1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains the interface control functions for IP. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/tunables.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 #include <sys/mac_flow.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 106 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 122 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 123 char *value, caddr_t cp, cred_t *ioc_cr); 124 125 static boolean_t ill_is_quiescent(ill_t *); 126 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 127 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 128 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 129 mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 133 queue_t *q, mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 135 mblk_t *mp); 136 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp); 138 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 139 queue_t *q, mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 141 int ioccmd, struct linkblk *li); 142 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 143 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 144 static void ipsq_flush(ill_t *ill); 145 146 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static void ipsq_delete(ipsq_t *); 149 150 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 151 boolean_t initialize, boolean_t insert, int *errorp); 152 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 153 static void ipif_delete_bcast_ires(ipif_t *ipif); 154 static int ipif_add_ires_v4(ipif_t *, boolean_t); 155 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 156 boolean_t isv6); 157 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 158 static void ipif_free(ipif_t *ipif); 159 static void ipif_free_tail(ipif_t *ipif); 160 static void ipif_set_default(ipif_t *ipif); 161 static int ipif_set_values(queue_t *q, mblk_t *mp, 162 char *interf_name, uint_t *ppa); 163 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 164 queue_t *q); 165 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 166 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 167 ip_stack_t *); 168 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 169 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 170 int *error, ip_stack_t *); 171 172 static int ill_alloc_ppa(ill_if_t *, ill_t *); 173 static void ill_delete_interface_type(ill_if_t *); 174 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 175 static void ill_dl_down(ill_t *ill); 176 static void ill_down(ill_t *ill); 177 static void ill_down_ipifs(ill_t *, boolean_t); 178 static void ill_free_mib(ill_t *ill); 179 static void ill_glist_delete(ill_t *); 180 static void ill_phyint_reinit(ill_t *ill); 181 static void ill_set_nce_router_flags(ill_t *, boolean_t); 182 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 183 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 184 185 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 186 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 187 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 188 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 189 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 190 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 191 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 192 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 193 static ip_v4mapinfo_func_t ip_mbcast_mapping; 194 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 195 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 196 static void phyint_free(phyint_t *); 197 198 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 199 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 200 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 201 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 203 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 204 dl_capability_sub_t *); 205 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 207 static void ill_capability_dld_ack(ill_t *, mblk_t *, 208 dl_capability_sub_t *); 209 static void ill_capability_dld_enable(ill_t *); 210 static void ill_capability_ack_thr(void *); 211 static void ill_capability_lso_enable(ill_t *); 212 213 static ill_t *ill_prev_usesrc(ill_t *); 214 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 215 static void ill_disband_usesrc_group(ill_t *); 216 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 217 218 #ifdef DEBUG 219 static void ill_trace_cleanup(const ill_t *); 220 static void ipif_trace_cleanup(const ipif_t *); 221 #endif 222 223 static void ill_dlpi_clear_deferred(ill_t *ill); 224 225 /* 226 * if we go over the memory footprint limit more than once in this msec 227 * interval, we'll start pruning aggressively. 228 */ 229 int ip_min_frag_prune_time = 0; 230 231 static ipft_t ip_ioctl_ftbl[] = { 232 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 233 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 234 IPFT_F_NO_REPLY }, 235 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 236 { 0 } 237 }; 238 239 /* Simple ICMP IP Header Template */ 240 static ipha_t icmp_ipha = { 241 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 242 }; 243 244 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 245 246 static ip_m_t ip_m_tbl[] = { 247 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 248 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 249 ip_nodef_v6intfid }, 250 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 251 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 252 ip_nodef_v6intfid }, 253 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 255 ip_nodef_v6intfid }, 256 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 258 ip_nodef_v6intfid }, 259 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 261 ip_nodef_v6intfid }, 262 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 263 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 264 ip_nodef_v6intfid }, 265 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 266 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 267 ip_ipv4_v6destintfid }, 268 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 269 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 270 ip_ipv6_v6destintfid }, 271 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 273 ip_nodef_v6intfid }, 274 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 275 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 276 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 277 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 278 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 279 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 280 ip_nodef_v6intfid } 281 }; 282 283 static ill_t ill_null; /* Empty ILL for init. */ 284 char ipif_loopback_name[] = "lo0"; 285 286 /* These are used by all IP network modules. */ 287 sin6_t sin6_null; /* Zero address for quick clears */ 288 sin_t sin_null; /* Zero address for quick clears */ 289 290 /* When set search for unused ipif_seqid */ 291 static ipif_t ipif_zero; 292 293 /* 294 * ppa arena is created after these many 295 * interfaces have been plumbed. 296 */ 297 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 298 299 /* 300 * Allocate per-interface mibs. 301 * Returns true if ok. False otherwise. 302 * ipsq may not yet be allocated (loopback case ). 303 */ 304 static boolean_t 305 ill_allocate_mibs(ill_t *ill) 306 { 307 /* Already allocated? */ 308 if (ill->ill_ip_mib != NULL) { 309 if (ill->ill_isv6) 310 ASSERT(ill->ill_icmp6_mib != NULL); 311 return (B_TRUE); 312 } 313 314 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 315 KM_NOSLEEP); 316 if (ill->ill_ip_mib == NULL) { 317 return (B_FALSE); 318 } 319 320 /* Setup static information */ 321 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 322 sizeof (mib2_ipIfStatsEntry_t)); 323 if (ill->ill_isv6) { 324 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 325 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 326 sizeof (mib2_ipv6AddrEntry_t)); 327 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 328 sizeof (mib2_ipv6RouteEntry_t)); 329 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 330 sizeof (mib2_ipv6NetToMediaEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 332 sizeof (ipv6_member_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 334 sizeof (ipv6_grpsrc_t)); 335 } else { 336 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 337 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 338 sizeof (mib2_ipAddrEntry_t)); 339 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 340 sizeof (mib2_ipRouteEntry_t)); 341 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 342 sizeof (mib2_ipNetToMediaEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 344 sizeof (ip_member_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 346 sizeof (ip_grpsrc_t)); 347 348 /* 349 * For a v4 ill, we are done at this point, because per ill 350 * icmp mibs are only used for v6. 351 */ 352 return (B_TRUE); 353 } 354 355 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 356 KM_NOSLEEP); 357 if (ill->ill_icmp6_mib == NULL) { 358 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 359 ill->ill_ip_mib = NULL; 360 return (B_FALSE); 361 } 362 /* static icmp info */ 363 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 364 sizeof (mib2_ipv6IfIcmpEntry_t); 365 /* 366 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 367 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 368 * -> ill_phyint_reinit 369 */ 370 return (B_TRUE); 371 } 372 373 /* 374 * Completely vaporize a lower level tap and all associated interfaces. 375 * ill_delete is called only out of ip_close when the device control 376 * stream is being closed. 377 */ 378 void 379 ill_delete(ill_t *ill) 380 { 381 ipif_t *ipif; 382 ill_t *prev_ill; 383 ip_stack_t *ipst = ill->ill_ipst; 384 385 /* 386 * ill_delete may be forcibly entering the ipsq. The previous 387 * ioctl may not have completed and may need to be aborted. 388 * ipsq_flush takes care of it. If we don't need to enter the 389 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 390 * ill_delete_tail is sufficient. 391 */ 392 ipsq_flush(ill); 393 394 /* 395 * Nuke all interfaces. ipif_free will take down the interface, 396 * remove it from the list, and free the data structure. 397 * Walk down the ipif list and remove the logical interfaces 398 * first before removing the main ipif. We can't unplumb 399 * zeroth interface first in the case of IPv6 as update_conn_ill 400 * -> ip_ll_multireq de-references ill_ipif for checking 401 * POINTOPOINT. 402 * 403 * If ill_ipif was not properly initialized (i.e low on memory), 404 * then no interfaces to clean up. In this case just clean up the 405 * ill. 406 */ 407 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 408 ipif_free(ipif); 409 410 /* 411 * clean out all the nce_t entries that depend on this 412 * ill for the ill_phys_addr. 413 */ 414 nce_flush(ill, B_TRUE); 415 416 /* Clean up msgs on pending upcalls for mrouted */ 417 reset_mrt_ill(ill); 418 419 update_conn_ill(ill, ipst); 420 421 /* 422 * Remove multicast references added as a result of calls to 423 * ip_join_allmulti(). 424 */ 425 ip_purge_allmulti(ill); 426 427 /* 428 * If the ill being deleted is under IPMP, boot it out of the illgrp. 429 */ 430 if (IS_UNDER_IPMP(ill)) 431 ipmp_ill_leave_illgrp(ill); 432 433 /* 434 * ill_down will arrange to blow off any IRE's dependent on this 435 * ILL, and shut down fragmentation reassembly. 436 */ 437 ill_down(ill); 438 439 /* Let SCTP know, so that it can remove this from its list. */ 440 sctp_update_ill(ill, SCTP_ILL_REMOVE); 441 442 /* 443 * Walk all CONNs that can have a reference on an ire or nce for this 444 * ill (we actually walk all that now have stale references). 445 */ 446 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 447 448 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 449 if (ill->ill_isv6) 450 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 451 452 /* 453 * If an address on this ILL is being used as a source address then 454 * clear out the pointers in other ILLs that point to this ILL. 455 */ 456 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 457 if (ill->ill_usesrc_grp_next != NULL) { 458 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 459 ill_disband_usesrc_group(ill); 460 } else { /* consumer of the usesrc ILL */ 461 prev_ill = ill_prev_usesrc(ill); 462 prev_ill->ill_usesrc_grp_next = 463 ill->ill_usesrc_grp_next; 464 } 465 } 466 rw_exit(&ipst->ips_ill_g_usesrc_lock); 467 } 468 469 static void 470 ipif_non_duplicate(ipif_t *ipif) 471 { 472 ill_t *ill = ipif->ipif_ill; 473 mutex_enter(&ill->ill_lock); 474 if (ipif->ipif_flags & IPIF_DUPLICATE) { 475 ipif->ipif_flags &= ~IPIF_DUPLICATE; 476 ASSERT(ill->ill_ipif_dup_count > 0); 477 ill->ill_ipif_dup_count--; 478 } 479 mutex_exit(&ill->ill_lock); 480 } 481 482 /* 483 * ill_delete_tail is called from ip_modclose after all references 484 * to the closing ill are gone. The wait is done in ip_modclose 485 */ 486 void 487 ill_delete_tail(ill_t *ill) 488 { 489 mblk_t **mpp; 490 ipif_t *ipif; 491 ip_stack_t *ipst = ill->ill_ipst; 492 493 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 494 ipif_non_duplicate(ipif); 495 (void) ipif_down_tail(ipif); 496 } 497 498 ASSERT(ill->ill_ipif_dup_count == 0); 499 500 /* 501 * If polling capability is enabled (which signifies direct 502 * upcall into IP and driver has ill saved as a handle), 503 * we need to make sure that unbind has completed before we 504 * let the ill disappear and driver no longer has any reference 505 * to this ill. 506 */ 507 mutex_enter(&ill->ill_lock); 508 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 509 cv_wait(&ill->ill_cv, &ill->ill_lock); 510 mutex_exit(&ill->ill_lock); 511 ASSERT(!(ill->ill_capabilities & 512 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 513 514 if (ill->ill_net_type != IRE_LOOPBACK) 515 qprocsoff(ill->ill_rq); 516 517 /* 518 * We do an ipsq_flush once again now. New messages could have 519 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 520 * could also have landed up if an ioctl thread had looked up 521 * the ill before we set the ILL_CONDEMNED flag, but not yet 522 * enqueued the ioctl when we did the ipsq_flush last time. 523 */ 524 ipsq_flush(ill); 525 526 /* 527 * Free capabilities. 528 */ 529 if (ill->ill_hcksum_capab != NULL) { 530 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 531 ill->ill_hcksum_capab = NULL; 532 } 533 534 if (ill->ill_zerocopy_capab != NULL) { 535 kmem_free(ill->ill_zerocopy_capab, 536 sizeof (ill_zerocopy_capab_t)); 537 ill->ill_zerocopy_capab = NULL; 538 } 539 540 if (ill->ill_lso_capab != NULL) { 541 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 542 ill->ill_lso_capab = NULL; 543 } 544 545 if (ill->ill_dld_capab != NULL) { 546 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 547 ill->ill_dld_capab = NULL; 548 } 549 550 /* Clean up ill_allowed_ips* related state */ 551 if (ill->ill_allowed_ips != NULL) { 552 ASSERT(ill->ill_allowed_ips_cnt > 0); 553 kmem_free(ill->ill_allowed_ips, 554 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 555 ill->ill_allowed_ips = NULL; 556 ill->ill_allowed_ips_cnt = 0; 557 } 558 559 while (ill->ill_ipif != NULL) 560 ipif_free_tail(ill->ill_ipif); 561 562 /* 563 * We have removed all references to ilm from conn and the ones joined 564 * within the kernel. 565 * 566 * We don't walk conns, mrts and ires because 567 * 568 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 569 * 2) ill_down ->ill_downi walks all the ires and cleans up 570 * ill references. 571 */ 572 573 /* 574 * If this ill is an IPMP meta-interface, blow away the illgrp. This 575 * is safe to do because the illgrp has already been unlinked from the 576 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 577 */ 578 if (IS_IPMP(ill)) { 579 ipmp_illgrp_destroy(ill->ill_grp); 580 ill->ill_grp = NULL; 581 } 582 583 if (ill->ill_mphysaddr_list != NULL) { 584 multiphysaddr_t *mpa, *tmpa; 585 586 mpa = ill->ill_mphysaddr_list; 587 ill->ill_mphysaddr_list = NULL; 588 while (mpa) { 589 tmpa = mpa->mpa_next; 590 kmem_free(mpa, sizeof (*mpa)); 591 mpa = tmpa; 592 } 593 } 594 /* 595 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 596 * could free the phyint. No more reference to the phyint after this 597 * point. 598 */ 599 (void) ill_glist_delete(ill); 600 601 if (ill->ill_frag_ptr != NULL) { 602 uint_t count; 603 604 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 605 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 606 } 607 mi_free(ill->ill_frag_ptr); 608 ill->ill_frag_ptr = NULL; 609 ill->ill_frag_hash_tbl = NULL; 610 } 611 612 freemsg(ill->ill_nd_lla_mp); 613 /* Free all retained control messages. */ 614 mpp = &ill->ill_first_mp_to_free; 615 do { 616 while (mpp[0]) { 617 mblk_t *mp; 618 mblk_t *mp1; 619 620 mp = mpp[0]; 621 mpp[0] = mp->b_next; 622 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 623 mp1->b_next = NULL; 624 mp1->b_prev = NULL; 625 } 626 freemsg(mp); 627 } 628 } while (mpp++ != &ill->ill_last_mp_to_free); 629 630 ill_free_mib(ill); 631 632 #ifdef DEBUG 633 ill_trace_cleanup(ill); 634 #endif 635 636 /* The default multicast interface might have changed */ 637 ire_increment_multicast_generation(ipst, ill->ill_isv6); 638 639 /* Drop refcnt here */ 640 netstack_rele(ill->ill_ipst->ips_netstack); 641 ill->ill_ipst = NULL; 642 } 643 644 static void 645 ill_free_mib(ill_t *ill) 646 { 647 ip_stack_t *ipst = ill->ill_ipst; 648 649 /* 650 * MIB statistics must not be lost, so when an interface 651 * goes away the counter values will be added to the global 652 * MIBs. 653 */ 654 if (ill->ill_ip_mib != NULL) { 655 if (ill->ill_isv6) { 656 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 657 ill->ill_ip_mib); 658 } else { 659 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 660 ill->ill_ip_mib); 661 } 662 663 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 664 ill->ill_ip_mib = NULL; 665 } 666 if (ill->ill_icmp6_mib != NULL) { 667 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 668 ill->ill_icmp6_mib); 669 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 670 ill->ill_icmp6_mib = NULL; 671 } 672 } 673 674 /* 675 * Concatenate together a physical address and a sap. 676 * 677 * Sap_lengths are interpreted as follows: 678 * sap_length == 0 ==> no sap 679 * sap_length > 0 ==> sap is at the head of the dlpi address 680 * sap_length < 0 ==> sap is at the tail of the dlpi address 681 */ 682 static void 683 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 684 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 685 { 686 uint16_t sap_addr = (uint16_t)sap_src; 687 688 if (sap_length == 0) { 689 if (phys_src == NULL) 690 bzero(dst, phys_length); 691 else 692 bcopy(phys_src, dst, phys_length); 693 } else if (sap_length < 0) { 694 if (phys_src == NULL) 695 bzero(dst, phys_length); 696 else 697 bcopy(phys_src, dst, phys_length); 698 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 699 } else { 700 bcopy(&sap_addr, dst, sizeof (sap_addr)); 701 if (phys_src == NULL) 702 bzero((char *)dst + sap_length, phys_length); 703 else 704 bcopy(phys_src, (char *)dst + sap_length, phys_length); 705 } 706 } 707 708 /* 709 * Generate a dl_unitdata_req mblk for the device and address given. 710 * addr_length is the length of the physical portion of the address. 711 * If addr is NULL include an all zero address of the specified length. 712 * TRUE? In any case, addr_length is taken to be the entire length of the 713 * dlpi address, including the absolute value of sap_length. 714 */ 715 mblk_t * 716 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 717 t_scalar_t sap_length) 718 { 719 dl_unitdata_req_t *dlur; 720 mblk_t *mp; 721 t_scalar_t abs_sap_length; /* absolute value */ 722 723 abs_sap_length = ABS(sap_length); 724 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 725 DL_UNITDATA_REQ); 726 if (mp == NULL) 727 return (NULL); 728 dlur = (dl_unitdata_req_t *)mp->b_rptr; 729 /* HACK: accomodate incompatible DLPI drivers */ 730 if (addr_length == 8) 731 addr_length = 6; 732 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 733 dlur->dl_dest_addr_offset = sizeof (*dlur); 734 dlur->dl_priority.dl_min = 0; 735 dlur->dl_priority.dl_max = 0; 736 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 737 (uchar_t *)&dlur[1]); 738 return (mp); 739 } 740 741 /* 742 * Add the pending mp to the list. There can be only 1 pending mp 743 * in the list. Any exclusive ioctl that needs to wait for a response 744 * from another module or driver needs to use this function to set 745 * the ipx_pending_mp to the ioctl mblk and wait for the response from 746 * the other module/driver. This is also used while waiting for the 747 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 748 */ 749 boolean_t 750 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 751 int waitfor) 752 { 753 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 754 755 ASSERT(IAM_WRITER_IPIF(ipif)); 756 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 757 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 758 ASSERT(ipx->ipx_pending_mp == NULL); 759 /* 760 * The caller may be using a different ipif than the one passed into 761 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 762 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 763 * that `ipx_current_ipif == ipif'. 764 */ 765 ASSERT(ipx->ipx_current_ipif != NULL); 766 767 /* 768 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 769 * driver. 770 */ 771 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 772 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 773 (DB_TYPE(add_mp) == M_PCPROTO)); 774 775 if (connp != NULL) { 776 ASSERT(MUTEX_HELD(&connp->conn_lock)); 777 /* 778 * Return error if the conn has started closing. The conn 779 * could have finished cleaning up the pending mp list, 780 * If so we should not add another mp to the list negating 781 * the cleanup. 782 */ 783 if (connp->conn_state_flags & CONN_CLOSING) 784 return (B_FALSE); 785 } 786 mutex_enter(&ipx->ipx_lock); 787 ipx->ipx_pending_ipif = ipif; 788 /* 789 * Note down the queue in b_queue. This will be returned by 790 * ipsq_pending_mp_get. Caller will then use these values to restart 791 * the processing 792 */ 793 add_mp->b_next = NULL; 794 add_mp->b_queue = q; 795 ipx->ipx_pending_mp = add_mp; 796 ipx->ipx_waitfor = waitfor; 797 mutex_exit(&ipx->ipx_lock); 798 799 if (connp != NULL) 800 connp->conn_oper_pending_ill = ipif->ipif_ill; 801 802 return (B_TRUE); 803 } 804 805 /* 806 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 807 * queued in the list. 808 */ 809 mblk_t * 810 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 811 { 812 mblk_t *curr = NULL; 813 ipxop_t *ipx = ipsq->ipsq_xop; 814 815 *connpp = NULL; 816 mutex_enter(&ipx->ipx_lock); 817 if (ipx->ipx_pending_mp == NULL) { 818 mutex_exit(&ipx->ipx_lock); 819 return (NULL); 820 } 821 822 /* There can be only 1 such excl message */ 823 curr = ipx->ipx_pending_mp; 824 ASSERT(curr->b_next == NULL); 825 ipx->ipx_pending_ipif = NULL; 826 ipx->ipx_pending_mp = NULL; 827 ipx->ipx_waitfor = 0; 828 mutex_exit(&ipx->ipx_lock); 829 830 if (CONN_Q(curr->b_queue)) { 831 /* 832 * This mp did a refhold on the conn, at the start of the ioctl. 833 * So we can safely return a pointer to the conn to the caller. 834 */ 835 *connpp = Q_TO_CONN(curr->b_queue); 836 } else { 837 *connpp = NULL; 838 } 839 curr->b_next = NULL; 840 curr->b_prev = NULL; 841 return (curr); 842 } 843 844 /* 845 * Cleanup the ioctl mp queued in ipx_pending_mp 846 * - Called in the ill_delete path 847 * - Called in the M_ERROR or M_HANGUP path on the ill. 848 * - Called in the conn close path. 849 * 850 * Returns success on finding the pending mblk associated with the ioctl or 851 * exclusive operation in progress, failure otherwise. 852 */ 853 boolean_t 854 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 855 { 856 mblk_t *mp; 857 ipxop_t *ipx; 858 queue_t *q; 859 ipif_t *ipif; 860 int cmd; 861 862 ASSERT(IAM_WRITER_ILL(ill)); 863 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 864 865 mutex_enter(&ipx->ipx_lock); 866 mp = ipx->ipx_pending_mp; 867 if (connp != NULL) { 868 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 869 /* 870 * Nothing to clean since the conn that is closing 871 * does not have a matching pending mblk in 872 * ipx_pending_mp. 873 */ 874 mutex_exit(&ipx->ipx_lock); 875 return (B_FALSE); 876 } 877 } else { 878 /* 879 * A non-zero ill_error signifies we are called in the 880 * M_ERROR or M_HANGUP path and we need to unconditionally 881 * abort any current ioctl and do the corresponding cleanup. 882 * A zero ill_error means we are in the ill_delete path and 883 * we do the cleanup only if there is a pending mp. 884 */ 885 if (mp == NULL && ill->ill_error == 0) { 886 mutex_exit(&ipx->ipx_lock); 887 return (B_FALSE); 888 } 889 } 890 891 /* Now remove from the ipx_pending_mp */ 892 ipx->ipx_pending_mp = NULL; 893 ipif = ipx->ipx_pending_ipif; 894 ipx->ipx_pending_ipif = NULL; 895 ipx->ipx_waitfor = 0; 896 ipx->ipx_current_ipif = NULL; 897 cmd = ipx->ipx_current_ioctl; 898 ipx->ipx_current_ioctl = 0; 899 ipx->ipx_current_done = B_TRUE; 900 mutex_exit(&ipx->ipx_lock); 901 902 if (mp == NULL) 903 return (B_FALSE); 904 905 q = mp->b_queue; 906 mp->b_next = NULL; 907 mp->b_prev = NULL; 908 mp->b_queue = NULL; 909 910 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 911 DTRACE_PROBE4(ipif__ioctl, 912 char *, "ipsq_pending_mp_cleanup", 913 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 914 ipif_t *, ipif); 915 if (connp == NULL) { 916 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 917 } else { 918 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 919 mutex_enter(&ipif->ipif_ill->ill_lock); 920 ipif->ipif_state_flags &= ~IPIF_CHANGING; 921 mutex_exit(&ipif->ipif_ill->ill_lock); 922 } 923 } else { 924 inet_freemsg(mp); 925 } 926 return (B_TRUE); 927 } 928 929 /* 930 * Called in the conn close path and ill delete path 931 */ 932 static void 933 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 934 { 935 ipsq_t *ipsq; 936 mblk_t *prev; 937 mblk_t *curr; 938 mblk_t *next; 939 queue_t *wq, *rq = NULL; 940 mblk_t *tmp_list = NULL; 941 942 ASSERT(IAM_WRITER_ILL(ill)); 943 if (connp != NULL) 944 wq = CONNP_TO_WQ(connp); 945 else 946 wq = ill->ill_wq; 947 948 /* 949 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 950 * against this here. 951 */ 952 if (wq != NULL) 953 rq = RD(wq); 954 955 ipsq = ill->ill_phyint->phyint_ipsq; 956 /* 957 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 958 * In the case of ioctl from a conn, there can be only 1 mp 959 * queued on the ipsq. If an ill is being unplumbed flush all 960 * the messages. 961 */ 962 mutex_enter(&ipsq->ipsq_lock); 963 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 964 curr = next) { 965 next = curr->b_next; 966 if (connp == NULL || 967 (curr->b_queue == wq || curr->b_queue == rq)) { 968 /* Unlink the mblk from the pending mp list */ 969 if (prev != NULL) { 970 prev->b_next = curr->b_next; 971 } else { 972 ASSERT(ipsq->ipsq_xopq_mphead == curr); 973 ipsq->ipsq_xopq_mphead = curr->b_next; 974 } 975 if (ipsq->ipsq_xopq_mptail == curr) 976 ipsq->ipsq_xopq_mptail = prev; 977 /* 978 * Create a temporary list and release the ipsq lock 979 * New elements are added to the head of the tmp_list 980 */ 981 curr->b_next = tmp_list; 982 tmp_list = curr; 983 } else { 984 prev = curr; 985 } 986 } 987 mutex_exit(&ipsq->ipsq_lock); 988 989 while (tmp_list != NULL) { 990 curr = tmp_list; 991 tmp_list = curr->b_next; 992 curr->b_next = NULL; 993 curr->b_prev = NULL; 994 wq = curr->b_queue; 995 curr->b_queue = NULL; 996 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 997 DTRACE_PROBE4(ipif__ioctl, 998 char *, "ipsq_xopq_mp_cleanup", 999 int, 0, ill_t *, NULL, ipif_t *, NULL); 1000 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1001 CONN_CLOSE : NO_COPYOUT, NULL); 1002 } else { 1003 /* 1004 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1005 * this can't be just inet_freemsg. we have to 1006 * restart it otherwise the thread will be stuck. 1007 */ 1008 inet_freemsg(curr); 1009 } 1010 } 1011 } 1012 1013 /* 1014 * This conn has started closing. Cleanup any pending ioctl from this conn. 1015 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1016 */ 1017 void 1018 conn_ioctl_cleanup(conn_t *connp) 1019 { 1020 ipsq_t *ipsq; 1021 ill_t *ill; 1022 boolean_t refheld; 1023 1024 /* 1025 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1026 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1027 * started the mp could be present in ipx_pending_mp. Note that if 1028 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1029 * not yet queued anywhere. In this case, the conn close code will wait 1030 * until the conn_ref is dropped. If the stream was a tcp stream, then 1031 * tcp_close will wait first until all ioctls have completed for this 1032 * conn. 1033 */ 1034 mutex_enter(&connp->conn_lock); 1035 ill = connp->conn_oper_pending_ill; 1036 if (ill == NULL) { 1037 mutex_exit(&connp->conn_lock); 1038 return; 1039 } 1040 1041 /* 1042 * We may not be able to refhold the ill if the ill/ipif 1043 * is changing. But we need to make sure that the ill will 1044 * not vanish. So we just bump up the ill_waiter count. 1045 */ 1046 refheld = ill_waiter_inc(ill); 1047 mutex_exit(&connp->conn_lock); 1048 if (refheld) { 1049 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1050 ill_waiter_dcr(ill); 1051 /* 1052 * Check whether this ioctl has started and is 1053 * pending. If it is not found there then check 1054 * whether this ioctl has not even started and is in 1055 * the ipsq_xopq list. 1056 */ 1057 if (!ipsq_pending_mp_cleanup(ill, connp)) 1058 ipsq_xopq_mp_cleanup(ill, connp); 1059 ipsq = ill->ill_phyint->phyint_ipsq; 1060 ipsq_exit(ipsq); 1061 return; 1062 } 1063 } 1064 1065 /* 1066 * The ill is also closing and we could not bump up the 1067 * ill_waiter_count or we could not enter the ipsq. Leave 1068 * the cleanup to ill_delete 1069 */ 1070 mutex_enter(&connp->conn_lock); 1071 while (connp->conn_oper_pending_ill != NULL) 1072 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1073 mutex_exit(&connp->conn_lock); 1074 if (refheld) 1075 ill_waiter_dcr(ill); 1076 } 1077 1078 /* 1079 * ipcl_walk function for cleaning up conn_*_ill fields. 1080 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1081 * conn_bound_if in place. We prefer dropping 1082 * packets instead of sending them out the wrong interface, or accepting 1083 * packets from the wrong ifindex. 1084 */ 1085 static void 1086 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1087 { 1088 ill_t *ill = (ill_t *)arg; 1089 1090 mutex_enter(&connp->conn_lock); 1091 if (connp->conn_dhcpinit_ill == ill) { 1092 connp->conn_dhcpinit_ill = NULL; 1093 ASSERT(ill->ill_dhcpinit != 0); 1094 atomic_dec_32(&ill->ill_dhcpinit); 1095 ill_set_inputfn(ill); 1096 } 1097 mutex_exit(&connp->conn_lock); 1098 } 1099 1100 static int 1101 ill_down_ipifs_tail(ill_t *ill) 1102 { 1103 ipif_t *ipif; 1104 int err; 1105 1106 ASSERT(IAM_WRITER_ILL(ill)); 1107 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1108 ipif_non_duplicate(ipif); 1109 /* 1110 * ipif_down_tail will call arp_ll_down on the last ipif 1111 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1112 */ 1113 if ((err = ipif_down_tail(ipif)) != 0) 1114 return (err); 1115 } 1116 return (0); 1117 } 1118 1119 /* ARGSUSED */ 1120 void 1121 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1122 { 1123 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1124 (void) ill_down_ipifs_tail(q->q_ptr); 1125 freemsg(mp); 1126 ipsq_current_finish(ipsq); 1127 } 1128 1129 /* 1130 * ill_down_start is called when we want to down this ill and bring it up again 1131 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1132 * all interfaces, but don't tear down any plumbing. 1133 */ 1134 boolean_t 1135 ill_down_start(queue_t *q, mblk_t *mp) 1136 { 1137 ill_t *ill = q->q_ptr; 1138 ipif_t *ipif; 1139 1140 ASSERT(IAM_WRITER_ILL(ill)); 1141 /* 1142 * It is possible that some ioctl is already in progress while we 1143 * received the M_ERROR / M_HANGUP in which case, we need to abort 1144 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1145 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1146 * the in progress ioctl from ever completing. 1147 * 1148 * The thread that started the ioctl (if any) must have returned, 1149 * since we are now executing as writer. After the 2 calls below, 1150 * the state of the ipsq and the ill would reflect no trace of any 1151 * pending operation. Subsequently if there is any response to the 1152 * original ioctl from the driver, it would be discarded as an 1153 * unsolicited message from the driver. 1154 */ 1155 (void) ipsq_pending_mp_cleanup(ill, NULL); 1156 ill_dlpi_clear_deferred(ill); 1157 1158 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1159 (void) ipif_down(ipif, NULL, NULL); 1160 1161 ill_down(ill); 1162 1163 /* 1164 * Walk all CONNs that can have a reference on an ire or nce for this 1165 * ill (we actually walk all that now have stale references). 1166 */ 1167 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1168 1169 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1170 if (ill->ill_isv6) 1171 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1172 1173 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1174 1175 /* 1176 * Atomically test and add the pending mp if references are active. 1177 */ 1178 mutex_enter(&ill->ill_lock); 1179 if (!ill_is_quiescent(ill)) { 1180 /* call cannot fail since `conn_t *' argument is NULL */ 1181 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1182 mp, ILL_DOWN); 1183 mutex_exit(&ill->ill_lock); 1184 return (B_FALSE); 1185 } 1186 mutex_exit(&ill->ill_lock); 1187 return (B_TRUE); 1188 } 1189 1190 static void 1191 ill_down(ill_t *ill) 1192 { 1193 mblk_t *mp; 1194 ip_stack_t *ipst = ill->ill_ipst; 1195 1196 /* 1197 * Blow off any IREs dependent on this ILL. 1198 * The caller needs to handle conn_ixa_cleanup 1199 */ 1200 ill_delete_ires(ill); 1201 1202 ire_walk_ill(0, 0, ill_downi, ill, ill); 1203 1204 /* Remove any conn_*_ill depending on this ill */ 1205 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1206 1207 /* 1208 * Free state for additional IREs. 1209 */ 1210 mutex_enter(&ill->ill_saved_ire_lock); 1211 mp = ill->ill_saved_ire_mp; 1212 ill->ill_saved_ire_mp = NULL; 1213 ill->ill_saved_ire_cnt = 0; 1214 mutex_exit(&ill->ill_saved_ire_lock); 1215 freemsg(mp); 1216 } 1217 1218 /* 1219 * ire_walk routine used to delete every IRE that depends on 1220 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1221 * 1222 * Note: since the routes added by the kernel are deleted separately, 1223 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1224 * 1225 * We also remove references on ire_nce_cache entries that refer to the ill. 1226 */ 1227 void 1228 ill_downi(ire_t *ire, char *ill_arg) 1229 { 1230 ill_t *ill = (ill_t *)ill_arg; 1231 nce_t *nce; 1232 1233 mutex_enter(&ire->ire_lock); 1234 nce = ire->ire_nce_cache; 1235 if (nce != NULL && nce->nce_ill == ill) 1236 ire->ire_nce_cache = NULL; 1237 else 1238 nce = NULL; 1239 mutex_exit(&ire->ire_lock); 1240 if (nce != NULL) 1241 nce_refrele(nce); 1242 if (ire->ire_ill == ill) { 1243 /* 1244 * The existing interface binding for ire must be 1245 * deleted before trying to bind the route to another 1246 * interface. However, since we are using the contents of the 1247 * ire after ire_delete, the caller has to ensure that 1248 * CONDEMNED (deleted) ire's are not removed from the list 1249 * when ire_delete() returns. Currently ill_downi() is 1250 * only called as part of ire_walk*() routines, so that 1251 * the irb_refhold() done by ire_walk*() will ensure that 1252 * ire_delete() does not lead to ire_inactive(). 1253 */ 1254 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1255 ire_delete(ire); 1256 if (ire->ire_unbound) 1257 ire_rebind(ire); 1258 } 1259 } 1260 1261 /* Remove IRE_IF_CLONE on this ill */ 1262 void 1263 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1264 { 1265 ill_t *ill = (ill_t *)ill_arg; 1266 1267 ASSERT(ire->ire_type & IRE_IF_CLONE); 1268 if (ire->ire_ill == ill) 1269 ire_delete(ire); 1270 } 1271 1272 /* Consume an M_IOCACK of the fastpath probe. */ 1273 void 1274 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1275 { 1276 mblk_t *mp1 = mp; 1277 1278 /* 1279 * If this was the first attempt turn on the fastpath probing. 1280 */ 1281 mutex_enter(&ill->ill_lock); 1282 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1283 ill->ill_dlpi_fastpath_state = IDS_OK; 1284 mutex_exit(&ill->ill_lock); 1285 1286 /* Free the M_IOCACK mblk, hold on to the data */ 1287 mp = mp->b_cont; 1288 freeb(mp1); 1289 if (mp == NULL) 1290 return; 1291 if (mp->b_cont != NULL) 1292 nce_fastpath_update(ill, mp); 1293 else 1294 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1295 freemsg(mp); 1296 } 1297 1298 /* 1299 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1300 * The data portion of the request is a dl_unitdata_req_t template for 1301 * what we would send downstream in the absence of a fastpath confirmation. 1302 */ 1303 int 1304 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1305 { 1306 struct iocblk *ioc; 1307 mblk_t *mp; 1308 1309 if (dlur_mp == NULL) 1310 return (EINVAL); 1311 1312 mutex_enter(&ill->ill_lock); 1313 switch (ill->ill_dlpi_fastpath_state) { 1314 case IDS_FAILED: 1315 /* 1316 * Driver NAKed the first fastpath ioctl - assume it doesn't 1317 * support it. 1318 */ 1319 mutex_exit(&ill->ill_lock); 1320 return (ENOTSUP); 1321 case IDS_UNKNOWN: 1322 /* This is the first probe */ 1323 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1324 break; 1325 default: 1326 break; 1327 } 1328 mutex_exit(&ill->ill_lock); 1329 1330 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1331 return (EAGAIN); 1332 1333 mp->b_cont = copyb(dlur_mp); 1334 if (mp->b_cont == NULL) { 1335 freeb(mp); 1336 return (EAGAIN); 1337 } 1338 1339 ioc = (struct iocblk *)mp->b_rptr; 1340 ioc->ioc_count = msgdsize(mp->b_cont); 1341 1342 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1343 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1344 putnext(ill->ill_wq, mp); 1345 return (0); 1346 } 1347 1348 void 1349 ill_capability_probe(ill_t *ill) 1350 { 1351 mblk_t *mp; 1352 1353 ASSERT(IAM_WRITER_ILL(ill)); 1354 1355 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1356 ill->ill_dlpi_capab_state != IDCS_FAILED) 1357 return; 1358 1359 /* 1360 * We are starting a new cycle of capability negotiation. 1361 * Free up the capab reset messages of any previous incarnation. 1362 * We will do a fresh allocation when we get the response to our probe 1363 */ 1364 if (ill->ill_capab_reset_mp != NULL) { 1365 freemsg(ill->ill_capab_reset_mp); 1366 ill->ill_capab_reset_mp = NULL; 1367 } 1368 1369 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1370 1371 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1372 if (mp == NULL) 1373 return; 1374 1375 ill_capability_send(ill, mp); 1376 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1377 } 1378 1379 void 1380 ill_capability_reset(ill_t *ill, boolean_t reneg) 1381 { 1382 ASSERT(IAM_WRITER_ILL(ill)); 1383 1384 if (ill->ill_dlpi_capab_state != IDCS_OK) 1385 return; 1386 1387 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1388 1389 ill_capability_send(ill, ill->ill_capab_reset_mp); 1390 ill->ill_capab_reset_mp = NULL; 1391 /* 1392 * We turn off all capabilities except those pertaining to 1393 * direct function call capabilities viz. ILL_CAPAB_DLD* 1394 * which will be turned off by the corresponding reset functions. 1395 */ 1396 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1397 } 1398 1399 static void 1400 ill_capability_reset_alloc(ill_t *ill) 1401 { 1402 mblk_t *mp; 1403 size_t size = 0; 1404 int err; 1405 dl_capability_req_t *capb; 1406 1407 ASSERT(IAM_WRITER_ILL(ill)); 1408 ASSERT(ill->ill_capab_reset_mp == NULL); 1409 1410 if (ILL_HCKSUM_CAPABLE(ill)) { 1411 size += sizeof (dl_capability_sub_t) + 1412 sizeof (dl_capab_hcksum_t); 1413 } 1414 1415 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1416 size += sizeof (dl_capability_sub_t) + 1417 sizeof (dl_capab_zerocopy_t); 1418 } 1419 1420 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1421 size += sizeof (dl_capability_sub_t) + 1422 sizeof (dl_capab_dld_t); 1423 } 1424 1425 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1426 STR_NOSIG, &err); 1427 1428 mp->b_datap->db_type = M_PROTO; 1429 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1430 1431 capb = (dl_capability_req_t *)mp->b_rptr; 1432 capb->dl_primitive = DL_CAPABILITY_REQ; 1433 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1434 capb->dl_sub_length = size; 1435 1436 mp->b_wptr += sizeof (dl_capability_req_t); 1437 1438 /* 1439 * Each handler fills in the corresponding dl_capability_sub_t 1440 * inside the mblk, 1441 */ 1442 ill_capability_hcksum_reset_fill(ill, mp); 1443 ill_capability_zerocopy_reset_fill(ill, mp); 1444 ill_capability_dld_reset_fill(ill, mp); 1445 1446 ill->ill_capab_reset_mp = mp; 1447 } 1448 1449 static void 1450 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1451 { 1452 dl_capab_id_t *id_ic; 1453 uint_t sub_dl_cap = outers->dl_cap; 1454 dl_capability_sub_t *inners; 1455 uint8_t *capend; 1456 1457 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1458 1459 /* 1460 * Note: range checks here are not absolutely sufficient to 1461 * make us robust against malformed messages sent by drivers; 1462 * this is in keeping with the rest of IP's dlpi handling. 1463 * (Remember, it's coming from something else in the kernel 1464 * address space) 1465 */ 1466 1467 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1468 if (capend > mp->b_wptr) { 1469 cmn_err(CE_WARN, "ill_capability_id_ack: " 1470 "malformed sub-capability too long for mblk"); 1471 return; 1472 } 1473 1474 id_ic = (dl_capab_id_t *)(outers + 1); 1475 1476 if (outers->dl_length < sizeof (*id_ic) || 1477 (inners = &id_ic->id_subcap, 1478 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1479 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1480 "encapsulated capab type %d too long for mblk", 1481 inners->dl_cap); 1482 return; 1483 } 1484 1485 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1486 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1487 "isn't as expected; pass-thru module(s) detected, " 1488 "discarding capability\n", inners->dl_cap)); 1489 return; 1490 } 1491 1492 /* Process the encapsulated sub-capability */ 1493 ill_capability_dispatch(ill, mp, inners); 1494 } 1495 1496 static void 1497 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1498 { 1499 dl_capability_sub_t *dl_subcap; 1500 1501 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1502 return; 1503 1504 /* 1505 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1506 * initialized below since it is not used by DLD. 1507 */ 1508 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1509 dl_subcap->dl_cap = DL_CAPAB_DLD; 1510 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1511 1512 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1513 } 1514 1515 static void 1516 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1517 { 1518 /* 1519 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1520 * is only to get the VRRP capability. 1521 * 1522 * Note that we cannot check ill_ipif_up_count here since 1523 * ill_ipif_up_count is only incremented when the resolver is setup. 1524 * That is done asynchronously, and can race with this function. 1525 */ 1526 if (!ill->ill_dl_up) { 1527 if (subp->dl_cap == DL_CAPAB_VRRP) 1528 ill_capability_vrrp_ack(ill, mp, subp); 1529 return; 1530 } 1531 1532 switch (subp->dl_cap) { 1533 case DL_CAPAB_HCKSUM: 1534 ill_capability_hcksum_ack(ill, mp, subp); 1535 break; 1536 case DL_CAPAB_ZEROCOPY: 1537 ill_capability_zerocopy_ack(ill, mp, subp); 1538 break; 1539 case DL_CAPAB_DLD: 1540 ill_capability_dld_ack(ill, mp, subp); 1541 break; 1542 case DL_CAPAB_VRRP: 1543 break; 1544 default: 1545 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1546 subp->dl_cap)); 1547 } 1548 } 1549 1550 /* 1551 * Process the vrrp capability received from a DLS Provider. isub must point 1552 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1553 */ 1554 static void 1555 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1556 { 1557 dl_capab_vrrp_t *vrrp; 1558 uint_t sub_dl_cap = isub->dl_cap; 1559 uint8_t *capend; 1560 1561 ASSERT(IAM_WRITER_ILL(ill)); 1562 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1563 1564 /* 1565 * Note: range checks here are not absolutely sufficient to 1566 * make us robust against malformed messages sent by drivers; 1567 * this is in keeping with the rest of IP's dlpi handling. 1568 * (Remember, it's coming from something else in the kernel 1569 * address space) 1570 */ 1571 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1572 if (capend > mp->b_wptr) { 1573 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1574 "malformed sub-capability too long for mblk"); 1575 return; 1576 } 1577 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1578 1579 /* 1580 * Compare the IP address family and set ILLF_VRRP for the right ill. 1581 */ 1582 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1583 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1584 ill->ill_flags |= ILLF_VRRP; 1585 } 1586 } 1587 1588 /* 1589 * Process a hardware checksum offload capability negotiation ack received 1590 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1591 * of a DL_CAPABILITY_ACK message. 1592 */ 1593 static void 1594 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1595 { 1596 dl_capability_req_t *ocap; 1597 dl_capab_hcksum_t *ihck, *ohck; 1598 ill_hcksum_capab_t **ill_hcksum; 1599 mblk_t *nmp = NULL; 1600 uint_t sub_dl_cap = isub->dl_cap; 1601 uint8_t *capend; 1602 1603 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1604 1605 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1606 1607 /* 1608 * Note: range checks here are not absolutely sufficient to 1609 * make us robust against malformed messages sent by drivers; 1610 * this is in keeping with the rest of IP's dlpi handling. 1611 * (Remember, it's coming from something else in the kernel 1612 * address space) 1613 */ 1614 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1615 if (capend > mp->b_wptr) { 1616 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1617 "malformed sub-capability too long for mblk"); 1618 return; 1619 } 1620 1621 /* 1622 * There are two types of acks we process here: 1623 * 1. acks in reply to a (first form) generic capability req 1624 * (no ENABLE flag set) 1625 * 2. acks in reply to a ENABLE capability req. 1626 * (ENABLE flag set) 1627 */ 1628 ihck = (dl_capab_hcksum_t *)(isub + 1); 1629 1630 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1631 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1632 "unsupported hardware checksum " 1633 "sub-capability (version %d, expected %d)", 1634 ihck->hcksum_version, HCKSUM_VERSION_1); 1635 return; 1636 } 1637 1638 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1639 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1640 "checksum capability isn't as expected; pass-thru " 1641 "module(s) detected, discarding capability\n")); 1642 return; 1643 } 1644 1645 #define CURR_HCKSUM_CAPAB \ 1646 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1647 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1648 1649 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1650 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1651 /* do ENABLE processing */ 1652 if (*ill_hcksum == NULL) { 1653 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1654 KM_NOSLEEP); 1655 1656 if (*ill_hcksum == NULL) { 1657 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1658 "could not enable hcksum version %d " 1659 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1660 ill->ill_name); 1661 return; 1662 } 1663 } 1664 1665 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1666 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1667 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1668 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1669 "has enabled hardware checksumming\n ", 1670 ill->ill_name)); 1671 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1672 /* 1673 * Enabling hardware checksum offload 1674 * Currently IP supports {TCP,UDP}/IPv4 1675 * partial and full cksum offload and 1676 * IPv4 header checksum offload. 1677 * Allocate new mblk which will 1678 * contain a new capability request 1679 * to enable hardware checksum offload. 1680 */ 1681 uint_t size; 1682 uchar_t *rptr; 1683 1684 size = sizeof (dl_capability_req_t) + 1685 sizeof (dl_capability_sub_t) + isub->dl_length; 1686 1687 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1688 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1689 "could not enable hardware cksum for %s (ENOMEM)\n", 1690 ill->ill_name); 1691 return; 1692 } 1693 1694 rptr = nmp->b_rptr; 1695 /* initialize dl_capability_req_t */ 1696 ocap = (dl_capability_req_t *)nmp->b_rptr; 1697 ocap->dl_sub_offset = 1698 sizeof (dl_capability_req_t); 1699 ocap->dl_sub_length = 1700 sizeof (dl_capability_sub_t) + 1701 isub->dl_length; 1702 nmp->b_rptr += sizeof (dl_capability_req_t); 1703 1704 /* initialize dl_capability_sub_t */ 1705 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1706 nmp->b_rptr += sizeof (*isub); 1707 1708 /* initialize dl_capab_hcksum_t */ 1709 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1710 bcopy(ihck, ohck, sizeof (*ihck)); 1711 1712 nmp->b_rptr = rptr; 1713 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1714 1715 /* Set ENABLE flag */ 1716 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1717 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1718 1719 /* 1720 * nmp points to a DL_CAPABILITY_REQ message to enable 1721 * hardware checksum acceleration. 1722 */ 1723 ill_capability_send(ill, nmp); 1724 } else { 1725 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1726 "advertised %x hardware checksum capability flags\n", 1727 ill->ill_name, ihck->hcksum_txflags)); 1728 } 1729 } 1730 1731 static void 1732 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1733 { 1734 dl_capab_hcksum_t *hck_subcap; 1735 dl_capability_sub_t *dl_subcap; 1736 1737 if (!ILL_HCKSUM_CAPABLE(ill)) 1738 return; 1739 1740 ASSERT(ill->ill_hcksum_capab != NULL); 1741 1742 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1743 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1744 dl_subcap->dl_length = sizeof (*hck_subcap); 1745 1746 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1747 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1748 hck_subcap->hcksum_txflags = 0; 1749 1750 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1751 } 1752 1753 static void 1754 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1755 { 1756 mblk_t *nmp = NULL; 1757 dl_capability_req_t *oc; 1758 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1759 ill_zerocopy_capab_t **ill_zerocopy_capab; 1760 uint_t sub_dl_cap = isub->dl_cap; 1761 uint8_t *capend; 1762 1763 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1764 1765 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1766 1767 /* 1768 * Note: range checks here are not absolutely sufficient to 1769 * make us robust against malformed messages sent by drivers; 1770 * this is in keeping with the rest of IP's dlpi handling. 1771 * (Remember, it's coming from something else in the kernel 1772 * address space) 1773 */ 1774 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1775 if (capend > mp->b_wptr) { 1776 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1777 "malformed sub-capability too long for mblk"); 1778 return; 1779 } 1780 1781 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1782 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1783 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1784 "unsupported ZEROCOPY sub-capability (version %d, " 1785 "expected %d)", zc_ic->zerocopy_version, 1786 ZEROCOPY_VERSION_1); 1787 return; 1788 } 1789 1790 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1791 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1792 "capability isn't as expected; pass-thru module(s) " 1793 "detected, discarding capability\n")); 1794 return; 1795 } 1796 1797 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1798 if (*ill_zerocopy_capab == NULL) { 1799 *ill_zerocopy_capab = 1800 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1801 KM_NOSLEEP); 1802 1803 if (*ill_zerocopy_capab == NULL) { 1804 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1805 "could not enable Zero-copy version %d " 1806 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1807 ill->ill_name); 1808 return; 1809 } 1810 } 1811 1812 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1813 "supports Zero-copy version %d\n", ill->ill_name, 1814 ZEROCOPY_VERSION_1)); 1815 1816 (*ill_zerocopy_capab)->ill_zerocopy_version = 1817 zc_ic->zerocopy_version; 1818 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1819 zc_ic->zerocopy_flags; 1820 1821 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1822 } else { 1823 uint_t size; 1824 uchar_t *rptr; 1825 1826 size = sizeof (dl_capability_req_t) + 1827 sizeof (dl_capability_sub_t) + 1828 sizeof (dl_capab_zerocopy_t); 1829 1830 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1831 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1832 "could not enable zerocopy for %s (ENOMEM)\n", 1833 ill->ill_name); 1834 return; 1835 } 1836 1837 rptr = nmp->b_rptr; 1838 /* initialize dl_capability_req_t */ 1839 oc = (dl_capability_req_t *)rptr; 1840 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1841 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1842 sizeof (dl_capab_zerocopy_t); 1843 rptr += sizeof (dl_capability_req_t); 1844 1845 /* initialize dl_capability_sub_t */ 1846 bcopy(isub, rptr, sizeof (*isub)); 1847 rptr += sizeof (*isub); 1848 1849 /* initialize dl_capab_zerocopy_t */ 1850 zc_oc = (dl_capab_zerocopy_t *)rptr; 1851 *zc_oc = *zc_ic; 1852 1853 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1854 "to enable zero-copy version %d\n", ill->ill_name, 1855 ZEROCOPY_VERSION_1)); 1856 1857 /* set VMSAFE_MEM flag */ 1858 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1859 1860 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1861 ill_capability_send(ill, nmp); 1862 } 1863 } 1864 1865 static void 1866 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1867 { 1868 dl_capab_zerocopy_t *zerocopy_subcap; 1869 dl_capability_sub_t *dl_subcap; 1870 1871 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1872 return; 1873 1874 ASSERT(ill->ill_zerocopy_capab != NULL); 1875 1876 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1877 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1878 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1879 1880 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1881 zerocopy_subcap->zerocopy_version = 1882 ill->ill_zerocopy_capab->ill_zerocopy_version; 1883 zerocopy_subcap->zerocopy_flags = 0; 1884 1885 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1886 } 1887 1888 /* 1889 * DLD capability 1890 * Refer to dld.h for more information regarding the purpose and usage 1891 * of this capability. 1892 */ 1893 static void 1894 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 dl_capab_dld_t *dld_ic, dld; 1897 uint_t sub_dl_cap = isub->dl_cap; 1898 uint8_t *capend; 1899 ill_dld_capab_t *idc; 1900 1901 ASSERT(IAM_WRITER_ILL(ill)); 1902 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1903 1904 /* 1905 * Note: range checks here are not absolutely sufficient to 1906 * make us robust against malformed messages sent by drivers; 1907 * this is in keeping with the rest of IP's dlpi handling. 1908 * (Remember, it's coming from something else in the kernel 1909 * address space) 1910 */ 1911 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1912 if (capend > mp->b_wptr) { 1913 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1914 "malformed sub-capability too long for mblk"); 1915 return; 1916 } 1917 dld_ic = (dl_capab_dld_t *)(isub + 1); 1918 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1919 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1920 "unsupported DLD sub-capability (version %d, " 1921 "expected %d)", dld_ic->dld_version, 1922 DLD_CURRENT_VERSION); 1923 return; 1924 } 1925 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1926 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1927 "capability isn't as expected; pass-thru module(s) " 1928 "detected, discarding capability\n")); 1929 return; 1930 } 1931 1932 /* 1933 * Copy locally to ensure alignment. 1934 */ 1935 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1936 1937 if ((idc = ill->ill_dld_capab) == NULL) { 1938 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1939 if (idc == NULL) { 1940 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1941 "could not enable DLD version %d " 1942 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1943 ill->ill_name); 1944 return; 1945 } 1946 ill->ill_dld_capab = idc; 1947 } 1948 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1949 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1950 ip1dbg(("ill_capability_dld_ack: interface %s " 1951 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1952 1953 ill_capability_dld_enable(ill); 1954 } 1955 1956 /* 1957 * Typically capability negotiation between IP and the driver happens via 1958 * DLPI message exchange. However GLD also offers a direct function call 1959 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1960 * But arbitrary function calls into IP or GLD are not permitted, since both 1961 * of them are protected by their own perimeter mechanism. The perimeter can 1962 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1963 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1964 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1965 * to enter the mac perimeter and then do the direct function calls into 1966 * GLD to enable squeue polling. The ring related callbacks from the mac into 1967 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1968 * protected by the mac perimeter. 1969 */ 1970 static void 1971 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1972 { 1973 ill_dld_capab_t *idc = ill->ill_dld_capab; 1974 int err; 1975 1976 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1977 DLD_ENABLE); 1978 ASSERT(err == 0); 1979 } 1980 1981 static void 1982 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1983 { 1984 ill_dld_capab_t *idc = ill->ill_dld_capab; 1985 int err; 1986 1987 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1988 DLD_DISABLE); 1989 ASSERT(err == 0); 1990 } 1991 1992 boolean_t 1993 ill_mac_perim_held(ill_t *ill) 1994 { 1995 ill_dld_capab_t *idc = ill->ill_dld_capab; 1996 1997 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1998 DLD_QUERY)); 1999 } 2000 2001 static void 2002 ill_capability_direct_enable(ill_t *ill) 2003 { 2004 ill_dld_capab_t *idc = ill->ill_dld_capab; 2005 ill_dld_direct_t *idd = &idc->idc_direct; 2006 dld_capab_direct_t direct; 2007 int rc; 2008 2009 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2010 2011 bzero(&direct, sizeof (direct)); 2012 direct.di_rx_cf = (uintptr_t)ip_input; 2013 direct.di_rx_ch = ill; 2014 2015 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2016 DLD_ENABLE); 2017 if (rc == 0) { 2018 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2019 idd->idd_tx_dh = direct.di_tx_dh; 2020 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2021 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2022 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2023 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2024 ASSERT(idd->idd_tx_cb_df != NULL); 2025 ASSERT(idd->idd_tx_fctl_df != NULL); 2026 ASSERT(idd->idd_tx_df != NULL); 2027 /* 2028 * One time registration of flow enable callback function 2029 */ 2030 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2031 ill_flow_enable, ill); 2032 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2033 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2034 } else { 2035 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2036 "capability, rc = %d\n", rc); 2037 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2038 } 2039 } 2040 2041 static void 2042 ill_capability_poll_enable(ill_t *ill) 2043 { 2044 ill_dld_capab_t *idc = ill->ill_dld_capab; 2045 dld_capab_poll_t poll; 2046 int rc; 2047 2048 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2049 2050 bzero(&poll, sizeof (poll)); 2051 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2052 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2053 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2054 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2055 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2056 poll.poll_ring_ch = ill; 2057 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2058 DLD_ENABLE); 2059 if (rc == 0) { 2060 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2061 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2062 } else { 2063 ip1dbg(("warning: could not enable POLL " 2064 "capability, rc = %d\n", rc)); 2065 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2066 } 2067 } 2068 2069 /* 2070 * Enable the LSO capability. 2071 */ 2072 static void 2073 ill_capability_lso_enable(ill_t *ill) 2074 { 2075 ill_dld_capab_t *idc = ill->ill_dld_capab; 2076 dld_capab_lso_t lso; 2077 int rc; 2078 2079 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2080 2081 if (ill->ill_lso_capab == NULL) { 2082 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2083 KM_NOSLEEP); 2084 if (ill->ill_lso_capab == NULL) { 2085 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2086 "could not enable LSO for %s (ENOMEM)\n", 2087 ill->ill_name); 2088 return; 2089 } 2090 } 2091 2092 bzero(&lso, sizeof (lso)); 2093 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2094 DLD_ENABLE)) == 0) { 2095 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2096 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2097 ill->ill_capabilities |= ILL_CAPAB_LSO; 2098 ip1dbg(("ill_capability_lso_enable: interface %s " 2099 "has enabled LSO\n ", ill->ill_name)); 2100 } else { 2101 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2102 ill->ill_lso_capab = NULL; 2103 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2104 } 2105 } 2106 2107 static void 2108 ill_capability_dld_enable(ill_t *ill) 2109 { 2110 mac_perim_handle_t mph; 2111 2112 ASSERT(IAM_WRITER_ILL(ill)); 2113 2114 if (ill->ill_isv6) 2115 return; 2116 2117 ill_mac_perim_enter(ill, &mph); 2118 if (!ill->ill_isv6) { 2119 ill_capability_direct_enable(ill); 2120 ill_capability_poll_enable(ill); 2121 ill_capability_lso_enable(ill); 2122 } 2123 ill->ill_capabilities |= ILL_CAPAB_DLD; 2124 ill_mac_perim_exit(ill, mph); 2125 } 2126 2127 static void 2128 ill_capability_dld_disable(ill_t *ill) 2129 { 2130 ill_dld_capab_t *idc; 2131 ill_dld_direct_t *idd; 2132 mac_perim_handle_t mph; 2133 2134 ASSERT(IAM_WRITER_ILL(ill)); 2135 2136 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2137 return; 2138 2139 ill_mac_perim_enter(ill, &mph); 2140 2141 idc = ill->ill_dld_capab; 2142 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2143 /* 2144 * For performance we avoid locks in the transmit data path 2145 * and don't maintain a count of the number of threads using 2146 * direct calls. Thus some threads could be using direct 2147 * transmit calls to GLD, even after the capability mechanism 2148 * turns it off. This is still safe since the handles used in 2149 * the direct calls continue to be valid until the unplumb is 2150 * completed. Remove the callback that was added (1-time) at 2151 * capab enable time. 2152 */ 2153 mutex_enter(&ill->ill_lock); 2154 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2155 mutex_exit(&ill->ill_lock); 2156 if (ill->ill_flownotify_mh != NULL) { 2157 idd = &idc->idc_direct; 2158 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2159 ill->ill_flownotify_mh); 2160 ill->ill_flownotify_mh = NULL; 2161 } 2162 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2163 NULL, DLD_DISABLE); 2164 } 2165 2166 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2167 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2168 ip_squeue_clean_all(ill); 2169 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2170 NULL, DLD_DISABLE); 2171 } 2172 2173 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2174 ASSERT(ill->ill_lso_capab != NULL); 2175 /* 2176 * Clear the capability flag for LSO but retain the 2177 * ill_lso_capab structure since it's possible that another 2178 * thread is still referring to it. The structure only gets 2179 * deallocated when we destroy the ill. 2180 */ 2181 2182 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2183 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2184 NULL, DLD_DISABLE); 2185 } 2186 2187 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2188 ill_mac_perim_exit(ill, mph); 2189 } 2190 2191 /* 2192 * Capability Negotiation protocol 2193 * 2194 * We don't wait for DLPI capability operations to finish during interface 2195 * bringup or teardown. Doing so would introduce more asynchrony and the 2196 * interface up/down operations will need multiple return and restarts. 2197 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2198 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2199 * exclusive operation won't start until the DLPI operations of the previous 2200 * exclusive operation complete. 2201 * 2202 * The capability state machine is shown below. 2203 * 2204 * state next state event, action 2205 * 2206 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2207 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2208 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2209 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2210 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2211 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2212 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2213 * ill_capability_probe. 2214 */ 2215 2216 /* 2217 * Dedicated thread started from ip_stack_init that handles capability 2218 * disable. This thread ensures the taskq dispatch does not fail by waiting 2219 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2220 * that direct calls to DLD are done in a cv_waitable context. 2221 */ 2222 void 2223 ill_taskq_dispatch(ip_stack_t *ipst) 2224 { 2225 callb_cpr_t cprinfo; 2226 char name[64]; 2227 mblk_t *mp; 2228 2229 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2230 ipst->ips_netstack->netstack_stackid); 2231 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2232 name); 2233 mutex_enter(&ipst->ips_capab_taskq_lock); 2234 2235 for (;;) { 2236 mp = ipst->ips_capab_taskq_head; 2237 while (mp != NULL) { 2238 ipst->ips_capab_taskq_head = mp->b_next; 2239 if (ipst->ips_capab_taskq_head == NULL) 2240 ipst->ips_capab_taskq_tail = NULL; 2241 mutex_exit(&ipst->ips_capab_taskq_lock); 2242 mp->b_next = NULL; 2243 2244 VERIFY(taskq_dispatch(system_taskq, 2245 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2246 mutex_enter(&ipst->ips_capab_taskq_lock); 2247 mp = ipst->ips_capab_taskq_head; 2248 } 2249 2250 if (ipst->ips_capab_taskq_quit) 2251 break; 2252 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2253 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2254 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2255 } 2256 VERIFY(ipst->ips_capab_taskq_head == NULL); 2257 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2258 CALLB_CPR_EXIT(&cprinfo); 2259 thread_exit(); 2260 } 2261 2262 /* 2263 * Consume a new-style hardware capabilities negotiation ack. 2264 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2265 */ 2266 static void 2267 ill_capability_ack_thr(void *arg) 2268 { 2269 mblk_t *mp = arg; 2270 dl_capability_ack_t *capp; 2271 dl_capability_sub_t *subp, *endp; 2272 ill_t *ill; 2273 boolean_t reneg; 2274 2275 ill = (ill_t *)mp->b_prev; 2276 mp->b_prev = NULL; 2277 2278 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2279 2280 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2281 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2282 /* 2283 * We have received the ack for our DL_CAPAB reset request. 2284 * There isnt' anything in the message that needs processing. 2285 * All message based capabilities have been disabled, now 2286 * do the function call based capability disable. 2287 */ 2288 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2289 ill_capability_dld_disable(ill); 2290 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2291 if (reneg) 2292 ill_capability_probe(ill); 2293 goto done; 2294 } 2295 2296 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2297 ill->ill_dlpi_capab_state = IDCS_OK; 2298 2299 capp = (dl_capability_ack_t *)mp->b_rptr; 2300 2301 if (capp->dl_sub_length == 0) { 2302 /* no new-style capabilities */ 2303 goto done; 2304 } 2305 2306 /* make sure the driver supplied correct dl_sub_length */ 2307 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2308 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2309 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2310 goto done; 2311 } 2312 2313 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2314 /* 2315 * There are sub-capabilities. Process the ones we know about. 2316 * Loop until we don't have room for another sub-cap header.. 2317 */ 2318 for (subp = SC(capp, capp->dl_sub_offset), 2319 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2320 subp <= endp; 2321 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2322 2323 switch (subp->dl_cap) { 2324 case DL_CAPAB_ID_WRAPPER: 2325 ill_capability_id_ack(ill, mp, subp); 2326 break; 2327 default: 2328 ill_capability_dispatch(ill, mp, subp); 2329 break; 2330 } 2331 } 2332 #undef SC 2333 done: 2334 inet_freemsg(mp); 2335 ill_capability_done(ill); 2336 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2337 } 2338 2339 /* 2340 * This needs to be started in a taskq thread to provide a cv_waitable 2341 * context. 2342 */ 2343 void 2344 ill_capability_ack(ill_t *ill, mblk_t *mp) 2345 { 2346 ip_stack_t *ipst = ill->ill_ipst; 2347 2348 mp->b_prev = (mblk_t *)ill; 2349 ASSERT(mp->b_next == NULL); 2350 2351 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2352 TQ_NOSLEEP) != 0) 2353 return; 2354 2355 /* 2356 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2357 * which will do the dispatch using TQ_SLEEP to guarantee success. 2358 */ 2359 mutex_enter(&ipst->ips_capab_taskq_lock); 2360 if (ipst->ips_capab_taskq_head == NULL) { 2361 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2362 ipst->ips_capab_taskq_head = mp; 2363 } else { 2364 ipst->ips_capab_taskq_tail->b_next = mp; 2365 } 2366 ipst->ips_capab_taskq_tail = mp; 2367 2368 cv_signal(&ipst->ips_capab_taskq_cv); 2369 mutex_exit(&ipst->ips_capab_taskq_lock); 2370 } 2371 2372 /* 2373 * This routine is called to scan the fragmentation reassembly table for 2374 * the specified ILL for any packets that are starting to smell. 2375 * dead_interval is the maximum time in seconds that will be tolerated. It 2376 * will either be the value specified in ip_g_frag_timeout, or zero if the 2377 * ILL is shutting down and it is time to blow everything off. 2378 * 2379 * It returns the number of seconds (as a time_t) that the next frag timer 2380 * should be scheduled for, 0 meaning that the timer doesn't need to be 2381 * re-started. Note that the method of calculating next_timeout isn't 2382 * entirely accurate since time will flow between the time we grab 2383 * current_time and the time we schedule the next timeout. This isn't a 2384 * big problem since this is the timer for sending an ICMP reassembly time 2385 * exceeded messages, and it doesn't have to be exactly accurate. 2386 * 2387 * This function is 2388 * sometimes called as writer, although this is not required. 2389 */ 2390 time_t 2391 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2392 { 2393 ipfb_t *ipfb; 2394 ipfb_t *endp; 2395 ipf_t *ipf; 2396 ipf_t *ipfnext; 2397 mblk_t *mp; 2398 time_t current_time = gethrestime_sec(); 2399 time_t next_timeout = 0; 2400 uint32_t hdr_length; 2401 mblk_t *send_icmp_head; 2402 mblk_t *send_icmp_head_v6; 2403 ip_stack_t *ipst = ill->ill_ipst; 2404 ip_recv_attr_t iras; 2405 2406 bzero(&iras, sizeof (iras)); 2407 iras.ira_flags = 0; 2408 iras.ira_ill = iras.ira_rill = ill; 2409 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2410 iras.ira_rifindex = iras.ira_ruifindex; 2411 2412 ipfb = ill->ill_frag_hash_tbl; 2413 if (ipfb == NULL) 2414 return (B_FALSE); 2415 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2416 /* Walk the frag hash table. */ 2417 for (; ipfb < endp; ipfb++) { 2418 send_icmp_head = NULL; 2419 send_icmp_head_v6 = NULL; 2420 mutex_enter(&ipfb->ipfb_lock); 2421 while ((ipf = ipfb->ipfb_ipf) != 0) { 2422 time_t frag_time = current_time - ipf->ipf_timestamp; 2423 time_t frag_timeout; 2424 2425 if (frag_time < dead_interval) { 2426 /* 2427 * There are some outstanding fragments 2428 * that will timeout later. Make note of 2429 * the time so that we can reschedule the 2430 * next timeout appropriately. 