xref: /titanic_50/usr/src/uts/common/inet/ip/ip_if.c (revision 15db28971f91c98efb449aebf46024ac72779fa3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/arp.h>
75 #include <inet/mib2.h>
76 #include <inet/ip.h>
77 #include <inet/ip6.h>
78 #include <inet/ip6_asp.h>
79 #include <inet/tcp.h>
80 #include <inet/ip_multi.h>
81 #include <inet/ip_ire.h>
82 #include <inet/ip_ftable.h>
83 #include <inet/ip_rts.h>
84 #include <inet/ip_ndp.h>
85 #include <inet/ip_if.h>
86 #include <inet/ip_impl.h>
87 #include <inet/sctp_ip.h>
88 #include <inet/ip_netinfo.h>
89 
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/sadb.h>
93 #include <inet/ipsec_impl.h>
94 #include <sys/iphada.h>
95 
96 #include <netinet/igmp.h>
97 #include <inet/ip_listutils.h>
98 #include <inet/ipclassifier.h>
99 #include <sys/mac_client.h>
100 #include <sys/dld.h>
101 
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
104 
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
107 
108 /* The character which tells where the ill_name ends */
109 #define	IPIF_SEPARATOR_CHAR	':'
110 
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 	int	ipft_cmd;
114 	pfi_t	ipft_pfi;
115 	int	ipft_min_size;
116 	int	ipft_flags;
117 } ipft_t;
118 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
119 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
120 
121 typedef struct ip_sock_ar_s {
122 	union {
123 		area_t	ip_sock_area;
124 		ared_t	ip_sock_ared;
125 		areq_t	ip_sock_areq;
126 	} ip_sock_ar_u;
127 	queue_t	*ip_sock_ar_q;
128 } ip_sock_ar_t;
129 
130 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
131 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
132 		    char *value, caddr_t cp, cred_t *ioc_cr);
133 
134 static boolean_t ill_is_quiescent(ill_t *);
135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
136 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
137 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
138     mblk_t *mp, boolean_t need_up);
139 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
140     mblk_t *mp, boolean_t need_up);
141 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
142     queue_t *q, mblk_t *mp, boolean_t need_up);
143 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
144     mblk_t *mp);
145 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
146     mblk_t *mp);
147 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
148     queue_t *q, mblk_t *mp, boolean_t need_up);
149 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
150     int ioccmd, struct linkblk *li, boolean_t doconsist);
151 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
152 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
153 static void	ipsq_flush(ill_t *ill);
154 
155 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
156     queue_t *q, mblk_t *mp, boolean_t need_up);
157 static void	ipsq_delete(ipsq_t *);
158 
159 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
160     boolean_t initialize, boolean_t insert);
161 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
162 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
164 		    boolean_t isv6);
165 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
166 static void	ipif_delete_cache_ire(ire_t *, char *);
167 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
168 static void	ipif_free(ipif_t *ipif);
169 static void	ipif_free_tail(ipif_t *ipif);
170 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
171 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
172 static void	ipif_set_default(ipif_t *ipif);
173 static int	ipif_set_values(queue_t *q, mblk_t *mp,
174     char *interf_name, uint_t *ppa);
175 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
176     queue_t *q);
177 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
178     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
179     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
180 static void	ipif_update_other_ipifs(ipif_t *old_ipif);
181 
182 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
183 static int	ill_arp_off(ill_t *ill);
184 static int	ill_arp_on(ill_t *ill);
185 static void	ill_delete_interface_type(ill_if_t *);
186 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
187 static void	ill_dl_down(ill_t *ill);
188 static void	ill_down(ill_t *ill);
189 static void	ill_downi(ire_t *ire, char *ill_arg);
190 static void	ill_free_mib(ill_t *ill);
191 static void	ill_glist_delete(ill_t *);
192 static void	ill_phyint_reinit(ill_t *ill);
193 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
194 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
195 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
196 
197 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
198 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
199 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
200 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
201 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo;
202 static ip_v6mapinfo_func_t ip_nodef_v6mapinfo;
203 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo;
204 static ip_v4mapinfo_func_t ip_nodef_v4mapinfo;
205 static void	ipif_save_ire(ipif_t *, ire_t *);
206 static void	ipif_remove_ire(ipif_t *, ire_t *);
207 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
208 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
209 static void	phyint_free(phyint_t *);
210 
211 /*
212  * Per-ill IPsec capabilities management.
213  */
214 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
215 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
216 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
217 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
218 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
219 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
220     boolean_t);
221 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
222 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
223 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *);
224 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
225 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *);
226 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
227 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
228 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
229     dl_capability_sub_t *);
230 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
231 static int  ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *,
232     int *);
233 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
234 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
235 		    dl_capability_sub_t *);
236 static void	ill_capability_dld_enable(ill_t *);
237 static void	ill_capability_ack_thr(void *);
238 static void	ill_capability_lso_enable(ill_t *);
239 static void	ill_capability_send(ill_t *, mblk_t *);
240 
241 static ill_t	*ill_prev_usesrc(ill_t *);
242 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
243 static void	ill_disband_usesrc_group(ill_t *);
244 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
245 
246 #ifdef DEBUG
247 static  void    ill_trace_cleanup(const ill_t *);
248 static  void    ipif_trace_cleanup(const ipif_t *);
249 #endif
250 
251 /*
252  * if we go over the memory footprint limit more than once in this msec
253  * interval, we'll start pruning aggressively.
254  */
255 int ip_min_frag_prune_time = 0;
256 
257 /*
258  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
259  * and the IPsec DOI
260  */
261 #define	MAX_IPSEC_ALGS	256
262 
263 #define	BITSPERBYTE	8
264 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
265 
266 #define	IPSEC_ALG_ENABLE(algs, algid) \
267 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
268 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
269 
270 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
271 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
272 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
273 
274 typedef uint8_t ipsec_capab_elem_t;
275 
276 /*
277  * Per-algorithm parameters.  Note that at present, only encryption
278  * algorithms have variable keysize (IKE does not provide a way to negotiate
279  * auth algorithm keysize).
280  *
281  * All sizes here are in bits.
282  */
283 typedef struct
284 {
285 	uint16_t	minkeylen;
286 	uint16_t	maxkeylen;
287 } ipsec_capab_algparm_t;
288 
289 /*
290  * Per-ill capabilities.
291  */
292 struct ill_ipsec_capab_s {
293 	ipsec_capab_elem_t *encr_hw_algs;
294 	ipsec_capab_elem_t *auth_hw_algs;
295 	uint32_t algs_size;	/* size of _hw_algs in bytes */
296 	/* algorithm key lengths */
297 	ipsec_capab_algparm_t *encr_algparm;
298 	uint32_t encr_algparm_size;
299 	uint32_t encr_algparm_end;
300 };
301 
302 /*
303  * The field values are larger than strictly necessary for simple
304  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
305  */
306 static area_t	ip_area_template = {
307 	AR_ENTRY_ADD,			/* area_cmd */
308 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
309 					/* area_name_offset */
310 	/* area_name_length temporarily holds this structure length */
311 	sizeof (area_t),			/* area_name_length */
312 	IP_ARP_PROTO_TYPE,		/* area_proto */
313 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
314 	IP_ADDR_LEN,			/* area_proto_addr_length */
315 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
316 					/* area_proto_mask_offset */
317 	0,				/* area_flags */
318 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
319 					/* area_hw_addr_offset */
320 	/* Zero length hw_addr_length means 'use your idea of the address' */
321 	0				/* area_hw_addr_length */
322 };
323 
324 /*
325  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
326  * support
327  */
328 static area_t	ip6_area_template = {
329 	AR_ENTRY_ADD,			/* area_cmd */
330 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
331 					/* area_name_offset */
332 	/* area_name_length temporarily holds this structure length */
333 	sizeof (area_t),			/* area_name_length */
334 	IP_ARP_PROTO_TYPE,		/* area_proto */
335 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
336 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
337 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
338 					/* area_proto_mask_offset */
339 	0,				/* area_flags */
340 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
341 					/* area_hw_addr_offset */
342 	/* Zero length hw_addr_length means 'use your idea of the address' */
343 	0				/* area_hw_addr_length */
344 };
345 
346 static ared_t	ip_ared_template = {
347 	AR_ENTRY_DELETE,
348 	sizeof (ared_t) + IP_ADDR_LEN,
349 	sizeof (ared_t),
350 	IP_ARP_PROTO_TYPE,
351 	sizeof (ared_t),
352 	IP_ADDR_LEN,
353 	0
354 };
355 
356 static ared_t	ip6_ared_template = {
357 	AR_ENTRY_DELETE,
358 	sizeof (ared_t) + IPV6_ADDR_LEN,
359 	sizeof (ared_t),
360 	IP_ARP_PROTO_TYPE,
361 	sizeof (ared_t),
362 	IPV6_ADDR_LEN,
363 	0
364 };
365 
366 /*
367  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
368  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
369  * areq is used).
370  */
371 static areq_t	ip_areq_template = {
372 	AR_ENTRY_QUERY,			/* cmd */
373 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
374 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
375 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
376 	sizeof (areq_t),			/* target addr offset */
377 	IP_ADDR_LEN,			/* target addr_length */
378 	0,				/* flags */
379 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
380 	IP_ADDR_LEN,			/* sender addr length */
381 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
382 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
383 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
384 	/* anything else filled in by the code */
385 };
386 
387 static arc_t	ip_aru_template = {
388 	AR_INTERFACE_UP,
389 	sizeof (arc_t),		/* Name offset */
390 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
391 };
392 
393 static arc_t	ip_ard_template = {
394 	AR_INTERFACE_DOWN,
395 	sizeof (arc_t),		/* Name offset */
396 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
397 };
398 
399 static arc_t	ip_aron_template = {
400 	AR_INTERFACE_ON,
401 	sizeof (arc_t),		/* Name offset */
402 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
403 };
404 
405 static arc_t	ip_aroff_template = {
406 	AR_INTERFACE_OFF,
407 	sizeof (arc_t),		/* Name offset */
408 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
409 };
410 
411 static arma_t	ip_arma_multi_template = {
412 	AR_MAPPING_ADD,
413 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
414 				/* Name offset */
415 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
416 	IP_ARP_PROTO_TYPE,
417 	sizeof (arma_t),			/* proto_addr_offset */
418 	IP_ADDR_LEN,				/* proto_addr_length */
419 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
420 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
421 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
422 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
423 	IP_MAX_HW_LEN,				/* hw_addr_length */
424 	0,					/* hw_mapping_start */
425 };
426 
427 static ipft_t	ip_ioctl_ftbl[] = {
428 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
429 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
430 		IPFT_F_NO_REPLY },
431 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
432 		IPFT_F_NO_REPLY },
433 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
434 	{ 0 }
435 };
436 
437 /* Simple ICMP IP Header Template */
438 static ipha_t icmp_ipha = {
439 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
440 };
441 
442 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
443 
444 static ip_m_t   ip_m_tbl[] = {
445 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
446 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid,
447 	    ip_nodef_v6intfid },
448 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
449 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
450 	    ip_nodef_v6intfid },
451 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
452 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
453 	    ip_nodef_v6intfid },
454 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
455 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
456 	    ip_nodef_v6intfid },
457 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
458 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid,
459 	    ip_nodef_v6intfid },
460 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
461 	    ip_ib_v4mapinfo, ip_ib_v6mapinfo, ip_ib_v6intfid,
462 	    ip_nodef_v6intfid },
463 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
464 	    ip_nodef_v6mapinfo, ip_ipv4_v6intfid, ip_ipv4_v6destintfid },
465 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
466 	    ip_nodef_v6mapinfo, ip_ipv6_v6intfid, ip_ipv6_v6destintfid },
467 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
468 	    ip_nodef_v6mapinfo, ip_ipv4_v6intfid, ip_nodef_v6intfid },
469 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
470 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
471 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
472 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
473 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
474 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
475 	    ip_nodef_v6intfid }
476 };
477 
478 static ill_t	ill_null;		/* Empty ILL for init. */
479 char	ipif_loopback_name[] = "lo0";
480 static char *ipv4_forward_suffix = ":ip_forwarding";
481 static char *ipv6_forward_suffix = ":ip6_forwarding";
482 static	sin6_t	sin6_null;	/* Zero address for quick clears */
483 static	sin_t	sin_null;	/* Zero address for quick clears */
484 
485 /* When set search for unused ipif_seqid */
486 static ipif_t	ipif_zero;
487 
488 /*
489  * ppa arena is created after these many
490  * interfaces have been plumbed.
491  */
492 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
493 
494 /*
495  * Allocate per-interface mibs.
496  * Returns true if ok. False otherwise.
497  *  ipsq  may not yet be allocated (loopback case ).
498  */
499 static boolean_t
500 ill_allocate_mibs(ill_t *ill)
501 {
502 	/* Already allocated? */
503 	if (ill->ill_ip_mib != NULL) {
504 		if (ill->ill_isv6)
505 			ASSERT(ill->ill_icmp6_mib != NULL);
506 		return (B_TRUE);
507 	}
508 
509 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
510 	    KM_NOSLEEP);
511 	if (ill->ill_ip_mib == NULL) {
512 		return (B_FALSE);
513 	}
514 
515 	/* Setup static information */
516 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
517 	    sizeof (mib2_ipIfStatsEntry_t));
518 	if (ill->ill_isv6) {
519 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
520 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
521 		    sizeof (mib2_ipv6AddrEntry_t));
522 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
523 		    sizeof (mib2_ipv6RouteEntry_t));
524 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
525 		    sizeof (mib2_ipv6NetToMediaEntry_t));
526 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
527 		    sizeof (ipv6_member_t));
528 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
529 		    sizeof (ipv6_grpsrc_t));
530 	} else {
531 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
532 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
533 		    sizeof (mib2_ipAddrEntry_t));
534 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
535 		    sizeof (mib2_ipRouteEntry_t));
536 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
537 		    sizeof (mib2_ipNetToMediaEntry_t));
538 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
539 		    sizeof (ip_member_t));
540 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
541 		    sizeof (ip_grpsrc_t));
542 
543 		/*
544 		 * For a v4 ill, we are done at this point, because per ill
545 		 * icmp mibs are only used for v6.
546 		 */
547 		return (B_TRUE);
548 	}
549 
550 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
551 	    KM_NOSLEEP);
552 	if (ill->ill_icmp6_mib == NULL) {
553 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
554 		ill->ill_ip_mib = NULL;
555 		return (B_FALSE);
556 	}
557 	/* static icmp info */
558 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
559 	    sizeof (mib2_ipv6IfIcmpEntry_t);
560 	/*
561 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
562 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
563 	 * -> ill_phyint_reinit
564 	 */
565 	return (B_TRUE);
566 }
567 
568 /*
569  * Common code for preparation of ARP commands.  Two points to remember:
570  * 	1) The ill_name is tacked on at the end of the allocated space so
571  *	   the templates name_offset field must contain the total space
572  *	   to allocate less the name length.
573  *
574  *	2) The templates name_length field should contain the *template*
575  *	   length.  We use it as a parameter to bcopy() and then write
576  *	   the real ill_name_length into the name_length field of the copy.
577  * (Always called as writer.)
578  */
579 mblk_t *
580 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr)
581 {
582 	arc_t	*arc = (arc_t *)template;
583 	char	*cp;
584 	int	len;
585 	mblk_t	*mp;
586 	uint_t	name_length = ill->ill_name_length;
587 	uint_t	template_len = arc->arc_name_length;
588 
589 	len = arc->arc_name_offset + name_length;
590 	mp = allocb(len, BPRI_HI);
591 	if (mp == NULL)
592 		return (NULL);
593 	cp = (char *)mp->b_rptr;
594 	mp->b_wptr = (uchar_t *)&cp[len];
595 	if (template_len)
596 		bcopy(template, cp, template_len);
597 	if (len > template_len)
598 		bzero(&cp[template_len], len - template_len);
599 	mp->b_datap->db_type = M_PROTO;
600 
601 	arc = (arc_t *)cp;
602 	arc->arc_name_length = name_length;
603 	cp = (char *)arc + arc->arc_name_offset;
604 	bcopy(ill->ill_name, cp, name_length);
605 
606 	if (addr) {
607 		area_t	*area = (area_t *)mp->b_rptr;
608 
609 		cp = (char *)area + area->area_proto_addr_offset;
610 		bcopy(addr, cp, area->area_proto_addr_length);
611 		if (area->area_cmd == AR_ENTRY_ADD) {
612 			cp = (char *)area;
613 			len = area->area_proto_addr_length;
614 			if (area->area_proto_mask_offset)
615 				cp += area->area_proto_mask_offset;
616 			else
617 				cp += area->area_proto_addr_offset + len;
618 			while (len-- > 0)
619 				*cp++ = (char)~0;
620 		}
621 	}
622 	return (mp);
623 }
624 
625 mblk_t *
626 ipif_area_alloc(ipif_t *ipif, uint_t optflags)
627 {
628 	caddr_t	addr;
629 	mblk_t 	*mp;
630 	area_t	*area;
631 	uchar_t	*areap;
632 	ill_t	*ill = ipif->ipif_ill;
633 
634 	if (ill->ill_isv6) {
635 		ASSERT(ill->ill_flags & ILLF_XRESOLV);
636 		addr = (caddr_t)&ipif->ipif_v6lcl_addr;
637 		areap = (uchar_t *)&ip6_area_template;
638 	} else {
639 		addr = (caddr_t)&ipif->ipif_lcl_addr;
640 		areap = (uchar_t *)&ip_area_template;
641 	}
642 
643 	if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL)
644 		return (NULL);
645 
646 	/*
647 	 * IPMP requires that the hardware address be included in all
648 	 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on.
649 	 * If there are no active underlying ills in the group (and thus no
650 	 * hardware address, DAD will be deferred until an underlying ill
651 	 * becomes active.
652 	 */
653 	if (IS_IPMP(ill)) {
654 		if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) {
655 			freemsg(mp);
656 			return (NULL);
657 		}
658 	} else {
659 		ill_refhold(ill);
660 	}
661 
662 	area = (area_t *)mp->b_rptr;
663 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR;
664 	area->area_flags |= optflags;
665 	area->area_hw_addr_length = ill->ill_phys_addr_length;
666 	bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset,
667 	    area->area_hw_addr_length);
668 
669 	ill_refrele(ill);
670 	return (mp);
671 }
672 
673 mblk_t *
674 ipif_ared_alloc(ipif_t *ipif)
675 {
676 	caddr_t	addr;
677 	uchar_t	*aredp;
678 
679 	if (ipif->ipif_ill->ill_isv6) {
680 		ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV);
681 		addr = (caddr_t)&ipif->ipif_v6lcl_addr;
682 		aredp = (uchar_t *)&ip6_ared_template;
683 	} else {
684 		addr = (caddr_t)&ipif->ipif_lcl_addr;
685 		aredp = (uchar_t *)&ip_ared_template;
686 	}
687 
688 	return (ill_arp_alloc(ipif->ipif_ill, aredp, addr));
689 }
690 
691 mblk_t *
692 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
693 {
694 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
695 	    (char *)&addr));
696 }
697 
698 mblk_t *
699 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template)
700 {
701 	mblk_t	*mp = ill_arp_alloc(ill, template, 0);
702 	arie_t	*arie;
703 
704 	if (mp != NULL) {
705 		arie = (arie_t *)mp->b_rptr;
706 		(void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ);
707 	}
708 	return (mp);
709 }
710 
711 /*
712  * Completely vaporize a lower level tap and all associated interfaces.
713  * ill_delete is called only out of ip_close when the device control
714  * stream is being closed.
715  */
716 void
717 ill_delete(ill_t *ill)
718 {
719 	ipif_t	*ipif;
720 	ill_t	*prev_ill;
721 	ip_stack_t	*ipst = ill->ill_ipst;
722 
723 	/*
724 	 * ill_delete may be forcibly entering the ipsq. The previous
725 	 * ioctl may not have completed and may need to be aborted.
726 	 * ipsq_flush takes care of it. If we don't need to enter the
727 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
728 	 * ill_delete_tail is sufficient.
729 	 */
730 	ipsq_flush(ill);
731 
732 	/*
733 	 * Nuke all interfaces.  ipif_free will take down the interface,
734 	 * remove it from the list, and free the data structure.
735 	 * Walk down the ipif list and remove the logical interfaces
736 	 * first before removing the main ipif. We can't unplumb
737 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
738 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
739 	 * POINTOPOINT.
740 	 *
741 	 * If ill_ipif was not properly initialized (i.e low on memory),
742 	 * then no interfaces to clean up. In this case just clean up the
743 	 * ill.
744 	 */
745 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
746 		ipif_free(ipif);
747 
748 	/*
749 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
750 	 * So nobody can be using this mp now. Free the mp allocated for
751 	 * honoring ILLF_NOARP
752 	 */
753 	freemsg(ill->ill_arp_on_mp);
754 	ill->ill_arp_on_mp = NULL;
755 
756 	/* Clean up msgs on pending upcalls for mrouted */
757 	reset_mrt_ill(ill);
758 
759 	/*
760 	 * ipif_free -> reset_conn_ipif will remove all multicast
761 	 * references for IPv4. For IPv6, we need to do it here as
762 	 * it points only at ills.
763 	 */
764 	reset_conn_ill(ill);
765 
766 	/*
767 	 * Remove multicast references added as a result of calls to
768 	 * ip_join_allmulti().
769 	 */
770 	ip_purge_allmulti(ill);
771 
772 	/*
773 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
774 	 */
775 	if (IS_UNDER_IPMP(ill))
776 		ipmp_ill_leave_illgrp(ill);
777 
778 	/*
779 	 * ill_down will arrange to blow off any IRE's dependent on this
780 	 * ILL, and shut down fragmentation reassembly.
781 	 */
782 	ill_down(ill);
783 
784 	/* Let SCTP know, so that it can remove this from its list. */
785 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
786 
787 	/*
788 	 * If an address on this ILL is being used as a source address then
789 	 * clear out the pointers in other ILLs that point to this ILL.
790 	 */
791 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
792 	if (ill->ill_usesrc_grp_next != NULL) {
793 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
794 			ill_disband_usesrc_group(ill);
795 		} else {	/* consumer of the usesrc ILL */
796 			prev_ill = ill_prev_usesrc(ill);
797 			prev_ill->ill_usesrc_grp_next =
798 			    ill->ill_usesrc_grp_next;
799 		}
800 	}
801 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
802 }
803 
804 static void
805 ipif_non_duplicate(ipif_t *ipif)
806 {
807 	ill_t *ill = ipif->ipif_ill;
808 	mutex_enter(&ill->ill_lock);
809 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
810 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
811 		ASSERT(ill->ill_ipif_dup_count > 0);
812 		ill->ill_ipif_dup_count--;
813 	}
814 	mutex_exit(&ill->ill_lock);
815 }
816 
817 /*
818  * ill_delete_tail is called from ip_modclose after all references
819  * to the closing ill are gone. The wait is done in ip_modclose
820  */
821 void
822 ill_delete_tail(ill_t *ill)
823 {
824 	mblk_t	**mpp;
825 	ipif_t	*ipif;
826 	ip_stack_t	*ipst = ill->ill_ipst;
827 
828 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
829 		ipif_non_duplicate(ipif);
830 		ipif_down_tail(ipif);
831 	}
832 
833 	ASSERT(ill->ill_ipif_dup_count == 0 &&
834 	    ill->ill_arp_down_mp == NULL &&
835 	    ill->ill_arp_del_mapping_mp == NULL);
836 
837 	/*
838 	 * If polling capability is enabled (which signifies direct
839 	 * upcall into IP and driver has ill saved as a handle),
840 	 * we need to make sure that unbind has completed before we
841 	 * let the ill disappear and driver no longer has any reference
842 	 * to this ill.
843 	 */
844 	mutex_enter(&ill->ill_lock);
845 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
846 		cv_wait(&ill->ill_cv, &ill->ill_lock);
847 	mutex_exit(&ill->ill_lock);
848 	ASSERT(!(ill->ill_capabilities &
849 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
850 
851 	if (ill->ill_net_type != IRE_LOOPBACK)
852 		qprocsoff(ill->ill_rq);
853 
854 	/*
855 	 * We do an ipsq_flush once again now. New messages could have
856 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
857 	 * could also have landed up if an ioctl thread had looked up
858 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
859 	 * enqueued the ioctl when we did the ipsq_flush last time.
860 	 */
861 	ipsq_flush(ill);
862 
863 	/*
864 	 * Free capabilities.
865 	 */
866 	if (ill->ill_ipsec_capab_ah != NULL) {
867 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
868 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
869 		ill->ill_ipsec_capab_ah = NULL;
870 	}
871 
872 	if (ill->ill_ipsec_capab_esp != NULL) {
873 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
874 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
875 		ill->ill_ipsec_capab_esp = NULL;
876 	}
877 
878 	if (ill->ill_mdt_capab != NULL) {
879 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
880 		ill->ill_mdt_capab = NULL;
881 	}
882 
883 	if (ill->ill_hcksum_capab != NULL) {
884 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
885 		ill->ill_hcksum_capab = NULL;
886 	}
887 
888 	if (ill->ill_zerocopy_capab != NULL) {
889 		kmem_free(ill->ill_zerocopy_capab,
890 		    sizeof (ill_zerocopy_capab_t));
891 		ill->ill_zerocopy_capab = NULL;
892 	}
893 
894 	if (ill->ill_lso_capab != NULL) {
895 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
896 		ill->ill_lso_capab = NULL;
897 	}
898 
899 	if (ill->ill_dld_capab != NULL) {
900 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
901 		ill->ill_dld_capab = NULL;
902 	}
903 
904 	while (ill->ill_ipif != NULL)
905 		ipif_free_tail(ill->ill_ipif);
906 
907 	/*
908 	 * We have removed all references to ilm from conn and the ones joined
909 	 * within the kernel.
910 	 *
911 	 * We don't walk conns, mrts and ires because
912 	 *
913 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
914 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
915 	 *    ill references.
916 	 */
917 	ASSERT(ilm_walk_ill(ill) == 0);
918 
919 	/*
920 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
921 	 * is safe to do because the illgrp has already been unlinked from the
922 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
923 	 */
924 	if (IS_IPMP(ill)) {
925 		ipmp_illgrp_destroy(ill->ill_grp);
926 		ill->ill_grp = NULL;
927 	}
928 
929 	/*
930 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
931 	 * could free the phyint. No more reference to the phyint after this
932 	 * point.
933 	 */
934 	(void) ill_glist_delete(ill);
935 
936 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
937 	if (ill->ill_ndd_name != NULL)
938 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
939 	rw_exit(&ipst->ips_ip_g_nd_lock);
940 
941 	if (ill->ill_frag_ptr != NULL) {
942 		uint_t count;
943 
944 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
945 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
946 		}
947 		mi_free(ill->ill_frag_ptr);
948 		ill->ill_frag_ptr = NULL;
949 		ill->ill_frag_hash_tbl = NULL;
950 	}
951 
952 	freemsg(ill->ill_nd_lla_mp);
953 	/* Free all retained control messages. */
954 	mpp = &ill->ill_first_mp_to_free;
955 	do {
956 		while (mpp[0]) {
957 			mblk_t  *mp;
958 			mblk_t  *mp1;
959 
960 			mp = mpp[0];
961 			mpp[0] = mp->b_next;
962 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
963 				mp1->b_next = NULL;
964 				mp1->b_prev = NULL;
965 			}
966 			freemsg(mp);
967 		}
968 	} while (mpp++ != &ill->ill_last_mp_to_free);
969 
970 	ill_free_mib(ill);
971 
972 #ifdef DEBUG
973 	ill_trace_cleanup(ill);
974 #endif
975 
976 	/* Drop refcnt here */
977 	netstack_rele(ill->ill_ipst->ips_netstack);
978 	ill->ill_ipst = NULL;
979 }
980 
981 static void
982 ill_free_mib(ill_t *ill)
983 {
984 	ip_stack_t *ipst = ill->ill_ipst;
985 
986 	/*
987 	 * MIB statistics must not be lost, so when an interface
988 	 * goes away the counter values will be added to the global
989 	 * MIBs.
990 	 */
991 	if (ill->ill_ip_mib != NULL) {
992 		if (ill->ill_isv6) {
993 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
994 			    ill->ill_ip_mib);
995 		} else {
996 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
997 			    ill->ill_ip_mib);
998 		}
999 
1000 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
1001 		ill->ill_ip_mib = NULL;
1002 	}
1003 	if (ill->ill_icmp6_mib != NULL) {
1004 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
1005 		    ill->ill_icmp6_mib);
1006 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
1007 		ill->ill_icmp6_mib = NULL;
1008 	}
1009 }
1010 
1011 /*
1012  * Concatenate together a physical address and a sap.
1013  *
1014  * Sap_lengths are interpreted as follows:
1015  *   sap_length == 0	==>	no sap
1016  *   sap_length > 0	==>	sap is at the head of the dlpi address
1017  *   sap_length < 0	==>	sap is at the tail of the dlpi address
1018  */
1019 static void
1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
1021     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
1022 {
1023 	uint16_t sap_addr = (uint16_t)sap_src;
1024 
1025 	if (sap_length == 0) {
1026 		if (phys_src == NULL)
1027 			bzero(dst, phys_length);
1028 		else
1029 			bcopy(phys_src, dst, phys_length);
1030 	} else if (sap_length < 0) {
1031 		if (phys_src == NULL)
1032 			bzero(dst, phys_length);
1033 		else
1034 			bcopy(phys_src, dst, phys_length);
1035 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1036 	} else {
1037 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1038 		if (phys_src == NULL)
1039 			bzero((char *)dst + sap_length, phys_length);
1040 		else
1041 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1042 	}
1043 }
1044 
1045 /*
1046  * Generate a dl_unitdata_req mblk for the device and address given.
1047  * addr_length is the length of the physical portion of the address.
1048  * If addr is NULL include an all zero address of the specified length.
1049  * TRUE? In any case, addr_length is taken to be the entire length of the
1050  * dlpi address, including the absolute value of sap_length.
1051  */
1052 mblk_t *
1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1054 		t_scalar_t sap_length)
1055 {
1056 	dl_unitdata_req_t *dlur;
1057 	mblk_t	*mp;
1058 	t_scalar_t	abs_sap_length;		/* absolute value */
1059 
1060 	abs_sap_length = ABS(sap_length);
1061 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1062 	    DL_UNITDATA_REQ);
1063 	if (mp == NULL)
1064 		return (NULL);
1065 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1066 	/* HACK: accomodate incompatible DLPI drivers */
1067 	if (addr_length == 8)
1068 		addr_length = 6;
1069 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1070 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1071 	dlur->dl_priority.dl_min = 0;
1072 	dlur->dl_priority.dl_max = 0;
1073 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1074 	    (uchar_t *)&dlur[1]);
1075 	return (mp);
1076 }
1077 
1078 /*
1079  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp.  Return
1080  * an error if we already have 1 or more ioctls in progress.  This is only
1081  * needed for SIOCG*ARP.
1082  */
1083 boolean_t
1084 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1085 {
1086 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1087 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1088 	/* We should only see M_IOCDATA arp ioctls here. */
1089 	ASSERT(add_mp->b_datap->db_type == M_IOCDATA);
1090 
1091 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1092 	/*
1093 	 * Return error if the conn has started closing. The conn
1094 	 * could have finished cleaning up the pending mp list,
1095 	 * If so we should not add another mp to the list negating
1096 	 * the cleanup.
1097 	 */
1098 	if (connp->conn_state_flags & CONN_CLOSING)
1099 		return (B_FALSE);
1100 	/*
1101 	 * Add the pending mp to the head of the list, chained by b_next.
1102 	 * Note down the conn on which the ioctl request came, in b_prev.
1103 	 * This will be used to later get the conn, when we get a response
1104 	 * on the ill queue, from some other module (typically arp)
1105 	 */
1106 	add_mp->b_next = (void *)ill->ill_pending_mp;
1107 	add_mp->b_queue = CONNP_TO_WQ(connp);
1108 	ill->ill_pending_mp = add_mp;
1109 	if (connp != NULL)
1110 		connp->conn_oper_pending_ill = ill;
1111 	return (B_TRUE);
1112 }
1113 
1114 /*
1115  * Retrieve the ill_pending_mp and return it. We have to walk the list
1116  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1117  */
1118 mblk_t *
1119 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1120 {
1121 	mblk_t	*prev = NULL;
1122 	mblk_t	*curr = NULL;
1123 	uint_t	id;
1124 	conn_t	*connp;
1125 
1126 	/*
1127 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1128 	 * up the pending mp, but it does not know the ioc_id and
1129 	 * passes in a zero for it.
