *)&ire->ire_addr,
16721 		    (uchar_t *)&ip_g_all_ones,
16722 		    (uchar_t *)&ire->ire_gateway_addr,
16723 		    IRE_BROADCAST,
16724 		    ill_prim,
16725 		    GLOBAL_ZONEID,	/* CGTP is only for the global zone */
16726 		    ire->ire_flags | RTF_KERNEL,
16727 		    NULL,
16728 		    ipst);
16729 
16730 		/*
16731 		 * Here we assume that ire_add does head insertion so that
16732 		 * the added IRE_BROADCAST comes before the existing IRE_HOST.
16733 		 */
16734 		if (bcast_ire != NULL) {
16735 			if (ire->ire_flags & RTF_SETSRC) {
16736 				bcast_ire->ire_setsrc_addr =
16737 				    ire->ire_setsrc_addr;
16738 			}
16739 			bcast_ire = ire_add(bcast_ire);
16740 			if (bcast_ire != NULL) {
16741 				ip2dbg(("ip_cgtp_filter_bcast_add: "
16742 				    "added bcast_ire %p\n",
16743 				    (void *)bcast_ire));
16744 
16745 				ill_save_ire(ill_prim, bcast_ire);
16746 				ire_refrele(bcast_ire);
16747 			}
16748 		}
16749 		ire_refrele(ire_prim);
16750 	}
16751 }
16752 
16753 /*
16754  * IP multirouting broadcast routes handling
16755  * Remove the broadcast ire.
16756  * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both
16757  * the destination and the gateway are broadcast addresses.
16758  * The caller has only verified that RTF_MULTIRT was set. We check
16759  * that the destination is broadcast and that the gateway is a broadcast
16760  * address, and if so delete the IRE added by ip_cgtp_bcast_add().
16761  */
16762 static void
16763 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
16764 {
16765 	ASSERT(ire != NULL);
16766 
16767 	if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) {
16768 		ire_t *ire_prim;
16769 
16770 		ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0,
16771 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0,
16772 		    ipst, NULL);
16773 		if (ire_prim != NULL) {
16774 			ill_t *ill_prim;
16775 			ire_t  *bcast_ire;
16776 
16777 			ill_prim = ire_prim->ire_ill;
16778 
16779 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
16780 			    "ire_prim %p, ill_prim %p\n",
16781 			    (void *)ire_prim, (void *)ill_prim));
16782 
16783 			bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0,
16784 			    ire->ire_gateway_addr, IRE_BROADCAST,
16785 			    ill_prim, ALL_ZONES, NULL,
16786 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL |
16787 			    MATCH_IRE_MASK, 0, ipst, NULL);
16788 
16789 			if (bcast_ire != NULL) {
16790 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
16791 				    "looked up bcast_ire %p\n",
16792 				    (void *)bcast_ire));
16793 				ill_remove_saved_ire(bcast_ire->ire_ill,
16794 				    bcast_ire);
16795 				ire_delete(bcast_ire);
16796 				ire_refrele(bcast_ire);
16797 			}
16798 			ire_refrele(ire_prim);
16799 		}
16800 	}
16801 }
16802 
16803 /*
16804  * Derive an interface id from the link layer address.
16805  * Knows about IEEE 802 and IEEE EUI-64 mappings.
16806  */
16807 static void
16808 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16809 {
16810 	char		*addr;
16811 
16812 	/*
16813 	 * Note that some IPv6 interfaces get plumbed over links that claim to
16814 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
16815 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
16816 	 * interface ID on IPv6 interfaces above links that actually have real
16817 	 * Ethernet addresses.
16818 	 */
16819 	if (ill->ill_phys_addr_length == ETHERADDRL) {
16820 		/* Form EUI-64 like address */
16821 		addr = (char *)&v6addr->s6_addr32[2];
16822 		bcopy(ill->ill_phys_addr, addr, 3);
16823 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
16824 		addr[3] = (char)0xff;
16825 		addr[4] = (char)0xfe;
16826 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
16827 	}
16828 }
16829 
16830 /* ARGSUSED */
16831 static void
16832 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16833 {
16834 }
16835 
16836 typedef struct ipmp_ifcookie {
16837 	uint32_t	ic_hostid;
16838 	char		ic_ifname[LIFNAMSIZ];
16839 	char		ic_zonename[ZONENAME_MAX];
16840 } ipmp_ifcookie_t;
16841 
16842 /*
16843  * Construct a pseudo-random interface ID for the IPMP interface that's both
16844  * predictable and (almost) guaranteed to be unique.
16845  */
16846 static void
16847 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16848 {
16849 	zone_t		*zp;
16850 	uint8_t		*addr;
16851 	uchar_t		hash[16];
16852 	ulong_t 	hostid;
16853 	MD5_CTX		ctx;
16854 	ipmp_ifcookie_t	ic = { 0 };
16855 
16856 	ASSERT(IS_IPMP(ill));
16857 
16858 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
16859 	ic.ic_hostid = htonl((uint32_t)hostid);
16860 
16861 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
16862 
16863 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
16864 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
16865 		zone_rele(zp);
16866 	}
16867 
16868 	MD5Init(&ctx);
16869 	MD5Update(&ctx, &ic, sizeof (ic));
16870 	MD5Final(hash, &ctx);
16871 
16872 	/*
16873 	 * Map the hash to an interface ID per the basic approach in RFC3041.
16874 	 */
16875 	addr = &v6addr->s6_addr8[8];
16876 	bcopy(hash + 8, addr, sizeof (uint64_t));
16877 	addr[0] &= ~0x2;				/* set local bit */
16878 }
16879 
16880 /*
16881  * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet.
16882  */
16883 static void
16884 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr)
16885 {
16886 	phyint_t *phyi = ill->ill_phyint;
16887 
16888 	/*
16889 	 * Check PHYI_MULTI_BCAST and length of physical
16890 	 * address to determine if we use the mapping or the
16891 	 * broadcast address.
16892 	 */
16893 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
16894 	    ill->ill_phys_addr_length != ETHERADDRL) {
16895 		ip_mbcast_mapping(ill, m_ip6addr, m_physaddr);
16896 		return;
16897 	}
16898 	m_physaddr[0] = 0x33;
16899 	m_physaddr[1] = 0x33;
16900 	m_physaddr[2] = m_ip6addr[12];
16901 	m_physaddr[3] = m_ip6addr[13];
16902 	m_physaddr[4] = m_ip6addr[14];
16903 	m_physaddr[5] = m_ip6addr[15];
16904 }
16905 
16906 /*
16907  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet.
