1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2014, OmniTI Computer Consulting, Inc. All rights reserved. 26 */ 27 28 /* 29 * This file contains the interface control functions for IP. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/dlpi.h> 35 #include <sys/stropts.h> 36 #include <sys/strsun.h> 37 #include <sys/sysmacros.h> 38 #include <sys/strsubr.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 #include <sys/cpuvar.h> 50 #include <sys/time.h> 51 #include <sys/ctype.h> 52 #include <sys/kmem.h> 53 #include <sys/systm.h> 54 #include <sys/param.h> 55 #include <sys/socket.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/if_types.h> 60 #include <net/if_dl.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <netinet/ip6.h> 65 #include <netinet/icmp6.h> 66 #include <netinet/igmp_var.h> 67 #include <sys/policy.h> 68 #include <sys/ethernet.h> 69 #include <sys/callb.h> 70 #include <sys/md5.h> 71 72 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 73 #include <inet/mi.h> 74 #include <inet/nd.h> 75 #include <inet/tunables.h> 76 #include <inet/arp.h> 77 #include <inet/ip_arp.h> 78 #include <inet/mib2.h> 79 #include <inet/ip.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_ire.h> 85 #include <inet/ip_ftable.h> 86 #include <inet/ip_rts.h> 87 #include <inet/ip_ndp.h> 88 #include <inet/ip_if.h> 89 #include <inet/ip_impl.h> 90 #include <inet/sctp_ip.h> 91 #include <inet/ip_netinfo.h> 92 #include <inet/ilb_ip.h> 93 94 #include <netinet/igmp.h> 95 #include <inet/ip_listutils.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac_client.h> 98 #include <sys/dld.h> 99 #include <sys/mac_flow.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 108 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 109 110 /* The character which tells where the ill_name ends */ 111 #define IPIF_SEPARATOR_CHAR ':' 112 113 /* IP ioctl function table entry */ 114 typedef struct ipft_s { 115 int ipft_cmd; 116 pfi_t ipft_pfi; 117 int ipft_min_size; 118 int ipft_flags; 119 } ipft_t; 120 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 121 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 122 123 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 124 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 125 char *value, caddr_t cp, cred_t *ioc_cr); 126 127 static boolean_t ill_is_quiescent(ill_t *); 128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 137 mblk_t *mp); 138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 143 int ioccmd, struct linkblk *li); 144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 146 static void ipsq_flush(ill_t *ill); 147 148 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static void ipsq_delete(ipsq_t *); 151 152 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 153 boolean_t initialize, boolean_t insert, int *errorp); 154 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 155 static void ipif_delete_bcast_ires(ipif_t *ipif); 156 static int ipif_add_ires_v4(ipif_t *, boolean_t); 157 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 158 boolean_t isv6); 159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_set_default(ipif_t *ipif); 163 static int ipif_set_values(queue_t *q, mblk_t *mp, 164 char *interf_name, uint_t *ppa); 165 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 166 queue_t *q); 167 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 168 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 169 ip_stack_t *); 170 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 171 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 172 int *error, ip_stack_t *); 173 174 static int ill_alloc_ppa(ill_if_t *, ill_t *); 175 static void ill_delete_interface_type(ill_if_t *); 176 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 177 static void ill_dl_down(ill_t *ill); 178 static void ill_down(ill_t *ill); 179 static void ill_down_ipifs(ill_t *, boolean_t); 180 static void ill_free_mib(ill_t *ill); 181 static void ill_glist_delete(ill_t *); 182 static void ill_phyint_reinit(ill_t *ill); 183 static void ill_set_nce_router_flags(ill_t *, boolean_t); 184 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 185 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 186 187 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 188 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 189 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 190 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 191 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 192 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 193 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 194 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 195 static ip_v4mapinfo_func_t ip_mbcast_mapping; 196 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 197 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 198 static void phyint_free(phyint_t *); 199 200 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 201 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 203 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 204 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 205 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 206 dl_capability_sub_t *); 207 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 208 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 209 static void ill_capability_dld_ack(ill_t *, mblk_t *, 210 dl_capability_sub_t *); 211 static void ill_capability_dld_enable(ill_t *); 212 static void ill_capability_ack_thr(void *); 213 static void ill_capability_lso_enable(ill_t *); 214 215 static ill_t *ill_prev_usesrc(ill_t *); 216 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 217 static void ill_disband_usesrc_group(ill_t *); 218 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 219 220 #ifdef DEBUG 221 static void ill_trace_cleanup(const ill_t *); 222 static void ipif_trace_cleanup(const ipif_t *); 223 #endif 224 225 static void ill_dlpi_clear_deferred(ill_t *ill); 226 227 /* 228 * if we go over the memory footprint limit more than once in this msec 229 * interval, we'll start pruning aggressively. 230 */ 231 int ip_min_frag_prune_time = 0; 232 233 static ipft_t ip_ioctl_ftbl[] = { 234 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 235 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 236 IPFT_F_NO_REPLY }, 237 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 238 { 0 } 239 }; 240 241 /* Simple ICMP IP Header Template */ 242 static ipha_t icmp_ipha = { 243 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 244 }; 245 246 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 247 248 static ip_m_t ip_m_tbl[] = { 249 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 259 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 260 ip_nodef_v6intfid }, 261 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 262 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 263 ip_nodef_v6intfid }, 264 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 265 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 266 ip_nodef_v6intfid }, 267 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 268 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 269 ip_ipv4_v6destintfid }, 270 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 271 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 272 ip_ipv6_v6destintfid }, 273 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 274 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 275 ip_nodef_v6intfid }, 276 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 277 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 278 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 279 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 280 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 281 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 282 ip_nodef_v6intfid } 283 }; 284 285 static ill_t ill_null; /* Empty ILL for init. */ 286 char ipif_loopback_name[] = "lo0"; 287 288 /* These are used by all IP network modules. */ 289 sin6_t sin6_null; /* Zero address for quick clears */ 290 sin_t sin_null; /* Zero address for quick clears */ 291 292 /* When set search for unused ipif_seqid */ 293 static ipif_t ipif_zero; 294 295 /* 296 * ppa arena is created after these many 297 * interfaces have been plumbed. 298 */ 299 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 300 301 /* 302 * Allocate per-interface mibs. 303 * Returns true if ok. False otherwise. 304 * ipsq may not yet be allocated (loopback case ). 305 */ 306 static boolean_t 307 ill_allocate_mibs(ill_t *ill) 308 { 309 /* Already allocated? */ 310 if (ill->ill_ip_mib != NULL) { 311 if (ill->ill_isv6) 312 ASSERT(ill->ill_icmp6_mib != NULL); 313 return (B_TRUE); 314 } 315 316 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 317 KM_NOSLEEP); 318 if (ill->ill_ip_mib == NULL) { 319 return (B_FALSE); 320 } 321 322 /* Setup static information */ 323 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 324 sizeof (mib2_ipIfStatsEntry_t)); 325 if (ill->ill_isv6) { 326 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 327 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 328 sizeof (mib2_ipv6AddrEntry_t)); 329 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 330 sizeof (mib2_ipv6RouteEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 332 sizeof (mib2_ipv6NetToMediaEntry_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 334 sizeof (ipv6_member_t)); 335 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 336 sizeof (ipv6_grpsrc_t)); 337 } else { 338 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 339 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 340 sizeof (mib2_ipAddrEntry_t)); 341 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 342 sizeof (mib2_ipRouteEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 344 sizeof (mib2_ipNetToMediaEntry_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 346 sizeof (ip_member_t)); 347 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 348 sizeof (ip_grpsrc_t)); 349 350 /* 351 * For a v4 ill, we are done at this point, because per ill 352 * icmp mibs are only used for v6. 353 */ 354 return (B_TRUE); 355 } 356 357 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 358 KM_NOSLEEP); 359 if (ill->ill_icmp6_mib == NULL) { 360 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 361 ill->ill_ip_mib = NULL; 362 return (B_FALSE); 363 } 364 /* static icmp info */ 365 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 366 sizeof (mib2_ipv6IfIcmpEntry_t); 367 /* 368 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 369 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 370 * -> ill_phyint_reinit 371 */ 372 return (B_TRUE); 373 } 374 375 /* 376 * Completely vaporize a lower level tap and all associated interfaces. 377 * ill_delete is called only out of ip_close when the device control 378 * stream is being closed. 379 */ 380 void 381 ill_delete(ill_t *ill) 382 { 383 ipif_t *ipif; 384 ill_t *prev_ill; 385 ip_stack_t *ipst = ill->ill_ipst; 386 387 /* 388 * ill_delete may be forcibly entering the ipsq. The previous 389 * ioctl may not have completed and may need to be aborted. 390 * ipsq_flush takes care of it. If we don't need to enter the 391 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 392 * ill_delete_tail is sufficient. 393 */ 394 ipsq_flush(ill); 395 396 /* 397 * Nuke all interfaces. ipif_free will take down the interface, 398 * remove it from the list, and free the data structure. 399 * Walk down the ipif list and remove the logical interfaces 400 * first before removing the main ipif. We can't unplumb 401 * zeroth interface first in the case of IPv6 as update_conn_ill 402 * -> ip_ll_multireq de-references ill_ipif for checking 403 * POINTOPOINT. 404 * 405 * If ill_ipif was not properly initialized (i.e low on memory), 406 * then no interfaces to clean up. In this case just clean up the 407 * ill. 408 */ 409 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 410 ipif_free(ipif); 411 412 /* 413 * clean out all the nce_t entries that depend on this 414 * ill for the ill_phys_addr. 415 */ 416 nce_flush(ill, B_TRUE); 417 418 /* Clean up msgs on pending upcalls for mrouted */ 419 reset_mrt_ill(ill); 420 421 update_conn_ill(ill, ipst); 422 423 /* 424 * Remove multicast references added as a result of calls to 425 * ip_join_allmulti(). 426 */ 427 ip_purge_allmulti(ill); 428 429 /* 430 * If the ill being deleted is under IPMP, boot it out of the illgrp. 431 */ 432 if (IS_UNDER_IPMP(ill)) 433 ipmp_ill_leave_illgrp(ill); 434 435 /* 436 * ill_down will arrange to blow off any IRE's dependent on this 437 * ILL, and shut down fragmentation reassembly. 438 */ 439 ill_down(ill); 440 441 /* Let SCTP know, so that it can remove this from its list. */ 442 sctp_update_ill(ill, SCTP_ILL_REMOVE); 443 444 /* 445 * Walk all CONNs that can have a reference on an ire or nce for this 446 * ill (we actually walk all that now have stale references). 447 */ 448 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 449 450 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 451 if (ill->ill_isv6) 452 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 453 454 /* 455 * If an address on this ILL is being used as a source address then 456 * clear out the pointers in other ILLs that point to this ILL. 457 */ 458 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 459 if (ill->ill_usesrc_grp_next != NULL) { 460 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 461 ill_disband_usesrc_group(ill); 462 } else { /* consumer of the usesrc ILL */ 463 prev_ill = ill_prev_usesrc(ill); 464 prev_ill->ill_usesrc_grp_next = 465 ill->ill_usesrc_grp_next; 466 } 467 } 468 rw_exit(&ipst->ips_ill_g_usesrc_lock); 469 } 470 471 static void 472 ipif_non_duplicate(ipif_t *ipif) 473 { 474 ill_t *ill = ipif->ipif_ill; 475 mutex_enter(&ill->ill_lock); 476 if (ipif->ipif_flags & IPIF_DUPLICATE) { 477 ipif->ipif_flags &= ~IPIF_DUPLICATE; 478 ASSERT(ill->ill_ipif_dup_count > 0); 479 ill->ill_ipif_dup_count--; 480 } 481 mutex_exit(&ill->ill_lock); 482 } 483 484 /* 485 * ill_delete_tail is called from ip_modclose after all references 486 * to the closing ill are gone. The wait is done in ip_modclose 487 */ 488 void 489 ill_delete_tail(ill_t *ill) 490 { 491 mblk_t **mpp; 492 ipif_t *ipif; 493 ip_stack_t *ipst = ill->ill_ipst; 494 495 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 496 ipif_non_duplicate(ipif); 497 (void) ipif_down_tail(ipif); 498 } 499 500 ASSERT(ill->ill_ipif_dup_count == 0); 501 502 /* 503 * If polling capability is enabled (which signifies direct 504 * upcall into IP and driver has ill saved as a handle), 505 * we need to make sure that unbind has completed before we 506 * let the ill disappear and driver no longer has any reference 507 * to this ill. 508 */ 509 mutex_enter(&ill->ill_lock); 510 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 511 cv_wait(&ill->ill_cv, &ill->ill_lock); 512 mutex_exit(&ill->ill_lock); 513 ASSERT(!(ill->ill_capabilities & 514 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 515 516 if (ill->ill_net_type != IRE_LOOPBACK) 517 qprocsoff(ill->ill_rq); 518 519 /* 520 * We do an ipsq_flush once again now. New messages could have 521 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 522 * could also have landed up if an ioctl thread had looked up 523 * the ill before we set the ILL_CONDEMNED flag, but not yet 524 * enqueued the ioctl when we did the ipsq_flush last time. 525 */ 526 ipsq_flush(ill); 527 528 /* 529 * Free capabilities. 530 */ 531 if (ill->ill_hcksum_capab != NULL) { 532 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 533 ill->ill_hcksum_capab = NULL; 534 } 535 536 if (ill->ill_zerocopy_capab != NULL) { 537 kmem_free(ill->ill_zerocopy_capab, 538 sizeof (ill_zerocopy_capab_t)); 539 ill->ill_zerocopy_capab = NULL; 540 } 541 542 if (ill->ill_lso_capab != NULL) { 543 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 544 ill->ill_lso_capab = NULL; 545 } 546 547 if (ill->ill_dld_capab != NULL) { 548 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 549 ill->ill_dld_capab = NULL; 550 } 551 552 /* Clean up ill_allowed_ips* related state */ 553 if (ill->ill_allowed_ips != NULL) { 554 ASSERT(ill->ill_allowed_ips_cnt > 0); 555 kmem_free(ill->ill_allowed_ips, 556 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 557 ill->ill_allowed_ips = NULL; 558 ill->ill_allowed_ips_cnt = 0; 559 } 560 561 while (ill->ill_ipif != NULL) 562 ipif_free_tail(ill->ill_ipif); 563 564 /* 565 * We have removed all references to ilm from conn and the ones joined 566 * within the kernel. 567 * 568 * We don't walk conns, mrts and ires because 569 * 570 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 571 * 2) ill_down ->ill_downi walks all the ires and cleans up 572 * ill references. 573 */ 574 575 /* 576 * If this ill is an IPMP meta-interface, blow away the illgrp. This 577 * is safe to do because the illgrp has already been unlinked from the 578 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 579 */ 580 if (IS_IPMP(ill)) { 581 ipmp_illgrp_destroy(ill->ill_grp); 582 ill->ill_grp = NULL; 583 } 584 585 if (ill->ill_mphysaddr_list != NULL) { 586 multiphysaddr_t *mpa, *tmpa; 587 588 mpa = ill->ill_mphysaddr_list; 589 ill->ill_mphysaddr_list = NULL; 590 while (mpa) { 591 tmpa = mpa->mpa_next; 592 kmem_free(mpa, sizeof (*mpa)); 593 mpa = tmpa; 594 } 595 } 596 /* 597 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 598 * could free the phyint. No more reference to the phyint after this 599 * point. 600 */ 601 (void) ill_glist_delete(ill); 602 603 if (ill->ill_frag_ptr != NULL) { 604 uint_t count; 605 606 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 607 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 608 } 609 mi_free(ill->ill_frag_ptr); 610 ill->ill_frag_ptr = NULL; 611 ill->ill_frag_hash_tbl = NULL; 612 } 613 614 freemsg(ill->ill_nd_lla_mp); 615 /* Free all retained control messages. */ 616 mpp = &ill->ill_first_mp_to_free; 617 do { 618 while (mpp[0]) { 619 mblk_t *mp; 620 mblk_t *mp1; 621 622 mp = mpp[0]; 623 mpp[0] = mp->b_next; 624 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 625 mp1->b_next = NULL; 626 mp1->b_prev = NULL; 627 } 628 freemsg(mp); 629 } 630 } while (mpp++ != &ill->ill_last_mp_to_free); 631 632 ill_free_mib(ill); 633 634 #ifdef DEBUG 635 ill_trace_cleanup(ill); 636 #endif 637 638 /* The default multicast interface might have changed */ 639 ire_increment_multicast_generation(ipst, ill->ill_isv6); 640 641 /* Drop refcnt here */ 642 netstack_rele(ill->ill_ipst->ips_netstack); 643 ill->ill_ipst = NULL; 644 } 645 646 static void 647 ill_free_mib(ill_t *ill) 648 { 649 ip_stack_t *ipst = ill->ill_ipst; 650 651 /* 652 * MIB statistics must not be lost, so when an interface 653 * goes away the counter values will be added to the global 654 * MIBs. 655 */ 656 if (ill->ill_ip_mib != NULL) { 657 if (ill->ill_isv6) { 658 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 659 ill->ill_ip_mib); 660 } else { 661 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 662 ill->ill_ip_mib); 663 } 664 665 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 666 ill->ill_ip_mib = NULL; 667 } 668 if (ill->ill_icmp6_mib != NULL) { 669 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 670 ill->ill_icmp6_mib); 671 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 672 ill->ill_icmp6_mib = NULL; 673 } 674 } 675 676 /* 677 * Concatenate together a physical address and a sap. 678 * 679 * Sap_lengths are interpreted as follows: 680 * sap_length == 0 ==> no sap 681 * sap_length > 0 ==> sap is at the head of the dlpi address 682 * sap_length < 0 ==> sap is at the tail of the dlpi address 683 */ 684 static void 685 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 686 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 687 { 688 uint16_t sap_addr = (uint16_t)sap_src; 689 690 if (sap_length == 0) { 691 if (phys_src == NULL) 692 bzero(dst, phys_length); 693 else 694 bcopy(phys_src, dst, phys_length); 695 } else if (sap_length < 0) { 696 if (phys_src == NULL) 697 bzero(dst, phys_length); 698 else 699 bcopy(phys_src, dst, phys_length); 700 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 701 } else { 702 bcopy(&sap_addr, dst, sizeof (sap_addr)); 703 if (phys_src == NULL) 704 bzero((char *)dst + sap_length, phys_length); 705 else 706 bcopy(phys_src, (char *)dst + sap_length, phys_length); 707 } 708 } 709 710 /* 711 * Generate a dl_unitdata_req mblk for the device and address given. 712 * addr_length is the length of the physical portion of the address. 713 * If addr is NULL include an all zero address of the specified length. 714 * TRUE? In any case, addr_length is taken to be the entire length of the 715 * dlpi address, including the absolute value of sap_length. 716 */ 717 mblk_t * 718 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 719 t_scalar_t sap_length) 720 { 721 dl_unitdata_req_t *dlur; 722 mblk_t *mp; 723 t_scalar_t abs_sap_length; /* absolute value */ 724 725 abs_sap_length = ABS(sap_length); 726 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 727 DL_UNITDATA_REQ); 728 if (mp == NULL) 729 return (NULL); 730 dlur = (dl_unitdata_req_t *)mp->b_rptr; 731 /* HACK: accomodate incompatible DLPI drivers */ 732 if (addr_length == 8) 733 addr_length = 6; 734 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 735 dlur->dl_dest_addr_offset = sizeof (*dlur); 736 dlur->dl_priority.dl_min = 0; 737 dlur->dl_priority.dl_max = 0; 738 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 739 (uchar_t *)&dlur[1]); 740 return (mp); 741 } 742 743 /* 744 * Add the pending mp to the list. There can be only 1 pending mp 745 * in the list. Any exclusive ioctl that needs to wait for a response 746 * from another module or driver needs to use this function to set 747 * the ipx_pending_mp to the ioctl mblk and wait for the response from 748 * the other module/driver. This is also used while waiting for the 749 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 750 */ 751 boolean_t 752 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 753 int waitfor) 754 { 755 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 756 757 ASSERT(IAM_WRITER_IPIF(ipif)); 758 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 759 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 760 ASSERT(ipx->ipx_pending_mp == NULL); 761 /* 762 * The caller may be using a different ipif than the one passed into 763 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 764 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 765 * that `ipx_current_ipif == ipif'. 766 */ 767 ASSERT(ipx->ipx_current_ipif != NULL); 768 769 /* 770 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 771 * driver. 772 */ 773 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 774 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 775 (DB_TYPE(add_mp) == M_PCPROTO)); 776 777 if (connp != NULL) { 778 ASSERT(MUTEX_HELD(&connp->conn_lock)); 779 /* 780 * Return error if the conn has started closing. The conn 781 * could have finished cleaning up the pending mp list, 782 * If so we should not add another mp to the list negating 783 * the cleanup. 784 */ 785 if (connp->conn_state_flags & CONN_CLOSING) 786 return (B_FALSE); 787 } 788 mutex_enter(&ipx->ipx_lock); 789 ipx->ipx_pending_ipif = ipif; 790 /* 791 * Note down the queue in b_queue. This will be returned by 792 * ipsq_pending_mp_get. Caller will then use these values to restart 793 * the processing 794 */ 795 add_mp->b_next = NULL; 796 add_mp->b_queue = q; 797 ipx->ipx_pending_mp = add_mp; 798 ipx->ipx_waitfor = waitfor; 799 mutex_exit(&ipx->ipx_lock); 800 801 if (connp != NULL) 802 connp->conn_oper_pending_ill = ipif->ipif_ill; 803 804 return (B_TRUE); 805 } 806 807 /* 808 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 809 * queued in the list. 810 */ 811 mblk_t * 812 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 813 { 814 mblk_t *curr = NULL; 815 ipxop_t *ipx = ipsq->ipsq_xop; 816 817 *connpp = NULL; 818 mutex_enter(&ipx->ipx_lock); 819 if (ipx->ipx_pending_mp == NULL) { 820 mutex_exit(&ipx->ipx_lock); 821 return (NULL); 822 } 823 824 /* There can be only 1 such excl message */ 825 curr = ipx->ipx_pending_mp; 826 ASSERT(curr->b_next == NULL); 827 ipx->ipx_pending_ipif = NULL; 828 ipx->ipx_pending_mp = NULL; 829 ipx->ipx_waitfor = 0; 830 mutex_exit(&ipx->ipx_lock); 831 832 if (CONN_Q(curr->b_queue)) { 833 /* 834 * This mp did a refhold on the conn, at the start of the ioctl. 835 * So we can safely return a pointer to the conn to the caller. 836 */ 837 *connpp = Q_TO_CONN(curr->b_queue); 838 } else { 839 *connpp = NULL; 840 } 841 curr->b_next = NULL; 842 curr->b_prev = NULL; 843 return (curr); 844 } 845 846 /* 847 * Cleanup the ioctl mp queued in ipx_pending_mp 848 * - Called in the ill_delete path 849 * - Called in the M_ERROR or M_HANGUP path on the ill. 850 * - Called in the conn close path. 851 * 852 * Returns success on finding the pending mblk associated with the ioctl or 853 * exclusive operation in progress, failure otherwise. 854 */ 855 boolean_t 856 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 857 { 858 mblk_t *mp; 859 ipxop_t *ipx; 860 queue_t *q; 861 ipif_t *ipif; 862 int cmd; 863 864 ASSERT(IAM_WRITER_ILL(ill)); 865 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 866 867 mutex_enter(&ipx->ipx_lock); 868 mp = ipx->ipx_pending_mp; 869 if (connp != NULL) { 870 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 871 /* 872 * Nothing to clean since the conn that is closing 873 * does not have a matching pending mblk in 874 * ipx_pending_mp. 875 */ 876 mutex_exit(&ipx->ipx_lock); 877 return (B_FALSE); 878 } 879 } else { 880 /* 881 * A non-zero ill_error signifies we are called in the 882 * M_ERROR or M_HANGUP path and we need to unconditionally 883 * abort any current ioctl and do the corresponding cleanup. 884 * A zero ill_error means we are in the ill_delete path and 885 * we do the cleanup only if there is a pending mp. 886 */ 887 if (mp == NULL && ill->ill_error == 0) { 888 mutex_exit(&ipx->ipx_lock); 889 return (B_FALSE); 890 } 891 } 892 893 /* Now remove from the ipx_pending_mp */ 894 ipx->ipx_pending_mp = NULL; 895 ipif = ipx->ipx_pending_ipif; 896 ipx->ipx_pending_ipif = NULL; 897 ipx->ipx_waitfor = 0; 898 ipx->ipx_current_ipif = NULL; 899 cmd = ipx->ipx_current_ioctl; 900 ipx->ipx_current_ioctl = 0; 901 ipx->ipx_current_done = B_TRUE; 902 mutex_exit(&ipx->ipx_lock); 903 904 if (mp == NULL) 905 return (B_FALSE); 906 907 q = mp->b_queue; 908 mp->b_next = NULL; 909 mp->b_prev = NULL; 910 mp->b_queue = NULL; 911 912 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 913 DTRACE_PROBE4(ipif__ioctl, 914 char *, "ipsq_pending_mp_cleanup", 915 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 916 ipif_t *, ipif); 917 if (connp == NULL) { 918 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 919 } else { 920 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 921 mutex_enter(&ipif->ipif_ill->ill_lock); 922 ipif->ipif_state_flags &= ~IPIF_CHANGING; 923 mutex_exit(&ipif->ipif_ill->ill_lock); 924 } 925 } else { 926 inet_freemsg(mp); 927 } 928 return (B_TRUE); 929 } 930 931 /* 932 * Called in the conn close path and ill delete path 933 */ 934 static void 935 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 936 { 937 ipsq_t *ipsq; 938 mblk_t *prev; 939 mblk_t *curr; 940 mblk_t *next; 941 queue_t *wq, *rq = NULL; 942 mblk_t *tmp_list = NULL; 943 944 ASSERT(IAM_WRITER_ILL(ill)); 945 if (connp != NULL) 946 wq = CONNP_TO_WQ(connp); 947 else 948 wq = ill->ill_wq; 949 950 /* 951 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 952 * against this here. 953 */ 954 if (wq != NULL) 955 rq = RD(wq); 956 957 ipsq = ill->ill_phyint->phyint_ipsq; 958 /* 959 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 960 * In the case of ioctl from a conn, there can be only 1 mp 961 * queued on the ipsq. If an ill is being unplumbed flush all 962 * the messages. 963 */ 964 mutex_enter(&ipsq->ipsq_lock); 965 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 966 curr = next) { 967 next = curr->b_next; 968 if (connp == NULL || 969 (curr->b_queue == wq || curr->b_queue == rq)) { 970 /* Unlink the mblk from the pending mp list */ 971 if (prev != NULL) { 972 prev->b_next = curr->b_next; 973 } else { 974 ASSERT(ipsq->ipsq_xopq_mphead == curr); 975 ipsq->ipsq_xopq_mphead = curr->b_next; 976 } 977 if (ipsq->ipsq_xopq_mptail == curr) 978 ipsq->ipsq_xopq_mptail = prev; 979 /* 980 * Create a temporary list and release the ipsq lock 981 * New elements are added to the head of the tmp_list 982 */ 983 curr->b_next = tmp_list; 984 tmp_list = curr; 985 } else { 986 prev = curr; 987 } 988 } 989 mutex_exit(&ipsq->ipsq_lock); 990 991 while (tmp_list != NULL) { 992 curr = tmp_list; 993 tmp_list = curr->b_next; 994 curr->b_next = NULL; 995 curr->b_prev = NULL; 996 wq = curr->b_queue; 997 curr->b_queue = NULL; 998 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 999 DTRACE_PROBE4(ipif__ioctl, 1000 char *, "ipsq_xopq_mp_cleanup", 1001 int, 0, ill_t *, NULL, ipif_t *, NULL); 1002 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1003 CONN_CLOSE : NO_COPYOUT, NULL); 1004 } else { 1005 /* 1006 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1007 * this can't be just inet_freemsg. we have to 1008 * restart it otherwise the thread will be stuck. 1009 */ 1010 inet_freemsg(curr); 1011 } 1012 } 1013 } 1014 1015 /* 1016 * This conn has started closing. Cleanup any pending ioctl from this conn. 1017 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1018 */ 1019 void 1020 conn_ioctl_cleanup(conn_t *connp) 1021 { 1022 ipsq_t *ipsq; 1023 ill_t *ill; 1024 boolean_t refheld; 1025 1026 /* 1027 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1028 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1029 * started the mp could be present in ipx_pending_mp. Note that if 1030 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1031 * not yet queued anywhere. In this case, the conn close code will wait 1032 * until the conn_ref is dropped. If the stream was a tcp stream, then 1033 * tcp_close will wait first until all ioctls have completed for this 1034 * conn. 1035 */ 1036 mutex_enter(&connp->conn_lock); 1037 ill = connp->conn_oper_pending_ill; 1038 if (ill == NULL) { 1039 mutex_exit(&connp->conn_lock); 1040 return; 1041 } 1042 1043 /* 1044 * We may not be able to refhold the ill if the ill/ipif 1045 * is changing. But we need to make sure that the ill will 1046 * not vanish. So we just bump up the ill_waiter count. 1047 */ 1048 refheld = ill_waiter_inc(ill); 1049 mutex_exit(&connp->conn_lock); 1050 if (refheld) { 1051 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1052 ill_waiter_dcr(ill); 1053 /* 1054 * Check whether this ioctl has started and is 1055 * pending. If it is not found there then check 1056 * whether this ioctl has not even started and is in 1057 * the ipsq_xopq list. 1058 */ 1059 if (!ipsq_pending_mp_cleanup(ill, connp)) 1060 ipsq_xopq_mp_cleanup(ill, connp); 1061 ipsq = ill->ill_phyint->phyint_ipsq; 1062 ipsq_exit(ipsq); 1063 return; 1064 } 1065 } 1066 1067 /* 1068 * The ill is also closing and we could not bump up the 1069 * ill_waiter_count or we could not enter the ipsq. Leave 1070 * the cleanup to ill_delete 1071 */ 1072 mutex_enter(&connp->conn_lock); 1073 while (connp->conn_oper_pending_ill != NULL) 1074 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1075 mutex_exit(&connp->conn_lock); 1076 if (refheld) 1077 ill_waiter_dcr(ill); 1078 } 1079 1080 /* 1081 * ipcl_walk function for cleaning up conn_*_ill fields. 1082 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1083 * conn_bound_if in place. We prefer dropping 1084 * packets instead of sending them out the wrong interface, or accepting 1085 * packets from the wrong ifindex. 1086 */ 1087 static void 1088 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1089 { 1090 ill_t *ill = (ill_t *)arg; 1091 1092 mutex_enter(&connp->conn_lock); 1093 if (connp->conn_dhcpinit_ill == ill) { 1094 connp->conn_dhcpinit_ill = NULL; 1095 ASSERT(ill->ill_dhcpinit != 0); 1096 atomic_dec_32(&ill->ill_dhcpinit); 1097 ill_set_inputfn(ill); 1098 } 1099 mutex_exit(&connp->conn_lock); 1100 } 1101 1102 static int 1103 ill_down_ipifs_tail(ill_t *ill) 1104 { 1105 ipif_t *ipif; 1106 int err; 1107 1108 ASSERT(IAM_WRITER_ILL(ill)); 1109 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1110 ipif_non_duplicate(ipif); 1111 /* 1112 * ipif_down_tail will call arp_ll_down on the last ipif 1113 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1114 */ 1115 if ((err = ipif_down_tail(ipif)) != 0) 1116 return (err); 1117 } 1118 return (0); 1119 } 1120 1121 /* ARGSUSED */ 1122 void 1123 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1124 { 1125 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1126 (void) ill_down_ipifs_tail(q->q_ptr); 1127 freemsg(mp); 1128 ipsq_current_finish(ipsq); 1129 } 1130 1131 /* 1132 * ill_down_start is called when we want to down this ill and bring it up again 1133 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1134 * all interfaces, but don't tear down any plumbing. 1135 */ 1136 boolean_t 1137 ill_down_start(queue_t *q, mblk_t *mp) 1138 { 1139 ill_t *ill = q->q_ptr; 1140 ipif_t *ipif; 1141 1142 ASSERT(IAM_WRITER_ILL(ill)); 1143 /* 1144 * It is possible that some ioctl is already in progress while we 1145 * received the M_ERROR / M_HANGUP in which case, we need to abort 1146 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1147 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1148 * the in progress ioctl from ever completing. 1149 * 1150 * The thread that started the ioctl (if any) must have returned, 1151 * since we are now executing as writer. After the 2 calls below, 1152 * the state of the ipsq and the ill would reflect no trace of any 1153 * pending operation. Subsequently if there is any response to the 1154 * original ioctl from the driver, it would be discarded as an 1155 * unsolicited message from the driver. 1156 */ 1157 (void) ipsq_pending_mp_cleanup(ill, NULL); 1158 ill_dlpi_clear_deferred(ill); 1159 1160 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1161 (void) ipif_down(ipif, NULL, NULL); 1162 1163 ill_down(ill); 1164 1165 /* 1166 * Walk all CONNs that can have a reference on an ire or nce for this 1167 * ill (we actually walk all that now have stale references). 1168 */ 1169 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1170 1171 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1172 if (ill->ill_isv6) 1173 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1174 1175 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1176 1177 /* 1178 * Atomically test and add the pending mp if references are active. 1179 */ 1180 mutex_enter(&ill->ill_lock); 1181 if (!ill_is_quiescent(ill)) { 1182 /* call cannot fail since `conn_t *' argument is NULL */ 1183 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1184 mp, ILL_DOWN); 1185 mutex_exit(&ill->ill_lock); 1186 return (B_FALSE); 1187 } 1188 mutex_exit(&ill->ill_lock); 1189 return (B_TRUE); 1190 } 1191 1192 static void 1193 ill_down(ill_t *ill) 1194 { 1195 mblk_t *mp; 1196 ip_stack_t *ipst = ill->ill_ipst; 1197 1198 /* 1199 * Blow off any IREs dependent on this ILL. 1200 * The caller needs to handle conn_ixa_cleanup 1201 */ 1202 ill_delete_ires(ill); 1203 1204 ire_walk_ill(0, 0, ill_downi, ill, ill); 1205 1206 /* Remove any conn_*_ill depending on this ill */ 1207 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1208 1209 /* 1210 * Free state for additional IREs. 1211 */ 1212 mutex_enter(&ill->ill_saved_ire_lock); 1213 mp = ill->ill_saved_ire_mp; 1214 ill->ill_saved_ire_mp = NULL; 1215 ill->ill_saved_ire_cnt = 0; 1216 mutex_exit(&ill->ill_saved_ire_lock); 1217 freemsg(mp); 1218 } 1219 1220 /* 1221 * ire_walk routine used to delete every IRE that depends on 1222 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1223 * 1224 * Note: since the routes added by the kernel are deleted separately, 1225 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1226 * 1227 * We also remove references on ire_nce_cache entries that refer to the ill. 1228 */ 1229 void 1230 ill_downi(ire_t *ire, char *ill_arg) 1231 { 1232 ill_t *ill = (ill_t *)ill_arg; 1233 nce_t *nce; 1234 1235 mutex_enter(&ire->ire_lock); 1236 nce = ire->ire_nce_cache; 1237 if (nce != NULL && nce->nce_ill == ill) 1238 ire->ire_nce_cache = NULL; 1239 else 1240 nce = NULL; 1241 mutex_exit(&ire->ire_lock); 1242 if (nce != NULL) 1243 nce_refrele(nce); 1244 if (ire->ire_ill == ill) { 1245 /* 1246 * The existing interface binding for ire must be 1247 * deleted before trying to bind the route to another 1248 * interface. However, since we are using the contents of the 1249 * ire after ire_delete, the caller has to ensure that 1250 * CONDEMNED (deleted) ire's are not removed from the list 1251 * when ire_delete() returns. Currently ill_downi() is 1252 * only called as part of ire_walk*() routines, so that 1253 * the irb_refhold() done by ire_walk*() will ensure that 1254 * ire_delete() does not lead to ire_inactive(). 1255 */ 1256 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1257 ire_delete(ire); 1258 if (ire->ire_unbound) 1259 ire_rebind(ire); 1260 } 1261 } 1262 1263 /* Remove IRE_IF_CLONE on this ill */ 1264 void 1265 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1266 { 1267 ill_t *ill = (ill_t *)ill_arg; 1268 1269 ASSERT(ire->ire_type & IRE_IF_CLONE); 1270 if (ire->ire_ill == ill) 1271 ire_delete(ire); 1272 } 1273 1274 /* Consume an M_IOCACK of the fastpath probe. */ 1275 void 1276 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1277 { 1278 mblk_t *mp1 = mp; 1279 1280 /* 1281 * If this was the first attempt turn on the fastpath probing. 1282 */ 1283 mutex_enter(&ill->ill_lock); 1284 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1285 ill->ill_dlpi_fastpath_state = IDS_OK; 1286 mutex_exit(&ill->ill_lock); 1287 1288 /* Free the M_IOCACK mblk, hold on to the data */ 1289 mp = mp->b_cont; 1290 freeb(mp1); 1291 if (mp == NULL) 1292 return; 1293 if (mp->b_cont != NULL) 1294 nce_fastpath_update(ill, mp); 1295 else 1296 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1297 freemsg(mp); 1298 } 1299 1300 /* 1301 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1302 * The data portion of the request is a dl_unitdata_req_t template for 1303 * what we would send downstream in the absence of a fastpath confirmation. 1304 */ 1305 int 1306 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1307 { 1308 struct iocblk *ioc; 1309 mblk_t *mp; 1310 1311 if (dlur_mp == NULL) 1312 return (EINVAL); 1313 1314 mutex_enter(&ill->ill_lock); 1315 switch (ill->ill_dlpi_fastpath_state) { 1316 case IDS_FAILED: 1317 /* 1318 * Driver NAKed the first fastpath ioctl - assume it doesn't 1319 * support it. 1320 */ 1321 mutex_exit(&ill->ill_lock); 1322 return (ENOTSUP); 1323 case IDS_UNKNOWN: 1324 /* This is the first probe */ 1325 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1326 break; 1327 default: 1328 break; 1329 } 1330 mutex_exit(&ill->ill_lock); 1331 1332 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1333 return (EAGAIN); 1334 1335 mp->b_cont = copyb(dlur_mp); 1336 if (mp->b_cont == NULL) { 1337 freeb(mp); 1338 return (EAGAIN); 1339 } 1340 1341 ioc = (struct iocblk *)mp->b_rptr; 1342 ioc->ioc_count = msgdsize(mp->b_cont); 1343 1344 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1345 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1346 putnext(ill->ill_wq, mp); 1347 return (0); 1348 } 1349 1350 void 1351 ill_capability_probe(ill_t *ill) 1352 { 1353 mblk_t *mp; 1354 1355 ASSERT(IAM_WRITER_ILL(ill)); 1356 1357 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1358 ill->ill_dlpi_capab_state != IDCS_FAILED) 1359 return; 1360 1361 /* 1362 * We are starting a new cycle of capability negotiation. 1363 * Free up the capab reset messages of any previous incarnation. 1364 * We will do a fresh allocation when we get the response to our probe 1365 */ 1366 if (ill->ill_capab_reset_mp != NULL) { 1367 freemsg(ill->ill_capab_reset_mp); 1368 ill->ill_capab_reset_mp = NULL; 1369 } 1370 1371 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1372 1373 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1374 if (mp == NULL) 1375 return; 1376 1377 ill_capability_send(ill, mp); 1378 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1379 } 1380 1381 void 1382 ill_capability_reset(ill_t *ill, boolean_t reneg) 1383 { 1384 ASSERT(IAM_WRITER_ILL(ill)); 1385 1386 if (ill->ill_dlpi_capab_state != IDCS_OK) 1387 return; 1388 1389 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1390 1391 ill_capability_send(ill, ill->ill_capab_reset_mp); 1392 ill->ill_capab_reset_mp = NULL; 1393 /* 1394 * We turn off all capabilities except those pertaining to 1395 * direct function call capabilities viz. ILL_CAPAB_DLD* 1396 * which will be turned off by the corresponding reset functions. 1397 */ 1398 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1399 } 1400 1401 static void 1402 ill_capability_reset_alloc(ill_t *ill) 1403 { 1404 mblk_t *mp; 1405 size_t size = 0; 1406 int err; 1407 dl_capability_req_t *capb; 1408 1409 ASSERT(IAM_WRITER_ILL(ill)); 1410 ASSERT(ill->ill_capab_reset_mp == NULL); 1411 1412 if (ILL_HCKSUM_CAPABLE(ill)) { 1413 size += sizeof (dl_capability_sub_t) + 1414 sizeof (dl_capab_hcksum_t); 1415 } 1416 1417 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1418 size += sizeof (dl_capability_sub_t) + 1419 sizeof (dl_capab_zerocopy_t); 1420 } 1421 1422 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1423 size += sizeof (dl_capability_sub_t) + 1424 sizeof (dl_capab_dld_t); 1425 } 1426 1427 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1428 STR_NOSIG, &err); 1429 1430 mp->b_datap->db_type = M_PROTO; 1431 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1432 1433 capb = (dl_capability_req_t *)mp->b_rptr; 1434 capb->dl_primitive = DL_CAPABILITY_REQ; 1435 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1436 capb->dl_sub_length = size; 1437 1438 mp->b_wptr += sizeof (dl_capability_req_t); 1439 1440 /* 1441 * Each handler fills in the corresponding dl_capability_sub_t 1442 * inside the mblk, 1443 */ 1444 ill_capability_hcksum_reset_fill(ill, mp); 1445 ill_capability_zerocopy_reset_fill(ill, mp); 1446 ill_capability_dld_reset_fill(ill, mp); 1447 1448 ill->ill_capab_reset_mp = mp; 1449 } 1450 1451 static void 1452 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1453 { 1454 dl_capab_id_t *id_ic; 1455 uint_t sub_dl_cap = outers->dl_cap; 1456 dl_capability_sub_t *inners; 1457 uint8_t *capend; 1458 1459 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1460 1461 /* 1462 * Note: range checks here are not absolutely sufficient to 1463 * make us robust against malformed messages sent by drivers; 1464 * this is in keeping with the rest of IP's dlpi handling. 1465 * (Remember, it's coming from something else in the kernel 1466 * address space) 1467 */ 1468 1469 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1470 if (capend > mp->b_wptr) { 1471 cmn_err(CE_WARN, "ill_capability_id_ack: " 1472 "malformed sub-capability too long for mblk"); 1473 return; 1474 } 1475 1476 id_ic = (dl_capab_id_t *)(outers + 1); 1477 1478 if (outers->dl_length < sizeof (*id_ic) || 1479 (inners = &id_ic->id_subcap, 1480 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1481 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1482 "encapsulated capab type %d too long for mblk", 1483 inners->dl_cap); 1484 return; 1485 } 1486 1487 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1488 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1489 "isn't as expected; pass-thru module(s) detected, " 1490 "discarding capability\n", inners->dl_cap)); 1491 return; 1492 } 1493 1494 /* Process the encapsulated sub-capability */ 1495 ill_capability_dispatch(ill, mp, inners); 1496 } 1497 1498 static void 1499 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1500 { 1501 dl_capability_sub_t *dl_subcap; 1502 1503 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1504 return; 1505 1506 /* 1507 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1508 * initialized below since it is not used by DLD. 1509 */ 1510 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1511 dl_subcap->dl_cap = DL_CAPAB_DLD; 1512 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1513 1514 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1515 } 1516 1517 static void 1518 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1519 { 1520 /* 1521 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1522 * is only to get the VRRP capability. 1523 * 1524 * Note that we cannot check ill_ipif_up_count here since 1525 * ill_ipif_up_count is only incremented when the resolver is setup. 1526 * That is done asynchronously, and can race with this function. 1527 */ 1528 if (!ill->ill_dl_up) { 1529 if (subp->dl_cap == DL_CAPAB_VRRP) 1530 ill_capability_vrrp_ack(ill, mp, subp); 1531 return; 1532 } 1533 1534 switch (subp->dl_cap) { 1535 case DL_CAPAB_HCKSUM: 1536 ill_capability_hcksum_ack(ill, mp, subp); 1537 break; 1538 case DL_CAPAB_ZEROCOPY: 1539 ill_capability_zerocopy_ack(ill, mp, subp); 1540 break; 1541 case DL_CAPAB_DLD: 1542 ill_capability_dld_ack(ill, mp, subp); 1543 break; 1544 case DL_CAPAB_VRRP: 1545 break; 1546 default: 1547 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1548 subp->dl_cap)); 1549 } 1550 } 1551 1552 /* 1553 * Process the vrrp capability received from a DLS Provider. isub must point 1554 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1555 */ 1556 static void 1557 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1558 { 1559 dl_capab_vrrp_t *vrrp; 1560 uint_t sub_dl_cap = isub->dl_cap; 1561 uint8_t *capend; 1562 1563 ASSERT(IAM_WRITER_ILL(ill)); 1564 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1565 1566 /* 1567 * Note: range checks here are not absolutely sufficient to 1568 * make us robust against malformed messages sent by drivers; 1569 * this is in keeping with the rest of IP's dlpi handling. 1570 * (Remember, it's coming from something else in the kernel 1571 * address space) 1572 */ 1573 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1574 if (capend > mp->b_wptr) { 1575 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1576 "malformed sub-capability too long for mblk"); 1577 return; 1578 } 1579 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1580 1581 /* 1582 * Compare the IP address family and set ILLF_VRRP for the right ill. 1583 */ 1584 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1585 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1586 ill->ill_flags |= ILLF_VRRP; 1587 } 1588 } 1589 1590 /* 1591 * Process a hardware checksum offload capability negotiation ack received 1592 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1593 * of a DL_CAPABILITY_ACK message. 1594 */ 1595 static void 1596 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1597 { 1598 dl_capability_req_t *ocap; 1599 dl_capab_hcksum_t *ihck, *ohck; 1600 ill_hcksum_capab_t **ill_hcksum; 1601 mblk_t *nmp = NULL; 1602 uint_t sub_dl_cap = isub->dl_cap; 1603 uint8_t *capend; 1604 1605 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1606 1607 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1608 1609 /* 1610 * Note: range checks here are not absolutely sufficient to 1611 * make us robust against malformed messages sent by drivers; 1612 * this is in keeping with the rest of IP's dlpi handling. 1613 * (Remember, it's coming from something else in the kernel 1614 * address space) 1615 */ 1616 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1617 if (capend > mp->b_wptr) { 1618 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1619 "malformed sub-capability too long for mblk"); 1620 return; 1621 } 1622 1623 /* 1624 * There are two types of acks we process here: 1625 * 1. acks in reply to a (first form) generic capability req 1626 * (no ENABLE flag set) 1627 * 2. acks in reply to a ENABLE capability req. 1628 * (ENABLE flag set) 1629 */ 1630 ihck = (dl_capab_hcksum_t *)(isub + 1); 1631 1632 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1633 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1634 "unsupported hardware checksum " 1635 "sub-capability (version %d, expected %d)", 1636 ihck->hcksum_version, HCKSUM_VERSION_1); 1637 return; 1638 } 1639 1640 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1641 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1642 "checksum capability isn't as expected; pass-thru " 1643 "module(s) detected, discarding capability\n")); 1644 return; 1645 } 1646 1647 #define CURR_HCKSUM_CAPAB \ 1648 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1649 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1650 1651 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1652 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1653 /* do ENABLE processing */ 1654 if (*ill_hcksum == NULL) { 1655 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1656 KM_NOSLEEP); 1657 1658 if (*ill_hcksum == NULL) { 1659 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1660 "could not enable hcksum version %d " 1661 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1662 ill->ill_name); 1663 return; 1664 } 1665 } 1666 1667 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1668 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1669 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1670 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1671 "has enabled hardware checksumming\n ", 1672 ill->ill_name)); 1673 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1674 /* 1675 * Enabling hardware checksum offload 1676 * Currently IP supports {TCP,UDP}/IPv4 1677 * partial and full cksum offload and 1678 * IPv4 header checksum offload. 1679 * Allocate new mblk which will 1680 * contain a new capability request 1681 * to enable hardware checksum offload. 1682 */ 1683 uint_t size; 1684 uchar_t *rptr; 1685 1686 size = sizeof (dl_capability_req_t) + 1687 sizeof (dl_capability_sub_t) + isub->dl_length; 1688 1689 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1690 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1691 "could not enable hardware cksum for %s (ENOMEM)\n", 1692 ill->ill_name); 1693 return; 1694 } 1695 1696 rptr = nmp->b_rptr; 1697 /* initialize dl_capability_req_t */ 1698 ocap = (dl_capability_req_t *)nmp->b_rptr; 1699 ocap->dl_sub_offset = 1700 sizeof (dl_capability_req_t); 1701 ocap->dl_sub_length = 1702 sizeof (dl_capability_sub_t) + 1703 isub->dl_length; 1704 nmp->b_rptr += sizeof (dl_capability_req_t); 1705 1706 /* initialize dl_capability_sub_t */ 1707 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1708 nmp->b_rptr += sizeof (*isub); 1709 1710 /* initialize dl_capab_hcksum_t */ 1711 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1712 bcopy(ihck, ohck, sizeof (*ihck)); 1713 1714 nmp->b_rptr = rptr; 1715 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1716 1717 /* Set ENABLE flag */ 1718 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1719 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1720 1721 /* 1722 * nmp points to a DL_CAPABILITY_REQ message to enable 1723 * hardware checksum acceleration. 1724 */ 1725 ill_capability_send(ill, nmp); 1726 } else { 1727 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1728 "advertised %x hardware checksum capability flags\n", 1729 ill->ill_name, ihck->hcksum_txflags)); 1730 } 1731 } 1732 1733 static void 1734 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1735 { 1736 dl_capab_hcksum_t *hck_subcap; 1737 dl_capability_sub_t *dl_subcap; 1738 1739 if (!ILL_HCKSUM_CAPABLE(ill)) 1740 return; 1741 1742 ASSERT(ill->ill_hcksum_capab != NULL); 1743 1744 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1745 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1746 dl_subcap->dl_length = sizeof (*hck_subcap); 1747 1748 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1749 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1750 hck_subcap->hcksum_txflags = 0; 1751 1752 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1753 } 1754 1755 static void 1756 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1757 { 1758 mblk_t *nmp = NULL; 1759 dl_capability_req_t *oc; 1760 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1761 ill_zerocopy_capab_t **ill_zerocopy_capab; 1762 uint_t sub_dl_cap = isub->dl_cap; 1763 uint8_t *capend; 1764 1765 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1766 1767 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1768 1769 /* 1770 * Note: range checks here are not absolutely sufficient to 1771 * make us robust against malformed messages sent by drivers; 1772 * this is in keeping with the rest of IP's dlpi handling. 1773 * (Remember, it's coming from something else in the kernel 1774 * address space) 1775 */ 1776 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1777 if (capend > mp->b_wptr) { 1778 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1779 "malformed sub-capability too long for mblk"); 1780 return; 1781 } 1782 1783 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1784 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1785 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1786 "unsupported ZEROCOPY sub-capability (version %d, " 1787 "expected %d)", zc_ic->zerocopy_version, 1788 ZEROCOPY_VERSION_1); 1789 return; 1790 } 1791 1792 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1793 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1794 "capability isn't as expected; pass-thru module(s) " 1795 "detected, discarding capability\n")); 1796 return; 1797 } 1798 1799 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1800 if (*ill_zerocopy_capab == NULL) { 1801 *ill_zerocopy_capab = 1802 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1803 KM_NOSLEEP); 1804 1805 if (*ill_zerocopy_capab == NULL) { 1806 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1807 "could not enable Zero-copy version %d " 1808 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1809 ill->ill_name); 1810 return; 1811 } 1812 } 1813 1814 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1815 "supports Zero-copy version %d\n", ill->ill_name, 1816 ZEROCOPY_VERSION_1)); 1817 1818 (*ill_zerocopy_capab)->ill_zerocopy_version = 1819 zc_ic->zerocopy_version; 1820 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1821 zc_ic->zerocopy_flags; 1822 1823 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1824 } else { 1825 uint_t size; 1826 uchar_t *rptr; 1827 1828 size = sizeof (dl_capability_req_t) + 1829 sizeof (dl_capability_sub_t) + 1830 sizeof (dl_capab_zerocopy_t); 1831 1832 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1833 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1834 "could not enable zerocopy for %s (ENOMEM)\n", 1835 ill->ill_name); 1836 return; 1837 } 1838 1839 rptr = nmp->b_rptr; 1840 /* initialize dl_capability_req_t */ 1841 oc = (dl_capability_req_t *)rptr; 1842 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1843 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1844 sizeof (dl_capab_zerocopy_t); 1845 rptr += sizeof (dl_capability_req_t); 1846 1847 /* initialize dl_capability_sub_t */ 1848 bcopy(isub, rptr, sizeof (*isub)); 1849 rptr += sizeof (*isub); 1850 1851 /* initialize dl_capab_zerocopy_t */ 1852 zc_oc = (dl_capab_zerocopy_t *)rptr; 1853 *zc_oc = *zc_ic; 1854 1855 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1856 "to enable zero-copy version %d\n", ill->ill_name, 1857 ZEROCOPY_VERSION_1)); 1858 1859 /* set VMSAFE_MEM flag */ 1860 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1861 1862 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1863 ill_capability_send(ill, nmp); 1864 } 1865 } 1866 1867 static void 1868 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1869 { 1870 dl_capab_zerocopy_t *zerocopy_subcap; 1871 dl_capability_sub_t *dl_subcap; 1872 1873 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1874 return; 1875 1876 ASSERT(ill->ill_zerocopy_capab != NULL); 1877 1878 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1879 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1880 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1881 1882 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1883 zerocopy_subcap->zerocopy_version = 1884 ill->ill_zerocopy_capab->ill_zerocopy_version; 1885 zerocopy_subcap->zerocopy_flags = 0; 1886 1887 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1888 } 1889 1890 /* 1891 * DLD capability 1892 * Refer to dld.h for more information regarding the purpose and usage 1893 * of this capability. 1894 */ 1895 static void 1896 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1897 { 1898 dl_capab_dld_t *dld_ic, dld; 1899 uint_t sub_dl_cap = isub->dl_cap; 1900 uint8_t *capend; 1901 ill_dld_capab_t *idc; 1902 1903 ASSERT(IAM_WRITER_ILL(ill)); 1904 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1905 1906 /* 1907 * Note: range checks here are not absolutely sufficient to 1908 * make us robust against malformed messages sent by drivers; 1909 * this is in keeping with the rest of IP's dlpi handling. 1910 * (Remember, it's coming from something else in the kernel 1911 * address space) 1912 */ 1913 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1914 if (capend > mp->b_wptr) { 1915 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1916 "malformed sub-capability too long for mblk"); 1917 return; 1918 } 1919 dld_ic = (dl_capab_dld_t *)(isub + 1); 1920 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1921 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1922 "unsupported DLD sub-capability (version %d, " 1923 "expected %d)", dld_ic->dld_version, 1924 DLD_CURRENT_VERSION); 1925 return; 1926 } 1927 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1928 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1929 "capability isn't as expected; pass-thru module(s) " 1930 "detected, discarding capability\n")); 1931 return; 1932 } 1933 1934 /* 1935 * Copy locally to ensure alignment. 1936 */ 1937 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1938 1939 if ((idc = ill->ill_dld_capab) == NULL) { 1940 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1941 if (idc == NULL) { 1942 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1943 "could not enable DLD version %d " 1944 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1945 ill->ill_name); 1946 return; 1947 } 1948 ill->ill_dld_capab = idc; 1949 } 1950 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1951 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1952 ip1dbg(("ill_capability_dld_ack: interface %s " 1953 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1954 1955 ill_capability_dld_enable(ill); 1956 } 1957 1958 /* 1959 * Typically capability negotiation between IP and the driver happens via 1960 * DLPI message exchange. However GLD also offers a direct function call 1961 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1962 * But arbitrary function calls into IP or GLD are not permitted, since both 1963 * of them are protected by their own perimeter mechanism. The perimeter can 1964 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1965 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1966 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1967 * to enter the mac perimeter and then do the direct function calls into 1968 * GLD to enable squeue polling. The ring related callbacks from the mac into 1969 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1970 * protected by the mac perimeter. 1971 */ 1972 static void 1973 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1974 { 1975 ill_dld_capab_t *idc = ill->ill_dld_capab; 1976 int err; 1977 1978 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1979 DLD_ENABLE); 1980 ASSERT(err == 0); 1981 } 1982 1983 static void 1984 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1985 { 1986 ill_dld_capab_t *idc = ill->ill_dld_capab; 1987 int err; 1988 1989 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1990 DLD_DISABLE); 1991 ASSERT(err == 0); 1992 } 1993 1994 boolean_t 1995 ill_mac_perim_held(ill_t *ill) 1996 { 1997 ill_dld_capab_t *idc = ill->ill_dld_capab; 1998 1999 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2000 DLD_QUERY)); 2001 } 2002 2003 static void 2004 ill_capability_direct_enable(ill_t *ill) 2005 { 2006 ill_dld_capab_t *idc = ill->ill_dld_capab; 2007 ill_dld_direct_t *idd = &idc->idc_direct; 2008 dld_capab_direct_t direct; 2009 int rc; 2010 2011 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2012 2013 bzero(&direct, sizeof (direct)); 2014 direct.di_rx_cf = (uintptr_t)ip_input; 2015 direct.di_rx_ch = ill; 2016 2017 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2018 DLD_ENABLE); 2019 if (rc == 0) { 2020 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2021 idd->idd_tx_dh = direct.di_tx_dh; 2022 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2023 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2024 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2025 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2026 ASSERT(idd->idd_tx_cb_df != NULL); 2027 ASSERT(idd->idd_tx_fctl_df != NULL); 2028 ASSERT(idd->idd_tx_df != NULL); 2029 /* 2030 * One time registration of flow enable callback function 2031 */ 2032 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2033 ill_flow_enable, ill); 2034 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2035 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2036 } else { 2037 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2038 "capability, rc = %d\n", rc); 2039 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2040 } 2041 } 2042 2043 static void 2044 ill_capability_poll_enable(ill_t *ill) 2045 { 2046 ill_dld_capab_t *idc = ill->ill_dld_capab; 2047 dld_capab_poll_t poll; 2048 int rc; 2049 2050 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2051 2052 bzero(&poll, sizeof (poll)); 2053 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2054 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2055 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2056 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2057 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2058 poll.poll_ring_ch = ill; 2059 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2060 DLD_ENABLE); 2061 if (rc == 0) { 2062 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2063 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2064 } else { 2065 ip1dbg(("warning: could not enable POLL " 2066 "capability, rc = %d\n", rc)); 2067 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2068 } 2069 } 2070 2071 /* 2072 * Enable the LSO capability. 2073 */ 2074 static void 2075 ill_capability_lso_enable(ill_t *ill) 2076 { 2077 ill_dld_capab_t *idc = ill->ill_dld_capab; 2078 dld_capab_lso_t lso; 2079 int rc; 2080 2081 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2082 2083 if (ill->ill_lso_capab == NULL) { 2084 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2085 KM_NOSLEEP); 2086 if (ill->ill_lso_capab == NULL) { 2087 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2088 "could not enable LSO for %s (ENOMEM)\n", 2089 ill->ill_name); 2090 return; 2091 } 2092 } 2093 2094 bzero(&lso, sizeof (lso)); 2095 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2096 DLD_ENABLE)) == 0) { 2097 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2098 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2099 ill->ill_capabilities |= ILL_CAPAB_LSO; 2100 ip1dbg(("ill_capability_lso_enable: interface %s " 2101 "has enabled LSO\n ", ill->ill_name)); 2102 } else { 2103 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2104 ill->ill_lso_capab = NULL; 2105 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2106 } 2107 } 2108 2109 static void 2110 ill_capability_dld_enable(ill_t *ill) 2111 { 2112 mac_perim_handle_t mph; 2113 2114 ASSERT(IAM_WRITER_ILL(ill)); 2115 2116 if (ill->ill_isv6) 2117 return; 2118 2119 ill_mac_perim_enter(ill, &mph); 2120 if (!ill->ill_isv6) { 2121 ill_capability_direct_enable(ill); 2122 ill_capability_poll_enable(ill); 2123 ill_capability_lso_enable(ill); 2124 } 2125 ill->ill_capabilities |= ILL_CAPAB_DLD; 2126 ill_mac_perim_exit(ill, mph); 2127 } 2128 2129 static void 2130 ill_capability_dld_disable(ill_t *ill) 2131 { 2132 ill_dld_capab_t *idc; 2133 ill_dld_direct_t *idd; 2134 mac_perim_handle_t mph; 2135 2136 ASSERT(IAM_WRITER_ILL(ill)); 2137 2138 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2139 return; 2140 2141 ill_mac_perim_enter(ill, &mph); 2142 2143 idc = ill->ill_dld_capab; 2144 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2145 /* 2146 * For performance we avoid locks in the transmit data path 2147 * and don't maintain a count of the number of threads using 2148 * direct calls. Thus some threads could be using direct 2149 * transmit calls to GLD, even after the capability mechanism 2150 * turns it off. This is still safe since the handles used in 2151 * the direct calls continue to be valid until the unplumb is 2152 * completed. Remove the callback that was added (1-time) at 2153 * capab enable time. 2154 */ 2155 mutex_enter(&ill->ill_lock); 2156 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2157 mutex_exit(&ill->ill_lock); 2158 if (ill->ill_flownotify_mh != NULL) { 2159 idd = &idc->idc_direct; 2160 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2161 ill->ill_flownotify_mh); 2162 ill->ill_flownotify_mh = NULL; 2163 } 2164 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2165 NULL, DLD_DISABLE); 2166 } 2167 2168 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2169 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2170 ip_squeue_clean_all(ill); 2171 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2172 NULL, DLD_DISABLE); 2173 } 2174 2175 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2176 ASSERT(ill->ill_lso_capab != NULL); 2177 /* 2178 * Clear the capability flag for LSO but retain the 2179 * ill_lso_capab structure since it's possible that another 2180 * thread is still referring to it. The structure only gets 2181 * deallocated when we destroy the ill. 2182 */ 2183 2184 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2185 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2186 NULL, DLD_DISABLE); 2187 } 2188 2189 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2190 ill_mac_perim_exit(ill, mph); 2191 } 2192 2193 /* 2194 * Capability Negotiation protocol 2195 * 2196 * We don't wait for DLPI capability operations to finish during interface 2197 * bringup or teardown. Doing so would introduce more asynchrony and the 2198 * interface up/down operations will need multiple return and restarts. 2199 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2200 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2201 * exclusive operation won't start until the DLPI operations of the previous 2202 * exclusive operation complete. 2203 * 2204 * The capability state machine is shown below. 2205 * 2206 * state next state event, action 2207 * 2208 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2209 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2210 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2211 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2212 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2213 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2214 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2215 * ill_capability_probe. 2216 */ 2217 2218 /* 2219 * Dedicated thread started from ip_stack_init that handles capability 2220 * disable. This thread ensures the taskq dispatch does not fail by waiting 2221 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2222 * that direct calls to DLD are done in a cv_waitable context. 2223 */ 2224 void 2225 ill_taskq_dispatch(ip_stack_t *ipst) 2226 { 2227 callb_cpr_t cprinfo; 2228 char name[64]; 2229 mblk_t *mp; 2230 2231 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2232 ipst->ips_netstack->netstack_stackid); 2233 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2234 name); 2235 mutex_enter(&ipst->ips_capab_taskq_lock); 2236 2237 for (;;) { 2238 mp = ipst->ips_capab_taskq_head; 2239 while (mp != NULL) { 2240 ipst->ips_capab_taskq_head = mp->b_next; 2241 if (ipst->ips_capab_taskq_head == NULL) 2242 ipst->ips_capab_taskq_tail = NULL; 2243 mutex_exit(&ipst->ips_capab_taskq_lock); 2244 mp->b_next = NULL; 2245 2246 VERIFY(taskq_dispatch(system_taskq, 2247 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2248 mutex_enter(&ipst->ips_capab_taskq_lock); 2249 mp = ipst->ips_capab_taskq_head; 2250 } 2251 2252 if (ipst->ips_capab_taskq_quit) 2253 break; 2254 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2255 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2256 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2257 } 2258 VERIFY(ipst->ips_capab_taskq_head == NULL); 2259 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2260 CALLB_CPR_EXIT(&cprinfo); 2261 thread_exit(); 2262 } 2263 2264 /* 2265 * Consume a new-style hardware capabilities negotiation ack. 2266 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2267 */ 2268 static void 2269 ill_capability_ack_thr(void *arg) 2270 { 2271 mblk_t *mp = arg; 2272 dl_capability_ack_t *capp; 2273 dl_capability_sub_t *subp, *endp; 2274 ill_t *ill; 2275 boolean_t reneg; 2276 2277 ill = (ill_t *)mp->b_prev; 2278 mp->b_prev = NULL; 2279 2280 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2281 2282 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2283 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2284 /* 2285 * We have received the ack for our DL_CAPAB reset request. 2286 * There isnt' anything in the message that needs processing. 2287 * All message based capabilities have been disabled, now 2288 * do the function call based capability disable. 2289 */ 2290 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2291 ill_capability_dld_disable(ill); 2292 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2293 if (reneg) 2294 ill_capability_probe(ill); 2295 goto done; 2296 } 2297 2298 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2299 ill->ill_dlpi_capab_state = IDCS_OK; 2300 2301 capp = (dl_capability_ack_t *)mp->b_rptr; 2302 2303 if (capp->dl_sub_length == 0) { 2304 /* no new-style capabilities */ 2305 goto done; 2306 } 2307 2308 /* make sure the driver supplied correct dl_sub_length */ 2309 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2310 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2311 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2312 goto done; 2313 } 2314 2315 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2316 /* 2317 * There are sub-capabilities. Process the ones we know about. 2318 * Loop until we don't have room for another sub-cap header.. 2319 */ 2320 for (subp = SC(capp, capp->dl_sub_offset), 2321 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2322 subp <= endp; 2323 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2324 2325 switch (subp->dl_cap) { 2326 case DL_CAPAB_ID_WRAPPER: 2327 ill_capability_id_ack(ill, mp, subp); 2328 break; 2329 default: 2330 ill_capability_dispatch(ill, mp, subp); 2331 break; 2332 } 2333 } 2334 #undef SC 2335 done: 2336 inet_freemsg(mp); 2337 ill_capability_done(ill); 2338 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2339 } 2340 2341 /* 2342 * This needs to be started in a taskq thread to provide a cv_waitable 2343 * context. 2344 */ 2345 void 2346 ill_capability_ack(ill_t *ill, mblk_t *mp) 2347 { 2348 ip_stack_t *ipst = ill->ill_ipst; 2349 2350 mp->b_prev = (mblk_t *)ill; 2351 ASSERT(mp->b_next == NULL); 2352 2353 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2354 TQ_NOSLEEP) != 0) 2355 return; 2356 2357 /* 2358 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2359 * which will do the dispatch using TQ_SLEEP to guarantee success. 2360 */ 2361 mutex_enter(&ipst->ips_capab_taskq_lock); 2362 if (ipst->ips_capab_taskq_head == NULL) { 2363 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2364 ipst->ips_capab_taskq_head = mp; 2365 } else { 2366 ipst->ips_capab_taskq_tail->b_next = mp; 2367 } 2368 ipst->ips_capab_taskq_tail = mp; 2369 2370 cv_signal(&ipst->ips_capab_taskq_cv); 2371 mutex_exit(&ipst->ips_capab_taskq_lock); 2372 } 2373 2374 /* 2375 * This routine is called to scan the fragmentation reassembly table for 2376 * the specified ILL for any packets that are starting to smell. 2377 * dead_interval is the maximum time in seconds that will be tolerated. It 2378 * will either be the value specified in ip_g_frag_timeout, or zero if the 2379 * ILL is shutting down and it is time to blow everything off. 2380 * 2381 * It returns the number of seconds (as a time_t) that the next frag timer 2382 * should be scheduled for, 0 meaning that the timer doesn't need to be 2383 * re-started. Note that the method of calculating next_timeout isn't 2384 * entirely accurate since time will flow between the time we grab 2385 * current_time and the time we schedule the next timeout. This isn't a 2386 * big problem since this is the timer for sending an ICMP reassembly time 2387 * exceeded messages, and it doesn't have to be exactly accurate. 2388 * 2389 * This function is 2390 * sometimes called as writer, although this is not required. 