1130 	 */
1131 	mutex_enter(&ill->ill_lock);
1132 	if (ioc_id != 0)
1133 		*connpp = NULL;
1134 
1135 	/* Search the list for the appropriate ioctl based on ioc_id */
1136 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1137 	    prev = curr, curr = curr->b_next) {
1138 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1139 		connp = Q_TO_CONN(curr->b_queue);
1140 		/* Match based on the ioc_id or based on the conn */
1141 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1142 			break;
1143 	}
1144 
1145 	if (curr != NULL) {
1146 		/* Unlink the mblk from the pending mp list */
1147 		if (prev != NULL) {
1148 			prev->b_next = curr->b_next;
1149 		} else {
1150 			ASSERT(ill->ill_pending_mp == curr);
1151 			ill->ill_pending_mp = curr->b_next;
1152 		}
1153 
1154 		/*
1155 		 * conn refcnt must have been bumped up at the start of
1156 		 * the ioctl. So we can safely access the conn.
1157 		 */
1158 		ASSERT(CONN_Q(curr->b_queue));
1159 		*connpp = Q_TO_CONN(curr->b_queue);
1160 		curr->b_next = NULL;
1161 		curr->b_queue = NULL;
1162 	}
1163 
1164 	mutex_exit(&ill->ill_lock);
1165 
1166 	return (curr);
1167 }
1168 
1169 /*
1170  * Add the pending mp to the list. There can be only 1 pending mp
1171  * in the list. Any exclusive ioctl that needs to wait for a response
1172  * from another module or driver needs to use this function to set
1173  * the ipx_pending_mp to the ioctl mblk and wait for the response from
1174  * the other module/driver. This is also used while waiting for the
1175  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1176  */
1177 boolean_t
1178 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1179     int waitfor)
1180 {
1181 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
1182 
1183 	ASSERT(IAM_WRITER_IPIF(ipif));
1184 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1185 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1186 	ASSERT(ipx->ipx_pending_mp == NULL);
1187 	/*
1188 	 * The caller may be using a different ipif than the one passed into
1189 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1190 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1191 	 * that `ipx_current_ipif == ipif'.
1192 	 */
1193 	ASSERT(ipx->ipx_current_ipif != NULL);
1194 
1195 	/*
1196 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
1197 	 * driver.
1198 	 */
1199 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
1200 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
1201 	    (DB_TYPE(add_mp) == M_PCPROTO));
1202 
1203 	if (connp != NULL) {
1204 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1205 		/*
1206 		 * Return error if the conn has started closing. The conn
1207 		 * could have finished cleaning up the pending mp list,
1208 		 * If so we should not add another mp to the list negating
1209 		 * the cleanup.
1210 		 */
1211 		if (connp->conn_state_flags & CONN_CLOSING)
1212 			return (B_FALSE);
1213 	}
1214 	mutex_enter(&ipx->ipx_lock);
1215 	ipx->ipx_pending_ipif = ipif;
1216 	/*
1217 	 * Note down the queue in b_queue. This will be returned by
1218 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1219 	 * the processing
1220 	 */
1221 	add_mp->b_next = NULL;
1222 	add_mp->b_queue = q;
1223 	ipx->ipx_pending_mp = add_mp;
1224 	ipx->ipx_waitfor = waitfor;
1225 	mutex_exit(&ipx->ipx_lock);
1226 
1227 	if (connp != NULL)
1228 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1229 
1230 	return (B_TRUE);
1231 }
1232 
1233 /*
1234  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
1235  * queued in the list.
1236  */
1237 mblk_t *
1238 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1239 {
1240 	mblk_t	*curr = NULL;
1241 	ipxop_t	*ipx = ipsq->ipsq_xop;
1242 
1243 	*connpp = NULL;
1244 	mutex_enter(&ipx->ipx_lock);
1245 	if (ipx->ipx_pending_mp == NULL) {
1246 		mutex_exit(&ipx->ipx_lock);
1247 		return (NULL);
1248 	}
1249 
1250 	/* There can be only 1 such excl message */
1251 	curr = ipx->ipx_pending_mp;
1252 	ASSERT(curr->b_next == NULL);
1253 	ipx->ipx_pending_ipif = NULL;
1254 	ipx->ipx_pending_mp = NULL;
1255 	ipx->ipx_waitfor = 0;
1256 	mutex_exit(&ipx->ipx_lock);
1257 
1258 	if (CONN_Q(curr->b_queue)) {
1259 		/*
1260 		 * This mp did a refhold on the conn, at the start of the ioctl.
1261 		 * So we can safely return a pointer to the conn to the caller.
1262 		 */
1263 		*connpp = Q_TO_CONN(curr->b_queue);
1264 	} else {
1265 		*connpp = NULL;
1266 	}
1267 	curr->b_next = NULL;
1268 	curr->b_prev = NULL;
1269 	return (curr);
1270 }
1271 
1272 /*
1273  * Cleanup the ioctl mp queued in ipx_pending_mp
1274  * - Called in the ill_delete path
1275  * - Called in the M_ERROR or M_HANGUP path on the ill.
1276  * - Called in the conn close path.
1277  */
1278 boolean_t
1279 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1280 {
1281 	mblk_t	*mp;
1282 	ipxop_t	*ipx;
1283 	queue_t	*q;
1284 	ipif_t	*ipif;
1285 
1286 	ASSERT(IAM_WRITER_ILL(ill));
1287 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
1288 
1289 	/*
1290 	 * If connp is null, unconditionally clean up the ipx_pending_mp.
1291 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1292 	 * even if it is meant for another ill, since we have to enqueue
1293 	 * a new mp now in ipx_pending_mp to complete the ipif_down.
1294 	 * If connp is non-null we are called from the conn close path.
1295 	 */
1296 	mutex_enter(&ipx->ipx_lock);
1297 	mp = ipx->ipx_pending_mp;
1298 	if (mp == NULL || (connp != NULL &&
1299 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1300 		mutex_exit(&ipx->ipx_lock);
1301 		return (B_FALSE);
1302 	}
1303 	/* Now remove from the ipx_pending_mp */
1304 	ipx->ipx_pending_mp = NULL;
1305 	q = mp->b_queue;
1306 	mp->b_next = NULL;
1307 	mp->b_prev = NULL;
1308 	mp->b_queue = NULL;
1309 
1310 	ipif = ipx->ipx_pending_ipif;
1311 	ipx->ipx_pending_ipif = NULL;
1312 	ipx->ipx_waitfor = 0;
1313 	ipx->ipx_current_ipif = NULL;
1314 	ipx->ipx_current_ioctl = 0;
1315 	ipx->ipx_current_done = B_TRUE;
1316 	mutex_exit(&ipx->ipx_lock);
1317 
1318 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1319 		if (connp == NULL) {
1320 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1321 		} else {
1322 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1323 			mutex_enter(&ipif->ipif_ill->ill_lock);
1324 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1325 			mutex_exit(&ipif->ipif_ill->ill_lock);
1326 		}
1327 	} else {
1328 		/*
1329 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1330 		 * be just inet_freemsg. we have to restart it
1331 		 * otherwise the thread will be stuck.
1332 		 */
1333 		inet_freemsg(mp);
1334 	}
1335 	return (B_TRUE);
1336 }
1337 
1338 /*
1339  * The ill is closing. Cleanup all the pending mps. Called exclusively
1340  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1341  * knows this ill, and hence nobody can add an mp to this list
1342  */
1343 static void
1344 ill_pending_mp_cleanup(ill_t *ill)
1345 {
1346 	mblk_t	*mp;
1347 	queue_t	*q;
1348 
1349 	ASSERT(IAM_WRITER_ILL(ill));
1350 
1351 	mutex_enter(&ill->ill_lock);
1352 	/*
1353 	 * Every mp on the pending mp list originating from an ioctl
1354 	 * added 1 to the conn refcnt, at the start of the ioctl.
1355 	 * So bump it down now.  See comments in ip_wput_nondata()
1356 	 */
1357 	while (ill->ill_pending_mp != NULL) {
1358 		mp = ill->ill_pending_mp;
1359 		ill->ill_pending_mp = mp->b_next;
1360 		mutex_exit(&ill->ill_lock);
1361 
1362 		q = mp->b_queue;
1363 		ASSERT(CONN_Q(q));
1364 		mp->b_next = NULL;
1365 		mp->b_prev = NULL;
1366 		mp->b_queue = NULL;
1367 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1368 		mutex_enter(&ill->ill_lock);
1369 	}
1370 	ill->ill_pending_ipif = NULL;
1371 
1372 	mutex_exit(&ill->ill_lock);
1373 }
1374 
1375 /*
1376  * Called in the conn close path and ill delete path
1377  */
1378 static void
1379 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1380 {
1381 	ipsq_t	*ipsq;
1382 	mblk_t	*prev;
1383 	mblk_t	*curr;
1384 	mblk_t	*next;
1385 	queue_t	*q;
1386 	mblk_t	*tmp_list = NULL;
1387 
1388 	ASSERT(IAM_WRITER_ILL(ill));
1389 	if (connp != NULL)
1390 		q = CONNP_TO_WQ(connp);
1391 	else
1392 		q = ill->ill_wq;
1393 
1394 	ipsq = ill->ill_phyint->phyint_ipsq;
1395 	/*
1396 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1397 	 * In the case of ioctl from a conn, there can be only 1 mp
1398 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1399 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1400 	 * ioctls meant for this ill form conn's are not flushed. They will
1401 	 * be processed during ipsq_exit and will not find the ill and will
1402 	 * return error.
1403 	 */
1404 	mutex_enter(&ipsq->ipsq_lock);
1405 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1406 	    curr = next) {
1407 		next = curr->b_next;
1408 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1409 			/* Unlink the mblk from the pending mp list */
1410 			if (prev != NULL) {
1411 				prev->b_next = curr->b_next;
1412 			} else {
1413 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1414 				ipsq->ipsq_xopq_mphead = curr->b_next;
1415 			}
1416 			if (ipsq->ipsq_xopq_mptail == curr)
1417 				ipsq->ipsq_xopq_mptail = prev;
1418 			/*
1419 			 * Create a temporary list and release the ipsq lock
1420 			 * New elements are added to the head of the tmp_list
1421 			 */
1422 			curr->b_next = tmp_list;
1423 			tmp_list = curr;
1424 		} else {
1425 			prev = curr;
1426 		}
1427 	}
1428 	mutex_exit(&ipsq->ipsq_lock);
1429 
1430 	while (tmp_list != NULL) {
1431 		curr = tmp_list;
1432 		tmp_list = curr->b_next;
1433 		curr->b_next = NULL;
1434 		curr->b_prev = NULL;
1435 		curr->b_queue = NULL;
1436 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1437 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1438 			    CONN_CLOSE : NO_COPYOUT, NULL);
1439 		} else {
1440 			/*
1441 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1442 			 * this can't be just inet_freemsg. we have to
1443 			 * restart it otherwise the thread will be stuck.
1444 			 */
1445 			inet_freemsg(curr);
1446 		}
1447 	}
1448 }
1449 
1450 /*
1451  * This conn has started closing. Cleanup any pending ioctl from this conn.
1452  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1453  */
1454 void
1455 conn_ioctl_cleanup(conn_t *connp)
1456 {
1457 	mblk_t *curr;
1458 	ipsq_t	*ipsq;
1459 	ill_t	*ill;
1460 	boolean_t refheld;
1461 
1462 	/*
1463 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1464 	 * ioctl has not yet started, the mp is pending in the list headed by
1465 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1466 	 * ipx_pending_mp. If the ioctl timed out in the streamhead but
1467 	 * is currently executing now the mp is not queued anywhere but
1468 	 * conn_oper_pending_ill is null. The conn close will wait
1469 	 * till the conn_ref drops to zero.
1470 	 */
1471 	mutex_enter(&connp->conn_lock);
1472 	ill = connp->conn_oper_pending_ill;
1473 	if (ill == NULL) {
1474 		mutex_exit(&connp->conn_lock);
1475 		return;
1476 	}
1477 
1478 	curr = ill_pending_mp_get(ill, &connp, 0);
1479 	if (curr != NULL) {
1480 		mutex_exit(&connp->conn_lock);
1481 		CONN_DEC_REF(connp);
1482 		inet_freemsg(curr);
1483 		return;
1484 	}
1485 	/*
1486 	 * We may not be able to refhold the ill if the ill/ipif
1487 	 * is changing. But we need to make sure that the ill will
1488 	 * not vanish. So we just bump up the ill_waiter count.
1489 	 */
1490 	refheld = ill_waiter_inc(ill);
1491 	mutex_exit(&connp->conn_lock);
1492 	if (refheld) {
1493 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1494 			ill_waiter_dcr(ill);
1495 			/*
1496 			 * Check whether this ioctl has started and is
1497 			 * pending. If it is not found there then check
1498 			 * whether this ioctl has not even started and is in
1499 			 * the ipsq_xopq list.
1500 			 */
1501 			if (!ipsq_pending_mp_cleanup(ill, connp))
1502 				ipsq_xopq_mp_cleanup(ill, connp);
1503 			ipsq = ill->ill_phyint->phyint_ipsq;
1504 			ipsq_exit(ipsq);
1505 			return;
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * The ill is also closing and we could not bump up the
1511 	 * ill_waiter_count or we could not enter the ipsq. Leave
1512 	 * the cleanup to ill_delete
1513 	 */
1514 	mutex_enter(&connp->conn_lock);
1515 	while (connp->conn_oper_pending_ill != NULL)
1516 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1517 	mutex_exit(&connp->conn_lock);
1518 	if (refheld)
1519 		ill_waiter_dcr(ill);
1520 }
1521 
1522 /*
1523  * ipcl_walk function for cleaning up conn_*_ill fields.
1524  */
1525 static void
1526 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1527 {
1528 	ill_t	*ill = (ill_t *)arg;
1529 	ire_t	*ire;
1530 
1531 	mutex_enter(&connp->conn_lock);
1532 	if (connp->conn_multicast_ill == ill) {
1533 		/* Revert to late binding */
1534 		connp->conn_multicast_ill = NULL;
1535 	}
1536 	if (connp->conn_incoming_ill == ill)
1537 		connp->conn_incoming_ill = NULL;
1538 	if (connp->conn_outgoing_ill == ill)
1539 		connp->conn_outgoing_ill = NULL;
1540 	if (connp->conn_dhcpinit_ill == ill) {
1541 		connp->conn_dhcpinit_ill = NULL;
1542 		ASSERT(ill->ill_dhcpinit != 0);
1543 		atomic_dec_32(&ill->ill_dhcpinit);
1544 	}
1545 	if (connp->conn_ire_cache != NULL) {
1546 		ire = connp->conn_ire_cache;
1547 		/*
1548 		 * Source address selection makes it possible for IRE_CACHE
1549 		 * entries to be created with ire_stq coming from interface X
1550 		 * and ipif coming from interface Y.  Thus whenever interface
1551 		 * X goes down, remove all references to it by checking both
1552 		 * on ire_ipif and ire_stq.
1553 		 */
1554 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1555 		    (ire->ire_type == IRE_CACHE &&
1556 		    ire->ire_stq == ill->ill_wq)) {
1557 			connp->conn_ire_cache = NULL;
1558 			mutex_exit(&connp->conn_lock);
1559 			ire_refrele_notr(ire);
1560 			return;
1561 		}
1562 	}
1563 	mutex_exit(&connp->conn_lock);
1564 }
1565 
1566 static void
1567 ill_down_ipifs_tail(ill_t *ill)
1568 {
1569 	ipif_t	*ipif;
1570 
1571 	ASSERT(IAM_WRITER_ILL(ill));
1572 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1573 		ipif_non_duplicate(ipif);
1574 		ipif_down_tail(ipif);
1575 	}
1576 }
1577 
1578 /* ARGSUSED */
1579 void
1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1581 {
1582 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1583 	ill_down_ipifs_tail(q->q_ptr);
1584 	freemsg(mp);
1585 	ipsq_current_finish(ipsq);
1586 }
1587 
1588 /*
1589  * ill_down_start is called when we want to down this ill and bring it up again
1590  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1591  * all interfaces, but don't tear down any plumbing.
1592  */
1593 boolean_t
1594 ill_down_start(queue_t *q, mblk_t *mp)
1595 {
1596 	ill_t	*ill = q->q_ptr;
1597 	ipif_t	*ipif;
1598 
1599 	ASSERT(IAM_WRITER_ILL(ill));
1600 
1601 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1602 		(void) ipif_down(ipif, NULL, NULL);
1603 
1604 	ill_down(ill);
1605 
1606 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1607 
1608 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1609 
1610 	/*
1611 	 * Atomically test and add the pending mp if references are active.
1612 	 */
1613 	mutex_enter(&ill->ill_lock);
1614 	if (!ill_is_quiescent(ill)) {
1615 		/* call cannot fail since `conn_t *' argument is NULL */
1616 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1617 		    mp, ILL_DOWN);
1618 		mutex_exit(&ill->ill_lock);
1619 		return (B_FALSE);
1620 	}
1621 	mutex_exit(&ill->ill_lock);
1622 	return (B_TRUE);
1623 }
1624 
1625 static void
1626 ill_down(ill_t *ill)
1627 {
1628 	ip_stack_t	*ipst = ill->ill_ipst;
1629 
1630 	/* Blow off any IREs dependent on this ILL. */
1631 	ire_walk(ill_downi, ill, ipst);
1632 
1633 	/* Remove any conn_*_ill depending on this ill */
1634 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1635 }
1636 
1637 /*
1638  * ire_walk routine used to delete every IRE that depends on queues
1639  * associated with 'ill'.  (Always called as writer.)
1640  */
1641 static void
1642 ill_downi(ire_t *ire, char *ill_arg)
1643 {
1644 	ill_t	*ill = (ill_t *)ill_arg;
1645 
1646 	/*
1647 	 * Source address selection makes it possible for IRE_CACHE
1648 	 * entries to be created with ire_stq coming from interface X
1649 	 * and ipif coming from interface Y.  Thus whenever interface
1650 	 * X goes down, remove all references to it by checking both
1651 	 * on ire_ipif and ire_stq.
1652 	 */
1653 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1654 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1655 		ire_delete(ire);
1656 	}
1657 }
1658 
1659 /*
1660  * Remove ire/nce from the fastpath list.
1661  */
1662 void
1663 ill_fastpath_nack(ill_t *ill)
1664 {
1665 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1666 }
1667 
1668 /* Consume an M_IOCACK of the fastpath probe. */
1669 void
1670 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1671 {
1672 	mblk_t	*mp1 = mp;
1673 
1674 	/*
1675 	 * If this was the first attempt turn on the fastpath probing.
1676 	 */
1677 	mutex_enter(&ill->ill_lock);
1678 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1679 		ill->ill_dlpi_fastpath_state = IDS_OK;
1680 	mutex_exit(&ill->ill_lock);
1681 
1682 	/* Free the M_IOCACK mblk, hold on to the data */
1683 	mp = mp->b_cont;
1684 	freeb(mp1);
1685 	if (mp == NULL)
1686 		return;
1687 	if (mp->b_cont != NULL) {
1688 		/*
1689 		 * Update all IRE's or NCE's that are waiting for
1690 		 * fastpath update.
1691 		 */
1692 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1693 		mp1 = mp->b_cont;
1694 		freeb(mp);
1695 		mp = mp1;
1696 	} else {
1697 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1698 	}
1699 
1700 	freeb(mp);
1701 }
1702 
1703 /*
1704  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1705  * The data portion of the request is a dl_unitdata_req_t template for
1706  * what we would send downstream in the absence of a fastpath confirmation.
1707  */
1708 int
1709 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1710 {
1711 	struct iocblk	*ioc;
1712 	mblk_t	*mp;
1713 
1714 	if (dlur_mp == NULL)
1715 		return (EINVAL);
1716 
1717 	mutex_enter(&ill->ill_lock);
1718 	switch (ill->ill_dlpi_fastpath_state) {
1719 	case IDS_FAILED:
1720 		/*
1721 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1722 		 * support it.
1723 		 */
1724 		mutex_exit(&ill->ill_lock);
1725 		return (ENOTSUP);
1726 	case IDS_UNKNOWN:
1727 		/* This is the first probe */
1728 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1729 		break;
1730 	default:
1731 		break;
1732 	}
1733 	mutex_exit(&ill->ill_lock);
1734 
1735 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1736 		return (EAGAIN);
1737 
1738 	mp->b_cont = copyb(dlur_mp);
1739 	if (mp->b_cont == NULL) {
1740 		freeb(mp);
1741 		return (EAGAIN);
1742 	}
1743 
1744 	ioc = (struct iocblk *)mp->b_rptr;
1745 	ioc->ioc_count = msgdsize(mp->b_cont);
1746 
1747 	putnext(ill->ill_wq, mp);
1748 	return (0);
1749 }
1750 
1751 void
1752 ill_capability_probe(ill_t *ill)
1753 {
1754 	mblk_t	*mp;
1755 
1756 	ASSERT(IAM_WRITER_ILL(ill));
1757 
1758 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1759 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1760 		return;
1761 
1762 	/*
1763 	 * We are starting a new cycle of capability negotiation.
1764 	 * Free up the capab reset messages of any previous incarnation.
1765 	 * We will do a fresh allocation when we get the response to our probe
1766 	 */
1767 	if (ill->ill_capab_reset_mp != NULL) {
1768 		freemsg(ill->ill_capab_reset_mp);
1769 		ill->ill_capab_reset_mp = NULL;
1770 	}
1771 
1772 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1773 
1774 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1775 	if (mp == NULL)
1776 		return;
1777 
1778 	ill_capability_send(ill, mp);
1779 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1780 }
1781 
1782 void
1783 ill_capability_reset(ill_t *ill, boolean_t reneg)
1784 {
1785 	ASSERT(IAM_WRITER_ILL(ill));
1786 
1787 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1788 		return;
1789 
1790 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1791 
1792 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1793 	ill->ill_capab_reset_mp = NULL;
1794 	/*
1795 	 * We turn off all capabilities except those pertaining to
1796 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1797 	 * which will be turned off by the corresponding reset functions.
1798 	 */
1799 	ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM  |
1800 	    ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP);
1801 }
1802 
1803 static void
1804 ill_capability_reset_alloc(ill_t *ill)
1805 {
1806 	mblk_t *mp;
1807 	size_t	size = 0;
1808 	int	err;
1809 	dl_capability_req_t	*capb;
1810 
1811 	ASSERT(IAM_WRITER_ILL(ill));
1812 	ASSERT(ill->ill_capab_reset_mp == NULL);
1813 
1814 	if (ILL_MDT_CAPABLE(ill))
1815 		size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1816 
1817 	if (ILL_HCKSUM_CAPABLE(ill)) {
1818 		size += sizeof (dl_capability_sub_t) +
1819 		    sizeof (dl_capab_hcksum_t);
1820 	}
1821 
1822 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1823 		size += sizeof (dl_capability_sub_t) +
1824 		    sizeof (dl_capab_zerocopy_t);
1825 	}
1826 
1827 	if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) {
1828 		size += sizeof (dl_capability_sub_t);
1829 		size += ill_capability_ipsec_reset_size(ill, NULL, NULL,
1830 		    NULL, NULL);
1831 	}
1832 
1833 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1834 		size += sizeof (dl_capability_sub_t) +
1835 		    sizeof (dl_capab_dld_t);
1836 	}
1837 
1838 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1839 	    STR_NOSIG, &err);
1840 
1841 	mp->b_datap->db_type = M_PROTO;
1842 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1843 
1844 	capb = (dl_capability_req_t *)mp->b_rptr;
1845 	capb->dl_primitive = DL_CAPABILITY_REQ;
1846 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1847 	capb->dl_sub_length = size;
1848 
1849 	mp->b_wptr += sizeof (dl_capability_req_t);
1850 
1851 	/*
1852 	 * Each handler fills in the corresponding dl_capability_sub_t
1853 	 * inside the mblk,
1854 	 */
1855 	ill_capability_mdt_reset_fill(ill, mp);
1856 	ill_capability_hcksum_reset_fill(ill, mp);
1857 	ill_capability_zerocopy_reset_fill(ill, mp);
1858 	ill_capability_ipsec_reset_fill(ill, mp);
1859 	ill_capability_dld_reset_fill(ill, mp);
1860 
1861 	ill->ill_capab_reset_mp = mp;
1862 }
1863 
1864 static void
1865 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1866 {
1867 	dl_capab_id_t *id_ic;
1868 	uint_t sub_dl_cap = outers->dl_cap;
1869 	dl_capability_sub_t *inners;
1870 	uint8_t *capend;
1871 
1872 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1873 
1874 	/*
1875 	 * Note: range checks here are not absolutely sufficient to
1876 	 * make us robust against malformed messages sent by drivers;
1877 	 * this is in keeping with the rest of IP's dlpi handling.
1878 	 * (Remember, it's coming from something else in the kernel
1879 	 * address space)
1880 	 */
1881 
1882 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1883 	if (capend > mp->b_wptr) {
1884 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1885 		    "malformed sub-capability too long for mblk");
1886 		return;
1887 	}
1888 
1889 	id_ic = (dl_capab_id_t *)(outers + 1);
1890 
1891 	if (outers->dl_length < sizeof (*id_ic) ||
1892 	    (inners = &id_ic->id_subcap,
1893 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1894 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1895 		    "encapsulated capab type %d too long for mblk",
1896 		    inners->dl_cap);
1897 		return;
1898 	}
1899 
1900 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1901 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1902 		    "isn't as expected; pass-thru module(s) detected, "
1903 		    "discarding capability\n", inners->dl_cap));
1904 		return;
1905 	}
1906 
1907 	/* Process the encapsulated sub-capability */
1908 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1909 }
1910 
1911 /*
1912  * Process Multidata Transmit capability negotiation ack received from a
1913  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1914  * DL_CAPABILITY_ACK message.
1915  */
1916 static void
1917 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1918 {
1919 	mblk_t *nmp = NULL;
1920 	dl_capability_req_t *oc;
1921 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1922 	ill_mdt_capab_t **ill_mdt_capab;
1923 	uint_t sub_dl_cap = isub->dl_cap;
1924 	uint8_t *capend;
1925 
1926 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1927 
1928 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1929 
1930 	/*
1931 	 * Note: range checks here are not absolutely sufficient to
1932 	 * make us robust against malformed messages sent by drivers;
1933 	 * this is in keeping with the rest of IP's dlpi handling.
1934 	 * (Remember, it's coming from something else in the kernel
1935 	 * address space)
1936 	 */
1937 
1938 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1939 	if (capend > mp->b_wptr) {
1940 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1941 		    "malformed sub-capability too long for mblk");
1942 		return;
1943 	}
1944 
1945 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1946 
1947 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1948 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1949 		    "unsupported MDT sub-capability (version %d, expected %d)",
1950 		    mdt_ic->mdt_version, MDT_VERSION_2);
1951 		return;
1952 	}
1953 
1954 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1955 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1956 		    "capability isn't as expected; pass-thru module(s) "
1957 		    "detected, discarding capability\n"));
1958 		return;
1959 	}
1960 
1961 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1962 
1963 		if (*ill_mdt_capab == NULL) {
1964 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1965 			    KM_NOSLEEP);
1966 			if (*ill_mdt_capab == NULL) {
1967 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1968 				    "could not enable MDT version %d "
1969 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
1970 				    ill->ill_name);
1971 				return;
1972 			}
1973 		}
1974 
1975 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1976 		    "MDT version %d (%d bytes leading, %d bytes trailing "
1977 		    "header spaces, %d max pld bufs, %d span limit)\n",
1978 		    ill->ill_name, MDT_VERSION_2,
1979 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1980 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1981 
1982 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1983 		(*ill_mdt_capab)->ill_mdt_on = 1;
1984 		/*
1985 		 * Round the following values to the nearest 32-bit; ULP
1986 		 * may further adjust them to accomodate for additional
1987 		 * protocol headers.  We pass these values to ULP during
1988 		 * bind time.
1989 		 */
1990 		(*ill_mdt_capab)->ill_mdt_hdr_head =
1991 		    roundup(mdt_ic->mdt_hdr_head, 4);
1992 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
1993 		    roundup(mdt_ic->mdt_hdr_tail, 4);
1994 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1995 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1996 
1997 		ill->ill_capabilities |= ILL_CAPAB_MDT;
1998 	} else {
1999 		uint_t size;
2000 		uchar_t *rptr;
2001 
2002 		size = sizeof (dl_capability_req_t) +
2003 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2004 
2005 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2006 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2007 			    "could not enable MDT for %s (ENOMEM)\n",
2008 			    ill->ill_name);
2009 			return;
2010 		}
2011 
2012 		rptr = nmp->b_rptr;
2013 		/* initialize dl_capability_req_t */
2014 		oc = (dl_capability_req_t *)nmp->b_rptr;
2015 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2016 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2017 		    sizeof (dl_capab_mdt_t);
2018 		nmp->b_rptr += sizeof (dl_capability_req_t);
2019 
2020 		/* initialize dl_capability_sub_t */
2021 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2022 		nmp->b_rptr += sizeof (*isub);
2023 
2024 		/* initialize dl_capab_mdt_t */
2025 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2026 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2027 
2028 		nmp->b_rptr = rptr;
2029 
2030 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2031 		    "to enable MDT version %d\n", ill->ill_name,
2032 		    MDT_VERSION_2));
2033 
2034 		/* set ENABLE flag */
2035 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2036 
2037 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2038 		ill_capability_send(ill, nmp);
2039 	}
2040 }
2041 
2042 static void
2043 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp)
2044 {
2045 	dl_capab_mdt_t *mdt_subcap;
2046 	dl_capability_sub_t *dl_subcap;
2047 
2048 	if (!ILL_MDT_CAPABLE(ill))
2049 		return;
2050 
2051 	ASSERT(ill->ill_mdt_capab != NULL);
2052 
2053 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2054 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2055 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2056 
2057 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2058 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2059 	mdt_subcap->mdt_flags = 0;
2060 	mdt_subcap->mdt_hdr_head = 0;
2061 	mdt_subcap->mdt_hdr_tail = 0;
2062 
2063 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2064 }
2065 
2066 static void
2067 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
2068 {
2069 	dl_capability_sub_t *dl_subcap;
2070 
2071 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2072 		return;
2073 
2074 	/*
2075 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
2076 	 * initialized below since it is not used by DLD.
2077 	 */
2078 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2079 	dl_subcap->dl_cap = DL_CAPAB_DLD;
2080 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
2081 
2082 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
2083 }
2084 
2085 /*
2086  * Allocate an IPsec capability request which will be filled by our
2087  * caller to turn on support for one or more algorithms.
2088  */
2089 /* ARGSUSED */
2090 static mblk_t *
2091 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2092 {
2093 	mblk_t *nmp;
2094 	dl_capability_req_t	*ocap;
2095 	dl_capab_ipsec_t	*ocip;
2096 	dl_capab_ipsec_t	*icip;
2097 	uint8_t			*ptr;
2098 	icip = (dl_capab_ipsec_t *)(isub + 1);
2099 
2100 	/*
2101 	 * Allocate new mblk which will contain a new capability
2102 	 * request to enable the capabilities.
2103 	 */
2104 
2105 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2106 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2107 	if (nmp == NULL)
2108 		return (NULL);
2109 
2110 	ptr = nmp->b_rptr;
2111 
2112 	/* initialize dl_capability_req_t */
2113 	ocap = (dl_capability_req_t *)ptr;
2114 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2115 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2116 	ptr += sizeof (dl_capability_req_t);
2117 
2118 	/* initialize dl_capability_sub_t */
2119 	bcopy(isub, ptr, sizeof (*isub));
2120 	ptr += sizeof (*isub);
2121 
2122 	/* initialize dl_capab_ipsec_t */
2123 	ocip = (dl_capab_ipsec_t *)ptr;
2124 	bcopy(icip, ocip, sizeof (*icip));
2125 
2126 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2127 	return (nmp);
2128 }
2129 
2130 /*
2131  * Process an IPsec capability negotiation ack received from a DLS Provider.
2132  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2133  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2134  */
2135 static void
2136 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2137 {
2138 	dl_capab_ipsec_t	*icip;
2139 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2140 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2141 	uint_t cipher, nciphers;
2142 	mblk_t *nmp;
2143 	uint_t alg_len;
2144 	boolean_t need_sadb_dump;
2145 	uint_t sub_dl_cap = isub->dl_cap;
2146 	ill_ipsec_capab_t **ill_capab;
2147 	uint64_t ill_capab_flag;
2148 	uint8_t *capend, *ciphend;
2149 	boolean_t sadb_resync;
2150 
2151 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2152 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2153 
2154 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2155 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2156 		ill_capab_flag = ILL_CAPAB_AH;
2157 	} else {
2158 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2159 		ill_capab_flag = ILL_CAPAB_ESP;
2160 	}
2161 
2162 	/*
2163 	 * If the ill capability structure exists, then this incoming
2164 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2165 	 * If this is so, then we'd need to resynchronize the SADB
2166 	 * after re-enabling the offloaded ciphers.