16908  */
16909 static void
16910 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16911 {
16912 	phyint_t *phyi = ill->ill_phyint;
16913 
16914 	/*
16915 	 * Check PHYI_MULTI_BCAST and length of physical
16916 	 * address to determine if we use the mapping or the
16917 	 * broadcast address.
16918 	 */
16919 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 ||
16920 	    ill->ill_phys_addr_length != ETHERADDRL) {
16921 		ip_mbcast_mapping(ill, m_ipaddr, m_physaddr);
16922 		return;
16923 	}
16924 	m_physaddr[0] = 0x01;
16925 	m_physaddr[1] = 0x00;
16926 	m_physaddr[2] = 0x5e;
16927 	m_physaddr[3] = m_ipaddr[1] & 0x7f;
16928 	m_physaddr[4] = m_ipaddr[2];
16929 	m_physaddr[5] = m_ipaddr[3];
16930 }
16931 
16932 /* ARGSUSED */
16933 static void
16934 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16935 {
16936 	/*
16937 	 * for the MULTI_BCAST case and other cases when we want to
16938 	 * use the link-layer broadcast address for multicast.
16939 	 */
16940 	uint8_t	*bphys_addr;
16941 	dl_unitdata_req_t *dlur;
16942 
16943 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
16944 	if (ill->ill_sap_length < 0) {
16945 		bphys_addr = (uchar_t *)dlur +
16946 		    dlur->dl_dest_addr_offset;
16947 	} else  {
16948 		bphys_addr = (uchar_t *)dlur +
16949 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
16950 	}
16951 
16952 	bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length);
16953 }
16954 
16955 /*
16956  * Derive IPoIB interface id from the link layer address.
16957  */
16958 static void
16959 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
16960 {
16961 	char		*addr;
16962 
16963 	ASSERT(ill->ill_phys_addr_length == 20);
16964 	addr = (char *)&v6addr->s6_addr32[2];
16965 	bcopy(ill->ill_phys_addr + 12, addr, 8);
16966 	/*
16967 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
16968 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
16969 	 * rules. In these cases, the IBA considers these GUIDs to be in
16970 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
16971 	 * required; vendors are required not to assign global EUI-64's
16972 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
16973 	 * of the interface identifier. Whether the GUID is in modified
16974 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
16975 	 * bit set to 1.
16976 	 */
16977 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
16978 }
16979 
16980 /*
16981  * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand.
16982  * Note on mapping from multicast IP addresses to IPoIB multicast link
16983  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
16984  * The format of an IPoIB multicast address is:
16985  *
16986  *  4 byte QPN      Scope Sign.  Pkey
16987  * +--------------------------------------------+
16988  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
16989  * +--------------------------------------------+
16990  *
16991  * The Scope and Pkey components are properties of the IBA port and
16992  * network interface. They can be ascertained from the broadcast address.
16993  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
16994  */
16995 static void
16996 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
16997 {
16998 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
16999 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
17000 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17001 	uint8_t	*bphys_addr;
17002 	dl_unitdata_req_t *dlur;
17003 
17004 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17005 
17006 	/*
17007 	 * RFC 4391: IPv4 MGID is 28-bit long.
17008 	 */
17009 	m_physaddr[16] = m_ipaddr[0] & 0x0f;
17010 	m_physaddr[17] = m_ipaddr[1];
17011 	m_physaddr[18] = m_ipaddr[2];
17012 	m_physaddr[19] = m_ipaddr[3];
17013 
17014 
17015 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17016 	if (ill->ill_sap_length < 0) {
17017 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17018 	} else  {
17019 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17020 		    ill->ill_sap_length;
17021 	}
17022 	/*
17023 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17024 	 */
17025 	m_physaddr[5] = bphys_addr[5];
17026 	m_physaddr[8] = bphys_addr[8];
17027 	m_physaddr[9] = bphys_addr[9];
17028 }
17029 
17030 static void
17031 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr)
17032 {
17033 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
17034 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
17035 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
17036 	uint8_t	*bphys_addr;
17037 	dl_unitdata_req_t *dlur;
17038 
17039 	bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length);
17040 
17041 	/*
17042 	 * RFC 4391: IPv4 MGID is 80-bit long.
17043 	 */
17044 	bcopy(&m_ipaddr[6], &m_physaddr[10], 10);
17045 
17046 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
17047 	if (ill->ill_sap_length < 0) {
17048 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
17049 	} else  {
17050 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
17051 		    ill->ill_sap_length;
17052 	}
17053 	/*
17054 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
17055 	 */
17056 	m_physaddr[5] = bphys_addr[5];
17057 	m_physaddr[8] = bphys_addr[8];
17058 	m_physaddr[9] = bphys_addr[9];
17059 }
17060 
17061 /*
17062  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
17063  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
17064  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
17065  * of RFC4213.
17066  */
17067 static void
17068 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17069 {
17070 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
17071 	v6addr->s6_addr32[2] = 0;
17072 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
17073 }
17074 
17075 /*
17076  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
17077  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
17078  * id.
17079  */
17080 static void
17081 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
17082 {
17083 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
17084 
17085 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
17086 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
17087 }
17088 
17089 static void
17090 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17091 {
17092 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17093 }
17094 
17095 static void
17096 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17097 {
17098 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17099 }
17100 
17101 static void
17102 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
17103 {
17104 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
17105 }
17106 
17107 static void
17108 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
17109 {
17110 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
17111 }
17112 
17113 /*
17114  * Lookup an ill and verify that the zoneid has an ipif on that ill.
17115  * Returns an held ill, or NULL.
17116  */
17117 ill_t *
17118 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6,
17119     ip_stack_t *ipst)
17120 {
17121 	ill_t	*ill;
17122 	ipif_t	*ipif;
17123 
17124 	ill = ill_lookup_on_ifindex(index, isv6, ipst);
17125 	if (ill == NULL)
17126 		return (NULL);
17127 
17128 	mutex_enter(&ill->ill_lock);
17129 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17130 		if (IPIF_IS_CONDEMNED(ipif))
17131 			continue;
17132 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
17133 		    ipif->ipif_zoneid != ALL_ZONES)
17134 			continue;
17135 
17136 		mutex_exit(&ill->ill_lock);
17137 		return (ill);
17138 	}
17139 	mutex_exit(&ill->ill_lock);
17140 	ill_refrele(ill);
17141 	return (NULL);
17142 }
17143 
17144 /*
17145  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
17146  * If a pointer to an ipif_t is returned then the caller will need to do
17147  * an ill_refrele().