2391 */ 2392 time_t 2393 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2394 { 2395 ipfb_t *ipfb; 2396 ipfb_t *endp; 2397 ipf_t *ipf; 2398 ipf_t *ipfnext; 2399 mblk_t *mp; 2400 time_t current_time = gethrestime_sec(); 2401 time_t next_timeout = 0; 2402 uint32_t hdr_length; 2403 mblk_t *send_icmp_head; 2404 mblk_t *send_icmp_head_v6; 2405 ip_stack_t *ipst = ill->ill_ipst; 2406 ip_recv_attr_t iras; 2407 2408 bzero(&iras, sizeof (iras)); 2409 iras.ira_flags = 0; 2410 iras.ira_ill = iras.ira_rill = ill; 2411 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2412 iras.ira_rifindex = iras.ira_ruifindex; 2413 2414 ipfb = ill->ill_frag_hash_tbl; 2415 if (ipfb == NULL) 2416 return (B_FALSE); 2417 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2418 /* Walk the frag hash table. */ 2419 for (; ipfb < endp; ipfb++) { 2420 send_icmp_head = NULL; 2421 send_icmp_head_v6 = NULL; 2422 mutex_enter(&ipfb->ipfb_lock); 2423 while ((ipf = ipfb->ipfb_ipf) != 0) { 2424 time_t frag_time = current_time - ipf->ipf_timestamp; 2425 time_t frag_timeout; 2426 2427 if (frag_time < dead_interval) { 2428 /* 2429 * There are some outstanding fragments 2430 * that will timeout later. Make note of 2431 * the time so that we can reschedule the 2432 * next timeout appropriately. 2433 */ 2434 frag_timeout = dead_interval - frag_time; 2435 if (next_timeout == 0 || 2436 frag_timeout < next_timeout) { 2437 next_timeout = frag_timeout; 2438 } 2439 break; 2440 } 2441 /* Time's up. Get it out of here. */ 2442 hdr_length = ipf->ipf_nf_hdr_len; 2443 ipfnext = ipf->ipf_hash_next; 2444 if (ipfnext) 2445 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2446 *ipf->ipf_ptphn = ipfnext; 2447 mp = ipf->ipf_mp->b_cont; 2448 for (; mp; mp = mp->b_cont) { 2449 /* Extra points for neatness. */ 2450 IP_REASS_SET_START(mp, 0); 2451 IP_REASS_SET_END(mp, 0); 2452 } 2453 mp = ipf->ipf_mp->b_cont; 2454 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2455 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2456 ipfb->ipfb_count -= ipf->ipf_count; 2457 ASSERT(ipfb->ipfb_frag_pkts > 0); 2458 ipfb->ipfb_frag_pkts--; 2459 /* 2460 * We do not send any icmp message from here because 2461 * we currently are holding the ipfb_lock for this 2462 * hash chain. If we try and send any icmp messages 2463 * from here we may end up via a put back into ip 2464 * trying to get the same lock, causing a recursive 2465 * mutex panic. Instead we build a list and send all 2466 * the icmp messages after we have dropped the lock. 2467 */ 2468 if (ill->ill_isv6) { 2469 if (hdr_length != 0) { 2470 mp->b_next = send_icmp_head_v6; 2471 send_icmp_head_v6 = mp; 2472 } else { 2473 freemsg(mp); 2474 } 2475 } else { 2476 if (hdr_length != 0) { 2477 mp->b_next = send_icmp_head; 2478 send_icmp_head = mp; 2479 } else { 2480 freemsg(mp); 2481 } 2482 } 2483 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2484 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2485 freeb(ipf->ipf_mp); 2486 } 2487 mutex_exit(&ipfb->ipfb_lock); 2488 /* 2489 * Now need to send any icmp messages that we delayed from 2490 * above. 2491 */ 2492 while (send_icmp_head_v6 != NULL) { 2493 ip6_t *ip6h; 2494 2495 mp = send_icmp_head_v6; 2496 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2497 mp->b_next = NULL; 2498 ip6h = (ip6_t *)mp->b_rptr; 2499 iras.ira_flags = 0; 2500 /* 2501 * This will result in an incorrect ALL_ZONES zoneid 2502 * for multicast packets, but we 2503 * don't send ICMP errors for those in any case. 2504 */ 2505 iras.ira_zoneid = 2506 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2507 ill, ipst); 2508 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2509 icmp_time_exceeded_v6(mp, 2510 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2511 &iras); 2512 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2513 } 2514 while (send_icmp_head != NULL) { 2515 ipaddr_t dst; 2516 2517 mp = send_icmp_head; 2518 send_icmp_head = send_icmp_head->b_next; 2519 mp->b_next = NULL; 2520 2521 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2522 2523 iras.ira_flags = IRAF_IS_IPV4; 2524 /* 2525 * This will result in an incorrect ALL_ZONES zoneid 2526 * for broadcast and multicast packets, but we 2527 * don't send ICMP errors for those in any case. 2528 */ 2529 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2530 ill, ipst); 2531 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2532 icmp_time_exceeded(mp, 2533 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2534 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2535 } 2536 } 2537 /* 2538 * A non-dying ILL will use the return value to decide whether to 2539 * restart the frag timer, and for how long. 2540 */ 2541 return (next_timeout); 2542 } 2543 2544 /* 2545 * This routine is called when the approximate count of mblk memory used 2546 * for the specified ILL has exceeded max_count. 2547 */ 2548 void 2549 ill_frag_prune(ill_t *ill, uint_t max_count) 2550 { 2551 ipfb_t *ipfb; 2552 ipf_t *ipf; 2553 size_t count; 2554 clock_t now; 2555 2556 /* 2557 * If we are here within ip_min_frag_prune_time msecs remove 2558 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2559 * ill_frag_free_num_pkts. 2560 */ 2561 mutex_enter(&ill->ill_lock); 2562 now = ddi_get_lbolt(); 2563 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2564 (ip_min_frag_prune_time != 0 ? 2565 ip_min_frag_prune_time : msec_per_tick)) { 2566 2567 ill->ill_frag_free_num_pkts++; 2568 2569 } else { 2570 ill->ill_frag_free_num_pkts = 0; 2571 } 2572 ill->ill_last_frag_clean_time = now; 2573 mutex_exit(&ill->ill_lock); 2574 2575 /* 2576 * free ill_frag_free_num_pkts oldest packets from each bucket. 2577 */ 2578 if (ill->ill_frag_free_num_pkts != 0) { 2579 int ix; 2580 2581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2582 ipfb = &ill->ill_frag_hash_tbl[ix]; 2583 mutex_enter(&ipfb->ipfb_lock); 2584 if (ipfb->ipfb_ipf != NULL) { 2585 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2586 ill->ill_frag_free_num_pkts); 2587 } 2588 mutex_exit(&ipfb->ipfb_lock); 2589 } 2590 } 2591 /* 2592 * While the reassembly list for this ILL is too big, prune a fragment 2593 * queue by age, oldest first. 2594 */ 2595 while (ill->ill_frag_count > max_count) { 2596 int ix; 2597 ipfb_t *oipfb = NULL; 2598 uint_t oldest = UINT_MAX; 2599 2600 count = 0; 2601 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2602 ipfb = &ill->ill_frag_hash_tbl[ix]; 2603 mutex_enter(&ipfb->ipfb_lock); 2604 ipf = ipfb->ipfb_ipf; 2605 if (ipf != NULL && ipf->ipf_gen < oldest) { 2606 oldest = ipf->ipf_gen; 2607 oipfb = ipfb; 2608 } 2609 count += ipfb->ipfb_count; 2610 mutex_exit(&ipfb->ipfb_lock); 2611 } 2612 if (oipfb == NULL) 2613 break; 2614 2615 if (count <= max_count) 2616 return; /* Somebody beat us to it, nothing to do */ 2617 mutex_enter(&oipfb->ipfb_lock); 2618 ipf = oipfb->ipfb_ipf; 2619 if (ipf != NULL) { 2620 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2621 } 2622 mutex_exit(&oipfb->ipfb_lock); 2623 } 2624 } 2625 2626 /* 2627 * free 'free_cnt' fragmented packets starting at ipf. 2628 */ 2629 void 2630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2631 { 2632 size_t count; 2633 mblk_t *mp; 2634 mblk_t *tmp; 2635 ipf_t **ipfp = ipf->ipf_ptphn; 2636 2637 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2638 ASSERT(ipfp != NULL); 2639 ASSERT(ipf != NULL); 2640 2641 while (ipf != NULL && free_cnt-- > 0) { 2642 count = ipf->ipf_count; 2643 mp = ipf->ipf_mp; 2644 ipf = ipf->ipf_hash_next; 2645 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2646 IP_REASS_SET_START(tmp, 0); 2647 IP_REASS_SET_END(tmp, 0); 2648 } 2649 atomic_add_32(&ill->ill_frag_count, -count); 2650 ASSERT(ipfb->ipfb_count >= count); 2651 ipfb->ipfb_count -= count; 2652 ASSERT(ipfb->ipfb_frag_pkts > 0); 2653 ipfb->ipfb_frag_pkts--; 2654 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2655 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2656 freemsg(mp); 2657 } 2658 2659 if (ipf) 2660 ipf->ipf_ptphn = ipfp; 2661 ipfp[0] = ipf; 2662 } 2663 2664 /* 2665 * Helper function for ill_forward_set(). 2666 */ 2667 static void 2668 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2669 { 2670 ip_stack_t *ipst = ill->ill_ipst; 2671 2672 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2673 2674 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2675 (enable ? "Enabling" : "Disabling"), 2676 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2677 mutex_enter(&ill->ill_lock); 2678 if (enable) 2679 ill->ill_flags |= ILLF_ROUTER; 2680 else 2681 ill->ill_flags &= ~ILLF_ROUTER; 2682 mutex_exit(&ill->ill_lock); 2683 if (ill->ill_isv6) 2684 ill_set_nce_router_flags(ill, enable); 2685 /* Notify routing socket listeners of this change. */ 2686 if (ill->ill_ipif != NULL) 2687 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2688 } 2689 2690 /* 2691 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2692 * socket messages for each interface whose flags we change. 2693 */ 2694 int 2695 ill_forward_set(ill_t *ill, boolean_t enable) 2696 { 2697 ipmp_illgrp_t *illg; 2698 ip_stack_t *ipst = ill->ill_ipst; 2699 2700 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2701 2702 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2703 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2704 return (0); 2705 2706 if (IS_LOOPBACK(ill)) 2707 return (EINVAL); 2708 2709 if (enable && ill->ill_allowed_ips_cnt > 0) 2710 return (EPERM); 2711 2712 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2713 /* 2714 * Update all of the interfaces in the group. 2715 */ 2716 illg = ill->ill_grp; 2717 ill = list_head(&illg->ig_if); 2718 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2719 ill_forward_set_on_ill(ill, enable); 2720 2721 /* 2722 * Update the IPMP meta-interface. 2723 */ 2724 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2725 return (0); 2726 } 2727 2728 ill_forward_set_on_ill(ill, enable); 2729 return (0); 2730 } 2731 2732 /* 2733 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2734 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2735 * set or clear. 2736 */ 2737 static void 2738 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2739 { 2740 ipif_t *ipif; 2741 ncec_t *ncec; 2742 nce_t *nce; 2743 2744 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2745 /* 2746 * NOTE: we match across the illgrp because nce's for 2747 * addresses on IPMP interfaces have an nce_ill that points to 2748 * the bound underlying ill. 2749 */ 2750 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2751 if (nce != NULL) { 2752 ncec = nce->nce_common; 2753 mutex_enter(&ncec->ncec_lock); 2754 if (enable) 2755 ncec->ncec_flags |= NCE_F_ISROUTER; 2756 else 2757 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2758 mutex_exit(&ncec->ncec_lock); 2759 nce_refrele(nce); 2760 } 2761 } 2762 } 2763 2764 /* 2765 * Intializes the context structure and returns the first ill in the list 2766 * cuurently start_list and end_list can have values: 2767 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2768 * IP_V4_G_HEAD Traverse IPV4 list only. 2769 * IP_V6_G_HEAD Traverse IPV6 list only. 2770 */ 2771 2772 /* 2773 * We don't check for CONDEMNED ills here. Caller must do that if 2774 * necessary under the ill lock. 2775 */ 2776 ill_t * 2777 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2778 ip_stack_t *ipst) 2779 { 2780 ill_if_t *ifp; 2781 ill_t *ill; 2782 avl_tree_t *avl_tree; 2783 2784 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2785 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2786 2787 /* 2788 * setup the lists to search 2789 */ 2790 if (end_list != MAX_G_HEADS) { 2791 ctx->ctx_current_list = start_list; 2792 ctx->ctx_last_list = end_list; 2793 } else { 2794 ctx->ctx_last_list = MAX_G_HEADS - 1; 2795 ctx->ctx_current_list = 0; 2796 } 2797 2798 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2799 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2800 if (ifp != (ill_if_t *) 2801 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2802 avl_tree = &ifp->illif_avl_by_ppa; 2803 ill = avl_first(avl_tree); 2804 /* 2805 * ill is guaranteed to be non NULL or ifp should have 2806 * not existed. 2807 */ 2808 ASSERT(ill != NULL); 2809 return (ill); 2810 } 2811 ctx->ctx_current_list++; 2812 } 2813 2814 return (NULL); 2815 } 2816 2817 /* 2818 * returns the next ill in the list. ill_first() must have been called 2819 * before calling ill_next() or bad things will happen. 2820 */ 2821 2822 /* 2823 * We don't check for CONDEMNED ills here. Caller must do that if 2824 * necessary under the ill lock. 2825 */ 2826 ill_t * 2827 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2828 { 2829 ill_if_t *ifp; 2830 ill_t *ill; 2831 ip_stack_t *ipst = lastill->ill_ipst; 2832 2833 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2834 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2835 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2836 AVL_AFTER)) != NULL) { 2837 return (ill); 2838 } 2839 2840 /* goto next ill_ifp in the list. */ 2841 ifp = lastill->ill_ifptr->illif_next; 2842 2843 /* make sure not at end of circular list */ 2844 while (ifp == 2845 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2846 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2847 return (NULL); 2848 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2849 } 2850 2851 return (avl_first(&ifp->illif_avl_by_ppa)); 2852 } 2853 2854 /* 2855 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2856 * The final number (PPA) must not have any leading zeros. Upon success, a 2857 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2858 */ 2859 static char * 2860 ill_get_ppa_ptr(char *name) 2861 { 2862 int namelen = strlen(name); 2863 int end_ndx = namelen - 1; 2864 int ppa_ndx, i; 2865 2866 /* 2867 * Check that the first character is [a-zA-Z], and that the last 2868 * character is [0-9]. 2869 */ 2870 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2871 return (NULL); 2872 2873 /* 2874 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2875 */ 2876 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2877 if (!isdigit(name[ppa_ndx - 1])) 2878 break; 2879 2880 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2881 return (NULL); 2882 2883 /* 2884 * Check that the intermediate characters are [a-z0-9.] 2885 */ 2886 for (i = 1; i < ppa_ndx; i++) { 2887 if (!isalpha(name[i]) && !isdigit(name[i]) && 2888 name[i] != '.' && name[i] != '_') { 2889 return (NULL); 2890 } 2891 } 2892 2893 return (name + ppa_ndx); 2894 } 2895 2896 /* 2897 * use avl tree to locate the ill. 2898 */ 2899 static ill_t * 2900 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2901 { 2902 char *ppa_ptr = NULL; 2903 int len; 2904 uint_t ppa; 2905 ill_t *ill = NULL; 2906 ill_if_t *ifp; 2907 int list; 2908 2909 /* 2910 * get ppa ptr 2911 */ 2912 if (isv6) 2913 list = IP_V6_G_HEAD; 2914 else 2915 list = IP_V4_G_HEAD; 2916 2917 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2918 return (NULL); 2919 } 2920 2921 len = ppa_ptr - name + 1; 2922 2923 ppa = stoi(&ppa_ptr); 2924 2925 ifp = IP_VX_ILL_G_LIST(list, ipst); 2926 2927 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2928 /* 2929 * match is done on len - 1 as the name is not null 2930 * terminated it contains ppa in addition to the interface 2931 * name. 2932 */ 2933 if ((ifp->illif_name_len == len) && 2934 bcmp(ifp->illif_name, name, len - 1) == 0) { 2935 break; 2936 } else { 2937 ifp = ifp->illif_next; 2938 } 2939 } 2940 2941 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2942 /* 2943 * Even the interface type does not exist. 2944 */ 2945 return (NULL); 2946 } 2947 2948 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2949 if (ill != NULL) { 2950 mutex_enter(&ill->ill_lock); 2951 if (ILL_CAN_LOOKUP(ill)) { 2952 ill_refhold_locked(ill); 2953 mutex_exit(&ill->ill_lock); 2954 return (ill); 2955 } 2956 mutex_exit(&ill->ill_lock); 2957 } 2958 return (NULL); 2959 } 2960 2961 /* 2962 * comparison function for use with avl. 2963 */ 2964 static int 2965 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2966 { 2967 uint_t ppa; 2968 uint_t ill_ppa; 2969 2970 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2971 2972 ppa = *((uint_t *)ppa_ptr); 2973 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2974 /* 2975 * We want the ill with the lowest ppa to be on the 2976 * top. 2977 */ 2978 if (ill_ppa < ppa) 2979 return (1); 2980 if (ill_ppa > ppa) 2981 return (-1); 2982 return (0); 2983 } 2984 2985 /* 2986 * remove an interface type from the global list. 2987 */ 2988 static void 2989 ill_delete_interface_type(ill_if_t *interface) 2990 { 2991 ASSERT(interface != NULL); 2992 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2993 2994 avl_destroy(&interface->illif_avl_by_ppa); 2995 if (interface->illif_ppa_arena != NULL) 2996 vmem_destroy(interface->illif_ppa_arena); 2997 2998 remque(interface); 2999 3000 mi_free(interface); 3001 } 3002 3003 /* 3004 * remove ill from the global list. 3005 */ 3006 static void 3007 ill_glist_delete(ill_t *ill) 3008 { 3009 ip_stack_t *ipst; 3010 phyint_t *phyi; 3011 3012 if (ill == NULL) 3013 return; 3014 ipst = ill->ill_ipst; 3015 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3016 3017 /* 3018 * If the ill was never inserted into the AVL tree 3019 * we skip the if branch. 3020 */ 3021 if (ill->ill_ifptr != NULL) { 3022 /* 3023 * remove from AVL tree and free ppa number 3024 */ 3025 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3026 3027 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3028 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3029 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3030 } 3031 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3032 ill_delete_interface_type(ill->ill_ifptr); 3033 } 3034 3035 /* 3036 * Indicate ill is no longer in the list. 3037 */ 3038 ill->ill_ifptr = NULL; 3039 ill->ill_name_length = 0; 3040 ill->ill_name[0] = '\0'; 3041 ill->ill_ppa = UINT_MAX; 3042 } 3043 3044 /* Generate one last event for this ill. */ 3045 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3046 ill->ill_name_length); 3047 3048 ASSERT(ill->ill_phyint != NULL); 3049 phyi = ill->ill_phyint; 3050 ill->ill_phyint = NULL; 3051 3052 /* 3053 * ill_init allocates a phyint always to store the copy 3054 * of flags relevant to phyint. At that point in time, we could 3055 * not assign the name and hence phyint_illv4/v6 could not be 3056 * initialized. Later in ipif_set_values, we assign the name to 3057 * the ill, at which point in time we assign phyint_illv4/v6. 3058 * Thus we don't rely on phyint_illv6 to be initialized always. 3059 */ 3060 if (ill->ill_flags & ILLF_IPV6) 3061 phyi->phyint_illv6 = NULL; 3062 else 3063 phyi->phyint_illv4 = NULL; 3064 3065 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3066 rw_exit(&ipst->ips_ill_g_lock); 3067 return; 3068 } 3069 3070 /* 3071 * There are no ills left on this phyint; pull it out of the phyint 3072 * avl trees, and free it. 3073 */ 3074 if (phyi->phyint_ifindex > 0) { 3075 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3076 phyi); 3077 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3078 phyi); 3079 } 3080 rw_exit(&ipst->ips_ill_g_lock); 3081 3082 phyint_free(phyi); 3083 } 3084 3085 /* 3086 * allocate a ppa, if the number of plumbed interfaces of this type are 3087 * less than ill_no_arena do a linear search to find a unused ppa. 3088 * When the number goes beyond ill_no_arena switch to using an arena. 3089 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3090 * is the return value for an error condition, so allocation starts at one 3091 * and is decremented by one. 3092 */ 3093 static int 3094 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3095 { 3096 ill_t *tmp_ill; 3097 uint_t start, end; 3098 int ppa; 3099 3100 if (ifp->illif_ppa_arena == NULL && 3101 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3102 /* 3103 * Create an arena. 3104 */ 3105 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3106 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3107 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3108 /* allocate what has already been assigned */ 3109 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3110 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3111 tmp_ill, AVL_AFTER)) { 3112 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3113 1, /* size */ 3114 1, /* align/quantum */ 3115 0, /* phase */ 3116 0, /* nocross */ 3117 /* minaddr */ 3118 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3119 /* maxaddr */ 3120 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3121 VM_NOSLEEP|VM_FIRSTFIT); 3122 if (ppa == 0) { 3123 ip1dbg(("ill_alloc_ppa: ppa allocation" 3124 " failed while switching")); 3125 vmem_destroy(ifp->illif_ppa_arena); 3126 ifp->illif_ppa_arena = NULL; 3127 break; 3128 } 3129 } 3130 } 3131 3132 if (ifp->illif_ppa_arena != NULL) { 3133 if (ill->ill_ppa == UINT_MAX) { 3134 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3135 1, VM_NOSLEEP|VM_FIRSTFIT); 3136 if (ppa == 0) 3137 return (EAGAIN); 3138 ill->ill_ppa = --ppa; 3139 } else { 3140 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3141 1, /* size */ 3142 1, /* align/quantum */ 3143 0, /* phase */ 3144 0, /* nocross */ 3145 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3146 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3147 VM_NOSLEEP|VM_FIRSTFIT); 3148 /* 3149 * Most likely the allocation failed because 3150 * the requested ppa was in use. 3151 */ 3152 if (ppa == 0) 3153 return (EEXIST); 3154 } 3155 return (0); 3156 } 3157 3158 /* 3159 * No arena is in use and not enough (>ill_no_arena) interfaces have 3160 * been plumbed to create one. Do a linear search to get a unused ppa. 3161 */ 3162 if (ill->ill_ppa == UINT_MAX) { 3163 end = UINT_MAX - 1; 3164 start = 0; 3165 } else { 3166 end = start = ill->ill_ppa; 3167 } 3168 3169 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3170 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3171 if (start++ >= end) { 3172 if (ill->ill_ppa == UINT_MAX) 3173 return (EAGAIN); 3174 else 3175 return (EEXIST); 3176 } 3177 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3178 } 3179 ill->ill_ppa = start; 3180 return (0); 3181 } 3182 3183 /* 3184 * Insert ill into the list of configured ill's. Once this function completes, 3185 * the ill is globally visible and is available through lookups. More precisely 3186 * this happens after the caller drops the ill_g_lock. 3187 */ 3188 static int 3189 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3190 { 3191 ill_if_t *ill_interface; 3192 avl_index_t where = 0; 3193 int error; 3194 int name_length; 3195 int index; 3196 boolean_t check_length = B_FALSE; 3197 ip_stack_t *ipst = ill->ill_ipst; 3198 3199 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3200 3201 name_length = mi_strlen(name) + 1; 3202 3203 if (isv6) 3204 index = IP_V6_G_HEAD; 3205 else 3206 index = IP_V4_G_HEAD; 3207 3208 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3209 /* 3210 * Search for interface type based on name 3211 */ 3212 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3213 if ((ill_interface->illif_name_len == name_length) && 3214 (strcmp(ill_interface->illif_name, name) == 0)) { 3215 break; 3216 } 3217 ill_interface = ill_interface->illif_next; 3218 } 3219 3220 /* 3221 * Interface type not found, create one. 3222 */ 3223 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3224 ill_g_head_t ghead; 3225 3226 /* 3227 * allocate ill_if_t structure 3228 */ 3229 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3230 if (ill_interface == NULL) { 3231 return (ENOMEM); 3232 } 3233 3234 (void) strcpy(ill_interface->illif_name, name); 3235 ill_interface->illif_name_len = name_length; 3236 3237 avl_create(&ill_interface->illif_avl_by_ppa, 3238 ill_compare_ppa, sizeof (ill_t), 3239 offsetof(struct ill_s, ill_avl_byppa)); 3240 3241 /* 3242 * link the structure in the back to maintain order 3243 * of configuration for ifconfig output. 3244 */ 3245 ghead = ipst->ips_ill_g_heads[index]; 3246 insque(ill_interface, ghead.ill_g_list_tail); 3247 } 3248 3249 if (ill->ill_ppa == UINT_MAX) 3250 check_length = B_TRUE; 3251 3252 error = ill_alloc_ppa(ill_interface, ill); 3253 if (error != 0) { 3254 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3255 ill_delete_interface_type(ill->ill_ifptr); 3256 return (error); 3257 } 3258 3259 /* 3260 * When the ppa is choosen by the system, check that there is 3261 * enough space to insert ppa. if a specific ppa was passed in this 3262 * check is not required as the interface name passed in will have 3263 * the right ppa in it. 3264 */ 3265 if (check_length) { 3266 /* 3267 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3268 */ 3269 char buf[sizeof (uint_t) * 3]; 3270 3271 /* 3272 * convert ppa to string to calculate the amount of space 3273 * required for it in the name. 3274 */ 3275 numtos(ill->ill_ppa, buf); 3276 3277 /* Do we have enough space to insert ppa ? */ 3278 3279 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3280 /* Free ppa and interface type struct */ 3281 if (ill_interface->illif_ppa_arena != NULL) { 3282 vmem_free(ill_interface->illif_ppa_arena, 3283 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3284 } 3285 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3286 ill_delete_interface_type(ill->ill_ifptr); 3287 3288 return (EINVAL); 3289 } 3290 } 3291 3292 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3293 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3294 3295 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3296 &where); 3297 ill->ill_ifptr = ill_interface; 3298 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3299 3300 ill_phyint_reinit(ill); 3301 return (0); 3302 } 3303 3304 /* Initialize the per phyint ipsq used for serialization */ 3305 static boolean_t 3306 ipsq_init(ill_t *ill, boolean_t enter) 3307 { 3308 ipsq_t *ipsq; 3309 ipxop_t *ipx; 3310 3311 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3312 return (B_FALSE); 3313 3314 ill->ill_phyint->phyint_ipsq = ipsq; 3315 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3316 ipx->ipx_ipsq = ipsq; 3317 ipsq->ipsq_next = ipsq; 3318 ipsq->ipsq_phyint = ill->ill_phyint; 3319 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3320 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3321 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3322 if (enter) { 3323 ipx->ipx_writer = curthread; 3324 ipx->ipx_forced = B_FALSE; 3325 ipx->ipx_reentry_cnt = 1; 3326 #ifdef DEBUG 3327 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3328 #endif 3329 } 3330 return (B_TRUE); 3331 } 3332 3333 /* 3334 * ill_init is called by ip_open when a device control stream is opened. 3335 * It does a few initializations, and shoots a DL_INFO_REQ message down 3336 * to the driver. The response is later picked up in ip_rput_dlpi and 3337 * used to set up default mechanisms for talking to the driver. (Always 3338 * called as writer.) 3339 * 3340 * If this function returns error, ip_open will call ip_close which in 3341 * turn will call ill_delete to clean up any memory allocated here that 3342 * is not yet freed. 3343 */ 3344 int 3345 ill_init(queue_t *q, ill_t *ill) 3346 { 3347 int count; 3348 dl_info_req_t *dlir; 3349 mblk_t *info_mp; 3350 uchar_t *frag_ptr; 3351 3352 /* 3353 * The ill is initialized to zero by mi_alloc*(). In addition 3354 * some fields already contain valid values, initialized in 3355 * ip_open(), before we reach here. 3356 */ 3357 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3358 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3359 ill->ill_saved_ire_cnt = 0; 3360 3361 ill->ill_rq = q; 3362 ill->ill_wq = WR(q); 3363 3364 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3365 BPRI_HI); 3366 if (info_mp == NULL) 3367 return (ENOMEM); 3368 3369 /* 3370 * Allocate sufficient space to contain our fragment hash table and 3371 * the device name. 3372 */ 3373 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3374 if (frag_ptr == NULL) { 3375 freemsg(info_mp); 3376 return (ENOMEM); 3377 } 3378 ill->ill_frag_ptr = frag_ptr; 3379 ill->ill_frag_free_num_pkts = 0; 3380 ill->ill_last_frag_clean_time = 0; 3381 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3382 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3383 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3384 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3385 NULL, MUTEX_DEFAULT, NULL); 3386 } 3387 3388 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3389 if (ill->ill_phyint == NULL) { 3390 freemsg(info_mp); 3391 mi_free(frag_ptr); 3392 return (ENOMEM); 3393 } 3394 3395 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3396 /* 3397 * For now pretend this is a v4 ill. We need to set phyint_ill* 3398 * at this point because of the following reason. If we can't 3399 * enter the ipsq at some point and cv_wait, the writer that 3400 * wakes us up tries to locate us using the list of all phyints 3401 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3402 * If we don't set it now, we risk a missed wakeup. 3403 */ 3404 ill->ill_phyint->phyint_illv4 = ill; 3405 ill->ill_ppa = UINT_MAX; 3406 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3407 3408 ill_set_inputfn(ill); 3409 3410 if (!ipsq_init(ill, B_TRUE)) { 3411 freemsg(info_mp); 3412 mi_free(frag_ptr); 3413 mi_free(ill->ill_phyint); 3414 return (ENOMEM); 3415 } 3416 3417 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3418 3419 /* Frag queue limit stuff */ 3420 ill->ill_frag_count = 0; 3421 ill->ill_ipf_gen = 0; 3422 3423 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3424 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3425 ill->ill_global_timer = INFINITY; 3426 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3427 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3428 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3429 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3430 3431 /* 3432 * Initialize IPv6 configuration variables. The IP module is always 3433 * opened as an IPv4 module. Instead tracking down the cases where 3434 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3435 * here for convenience, this has no effect until the ill is set to do 3436 * IPv6. 3437 */ 3438 ill->ill_reachable_time = ND_REACHABLE_TIME; 3439 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3440 ill->ill_max_buf = ND_MAX_Q; 3441 ill->ill_refcnt = 0; 3442 3443 /* Send down the Info Request to the driver. */ 3444 info_mp->b_datap->db_type = M_PCPROTO; 3445 dlir = (dl_info_req_t *)info_mp->b_rptr; 3446 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3447 dlir->dl_primitive = DL_INFO_REQ; 3448 3449 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3450 3451 qprocson(q); 3452 ill_dlpi_send(ill, info_mp); 3453 3454 return (0); 3455 } 3456 3457 /* 3458 * ill_dls_info 3459 * creates datalink socket info from the device. 3460 */ 3461 int 3462 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3463 { 3464 size_t len; 3465 3466 sdl->sdl_family = AF_LINK; 3467 sdl->sdl_index = ill_get_upper_ifindex(ill); 3468 sdl->sdl_type = ill->ill_type; 3469 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3470 len = strlen(sdl->sdl_data); 3471 ASSERT(len < 256); 3472 sdl->sdl_nlen = (uchar_t)len; 3473 sdl->sdl_alen = ill->ill_phys_addr_length; 3474 sdl->sdl_slen = 0; 3475 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3476 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3477 3478 return (sizeof (struct sockaddr_dl)); 3479 } 3480 3481 /* 3482 * ill_xarp_info 3483 * creates xarp info from the device. 3484 */ 3485 static int 3486 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3487 { 3488 sdl->sdl_family = AF_LINK; 3489 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3490 sdl->sdl_type = ill->ill_type; 3491 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3492 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3493 sdl->sdl_alen = ill->ill_phys_addr_length; 3494 sdl->sdl_slen = 0; 3495 return (sdl->sdl_nlen); 3496 } 3497 3498 static int 3499 loopback_kstat_update(kstat_t *ksp, int rw) 3500 { 3501 kstat_named_t *kn; 3502 netstackid_t stackid; 3503 netstack_t *ns; 3504 ip_stack_t *ipst; 3505 3506 if (ksp == NULL || ksp->ks_data == NULL) 3507 return (EIO); 3508 3509 if (rw == KSTAT_WRITE) 3510 return (EACCES); 3511 3512 kn = KSTAT_NAMED_PTR(ksp); 3513 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3514 3515 ns = netstack_find_by_stackid(stackid); 3516 if (ns == NULL) 3517 return (-1); 3518 3519 ipst = ns->netstack_ip; 3520 if (ipst == NULL) { 3521 netstack_rele(ns); 3522 return (-1); 3523 } 3524 kn[0].value.ui32 = ipst->ips_loopback_packets; 3525 kn[1].value.ui32 = ipst->ips_loopback_packets; 3526 netstack_rele(ns); 3527 return (0); 3528 } 3529 3530 /* 3531 * Has ifindex been plumbed already? 3532 */ 3533 static boolean_t 3534 phyint_exists(uint_t index, ip_stack_t *ipst) 3535 { 3536 ASSERT(index != 0); 3537 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3538 3539 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3540 &index, NULL) != NULL); 3541 } 3542 3543 /* 3544 * Pick a unique ifindex. 3545 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3546 * flag is set so that next time time ip_assign_ifindex() is called, it 3547 * falls through and resets the index counter back to 1, the minimum value 3548 * for the interface index. The logic below assumes that ips_ill_index 3549 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3550 * (i.e. reset back to 0.) 3551 */ 3552 boolean_t 3553 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3554 { 3555 uint_t loops; 3556 3557 if (!ipst->ips_ill_index_wrap) { 3558 *indexp = ipst->ips_ill_index++; 3559 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3560 /* 3561 * Reached the maximum ifindex value, set the wrap 3562 * flag to indicate that it is no longer possible 3563 * to assume that a given index is unallocated. 3564 */ 3565 ipst->ips_ill_index_wrap = B_TRUE; 3566 } 3567 return (B_TRUE); 3568 } 3569 3570 if (ipst->ips_ill_index > IF_INDEX_MAX) 3571 ipst->ips_ill_index = 1; 3572 3573 /* 3574 * Start reusing unused indexes. Note that we hold the ill_g_lock 3575 * at this point and don't want to call any function that attempts 3576 * to get the lock again. 3577 */ 3578 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3579 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3580 /* found unused index - use it */ 3581 *indexp = ipst->ips_ill_index; 3582 return (B_TRUE); 3583 } 3584 3585 ipst->ips_ill_index++; 3586 if (ipst->ips_ill_index > IF_INDEX_MAX) 3587 ipst->ips_ill_index = 1; 3588 } 3589 3590 /* 3591 * all interface indicies are inuse. 3592 */ 3593 return (B_FALSE); 3594 } 3595 3596 /* 3597 * Assign a unique interface index for the phyint. 3598 */ 3599 static boolean_t 3600 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3601 { 3602 ASSERT(phyi->phyint_ifindex == 0); 3603 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3604 } 3605 3606 /* 3607 * Initialize the flags on `phyi' as per the provided mactype. 3608 */ 3609 static void 3610 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3611 { 3612 uint64_t flags = 0; 3613 3614 /* 3615 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3616 * we always presume the underlying hardware is working and set 3617 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3618 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3619 * there are no active interfaces in the group so we set PHYI_FAILED. 3620 */ 3621 if (mactype == SUNW_DL_IPMP) 3622 flags |= PHYI_FAILED; 3623 else 3624 flags |= PHYI_RUNNING; 3625 3626 switch (mactype) { 3627 case SUNW_DL_VNI: 3628 flags |= PHYI_VIRTUAL; 3629 break; 3630 case SUNW_DL_IPMP: 3631 flags |= PHYI_IPMP; 3632 break; 3633 case DL_LOOP: 3634 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3635 break; 3636 } 3637 3638 mutex_enter(&phyi->phyint_lock); 3639 phyi->phyint_flags |= flags; 3640 mutex_exit(&phyi->phyint_lock); 3641 } 3642 3643 /* 3644 * Return a pointer to the ill which matches the supplied name. Note that 3645 * the ill name length includes the null termination character. (May be 3646 * called as writer.) 3647 * If do_alloc and the interface is "lo0" it will be automatically created. 3648 * Cannot bump up reference on condemned ills. So dup detect can't be done 3649 * using this func. 3650 */ 3651 ill_t * 3652 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3653 boolean_t *did_alloc, ip_stack_t *ipst) 3654 { 3655 ill_t *ill; 3656 ipif_t *ipif; 3657 ipsq_t *ipsq; 3658 kstat_named_t *kn; 3659 boolean_t isloopback; 3660 in6_addr_t ov6addr; 3661 3662 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3663 3664 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3665 ill = ill_find_by_name(name, isv6, ipst); 3666 rw_exit(&ipst->ips_ill_g_lock); 3667 if (ill != NULL) 3668 return (ill); 3669 3670 /* 3671 * Couldn't find it. Does this happen to be a lookup for the 3672 * loopback device and are we allowed to allocate it? 3673 */ 3674 if (!isloopback || !do_alloc) 3675 return (NULL); 3676 3677 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3678 ill = ill_find_by_name(name, isv6, ipst); 3679 if (ill != NULL) { 3680 rw_exit(&ipst->ips_ill_g_lock); 3681 return (ill); 3682 } 3683 3684 /* Create the loopback device on demand */ 3685 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3686 sizeof (ipif_loopback_name), BPRI_MED)); 3687 if (ill == NULL) 3688 goto done; 3689 3690 *ill = ill_null; 3691 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3692 ill->ill_ipst = ipst; 3693 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3694 netstack_hold(ipst->ips_netstack); 3695 /* 3696 * For exclusive stacks we set the zoneid to zero 3697 * to make IP operate as if in the global zone. 3698 */ 3699 ill->ill_zoneid = GLOBAL_ZONEID; 3700 3701 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3702 if (ill->ill_phyint == NULL) 3703 goto done; 3704 3705 if (isv6) 3706 ill->ill_phyint->phyint_illv6 = ill; 3707 else 3708 ill->ill_phyint->phyint_illv4 = ill; 3709 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3710 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3711 3712 if (isv6) { 3713 ill->ill_isv6 = B_TRUE; 3714 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3715 } else { 3716 ill->ill_max_frag = ip_loopback_mtuplus; 3717 } 3718 if (!ill_allocate_mibs(ill)) 3719 goto done; 3720 ill->ill_current_frag = ill->ill_max_frag; 3721 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3722 ill->ill_mc_mtu = ill->ill_mtu; 3723 /* 3724 * ipif_loopback_name can't be pointed at directly because its used 3725 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3726 * from the glist, ill_glist_delete() sets the first character of 3727 * ill_name to '\0'. 3728 */ 3729 ill->ill_name = (char *)ill + sizeof (*ill); 3730 (void) strcpy(ill->ill_name, ipif_loopback_name); 3731 ill->ill_name_length = sizeof (ipif_loopback_name); 3732 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3733 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3734 3735 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3736 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3737 ill->ill_global_timer = INFINITY; 3738 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3739 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3740 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3741 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3742 3743 /* No resolver here. */ 3744 ill->ill_net_type = IRE_LOOPBACK; 3745 3746 /* Initialize the ipsq */ 3747 if (!ipsq_init(ill, B_FALSE)) 3748 goto done; 3749 3750 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3751 if (ipif == NULL) 3752 goto done; 3753 3754 ill->ill_flags = ILLF_MULTICAST; 3755 3756 ov6addr = ipif->ipif_v6lcl_addr; 3757 /* Set up default loopback address and mask. */ 3758 if (!isv6) { 3759 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3760 3761 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3762 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3763 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3764 ipif->ipif_v6subnet); 3765 ill->ill_flags |= ILLF_IPV4; 3766 } else { 3767 ipif->ipif_v6lcl_addr = ipv6_loopback; 3768 ipif->ipif_v6net_mask = ipv6_all_ones; 3769 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3770 ipif->ipif_v6subnet); 3771 ill->ill_flags |= ILLF_IPV6; 3772 } 3773 3774 /* 3775 * Chain us in at the end of the ill list. hold the ill 3776 * before we make it globally visible. 1 for the lookup. 3777 */ 3778 ill->ill_refcnt = 0; 3779 ill_refhold(ill); 3780 3781 ill->ill_frag_count = 0; 3782 ill->ill_frag_free_num_pkts = 0; 3783 ill->ill_last_frag_clean_time = 0; 3784 3785 ipsq = ill->ill_phyint->phyint_ipsq; 3786 3787 ill_set_inputfn(ill); 3788 3789 if (ill_glist_insert(ill, "lo", isv6) != 0) 3790 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3791 3792 /* Let SCTP know so that it can add this to its list */ 3793 sctp_update_ill(ill, SCTP_ILL_INSERT); 3794 3795 /* 3796 * We have already assigned ipif_v6lcl_addr above, but we need to 3797 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3798 * requires to be after ill_glist_insert() since we need the 3799 * ill_index set. Pass on ipv6_loopback as the old address. 3800 */ 3801 sctp_update_ipif_addr(ipif, ov6addr); 3802 3803 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3804 3805 /* 3806 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3807 * If so, free our original one. 3808 */ 3809 if (ipsq != ill->ill_phyint->phyint_ipsq) 3810 ipsq_delete(ipsq); 3811 3812 if (ipst->ips_loopback_ksp == NULL) { 3813 /* Export loopback interface statistics */ 3814 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3815 ipif_loopback_name, "net", 3816 KSTAT_TYPE_NAMED, 2, 0, 3817 ipst->ips_netstack->netstack_stackid); 3818 if (ipst->ips_loopback_ksp != NULL) { 3819 ipst->ips_loopback_ksp->ks_update = 3820 loopback_kstat_update; 3821 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3822 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3823 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3824 ipst->ips_loopback_ksp->ks_private = 3825 (void *)(uintptr_t)ipst->ips_netstack-> 3826 netstack_stackid; 3827 kstat_install(ipst->ips_loopback_ksp); 3828 } 3829 } 3830 3831 *did_alloc = B_TRUE; 3832 rw_exit(&ipst->ips_ill_g_lock); 3833 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3834 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3835 return (ill); 3836 done: 3837 if (ill != NULL) { 3838 if (ill->ill_phyint != NULL) { 3839 ipsq = ill->ill_phyint->phyint_ipsq; 3840 if (ipsq != NULL) { 3841 ipsq->ipsq_phyint = NULL; 3842 ipsq_delete(ipsq); 3843 } 3844 mi_free(ill->ill_phyint); 3845 } 3846 ill_free_mib(ill); 3847 if (ill->ill_ipst != NULL) 3848 netstack_rele(ill->ill_ipst->ips_netstack); 3849 mi_free(ill); 3850 } 3851 rw_exit(&ipst->ips_ill_g_lock); 3852 return (NULL); 3853 } 3854 3855 /* 3856 * For IPP calls - use the ip_stack_t for global stack. 3857 */ 3858 ill_t * 3859 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3860 { 3861 ip_stack_t *ipst; 3862 ill_t *ill; 3863 3864 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3865 if (ipst == NULL) { 3866 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3867 return (NULL); 3868 } 3869 3870 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3871 netstack_rele(ipst->ips_netstack); 3872 return (ill); 3873 } 3874 3875 /* 3876 * Return a pointer to the ill which matches the index and IP version type. 3877 */ 3878 ill_t * 3879 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3880 { 3881 ill_t *ill; 3882 phyint_t *phyi; 3883 3884 /* 3885 * Indexes are stored in the phyint - a common structure 3886 * to both IPv4 and IPv6. 3887 */ 3888 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3889 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3890 (void *) &index, NULL); 3891 if (phyi != NULL) { 3892 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3893 if (ill != NULL) { 3894 mutex_enter(&ill->ill_lock); 3895 if (!ILL_IS_CONDEMNED(ill)) { 3896 ill_refhold_locked(ill); 3897 mutex_exit(&ill->ill_lock); 3898 rw_exit(&ipst->ips_ill_g_lock); 3899 return (ill); 3900 } 3901 mutex_exit(&ill->ill_lock); 3902 } 3903 } 3904 rw_exit(&ipst->ips_ill_g_lock); 3905 return (NULL); 3906 } 3907 3908 /* 3909 * Verify whether or not an interface index is valid for the specified zoneid 3910 * to transmit packets. 3911 * It can be zero (meaning "reset") or an interface index assigned 3912 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3913 */ 3914 boolean_t 3915 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3916 ip_stack_t *ipst) 3917 { 3918 ill_t *ill; 3919 3920 if (ifindex == 0) 3921 return (B_TRUE); 3922 3923 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3924 if (ill == NULL) 3925 return (B_FALSE); 3926 if (IS_VNI(ill)) { 3927 ill_refrele(ill); 3928 return (B_FALSE); 3929 } 3930 ill_refrele(ill); 3931 return (B_TRUE); 3932 } 3933 3934 /* 3935 * Return the ifindex next in sequence after the passed in ifindex. 3936 * If there is no next ifindex for the given protocol, return 0. 3937 */ 3938 uint_t 3939 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3940 { 3941 phyint_t *phyi; 3942 phyint_t *phyi_initial; 3943 uint_t ifindex; 3944 3945 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3946 3947 if (index == 0) { 3948 phyi = avl_first( 3949 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3950 } else { 3951 phyi = phyi_initial = avl_find( 3952 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3953 (void *) &index, NULL); 3954 } 3955 3956 for (; phyi != NULL; 3957 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3958 phyi, AVL_AFTER)) { 3959 /* 3960 * If we're not returning the first interface in the tree 3961 * and we still haven't moved past the phyint_t that 3962 * corresponds to index, avl_walk needs to be called again 3963 */ 3964 if (!((index != 0) && (phyi == phyi_initial))) { 3965 if (isv6) { 3966 if ((phyi->phyint_illv6) && 3967 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3968 (phyi->phyint_illv6->ill_isv6 == 1)) 3969 break; 3970 } else { 3971 if ((phyi->phyint_illv4) && 3972 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3973 (phyi->phyint_illv4->ill_isv6 == 0)) 3974 break; 3975 } 3976 } 3977 } 3978 3979 rw_exit(&ipst->ips_ill_g_lock); 3980 3981 if (phyi != NULL) 3982 ifindex = phyi->phyint_ifindex; 3983 else 3984 ifindex = 0; 3985 3986 return (ifindex); 3987 } 3988 3989 /* 3990 * Return the ifindex for the named interface. 3991 * If there is no next ifindex for the interface, return 0. 3992 */ 3993 uint_t 3994 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3995 { 3996 phyint_t *phyi; 3997 avl_index_t where = 0; 3998 uint_t ifindex; 3999 4000 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4001 4002 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4003 name, &where)) == NULL) { 4004 rw_exit(&ipst->ips_ill_g_lock); 4005 return (0); 4006 } 4007 4008 ifindex = phyi->phyint_ifindex; 4009 4010 rw_exit(&ipst->ips_ill_g_lock); 4011 4012 return (ifindex); 4013 } 4014 4015 /* 4016 * Return the ifindex to be used by upper layer protocols for instance 4017 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4018 */ 4019 uint_t 4020 ill_get_upper_ifindex(const ill_t *ill) 4021 { 4022 if (IS_UNDER_IPMP(ill)) 4023 return (ipmp_ill_get_ipmp_ifindex(ill)); 4024 else 4025 return (ill->ill_phyint->phyint_ifindex); 4026 } 4027 4028 4029 /* 4030 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4031 * that gives a running thread a reference to the ill. This reference must be 4032 * released by the thread when it is done accessing the ill and related 4033 * objects. ill_refcnt can not be used to account for static references 4034 * such as other structures pointing to an ill. Callers must generally 4035 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4036 * or be sure that the ill is not being deleted or changing state before 4037 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4038 * ill won't change any of its critical state such as address, netmask etc. 4039 */ 4040 void 4041 ill_refhold(ill_t *ill) 4042 { 4043 mutex_enter(&ill->ill_lock); 4044 ill->ill_refcnt++; 4045 ILL_TRACE_REF(ill); 4046 mutex_exit(&ill->ill_lock); 4047 } 4048 4049 void 4050 ill_refhold_locked(ill_t *ill) 4051 { 4052 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4053 ill->ill_refcnt++; 4054 ILL_TRACE_REF(ill); 4055 } 4056 4057 /* Returns true if we managed to get a refhold */ 4058 boolean_t 4059 ill_check_and_refhold(ill_t *ill) 4060 { 4061 mutex_enter(&ill->ill_lock); 4062 if (!ILL_IS_CONDEMNED(ill)) { 4063 ill_refhold_locked(ill); 4064 mutex_exit(&ill->ill_lock); 4065 return (B_TRUE); 4066 } 4067 mutex_exit(&ill->ill_lock); 4068 return (B_FALSE); 4069 } 4070 4071 /* 4072 * Must not be called while holding any locks. Otherwise if this is 4073 * the last reference to be released, there is a chance of recursive mutex 4074 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4075 * to restart an ioctl. 4076 */ 4077 void 4078 ill_refrele(ill_t *ill) 4079 { 4080 mutex_enter(&ill->ill_lock); 4081 ASSERT(ill->ill_refcnt != 0); 4082 ill->ill_refcnt--; 4083 ILL_UNTRACE_REF(ill); 4084 if (ill->ill_refcnt != 0) { 4085 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4086 mutex_exit(&ill->ill_lock); 4087 return; 4088 } 4089 4090 /* Drops the ill_lock */ 4091 ipif_ill_refrele_tail(ill); 4092 } 4093 4094 /* 4095 * Obtain a weak reference count on the ill. This reference ensures the 4096 * ill won't be freed, but the ill may change any of its critical state 4097 * such as netmask, address etc. Returns an error if the ill has started 4098 * closing. 4099 */ 4100 boolean_t 4101 ill_waiter_inc(ill_t *ill) 4102 { 4103 mutex_enter(&ill->ill_lock); 4104 if (ill->ill_state_flags & ILL_CONDEMNED) { 4105 mutex_exit(&ill->ill_lock); 4106 return (B_FALSE); 4107 } 4108 ill->ill_waiters++; 4109 mutex_exit(&ill->ill_lock); 4110 return (B_TRUE); 4111 } 4112 4113 void 4114 ill_waiter_dcr(ill_t *ill) 4115 { 4116 mutex_enter(&ill->ill_lock); 4117 ill->ill_waiters--; 4118 if (ill->ill_waiters == 0) 4119 cv_broadcast(&ill->ill_cv); 4120 mutex_exit(&ill->ill_lock); 4121 } 4122 4123 /* 4124 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4125 * driver. We construct best guess defaults for lower level information that 4126 * we need. If an interface is brought up without injection of any overriding 4127 * information from outside, we have to be ready to go with these defaults. 4128 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4129 * we primarely want the dl_provider_style. 4130 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4131 * at which point we assume the other part of the information is valid. 4132 */ 4133 void 4134 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4135 { 4136 uchar_t *brdcst_addr; 4137 uint_t brdcst_addr_length, phys_addr_length; 4138 t_scalar_t sap_length; 4139 dl_info_ack_t *dlia; 4140 ip_m_t *ipm; 4141 dl_qos_cl_sel1_t *sel1; 4142 int min_mtu; 4143 4144 ASSERT(IAM_WRITER_ILL(ill)); 4145 4146 /* 4147 * Till the ill is fully up the ill is not globally visible. 4148 * So no need for a lock. 4149 */ 4150 dlia = (dl_info_ack_t *)mp->b_rptr; 4151 ill->ill_mactype = dlia->dl_mac_type; 4152 4153 ipm = ip_m_lookup(dlia->dl_mac_type); 4154 if (ipm == NULL) { 4155 ipm = ip_m_lookup(DL_OTHER); 4156 ASSERT(ipm != NULL); 4157 } 4158 ill->ill_media = ipm; 4159 4160 /* 4161 * When the new DLPI stuff is ready we'll pull lengths 4162 * from dlia. 4163 */ 4164 if (dlia->dl_version == DL_VERSION_2) { 4165 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4166 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4167 brdcst_addr_length); 4168 if (brdcst_addr == NULL) { 4169 brdcst_addr_length = 0; 4170 } 4171 sap_length = dlia->dl_sap_length; 4172 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4173 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4174 brdcst_addr_length, sap_length, phys_addr_length)); 4175 } else { 4176 brdcst_addr_length = 6; 4177 brdcst_addr = ip_six_byte_all_ones; 4178 sap_length = -2; 4179 phys_addr_length = brdcst_addr_length; 4180 } 4181 4182 ill->ill_bcast_addr_length = brdcst_addr_length; 4183 ill->ill_phys_addr_length = phys_addr_length; 4184 ill->ill_sap_length = sap_length; 4185 4186 /* 4187 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4188 * but we must ensure a minimum IP MTU is used since other bits of 4189 * IP will fly apart otherwise. 4190 */ 4191 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4192 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4193 ill->ill_current_frag = ill->ill_max_frag; 4194 ill->ill_mtu = ill->ill_max_frag; 4195 ill->ill_mc_mtu = ill->ill_mtu; /* Overridden by DL_NOTE_SDU_SIZE2 */ 4196 4197 ill->ill_type = ipm->ip_m_type; 4198 4199 if (!ill->ill_dlpi_style_set) { 4200 if (dlia->dl_provider_style == DL_STYLE2) 4201 ill->ill_needs_attach = 1; 4202 4203 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4204 4205 /* 4206 * Allocate the first ipif on this ill. We don't delay it 4207 * further as ioctl handling assumes at least one ipif exists. 4208 * 4209 * At this point we don't know whether the ill is v4 or v6. 4210 * We will know this whan the SIOCSLIFNAME happens and 4211 * the correct value for ill_isv6 will be assigned in 4212 * ipif_set_values(). We need to hold the ill lock and 4213 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4214 * the wakeup. 4215 */ 4216 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4217 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4218 mutex_enter(&ill->ill_lock); 4219 ASSERT(ill->ill_dlpi_style_set == 0); 4220 ill->ill_dlpi_style_set = 1; 4221 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4222 cv_broadcast(&ill->ill_cv); 4223 mutex_exit(&ill->ill_lock); 4224 freemsg(mp); 4225 return; 4226 } 4227 ASSERT(ill->ill_ipif != NULL); 4228 /* 4229 * We know whether it is IPv4 or IPv6 now, as this is the 4230 * second DL_INFO_ACK we are recieving in response to the 4231 * DL_INFO_REQ sent in ipif_set_values. 4232 */ 4233 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4234 /* 4235 * Clear all the flags that were set based on ill_bcast_addr_length 4236 * and ill_phys_addr_length (in ipif_set_values) as these could have 4237 * changed now and we need to re-evaluate. 4238 */ 4239 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4240 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4241 4242 /* 4243 * Free ill_bcast_mp as things could have changed now. 4244 * 4245 * NOTE: The IPMP meta-interface is special-cased because it starts 4246 * with no underlying interfaces (and thus an unknown broadcast 4247 * address length), but we enforce that an interface is broadcast- 4248 * capable as part of allowing it to join a group. 4249 */ 4250 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4251 if (ill->ill_bcast_mp != NULL) 4252 freemsg(ill->ill_bcast_mp); 4253 ill->ill_net_type = IRE_IF_NORESOLVER; 4254 4255 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4256 ill->ill_phys_addr_length, 4257 ill->ill_sap, 4258 ill->ill_sap_length); 4259 4260 if (ill->ill_isv6) 4261 /* 4262 * Note: xresolv interfaces will eventually need NOARP 4263 * set here as well, but that will require those 4264 * external resolvers to have some knowledge of 4265 * that flag and act appropriately. Not to be changed 4266 * at present. 4267 */ 4268 ill->ill_flags |= ILLF_NONUD; 4269 else 4270 ill->ill_flags |= ILLF_NOARP; 4271 4272 if (ill->ill_mactype == SUNW_DL_VNI) { 4273 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4274 } else if (ill->ill_phys_addr_length == 0 || 4275 ill->ill_mactype == DL_IPV4 || 4276 ill->ill_mactype == DL_IPV6) { 4277 /* 4278 * The underying link is point-to-point, so mark the 4279 * interface as such. We can do IP multicast over 4280 * such a link since it transmits all network-layer 4281 * packets to the remote side the same way. 4282 */ 4283 ill->ill_flags |= ILLF_MULTICAST; 4284 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4285 } 4286 } else { 4287 ill->ill_net_type = IRE_IF_RESOLVER; 4288 if (ill->ill_bcast_mp != NULL) 4289 freemsg(ill->ill_bcast_mp); 4290 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4291 ill->ill_bcast_addr_length, ill->ill_sap, 4292 ill->ill_sap_length); 4293 /* 4294 * Later detect lack of DLPI driver multicast 4295 * capability by catching DL_ENABMULTI errors in 4296 * ip_rput_dlpi. 4297 */ 4298 ill->ill_flags |= ILLF_MULTICAST; 4299 if (!ill->ill_isv6) 4300 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4301 } 4302 4303 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4304 if (ill->ill_mactype == SUNW_DL_IPMP) 4305 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4306 4307 /* By default an interface does not support any CoS marking */ 4308 ill->ill_flags &= ~ILLF_COS_ENABLED; 4309 4310 /* 4311 * If we get QoS information in DL_INFO_ACK, the device supports 4312 * some form of CoS marking, set ILLF_COS_ENABLED. 4313 */ 4314 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4315 dlia->dl_qos_length); 4316 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4317 ill->ill_flags |= ILLF_COS_ENABLED; 4318 } 4319 4320 /* Clear any previous error indication. */ 4321 ill->ill_error = 0; 4322 freemsg(mp); 4323 } 4324 4325 /* 4326 * Perform various checks to verify that an address would make sense as a 4327 * local, remote, or subnet interface address. 4328 */ 4329 static boolean_t 4330 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4331 { 4332 ipaddr_t net_mask; 4333 4334 /* 4335 * Don't allow all zeroes, or all ones, but allow 4336 * all ones netmask. 4337 */ 4338 if ((net_mask = ip_net_mask(addr)) == 0) 4339 return (B_FALSE); 4340 /* A given netmask overrides the "guess" netmask */ 4341 if (subnet_mask != 0) 4342 net_mask = subnet_mask; 4343 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4344 (addr == (addr | ~net_mask)))) { 4345 return (B_FALSE); 4346 } 4347 4348 /* 4349 * Even if the netmask is all ones, we do not allow address to be 4350 * 255.255.255.255 4351 */ 4352 if (addr == INADDR_BROADCAST) 4353 return (B_FALSE); 4354 4355 if (CLASSD(addr)) 4356 return (B_FALSE); 4357 4358 return (B_TRUE); 4359 } 4360 4361 #define V6_IPIF_LINKLOCAL(p) \ 4362 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4363 4364 /* 4365 * Compare two given ipifs and check if the second one is better than 4366 * the first one using the order of preference (not taking deprecated 4367 * into acount) specified in ipif_lookup_multicast(). 4368 */ 4369 static boolean_t 4370 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4371 { 4372 /* Check the least preferred first. */ 4373 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4374 /* If both ipifs are the same, use the first one. */ 4375 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4376 return (B_FALSE); 4377 else 4378 return (B_TRUE); 4379 } 4380 4381 /* For IPv6, check for link local address. */ 4382 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4383 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4384 V6_IPIF_LINKLOCAL(new_ipif)) { 4385 /* The second one is equal or less preferred. */ 4386 return (B_FALSE); 4387 } else { 4388 return (B_TRUE); 4389 } 4390 } 4391 4392 /* Then check for point to point interface. */ 4393 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4394 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4395 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4396 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4397 return (B_FALSE); 4398 } else { 4399 return (B_TRUE); 4400 } 4401 } 4402 4403 /* old_ipif is a normal interface, so no need to use the new one. */ 4404 return (B_FALSE); 4405 } 4406 4407 /* 4408 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4409 * The ipif must be up, and its ill must multicast-capable, not 4410 * condemned, not an underlying interface in an IPMP group, and 4411 * not a VNI interface. Order of preference: 4412 * 4413 * 1a. normal 4414 * 1b. normal, but deprecated 4415 * 2a. point to point 4416 * 2b. point to point, but deprecated 4417 * 3a. link local 4418 * 3b. link local, but deprecated 4419 * 4. loopback. 4420 */ 4421 static ipif_t * 4422 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4423 { 4424 ill_t *ill; 4425 ill_walk_context_t ctx; 4426 ipif_t *ipif; 4427 ipif_t *saved_ipif = NULL; 4428 ipif_t *dep_ipif = NULL; 4429 4430 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4431 if (isv6) 4432 ill = ILL_START_WALK_V6(&ctx, ipst); 4433 else 4434 ill = ILL_START_WALK_V4(&ctx, ipst); 4435 4436 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4437 mutex_enter(&ill->ill_lock); 4438 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4439 ILL_IS_CONDEMNED(ill) || 4440 !(ill->ill_flags & ILLF_MULTICAST)) { 4441 mutex_exit(&ill->ill_lock); 4442 continue; 4443 } 4444 for (ipif = ill->ill_ipif; ipif != NULL; 4445 ipif = ipif->ipif_next) { 4446 if (zoneid != ipif->ipif_zoneid && 4447 zoneid != ALL_ZONES && 4448 ipif->ipif_zoneid != ALL_ZONES) { 4449 continue; 4450 } 4451 if (!(ipif->ipif_flags & IPIF_UP) || 4452 IPIF_IS_CONDEMNED(ipif)) { 4453 continue; 4454 } 4455 4456 /* 4457 * Found one candidate. If it is deprecated, 4458 * remember it in dep_ipif. If it is not deprecated, 4459 * remember it in saved_ipif. 4460 */ 4461 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4462 if (dep_ipif == NULL) { 4463 dep_ipif = ipif; 4464 } else if (ipif_comp_multi(dep_ipif, ipif, 4465 isv6)) { 4466 /* 4467 * If the previous dep_ipif does not 4468 * belong to the same ill, we've done 4469 * a ipif_refhold() on it. So we need 4470 * to release it. 4471 */ 4472 if (dep_ipif->ipif_ill != ill) 4473 ipif_refrele(dep_ipif); 4474 dep_ipif = ipif; 4475 } 4476 continue; 4477 } 4478 if (saved_ipif == NULL) { 4479 saved_ipif = ipif; 4480 } else { 4481 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4482 if (saved_ipif->ipif_ill != ill) 4483 ipif_refrele(saved_ipif); 4484 saved_ipif = ipif; 4485 } 4486 } 4487 } 4488 /* 4489 * Before going to the next ill, do a ipif_refhold() on the 4490 * saved ones. 4491 */ 4492 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4493 ipif_refhold_locked(saved_ipif); 4494 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4495 ipif_refhold_locked(dep_ipif); 4496 mutex_exit(&ill->ill_lock); 4497 } 4498 rw_exit(&ipst->ips_ill_g_lock); 4499 4500 /* 4501 * If we have only the saved_ipif, return it. But if we have both 4502 * saved_ipif and dep_ipif, check to see which one is better. 4503 */ 4504 if (saved_ipif != NULL) { 4505 if (dep_ipif != NULL) { 4506 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4507 ipif_refrele(saved_ipif); 4508 return (dep_ipif); 4509 } else { 4510 ipif_refrele(dep_ipif); 4511 return (saved_ipif); 4512 } 4513 } 4514 return (saved_ipif); 4515 } else { 4516 return (dep_ipif); 4517 } 4518 } 4519 4520 ill_t * 4521 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4522 { 4523 ipif_t *ipif; 4524 ill_t *ill; 4525 4526 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4527 if (ipif == NULL) 4528 return (NULL); 4529 4530 ill = ipif->ipif_ill; 4531 ill_refhold(ill); 4532 ipif_refrele(ipif); 4533 return (ill); 4534 } 4535 4536 /* 4537 * This function is called when an application does not specify an interface 4538 * to be used for multicast traffic (joining a group/sending data). It 4539 * calls ire_lookup_multi() to look for an interface route for the 4540 * specified multicast group. Doing this allows the administrator to add 4541 * prefix routes for multicast to indicate which interface to be used for 4542 * multicast traffic in the above scenario. The route could be for all 4543 * multicast (224.0/4), for a single multicast group (a /32 route) or 4544 * anything in between. If there is no such multicast route, we just find 4545 * any multicast capable interface and return it. The returned ipif 4546 * is refhold'ed. 4547 * 4548 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4549 * unicast table. This is used by CGTP. 4550 */ 4551 ill_t * 4552 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4553 boolean_t *multirtp, ipaddr_t *setsrcp) 4554 { 4555 ill_t *ill; 4556 4557 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4558 if (ill != NULL) 4559 return (ill); 4560 4561 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4562 } 4563 4564 /* 4565 * Look for an ipif with the specified interface address and destination. 4566 * The destination address is used only for matching point-to-point interfaces. 4567 */ 4568 ipif_t * 4569 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4570 { 4571 ipif_t *ipif; 4572 ill_t *ill; 4573 ill_walk_context_t ctx; 4574 4575 /* 4576 * First match all the point-to-point interfaces 4577 * before looking at non-point-to-point interfaces. 4578 * This is done to avoid returning non-point-to-point 4579 * ipif instead of unnumbered point-to-point ipif. 4580 */ 4581 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4582 ill = ILL_START_WALK_V4(&ctx, ipst); 4583 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4584 mutex_enter(&ill->ill_lock); 4585 for (ipif = ill->ill_ipif; ipif != NULL; 4586 ipif = ipif->ipif_next) { 4587 /* Allow the ipif to be down */ 4588 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4589 (ipif->ipif_lcl_addr == if_addr) && 4590 (ipif->ipif_pp_dst_addr == dst)) { 4591 if (!IPIF_IS_CONDEMNED(ipif)) { 4592 ipif_refhold_locked(ipif); 4593 mutex_exit(&ill->ill_lock); 4594 rw_exit(&ipst->ips_ill_g_lock); 4595 return (ipif); 4596 } 4597 } 4598 } 4599 mutex_exit(&ill->ill_lock); 4600 } 4601 rw_exit(&ipst->ips_ill_g_lock); 4602 4603 /* lookup the ipif based on interface address */ 4604 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4605 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4606 return (ipif); 4607 } 4608 4609 /* 4610 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4611 */ 4612 static ipif_t * 4613 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4614 zoneid_t zoneid, ip_stack_t *ipst) 4615 { 4616 ipif_t *ipif; 4617 ill_t *ill; 4618 boolean_t ptp = B_FALSE; 4619 ill_walk_context_t ctx; 4620 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4621 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4622 4623 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4624 /* 4625 * Repeat twice, first based on local addresses and 4626 * next time for pointopoint. 4627 */ 4628 repeat: 4629 ill = ILL_START_WALK_V4(&ctx, ipst); 4630 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4631 if (match_ill != NULL && ill != match_ill && 4632 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4633 continue; 4634 } 4635 mutex_enter(&ill->ill_lock); 4636 for (ipif = ill->ill_ipif; ipif != NULL; 4637 ipif = ipif->ipif_next) { 4638 if (zoneid != ALL_ZONES && 4639 zoneid != ipif->ipif_zoneid && 4640 ipif->ipif_zoneid != ALL_ZONES) 4641 continue; 4642 4643 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4644 continue; 4645 4646 /* Allow the ipif to be down */ 4647 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4648 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4649 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4650 (ipif->ipif_pp_dst_addr == addr))) { 4651 if (!IPIF_IS_CONDEMNED(ipif)) { 4652 ipif_refhold_locked(ipif); 4653 mutex_exit(&ill->ill_lock); 4654 rw_exit(&ipst->ips_ill_g_lock); 4655 return (ipif); 4656 } 4657 } 4658 } 4659 mutex_exit(&ill->ill_lock); 4660 } 4661 4662 /* If we already did the ptp case, then we are done */ 4663 if (ptp) { 4664 rw_exit(&ipst->ips_ill_g_lock); 4665 return (NULL); 4666 } 4667 ptp = B_TRUE; 4668 goto repeat; 4669 } 4670 4671 /* 4672 * Lookup an ipif with the specified address. For point-to-point links we 4673 * look for matches on either the destination address or the local address, 4674 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4675 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4676 * (or illgrp if `match_ill' is in an IPMP group). 4677 */ 4678 ipif_t * 4679 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4680 ip_stack_t *ipst) 4681 { 4682 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4683 zoneid, ipst)); 4684 } 4685 4686 /* 4687 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4688 * except that we will only return an address if it is not marked as 4689 * IPIF_DUPLICATE 4690 */ 4691 ipif_t * 4692 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4693 ip_stack_t *ipst) 4694 { 4695 return (ipif_lookup_addr_common(addr, match_ill, 4696 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4697 zoneid, ipst)); 4698 } 4699 4700 /* 4701 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4702 * `match_ill' across the IPMP group. This function is only needed in some 4703 * corner-cases; almost everything should use ipif_lookup_addr(). 4704 */ 4705 ipif_t * 4706 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4707 { 4708 ASSERT(match_ill != NULL); 4709 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4710 ipst)); 4711 } 4712 4713 /* 4714 * Look for an ipif with the specified address. For point-point links 4715 * we look for matches on either the destination address and the local 4716 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4717 * is set. 4718 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4719 * ill (or illgrp if `match_ill' is in an IPMP group). 4720 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4721 */ 4722 zoneid_t 4723 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4724 { 4725 zoneid_t zoneid; 4726 ipif_t *ipif; 4727 ill_t *ill; 4728 boolean_t ptp = B_FALSE; 4729 ill_walk_context_t ctx; 4730 4731 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4732 /* 4733 * Repeat twice, first based on local addresses and 4734 * next time for pointopoint. 4735 */ 4736 repeat: 4737 ill = ILL_START_WALK_V4(&ctx, ipst); 4738 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4739 if (match_ill != NULL && ill != match_ill && 4740 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4741 continue; 4742 } 4743 mutex_enter(&ill->ill_lock); 4744 for (ipif = ill->ill_ipif; ipif != NULL; 4745 ipif = ipif->ipif_next) { 4746 /* Allow the ipif to be down */ 4747 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4748 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4749 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4750 (ipif->ipif_pp_dst_addr == addr)) && 4751 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4752 zoneid = ipif->ipif_zoneid; 4753 mutex_exit(&ill->ill_lock); 4754 rw_exit(&ipst->ips_ill_g_lock); 4755 /* 4756 * If ipif_zoneid was ALL_ZONES then we have 4757 * a trusted extensions shared IP address. 4758 * In that case GLOBAL_ZONEID works to send. 4759 */ 4760 if (zoneid == ALL_ZONES) 4761 zoneid = GLOBAL_ZONEID; 4762 return (zoneid); 4763 } 4764 } 4765 mutex_exit(&ill->ill_lock); 4766 } 4767 4768 /* If we already did the ptp case, then we are done */ 4769 if (ptp) { 4770 rw_exit(&ipst->ips_ill_g_lock); 4771 return (ALL_ZONES); 4772 } 4773 ptp = B_TRUE; 4774 goto repeat; 4775 } 4776 4777 /* 4778 * Look for an ipif that matches the specified remote address i.e. the 4779 * ipif that would receive the specified packet. 4780 * First look for directly connected interfaces and then do a recursive 4781 * IRE lookup and pick the first ipif corresponding to the source address in the 4782 * ire. 4783 * Returns: held ipif 4784 * 4785 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4786 */ 4787 ipif_t * 4788 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4789 { 4790 ipif_t *ipif; 4791 4792 ASSERT(!ill->ill_isv6); 4793 4794 /* 4795 * Someone could be changing this ipif currently or change it 4796 * after we return this. Thus a few packets could use the old 4797 * old values. However structure updates/creates (ire, ilg, ilm etc) 4798 * will atomically be updated or cleaned up with the new value 4799 * Thus we don't need a lock to check the flags or other attrs below. 4800 */ 4801 mutex_enter(&ill->ill_lock); 4802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4803 if (IPIF_IS_CONDEMNED(ipif)) 4804 continue; 4805 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4806 ipif->ipif_zoneid != ALL_ZONES) 4807 continue; 4808 /* Allow the ipif to be down */ 4809 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4810 if ((ipif->ipif_pp_dst_addr == addr) || 4811 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4812 ipif->ipif_lcl_addr == addr)) { 4813 ipif_refhold_locked(ipif); 4814 mutex_exit(&ill->ill_lock); 4815 return (ipif); 4816 } 4817 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4818 ipif_refhold_locked(ipif); 4819 mutex_exit(&ill->ill_lock); 4820 return (ipif); 4821 } 4822 } 4823 mutex_exit(&ill->ill_lock); 4824 /* 4825 * For a remote destination it isn't possible to nail down a particular 4826 * ipif. 4827 */ 4828 4829 /* Pick the first interface */ 4830 ipif = ipif_get_next_ipif(NULL, ill); 4831 return (ipif); 4832 } 4833 4834 /* 4835 * This func does not prevent refcnt from increasing. But if 4836 * the caller has taken steps to that effect, then this func 4837 * can be used to determine whether the ill has become quiescent 4838 */ 4839 static boolean_t 4840 ill_is_quiescent(ill_t *ill) 4841 { 4842 ipif_t *ipif; 4843 4844 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4845 4846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4847 if (ipif->ipif_refcnt != 0) 4848 return (B_FALSE); 4849 } 4850 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4851 return (B_FALSE); 4852 } 4853 return (B_TRUE); 4854 } 4855 4856 boolean_t 4857 ill_is_freeable(ill_t *ill) 4858 { 4859 ipif_t *ipif; 4860 4861 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4862 4863 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4864 if (ipif->ipif_refcnt != 0) { 4865 return (B_FALSE); 4866 } 4867 } 4868 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4869 return (B_FALSE); 4870 } 4871 return (B_TRUE); 4872 } 4873 4874 /* 4875 * This func does not prevent refcnt from increasing. But if 4876 * the caller has taken steps to that effect, then this func 4877 * can be used to determine whether the ipif has become quiescent 4878 */ 4879 static boolean_t 4880 ipif_is_quiescent(ipif_t *ipif) 4881 { 4882 ill_t *ill; 4883 4884 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4885 4886 if (ipif->ipif_refcnt != 0) 4887 return (B_FALSE); 4888 4889 ill = ipif->ipif_ill; 4890 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4891 ill->ill_logical_down) { 4892 return (B_TRUE); 4893 } 4894 4895 /* This is the last ipif going down or being deleted on this ill */ 4896 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4897 return (B_FALSE); 4898 } 4899 4900 return (B_TRUE); 4901 } 4902 4903 /* 4904 * return true if the ipif can be destroyed: the ipif has to be quiescent 4905 * with zero references from ire/ilm to it. 4906 */ 4907 static boolean_t 4908 ipif_is_freeable(ipif_t *ipif) 4909 { 4910 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4911 ASSERT(ipif->ipif_id != 0); 4912 return (ipif->ipif_refcnt == 0); 4913 } 4914 4915 /* 4916 * The ipif/ill/ire has been refreled. Do the tail processing. 