2167 	 */
2168 	sadb_resync = (*ill_capab != NULL);
2169 
2170 	/*
2171 	 * Note: range checks here are not absolutely sufficient to
2172 	 * make us robust against malformed messages sent by drivers;
2173 	 * this is in keeping with the rest of IP's dlpi handling.
2174 	 * (Remember, it's coming from something else in the kernel
2175 	 * address space)
2176 	 */
2177 
2178 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2179 	if (capend > mp->b_wptr) {
2180 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2181 		    "malformed sub-capability too long for mblk");
2182 		return;
2183 	}
2184 
2185 	/*
2186 	 * There are two types of acks we process here:
2187 	 * 1. acks in reply to a (first form) generic capability req
2188 	 *    (no ENABLE flag set)
2189 	 * 2. acks in reply to a ENABLE capability req.
2190 	 *    (ENABLE flag set)
2191 	 *
2192 	 * We process the subcapability passed as argument as follows:
2193 	 * 1 do initializations
2194 	 *   1.1 initialize nmp = NULL
2195 	 *   1.2 set need_sadb_dump to B_FALSE
2196 	 * 2 for each cipher in subcapability:
2197 	 *   2.1 if ENABLE flag is set:
2198 	 *	2.1.1 update per-ill ipsec capabilities info
2199 	 *	2.1.2 set need_sadb_dump to B_TRUE
2200 	 *   2.2 if ENABLE flag is not set:
2201 	 *	2.2.1 if nmp is NULL:
2202 	 *		2.2.1.1 allocate and initialize nmp
2203 	 *		2.2.1.2 init current pos in nmp
2204 	 *	2.2.2 copy current cipher to current pos in nmp
2205 	 *	2.2.3 set ENABLE flag in nmp
2206 	 *	2.2.4 update current pos
2207 	 * 3 if nmp is not equal to NULL, send enable request
2208 	 *   3.1 send capability request
2209 	 * 4 if need_sadb_dump is B_TRUE
2210 	 *   4.1 enable promiscuous on/off notifications
2211 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2212 	 *	AH or ESP SA's to interface.
2213 	 */
2214 
2215 	nmp = NULL;
2216 	oalg = NULL;
2217 	need_sadb_dump = B_FALSE;
2218 	icip = (dl_capab_ipsec_t *)(isub + 1);
2219 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2220 
2221 	nciphers = icip->cip_nciphers;
2222 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2223 
2224 	if (ciphend > capend) {
2225 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2226 		    "too many ciphers for sub-capability len");
2227 		return;
2228 	}
2229 
2230 	for (cipher = 0; cipher < nciphers; cipher++) {
2231 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2232 
2233 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2234 			/*
2235 			 * TBD: when we provide a way to disable capabilities
2236 			 * from above, need to manage the request-pending state
2237 			 * and fail if we were not expecting this ACK.
2238 			 */
2239 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2240 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2241 
2242 			/*
2243 			 * Update IPsec capabilities for this ill
2244 			 */
2245 
2246 			if (*ill_capab == NULL) {
2247 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2248 				    ("ill_capability_ipsec_ack: "
2249 				    "allocating ipsec_capab for ill\n"));
2250 				*ill_capab = ill_ipsec_capab_alloc();
2251 
2252 				if (*ill_capab == NULL) {
2253 					cmn_err(CE_WARN,
2254 					    "ill_capability_ipsec_ack: "
2255 					    "could not enable IPsec Hardware "
2256 					    "acceleration for %s (ENOMEM)\n",
2257 					    ill->ill_name);
2258 					return;
2259 				}
2260 			}
2261 
2262 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2263 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2264 
2265 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2266 				cmn_err(CE_WARN,
2267 				    "ill_capability_ipsec_ack: "
2268 				    "malformed IPsec algorithm id %d",
2269 				    ialg->alg_prim);
2270 				continue;
2271 			}
2272 
2273 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2274 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2275 				    ialg->alg_prim);
2276 			} else {
2277 				ipsec_capab_algparm_t *alp;
2278 
2279 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2280 				    ialg->alg_prim);
2281 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2282 				    ialg->alg_prim)) {
2283 					cmn_err(CE_WARN,
2284 					    "ill_capability_ipsec_ack: "
2285 					    "no space for IPsec alg id %d",
2286 					    ialg->alg_prim);
2287 					continue;
2288 				}
2289 				alp = &((*ill_capab)->encr_algparm[
2290 				    ialg->alg_prim]);
2291 				alp->minkeylen = ialg->alg_minbits;
2292 				alp->maxkeylen = ialg->alg_maxbits;
2293 			}
2294 			ill->ill_capabilities |= ill_capab_flag;
2295 			/*
2296 			 * indicate that a capability was enabled, which
2297 			 * will be used below to kick off a SADB dump
2298 			 * to the ill.
2299 			 */
2300 			need_sadb_dump = B_TRUE;
2301 		} else {
2302 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2303 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2304 			    ialg->alg_prim));
2305 
2306 			if (nmp == NULL) {
2307 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2308 				if (nmp == NULL) {
2309 					/*
2310 					 * Sending the PROMISC_ON/OFF
2311 					 * notification request failed.
2312 					 * We cannot enable the algorithms
2313 					 * since the Provider will not
2314 					 * notify IP of promiscous mode
2315 					 * changes, which could lead
2316 					 * to leakage of packets.
2317 					 */
2318 					cmn_err(CE_WARN,
2319 					    "ill_capability_ipsec_ack: "
2320 					    "could not enable IPsec Hardware "
2321 					    "acceleration for %s (ENOMEM)\n",
2322 					    ill->ill_name);
2323 					return;
2324 				}
2325 				/* ptr to current output alg specifier */
2326 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2327 			}
2328 
2329 			/*
2330 			 * Copy current alg specifier, set ENABLE
2331 			 * flag, and advance to next output alg.
2332 			 * For now we enable all IPsec capabilities.
2333 			 */
2334 			ASSERT(oalg != NULL);
2335 			bcopy(ialg, oalg, alg_len);
2336 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2337 			nmp->b_wptr += alg_len;
2338 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2339 		}
2340 
2341 		/* move to next input algorithm specifier */
2342 		ialg = (dl_capab_ipsec_alg_t *)
2343 		    ((char *)ialg + alg_len);
2344 	}
2345 
2346 	if (nmp != NULL)
2347 		/*
2348 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2349 		 * IPsec hardware acceleration.
2350 		 */
2351 		ill_capability_send(ill, nmp);
2352 
2353 	if (need_sadb_dump)
2354 		/*
2355 		 * An acknowledgement corresponding to a request to
2356 		 * enable acceleration was received, notify SADB.
2357 		 */
2358 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2359 }
2360 
2361 /*
2362  * Given an mblk with enough space in it, create sub-capability entries for
2363  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2364  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2365  * in preparation for the reset the DL_CAPABILITY_REQ message.
2366  */
2367 static void
2368 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2369     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2370 {
2371 	dl_capab_ipsec_t *oipsec;
2372 	dl_capab_ipsec_alg_t *oalg;
2373 	dl_capability_sub_t *dl_subcap;
2374 	int i, k;
2375 
2376 	ASSERT(nciphers > 0);
2377 	ASSERT(ill_cap != NULL);
2378 	ASSERT(mp != NULL);
2379 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2380 
2381 	/* dl_capability_sub_t for "stype" */
2382 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2383 	dl_subcap->dl_cap = stype;
2384 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2385 	mp->b_wptr += sizeof (dl_capability_sub_t);
2386 
2387 	/* dl_capab_ipsec_t for "stype" */
2388 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2389 	oipsec->cip_version = 1;
2390 	oipsec->cip_nciphers = nciphers;
2391 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2392 
2393 	/* create entries for "stype" AUTH ciphers */
2394 	for (i = 0; i < ill_cap->algs_size; i++) {
2395 		for (k = 0; k < BITSPERBYTE; k++) {
2396 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2397 				continue;
2398 
2399 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2400 			bzero((void *)oalg, sizeof (*oalg));
2401 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2402 			oalg->alg_prim = k + (BITSPERBYTE * i);
2403 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2404 		}
2405 	}
2406 	/* create entries for "stype" ENCR ciphers */
2407 	for (i = 0; i < ill_cap->algs_size; i++) {
2408 		for (k = 0; k < BITSPERBYTE; k++) {
2409 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2410 				continue;
2411 
2412 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2413 			bzero((void *)oalg, sizeof (*oalg));
2414 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2415 			oalg->alg_prim = k + (BITSPERBYTE * i);
2416 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2417 		}
2418 	}
2419 }
2420 
2421 /*
2422  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2423  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2424  * POPC instruction, but our macro is more flexible for an arbitrary length
2425  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2426  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2427  * stays that way, we can reduce the number of iterations required.
2428  */
2429 #define	COUNT_1S(val, sum) {					\
2430 	uint8_t x = val & 0xff;					\
2431 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2432 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2433 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2434 }
2435 
2436 /* ARGSUSED */
2437 static int
2438 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp,
2439     int *esp_cntp, int *esp_lenp)
2440 {
2441 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2442 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2443 	uint64_t ill_capabilities = ill->ill_capabilities;
2444 	int ah_cnt = 0, esp_cnt = 0;
2445 	int ah_len = 0, esp_len = 0;
2446 	int i, size = 0;
2447 
2448 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2449 		return (0);
2450 
2451 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2452 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2453 
2454 	/* Find out the number of ciphers for AH */
2455 	if (cap_ah != NULL) {
2456 		for (i = 0; i < cap_ah->algs_size; i++) {
2457 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2458 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2459 		}
2460 		if (ah_cnt > 0) {
2461 			size += sizeof (dl_capability_sub_t) +
2462 			    sizeof (dl_capab_ipsec_t);
2463 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2464 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2465 			size += ah_len;
2466 		}
2467 	}
2468 
2469 	/* Find out the number of ciphers for ESP */
2470 	if (cap_esp != NULL) {
2471 		for (i = 0; i < cap_esp->algs_size; i++) {
2472 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2473 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2474 		}
2475 		if (esp_cnt > 0) {
2476 			size += sizeof (dl_capability_sub_t) +
2477 			    sizeof (dl_capab_ipsec_t);
2478 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2479 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2480 			size += esp_len;
2481 		}
2482 	}
2483 
2484 	if (ah_cntp != NULL)
2485 		*ah_cntp = ah_cnt;
2486 	if (ah_lenp != NULL)
2487 		*ah_lenp = ah_len;
2488 	if (esp_cntp != NULL)
2489 		*esp_cntp = esp_cnt;
2490 	if (esp_lenp != NULL)
2491 		*esp_lenp = esp_len;
2492 
2493 	return (size);
2494 }
2495 
2496 /* ARGSUSED */
2497 static void
2498 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp)
2499 {
2500 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2501 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2502 	int ah_cnt = 0, esp_cnt = 0;
2503 	int ah_len = 0, esp_len = 0;
2504 	int size;
2505 
2506 	size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len,
2507 	    &esp_cnt, &esp_len);
2508 	if (size == 0)
2509 		return;
2510 
2511 	/*
2512 	 * Clear the capability flags for IPsec HA but retain the ill
2513 	 * capability structures since it's possible that another thread
2514 	 * is still referring to them.  The structures only get deallocated
2515 	 * when we destroy the ill.
2516 	 *
2517 	 * Various places check the flags to see if the ill is capable of
2518 	 * hardware acceleration, and by clearing them we ensure that new
2519 	 * outbound IPsec packets are sent down encrypted.
2520 	 */
2521 
2522 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2523 	if (ah_cnt > 0) {
2524 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2525 		    cap_ah, mp);
2526 	}
2527 
2528 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2529 	if (esp_cnt > 0) {
2530 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2531 		    cap_esp, mp);
2532 	}
2533 
2534 	/*
2535 	 * At this point we've composed a bunch of sub-capabilities to be
2536 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2537 	 * by the caller.  Upon receiving this reset message, the driver
2538 	 * must stop inbound decryption (by destroying all inbound SAs)
2539 	 * and let the corresponding packets come in encrypted.
2540 	 */
2541 }
2542 
2543 static void
2544 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2545     boolean_t encapsulated)
2546 {
2547 	boolean_t legacy = B_FALSE;
2548 
2549 	/*
2550 	 * Note that only the following two sub-capabilities may be
2551 	 * considered as "legacy", since their original definitions
2552 	 * do not incorporate the dl_mid_t module ID token, and hence
2553 	 * may require the use of the wrapper sub-capability.
2554 	 */
2555 	switch (subp->dl_cap) {
2556 	case DL_CAPAB_IPSEC_AH:
2557 	case DL_CAPAB_IPSEC_ESP:
2558 		legacy = B_TRUE;
2559 		break;
2560 	}
2561 
2562 	/*
2563 	 * For legacy sub-capabilities which don't incorporate a queue_t
2564 	 * pointer in their structures, discard them if we detect that
2565 	 * there are intermediate modules in between IP and the driver.
2566 	 */
2567 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2568 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2569 		    "%d discarded; %d module(s) present below IP\n",
2570 		    subp->dl_cap, ill->ill_lmod_cnt));
2571 		return;
2572 	}
2573 
2574 	switch (subp->dl_cap) {
2575 	case DL_CAPAB_IPSEC_AH:
2576 	case DL_CAPAB_IPSEC_ESP:
2577 		ill_capability_ipsec_ack(ill, mp, subp);
2578 		break;
2579 	case DL_CAPAB_MDT:
2580 		ill_capability_mdt_ack(ill, mp, subp);
2581 		break;
2582 	case DL_CAPAB_HCKSUM:
2583 		ill_capability_hcksum_ack(ill, mp, subp);
2584 		break;
2585 	case DL_CAPAB_ZEROCOPY:
2586 		ill_capability_zerocopy_ack(ill, mp, subp);
2587 		break;
2588 	case DL_CAPAB_DLD:
2589 		ill_capability_dld_ack(ill, mp, subp);
2590 		break;
2591 	default:
2592 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2593 		    subp->dl_cap));
2594 	}
2595 }
2596 
2597 /*
2598  * Process a hardware checksum offload capability negotiation ack received
2599  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
2600  * of a DL_CAPABILITY_ACK message.
2601  */
2602 static void
2603 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2604 {
2605 	dl_capability_req_t	*ocap;
2606 	dl_capab_hcksum_t	*ihck, *ohck;
2607 	ill_hcksum_capab_t	**ill_hcksum;
2608 	mblk_t			*nmp = NULL;
2609 	uint_t			sub_dl_cap = isub->dl_cap;
2610 	uint8_t			*capend;
2611 
2612 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
2613 
2614 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
2615 
2616 	/*
2617 	 * Note: range checks here are not absolutely sufficient to
2618 	 * make us robust against malformed messages sent by drivers;
2619 	 * this is in keeping with the rest of IP's dlpi handling.
2620 	 * (Remember, it's coming from something else in the kernel
2621 	 * address space)
2622 	 */
2623 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2624 	if (capend > mp->b_wptr) {
2625 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2626 		    "malformed sub-capability too long for mblk");
2627 		return;
2628 	}
2629 
2630 	/*
2631 	 * There are two types of acks we process here:
2632 	 * 1. acks in reply to a (first form) generic capability req
2633 	 *    (no ENABLE flag set)
2634 	 * 2. acks in reply to a ENABLE capability req.
2635 	 *    (ENABLE flag set)
2636 	 */
2637 	ihck = (dl_capab_hcksum_t *)(isub + 1);
2638 
2639 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
2640 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
2641 		    "unsupported hardware checksum "
2642 		    "sub-capability (version %d, expected %d)",
2643 		    ihck->hcksum_version, HCKSUM_VERSION_1);
2644 		return;
2645 	}
2646 
2647 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
2648 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
2649 		    "checksum capability isn't as expected; pass-thru "
2650 		    "module(s) detected, discarding capability\n"));
2651 		return;
2652 	}
2653 
2654 #define	CURR_HCKSUM_CAPAB				\
2655 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
2656 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
2657 
2658 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
2659 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
2660 		/* do ENABLE processing */
2661 		if (*ill_hcksum == NULL) {
2662 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
2663 			    KM_NOSLEEP);
2664 
2665 			if (*ill_hcksum == NULL) {
2666 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2667 				    "could not enable hcksum version %d "
2668 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
2669 				    ill->ill_name);
2670 				return;
2671 			}
2672 		}
2673 
2674 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
2675 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
2676 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
2677 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
2678 		    "has enabled hardware checksumming\n ",
2679 		    ill->ill_name));
2680 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
2681 		/*
2682 		 * Enabling hardware checksum offload
2683 		 * Currently IP supports {TCP,UDP}/IPv4
2684 		 * partial and full cksum offload and
2685 		 * IPv4 header checksum offload.
2686 		 * Allocate new mblk which will
2687 		 * contain a new capability request
2688 		 * to enable hardware checksum offload.
2689 		 */
2690 		uint_t	size;
2691 		uchar_t	*rptr;
2692 
2693 		size = sizeof (dl_capability_req_t) +
2694 		    sizeof (dl_capability_sub_t) + isub->dl_length;
2695 
2696 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2697 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2698 			    "could not enable hardware cksum for %s (ENOMEM)\n",
2699 			    ill->ill_name);
2700 			return;
2701 		}
2702 
2703 		rptr = nmp->b_rptr;
2704 		/* initialize dl_capability_req_t */
2705 		ocap = (dl_capability_req_t *)nmp->b_rptr;
2706 		ocap->dl_sub_offset =
2707 		    sizeof (dl_capability_req_t);
2708 		ocap->dl_sub_length =
2709 		    sizeof (dl_capability_sub_t) +
2710 		    isub->dl_length;
2711 		nmp->b_rptr += sizeof (dl_capability_req_t);
2712 
2713 		/* initialize dl_capability_sub_t */
2714 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2715 		nmp->b_rptr += sizeof (*isub);
2716 
2717 		/* initialize dl_capab_hcksum_t */
2718 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
2719 		bcopy(ihck, ohck, sizeof (*ihck));
2720 
2721 		nmp->b_rptr = rptr;
2722 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2723 
2724 		/* Set ENABLE flag */
2725 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
2726 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
2727 
2728 		/*
2729 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2730 		 * hardware checksum acceleration.
2731 		 */
2732 		ill_capability_send(ill, nmp);
2733 	} else {
2734 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
2735 		    "advertised %x hardware checksum capability flags\n",
2736 		    ill->ill_name, ihck->hcksum_txflags));
2737 	}
2738 }
2739 
2740 static void
2741 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
2742 {
2743 	dl_capab_hcksum_t *hck_subcap;
2744 	dl_capability_sub_t *dl_subcap;
2745 
2746 	if (!ILL_HCKSUM_CAPABLE(ill))
2747 		return;
2748 
2749 	ASSERT(ill->ill_hcksum_capab != NULL);
2750 
2751 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2752 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
2753 	dl_subcap->dl_length = sizeof (*hck_subcap);
2754 
2755 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
2756 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
2757 	hck_subcap->hcksum_txflags = 0;
2758 
2759 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
2760 }
2761 
2762 static void
2763 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2764 {
2765 	mblk_t *nmp = NULL;
2766 	dl_capability_req_t *oc;
2767 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
2768 	ill_zerocopy_capab_t **ill_zerocopy_capab;
2769 	uint_t sub_dl_cap = isub->dl_cap;
2770 	uint8_t *capend;
2771 
2772 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
2773 
2774 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
2775 
2776 	/*
2777 	 * Note: range checks here are not absolutely sufficient to
2778 	 * make us robust against malformed messages sent by drivers;
2779 	 * this is in keeping with the rest of IP's dlpi handling.
2780 	 * (Remember, it's coming from something else in the kernel
2781 	 * address space)
2782 	 */
2783 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2784 	if (capend > mp->b_wptr) {
2785 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2786 		    "malformed sub-capability too long for mblk");
2787 		return;
2788 	}
2789 
2790 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
2791 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
2792 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
2793 		    "unsupported ZEROCOPY sub-capability (version %d, "
2794 		    "expected %d)", zc_ic->zerocopy_version,
2795 		    ZEROCOPY_VERSION_1);
2796 		return;
2797 	}
2798 
2799 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
2800 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
2801 		    "capability isn't as expected; pass-thru module(s) "
2802 		    "detected, discarding capability\n"));
2803 		return;
2804 	}
2805 
2806 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
2807 		if (*ill_zerocopy_capab == NULL) {
2808 			*ill_zerocopy_capab =
2809 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
2810 			    KM_NOSLEEP);
2811 
2812 			if (*ill_zerocopy_capab == NULL) {
2813 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2814 				    "could not enable Zero-copy version %d "
2815 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
2816 				    ill->ill_name);
2817 				return;
2818 			}
2819 		}
2820 
2821 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
2822 		    "supports Zero-copy version %d\n", ill->ill_name,
2823 		    ZEROCOPY_VERSION_1));
2824 
2825 		(*ill_zerocopy_capab)->ill_zerocopy_version =
2826 		    zc_ic->zerocopy_version;
2827 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
2828 		    zc_ic->zerocopy_flags;
2829 
2830 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
2831 	} else {
2832 		uint_t size;
2833 		uchar_t *rptr;
2834 
2835 		size = sizeof (dl_capability_req_t) +
2836 		    sizeof (dl_capability_sub_t) +
2837 		    sizeof (dl_capab_zerocopy_t);
2838 
2839 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2840 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2841 			    "could not enable zerocopy for %s (ENOMEM)\n",
2842 			    ill->ill_name);
2843 			return;
2844 		}
2845 
2846 		rptr = nmp->b_rptr;
2847 		/* initialize dl_capability_req_t */
2848 		oc = (dl_capability_req_t *)rptr;
2849 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2850 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2851 		    sizeof (dl_capab_zerocopy_t);
2852 		rptr += sizeof (dl_capability_req_t);
2853 
2854 		/* initialize dl_capability_sub_t */
2855 		bcopy(isub, rptr, sizeof (*isub));
2856 		rptr += sizeof (*isub);
2857 
2858 		/* initialize dl_capab_zerocopy_t */
2859 		zc_oc = (dl_capab_zerocopy_t *)rptr;
2860 		*zc_oc = *zc_ic;
2861 
2862 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
2863 		    "to enable zero-copy version %d\n", ill->ill_name,
2864 		    ZEROCOPY_VERSION_1));
2865 
2866 		/* set VMSAFE_MEM flag */
2867 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
2868 
2869 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
2870 		ill_capability_send(ill, nmp);
2871 	}
2872 }
2873 
2874 static void
2875 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
2876 {
2877 	dl_capab_zerocopy_t *zerocopy_subcap;
2878 	dl_capability_sub_t *dl_subcap;
2879 
2880 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
2881 		return;
2882 
2883 	ASSERT(ill->ill_zerocopy_capab != NULL);
2884 
2885 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2886 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
2887 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
2888 
2889 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
2890 	zerocopy_subcap->zerocopy_version =
2891 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
2892 	zerocopy_subcap->zerocopy_flags = 0;
2893 
2894 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
2895 }
2896 
2897 /*
2898  * DLD capability
2899  * Refer to dld.h for more information regarding the purpose and usage
2900  * of this capability.
2901  */
2902 static void
2903 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2904 {
2905 	dl_capab_dld_t		*dld_ic, dld;
2906 	uint_t			sub_dl_cap = isub->dl_cap;
2907 	uint8_t			*capend;
2908 	ill_dld_capab_t		*idc;
2909 
2910 	ASSERT(IAM_WRITER_ILL(ill));
2911 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
2912 
2913 	/*
2914 	 * Note: range checks here are not absolutely sufficient to
2915 	 * make us robust against malformed messages sent by drivers;
2916 	 * this is in keeping with the rest of IP's dlpi handling.
2917 	 * (Remember, it's coming from something else in the kernel
2918 	 * address space)
2919 	 */
2920 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2921 	if (capend > mp->b_wptr) {
2922 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
2923 		    "malformed sub-capability too long for mblk");
2924 		return;
2925 	}
2926 	dld_ic = (dl_capab_dld_t *)(isub + 1);
2927 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
2928 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
2929 		    "unsupported DLD sub-capability (version %d, "
2930 		    "expected %d)", dld_ic->dld_version,
2931 		    DLD_CURRENT_VERSION);
2932 		return;
2933 	}
2934 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
2935 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
2936 		    "capability isn't as expected; pass-thru module(s) "
2937 		    "detected, discarding capability\n"));
2938 		return;
2939 	}
2940 
2941 	/*
2942 	 * Copy locally to ensure alignment.
2943 	 */
2944 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
2945 
2946 	if ((idc = ill->ill_dld_capab) == NULL) {
2947 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
2948 		if (idc == NULL) {
2949 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
2950 			    "could not enable DLD version %d "
2951 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
2952 			    ill->ill_name);
2953 			return;
2954 		}
2955 		ill->ill_dld_capab = idc;
2956 	}
2957 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
2958 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
2959 	ip1dbg(("ill_capability_dld_ack: interface %s "
2960 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
2961 
2962 	ill_capability_dld_enable(ill);
2963 }
2964 
2965 /*
2966  * Typically capability negotiation between IP and the driver happens via
2967  * DLPI message exchange. However GLD also offers a direct function call
2968  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
2969  * But arbitrary function calls into IP or GLD are not permitted, since both
2970  * of them are protected by their own perimeter mechanism. The perimeter can
2971  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
2972  * these perimeters is IP -> MAC. Thus for example to enable the squeue
2973  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
2974  * to enter the mac perimeter and then do the direct function calls into
2975  * GLD to enable squeue polling. The ring related callbacks from the mac into
2976  * the stack to add, bind, quiesce, restart or cleanup a ring are all
2977  * protected by the mac perimeter.
2978  */
2979 static void
2980 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
2981 {
2982 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2983 	int			err;
2984 
2985 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
2986 	    DLD_ENABLE);
2987 	ASSERT(err == 0);
2988 }
2989 
2990 static void
2991 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
2992 {
2993 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2994 	int			err;
2995 
2996 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
2997 	    DLD_DISABLE);
2998 	ASSERT(err == 0);
2999 }
3000 
3001 boolean_t
3002 ill_mac_perim_held(ill_t *ill)
3003 {
3004 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3005 
3006 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
3007 	    DLD_QUERY));
3008 }
3009 
3010 static void
3011 ill_capability_direct_enable(ill_t *ill)
3012 {
3013 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3014 	ill_dld_direct_t	*idd = &idc->idc_direct;
3015 	dld_capab_direct_t	direct;
3016 	int			rc;
3017 
3018 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3019 
3020 	bzero(&direct, sizeof (direct));
3021 	direct.di_rx_cf = (uintptr_t)ip_input;
3022 	direct.di_rx_ch = ill;
3023 
3024 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
3025 	    DLD_ENABLE);
3026 	if (rc == 0) {
3027 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
3028 		idd->idd_tx_dh = direct.di_tx_dh;
3029 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
3030 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
3031 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
3032 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
3033 		ASSERT(idd->idd_tx_cb_df != NULL);
3034 		ASSERT(idd->idd_tx_fctl_df != NULL);
3035 		ASSERT(idd->idd_tx_df != NULL);
3036 		/*
3037 		 * One time registration of flow enable callback function
3038 		 */
3039 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
3040 		    ill_flow_enable, ill);
3041 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
3042 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
3043 	} else {
3044 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
3045 		    "capability, rc = %d\n", rc);
3046 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
3047 	}
3048 }
3049 
3050 static void
3051 ill_capability_poll_enable(ill_t *ill)
3052 {
3053 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3054 	dld_capab_poll_t	poll;
3055 	int			rc;
3056 
3057 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3058 
3059 	bzero(&poll, sizeof (poll));
3060 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
3061 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
3062 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
3063 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
3064 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
3065 	poll.poll_ring_ch = ill;
3066 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
3067 	    DLD_ENABLE);
3068 	if (rc == 0) {
3069 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
3070 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
3071 	} else {
3072 		ip1dbg(("warning: could not enable POLL "
3073 		    "capability, rc = %d\n", rc));
3074 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
3075 	}
3076 }
3077 
3078 /*
3079  * Enable the LSO capability.
3080  */
3081 static void
3082 ill_capability_lso_enable(ill_t *ill)
3083 {
3084 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
3085 	dld_capab_lso_t	lso;
3086 	int rc;
3087 
3088 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3089 
3090 	if (ill->ill_lso_capab == NULL) {
3091 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3092 		    KM_NOSLEEP);
3093 		if (ill->ill_lso_capab == NULL) {
3094 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
3095 			    "could not enable LSO for %s (ENOMEM)\n",
3096 			    ill->ill_name);
3097 			return;
3098 		}
3099 	}
3100 
3101 	bzero(&lso, sizeof (lso));
3102 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
3103 	    DLD_ENABLE)) == 0) {
3104 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
3105 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
3106 		ill->ill_capabilities |= ILL_CAPAB_DLD_LSO;
3107 		ip1dbg(("ill_capability_lso_enable: interface %s "
3108 		    "has enabled LSO\n ", ill->ill_name));
3109 	} else {
3110 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
3111 		ill->ill_lso_capab = NULL;
3112 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
3113 	}
3114 }
3115 
3116 static void
3117 ill_capability_dld_enable(ill_t *ill)
3118 {
3119 	mac_perim_handle_t mph;
3120 
3121 	ASSERT(IAM_WRITER_ILL(ill));
3122 
3123 	if (ill->ill_isv6)
3124 		return;
3125 
3126 	ill_mac_perim_enter(ill, &mph);
3127 	if (!ill->ill_isv6) {
3128 		ill_capability_direct_enable(ill);
3129 		ill_capability_poll_enable(ill);
3130 		ill_capability_lso_enable(ill);
3131 	}
3132 	ill->ill_capabilities |= ILL_CAPAB_DLD;
3133 	ill_mac_perim_exit(ill, mph);
3134 }
3135 
3136 static void
3137 ill_capability_dld_disable(ill_t *ill)
3138 {
3139 	ill_dld_capab_t	*idc;
3140 	ill_dld_direct_t *idd;
3141 	mac_perim_handle_t	mph;
3142 
3143 	ASSERT(IAM_WRITER_ILL(ill));
3144 
3145 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
3146 		return;
3147 
3148 	ill_mac_perim_enter(ill, &mph);
3149 
3150 	idc = ill->ill_dld_capab;
3151 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
3152 		/*
3153 		 * For performance we avoid locks in the transmit data path
3154 		 * and don't maintain a count of the number of threads using
3155 		 * direct calls. Thus some threads could be using direct
3156 		 * transmit calls to GLD, even after the capability mechanism
3157 		 * turns it off. This is still safe since the handles used in
3158 		 * the direct calls continue to be valid until the unplumb is
3159 		 * completed. Remove the callback that was added (1-time) at
3160 		 * capab enable time.
3161 		 */
3162 		mutex_enter(&ill->ill_lock);
3163 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
3164 		mutex_exit(&ill->ill_lock);
3165 		if (ill->ill_flownotify_mh != NULL) {
3166 			idd = &idc->idc_direct;
3167 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
3168 			    ill->ill_flownotify_mh);
3169 			ill->ill_flownotify_mh = NULL;
3170 		}
3171 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
3172 		    NULL, DLD_DISABLE);
3173 	}
3174 
3175 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
3176 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
3177 		ip_squeue_clean_all(ill);
3178 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
3179 		    NULL, DLD_DISABLE);
3180 	}
3181 
3182 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) {
3183 		ASSERT(ill->ill_lso_capab != NULL);
3184 		/*
3185 		 * Clear the capability flag for LSO but retain the
3186 		 * ill_lso_capab structure since it's possible that another
3187 		 * thread is still referring to it.  The structure only gets
3188 		 * deallocated when we destroy the ill.
3189 		 */
3190 
3191 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO;
3192 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
3193 		    NULL, DLD_DISABLE);
3194 	}
3195 
3196 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
3197 	ill_mac_perim_exit(ill, mph);
3198 }
3199 
3200 /*
3201  * Capability Negotiation protocol
3202  *
3203  * We don't wait for DLPI capability operations to finish during interface
3204  * bringup or teardown. Doing so would introduce more asynchrony and the
3205  * interface up/down operations will need multiple return and restarts.
3206  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
3207  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
3208  * exclusive operation won't start until the DLPI operations of the previous
3209  * exclusive operation complete.
3210  *
3211  * The capability state machine is shown below.
3212  *
3213  * state		next state		event, action
3214  *
3215  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
3216  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
3217  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
3218  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
3219  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
3220  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
3221  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
3222  *						    ill_capability_probe.
3223  */
3224 
3225 /*
3226  * Dedicated thread started from ip_stack_init that handles capability
3227  * disable. This thread ensures the taskq dispatch does not fail by waiting
3228  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
3229  * that direct calls to DLD are done in a cv_waitable context.