17148  */
17149 ipif_t *
17150 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
17151     ip_stack_t *ipst)
17152 {
17153 	ipif_t *ipif;
17154 	ill_t *ill;
17155 
17156 	ill = ill_lookup_on_ifindex(ifindex, isv6, ipst);
17157 	if (ill == NULL)
17158 		return (NULL);
17159 
17160 	mutex_enter(&ill->ill_lock);
17161 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17162 		mutex_exit(&ill->ill_lock);
17163 		ill_refrele(ill);
17164 		return (NULL);
17165 	}
17166 
17167 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17168 		if (!IPIF_CAN_LOOKUP(ipif))
17169 			continue;
17170 		if (lifidx == ipif->ipif_id) {
17171 			ipif_refhold_locked(ipif);
17172 			break;
17173 		}
17174 	}
17175 
17176 	mutex_exit(&ill->ill_lock);
17177 	ill_refrele(ill);
17178 	return (ipif);
17179 }
17180 
17181 /*
17182  * Set ill_inputfn based on the current know state.
17183  * This needs to be called when any of the factors taken into
17184  * account changes.
17185  */
17186 void
17187 ill_set_inputfn(ill_t *ill)
17188 {
17189 	ip_stack_t	*ipst = ill->ill_ipst;
17190 
17191 	if (ill->ill_isv6) {
17192 		if (is_system_labeled())
17193 			ill->ill_inputfn = ill_input_full_v6;
17194 		else
17195 			ill->ill_inputfn = ill_input_short_v6;
17196 	} else {
17197 		if (is_system_labeled())
17198 			ill->ill_inputfn = ill_input_full_v4;
17199 		else if (ill->ill_dhcpinit != 0)
17200 			ill->ill_inputfn = ill_input_full_v4;
17201 		else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head
17202 		    != NULL)
17203 			ill->ill_inputfn = ill_input_full_v4;
17204 		else if (ipst->ips_ip_cgtp_filter &&
17205 		    ipst->ips_ip_cgtp_filter_ops != NULL)
17206 			ill->ill_inputfn = ill_input_full_v4;
17207 		else
17208 			ill->ill_inputfn = ill_input_short_v4;
17209 	}
17210 }
17211 
17212 /*
17213  * Re-evaluate ill_inputfn for all the IPv4 ills.
17214  * Used when RSVP and CGTP comes and goes.
17215  */
17216 void
17217 ill_set_inputfn_all(ip_stack_t *ipst)
17218 {
17219 	ill_walk_context_t	ctx;
17220 	ill_t			*ill;
17221 
17222 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
17223 	ill = ILL_START_WALK_V4(&ctx, ipst);
17224 	for (; ill != NULL; ill = ill_next(&ctx, ill))
17225 		ill_set_inputfn(ill);
17226 
17227 	rw_exit(&ipst->ips_ill_g_lock);
17228 }
17229 
17230 /*
17231  * Set the physical address information for `ill' to the contents of the
17232  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
17233  * asynchronous if `ill' cannot immediately be quiesced -- in which case
17234  * EINPROGRESS will be returned.
17235  */
17236 int
17237 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
17238 {
17239 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17240 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
17241 
17242 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17243 
17244 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
17245 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
17246 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
17247 		/* Changing DL_IPV6_TOKEN is not yet supported */
17248 		return (0);
17249 	}
17250 
17251 	/*
17252 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
17253 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
17254 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
17255 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
17256 	 */
17257 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
17258 		freemsg(mp);
17259 		return (ENOMEM);
17260 	}
17261 
17262 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17263 	mutex_enter(&ill->ill_lock);
17264 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17265 	/* no more nce addition allowed */
17266 	mutex_exit(&ill->ill_lock);
17267 
17268 	/*
17269 	 * If we can quiesce the ill, then set the address.  If not, then
17270 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
17271 	 */
17272 	ill_down_ipifs(ill, B_TRUE);
17273 	mutex_enter(&ill->ill_lock);
17274 	if (!ill_is_quiescent(ill)) {
17275 		/* call cannot fail since `conn_t *' argument is NULL */
17276 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17277 		    mp, ILL_DOWN);
17278 		mutex_exit(&ill->ill_lock);
17279 		return (EINPROGRESS);
17280 	}
17281 	mutex_exit(&ill->ill_lock);
17282 
17283 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
17284 	return (0);
17285 }
17286 
17287 /*
17288  * Once the ill associated with `q' has quiesced, set its physical address
17289  * information to the values in `addrmp'.  Note that two copies of `addrmp'
17290  * are passed (linked by b_cont), since we sometimes need to save two distinct
17291  * copies in the ill_t, and our context doesn't permit sleeping or allocation
17292  * failure (we'll free the other copy if it's not needed).  Since the ill_t
17293  * is quiesced, we know any stale nce's with the old address information have
17294  * already been removed, so we don't need to call nce_flush().
17295  */
17296 /* ARGSUSED */
17297 static void
17298 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
17299 {
17300 	ill_t		*ill = q->q_ptr;
17301 	mblk_t		*addrmp2 = unlinkb(addrmp);
17302 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
17303 	uint_t		addrlen, addroff;
17304 	int		status;
17305 
17306 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17307 
17308 	addroff	= dlindp->dl_addr_offset;
17309 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
17310 
17311 	switch (dlindp->dl_data) {
17312 	case DL_IPV6_LINK_LAYER_ADDR:
17313 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
17314 		freemsg(addrmp2);
17315 		break;
17316 
17317 	case DL_CURR_DEST_ADDR:
17318 		freemsg(ill->ill_dest_addr_mp);
17319 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
17320 		ill->ill_dest_addr_mp = addrmp;
17321 		if (ill->ill_isv6) {
17322 			ill_setdesttoken(ill);
17323 			ipif_setdestlinklocal(ill->ill_ipif);
17324 		}
17325 		freemsg(addrmp2);
17326 		break;
17327 
17328 	case DL_CURR_PHYS_ADDR:
17329 		freemsg(ill->ill_phys_addr_mp);
17330 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
17331 		ill->ill_phys_addr_mp = addrmp;
17332 		ill->ill_phys_addr_length = addrlen;
17333 		if (ill->ill_isv6)
17334 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
17335 		else
17336 			freemsg(addrmp2);
17337 		if (ill->ill_isv6) {
17338 			ill_setdefaulttoken(ill);
17339 			ipif_setlinklocal(ill->ill_ipif);
17340 		}
17341 		break;
17342 	default:
17343 		ASSERT(0);
17344 	}
17345 
17346 	/*
17347 	 * If there are ipifs to bring up, ill_up_ipifs() will return
17348 	 * EINPROGRESS, and ipsq_current_finish() will be called by
17349 	 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is
17350 	 * brought up.