2431 */ 2432 frag_timeout = dead_interval - frag_time; 2433 if (next_timeout == 0 || 2434 frag_timeout < next_timeout) { 2435 next_timeout = frag_timeout; 2436 } 2437 break; 2438 } 2439 /* Time's up. Get it out of here. */ 2440 hdr_length = ipf->ipf_nf_hdr_len; 2441 ipfnext = ipf->ipf_hash_next; 2442 if (ipfnext) 2443 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2444 *ipf->ipf_ptphn = ipfnext; 2445 mp = ipf->ipf_mp->b_cont; 2446 for (; mp; mp = mp->b_cont) { 2447 /* Extra points for neatness. */ 2448 IP_REASS_SET_START(mp, 0); 2449 IP_REASS_SET_END(mp, 0); 2450 } 2451 mp = ipf->ipf_mp->b_cont; 2452 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2453 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2454 ipfb->ipfb_count -= ipf->ipf_count; 2455 ASSERT(ipfb->ipfb_frag_pkts > 0); 2456 ipfb->ipfb_frag_pkts--; 2457 /* 2458 * We do not send any icmp message from here because 2459 * we currently are holding the ipfb_lock for this 2460 * hash chain. If we try and send any icmp messages 2461 * from here we may end up via a put back into ip 2462 * trying to get the same lock, causing a recursive 2463 * mutex panic. Instead we build a list and send all 2464 * the icmp messages after we have dropped the lock. 2465 */ 2466 if (ill->ill_isv6) { 2467 if (hdr_length != 0) { 2468 mp->b_next = send_icmp_head_v6; 2469 send_icmp_head_v6 = mp; 2470 } else { 2471 freemsg(mp); 2472 } 2473 } else { 2474 if (hdr_length != 0) { 2475 mp->b_next = send_icmp_head; 2476 send_icmp_head = mp; 2477 } else { 2478 freemsg(mp); 2479 } 2480 } 2481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2482 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2483 freeb(ipf->ipf_mp); 2484 } 2485 mutex_exit(&ipfb->ipfb_lock); 2486 /* 2487 * Now need to send any icmp messages that we delayed from 2488 * above. 2489 */ 2490 while (send_icmp_head_v6 != NULL) { 2491 ip6_t *ip6h; 2492 2493 mp = send_icmp_head_v6; 2494 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2495 mp->b_next = NULL; 2496 ip6h = (ip6_t *)mp->b_rptr; 2497 iras.ira_flags = 0; 2498 /* 2499 * This will result in an incorrect ALL_ZONES zoneid 2500 * for multicast packets, but we 2501 * don't send ICMP errors for those in any case. 2502 */ 2503 iras.ira_zoneid = 2504 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2505 ill, ipst); 2506 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2507 icmp_time_exceeded_v6(mp, 2508 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2509 &iras); 2510 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2511 } 2512 while (send_icmp_head != NULL) { 2513 ipaddr_t dst; 2514 2515 mp = send_icmp_head; 2516 send_icmp_head = send_icmp_head->b_next; 2517 mp->b_next = NULL; 2518 2519 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2520 2521 iras.ira_flags = IRAF_IS_IPV4; 2522 /* 2523 * This will result in an incorrect ALL_ZONES zoneid 2524 * for broadcast and multicast packets, but we 2525 * don't send ICMP errors for those in any case. 2526 */ 2527 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2528 ill, ipst); 2529 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2530 icmp_time_exceeded(mp, 2531 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2532 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2533 } 2534 } 2535 /* 2536 * A non-dying ILL will use the return value to decide whether to 2537 * restart the frag timer, and for how long. 2538 */ 2539 return (next_timeout); 2540 } 2541 2542 /* 2543 * This routine is called when the approximate count of mblk memory used 2544 * for the specified ILL has exceeded max_count. 2545 */ 2546 void 2547 ill_frag_prune(ill_t *ill, uint_t max_count) 2548 { 2549 ipfb_t *ipfb; 2550 ipf_t *ipf; 2551 size_t count; 2552 clock_t now; 2553 2554 /* 2555 * If we are here within ip_min_frag_prune_time msecs remove 2556 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2557 * ill_frag_free_num_pkts. 2558 */ 2559 mutex_enter(&ill->ill_lock); 2560 now = ddi_get_lbolt(); 2561 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2562 (ip_min_frag_prune_time != 0 ? 2563 ip_min_frag_prune_time : msec_per_tick)) { 2564 2565 ill->ill_frag_free_num_pkts++; 2566 2567 } else { 2568 ill->ill_frag_free_num_pkts = 0; 2569 } 2570 ill->ill_last_frag_clean_time = now; 2571 mutex_exit(&ill->ill_lock); 2572 2573 /* 2574 * free ill_frag_free_num_pkts oldest packets from each bucket. 2575 */ 2576 if (ill->ill_frag_free_num_pkts != 0) { 2577 int ix; 2578 2579 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2580 ipfb = &ill->ill_frag_hash_tbl[ix]; 2581 mutex_enter(&ipfb->ipfb_lock); 2582 if (ipfb->ipfb_ipf != NULL) { 2583 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2584 ill->ill_frag_free_num_pkts); 2585 } 2586 mutex_exit(&ipfb->ipfb_lock); 2587 } 2588 } 2589 /* 2590 * While the reassembly list for this ILL is too big, prune a fragment 2591 * queue by age, oldest first. 2592 */ 2593 while (ill->ill_frag_count > max_count) { 2594 int ix; 2595 ipfb_t *oipfb = NULL; 2596 uint_t oldest = UINT_MAX; 2597 2598 count = 0; 2599 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2600 ipfb = &ill->ill_frag_hash_tbl[ix]; 2601 mutex_enter(&ipfb->ipfb_lock); 2602 ipf = ipfb->ipfb_ipf; 2603 if (ipf != NULL && ipf->ipf_gen < oldest) { 2604 oldest = ipf->ipf_gen; 2605 oipfb = ipfb; 2606 } 2607 count += ipfb->ipfb_count; 2608 mutex_exit(&ipfb->ipfb_lock); 2609 } 2610 if (oipfb == NULL) 2611 break; 2612 2613 if (count <= max_count) 2614 return; /* Somebody beat us to it, nothing to do */ 2615 mutex_enter(&oipfb->ipfb_lock); 2616 ipf = oipfb->ipfb_ipf; 2617 if (ipf != NULL) { 2618 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2619 } 2620 mutex_exit(&oipfb->ipfb_lock); 2621 } 2622 } 2623 2624 /* 2625 * free 'free_cnt' fragmented packets starting at ipf. 2626 */ 2627 void 2628 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2629 { 2630 size_t count; 2631 mblk_t *mp; 2632 mblk_t *tmp; 2633 ipf_t **ipfp = ipf->ipf_ptphn; 2634 2635 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2636 ASSERT(ipfp != NULL); 2637 ASSERT(ipf != NULL); 2638 2639 while (ipf != NULL && free_cnt-- > 0) { 2640 count = ipf->ipf_count; 2641 mp = ipf->ipf_mp; 2642 ipf = ipf->ipf_hash_next; 2643 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2644 IP_REASS_SET_START(tmp, 0); 2645 IP_REASS_SET_END(tmp, 0); 2646 } 2647 atomic_add_32(&ill->ill_frag_count, -count); 2648 ASSERT(ipfb->ipfb_count >= count); 2649 ipfb->ipfb_count -= count; 2650 ASSERT(ipfb->ipfb_frag_pkts > 0); 2651 ipfb->ipfb_frag_pkts--; 2652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2653 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2654 freemsg(mp); 2655 } 2656 2657 if (ipf) 2658 ipf->ipf_ptphn = ipfp; 2659 ipfp[0] = ipf; 2660 } 2661 2662 /* 2663 * Helper function for ill_forward_set(). 2664 */ 2665 static void 2666 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2667 { 2668 ip_stack_t *ipst = ill->ill_ipst; 2669 2670 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2671 2672 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2673 (enable ? "Enabling" : "Disabling"), 2674 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2675 mutex_enter(&ill->ill_lock); 2676 if (enable) 2677 ill->ill_flags |= ILLF_ROUTER; 2678 else 2679 ill->ill_flags &= ~ILLF_ROUTER; 2680 mutex_exit(&ill->ill_lock); 2681 if (ill->ill_isv6) 2682 ill_set_nce_router_flags(ill, enable); 2683 /* Notify routing socket listeners of this change. */ 2684 if (ill->ill_ipif != NULL) 2685 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2686 } 2687 2688 /* 2689 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2690 * socket messages for each interface whose flags we change. 2691 */ 2692 int 2693 ill_forward_set(ill_t *ill, boolean_t enable) 2694 { 2695 ipmp_illgrp_t *illg; 2696 ip_stack_t *ipst = ill->ill_ipst; 2697 2698 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2699 2700 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2701 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2702 return (0); 2703 2704 if (IS_LOOPBACK(ill)) 2705 return (EINVAL); 2706 2707 if (enable && ill->ill_allowed_ips_cnt > 0) 2708 return (EPERM); 2709 2710 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2711 /* 2712 * Update all of the interfaces in the group. 2713 */ 2714 illg = ill->ill_grp; 2715 ill = list_head(&illg->ig_if); 2716 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2717 ill_forward_set_on_ill(ill, enable); 2718 2719 /* 2720 * Update the IPMP meta-interface. 2721 */ 2722 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2723 return (0); 2724 } 2725 2726 ill_forward_set_on_ill(ill, enable); 2727 return (0); 2728 } 2729 2730 /* 2731 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2732 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2733 * set or clear. 2734 */ 2735 static void 2736 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2737 { 2738 ipif_t *ipif; 2739 ncec_t *ncec; 2740 nce_t *nce; 2741 2742 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2743 /* 2744 * NOTE: we match across the illgrp because nce's for 2745 * addresses on IPMP interfaces have an nce_ill that points to 2746 * the bound underlying ill. 2747 */ 2748 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2749 if (nce != NULL) { 2750 ncec = nce->nce_common; 2751 mutex_enter(&ncec->ncec_lock); 2752 if (enable) 2753 ncec->ncec_flags |= NCE_F_ISROUTER; 2754 else 2755 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2756 mutex_exit(&ncec->ncec_lock); 2757 nce_refrele(nce); 2758 } 2759 } 2760 } 2761 2762 /* 2763 * Intializes the context structure and returns the first ill in the list 2764 * cuurently start_list and end_list can have values: 2765 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2766 * IP_V4_G_HEAD Traverse IPV4 list only. 2767 * IP_V6_G_HEAD Traverse IPV6 list only. 2768 */ 2769 2770 /* 2771 * We don't check for CONDEMNED ills here. Caller must do that if 2772 * necessary under the ill lock. 2773 */ 2774 ill_t * 2775 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2776 ip_stack_t *ipst) 2777 { 2778 ill_if_t *ifp; 2779 ill_t *ill; 2780 avl_tree_t *avl_tree; 2781 2782 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2783 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2784 2785 /* 2786 * setup the lists to search 2787 */ 2788 if (end_list != MAX_G_HEADS) { 2789 ctx->ctx_current_list = start_list; 2790 ctx->ctx_last_list = end_list; 2791 } else { 2792 ctx->ctx_last_list = MAX_G_HEADS - 1; 2793 ctx->ctx_current_list = 0; 2794 } 2795 2796 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2797 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2798 if (ifp != (ill_if_t *) 2799 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2800 avl_tree = &ifp->illif_avl_by_ppa; 2801 ill = avl_first(avl_tree); 2802 /* 2803 * ill is guaranteed to be non NULL or ifp should have 2804 * not existed. 2805 */ 2806 ASSERT(ill != NULL); 2807 return (ill); 2808 } 2809 ctx->ctx_current_list++; 2810 } 2811 2812 return (NULL); 2813 } 2814 2815 /* 2816 * returns the next ill in the list. ill_first() must have been called 2817 * before calling ill_next() or bad things will happen. 2818 */ 2819 2820 /* 2821 * We don't check for CONDEMNED ills here. Caller must do that if 2822 * necessary under the ill lock. 2823 */ 2824 ill_t * 2825 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2826 { 2827 ill_if_t *ifp; 2828 ill_t *ill; 2829 ip_stack_t *ipst = lastill->ill_ipst; 2830 2831 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2832 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2833 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2834 AVL_AFTER)) != NULL) { 2835 return (ill); 2836 } 2837 2838 /* goto next ill_ifp in the list. */ 2839 ifp = lastill->ill_ifptr->illif_next; 2840 2841 /* make sure not at end of circular list */ 2842 while (ifp == 2843 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2844 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2845 return (NULL); 2846 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2847 } 2848 2849 return (avl_first(&ifp->illif_avl_by_ppa)); 2850 } 2851 2852 /* 2853 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2854 * The final number (PPA) must not have any leading zeros. Upon success, a 2855 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2856 */ 2857 static char * 2858 ill_get_ppa_ptr(char *name) 2859 { 2860 int namelen = strlen(name); 2861 int end_ndx = namelen - 1; 2862 int ppa_ndx, i; 2863 2864 /* 2865 * Check that the first character is [a-zA-Z], and that the last 2866 * character is [0-9]. 2867 */ 2868 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2869 return (NULL); 2870 2871 /* 2872 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2873 */ 2874 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2875 if (!isdigit(name[ppa_ndx - 1])) 2876 break; 2877 2878 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2879 return (NULL); 2880 2881 /* 2882 * Check that the intermediate characters are [a-z0-9.] 2883 */ 2884 for (i = 1; i < ppa_ndx; i++) { 2885 if (!isalpha(name[i]) && !isdigit(name[i]) && 2886 name[i] != '.' && name[i] != '_') { 2887 return (NULL); 2888 } 2889 } 2890 2891 return (name + ppa_ndx); 2892 } 2893 2894 /* 2895 * use avl tree to locate the ill. 2896 */ 2897 static ill_t * 2898 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2899 { 2900 char *ppa_ptr = NULL; 2901 int len; 2902 uint_t ppa; 2903 ill_t *ill = NULL; 2904 ill_if_t *ifp; 2905 int list; 2906 2907 /* 2908 * get ppa ptr 2909 */ 2910 if (isv6) 2911 list = IP_V6_G_HEAD; 2912 else 2913 list = IP_V4_G_HEAD; 2914 2915 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2916 return (NULL); 2917 } 2918 2919 len = ppa_ptr - name + 1; 2920 2921 ppa = stoi(&ppa_ptr); 2922 2923 ifp = IP_VX_ILL_G_LIST(list, ipst); 2924 2925 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2926 /* 2927 * match is done on len - 1 as the name is not null 2928 * terminated it contains ppa in addition to the interface 2929 * name. 2930 */ 2931 if ((ifp->illif_name_len == len) && 2932 bcmp(ifp->illif_name, name, len - 1) == 0) { 2933 break; 2934 } else { 2935 ifp = ifp->illif_next; 2936 } 2937 } 2938 2939 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2940 /* 2941 * Even the interface type does not exist. 2942 */ 2943 return (NULL); 2944 } 2945 2946 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2947 if (ill != NULL) { 2948 mutex_enter(&ill->ill_lock); 2949 if (ILL_CAN_LOOKUP(ill)) { 2950 ill_refhold_locked(ill); 2951 mutex_exit(&ill->ill_lock); 2952 return (ill); 2953 } 2954 mutex_exit(&ill->ill_lock); 2955 } 2956 return (NULL); 2957 } 2958 2959 /* 2960 * comparison function for use with avl. 2961 */ 2962 static int 2963 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2964 { 2965 uint_t ppa; 2966 uint_t ill_ppa; 2967 2968 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2969 2970 ppa = *((uint_t *)ppa_ptr); 2971 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2972 /* 2973 * We want the ill with the lowest ppa to be on the 2974 * top. 2975 */ 2976 if (ill_ppa < ppa) 2977 return (1); 2978 if (ill_ppa > ppa) 2979 return (-1); 2980 return (0); 2981 } 2982 2983 /* 2984 * remove an interface type from the global list. 2985 */ 2986 static void 2987 ill_delete_interface_type(ill_if_t *interface) 2988 { 2989 ASSERT(interface != NULL); 2990 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2991 2992 avl_destroy(&interface->illif_avl_by_ppa); 2993 if (interface->illif_ppa_arena != NULL) 2994 vmem_destroy(interface->illif_ppa_arena); 2995 2996 remque(interface); 2997 2998 mi_free(interface); 2999 } 3000 3001 /* 3002 * remove ill from the global list. 3003 */ 3004 static void 3005 ill_glist_delete(ill_t *ill) 3006 { 3007 ip_stack_t *ipst; 3008 phyint_t *phyi; 3009 3010 if (ill == NULL) 3011 return; 3012 ipst = ill->ill_ipst; 3013 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3014 3015 /* 3016 * If the ill was never inserted into the AVL tree 3017 * we skip the if branch. 3018 */ 3019 if (ill->ill_ifptr != NULL) { 3020 /* 3021 * remove from AVL tree and free ppa number 3022 */ 3023 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3024 3025 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3026 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3027 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3028 } 3029 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3030 ill_delete_interface_type(ill->ill_ifptr); 3031 } 3032 3033 /* 3034 * Indicate ill is no longer in the list. 3035 */ 3036 ill->ill_ifptr = NULL; 3037 ill->ill_name_length = 0; 3038 ill->ill_name[0] = '\0'; 3039 ill->ill_ppa = UINT_MAX; 3040 } 3041 3042 /* Generate one last event for this ill. */ 3043 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3044 ill->ill_name_length); 3045 3046 ASSERT(ill->ill_phyint != NULL); 3047 phyi = ill->ill_phyint; 3048 ill->ill_phyint = NULL; 3049 3050 /* 3051 * ill_init allocates a phyint always to store the copy 3052 * of flags relevant to phyint. At that point in time, we could 3053 * not assign the name and hence phyint_illv4/v6 could not be 3054 * initialized. Later in ipif_set_values, we assign the name to 3055 * the ill, at which point in time we assign phyint_illv4/v6. 3056 * Thus we don't rely on phyint_illv6 to be initialized always. 3057 */ 3058 if (ill->ill_flags & ILLF_IPV6) 3059 phyi->phyint_illv6 = NULL; 3060 else 3061 phyi->phyint_illv4 = NULL; 3062 3063 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3064 rw_exit(&ipst->ips_ill_g_lock); 3065 return; 3066 } 3067 3068 /* 3069 * There are no ills left on this phyint; pull it out of the phyint 3070 * avl trees, and free it. 3071 */ 3072 if (phyi->phyint_ifindex > 0) { 3073 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3074 phyi); 3075 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3076 phyi); 3077 } 3078 rw_exit(&ipst->ips_ill_g_lock); 3079 3080 phyint_free(phyi); 3081 } 3082 3083 /* 3084 * allocate a ppa, if the number of plumbed interfaces of this type are 3085 * less than ill_no_arena do a linear search to find a unused ppa. 3086 * When the number goes beyond ill_no_arena switch to using an arena. 3087 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3088 * is the return value for an error condition, so allocation starts at one 3089 * and is decremented by one. 3090 */ 3091 static int 3092 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3093 { 3094 ill_t *tmp_ill; 3095 uint_t start, end; 3096 int ppa; 3097 3098 if (ifp->illif_ppa_arena == NULL && 3099 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3100 /* 3101 * Create an arena. 3102 */ 3103 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3104 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3105 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3106 /* allocate what has already been assigned */ 3107 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3108 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3109 tmp_ill, AVL_AFTER)) { 3110 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3111 1, /* size */ 3112 1, /* align/quantum */ 3113 0, /* phase */ 3114 0, /* nocross */ 3115 /* minaddr */ 3116 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3117 /* maxaddr */ 3118 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3119 VM_NOSLEEP|VM_FIRSTFIT); 3120 if (ppa == 0) { 3121 ip1dbg(("ill_alloc_ppa: ppa allocation" 3122 " failed while switching")); 3123 vmem_destroy(ifp->illif_ppa_arena); 3124 ifp->illif_ppa_arena = NULL; 3125 break; 3126 } 3127 } 3128 } 3129 3130 if (ifp->illif_ppa_arena != NULL) { 3131 if (ill->ill_ppa == UINT_MAX) { 3132 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3133 1, VM_NOSLEEP|VM_FIRSTFIT); 3134 if (ppa == 0) 3135 return (EAGAIN); 3136 ill->ill_ppa = --ppa; 3137 } else { 3138 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3139 1, /* size */ 3140 1, /* align/quantum */ 3141 0, /* phase */ 3142 0, /* nocross */ 3143 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3144 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3145 VM_NOSLEEP|VM_FIRSTFIT); 3146 /* 3147 * Most likely the allocation failed because 3148 * the requested ppa was in use. 3149 */ 3150 if (ppa == 0) 3151 return (EEXIST); 3152 } 3153 return (0); 3154 } 3155 3156 /* 3157 * No arena is in use and not enough (>ill_no_arena) interfaces have 3158 * been plumbed to create one. Do a linear search to get a unused ppa. 3159 */ 3160 if (ill->ill_ppa == UINT_MAX) { 3161 end = UINT_MAX - 1; 3162 start = 0; 3163 } else { 3164 end = start = ill->ill_ppa; 3165 } 3166 3167 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3168 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3169 if (start++ >= end) { 3170 if (ill->ill_ppa == UINT_MAX) 3171 return (EAGAIN); 3172 else 3173 return (EEXIST); 3174 } 3175 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3176 } 3177 ill->ill_ppa = start; 3178 return (0); 3179 } 3180 3181 /* 3182 * Insert ill into the list of configured ill's. Once this function completes, 3183 * the ill is globally visible and is available through lookups. More precisely 3184 * this happens after the caller drops the ill_g_lock. 3185 */ 3186 static int 3187 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3188 { 3189 ill_if_t *ill_interface; 3190 avl_index_t where = 0; 3191 int error; 3192 int name_length; 3193 int index; 3194 boolean_t check_length = B_FALSE; 3195 ip_stack_t *ipst = ill->ill_ipst; 3196 3197 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3198 3199 name_length = mi_strlen(name) + 1; 3200 3201 if (isv6) 3202 index = IP_V6_G_HEAD; 3203 else 3204 index = IP_V4_G_HEAD; 3205 3206 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3207 /* 3208 * Search for interface type based on name 3209 */ 3210 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3211 if ((ill_interface->illif_name_len == name_length) && 3212 (strcmp(ill_interface->illif_name, name) == 0)) { 3213 break; 3214 } 3215 ill_interface = ill_interface->illif_next; 3216 } 3217 3218 /* 3219 * Interface type not found, create one. 3220 */ 3221 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3222 ill_g_head_t ghead; 3223 3224 /* 3225 * allocate ill_if_t structure 3226 */ 3227 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3228 if (ill_interface == NULL) { 3229 return (ENOMEM); 3230 } 3231 3232 (void) strcpy(ill_interface->illif_name, name); 3233 ill_interface->illif_name_len = name_length; 3234 3235 avl_create(&ill_interface->illif_avl_by_ppa, 3236 ill_compare_ppa, sizeof (ill_t), 3237 offsetof(struct ill_s, ill_avl_byppa)); 3238 3239 /* 3240 * link the structure in the back to maintain order 3241 * of configuration for ifconfig output. 3242 */ 3243 ghead = ipst->ips_ill_g_heads[index]; 3244 insque(ill_interface, ghead.ill_g_list_tail); 3245 } 3246 3247 if (ill->ill_ppa == UINT_MAX) 3248 check_length = B_TRUE; 3249 3250 error = ill_alloc_ppa(ill_interface, ill); 3251 if (error != 0) { 3252 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3253 ill_delete_interface_type(ill->ill_ifptr); 3254 return (error); 3255 } 3256 3257 /* 3258 * When the ppa is choosen by the system, check that there is 3259 * enough space to insert ppa. if a specific ppa was passed in this 3260 * check is not required as the interface name passed in will have 3261 * the right ppa in it. 3262 */ 3263 if (check_length) { 3264 /* 3265 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3266 */ 3267 char buf[sizeof (uint_t) * 3]; 3268 3269 /* 3270 * convert ppa to string to calculate the amount of space 3271 * required for it in the name. 3272 */ 3273 numtos(ill->ill_ppa, buf); 3274 3275 /* Do we have enough space to insert ppa ? */ 3276 3277 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3278 /* Free ppa and interface type struct */ 3279 if (ill_interface->illif_ppa_arena != NULL) { 3280 vmem_free(ill_interface->illif_ppa_arena, 3281 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3282 } 3283 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3284 ill_delete_interface_type(ill->ill_ifptr); 3285 3286 return (EINVAL); 3287 } 3288 } 3289 3290 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3291 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3292 3293 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3294 &where); 3295 ill->ill_ifptr = ill_interface; 3296 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3297 3298 ill_phyint_reinit(ill); 3299 return (0); 3300 } 3301 3302 /* Initialize the per phyint ipsq used for serialization */ 3303 static boolean_t 3304 ipsq_init(ill_t *ill, boolean_t enter) 3305 { 3306 ipsq_t *ipsq; 3307 ipxop_t *ipx; 3308 3309 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3310 return (B_FALSE); 3311 3312 ill->ill_phyint->phyint_ipsq = ipsq; 3313 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3314 ipx->ipx_ipsq = ipsq; 3315 ipsq->ipsq_next = ipsq; 3316 ipsq->ipsq_phyint = ill->ill_phyint; 3317 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3318 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3319 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3320 if (enter) { 3321 ipx->ipx_writer = curthread; 3322 ipx->ipx_forced = B_FALSE; 3323 ipx->ipx_reentry_cnt = 1; 3324 #ifdef DEBUG 3325 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3326 #endif 3327 } 3328 return (B_TRUE); 3329 } 3330 3331 /* 3332 * ill_init is called by ip_open when a device control stream is opened. 3333 * It does a few initializations, and shoots a DL_INFO_REQ message down 3334 * to the driver. The response is later picked up in ip_rput_dlpi and 3335 * used to set up default mechanisms for talking to the driver. (Always 3336 * called as writer.) 3337 * 3338 * If this function returns error, ip_open will call ip_close which in 3339 * turn will call ill_delete to clean up any memory allocated here that 3340 * is not yet freed. 3341 */ 3342 int 3343 ill_init(queue_t *q, ill_t *ill) 3344 { 3345 int count; 3346 dl_info_req_t *dlir; 3347 mblk_t *info_mp; 3348 uchar_t *frag_ptr; 3349 3350 /* 3351 * The ill is initialized to zero by mi_alloc*(). In addition 3352 * some fields already contain valid values, initialized in 3353 * ip_open(), before we reach here. 3354 */ 3355 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3356 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3357 ill->ill_saved_ire_cnt = 0; 3358 3359 ill->ill_rq = q; 3360 ill->ill_wq = WR(q); 3361 3362 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3363 BPRI_HI); 3364 if (info_mp == NULL) 3365 return (ENOMEM); 3366 3367 /* 3368 * Allocate sufficient space to contain our fragment hash table and 3369 * the device name. 3370 */ 3371 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3372 if (frag_ptr == NULL) { 3373 freemsg(info_mp); 3374 return (ENOMEM); 3375 } 3376 ill->ill_frag_ptr = frag_ptr; 3377 ill->ill_frag_free_num_pkts = 0; 3378 ill->ill_last_frag_clean_time = 0; 3379 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3380 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3381 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3382 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3383 NULL, MUTEX_DEFAULT, NULL); 3384 } 3385 3386 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3387 if (ill->ill_phyint == NULL) { 3388 freemsg(info_mp); 3389 mi_free(frag_ptr); 3390 return (ENOMEM); 3391 } 3392 3393 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3394 /* 3395 * For now pretend this is a v4 ill. We need to set phyint_ill* 3396 * at this point because of the following reason. If we can't 3397 * enter the ipsq at some point and cv_wait, the writer that 3398 * wakes us up tries to locate us using the list of all phyints 3399 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3400 * If we don't set it now, we risk a missed wakeup. 3401 */ 3402 ill->ill_phyint->phyint_illv4 = ill; 3403 ill->ill_ppa = UINT_MAX; 3404 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3405 3406 ill_set_inputfn(ill); 3407 3408 if (!ipsq_init(ill, B_TRUE)) { 3409 freemsg(info_mp); 3410 mi_free(frag_ptr); 3411 mi_free(ill->ill_phyint); 3412 return (ENOMEM); 3413 } 3414 3415 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3416 3417 /* Frag queue limit stuff */ 3418 ill->ill_frag_count = 0; 3419 ill->ill_ipf_gen = 0; 3420 3421 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3422 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3423 ill->ill_global_timer = INFINITY; 3424 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3425 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3426 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3427 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3428 3429 /* 3430 * Initialize IPv6 configuration variables. The IP module is always 3431 * opened as an IPv4 module. Instead tracking down the cases where 3432 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3433 * here for convenience, this has no effect until the ill is set to do 3434 * IPv6. 3435 */ 3436 ill->ill_reachable_time = ND_REACHABLE_TIME; 3437 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3438 ill->ill_max_buf = ND_MAX_Q; 3439 ill->ill_refcnt = 0; 3440 3441 /* Send down the Info Request to the driver. */ 3442 info_mp->b_datap->db_type = M_PCPROTO; 3443 dlir = (dl_info_req_t *)info_mp->b_rptr; 3444 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3445 dlir->dl_primitive = DL_INFO_REQ; 3446 3447 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3448 3449 qprocson(q); 3450 ill_dlpi_send(ill, info_mp); 3451 3452 return (0); 3453 } 3454 3455 /* 3456 * ill_dls_info 3457 * creates datalink socket info from the device. 3458 */ 3459 int 3460 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3461 { 3462 size_t len; 3463 3464 sdl->sdl_family = AF_LINK; 3465 sdl->sdl_index = ill_get_upper_ifindex(ill); 3466 sdl->sdl_type = ill->ill_type; 3467 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3468 len = strlen(sdl->sdl_data); 3469 ASSERT(len < 256); 3470 sdl->sdl_nlen = (uchar_t)len; 3471 sdl->sdl_alen = ill->ill_phys_addr_length; 3472 sdl->sdl_slen = 0; 3473 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3474 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3475 3476 return (sizeof (struct sockaddr_dl)); 3477 } 3478 3479 /* 3480 * ill_xarp_info 3481 * creates xarp info from the device. 3482 */ 3483 static int 3484 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3485 { 3486 sdl->sdl_family = AF_LINK; 3487 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3488 sdl->sdl_type = ill->ill_type; 3489 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3490 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3491 sdl->sdl_alen = ill->ill_phys_addr_length; 3492 sdl->sdl_slen = 0; 3493 return (sdl->sdl_nlen); 3494 } 3495 3496 static int 3497 loopback_kstat_update(kstat_t *ksp, int rw) 3498 { 3499 kstat_named_t *kn; 3500 netstackid_t stackid; 3501 netstack_t *ns; 3502 ip_stack_t *ipst; 3503 3504 if (ksp == NULL || ksp->ks_data == NULL) 3505 return (EIO); 3506 3507 if (rw == KSTAT_WRITE) 3508 return (EACCES); 3509 3510 kn = KSTAT_NAMED_PTR(ksp); 3511 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3512 3513 ns = netstack_find_by_stackid(stackid); 3514 if (ns == NULL) 3515 return (-1); 3516 3517 ipst = ns->netstack_ip; 3518 if (ipst == NULL) { 3519 netstack_rele(ns); 3520 return (-1); 3521 } 3522 kn[0].value.ui32 = ipst->ips_loopback_packets; 3523 kn[1].value.ui32 = ipst->ips_loopback_packets; 3524 netstack_rele(ns); 3525 return (0); 3526 } 3527 3528 /* 3529 * Has ifindex been plumbed already? 3530 */ 3531 static boolean_t 3532 phyint_exists(uint_t index, ip_stack_t *ipst) 3533 { 3534 ASSERT(index != 0); 3535 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3536 3537 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3538 &index, NULL) != NULL); 3539 } 3540 3541 /* Pick a unique ifindex */ 3542 boolean_t 3543 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3544 { 3545 uint_t starting_index; 3546 3547 if (!ipst->ips_ill_index_wrap) { 3548 *indexp = ipst->ips_ill_index++; 3549 if (ipst->ips_ill_index == 0) { 3550 /* Reached the uint_t limit Next time wrap */ 3551 ipst->ips_ill_index_wrap = B_TRUE; 3552 } 3553 return (B_TRUE); 3554 } 3555 3556 /* 3557 * Start reusing unused indexes. Note that we hold the ill_g_lock 3558 * at this point and don't want to call any function that attempts 3559 * to get the lock again. 3560 */ 3561 starting_index = ipst->ips_ill_index++; 3562 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3563 if (ipst->ips_ill_index != 0 && 3564 !phyint_exists(ipst->ips_ill_index, ipst)) { 3565 /* found unused index - use it */ 3566 *indexp = ipst->ips_ill_index; 3567 return (B_TRUE); 3568 } 3569 } 3570 3571 /* 3572 * all interface indicies are inuse. 3573 */ 3574 return (B_FALSE); 3575 } 3576 3577 /* 3578 * Assign a unique interface index for the phyint. 3579 */ 3580 static boolean_t 3581 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3582 { 3583 ASSERT(phyi->phyint_ifindex == 0); 3584 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3585 } 3586 3587 /* 3588 * Initialize the flags on `phyi' as per the provided mactype. 3589 */ 3590 static void 3591 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3592 { 3593 uint64_t flags = 0; 3594 3595 /* 3596 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3597 * we always presume the underlying hardware is working and set 3598 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3599 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3600 * there are no active interfaces in the group so we set PHYI_FAILED. 3601 */ 3602 if (mactype == SUNW_DL_IPMP) 3603 flags |= PHYI_FAILED; 3604 else 3605 flags |= PHYI_RUNNING; 3606 3607 switch (mactype) { 3608 case SUNW_DL_VNI: 3609 flags |= PHYI_VIRTUAL; 3610 break; 3611 case SUNW_DL_IPMP: 3612 flags |= PHYI_IPMP; 3613 break; 3614 case DL_LOOP: 3615 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3616 break; 3617 } 3618 3619 mutex_enter(&phyi->phyint_lock); 3620 phyi->phyint_flags |= flags; 3621 mutex_exit(&phyi->phyint_lock); 3622 } 3623 3624 /* 3625 * Return a pointer to the ill which matches the supplied name. Note that 3626 * the ill name length includes the null termination character. (May be 3627 * called as writer.) 3628 * If do_alloc and the interface is "lo0" it will be automatically created. 3629 * Cannot bump up reference on condemned ills. So dup detect can't be done 3630 * using this func. 3631 */ 3632 ill_t * 3633 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3634 boolean_t *did_alloc, ip_stack_t *ipst) 3635 { 3636 ill_t *ill; 3637 ipif_t *ipif; 3638 ipsq_t *ipsq; 3639 kstat_named_t *kn; 3640 boolean_t isloopback; 3641 in6_addr_t ov6addr; 3642 3643 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3644 3645 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3646 ill = ill_find_by_name(name, isv6, ipst); 3647 rw_exit(&ipst->ips_ill_g_lock); 3648 if (ill != NULL) 3649 return (ill); 3650 3651 /* 3652 * Couldn't find it. Does this happen to be a lookup for the 3653 * loopback device and are we allowed to allocate it? 3654 */ 3655 if (!isloopback || !do_alloc) 3656 return (NULL); 3657 3658 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3659 ill = ill_find_by_name(name, isv6, ipst); 3660 if (ill != NULL) { 3661 rw_exit(&ipst->ips_ill_g_lock); 3662 return (ill); 3663 } 3664 3665 /* Create the loopback device on demand */ 3666 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3667 sizeof (ipif_loopback_name), BPRI_MED)); 3668 if (ill == NULL) 3669 goto done; 3670 3671 *ill = ill_null; 3672 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3673 ill->ill_ipst = ipst; 3674 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3675 netstack_hold(ipst->ips_netstack); 3676 /* 3677 * For exclusive stacks we set the zoneid to zero 3678 * to make IP operate as if in the global zone. 3679 */ 3680 ill->ill_zoneid = GLOBAL_ZONEID; 3681 3682 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3683 if (ill->ill_phyint == NULL) 3684 goto done; 3685 3686 if (isv6) 3687 ill->ill_phyint->phyint_illv6 = ill; 3688 else 3689 ill->ill_phyint->phyint_illv4 = ill; 3690 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3691 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3692 3693 if (isv6) { 3694 ill->ill_isv6 = B_TRUE; 3695 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3696 } else { 3697 ill->ill_max_frag = ip_loopback_mtuplus; 3698 } 3699 if (!ill_allocate_mibs(ill)) 3700 goto done; 3701 ill->ill_current_frag = ill->ill_max_frag; 3702 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3703 /* 3704 * ipif_loopback_name can't be pointed at directly because its used 3705 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3706 * from the glist, ill_glist_delete() sets the first character of 3707 * ill_name to '\0'. 3708 */ 3709 ill->ill_name = (char *)ill + sizeof (*ill); 3710 (void) strcpy(ill->ill_name, ipif_loopback_name); 3711 ill->ill_name_length = sizeof (ipif_loopback_name); 3712 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3713 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3714 3715 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3716 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3717 ill->ill_global_timer = INFINITY; 3718 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3719 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3720 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3721 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3722 3723 /* No resolver here. */ 3724 ill->ill_net_type = IRE_LOOPBACK; 3725 3726 /* Initialize the ipsq */ 3727 if (!ipsq_init(ill, B_FALSE)) 3728 goto done; 3729 3730 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3731 if (ipif == NULL) 3732 goto done; 3733 3734 ill->ill_flags = ILLF_MULTICAST; 3735 3736 ov6addr = ipif->ipif_v6lcl_addr; 3737 /* Set up default loopback address and mask. */ 3738 if (!isv6) { 3739 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3740 3741 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3742 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3743 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3744 ipif->ipif_v6subnet); 3745 ill->ill_flags |= ILLF_IPV4; 3746 } else { 3747 ipif->ipif_v6lcl_addr = ipv6_loopback; 3748 ipif->ipif_v6net_mask = ipv6_all_ones; 3749 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3750 ipif->ipif_v6subnet); 3751 ill->ill_flags |= ILLF_IPV6; 3752 } 3753 3754 /* 3755 * Chain us in at the end of the ill list. hold the ill 3756 * before we make it globally visible. 1 for the lookup. 3757 */ 3758 ill->ill_refcnt = 0; 3759 ill_refhold(ill); 3760 3761 ill->ill_frag_count = 0; 3762 ill->ill_frag_free_num_pkts = 0; 3763 ill->ill_last_frag_clean_time = 0; 3764 3765 ipsq = ill->ill_phyint->phyint_ipsq; 3766 3767 ill_set_inputfn(ill); 3768 3769 if (ill_glist_insert(ill, "lo", isv6) != 0) 3770 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3771 3772 /* Let SCTP know so that it can add this to its list */ 3773 sctp_update_ill(ill, SCTP_ILL_INSERT); 3774 3775 /* 3776 * We have already assigned ipif_v6lcl_addr above, but we need to 3777 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3778 * requires to be after ill_glist_insert() since we need the 3779 * ill_index set. Pass on ipv6_loopback as the old address. 3780 */ 3781 sctp_update_ipif_addr(ipif, ov6addr); 3782 3783 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3784 3785 /* 3786 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3787 * If so, free our original one. 3788 */ 3789 if (ipsq != ill->ill_phyint->phyint_ipsq) 3790 ipsq_delete(ipsq); 3791 3792 if (ipst->ips_loopback_ksp == NULL) { 3793 /* Export loopback interface statistics */ 3794 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3795 ipif_loopback_name, "net", 3796 KSTAT_TYPE_NAMED, 2, 0, 3797 ipst->ips_netstack->netstack_stackid); 3798 if (ipst->ips_loopback_ksp != NULL) { 3799 ipst->ips_loopback_ksp->ks_update = 3800 loopback_kstat_update; 3801 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3802 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3803 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3804 ipst->ips_loopback_ksp->ks_private = 3805 (void *)(uintptr_t)ipst->ips_netstack-> 3806 netstack_stackid; 3807 kstat_install(ipst->ips_loopback_ksp); 3808 } 3809 } 3810 3811 *did_alloc = B_TRUE; 3812 rw_exit(&ipst->ips_ill_g_lock); 3813 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3814 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3815 return (ill); 3816 done: 3817 if (ill != NULL) { 3818 if (ill->ill_phyint != NULL) { 3819 ipsq = ill->ill_phyint->phyint_ipsq; 3820 if (ipsq != NULL) { 3821 ipsq->ipsq_phyint = NULL; 3822 ipsq_delete(ipsq); 3823 } 3824 mi_free(ill->ill_phyint); 3825 } 3826 ill_free_mib(ill); 3827 if (ill->ill_ipst != NULL) 3828 netstack_rele(ill->ill_ipst->ips_netstack); 3829 mi_free(ill); 3830 } 3831 rw_exit(&ipst->ips_ill_g_lock); 3832 return (NULL); 3833 } 3834 3835 /* 3836 * For IPP calls - use the ip_stack_t for global stack. 3837 */ 3838 ill_t * 3839 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3840 { 3841 ip_stack_t *ipst; 3842 ill_t *ill; 3843 3844 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3845 if (ipst == NULL) { 3846 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3847 return (NULL); 3848 } 3849 3850 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3851 netstack_rele(ipst->ips_netstack); 3852 return (ill); 3853 } 3854 3855 /* 3856 * Return a pointer to the ill which matches the index and IP version type. 3857 */ 3858 ill_t * 3859 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3860 { 3861 ill_t *ill; 3862 phyint_t *phyi; 3863 3864 /* 3865 * Indexes are stored in the phyint - a common structure 3866 * to both IPv4 and IPv6. 3867 */ 3868 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3869 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3870 (void *) &index, NULL); 3871 if (phyi != NULL) { 3872 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3873 if (ill != NULL) { 3874 mutex_enter(&ill->ill_lock); 3875 if (!ILL_IS_CONDEMNED(ill)) { 3876 ill_refhold_locked(ill); 3877 mutex_exit(&ill->ill_lock); 3878 rw_exit(&ipst->ips_ill_g_lock); 3879 return (ill); 3880 } 3881 mutex_exit(&ill->ill_lock); 3882 } 3883 } 3884 rw_exit(&ipst->ips_ill_g_lock); 3885 return (NULL); 3886 } 3887 3888 /* 3889 * Verify whether or not an interface index is valid for the specified zoneid 3890 * to transmit packets. 3891 * It can be zero (meaning "reset") or an interface index assigned 3892 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3893 */ 3894 boolean_t 3895 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3896 ip_stack_t *ipst) 3897 { 3898 ill_t *ill; 3899 3900 if (ifindex == 0) 3901 return (B_TRUE); 3902 3903 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3904 if (ill == NULL) 3905 return (B_FALSE); 3906 if (IS_VNI(ill)) { 3907 ill_refrele(ill); 3908 return (B_FALSE); 3909 } 3910 ill_refrele(ill); 3911 return (B_TRUE); 3912 } 3913 3914 /* 3915 * Return the ifindex next in sequence after the passed in ifindex. 3916 * If there is no next ifindex for the given protocol, return 0. 3917 */ 3918 uint_t 3919 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3920 { 3921 phyint_t *phyi; 3922 phyint_t *phyi_initial; 3923 uint_t ifindex; 3924 3925 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3926 3927 if (index == 0) { 3928 phyi = avl_first( 3929 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3930 } else { 3931 phyi = phyi_initial = avl_find( 3932 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3933 (void *) &index, NULL); 3934 } 3935 3936 for (; phyi != NULL; 3937 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3938 phyi, AVL_AFTER)) { 3939 /* 3940 * If we're not returning the first interface in the tree 3941 * and we still haven't moved past the phyint_t that 3942 * corresponds to index, avl_walk needs to be called again 3943 */ 3944 if (!((index != 0) && (phyi == phyi_initial))) { 3945 if (isv6) { 3946 if ((phyi->phyint_illv6) && 3947 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3948 (phyi->phyint_illv6->ill_isv6 == 1)) 3949 break; 3950 } else { 3951 if ((phyi->phyint_illv4) && 3952 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3953 (phyi->phyint_illv4->ill_isv6 == 0)) 3954 break; 3955 } 3956 } 3957 } 3958 3959 rw_exit(&ipst->ips_ill_g_lock); 3960 3961 if (phyi != NULL) 3962 ifindex = phyi->phyint_ifindex; 3963 else 3964 ifindex = 0; 3965 3966 return (ifindex); 3967 } 3968 3969 /* 3970 * Return the ifindex for the named interface. 3971 * If there is no next ifindex for the interface, return 0. 3972 */ 3973 uint_t 3974 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3975 { 3976 phyint_t *phyi; 3977 avl_index_t where = 0; 3978 uint_t ifindex; 3979 3980 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3981 3982 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3983 name, &where)) == NULL) { 3984 rw_exit(&ipst->ips_ill_g_lock); 3985 return (0); 3986 } 3987 3988 ifindex = phyi->phyint_ifindex; 3989 3990 rw_exit(&ipst->ips_ill_g_lock); 3991 3992 return (ifindex); 3993 } 3994 3995 /* 3996 * Return the ifindex to be used by upper layer protocols for instance 3997 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 3998 */ 3999 uint_t 4000 ill_get_upper_ifindex(const ill_t *ill) 4001 { 4002 if (IS_UNDER_IPMP(ill)) 4003 return (ipmp_ill_get_ipmp_ifindex(ill)); 4004 else 4005 return (ill->ill_phyint->phyint_ifindex); 4006 } 4007 4008 4009 /* 4010 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4011 * that gives a running thread a reference to the ill. This reference must be 4012 * released by the thread when it is done accessing the ill and related 4013 * objects. ill_refcnt can not be used to account for static references 4014 * such as other structures pointing to an ill. Callers must generally 4015 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4016 * or be sure that the ill is not being deleted or changing state before 4017 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4018 * ill won't change any of its critical state such as address, netmask etc. 4019 */ 4020 void 4021 ill_refhold(ill_t *ill) 4022 { 4023 mutex_enter(&ill->ill_lock); 4024 ill->ill_refcnt++; 4025 ILL_TRACE_REF(ill); 4026 mutex_exit(&ill->ill_lock); 4027 } 4028 4029 void 4030 ill_refhold_locked(ill_t *ill) 4031 { 4032 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4033 ill->ill_refcnt++; 4034 ILL_TRACE_REF(ill); 4035 } 4036 4037 /* Returns true if we managed to get a refhold */ 4038 boolean_t 4039 ill_check_and_refhold(ill_t *ill) 4040 { 4041 mutex_enter(&ill->ill_lock); 4042 if (!ILL_IS_CONDEMNED(ill)) { 4043 ill_refhold_locked(ill); 4044 mutex_exit(&ill->ill_lock); 4045 return (B_TRUE); 4046 } 4047 mutex_exit(&ill->ill_lock); 4048 return (B_FALSE); 4049 } 4050 4051 /* 4052 * Must not be called while holding any locks. Otherwise if this is 4053 * the last reference to be released, there is a chance of recursive mutex 4054 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4055 * to restart an ioctl. 4056 */ 4057 void 4058 ill_refrele(ill_t *ill) 4059 { 4060 mutex_enter(&ill->ill_lock); 4061 ASSERT(ill->ill_refcnt != 0); 4062 ill->ill_refcnt--; 4063 ILL_UNTRACE_REF(ill); 4064 if (ill->ill_refcnt != 0) { 4065 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4066 mutex_exit(&ill->ill_lock); 4067 return; 4068 } 4069 4070 /* Drops the ill_lock */ 4071 ipif_ill_refrele_tail(ill); 4072 } 4073 4074 /* 4075 * Obtain a weak reference count on the ill. This reference ensures the 4076 * ill won't be freed, but the ill may change any of its critical state 4077 * such as netmask, address etc. Returns an error if the ill has started 4078 * closing. 4079 */ 4080 boolean_t 4081 ill_waiter_inc(ill_t *ill) 4082 { 4083 mutex_enter(&ill->ill_lock); 4084 if (ill->ill_state_flags & ILL_CONDEMNED) { 4085 mutex_exit(&ill->ill_lock); 4086 return (B_FALSE); 4087 } 4088 ill->ill_waiters++; 4089 mutex_exit(&ill->ill_lock); 4090 return (B_TRUE); 4091 } 4092 4093 void 4094 ill_waiter_dcr(ill_t *ill) 4095 { 4096 mutex_enter(&ill->ill_lock); 4097 ill->ill_waiters--; 4098 if (ill->ill_waiters == 0) 4099 cv_broadcast(&ill->ill_cv); 4100 mutex_exit(&ill->ill_lock); 4101 } 4102 4103 /* 4104 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4105 * driver. We construct best guess defaults for lower level information that 4106 * we need. If an interface is brought up without injection of any overriding 4107 * information from outside, we have to be ready to go with these defaults. 4108 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4109 * we primarely want the dl_provider_style. 4110 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4111 * at which point we assume the other part of the information is valid. 4112 */ 4113 void 4114 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4115 { 4116 uchar_t *brdcst_addr; 4117 uint_t brdcst_addr_length, phys_addr_length; 4118 t_scalar_t sap_length; 4119 dl_info_ack_t *dlia; 4120 ip_m_t *ipm; 4121 dl_qos_cl_sel1_t *sel1; 4122 int min_mtu; 4123 4124 ASSERT(IAM_WRITER_ILL(ill)); 4125 4126 /* 4127 * Till the ill is fully up the ill is not globally visible. 4128 * So no need for a lock. 4129 */ 4130 dlia = (dl_info_ack_t *)mp->b_rptr; 4131 ill->ill_mactype = dlia->dl_mac_type; 4132 4133 ipm = ip_m_lookup(dlia->dl_mac_type); 4134 if (ipm == NULL) { 4135 ipm = ip_m_lookup(DL_OTHER); 4136 ASSERT(ipm != NULL); 4137 } 4138 ill->ill_media = ipm; 4139 4140 /* 4141 * When the new DLPI stuff is ready we'll pull lengths 4142 * from dlia. 4143 */ 4144 if (dlia->dl_version == DL_VERSION_2) { 4145 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4146 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4147 brdcst_addr_length); 4148 if (brdcst_addr == NULL) { 4149 brdcst_addr_length = 0; 4150 } 4151 sap_length = dlia->dl_sap_length; 4152 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4153 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4154 brdcst_addr_length, sap_length, phys_addr_length)); 4155 } else { 4156 brdcst_addr_length = 6; 4157 brdcst_addr = ip_six_byte_all_ones; 4158 sap_length = -2; 4159 phys_addr_length = brdcst_addr_length; 4160 } 4161 4162 ill->ill_bcast_addr_length = brdcst_addr_length; 4163 ill->ill_phys_addr_length = phys_addr_length; 4164 ill->ill_sap_length = sap_length; 4165 4166 /* 4167 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4168 * but we must ensure a minimum IP MTU is used since other bits of 4169 * IP will fly apart otherwise. 4170 */ 4171 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4172 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4173 ill->ill_current_frag = ill->ill_max_frag; 4174 ill->ill_mtu = ill->ill_max_frag; 4175 4176 ill->ill_type = ipm->ip_m_type; 4177 4178 if (!ill->ill_dlpi_style_set) { 4179 if (dlia->dl_provider_style == DL_STYLE2) 4180 ill->ill_needs_attach = 1; 4181 4182 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4183 4184 /* 4185 * Allocate the first ipif on this ill. We don't delay it 4186 * further as ioctl handling assumes at least one ipif exists. 4187 * 4188 * At this point we don't know whether the ill is v4 or v6. 4189 * We will know this whan the SIOCSLIFNAME happens and 4190 * the correct value for ill_isv6 will be assigned in 4191 * ipif_set_values(). We need to hold the ill lock and 4192 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4193 * the wakeup. 4194 */ 4195 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4196 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4197 mutex_enter(&ill->ill_lock); 4198 ASSERT(ill->ill_dlpi_style_set == 0); 4199 ill->ill_dlpi_style_set = 1; 4200 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4201 cv_broadcast(&ill->ill_cv); 4202 mutex_exit(&ill->ill_lock); 4203 freemsg(mp); 4204 return; 4205 } 4206 ASSERT(ill->ill_ipif != NULL); 4207 /* 4208 * We know whether it is IPv4 or IPv6 now, as this is the 4209 * second DL_INFO_ACK we are recieving in response to the 4210 * DL_INFO_REQ sent in ipif_set_values. 4211 */ 4212 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4213 /* 4214 * Clear all the flags that were set based on ill_bcast_addr_length 4215 * and ill_phys_addr_length (in ipif_set_values) as these could have 4216 * changed now and we need to re-evaluate. 4217 */ 4218 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4219 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4220 4221 /* 4222 * Free ill_bcast_mp as things could have changed now. 4223 * 4224 * NOTE: The IPMP meta-interface is special-cased because it starts 4225 * with no underlying interfaces (and thus an unknown broadcast 4226 * address length), but we enforce that an interface is broadcast- 4227 * capable as part of allowing it to join a group. 4228 */ 4229 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4230 if (ill->ill_bcast_mp != NULL) 4231 freemsg(ill->ill_bcast_mp); 4232 ill->ill_net_type = IRE_IF_NORESOLVER; 4233 4234 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4235 ill->ill_phys_addr_length, 4236 ill->ill_sap, 4237 ill->ill_sap_length); 4238 4239 if (ill->ill_isv6) 4240 /* 4241 * Note: xresolv interfaces will eventually need NOARP 4242 * set here as well, but that will require those 4243 * external resolvers to have some knowledge of 4244 * that flag and act appropriately. Not to be changed 4245 * at present. 4246 */ 4247 ill->ill_flags |= ILLF_NONUD; 4248 else 4249 ill->ill_flags |= ILLF_NOARP; 4250 4251 if (ill->ill_mactype == SUNW_DL_VNI) { 4252 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4253 } else if (ill->ill_phys_addr_length == 0 || 4254 ill->ill_mactype == DL_IPV4 || 4255 ill->ill_mactype == DL_IPV6) { 4256 /* 4257 * The underying link is point-to-point, so mark the 4258 * interface as such. We can do IP multicast over 4259 * such a link since it transmits all network-layer 4260 * packets to the remote side the same way. 4261 */ 4262 ill->ill_flags |= ILLF_MULTICAST; 4263 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4264 } 4265 } else { 4266 ill->ill_net_type = IRE_IF_RESOLVER; 4267 if (ill->ill_bcast_mp != NULL) 4268 freemsg(ill->ill_bcast_mp); 4269 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4270 ill->ill_bcast_addr_length, ill->ill_sap, 4271 ill->ill_sap_length); 4272 /* 4273 * Later detect lack of DLPI driver multicast 4274 * capability by catching DL_ENABMULTI errors in 4275 * ip_rput_dlpi. 4276 */ 4277 ill->ill_flags |= ILLF_MULTICAST; 4278 if (!ill->ill_isv6) 4279 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4280 } 4281 4282 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4283 if (ill->ill_mactype == SUNW_DL_IPMP) 4284 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4285 4286 /* By default an interface does not support any CoS marking */ 4287 ill->ill_flags &= ~ILLF_COS_ENABLED; 4288 4289 /* 4290 * If we get QoS information in DL_INFO_ACK, the device supports 4291 * some form of CoS marking, set ILLF_COS_ENABLED. 4292 */ 4293 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4294 dlia->dl_qos_length); 4295 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4296 ill->ill_flags |= ILLF_COS_ENABLED; 4297 } 4298 4299 /* Clear any previous error indication. */ 4300 ill->ill_error = 0; 4301 freemsg(mp); 4302 } 4303 4304 /* 4305 * Perform various checks to verify that an address would make sense as a 4306 * local, remote, or subnet interface address. 4307 */ 4308 static boolean_t 4309 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4310 { 4311 ipaddr_t net_mask; 4312 4313 /* 4314 * Don't allow all zeroes, or all ones, but allow 4315 * all ones netmask. 4316 */ 4317 if ((net_mask = ip_net_mask(addr)) == 0) 4318 return (B_FALSE); 4319 /* A given netmask overrides the "guess" netmask */ 4320 if (subnet_mask != 0) 4321 net_mask = subnet_mask; 4322 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4323 (addr == (addr | ~net_mask)))) { 4324 return (B_FALSE); 4325 } 4326 4327 /* 4328 * Even if the netmask is all ones, we do not allow address to be 4329 * 255.255.255.255 4330 */ 4331 if (addr == INADDR_BROADCAST) 4332 return (B_FALSE); 4333 4334 if (CLASSD(addr)) 4335 return (B_FALSE); 4336 4337 return (B_TRUE); 4338 } 4339 4340 #define V6_IPIF_LINKLOCAL(p) \ 4341 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4342 4343 /* 4344 * Compare two given ipifs and check if the second one is better than 4345 * the first one using the order of preference (not taking deprecated 4346 * into acount) specified in ipif_lookup_multicast(). 4347 */ 4348 static boolean_t 4349 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4350 { 4351 /* Check the least preferred first. */ 4352 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4353 /* If both ipifs are the same, use the first one. */ 4354 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4355 return (B_FALSE); 4356 else 4357 return (B_TRUE); 4358 } 4359 4360 /* For IPv6, check for link local address. */ 4361 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4362 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4363 V6_IPIF_LINKLOCAL(new_ipif)) { 4364 /* The second one is equal or less preferred. */ 4365 return (B_FALSE); 4366 } else { 4367 return (B_TRUE); 4368 } 4369 } 4370 4371 /* Then check for point to point interface. */ 4372 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4373 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4374 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4375 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4376 return (B_FALSE); 4377 } else { 4378 return (B_TRUE); 4379 } 4380 } 4381 4382 /* old_ipif is a normal interface, so no need to use the new one. */ 4383 return (B_FALSE); 4384 } 4385 4386 /* 4387 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4388 * The ipif must be up, and its ill must multicast-capable, not 4389 * condemned, not an underlying interface in an IPMP group, and 4390 * not a VNI interface. Order of preference: 4391 * 4392 * 1a. normal 4393 * 1b. normal, but deprecated 4394 * 2a. point to point 4395 * 2b. point to point, but deprecated 4396 * 3a. link local 4397 * 3b. link local, but deprecated 4398 * 4. loopback. 4399 */ 4400 static ipif_t * 4401 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4402 { 4403 ill_t *ill; 4404 ill_walk_context_t ctx; 4405 ipif_t *ipif; 4406 ipif_t *saved_ipif = NULL; 4407 ipif_t *dep_ipif = NULL; 4408 4409 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4410 if (isv6) 4411 ill = ILL_START_WALK_V6(&ctx, ipst); 4412 else 4413 ill = ILL_START_WALK_V4(&ctx, ipst); 4414 4415 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4416 mutex_enter(&ill->ill_lock); 4417 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4418 ILL_IS_CONDEMNED(ill) || 4419 !(ill->ill_flags & ILLF_MULTICAST)) { 4420 mutex_exit(&ill->ill_lock); 4421 continue; 4422 } 4423 for (ipif = ill->ill_ipif; ipif != NULL; 4424 ipif = ipif->ipif_next) { 4425 if (zoneid != ipif->ipif_zoneid && 4426 zoneid != ALL_ZONES && 4427 ipif->ipif_zoneid != ALL_ZONES) { 4428 continue; 4429 } 4430 if (!(ipif->ipif_flags & IPIF_UP) || 4431 IPIF_IS_CONDEMNED(ipif)) { 4432 continue; 4433 } 4434 4435 /* 4436 * Found one candidate. If it is deprecated, 4437 * remember it in dep_ipif. If it is not deprecated, 4438 * remember it in saved_ipif. 4439 */ 4440 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4441 if (dep_ipif == NULL) { 4442 dep_ipif = ipif; 4443 } else if (ipif_comp_multi(dep_ipif, ipif, 4444 isv6)) { 4445 /* 4446 * If the previous dep_ipif does not 4447 * belong to the same ill, we've done 4448 * a ipif_refhold() on it. So we need 4449 * to release it. 4450 */ 4451 if (dep_ipif->ipif_ill != ill) 4452 ipif_refrele(dep_ipif); 4453 dep_ipif = ipif; 4454 } 4455 continue; 4456 } 4457 if (saved_ipif == NULL) { 4458 saved_ipif = ipif; 4459 } else { 4460 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4461 if (saved_ipif->ipif_ill != ill) 4462 ipif_refrele(saved_ipif); 4463 saved_ipif = ipif; 4464 } 4465 } 4466 } 4467 /* 4468 * Before going to the next ill, do a ipif_refhold() on the 4469 * saved ones. 4470 */ 4471 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4472 ipif_refhold_locked(saved_ipif); 4473 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4474 ipif_refhold_locked(dep_ipif); 4475 mutex_exit(&ill->ill_lock); 4476 } 4477 rw_exit(&ipst->ips_ill_g_lock); 4478 4479 /* 4480 * If we have only the saved_ipif, return it. But if we have both 4481 * saved_ipif and dep_ipif, check to see which one is better. 4482 */ 4483 if (saved_ipif != NULL) { 4484 if (dep_ipif != NULL) { 4485 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4486 ipif_refrele(saved_ipif); 4487 return (dep_ipif); 4488 } else { 4489 ipif_refrele(dep_ipif); 4490 return (saved_ipif); 4491 } 4492 } 4493 return (saved_ipif); 4494 } else { 4495 return (dep_ipif); 4496 } 4497 } 4498 4499 ill_t * 4500 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4501 { 4502 ipif_t *ipif; 4503 ill_t *ill; 4504 4505 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4506 if (ipif == NULL) 4507 return (NULL); 4508 4509 ill = ipif->ipif_ill; 4510 ill_refhold(ill); 4511 ipif_refrele(ipif); 4512 return (ill); 4513 } 4514 4515 /* 4516 * This function is called when an application does not specify an interface 4517 * to be used for multicast traffic (joining a group/sending data). It 4518 * calls ire_lookup_multi() to look for an interface route for the 4519 * specified multicast group. Doing this allows the administrator to add 4520 * prefix routes for multicast to indicate which interface to be used for 4521 * multicast traffic in the above scenario. The route could be for all 4522 * multicast (224.0/4), for a single multicast group (a /32 route) or 4523 * anything in between. If there is no such multicast route, we just find 4524 * any multicast capable interface and return it. The returned ipif 4525 * is refhold'ed. 4526 * 4527 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4528 * unicast table. This is used by CGTP. 4529 */ 4530 ill_t * 4531 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4532 boolean_t *multirtp, ipaddr_t *setsrcp) 4533 { 4534 ill_t *ill; 4535 4536 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4537 if (ill != NULL) 4538 return (ill); 4539 4540 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4541 } 4542 4543 /* 4544 * Look for an ipif with the specified interface address and destination. 4545 * The destination address is used only for matching point-to-point interfaces. 4546 */ 4547 ipif_t * 4548 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4549 { 4550 ipif_t *ipif; 4551 ill_t *ill; 4552 ill_walk_context_t ctx; 4553 4554 /* 4555 * First match all the point-to-point interfaces 4556 * before looking at non-point-to-point interfaces. 4557 * This is done to avoid returning non-point-to-point 4558 * ipif instead of unnumbered point-to-point ipif. 4559 */ 4560 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4561 ill = ILL_START_WALK_V4(&ctx, ipst); 4562 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4563 mutex_enter(&ill->ill_lock); 4564 for (ipif = ill->ill_ipif; ipif != NULL; 4565 ipif = ipif->ipif_next) { 4566 /* Allow the ipif to be down */ 4567 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4568 (ipif->ipif_lcl_addr == if_addr) && 4569 (ipif->ipif_pp_dst_addr == dst)) { 4570 if (!IPIF_IS_CONDEMNED(ipif)) { 4571 ipif_refhold_locked(ipif); 4572 mutex_exit(&ill->ill_lock); 4573 rw_exit(&ipst->ips_ill_g_lock); 4574 return (ipif); 4575 } 4576 } 4577 } 4578 mutex_exit(&ill->ill_lock); 4579 } 4580 rw_exit(&ipst->ips_ill_g_lock); 4581 4582 /* lookup the ipif based on interface address */ 4583 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4584 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4585 return (ipif); 4586 } 4587 4588 /* 4589 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4590 */ 4591 static ipif_t * 4592 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4593 zoneid_t zoneid, ip_stack_t *ipst) 4594 { 4595 ipif_t *ipif; 4596 ill_t *ill; 4597 boolean_t ptp = B_FALSE; 4598 ill_walk_context_t ctx; 4599 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4600 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4601 4602 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4603 /* 4604 * Repeat twice, first based on local addresses and 4605 * next time for pointopoint. 4606 */ 4607 repeat: 4608 ill = ILL_START_WALK_V4(&ctx, ipst); 4609 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4610 if (match_ill != NULL && ill != match_ill && 4611 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4612 continue; 4613 } 4614 mutex_enter(&ill->ill_lock); 4615 for (ipif = ill->ill_ipif; ipif != NULL; 4616 ipif = ipif->ipif_next) { 4617 if (zoneid != ALL_ZONES && 4618 zoneid != ipif->ipif_zoneid && 4619 ipif->ipif_zoneid != ALL_ZONES) 4620 continue; 4621 4622 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4623 continue; 4624 4625 /* Allow the ipif to be down */ 4626 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4627 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4628 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4629 (ipif->ipif_pp_dst_addr == addr))) { 4630 if (!IPIF_IS_CONDEMNED(ipif)) { 4631 ipif_refhold_locked(ipif); 4632 mutex_exit(&ill->ill_lock); 4633 rw_exit(&ipst->ips_ill_g_lock); 4634 return (ipif); 4635 } 4636 } 4637 } 4638 mutex_exit(&ill->ill_lock); 4639 } 4640 4641 /* If we already did the ptp case, then we are done */ 4642 if (ptp) { 4643 rw_exit(&ipst->ips_ill_g_lock); 4644 return (NULL); 4645 } 4646 ptp = B_TRUE; 4647 goto repeat; 4648 } 4649 4650 /* 4651 * Lookup an ipif with the specified address. For point-to-point links we 4652 * look for matches on either the destination address or the local address, 4653 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4654 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4655 * (or illgrp if `match_ill' is in an IPMP group). 4656 */ 4657 ipif_t * 4658 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4659 ip_stack_t *ipst) 4660 { 4661 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4662 zoneid, ipst)); 4663 } 4664 4665 /* 4666 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4667 * except that we will only return an address if it is not marked as 4668 * IPIF_DUPLICATE 4669 */ 4670 ipif_t * 4671 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4672 ip_stack_t *ipst) 4673 { 4674 return (ipif_lookup_addr_common(addr, match_ill, 4675 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4676 zoneid, ipst)); 4677 } 4678 4679 /* 4680 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4681 * `match_ill' across the IPMP group. This function is only needed in some 4682 * corner-cases; almost everything should use ipif_lookup_addr(). 4683 */ 4684 ipif_t * 4685 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4686 { 4687 ASSERT(match_ill != NULL); 4688 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4689 ipst)); 4690 } 4691 4692 /* 4693 * Look for an ipif with the specified address. For point-point links 4694 * we look for matches on either the destination address and the local 4695 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4696 * is set. 4697 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4698 * ill (or illgrp if `match_ill' is in an IPMP group). 4699 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4700 */ 4701 zoneid_t 4702 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4703 { 4704 zoneid_t zoneid; 4705 ipif_t *ipif; 4706 ill_t *ill; 4707 boolean_t ptp = B_FALSE; 4708 ill_walk_context_t ctx; 4709 4710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4711 /* 4712 * Repeat twice, first based on local addresses and 4713 * next time for pointopoint. 4714 */ 4715 repeat: 4716 ill = ILL_START_WALK_V4(&ctx, ipst); 4717 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4718 if (match_ill != NULL && ill != match_ill && 4719 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4720 continue; 4721 } 4722 mutex_enter(&ill->ill_lock); 4723 for (ipif = ill->ill_ipif; ipif != NULL; 4724 ipif = ipif->ipif_next) { 4725 /* Allow the ipif to be down */ 4726 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4727 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4728 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4729 (ipif->ipif_pp_dst_addr == addr)) && 4730 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4731 zoneid = ipif->ipif_zoneid; 4732 mutex_exit(&ill->ill_lock); 4733 rw_exit(&ipst->ips_ill_g_lock); 4734 /* 4735 * If ipif_zoneid was ALL_ZONES then we have 4736 * a trusted extensions shared IP address. 4737 * In that case GLOBAL_ZONEID works to send. 4738 */ 4739 if (zoneid == ALL_ZONES) 4740 zoneid = GLOBAL_ZONEID; 4741 return (zoneid); 4742 } 4743 } 4744 mutex_exit(&ill->ill_lock); 4745 } 4746 4747 /* If we already did the ptp case, then we are done */ 4748 if (ptp) { 4749 rw_exit(&ipst->ips_ill_g_lock); 4750 return (ALL_ZONES); 4751 } 4752 ptp = B_TRUE; 4753 goto repeat; 4754 } 4755 4756 /* 4757 * Look for an ipif that matches the specified remote address i.e. the 4758 * ipif that would receive the specified packet. 4759 * First look for directly connected interfaces and then do a recursive 4760 * IRE lookup and pick the first ipif corresponding to the source address in the 4761 * ire. 4762 * Returns: held ipif 4763 * 4764 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4765 */ 4766 ipif_t * 4767 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4768 { 4769 ipif_t *ipif; 4770 4771 ASSERT(!ill->ill_isv6); 4772 4773 /* 4774 * Someone could be changing this ipif currently or change it 4775 * after we return this. Thus a few packets could use the old 4776 * old values. However structure updates/creates (ire, ilg, ilm etc) 4777 * will atomically be updated or cleaned up with the new value 4778 * Thus we don't need a lock to check the flags or other attrs below. 4779 */ 4780 mutex_enter(&ill->ill_lock); 4781 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4782 if (IPIF_IS_CONDEMNED(ipif)) 4783 continue; 4784 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4785 ipif->ipif_zoneid != ALL_ZONES) 4786 continue; 4787 /* Allow the ipif to be down */ 4788 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4789 if ((ipif->ipif_pp_dst_addr == addr) || 4790 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4791 ipif->ipif_lcl_addr == addr)) { 4792 ipif_refhold_locked(ipif); 4793 mutex_exit(&ill->ill_lock); 4794 return (ipif); 4795 } 4796 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4797 ipif_refhold_locked(ipif); 4798 mutex_exit(&ill->ill_lock); 4799 return (ipif); 4800 } 4801 } 4802 mutex_exit(&ill->ill_lock); 4803 /* 4804 * For a remote destination it isn't possible to nail down a particular 4805 * ipif. 4806 */ 4807 4808 /* Pick the first interface */ 4809 ipif = ipif_get_next_ipif(NULL, ill); 4810 return (ipif); 4811 } 4812 4813 /* 4814 * This func does not prevent refcnt from increasing. But if 4815 * the caller has taken steps to that effect, then this func 4816 * can be used to determine whether the ill has become quiescent 4817 */ 4818 static boolean_t 4819 ill_is_quiescent(ill_t *ill) 4820 { 4821 ipif_t *ipif; 4822 4823 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4824 4825 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4826 if (ipif->ipif_refcnt != 0) 4827 return (B_FALSE); 4828 } 4829 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4830 return (B_FALSE); 4831 } 4832 return (B_TRUE); 4833 } 4834 4835 boolean_t 4836 ill_is_freeable(ill_t *ill) 4837 { 4838 ipif_t *ipif; 4839 4840 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4841 4842 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4843 if (ipif->ipif_refcnt != 0) { 4844 return (B_FALSE); 4845 } 4846 } 4847 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4848 return (B_FALSE); 4849 } 4850 return (B_TRUE); 4851 } 4852 4853 /* 4854 * This func does not prevent refcnt from increasing. But if 4855 * the caller has taken steps to that effect, then this func 4856 * can be used to determine whether the ipif has become quiescent 4857 */ 4858 static boolean_t 4859 ipif_is_quiescent(ipif_t *ipif) 4860 { 4861 ill_t *ill; 4862 4863 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4864 4865 if (ipif->ipif_refcnt != 0) 4866 return (B_FALSE); 4867 4868 ill = ipif->ipif_ill; 4869 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4870 ill->ill_logical_down) { 4871 return (B_TRUE); 4872 } 4873 4874 /* This is the last ipif going down or being deleted on this ill */ 4875 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4876 return (B_FALSE); 4877 } 4878 4879 return (B_TRUE); 4880 } 4881 4882 /* 4883 * return true if the ipif can be destroyed: the ipif has to be quiescent 4884 * with zero references from ire/ilm to it. 4885 */ 4886 static boolean_t 4887 ipif_is_freeable(ipif_t *ipif) 4888 { 4889 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4890 ASSERT(ipif->ipif_id != 0); 4891 return (ipif->ipif_refcnt == 0); 4892 } 4893 4894 /* 4895 * The ipif/ill/ire has been refreled. Do the tail processing. 