3230  */
3231 void
3232 ill_taskq_dispatch(ip_stack_t *ipst)
3233 {
3234 	callb_cpr_t cprinfo;
3235 	char 	name[64];
3236 	mblk_t	*mp;
3237 
3238 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
3239 	    ipst->ips_netstack->netstack_stackid);
3240 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
3241 	    name);
3242 	mutex_enter(&ipst->ips_capab_taskq_lock);
3243 
3244 	for (;;) {
3245 		mp = ipst->ips_capab_taskq_head;
3246 		while (mp != NULL) {
3247 			ipst->ips_capab_taskq_head = mp->b_next;
3248 			if (ipst->ips_capab_taskq_head == NULL)
3249 				ipst->ips_capab_taskq_tail = NULL;
3250 			mutex_exit(&ipst->ips_capab_taskq_lock);
3251 			mp->b_next = NULL;
3252 
3253 			VERIFY(taskq_dispatch(system_taskq,
3254 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
3255 			mutex_enter(&ipst->ips_capab_taskq_lock);
3256 			mp = ipst->ips_capab_taskq_head;
3257 		}
3258 
3259 		if (ipst->ips_capab_taskq_quit)
3260 			break;
3261 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3262 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
3263 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
3264 	}
3265 	VERIFY(ipst->ips_capab_taskq_head == NULL);
3266 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
3267 	CALLB_CPR_EXIT(&cprinfo);
3268 	thread_exit();
3269 }
3270 
3271 /*
3272  * Consume a new-style hardware capabilities negotiation ack.
3273  * Called via taskq on receipt of DL_CAPABBILITY_ACK.
3274  */
3275 static void
3276 ill_capability_ack_thr(void *arg)
3277 {
3278 	mblk_t	*mp = arg;
3279 	dl_capability_ack_t *capp;
3280 	dl_capability_sub_t *subp, *endp;
3281 	ill_t	*ill;
3282 	boolean_t reneg;
3283 
3284 	ill = (ill_t *)mp->b_prev;
3285 	mp->b_prev = NULL;
3286 
3287 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
3288 
3289 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
3290 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
3291 		/*
3292 		 * We have received the ack for our DL_CAPAB reset request.
3293 		 * There isnt' anything in the message that needs processing.
3294 		 * All message based capabilities have been disabled, now
3295 		 * do the function call based capability disable.
3296 		 */
3297 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
3298 		ill_capability_dld_disable(ill);
3299 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
3300 		if (reneg)
3301 			ill_capability_probe(ill);
3302 		goto done;
3303 	}
3304 
3305 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
3306 		ill->ill_dlpi_capab_state = IDCS_OK;
3307 
3308 	capp = (dl_capability_ack_t *)mp->b_rptr;
3309 
3310 	if (capp->dl_sub_length == 0) {
3311 		/* no new-style capabilities */
3312 		goto done;
3313 	}
3314 
3315 	/* make sure the driver supplied correct dl_sub_length */
3316 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3317 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3318 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3319 		goto done;
3320 	}
3321 
3322 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3323 	/*
3324 	 * There are sub-capabilities. Process the ones we know about.
3325 	 * Loop until we don't have room for another sub-cap header..
3326 	 */
3327 	for (subp = SC(capp, capp->dl_sub_offset),
3328 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3329 	    subp <= endp;
3330 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3331 
3332 		switch (subp->dl_cap) {
3333 		case DL_CAPAB_ID_WRAPPER:
3334 			ill_capability_id_ack(ill, mp, subp);
3335 			break;
3336 		default:
3337 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3338 			break;
3339 		}
3340 	}
3341 #undef SC
3342 done:
3343 	inet_freemsg(mp);
3344 	ill_capability_done(ill);
3345 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
3346 }
3347 
3348 /*
3349  * This needs to be started in a taskq thread to provide a cv_waitable
3350  * context.
3351  */
3352 void
3353 ill_capability_ack(ill_t *ill, mblk_t *mp)
3354 {
3355 	ip_stack_t	*ipst = ill->ill_ipst;
3356 
3357 	mp->b_prev = (mblk_t *)ill;
3358 	ASSERT(mp->b_next == NULL);
3359 
3360 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
3361 	    TQ_NOSLEEP) != 0)
3362 		return;
3363 
3364 	/*
3365 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
3366 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
3367 	 */
3368 	mutex_enter(&ipst->ips_capab_taskq_lock);
3369 	if (ipst->ips_capab_taskq_head == NULL) {
3370 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
3371 		ipst->ips_capab_taskq_head = mp;
3372 	} else {
3373 		ipst->ips_capab_taskq_tail->b_next = mp;
3374 	}
3375 	ipst->ips_capab_taskq_tail = mp;
3376 
3377 	cv_signal(&ipst->ips_capab_taskq_cv);
3378 	mutex_exit(&ipst->ips_capab_taskq_lock);
3379 }
3380 
3381 /*
3382  * This routine is called to scan the fragmentation reassembly table for
3383  * the specified ILL for any packets that are starting to smell.
3384  * dead_interval is the maximum time in seconds that will be tolerated.  It
3385  * will either be the value specified in ip_g_frag_timeout, or zero if the
3386  * ILL is shutting down and it is time to blow everything off.
3387  *
3388  * It returns the number of seconds (as a time_t) that the next frag timer
3389  * should be scheduled for, 0 meaning that the timer doesn't need to be
3390  * re-started.  Note that the method of calculating next_timeout isn't
3391  * entirely accurate since time will flow between the time we grab
3392  * current_time and the time we schedule the next timeout.  This isn't a
3393  * big problem since this is the timer for sending an ICMP reassembly time
3394  * exceeded messages, and it doesn't have to be exactly accurate.
3395  *
3396  * This function is
3397  * sometimes called as writer, although this is not required.
3398  */
3399 time_t
3400 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3401 {
3402 	ipfb_t	*ipfb;
3403 	ipfb_t	*endp;
3404 	ipf_t	*ipf;
3405 	ipf_t	*ipfnext;
3406 	mblk_t	*mp;
3407 	time_t	current_time = gethrestime_sec();
3408 	time_t	next_timeout = 0;
3409 	uint32_t	hdr_length;
3410 	mblk_t	*send_icmp_head;
3411 	mblk_t	*send_icmp_head_v6;
3412 	zoneid_t zoneid;
3413 	ip_stack_t *ipst = ill->ill_ipst;
3414 
3415 	ipfb = ill->ill_frag_hash_tbl;
3416 	if (ipfb == NULL)
3417 		return (B_FALSE);
3418 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3419 	/* Walk the frag hash table. */
3420 	for (; ipfb < endp; ipfb++) {
3421 		send_icmp_head = NULL;
3422 		send_icmp_head_v6 = NULL;
3423 		mutex_enter(&ipfb->ipfb_lock);
3424 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3425 			time_t frag_time = current_time - ipf->ipf_timestamp;
3426 			time_t frag_timeout;
3427 
3428 			if (frag_time < dead_interval) {
3429 				/*
3430 				 * There are some outstanding fragments
3431 				 * that will timeout later.  Make note of
3432 				 * the time so that we can reschedule the
3433 				 * next timeout appropriately.
3434 				 */
3435 				frag_timeout = dead_interval - frag_time;
3436 				if (next_timeout == 0 ||
3437 				    frag_timeout < next_timeout) {
3438 					next_timeout = frag_timeout;
3439 				}
3440 				break;
3441 			}
3442 			/* Time's up.  Get it out of here. */
3443 			hdr_length = ipf->ipf_nf_hdr_len;
3444 			ipfnext = ipf->ipf_hash_next;
3445 			if (ipfnext)
3446 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3447 			*ipf->ipf_ptphn = ipfnext;
3448 			mp = ipf->ipf_mp->b_cont;
3449 			for (; mp; mp = mp->b_cont) {
3450 				/* Extra points for neatness. */
3451 				IP_REASS_SET_START(mp, 0);
3452 				IP_REASS_SET_END(mp, 0);
3453 			}
3454 			mp = ipf->ipf_mp->b_cont;
3455 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
3456 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3457 			ipfb->ipfb_count -= ipf->ipf_count;
3458 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3459 			ipfb->ipfb_frag_pkts--;
3460 			/*
3461 			 * We do not send any icmp message from here because
3462 			 * we currently are holding the ipfb_lock for this
3463 			 * hash chain. If we try and send any icmp messages
3464 			 * from here we may end up via a put back into ip
3465 			 * trying to get the same lock, causing a recursive
3466 			 * mutex panic. Instead we build a list and send all
3467 			 * the icmp messages after we have dropped the lock.
3468 			 */
3469 			if (ill->ill_isv6) {
3470 				if (hdr_length != 0) {
3471 					mp->b_next = send_icmp_head_v6;
3472 					send_icmp_head_v6 = mp;
3473 				} else {
3474 					freemsg(mp);
3475 				}
3476 			} else {
3477 				if (hdr_length != 0) {
3478 					mp->b_next = send_icmp_head;
3479 					send_icmp_head = mp;
3480 				} else {
3481 					freemsg(mp);
3482 				}
3483 			}
3484 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3485 			freeb(ipf->ipf_mp);
3486 		}
3487 		mutex_exit(&ipfb->ipfb_lock);
3488 		/*
3489 		 * Now need to send any icmp messages that we delayed from
3490 		 * above.
3491 		 */
3492 		while (send_icmp_head_v6 != NULL) {
3493 			ip6_t *ip6h;
3494 
3495 			mp = send_icmp_head_v6;
3496 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3497 			mp->b_next = NULL;
3498 			if (mp->b_datap->db_type == M_CTL)
3499 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3500 			else
3501 				ip6h = (ip6_t *)mp->b_rptr;
3502 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3503 			    ill, ipst);
3504 			if (zoneid == ALL_ZONES) {
3505 				freemsg(mp);
3506 			} else {
3507 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3508 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3509 				    B_FALSE, zoneid, ipst);
3510 			}
3511 		}
3512 		while (send_icmp_head != NULL) {
3513 			ipaddr_t dst;
3514 
3515 			mp = send_icmp_head;
3516 			send_icmp_head = send_icmp_head->b_next;
3517 			mp->b_next = NULL;
3518 
3519 			if (mp->b_datap->db_type == M_CTL)
3520 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3521 			else
3522 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3523 
3524 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3525 			if (zoneid == ALL_ZONES) {
3526 				freemsg(mp);
3527 			} else {
3528 				icmp_time_exceeded(ill->ill_wq, mp,
3529 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3530 				    ipst);
3531 			}
3532 		}
3533 	}
3534 	/*
3535 	 * A non-dying ILL will use the return value to decide whether to
3536 	 * restart the frag timer, and for how long.
3537 	 */
3538 	return (next_timeout);
3539 }
3540 
3541 /*
3542  * This routine is called when the approximate count of mblk memory used
3543  * for the specified ILL has exceeded max_count.
3544  */
3545 void
3546 ill_frag_prune(ill_t *ill, uint_t max_count)
3547 {
3548 	ipfb_t	*ipfb;
3549 	ipf_t	*ipf;
3550 	size_t	count;
3551 
3552 	/*
3553 	 * If we are here within ip_min_frag_prune_time msecs remove
3554 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3555 	 * ill_frag_free_num_pkts.
3556 	 */
3557 	mutex_enter(&ill->ill_lock);
3558 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3559 	    (ip_min_frag_prune_time != 0 ?
3560 	    ip_min_frag_prune_time : msec_per_tick)) {
3561 
3562 		ill->ill_frag_free_num_pkts++;
3563 
3564 	} else {
3565 		ill->ill_frag_free_num_pkts = 0;
3566 	}
3567 	ill->ill_last_frag_clean_time = lbolt;
3568 	mutex_exit(&ill->ill_lock);
3569 
3570 	/*
3571 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3572 	 */
3573 	if (ill->ill_frag_free_num_pkts != 0) {
3574 		int ix;
3575 
3576 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3577 			ipfb = &ill->ill_frag_hash_tbl[ix];
3578 			mutex_enter(&ipfb->ipfb_lock);
3579 			if (ipfb->ipfb_ipf != NULL) {
3580 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3581 				    ill->ill_frag_free_num_pkts);
3582 			}
3583 			mutex_exit(&ipfb->ipfb_lock);
3584 		}
3585 	}
3586 	/*
3587 	 * While the reassembly list for this ILL is too big, prune a fragment
3588 	 * queue by age, oldest first.
3589 	 */
3590 	while (ill->ill_frag_count > max_count) {
3591 		int	ix;
3592 		ipfb_t	*oipfb = NULL;
3593 		uint_t	oldest = UINT_MAX;
3594 
3595 		count = 0;
3596 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3597 			ipfb = &ill->ill_frag_hash_tbl[ix];
3598 			mutex_enter(&ipfb->ipfb_lock);
3599 			ipf = ipfb->ipfb_ipf;
3600 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3601 				oldest = ipf->ipf_gen;
3602 				oipfb = ipfb;
3603 			}
3604 			count += ipfb->ipfb_count;
3605 			mutex_exit(&ipfb->ipfb_lock);
3606 		}
3607 		if (oipfb == NULL)
3608 			break;
3609 
3610 		if (count <= max_count)
3611 			return;	/* Somebody beat us to it, nothing to do */
3612 		mutex_enter(&oipfb->ipfb_lock);
3613 		ipf = oipfb->ipfb_ipf;
3614 		if (ipf != NULL) {
3615 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3616 		}
3617 		mutex_exit(&oipfb->ipfb_lock);
3618 	}
3619 }
3620 
3621 /*
3622  * free 'free_cnt' fragmented packets starting at ipf.
3623  */
3624 void
3625 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3626 {
3627 	size_t	count;
3628 	mblk_t	*mp;
3629 	mblk_t	*tmp;
3630 	ipf_t **ipfp = ipf->ipf_ptphn;
3631 
3632 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3633 	ASSERT(ipfp != NULL);
3634 	ASSERT(ipf != NULL);
3635 
3636 	while (ipf != NULL && free_cnt-- > 0) {
3637 		count = ipf->ipf_count;
3638 		mp = ipf->ipf_mp;
3639 		ipf = ipf->ipf_hash_next;
3640 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3641 			IP_REASS_SET_START(tmp, 0);
3642 			IP_REASS_SET_END(tmp, 0);
3643 		}
3644 		atomic_add_32(&ill->ill_frag_count, -count);
3645 		ASSERT(ipfb->ipfb_count >= count);
3646 		ipfb->ipfb_count -= count;
3647 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3648 		ipfb->ipfb_frag_pkts--;
3649 		freemsg(mp);
3650 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3651 	}
3652 
3653 	if (ipf)
3654 		ipf->ipf_ptphn = ipfp;
3655 	ipfp[0] = ipf;
3656 }
3657 
3658 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3659 	"obsolete and may be removed in a future release of Solaris.  Use " \
3660 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3661 
3662 /*
3663  * For obsolete per-interface forwarding configuration;
3664  * called in response to ND_GET.
3665  */
3666 /* ARGSUSED */
3667 static int
3668 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3669 {
3670 	ill_t *ill = (ill_t *)cp;
3671 
3672 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3673 
3674 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3675 	return (0);
3676 }
3677 
3678 /*
3679  * For obsolete per-interface forwarding configuration;
3680  * called in response to ND_SET.
3681  */
3682 /* ARGSUSED */
3683 static int
3684 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3685     cred_t *ioc_cr)
3686 {
3687 	long value;
3688 	int retval;
3689 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3690 
3691 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3692 
3693 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3694 	    value < 0 || value > 1) {
3695 		return (EINVAL);
3696 	}
3697 
3698 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3699 	retval = ill_forward_set((ill_t *)cp, (value != 0));
3700 	rw_exit(&ipst->ips_ill_g_lock);
3701 	return (retval);
3702 }
3703 
3704 /*
3705  * Helper function for ill_forward_set().
3706  */
3707 static void
3708 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
3709 {
3710 	ip_stack_t	*ipst = ill->ill_ipst;
3711 
3712 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3713 
3714 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3715 	    (enable ? "Enabling" : "Disabling"),
3716 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3717 	mutex_enter(&ill->ill_lock);
3718 	if (enable)
3719 		ill->ill_flags |= ILLF_ROUTER;
3720 	else
3721 		ill->ill_flags &= ~ILLF_ROUTER;
3722 	mutex_exit(&ill->ill_lock);
3723 	if (ill->ill_isv6)
3724 		ill_set_nce_router_flags(ill, enable);
3725 	/* Notify routing socket listeners of this change. */
3726 	if (ill->ill_ipif != NULL)
3727 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
3728 }
3729 
3730 /*
3731  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
3732  * socket messages for each interface whose flags we change.
3733  */
3734 int
3735 ill_forward_set(ill_t *ill, boolean_t enable)
3736 {
3737 	ipmp_illgrp_t *illg;
3738 	ip_stack_t *ipst = ill->ill_ipst;
3739 
3740 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3741 
3742 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3743 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3744 		return (0);
3745 
3746 	if (IS_LOOPBACK(ill))
3747 		return (EINVAL);
3748 
3749 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
3750 		/*
3751 		 * Update all of the interfaces in the group.
3752 		 */
3753 		illg = ill->ill_grp;
3754 		ill = list_head(&illg->ig_if);
3755 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
3756 			ill_forward_set_on_ill(ill, enable);
3757 
3758 		/*
3759 		 * Update the IPMP meta-interface.
3760 		 */
3761 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
3762 		return (0);
3763 	}
3764 
3765 	ill_forward_set_on_ill(ill, enable);
3766 	return (0);
3767 }
3768 
3769 /*
3770  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3771  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3772  * set or clear.
3773  */
3774 static void
3775 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3776 {
3777 	ipif_t *ipif;
3778 	nce_t *nce;
3779 
3780 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3781 		/*
3782 		 * NOTE: we match across the illgrp because nce's for
3783 		 * addresses on IPMP interfaces have an nce_ill that points to
3784 		 * the bound underlying ill.
3785 		 */
3786 		nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr,
3787 		    B_FALSE);
3788 		if (nce != NULL) {
3789 			mutex_enter(&nce->nce_lock);
3790 			if (enable)
3791 				nce->nce_flags |= NCE_F_ISROUTER;
3792 			else
3793 				nce->nce_flags &= ~NCE_F_ISROUTER;
3794 			mutex_exit(&nce->nce_lock);
3795 			NCE_REFRELE(nce);
3796 		}
3797 	}
3798 }
3799 
3800 /*
3801  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
3802  * for this ill.  Make sure the v6/v4 question has been answered about this
3803  * ill.  The creation of this ndd variable is only for backwards compatibility.
3804  * The preferred way to control per-interface IP forwarding is through the
3805  * ILLF_ROUTER interface flag.
3806  */
3807 static int
3808 ill_set_ndd_name(ill_t *ill)
3809 {
3810 	char *suffix;
3811 	ip_stack_t	*ipst = ill->ill_ipst;
3812 
3813 	ASSERT(IAM_WRITER_ILL(ill));
3814 
3815 	if (ill->ill_isv6)
3816 		suffix = ipv6_forward_suffix;
3817 	else
3818 		suffix = ipv4_forward_suffix;
3819 
3820 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
3821 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
3822 	/*
3823 	 * Copies over the '\0'.
3824 	 * Note that strlen(suffix) is always bounded.
3825 	 */
3826 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
3827 	    strlen(suffix) + 1);
3828 
3829 	/*
3830 	 * Use of the nd table requires holding the reader lock.
3831 	 * Modifying the nd table thru nd_load/nd_unload requires
3832 	 * the writer lock.
3833 	 */
3834 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
3835 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
3836 	    nd_ill_forward_set, (caddr_t)ill)) {
3837 		/*
3838 		 * If the nd_load failed, it only meant that it could not
3839 		 * allocate a new bunch of room for further NDD expansion.
3840 		 * Because of that, the ill_ndd_name will be set to 0, and
3841 		 * this interface is at the mercy of the global ip_forwarding
3842 		 * variable.
3843 		 */
3844 		rw_exit(&ipst->ips_ip_g_nd_lock);
3845 		ill->ill_ndd_name = NULL;
3846 		return (ENOMEM);
3847 	}
3848 	rw_exit(&ipst->ips_ip_g_nd_lock);
3849 	return (0);
3850 }
3851 
3852 /*
3853  * Intializes the context structure and returns the first ill in the list
3854  * cuurently start_list and end_list can have values:
3855  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
3856  * IP_V4_G_HEAD		Traverse IPV4 list only.
3857  * IP_V6_G_HEAD		Traverse IPV6 list only.
3858  */
3859 
3860 /*
3861  * We don't check for CONDEMNED ills here. Caller must do that if
3862  * necessary under the ill lock.
3863  */
3864 ill_t *
3865 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
3866     ip_stack_t *ipst)
3867 {
3868 	ill_if_t *ifp;
3869 	ill_t *ill;
3870 	avl_tree_t *avl_tree;
3871 
3872 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3873 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
3874 
3875 	/*
3876 	 * setup the lists to search
3877 	 */
3878 	if (end_list != MAX_G_HEADS) {
3879 		ctx->ctx_current_list = start_list;
3880 		ctx->ctx_last_list = end_list;
3881 	} else {
3882 		ctx->ctx_last_list = MAX_G_HEADS - 1;
3883 		ctx->ctx_current_list = 0;
3884 	}
3885 
3886 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
3887 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
3888 		if (ifp != (ill_if_t *)
3889 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
3890 			avl_tree = &ifp->illif_avl_by_ppa;
3891 			ill = avl_first(avl_tree);
3892 			/*
3893 			 * ill is guaranteed to be non NULL or ifp should have
3894 			 * not existed.
3895 			 */
3896 			ASSERT(ill != NULL);
3897 			return (ill);
3898 		}
3899 		ctx->ctx_current_list++;
3900 	}
3901 
3902 	return (NULL);
3903 }
3904 
3905 /*
3906  * returns the next ill in the list. ill_first() must have been called
3907  * before calling ill_next() or bad things will happen.
3908  */
3909 
3910 /*
3911  * We don't check for CONDEMNED ills here. Caller must do that if
3912  * necessary under the ill lock.
3913  */
3914 ill_t *
3915 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
3916 {
3917 	ill_if_t *ifp;
3918 	ill_t *ill;
3919 	ip_stack_t	*ipst = lastill->ill_ipst;
3920 
3921 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
3922 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
3923 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
3924 	    AVL_AFTER)) != NULL) {
3925 		return (ill);
3926 	}
3927 
3928 	/* goto next ill_ifp in the list. */
3929 	ifp = lastill->ill_ifptr->illif_next;
3930 
3931 	/* make sure not at end of circular list */
3932 	while (ifp ==
3933 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
3934 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
3935 			return (NULL);
3936 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
3937 	}
3938 
3939 	return (avl_first(&ifp->illif_avl_by_ppa));
3940 }
3941 
3942 /*
3943  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
3944  * The final number (PPA) must not have any leading zeros.  Upon success, a
3945  * pointer to the start of the PPA is returned; otherwise NULL is returned.
3946  */
3947 static char *
3948 ill_get_ppa_ptr(char *name)
3949 {
3950 	int namelen = strlen(name);
3951 	int end_ndx = namelen - 1;
3952 	int ppa_ndx, i;
3953 
3954 	/*
3955 	 * Check that the first character is [a-zA-Z], and that the last
3956 	 * character is [0-9].
3957 	 */
3958 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
3959 		return (NULL);
3960 
3961 	/*
3962 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
3963 	 */
3964 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
3965 		if (!isdigit(name[ppa_ndx - 1]))
3966 			break;
3967 
3968 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
3969 		return (NULL);
3970 
3971 	/*
3972 	 * Check that the intermediate characters are [a-z0-9.]
3973 	 */
3974 	for (i = 1; i < ppa_ndx; i++) {
3975 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
3976 		    name[i] != '.' && name[i] != '_') {
3977 			return (NULL);
3978 		}
3979 	}
3980 
3981 	return (name + ppa_ndx);
3982 }
3983 
3984 /*
3985  * use avl tree to locate the ill.
3986  */
3987 static ill_t *
3988 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
3989     ipsq_func_t func, int *error, ip_stack_t *ipst)
3990 {
3991 	char *ppa_ptr = NULL;
3992 	int len;
3993 	uint_t ppa;
3994 	ill_t *ill = NULL;
3995 	ill_if_t *ifp;
3996 	int list;
3997 	ipsq_t *ipsq;
3998 
3999 	if (error != NULL)
4000 		*error = 0;
4001 
4002 	/*
4003 	 * get ppa ptr
4004 	 */
4005 	if (isv6)
4006 		list = IP_V6_G_HEAD;
4007 	else
4008 		list = IP_V4_G_HEAD;
4009 
4010 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4011 		if (error != NULL)
4012 			*error = ENXIO;
4013 		return (NULL);
4014 	}
4015 
4016 	len = ppa_ptr - name + 1;
4017 
4018 	ppa = stoi(&ppa_ptr);
4019 
4020 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4021 
4022 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4023 		/*
4024 		 * match is done on len - 1 as the name is not null
4025 		 * terminated it contains ppa in addition to the interface
4026 		 * name.
4027 		 */
4028 		if ((ifp->illif_name_len == len) &&
4029 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4030 			break;
4031 		} else {
4032 			ifp = ifp->illif_next;
4033 		}
4034 	}
4035 
4036 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4037 		/*
4038 		 * Even the interface type does not exist.
4039 		 */
4040 		if (error != NULL)
4041 			*error = ENXIO;
4042 		return (NULL);
4043 	}
4044 
4045 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4046 	if (ill != NULL) {
4047 		/*
4048 		 * The block comment at the start of ipif_down
4049 		 * explains the use of the macros used below
4050 		 */
4051 		GRAB_CONN_LOCK(q);
4052 		mutex_enter(&ill->ill_lock);
4053 		if (ILL_CAN_LOOKUP(ill)) {
4054 			ill_refhold_locked(ill);
4055 			mutex_exit(&ill->ill_lock);
4056 			RELEASE_CONN_LOCK(q);
4057 			return (ill);
4058 		} else if (ILL_CAN_WAIT(ill, q)) {
4059 			ipsq = ill->ill_phyint->phyint_ipsq;
4060 			mutex_enter(&ipsq->ipsq_lock);
4061 			mutex_enter(&ipsq->ipsq_xop->ipx_lock);
4062 			mutex_exit(&ill->ill_lock);
4063 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4064 			mutex_exit(&ipsq->ipsq_xop->ipx_lock);
4065 			mutex_exit(&ipsq->ipsq_lock);
4066 			RELEASE_CONN_LOCK(q);
4067 			if (error != NULL)
4068 				*error = EINPROGRESS;
4069 			return (NULL);
4070 		}
4071 		mutex_exit(&ill->ill_lock);
4072 		RELEASE_CONN_LOCK(q);
4073 	}
4074 	if (error != NULL)
4075 		*error = ENXIO;
4076 	return (NULL);
4077 }
4078 
4079 /*
4080  * comparison function for use with avl.
4081  */
4082 static int
4083 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4084 {
4085 	uint_t ppa;
4086 	uint_t ill_ppa;
4087 
4088 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4089 
4090 	ppa = *((uint_t *)ppa_ptr);
4091 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4092 	/*
4093 	 * We want the ill with the lowest ppa to be on the
4094 	 * top.
4095 	 */
4096 	if (ill_ppa < ppa)
4097 		return (1);
4098 	if (ill_ppa > ppa)
4099 		return (-1);
4100 	return (0);
4101 }
4102 
4103 /*
4104  * remove an interface type from the global list.
4105  */
4106 static void
4107 ill_delete_interface_type(ill_if_t *interface)
4108 {
4109 	ASSERT(interface != NULL);
4110 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4111 
4112 	avl_destroy(&interface->illif_avl_by_ppa);
4113 	if (interface->illif_ppa_arena != NULL)
4114 		vmem_destroy(interface->illif_ppa_arena);
4115 
4116 	remque(interface);
4117 
4118 	mi_free(interface);
4119 }
4120 
4121 /*
4122  * remove ill from the global list.
4123  */
4124 static void
4125 ill_glist_delete(ill_t *ill)
4126 {
4127 	ip_stack_t	*ipst;
4128 	phyint_t	*phyi;
4129 
4130 	if (ill == NULL)
4131 		return;
4132 	ipst = ill->ill_ipst;
4133 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4134 
4135 	/*
4136 	 * If the ill was never inserted into the AVL tree
4137 	 * we skip the if branch.
4138 	 */
4139 	if (ill->ill_ifptr != NULL) {
4140 		/*
4141 		 * remove from AVL tree and free ppa number
4142 		 */
4143 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4144 
4145 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4146 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4147 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4148 		}
4149 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4150 			ill_delete_interface_type(ill->ill_ifptr);
4151 		}
4152 
4153 		/*
4154 		 * Indicate ill is no longer in the list.
4155 		 */
4156 		ill->ill_ifptr = NULL;
4157 		ill->ill_name_length = 0;
4158 		ill->ill_name[0] = '\0';
4159 		ill->ill_ppa = UINT_MAX;
4160 	}
4161 
4162 	/* Generate one last event for this ill. */
4163 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
4164 	    ill->ill_name_length);
4165 
4166 	ASSERT(ill->ill_phyint != NULL);
4167 	phyi = ill->ill_phyint;
4168 	ill->ill_phyint = NULL;
4169 
4170 	/*
4171 	 * ill_init allocates a phyint always to store the copy
4172 	 * of flags relevant to phyint. At that point in time, we could
4173 	 * not assign the name and hence phyint_illv4/v6 could not be
4174 	 * initialized. Later in ipif_set_values, we assign the name to
4175 	 * the ill, at which point in time we assign phyint_illv4/v6.
4176 	 * Thus we don't rely on phyint_illv6 to be initialized always.
4177 	 */
4178 	if (ill->ill_flags & ILLF_IPV6)
4179 		phyi->phyint_illv6 = NULL;
4180 	else
4181 		phyi->phyint_illv4 = NULL;
4182 
4183 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
4184 		rw_exit(&ipst->ips_ill_g_lock);
4185 		return;
4186 	}
4187 
4188 	/*
4189 	 * There are no ills left on this phyint; pull it out of the phyint
4190 	 * avl trees, and free it.
4191 	 */
4192 	if (phyi->phyint_ifindex > 0) {
4193 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4194 		    phyi);
4195 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4196 		    phyi);
4197 	}
4198 	rw_exit(&ipst->ips_ill_g_lock);
4199 
4200 	phyint_free(phyi);
4201 }
4202 
4203 /*
4204  * allocate a ppa, if the number of plumbed interfaces of this type are
4205  * less than ill_no_arena do a linear search to find a unused ppa.
4206  * When the number goes beyond ill_no_arena switch to using an arena.
4207  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4208  * is the return value for an error condition, so allocation starts at one
4209  * and is decremented by one.
4210  */
4211 static int
4212 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4213 {
4214 	ill_t *tmp_ill;
4215 	uint_t start, end;
4216 	int ppa;
4217 
4218 	if (ifp->illif_ppa_arena == NULL &&
4219 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4220 		/*
4221 		 * Create an arena.
4222 		 */
4223 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4224 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4225 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4226 			/* allocate what has already been assigned */
4227 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4228 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4229 		    tmp_ill, AVL_AFTER)) {
4230 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4231 			    1,		/* size */
4232 			    1,		/* align/quantum */
4233 			    0,		/* phase */
4234 			    0,		/* nocross */
4235 			    /* minaddr */
4236 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4237 			    /* maxaddr */
4238 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4239 			    VM_NOSLEEP|VM_FIRSTFIT);
4240 			if (ppa == 0) {
4241 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4242 				    " failed while switching"));
4243 				vmem_destroy(ifp->illif_ppa_arena);
4244 				ifp->illif_ppa_arena = NULL;
4245 				break;
4246 			}
4247 		}
4248 	}
4249 
4250 	if (ifp->illif_ppa_arena != NULL) {
4251 		if (ill->ill_ppa == UINT_MAX) {
4252 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4253 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4254 			if (ppa == 0)
4255 				return (EAGAIN);
4256 			ill->ill_ppa = --ppa;
4257 		} else {
4258 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4259 			    1, 		/* size */
4260 			    1, 		/* align/quantum */
4261 			    0, 		/* phase */
4262 			    0, 		/* nocross */
4263 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4264 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4265 			    VM_NOSLEEP|VM_FIRSTFIT);
4266 			/*
4267 			 * Most likely the allocation failed because
4268 			 * the requested ppa was in use.
4269 			 */
4270 			if (ppa == 0)
4271 				return (EEXIST);
4272 		}
4273 		return (0);
4274 	}
4275 
4276 	/*
4277 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4278 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4279 	 */
4280 	if (ill->ill_ppa == UINT_MAX) {
4281 		end = UINT_MAX - 1;
4282 		start = 0;
4283 	} else {
4284 		end = start = ill->ill_ppa;
4285 	}
4286 
4287 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4288 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4289 		if (start++ >= end) {
4290 			if (ill->ill_ppa == UINT_MAX)
4291 				return (EAGAIN);
4292 			else
4293 				return (EEXIST);
4294 		}
4295 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4296 	}
4297 	ill->ill_ppa = start;
4298 	return (0);
4299 }
4300 
4301 /*
4302  * Insert ill into the list of configured ill's. Once this function completes,
4303  * the ill is globally visible and is available through lookups. More precisely
4304  * this happens after the caller drops the ill_g_lock.