17351 	 */
17352 	status = ill_up_ipifs(ill, q, addrmp);
17353 	mutex_enter(&ill->ill_lock);
17354 	if (ill->ill_dl_up)
17355 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
17356 	mutex_exit(&ill->ill_lock);
17357 	if (status != EINPROGRESS)
17358 		ipsq_current_finish(ipsq);
17359 }
17360 
17361 /*
17362  * Helper routine for setting the ill_nd_lla fields.
17363  */
17364 void
17365 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
17366 {
17367 	freemsg(ill->ill_nd_lla_mp);
17368 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
17369 	ill->ill_nd_lla_mp = ndmp;
17370 	ill->ill_nd_lla_len = addrlen;
17371 }
17372 
17373 /*
17374  * Replumb the ill.
17375  */
17376 int
17377 ill_replumb(ill_t *ill, mblk_t *mp)
17378 {
17379 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
17380 
17381 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17382 
17383 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
17384 
17385 	mutex_enter(&ill->ill_lock);
17386 	ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS;
17387 	/* no more nce addition allowed */
17388 	mutex_exit(&ill->ill_lock);
17389 
17390 	/*
17391 	 * If we can quiesce the ill, then continue.  If not, then
17392 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
17393 	 */
17394 	ill_down_ipifs(ill, B_FALSE);
17395 
17396 	mutex_enter(&ill->ill_lock);
17397 	if (!ill_is_quiescent(ill)) {
17398 		/* call cannot fail since `conn_t *' argument is NULL */
17399 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
17400 		    mp, ILL_DOWN);
17401 		mutex_exit(&ill->ill_lock);
17402 		return (EINPROGRESS);
17403 	}
17404 	mutex_exit(&ill->ill_lock);
17405 
17406 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
17407 	return (0);
17408 }
17409 
17410 /* ARGSUSED */
17411 static void
17412 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
17413 {
17414 	ill_t *ill = q->q_ptr;
17415 	int err;
17416 	conn_t *connp = NULL;
17417 
17418 	ASSERT(IAM_WRITER_IPSQ(ipsq));
17419 	freemsg(ill->ill_replumb_mp);
17420 	ill->ill_replumb_mp = copyb(mp);
17421 
17422 	if (ill->ill_replumb_mp == NULL) {
17423 		/* out of memory */
17424 		ipsq_current_finish(ipsq);
17425 		return;
17426 	}
17427 
17428 	mutex_enter(&ill->ill_lock);
17429 	ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif,
17430 	    ill->ill_rq, ill->ill_replumb_mp, 0);
17431 	mutex_exit(&ill->ill_lock);
17432 
17433 	if (!ill->ill_up_ipifs) {
17434 		/* already closing */
17435 		ipsq_current_finish(ipsq);
17436 		return;
17437 	}
17438 	ill->ill_replumbing = 1;
17439 	err = ill_down_ipifs_tail(ill);
17440 
17441 	/*
17442 	 * Successfully quiesced and brought down the interface, now we send
17443 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
17444 	 * DL_NOTE_REPLUMB message.
17445 	 */
17446 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
17447 	    DL_NOTIFY_CONF);
17448 	ASSERT(mp != NULL);
17449 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
17450 	    DL_NOTE_REPLUMB_DONE;
17451 	ill_dlpi_send(ill, mp);
17452 
17453 	/*
17454 	 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP
17455 	 * streams have to be unbound. When all the DLPI exchanges are done,
17456 	 * ipsq_current_finish() will be called by arp_bringup_done(). The
17457 	 * remainder of ipif bringup via ill_up_ipifs() will also be done in
17458 	 * arp_bringup_done().
17459 	 */
17460 	ASSERT(ill->ill_replumb_mp != NULL);
17461 	if (err == EINPROGRESS)
17462 		return;
17463 	else
17464 		ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp);
17465 	ASSERT(connp == NULL);
17466 	if (err == 0 && ill->ill_replumb_mp != NULL &&
17467 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) {
17468 		return;
17469 	}
17470 	ipsq_current_finish(ipsq);
17471 }
17472 
17473 /*
17474  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
17475  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
17476  * as per the ioctl.  On failure, an errno is returned.
17477  */
17478 static int
17479 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
17480 {
17481 	int rval;
17482 	struct strioctl iocb;
17483 
17484 	iocb.ic_cmd = cmd;
17485 	iocb.ic_timout = 15;
17486 	iocb.ic_len = bufsize;
17487 	iocb.ic_dp = buf;
17488 
17489 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
17490 }
17491 
17492 /*
17493  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
17494  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
17495  */
17496 static int
17497 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
17498     uint_t *bufsizep, cred_t *cr)
17499 {
17500 	int err;
17501 	struct lifnum lifn;
17502 
17503 	bzero(&lifn, sizeof (lifn));
17504 	lifn.lifn_family = af;
17505 	lifn.lifn_flags = LIFC_UNDER_IPMP;
17506 
17507 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
17508 		return (err);
17509 
17510 	/*
17511 	 * Pad the interface count to account for additional interfaces that
17512 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
17513 	 */
17514 	lifn.lifn_count += 4;
17515 	bzero(lifcp, sizeof (*lifcp));
17516 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
17517 	lifcp->lifc_family = af;
17518 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
17519 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
17520 
17521 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
17522 	if (err != 0) {
17523 		kmem_free(lifcp->lifc_buf, *bufsizep);
17524 		return (err);
17525 	}
17526 
17527 	return (0);
17528 }
17529 
17530 /*
17531  * Helper for ip_interface_cleanup() that removes the loopback interface.
17532  */
17533 static void
17534 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17535 {
17536 	int err;
17537 	struct lifreq lifr;
17538 
17539 	bzero(&lifr, sizeof (lifr));
17540 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
17541 
17542 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
17543 	if (err != 0) {
17544 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
17545 		    "error %d\n", isv6 ? "v6" : "v4", err));
17546 	}
17547 }
17548 
17549 /*
17550  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
17551  * groups and that IPMP data addresses are down.  These conditions must be met
17552  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
17553  */
17554 static void
17555 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
17556 {
17557 	int af = isv6 ? AF_INET6 : AF_INET;
17558 	int i, nifs;
17559 	int err;
17560 	uint_t bufsize;
17561 	uint_t lifrsize = sizeof (struct lifreq);
17562 	struct lifconf lifc;
17563 	struct lifreq *lifrp;
17564 
17565 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
17566 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
17567 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
17568 		return;
17569 	}
17570 
17571 	nifs = lifc.lifc_len / lifrsize;
17572 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
17573 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17574 		if (err != 0) {
17575 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
17576 			    "flags: error %d", lifrp->lifr_name, err);
17577 			continue;
17578 		}
17579 
17580 		if (lifrp->lifr_flags & IFF_IPMP) {
17581 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
17582 				continue;
17583 
17584 			lifrp->lifr_flags &= ~IFF_UP;
17585 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
17586 			if (err != 0) {
17587 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17588 				    "bring down (error %d); IPMP interface may "
17589 				    "not be shutdown", lifrp->lifr_name, err);
17590 			}
17591 
17592 			/*
17593 			 * Check if IFF_DUPLICATE is still set -- and if so,
17594 			 * reset the address to clear it.