4896 * Determine if the ipif or ill in question has become quiescent and if so 4897 * wakeup close and/or restart any queued pending ioctl that is waiting 4898 * for the ipif_down (or ill_down) 4899 */ 4900 void 4901 ipif_ill_refrele_tail(ill_t *ill) 4902 { 4903 mblk_t *mp; 4904 conn_t *connp; 4905 ipsq_t *ipsq; 4906 ipxop_t *ipx; 4907 ipif_t *ipif; 4908 dl_notify_ind_t *dlindp; 4909 4910 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4911 4912 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4913 /* ip_modclose() may be waiting */ 4914 cv_broadcast(&ill->ill_cv); 4915 } 4916 4917 ipsq = ill->ill_phyint->phyint_ipsq; 4918 mutex_enter(&ipsq->ipsq_lock); 4919 ipx = ipsq->ipsq_xop; 4920 mutex_enter(&ipx->ipx_lock); 4921 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4922 goto unlock; 4923 4924 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4925 4926 ipif = ipx->ipx_pending_ipif; 4927 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4928 goto unlock; 4929 4930 switch (ipx->ipx_waitfor) { 4931 case IPIF_DOWN: 4932 if (!ipif_is_quiescent(ipif)) 4933 goto unlock; 4934 break; 4935 case IPIF_FREE: 4936 if (!ipif_is_freeable(ipif)) 4937 goto unlock; 4938 break; 4939 case ILL_DOWN: 4940 if (!ill_is_quiescent(ill)) 4941 goto unlock; 4942 break; 4943 case ILL_FREE: 4944 /* 4945 * ILL_FREE is only for loopback; normal ill teardown waits 4946 * synchronously in ip_modclose() without using ipx_waitfor, 4947 * handled by the cv_broadcast() at the top of this function. 4948 */ 4949 if (!ill_is_freeable(ill)) 4950 goto unlock; 4951 break; 4952 default: 4953 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4954 (void *)ipsq, ipx->ipx_waitfor); 4955 } 4956 4957 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4958 mutex_exit(&ipx->ipx_lock); 4959 mp = ipsq_pending_mp_get(ipsq, &connp); 4960 mutex_exit(&ipsq->ipsq_lock); 4961 mutex_exit(&ill->ill_lock); 4962 4963 ASSERT(mp != NULL); 4964 /* 4965 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4966 * we can only get here when the current operation decides it 4967 * it needs to quiesce via ipsq_pending_mp_add(). 4968 */ 4969 switch (mp->b_datap->db_type) { 4970 case M_PCPROTO: 4971 case M_PROTO: 4972 /* 4973 * For now, only DL_NOTIFY_IND messages can use this facility. 4974 */ 4975 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4976 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4977 4978 switch (dlindp->dl_notification) { 4979 case DL_NOTE_PHYS_ADDR: 4980 qwriter_ip(ill, ill->ill_rq, mp, 4981 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4982 return; 4983 case DL_NOTE_REPLUMB: 4984 qwriter_ip(ill, ill->ill_rq, mp, 4985 ill_replumb_tail, CUR_OP, B_TRUE); 4986 return; 4987 default: 4988 ASSERT(0); 4989 ill_refrele(ill); 4990 } 4991 break; 4992 4993 case M_ERROR: 4994 case M_HANGUP: 4995 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 4996 B_TRUE); 4997 return; 4998 4999 case M_IOCTL: 5000 case M_IOCDATA: 5001 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5002 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5003 return; 5004 5005 default: 5006 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5007 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5008 } 5009 return; 5010 unlock: 5011 mutex_exit(&ipsq->ipsq_lock); 5012 mutex_exit(&ipx->ipx_lock); 5013 mutex_exit(&ill->ill_lock); 5014 } 5015 5016 #ifdef DEBUG 5017 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5018 static void 5019 th_trace_rrecord(th_trace_t *th_trace) 5020 { 5021 tr_buf_t *tr_buf; 5022 uint_t lastref; 5023 5024 lastref = th_trace->th_trace_lastref; 5025 lastref++; 5026 if (lastref == TR_BUF_MAX) 5027 lastref = 0; 5028 th_trace->th_trace_lastref = lastref; 5029 tr_buf = &th_trace->th_trbuf[lastref]; 5030 tr_buf->tr_time = ddi_get_lbolt(); 5031 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5032 } 5033 5034 static void 5035 th_trace_free(void *value) 5036 { 5037 th_trace_t *th_trace = value; 5038 5039 ASSERT(th_trace->th_refcnt == 0); 5040 kmem_free(th_trace, sizeof (*th_trace)); 5041 } 5042 5043 /* 5044 * Find or create the per-thread hash table used to track object references. 5045 * The ipst argument is NULL if we shouldn't allocate. 5046 * 5047 * Accesses per-thread data, so there's no need to lock here. 5048 */ 5049 static mod_hash_t * 5050 th_trace_gethash(ip_stack_t *ipst) 5051 { 5052 th_hash_t *thh; 5053 5054 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5055 mod_hash_t *mh; 5056 char name[256]; 5057 size_t objsize, rshift; 5058 int retv; 5059 5060 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5061 return (NULL); 5062 (void) snprintf(name, sizeof (name), "th_trace_%p", 5063 (void *)curthread); 5064 5065 /* 5066 * We use mod_hash_create_extended here rather than the more 5067 * obvious mod_hash_create_ptrhash because the latter has a 5068 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5069 * block. 5070 */ 5071 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5072 MAX(sizeof (ire_t), sizeof (ncec_t))); 5073 rshift = highbit(objsize); 5074 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5075 th_trace_free, mod_hash_byptr, (void *)rshift, 5076 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5077 if (mh == NULL) { 5078 kmem_free(thh, sizeof (*thh)); 5079 return (NULL); 5080 } 5081 thh->thh_hash = mh; 5082 thh->thh_ipst = ipst; 5083 /* 5084 * We trace ills, ipifs, ires, and nces. All of these are 5085 * per-IP-stack, so the lock on the thread list is as well. 5086 */ 5087 rw_enter(&ip_thread_rwlock, RW_WRITER); 5088 list_insert_tail(&ip_thread_list, thh); 5089 rw_exit(&ip_thread_rwlock); 5090 retv = tsd_set(ip_thread_data, thh); 5091 ASSERT(retv == 0); 5092 } 5093 return (thh != NULL ? thh->thh_hash : NULL); 5094 } 5095 5096 boolean_t 5097 th_trace_ref(const void *obj, ip_stack_t *ipst) 5098 { 5099 th_trace_t *th_trace; 5100 mod_hash_t *mh; 5101 mod_hash_val_t val; 5102 5103 if ((mh = th_trace_gethash(ipst)) == NULL) 5104 return (B_FALSE); 5105 5106 /* 5107 * Attempt to locate the trace buffer for this obj and thread. 5108 * If it does not exist, then allocate a new trace buffer and 5109 * insert into the hash. 5110 */ 5111 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5112 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5113 if (th_trace == NULL) 5114 return (B_FALSE); 5115 5116 th_trace->th_id = curthread; 5117 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5118 (mod_hash_val_t)th_trace) != 0) { 5119 kmem_free(th_trace, sizeof (th_trace_t)); 5120 return (B_FALSE); 5121 } 5122 } else { 5123 th_trace = (th_trace_t *)val; 5124 } 5125 5126 ASSERT(th_trace->th_refcnt >= 0 && 5127 th_trace->th_refcnt < TR_BUF_MAX - 1); 5128 5129 th_trace->th_refcnt++; 5130 th_trace_rrecord(th_trace); 5131 return (B_TRUE); 5132 } 5133 5134 /* 5135 * For the purpose of tracing a reference release, we assume that global 5136 * tracing is always on and that the same thread initiated the reference hold 5137 * is releasing. 5138 */ 5139 void 5140 th_trace_unref(const void *obj) 5141 { 5142 int retv; 5143 mod_hash_t *mh; 5144 th_trace_t *th_trace; 5145 mod_hash_val_t val; 5146 5147 mh = th_trace_gethash(NULL); 5148 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5149 ASSERT(retv == 0); 5150 th_trace = (th_trace_t *)val; 5151 5152 ASSERT(th_trace->th_refcnt > 0); 5153 th_trace->th_refcnt--; 5154 th_trace_rrecord(th_trace); 5155 } 5156 5157 /* 5158 * If tracing has been disabled, then we assume that the reference counts are 5159 * now useless, and we clear them out before destroying the entries. 5160 */ 5161 void 5162 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5163 { 5164 th_hash_t *thh; 5165 mod_hash_t *mh; 5166 mod_hash_val_t val; 5167 th_trace_t *th_trace; 5168 int retv; 5169 5170 rw_enter(&ip_thread_rwlock, RW_READER); 5171 for (thh = list_head(&ip_thread_list); thh != NULL; 5172 thh = list_next(&ip_thread_list, thh)) { 5173 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5174 &val) == 0) { 5175 th_trace = (th_trace_t *)val; 5176 if (trace_disable) 5177 th_trace->th_refcnt = 0; 5178 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5179 ASSERT(retv == 0); 5180 } 5181 } 5182 rw_exit(&ip_thread_rwlock); 5183 } 5184 5185 void 5186 ipif_trace_ref(ipif_t *ipif) 5187 { 5188 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5189 5190 if (ipif->ipif_trace_disable) 5191 return; 5192 5193 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5194 ipif->ipif_trace_disable = B_TRUE; 5195 ipif_trace_cleanup(ipif); 5196 } 5197 } 5198 5199 void 5200 ipif_untrace_ref(ipif_t *ipif) 5201 { 5202 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5203 5204 if (!ipif->ipif_trace_disable) 5205 th_trace_unref(ipif); 5206 } 5207 5208 void 5209 ill_trace_ref(ill_t *ill) 5210 { 5211 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5212 5213 if (ill->ill_trace_disable) 5214 return; 5215 5216 if (!th_trace_ref(ill, ill->ill_ipst)) { 5217 ill->ill_trace_disable = B_TRUE; 5218 ill_trace_cleanup(ill); 5219 } 5220 } 5221 5222 void 5223 ill_untrace_ref(ill_t *ill) 5224 { 5225 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5226 5227 if (!ill->ill_trace_disable) 5228 th_trace_unref(ill); 5229 } 5230 5231 /* 5232 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5233 * failure, ipif_trace_disable is set. 5234 */ 5235 static void 5236 ipif_trace_cleanup(const ipif_t *ipif) 5237 { 5238 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5239 } 5240 5241 /* 5242 * Called when ill is unplumbed or when memory alloc fails. Note that on 5243 * failure, ill_trace_disable is set. 5244 */ 5245 static void 5246 ill_trace_cleanup(const ill_t *ill) 5247 { 5248 th_trace_cleanup(ill, ill->ill_trace_disable); 5249 } 5250 #endif /* DEBUG */ 5251 5252 void 5253 ipif_refhold_locked(ipif_t *ipif) 5254 { 5255 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5256 ipif->ipif_refcnt++; 5257 IPIF_TRACE_REF(ipif); 5258 } 5259 5260 void 5261 ipif_refhold(ipif_t *ipif) 5262 { 5263 ill_t *ill; 5264 5265 ill = ipif->ipif_ill; 5266 mutex_enter(&ill->ill_lock); 5267 ipif->ipif_refcnt++; 5268 IPIF_TRACE_REF(ipif); 5269 mutex_exit(&ill->ill_lock); 5270 } 5271 5272 /* 5273 * Must not be called while holding any locks. Otherwise if this is 5274 * the last reference to be released there is a chance of recursive mutex 5275 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5276 * to restart an ioctl. 5277 */ 5278 void 5279 ipif_refrele(ipif_t *ipif) 5280 { 5281 ill_t *ill; 5282 5283 ill = ipif->ipif_ill; 5284 5285 mutex_enter(&ill->ill_lock); 5286 ASSERT(ipif->ipif_refcnt != 0); 5287 ipif->ipif_refcnt--; 5288 IPIF_UNTRACE_REF(ipif); 5289 if (ipif->ipif_refcnt != 0) { 5290 mutex_exit(&ill->ill_lock); 5291 return; 5292 } 5293 5294 /* Drops the ill_lock */ 5295 ipif_ill_refrele_tail(ill); 5296 } 5297 5298 ipif_t * 5299 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5300 { 5301 ipif_t *ipif; 5302 5303 mutex_enter(&ill->ill_lock); 5304 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5305 ipif != NULL; ipif = ipif->ipif_next) { 5306 if (IPIF_IS_CONDEMNED(ipif)) 5307 continue; 5308 ipif_refhold_locked(ipif); 5309 mutex_exit(&ill->ill_lock); 5310 return (ipif); 5311 } 5312 mutex_exit(&ill->ill_lock); 5313 return (NULL); 5314 } 5315 5316 /* 5317 * TODO: make this table extendible at run time 5318 * Return a pointer to the mac type info for 'mac_type' 5319 */ 5320 static ip_m_t * 5321 ip_m_lookup(t_uscalar_t mac_type) 5322 { 5323 ip_m_t *ipm; 5324 5325 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5326 if (ipm->ip_m_mac_type == mac_type) 5327 return (ipm); 5328 return (NULL); 5329 } 5330 5331 /* 5332 * Make a link layer address from the multicast IP address *addr. 5333 * To form the link layer address, invoke the ip_m_v*mapping function 5334 * associated with the link-layer type. 5335 */ 5336 void 5337 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5338 { 5339 ip_m_t *ipm; 5340 5341 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5342 return; 5343 5344 ASSERT(addr != NULL); 5345 5346 ipm = ip_m_lookup(ill->ill_mactype); 5347 if (ipm == NULL || 5348 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5349 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5350 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5351 ill->ill_name, ill->ill_mactype)); 5352 return; 5353 } 5354 if (ill->ill_isv6) 5355 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5356 else 5357 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5358 } 5359 5360 /* 5361 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5362 * Otherwise returns B_TRUE. 5363 * 5364 * The netmask can be verified to be contiguous with 32 shifts and or 5365 * operations. Take the contiguous mask (in host byte order) and compute 5366 * mask | mask << 1 | mask << 2 | ... | mask << 31 5367 * the result will be the same as the 'mask' for contiguous mask. 5368 */ 5369 static boolean_t 5370 ip_contiguous_mask(uint32_t mask) 5371 { 5372 uint32_t m = mask; 5373 int i; 5374 5375 for (i = 1; i < 32; i++) 5376 m |= (mask << i); 5377 5378 return (m == mask); 5379 } 5380 5381 /* 5382 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5383 * ill is passed in to associate it with the correct interface. 5384 * If ire_arg is set, then we return the held IRE in that location. 5385 */ 5386 int 5387 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5388 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5389 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5390 { 5391 ire_t *ire, *nire; 5392 ire_t *gw_ire = NULL; 5393 ipif_t *ipif = NULL; 5394 uint_t type; 5395 int match_flags = MATCH_IRE_TYPE; 5396 tsol_gc_t *gc = NULL; 5397 tsol_gcgrp_t *gcgrp = NULL; 5398 boolean_t gcgrp_xtraref = B_FALSE; 5399 boolean_t cgtp_broadcast; 5400 boolean_t unbound = B_FALSE; 5401 5402 ip1dbg(("ip_rt_add:")); 5403 5404 if (ire_arg != NULL) 5405 *ire_arg = NULL; 5406 5407 /* disallow non-contiguous netmasks */ 5408 if (!ip_contiguous_mask(ntohl(mask))) 5409 return (ENOTSUP); 5410 5411 /* 5412 * If this is the case of RTF_HOST being set, then we set the netmask 5413 * to all ones (regardless if one was supplied). 5414 */ 5415 if (flags & RTF_HOST) 5416 mask = IP_HOST_MASK; 5417 5418 /* 5419 * Prevent routes with a zero gateway from being created (since 5420 * interfaces can currently be plumbed and brought up no assigned 5421 * address). 5422 */ 5423 if (gw_addr == 0) 5424 return (ENETUNREACH); 5425 /* 5426 * Get the ipif, if any, corresponding to the gw_addr 5427 * If -ifp was specified we restrict ourselves to the ill, otherwise 5428 * we match on the gatway and destination to handle unnumbered pt-pt 5429 * interfaces. 5430 */ 5431 if (ill != NULL) 5432 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5433 else 5434 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5435 if (ipif != NULL) { 5436 if (IS_VNI(ipif->ipif_ill)) { 5437 ipif_refrele(ipif); 5438 return (EINVAL); 5439 } 5440 } 5441 5442 /* 5443 * GateD will attempt to create routes with a loopback interface 5444 * address as the gateway and with RTF_GATEWAY set. We allow 5445 * these routes to be added, but create them as interface routes 5446 * since the gateway is an interface address. 5447 */ 5448 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5449 flags &= ~RTF_GATEWAY; 5450 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5451 mask == IP_HOST_MASK) { 5452 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5453 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5454 NULL); 5455 if (ire != NULL) { 5456 ire_refrele(ire); 5457 ipif_refrele(ipif); 5458 return (EEXIST); 5459 } 5460 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5461 "for 0x%x\n", (void *)ipif, 5462 ipif->ipif_ire_type, 5463 ntohl(ipif->ipif_lcl_addr))); 5464 ire = ire_create( 5465 (uchar_t *)&dst_addr, /* dest address */ 5466 (uchar_t *)&mask, /* mask */ 5467 NULL, /* no gateway */ 5468 ipif->ipif_ire_type, /* LOOPBACK */ 5469 ipif->ipif_ill, 5470 zoneid, 5471 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5472 NULL, 5473 ipst); 5474 5475 if (ire == NULL) { 5476 ipif_refrele(ipif); 5477 return (ENOMEM); 5478 } 5479 /* src address assigned by the caller? */ 5480 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5481 ire->ire_setsrc_addr = src_addr; 5482 5483 nire = ire_add(ire); 5484 if (nire == NULL) { 5485 /* 5486 * In the result of failure, ire_add() will have 5487 * already deleted the ire in question, so there 5488 * is no need to do that here. 5489 */ 5490 ipif_refrele(ipif); 5491 return (ENOMEM); 5492 } 5493 /* 5494 * Check if it was a duplicate entry. This handles 5495 * the case of two racing route adds for the same route 5496 */ 5497 if (nire != ire) { 5498 ASSERT(nire->ire_identical_ref > 1); 5499 ire_delete(nire); 5500 ire_refrele(nire); 5501 ipif_refrele(ipif); 5502 return (EEXIST); 5503 } 5504 ire = nire; 5505 goto save_ire; 5506 } 5507 } 5508 5509 /* 5510 * The routes for multicast with CGTP are quite special in that 5511 * the gateway is the local interface address, yet RTF_GATEWAY 5512 * is set. We turn off RTF_GATEWAY to provide compatibility with 5513 * this undocumented and unusual use of multicast routes. 5514 */ 5515 if ((flags & RTF_MULTIRT) && ipif != NULL) 5516 flags &= ~RTF_GATEWAY; 5517 5518 /* 5519 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5520 * and the gateway address provided is one of the system's interface 5521 * addresses. By using the routing socket interface and supplying an 5522 * RTA_IFP sockaddr with an interface index, an alternate method of 5523 * specifying an interface route to be created is available which uses 5524 * the interface index that specifies the outgoing interface rather than 5525 * the address of an outgoing interface (which may not be able to 5526 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5527 * flag, routes can be specified which not only specify the next-hop to 5528 * be used when routing to a certain prefix, but also which outgoing 5529 * interface should be used. 5530 * 5531 * Previously, interfaces would have unique addresses assigned to them 5532 * and so the address assigned to a particular interface could be used 5533 * to identify a particular interface. One exception to this was the 5534 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5535 * 5536 * With the advent of IPv6 and its link-local addresses, this 5537 * restriction was relaxed and interfaces could share addresses between 5538 * themselves. In fact, typically all of the link-local interfaces on 5539 * an IPv6 node or router will have the same link-local address. In 5540 * order to differentiate between these interfaces, the use of an 5541 * interface index is necessary and this index can be carried inside a 5542 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5543 * of using the interface index, however, is that all of the ipif's that 5544 * are part of an ill have the same index and so the RTA_IFP sockaddr 5545 * cannot be used to differentiate between ipif's (or logical 5546 * interfaces) that belong to the same ill (physical interface). 5547 * 5548 * For example, in the following case involving IPv4 interfaces and 5549 * logical interfaces 5550 * 5551 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5552 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5553 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5554 * 5555 * the ipif's corresponding to each of these interface routes can be 5556 * uniquely identified by the "gateway" (actually interface address). 5557 * 5558 * In this case involving multiple IPv6 default routes to a particular 5559 * link-local gateway, the use of RTA_IFP is necessary to specify which 5560 * default route is of interest: 5561 * 5562 * default fe80::123:4567:89ab:cdef U if0 5563 * default fe80::123:4567:89ab:cdef U if1 5564 */ 5565 5566 /* RTF_GATEWAY not set */ 5567 if (!(flags & RTF_GATEWAY)) { 5568 if (sp != NULL) { 5569 ip2dbg(("ip_rt_add: gateway security attributes " 5570 "cannot be set with interface route\n")); 5571 if (ipif != NULL) 5572 ipif_refrele(ipif); 5573 return (EINVAL); 5574 } 5575 5576 /* 5577 * Whether or not ill (RTA_IFP) is set, we require that 5578 * the gateway is one of our local addresses. 5579 */ 5580 if (ipif == NULL) 5581 return (ENETUNREACH); 5582 5583 /* 5584 * We use MATCH_IRE_ILL here. If the caller specified an 5585 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5586 * we use the ill derived from the gateway address. 5587 * We can always match the gateway address since we record it 5588 * in ire_gateway_addr. 5589 * We don't allow RTA_IFP to specify a different ill than the 5590 * one matching the ipif to make sure we can delete the route. 5591 */ 5592 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5593 if (ill == NULL) { 5594 ill = ipif->ipif_ill; 5595 } else if (ill != ipif->ipif_ill) { 5596 ipif_refrele(ipif); 5597 return (EINVAL); 5598 } 5599 5600 /* 5601 * We check for an existing entry at this point. 5602 * 5603 * Since a netmask isn't passed in via the ioctl interface 5604 * (SIOCADDRT), we don't check for a matching netmask in that 5605 * case. 5606 */ 5607 if (!ioctl_msg) 5608 match_flags |= MATCH_IRE_MASK; 5609 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5610 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5611 NULL); 5612 if (ire != NULL) { 5613 ire_refrele(ire); 5614 ipif_refrele(ipif); 5615 return (EEXIST); 5616 } 5617 5618 /* 5619 * Some software (for example, GateD and Sun Cluster) attempts 5620 * to create (what amount to) IRE_PREFIX routes with the 5621 * loopback address as the gateway. This is primarily done to 5622 * set up prefixes with the RTF_REJECT flag set (for example, 5623 * when generating aggregate routes.) 5624 * 5625 * If the IRE type (as defined by ill->ill_net_type) would be 5626 * IRE_LOOPBACK, then we map the request into a 5627 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5628 * these interface routes, by definition, can only be that. 5629 * 5630 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5631 * routine, but rather using ire_create() directly. 5632 * 5633 */ 5634 type = ill->ill_net_type; 5635 if (type == IRE_LOOPBACK) { 5636 type = IRE_IF_NORESOLVER; 5637 flags |= RTF_BLACKHOLE; 5638 } 5639 5640 /* 5641 * Create a copy of the IRE_IF_NORESOLVER or 5642 * IRE_IF_RESOLVER with the modified address, netmask, and 5643 * gateway. 5644 */ 5645 ire = ire_create( 5646 (uchar_t *)&dst_addr, 5647 (uint8_t *)&mask, 5648 (uint8_t *)&gw_addr, 5649 type, 5650 ill, 5651 zoneid, 5652 flags, 5653 NULL, 5654 ipst); 5655 if (ire == NULL) { 5656 ipif_refrele(ipif); 5657 return (ENOMEM); 5658 } 5659 5660 /* src address assigned by the caller? */ 5661 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5662 ire->ire_setsrc_addr = src_addr; 5663 5664 nire = ire_add(ire); 5665 if (nire == NULL) { 5666 /* 5667 * In the result of failure, ire_add() will have 5668 * already deleted the ire in question, so there 5669 * is no need to do that here. 5670 */ 5671 ipif_refrele(ipif); 5672 return (ENOMEM); 5673 } 5674 /* 5675 * Check if it was a duplicate entry. This handles 5676 * the case of two racing route adds for the same route 5677 */ 5678 if (nire != ire) { 5679 ire_delete(nire); 5680 ire_refrele(nire); 5681 ipif_refrele(ipif); 5682 return (EEXIST); 5683 } 5684 ire = nire; 5685 goto save_ire; 5686 } 5687 5688 /* 5689 * Get an interface IRE for the specified gateway. 5690 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5691 * gateway, it is currently unreachable and we fail the request 5692 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5693 * is an IRE_LOCAL or IRE_LOOPBACK. 5694 * If RTA_IFP was specified we look on that particular ill. 5695 */ 5696 if (ill != NULL) 5697 match_flags |= MATCH_IRE_ILL; 5698 5699 /* Check whether the gateway is reachable. */ 5700 again: 5701 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5702 if (flags & RTF_INDIRECT) 5703 type |= IRE_OFFLINK; 5704 5705 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5706 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5707 if (gw_ire == NULL) { 5708 /* 5709 * With IPMP, we allow host routes to influence in.mpathd's 5710 * target selection. However, if the test addresses are on 5711 * their own network, the above lookup will fail since the 5712 * underlying IRE_INTERFACEs are marked hidden. So allow 5713 * hidden test IREs to be found and try again. 5714 */ 5715 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5716 match_flags |= MATCH_IRE_TESTHIDDEN; 5717 goto again; 5718 } 5719 if (ipif != NULL) 5720 ipif_refrele(ipif); 5721 return (ENETUNREACH); 5722 } 5723 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5724 ire_refrele(gw_ire); 5725 if (ipif != NULL) 5726 ipif_refrele(ipif); 5727 return (ENETUNREACH); 5728 } 5729 5730 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5731 unbound = B_TRUE; 5732 if (ipst->ips_ip_strict_src_multihoming > 0) 5733 ill = gw_ire->ire_ill; 5734 } 5735 5736 /* 5737 * We create one of three types of IREs as a result of this request 5738 * based on the netmask. A netmask of all ones (which is automatically 5739 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5740 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5741 * created. Otherwise, an IRE_PREFIX route is created for the 5742 * destination prefix. 5743 */ 5744 if (mask == IP_HOST_MASK) 5745 type = IRE_HOST; 5746 else if (mask == 0) 5747 type = IRE_DEFAULT; 5748 else 5749 type = IRE_PREFIX; 5750 5751 /* check for a duplicate entry */ 5752 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5753 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5754 0, ipst, NULL); 5755 if (ire != NULL) { 5756 if (ipif != NULL) 5757 ipif_refrele(ipif); 5758 ire_refrele(gw_ire); 5759 ire_refrele(ire); 5760 return (EEXIST); 5761 } 5762 5763 /* Security attribute exists */ 5764 if (sp != NULL) { 5765 tsol_gcgrp_addr_t ga; 5766 5767 /* find or create the gateway credentials group */ 5768 ga.ga_af = AF_INET; 5769 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5770 5771 /* we hold reference to it upon success */ 5772 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5773 if (gcgrp == NULL) { 5774 if (ipif != NULL) 5775 ipif_refrele(ipif); 5776 ire_refrele(gw_ire); 5777 return (ENOMEM); 5778 } 5779 5780 /* 5781 * Create and add the security attribute to the group; a 5782 * reference to the group is made upon allocating a new 5783 * entry successfully. If it finds an already-existing 5784 * entry for the security attribute in the group, it simply 5785 * returns it and no new reference is made to the group. 5786 */ 5787 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5788 if (gc == NULL) { 5789 if (ipif != NULL) 5790 ipif_refrele(ipif); 5791 /* release reference held by gcgrp_lookup */ 5792 GCGRP_REFRELE(gcgrp); 5793 ire_refrele(gw_ire); 5794 return (ENOMEM); 5795 } 5796 } 5797 5798 /* Create the IRE. */ 5799 ire = ire_create( 5800 (uchar_t *)&dst_addr, /* dest address */ 5801 (uchar_t *)&mask, /* mask */ 5802 (uchar_t *)&gw_addr, /* gateway address */ 5803 (ushort_t)type, /* IRE type */ 5804 ill, 5805 zoneid, 5806 flags, 5807 gc, /* security attribute */ 5808 ipst); 5809 5810 /* 5811 * The ire holds a reference to the 'gc' and the 'gc' holds a 5812 * reference to the 'gcgrp'. We can now release the extra reference 5813 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5814 */ 5815 if (gcgrp_xtraref) 5816 GCGRP_REFRELE(gcgrp); 5817 if (ire == NULL) { 5818 if (gc != NULL) 5819 GC_REFRELE(gc); 5820 if (ipif != NULL) 5821 ipif_refrele(ipif); 5822 ire_refrele(gw_ire); 5823 return (ENOMEM); 5824 } 5825 5826 /* Before we add, check if an extra CGTP broadcast is needed */ 5827 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5828 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5829 5830 /* src address assigned by the caller? */ 5831 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5832 ire->ire_setsrc_addr = src_addr; 5833 5834 ire->ire_unbound = unbound; 5835 5836 /* 5837 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5838 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5839 */ 5840 5841 /* Add the new IRE. */ 5842 nire = ire_add(ire); 5843 if (nire == NULL) { 5844 /* 5845 * In the result of failure, ire_add() will have 5846 * already deleted the ire in question, so there 5847 * is no need to do that here. 5848 */ 5849 if (ipif != NULL) 5850 ipif_refrele(ipif); 5851 ire_refrele(gw_ire); 5852 return (ENOMEM); 5853 } 5854 /* 5855 * Check if it was a duplicate entry. This handles 5856 * the case of two racing route adds for the same route 5857 */ 5858 if (nire != ire) { 5859 ire_delete(nire); 5860 ire_refrele(nire); 5861 if (ipif != NULL) 5862 ipif_refrele(ipif); 5863 ire_refrele(gw_ire); 5864 return (EEXIST); 5865 } 5866 ire = nire; 5867 5868 if (flags & RTF_MULTIRT) { 5869 /* 5870 * Invoke the CGTP (multirouting) filtering module 5871 * to add the dst address in the filtering database. 5872 * Replicated inbound packets coming from that address 5873 * will be filtered to discard the duplicates. 5874 * It is not necessary to call the CGTP filter hook 5875 * when the dst address is a broadcast or multicast, 5876 * because an IP source address cannot be a broadcast 5877 * or a multicast. 5878 */ 5879 if (cgtp_broadcast) { 5880 ip_cgtp_bcast_add(ire, ipst); 5881 goto save_ire; 5882 } 5883 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5884 !CLASSD(ire->ire_addr)) { 5885 int res; 5886 ipif_t *src_ipif; 5887 5888 /* Find the source address corresponding to gw_ire */ 5889 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5890 NULL, zoneid, ipst); 5891 if (src_ipif != NULL) { 5892 res = ipst->ips_ip_cgtp_filter_ops-> 5893 cfo_add_dest_v4( 5894 ipst->ips_netstack->netstack_stackid, 5895 ire->ire_addr, 5896 ire->ire_gateway_addr, 5897 ire->ire_setsrc_addr, 5898 src_ipif->ipif_lcl_addr); 5899 ipif_refrele(src_ipif); 5900 } else { 5901 res = EADDRNOTAVAIL; 5902 } 5903 if (res != 0) { 5904 if (ipif != NULL) 5905 ipif_refrele(ipif); 5906 ire_refrele(gw_ire); 5907 ire_delete(ire); 5908 ire_refrele(ire); /* Held in ire_add */ 5909 return (res); 5910 } 5911 } 5912 } 5913 5914 save_ire: 5915 if (gw_ire != NULL) { 5916 ire_refrele(gw_ire); 5917 gw_ire = NULL; 5918 } 5919 if (ill != NULL) { 5920 /* 5921 * Save enough information so that we can recreate the IRE if 5922 * the interface goes down and then up. The metrics associated 5923 * with the route will be saved as well when rts_setmetrics() is 5924 * called after the IRE has been created. In the case where 5925 * memory cannot be allocated, none of this information will be 5926 * saved. 5927 */ 5928 ill_save_ire(ill, ire); 5929 } 5930 if (ioctl_msg) 5931 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5932 if (ire_arg != NULL) { 5933 /* 5934 * Store the ire that was successfully added into where ire_arg 5935 * points to so that callers don't have to look it up 5936 * themselves (but they are responsible for ire_refrele()ing 5937 * the ire when they are finished with it). 5938 */ 5939 *ire_arg = ire; 5940 } else { 5941 ire_refrele(ire); /* Held in ire_add */ 5942 } 5943 if (ipif != NULL) 5944 ipif_refrele(ipif); 5945 return (0); 5946 } 5947 5948 /* 5949 * ip_rt_delete is called to delete an IPv4 route. 5950 * ill is passed in to associate it with the correct interface. 5951 */ 5952 /* ARGSUSED4 */ 5953 int 5954 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5955 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5956 ip_stack_t *ipst, zoneid_t zoneid) 5957 { 5958 ire_t *ire = NULL; 5959 ipif_t *ipif; 5960 uint_t type; 5961 uint_t match_flags = MATCH_IRE_TYPE; 5962 int err = 0; 5963 5964 ip1dbg(("ip_rt_delete:")); 5965 /* 5966 * If this is the case of RTF_HOST being set, then we set the netmask 5967 * to all ones. Otherwise, we use the netmask if one was supplied. 5968 */ 5969 if (flags & RTF_HOST) { 5970 mask = IP_HOST_MASK; 5971 match_flags |= MATCH_IRE_MASK; 5972 } else if (rtm_addrs & RTA_NETMASK) { 5973 match_flags |= MATCH_IRE_MASK; 5974 } 5975 5976 /* 5977 * Note that RTF_GATEWAY is never set on a delete, therefore 5978 * we check if the gateway address is one of our interfaces first, 5979 * and fall back on RTF_GATEWAY routes. 5980 * 5981 * This makes it possible to delete an original 5982 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5983 * However, we have RTF_KERNEL set on the ones created by ipif_up 5984 * and those can not be deleted here. 5985 * 5986 * We use MATCH_IRE_ILL if we know the interface. If the caller 5987 * specified an interface (from the RTA_IFP sockaddr) we use it, 5988 * otherwise we use the ill derived from the gateway address. 5989 * We can always match the gateway address since we record it 5990 * in ire_gateway_addr. 5991 * 5992 * For more detail on specifying routes by gateway address and by 5993 * interface index, see the comments in ip_rt_add(). 5994 */ 5995 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5996 if (ipif != NULL) { 5997 ill_t *ill_match; 5998 5999 if (ill != NULL) 6000 ill_match = ill; 6001 else 6002 ill_match = ipif->ipif_ill; 6003 6004 match_flags |= MATCH_IRE_ILL; 6005 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6006 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6007 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6008 match_flags, 0, ipst, NULL); 6009 } 6010 if (ire == NULL) { 6011 match_flags |= MATCH_IRE_GW; 6012 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6013 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6014 match_flags, 0, ipst, NULL); 6015 } 6016 /* Avoid deleting routes created by kernel from an ipif */ 6017 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6018 ire_refrele(ire); 6019 ire = NULL; 6020 } 6021 6022 /* Restore in case we didn't find a match */ 6023 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6024 } 6025 6026 if (ire == NULL) { 6027 /* 6028 * At this point, the gateway address is not one of our own 6029 * addresses or a matching interface route was not found. We 6030 * set the IRE type to lookup based on whether 6031 * this is a host route, a default route or just a prefix. 6032 * 6033 * If an ill was passed in, then the lookup is based on an 6034 * interface index so MATCH_IRE_ILL is added to match_flags. 6035 */ 6036 match_flags |= MATCH_IRE_GW; 6037 if (ill != NULL) 6038 match_flags |= MATCH_IRE_ILL; 6039 if (mask == IP_HOST_MASK) 6040 type = IRE_HOST; 6041 else if (mask == 0) 6042 type = IRE_DEFAULT; 6043 else 6044 type = IRE_PREFIX; 6045 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6046 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6047 } 6048 6049 if (ipif != NULL) { 6050 ipif_refrele(ipif); 6051 ipif = NULL; 6052 } 6053 6054 if (ire == NULL) 6055 return (ESRCH); 6056 6057 if (ire->ire_flags & RTF_MULTIRT) { 6058 /* 6059 * Invoke the CGTP (multirouting) filtering module 6060 * to remove the dst address from the filtering database. 6061 * Packets coming from that address will no longer be 6062 * filtered to remove duplicates. 6063 */ 6064 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6065 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6066 ipst->ips_netstack->netstack_stackid, 6067 ire->ire_addr, ire->ire_gateway_addr); 6068 } 6069 ip_cgtp_bcast_delete(ire, ipst); 6070 } 6071 6072 ill = ire->ire_ill; 6073 if (ill != NULL) 6074 ill_remove_saved_ire(ill, ire); 6075 if (ioctl_msg) 6076 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6077 ire_delete(ire); 6078 ire_refrele(ire); 6079 return (err); 6080 } 6081 6082 /* 6083 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6084 */ 6085 /* ARGSUSED */ 6086 int 6087 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6088 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6089 { 6090 ipaddr_t dst_addr; 6091 ipaddr_t gw_addr; 6092 ipaddr_t mask; 6093 int error = 0; 6094 mblk_t *mp1; 6095 struct rtentry *rt; 6096 ipif_t *ipif = NULL; 6097 ip_stack_t *ipst; 6098 6099 ASSERT(q->q_next == NULL); 6100 ipst = CONNQ_TO_IPST(q); 6101 6102 ip1dbg(("ip_siocaddrt:")); 6103 /* Existence of mp1 verified in ip_wput_nondata */ 6104 mp1 = mp->b_cont->b_cont; 6105 rt = (struct rtentry *)mp1->b_rptr; 6106 6107 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6108 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6109 6110 /* 6111 * If the RTF_HOST flag is on, this is a request to assign a gateway 6112 * to a particular host address. In this case, we set the netmask to 6113 * all ones for the particular destination address. Otherwise, 6114 * determine the netmask to be used based on dst_addr and the interfaces 6115 * in use. 6116 */ 6117 if (rt->rt_flags & RTF_HOST) { 6118 mask = IP_HOST_MASK; 6119 } else { 6120 /* 6121 * Note that ip_subnet_mask returns a zero mask in the case of 6122 * default (an all-zeroes address). 6123 */ 6124 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6125 } 6126 6127 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6128 B_TRUE, NULL, ipst, ALL_ZONES); 6129 if (ipif != NULL) 6130 ipif_refrele(ipif); 6131 return (error); 6132 } 6133 6134 /* 6135 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6136 */ 6137 /* ARGSUSED */ 6138 int 6139 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6140 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6141 { 6142 ipaddr_t dst_addr; 6143 ipaddr_t gw_addr; 6144 ipaddr_t mask; 6145 int error; 6146 mblk_t *mp1; 6147 struct rtentry *rt; 6148 ipif_t *ipif = NULL; 6149 ip_stack_t *ipst; 6150 6151 ASSERT(q->q_next == NULL); 6152 ipst = CONNQ_TO_IPST(q); 6153 6154 ip1dbg(("ip_siocdelrt:")); 6155 /* Existence of mp1 verified in ip_wput_nondata */ 6156 mp1 = mp->b_cont->b_cont; 6157 rt = (struct rtentry *)mp1->b_rptr; 6158 6159 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6160 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6161 6162 /* 6163 * If the RTF_HOST flag is on, this is a request to delete a gateway 6164 * to a particular host address. In this case, we set the netmask to 6165 * all ones for the particular destination address. Otherwise, 6166 * determine the netmask to be used based on dst_addr and the interfaces 6167 * in use. 6168 */ 6169 if (rt->rt_flags & RTF_HOST) { 6170 mask = IP_HOST_MASK; 6171 } else { 6172 /* 6173 * Note that ip_subnet_mask returns a zero mask in the case of 6174 * default (an all-zeroes address). 6175 */ 6176 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6177 } 6178 6179 error = ip_rt_delete(dst_addr, mask, gw_addr, 6180 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6181 ipst, ALL_ZONES); 6182 if (ipif != NULL) 6183 ipif_refrele(ipif); 6184 return (error); 6185 } 6186 6187 /* 6188 * Enqueue the mp onto the ipsq, chained by b_next. 6189 * b_prev stores the function to be executed later, and b_queue the queue 6190 * where this mp originated. 6191 */ 6192 void 6193 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6194 ill_t *pending_ill) 6195 { 6196 conn_t *connp; 6197 ipxop_t *ipx = ipsq->ipsq_xop; 6198 6199 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6200 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6201 ASSERT(func != NULL); 6202 6203 mp->b_queue = q; 6204 mp->b_prev = (void *)func; 6205 mp->b_next = NULL; 6206 6207 switch (type) { 6208 case CUR_OP: 6209 if (ipx->ipx_mptail != NULL) { 6210 ASSERT(ipx->ipx_mphead != NULL); 6211 ipx->ipx_mptail->b_next = mp; 6212 } else { 6213 ASSERT(ipx->ipx_mphead == NULL); 6214 ipx->ipx_mphead = mp; 6215 } 6216 ipx->ipx_mptail = mp; 6217 break; 6218 6219 case NEW_OP: 6220 if (ipsq->ipsq_xopq_mptail != NULL) { 6221 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6222 ipsq->ipsq_xopq_mptail->b_next = mp; 6223 } else { 6224 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6225 ipsq->ipsq_xopq_mphead = mp; 6226 } 6227 ipsq->ipsq_xopq_mptail = mp; 6228 ipx->ipx_ipsq_queued = B_TRUE; 6229 break; 6230 6231 case SWITCH_OP: 6232 ASSERT(ipsq->ipsq_swxop != NULL); 6233 /* only one switch operation is currently allowed */ 6234 ASSERT(ipsq->ipsq_switch_mp == NULL); 6235 ipsq->ipsq_switch_mp = mp; 6236 ipx->ipx_ipsq_queued = B_TRUE; 6237 break; 6238 default: 6239 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6240 } 6241 6242 if (CONN_Q(q) && pending_ill != NULL) { 6243 connp = Q_TO_CONN(q); 6244 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6245 connp->conn_oper_pending_ill = pending_ill; 6246 } 6247 } 6248 6249 /* 6250 * Dequeue the next message that requested exclusive access to this IPSQ's 6251 * xop. Specifically: 6252 * 6253 * 1. If we're still processing the current operation on `ipsq', then 6254 * dequeue the next message for the operation (from ipx_mphead), or 6255 * return NULL if there are no queued messages for the operation. 6256 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6257 * 6258 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6259 * not set) see if the ipsq has requested an xop switch. If so, switch 6260 * `ipsq' to a different xop. Xop switches only happen when joining or 6261 * leaving IPMP groups and require a careful dance -- see the comments 6262 * in-line below for details. If we're leaving a group xop or if we're 6263 * joining a group xop and become writer on it, then we proceed to (3). 6264 * Otherwise, we return NULL and exit the xop. 6265 * 6266 * 3. For each IPSQ in the xop, return any switch operation stored on 6267 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6268 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6269 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6270 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6271 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6272 * each phyint in the group, including the IPMP meta-interface phyint. 6273 */ 6274 static mblk_t * 6275 ipsq_dq(ipsq_t *ipsq) 6276 { 6277 ill_t *illv4, *illv6; 6278 mblk_t *mp; 6279 ipsq_t *xopipsq; 6280 ipsq_t *leftipsq = NULL; 6281 ipxop_t *ipx; 6282 phyint_t *phyi = ipsq->ipsq_phyint; 6283 ip_stack_t *ipst = ipsq->ipsq_ipst; 6284 boolean_t emptied = B_FALSE; 6285 6286 /* 6287 * Grab all the locks we need in the defined order (ill_g_lock -> 6288 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6289 */ 6290 rw_enter(&ipst->ips_ill_g_lock, 6291 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6292 mutex_enter(&ipsq->ipsq_lock); 6293 ipx = ipsq->ipsq_xop; 6294 mutex_enter(&ipx->ipx_lock); 6295 6296 /* 6297 * Dequeue the next message associated with the current exclusive 6298 * operation, if any. 6299 */ 6300 if ((mp = ipx->ipx_mphead) != NULL) { 6301 ipx->ipx_mphead = mp->b_next; 6302 if (ipx->ipx_mphead == NULL) 6303 ipx->ipx_mptail = NULL; 6304 mp->b_next = (void *)ipsq; 6305 goto out; 6306 } 6307 6308 if (ipx->ipx_current_ipif != NULL) 6309 goto empty; 6310 6311 if (ipsq->ipsq_swxop != NULL) { 6312 /* 6313 * The exclusive operation that is now being completed has 6314 * requested a switch to a different xop. This happens 6315 * when an interface joins or leaves an IPMP group. Joins 6316 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6317 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6318 * (phyint_free()), or interface plumb for an ill type 6319 * not in the IPMP group (ip_rput_dlpi_writer()). 6320 * 6321 * Xop switches are not allowed on the IPMP meta-interface. 6322 */ 6323 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6324 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6325 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6326 6327 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6328 /* 6329 * We're switching back to our own xop, so we have two 6330 * xop's to drain/exit: our own, and the group xop 6331 * that we are leaving. 6332 * 6333 * First, pull ourselves out of the group ipsq list. 6334 * This is safe since we're writer on ill_g_lock. 6335 */ 6336 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6337 6338 xopipsq = ipx->ipx_ipsq; 6339 while (xopipsq->ipsq_next != ipsq) 6340 xopipsq = xopipsq->ipsq_next; 6341 6342 xopipsq->ipsq_next = ipsq->ipsq_next; 6343 ipsq->ipsq_next = ipsq; 6344 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6345 ipsq->ipsq_swxop = NULL; 6346 6347 /* 6348 * Second, prepare to exit the group xop. The actual 6349 * ipsq_exit() is done at the end of this function 6350 * since we cannot hold any locks across ipsq_exit(). 6351 * Note that although we drop the group's ipx_lock, no 6352 * threads can proceed since we're still ipx_writer. 6353 */ 6354 leftipsq = xopipsq; 6355 mutex_exit(&ipx->ipx_lock); 6356 6357 /* 6358 * Third, set ipx to point to our own xop (which was 6359 * inactive and therefore can be entered). 6360 */ 6361 ipx = ipsq->ipsq_xop; 6362 mutex_enter(&ipx->ipx_lock); 6363 ASSERT(ipx->ipx_writer == NULL); 6364 ASSERT(ipx->ipx_current_ipif == NULL); 6365 } else { 6366 /* 6367 * We're switching from our own xop to a group xop. 6368 * The requestor of the switch must ensure that the 6369 * group xop cannot go away (e.g. by ensuring the 6370 * phyint associated with the xop cannot go away). 6371 * 6372 * If we can become writer on our new xop, then we'll 6373 * do the drain. Otherwise, the current writer of our 6374 * new xop will do the drain when it exits. 6375 * 6376 * First, splice ourselves into the group IPSQ list. 6377 * This is safe since we're writer on ill_g_lock. 6378 */ 6379 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6380 6381 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6382 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6383 xopipsq = xopipsq->ipsq_next; 6384 6385 xopipsq->ipsq_next = ipsq; 6386 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6387 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6388 ipsq->ipsq_swxop = NULL; 6389 6390 /* 6391 * Second, exit our own xop, since it's now unused. 6392 * This is safe since we've got the only reference. 6393 */ 6394 ASSERT(ipx->ipx_writer == curthread); 6395 ipx->ipx_writer = NULL; 6396 VERIFY(--ipx->ipx_reentry_cnt == 0); 6397 ipx->ipx_ipsq_queued = B_FALSE; 6398 mutex_exit(&ipx->ipx_lock); 6399 6400 /* 6401 * Third, set ipx to point to our new xop, and check 6402 * if we can become writer on it. If we cannot, then 6403 * the current writer will drain the IPSQ group when 6404 * it exits. Our ipsq_xop is guaranteed to be stable 6405 * because we're still holding ipsq_lock. 6406 */ 6407 ipx = ipsq->ipsq_xop; 6408 mutex_enter(&ipx->ipx_lock); 6409 if (ipx->ipx_writer != NULL || 6410 ipx->ipx_current_ipif != NULL) { 6411 goto out; 6412 } 6413 } 6414 6415 /* 6416 * Fourth, become writer on our new ipx before we continue 6417 * with the drain. Note that we never dropped ipsq_lock 6418 * above, so no other thread could've raced with us to 6419 * become writer first. Also, we're holding ipx_lock, so 6420 * no other thread can examine the ipx right now. 6421 */ 6422 ASSERT(ipx->ipx_current_ipif == NULL); 6423 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6424 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6425 ipx->ipx_writer = curthread; 6426 ipx->ipx_forced = B_FALSE; 6427 #ifdef DEBUG 6428 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6429 #endif 6430 } 6431 6432 xopipsq = ipsq; 6433 do { 6434 /* 6435 * So that other operations operate on a consistent and 6436 * complete phyint, a switch message on an IPSQ must be 6437 * handled prior to any other operations on that IPSQ. 6438 */ 6439 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6440 xopipsq->ipsq_switch_mp = NULL; 6441 ASSERT(mp->b_next == NULL); 6442 mp->b_next = (void *)xopipsq; 6443 goto out; 6444 } 6445 6446 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6447 xopipsq->ipsq_xopq_mphead = mp->b_next; 6448 if (xopipsq->ipsq_xopq_mphead == NULL) 6449 xopipsq->ipsq_xopq_mptail = NULL; 6450 mp->b_next = (void *)xopipsq; 6451 goto out; 6452 } 6453 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6454 empty: 6455 /* 6456 * There are no messages. Further, we are holding ipx_lock, hence no 6457 * new messages can end up on any IPSQ in the xop. 6458 */ 6459 ipx->ipx_writer = NULL; 6460 ipx->ipx_forced = B_FALSE; 6461 VERIFY(--ipx->ipx_reentry_cnt == 0); 6462 ipx->ipx_ipsq_queued = B_FALSE; 6463 emptied = B_TRUE; 6464 #ifdef DEBUG 6465 ipx->ipx_depth = 0; 6466 #endif 6467 out: 6468 mutex_exit(&ipx->ipx_lock); 6469 mutex_exit(&ipsq->ipsq_lock); 6470 6471 /* 6472 * If we completely emptied the xop, then wake up any threads waiting 6473 * to enter any of the IPSQ's associated with it. 6474 */ 6475 if (emptied) { 6476 xopipsq = ipsq; 6477 do { 6478 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6479 continue; 6480 6481 illv4 = phyi->phyint_illv4; 6482 illv6 = phyi->phyint_illv6; 6483 6484 GRAB_ILL_LOCKS(illv4, illv6); 6485 if (illv4 != NULL) 6486 cv_broadcast(&illv4->ill_cv); 6487 if (illv6 != NULL) 6488 cv_broadcast(&illv6->ill_cv); 6489 RELEASE_ILL_LOCKS(illv4, illv6); 6490 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6491 } 6492 rw_exit(&ipst->ips_ill_g_lock); 6493 6494 /* 6495 * Now that all locks are dropped, exit the IPSQ we left. 6496 */ 6497 if (leftipsq != NULL) 6498 ipsq_exit(leftipsq); 6499 6500 return (mp); 6501 } 6502 6503 /* 6504 * Return completion status of previously initiated DLPI operations on 6505 * ills in the purview of an ipsq. 6506 */ 6507 static boolean_t 6508 ipsq_dlpi_done(ipsq_t *ipsq) 6509 { 6510 ipsq_t *ipsq_start; 6511 phyint_t *phyi; 6512 ill_t *ill; 6513 6514 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6515 ipsq_start = ipsq; 6516 6517 do { 6518 /* 6519 * The only current users of this function are ipsq_try_enter 6520 * and ipsq_enter which have made sure that ipsq_writer is 6521 * NULL before we reach here. ill_dlpi_pending is modified 6522 * only by an ipsq writer 6523 */ 6524 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6525 phyi = ipsq->ipsq_phyint; 6526 /* 6527 * phyi could be NULL if a phyint that is part of an 6528 * IPMP group is being unplumbed. A more detailed 6529 * comment is in ipmp_grp_update_kstats() 6530 */ 6531 if (phyi != NULL) { 6532 ill = phyi->phyint_illv4; 6533 if (ill != NULL && 6534 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6535 ill->ill_arl_dlpi_pending)) 6536 return (B_FALSE); 6537 6538 ill = phyi->phyint_illv6; 6539 if (ill != NULL && 6540 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6541 return (B_FALSE); 6542 } 6543 6544 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6545 6546 return (B_TRUE); 6547 } 6548 6549 /* 6550 * Enter the ipsq corresponding to ill, by waiting synchronously till 6551 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6552 * will have to drain completely before ipsq_enter returns success. 6553 * ipx_current_ipif will be set if some exclusive op is in progress, 6554 * and the ipsq_exit logic will start the next enqueued op after 6555 * completion of the current op. If 'force' is used, we don't wait 6556 * for the enqueued ops. This is needed when a conn_close wants to 6557 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6558 * of an ill can also use this option. But we dont' use it currently. 6559 */ 6560 #define ENTER_SQ_WAIT_TICKS 100 6561 boolean_t 6562 ipsq_enter(ill_t *ill, boolean_t force, int type) 6563 { 6564 ipsq_t *ipsq; 6565 ipxop_t *ipx; 6566 boolean_t waited_enough = B_FALSE; 6567 ip_stack_t *ipst = ill->ill_ipst; 6568 6569 /* 6570 * Note that the relationship between ill and ipsq is fixed as long as 6571 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6572 * relationship between the IPSQ and xop cannot change. However, 6573 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6574 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6575 * waking up all ills in the xop when it becomes available. 6576 */ 6577 for (;;) { 6578 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6579 mutex_enter(&ill->ill_lock); 6580 if (ill->ill_state_flags & ILL_CONDEMNED) { 6581 mutex_exit(&ill->ill_lock); 6582 rw_exit(&ipst->ips_ill_g_lock); 6583 return (B_FALSE); 6584 } 6585 6586 ipsq = ill->ill_phyint->phyint_ipsq; 6587 mutex_enter(&ipsq->ipsq_lock); 6588 ipx = ipsq->ipsq_xop; 6589 mutex_enter(&ipx->ipx_lock); 6590 6591 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6592 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6593 waited_enough)) 6594 break; 6595 6596 rw_exit(&ipst->ips_ill_g_lock); 6597 6598 if (!force || ipx->ipx_writer != NULL) { 6599 mutex_exit(&ipx->ipx_lock); 6600 mutex_exit(&ipsq->ipsq_lock); 6601 cv_wait(&ill->ill_cv, &ill->ill_lock); 6602 } else { 6603 mutex_exit(&ipx->ipx_lock); 6604 mutex_exit(&ipsq->ipsq_lock); 6605 (void) cv_reltimedwait(&ill->ill_cv, 6606 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6607 waited_enough = B_TRUE; 6608 } 6609 mutex_exit(&ill->ill_lock); 6610 } 6611 6612 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6613 ASSERT(ipx->ipx_reentry_cnt == 0); 6614 ipx->ipx_writer = curthread; 6615 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6616 ipx->ipx_reentry_cnt++; 6617 #ifdef DEBUG 6618 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6619 #endif 6620 mutex_exit(&ipx->ipx_lock); 6621 mutex_exit(&ipsq->ipsq_lock); 6622 mutex_exit(&ill->ill_lock); 6623 rw_exit(&ipst->ips_ill_g_lock); 6624 6625 return (B_TRUE); 6626 } 6627 6628 /* 6629 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6630 * across the call to the core interface ipsq_try_enter() and hence calls this 6631 * function directly. This is explained more fully in ipif_set_values(). 6632 * In order to support the above constraint, ipsq_try_enter is implemented as 6633 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6634 */ 6635 static ipsq_t * 6636 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6637 int type, boolean_t reentry_ok) 6638 { 6639 ipsq_t *ipsq; 6640 ipxop_t *ipx; 6641 ip_stack_t *ipst = ill->ill_ipst; 6642 6643 /* 6644 * lock ordering: 6645 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6646 * 6647 * ipx of an ipsq can't change when ipsq_lock is held. 6648 */ 6649 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6650 GRAB_CONN_LOCK(q); 6651 mutex_enter(&ill->ill_lock); 6652 ipsq = ill->ill_phyint->phyint_ipsq; 6653 mutex_enter(&ipsq->ipsq_lock); 6654 ipx = ipsq->ipsq_xop; 6655 mutex_enter(&ipx->ipx_lock); 6656 6657 /* 6658 * 1. Enter the ipsq if we are already writer and reentry is ok. 6659 * (Note: If the caller does not specify reentry_ok then neither 6660 * 'func' nor any of its callees must ever attempt to enter the ipsq 6661 * again. Otherwise it can lead to an infinite loop 6662 * 2. Enter the ipsq if there is no current writer and this attempted 6663 * entry is part of the current operation 6664 * 3. Enter the ipsq if there is no current writer and this is a new 6665 * operation and the operation queue is empty and there is no 6666 * operation currently in progress and if all previously initiated 6667 * DLPI operations have completed. 6668 */ 6669 if ((ipx->ipx_writer == curthread && reentry_ok) || 6670 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6671 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6672 ipsq_dlpi_done(ipsq))))) { 6673 /* Success. */ 6674 ipx->ipx_reentry_cnt++; 6675 ipx->ipx_writer = curthread; 6676 ipx->ipx_forced = B_FALSE; 6677 mutex_exit(&ipx->ipx_lock); 6678 mutex_exit(&ipsq->ipsq_lock); 6679 mutex_exit(&ill->ill_lock); 6680 RELEASE_CONN_LOCK(q); 6681 #ifdef DEBUG 6682 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6683 #endif 6684 return (ipsq); 6685 } 6686 6687 if (func != NULL) 6688 ipsq_enq(ipsq, q, mp, func, type, ill); 6689 6690 mutex_exit(&ipx->ipx_lock); 6691 mutex_exit(&ipsq->ipsq_lock); 6692 mutex_exit(&ill->ill_lock); 6693 RELEASE_CONN_LOCK(q); 6694 return (NULL); 6695 } 6696 6697 /* 6698 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6699 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6700 * There is one ipsq per phyint. The ipsq 6701 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6702 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6703 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6704 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6705 * up the interface) and are enqueued in ipx_mphead. 6706 * 6707 * If a thread does not want to reenter the ipsq when it is already writer, 6708 * it must make sure that the specified reentry point to be called later 6709 * when the ipsq is empty, nor any code path starting from the specified reentry 6710 * point must never ever try to enter the ipsq again. Otherwise it can lead 6711 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6712 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6713 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6714 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6715 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6716 * ioctl if the current ioctl has completed. If the current ioctl is still 6717 * in progress it simply returns. The current ioctl could be waiting for 6718 * a response from another module (the driver or could be waiting for 6719 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6720 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6721 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6722 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6723 * all associated DLPI operations have completed. 6724 */ 6725 6726 /* 6727 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6728 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6729 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6730 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6731 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6732 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6733 */ 6734 ipsq_t * 6735 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6736 ipsq_func_t func, int type, boolean_t reentry_ok) 6737 { 6738 ip_stack_t *ipst; 6739 ipsq_t *ipsq; 6740 6741 /* Only 1 of ipif or ill can be specified */ 6742 ASSERT((ipif != NULL) ^ (ill != NULL)); 6743 6744 if (ipif != NULL) 6745 ill = ipif->ipif_ill; 6746 ipst = ill->ill_ipst; 6747 6748 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6749 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6750 rw_exit(&ipst->ips_ill_g_lock); 6751 6752 return (ipsq); 6753 } 6754 6755 /* 6756 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6757 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6758 * cannot be entered, the mp is queued for completion. 6759 */ 6760 void 6761 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6762 boolean_t reentry_ok) 6763 { 6764 ipsq_t *ipsq; 6765 6766 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6767 6768 /* 6769 * Drop the caller's refhold on the ill. This is safe since we either 6770 * entered the IPSQ (and thus are exclusive), or failed to enter the 6771 * IPSQ, in which case we return without accessing ill anymore. This 6772 * is needed because func needs to see the correct refcount. 6773 * e.g. removeif can work only then. 6774 */ 6775 ill_refrele(ill); 6776 if (ipsq != NULL) { 6777 (*func)(ipsq, q, mp, NULL); 6778 ipsq_exit(ipsq); 6779 } 6780 } 6781 6782 /* 6783 * Exit the specified IPSQ. If this is the final exit on it then drain it 6784 * prior to exiting. Caller must be writer on the specified IPSQ. 6785 */ 6786 void 6787 ipsq_exit(ipsq_t *ipsq) 6788 { 6789 mblk_t *mp; 6790 ipsq_t *mp_ipsq; 6791 queue_t *q; 6792 phyint_t *phyi; 6793 ipsq_func_t func; 6794 6795 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6796 6797 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6798 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6799 ipsq->ipsq_xop->ipx_reentry_cnt--; 6800 return; 6801 } 6802 6803 for (;;) { 6804 phyi = ipsq->ipsq_phyint; 6805 mp = ipsq_dq(ipsq); 6806 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6807 6808 /* 6809 * If we've changed to a new IPSQ, and the phyint associated 6810 * with the old one has gone away, free the old IPSQ. Note 6811 * that this cannot happen while the IPSQ is in a group. 6812 */ 6813 if (mp_ipsq != ipsq && phyi == NULL) { 6814 ASSERT(ipsq->ipsq_next == ipsq); 6815 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6816 ipsq_delete(ipsq); 6817 } 6818 6819 if (mp == NULL) 6820 break; 6821 6822 q = mp->b_queue; 6823 func = (ipsq_func_t)mp->b_prev; 6824 ipsq = mp_ipsq; 6825 mp->b_next = mp->b_prev = NULL; 6826 mp->b_queue = NULL; 6827 6828 /* 6829 * If 'q' is an conn queue, it is valid, since we did a 6830 * a refhold on the conn at the start of the ioctl. 6831 * If 'q' is an ill queue, it is valid, since close of an 6832 * ill will clean up its IPSQ. 6833 */ 6834 (*func)(ipsq, q, mp, NULL); 6835 } 6836 } 6837 6838 /* 6839 * Used to start any igmp or mld timers that could not be started 6840 * while holding ill_mcast_lock. The timers can't be started while holding 6841 * the lock, since mld/igmp_start_timers may need to call untimeout() 6842 * which can't be done while holding the lock which the timeout handler 6843 * acquires. Otherwise 6844 * there could be a deadlock since the timeout handlers 6845 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6846 * ill_mcast_lock. 6847 */ 6848 void 6849 ill_mcast_timer_start(ip_stack_t *ipst) 6850 { 6851 int next; 6852 6853 mutex_enter(&ipst->ips_igmp_timer_lock); 6854 next = ipst->ips_igmp_deferred_next; 6855 ipst->ips_igmp_deferred_next = INFINITY; 6856 mutex_exit(&ipst->ips_igmp_timer_lock); 6857 6858 if (next != INFINITY) 6859 igmp_start_timers(next, ipst); 6860 6861 mutex_enter(&ipst->ips_mld_timer_lock); 6862 next = ipst->ips_mld_deferred_next; 6863 ipst->ips_mld_deferred_next = INFINITY; 6864 mutex_exit(&ipst->ips_mld_timer_lock); 6865 6866 if (next != INFINITY) 6867 mld_start_timers(next, ipst); 6868 } 6869 6870 /* 6871 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6872 * and `ioccmd'. 6873 */ 6874 void 6875 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6876 { 6877 ill_t *ill = ipif->ipif_ill; 6878 ipxop_t *ipx = ipsq->ipsq_xop; 6879 6880 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6881 ASSERT(ipx->ipx_current_ipif == NULL); 6882 ASSERT(ipx->ipx_current_ioctl == 0); 6883 6884 ipx->ipx_current_done = B_FALSE; 6885 ipx->ipx_current_ioctl = ioccmd; 6886 mutex_enter(&ipx->ipx_lock); 6887 ipx->ipx_current_ipif = ipif; 6888 mutex_exit(&ipx->ipx_lock); 6889 6890 /* 6891 * Set IPIF_CHANGING on one or more ipifs associated with the 6892 * current exclusive operation. IPIF_CHANGING prevents any new 6893 * references to the ipif (so that the references will eventually 6894 * drop to zero) and also prevents any "get" operations (e.g., 6895 * SIOCGLIFFLAGS) from being able to access the ipif until the 6896 * operation has completed and the ipif is again in a stable state. 6897 * 6898 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6899 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6900 * on the ill are marked with IPIF_CHANGING since it's unclear which 6901 * ipifs will be affected. 6902 * 6903 * Note that SIOCLIFREMOVEIF is a special case as it sets 6904 * IPIF_CONDEMNED internally after identifying the right ipif to 6905 * operate on. 6906 */ 6907 switch (ioccmd) { 6908 case SIOCLIFREMOVEIF: 6909 break; 6910 case 0: 6911 mutex_enter(&ill->ill_lock); 6912 ipif = ipif->ipif_ill->ill_ipif; 6913 for (; ipif != NULL; ipif = ipif->ipif_next) 6914 ipif->ipif_state_flags |= IPIF_CHANGING; 6915 mutex_exit(&ill->ill_lock); 6916 break; 6917 default: 6918 mutex_enter(&ill->ill_lock); 6919 ipif->ipif_state_flags |= IPIF_CHANGING; 6920 mutex_exit(&ill->ill_lock); 6921 } 6922 } 6923 6924 /* 6925 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6926 * the next exclusive operation to begin once we ipsq_exit(). However, if 6927 * pending DLPI operations remain, then we will wait for the queue to drain 6928 * before allowing the next exclusive operation to begin. This ensures that 6929 * DLPI operations from one exclusive operation are never improperly processed 6930 * as part of a subsequent exclusive operation. 6931 */ 6932 void 6933 ipsq_current_finish(ipsq_t *ipsq) 6934 { 6935 ipxop_t *ipx = ipsq->ipsq_xop; 6936 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6937 ipif_t *ipif = ipx->ipx_current_ipif; 6938 6939 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6940 6941 /* 6942 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6943 * (but in that case, IPIF_CHANGING will already be clear and no 6944 * pending DLPI messages can remain). 6945 */ 6946 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6947 ill_t *ill = ipif->ipif_ill; 6948 6949 mutex_enter(&ill->ill_lock); 6950 dlpi_pending = ill->ill_dlpi_pending; 6951 if (ipx->ipx_current_ioctl == 0) { 6952 ipif = ill->ill_ipif; 6953 for (; ipif != NULL; ipif = ipif->ipif_next) 6954 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6955 } else { 6956 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6957 } 6958 mutex_exit(&ill->ill_lock); 6959 } 6960 6961 ASSERT(!ipx->ipx_current_done); 6962 ipx->ipx_current_done = B_TRUE; 6963 ipx->ipx_current_ioctl = 0; 6964 if (dlpi_pending == DL_PRIM_INVAL) { 6965 mutex_enter(&ipx->ipx_lock); 6966 ipx->ipx_current_ipif = NULL; 6967 mutex_exit(&ipx->ipx_lock); 6968 } 6969 } 6970 6971 /* 6972 * The ill is closing. Flush all messages on the ipsq that originated 6973 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6974 * for this ill since ipsq_enter could not have entered until then. 6975 * New messages can't be queued since the CONDEMNED flag is set. 6976 */ 6977 static void 6978 ipsq_flush(ill_t *ill) 6979 { 6980 queue_t *q; 6981 mblk_t *prev; 6982 mblk_t *mp; 6983 mblk_t *mp_next; 6984 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6985 6986 ASSERT(IAM_WRITER_ILL(ill)); 6987 6988 /* 6989 * Flush any messages sent up by the driver. 6990 */ 6991 mutex_enter(&ipx->ipx_lock); 6992 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 6993 mp_next = mp->b_next; 6994 q = mp->b_queue; 6995 if (q == ill->ill_rq || q == ill->ill_wq) { 6996 /* dequeue mp */ 6997 if (prev == NULL) 6998 ipx->ipx_mphead = mp->b_next; 6999 else 7000 prev->b_next = mp->b_next; 7001 if (ipx->ipx_mptail == mp) { 7002 ASSERT(mp_next == NULL); 7003 ipx->ipx_mptail = prev; 7004 } 7005 inet_freemsg(mp); 7006 } else { 7007 prev = mp; 7008 } 7009 } 7010 mutex_exit(&ipx->ipx_lock); 7011 (void) ipsq_pending_mp_cleanup(ill, NULL); 7012 ipsq_xopq_mp_cleanup(ill, NULL); 7013 } 7014 7015 /* 7016 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7017 * and return the associated ipif. 7018 * Return value: 7019 * Non zero: An error has occurred. ci may not be filled out. 7020 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7021 * a held ipif in ci.ci_ipif. 7022 */ 7023 int 7024 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7025 cmd_info_t *ci) 7026 { 7027 char *name; 7028 struct ifreq *ifr; 7029 struct lifreq *lifr; 7030 ipif_t *ipif = NULL; 7031 ill_t *ill; 7032 conn_t *connp; 7033 boolean_t isv6; 7034 int err; 7035 mblk_t *mp1; 7036 zoneid_t zoneid; 7037 ip_stack_t *ipst; 7038 7039 if (q->q_next != NULL) { 7040 ill = (ill_t *)q->q_ptr; 7041 isv6 = ill->ill_isv6; 7042 connp = NULL; 7043 zoneid = ALL_ZONES; 7044 ipst = ill->ill_ipst; 7045 } else { 7046 ill = NULL; 7047 connp = Q_TO_CONN(q); 7048 isv6 = (connp->conn_family == AF_INET6); 7049 zoneid = connp->conn_zoneid; 7050 if (zoneid == GLOBAL_ZONEID) { 7051 /* global zone can access ipifs in all zones */ 7052 zoneid = ALL_ZONES; 7053 } 7054 ipst = connp->conn_netstack->netstack_ip; 7055 } 7056 7057 /* Has been checked in ip_wput_nondata */ 7058 mp1 = mp->b_cont->b_cont; 7059 7060 if (ipip->ipi_cmd_type == IF_CMD) { 7061 /* This a old style SIOC[GS]IF* command */ 7062 ifr = (struct ifreq *)mp1->b_rptr; 7063 /* 7064 * Null terminate the string to protect against buffer 7065 * overrun. String was generated by user code and may not 7066 * be trusted. 7067 */ 7068 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7069 name = ifr->ifr_name; 7070 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7071 ci->ci_sin6 = NULL; 7072 ci->ci_lifr = (struct lifreq *)ifr; 7073 } else { 7074 /* This a new style SIOC[GS]LIF* command */ 7075 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7076 lifr = (struct lifreq *)mp1->b_rptr; 7077 /* 7078 * Null terminate the string to protect against buffer 7079 * overrun. String was generated by user code and may not 7080 * be trusted. 7081 */ 7082 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7083 name = lifr->lifr_name; 7084 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7085 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7086 ci->ci_lifr = lifr; 7087 } 7088 7089 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7090 /* 7091 * The ioctl will be failed if the ioctl comes down 7092 * an conn stream 7093 */ 7094 if (ill == NULL) { 7095 /* 7096 * Not an ill queue, return EINVAL same as the 7097 * old error code. 7098 */ 7099 return (ENXIO); 7100 } 7101 ipif = ill->ill_ipif; 7102 ipif_refhold(ipif); 7103 } else { 7104 /* 7105 * Ensure that ioctls don't see any internal state changes 7106 * caused by set ioctls by deferring them if IPIF_CHANGING is 7107 * set. 7108 */ 7109 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7110 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7111 if (ipif == NULL) { 7112 if (err == EINPROGRESS) 7113 return (err); 7114 err = 0; /* Ensure we don't use it below */ 7115 } 7116 } 7117 7118 /* 7119 * Old style [GS]IFCMD does not admit IPv6 ipif 7120 */ 7121 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7122 ipif_refrele(ipif); 7123 return (ENXIO); 7124 } 7125 7126 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7127 name[0] == '\0') { 7128 /* 7129 * Handle a or a SIOC?IF* with a null name 7130 * during plumb (on the ill queue before the I_PLINK). 7131 */ 7132 ipif = ill->ill_ipif; 7133 ipif_refhold(ipif); 7134 } 7135 7136 if (ipif == NULL) 7137 return (ENXIO); 7138 7139 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7140 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7141 7142 ci->ci_ipif = ipif; 7143 return (0); 7144 } 7145 7146 /* 7147 * Return the total number of ipifs. 7148 */ 7149 static uint_t 7150 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7151 { 7152 uint_t numifs = 0; 7153 ill_t *ill; 7154 ill_walk_context_t ctx; 7155 ipif_t *ipif; 7156 7157 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7158 ill = ILL_START_WALK_V4(&ctx, ipst); 7159 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7160 if (IS_UNDER_IPMP(ill)) 7161 continue; 7162 for (ipif = ill->ill_ipif; ipif != NULL; 7163 ipif = ipif->ipif_next) { 7164 if (ipif->ipif_zoneid == zoneid || 7165 ipif->ipif_zoneid == ALL_ZONES) 7166 numifs++; 7167 } 7168 } 7169 rw_exit(&ipst->ips_ill_g_lock); 7170 return (numifs); 7171 } 7172 7173 /* 7174 * Return the total number of ipifs. 7175 */ 7176 static uint_t 7177 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7178 { 7179 uint_t numifs = 0; 7180 ill_t *ill; 7181 ipif_t *ipif; 7182 ill_walk_context_t ctx; 7183 7184 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7185 7186 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7187 if (family == AF_INET) 7188 ill = ILL_START_WALK_V4(&ctx, ipst); 7189 else if (family == AF_INET6) 7190 ill = ILL_START_WALK_V6(&ctx, ipst); 7191 else 7192 ill = ILL_START_WALK_ALL(&ctx, ipst); 7193 7194 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7195 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7196 continue; 7197 7198 for (ipif = ill->ill_ipif; ipif != NULL; 7199 ipif = ipif->ipif_next) { 7200 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7201 !(lifn_flags & LIFC_NOXMIT)) 7202 continue; 7203 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7204 !(lifn_flags & LIFC_TEMPORARY)) 7205 continue; 7206 if (((ipif->ipif_flags & 7207 (IPIF_NOXMIT|IPIF_NOLOCAL| 7208 IPIF_DEPRECATED)) || 7209 IS_LOOPBACK(ill) || 7210 !(ipif->ipif_flags & IPIF_UP)) && 7211 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7212 continue; 7213 7214 if (zoneid != ipif->ipif_zoneid && 7215 ipif->ipif_zoneid != ALL_ZONES && 7216 (zoneid != GLOBAL_ZONEID || 7217 !