4305  */
4306 static int
4307 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4308 {
4309 	ill_if_t *ill_interface;
4310 	avl_index_t where = 0;
4311 	int error;
4312 	int name_length;
4313 	int index;
4314 	boolean_t check_length = B_FALSE;
4315 	ip_stack_t	*ipst = ill->ill_ipst;
4316 
4317 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4318 
4319 	name_length = mi_strlen(name) + 1;
4320 
4321 	if (isv6)
4322 		index = IP_V6_G_HEAD;
4323 	else
4324 		index = IP_V4_G_HEAD;
4325 
4326 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4327 	/*
4328 	 * Search for interface type based on name
4329 	 */
4330 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4331 		if ((ill_interface->illif_name_len == name_length) &&
4332 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4333 			break;
4334 		}
4335 		ill_interface = ill_interface->illif_next;
4336 	}
4337 
4338 	/*
4339 	 * Interface type not found, create one.
4340 	 */
4341 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4342 		ill_g_head_t ghead;
4343 
4344 		/*
4345 		 * allocate ill_if_t structure
4346 		 */
4347 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4348 		if (ill_interface == NULL) {
4349 			return (ENOMEM);
4350 		}
4351 
4352 		(void) strcpy(ill_interface->illif_name, name);
4353 		ill_interface->illif_name_len = name_length;
4354 
4355 		avl_create(&ill_interface->illif_avl_by_ppa,
4356 		    ill_compare_ppa, sizeof (ill_t),
4357 		    offsetof(struct ill_s, ill_avl_byppa));
4358 
4359 		/*
4360 		 * link the structure in the back to maintain order
4361 		 * of configuration for ifconfig output.
4362 		 */
4363 		ghead = ipst->ips_ill_g_heads[index];
4364 		insque(ill_interface, ghead.ill_g_list_tail);
4365 	}
4366 
4367 	if (ill->ill_ppa == UINT_MAX)
4368 		check_length = B_TRUE;
4369 
4370 	error = ill_alloc_ppa(ill_interface, ill);
4371 	if (error != 0) {
4372 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4373 			ill_delete_interface_type(ill->ill_ifptr);
4374 		return (error);
4375 	}
4376 
4377 	/*
4378 	 * When the ppa is choosen by the system, check that there is
4379 	 * enough space to insert ppa. if a specific ppa was passed in this
4380 	 * check is not required as the interface name passed in will have
4381 	 * the right ppa in it.
4382 	 */
4383 	if (check_length) {
4384 		/*
4385 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4386 		 */
4387 		char buf[sizeof (uint_t) * 3];
4388 
4389 		/*
4390 		 * convert ppa to string to calculate the amount of space
4391 		 * required for it in the name.
4392 		 */
4393 		numtos(ill->ill_ppa, buf);
4394 
4395 		/* Do we have enough space to insert ppa ? */
4396 
4397 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4398 			/* Free ppa and interface type struct */
4399 			if (ill_interface->illif_ppa_arena != NULL) {
4400 				vmem_free(ill_interface->illif_ppa_arena,
4401 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4402 			}
4403 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4404 				ill_delete_interface_type(ill->ill_ifptr);
4405 
4406 			return (EINVAL);
4407 		}
4408 	}
4409 
4410 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4411 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4412 
4413 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4414 	    &where);
4415 	ill->ill_ifptr = ill_interface;
4416 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4417 
4418 	ill_phyint_reinit(ill);
4419 	return (0);
4420 }
4421 
4422 /* Initialize the per phyint ipsq used for serialization */
4423 static boolean_t
4424 ipsq_init(ill_t *ill, boolean_t enter)
4425 {
4426 	ipsq_t  *ipsq;
4427 	ipxop_t	*ipx;
4428 
4429 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
4430 		return (B_FALSE);
4431 
4432 	ill->ill_phyint->phyint_ipsq = ipsq;
4433 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
4434 	ipx->ipx_ipsq = ipsq;
4435 	ipsq->ipsq_next = ipsq;
4436 	ipsq->ipsq_phyint = ill->ill_phyint;
4437 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4438 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
4439 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4440 	if (enter) {
4441 		ipx->ipx_writer = curthread;
4442 		ipx->ipx_forced = B_FALSE;
4443 		ipx->ipx_reentry_cnt = 1;
4444 #ifdef DEBUG
4445 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
4446 #endif
4447 	}
4448 	return (B_TRUE);
4449 }
4450 
4451 /*
4452  * ill_init is called by ip_open when a device control stream is opened.
4453  * It does a few initializations, and shoots a DL_INFO_REQ message down
4454  * to the driver.  The response is later picked up in ip_rput_dlpi and
4455  * used to set up default mechanisms for talking to the driver.  (Always
4456  * called as writer.)
4457  *
4458  * If this function returns error, ip_open will call ip_close which in
4459  * turn will call ill_delete to clean up any memory allocated here that
4460  * is not yet freed.
4461  */
4462 int
4463 ill_init(queue_t *q, ill_t *ill)
4464 {
4465 	int	count;
4466 	dl_info_req_t	*dlir;
4467 	mblk_t	*info_mp;
4468 	uchar_t *frag_ptr;
4469 
4470 	/*
4471 	 * The ill is initialized to zero by mi_alloc*(). In addition
4472 	 * some fields already contain valid values, initialized in
4473 	 * ip_open(), before we reach here.
4474 	 */
4475 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4476 
4477 	ill->ill_rq = q;
4478 	ill->ill_wq = WR(q);
4479 
4480 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4481 	    BPRI_HI);
4482 	if (info_mp == NULL)
4483 		return (ENOMEM);
4484 
4485 	/*
4486 	 * Allocate sufficient space to contain our fragment hash table and
4487 	 * the device name.
4488 	 */
4489 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4490 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4491 	if (frag_ptr == NULL) {
4492 		freemsg(info_mp);
4493 		return (ENOMEM);
4494 	}
4495 	ill->ill_frag_ptr = frag_ptr;
4496 	ill->ill_frag_free_num_pkts = 0;
4497 	ill->ill_last_frag_clean_time = 0;
4498 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4499 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4500 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4501 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4502 		    NULL, MUTEX_DEFAULT, NULL);
4503 	}
4504 
4505 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4506 	if (ill->ill_phyint == NULL) {
4507 		freemsg(info_mp);
4508 		mi_free(frag_ptr);
4509 		return (ENOMEM);
4510 	}
4511 
4512 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4513 	/*
4514 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4515 	 * at this point because of the following reason. If we can't
4516 	 * enter the ipsq at some point and cv_wait, the writer that
4517 	 * wakes us up tries to locate us using the list of all phyints
4518 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4519 	 * If we don't set it now, we risk a missed wakeup.
4520 	 */
4521 	ill->ill_phyint->phyint_illv4 = ill;
4522 	ill->ill_ppa = UINT_MAX;
4523 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4524 
4525 	if (!ipsq_init(ill, B_TRUE)) {
4526 		freemsg(info_mp);
4527 		mi_free(frag_ptr);
4528 		mi_free(ill->ill_phyint);
4529 		return (ENOMEM);
4530 	}
4531 
4532 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4533 
4534 	/* Frag queue limit stuff */
4535 	ill->ill_frag_count = 0;
4536 	ill->ill_ipf_gen = 0;
4537 
4538 	ill->ill_global_timer = INFINITY;
4539 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4540 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4541 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4542 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4543 
4544 	/*
4545 	 * Initialize IPv6 configuration variables.  The IP module is always
4546 	 * opened as an IPv4 module.  Instead tracking down the cases where
4547 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4548 	 * here for convenience, this has no effect until the ill is set to do
4549 	 * IPv6.
4550 	 */
4551 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4552 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4553 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4554 	ill->ill_max_buf = ND_MAX_Q;
4555 	ill->ill_refcnt = 0;
4556 
4557 	/* Send down the Info Request to the driver. */
4558 	info_mp->b_datap->db_type = M_PCPROTO;
4559 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4560 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4561 	dlir->dl_primitive = DL_INFO_REQ;
4562 
4563 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4564 
4565 	qprocson(q);
4566 	ill_dlpi_send(ill, info_mp);
4567 
4568 	return (0);
4569 }
4570 
4571 /*
4572  * ill_dls_info
4573  * creates datalink socket info from the device.
4574  */
4575 int
4576 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4577 {
4578 	size_t	len;
4579 	ill_t	*ill = ipif->ipif_ill;
4580 
4581 	sdl->sdl_family = AF_LINK;
4582 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4583 	sdl->sdl_type = ill->ill_type;
4584 	ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4585 	len = strlen(sdl->sdl_data);
4586 	ASSERT(len < 256);
4587 	sdl->sdl_nlen = (uchar_t)len;
4588 	sdl->sdl_alen = ill->ill_phys_addr_length;
4589 	sdl->sdl_slen = 0;
4590 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4591 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4592 
4593 	return (sizeof (struct sockaddr_dl));
4594 }
4595 
4596 /*
4597  * ill_xarp_info
4598  * creates xarp info from the device.
4599  */
4600 static int
4601 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4602 {
4603 	sdl->sdl_family = AF_LINK;
4604 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4605 	sdl->sdl_type = ill->ill_type;
4606 	ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4607 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4608 	sdl->sdl_alen = ill->ill_phys_addr_length;
4609 	sdl->sdl_slen = 0;
4610 	return (sdl->sdl_nlen);
4611 }
4612 
4613 static int
4614 loopback_kstat_update(kstat_t *ksp, int rw)
4615 {
4616 	kstat_named_t *kn;
4617 	netstackid_t	stackid;
4618 	netstack_t	*ns;
4619 	ip_stack_t	*ipst;
4620 
4621 	if (ksp == NULL || ksp->ks_data == NULL)
4622 		return (EIO);
4623 
4624 	if (rw == KSTAT_WRITE)
4625 		return (EACCES);
4626 
4627 	kn = KSTAT_NAMED_PTR(ksp);
4628 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4629 
4630 	ns = netstack_find_by_stackid(stackid);
4631 	if (ns == NULL)
4632 		return (-1);
4633 
4634 	ipst = ns->netstack_ip;
4635 	if (ipst == NULL) {
4636 		netstack_rele(ns);
4637 		return (-1);
4638 	}
4639 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4640 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4641 	netstack_rele(ns);
4642 	return (0);
4643 }
4644 
4645 /*
4646  * Has ifindex been plumbed already?
4647  */
4648 boolean_t
4649 phyint_exists(uint_t index, ip_stack_t *ipst)
4650 {
4651 	ASSERT(index != 0);
4652 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4653 
4654 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4655 	    &index, NULL) != NULL);
4656 }
4657 
4658 /* Pick a unique ifindex */
4659 boolean_t
4660 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4661 {
4662 	uint_t starting_index;
4663 
4664 	if (!ipst->ips_ill_index_wrap) {
4665 		*indexp = ipst->ips_ill_index++;
4666 		if (ipst->ips_ill_index == 0) {
4667 			/* Reached the uint_t limit Next time wrap  */
4668 			ipst->ips_ill_index_wrap = B_TRUE;
4669 		}
4670 		return (B_TRUE);
4671 	}
4672 
4673 	/*
4674 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4675 	 * at this point and don't want to call any function that attempts
4676 	 * to get the lock again.
4677 	 */
4678 	starting_index = ipst->ips_ill_index++;
4679 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4680 		if (ipst->ips_ill_index != 0 &&
4681 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4682 			/* found unused index - use it */
4683 			*indexp = ipst->ips_ill_index;
4684 			return (B_TRUE);
4685 		}
4686 	}
4687 
4688 	/*
4689 	 * all interface indicies are inuse.
4690 	 */
4691 	return (B_FALSE);
4692 }
4693 
4694 /*
4695  * Assign a unique interface index for the phyint.
4696  */
4697 static boolean_t
4698 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4699 {
4700 	ASSERT(phyi->phyint_ifindex == 0);
4701 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4702 }
4703 
4704 /*
4705  * Initialize the flags on `phyi' as per the provided mactype.
4706  */
4707 static void
4708 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
4709 {
4710 	uint64_t flags = 0;
4711 
4712 	/*
4713 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
4714 	 * we always presume the underlying hardware is working and set
4715 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
4716 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
4717 	 * there are no active interfaces in the group so we set PHYI_FAILED.
4718 	 */
4719 	if (mactype == SUNW_DL_IPMP)
4720 		flags |= PHYI_FAILED;
4721 	else
4722 		flags |= PHYI_RUNNING;
4723 
4724 	switch (mactype) {
4725 	case SUNW_DL_VNI:
4726 		flags |= PHYI_VIRTUAL;
4727 		break;
4728 	case SUNW_DL_IPMP:
4729 		flags |= PHYI_IPMP;
4730 		break;
4731 	case DL_LOOP:
4732 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
4733 		break;
4734 	}
4735 
4736 	mutex_enter(&phyi->phyint_lock);
4737 	phyi->phyint_flags |= flags;
4738 	mutex_exit(&phyi->phyint_lock);
4739 }
4740 
4741 /*
4742  * Return a pointer to the ill which matches the supplied name.  Note that
4743  * the ill name length includes the null termination character.  (May be
4744  * called as writer.)
4745  * If do_alloc and the interface is "lo0" it will be automatically created.
4746  * Cannot bump up reference on condemned ills. So dup detect can't be done
4747  * using this func.
4748  */
4749 ill_t *
4750 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4751     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4752     ip_stack_t *ipst)
4753 {
4754 	ill_t	*ill;
4755 	ipif_t	*ipif;
4756 	ipsq_t	*ipsq;
4757 	kstat_named_t	*kn;
4758 	boolean_t isloopback;
4759 	in6_addr_t ov6addr;
4760 
4761 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4762 
4763 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4764 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4765 	rw_exit(&ipst->ips_ill_g_lock);
4766 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4767 		return (ill);
4768 
4769 	/*
4770 	 * Couldn't find it.  Does this happen to be a lookup for the
4771 	 * loopback device and are we allowed to allocate it?
4772 	 */
4773 	if (!isloopback || !do_alloc)
4774 		return (NULL);
4775 
4776 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4777 
4778 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4779 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4780 		rw_exit(&ipst->ips_ill_g_lock);
4781 		return (ill);
4782 	}
4783 
4784 	/* Create the loopback device on demand */
4785 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4786 	    sizeof (ipif_loopback_name), BPRI_MED));
4787 	if (ill == NULL)
4788 		goto done;
4789 
4790 	*ill = ill_null;
4791 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4792 	ill->ill_ipst = ipst;
4793 	netstack_hold(ipst->ips_netstack);
4794 	/*
4795 	 * For exclusive stacks we set the zoneid to zero
4796 	 * to make IP operate as if in the global zone.
4797 	 */
4798 	ill->ill_zoneid = GLOBAL_ZONEID;
4799 
4800 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4801 	if (ill->ill_phyint == NULL)
4802 		goto done;
4803 
4804 	if (isv6)
4805 		ill->ill_phyint->phyint_illv6 = ill;
4806 	else
4807 		ill->ill_phyint->phyint_illv4 = ill;
4808 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4809 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
4810 
4811 	ill->ill_max_frag = IP_LOOPBACK_MTU;
4812 	/* Add room for tcp+ip headers */
4813 	if (isv6) {
4814 		ill->ill_isv6 = B_TRUE;
4815 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
4816 	} else {
4817 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
4818 	}
4819 	if (!ill_allocate_mibs(ill))
4820 		goto done;
4821 	ill->ill_max_mtu = ill->ill_max_frag;
4822 	/*
4823 	 * ipif_loopback_name can't be pointed at directly because its used
4824 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
4825 	 * from the glist, ill_glist_delete() sets the first character of
4826 	 * ill_name to '\0'.
4827 	 */
4828 	ill->ill_name = (char *)ill + sizeof (*ill);
4829 	(void) strcpy(ill->ill_name, ipif_loopback_name);
4830 	ill->ill_name_length = sizeof (ipif_loopback_name);
4831 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
4832 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4833 
4834 	ill->ill_global_timer = INFINITY;
4835 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4836 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4837 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4838 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4839 
4840 	/* No resolver here. */
4841 	ill->ill_net_type = IRE_LOOPBACK;
4842 
4843 	/* Initialize the ipsq */
4844 	if (!ipsq_init(ill, B_FALSE))
4845 		goto done;
4846 
4847 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE);
4848 	if (ipif == NULL)
4849 		goto done;
4850 
4851 	ill->ill_flags = ILLF_MULTICAST;
4852 
4853 	ov6addr = ipif->ipif_v6lcl_addr;
4854 	/* Set up default loopback address and mask. */
4855 	if (!isv6) {
4856 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
4857 
4858 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
4859 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4860 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
4861 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4862 		    ipif->ipif_v6subnet);
4863 		ill->ill_flags |= ILLF_IPV4;
4864 	} else {
4865 		ipif->ipif_v6lcl_addr = ipv6_loopback;
4866 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4867 		ipif->ipif_v6net_mask = ipv6_all_ones;
4868 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4869 		    ipif->ipif_v6subnet);
4870 		ill->ill_flags |= ILLF_IPV6;
4871 	}
4872 
4873 	/*
4874 	 * Chain us in at the end of the ill list. hold the ill
4875 	 * before we make it globally visible. 1 for the lookup.
4876 	 */
4877 	ill->ill_refcnt = 0;
4878 	ill_refhold(ill);
4879 
4880 	ill->ill_frag_count = 0;
4881 	ill->ill_frag_free_num_pkts = 0;
4882 	ill->ill_last_frag_clean_time = 0;
4883 
4884 	ipsq = ill->ill_phyint->phyint_ipsq;
4885 
4886 	if (ill_glist_insert(ill, "lo", isv6) != 0)
4887 		cmn_err(CE_PANIC, "cannot insert loopback interface");
4888 
4889 	/* Let SCTP know so that it can add this to its list */
4890 	sctp_update_ill(ill, SCTP_ILL_INSERT);
4891 
4892 	/*
4893 	 * We have already assigned ipif_v6lcl_addr above, but we need to
4894 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
4895 	 * requires to be after ill_glist_insert() since we need the
4896 	 * ill_index set. Pass on ipv6_loopback as the old address.
4897 	 */
4898 	sctp_update_ipif_addr(ipif, ov6addr);
4899 
4900 	/*
4901 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
4902 	 * If so, free our original one.
4903 	 */
4904 	if (ipsq != ill->ill_phyint->phyint_ipsq)
4905 		ipsq_delete(ipsq);
4906 
4907 	if (ipst->ips_loopback_ksp == NULL) {
4908 		/* Export loopback interface statistics */
4909 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
4910 		    ipif_loopback_name, "net",
4911 		    KSTAT_TYPE_NAMED, 2, 0,
4912 		    ipst->ips_netstack->netstack_stackid);
4913 		if (ipst->ips_loopback_ksp != NULL) {
4914 			ipst->ips_loopback_ksp->ks_update =
4915 			    loopback_kstat_update;
4916 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
4917 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
4918 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
4919 			ipst->ips_loopback_ksp->ks_private =
4920 			    (void *)(uintptr_t)ipst->ips_netstack->
4921 			    netstack_stackid;
4922 			kstat_install(ipst->ips_loopback_ksp);
4923 		}
4924 	}
4925 
4926 	if (error != NULL)
4927 		*error = 0;
4928 	*did_alloc = B_TRUE;
4929 	rw_exit(&ipst->ips_ill_g_lock);
4930 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
4931 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
4932 	return (ill);
4933 done:
4934 	if (ill != NULL) {
4935 		if (ill->ill_phyint != NULL) {
4936 			ipsq = ill->ill_phyint->phyint_ipsq;
4937 			if (ipsq != NULL) {
4938 				ipsq->ipsq_phyint = NULL;
4939 				ipsq_delete(ipsq);
4940 			}
4941 			mi_free(ill->ill_phyint);
4942 		}
4943 		ill_free_mib(ill);
4944 		if (ill->ill_ipst != NULL)
4945 			netstack_rele(ill->ill_ipst->ips_netstack);
4946 		mi_free(ill);
4947 	}
4948 	rw_exit(&ipst->ips_ill_g_lock);
4949 	if (error != NULL)
4950 		*error = ENOMEM;
4951 	return (NULL);
4952 }
4953 
4954 /*
4955  * For IPP calls - use the ip_stack_t for global stack.
4956  */
4957 ill_t *
4958 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
4959     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
4960 {
4961 	ip_stack_t	*ipst;
4962 	ill_t		*ill;
4963 
4964 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
4965 	if (ipst == NULL) {
4966 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
4967 		return (NULL);
4968 	}
4969 
4970 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
4971 	netstack_rele(ipst->ips_netstack);
4972 	return (ill);
4973 }
4974 
4975 /*
4976  * Return a pointer to the ill which matches the index and IP version type.
4977  */
4978 ill_t *
4979 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
4980     ipsq_func_t func, int *err, ip_stack_t *ipst)
4981 {
4982 	ill_t	*ill;
4983 	ipsq_t  *ipsq;
4984 	phyint_t *phyi;
4985 
4986 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
4987 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
4988 
4989 	if (err != NULL)
4990 		*err = 0;
4991 
4992 	/*
4993 	 * Indexes are stored in the phyint - a common structure
4994 	 * to both IPv4 and IPv6.
4995 	 */
4996 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4997 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4998 	    (void *) &index, NULL);
4999 	if (phyi != NULL) {
5000 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5001 		if (ill != NULL) {
5002 			/*
5003 			 * The block comment at the start of ipif_down
5004 			 * explains the use of the macros used below
5005 			 */
5006 			GRAB_CONN_LOCK(q);
5007 			mutex_enter(&ill->ill_lock);
5008 			if (ILL_CAN_LOOKUP(ill)) {
5009 				ill_refhold_locked(ill);
5010 				mutex_exit(&ill->ill_lock);
5011 				RELEASE_CONN_LOCK(q);
5012 				rw_exit(&ipst->ips_ill_g_lock);
5013 				return (ill);
5014 			} else if (ILL_CAN_WAIT(ill, q)) {
5015 				ipsq = ill->ill_phyint->phyint_ipsq;
5016 				mutex_enter(&ipsq->ipsq_lock);
5017 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5018 				rw_exit(&ipst->ips_ill_g_lock);
5019 				mutex_exit(&ill->ill_lock);
5020 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5021 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5022 				mutex_exit(&ipsq->ipsq_lock);
5023 				RELEASE_CONN_LOCK(q);
5024 				if (err != NULL)
5025 					*err = EINPROGRESS;
5026 				return (NULL);
5027 			}
5028 			RELEASE_CONN_LOCK(q);
5029 			mutex_exit(&ill->ill_lock);
5030 		}
5031 	}
5032 	rw_exit(&ipst->ips_ill_g_lock);
5033 	if (err != NULL)
5034 		*err = ENXIO;
5035 	return (NULL);
5036 }
5037 
5038 /*
5039  * Return the ifindex next in sequence after the passed in ifindex.
5040  * If there is no next ifindex for the given protocol, return 0.
5041  */
5042 uint_t
5043 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5044 {
5045 	phyint_t *phyi;
5046 	phyint_t *phyi_initial;
5047 	uint_t   ifindex;
5048 
5049 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5050 
5051 	if (index == 0) {
5052 		phyi = avl_first(
5053 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5054 	} else {
5055 		phyi = phyi_initial = avl_find(
5056 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5057 		    (void *) &index, NULL);
5058 	}
5059 
5060 	for (; phyi != NULL;
5061 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5062 	    phyi, AVL_AFTER)) {
5063 		/*
5064 		 * If we're not returning the first interface in the tree
5065 		 * and we still haven't moved past the phyint_t that
5066 		 * corresponds to index, avl_walk needs to be called again
5067 		 */
5068 		if (!((index != 0) && (phyi == phyi_initial))) {
5069 			if (isv6) {
5070 				if ((phyi->phyint_illv6) &&
5071 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5072 				    (phyi->phyint_illv6->ill_isv6 == 1))
5073 					break;
5074 			} else {
5075 				if ((phyi->phyint_illv4) &&
5076 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5077 				    (phyi->phyint_illv4->ill_isv6 == 0))
5078 					break;
5079 			}
5080 		}
5081 	}
5082 
5083 	rw_exit(&ipst->ips_ill_g_lock);
5084 
5085 	if (phyi != NULL)
5086 		ifindex = phyi->phyint_ifindex;
5087 	else
5088 		ifindex = 0;
5089 
5090 	return (ifindex);
5091 }
5092 
5093 /*
5094  * Return the ifindex for the named interface.
5095  * If there is no next ifindex for the interface, return 0.
5096  */
5097 uint_t
5098 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5099 {
5100 	phyint_t	*phyi;
5101 	avl_index_t	where = 0;
5102 	uint_t		ifindex;
5103 
5104 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5105 
5106 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5107 	    name, &where)) == NULL) {
5108 		rw_exit(&ipst->ips_ill_g_lock);
5109 		return (0);
5110 	}
5111 
5112 	ifindex = phyi->phyint_ifindex;
5113 
5114 	rw_exit(&ipst->ips_ill_g_lock);
5115 
5116 	return (ifindex);
5117 }
5118 
5119 /*
5120  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5121  * that gives a running thread a reference to the ill. This reference must be
5122  * released by the thread when it is done accessing the ill and related
5123  * objects. ill_refcnt can not be used to account for static references
5124  * such as other structures pointing to an ill. Callers must generally
5125  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5126  * or be sure that the ill is not being deleted or changing state before
5127  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5128  * ill won't change any of its critical state such as address, netmask etc.
5129  */
5130 void
5131 ill_refhold(ill_t *ill)
5132 {
5133 	mutex_enter(&ill->ill_lock);
5134 	ill->ill_refcnt++;
5135 	ILL_TRACE_REF(ill);
5136 	mutex_exit(&ill->ill_lock);
5137 }
5138 
5139 void
5140 ill_refhold_locked(ill_t *ill)
5141 {
5142 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5143 	ill->ill_refcnt++;
5144 	ILL_TRACE_REF(ill);
5145 }
5146 
5147 int
5148 ill_check_and_refhold(ill_t *ill)
5149 {
5150 	mutex_enter(&ill->ill_lock);
5151 	if (ILL_CAN_LOOKUP(ill)) {
5152 		ill_refhold_locked(ill);
5153 		mutex_exit(&ill->ill_lock);
5154 		return (0);
5155 	}
5156 	mutex_exit(&ill->ill_lock);
5157 	return (ILL_LOOKUP_FAILED);
5158 }
5159 
5160 /*
5161  * Must not be called while holding any locks. Otherwise if this is
5162  * the last reference to be released, there is a chance of recursive mutex
5163  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5164  * to restart an ioctl.
5165  */
5166 void
5167 ill_refrele(ill_t *ill)
5168 {
5169 	mutex_enter(&ill->ill_lock);
5170 	ASSERT(ill->ill_refcnt != 0);
5171 	ill->ill_refcnt--;
5172 	ILL_UNTRACE_REF(ill);
5173 	if (ill->ill_refcnt != 0) {
5174 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5175 		mutex_exit(&ill->ill_lock);
5176 		return;
5177 	}
5178 
5179 	/* Drops the ill_lock */
5180 	ipif_ill_refrele_tail(ill);
5181 }
5182 
5183 /*
5184  * Obtain a weak reference count on the ill. This reference ensures the
5185  * ill won't be freed, but the ill may change any of its critical state
5186  * such as netmask, address etc. Returns an error if the ill has started
5187  * closing.
5188  */
5189 boolean_t
5190 ill_waiter_inc(ill_t *ill)
5191 {
5192 	mutex_enter(&ill->ill_lock);
5193 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5194 		mutex_exit(&ill->ill_lock);
5195 		return (B_FALSE);
5196 	}
5197 	ill->ill_waiters++;
5198 	mutex_exit(&ill->ill_lock);
5199 	return (B_TRUE);
5200 }
5201 
5202 void
5203 ill_waiter_dcr(ill_t *ill)
5204 {
5205 	mutex_enter(&ill->ill_lock);
5206 	ill->ill_waiters--;
5207 	if (ill->ill_waiters == 0)
5208 		cv_broadcast(&ill->ill_cv);
5209 	mutex_exit(&ill->ill_lock);
5210 }
5211 
5212 /*
5213  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5214  * driver.  We construct best guess defaults for lower level information that
5215  * we need.  If an interface is brought up without injection of any overriding
5216  * information from outside, we have to be ready to go with these defaults.
5217  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5218  * we primarely want the dl_provider_style.
5219  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5220  * at which point we assume the other part of the information is valid.
5221  */
5222 void
5223 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5224 {
5225 	uchar_t		*brdcst_addr;
5226 	uint_t		brdcst_addr_length, phys_addr_length;
5227 	t_scalar_t	sap_length;
5228 	dl_info_ack_t	*dlia;
5229 	ip_m_t		*ipm;
5230 	dl_qos_cl_sel1_t *sel1;
5231 	int		min_mtu;
5232 
5233 	ASSERT(IAM_WRITER_ILL(ill));
5234 
5235 	/*
5236 	 * Till the ill is fully up ILL_CHANGING will be set and
5237 	 * the ill is not globally visible. So no need for a lock.
5238 	 */
5239 	dlia = (dl_info_ack_t *)mp->b_rptr;
5240 	ill->ill_mactype = dlia->dl_mac_type;
5241 
5242 	ipm = ip_m_lookup(dlia->dl_mac_type);
5243 	if (ipm == NULL) {
5244 		ipm = ip_m_lookup(DL_OTHER);
5245 		ASSERT(ipm != NULL);
5246 	}
5247 	ill->ill_media = ipm;
5248 
5249 	/*
5250 	 * When the new DLPI stuff is ready we'll pull lengths
5251 	 * from dlia.
5252 	 */
5253 	if (dlia->dl_version == DL_VERSION_2) {
5254 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5255 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5256 		    brdcst_addr_length);
5257 		if (brdcst_addr == NULL) {
5258 			brdcst_addr_length = 0;
5259 		}
5260 		sap_length = dlia->dl_sap_length;
5261 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5262 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5263 		    brdcst_addr_length, sap_length, phys_addr_length));
5264 	} else {
5265 		brdcst_addr_length = 6;
5266 		brdcst_addr = ip_six_byte_all_ones;
5267 		sap_length = -2;
5268 		phys_addr_length = brdcst_addr_length;
5269 	}
5270 
5271 	ill->ill_bcast_addr_length = brdcst_addr_length;
5272 	ill->ill_phys_addr_length = phys_addr_length;
5273 	ill->ill_sap_length = sap_length;
5274 
5275 	/*
5276 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
5277 	 * but we must ensure a minimum IP MTU is used since other bits of
5278 	 * IP will fly apart otherwise.
5279 	 */
5280 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
5281 	ill->ill_max_frag  = MAX(min_mtu, dlia->dl_max_sdu);
5282 	ill->ill_max_mtu = ill->ill_max_frag;
5283 
5284 	ill->ill_type = ipm->ip_m_type;
5285 
5286 	if (!ill->ill_dlpi_style_set) {
5287 		if (dlia->dl_provider_style == DL_STYLE2)
5288 			ill->ill_needs_attach = 1;
5289 
5290 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
5291 
5292 		/*
5293 		 * Allocate the first ipif on this ill.  We don't delay it
5294 		 * further as ioctl handling assumes at least one ipif exists.
5295 		 *
5296 		 * At this point we don't know whether the ill is v4 or v6.
5297 		 * We will know this whan the SIOCSLIFNAME happens and
5298 		 * the correct value for ill_isv6 will be assigned in
5299 		 * ipif_set_values(). We need to hold the ill lock and
5300 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5301 		 * the wakeup.
5302 		 */
5303 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5304 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE);
5305 		mutex_enter(&ill->ill_lock);
5306 		ASSERT(ill->ill_dlpi_style_set == 0);
5307 		ill->ill_dlpi_style_set = 1;
5308 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5309 		cv_broadcast(&ill->ill_cv);
5310 		mutex_exit(&ill->ill_lock);
5311 		freemsg(mp);
5312 		return;
5313 	}
5314 	ASSERT(ill->ill_ipif != NULL);
5315 	/*
5316 	 * We know whether it is IPv4 or IPv6 now, as this is the
5317 	 * second DL_INFO_ACK we are recieving in response to the
5318 	 * DL_INFO_REQ sent in ipif_set_values.
5319 	 */
5320 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
5321 	/*
5322 	 * Set ipif_mtu which is used to set the IRE's
5323 	 * ire_max_frag value. The driver could have sent
5324 	 * a different mtu from what it sent last time. No
5325 	 * need to call ipif_mtu_change because IREs have
5326 	 * not yet been created.