4917 * Determine if the ipif or ill in question has become quiescent and if so 4918 * wakeup close and/or restart any queued pending ioctl that is waiting 4919 * for the ipif_down (or ill_down) 4920 */ 4921 void 4922 ipif_ill_refrele_tail(ill_t *ill) 4923 { 4924 mblk_t *mp; 4925 conn_t *connp; 4926 ipsq_t *ipsq; 4927 ipxop_t *ipx; 4928 ipif_t *ipif; 4929 dl_notify_ind_t *dlindp; 4930 4931 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4932 4933 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4934 /* ip_modclose() may be waiting */ 4935 cv_broadcast(&ill->ill_cv); 4936 } 4937 4938 ipsq = ill->ill_phyint->phyint_ipsq; 4939 mutex_enter(&ipsq->ipsq_lock); 4940 ipx = ipsq->ipsq_xop; 4941 mutex_enter(&ipx->ipx_lock); 4942 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4943 goto unlock; 4944 4945 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4946 4947 ipif = ipx->ipx_pending_ipif; 4948 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4949 goto unlock; 4950 4951 switch (ipx->ipx_waitfor) { 4952 case IPIF_DOWN: 4953 if (!ipif_is_quiescent(ipif)) 4954 goto unlock; 4955 break; 4956 case IPIF_FREE: 4957 if (!ipif_is_freeable(ipif)) 4958 goto unlock; 4959 break; 4960 case ILL_DOWN: 4961 if (!ill_is_quiescent(ill)) 4962 goto unlock; 4963 break; 4964 case ILL_FREE: 4965 /* 4966 * ILL_FREE is only for loopback; normal ill teardown waits 4967 * synchronously in ip_modclose() without using ipx_waitfor, 4968 * handled by the cv_broadcast() at the top of this function. 4969 */ 4970 if (!ill_is_freeable(ill)) 4971 goto unlock; 4972 break; 4973 default: 4974 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4975 (void *)ipsq, ipx->ipx_waitfor); 4976 } 4977 4978 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4979 mutex_exit(&ipx->ipx_lock); 4980 mp = ipsq_pending_mp_get(ipsq, &connp); 4981 mutex_exit(&ipsq->ipsq_lock); 4982 mutex_exit(&ill->ill_lock); 4983 4984 ASSERT(mp != NULL); 4985 /* 4986 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4987 * we can only get here when the current operation decides it 4988 * it needs to quiesce via ipsq_pending_mp_add(). 4989 */ 4990 switch (mp->b_datap->db_type) { 4991 case M_PCPROTO: 4992 case M_PROTO: 4993 /* 4994 * For now, only DL_NOTIFY_IND messages can use this facility. 4995 */ 4996 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4997 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4998 4999 switch (dlindp->dl_notification) { 5000 case DL_NOTE_PHYS_ADDR: 5001 qwriter_ip(ill, ill->ill_rq, mp, 5002 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5003 return; 5004 case DL_NOTE_REPLUMB: 5005 qwriter_ip(ill, ill->ill_rq, mp, 5006 ill_replumb_tail, CUR_OP, B_TRUE); 5007 return; 5008 default: 5009 ASSERT(0); 5010 ill_refrele(ill); 5011 } 5012 break; 5013 5014 case M_ERROR: 5015 case M_HANGUP: 5016 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5017 B_TRUE); 5018 return; 5019 5020 case M_IOCTL: 5021 case M_IOCDATA: 5022 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5023 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5024 return; 5025 5026 default: 5027 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5028 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5029 } 5030 return; 5031 unlock: 5032 mutex_exit(&ipsq->ipsq_lock); 5033 mutex_exit(&ipx->ipx_lock); 5034 mutex_exit(&ill->ill_lock); 5035 } 5036 5037 #ifdef DEBUG 5038 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5039 static void 5040 th_trace_rrecord(th_trace_t *th_trace) 5041 { 5042 tr_buf_t *tr_buf; 5043 uint_t lastref; 5044 5045 lastref = th_trace->th_trace_lastref; 5046 lastref++; 5047 if (lastref == TR_BUF_MAX) 5048 lastref = 0; 5049 th_trace->th_trace_lastref = lastref; 5050 tr_buf = &th_trace->th_trbuf[lastref]; 5051 tr_buf->tr_time = ddi_get_lbolt(); 5052 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5053 } 5054 5055 static void 5056 th_trace_free(void *value) 5057 { 5058 th_trace_t *th_trace = value; 5059 5060 ASSERT(th_trace->th_refcnt == 0); 5061 kmem_free(th_trace, sizeof (*th_trace)); 5062 } 5063 5064 /* 5065 * Find or create the per-thread hash table used to track object references. 5066 * The ipst argument is NULL if we shouldn't allocate. 5067 * 5068 * Accesses per-thread data, so there's no need to lock here. 5069 */ 5070 static mod_hash_t * 5071 th_trace_gethash(ip_stack_t *ipst) 5072 { 5073 th_hash_t *thh; 5074 5075 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5076 mod_hash_t *mh; 5077 char name[256]; 5078 size_t objsize, rshift; 5079 int retv; 5080 5081 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5082 return (NULL); 5083 (void) snprintf(name, sizeof (name), "th_trace_%p", 5084 (void *)curthread); 5085 5086 /* 5087 * We use mod_hash_create_extended here rather than the more 5088 * obvious mod_hash_create_ptrhash because the latter has a 5089 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5090 * block. 5091 */ 5092 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5093 MAX(sizeof (ire_t), sizeof (ncec_t))); 5094 rshift = highbit(objsize); 5095 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5096 th_trace_free, mod_hash_byptr, (void *)rshift, 5097 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5098 if (mh == NULL) { 5099 kmem_free(thh, sizeof (*thh)); 5100 return (NULL); 5101 } 5102 thh->thh_hash = mh; 5103 thh->thh_ipst = ipst; 5104 /* 5105 * We trace ills, ipifs, ires, and nces. All of these are 5106 * per-IP-stack, so the lock on the thread list is as well. 5107 */ 5108 rw_enter(&ip_thread_rwlock, RW_WRITER); 5109 list_insert_tail(&ip_thread_list, thh); 5110 rw_exit(&ip_thread_rwlock); 5111 retv = tsd_set(ip_thread_data, thh); 5112 ASSERT(retv == 0); 5113 } 5114 return (thh != NULL ? thh->thh_hash : NULL); 5115 } 5116 5117 boolean_t 5118 th_trace_ref(const void *obj, ip_stack_t *ipst) 5119 { 5120 th_trace_t *th_trace; 5121 mod_hash_t *mh; 5122 mod_hash_val_t val; 5123 5124 if ((mh = th_trace_gethash(ipst)) == NULL) 5125 return (B_FALSE); 5126 5127 /* 5128 * Attempt to locate the trace buffer for this obj and thread. 5129 * If it does not exist, then allocate a new trace buffer and 5130 * insert into the hash. 5131 */ 5132 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5133 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5134 if (th_trace == NULL) 5135 return (B_FALSE); 5136 5137 th_trace->th_id = curthread; 5138 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5139 (mod_hash_val_t)th_trace) != 0) { 5140 kmem_free(th_trace, sizeof (th_trace_t)); 5141 return (B_FALSE); 5142 } 5143 } else { 5144 th_trace = (th_trace_t *)val; 5145 } 5146 5147 ASSERT(th_trace->th_refcnt >= 0 && 5148 th_trace->th_refcnt < TR_BUF_MAX - 1); 5149 5150 th_trace->th_refcnt++; 5151 th_trace_rrecord(th_trace); 5152 return (B_TRUE); 5153 } 5154 5155 /* 5156 * For the purpose of tracing a reference release, we assume that global 5157 * tracing is always on and that the same thread initiated the reference hold 5158 * is releasing. 5159 */ 5160 void 5161 th_trace_unref(const void *obj) 5162 { 5163 int retv; 5164 mod_hash_t *mh; 5165 th_trace_t *th_trace; 5166 mod_hash_val_t val; 5167 5168 mh = th_trace_gethash(NULL); 5169 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5170 ASSERT(retv == 0); 5171 th_trace = (th_trace_t *)val; 5172 5173 ASSERT(th_trace->th_refcnt > 0); 5174 th_trace->th_refcnt--; 5175 th_trace_rrecord(th_trace); 5176 } 5177 5178 /* 5179 * If tracing has been disabled, then we assume that the reference counts are 5180 * now useless, and we clear them out before destroying the entries. 5181 */ 5182 void 5183 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5184 { 5185 th_hash_t *thh; 5186 mod_hash_t *mh; 5187 mod_hash_val_t val; 5188 th_trace_t *th_trace; 5189 int retv; 5190 5191 rw_enter(&ip_thread_rwlock, RW_READER); 5192 for (thh = list_head(&ip_thread_list); thh != NULL; 5193 thh = list_next(&ip_thread_list, thh)) { 5194 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5195 &val) == 0) { 5196 th_trace = (th_trace_t *)val; 5197 if (trace_disable) 5198 th_trace->th_refcnt = 0; 5199 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5200 ASSERT(retv == 0); 5201 } 5202 } 5203 rw_exit(&ip_thread_rwlock); 5204 } 5205 5206 void 5207 ipif_trace_ref(ipif_t *ipif) 5208 { 5209 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5210 5211 if (ipif->ipif_trace_disable) 5212 return; 5213 5214 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5215 ipif->ipif_trace_disable = B_TRUE; 5216 ipif_trace_cleanup(ipif); 5217 } 5218 } 5219 5220 void 5221 ipif_untrace_ref(ipif_t *ipif) 5222 { 5223 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5224 5225 if (!ipif->ipif_trace_disable) 5226 th_trace_unref(ipif); 5227 } 5228 5229 void 5230 ill_trace_ref(ill_t *ill) 5231 { 5232 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5233 5234 if (ill->ill_trace_disable) 5235 return; 5236 5237 if (!th_trace_ref(ill, ill->ill_ipst)) { 5238 ill->ill_trace_disable = B_TRUE; 5239 ill_trace_cleanup(ill); 5240 } 5241 } 5242 5243 void 5244 ill_untrace_ref(ill_t *ill) 5245 { 5246 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5247 5248 if (!ill->ill_trace_disable) 5249 th_trace_unref(ill); 5250 } 5251 5252 /* 5253 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5254 * failure, ipif_trace_disable is set. 5255 */ 5256 static void 5257 ipif_trace_cleanup(const ipif_t *ipif) 5258 { 5259 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5260 } 5261 5262 /* 5263 * Called when ill is unplumbed or when memory alloc fails. Note that on 5264 * failure, ill_trace_disable is set. 5265 */ 5266 static void 5267 ill_trace_cleanup(const ill_t *ill) 5268 { 5269 th_trace_cleanup(ill, ill->ill_trace_disable); 5270 } 5271 #endif /* DEBUG */ 5272 5273 void 5274 ipif_refhold_locked(ipif_t *ipif) 5275 { 5276 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5277 ipif->ipif_refcnt++; 5278 IPIF_TRACE_REF(ipif); 5279 } 5280 5281 void 5282 ipif_refhold(ipif_t *ipif) 5283 { 5284 ill_t *ill; 5285 5286 ill = ipif->ipif_ill; 5287 mutex_enter(&ill->ill_lock); 5288 ipif->ipif_refcnt++; 5289 IPIF_TRACE_REF(ipif); 5290 mutex_exit(&ill->ill_lock); 5291 } 5292 5293 /* 5294 * Must not be called while holding any locks. Otherwise if this is 5295 * the last reference to be released there is a chance of recursive mutex 5296 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5297 * to restart an ioctl. 5298 */ 5299 void 5300 ipif_refrele(ipif_t *ipif) 5301 { 5302 ill_t *ill; 5303 5304 ill = ipif->ipif_ill; 5305 5306 mutex_enter(&ill->ill_lock); 5307 ASSERT(ipif->ipif_refcnt != 0); 5308 ipif->ipif_refcnt--; 5309 IPIF_UNTRACE_REF(ipif); 5310 if (ipif->ipif_refcnt != 0) { 5311 mutex_exit(&ill->ill_lock); 5312 return; 5313 } 5314 5315 /* Drops the ill_lock */ 5316 ipif_ill_refrele_tail(ill); 5317 } 5318 5319 ipif_t * 5320 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5321 { 5322 ipif_t *ipif; 5323 5324 mutex_enter(&ill->ill_lock); 5325 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5326 ipif != NULL; ipif = ipif->ipif_next) { 5327 if (IPIF_IS_CONDEMNED(ipif)) 5328 continue; 5329 ipif_refhold_locked(ipif); 5330 mutex_exit(&ill->ill_lock); 5331 return (ipif); 5332 } 5333 mutex_exit(&ill->ill_lock); 5334 return (NULL); 5335 } 5336 5337 /* 5338 * TODO: make this table extendible at run time 5339 * Return a pointer to the mac type info for 'mac_type' 5340 */ 5341 static ip_m_t * 5342 ip_m_lookup(t_uscalar_t mac_type) 5343 { 5344 ip_m_t *ipm; 5345 5346 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5347 if (ipm->ip_m_mac_type == mac_type) 5348 return (ipm); 5349 return (NULL); 5350 } 5351 5352 /* 5353 * Make a link layer address from the multicast IP address *addr. 5354 * To form the link layer address, invoke the ip_m_v*mapping function 5355 * associated with the link-layer type. 5356 */ 5357 void 5358 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5359 { 5360 ip_m_t *ipm; 5361 5362 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5363 return; 5364 5365 ASSERT(addr != NULL); 5366 5367 ipm = ip_m_lookup(ill->ill_mactype); 5368 if (ipm == NULL || 5369 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5370 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5371 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5372 ill->ill_name, ill->ill_mactype)); 5373 return; 5374 } 5375 if (ill->ill_isv6) 5376 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5377 else 5378 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5379 } 5380 5381 /* 5382 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5383 * Otherwise returns B_TRUE. 5384 * 5385 * The netmask can be verified to be contiguous with 32 shifts and or 5386 * operations. Take the contiguous mask (in host byte order) and compute 5387 * mask | mask << 1 | mask << 2 | ... | mask << 31 5388 * the result will be the same as the 'mask' for contiguous mask. 5389 */ 5390 static boolean_t 5391 ip_contiguous_mask(uint32_t mask) 5392 { 5393 uint32_t m = mask; 5394 int i; 5395 5396 for (i = 1; i < 32; i++) 5397 m |= (mask << i); 5398 5399 return (m == mask); 5400 } 5401 5402 /* 5403 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5404 * ill is passed in to associate it with the correct interface. 5405 * If ire_arg is set, then we return the held IRE in that location. 5406 */ 5407 int 5408 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5409 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5410 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5411 { 5412 ire_t *ire, *nire; 5413 ire_t *gw_ire = NULL; 5414 ipif_t *ipif = NULL; 5415 uint_t type; 5416 int match_flags = MATCH_IRE_TYPE; 5417 tsol_gc_t *gc = NULL; 5418 tsol_gcgrp_t *gcgrp = NULL; 5419 boolean_t gcgrp_xtraref = B_FALSE; 5420 boolean_t cgtp_broadcast; 5421 boolean_t unbound = B_FALSE; 5422 5423 ip1dbg(("ip_rt_add:")); 5424 5425 if (ire_arg != NULL) 5426 *ire_arg = NULL; 5427 5428 /* disallow non-contiguous netmasks */ 5429 if (!ip_contiguous_mask(ntohl(mask))) 5430 return (ENOTSUP); 5431 5432 /* 5433 * If this is the case of RTF_HOST being set, then we set the netmask 5434 * to all ones (regardless if one was supplied). 5435 */ 5436 if (flags & RTF_HOST) 5437 mask = IP_HOST_MASK; 5438 5439 /* 5440 * Prevent routes with a zero gateway from being created (since 5441 * interfaces can currently be plumbed and brought up no assigned 5442 * address). 5443 */ 5444 if (gw_addr == 0) 5445 return (ENETUNREACH); 5446 /* 5447 * Get the ipif, if any, corresponding to the gw_addr 5448 * If -ifp was specified we restrict ourselves to the ill, otherwise 5449 * we match on the gatway and destination to handle unnumbered pt-pt 5450 * interfaces. 5451 */ 5452 if (ill != NULL) 5453 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5454 else 5455 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5456 if (ipif != NULL) { 5457 if (IS_VNI(ipif->ipif_ill)) { 5458 ipif_refrele(ipif); 5459 return (EINVAL); 5460 } 5461 } 5462 5463 /* 5464 * GateD will attempt to create routes with a loopback interface 5465 * address as the gateway and with RTF_GATEWAY set. We allow 5466 * these routes to be added, but create them as interface routes 5467 * since the gateway is an interface address. 5468 */ 5469 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5470 flags &= ~RTF_GATEWAY; 5471 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5472 mask == IP_HOST_MASK) { 5473 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5475 NULL); 5476 if (ire != NULL) { 5477 ire_refrele(ire); 5478 ipif_refrele(ipif); 5479 return (EEXIST); 5480 } 5481 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5482 "for 0x%x\n", (void *)ipif, 5483 ipif->ipif_ire_type, 5484 ntohl(ipif->ipif_lcl_addr))); 5485 ire = ire_create( 5486 (uchar_t *)&dst_addr, /* dest address */ 5487 (uchar_t *)&mask, /* mask */ 5488 NULL, /* no gateway */ 5489 ipif->ipif_ire_type, /* LOOPBACK */ 5490 ipif->ipif_ill, 5491 zoneid, 5492 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5493 NULL, 5494 ipst); 5495 5496 if (ire == NULL) { 5497 ipif_refrele(ipif); 5498 return (ENOMEM); 5499 } 5500 /* src address assigned by the caller? */ 5501 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5502 ire->ire_setsrc_addr = src_addr; 5503 5504 nire = ire_add(ire); 5505 if (nire == NULL) { 5506 /* 5507 * In the result of failure, ire_add() will have 5508 * already deleted the ire in question, so there 5509 * is no need to do that here. 5510 */ 5511 ipif_refrele(ipif); 5512 return (ENOMEM); 5513 } 5514 /* 5515 * Check if it was a duplicate entry. This handles 5516 * the case of two racing route adds for the same route 5517 */ 5518 if (nire != ire) { 5519 ASSERT(nire->ire_identical_ref > 1); 5520 ire_delete(nire); 5521 ire_refrele(nire); 5522 ipif_refrele(ipif); 5523 return (EEXIST); 5524 } 5525 ire = nire; 5526 goto save_ire; 5527 } 5528 } 5529 5530 /* 5531 * The routes for multicast with CGTP are quite special in that 5532 * the gateway is the local interface address, yet RTF_GATEWAY 5533 * is set. We turn off RTF_GATEWAY to provide compatibility with 5534 * this undocumented and unusual use of multicast routes. 5535 */ 5536 if ((flags & RTF_MULTIRT) && ipif != NULL) 5537 flags &= ~RTF_GATEWAY; 5538 5539 /* 5540 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5541 * and the gateway address provided is one of the system's interface 5542 * addresses. By using the routing socket interface and supplying an 5543 * RTA_IFP sockaddr with an interface index, an alternate method of 5544 * specifying an interface route to be created is available which uses 5545 * the interface index that specifies the outgoing interface rather than 5546 * the address of an outgoing interface (which may not be able to 5547 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5548 * flag, routes can be specified which not only specify the next-hop to 5549 * be used when routing to a certain prefix, but also which outgoing 5550 * interface should be used. 5551 * 5552 * Previously, interfaces would have unique addresses assigned to them 5553 * and so the address assigned to a particular interface could be used 5554 * to identify a particular interface. One exception to this was the 5555 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5556 * 5557 * With the advent of IPv6 and its link-local addresses, this 5558 * restriction was relaxed and interfaces could share addresses between 5559 * themselves. In fact, typically all of the link-local interfaces on 5560 * an IPv6 node or router will have the same link-local address. In 5561 * order to differentiate between these interfaces, the use of an 5562 * interface index is necessary and this index can be carried inside a 5563 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5564 * of using the interface index, however, is that all of the ipif's that 5565 * are part of an ill have the same index and so the RTA_IFP sockaddr 5566 * cannot be used to differentiate between ipif's (or logical 5567 * interfaces) that belong to the same ill (physical interface). 5568 * 5569 * For example, in the following case involving IPv4 interfaces and 5570 * logical interfaces 5571 * 5572 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5574 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5575 * 5576 * the ipif's corresponding to each of these interface routes can be 5577 * uniquely identified by the "gateway" (actually interface address). 5578 * 5579 * In this case involving multiple IPv6 default routes to a particular 5580 * link-local gateway, the use of RTA_IFP is necessary to specify which 5581 * default route is of interest: 5582 * 5583 * default fe80::123:4567:89ab:cdef U if0 5584 * default fe80::123:4567:89ab:cdef U if1 5585 */ 5586 5587 /* RTF_GATEWAY not set */ 5588 if (!(flags & RTF_GATEWAY)) { 5589 if (sp != NULL) { 5590 ip2dbg(("ip_rt_add: gateway security attributes " 5591 "cannot be set with interface route\n")); 5592 if (ipif != NULL) 5593 ipif_refrele(ipif); 5594 return (EINVAL); 5595 } 5596 5597 /* 5598 * Whether or not ill (RTA_IFP) is set, we require that 5599 * the gateway is one of our local addresses. 5600 */ 5601 if (ipif == NULL) 5602 return (ENETUNREACH); 5603 5604 /* 5605 * We use MATCH_IRE_ILL here. If the caller specified an 5606 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5607 * we use the ill derived from the gateway address. 5608 * We can always match the gateway address since we record it 5609 * in ire_gateway_addr. 5610 * We don't allow RTA_IFP to specify a different ill than the 5611 * one matching the ipif to make sure we can delete the route. 5612 */ 5613 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5614 if (ill == NULL) { 5615 ill = ipif->ipif_ill; 5616 } else if (ill != ipif->ipif_ill) { 5617 ipif_refrele(ipif); 5618 return (EINVAL); 5619 } 5620 5621 /* 5622 * We check for an existing entry at this point. 5623 * 5624 * Since a netmask isn't passed in via the ioctl interface 5625 * (SIOCADDRT), we don't check for a matching netmask in that 5626 * case. 5627 */ 5628 if (!ioctl_msg) 5629 match_flags |= MATCH_IRE_MASK; 5630 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5631 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5632 NULL); 5633 if (ire != NULL) { 5634 ire_refrele(ire); 5635 ipif_refrele(ipif); 5636 return (EEXIST); 5637 } 5638 5639 /* 5640 * Some software (for example, GateD and Sun Cluster) attempts 5641 * to create (what amount to) IRE_PREFIX routes with the 5642 * loopback address as the gateway. This is primarily done to 5643 * set up prefixes with the RTF_REJECT flag set (for example, 5644 * when generating aggregate routes.) 5645 * 5646 * If the IRE type (as defined by ill->ill_net_type) would be 5647 * IRE_LOOPBACK, then we map the request into a 5648 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5649 * these interface routes, by definition, can only be that. 5650 * 5651 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5652 * routine, but rather using ire_create() directly. 5653 * 5654 */ 5655 type = ill->ill_net_type; 5656 if (type == IRE_LOOPBACK) { 5657 type = IRE_IF_NORESOLVER; 5658 flags |= RTF_BLACKHOLE; 5659 } 5660 5661 /* 5662 * Create a copy of the IRE_IF_NORESOLVER or 5663 * IRE_IF_RESOLVER with the modified address, netmask, and 5664 * gateway. 5665 */ 5666 ire = ire_create( 5667 (uchar_t *)&dst_addr, 5668 (uint8_t *)&mask, 5669 (uint8_t *)&gw_addr, 5670 type, 5671 ill, 5672 zoneid, 5673 flags, 5674 NULL, 5675 ipst); 5676 if (ire == NULL) { 5677 ipif_refrele(ipif); 5678 return (ENOMEM); 5679 } 5680 5681 /* src address assigned by the caller? */ 5682 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5683 ire->ire_setsrc_addr = src_addr; 5684 5685 nire = ire_add(ire); 5686 if (nire == NULL) { 5687 /* 5688 * In the result of failure, ire_add() will have 5689 * already deleted the ire in question, so there 5690 * is no need to do that here. 5691 */ 5692 ipif_refrele(ipif); 5693 return (ENOMEM); 5694 } 5695 /* 5696 * Check if it was a duplicate entry. This handles 5697 * the case of two racing route adds for the same route 5698 */ 5699 if (nire != ire) { 5700 ire_delete(nire); 5701 ire_refrele(nire); 5702 ipif_refrele(ipif); 5703 return (EEXIST); 5704 } 5705 ire = nire; 5706 goto save_ire; 5707 } 5708 5709 /* 5710 * Get an interface IRE for the specified gateway. 5711 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5712 * gateway, it is currently unreachable and we fail the request 5713 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5714 * is an IRE_LOCAL or IRE_LOOPBACK. 5715 * If RTA_IFP was specified we look on that particular ill. 5716 */ 5717 if (ill != NULL) 5718 match_flags |= MATCH_IRE_ILL; 5719 5720 /* Check whether the gateway is reachable. */ 5721 again: 5722 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5723 if (flags & RTF_INDIRECT) 5724 type |= IRE_OFFLINK; 5725 5726 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5727 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5728 if (gw_ire == NULL) { 5729 /* 5730 * With IPMP, we allow host routes to influence in.mpathd's 5731 * target selection. However, if the test addresses are on 5732 * their own network, the above lookup will fail since the 5733 * underlying IRE_INTERFACEs are marked hidden. So allow 5734 * hidden test IREs to be found and try again. 5735 */ 5736 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5737 match_flags |= MATCH_IRE_TESTHIDDEN; 5738 goto again; 5739 } 5740 if (ipif != NULL) 5741 ipif_refrele(ipif); 5742 return (ENETUNREACH); 5743 } 5744 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5745 ire_refrele(gw_ire); 5746 if (ipif != NULL) 5747 ipif_refrele(ipif); 5748 return (ENETUNREACH); 5749 } 5750 5751 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5752 unbound = B_TRUE; 5753 if (ipst->ips_ip_strict_src_multihoming > 0) 5754 ill = gw_ire->ire_ill; 5755 } 5756 5757 /* 5758 * We create one of three types of IREs as a result of this request 5759 * based on the netmask. A netmask of all ones (which is automatically 5760 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5761 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5762 * created. Otherwise, an IRE_PREFIX route is created for the 5763 * destination prefix. 5764 */ 5765 if (mask == IP_HOST_MASK) 5766 type = IRE_HOST; 5767 else if (mask == 0) 5768 type = IRE_DEFAULT; 5769 else 5770 type = IRE_PREFIX; 5771 5772 /* check for a duplicate entry */ 5773 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5774 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5775 0, ipst, NULL); 5776 if (ire != NULL) { 5777 if (ipif != NULL) 5778 ipif_refrele(ipif); 5779 ire_refrele(gw_ire); 5780 ire_refrele(ire); 5781 return (EEXIST); 5782 } 5783 5784 /* Security attribute exists */ 5785 if (sp != NULL) { 5786 tsol_gcgrp_addr_t ga; 5787 5788 /* find or create the gateway credentials group */ 5789 ga.ga_af = AF_INET; 5790 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5791 5792 /* we hold reference to it upon success */ 5793 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5794 if (gcgrp == NULL) { 5795 if (ipif != NULL) 5796 ipif_refrele(ipif); 5797 ire_refrele(gw_ire); 5798 return (ENOMEM); 5799 } 5800 5801 /* 5802 * Create and add the security attribute to the group; a 5803 * reference to the group is made upon allocating a new 5804 * entry successfully. If it finds an already-existing 5805 * entry for the security attribute in the group, it simply 5806 * returns it and no new reference is made to the group. 5807 */ 5808 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5809 if (gc == NULL) { 5810 if (ipif != NULL) 5811 ipif_refrele(ipif); 5812 /* release reference held by gcgrp_lookup */ 5813 GCGRP_REFRELE(gcgrp); 5814 ire_refrele(gw_ire); 5815 return (ENOMEM); 5816 } 5817 } 5818 5819 /* Create the IRE. */ 5820 ire = ire_create( 5821 (uchar_t *)&dst_addr, /* dest address */ 5822 (uchar_t *)&mask, /* mask */ 5823 (uchar_t *)&gw_addr, /* gateway address */ 5824 (ushort_t)type, /* IRE type */ 5825 ill, 5826 zoneid, 5827 flags, 5828 gc, /* security attribute */ 5829 ipst); 5830 5831 /* 5832 * The ire holds a reference to the 'gc' and the 'gc' holds a 5833 * reference to the 'gcgrp'. We can now release the extra reference 5834 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5835 */ 5836 if (gcgrp_xtraref) 5837 GCGRP_REFRELE(gcgrp); 5838 if (ire == NULL) { 5839 if (gc != NULL) 5840 GC_REFRELE(gc); 5841 if (ipif != NULL) 5842 ipif_refrele(ipif); 5843 ire_refrele(gw_ire); 5844 return (ENOMEM); 5845 } 5846 5847 /* Before we add, check if an extra CGTP broadcast is needed */ 5848 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5849 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5850 5851 /* src address assigned by the caller? */ 5852 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5853 ire->ire_setsrc_addr = src_addr; 5854 5855 ire->ire_unbound = unbound; 5856 5857 /* 5858 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5859 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5860 */ 5861 5862 /* Add the new IRE. */ 5863 nire = ire_add(ire); 5864 if (nire == NULL) { 5865 /* 5866 * In the result of failure, ire_add() will have 5867 * already deleted the ire in question, so there 5868 * is no need to do that here. 5869 */ 5870 if (ipif != NULL) 5871 ipif_refrele(ipif); 5872 ire_refrele(gw_ire); 5873 return (ENOMEM); 5874 } 5875 /* 5876 * Check if it was a duplicate entry. This handles 5877 * the case of two racing route adds for the same route 5878 */ 5879 if (nire != ire) { 5880 ire_delete(nire); 5881 ire_refrele(nire); 5882 if (ipif != NULL) 5883 ipif_refrele(ipif); 5884 ire_refrele(gw_ire); 5885 return (EEXIST); 5886 } 5887 ire = nire; 5888 5889 if (flags & RTF_MULTIRT) { 5890 /* 5891 * Invoke the CGTP (multirouting) filtering module 5892 * to add the dst address in the filtering database. 5893 * Replicated inbound packets coming from that address 5894 * will be filtered to discard the duplicates. 5895 * It is not necessary to call the CGTP filter hook 5896 * when the dst address is a broadcast or multicast, 5897 * because an IP source address cannot be a broadcast 5898 * or a multicast. 5899 */ 5900 if (cgtp_broadcast) { 5901 ip_cgtp_bcast_add(ire, ipst); 5902 goto save_ire; 5903 } 5904 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5905 !CLASSD(ire->ire_addr)) { 5906 int res; 5907 ipif_t *src_ipif; 5908 5909 /* Find the source address corresponding to gw_ire */ 5910 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5911 NULL, zoneid, ipst); 5912 if (src_ipif != NULL) { 5913 res = ipst->ips_ip_cgtp_filter_ops-> 5914 cfo_add_dest_v4( 5915 ipst->ips_netstack->netstack_stackid, 5916 ire->ire_addr, 5917 ire->ire_gateway_addr, 5918 ire->ire_setsrc_addr, 5919 src_ipif->ipif_lcl_addr); 5920 ipif_refrele(src_ipif); 5921 } else { 5922 res = EADDRNOTAVAIL; 5923 } 5924 if (res != 0) { 5925 if (ipif != NULL) 5926 ipif_refrele(ipif); 5927 ire_refrele(gw_ire); 5928 ire_delete(ire); 5929 ire_refrele(ire); /* Held in ire_add */ 5930 return (res); 5931 } 5932 } 5933 } 5934 5935 save_ire: 5936 if (gw_ire != NULL) { 5937 ire_refrele(gw_ire); 5938 gw_ire = NULL; 5939 } 5940 if (ill != NULL) { 5941 /* 5942 * Save enough information so that we can recreate the IRE if 5943 * the interface goes down and then up. The metrics associated 5944 * with the route will be saved as well when rts_setmetrics() is 5945 * called after the IRE has been created. In the case where 5946 * memory cannot be allocated, none of this information will be 5947 * saved. 5948 */ 5949 ill_save_ire(ill, ire); 5950 } 5951 if (ioctl_msg) 5952 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5953 if (ire_arg != NULL) { 5954 /* 5955 * Store the ire that was successfully added into where ire_arg 5956 * points to so that callers don't have to look it up 5957 * themselves (but they are responsible for ire_refrele()ing 5958 * the ire when they are finished with it). 5959 */ 5960 *ire_arg = ire; 5961 } else { 5962 ire_refrele(ire); /* Held in ire_add */ 5963 } 5964 if (ipif != NULL) 5965 ipif_refrele(ipif); 5966 return (0); 5967 } 5968 5969 /* 5970 * ip_rt_delete is called to delete an IPv4 route. 5971 * ill is passed in to associate it with the correct interface. 5972 */ 5973 /* ARGSUSED4 */ 5974 int 5975 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5976 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5977 ip_stack_t *ipst, zoneid_t zoneid) 5978 { 5979 ire_t *ire = NULL; 5980 ipif_t *ipif; 5981 uint_t type; 5982 uint_t match_flags = MATCH_IRE_TYPE; 5983 int err = 0; 5984 5985 ip1dbg(("ip_rt_delete:")); 5986 /* 5987 * If this is the case of RTF_HOST being set, then we set the netmask 5988 * to all ones. Otherwise, we use the netmask if one was supplied. 5989 */ 5990 if (flags & RTF_HOST) { 5991 mask = IP_HOST_MASK; 5992 match_flags |= MATCH_IRE_MASK; 5993 } else if (rtm_addrs & RTA_NETMASK) { 5994 match_flags |= MATCH_IRE_MASK; 5995 } 5996 5997 /* 5998 * Note that RTF_GATEWAY is never set on a delete, therefore 5999 * we check if the gateway address is one of our interfaces first, 6000 * and fall back on RTF_GATEWAY routes. 6001 * 6002 * This makes it possible to delete an original 6003 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6004 * However, we have RTF_KERNEL set on the ones created by ipif_up 6005 * and those can not be deleted here. 6006 * 6007 * We use MATCH_IRE_ILL if we know the interface. If the caller 6008 * specified an interface (from the RTA_IFP sockaddr) we use it, 6009 * otherwise we use the ill derived from the gateway address. 6010 * We can always match the gateway address since we record it 6011 * in ire_gateway_addr. 6012 * 6013 * For more detail on specifying routes by gateway address and by 6014 * interface index, see the comments in ip_rt_add(). 6015 */ 6016 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6017 if (ipif != NULL) { 6018 ill_t *ill_match; 6019 6020 if (ill != NULL) 6021 ill_match = ill; 6022 else 6023 ill_match = ipif->ipif_ill; 6024 6025 match_flags |= MATCH_IRE_ILL; 6026 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6027 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6028 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6029 match_flags, 0, ipst, NULL); 6030 } 6031 if (ire == NULL) { 6032 match_flags |= MATCH_IRE_GW; 6033 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6034 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6035 match_flags, 0, ipst, NULL); 6036 } 6037 /* Avoid deleting routes created by kernel from an ipif */ 6038 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6039 ire_refrele(ire); 6040 ire = NULL; 6041 } 6042 6043 /* Restore in case we didn't find a match */ 6044 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6045 } 6046 6047 if (ire == NULL) { 6048 /* 6049 * At this point, the gateway address is not one of our own 6050 * addresses or a matching interface route was not found. We 6051 * set the IRE type to lookup based on whether 6052 * this is a host route, a default route or just a prefix. 6053 * 6054 * If an ill was passed in, then the lookup is based on an 6055 * interface index so MATCH_IRE_ILL is added to match_flags. 6056 */ 6057 match_flags |= MATCH_IRE_GW; 6058 if (ill != NULL) 6059 match_flags |= MATCH_IRE_ILL; 6060 if (mask == IP_HOST_MASK) 6061 type = IRE_HOST; 6062 else if (mask == 0) 6063 type = IRE_DEFAULT; 6064 else 6065 type = IRE_PREFIX; 6066 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6067 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6068 } 6069 6070 if (ipif != NULL) { 6071 ipif_refrele(ipif); 6072 ipif = NULL; 6073 } 6074 6075 if (ire == NULL) 6076 return (ESRCH); 6077 6078 if (ire->ire_flags & RTF_MULTIRT) { 6079 /* 6080 * Invoke the CGTP (multirouting) filtering module 6081 * to remove the dst address from the filtering database. 6082 * Packets coming from that address will no longer be 6083 * filtered to remove duplicates. 6084 */ 6085 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6086 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6087 ipst->ips_netstack->netstack_stackid, 6088 ire->ire_addr, ire->ire_gateway_addr); 6089 } 6090 ip_cgtp_bcast_delete(ire, ipst); 6091 } 6092 6093 ill = ire->ire_ill; 6094 if (ill != NULL) 6095 ill_remove_saved_ire(ill, ire); 6096 if (ioctl_msg) 6097 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6098 ire_delete(ire); 6099 ire_refrele(ire); 6100 return (err); 6101 } 6102 6103 /* 6104 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6105 */ 6106 /* ARGSUSED */ 6107 int 6108 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6109 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6110 { 6111 ipaddr_t dst_addr; 6112 ipaddr_t gw_addr; 6113 ipaddr_t mask; 6114 int error = 0; 6115 mblk_t *mp1; 6116 struct rtentry *rt; 6117 ipif_t *ipif = NULL; 6118 ip_stack_t *ipst; 6119 6120 ASSERT(q->q_next == NULL); 6121 ipst = CONNQ_TO_IPST(q); 6122 6123 ip1dbg(("ip_siocaddrt:")); 6124 /* Existence of mp1 verified in ip_wput_nondata */ 6125 mp1 = mp->b_cont->b_cont; 6126 rt = (struct rtentry *)mp1->b_rptr; 6127 6128 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6129 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6130 6131 /* 6132 * If the RTF_HOST flag is on, this is a request to assign a gateway 6133 * to a particular host address. In this case, we set the netmask to 6134 * all ones for the particular destination address. Otherwise, 6135 * determine the netmask to be used based on dst_addr and the interfaces 6136 * in use. 6137 */ 6138 if (rt->rt_flags & RTF_HOST) { 6139 mask = IP_HOST_MASK; 6140 } else { 6141 /* 6142 * Note that ip_subnet_mask returns a zero mask in the case of 6143 * default (an all-zeroes address). 6144 */ 6145 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6146 } 6147 6148 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6149 B_TRUE, NULL, ipst, ALL_ZONES); 6150 if (ipif != NULL) 6151 ipif_refrele(ipif); 6152 return (error); 6153 } 6154 6155 /* 6156 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6157 */ 6158 /* ARGSUSED */ 6159 int 6160 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6161 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6162 { 6163 ipaddr_t dst_addr; 6164 ipaddr_t gw_addr; 6165 ipaddr_t mask; 6166 int error; 6167 mblk_t *mp1; 6168 struct rtentry *rt; 6169 ipif_t *ipif = NULL; 6170 ip_stack_t *ipst; 6171 6172 ASSERT(q->q_next == NULL); 6173 ipst = CONNQ_TO_IPST(q); 6174 6175 ip1dbg(("ip_siocdelrt:")); 6176 /* Existence of mp1 verified in ip_wput_nondata */ 6177 mp1 = mp->b_cont->b_cont; 6178 rt = (struct rtentry *)mp1->b_rptr; 6179 6180 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6181 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6182 6183 /* 6184 * If the RTF_HOST flag is on, this is a request to delete a gateway 6185 * to a particular host address. In this case, we set the netmask to 6186 * all ones for the particular destination address. Otherwise, 6187 * determine the netmask to be used based on dst_addr and the interfaces 6188 * in use. 6189 */ 6190 if (rt->rt_flags & RTF_HOST) { 6191 mask = IP_HOST_MASK; 6192 } else { 6193 /* 6194 * Note that ip_subnet_mask returns a zero mask in the case of 6195 * default (an all-zeroes address). 6196 */ 6197 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6198 } 6199 6200 error = ip_rt_delete(dst_addr, mask, gw_addr, 6201 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6202 ipst, ALL_ZONES); 6203 if (ipif != NULL) 6204 ipif_refrele(ipif); 6205 return (error); 6206 } 6207 6208 /* 6209 * Enqueue the mp onto the ipsq, chained by b_next. 6210 * b_prev stores the function to be executed later, and b_queue the queue 6211 * where this mp originated. 6212 */ 6213 void 6214 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6215 ill_t *pending_ill) 6216 { 6217 conn_t *connp; 6218 ipxop_t *ipx = ipsq->ipsq_xop; 6219 6220 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6221 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6222 ASSERT(func != NULL); 6223 6224 mp->b_queue = q; 6225 mp->b_prev = (void *)func; 6226 mp->b_next = NULL; 6227 6228 switch (type) { 6229 case CUR_OP: 6230 if (ipx->ipx_mptail != NULL) { 6231 ASSERT(ipx->ipx_mphead != NULL); 6232 ipx->ipx_mptail->b_next = mp; 6233 } else { 6234 ASSERT(ipx->ipx_mphead == NULL); 6235 ipx->ipx_mphead = mp; 6236 } 6237 ipx->ipx_mptail = mp; 6238 break; 6239 6240 case NEW_OP: 6241 if (ipsq->ipsq_xopq_mptail != NULL) { 6242 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6243 ipsq->ipsq_xopq_mptail->b_next = mp; 6244 } else { 6245 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6246 ipsq->ipsq_xopq_mphead = mp; 6247 } 6248 ipsq->ipsq_xopq_mptail = mp; 6249 ipx->ipx_ipsq_queued = B_TRUE; 6250 break; 6251 6252 case SWITCH_OP: 6253 ASSERT(ipsq->ipsq_swxop != NULL); 6254 /* only one switch operation is currently allowed */ 6255 ASSERT(ipsq->ipsq_switch_mp == NULL); 6256 ipsq->ipsq_switch_mp = mp; 6257 ipx->ipx_ipsq_queued = B_TRUE; 6258 break; 6259 default: 6260 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6261 } 6262 6263 if (CONN_Q(q) && pending_ill != NULL) { 6264 connp = Q_TO_CONN(q); 6265 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6266 connp->conn_oper_pending_ill = pending_ill; 6267 } 6268 } 6269 6270 /* 6271 * Dequeue the next message that requested exclusive access to this IPSQ's 6272 * xop. Specifically: 6273 * 6274 * 1. If we're still processing the current operation on `ipsq', then 6275 * dequeue the next message for the operation (from ipx_mphead), or 6276 * return NULL if there are no queued messages for the operation. 6277 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6278 * 6279 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6280 * not set) see if the ipsq has requested an xop switch. If so, switch 6281 * `ipsq' to a different xop. Xop switches only happen when joining or 6282 * leaving IPMP groups and require a careful dance -- see the comments 6283 * in-line below for details. If we're leaving a group xop or if we're 6284 * joining a group xop and become writer on it, then we proceed to (3). 6285 * Otherwise, we return NULL and exit the xop. 6286 * 6287 * 3. For each IPSQ in the xop, return any switch operation stored on 6288 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6289 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6290 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6291 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6292 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6293 * each phyint in the group, including the IPMP meta-interface phyint. 6294 */ 6295 static mblk_t * 6296 ipsq_dq(ipsq_t *ipsq) 6297 { 6298 ill_t *illv4, *illv6; 6299 mblk_t *mp; 6300 ipsq_t *xopipsq; 6301 ipsq_t *leftipsq = NULL; 6302 ipxop_t *ipx; 6303 phyint_t *phyi = ipsq->ipsq_phyint; 6304 ip_stack_t *ipst = ipsq->ipsq_ipst; 6305 boolean_t emptied = B_FALSE; 6306 6307 /* 6308 * Grab all the locks we need in the defined order (ill_g_lock -> 6309 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6310 */ 6311 rw_enter(&ipst->ips_ill_g_lock, 6312 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6313 mutex_enter(&ipsq->ipsq_lock); 6314 ipx = ipsq->ipsq_xop; 6315 mutex_enter(&ipx->ipx_lock); 6316 6317 /* 6318 * Dequeue the next message associated with the current exclusive 6319 * operation, if any. 6320 */ 6321 if ((mp = ipx->ipx_mphead) != NULL) { 6322 ipx->ipx_mphead = mp->b_next; 6323 if (ipx->ipx_mphead == NULL) 6324 ipx->ipx_mptail = NULL; 6325 mp->b_next = (void *)ipsq; 6326 goto out; 6327 } 6328 6329 if (ipx->ipx_current_ipif != NULL) 6330 goto empty; 6331 6332 if (ipsq->ipsq_swxop != NULL) { 6333 /* 6334 * The exclusive operation that is now being completed has 6335 * requested a switch to a different xop. This happens 6336 * when an interface joins or leaves an IPMP group. Joins 6337 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6338 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6339 * (phyint_free()), or interface plumb for an ill type 6340 * not in the IPMP group (ip_rput_dlpi_writer()). 6341 * 6342 * Xop switches are not allowed on the IPMP meta-interface. 6343 */ 6344 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6345 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6346 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6347 6348 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6349 /* 6350 * We're switching back to our own xop, so we have two 6351 * xop's to drain/exit: our own, and the group xop 6352 * that we are leaving. 6353 * 6354 * First, pull ourselves out of the group ipsq list. 6355 * This is safe since we're writer on ill_g_lock. 6356 */ 6357 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6358 6359 xopipsq = ipx->ipx_ipsq; 6360 while (xopipsq->ipsq_next != ipsq) 6361 xopipsq = xopipsq->ipsq_next; 6362 6363 xopipsq->ipsq_next = ipsq->ipsq_next; 6364 ipsq->ipsq_next = ipsq; 6365 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6366 ipsq->ipsq_swxop = NULL; 6367 6368 /* 6369 * Second, prepare to exit the group xop. The actual 6370 * ipsq_exit() is done at the end of this function 6371 * since we cannot hold any locks across ipsq_exit(). 6372 * Note that although we drop the group's ipx_lock, no 6373 * threads can proceed since we're still ipx_writer. 6374 */ 6375 leftipsq = xopipsq; 6376 mutex_exit(&ipx->ipx_lock); 6377 6378 /* 6379 * Third, set ipx to point to our own xop (which was 6380 * inactive and therefore can be entered). 6381 */ 6382 ipx = ipsq->ipsq_xop; 6383 mutex_enter(&ipx->ipx_lock); 6384 ASSERT(ipx->ipx_writer == NULL); 6385 ASSERT(ipx->ipx_current_ipif == NULL); 6386 } else { 6387 /* 6388 * We're switching from our own xop to a group xop. 6389 * The requestor of the switch must ensure that the 6390 * group xop cannot go away (e.g. by ensuring the 6391 * phyint associated with the xop cannot go away). 6392 * 6393 * If we can become writer on our new xop, then we'll 6394 * do the drain. Otherwise, the current writer of our 6395 * new xop will do the drain when it exits. 6396 * 6397 * First, splice ourselves into the group IPSQ list. 6398 * This is safe since we're writer on ill_g_lock. 6399 */ 6400 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6401 6402 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6403 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6404 xopipsq = xopipsq->ipsq_next; 6405 6406 xopipsq->ipsq_next = ipsq; 6407 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6408 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6409 ipsq->ipsq_swxop = NULL; 6410 6411 /* 6412 * Second, exit our own xop, since it's now unused. 6413 * This is safe since we've got the only reference. 6414 */ 6415 ASSERT(ipx->ipx_writer == curthread); 6416 ipx->ipx_writer = NULL; 6417 VERIFY(--ipx->ipx_reentry_cnt == 0); 6418 ipx->ipx_ipsq_queued = B_FALSE; 6419 mutex_exit(&ipx->ipx_lock); 6420 6421 /* 6422 * Third, set ipx to point to our new xop, and check 6423 * if we can become writer on it. If we cannot, then 6424 * the current writer will drain the IPSQ group when 6425 * it exits. Our ipsq_xop is guaranteed to be stable 6426 * because we're still holding ipsq_lock. 6427 */ 6428 ipx = ipsq->ipsq_xop; 6429 mutex_enter(&ipx->ipx_lock); 6430 if (ipx->ipx_writer != NULL || 6431 ipx->ipx_current_ipif != NULL) { 6432 goto out; 6433 } 6434 } 6435 6436 /* 6437 * Fourth, become writer on our new ipx before we continue 6438 * with the drain. Note that we never dropped ipsq_lock 6439 * above, so no other thread could've raced with us to 6440 * become writer first. Also, we're holding ipx_lock, so 6441 * no other thread can examine the ipx right now. 6442 */ 6443 ASSERT(ipx->ipx_current_ipif == NULL); 6444 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6445 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6446 ipx->ipx_writer = curthread; 6447 ipx->ipx_forced = B_FALSE; 6448 #ifdef DEBUG 6449 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6450 #endif 6451 } 6452 6453 xopipsq = ipsq; 6454 do { 6455 /* 6456 * So that other operations operate on a consistent and 6457 * complete phyint, a switch message on an IPSQ must be 6458 * handled prior to any other operations on that IPSQ. 6459 */ 6460 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6461 xopipsq->ipsq_switch_mp = NULL; 6462 ASSERT(mp->b_next == NULL); 6463 mp->b_next = (void *)xopipsq; 6464 goto out; 6465 } 6466 6467 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6468 xopipsq->ipsq_xopq_mphead = mp->b_next; 6469 if (xopipsq->ipsq_xopq_mphead == NULL) 6470 xopipsq->ipsq_xopq_mptail = NULL; 6471 mp->b_next = (void *)xopipsq; 6472 goto out; 6473 } 6474 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6475 empty: 6476 /* 6477 * There are no messages. Further, we are holding ipx_lock, hence no 6478 * new messages can end up on any IPSQ in the xop. 6479 */ 6480 ipx->ipx_writer = NULL; 6481 ipx->ipx_forced = B_FALSE; 6482 VERIFY(--ipx->ipx_reentry_cnt == 0); 6483 ipx->ipx_ipsq_queued = B_FALSE; 6484 emptied = B_TRUE; 6485 #ifdef DEBUG 6486 ipx->ipx_depth = 0; 6487 #endif 6488 out: 6489 mutex_exit(&ipx->ipx_lock); 6490 mutex_exit(&ipsq->ipsq_lock); 6491 6492 /* 6493 * If we completely emptied the xop, then wake up any threads waiting 6494 * to enter any of the IPSQ's associated with it. 6495 */ 6496 if (emptied) { 6497 xopipsq = ipsq; 6498 do { 6499 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6500 continue; 6501 6502 illv4 = phyi->phyint_illv4; 6503 illv6 = phyi->phyint_illv6; 6504 6505 GRAB_ILL_LOCKS(illv4, illv6); 6506 if (illv4 != NULL) 6507 cv_broadcast(&illv4->ill_cv); 6508 if (illv6 != NULL) 6509 cv_broadcast(&illv6->ill_cv); 6510 RELEASE_ILL_LOCKS(illv4, illv6); 6511 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6512 } 6513 rw_exit(&ipst->ips_ill_g_lock); 6514 6515 /* 6516 * Now that all locks are dropped, exit the IPSQ we left. 6517 */ 6518 if (leftipsq != NULL) 6519 ipsq_exit(leftipsq); 6520 6521 return (mp); 6522 } 6523 6524 /* 6525 * Return completion status of previously initiated DLPI operations on 6526 * ills in the purview of an ipsq. 6527 */ 6528 static boolean_t 6529 ipsq_dlpi_done(ipsq_t *ipsq) 6530 { 6531 ipsq_t *ipsq_start; 6532 phyint_t *phyi; 6533 ill_t *ill; 6534 6535 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6536 ipsq_start = ipsq; 6537 6538 do { 6539 /* 6540 * The only current users of this function are ipsq_try_enter 6541 * and ipsq_enter which have made sure that ipsq_writer is 6542 * NULL before we reach here. ill_dlpi_pending is modified 6543 * only by an ipsq writer 6544 */ 6545 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6546 phyi = ipsq->ipsq_phyint; 6547 /* 6548 * phyi could be NULL if a phyint that is part of an 6549 * IPMP group is being unplumbed. A more detailed 6550 * comment is in ipmp_grp_update_kstats() 6551 */ 6552 if (phyi != NULL) { 6553 ill = phyi->phyint_illv4; 6554 if (ill != NULL && 6555 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6556 ill->ill_arl_dlpi_pending)) 6557 return (B_FALSE); 6558 6559 ill = phyi->phyint_illv6; 6560 if (ill != NULL && 6561 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6562 return (B_FALSE); 6563 } 6564 6565 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6566 6567 return (B_TRUE); 6568 } 6569 6570 /* 6571 * Enter the ipsq corresponding to ill, by waiting synchronously till 6572 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6573 * will have to drain completely before ipsq_enter returns success. 6574 * ipx_current_ipif will be set if some exclusive op is in progress, 6575 * and the ipsq_exit logic will start the next enqueued op after 6576 * completion of the current op. If 'force' is used, we don't wait 6577 * for the enqueued ops. This is needed when a conn_close wants to 6578 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6579 * of an ill can also use this option. But we dont' use it currently. 6580 */ 6581 #define ENTER_SQ_WAIT_TICKS 100 6582 boolean_t 6583 ipsq_enter(ill_t *ill, boolean_t force, int type) 6584 { 6585 ipsq_t *ipsq; 6586 ipxop_t *ipx; 6587 boolean_t waited_enough = B_FALSE; 6588 ip_stack_t *ipst = ill->ill_ipst; 6589 6590 /* 6591 * Note that the relationship between ill and ipsq is fixed as long as 6592 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6593 * relationship between the IPSQ and xop cannot change. However, 6594 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6595 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6596 * waking up all ills in the xop when it becomes available. 6597 */ 6598 for (;;) { 6599 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6600 mutex_enter(&ill->ill_lock); 6601 if (ill->ill_state_flags & ILL_CONDEMNED) { 6602 mutex_exit(&ill->ill_lock); 6603 rw_exit(&ipst->ips_ill_g_lock); 6604 return (B_FALSE); 6605 } 6606 6607 ipsq = ill->ill_phyint->phyint_ipsq; 6608 mutex_enter(&ipsq->ipsq_lock); 6609 ipx = ipsq->ipsq_xop; 6610 mutex_enter(&ipx->ipx_lock); 6611 6612 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6613 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6614 waited_enough)) 6615 break; 6616 6617 rw_exit(&ipst->ips_ill_g_lock); 6618 6619 if (!force || ipx->ipx_writer != NULL) { 6620 mutex_exit(&ipx->ipx_lock); 6621 mutex_exit(&ipsq->ipsq_lock); 6622 cv_wait(&ill->ill_cv, &ill->ill_lock); 6623 } else { 6624 mutex_exit(&ipx->ipx_lock); 6625 mutex_exit(&ipsq->ipsq_lock); 6626 (void) cv_reltimedwait(&ill->ill_cv, 6627 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6628 waited_enough = B_TRUE; 6629 } 6630 mutex_exit(&ill->ill_lock); 6631 } 6632 6633 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6634 ASSERT(ipx->ipx_reentry_cnt == 0); 6635 ipx->ipx_writer = curthread; 6636 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6637 ipx->ipx_reentry_cnt++; 6638 #ifdef DEBUG 6639 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6640 #endif 6641 mutex_exit(&ipx->ipx_lock); 6642 mutex_exit(&ipsq->ipsq_lock); 6643 mutex_exit(&ill->ill_lock); 6644 rw_exit(&ipst->ips_ill_g_lock); 6645 6646 return (B_TRUE); 6647 } 6648 6649 /* 6650 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6651 * across the call to the core interface ipsq_try_enter() and hence calls this 6652 * function directly. This is explained more fully in ipif_set_values(). 6653 * In order to support the above constraint, ipsq_try_enter is implemented as 6654 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6655 */ 6656 static ipsq_t * 6657 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6658 int type, boolean_t reentry_ok) 6659 { 6660 ipsq_t *ipsq; 6661 ipxop_t *ipx; 6662 ip_stack_t *ipst = ill->ill_ipst; 6663 6664 /* 6665 * lock ordering: 6666 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6667 * 6668 * ipx of an ipsq can't change when ipsq_lock is held. 6669 */ 6670 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6671 GRAB_CONN_LOCK(q); 6672 mutex_enter(&ill->ill_lock); 6673 ipsq = ill->ill_phyint->phyint_ipsq; 6674 mutex_enter(&ipsq->ipsq_lock); 6675 ipx = ipsq->ipsq_xop; 6676 mutex_enter(&ipx->ipx_lock); 6677 6678 /* 6679 * 1. Enter the ipsq if we are already writer and reentry is ok. 6680 * (Note: If the caller does not specify reentry_ok then neither 6681 * 'func' nor any of its callees must ever attempt to enter the ipsq 6682 * again. Otherwise it can lead to an infinite loop 6683 * 2. Enter the ipsq if there is no current writer and this attempted 6684 * entry is part of the current operation 6685 * 3. Enter the ipsq if there is no current writer and this is a new 6686 * operation and the operation queue is empty and there is no 6687 * operation currently in progress and if all previously initiated 6688 * DLPI operations have completed. 6689 */ 6690 if ((ipx->ipx_writer == curthread && reentry_ok) || 6691 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6692 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6693 ipsq_dlpi_done(ipsq))))) { 6694 /* Success. */ 6695 ipx->ipx_reentry_cnt++; 6696 ipx->ipx_writer = curthread; 6697 ipx->ipx_forced = B_FALSE; 6698 mutex_exit(&ipx->ipx_lock); 6699 mutex_exit(&ipsq->ipsq_lock); 6700 mutex_exit(&ill->ill_lock); 6701 RELEASE_CONN_LOCK(q); 6702 #ifdef DEBUG 6703 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6704 #endif 6705 return (ipsq); 6706 } 6707 6708 if (func != NULL) 6709 ipsq_enq(ipsq, q, mp, func, type, ill); 6710 6711 mutex_exit(&ipx->ipx_lock); 6712 mutex_exit(&ipsq->ipsq_lock); 6713 mutex_exit(&ill->ill_lock); 6714 RELEASE_CONN_LOCK(q); 6715 return (NULL); 6716 } 6717 6718 /* 6719 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6720 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6721 * There is one ipsq per phyint. The ipsq 6722 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6723 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6724 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6725 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6726 * up the interface) and are enqueued in ipx_mphead. 6727 * 6728 * If a thread does not want to reenter the ipsq when it is already writer, 6729 * it must make sure that the specified reentry point to be called later 6730 * when the ipsq is empty, nor any code path starting from the specified reentry 6731 * point must never ever try to enter the ipsq again. Otherwise it can lead 6732 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6733 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6734 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6735 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6736 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6737 * ioctl if the current ioctl has completed. If the current ioctl is still 6738 * in progress it simply returns. The current ioctl could be waiting for 6739 * a response from another module (the driver or could be waiting for 6740 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6741 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6742 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6743 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6744 * all associated DLPI operations have completed. 6745 */ 6746 6747 /* 6748 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6749 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6750 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6751 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6752 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6753 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6754 */ 6755 ipsq_t * 6756 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6757 ipsq_func_t func, int type, boolean_t reentry_ok) 6758 { 6759 ip_stack_t *ipst; 6760 ipsq_t *ipsq; 6761 6762 /* Only 1 of ipif or ill can be specified */ 6763 ASSERT((ipif != NULL) ^ (ill != NULL)); 6764 6765 if (ipif != NULL) 6766 ill = ipif->ipif_ill; 6767 ipst = ill->ill_ipst; 6768 6769 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6770 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6771 rw_exit(&ipst->ips_ill_g_lock); 6772 6773 return (ipsq); 6774 } 6775 6776 /* 6777 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6778 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6779 * cannot be entered, the mp is queued for completion. 6780 */ 6781 void 6782 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6783 boolean_t reentry_ok) 6784 { 6785 ipsq_t *ipsq; 6786 6787 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6788 6789 /* 6790 * Drop the caller's refhold on the ill. This is safe since we either 6791 * entered the IPSQ (and thus are exclusive), or failed to enter the 6792 * IPSQ, in which case we return without accessing ill anymore. This 6793 * is needed because func needs to see the correct refcount. 6794 * e.g. removeif can work only then. 6795 */ 6796 ill_refrele(ill); 6797 if (ipsq != NULL) { 6798 (*func)(ipsq, q, mp, NULL); 6799 ipsq_exit(ipsq); 6800 } 6801 } 6802 6803 /* 6804 * Exit the specified IPSQ. If this is the final exit on it then drain it 6805 * prior to exiting. Caller must be writer on the specified IPSQ. 6806 */ 6807 void 6808 ipsq_exit(ipsq_t *ipsq) 6809 { 6810 mblk_t *mp; 6811 ipsq_t *mp_ipsq; 6812 queue_t *q; 6813 phyint_t *phyi; 6814 ipsq_func_t func; 6815 6816 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6817 6818 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6819 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6820 ipsq->ipsq_xop->ipx_reentry_cnt--; 6821 return; 6822 } 6823 6824 for (;;) { 6825 phyi = ipsq->ipsq_phyint; 6826 mp = ipsq_dq(ipsq); 6827 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6828 6829 /* 6830 * If we've changed to a new IPSQ, and the phyint associated 6831 * with the old one has gone away, free the old IPSQ. Note 6832 * that this cannot happen while the IPSQ is in a group. 6833 */ 6834 if (mp_ipsq != ipsq && phyi == NULL) { 6835 ASSERT(ipsq->ipsq_next == ipsq); 6836 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6837 ipsq_delete(ipsq); 6838 } 6839 6840 if (mp == NULL) 6841 break; 6842 6843 q = mp->b_queue; 6844 func = (ipsq_func_t)mp->b_prev; 6845 ipsq = mp_ipsq; 6846 mp->b_next = mp->b_prev = NULL; 6847 mp->b_queue = NULL; 6848 6849 /* 6850 * If 'q' is an conn queue, it is valid, since we did a 6851 * a refhold on the conn at the start of the ioctl. 6852 * If 'q' is an ill queue, it is valid, since close of an 6853 * ill will clean up its IPSQ. 6854 */ 6855 (*func)(ipsq, q, mp, NULL); 6856 } 6857 } 6858 6859 /* 6860 * Used to start any igmp or mld timers that could not be started 6861 * while holding ill_mcast_lock. The timers can't be started while holding 6862 * the lock, since mld/igmp_start_timers may need to call untimeout() 6863 * which can't be done while holding the lock which the timeout handler 6864 * acquires. Otherwise 6865 * there could be a deadlock since the timeout handlers 6866 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6867 * ill_mcast_lock. 6868 */ 6869 void 6870 ill_mcast_timer_start(ip_stack_t *ipst) 6871 { 6872 int next; 6873 6874 mutex_enter(&ipst->ips_igmp_timer_lock); 6875 next = ipst->ips_igmp_deferred_next; 6876 ipst->ips_igmp_deferred_next = INFINITY; 6877 mutex_exit(&ipst->ips_igmp_timer_lock); 6878 6879 if (next != INFINITY) 6880 igmp_start_timers(next, ipst); 6881 6882 mutex_enter(&ipst->ips_mld_timer_lock); 6883 next = ipst->ips_mld_deferred_next; 6884 ipst->ips_mld_deferred_next = INFINITY; 6885 mutex_exit(&ipst->ips_mld_timer_lock); 6886 6887 if (next != INFINITY) 6888 mld_start_timers(next, ipst); 6889 } 6890 6891 /* 6892 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6893 * and `ioccmd'. 6894 */ 6895 void 6896 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6897 { 6898 ill_t *ill = ipif->ipif_ill; 6899 ipxop_t *ipx = ipsq->ipsq_xop; 6900 6901 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6902 ASSERT(ipx->ipx_current_ipif == NULL); 6903 ASSERT(ipx->ipx_current_ioctl == 0); 6904 6905 ipx->ipx_current_done = B_FALSE; 6906 ipx->ipx_current_ioctl = ioccmd; 6907 mutex_enter(&ipx->ipx_lock); 6908 ipx->ipx_current_ipif = ipif; 6909 mutex_exit(&ipx->ipx_lock); 6910 6911 /* 6912 * Set IPIF_CHANGING on one or more ipifs associated with the 6913 * current exclusive operation. IPIF_CHANGING prevents any new 6914 * references to the ipif (so that the references will eventually 6915 * drop to zero) and also prevents any "get" operations (e.g., 6916 * SIOCGLIFFLAGS) from being able to access the ipif until the 6917 * operation has completed and the ipif is again in a stable state. 6918 * 6919 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6920 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6921 * on the ill are marked with IPIF_CHANGING since it's unclear which 6922 * ipifs will be affected. 6923 * 6924 * Note that SIOCLIFREMOVEIF is a special case as it sets 6925 * IPIF_CONDEMNED internally after identifying the right ipif to 6926 * operate on. 6927 */ 6928 switch (ioccmd) { 6929 case SIOCLIFREMOVEIF: 6930 break; 6931 case 0: 6932 mutex_enter(&ill->ill_lock); 6933 ipif = ipif->ipif_ill->ill_ipif; 6934 for (; ipif != NULL; ipif = ipif->ipif_next) 6935 ipif->ipif_state_flags |= IPIF_CHANGING; 6936 mutex_exit(&ill->ill_lock); 6937 break; 6938 default: 6939 mutex_enter(&ill->ill_lock); 6940 ipif->ipif_state_flags |= IPIF_CHANGING; 6941 mutex_exit(&ill->ill_lock); 6942 } 6943 } 6944 6945 /* 6946 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6947 * the next exclusive operation to begin once we ipsq_exit(). However, if 6948 * pending DLPI operations remain, then we will wait for the queue to drain 6949 * before allowing the next exclusive operation to begin. This ensures that 6950 * DLPI operations from one exclusive operation are never improperly processed 6951 * as part of a subsequent exclusive operation. 6952 */ 6953 void 6954 ipsq_current_finish(ipsq_t *ipsq) 6955 { 6956 ipxop_t *ipx = ipsq->ipsq_xop; 6957 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6958 ipif_t *ipif = ipx->ipx_current_ipif; 6959 6960 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6961 6962 /* 6963 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6964 * (but in that case, IPIF_CHANGING will already be clear and no 6965 * pending DLPI messages can remain). 6966 */ 6967 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6968 ill_t *ill = ipif->ipif_ill; 6969 6970 mutex_enter(&ill->ill_lock); 6971 dlpi_pending = ill->ill_dlpi_pending; 6972 if (ipx->ipx_current_ioctl == 0) { 6973 ipif = ill->ill_ipif; 6974 for (; ipif != NULL; ipif = ipif->ipif_next) 6975 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6976 } else { 6977 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6978 } 6979 mutex_exit(&ill->ill_lock); 6980 } 6981 6982 ASSERT(!ipx->ipx_current_done); 6983 ipx->ipx_current_done = B_TRUE; 6984 ipx->ipx_current_ioctl = 0; 6985 if (dlpi_pending == DL_PRIM_INVAL) { 6986 mutex_enter(&ipx->ipx_lock); 6987 ipx->ipx_current_ipif = NULL; 6988 mutex_exit(&ipx->ipx_lock); 6989 } 6990 } 6991 6992 /* 6993 * The ill is closing. Flush all messages on the ipsq that originated 6994 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6995 * for this ill since ipsq_enter could not have entered until then. 6996 * New messages can't be queued since the CONDEMNED flag is set. 6997 */ 6998 static void 6999 ipsq_flush(ill_t *ill) 7000 { 7001 queue_t *q; 7002 mblk_t *prev; 7003 mblk_t *mp; 7004 mblk_t *mp_next; 7005 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7006 7007 ASSERT(IAM_WRITER_ILL(ill)); 7008 7009 /* 7010 * Flush any messages sent up by the driver. 7011 */ 7012 mutex_enter(&ipx->ipx_lock); 7013 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7014 mp_next = mp->b_next; 7015 q = mp->b_queue; 7016 if (q == ill->ill_rq || q == ill->ill_wq) { 7017 /* dequeue mp */ 7018 if (prev == NULL) 7019 ipx->ipx_mphead = mp->b_next; 7020 else 7021 prev->b_next = mp->b_next; 7022 if (ipx->ipx_mptail == mp) { 7023 ASSERT(mp_next == NULL); 7024 ipx->ipx_mptail = prev; 7025 } 7026 inet_freemsg(mp); 7027 } else { 7028 prev = mp; 7029 } 7030 } 7031 mutex_exit(&ipx->ipx_lock); 7032 (void) ipsq_pending_mp_cleanup(ill, NULL); 7033 ipsq_xopq_mp_cleanup(ill, NULL); 7034 } 7035 7036 /* 7037 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7038 * and return the associated ipif. 7039 * Return value: 7040 * Non zero: An error has occurred. ci may not be filled out. 7041 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7042 * a held ipif in ci.ci_ipif. 7043 */ 7044 int 7045 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7046 cmd_info_t *ci) 7047 { 7048 char *name; 7049 struct ifreq *ifr; 7050 struct lifreq *lifr; 7051 ipif_t *ipif = NULL; 7052 ill_t *ill; 7053 conn_t *connp; 7054 boolean_t isv6; 7055 int err; 7056 mblk_t *mp1; 7057 zoneid_t zoneid; 7058 ip_stack_t *ipst; 7059 7060 if (q->q_next != NULL) { 7061 ill = (ill_t *)q->q_ptr; 7062 isv6 = ill->ill_isv6; 7063 connp = NULL; 7064 zoneid = ALL_ZONES; 7065 ipst = ill->ill_ipst; 7066 } else { 7067 ill = NULL; 7068 connp = Q_TO_CONN(q); 7069 isv6 = (connp->conn_family == AF_INET6); 7070 zoneid = connp->conn_zoneid; 7071 if (zoneid == GLOBAL_ZONEID) { 7072 /* global zone can access ipifs in all zones */ 7073 zoneid = ALL_ZONES; 7074 } 7075 ipst = connp->conn_netstack->netstack_ip; 7076 } 7077 7078 /* Has been checked in ip_wput_nondata */ 7079 mp1 = mp->b_cont->b_cont; 7080 7081 if (ipip->ipi_cmd_type == IF_CMD) { 7082 /* This a old style SIOC[GS]IF* command */ 7083 ifr = (struct ifreq *)mp1->b_rptr; 7084 /* 7085 * Null terminate the string to protect against buffer 7086 * overrun. String was generated by user code and may not 7087 * be trusted. 7088 */ 7089 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7090 name = ifr->ifr_name; 7091 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7092 ci->ci_sin6 = NULL; 7093 ci->ci_lifr = (struct lifreq *)ifr; 7094 } else { 7095 /* This a new style SIOC[GS]LIF* command */ 7096 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7097 lifr = (struct lifreq *)mp1->b_rptr; 7098 /* 7099 * Null terminate the string to protect against buffer 7100 * overrun. String was generated by user code and may not 7101 * be trusted. 7102 */ 7103 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7104 name = lifr->lifr_name; 7105 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7106 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7107 ci->ci_lifr = lifr; 7108 } 7109 7110 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7111 /* 7112 * The ioctl will be failed if the ioctl comes down 7113 * an conn stream 7114 */ 7115 if (ill == NULL) { 7116 /* 7117 * Not an ill queue, return EINVAL same as the 7118 * old error code. 7119 */ 7120 return (ENXIO); 7121 } 7122 ipif = ill->ill_ipif; 7123 ipif_refhold(ipif); 7124 } else { 7125 /* 7126 * Ensure that ioctls don't see any internal state changes 7127 * caused by set ioctls by deferring them if IPIF_CHANGING is 7128 * set. 7129 */ 7130 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7131 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7132 if (ipif == NULL) { 7133 if (err == EINPROGRESS) 7134 return (err); 7135 err = 0; /* Ensure we don't use it below */ 7136 } 7137 } 7138 7139 /* 7140 * Old style [GS]IFCMD does not admit IPv6 ipif 7141 */ 7142 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7143 ipif_refrele(ipif); 7144 return (ENXIO); 7145 } 7146 7147 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7148 name[0] == '\0') { 7149 /* 7150 * Handle a or a SIOC?IF* with a null name 7151 * during plumb (on the ill queue before the I_PLINK). 7152 */ 7153 ipif = ill->ill_ipif; 7154 ipif_refhold(ipif); 7155 } 7156 7157 if (ipif == NULL) 7158 return (ENXIO); 7159 7160 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7161 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7162 7163 ci->ci_ipif = ipif; 7164 return (0); 7165 } 7166 7167 /* 7168 * Return the total number of ipifs. 7169 */ 7170 static uint_t 7171 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7172 { 7173 uint_t numifs = 0; 7174 ill_t *ill; 7175 ill_walk_context_t ctx; 7176 ipif_t *ipif; 7177 7178 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7179 ill = ILL_START_WALK_V4(&ctx, ipst); 7180 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7181 if (IS_UNDER_IPMP(ill)) 7182 continue; 7183 for (ipif = ill->ill_ipif; ipif != NULL; 7184 ipif = ipif->ipif_next) { 7185 if (ipif->ipif_zoneid == zoneid || 7186 ipif->ipif_zoneid == ALL_ZONES) 7187 numifs++; 7188 } 7189 } 7190 rw_exit(&ipst->ips_ill_g_lock); 7191 return (numifs); 7192 } 7193 7194 /* 7195 * Return the total number of ipifs. 7196 */ 7197 static uint_t 7198 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7199 { 7200 uint_t numifs = 0; 7201 ill_t *ill; 7202 ipif_t *ipif; 7203 ill_walk_context_t ctx; 7204 7205 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7206 7207 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7208 if (family == AF_INET) 7209 ill = ILL_START_WALK_V4(&ctx, ipst); 7210 else if (family == AF_INET6) 7211 ill = ILL_START_WALK_V6(&ctx, ipst); 7212 else 7213 ill = ILL_START_WALK_ALL(&ctx, ipst); 7214 7215 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7216 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7217 continue; 7218 7219 for (ipif = ill->ill_ipif; ipif != NULL; 7220 ipif = ipif->ipif_next) { 7221 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7222 !(lifn_flags & LIFC_NOXMIT)) 7223 continue; 7224 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7225 !(lifn_flags & LIFC_TEMPORARY)) 7226 continue; 7227 if (((ipif->ipif_flags & 7228 (IPIF_NOXMIT|IPIF_NOLOCAL| 7229 IPIF_DEPRECATED)) || 7230 IS_LOOPBACK(ill) || 7231 !(ipif->ipif_flags & IPIF_UP)) && 7232 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7233 continue; 7234 7235 if (zoneid != ipif->ipif_zoneid && 7236 ipif->ipif_zoneid != ALL_ZONES && 7237 (zoneid != GLOBAL_ZONEID || 7238 !