(lifn_flags & LIFC_ALLZONES))) 7218 continue; 7219 7220 numifs++; 7221 } 7222 } 7223 rw_exit(&ipst->ips_ill_g_lock); 7224 return (numifs); 7225 } 7226 7227 uint_t 7228 ip_get_lifsrcofnum(ill_t *ill) 7229 { 7230 uint_t numifs = 0; 7231 ill_t *ill_head = ill; 7232 ip_stack_t *ipst = ill->ill_ipst; 7233 7234 /* 7235 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7236 * other thread may be trying to relink the ILLs in this usesrc group 7237 * and adjusting the ill_usesrc_grp_next pointers 7238 */ 7239 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7240 if ((ill->ill_usesrc_ifindex == 0) && 7241 (ill->ill_usesrc_grp_next != NULL)) { 7242 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7243 ill = ill->ill_usesrc_grp_next) 7244 numifs++; 7245 } 7246 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7247 7248 return (numifs); 7249 } 7250 7251 /* Null values are passed in for ipif, sin, and ifreq */ 7252 /* ARGSUSED */ 7253 int 7254 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7255 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7256 { 7257 int *nump; 7258 conn_t *connp = Q_TO_CONN(q); 7259 7260 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7261 7262 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7263 nump = (int *)mp->b_cont->b_cont->b_rptr; 7264 7265 *nump = ip_get_numifs(connp->conn_zoneid, 7266 connp->conn_netstack->netstack_ip); 7267 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7268 return (0); 7269 } 7270 7271 /* Null values are passed in for ipif, sin, and ifreq */ 7272 /* ARGSUSED */ 7273 int 7274 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7275 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7276 { 7277 struct lifnum *lifn; 7278 mblk_t *mp1; 7279 conn_t *connp = Q_TO_CONN(q); 7280 7281 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7282 7283 /* Existence checked in ip_wput_nondata */ 7284 mp1 = mp->b_cont->b_cont; 7285 7286 lifn = (struct lifnum *)mp1->b_rptr; 7287 switch (lifn->lifn_family) { 7288 case AF_UNSPEC: 7289 case AF_INET: 7290 case AF_INET6: 7291 break; 7292 default: 7293 return (EAFNOSUPPORT); 7294 } 7295 7296 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7297 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7298 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7299 return (0); 7300 } 7301 7302 /* ARGSUSED */ 7303 int 7304 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7305 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7306 { 7307 STRUCT_HANDLE(ifconf, ifc); 7308 mblk_t *mp1; 7309 struct iocblk *iocp; 7310 struct ifreq *ifr; 7311 ill_walk_context_t ctx; 7312 ill_t *ill; 7313 ipif_t *ipif; 7314 struct sockaddr_in *sin; 7315 int32_t ifclen; 7316 zoneid_t zoneid; 7317 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7318 7319 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7320 7321 ip1dbg(("ip_sioctl_get_ifconf")); 7322 /* Existence verified in ip_wput_nondata */ 7323 mp1 = mp->b_cont->b_cont; 7324 iocp = (struct iocblk *)mp->b_rptr; 7325 zoneid = Q_TO_CONN(q)->conn_zoneid; 7326 7327 /* 7328 * The original SIOCGIFCONF passed in a struct ifconf which specified 7329 * the user buffer address and length into which the list of struct 7330 * ifreqs was to be copied. Since AT&T Streams does not seem to 7331 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7332 * the SIOCGIFCONF operation was redefined to simply provide 7333 * a large output buffer into which we are supposed to jam the ifreq 7334 * array. The same ioctl command code was used, despite the fact that 7335 * both the applications and the kernel code had to change, thus making 7336 * it impossible to support both interfaces. 7337 * 7338 * For reasons not good enough to try to explain, the following 7339 * algorithm is used for deciding what to do with one of these: 7340 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7341 * form with the output buffer coming down as the continuation message. 7342 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7343 * and we have to copy in the ifconf structure to find out how big the 7344 * output buffer is and where to copy out to. Sure no problem... 7345 * 7346 */ 7347 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7348 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7349 int numifs = 0; 7350 size_t ifc_bufsize; 7351 7352 /* 7353 * Must be (better be!) continuation of a TRANSPARENT 7354 * IOCTL. We just copied in the ifconf structure. 7355 */ 7356 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7357 (struct ifconf *)mp1->b_rptr); 7358 7359 /* 7360 * Allocate a buffer to hold requested information. 7361 * 7362 * If ifc_len is larger than what is needed, we only 7363 * allocate what we will use. 7364 * 7365 * If ifc_len is smaller than what is needed, return 7366 * EINVAL. 7367 * 7368 * XXX: the ill_t structure can hava 2 counters, for 7369 * v4 and v6 (not just ill_ipif_up_count) to store the 7370 * number of interfaces for a device, so we don't need 7371 * to count them here... 7372 */ 7373 numifs = ip_get_numifs(zoneid, ipst); 7374 7375 ifclen = STRUCT_FGET(ifc, ifc_len); 7376 ifc_bufsize = numifs * sizeof (struct ifreq); 7377 if (ifc_bufsize > ifclen) { 7378 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7379 /* old behaviour */ 7380 return (EINVAL); 7381 } else { 7382 ifc_bufsize = ifclen; 7383 } 7384 } 7385 7386 mp1 = mi_copyout_alloc(q, mp, 7387 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7388 if (mp1 == NULL) 7389 return (ENOMEM); 7390 7391 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7392 } 7393 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7394 /* 7395 * the SIOCGIFCONF ioctl only knows about 7396 * IPv4 addresses, so don't try to tell 7397 * it about interfaces with IPv6-only 7398 * addresses. (Last parm 'isv6' is B_FALSE) 7399 */ 7400 7401 ifr = (struct ifreq *)mp1->b_rptr; 7402 7403 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7404 ill = ILL_START_WALK_V4(&ctx, ipst); 7405 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7406 if (IS_UNDER_IPMP(ill)) 7407 continue; 7408 for (ipif = ill->ill_ipif; ipif != NULL; 7409 ipif = ipif->ipif_next) { 7410 if (zoneid != ipif->ipif_zoneid && 7411 ipif->ipif_zoneid != ALL_ZONES) 7412 continue; 7413 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7414 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7415 /* old behaviour */ 7416 rw_exit(&ipst->ips_ill_g_lock); 7417 return (EINVAL); 7418 } else { 7419 goto if_copydone; 7420 } 7421 } 7422 ipif_get_name(ipif, ifr->ifr_name, 7423 sizeof (ifr->ifr_name)); 7424 sin = (sin_t *)&ifr->ifr_addr; 7425 *sin = sin_null; 7426 sin->sin_family = AF_INET; 7427 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7428 ifr++; 7429 } 7430 } 7431 if_copydone: 7432 rw_exit(&ipst->ips_ill_g_lock); 7433 mp1->b_wptr = (uchar_t *)ifr; 7434 7435 if (STRUCT_BUF(ifc) != NULL) { 7436 STRUCT_FSET(ifc, ifc_len, 7437 (int)((uchar_t *)ifr - mp1->b_rptr)); 7438 } 7439 return (0); 7440 } 7441 7442 /* 7443 * Get the interfaces using the address hosted on the interface passed in, 7444 * as a source adddress 7445 */ 7446 /* ARGSUSED */ 7447 int 7448 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7449 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7450 { 7451 mblk_t *mp1; 7452 ill_t *ill, *ill_head; 7453 ipif_t *ipif, *orig_ipif; 7454 int numlifs = 0; 7455 size_t lifs_bufsize, lifsmaxlen; 7456 struct lifreq *lifr; 7457 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7458 uint_t ifindex; 7459 zoneid_t zoneid; 7460 boolean_t isv6 = B_FALSE; 7461 struct sockaddr_in *sin; 7462 struct sockaddr_in6 *sin6; 7463 STRUCT_HANDLE(lifsrcof, lifs); 7464 ip_stack_t *ipst; 7465 7466 ipst = CONNQ_TO_IPST(q); 7467 7468 ASSERT(q->q_next == NULL); 7469 7470 zoneid = Q_TO_CONN(q)->conn_zoneid; 7471 7472 /* Existence verified in ip_wput_nondata */ 7473 mp1 = mp->b_cont->b_cont; 7474 7475 /* 7476 * Must be (better be!) continuation of a TRANSPARENT 7477 * IOCTL. We just copied in the lifsrcof structure. 7478 */ 7479 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7480 (struct lifsrcof *)mp1->b_rptr); 7481 7482 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7483 return (EINVAL); 7484 7485 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7486 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7487 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7488 if (ipif == NULL) { 7489 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7490 ifindex)); 7491 return (ENXIO); 7492 } 7493 7494 /* Allocate a buffer to hold requested information */ 7495 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7496 lifs_bufsize = numlifs * sizeof (struct lifreq); 7497 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7498 /* The actual size needed is always returned in lifs_len */ 7499 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7500 7501 /* If the amount we need is more than what is passed in, abort */ 7502 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7503 ipif_refrele(ipif); 7504 return (0); 7505 } 7506 7507 mp1 = mi_copyout_alloc(q, mp, 7508 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7509 if (mp1 == NULL) { 7510 ipif_refrele(ipif); 7511 return (ENOMEM); 7512 } 7513 7514 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7515 bzero(mp1->b_rptr, lifs_bufsize); 7516 7517 lifr = (struct lifreq *)mp1->b_rptr; 7518 7519 ill = ill_head = ipif->ipif_ill; 7520 orig_ipif = ipif; 7521 7522 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7523 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7524 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7525 7526 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7527 for (; (ill != NULL) && (ill != ill_head); 7528 ill = ill->ill_usesrc_grp_next) { 7529 7530 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7531 break; 7532 7533 ipif = ill->ill_ipif; 7534 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7535 if (ipif->ipif_isv6) { 7536 sin6 = (sin6_t *)&lifr->lifr_addr; 7537 *sin6 = sin6_null; 7538 sin6->sin6_family = AF_INET6; 7539 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7540 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7541 &ipif->ipif_v6net_mask); 7542 } else { 7543 sin = (sin_t *)&lifr->lifr_addr; 7544 *sin = sin_null; 7545 sin->sin_family = AF_INET; 7546 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7547 lifr->lifr_addrlen = ip_mask_to_plen( 7548 ipif->ipif_net_mask); 7549 } 7550 lifr++; 7551 } 7552 rw_exit(&ipst->ips_ill_g_lock); 7553 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7554 ipif_refrele(orig_ipif); 7555 mp1->b_wptr = (uchar_t *)lifr; 7556 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7557 7558 return (0); 7559 } 7560 7561 /* ARGSUSED */ 7562 int 7563 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7564 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7565 { 7566 mblk_t *mp1; 7567 int list; 7568 ill_t *ill; 7569 ipif_t *ipif; 7570 int flags; 7571 int numlifs = 0; 7572 size_t lifc_bufsize; 7573 struct lifreq *lifr; 7574 sa_family_t family; 7575 struct sockaddr_in *sin; 7576 struct sockaddr_in6 *sin6; 7577 ill_walk_context_t ctx; 7578 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7579 int32_t lifclen; 7580 zoneid_t zoneid; 7581 STRUCT_HANDLE(lifconf, lifc); 7582 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7583 7584 ip1dbg(("ip_sioctl_get_lifconf")); 7585 7586 ASSERT(q->q_next == NULL); 7587 7588 zoneid = Q_TO_CONN(q)->conn_zoneid; 7589 7590 /* Existence verified in ip_wput_nondata */ 7591 mp1 = mp->b_cont->b_cont; 7592 7593 /* 7594 * An extended version of SIOCGIFCONF that takes an 7595 * additional address family and flags field. 7596 * AF_UNSPEC retrieve both IPv4 and IPv6. 7597 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7598 * interfaces are omitted. 7599 * Similarly, IPIF_TEMPORARY interfaces are omitted 7600 * unless LIFC_TEMPORARY is specified. 7601 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7602 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7603 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7604 * has priority over LIFC_NOXMIT. 7605 */ 7606 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7607 7608 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7609 return (EINVAL); 7610 7611 /* 7612 * Must be (better be!) continuation of a TRANSPARENT 7613 * IOCTL. We just copied in the lifconf structure. 7614 */ 7615 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7616 7617 family = STRUCT_FGET(lifc, lifc_family); 7618 flags = STRUCT_FGET(lifc, lifc_flags); 7619 7620 switch (family) { 7621 case AF_UNSPEC: 7622 /* 7623 * walk all ILL's. 7624 */ 7625 list = MAX_G_HEADS; 7626 break; 7627 case AF_INET: 7628 /* 7629 * walk only IPV4 ILL's. 7630 */ 7631 list = IP_V4_G_HEAD; 7632 break; 7633 case AF_INET6: 7634 /* 7635 * walk only IPV6 ILL's. 7636 */ 7637 list = IP_V6_G_HEAD; 7638 break; 7639 default: 7640 return (EAFNOSUPPORT); 7641 } 7642 7643 /* 7644 * Allocate a buffer to hold requested information. 7645 * 7646 * If lifc_len is larger than what is needed, we only 7647 * allocate what we will use. 7648 * 7649 * If lifc_len is smaller than what is needed, return 7650 * EINVAL. 7651 */ 7652 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7653 lifc_bufsize = numlifs * sizeof (struct lifreq); 7654 lifclen = STRUCT_FGET(lifc, lifc_len); 7655 if (lifc_bufsize > lifclen) { 7656 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7657 return (EINVAL); 7658 else 7659 lifc_bufsize = lifclen; 7660 } 7661 7662 mp1 = mi_copyout_alloc(q, mp, 7663 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7664 if (mp1 == NULL) 7665 return (ENOMEM); 7666 7667 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7668 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7669 7670 lifr = (struct lifreq *)mp1->b_rptr; 7671 7672 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7673 ill = ill_first(list, list, &ctx, ipst); 7674 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7675 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7676 continue; 7677 7678 for (ipif = ill->ill_ipif; ipif != NULL; 7679 ipif = ipif->ipif_next) { 7680 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7681 !(flags & LIFC_NOXMIT)) 7682 continue; 7683 7684 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7685 !(flags & LIFC_TEMPORARY)) 7686 continue; 7687 7688 if (((ipif->ipif_flags & 7689 (IPIF_NOXMIT|IPIF_NOLOCAL| 7690 IPIF_DEPRECATED)) || 7691 IS_LOOPBACK(ill) || 7692 !(ipif->ipif_flags & IPIF_UP)) && 7693 (flags & LIFC_EXTERNAL_SOURCE)) 7694 continue; 7695 7696 if (zoneid != ipif->ipif_zoneid && 7697 ipif->ipif_zoneid != ALL_ZONES && 7698 (zoneid != GLOBAL_ZONEID || 7699 !(flags & LIFC_ALLZONES))) 7700 continue; 7701 7702 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7703 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7704 rw_exit(&ipst->ips_ill_g_lock); 7705 return (EINVAL); 7706 } else { 7707 goto lif_copydone; 7708 } 7709 } 7710 7711 ipif_get_name(ipif, lifr->lifr_name, 7712 sizeof (lifr->lifr_name)); 7713 lifr->lifr_type = ill->ill_type; 7714 if (ipif->ipif_isv6) { 7715 sin6 = (sin6_t *)&lifr->lifr_addr; 7716 *sin6 = sin6_null; 7717 sin6->sin6_family = AF_INET6; 7718 sin6->sin6_addr = 7719 ipif->ipif_v6lcl_addr; 7720 lifr->lifr_addrlen = 7721 ip_mask_to_plen_v6( 7722 &ipif->ipif_v6net_mask); 7723 } else { 7724 sin = (sin_t *)&lifr->lifr_addr; 7725 *sin = sin_null; 7726 sin->sin_family = AF_INET; 7727 sin->sin_addr.s_addr = 7728 ipif->ipif_lcl_addr; 7729 lifr->lifr_addrlen = 7730 ip_mask_to_plen( 7731 ipif->ipif_net_mask); 7732 } 7733 lifr++; 7734 } 7735 } 7736 lif_copydone: 7737 rw_exit(&ipst->ips_ill_g_lock); 7738 7739 mp1->b_wptr = (uchar_t *)lifr; 7740 if (STRUCT_BUF(lifc) != NULL) { 7741 STRUCT_FSET(lifc, lifc_len, 7742 (int)((uchar_t *)lifr - mp1->b_rptr)); 7743 } 7744 return (0); 7745 } 7746 7747 static void 7748 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7749 { 7750 ip6_asp_t *table; 7751 size_t table_size; 7752 mblk_t *data_mp; 7753 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7754 ip_stack_t *ipst; 7755 7756 if (q->q_next == NULL) 7757 ipst = CONNQ_TO_IPST(q); 7758 else 7759 ipst = ILLQ_TO_IPST(q); 7760 7761 /* These two ioctls are I_STR only */ 7762 if (iocp->ioc_count == TRANSPARENT) { 7763 miocnak(q, mp, 0, EINVAL); 7764 return; 7765 } 7766 7767 data_mp = mp->b_cont; 7768 if (data_mp == NULL) { 7769 /* The user passed us a NULL argument */ 7770 table = NULL; 7771 table_size = iocp->ioc_count; 7772 } else { 7773 /* 7774 * The user provided a table. The stream head 7775 * may have copied in the user data in chunks, 7776 * so make sure everything is pulled up 7777 * properly. 7778 */ 7779 if (MBLKL(data_mp) < iocp->ioc_count) { 7780 mblk_t *new_data_mp; 7781 if ((new_data_mp = msgpullup(data_mp, -1)) == 7782 NULL) { 7783 miocnak(q, mp, 0, ENOMEM); 7784 return; 7785 } 7786 freemsg(data_mp); 7787 data_mp = new_data_mp; 7788 mp->b_cont = data_mp; 7789 } 7790 table = (ip6_asp_t *)data_mp->b_rptr; 7791 table_size = iocp->ioc_count; 7792 } 7793 7794 switch (iocp->ioc_cmd) { 7795 case SIOCGIP6ADDRPOLICY: 7796 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7797 if (iocp->ioc_rval == -1) 7798 iocp->ioc_error = EINVAL; 7799 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7800 else if (table != NULL && 7801 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7802 ip6_asp_t *src = table; 7803 ip6_asp32_t *dst = (void *)table; 7804 int count = table_size / sizeof (ip6_asp_t); 7805 int i; 7806 7807 /* 7808 * We need to do an in-place shrink of the array 7809 * to match the alignment attributes of the 7810 * 32-bit ABI looking at it. 7811 */ 7812 /* LINTED: logical expression always true: op "||" */ 7813 ASSERT(sizeof (*src) > sizeof (*dst)); 7814 for (i = 1; i < count; i++) 7815 bcopy(src + i, dst + i, sizeof (*dst)); 7816 } 7817 #endif 7818 break; 7819 7820 case SIOCSIP6ADDRPOLICY: 7821 ASSERT(mp->b_prev == NULL); 7822 mp->b_prev = (void *)q; 7823 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7824 /* 7825 * We pass in the datamodel here so that the ip6_asp_replace() 7826 * routine can handle converting from 32-bit to native formats 7827 * where necessary. 7828 * 7829 * A better way to handle this might be to convert the inbound 7830 * data structure here, and hang it off a new 'mp'; thus the 7831 * ip6_asp_replace() logic would always be dealing with native 7832 * format data structures.. 7833 * 7834 * (An even simpler way to handle these ioctls is to just 7835 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7836 * and just recompile everything that depends on it.) 7837 */ 7838 #endif 7839 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7840 iocp->ioc_flag & IOC_MODELS); 7841 return; 7842 } 7843 7844 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7845 qreply(q, mp); 7846 } 7847 7848 static void 7849 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7850 { 7851 mblk_t *data_mp; 7852 struct dstinforeq *dir; 7853 uint8_t *end, *cur; 7854 in6_addr_t *daddr, *saddr; 7855 ipaddr_t v4daddr; 7856 ire_t *ire; 7857 ipaddr_t v4setsrc; 7858 in6_addr_t v6setsrc; 7859 char *slabel, *dlabel; 7860 boolean_t isipv4; 7861 int match_ire; 7862 ill_t *dst_ill; 7863 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7864 conn_t *connp = Q_TO_CONN(q); 7865 zoneid_t zoneid = IPCL_ZONEID(connp); 7866 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7867 uint64_t ipif_flags; 7868 7869 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7870 7871 /* 7872 * This ioctl is I_STR only, and must have a 7873 * data mblk following the M_IOCTL mblk. 7874 */ 7875 data_mp = mp->b_cont; 7876 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7877 miocnak(q, mp, 0, EINVAL); 7878 return; 7879 } 7880 7881 if (MBLKL(data_mp) < iocp->ioc_count) { 7882 mblk_t *new_data_mp; 7883 7884 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7885 miocnak(q, mp, 0, ENOMEM); 7886 return; 7887 } 7888 freemsg(data_mp); 7889 data_mp = new_data_mp; 7890 mp->b_cont = data_mp; 7891 } 7892 match_ire = MATCH_IRE_DSTONLY; 7893 7894 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7895 end - cur >= sizeof (struct dstinforeq); 7896 cur += sizeof (struct dstinforeq)) { 7897 dir = (struct dstinforeq *)cur; 7898 daddr = &dir->dir_daddr; 7899 saddr = &dir->dir_saddr; 7900 7901 /* 7902 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7903 * v4 mapped addresses; ire_ftable_lookup_v6() 7904 * and ip_select_source_v6() do not. 7905 */ 7906 dir->dir_dscope = ip_addr_scope_v6(daddr); 7907 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7908 7909 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7910 if (isipv4) { 7911 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7912 v4setsrc = INADDR_ANY; 7913 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7914 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7915 NULL, NULL); 7916 } else { 7917 v6setsrc = ipv6_all_zeros; 7918 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7919 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7920 NULL, NULL); 7921 } 7922 ASSERT(ire != NULL); 7923 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7924 ire_refrele(ire); 7925 dir->dir_dreachable = 0; 7926 7927 /* move on to next dst addr */ 7928 continue; 7929 } 7930 dir->dir_dreachable = 1; 7931 7932 dst_ill = ire_nexthop_ill(ire); 7933 if (dst_ill == NULL) { 7934 ire_refrele(ire); 7935 continue; 7936 } 7937 7938 /* With ipmp we most likely look at the ipmp ill here */ 7939 dir->dir_dmactype = dst_ill->ill_mactype; 7940 7941 if (isipv4) { 7942 ipaddr_t v4saddr; 7943 7944 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7945 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7946 &v4saddr, NULL, &ipif_flags) != 0) { 7947 v4saddr = INADDR_ANY; 7948 ipif_flags = 0; 7949 } 7950 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7951 } else { 7952 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7953 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7954 saddr, NULL, &ipif_flags) != 0) { 7955 *saddr = ipv6_all_zeros; 7956 ipif_flags = 0; 7957 } 7958 } 7959 7960 dir->dir_sscope = ip_addr_scope_v6(saddr); 7961 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7962 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7963 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7964 ire_refrele(ire); 7965 ill_refrele(dst_ill); 7966 } 7967 miocack(q, mp, iocp->ioc_count, 0); 7968 } 7969 7970 /* 7971 * Check if this is an address assigned to this machine. 7972 * Skips interfaces that are down by using ire checks. 7973 * Translates mapped addresses to v4 addresses and then 7974 * treats them as such, returning true if the v4 address 7975 * associated with this mapped address is configured. 7976 * Note: Applications will have to be careful what they do 7977 * with the response; use of mapped addresses limits 7978 * what can be done with the socket, especially with 7979 * respect to socket options and ioctls - neither IPv4 7980 * options nor IPv6 sticky options/ancillary data options 7981 * may be used. 7982 */ 7983 /* ARGSUSED */ 7984 int 7985 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7986 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 7987 { 7988 struct sioc_addrreq *sia; 7989 sin_t *sin; 7990 ire_t *ire; 7991 mblk_t *mp1; 7992 zoneid_t zoneid; 7993 ip_stack_t *ipst; 7994 7995 ip1dbg(("ip_sioctl_tmyaddr")); 7996 7997 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7998 zoneid = Q_TO_CONN(q)->conn_zoneid; 7999 ipst = CONNQ_TO_IPST(q); 8000 8001 /* Existence verified in ip_wput_nondata */ 8002 mp1 = mp->b_cont->b_cont; 8003 sia = (struct sioc_addrreq *)mp1->b_rptr; 8004 sin = (sin_t *)&sia->sa_addr; 8005 switch (sin->sin_family) { 8006 case AF_INET6: { 8007 sin6_t *sin6 = (sin6_t *)sin; 8008 8009 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8010 ipaddr_t v4_addr; 8011 8012 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8013 v4_addr); 8014 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8015 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8016 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8017 } else { 8018 in6_addr_t v6addr; 8019 8020 v6addr = sin6->sin6_addr; 8021 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8022 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8023 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8024 } 8025 break; 8026 } 8027 case AF_INET: { 8028 ipaddr_t v4addr; 8029 8030 v4addr = sin->sin_addr.s_addr; 8031 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8032 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8033 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8034 break; 8035 } 8036 default: 8037 return (EAFNOSUPPORT); 8038 } 8039 if (ire != NULL) { 8040 sia->sa_res = 1; 8041 ire_refrele(ire); 8042 } else { 8043 sia->sa_res = 0; 8044 } 8045 return (0); 8046 } 8047 8048 /* 8049 * Check if this is an address assigned on-link i.e. neighbor, 8050 * and makes sure it's reachable from the current zone. 8051 * Returns true for my addresses as well. 8052 * Translates mapped addresses to v4 addresses and then 8053 * treats them as such, returning true if the v4 address 8054 * associated with this mapped address is configured. 8055 * Note: Applications will have to be careful what they do 8056 * with the response; use of mapped addresses limits 8057 * what can be done with the socket, especially with 8058 * respect to socket options and ioctls - neither IPv4 8059 * options nor IPv6 sticky options/ancillary data options 8060 * may be used. 8061 */ 8062 /* ARGSUSED */ 8063 int 8064 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8065 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8066 { 8067 struct sioc_addrreq *sia; 8068 sin_t *sin; 8069 mblk_t *mp1; 8070 ire_t *ire = NULL; 8071 zoneid_t zoneid; 8072 ip_stack_t *ipst; 8073 8074 ip1dbg(("ip_sioctl_tonlink")); 8075 8076 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8077 zoneid = Q_TO_CONN(q)->conn_zoneid; 8078 ipst = CONNQ_TO_IPST(q); 8079 8080 /* Existence verified in ip_wput_nondata */ 8081 mp1 = mp->b_cont->b_cont; 8082 sia = (struct sioc_addrreq *)mp1->b_rptr; 8083 sin = (sin_t *)&sia->sa_addr; 8084 8085 /* 8086 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8087 * to make sure we only look at on-link unicast address. 8088 */ 8089 switch (sin->sin_family) { 8090 case AF_INET6: { 8091 sin6_t *sin6 = (sin6_t *)sin; 8092 8093 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8094 ipaddr_t v4_addr; 8095 8096 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8097 v4_addr); 8098 if (!CLASSD(v4_addr)) { 8099 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8100 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8101 0, ipst, NULL); 8102 } 8103 } else { 8104 in6_addr_t v6addr; 8105 8106 v6addr = sin6->sin6_addr; 8107 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8108 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8109 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8110 ipst, NULL); 8111 } 8112 } 8113 break; 8114 } 8115 case AF_INET: { 8116 ipaddr_t v4addr; 8117 8118 v4addr = sin->sin_addr.s_addr; 8119 if (!CLASSD(v4addr)) { 8120 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8121 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8122 } 8123 break; 8124 } 8125 default: 8126 return (EAFNOSUPPORT); 8127 } 8128 sia->sa_res = 0; 8129 if (ire != NULL) { 8130 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8131 8132 if ((ire->ire_type & IRE_ONLINK) && 8133 !(ire->ire_type & IRE_BROADCAST)) 8134 sia->sa_res = 1; 8135 ire_refrele(ire); 8136 } 8137 return (0); 8138 } 8139 8140 /* 8141 * TBD: implement when kernel maintaines a list of site prefixes. 8142 */ 8143 /* ARGSUSED */ 8144 int 8145 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8146 ip_ioctl_cmd_t *ipip, void *ifreq) 8147 { 8148 return (ENXIO); 8149 } 8150 8151 /* ARP IOCTLs. */ 8152 /* ARGSUSED */ 8153 int 8154 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8155 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8156 { 8157 int err; 8158 ipaddr_t ipaddr; 8159 struct iocblk *iocp; 8160 conn_t *connp; 8161 struct arpreq *ar; 8162 struct xarpreq *xar; 8163 int arp_flags, flags, alength; 8164 uchar_t *lladdr; 8165 ip_stack_t *ipst; 8166 ill_t *ill = ipif->ipif_ill; 8167 ill_t *proxy_ill = NULL; 8168 ipmp_arpent_t *entp = NULL; 8169 boolean_t proxyarp = B_FALSE; 8170 boolean_t if_arp_ioctl = B_FALSE; 8171 ncec_t *ncec = NULL; 8172 nce_t *nce; 8173 8174 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8175 connp = Q_TO_CONN(q); 8176 ipst = connp->conn_netstack->netstack_ip; 8177 iocp = (struct iocblk *)mp->b_rptr; 8178 8179 if (ipip->ipi_cmd_type == XARP_CMD) { 8180 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8181 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8182 ar = NULL; 8183 8184 arp_flags = xar->xarp_flags; 8185 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8186 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8187 /* 8188 * Validate against user's link layer address length 8189 * input and name and addr length limits. 8190 */ 8191 alength = ill->ill_phys_addr_length; 8192 if (ipip->ipi_cmd == SIOCSXARP) { 8193 if (alength != xar->xarp_ha.sdl_alen || 8194 (alength + xar->xarp_ha.sdl_nlen > 8195 sizeof (xar->xarp_ha.sdl_data))) 8196 return (EINVAL); 8197 } 8198 } else { 8199 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8200 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8201 xar = NULL; 8202 8203 arp_flags = ar->arp_flags; 8204 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8205 /* 8206 * Theoretically, the sa_family could tell us what link 8207 * layer type this operation is trying to deal with. By 8208 * common usage AF_UNSPEC means ethernet. We'll assume 8209 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8210 * for now. Our new SIOC*XARP ioctls can be used more 8211 * generally. 8212 * 8213 * If the underlying media happens to have a non 6 byte 8214 * address, arp module will fail set/get, but the del 8215 * operation will succeed. 8216 */ 8217 alength = 6; 8218 if ((ipip->ipi_cmd != SIOCDARP) && 8219 (alength != ill->ill_phys_addr_length)) { 8220 return (EINVAL); 8221 } 8222 } 8223 8224 /* Translate ATF* flags to NCE* flags */ 8225 flags = 0; 8226 if (arp_flags & ATF_AUTHORITY) 8227 flags |= NCE_F_AUTHORITY; 8228 if (arp_flags & ATF_PERM) 8229 flags |= NCE_F_NONUD; /* not subject to aging */ 8230 if (arp_flags & ATF_PUBL) 8231 flags |= NCE_F_PUBLISH; 8232 8233 /* 8234 * IPMP ARP special handling: 8235 * 8236 * 1. Since ARP mappings must appear consistent across the group, 8237 * prohibit changing ARP mappings on the underlying interfaces. 8238 * 8239 * 2. Since ARP mappings for IPMP data addresses are maintained by 8240 * IP itself, prohibit changing them. 8241 * 8242 * 3. For proxy ARP, use a functioning hardware address in the group, 8243 * provided one exists. If one doesn't, just add the entry as-is; 8244 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8245 */ 8246 if (IS_UNDER_IPMP(ill)) { 8247 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8248 return (EPERM); 8249 } 8250 if (IS_IPMP(ill)) { 8251 ipmp_illgrp_t *illg = ill->ill_grp; 8252 8253 switch (ipip->ipi_cmd) { 8254 case SIOCSARP: 8255 case SIOCSXARP: 8256 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8257 if (proxy_ill != NULL) { 8258 proxyarp = B_TRUE; 8259 if (!ipmp_ill_is_active(proxy_ill)) 8260 proxy_ill = ipmp_illgrp_next_ill(illg); 8261 if (proxy_ill != NULL) 8262 lladdr = proxy_ill->ill_phys_addr; 8263 } 8264 /* FALLTHRU */ 8265 } 8266 } 8267 8268 ipaddr = sin->sin_addr.s_addr; 8269 /* 8270 * don't match across illgrp per case (1) and (2). 8271 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8272 */ 8273 nce = nce_lookup_v4(ill, &ipaddr); 8274 if (nce != NULL) 8275 ncec = nce->nce_common; 8276 8277 switch (iocp->ioc_cmd) { 8278 case SIOCDARP: 8279 case SIOCDXARP: { 8280 /* 8281 * Delete the NCE if any. 8282 */ 8283 if (ncec == NULL) { 8284 iocp->ioc_error = ENXIO; 8285 break; 8286 } 8287 /* Don't allow changes to arp mappings of local addresses. */ 8288 if (NCE_MYADDR(ncec)) { 8289 nce_refrele(nce); 8290 return (ENOTSUP); 8291 } 8292 iocp->ioc_error = 0; 8293 8294 /* 8295 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8296 * This will delete all the nce entries on the under_ills. 8297 */ 8298 ncec_delete(ncec); 8299 /* 8300 * Once the NCE has been deleted, then the ire_dep* consistency 8301 * mechanism will find any IRE which depended on the now 8302 * condemned NCE (as part of sending packets). 8303 * That mechanism handles redirects by deleting redirects 8304 * that refer to UNREACHABLE nces. 8305 */ 8306 break; 8307 } 8308 case SIOCGARP: 8309 case SIOCGXARP: 8310 if (ncec != NULL) { 8311 lladdr = ncec->ncec_lladdr; 8312 flags = ncec->ncec_flags; 8313 iocp->ioc_error = 0; 8314 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8315 } else { 8316 iocp->ioc_error = ENXIO; 8317 } 8318 break; 8319 case SIOCSARP: 8320 case SIOCSXARP: 8321 /* Don't allow changes to arp mappings of local addresses. */ 8322 if (ncec != NULL && NCE_MYADDR(ncec)) { 8323 nce_refrele(nce); 8324 return (ENOTSUP); 8325 } 8326 8327 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8328 flags |= NCE_F_STATIC; 8329 if (!if_arp_ioctl) { 8330 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8331 lladdr, alength, flags); 8332 } else { 8333 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8334 if (ipif != NULL) { 8335 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8336 lladdr, alength, flags); 8337 ipif_refrele(ipif); 8338 } 8339 } 8340 if (nce != NULL) { 8341 nce_refrele(nce); 8342 nce = NULL; 8343 } 8344 /* 8345 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8346 * by nce_add_common() 8347 */ 8348 err = nce_lookup_then_add_v4(ill, lladdr, 8349 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8350 &nce); 8351 if (err == EEXIST) { 8352 ncec = nce->nce_common; 8353 mutex_enter(&ncec->ncec_lock); 8354 ncec->ncec_state = ND_REACHABLE; 8355 ncec->ncec_flags = flags; 8356 nce_update(ncec, ND_UNCHANGED, lladdr); 8357 mutex_exit(&ncec->ncec_lock); 8358 err = 0; 8359 } 8360 if (nce != NULL) { 8361 nce_refrele(nce); 8362 nce = NULL; 8363 } 8364 if (IS_IPMP(ill) && err == 0) { 8365 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8366 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8367 flags); 8368 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8369 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8370 break; 8371 } 8372 } 8373 iocp->ioc_error = err; 8374 } 8375 8376 if (nce != NULL) { 8377 nce_refrele(nce); 8378 } 8379 8380 /* 8381 * If we created an IPMP ARP entry, mark that we've notified ARP. 8382 */ 8383 if (entp != NULL) 8384 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8385 8386 return (iocp->ioc_error); 8387 } 8388 8389 /* 8390 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8391 * the associated sin and refhold and return the associated ipif via `ci'. 8392 */ 8393 int 8394 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8395 cmd_info_t *ci) 8396 { 8397 mblk_t *mp1; 8398 sin_t *sin; 8399 conn_t *connp; 8400 ipif_t *ipif; 8401 ire_t *ire = NULL; 8402 ill_t *ill = NULL; 8403 boolean_t exists; 8404 ip_stack_t *ipst; 8405 struct arpreq *ar; 8406 struct xarpreq *xar; 8407 struct sockaddr_dl *sdl; 8408 8409 /* ioctl comes down on a conn */ 8410 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8411 connp = Q_TO_CONN(q); 8412 if (connp->conn_family == AF_INET6) 8413 return (ENXIO); 8414 8415 ipst = connp->conn_netstack->netstack_ip; 8416 8417 /* Verified in ip_wput_nondata */ 8418 mp1 = mp->b_cont->b_cont; 8419 8420 if (ipip->ipi_cmd_type == XARP_CMD) { 8421 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8422 xar = (struct xarpreq *)mp1->b_rptr; 8423 sin = (sin_t *)&xar->xarp_pa; 8424 sdl = &xar->xarp_ha; 8425 8426 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8427 return (ENXIO); 8428 if (sdl->sdl_nlen >= LIFNAMSIZ) 8429 return (EINVAL); 8430 } else { 8431 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8432 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8433 ar = (struct arpreq *)mp1->b_rptr; 8434 sin = (sin_t *)&ar->arp_pa; 8435 } 8436 8437 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8438 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8439 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8440 if (ipif == NULL) 8441 return (ENXIO); 8442 if (ipif->ipif_id != 0) { 8443 ipif_refrele(ipif); 8444 return (ENXIO); 8445 } 8446 } else { 8447 /* 8448 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8449 * of 0: use the IP address to find the ipif. If the IP 8450 * address is an IPMP test address, ire_ftable_lookup() will 8451 * find the wrong ill, so we first do an ipif_lookup_addr(). 8452 */ 8453 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8454 ipst); 8455 if (ipif == NULL) { 8456 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8457 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8458 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8459 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8460 if (ire != NULL) 8461 ire_refrele(ire); 8462 return (ENXIO); 8463 } 8464 ASSERT(ire != NULL && ill != NULL); 8465 ipif = ill->ill_ipif; 8466 ipif_refhold(ipif); 8467 ire_refrele(ire); 8468 } 8469 } 8470 8471 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8472 ipif_refrele(ipif); 8473 return (ENXIO); 8474 } 8475 8476 ci->ci_sin = sin; 8477 ci->ci_ipif = ipif; 8478 return (0); 8479 } 8480 8481 /* 8482 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8483 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8484 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8485 * up and thus an ill can join that illgrp. 8486 * 8487 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8488 * open()/close() primarily because close() is not allowed to fail or block 8489 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8490 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8491 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8492 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8493 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8494 * state if I_UNLINK didn't occur. 8495 * 8496 * Note that for each plumb/unplumb operation, we may end up here more than 8497 * once because of the way ifconfig works. However, it's OK to link the same 8498 * illgrp more than once, or unlink an illgrp that's already unlinked. 8499 */ 8500 static int 8501 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8502 { 8503 int err; 8504 ip_stack_t *ipst = ill->ill_ipst; 8505 8506 ASSERT(IS_IPMP(ill)); 8507 ASSERT(IAM_WRITER_ILL(ill)); 8508 8509 switch (ioccmd) { 8510 case I_LINK: 8511 return (ENOTSUP); 8512 8513 case I_PLINK: 8514 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8515 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8516 rw_exit(&ipst->ips_ipmp_lock); 8517 break; 8518 8519 case I_PUNLINK: 8520 /* 8521 * Require all UP ipifs be brought down prior to unlinking the 8522 * illgrp so any associated IREs (and other state) is torched. 8523 */ 8524 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8525 return (EBUSY); 8526 8527 /* 8528 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8529 * with an SIOCSLIFGROUPNAME request from an ill trying to 8530 * join this group. Specifically: ills trying to join grab 8531 * ipmp_lock and bump a "pending join" counter checked by 8532 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8533 * joins can occur (since we have ipmp_lock). Once we drop 8534 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8535 * find the illgrp (since we unlinked it) and will return 8536 * EAFNOSUPPORT. This will then take them back through the 8537 * IPMP meta-interface plumbing logic in ifconfig, and thus 8538 * back through I_PLINK above. 8539 */ 8540 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8541 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8542 rw_exit(&ipst->ips_ipmp_lock); 8543 return (err); 8544 default: 8545 break; 8546 } 8547 return (0); 8548 } 8549 8550 /* 8551 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8552 * atomically set/clear the muxids. Also complete the ioctl by acking or 8553 * naking it. Note that the code is structured such that the link type, 8554 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8555 * its clones use the persistent link, while pppd(1M) and perhaps many 8556 * other daemons may use non-persistent link. When combined with some 8557 * ill_t states, linking and unlinking lower streams may be used as 8558 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8559 */ 8560 /* ARGSUSED */ 8561 void 8562 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8563 { 8564 mblk_t *mp1; 8565 struct linkblk *li; 8566 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8567 int err = 0; 8568 8569 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8570 ioccmd == I_LINK || ioccmd == I_UNLINK); 8571 8572 mp1 = mp->b_cont; /* This is the linkblk info */ 8573 li = (struct linkblk *)mp1->b_rptr; 8574 8575 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8576 if (err == EINPROGRESS) 8577 return; 8578 if (err == 0) 8579 miocack(q, mp, 0, 0); 8580 else 8581 miocnak(q, mp, 0, err); 8582 8583 /* Conn was refheld in ip_sioctl_copyin_setup */ 8584 if (CONN_Q(q)) { 8585 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8586 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8587 } 8588 } 8589 8590 /* 8591 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8592 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8593 * module stream). 8594 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8595 * an error code on failure. 8596 */ 8597 static int 8598 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8599 struct linkblk *li) 8600 { 8601 int err = 0; 8602 ill_t *ill; 8603 queue_t *ipwq, *dwq; 8604 const char *name; 8605 struct qinit *qinfo; 8606 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8607 boolean_t entered_ipsq = B_FALSE; 8608 boolean_t is_ip = B_FALSE; 8609 arl_t *arl; 8610 8611 /* 8612 * Walk the lower stream to verify it's the IP module stream. 8613 * The IP module is identified by its name, wput function, 8614 * and non-NULL q_next. STREAMS ensures that the lower stream 8615 * (li->l_qbot) will not vanish until this ioctl completes. 8616 */ 8617 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8618 qinfo = ipwq->q_qinfo; 8619 name = qinfo->qi_minfo->mi_idname; 8620 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8621 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8622 is_ip = B_TRUE; 8623 break; 8624 } 8625 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8626 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8627 break; 8628 } 8629 } 8630 8631 /* 8632 * If this isn't an IP module stream, bail. 8633 */ 8634 if (ipwq == NULL) 8635 return (0); 8636 8637 if (!is_ip) { 8638 arl = (arl_t *)ipwq->q_ptr; 8639 ill = arl_to_ill(arl); 8640 if (ill == NULL) 8641 return (0); 8642 } else { 8643 ill = ipwq->q_ptr; 8644 } 8645 ASSERT(ill != NULL); 8646 8647 if (ipsq == NULL) { 8648 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8649 NEW_OP, B_FALSE); 8650 if (ipsq == NULL) { 8651 if (!is_ip) 8652 ill_refrele(ill); 8653 return (EINPROGRESS); 8654 } 8655 entered_ipsq = B_TRUE; 8656 } 8657 ASSERT(IAM_WRITER_ILL(ill)); 8658 mutex_enter(&ill->ill_lock); 8659 if (!is_ip) { 8660 if (islink && ill->ill_muxid == 0) { 8661 /* 8662 * Plumbing has to be done with IP plumbed first, arp 8663 * second, but here we have arp being plumbed first. 8664 */ 8665 mutex_exit(&ill->ill_lock); 8666 if (entered_ipsq) 8667 ipsq_exit(ipsq); 8668 ill_refrele(ill); 8669 return (EINVAL); 8670 } 8671 } 8672 mutex_exit(&ill->ill_lock); 8673 if (!is_ip) { 8674 arl->arl_muxid = islink ? li->l_index : 0; 8675 ill_refrele(ill); 8676 goto done; 8677 } 8678 8679 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8680 goto done; 8681 8682 /* 8683 * As part of I_{P}LINKing, stash the number of downstream modules and 8684 * the read queue of the module immediately below IP in the ill. 8685 * These are used during the capability negotiation below. 8686 */ 8687 ill->ill_lmod_rq = NULL; 8688 ill->ill_lmod_cnt = 0; 8689 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8690 ill->ill_lmod_rq = RD(dwq); 8691 for (; dwq != NULL; dwq = dwq->q_next) 8692 ill->ill_lmod_cnt++; 8693 } 8694 8695 ill->ill_muxid = islink ? li->l_index : 0; 8696 8697 /* 8698 * Mark the ipsq busy until the capability operations initiated below 8699 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8700 * returns, but the capability operation may complete asynchronously 8701 * much later. 8702 */ 8703 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8704 /* 8705 * If there's at least one up ipif on this ill, then we're bound to 8706 * the underlying driver via DLPI. In that case, renegotiate 8707 * capabilities to account for any possible change in modules 8708 * interposed between IP and the driver. 8709 */ 8710 if (ill->ill_ipif_up_count > 0) { 8711 if (islink) 8712 ill_capability_probe(ill); 8713 else 8714 ill_capability_reset(ill, B_FALSE); 8715 } 8716 ipsq_current_finish(ipsq); 8717 done: 8718 if (entered_ipsq) 8719 ipsq_exit(ipsq); 8720 8721 return (err); 8722 } 8723 8724 /* 8725 * Search the ioctl command in the ioctl tables and return a pointer 8726 * to the ioctl command information. The ioctl command tables are 8727 * static and fully populated at compile time. 8728 */ 8729 ip_ioctl_cmd_t * 8730 ip_sioctl_lookup(int ioc_cmd) 8731 { 8732 int index; 8733 ip_ioctl_cmd_t *ipip; 8734 ip_ioctl_cmd_t *ipip_end; 8735 8736 if (ioc_cmd == IPI_DONTCARE) 8737 return (NULL); 8738 8739 /* 8740 * Do a 2 step search. First search the indexed table 8741 * based on the least significant byte of the ioctl cmd. 8742 * If we don't find a match, then search the misc table 8743 * serially. 8744 */ 8745 index = ioc_cmd & 0xFF; 8746 if (index < ip_ndx_ioctl_count) { 8747 ipip = &ip_ndx_ioctl_table[index]; 8748 if (ipip->ipi_cmd == ioc_cmd) { 8749 /* Found a match in the ndx table */ 8750 return (ipip); 8751 } 8752 } 8753 8754 /* Search the misc table */ 8755 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8756 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8757 if (ipip->ipi_cmd == ioc_cmd) 8758 /* Found a match in the misc table */ 8759 return (ipip); 8760 } 8761 8762 return (NULL); 8763 } 8764 8765 /* 8766 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8767 */ 8768 static boolean_t 8769 getset_ioctl_checks(mblk_t *mp) 8770 { 8771 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8772 mblk_t *mp1 = mp->b_cont; 8773 mod_ioc_prop_t *pioc; 8774 uint_t flags; 8775 uint_t pioc_size; 8776 8777 /* do sanity checks on various arguments */ 8778 if (mp1 == NULL || iocp->ioc_count == 0 || 8779 iocp->ioc_count == TRANSPARENT) { 8780 return (B_FALSE); 8781 } 8782 if (msgdsize(mp1) < iocp->ioc_count) { 8783 if (!pullupmsg(mp1, iocp->ioc_count)) 8784 return (B_FALSE); 8785 } 8786 8787 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8788 8789 /* sanity checks on mpr_valsize */ 8790 pioc_size = sizeof (mod_ioc_prop_t); 8791 if (pioc->mpr_valsize != 0) 8792 pioc_size += pioc->mpr_valsize - 1; 8793 8794 if (iocp->ioc_count != pioc_size) 8795 return (B_FALSE); 8796 8797 flags = pioc->mpr_flags; 8798 if (iocp->ioc_cmd == SIOCSETPROP) { 8799 /* 8800 * One can either reset the value to it's default value or 8801 * change the current value or append/remove the value from 8802 * a multi-valued properties. 8803 */ 8804 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8805 flags != MOD_PROP_ACTIVE && 8806 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8807 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8808 return (B_FALSE); 8809 } else { 8810 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8811 8812 /* 8813 * One can retrieve only one kind of property information 8814 * at a time. 8815 */ 8816 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8817 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8818 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8819 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8820 return (B_FALSE); 8821 } 8822 8823 return (B_TRUE); 8824 } 8825 8826 /* 8827 * process the SIOC{SET|GET}PROP ioctl's 8828 */ 8829 /* ARGSUSED */ 8830 static void 8831 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8832 { 8833 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8834 mblk_t *mp1 = mp->b_cont; 8835 mod_ioc_prop_t *pioc; 8836 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8837 ip_stack_t *ipst; 8838 icmp_stack_t *is; 8839 tcp_stack_t *tcps; 8840 sctp_stack_t *sctps; 8841 udp_stack_t *us; 8842 netstack_t *stack; 8843 void *cbarg; 8844 cred_t *cr; 8845 boolean_t set; 8846 int err; 8847 8848 ASSERT(q->q_next == NULL); 8849 ASSERT(CONN_Q(q)); 8850 8851 if (!getset_ioctl_checks(mp)) { 8852 miocnak(q, mp, 0, EINVAL); 8853 return; 8854 } 8855 ipst = CONNQ_TO_IPST(q); 8856 stack = ipst->ips_netstack; 8857 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8858 8859 switch (pioc->mpr_proto) { 8860 case MOD_PROTO_IP: 8861 case MOD_PROTO_IPV4: 8862 case MOD_PROTO_IPV6: 8863 ptbl = ipst->ips_propinfo_tbl; 8864 cbarg = ipst; 8865 break; 8866 case MOD_PROTO_RAWIP: 8867 is = stack->netstack_icmp; 8868 ptbl = is->is_propinfo_tbl; 8869 cbarg = is; 8870 break; 8871 case MOD_PROTO_TCP: 8872 tcps = stack->netstack_tcp; 8873 ptbl = tcps->tcps_propinfo_tbl; 8874 cbarg = tcps; 8875 break; 8876 case MOD_PROTO_UDP: 8877 us = stack->netstack_udp; 8878 ptbl = us->us_propinfo_tbl; 8879 cbarg = us; 8880 break; 8881 case MOD_PROTO_SCTP: 8882 sctps = stack->netstack_sctp; 8883 ptbl = sctps->sctps_propinfo_tbl; 8884 cbarg = sctps; 8885 break; 8886 default: 8887 miocnak(q, mp, 0, EINVAL); 8888 return; 8889 } 8890 8891 /* search for given property in respective protocol propinfo table */ 8892 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8893 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8894 pinfo->mpi_proto == pioc->mpr_proto) 8895 break; 8896 } 8897 if (pinfo->mpi_name == NULL) { 8898 miocnak(q, mp, 0, ENOENT); 8899 return; 8900 } 8901 8902 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8903 if (set && pinfo->mpi_setf != NULL) { 8904 cr = msg_getcred(mp, NULL); 8905 if (cr == NULL) 8906 cr = iocp->ioc_cr; 8907 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8908 pioc->mpr_val, pioc->mpr_flags); 8909 } else if (!set && pinfo->mpi_getf != NULL) { 8910 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8911 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8912 } else { 8913 err = EPERM; 8914 } 8915 8916 if (err != 0) { 8917 miocnak(q, mp, 0, err); 8918 } else { 8919 if (set) 8920 miocack(q, mp, 0, 0); 8921 else /* For get, we need to return back the data */ 8922 miocack(q, mp, iocp->ioc_count, 0); 8923 } 8924 } 8925 8926 /* 8927 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8928 * as several routing daemons have unfortunately used this 'unpublished' 8929 * but well-known ioctls. 8930 */ 8931 /* ARGSUSED */ 8932 static void 8933 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8934 { 8935 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8936 mblk_t *mp1 = mp->b_cont; 8937 char *pname, *pval, *buf; 8938 uint_t bufsize, proto; 8939 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8940 ip_stack_t *ipst; 8941 int err = 0; 8942 8943 ASSERT(CONN_Q(q)); 8944 ipst = CONNQ_TO_IPST(q); 8945 8946 if (iocp->ioc_count == 0 || mp1 == NULL) { 8947 miocnak(q, mp, 0, EINVAL); 8948 return; 8949 } 8950 8951 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8952 pval = buf = pname = (char *)mp1->b_rptr; 8953 bufsize = MBLKL(mp1); 8954 8955 if (strcmp(pname, "ip_forwarding") == 0) { 8956 pname = "forwarding"; 8957 proto = MOD_PROTO_IPV4; 8958 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8959 pname = "forwarding"; 8960 proto = MOD_PROTO_IPV6; 8961 } else { 8962 miocnak(q, mp, 0, EINVAL); 8963 return; 8964 } 8965 8966 ptbl = ipst->ips_propinfo_tbl; 8967 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8968 if (strcmp(pinfo->mpi_name, pname) == 0 && 8969 pinfo->mpi_proto == proto) 8970 break; 8971 } 8972 8973 ASSERT(pinfo->mpi_name != NULL); 8974 8975 switch (iocp->ioc_cmd) { 8976 case ND_GET: 8977 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 8978 0)) == 0) { 8979 miocack(q, mp, iocp->ioc_count, 0); 8980 return; 8981 } 8982 break; 8983 case ND_SET: 8984 /* 8985 * buffer will have property name and value in the following 8986 * format, 8987 * <property name>'\0'<property value>'\0', extract them; 8988 */ 8989 while (*pval++) 8990 noop; 8991 8992 if (!*pval || pval >= (char *)mp1->b_wptr) { 8993 err = EINVAL; 8994 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 8995 pval, 0)) == 0) { 8996 miocack(q, mp, 0, 0); 8997 return; 8998 } 8999 break; 9000 default: 9001 err = EINVAL; 9002 break; 9003 } 9004 miocnak(q, mp, 0, err); 9005 } 9006 9007 /* 9008 * Wrapper function for resuming deferred ioctl processing 9009 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9010 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9011 */ 9012 /* ARGSUSED */ 9013 void 9014 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9015 void *dummy_arg) 9016 { 9017 ip_sioctl_copyin_setup(q, mp); 9018 } 9019 9020 /* 9021 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9022 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9023 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9024 * We establish here the size of the block to be copied in. mi_copyin 9025 * arranges for this to happen, an processing continues in ip_wput_nondata with 9026 * an M_IOCDATA message. 9027 */ 9028 void 9029 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9030 { 9031 int copyin_size; 9032 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9033 ip_ioctl_cmd_t *ipip; 9034 cred_t *cr; 9035 ip_stack_t *ipst; 9036 9037 if (CONN_Q(q)) 9038 ipst = CONNQ_TO_IPST(q); 9039 else 9040 ipst = ILLQ_TO_IPST(q); 9041 9042 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9043 if (ipip == NULL) { 9044 /* 9045 * The ioctl is not one we understand or own. 9046 * Pass it along to be processed down stream, 9047 * if this is a module instance of IP, else nak 9048 * the ioctl. 9049 */ 9050 if (q->q_next == NULL) { 9051 goto nak; 9052 } else { 9053 putnext(q, mp); 9054 return; 9055 } 9056 } 9057 9058 /* 9059 * If this is deferred, then we will do all the checks when we 9060 * come back. 9061 */ 9062 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9063 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9064 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9065 return; 9066 } 9067 9068 /* 9069 * Only allow a very small subset of IP ioctls on this stream if 9070 * IP is a module and not a driver. Allowing ioctls to be processed 9071 * in this case may cause assert failures or data corruption. 9072 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9073 * ioctls allowed on an IP module stream, after which this stream 9074 * normally becomes a multiplexor (at which time the stream head 9075 * will fail all ioctls). 9076 */ 9077 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9078 goto nak; 9079 } 9080 9081 /* Make sure we have ioctl data to process. */ 9082 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9083 goto nak; 9084 9085 /* 9086 * Prefer dblk credential over ioctl credential; some synthesized 9087 * ioctls have kcred set because there's no way to crhold() 9088 * a credential in some contexts. (ioc_cr is not crfree() by 9089 * the framework; the caller of ioctl needs to hold the reference 9090 * for the duration of the call). 9091 */ 9092 cr = msg_getcred(mp, NULL); 9093 if (cr == NULL) 9094 cr = iocp->ioc_cr; 9095 9096 /* Make sure normal users don't send down privileged ioctls */ 9097 if ((ipip->ipi_flags & IPI_PRIV) && 9098 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9099 /* We checked the privilege earlier but log it here */ 9100 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9101 return; 9102 } 9103 9104 /* 9105 * The ioctl command tables can only encode fixed length 9106 * ioctl data. If the length is variable, the table will 9107 * encode the length as zero. Such special cases are handled 9108 * below in the switch. 9109 */ 9110 if (ipip->ipi_copyin_size != 0) { 9111 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9112 return; 9113 } 9114 9115 switch (iocp->ioc_cmd) { 9116 case O_SIOCGIFCONF: 9117 case SIOCGIFCONF: 9118 /* 9119 * This IOCTL is hilarious. See comments in 9120 * ip_sioctl_get_ifconf for the story. 9121 */ 9122 if (iocp->ioc_count == TRANSPARENT) 9123 copyin_size = SIZEOF_STRUCT(ifconf, 9124 iocp->ioc_flag); 9125 else 9126 copyin_size = iocp->ioc_count; 9127 mi_copyin(q, mp, NULL, copyin_size); 9128 return; 9129 9130 case O_SIOCGLIFCONF: 9131 case SIOCGLIFCONF: 9132 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9133 mi_copyin(q, mp, NULL, copyin_size); 9134 return; 9135 9136 case SIOCGLIFSRCOF: 9137 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9138 mi_copyin(q, mp, NULL, copyin_size); 9139 return; 9140 9141 case SIOCGIP6ADDRPOLICY: 9142 ip_sioctl_ip6addrpolicy(q, mp); 9143 ip6_asp_table_refrele(ipst); 9144 return; 9145 9146 case SIOCSIP6ADDRPOLICY: 9147 ip_sioctl_ip6addrpolicy(q, mp); 9148 return; 9149 9150 case SIOCGDSTINFO: 9151 ip_sioctl_dstinfo(q, mp); 9152 ip6_asp_table_refrele(ipst); 9153 return; 9154 9155 case ND_SET: 9156 case ND_GET: 9157 ip_process_legacy_nddprop(q, mp); 9158 return; 9159 9160 case SIOCSETPROP: 9161 case SIOCGETPROP: 9162 ip_sioctl_getsetprop(q, mp); 9163 return; 9164 9165 case I_PLINK: 9166 case I_PUNLINK: 9167 case I_LINK: 9168 case I_UNLINK: 9169 /* 9170 * We treat non-persistent link similarly as the persistent 9171 * link case, in terms of plumbing/unplumbing, as well as 9172 * dynamic re-plumbing events indicator. See comments 9173 * in ip_sioctl_plink() for more. 9174 * 9175 * Request can be enqueued in the 'ipsq' while waiting 9176 * to become exclusive. So bump up the conn ref. 9177 */ 9178 if (CONN_Q(q)) { 9179 CONN_INC_REF(Q_TO_CONN(q)); 9180 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9181 } 9182 ip_sioctl_plink(NULL, q, mp, NULL); 9183 return; 9184 9185 case IP_IOCTL: 9186 ip_wput_ioctl(q, mp); 9187 return; 9188 9189 case SIOCILB: 9190 /* The ioctl length varies depending on the ILB command. */ 9191 copyin_size = iocp->ioc_count; 9192 if (copyin_size < sizeof (ilb_cmd_t)) 9193 goto nak; 9194 mi_copyin(q, mp, NULL, copyin_size); 9195 return; 9196 9197 default: 9198 cmn_err(CE_PANIC, "should not happen "); 9199 } 9200 nak: 9201 if (mp->b_cont != NULL) { 9202 freemsg(mp->b_cont); 9203 mp->b_cont = NULL; 9204 } 9205 iocp->ioc_error = EINVAL; 9206 mp->b_datap->db_type = M_IOCNAK; 9207 iocp->ioc_count = 0; 9208 qreply(q, mp); 9209 } 9210 9211 static void 9212 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9213 { 9214 struct arpreq *ar; 9215 struct xarpreq *xar; 9216 mblk_t *tmp; 9217 struct iocblk *iocp; 9218 int x_arp_ioctl = B_FALSE; 9219 int *flagsp; 9220 char *storage = NULL; 9221 9222 ASSERT(ill != NULL); 9223 9224 iocp = (struct iocblk *)mp->b_rptr; 9225 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9226 9227 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9228 if ((iocp->ioc_cmd == SIOCGXARP) || 9229 (iocp->ioc_cmd == SIOCSXARP)) { 9230 x_arp_ioctl = B_TRUE; 9231 xar = (struct xarpreq *)tmp->b_rptr; 9232 flagsp = &xar->xarp_flags; 9233 storage = xar->xarp_ha.sdl_data; 9234 } else { 9235 ar = (struct arpreq *)tmp->b_rptr; 9236 flagsp = &ar->arp_flags; 9237 storage = ar->arp_ha.sa_data; 9238 } 9239 9240 /* 9241 * We're done if this is not an SIOCG{X}ARP 9242 */ 9243 if (x_arp_ioctl) { 9244 storage += ill_xarp_info(&xar->xarp_ha, ill); 9245 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9246 sizeof (xar->xarp_ha.sdl_data)) { 9247 iocp->ioc_error = EINVAL; 9248 return; 9249 } 9250 } 9251 *flagsp = ATF_INUSE; 9252 /* 9253 * If /sbin/arp told us we are the authority using the "permanent" 9254 * flag, or if this is one of my addresses print "permanent" 9255 * in the /sbin/arp output. 9256 */ 9257 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9258 *flagsp |= ATF_AUTHORITY; 9259 if (flags & NCE_F_NONUD) 9260 *flagsp |= ATF_PERM; /* not subject to aging */ 9261 if (flags & NCE_F_PUBLISH) 9262 *flagsp |= ATF_PUBL; 9263 if (hwaddr != NULL) { 9264 *flagsp |= ATF_COM; 9265 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9266 } 9267 } 9268 9269 /* 9270 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9271 * interface) create the next available logical interface for this 9272 * physical interface. 9273 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9274 * ipif with the specified name. 9275 * 9276 * If the address family is not AF_UNSPEC then set the address as well. 9277 * 9278 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9279 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9280 * 9281 * Executed as a writer on the ill. 9282 * So no lock is needed to traverse the ipif chain, or examine the 9283 * phyint flags. 9284 */ 9285 /* ARGSUSED */ 9286 int 9287 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9288 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9289 { 9290 mblk_t *mp1; 9291 struct lifreq *lifr; 9292 boolean_t isv6; 9293 boolean_t exists; 9294 char *name; 9295 char *endp; 9296 char *cp; 9297 int namelen; 9298 ipif_t *ipif; 9299 long id; 9300 ipsq_t *ipsq; 9301 ill_t *ill; 9302 sin_t *sin; 9303 int err = 0; 9304 boolean_t found_sep = B_FALSE; 9305 conn_t *connp; 9306 zoneid_t zoneid; 9307 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9308 9309 ASSERT(q->q_next == NULL); 9310 ip1dbg(("ip_sioctl_addif\n")); 9311 /* Existence of mp1 has been checked in ip_wput_nondata */ 9312 mp1 = mp->b_cont->b_cont; 9313 /* 9314 * Null terminate the string to protect against buffer 9315 * overrun. String was generated by user code and may not 9316 * be trusted. 9317 */ 9318 lifr = (struct lifreq *)mp1->b_rptr; 9319 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9320 name = lifr->lifr_name; 9321 ASSERT(CONN_Q(q)); 9322 connp = Q_TO_CONN(q); 9323 isv6 = (connp->conn_family == AF_INET6); 9324 zoneid = connp->conn_zoneid; 9325 namelen = mi_strlen(name); 9326 if (namelen == 0) 9327 return (EINVAL); 9328 9329 exists = B_FALSE; 9330 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9331 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9332 /* 9333 * Allow creating lo0 using SIOCLIFADDIF. 9334 * can't be any other writer thread. So can pass null below 9335 * for the last 4 args to ipif_lookup_name. 9336 */ 9337 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9338 &exists, isv6, zoneid, ipst); 9339 /* Prevent any further action */ 9340 if (ipif == NULL) { 9341 return (ENOBUFS); 9342 } else if (!exists) { 9343 /* We created the ipif now and as writer */ 9344 ipif_refrele(ipif); 9345 return (0); 9346 } else { 9347 ill = ipif->ipif_ill; 9348 ill_refhold(ill); 9349 ipif_refrele(ipif); 9350 } 9351 } else { 9352 /* Look for a colon in the name. */ 9353 endp = &name[namelen]; 9354 for (cp = endp; --cp > name; ) { 9355 if (*cp == IPIF_SEPARATOR_CHAR) { 9356 found_sep = B_TRUE; 9357 /* 9358 * Reject any non-decimal aliases for plumbing 9359 * of logical interfaces. Aliases with leading 9360 * zeroes are also rejected as they introduce 9361 * ambiguity in the naming of the interfaces. 9362 * Comparing with "0" takes care of all such 9363 * cases. 9364 */ 9365 if ((strncmp("0", cp+1, 1)) == 0) 9366 return (EINVAL); 9367 9368 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9369 id <= 0 || *endp != '\0') { 9370 return (EINVAL); 9371 } 9372 *cp = '\0'; 9373 break; 9374 } 9375 } 9376 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9377 if (found_sep) 9378 *cp = IPIF_SEPARATOR_CHAR; 9379 if (ill == NULL) 9380 return (ENXIO); 9381 } 9382 9383 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9384 B_TRUE); 9385 9386 /* 9387 * Release the refhold due to the lookup, now that we are excl 9388 * or we are just returning 9389 */ 9390 ill_refrele(ill); 9391 9392 if (ipsq == NULL) 9393 return (EINPROGRESS); 9394 9395 /* We are now exclusive on the IPSQ */ 9396 ASSERT(IAM_WRITER_ILL(ill)); 9397 9398 if (found_sep) { 9399 /* Now see if there is an IPIF with this unit number. */ 9400 for (ipif = ill->ill_ipif; ipif != NULL; 9401 ipif = ipif->ipif_next) { 9402 if (ipif->ipif_id == id) { 9403 err = EEXIST; 9404 goto done; 9405 } 9406 } 9407 } 9408 9409 /* 9410 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9411 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9412 * instead. 9413 */ 9414 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9415 B_TRUE, B_TRUE, &err)) == NULL) { 9416 goto done; 9417 } 9418 9419 /* Return created name with ioctl */ 9420 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9421 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9422 ip1dbg(("created %s\n", lifr->lifr_name)); 9423 9424 /* Set address */ 9425 sin = (sin_t *)&lifr->lifr_addr; 9426 if (sin->sin_family != AF_UNSPEC) { 9427 err = ip_sioctl_addr(ipif, sin, q, mp, 9428 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9429 } 9430 9431 done: 9432 ipsq_exit(ipsq); 9433 return (err); 9434 } 9435 9436 /* 9437 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9438 * interface) delete it based on the IP address (on this physical interface). 9439 * Otherwise delete it based on the ipif_id. 9440 * Also, special handling to allow a removeif of lo0. 9441 */ 9442 /* ARGSUSED */ 9443 int 9444 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9445 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9446 { 9447 conn_t *connp; 9448 ill_t *ill = ipif->ipif_ill; 9449 boolean_t success; 9450 ip_stack_t *ipst; 9451 9452 ipst = CONNQ_TO_IPST(q); 9453 9454 ASSERT(q->q_next == NULL); 9455 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9456 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9457 ASSERT(IAM_WRITER_IPIF(ipif)); 9458 9459 connp = Q_TO_CONN(q); 9460 /* 9461 * Special case for unplumbing lo0 (the loopback physical interface). 9462 * If unplumbing lo0, the incoming address structure has been 9463 * initialized to all zeros. When unplumbing lo0, all its logical 9464 * interfaces must be removed too. 9465 * 9466 * Note that this interface may be called to remove a specific 9467 * loopback logical interface (eg, lo0:1). But in that case 9468 * ipif->ipif_id != 0 so that the code path for that case is the 9469 * same as any other interface (meaning it skips the code directly 9470 * below). 9471 */ 9472 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9473 if (sin->sin_family == AF_UNSPEC && 9474 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9475 /* 9476 * Mark it condemned. No new ref. will be made to ill. 9477 */ 9478 mutex_enter(&ill->ill_lock); 9479 ill->ill_state_flags |= ILL_CONDEMNED; 9480 for (ipif = ill->ill_ipif; ipif != NULL; 9481 ipif = ipif->ipif_next) { 9482 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9483 } 9484 mutex_exit(&ill->ill_lock); 9485 9486 ipif = ill->ill_ipif; 9487 /* unplumb the loopback interface */ 9488 ill_delete(ill); 9489 mutex_enter(&connp->conn_lock); 9490 mutex_enter(&ill->ill_lock); 9491 9492 /* Are any references to this ill active */ 9493 if (ill_is_freeable(ill)) { 9494 mutex_exit(&ill->ill_lock); 9495 mutex_exit(&connp->conn_lock); 9496 ill_delete_tail(ill); 9497 mi_free(ill); 9498 return (0); 9499 } 9500 success = ipsq_pending_mp_add(connp, ipif, 9501 CONNP_TO_WQ(connp), mp, ILL_FREE); 9502 mutex_exit(&connp->conn_lock); 9503 mutex_exit(&ill->ill_lock); 9504 if (success) 9505 return (EINPROGRESS); 9506 else 9507 return (EINTR); 9508 } 9509 } 9510 9511 if (ipif->ipif_id == 0) { 9512 ipsq_t *ipsq; 9513 9514 /* Find based on address */ 9515 if (ipif->ipif_isv6) { 9516 sin6_t *sin6; 9517 9518 if (sin->sin_family != AF_INET6) 9519 return (EAFNOSUPPORT); 9520 9521 sin6 = (sin6_t *)sin; 9522 /* We are a writer, so we should be able to lookup */ 9523 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9524 ipst); 9525 } else { 9526 if (sin->sin_family != AF_INET) 9527 return (EAFNOSUPPORT); 9528 9529 /* We are a writer, so we should be able to lookup */ 9530 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9531 ipst); 9532 } 9533 if (ipif == NULL) { 9534 return (EADDRNOTAVAIL); 9535 } 9536 9537 /* 9538 * It is possible for a user to send an SIOCLIFREMOVEIF with 9539 * lifr_name of the physical interface but with an ip address 9540 * lifr_addr of a logical interface plumbed over it. 9541 * So update ipx_current_ipif now that ipif points to the 9542 * correct one. 9543 */ 9544 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9545 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9546 9547 /* This is a writer */ 9548 ipif_refrele(ipif); 9549 } 9550 9551 /* 9552 * Can not delete instance zero since it is tied to the ill. 9553 */ 9554 if (ipif->ipif_id == 0) 9555 return (EBUSY); 9556 9557 mutex_enter(&ill->ill_lock); 9558 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9559 mutex_exit(&ill->ill_lock); 9560 9561 ipif_free(ipif); 9562 9563 mutex_enter(&connp->conn_lock); 9564 mutex_enter(&ill->ill_lock); 9565 9566 /* Are any references to this ipif active */ 9567 if (ipif_is_freeable(ipif)) { 9568 mutex_exit(&ill->ill_lock); 9569 mutex_exit(&connp->conn_lock); 9570 ipif_non_duplicate(ipif); 9571 (void) ipif_down_tail(ipif); 9572 ipif_free_tail(ipif); /* frees ipif */ 9573 return (0); 9574 } 9575 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9576 IPIF_FREE); 9577 mutex_exit(&ill->ill_lock); 9578 mutex_exit(&connp->conn_lock); 9579 if (success) 9580 return (EINPROGRESS); 9581 else 9582 return (EINTR); 9583 } 9584 9585 /* 9586 * Restart the removeif ioctl. The refcnt has gone down to 0. 9587 * The ipif is already condemned. So can't find it thru lookups. 9588 */ 9589 /* ARGSUSED */ 9590 int 9591 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9592 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9593 { 9594 ill_t *ill = ipif->ipif_ill; 9595 9596 ASSERT(IAM_WRITER_IPIF(ipif)); 9597 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9598 9599 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9600 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9601 9602 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9603 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9604 ill_delete_tail(ill); 9605 mi_free(ill); 9606 return (0); 9607 } 9608 9609 ipif_non_duplicate(ipif); 9610 (void) ipif_down_tail(ipif); 9611 ipif_free_tail(ipif); 9612 9613 return (0); 9614 } 9615 9616 /* 9617 * Set the local interface address using the given prefix and ill_token. 9618 */ 9619 /* ARGSUSED */ 9620 int 9621 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9622 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9623 { 9624 int err; 9625 in6_addr_t v6addr; 9626 sin6_t *sin6; 9627 ill_t *ill; 9628 int i; 9629 9630 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9632 9633 ASSERT(IAM_WRITER_IPIF(ipif)); 9634 9635 if (!ipif->ipif_isv6) 9636 return (EINVAL); 9637 9638 if (sin->sin_family != AF_INET6) 9639 return (EAFNOSUPPORT); 9640 9641 sin6 = (sin6_t *)sin; 9642 v6addr = sin6->sin6_addr; 9643 ill = ipif->ipif_ill; 9644 9645 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9646 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9647 return (EADDRNOTAVAIL); 9648 9649 for (i = 0; i < 4; i++) 9650 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9651 9652 err = ip_sioctl_addr(ipif, sin, q, mp, 9653 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9654 return (err); 9655 } 9656 9657 /* 9658 * Restart entry point to restart the address set operation after the 9659 * refcounts have dropped to zero. 9660 */ 9661 /* ARGSUSED */ 9662 int 9663 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9664 ip_ioctl_cmd_t *ipip, void *ifreq) 9665 { 9666 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9668 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9669 } 9670 9671 /* 9672 * Set the local interface address. 9673 * Allow an address of all zero when the interface is down. 9674 */ 9675 /* ARGSUSED */ 9676 int 9677 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9678 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9679 { 9680 int err = 0; 9681 in6_addr_t v6addr; 9682 boolean_t need_up = B_FALSE; 9683 ill_t *ill; 9684 int i; 9685 9686 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9687 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9688 9689 ASSERT(IAM_WRITER_IPIF(ipif)); 9690 9691 ill = ipif->ipif_ill; 9692 if (ipif->ipif_isv6) { 9693 sin6_t *sin6; 9694 phyint_t *phyi; 9695 9696 if (sin->sin_family != AF_INET6) 9697 return (EAFNOSUPPORT); 9698 9699 sin6 = (sin6_t *)sin; 9700 v6addr = sin6->sin6_addr; 9701 phyi = ill->ill_phyint; 9702 9703 /* 9704 * Enforce that true multicast interfaces have a link-local 9705 * address for logical unit 0. 9706 * 9707 * However for those ipif's for which link-local address was 9708 * not created by default, also allow setting :: as the address. 9709 * This scenario would arise, when we delete an address on ipif 9710 * with logical unit 0, we would want to set :: as the address. 9711 */ 9712 if (ipif->ipif_id == 0 && 9713 (ill->ill_flags & ILLF_MULTICAST) && 9714 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9715 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9716 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9717 9718 /* 9719 * if default link-local was not created by kernel for 9720 * this ill, allow setting :: as the address on ipif:0. 9721 */ 9722 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9723 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9724 return (EADDRNOTAVAIL); 9725 } else { 9726 return (EADDRNOTAVAIL); 9727 } 9728 } 9729 9730 /* 9731 * up interfaces shouldn't have the unspecified address 9732 * unless they also have the IPIF_NOLOCAL flags set and 9733 * have a subnet assigned. 9734 */ 9735 if ((ipif->ipif_flags & IPIF_UP) && 9736 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9737 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9738 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9739 return (EADDRNOTAVAIL); 9740 } 9741 9742 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9743 return (EADDRNOTAVAIL); 9744 } else { 9745 ipaddr_t addr; 9746 9747 if (sin->sin_family != AF_INET) 9748 return (EAFNOSUPPORT); 9749 9750 addr = sin->sin_addr.s_addr; 9751 9752 /* Allow INADDR_ANY as the local address. */ 9753 if (addr != INADDR_ANY && 9754 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9755 return (EADDRNOTAVAIL); 9756 9757 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9758 } 9759 /* 9760 * verify that the address being configured is permitted by the 9761 * ill_allowed_ips[] for the interface. 