17595 			 */
17596 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
17597 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
17598 				continue;
17599 
17600 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
17601 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
17602 			    lifrp, lifrsize, cr)) != 0) {
17603 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
17604 				    "reset DAD (error %d); IPMP interface may "
17605 				    "not be shutdown", lifrp->lifr_name, err);
17606 			}
17607 			continue;
17608 		}
17609 
17610 		lifrp->lifr_groupname[0] = '\0';
17611 		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
17612 		if (err != 0) {
17613 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
17614 			    "IPMP group (error %d); associated IPMP interface "
17615 			    "may not be shutdown", lifrp->lifr_name, err);
17616 			continue;
17617 		}
17618 	}
17619 
17620 	kmem_free(lifc.lifc_buf, bufsize);
17621 }
17622 
17623 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
17624 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
17625 
17626 /*
17627  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
17628  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
17629  * when the user-level processes in the zone are killed and the latter are
17630  * cleaned up by str_stack_shutdown().
17631  */
17632 void
17633 ip_interface_cleanup(ip_stack_t *ipst)
17634 {
17635 	ldi_handle_t	lh;
17636 	ldi_ident_t	li;
17637 	cred_t		*cr;
17638 	int		err;
17639 	int		i;
17640 	char		*devs[] = { UDP6DEV, UDPDEV };
17641 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
17642 
17643 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
17644 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
17645 		    " error %d", err);
17646 		return;
17647 	}
17648 
17649 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
17650 	ASSERT(cr != NULL);
17651 
17652 	/*
17653 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
17654 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
17655 	 * the loop.)
17656 	 */
17657 	for (i = 0; i < 2; i++) {
17658 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
17659 		if (err != 0) {
17660 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
17661 			    " error %d", devs[i], err);
17662 			continue;
17663 		}
17664 
17665 		ip_loopback_removeif(lh, i == 0, cr);
17666 		ip_ipmp_cleanup(lh, i == 0, cr);
17667 
17668 		(void) ldi_close(lh, FREAD|FWRITE, cr);
17669 	}
17670 
17671 	ldi_ident_release(li);
17672 	crfree(cr);
17673 }
17674 
17675 /*
17676  * This needs to be in-sync with nic_event_t definition
17677  */
17678 static const char *
17679 ill_hook_event2str(nic_event_t event)
17680 {
17681 	switch (event) {
17682 	case NE_PLUMB:
17683 		return ("PLUMB");
17684 	case NE_UNPLUMB:
17685 		return ("UNPLUMB");
17686 	case NE_UP:
17687 		return ("UP");
17688 	case NE_DOWN:
17689 		return ("DOWN");
17690 	case NE_ADDRESS_CHANGE:
17691 		return ("ADDRESS_CHANGE");
17692 	case NE_LIF_UP:
17693 		return ("LIF_UP");
17694 	case NE_LIF_DOWN:
17695 		return ("LIF_DOWN");
17696 	case NE_IFINDEX_CHANGE:
17697 		return ("IFINDEX_CHANGE");
17698 	default:
17699 		return ("UNKNOWN");
17700 	}
17701 }
17702 
17703 void
17704 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
17705     nic_event_data_t data, size_t datalen)
17706 {
17707 	ip_stack_t		*ipst = ill->ill_ipst;
17708 	hook_nic_event_int_t	*info;
17709 	const char		*str = NULL;
17710 
17711 	/* create a new nic event info */
17712 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
17713 		goto fail;
17714 
17715 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
17716 	info->hnei_event.hne_lif = lif;
17717 	info->hnei_event.hne_event = event;
17718 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
17719 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
17720 	info->hnei_event.hne_data = NULL;
17721 	info->hnei_event.hne_datalen = 0;
17722 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
17723 
17724 	if (data != NULL && datalen != 0) {
17725 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
17726 		if (info->hnei_event.hne_data == NULL)
17727 			goto fail;
17728 		bcopy(data, info->hnei_event.hne_data, datalen);
17729 		info->hnei_event.hne_datalen = datalen;
17730 	}
17731 
17732 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
17733 	    DDI_NOSLEEP) == DDI_SUCCESS)
17734 		return;
17735 
17736 fail:
17737 	if (info != NULL) {
17738 		if (info->hnei_event.hne_data != NULL) {
17739 			kmem_free(info->hnei_event.hne_data,
17740 			    info->hnei_event.hne_datalen);
17741 		}
17742 		kmem_free(info, sizeof (hook_nic_event_t));
17743 	}
17744 	str = ill_hook_event2str(event);
17745 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
17746 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
17747 }
17748 
17749 static int
17750 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act)
17751 {
17752 	int		err = 0;
17753 	const in_addr_t	*addr = NULL;
17754 	nce_t		*nce = NULL;
17755 	ill_t		*ill = ipif->ipif_ill;
17756 	ill_t		*bound_ill;
17757 	boolean_t	added_ipif = B_FALSE;
17758 	uint16_t	state;
17759 	uint16_t	flags;
17760 
17761 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail",
17762 	    ill_t *, ill, ipif_t *, ipif);
17763 	if (ipif->ipif_lcl_addr != INADDR_ANY) {
17764 		addr = &ipif->ipif_lcl_addr;
17765 	}
17766 
17767 	if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) {
17768 		if (res_act != Res_act_initial)
17769 			return (EINVAL);
17770 	}
17771 
17772 	if (addr != NULL) {
17773 		ipmp_illgrp_t	*illg = ill->ill_grp;
17774 
17775 		/* add unicast nce for the local addr */
17776 
17777 		if (IS_IPMP(ill)) {
17778 			/*
17779 			 * If we're here via ipif_up(), then the ipif
17780 			 * won't be bound yet -- add it to the group,
17781 			 * which will bind it if possible. (We would
17782 			 * add it in ipif_up(), but deleting on failure
17783 			 * there is gruesome.)  If we're here via
17784 			 * ipmp_ill_bind_ipif(), then the ipif has
17785 			 * already been added to the group and we
17786 			 * just need to use the binding.
17787 			 */
17788 			if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) {
17789 				bound_ill  = ipmp_illgrp_add_ipif(illg, ipif);
17790 				if (bound_ill == NULL) {
17791 					/*
17792 					 * We couldn't bind the ipif to an ill
17793 					 * yet, so we have nothing to publish.