(lifn_flags & LIFC_ALLZONES))) 7239 continue; 7240 7241 numifs++; 7242 } 7243 } 7244 rw_exit(&ipst->ips_ill_g_lock); 7245 return (numifs); 7246 } 7247 7248 uint_t 7249 ip_get_lifsrcofnum(ill_t *ill) 7250 { 7251 uint_t numifs = 0; 7252 ill_t *ill_head = ill; 7253 ip_stack_t *ipst = ill->ill_ipst; 7254 7255 /* 7256 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7257 * other thread may be trying to relink the ILLs in this usesrc group 7258 * and adjusting the ill_usesrc_grp_next pointers 7259 */ 7260 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7261 if ((ill->ill_usesrc_ifindex == 0) && 7262 (ill->ill_usesrc_grp_next != NULL)) { 7263 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7264 ill = ill->ill_usesrc_grp_next) 7265 numifs++; 7266 } 7267 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7268 7269 return (numifs); 7270 } 7271 7272 /* Null values are passed in for ipif, sin, and ifreq */ 7273 /* ARGSUSED */ 7274 int 7275 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7276 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7277 { 7278 int *nump; 7279 conn_t *connp = Q_TO_CONN(q); 7280 7281 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7282 7283 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7284 nump = (int *)mp->b_cont->b_cont->b_rptr; 7285 7286 *nump = ip_get_numifs(connp->conn_zoneid, 7287 connp->conn_netstack->netstack_ip); 7288 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7289 return (0); 7290 } 7291 7292 /* Null values are passed in for ipif, sin, and ifreq */ 7293 /* ARGSUSED */ 7294 int 7295 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7296 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7297 { 7298 struct lifnum *lifn; 7299 mblk_t *mp1; 7300 conn_t *connp = Q_TO_CONN(q); 7301 7302 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7303 7304 /* Existence checked in ip_wput_nondata */ 7305 mp1 = mp->b_cont->b_cont; 7306 7307 lifn = (struct lifnum *)mp1->b_rptr; 7308 switch (lifn->lifn_family) { 7309 case AF_UNSPEC: 7310 case AF_INET: 7311 case AF_INET6: 7312 break; 7313 default: 7314 return (EAFNOSUPPORT); 7315 } 7316 7317 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7318 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7319 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7320 return (0); 7321 } 7322 7323 /* ARGSUSED */ 7324 int 7325 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7326 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7327 { 7328 STRUCT_HANDLE(ifconf, ifc); 7329 mblk_t *mp1; 7330 struct iocblk *iocp; 7331 struct ifreq *ifr; 7332 ill_walk_context_t ctx; 7333 ill_t *ill; 7334 ipif_t *ipif; 7335 struct sockaddr_in *sin; 7336 int32_t ifclen; 7337 zoneid_t zoneid; 7338 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7339 7340 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7341 7342 ip1dbg(("ip_sioctl_get_ifconf")); 7343 /* Existence verified in ip_wput_nondata */ 7344 mp1 = mp->b_cont->b_cont; 7345 iocp = (struct iocblk *)mp->b_rptr; 7346 zoneid = Q_TO_CONN(q)->conn_zoneid; 7347 7348 /* 7349 * The original SIOCGIFCONF passed in a struct ifconf which specified 7350 * the user buffer address and length into which the list of struct 7351 * ifreqs was to be copied. Since AT&T Streams does not seem to 7352 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7353 * the SIOCGIFCONF operation was redefined to simply provide 7354 * a large output buffer into which we are supposed to jam the ifreq 7355 * array. The same ioctl command code was used, despite the fact that 7356 * both the applications and the kernel code had to change, thus making 7357 * it impossible to support both interfaces. 7358 * 7359 * For reasons not good enough to try to explain, the following 7360 * algorithm is used for deciding what to do with one of these: 7361 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7362 * form with the output buffer coming down as the continuation message. 7363 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7364 * and we have to copy in the ifconf structure to find out how big the 7365 * output buffer is and where to copy out to. Sure no problem... 7366 * 7367 */ 7368 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7369 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7370 int numifs = 0; 7371 size_t ifc_bufsize; 7372 7373 /* 7374 * Must be (better be!) continuation of a TRANSPARENT 7375 * IOCTL. We just copied in the ifconf structure. 7376 */ 7377 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7378 (struct ifconf *)mp1->b_rptr); 7379 7380 /* 7381 * Allocate a buffer to hold requested information. 7382 * 7383 * If ifc_len is larger than what is needed, we only 7384 * allocate what we will use. 7385 * 7386 * If ifc_len is smaller than what is needed, return 7387 * EINVAL. 7388 * 7389 * XXX: the ill_t structure can hava 2 counters, for 7390 * v4 and v6 (not just ill_ipif_up_count) to store the 7391 * number of interfaces for a device, so we don't need 7392 * to count them here... 7393 */ 7394 numifs = ip_get_numifs(zoneid, ipst); 7395 7396 ifclen = STRUCT_FGET(ifc, ifc_len); 7397 ifc_bufsize = numifs * sizeof (struct ifreq); 7398 if (ifc_bufsize > ifclen) { 7399 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7400 /* old behaviour */ 7401 return (EINVAL); 7402 } else { 7403 ifc_bufsize = ifclen; 7404 } 7405 } 7406 7407 mp1 = mi_copyout_alloc(q, mp, 7408 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7409 if (mp1 == NULL) 7410 return (ENOMEM); 7411 7412 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7413 } 7414 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7415 /* 7416 * the SIOCGIFCONF ioctl only knows about 7417 * IPv4 addresses, so don't try to tell 7418 * it about interfaces with IPv6-only 7419 * addresses. (Last parm 'isv6' is B_FALSE) 7420 */ 7421 7422 ifr = (struct ifreq *)mp1->b_rptr; 7423 7424 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7425 ill = ILL_START_WALK_V4(&ctx, ipst); 7426 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7427 if (IS_UNDER_IPMP(ill)) 7428 continue; 7429 for (ipif = ill->ill_ipif; ipif != NULL; 7430 ipif = ipif->ipif_next) { 7431 if (zoneid != ipif->ipif_zoneid && 7432 ipif->ipif_zoneid != ALL_ZONES) 7433 continue; 7434 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7435 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7436 /* old behaviour */ 7437 rw_exit(&ipst->ips_ill_g_lock); 7438 return (EINVAL); 7439 } else { 7440 goto if_copydone; 7441 } 7442 } 7443 ipif_get_name(ipif, ifr->ifr_name, 7444 sizeof (ifr->ifr_name)); 7445 sin = (sin_t *)&ifr->ifr_addr; 7446 *sin = sin_null; 7447 sin->sin_family = AF_INET; 7448 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7449 ifr++; 7450 } 7451 } 7452 if_copydone: 7453 rw_exit(&ipst->ips_ill_g_lock); 7454 mp1->b_wptr = (uchar_t *)ifr; 7455 7456 if (STRUCT_BUF(ifc) != NULL) { 7457 STRUCT_FSET(ifc, ifc_len, 7458 (int)((uchar_t *)ifr - mp1->b_rptr)); 7459 } 7460 return (0); 7461 } 7462 7463 /* 7464 * Get the interfaces using the address hosted on the interface passed in, 7465 * as a source adddress 7466 */ 7467 /* ARGSUSED */ 7468 int 7469 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7470 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7471 { 7472 mblk_t *mp1; 7473 ill_t *ill, *ill_head; 7474 ipif_t *ipif, *orig_ipif; 7475 int numlifs = 0; 7476 size_t lifs_bufsize, lifsmaxlen; 7477 struct lifreq *lifr; 7478 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7479 uint_t ifindex; 7480 zoneid_t zoneid; 7481 boolean_t isv6 = B_FALSE; 7482 struct sockaddr_in *sin; 7483 struct sockaddr_in6 *sin6; 7484 STRUCT_HANDLE(lifsrcof, lifs); 7485 ip_stack_t *ipst; 7486 7487 ipst = CONNQ_TO_IPST(q); 7488 7489 ASSERT(q->q_next == NULL); 7490 7491 zoneid = Q_TO_CONN(q)->conn_zoneid; 7492 7493 /* Existence verified in ip_wput_nondata */ 7494 mp1 = mp->b_cont->b_cont; 7495 7496 /* 7497 * Must be (better be!) continuation of a TRANSPARENT 7498 * IOCTL. We just copied in the lifsrcof structure. 7499 */ 7500 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7501 (struct lifsrcof *)mp1->b_rptr); 7502 7503 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7504 return (EINVAL); 7505 7506 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7507 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7508 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7509 if (ipif == NULL) { 7510 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7511 ifindex)); 7512 return (ENXIO); 7513 } 7514 7515 /* Allocate a buffer to hold requested information */ 7516 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7517 lifs_bufsize = numlifs * sizeof (struct lifreq); 7518 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7519 /* The actual size needed is always returned in lifs_len */ 7520 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7521 7522 /* If the amount we need is more than what is passed in, abort */ 7523 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7524 ipif_refrele(ipif); 7525 return (0); 7526 } 7527 7528 mp1 = mi_copyout_alloc(q, mp, 7529 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7530 if (mp1 == NULL) { 7531 ipif_refrele(ipif); 7532 return (ENOMEM); 7533 } 7534 7535 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7536 bzero(mp1->b_rptr, lifs_bufsize); 7537 7538 lifr = (struct lifreq *)mp1->b_rptr; 7539 7540 ill = ill_head = ipif->ipif_ill; 7541 orig_ipif = ipif; 7542 7543 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7544 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7545 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7546 7547 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7548 for (; (ill != NULL) && (ill != ill_head); 7549 ill = ill->ill_usesrc_grp_next) { 7550 7551 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7552 break; 7553 7554 ipif = ill->ill_ipif; 7555 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7556 if (ipif->ipif_isv6) { 7557 sin6 = (sin6_t *)&lifr->lifr_addr; 7558 *sin6 = sin6_null; 7559 sin6->sin6_family = AF_INET6; 7560 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7561 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7562 &ipif->ipif_v6net_mask); 7563 } else { 7564 sin = (sin_t *)&lifr->lifr_addr; 7565 *sin = sin_null; 7566 sin->sin_family = AF_INET; 7567 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7568 lifr->lifr_addrlen = ip_mask_to_plen( 7569 ipif->ipif_net_mask); 7570 } 7571 lifr++; 7572 } 7573 rw_exit(&ipst->ips_ill_g_lock); 7574 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7575 ipif_refrele(orig_ipif); 7576 mp1->b_wptr = (uchar_t *)lifr; 7577 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7578 7579 return (0); 7580 } 7581 7582 /* ARGSUSED */ 7583 int 7584 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7585 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7586 { 7587 mblk_t *mp1; 7588 int list; 7589 ill_t *ill; 7590 ipif_t *ipif; 7591 int flags; 7592 int numlifs = 0; 7593 size_t lifc_bufsize; 7594 struct lifreq *lifr; 7595 sa_family_t family; 7596 struct sockaddr_in *sin; 7597 struct sockaddr_in6 *sin6; 7598 ill_walk_context_t ctx; 7599 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7600 int32_t lifclen; 7601 zoneid_t zoneid; 7602 STRUCT_HANDLE(lifconf, lifc); 7603 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7604 7605 ip1dbg(("ip_sioctl_get_lifconf")); 7606 7607 ASSERT(q->q_next == NULL); 7608 7609 zoneid = Q_TO_CONN(q)->conn_zoneid; 7610 7611 /* Existence verified in ip_wput_nondata */ 7612 mp1 = mp->b_cont->b_cont; 7613 7614 /* 7615 * An extended version of SIOCGIFCONF that takes an 7616 * additional address family and flags field. 7617 * AF_UNSPEC retrieve both IPv4 and IPv6. 7618 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7619 * interfaces are omitted. 7620 * Similarly, IPIF_TEMPORARY interfaces are omitted 7621 * unless LIFC_TEMPORARY is specified. 7622 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7623 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7624 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7625 * has priority over LIFC_NOXMIT. 7626 */ 7627 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7628 7629 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7630 return (EINVAL); 7631 7632 /* 7633 * Must be (better be!) continuation of a TRANSPARENT 7634 * IOCTL. We just copied in the lifconf structure. 7635 */ 7636 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7637 7638 family = STRUCT_FGET(lifc, lifc_family); 7639 flags = STRUCT_FGET(lifc, lifc_flags); 7640 7641 switch (family) { 7642 case AF_UNSPEC: 7643 /* 7644 * walk all ILL's. 7645 */ 7646 list = MAX_G_HEADS; 7647 break; 7648 case AF_INET: 7649 /* 7650 * walk only IPV4 ILL's. 7651 */ 7652 list = IP_V4_G_HEAD; 7653 break; 7654 case AF_INET6: 7655 /* 7656 * walk only IPV6 ILL's. 7657 */ 7658 list = IP_V6_G_HEAD; 7659 break; 7660 default: 7661 return (EAFNOSUPPORT); 7662 } 7663 7664 /* 7665 * Allocate a buffer to hold requested information. 7666 * 7667 * If lifc_len is larger than what is needed, we only 7668 * allocate what we will use. 7669 * 7670 * If lifc_len is smaller than what is needed, return 7671 * EINVAL. 7672 */ 7673 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7674 lifc_bufsize = numlifs * sizeof (struct lifreq); 7675 lifclen = STRUCT_FGET(lifc, lifc_len); 7676 if (lifc_bufsize > lifclen) { 7677 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7678 return (EINVAL); 7679 else 7680 lifc_bufsize = lifclen; 7681 } 7682 7683 mp1 = mi_copyout_alloc(q, mp, 7684 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7685 if (mp1 == NULL) 7686 return (ENOMEM); 7687 7688 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7689 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7690 7691 lifr = (struct lifreq *)mp1->b_rptr; 7692 7693 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7694 ill = ill_first(list, list, &ctx, ipst); 7695 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7696 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7697 continue; 7698 7699 for (ipif = ill->ill_ipif; ipif != NULL; 7700 ipif = ipif->ipif_next) { 7701 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7702 !(flags & LIFC_NOXMIT)) 7703 continue; 7704 7705 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7706 !(flags & LIFC_TEMPORARY)) 7707 continue; 7708 7709 if (((ipif->ipif_flags & 7710 (IPIF_NOXMIT|IPIF_NOLOCAL| 7711 IPIF_DEPRECATED)) || 7712 IS_LOOPBACK(ill) || 7713 !(ipif->ipif_flags & IPIF_UP)) && 7714 (flags & LIFC_EXTERNAL_SOURCE)) 7715 continue; 7716 7717 if (zoneid != ipif->ipif_zoneid && 7718 ipif->ipif_zoneid != ALL_ZONES && 7719 (zoneid != GLOBAL_ZONEID || 7720 !(flags & LIFC_ALLZONES))) 7721 continue; 7722 7723 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7724 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7725 rw_exit(&ipst->ips_ill_g_lock); 7726 return (EINVAL); 7727 } else { 7728 goto lif_copydone; 7729 } 7730 } 7731 7732 ipif_get_name(ipif, lifr->lifr_name, 7733 sizeof (lifr->lifr_name)); 7734 lifr->lifr_type = ill->ill_type; 7735 if (ipif->ipif_isv6) { 7736 sin6 = (sin6_t *)&lifr->lifr_addr; 7737 *sin6 = sin6_null; 7738 sin6->sin6_family = AF_INET6; 7739 sin6->sin6_addr = 7740 ipif->ipif_v6lcl_addr; 7741 lifr->lifr_addrlen = 7742 ip_mask_to_plen_v6( 7743 &ipif->ipif_v6net_mask); 7744 } else { 7745 sin = (sin_t *)&lifr->lifr_addr; 7746 *sin = sin_null; 7747 sin->sin_family = AF_INET; 7748 sin->sin_addr.s_addr = 7749 ipif->ipif_lcl_addr; 7750 lifr->lifr_addrlen = 7751 ip_mask_to_plen( 7752 ipif->ipif_net_mask); 7753 } 7754 lifr++; 7755 } 7756 } 7757 lif_copydone: 7758 rw_exit(&ipst->ips_ill_g_lock); 7759 7760 mp1->b_wptr = (uchar_t *)lifr; 7761 if (STRUCT_BUF(lifc) != NULL) { 7762 STRUCT_FSET(lifc, lifc_len, 7763 (int)((uchar_t *)lifr - mp1->b_rptr)); 7764 } 7765 return (0); 7766 } 7767 7768 static void 7769 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7770 { 7771 ip6_asp_t *table; 7772 size_t table_size; 7773 mblk_t *data_mp; 7774 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7775 ip_stack_t *ipst; 7776 7777 if (q->q_next == NULL) 7778 ipst = CONNQ_TO_IPST(q); 7779 else 7780 ipst = ILLQ_TO_IPST(q); 7781 7782 /* These two ioctls are I_STR only */ 7783 if (iocp->ioc_count == TRANSPARENT) { 7784 miocnak(q, mp, 0, EINVAL); 7785 return; 7786 } 7787 7788 data_mp = mp->b_cont; 7789 if (data_mp == NULL) { 7790 /* The user passed us a NULL argument */ 7791 table = NULL; 7792 table_size = iocp->ioc_count; 7793 } else { 7794 /* 7795 * The user provided a table. The stream head 7796 * may have copied in the user data in chunks, 7797 * so make sure everything is pulled up 7798 * properly. 7799 */ 7800 if (MBLKL(data_mp) < iocp->ioc_count) { 7801 mblk_t *new_data_mp; 7802 if ((new_data_mp = msgpullup(data_mp, -1)) == 7803 NULL) { 7804 miocnak(q, mp, 0, ENOMEM); 7805 return; 7806 } 7807 freemsg(data_mp); 7808 data_mp = new_data_mp; 7809 mp->b_cont = data_mp; 7810 } 7811 table = (ip6_asp_t *)data_mp->b_rptr; 7812 table_size = iocp->ioc_count; 7813 } 7814 7815 switch (iocp->ioc_cmd) { 7816 case SIOCGIP6ADDRPOLICY: 7817 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7818 if (iocp->ioc_rval == -1) 7819 iocp->ioc_error = EINVAL; 7820 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7821 else if (table != NULL && 7822 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7823 ip6_asp_t *src = table; 7824 ip6_asp32_t *dst = (void *)table; 7825 int count = table_size / sizeof (ip6_asp_t); 7826 int i; 7827 7828 /* 7829 * We need to do an in-place shrink of the array 7830 * to match the alignment attributes of the 7831 * 32-bit ABI looking at it. 7832 */ 7833 /* LINTED: logical expression always true: op "||" */ 7834 ASSERT(sizeof (*src) > sizeof (*dst)); 7835 for (i = 1; i < count; i++) 7836 bcopy(src + i, dst + i, sizeof (*dst)); 7837 } 7838 #endif 7839 break; 7840 7841 case SIOCSIP6ADDRPOLICY: 7842 ASSERT(mp->b_prev == NULL); 7843 mp->b_prev = (void *)q; 7844 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7845 /* 7846 * We pass in the datamodel here so that the ip6_asp_replace() 7847 * routine can handle converting from 32-bit to native formats 7848 * where necessary. 7849 * 7850 * A better way to handle this might be to convert the inbound 7851 * data structure here, and hang it off a new 'mp'; thus the 7852 * ip6_asp_replace() logic would always be dealing with native 7853 * format data structures.. 7854 * 7855 * (An even simpler way to handle these ioctls is to just 7856 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7857 * and just recompile everything that depends on it.) 7858 */ 7859 #endif 7860 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7861 iocp->ioc_flag & IOC_MODELS); 7862 return; 7863 } 7864 7865 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7866 qreply(q, mp); 7867 } 7868 7869 static void 7870 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7871 { 7872 mblk_t *data_mp; 7873 struct dstinforeq *dir; 7874 uint8_t *end, *cur; 7875 in6_addr_t *daddr, *saddr; 7876 ipaddr_t v4daddr; 7877 ire_t *ire; 7878 ipaddr_t v4setsrc; 7879 in6_addr_t v6setsrc; 7880 char *slabel, *dlabel; 7881 boolean_t isipv4; 7882 int match_ire; 7883 ill_t *dst_ill; 7884 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7885 conn_t *connp = Q_TO_CONN(q); 7886 zoneid_t zoneid = IPCL_ZONEID(connp); 7887 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7888 uint64_t ipif_flags; 7889 7890 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7891 7892 /* 7893 * This ioctl is I_STR only, and must have a 7894 * data mblk following the M_IOCTL mblk. 7895 */ 7896 data_mp = mp->b_cont; 7897 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7898 miocnak(q, mp, 0, EINVAL); 7899 return; 7900 } 7901 7902 if (MBLKL(data_mp) < iocp->ioc_count) { 7903 mblk_t *new_data_mp; 7904 7905 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7906 miocnak(q, mp, 0, ENOMEM); 7907 return; 7908 } 7909 freemsg(data_mp); 7910 data_mp = new_data_mp; 7911 mp->b_cont = data_mp; 7912 } 7913 match_ire = MATCH_IRE_DSTONLY; 7914 7915 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7916 end - cur >= sizeof (struct dstinforeq); 7917 cur += sizeof (struct dstinforeq)) { 7918 dir = (struct dstinforeq *)cur; 7919 daddr = &dir->dir_daddr; 7920 saddr = &dir->dir_saddr; 7921 7922 /* 7923 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7924 * v4 mapped addresses; ire_ftable_lookup_v6() 7925 * and ip_select_source_v6() do not. 7926 */ 7927 dir->dir_dscope = ip_addr_scope_v6(daddr); 7928 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7929 7930 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7931 if (isipv4) { 7932 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7933 v4setsrc = INADDR_ANY; 7934 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7935 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7936 NULL, NULL); 7937 } else { 7938 v6setsrc = ipv6_all_zeros; 7939 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7940 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7941 NULL, NULL); 7942 } 7943 ASSERT(ire != NULL); 7944 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7945 ire_refrele(ire); 7946 dir->dir_dreachable = 0; 7947 7948 /* move on to next dst addr */ 7949 continue; 7950 } 7951 dir->dir_dreachable = 1; 7952 7953 dst_ill = ire_nexthop_ill(ire); 7954 if (dst_ill == NULL) { 7955 ire_refrele(ire); 7956 continue; 7957 } 7958 7959 /* With ipmp we most likely look at the ipmp ill here */ 7960 dir->dir_dmactype = dst_ill->ill_mactype; 7961 7962 if (isipv4) { 7963 ipaddr_t v4saddr; 7964 7965 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7966 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7967 &v4saddr, NULL, &ipif_flags) != 0) { 7968 v4saddr = INADDR_ANY; 7969 ipif_flags = 0; 7970 } 7971 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7972 } else { 7973 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7974 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7975 saddr, NULL, &ipif_flags) != 0) { 7976 *saddr = ipv6_all_zeros; 7977 ipif_flags = 0; 7978 } 7979 } 7980 7981 dir->dir_sscope = ip_addr_scope_v6(saddr); 7982 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7983 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7984 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7985 ire_refrele(ire); 7986 ill_refrele(dst_ill); 7987 } 7988 miocack(q, mp, iocp->ioc_count, 0); 7989 } 7990 7991 /* 7992 * Check if this is an address assigned to this machine. 7993 * Skips interfaces that are down by using ire checks. 7994 * Translates mapped addresses to v4 addresses and then 7995 * treats them as such, returning true if the v4 address 7996 * associated with this mapped address is configured. 7997 * Note: Applications will have to be careful what they do 7998 * with the response; use of mapped addresses limits 7999 * what can be done with the socket, especially with 8000 * respect to socket options and ioctls - neither IPv4 8001 * options nor IPv6 sticky options/ancillary data options 8002 * may be used. 8003 */ 8004 /* ARGSUSED */ 8005 int 8006 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8007 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8008 { 8009 struct sioc_addrreq *sia; 8010 sin_t *sin; 8011 ire_t *ire; 8012 mblk_t *mp1; 8013 zoneid_t zoneid; 8014 ip_stack_t *ipst; 8015 8016 ip1dbg(("ip_sioctl_tmyaddr")); 8017 8018 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8019 zoneid = Q_TO_CONN(q)->conn_zoneid; 8020 ipst = CONNQ_TO_IPST(q); 8021 8022 /* Existence verified in ip_wput_nondata */ 8023 mp1 = mp->b_cont->b_cont; 8024 sia = (struct sioc_addrreq *)mp1->b_rptr; 8025 sin = (sin_t *)&sia->sa_addr; 8026 switch (sin->sin_family) { 8027 case AF_INET6: { 8028 sin6_t *sin6 = (sin6_t *)sin; 8029 8030 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8031 ipaddr_t v4_addr; 8032 8033 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8034 v4_addr); 8035 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8036 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8037 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8038 } else { 8039 in6_addr_t v6addr; 8040 8041 v6addr = sin6->sin6_addr; 8042 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8043 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8044 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8045 } 8046 break; 8047 } 8048 case AF_INET: { 8049 ipaddr_t v4addr; 8050 8051 v4addr = sin->sin_addr.s_addr; 8052 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8053 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8054 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8055 break; 8056 } 8057 default: 8058 return (EAFNOSUPPORT); 8059 } 8060 if (ire != NULL) { 8061 sia->sa_res = 1; 8062 ire_refrele(ire); 8063 } else { 8064 sia->sa_res = 0; 8065 } 8066 return (0); 8067 } 8068 8069 /* 8070 * Check if this is an address assigned on-link i.e. neighbor, 8071 * and makes sure it's reachable from the current zone. 8072 * Returns true for my addresses as well. 8073 * Translates mapped addresses to v4 addresses and then 8074 * treats them as such, returning true if the v4 address 8075 * associated with this mapped address is configured. 8076 * Note: Applications will have to be careful what they do 8077 * with the response; use of mapped addresses limits 8078 * what can be done with the socket, especially with 8079 * respect to socket options and ioctls - neither IPv4 8080 * options nor IPv6 sticky options/ancillary data options 8081 * may be used. 8082 */ 8083 /* ARGSUSED */ 8084 int 8085 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8086 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8087 { 8088 struct sioc_addrreq *sia; 8089 sin_t *sin; 8090 mblk_t *mp1; 8091 ire_t *ire = NULL; 8092 zoneid_t zoneid; 8093 ip_stack_t *ipst; 8094 8095 ip1dbg(("ip_sioctl_tonlink")); 8096 8097 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8098 zoneid = Q_TO_CONN(q)->conn_zoneid; 8099 ipst = CONNQ_TO_IPST(q); 8100 8101 /* Existence verified in ip_wput_nondata */ 8102 mp1 = mp->b_cont->b_cont; 8103 sia = (struct sioc_addrreq *)mp1->b_rptr; 8104 sin = (sin_t *)&sia->sa_addr; 8105 8106 /* 8107 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8108 * to make sure we only look at on-link unicast address. 8109 */ 8110 switch (sin->sin_family) { 8111 case AF_INET6: { 8112 sin6_t *sin6 = (sin6_t *)sin; 8113 8114 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8115 ipaddr_t v4_addr; 8116 8117 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8118 v4_addr); 8119 if (!CLASSD(v4_addr)) { 8120 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8121 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8122 0, ipst, NULL); 8123 } 8124 } else { 8125 in6_addr_t v6addr; 8126 8127 v6addr = sin6->sin6_addr; 8128 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8129 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8130 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8131 ipst, NULL); 8132 } 8133 } 8134 break; 8135 } 8136 case AF_INET: { 8137 ipaddr_t v4addr; 8138 8139 v4addr = sin->sin_addr.s_addr; 8140 if (!CLASSD(v4addr)) { 8141 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8142 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8143 } 8144 break; 8145 } 8146 default: 8147 return (EAFNOSUPPORT); 8148 } 8149 sia->sa_res = 0; 8150 if (ire != NULL) { 8151 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8152 8153 if ((ire->ire_type & IRE_ONLINK) && 8154 !(ire->ire_type & IRE_BROADCAST)) 8155 sia->sa_res = 1; 8156 ire_refrele(ire); 8157 } 8158 return (0); 8159 } 8160 8161 /* 8162 * TBD: implement when kernel maintaines a list of site prefixes. 8163 */ 8164 /* ARGSUSED */ 8165 int 8166 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8167 ip_ioctl_cmd_t *ipip, void *ifreq) 8168 { 8169 return (ENXIO); 8170 } 8171 8172 /* ARP IOCTLs. */ 8173 /* ARGSUSED */ 8174 int 8175 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8176 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8177 { 8178 int err; 8179 ipaddr_t ipaddr; 8180 struct iocblk *iocp; 8181 conn_t *connp; 8182 struct arpreq *ar; 8183 struct xarpreq *xar; 8184 int arp_flags, flags, alength; 8185 uchar_t *lladdr; 8186 ip_stack_t *ipst; 8187 ill_t *ill = ipif->ipif_ill; 8188 ill_t *proxy_ill = NULL; 8189 ipmp_arpent_t *entp = NULL; 8190 boolean_t proxyarp = B_FALSE; 8191 boolean_t if_arp_ioctl = B_FALSE; 8192 ncec_t *ncec = NULL; 8193 nce_t *nce; 8194 8195 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8196 connp = Q_TO_CONN(q); 8197 ipst = connp->conn_netstack->netstack_ip; 8198 iocp = (struct iocblk *)mp->b_rptr; 8199 8200 if (ipip->ipi_cmd_type == XARP_CMD) { 8201 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8202 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8203 ar = NULL; 8204 8205 arp_flags = xar->xarp_flags; 8206 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8207 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8208 /* 8209 * Validate against user's link layer address length 8210 * input and name and addr length limits. 8211 */ 8212 alength = ill->ill_phys_addr_length; 8213 if (ipip->ipi_cmd == SIOCSXARP) { 8214 if (alength != xar->xarp_ha.sdl_alen || 8215 (alength + xar->xarp_ha.sdl_nlen > 8216 sizeof (xar->xarp_ha.sdl_data))) 8217 return (EINVAL); 8218 } 8219 } else { 8220 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8221 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8222 xar = NULL; 8223 8224 arp_flags = ar->arp_flags; 8225 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8226 /* 8227 * Theoretically, the sa_family could tell us what link 8228 * layer type this operation is trying to deal with. By 8229 * common usage AF_UNSPEC means ethernet. We'll assume 8230 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8231 * for now. Our new SIOC*XARP ioctls can be used more 8232 * generally. 8233 * 8234 * If the underlying media happens to have a non 6 byte 8235 * address, arp module will fail set/get, but the del 8236 * operation will succeed. 8237 */ 8238 alength = 6; 8239 if ((ipip->ipi_cmd != SIOCDARP) && 8240 (alength != ill->ill_phys_addr_length)) { 8241 return (EINVAL); 8242 } 8243 } 8244 8245 /* Translate ATF* flags to NCE* flags */ 8246 flags = 0; 8247 if (arp_flags & ATF_AUTHORITY) 8248 flags |= NCE_F_AUTHORITY; 8249 if (arp_flags & ATF_PERM) 8250 flags |= NCE_F_NONUD; /* not subject to aging */ 8251 if (arp_flags & ATF_PUBL) 8252 flags |= NCE_F_PUBLISH; 8253 8254 /* 8255 * IPMP ARP special handling: 8256 * 8257 * 1. Since ARP mappings must appear consistent across the group, 8258 * prohibit changing ARP mappings on the underlying interfaces. 8259 * 8260 * 2. Since ARP mappings for IPMP data addresses are maintained by 8261 * IP itself, prohibit changing them. 8262 * 8263 * 3. For proxy ARP, use a functioning hardware address in the group, 8264 * provided one exists. If one doesn't, just add the entry as-is; 8265 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8266 */ 8267 if (IS_UNDER_IPMP(ill)) { 8268 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8269 return (EPERM); 8270 } 8271 if (IS_IPMP(ill)) { 8272 ipmp_illgrp_t *illg = ill->ill_grp; 8273 8274 switch (ipip->ipi_cmd) { 8275 case SIOCSARP: 8276 case SIOCSXARP: 8277 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8278 if (proxy_ill != NULL) { 8279 proxyarp = B_TRUE; 8280 if (!ipmp_ill_is_active(proxy_ill)) 8281 proxy_ill = ipmp_illgrp_next_ill(illg); 8282 if (proxy_ill != NULL) 8283 lladdr = proxy_ill->ill_phys_addr; 8284 } 8285 /* FALLTHRU */ 8286 } 8287 } 8288 8289 ipaddr = sin->sin_addr.s_addr; 8290 /* 8291 * don't match across illgrp per case (1) and (2). 8292 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8293 */ 8294 nce = nce_lookup_v4(ill, &ipaddr); 8295 if (nce != NULL) 8296 ncec = nce->nce_common; 8297 8298 switch (iocp->ioc_cmd) { 8299 case SIOCDARP: 8300 case SIOCDXARP: { 8301 /* 8302 * Delete the NCE if any. 8303 */ 8304 if (ncec == NULL) { 8305 iocp->ioc_error = ENXIO; 8306 break; 8307 } 8308 /* Don't allow changes to arp mappings of local addresses. */ 8309 if (NCE_MYADDR(ncec)) { 8310 nce_refrele(nce); 8311 return (ENOTSUP); 8312 } 8313 iocp->ioc_error = 0; 8314 8315 /* 8316 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8317 * This will delete all the nce entries on the under_ills. 8318 */ 8319 ncec_delete(ncec); 8320 /* 8321 * Once the NCE has been deleted, then the ire_dep* consistency 8322 * mechanism will find any IRE which depended on the now 8323 * condemned NCE (as part of sending packets). 8324 * That mechanism handles redirects by deleting redirects 8325 * that refer to UNREACHABLE nces. 8326 */ 8327 break; 8328 } 8329 case SIOCGARP: 8330 case SIOCGXARP: 8331 if (ncec != NULL) { 8332 lladdr = ncec->ncec_lladdr; 8333 flags = ncec->ncec_flags; 8334 iocp->ioc_error = 0; 8335 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8336 } else { 8337 iocp->ioc_error = ENXIO; 8338 } 8339 break; 8340 case SIOCSARP: 8341 case SIOCSXARP: 8342 /* Don't allow changes to arp mappings of local addresses. */ 8343 if (ncec != NULL && NCE_MYADDR(ncec)) { 8344 nce_refrele(nce); 8345 return (ENOTSUP); 8346 } 8347 8348 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8349 flags |= NCE_F_STATIC; 8350 if (!if_arp_ioctl) { 8351 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8352 lladdr, alength, flags); 8353 } else { 8354 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8355 if (ipif != NULL) { 8356 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8357 lladdr, alength, flags); 8358 ipif_refrele(ipif); 8359 } 8360 } 8361 if (nce != NULL) { 8362 nce_refrele(nce); 8363 nce = NULL; 8364 } 8365 /* 8366 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8367 * by nce_add_common() 8368 */ 8369 err = nce_lookup_then_add_v4(ill, lladdr, 8370 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8371 &nce); 8372 if (err == EEXIST) { 8373 ncec = nce->nce_common; 8374 mutex_enter(&ncec->ncec_lock); 8375 ncec->ncec_state = ND_REACHABLE; 8376 ncec->ncec_flags = flags; 8377 nce_update(ncec, ND_UNCHANGED, lladdr); 8378 mutex_exit(&ncec->ncec_lock); 8379 err = 0; 8380 } 8381 if (nce != NULL) { 8382 nce_refrele(nce); 8383 nce = NULL; 8384 } 8385 if (IS_IPMP(ill) && err == 0) { 8386 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8387 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8388 flags); 8389 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8390 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8391 break; 8392 } 8393 } 8394 iocp->ioc_error = err; 8395 } 8396 8397 if (nce != NULL) { 8398 nce_refrele(nce); 8399 } 8400 8401 /* 8402 * If we created an IPMP ARP entry, mark that we've notified ARP. 8403 */ 8404 if (entp != NULL) 8405 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8406 8407 return (iocp->ioc_error); 8408 } 8409 8410 /* 8411 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8412 * the associated sin and refhold and return the associated ipif via `ci'. 8413 */ 8414 int 8415 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8416 cmd_info_t *ci) 8417 { 8418 mblk_t *mp1; 8419 sin_t *sin; 8420 conn_t *connp; 8421 ipif_t *ipif; 8422 ire_t *ire = NULL; 8423 ill_t *ill = NULL; 8424 boolean_t exists; 8425 ip_stack_t *ipst; 8426 struct arpreq *ar; 8427 struct xarpreq *xar; 8428 struct sockaddr_dl *sdl; 8429 8430 /* ioctl comes down on a conn */ 8431 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8432 connp = Q_TO_CONN(q); 8433 if (connp->conn_family == AF_INET6) 8434 return (ENXIO); 8435 8436 ipst = connp->conn_netstack->netstack_ip; 8437 8438 /* Verified in ip_wput_nondata */ 8439 mp1 = mp->b_cont->b_cont; 8440 8441 if (ipip->ipi_cmd_type == XARP_CMD) { 8442 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8443 xar = (struct xarpreq *)mp1->b_rptr; 8444 sin = (sin_t *)&xar->xarp_pa; 8445 sdl = &xar->xarp_ha; 8446 8447 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8448 return (ENXIO); 8449 if (sdl->sdl_nlen >= LIFNAMSIZ) 8450 return (EINVAL); 8451 } else { 8452 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8453 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8454 ar = (struct arpreq *)mp1->b_rptr; 8455 sin = (sin_t *)&ar->arp_pa; 8456 } 8457 8458 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8459 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8460 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8461 if (ipif == NULL) 8462 return (ENXIO); 8463 if (ipif->ipif_id != 0) { 8464 ipif_refrele(ipif); 8465 return (ENXIO); 8466 } 8467 } else { 8468 /* 8469 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8470 * of 0: use the IP address to find the ipif. If the IP 8471 * address is an IPMP test address, ire_ftable_lookup() will 8472 * find the wrong ill, so we first do an ipif_lookup_addr(). 8473 */ 8474 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8475 ipst); 8476 if (ipif == NULL) { 8477 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8478 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8479 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8480 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8481 if (ire != NULL) 8482 ire_refrele(ire); 8483 return (ENXIO); 8484 } 8485 ASSERT(ire != NULL && ill != NULL); 8486 ipif = ill->ill_ipif; 8487 ipif_refhold(ipif); 8488 ire_refrele(ire); 8489 } 8490 } 8491 8492 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8493 ipif_refrele(ipif); 8494 return (ENXIO); 8495 } 8496 8497 ci->ci_sin = sin; 8498 ci->ci_ipif = ipif; 8499 return (0); 8500 } 8501 8502 /* 8503 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8504 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8505 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8506 * up and thus an ill can join that illgrp. 8507 * 8508 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8509 * open()/close() primarily because close() is not allowed to fail or block 8510 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8511 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8512 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8513 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8514 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8515 * state if I_UNLINK didn't occur. 8516 * 8517 * Note that for each plumb/unplumb operation, we may end up here more than 8518 * once because of the way ifconfig works. However, it's OK to link the same 8519 * illgrp more than once, or unlink an illgrp that's already unlinked. 8520 */ 8521 static int 8522 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8523 { 8524 int err; 8525 ip_stack_t *ipst = ill->ill_ipst; 8526 8527 ASSERT(IS_IPMP(ill)); 8528 ASSERT(IAM_WRITER_ILL(ill)); 8529 8530 switch (ioccmd) { 8531 case I_LINK: 8532 return (ENOTSUP); 8533 8534 case I_PLINK: 8535 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8536 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8537 rw_exit(&ipst->ips_ipmp_lock); 8538 break; 8539 8540 case I_PUNLINK: 8541 /* 8542 * Require all UP ipifs be brought down prior to unlinking the 8543 * illgrp so any associated IREs (and other state) is torched. 8544 */ 8545 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8546 return (EBUSY); 8547 8548 /* 8549 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8550 * with an SIOCSLIFGROUPNAME request from an ill trying to 8551 * join this group. Specifically: ills trying to join grab 8552 * ipmp_lock and bump a "pending join" counter checked by 8553 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8554 * joins can occur (since we have ipmp_lock). Once we drop 8555 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8556 * find the illgrp (since we unlinked it) and will return 8557 * EAFNOSUPPORT. This will then take them back through the 8558 * IPMP meta-interface plumbing logic in ifconfig, and thus 8559 * back through I_PLINK above. 8560 */ 8561 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8562 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8563 rw_exit(&ipst->ips_ipmp_lock); 8564 return (err); 8565 default: 8566 break; 8567 } 8568 return (0); 8569 } 8570 8571 /* 8572 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8573 * atomically set/clear the muxids. Also complete the ioctl by acking or 8574 * naking it. Note that the code is structured such that the link type, 8575 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8576 * its clones use the persistent link, while pppd(1M) and perhaps many 8577 * other daemons may use non-persistent link. When combined with some 8578 * ill_t states, linking and unlinking lower streams may be used as 8579 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8580 */ 8581 /* ARGSUSED */ 8582 void 8583 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8584 { 8585 mblk_t *mp1; 8586 struct linkblk *li; 8587 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8588 int err = 0; 8589 8590 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8591 ioccmd == I_LINK || ioccmd == I_UNLINK); 8592 8593 mp1 = mp->b_cont; /* This is the linkblk info */ 8594 li = (struct linkblk *)mp1->b_rptr; 8595 8596 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8597 if (err == EINPROGRESS) 8598 return; 8599 if (err == 0) 8600 miocack(q, mp, 0, 0); 8601 else 8602 miocnak(q, mp, 0, err); 8603 8604 /* Conn was refheld in ip_sioctl_copyin_setup */ 8605 if (CONN_Q(q)) { 8606 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8607 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8608 } 8609 } 8610 8611 /* 8612 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8613 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8614 * module stream). 8615 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8616 * an error code on failure. 8617 */ 8618 static int 8619 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8620 struct linkblk *li) 8621 { 8622 int err = 0; 8623 ill_t *ill; 8624 queue_t *ipwq, *dwq; 8625 const char *name; 8626 struct qinit *qinfo; 8627 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8628 boolean_t entered_ipsq = B_FALSE; 8629 boolean_t is_ip = B_FALSE; 8630 arl_t *arl; 8631 8632 /* 8633 * Walk the lower stream to verify it's the IP module stream. 8634 * The IP module is identified by its name, wput function, 8635 * and non-NULL q_next. STREAMS ensures that the lower stream 8636 * (li->l_qbot) will not vanish until this ioctl completes. 8637 */ 8638 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8639 qinfo = ipwq->q_qinfo; 8640 name = qinfo->qi_minfo->mi_idname; 8641 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8642 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8643 is_ip = B_TRUE; 8644 break; 8645 } 8646 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8647 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8648 break; 8649 } 8650 } 8651 8652 /* 8653 * If this isn't an IP module stream, bail. 8654 */ 8655 if (ipwq == NULL) 8656 return (0); 8657 8658 if (!is_ip) { 8659 arl = (arl_t *)ipwq->q_ptr; 8660 ill = arl_to_ill(arl); 8661 if (ill == NULL) 8662 return (0); 8663 } else { 8664 ill = ipwq->q_ptr; 8665 } 8666 ASSERT(ill != NULL); 8667 8668 if (ipsq == NULL) { 8669 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8670 NEW_OP, B_FALSE); 8671 if (ipsq == NULL) { 8672 if (!is_ip) 8673 ill_refrele(ill); 8674 return (EINPROGRESS); 8675 } 8676 entered_ipsq = B_TRUE; 8677 } 8678 ASSERT(IAM_WRITER_ILL(ill)); 8679 mutex_enter(&ill->ill_lock); 8680 if (!is_ip) { 8681 if (islink && ill->ill_muxid == 0) { 8682 /* 8683 * Plumbing has to be done with IP plumbed first, arp 8684 * second, but here we have arp being plumbed first. 8685 */ 8686 mutex_exit(&ill->ill_lock); 8687 if (entered_ipsq) 8688 ipsq_exit(ipsq); 8689 ill_refrele(ill); 8690 return (EINVAL); 8691 } 8692 } 8693 mutex_exit(&ill->ill_lock); 8694 if (!is_ip) { 8695 arl->arl_muxid = islink ? li->l_index : 0; 8696 ill_refrele(ill); 8697 goto done; 8698 } 8699 8700 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8701 goto done; 8702 8703 /* 8704 * As part of I_{P}LINKing, stash the number of downstream modules and 8705 * the read queue of the module immediately below IP in the ill. 8706 * These are used during the capability negotiation below. 8707 */ 8708 ill->ill_lmod_rq = NULL; 8709 ill->ill_lmod_cnt = 0; 8710 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8711 ill->ill_lmod_rq = RD(dwq); 8712 for (; dwq != NULL; dwq = dwq->q_next) 8713 ill->ill_lmod_cnt++; 8714 } 8715 8716 ill->ill_muxid = islink ? li->l_index : 0; 8717 8718 /* 8719 * Mark the ipsq busy until the capability operations initiated below 8720 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8721 * returns, but the capability operation may complete asynchronously 8722 * much later. 8723 */ 8724 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8725 /* 8726 * If there's at least one up ipif on this ill, then we're bound to 8727 * the underlying driver via DLPI. In that case, renegotiate 8728 * capabilities to account for any possible change in modules 8729 * interposed between IP and the driver. 8730 */ 8731 if (ill->ill_ipif_up_count > 0) { 8732 if (islink) 8733 ill_capability_probe(ill); 8734 else 8735 ill_capability_reset(ill, B_FALSE); 8736 } 8737 ipsq_current_finish(ipsq); 8738 done: 8739 if (entered_ipsq) 8740 ipsq_exit(ipsq); 8741 8742 return (err); 8743 } 8744 8745 /* 8746 * Search the ioctl command in the ioctl tables and return a pointer 8747 * to the ioctl command information. The ioctl command tables are 8748 * static and fully populated at compile time. 8749 */ 8750 ip_ioctl_cmd_t * 8751 ip_sioctl_lookup(int ioc_cmd) 8752 { 8753 int index; 8754 ip_ioctl_cmd_t *ipip; 8755 ip_ioctl_cmd_t *ipip_end; 8756 8757 if (ioc_cmd == IPI_DONTCARE) 8758 return (NULL); 8759 8760 /* 8761 * Do a 2 step search. First search the indexed table 8762 * based on the least significant byte of the ioctl cmd. 8763 * If we don't find a match, then search the misc table 8764 * serially. 8765 */ 8766 index = ioc_cmd & 0xFF; 8767 if (index < ip_ndx_ioctl_count) { 8768 ipip = &ip_ndx_ioctl_table[index]; 8769 if (ipip->ipi_cmd == ioc_cmd) { 8770 /* Found a match in the ndx table */ 8771 return (ipip); 8772 } 8773 } 8774 8775 /* Search the misc table */ 8776 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8777 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8778 if (ipip->ipi_cmd == ioc_cmd) 8779 /* Found a match in the misc table */ 8780 return (ipip); 8781 } 8782 8783 return (NULL); 8784 } 8785 8786 /* 8787 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8788 */ 8789 static boolean_t 8790 getset_ioctl_checks(mblk_t *mp) 8791 { 8792 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8793 mblk_t *mp1 = mp->b_cont; 8794 mod_ioc_prop_t *pioc; 8795 uint_t flags; 8796 uint_t pioc_size; 8797 8798 /* do sanity checks on various arguments */ 8799 if (mp1 == NULL || iocp->ioc_count == 0 || 8800 iocp->ioc_count == TRANSPARENT) { 8801 return (B_FALSE); 8802 } 8803 if (msgdsize(mp1) < iocp->ioc_count) { 8804 if (!pullupmsg(mp1, iocp->ioc_count)) 8805 return (B_FALSE); 8806 } 8807 8808 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8809 8810 /* sanity checks on mpr_valsize */ 8811 pioc_size = sizeof (mod_ioc_prop_t); 8812 if (pioc->mpr_valsize != 0) 8813 pioc_size += pioc->mpr_valsize - 1; 8814 8815 if (iocp->ioc_count != pioc_size) 8816 return (B_FALSE); 8817 8818 flags = pioc->mpr_flags; 8819 if (iocp->ioc_cmd == SIOCSETPROP) { 8820 /* 8821 * One can either reset the value to it's default value or 8822 * change the current value or append/remove the value from 8823 * a multi-valued properties. 8824 */ 8825 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8826 flags != MOD_PROP_ACTIVE && 8827 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8828 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8829 return (B_FALSE); 8830 } else { 8831 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8832 8833 /* 8834 * One can retrieve only one kind of property information 8835 * at a time. 8836 */ 8837 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8838 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8839 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8840 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8841 return (B_FALSE); 8842 } 8843 8844 return (B_TRUE); 8845 } 8846 8847 /* 8848 * process the SIOC{SET|GET}PROP ioctl's 8849 */ 8850 /* ARGSUSED */ 8851 static void 8852 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8853 { 8854 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8855 mblk_t *mp1 = mp->b_cont; 8856 mod_ioc_prop_t *pioc; 8857 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8858 ip_stack_t *ipst; 8859 netstack_t *stack; 8860 cred_t *cr; 8861 boolean_t set; 8862 int err; 8863 8864 ASSERT(q->q_next == NULL); 8865 ASSERT(CONN_Q(q)); 8866 8867 if (!getset_ioctl_checks(mp)) { 8868 miocnak(q, mp, 0, EINVAL); 8869 return; 8870 } 8871 ipst = CONNQ_TO_IPST(q); 8872 stack = ipst->ips_netstack; 8873 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8874 8875 switch (pioc->mpr_proto) { 8876 case MOD_PROTO_IP: 8877 case MOD_PROTO_IPV4: 8878 case MOD_PROTO_IPV6: 8879 ptbl = ipst->ips_propinfo_tbl; 8880 break; 8881 case MOD_PROTO_RAWIP: 8882 ptbl = stack->netstack_icmp->is_propinfo_tbl; 8883 break; 8884 case MOD_PROTO_TCP: 8885 ptbl = stack->netstack_tcp->tcps_propinfo_tbl; 8886 break; 8887 case MOD_PROTO_UDP: 8888 ptbl = stack->netstack_udp->us_propinfo_tbl; 8889 break; 8890 case MOD_PROTO_SCTP: 8891 ptbl = stack->netstack_sctp->sctps_propinfo_tbl; 8892 break; 8893 default: 8894 miocnak(q, mp, 0, EINVAL); 8895 return; 8896 } 8897 8898 pinfo = mod_prop_lookup(ptbl, pioc->mpr_name, pioc->mpr_proto); 8899 if (pinfo == NULL) { 8900 miocnak(q, mp, 0, ENOENT); 8901 return; 8902 } 8903 8904 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8905 if (set && pinfo->mpi_setf != NULL) { 8906 cr = msg_getcred(mp, NULL); 8907 if (cr == NULL) 8908 cr = iocp->ioc_cr; 8909 err = pinfo->mpi_setf(stack, cr, pinfo, pioc->mpr_ifname, 8910 pioc->mpr_val, pioc->mpr_flags); 8911 } else if (!set && pinfo->mpi_getf != NULL) { 8912 err = pinfo->mpi_getf(stack, pinfo, pioc->mpr_ifname, 8913 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8914 } else { 8915 err = EPERM; 8916 } 8917 8918 if (err != 0) { 8919 miocnak(q, mp, 0, err); 8920 } else { 8921 if (set) 8922 miocack(q, mp, 0, 0); 8923 else /* For get, we need to return back the data */ 8924 miocack(q, mp, iocp->ioc_count, 0); 8925 } 8926 } 8927 8928 /* 8929 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8930 * as several routing daemons have unfortunately used this 'unpublished' 8931 * but well-known ioctls. 8932 */ 8933 /* ARGSUSED */ 8934 static void 8935 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8936 { 8937 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8938 mblk_t *mp1 = mp->b_cont; 8939 char *pname, *pval, *buf; 8940 uint_t bufsize, proto; 8941 mod_prop_info_t *pinfo = NULL; 8942 ip_stack_t *ipst; 8943 int err = 0; 8944 8945 ASSERT(CONN_Q(q)); 8946 ipst = CONNQ_TO_IPST(q); 8947 8948 if (iocp->ioc_count == 0 || mp1 == NULL) { 8949 miocnak(q, mp, 0, EINVAL); 8950 return; 8951 } 8952 8953 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8954 pval = buf = pname = (char *)mp1->b_rptr; 8955 bufsize = MBLKL(mp1); 8956 8957 if (strcmp(pname, "ip_forwarding") == 0) { 8958 pname = "forwarding"; 8959 proto = MOD_PROTO_IPV4; 8960 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8961 pname = "forwarding"; 8962 proto = MOD_PROTO_IPV6; 8963 } else { 8964 miocnak(q, mp, 0, EINVAL); 8965 return; 8966 } 8967 8968 pinfo = mod_prop_lookup(ipst->ips_propinfo_tbl, pname, proto); 8969 8970 switch (iocp->ioc_cmd) { 8971 case ND_GET: 8972 if ((err = pinfo->mpi_getf(ipst->ips_netstack, pinfo, NULL, buf, 8973 bufsize, 0)) == 0) { 8974 miocack(q, mp, iocp->ioc_count, 0); 8975 return; 8976 } 8977 break; 8978 case ND_SET: 8979 /* 8980 * buffer will have property name and value in the following 8981 * format, 8982 * <property name>'\0'<property value>'\0', extract them; 8983 */ 8984 while (*pval++) 8985 noop; 8986 8987 if (!*pval || pval >= (char *)mp1->b_wptr) { 8988 err = EINVAL; 8989 } else if ((err = pinfo->mpi_setf(ipst->ips_netstack, NULL, 8990 pinfo, NULL, pval, 0)) == 0) { 8991 miocack(q, mp, 0, 0); 8992 return; 8993 } 8994 break; 8995 default: 8996 err = EINVAL; 8997 break; 8998 } 8999 miocnak(q, mp, 0, err); 9000 } 9001 9002 /* 9003 * Wrapper function for resuming deferred ioctl processing 9004 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9005 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9006 */ 9007 /* ARGSUSED */ 9008 void 9009 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9010 void *dummy_arg) 9011 { 9012 ip_sioctl_copyin_setup(q, mp); 9013 } 9014 9015 /* 9016 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9017 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9018 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9019 * We establish here the size of the block to be copied in. mi_copyin 9020 * arranges for this to happen, an processing continues in ip_wput_nondata with 9021 * an M_IOCDATA message. 9022 */ 9023 void 9024 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9025 { 9026 int copyin_size; 9027 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9028 ip_ioctl_cmd_t *ipip; 9029 cred_t *cr; 9030 ip_stack_t *ipst; 9031 9032 if (CONN_Q(q)) 9033 ipst = CONNQ_TO_IPST(q); 9034 else 9035 ipst = ILLQ_TO_IPST(q); 9036 9037 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9038 if (ipip == NULL) { 9039 /* 9040 * The ioctl is not one we understand or own. 9041 * Pass it along to be processed down stream, 9042 * if this is a module instance of IP, else nak 9043 * the ioctl. 9044 */ 9045 if (q->q_next == NULL) { 9046 goto nak; 9047 } else { 9048 putnext(q, mp); 9049 return; 9050 } 9051 } 9052 9053 /* 9054 * If this is deferred, then we will do all the checks when we 9055 * come back. 9056 */ 9057 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9058 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9059 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9060 return; 9061 } 9062 9063 /* 9064 * Only allow a very small subset of IP ioctls on this stream if 9065 * IP is a module and not a driver. Allowing ioctls to be processed 9066 * in this case may cause assert failures or data corruption. 9067 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9068 * ioctls allowed on an IP module stream, after which this stream 9069 * normally becomes a multiplexor (at which time the stream head 9070 * will fail all ioctls). 9071 */ 9072 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9073 goto nak; 9074 } 9075 9076 /* Make sure we have ioctl data to process. */ 9077 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9078 goto nak; 9079 9080 /* 9081 * Prefer dblk credential over ioctl credential; some synthesized 9082 * ioctls have kcred set because there's no way to crhold() 9083 * a credential in some contexts. (ioc_cr is not crfree() by 9084 * the framework; the caller of ioctl needs to hold the reference 9085 * for the duration of the call). 9086 */ 9087 cr = msg_getcred(mp, NULL); 9088 if (cr == NULL) 9089 cr = iocp->ioc_cr; 9090 9091 /* Make sure normal users don't send down privileged ioctls */ 9092 if ((ipip->ipi_flags & IPI_PRIV) && 9093 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9094 /* We checked the privilege earlier but log it here */ 9095 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9096 return; 9097 } 9098 9099 /* 9100 * The ioctl command tables can only encode fixed length 9101 * ioctl data. If the length is variable, the table will 9102 * encode the length as zero. Such special cases are handled 9103 * below in the switch. 9104 */ 9105 if (ipip->ipi_copyin_size != 0) { 9106 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9107 return; 9108 } 9109 9110 switch (iocp->ioc_cmd) { 9111 case O_SIOCGIFCONF: 9112 case SIOCGIFCONF: 9113 /* 9114 * This IOCTL is hilarious. See comments in 9115 * ip_sioctl_get_ifconf for the story. 9116 */ 9117 if (iocp->ioc_count == TRANSPARENT) 9118 copyin_size = SIZEOF_STRUCT(ifconf, 9119 iocp->ioc_flag); 9120 else 9121 copyin_size = iocp->ioc_count; 9122 mi_copyin(q, mp, NULL, copyin_size); 9123 return; 9124 9125 case O_SIOCGLIFCONF: 9126 case SIOCGLIFCONF: 9127 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9128 mi_copyin(q, mp, NULL, copyin_size); 9129 return; 9130 9131 case SIOCGLIFSRCOF: 9132 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9133 mi_copyin(q, mp, NULL, copyin_size); 9134 return; 9135 9136 case SIOCGIP6ADDRPOLICY: 9137 ip_sioctl_ip6addrpolicy(q, mp); 9138 ip6_asp_table_refrele(ipst); 9139 return; 9140 9141 case SIOCSIP6ADDRPOLICY: 9142 ip_sioctl_ip6addrpolicy(q, mp); 9143 return; 9144 9145 case SIOCGDSTINFO: 9146 ip_sioctl_dstinfo(q, mp); 9147 ip6_asp_table_refrele(ipst); 9148 return; 9149 9150 case ND_SET: 9151 case ND_GET: 9152 ip_process_legacy_nddprop(q, mp); 9153 return; 9154 9155 case SIOCSETPROP: 9156 case SIOCGETPROP: 9157 ip_sioctl_getsetprop(q, mp); 9158 return; 9159 9160 case I_PLINK: 9161 case I_PUNLINK: 9162 case I_LINK: 9163 case I_UNLINK: 9164 /* 9165 * We treat non-persistent link similarly as the persistent 9166 * link case, in terms of plumbing/unplumbing, as well as 9167 * dynamic re-plumbing events indicator. See comments 9168 * in ip_sioctl_plink() for more. 9169 * 9170 * Request can be enqueued in the 'ipsq' while waiting 9171 * to become exclusive. So bump up the conn ref. 9172 */ 9173 if (CONN_Q(q)) { 9174 CONN_INC_REF(Q_TO_CONN(q)); 9175 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9176 } 9177 ip_sioctl_plink(NULL, q, mp, NULL); 9178 return; 9179 9180 case IP_IOCTL: 9181 ip_wput_ioctl(q, mp); 9182 return; 9183 9184 case SIOCILB: 9185 /* The ioctl length varies depending on the ILB command. */ 9186 copyin_size = iocp->ioc_count; 9187 if (copyin_size < sizeof (ilb_cmd_t)) 9188 goto nak; 9189 mi_copyin(q, mp, NULL, copyin_size); 9190 return; 9191 9192 default: 9193 cmn_err(CE_WARN, "Unknown ioctl %d/0x%x slipped through.", 9194 iocp->ioc_cmd, iocp->ioc_cmd); 9195 /* FALLTHRU */ 9196 } 9197 nak: 9198 if (mp->b_cont != NULL) { 9199 freemsg(mp->b_cont); 9200 mp->b_cont = NULL; 9201 } 9202 iocp->ioc_error = EINVAL; 9203 mp->b_datap->db_type = M_IOCNAK; 9204 iocp->ioc_count = 0; 9205 qreply(q, mp); 9206 } 9207 9208 static void 9209 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9210 { 9211 struct arpreq *ar; 9212 struct xarpreq *xar; 9213 mblk_t *tmp; 9214 struct iocblk *iocp; 9215 int x_arp_ioctl = B_FALSE; 9216 int *flagsp; 9217 char *storage = NULL; 9218 9219 ASSERT(ill != NULL); 9220 9221 iocp = (struct iocblk *)mp->b_rptr; 9222 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9223 9224 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9225 if ((iocp->ioc_cmd == SIOCGXARP) || 9226 (iocp->ioc_cmd == SIOCSXARP)) { 9227 x_arp_ioctl = B_TRUE; 9228 xar = (struct xarpreq *)tmp->b_rptr; 9229 flagsp = &xar->xarp_flags; 9230 storage = xar->xarp_ha.sdl_data; 9231 } else { 9232 ar = (struct arpreq *)tmp->b_rptr; 9233 flagsp = &ar->arp_flags; 9234 storage = ar->arp_ha.sa_data; 9235 } 9236 9237 /* 9238 * We're done if this is not an SIOCG{X}ARP 9239 */ 9240 if (x_arp_ioctl) { 9241 storage += ill_xarp_info(&xar->xarp_ha, ill); 9242 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9243 sizeof (xar->xarp_ha.sdl_data)) { 9244 iocp->ioc_error = EINVAL; 9245 return; 9246 } 9247 } 9248 *flagsp = ATF_INUSE; 9249 /* 9250 * If /sbin/arp told us we are the authority using the "permanent" 9251 * flag, or if this is one of my addresses print "permanent" 9252 * in the /sbin/arp output. 9253 */ 9254 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9255 *flagsp |= ATF_AUTHORITY; 9256 if (flags & NCE_F_NONUD) 9257 *flagsp |= ATF_PERM; /* not subject to aging */ 9258 if (flags & NCE_F_PUBLISH) 9259 *flagsp |= ATF_PUBL; 9260 if (hwaddr != NULL) { 9261 *flagsp |= ATF_COM; 9262 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9263 } 9264 } 9265 9266 /* 9267 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9268 * interface) create the next available logical interface for this 9269 * physical interface. 9270 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9271 * ipif with the specified name. 9272 * 9273 * If the address family is not AF_UNSPEC then set the address as well. 9274 * 9275 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9276 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9277 * 9278 * Executed as a writer on the ill. 9279 * So no lock is needed to traverse the ipif chain, or examine the 9280 * phyint flags. 9281 */ 9282 /* ARGSUSED */ 9283 int 9284 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9285 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9286 { 9287 mblk_t *mp1; 9288 struct lifreq *lifr; 9289 boolean_t isv6; 9290 boolean_t exists; 9291 char *name; 9292 char *endp; 9293 char *cp; 9294 int namelen; 9295 ipif_t *ipif; 9296 long id; 9297 ipsq_t *ipsq; 9298 ill_t *ill; 9299 sin_t *sin; 9300 int err = 0; 9301 boolean_t found_sep = B_FALSE; 9302 conn_t *connp; 9303 zoneid_t zoneid; 9304 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9305 9306 ASSERT(q->q_next == NULL); 9307 ip1dbg(("ip_sioctl_addif\n")); 9308 /* Existence of mp1 has been checked in ip_wput_nondata */ 9309 mp1 = mp->b_cont->b_cont; 9310 /* 9311 * Null terminate the string to protect against buffer 9312 * overrun. String was generated by user code and may not 9313 * be trusted. 9314 */ 9315 lifr = (struct lifreq *)mp1->b_rptr; 9316 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9317 name = lifr->lifr_name; 9318 ASSERT(CONN_Q(q)); 9319 connp = Q_TO_CONN(q); 9320 isv6 = (connp->conn_family == AF_INET6); 9321 zoneid = connp->conn_zoneid; 9322 namelen = mi_strlen(name); 9323 if (namelen == 0) 9324 return (EINVAL); 9325 9326 exists = B_FALSE; 9327 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9328 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9329 /* 9330 * Allow creating lo0 using SIOCLIFADDIF. 9331 * can't be any other writer thread. So can pass null below 9332 * for the last 4 args to ipif_lookup_name. 9333 */ 9334 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9335 &exists, isv6, zoneid, ipst); 9336 /* Prevent any further action */ 9337 if (ipif == NULL) { 9338 return (ENOBUFS); 9339 } else if (!exists) { 9340 /* We created the ipif now and as writer */ 9341 ipif_refrele(ipif); 9342 return (0); 9343 } else { 9344 ill = ipif->ipif_ill; 9345 ill_refhold(ill); 9346 ipif_refrele(ipif); 9347 } 9348 } else { 9349 /* Look for a colon in the name. */ 9350 endp = &name[namelen]; 9351 for (cp = endp; --cp > name; ) { 9352 if (*cp == IPIF_SEPARATOR_CHAR) { 9353 found_sep = B_TRUE; 9354 /* 9355 * Reject any non-decimal aliases for plumbing 9356 * of logical interfaces. Aliases with leading 9357 * zeroes are also rejected as they introduce 9358 * ambiguity in the naming of the interfaces. 9359 * Comparing with "0" takes care of all such 9360 * cases. 9361 */ 9362 if ((strncmp("0", cp+1, 1)) == 0) 9363 return (EINVAL); 9364 9365 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9366 id <= 0 || *endp != '\0') { 9367 return (EINVAL); 9368 } 9369 *cp = '\0'; 9370 break; 9371 } 9372 } 9373 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9374 if (found_sep) 9375 *cp = IPIF_SEPARATOR_CHAR; 9376 if (ill == NULL) 9377 return (ENXIO); 9378 } 9379 9380 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9381 B_TRUE); 9382 9383 /* 9384 * Release the refhold due to the lookup, now that we are excl 9385 * or we are just returning 9386 */ 9387 ill_refrele(ill); 9388 9389 if (ipsq == NULL) 9390 return (EINPROGRESS); 9391 9392 /* We are now exclusive on the IPSQ */ 9393 ASSERT(IAM_WRITER_ILL(ill)); 9394 9395 if (found_sep) { 9396 /* Now see if there is an IPIF with this unit number. */ 9397 for (ipif = ill->ill_ipif; ipif != NULL; 9398 ipif = ipif->ipif_next) { 9399 if (ipif->ipif_id == id) { 9400 err = EEXIST; 9401 goto done; 9402 } 9403 } 9404 } 9405 9406 /* 9407 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9408 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9409 * instead. 9410 */ 9411 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9412 B_TRUE, B_TRUE, &err)) == NULL) { 9413 goto done; 9414 } 9415 9416 /* Return created name with ioctl */ 9417 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9418 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9419 ip1dbg(("created %s\n", lifr->lifr_name)); 9420 9421 /* Set address */ 9422 sin = (sin_t *)&lifr->lifr_addr; 9423 if (sin->sin_family != AF_UNSPEC) { 9424 err = ip_sioctl_addr(ipif, sin, q, mp, 9425 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9426 } 9427 9428 done: 9429 ipsq_exit(ipsq); 9430 return (err); 9431 } 9432 9433 /* 9434 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9435 * interface) delete it based on the IP address (on this physical interface). 9436 * Otherwise delete it based on the ipif_id. 9437 * Also, special handling to allow a removeif of lo0. 9438 */ 9439 /* ARGSUSED */ 9440 int 9441 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9442 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9443 { 9444 conn_t *connp; 9445 ill_t *ill = ipif->ipif_ill; 9446 boolean_t success; 9447 ip_stack_t *ipst; 9448 9449 ipst = CONNQ_TO_IPST(q); 9450 9451 ASSERT(q->q_next == NULL); 9452 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9453 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9454 ASSERT(IAM_WRITER_IPIF(ipif)); 9455 9456 connp = Q_TO_CONN(q); 9457 /* 9458 * Special case for unplumbing lo0 (the loopback physical interface). 9459 * If unplumbing lo0, the incoming address structure has been 9460 * initialized to all zeros. When unplumbing lo0, all its logical 9461 * interfaces must be removed too. 9462 * 9463 * Note that this interface may be called to remove a specific 9464 * loopback logical interface (eg, lo0:1). But in that case 9465 * ipif->ipif_id != 0 so that the code path for that case is the 9466 * same as any other interface (meaning it skips the code directly 9467 * below). 9468 */ 9469 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9470 if (sin->sin_family == AF_UNSPEC && 9471 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9472 /* 9473 * Mark it condemned. No new ref. will be made to ill. 9474 */ 9475 mutex_enter(&ill->ill_lock); 9476 ill->ill_state_flags |= ILL_CONDEMNED; 9477 for (ipif = ill->ill_ipif; ipif != NULL; 9478 ipif = ipif->ipif_next) { 9479 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9480 } 9481 mutex_exit(&ill->ill_lock); 9482 9483 ipif = ill->ill_ipif; 9484 /* unplumb the loopback interface */ 9485 ill_delete(ill); 9486 mutex_enter(&connp->conn_lock); 9487 mutex_enter(&ill->ill_lock); 9488 9489 /* Are any references to this ill active */ 9490 if (ill_is_freeable(ill)) { 9491 mutex_exit(&ill->ill_lock); 9492 mutex_exit(&connp->conn_lock); 9493 ill_delete_tail(ill); 9494 mi_free(ill); 9495 return (0); 9496 } 9497 success = ipsq_pending_mp_add(connp, ipif, 9498 CONNP_TO_WQ(connp), mp, ILL_FREE); 9499 mutex_exit(&connp->conn_lock); 9500 mutex_exit(&ill->ill_lock); 9501 if (success) 9502 return (EINPROGRESS); 9503 else 9504 return (EINTR); 9505 } 9506 } 9507 9508 if (ipif->ipif_id == 0) { 9509 ipsq_t *ipsq; 9510 9511 /* Find based on address */ 9512 if (ipif->ipif_isv6) { 9513 sin6_t *sin6; 9514 9515 if (sin->sin_family != AF_INET6) 9516 return (EAFNOSUPPORT); 9517 9518 sin6 = (sin6_t *)sin; 9519 /* We are a writer, so we should be able to lookup */ 9520 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9521 ipst); 9522 } else { 9523 if (sin->sin_family != AF_INET) 9524 return (EAFNOSUPPORT); 9525 9526 /* We are a writer, so we should be able to lookup */ 9527 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9528 ipst); 9529 } 9530 if (ipif == NULL) { 9531 return (EADDRNOTAVAIL); 9532 } 9533 9534 /* 9535 * It is possible for a user to send an SIOCLIFREMOVEIF with 9536 * lifr_name of the physical interface but with an ip address 9537 * lifr_addr of a logical interface plumbed over it. 9538 * So update ipx_current_ipif now that ipif points to the 9539 * correct one. 9540 */ 9541 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9542 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9543 9544 /* This is a writer */ 9545 ipif_refrele(ipif); 9546 } 9547 9548 /* 9549 * Can not delete instance zero since it is tied to the ill. 9550 */ 9551 if (ipif->ipif_id == 0) 9552 return (EBUSY); 9553 9554 mutex_enter(&ill->ill_lock); 9555 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9556 mutex_exit(&ill->ill_lock); 9557 9558 ipif_free(ipif); 9559 9560 mutex_enter(&connp->conn_lock); 9561 mutex_enter(&ill->ill_lock); 9562 9563 /* Are any references to this ipif active */ 9564 if (ipif_is_freeable(ipif)) { 9565 mutex_exit(&ill->ill_lock); 9566 mutex_exit(&connp->conn_lock); 9567 ipif_non_duplicate(ipif); 9568 (void) ipif_down_tail(ipif); 9569 ipif_free_tail(ipif); /* frees ipif */ 9570 return (0); 9571 } 9572 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9573 IPIF_FREE); 9574 mutex_exit(&ill->ill_lock); 9575 mutex_exit(&connp->conn_lock); 9576 if (success) 9577 return (EINPROGRESS); 9578 else 9579 return (EINTR); 9580 } 9581 9582 /* 9583 * Restart the removeif ioctl. The refcnt has gone down to 0. 9584 * The ipif is already condemned. So can't find it thru lookups. 9585 */ 9586 /* ARGSUSED */ 9587 int 9588 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9589 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9590 { 9591 ill_t *ill = ipif->ipif_ill; 9592 9593 ASSERT(IAM_WRITER_IPIF(ipif)); 9594 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9595 9596 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9597 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9598 9599 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9600 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9601 ill_delete_tail(ill); 9602 mi_free(ill); 9603 return (0); 9604 } 9605 9606 ipif_non_duplicate(ipif); 9607 (void) ipif_down_tail(ipif); 9608 ipif_free_tail(ipif); 9609 9610 return (0); 9611 } 9612 9613 /* 9614 * Set the local interface address using the given prefix and ill_token. 9615 */ 9616 /* ARGSUSED */ 9617 int 9618 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9619 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9620 { 9621 int err; 9622 in6_addr_t v6addr; 9623 sin6_t *sin6; 9624 ill_t *ill; 9625 int i; 9626 9627 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9628 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9629 9630 ASSERT(IAM_WRITER_IPIF(ipif)); 9631 9632 if (!ipif->ipif_isv6) 9633 return (EINVAL); 9634 9635 if (sin->sin_family != AF_INET6) 9636 return (EAFNOSUPPORT); 9637 9638 sin6 = (sin6_t *)sin; 9639 v6addr = sin6->sin6_addr; 9640 ill = ipif->ipif_ill; 9641 9642 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9643 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9644 return (EADDRNOTAVAIL); 9645 9646 for (i = 0; i < 4; i++) 9647 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9648 9649 err = ip_sioctl_addr(ipif, sin, q, mp, 9650 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9651 return (err); 9652 } 9653 9654 /* 9655 * Restart entry point to restart the address set operation after the 9656 * refcounts have dropped to zero. 9657 */ 9658 /* ARGSUSED */ 9659 int 9660 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9661 ip_ioctl_cmd_t *ipip, void *ifreq) 9662 { 9663 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9665 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9666 } 9667 9668 /* 9669 * Set the local interface address. 9670 * Allow an address of all zero when the interface is down. 9671 */ 9672 /* ARGSUSED */ 9673 int 9674 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9675 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9676 { 9677 int err = 0; 9678 in6_addr_t v6addr; 9679 boolean_t need_up = B_FALSE; 9680 ill_t *ill; 9681 int i; 9682 9683 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9684 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9685 9686 ASSERT(IAM_WRITER_IPIF(ipif)); 9687 9688 ill = ipif->ipif_ill; 9689 if (ipif->ipif_isv6) { 9690 sin6_t *sin6; 9691 phyint_t *phyi; 9692 9693 if (sin->sin_family != AF_INET6) 9694 return (EAFNOSUPPORT); 9695 9696 sin6 = (sin6_t *)sin; 9697 v6addr = sin6->sin6_addr; 9698 phyi = ill->ill_phyint; 9699 9700 /* 9701 * Enforce that true multicast interfaces have a link-local 9702 * address for logical unit 0. 9703 * 9704 * However for those ipif's for which link-local address was 9705 * not created by default, also allow setting :: as the address. 9706 * This scenario would arise, when we delete an address on ipif 9707 * with logical unit 0, we would want to set :: as the address. 9708 */ 9709 if (ipif->ipif_id == 0 && 9710 (ill->ill_flags & ILLF_MULTICAST) && 9711 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9712 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9713 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9714 9715 /* 9716 * if default link-local was not created by kernel for 9717 * this ill, allow setting :: as the address on ipif:0. 9718 */ 9719 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9720 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9721 return (EADDRNOTAVAIL); 9722 } else { 9723 return (EADDRNOTAVAIL); 9724 } 9725 } 9726 9727 /* 9728 * up interfaces shouldn't have the unspecified address 9729 * unless they also have the IPIF_NOLOCAL flags set and 9730 * have a subnet assigned. 9731 */ 9732 if ((ipif->ipif_flags & IPIF_UP) && 9733 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9734 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9735 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9736 return (EADDRNOTAVAIL); 9737 } 9738 9739 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9740 return (EADDRNOTAVAIL); 9741 } else { 9742 ipaddr_t addr; 9743 9744 if (sin->sin_family != AF_INET) 9745 return (EAFNOSUPPORT); 9746 9747 addr = sin->sin_addr.s_addr; 9748 9749 /* Allow INADDR_ANY as the local address. */ 9750 if (addr != INADDR_ANY && 9751 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9752 return (EADDRNOTAVAIL); 9753 9754 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9755 } 9756 /* 9757 * verify that the address being configured is permitted by the 9758 * ill_allowed_ips[] for the interface. 9759 */ 9760 if (ill->ill_allowed_ips_cnt > 0) { 9761 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9762 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9763 &v6addr)) 9764 break; 9765 } 9766 if (i == ill->ill_allowed_ips_cnt) { 9767 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9768 return (EPERM); 9769 } 9770 } 9771 /* 9772 * Even if there is no change we redo things just to rerun 9773 * ipif_set_default. 9774 */ 9775 if (ipif->ipif_flags & IPIF_UP) { 9776 /* 9777 * Setting a new local address, make sure 9778 * we have net and subnet bcast ire's for 9779 * the old address if we need them. 9780 */ 9781 /* 9782 * If the interface is already marked up, 9783 * we call ipif_down which will take care 9784 * of ditching any IREs that have been set 9785 * up based on the old interface address. 