9762 */ 9763 if (ill->ill_allowed_ips_cnt > 0) { 9764 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9765 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9766 &v6addr)) 9767 break; 9768 } 9769 if (i == ill->ill_allowed_ips_cnt) { 9770 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9771 return (EPERM); 9772 } 9773 } 9774 /* 9775 * Even if there is no change we redo things just to rerun 9776 * ipif_set_default. 9777 */ 9778 if (ipif->ipif_flags & IPIF_UP) { 9779 /* 9780 * Setting a new local address, make sure 9781 * we have net and subnet bcast ire's for 9782 * the old address if we need them. 9783 */ 9784 /* 9785 * If the interface is already marked up, 9786 * we call ipif_down which will take care 9787 * of ditching any IREs that have been set 9788 * up based on the old interface address. 9789 */ 9790 err = ipif_logical_down(ipif, q, mp); 9791 if (err == EINPROGRESS) 9792 return (err); 9793 (void) ipif_down_tail(ipif); 9794 need_up = 1; 9795 } 9796 9797 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9798 return (err); 9799 } 9800 9801 int 9802 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9803 boolean_t need_up) 9804 { 9805 in6_addr_t v6addr; 9806 in6_addr_t ov6addr; 9807 ipaddr_t addr; 9808 sin6_t *sin6; 9809 int sinlen; 9810 int err = 0; 9811 ill_t *ill = ipif->ipif_ill; 9812 boolean_t need_dl_down; 9813 boolean_t need_arp_down; 9814 struct iocblk *iocp; 9815 9816 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9817 9818 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9819 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9820 ASSERT(IAM_WRITER_IPIF(ipif)); 9821 9822 /* Must cancel any pending timer before taking the ill_lock */ 9823 if (ipif->ipif_recovery_id != 0) 9824 (void) untimeout(ipif->ipif_recovery_id); 9825 ipif->ipif_recovery_id = 0; 9826 9827 if (ipif->ipif_isv6) { 9828 sin6 = (sin6_t *)sin; 9829 v6addr = sin6->sin6_addr; 9830 sinlen = sizeof (struct sockaddr_in6); 9831 } else { 9832 addr = sin->sin_addr.s_addr; 9833 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9834 sinlen = sizeof (struct sockaddr_in); 9835 } 9836 mutex_enter(&ill->ill_lock); 9837 ov6addr = ipif->ipif_v6lcl_addr; 9838 ipif->ipif_v6lcl_addr = v6addr; 9839 sctp_update_ipif_addr(ipif, ov6addr); 9840 ipif->ipif_addr_ready = 0; 9841 9842 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9843 9844 /* 9845 * If the interface was previously marked as a duplicate, then since 9846 * we've now got a "new" address, it should no longer be considered a 9847 * duplicate -- even if the "new" address is the same as the old one. 9848 * Note that if all ipifs are down, we may have a pending ARP down 9849 * event to handle. This is because we want to recover from duplicates 9850 * and thus delay tearing down ARP until the duplicates have been 9851 * removed or disabled. 9852 */ 9853 need_dl_down = need_arp_down = B_FALSE; 9854 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9855 need_arp_down = !need_up; 9856 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9857 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9858 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9859 need_dl_down = B_TRUE; 9860 } 9861 } 9862 9863 ipif_set_default(ipif); 9864 9865 /* 9866 * If we've just manually set the IPv6 link-local address (0th ipif), 9867 * tag the ill so that future updates to the interface ID don't result 9868 * in this address getting automatically reconfigured from under the 9869 * administrator. 9870 */ 9871 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9872 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9873 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9874 ill->ill_manual_linklocal = 1; 9875 } 9876 9877 /* 9878 * When publishing an interface address change event, we only notify 9879 * the event listeners of the new address. It is assumed that if they 9880 * actively care about the addresses assigned that they will have 9881 * already discovered the previous address assigned (if there was one.) 9882 * 9883 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9884 */ 9885 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9886 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9887 NE_ADDRESS_CHANGE, sin, sinlen); 9888 } 9889 9890 mutex_exit(&ill->ill_lock); 9891 9892 if (need_up) { 9893 /* 9894 * Now bring the interface back up. If this 9895 * is the only IPIF for the ILL, ipif_up 9896 * will have to re-bind to the device, so 9897 * we may get back EINPROGRESS, in which 9898 * case, this IOCTL will get completed in 9899 * ip_rput_dlpi when we see the DL_BIND_ACK. 9900 */ 9901 err = ipif_up(ipif, q, mp); 9902 } else { 9903 /* Perhaps ilgs should use this ill */ 9904 update_conn_ill(NULL, ill->ill_ipst); 9905 } 9906 9907 if (need_dl_down) 9908 ill_dl_down(ill); 9909 9910 if (need_arp_down && !ill->ill_isv6) 9911 (void) ipif_arp_down(ipif); 9912 9913 /* 9914 * The default multicast interface might have changed (for 9915 * instance if the IPv6 scope of the address changed) 9916 */ 9917 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9918 9919 return (err); 9920 } 9921 9922 /* 9923 * Restart entry point to restart the address set operation after the 9924 * refcounts have dropped to zero. 9925 */ 9926 /* ARGSUSED */ 9927 int 9928 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9929 ip_ioctl_cmd_t *ipip, void *ifreq) 9930 { 9931 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9932 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9933 ASSERT(IAM_WRITER_IPIF(ipif)); 9934 (void) ipif_down_tail(ipif); 9935 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9936 } 9937 9938 /* ARGSUSED */ 9939 int 9940 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9941 ip_ioctl_cmd_t *ipip, void *if_req) 9942 { 9943 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9944 struct lifreq *lifr = (struct lifreq *)if_req; 9945 9946 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9947 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9948 /* 9949 * The net mask and address can't change since we have a 9950 * reference to the ipif. So no lock is necessary. 9951 */ 9952 if (ipif->ipif_isv6) { 9953 *sin6 = sin6_null; 9954 sin6->sin6_family = AF_INET6; 9955 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9956 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9957 lifr->lifr_addrlen = 9958 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9959 } else { 9960 *sin = sin_null; 9961 sin->sin_family = AF_INET; 9962 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9963 if (ipip->ipi_cmd_type == LIF_CMD) { 9964 lifr->lifr_addrlen = 9965 ip_mask_to_plen(ipif->ipif_net_mask); 9966 } 9967 } 9968 return (0); 9969 } 9970 9971 /* 9972 * Set the destination address for a pt-pt interface. 9973 */ 9974 /* ARGSUSED */ 9975 int 9976 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9977 ip_ioctl_cmd_t *ipip, void *if_req) 9978 { 9979 int err = 0; 9980 in6_addr_t v6addr; 9981 boolean_t need_up = B_FALSE; 9982 9983 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9984 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9985 ASSERT(IAM_WRITER_IPIF(ipif)); 9986 9987 if (ipif->ipif_isv6) { 9988 sin6_t *sin6; 9989 9990 if (sin->sin_family != AF_INET6) 9991 return (EAFNOSUPPORT); 9992 9993 sin6 = (sin6_t *)sin; 9994 v6addr = sin6->sin6_addr; 9995 9996 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9997 return (EADDRNOTAVAIL); 9998 } else { 9999 ipaddr_t addr; 10000 10001 if (sin->sin_family != AF_INET) 10002 return (EAFNOSUPPORT); 10003 10004 addr = sin->sin_addr.s_addr; 10005 if (addr != INADDR_ANY && 10006 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10007 return (EADDRNOTAVAIL); 10008 } 10009 10010 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10011 } 10012 10013 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10014 return (0); /* No change */ 10015 10016 if (ipif->ipif_flags & IPIF_UP) { 10017 /* 10018 * If the interface is already marked up, 10019 * we call ipif_down which will take care 10020 * of ditching any IREs that have been set 10021 * up based on the old pp dst address. 10022 */ 10023 err = ipif_logical_down(ipif, q, mp); 10024 if (err == EINPROGRESS) 10025 return (err); 10026 (void) ipif_down_tail(ipif); 10027 need_up = B_TRUE; 10028 } 10029 /* 10030 * could return EINPROGRESS. If so ioctl will complete in 10031 * ip_rput_dlpi_writer 10032 */ 10033 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10034 return (err); 10035 } 10036 10037 static int 10038 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10039 boolean_t need_up) 10040 { 10041 in6_addr_t v6addr; 10042 ill_t *ill = ipif->ipif_ill; 10043 int err = 0; 10044 boolean_t need_dl_down; 10045 boolean_t need_arp_down; 10046 10047 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10048 ipif->ipif_id, (void *)ipif)); 10049 10050 /* Must cancel any pending timer before taking the ill_lock */ 10051 if (ipif->ipif_recovery_id != 0) 10052 (void) untimeout(ipif->ipif_recovery_id); 10053 ipif->ipif_recovery_id = 0; 10054 10055 if (ipif->ipif_isv6) { 10056 sin6_t *sin6; 10057 10058 sin6 = (sin6_t *)sin; 10059 v6addr = sin6->sin6_addr; 10060 } else { 10061 ipaddr_t addr; 10062 10063 addr = sin->sin_addr.s_addr; 10064 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10065 } 10066 mutex_enter(&ill->ill_lock); 10067 /* Set point to point destination address. */ 10068 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10069 /* 10070 * Allow this as a means of creating logical 10071 * pt-pt interfaces on top of e.g. an Ethernet. 10072 * XXX Undocumented HACK for testing. 10073 * pt-pt interfaces are created with NUD disabled. 10074 */ 10075 ipif->ipif_flags |= IPIF_POINTOPOINT; 10076 ipif->ipif_flags &= ~IPIF_BROADCAST; 10077 if (ipif->ipif_isv6) 10078 ill->ill_flags |= ILLF_NONUD; 10079 } 10080 10081 /* 10082 * If the interface was previously marked as a duplicate, then since 10083 * we've now got a "new" address, it should no longer be considered a 10084 * duplicate -- even if the "new" address is the same as the old one. 10085 * Note that if all ipifs are down, we may have a pending ARP down 10086 * event to handle. 10087 */ 10088 need_dl_down = need_arp_down = B_FALSE; 10089 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10090 need_arp_down = !need_up; 10091 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10092 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10093 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10094 need_dl_down = B_TRUE; 10095 } 10096 } 10097 10098 /* 10099 * If we've just manually set the IPv6 destination link-local address 10100 * (0th ipif), tag the ill so that future updates to the destination 10101 * interface ID (as can happen with interfaces over IP tunnels) don't 10102 * result in this address getting automatically reconfigured from 10103 * under the administrator. 10104 */ 10105 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10106 ill->ill_manual_dst_linklocal = 1; 10107 10108 /* Set the new address. */ 10109 ipif->ipif_v6pp_dst_addr = v6addr; 10110 /* Make sure subnet tracks pp_dst */ 10111 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10112 mutex_exit(&ill->ill_lock); 10113 10114 if (need_up) { 10115 /* 10116 * Now bring the interface back up. If this 10117 * is the only IPIF for the ILL, ipif_up 10118 * will have to re-bind to the device, so 10119 * we may get back EINPROGRESS, in which 10120 * case, this IOCTL will get completed in 10121 * ip_rput_dlpi when we see the DL_BIND_ACK. 10122 */ 10123 err = ipif_up(ipif, q, mp); 10124 } 10125 10126 if (need_dl_down) 10127 ill_dl_down(ill); 10128 if (need_arp_down && !ipif->ipif_isv6) 10129 (void) ipif_arp_down(ipif); 10130 10131 return (err); 10132 } 10133 10134 /* 10135 * Restart entry point to restart the dstaddress set operation after the 10136 * refcounts have dropped to zero. 10137 */ 10138 /* ARGSUSED */ 10139 int 10140 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10141 ip_ioctl_cmd_t *ipip, void *ifreq) 10142 { 10143 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10144 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10145 (void) ipif_down_tail(ipif); 10146 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10147 } 10148 10149 /* ARGSUSED */ 10150 int 10151 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10152 ip_ioctl_cmd_t *ipip, void *if_req) 10153 { 10154 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10155 10156 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10157 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10158 /* 10159 * Get point to point destination address. The addresses can't 10160 * change since we hold a reference to the ipif. 10161 */ 10162 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10163 return (EADDRNOTAVAIL); 10164 10165 if (ipif->ipif_isv6) { 10166 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10167 *sin6 = sin6_null; 10168 sin6->sin6_family = AF_INET6; 10169 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10170 } else { 10171 *sin = sin_null; 10172 sin->sin_family = AF_INET; 10173 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10174 } 10175 return (0); 10176 } 10177 10178 /* 10179 * Check which flags will change by the given flags being set 10180 * silently ignore flags which userland is not allowed to control. 10181 * (Because these flags may change between SIOCGLIFFLAGS and 10182 * SIOCSLIFFLAGS, and that's outside of userland's control, 10183 * we need to silently ignore them rather than fail.) 10184 */ 10185 static void 10186 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10187 uint64_t *offp) 10188 { 10189 ill_t *ill = ipif->ipif_ill; 10190 phyint_t *phyi = ill->ill_phyint; 10191 uint64_t cantchange_flags, intf_flags; 10192 uint64_t turn_on, turn_off; 10193 10194 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10195 cantchange_flags = IFF_CANTCHANGE; 10196 if (IS_IPMP(ill)) 10197 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10198 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10199 turn_off = intf_flags & turn_on; 10200 turn_on ^= turn_off; 10201 *onp = turn_on; 10202 *offp = turn_off; 10203 } 10204 10205 /* 10206 * Set interface flags. Many flags require special handling (e.g., 10207 * bringing the interface down); see below for details. 10208 * 10209 * NOTE : We really don't enforce that ipif_id zero should be used 10210 * for setting any flags other than IFF_LOGINT_FLAGS. This 10211 * is because applications generally does SICGLIFFLAGS and 10212 * ORs in the new flags (that affects the logical) and does a 10213 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10214 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10215 * flags that will be turned on is correct with respect to 10216 * ipif_id 0. For backward compatibility reasons, it is not done. 10217 */ 10218 /* ARGSUSED */ 10219 int 10220 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10221 ip_ioctl_cmd_t *ipip, void *if_req) 10222 { 10223 uint64_t turn_on; 10224 uint64_t turn_off; 10225 int err = 0; 10226 phyint_t *phyi; 10227 ill_t *ill; 10228 conn_t *connp; 10229 uint64_t intf_flags; 10230 boolean_t phyint_flags_modified = B_FALSE; 10231 uint64_t flags; 10232 struct ifreq *ifr; 10233 struct lifreq *lifr; 10234 boolean_t set_linklocal = B_FALSE; 10235 10236 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10237 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10238 10239 ASSERT(IAM_WRITER_IPIF(ipif)); 10240 10241 ill = ipif->ipif_ill; 10242 phyi = ill->ill_phyint; 10243 10244 if (ipip->ipi_cmd_type == IF_CMD) { 10245 ifr = (struct ifreq *)if_req; 10246 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10247 } else { 10248 lifr = (struct lifreq *)if_req; 10249 flags = lifr->lifr_flags; 10250 } 10251 10252 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10253 10254 /* 10255 * Have the flags been set correctly until now? 10256 */ 10257 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10258 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10259 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10260 /* 10261 * Compare the new flags to the old, and partition 10262 * into those coming on and those going off. 10263 * For the 16 bit command keep the bits above bit 16 unchanged. 10264 */ 10265 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10266 flags |= intf_flags & ~0xFFFF; 10267 10268 /* 10269 * Explicitly fail attempts to change flags that are always invalid on 10270 * an IPMP meta-interface. 10271 */ 10272 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10273 return (EINVAL); 10274 10275 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10276 if ((turn_on|turn_off) == 0) 10277 return (0); /* No change */ 10278 10279 /* 10280 * All test addresses must be IFF_DEPRECATED (to ensure source address 10281 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10282 * allow it to be turned off. 10283 */ 10284 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10285 (turn_on|intf_flags) & IFF_NOFAILOVER) 10286 return (EINVAL); 10287 10288 if ((connp = Q_TO_CONN(q)) == NULL) 10289 return (EINVAL); 10290 10291 /* 10292 * Only vrrp control socket is allowed to change IFF_UP and 10293 * IFF_NOACCEPT flags when IFF_VRRP is set. 10294 */ 10295 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10296 if (!connp->conn_isvrrp) 10297 return (EINVAL); 10298 } 10299 10300 /* 10301 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10302 * VRRP control socket. 10303 */ 10304 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10305 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10306 return (EINVAL); 10307 } 10308 10309 if (turn_on & IFF_NOFAILOVER) { 10310 turn_on |= IFF_DEPRECATED; 10311 flags |= IFF_DEPRECATED; 10312 } 10313 10314 /* 10315 * On underlying interfaces, only allow applications to manage test 10316 * addresses -- otherwise, they may get confused when the address 10317 * moves as part of being brought up. Likewise, prevent an 10318 * application-managed test address from being converted to a data 10319 * address. To prevent migration of administratively up addresses in 10320 * the kernel, we don't allow them to be converted either. 10321 */ 10322 if (IS_UNDER_IPMP(ill)) { 10323 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10324 10325 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10326 return (EINVAL); 10327 10328 if ((turn_off & IFF_NOFAILOVER) && 10329 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10330 return (EINVAL); 10331 } 10332 10333 /* 10334 * Only allow IFF_TEMPORARY flag to be set on 10335 * IPv6 interfaces. 10336 */ 10337 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10338 return (EINVAL); 10339 10340 /* 10341 * cannot turn off IFF_NOXMIT on VNI interfaces. 10342 */ 10343 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10344 return (EINVAL); 10345 10346 /* 10347 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10348 * interfaces. It makes no sense in that context. 10349 */ 10350 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10351 return (EINVAL); 10352 10353 /* 10354 * For IPv6 ipif_id 0, don't allow the interface to be up without 10355 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10356 * If the link local address isn't set, and can be set, it will get 10357 * set later on in this function. 10358 */ 10359 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10360 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10361 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10362 if (ipif_cant_setlinklocal(ipif)) 10363 return (EINVAL); 10364 set_linklocal = B_TRUE; 10365 } 10366 10367 /* 10368 * If we modify physical interface flags, we'll potentially need to 10369 * send up two routing socket messages for the changes (one for the 10370 * IPv4 ill, and another for the IPv6 ill). Note that here. 10371 */ 10372 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10373 phyint_flags_modified = B_TRUE; 10374 10375 /* 10376 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10377 * (otherwise, we'd immediately use them, defeating standby). Also, 10378 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10379 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10380 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10381 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10382 * will not be honored. 10383 */ 10384 if (turn_on & PHYI_STANDBY) { 10385 /* 10386 * No need to grab ill_g_usesrc_lock here; see the 10387 * synchronization notes in ip.c. 10388 */ 10389 if (ill->ill_usesrc_grp_next != NULL || 10390 intf_flags & PHYI_INACTIVE) 10391 return (EINVAL); 10392 if (!(flags & PHYI_FAILED)) { 10393 flags |= PHYI_INACTIVE; 10394 turn_on |= PHYI_INACTIVE; 10395 } 10396 } 10397 10398 if (turn_off & PHYI_STANDBY) { 10399 flags &= ~PHYI_INACTIVE; 10400 turn_off |= PHYI_INACTIVE; 10401 } 10402 10403 /* 10404 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10405 * would end up on. 10406 */ 10407 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10408 (PHYI_FAILED | PHYI_INACTIVE)) 10409 return (EINVAL); 10410 10411 /* 10412 * If ILLF_ROUTER changes, we need to change the ip forwarding 10413 * status of the interface. 10414 */ 10415 if ((turn_on | turn_off) & ILLF_ROUTER) { 10416 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10417 if (err != 0) 10418 return (err); 10419 } 10420 10421 /* 10422 * If the interface is not UP and we are not going to 10423 * bring it UP, record the flags and return. When the 10424 * interface comes UP later, the right actions will be 10425 * taken. 10426 */ 10427 if (!(ipif->ipif_flags & IPIF_UP) && 10428 !(turn_on & IPIF_UP)) { 10429 /* Record new flags in their respective places. */ 10430 mutex_enter(&ill->ill_lock); 10431 mutex_enter(&ill->ill_phyint->phyint_lock); 10432 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10433 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10434 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10435 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10436 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10437 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10438 mutex_exit(&ill->ill_lock); 10439 mutex_exit(&ill->ill_phyint->phyint_lock); 10440 10441 /* 10442 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10443 * same to the kernel: if any of them has been set by 10444 * userland, the interface cannot be used for data traffic. 10445 */ 10446 if ((turn_on|turn_off) & 10447 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10448 ASSERT(!IS_IPMP(ill)); 10449 /* 10450 * It's possible the ill is part of an "anonymous" 10451 * IPMP group rather than a real group. In that case, 10452 * there are no other interfaces in the group and thus 10453 * no need to call ipmp_phyint_refresh_active(). 10454 */ 10455 if (IS_UNDER_IPMP(ill)) 10456 ipmp_phyint_refresh_active(phyi); 10457 } 10458 10459 if (phyint_flags_modified) { 10460 if (phyi->phyint_illv4 != NULL) { 10461 ip_rts_ifmsg(phyi->phyint_illv4-> 10462 ill_ipif, RTSQ_DEFAULT); 10463 } 10464 if (phyi->phyint_illv6 != NULL) { 10465 ip_rts_ifmsg(phyi->phyint_illv6-> 10466 ill_ipif, RTSQ_DEFAULT); 10467 } 10468 } 10469 /* The default multicast interface might have changed */ 10470 ire_increment_multicast_generation(ill->ill_ipst, 10471 ill->ill_isv6); 10472 10473 return (0); 10474 } else if (set_linklocal) { 10475 mutex_enter(&ill->ill_lock); 10476 if (set_linklocal) 10477 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10478 mutex_exit(&ill->ill_lock); 10479 } 10480 10481 /* 10482 * Disallow IPv6 interfaces coming up that have the unspecified address, 10483 * or point-to-point interfaces with an unspecified destination. We do 10484 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10485 * have a subnet assigned, which is how in.ndpd currently manages its 10486 * onlink prefix list when no addresses are configured with those 10487 * prefixes. 10488 */ 10489 if (ipif->ipif_isv6 && 10490 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10491 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10492 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10493 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10494 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10495 return (EINVAL); 10496 } 10497 10498 /* 10499 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10500 * from being brought up. 10501 */ 10502 if (!ipif->ipif_isv6 && 10503 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10504 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10505 return (EINVAL); 10506 } 10507 10508 /* 10509 * If we are going to change one or more of the flags that are 10510 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10511 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10512 * IPIF_NOFAILOVER, we will take special action. This is 10513 * done by bring the ipif down, changing the flags and bringing 10514 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10515 * back up will trigger the address to be moved. 10516 * 10517 * If we are going to change IFF_NOACCEPT, we need to bring 10518 * all the ipifs down then bring them up again. The act of 10519 * bringing all the ipifs back up will trigger the local 10520 * ires being recreated with "no_accept" set/cleared. 10521 * 10522 * Note that ILLF_NOACCEPT is always set separately from the 10523 * other flags. 10524 */ 10525 if ((turn_on|turn_off) & 10526 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10527 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10528 IPIF_NOFAILOVER)) { 10529 /* 10530 * ipif_down() will ire_delete bcast ire's for the subnet, 10531 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10532 * entries shared between multiple ipifs on the same subnet. 10533 */ 10534 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10535 !(turn_off & IPIF_UP)) { 10536 if (ipif->ipif_flags & IPIF_UP) 10537 ill->ill_logical_down = 1; 10538 turn_on &= ~IPIF_UP; 10539 } 10540 err = ipif_down(ipif, q, mp); 10541 ip1dbg(("ipif_down returns %d err ", err)); 10542 if (err == EINPROGRESS) 10543 return (err); 10544 (void) ipif_down_tail(ipif); 10545 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10546 /* 10547 * If we can quiesce the ill, then continue. If not, then 10548 * ip_sioctl_flags_tail() will be called from 10549 * ipif_ill_refrele_tail(). 10550 */ 10551 ill_down_ipifs(ill, B_TRUE); 10552 10553 mutex_enter(&connp->conn_lock); 10554 mutex_enter(&ill->ill_lock); 10555 if (!ill_is_quiescent(ill)) { 10556 boolean_t success; 10557 10558 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10559 q, mp, ILL_DOWN); 10560 mutex_exit(&ill->ill_lock); 10561 mutex_exit(&connp->conn_lock); 10562 return (success ? EINPROGRESS : EINTR); 10563 } 10564 mutex_exit(&ill->ill_lock); 10565 mutex_exit(&connp->conn_lock); 10566 } 10567 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10568 } 10569 10570 static int 10571 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10572 { 10573 ill_t *ill; 10574 phyint_t *phyi; 10575 uint64_t turn_on, turn_off; 10576 boolean_t phyint_flags_modified = B_FALSE; 10577 int err = 0; 10578 boolean_t set_linklocal = B_FALSE; 10579 10580 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10581 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10582 10583 ASSERT(IAM_WRITER_IPIF(ipif)); 10584 10585 ill = ipif->ipif_ill; 10586 phyi = ill->ill_phyint; 10587 10588 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10589 10590 /* 10591 * IFF_UP is handled separately. 10592 */ 10593 turn_on &= ~IFF_UP; 10594 turn_off &= ~IFF_UP; 10595 10596 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10597 phyint_flags_modified = B_TRUE; 10598 10599 /* 10600 * Now we change the flags. Track current value of 10601 * other flags in their respective places. 10602 */ 10603 mutex_enter(&ill->ill_lock); 10604 mutex_enter(&phyi->phyint_lock); 10605 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10606 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10607 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10608 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10609 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10610 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10611 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10612 set_linklocal = B_TRUE; 10613 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10614 } 10615 10616 mutex_exit(&ill->ill_lock); 10617 mutex_exit(&phyi->phyint_lock); 10618 10619 if (set_linklocal) 10620 (void) ipif_setlinklocal(ipif); 10621 10622 /* 10623 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10624 * the kernel: if any of them has been set by userland, the interface 10625 * cannot be used for data traffic. 10626 */ 10627 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10628 ASSERT(!IS_IPMP(ill)); 10629 /* 10630 * It's possible the ill is part of an "anonymous" IPMP group 10631 * rather than a real group. In that case, there are no other 10632 * interfaces in the group and thus no need for us to call 10633 * ipmp_phyint_refresh_active(). 10634 */ 10635 if (IS_UNDER_IPMP(ill)) 10636 ipmp_phyint_refresh_active(phyi); 10637 } 10638 10639 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10640 /* 10641 * If the ILLF_NOACCEPT flag is changed, bring up all the 10642 * ipifs that were brought down. 10643 * 10644 * The routing sockets messages are sent as the result 10645 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10646 * as well. 10647 */ 10648 err = ill_up_ipifs(ill, q, mp); 10649 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10650 /* 10651 * XXX ipif_up really does not know whether a phyint flags 10652 * was modified or not. So, it sends up information on 10653 * only one routing sockets message. As we don't bring up 10654 * the interface and also set PHYI_ flags simultaneously 10655 * it should be okay. 10656 */ 10657 err = ipif_up(ipif, q, mp); 10658 } else { 10659 /* 10660 * Make sure routing socket sees all changes to the flags. 10661 * ipif_up_done* handles this when we use ipif_up. 10662 */ 10663 if (phyint_flags_modified) { 10664 if (phyi->phyint_illv4 != NULL) { 10665 ip_rts_ifmsg(phyi->phyint_illv4-> 10666 ill_ipif, RTSQ_DEFAULT); 10667 } 10668 if (phyi->phyint_illv6 != NULL) { 10669 ip_rts_ifmsg(phyi->phyint_illv6-> 10670 ill_ipif, RTSQ_DEFAULT); 10671 } 10672 } else { 10673 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10674 } 10675 /* 10676 * Update the flags in SCTP's IPIF list, ipif_up() will do 10677 * this in need_up case. 10678 */ 10679 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10680 } 10681 10682 /* The default multicast interface might have changed */ 10683 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10684 return (err); 10685 } 10686 10687 /* 10688 * Restart the flags operation now that the refcounts have dropped to zero. 10689 */ 10690 /* ARGSUSED */ 10691 int 10692 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10693 ip_ioctl_cmd_t *ipip, void *if_req) 10694 { 10695 uint64_t flags; 10696 struct ifreq *ifr = if_req; 10697 struct lifreq *lifr = if_req; 10698 uint64_t turn_on, turn_off; 10699 10700 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10701 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10702 10703 if (ipip->ipi_cmd_type == IF_CMD) { 10704 /* cast to uint16_t prevents unwanted sign extension */ 10705 flags = (uint16_t)ifr->ifr_flags; 10706 } else { 10707 flags = lifr->lifr_flags; 10708 } 10709 10710 /* 10711 * If this function call is a result of the ILLF_NOACCEPT flag 10712 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10713 */ 10714 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10715 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10716 (void) ipif_down_tail(ipif); 10717 10718 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10719 } 10720 10721 /* 10722 * Can operate on either a module or a driver queue. 10723 */ 10724 /* ARGSUSED */ 10725 int 10726 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10727 ip_ioctl_cmd_t *ipip, void *if_req) 10728 { 10729 /* 10730 * Has the flags been set correctly till now ? 10731 */ 10732 ill_t *ill = ipif->ipif_ill; 10733 phyint_t *phyi = ill->ill_phyint; 10734 10735 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10736 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10737 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10738 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10739 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10740 10741 /* 10742 * Need a lock since some flags can be set even when there are 10743 * references to the ipif. 10744 */ 10745 mutex_enter(&ill->ill_lock); 10746 if (ipip->ipi_cmd_type == IF_CMD) { 10747 struct ifreq *ifr = (struct ifreq *)if_req; 10748 10749 /* Get interface flags (low 16 only). */ 10750 ifr->ifr_flags = ((ipif->ipif_flags | 10751 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10752 } else { 10753 struct lifreq *lifr = (struct lifreq *)if_req; 10754 10755 /* Get interface flags. */ 10756 lifr->lifr_flags = ipif->ipif_flags | 10757 ill->ill_flags | phyi->phyint_flags; 10758 } 10759 mutex_exit(&ill->ill_lock); 10760 return (0); 10761 } 10762 10763 /* 10764 * We allow the MTU to be set on an ILL, but not have it be different 10765 * for different IPIFs since we don't actually send packets on IPIFs. 10766 */ 10767 /* ARGSUSED */ 10768 int 10769 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10770 ip_ioctl_cmd_t *ipip, void *if_req) 10771 { 10772 int mtu; 10773 int ip_min_mtu; 10774 struct ifreq *ifr; 10775 struct lifreq *lifr; 10776 ill_t *ill; 10777 10778 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10779 ipif->ipif_id, (void *)ipif)); 10780 if (ipip->ipi_cmd_type == IF_CMD) { 10781 ifr = (struct ifreq *)if_req; 10782 mtu = ifr->ifr_metric; 10783 } else { 10784 lifr = (struct lifreq *)if_req; 10785 mtu = lifr->lifr_mtu; 10786 } 10787 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10788 if (ipif->ipif_id != 0) 10789 return (EINVAL); 10790 10791 ill = ipif->ipif_ill; 10792 if (ipif->ipif_isv6) 10793 ip_min_mtu = IPV6_MIN_MTU; 10794 else 10795 ip_min_mtu = IP_MIN_MTU; 10796 10797 mutex_enter(&ill->ill_lock); 10798 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10799 mutex_exit(&ill->ill_lock); 10800 return (EINVAL); 10801 } 10802 /* 10803 * The dce and fragmentation code can handle changes to ill_mtu 10804 * concurrent with sending/fragmenting packets. 10805 */ 10806 ill->ill_mtu = mtu; 10807 ill->ill_flags |= ILLF_FIXEDMTU; 10808 mutex_exit(&ill->ill_lock); 10809 10810 /* 10811 * Make sure all dce_generation checks find out 10812 * that ill_mtu has changed. 10813 */ 10814 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10815 10816 /* 10817 * Refresh IPMP meta-interface MTU if necessary. 10818 */ 10819 if (IS_UNDER_IPMP(ill)) 10820 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10821 10822 /* Update the MTU in SCTP's list */ 10823 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10824 return (0); 10825 } 10826 10827 /* Get interface MTU. */ 10828 /* ARGSUSED */ 10829 int 10830 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10831 ip_ioctl_cmd_t *ipip, void *if_req) 10832 { 10833 struct ifreq *ifr; 10834 struct lifreq *lifr; 10835 10836 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10837 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10838 10839 /* 10840 * We allow a get on any logical interface even though the set 10841 * can only be done on logical unit 0. 10842 */ 10843 if (ipip->ipi_cmd_type == IF_CMD) { 10844 ifr = (struct ifreq *)if_req; 10845 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10846 } else { 10847 lifr = (struct lifreq *)if_req; 10848 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10849 } 10850 return (0); 10851 } 10852 10853 /* Set interface broadcast address. */ 10854 /* ARGSUSED2 */ 10855 int 10856 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10857 ip_ioctl_cmd_t *ipip, void *if_req) 10858 { 10859 ipaddr_t addr; 10860 ire_t *ire; 10861 ill_t *ill = ipif->ipif_ill; 10862 ip_stack_t *ipst = ill->ill_ipst; 10863 10864 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10865 ipif->ipif_id)); 10866 10867 ASSERT(IAM_WRITER_IPIF(ipif)); 10868 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10869 return (EADDRNOTAVAIL); 10870 10871 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10872 10873 if (sin->sin_family != AF_INET) 10874 return (EAFNOSUPPORT); 10875 10876 addr = sin->sin_addr.s_addr; 10877 10878 if (ipif->ipif_flags & IPIF_UP) { 10879 /* 10880 * If we are already up, make sure the new 10881 * broadcast address makes sense. If it does, 10882 * there should be an IRE for it already. 10883 */ 10884 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10885 ill, ipif->ipif_zoneid, NULL, 10886 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10887 if (ire == NULL) { 10888 return (EINVAL); 10889 } else { 10890 ire_refrele(ire); 10891 } 10892 } 10893 /* 10894 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10895 * needs to already exist we never need to change the set of 10896 * IRE_BROADCASTs when we are UP. 10897 */ 10898 if (addr != ipif->ipif_brd_addr) 10899 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10900 10901 return (0); 10902 } 10903 10904 /* Get interface broadcast address. */ 10905 /* ARGSUSED */ 10906 int 10907 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10908 ip_ioctl_cmd_t *ipip, void *if_req) 10909 { 10910 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10912 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10913 return (EADDRNOTAVAIL); 10914 10915 /* IPIF_BROADCAST not possible with IPv6 */ 10916 ASSERT(!ipif->ipif_isv6); 10917 *sin = sin_null; 10918 sin->sin_family = AF_INET; 10919 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10920 return (0); 10921 } 10922 10923 /* 10924 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10925 */ 10926 /* ARGSUSED */ 10927 int 10928 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10929 ip_ioctl_cmd_t *ipip, void *if_req) 10930 { 10931 int err = 0; 10932 in6_addr_t v6mask; 10933 10934 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10935 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10936 10937 ASSERT(IAM_WRITER_IPIF(ipif)); 10938 10939 if (ipif->ipif_isv6) { 10940 sin6_t *sin6; 10941 10942 if (sin->sin_family != AF_INET6) 10943 return (EAFNOSUPPORT); 10944 10945 sin6 = (sin6_t *)sin; 10946 v6mask = sin6->sin6_addr; 10947 } else { 10948 ipaddr_t mask; 10949 10950 if (sin->sin_family != AF_INET) 10951 return (EAFNOSUPPORT); 10952 10953 mask = sin->sin_addr.s_addr; 10954 if (!ip_contiguous_mask(ntohl(mask))) 10955 return (ENOTSUP); 10956 V4MASK_TO_V6(mask, v6mask); 10957 } 10958 10959 /* 10960 * No big deal if the interface isn't already up, or the mask 10961 * isn't really changing, or this is pt-pt. 10962 */ 10963 if (!(ipif->ipif_flags & IPIF_UP) || 10964 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10965 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10966 ipif->ipif_v6net_mask = v6mask; 10967 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10968 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10969 ipif->ipif_v6net_mask, 10970 ipif->ipif_v6subnet); 10971 } 10972 return (0); 10973 } 10974 /* 10975 * Make sure we have valid net and subnet broadcast ire's 10976 * for the old netmask, if needed by other logical interfaces. 10977 */ 10978 err = ipif_logical_down(ipif, q, mp); 10979 if (err == EINPROGRESS) 10980 return (err); 10981 (void) ipif_down_tail(ipif); 10982 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10983 return (err); 10984 } 10985 10986 static int 10987 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10988 { 10989 in6_addr_t v6mask; 10990 int err = 0; 10991 10992 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10993 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10994 10995 if (ipif->ipif_isv6) { 10996 sin6_t *sin6; 10997 10998 sin6 = (sin6_t *)sin; 10999 v6mask = sin6->sin6_addr; 11000 } else { 11001 ipaddr_t mask; 11002 11003 mask = sin->sin_addr.s_addr; 11004 V4MASK_TO_V6(mask, v6mask); 11005 } 11006 11007 ipif->ipif_v6net_mask = v6mask; 11008 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11009 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11010 ipif->ipif_v6subnet); 11011 } 11012 err = ipif_up(ipif, q, mp); 11013 11014 if (err == 0 || err == EINPROGRESS) { 11015 /* 11016 * The interface must be DL_BOUND if this packet has to 11017 * go out on the wire. Since we only go through a logical 11018 * down and are bound with the driver during an internal 11019 * down/up that is satisfied. 11020 */ 11021 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11022 /* Potentially broadcast an address mask reply. */ 11023 ipif_mask_reply(ipif); 11024 } 11025 } 11026 return (err); 11027 } 11028 11029 /* ARGSUSED */ 11030 int 11031 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11032 ip_ioctl_cmd_t *ipip, void *if_req) 11033 { 11034 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11035 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11036 (void) ipif_down_tail(ipif); 11037 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11038 } 11039 11040 /* Get interface net mask. */ 11041 /* ARGSUSED */ 11042 int 11043 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11044 ip_ioctl_cmd_t *ipip, void *if_req) 11045 { 11046 struct lifreq *lifr = (struct lifreq *)if_req; 11047 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11048 11049 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11050 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11051 11052 /* 11053 * net mask can't change since we have a reference to the ipif. 11054 */ 11055 if (ipif->ipif_isv6) { 11056 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11057 *sin6 = sin6_null; 11058 sin6->sin6_family = AF_INET6; 11059 sin6->sin6_addr = ipif->ipif_v6net_mask; 11060 lifr->lifr_addrlen = 11061 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11062 } else { 11063 *sin = sin_null; 11064 sin->sin_family = AF_INET; 11065 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11066 if (ipip->ipi_cmd_type == LIF_CMD) { 11067 lifr->lifr_addrlen = 11068 ip_mask_to_plen(ipif->ipif_net_mask); 11069 } 11070 } 11071 return (0); 11072 } 11073 11074 /* ARGSUSED */ 11075 int 11076 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11077 ip_ioctl_cmd_t *ipip, void *if_req) 11078 { 11079 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11080 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11081 11082 /* 11083 * Since no applications should ever be setting metrics on underlying 11084 * interfaces, we explicitly fail to smoke 'em out. 11085 */ 11086 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11087 return (EINVAL); 11088 11089 /* 11090 * Set interface metric. We don't use this for 11091 * anything but we keep track of it in case it is 11092 * important to routing applications or such. 11093 */ 11094 if (ipip->ipi_cmd_type == IF_CMD) { 11095 struct ifreq *ifr; 11096 11097 ifr = (struct ifreq *)if_req; 11098 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11099 } else { 11100 struct lifreq *lifr; 11101 11102 lifr = (struct lifreq *)if_req; 11103 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11104 } 11105 return (0); 11106 } 11107 11108 /* ARGSUSED */ 11109 int 11110 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11111 ip_ioctl_cmd_t *ipip, void *if_req) 11112 { 11113 /* Get interface metric. */ 11114 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11116 11117 if (ipip->ipi_cmd_type == IF_CMD) { 11118 struct ifreq *ifr; 11119 11120 ifr = (struct ifreq *)if_req; 11121 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11122 } else { 11123 struct lifreq *lifr; 11124 11125 lifr = (struct lifreq *)if_req; 11126 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11127 } 11128 11129 return (0); 11130 } 11131 11132 /* ARGSUSED */ 11133 int 11134 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11135 ip_ioctl_cmd_t *ipip, void *if_req) 11136 { 11137 int arp_muxid; 11138 11139 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11141 /* 11142 * Set the muxid returned from I_PLINK. 11143 */ 11144 if (ipip->ipi_cmd_type == IF_CMD) { 11145 struct ifreq *ifr = (struct ifreq *)if_req; 11146 11147 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11148 arp_muxid = ifr->ifr_arp_muxid; 11149 } else { 11150 struct lifreq *lifr = (struct lifreq *)if_req; 11151 11152 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11153 arp_muxid = lifr->lifr_arp_muxid; 11154 } 11155 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11156 return (0); 11157 } 11158 11159 /* ARGSUSED */ 11160 int 11161 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11162 ip_ioctl_cmd_t *ipip, void *if_req) 11163 { 11164 int arp_muxid = 0; 11165 11166 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11167 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11168 /* 11169 * Get the muxid saved in ill for I_PUNLINK. 11170 */ 11171 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11172 if (ipip->ipi_cmd_type == IF_CMD) { 11173 struct ifreq *ifr = (struct ifreq *)if_req; 11174 11175 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11176 ifr->ifr_arp_muxid = arp_muxid; 11177 } else { 11178 struct lifreq *lifr = (struct lifreq *)if_req; 11179 11180 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11181 lifr->lifr_arp_muxid = arp_muxid; 11182 } 11183 return (0); 11184 } 11185 11186 /* 11187 * Set the subnet prefix. Does not modify the broadcast address. 11188 */ 11189 /* ARGSUSED */ 11190 int 11191 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11192 ip_ioctl_cmd_t *ipip, void *if_req) 11193 { 11194 int err = 0; 11195 in6_addr_t v6addr; 11196 in6_addr_t v6mask; 11197 boolean_t need_up = B_FALSE; 11198 int addrlen; 11199 11200 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11201 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11202 11203 ASSERT(IAM_WRITER_IPIF(ipif)); 11204 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11205 11206 if (ipif->ipif_isv6) { 11207 sin6_t *sin6; 11208 11209 if (sin->sin_family != AF_INET6) 11210 return (EAFNOSUPPORT); 11211 11212 sin6 = (sin6_t *)sin; 11213 v6addr = sin6->sin6_addr; 11214 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11215 return (EADDRNOTAVAIL); 11216 } else { 11217 ipaddr_t addr; 11218 11219 if (sin->sin_family != AF_INET) 11220 return (EAFNOSUPPORT); 11221 11222 addr = sin->sin_addr.s_addr; 11223 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11224 return (EADDRNOTAVAIL); 11225 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11226 /* Add 96 bits */ 11227 addrlen += IPV6_ABITS - IP_ABITS; 11228 } 11229 11230 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11231 return (EINVAL); 11232 11233 /* Check if bits in the address is set past the mask */ 11234 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11235 return (EINVAL); 11236 11237 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11238 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11239 return (0); /* No change */ 11240 11241 if (ipif->ipif_flags & IPIF_UP) { 11242 /* 11243 * If the interface is already marked up, 11244 * we call ipif_down which will take care 11245 * of ditching any IREs that have been set 11246 * up based on the old interface address. 11247 */ 11248 err = ipif_logical_down(ipif, q, mp); 11249 if (err == EINPROGRESS) 11250 return (err); 11251 (void) ipif_down_tail(ipif); 11252 need_up = B_TRUE; 11253 } 11254 11255 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11256 return (err); 11257 } 11258 11259 static int 11260 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11261 queue_t *q, mblk_t *mp, boolean_t need_up) 11262 { 11263 ill_t *ill = ipif->ipif_ill; 11264 int err = 0; 11265 11266 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11267 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11268 11269 /* Set the new address. */ 11270 mutex_enter(&ill->ill_lock); 11271 ipif->ipif_v6net_mask = v6mask; 11272 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11273 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11274 ipif->ipif_v6subnet); 11275 } 11276 mutex_exit(&ill->ill_lock); 11277 11278 if (need_up) { 11279 /* 11280 * Now bring the interface back up. If this 11281 * is the only IPIF for the ILL, ipif_up 11282 * will have to re-bind to the device, so 11283 * we may get back EINPROGRESS, in which 11284 * case, this IOCTL will get completed in 11285 * ip_rput_dlpi when we see the DL_BIND_ACK. 11286 */ 11287 err = ipif_up(ipif, q, mp); 11288 if (err == EINPROGRESS) 11289 return (err); 11290 } 11291 return (err); 11292 } 11293 11294 /* ARGSUSED */ 11295 int 11296 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11297 ip_ioctl_cmd_t *ipip, void *if_req) 11298 { 11299 int addrlen; 11300 in6_addr_t v6addr; 11301 in6_addr_t v6mask; 11302 struct lifreq *lifr = (struct lifreq *)if_req; 11303 11304 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11305 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11306 (void) ipif_down_tail(ipif); 11307 11308 addrlen = lifr->lifr_addrlen; 11309 if (ipif->ipif_isv6) { 11310 sin6_t *sin6; 11311 11312 sin6 = (sin6_t *)sin; 11313 v6addr = sin6->sin6_addr; 11314 } else { 11315 ipaddr_t addr; 11316 11317 addr = sin->sin_addr.s_addr; 11318 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11319 addrlen += IPV6_ABITS - IP_ABITS; 11320 } 11321 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11322 11323 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11324 } 11325 11326 /* ARGSUSED */ 11327 int 11328 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11329 ip_ioctl_cmd_t *ipip, void *if_req) 11330 { 11331 struct lifreq *lifr = (struct lifreq *)if_req; 11332 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11333 11334 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11335 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11336 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11337 11338 if (ipif->ipif_isv6) { 11339 *sin6 = sin6_null; 11340 sin6->sin6_family = AF_INET6; 11341 sin6->sin6_addr = ipif->ipif_v6subnet; 11342 lifr->lifr_addrlen = 11343 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11344 } else { 11345 *sin = sin_null; 11346 sin->sin_family = AF_INET; 11347 sin->sin_addr.s_addr = ipif->ipif_subnet; 11348 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11349 } 11350 return (0); 11351 } 11352 11353 /* 11354 * Set the IPv6 address token. 11355 */ 11356 /* ARGSUSED */ 11357 int 11358 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11359 ip_ioctl_cmd_t *ipi, void *if_req) 11360 { 11361 ill_t *ill = ipif->ipif_ill; 11362 int err; 11363 in6_addr_t v6addr; 11364 in6_addr_t v6mask; 11365 boolean_t need_up = B_FALSE; 11366 int i; 11367 sin6_t *sin6 = (sin6_t *)sin; 11368 struct lifreq *lifr = (struct lifreq *)if_req; 11369 int addrlen; 11370 11371 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11372 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11373 ASSERT(IAM_WRITER_IPIF(ipif)); 11374 11375 addrlen = lifr->lifr_addrlen; 11376 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11377 if (ipif->ipif_id != 0) 11378 return (EINVAL); 11379 11380 if (!ipif->ipif_isv6) 11381 return (EINVAL); 11382 11383 if (addrlen > IPV6_ABITS) 11384 return (EINVAL); 11385 11386 v6addr = sin6->sin6_addr; 11387 11388 /* 11389 * The length of the token is the length from the end. To get 11390 * the proper mask for this, compute the mask of the bits not 11391 * in the token; ie. the prefix, and then xor to get the mask. 11392 */ 11393 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11394 return (EINVAL); 11395 for (i = 0; i < 4; i++) { 11396 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11397 } 11398 11399 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11400 ill->ill_token_length == addrlen) 11401 return (0); /* No change */ 11402 11403 if (ipif->ipif_flags & IPIF_UP) { 11404 err = ipif_logical_down(ipif, q, mp); 11405 if (err == EINPROGRESS) 11406 return (err); 11407 (void) ipif_down_tail(ipif); 11408 need_up = B_TRUE; 11409 } 11410 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11411 return (err); 11412 } 11413 11414 static int 11415 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11416 mblk_t *mp, boolean_t need_up) 11417 { 11418 in6_addr_t v6addr; 11419 in6_addr_t v6mask; 11420 ill_t *ill = ipif->ipif_ill; 11421 int i; 11422 int err = 0; 11423 11424 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11425 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11426 v6addr = sin6->sin6_addr; 11427 /* 11428 * The length of the token is the length from the end. To get 11429 * the proper mask for this, compute the mask of the bits not 11430 * in the token; ie. the prefix, and then xor to get the mask. 11431 */ 11432 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11433 for (i = 0; i < 4; i++) 11434 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11435 11436 mutex_enter(&ill->ill_lock); 11437 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11438 ill->ill_token_length = addrlen; 11439 ill->ill_manual_token = 1; 11440 11441 /* Reconfigure the link-local address based on this new token */ 11442 ipif_setlinklocal(ill->ill_ipif); 11443 11444 mutex_exit(&ill->ill_lock); 11445 11446 if (need_up) { 11447 /* 11448 * Now bring the interface back up. If this 11449 * is the only IPIF for the ILL, ipif_up 11450 * will have to re-bind to the device, so 11451 * we may get back EINPROGRESS, in which 11452 * case, this IOCTL will get completed in 11453 * ip_rput_dlpi when we see the DL_BIND_ACK. 11454 */ 11455 err = ipif_up(ipif, q, mp); 11456 if (err == EINPROGRESS) 11457 return (err); 11458 } 11459 return (err); 11460 } 11461 11462 /* ARGSUSED */ 11463 int 11464 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11465 ip_ioctl_cmd_t *ipi, void *if_req) 11466 { 11467 ill_t *ill; 11468 sin6_t *sin6 = (sin6_t *)sin; 11469 struct lifreq *lifr = (struct lifreq *)if_req; 11470 11471 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11472 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11473 if (ipif->ipif_id != 0) 11474 return (EINVAL); 11475 11476 ill = ipif->ipif_ill; 11477 if (!ill->ill_isv6) 11478 return (ENXIO); 11479 11480 *sin6 = sin6_null; 11481 sin6->sin6_family = AF_INET6; 11482 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11483 sin6->sin6_addr = ill->ill_token; 11484 lifr->lifr_addrlen = ill->ill_token_length; 11485 return (0); 11486 } 11487 11488 /* 11489 * Set (hardware) link specific information that might override 11490 * what was acquired through the DL_INFO_ACK. 11491 */ 11492 /* ARGSUSED */ 11493 int 11494 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11495 ip_ioctl_cmd_t *ipi, void *if_req) 11496 { 11497 ill_t *ill = ipif->ipif_ill; 11498 int ip_min_mtu; 11499 struct lifreq *lifr = (struct lifreq *)if_req; 11500 lif_ifinfo_req_t *lir; 11501 11502 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11503 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11504 lir = &lifr->lifr_ifinfo; 11505 ASSERT(IAM_WRITER_IPIF(ipif)); 11506 11507 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11508 if (ipif->ipif_id != 0) 11509 return (EINVAL); 11510 11511 /* Set interface MTU. */ 11512 if (ipif->ipif_isv6) 11513 ip_min_mtu = IPV6_MIN_MTU; 11514 else 11515 ip_min_mtu = IP_MIN_MTU; 11516 11517 /* 11518 * Verify values before we set anything. Allow zero to 11519 * mean unspecified. 11520 * 11521 * XXX We should be able to set the user-defined lir_mtu to some value 11522 * that is greater than ill_current_frag but less than ill_max_frag- the 11523 * ill_max_frag value tells us the max MTU that can be handled by the 11524 * datalink, whereas the ill_current_frag is dynamically computed for 11525 * some link-types like tunnels, based on the tunnel PMTU. However, 11526 * since there is currently no way of distinguishing between 11527 * administratively fixed link mtu values (e.g., those set via 11528 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11529 * for tunnels) we conservatively choose the ill_current_frag as the 11530 * upper-bound. 11531 */ 11532 if (lir->lir_maxmtu != 0 && 11533 (lir->lir_maxmtu > ill->ill_current_frag || 11534 lir->lir_maxmtu < ip_min_mtu)) 11535 return (EINVAL); 11536 if (lir->lir_reachtime != 0 && 11537 lir->lir_reachtime > ND_MAX_REACHTIME) 11538 return (EINVAL); 11539 if (lir->lir_reachretrans != 0 && 11540 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11541 return (EINVAL); 11542 11543 mutex_enter(&ill->ill_lock); 11544 /* 11545 * The dce and fragmentation code can handle changes to ill_mtu 11546 * concurrent with sending/fragmenting packets. 11547 */ 11548 if (lir->lir_maxmtu != 0) 11549 ill->ill_user_mtu = lir->lir_maxmtu; 11550 11551 if (lir->lir_reachtime != 0) 11552 ill->ill_reachable_time = lir->lir_reachtime; 11553 11554 if (lir->lir_reachretrans != 0) 11555 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11556 11557 ill->ill_max_hops = lir->lir_maxhops; 11558 ill->ill_max_buf = ND_MAX_Q; 11559 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11560 /* 11561 * ill_mtu is the actual interface MTU, obtained as the min 11562 * of user-configured mtu and the value announced by the 11563 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11564 * we have already made the choice of requiring 11565 * ill_user_mtu < ill_current_frag by the time we get here, 11566 * the ill_mtu effectively gets assigned to the ill_user_mtu 11567 * here. 11568 */ 11569 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11570 } 11571 mutex_exit(&ill->ill_lock); 11572 11573 /* 11574 * Make sure all dce_generation checks find out 11575 * that ill_mtu has changed. 11576 */ 11577 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11578 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11579 11580 /* 11581 * Refresh IPMP meta-interface MTU if necessary. 11582 */ 11583 if (IS_UNDER_IPMP(ill)) 11584 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11585 11586 return (0); 11587 } 11588 11589 /* ARGSUSED */ 11590 int 11591 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11592 ip_ioctl_cmd_t *ipi, void *if_req) 11593 { 11594 struct lif_ifinfo_req *lir; 11595 ill_t *ill = ipif->ipif_ill; 11596 11597 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11598 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11599 if (ipif->ipif_id != 0) 11600 return (EINVAL); 11601 11602 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11603 lir->lir_maxhops = ill->ill_max_hops; 11604 lir->lir_reachtime = ill->ill_reachable_time; 11605 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11606 lir->lir_maxmtu = ill->ill_mtu; 11607 11608 return (0); 11609 } 11610 11611 /* 11612 * Return best guess as to the subnet mask for the specified address. 11613 * Based on the subnet masks for all the configured interfaces. 11614 * 11615 * We end up returning a zero mask in the case of default, multicast or 11616 * experimental. 11617 */ 11618 static ipaddr_t 11619 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11620 { 11621 ipaddr_t net_mask; 11622 ill_t *ill; 11623 ipif_t *ipif; 11624 ill_walk_context_t ctx; 11625 ipif_t *fallback_ipif = NULL; 11626 11627 net_mask = ip_net_mask(addr); 11628 if (net_mask == 0) { 11629 *ipifp = NULL; 11630 return (0); 11631 } 11632 11633 /* Let's check to see if this is maybe a local subnet route. */ 11634 /* this function only applies to IPv4 interfaces */ 11635 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11636 ill = ILL_START_WALK_V4(&ctx, ipst); 11637 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11638 mutex_enter(&ill->ill_lock); 11639 for (ipif = ill->ill_ipif; ipif != NULL; 11640 ipif = ipif->ipif_next) { 11641 if (IPIF_IS_CONDEMNED(ipif)) 11642 continue; 11643 if (!(ipif->ipif_flags & IPIF_UP)) 11644 continue; 11645 if ((ipif->ipif_subnet & net_mask) == 11646 (addr & net_mask)) { 11647 /* 11648 * Don't trust pt-pt interfaces if there are 11649 * other interfaces. 11650 */ 11651 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11652 if (fallback_ipif == NULL) { 11653 ipif_refhold_locked(ipif); 11654 fallback_ipif = ipif; 11655 } 11656 continue; 11657 } 11658 11659 /* 11660 * Fine. Just assume the same net mask as the 11661 * directly attached subnet interface is using. 11662 */ 11663 ipif_refhold_locked(ipif); 11664 mutex_exit(&ill->ill_lock); 11665 rw_exit(&ipst->ips_ill_g_lock); 11666 if (fallback_ipif != NULL) 11667 ipif_refrele(fallback_ipif); 11668 *ipifp = ipif; 11669 return (ipif->ipif_net_mask); 11670 } 11671 } 11672 mutex_exit(&ill->ill_lock); 11673 } 11674 rw_exit(&ipst->ips_ill_g_lock); 11675 11676 *ipifp = fallback_ipif; 11677 return ((fallback_ipif != NULL) ? 11678 fallback_ipif->ipif_net_mask : net_mask); 11679 } 11680 11681 /* 11682 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11683 */ 11684 static void 11685 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11686 { 11687 IOCP iocp; 11688 ipft_t *ipft; 11689 ipllc_t *ipllc; 11690 mblk_t *mp1; 11691 cred_t *cr; 11692 int error = 0; 11693 conn_t *connp; 11694 11695 ip1dbg(("ip_wput_ioctl")); 11696 iocp = (IOCP)mp->b_rptr; 11697 mp1 = mp->b_cont; 11698 if (mp1 == NULL) { 11699 iocp->ioc_error = EINVAL; 11700 mp->b_datap->db_type = M_IOCNAK; 11701 iocp->ioc_count = 0; 11702 qreply(q, mp); 11703 return; 11704 } 11705 11706 /* 11707 * These IOCTLs provide various control capabilities to 11708 * upstream agents such as ULPs and processes. There 11709 * are currently two such IOCTLs implemented. They 11710 * are used by TCP to provide update information for 11711 * existing IREs and to forcibly delete an IRE for a 11712 * host that is not responding, thereby forcing an 11713 * attempt at a new route. 11714 */ 11715 iocp->ioc_error = EINVAL; 11716 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11717 goto done; 11718 11719 ipllc = (ipllc_t *)mp1->b_rptr; 11720 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11721 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11722 break; 11723 } 11724 /* 11725 * prefer credential from mblk over ioctl; 11726 * see ip_sioctl_copyin_setup 11727 */ 11728 cr = msg_getcred(mp, NULL); 11729 if (cr == NULL) 11730 cr = iocp->ioc_cr; 11731 11732 /* 11733 * Refhold the conn in case the request gets queued up in some lookup 11734 */ 11735 ASSERT(CONN_Q(q)); 11736 connp = Q_TO_CONN(q); 11737 CONN_INC_REF(connp); 11738 CONN_INC_IOCTLREF(connp); 11739 if (ipft->ipft_pfi && 11740 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11741 pullupmsg(mp1, ipft->ipft_min_size))) { 11742 error = (*ipft->ipft_pfi)(q, 11743 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11744 } 11745 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11746 /* 11747 * CONN_OPER_PENDING_DONE happens in the function called 11748 * through ipft_pfi above. 11749 */ 11750 return; 11751 } 11752 11753 CONN_DEC_IOCTLREF(connp); 11754 CONN_OPER_PENDING_DONE(connp); 11755 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11756 freemsg(mp); 11757 return; 11758 } 11759 iocp->ioc_error = error; 11760 11761 done: 11762 mp->b_datap->db_type = M_IOCACK; 11763 if (iocp->ioc_error) 11764 iocp->ioc_count = 0; 11765 qreply(q, mp); 11766 } 11767 11768 /* 11769 * Assign a unique id for the ipif. This is used by sctp_addr.c 11770 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11771 */ 11772 static void 11773 ipif_assign_seqid(ipif_t *ipif) 11774 { 11775 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11776 11777 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11778 } 11779 11780 /* 11781 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11782 * administratively down (i.e., no DAD), of the same type, and locked. Note 11783 * that the clone is complete -- including the seqid -- and the expectation is 11784 * that the caller will either free or overwrite `sipif' before it's unlocked. 11785 */ 11786 static void 11787 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11788 { 11789 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11790 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11791 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11792 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11793 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11794 11795 dipif->ipif_flags = sipif->ipif_flags; 11796 dipif->ipif_zoneid = sipif->ipif_zoneid; 11797 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11798 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11799 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11800 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11801 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11802 11803 /* 11804 * As per the comment atop the function, we assume that these sipif 11805 * fields will be changed before sipif is unlocked. 11806 */ 11807 dipif->ipif_seqid = sipif->ipif_seqid; 11808 dipif->ipif_state_flags = sipif->ipif_state_flags; 11809 } 11810 11811 /* 11812 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11813 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11814 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11815 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11816 * down (i.e., no DAD), of the same type, and unlocked. 11817 */ 11818 static void 11819 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11820 { 11821 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11822 ipxop_t *ipx = ipsq->ipsq_xop; 11823 11824 ASSERT(sipif != dipif); 11825 ASSERT(sipif != virgipif); 11826 11827 /* 11828 * Grab all of the locks that protect the ipif in a defined order. 11829 */ 11830 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11831 11832 ipif_clone(sipif, dipif); 11833 if (virgipif != NULL) { 11834 ipif_clone(virgipif, sipif); 11835 mi_free(virgipif); 11836 } 11837 11838 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11839 11840 /* 11841 * Transfer ownership of the current xop, if necessary. 11842 */ 11843 if (ipx->ipx_current_ipif == sipif) { 11844 ASSERT(ipx->ipx_pending_ipif == NULL); 11845 mutex_enter(&ipx->ipx_lock); 11846 ipx->ipx_current_ipif = dipif; 11847 mutex_exit(&ipx->ipx_lock); 11848 } 11849 11850 if (virgipif == NULL) 11851 mi_free(sipif); 11852 } 11853 11854 /* 11855 * checks if: 11856 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11857 * - logical interface is within the allowed range 11858 */ 11859 static int 11860 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11861 { 11862 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11863 return (ENAMETOOLONG); 11864 11865 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11866 return (ERANGE); 11867 return (0); 11868 } 11869 11870 /* 11871 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11872 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11873 * be inserted into the first space available in the list. The value of 11874 * ipif_id will then be set to the appropriate value for its position. 11875 */ 11876 static int 11877 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11878 { 11879 ill_t *ill; 11880 ipif_t *tipif; 11881 ipif_t **tipifp; 11882 int id, err; 11883 ip_stack_t *ipst; 11884 11885 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11886 IAM_WRITER_IPIF(ipif)); 11887 11888 ill = ipif->ipif_ill; 11889 ASSERT(ill != NULL); 11890 ipst = ill->ill_ipst; 11891 11892 /* 11893 * In the case of lo0:0 we already hold the ill_g_lock. 11894 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11895 * ipif_insert. 11896 */ 11897 if (acquire_g_lock) 11898 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11899 mutex_enter(&ill->ill_lock); 11900 id = ipif->ipif_id; 11901 tipifp = &(ill->ill_ipif); 11902 if (id == -1) { /* need to find a real id */ 11903 id = 0; 11904 while ((tipif = *tipifp) != NULL) { 11905 ASSERT(tipif->ipif_id >= id); 11906 if (tipif->ipif_id != id) 11907 break; /* non-consecutive id */ 11908 id++; 11909 tipifp = &(tipif->ipif_next); 11910 } 11911 if ((err = is_lifname_valid(ill, id)) != 0) { 11912 mutex_exit(&ill->ill_lock); 11913 if (acquire_g_lock) 11914 rw_exit(&ipst->ips_ill_g_lock); 11915 return (err); 11916 } 11917 ipif->ipif_id = id; /* assign new id */ 11918 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11919 /* we have a real id; insert ipif in the right place */ 11920 while ((tipif = *tipifp) != NULL) { 11921 ASSERT(tipif->ipif_id != id); 11922 if (tipif->ipif_id > id) 11923 break; /* found correct location */ 11924 tipifp = &(tipif->ipif_next); 11925 } 11926 } else { 11927 mutex_exit(&ill->ill_lock); 11928 if (acquire_g_lock) 11929 rw_exit(&ipst->ips_ill_g_lock); 11930 return (err); 11931 } 11932 11933 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11934 11935 ipif->ipif_next = tipif; 11936 *tipifp = ipif; 11937 mutex_exit(&ill->ill_lock); 11938 if (acquire_g_lock) 11939 rw_exit(&ipst->ips_ill_g_lock); 11940 11941 return (0); 11942 } 11943 11944 static void 11945 ipif_remove(ipif_t *ipif) 11946 { 11947 ipif_t **ipifp; 11948 ill_t *ill = ipif->ipif_ill; 11949 11950 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11951 11952 mutex_enter(&ill->ill_lock); 11953 ipifp = &ill->ill_ipif; 11954 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11955 if (*ipifp == ipif) { 11956 *ipifp = ipif->ipif_next; 11957 break; 11958 } 11959 } 11960 mutex_exit(&ill->ill_lock); 11961 } 11962 11963 /* 11964 * Allocate and initialize a new interface control structure. (Always 11965 * called as writer.) 11966 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11967 * is not part of the global linked list of ills. ipif_seqid is unique 11968 * in the system and to preserve the uniqueness, it is assigned only 11969 * when ill becomes part of the global list. At that point ill will 11970 * have a name. If it doesn't get assigned here, it will get assigned 11971 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11972 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11973 * the interface flags or any other information from the DL_INFO_ACK for 11974 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11975 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11976 * second DL_INFO_ACK comes in from the driver. 11977 */ 11978 static ipif_t * 11979 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11980 boolean_t insert, int *errorp) 11981 { 11982 int err; 11983 ipif_t *ipif; 11984 ip_stack_t *ipst = ill->ill_ipst; 11985 11986 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11987 ill->ill_name, id, (void *)ill)); 11988 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11989 11990 if (errorp != NULL) 11991 *errorp = 0; 11992 11993 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11994 if (errorp != NULL) 11995 *errorp = ENOMEM; 11996 return (NULL); 11997 } 11998 *ipif = ipif_zero; /* start clean */ 11999 12000 ipif->ipif_ill = ill; 12001 ipif->ipif_id = id; /* could be -1 */ 12002 /* 12003 * Inherit the zoneid from the ill; for the shared stack instance 12004 * this is always the global zone 12005 */ 12006 ipif->ipif_zoneid = ill->ill_zoneid; 12007 12008 ipif->ipif_refcnt = 0; 12009 12010 if (insert) { 12011 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12012 mi_free(ipif); 12013 if (errorp != NULL) 12014 *errorp = err; 12015 return (NULL); 12016 } 12017 /* -1 id should have been replaced by real id */ 12018 id = ipif->ipif_id; 12019 ASSERT(id >= 0); 12020 } 12021 12022 if (ill->ill_name[0] != '\0') 12023 ipif_assign_seqid(ipif); 12024 12025 /* 12026 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12027 * (which must not exist yet because the zeroth ipif is created once 12028 * per ill). However, do not not link it to the ipmp_grp_t until 12029 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12030 */ 12031 if (id == 0 && IS_IPMP(ill)) { 12032 if (ipmp_illgrp_create(ill) == NULL) { 12033 if (insert) { 12034 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12035 ipif_remove(ipif); 12036 rw_exit(&ipst->ips_ill_g_lock); 12037 } 12038 mi_free(ipif); 12039 if (errorp != NULL) 12040 *errorp = ENOMEM; 12041 return (NULL); 12042 } 12043 } 12044 12045 /* 12046 * We grab ill_lock to protect the flag changes. The ipif is still 12047 * not up and can't be looked up until the ioctl completes and the 12048 * IPIF_CHANGING flag is cleared. 12049 */ 12050 mutex_enter(&ill->ill_lock); 12051 12052 ipif->ipif_ire_type = ire_type; 12053 12054 if (ipif->ipif_isv6) { 12055 ill->ill_flags |= ILLF_IPV6; 12056 } else { 12057 ipaddr_t inaddr_any = INADDR_ANY; 12058 12059 ill->ill_flags |= ILLF_IPV4; 12060 12061 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12062 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12063 &ipif->ipif_v6lcl_addr); 12064 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12065 &ipif->ipif_v6subnet); 12066 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12067 &ipif->ipif_v6net_mask); 12068 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12069 &ipif->ipif_v6brd_addr); 12070 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12071 &ipif->ipif_v6pp_dst_addr); 12072 } 12073 12074 /* 12075 * Don't set the interface flags etc. now, will do it in 12076 * ip_ll_subnet_defaults. 12077 */ 12078 if (!initialize) 12079 goto out; 12080 12081 /* 12082 * NOTE: The IPMP meta-interface is special-cased because it starts 12083 * with no underlying interfaces (and thus an unknown broadcast 12084 * address length), but all interfaces that can be placed into an IPMP 12085 * group are required to be broadcast-capable. 