17794 					 * Mark the address as ready and return.
17795 					 */
17796 					ipif->ipif_addr_ready = 1;
17797 					return (0);
17798 				}
17799 				added_ipif = B_TRUE;
17800 			}
17801 		} else {
17802 			bound_ill = ill;
17803 		}
17804 
17805 		flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY |
17806 		    NCE_F_NONUD);
17807 		/*
17808 		 * If this is an initial bring-up (or the ipif was never
17809 		 * completely brought up), do DAD.  Otherwise, we're here
17810 		 * because IPMP has rebound an address to this ill: send
17811 		 * unsolicited advertisements (ARP announcements) to
17812 		 * inform others.
17813 		 */
17814 		if (res_act == Res_act_initial || !ipif->ipif_addr_ready) {
17815 			state = ND_UNCHANGED; /* compute in nce_add_common() */
17816 		} else {
17817 			state = ND_REACHABLE;
17818 			flags |= NCE_F_UNSOL_ADV;
17819 		}
17820 
17821 retry:
17822 		err = nce_lookup_then_add_v4(ill,
17823 		    bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length,
17824 		    addr, flags, state, &nce);
17825 
17826 		/*
17827 		 * note that we may encounter EEXIST if we are moving
17828 		 * the nce as a result of a rebind operation.
17829 		 */
17830 		switch (err) {
17831 		case 0:
17832 			ipif->ipif_added_nce = 1;
17833 			nce->nce_ipif_cnt++;
17834 			break;
17835 		case EEXIST:
17836 			ip1dbg(("ipif_arp_up: NCE already exists for %s\n",
17837 			    ill->ill_name));
17838 			if (!NCE_MYADDR(nce->nce_common)) {
17839 				/*
17840 				 * A leftover nce from before this address
17841 				 * existed
17842 				 */
17843 				ncec_delete(nce->nce_common);
17844 				nce_refrele(nce);
17845 				nce = NULL;
17846 				goto retry;
17847 			}
17848 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
17849 				nce_refrele(nce);
17850 				nce = NULL;
17851 				ip1dbg(("ipif_arp_up: NCE already exists "
17852 				    "for %s:%u\n", ill->ill_name,
17853 				    ipif->ipif_id));
17854 				goto arp_up_done;
17855 			}
17856 			/*
17857 			 * Duplicate local addresses are permissible for
17858 			 * IPIF_POINTOPOINT interfaces which will get marked
17859 			 * IPIF_UNNUMBERED later in
17860 			 * ip_addr_availability_check().
17861 			 *
17862 			 * The nce_ipif_cnt field tracks the number of
17863 			 * ipifs that have nce_addr as their local address.
17864 			 */
17865 			ipif->ipif_addr_ready = 1;
17866 			ipif->ipif_added_nce = 1;
17867 			nce->nce_ipif_cnt++;
17868 			err = 0;
17869 			break;
17870 		default:
17871 			ASSERT(nce == NULL);
17872 			goto arp_up_done;
17873 		}
17874 		if (arp_no_defense) {
17875 			if ((ipif->ipif_flags & IPIF_UP) &&
17876 			    !ipif->ipif_addr_ready)
17877 				ipif_up_notify(ipif);
17878 			ipif->ipif_addr_ready = 1;
17879 		}
17880 	} else {
17881 		/* zero address. nothing to publish */
17882 		ipif->ipif_addr_ready = 1;
17883 	}
17884 	if (nce != NULL)
17885 		nce_refrele(nce);
17886 arp_up_done:
17887 	if (added_ipif && err != 0)
17888 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
17889 	return (err);
17890 }
17891 
17892 int
17893 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup)
17894 {
17895 	int 		err = 0;
17896 	ill_t 		*ill = ipif->ipif_ill;
17897 	boolean_t	first_interface, wait_for_dlpi = B_FALSE;
17898 
17899 	DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up",
17900 	    ill_t *, ill, ipif_t *, ipif);
17901 
17902 	/*
17903 	 * need to bring up ARP or setup mcast mapping only
17904 	 * when the first interface is coming UP.
17905 	 */
17906 	first_interface = (ill->ill_ipif_up_count == 0 &&
17907 	    ill->ill_ipif_dup_count == 0 && !was_dup);
17908 
17909 	if (res_act == Res_act_initial && first_interface) {
17910 		/*
17911 		 * Send ATTACH + BIND
17912 		 */
17913 		err = arp_ll_up(ill);
17914 		if (err != EINPROGRESS && err != 0)
17915 			return (err);
17916 
17917 		/*
17918 		 * Add NCE for local address. Start DAD.
17919 		 * we'll wait to hear that DAD has finished
17920 		 * before using the interface.
17921 		 */
17922 		if (err == EINPROGRESS)
17923 			wait_for_dlpi = B_TRUE;
17924 	}
17925 
17926 	if (!wait_for_dlpi)
17927 		(void) ipif_arp_up_done_tail(ipif, res_act);
17928 
17929 	return (!wait_for_dlpi ? 0 : EINPROGRESS);
17930 }
17931 
17932 /*
17933  * Finish processing of "arp_up" after all the DLPI message
17934  * exchanges have completed between arp and the driver.
17935  */
17936 void
17937 arp_bringup_done(ill_t *ill, int err)
17938 {
17939 	mblk_t	*mp1;
17940 	ipif_t  *ipif;
17941 	conn_t *connp = NULL;
17942 	ipsq_t	*ipsq;
17943 	queue_t *q;
17944 
17945 	ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name));
17946 
17947 	ASSERT(IAM_WRITER_ILL(ill));
17948 
17949 	ipsq = ill->ill_phyint->phyint_ipsq;
17950 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
17951 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
17952 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
17953 	if (mp1 == NULL) /* bringup was aborted by the user */
17954 		return;
17955 
17956 	/*
17957 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
17958 	 * must have an associated conn_t.  Otherwise, we're bringing this
17959 	 * interface back up as part of handling an asynchronous event (e.g.,
17960 	 * physical address change).