9786 */ 9787 err = ipif_logical_down(ipif, q, mp); 9788 if (err == EINPROGRESS) 9789 return (err); 9790 (void) ipif_down_tail(ipif); 9791 need_up = 1; 9792 } 9793 9794 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9795 return (err); 9796 } 9797 9798 int 9799 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9800 boolean_t need_up) 9801 { 9802 in6_addr_t v6addr; 9803 in6_addr_t ov6addr; 9804 ipaddr_t addr; 9805 sin6_t *sin6; 9806 int sinlen; 9807 int err = 0; 9808 ill_t *ill = ipif->ipif_ill; 9809 boolean_t need_dl_down; 9810 boolean_t need_arp_down; 9811 struct iocblk *iocp; 9812 9813 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9814 9815 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9816 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9817 ASSERT(IAM_WRITER_IPIF(ipif)); 9818 9819 /* Must cancel any pending timer before taking the ill_lock */ 9820 if (ipif->ipif_recovery_id != 0) 9821 (void) untimeout(ipif->ipif_recovery_id); 9822 ipif->ipif_recovery_id = 0; 9823 9824 if (ipif->ipif_isv6) { 9825 sin6 = (sin6_t *)sin; 9826 v6addr = sin6->sin6_addr; 9827 sinlen = sizeof (struct sockaddr_in6); 9828 } else { 9829 addr = sin->sin_addr.s_addr; 9830 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9831 sinlen = sizeof (struct sockaddr_in); 9832 } 9833 mutex_enter(&ill->ill_lock); 9834 ov6addr = ipif->ipif_v6lcl_addr; 9835 ipif->ipif_v6lcl_addr = v6addr; 9836 sctp_update_ipif_addr(ipif, ov6addr); 9837 ipif->ipif_addr_ready = 0; 9838 9839 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9840 9841 /* 9842 * If the interface was previously marked as a duplicate, then since 9843 * we've now got a "new" address, it should no longer be considered a 9844 * duplicate -- even if the "new" address is the same as the old one. 9845 * Note that if all ipifs are down, we may have a pending ARP down 9846 * event to handle. This is because we want to recover from duplicates 9847 * and thus delay tearing down ARP until the duplicates have been 9848 * removed or disabled. 9849 */ 9850 need_dl_down = need_arp_down = B_FALSE; 9851 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9852 need_arp_down = !need_up; 9853 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9854 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9855 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9856 need_dl_down = B_TRUE; 9857 } 9858 } 9859 9860 ipif_set_default(ipif); 9861 9862 /* 9863 * If we've just manually set the IPv6 link-local address (0th ipif), 9864 * tag the ill so that future updates to the interface ID don't result 9865 * in this address getting automatically reconfigured from under the 9866 * administrator. 9867 */ 9868 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9869 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9870 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9871 ill->ill_manual_linklocal = 1; 9872 } 9873 9874 /* 9875 * When publishing an interface address change event, we only notify 9876 * the event listeners of the new address. It is assumed that if they 9877 * actively care about the addresses assigned that they will have 9878 * already discovered the previous address assigned (if there was one.) 9879 * 9880 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9881 */ 9882 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9883 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9884 NE_ADDRESS_CHANGE, sin, sinlen); 9885 } 9886 9887 mutex_exit(&ill->ill_lock); 9888 9889 if (need_up) { 9890 /* 9891 * Now bring the interface back up. If this 9892 * is the only IPIF for the ILL, ipif_up 9893 * will have to re-bind to the device, so 9894 * we may get back EINPROGRESS, in which 9895 * case, this IOCTL will get completed in 9896 * ip_rput_dlpi when we see the DL_BIND_ACK. 9897 */ 9898 err = ipif_up(ipif, q, mp); 9899 } else { 9900 /* Perhaps ilgs should use this ill */ 9901 update_conn_ill(NULL, ill->ill_ipst); 9902 } 9903 9904 if (need_dl_down) 9905 ill_dl_down(ill); 9906 9907 if (need_arp_down && !ill->ill_isv6) 9908 (void) ipif_arp_down(ipif); 9909 9910 /* 9911 * The default multicast interface might have changed (for 9912 * instance if the IPv6 scope of the address changed) 9913 */ 9914 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9915 9916 return (err); 9917 } 9918 9919 /* 9920 * Restart entry point to restart the address set operation after the 9921 * refcounts have dropped to zero. 9922 */ 9923 /* ARGSUSED */ 9924 int 9925 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9926 ip_ioctl_cmd_t *ipip, void *ifreq) 9927 { 9928 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9929 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9930 ASSERT(IAM_WRITER_IPIF(ipif)); 9931 (void) ipif_down_tail(ipif); 9932 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9933 } 9934 9935 /* ARGSUSED */ 9936 int 9937 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9938 ip_ioctl_cmd_t *ipip, void *if_req) 9939 { 9940 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9941 struct lifreq *lifr = (struct lifreq *)if_req; 9942 9943 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9944 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9945 /* 9946 * The net mask and address can't change since we have a 9947 * reference to the ipif. So no lock is necessary. 9948 */ 9949 if (ipif->ipif_isv6) { 9950 *sin6 = sin6_null; 9951 sin6->sin6_family = AF_INET6; 9952 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9953 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9954 lifr->lifr_addrlen = 9955 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9956 } else { 9957 *sin = sin_null; 9958 sin->sin_family = AF_INET; 9959 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9960 if (ipip->ipi_cmd_type == LIF_CMD) { 9961 lifr->lifr_addrlen = 9962 ip_mask_to_plen(ipif->ipif_net_mask); 9963 } 9964 } 9965 return (0); 9966 } 9967 9968 /* 9969 * Set the destination address for a pt-pt interface. 9970 */ 9971 /* ARGSUSED */ 9972 int 9973 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9974 ip_ioctl_cmd_t *ipip, void *if_req) 9975 { 9976 int err = 0; 9977 in6_addr_t v6addr; 9978 boolean_t need_up = B_FALSE; 9979 9980 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9981 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9982 ASSERT(IAM_WRITER_IPIF(ipif)); 9983 9984 if (ipif->ipif_isv6) { 9985 sin6_t *sin6; 9986 9987 if (sin->sin_family != AF_INET6) 9988 return (EAFNOSUPPORT); 9989 9990 sin6 = (sin6_t *)sin; 9991 v6addr = sin6->sin6_addr; 9992 9993 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9994 return (EADDRNOTAVAIL); 9995 } else { 9996 ipaddr_t addr; 9997 9998 if (sin->sin_family != AF_INET) 9999 return (EAFNOSUPPORT); 10000 10001 addr = sin->sin_addr.s_addr; 10002 if (addr != INADDR_ANY && 10003 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10004 return (EADDRNOTAVAIL); 10005 } 10006 10007 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10008 } 10009 10010 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10011 return (0); /* No change */ 10012 10013 if (ipif->ipif_flags & IPIF_UP) { 10014 /* 10015 * If the interface is already marked up, 10016 * we call ipif_down which will take care 10017 * of ditching any IREs that have been set 10018 * up based on the old pp dst address. 10019 */ 10020 err = ipif_logical_down(ipif, q, mp); 10021 if (err == EINPROGRESS) 10022 return (err); 10023 (void) ipif_down_tail(ipif); 10024 need_up = B_TRUE; 10025 } 10026 /* 10027 * could return EINPROGRESS. If so ioctl will complete in 10028 * ip_rput_dlpi_writer 10029 */ 10030 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10031 return (err); 10032 } 10033 10034 static int 10035 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10036 boolean_t need_up) 10037 { 10038 in6_addr_t v6addr; 10039 ill_t *ill = ipif->ipif_ill; 10040 int err = 0; 10041 boolean_t need_dl_down; 10042 boolean_t need_arp_down; 10043 10044 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10045 ipif->ipif_id, (void *)ipif)); 10046 10047 /* Must cancel any pending timer before taking the ill_lock */ 10048 if (ipif->ipif_recovery_id != 0) 10049 (void) untimeout(ipif->ipif_recovery_id); 10050 ipif->ipif_recovery_id = 0; 10051 10052 if (ipif->ipif_isv6) { 10053 sin6_t *sin6; 10054 10055 sin6 = (sin6_t *)sin; 10056 v6addr = sin6->sin6_addr; 10057 } else { 10058 ipaddr_t addr; 10059 10060 addr = sin->sin_addr.s_addr; 10061 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10062 } 10063 mutex_enter(&ill->ill_lock); 10064 /* Set point to point destination address. */ 10065 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10066 /* 10067 * Allow this as a means of creating logical 10068 * pt-pt interfaces on top of e.g. an Ethernet. 10069 * XXX Undocumented HACK for testing. 10070 * pt-pt interfaces are created with NUD disabled. 10071 */ 10072 ipif->ipif_flags |= IPIF_POINTOPOINT; 10073 ipif->ipif_flags &= ~IPIF_BROADCAST; 10074 if (ipif->ipif_isv6) 10075 ill->ill_flags |= ILLF_NONUD; 10076 } 10077 10078 /* 10079 * If the interface was previously marked as a duplicate, then since 10080 * we've now got a "new" address, it should no longer be considered a 10081 * duplicate -- even if the "new" address is the same as the old one. 10082 * Note that if all ipifs are down, we may have a pending ARP down 10083 * event to handle. 10084 */ 10085 need_dl_down = need_arp_down = B_FALSE; 10086 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10087 need_arp_down = !need_up; 10088 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10089 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10090 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10091 need_dl_down = B_TRUE; 10092 } 10093 } 10094 10095 /* 10096 * If we've just manually set the IPv6 destination link-local address 10097 * (0th ipif), tag the ill so that future updates to the destination 10098 * interface ID (as can happen with interfaces over IP tunnels) don't 10099 * result in this address getting automatically reconfigured from 10100 * under the administrator. 10101 */ 10102 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10103 ill->ill_manual_dst_linklocal = 1; 10104 10105 /* Set the new address. */ 10106 ipif->ipif_v6pp_dst_addr = v6addr; 10107 /* Make sure subnet tracks pp_dst */ 10108 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10109 mutex_exit(&ill->ill_lock); 10110 10111 if (need_up) { 10112 /* 10113 * Now bring the interface back up. If this 10114 * is the only IPIF for the ILL, ipif_up 10115 * will have to re-bind to the device, so 10116 * we may get back EINPROGRESS, in which 10117 * case, this IOCTL will get completed in 10118 * ip_rput_dlpi when we see the DL_BIND_ACK. 10119 */ 10120 err = ipif_up(ipif, q, mp); 10121 } 10122 10123 if (need_dl_down) 10124 ill_dl_down(ill); 10125 if (need_arp_down && !ipif->ipif_isv6) 10126 (void) ipif_arp_down(ipif); 10127 10128 return (err); 10129 } 10130 10131 /* 10132 * Restart entry point to restart the dstaddress set operation after the 10133 * refcounts have dropped to zero. 10134 */ 10135 /* ARGSUSED */ 10136 int 10137 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10138 ip_ioctl_cmd_t *ipip, void *ifreq) 10139 { 10140 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10142 (void) ipif_down_tail(ipif); 10143 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10144 } 10145 10146 /* ARGSUSED */ 10147 int 10148 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10149 ip_ioctl_cmd_t *ipip, void *if_req) 10150 { 10151 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10152 10153 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10154 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10155 /* 10156 * Get point to point destination address. The addresses can't 10157 * change since we hold a reference to the ipif. 10158 */ 10159 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10160 return (EADDRNOTAVAIL); 10161 10162 if (ipif->ipif_isv6) { 10163 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10164 *sin6 = sin6_null; 10165 sin6->sin6_family = AF_INET6; 10166 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10167 } else { 10168 *sin = sin_null; 10169 sin->sin_family = AF_INET; 10170 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10171 } 10172 return (0); 10173 } 10174 10175 /* 10176 * Check which flags will change by the given flags being set 10177 * silently ignore flags which userland is not allowed to control. 10178 * (Because these flags may change between SIOCGLIFFLAGS and 10179 * SIOCSLIFFLAGS, and that's outside of userland's control, 10180 * we need to silently ignore them rather than fail.) 10181 */ 10182 static void 10183 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10184 uint64_t *offp) 10185 { 10186 ill_t *ill = ipif->ipif_ill; 10187 phyint_t *phyi = ill->ill_phyint; 10188 uint64_t cantchange_flags, intf_flags; 10189 uint64_t turn_on, turn_off; 10190 10191 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10192 cantchange_flags = IFF_CANTCHANGE; 10193 if (IS_IPMP(ill)) 10194 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10195 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10196 turn_off = intf_flags & turn_on; 10197 turn_on ^= turn_off; 10198 *onp = turn_on; 10199 *offp = turn_off; 10200 } 10201 10202 /* 10203 * Set interface flags. Many flags require special handling (e.g., 10204 * bringing the interface down); see below for details. 10205 * 10206 * NOTE : We really don't enforce that ipif_id zero should be used 10207 * for setting any flags other than IFF_LOGINT_FLAGS. This 10208 * is because applications generally does SICGLIFFLAGS and 10209 * ORs in the new flags (that affects the logical) and does a 10210 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10211 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10212 * flags that will be turned on is correct with respect to 10213 * ipif_id 0. For backward compatibility reasons, it is not done. 10214 */ 10215 /* ARGSUSED */ 10216 int 10217 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10218 ip_ioctl_cmd_t *ipip, void *if_req) 10219 { 10220 uint64_t turn_on; 10221 uint64_t turn_off; 10222 int err = 0; 10223 phyint_t *phyi; 10224 ill_t *ill; 10225 conn_t *connp; 10226 uint64_t intf_flags; 10227 boolean_t phyint_flags_modified = B_FALSE; 10228 uint64_t flags; 10229 struct ifreq *ifr; 10230 struct lifreq *lifr; 10231 boolean_t set_linklocal = B_FALSE; 10232 10233 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10234 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10235 10236 ASSERT(IAM_WRITER_IPIF(ipif)); 10237 10238 ill = ipif->ipif_ill; 10239 phyi = ill->ill_phyint; 10240 10241 if (ipip->ipi_cmd_type == IF_CMD) { 10242 ifr = (struct ifreq *)if_req; 10243 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10244 } else { 10245 lifr = (struct lifreq *)if_req; 10246 flags = lifr->lifr_flags; 10247 } 10248 10249 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10250 10251 /* 10252 * Have the flags been set correctly until now? 10253 */ 10254 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10255 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10256 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10257 /* 10258 * Compare the new flags to the old, and partition 10259 * into those coming on and those going off. 10260 * For the 16 bit command keep the bits above bit 16 unchanged. 10261 */ 10262 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10263 flags |= intf_flags & ~0xFFFF; 10264 10265 /* 10266 * Explicitly fail attempts to change flags that are always invalid on 10267 * an IPMP meta-interface. 10268 */ 10269 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10270 return (EINVAL); 10271 10272 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10273 if ((turn_on|turn_off) == 0) 10274 return (0); /* No change */ 10275 10276 /* 10277 * All test addresses must be IFF_DEPRECATED (to ensure source address 10278 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10279 * allow it to be turned off. 10280 */ 10281 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10282 (turn_on|intf_flags) & IFF_NOFAILOVER) 10283 return (EINVAL); 10284 10285 if ((connp = Q_TO_CONN(q)) == NULL) 10286 return (EINVAL); 10287 10288 /* 10289 * Only vrrp control socket is allowed to change IFF_UP and 10290 * IFF_NOACCEPT flags when IFF_VRRP is set. 10291 */ 10292 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10293 if (!connp->conn_isvrrp) 10294 return (EINVAL); 10295 } 10296 10297 /* 10298 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10299 * VRRP control socket. 10300 */ 10301 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10302 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10303 return (EINVAL); 10304 } 10305 10306 if (turn_on & IFF_NOFAILOVER) { 10307 turn_on |= IFF_DEPRECATED; 10308 flags |= IFF_DEPRECATED; 10309 } 10310 10311 /* 10312 * On underlying interfaces, only allow applications to manage test 10313 * addresses -- otherwise, they may get confused when the address 10314 * moves as part of being brought up. Likewise, prevent an 10315 * application-managed test address from being converted to a data 10316 * address. To prevent migration of administratively up addresses in 10317 * the kernel, we don't allow them to be converted either. 10318 */ 10319 if (IS_UNDER_IPMP(ill)) { 10320 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10321 10322 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10323 return (EINVAL); 10324 10325 if ((turn_off & IFF_NOFAILOVER) && 10326 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10327 return (EINVAL); 10328 } 10329 10330 /* 10331 * Only allow IFF_TEMPORARY flag to be set on 10332 * IPv6 interfaces. 10333 */ 10334 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10335 return (EINVAL); 10336 10337 /* 10338 * cannot turn off IFF_NOXMIT on VNI interfaces. 10339 */ 10340 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10341 return (EINVAL); 10342 10343 /* 10344 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10345 * interfaces. It makes no sense in that context. 10346 */ 10347 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10348 return (EINVAL); 10349 10350 /* 10351 * For IPv6 ipif_id 0, don't allow the interface to be up without 10352 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10353 * If the link local address isn't set, and can be set, it will get 10354 * set later on in this function. 10355 */ 10356 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10357 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10358 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10359 if (ipif_cant_setlinklocal(ipif)) 10360 return (EINVAL); 10361 set_linklocal = B_TRUE; 10362 } 10363 10364 /* 10365 * If we modify physical interface flags, we'll potentially need to 10366 * send up two routing socket messages for the changes (one for the 10367 * IPv4 ill, and another for the IPv6 ill). Note that here. 10368 */ 10369 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10370 phyint_flags_modified = B_TRUE; 10371 10372 /* 10373 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10374 * (otherwise, we'd immediately use them, defeating standby). Also, 10375 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10376 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10377 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10378 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10379 * will not be honored. 10380 */ 10381 if (turn_on & PHYI_STANDBY) { 10382 /* 10383 * No need to grab ill_g_usesrc_lock here; see the 10384 * synchronization notes in ip.c. 10385 */ 10386 if (ill->ill_usesrc_grp_next != NULL || 10387 intf_flags & PHYI_INACTIVE) 10388 return (EINVAL); 10389 if (!(flags & PHYI_FAILED)) { 10390 flags |= PHYI_INACTIVE; 10391 turn_on |= PHYI_INACTIVE; 10392 } 10393 } 10394 10395 if (turn_off & PHYI_STANDBY) { 10396 flags &= ~PHYI_INACTIVE; 10397 turn_off |= PHYI_INACTIVE; 10398 } 10399 10400 /* 10401 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10402 * would end up on. 10403 */ 10404 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10405 (PHYI_FAILED | PHYI_INACTIVE)) 10406 return (EINVAL); 10407 10408 /* 10409 * If ILLF_ROUTER changes, we need to change the ip forwarding 10410 * status of the interface. 10411 */ 10412 if ((turn_on | turn_off) & ILLF_ROUTER) { 10413 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10414 if (err != 0) 10415 return (err); 10416 } 10417 10418 /* 10419 * If the interface is not UP and we are not going to 10420 * bring it UP, record the flags and return. When the 10421 * interface comes UP later, the right actions will be 10422 * taken. 10423 */ 10424 if (!(ipif->ipif_flags & IPIF_UP) && 10425 !(turn_on & IPIF_UP)) { 10426 /* Record new flags in their respective places. */ 10427 mutex_enter(&ill->ill_lock); 10428 mutex_enter(&ill->ill_phyint->phyint_lock); 10429 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10430 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10431 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10432 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10433 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10434 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10435 mutex_exit(&ill->ill_lock); 10436 mutex_exit(&ill->ill_phyint->phyint_lock); 10437 10438 /* 10439 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10440 * same to the kernel: if any of them has been set by 10441 * userland, the interface cannot be used for data traffic. 10442 */ 10443 if ((turn_on|turn_off) & 10444 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10445 ASSERT(!IS_IPMP(ill)); 10446 /* 10447 * It's possible the ill is part of an "anonymous" 10448 * IPMP group rather than a real group. In that case, 10449 * there are no other interfaces in the group and thus 10450 * no need to call ipmp_phyint_refresh_active(). 10451 */ 10452 if (IS_UNDER_IPMP(ill)) 10453 ipmp_phyint_refresh_active(phyi); 10454 } 10455 10456 if (phyint_flags_modified) { 10457 if (phyi->phyint_illv4 != NULL) { 10458 ip_rts_ifmsg(phyi->phyint_illv4-> 10459 ill_ipif, RTSQ_DEFAULT); 10460 } 10461 if (phyi->phyint_illv6 != NULL) { 10462 ip_rts_ifmsg(phyi->phyint_illv6-> 10463 ill_ipif, RTSQ_DEFAULT); 10464 } 10465 } 10466 /* The default multicast interface might have changed */ 10467 ire_increment_multicast_generation(ill->ill_ipst, 10468 ill->ill_isv6); 10469 10470 return (0); 10471 } else if (set_linklocal) { 10472 mutex_enter(&ill->ill_lock); 10473 if (set_linklocal) 10474 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10475 mutex_exit(&ill->ill_lock); 10476 } 10477 10478 /* 10479 * Disallow IPv6 interfaces coming up that have the unspecified address, 10480 * or point-to-point interfaces with an unspecified destination. We do 10481 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10482 * have a subnet assigned, which is how in.ndpd currently manages its 10483 * onlink prefix list when no addresses are configured with those 10484 * prefixes. 10485 */ 10486 if (ipif->ipif_isv6 && 10487 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10488 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10489 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10490 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10491 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10492 return (EINVAL); 10493 } 10494 10495 /* 10496 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10497 * from being brought up. 10498 */ 10499 if (!ipif->ipif_isv6 && 10500 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10501 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10502 return (EINVAL); 10503 } 10504 10505 /* 10506 * If we are going to change one or more of the flags that are 10507 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10508 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10509 * IPIF_NOFAILOVER, we will take special action. This is 10510 * done by bring the ipif down, changing the flags and bringing 10511 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10512 * back up will trigger the address to be moved. 10513 * 10514 * If we are going to change IFF_NOACCEPT, we need to bring 10515 * all the ipifs down then bring them up again. The act of 10516 * bringing all the ipifs back up will trigger the local 10517 * ires being recreated with "no_accept" set/cleared. 10518 * 10519 * Note that ILLF_NOACCEPT is always set separately from the 10520 * other flags. 10521 */ 10522 if ((turn_on|turn_off) & 10523 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10524 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10525 IPIF_NOFAILOVER)) { 10526 /* 10527 * ipif_down() will ire_delete bcast ire's for the subnet, 10528 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10529 * entries shared between multiple ipifs on the same subnet. 10530 */ 10531 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10532 !(turn_off & IPIF_UP)) { 10533 if (ipif->ipif_flags & IPIF_UP) 10534 ill->ill_logical_down = 1; 10535 turn_on &= ~IPIF_UP; 10536 } 10537 err = ipif_down(ipif, q, mp); 10538 ip1dbg(("ipif_down returns %d err ", err)); 10539 if (err == EINPROGRESS) 10540 return (err); 10541 (void) ipif_down_tail(ipif); 10542 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10543 /* 10544 * If we can quiesce the ill, then continue. If not, then 10545 * ip_sioctl_flags_tail() will be called from 10546 * ipif_ill_refrele_tail(). 10547 */ 10548 ill_down_ipifs(ill, B_TRUE); 10549 10550 mutex_enter(&connp->conn_lock); 10551 mutex_enter(&ill->ill_lock); 10552 if (!ill_is_quiescent(ill)) { 10553 boolean_t success; 10554 10555 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10556 q, mp, ILL_DOWN); 10557 mutex_exit(&ill->ill_lock); 10558 mutex_exit(&connp->conn_lock); 10559 return (success ? EINPROGRESS : EINTR); 10560 } 10561 mutex_exit(&ill->ill_lock); 10562 mutex_exit(&connp->conn_lock); 10563 } 10564 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10565 } 10566 10567 static int 10568 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10569 { 10570 ill_t *ill; 10571 phyint_t *phyi; 10572 uint64_t turn_on, turn_off; 10573 boolean_t phyint_flags_modified = B_FALSE; 10574 int err = 0; 10575 boolean_t set_linklocal = B_FALSE; 10576 10577 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10578 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10579 10580 ASSERT(IAM_WRITER_IPIF(ipif)); 10581 10582 ill = ipif->ipif_ill; 10583 phyi = ill->ill_phyint; 10584 10585 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10586 10587 /* 10588 * IFF_UP is handled separately. 10589 */ 10590 turn_on &= ~IFF_UP; 10591 turn_off &= ~IFF_UP; 10592 10593 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10594 phyint_flags_modified = B_TRUE; 10595 10596 /* 10597 * Now we change the flags. Track current value of 10598 * other flags in their respective places. 10599 */ 10600 mutex_enter(&ill->ill_lock); 10601 mutex_enter(&phyi->phyint_lock); 10602 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10603 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10604 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10605 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10606 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10607 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10608 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10609 set_linklocal = B_TRUE; 10610 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10611 } 10612 10613 mutex_exit(&ill->ill_lock); 10614 mutex_exit(&phyi->phyint_lock); 10615 10616 if (set_linklocal) 10617 (void) ipif_setlinklocal(ipif); 10618 10619 /* 10620 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10621 * the kernel: if any of them has been set by userland, the interface 10622 * cannot be used for data traffic. 10623 */ 10624 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10625 ASSERT(!IS_IPMP(ill)); 10626 /* 10627 * It's possible the ill is part of an "anonymous" IPMP group 10628 * rather than a real group. In that case, there are no other 10629 * interfaces in the group and thus no need for us to call 10630 * ipmp_phyint_refresh_active(). 10631 */ 10632 if (IS_UNDER_IPMP(ill)) 10633 ipmp_phyint_refresh_active(phyi); 10634 } 10635 10636 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10637 /* 10638 * If the ILLF_NOACCEPT flag is changed, bring up all the 10639 * ipifs that were brought down. 10640 * 10641 * The routing sockets messages are sent as the result 10642 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10643 * as well. 10644 */ 10645 err = ill_up_ipifs(ill, q, mp); 10646 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10647 /* 10648 * XXX ipif_up really does not know whether a phyint flags 10649 * was modified or not. So, it sends up information on 10650 * only one routing sockets message. As we don't bring up 10651 * the interface and also set PHYI_ flags simultaneously 10652 * it should be okay. 10653 */ 10654 err = ipif_up(ipif, q, mp); 10655 } else { 10656 /* 10657 * Make sure routing socket sees all changes to the flags. 10658 * ipif_up_done* handles this when we use ipif_up. 10659 */ 10660 if (phyint_flags_modified) { 10661 if (phyi->phyint_illv4 != NULL) { 10662 ip_rts_ifmsg(phyi->phyint_illv4-> 10663 ill_ipif, RTSQ_DEFAULT); 10664 } 10665 if (phyi->phyint_illv6 != NULL) { 10666 ip_rts_ifmsg(phyi->phyint_illv6-> 10667 ill_ipif, RTSQ_DEFAULT); 10668 } 10669 } else { 10670 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10671 } 10672 /* 10673 * Update the flags in SCTP's IPIF list, ipif_up() will do 10674 * this in need_up case. 10675 */ 10676 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10677 } 10678 10679 /* The default multicast interface might have changed */ 10680 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10681 return (err); 10682 } 10683 10684 /* 10685 * Restart the flags operation now that the refcounts have dropped to zero. 10686 */ 10687 /* ARGSUSED */ 10688 int 10689 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10690 ip_ioctl_cmd_t *ipip, void *if_req) 10691 { 10692 uint64_t flags; 10693 struct ifreq *ifr = if_req; 10694 struct lifreq *lifr = if_req; 10695 uint64_t turn_on, turn_off; 10696 10697 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10698 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10699 10700 if (ipip->ipi_cmd_type == IF_CMD) { 10701 /* cast to uint16_t prevents unwanted sign extension */ 10702 flags = (uint16_t)ifr->ifr_flags; 10703 } else { 10704 flags = lifr->lifr_flags; 10705 } 10706 10707 /* 10708 * If this function call is a result of the ILLF_NOACCEPT flag 10709 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10710 */ 10711 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10712 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10713 (void) ipif_down_tail(ipif); 10714 10715 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10716 } 10717 10718 /* 10719 * Can operate on either a module or a driver queue. 10720 */ 10721 /* ARGSUSED */ 10722 int 10723 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10724 ip_ioctl_cmd_t *ipip, void *if_req) 10725 { 10726 /* 10727 * Has the flags been set correctly till now ? 10728 */ 10729 ill_t *ill = ipif->ipif_ill; 10730 phyint_t *phyi = ill->ill_phyint; 10731 10732 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10733 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10734 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10735 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10736 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10737 10738 /* 10739 * Need a lock since some flags can be set even when there are 10740 * references to the ipif. 10741 */ 10742 mutex_enter(&ill->ill_lock); 10743 if (ipip->ipi_cmd_type == IF_CMD) { 10744 struct ifreq *ifr = (struct ifreq *)if_req; 10745 10746 /* Get interface flags (low 16 only). */ 10747 ifr->ifr_flags = ((ipif->ipif_flags | 10748 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10749 } else { 10750 struct lifreq *lifr = (struct lifreq *)if_req; 10751 10752 /* Get interface flags. */ 10753 lifr->lifr_flags = ipif->ipif_flags | 10754 ill->ill_flags | phyi->phyint_flags; 10755 } 10756 mutex_exit(&ill->ill_lock); 10757 return (0); 10758 } 10759 10760 /* 10761 * We allow the MTU to be set on an ILL, but not have it be different 10762 * for different IPIFs since we don't actually send packets on IPIFs. 10763 */ 10764 /* ARGSUSED */ 10765 int 10766 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10767 ip_ioctl_cmd_t *ipip, void *if_req) 10768 { 10769 int mtu; 10770 int ip_min_mtu; 10771 struct ifreq *ifr; 10772 struct lifreq *lifr; 10773 ill_t *ill; 10774 10775 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10776 ipif->ipif_id, (void *)ipif)); 10777 if (ipip->ipi_cmd_type == IF_CMD) { 10778 ifr = (struct ifreq *)if_req; 10779 mtu = ifr->ifr_metric; 10780 } else { 10781 lifr = (struct lifreq *)if_req; 10782 mtu = lifr->lifr_mtu; 10783 } 10784 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10785 if (ipif->ipif_id != 0) 10786 return (EINVAL); 10787 10788 ill = ipif->ipif_ill; 10789 if (ipif->ipif_isv6) 10790 ip_min_mtu = IPV6_MIN_MTU; 10791 else 10792 ip_min_mtu = IP_MIN_MTU; 10793 10794 mutex_enter(&ill->ill_lock); 10795 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10796 mutex_exit(&ill->ill_lock); 10797 return (EINVAL); 10798 } 10799 /* Avoid increasing ill_mc_mtu */ 10800 if (ill->ill_mc_mtu > mtu) 10801 ill->ill_mc_mtu = mtu; 10802 10803 /* 10804 * The dce and fragmentation code can handle changes to ill_mtu 10805 * concurrent with sending/fragmenting packets. 10806 */ 10807 ill->ill_mtu = mtu; 10808 ill->ill_flags |= ILLF_FIXEDMTU; 10809 mutex_exit(&ill->ill_lock); 10810 10811 /* 10812 * Make sure all dce_generation checks find out 10813 * that ill_mtu/ill_mc_mtu has changed. 10814 */ 10815 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10816 10817 /* 10818 * Refresh IPMP meta-interface MTU if necessary. 10819 */ 10820 if (IS_UNDER_IPMP(ill)) 10821 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10822 10823 /* Update the MTU in SCTP's list */ 10824 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10825 return (0); 10826 } 10827 10828 /* Get interface MTU. */ 10829 /* ARGSUSED */ 10830 int 10831 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10832 ip_ioctl_cmd_t *ipip, void *if_req) 10833 { 10834 struct ifreq *ifr; 10835 struct lifreq *lifr; 10836 10837 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10838 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10839 10840 /* 10841 * We allow a get on any logical interface even though the set 10842 * can only be done on logical unit 0. 10843 */ 10844 if (ipip->ipi_cmd_type == IF_CMD) { 10845 ifr = (struct ifreq *)if_req; 10846 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10847 } else { 10848 lifr = (struct lifreq *)if_req; 10849 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10850 } 10851 return (0); 10852 } 10853 10854 /* Set interface broadcast address. */ 10855 /* ARGSUSED2 */ 10856 int 10857 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10858 ip_ioctl_cmd_t *ipip, void *if_req) 10859 { 10860 ipaddr_t addr; 10861 ire_t *ire; 10862 ill_t *ill = ipif->ipif_ill; 10863 ip_stack_t *ipst = ill->ill_ipst; 10864 10865 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10866 ipif->ipif_id)); 10867 10868 ASSERT(IAM_WRITER_IPIF(ipif)); 10869 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10870 return (EADDRNOTAVAIL); 10871 10872 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10873 10874 if (sin->sin_family != AF_INET) 10875 return (EAFNOSUPPORT); 10876 10877 addr = sin->sin_addr.s_addr; 10878 10879 if (ipif->ipif_flags & IPIF_UP) { 10880 /* 10881 * If we are already up, make sure the new 10882 * broadcast address makes sense. If it does, 10883 * there should be an IRE for it already. 10884 */ 10885 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10886 ill, ipif->ipif_zoneid, NULL, 10887 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10888 if (ire == NULL) { 10889 return (EINVAL); 10890 } else { 10891 ire_refrele(ire); 10892 } 10893 } 10894 /* 10895 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10896 * needs to already exist we never need to change the set of 10897 * IRE_BROADCASTs when we are UP. 10898 */ 10899 if (addr != ipif->ipif_brd_addr) 10900 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10901 10902 return (0); 10903 } 10904 10905 /* Get interface broadcast address. */ 10906 /* ARGSUSED */ 10907 int 10908 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10909 ip_ioctl_cmd_t *ipip, void *if_req) 10910 { 10911 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10912 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10913 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10914 return (EADDRNOTAVAIL); 10915 10916 /* IPIF_BROADCAST not possible with IPv6 */ 10917 ASSERT(!ipif->ipif_isv6); 10918 *sin = sin_null; 10919 sin->sin_family = AF_INET; 10920 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10921 return (0); 10922 } 10923 10924 /* 10925 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10926 */ 10927 /* ARGSUSED */ 10928 int 10929 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10930 ip_ioctl_cmd_t *ipip, void *if_req) 10931 { 10932 int err = 0; 10933 in6_addr_t v6mask; 10934 10935 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10936 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10937 10938 ASSERT(IAM_WRITER_IPIF(ipif)); 10939 10940 if (ipif->ipif_isv6) { 10941 sin6_t *sin6; 10942 10943 if (sin->sin_family != AF_INET6) 10944 return (EAFNOSUPPORT); 10945 10946 sin6 = (sin6_t *)sin; 10947 v6mask = sin6->sin6_addr; 10948 } else { 10949 ipaddr_t mask; 10950 10951 if (sin->sin_family != AF_INET) 10952 return (EAFNOSUPPORT); 10953 10954 mask = sin->sin_addr.s_addr; 10955 if (!ip_contiguous_mask(ntohl(mask))) 10956 return (ENOTSUP); 10957 V4MASK_TO_V6(mask, v6mask); 10958 } 10959 10960 /* 10961 * No big deal if the interface isn't already up, or the mask 10962 * isn't really changing, or this is pt-pt. 10963 */ 10964 if (!(ipif->ipif_flags & IPIF_UP) || 10965 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10966 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10967 ipif->ipif_v6net_mask = v6mask; 10968 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10969 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10970 ipif->ipif_v6net_mask, 10971 ipif->ipif_v6subnet); 10972 } 10973 return (0); 10974 } 10975 /* 10976 * Make sure we have valid net and subnet broadcast ire's 10977 * for the old netmask, if needed by other logical interfaces. 10978 */ 10979 err = ipif_logical_down(ipif, q, mp); 10980 if (err == EINPROGRESS) 10981 return (err); 10982 (void) ipif_down_tail(ipif); 10983 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10984 return (err); 10985 } 10986 10987 static int 10988 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10989 { 10990 in6_addr_t v6mask; 10991 int err = 0; 10992 10993 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10994 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10995 10996 if (ipif->ipif_isv6) { 10997 sin6_t *sin6; 10998 10999 sin6 = (sin6_t *)sin; 11000 v6mask = sin6->sin6_addr; 11001 } else { 11002 ipaddr_t mask; 11003 11004 mask = sin->sin_addr.s_addr; 11005 V4MASK_TO_V6(mask, v6mask); 11006 } 11007 11008 ipif->ipif_v6net_mask = v6mask; 11009 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11010 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11011 ipif->ipif_v6subnet); 11012 } 11013 err = ipif_up(ipif, q, mp); 11014 11015 if (err == 0 || err == EINPROGRESS) { 11016 /* 11017 * The interface must be DL_BOUND if this packet has to 11018 * go out on the wire. Since we only go through a logical 11019 * down and are bound with the driver during an internal 11020 * down/up that is satisfied. 11021 */ 11022 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11023 /* Potentially broadcast an address mask reply. */ 11024 ipif_mask_reply(ipif); 11025 } 11026 } 11027 return (err); 11028 } 11029 11030 /* ARGSUSED */ 11031 int 11032 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11033 ip_ioctl_cmd_t *ipip, void *if_req) 11034 { 11035 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11036 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11037 (void) ipif_down_tail(ipif); 11038 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11039 } 11040 11041 /* Get interface net mask. */ 11042 /* ARGSUSED */ 11043 int 11044 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11045 ip_ioctl_cmd_t *ipip, void *if_req) 11046 { 11047 struct lifreq *lifr = (struct lifreq *)if_req; 11048 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11049 11050 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11051 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11052 11053 /* 11054 * net mask can't change since we have a reference to the ipif. 11055 */ 11056 if (ipif->ipif_isv6) { 11057 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11058 *sin6 = sin6_null; 11059 sin6->sin6_family = AF_INET6; 11060 sin6->sin6_addr = ipif->ipif_v6net_mask; 11061 lifr->lifr_addrlen = 11062 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11063 } else { 11064 *sin = sin_null; 11065 sin->sin_family = AF_INET; 11066 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11067 if (ipip->ipi_cmd_type == LIF_CMD) { 11068 lifr->lifr_addrlen = 11069 ip_mask_to_plen(ipif->ipif_net_mask); 11070 } 11071 } 11072 return (0); 11073 } 11074 11075 /* ARGSUSED */ 11076 int 11077 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11078 ip_ioctl_cmd_t *ipip, void *if_req) 11079 { 11080 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11081 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11082 11083 /* 11084 * Since no applications should ever be setting metrics on underlying 11085 * interfaces, we explicitly fail to smoke 'em out. 11086 */ 11087 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11088 return (EINVAL); 11089 11090 /* 11091 * Set interface metric. We don't use this for 11092 * anything but we keep track of it in case it is 11093 * important to routing applications or such. 11094 */ 11095 if (ipip->ipi_cmd_type == IF_CMD) { 11096 struct ifreq *ifr; 11097 11098 ifr = (struct ifreq *)if_req; 11099 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11100 } else { 11101 struct lifreq *lifr; 11102 11103 lifr = (struct lifreq *)if_req; 11104 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11105 } 11106 return (0); 11107 } 11108 11109 /* ARGSUSED */ 11110 int 11111 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11112 ip_ioctl_cmd_t *ipip, void *if_req) 11113 { 11114 /* Get interface metric. */ 11115 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11116 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11117 11118 if (ipip->ipi_cmd_type == IF_CMD) { 11119 struct ifreq *ifr; 11120 11121 ifr = (struct ifreq *)if_req; 11122 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11123 } else { 11124 struct lifreq *lifr; 11125 11126 lifr = (struct lifreq *)if_req; 11127 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11128 } 11129 11130 return (0); 11131 } 11132 11133 /* ARGSUSED */ 11134 int 11135 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11136 ip_ioctl_cmd_t *ipip, void *if_req) 11137 { 11138 int arp_muxid; 11139 11140 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11142 /* 11143 * Set the muxid returned from I_PLINK. 11144 */ 11145 if (ipip->ipi_cmd_type == IF_CMD) { 11146 struct ifreq *ifr = (struct ifreq *)if_req; 11147 11148 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11149 arp_muxid = ifr->ifr_arp_muxid; 11150 } else { 11151 struct lifreq *lifr = (struct lifreq *)if_req; 11152 11153 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11154 arp_muxid = lifr->lifr_arp_muxid; 11155 } 11156 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11157 return (0); 11158 } 11159 11160 /* ARGSUSED */ 11161 int 11162 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11163 ip_ioctl_cmd_t *ipip, void *if_req) 11164 { 11165 int arp_muxid = 0; 11166 11167 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11168 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11169 /* 11170 * Get the muxid saved in ill for I_PUNLINK. 11171 */ 11172 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11173 if (ipip->ipi_cmd_type == IF_CMD) { 11174 struct ifreq *ifr = (struct ifreq *)if_req; 11175 11176 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11177 ifr->ifr_arp_muxid = arp_muxid; 11178 } else { 11179 struct lifreq *lifr = (struct lifreq *)if_req; 11180 11181 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11182 lifr->lifr_arp_muxid = arp_muxid; 11183 } 11184 return (0); 11185 } 11186 11187 /* 11188 * Set the subnet prefix. Does not modify the broadcast address. 11189 */ 11190 /* ARGSUSED */ 11191 int 11192 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11193 ip_ioctl_cmd_t *ipip, void *if_req) 11194 { 11195 int err = 0; 11196 in6_addr_t v6addr; 11197 in6_addr_t v6mask; 11198 boolean_t need_up = B_FALSE; 11199 int addrlen; 11200 11201 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11202 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11203 11204 ASSERT(IAM_WRITER_IPIF(ipif)); 11205 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11206 11207 if (ipif->ipif_isv6) { 11208 sin6_t *sin6; 11209 11210 if (sin->sin_family != AF_INET6) 11211 return (EAFNOSUPPORT); 11212 11213 sin6 = (sin6_t *)sin; 11214 v6addr = sin6->sin6_addr; 11215 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11216 return (EADDRNOTAVAIL); 11217 } else { 11218 ipaddr_t addr; 11219 11220 if (sin->sin_family != AF_INET) 11221 return (EAFNOSUPPORT); 11222 11223 addr = sin->sin_addr.s_addr; 11224 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11225 return (EADDRNOTAVAIL); 11226 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11227 /* Add 96 bits */ 11228 addrlen += IPV6_ABITS - IP_ABITS; 11229 } 11230 11231 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11232 return (EINVAL); 11233 11234 /* Check if bits in the address is set past the mask */ 11235 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11236 return (EINVAL); 11237 11238 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11239 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11240 return (0); /* No change */ 11241 11242 if (ipif->ipif_flags & IPIF_UP) { 11243 /* 11244 * If the interface is already marked up, 11245 * we call ipif_down which will take care 11246 * of ditching any IREs that have been set 11247 * up based on the old interface address. 11248 */ 11249 err = ipif_logical_down(ipif, q, mp); 11250 if (err == EINPROGRESS) 11251 return (err); 11252 (void) ipif_down_tail(ipif); 11253 need_up = B_TRUE; 11254 } 11255 11256 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11257 return (err); 11258 } 11259 11260 static int 11261 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11262 queue_t *q, mblk_t *mp, boolean_t need_up) 11263 { 11264 ill_t *ill = ipif->ipif_ill; 11265 int err = 0; 11266 11267 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11269 11270 /* Set the new address. */ 11271 mutex_enter(&ill->ill_lock); 11272 ipif->ipif_v6net_mask = v6mask; 11273 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11274 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11275 ipif->ipif_v6subnet); 11276 } 11277 mutex_exit(&ill->ill_lock); 11278 11279 if (need_up) { 11280 /* 11281 * Now bring the interface back up. If this 11282 * is the only IPIF for the ILL, ipif_up 11283 * will have to re-bind to the device, so 11284 * we may get back EINPROGRESS, in which 11285 * case, this IOCTL will get completed in 11286 * ip_rput_dlpi when we see the DL_BIND_ACK. 11287 */ 11288 err = ipif_up(ipif, q, mp); 11289 if (err == EINPROGRESS) 11290 return (err); 11291 } 11292 return (err); 11293 } 11294 11295 /* ARGSUSED */ 11296 int 11297 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11298 ip_ioctl_cmd_t *ipip, void *if_req) 11299 { 11300 int addrlen; 11301 in6_addr_t v6addr; 11302 in6_addr_t v6mask; 11303 struct lifreq *lifr = (struct lifreq *)if_req; 11304 11305 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11306 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11307 (void) ipif_down_tail(ipif); 11308 11309 addrlen = lifr->lifr_addrlen; 11310 if (ipif->ipif_isv6) { 11311 sin6_t *sin6; 11312 11313 sin6 = (sin6_t *)sin; 11314 v6addr = sin6->sin6_addr; 11315 } else { 11316 ipaddr_t addr; 11317 11318 addr = sin->sin_addr.s_addr; 11319 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11320 addrlen += IPV6_ABITS - IP_ABITS; 11321 } 11322 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11323 11324 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11325 } 11326 11327 /* ARGSUSED */ 11328 int 11329 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11330 ip_ioctl_cmd_t *ipip, void *if_req) 11331 { 11332 struct lifreq *lifr = (struct lifreq *)if_req; 11333 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11334 11335 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11336 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11337 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11338 11339 if (ipif->ipif_isv6) { 11340 *sin6 = sin6_null; 11341 sin6->sin6_family = AF_INET6; 11342 sin6->sin6_addr = ipif->ipif_v6subnet; 11343 lifr->lifr_addrlen = 11344 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11345 } else { 11346 *sin = sin_null; 11347 sin->sin_family = AF_INET; 11348 sin->sin_addr.s_addr = ipif->ipif_subnet; 11349 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11350 } 11351 return (0); 11352 } 11353 11354 /* 11355 * Set the IPv6 address token. 11356 */ 11357 /* ARGSUSED */ 11358 int 11359 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11360 ip_ioctl_cmd_t *ipi, void *if_req) 11361 { 11362 ill_t *ill = ipif->ipif_ill; 11363 int err; 11364 in6_addr_t v6addr; 11365 in6_addr_t v6mask; 11366 boolean_t need_up = B_FALSE; 11367 int i; 11368 sin6_t *sin6 = (sin6_t *)sin; 11369 struct lifreq *lifr = (struct lifreq *)if_req; 11370 int addrlen; 11371 11372 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11373 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11374 ASSERT(IAM_WRITER_IPIF(ipif)); 11375 11376 addrlen = lifr->lifr_addrlen; 11377 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11378 if (ipif->ipif_id != 0) 11379 return (EINVAL); 11380 11381 if (!ipif->ipif_isv6) 11382 return (EINVAL); 11383 11384 if (addrlen > IPV6_ABITS) 11385 return (EINVAL); 11386 11387 v6addr = sin6->sin6_addr; 11388 11389 /* 11390 * The length of the token is the length from the end. To get 11391 * the proper mask for this, compute the mask of the bits not 11392 * in the token; ie. the prefix, and then xor to get the mask. 11393 */ 11394 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11395 return (EINVAL); 11396 for (i = 0; i < 4; i++) { 11397 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11398 } 11399 11400 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11401 ill->ill_token_length == addrlen) 11402 return (0); /* No change */ 11403 11404 if (ipif->ipif_flags & IPIF_UP) { 11405 err = ipif_logical_down(ipif, q, mp); 11406 if (err == EINPROGRESS) 11407 return (err); 11408 (void) ipif_down_tail(ipif); 11409 need_up = B_TRUE; 11410 } 11411 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11412 return (err); 11413 } 11414 11415 static int 11416 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11417 mblk_t *mp, boolean_t need_up) 11418 { 11419 in6_addr_t v6addr; 11420 in6_addr_t v6mask; 11421 ill_t *ill = ipif->ipif_ill; 11422 int i; 11423 int err = 0; 11424 11425 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11426 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11427 v6addr = sin6->sin6_addr; 11428 /* 11429 * The length of the token is the length from the end. To get 11430 * the proper mask for this, compute the mask of the bits not 11431 * in the token; ie. the prefix, and then xor to get the mask. 11432 */ 11433 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11434 for (i = 0; i < 4; i++) 11435 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11436 11437 mutex_enter(&ill->ill_lock); 11438 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11439 ill->ill_token_length = addrlen; 11440 ill->ill_manual_token = 1; 11441 11442 /* Reconfigure the link-local address based on this new token */ 11443 ipif_setlinklocal(ill->ill_ipif); 11444 11445 mutex_exit(&ill->ill_lock); 11446 11447 if (need_up) { 11448 /* 11449 * Now bring the interface back up. If this 11450 * is the only IPIF for the ILL, ipif_up 11451 * will have to re-bind to the device, so 11452 * we may get back EINPROGRESS, in which 11453 * case, this IOCTL will get completed in 11454 * ip_rput_dlpi when we see the DL_BIND_ACK. 11455 */ 11456 err = ipif_up(ipif, q, mp); 11457 if (err == EINPROGRESS) 11458 return (err); 11459 } 11460 return (err); 11461 } 11462 11463 /* ARGSUSED */ 11464 int 11465 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11466 ip_ioctl_cmd_t *ipi, void *if_req) 11467 { 11468 ill_t *ill; 11469 sin6_t *sin6 = (sin6_t *)sin; 11470 struct lifreq *lifr = (struct lifreq *)if_req; 11471 11472 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11473 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11474 if (ipif->ipif_id != 0) 11475 return (EINVAL); 11476 11477 ill = ipif->ipif_ill; 11478 if (!ill->ill_isv6) 11479 return (ENXIO); 11480 11481 *sin6 = sin6_null; 11482 sin6->sin6_family = AF_INET6; 11483 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11484 sin6->sin6_addr = ill->ill_token; 11485 lifr->lifr_addrlen = ill->ill_token_length; 11486 return (0); 11487 } 11488 11489 /* 11490 * Set (hardware) link specific information that might override 11491 * what was acquired through the DL_INFO_ACK. 11492 */ 11493 /* ARGSUSED */ 11494 int 11495 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11496 ip_ioctl_cmd_t *ipi, void *if_req) 11497 { 11498 ill_t *ill = ipif->ipif_ill; 11499 int ip_min_mtu; 11500 struct lifreq *lifr = (struct lifreq *)if_req; 11501 lif_ifinfo_req_t *lir; 11502 11503 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11504 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11505 lir = &lifr->lifr_ifinfo; 11506 ASSERT(IAM_WRITER_IPIF(ipif)); 11507 11508 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11509 if (ipif->ipif_id != 0) 11510 return (EINVAL); 11511 11512 /* Set interface MTU. */ 11513 if (ipif->ipif_isv6) 11514 ip_min_mtu = IPV6_MIN_MTU; 11515 else 11516 ip_min_mtu = IP_MIN_MTU; 11517 11518 /* 11519 * Verify values before we set anything. Allow zero to 11520 * mean unspecified. 11521 * 11522 * XXX We should be able to set the user-defined lir_mtu to some value 11523 * that is greater than ill_current_frag but less than ill_max_frag- the 11524 * ill_max_frag value tells us the max MTU that can be handled by the 11525 * datalink, whereas the ill_current_frag is dynamically computed for 11526 * some link-types like tunnels, based on the tunnel PMTU. However, 11527 * since there is currently no way of distinguishing between 11528 * administratively fixed link mtu values (e.g., those set via 11529 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11530 * for tunnels) we conservatively choose the ill_current_frag as the 11531 * upper-bound. 11532 */ 11533 if (lir->lir_maxmtu != 0 && 11534 (lir->lir_maxmtu > ill->ill_current_frag || 11535 lir->lir_maxmtu < ip_min_mtu)) 11536 return (EINVAL); 11537 if (lir->lir_reachtime != 0 && 11538 lir->lir_reachtime > ND_MAX_REACHTIME) 11539 return (EINVAL); 11540 if (lir->lir_reachretrans != 0 && 11541 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11542 return (EINVAL); 11543 11544 mutex_enter(&ill->ill_lock); 11545 /* 11546 * The dce and fragmentation code can handle changes to ill_mtu 11547 * concurrent with sending/fragmenting packets. 11548 */ 11549 if (lir->lir_maxmtu != 0) 11550 ill->ill_user_mtu = lir->lir_maxmtu; 11551 11552 if (lir->lir_reachtime != 0) 11553 ill->ill_reachable_time = lir->lir_reachtime; 11554 11555 if (lir->lir_reachretrans != 0) 11556 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11557 11558 ill->ill_max_hops = lir->lir_maxhops; 11559 ill->ill_max_buf = ND_MAX_Q; 11560 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11561 /* 11562 * ill_mtu is the actual interface MTU, obtained as the min 11563 * of user-configured mtu and the value announced by the 11564 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11565 * we have already made the choice of requiring 11566 * ill_user_mtu < ill_current_frag by the time we get here, 11567 * the ill_mtu effectively gets assigned to the ill_user_mtu 11568 * here. 11569 */ 11570 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11571 ill->ill_mc_mtu = MIN(ill->ill_mc_mtu, ill->ill_user_mtu); 11572 } 11573 mutex_exit(&ill->ill_lock); 11574 11575 /* 11576 * Make sure all dce_generation checks find out 11577 * that ill_mtu/ill_mc_mtu has changed. 11578 */ 11579 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11580 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11581 11582 /* 11583 * Refresh IPMP meta-interface MTU if necessary. 11584 */ 11585 if (IS_UNDER_IPMP(ill)) 11586 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11587 11588 return (0); 11589 } 11590 11591 /* ARGSUSED */ 11592 int 11593 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11594 ip_ioctl_cmd_t *ipi, void *if_req) 11595 { 11596 struct lif_ifinfo_req *lir; 11597 ill_t *ill = ipif->ipif_ill; 11598 11599 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11600 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11601 if (ipif->ipif_id != 0) 11602 return (EINVAL); 11603 11604 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11605 lir->lir_maxhops = ill->ill_max_hops; 11606 lir->lir_reachtime = ill->ill_reachable_time; 11607 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11608 lir->lir_maxmtu = ill->ill_mtu; 11609 11610 return (0); 11611 } 11612 11613 /* 11614 * Return best guess as to the subnet mask for the specified address. 11615 * Based on the subnet masks for all the configured interfaces. 11616 * 11617 * We end up returning a zero mask in the case of default, multicast or 11618 * experimental. 11619 */ 11620 static ipaddr_t 11621 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11622 { 11623 ipaddr_t net_mask; 11624 ill_t *ill; 11625 ipif_t *ipif; 11626 ill_walk_context_t ctx; 11627 ipif_t *fallback_ipif = NULL; 11628 11629 net_mask = ip_net_mask(addr); 11630 if (net_mask == 0) { 11631 *ipifp = NULL; 11632 return (0); 11633 } 11634 11635 /* Let's check to see if this is maybe a local subnet route. */ 11636 /* this function only applies to IPv4 interfaces */ 11637 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11638 ill = ILL_START_WALK_V4(&ctx, ipst); 11639 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11640 mutex_enter(&ill->ill_lock); 11641 for (ipif = ill->ill_ipif; ipif != NULL; 11642 ipif = ipif->ipif_next) { 11643 if (IPIF_IS_CONDEMNED(ipif)) 11644 continue; 11645 if (!(ipif->ipif_flags & IPIF_UP)) 11646 continue; 11647 if ((ipif->ipif_subnet & net_mask) == 11648 (addr & net_mask)) { 11649 /* 11650 * Don't trust pt-pt interfaces if there are 11651 * other interfaces. 11652 */ 11653 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11654 if (fallback_ipif == NULL) { 11655 ipif_refhold_locked(ipif); 11656 fallback_ipif = ipif; 11657 } 11658 continue; 11659 } 11660 11661 /* 11662 * Fine. Just assume the same net mask as the 11663 * directly attached subnet interface is using. 11664 */ 11665 ipif_refhold_locked(ipif); 11666 mutex_exit(&ill->ill_lock); 11667 rw_exit(&ipst->ips_ill_g_lock); 11668 if (fallback_ipif != NULL) 11669 ipif_refrele(fallback_ipif); 11670 *ipifp = ipif; 11671 return (ipif->ipif_net_mask); 11672 } 11673 } 11674 mutex_exit(&ill->ill_lock); 11675 } 11676 rw_exit(&ipst->ips_ill_g_lock); 11677 11678 *ipifp = fallback_ipif; 11679 return ((fallback_ipif != NULL) ? 11680 fallback_ipif->ipif_net_mask : net_mask); 11681 } 11682 11683 /* 11684 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11685 */ 11686 static void 11687 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11688 { 11689 IOCP iocp; 11690 ipft_t *ipft; 11691 ipllc_t *ipllc; 11692 mblk_t *mp1; 11693 cred_t *cr; 11694 int error = 0; 11695 conn_t *connp; 11696 11697 ip1dbg(("ip_wput_ioctl")); 11698 iocp = (IOCP)mp->b_rptr; 11699 mp1 = mp->b_cont; 11700 if (mp1 == NULL) { 11701 iocp->ioc_error = EINVAL; 11702 mp->b_datap->db_type = M_IOCNAK; 11703 iocp->ioc_count = 0; 11704 qreply(q, mp); 11705 return; 11706 } 11707 11708 /* 11709 * These IOCTLs provide various control capabilities to 11710 * upstream agents such as ULPs and processes. There 11711 * are currently two such IOCTLs implemented. They 11712 * are used by TCP to provide update information for 11713 * existing IREs and to forcibly delete an IRE for a 11714 * host that is not responding, thereby forcing an 11715 * attempt at a new route. 11716 */ 11717 iocp->ioc_error = EINVAL; 11718 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11719 goto done; 11720 11721 ipllc = (ipllc_t *)mp1->b_rptr; 11722 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11723 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11724 break; 11725 } 11726 /* 11727 * prefer credential from mblk over ioctl; 11728 * see ip_sioctl_copyin_setup 11729 */ 11730 cr = msg_getcred(mp, NULL); 11731 if (cr == NULL) 11732 cr = iocp->ioc_cr; 11733 11734 /* 11735 * Refhold the conn in case the request gets queued up in some lookup 11736 */ 11737 ASSERT(CONN_Q(q)); 11738 connp = Q_TO_CONN(q); 11739 CONN_INC_REF(connp); 11740 CONN_INC_IOCTLREF(connp); 11741 if (ipft->ipft_pfi && 11742 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11743 pullupmsg(mp1, ipft->ipft_min_size))) { 11744 error = (*ipft->ipft_pfi)(q, 11745 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11746 } 11747 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11748 /* 11749 * CONN_OPER_PENDING_DONE happens in the function called 11750 * through ipft_pfi above. 11751 */ 11752 return; 11753 } 11754 11755 CONN_DEC_IOCTLREF(connp); 11756 CONN_OPER_PENDING_DONE(connp); 11757 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11758 freemsg(mp); 11759 return; 11760 } 11761 iocp->ioc_error = error; 11762 11763 done: 11764 mp->b_datap->db_type = M_IOCACK; 11765 if (iocp->ioc_error) 11766 iocp->ioc_count = 0; 11767 qreply(q, mp); 11768 } 11769 11770 /* 11771 * Assign a unique id for the ipif. This is used by sctp_addr.c 11772 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11773 */ 11774 static void 11775 ipif_assign_seqid(ipif_t *ipif) 11776 { 11777 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11778 11779 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11780 } 11781 11782 /* 11783 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11784 * administratively down (i.e., no DAD), of the same type, and locked. Note 11785 * that the clone is complete -- including the seqid -- and the expectation is 11786 * that the caller will either free or overwrite `sipif' before it's unlocked. 11787 */ 11788 static void 11789 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11790 { 11791 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11792 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11793 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11794 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11795 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11796 11797 dipif->ipif_flags = sipif->ipif_flags; 11798 dipif->ipif_zoneid = sipif->ipif_zoneid; 11799 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11800 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11801 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11802 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11803 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11804 11805 /* 11806 * As per the comment atop the function, we assume that these sipif 11807 * fields will be changed before sipif is unlocked. 11808 */ 11809 dipif->ipif_seqid = sipif->ipif_seqid; 11810 dipif->ipif_state_flags = sipif->ipif_state_flags; 11811 } 11812 11813 /* 11814 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11815 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11816 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11817 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11818 * down (i.e., no DAD), of the same type, and unlocked. 11819 */ 11820 static void 11821 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11822 { 11823 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11824 ipxop_t *ipx = ipsq->ipsq_xop; 11825 11826 ASSERT(sipif != dipif); 11827 ASSERT(sipif != virgipif); 11828 11829 /* 11830 * Grab all of the locks that protect the ipif in a defined order. 11831 */ 11832 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11833 11834 ipif_clone(sipif, dipif); 11835 if (virgipif != NULL) { 11836 ipif_clone(virgipif, sipif); 11837 mi_free(virgipif); 11838 } 11839 11840 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11841 11842 /* 11843 * Transfer ownership of the current xop, if necessary. 11844 */ 11845 if (ipx->ipx_current_ipif == sipif) { 11846 ASSERT(ipx->ipx_pending_ipif == NULL); 11847 mutex_enter(&ipx->ipx_lock); 11848 ipx->ipx_current_ipif = dipif; 11849 mutex_exit(&ipx->ipx_lock); 11850 } 11851 11852 if (virgipif == NULL) 11853 mi_free(sipif); 11854 } 11855 11856 /* 11857 * checks if: 11858 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11859 * - logical interface is within the allowed range 11860 */ 11861 static int 11862 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11863 { 11864 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11865 return (ENAMETOOLONG); 11866 11867 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11868 return (ERANGE); 11869 return (0); 11870 } 11871 11872 /* 11873 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11874 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11875 * be inserted into the first space available in the list. The value of 11876 * ipif_id will then be set to the appropriate value for its position. 11877 */ 11878 static int 11879 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11880 { 11881 ill_t *ill; 11882 ipif_t *tipif; 11883 ipif_t **tipifp; 11884 int id, err; 11885 ip_stack_t *ipst; 11886 11887 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11888 IAM_WRITER_IPIF(ipif)); 11889 11890 ill = ipif->ipif_ill; 11891 ASSERT(ill != NULL); 11892 ipst = ill->ill_ipst; 11893 11894 /* 11895 * In the case of lo0:0 we already hold the ill_g_lock. 11896 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11897 * ipif_insert. 11898 */ 11899 if (acquire_g_lock) 11900 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11901 mutex_enter(&ill->ill_lock); 11902 id = ipif->ipif_id; 11903 tipifp = &(ill->ill_ipif); 11904 if (id == -1) { /* need to find a real id */ 11905 id = 0; 11906 while ((tipif = *tipifp) != NULL) { 11907 ASSERT(tipif->ipif_id >= id); 11908 if (tipif->ipif_id != id) 11909 break; /* non-consecutive id */ 11910 id++; 11911 tipifp = &(tipif->ipif_next); 11912 } 11913 if ((err = is_lifname_valid(ill, id)) != 0) { 11914 mutex_exit(&ill->ill_lock); 11915 if (acquire_g_lock) 11916 rw_exit(&ipst->ips_ill_g_lock); 11917 return (err); 11918 } 11919 ipif->ipif_id = id; /* assign new id */ 11920 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11921 /* we have a real id; insert ipif in the right place */ 11922 while ((tipif = *tipifp) != NULL) { 11923 ASSERT(tipif->ipif_id != id); 11924 if (tipif->ipif_id > id) 11925 break; /* found correct location */ 11926 tipifp = &(tipif->ipif_next); 11927 } 11928 } else { 11929 mutex_exit(&ill->ill_lock); 11930 if (acquire_g_lock) 11931 rw_exit(&ipst->ips_ill_g_lock); 11932 return (err); 11933 } 11934 11935 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11936 11937 ipif->ipif_next = tipif; 11938 *tipifp = ipif; 11939 mutex_exit(&ill->ill_lock); 11940 if (acquire_g_lock) 11941 rw_exit(&ipst->ips_ill_g_lock); 11942 11943 return (0); 11944 } 11945 11946 static void 11947 ipif_remove(ipif_t *ipif) 11948 { 11949 ipif_t **ipifp; 11950 ill_t *ill = ipif->ipif_ill; 11951 11952 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11953 11954 mutex_enter(&ill->ill_lock); 11955 ipifp = &ill->ill_ipif; 11956 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11957 if (*ipifp == ipif) { 11958 *ipifp = ipif->ipif_next; 11959 break; 11960 } 11961 } 11962 mutex_exit(&ill->ill_lock); 11963 } 11964 11965 /* 11966 * Allocate and initialize a new interface control structure. (Always 11967 * called as writer.) 11968 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11969 * is not part of the global linked list of ills. ipif_seqid is unique 11970 * in the system and to preserve the uniqueness, it is assigned only 11971 * when ill becomes part of the global list. At that point ill will 11972 * have a name. If it doesn't get assigned here, it will get assigned 11973 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11974 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11975 * the interface flags or any other information from the DL_INFO_ACK for 11976 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11977 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11978 * second DL_INFO_ACK comes in from the driver. 11979 */ 11980 static ipif_t * 11981 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11982 boolean_t insert, int *errorp) 11983 { 11984 int err; 11985 ipif_t *ipif; 11986 ip_stack_t *ipst = ill->ill_ipst; 11987 11988 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11989 ill->ill_name, id, (void *)ill)); 11990 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11991 11992 if (errorp != NULL) 11993 *errorp = 0; 11994 11995 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11996 if (errorp != NULL) 11997 *errorp = ENOMEM; 11998 return (NULL); 11999 } 12000 *ipif = ipif_zero; /* start clean */ 12001 12002 ipif->ipif_ill = ill; 12003 ipif->ipif_id = id; /* could be -1 */ 12004 /* 12005 * Inherit the zoneid from the ill; for the shared stack instance 12006 * this is always the global zone 12007 */ 12008 ipif->ipif_zoneid = ill->ill_zoneid; 12009 12010 ipif->ipif_refcnt = 0; 12011 12012 if (insert) { 12013 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12014 mi_free(ipif); 12015 if (errorp != NULL) 12016 *errorp = err; 12017 return (NULL); 12018 } 12019 /* -1 id should have been replaced by real id */ 12020 id = ipif->ipif_id; 12021 ASSERT(id >= 0); 12022 } 12023 12024 if (ill->ill_name[0] != '\0') 12025 ipif_assign_seqid(ipif); 12026 12027 /* 12028 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12029 * (which must not exist yet because the zeroth ipif is created once 12030 * per ill). However, do not not link it to the ipmp_grp_t until 12031 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12032 */ 12033 if (id == 0 && IS_IPMP(ill)) { 12034 if (ipmp_illgrp_create(ill) == NULL) { 12035 if (insert) { 12036 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12037 ipif_remove(ipif); 12038 rw_exit(&ipst->ips_ill_g_lock); 12039 } 12040 mi_free(ipif); 12041 if (errorp != NULL) 12042 *errorp = ENOMEM; 12043 return (NULL); 12044 } 12045 } 12046 12047 /* 12048 * We grab ill_lock to protect the flag changes. The ipif is still 12049 * not up and can't be looked up until the ioctl completes and the 12050 * IPIF_CHANGING flag is cleared. 12051 */ 12052 mutex_enter(&ill->ill_lock); 12053 12054 ipif->ipif_ire_type = ire_type; 12055 12056 if (ipif->ipif_isv6) { 12057 ill->ill_flags |= ILLF_IPV6; 12058 } else { 12059 ipaddr_t inaddr_any = INADDR_ANY; 12060 12061 ill->ill_flags |= ILLF_IPV4; 12062 12063 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12064 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12065 &ipif->ipif_v6lcl_addr); 12066 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12067 &ipif->ipif_v6subnet); 12068 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12069 &ipif->ipif_v6net_mask); 12070 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12071 &ipif->ipif_v6brd_addr); 12072 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12073 &ipif->ipif_v6pp_dst_addr); 12074 } 12075 12076 /* 12077 * Don't set the interface flags etc. now, will do it in 12078 * ip_ll_subnet_defaults. 12079 */ 12080 if (!initialize) 12081 goto out; 12082 12083 /* 12084 * NOTE: The IPMP meta-interface is special-cased because it starts 12085 * with no underlying interfaces (and thus an unknown broadcast 12086 * address length), but all interfaces that can be placed into an IPMP 12087 * group are required to be broadcast-capable. 12088 */ 12089 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12090 /* 12091 * Later detect lack of DLPI driver multicast capability by 12092 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12093 */ 12094 ill->ill_flags |= ILLF_MULTICAST; 12095 if (!ipif->ipif_isv6) 12096 ipif->ipif_flags |= IPIF_BROADCAST; 12097 } else { 12098 if (ill->ill_net_type != IRE_LOOPBACK) { 12099 if (ipif->ipif_isv6) 12100 /* 12101 * Note: xresolv interfaces will eventually need 12102 * NOARP set here as well, but that will require 12103 * those external resolvers to have some 12104 * knowledge of that flag and act appropriately. 12105 * Not to be changed at present. 12106 */ 12107 ill->ill_flags |= ILLF_NONUD; 12108 else 12109 ill->ill_flags |= ILLF_NOARP; 12110 } 12111 if (ill->ill_phys_addr_length == 0) { 12112 if (IS_VNI(ill)) { 12113 ipif->ipif_flags |= IPIF_NOXMIT; 12114 } else { 12115 /* pt-pt supports multicast. */ 12116 ill->ill_flags |= ILLF_MULTICAST; 12117 if (ill->ill_net_type != IRE_LOOPBACK) 12118 ipif->ipif_flags |= IPIF_POINTOPOINT; 12119 } 12120 } 12121 } 12122 out: 12123 mutex_exit(&ill->ill_lock); 12124 return (ipif); 12125 } 12126 12127 /* 12128 * Remove the neighbor cache entries associated with this logical 12129 * interface. 12130 */ 12131 int 12132 ipif_arp_down(ipif_t *ipif) 12133 { 12134 ill_t *ill = ipif->ipif_ill; 12135 int err = 0; 12136 12137 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12138 ASSERT(IAM_WRITER_IPIF(ipif)); 12139 12140 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12141 ill_t *, ill, ipif_t *, ipif); 12142 ipif_nce_down(ipif); 12143 12144 /* 12145 * If this is the last ipif that is going down and there are no 12146 * duplicate addresses we may yet attempt to re-probe, then we need to 12147 * clean up ARP completely. 