5327 	 */
5328 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5329 	/*
5330 	 * Clear all the flags that were set based on ill_bcast_addr_length
5331 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5332 	 * changed now and we need to re-evaluate.
5333 	 */
5334 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5335 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5336 
5337 	/*
5338 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5339 	 * changed now.
5340 	 *
5341 	 * NOTE: The IPMP meta-interface is special-cased because it starts
5342 	 * with no underlying interfaces (and thus an unknown broadcast
5343 	 * address length), but we enforce that an interface is broadcast-
5344 	 * capable as part of allowing it to join a group.
5345 	 */
5346 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
5347 		if (ill->ill_resolver_mp != NULL)
5348 			freemsg(ill->ill_resolver_mp);
5349 		if (ill->ill_bcast_mp != NULL)
5350 			freemsg(ill->ill_bcast_mp);
5351 		if (ill->ill_flags & ILLF_XRESOLV)
5352 			ill->ill_net_type = IRE_IF_RESOLVER;
5353 		else
5354 			ill->ill_net_type = IRE_IF_NORESOLVER;
5355 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5356 		    ill->ill_phys_addr_length,
5357 		    ill->ill_sap,
5358 		    ill->ill_sap_length);
5359 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5360 
5361 		if (ill->ill_isv6)
5362 			/*
5363 			 * Note: xresolv interfaces will eventually need NOARP
5364 			 * set here as well, but that will require those
5365 			 * external resolvers to have some knowledge of
5366 			 * that flag and act appropriately. Not to be changed
5367 			 * at present.
5368 			 */
5369 			ill->ill_flags |= ILLF_NONUD;
5370 		else
5371 			ill->ill_flags |= ILLF_NOARP;
5372 
5373 		if (ill->ill_mactype == SUNW_DL_VNI) {
5374 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5375 		} else if (ill->ill_phys_addr_length == 0 ||
5376 		    ill->ill_mactype == DL_IPV4 ||
5377 		    ill->ill_mactype == DL_IPV6) {
5378 			/*
5379 			 * The underying link is point-to-point, so mark the
5380 			 * interface as such.  We can do IP multicast over
5381 			 * such a link since it transmits all network-layer
5382 			 * packets to the remote side the same way.
5383 			 */
5384 			ill->ill_flags |= ILLF_MULTICAST;
5385 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5386 		}
5387 	} else {
5388 		ill->ill_net_type = IRE_IF_RESOLVER;
5389 		if (ill->ill_bcast_mp != NULL)
5390 			freemsg(ill->ill_bcast_mp);
5391 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5392 		    ill->ill_bcast_addr_length, ill->ill_sap,
5393 		    ill->ill_sap_length);
5394 		/*
5395 		 * Later detect lack of DLPI driver multicast
5396 		 * capability by catching DL_ENABMULTI errors in
5397 		 * ip_rput_dlpi.
5398 		 */
5399 		ill->ill_flags |= ILLF_MULTICAST;
5400 		if (!ill->ill_isv6)
5401 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5402 	}
5403 
5404 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
5405 	if (ill->ill_mactype == SUNW_DL_IPMP)
5406 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
5407 
5408 	/* By default an interface does not support any CoS marking */
5409 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5410 
5411 	/*
5412 	 * If we get QoS information in DL_INFO_ACK, the device supports
5413 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5414 	 */
5415 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5416 	    dlia->dl_qos_length);
5417 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5418 		ill->ill_flags |= ILLF_COS_ENABLED;
5419 	}
5420 
5421 	/* Clear any previous error indication. */
5422 	ill->ill_error = 0;
5423 	freemsg(mp);
5424 }
5425 
5426 /*
5427  * Perform various checks to verify that an address would make sense as a
5428  * local, remote, or subnet interface address.
5429  */
5430 static boolean_t
5431 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5432 {
5433 	ipaddr_t	net_mask;
5434 
5435 	/*
5436 	 * Don't allow all zeroes, or all ones, but allow
5437 	 * all ones netmask.
5438 	 */
5439 	if ((net_mask = ip_net_mask(addr)) == 0)
5440 		return (B_FALSE);
5441 	/* A given netmask overrides the "guess" netmask */
5442 	if (subnet_mask != 0)
5443 		net_mask = subnet_mask;
5444 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5445 	    (addr == (addr | ~net_mask)))) {
5446 		return (B_FALSE);
5447 	}
5448 
5449 	/*
5450 	 * Even if the netmask is all ones, we do not allow address to be
5451 	 * 255.255.255.255
5452 	 */
5453 	if (addr == INADDR_BROADCAST)
5454 		return (B_FALSE);
5455 
5456 	if (CLASSD(addr))
5457 		return (B_FALSE);
5458 
5459 	return (B_TRUE);
5460 }
5461 
5462 #define	V6_IPIF_LINKLOCAL(p)	\
5463 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5464 
5465 /*
5466  * Compare two given ipifs and check if the second one is better than
5467  * the first one using the order of preference (not taking deprecated
5468  * into acount) specified in ipif_lookup_multicast().
5469  */
5470 static boolean_t
5471 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5472 {
5473 	/* Check the least preferred first. */
5474 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5475 		/* If both ipifs are the same, use the first one. */
5476 		if (IS_LOOPBACK(new_ipif->ipif_ill))
5477 			return (B_FALSE);
5478 		else
5479 			return (B_TRUE);
5480 	}
5481 
5482 	/* For IPv6, check for link local address. */
5483 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5484 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5485 		    V6_IPIF_LINKLOCAL(new_ipif)) {
5486 			/* The second one is equal or less preferred. */
5487 			return (B_FALSE);
5488 		} else {
5489 			return (B_TRUE);
5490 		}
5491 	}
5492 
5493 	/* Then check for point to point interface. */
5494 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5495 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5496 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5497 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5498 			return (B_FALSE);
5499 		} else {
5500 			return (B_TRUE);
5501 		}
5502 	}
5503 
5504 	/* old_ipif is a normal interface, so no need to use the new one. */
5505 	return (B_FALSE);
5506 }
5507 
5508 /*
5509  * Find a mulitcast-capable ipif given an IP instance and zoneid.
5510  * The ipif must be up, and its ill must multicast-capable, not
5511  * condemned, not an underlying interface in an IPMP group, and
5512  * not a VNI interface.  Order of preference:
5513  *
5514  * 	1a. normal
5515  * 	1b. normal, but deprecated
5516  * 	2a. point to point
5517  * 	2b. point to point, but deprecated
5518  * 	3a. link local
5519  * 	3b. link local, but deprecated
5520  * 	4. loopback.
5521  */
5522 ipif_t *
5523 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5524 {
5525 	ill_t			*ill;
5526 	ill_walk_context_t	ctx;
5527 	ipif_t			*ipif;
5528 	ipif_t			*saved_ipif = NULL;
5529 	ipif_t			*dep_ipif = NULL;
5530 
5531 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5532 	if (isv6)
5533 		ill = ILL_START_WALK_V6(&ctx, ipst);
5534 	else
5535 		ill = ILL_START_WALK_V4(&ctx, ipst);
5536 
5537 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5538 		mutex_enter(&ill->ill_lock);
5539 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) ||
5540 		    !(ill->ill_flags & ILLF_MULTICAST)) {
5541 			mutex_exit(&ill->ill_lock);
5542 			continue;
5543 		}
5544 		for (ipif = ill->ill_ipif; ipif != NULL;
5545 		    ipif = ipif->ipif_next) {
5546 			if (zoneid != ipif->ipif_zoneid &&
5547 			    zoneid != ALL_ZONES &&
5548 			    ipif->ipif_zoneid != ALL_ZONES) {
5549 				continue;
5550 			}
5551 			if (!(ipif->ipif_flags & IPIF_UP) ||
5552 			    !IPIF_CAN_LOOKUP(ipif)) {
5553 				continue;
5554 			}
5555 
5556 			/*
5557 			 * Found one candidate.  If it is deprecated,
5558 			 * remember it in dep_ipif.  If it is not deprecated,
5559 			 * remember it in saved_ipif.
5560 			 */
5561 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5562 				if (dep_ipif == NULL) {
5563 					dep_ipif = ipif;
5564 				} else if (ipif_comp_multi(dep_ipif, ipif,
5565 				    isv6)) {
5566 					/*
5567 					 * If the previous dep_ipif does not
5568 					 * belong to the same ill, we've done
5569 					 * a ipif_refhold() on it.  So we need
5570 					 * to release it.
5571 					 */
5572 					if (dep_ipif->ipif_ill != ill)
5573 						ipif_refrele(dep_ipif);
5574 					dep_ipif = ipif;
5575 				}
5576 				continue;
5577 			}
5578 			if (saved_ipif == NULL) {
5579 				saved_ipif = ipif;
5580 			} else {
5581 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5582 					if (saved_ipif->ipif_ill != ill)
5583 						ipif_refrele(saved_ipif);
5584 					saved_ipif = ipif;
5585 				}
5586 			}
5587 		}
5588 		/*
5589 		 * Before going to the next ill, do a ipif_refhold() on the
5590 		 * saved ones.
5591 		 */
5592 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5593 			ipif_refhold_locked(saved_ipif);
5594 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5595 			ipif_refhold_locked(dep_ipif);
5596 		mutex_exit(&ill->ill_lock);
5597 	}
5598 	rw_exit(&ipst->ips_ill_g_lock);
5599 
5600 	/*
5601 	 * If we have only the saved_ipif, return it.  But if we have both
5602 	 * saved_ipif and dep_ipif, check to see which one is better.
5603 	 */
5604 	if (saved_ipif != NULL) {
5605 		if (dep_ipif != NULL) {
5606 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5607 				ipif_refrele(saved_ipif);
5608 				return (dep_ipif);
5609 			} else {
5610 				ipif_refrele(dep_ipif);
5611 				return (saved_ipif);
5612 			}
5613 		}
5614 		return (saved_ipif);
5615 	} else {
5616 		return (dep_ipif);
5617 	}
5618 }
5619 
5620 /*
5621  * This function is called when an application does not specify an interface
5622  * to be used for multicast traffic (joining a group/sending data).  It
5623  * calls ire_lookup_multi() to look for an interface route for the
5624  * specified multicast group.  Doing this allows the administrator to add
5625  * prefix routes for multicast to indicate which interface to be used for
5626  * multicast traffic in the above scenario.  The route could be for all
5627  * multicast (224.0/4), for a single multicast group (a /32 route) or
5628  * anything in between.  If there is no such multicast route, we just find
5629  * any multicast capable interface and return it.  The returned ipif
5630  * is refhold'ed.
5631  */
5632 ipif_t *
5633 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5634 {
5635 	ire_t			*ire;
5636 	ipif_t			*ipif;
5637 
5638 	ire = ire_lookup_multi(group, zoneid, ipst);
5639 	if (ire != NULL) {
5640 		ipif = ire->ire_ipif;
5641 		ipif_refhold(ipif);
5642 		ire_refrele(ire);
5643 		return (ipif);
5644 	}
5645 
5646 	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5647 }
5648 
5649 /*
5650  * Look for an ipif with the specified interface address and destination.
5651  * The destination address is used only for matching point-to-point interfaces.
5652  */
5653 ipif_t *
5654 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5655     ipsq_func_t func, int *error, ip_stack_t *ipst)
5656 {
5657 	ipif_t	*ipif;
5658 	ill_t	*ill;
5659 	ill_walk_context_t ctx;
5660 	ipsq_t	*ipsq;
5661 
5662 	if (error != NULL)
5663 		*error = 0;
5664 
5665 	/*
5666 	 * First match all the point-to-point interfaces
5667 	 * before looking at non-point-to-point interfaces.
5668 	 * This is done to avoid returning non-point-to-point
5669 	 * ipif instead of unnumbered point-to-point ipif.
5670 	 */
5671 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5672 	ill = ILL_START_WALK_V4(&ctx, ipst);
5673 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5674 		GRAB_CONN_LOCK(q);
5675 		mutex_enter(&ill->ill_lock);
5676 		for (ipif = ill->ill_ipif; ipif != NULL;
5677 		    ipif = ipif->ipif_next) {
5678 			/* Allow the ipif to be down */
5679 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5680 			    (ipif->ipif_lcl_addr == if_addr) &&
5681 			    (ipif->ipif_pp_dst_addr == dst)) {
5682 				/*
5683 				 * The block comment at the start of ipif_down
5684 				 * explains the use of the macros used below
5685 				 */
5686 				if (IPIF_CAN_LOOKUP(ipif)) {
5687 					ipif_refhold_locked(ipif);
5688 					mutex_exit(&ill->ill_lock);
5689 					RELEASE_CONN_LOCK(q);
5690 					rw_exit(&ipst->ips_ill_g_lock);
5691 					return (ipif);
5692 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5693 					ipsq = ill->ill_phyint->phyint_ipsq;
5694 					mutex_enter(&ipsq->ipsq_lock);
5695 					mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5696 					mutex_exit(&ill->ill_lock);
5697 					rw_exit(&ipst->ips_ill_g_lock);
5698 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5699 					    ill);
5700 					mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5701 					mutex_exit(&ipsq->ipsq_lock);
5702 					RELEASE_CONN_LOCK(q);
5703 					if (error != NULL)
5704 						*error = EINPROGRESS;
5705 					return (NULL);
5706 				}
5707 			}
5708 		}
5709 		mutex_exit(&ill->ill_lock);
5710 		RELEASE_CONN_LOCK(q);
5711 	}
5712 	rw_exit(&ipst->ips_ill_g_lock);
5713 
5714 	/* lookup the ipif based on interface address */
5715 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
5716 	    ipst);
5717 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5718 	return (ipif);
5719 }
5720 
5721 /*
5722  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
5723  */
5724 static ipif_t *
5725 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp,
5726     zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
5727     ip_stack_t *ipst)
5728 {
5729 	ipif_t  *ipif;
5730 	ill_t   *ill;
5731 	boolean_t ptp = B_FALSE;
5732 	ipsq_t	*ipsq;
5733 	ill_walk_context_t	ctx;
5734 
5735 	if (error != NULL)
5736 		*error = 0;
5737 
5738 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5739 	/*
5740 	 * Repeat twice, first based on local addresses and
5741 	 * next time for pointopoint.
5742 	 */
5743 repeat:
5744 	ill = ILL_START_WALK_V4(&ctx, ipst);
5745 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5746 		if (match_ill != NULL && ill != match_ill &&
5747 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
5748 			continue;
5749 		}
5750 		GRAB_CONN_LOCK(q);
5751 		mutex_enter(&ill->ill_lock);
5752 		for (ipif = ill->ill_ipif; ipif != NULL;
5753 		    ipif = ipif->ipif_next) {
5754 			if (zoneid != ALL_ZONES &&
5755 			    zoneid != ipif->ipif_zoneid &&
5756 			    ipif->ipif_zoneid != ALL_ZONES)
5757 				continue;
5758 			/* Allow the ipif to be down */
5759 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5760 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5761 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5762 			    (ipif->ipif_pp_dst_addr == addr))) {
5763 				/*
5764 				 * The block comment at the start of ipif_down
5765 				 * explains the use of the macros used below
5766 				 */
5767 				if (IPIF_CAN_LOOKUP(ipif)) {
5768 					ipif_refhold_locked(ipif);
5769 					mutex_exit(&ill->ill_lock);
5770 					RELEASE_CONN_LOCK(q);
5771 					rw_exit(&ipst->ips_ill_g_lock);
5772 					return (ipif);
5773 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5774 					ipsq = ill->ill_phyint->phyint_ipsq;
5775 					mutex_enter(&ipsq->ipsq_lock);
5776 					mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5777 					mutex_exit(&ill->ill_lock);
5778 					rw_exit(&ipst->ips_ill_g_lock);
5779 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5780 					    ill);
5781 					mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5782 					mutex_exit(&ipsq->ipsq_lock);
5783 					RELEASE_CONN_LOCK(q);
5784 					if (error != NULL)
5785 						*error = EINPROGRESS;
5786 					return (NULL);
5787 				}
5788 			}
5789 		}
5790 		mutex_exit(&ill->ill_lock);
5791 		RELEASE_CONN_LOCK(q);
5792 	}
5793 
5794 	/* If we already did the ptp case, then we are done */
5795 	if (ptp) {
5796 		rw_exit(&ipst->ips_ill_g_lock);
5797 		if (error != NULL)
5798 			*error = ENXIO;
5799 		return (NULL);
5800 	}
5801 	ptp = B_TRUE;
5802 	goto repeat;
5803 }
5804 
5805 /*
5806  * Check if the address exists in the system.
5807  * We don't hold the conn_lock as we will not perform defered ipsqueue
5808  * operation.
5809  */
5810 boolean_t
5811 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
5812 {
5813 	ipif_t  *ipif;
5814 	ill_t   *ill;
5815 	ill_walk_context_t	ctx;
5816 
5817 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5818 
5819 	ill = ILL_START_WALK_V4(&ctx, ipst);
5820 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5821 		mutex_enter(&ill->ill_lock);
5822 		for (ipif = ill->ill_ipif; ipif != NULL;
5823 		    ipif = ipif->ipif_next) {
5824 			if (zoneid != ALL_ZONES &&
5825 			    zoneid != ipif->ipif_zoneid &&
5826 			    ipif->ipif_zoneid != ALL_ZONES)
5827 				continue;
5828 			/* Allow the ipif to be down */
5829 			/*
5830 			 * XXX Different from ipif_lookup_addr(), we don't do
5831 			 * twice lookups. As from bind()'s point of view, we
5832 			 * may return once we find a match.
5833 			 */
5834 			if (((ipif->ipif_lcl_addr == addr) &&
5835 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5836 			    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5837 			    (ipif->ipif_pp_dst_addr == addr))) {
5838 				/*
5839 				 * Allow bind() to be successful even if the
5840 				 * ipif is with IPIF_CHANGING bit set.
5841 				 */
5842 				mutex_exit(&ill->ill_lock);
5843 				rw_exit(&ipst->ips_ill_g_lock);
5844 				return (B_TRUE);
5845 			}
5846 		}
5847 		mutex_exit(&ill->ill_lock);
5848 	}
5849 
5850 	rw_exit(&ipst->ips_ill_g_lock);
5851 	return (B_FALSE);
5852 }
5853 
5854 /*
5855  * Lookup an ipif with the specified address.  For point-to-point links we
5856  * look for matches on either the destination address or the local address,
5857  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
5858  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
5859  * (or illgrp if `match_ill' is in an IPMP group).
5860  */
5861 ipif_t *
5862 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5863     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
5864 {
5865 	return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp,
5866 	    func, error, ipst));
5867 }
5868 
5869 /*
5870  * Special abbreviated version of ipif_lookup_addr() that doesn't match
5871  * `match_ill' across the IPMP group.  This function is only needed in some
5872  * corner-cases; almost everything should use ipif_lookup_addr().
5873  */
5874 static ipif_t *
5875 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
5876 {
5877 	ASSERT(match_ill != NULL);
5878 	return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES,
5879 	    NULL, NULL, NULL, NULL, ipst));
5880 }
5881 
5882 /*
5883  * Look for an ipif with the specified address. For point-point links
5884  * we look for matches on either the destination address and the local
5885  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5886  * is set.
5887  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
5888  * ill (or illgrp if `match_ill' is in an IPMP group).
5889  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
5890  */
5891 zoneid_t
5892 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
5893 {
5894 	zoneid_t zoneid;
5895 	ipif_t  *ipif;
5896 	ill_t   *ill;
5897 	boolean_t ptp = B_FALSE;
5898 	ill_walk_context_t	ctx;
5899 
5900 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5901 	/*
5902 	 * Repeat twice, first based on local addresses and
5903 	 * next time for pointopoint.
5904 	 */
5905 repeat:
5906 	ill = ILL_START_WALK_V4(&ctx, ipst);
5907 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5908 		if (match_ill != NULL && ill != match_ill &&
5909 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
5910 			continue;
5911 		}
5912 		mutex_enter(&ill->ill_lock);
5913 		for (ipif = ill->ill_ipif; ipif != NULL;
5914 		    ipif = ipif->ipif_next) {
5915 			/* Allow the ipif to be down */
5916 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5917 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5918 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5919 			    (ipif->ipif_pp_dst_addr == addr)) &&
5920 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
5921 				zoneid = ipif->ipif_zoneid;
5922 				mutex_exit(&ill->ill_lock);
5923 				rw_exit(&ipst->ips_ill_g_lock);
5924 				/*
5925 				 * If ipif_zoneid was ALL_ZONES then we have
5926 				 * a trusted extensions shared IP address.
5927 				 * In that case GLOBAL_ZONEID works to send.
5928 				 */
5929 				if (zoneid == ALL_ZONES)
5930 					zoneid = GLOBAL_ZONEID;
5931 				return (zoneid);
5932 			}
5933 		}
5934 		mutex_exit(&ill->ill_lock);
5935 	}
5936 
5937 	/* If we already did the ptp case, then we are done */
5938 	if (ptp) {
5939 		rw_exit(&ipst->ips_ill_g_lock);
5940 		return (ALL_ZONES);
5941 	}
5942 	ptp = B_TRUE;
5943 	goto repeat;
5944 }
5945 
5946 /*
5947  * Look for an ipif that matches the specified remote address i.e. the
5948  * ipif that would receive the specified packet.
5949  * First look for directly connected interfaces and then do a recursive
5950  * IRE lookup and pick the first ipif corresponding to the source address in the
5951  * ire.
5952  * Returns: held ipif
5953  */
5954 ipif_t *
5955 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
5956 {
5957 	ipif_t	*ipif;
5958 	ire_t	*ire;
5959 	ip_stack_t	*ipst = ill->ill_ipst;
5960 
5961 	ASSERT(!ill->ill_isv6);
5962 
5963 	/*
5964 	 * Someone could be changing this ipif currently or change it
5965 	 * after we return this. Thus  a few packets could use the old
5966 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
5967 	 * will atomically be updated or cleaned up with the new value
5968 	 * Thus we don't need a lock to check the flags or other attrs below.
5969 	 */
5970 	mutex_enter(&ill->ill_lock);
5971 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
5972 		if (!IPIF_CAN_LOOKUP(ipif))
5973 			continue;
5974 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
5975 		    ipif->ipif_zoneid != ALL_ZONES)
5976 			continue;
5977 		/* Allow the ipif to be down */
5978 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
5979 			if ((ipif->ipif_pp_dst_addr == addr) ||
5980 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
5981 			    ipif->ipif_lcl_addr == addr)) {
5982 				ipif_refhold_locked(ipif);
5983 				mutex_exit(&ill->ill_lock);
5984 				return (ipif);
5985 			}
5986 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
5987 			ipif_refhold_locked(ipif);
5988 			mutex_exit(&ill->ill_lock);
5989 			return (ipif);
5990 		}
5991 	}
5992 	mutex_exit(&ill->ill_lock);
5993 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
5994 	    NULL, MATCH_IRE_RECURSIVE, ipst);
5995 	if (ire != NULL) {
5996 		/*
5997 		 * The callers of this function wants to know the
5998 		 * interface on which they have to send the replies
5999 		 * back. For IREs that have ire_stq and ire_ipif
6000 		 * derived from different ills, we really don't care
6001 		 * what we return here.
6002 		 */
6003 		ipif = ire->ire_ipif;
6004 		if (ipif != NULL) {
6005 			ipif_refhold(ipif);
6006 			ire_refrele(ire);
6007 			return (ipif);
6008 		}
6009 		ire_refrele(ire);
6010 	}
6011 	/* Pick the first interface */
6012 	ipif = ipif_get_next_ipif(NULL, ill);
6013 	return (ipif);
6014 }
6015 
6016 /*
6017  * This func does not prevent refcnt from increasing. But if
6018  * the caller has taken steps to that effect, then this func
6019  * can be used to determine whether the ill has become quiescent
6020  */
6021 static boolean_t
6022 ill_is_quiescent(ill_t *ill)
6023 {
6024 	ipif_t	*ipif;
6025 
6026 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6027 
6028 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6029 		if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) {
6030 			return (B_FALSE);
6031 		}
6032 	}
6033 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
6034 		return (B_FALSE);
6035 	}
6036 	return (B_TRUE);
6037 }
6038 
6039 boolean_t
6040 ill_is_freeable(ill_t *ill)
6041 {
6042 	ipif_t	*ipif;
6043 
6044 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6045 
6046 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6047 		if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) {
6048 			return (B_FALSE);
6049 		}
6050 	}
6051 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
6052 		return (B_FALSE);
6053 	}
6054 	return (B_TRUE);
6055 }
6056 
6057 /*
6058  * This func does not prevent refcnt from increasing. But if
6059  * the caller has taken steps to that effect, then this func
6060  * can be used to determine whether the ipif has become quiescent
6061  */
6062 static boolean_t
6063 ipif_is_quiescent(ipif_t *ipif)
6064 {
6065 	ill_t *ill;
6066 
6067 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6068 
6069 	if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) {
6070 		return (B_FALSE);
6071 	}
6072 
6073 	ill = ipif->ipif_ill;
6074 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6075 	    ill->ill_logical_down) {
6076 		return (B_TRUE);
6077 	}
6078 
6079 	/* This is the last ipif going down or being deleted on this ill */
6080 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
6081 		return (B_FALSE);
6082 	}
6083 
6084 	return (B_TRUE);
6085 }
6086 
6087 /*
6088  * return true if the ipif can be destroyed: the ipif has to be quiescent
6089  * with zero references from ire/nce/ilm to it.
6090  */
6091 static boolean_t
6092 ipif_is_freeable(ipif_t *ipif)
6093 {
6094 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6095 	ASSERT(ipif->ipif_id != 0);
6096 	return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif));
6097 }
6098 
6099 /*
6100  * The ipif/ill/ire has been refreled. Do the tail processing.
6101  * Determine if the ipif or ill in question has become quiescent and if so
6102  * wakeup close and/or restart any queued pending ioctl that is waiting
6103  * for the ipif_down (or ill_down)
6104  */
6105 void
6106 ipif_ill_refrele_tail(ill_t *ill)
6107 {
6108 	mblk_t	*mp;
6109 	conn_t	*connp;
6110 	ipsq_t	*ipsq;
6111 	ipxop_t	*ipx;
6112 	ipif_t	*ipif;
6113 	dl_notify_ind_t *dlindp;
6114 
6115 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6116 
6117 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
6118 		/* ip_modclose() may be waiting */
6119 		cv_broadcast(&ill->ill_cv);
6120 	}
6121 
6122 	ipsq = ill->ill_phyint->phyint_ipsq;
6123 	mutex_enter(&ipsq->ipsq_lock);
6124 	ipx = ipsq->ipsq_xop;
6125 	mutex_enter(&ipx->ipx_lock);
6126 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
6127 		goto unlock;
6128 
6129 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
6130 
6131 	ipif = ipx->ipx_pending_ipif;
6132 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
6133 		goto unlock;
6134 
6135 	switch (ipx->ipx_waitfor) {
6136 	case IPIF_DOWN:
6137 		if (!ipif_is_quiescent(ipif))
6138 			goto unlock;
6139 		break;
6140 	case IPIF_FREE:
6141 		if (!ipif_is_freeable(ipif))
6142 			goto unlock;
6143 		break;
6144 	case ILL_DOWN:
6145 		if (!ill_is_quiescent(ill))
6146 			goto unlock;
6147 		break;
6148 	case ILL_FREE:
6149 		/*
6150 		 * ILL_FREE is only for loopback; normal ill teardown waits
6151 		 * synchronously in ip_modclose() without using ipx_waitfor,
6152 		 * handled by the cv_broadcast() at the top of this function.
6153 		 */
6154 		if (!ill_is_freeable(ill))
6155 			goto unlock;
6156 		break;
6157 	default:
6158 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
6159 		    (void *)ipsq, ipx->ipx_waitfor);
6160 	}
6161 
6162 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
6163 	mutex_exit(&ipx->ipx_lock);
6164 	mp = ipsq_pending_mp_get(ipsq, &connp);
6165 	mutex_exit(&ipsq->ipsq_lock);
6166 	mutex_exit(&ill->ill_lock);
6167 
6168 	ASSERT(mp != NULL);
6169 	/*
6170 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6171 	 * we can only get here when the current operation decides it
6172 	 * it needs to quiesce via ipsq_pending_mp_add().
6173 	 */
6174 	switch (mp->b_datap->db_type) {
6175 	case M_PCPROTO:
6176 	case M_PROTO:
6177 		/*
6178 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6179 		 */
6180 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6181 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6182 
6183 		switch (dlindp->dl_notification) {
6184 		case DL_NOTE_PHYS_ADDR:
6185 			qwriter_ip(ill, ill->ill_rq, mp,
6186 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6187 			return;
6188 		case DL_NOTE_REPLUMB:
6189 			qwriter_ip(ill, ill->ill_rq, mp,
6190 			    ill_replumb_tail, CUR_OP, B_TRUE);
6191 			return;
6192 		default:
6193 			ASSERT(0);
6194 			ill_refrele(ill);
6195 		}
6196 		break;
6197 
6198 	case M_ERROR:
6199 	case M_HANGUP:
6200 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6201 		    B_TRUE);
6202 		return;
6203 
6204 	case M_IOCTL:
6205 	case M_IOCDATA:
6206 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6207 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6208 		return;
6209 
6210 	default:
6211 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6212 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6213 	}
6214 	return;
6215 unlock:
6216 	mutex_exit(&ipsq->ipsq_lock);
6217 	mutex_exit(&ipx->ipx_lock);
6218 	mutex_exit(&ill->ill_lock);
6219 }
6220 
6221 #ifdef DEBUG
6222 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6223 static void
6224 th_trace_rrecord(th_trace_t *th_trace)
6225 {
6226 	tr_buf_t *tr_buf;
6227 	uint_t lastref;
6228 
6229 	lastref = th_trace->th_trace_lastref;
6230 	lastref++;
6231 	if (lastref == TR_BUF_MAX)
6232 		lastref = 0;
6233 	th_trace->th_trace_lastref = lastref;
6234 	tr_buf = &th_trace->th_trbuf[lastref];
6235 	tr_buf->tr_time = lbolt;
6236 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6237 }
6238 
6239 static void
6240 th_trace_free(void *value)
6241 {
6242 	th_trace_t *th_trace = value;
6243 
6244 	ASSERT(th_trace->th_refcnt == 0);
6245 	kmem_free(th_trace, sizeof (*th_trace));
6246 }
6247 
6248 /*
6249  * Find or create the per-thread hash table used to track object references.
6250  * The ipst argument is NULL if we shouldn't allocate.
6251  *
6252  * Accesses per-thread data, so there's no need to lock here.
6253  */
6254 static mod_hash_t *
6255 th_trace_gethash(ip_stack_t *ipst)
6256 {
6257 	th_hash_t *thh;
6258 
6259 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6260 		mod_hash_t *mh;
6261 		char name[256];
6262 		size_t objsize, rshift;
6263 		int retv;
6264 
6265 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6266 			return (NULL);
6267 		(void) snprintf(name, sizeof (name), "th_trace_%p",
6268 		    (void *)curthread);
6269 
6270 		/*
6271 		 * We use mod_hash_create_extended here rather than the more
6272 		 * obvious mod_hash_create_ptrhash because the latter has a
6273 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6274 		 * block.
6275 		 */
6276 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6277 		    MAX(sizeof (ire_t), sizeof (nce_t)));
6278 		rshift = highbit(objsize);
6279 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6280 		    th_trace_free, mod_hash_byptr, (void *)rshift,
6281 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
6282 		if (mh == NULL) {
6283 			kmem_free(thh, sizeof (*thh));
6284 			return (NULL);
6285 		}
6286 		thh->thh_hash = mh;
6287 		thh->thh_ipst = ipst;
6288 		/*
6289 		 * We trace ills, ipifs, ires, and nces.  All of these are
6290 		 * per-IP-stack, so the lock on the thread list is as well.
6291 		 */
6292 		rw_enter(&ip_thread_rwlock, RW_WRITER);
6293 		list_insert_tail(&ip_thread_list, thh);
6294 		rw_exit(&ip_thread_rwlock);
6295 		retv = tsd_set(ip_thread_data, thh);
6296 		ASSERT(retv == 0);
6297 	}
6298 	return (thh != NULL ? thh->thh_hash : NULL);
6299 }
6300 
6301 boolean_t
6302 th_trace_ref(const void *obj, ip_stack_t *ipst)
6303 {
6304 	th_trace_t *th_trace;
6305 	mod_hash_t *mh;
6306 	mod_hash_val_t val;
6307 
6308 	if ((mh = th_trace_gethash(ipst)) == NULL)
6309 		return (B_FALSE);
6310 
6311 	/*
6312 	 * Attempt to locate the trace buffer for this obj and thread.
6313 	 * If it does not exist, then allocate a new trace buffer and
6314 	 * insert into the hash.