17961 	 */
17962 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
17963 		ASSERT(connp != NULL);
17964 		q = CONNP_TO_WQ(connp);
17965 	} else {
17966 		ASSERT(connp == NULL);
17967 		q = ill->ill_rq;
17968 	}
17969 	if (err == 0) {
17970 		if (ipif->ipif_isv6) {
17971 			if ((err = ipif_up_done_v6(ipif)) != 0)
17972 				ip0dbg(("arp_bringup_done: init failed\n"));
17973 		} else {
17974 			err = ipif_arp_up_done_tail(ipif, Res_act_initial);
17975 			if (err != 0 ||
17976 			    (err = ipif_up_done(ipif)) != 0) {
17977 				ip0dbg(("arp_bringup_done: "
17978 				    "init failed err %x\n", err));
17979 				(void) ipif_arp_down(ipif);
17980 			}
17981 
17982 		}
17983 	} else {
17984 		ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n"));
17985 	}
17986 
17987 	if ((err == 0) && (ill->ill_up_ipifs)) {
17988 		err = ill_up_ipifs(ill, q, mp1);
17989 		if (err == EINPROGRESS)
17990 			return;
17991 	}
17992 
17993 	/*
17994 	 * If we have a moved ipif to bring up, and everything has succeeded
17995 	 * to this point, bring it up on the IPMP ill.  Otherwise, leave it
17996 	 * down -- the admin can try to bring it up by hand if need be.
17997 	 */
17998 	if (ill->ill_move_ipif != NULL) {
17999 		ipif = ill->ill_move_ipif;
18000 		ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif,
18001 		    ipif->ipif_ill->ill_name));
18002 		ill->ill_move_ipif = NULL;
18003 		if (err == 0) {
18004 			err = ipif_up(ipif, q, mp1);
18005 			if (err == EINPROGRESS)
18006 				return;
18007 		}
18008 	}
18009 
18010 	/*
18011 	 * The operation must complete without EINPROGRESS since
18012 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18013 	 * Otherwise, the operation will be stuck forever in the ipsq.
18014 	 */
18015 	ASSERT(err != EINPROGRESS);
18016 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18017 		DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish",
18018 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18019 		    ill_t *, ill, ipif_t *, ipif);
18020 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18021 	} else {
18022 		ipsq_current_finish(ipsq);
18023 	}
18024 }
18025 
18026 /*
18027  * Finish processing of arp replumb after all the DLPI message
18028  * exchanges have completed between arp and the driver.
18029  */
18030 void
18031 arp_replumb_done(ill_t *ill, int err)
18032 {
18033 	mblk_t	*mp1;
18034 	ipif_t  *ipif;
18035 	conn_t *connp = NULL;
18036 	ipsq_t	*ipsq;
18037 	queue_t *q;
18038 
18039 	ASSERT(IAM_WRITER_ILL(ill));
18040 
18041 	ipsq = ill->ill_phyint->phyint_ipsq;
18042 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
18043 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
18044 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
18045 	if (mp1 == NULL) {
18046 		ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n",
18047 		    ipsq->ipsq_xop->ipx_current_ioctl));
18048 		/* bringup was aborted by the user */
18049 		return;
18050 	}
18051 	/*
18052 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
18053 	 * must have an associated conn_t.  Otherwise, we're bringing this
18054 	 * interface back up as part of handling an asynchronous event (e.g.,
18055 	 * physical address change).
18056 	 */
18057 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18058 		ASSERT(connp != NULL);
18059 		q = CONNP_TO_WQ(connp);
18060 	} else {
18061 		ASSERT(connp == NULL);
18062 		q = ill->ill_rq;
18063 	}
18064 	if ((err == 0) && (ill->ill_up_ipifs)) {
18065 		err = ill_up_ipifs(ill, q, mp1);
18066 		if (err == EINPROGRESS)
18067 			return;
18068 	}
18069 	/*
18070 	 * The operation must complete without EINPROGRESS since
18071 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
18072 	 * Otherwise, the operation will be stuck forever in the ipsq.
18073 	 */
18074 	ASSERT(err != EINPROGRESS);
18075 	if (ipsq->ipsq_xop->ipx_current_ioctl != 0) {
18076 		DTRACE_PROBE4(ipif__ioctl, char *,
18077 		    "arp_replumb_done finish",
18078 		    int, ipsq->ipsq_xop->ipx_current_ioctl,
18079 		    ill_t *, ill, ipif_t *, ipif);
18080 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
18081 	} else {
18082 		ipsq_current_finish(ipsq);
18083 	}
18084 }
18085 
18086 void
18087 ipif_up_notify(ipif_t *ipif)
18088 {
18089 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
18090 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
18091 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
18092 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
18093 	    NE_LIF_UP, NULL, 0);
18094 }
18095 
18096 /*
18097  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
18098  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
18099  * TPI end points with STREAMS modules pushed above.  This is assured by not
18100  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
18101  * never ends up on an ipsq, otherwise we may end up processing the ioctl
18102  * while unwinding from the ispq and that could be a thread from the bottom.
18103  */
18104 /* ARGSUSED */
18105 int
18106 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18107     ip_ioctl_cmd_t *ipip, void *arg)
18108 {
18109 	mblk_t *cmd_mp = mp->b_cont->b_cont;
18110 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
18111 	int ret = 0;
18112 	int i;
18113 	size_t size;
18114 	ip_stack_t *ipst;
18115 	zoneid_t zoneid;
18116 	ilb_stack_t *ilbs;
18117 
18118 	ipst = CONNQ_TO_IPST(q);
18119 	ilbs = ipst->ips_netstack->netstack_ilb;
18120 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18121 
18122 	switch (command) {
18123 	case ILB_CREATE_RULE: {
18124 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18125 
18126 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18127 			ret = EINVAL;
18128 			break;
18129 		}
18130 
18131 		ret = ilb_rule_add(ilbs, zoneid, cmd);
18132 		break;
18133 	}
18134 	case ILB_DESTROY_RULE:
18135 	case ILB_ENABLE_RULE:
18136 	case ILB_DISABLE_RULE: {
18137 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
18138 
18139 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
18140 			ret = EINVAL;
18141 			break;
18142 		}
18143 
18144 		if (cmd->flags & ILB_RULE_ALLRULES) {
18145 			if (command == ILB_DESTROY_RULE) {
18146 				ilb_rule_del_all(ilbs, zoneid);
18147 				break;
18148 			} else if (command == ILB_ENABLE_RULE) {
18149 				ilb_rule_enable_all(ilbs, zoneid);
18150 				break;
18151 			} else if (command == ILB_DISABLE_RULE) {
18152 				ilb_rule_disable_all(ilbs, zoneid);
18153 				break;
18154 			}
18155 		} else {
18156 			if (command == ILB_DESTROY_RULE) {
18157 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
18158 			} else if (command == ILB_ENABLE_RULE) {
18159 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
18160 				    NULL);
18161 			} else if (command == ILB_DISABLE_RULE) {
18162 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
18163 				    NULL);
18164 			}