12148 */ 12149 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12150 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12151 /* 12152 * If this was the last ipif on an IPMP interface, purge any 12153 * static ARP entries associated with it. 12154 */ 12155 if (IS_IPMP(ill)) 12156 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12157 12158 /* UNBIND, DETACH */ 12159 err = arp_ll_down(ill); 12160 } 12161 12162 return (err); 12163 } 12164 12165 /* 12166 * Get the resolver set up for a new IP address. (Always called as writer.) 12167 * Called both for IPv4 and IPv6 interfaces, though it only does some 12168 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12169 * 12170 * The enumerated value res_act tunes the behavior: 12171 * * Res_act_initial: set up all the resolver structures for a new 12172 * IP address. 12173 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12174 * ARP message in defense of the address. 12175 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12176 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12177 * 12178 * Returns zero on success, or an errno upon failure. 12179 */ 12180 int 12181 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12182 { 12183 ill_t *ill = ipif->ipif_ill; 12184 int err; 12185 boolean_t was_dup; 12186 12187 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12188 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12189 ASSERT(IAM_WRITER_IPIF(ipif)); 12190 12191 was_dup = B_FALSE; 12192 if (res_act == Res_act_initial) { 12193 ipif->ipif_addr_ready = 0; 12194 /* 12195 * We're bringing an interface up here. There's no way that we 12196 * should need to shut down ARP now. 12197 */ 12198 mutex_enter(&ill->ill_lock); 12199 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12200 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12201 ill->ill_ipif_dup_count--; 12202 was_dup = B_TRUE; 12203 } 12204 mutex_exit(&ill->ill_lock); 12205 } 12206 if (ipif->ipif_recovery_id != 0) 12207 (void) untimeout(ipif->ipif_recovery_id); 12208 ipif->ipif_recovery_id = 0; 12209 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12210 ipif->ipif_addr_ready = 1; 12211 return (0); 12212 } 12213 /* NDP will set the ipif_addr_ready flag when it's ready */ 12214 if (ill->ill_isv6) 12215 return (0); 12216 12217 err = ipif_arp_up(ipif, res_act, was_dup); 12218 return (err); 12219 } 12220 12221 /* 12222 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12223 * when a link has just gone back up. 12224 */ 12225 static void 12226 ipif_nce_start_dad(ipif_t *ipif) 12227 { 12228 ncec_t *ncec; 12229 ill_t *ill = ipif->ipif_ill; 12230 boolean_t isv6 = ill->ill_isv6; 12231 12232 if (isv6) { 12233 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12234 &ipif->ipif_v6lcl_addr); 12235 } else { 12236 ipaddr_t v4addr; 12237 12238 if (ill->ill_net_type != IRE_IF_RESOLVER || 12239 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12240 ipif->ipif_lcl_addr == INADDR_ANY) { 12241 /* 12242 * If we can't contact ARP for some reason, 12243 * that's not really a problem. Just send 12244 * out the routing socket notification that 12245 * DAD completion would have done, and continue. 12246 */ 12247 ipif_mask_reply(ipif); 12248 ipif_up_notify(ipif); 12249 ipif->ipif_addr_ready = 1; 12250 return; 12251 } 12252 12253 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12254 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12255 } 12256 12257 if (ncec == NULL) { 12258 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12259 (void *)ipif)); 12260 return; 12261 } 12262 if (!nce_restart_dad(ncec)) { 12263 /* 12264 * If we can't restart DAD for some reason, that's not really a 12265 * problem. Just send out the routing socket notification that 12266 * DAD completion would have done, and continue. 12267 */ 12268 ipif_up_notify(ipif); 12269 ipif->ipif_addr_ready = 1; 12270 } 12271 ncec_refrele(ncec); 12272 } 12273 12274 /* 12275 * Restart duplicate address detection on all interfaces on the given ill. 12276 * 12277 * This is called when an interface transitions from down to up 12278 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12279 * 12280 * Note that since the underlying physical link has transitioned, we must cause 12281 * at least one routing socket message to be sent here, either via DAD 12282 * completion or just by default on the first ipif. (If we don't do this, then 12283 * in.mpathd will see long delays when doing link-based failure recovery.) 12284 */ 12285 void 12286 ill_restart_dad(ill_t *ill, boolean_t went_up) 12287 { 12288 ipif_t *ipif; 12289 12290 if (ill == NULL) 12291 return; 12292 12293 /* 12294 * If layer two doesn't support duplicate address detection, then just 12295 * send the routing socket message now and be done with it. 12296 */ 12297 if (!ill->ill_isv6 && arp_no_defense) { 12298 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12299 return; 12300 } 12301 12302 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12303 if (went_up) { 12304 12305 if (ipif->ipif_flags & IPIF_UP) { 12306 ipif_nce_start_dad(ipif); 12307 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12308 /* 12309 * kick off the bring-up process now. 12310 */ 12311 ipif_do_recovery(ipif); 12312 } else { 12313 /* 12314 * Unfortunately, the first ipif is "special" 12315 * and represents the underlying ill in the 12316 * routing socket messages. Thus, when this 12317 * one ipif is down, we must still notify so 12318 * that the user knows the IFF_RUNNING status 12319 * change. (If the first ipif is up, then 12320 * we'll handle eventual routing socket 12321 * notification via DAD completion.) 12322 */ 12323 if (ipif == ill->ill_ipif) { 12324 ip_rts_ifmsg(ill->ill_ipif, 12325 RTSQ_DEFAULT); 12326 } 12327 } 12328 } else { 12329 /* 12330 * After link down, we'll need to send a new routing 12331 * message when the link comes back, so clear 12332 * ipif_addr_ready. 12333 */ 12334 ipif->ipif_addr_ready = 0; 12335 } 12336 } 12337 12338 /* 12339 * If we've torn down links, then notify the user right away. 12340 */ 12341 if (!went_up) 12342 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12343 } 12344 12345 static void 12346 ipsq_delete(ipsq_t *ipsq) 12347 { 12348 ipxop_t *ipx = ipsq->ipsq_xop; 12349 12350 ipsq->ipsq_ipst = NULL; 12351 ASSERT(ipsq->ipsq_phyint == NULL); 12352 ASSERT(ipsq->ipsq_xop != NULL); 12353 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12354 ASSERT(ipx->ipx_pending_mp == NULL); 12355 kmem_free(ipsq, sizeof (ipsq_t)); 12356 } 12357 12358 static int 12359 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12360 { 12361 int err = 0; 12362 ipif_t *ipif; 12363 12364 if (ill == NULL) 12365 return (0); 12366 12367 ASSERT(IAM_WRITER_ILL(ill)); 12368 ill->ill_up_ipifs = B_TRUE; 12369 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12370 if (ipif->ipif_was_up) { 12371 if (!(ipif->ipif_flags & IPIF_UP)) 12372 err = ipif_up(ipif, q, mp); 12373 ipif->ipif_was_up = B_FALSE; 12374 if (err != 0) { 12375 ASSERT(err == EINPROGRESS); 12376 return (err); 12377 } 12378 } 12379 } 12380 ill->ill_up_ipifs = B_FALSE; 12381 return (0); 12382 } 12383 12384 /* 12385 * This function is called to bring up all the ipifs that were up before 12386 * bringing the ill down via ill_down_ipifs(). 12387 */ 12388 int 12389 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12390 { 12391 int err; 12392 12393 ASSERT(IAM_WRITER_ILL(ill)); 12394 12395 if (ill->ill_replumbing) { 12396 ill->ill_replumbing = 0; 12397 /* 12398 * Send down REPLUMB_DONE notification followed by the 12399 * BIND_REQ on the arp stream. 12400 */ 12401 if (!ill->ill_isv6) 12402 arp_send_replumb_conf(ill); 12403 } 12404 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12405 if (err != 0) 12406 return (err); 12407 12408 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12409 } 12410 12411 /* 12412 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12413 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12414 */ 12415 static void 12416 ill_down_ipifs(ill_t *ill, boolean_t logical) 12417 { 12418 ipif_t *ipif; 12419 12420 ASSERT(IAM_WRITER_ILL(ill)); 12421 12422 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12423 /* 12424 * We go through the ipif_down logic even if the ipif 12425 * is already down, since routes can be added based 12426 * on down ipifs. Going through ipif_down once again 12427 * will delete any IREs created based on these routes. 12428 */ 12429 if (ipif->ipif_flags & IPIF_UP) 12430 ipif->ipif_was_up = B_TRUE; 12431 12432 if (logical) { 12433 (void) ipif_logical_down(ipif, NULL, NULL); 12434 ipif_non_duplicate(ipif); 12435 (void) ipif_down_tail(ipif); 12436 } else { 12437 (void) ipif_down(ipif, NULL, NULL); 12438 } 12439 } 12440 } 12441 12442 /* 12443 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12444 * a look again at valid source addresses. 12445 * This should be called each time after the set of source addresses has been 12446 * changed. 12447 */ 12448 void 12449 ip_update_source_selection(ip_stack_t *ipst) 12450 { 12451 /* We skip past SRC_GENERATION_VERIFY */ 12452 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12453 SRC_GENERATION_VERIFY) 12454 atomic_add_32(&ipst->ips_src_generation, 1); 12455 } 12456 12457 /* 12458 * Finish the group join started in ip_sioctl_groupname(). 12459 */ 12460 /* ARGSUSED */ 12461 static void 12462 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12463 { 12464 ill_t *ill = q->q_ptr; 12465 phyint_t *phyi = ill->ill_phyint; 12466 ipmp_grp_t *grp = phyi->phyint_grp; 12467 ip_stack_t *ipst = ill->ill_ipst; 12468 12469 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12470 ASSERT(!IS_IPMP(ill) && grp != NULL); 12471 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12472 12473 if (phyi->phyint_illv4 != NULL) { 12474 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12475 VERIFY(grp->gr_pendv4-- > 0); 12476 rw_exit(&ipst->ips_ipmp_lock); 12477 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12478 } 12479 if (phyi->phyint_illv6 != NULL) { 12480 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12481 VERIFY(grp->gr_pendv6-- > 0); 12482 rw_exit(&ipst->ips_ipmp_lock); 12483 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12484 } 12485 freemsg(mp); 12486 } 12487 12488 /* 12489 * Process an SIOCSLIFGROUPNAME request. 12490 */ 12491 /* ARGSUSED */ 12492 int 12493 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12494 ip_ioctl_cmd_t *ipip, void *ifreq) 12495 { 12496 struct lifreq *lifr = ifreq; 12497 ill_t *ill = ipif->ipif_ill; 12498 ip_stack_t *ipst = ill->ill_ipst; 12499 phyint_t *phyi = ill->ill_phyint; 12500 ipmp_grp_t *grp = phyi->phyint_grp; 12501 mblk_t *ipsq_mp; 12502 int err = 0; 12503 12504 /* 12505 * Note that phyint_grp can only change here, where we're exclusive. 12506 */ 12507 ASSERT(IAM_WRITER_ILL(ill)); 12508 12509 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12510 (phyi->phyint_flags & PHYI_VIRTUAL)) 12511 return (EINVAL); 12512 12513 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12514 12515 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12516 12517 /* 12518 * If the name hasn't changed, there's nothing to do. 12519 */ 12520 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12521 goto unlock; 12522 12523 /* 12524 * Handle requests to rename an IPMP meta-interface. 12525 * 12526 * Note that creation of the IPMP meta-interface is handled in 12527 * userland through the standard plumbing sequence. As part of the 12528 * plumbing the IPMP meta-interface, its initial groupname is set to 12529 * the name of the interface (see ipif_set_values_tail()). 12530 */ 12531 if (IS_IPMP(ill)) { 12532 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12533 goto unlock; 12534 } 12535 12536 /* 12537 * Handle requests to add or remove an IP interface from a group. 12538 */ 12539 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12540 /* 12541 * Moves are handled by first removing the interface from 12542 * its existing group, and then adding it to another group. 12543 * So, fail if it's already in a group. 12544 */ 12545 if (IS_UNDER_IPMP(ill)) { 12546 err = EALREADY; 12547 goto unlock; 12548 } 12549 12550 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12551 if (grp == NULL) { 12552 err = ENOENT; 12553 goto unlock; 12554 } 12555 12556 /* 12557 * Check if the phyint and its ills are suitable for 12558 * inclusion into the group. 12559 */ 12560 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12561 goto unlock; 12562 12563 /* 12564 * Checks pass; join the group, and enqueue the remaining 12565 * illgrp joins for when we've become part of the group xop 12566 * and are exclusive across its IPSQs. Since qwriter_ip() 12567 * requires an mblk_t to scribble on, and since `mp' will be 12568 * freed as part of completing the ioctl, allocate another. 12569 */ 12570 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12571 err = ENOMEM; 12572 goto unlock; 12573 } 12574 12575 /* 12576 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12577 * IPMP meta-interface ills needed by `phyi' cannot go away 12578 * before ip_join_illgrps() is called back. See the comments 12579 * in ip_sioctl_plink_ipmp() for more. 12580 */ 12581 if (phyi->phyint_illv4 != NULL) 12582 grp->gr_pendv4++; 12583 if (phyi->phyint_illv6 != NULL) 12584 grp->gr_pendv6++; 12585 12586 rw_exit(&ipst->ips_ipmp_lock); 12587 12588 ipmp_phyint_join_grp(phyi, grp); 12589 ill_refhold(ill); 12590 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12591 SWITCH_OP, B_FALSE); 12592 return (0); 12593 } else { 12594 /* 12595 * Request to remove the interface from a group. If the 12596 * interface is not in a group, this trivially succeeds. 12597 */ 12598 rw_exit(&ipst->ips_ipmp_lock); 12599 if (IS_UNDER_IPMP(ill)) 12600 ipmp_phyint_leave_grp(phyi); 12601 return (0); 12602 } 12603 unlock: 12604 rw_exit(&ipst->ips_ipmp_lock); 12605 return (err); 12606 } 12607 12608 /* 12609 * Process an SIOCGLIFBINDING request. 12610 */ 12611 /* ARGSUSED */ 12612 int 12613 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12614 ip_ioctl_cmd_t *ipip, void *ifreq) 12615 { 12616 ill_t *ill; 12617 struct lifreq *lifr = ifreq; 12618 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12619 12620 if (!IS_IPMP(ipif->ipif_ill)) 12621 return (EINVAL); 12622 12623 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12624 if ((ill = ipif->ipif_bound_ill) == NULL) 12625 lifr->lifr_binding[0] = '\0'; 12626 else 12627 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12628 rw_exit(&ipst->ips_ipmp_lock); 12629 return (0); 12630 } 12631 12632 /* 12633 * Process an SIOCGLIFGROUPNAME request. 12634 */ 12635 /* ARGSUSED */ 12636 int 12637 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12638 ip_ioctl_cmd_t *ipip, void *ifreq) 12639 { 12640 ipmp_grp_t *grp; 12641 struct lifreq *lifr = ifreq; 12642 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12643 12644 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12645 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12646 lifr->lifr_groupname[0] = '\0'; 12647 else 12648 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12649 rw_exit(&ipst->ips_ipmp_lock); 12650 return (0); 12651 } 12652 12653 /* 12654 * Process an SIOCGLIFGROUPINFO request. 12655 */ 12656 /* ARGSUSED */ 12657 int 12658 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12659 ip_ioctl_cmd_t *ipip, void *dummy) 12660 { 12661 ipmp_grp_t *grp; 12662 lifgroupinfo_t *lifgr; 12663 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12664 12665 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12666 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12667 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12668 12669 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12670 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12671 rw_exit(&ipst->ips_ipmp_lock); 12672 return (ENOENT); 12673 } 12674 ipmp_grp_info(grp, lifgr); 12675 rw_exit(&ipst->ips_ipmp_lock); 12676 return (0); 12677 } 12678 12679 static void 12680 ill_dl_down(ill_t *ill) 12681 { 12682 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12683 12684 /* 12685 * The ill is down; unbind but stay attached since we're still 12686 * associated with a PPA. If we have negotiated DLPI capabilites 12687 * with the data link service provider (IDS_OK) then reset them. 12688 * The interval between unbinding and rebinding is potentially 12689 * unbounded hence we cannot assume things will be the same. 12690 * The DLPI capabilities will be probed again when the data link 12691 * is brought up. 12692 */ 12693 mblk_t *mp = ill->ill_unbind_mp; 12694 12695 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12696 12697 if (!ill->ill_replumbing) { 12698 /* Free all ilms for this ill */ 12699 update_conn_ill(ill, ill->ill_ipst); 12700 } else { 12701 ill_leave_multicast(ill); 12702 } 12703 12704 ill->ill_unbind_mp = NULL; 12705 if (mp != NULL) { 12706 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12707 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12708 ill->ill_name)); 12709 mutex_enter(&ill->ill_lock); 12710 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12711 mutex_exit(&ill->ill_lock); 12712 /* 12713 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12714 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12715 * ill_capability_dld_disable disable rightaway. If this is not 12716 * an unplumb operation then the disable happens on receipt of 12717 * the capab ack via ip_rput_dlpi_writer -> 12718 * ill_capability_ack_thr. In both cases the order of 12719 * the operations seen by DLD is capability disable followed 12720 * by DL_UNBIND. Also the DLD capability disable needs a 12721 * cv_wait'able context. 12722 */ 12723 if (ill->ill_state_flags & ILL_CONDEMNED) 12724 ill_capability_dld_disable(ill); 12725 ill_capability_reset(ill, B_FALSE); 12726 ill_dlpi_send(ill, mp); 12727 } 12728 mutex_enter(&ill->ill_lock); 12729 ill->ill_dl_up = 0; 12730 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12731 mutex_exit(&ill->ill_lock); 12732 } 12733 12734 void 12735 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12736 { 12737 union DL_primitives *dlp; 12738 t_uscalar_t prim; 12739 boolean_t waitack = B_FALSE; 12740 12741 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12742 12743 dlp = (union DL_primitives *)mp->b_rptr; 12744 prim = dlp->dl_primitive; 12745 12746 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12747 dl_primstr(prim), prim, ill->ill_name)); 12748 12749 switch (prim) { 12750 case DL_PHYS_ADDR_REQ: 12751 { 12752 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12753 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12754 break; 12755 } 12756 case DL_BIND_REQ: 12757 mutex_enter(&ill->ill_lock); 12758 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12759 mutex_exit(&ill->ill_lock); 12760 break; 12761 } 12762 12763 /* 12764 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12765 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12766 * we only wait for the ACK of the DL_UNBIND_REQ. 12767 */ 12768 mutex_enter(&ill->ill_lock); 12769 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12770 (prim == DL_UNBIND_REQ)) { 12771 ill->ill_dlpi_pending = prim; 12772 waitack = B_TRUE; 12773 } 12774 12775 mutex_exit(&ill->ill_lock); 12776 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12777 char *, dl_primstr(prim), ill_t *, ill); 12778 putnext(ill->ill_wq, mp); 12779 12780 /* 12781 * There is no ack for DL_NOTIFY_CONF messages 12782 */ 12783 if (waitack && prim == DL_NOTIFY_CONF) 12784 ill_dlpi_done(ill, prim); 12785 } 12786 12787 /* 12788 * Helper function for ill_dlpi_send(). 12789 */ 12790 /* ARGSUSED */ 12791 static void 12792 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12793 { 12794 ill_dlpi_send(q->q_ptr, mp); 12795 } 12796 12797 /* 12798 * Send a DLPI control message to the driver but make sure there 12799 * is only one outstanding message. Uses ill_dlpi_pending to tell 12800 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12801 * when an ACK or a NAK is received to process the next queued message. 12802 */ 12803 void 12804 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12805 { 12806 mblk_t **mpp; 12807 12808 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12809 12810 /* 12811 * To ensure that any DLPI requests for current exclusive operation 12812 * are always completely sent before any DLPI messages for other 12813 * operations, require writer access before enqueuing. 12814 */ 12815 if (!IAM_WRITER_ILL(ill)) { 12816 ill_refhold(ill); 12817 /* qwriter_ip() does the ill_refrele() */ 12818 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12819 NEW_OP, B_TRUE); 12820 return; 12821 } 12822 12823 mutex_enter(&ill->ill_lock); 12824 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12825 /* Must queue message. Tail insertion */ 12826 mpp = &ill->ill_dlpi_deferred; 12827 while (*mpp != NULL) 12828 mpp = &((*mpp)->b_next); 12829 12830 ip1dbg(("ill_dlpi_send: deferring request for %s " 12831 "while %s pending\n", ill->ill_name, 12832 dl_primstr(ill->ill_dlpi_pending))); 12833 12834 *mpp = mp; 12835 mutex_exit(&ill->ill_lock); 12836 return; 12837 } 12838 mutex_exit(&ill->ill_lock); 12839 ill_dlpi_dispatch(ill, mp); 12840 } 12841 12842 void 12843 ill_capability_send(ill_t *ill, mblk_t *mp) 12844 { 12845 ill->ill_capab_pending_cnt++; 12846 ill_dlpi_send(ill, mp); 12847 } 12848 12849 void 12850 ill_capability_done(ill_t *ill) 12851 { 12852 ASSERT(ill->ill_capab_pending_cnt != 0); 12853 12854 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12855 12856 ill->ill_capab_pending_cnt--; 12857 if (ill->ill_capab_pending_cnt == 0 && 12858 ill->ill_dlpi_capab_state == IDCS_OK) 12859 ill_capability_reset_alloc(ill); 12860 } 12861 12862 /* 12863 * Send all deferred DLPI messages without waiting for their ACKs. 12864 */ 12865 void 12866 ill_dlpi_send_deferred(ill_t *ill) 12867 { 12868 mblk_t *mp, *nextmp; 12869 12870 /* 12871 * Clear ill_dlpi_pending so that the message is not queued in 12872 * ill_dlpi_send(). 12873 */ 12874 mutex_enter(&ill->ill_lock); 12875 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12876 mp = ill->ill_dlpi_deferred; 12877 ill->ill_dlpi_deferred = NULL; 12878 mutex_exit(&ill->ill_lock); 12879 12880 for (; mp != NULL; mp = nextmp) { 12881 nextmp = mp->b_next; 12882 mp->b_next = NULL; 12883 ill_dlpi_send(ill, mp); 12884 } 12885 } 12886 12887 /* 12888 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12889 * or M_HANGUP 12890 */ 12891 static void 12892 ill_dlpi_clear_deferred(ill_t *ill) 12893 { 12894 mblk_t *mp, *nextmp; 12895 12896 mutex_enter(&ill->ill_lock); 12897 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12898 mp = ill->ill_dlpi_deferred; 12899 ill->ill_dlpi_deferred = NULL; 12900 mutex_exit(&ill->ill_lock); 12901 12902 for (; mp != NULL; mp = nextmp) { 12903 nextmp = mp->b_next; 12904 inet_freemsg(mp); 12905 } 12906 } 12907 12908 /* 12909 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12910 */ 12911 boolean_t 12912 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12913 { 12914 t_uscalar_t pending; 12915 12916 mutex_enter(&ill->ill_lock); 12917 if (ill->ill_dlpi_pending == prim) { 12918 mutex_exit(&ill->ill_lock); 12919 return (B_TRUE); 12920 } 12921 12922 /* 12923 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12924 * without waiting, so don't print any warnings in that case. 12925 */ 12926 if (ill->ill_state_flags & ILL_CONDEMNED) { 12927 mutex_exit(&ill->ill_lock); 12928 return (B_FALSE); 12929 } 12930 pending = ill->ill_dlpi_pending; 12931 mutex_exit(&ill->ill_lock); 12932 12933 if (pending == DL_PRIM_INVAL) { 12934 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12935 "received unsolicited ack for %s on %s\n", 12936 dl_primstr(prim), ill->ill_name); 12937 } else { 12938 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12939 "received unexpected ack for %s on %s (expecting %s)\n", 12940 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12941 } 12942 return (B_FALSE); 12943 } 12944 12945 /* 12946 * Complete the current DLPI operation associated with `prim' on `ill' and 12947 * start the next queued DLPI operation (if any). If there are no queued DLPI 12948 * operations and the ill's current exclusive IPSQ operation has finished 12949 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12950 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12951 * the comments above ipsq_current_finish() for details. 12952 */ 12953 void 12954 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12955 { 12956 mblk_t *mp; 12957 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12958 ipxop_t *ipx = ipsq->ipsq_xop; 12959 12960 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12961 mutex_enter(&ill->ill_lock); 12962 12963 ASSERT(prim != DL_PRIM_INVAL); 12964 ASSERT(ill->ill_dlpi_pending == prim); 12965 12966 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12967 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12968 12969 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12970 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12971 if (ipx->ipx_current_done) { 12972 mutex_enter(&ipx->ipx_lock); 12973 ipx->ipx_current_ipif = NULL; 12974 mutex_exit(&ipx->ipx_lock); 12975 } 12976 cv_signal(&ill->ill_cv); 12977 mutex_exit(&ill->ill_lock); 12978 return; 12979 } 12980 12981 ill->ill_dlpi_deferred = mp->b_next; 12982 mp->b_next = NULL; 12983 mutex_exit(&ill->ill_lock); 12984 12985 ill_dlpi_dispatch(ill, mp); 12986 } 12987 12988 /* 12989 * Queue a (multicast) DLPI control message to be sent to the driver by 12990 * later calling ill_dlpi_send_queued. 12991 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12992 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12993 * for the same group to race. 12994 * We send DLPI control messages in order using ill_lock. 12995 * For IPMP we should be called on the cast_ill. 12996 */ 12997 void 12998 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12999 { 13000 mblk_t **mpp; 13001 13002 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13003 13004 mutex_enter(&ill->ill_lock); 13005 /* Must queue message. Tail insertion */ 13006 mpp = &ill->ill_dlpi_deferred; 13007 while (*mpp != NULL) 13008 mpp = &((*mpp)->b_next); 13009 13010 *mpp = mp; 13011 mutex_exit(&ill->ill_lock); 13012 } 13013 13014 /* 13015 * Send the messages that were queued. Make sure there is only 13016 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13017 * when an ACK or a NAK is received to process the next queued message. 13018 * For IPMP we are called on the upper ill, but when send what is queued 13019 * on the cast_ill. 13020 */ 13021 void 13022 ill_dlpi_send_queued(ill_t *ill) 13023 { 13024 mblk_t *mp; 13025 union DL_primitives *dlp; 13026 t_uscalar_t prim; 13027 ill_t *release_ill = NULL; 13028 13029 if (IS_IPMP(ill)) { 13030 /* On the upper IPMP ill. */ 13031 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13032 if (release_ill == NULL) { 13033 /* Avoid ever sending anything down to the ipmpstub */ 13034 return; 13035 } 13036 ill = release_ill; 13037 } 13038 mutex_enter(&ill->ill_lock); 13039 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13040 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13041 /* Can't send. Somebody else will send it */ 13042 mutex_exit(&ill->ill_lock); 13043 goto done; 13044 } 13045 ill->ill_dlpi_deferred = mp->b_next; 13046 mp->b_next = NULL; 13047 if (!ill->ill_dl_up) { 13048 /* 13049 * Nobody there. All multicast addresses will be 13050 * re-joined when we get the DL_BIND_ACK bringing the 13051 * interface up. 13052 */ 13053 freemsg(mp); 13054 continue; 13055 } 13056 dlp = (union DL_primitives *)mp->b_rptr; 13057 prim = dlp->dl_primitive; 13058 13059 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13060 (prim == DL_UNBIND_REQ)) { 13061 ill->ill_dlpi_pending = prim; 13062 } 13063 mutex_exit(&ill->ill_lock); 13064 13065 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13066 char *, dl_primstr(prim), ill_t *, ill); 13067 putnext(ill->ill_wq, mp); 13068 mutex_enter(&ill->ill_lock); 13069 } 13070 mutex_exit(&ill->ill_lock); 13071 done: 13072 if (release_ill != NULL) 13073 ill_refrele(release_ill); 13074 } 13075 13076 /* 13077 * Queue an IP (IGMP/MLD) message to be sent by IP from 13078 * ill_mcast_send_queued 13079 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13080 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13081 * group to race. 13082 * We send them in order using ill_lock. 13083 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13084 */ 13085 void 13086 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13087 { 13088 mblk_t **mpp; 13089 ill_t *release_ill = NULL; 13090 13091 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13092 13093 if (IS_IPMP(ill)) { 13094 /* On the upper IPMP ill. */ 13095 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13096 if (release_ill == NULL) { 13097 /* Discard instead of queuing for the ipmp interface */ 13098 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13099 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13100 mp, ill); 13101 freemsg(mp); 13102 return; 13103 } 13104 ill = release_ill; 13105 } 13106 13107 mutex_enter(&ill->ill_lock); 13108 /* Must queue message. Tail insertion */ 13109 mpp = &ill->ill_mcast_deferred; 13110 while (*mpp != NULL) 13111 mpp = &((*mpp)->b_next); 13112 13113 *mpp = mp; 13114 mutex_exit(&ill->ill_lock); 13115 if (release_ill != NULL) 13116 ill_refrele(release_ill); 13117 } 13118 13119 /* 13120 * Send the IP packets that were queued by ill_mcast_queue. 13121 * These are IGMP/MLD packets. 13122 * 13123 * For IPMP we are called on the upper ill, but when send what is queued 13124 * on the cast_ill. 13125 * 13126 * Request loopback of the report if we are acting as a multicast 13127 * router, so that the process-level routing demon can hear it. 13128 * This will run multiple times for the same group if there are members 13129 * on the same group for multiple ipif's on the same ill. The 13130 * igmp_input/mld_input code will suppress this due to the loopback thus we 13131 * always loopback membership report. 13132 * 13133 * We also need to make sure that this does not get load balanced 13134 * by IPMP. We do this by passing an ill to ip_output_simple. 13135 */ 13136 void 13137 ill_mcast_send_queued(ill_t *ill) 13138 { 13139 mblk_t *mp; 13140 ip_xmit_attr_t ixas; 13141 ill_t *release_ill = NULL; 13142 13143 if (IS_IPMP(ill)) { 13144 /* On the upper IPMP ill. */ 13145 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13146 if (release_ill == NULL) { 13147 /* 13148 * We should have no messages on the ipmp interface 13149 * but no point in trying to send them. 13150 */ 13151 return; 13152 } 13153 ill = release_ill; 13154 } 13155 bzero(&ixas, sizeof (ixas)); 13156 ixas.ixa_zoneid = ALL_ZONES; 13157 ixas.ixa_cred = kcred; 13158 ixas.ixa_cpid = NOPID; 13159 ixas.ixa_tsl = NULL; 13160 /* 13161 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13162 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13163 * That is necessary to handle IGMP/MLD snooping switches. 13164 */ 13165 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13166 ixas.ixa_ipst = ill->ill_ipst; 13167 13168 mutex_enter(&ill->ill_lock); 13169 while ((mp = ill->ill_mcast_deferred) != NULL) { 13170 ill->ill_mcast_deferred = mp->b_next; 13171 mp->b_next = NULL; 13172 if (!ill->ill_dl_up) { 13173 /* 13174 * Nobody there. Just drop the ip packets. 13175 * IGMP/MLD will resend later, if this is a replumb. 13176 */ 13177 freemsg(mp); 13178 continue; 13179 } 13180 mutex_enter(&ill->ill_phyint->phyint_lock); 13181 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13182 /* 13183 * When the ill is getting deactivated, we only want to 13184 * send the DLPI messages, so drop IGMP/MLD packets. 13185 * DLPI messages are handled by ill_dlpi_send_queued() 13186 */ 13187 mutex_exit(&ill->ill_phyint->phyint_lock); 13188 freemsg(mp); 13189 continue; 13190 } 13191 mutex_exit(&ill->ill_phyint->phyint_lock); 13192 mutex_exit(&ill->ill_lock); 13193 13194 /* Check whether we are sending IPv4 or IPv6. */ 13195 if (ill->ill_isv6) { 13196 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13197 13198 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13199 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13200 } else { 13201 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13202 13203 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13204 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13205 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13206 } 13207 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13208 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13209 (void) ip_output_simple(mp, &ixas); 13210 ixa_cleanup(&ixas); 13211 13212 mutex_enter(&ill->ill_lock); 13213 } 13214 mutex_exit(&ill->ill_lock); 13215 13216 done: 13217 if (release_ill != NULL) 13218 ill_refrele(release_ill); 13219 } 13220 13221 /* 13222 * Take down a specific interface, but don't lose any information about it. 13223 * (Always called as writer.) 13224 * This function goes through the down sequence even if the interface is 13225 * already down. There are 2 reasons. 13226 * a. Currently we permit interface routes that depend on down interfaces 13227 * to be added. This behaviour itself is questionable. However it appears 13228 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13229 * time. We go thru the cleanup in order to remove these routes. 13230 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13231 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13232 * down, but we need to cleanup i.e. do ill_dl_down and 13233 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13234 * 13235 * IP-MT notes: 13236 * 13237 * Model of reference to interfaces. 13238 * 13239 * The following members in ipif_t track references to the ipif. 13240 * int ipif_refcnt; Active reference count 13241 * 13242 * The following members in ill_t track references to the ill. 13243 * int ill_refcnt; active refcnt 13244 * uint_t ill_ire_cnt; Number of ires referencing ill 13245 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13246 * uint_t ill_nce_cnt; Number of nces referencing ill 13247 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13248 * 13249 * Reference to an ipif or ill can be obtained in any of the following ways. 13250 * 13251 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13252 * Pointers to ipif / ill from other data structures viz ire and conn. 13253 * Implicit reference to the ipif / ill by holding a reference to the ire. 13254 * 13255 * The ipif/ill lookup functions return a reference held ipif / ill. 13256 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13257 * This is a purely dynamic reference count associated with threads holding 13258 * references to the ipif / ill. Pointers from other structures do not 13259 * count towards this reference count. 13260 * 13261 * ill_ire_cnt is the number of ire's associated with the 13262 * ill. This is incremented whenever a new ire is created referencing the 13263 * ill. This is done atomically inside ire_add_v[46] where the ire is 13264 * actually added to the ire hash table. The count is decremented in 13265 * ire_inactive where the ire is destroyed. 13266 * 13267 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13268 * This is incremented atomically in 13269 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13270 * table. Similarly it is decremented in ncec_inactive() where the ncec 13271 * is destroyed. 13272 * 13273 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13274 * incremented atomically in nce_add() where the nce is actually added to the 13275 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13276 * is destroyed. 13277 * 13278 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13279 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13280 * 13281 * Flow of ioctls involving interface down/up 13282 * 13283 * The following is the sequence of an attempt to set some critical flags on an 13284 * up interface. 13285 * ip_sioctl_flags 13286 * ipif_down 13287 * wait for ipif to be quiescent 13288 * ipif_down_tail 13289 * ip_sioctl_flags_tail 13290 * 13291 * All set ioctls that involve down/up sequence would have a skeleton similar 13292 * to the above. All the *tail functions are called after the refcounts have 13293 * dropped to the appropriate values. 13294 * 13295 * SIOC ioctls during the IPIF_CHANGING interval. 13296 * 13297 * Threads handling SIOC set ioctls serialize on the squeue, but this 13298 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13299 * steps of internal changes to the state, some of which are visible in 13300 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13301 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13302 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13303 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13304 * the current exclusive operation completes. The IPIF_CHANGING check 13305 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13306 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13307 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13308 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13309 * until we release the ipsq_lock, even though the ill/ipif state flags 13310 * can change after we drop the ill_lock. 13311 */ 13312 int 13313 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13314 { 13315 ill_t *ill = ipif->ipif_ill; 13316 conn_t *connp; 13317 boolean_t success; 13318 boolean_t ipif_was_up = B_FALSE; 13319 ip_stack_t *ipst = ill->ill_ipst; 13320 13321 ASSERT(IAM_WRITER_IPIF(ipif)); 13322 13323 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13324 13325 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13326 ill_t *, ill, ipif_t *, ipif); 13327 13328 if (ipif->ipif_flags & IPIF_UP) { 13329 mutex_enter(&ill->ill_lock); 13330 ipif->ipif_flags &= ~IPIF_UP; 13331 ASSERT(ill->ill_ipif_up_count > 0); 13332 --ill->ill_ipif_up_count; 13333 mutex_exit(&ill->ill_lock); 13334 ipif_was_up = B_TRUE; 13335 /* Update status in SCTP's list */ 13336 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13337 ill_nic_event_dispatch(ipif->ipif_ill, 13338 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13339 } 13340 13341 /* 13342 * Removal of the last ipif from an ill may result in a DL_UNBIND 13343 * being sent to the driver, and we must not send any data packets to 13344 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13345 * ire and nce entries used in the data path will be cleaned 13346 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13347 * sure on new entries will be added until the ill is bound 13348 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13349 * receipt of a DL_BIND_ACK. 13350 */ 13351 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13352 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13353 ill->ill_dl_up) { 13354 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13355 } 13356 13357 /* 13358 * Blow away memberships we established in ipif_multicast_up(). 13359 */ 13360 ipif_multicast_down(ipif); 13361 13362 /* 13363 * Remove from the mapping for __sin6_src_id. We insert only 13364 * when the address is not INADDR_ANY. As IPv4 addresses are 13365 * stored as mapped addresses, we need to check for mapped 13366 * INADDR_ANY also. 13367 */ 13368 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13369 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13370 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13371 int err; 13372 13373 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13374 ipif->ipif_zoneid, ipst); 13375 if (err != 0) { 13376 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13377 } 13378 } 13379 13380 if (ipif_was_up) { 13381 /* only delete if we'd added ire's before */ 13382 if (ipif->ipif_isv6) 13383 ipif_delete_ires_v6(ipif); 13384 else 13385 ipif_delete_ires_v4(ipif); 13386 } 13387 13388 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13389 /* 13390 * Since the interface is now down, it may have just become 13391 * inactive. Note that this needs to be done even for a 13392 * lll_logical_down(), or ARP entries will not get correctly 13393 * restored when the interface comes back up. 13394 */ 13395 if (IS_UNDER_IPMP(ill)) 13396 ipmp_ill_refresh_active(ill); 13397 } 13398 13399 /* 13400 * neighbor-discovery or arp entries for this interface. The ipif 13401 * has to be quiesced, so we walk all the nce's and delete those 13402 * that point at the ipif->ipif_ill. At the same time, we also 13403 * update IPMP so that ipifs for data addresses are unbound. We dont 13404 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13405 * that for ipif_down_tail() 13406 */ 13407 ipif_nce_down(ipif); 13408 13409 /* 13410 * If this is the last ipif on the ill, we also need to remove 13411 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13412 * never succeed. 13413 */ 13414 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13415 ire_walk_ill(0, 0, ill_downi, ill, ill); 13416 13417 /* 13418 * Walk all CONNs that can have a reference on an ire for this 13419 * ipif (we actually walk all that now have stale references). 13420 */ 13421 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13422 13423 /* 13424 * If mp is NULL the caller will wait for the appropriate refcnt. 13425 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13426 * and ill_delete -> ipif_free -> ipif_down 13427 */ 13428 if (mp == NULL) { 13429 ASSERT(q == NULL); 13430 return (0); 13431 } 13432 13433 if (CONN_Q(q)) { 13434 connp = Q_TO_CONN(q); 13435 mutex_enter(&connp->conn_lock); 13436 } else { 13437 connp = NULL; 13438 } 13439 mutex_enter(&ill->ill_lock); 13440 /* 13441 * Are there any ire's pointing to this ipif that are still active ? 13442 * If this is the last ipif going down, are there any ire's pointing 13443 * to this ill that are still active ? 13444 */ 13445 if (ipif_is_quiescent(ipif)) { 13446 mutex_exit(&ill->ill_lock); 13447 if (connp != NULL) 13448 mutex_exit(&connp->conn_lock); 13449 return (0); 13450 } 13451 13452 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13453 ill->ill_name, (void *)ill)); 13454 /* 13455 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13456 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13457 * which in turn is called by the last refrele on the ipif/ill/ire. 13458 */ 13459 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13460 if (!success) { 13461 /* The conn is closing. So just return */ 13462 ASSERT(connp != NULL); 13463 mutex_exit(&ill->ill_lock); 13464 mutex_exit(&connp->conn_lock); 13465 return (EINTR); 13466 } 13467 13468 mutex_exit(&ill->ill_lock); 13469 if (connp != NULL) 13470 mutex_exit(&connp->conn_lock); 13471 return (EINPROGRESS); 13472 } 13473 13474 int 13475 ipif_down_tail(ipif_t *ipif) 13476 { 13477 ill_t *ill = ipif->ipif_ill; 13478 int err = 0; 13479 13480 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13481 ill_t *, ill, ipif_t *, ipif); 13482 13483 /* 13484 * Skip any loopback interface (null wq). 13485 * If this is the last logical interface on the ill 13486 * have ill_dl_down tell the driver we are gone (unbind) 13487 * Note that lun 0 can ipif_down even though 13488 * there are other logical units that are up. 13489 * This occurs e.g. when we change a "significant" IFF_ flag. 13490 */ 13491 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13492 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13493 ill->ill_dl_up) { 13494 ill_dl_down(ill); 13495 } 13496 if (!ipif->ipif_isv6) 13497 err = ipif_arp_down(ipif); 13498 13499 ill->ill_logical_down = 0; 13500 13501 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13502 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13503 return (err); 13504 } 13505 13506 /* 13507 * Bring interface logically down without bringing the physical interface 13508 * down e.g. when the netmask is changed. This avoids long lasting link 13509 * negotiations between an ethernet interface and a certain switches. 13510 */ 13511 static int 13512 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13513 { 13514 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13515 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13516 13517 /* 13518 * The ill_logical_down flag is a transient flag. It is set here 13519 * and is cleared once the down has completed in ipif_down_tail. 13520 * This flag does not indicate whether the ill stream is in the 13521 * DL_BOUND state with the driver. Instead this flag is used by 13522 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13523 * the driver. The state of the ill stream i.e. whether it is 13524 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13525 */ 13526 ipif->ipif_ill->ill_logical_down = 1; 13527 return (ipif_down(ipif, q, mp)); 13528 } 13529 13530 /* 13531 * Initiate deallocate of an IPIF. Always called as writer. Called by 13532 * ill_delete or ip_sioctl_removeif. 13533 */ 13534 static void 13535 ipif_free(ipif_t *ipif) 13536 { 13537 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13538 13539 ASSERT(IAM_WRITER_IPIF(ipif)); 13540 13541 if (ipif->ipif_recovery_id != 0) 13542 (void) untimeout(ipif->ipif_recovery_id); 13543 ipif->ipif_recovery_id = 0; 13544 13545 /* 13546 * Take down the interface. We can be called either from ill_delete 13547 * or from ip_sioctl_removeif. 13548 */ 13549 (void) ipif_down(ipif, NULL, NULL); 13550 13551 /* 13552 * Now that the interface is down, there's no chance it can still 13553 * become a duplicate. Cancel any timer that may have been set while 13554 * tearing down. 13555 */ 13556 if (ipif->ipif_recovery_id != 0) 13557 (void) untimeout(ipif->ipif_recovery_id); 13558 ipif->ipif_recovery_id = 0; 13559 13560 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13561 /* Remove pointers to this ill in the multicast routing tables */ 13562 reset_mrt_vif_ipif(ipif); 13563 /* If necessary, clear the cached source ipif rotor. */ 13564 if (ipif->ipif_ill->ill_src_ipif == ipif) 13565 ipif->ipif_ill->ill_src_ipif = NULL; 13566 rw_exit(&ipst->ips_ill_g_lock); 13567 } 13568 13569 static void 13570 ipif_free_tail(ipif_t *ipif) 13571 { 13572 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13573 13574 /* 13575 * Need to hold both ill_g_lock and ill_lock while 13576 * inserting or removing an ipif from the linked list 13577 * of ipifs hanging off the ill. 13578 */ 13579 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13580 13581 #ifdef DEBUG 13582 ipif_trace_cleanup(ipif); 13583 #endif 13584 13585 /* Ask SCTP to take it out of it list */ 13586 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13587 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13588 13589 /* Get it out of the ILL interface list. */ 13590 ipif_remove(ipif); 13591 rw_exit(&ipst->ips_ill_g_lock); 13592 13593 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13594 ASSERT(ipif->ipif_recovery_id == 0); 13595 ASSERT(ipif->ipif_ire_local == NULL); 13596 ASSERT(ipif->ipif_ire_if == NULL); 13597 13598 /* Free the memory. */ 13599 mi_free(ipif); 13600 } 13601 13602 /* 13603 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13604 * is zero. 13605 */ 13606 void 13607 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13608 { 13609 char lbuf[LIFNAMSIZ]; 13610 char *name; 13611 size_t name_len; 13612 13613 buf[0] = '\0'; 13614 name = ipif->ipif_ill->ill_name; 13615 name_len = ipif->ipif_ill->ill_name_length; 13616 if (ipif->ipif_id != 0) { 13617 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13618 ipif->ipif_id); 13619 name = lbuf; 13620 name_len = mi_strlen(name) + 1; 13621 } 13622 len -= 1; 13623 buf[len] = '\0'; 13624 len = MIN(len, name_len); 13625 bcopy(name, buf, len); 13626 } 13627 13628 /* 13629 * Sets `buf' to an ill name. 13630 */ 13631 void 13632 ill_get_name(const ill_t *ill, char *buf, int len) 13633 { 13634 char *name; 13635 size_t name_len; 13636 13637 name = ill->ill_name; 13638 name_len = ill->ill_name_length; 13639 len -= 1; 13640 buf[len] = '\0'; 13641 len = MIN(len, name_len); 13642 bcopy(name, buf, len); 13643 } 13644 13645 /* 13646 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13647 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13648 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13649 * (May be called as writer.) 13650 */ 13651 static ipif_t * 13652 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13653 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13654 { 13655 char *cp; 13656 char *endp; 13657 long id; 13658 ill_t *ill; 13659 ipif_t *ipif; 13660 uint_t ire_type; 13661 boolean_t did_alloc = B_FALSE; 13662 char last; 13663 13664 /* 13665 * If the caller wants to us to create the ipif, make sure we have a 13666 * valid zoneid 13667 */ 13668 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13669 13670 if (namelen == 0) { 13671 return (NULL); 13672 } 13673 13674 *exists = B_FALSE; 13675 /* Look for a colon in the name. */ 13676 endp = &name[namelen]; 13677 for (cp = endp; --cp > name; ) { 13678 if (*cp == IPIF_SEPARATOR_CHAR) 13679 break; 13680 } 13681 13682 if (*cp == IPIF_SEPARATOR_CHAR) { 13683 /* 13684 * Reject any non-decimal aliases for logical 13685 * interfaces. Aliases with leading zeroes 13686 * are also rejected as they introduce ambiguity 13687 * in the naming of the interfaces. 13688 * In order to confirm with existing semantics, 13689 * and to not break any programs/script relying 13690 * on that behaviour, if<0>:0 is considered to be 13691 * a valid interface. 13692 * 13693 * If alias has two or more digits and the first 13694 * is zero, fail. 13695 */ 13696 if (&cp[2] < endp && cp[1] == '0') { 13697 return (NULL); 13698 } 13699 } 13700 13701 if (cp <= name) { 13702 cp = endp; 13703 } 13704 last = *cp; 13705 *cp = '\0'; 13706 13707 /* 13708 * Look up the ILL, based on the portion of the name 13709 * before the slash. ill_lookup_on_name returns a held ill. 13710 * Temporary to check whether ill exists already. If so 13711 * ill_lookup_on_name will clear it. 13712 */ 13713 ill = ill_lookup_on_name(name, do_alloc, isv6, 13714 &did_alloc, ipst); 13715 *cp = last; 13716 if (ill == NULL) 13717 return (NULL); 13718 13719 /* Establish the unit number in the name. */ 13720 id = 0; 13721 if (cp < endp && *endp == '\0') { 13722 /* If there was a colon, the unit number follows. */ 13723 cp++; 13724 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13725 ill_refrele(ill); 13726 return (NULL); 13727 } 13728 } 13729 13730 mutex_enter(&ill->ill_lock); 13731 /* Now see if there is an IPIF with this unit number. */ 13732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13733 if (ipif->ipif_id == id) { 13734 if (zoneid != ALL_ZONES && 13735 zoneid != ipif->ipif_zoneid && 13736 ipif->ipif_zoneid != ALL_ZONES) { 13737 mutex_exit(&ill->ill_lock); 13738 ill_refrele(ill); 13739 return (NULL); 13740 } 13741 if (IPIF_CAN_LOOKUP(ipif)) { 13742 ipif_refhold_locked(ipif); 13743 mutex_exit(&ill->ill_lock); 13744 if (!did_alloc) 13745 *exists = B_TRUE; 13746 /* 13747 * Drop locks before calling ill_refrele 13748 * since it can potentially call into 13749 * ipif_ill_refrele_tail which can end up 13750 * in trying to acquire any lock. 13751 */ 13752 ill_refrele(ill); 13753 return (ipif); 13754 } 13755 } 13756 } 13757 13758 if (!do_alloc) { 13759 mutex_exit(&ill->ill_lock); 13760 ill_refrele(ill); 13761 return (NULL); 13762 } 13763 13764 /* 13765 * If none found, atomically allocate and return a new one. 13766 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13767 * to support "receive only" use of lo0:1 etc. as is still done 13768 * below as an initial guess. 13769 * However, this is now likely to be overriden later in ipif_up_done() 13770 * when we know for sure what address has been configured on the 13771 * interface, since we might have more than one loopback interface 13772 * with a loopback address, e.g. in the case of zones, and all the 13773 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13774 */ 13775 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13776 ire_type = IRE_LOOPBACK; 13777 else 13778 ire_type = IRE_LOCAL; 13779 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13780 if (ipif != NULL) 13781 ipif_refhold_locked(ipif); 13782 mutex_exit(&ill->ill_lock); 13783 ill_refrele(ill); 13784 return (ipif); 13785 } 13786 13787 /* 13788 * Variant of the above that queues the request on the ipsq when 13789 * IPIF_CHANGING is set. 13790 */ 13791 static ipif_t * 13792 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13793 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13794 ip_stack_t *ipst) 13795 { 13796 char *cp; 13797 char *endp; 13798 long id; 13799 ill_t *ill; 13800 ipif_t *ipif; 13801 boolean_t did_alloc = B_FALSE; 13802 ipsq_t *ipsq; 13803 13804 if (error != NULL) 13805 *error = 0; 13806 13807 if (namelen == 0) { 13808 if (error != NULL) 13809 *error = ENXIO; 13810 return (NULL); 13811 } 13812 13813 /* Look for a colon in the name. */ 13814 endp = &name[namelen]; 13815 for (cp = endp; --cp > name; ) { 13816 if (*cp == IPIF_SEPARATOR_CHAR) 13817 break; 13818 } 13819 13820 if (*cp == IPIF_SEPARATOR_CHAR) { 13821 /* 13822 * Reject any non-decimal aliases for logical 13823 * interfaces. Aliases with leading zeroes 13824 * are also rejected as they introduce ambiguity 13825 * in the naming of the interfaces. 13826 * In order to confirm with existing semantics, 13827 * and to not break any programs/script relying 13828 * on that behaviour, if<0>:0 is considered to be 13829 * a valid interface. 13830 * 13831 * If alias has two or more digits and the first 13832 * is zero, fail. 13833 */ 13834 if (&cp[2] < endp && cp[1] == '0') { 13835 if (error != NULL) 13836 *error = EINVAL; 13837 return (NULL); 13838 } 13839 } 13840 13841 if (cp <= name) { 13842 cp = endp; 13843 } else { 13844 *cp = '\0'; 13845 } 13846 13847 /* 13848 * Look up the ILL, based on the portion of the name 13849 * before the slash. ill_lookup_on_name returns a held ill. 13850 * Temporary to check whether ill exists already. If so 13851 * ill_lookup_on_name will clear it. 13852 */ 13853 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13854 if (cp != endp) 13855 *cp = IPIF_SEPARATOR_CHAR; 13856 if (ill == NULL) 13857 return (NULL); 13858 13859 /* Establish the unit number in the name. */ 13860 id = 0; 13861 if (cp < endp && *endp == '\0') { 13862 /* If there was a colon, the unit number follows. */ 13863 cp++; 13864 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13865 ill_refrele(ill); 13866 if (error != NULL) 13867 *error = ENXIO; 13868 return (NULL); 13869 } 13870 } 13871 13872 GRAB_CONN_LOCK(q); 13873 mutex_enter(&ill->ill_lock); 13874 /* Now see if there is an IPIF with this unit number. */ 13875 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13876 if (ipif->ipif_id == id) { 13877 if (zoneid != ALL_ZONES && 13878 zoneid != ipif->ipif_zoneid && 13879 ipif->ipif_zoneid != ALL_ZONES) { 13880 mutex_exit(&ill->ill_lock); 13881 RELEASE_CONN_LOCK(q); 13882 ill_refrele(ill); 13883 if (error != NULL) 13884 *error = ENXIO; 13885 return (NULL); 13886 } 13887 13888 if (!(IPIF_IS_CHANGING(ipif) || 13889 IPIF_IS_CONDEMNED(ipif)) || 13890 IAM_WRITER_IPIF(ipif)) { 13891 ipif_refhold_locked(ipif); 13892 mutex_exit(&ill->ill_lock); 13893 /* 13894 * Drop locks before calling ill_refrele 13895 * since it can potentially call into 13896 * ipif_ill_refrele_tail which can end up 13897 * in trying to acquire any lock. 13898 */ 13899 RELEASE_CONN_LOCK(q); 13900 ill_refrele(ill); 13901 return (ipif); 13902 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13903 ipsq = ill->ill_phyint->phyint_ipsq; 13904 mutex_enter(&ipsq->ipsq_lock); 13905 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13906 mutex_exit(&ill->ill_lock); 13907 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13908 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13909 mutex_exit(&ipsq->ipsq_lock); 13910 RELEASE_CONN_LOCK(q); 13911 ill_refrele(ill); 13912 if (error != NULL) 13913 *error = EINPROGRESS; 13914 return (NULL); 13915 } 13916 } 13917 } 13918 RELEASE_CONN_LOCK(q); 13919 mutex_exit(&ill->ill_lock); 13920 ill_refrele(ill); 13921 if (error != NULL) 13922 *error = ENXIO; 13923 return (NULL); 13924 } 13925 13926 /* 13927 * This routine is called whenever a new address comes up on an ipif. If 13928 * we are configured to respond to address mask requests, then we are supposed 13929 * to broadcast an address mask reply at this time. This routine is also 13930 * called if we are already up, but a netmask change is made. This is legal 13931 * but might not make the system manager very popular. (May be called 13932 * as writer.) 13933 */ 13934 void 13935 ipif_mask_reply(ipif_t *ipif) 13936 { 13937 icmph_t *icmph; 13938 ipha_t *ipha; 13939 mblk_t *mp; 13940 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13941 ip_xmit_attr_t ixas; 13942 13943 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13944 13945 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13946 return; 13947 13948 /* ICMP mask reply is IPv4 only */ 13949 ASSERT(!ipif->ipif_isv6); 13950 /* ICMP mask reply is not for a loopback interface */ 13951 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13952 13953 if (ipif->ipif_lcl_addr == INADDR_ANY) 13954 return; 13955 13956 mp = allocb(REPLY_LEN, BPRI_HI); 13957 if (mp == NULL) 13958 return; 13959 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13960 13961 ipha = (ipha_t *)mp->b_rptr; 13962 bzero(ipha, REPLY_LEN); 13963 *ipha = icmp_ipha; 13964 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13965 ipha->ipha_src = ipif->ipif_lcl_addr; 13966 ipha->ipha_dst = ipif->ipif_brd_addr; 13967 ipha->ipha_length = htons(REPLY_LEN); 13968 ipha->ipha_ident = 0; 13969 13970 icmph = (icmph_t *)&ipha[1]; 13971 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13972 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13973 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13974 13975 bzero(&ixas, sizeof (ixas)); 13976 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13977 ixas.ixa_zoneid = ALL_ZONES; 13978 ixas.ixa_ifindex = 0; 13979 ixas.ixa_ipst = ipst; 13980 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13981 (void) ip_output_simple(mp, &ixas); 13982 ixa_cleanup(&ixas); 13983 #undef REPLY_LEN 13984 } 13985 13986 /* 13987 * Join the ipif specific multicast groups. 13988 * Must be called after a mapping has been set up in the resolver. (Always 13989 * called as writer.) 13990 */ 13991 void 13992 ipif_multicast_up(ipif_t *ipif) 13993 { 13994 int err; 13995 ill_t *ill; 13996 ilm_t *ilm; 13997 13998 ASSERT(IAM_WRITER_IPIF(ipif)); 13999 14000 ill = ipif->ipif_ill; 14001 14002 ip1dbg(("ipif_multicast_up\n")); 14003 if (!(ill->ill_flags & ILLF_MULTICAST) || 14004 ipif->ipif_allhosts_ilm != NULL) 14005 return; 14006 14007 if (ipif->ipif_isv6) { 14008 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14009 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14010 14011 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14012 14013 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14014 return; 14015 14016 ip1dbg(("ipif_multicast_up - addmulti\n")); 14017 14018 /* 14019 * Join the all hosts multicast address. We skip this for 14020 * underlying IPMP interfaces since they should be invisible. 14021 */ 14022 if (!IS_UNDER_IPMP(ill)) { 14023 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14024 &err); 14025 if (ilm == NULL) { 14026 ASSERT(err != 0); 14027 ip0dbg(("ipif_multicast_up: " 14028 "all_hosts_mcast failed %d\n", err)); 14029 return; 14030 } 14031 ipif->ipif_allhosts_ilm = ilm; 14032 } 14033 14034 /* 14035 * Enable multicast for the solicited node multicast address. 14036 * If IPMP we need to put the membership on the upper ill. 14037 */ 14038 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14039 ill_t *mcast_ill = NULL; 14040 boolean_t need_refrele; 14041 14042 if (IS_UNDER_IPMP(ill) && 14043 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14044 need_refrele = B_TRUE; 14045 } else { 14046 mcast_ill = ill; 14047 need_refrele = B_FALSE; 14048 } 14049 14050 ilm = ip_addmulti(&v6solmc, mcast_ill, 14051 ipif->ipif_zoneid, &err); 14052 if (need_refrele) 14053 ill_refrele(mcast_ill); 14054 14055 if (ilm == NULL) { 14056 ASSERT(err != 0); 14057 ip0dbg(("ipif_multicast_up: solicited MC" 14058 " failed %d\n", err)); 14059 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14060 ipif->ipif_allhosts_ilm = NULL; 14061 (void) ip_delmulti(ilm); 14062 } 14063 return; 14064 } 14065 ipif->ipif_solmulti_ilm = ilm; 14066 } 14067 } else { 14068 in6_addr_t v6group; 14069 14070 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14071 return; 14072 14073 /* Join the all hosts multicast address */ 14074 ip1dbg(("ipif_multicast_up - addmulti\n")); 14075 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14076 14077 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14078 if (ilm == NULL) { 14079 ASSERT(err != 0); 14080 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14081 return; 14082 } 14083 ipif->ipif_allhosts_ilm = ilm; 14084 } 14085 } 14086 14087 /* 14088 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14089 * (ilms from explicit memberships are handled in conn_update_ill.) 14090 */ 14091 void 14092 ipif_multicast_down(ipif_t *ipif) 14093 { 14094 ASSERT(IAM_WRITER_IPIF(ipif)); 14095 14096 ip1dbg(("ipif_multicast_down\n")); 14097 14098 if (ipif->ipif_allhosts_ilm != NULL) { 14099 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14100 ipif->ipif_allhosts_ilm = NULL; 14101 } 14102 if (ipif->ipif_solmulti_ilm != NULL) { 14103 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14104 ipif->ipif_solmulti_ilm = NULL; 14105 } 14106 } 14107 14108 /* 14109 * Used when an interface comes up to recreate any extra routes on this 14110 * interface. 14111 */ 14112 int 14113 ill_recover_saved_ire(ill_t *ill) 14114 { 14115 mblk_t *mp; 14116 ip_stack_t *ipst = ill->ill_ipst; 14117 14118 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14119 14120 mutex_enter(&ill->ill_saved_ire_lock); 14121 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14122 ire_t *ire, *nire; 14123 ifrt_t *ifrt; 14124 14125 ifrt = (ifrt_t *)mp->b_rptr; 14126 /* 14127 * Create a copy of the IRE with the saved address and netmask. 14128 */ 14129 if (ill->ill_isv6) { 14130 ire = ire_create_v6( 14131 &ifrt->ifrt_v6addr, 14132 &ifrt->ifrt_v6mask, 14133 &ifrt->ifrt_v6gateway_addr, 14134 ifrt->ifrt_type, 14135 ill, 14136 ifrt->ifrt_zoneid, 14137 ifrt->ifrt_flags, 14138 NULL, 14139 ipst); 14140 } else { 14141 ire = ire_create( 14142 (uint8_t *)&ifrt->ifrt_addr, 14143 (uint8_t *)&ifrt->ifrt_mask, 14144 (uint8_t *)&ifrt->ifrt_gateway_addr, 14145 ifrt->ifrt_type, 14146 ill, 14147 ifrt->ifrt_zoneid, 14148 ifrt->ifrt_flags, 14149 NULL, 14150 ipst); 14151 } 14152 if (ire == NULL) { 14153 mutex_exit(&ill->ill_saved_ire_lock); 14154 return (ENOMEM); 14155 } 14156 14157 if (ifrt->ifrt_flags & RTF_SETSRC) { 14158 if (ill->ill_isv6) { 14159 ire->ire_setsrc_addr_v6 = 14160 ifrt->ifrt_v6setsrc_addr; 14161 } else { 14162 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14163 } 14164 } 14165 14166 /* 14167 * Some software (for example, GateD and Sun Cluster) attempts 14168 * to create (what amount to) IRE_PREFIX routes with the 14169 * loopback address as the gateway. This is primarily done to 14170 * set up prefixes with the RTF_REJECT flag set (for example, 14171 * when generating aggregate routes.) 14172 * 14173 * If the IRE type (as defined by ill->ill_net_type) is 14174 * IRE_LOOPBACK, then we map the request into a 14175 * IRE_IF_NORESOLVER. 14176 */ 14177 if (ill->ill_net_type == IRE_LOOPBACK) 14178 ire->ire_type = IRE_IF_NORESOLVER; 14179 14180 /* 14181 * ire held by ire_add, will be refreled' towards the 14182 * the end of ipif_up_done 14183 */ 14184 nire = ire_add(ire); 14185 /* 14186 * Check if it was a duplicate entry. This handles 14187 * the case of two racing route adds for the same route 14188 */ 14189 if (nire == NULL) { 14190 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14191 } else if (nire != ire) { 14192 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14193 (void *)nire)); 14194 ire_delete(nire); 14195 } else { 14196 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14197 (void *)nire)); 14198 } 14199 if (nire != NULL) 14200 ire_refrele(nire); 14201 } 14202 mutex_exit(&ill->ill_saved_ire_lock); 14203 return (0); 14204 } 14205 14206 /* 14207 * Used to set the netmask and broadcast address to default values when the 14208 * interface is brought up. (Always called as writer.) 14209 */ 14210 static void 14211 ipif_set_default(ipif_t *ipif) 14212 { 14213 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14214 14215 if (!ipif->ipif_isv6) { 14216 /* 14217 * Interface holds an IPv4 address. Default 14218 * mask is the natural netmask. 14219 */ 14220 if (!ipif->ipif_net_mask) { 14221 ipaddr_t v4mask; 14222 14223 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14224 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14225 } 14226 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14227 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14228 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14229 } else { 14230 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14231 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14232 } 14233 /* 14234 * NOTE: SunOS 4.X does this even if the broadcast address 14235 * has been already set thus we do the same here. 14236 */ 14237 if (ipif->ipif_flags & IPIF_BROADCAST) { 14238 ipaddr_t v4addr; 14239 14240 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14241 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14242 } 14243 } else { 14244 /* 14245 * Interface holds an IPv6-only address. Default 14246 * mask is all-ones. 14247 */ 14248 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14249 ipif->ipif_v6net_mask = ipv6_all_ones; 14250 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14251 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14252 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14253 } else { 14254 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14255 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14256 } 14257 } 14258 } 14259 14260 /* 14261 * Return 0 if this address can be used as local address without causing 14262 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14263 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14264 * Note that the same IPv6 link-local address is allowed as long as the ills 14265 * are not on the same link. 14266 */ 14267 int 14268 ip_addr_availability_check(ipif_t *new_ipif) 14269 { 14270 in6_addr_t our_v6addr; 14271 ill_t *ill; 14272 ipif_t *ipif; 14273 ill_walk_context_t ctx; 14274 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14275 14276 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14277 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14278 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14279 14280 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14281 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14282 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14283 return (0); 14284 14285 our_v6addr = new_ipif->ipif_v6lcl_addr; 14286 14287 if (new_ipif->ipif_isv6) 14288 ill = ILL_START_WALK_V6(&ctx, ipst); 14289 else 14290 ill = ILL_START_WALK_V4(&ctx, ipst); 14291 14292 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14293 for (ipif = ill->ill_ipif; ipif != NULL; 14294 ipif = ipif->ipif_next) { 14295 if ((ipif == new_ipif) || 14296 !(ipif->ipif_flags & IPIF_UP) || 14297 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14298 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14299 &our_v6addr)) 14300 continue; 14301 14302 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14303 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14304 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14305 ipif->ipif_flags |= IPIF_UNNUMBERED; 14306 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14307 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14308 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14309 continue; 14310 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14311 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14312 continue; 14313 else if (new_ipif->ipif_ill == ill) 14314 return (EADDRINUSE); 14315 else 14316 return (EADDRNOTAVAIL); 14317 } 14318 } 14319 14320 return (0); 14321 } 14322 14323 /* 14324 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14325 * IREs for the ipif. 14326 * When the routine returns EINPROGRESS then mp has been consumed and 14327 * the ioctl will be acked from ip_rput_dlpi. 14328 */ 14329 int 14330 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14331 { 14332 ill_t *ill = ipif->ipif_ill; 14333 boolean_t isv6 = ipif->ipif_isv6; 14334 int err = 0; 14335 boolean_t success; 14336 uint_t ipif_orig_id; 14337 ip_stack_t *ipst = ill->ill_ipst; 14338 14339 ASSERT(IAM_WRITER_IPIF(ipif)); 14340 14341 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14342 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14343 ill_t *, ill, ipif_t *, ipif); 14344 14345 /* Shouldn't get here if it is already up. */ 14346 if (ipif->ipif_flags & IPIF_UP) 14347 return (EALREADY); 14348 14349 /* 14350 * If this is a request to bring up a data address on an interface 14351 * under IPMP, then move the address to its IPMP meta-interface and 14352 * try to bring it up. One complication is that the zeroth ipif for 14353 * an ill is special, in that every ill always has one, and that code 14354 * throughout IP deferences ill->ill_ipif without holding any locks. 14355 */ 14356 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14357 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14358 ipif_t *stubipif = NULL, *moveipif = NULL; 14359 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14360 14361 /* 14362 * The ipif being brought up should be quiesced. If it's not, 14363 * something has gone amiss and we need to bail out. (If it's 14364 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14365 */ 14366 mutex_enter(&ill->ill_lock); 14367 if (!ipif_is_quiescent(ipif)) { 14368 mutex_exit(&ill->ill_lock); 14369 return (EINVAL); 14370 } 14371 mutex_exit(&ill->ill_lock); 14372 14373 /* 14374 * If we're going to need to allocate ipifs, do it prior 14375 * to starting the move (and grabbing locks). 14376 */ 14377 if (ipif->ipif_id == 0) { 14378 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14379 B_FALSE, &err)) == NULL) { 14380 return (err); 14381 } 14382 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14383 B_FALSE, &err)) == NULL) { 14384 mi_free(moveipif); 14385 return (err); 14386 } 14387 } 14388 14389 /* 14390 * Grab or transfer the ipif to move. During the move, keep 14391 * ill_g_lock held to prevent any ill walker threads from 14392 * seeing things in an inconsistent state. 14393 */ 14394 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14395 if (ipif->ipif_id != 0) { 14396 ipif_remove(ipif); 14397 } else { 14398 ipif_transfer(ipif, moveipif, stubipif); 14399 ipif = moveipif; 14400 } 14401 14402 /* 14403 * Place the ipif on the IPMP ill. If the zeroth ipif on 14404 * the IPMP ill is a stub (0.0.0.0 down address) then we 14405 * replace that one. Otherwise, pick the next available slot. 14406 */ 14407 ipif->ipif_ill = ipmp_ill; 14408 ipif_orig_id = ipif->ipif_id; 14409 14410 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14411 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14412 ipif = ipmp_ill->ill_ipif; 14413 } else { 14414 ipif->ipif_id = -1; 14415 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14416 /* 14417 * No more available ipif_id's -- put it back 14418 * on the original ill and fail the operation. 14419 * Since we're writer on the ill, we can be 14420 * sure our old slot is still available. 14421 */ 14422 ipif->ipif_id = ipif_orig_id; 14423 ipif->ipif_ill = ill; 14424 if (ipif_orig_id == 0) { 14425 ipif_transfer(ipif, ill->ill_ipif, 14426 NULL); 14427 } else { 14428 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14429 } 14430 rw_exit(&ipst->ips_ill_g_lock); 14431 return (err); 14432 } 14433 } 14434 rw_exit(&ipst->ips_ill_g_lock); 14435 14436 /* 14437 * Tell SCTP that the ipif has moved. Note that even if we 14438 * had to allocate a new ipif, the original sequence id was 14439 * preserved and therefore SCTP won't know. 14440 */ 14441 sctp_move_ipif(ipif, ill, ipmp_ill); 14442 14443 /* 14444 * If the ipif being brought up was on slot zero, then we 14445 * first need to bring up the placeholder we stuck there. In 14446 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14447 * call to ipif_up() itself, if we successfully bring up the 14448 * placeholder, we'll check ill_move_ipif and bring it up too. 14449 */ 14450 if (ipif_orig_id == 0) { 14451 ASSERT(ill->ill_move_ipif == NULL); 14452 ill->ill_move_ipif = ipif; 14453 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14454 ASSERT(ill->ill_move_ipif == NULL); 14455 if (err != EINPROGRESS) 14456 ill->ill_move_ipif = NULL; 14457 return (err); 14458 } 14459 14460 /* 14461 * Bring it up on the IPMP ill. 14462 */ 14463 return (ipif_up(ipif, q, mp)); 14464 } 14465 14466 /* Skip arp/ndp for any loopback interface. */ 14467 if (ill->ill_wq != NULL) { 14468 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14469 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14470 14471 if (!ill->ill_dl_up) { 14472 /* 14473 * ill_dl_up is not yet set. i.e. we are yet to 14474 * DL_BIND with the driver and this is the first 14475 * logical interface on the ill to become "up". 14476 * Tell the driver to get going (via DL_BIND_REQ). 