6315 	 */
6316 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6317 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6318 		if (th_trace == NULL)
6319 			return (B_FALSE);
6320 
6321 		th_trace->th_id = curthread;
6322 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6323 		    (mod_hash_val_t)th_trace) != 0) {
6324 			kmem_free(th_trace, sizeof (th_trace_t));
6325 			return (B_FALSE);
6326 		}
6327 	} else {
6328 		th_trace = (th_trace_t *)val;
6329 	}
6330 
6331 	ASSERT(th_trace->th_refcnt >= 0 &&
6332 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6333 
6334 	th_trace->th_refcnt++;
6335 	th_trace_rrecord(th_trace);
6336 	return (B_TRUE);
6337 }
6338 
6339 /*
6340  * For the purpose of tracing a reference release, we assume that global
6341  * tracing is always on and that the same thread initiated the reference hold
6342  * is releasing.
6343  */
6344 void
6345 th_trace_unref(const void *obj)
6346 {
6347 	int retv;
6348 	mod_hash_t *mh;
6349 	th_trace_t *th_trace;
6350 	mod_hash_val_t val;
6351 
6352 	mh = th_trace_gethash(NULL);
6353 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6354 	ASSERT(retv == 0);
6355 	th_trace = (th_trace_t *)val;
6356 
6357 	ASSERT(th_trace->th_refcnt > 0);
6358 	th_trace->th_refcnt--;
6359 	th_trace_rrecord(th_trace);
6360 }
6361 
6362 /*
6363  * If tracing has been disabled, then we assume that the reference counts are
6364  * now useless, and we clear them out before destroying the entries.
6365  */
6366 void
6367 th_trace_cleanup(const void *obj, boolean_t trace_disable)
6368 {
6369 	th_hash_t	*thh;
6370 	mod_hash_t	*mh;
6371 	mod_hash_val_t	val;
6372 	th_trace_t	*th_trace;
6373 	int		retv;
6374 
6375 	rw_enter(&ip_thread_rwlock, RW_READER);
6376 	for (thh = list_head(&ip_thread_list); thh != NULL;
6377 	    thh = list_next(&ip_thread_list, thh)) {
6378 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6379 		    &val) == 0) {
6380 			th_trace = (th_trace_t *)val;
6381 			if (trace_disable)
6382 				th_trace->th_refcnt = 0;
6383 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6384 			ASSERT(retv == 0);
6385 		}
6386 	}
6387 	rw_exit(&ip_thread_rwlock);
6388 }
6389 
6390 void
6391 ipif_trace_ref(ipif_t *ipif)
6392 {
6393 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6394 
6395 	if (ipif->ipif_trace_disable)
6396 		return;
6397 
6398 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6399 		ipif->ipif_trace_disable = B_TRUE;
6400 		ipif_trace_cleanup(ipif);
6401 	}
6402 }
6403 
6404 void
6405 ipif_untrace_ref(ipif_t *ipif)
6406 {
6407 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6408 
6409 	if (!ipif->ipif_trace_disable)
6410 		th_trace_unref(ipif);
6411 }
6412 
6413 void
6414 ill_trace_ref(ill_t *ill)
6415 {
6416 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6417 
6418 	if (ill->ill_trace_disable)
6419 		return;
6420 
6421 	if (!th_trace_ref(ill, ill->ill_ipst)) {
6422 		ill->ill_trace_disable = B_TRUE;
6423 		ill_trace_cleanup(ill);
6424 	}
6425 }
6426 
6427 void
6428 ill_untrace_ref(ill_t *ill)
6429 {
6430 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6431 
6432 	if (!ill->ill_trace_disable)
6433 		th_trace_unref(ill);
6434 }
6435 
6436 /*
6437  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
6438  * failure, ipif_trace_disable is set.
6439  */
6440 static void
6441 ipif_trace_cleanup(const ipif_t *ipif)
6442 {
6443 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6444 }
6445 
6446 /*
6447  * Called when ill is unplumbed or when memory alloc fails.  Note that on
6448  * failure, ill_trace_disable is set.
6449  */
6450 static void
6451 ill_trace_cleanup(const ill_t *ill)
6452 {
6453 	th_trace_cleanup(ill, ill->ill_trace_disable);
6454 }
6455 #endif /* DEBUG */
6456 
6457 void
6458 ipif_refhold_locked(ipif_t *ipif)
6459 {
6460 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6461 	ipif->ipif_refcnt++;
6462 	IPIF_TRACE_REF(ipif);
6463 }
6464 
6465 void
6466 ipif_refhold(ipif_t *ipif)
6467 {
6468 	ill_t	*ill;
6469 
6470 	ill = ipif->ipif_ill;
6471 	mutex_enter(&ill->ill_lock);
6472 	ipif->ipif_refcnt++;
6473 	IPIF_TRACE_REF(ipif);
6474 	mutex_exit(&ill->ill_lock);
6475 }
6476 
6477 /*
6478  * Must not be called while holding any locks. Otherwise if this is
6479  * the last reference to be released there is a chance of recursive mutex
6480  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6481  * to restart an ioctl.
6482  */
6483 void
6484 ipif_refrele(ipif_t *ipif)
6485 {
6486 	ill_t	*ill;
6487 
6488 	ill = ipif->ipif_ill;
6489 
6490 	mutex_enter(&ill->ill_lock);
6491 	ASSERT(ipif->ipif_refcnt != 0);
6492 	ipif->ipif_refcnt--;
6493 	IPIF_UNTRACE_REF(ipif);
6494 	if (ipif->ipif_refcnt != 0) {
6495 		mutex_exit(&ill->ill_lock);
6496 		return;
6497 	}
6498 
6499 	/* Drops the ill_lock */
6500 	ipif_ill_refrele_tail(ill);
6501 }
6502 
6503 ipif_t *
6504 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6505 {
6506 	ipif_t	*ipif;
6507 
6508 	mutex_enter(&ill->ill_lock);
6509 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6510 	    ipif != NULL; ipif = ipif->ipif_next) {
6511 		if (!IPIF_CAN_LOOKUP(ipif))
6512 			continue;
6513 		ipif_refhold_locked(ipif);
6514 		mutex_exit(&ill->ill_lock);
6515 		return (ipif);
6516 	}
6517 	mutex_exit(&ill->ill_lock);
6518 	return (NULL);
6519 }
6520 
6521 /*
6522  * TODO: make this table extendible at run time
6523  * Return a pointer to the mac type info for 'mac_type'
6524  */
6525 static ip_m_t *
6526 ip_m_lookup(t_uscalar_t mac_type)
6527 {
6528 	ip_m_t	*ipm;
6529 
6530 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6531 		if (ipm->ip_m_mac_type == mac_type)
6532 			return (ipm);
6533 	return (NULL);
6534 }
6535 
6536 /*
6537  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6538  * ipif_arg is passed in to associate it with the correct interface.
6539  * We may need to restart this operation if the ipif cannot be looked up
6540  * due to an exclusive operation that is currently in progress. The restart
6541  * entry point is specified by 'func'
6542  */
6543 int
6544 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6545     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6546     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6547     struct rtsa_s *sp, ip_stack_t *ipst)
6548 {
6549 	ire_t	*ire;
6550 	ire_t	*gw_ire = NULL;
6551 	ipif_t	*ipif = NULL;
6552 	boolean_t ipif_refheld = B_FALSE;
6553 	uint_t	type;
6554 	int	match_flags = MATCH_IRE_TYPE;
6555 	int	error;
6556 	tsol_gc_t *gc = NULL;
6557 	tsol_gcgrp_t *gcgrp = NULL;
6558 	boolean_t gcgrp_xtraref = B_FALSE;
6559 
6560 	ip1dbg(("ip_rt_add:"));
6561 
6562 	if (ire_arg != NULL)
6563 		*ire_arg = NULL;
6564 
6565 	/*
6566 	 * If this is the case of RTF_HOST being set, then we set the netmask
6567 	 * to all ones (regardless if one was supplied).
6568 	 */
6569 	if (flags & RTF_HOST)
6570 		mask = IP_HOST_MASK;
6571 
6572 	/*
6573 	 * Prevent routes with a zero gateway from being created (since
6574 	 * interfaces can currently be plumbed and brought up no assigned
6575 	 * address).
6576 	 */
6577 	if (gw_addr == 0)
6578 		return (ENETUNREACH);
6579 	/*
6580 	 * Get the ipif, if any, corresponding to the gw_addr
6581 	 */
6582 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6583 	    ipst);
6584 	if (ipif != NULL) {
6585 		if (IS_VNI(ipif->ipif_ill)) {
6586 			ipif_refrele(ipif);
6587 			return (EINVAL);
6588 		}
6589 		ipif_refheld = B_TRUE;
6590 	} else if (error == EINPROGRESS) {
6591 		ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6592 		return (EINPROGRESS);
6593 	} else {
6594 		error = 0;
6595 	}
6596 
6597 	if (ipif != NULL) {
6598 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6599 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6600 	} else {
6601 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6602 	}
6603 
6604 	/*
6605 	 * GateD will attempt to create routes with a loopback interface
6606 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6607 	 * these routes to be added, but create them as interface routes
6608 	 * since the gateway is an interface address.
6609 	 */
6610 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6611 		flags &= ~RTF_GATEWAY;
6612 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6613 		    mask == IP_HOST_MASK) {
6614 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6615 			    ALL_ZONES, NULL, match_flags, ipst);
6616 			if (ire != NULL) {
6617 				ire_refrele(ire);
6618 				if (ipif_refheld)
6619 					ipif_refrele(ipif);
6620 				return (EEXIST);
6621 			}
6622 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
6623 			    "for 0x%x\n", (void *)ipif,
6624 			    ipif->ipif_ire_type,
6625 			    ntohl(ipif->ipif_lcl_addr)));
6626 			ire = ire_create(
6627 			    (uchar_t *)&dst_addr,	/* dest address */
6628 			    (uchar_t *)&mask,		/* mask */
6629 			    (uchar_t *)&ipif->ipif_src_addr,
6630 			    NULL,			/* no gateway */
6631 			    &ipif->ipif_mtu,
6632 			    NULL,
6633 			    ipif->ipif_rq,		/* recv-from queue */
6634 			    NULL,			/* no send-to queue */
6635 			    ipif->ipif_ire_type,	/* LOOPBACK */
6636 			    ipif,
6637 			    0,
6638 			    0,
6639 			    0,
6640 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6641 			    RTF_PRIVATE : 0,
6642 			    &ire_uinfo_null,
6643 			    NULL,
6644 			    NULL,
6645 			    ipst);
6646 
6647 			if (ire == NULL) {
6648 				if (ipif_refheld)
6649 					ipif_refrele(ipif);
6650 				return (ENOMEM);
6651 			}
6652 			error = ire_add(&ire, q, mp, func, B_FALSE);
6653 			if (error == 0)
6654 				goto save_ire;
6655 			if (ipif_refheld)
6656 				ipif_refrele(ipif);
6657 			return (error);
6658 
6659 		}
6660 	}
6661 
6662 	/*
6663 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6664 	 * and the gateway address provided is one of the system's interface
6665 	 * addresses.  By using the routing socket interface and supplying an
6666 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6667 	 * specifying an interface route to be created is available which uses
6668 	 * the interface index that specifies the outgoing interface rather than
6669 	 * the address of an outgoing interface (which may not be able to
6670 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6671 	 * flag, routes can be specified which not only specify the next-hop to
6672 	 * be used when routing to a certain prefix, but also which outgoing
6673 	 * interface should be used.
6674 	 *
6675 	 * Previously, interfaces would have unique addresses assigned to them
6676 	 * and so the address assigned to a particular interface could be used
6677 	 * to identify a particular interface.  One exception to this was the
6678 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6679 	 *
6680 	 * With the advent of IPv6 and its link-local addresses, this
6681 	 * restriction was relaxed and interfaces could share addresses between
6682 	 * themselves.  In fact, typically all of the link-local interfaces on
6683 	 * an IPv6 node or router will have the same link-local address.  In
6684 	 * order to differentiate between these interfaces, the use of an
6685 	 * interface index is necessary and this index can be carried inside a
6686 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6687 	 * of using the interface index, however, is that all of the ipif's that
6688 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6689 	 * cannot be used to differentiate between ipif's (or logical
6690 	 * interfaces) that belong to the same ill (physical interface).
6691 	 *
6692 	 * For example, in the following case involving IPv4 interfaces and
6693 	 * logical interfaces
6694 	 *
6695 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6696 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6697 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6698 	 *
6699 	 * the ipif's corresponding to each of these interface routes can be
6700 	 * uniquely identified by the "gateway" (actually interface address).
6701 	 *
6702 	 * In this case involving multiple IPv6 default routes to a particular
6703 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6704 	 * default route is of interest:
6705 	 *
6706 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6707 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6708 	 */
6709 
6710 	/* RTF_GATEWAY not set */
6711 	if (!(flags & RTF_GATEWAY)) {
6712 		queue_t	*stq;
6713 
6714 		if (sp != NULL) {
6715 			ip2dbg(("ip_rt_add: gateway security attributes "
6716 			    "cannot be set with interface route\n"));
6717 			if (ipif_refheld)
6718 				ipif_refrele(ipif);
6719 			return (EINVAL);
6720 		}
6721 
6722 		/*
6723 		 * As the interface index specified with the RTA_IFP sockaddr is
6724 		 * the same for all ipif's off of an ill, the matching logic
6725 		 * below uses MATCH_IRE_ILL if such an index was specified.
6726 		 * This means that routes sharing the same prefix when added
6727 		 * using a RTA_IFP sockaddr must have distinct interface
6728 		 * indices (namely, they must be on distinct ill's).
6729 		 *
6730 		 * On the other hand, since the gateway address will usually be
6731 		 * different for each ipif on the system, the matching logic
6732 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6733 		 * route.  This means that interface routes for the same prefix
6734 		 * can be created if they belong to distinct ipif's and if a
6735 		 * RTA_IFP sockaddr is not present.
6736 		 */
6737 		if (ipif_arg != NULL) {
6738 			if (ipif_refheld)  {
6739 				ipif_refrele(ipif);
6740 				ipif_refheld = B_FALSE;
6741 			}
6742 			ipif = ipif_arg;
6743 			match_flags |= MATCH_IRE_ILL;
6744 		} else {
6745 			/*
6746 			 * Check the ipif corresponding to the gw_addr
6747 			 */
6748 			if (ipif == NULL)
6749 				return (ENETUNREACH);
6750 			match_flags |= MATCH_IRE_IPIF;
6751 		}
6752 		ASSERT(ipif != NULL);
6753 
6754 		/*
6755 		 * We check for an existing entry at this point.
6756 		 *
6757 		 * Since a netmask isn't passed in via the ioctl interface
6758 		 * (SIOCADDRT), we don't check for a matching netmask in that
6759 		 * case.
6760 		 */
6761 		if (!ioctl_msg)
6762 			match_flags |= MATCH_IRE_MASK;
6763 		ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
6764 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
6765 		if (ire != NULL) {
6766 			ire_refrele(ire);
6767 			if (ipif_refheld)
6768 				ipif_refrele(ipif);
6769 			return (EEXIST);
6770 		}
6771 
6772 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
6773 		    ? ipif->ipif_rq : ipif->ipif_wq;
6774 
6775 		/*
6776 		 * Create a copy of the IRE_LOOPBACK,
6777 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
6778 		 * the modified address and netmask.
6779 		 */
6780 		ire = ire_create(
6781 		    (uchar_t *)&dst_addr,
6782 		    (uint8_t *)&mask,
6783 		    (uint8_t *)&ipif->ipif_src_addr,
6784 		    NULL,
6785 		    &ipif->ipif_mtu,
6786 		    NULL,
6787 		    NULL,
6788 		    stq,
6789 		    ipif->ipif_net_type,
6790 		    ipif,
6791 		    0,
6792 		    0,
6793 		    0,
6794 		    flags,
6795 		    &ire_uinfo_null,
6796 		    NULL,
6797 		    NULL,
6798 		    ipst);
6799 		if (ire == NULL) {
6800 			if (ipif_refheld)
6801 				ipif_refrele(ipif);
6802 			return (ENOMEM);
6803 		}
6804 
6805 		/*
6806 		 * Some software (for example, GateD and Sun Cluster) attempts
6807 		 * to create (what amount to) IRE_PREFIX routes with the
6808 		 * loopback address as the gateway.  This is primarily done to
6809 		 * set up prefixes with the RTF_REJECT flag set (for example,
6810 		 * when generating aggregate routes.)
6811 		 *
6812 		 * If the IRE type (as defined by ipif->ipif_net_type) is
6813 		 * IRE_LOOPBACK, then we map the request into a
6814 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
6815 		 * these interface routes, by definition, can only be that.
6816 		 *
6817 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
6818 		 * routine, but rather using ire_create() directly.
6819 		 *
6820 		 */
6821 		if (ipif->ipif_net_type == IRE_LOOPBACK) {
6822 			ire->ire_type = IRE_IF_NORESOLVER;
6823 			ire->ire_flags |= RTF_BLACKHOLE;
6824 		}
6825 
6826 		error = ire_add(&ire, q, mp, func, B_FALSE);
6827 		if (error == 0)
6828 			goto save_ire;
6829 
6830 		/*
6831 		 * In the result of failure, ire_add() will have already
6832 		 * deleted the ire in question, so there is no need to
6833 		 * do that here.
6834 		 */
6835 		if (ipif_refheld)
6836 			ipif_refrele(ipif);
6837 		return (error);
6838 	}
6839 	if (ipif_refheld) {
6840 		ipif_refrele(ipif);
6841 		ipif_refheld = B_FALSE;
6842 	}
6843 
6844 	/*
6845 	 * Get an interface IRE for the specified gateway.
6846 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
6847 	 * gateway, it is currently unreachable and we fail the request
6848 	 * accordingly.
6849 	 */
6850 	ipif = ipif_arg;
6851 	if (ipif_arg != NULL)
6852 		match_flags |= MATCH_IRE_ILL;
6853 again:
6854 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
6855 	    ALL_ZONES, 0, NULL, match_flags, ipst);
6856 	if (gw_ire == NULL) {
6857 		/*
6858 		 * With IPMP, we allow host routes to influence in.mpathd's
6859 		 * target selection.  However, if the test addresses are on
6860 		 * their own network, the above lookup will fail since the
6861 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
6862 		 * hidden test IREs to be found and try again.
6863 		 */
6864 		if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN))  {
6865 			match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
6866 			goto again;
6867 		}
6868 		return (ENETUNREACH);
6869 	}
6870 
6871 	/*
6872 	 * We create one of three types of IREs as a result of this request
6873 	 * based on the netmask.  A netmask of all ones (which is automatically
6874 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
6875 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
6876 	 * created.  Otherwise, an IRE_PREFIX route is created for the
6877 	 * destination prefix.
6878 	 */
6879 	if (mask == IP_HOST_MASK)
6880 		type = IRE_HOST;
6881 	else if (mask == 0)
6882 		type = IRE_DEFAULT;
6883 	else
6884 		type = IRE_PREFIX;
6885 
6886 	/* check for a duplicate entry */
6887 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
6888 	    NULL, ALL_ZONES, 0, NULL,
6889 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
6890 	if (ire != NULL) {
6891 		ire_refrele(gw_ire);
6892 		ire_refrele(ire);
6893 		return (EEXIST);
6894 	}
6895 
6896 	/* Security attribute exists */
6897 	if (sp != NULL) {
6898 		tsol_gcgrp_addr_t ga;
6899 
6900 		/* find or create the gateway credentials group */
6901 		ga.ga_af = AF_INET;
6902 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
6903 
6904 		/* we hold reference to it upon success */
6905 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
6906 		if (gcgrp == NULL) {
6907 			ire_refrele(gw_ire);
6908 			return (ENOMEM);
6909 		}
6910 
6911 		/*
6912 		 * Create and add the security attribute to the group; a
6913 		 * reference to the group is made upon allocating a new
6914 		 * entry successfully.  If it finds an already-existing
6915 		 * entry for the security attribute in the group, it simply
6916 		 * returns it and no new reference is made to the group.
6917 		 */
6918 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
6919 		if (gc == NULL) {
6920 			/* release reference held by gcgrp_lookup */
6921 			GCGRP_REFRELE(gcgrp);
6922 			ire_refrele(gw_ire);
6923 			return (ENOMEM);
6924 		}
6925 	}
6926 
6927 	/* Create the IRE. */
6928 	ire = ire_create(
6929 	    (uchar_t *)&dst_addr,		/* dest address */
6930 	    (uchar_t *)&mask,			/* mask */
6931 	    /* src address assigned by the caller? */
6932 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
6933 	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
6934 	    (uchar_t *)&gw_addr,		/* gateway address */
6935 	    &gw_ire->ire_max_frag,
6936 	    NULL,				/* no src nce */
6937 	    NULL,				/* no recv-from queue */
6938 	    NULL,				/* no send-to queue */
6939 	    (ushort_t)type,			/* IRE type */
6940 	    ipif_arg,
6941 	    0,
6942 	    0,
6943 	    0,
6944 	    flags,
6945 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
6946 	    gc,					/* security attribute */
6947 	    NULL,
6948 	    ipst);
6949 
6950 	/*
6951 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
6952 	 * reference to the 'gcgrp'. We can now release the extra reference
6953 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
6954 	 */
6955 	if (gcgrp_xtraref)
6956 		GCGRP_REFRELE(gcgrp);
6957 	if (ire == NULL) {
6958 		if (gc != NULL)
6959 			GC_REFRELE(gc);
6960 		ire_refrele(gw_ire);
6961 		return (ENOMEM);
6962 	}
6963 
6964 	/*
6965 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
6966 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
6967 	 */
6968 
6969 	/* Add the new IRE. */
6970 	error = ire_add(&ire, q, mp, func, B_FALSE);
6971 	if (error != 0) {
6972 		/*
6973 		 * In the result of failure, ire_add() will have already
6974 		 * deleted the ire in question, so there is no need to
6975 		 * do that here.
6976 		 */
6977 		ire_refrele(gw_ire);
6978 		return (error);
6979 	}
6980 
6981 	if (flags & RTF_MULTIRT) {
6982 		/*
6983 		 * Invoke the CGTP (multirouting) filtering module
6984 		 * to add the dst address in the filtering database.
6985 		 * Replicated inbound packets coming from that address
6986 		 * will be filtered to discard the duplicates.
6987 		 * It is not necessary to call the CGTP filter hook
6988 		 * when the dst address is a broadcast or multicast,
6989 		 * because an IP source address cannot be a broadcast
6990 		 * or a multicast.
6991 		 */
6992 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
6993 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
6994 		if (ire_dst != NULL) {
6995 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
6996 			ire_refrele(ire_dst);
6997 			goto save_ire;
6998 		}
6999 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7000 		    !CLASSD(ire->ire_addr)) {
7001 			int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7002 			    ipst->ips_netstack->netstack_stackid,
7003 			    ire->ire_addr,
7004 			    ire->ire_gateway_addr,
7005 			    ire->ire_src_addr,
7006 			    gw_ire->ire_src_addr);
7007 			if (res != 0) {
7008 				ire_refrele(gw_ire);
7009 				ire_delete(ire);
7010 				return (res);
7011 			}
7012 		}
7013 	}
7014 
7015 	/*
7016 	 * Now that the prefix IRE entry has been created, delete any
7017 	 * existing gateway IRE cache entries as well as any IRE caches
7018 	 * using the gateway, and force them to be created through
7019 	 * ip_newroute.
7020 	 */
7021 	if (gc != NULL) {
7022 		ASSERT(gcgrp != NULL);
7023 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7024 	}
7025 
7026 save_ire:
7027 	if (gw_ire != NULL) {
7028 		ire_refrele(gw_ire);
7029 	}
7030 	if (ipif != NULL) {
7031 		/*
7032 		 * Save enough information so that we can recreate the IRE if
7033 		 * the interface goes down and then up.  The metrics associated
7034 		 * with the route will be saved as well when rts_setmetrics() is
7035 		 * called after the IRE has been created.  In the case where
7036 		 * memory cannot be allocated, none of this information will be
7037 		 * saved.
7038 		 */
7039 		ipif_save_ire(ipif, ire);
7040 	}
7041 	if (ioctl_msg)
7042 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7043 	if (ire_arg != NULL) {
7044 		/*
7045 		 * Store the ire that was successfully added into where ire_arg
7046 		 * points to so that callers don't have to look it up
7047 		 * themselves (but they are responsible for ire_refrele()ing
7048 		 * the ire when they are finished with it).
7049 		 */
7050 		*ire_arg = ire;
7051 	} else {
7052 		ire_refrele(ire);		/* Held in ire_add */
7053 	}
7054 	if (ipif_refheld)
7055 		ipif_refrele(ipif);
7056 	return (0);
7057 }
7058 
7059 /*
7060  * ip_rt_delete is called to delete an IPv4 route.
7061  * ipif_arg is passed in to associate it with the correct interface.
7062  * We may need to restart this operation if the ipif cannot be looked up
7063  * due to an exclusive operation that is currently in progress. The restart
7064  * entry point is specified by 'func'
7065  */
7066 /* ARGSUSED4 */
7067 int
7068 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7069     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7070     queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7071 {
7072 	ire_t	*ire = NULL;
7073 	ipif_t	*ipif;
7074 	boolean_t ipif_refheld = B_FALSE;
7075 	uint_t	type;
7076 	uint_t	match_flags = MATCH_IRE_TYPE;
7077 	int	err = 0;
7078 
7079 	ip1dbg(("ip_rt_delete:"));
7080 	/*
7081 	 * If this is the case of RTF_HOST being set, then we set the netmask
7082 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7083 	 */
7084 	if (flags & RTF_HOST) {
7085 		mask = IP_HOST_MASK;
7086 		match_flags |= MATCH_IRE_MASK;
7087 	} else if (rtm_addrs & RTA_NETMASK) {
7088 		match_flags |= MATCH_IRE_MASK;
7089 	}
7090 
7091 	/*
7092 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7093 	 * we check if the gateway address is one of our interfaces first,
7094 	 * and fall back on RTF_GATEWAY routes.
7095 	 *
7096 	 * This makes it possible to delete an original
7097 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7098 	 *
7099 	 * As the interface index specified with the RTA_IFP sockaddr is the
7100 	 * same for all ipif's off of an ill, the matching logic below uses
7101 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7102 	 * sharing the same prefix and interface index as the the route
7103 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7104 	 * is specified in the request.
7105 	 *
7106 	 * On the other hand, since the gateway address will usually be
7107 	 * different for each ipif on the system, the matching logic
7108 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7109 	 * route.  This means that interface routes for the same prefix can be
7110 	 * uniquely identified if they belong to distinct ipif's and if a
7111 	 * RTA_IFP sockaddr is not present.
7112 	 *
7113 	 * For more detail on specifying routes by gateway address and by
7114 	 * interface index, see the comments in ip_rt_add().
7115 	 */
7116 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7117 	    ipst);
7118 	if (ipif != NULL)
7119 		ipif_refheld = B_TRUE;
7120 	else if (err == EINPROGRESS)
7121 		return (err);
7122 	else
7123 		err = 0;
7124 	if (ipif != NULL) {
7125 		if (ipif_arg != NULL) {
7126 			if (ipif_refheld) {
7127 				ipif_refrele(ipif);
7128 				ipif_refheld = B_FALSE;
7129 			}
7130 			ipif = ipif_arg;
7131 			match_flags |= MATCH_IRE_ILL;
7132 		} else {
7133 			match_flags |= MATCH_IRE_IPIF;
7134 		}
7135 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7136 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7137 			    ALL_ZONES, NULL, match_flags, ipst);
7138 		}
7139 		if (ire == NULL) {
7140 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7141 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7142 			    match_flags, ipst);
7143 		}
7144 	}
7145 
7146 	if (ire == NULL) {
7147 		/*
7148 		 * At this point, the gateway address is not one of our own
7149 		 * addresses or a matching interface route was not found.  We
7150 		 * set the IRE type to lookup based on whether
7151 		 * this is a host route, a default route or just a prefix.
7152 		 *
7153 		 * If an ipif_arg was passed in, then the lookup is based on an
7154 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7155 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7156 		 * set as the route being looked up is not a traditional
7157 		 * interface route.
7158 		 */
7159 		match_flags &= ~MATCH_IRE_IPIF;
7160 		match_flags |= MATCH_IRE_GW;
7161 		if (ipif_arg != NULL)
7162 			match_flags |= MATCH_IRE_ILL;
7163 		if (mask == IP_HOST_MASK)
7164 			type = IRE_HOST;
7165 		else if (mask == 0)
7166 			type = IRE_DEFAULT;
7167 		else
7168 			type = IRE_PREFIX;
7169 		ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7170 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7171 	}
7172 
7173 	if (ipif_refheld)
7174 		ipif_refrele(ipif);
7175 
7176 	/* ipif is not refheld anymore */
7177 	if (ire == NULL)
7178 		return (ESRCH);
7179 
7180 	if (ire->ire_flags & RTF_MULTIRT) {
7181 		/*
7182 		 * Invoke the CGTP (multirouting) filtering module
7183 		 * to remove the dst address from the filtering database.
7184 		 * Packets coming from that address will no longer be
7185 		 * filtered to remove duplicates.
7186 		 */
7187 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7188 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7189 			    ipst->ips_netstack->netstack_stackid,
7190 			    ire->ire_addr, ire->ire_gateway_addr);
7191 		}
7192 		ip_cgtp_bcast_delete(ire, ipst);
7193 	}
7194 
7195 	ipif = ire->ire_ipif;
7196 	if (ipif != NULL)
7197 		ipif_remove_ire(ipif, ire);
7198 	if (ioctl_msg)
7199 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7200 	ire_delete(ire);
7201 	ire_refrele(ire);
7202 	return (err);
7203 }
7204 
7205 /*
7206  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7207  */
7208 /* ARGSUSED */
7209 int
7210 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7211     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7212 {
7213 	ipaddr_t dst_addr;
7214 	ipaddr_t gw_addr;
7215 	ipaddr_t mask;
7216 	int error = 0;
7217 	mblk_t *mp1;
7218 	struct rtentry *rt;
7219 	ipif_t *ipif = NULL;
7220 	ip_stack_t	*ipst;
7221 
7222 	ASSERT(q->q_next == NULL);
7223 	ipst = CONNQ_TO_IPST(q);
7224 
7225 	ip1dbg(("ip_siocaddrt:"));
7226 	/* Existence of mp1 verified in ip_wput_nondata */
7227 	mp1 = mp->b_cont->b_cont;
7228 	rt = (struct rtentry *)mp1->b_rptr;
7229 
7230 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7231 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7232 
7233 	/*
7234 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7235 	 * to a particular host address.  In this case, we set the netmask to
7236 	 * all ones for the particular destination address.  Otherwise,
7237 	 * determine the netmask to be used based on dst_addr and the interfaces
7238 	 * in use.
7239 	 */
7240 	if (rt->rt_flags & RTF_HOST) {
7241 		mask = IP_HOST_MASK;
7242 	} else {
7243 		/*
7244 		 * Note that ip_subnet_mask returns a zero mask in the case of
7245 		 * default (an all-zeroes address).
7246 		 */
7247 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7248 	}
7249 
7250 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7251 	    B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7252 	if (ipif != NULL)
7253 		ipif_refrele(ipif);
7254 	return (error);
7255 }
7256 
7257 /*
7258  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7259  */
7260 /* ARGSUSED */
7261 int
7262 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7263     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7264 {
7265 	ipaddr_t dst_addr;
7266 	ipaddr_t gw_addr;
7267 	ipaddr_t mask;
7268 	int error;
7269 	mblk_t *mp1;
7270 	struct rtentry *rt;
7271 	ipif_t *ipif = NULL;
7272 	ip_stack_t	*ipst;
7273 
7274 	ASSERT(q->q_next == NULL);
7275 	ipst = CONNQ_TO_IPST(q);
7276 
7277 	ip1dbg(("ip_siocdelrt:"));
7278 	/* Existence of mp1 verified in ip_wput_nondata */
7279 	mp1 = mp->b_cont->b_cont;
7280 	rt = (struct rtentry *)mp1->b_rptr;
7281 
7282 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7283 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7284 
7285 	/*
7286 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7287 	 * to a particular host address.  In this case, we set the netmask to
7288 	 * all ones for the particular destination address.  Otherwise,
7289 	 * determine the netmask to be used based on dst_addr and the interfaces
7290 	 * in use.
7291 	 */
7292 	if (rt->rt_flags & RTF_HOST) {
7293 		mask = IP_HOST_MASK;
7294 	} else {
7295 		/*
7296 		 * Note that ip_subnet_mask returns a zero mask in the case of
7297 		 * default (an all-zeroes address).