18165 		}
18166 		break;
18167 	}
18168 	case ILB_NUM_RULES: {
18169 		ilb_num_rules_cmd_t *cmd;
18170 
18171 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
18172 			ret = EINVAL;
18173 			break;
18174 		}
18175 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
18176 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
18177 		break;
18178 	}
18179 	case ILB_RULE_NAMES: {
18180 		ilb_rule_names_cmd_t *cmd;
18181 
18182 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
18183 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
18184 		    cmd->num_names == 0) {
18185 			ret = EINVAL;
18186 			break;
18187 		}
18188 		size = cmd->num_names * ILB_RULE_NAMESZ;
18189 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
18190 		    size != cmd_mp->b_wptr) {
18191 			ret = EINVAL;
18192 			break;
18193 		}
18194 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
18195 		break;
18196 	}
18197 	case ILB_NUM_SERVERS: {
18198 		ilb_num_servers_cmd_t *cmd;
18199 
18200 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
18201 			ret = EINVAL;
18202 			break;
18203 		}
18204 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
18205 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
18206 		    &(cmd->num));
18207 		break;
18208 	}
18209 	case ILB_LIST_RULE: {
18210 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
18211 
18212 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
18213 			ret = EINVAL;
18214 			break;
18215 		}
18216 		ret = ilb_rule_list(ilbs, zoneid, cmd);
18217 		break;
18218 	}
18219 	case ILB_LIST_SERVERS: {
18220 		ilb_servers_info_cmd_t *cmd;
18221 
18222 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18223 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
18224 		    cmd->num_servers == 0) {
18225 			ret = EINVAL;
18226 			break;
18227 		}
18228 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18229 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18230 		    size != cmd_mp->b_wptr) {
18231 			ret = EINVAL;
18232 			break;
18233 		}
18234 
18235 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
18236 		    &cmd->num_servers);
18237 		break;
18238 	}
18239 	case ILB_ADD_SERVERS: {
18240 		ilb_servers_info_cmd_t *cmd;
18241 		ilb_rule_t *rule;
18242 
18243 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
18244 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
18245 			ret = EINVAL;
18246 			break;
18247 		}
18248 		size = cmd->num_servers * sizeof (ilb_server_info_t);
18249 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
18250 		    size != cmd_mp->b_wptr) {
18251 			ret = EINVAL;
18252 			break;
18253 		}
18254 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18255 		if (rule == NULL) {
18256 			ASSERT(ret != 0);
18257 			break;
18258 		}
18259 		for (i = 0; i < cmd->num_servers; i++) {
18260 			ilb_server_info_t *s;
18261 
18262 			s = &cmd->servers[i];
18263 			s->err = ilb_server_add(ilbs, rule, s);
18264 		}
18265 		ILB_RULE_REFRELE(rule);
18266 		break;
18267 	}
18268 	case ILB_DEL_SERVERS:
18269 	case ILB_ENABLE_SERVERS:
18270 	case ILB_DISABLE_SERVERS: {
18271 		ilb_servers_cmd_t *cmd;
18272 		ilb_rule_t *rule;
18273 		int (*f)();
18274 
18275 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
18276 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
18277 			ret = EINVAL;
18278 			break;
18279 		}
18280 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
18281 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
18282 		    size != cmd_mp->b_wptr) {
18283 			ret = EINVAL;
18284 			break;
18285 		}
18286 
18287 		if (command == ILB_DEL_SERVERS)
18288 			f = ilb_server_del;
18289 		else if (command == ILB_ENABLE_SERVERS)
18290 			f = ilb_server_enable;
18291 		else if (command == ILB_DISABLE_SERVERS)
18292 			f = ilb_server_disable;
18293 
18294 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
18295 		if (rule == NULL) {
18296 			ASSERT(ret != 0);
18297 			break;
18298 		}
18299 
18300 		for (i = 0; i < cmd->num_servers; i++) {
18301 			ilb_server_arg_t *s;
18302 
18303 			s = &cmd->servers[i];
18304 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
18305 		}
18306 		ILB_RULE_REFRELE(rule);
18307 		break;
18308 	}
18309 	case ILB_LIST_NAT_TABLE: {
18310 		ilb_list_nat_cmd_t *cmd;
18311 
18312 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
18313 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
18314 			ret = EINVAL;
18315 			break;
18316 		}
18317 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
18318 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
18319 		    size != cmd_mp->b_wptr) {
18320 			ret = EINVAL;
18321 			break;
18322 		}
18323 
18324 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
18325 		    &cmd->flags);
18326 		break;
18327 	}
18328 	case ILB_LIST_STICKY_TABLE: {
18329 		ilb_list_sticky_cmd_t *cmd;
18330 
18331 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
18332 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
18333 			ret = EINVAL;
18334 			break;
18335 		}
18336 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
18337 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
18338 		    size != cmd_mp->b_wptr) {
18339 			ret = EINVAL;
18340 			break;
18341 		}
18342 
18343 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
18344 		    &cmd->num_sticky, &cmd->flags);
18345 		break;
18346 	}
18347 	default:
18348 		ret = EINVAL;
18349 		break;
18350 	}
18351 done:
18352 	return (ret);
18353 }
18354 
18355 /* Remove all cache entries for this logical interface */
18356 void
18357 ipif_nce_down(ipif_t *ipif)
18358 {
18359 	ill_t *ill = ipif->ipif_ill;
18360 	nce_t *nce;
18361 
18362 	DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down",
18363 	    ill_t *, ill, ipif_t *, ipif);
18364 	if (ipif->ipif_added_nce) {
18365 		if (ipif->ipif_isv6)
18366 			nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr);
18367 		else
18368 			nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr);
18369 		if (nce != NULL) {
18370 			if (--nce->nce_ipif_cnt == 0)
18371 				ncec_delete(nce->nce_common);
18372 			ipif->ipif_added_nce = 0;
18373 			nce_refrele(nce);
18374 		} else {
18375 			/*
18376 			 * nce may already be NULL because it was already
18377 			 * flushed, e.g., due to a call to nce_flush
18378 			 */
18379 			ipif->ipif_added_nce = 0;
18380 		}
18381 	}
18382 	/*
18383 	 * Make IPMP aware of the deleted data address.
18384 	 */
18385 	if (IS_IPMP(ill))
18386 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
18387 
18388 	/*
18389 	 * Remove all other nces dependent on this ill when the last ipif
18390 	 * is going away.
18391 	 */
18392 	if (ill->ill_ipif_up_count == 0) {
18393 		ncec_walk(ill, (pfi_t)ncec_delete_per_ill,
18394 		    (uchar_t *)ill, ill->ill_ipst);
18395 		if (IS_UNDER_IPMP(ill))
18396 			nce_flush(ill, B_TRUE);
18397 	}
18398 }
18399