14477 * Note that changing "significant" IFF_ flags 14478 * address/netmask etc cause a down/up dance, but 14479 * does not cause an unbind (DL_UNBIND) with the driver 14480 */ 14481 return (ill_dl_up(ill, ipif, mp, q)); 14482 } 14483 14484 /* 14485 * ipif_resolver_up may end up needeing to bind/attach 14486 * the ARP stream, which in turn necessitates a 14487 * DLPI message exchange with the driver. ioctls are 14488 * serialized and so we cannot send more than one 14489 * interface up message at a time. If ipif_resolver_up 14490 * does need to wait for the DLPI handshake for the ARP stream, 14491 * we get EINPROGRESS and we will complete in arp_bringup_done. 14492 */ 14493 14494 ASSERT(connp != NULL || !CONN_Q(q)); 14495 if (connp != NULL) 14496 mutex_enter(&connp->conn_lock); 14497 mutex_enter(&ill->ill_lock); 14498 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14499 mutex_exit(&ill->ill_lock); 14500 if (connp != NULL) 14501 mutex_exit(&connp->conn_lock); 14502 if (!success) 14503 return (EINTR); 14504 14505 /* 14506 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14507 * complete when ipif_ndp_up returns. 14508 */ 14509 err = ipif_resolver_up(ipif, Res_act_initial); 14510 if (err == EINPROGRESS) { 14511 /* We will complete it in arp_bringup_done() */ 14512 return (err); 14513 } 14514 14515 if (isv6 && err == 0) 14516 err = ipif_ndp_up(ipif, B_TRUE); 14517 14518 ASSERT(err != EINPROGRESS); 14519 mp = ipsq_pending_mp_get(ipsq, &connp); 14520 ASSERT(mp != NULL); 14521 if (err != 0) 14522 return (err); 14523 } else { 14524 /* 14525 * Interfaces without underlying hardware don't do duplicate 14526 * address detection. 14527 */ 14528 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14529 ipif->ipif_addr_ready = 1; 14530 err = ill_add_ires(ill); 14531 /* allocation failure? */ 14532 if (err != 0) 14533 return (err); 14534 } 14535 14536 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14537 if (err == 0 && ill->ill_move_ipif != NULL) { 14538 ipif = ill->ill_move_ipif; 14539 ill->ill_move_ipif = NULL; 14540 return (ipif_up(ipif, q, mp)); 14541 } 14542 return (err); 14543 } 14544 14545 /* 14546 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14547 * The identical set of IREs need to be removed in ill_delete_ires(). 14548 */ 14549 int 14550 ill_add_ires(ill_t *ill) 14551 { 14552 ire_t *ire; 14553 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14554 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14555 14556 if (ill->ill_ire_multicast != NULL) 14557 return (0); 14558 14559 /* 14560 * provide some dummy ire_addr for creating the ire. 14561 */ 14562 if (ill->ill_isv6) { 14563 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14564 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14565 } else { 14566 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14567 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14568 } 14569 if (ire == NULL) 14570 return (ENOMEM); 14571 14572 ill->ill_ire_multicast = ire; 14573 return (0); 14574 } 14575 14576 void 14577 ill_delete_ires(ill_t *ill) 14578 { 14579 if (ill->ill_ire_multicast != NULL) { 14580 /* 14581 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14582 * which was taken without any th_tracing enabled. 14583 * We also mark it as condemned (note that it was never added) 14584 * so that caching conn's can move off of it. 14585 */ 14586 ire_make_condemned(ill->ill_ire_multicast); 14587 ire_refrele_notr(ill->ill_ire_multicast); 14588 ill->ill_ire_multicast = NULL; 14589 } 14590 } 14591 14592 /* 14593 * Perform a bind for the physical device. 14594 * When the routine returns EINPROGRESS then mp has been consumed and 14595 * the ioctl will be acked from ip_rput_dlpi. 14596 * Allocate an unbind message and save it until ipif_down. 14597 */ 14598 static int 14599 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14600 { 14601 mblk_t *bind_mp = NULL; 14602 mblk_t *unbind_mp = NULL; 14603 conn_t *connp; 14604 boolean_t success; 14605 int err; 14606 14607 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14608 14609 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14610 ASSERT(IAM_WRITER_ILL(ill)); 14611 ASSERT(mp != NULL); 14612 14613 /* 14614 * Make sure we have an IRE_MULTICAST in case we immediately 14615 * start receiving packets. 14616 */ 14617 err = ill_add_ires(ill); 14618 if (err != 0) 14619 goto bad; 14620 14621 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14622 DL_BIND_REQ); 14623 if (bind_mp == NULL) 14624 goto bad; 14625 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14626 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14627 14628 /* 14629 * ill_unbind_mp would be non-null if the following sequence had 14630 * happened: 14631 * - send DL_BIND_REQ to driver, wait for response 14632 * - multiple ioctls that need to bring the ipif up are encountered, 14633 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14634 * These ioctls will then be enqueued on the ipsq 14635 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14636 * At this point, the pending ioctls in the ipsq will be drained, and 14637 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14638 * a non-null ill->ill_unbind_mp 14639 */ 14640 if (ill->ill_unbind_mp == NULL) { 14641 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14642 DL_UNBIND_REQ); 14643 if (unbind_mp == NULL) 14644 goto bad; 14645 } 14646 /* 14647 * Record state needed to complete this operation when the 14648 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14649 */ 14650 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14651 ASSERT(connp != NULL || !CONN_Q(q)); 14652 GRAB_CONN_LOCK(q); 14653 mutex_enter(&ipif->ipif_ill->ill_lock); 14654 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14655 mutex_exit(&ipif->ipif_ill->ill_lock); 14656 RELEASE_CONN_LOCK(q); 14657 if (!success) 14658 goto bad; 14659 14660 /* 14661 * Save the unbind message for ill_dl_down(); it will be consumed when 14662 * the interface goes down. 14663 */ 14664 if (ill->ill_unbind_mp == NULL) 14665 ill->ill_unbind_mp = unbind_mp; 14666 14667 ill_dlpi_send(ill, bind_mp); 14668 /* Send down link-layer capabilities probe if not already done. */ 14669 ill_capability_probe(ill); 14670 14671 /* 14672 * Sysid used to rely on the fact that netboots set domainname 14673 * and the like. Now that miniroot boots aren't strictly netboots 14674 * and miniroot network configuration is driven from userland 14675 * these things still need to be set. This situation can be detected 14676 * by comparing the interface being configured here to the one 14677 * dhcifname was set to reference by the boot loader. Once sysid is 14678 * converted to use dhcp_ipc_getinfo() this call can go away. 14679 */ 14680 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14681 (strcmp(ill->ill_name, dhcifname) == 0) && 14682 (strlen(srpc_domain) == 0)) { 14683 if (dhcpinit() != 0) 14684 cmn_err(CE_WARN, "no cached dhcp response"); 14685 } 14686 14687 /* 14688 * This operation will complete in ip_rput_dlpi with either 14689 * a DL_BIND_ACK or DL_ERROR_ACK. 14690 */ 14691 return (EINPROGRESS); 14692 bad: 14693 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14694 14695 freemsg(bind_mp); 14696 freemsg(unbind_mp); 14697 return (ENOMEM); 14698 } 14699 14700 /* Add room for tcp+ip headers */ 14701 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14702 14703 /* 14704 * DLPI and ARP is up. 14705 * Create all the IREs associated with an interface. Bring up multicast. 14706 * Set the interface flag and finish other initialization 14707 * that potentially had to be deferred to after DL_BIND_ACK. 14708 */ 14709 int 14710 ipif_up_done(ipif_t *ipif) 14711 { 14712 ill_t *ill = ipif->ipif_ill; 14713 int err = 0; 14714 boolean_t loopback = B_FALSE; 14715 boolean_t update_src_selection = B_TRUE; 14716 ipif_t *tmp_ipif; 14717 14718 ip1dbg(("ipif_up_done(%s:%u)\n", 14719 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14720 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14721 ill_t *, ill, ipif_t *, ipif); 14722 14723 /* Check if this is a loopback interface */ 14724 if (ipif->ipif_ill->ill_wq == NULL) 14725 loopback = B_TRUE; 14726 14727 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14728 14729 /* 14730 * If all other interfaces for this ill are down or DEPRECATED, 14731 * or otherwise unsuitable for source address selection, 14732 * reset the src generation numbers to make sure source 14733 * address selection gets to take this new ipif into account. 14734 * No need to hold ill_lock while traversing the ipif list since 14735 * we are writer 14736 */ 14737 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14738 tmp_ipif = tmp_ipif->ipif_next) { 14739 if (((tmp_ipif->ipif_flags & 14740 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14741 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14742 (tmp_ipif == ipif)) 14743 continue; 14744 /* first useable pre-existing interface */ 14745 update_src_selection = B_FALSE; 14746 break; 14747 } 14748 if (update_src_selection) 14749 ip_update_source_selection(ill->ill_ipst); 14750 14751 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14752 nce_t *loop_nce = NULL; 14753 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14754 14755 /* 14756 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14757 * ipif_lookup_on_name(), but in the case of zones we can have 14758 * several loopback addresses on lo0. So all the interfaces with 14759 * loopback addresses need to be marked IRE_LOOPBACK. 14760 */ 14761 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14762 htonl(INADDR_LOOPBACK)) 14763 ipif->ipif_ire_type = IRE_LOOPBACK; 14764 else 14765 ipif->ipif_ire_type = IRE_LOCAL; 14766 if (ill->ill_net_type != IRE_LOOPBACK) 14767 flags |= NCE_F_PUBLISH; 14768 14769 /* add unicast nce for the local addr */ 14770 err = nce_lookup_then_add_v4(ill, NULL, 14771 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14772 ND_REACHABLE, &loop_nce); 14773 /* A shared-IP zone sees EEXIST for lo0:N */ 14774 if (err == 0 || err == EEXIST) { 14775 ipif->ipif_added_nce = 1; 14776 loop_nce->nce_ipif_cnt++; 14777 nce_refrele(loop_nce); 14778 err = 0; 14779 } else { 14780 ASSERT(loop_nce == NULL); 14781 return (err); 14782 } 14783 } 14784 14785 /* Create all the IREs associated with this interface */ 14786 err = ipif_add_ires_v4(ipif, loopback); 14787 if (err != 0) { 14788 /* 14789 * see comments about return value from 14790 * ip_addr_availability_check() in ipif_add_ires_v4(). 14791 */ 14792 if (err != EADDRINUSE) { 14793 (void) ipif_arp_down(ipif); 14794 } else { 14795 /* 14796 * Make IPMP aware of the deleted ipif so that 14797 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14798 * can be completed. Note that we do not want to 14799 * destroy the nce that was created on the ipmp_ill 14800 * for the active copy of the duplicate address in 14801 * use. 14802 */ 14803 if (IS_IPMP(ill)) 14804 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14805 err = EADDRNOTAVAIL; 14806 } 14807 return (err); 14808 } 14809 14810 if (ill->ill_ipif_up_count == 1 && !loopback) { 14811 /* Recover any additional IREs entries for this ill */ 14812 (void) ill_recover_saved_ire(ill); 14813 } 14814 14815 if (ill->ill_need_recover_multicast) { 14816 /* 14817 * Need to recover all multicast memberships in the driver. 14818 * This had to be deferred until we had attached. The same 14819 * code exists in ipif_up_done_v6() to recover IPv6 14820 * memberships. 14821 * 14822 * Note that it would be preferable to unconditionally do the 14823 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14824 * that since ill_join_allmulti() depends on ill_dl_up being 14825 * set, and it is not set until we receive a DL_BIND_ACK after 14826 * having called ill_dl_up(). 14827 */ 14828 ill_recover_multicast(ill); 14829 } 14830 14831 if (ill->ill_ipif_up_count == 1) { 14832 /* 14833 * Since the interface is now up, it may now be active. 14834 */ 14835 if (IS_UNDER_IPMP(ill)) 14836 ipmp_ill_refresh_active(ill); 14837 14838 /* 14839 * If this is an IPMP interface, we may now be able to 14840 * establish ARP entries. 14841 */ 14842 if (IS_IPMP(ill)) 14843 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14844 } 14845 14846 /* Join the allhosts multicast address */ 14847 ipif_multicast_up(ipif); 14848 14849 if (!loopback && !update_src_selection && 14850 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14851 ip_update_source_selection(ill->ill_ipst); 14852 14853 if (!loopback && ipif->ipif_addr_ready) { 14854 /* Broadcast an address mask reply. */ 14855 ipif_mask_reply(ipif); 14856 } 14857 /* Perhaps ilgs should use this ill */ 14858 update_conn_ill(NULL, ill->ill_ipst); 14859 14860 /* 14861 * This had to be deferred until we had bound. Tell routing sockets and 14862 * others that this interface is up if it looks like the address has 14863 * been validated. Otherwise, if it isn't ready yet, wait for 14864 * duplicate address detection to do its thing. 14865 */ 14866 if (ipif->ipif_addr_ready) 14867 ipif_up_notify(ipif); 14868 return (0); 14869 } 14870 14871 /* 14872 * Add the IREs associated with the ipif. 14873 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14874 */ 14875 static int 14876 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14877 { 14878 ill_t *ill = ipif->ipif_ill; 14879 ip_stack_t *ipst = ill->ill_ipst; 14880 ire_t *ire_array[20]; 14881 ire_t **irep = ire_array; 14882 ire_t **irep1; 14883 ipaddr_t net_mask = 0; 14884 ipaddr_t subnet_mask, route_mask; 14885 int err; 14886 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14887 ire_t *ire_if = NULL; 14888 uchar_t *gw; 14889 14890 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14891 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14892 /* 14893 * If we're on a labeled system then make sure that zone- 14894 * private addresses have proper remote host database entries. 14895 */ 14896 if (is_system_labeled() && 14897 ipif->ipif_ire_type != IRE_LOOPBACK && 14898 !tsol_check_interface_address(ipif)) 14899 return (EINVAL); 14900 14901 /* Register the source address for __sin6_src_id */ 14902 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14903 ipif->ipif_zoneid, ipst); 14904 if (err != 0) { 14905 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14906 return (err); 14907 } 14908 14909 if (loopback) 14910 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14911 else 14912 gw = NULL; 14913 14914 /* If the interface address is set, create the local IRE. */ 14915 ire_local = ire_create( 14916 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14917 (uchar_t *)&ip_g_all_ones, /* mask */ 14918 gw, /* gateway */ 14919 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14920 ipif->ipif_ill, 14921 ipif->ipif_zoneid, 14922 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14923 RTF_PRIVATE : 0) | RTF_KERNEL, 14924 NULL, 14925 ipst); 14926 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14927 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14928 ipif->ipif_ire_type, 14929 ntohl(ipif->ipif_lcl_addr))); 14930 if (ire_local == NULL) { 14931 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14932 err = ENOMEM; 14933 goto bad; 14934 } 14935 } else { 14936 ip1dbg(( 14937 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14938 ipif->ipif_ire_type, 14939 ntohl(ipif->ipif_lcl_addr), 14940 (uint_t)ipif->ipif_flags)); 14941 } 14942 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14943 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14944 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14945 } else { 14946 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14947 } 14948 14949 subnet_mask = ipif->ipif_net_mask; 14950 14951 /* 14952 * If mask was not specified, use natural netmask of 14953 * interface address. Also, store this mask back into the 14954 * ipif struct. 14955 */ 14956 if (subnet_mask == 0) { 14957 subnet_mask = net_mask; 14958 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14959 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14960 ipif->ipif_v6subnet); 14961 } 14962 14963 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14964 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14965 ipif->ipif_subnet != INADDR_ANY) { 14966 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14967 14968 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14969 route_mask = IP_HOST_MASK; 14970 } else { 14971 route_mask = subnet_mask; 14972 } 14973 14974 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14975 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14976 (void *)ipif, (void *)ill, ill->ill_net_type, 14977 ntohl(ipif->ipif_subnet))); 14978 ire_if = ire_create( 14979 (uchar_t *)&ipif->ipif_subnet, 14980 (uchar_t *)&route_mask, 14981 (uchar_t *)&ipif->ipif_lcl_addr, 14982 ill->ill_net_type, 14983 ill, 14984 ipif->ipif_zoneid, 14985 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14986 RTF_PRIVATE: 0) | RTF_KERNEL, 14987 NULL, 14988 ipst); 14989 if (ire_if == NULL) { 14990 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14991 err = ENOMEM; 14992 goto bad; 14993 } 14994 } 14995 14996 /* 14997 * Create any necessary broadcast IREs. 14998 */ 14999 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15000 !(ipif->ipif_flags & IPIF_NOXMIT)) 15001 irep = ipif_create_bcast_ires(ipif, irep); 15002 15003 /* If an earlier ire_create failed, get out now */ 15004 for (irep1 = irep; irep1 > ire_array; ) { 15005 irep1--; 15006 if (*irep1 == NULL) { 15007 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15008 err = ENOMEM; 15009 goto bad; 15010 } 15011 } 15012 15013 /* 15014 * Need to atomically check for IP address availability under 15015 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15016 * ills or new ipifs can be added while we are checking availability. 15017 */ 15018 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15019 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15020 /* Mark it up, and increment counters. */ 15021 ipif->ipif_flags |= IPIF_UP; 15022 ill->ill_ipif_up_count++; 15023 err = ip_addr_availability_check(ipif); 15024 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15025 rw_exit(&ipst->ips_ill_g_lock); 15026 15027 if (err != 0) { 15028 /* 15029 * Our address may already be up on the same ill. In this case, 15030 * the ARP entry for our ipif replaced the one for the other 15031 * ipif. So we don't want to delete it (otherwise the other ipif 15032 * would be unable to send packets). 15033 * ip_addr_availability_check() identifies this case for us and 15034 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15035 * which is the expected error code. 15036 */ 15037 ill->ill_ipif_up_count--; 15038 ipif->ipif_flags &= ~IPIF_UP; 15039 goto bad; 15040 } 15041 15042 /* 15043 * Add in all newly created IREs. ire_create_bcast() has 15044 * already checked for duplicates of the IRE_BROADCAST type. 15045 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15046 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15047 * a /32 route. 15048 */ 15049 if (ire_if != NULL) { 15050 ire_if = ire_add(ire_if); 15051 if (ire_if == NULL) { 15052 err = ENOMEM; 15053 goto bad2; 15054 } 15055 #ifdef DEBUG 15056 ire_refhold_notr(ire_if); 15057 ire_refrele(ire_if); 15058 #endif 15059 } 15060 if (ire_local != NULL) { 15061 ire_local = ire_add(ire_local); 15062 if (ire_local == NULL) { 15063 err = ENOMEM; 15064 goto bad2; 15065 } 15066 #ifdef DEBUG 15067 ire_refhold_notr(ire_local); 15068 ire_refrele(ire_local); 15069 #endif 15070 } 15071 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15072 if (ire_local != NULL) 15073 ipif->ipif_ire_local = ire_local; 15074 if (ire_if != NULL) 15075 ipif->ipif_ire_if = ire_if; 15076 rw_exit(&ipst->ips_ill_g_lock); 15077 ire_local = NULL; 15078 ire_if = NULL; 15079 15080 /* 15081 * We first add all of them, and if that succeeds we refrele the 15082 * bunch. That enables us to delete all of them should any of the 15083 * ire_adds fail. 15084 */ 15085 for (irep1 = irep; irep1 > ire_array; ) { 15086 irep1--; 15087 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15088 *irep1 = ire_add(*irep1); 15089 if (*irep1 == NULL) { 15090 err = ENOMEM; 15091 goto bad2; 15092 } 15093 } 15094 15095 for (irep1 = irep; irep1 > ire_array; ) { 15096 irep1--; 15097 /* refheld by ire_add. */ 15098 if (*irep1 != NULL) { 15099 ire_refrele(*irep1); 15100 *irep1 = NULL; 15101 } 15102 } 15103 15104 if (!loopback) { 15105 /* 15106 * If the broadcast address has been set, make sure it makes 15107 * sense based on the interface address. 15108 * Only match on ill since we are sharing broadcast addresses. 15109 */ 15110 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15111 (ipif->ipif_flags & IPIF_BROADCAST)) { 15112 ire_t *ire; 15113 15114 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15115 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15116 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15117 15118 if (ire == NULL) { 15119 /* 15120 * If there isn't a matching broadcast IRE, 15121 * revert to the default for this netmask. 15122 */ 15123 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15124 mutex_enter(&ipif->ipif_ill->ill_lock); 15125 ipif_set_default(ipif); 15126 mutex_exit(&ipif->ipif_ill->ill_lock); 15127 } else { 15128 ire_refrele(ire); 15129 } 15130 } 15131 15132 } 15133 return (0); 15134 15135 bad2: 15136 ill->ill_ipif_up_count--; 15137 ipif->ipif_flags &= ~IPIF_UP; 15138 15139 bad: 15140 ip1dbg(("ipif_add_ires: FAILED \n")); 15141 if (ire_local != NULL) 15142 ire_delete(ire_local); 15143 if (ire_if != NULL) 15144 ire_delete(ire_if); 15145 15146 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15147 ire_local = ipif->ipif_ire_local; 15148 ipif->ipif_ire_local = NULL; 15149 ire_if = ipif->ipif_ire_if; 15150 ipif->ipif_ire_if = NULL; 15151 rw_exit(&ipst->ips_ill_g_lock); 15152 if (ire_local != NULL) { 15153 ire_delete(ire_local); 15154 ire_refrele_notr(ire_local); 15155 } 15156 if (ire_if != NULL) { 15157 ire_delete(ire_if); 15158 ire_refrele_notr(ire_if); 15159 } 15160 15161 while (irep > ire_array) { 15162 irep--; 15163 if (*irep != NULL) { 15164 ire_delete(*irep); 15165 } 15166 } 15167 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15168 15169 return (err); 15170 } 15171 15172 /* Remove all the IREs created by ipif_add_ires_v4 */ 15173 void 15174 ipif_delete_ires_v4(ipif_t *ipif) 15175 { 15176 ill_t *ill = ipif->ipif_ill; 15177 ip_stack_t *ipst = ill->ill_ipst; 15178 ire_t *ire; 15179 15180 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15181 ire = ipif->ipif_ire_local; 15182 ipif->ipif_ire_local = NULL; 15183 rw_exit(&ipst->ips_ill_g_lock); 15184 if (ire != NULL) { 15185 /* 15186 * Move count to ipif so we don't loose the count due to 15187 * a down/up dance. 15188 */ 15189 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15190 15191 ire_delete(ire); 15192 ire_refrele_notr(ire); 15193 } 15194 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15195 ire = ipif->ipif_ire_if; 15196 ipif->ipif_ire_if = NULL; 15197 rw_exit(&ipst->ips_ill_g_lock); 15198 if (ire != NULL) { 15199 ire_delete(ire); 15200 ire_refrele_notr(ire); 15201 } 15202 15203 /* 15204 * Delete the broadcast IREs. 15205 */ 15206 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15207 !(ipif->ipif_flags & IPIF_NOXMIT)) 15208 ipif_delete_bcast_ires(ipif); 15209 } 15210 15211 /* 15212 * Checks for availbility of a usable source address (if there is one) when the 15213 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15214 * this selection is done regardless of the destination. 15215 */ 15216 boolean_t 15217 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15218 ip_stack_t *ipst) 15219 { 15220 ipif_t *ipif = NULL; 15221 ill_t *uill; 15222 15223 ASSERT(ifindex != 0); 15224 15225 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15226 if (uill == NULL) 15227 return (B_FALSE); 15228 15229 mutex_enter(&uill->ill_lock); 15230 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15231 if (IPIF_IS_CONDEMNED(ipif)) 15232 continue; 15233 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15234 continue; 15235 if (!(ipif->ipif_flags & IPIF_UP)) 15236 continue; 15237 if (ipif->ipif_zoneid != zoneid) 15238 continue; 15239 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15240 ipif->ipif_lcl_addr == INADDR_ANY) 15241 continue; 15242 mutex_exit(&uill->ill_lock); 15243 ill_refrele(uill); 15244 return (B_TRUE); 15245 } 15246 mutex_exit(&uill->ill_lock); 15247 ill_refrele(uill); 15248 return (B_FALSE); 15249 } 15250 15251 /* 15252 * Find an ipif with a good local address on the ill+zoneid. 15253 */ 15254 ipif_t * 15255 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15256 { 15257 ipif_t *ipif; 15258 15259 mutex_enter(&ill->ill_lock); 15260 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15261 if (IPIF_IS_CONDEMNED(ipif)) 15262 continue; 15263 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15264 continue; 15265 if (!(ipif->ipif_flags & IPIF_UP)) 15266 continue; 15267 if (ipif->ipif_zoneid != zoneid && 15268 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15269 continue; 15270 if (ill->ill_isv6 ? 15271 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15272 ipif->ipif_lcl_addr == INADDR_ANY) 15273 continue; 15274 ipif_refhold_locked(ipif); 15275 mutex_exit(&ill->ill_lock); 15276 return (ipif); 15277 } 15278 mutex_exit(&ill->ill_lock); 15279 return (NULL); 15280 } 15281 15282 /* 15283 * IP source address type, sorted from worst to best. For a given type, 15284 * always prefer IP addresses on the same subnet. All-zones addresses are 15285 * suboptimal because they pose problems with unlabeled destinations. 15286 */ 15287 typedef enum { 15288 IPIF_NONE, 15289 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15290 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15291 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15292 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15293 IPIF_DIFFNET, /* normal and different subnet */ 15294 IPIF_SAMENET, /* normal and same subnet */ 15295 IPIF_LOCALADDR /* local loopback */ 15296 } ipif_type_t; 15297 15298 /* 15299 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15300 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15301 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15302 * the first one, unless IPMP is used in which case we round-robin among them; 15303 * see below for more. 15304 * 15305 * Returns NULL if there is no suitable source address for the ill. 15306 * This only occurs when there is no valid source address for the ill. 15307 */ 15308 ipif_t * 15309 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15310 boolean_t allow_usesrc, boolean_t *notreadyp) 15311 { 15312 ill_t *usill = NULL; 15313 ill_t *ipmp_ill = NULL; 15314 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15315 ipif_type_t type, best_type; 15316 tsol_tpc_t *src_rhtp, *dst_rhtp; 15317 ip_stack_t *ipst = ill->ill_ipst; 15318 boolean_t samenet; 15319 15320 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15321 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15322 B_FALSE, ipst); 15323 if (usill != NULL) 15324 ill = usill; /* Select source from usesrc ILL */ 15325 else 15326 return (NULL); 15327 } 15328 15329 /* 15330 * Test addresses should never be used for source address selection, 15331 * so if we were passed one, switch to the IPMP meta-interface. 15332 */ 15333 if (IS_UNDER_IPMP(ill)) { 15334 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15335 ill = ipmp_ill; /* Select source from IPMP ill */ 15336 else 15337 return (NULL); 15338 } 15339 15340 /* 15341 * If we're dealing with an unlabeled destination on a labeled system, 15342 * make sure that we ignore source addresses that are incompatible with 15343 * the destination's default label. That destination's default label 15344 * must dominate the minimum label on the source address. 15345 */ 15346 dst_rhtp = NULL; 15347 if (is_system_labeled()) { 15348 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15349 if (dst_rhtp == NULL) 15350 return (NULL); 15351 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15352 TPC_RELE(dst_rhtp); 15353 dst_rhtp = NULL; 15354 } 15355 } 15356 15357 /* 15358 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15359 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15360 * After selecting the right ipif, under ill_lock make sure ipif is 15361 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15362 * we retry. Inside the loop we still need to check for CONDEMNED, 15363 * but not under a lock. 15364 */ 15365 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15366 retry: 15367 /* 15368 * For source address selection, we treat the ipif list as circular 15369 * and continue until we get back to where we started. This allows 15370 * IPMP to vary source address selection (which improves inbound load 15371 * spreading) by caching its last ending point and starting from 15372 * there. NOTE: we don't have to worry about ill_src_ipif changing 15373 * ills since that can't happen on the IPMP ill. 15374 */ 15375 start_ipif = ill->ill_ipif; 15376 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15377 start_ipif = ill->ill_src_ipif; 15378 15379 ipif = start_ipif; 15380 best_ipif = NULL; 15381 best_type = IPIF_NONE; 15382 do { 15383 if ((next_ipif = ipif->ipif_next) == NULL) 15384 next_ipif = ill->ill_ipif; 15385 15386 if (IPIF_IS_CONDEMNED(ipif)) 15387 continue; 15388 /* Always skip NOLOCAL and ANYCAST interfaces */ 15389 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15390 continue; 15391 /* Always skip NOACCEPT interfaces */ 15392 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15393 continue; 15394 if (!(ipif->ipif_flags & IPIF_UP)) 15395 continue; 15396 15397 if (!ipif->ipif_addr_ready) { 15398 if (notreadyp != NULL) 15399 *notreadyp = B_TRUE; 15400 continue; 15401 } 15402 15403 if (zoneid != ALL_ZONES && 15404 ipif->ipif_zoneid != zoneid && 15405 ipif->ipif_zoneid != ALL_ZONES) 15406 continue; 15407 15408 /* 15409 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15410 * are not valid as source addresses. 15411 */ 15412 if (ipif->ipif_lcl_addr == INADDR_ANY) 15413 continue; 15414 15415 /* 15416 * Check compatibility of local address for destination's 15417 * default label if we're on a labeled system. Incompatible 15418 * addresses can't be used at all. 15419 */ 15420 if (dst_rhtp != NULL) { 15421 boolean_t incompat; 15422 15423 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15424 IPV4_VERSION, B_FALSE); 15425 if (src_rhtp == NULL) 15426 continue; 15427 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15428 src_rhtp->tpc_tp.tp_doi != 15429 dst_rhtp->tpc_tp.tp_doi || 15430 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15431 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15432 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15433 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15434 TPC_RELE(src_rhtp); 15435 if (incompat) 15436 continue; 15437 } 15438 15439 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15440 15441 if (ipif->ipif_lcl_addr == dst) { 15442 type = IPIF_LOCALADDR; 15443 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15444 type = samenet ? IPIF_SAMENET_DEPRECATED : 15445 IPIF_DIFFNET_DEPRECATED; 15446 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15447 type = samenet ? IPIF_SAMENET_ALLZONES : 15448 IPIF_DIFFNET_ALLZONES; 15449 } else { 15450 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15451 } 15452 15453 if (type > best_type) { 15454 best_type = type; 15455 best_ipif = ipif; 15456 if (best_type == IPIF_LOCALADDR) 15457 break; /* can't get better */ 15458 } 15459 } while ((ipif = next_ipif) != start_ipif); 15460 15461 if ((ipif = best_ipif) != NULL) { 15462 mutex_enter(&ipif->ipif_ill->ill_lock); 15463 if (IPIF_IS_CONDEMNED(ipif)) { 15464 mutex_exit(&ipif->ipif_ill->ill_lock); 15465 goto retry; 15466 } 15467 ipif_refhold_locked(ipif); 15468 15469 /* 15470 * For IPMP, update the source ipif rotor to the next ipif, 15471 * provided we can look it up. (We must not use it if it's 15472 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15473 * ipif_free() checked ill_src_ipif.) 15474 */ 15475 if (IS_IPMP(ill) && ipif != NULL) { 15476 next_ipif = ipif->ipif_next; 15477 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15478 ill->ill_src_ipif = next_ipif; 15479 else 15480 ill->ill_src_ipif = NULL; 15481 } 15482 mutex_exit(&ipif->ipif_ill->ill_lock); 15483 } 15484 15485 rw_exit(&ipst->ips_ill_g_lock); 15486 if (usill != NULL) 15487 ill_refrele(usill); 15488 if (ipmp_ill != NULL) 15489 ill_refrele(ipmp_ill); 15490 if (dst_rhtp != NULL) 15491 TPC_RELE(dst_rhtp); 15492 15493 #ifdef DEBUG 15494 if (ipif == NULL) { 15495 char buf1[INET6_ADDRSTRLEN]; 15496 15497 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15498 ill->ill_name, 15499 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15500 } else { 15501 char buf1[INET6_ADDRSTRLEN]; 15502 char buf2[INET6_ADDRSTRLEN]; 15503 15504 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15505 ipif->ipif_ill->ill_name, 15506 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15507 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15508 buf2, sizeof (buf2)))); 15509 } 15510 #endif /* DEBUG */ 15511 return (ipif); 15512 } 15513 15514 /* 15515 * Pick a source address based on the destination ill and an optional setsrc 15516 * address. 15517 * The result is stored in srcp. If generation is set, then put the source 15518 * generation number there before we look for the source address (to avoid 15519 * missing changes in the set of source addresses. 15520 * If flagsp is set, then us it to pass back ipif_flags. 15521 * 15522 * If the caller wants to cache the returned source address and detect when 15523 * that might be stale, the caller should pass in a generation argument, 15524 * which the caller can later compare against ips_src_generation 15525 * 15526 * The precedence order for selecting an IPv4 source address is: 15527 * - RTF_SETSRC on the offlink ire always wins. 15528 * - If usrsrc is set, swap the ill to be the usesrc one. 15529 * - If IPMP is used on the ill, select a random address from the most 15530 * preferred ones below: 15531 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15532 * 2. Not deprecated, not ALL_ZONES 15533 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15534 * 4. Not deprecated, ALL_ZONES 15535 * 5. If onlink destination, same subnet and deprecated 15536 * 6. Deprecated. 15537 * 15538 * We have lower preference for ALL_ZONES IP addresses, 15539 * as they pose problems with unlabeled destinations. 15540 * 15541 * Note that when multiple IP addresses match e.g., #1 we pick 15542 * the first one if IPMP is not in use. With IPMP we randomize. 15543 */ 15544 int 15545 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15546 ipaddr_t multicast_ifaddr, 15547 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15548 uint32_t *generation, uint64_t *flagsp) 15549 { 15550 ipif_t *ipif; 15551 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15552 15553 if (flagsp != NULL) 15554 *flagsp = 0; 15555 15556 /* 15557 * Need to grab the generation number before we check to 15558 * avoid a race with a change to the set of local addresses. 15559 * No lock needed since the thread which updates the set of local 15560 * addresses use ipif/ill locks and exit those (hence a store memory 15561 * barrier) before doing the atomic increase of ips_src_generation. 15562 */ 15563 if (generation != NULL) { 15564 *generation = ipst->ips_src_generation; 15565 } 15566 15567 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15568 *srcp = multicast_ifaddr; 15569 return (0); 15570 } 15571 15572 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15573 if (setsrc != INADDR_ANY) { 15574 *srcp = setsrc; 15575 return (0); 15576 } 15577 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15578 if (ipif == NULL) { 15579 if (notready) 15580 return (ENETDOWN); 15581 else 15582 return (EADDRNOTAVAIL); 15583 } 15584 *srcp = ipif->ipif_lcl_addr; 15585 if (flagsp != NULL) 15586 *flagsp = ipif->ipif_flags; 15587 ipif_refrele(ipif); 15588 return (0); 15589 } 15590 15591 /* ARGSUSED */ 15592 int 15593 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15594 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15595 { 15596 /* 15597 * ill_phyint_reinit merged the v4 and v6 into a single 15598 * ipsq. We might not have been able to complete the 15599 * operation in ipif_set_values, if we could not become 15600 * exclusive. If so restart it here. 15601 */ 15602 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15603 } 15604 15605 /* 15606 * Can operate on either a module or a driver queue. 15607 * Returns an error if not a module queue. 15608 */ 15609 /* ARGSUSED */ 15610 int 15611 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15612 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15613 { 15614 queue_t *q1 = q; 15615 char *cp; 15616 char interf_name[LIFNAMSIZ]; 15617 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15618 15619 if (q->q_next == NULL) { 15620 ip1dbg(( 15621 "if_unitsel: IF_UNITSEL: no q_next\n")); 15622 return (EINVAL); 15623 } 15624 15625 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15626 return (EALREADY); 15627 15628 do { 15629 q1 = q1->q_next; 15630 } while (q1->q_next); 15631 cp = q1->q_qinfo->qi_minfo->mi_idname; 15632 (void) sprintf(interf_name, "%s%d", cp, ppa); 15633 15634 /* 15635 * Here we are not going to delay the ioack until after 15636 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15637 * original ioctl message before sending the requests. 15638 */ 15639 return (ipif_set_values(q, mp, interf_name, &ppa)); 15640 } 15641 15642 /* ARGSUSED */ 15643 int 15644 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15645 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15646 { 15647 return (ENXIO); 15648 } 15649 15650 /* 15651 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15652 * `irep'. Returns a pointer to the next free `irep' entry 15653 * A mirror exists in ipif_delete_bcast_ires(). 15654 * 15655 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15656 * done in ire_add. 15657 */ 15658 static ire_t ** 15659 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15660 { 15661 ipaddr_t addr; 15662 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15663 ipaddr_t subnetmask = ipif->ipif_net_mask; 15664 ill_t *ill = ipif->ipif_ill; 15665 zoneid_t zoneid = ipif->ipif_zoneid; 15666 15667 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15668 15669 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15670 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15671 15672 if (ipif->ipif_lcl_addr == INADDR_ANY || 15673 (ipif->ipif_flags & IPIF_NOLOCAL)) 15674 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15675 15676 irep = ire_create_bcast(ill, 0, zoneid, irep); 15677 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15678 15679 /* 15680 * For backward compatibility, we create net broadcast IREs based on 15681 * the old "IP address class system", since some old machines only 15682 * respond to these class derived net broadcast. However, we must not 15683 * create these net broadcast IREs if the subnetmask is shorter than 15684 * the IP address class based derived netmask. Otherwise, we may 15685 * create a net broadcast address which is the same as an IP address 15686 * on the subnet -- and then TCP will refuse to talk to that address. 15687 */ 15688 if (netmask < subnetmask) { 15689 addr = netmask & ipif->ipif_subnet; 15690 irep = ire_create_bcast(ill, addr, zoneid, irep); 15691 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15692 } 15693 15694 /* 15695 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15696 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15697 * created. Creating these broadcast IREs will only create confusion 15698 * as `addr' will be the same as the IP address. 15699 */ 15700 if (subnetmask != 0xFFFFFFFF) { 15701 addr = ipif->ipif_subnet; 15702 irep = ire_create_bcast(ill, addr, zoneid, irep); 15703 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15704 } 15705 15706 return (irep); 15707 } 15708 15709 /* 15710 * Mirror of ipif_create_bcast_ires() 15711 */ 15712 static void 15713 ipif_delete_bcast_ires(ipif_t *ipif) 15714 { 15715 ipaddr_t addr; 15716 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15717 ipaddr_t subnetmask = ipif->ipif_net_mask; 15718 ill_t *ill = ipif->ipif_ill; 15719 zoneid_t zoneid = ipif->ipif_zoneid; 15720 ire_t *ire; 15721 15722 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15723 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15724 15725 if (ipif->ipif_lcl_addr == INADDR_ANY || 15726 (ipif->ipif_flags & IPIF_NOLOCAL)) 15727 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15728 15729 ire = ire_lookup_bcast(ill, 0, zoneid); 15730 ASSERT(ire != NULL); 15731 ire_delete(ire); ire_refrele(ire); 15732 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15733 ASSERT(ire != NULL); 15734 ire_delete(ire); ire_refrele(ire); 15735 15736 /* 15737 * For backward compatibility, we create net broadcast IREs based on 15738 * the old "IP address class system", since some old machines only 15739 * respond to these class derived net broadcast. However, we must not 15740 * create these net broadcast IREs if the subnetmask is shorter than 15741 * the IP address class based derived netmask. Otherwise, we may 15742 * create a net broadcast address which is the same as an IP address 15743 * on the subnet -- and then TCP will refuse to talk to that address. 15744 */ 15745 if (netmask < subnetmask) { 15746 addr = netmask & ipif->ipif_subnet; 15747 ire = ire_lookup_bcast(ill, addr, zoneid); 15748 ASSERT(ire != NULL); 15749 ire_delete(ire); ire_refrele(ire); 15750 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15751 ASSERT(ire != NULL); 15752 ire_delete(ire); ire_refrele(ire); 15753 } 15754 15755 /* 15756 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15757 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15758 * created. Creating these broadcast IREs will only create confusion 15759 * as `addr' will be the same as the IP address. 15760 */ 15761 if (subnetmask != 0xFFFFFFFF) { 15762 addr = ipif->ipif_subnet; 15763 ire = ire_lookup_bcast(ill, addr, zoneid); 15764 ASSERT(ire != NULL); 15765 ire_delete(ire); ire_refrele(ire); 15766 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15767 ASSERT(ire != NULL); 15768 ire_delete(ire); ire_refrele(ire); 15769 } 15770 } 15771 15772 /* 15773 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15774 * from lifr_flags and the name from lifr_name. 15775 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15776 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15777 * Returns EINPROGRESS when mp has been consumed by queueing it on 15778 * ipx_pending_mp and the ioctl will complete in ip_rput. 15779 * 15780 * Can operate on either a module or a driver queue. 15781 * Returns an error if not a module queue. 15782 */ 15783 /* ARGSUSED */ 15784 int 15785 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15786 ip_ioctl_cmd_t *ipip, void *if_req) 15787 { 15788 ill_t *ill = q->q_ptr; 15789 phyint_t *phyi; 15790 ip_stack_t *ipst; 15791 struct lifreq *lifr = if_req; 15792 uint64_t new_flags; 15793 15794 ASSERT(ipif != NULL); 15795 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15796 15797 if (q->q_next == NULL) { 15798 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15799 return (EINVAL); 15800 } 15801 15802 /* 15803 * If we are not writer on 'q' then this interface exists already 15804 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15805 * so return EALREADY. 15806 */ 15807 if (ill != ipif->ipif_ill) 15808 return (EALREADY); 15809 15810 if (ill->ill_name[0] != '\0') 15811 return (EALREADY); 15812 15813 /* 15814 * If there's another ill already with the requested name, ensure 15815 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15816 * fuse together two unrelated ills, which will cause chaos. 15817 */ 15818 ipst = ill->ill_ipst; 15819 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15820 lifr->lifr_name, NULL); 15821 if (phyi != NULL) { 15822 ill_t *ill_mate = phyi->phyint_illv4; 15823 15824 if (ill_mate == NULL) 15825 ill_mate = phyi->phyint_illv6; 15826 ASSERT(ill_mate != NULL); 15827 15828 if (ill_mate->ill_media->ip_m_mac_type != 15829 ill->ill_media->ip_m_mac_type) { 15830 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15831 "use the same ill name on differing media\n")); 15832 return (EINVAL); 15833 } 15834 } 15835 15836 /* 15837 * We start off as IFF_IPV4 in ipif_allocate and become 15838 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15839 * The only flags that we read from user space are IFF_IPV4, 15840 * IFF_IPV6, and IFF_BROADCAST. 15841 * 15842 * This ill has not been inserted into the global list. 15843 * So we are still single threaded and don't need any lock 15844 * 15845 * Saniy check the flags. 15846 */ 15847 15848 if ((lifr->lifr_flags & IFF_BROADCAST) && 15849 ((lifr->lifr_flags & IFF_IPV6) || 15850 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15851 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15852 "or IPv6 i.e., no broadcast \n")); 15853 return (EINVAL); 15854 } 15855 15856 new_flags = 15857 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15858 15859 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15860 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15861 "IFF_IPV4 or IFF_IPV6\n")); 15862 return (EINVAL); 15863 } 15864 15865 /* 15866 * We always start off as IPv4, so only need to check for IPv6. 15867 */ 15868 if ((new_flags & IFF_IPV6) != 0) { 15869 ill->ill_flags |= ILLF_IPV6; 15870 ill->ill_flags &= ~ILLF_IPV4; 15871 15872 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15873 ill->ill_flags |= ILLF_NOLINKLOCAL; 15874 } 15875 15876 if ((new_flags & IFF_BROADCAST) != 0) 15877 ipif->ipif_flags |= IPIF_BROADCAST; 15878 else 15879 ipif->ipif_flags &= ~IPIF_BROADCAST; 15880 15881 /* We started off as V4. */ 15882 if (ill->ill_flags & ILLF_IPV6) { 15883 ill->ill_phyint->phyint_illv6 = ill; 15884 ill->ill_phyint->phyint_illv4 = NULL; 15885 } 15886 15887 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15888 } 15889 15890 /* ARGSUSED */ 15891 int 15892 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15893 ip_ioctl_cmd_t *ipip, void *if_req) 15894 { 15895 /* 15896 * ill_phyint_reinit merged the v4 and v6 into a single 15897 * ipsq. We might not have been able to complete the 15898 * slifname in ipif_set_values, if we could not become 15899 * exclusive. If so restart it here 15900 */ 15901 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15902 } 15903 15904 /* 15905 * Return a pointer to the ipif which matches the index, IP version type and 15906 * zoneid. 15907 */ 15908 ipif_t * 15909 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15910 ip_stack_t *ipst) 15911 { 15912 ill_t *ill; 15913 ipif_t *ipif = NULL; 15914 15915 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15916 if (ill != NULL) { 15917 mutex_enter(&ill->ill_lock); 15918 for (ipif = ill->ill_ipif; ipif != NULL; 15919 ipif = ipif->ipif_next) { 15920 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15921 zoneid == ipif->ipif_zoneid || 15922 ipif->ipif_zoneid == ALL_ZONES)) { 15923 ipif_refhold_locked(ipif); 15924 break; 15925 } 15926 } 15927 mutex_exit(&ill->ill_lock); 15928 ill_refrele(ill); 15929 } 15930 return (ipif); 15931 } 15932 15933 /* 15934 * Change an existing physical interface's index. If the new index 15935 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15936 * Finally, we update other systems which may have a dependence on the 15937 * index value. 15938 */ 15939 /* ARGSUSED */ 15940 int 15941 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15942 ip_ioctl_cmd_t *ipip, void *ifreq) 15943 { 15944 ill_t *ill; 15945 phyint_t *phyi; 15946 struct ifreq *ifr = (struct ifreq *)ifreq; 15947 struct lifreq *lifr = (struct lifreq *)ifreq; 15948 uint_t old_index, index; 15949 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15950 avl_index_t where; 15951 15952 if (ipip->ipi_cmd_type == IF_CMD) 15953 index = ifr->ifr_index; 15954 else 15955 index = lifr->lifr_index; 15956 15957 /* 15958 * Only allow on physical interface. Also, index zero is illegal. 15959 */ 15960 ill = ipif->ipif_ill; 15961 phyi = ill->ill_phyint; 15962 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15963 return (EINVAL); 15964 } 15965 15966 /* If the index is not changing, no work to do */ 15967 if (phyi->phyint_ifindex == index) 15968 return (0); 15969 15970 /* 15971 * Use phyint_exists() to determine if the new interface index 15972 * is already in use. If the index is unused then we need to 15973 * change the phyint's position in the phyint_list_avl_by_index 15974 * tree. If we do not do this, subsequent lookups (using the new 15975 * index value) will not find the phyint. 15976 */ 15977 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15978 if (phyint_exists(index, ipst)) { 15979 rw_exit(&ipst->ips_ill_g_lock); 15980 return (EEXIST); 15981 } 15982 15983 /* 15984 * The new index is unused. Set it in the phyint. However we must not 15985 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15986 * changes. The event must be bound to old ifindex value. 15987 */ 15988 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15989 &index, sizeof (index)); 15990 15991 old_index = phyi->phyint_ifindex; 15992 phyi->phyint_ifindex = index; 15993 15994 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15995 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15996 &index, &where); 15997 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15998 phyi, where); 15999 rw_exit(&ipst->ips_ill_g_lock); 16000 16001 /* Update SCTP's ILL list */ 16002 sctp_ill_reindex(ill, old_index); 16003 16004 /* Send the routing sockets message */ 16005 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16006 if (ILL_OTHER(ill)) 16007 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16008 16009 /* Perhaps ilgs should use this ill */ 16010 update_conn_ill(NULL, ill->ill_ipst); 16011 return (0); 16012 } 16013 16014 /* ARGSUSED */ 16015 int 16016 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16017 ip_ioctl_cmd_t *ipip, void *ifreq) 16018 { 16019 struct ifreq *ifr = (struct ifreq *)ifreq; 16020 struct lifreq *lifr = (struct lifreq *)ifreq; 16021 16022 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16023 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16024 /* Get the interface index */ 16025 if (ipip->ipi_cmd_type == IF_CMD) { 16026 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16027 } else { 16028 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16029 } 16030 return (0); 16031 } 16032 16033 /* ARGSUSED */ 16034 int 16035 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16036 ip_ioctl_cmd_t *ipip, void *ifreq) 16037 { 16038 struct lifreq *lifr = (struct lifreq *)ifreq; 16039 16040 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16041 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16042 /* Get the interface zone */ 16043 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16044 lifr->lifr_zoneid = ipif->ipif_zoneid; 16045 return (0); 16046 } 16047 16048 /* 16049 * Set the zoneid of an interface. 16050 */ 16051 /* ARGSUSED */ 16052 int 16053 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16054 ip_ioctl_cmd_t *ipip, void *ifreq) 16055 { 16056 struct lifreq *lifr = (struct lifreq *)ifreq; 16057 int err = 0; 16058 boolean_t need_up = B_FALSE; 16059 zone_t *zptr; 16060 zone_status_t status; 16061 zoneid_t zoneid; 16062 16063 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16064 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16065 if (!is_system_labeled()) 16066 return (ENOTSUP); 16067 zoneid = GLOBAL_ZONEID; 16068 } 16069 16070 /* cannot assign instance zero to a non-global zone */ 16071 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16072 return (ENOTSUP); 16073 16074 /* 16075 * Cannot assign to a zone that doesn't exist or is shutting down. In 16076 * the event of a race with the zone shutdown processing, since IP 16077 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16078 * interface will be cleaned up even if the zone is shut down 16079 * immediately after the status check. If the interface can't be brought 16080 * down right away, and the zone is shut down before the restart 16081 * function is called, we resolve the possible races by rechecking the 16082 * zone status in the restart function. 16083 */ 16084 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16085 return (EINVAL); 16086 status = zone_status_get(zptr); 16087 zone_rele(zptr); 16088 16089 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16090 return (EINVAL); 16091 16092 if (ipif->ipif_flags & IPIF_UP) { 16093 /* 16094 * If the interface is already marked up, 16095 * we call ipif_down which will take care 16096 * of ditching any IREs that have been set 16097 * up based on the old interface address. 16098 */ 16099 err = ipif_logical_down(ipif, q, mp); 16100 if (err == EINPROGRESS) 16101 return (err); 16102 (void) ipif_down_tail(ipif); 16103 need_up = B_TRUE; 16104 } 16105 16106 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16107 return (err); 16108 } 16109 16110 static int 16111 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16112 queue_t *q, mblk_t *mp, boolean_t need_up) 16113 { 16114 int err = 0; 16115 ip_stack_t *ipst; 16116 16117 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16118 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16119 16120 if (CONN_Q(q)) 16121 ipst = CONNQ_TO_IPST(q); 16122 else 16123 ipst = ILLQ_TO_IPST(q); 16124 16125 /* 16126 * For exclusive stacks we don't allow a different zoneid than 16127 * global. 16128 */ 16129 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16130 zoneid != GLOBAL_ZONEID) 16131 return (EINVAL); 16132 16133 /* Set the new zone id. */ 16134 ipif->ipif_zoneid = zoneid; 16135 16136 /* Update sctp list */ 16137 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16138 16139 /* The default multicast interface might have changed */ 16140 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16141 16142 if (need_up) { 16143 /* 16144 * Now bring the interface back up. If this 16145 * is the only IPIF for the ILL, ipif_up 16146 * will have to re-bind to the device, so 16147 * we may get back EINPROGRESS, in which 16148 * case, this IOCTL will get completed in 16149 * ip_rput_dlpi when we see the DL_BIND_ACK. 16150 */ 16151 err = ipif_up(ipif, q, mp); 16152 } 16153 return (err); 16154 } 16155 16156 /* ARGSUSED */ 16157 int 16158 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16159 ip_ioctl_cmd_t *ipip, void *if_req) 16160 { 16161 struct lifreq *lifr = (struct lifreq *)if_req; 16162 zoneid_t zoneid; 16163 zone_t *zptr; 16164 zone_status_t status; 16165 16166 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16167 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16168 zoneid = GLOBAL_ZONEID; 16169 16170 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16171 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16172 16173 /* 16174 * We recheck the zone status to resolve the following race condition: 16175 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16176 * 2) hme0:1 is up and can't be brought down right away; 16177 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16178 * 3) zone "myzone" is halted; the zone status switches to 16179 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16180 * the interfaces to remove - hme0:1 is not returned because it's not 16181 * yet in "myzone", so it won't be removed; 16182 * 4) the restart function for SIOCSLIFZONE is called; without the 16183 * status check here, we would have hme0:1 in "myzone" after it's been 16184 * destroyed. 16185 * Note that if the status check fails, we need to bring the interface 16186 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16187 * ipif_up_done[_v6](). 16188 */ 16189 status = ZONE_IS_UNINITIALIZED; 16190 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16191 status = zone_status_get(zptr); 16192 zone_rele(zptr); 16193 } 16194 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16195 if (ipif->ipif_isv6) { 16196 (void) ipif_up_done_v6(ipif); 16197 } else { 16198 (void) ipif_up_done(ipif); 16199 } 16200 return (EINVAL); 16201 } 16202 16203 (void) ipif_down_tail(ipif); 16204 16205 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16206 B_TRUE)); 16207 } 16208 16209 /* 16210 * Return the number of addresses on `ill' with one or more of the values 16211 * in `set' set and all of the values in `clear' clear. 16212 */ 16213 static uint_t 16214 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16215 { 16216 ipif_t *ipif; 16217 uint_t cnt = 0; 16218 16219 ASSERT(IAM_WRITER_ILL(ill)); 16220 16221 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16222 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16223 cnt++; 16224 16225 return (cnt); 16226 } 16227 16228 /* 16229 * Return the number of migratable addresses on `ill' that are under 16230 * application control. 16231 */ 16232 uint_t 16233 ill_appaddr_cnt(const ill_t *ill) 16234 { 16235 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16236 IPIF_NOFAILOVER)); 16237 } 16238 16239 /* 16240 * Return the number of point-to-point addresses on `ill'. 16241 */ 16242 uint_t 16243 ill_ptpaddr_cnt(const ill_t *ill) 16244 { 16245 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16246 } 16247 16248 /* ARGSUSED */ 16249 int 16250 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16251 ip_ioctl_cmd_t *ipip, void *ifreq) 16252 { 16253 struct lifreq *lifr = ifreq; 16254 16255 ASSERT(q->q_next == NULL); 16256 ASSERT(CONN_Q(q)); 16257 16258 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16259 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16260 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16261 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16262 16263 return (0); 16264 } 16265 16266 /* Find the previous ILL in this usesrc group */ 16267 static ill_t * 16268 ill_prev_usesrc(ill_t *uill) 16269 { 16270 ill_t *ill; 16271 16272 for (ill = uill->ill_usesrc_grp_next; 16273 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16274 ill = ill->ill_usesrc_grp_next) 16275 /* do nothing */; 16276 return (ill); 16277 } 16278 16279 /* 16280 * Release all members of the usesrc group. This routine is called 16281 * from ill_delete when the interface being unplumbed is the 16282 * group head. 16283 * 16284 * This silently clears the usesrc that ifconfig setup. 16285 * An alternative would be to keep that ifindex, and drop packets on the floor 16286 * since no source address can be selected. 16287 * Even if we keep the current semantics, don't need a lock and a linked list. 16288 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16289 * the one that is being removed. Issue is how we return the usesrc users 16290 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16291 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16292 * ill walk, but the walker would need to insert in the ioctl response. 16293 */ 16294 static void 16295 ill_disband_usesrc_group(ill_t *uill) 16296 { 16297 ill_t *next_ill, *tmp_ill; 16298 ip_stack_t *ipst = uill->ill_ipst; 16299 16300 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16301 next_ill = uill->ill_usesrc_grp_next; 16302 16303 do { 16304 ASSERT(next_ill != NULL); 16305 tmp_ill = next_ill->ill_usesrc_grp_next; 16306 ASSERT(tmp_ill != NULL); 16307 next_ill->ill_usesrc_grp_next = NULL; 16308 next_ill->ill_usesrc_ifindex = 0; 16309 next_ill = tmp_ill; 16310 } while (next_ill->ill_usesrc_ifindex != 0); 16311 uill->ill_usesrc_grp_next = NULL; 16312 } 16313 16314 /* 16315 * Remove the client usesrc ILL from the list and relink to a new list 16316 */ 16317 int 16318 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16319 { 16320 ill_t *ill, *tmp_ill; 16321 ip_stack_t *ipst = ucill->ill_ipst; 16322 16323 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16324 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16325 16326 /* 16327 * Check if the usesrc client ILL passed in is not already 16328 * in use as a usesrc ILL i.e one whose source address is 16329 * in use OR a usesrc ILL is not already in use as a usesrc 16330 * client ILL 16331 */ 16332 if ((ucill->ill_usesrc_ifindex == 0) || 16333 (uill->ill_usesrc_ifindex != 0)) { 16334 return (-1); 16335 } 16336 16337 ill = ill_prev_usesrc(ucill); 16338 ASSERT(ill->ill_usesrc_grp_next != NULL); 16339 16340 /* Remove from the current list */ 16341 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16342 /* Only two elements in the list */ 16343 ASSERT(ill->ill_usesrc_ifindex == 0); 16344 ill->ill_usesrc_grp_next = NULL; 16345 } else { 16346 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16347 } 16348 16349 if (ifindex == 0) { 16350 ucill->ill_usesrc_ifindex = 0; 16351 ucill->ill_usesrc_grp_next = NULL; 16352 return (0); 16353 } 16354 16355 ucill->ill_usesrc_ifindex = ifindex; 16356 tmp_ill = uill->ill_usesrc_grp_next; 16357 uill->ill_usesrc_grp_next = ucill; 16358 ucill->ill_usesrc_grp_next = 16359 (tmp_ill != NULL) ? tmp_ill : uill; 16360 return (0); 16361 } 16362 16363 /* 16364 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16365 * ip.c for locking details. 16366 */ 16367 /* ARGSUSED */ 16368 int 16369 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16370 ip_ioctl_cmd_t *ipip, void *ifreq) 16371 { 16372 struct lifreq *lifr = (struct lifreq *)ifreq; 16373 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16374 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16375 int err = 0, ret; 16376 uint_t ifindex; 16377 ipsq_t *ipsq = NULL; 16378 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16379 16380 ASSERT(IAM_WRITER_IPIF(ipif)); 16381 ASSERT(q->q_next == NULL); 16382 ASSERT(CONN_Q(q)); 16383 16384 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16385 16386 ifindex = lifr->lifr_index; 16387 if (ifindex == 0) { 16388 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16389 /* non usesrc group interface, nothing to reset */ 16390 return (0); 16391 } 16392 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16393 /* valid reset request */ 16394 reset_flg = B_TRUE; 16395 } 16396 16397 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16398 if (usesrc_ill == NULL) 16399 return (ENXIO); 16400 if (usesrc_ill == ipif->ipif_ill) { 16401 ill_refrele(usesrc_ill); 16402 return (EINVAL); 16403 } 16404 16405 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16406 NEW_OP, B_TRUE); 16407 if (ipsq == NULL) { 16408 err = EINPROGRESS; 16409 /* Operation enqueued on the ipsq of the usesrc ILL */ 16410 goto done; 16411 } 16412 16413 /* USESRC isn't currently supported with IPMP */ 16414 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16415 err = ENOTSUP; 16416 goto done; 16417 } 16418 16419 /* 16420 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16421 * used by IPMP underlying interfaces, but someone might think it's 16422 * more general and try to use it independently with VNI.) 16423 */ 16424 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16425 err = ENOTSUP; 16426 goto done; 16427 } 16428 16429 /* 16430 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16431 * already a client then return EINVAL 16432 */ 16433 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16434 err = EINVAL; 16435 goto done; 16436 } 16437 16438 /* 16439 * If the ill_usesrc_ifindex field is already set to what it needs to 16440 * be then this is a duplicate operation. 16441 */ 16442 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16443 err = 0; 16444 goto done; 16445 } 16446 16447 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16448 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16449 usesrc_ill->ill_isv6)); 16450 16451 /* 16452 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16453 * and the ill_usesrc_ifindex fields 16454 */ 16455 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16456 16457 if (reset_flg) { 16458 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16459 if (ret != 0) { 16460 err = EINVAL; 16461 } 16462 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16463 goto done; 16464 } 16465 16466 /* 16467 * Four possibilities to consider: 16468 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16469 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16470 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16471 * 4. Both are part of their respective usesrc groups 16472 */ 16473 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16474 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16475 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16476 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16477 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16478 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16479 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16480 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16481 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16482 /* Insert at head of list */ 16483 usesrc_cli_ill->ill_usesrc_grp_next = 16484 usesrc_ill->ill_usesrc_grp_next; 16485 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16486 } else { 16487 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16488 ifindex); 16489 if (ret != 0) 16490 err = EINVAL; 16491 } 16492 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16493 16494 done: 16495 if (ipsq != NULL) 16496 ipsq_exit(ipsq); 16497 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16498 ill_refrele(usesrc_ill); 16499 16500 /* Let conn_ixa caching know that source address selection changed */ 16501 ip_update_source_selection(ipst); 16502 16503 return (err); 16504 } 16505 16506 /* ARGSUSED */ 16507 int 16508 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16509 ip_ioctl_cmd_t *ipip, void *if_req) 16510 { 16511 struct lifreq *lifr = (struct lifreq *)if_req; 16512 ill_t *ill = ipif->ipif_ill; 16513 16514 /* 16515 * Need a lock since IFF_UP can be set even when there are 16516 * references to the ipif. 16517 */ 16518 mutex_enter(&ill->ill_lock); 16519 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16520 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16521 else 16522 lifr->lifr_dadstate = DAD_DONE; 16523 mutex_exit(&ill->ill_lock); 16524 return (0); 16525 } 16526 16527 /* 16528 * comparison function used by avl. 16529 */ 16530 static int 16531 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16532 { 16533 16534 uint_t index; 16535 16536 ASSERT(phyip != NULL && index_ptr != NULL); 16537 16538 index = *((uint_t *)index_ptr); 16539 /* 16540 * let the phyint with the lowest index be on top. 16541 */ 16542 if (((phyint_t *)phyip)->phyint_ifindex < index) 16543 return (1); 16544 if (((phyint_t *)phyip)->phyint_ifindex > index) 16545 return (-1); 16546 return (0); 16547 } 16548 16549 /* 16550 * comparison function used by avl. 16551 */ 16552 static int 16553 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16554 { 16555 ill_t *ill; 16556 int res = 0; 16557 16558 ASSERT(phyip != NULL && name_ptr != NULL); 16559 16560 if (((phyint_t *)phyip)->phyint_illv4) 16561 ill = ((phyint_t *)phyip)->phyint_illv4; 16562 else 16563 ill = ((phyint_t *)phyip)->phyint_illv6; 16564 ASSERT(ill != NULL); 16565 16566 res = strcmp(ill->ill_name, (char *)name_ptr); 16567 if (res > 0) 16568 return (1); 16569 else if (res < 0) 16570 return (-1); 16571 return (0); 16572 } 16573 16574 /* 16575 * This function is called on the unplumb path via ill_glist_delete() when 16576 * there are no ills left on the phyint and thus the phyint can be freed. 16577 */ 16578 static void 16579 phyint_free(phyint_t *phyi) 16580 { 16581 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16582 16583 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16584 16585 /* 16586 * If this phyint was an IPMP meta-interface, blow away the group. 16587 * This is safe to do because all of the illgrps have already been 16588 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16589 * If we're cleaning up as a result of failed initialization, 16590 * phyint_grp may be NULL. 16591 */ 16592 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16593 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16594 ipmp_grp_destroy(phyi->phyint_grp); 16595 phyi->phyint_grp = NULL; 16596 rw_exit(&ipst->ips_ipmp_lock); 16597 } 16598 16599 /* 16600 * If this interface was under IPMP, take it out of the group. 16601 */ 16602 if (phyi->phyint_grp != NULL) 16603 ipmp_phyint_leave_grp(phyi); 16604 16605 /* 16606 * Delete the phyint and disassociate its ipsq. The ipsq itself 16607 * will be freed in ipsq_exit(). 16608 */ 16609 phyi->phyint_ipsq->ipsq_phyint = NULL; 16610 phyi->phyint_name[0] = '\0'; 16611 16612 mi_free(phyi); 16613 } 16614 16615 /* 16616 * Attach the ill to the phyint structure which can be shared by both 16617 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16618 * function is called from ipif_set_values and ill_lookup_on_name (for 16619 * loopback) where we know the name of the ill. We lookup the ill and if 16620 * there is one present already with the name use that phyint. Otherwise 16621 * reuse the one allocated by ill_init. 16622 */ 16623 static void 16624 ill_phyint_reinit(ill_t *ill) 16625 { 16626 boolean_t isv6 = ill->ill_isv6; 16627 phyint_t *phyi_old; 16628 phyint_t *phyi; 16629 avl_index_t where = 0; 16630 ill_t *ill_other = NULL; 16631 ip_stack_t *ipst = ill->ill_ipst; 16632 16633 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16634 16635 phyi_old = ill->ill_phyint; 16636 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16637 phyi_old->phyint_illv6 == NULL)); 16638 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16639 phyi_old->phyint_illv4 == NULL)); 16640 ASSERT(phyi_old->phyint_ifindex == 0); 16641 16642 /* 16643 * Now that our ill has a name, set it in the phyint. 16644 */ 16645 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16646 16647 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16648 ill->ill_name, &where); 16649 16650 /* 16651 * 1. We grabbed the ill_g_lock before inserting this ill into 16652 * the global list of ills. So no other thread could have located 16653 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16654 * 2. Now locate the other protocol instance of this ill. 16655 * 3. Now grab both ill locks in the right order, and the phyint lock of 16656 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16657 * of neither ill can change. 16658 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16659 * other ill. 16660 * 5. Release all locks. 16661 */ 16662 16663 /* 16664 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16665 * we are initializing IPv4. 16666 */ 16667 if (phyi != NULL) { 16668 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16669 ASSERT(ill_other->ill_phyint != NULL); 16670 ASSERT((isv6 && !ill_other->ill_isv6) || 16671 (!isv6 && ill_other->ill_isv6)); 16672 GRAB_ILL_LOCKS(ill, ill_other); 16673 /* 16674 * We are potentially throwing away phyint_flags which 16675 * could be different from the one that we obtain from 16676 * ill_other->ill_phyint. But it is okay as we are assuming 16677 * that the state maintained within IP is correct. 16678 */ 16679 mutex_enter(&phyi->phyint_lock); 16680 if (isv6) { 16681 ASSERT(phyi->phyint_illv6 == NULL); 16682 phyi->phyint_illv6 = ill; 16683 } else { 16684 ASSERT(phyi->phyint_illv4 == NULL); 16685 phyi->phyint_illv4 = ill; 16686 } 16687 16688 /* 16689 * Delete the old phyint and make its ipsq eligible 16690 * to be freed in ipsq_exit(). 16691 */ 16692 phyi_old->phyint_illv4 = NULL; 16693 phyi_old->phyint_illv6 = NULL; 16694 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16695 phyi_old->phyint_name[0] = '\0'; 16696 mi_free(phyi_old); 16697 } else { 16698 mutex_enter(&ill->ill_lock); 16699 /* 16700 * We don't need to acquire any lock, since 16701 * the ill is not yet visible globally and we 16702 * have not yet released the ill_g_lock. 16703 */ 16704 phyi = phyi_old; 16705 mutex_enter(&phyi->phyint_lock); 16706 /* XXX We need a recovery strategy here. */ 16707 if (!phyint_assign_ifindex(phyi, ipst)) 16708 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16709 16710 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16711 (void *)phyi, where); 16712 16713 (void) avl_find(&ipst->ips_phyint_g_list-> 16714 phyint_list_avl_by_index, 16715 &phyi->phyint_ifindex, &where); 16716 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16717 (void *)phyi, where); 16718 } 16719 16720 /* 16721 * Reassigning ill_phyint automatically reassigns the ipsq also. 16722 * pending mp is not affected because that is per ill basis. 16723 */ 16724 ill->ill_phyint = phyi; 16725 16726 /* 16727 * Now that the phyint's ifindex has been assigned, complete the 16728 * remaining 16729 */ 16730 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16731 if (ill->ill_isv6) { 16732 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16733 ill->ill_phyint->phyint_ifindex; 16734 ill->ill_mcast_type = ipst->ips_mld_max_version; 16735 } else { 16736 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16737 } 16738 16739 /* 16740 * Generate an event within the hooks framework to indicate that 16741 * a new interface has just been added to IP. For this event to 16742 * be generated, the network interface must, at least, have an 16743 * ifindex assigned to it. (We don't generate the event for 16744 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16745 * 16746 * This needs to be run inside the ill_g_lock perimeter to ensure 16747 * that the ordering of delivered events to listeners matches the 16748 * order of them in the kernel. 16749 */ 16750 if (!IS_LOOPBACK(ill)) { 16751 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16752 ill->ill_name_length); 16753 } 16754 RELEASE_ILL_LOCKS(ill, ill_other); 16755 mutex_exit(&phyi->phyint_lock); 16756 } 16757 16758 /* 16759 * Notify any downstream modules of the name of this interface. 16760 * An M_IOCTL is used even though we don't expect a successful reply. 