12086 */ 12087 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12088 /* 12089 * Later detect lack of DLPI driver multicast capability by 12090 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12091 */ 12092 ill->ill_flags |= ILLF_MULTICAST; 12093 if (!ipif->ipif_isv6) 12094 ipif->ipif_flags |= IPIF_BROADCAST; 12095 } else { 12096 if (ill->ill_net_type != IRE_LOOPBACK) { 12097 if (ipif->ipif_isv6) 12098 /* 12099 * Note: xresolv interfaces will eventually need 12100 * NOARP set here as well, but that will require 12101 * those external resolvers to have some 12102 * knowledge of that flag and act appropriately. 12103 * Not to be changed at present. 12104 */ 12105 ill->ill_flags |= ILLF_NONUD; 12106 else 12107 ill->ill_flags |= ILLF_NOARP; 12108 } 12109 if (ill->ill_phys_addr_length == 0) { 12110 if (IS_VNI(ill)) { 12111 ipif->ipif_flags |= IPIF_NOXMIT; 12112 } else { 12113 /* pt-pt supports multicast. */ 12114 ill->ill_flags |= ILLF_MULTICAST; 12115 if (ill->ill_net_type != IRE_LOOPBACK) 12116 ipif->ipif_flags |= IPIF_POINTOPOINT; 12117 } 12118 } 12119 } 12120 out: 12121 mutex_exit(&ill->ill_lock); 12122 return (ipif); 12123 } 12124 12125 /* 12126 * Remove the neighbor cache entries associated with this logical 12127 * interface. 12128 */ 12129 int 12130 ipif_arp_down(ipif_t *ipif) 12131 { 12132 ill_t *ill = ipif->ipif_ill; 12133 int err = 0; 12134 12135 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12136 ASSERT(IAM_WRITER_IPIF(ipif)); 12137 12138 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12139 ill_t *, ill, ipif_t *, ipif); 12140 ipif_nce_down(ipif); 12141 12142 /* 12143 * If this is the last ipif that is going down and there are no 12144 * duplicate addresses we may yet attempt to re-probe, then we need to 12145 * clean up ARP completely. 12146 */ 12147 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12148 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12149 /* 12150 * If this was the last ipif on an IPMP interface, purge any 12151 * static ARP entries associated with it. 12152 */ 12153 if (IS_IPMP(ill)) 12154 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12155 12156 /* UNBIND, DETACH */ 12157 err = arp_ll_down(ill); 12158 } 12159 12160 return (err); 12161 } 12162 12163 /* 12164 * Get the resolver set up for a new IP address. (Always called as writer.) 12165 * Called both for IPv4 and IPv6 interfaces, though it only does some 12166 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12167 * 12168 * The enumerated value res_act tunes the behavior: 12169 * * Res_act_initial: set up all the resolver structures for a new 12170 * IP address. 12171 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12172 * ARP message in defense of the address. 12173 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12174 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12175 * 12176 * Returns zero on success, or an errno upon failure. 12177 */ 12178 int 12179 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12180 { 12181 ill_t *ill = ipif->ipif_ill; 12182 int err; 12183 boolean_t was_dup; 12184 12185 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12186 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12187 ASSERT(IAM_WRITER_IPIF(ipif)); 12188 12189 was_dup = B_FALSE; 12190 if (res_act == Res_act_initial) { 12191 ipif->ipif_addr_ready = 0; 12192 /* 12193 * We're bringing an interface up here. There's no way that we 12194 * should need to shut down ARP now. 12195 */ 12196 mutex_enter(&ill->ill_lock); 12197 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12198 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12199 ill->ill_ipif_dup_count--; 12200 was_dup = B_TRUE; 12201 } 12202 mutex_exit(&ill->ill_lock); 12203 } 12204 if (ipif->ipif_recovery_id != 0) 12205 (void) untimeout(ipif->ipif_recovery_id); 12206 ipif->ipif_recovery_id = 0; 12207 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12208 ipif->ipif_addr_ready = 1; 12209 return (0); 12210 } 12211 /* NDP will set the ipif_addr_ready flag when it's ready */ 12212 if (ill->ill_isv6) 12213 return (0); 12214 12215 err = ipif_arp_up(ipif, res_act, was_dup); 12216 return (err); 12217 } 12218 12219 /* 12220 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12221 * when a link has just gone back up. 12222 */ 12223 static void 12224 ipif_nce_start_dad(ipif_t *ipif) 12225 { 12226 ncec_t *ncec; 12227 ill_t *ill = ipif->ipif_ill; 12228 boolean_t isv6 = ill->ill_isv6; 12229 12230 if (isv6) { 12231 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12232 &ipif->ipif_v6lcl_addr); 12233 } else { 12234 ipaddr_t v4addr; 12235 12236 if (ill->ill_net_type != IRE_IF_RESOLVER || 12237 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12238 ipif->ipif_lcl_addr == INADDR_ANY) { 12239 /* 12240 * If we can't contact ARP for some reason, 12241 * that's not really a problem. Just send 12242 * out the routing socket notification that 12243 * DAD completion would have done, and continue. 12244 */ 12245 ipif_mask_reply(ipif); 12246 ipif_up_notify(ipif); 12247 ipif->ipif_addr_ready = 1; 12248 return; 12249 } 12250 12251 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12252 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12253 } 12254 12255 if (ncec == NULL) { 12256 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12257 (void *)ipif)); 12258 return; 12259 } 12260 if (!nce_restart_dad(ncec)) { 12261 /* 12262 * If we can't restart DAD for some reason, that's not really a 12263 * problem. Just send out the routing socket notification that 12264 * DAD completion would have done, and continue. 12265 */ 12266 ipif_up_notify(ipif); 12267 ipif->ipif_addr_ready = 1; 12268 } 12269 ncec_refrele(ncec); 12270 } 12271 12272 /* 12273 * Restart duplicate address detection on all interfaces on the given ill. 12274 * 12275 * This is called when an interface transitions from down to up 12276 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12277 * 12278 * Note that since the underlying physical link has transitioned, we must cause 12279 * at least one routing socket message to be sent here, either via DAD 12280 * completion or just by default on the first ipif. (If we don't do this, then 12281 * in.mpathd will see long delays when doing link-based failure recovery.) 12282 */ 12283 void 12284 ill_restart_dad(ill_t *ill, boolean_t went_up) 12285 { 12286 ipif_t *ipif; 12287 12288 if (ill == NULL) 12289 return; 12290 12291 /* 12292 * If layer two doesn't support duplicate address detection, then just 12293 * send the routing socket message now and be done with it. 12294 */ 12295 if (!ill->ill_isv6 && arp_no_defense) { 12296 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12297 return; 12298 } 12299 12300 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12301 if (went_up) { 12302 12303 if (ipif->ipif_flags & IPIF_UP) { 12304 ipif_nce_start_dad(ipif); 12305 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12306 /* 12307 * kick off the bring-up process now. 12308 */ 12309 ipif_do_recovery(ipif); 12310 } else { 12311 /* 12312 * Unfortunately, the first ipif is "special" 12313 * and represents the underlying ill in the 12314 * routing socket messages. Thus, when this 12315 * one ipif is down, we must still notify so 12316 * that the user knows the IFF_RUNNING status 12317 * change. (If the first ipif is up, then 12318 * we'll handle eventual routing socket 12319 * notification via DAD completion.) 12320 */ 12321 if (ipif == ill->ill_ipif) { 12322 ip_rts_ifmsg(ill->ill_ipif, 12323 RTSQ_DEFAULT); 12324 } 12325 } 12326 } else { 12327 /* 12328 * After link down, we'll need to send a new routing 12329 * message when the link comes back, so clear 12330 * ipif_addr_ready. 12331 */ 12332 ipif->ipif_addr_ready = 0; 12333 } 12334 } 12335 12336 /* 12337 * If we've torn down links, then notify the user right away. 12338 */ 12339 if (!went_up) 12340 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12341 } 12342 12343 static void 12344 ipsq_delete(ipsq_t *ipsq) 12345 { 12346 ipxop_t *ipx = ipsq->ipsq_xop; 12347 12348 ipsq->ipsq_ipst = NULL; 12349 ASSERT(ipsq->ipsq_phyint == NULL); 12350 ASSERT(ipsq->ipsq_xop != NULL); 12351 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12352 ASSERT(ipx->ipx_pending_mp == NULL); 12353 kmem_free(ipsq, sizeof (ipsq_t)); 12354 } 12355 12356 static int 12357 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12358 { 12359 int err = 0; 12360 ipif_t *ipif; 12361 12362 if (ill == NULL) 12363 return (0); 12364 12365 ASSERT(IAM_WRITER_ILL(ill)); 12366 ill->ill_up_ipifs = B_TRUE; 12367 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12368 if (ipif->ipif_was_up) { 12369 if (!(ipif->ipif_flags & IPIF_UP)) 12370 err = ipif_up(ipif, q, mp); 12371 ipif->ipif_was_up = B_FALSE; 12372 if (err != 0) { 12373 ASSERT(err == EINPROGRESS); 12374 return (err); 12375 } 12376 } 12377 } 12378 ill->ill_up_ipifs = B_FALSE; 12379 return (0); 12380 } 12381 12382 /* 12383 * This function is called to bring up all the ipifs that were up before 12384 * bringing the ill down via ill_down_ipifs(). 12385 */ 12386 int 12387 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12388 { 12389 int err; 12390 12391 ASSERT(IAM_WRITER_ILL(ill)); 12392 12393 if (ill->ill_replumbing) { 12394 ill->ill_replumbing = 0; 12395 /* 12396 * Send down REPLUMB_DONE notification followed by the 12397 * BIND_REQ on the arp stream. 12398 */ 12399 if (!ill->ill_isv6) 12400 arp_send_replumb_conf(ill); 12401 } 12402 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12403 if (err != 0) 12404 return (err); 12405 12406 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12407 } 12408 12409 /* 12410 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12411 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12412 */ 12413 static void 12414 ill_down_ipifs(ill_t *ill, boolean_t logical) 12415 { 12416 ipif_t *ipif; 12417 12418 ASSERT(IAM_WRITER_ILL(ill)); 12419 12420 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12421 /* 12422 * We go through the ipif_down logic even if the ipif 12423 * is already down, since routes can be added based 12424 * on down ipifs. Going through ipif_down once again 12425 * will delete any IREs created based on these routes. 12426 */ 12427 if (ipif->ipif_flags & IPIF_UP) 12428 ipif->ipif_was_up = B_TRUE; 12429 12430 if (logical) { 12431 (void) ipif_logical_down(ipif, NULL, NULL); 12432 ipif_non_duplicate(ipif); 12433 (void) ipif_down_tail(ipif); 12434 } else { 12435 (void) ipif_down(ipif, NULL, NULL); 12436 } 12437 } 12438 } 12439 12440 /* 12441 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12442 * a look again at valid source addresses. 12443 * This should be called each time after the set of source addresses has been 12444 * changed. 12445 */ 12446 void 12447 ip_update_source_selection(ip_stack_t *ipst) 12448 { 12449 /* We skip past SRC_GENERATION_VERIFY */ 12450 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12451 SRC_GENERATION_VERIFY) 12452 atomic_add_32(&ipst->ips_src_generation, 1); 12453 } 12454 12455 /* 12456 * Finish the group join started in ip_sioctl_groupname(). 12457 */ 12458 /* ARGSUSED */ 12459 static void 12460 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12461 { 12462 ill_t *ill = q->q_ptr; 12463 phyint_t *phyi = ill->ill_phyint; 12464 ipmp_grp_t *grp = phyi->phyint_grp; 12465 ip_stack_t *ipst = ill->ill_ipst; 12466 12467 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12468 ASSERT(!IS_IPMP(ill) && grp != NULL); 12469 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12470 12471 if (phyi->phyint_illv4 != NULL) { 12472 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12473 VERIFY(grp->gr_pendv4-- > 0); 12474 rw_exit(&ipst->ips_ipmp_lock); 12475 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12476 } 12477 if (phyi->phyint_illv6 != NULL) { 12478 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12479 VERIFY(grp->gr_pendv6-- > 0); 12480 rw_exit(&ipst->ips_ipmp_lock); 12481 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12482 } 12483 freemsg(mp); 12484 } 12485 12486 /* 12487 * Process an SIOCSLIFGROUPNAME request. 12488 */ 12489 /* ARGSUSED */ 12490 int 12491 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12492 ip_ioctl_cmd_t *ipip, void *ifreq) 12493 { 12494 struct lifreq *lifr = ifreq; 12495 ill_t *ill = ipif->ipif_ill; 12496 ip_stack_t *ipst = ill->ill_ipst; 12497 phyint_t *phyi = ill->ill_phyint; 12498 ipmp_grp_t *grp = phyi->phyint_grp; 12499 mblk_t *ipsq_mp; 12500 int err = 0; 12501 12502 /* 12503 * Note that phyint_grp can only change here, where we're exclusive. 12504 */ 12505 ASSERT(IAM_WRITER_ILL(ill)); 12506 12507 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12508 (phyi->phyint_flags & PHYI_VIRTUAL)) 12509 return (EINVAL); 12510 12511 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12512 12513 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12514 12515 /* 12516 * If the name hasn't changed, there's nothing to do. 12517 */ 12518 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12519 goto unlock; 12520 12521 /* 12522 * Handle requests to rename an IPMP meta-interface. 12523 * 12524 * Note that creation of the IPMP meta-interface is handled in 12525 * userland through the standard plumbing sequence. As part of the 12526 * plumbing the IPMP meta-interface, its initial groupname is set to 12527 * the name of the interface (see ipif_set_values_tail()). 12528 */ 12529 if (IS_IPMP(ill)) { 12530 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12531 goto unlock; 12532 } 12533 12534 /* 12535 * Handle requests to add or remove an IP interface from a group. 12536 */ 12537 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12538 /* 12539 * Moves are handled by first removing the interface from 12540 * its existing group, and then adding it to another group. 12541 * So, fail if it's already in a group. 12542 */ 12543 if (IS_UNDER_IPMP(ill)) { 12544 err = EALREADY; 12545 goto unlock; 12546 } 12547 12548 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12549 if (grp == NULL) { 12550 err = ENOENT; 12551 goto unlock; 12552 } 12553 12554 /* 12555 * Check if the phyint and its ills are suitable for 12556 * inclusion into the group. 12557 */ 12558 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12559 goto unlock; 12560 12561 /* 12562 * Checks pass; join the group, and enqueue the remaining 12563 * illgrp joins for when we've become part of the group xop 12564 * and are exclusive across its IPSQs. Since qwriter_ip() 12565 * requires an mblk_t to scribble on, and since `mp' will be 12566 * freed as part of completing the ioctl, allocate another. 12567 */ 12568 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12569 err = ENOMEM; 12570 goto unlock; 12571 } 12572 12573 /* 12574 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12575 * IPMP meta-interface ills needed by `phyi' cannot go away 12576 * before ip_join_illgrps() is called back. See the comments 12577 * in ip_sioctl_plink_ipmp() for more. 12578 */ 12579 if (phyi->phyint_illv4 != NULL) 12580 grp->gr_pendv4++; 12581 if (phyi->phyint_illv6 != NULL) 12582 grp->gr_pendv6++; 12583 12584 rw_exit(&ipst->ips_ipmp_lock); 12585 12586 ipmp_phyint_join_grp(phyi, grp); 12587 ill_refhold(ill); 12588 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12589 SWITCH_OP, B_FALSE); 12590 return (0); 12591 } else { 12592 /* 12593 * Request to remove the interface from a group. If the 12594 * interface is not in a group, this trivially succeeds. 12595 */ 12596 rw_exit(&ipst->ips_ipmp_lock); 12597 if (IS_UNDER_IPMP(ill)) 12598 ipmp_phyint_leave_grp(phyi); 12599 return (0); 12600 } 12601 unlock: 12602 rw_exit(&ipst->ips_ipmp_lock); 12603 return (err); 12604 } 12605 12606 /* 12607 * Process an SIOCGLIFBINDING request. 12608 */ 12609 /* ARGSUSED */ 12610 int 12611 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12612 ip_ioctl_cmd_t *ipip, void *ifreq) 12613 { 12614 ill_t *ill; 12615 struct lifreq *lifr = ifreq; 12616 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12617 12618 if (!IS_IPMP(ipif->ipif_ill)) 12619 return (EINVAL); 12620 12621 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12622 if ((ill = ipif->ipif_bound_ill) == NULL) 12623 lifr->lifr_binding[0] = '\0'; 12624 else 12625 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12626 rw_exit(&ipst->ips_ipmp_lock); 12627 return (0); 12628 } 12629 12630 /* 12631 * Process an SIOCGLIFGROUPNAME request. 12632 */ 12633 /* ARGSUSED */ 12634 int 12635 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12636 ip_ioctl_cmd_t *ipip, void *ifreq) 12637 { 12638 ipmp_grp_t *grp; 12639 struct lifreq *lifr = ifreq; 12640 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12641 12642 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12643 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12644 lifr->lifr_groupname[0] = '\0'; 12645 else 12646 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12647 rw_exit(&ipst->ips_ipmp_lock); 12648 return (0); 12649 } 12650 12651 /* 12652 * Process an SIOCGLIFGROUPINFO request. 12653 */ 12654 /* ARGSUSED */ 12655 int 12656 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12657 ip_ioctl_cmd_t *ipip, void *dummy) 12658 { 12659 ipmp_grp_t *grp; 12660 lifgroupinfo_t *lifgr; 12661 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12662 12663 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12664 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12665 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12666 12667 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12668 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12669 rw_exit(&ipst->ips_ipmp_lock); 12670 return (ENOENT); 12671 } 12672 ipmp_grp_info(grp, lifgr); 12673 rw_exit(&ipst->ips_ipmp_lock); 12674 return (0); 12675 } 12676 12677 static void 12678 ill_dl_down(ill_t *ill) 12679 { 12680 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12681 12682 /* 12683 * The ill is down; unbind but stay attached since we're still 12684 * associated with a PPA. If we have negotiated DLPI capabilites 12685 * with the data link service provider (IDS_OK) then reset them. 12686 * The interval between unbinding and rebinding is potentially 12687 * unbounded hence we cannot assume things will be the same. 12688 * The DLPI capabilities will be probed again when the data link 12689 * is brought up. 12690 */ 12691 mblk_t *mp = ill->ill_unbind_mp; 12692 12693 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12694 12695 if (!ill->ill_replumbing) { 12696 /* Free all ilms for this ill */ 12697 update_conn_ill(ill, ill->ill_ipst); 12698 } else { 12699 ill_leave_multicast(ill); 12700 } 12701 12702 ill->ill_unbind_mp = NULL; 12703 if (mp != NULL) { 12704 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12705 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12706 ill->ill_name)); 12707 mutex_enter(&ill->ill_lock); 12708 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12709 mutex_exit(&ill->ill_lock); 12710 /* 12711 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12712 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12713 * ill_capability_dld_disable disable rightaway. If this is not 12714 * an unplumb operation then the disable happens on receipt of 12715 * the capab ack via ip_rput_dlpi_writer -> 12716 * ill_capability_ack_thr. In both cases the order of 12717 * the operations seen by DLD is capability disable followed 12718 * by DL_UNBIND. Also the DLD capability disable needs a 12719 * cv_wait'able context. 12720 */ 12721 if (ill->ill_state_flags & ILL_CONDEMNED) 12722 ill_capability_dld_disable(ill); 12723 ill_capability_reset(ill, B_FALSE); 12724 ill_dlpi_send(ill, mp); 12725 } 12726 mutex_enter(&ill->ill_lock); 12727 ill->ill_dl_up = 0; 12728 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12729 mutex_exit(&ill->ill_lock); 12730 } 12731 12732 void 12733 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12734 { 12735 union DL_primitives *dlp; 12736 t_uscalar_t prim; 12737 boolean_t waitack = B_FALSE; 12738 12739 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12740 12741 dlp = (union DL_primitives *)mp->b_rptr; 12742 prim = dlp->dl_primitive; 12743 12744 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12745 dl_primstr(prim), prim, ill->ill_name)); 12746 12747 switch (prim) { 12748 case DL_PHYS_ADDR_REQ: 12749 { 12750 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12751 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12752 break; 12753 } 12754 case DL_BIND_REQ: 12755 mutex_enter(&ill->ill_lock); 12756 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12757 mutex_exit(&ill->ill_lock); 12758 break; 12759 } 12760 12761 /* 12762 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12763 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12764 * we only wait for the ACK of the DL_UNBIND_REQ. 12765 */ 12766 mutex_enter(&ill->ill_lock); 12767 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12768 (prim == DL_UNBIND_REQ)) { 12769 ill->ill_dlpi_pending = prim; 12770 waitack = B_TRUE; 12771 } 12772 12773 mutex_exit(&ill->ill_lock); 12774 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12775 char *, dl_primstr(prim), ill_t *, ill); 12776 putnext(ill->ill_wq, mp); 12777 12778 /* 12779 * There is no ack for DL_NOTIFY_CONF messages 12780 */ 12781 if (waitack && prim == DL_NOTIFY_CONF) 12782 ill_dlpi_done(ill, prim); 12783 } 12784 12785 /* 12786 * Helper function for ill_dlpi_send(). 12787 */ 12788 /* ARGSUSED */ 12789 static void 12790 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12791 { 12792 ill_dlpi_send(q->q_ptr, mp); 12793 } 12794 12795 /* 12796 * Send a DLPI control message to the driver but make sure there 12797 * is only one outstanding message. Uses ill_dlpi_pending to tell 12798 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12799 * when an ACK or a NAK is received to process the next queued message. 12800 */ 12801 void 12802 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12803 { 12804 mblk_t **mpp; 12805 12806 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12807 12808 /* 12809 * To ensure that any DLPI requests for current exclusive operation 12810 * are always completely sent before any DLPI messages for other 12811 * operations, require writer access before enqueuing. 12812 */ 12813 if (!IAM_WRITER_ILL(ill)) { 12814 ill_refhold(ill); 12815 /* qwriter_ip() does the ill_refrele() */ 12816 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12817 NEW_OP, B_TRUE); 12818 return; 12819 } 12820 12821 mutex_enter(&ill->ill_lock); 12822 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12823 /* Must queue message. Tail insertion */ 12824 mpp = &ill->ill_dlpi_deferred; 12825 while (*mpp != NULL) 12826 mpp = &((*mpp)->b_next); 12827 12828 ip1dbg(("ill_dlpi_send: deferring request for %s " 12829 "while %s pending\n", ill->ill_name, 12830 dl_primstr(ill->ill_dlpi_pending))); 12831 12832 *mpp = mp; 12833 mutex_exit(&ill->ill_lock); 12834 return; 12835 } 12836 mutex_exit(&ill->ill_lock); 12837 ill_dlpi_dispatch(ill, mp); 12838 } 12839 12840 void 12841 ill_capability_send(ill_t *ill, mblk_t *mp) 12842 { 12843 ill->ill_capab_pending_cnt++; 12844 ill_dlpi_send(ill, mp); 12845 } 12846 12847 void 12848 ill_capability_done(ill_t *ill) 12849 { 12850 ASSERT(ill->ill_capab_pending_cnt != 0); 12851 12852 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12853 12854 ill->ill_capab_pending_cnt--; 12855 if (ill->ill_capab_pending_cnt == 0 && 12856 ill->ill_dlpi_capab_state == IDCS_OK) 12857 ill_capability_reset_alloc(ill); 12858 } 12859 12860 /* 12861 * Send all deferred DLPI messages without waiting for their ACKs. 12862 */ 12863 void 12864 ill_dlpi_send_deferred(ill_t *ill) 12865 { 12866 mblk_t *mp, *nextmp; 12867 12868 /* 12869 * Clear ill_dlpi_pending so that the message is not queued in 12870 * ill_dlpi_send(). 12871 */ 12872 mutex_enter(&ill->ill_lock); 12873 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12874 mp = ill->ill_dlpi_deferred; 12875 ill->ill_dlpi_deferred = NULL; 12876 mutex_exit(&ill->ill_lock); 12877 12878 for (; mp != NULL; mp = nextmp) { 12879 nextmp = mp->b_next; 12880 mp->b_next = NULL; 12881 ill_dlpi_send(ill, mp); 12882 } 12883 } 12884 12885 /* 12886 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12887 * or M_HANGUP 12888 */ 12889 static void 12890 ill_dlpi_clear_deferred(ill_t *ill) 12891 { 12892 mblk_t *mp, *nextmp; 12893 12894 mutex_enter(&ill->ill_lock); 12895 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12896 mp = ill->ill_dlpi_deferred; 12897 ill->ill_dlpi_deferred = NULL; 12898 mutex_exit(&ill->ill_lock); 12899 12900 for (; mp != NULL; mp = nextmp) { 12901 nextmp = mp->b_next; 12902 inet_freemsg(mp); 12903 } 12904 } 12905 12906 /* 12907 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12908 */ 12909 boolean_t 12910 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12911 { 12912 t_uscalar_t pending; 12913 12914 mutex_enter(&ill->ill_lock); 12915 if (ill->ill_dlpi_pending == prim) { 12916 mutex_exit(&ill->ill_lock); 12917 return (B_TRUE); 12918 } 12919 12920 /* 12921 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12922 * without waiting, so don't print any warnings in that case. 12923 */ 12924 if (ill->ill_state_flags & ILL_CONDEMNED) { 12925 mutex_exit(&ill->ill_lock); 12926 return (B_FALSE); 12927 } 12928 pending = ill->ill_dlpi_pending; 12929 mutex_exit(&ill->ill_lock); 12930 12931 if (pending == DL_PRIM_INVAL) { 12932 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12933 "received unsolicited ack for %s on %s\n", 12934 dl_primstr(prim), ill->ill_name); 12935 } else { 12936 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12937 "received unexpected ack for %s on %s (expecting %s)\n", 12938 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12939 } 12940 return (B_FALSE); 12941 } 12942 12943 /* 12944 * Complete the current DLPI operation associated with `prim' on `ill' and 12945 * start the next queued DLPI operation (if any). If there are no queued DLPI 12946 * operations and the ill's current exclusive IPSQ operation has finished 12947 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12948 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12949 * the comments above ipsq_current_finish() for details. 12950 */ 12951 void 12952 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12953 { 12954 mblk_t *mp; 12955 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12956 ipxop_t *ipx = ipsq->ipsq_xop; 12957 12958 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12959 mutex_enter(&ill->ill_lock); 12960 12961 ASSERT(prim != DL_PRIM_INVAL); 12962 ASSERT(ill->ill_dlpi_pending == prim); 12963 12964 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12965 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12966 12967 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12968 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12969 if (ipx->ipx_current_done) { 12970 mutex_enter(&ipx->ipx_lock); 12971 ipx->ipx_current_ipif = NULL; 12972 mutex_exit(&ipx->ipx_lock); 12973 } 12974 cv_signal(&ill->ill_cv); 12975 mutex_exit(&ill->ill_lock); 12976 return; 12977 } 12978 12979 ill->ill_dlpi_deferred = mp->b_next; 12980 mp->b_next = NULL; 12981 mutex_exit(&ill->ill_lock); 12982 12983 ill_dlpi_dispatch(ill, mp); 12984 } 12985 12986 /* 12987 * Queue a (multicast) DLPI control message to be sent to the driver by 12988 * later calling ill_dlpi_send_queued. 12989 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12990 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12991 * for the same group to race. 12992 * We send DLPI control messages in order using ill_lock. 12993 * For IPMP we should be called on the cast_ill. 12994 */ 12995 void 12996 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12997 { 12998 mblk_t **mpp; 12999 13000 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13001 13002 mutex_enter(&ill->ill_lock); 13003 /* Must queue message. Tail insertion */ 13004 mpp = &ill->ill_dlpi_deferred; 13005 while (*mpp != NULL) 13006 mpp = &((*mpp)->b_next); 13007 13008 *mpp = mp; 13009 mutex_exit(&ill->ill_lock); 13010 } 13011 13012 /* 13013 * Send the messages that were queued. Make sure there is only 13014 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13015 * when an ACK or a NAK is received to process the next queued message. 13016 * For IPMP we are called on the upper ill, but when send what is queued 13017 * on the cast_ill. 13018 */ 13019 void 13020 ill_dlpi_send_queued(ill_t *ill) 13021 { 13022 mblk_t *mp; 13023 union DL_primitives *dlp; 13024 t_uscalar_t prim; 13025 ill_t *release_ill = NULL; 13026 13027 if (IS_IPMP(ill)) { 13028 /* On the upper IPMP ill. */ 13029 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13030 if (release_ill == NULL) { 13031 /* Avoid ever sending anything down to the ipmpstub */ 13032 return; 13033 } 13034 ill = release_ill; 13035 } 13036 mutex_enter(&ill->ill_lock); 13037 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13038 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13039 /* Can't send. Somebody else will send it */ 13040 mutex_exit(&ill->ill_lock); 13041 goto done; 13042 } 13043 ill->ill_dlpi_deferred = mp->b_next; 13044 mp->b_next = NULL; 13045 if (!ill->ill_dl_up) { 13046 /* 13047 * Nobody there. All multicast addresses will be 13048 * re-joined when we get the DL_BIND_ACK bringing the 13049 * interface up. 13050 */ 13051 freemsg(mp); 13052 continue; 13053 } 13054 dlp = (union DL_primitives *)mp->b_rptr; 13055 prim = dlp->dl_primitive; 13056 13057 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13058 (prim == DL_UNBIND_REQ)) { 13059 ill->ill_dlpi_pending = prim; 13060 } 13061 mutex_exit(&ill->ill_lock); 13062 13063 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13064 char *, dl_primstr(prim), ill_t *, ill); 13065 putnext(ill->ill_wq, mp); 13066 mutex_enter(&ill->ill_lock); 13067 } 13068 mutex_exit(&ill->ill_lock); 13069 done: 13070 if (release_ill != NULL) 13071 ill_refrele(release_ill); 13072 } 13073 13074 /* 13075 * Queue an IP (IGMP/MLD) message to be sent by IP from 13076 * ill_mcast_send_queued 13077 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13078 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13079 * group to race. 13080 * We send them in order using ill_lock. 13081 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13082 */ 13083 void 13084 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13085 { 13086 mblk_t **mpp; 13087 ill_t *release_ill = NULL; 13088 13089 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13090 13091 if (IS_IPMP(ill)) { 13092 /* On the upper IPMP ill. */ 13093 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13094 if (release_ill == NULL) { 13095 /* Discard instead of queuing for the ipmp interface */ 13096 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13097 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13098 mp, ill); 13099 freemsg(mp); 13100 return; 13101 } 13102 ill = release_ill; 13103 } 13104 13105 mutex_enter(&ill->ill_lock); 13106 /* Must queue message. Tail insertion */ 13107 mpp = &ill->ill_mcast_deferred; 13108 while (*mpp != NULL) 13109 mpp = &((*mpp)->b_next); 13110 13111 *mpp = mp; 13112 mutex_exit(&ill->ill_lock); 13113 if (release_ill != NULL) 13114 ill_refrele(release_ill); 13115 } 13116 13117 /* 13118 * Send the IP packets that were queued by ill_mcast_queue. 13119 * These are IGMP/MLD packets. 13120 * 13121 * For IPMP we are called on the upper ill, but when send what is queued 13122 * on the cast_ill. 13123 * 13124 * Request loopback of the report if we are acting as a multicast 13125 * router, so that the process-level routing demon can hear it. 13126 * This will run multiple times for the same group if there are members 13127 * on the same group for multiple ipif's on the same ill. The 13128 * igmp_input/mld_input code will suppress this due to the loopback thus we 13129 * always loopback membership report. 13130 * 13131 * We also need to make sure that this does not get load balanced 13132 * by IPMP. We do this by passing an ill to ip_output_simple. 13133 */ 13134 void 13135 ill_mcast_send_queued(ill_t *ill) 13136 { 13137 mblk_t *mp; 13138 ip_xmit_attr_t ixas; 13139 ill_t *release_ill = NULL; 13140 13141 if (IS_IPMP(ill)) { 13142 /* On the upper IPMP ill. */ 13143 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13144 if (release_ill == NULL) { 13145 /* 13146 * We should have no messages on the ipmp interface 13147 * but no point in trying to send them. 13148 */ 13149 return; 13150 } 13151 ill = release_ill; 13152 } 13153 bzero(&ixas, sizeof (ixas)); 13154 ixas.ixa_zoneid = ALL_ZONES; 13155 ixas.ixa_cred = kcred; 13156 ixas.ixa_cpid = NOPID; 13157 ixas.ixa_tsl = NULL; 13158 /* 13159 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13160 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13161 * That is necessary to handle IGMP/MLD snooping switches. 13162 */ 13163 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13164 ixas.ixa_ipst = ill->ill_ipst; 13165 13166 mutex_enter(&ill->ill_lock); 13167 while ((mp = ill->ill_mcast_deferred) != NULL) { 13168 ill->ill_mcast_deferred = mp->b_next; 13169 mp->b_next = NULL; 13170 if (!ill->ill_dl_up) { 13171 /* 13172 * Nobody there. Just drop the ip packets. 13173 * IGMP/MLD will resend later, if this is a replumb. 13174 */ 13175 freemsg(mp); 13176 continue; 13177 } 13178 mutex_enter(&ill->ill_phyint->phyint_lock); 13179 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13180 /* 13181 * When the ill is getting deactivated, we only want to 13182 * send the DLPI messages, so drop IGMP/MLD packets. 13183 * DLPI messages are handled by ill_dlpi_send_queued() 13184 */ 13185 mutex_exit(&ill->ill_phyint->phyint_lock); 13186 freemsg(mp); 13187 continue; 13188 } 13189 mutex_exit(&ill->ill_phyint->phyint_lock); 13190 mutex_exit(&ill->ill_lock); 13191 13192 /* Check whether we are sending IPv4 or IPv6. */ 13193 if (ill->ill_isv6) { 13194 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13195 13196 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13197 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13198 } else { 13199 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13200 13201 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13202 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13203 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13204 } 13205 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13206 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13207 (void) ip_output_simple(mp, &ixas); 13208 ixa_cleanup(&ixas); 13209 13210 mutex_enter(&ill->ill_lock); 13211 } 13212 mutex_exit(&ill->ill_lock); 13213 13214 done: 13215 if (release_ill != NULL) 13216 ill_refrele(release_ill); 13217 } 13218 13219 /* 13220 * Take down a specific interface, but don't lose any information about it. 13221 * (Always called as writer.) 13222 * This function goes through the down sequence even if the interface is 13223 * already down. There are 2 reasons. 13224 * a. Currently we permit interface routes that depend on down interfaces 13225 * to be added. This behaviour itself is questionable. However it appears 13226 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13227 * time. We go thru the cleanup in order to remove these routes. 13228 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13229 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13230 * down, but we need to cleanup i.e. do ill_dl_down and 13231 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13232 * 13233 * IP-MT notes: 13234 * 13235 * Model of reference to interfaces. 13236 * 13237 * The following members in ipif_t track references to the ipif. 13238 * int ipif_refcnt; Active reference count 13239 * 13240 * The following members in ill_t track references to the ill. 13241 * int ill_refcnt; active refcnt 13242 * uint_t ill_ire_cnt; Number of ires referencing ill 13243 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13244 * uint_t ill_nce_cnt; Number of nces referencing ill 13245 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13246 * 13247 * Reference to an ipif or ill can be obtained in any of the following ways. 13248 * 13249 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13250 * Pointers to ipif / ill from other data structures viz ire and conn. 13251 * Implicit reference to the ipif / ill by holding a reference to the ire. 13252 * 13253 * The ipif/ill lookup functions return a reference held ipif / ill. 13254 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13255 * This is a purely dynamic reference count associated with threads holding 13256 * references to the ipif / ill. Pointers from other structures do not 13257 * count towards this reference count. 13258 * 13259 * ill_ire_cnt is the number of ire's associated with the 13260 * ill. This is incremented whenever a new ire is created referencing the 13261 * ill. This is done atomically inside ire_add_v[46] where the ire is 13262 * actually added to the ire hash table. The count is decremented in 13263 * ire_inactive where the ire is destroyed. 13264 * 13265 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13266 * This is incremented atomically in 13267 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13268 * table. Similarly it is decremented in ncec_inactive() where the ncec 13269 * is destroyed. 13270 * 13271 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13272 * incremented atomically in nce_add() where the nce is actually added to the 13273 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13274 * is destroyed. 13275 * 13276 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13277 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13278 * 13279 * Flow of ioctls involving interface down/up 13280 * 13281 * The following is the sequence of an attempt to set some critical flags on an 13282 * up interface. 13283 * ip_sioctl_flags 13284 * ipif_down 13285 * wait for ipif to be quiescent 13286 * ipif_down_tail 13287 * ip_sioctl_flags_tail 13288 * 13289 * All set ioctls that involve down/up sequence would have a skeleton similar 13290 * to the above. All the *tail functions are called after the refcounts have 13291 * dropped to the appropriate values. 13292 * 13293 * SIOC ioctls during the IPIF_CHANGING interval. 13294 * 13295 * Threads handling SIOC set ioctls serialize on the squeue, but this 13296 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13297 * steps of internal changes to the state, some of which are visible in 13298 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13299 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13300 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13301 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13302 * the current exclusive operation completes. The IPIF_CHANGING check 13303 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13304 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13305 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13306 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13307 * until we release the ipsq_lock, even though the ill/ipif state flags 13308 * can change after we drop the ill_lock. 13309 */ 13310 int 13311 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13312 { 13313 ill_t *ill = ipif->ipif_ill; 13314 conn_t *connp; 13315 boolean_t success; 13316 boolean_t ipif_was_up = B_FALSE; 13317 ip_stack_t *ipst = ill->ill_ipst; 13318 13319 ASSERT(IAM_WRITER_IPIF(ipif)); 13320 13321 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13322 13323 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13324 ill_t *, ill, ipif_t *, ipif); 13325 13326 if (ipif->ipif_flags & IPIF_UP) { 13327 mutex_enter(&ill->ill_lock); 13328 ipif->ipif_flags &= ~IPIF_UP; 13329 ASSERT(ill->ill_ipif_up_count > 0); 13330 --ill->ill_ipif_up_count; 13331 mutex_exit(&ill->ill_lock); 13332 ipif_was_up = B_TRUE; 13333 /* Update status in SCTP's list */ 13334 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13335 ill_nic_event_dispatch(ipif->ipif_ill, 13336 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13337 } 13338 13339 /* 13340 * Removal of the last ipif from an ill may result in a DL_UNBIND 13341 * being sent to the driver, and we must not send any data packets to 13342 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13343 * ire and nce entries used in the data path will be cleaned 13344 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13345 * sure on new entries will be added until the ill is bound 13346 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13347 * receipt of a DL_BIND_ACK. 13348 */ 13349 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13350 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13351 ill->ill_dl_up) { 13352 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13353 } 13354 13355 /* 13356 * Blow away memberships we established in ipif_multicast_up(). 13357 */ 13358 ipif_multicast_down(ipif); 13359 13360 /* 13361 * Remove from the mapping for __sin6_src_id. We insert only 13362 * when the address is not INADDR_ANY. As IPv4 addresses are 13363 * stored as mapped addresses, we need to check for mapped 13364 * INADDR_ANY also. 13365 */ 13366 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13367 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13368 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13369 int err; 13370 13371 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13372 ipif->ipif_zoneid, ipst); 13373 if (err != 0) { 13374 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13375 } 13376 } 13377 13378 if (ipif_was_up) { 13379 /* only delete if we'd added ire's before */ 13380 if (ipif->ipif_isv6) 13381 ipif_delete_ires_v6(ipif); 13382 else 13383 ipif_delete_ires_v4(ipif); 13384 } 13385 13386 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13387 /* 13388 * Since the interface is now down, it may have just become 13389 * inactive. Note that this needs to be done even for a 13390 * lll_logical_down(), or ARP entries will not get correctly 13391 * restored when the interface comes back up. 13392 */ 13393 if (IS_UNDER_IPMP(ill)) 13394 ipmp_ill_refresh_active(ill); 13395 } 13396 13397 /* 13398 * neighbor-discovery or arp entries for this interface. The ipif 13399 * has to be quiesced, so we walk all the nce's and delete those 13400 * that point at the ipif->ipif_ill. At the same time, we also 13401 * update IPMP so that ipifs for data addresses are unbound. We dont 13402 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13403 * that for ipif_down_tail() 13404 */ 13405 ipif_nce_down(ipif); 13406 13407 /* 13408 * If this is the last ipif on the ill, we also need to remove 13409 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13410 * never succeed. 13411 */ 13412 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13413 ire_walk_ill(0, 0, ill_downi, ill, ill); 13414 13415 /* 13416 * Walk all CONNs that can have a reference on an ire for this 13417 * ipif (we actually walk all that now have stale references). 13418 */ 13419 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13420 13421 /* 13422 * If mp is NULL the caller will wait for the appropriate refcnt. 13423 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13424 * and ill_delete -> ipif_free -> ipif_down 13425 */ 13426 if (mp == NULL) { 13427 ASSERT(q == NULL); 13428 return (0); 13429 } 13430 13431 if (CONN_Q(q)) { 13432 connp = Q_TO_CONN(q); 13433 mutex_enter(&connp->conn_lock); 13434 } else { 13435 connp = NULL; 13436 } 13437 mutex_enter(&ill->ill_lock); 13438 /* 13439 * Are there any ire's pointing to this ipif that are still active ? 13440 * If this is the last ipif going down, are there any ire's pointing 13441 * to this ill that are still active ? 13442 */ 13443 if (ipif_is_quiescent(ipif)) { 13444 mutex_exit(&ill->ill_lock); 13445 if (connp != NULL) 13446 mutex_exit(&connp->conn_lock); 13447 return (0); 13448 } 13449 13450 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13451 ill->ill_name, (void *)ill)); 13452 /* 13453 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13454 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13455 * which in turn is called by the last refrele on the ipif/ill/ire. 13456 */ 13457 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13458 if (!success) { 13459 /* The conn is closing. So just return */ 13460 ASSERT(connp != NULL); 13461 mutex_exit(&ill->ill_lock); 13462 mutex_exit(&connp->conn_lock); 13463 return (EINTR); 13464 } 13465 13466 mutex_exit(&ill->ill_lock); 13467 if (connp != NULL) 13468 mutex_exit(&connp->conn_lock); 13469 return (EINPROGRESS); 13470 } 13471 13472 int 13473 ipif_down_tail(ipif_t *ipif) 13474 { 13475 ill_t *ill = ipif->ipif_ill; 13476 int err = 0; 13477 13478 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13479 ill_t *, ill, ipif_t *, ipif); 13480 13481 /* 13482 * Skip any loopback interface (null wq). 13483 * If this is the last logical interface on the ill 13484 * have ill_dl_down tell the driver we are gone (unbind) 13485 * Note that lun 0 can ipif_down even though 13486 * there are other logical units that are up. 13487 * This occurs e.g. when we change a "significant" IFF_ flag. 13488 */ 13489 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13490 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13491 ill->ill_dl_up) { 13492 ill_dl_down(ill); 13493 } 13494 if (!ipif->ipif_isv6) 13495 err = ipif_arp_down(ipif); 13496 13497 ill->ill_logical_down = 0; 13498 13499 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13500 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13501 return (err); 13502 } 13503 13504 /* 13505 * Bring interface logically down without bringing the physical interface 13506 * down e.g. when the netmask is changed. This avoids long lasting link 13507 * negotiations between an ethernet interface and a certain switches. 13508 */ 13509 static int 13510 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13511 { 13512 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13513 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13514 13515 /* 13516 * The ill_logical_down flag is a transient flag. It is set here 13517 * and is cleared once the down has completed in ipif_down_tail. 13518 * This flag does not indicate whether the ill stream is in the 13519 * DL_BOUND state with the driver. Instead this flag is used by 13520 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13521 * the driver. The state of the ill stream i.e. whether it is 13522 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13523 */ 13524 ipif->ipif_ill->ill_logical_down = 1; 13525 return (ipif_down(ipif, q, mp)); 13526 } 13527 13528 /* 13529 * Initiate deallocate of an IPIF. Always called as writer. Called by 13530 * ill_delete or ip_sioctl_removeif. 13531 */ 13532 static void 13533 ipif_free(ipif_t *ipif) 13534 { 13535 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13536 13537 ASSERT(IAM_WRITER_IPIF(ipif)); 13538 13539 if (ipif->ipif_recovery_id != 0) 13540 (void) untimeout(ipif->ipif_recovery_id); 13541 ipif->ipif_recovery_id = 0; 13542 13543 /* 13544 * Take down the interface. We can be called either from ill_delete 13545 * or from ip_sioctl_removeif. 13546 */ 13547 (void) ipif_down(ipif, NULL, NULL); 13548 13549 /* 13550 * Now that the interface is down, there's no chance it can still 13551 * become a duplicate. Cancel any timer that may have been set while 13552 * tearing down. 13553 */ 13554 if (ipif->ipif_recovery_id != 0) 13555 (void) untimeout(ipif->ipif_recovery_id); 13556 ipif->ipif_recovery_id = 0; 13557 13558 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13559 /* Remove pointers to this ill in the multicast routing tables */ 13560 reset_mrt_vif_ipif(ipif); 13561 /* If necessary, clear the cached source ipif rotor. */ 13562 if (ipif->ipif_ill->ill_src_ipif == ipif) 13563 ipif->ipif_ill->ill_src_ipif = NULL; 13564 rw_exit(&ipst->ips_ill_g_lock); 13565 } 13566 13567 static void 13568 ipif_free_tail(ipif_t *ipif) 13569 { 13570 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13571 13572 /* 13573 * Need to hold both ill_g_lock and ill_lock while 13574 * inserting or removing an ipif from the linked list 13575 * of ipifs hanging off the ill. 13576 */ 13577 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13578 13579 #ifdef DEBUG 13580 ipif_trace_cleanup(ipif); 13581 #endif 13582 13583 /* Ask SCTP to take it out of it list */ 13584 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13585 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13586 13587 /* Get it out of the ILL interface list. */ 13588 ipif_remove(ipif); 13589 rw_exit(&ipst->ips_ill_g_lock); 13590 13591 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13592 ASSERT(ipif->ipif_recovery_id == 0); 13593 ASSERT(ipif->ipif_ire_local == NULL); 13594 ASSERT(ipif->ipif_ire_if == NULL); 13595 13596 /* Free the memory. */ 13597 mi_free(ipif); 13598 } 13599 13600 /* 13601 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13602 * is zero. 13603 */ 13604 void 13605 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13606 { 13607 char lbuf[LIFNAMSIZ]; 13608 char *name; 13609 size_t name_len; 13610 13611 buf[0] = '\0'; 13612 name = ipif->ipif_ill->ill_name; 13613 name_len = ipif->ipif_ill->ill_name_length; 13614 if (ipif->ipif_id != 0) { 13615 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13616 ipif->ipif_id); 13617 name = lbuf; 13618 name_len = mi_strlen(name) + 1; 13619 } 13620 len -= 1; 13621 buf[len] = '\0'; 13622 len = MIN(len, name_len); 13623 bcopy(name, buf, len); 13624 } 13625 13626 /* 13627 * Sets `buf' to an ill name. 13628 */ 13629 void 13630 ill_get_name(const ill_t *ill, char *buf, int len) 13631 { 13632 char *name; 13633 size_t name_len; 13634 13635 name = ill->ill_name; 13636 name_len = ill->ill_name_length; 13637 len -= 1; 13638 buf[len] = '\0'; 13639 len = MIN(len, name_len); 13640 bcopy(name, buf, len); 13641 } 13642 13643 /* 13644 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13645 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13646 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13647 * (May be called as writer.) 13648 */ 13649 static ipif_t * 13650 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13651 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13652 { 13653 char *cp; 13654 char *endp; 13655 long id; 13656 ill_t *ill; 13657 ipif_t *ipif; 13658 uint_t ire_type; 13659 boolean_t did_alloc = B_FALSE; 13660 char last; 13661 13662 /* 13663 * If the caller wants to us to create the ipif, make sure we have a 13664 * valid zoneid 13665 */ 13666 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13667 13668 if (namelen == 0) { 13669 return (NULL); 13670 } 13671 13672 *exists = B_FALSE; 13673 /* Look for a colon in the name. */ 13674 endp = &name[namelen]; 13675 for (cp = endp; --cp > name; ) { 13676 if (*cp == IPIF_SEPARATOR_CHAR) 13677 break; 13678 } 13679 13680 if (*cp == IPIF_SEPARATOR_CHAR) { 13681 /* 13682 * Reject any non-decimal aliases for logical 13683 * interfaces. Aliases with leading zeroes 13684 * are also rejected as they introduce ambiguity 13685 * in the naming of the interfaces. 13686 * In order to confirm with existing semantics, 13687 * and to not break any programs/script relying 13688 * on that behaviour, if<0>:0 is considered to be 13689 * a valid interface. 13690 * 13691 * If alias has two or more digits and the first 13692 * is zero, fail. 13693 */ 13694 if (&cp[2] < endp && cp[1] == '0') { 13695 return (NULL); 13696 } 13697 } 13698 13699 if (cp <= name) { 13700 cp = endp; 13701 } 13702 last = *cp; 13703 *cp = '\0'; 13704 13705 /* 13706 * Look up the ILL, based on the portion of the name 13707 * before the slash. ill_lookup_on_name returns a held ill. 13708 * Temporary to check whether ill exists already. If so 13709 * ill_lookup_on_name will clear it. 13710 */ 13711 ill = ill_lookup_on_name(name, do_alloc, isv6, 13712 &did_alloc, ipst); 13713 *cp = last; 13714 if (ill == NULL) 13715 return (NULL); 13716 13717 /* Establish the unit number in the name. */ 13718 id = 0; 13719 if (cp < endp && *endp == '\0') { 13720 /* If there was a colon, the unit number follows. */ 13721 cp++; 13722 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13723 ill_refrele(ill); 13724 return (NULL); 13725 } 13726 } 13727 13728 mutex_enter(&ill->ill_lock); 13729 /* Now see if there is an IPIF with this unit number. */ 13730 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13731 if (ipif->ipif_id == id) { 13732 if (zoneid != ALL_ZONES && 13733 zoneid != ipif->ipif_zoneid && 13734 ipif->ipif_zoneid != ALL_ZONES) { 13735 mutex_exit(&ill->ill_lock); 13736 ill_refrele(ill); 13737 return (NULL); 13738 } 13739 if (IPIF_CAN_LOOKUP(ipif)) { 13740 ipif_refhold_locked(ipif); 13741 mutex_exit(&ill->ill_lock); 13742 if (!did_alloc) 13743 *exists = B_TRUE; 13744 /* 13745 * Drop locks before calling ill_refrele 13746 * since it can potentially call into 13747 * ipif_ill_refrele_tail which can end up 13748 * in trying to acquire any lock. 13749 */ 13750 ill_refrele(ill); 13751 return (ipif); 13752 } 13753 } 13754 } 13755 13756 if (!do_alloc) { 13757 mutex_exit(&ill->ill_lock); 13758 ill_refrele(ill); 13759 return (NULL); 13760 } 13761 13762 /* 13763 * If none found, atomically allocate and return a new one. 13764 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13765 * to support "receive only" use of lo0:1 etc. as is still done 13766 * below as an initial guess. 13767 * However, this is now likely to be overriden later in ipif_up_done() 13768 * when we know for sure what address has been configured on the 13769 * interface, since we might have more than one loopback interface 13770 * with a loopback address, e.g. in the case of zones, and all the 13771 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13772 */ 13773 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13774 ire_type = IRE_LOOPBACK; 13775 else 13776 ire_type = IRE_LOCAL; 13777 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13778 if (ipif != NULL) 13779 ipif_refhold_locked(ipif); 13780 mutex_exit(&ill->ill_lock); 13781 ill_refrele(ill); 13782 return (ipif); 13783 } 13784 13785 /* 13786 * Variant of the above that queues the request on the ipsq when 13787 * IPIF_CHANGING is set. 13788 */ 13789 static ipif_t * 13790 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13791 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13792 ip_stack_t *ipst) 13793 { 13794 char *cp; 13795 char *endp; 13796 long id; 13797 ill_t *ill; 13798 ipif_t *ipif; 13799 boolean_t did_alloc = B_FALSE; 13800 ipsq_t *ipsq; 13801 13802 if (error != NULL) 13803 *error = 0; 13804 13805 if (namelen == 0) { 13806 if (error != NULL) 13807 *error = ENXIO; 13808 return (NULL); 13809 } 13810 13811 /* Look for a colon in the name. */ 13812 endp = &name[namelen]; 13813 for (cp = endp; --cp > name; ) { 13814 if (*cp == IPIF_SEPARATOR_CHAR) 13815 break; 13816 } 13817 13818 if (*cp == IPIF_SEPARATOR_CHAR) { 13819 /* 13820 * Reject any non-decimal aliases for logical 13821 * interfaces. Aliases with leading zeroes 13822 * are also rejected as they introduce ambiguity 13823 * in the naming of the interfaces. 13824 * In order to confirm with existing semantics, 13825 * and to not break any programs/script relying 13826 * on that behaviour, if<0>:0 is considered to be 13827 * a valid interface. 13828 * 13829 * If alias has two or more digits and the first 13830 * is zero, fail. 13831 */ 13832 if (&cp[2] < endp && cp[1] == '0') { 13833 if (error != NULL) 13834 *error = EINVAL; 13835 return (NULL); 13836 } 13837 } 13838 13839 if (cp <= name) { 13840 cp = endp; 13841 } else { 13842 *cp = '\0'; 13843 } 13844 13845 /* 13846 * Look up the ILL, based on the portion of the name 13847 * before the slash. ill_lookup_on_name returns a held ill. 13848 * Temporary to check whether ill exists already. If so 13849 * ill_lookup_on_name will clear it. 13850 */ 13851 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13852 if (cp != endp) 13853 *cp = IPIF_SEPARATOR_CHAR; 13854 if (ill == NULL) 13855 return (NULL); 13856 13857 /* Establish the unit number in the name. */ 13858 id = 0; 13859 if (cp < endp && *endp == '\0') { 13860 /* If there was a colon, the unit number follows. */ 13861 cp++; 13862 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13863 ill_refrele(ill); 13864 if (error != NULL) 13865 *error = ENXIO; 13866 return (NULL); 13867 } 13868 } 13869 13870 GRAB_CONN_LOCK(q); 13871 mutex_enter(&ill->ill_lock); 13872 /* Now see if there is an IPIF with this unit number. */ 13873 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13874 if (ipif->ipif_id == id) { 13875 if (zoneid != ALL_ZONES && 13876 zoneid != ipif->ipif_zoneid && 13877 ipif->ipif_zoneid != ALL_ZONES) { 13878 mutex_exit(&ill->ill_lock); 13879 RELEASE_CONN_LOCK(q); 13880 ill_refrele(ill); 13881 if (error != NULL) 13882 *error = ENXIO; 13883 return (NULL); 13884 } 13885 13886 if (!(IPIF_IS_CHANGING(ipif) || 13887 IPIF_IS_CONDEMNED(ipif)) || 13888 IAM_WRITER_IPIF(ipif)) { 13889 ipif_refhold_locked(ipif); 13890 mutex_exit(&ill->ill_lock); 13891 /* 13892 * Drop locks before calling ill_refrele 13893 * since it can potentially call into 13894 * ipif_ill_refrele_tail which can end up 13895 * in trying to acquire any lock. 13896 */ 13897 RELEASE_CONN_LOCK(q); 13898 ill_refrele(ill); 13899 return (ipif); 13900 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13901 ipsq = ill->ill_phyint->phyint_ipsq; 13902 mutex_enter(&ipsq->ipsq_lock); 13903 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13904 mutex_exit(&ill->ill_lock); 13905 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13906 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13907 mutex_exit(&ipsq->ipsq_lock); 13908 RELEASE_CONN_LOCK(q); 13909 ill_refrele(ill); 13910 if (error != NULL) 13911 *error = EINPROGRESS; 13912 return (NULL); 13913 } 13914 } 13915 } 13916 RELEASE_CONN_LOCK(q); 13917 mutex_exit(&ill->ill_lock); 13918 ill_refrele(ill); 13919 if (error != NULL) 13920 *error = ENXIO; 13921 return (NULL); 13922 } 13923 13924 /* 13925 * This routine is called whenever a new address comes up on an ipif. If 13926 * we are configured to respond to address mask requests, then we are supposed 13927 * to broadcast an address mask reply at this time. This routine is also 13928 * called if we are already up, but a netmask change is made. This is legal 13929 * but might not make the system manager very popular. (May be called 13930 * as writer.) 13931 */ 13932 void 13933 ipif_mask_reply(ipif_t *ipif) 13934 { 13935 icmph_t *icmph; 13936 ipha_t *ipha; 13937 mblk_t *mp; 13938 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13939 ip_xmit_attr_t ixas; 13940 13941 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13942 13943 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13944 return; 13945 13946 /* ICMP mask reply is IPv4 only */ 13947 ASSERT(!ipif->ipif_isv6); 13948 /* ICMP mask reply is not for a loopback interface */ 13949 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13950 13951 if (ipif->ipif_lcl_addr == INADDR_ANY) 13952 return; 13953 13954 mp = allocb(REPLY_LEN, BPRI_HI); 13955 if (mp == NULL) 13956 return; 13957 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13958 13959 ipha = (ipha_t *)mp->b_rptr; 13960 bzero(ipha, REPLY_LEN); 13961 *ipha = icmp_ipha; 13962 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13963 ipha->ipha_src = ipif->ipif_lcl_addr; 13964 ipha->ipha_dst = ipif->ipif_brd_addr; 13965 ipha->ipha_length = htons(REPLY_LEN); 13966 ipha->ipha_ident = 0; 13967 13968 icmph = (icmph_t *)&ipha[1]; 13969 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13970 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13971 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13972 13973 bzero(&ixas, sizeof (ixas)); 13974 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13975 ixas.ixa_zoneid = ALL_ZONES; 13976 ixas.ixa_ifindex = 0; 13977 ixas.ixa_ipst = ipst; 13978 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13979 (void) ip_output_simple(mp, &ixas); 13980 ixa_cleanup(&ixas); 13981 #undef REPLY_LEN 13982 } 13983 13984 /* 13985 * Join the ipif specific multicast groups. 13986 * Must be called after a mapping has been set up in the resolver. (Always 13987 * called as writer.) 13988 */ 13989 void 13990 ipif_multicast_up(ipif_t *ipif) 13991 { 13992 int err; 13993 ill_t *ill; 13994 ilm_t *ilm; 13995 13996 ASSERT(IAM_WRITER_IPIF(ipif)); 13997 13998 ill = ipif->ipif_ill; 13999 14000 ip1dbg(("ipif_multicast_up\n")); 14001 if (!(ill->ill_flags & ILLF_MULTICAST) || 14002 ipif->ipif_allhosts_ilm != NULL) 14003 return; 14004 14005 if (ipif->ipif_isv6) { 14006 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14007 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14008 14009 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14010 14011 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14012 return; 14013 14014 ip1dbg(("ipif_multicast_up - addmulti\n")); 14015 14016 /* 14017 * Join the all hosts multicast address. We skip this for 14018 * underlying IPMP interfaces since they should be invisible. 14019 */ 14020 if (!IS_UNDER_IPMP(ill)) { 14021 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14022 &err); 14023 if (ilm == NULL) { 14024 ASSERT(err != 0); 14025 ip0dbg(("ipif_multicast_up: " 14026 "all_hosts_mcast failed %d\n", err)); 14027 return; 14028 } 14029 ipif->ipif_allhosts_ilm = ilm; 14030 } 14031 14032 /* 14033 * Enable multicast for the solicited node multicast address. 14034 * If IPMP we need to put the membership on the upper ill. 14035 */ 14036 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14037 ill_t *mcast_ill = NULL; 14038 boolean_t need_refrele; 14039 14040 if (IS_UNDER_IPMP(ill) && 14041 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14042 need_refrele = B_TRUE; 14043 } else { 14044 mcast_ill = ill; 14045 need_refrele = B_FALSE; 14046 } 14047 14048 ilm = ip_addmulti(&v6solmc, mcast_ill, 14049 ipif->ipif_zoneid, &err); 14050 if (need_refrele) 14051 ill_refrele(mcast_ill); 14052 14053 if (ilm == NULL) { 14054 ASSERT(err != 0); 14055 ip0dbg(("ipif_multicast_up: solicited MC" 14056 " failed %d\n", err)); 14057 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14058 ipif->ipif_allhosts_ilm = NULL; 14059 (void) ip_delmulti(ilm); 14060 } 14061 return; 14062 } 14063 ipif->ipif_solmulti_ilm = ilm; 14064 } 14065 } else { 14066 in6_addr_t v6group; 14067 14068 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14069 return; 14070 14071 /* Join the all hosts multicast address */ 14072 ip1dbg(("ipif_multicast_up - addmulti\n")); 14073 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14074 14075 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14076 if (ilm == NULL) { 14077 ASSERT(err != 0); 14078 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14079 return; 14080 } 14081 ipif->ipif_allhosts_ilm = ilm; 14082 } 14083 } 14084 14085 /* 14086 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14087 * (ilms from explicit memberships are handled in conn_update_ill.) 14088 */ 14089 void 14090 ipif_multicast_down(ipif_t *ipif) 14091 { 14092 ASSERT(IAM_WRITER_IPIF(ipif)); 14093 14094 ip1dbg(("ipif_multicast_down\n")); 14095 14096 if (ipif->ipif_allhosts_ilm != NULL) { 14097 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14098 ipif->ipif_allhosts_ilm = NULL; 14099 } 14100 if (ipif->ipif_solmulti_ilm != NULL) { 14101 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14102 ipif->ipif_solmulti_ilm = NULL; 14103 } 14104 } 14105 14106 /* 14107 * Used when an interface comes up to recreate any extra routes on this 14108 * interface. 14109 */ 14110 int 14111 ill_recover_saved_ire(ill_t *ill) 14112 { 14113 mblk_t *mp; 14114 ip_stack_t *ipst = ill->ill_ipst; 14115 14116 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14117 14118 mutex_enter(&ill->ill_saved_ire_lock); 14119 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14120 ire_t *ire, *nire; 14121 ifrt_t *ifrt; 14122 14123 ifrt = (ifrt_t *)mp->b_rptr; 14124 /* 14125 * Create a copy of the IRE with the saved address and netmask. 14126 */ 14127 if (ill->ill_isv6) { 14128 ire = ire_create_v6( 14129 &ifrt->ifrt_v6addr, 14130 &ifrt->ifrt_v6mask, 14131 &ifrt->ifrt_v6gateway_addr, 14132 ifrt->ifrt_type, 14133 ill, 14134 ifrt->ifrt_zoneid, 14135 ifrt->ifrt_flags, 14136 NULL, 14137 ipst); 14138 } else { 14139 ire = ire_create( 14140 (uint8_t *)&ifrt->ifrt_addr, 14141 (uint8_t *)&ifrt->ifrt_mask, 14142 (uint8_t *)&ifrt->ifrt_gateway_addr, 14143 ifrt->ifrt_type, 14144 ill, 14145 ifrt->ifrt_zoneid, 14146 ifrt->ifrt_flags, 14147 NULL, 14148 ipst); 14149 } 14150 if (ire == NULL) { 14151 mutex_exit(&ill->ill_saved_ire_lock); 14152 return (ENOMEM); 14153 } 14154 14155 if (ifrt->ifrt_flags & RTF_SETSRC) { 14156 if (ill->ill_isv6) { 14157 ire->ire_setsrc_addr_v6 = 14158 ifrt->ifrt_v6setsrc_addr; 14159 } else { 14160 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14161 } 14162 } 14163 14164 /* 14165 * Some software (for example, GateD and Sun Cluster) attempts 14166 * to create (what amount to) IRE_PREFIX routes with the 14167 * loopback address as the gateway. This is primarily done to 14168 * set up prefixes with the RTF_REJECT flag set (for example, 14169 * when generating aggregate routes.) 14170 * 14171 * If the IRE type (as defined by ill->ill_net_type) is 14172 * IRE_LOOPBACK, then we map the request into a 14173 * IRE_IF_NORESOLVER. 14174 */ 14175 if (ill->ill_net_type == IRE_LOOPBACK) 14176 ire->ire_type = IRE_IF_NORESOLVER; 14177 14178 /* 14179 * ire held by ire_add, will be refreled' towards the 14180 * the end of ipif_up_done 14181 */ 14182 nire = ire_add(ire); 14183 /* 14184 * Check if it was a duplicate entry. This handles 14185 * the case of two racing route adds for the same route 14186 */ 14187 if (nire == NULL) { 14188 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14189 } else if (nire != ire) { 14190 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14191 (void *)nire)); 14192 ire_delete(nire); 14193 } else { 14194 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14195 (void *)nire)); 14196 } 14197 if (nire != NULL) 14198 ire_refrele(nire); 14199 } 14200 mutex_exit(&ill->ill_saved_ire_lock); 14201 return (0); 14202 } 14203 14204 /* 14205 * Used to set the netmask and broadcast address to default values when the 14206 * interface is brought up. (Always called as writer.) 14207 */ 14208 static void 14209 ipif_set_default(ipif_t *ipif) 14210 { 14211 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14212 14213 if (!ipif->ipif_isv6) { 14214 /* 14215 * Interface holds an IPv4 address. Default 14216 * mask is the natural netmask. 14217 */ 14218 if (!ipif->ipif_net_mask) { 14219 ipaddr_t v4mask; 14220 14221 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14222 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14223 } 14224 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14225 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14226 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14227 } else { 14228 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14229 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14230 } 14231 /* 14232 * NOTE: SunOS 4.X does this even if the broadcast address 14233 * has been already set thus we do the same here. 14234 */ 14235 if (ipif->ipif_flags & IPIF_BROADCAST) { 14236 ipaddr_t v4addr; 14237 14238 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14239 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14240 } 14241 } else { 14242 /* 14243 * Interface holds an IPv6-only address. Default 14244 * mask is all-ones. 14245 */ 14246 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14247 ipif->ipif_v6net_mask = ipv6_all_ones; 14248 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14249 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14250 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14251 } else { 14252 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14253 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14254 } 14255 } 14256 } 14257 14258 /* 14259 * Return 0 if this address can be used as local address without causing 14260 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14261 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14262 * Note that the same IPv6 link-local address is allowed as long as the ills 14263 * are not on the same link. 14264 */ 14265 int 14266 ip_addr_availability_check(ipif_t *new_ipif) 14267 { 14268 in6_addr_t our_v6addr; 14269 ill_t *ill; 14270 ipif_t *ipif; 14271 ill_walk_context_t ctx; 14272 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14273 14274 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14275 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14276 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14277 14278 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14279 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14280 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14281 return (0); 14282 14283 our_v6addr = new_ipif->ipif_v6lcl_addr; 14284 14285 if (new_ipif->ipif_isv6) 14286 ill = ILL_START_WALK_V6(&ctx, ipst); 14287 else 14288 ill = ILL_START_WALK_V4(&ctx, ipst); 14289 14290 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14291 for (ipif = ill->ill_ipif; ipif != NULL; 14292 ipif = ipif->ipif_next) { 14293 if ((ipif == new_ipif) || 14294 !(ipif->ipif_flags & IPIF_UP) || 14295 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14296 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14297 &our_v6addr)) 14298 continue; 14299 14300 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14301 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14302 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14303 ipif->ipif_flags |= IPIF_UNNUMBERED; 14304 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14305 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14306 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14307 continue; 14308 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14309 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14310 continue; 14311 else if (new_ipif->ipif_ill == ill) 14312 return (EADDRINUSE); 14313 else 14314 return (EADDRNOTAVAIL); 14315 } 14316 } 14317 14318 return (0); 14319 } 14320 14321 /* 14322 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14323 * IREs for the ipif. 14324 * When the routine returns EINPROGRESS then mp has been consumed and 14325 * the ioctl will be acked from ip_rput_dlpi. 14326 */ 14327 int 14328 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14329 { 14330 ill_t *ill = ipif->ipif_ill; 14331 boolean_t isv6 = ipif->ipif_isv6; 14332 int err = 0; 14333 boolean_t success; 14334 uint_t ipif_orig_id; 14335 ip_stack_t *ipst = ill->ill_ipst; 14336 14337 ASSERT(IAM_WRITER_IPIF(ipif)); 14338 14339 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14340 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14341 ill_t *, ill, ipif_t *, ipif); 14342 14343 /* Shouldn't get here if it is already up. */ 14344 if (ipif->ipif_flags & IPIF_UP) 14345 return (EALREADY); 14346 14347 /* 14348 * If this is a request to bring up a data address on an interface 14349 * under IPMP, then move the address to its IPMP meta-interface and 14350 * try to bring it up. One complication is that the zeroth ipif for 14351 * an ill is special, in that every ill always has one, and that code 14352 * throughout IP deferences ill->ill_ipif without holding any locks. 14353 */ 14354 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14355 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14356 ipif_t *stubipif = NULL, *moveipif = NULL; 14357 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14358 14359 /* 14360 * The ipif being brought up should be quiesced. If it's not, 14361 * something has gone amiss and we need to bail out. (If it's 14362 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14363 */ 14364 mutex_enter(&ill->ill_lock); 14365 if (!ipif_is_quiescent(ipif)) { 14366 mutex_exit(&ill->ill_lock); 14367 return (EINVAL); 14368 } 14369 mutex_exit(&ill->ill_lock); 14370 14371 /* 14372 * If we're going to need to allocate ipifs, do it prior 14373 * to starting the move (and grabbing locks). 14374 */ 14375 if (ipif->ipif_id == 0) { 14376 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14377 B_FALSE, &err)) == NULL) { 14378 return (err); 14379 } 14380 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14381 B_FALSE, &err)) == NULL) { 14382 mi_free(moveipif); 14383 return (err); 14384 } 14385 } 14386 14387 /* 14388 * Grab or transfer the ipif to move. During the move, keep 14389 * ill_g_lock held to prevent any ill walker threads from 14390 * seeing things in an inconsistent state. 14391 */ 14392 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14393 if (ipif->ipif_id != 0) { 14394 ipif_remove(ipif); 14395 } else { 14396 ipif_transfer(ipif, moveipif, stubipif); 14397 ipif = moveipif; 14398 } 14399 14400 /* 14401 * Place the ipif on the IPMP ill. If the zeroth ipif on 14402 * the IPMP ill is a stub (0.0.0.0 down address) then we 14403 * replace that one. Otherwise, pick the next available slot. 14404 */ 14405 ipif->ipif_ill = ipmp_ill; 14406 ipif_orig_id = ipif->ipif_id; 14407 14408 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14409 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14410 ipif = ipmp_ill->ill_ipif; 14411 } else { 14412 ipif->ipif_id = -1; 14413 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14414 /* 14415 * No more available ipif_id's -- put it back 14416 * on the original ill and fail the operation. 