16761 * Any reply message from the driver (presumably an M_IOCNAK) will 16762 * eventually get discarded somewhere upstream. The message format is 16763 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16764 * to IP. 16765 */ 16766 static void 16767 ip_ifname_notify(ill_t *ill, queue_t *q) 16768 { 16769 mblk_t *mp1, *mp2; 16770 struct iocblk *iocp; 16771 struct lifreq *lifr; 16772 16773 mp1 = mkiocb(SIOCSLIFNAME); 16774 if (mp1 == NULL) 16775 return; 16776 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16777 if (mp2 == NULL) { 16778 freeb(mp1); 16779 return; 16780 } 16781 16782 mp1->b_cont = mp2; 16783 iocp = (struct iocblk *)mp1->b_rptr; 16784 iocp->ioc_count = sizeof (struct lifreq); 16785 16786 lifr = (struct lifreq *)mp2->b_rptr; 16787 mp2->b_wptr += sizeof (struct lifreq); 16788 bzero(lifr, sizeof (struct lifreq)); 16789 16790 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16791 lifr->lifr_ppa = ill->ill_ppa; 16792 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16793 16794 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16795 char *, "SIOCSLIFNAME", ill_t *, ill); 16796 putnext(q, mp1); 16797 } 16798 16799 static int 16800 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16801 { 16802 int err; 16803 ip_stack_t *ipst = ill->ill_ipst; 16804 phyint_t *phyi = ill->ill_phyint; 16805 16806 /* 16807 * Now that ill_name is set, the configuration for the IPMP 16808 * meta-interface can be performed. 16809 */ 16810 if (IS_IPMP(ill)) { 16811 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16812 /* 16813 * If phyi->phyint_grp is NULL, then this is the first IPMP 16814 * meta-interface and we need to create the IPMP group. 16815 */ 16816 if (phyi->phyint_grp == NULL) { 16817 /* 16818 * If someone has renamed another IPMP group to have 16819 * the same name as our interface, bail. 16820 */ 16821 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16822 rw_exit(&ipst->ips_ipmp_lock); 16823 return (EEXIST); 16824 } 16825 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16826 if (phyi->phyint_grp == NULL) { 16827 rw_exit(&ipst->ips_ipmp_lock); 16828 return (ENOMEM); 16829 } 16830 } 16831 rw_exit(&ipst->ips_ipmp_lock); 16832 } 16833 16834 /* Tell downstream modules where they are. */ 16835 ip_ifname_notify(ill, q); 16836 16837 /* 16838 * ill_dl_phys returns EINPROGRESS in the usual case. 16839 * Error cases are ENOMEM ... 16840 */ 16841 err = ill_dl_phys(ill, ipif, mp, q); 16842 16843 if (ill->ill_isv6) { 16844 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16845 if (ipst->ips_mld_slowtimeout_id == 0) { 16846 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16847 (void *)ipst, 16848 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16849 } 16850 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16851 } else { 16852 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16853 if (ipst->ips_igmp_slowtimeout_id == 0) { 16854 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16855 (void *)ipst, 16856 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16857 } 16858 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16859 } 16860 16861 return (err); 16862 } 16863 16864 /* 16865 * Common routine for ppa and ifname setting. Should be called exclusive. 16866 * 16867 * Returns EINPROGRESS when mp has been consumed by queueing it on 16868 * ipx_pending_mp and the ioctl will complete in ip_rput. 16869 * 16870 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16871 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16872 * For SLIFNAME, we pass these values back to the userland. 16873 */ 16874 static int 16875 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16876 { 16877 ill_t *ill; 16878 ipif_t *ipif; 16879 ipsq_t *ipsq; 16880 char *ppa_ptr; 16881 char *old_ptr; 16882 char old_char; 16883 int error; 16884 ip_stack_t *ipst; 16885 16886 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16887 ASSERT(q->q_next != NULL); 16888 ASSERT(interf_name != NULL); 16889 16890 ill = (ill_t *)q->q_ptr; 16891 ipst = ill->ill_ipst; 16892 16893 ASSERT(ill->ill_ipst != NULL); 16894 ASSERT(ill->ill_name[0] == '\0'); 16895 ASSERT(IAM_WRITER_ILL(ill)); 16896 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16897 ASSERT(ill->ill_ppa == UINT_MAX); 16898 16899 ill->ill_defend_start = ill->ill_defend_count = 0; 16900 /* The ppa is sent down by ifconfig or is chosen */ 16901 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16902 return (EINVAL); 16903 } 16904 16905 /* 16906 * make sure ppa passed in is same as ppa in the name. 16907 * This check is not made when ppa == UINT_MAX in that case ppa 16908 * in the name could be anything. System will choose a ppa and 16909 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16910 */ 16911 if (*new_ppa_ptr != UINT_MAX) { 16912 /* stoi changes the pointer */ 16913 old_ptr = ppa_ptr; 16914 /* 16915 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16916 * (they don't have an externally visible ppa). We assign one 16917 * here so that we can manage the interface. Note that in 16918 * the past this value was always 0 for DLPI 1 drivers. 16919 */ 16920 if (*new_ppa_ptr == 0) 16921 *new_ppa_ptr = stoi(&old_ptr); 16922 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16923 return (EINVAL); 16924 } 16925 /* 16926 * terminate string before ppa 16927 * save char at that location. 16928 */ 16929 old_char = ppa_ptr[0]; 16930 ppa_ptr[0] = '\0'; 16931 16932 ill->ill_ppa = *new_ppa_ptr; 16933 /* 16934 * Finish as much work now as possible before calling ill_glist_insert 16935 * which makes the ill globally visible and also merges it with the 16936 * other protocol instance of this phyint. The remaining work is 16937 * done after entering the ipsq which may happen sometime later. 16938 */ 16939 ipif = ill->ill_ipif; 16940 16941 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16942 ipif_assign_seqid(ipif); 16943 16944 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16945 ill->ill_flags |= ILLF_IPV4; 16946 16947 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16948 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16949 16950 if (ill->ill_flags & ILLF_IPV6) { 16951 16952 ill->ill_isv6 = B_TRUE; 16953 ill_set_inputfn(ill); 16954 if (ill->ill_rq != NULL) { 16955 ill->ill_rq->q_qinfo = &iprinitv6; 16956 } 16957 16958 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16959 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16960 ipif->ipif_v6subnet = ipv6_all_zeros; 16961 ipif->ipif_v6net_mask = ipv6_all_zeros; 16962 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16963 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16964 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16965 /* 16966 * point-to-point or Non-mulicast capable 16967 * interfaces won't do NUD unless explicitly 16968 * configured to do so. 16969 */ 16970 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16971 !(ill->ill_flags & ILLF_MULTICAST)) { 16972 ill->ill_flags |= ILLF_NONUD; 16973 } 16974 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16975 if (ill->ill_flags & ILLF_NOARP) { 16976 /* 16977 * Note: xresolv interfaces will eventually need 16978 * NOARP set here as well, but that will require 16979 * those external resolvers to have some 16980 * knowledge of that flag and act appropriately. 16981 * Not to be changed at present. 16982 */ 16983 ill->ill_flags &= ~ILLF_NOARP; 16984 } 16985 /* 16986 * Set the ILLF_ROUTER flag according to the global 16987 * IPv6 forwarding policy. 16988 */ 16989 if (ipst->ips_ipv6_forwarding != 0) 16990 ill->ill_flags |= ILLF_ROUTER; 16991 } else if (ill->ill_flags & ILLF_IPV4) { 16992 ill->ill_isv6 = B_FALSE; 16993 ill_set_inputfn(ill); 16994 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16995 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16996 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16997 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16998 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17000 /* 17001 * Set the ILLF_ROUTER flag according to the global 17002 * IPv4 forwarding policy. 17003 */ 17004 if (ipst->ips_ip_forwarding != 0) 17005 ill->ill_flags |= ILLF_ROUTER; 17006 } 17007 17008 ASSERT(ill->ill_phyint != NULL); 17009 17010 /* 17011 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17012 * be completed in ill_glist_insert -> ill_phyint_reinit 17013 */ 17014 if (!ill_allocate_mibs(ill)) 17015 return (ENOMEM); 17016 17017 /* 17018 * Pick a default sap until we get the DL_INFO_ACK back from 17019 * the driver. 17020 */ 17021 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17022 ill->ill_media->ip_m_ipv4sap; 17023 17024 ill->ill_ifname_pending = 1; 17025 ill->ill_ifname_pending_err = 0; 17026 17027 /* 17028 * When the first ipif comes up in ipif_up_done(), multicast groups 17029 * that were joined while this ill was not bound to the DLPI link need 17030 * to be recovered by ill_recover_multicast(). 17031 */ 17032 ill->ill_need_recover_multicast = 1; 17033 17034 ill_refhold(ill); 17035 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17036 if ((error = ill_glist_insert(ill, interf_name, 17037 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17038 ill->ill_ppa = UINT_MAX; 17039 ill->ill_name[0] = '\0'; 17040 /* 17041 * undo null termination done above. 17042 */ 17043 ppa_ptr[0] = old_char; 17044 rw_exit(&ipst->ips_ill_g_lock); 17045 ill_refrele(ill); 17046 return (error); 17047 } 17048 17049 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17050 17051 /* 17052 * When we return the buffer pointed to by interf_name should contain 17053 * the same name as in ill_name. 17054 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17055 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17056 * so copy full name and update the ppa ptr. 17057 * When ppa passed in != UINT_MAX all values are correct just undo 17058 * null termination, this saves a bcopy. 17059 */ 17060 if (*new_ppa_ptr == UINT_MAX) { 17061 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17062 *new_ppa_ptr = ill->ill_ppa; 17063 } else { 17064 /* 17065 * undo null termination done above. 17066 */ 17067 ppa_ptr[0] = old_char; 17068 } 17069 17070 /* Let SCTP know about this ILL */ 17071 sctp_update_ill(ill, SCTP_ILL_INSERT); 17072 17073 /* 17074 * ill_glist_insert has made the ill visible globally, and 17075 * ill_phyint_reinit could have changed the ipsq. At this point, 17076 * we need to hold the ips_ill_g_lock across the call to enter the 17077 * ipsq to enforce atomicity and prevent reordering. In the event 17078 * the ipsq has changed, and if the new ipsq is currently busy, 17079 * we need to make sure that this half-completed ioctl is ahead of 17080 * any subsequent ioctl. We achieve this by not dropping the 17081 * ips_ill_g_lock which prevents any ill lookup itself thereby 17082 * ensuring that new ioctls can't start. 17083 */ 17084 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17085 B_TRUE); 17086 17087 rw_exit(&ipst->ips_ill_g_lock); 17088 ill_refrele(ill); 17089 if (ipsq == NULL) 17090 return (EINPROGRESS); 17091 17092 /* 17093 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17094 */ 17095 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17096 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17097 else 17098 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17099 17100 error = ipif_set_values_tail(ill, ipif, mp, q); 17101 ipsq_exit(ipsq); 17102 if (error != 0 && error != EINPROGRESS) { 17103 /* 17104 * restore previous values 17105 */ 17106 ill->ill_isv6 = B_FALSE; 17107 ill_set_inputfn(ill); 17108 } 17109 return (error); 17110 } 17111 17112 void 17113 ipif_init(ip_stack_t *ipst) 17114 { 17115 int i; 17116 17117 for (i = 0; i < MAX_G_HEADS; i++) { 17118 ipst->ips_ill_g_heads[i].ill_g_list_head = 17119 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17120 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17121 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17122 } 17123 17124 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17125 ill_phyint_compare_index, 17126 sizeof (phyint_t), 17127 offsetof(struct phyint, phyint_avl_by_index)); 17128 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17129 ill_phyint_compare_name, 17130 sizeof (phyint_t), 17131 offsetof(struct phyint, phyint_avl_by_name)); 17132 } 17133 17134 /* 17135 * Save enough information so that we can recreate the IRE if 17136 * the interface goes down and then up. 17137 */ 17138 void 17139 ill_save_ire(ill_t *ill, ire_t *ire) 17140 { 17141 mblk_t *save_mp; 17142 17143 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17144 if (save_mp != NULL) { 17145 ifrt_t *ifrt; 17146 17147 save_mp->b_wptr += sizeof (ifrt_t); 17148 ifrt = (ifrt_t *)save_mp->b_rptr; 17149 bzero(ifrt, sizeof (ifrt_t)); 17150 ifrt->ifrt_type = ire->ire_type; 17151 if (ire->ire_ipversion == IPV4_VERSION) { 17152 ASSERT(!ill->ill_isv6); 17153 ifrt->ifrt_addr = ire->ire_addr; 17154 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17155 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17156 ifrt->ifrt_mask = ire->ire_mask; 17157 } else { 17158 ASSERT(ill->ill_isv6); 17159 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17160 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17161 mutex_enter(&ire->ire_lock); 17162 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17163 mutex_exit(&ire->ire_lock); 17164 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17165 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17166 } 17167 ifrt->ifrt_flags = ire->ire_flags; 17168 ifrt->ifrt_zoneid = ire->ire_zoneid; 17169 mutex_enter(&ill->ill_saved_ire_lock); 17170 save_mp->b_cont = ill->ill_saved_ire_mp; 17171 ill->ill_saved_ire_mp = save_mp; 17172 ill->ill_saved_ire_cnt++; 17173 mutex_exit(&ill->ill_saved_ire_lock); 17174 } 17175 } 17176 17177 /* 17178 * Remove one entry from ill_saved_ire_mp. 17179 */ 17180 void 17181 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17182 { 17183 mblk_t **mpp; 17184 mblk_t *mp; 17185 ifrt_t *ifrt; 17186 17187 /* Remove from ill_saved_ire_mp list if it is there */ 17188 mutex_enter(&ill->ill_saved_ire_lock); 17189 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17190 mpp = &(*mpp)->b_cont) { 17191 in6_addr_t gw_addr_v6; 17192 17193 /* 17194 * On a given ill, the tuple of address, gateway, mask, 17195 * ire_type, and zoneid is unique for each saved IRE. 17196 */ 17197 mp = *mpp; 17198 ifrt = (ifrt_t *)mp->b_rptr; 17199 /* ire_gateway_addr_v6 can change - need lock */ 17200 mutex_enter(&ire->ire_lock); 17201 gw_addr_v6 = ire->ire_gateway_addr_v6; 17202 mutex_exit(&ire->ire_lock); 17203 17204 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17205 ifrt->ifrt_type != ire->ire_type) 17206 continue; 17207 17208 if (ill->ill_isv6 ? 17209 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17210 &ire->ire_addr_v6) && 17211 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17212 &gw_addr_v6) && 17213 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17214 &ire->ire_mask_v6)) : 17215 (ifrt->ifrt_addr == ire->ire_addr && 17216 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17217 ifrt->ifrt_mask == ire->ire_mask)) { 17218 *mpp = mp->b_cont; 17219 ill->ill_saved_ire_cnt--; 17220 freeb(mp); 17221 break; 17222 } 17223 } 17224 mutex_exit(&ill->ill_saved_ire_lock); 17225 } 17226 17227 /* 17228 * IP multirouting broadcast routes handling 17229 * Append CGTP broadcast IREs to regular ones created 17230 * at ifconfig time. 17231 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17232 * the destination and the gateway are broadcast addresses. 17233 * The caller has verified that the destination is an IRE_BROADCAST and that 17234 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17235 * we create a MULTIRT IRE_BROADCAST. 17236 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17237 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17238 */ 17239 static void 17240 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17241 { 17242 ire_t *ire_prim; 17243 17244 ASSERT(ire != NULL); 17245 17246 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17247 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17248 NULL); 17249 if (ire_prim != NULL) { 17250 /* 17251 * We are in the special case of broadcasts for 17252 * CGTP. We add an IRE_BROADCAST that holds 17253 * the RTF_MULTIRT flag, the destination 17254 * address and the low level 17255 * info of ire_prim. In other words, CGTP 17256 * broadcast is added to the redundant ipif. 17257 */ 17258 ill_t *ill_prim; 17259 ire_t *bcast_ire; 17260 17261 ill_prim = ire_prim->ire_ill; 17262 17263 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17264 (void *)ire_prim, (void *)ill_prim)); 17265 17266 bcast_ire = ire_create( 17267 (uchar_t *)&ire->ire_addr, 17268 (uchar_t *)&ip_g_all_ones, 17269 (uchar_t *)&ire->ire_gateway_addr, 17270 IRE_BROADCAST, 17271 ill_prim, 17272 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17273 ire->ire_flags | RTF_KERNEL, 17274 NULL, 17275 ipst); 17276 17277 /* 17278 * Here we assume that ire_add does head insertion so that 17279 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17280 */ 17281 if (bcast_ire != NULL) { 17282 if (ire->ire_flags & RTF_SETSRC) { 17283 bcast_ire->ire_setsrc_addr = 17284 ire->ire_setsrc_addr; 17285 } 17286 bcast_ire = ire_add(bcast_ire); 17287 if (bcast_ire != NULL) { 17288 ip2dbg(("ip_cgtp_filter_bcast_add: " 17289 "added bcast_ire %p\n", 17290 (void *)bcast_ire)); 17291 17292 ill_save_ire(ill_prim, bcast_ire); 17293 ire_refrele(bcast_ire); 17294 } 17295 } 17296 ire_refrele(ire_prim); 17297 } 17298 } 17299 17300 /* 17301 * IP multirouting broadcast routes handling 17302 * Remove the broadcast ire. 17303 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17304 * the destination and the gateway are broadcast addresses. 17305 * The caller has only verified that RTF_MULTIRT was set. We check 17306 * that the destination is broadcast and that the gateway is a broadcast 17307 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17308 */ 17309 static void 17310 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17311 { 17312 ASSERT(ire != NULL); 17313 17314 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17315 ire_t *ire_prim; 17316 17317 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17318 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17319 ipst, NULL); 17320 if (ire_prim != NULL) { 17321 ill_t *ill_prim; 17322 ire_t *bcast_ire; 17323 17324 ill_prim = ire_prim->ire_ill; 17325 17326 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17327 "ire_prim %p, ill_prim %p\n", 17328 (void *)ire_prim, (void *)ill_prim)); 17329 17330 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17331 ire->ire_gateway_addr, IRE_BROADCAST, 17332 ill_prim, ALL_ZONES, NULL, 17333 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17334 MATCH_IRE_MASK, 0, ipst, NULL); 17335 17336 if (bcast_ire != NULL) { 17337 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17338 "looked up bcast_ire %p\n", 17339 (void *)bcast_ire)); 17340 ill_remove_saved_ire(bcast_ire->ire_ill, 17341 bcast_ire); 17342 ire_delete(bcast_ire); 17343 ire_refrele(bcast_ire); 17344 } 17345 ire_refrele(ire_prim); 17346 } 17347 } 17348 } 17349 17350 /* 17351 * Derive an interface id from the link layer address. 17352 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17353 */ 17354 static void 17355 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17356 { 17357 char *addr; 17358 17359 /* 17360 * Note that some IPv6 interfaces get plumbed over links that claim to 17361 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17362 * PPP links). The ETHERADDRL check here ensures that we only set the 17363 * interface ID on IPv6 interfaces above links that actually have real 17364 * Ethernet addresses. 17365 */ 17366 if (ill->ill_phys_addr_length == ETHERADDRL) { 17367 /* Form EUI-64 like address */ 17368 addr = (char *)&v6addr->s6_addr32[2]; 17369 bcopy(ill->ill_phys_addr, addr, 3); 17370 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17371 addr[3] = (char)0xff; 17372 addr[4] = (char)0xfe; 17373 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17374 } 17375 } 17376 17377 /* ARGSUSED */ 17378 static void 17379 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17380 { 17381 } 17382 17383 typedef struct ipmp_ifcookie { 17384 uint32_t ic_hostid; 17385 char ic_ifname[LIFNAMSIZ]; 17386 char ic_zonename[ZONENAME_MAX]; 17387 } ipmp_ifcookie_t; 17388 17389 /* 17390 * Construct a pseudo-random interface ID for the IPMP interface that's both 17391 * predictable and (almost) guaranteed to be unique. 17392 */ 17393 static void 17394 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17395 { 17396 zone_t *zp; 17397 uint8_t *addr; 17398 uchar_t hash[16]; 17399 ulong_t hostid; 17400 MD5_CTX ctx; 17401 ipmp_ifcookie_t ic = { 0 }; 17402 17403 ASSERT(IS_IPMP(ill)); 17404 17405 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17406 ic.ic_hostid = htonl((uint32_t)hostid); 17407 17408 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17409 17410 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17411 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17412 zone_rele(zp); 17413 } 17414 17415 MD5Init(&ctx); 17416 MD5Update(&ctx, &ic, sizeof (ic)); 17417 MD5Final(hash, &ctx); 17418 17419 /* 17420 * Map the hash to an interface ID per the basic approach in RFC3041. 17421 */ 17422 addr = &v6addr->s6_addr8[8]; 17423 bcopy(hash + 8, addr, sizeof (uint64_t)); 17424 addr[0] &= ~0x2; /* set local bit */ 17425 } 17426 17427 /* 17428 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17429 */ 17430 static void 17431 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17432 { 17433 phyint_t *phyi = ill->ill_phyint; 17434 17435 /* 17436 * Check PHYI_MULTI_BCAST and length of physical 17437 * address to determine if we use the mapping or the 17438 * broadcast address. 17439 */ 17440 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17441 ill->ill_phys_addr_length != ETHERADDRL) { 17442 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17443 return; 17444 } 17445 m_physaddr[0] = 0x33; 17446 m_physaddr[1] = 0x33; 17447 m_physaddr[2] = m_ip6addr[12]; 17448 m_physaddr[3] = m_ip6addr[13]; 17449 m_physaddr[4] = m_ip6addr[14]; 17450 m_physaddr[5] = m_ip6addr[15]; 17451 } 17452 17453 /* 17454 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17455 */ 17456 static void 17457 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17458 { 17459 phyint_t *phyi = ill->ill_phyint; 17460 17461 /* 17462 * Check PHYI_MULTI_BCAST and length of physical 17463 * address to determine if we use the mapping or the 17464 * broadcast address. 17465 */ 17466 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17467 ill->ill_phys_addr_length != ETHERADDRL) { 17468 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17469 return; 17470 } 17471 m_physaddr[0] = 0x01; 17472 m_physaddr[1] = 0x00; 17473 m_physaddr[2] = 0x5e; 17474 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17475 m_physaddr[4] = m_ipaddr[2]; 17476 m_physaddr[5] = m_ipaddr[3]; 17477 } 17478 17479 /* ARGSUSED */ 17480 static void 17481 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17482 { 17483 /* 17484 * for the MULTI_BCAST case and other cases when we want to 17485 * use the link-layer broadcast address for multicast. 17486 */ 17487 uint8_t *bphys_addr; 17488 dl_unitdata_req_t *dlur; 17489 17490 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17491 if (ill->ill_sap_length < 0) { 17492 bphys_addr = (uchar_t *)dlur + 17493 dlur->dl_dest_addr_offset; 17494 } else { 17495 bphys_addr = (uchar_t *)dlur + 17496 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17497 } 17498 17499 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17500 } 17501 17502 /* 17503 * Derive IPoIB interface id from the link layer address. 17504 */ 17505 static void 17506 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17507 { 17508 char *addr; 17509 17510 ASSERT(ill->ill_phys_addr_length == 20); 17511 addr = (char *)&v6addr->s6_addr32[2]; 17512 bcopy(ill->ill_phys_addr + 12, addr, 8); 17513 /* 17514 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17515 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17516 * rules. In these cases, the IBA considers these GUIDs to be in 17517 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17518 * required; vendors are required not to assign global EUI-64's 17519 * that differ only in u/l bit values, thus guaranteeing uniqueness 17520 * of the interface identifier. Whether the GUID is in modified 17521 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17522 * bit set to 1. 17523 */ 17524 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17525 } 17526 17527 /* 17528 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17529 * Note on mapping from multicast IP addresses to IPoIB multicast link 17530 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17531 * The format of an IPoIB multicast address is: 17532 * 17533 * 4 byte QPN Scope Sign. Pkey 17534 * +--------------------------------------------+ 17535 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17536 * +--------------------------------------------+ 17537 * 17538 * The Scope and Pkey components are properties of the IBA port and 17539 * network interface. They can be ascertained from the broadcast address. 17540 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17541 */ 17542 static void 17543 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17544 { 17545 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17546 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17547 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17548 uint8_t *bphys_addr; 17549 dl_unitdata_req_t *dlur; 17550 17551 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17552 17553 /* 17554 * RFC 4391: IPv4 MGID is 28-bit long. 17555 */ 17556 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17557 m_physaddr[17] = m_ipaddr[1]; 17558 m_physaddr[18] = m_ipaddr[2]; 17559 m_physaddr[19] = m_ipaddr[3]; 17560 17561 17562 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17563 if (ill->ill_sap_length < 0) { 17564 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17565 } else { 17566 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17567 ill->ill_sap_length; 17568 } 17569 /* 17570 * Now fill in the IBA scope/Pkey values from the broadcast address. 17571 */ 17572 m_physaddr[5] = bphys_addr[5]; 17573 m_physaddr[8] = bphys_addr[8]; 17574 m_physaddr[9] = bphys_addr[9]; 17575 } 17576 17577 static void 17578 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17579 { 17580 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17581 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17582 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17583 uint8_t *bphys_addr; 17584 dl_unitdata_req_t *dlur; 17585 17586 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17587 17588 /* 17589 * RFC 4391: IPv4 MGID is 80-bit long. 17590 */ 17591 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17592 17593 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17594 if (ill->ill_sap_length < 0) { 17595 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17596 } else { 17597 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17598 ill->ill_sap_length; 17599 } 17600 /* 17601 * Now fill in the IBA scope/Pkey values from the broadcast address. 17602 */ 17603 m_physaddr[5] = bphys_addr[5]; 17604 m_physaddr[8] = bphys_addr[8]; 17605 m_physaddr[9] = bphys_addr[9]; 17606 } 17607 17608 /* 17609 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17610 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17611 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17612 * of RFC4213. 17613 */ 17614 static void 17615 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17616 { 17617 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17618 v6addr->s6_addr32[2] = 0; 17619 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17620 } 17621 17622 /* 17623 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17624 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17625 * id. 17626 */ 17627 static void 17628 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17629 { 17630 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17631 17632 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17633 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17634 } 17635 17636 static void 17637 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17638 { 17639 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17640 } 17641 17642 static void 17643 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17644 { 17645 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17646 } 17647 17648 static void 17649 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17650 { 17651 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17652 } 17653 17654 static void 17655 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17656 { 17657 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17658 } 17659 17660 /* 17661 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17662 * Returns an held ill, or NULL. 17663 */ 17664 ill_t * 17665 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17666 ip_stack_t *ipst) 17667 { 17668 ill_t *ill; 17669 ipif_t *ipif; 17670 17671 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17672 if (ill == NULL) 17673 return (NULL); 17674 17675 mutex_enter(&ill->ill_lock); 17676 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17677 if (IPIF_IS_CONDEMNED(ipif)) 17678 continue; 17679 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17680 ipif->ipif_zoneid != ALL_ZONES) 17681 continue; 17682 17683 mutex_exit(&ill->ill_lock); 17684 return (ill); 17685 } 17686 mutex_exit(&ill->ill_lock); 17687 ill_refrele(ill); 17688 return (NULL); 17689 } 17690 17691 /* 17692 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17693 * If a pointer to an ipif_t is returned then the caller will need to do 17694 * an ill_refrele(). 17695 */ 17696 ipif_t * 17697 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17698 ip_stack_t *ipst) 17699 { 17700 ipif_t *ipif; 17701 ill_t *ill; 17702 17703 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17704 if (ill == NULL) 17705 return (NULL); 17706 17707 mutex_enter(&ill->ill_lock); 17708 if (ill->ill_state_flags & ILL_CONDEMNED) { 17709 mutex_exit(&ill->ill_lock); 17710 ill_refrele(ill); 17711 return (NULL); 17712 } 17713 17714 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17715 if (!IPIF_CAN_LOOKUP(ipif)) 17716 continue; 17717 if (lifidx == ipif->ipif_id) { 17718 ipif_refhold_locked(ipif); 17719 break; 17720 } 17721 } 17722 17723 mutex_exit(&ill->ill_lock); 17724 ill_refrele(ill); 17725 return (ipif); 17726 } 17727 17728 /* 17729 * Set ill_inputfn based on the current know state. 17730 * This needs to be called when any of the factors taken into 17731 * account changes. 17732 */ 17733 void 17734 ill_set_inputfn(ill_t *ill) 17735 { 17736 ip_stack_t *ipst = ill->ill_ipst; 17737 17738 if (ill->ill_isv6) { 17739 if (is_system_labeled()) 17740 ill->ill_inputfn = ill_input_full_v6; 17741 else 17742 ill->ill_inputfn = ill_input_short_v6; 17743 } else { 17744 if (is_system_labeled()) 17745 ill->ill_inputfn = ill_input_full_v4; 17746 else if (ill->ill_dhcpinit != 0) 17747 ill->ill_inputfn = ill_input_full_v4; 17748 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17749 != NULL) 17750 ill->ill_inputfn = ill_input_full_v4; 17751 else if (ipst->ips_ip_cgtp_filter && 17752 ipst->ips_ip_cgtp_filter_ops != NULL) 17753 ill->ill_inputfn = ill_input_full_v4; 17754 else 17755 ill->ill_inputfn = ill_input_short_v4; 17756 } 17757 } 17758 17759 /* 17760 * Re-evaluate ill_inputfn for all the IPv4 ills. 17761 * Used when RSVP and CGTP comes and goes. 17762 */ 17763 void 17764 ill_set_inputfn_all(ip_stack_t *ipst) 17765 { 17766 ill_walk_context_t ctx; 17767 ill_t *ill; 17768 17769 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17770 ill = ILL_START_WALK_V4(&ctx, ipst); 17771 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17772 ill_set_inputfn(ill); 17773 17774 rw_exit(&ipst->ips_ill_g_lock); 17775 } 17776 17777 /* 17778 * Set the physical address information for `ill' to the contents of the 17779 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17780 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17781 * EINPROGRESS will be returned. 17782 */ 17783 int 17784 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17785 { 17786 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17787 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17788 17789 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17790 17791 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17792 dlindp->dl_data != DL_CURR_DEST_ADDR && 17793 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17794 /* Changing DL_IPV6_TOKEN is not yet supported */ 17795 return (0); 17796 } 17797 17798 /* 17799 * We need to store up to two copies of `mp' in `ill'. Due to the 17800 * design of ipsq_pending_mp_add(), we can't pass them as separate 17801 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17802 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17803 */ 17804 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17805 freemsg(mp); 17806 return (ENOMEM); 17807 } 17808 17809 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17810 17811 /* 17812 * Since we'll only do a logical down, we can't rely on ipif_down 17813 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17814 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17815 * case, to quiesce ire's and nce's for ill_is_quiescent. 17816 */ 17817 mutex_enter(&ill->ill_lock); 17818 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17819 /* no more ire/nce addition allowed */ 17820 mutex_exit(&ill->ill_lock); 17821 17822 /* 17823 * If we can quiesce the ill, then set the address. If not, then 17824 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17825 */ 17826 ill_down_ipifs(ill, B_TRUE); 17827 mutex_enter(&ill->ill_lock); 17828 if (!ill_is_quiescent(ill)) { 17829 /* call cannot fail since `conn_t *' argument is NULL */ 17830 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17831 mp, ILL_DOWN); 17832 mutex_exit(&ill->ill_lock); 17833 return (EINPROGRESS); 17834 } 17835 mutex_exit(&ill->ill_lock); 17836 17837 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17838 return (0); 17839 } 17840 17841 /* 17842 * When the allowed-ips link property is set on the datalink, IP receives a 17843 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17844 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17845 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17846 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17847 * array. 17848 */ 17849 void 17850 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17851 { 17852 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17853 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17854 mac_protect_t *mrp; 17855 int i; 17856 17857 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17858 mrp = (mac_protect_t *)&dlip[1]; 17859 17860 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17861 kmem_free(ill->ill_allowed_ips, 17862 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17863 ill->ill_allowed_ips_cnt = 0; 17864 ill->ill_allowed_ips = NULL; 17865 mutex_enter(&ill->ill_phyint->phyint_lock); 17866 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17867 mutex_exit(&ill->ill_phyint->phyint_lock); 17868 return; 17869 } 17870 17871 if (ill->ill_allowed_ips != NULL) { 17872 kmem_free(ill->ill_allowed_ips, 17873 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17874 } 17875 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17876 ill->ill_allowed_ips = kmem_alloc( 17877 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17878 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17879 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17880 17881 mutex_enter(&ill->ill_phyint->phyint_lock); 17882 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17883 mutex_exit(&ill->ill_phyint->phyint_lock); 17884 } 17885 17886 /* 17887 * Once the ill associated with `q' has quiesced, set its physical address 17888 * information to the values in `addrmp'. Note that two copies of `addrmp' 17889 * are passed (linked by b_cont), since we sometimes need to save two distinct 17890 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17891 * failure (we'll free the other copy if it's not needed). Since the ill_t 17892 * is quiesced, we know any stale nce's with the old address information have 17893 * already been removed, so we don't need to call nce_flush(). 17894 */ 17895 /* ARGSUSED */ 17896 static void 17897 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17898 { 17899 ill_t *ill = q->q_ptr; 17900 mblk_t *addrmp2 = unlinkb(addrmp); 17901 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17902 uint_t addrlen, addroff; 17903 int status; 17904 17905 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17906 17907 addroff = dlindp->dl_addr_offset; 17908 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17909 17910 switch (dlindp->dl_data) { 17911 case DL_IPV6_LINK_LAYER_ADDR: 17912 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17913 freemsg(addrmp2); 17914 break; 17915 17916 case DL_CURR_DEST_ADDR: 17917 freemsg(ill->ill_dest_addr_mp); 17918 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17919 ill->ill_dest_addr_mp = addrmp; 17920 if (ill->ill_isv6) { 17921 ill_setdesttoken(ill); 17922 ipif_setdestlinklocal(ill->ill_ipif); 17923 } 17924 freemsg(addrmp2); 17925 break; 17926 17927 case DL_CURR_PHYS_ADDR: 17928 freemsg(ill->ill_phys_addr_mp); 17929 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17930 ill->ill_phys_addr_mp = addrmp; 17931 ill->ill_phys_addr_length = addrlen; 17932 if (ill->ill_isv6) 17933 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17934 else 17935 freemsg(addrmp2); 17936 if (ill->ill_isv6) { 17937 ill_setdefaulttoken(ill); 17938 ipif_setlinklocal(ill->ill_ipif); 17939 } 17940 break; 17941 default: 17942 ASSERT(0); 17943 } 17944 17945 /* 17946 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17947 * as we bring the ipifs up again. 17948 */ 17949 mutex_enter(&ill->ill_lock); 17950 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17951 mutex_exit(&ill->ill_lock); 17952 /* 17953 * If there are ipifs to bring up, ill_up_ipifs() will return 17954 * EINPROGRESS, and ipsq_current_finish() will be called by 17955 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17956 * brought up. 17957 */ 17958 status = ill_up_ipifs(ill, q, addrmp); 17959 if (status != EINPROGRESS) 17960 ipsq_current_finish(ipsq); 17961 } 17962 17963 /* 17964 * Helper routine for setting the ill_nd_lla fields. 17965 */ 17966 void 17967 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17968 { 17969 freemsg(ill->ill_nd_lla_mp); 17970 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17971 ill->ill_nd_lla_mp = ndmp; 17972 ill->ill_nd_lla_len = addrlen; 17973 } 17974 17975 /* 17976 * Replumb the ill. 17977 */ 17978 int 17979 ill_replumb(ill_t *ill, mblk_t *mp) 17980 { 17981 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17982 17983 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17984 17985 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17986 17987 /* 17988 * If we can quiesce the ill, then continue. If not, then 17989 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17990 */ 17991 ill_down_ipifs(ill, B_FALSE); 17992 17993 mutex_enter(&ill->ill_lock); 17994 if (!ill_is_quiescent(ill)) { 17995 /* call cannot fail since `conn_t *' argument is NULL */ 17996 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17997 mp, ILL_DOWN); 17998 mutex_exit(&ill->ill_lock); 17999 return (EINPROGRESS); 18000 } 18001 mutex_exit(&ill->ill_lock); 18002 18003 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18004 return (0); 18005 } 18006 18007 /* ARGSUSED */ 18008 static void 18009 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18010 { 18011 ill_t *ill = q->q_ptr; 18012 int err; 18013 conn_t *connp = NULL; 18014 18015 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18016 freemsg(ill->ill_replumb_mp); 18017 ill->ill_replumb_mp = copyb(mp); 18018 18019 if (ill->ill_replumb_mp == NULL) { 18020 /* out of memory */ 18021 ipsq_current_finish(ipsq); 18022 return; 18023 } 18024 18025 mutex_enter(&ill->ill_lock); 18026 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18027 ill->ill_rq, ill->ill_replumb_mp, 0); 18028 mutex_exit(&ill->ill_lock); 18029 18030 if (!ill->ill_up_ipifs) { 18031 /* already closing */ 18032 ipsq_current_finish(ipsq); 18033 return; 18034 } 18035 ill->ill_replumbing = 1; 18036 err = ill_down_ipifs_tail(ill); 18037 18038 /* 18039 * Successfully quiesced and brought down the interface, now we send 18040 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18041 * DL_NOTE_REPLUMB message. 18042 */ 18043 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18044 DL_NOTIFY_CONF); 18045 ASSERT(mp != NULL); 18046 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18047 DL_NOTE_REPLUMB_DONE; 18048 ill_dlpi_send(ill, mp); 18049 18050 /* 18051 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18052 * streams have to be unbound. When all the DLPI exchanges are done, 18053 * ipsq_current_finish() will be called by arp_bringup_done(). The 18054 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18055 * arp_bringup_done(). 18056 */ 18057 ASSERT(ill->ill_replumb_mp != NULL); 18058 if (err == EINPROGRESS) 18059 return; 18060 else 18061 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18062 ASSERT(connp == NULL); 18063 if (err == 0 && ill->ill_replumb_mp != NULL && 18064 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18065 return; 18066 } 18067 ipsq_current_finish(ipsq); 18068 } 18069 18070 /* 18071 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18072 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18073 * as per the ioctl. On failure, an errno is returned. 18074 */ 18075 static int 18076 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18077 { 18078 int rval; 18079 struct strioctl iocb; 18080 18081 iocb.ic_cmd = cmd; 18082 iocb.ic_timout = 15; 18083 iocb.ic_len = bufsize; 18084 iocb.ic_dp = buf; 18085 18086 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18087 } 18088 18089 /* 18090 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18091 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18092 */ 18093 static int 18094 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18095 uint_t *bufsizep, cred_t *cr) 18096 { 18097 int err; 18098 struct lifnum lifn; 18099 18100 bzero(&lifn, sizeof (lifn)); 18101 lifn.lifn_family = af; 18102 lifn.lifn_flags = LIFC_UNDER_IPMP; 18103 18104 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18105 return (err); 18106 18107 /* 18108 * Pad the interface count to account for additional interfaces that 18109 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18110 */ 18111 lifn.lifn_count += 4; 18112 bzero(lifcp, sizeof (*lifcp)); 18113 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18114 lifcp->lifc_family = af; 18115 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18116 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18117 18118 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18119 if (err != 0) { 18120 kmem_free(lifcp->lifc_buf, *bufsizep); 18121 return (err); 18122 } 18123 18124 return (0); 18125 } 18126 18127 /* 18128 * Helper for ip_interface_cleanup() that removes the loopback interface. 18129 */ 18130 static void 18131 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18132 { 18133 int err; 18134 struct lifreq lifr; 18135 18136 bzero(&lifr, sizeof (lifr)); 18137 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18138 18139 /* 18140 * Attempt to remove the interface. It may legitimately not exist 18141 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18142 */ 18143 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18144 if (err != 0 && err != ENXIO) { 18145 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18146 "error %d\n", isv6 ? "v6" : "v4", err)); 18147 } 18148 } 18149 18150 /* 18151 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18152 * groups and that IPMP data addresses are down. These conditions must be met 18153 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18154 */ 18155 static void 18156 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18157 { 18158 int af = isv6 ? AF_INET6 : AF_INET; 18159 int i, nifs; 18160 int err; 18161 uint_t bufsize; 18162 uint_t lifrsize = sizeof (struct lifreq); 18163 struct lifconf lifc; 18164 struct lifreq *lifrp; 18165 18166 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18167 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18168 "(error %d); any IPMP interfaces cannot be shutdown", err); 18169 return; 18170 } 18171 18172 nifs = lifc.lifc_len / lifrsize; 18173 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18174 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18175 if (err != 0) { 18176 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18177 "flags: error %d", lifrp->lifr_name, err); 18178 continue; 18179 } 18180 18181 if (lifrp->lifr_flags & IFF_IPMP) { 18182 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18183 continue; 18184 18185 lifrp->lifr_flags &= ~IFF_UP; 18186 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18187 if (err != 0) { 18188 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18189 "bring down (error %d); IPMP interface may " 18190 "not be shutdown", lifrp->lifr_name, err); 18191 } 18192 18193 /* 18194 * Check if IFF_DUPLICATE is still set -- and if so, 18195 * reset the address to clear it. 18196 */ 18197 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18198 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18199 continue; 18200 18201 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18202 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18203 lifrp, lifrsize, cr)) != 0) { 18204 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18205 "reset DAD (error %d); IPMP interface may " 18206 "not be shutdown", lifrp->lifr_name, err); 18207 } 18208 continue; 18209 } 18210 18211 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18212 lifrp->lifr_groupname[0] = '\0'; 18213 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18214 lifrsize, cr)) != 0) { 18215 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18216 "leave IPMP group (error %d); associated " 18217 "IPMP interface may not be shutdown", 18218 lifrp->lifr_name, err); 18219 continue; 18220 } 18221 } 18222 } 18223 18224 kmem_free(lifc.lifc_buf, bufsize); 18225 } 18226 18227 #define UDPDEV "/devices/pseudo/udp@0:udp" 18228 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18229 18230 /* 18231 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18232 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18233 * when the user-level processes in the zone are killed and the latter are 18234 * cleaned up by str_stack_shutdown(). 18235 */ 18236 void 18237 ip_interface_cleanup(ip_stack_t *ipst) 18238 { 18239 ldi_handle_t lh; 18240 ldi_ident_t li; 18241 cred_t *cr; 18242 int err; 18243 int i; 18244 char *devs[] = { UDP6DEV, UDPDEV }; 18245 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18246 18247 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18248 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18249 " error %d", err); 18250 return; 18251 } 18252 18253 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18254 ASSERT(cr != NULL); 18255 18256 /* 18257 * NOTE: loop executes exactly twice and is hardcoded to know that the 18258 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18259 * the loop.) 18260 */ 18261 for (i = 0; i < 2; i++) { 18262 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18263 if (err != 0) { 18264 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18265 " error %d", devs[i], err); 18266 continue; 18267 } 18268 18269 ip_loopback_removeif(lh, i == 0, cr); 18270 ip_ipmp_cleanup(lh, i == 0, cr); 18271 18272 (void) ldi_close(lh, FREAD|FWRITE, cr); 18273 } 18274 18275 ldi_ident_release(li); 18276 crfree(cr); 18277 } 18278 18279 /* 18280 * This needs to be in-sync with nic_event_t definition 18281 */ 18282 static const char * 18283 ill_hook_event2str(nic_event_t event) 18284 { 18285 switch (event) { 18286 case NE_PLUMB: 18287 return ("PLUMB"); 18288 case NE_UNPLUMB: 18289 return ("UNPLUMB"); 18290 case NE_UP: 18291 return ("UP"); 18292 case NE_DOWN: 18293 return ("DOWN"); 18294 case NE_ADDRESS_CHANGE: 18295 return ("ADDRESS_CHANGE"); 18296 case NE_LIF_UP: 18297 return ("LIF_UP"); 18298 case NE_LIF_DOWN: 18299 return ("LIF_DOWN"); 18300 case NE_IFINDEX_CHANGE: 18301 return ("IFINDEX_CHANGE"); 18302 default: 18303 return ("UNKNOWN"); 18304 } 18305 } 18306 18307 void 18308 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18309 nic_event_data_t data, size_t datalen) 18310 { 18311 ip_stack_t *ipst = ill->ill_ipst; 18312 hook_nic_event_int_t *info; 18313 const char *str = NULL; 18314 18315 /* create a new nic event info */ 18316 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18317 goto fail; 18318 18319 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18320 info->hnei_event.hne_lif = lif; 18321 info->hnei_event.hne_event = event; 18322 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18323 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18324 info->hnei_event.hne_data = NULL; 18325 info->hnei_event.hne_datalen = 0; 18326 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18327 18328 if (data != NULL && datalen != 0) { 18329 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18330 if (info->hnei_event.hne_data == NULL) 18331 goto fail; 18332 bcopy(data, info->hnei_event.hne_data, datalen); 18333 info->hnei_event.hne_datalen = datalen; 18334 } 18335 18336 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18337 DDI_NOSLEEP) == DDI_SUCCESS) 18338 return; 18339 18340 fail: 18341 if (info != NULL) { 18342 if (info->hnei_event.hne_data != NULL) { 18343 kmem_free(info->hnei_event.hne_data, 18344 info->hnei_event.hne_datalen); 18345 } 18346 kmem_free(info, sizeof (hook_nic_event_t)); 18347 } 18348 str = ill_hook_event2str(event); 18349 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18350 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18351 } 18352 18353 static int 18354 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18355 { 18356 int err = 0; 18357 const in_addr_t *addr = NULL; 18358 nce_t *nce = NULL; 18359 ill_t *ill = ipif->ipif_ill; 18360 ill_t *bound_ill; 18361 boolean_t added_ipif = B_FALSE; 18362 uint16_t state; 18363 uint16_t flags; 18364 18365 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18366 ill_t *, ill, ipif_t *, ipif); 18367 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18368 addr = &ipif->ipif_lcl_addr; 18369 } 18370 18371 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18372 if (res_act != Res_act_initial) 18373 return (EINVAL); 18374 } 18375 18376 if (addr != NULL) { 18377 ipmp_illgrp_t *illg = ill->ill_grp; 18378 18379 /* add unicast nce for the local addr */ 18380 18381 if (IS_IPMP(ill)) { 18382 /* 18383 * If we're here via ipif_up(), then the ipif 18384 * won't be bound yet -- add it to the group, 18385 * which will bind it if possible. (We would 18386 * add it in ipif_up(), but deleting on failure 18387 * there is gruesome.) If we're here via 18388 * ipmp_ill_bind_ipif(), then the ipif has 18389 * already been added to the group and we 18390 * just need to use the binding. 18391 */ 18392 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18393 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18394 if (bound_ill == NULL) { 18395 /* 18396 * We couldn't bind the ipif to an ill 18397 * yet, so we have nothing to publish. 18398 * Mark the address as ready and return. 18399 */ 18400 ipif->ipif_addr_ready = 1; 18401 return (0); 18402 } 18403 added_ipif = B_TRUE; 18404 } 18405 } else { 18406 bound_ill = ill; 18407 } 18408 18409 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18410 NCE_F_NONUD); 18411 /* 18412 * If this is an initial bring-up (or the ipif was never 18413 * completely brought up), do DAD. Otherwise, we're here 18414 * because IPMP has rebound an address to this ill: send 18415 * unsolicited advertisements (ARP announcements) to 18416 * inform others. 18417 */ 18418 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18419 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18420 } else { 18421 state = ND_REACHABLE; 18422 flags |= NCE_F_UNSOL_ADV; 18423 } 18424 18425 retry: 18426 err = nce_lookup_then_add_v4(ill, 18427 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18428 addr, flags, state, &nce); 18429 18430 /* 18431 * note that we may encounter EEXIST if we are moving 18432 * the nce as a result of a rebind operation. 18433 */ 18434 switch (err) { 18435 case 0: 18436 ipif->ipif_added_nce = 1; 18437 nce->nce_ipif_cnt++; 18438 break; 18439 case EEXIST: 18440 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18441 ill->ill_name)); 18442 if (!NCE_MYADDR(nce->nce_common)) { 18443 /* 18444 * A leftover nce from before this address 18445 * existed 18446 */ 18447 ncec_delete(nce->nce_common); 18448 nce_refrele(nce); 18449 nce = NULL; 18450 goto retry; 18451 } 18452 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18453 nce_refrele(nce); 18454 nce = NULL; 18455 ip1dbg(("ipif_arp_up: NCE already exists " 18456 "for %s:%u\n", ill->ill_name, 18457 ipif->ipif_id)); 18458 goto arp_up_done; 18459 } 18460 /* 18461 * Duplicate local addresses are permissible for 18462 * IPIF_POINTOPOINT interfaces which will get marked 18463 * IPIF_UNNUMBERED later in 18464 * ip_addr_availability_check(). 18465 * 18466 * The nce_ipif_cnt field tracks the number of 18467 * ipifs that have nce_addr as their local address. 18468 */ 18469 ipif->ipif_addr_ready = 1; 18470 ipif->ipif_added_nce = 1; 18471 nce->nce_ipif_cnt++; 18472 err = 0; 18473 break; 18474 default: 18475 ASSERT(nce == NULL); 18476 goto arp_up_done; 18477 } 18478 if (arp_no_defense) { 18479 if ((ipif->ipif_flags & IPIF_UP) && 18480 !ipif->ipif_addr_ready) 18481 ipif_up_notify(ipif); 18482 ipif->ipif_addr_ready = 1; 18483 } 18484 } else { 18485 /* zero address. nothing to publish */ 18486 ipif->ipif_addr_ready = 1; 18487 } 18488 if (nce != NULL) 18489 nce_refrele(nce); 18490 arp_up_done: 18491 if (added_ipif && err != 0) 18492 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18493 return (err); 18494 } 18495 18496 int 18497 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18498 { 18499 int err = 0; 18500 ill_t *ill = ipif->ipif_ill; 18501 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18502 18503 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18504 ill_t *, ill, ipif_t *, ipif); 18505 18506 /* 18507 * need to bring up ARP or setup mcast mapping only 18508 * when the first interface is coming UP. 18509 */ 18510 first_interface = (ill->ill_ipif_up_count == 0 && 18511 ill->ill_ipif_dup_count == 0 && !was_dup); 18512 18513 if (res_act == Res_act_initial && first_interface) { 18514 /* 18515 * Send ATTACH + BIND 18516 */ 18517 err = arp_ll_up(ill); 18518 if (err != EINPROGRESS && err != 0) 18519 return (err); 18520 18521 /* 18522 * Add NCE for local address. Start DAD. 18523 * we'll wait to hear that DAD has finished 18524 * before using the interface. 18525 */ 18526 if (err == EINPROGRESS) 18527 wait_for_dlpi = B_TRUE; 18528 } 18529 18530 if (!wait_for_dlpi) 18531 (void) ipif_arp_up_done_tail(ipif, res_act); 18532 18533 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18534 } 18535 18536 /* 18537 * Finish processing of "arp_up" after all the DLPI message 18538 * exchanges have completed between arp and the driver. 18539 */ 18540 void 18541 arp_bringup_done(ill_t *ill, int err) 18542 { 18543 mblk_t *mp1; 18544 ipif_t *ipif; 18545 conn_t *connp = NULL; 18546 ipsq_t *ipsq; 18547 queue_t *q; 18548 18549 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18550 18551 ASSERT(IAM_WRITER_ILL(ill)); 18552 18553 ipsq = ill->ill_phyint->phyint_ipsq; 18554 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18555 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18556 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18557 if (mp1 == NULL) /* bringup was aborted by the user */ 18558 return; 18559 18560 /* 18561 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18562 * must have an associated conn_t. Otherwise, we're bringing this 18563 * interface back up as part of handling an asynchronous event (e.g., 18564 * physical address change). 18565 */ 18566 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18567 ASSERT(connp != NULL); 18568 q = CONNP_TO_WQ(connp); 18569 } else { 18570 ASSERT(connp == NULL); 18571 q = ill->ill_rq; 18572 } 18573 if (err == 0) { 18574 if (ipif->ipif_isv6) { 18575 if ((err = ipif_up_done_v6(ipif)) != 0) 18576 ip0dbg(("arp_bringup_done: init failed\n")); 18577 } else { 18578 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18579 if (err != 0 || 18580 (err = ipif_up_done(ipif)) != 0) { 18581 ip0dbg(("arp_bringup_done: " 18582 "init failed err %x\n", err)); 18583 (void) ipif_arp_down(ipif); 18584 } 18585 18586 } 18587 } else { 18588 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18589 } 18590 18591 if ((err == 0) && (ill->ill_up_ipifs)) { 18592 err = ill_up_ipifs(ill, q, mp1); 18593 if (err == EINPROGRESS) 18594 return; 18595 } 18596 18597 /* 18598 * If we have a moved ipif to bring up, and everything has succeeded 18599 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18600 * down -- the admin can try to bring it up by hand if need be. 18601 */ 18602 if (ill->ill_move_ipif != NULL) { 18603 ipif = ill->ill_move_ipif; 18604 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18605 ipif->ipif_ill->ill_name)); 18606 ill->ill_move_ipif = NULL; 18607 if (err == 0) { 18608 err = ipif_up(ipif, q, mp1); 18609 if (err == EINPROGRESS) 18610 return; 18611 } 18612 } 18613 18614 /* 18615 * The operation must complete without EINPROGRESS since 18616 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18617 * Otherwise, the operation will be stuck forever in the ipsq. 18618 */ 18619 ASSERT(err != EINPROGRESS); 18620 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18621 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18622 int, ipsq->ipsq_xop->ipx_current_ioctl, 18623 ill_t *, ill, ipif_t *, ipif); 18624 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18625 } else { 18626 ipsq_current_finish(ipsq); 18627 } 18628 } 18629 18630 /* 18631 * Finish processing of arp replumb after all the DLPI message 18632 * exchanges have completed between arp and the driver. 18633 */ 18634 void 18635 arp_replumb_done(ill_t *ill, int err) 18636 { 18637 mblk_t *mp1; 18638 ipif_t *ipif; 18639 conn_t *connp = NULL; 18640 ipsq_t *ipsq; 18641 queue_t *q; 18642 18643 ASSERT(IAM_WRITER_ILL(ill)); 18644 18645 ipsq = ill->ill_phyint->phyint_ipsq; 18646 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18647 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18648 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18649 if (mp1 == NULL) { 18650 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18651 ipsq->ipsq_xop->ipx_current_ioctl)); 18652 /* bringup was aborted by the user */ 18653 return; 18654 } 18655 /* 18656 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18657 * must have an associated conn_t. Otherwise, we're bringing this 18658 * interface back up as part of handling an asynchronous event (e.g., 18659 * physical address change). 18660 */ 18661 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18662 ASSERT(connp != NULL); 18663 q = CONNP_TO_WQ(connp); 18664 } else { 18665 ASSERT(connp == NULL); 18666 q = ill->ill_rq; 18667 } 18668 if ((err == 0) && (ill->ill_up_ipifs)) { 18669 err = ill_up_ipifs(ill, q, mp1); 18670 if (err == EINPROGRESS) 18671 return; 18672 } 18673 /* 18674 * The operation must complete without EINPROGRESS since 18675 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18676 * Otherwise, the operation will be stuck forever in the ipsq. 18677 */ 18678 ASSERT(err != EINPROGRESS); 18679 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18680 DTRACE_PROBE4(ipif__ioctl, char *, 18681 "arp_replumb_done finish", 18682 int, ipsq->ipsq_xop->ipx_current_ioctl, 18683 ill_t *, ill, ipif_t *, ipif); 18684 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18685 } else { 18686 ipsq_current_finish(ipsq); 18687 } 18688 } 18689 18690 void 18691 ipif_up_notify(ipif_t *ipif) 18692 { 18693 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18694 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18695 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18696 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18697 NE_LIF_UP, NULL, 0); 18698 } 18699 18700 /* 18701 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18702 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18703 * TPI end points with STREAMS modules pushed above. This is assured by not 18704 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18705 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18706 * while unwinding from the ispq and that could be a thread from the bottom. 18707 */ 18708 /* ARGSUSED */ 18709 int 18710 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18711 ip_ioctl_cmd_t *ipip, void *arg) 18712 { 18713 mblk_t *cmd_mp = mp->b_cont->b_cont; 18714 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18715 int ret = 0; 18716 int i; 18717 size_t size; 18718 ip_stack_t *ipst; 18719 zoneid_t zoneid; 18720 ilb_stack_t *ilbs; 18721 18722 ipst = CONNQ_TO_IPST(q); 18723 ilbs = ipst->ips_netstack->netstack_ilb; 18724 zoneid = Q_TO_CONN(q)->conn_zoneid; 18725 18726 switch (command) { 18727 case ILB_CREATE_RULE: { 18728 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18729 18730 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18731 ret = EINVAL; 18732 break; 18733 } 18734 18735 ret = ilb_rule_add(ilbs, zoneid, cmd); 18736 break; 18737 } 18738 case ILB_DESTROY_RULE: 18739 case ILB_ENABLE_RULE: 18740 case ILB_DISABLE_RULE: { 18741 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18742 18743 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18744 ret = EINVAL; 18745 break; 18746 } 18747 18748 if (cmd->flags & ILB_RULE_ALLRULES) { 18749 if (command == ILB_DESTROY_RULE) { 18750 ilb_rule_del_all(ilbs, zoneid); 18751 break; 18752 } else if (command == ILB_ENABLE_RULE) { 18753 ilb_rule_enable_all(ilbs, zoneid); 18754 break; 18755 } else if (command == ILB_DISABLE_RULE) { 18756 ilb_rule_disable_all(ilbs, zoneid); 18757 break; 18758 } 18759 } else { 18760 if (command == ILB_DESTROY_RULE) { 18761 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18762 } else if (command == ILB_ENABLE_RULE) { 18763 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18764 NULL); 18765 } else if (command == ILB_DISABLE_RULE) { 18766 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18767 NULL); 18768 } 18769 } 18770 break; 18771 } 18772 case ILB_NUM_RULES: { 18773 ilb_num_rules_cmd_t *cmd; 18774 18775 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18776 ret = EINVAL; 18777 break; 18778 } 18779 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18780 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18781 break; 18782 } 18783 case ILB_RULE_NAMES: { 18784 ilb_rule_names_cmd_t *cmd; 18785 18786 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18787 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18788 cmd->num_names == 0) { 18789 ret = EINVAL; 18790 break; 18791 } 18792 size = cmd->num_names * ILB_RULE_NAMESZ; 18793 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18794 size != cmd_mp->b_wptr) { 18795 ret = EINVAL; 18796 break; 18797 } 18798 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18799 break; 18800 } 18801 case ILB_NUM_SERVERS: { 18802 ilb_num_servers_cmd_t *cmd; 18803 18804 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18805 ret = EINVAL; 18806 break; 18807 } 18808 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18809 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18810 &(cmd->num)); 18811 break; 18812 } 18813 case ILB_LIST_RULE: { 18814 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18815 18816 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18817 ret = EINVAL; 18818 break; 18819 } 18820 ret = ilb_rule_list(ilbs, zoneid, cmd); 18821 break; 18822 } 18823 case ILB_LIST_SERVERS: { 18824 ilb_servers_info_cmd_t *cmd; 18825 18826 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18827 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18828 cmd->num_servers == 0) { 18829 ret = EINVAL; 18830 break; 18831 } 18832 size = cmd->num_servers * sizeof (ilb_server_info_t); 18833 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18834 size != cmd_mp->b_wptr) { 18835 ret = EINVAL; 18836 break; 18837 } 18838 18839 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18840 &cmd->num_servers); 18841 break; 18842 } 18843 case ILB_ADD_SERVERS: { 18844 ilb_servers_info_cmd_t *cmd; 18845 ilb_rule_t *rule; 18846 18847 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18848 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18849 ret = EINVAL; 18850 break; 18851 } 18852 size = cmd->num_servers * sizeof (ilb_server_info_t); 18853 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18854 size != cmd_mp->b_wptr) { 18855 ret = EINVAL; 18856 break; 18857 } 18858 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18859 if (rule == NULL) { 18860 ASSERT(ret != 0); 18861 break; 18862 } 18863 for (i = 0; i < cmd->num_servers; i++) { 18864 ilb_server_info_t *s; 18865 18866 s = &cmd->servers[i]; 18867 s->err = ilb_server_add(ilbs, rule, s); 18868 } 18869 ILB_RULE_REFRELE(rule); 18870 break; 18871 } 18872 case ILB_DEL_SERVERS: 18873 case ILB_ENABLE_SERVERS: 18874 case ILB_DISABLE_SERVERS: { 18875 ilb_servers_cmd_t *cmd; 18876 ilb_rule_t *rule; 18877 int (*f)(); 18878 18879 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18880 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18881 ret = EINVAL; 18882 break; 18883 } 18884 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18885 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18886 size != cmd_mp->b_wptr) { 18887 ret = EINVAL; 18888 break; 18889 } 18890 18891 if (command == ILB_DEL_SERVERS) 18892 f = ilb_server_del; 18893 else if (command == ILB_ENABLE_SERVERS) 18894 f = ilb_server_enable; 18895 else if (command == ILB_DISABLE_SERVERS) 18896 f = ilb_server_disable; 18897 18898 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18899 if (rule == NULL) { 18900 ASSERT(ret != 0); 18901 break; 18902 } 18903 18904 for (i = 0; i < cmd->num_servers; i++) { 18905 ilb_server_arg_t *s; 18906 18907 s = &cmd->servers[i]; 18908 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18909 } 18910 ILB_RULE_REFRELE(rule); 18911 break; 18912 } 18913 case ILB_LIST_NAT_TABLE: { 18914 ilb_list_nat_cmd_t *cmd; 18915 18916 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18917 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18918 ret = EINVAL; 18919 break; 18920 } 18921 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18922 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18923 size != cmd_mp->b_wptr) { 18924 ret = EINVAL; 18925 break; 18926 } 18927 18928 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18929 &cmd->flags); 18930 break; 18931 } 18932 case ILB_LIST_STICKY_TABLE: { 18933 ilb_list_sticky_cmd_t *cmd; 18934 18935 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18936 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18937 ret = EINVAL; 18938 break; 18939 } 18940 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18941 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18942 size != cmd_mp->b_wptr) { 18943 ret = EINVAL; 18944 break; 18945 } 18946 18947 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18948 &cmd->num_sticky, &cmd->flags); 18949 break; 18950 } 18951 default: 18952 ret = EINVAL; 18953 break; 18954 } 18955 done: 18956 return (ret); 18957 } 18958 18959 /* Remove all cache entries for this logical interface */ 18960 void 18961 ipif_nce_down(ipif_t *ipif) 18962 { 18963 ill_t *ill = ipif->ipif_ill; 18964 nce_t *nce; 18965 18966 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18967 ill_t *, ill, ipif_t *, ipif); 18968 if (ipif->ipif_added_nce) { 18969 if (ipif->ipif_isv6) 18970 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18971 else 18972 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18973 if (nce != NULL) { 18974 if (--nce->nce_ipif_cnt == 0) 18975 ncec_delete(nce->nce_common); 18976 ipif->ipif_added_nce = 0; 18977 nce_refrele(nce); 18978 } else { 18979 /* 18980 * nce may already be NULL because it was already 18981 * flushed, e.g., due to a call to nce_flush 18982 */ 18983 ipif->ipif_added_nce = 0; 18984 } 18985 } 18986 /* 18987 * Make IPMP aware of the deleted data address. 18988 */ 18989 if (IS_IPMP(ill)) 18990 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18991 18992 /* 18993 * Remove all other nces dependent on this ill when the last ipif 18994 * is going away. 18995 */ 18996 if (ill->ill_ipif_up_count == 0) { 18997 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18998 (uchar_t *)ill, ill->ill_ipst); 18999 if (IS_UNDER_IPMP(ill)) 19000 nce_flush(ill, B_TRUE); 19001 } 19002 } 19003 19004 /* 19005 * find the first interface that uses usill for its source address. 19006 */ 19007 ill_t * 19008 ill_lookup_usesrc(ill_t *usill) 19009 { 19010 ip_stack_t *ipst = usill->ill_ipst; 19011 ill_t *ill; 19012 19013 ASSERT(usill != NULL); 19014 19015 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19016 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19017 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19018 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19019 ill = ill->ill_usesrc_grp_next) { 19020 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19021 !ILL_IS_CONDEMNED(ill)) { 19022 ill_refhold(ill); 19023 break; 19024 } 19025 } 19026 rw_exit(&ipst->ips_ill_g_lock); 19027 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19028 return (ill); 19029 } 19030 19031 /* 19032 * This comment applies to both ip_sioctl_get_ifhwaddr and 19033 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19034 * is the same. 19035 * 19036 * The goal here is to find an IP interface that corresponds to the name 19037 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19038 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19039 * mac address. 19040 * 19041 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19042 * of different reasons: 19043 * ENXIO - the device name is not known to IP. 19044 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19045 * by ill_phys_addr not pointing to an actual address. 19046 * EPFNOSUPPORT - this will indicate that a request is being made for a 19047 * mac address that will not fit in the data structure supplier (struct 19048 * sockaddr). 19049 * 19050 */ 19051 /* ARGSUSED */ 19052 int 19053 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19054 ip_ioctl_cmd_t *ipip, void *if_req) 19055 { 19056 struct sockaddr *sock; 19057 struct ifreq *ifr; 19058 mblk_t *mp1; 19059 ill_t *ill; 19060 19061 ASSERT(ipif != NULL); 19062 ill = ipif->ipif_ill; 19063 19064 if (ill->ill_phys_addr == NULL) { 19065 return (EADDRNOTAVAIL); 19066 } 19067 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19068 return (EPFNOSUPPORT); 19069 } 19070 19071 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19072 19073 /* Existence of mp1 has been checked in ip_wput_nondata */ 19074 mp1 = mp->b_cont->b_cont; 19075 ifr = (struct ifreq *)mp1->b_rptr; 19076 19077 sock = &ifr->ifr_addr; 19078 /* 19079 * The "family" field in the returned structure is set to a value 19080 * that represents the type of device to which the address belongs. 19081 * The value returned may differ to that on Linux but it will still 19082 * represent the correct symbol on Solaris. 19083 */ 19084 sock->sa_family = arp_hw_type(ill->ill_mactype); 19085 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19086 19087 return (0); 19088 } 19089 19090 /* 19091 * The expection of applications using SIOCGIFHWADDR is that data will 19092 * be returned in the sa_data field of the sockaddr structure. With 19093 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19094 * equivalent. In light of this, struct sockaddr_dl is used as it 19095 * offers more space for address storage in sll_data. 19096 */ 19097 /* ARGSUSED */ 19098 int 19099 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19100 ip_ioctl_cmd_t *ipip, void *if_req) 19101 { 19102 struct sockaddr_dl *sock; 19103 struct lifreq *lifr; 19104 mblk_t *mp1; 19105 ill_t *ill; 19106 19107 ASSERT(ipif != NULL); 19108 ill = ipif->ipif_ill; 19109 19110 if (ill->ill_phys_addr == NULL) { 19111 return (EADDRNOTAVAIL); 19112 } 19113 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19114 return (EPFNOSUPPORT); 19115 } 19116 19117 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19118 19119 /* Existence of mp1 has been checked in ip_wput_nondata */ 19120 mp1 = mp->b_cont->b_cont; 19121 lifr = (struct lifreq *)mp1->b_rptr; 19122 19123 /* 19124 * sockaddr_ll is used here because it is also the structure used in 19125 * responding to the same ioctl in sockpfp. The only other choice is 19126 * sockaddr_dl which contains fields that are not required here 19127 * because its purpose is different. 19128 */ 19129 lifr->lifr_type = ill->ill_type; 19130 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19131 sock->sdl_family = AF_LINK; 19132 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19133 sock->sdl_type = ill->ill_mactype; 19134 sock->sdl_nlen = 0; 19135 sock->sdl_slen = 0; 19136 sock->sdl_alen = ill->ill_phys_addr_length; 19137 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19138 19139 return (0); 19140 } 19141