14417 * Since we're writer on the ill, we can be 14418 * sure our old slot is still available. 14419 */ 14420 ipif->ipif_id = ipif_orig_id; 14421 ipif->ipif_ill = ill; 14422 if (ipif_orig_id == 0) { 14423 ipif_transfer(ipif, ill->ill_ipif, 14424 NULL); 14425 } else { 14426 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14427 } 14428 rw_exit(&ipst->ips_ill_g_lock); 14429 return (err); 14430 } 14431 } 14432 rw_exit(&ipst->ips_ill_g_lock); 14433 14434 /* 14435 * Tell SCTP that the ipif has moved. Note that even if we 14436 * had to allocate a new ipif, the original sequence id was 14437 * preserved and therefore SCTP won't know. 14438 */ 14439 sctp_move_ipif(ipif, ill, ipmp_ill); 14440 14441 /* 14442 * If the ipif being brought up was on slot zero, then we 14443 * first need to bring up the placeholder we stuck there. In 14444 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14445 * call to ipif_up() itself, if we successfully bring up the 14446 * placeholder, we'll check ill_move_ipif and bring it up too. 14447 */ 14448 if (ipif_orig_id == 0) { 14449 ASSERT(ill->ill_move_ipif == NULL); 14450 ill->ill_move_ipif = ipif; 14451 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14452 ASSERT(ill->ill_move_ipif == NULL); 14453 if (err != EINPROGRESS) 14454 ill->ill_move_ipif = NULL; 14455 return (err); 14456 } 14457 14458 /* 14459 * Bring it up on the IPMP ill. 14460 */ 14461 return (ipif_up(ipif, q, mp)); 14462 } 14463 14464 /* Skip arp/ndp for any loopback interface. */ 14465 if (ill->ill_wq != NULL) { 14466 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14467 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14468 14469 if (!ill->ill_dl_up) { 14470 /* 14471 * ill_dl_up is not yet set. i.e. we are yet to 14472 * DL_BIND with the driver and this is the first 14473 * logical interface on the ill to become "up". 14474 * Tell the driver to get going (via DL_BIND_REQ). 14475 * Note that changing "significant" IFF_ flags 14476 * address/netmask etc cause a down/up dance, but 14477 * does not cause an unbind (DL_UNBIND) with the driver 14478 */ 14479 return (ill_dl_up(ill, ipif, mp, q)); 14480 } 14481 14482 /* 14483 * ipif_resolver_up may end up needeing to bind/attach 14484 * the ARP stream, which in turn necessitates a 14485 * DLPI message exchange with the driver. ioctls are 14486 * serialized and so we cannot send more than one 14487 * interface up message at a time. If ipif_resolver_up 14488 * does need to wait for the DLPI handshake for the ARP stream, 14489 * we get EINPROGRESS and we will complete in arp_bringup_done. 14490 */ 14491 14492 ASSERT(connp != NULL || !CONN_Q(q)); 14493 if (connp != NULL) 14494 mutex_enter(&connp->conn_lock); 14495 mutex_enter(&ill->ill_lock); 14496 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14497 mutex_exit(&ill->ill_lock); 14498 if (connp != NULL) 14499 mutex_exit(&connp->conn_lock); 14500 if (!success) 14501 return (EINTR); 14502 14503 /* 14504 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14505 * complete when ipif_ndp_up returns. 14506 */ 14507 err = ipif_resolver_up(ipif, Res_act_initial); 14508 if (err == EINPROGRESS) { 14509 /* We will complete it in arp_bringup_done() */ 14510 return (err); 14511 } 14512 14513 if (isv6 && err == 0) 14514 err = ipif_ndp_up(ipif, B_TRUE); 14515 14516 ASSERT(err != EINPROGRESS); 14517 mp = ipsq_pending_mp_get(ipsq, &connp); 14518 ASSERT(mp != NULL); 14519 if (err != 0) 14520 return (err); 14521 } else { 14522 /* 14523 * Interfaces without underlying hardware don't do duplicate 14524 * address detection. 14525 */ 14526 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14527 ipif->ipif_addr_ready = 1; 14528 err = ill_add_ires(ill); 14529 /* allocation failure? */ 14530 if (err != 0) 14531 return (err); 14532 } 14533 14534 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14535 if (err == 0 && ill->ill_move_ipif != NULL) { 14536 ipif = ill->ill_move_ipif; 14537 ill->ill_move_ipif = NULL; 14538 return (ipif_up(ipif, q, mp)); 14539 } 14540 return (err); 14541 } 14542 14543 /* 14544 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14545 * The identical set of IREs need to be removed in ill_delete_ires(). 14546 */ 14547 int 14548 ill_add_ires(ill_t *ill) 14549 { 14550 ire_t *ire; 14551 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14552 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14553 14554 if (ill->ill_ire_multicast != NULL) 14555 return (0); 14556 14557 /* 14558 * provide some dummy ire_addr for creating the ire. 14559 */ 14560 if (ill->ill_isv6) { 14561 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14562 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14563 } else { 14564 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14565 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14566 } 14567 if (ire == NULL) 14568 return (ENOMEM); 14569 14570 ill->ill_ire_multicast = ire; 14571 return (0); 14572 } 14573 14574 void 14575 ill_delete_ires(ill_t *ill) 14576 { 14577 if (ill->ill_ire_multicast != NULL) { 14578 /* 14579 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14580 * which was taken without any th_tracing enabled. 14581 * We also mark it as condemned (note that it was never added) 14582 * so that caching conn's can move off of it. 14583 */ 14584 ire_make_condemned(ill->ill_ire_multicast); 14585 ire_refrele_notr(ill->ill_ire_multicast); 14586 ill->ill_ire_multicast = NULL; 14587 } 14588 } 14589 14590 /* 14591 * Perform a bind for the physical device. 14592 * When the routine returns EINPROGRESS then mp has been consumed and 14593 * the ioctl will be acked from ip_rput_dlpi. 14594 * Allocate an unbind message and save it until ipif_down. 14595 */ 14596 static int 14597 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14598 { 14599 mblk_t *bind_mp = NULL; 14600 mblk_t *unbind_mp = NULL; 14601 conn_t *connp; 14602 boolean_t success; 14603 int err; 14604 14605 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14606 14607 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14608 ASSERT(IAM_WRITER_ILL(ill)); 14609 ASSERT(mp != NULL); 14610 14611 /* 14612 * Make sure we have an IRE_MULTICAST in case we immediately 14613 * start receiving packets. 14614 */ 14615 err = ill_add_ires(ill); 14616 if (err != 0) 14617 goto bad; 14618 14619 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14620 DL_BIND_REQ); 14621 if (bind_mp == NULL) 14622 goto bad; 14623 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14624 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14625 14626 /* 14627 * ill_unbind_mp would be non-null if the following sequence had 14628 * happened: 14629 * - send DL_BIND_REQ to driver, wait for response 14630 * - multiple ioctls that need to bring the ipif up are encountered, 14631 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14632 * These ioctls will then be enqueued on the ipsq 14633 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14634 * At this point, the pending ioctls in the ipsq will be drained, and 14635 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14636 * a non-null ill->ill_unbind_mp 14637 */ 14638 if (ill->ill_unbind_mp == NULL) { 14639 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14640 DL_UNBIND_REQ); 14641 if (unbind_mp == NULL) 14642 goto bad; 14643 } 14644 /* 14645 * Record state needed to complete this operation when the 14646 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14647 */ 14648 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14649 ASSERT(connp != NULL || !CONN_Q(q)); 14650 GRAB_CONN_LOCK(q); 14651 mutex_enter(&ipif->ipif_ill->ill_lock); 14652 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14653 mutex_exit(&ipif->ipif_ill->ill_lock); 14654 RELEASE_CONN_LOCK(q); 14655 if (!success) 14656 goto bad; 14657 14658 /* 14659 * Save the unbind message for ill_dl_down(); it will be consumed when 14660 * the interface goes down. 14661 */ 14662 if (ill->ill_unbind_mp == NULL) 14663 ill->ill_unbind_mp = unbind_mp; 14664 14665 ill_dlpi_send(ill, bind_mp); 14666 /* Send down link-layer capabilities probe if not already done. */ 14667 ill_capability_probe(ill); 14668 14669 /* 14670 * Sysid used to rely on the fact that netboots set domainname 14671 * and the like. Now that miniroot boots aren't strictly netboots 14672 * and miniroot network configuration is driven from userland 14673 * these things still need to be set. This situation can be detected 14674 * by comparing the interface being configured here to the one 14675 * dhcifname was set to reference by the boot loader. Once sysid is 14676 * converted to use dhcp_ipc_getinfo() this call can go away. 14677 */ 14678 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14679 (strcmp(ill->ill_name, dhcifname) == 0) && 14680 (strlen(srpc_domain) == 0)) { 14681 if (dhcpinit() != 0) 14682 cmn_err(CE_WARN, "no cached dhcp response"); 14683 } 14684 14685 /* 14686 * This operation will complete in ip_rput_dlpi with either 14687 * a DL_BIND_ACK or DL_ERROR_ACK. 14688 */ 14689 return (EINPROGRESS); 14690 bad: 14691 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14692 14693 freemsg(bind_mp); 14694 freemsg(unbind_mp); 14695 return (ENOMEM); 14696 } 14697 14698 /* Add room for tcp+ip headers */ 14699 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14700 14701 /* 14702 * DLPI and ARP is up. 14703 * Create all the IREs associated with an interface. Bring up multicast. 14704 * Set the interface flag and finish other initialization 14705 * that potentially had to be deferred to after DL_BIND_ACK. 14706 */ 14707 int 14708 ipif_up_done(ipif_t *ipif) 14709 { 14710 ill_t *ill = ipif->ipif_ill; 14711 int err = 0; 14712 boolean_t loopback = B_FALSE; 14713 boolean_t update_src_selection = B_TRUE; 14714 ipif_t *tmp_ipif; 14715 14716 ip1dbg(("ipif_up_done(%s:%u)\n", 14717 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14718 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14719 ill_t *, ill, ipif_t *, ipif); 14720 14721 /* Check if this is a loopback interface */ 14722 if (ipif->ipif_ill->ill_wq == NULL) 14723 loopback = B_TRUE; 14724 14725 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14726 14727 /* 14728 * If all other interfaces for this ill are down or DEPRECATED, 14729 * or otherwise unsuitable for source address selection, 14730 * reset the src generation numbers to make sure source 14731 * address selection gets to take this new ipif into account. 14732 * No need to hold ill_lock while traversing the ipif list since 14733 * we are writer 14734 */ 14735 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14736 tmp_ipif = tmp_ipif->ipif_next) { 14737 if (((tmp_ipif->ipif_flags & 14738 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14739 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14740 (tmp_ipif == ipif)) 14741 continue; 14742 /* first useable pre-existing interface */ 14743 update_src_selection = B_FALSE; 14744 break; 14745 } 14746 if (update_src_selection) 14747 ip_update_source_selection(ill->ill_ipst); 14748 14749 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14750 nce_t *loop_nce = NULL; 14751 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14752 14753 /* 14754 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14755 * ipif_lookup_on_name(), but in the case of zones we can have 14756 * several loopback addresses on lo0. So all the interfaces with 14757 * loopback addresses need to be marked IRE_LOOPBACK. 14758 */ 14759 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14760 htonl(INADDR_LOOPBACK)) 14761 ipif->ipif_ire_type = IRE_LOOPBACK; 14762 else 14763 ipif->ipif_ire_type = IRE_LOCAL; 14764 if (ill->ill_net_type != IRE_LOOPBACK) 14765 flags |= NCE_F_PUBLISH; 14766 14767 /* add unicast nce for the local addr */ 14768 err = nce_lookup_then_add_v4(ill, NULL, 14769 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14770 ND_REACHABLE, &loop_nce); 14771 /* A shared-IP zone sees EEXIST for lo0:N */ 14772 if (err == 0 || err == EEXIST) { 14773 ipif->ipif_added_nce = 1; 14774 loop_nce->nce_ipif_cnt++; 14775 nce_refrele(loop_nce); 14776 err = 0; 14777 } else { 14778 ASSERT(loop_nce == NULL); 14779 return (err); 14780 } 14781 } 14782 14783 /* Create all the IREs associated with this interface */ 14784 err = ipif_add_ires_v4(ipif, loopback); 14785 if (err != 0) { 14786 /* 14787 * see comments about return value from 14788 * ip_addr_availability_check() in ipif_add_ires_v4(). 14789 */ 14790 if (err != EADDRINUSE) { 14791 (void) ipif_arp_down(ipif); 14792 } else { 14793 /* 14794 * Make IPMP aware of the deleted ipif so that 14795 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14796 * can be completed. Note that we do not want to 14797 * destroy the nce that was created on the ipmp_ill 14798 * for the active copy of the duplicate address in 14799 * use. 14800 */ 14801 if (IS_IPMP(ill)) 14802 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14803 err = EADDRNOTAVAIL; 14804 } 14805 return (err); 14806 } 14807 14808 if (ill->ill_ipif_up_count == 1 && !loopback) { 14809 /* Recover any additional IREs entries for this ill */ 14810 (void) ill_recover_saved_ire(ill); 14811 } 14812 14813 if (ill->ill_need_recover_multicast) { 14814 /* 14815 * Need to recover all multicast memberships in the driver. 14816 * This had to be deferred until we had attached. The same 14817 * code exists in ipif_up_done_v6() to recover IPv6 14818 * memberships. 14819 * 14820 * Note that it would be preferable to unconditionally do the 14821 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14822 * that since ill_join_allmulti() depends on ill_dl_up being 14823 * set, and it is not set until we receive a DL_BIND_ACK after 14824 * having called ill_dl_up(). 14825 */ 14826 ill_recover_multicast(ill); 14827 } 14828 14829 if (ill->ill_ipif_up_count == 1) { 14830 /* 14831 * Since the interface is now up, it may now be active. 14832 */ 14833 if (IS_UNDER_IPMP(ill)) 14834 ipmp_ill_refresh_active(ill); 14835 14836 /* 14837 * If this is an IPMP interface, we may now be able to 14838 * establish ARP entries. 14839 */ 14840 if (IS_IPMP(ill)) 14841 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14842 } 14843 14844 /* Join the allhosts multicast address */ 14845 ipif_multicast_up(ipif); 14846 14847 if (!loopback && !update_src_selection && 14848 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14849 ip_update_source_selection(ill->ill_ipst); 14850 14851 if (!loopback && ipif->ipif_addr_ready) { 14852 /* Broadcast an address mask reply. */ 14853 ipif_mask_reply(ipif); 14854 } 14855 /* Perhaps ilgs should use this ill */ 14856 update_conn_ill(NULL, ill->ill_ipst); 14857 14858 /* 14859 * This had to be deferred until we had bound. Tell routing sockets and 14860 * others that this interface is up if it looks like the address has 14861 * been validated. Otherwise, if it isn't ready yet, wait for 14862 * duplicate address detection to do its thing. 14863 */ 14864 if (ipif->ipif_addr_ready) 14865 ipif_up_notify(ipif); 14866 return (0); 14867 } 14868 14869 /* 14870 * Add the IREs associated with the ipif. 14871 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14872 */ 14873 static int 14874 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14875 { 14876 ill_t *ill = ipif->ipif_ill; 14877 ip_stack_t *ipst = ill->ill_ipst; 14878 ire_t *ire_array[20]; 14879 ire_t **irep = ire_array; 14880 ire_t **irep1; 14881 ipaddr_t net_mask = 0; 14882 ipaddr_t subnet_mask, route_mask; 14883 int err; 14884 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14885 ire_t *ire_if = NULL; 14886 uchar_t *gw; 14887 14888 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14889 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14890 /* 14891 * If we're on a labeled system then make sure that zone- 14892 * private addresses have proper remote host database entries. 14893 */ 14894 if (is_system_labeled() && 14895 ipif->ipif_ire_type != IRE_LOOPBACK && 14896 !tsol_check_interface_address(ipif)) 14897 return (EINVAL); 14898 14899 /* Register the source address for __sin6_src_id */ 14900 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14901 ipif->ipif_zoneid, ipst); 14902 if (err != 0) { 14903 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14904 return (err); 14905 } 14906 14907 if (loopback) 14908 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14909 else 14910 gw = NULL; 14911 14912 /* If the interface address is set, create the local IRE. */ 14913 ire_local = ire_create( 14914 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14915 (uchar_t *)&ip_g_all_ones, /* mask */ 14916 gw, /* gateway */ 14917 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14918 ipif->ipif_ill, 14919 ipif->ipif_zoneid, 14920 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14921 RTF_PRIVATE : 0) | RTF_KERNEL, 14922 NULL, 14923 ipst); 14924 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14925 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14926 ipif->ipif_ire_type, 14927 ntohl(ipif->ipif_lcl_addr))); 14928 if (ire_local == NULL) { 14929 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14930 err = ENOMEM; 14931 goto bad; 14932 } 14933 } else { 14934 ip1dbg(( 14935 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14936 ipif->ipif_ire_type, 14937 ntohl(ipif->ipif_lcl_addr), 14938 (uint_t)ipif->ipif_flags)); 14939 } 14940 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14941 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14942 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14943 } else { 14944 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14945 } 14946 14947 subnet_mask = ipif->ipif_net_mask; 14948 14949 /* 14950 * If mask was not specified, use natural netmask of 14951 * interface address. Also, store this mask back into the 14952 * ipif struct. 14953 */ 14954 if (subnet_mask == 0) { 14955 subnet_mask = net_mask; 14956 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14957 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14958 ipif->ipif_v6subnet); 14959 } 14960 14961 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14962 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14963 ipif->ipif_subnet != INADDR_ANY) { 14964 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14965 14966 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14967 route_mask = IP_HOST_MASK; 14968 } else { 14969 route_mask = subnet_mask; 14970 } 14971 14972 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14973 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14974 (void *)ipif, (void *)ill, ill->ill_net_type, 14975 ntohl(ipif->ipif_subnet))); 14976 ire_if = ire_create( 14977 (uchar_t *)&ipif->ipif_subnet, 14978 (uchar_t *)&route_mask, 14979 (uchar_t *)&ipif->ipif_lcl_addr, 14980 ill->ill_net_type, 14981 ill, 14982 ipif->ipif_zoneid, 14983 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14984 RTF_PRIVATE: 0) | RTF_KERNEL, 14985 NULL, 14986 ipst); 14987 if (ire_if == NULL) { 14988 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14989 err = ENOMEM; 14990 goto bad; 14991 } 14992 } 14993 14994 /* 14995 * Create any necessary broadcast IREs. 14996 */ 14997 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14998 !(ipif->ipif_flags & IPIF_NOXMIT)) 14999 irep = ipif_create_bcast_ires(ipif, irep); 15000 15001 /* If an earlier ire_create failed, get out now */ 15002 for (irep1 = irep; irep1 > ire_array; ) { 15003 irep1--; 15004 if (*irep1 == NULL) { 15005 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15006 err = ENOMEM; 15007 goto bad; 15008 } 15009 } 15010 15011 /* 15012 * Need to atomically check for IP address availability under 15013 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15014 * ills or new ipifs can be added while we are checking availability. 15015 */ 15016 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15017 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15018 /* Mark it up, and increment counters. */ 15019 ipif->ipif_flags |= IPIF_UP; 15020 ill->ill_ipif_up_count++; 15021 err = ip_addr_availability_check(ipif); 15022 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15023 rw_exit(&ipst->ips_ill_g_lock); 15024 15025 if (err != 0) { 15026 /* 15027 * Our address may already be up on the same ill. In this case, 15028 * the ARP entry for our ipif replaced the one for the other 15029 * ipif. So we don't want to delete it (otherwise the other ipif 15030 * would be unable to send packets). 15031 * ip_addr_availability_check() identifies this case for us and 15032 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15033 * which is the expected error code. 15034 */ 15035 ill->ill_ipif_up_count--; 15036 ipif->ipif_flags &= ~IPIF_UP; 15037 goto bad; 15038 } 15039 15040 /* 15041 * Add in all newly created IREs. ire_create_bcast() has 15042 * already checked for duplicates of the IRE_BROADCAST type. 15043 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15044 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15045 * a /32 route. 15046 */ 15047 if (ire_if != NULL) { 15048 ire_if = ire_add(ire_if); 15049 if (ire_if == NULL) { 15050 err = ENOMEM; 15051 goto bad2; 15052 } 15053 #ifdef DEBUG 15054 ire_refhold_notr(ire_if); 15055 ire_refrele(ire_if); 15056 #endif 15057 } 15058 if (ire_local != NULL) { 15059 ire_local = ire_add(ire_local); 15060 if (ire_local == NULL) { 15061 err = ENOMEM; 15062 goto bad2; 15063 } 15064 #ifdef DEBUG 15065 ire_refhold_notr(ire_local); 15066 ire_refrele(ire_local); 15067 #endif 15068 } 15069 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15070 if (ire_local != NULL) 15071 ipif->ipif_ire_local = ire_local; 15072 if (ire_if != NULL) 15073 ipif->ipif_ire_if = ire_if; 15074 rw_exit(&ipst->ips_ill_g_lock); 15075 ire_local = NULL; 15076 ire_if = NULL; 15077 15078 /* 15079 * We first add all of them, and if that succeeds we refrele the 15080 * bunch. That enables us to delete all of them should any of the 15081 * ire_adds fail. 15082 */ 15083 for (irep1 = irep; irep1 > ire_array; ) { 15084 irep1--; 15085 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15086 *irep1 = ire_add(*irep1); 15087 if (*irep1 == NULL) { 15088 err = ENOMEM; 15089 goto bad2; 15090 } 15091 } 15092 15093 for (irep1 = irep; irep1 > ire_array; ) { 15094 irep1--; 15095 /* refheld by ire_add. */ 15096 if (*irep1 != NULL) { 15097 ire_refrele(*irep1); 15098 *irep1 = NULL; 15099 } 15100 } 15101 15102 if (!loopback) { 15103 /* 15104 * If the broadcast address has been set, make sure it makes 15105 * sense based on the interface address. 15106 * Only match on ill since we are sharing broadcast addresses. 15107 */ 15108 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15109 (ipif->ipif_flags & IPIF_BROADCAST)) { 15110 ire_t *ire; 15111 15112 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15113 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15114 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15115 15116 if (ire == NULL) { 15117 /* 15118 * If there isn't a matching broadcast IRE, 15119 * revert to the default for this netmask. 15120 */ 15121 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15122 mutex_enter(&ipif->ipif_ill->ill_lock); 15123 ipif_set_default(ipif); 15124 mutex_exit(&ipif->ipif_ill->ill_lock); 15125 } else { 15126 ire_refrele(ire); 15127 } 15128 } 15129 15130 } 15131 return (0); 15132 15133 bad2: 15134 ill->ill_ipif_up_count--; 15135 ipif->ipif_flags &= ~IPIF_UP; 15136 15137 bad: 15138 ip1dbg(("ipif_add_ires: FAILED \n")); 15139 if (ire_local != NULL) 15140 ire_delete(ire_local); 15141 if (ire_if != NULL) 15142 ire_delete(ire_if); 15143 15144 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15145 ire_local = ipif->ipif_ire_local; 15146 ipif->ipif_ire_local = NULL; 15147 ire_if = ipif->ipif_ire_if; 15148 ipif->ipif_ire_if = NULL; 15149 rw_exit(&ipst->ips_ill_g_lock); 15150 if (ire_local != NULL) { 15151 ire_delete(ire_local); 15152 ire_refrele_notr(ire_local); 15153 } 15154 if (ire_if != NULL) { 15155 ire_delete(ire_if); 15156 ire_refrele_notr(ire_if); 15157 } 15158 15159 while (irep > ire_array) { 15160 irep--; 15161 if (*irep != NULL) { 15162 ire_delete(*irep); 15163 } 15164 } 15165 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15166 15167 return (err); 15168 } 15169 15170 /* Remove all the IREs created by ipif_add_ires_v4 */ 15171 void 15172 ipif_delete_ires_v4(ipif_t *ipif) 15173 { 15174 ill_t *ill = ipif->ipif_ill; 15175 ip_stack_t *ipst = ill->ill_ipst; 15176 ire_t *ire; 15177 15178 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15179 ire = ipif->ipif_ire_local; 15180 ipif->ipif_ire_local = NULL; 15181 rw_exit(&ipst->ips_ill_g_lock); 15182 if (ire != NULL) { 15183 /* 15184 * Move count to ipif so we don't loose the count due to 15185 * a down/up dance. 15186 */ 15187 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15188 15189 ire_delete(ire); 15190 ire_refrele_notr(ire); 15191 } 15192 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15193 ire = ipif->ipif_ire_if; 15194 ipif->ipif_ire_if = NULL; 15195 rw_exit(&ipst->ips_ill_g_lock); 15196 if (ire != NULL) { 15197 ire_delete(ire); 15198 ire_refrele_notr(ire); 15199 } 15200 15201 /* 15202 * Delete the broadcast IREs. 15203 */ 15204 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15205 !(ipif->ipif_flags & IPIF_NOXMIT)) 15206 ipif_delete_bcast_ires(ipif); 15207 } 15208 15209 /* 15210 * Checks for availbility of a usable source address (if there is one) when the 15211 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15212 * this selection is done regardless of the destination. 15213 */ 15214 boolean_t 15215 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15216 ip_stack_t *ipst) 15217 { 15218 ipif_t *ipif = NULL; 15219 ill_t *uill; 15220 15221 ASSERT(ifindex != 0); 15222 15223 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15224 if (uill == NULL) 15225 return (B_FALSE); 15226 15227 mutex_enter(&uill->ill_lock); 15228 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15229 if (IPIF_IS_CONDEMNED(ipif)) 15230 continue; 15231 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15232 continue; 15233 if (!(ipif->ipif_flags & IPIF_UP)) 15234 continue; 15235 if (ipif->ipif_zoneid != zoneid) 15236 continue; 15237 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15238 ipif->ipif_lcl_addr == INADDR_ANY) 15239 continue; 15240 mutex_exit(&uill->ill_lock); 15241 ill_refrele(uill); 15242 return (B_TRUE); 15243 } 15244 mutex_exit(&uill->ill_lock); 15245 ill_refrele(uill); 15246 return (B_FALSE); 15247 } 15248 15249 /* 15250 * Find an ipif with a good local address on the ill+zoneid. 15251 */ 15252 ipif_t * 15253 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15254 { 15255 ipif_t *ipif; 15256 15257 mutex_enter(&ill->ill_lock); 15258 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15259 if (IPIF_IS_CONDEMNED(ipif)) 15260 continue; 15261 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15262 continue; 15263 if (!(ipif->ipif_flags & IPIF_UP)) 15264 continue; 15265 if (ipif->ipif_zoneid != zoneid && 15266 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15267 continue; 15268 if (ill->ill_isv6 ? 15269 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15270 ipif->ipif_lcl_addr == INADDR_ANY) 15271 continue; 15272 ipif_refhold_locked(ipif); 15273 mutex_exit(&ill->ill_lock); 15274 return (ipif); 15275 } 15276 mutex_exit(&ill->ill_lock); 15277 return (NULL); 15278 } 15279 15280 /* 15281 * IP source address type, sorted from worst to best. For a given type, 15282 * always prefer IP addresses on the same subnet. All-zones addresses are 15283 * suboptimal because they pose problems with unlabeled destinations. 15284 */ 15285 typedef enum { 15286 IPIF_NONE, 15287 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15288 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15289 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15290 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15291 IPIF_DIFFNET, /* normal and different subnet */ 15292 IPIF_SAMENET, /* normal and same subnet */ 15293 IPIF_LOCALADDR /* local loopback */ 15294 } ipif_type_t; 15295 15296 /* 15297 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15298 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15299 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15300 * the first one, unless IPMP is used in which case we round-robin among them; 15301 * see below for more. 15302 * 15303 * Returns NULL if there is no suitable source address for the ill. 15304 * This only occurs when there is no valid source address for the ill. 15305 */ 15306 ipif_t * 15307 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15308 boolean_t allow_usesrc, boolean_t *notreadyp) 15309 { 15310 ill_t *usill = NULL; 15311 ill_t *ipmp_ill = NULL; 15312 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15313 ipif_type_t type, best_type; 15314 tsol_tpc_t *src_rhtp, *dst_rhtp; 15315 ip_stack_t *ipst = ill->ill_ipst; 15316 boolean_t samenet; 15317 15318 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15319 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15320 B_FALSE, ipst); 15321 if (usill != NULL) 15322 ill = usill; /* Select source from usesrc ILL */ 15323 else 15324 return (NULL); 15325 } 15326 15327 /* 15328 * Test addresses should never be used for source address selection, 15329 * so if we were passed one, switch to the IPMP meta-interface. 15330 */ 15331 if (IS_UNDER_IPMP(ill)) { 15332 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15333 ill = ipmp_ill; /* Select source from IPMP ill */ 15334 else 15335 return (NULL); 15336 } 15337 15338 /* 15339 * If we're dealing with an unlabeled destination on a labeled system, 15340 * make sure that we ignore source addresses that are incompatible with 15341 * the destination's default label. That destination's default label 15342 * must dominate the minimum label on the source address. 15343 */ 15344 dst_rhtp = NULL; 15345 if (is_system_labeled()) { 15346 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15347 if (dst_rhtp == NULL) 15348 return (NULL); 15349 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15350 TPC_RELE(dst_rhtp); 15351 dst_rhtp = NULL; 15352 } 15353 } 15354 15355 /* 15356 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15357 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15358 * After selecting the right ipif, under ill_lock make sure ipif is 15359 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15360 * we retry. Inside the loop we still need to check for CONDEMNED, 15361 * but not under a lock. 15362 */ 15363 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15364 retry: 15365 /* 15366 * For source address selection, we treat the ipif list as circular 15367 * and continue until we get back to where we started. This allows 15368 * IPMP to vary source address selection (which improves inbound load 15369 * spreading) by caching its last ending point and starting from 15370 * there. NOTE: we don't have to worry about ill_src_ipif changing 15371 * ills since that can't happen on the IPMP ill. 15372 */ 15373 start_ipif = ill->ill_ipif; 15374 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15375 start_ipif = ill->ill_src_ipif; 15376 15377 ipif = start_ipif; 15378 best_ipif = NULL; 15379 best_type = IPIF_NONE; 15380 do { 15381 if ((next_ipif = ipif->ipif_next) == NULL) 15382 next_ipif = ill->ill_ipif; 15383 15384 if (IPIF_IS_CONDEMNED(ipif)) 15385 continue; 15386 /* Always skip NOLOCAL and ANYCAST interfaces */ 15387 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15388 continue; 15389 /* Always skip NOACCEPT interfaces */ 15390 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15391 continue; 15392 if (!(ipif->ipif_flags & IPIF_UP)) 15393 continue; 15394 15395 if (!ipif->ipif_addr_ready) { 15396 if (notreadyp != NULL) 15397 *notreadyp = B_TRUE; 15398 continue; 15399 } 15400 15401 if (zoneid != ALL_ZONES && 15402 ipif->ipif_zoneid != zoneid && 15403 ipif->ipif_zoneid != ALL_ZONES) 15404 continue; 15405 15406 /* 15407 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15408 * are not valid as source addresses. 15409 */ 15410 if (ipif->ipif_lcl_addr == INADDR_ANY) 15411 continue; 15412 15413 /* 15414 * Check compatibility of local address for destination's 15415 * default label if we're on a labeled system. Incompatible 15416 * addresses can't be used at all. 15417 */ 15418 if (dst_rhtp != NULL) { 15419 boolean_t incompat; 15420 15421 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15422 IPV4_VERSION, B_FALSE); 15423 if (src_rhtp == NULL) 15424 continue; 15425 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15426 src_rhtp->tpc_tp.tp_doi != 15427 dst_rhtp->tpc_tp.tp_doi || 15428 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15429 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15430 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15431 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15432 TPC_RELE(src_rhtp); 15433 if (incompat) 15434 continue; 15435 } 15436 15437 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15438 15439 if (ipif->ipif_lcl_addr == dst) { 15440 type = IPIF_LOCALADDR; 15441 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15442 type = samenet ? IPIF_SAMENET_DEPRECATED : 15443 IPIF_DIFFNET_DEPRECATED; 15444 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15445 type = samenet ? IPIF_SAMENET_ALLZONES : 15446 IPIF_DIFFNET_ALLZONES; 15447 } else { 15448 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15449 } 15450 15451 if (type > best_type) { 15452 best_type = type; 15453 best_ipif = ipif; 15454 if (best_type == IPIF_LOCALADDR) 15455 break; /* can't get better */ 15456 } 15457 } while ((ipif = next_ipif) != start_ipif); 15458 15459 if ((ipif = best_ipif) != NULL) { 15460 mutex_enter(&ipif->ipif_ill->ill_lock); 15461 if (IPIF_IS_CONDEMNED(ipif)) { 15462 mutex_exit(&ipif->ipif_ill->ill_lock); 15463 goto retry; 15464 } 15465 ipif_refhold_locked(ipif); 15466 15467 /* 15468 * For IPMP, update the source ipif rotor to the next ipif, 15469 * provided we can look it up. (We must not use it if it's 15470 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15471 * ipif_free() checked ill_src_ipif.) 15472 */ 15473 if (IS_IPMP(ill) && ipif != NULL) { 15474 next_ipif = ipif->ipif_next; 15475 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15476 ill->ill_src_ipif = next_ipif; 15477 else 15478 ill->ill_src_ipif = NULL; 15479 } 15480 mutex_exit(&ipif->ipif_ill->ill_lock); 15481 } 15482 15483 rw_exit(&ipst->ips_ill_g_lock); 15484 if (usill != NULL) 15485 ill_refrele(usill); 15486 if (ipmp_ill != NULL) 15487 ill_refrele(ipmp_ill); 15488 if (dst_rhtp != NULL) 15489 TPC_RELE(dst_rhtp); 15490 15491 #ifdef DEBUG 15492 if (ipif == NULL) { 15493 char buf1[INET6_ADDRSTRLEN]; 15494 15495 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15496 ill->ill_name, 15497 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15498 } else { 15499 char buf1[INET6_ADDRSTRLEN]; 15500 char buf2[INET6_ADDRSTRLEN]; 15501 15502 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15503 ipif->ipif_ill->ill_name, 15504 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15505 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15506 buf2, sizeof (buf2)))); 15507 } 15508 #endif /* DEBUG */ 15509 return (ipif); 15510 } 15511 15512 /* 15513 * Pick a source address based on the destination ill and an optional setsrc 15514 * address. 15515 * The result is stored in srcp. If generation is set, then put the source 15516 * generation number there before we look for the source address (to avoid 15517 * missing changes in the set of source addresses. 15518 * If flagsp is set, then us it to pass back ipif_flags. 15519 * 15520 * If the caller wants to cache the returned source address and detect when 15521 * that might be stale, the caller should pass in a generation argument, 15522 * which the caller can later compare against ips_src_generation 15523 * 15524 * The precedence order for selecting an IPv4 source address is: 15525 * - RTF_SETSRC on the offlink ire always wins. 15526 * - If usrsrc is set, swap the ill to be the usesrc one. 15527 * - If IPMP is used on the ill, select a random address from the most 15528 * preferred ones below: 15529 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15530 * 2. Not deprecated, not ALL_ZONES 15531 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15532 * 4. Not deprecated, ALL_ZONES 15533 * 5. If onlink destination, same subnet and deprecated 15534 * 6. Deprecated. 15535 * 15536 * We have lower preference for ALL_ZONES IP addresses, 15537 * as they pose problems with unlabeled destinations. 15538 * 15539 * Note that when multiple IP addresses match e.g., #1 we pick 15540 * the first one if IPMP is not in use. With IPMP we randomize. 15541 */ 15542 int 15543 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15544 ipaddr_t multicast_ifaddr, 15545 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15546 uint32_t *generation, uint64_t *flagsp) 15547 { 15548 ipif_t *ipif; 15549 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15550 15551 if (flagsp != NULL) 15552 *flagsp = 0; 15553 15554 /* 15555 * Need to grab the generation number before we check to 15556 * avoid a race with a change to the set of local addresses. 15557 * No lock needed since the thread which updates the set of local 15558 * addresses use ipif/ill locks and exit those (hence a store memory 15559 * barrier) before doing the atomic increase of ips_src_generation. 15560 */ 15561 if (generation != NULL) { 15562 *generation = ipst->ips_src_generation; 15563 } 15564 15565 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15566 *srcp = multicast_ifaddr; 15567 return (0); 15568 } 15569 15570 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15571 if (setsrc != INADDR_ANY) { 15572 *srcp = setsrc; 15573 return (0); 15574 } 15575 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15576 if (ipif == NULL) { 15577 if (notready) 15578 return (ENETDOWN); 15579 else 15580 return (EADDRNOTAVAIL); 15581 } 15582 *srcp = ipif->ipif_lcl_addr; 15583 if (flagsp != NULL) 15584 *flagsp = ipif->ipif_flags; 15585 ipif_refrele(ipif); 15586 return (0); 15587 } 15588 15589 /* ARGSUSED */ 15590 int 15591 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15592 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15593 { 15594 /* 15595 * ill_phyint_reinit merged the v4 and v6 into a single 15596 * ipsq. We might not have been able to complete the 15597 * operation in ipif_set_values, if we could not become 15598 * exclusive. If so restart it here. 15599 */ 15600 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15601 } 15602 15603 /* 15604 * Can operate on either a module or a driver queue. 15605 * Returns an error if not a module queue. 15606 */ 15607 /* ARGSUSED */ 15608 int 15609 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15610 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15611 { 15612 queue_t *q1 = q; 15613 char *cp; 15614 char interf_name[LIFNAMSIZ]; 15615 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15616 15617 if (q->q_next == NULL) { 15618 ip1dbg(( 15619 "if_unitsel: IF_UNITSEL: no q_next\n")); 15620 return (EINVAL); 15621 } 15622 15623 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15624 return (EALREADY); 15625 15626 do { 15627 q1 = q1->q_next; 15628 } while (q1->q_next); 15629 cp = q1->q_qinfo->qi_minfo->mi_idname; 15630 (void) sprintf(interf_name, "%s%d", cp, ppa); 15631 15632 /* 15633 * Here we are not going to delay the ioack until after 15634 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15635 * original ioctl message before sending the requests. 15636 */ 15637 return (ipif_set_values(q, mp, interf_name, &ppa)); 15638 } 15639 15640 /* ARGSUSED */ 15641 int 15642 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15643 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15644 { 15645 return (ENXIO); 15646 } 15647 15648 /* 15649 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15650 * `irep'. Returns a pointer to the next free `irep' entry 15651 * A mirror exists in ipif_delete_bcast_ires(). 15652 * 15653 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15654 * done in ire_add. 15655 */ 15656 static ire_t ** 15657 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15658 { 15659 ipaddr_t addr; 15660 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15661 ipaddr_t subnetmask = ipif->ipif_net_mask; 15662 ill_t *ill = ipif->ipif_ill; 15663 zoneid_t zoneid = ipif->ipif_zoneid; 15664 15665 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15666 15667 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15668 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15669 15670 if (ipif->ipif_lcl_addr == INADDR_ANY || 15671 (ipif->ipif_flags & IPIF_NOLOCAL)) 15672 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15673 15674 irep = ire_create_bcast(ill, 0, zoneid, irep); 15675 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15676 15677 /* 15678 * For backward compatibility, we create net broadcast IREs based on 15679 * the old "IP address class system", since some old machines only 15680 * respond to these class derived net broadcast. However, we must not 15681 * create these net broadcast IREs if the subnetmask is shorter than 15682 * the IP address class based derived netmask. Otherwise, we may 15683 * create a net broadcast address which is the same as an IP address 15684 * on the subnet -- and then TCP will refuse to talk to that address. 15685 */ 15686 if (netmask < subnetmask) { 15687 addr = netmask & ipif->ipif_subnet; 15688 irep = ire_create_bcast(ill, addr, zoneid, irep); 15689 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15690 } 15691 15692 /* 15693 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15694 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15695 * created. Creating these broadcast IREs will only create confusion 15696 * as `addr' will be the same as the IP address. 15697 */ 15698 if (subnetmask != 0xFFFFFFFF) { 15699 addr = ipif->ipif_subnet; 15700 irep = ire_create_bcast(ill, addr, zoneid, irep); 15701 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15702 } 15703 15704 return (irep); 15705 } 15706 15707 /* 15708 * Mirror of ipif_create_bcast_ires() 15709 */ 15710 static void 15711 ipif_delete_bcast_ires(ipif_t *ipif) 15712 { 15713 ipaddr_t addr; 15714 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15715 ipaddr_t subnetmask = ipif->ipif_net_mask; 15716 ill_t *ill = ipif->ipif_ill; 15717 zoneid_t zoneid = ipif->ipif_zoneid; 15718 ire_t *ire; 15719 15720 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15721 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15722 15723 if (ipif->ipif_lcl_addr == INADDR_ANY || 15724 (ipif->ipif_flags & IPIF_NOLOCAL)) 15725 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15726 15727 ire = ire_lookup_bcast(ill, 0, zoneid); 15728 ASSERT(ire != NULL); 15729 ire_delete(ire); ire_refrele(ire); 15730 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15731 ASSERT(ire != NULL); 15732 ire_delete(ire); ire_refrele(ire); 15733 15734 /* 15735 * For backward compatibility, we create net broadcast IREs based on 15736 * the old "IP address class system", since some old machines only 15737 * respond to these class derived net broadcast. However, we must not 15738 * create these net broadcast IREs if the subnetmask is shorter than 15739 * the IP address class based derived netmask. Otherwise, we may 15740 * create a net broadcast address which is the same as an IP address 15741 * on the subnet -- and then TCP will refuse to talk to that address. 15742 */ 15743 if (netmask < subnetmask) { 15744 addr = netmask & ipif->ipif_subnet; 15745 ire = ire_lookup_bcast(ill, addr, zoneid); 15746 ASSERT(ire != NULL); 15747 ire_delete(ire); ire_refrele(ire); 15748 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15749 ASSERT(ire != NULL); 15750 ire_delete(ire); ire_refrele(ire); 15751 } 15752 15753 /* 15754 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15755 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15756 * created. Creating these broadcast IREs will only create confusion 15757 * as `addr' will be the same as the IP address. 15758 */ 15759 if (subnetmask != 0xFFFFFFFF) { 15760 addr = ipif->ipif_subnet; 15761 ire = ire_lookup_bcast(ill, addr, zoneid); 15762 ASSERT(ire != NULL); 15763 ire_delete(ire); ire_refrele(ire); 15764 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15765 ASSERT(ire != NULL); 15766 ire_delete(ire); ire_refrele(ire); 15767 } 15768 } 15769 15770 /* 15771 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15772 * from lifr_flags and the name from lifr_name. 15773 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15774 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15775 * Returns EINPROGRESS when mp has been consumed by queueing it on 15776 * ipx_pending_mp and the ioctl will complete in ip_rput. 15777 * 15778 * Can operate on either a module or a driver queue. 15779 * Returns an error if not a module queue. 15780 */ 15781 /* ARGSUSED */ 15782 int 15783 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15784 ip_ioctl_cmd_t *ipip, void *if_req) 15785 { 15786 ill_t *ill = q->q_ptr; 15787 phyint_t *phyi; 15788 ip_stack_t *ipst; 15789 struct lifreq *lifr = if_req; 15790 uint64_t new_flags; 15791 15792 ASSERT(ipif != NULL); 15793 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15794 15795 if (q->q_next == NULL) { 15796 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15797 return (EINVAL); 15798 } 15799 15800 /* 15801 * If we are not writer on 'q' then this interface exists already 15802 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15803 * so return EALREADY. 15804 */ 15805 if (ill != ipif->ipif_ill) 15806 return (EALREADY); 15807 15808 if (ill->ill_name[0] != '\0') 15809 return (EALREADY); 15810 15811 /* 15812 * If there's another ill already with the requested name, ensure 15813 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15814 * fuse together two unrelated ills, which will cause chaos. 15815 */ 15816 ipst = ill->ill_ipst; 15817 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15818 lifr->lifr_name, NULL); 15819 if (phyi != NULL) { 15820 ill_t *ill_mate = phyi->phyint_illv4; 15821 15822 if (ill_mate == NULL) 15823 ill_mate = phyi->phyint_illv6; 15824 ASSERT(ill_mate != NULL); 15825 15826 if (ill_mate->ill_media->ip_m_mac_type != 15827 ill->ill_media->ip_m_mac_type) { 15828 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15829 "use the same ill name on differing media\n")); 15830 return (EINVAL); 15831 } 15832 } 15833 15834 /* 15835 * We start off as IFF_IPV4 in ipif_allocate and become 15836 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15837 * The only flags that we read from user space are IFF_IPV4, 15838 * IFF_IPV6, and IFF_BROADCAST. 15839 * 15840 * This ill has not been inserted into the global list. 15841 * So we are still single threaded and don't need any lock 15842 * 15843 * Saniy check the flags. 15844 */ 15845 15846 if ((lifr->lifr_flags & IFF_BROADCAST) && 15847 ((lifr->lifr_flags & IFF_IPV6) || 15848 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15849 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15850 "or IPv6 i.e., no broadcast \n")); 15851 return (EINVAL); 15852 } 15853 15854 new_flags = 15855 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15856 15857 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15858 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15859 "IFF_IPV4 or IFF_IPV6\n")); 15860 return (EINVAL); 15861 } 15862 15863 /* 15864 * We always start off as IPv4, so only need to check for IPv6. 15865 */ 15866 if ((new_flags & IFF_IPV6) != 0) { 15867 ill->ill_flags |= ILLF_IPV6; 15868 ill->ill_flags &= ~ILLF_IPV4; 15869 15870 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15871 ill->ill_flags |= ILLF_NOLINKLOCAL; 15872 } 15873 15874 if ((new_flags & IFF_BROADCAST) != 0) 15875 ipif->ipif_flags |= IPIF_BROADCAST; 15876 else 15877 ipif->ipif_flags &= ~IPIF_BROADCAST; 15878 15879 /* We started off as V4. */ 15880 if (ill->ill_flags & ILLF_IPV6) { 15881 ill->ill_phyint->phyint_illv6 = ill; 15882 ill->ill_phyint->phyint_illv4 = NULL; 15883 } 15884 15885 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15886 } 15887 15888 /* ARGSUSED */ 15889 int 15890 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15891 ip_ioctl_cmd_t *ipip, void *if_req) 15892 { 15893 /* 15894 * ill_phyint_reinit merged the v4 and v6 into a single 15895 * ipsq. We might not have been able to complete the 15896 * slifname in ipif_set_values, if we could not become 15897 * exclusive. If so restart it here 15898 */ 15899 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15900 } 15901 15902 /* 15903 * Return a pointer to the ipif which matches the index, IP version type and 15904 * zoneid. 15905 */ 15906 ipif_t * 15907 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15908 ip_stack_t *ipst) 15909 { 15910 ill_t *ill; 15911 ipif_t *ipif = NULL; 15912 15913 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15914 if (ill != NULL) { 15915 mutex_enter(&ill->ill_lock); 15916 for (ipif = ill->ill_ipif; ipif != NULL; 15917 ipif = ipif->ipif_next) { 15918 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15919 zoneid == ipif->ipif_zoneid || 15920 ipif->ipif_zoneid == ALL_ZONES)) { 15921 ipif_refhold_locked(ipif); 15922 break; 15923 } 15924 } 15925 mutex_exit(&ill->ill_lock); 15926 ill_refrele(ill); 15927 } 15928 return (ipif); 15929 } 15930 15931 /* 15932 * Change an existing physical interface's index. If the new index 15933 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15934 * Finally, we update other systems which may have a dependence on the 15935 * index value. 15936 */ 15937 /* ARGSUSED */ 15938 int 15939 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15940 ip_ioctl_cmd_t *ipip, void *ifreq) 15941 { 15942 ill_t *ill; 15943 phyint_t *phyi; 15944 struct ifreq *ifr = (struct ifreq *)ifreq; 15945 struct lifreq *lifr = (struct lifreq *)ifreq; 15946 uint_t old_index, index; 15947 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15948 avl_index_t where; 15949 15950 if (ipip->ipi_cmd_type == IF_CMD) 15951 index = ifr->ifr_index; 15952 else 15953 index = lifr->lifr_index; 15954 15955 /* 15956 * Only allow on physical interface. Also, index zero is illegal. 15957 */ 15958 ill = ipif->ipif_ill; 15959 phyi = ill->ill_phyint; 15960 if (ipif->ipif_id != 0 || index == 0) { 15961 return (EINVAL); 15962 } 15963 15964 /* If the index is not changing, no work to do */ 15965 if (phyi->phyint_ifindex == index) 15966 return (0); 15967 15968 /* 15969 * Use phyint_exists() to determine if the new interface index 15970 * is already in use. If the index is unused then we need to 15971 * change the phyint's position in the phyint_list_avl_by_index 15972 * tree. If we do not do this, subsequent lookups (using the new 15973 * index value) will not find the phyint. 15974 */ 15975 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15976 if (phyint_exists(index, ipst)) { 15977 rw_exit(&ipst->ips_ill_g_lock); 15978 return (EEXIST); 15979 } 15980 15981 /* 15982 * The new index is unused. Set it in the phyint. However we must not 15983 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15984 * changes. The event must be bound to old ifindex value. 15985 */ 15986 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15987 &index, sizeof (index)); 15988 15989 old_index = phyi->phyint_ifindex; 15990 phyi->phyint_ifindex = index; 15991 15992 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15993 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15994 &index, &where); 15995 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15996 phyi, where); 15997 rw_exit(&ipst->ips_ill_g_lock); 15998 15999 /* Update SCTP's ILL list */ 16000 sctp_ill_reindex(ill, old_index); 16001 16002 /* Send the routing sockets message */ 16003 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16004 if (ILL_OTHER(ill)) 16005 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16006 16007 /* Perhaps ilgs should use this ill */ 16008 update_conn_ill(NULL, ill->ill_ipst); 16009 return (0); 16010 } 16011 16012 /* ARGSUSED */ 16013 int 16014 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16015 ip_ioctl_cmd_t *ipip, void *ifreq) 16016 { 16017 struct ifreq *ifr = (struct ifreq *)ifreq; 16018 struct lifreq *lifr = (struct lifreq *)ifreq; 16019 16020 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16021 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16022 /* Get the interface index */ 16023 if (ipip->ipi_cmd_type == IF_CMD) { 16024 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16025 } else { 16026 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16027 } 16028 return (0); 16029 } 16030 16031 /* ARGSUSED */ 16032 int 16033 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16034 ip_ioctl_cmd_t *ipip, void *ifreq) 16035 { 16036 struct lifreq *lifr = (struct lifreq *)ifreq; 16037 16038 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16040 /* Get the interface zone */ 16041 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16042 lifr->lifr_zoneid = ipif->ipif_zoneid; 16043 return (0); 16044 } 16045 16046 /* 16047 * Set the zoneid of an interface. 16048 */ 16049 /* ARGSUSED */ 16050 int 16051 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16052 ip_ioctl_cmd_t *ipip, void *ifreq) 16053 { 16054 struct lifreq *lifr = (struct lifreq *)ifreq; 16055 int err = 0; 16056 boolean_t need_up = B_FALSE; 16057 zone_t *zptr; 16058 zone_status_t status; 16059 zoneid_t zoneid; 16060 16061 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16062 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16063 if (!is_system_labeled()) 16064 return (ENOTSUP); 16065 zoneid = GLOBAL_ZONEID; 16066 } 16067 16068 /* cannot assign instance zero to a non-global zone */ 16069 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16070 return (ENOTSUP); 16071 16072 /* 16073 * Cannot assign to a zone that doesn't exist or is shutting down. In 16074 * the event of a race with the zone shutdown processing, since IP 16075 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16076 * interface will be cleaned up even if the zone is shut down 16077 * immediately after the status check. If the interface can't be brought 16078 * down right away, and the zone is shut down before the restart 16079 * function is called, we resolve the possible races by rechecking the 16080 * zone status in the restart function. 16081 */ 16082 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16083 return (EINVAL); 16084 status = zone_status_get(zptr); 16085 zone_rele(zptr); 16086 16087 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16088 return (EINVAL); 16089 16090 if (ipif->ipif_flags & IPIF_UP) { 16091 /* 16092 * If the interface is already marked up, 16093 * we call ipif_down which will take care 16094 * of ditching any IREs that have been set 16095 * up based on the old interface address. 16096 */ 16097 err = ipif_logical_down(ipif, q, mp); 16098 if (err == EINPROGRESS) 16099 return (err); 16100 (void) ipif_down_tail(ipif); 16101 need_up = B_TRUE; 16102 } 16103 16104 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16105 return (err); 16106 } 16107 16108 static int 16109 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16110 queue_t *q, mblk_t *mp, boolean_t need_up) 16111 { 16112 int err = 0; 16113 ip_stack_t *ipst; 16114 16115 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16116 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16117 16118 if (CONN_Q(q)) 16119 ipst = CONNQ_TO_IPST(q); 16120 else 16121 ipst = ILLQ_TO_IPST(q); 16122 16123 /* 16124 * For exclusive stacks we don't allow a different zoneid than 16125 * global. 16126 */ 16127 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16128 zoneid != GLOBAL_ZONEID) 16129 return (EINVAL); 16130 16131 /* Set the new zone id. */ 16132 ipif->ipif_zoneid = zoneid; 16133 16134 /* Update sctp list */ 16135 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16136 16137 /* The default multicast interface might have changed */ 16138 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16139 16140 if (need_up) { 16141 /* 16142 * Now bring the interface back up. If this 16143 * is the only IPIF for the ILL, ipif_up 16144 * will have to re-bind to the device, so 16145 * we may get back EINPROGRESS, in which 16146 * case, this IOCTL will get completed in 16147 * ip_rput_dlpi when we see the DL_BIND_ACK. 16148 */ 16149 err = ipif_up(ipif, q, mp); 16150 } 16151 return (err); 16152 } 16153 16154 /* ARGSUSED */ 16155 int 16156 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16157 ip_ioctl_cmd_t *ipip, void *if_req) 16158 { 16159 struct lifreq *lifr = (struct lifreq *)if_req; 16160 zoneid_t zoneid; 16161 zone_t *zptr; 16162 zone_status_t status; 16163 16164 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16165 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16166 zoneid = GLOBAL_ZONEID; 16167 16168 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16169 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16170 16171 /* 16172 * We recheck the zone status to resolve the following race condition: 16173 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16174 * 2) hme0:1 is up and can't be brought down right away; 16175 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16176 * 3) zone "myzone" is halted; the zone status switches to 16177 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16178 * the interfaces to remove - hme0:1 is not returned because it's not 16179 * yet in "myzone", so it won't be removed; 16180 * 4) the restart function for SIOCSLIFZONE is called; without the 16181 * status check here, we would have hme0:1 in "myzone" after it's been 16182 * destroyed. 16183 * Note that if the status check fails, we need to bring the interface 16184 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16185 * ipif_up_done[_v6](). 16186 */ 16187 status = ZONE_IS_UNINITIALIZED; 16188 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16189 status = zone_status_get(zptr); 16190 zone_rele(zptr); 16191 } 16192 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16193 if (ipif->ipif_isv6) { 16194 (void) ipif_up_done_v6(ipif); 16195 } else { 16196 (void) ipif_up_done(ipif); 16197 } 16198 return (EINVAL); 16199 } 16200 16201 (void) ipif_down_tail(ipif); 16202 16203 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16204 B_TRUE)); 16205 } 16206 16207 /* 16208 * Return the number of addresses on `ill' with one or more of the values 16209 * in `set' set and all of the values in `clear' clear. 16210 */ 16211 static uint_t 16212 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16213 { 16214 ipif_t *ipif; 16215 uint_t cnt = 0; 16216 16217 ASSERT(IAM_WRITER_ILL(ill)); 16218 16219 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16220 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16221 cnt++; 16222 16223 return (cnt); 16224 } 16225 16226 /* 16227 * Return the number of migratable addresses on `ill' that are under 16228 * application control. 16229 */ 16230 uint_t 16231 ill_appaddr_cnt(const ill_t *ill) 16232 { 16233 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16234 IPIF_NOFAILOVER)); 16235 } 16236 16237 /* 16238 * Return the number of point-to-point addresses on `ill'. 16239 */ 16240 uint_t 16241 ill_ptpaddr_cnt(const ill_t *ill) 16242 { 16243 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16244 } 16245 16246 /* ARGSUSED */ 16247 int 16248 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16249 ip_ioctl_cmd_t *ipip, void *ifreq) 16250 { 16251 struct lifreq *lifr = ifreq; 16252 16253 ASSERT(q->q_next == NULL); 16254 ASSERT(CONN_Q(q)); 16255 16256 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16257 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16258 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16259 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16260 16261 return (0); 16262 } 16263 16264 /* Find the previous ILL in this usesrc group */ 16265 static ill_t * 16266 ill_prev_usesrc(ill_t *uill) 16267 { 16268 ill_t *ill; 16269 16270 for (ill = uill->ill_usesrc_grp_next; 16271 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16272 ill = ill->ill_usesrc_grp_next) 16273 /* do nothing */; 16274 return (ill); 16275 } 16276 16277 /* 16278 * Release all members of the usesrc group. This routine is called 16279 * from ill_delete when the interface being unplumbed is the 16280 * group head. 16281 * 16282 * This silently clears the usesrc that ifconfig setup. 16283 * An alternative would be to keep that ifindex, and drop packets on the floor 16284 * since no source address can be selected. 16285 * Even if we keep the current semantics, don't need a lock and a linked list. 16286 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16287 * the one that is being removed. Issue is how we return the usesrc users 16288 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16289 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16290 * ill walk, but the walker would need to insert in the ioctl response. 16291 */ 16292 static void 16293 ill_disband_usesrc_group(ill_t *uill) 16294 { 16295 ill_t *next_ill, *tmp_ill; 16296 ip_stack_t *ipst = uill->ill_ipst; 16297 16298 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16299 next_ill = uill->ill_usesrc_grp_next; 16300 16301 do { 16302 ASSERT(next_ill != NULL); 16303 tmp_ill = next_ill->ill_usesrc_grp_next; 16304 ASSERT(tmp_ill != NULL); 16305 next_ill->ill_usesrc_grp_next = NULL; 16306 next_ill->ill_usesrc_ifindex = 0; 16307 next_ill = tmp_ill; 16308 } while (next_ill->ill_usesrc_ifindex != 0); 16309 uill->ill_usesrc_grp_next = NULL; 16310 } 16311 16312 /* 16313 * Remove the client usesrc ILL from the list and relink to a new list 16314 */ 16315 int 16316 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16317 { 16318 ill_t *ill, *tmp_ill; 16319 ip_stack_t *ipst = ucill->ill_ipst; 16320 16321 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16322 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16323 16324 /* 16325 * Check if the usesrc client ILL passed in is not already 16326 * in use as a usesrc ILL i.e one whose source address is 16327 * in use OR a usesrc ILL is not already in use as a usesrc 16328 * client ILL 16329 */ 16330 if ((ucill->ill_usesrc_ifindex == 0) || 16331 (uill->ill_usesrc_ifindex != 0)) { 16332 return (-1); 16333 } 16334 16335 ill = ill_prev_usesrc(ucill); 16336 ASSERT(ill->ill_usesrc_grp_next != NULL); 16337 16338 /* Remove from the current list */ 16339 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16340 /* Only two elements in the list */ 16341 ASSERT(ill->ill_usesrc_ifindex == 0); 16342 ill->ill_usesrc_grp_next = NULL; 16343 } else { 16344 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16345 } 16346 16347 if (ifindex == 0) { 16348 ucill->ill_usesrc_ifindex = 0; 16349 ucill->ill_usesrc_grp_next = NULL; 16350 return (0); 16351 } 16352 16353 ucill->ill_usesrc_ifindex = ifindex; 16354 tmp_ill = uill->ill_usesrc_grp_next; 16355 uill->ill_usesrc_grp_next = ucill; 16356 ucill->ill_usesrc_grp_next = 16357 (tmp_ill != NULL) ? tmp_ill : uill; 16358 return (0); 16359 } 16360 16361 /* 16362 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16363 * ip.c for locking details. 16364 */ 16365 /* ARGSUSED */ 16366 int 16367 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16368 ip_ioctl_cmd_t *ipip, void *ifreq) 16369 { 16370 struct lifreq *lifr = (struct lifreq *)ifreq; 16371 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16372 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16373 int err = 0, ret; 16374 uint_t ifindex; 16375 ipsq_t *ipsq = NULL; 16376 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16377 16378 ASSERT(IAM_WRITER_IPIF(ipif)); 16379 ASSERT(q->q_next == NULL); 16380 ASSERT(CONN_Q(q)); 16381 16382 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16383 16384 ifindex = lifr->lifr_index; 16385 if (ifindex == 0) { 16386 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16387 /* non usesrc group interface, nothing to reset */ 16388 return (0); 16389 } 16390 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16391 /* valid reset request */ 16392 reset_flg = B_TRUE; 16393 } 16394 16395 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16396 if (usesrc_ill == NULL) 16397 return (ENXIO); 16398 if (usesrc_ill == ipif->ipif_ill) { 16399 ill_refrele(usesrc_ill); 16400 return (EINVAL); 16401 } 16402 16403 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16404 NEW_OP, B_TRUE); 16405 if (ipsq == NULL) { 16406 err = EINPROGRESS; 16407 /* Operation enqueued on the ipsq of the usesrc ILL */ 16408 goto done; 16409 } 16410 16411 /* USESRC isn't currently supported with IPMP */ 16412 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16413 err = ENOTSUP; 16414 goto done; 16415 } 16416 16417 /* 16418 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16419 * used by IPMP underlying interfaces, but someone might think it's 16420 * more general and try to use it independently with VNI.) 16421 */ 16422 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16423 err = ENOTSUP; 16424 goto done; 16425 } 16426 16427 /* 16428 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16429 * already a client then return EINVAL 16430 */ 16431 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16432 err = EINVAL; 16433 goto done; 16434 } 16435 16436 /* 16437 * If the ill_usesrc_ifindex field is already set to what it needs to 16438 * be then this is a duplicate operation. 16439 */ 16440 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16441 err = 0; 16442 goto done; 16443 } 16444 16445 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16446 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16447 usesrc_ill->ill_isv6)); 16448 16449 /* 16450 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16451 * and the ill_usesrc_ifindex fields 16452 */ 16453 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16454 16455 if (reset_flg) { 16456 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16457 if (ret != 0) { 16458 err = EINVAL; 16459 } 16460 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16461 goto done; 16462 } 16463 16464 /* 16465 * Four possibilities to consider: 16466 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16467 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16468 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16469 * 4. Both are part of their respective usesrc groups 16470 */ 16471 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16472 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16473 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16474 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16475 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16476 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16477 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16478 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16479 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16480 /* Insert at head of list */ 16481 usesrc_cli_ill->ill_usesrc_grp_next = 16482 usesrc_ill->ill_usesrc_grp_next; 16483 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16484 } else { 16485 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16486 ifindex); 16487 if (ret != 0) 16488 err = EINVAL; 16489 } 16490 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16491 16492 done: 16493 if (ipsq != NULL) 16494 ipsq_exit(ipsq); 16495 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16496 ill_refrele(usesrc_ill); 16497 16498 /* Let conn_ixa caching know that source address selection changed */ 16499 ip_update_source_selection(ipst); 16500 16501 return (err); 16502 } 16503 16504 /* ARGSUSED */ 16505 int 16506 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16507 ip_ioctl_cmd_t *ipip, void *if_req) 16508 { 16509 struct lifreq *lifr = (struct lifreq *)if_req; 16510 ill_t *ill = ipif->ipif_ill; 16511 16512 /* 16513 * Need a lock since IFF_UP can be set even when there are 16514 * references to the ipif. 16515 */ 16516 mutex_enter(&ill->ill_lock); 16517 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16518 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16519 else 16520 lifr->lifr_dadstate = DAD_DONE; 16521 mutex_exit(&ill->ill_lock); 16522 return (0); 16523 } 16524 16525 /* 16526 * comparison function used by avl. 16527 */ 16528 static int 16529 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16530 { 16531 16532 uint_t index; 16533 16534 ASSERT(phyip != NULL && index_ptr != NULL); 16535 16536 index = *((uint_t *)index_ptr); 16537 /* 16538 * let the phyint with the lowest index be on top. 16539 */ 16540 if (((phyint_t *)phyip)->phyint_ifindex < index) 16541 return (1); 16542 if (((phyint_t *)phyip)->phyint_ifindex > index) 16543 return (-1); 16544 return (0); 16545 } 16546 16547 /* 16548 * comparison function used by avl. 16549 */ 16550 static int 16551 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16552 { 16553 ill_t *ill; 16554 int res = 0; 16555 16556 ASSERT(phyip != NULL && name_ptr != NULL); 16557 16558 if (((phyint_t *)phyip)->phyint_illv4) 16559 ill = ((phyint_t *)phyip)->phyint_illv4; 16560 else 16561 ill = ((phyint_t *)phyip)->phyint_illv6; 16562 ASSERT(ill != NULL); 16563 16564 res = strcmp(ill->ill_name, (char *)name_ptr); 16565 if (res > 0) 16566 return (1); 16567 else if (res < 0) 16568 return (-1); 16569 return (0); 16570 } 16571 16572 /* 16573 * This function is called on the unplumb path via ill_glist_delete() when 16574 * there are no ills left on the phyint and thus the phyint can be freed. 16575 */ 16576 static void 16577 phyint_free(phyint_t *phyi) 16578 { 16579 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16580 16581 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16582 16583 /* 16584 * If this phyint was an IPMP meta-interface, blow away the group. 16585 * This is safe to do because all of the illgrps have already been 16586 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16587 * If we're cleaning up as a result of failed initialization, 16588 * phyint_grp may be NULL. 16589 */ 16590 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16591 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16592 ipmp_grp_destroy(phyi->phyint_grp); 16593 phyi->phyint_grp = NULL; 16594 rw_exit(&ipst->ips_ipmp_lock); 16595 } 16596 16597 /* 16598 * If this interface was under IPMP, take it out of the group. 16599 */ 16600 if (phyi->phyint_grp != NULL) 16601 ipmp_phyint_leave_grp(phyi); 16602 16603 /* 16604 * Delete the phyint and disassociate its ipsq. The ipsq itself 16605 * will be freed in ipsq_exit(). 16606 */ 16607 phyi->phyint_ipsq->ipsq_phyint = NULL; 16608 phyi->phyint_name[0] = '\0'; 16609 16610 mi_free(phyi); 16611 } 16612 16613 /* 16614 * Attach the ill to the phyint structure which can be shared by both 16615 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16616 * function is called from ipif_set_values and ill_lookup_on_name (for 16617 * loopback) where we know the name of the ill. We lookup the ill and if 16618 * there is one present already with the name use that phyint. Otherwise 16619 * reuse the one allocated by ill_init. 16620 */ 16621 static void 16622 ill_phyint_reinit(ill_t *ill) 16623 { 16624 boolean_t isv6 = ill->ill_isv6; 16625 phyint_t *phyi_old; 16626 phyint_t *phyi; 16627 avl_index_t where = 0; 16628 ill_t *ill_other = NULL; 16629 ip_stack_t *ipst = ill->ill_ipst; 16630 16631 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16632 16633 phyi_old = ill->ill_phyint; 16634 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16635 phyi_old->phyint_illv6 == NULL)); 16636 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16637 phyi_old->phyint_illv4 == NULL)); 16638 ASSERT(phyi_old->phyint_ifindex == 0); 16639 16640 /* 16641 * Now that our ill has a name, set it in the phyint. 16642 */ 16643 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16644 16645 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16646 ill->ill_name, &where); 16647 16648 /* 16649 * 1. We grabbed the ill_g_lock before inserting this ill into 16650 * the global list of ills. So no other thread could have located 16651 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16652 * 2. Now locate the other protocol instance of this ill. 16653 * 3. Now grab both ill locks in the right order, and the phyint lock of 16654 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16655 * of neither ill can change. 16656 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16657 * other ill. 16658 * 5. Release all locks. 16659 */ 16660 16661 /* 16662 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16663 * we are initializing IPv4. 16664 */ 16665 if (phyi != NULL) { 16666 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16667 ASSERT(ill_other->ill_phyint != NULL); 16668 ASSERT((isv6 && !ill_other->ill_isv6) || 16669 (!isv6 && ill_other->ill_isv6)); 16670 GRAB_ILL_LOCKS(ill, ill_other); 16671 /* 16672 * We are potentially throwing away phyint_flags which 16673 * could be different from the one that we obtain from 16674 * ill_other->ill_phyint. But it is okay as we are assuming 16675 * that the state maintained within IP is correct. 16676 */ 16677 mutex_enter(&phyi->phyint_lock); 16678 if (isv6) { 16679 ASSERT(phyi->phyint_illv6 == NULL); 16680 phyi->phyint_illv6 = ill; 16681 } else { 16682 ASSERT(phyi->phyint_illv4 == NULL); 16683 phyi->phyint_illv4 = ill; 16684 } 16685 16686 /* 16687 * Delete the old phyint and make its ipsq eligible 16688 * to be freed in ipsq_exit(). 16689 */ 16690 phyi_old->phyint_illv4 = NULL; 16691 phyi_old->phyint_illv6 = NULL; 16692 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16693 phyi_old->phyint_name[0] = '\0'; 16694 mi_free(phyi_old); 16695 } else { 16696 mutex_enter(&ill->ill_lock); 16697 /* 16698 * We don't need to acquire any lock, since 16699 * the ill is not yet visible globally and we 16700 * have not yet released the ill_g_lock. 16701 */ 16702 phyi = phyi_old; 16703 mutex_enter(&phyi->phyint_lock); 16704 /* XXX We need a recovery strategy here. */ 16705 if (!phyint_assign_ifindex(phyi, ipst)) 16706 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16707 16708 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16709 (void *)phyi, where); 16710 16711 (void) avl_find(&ipst->ips_phyint_g_list-> 16712 phyint_list_avl_by_index, 16713 &phyi->phyint_ifindex, &where); 16714 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16715 (void *)phyi, where); 16716 } 16717 16718 /* 16719 * Reassigning ill_phyint automatically reassigns the ipsq also. 16720 * pending mp is not affected because that is per ill basis. 16721 */ 16722 ill->ill_phyint = phyi; 16723 16724 /* 16725 * Now that the phyint's ifindex has been assigned, complete the 16726 * remaining 16727 */ 16728 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16729 if (ill->ill_isv6) { 16730 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16731 ill->ill_phyint->phyint_ifindex; 16732 ill->ill_mcast_type = ipst->ips_mld_max_version; 16733 } else { 16734 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16735 } 16736 16737 /* 16738 * Generate an event within the hooks framework to indicate that 16739 * a new interface has just been added to IP. For this event to 16740 * be generated, the network interface must, at least, have an 16741 * ifindex assigned to it. (We don't generate the event for 16742 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16743 * 16744 * This needs to be run inside the ill_g_lock perimeter to ensure 16745 * that the ordering of delivered events to listeners matches the 16746 * order of them in the kernel. 16747 */ 16748 if (!IS_LOOPBACK(ill)) { 16749 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16750 ill->ill_name_length); 16751 } 16752 RELEASE_ILL_LOCKS(ill, ill_other); 16753 mutex_exit(&phyi->phyint_lock); 16754 } 16755 16756 /* 16757 * Notify any downstream modules of the name of this interface. 16758 * An M_IOCTL is used even though we don't expect a successful reply. 16759 * Any reply message from the driver (presumably an M_IOCNAK) will 16760 * eventually get discarded somewhere upstream. The message format is 16761 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16762 * to IP. 16763 */ 16764 static void 16765 ip_ifname_notify(ill_t *ill, queue_t *q) 16766 { 16767 mblk_t *mp1, *mp2; 16768 struct iocblk *iocp; 16769 struct lifreq *lifr; 16770 16771 mp1 = mkiocb(SIOCSLIFNAME); 16772 if (mp1 == NULL) 16773 return; 16774 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16775 if (mp2 == NULL) { 16776 freeb(mp1); 16777 return; 16778 } 16779 16780 mp1->b_cont = mp2; 16781 iocp = (struct iocblk *)mp1->b_rptr; 16782 iocp->ioc_count = sizeof (struct lifreq); 16783 16784 lifr = (struct lifreq *)mp2->b_rptr; 16785 mp2->b_wptr += sizeof (struct lifreq); 16786 bzero(lifr, sizeof (struct lifreq)); 16787 16788 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16789 lifr->lifr_ppa = ill->ill_ppa; 16790 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16791 16792 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16793 char *, "SIOCSLIFNAME", ill_t *, ill); 16794 putnext(q, mp1); 16795 } 16796 16797 static int 16798 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16799 { 16800 int err; 16801 ip_stack_t *ipst = ill->ill_ipst; 16802 phyint_t *phyi = ill->ill_phyint; 16803 16804 /* 16805 * Now that ill_name is set, the configuration for the IPMP 16806 * meta-interface can be performed. 16807 */ 16808 if (IS_IPMP(ill)) { 16809 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16810 /* 16811 * If phyi->phyint_grp is NULL, then this is the first IPMP 16812 * meta-interface and we need to create the IPMP group. 16813 */ 16814 if (phyi->phyint_grp == NULL) { 16815 /* 16816 * If someone has renamed another IPMP group to have 16817 * the same name as our interface, bail. 16818 */ 16819 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16820 rw_exit(&ipst->ips_ipmp_lock); 16821 return (EEXIST); 16822 } 16823 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16824 if (phyi->phyint_grp == NULL) { 16825 rw_exit(&ipst->ips_ipmp_lock); 16826 return (ENOMEM); 16827 } 16828 } 16829 rw_exit(&ipst->ips_ipmp_lock); 16830 } 16831 16832 /* Tell downstream modules where they are. */ 16833 ip_ifname_notify(ill, q); 16834 16835 /* 16836 * ill_dl_phys returns EINPROGRESS in the usual case. 16837 * Error cases are ENOMEM ... 16838 */ 16839 err = ill_dl_phys(ill, ipif, mp, q); 16840 16841 if (ill->ill_isv6) { 16842 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16843 if (ipst->ips_mld_slowtimeout_id == 0) { 16844 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16845 (void *)ipst, 16846 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16847 } 16848 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16849 } else { 16850 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16851 if (ipst->ips_igmp_slowtimeout_id == 0) { 16852 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16853 (void *)ipst, 16854 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16855 } 16856 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16857 } 16858 16859 return (err); 16860 } 16861 16862 /* 16863 * Common routine for ppa and ifname setting. Should be called exclusive. 16864 * 16865 * Returns EINPROGRESS when mp has been consumed by queueing it on 16866 * ipx_pending_mp and the ioctl will complete in ip_rput. 16867 * 16868 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16869 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16870 * For SLIFNAME, we pass these values back to the userland. 16871 */ 16872 static int 16873 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16874 { 16875 ill_t *ill; 16876 ipif_t *ipif; 16877 ipsq_t *ipsq; 16878 char *ppa_ptr; 16879 char *old_ptr; 16880 char old_char; 16881 int error; 16882 ip_stack_t *ipst; 16883 16884 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16885 ASSERT(q->q_next != NULL); 16886 ASSERT(interf_name != NULL); 16887 16888 ill = (ill_t *)q->q_ptr; 16889 ipst = ill->ill_ipst; 16890 16891 ASSERT(ill->ill_ipst != NULL); 16892 ASSERT(ill->ill_name[0] == '\0'); 16893 ASSERT(IAM_WRITER_ILL(ill)); 16894 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16895 ASSERT(ill->ill_ppa == UINT_MAX); 16896 16897 ill->ill_defend_start = ill->ill_defend_count = 0; 16898 /* The ppa is sent down by ifconfig or is chosen */ 16899 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16900 return (EINVAL); 16901 } 16902 16903 /* 16904 * make sure ppa passed in is same as ppa in the name. 16905 * This check is not made when ppa == UINT_MAX in that case ppa 16906 * in the name could be anything. System will choose a ppa and 16907 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16908 */ 16909 if (*new_ppa_ptr != UINT_MAX) { 16910 /* stoi changes the pointer */ 16911 old_ptr = ppa_ptr; 16912 /* 16913 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16914 * (they don't have an externally visible ppa). We assign one 16915 * here so that we can manage the interface. Note that in 16916 * the past this value was always 0 for DLPI 1 drivers. 16917 */ 16918 if (*new_ppa_ptr == 0) 16919 *new_ppa_ptr = stoi(&old_ptr); 16920 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16921 return (EINVAL); 16922 } 16923 /* 16924 * terminate string before ppa 16925 * save char at that location. 16926 */ 16927 old_char = ppa_ptr[0]; 16928 ppa_ptr[0] = '\0'; 16929 16930 ill->ill_ppa = *new_ppa_ptr; 16931 /* 16932 * Finish as much work now as possible before calling ill_glist_insert 16933 * which makes the ill globally visible and also merges it with the 16934 * other protocol instance of this phyint. The remaining work is 16935 * done after entering the ipsq which may happen sometime later. 16936 */ 16937 ipif = ill->ill_ipif; 16938 16939 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16940 ipif_assign_seqid(ipif); 16941 16942 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16943 ill->ill_flags |= ILLF_IPV4; 16944 16945 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16946 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16947 16948 if (ill->ill_flags & ILLF_IPV6) { 16949 16950 ill->ill_isv6 = B_TRUE; 16951 ill_set_inputfn(ill); 16952 if (ill->ill_rq != NULL) { 16953 ill->ill_rq->q_qinfo = &iprinitv6; 16954 } 16955 16956 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16957 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16958 ipif->ipif_v6subnet = ipv6_all_zeros; 16959 ipif->ipif_v6net_mask = ipv6_all_zeros; 16960 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16961 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16962 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16963 /* 16964 * point-to-point or Non-mulicast capable 16965 * interfaces won't do NUD unless explicitly 16966 * configured to do so. 16967 */ 16968 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16969 !(ill->ill_flags & ILLF_MULTICAST)) { 16970 ill->ill_flags |= ILLF_NONUD; 16971 } 16972 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16973 if (ill->ill_flags & ILLF_NOARP) { 16974 /* 16975 * Note: xresolv interfaces will eventually need 16976 * NOARP set here as well, but that will require 16977 * those external resolvers to have some 16978 * knowledge of that flag and act appropriately. 16979 * Not to be changed at present. 16980 */ 16981 ill->ill_flags &= ~ILLF_NOARP; 16982 } 16983 /* 16984 * Set the ILLF_ROUTER flag according to the global 16985 * IPv6 forwarding policy. 16986 */ 16987 if (ipst->ips_ipv6_forwarding != 0) 16988 ill->ill_flags |= ILLF_ROUTER; 16989 } else if (ill->ill_flags & ILLF_IPV4) { 16990 ill->ill_isv6 = B_FALSE; 16991 ill_set_inputfn(ill); 16992 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16993 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16994 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16995 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16996 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16997 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16998 /* 16999 * Set the ILLF_ROUTER flag according to the global 17000 * IPv4 forwarding policy. 17001 */ 17002 if (ipst->ips_ip_forwarding != 0) 17003 ill->ill_flags |= ILLF_ROUTER; 17004 } 17005 17006 ASSERT(ill->ill_phyint != NULL); 17007 17008 /* 17009 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17010 * be completed in ill_glist_insert -> ill_phyint_reinit 17011 */ 17012 if (!ill_allocate_mibs(ill)) 17013 return (ENOMEM); 17014 17015 /* 17016 * Pick a default sap until we get the DL_INFO_ACK back from 17017 * the driver. 17018 */ 17019 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17020 ill->ill_media->ip_m_ipv4sap; 17021 17022 ill->ill_ifname_pending = 1; 17023 ill->ill_ifname_pending_err = 0; 17024 17025 /* 17026 * When the first ipif comes up in ipif_up_done(), multicast groups 17027 * that were joined while this ill was not bound to the DLPI link need 17028 * to be recovered by ill_recover_multicast(). 17029 */ 17030 ill->ill_need_recover_multicast = 1; 17031 17032 ill_refhold(ill); 17033 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17034 if ((error = ill_glist_insert(ill, interf_name, 17035 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17036 ill->ill_ppa = UINT_MAX; 17037 ill->ill_name[0] = '\0'; 17038 /* 17039 * undo null termination done above. 17040 */ 17041 ppa_ptr[0] = old_char; 17042 rw_exit(&ipst->ips_ill_g_lock); 17043 ill_refrele(ill); 17044 return (error); 17045 } 17046 17047 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17048 17049 /* 17050 * When we return the buffer pointed to by interf_name should contain 17051 * the same name as in ill_name. 17052 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17053 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17054 * so copy full name and update the ppa ptr. 17055 * When ppa passed in != UINT_MAX all values are correct just undo 17056 * null termination, this saves a bcopy. 17057 */ 17058 if (*new_ppa_ptr == UINT_MAX) { 17059 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17060 *new_ppa_ptr = ill->ill_ppa; 17061 } else { 17062 /* 17063 * undo null termination done above. 17064 */ 17065 ppa_ptr[0] = old_char; 17066 } 17067 17068 /* Let SCTP know about this ILL */ 17069 sctp_update_ill(ill, SCTP_ILL_INSERT); 17070 17071 /* 17072 * ill_glist_insert has made the ill visible globally, and 17073 * ill_phyint_reinit could have changed the ipsq. At this point, 17074 * we need to hold the ips_ill_g_lock across the call to enter the 17075 * ipsq to enforce atomicity and prevent reordering. In the event 17076 * the ipsq has changed, and if the new ipsq is currently busy, 17077 * we need to make sure that this half-completed ioctl is ahead of 17078 * any subsequent ioctl. We achieve this by not dropping the 17079 * ips_ill_g_lock which prevents any ill lookup itself thereby 17080 * ensuring that new ioctls can't start. 17081 */ 17082 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17083 B_TRUE); 17084 17085 rw_exit(&ipst->ips_ill_g_lock); 17086 ill_refrele(ill); 17087 if (ipsq == NULL) 17088 return (EINPROGRESS); 17089 17090 /* 17091 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17092 */ 17093 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17094 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17095 else 17096 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17097 17098 error = ipif_set_values_tail(ill, ipif, mp, q); 17099 ipsq_exit(ipsq); 17100 if (error != 0 && error != EINPROGRESS) { 17101 /* 17102 * restore previous values 17103 */ 17104 ill->ill_isv6 = B_FALSE; 17105 ill_set_inputfn(ill); 17106 } 17107 return (error); 17108 } 17109 17110 void 17111 ipif_init(ip_stack_t *ipst) 17112 { 17113 int i; 17114 17115 for (i = 0; i < MAX_G_HEADS; i++) { 17116 ipst->ips_ill_g_heads[i].ill_g_list_head = 17117 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17118 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17119 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17120 } 17121 17122 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17123 ill_phyint_compare_index, 17124 sizeof (phyint_t), 17125 offsetof(struct phyint, phyint_avl_by_index)); 17126 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17127 ill_phyint_compare_name, 17128 sizeof (phyint_t), 17129 offsetof(struct phyint, phyint_avl_by_name)); 17130 } 17131 17132 /* 17133 * Save enough information so that we can recreate the IRE if 17134 * the interface goes down and then up. 17135 */ 17136 void 17137 ill_save_ire(ill_t *ill, ire_t *ire) 17138 { 17139 mblk_t *save_mp; 17140 17141 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17142 if (save_mp != NULL) { 17143 ifrt_t *ifrt; 17144 17145 save_mp->b_wptr += sizeof (ifrt_t); 17146 ifrt = (ifrt_t *)save_mp->b_rptr; 17147 bzero(ifrt, sizeof (ifrt_t)); 17148 ifrt->ifrt_type = ire->ire_type; 17149 if (ire->ire_ipversion == IPV4_VERSION) { 17150 ASSERT(!ill->ill_isv6); 17151 ifrt->ifrt_addr = ire->ire_addr; 17152 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17153 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17154 ifrt->ifrt_mask = ire->ire_mask; 17155 } else { 17156 ASSERT(ill->ill_isv6); 17157 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17158 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17159 mutex_enter(&ire->ire_lock); 17160 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17161 mutex_exit(&ire->ire_lock); 17162 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17163 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17164 } 17165 ifrt->ifrt_flags = ire->ire_flags; 17166 ifrt->ifrt_zoneid = ire->ire_zoneid; 17167 mutex_enter(&ill->ill_saved_ire_lock); 17168 save_mp->b_cont = ill->ill_saved_ire_mp; 17169 ill->ill_saved_ire_mp = save_mp; 17170 ill->ill_saved_ire_cnt++; 17171 mutex_exit(&ill->ill_saved_ire_lock); 17172 } 17173 } 17174 17175 /* 17176 * Remove one entry from ill_saved_ire_mp. 17177 */ 17178 void 17179 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17180 { 17181 mblk_t **mpp; 17182 mblk_t *mp; 17183 ifrt_t *ifrt; 17184 17185 /* Remove from ill_saved_ire_mp list if it is there */ 17186 mutex_enter(&ill->ill_saved_ire_lock); 17187 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17188 mpp = &(*mpp)->b_cont) { 17189 in6_addr_t gw_addr_v6; 17190 17191 /* 17192 * On a given ill, the tuple of address, gateway, mask, 17193 * ire_type, and zoneid is unique for each saved IRE. 17194 */ 17195 mp = *mpp; 17196 ifrt = (ifrt_t *)mp->b_rptr; 17197 /* ire_gateway_addr_v6 can change - need lock */ 17198 mutex_enter(&ire->ire_lock); 17199 gw_addr_v6 = ire->ire_gateway_addr_v6; 17200 mutex_exit(&ire->ire_lock); 17201 17202 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17203 ifrt->ifrt_type != ire->ire_type) 17204 continue; 17205 17206 if (ill->ill_isv6 ? 17207 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17208 &ire->ire_addr_v6) && 17209 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17210 &gw_addr_v6) && 17211 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17212 &ire->ire_mask_v6)) : 17213 (ifrt->ifrt_addr == ire->ire_addr && 17214 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17215 ifrt->ifrt_mask == ire->ire_mask)) { 17216 *mpp = mp->b_cont; 17217 ill->ill_saved_ire_cnt--; 17218 freeb(mp); 17219 break; 17220 } 17221 } 17222 mutex_exit(&ill->ill_saved_ire_lock); 17223 } 17224 17225 /* 17226 * IP multirouting broadcast routes handling 17227 * Append CGTP broadcast IREs to regular ones created 17228 * at ifconfig time. 17229 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17230 * the destination and the gateway are broadcast addresses. 17231 * The caller has verified that the destination is an IRE_BROADCAST and that 17232 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17233 * we create a MULTIRT IRE_BROADCAST. 17234 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17235 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17236 */ 17237 static void 17238 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17239 { 17240 ire_t *ire_prim; 17241 17242 ASSERT(ire != NULL); 17243 17244 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17245 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17246 NULL); 17247 if (ire_prim != NULL) { 17248 /* 17249 * We are in the special case of broadcasts for 17250 * CGTP. We add an IRE_BROADCAST that holds 17251 * the RTF_MULTIRT flag, the destination 17252 * address and the low level 17253 * info of ire_prim. In other words, CGTP 17254 * broadcast is added to the redundant ipif. 17255 */ 17256 ill_t *ill_prim; 17257 ire_t *bcast_ire; 17258 17259 ill_prim = ire_prim->ire_ill; 17260 17261 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17262 (void *)ire_prim, (void *)ill_prim)); 17263 17264 bcast_ire = ire_create( 17265 (uchar_t *)&ire->ire_addr, 17266 (uchar_t *)&ip_g_all_ones, 17267 (uchar_t *)&ire->ire_gateway_addr, 17268 IRE_BROADCAST, 17269 ill_prim, 17270 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17271 ire->ire_flags | RTF_KERNEL, 17272 NULL, 17273 ipst); 17274 17275 /* 17276 * Here we assume that ire_add does head insertion so that 17277 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17278 */ 17279 if (bcast_ire != NULL) { 17280 if (ire->ire_flags & RTF_SETSRC) { 17281 bcast_ire->ire_setsrc_addr = 17282 ire->ire_setsrc_addr; 17283 } 17284 bcast_ire = ire_add(bcast_ire); 17285 if (bcast_ire != NULL) { 17286 ip2dbg(("ip_cgtp_filter_bcast_add: " 17287 "added bcast_ire %p\n", 17288 (void *)bcast_ire)); 17289 17290 ill_save_ire(ill_prim, bcast_ire); 17291 ire_refrele(bcast_ire); 17292 } 17293 } 17294 ire_refrele(ire_prim); 17295 } 17296 } 17297 17298 /* 17299 * IP multirouting broadcast routes handling 17300 * Remove the broadcast ire. 17301 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17302 * the destination and the gateway are broadcast addresses. 17303 * The caller has only verified that RTF_MULTIRT was set. We check 17304 * that the destination is broadcast and that the gateway is a broadcast 17305 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17306 */ 17307 static void 17308 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17309 { 17310 ASSERT(ire != NULL); 17311 17312 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17313 ire_t *ire_prim; 17314 17315 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17316 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17317 ipst, NULL); 17318 if (ire_prim != NULL) { 17319 ill_t *ill_prim; 17320 ire_t *bcast_ire; 17321 17322 ill_prim = ire_prim->ire_ill; 17323 17324 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17325 "ire_prim %p, ill_prim %p\n", 17326 (void *)ire_prim, (void *)ill_prim)); 17327 17328 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17329 ire->ire_gateway_addr, IRE_BROADCAST, 17330 ill_prim, ALL_ZONES, NULL, 17331 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17332 MATCH_IRE_MASK, 0, ipst, NULL); 17333 17334 if (bcast_ire != NULL) { 17335 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17336 "looked up bcast_ire %p\n", 17337 (void *)bcast_ire)); 17338 ill_remove_saved_ire(bcast_ire->ire_ill, 17339 bcast_ire); 17340 ire_delete(bcast_ire); 17341 ire_refrele(bcast_ire); 17342 } 17343 ire_refrele(ire_prim); 17344 } 17345 } 17346 } 17347 17348 /* 17349 * Derive an interface id from the link layer address. 17350 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17351 */ 17352 static void 17353 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17354 { 17355 char *addr; 17356 17357 /* 17358 * Note that some IPv6 interfaces get plumbed over links that claim to 17359 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17360 * PPP links). The ETHERADDRL check here ensures that we only set the 17361 * interface ID on IPv6 interfaces above links that actually have real 17362 * Ethernet addresses. 17363 */ 17364 if (ill->ill_phys_addr_length == ETHERADDRL) { 17365 /* Form EUI-64 like address */ 17366 addr = (char *)&v6addr->s6_addr32[2]; 17367 bcopy(ill->ill_phys_addr, addr, 3); 17368 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17369 addr[3] = (char)0xff; 17370 addr[4] = (char)0xfe; 17371 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17372 } 17373 } 17374 17375 /* ARGSUSED */ 17376 static void 17377 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17378 { 17379 } 17380 17381 typedef struct ipmp_ifcookie { 17382 uint32_t ic_hostid; 17383 char ic_ifname[LIFNAMSIZ]; 17384 char ic_zonename[ZONENAME_MAX]; 17385 } ipmp_ifcookie_t; 17386 17387 /* 17388 * Construct a pseudo-random interface ID for the IPMP interface that's both 17389 * predictable and (almost) guaranteed to be unique. 17390 */ 17391 static void 17392 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17393 { 17394 zone_t *zp; 17395 uint8_t *addr; 17396 uchar_t hash[16]; 17397 ulong_t hostid; 17398 MD5_CTX ctx; 17399 ipmp_ifcookie_t ic = { 0 }; 17400 17401 ASSERT(IS_IPMP(ill)); 17402 17403 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17404 ic.ic_hostid = htonl((uint32_t)hostid); 17405 17406 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17407 17408 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17409 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17410 zone_rele(zp); 17411 } 17412 17413 MD5Init(&ctx); 17414 MD5Update(&ctx, &ic, sizeof (ic)); 17415 MD5Final(hash, &ctx); 17416 17417 /* 17418 * Map the hash to an interface ID per the basic approach in RFC3041. 17419 */ 17420 addr = &v6addr->s6_addr8[8]; 17421 bcopy(hash + 8, addr, sizeof (uint64_t)); 17422 addr[0] &= ~0x2; /* set local bit */ 17423 } 17424 17425 /* 17426 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17427 */ 17428 static void 17429 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17430 { 17431 phyint_t *phyi = ill->ill_phyint; 17432 17433 /* 17434 * Check PHYI_MULTI_BCAST and length of physical 17435 * address to determine if we use the mapping or the 17436 * broadcast address. 17437 */ 17438 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17439 ill->ill_phys_addr_length != ETHERADDRL) { 17440 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17441 return; 17442 } 17443 m_physaddr[0] = 0x33; 17444 m_physaddr[1] = 0x33; 17445 m_physaddr[2] = m_ip6addr[12]; 17446 m_physaddr[3] = m_ip6addr[13]; 17447 m_physaddr[4] = m_ip6addr[14]; 17448 m_physaddr[5] = m_ip6addr[15]; 17449 } 17450 17451 /* 17452 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17453 */ 17454 static void 17455 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17456 { 17457 phyint_t *phyi = ill->ill_phyint; 17458 17459 /* 17460 * Check PHYI_MULTI_BCAST and length of physical 17461 * address to determine if we use the mapping or the 17462 * broadcast address. 17463 */ 17464 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17465 ill->ill_phys_addr_length != ETHERADDRL) { 17466 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17467 return; 17468 } 17469 m_physaddr[0] = 0x01; 17470 m_physaddr[1] = 0x00; 17471 m_physaddr[2] = 0x5e; 17472 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17473 m_physaddr[4] = m_ipaddr[2]; 17474 m_physaddr[5] = m_ipaddr[3]; 17475 } 17476 17477 /* ARGSUSED */ 17478 static void 17479 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17480 { 17481 /* 17482 * for the MULTI_BCAST case and other cases when we want to 17483 * use the link-layer broadcast address for multicast. 17484 */ 17485 uint8_t *bphys_addr; 17486 dl_unitdata_req_t *dlur; 17487 17488 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17489 if (ill->ill_sap_length < 0) { 17490 bphys_addr = (uchar_t *)dlur + 17491 dlur->dl_dest_addr_offset; 17492 } else { 17493 bphys_addr = (uchar_t *)dlur + 17494 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17495 } 17496 17497 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17498 } 17499 17500 /* 17501 * Derive IPoIB interface id from the link layer address. 17502 */ 17503 static void 17504 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17505 { 17506 char *addr; 17507 17508 ASSERT(ill->ill_phys_addr_length == 20); 17509 addr = (char *)&v6addr->s6_addr32[2]; 17510 bcopy(ill->ill_phys_addr + 12, addr, 8); 17511 /* 17512 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17513 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17514 * rules. In these cases, the IBA considers these GUIDs to be in 17515 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17516 * required; vendors are required not to assign global EUI-64's 17517 * that differ only in u/l bit values, thus guaranteeing uniqueness 17518 * of the interface identifier. Whether the GUID is in modified 17519 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17520 * bit set to 1. 17521 */ 17522 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17523 } 17524 17525 /* 17526 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17527 * Note on mapping from multicast IP addresses to IPoIB multicast link 17528 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17529 * The format of an IPoIB multicast address is: 17530 * 17531 * 4 byte QPN Scope Sign. Pkey 17532 * +--------------------------------------------+ 17533 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17534 * +--------------------------------------------+ 17535 * 17536 * The Scope and Pkey components are properties of the IBA port and 17537 * network interface. They can be ascertained from the broadcast address. 17538 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17539 */ 17540 static void 17541 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17542 { 17543 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17544 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17545 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17546 uint8_t *bphys_addr; 17547 dl_unitdata_req_t *dlur; 17548 17549 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17550 17551 /* 17552 * RFC 4391: IPv4 MGID is 28-bit long. 17553 */ 17554 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17555 m_physaddr[17] = m_ipaddr[1]; 17556 m_physaddr[18] = m_ipaddr[2]; 17557 m_physaddr[19] = m_ipaddr[3]; 17558 17559 17560 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17561 if (ill->ill_sap_length < 0) { 17562 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17563 } else { 17564 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17565 ill->ill_sap_length; 17566 } 17567 /* 17568 * Now fill in the IBA scope/Pkey values from the broadcast address. 17569 */ 17570 m_physaddr[5] = bphys_addr[5]; 17571 m_physaddr[8] = bphys_addr[8]; 17572 m_physaddr[9] = bphys_addr[9]; 17573 } 17574 17575 static void 17576 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17577 { 17578 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17579 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17580 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17581 uint8_t *bphys_addr; 17582 dl_unitdata_req_t *dlur; 17583 17584 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17585 17586 /* 17587 * RFC 4391: IPv4 MGID is 80-bit long. 17588 */ 17589 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17590 17591 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17592 if (ill->ill_sap_length < 0) { 17593 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17594 } else { 17595 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17596 ill->ill_sap_length; 17597 } 17598 /* 17599 * Now fill in the IBA scope/Pkey values from the broadcast address. 17600 */ 17601 m_physaddr[5] = bphys_addr[5]; 17602 m_physaddr[8] = bphys_addr[8]; 17603 m_physaddr[9] = bphys_addr[9]; 17604 } 17605 17606 /* 17607 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17608 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17609 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17610 * of RFC4213. 17611 */ 17612 static void 17613 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17614 { 17615 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17616 v6addr->s6_addr32[2] = 0; 17617 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17618 } 17619 17620 /* 17621 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17622 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17623 * id. 17624 */ 17625 static void 17626 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17627 { 17628 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17629 17630 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17631 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17632 } 17633 17634 static void 17635 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17636 { 17637 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17638 } 17639 17640 static void 17641 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17642 { 17643 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17644 } 17645 17646 static void 17647 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17648 { 17649 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17650 } 17651 17652 static void 17653 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17654 { 17655 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17656 } 17657 17658 /* 17659 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17660 * Returns an held ill, or NULL. 17661 */ 17662 ill_t * 17663 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17664 ip_stack_t *ipst) 17665 { 17666 ill_t *ill; 17667 ipif_t *ipif; 17668 17669 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17670 if (ill == NULL) 17671 return (NULL); 17672 17673 mutex_enter(&ill->ill_lock); 17674 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17675 if (IPIF_IS_CONDEMNED(ipif)) 17676 continue; 17677 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17678 ipif->ipif_zoneid != ALL_ZONES) 17679 continue; 17680 17681 mutex_exit(&ill->ill_lock); 17682 return (ill); 17683 } 17684 mutex_exit(&ill->ill_lock); 17685 ill_refrele(ill); 17686 return (NULL); 17687 } 17688 17689 /* 17690 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17691 * If a pointer to an ipif_t is returned then the caller will need to do 17692 * an ill_refrele(). 17693 */ 17694 ipif_t * 17695 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17696 ip_stack_t *ipst) 17697 { 17698 ipif_t *ipif; 17699 ill_t *ill; 17700 17701 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17702 if (ill == NULL) 17703 return (NULL); 17704 17705 mutex_enter(&ill->ill_lock); 17706 if (ill->ill_state_flags & ILL_CONDEMNED) { 17707 mutex_exit(&ill->ill_lock); 17708 ill_refrele(ill); 17709 return (NULL); 17710 } 17711 17712 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17713 if (!IPIF_CAN_LOOKUP(ipif)) 17714 continue; 17715 if (lifidx == ipif->ipif_id) { 17716 ipif_refhold_locked(ipif); 17717 break; 17718 } 17719 } 17720 17721 mutex_exit(&ill->ill_lock); 17722 ill_refrele(ill); 17723 return (ipif); 17724 } 17725 17726 /* 17727 * Set ill_inputfn based on the current know state. 17728 * This needs to be called when any of the factors taken into 17729 * account changes. 17730 */ 17731 void 17732 ill_set_inputfn(ill_t *ill) 17733 { 17734 ip_stack_t *ipst = ill->ill_ipst; 17735 17736 if (ill->ill_isv6) { 17737 if (is_system_labeled()) 17738 ill->ill_inputfn = ill_input_full_v6; 17739 else 17740 ill->ill_inputfn = ill_input_short_v6; 17741 } else { 17742 if (is_system_labeled()) 17743 ill->ill_inputfn = ill_input_full_v4; 17744 else if (ill->ill_dhcpinit != 0) 17745 ill->ill_inputfn = ill_input_full_v4; 17746 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17747 != NULL) 17748 ill->ill_inputfn = ill_input_full_v4; 17749 else if (ipst->ips_ip_cgtp_filter && 17750 ipst->ips_ip_cgtp_filter_ops != NULL) 17751 ill->ill_inputfn = ill_input_full_v4; 17752 else 17753 ill->ill_inputfn = ill_input_short_v4; 17754 } 17755 } 17756 17757 /* 17758 * Re-evaluate ill_inputfn for all the IPv4 ills. 17759 * Used when RSVP and CGTP comes and goes. 17760 */ 17761 void 17762 ill_set_inputfn_all(ip_stack_t *ipst) 17763 { 17764 ill_walk_context_t ctx; 17765 ill_t *ill; 17766 17767 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17768 ill = ILL_START_WALK_V4(&ctx, ipst); 17769 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17770 ill_set_inputfn(ill); 17771 17772 rw_exit(&ipst->ips_ill_g_lock); 17773 } 17774 17775 /* 17776 * Set the physical address information for `ill' to the contents of the 17777 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17778 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17779 * EINPROGRESS will be returned. 17780 */ 17781 int 17782 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17783 { 17784 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17785 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17786 17787 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17788 17789 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17790 dlindp->dl_data != DL_CURR_DEST_ADDR && 17791 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17792 /* Changing DL_IPV6_TOKEN is not yet supported */ 17793 return (0); 17794 } 17795 17796 /* 17797 * We need to store up to two copies of `mp' in `ill'. Due to the 17798 * design of ipsq_pending_mp_add(), we can't pass them as separate 17799 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17800 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17801 */ 17802 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17803 freemsg(mp); 17804 return (ENOMEM); 17805 } 17806 17807 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17808 17809 /* 17810 * Since we'll only do a logical down, we can't rely on ipif_down 17811 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17812 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17813 * case, to quiesce ire's and nce's for ill_is_quiescent. 17814 */ 17815 mutex_enter(&ill->ill_lock); 17816 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17817 /* no more ire/nce addition allowed */ 17818 mutex_exit(&ill->ill_lock); 17819 17820 /* 17821 * If we can quiesce the ill, then set the address. If not, then 17822 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17823 */ 17824 ill_down_ipifs(ill, B_TRUE); 17825 mutex_enter(&ill->ill_lock); 17826 if (!ill_is_quiescent(ill)) { 17827 /* call cannot fail since `conn_t *' argument is NULL */ 17828 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17829 mp, ILL_DOWN); 17830 mutex_exit(&ill->ill_lock); 17831 return (EINPROGRESS); 17832 } 17833 mutex_exit(&ill->ill_lock); 17834 17835 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17836 return (0); 17837 } 17838 17839 /* 17840 * When the allowed-ips link property is set on the datalink, IP receives a 17841 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17842 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17843 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17844 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17845 * array. 17846 */ 17847 void 17848 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17849 { 17850 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17851 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17852 mac_protect_t *mrp; 17853 int i; 17854 17855 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17856 mrp = (mac_protect_t *)&dlip[1]; 17857 17858 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17859 kmem_free(ill->ill_allowed_ips, 17860 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17861 ill->ill_allowed_ips_cnt = 0; 17862 ill->ill_allowed_ips = NULL; 17863 mutex_enter(&ill->ill_phyint->phyint_lock); 17864 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17865 mutex_exit(&ill->ill_phyint->phyint_lock); 17866 return; 17867 } 17868 17869 if (ill->ill_allowed_ips != NULL) { 17870 kmem_free(ill->ill_allowed_ips, 17871 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17872 } 17873 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17874 ill->ill_allowed_ips = kmem_alloc( 17875 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17876 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17877 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17878 17879 mutex_enter(&ill->ill_phyint->phyint_lock); 17880 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17881 mutex_exit(&ill->ill_phyint->phyint_lock); 17882 } 17883 17884 /* 17885 * Once the ill associated with `q' has quiesced, set its physical address 17886 * information to the values in `addrmp'. Note that two copies of `addrmp' 17887 * are passed (linked by b_cont), since we sometimes need to save two distinct 17888 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17889 * failure (we'll free the other copy if it's not needed). Since the ill_t 17890 * is quiesced, we know any stale nce's with the old address information have 17891 * already been removed, so we don't need to call nce_flush(). 17892 */ 17893 /* ARGSUSED */ 17894 static void 17895 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17896 { 17897 ill_t *ill = q->q_ptr; 17898 mblk_t *addrmp2 = unlinkb(addrmp); 17899 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17900 uint_t addrlen, addroff; 17901 int status; 17902 17903 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17904 17905 addroff = dlindp->dl_addr_offset; 17906 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17907 17908 switch (dlindp->dl_data) { 17909 case DL_IPV6_LINK_LAYER_ADDR: 17910 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17911 freemsg(addrmp2); 17912 break; 17913 17914 case DL_CURR_DEST_ADDR: 17915 freemsg(ill->ill_dest_addr_mp); 17916 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17917 ill->ill_dest_addr_mp = addrmp; 17918 if (ill->ill_isv6) { 17919 ill_setdesttoken(ill); 17920 ipif_setdestlinklocal(ill->ill_ipif); 17921 } 17922 freemsg(addrmp2); 17923 break; 17924 17925 case DL_CURR_PHYS_ADDR: 17926 freemsg(ill->ill_phys_addr_mp); 17927 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17928 ill->ill_phys_addr_mp = addrmp; 17929 ill->ill_phys_addr_length = addrlen; 17930 if (ill->ill_isv6) 17931 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17932 else 17933 freemsg(addrmp2); 17934 if (ill->ill_isv6) { 17935 ill_setdefaulttoken(ill); 17936 ipif_setlinklocal(ill->ill_ipif); 17937 } 17938 break; 17939 default: 17940 ASSERT(0); 17941 } 17942 17943 /* 17944 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17945 * as we bring the ipifs up again. 17946 */ 17947 mutex_enter(&ill->ill_lock); 17948 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17949 mutex_exit(&ill->ill_lock); 17950 /* 17951 * If there are ipifs to bring up, ill_up_ipifs() will return 17952 * EINPROGRESS, and ipsq_current_finish() will be called by 17953 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17954 * brought up. 17955 */ 17956 status = ill_up_ipifs(ill, q, addrmp); 17957 if (status != EINPROGRESS) 17958 ipsq_current_finish(ipsq); 17959 } 17960 17961 /* 17962 * Helper routine for setting the ill_nd_lla fields. 17963 */ 17964 void 17965 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17966 { 17967 freemsg(ill->ill_nd_lla_mp); 17968 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17969 ill->ill_nd_lla_mp = ndmp; 17970 ill->ill_nd_lla_len = addrlen; 17971 } 17972 17973 /* 17974 * Replumb the ill. 17975 */ 17976 int 17977 ill_replumb(ill_t *ill, mblk_t *mp) 17978 { 17979 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17980 17981 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17982 17983 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17984 17985 /* 17986 * If we can quiesce the ill, then continue. If not, then 17987 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17988 */ 17989 ill_down_ipifs(ill, B_FALSE); 17990 17991 mutex_enter(&ill->ill_lock); 17992 if (!ill_is_quiescent(ill)) { 17993 /* call cannot fail since `conn_t *' argument is NULL */ 17994 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17995 mp, ILL_DOWN); 17996 mutex_exit(&ill->ill_lock); 17997 return (EINPROGRESS); 17998 } 17999 mutex_exit(&ill->ill_lock); 18000 18001 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18002 return (0); 18003 } 18004 18005 /* ARGSUSED */ 18006 static void 18007 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18008 { 18009 ill_t *ill = q->q_ptr; 18010 int err; 18011 conn_t *connp = NULL; 18012 18013 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18014 freemsg(ill->ill_replumb_mp); 18015 ill->ill_replumb_mp = copyb(mp); 18016 18017 if (ill->ill_replumb_mp == NULL) { 18018 /* out of memory */ 18019 ipsq_current_finish(ipsq); 18020 return; 18021 } 18022 18023 mutex_enter(&ill->ill_lock); 18024 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18025 ill->ill_rq, ill->ill_replumb_mp, 0); 18026 mutex_exit(&ill->ill_lock); 18027 18028 if (!ill->ill_up_ipifs) { 18029 /* already closing */ 18030 ipsq_current_finish(ipsq); 18031 return; 18032 } 18033 ill->ill_replumbing = 1; 18034 err = ill_down_ipifs_tail(ill); 18035 18036 /* 18037 * Successfully quiesced and brought down the interface, now we send 18038 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18039 * DL_NOTE_REPLUMB message. 18040 */ 18041 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18042 DL_NOTIFY_CONF); 18043 ASSERT(mp != NULL); 18044 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18045 DL_NOTE_REPLUMB_DONE; 18046 ill_dlpi_send(ill, mp); 18047 18048 /* 18049 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18050 * streams have to be unbound. When all the DLPI exchanges are done, 18051 * ipsq_current_finish() will be called by arp_bringup_done(). The 18052 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18053 * arp_bringup_done(). 18054 */ 18055 ASSERT(ill->ill_replumb_mp != NULL); 18056 if (err == EINPROGRESS) 18057 return; 18058 else 18059 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18060 ASSERT(connp == NULL); 18061 if (err == 0 && ill->ill_replumb_mp != NULL && 18062 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18063 return; 18064 } 18065 ipsq_current_finish(ipsq); 18066 } 18067 18068 /* 18069 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18070 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18071 * as per the ioctl. On failure, an errno is returned. 18072 */ 18073 static int 18074 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18075 { 18076 int rval; 18077 struct strioctl iocb; 18078 18079 iocb.ic_cmd = cmd; 18080 iocb.ic_timout = 15; 18081 iocb.ic_len = bufsize; 18082 iocb.ic_dp = buf; 18083 18084 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18085 } 18086 18087 /* 18088 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18089 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18090 */ 18091 static int 18092 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18093 uint_t *bufsizep, cred_t *cr) 18094 { 18095 int err; 18096 struct lifnum lifn; 18097 18098 bzero(&lifn, sizeof (lifn)); 18099 lifn.lifn_family = af; 18100 lifn.lifn_flags = LIFC_UNDER_IPMP; 18101 18102 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18103 return (err); 18104 18105 /* 18106 * Pad the interface count to account for additional interfaces that 18107 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18108 */ 18109 lifn.lifn_count += 4; 18110 bzero(lifcp, sizeof (*lifcp)); 18111 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18112 lifcp->lifc_family = af; 18113 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18114 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18115 18116 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18117 if (err != 0) { 18118 kmem_free(lifcp->lifc_buf, *bufsizep); 18119 return (err); 18120 } 18121 18122 return (0); 18123 } 18124 18125 /* 18126 * Helper for ip_interface_cleanup() that removes the loopback interface. 18127 */ 18128 static void 18129 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18130 { 18131 int err; 18132 struct lifreq lifr; 18133 18134 bzero(&lifr, sizeof (lifr)); 18135 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18136 18137 /* 18138 * Attempt to remove the interface. It may legitimately not exist 18139 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18140 */ 18141 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18142 if (err != 0 && err != ENXIO) { 18143 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18144 "error %d\n", isv6 ? "v6" : "v4", err)); 18145 } 18146 } 18147 18148 /* 18149 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18150 * groups and that IPMP data addresses are down. These conditions must be met 18151 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18152 */ 18153 static void 18154 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18155 { 18156 int af = isv6 ? AF_INET6 : AF_INET; 18157 int i, nifs; 18158 int err; 18159 uint_t bufsize; 18160 uint_t lifrsize = sizeof (struct lifreq); 18161 struct lifconf lifc; 18162 struct lifreq *lifrp; 18163 18164 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18165 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18166 "(error %d); any IPMP interfaces cannot be shutdown", err); 18167 return; 18168 } 18169 18170 nifs = lifc.lifc_len / lifrsize; 18171 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18172 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18173 if (err != 0) { 18174 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18175 "flags: error %d", lifrp->lifr_name, err); 18176 continue; 18177 } 18178 18179 if (lifrp->lifr_flags & IFF_IPMP) { 18180 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18181 continue; 18182 18183 lifrp->lifr_flags &= ~IFF_UP; 18184 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18185 if (err != 0) { 18186 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18187 "bring down (error %d); IPMP interface may " 18188 "not be shutdown", lifrp->lifr_name, err); 18189 } 18190 18191 /* 18192 * Check if IFF_DUPLICATE is still set -- and if so, 18193 * reset the address to clear it. 18194 */ 18195 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18196 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18197 continue; 18198 18199 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18200 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18201 lifrp, lifrsize, cr)) != 0) { 18202 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18203 "reset DAD (error %d); IPMP interface may " 18204 "not be shutdown", lifrp->lifr_name, err); 18205 } 18206 continue; 18207 } 18208 18209 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18210 lifrp->lifr_groupname[0] = '\0'; 18211 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18212 lifrsize, cr)) != 0) { 18213 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18214 "leave IPMP group (error %d); associated " 18215 "IPMP interface may not be shutdown", 18216 lifrp->lifr_name, err); 18217 continue; 18218 } 18219 } 18220 } 18221 18222 kmem_free(lifc.lifc_buf, bufsize); 18223 } 18224 18225 #define UDPDEV "/devices/pseudo/udp@0:udp" 18226 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18227 18228 /* 18229 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18230 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18231 * when the user-level processes in the zone are killed and the latter are 18232 * cleaned up by str_stack_shutdown(). 18233 */ 18234 void 18235 ip_interface_cleanup(ip_stack_t *ipst) 18236 { 18237 ldi_handle_t lh; 18238 ldi_ident_t li; 18239 cred_t *cr; 18240 int err; 18241 int i; 18242 char *devs[] = { UDP6DEV, UDPDEV }; 18243 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18244 18245 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18246 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18247 " error %d", err); 18248 return; 18249 } 18250 18251 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18252 ASSERT(cr != NULL); 18253 18254 /* 18255 * NOTE: loop executes exactly twice and is hardcoded to know that the 18256 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18257 * the loop.) 18258 */ 18259 for (i = 0; i < 2; i++) { 18260 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18261 if (err != 0) { 18262 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18263 " error %d", devs[i], err); 18264 continue; 18265 } 18266 18267 ip_loopback_removeif(lh, i == 0, cr); 18268 ip_ipmp_cleanup(lh, i == 0, cr); 18269 18270 (void) ldi_close(lh, FREAD|FWRITE, cr); 18271 } 18272 18273 ldi_ident_release(li); 18274 crfree(cr); 18275 } 18276 18277 /* 18278 * This needs to be in-sync with nic_event_t definition 18279 */ 18280 static const char * 18281 ill_hook_event2str(nic_event_t event) 18282 { 18283 switch (event) { 18284 case NE_PLUMB: 18285 return ("PLUMB"); 18286 case NE_UNPLUMB: 18287 return ("UNPLUMB"); 18288 case NE_UP: 18289 return ("UP"); 18290 case NE_DOWN: 18291 return ("DOWN"); 18292 case NE_ADDRESS_CHANGE: 18293 return ("ADDRESS_CHANGE"); 18294 case NE_LIF_UP: 18295 return ("LIF_UP"); 18296 case NE_LIF_DOWN: 18297 return ("LIF_DOWN"); 18298 case NE_IFINDEX_CHANGE: 18299 return ("IFINDEX_CHANGE"); 18300 default: 18301 return ("UNKNOWN"); 18302 } 18303 } 18304 18305 void 18306 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18307 nic_event_data_t data, size_t datalen) 18308 { 18309 ip_stack_t *ipst = ill->ill_ipst; 18310 hook_nic_event_int_t *info; 18311 const char *str = NULL; 18312 18313 /* create a new nic event info */ 18314 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18315 goto fail; 18316 18317 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18318 info->hnei_event.hne_lif = lif; 18319 info->hnei_event.hne_event = event; 18320 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18321 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18322 info->hnei_event.hne_data = NULL; 18323 info->hnei_event.hne_datalen = 0; 18324 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18325 18326 if (data != NULL && datalen != 0) { 18327 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18328 if (info->hnei_event.hne_data == NULL) 18329 goto fail; 18330 bcopy(data, info->hnei_event.hne_data, datalen); 18331 info->hnei_event.hne_datalen = datalen; 18332 } 18333 18334 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18335 DDI_NOSLEEP) == DDI_SUCCESS) 18336 return; 18337 18338 fail: 18339 if (info != NULL) { 18340 if (info->hnei_event.hne_data != NULL) { 18341 kmem_free(info->hnei_event.hne_data, 18342 info->hnei_event.hne_datalen); 18343 } 18344 kmem_free(info, sizeof (hook_nic_event_t)); 18345 } 18346 str = ill_hook_event2str(event); 18347 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18348 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18349 } 18350 18351 static int 18352 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18353 { 18354 int err = 0; 18355 const in_addr_t *addr = NULL; 18356 nce_t *nce = NULL; 18357 ill_t *ill = ipif->ipif_ill; 18358 ill_t *bound_ill; 18359 boolean_t added_ipif = B_FALSE; 18360 uint16_t state; 18361 uint16_t flags; 18362 18363 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18364 ill_t *, ill, ipif_t *, ipif); 18365 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18366 addr = &ipif->ipif_lcl_addr; 18367 } 18368 18369 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18370 if (res_act != Res_act_initial) 18371 return (EINVAL); 18372 } 18373 18374 if (addr != NULL) { 18375 ipmp_illgrp_t *illg = ill->ill_grp; 18376 18377 /* add unicast nce for the local addr */ 18378 18379 if (IS_IPMP(ill)) { 18380 /* 18381 * If we're here via ipif_up(), then the ipif 18382 * won't be bound yet -- add it to the group, 18383 * which will bind it if possible. (We would 18384 * add it in ipif_up(), but deleting on failure 18385 * there is gruesome.) If we're here via 18386 * ipmp_ill_bind_ipif(), then the ipif has 18387 * already been added to the group and we 18388 * just need to use the binding. 18389 */ 18390 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18391 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18392 if (bound_ill == NULL) { 18393 /* 18394 * We couldn't bind the ipif to an ill 18395 * yet, so we have nothing to publish. 18396 * Mark the address as ready and return. 18397 */ 18398 ipif->ipif_addr_ready = 1; 18399 return (0); 18400 } 18401 added_ipif = B_TRUE; 18402 } 18403 } else { 18404 bound_ill = ill; 18405 } 18406 18407 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18408 NCE_F_NONUD); 18409 /* 18410 * If this is an initial bring-up (or the ipif was never 18411 * completely brought up), do DAD. Otherwise, we're here 18412 * because IPMP has rebound an address to this ill: send 18413 * unsolicited advertisements (ARP announcements) to 18414 * inform others. 18415 */ 18416 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18417 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18418 } else { 18419 state = ND_REACHABLE; 18420 flags |= NCE_F_UNSOL_ADV; 18421 } 18422 18423 retry: 18424 err = nce_lookup_then_add_v4(ill, 18425 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18426 addr, flags, state, &nce); 18427 18428 /* 18429 * note that we may encounter EEXIST if we are moving 18430 * the nce as a result of a rebind operation. 18431 */ 18432 switch (err) { 18433 case 0: 18434 ipif->ipif_added_nce = 1; 18435 nce->nce_ipif_cnt++; 18436 break; 18437 case EEXIST: 18438 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18439 ill->ill_name)); 18440 if (!NCE_MYADDR(nce->nce_common)) { 18441 /* 18442 * A leftover nce from before this address 18443 * existed 18444 */ 18445 ncec_delete(nce->nce_common); 18446 nce_refrele(nce); 18447 nce = NULL; 18448 goto retry; 18449 } 18450 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18451 nce_refrele(nce); 18452 nce = NULL; 18453 ip1dbg(("ipif_arp_up: NCE already exists " 18454 "for %s:%u\n", ill->ill_name, 18455 ipif->ipif_id)); 18456 goto arp_up_done; 18457 } 18458 /* 18459 * Duplicate local addresses are permissible for 18460 * IPIF_POINTOPOINT interfaces which will get marked 18461 * IPIF_UNNUMBERED later in 18462 * ip_addr_availability_check(). 18463 * 18464 * The nce_ipif_cnt field tracks the number of 18465 * ipifs that have nce_addr as their local address. 18466 */ 18467 ipif->ipif_addr_ready = 1; 18468 ipif->ipif_added_nce = 1; 18469 nce->nce_ipif_cnt++; 18470 err = 0; 18471 break; 18472 default: 18473 ASSERT(nce == NULL); 18474 goto arp_up_done; 18475 } 18476 if (arp_no_defense) { 18477 if ((ipif->ipif_flags & IPIF_UP) && 18478 !ipif->ipif_addr_ready) 18479 ipif_up_notify(ipif); 18480 ipif->ipif_addr_ready = 1; 18481 } 18482 } else { 18483 /* zero address. nothing to publish */ 18484 ipif->ipif_addr_ready = 1; 18485 } 18486 if (nce != NULL) 18487 nce_refrele(nce); 18488 arp_up_done: 18489 if (added_ipif && err != 0) 18490 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18491 return (err); 18492 } 18493 18494 int 18495 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18496 { 18497 int err = 0; 18498 ill_t *ill = ipif->ipif_ill; 18499 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18500 18501 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18502 ill_t *, ill, ipif_t *, ipif); 18503 18504 /* 18505 * need to bring up ARP or setup mcast mapping only 18506 * when the first interface is coming UP. 18507 */ 18508 first_interface = (ill->ill_ipif_up_count == 0 && 18509 ill->ill_ipif_dup_count == 0 && !was_dup); 18510 18511 if (res_act == Res_act_initial && first_interface) { 18512 /* 18513 * Send ATTACH + BIND 18514 */ 18515 err = arp_ll_up(ill); 18516 if (err != EINPROGRESS && err != 0) 18517 return (err); 18518 18519 /* 18520 * Add NCE for local address. Start DAD. 18521 * we'll wait to hear that DAD has finished 18522 * before using the interface. 18523 */ 18524 if (err == EINPROGRESS) 18525 wait_for_dlpi = B_TRUE; 18526 } 18527 18528 if (!wait_for_dlpi) 18529 (void) ipif_arp_up_done_tail(ipif, res_act); 18530 18531 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18532 } 18533 18534 /* 18535 * Finish processing of "arp_up" after all the DLPI message 18536 * exchanges have completed between arp and the driver. 18537 */ 18538 void 18539 arp_bringup_done(ill_t *ill, int err) 18540 { 18541 mblk_t *mp1; 18542 ipif_t *ipif; 18543 conn_t *connp = NULL; 18544 ipsq_t *ipsq; 18545 queue_t *q; 18546 18547 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18548 18549 ASSERT(IAM_WRITER_ILL(ill)); 18550 18551 ipsq = ill->ill_phyint->phyint_ipsq; 18552 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18553 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18554 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18555 if (mp1 == NULL) /* bringup was aborted by the user */ 18556 return; 18557 18558 /* 18559 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18560 * must have an associated conn_t. Otherwise, we're bringing this 18561 * interface back up as part of handling an asynchronous event (e.g., 18562 * physical address change). 18563 */ 18564 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18565 ASSERT(connp != NULL); 18566 q = CONNP_TO_WQ(connp); 18567 } else { 18568 ASSERT(connp == NULL); 18569 q = ill->ill_rq; 18570 } 18571 if (err == 0) { 18572 if (ipif->ipif_isv6) { 18573 if ((err = ipif_up_done_v6(ipif)) != 0) 18574 ip0dbg(("arp_bringup_done: init failed\n")); 18575 } else { 18576 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18577 if (err != 0 || 18578 (err = ipif_up_done(ipif)) != 0) { 18579 ip0dbg(("arp_bringup_done: " 18580 "init failed err %x\n", err)); 18581 (void) ipif_arp_down(ipif); 18582 } 18583 18584 } 18585 } else { 18586 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18587 } 18588 18589 if ((err == 0) && (ill->ill_up_ipifs)) { 18590 err = ill_up_ipifs(ill, q, mp1); 18591 if (err == EINPROGRESS) 18592 return; 18593 } 18594 18595 /* 18596 * If we have a moved ipif to bring up, and everything has succeeded 18597 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18598 * down -- the admin can try to bring it up by hand if need be. 18599 */ 18600 if (ill->ill_move_ipif != NULL) { 18601 ipif = ill->ill_move_ipif; 18602 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18603 ipif->ipif_ill->ill_name)); 18604 ill->ill_move_ipif = NULL; 18605 if (err == 0) { 18606 err = ipif_up(ipif, q, mp1); 18607 if (err == EINPROGRESS) 18608 return; 18609 } 18610 } 18611 18612 /* 18613 * The operation must complete without EINPROGRESS since 18614 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18615 * Otherwise, the operation will be stuck forever in the ipsq. 18616 */ 18617 ASSERT(err != EINPROGRESS); 18618 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18619 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18620 int, ipsq->ipsq_xop->ipx_current_ioctl, 18621 ill_t *, ill, ipif_t *, ipif); 18622 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18623 } else { 18624 ipsq_current_finish(ipsq); 18625 } 18626 } 18627 18628 /* 18629 * Finish processing of arp replumb after all the DLPI message 18630 * exchanges have completed between arp and the driver. 18631 */ 18632 void 18633 arp_replumb_done(ill_t *ill, int err) 18634 { 18635 mblk_t *mp1; 18636 ipif_t *ipif; 18637 conn_t *connp = NULL; 18638 ipsq_t *ipsq; 18639 queue_t *q; 18640 18641 ASSERT(IAM_WRITER_ILL(ill)); 18642 18643 ipsq = ill->ill_phyint->phyint_ipsq; 18644 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18645 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18646 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18647 if (mp1 == NULL) { 18648 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18649 ipsq->ipsq_xop->ipx_current_ioctl)); 18650 /* bringup was aborted by the user */ 18651 return; 18652 } 18653 /* 18654 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18655 * must have an associated conn_t. Otherwise, we're bringing this 18656 * interface back up as part of handling an asynchronous event (e.g., 18657 * physical address change). 18658 */ 18659 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18660 ASSERT(connp != NULL); 18661 q = CONNP_TO_WQ(connp); 18662 } else { 18663 ASSERT(connp == NULL); 18664 q = ill->ill_rq; 18665 } 18666 if ((err == 0) && (ill->ill_up_ipifs)) { 18667 err = ill_up_ipifs(ill, q, mp1); 18668 if (err == EINPROGRESS) 18669 return; 18670 } 18671 /* 18672 * The operation must complete without EINPROGRESS since 18673 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18674 * Otherwise, the operation will be stuck forever in the ipsq. 18675 */ 18676 ASSERT(err != EINPROGRESS); 18677 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18678 DTRACE_PROBE4(ipif__ioctl, char *, 18679 "arp_replumb_done finish", 18680 int, ipsq->ipsq_xop->ipx_current_ioctl, 18681 ill_t *, ill, ipif_t *, ipif); 18682 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18683 } else { 18684 ipsq_current_finish(ipsq); 18685 } 18686 } 18687 18688 void 18689 ipif_up_notify(ipif_t *ipif) 18690 { 18691 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18692 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18693 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18694 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18695 NE_LIF_UP, NULL, 0); 18696 } 18697 18698 /* 18699 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18700 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18701 * TPI end points with STREAMS modules pushed above. This is assured by not 18702 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18703 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18704 * while unwinding from the ispq and that could be a thread from the bottom. 18705 */ 18706 /* ARGSUSED */ 18707 int 18708 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18709 ip_ioctl_cmd_t *ipip, void *arg) 18710 { 18711 mblk_t *cmd_mp = mp->b_cont->b_cont; 18712 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18713 int ret = 0; 18714 int i; 18715 size_t size; 18716 ip_stack_t *ipst; 18717 zoneid_t zoneid; 18718 ilb_stack_t *ilbs; 18719 18720 ipst = CONNQ_TO_IPST(q); 18721 ilbs = ipst->ips_netstack->netstack_ilb; 18722 zoneid = Q_TO_CONN(q)->conn_zoneid; 18723 18724 switch (command) { 18725 case ILB_CREATE_RULE: { 18726 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18727 18728 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18729 ret = EINVAL; 18730 break; 18731 } 18732 18733 ret = ilb_rule_add(ilbs, zoneid, cmd); 18734 break; 18735 } 18736 case ILB_DESTROY_RULE: 18737 case ILB_ENABLE_RULE: 18738 case ILB_DISABLE_RULE: { 18739 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18740 18741 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18742 ret = EINVAL; 18743 break; 18744 } 18745 18746 if (cmd->flags & ILB_RULE_ALLRULES) { 18747 if (command == ILB_DESTROY_RULE) { 18748 ilb_rule_del_all(ilbs, zoneid); 18749 break; 18750 } else if (command == ILB_ENABLE_RULE) { 18751 ilb_rule_enable_all(ilbs, zoneid); 18752 break; 18753 } else if (command == ILB_DISABLE_RULE) { 18754 ilb_rule_disable_all(ilbs, zoneid); 18755 break; 18756 } 18757 } else { 18758 if (command == ILB_DESTROY_RULE) { 18759 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18760 } else if (command == ILB_ENABLE_RULE) { 18761 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18762 NULL); 18763 } else if (command == ILB_DISABLE_RULE) { 18764 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18765 NULL); 18766 } 18767 } 18768 break; 18769 } 18770 case ILB_NUM_RULES: { 18771 ilb_num_rules_cmd_t *cmd; 18772 18773 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18774 ret = EINVAL; 18775 break; 18776 } 18777 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18778 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18779 break; 18780 } 18781 case ILB_RULE_NAMES: { 18782 ilb_rule_names_cmd_t *cmd; 18783 18784 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18785 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18786 cmd->num_names == 0) { 18787 ret = EINVAL; 18788 break; 18789 } 18790 size = cmd->num_names * ILB_RULE_NAMESZ; 18791 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18792 size != cmd_mp->b_wptr) { 18793 ret = EINVAL; 18794 break; 18795 } 18796 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18797 break; 18798 } 18799 case ILB_NUM_SERVERS: { 18800 ilb_num_servers_cmd_t *cmd; 18801 18802 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18803 ret = EINVAL; 18804 break; 18805 } 18806 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18807 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18808 &(cmd->num)); 18809 break; 18810 } 18811 case ILB_LIST_RULE: { 18812 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18813 18814 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18815 ret = EINVAL; 18816 break; 18817 } 18818 ret = ilb_rule_list(ilbs, zoneid, cmd); 18819 break; 18820 } 18821 case ILB_LIST_SERVERS: { 18822 ilb_servers_info_cmd_t *cmd; 18823 18824 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18825 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18826 cmd->num_servers == 0) { 18827 ret = EINVAL; 18828 break; 18829 } 18830 size = cmd->num_servers * sizeof (ilb_server_info_t); 18831 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18832 size != cmd_mp->b_wptr) { 18833 ret = EINVAL; 18834 break; 18835 } 18836 18837 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18838 &cmd->num_servers); 18839 break; 18840 } 18841 case ILB_ADD_SERVERS: { 18842 ilb_servers_info_cmd_t *cmd; 18843 ilb_rule_t *rule; 18844 18845 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18846 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18847 ret = EINVAL; 18848 break; 18849 } 18850 size = cmd->num_servers * sizeof (ilb_server_info_t); 18851 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18852 size != cmd_mp->b_wptr) { 18853 ret = EINVAL; 18854 break; 18855 } 18856 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18857 if (rule == NULL) { 18858 ASSERT(ret != 0); 18859 break; 18860 } 18861 for (i = 0; i < cmd->num_servers; i++) { 18862 ilb_server_info_t *s; 18863 18864 s = &cmd->servers[i]; 18865 s->err = ilb_server_add(ilbs, rule, s); 18866 } 18867 ILB_RULE_REFRELE(rule); 18868 break; 18869 } 18870 case ILB_DEL_SERVERS: 18871 case ILB_ENABLE_SERVERS: 18872 case ILB_DISABLE_SERVERS: { 18873 ilb_servers_cmd_t *cmd; 18874 ilb_rule_t *rule; 18875 int (*f)(); 18876 18877 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18878 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18879 ret = EINVAL; 18880 break; 18881 } 18882 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18883 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18884 size != cmd_mp->b_wptr) { 18885 ret = EINVAL; 18886 break; 18887 } 18888 18889 if (command == ILB_DEL_SERVERS) 18890 f = ilb_server_del; 18891 else if (command == ILB_ENABLE_SERVERS) 18892 f = ilb_server_enable; 18893 else if (command == ILB_DISABLE_SERVERS) 18894 f = ilb_server_disable; 18895 18896 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18897 if (rule == NULL) { 18898 ASSERT(ret != 0); 18899 break; 18900 } 18901 18902 for (i = 0; i < cmd->num_servers; i++) { 18903 ilb_server_arg_t *s; 18904 18905 s = &cmd->servers[i]; 18906 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18907 } 18908 ILB_RULE_REFRELE(rule); 18909 break; 18910 } 18911 case ILB_LIST_NAT_TABLE: { 18912 ilb_list_nat_cmd_t *cmd; 18913 18914 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18915 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18916 ret = EINVAL; 18917 break; 18918 } 18919 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18920 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18921 size != cmd_mp->b_wptr) { 18922 ret = EINVAL; 18923 break; 18924 } 18925 18926 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18927 &cmd->flags); 18928 break; 18929 } 18930 case ILB_LIST_STICKY_TABLE: { 18931 ilb_list_sticky_cmd_t *cmd; 18932 18933 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18934 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18935 ret = EINVAL; 18936 break; 18937 } 18938 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18939 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18940 size != cmd_mp->b_wptr) { 18941 ret = EINVAL; 18942 break; 18943 } 18944 18945 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18946 &cmd->num_sticky, &cmd->flags); 18947 break; 18948 } 18949 default: 18950 ret = EINVAL; 18951 break; 18952 } 18953 done: 18954 return (ret); 18955 } 18956 18957 /* Remove all cache entries for this logical interface */ 18958 void 18959 ipif_nce_down(ipif_t *ipif) 18960 { 18961 ill_t *ill = ipif->ipif_ill; 18962 nce_t *nce; 18963 18964 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18965 ill_t *, ill, ipif_t *, ipif); 18966 if (ipif->ipif_added_nce) { 18967 if (ipif->ipif_isv6) 18968 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18969 else 18970 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18971 if (nce != NULL) { 18972 if (--nce->nce_ipif_cnt == 0) 18973 ncec_delete(nce->nce_common); 18974 ipif->ipif_added_nce = 0; 18975 nce_refrele(nce); 18976 } else { 18977 /* 18978 * nce may already be NULL because it was already 18979 * flushed, e.g., due to a call to nce_flush 18980 */ 18981 ipif->ipif_added_nce = 0; 18982 } 18983 } 18984 /* 18985 * Make IPMP aware of the deleted data address. 18986 */ 18987 if (IS_IPMP(ill)) 18988 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18989 18990 /* 18991 * Remove all other nces dependent on this ill when the last ipif 18992 * is going away. 18993 */ 18994 if (ill->ill_ipif_up_count == 0) { 18995 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18996 (uchar_t *)ill, ill->ill_ipst); 18997 if (IS_UNDER_IPMP(ill)) 18998 nce_flush(ill, B_TRUE); 18999 } 19000 } 19001 19002 /* 19003 * find the first interface that uses usill for its source address. 19004 */ 19005 ill_t * 19006 ill_lookup_usesrc(ill_t *usill) 19007 { 19008 ip_stack_t *ipst = usill->ill_ipst; 19009 ill_t *ill; 19010 19011 ASSERT(usill != NULL); 19012 19013 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19014 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19015 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19016 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19017 ill = ill->ill_usesrc_grp_next) { 19018 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19019 !ILL_IS_CONDEMNED(ill)) { 19020 ill_refhold(ill); 19021 break; 19022 } 19023 } 19024 rw_exit(&ipst->ips_ill_g_lock); 19025 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19026 return (ill); 19027 } 19028