7298 		 */
7299 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7300 	}
7301 
7302 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7303 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7304 	    mp, ip_process_ioctl, ipst);
7305 	if (ipif != NULL)
7306 		ipif_refrele(ipif);
7307 	return (error);
7308 }
7309 
7310 /*
7311  * Enqueue the mp onto the ipsq, chained by b_next.
7312  * b_prev stores the function to be executed later, and b_queue the queue
7313  * where this mp originated.
7314  */
7315 void
7316 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7317     ill_t *pending_ill)
7318 {
7319 	conn_t	*connp;
7320 	ipxop_t *ipx = ipsq->ipsq_xop;
7321 
7322 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7323 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
7324 	ASSERT(func != NULL);
7325 
7326 	mp->b_queue = q;
7327 	mp->b_prev = (void *)func;
7328 	mp->b_next = NULL;
7329 
7330 	switch (type) {
7331 	case CUR_OP:
7332 		if (ipx->ipx_mptail != NULL) {
7333 			ASSERT(ipx->ipx_mphead != NULL);
7334 			ipx->ipx_mptail->b_next = mp;
7335 		} else {
7336 			ASSERT(ipx->ipx_mphead == NULL);
7337 			ipx->ipx_mphead = mp;
7338 		}
7339 		ipx->ipx_mptail = mp;
7340 		break;
7341 
7342 	case NEW_OP:
7343 		if (ipsq->ipsq_xopq_mptail != NULL) {
7344 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7345 			ipsq->ipsq_xopq_mptail->b_next = mp;
7346 		} else {
7347 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7348 			ipsq->ipsq_xopq_mphead = mp;
7349 		}
7350 		ipsq->ipsq_xopq_mptail = mp;
7351 		ipx->ipx_ipsq_queued = B_TRUE;
7352 		break;
7353 
7354 	case SWITCH_OP:
7355 		ASSERT(ipsq->ipsq_swxop != NULL);
7356 		/* only one switch operation is currently allowed */
7357 		ASSERT(ipsq->ipsq_switch_mp == NULL);
7358 		ipsq->ipsq_switch_mp = mp;
7359 		ipx->ipx_ipsq_queued = B_TRUE;
7360 		break;
7361 	default:
7362 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7363 	}
7364 
7365 	if (CONN_Q(q) && pending_ill != NULL) {
7366 		connp = Q_TO_CONN(q);
7367 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7368 		connp->conn_oper_pending_ill = pending_ill;
7369 	}
7370 }
7371 
7372 /*
7373  * Dequeue the next message that requested exclusive access to this IPSQ's
7374  * xop.  Specifically:
7375  *
7376  *  1. If we're still processing the current operation on `ipsq', then
7377  *     dequeue the next message for the operation (from ipx_mphead), or
7378  *     return NULL if there are no queued messages for the operation.
7379  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
7380  *
7381  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
7382  *     not set) see if the ipsq has requested an xop switch.  If so, switch
7383  *     `ipsq' to a different xop.  Xop switches only happen when joining or
7384  *     leaving IPMP groups and require a careful dance -- see the comments
7385  *     in-line below for details.  If we're leaving a group xop or if we're
7386  *     joining a group xop and become writer on it, then we proceed to (3).
7387  *     Otherwise, we return NULL and exit the xop.
7388  *
7389  *  3. For each IPSQ in the xop, return any switch operation stored on
7390  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
7391  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
7392  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
7393  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
7394  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
7395  *     each phyint in the group, including the IPMP meta-interface phyint.
7396  */
7397 static mblk_t *
7398 ipsq_dq(ipsq_t *ipsq)
7399 {
7400 	ill_t	*illv4, *illv6;
7401 	mblk_t	*mp;
7402 	ipsq_t	*xopipsq;
7403 	ipsq_t	*leftipsq = NULL;
7404 	ipxop_t *ipx;
7405 	phyint_t *phyi = ipsq->ipsq_phyint;
7406 	ip_stack_t *ipst = ipsq->ipsq_ipst;
7407 	boolean_t emptied = B_FALSE;
7408 
7409 	/*
7410 	 * Grab all the locks we need in the defined order (ill_g_lock ->
7411 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
7412 	 */
7413 	rw_enter(&ipst->ips_ill_g_lock,
7414 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
7415 	mutex_enter(&ipsq->ipsq_lock);
7416 	ipx = ipsq->ipsq_xop;
7417 	mutex_enter(&ipx->ipx_lock);
7418 
7419 	/*
7420 	 * Dequeue the next message associated with the current exclusive
7421 	 * operation, if any.
7422 	 */
7423 	if ((mp = ipx->ipx_mphead) != NULL) {
7424 		ipx->ipx_mphead = mp->b_next;
7425 		if (ipx->ipx_mphead == NULL)
7426 			ipx->ipx_mptail = NULL;
7427 		mp->b_next = (void *)ipsq;
7428 		goto out;
7429 	}
7430 
7431 	if (ipx->ipx_current_ipif != NULL)
7432 		goto empty;
7433 
7434 	if (ipsq->ipsq_swxop != NULL) {
7435 		/*
7436 		 * The exclusive operation that is now being completed has
7437 		 * requested a switch to a different xop.  This happens
7438 		 * when an interface joins or leaves an IPMP group.  Joins
7439 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
7440 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
7441 		 * (phyint_free()), or interface plumb for an ill type
7442 		 * not in the IPMP group (ip_rput_dlpi_writer()).
7443 		 *
7444 		 * Xop switches are not allowed on the IPMP meta-interface.
7445 		 */
7446 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
7447 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
7448 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
7449 
7450 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
7451 			/*
7452 			 * We're switching back to our own xop, so we have two
7453 			 * xop's to drain/exit: our own, and the group xop
7454 			 * that we are leaving.
7455 			 *
7456 			 * First, pull ourselves out of the group ipsq list.
7457 			 * This is safe since we're writer on ill_g_lock.
7458 			 */
7459 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
7460 
7461 			xopipsq = ipx->ipx_ipsq;
7462 			while (xopipsq->ipsq_next != ipsq)
7463 				xopipsq = xopipsq->ipsq_next;
7464 
7465 			xopipsq->ipsq_next = ipsq->ipsq_next;
7466 			ipsq->ipsq_next = ipsq;
7467 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
7468 			ipsq->ipsq_swxop = NULL;
7469 
7470 			/*
7471 			 * Second, prepare to exit the group xop.  The actual
7472 			 * ipsq_exit() is done at the end of this function
7473 			 * since we cannot hold any locks across ipsq_exit().
7474 			 * Note that although we drop the group's ipx_lock, no
7475 			 * threads can proceed since we're still ipx_writer.
7476 			 */
7477 			leftipsq = xopipsq;
7478 			mutex_exit(&ipx->ipx_lock);
7479 
7480 			/*
7481 			 * Third, set ipx to point to our own xop (which was
7482 			 * inactive and therefore can be entered).
7483 			 */
7484 			ipx = ipsq->ipsq_xop;
7485 			mutex_enter(&ipx->ipx_lock);
7486 			ASSERT(ipx->ipx_writer == NULL);
7487 			ASSERT(ipx->ipx_current_ipif == NULL);
7488 		} else {
7489 			/*
7490 			 * We're switching from our own xop to a group xop.
7491 			 * The requestor of the switch must ensure that the
7492 			 * group xop cannot go away (e.g. by ensuring the
7493 			 * phyint associated with the xop cannot go away).
7494 			 *
7495 			 * If we can become writer on our new xop, then we'll
7496 			 * do the drain.  Otherwise, the current writer of our
7497 			 * new xop will do the drain when it exits.
7498 			 *
7499 			 * First, splice ourselves into the group IPSQ list.
7500 			 * This is safe since we're writer on ill_g_lock.
7501 			 */
7502 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
7503 
7504 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
7505 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
7506 				xopipsq = xopipsq->ipsq_next;
7507 
7508 			xopipsq->ipsq_next = ipsq;
7509 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
7510 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
7511 			ipsq->ipsq_swxop = NULL;
7512 
7513 			/*
7514 			 * Second, exit our own xop, since it's now unused.
7515 			 * This is safe since we've got the only reference.
7516 			 */
7517 			ASSERT(ipx->ipx_writer == curthread);
7518 			ipx->ipx_writer = NULL;
7519 			VERIFY(--ipx->ipx_reentry_cnt == 0);
7520 			ipx->ipx_ipsq_queued = B_FALSE;
7521 			mutex_exit(&ipx->ipx_lock);
7522 
7523 			/*
7524 			 * Third, set ipx to point to our new xop, and check
7525 			 * if we can become writer on it.  If we cannot, then
7526 			 * the current writer will drain the IPSQ group when
7527 			 * it exits.  Our ipsq_xop is guaranteed to be stable
7528 			 * because we're still holding ipsq_lock.
7529 			 */
7530 			ipx = ipsq->ipsq_xop;
7531 			mutex_enter(&ipx->ipx_lock);
7532 			if (ipx->ipx_writer != NULL ||
7533 			    ipx->ipx_current_ipif != NULL) {
7534 				goto out;
7535 			}
7536 		}
7537 
7538 		/*
7539 		 * Fourth, become writer on our new ipx before we continue
7540 		 * with the drain.  Note that we never dropped ipsq_lock
7541 		 * above, so no other thread could've raced with us to
7542 		 * become writer first.  Also, we're holding ipx_lock, so
7543 		 * no other thread can examine the ipx right now.
7544 		 */
7545 		ASSERT(ipx->ipx_current_ipif == NULL);
7546 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
7547 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
7548 		ipx->ipx_writer = curthread;
7549 		ipx->ipx_forced = B_FALSE;
7550 #ifdef DEBUG
7551 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7552 #endif
7553 	}
7554 
7555 	xopipsq = ipsq;
7556 	do {
7557 		/*
7558 		 * So that other operations operate on a consistent and
7559 		 * complete phyint, a switch message on an IPSQ must be
7560 		 * handled prior to any other operations on that IPSQ.
7561 		 */
7562 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
7563 			xopipsq->ipsq_switch_mp = NULL;
7564 			ASSERT(mp->b_next == NULL);
7565 			mp->b_next = (void *)xopipsq;
7566 			goto out;
7567 		}
7568 
7569 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
7570 			xopipsq->ipsq_xopq_mphead = mp->b_next;
7571 			if (xopipsq->ipsq_xopq_mphead == NULL)
7572 				xopipsq->ipsq_xopq_mptail = NULL;
7573 			mp->b_next = (void *)xopipsq;
7574 			goto out;
7575 		}
7576 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
7577 empty:
7578 	/*
7579 	 * There are no messages.  Further, we are holding ipx_lock, hence no
7580 	 * new messages can end up on any IPSQ in the xop.
7581 	 */
7582 	ipx->ipx_writer = NULL;
7583 	ipx->ipx_forced = B_FALSE;
7584 	VERIFY(--ipx->ipx_reentry_cnt == 0);
7585 	ipx->ipx_ipsq_queued = B_FALSE;
7586 	emptied = B_TRUE;
7587 #ifdef	DEBUG
7588 	ipx->ipx_depth = 0;
7589 #endif
7590 out:
7591 	mutex_exit(&ipx->ipx_lock);
7592 	mutex_exit(&ipsq->ipsq_lock);
7593 
7594 	/*
7595 	 * If we completely emptied the xop, then wake up any threads waiting
7596 	 * to enter any of the IPSQ's associated with it.
7597 	 */
7598 	if (emptied) {
7599 		xopipsq = ipsq;
7600 		do {
7601 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
7602 				continue;
7603 
7604 			illv4 = phyi->phyint_illv4;
7605 			illv6 = phyi->phyint_illv6;
7606 
7607 			GRAB_ILL_LOCKS(illv4, illv6);
7608 			if (illv4 != NULL)
7609 				cv_broadcast(&illv4->ill_cv);
7610 			if (illv6 != NULL)
7611 				cv_broadcast(&illv6->ill_cv);
7612 			RELEASE_ILL_LOCKS(illv4, illv6);
7613 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
7614 	}
7615 	rw_exit(&ipst->ips_ill_g_lock);
7616 
7617 	/*
7618 	 * Now that all locks are dropped, exit the IPSQ we left.
7619 	 */
7620 	if (leftipsq != NULL)
7621 		ipsq_exit(leftipsq);
7622 
7623 	return (mp);
7624 }
7625 
7626 /*
7627  * Return completion status of previously initiated DLPI operations on
7628  * ills in the purview of an ipsq.
7629  */
7630 static boolean_t
7631 ipsq_dlpi_done(ipsq_t *ipsq)
7632 {
7633 	ipsq_t		*ipsq_start;
7634 	phyint_t	*phyi;
7635 	ill_t		*ill;
7636 
7637 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
7638 	ipsq_start = ipsq;
7639 
7640 	do {
7641 		/*
7642 		 * The only current users of this function are ipsq_try_enter
7643 		 * and ipsq_enter which have made sure that ipsq_writer is
7644 		 * NULL before we reach here. ill_dlpi_pending is modified
7645 		 * only by an ipsq writer
7646 		 */
7647 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
7648 		phyi = ipsq->ipsq_phyint;
7649 		/*
7650 		 * phyi could be NULL if a phyint that is part of an
7651 		 * IPMP group is being unplumbed. A more detailed
7652 		 * comment is in ipmp_grp_update_kstats()
7653 		 */
7654 		if (phyi != NULL) {
7655 			ill = phyi->phyint_illv4;
7656 			if (ill != NULL &&
7657 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
7658 				return (B_FALSE);
7659 
7660 			ill = phyi->phyint_illv6;
7661 			if (ill != NULL &&
7662 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
7663 				return (B_FALSE);
7664 		}
7665 
7666 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
7667 
7668 	return (B_TRUE);
7669 }
7670 
7671 /*
7672  * Enter the ipsq corresponding to ill, by waiting synchronously till
7673  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7674  * will have to drain completely before ipsq_enter returns success.
7675  * ipx_current_ipif will be set if some exclusive op is in progress,
7676  * and the ipsq_exit logic will start the next enqueued op after
7677  * completion of the current op. If 'force' is used, we don't wait
7678  * for the enqueued ops. This is needed when a conn_close wants to
7679  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7680  * of an ill can also use this option. But we dont' use it currently.
7681  */
7682 #define	ENTER_SQ_WAIT_TICKS 100
7683 boolean_t
7684 ipsq_enter(ill_t *ill, boolean_t force, int type)
7685 {
7686 	ipsq_t	*ipsq;
7687 	ipxop_t *ipx;
7688 	boolean_t waited_enough = B_FALSE;
7689 	ip_stack_t *ipst = ill->ill_ipst;
7690 
7691 	/*
7692 	 * Note that the relationship between ill and ipsq is fixed as long as
7693 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
7694 	 * relationship between the IPSQ and xop cannot change.  However,
7695 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
7696 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
7697 	 * waking up all ills in the xop when it becomes available.
7698 	 */
7699 	for (;;) {
7700 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7701 		mutex_enter(&ill->ill_lock);
7702 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7703 			mutex_exit(&ill->ill_lock);
7704 			rw_exit(&ipst->ips_ill_g_lock);
7705 			return (B_FALSE);
7706 		}
7707 
7708 		ipsq = ill->ill_phyint->phyint_ipsq;
7709 		mutex_enter(&ipsq->ipsq_lock);
7710 		ipx = ipsq->ipsq_xop;
7711 		mutex_enter(&ipx->ipx_lock);
7712 
7713 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
7714 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
7715 		    waited_enough))
7716 			break;
7717 
7718 		rw_exit(&ipst->ips_ill_g_lock);
7719 
7720 		if (!force || ipx->ipx_writer != NULL) {
7721 			mutex_exit(&ipx->ipx_lock);
7722 			mutex_exit(&ipsq->ipsq_lock);
7723 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7724 		} else {
7725 			mutex_exit(&ipx->ipx_lock);
7726 			mutex_exit(&ipsq->ipsq_lock);
7727 			(void) cv_timedwait(&ill->ill_cv,
7728 			    &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS);
7729 			waited_enough = B_TRUE;
7730 		}
7731 		mutex_exit(&ill->ill_lock);
7732 	}
7733 
7734 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
7735 	ASSERT(ipx->ipx_reentry_cnt == 0);
7736 	ipx->ipx_writer = curthread;
7737 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
7738 	ipx->ipx_reentry_cnt++;
7739 #ifdef DEBUG
7740 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7741 #endif
7742 	mutex_exit(&ipx->ipx_lock);
7743 	mutex_exit(&ipsq->ipsq_lock);
7744 	mutex_exit(&ill->ill_lock);
7745 	rw_exit(&ipst->ips_ill_g_lock);
7746 
7747 	return (B_TRUE);
7748 }
7749 
7750 /*
7751  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
7752  * across the call to the core interface ipsq_try_enter() and hence calls this
7753  * function directly. This is explained more fully in ipif_set_values().
7754  * In order to support the above constraint, ipsq_try_enter is implemented as
7755  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
7756  */
7757 static ipsq_t *
7758 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
7759     int type, boolean_t reentry_ok)
7760 {
7761 	ipsq_t	*ipsq;
7762 	ipxop_t	*ipx;
7763 	ip_stack_t *ipst = ill->ill_ipst;
7764 
7765 	/*
7766 	 * lock ordering:
7767 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
7768 	 *
7769 	 * ipx of an ipsq can't change when ipsq_lock is held.
7770 	 */
7771 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
7772 	GRAB_CONN_LOCK(q);
7773 	mutex_enter(&ill->ill_lock);
7774 	ipsq = ill->ill_phyint->phyint_ipsq;
7775 	mutex_enter(&ipsq->ipsq_lock);
7776 	ipx = ipsq->ipsq_xop;
7777 	mutex_enter(&ipx->ipx_lock);
7778 
7779 	/*
7780 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7781 	 *    (Note: If the caller does not specify reentry_ok then neither
7782 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7783 	 *    again. Otherwise it can lead to an infinite loop
7784 	 * 2. Enter the ipsq if there is no current writer and this attempted
7785 	 *    entry is part of the current operation
7786 	 * 3. Enter the ipsq if there is no current writer and this is a new
7787 	 *    operation and the operation queue is empty and there is no
7788 	 *    operation currently in progress and if all previously initiated
7789 	 *    DLPI operations have completed.
7790 	 */
7791 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
7792 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
7793 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
7794 	    ipsq_dlpi_done(ipsq))))) {
7795 		/* Success. */
7796 		ipx->ipx_reentry_cnt++;
7797 		ipx->ipx_writer = curthread;
7798 		ipx->ipx_forced = B_FALSE;
7799 		mutex_exit(&ipx->ipx_lock);
7800 		mutex_exit(&ipsq->ipsq_lock);
7801 		mutex_exit(&ill->ill_lock);
7802 		RELEASE_CONN_LOCK(q);
7803 #ifdef DEBUG
7804 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7805 #endif
7806 		return (ipsq);
7807 	}
7808 
7809 	if (func != NULL)
7810 		ipsq_enq(ipsq, q, mp, func, type, ill);
7811 
7812 	mutex_exit(&ipx->ipx_lock);
7813 	mutex_exit(&ipsq->ipsq_lock);
7814 	mutex_exit(&ill->ill_lock);
7815 	RELEASE_CONN_LOCK(q);
7816 	return (NULL);
7817 }
7818 
7819 /*
7820  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7821  * certain critical operations like plumbing (i.e. most set ioctls), multicast
7822  * joins, igmp/mld timers, etc.  There is one ipsq per phyint. The ipsq
7823  * serializes exclusive ioctls issued by applications on a per ipsq basis in
7824  * ipsq_xopq_mphead. It also protects against multiple threads executing in
7825  * the ipsq. Responses from the driver pertain to the current ioctl (say a
7826  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
7827  * up the interface) and are enqueued in ipx_mphead.
7828  *
7829  * If a thread does not want to reenter the ipsq when it is already writer,
7830  * it must make sure that the specified reentry point to be called later
7831  * when the ipsq is empty, nor any code path starting from the specified reentry
7832  * point must never ever try to enter the ipsq again. Otherwise it can lead
7833  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7834  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7835  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
7836  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
7837  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7838  * ioctl if the current ioctl has completed. If the current ioctl is still
7839  * in progress it simply returns. The current ioctl could be waiting for
7840  * a response from another module (arp or the driver or could be waiting for
7841  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
7842  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
7843  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7844  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
7845  * all associated DLPI operations have completed.
7846  */
7847 
7848 /*
7849  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
7850  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
7851  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
7852  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
7853  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
7854  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
7855  */
7856 ipsq_t *
7857 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7858     ipsq_func_t func, int type, boolean_t reentry_ok)
7859 {
7860 	ip_stack_t	*ipst;
7861 	ipsq_t		*ipsq;
7862 
7863 	/* Only 1 of ipif or ill can be specified */
7864 	ASSERT((ipif != NULL) ^ (ill != NULL));
7865 
7866 	if (ipif != NULL)
7867 		ill = ipif->ipif_ill;
7868 	ipst = ill->ill_ipst;
7869 
7870 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7871 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
7872 	rw_exit(&ipst->ips_ill_g_lock);
7873 
7874 	return (ipsq);
7875 }
7876 
7877 /*
7878  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7879  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7880  * cannot be entered, the mp is queued for completion.
7881  */
7882 void
7883 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7884     boolean_t reentry_ok)
7885 {
7886 	ipsq_t	*ipsq;
7887 
7888 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7889 
7890 	/*
7891 	 * Drop the caller's refhold on the ill.  This is safe since we either
7892 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
7893 	 * IPSQ, in which case we return without accessing ill anymore.  This
7894 	 * is needed because func needs to see the correct refcount.
7895 	 * e.g. removeif can work only then.
7896 	 */
7897 	ill_refrele(ill);
7898 	if (ipsq != NULL) {
7899 		(*func)(ipsq, q, mp, NULL);
7900 		ipsq_exit(ipsq);
7901 	}
7902 }
7903 
7904 /*
7905  * Exit the specified IPSQ.  If this is the final exit on it then drain it
7906  * prior to exiting.  Caller must be writer on the specified IPSQ.
7907  */
7908 void
7909 ipsq_exit(ipsq_t *ipsq)
7910 {
7911 	mblk_t *mp;
7912 	ipsq_t *mp_ipsq;
7913 	queue_t	*q;
7914 	phyint_t *phyi;
7915 	ipsq_func_t func;
7916 
7917 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7918 
7919 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
7920 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
7921 		ipsq->ipsq_xop->ipx_reentry_cnt--;
7922 		return;
7923 	}
7924 
7925 	for (;;) {
7926 		phyi = ipsq->ipsq_phyint;
7927 		mp = ipsq_dq(ipsq);
7928 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
7929 
7930 		/*
7931 		 * If we've changed to a new IPSQ, and the phyint associated
7932 		 * with the old one has gone away, free the old IPSQ.  Note
7933 		 * that this cannot happen while the IPSQ is in a group.
7934 		 */
7935 		if (mp_ipsq != ipsq && phyi == NULL) {
7936 			ASSERT(ipsq->ipsq_next == ipsq);
7937 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
7938 			ipsq_delete(ipsq);
7939 		}
7940 
7941 		if (mp == NULL)
7942 			break;
7943 
7944 		q = mp->b_queue;
7945 		func = (ipsq_func_t)mp->b_prev;
7946 		ipsq = mp_ipsq;
7947 		mp->b_next = mp->b_prev = NULL;
7948 		mp->b_queue = NULL;
7949 
7950 		/*
7951 		 * If 'q' is an conn queue, it is valid, since we did a
7952 		 * a refhold on the conn at the start of the ioctl.
7953 		 * If 'q' is an ill queue, it is valid, since close of an
7954 		 * ill will clean up its IPSQ.
7955 		 */
7956 		(*func)(ipsq, q, mp, NULL);
7957 	}
7958 }
7959 
7960 /*
7961  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
7962  * and `ioccmd'.
7963  */
7964 void
7965 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
7966 {
7967 	ill_t *ill = ipif->ipif_ill;
7968 	ipxop_t *ipx = ipsq->ipsq_xop;
7969 
7970 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7971 	ASSERT(ipx->ipx_current_ipif == NULL);
7972 	ASSERT(ipx->ipx_current_ioctl == 0);
7973 
7974 	ipx->ipx_current_done = B_FALSE;
7975 	ipx->ipx_current_ioctl = ioccmd;
7976 	mutex_enter(&ipx->ipx_lock);
7977 	ipx->ipx_current_ipif = ipif;
7978 	mutex_exit(&ipx->ipx_lock);
7979 
7980 	/*
7981 	 * Set IPIF_CHANGING on one or more ipifs associated with the
7982 	 * current exclusive operation.  IPIF_CHANGING prevents any new
7983 	 * references to the ipif (so that the references will eventually
7984 	 * drop to zero) and also prevents any "get" operations (e.g.,
7985 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
7986 	 * operation has completed and the ipif is again in a stable state.
7987 	 *
7988 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
7989 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
7990 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
7991 	 * ipifs will be affected.
7992 	 *
7993 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
7994 	 * IPIF_CONDEMNED internally after identifying the right ipif to
7995 	 * operate on.
7996 	 */
7997 	switch (ioccmd) {
7998 	case SIOCLIFREMOVEIF:
7999 		break;
8000 	case 0:
8001 		mutex_enter(&ill->ill_lock);
8002 		ipif = ipif->ipif_ill->ill_ipif;
8003 		for (; ipif != NULL; ipif = ipif->ipif_next)
8004 			ipif->ipif_state_flags |= IPIF_CHANGING;
8005 		mutex_exit(&ill->ill_lock);
8006 		break;
8007 	default:
8008 		mutex_enter(&ill->ill_lock);
8009 		ipif->ipif_state_flags |= IPIF_CHANGING;
8010 		mutex_exit(&ill->ill_lock);
8011 	}
8012 }
8013 
8014 /*
8015  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
8016  * the next exclusive operation to begin once we ipsq_exit().  However, if
8017  * pending DLPI operations remain, then we will wait for the queue to drain
8018  * before allowing the next exclusive operation to begin.  This ensures that
8019  * DLPI operations from one exclusive operation are never improperly processed
8020  * as part of a subsequent exclusive operation.
8021  */
8022 void
8023 ipsq_current_finish(ipsq_t *ipsq)
8024 {
8025 	ipxop_t	*ipx = ipsq->ipsq_xop;
8026 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
8027 	ipif_t	*ipif = ipx->ipx_current_ipif;
8028 
8029 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8030 
8031 	/*
8032 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
8033 	 * (but in that case, IPIF_CHANGING will already be clear and no
8034 	 * pending DLPI messages can remain).
8035 	 */
8036 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
8037 		ill_t *ill = ipif->ipif_ill;
8038 
8039 		mutex_enter(&ill->ill_lock);
8040 		dlpi_pending = ill->ill_dlpi_pending;
8041 		if (ipx->ipx_current_ioctl == 0) {
8042 			ipif = ill->ill_ipif;
8043 			for (; ipif != NULL; ipif = ipif->ipif_next)
8044 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
8045 		} else {
8046 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
8047 		}
8048 		mutex_exit(&ill->ill_lock);
8049 	}
8050 
8051 	ASSERT(!ipx->ipx_current_done);
8052 	ipx->ipx_current_done = B_TRUE;
8053 	ipx->ipx_current_ioctl = 0;
8054 	if (dlpi_pending == DL_PRIM_INVAL) {
8055 		mutex_enter(&ipx->ipx_lock);
8056 		ipx->ipx_current_ipif = NULL;
8057 		mutex_exit(&ipx->ipx_lock);
8058 	}
8059 }
8060 
8061 /*
8062  * The ill is closing. Flush all messages on the ipsq that originated
8063  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8064  * for this ill since ipsq_enter could not have entered until then.
8065  * New messages can't be queued since the CONDEMNED flag is set.
8066  */
8067 static void
8068 ipsq_flush(ill_t *ill)
8069 {
8070 	queue_t	*q;
8071 	mblk_t	*prev;
8072 	mblk_t	*mp;
8073 	mblk_t	*mp_next;
8074 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
8075 
8076 	ASSERT(IAM_WRITER_ILL(ill));
8077 
8078 	/*
8079 	 * Flush any messages sent up by the driver.
8080 	 */
8081 	mutex_enter(&ipx->ipx_lock);
8082 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
8083 		mp_next = mp->b_next;
8084 		q = mp->b_queue;
8085 		if (q == ill->ill_rq || q == ill->ill_wq) {
8086 			/* dequeue mp */
8087 			if (prev == NULL)
8088 				ipx->ipx_mphead = mp->b_next;
8089 			else
8090 				prev->b_next = mp->b_next;
8091 			if (ipx->ipx_mptail == mp) {
8092 				ASSERT(mp_next == NULL);
8093 				ipx->ipx_mptail = prev;
8094 			}
8095 			inet_freemsg(mp);
8096 		} else {
8097 			prev = mp;
8098 		}
8099 	}
8100 	mutex_exit(&ipx->ipx_lock);
8101 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8102 	ipsq_xopq_mp_cleanup(ill, NULL);
8103 	ill_pending_mp_cleanup(ill);
8104 }
8105 
8106 /*
8107  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8108  * and return the associated ipif.
8109  * Return value:
8110  *	Non zero: An error has occurred. ci may not be filled out.
8111  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8112  *	a held ipif in ci.ci_ipif.
8113  */
8114 int
8115 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8116     cmd_info_t *ci, ipsq_func_t func)
8117 {
8118 	char		*name;
8119 	struct ifreq    *ifr;
8120 	struct lifreq    *lifr;
8121 	ipif_t		*ipif = NULL;
8122 	ill_t		*ill;
8123 	conn_t		*connp;
8124 	boolean_t	isv6;
8125 	boolean_t	exists;
8126 	int		err;
8127 	mblk_t		*mp1;
8128 	zoneid_t	zoneid;
8129 	ip_stack_t	*ipst;
8130 
8131 	if (q->q_next != NULL) {
8132 		ill = (ill_t *)q->q_ptr;
8133 		isv6 = ill->ill_isv6;
8134 		connp = NULL;
8135 		zoneid = ALL_ZONES;
8136 		ipst = ill->ill_ipst;
8137 	} else {
8138 		ill = NULL;
8139 		connp = Q_TO_CONN(q);
8140 		isv6 = connp->conn_af_isv6;
8141 		zoneid = connp->conn_zoneid;
8142 		if (zoneid == GLOBAL_ZONEID) {
8143 			/* global zone can access ipifs in all zones */
8144 			zoneid = ALL_ZONES;
8145 		}
8146 		ipst = connp->conn_netstack->netstack_ip;
8147 	}
8148 
8149 	/* Has been checked in ip_wput_nondata */
8150 	mp1 = mp->b_cont->b_cont;
8151 
8152 	if (ipip->ipi_cmd_type == IF_CMD) {
8153 		/* This a old style SIOC[GS]IF* command */
8154 		ifr = (struct ifreq *)mp1->b_rptr;
8155 		/*
8156 		 * Null terminate the string to protect against buffer
8157 		 * overrun. String was generated by user code and may not
8158 		 * be trusted.
8159 		 */
8160 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8161 		name = ifr->ifr_name;
8162 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
8163 		ci->ci_sin6 = NULL;
8164 		ci->ci_lifr = (struct lifreq *)ifr;
8165 	} else {
8166 		/* This a new style SIOC[GS]LIF* command */
8167 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8168 		lifr = (struct lifreq *)mp1->b_rptr;
8169 		/*
8170 		 * Null terminate the string to protect against buffer
8171 		 * overrun. String was generated by user code and may not
8172 		 * be trusted.
8173 		 */
8174 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8175 		name = lifr->lifr_name;
8176 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
8177 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
8178 		ci->ci_lifr = lifr;
8179 	}
8180 
8181 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
8182 		/*
8183 		 * The ioctl will be failed if the ioctl comes down
8184 		 * an conn stream
8185 		 */
8186 		if (ill == NULL) {
8187 			/*
8188 			 * Not an ill queue, return EINVAL same as the
8189 			 * old error code.
8190 			 */
8191 			return (ENXIO);
8192 		}
8193 		ipif = ill->ill_ipif;
8194 		ipif_refhold(ipif);
8195 	} else {
8196 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8197 		    &exists, isv6, zoneid,
8198 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8199 		    ipst);
8200 		if (ipif == NULL) {
8201 			if (err == EINPROGRESS)
8202 				return (err);
8203 			err = 0;	/* Ensure we don't use it below */
8204 		}
8205 	}
8206 
8207 	/*
8208 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8209 	 */
8210 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8211 		ipif_refrele(ipif);
8212 		return (ENXIO);
8213 	}
8214 
8215 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8216 	    name[0] == '\0') {
8217 		/*
8218 		 * Handle a or a SIOC?IF* with a null name
8219 		 * during plumb (on the ill queue before the I_PLINK).
8220 		 */
8221 		ipif = ill->ill_ipif;
8222 		ipif_refhold(ipif);
8223 	}
8224 
8225 	if (ipif == NULL)
8226 		return (ENXIO);
8227 
8228 	ci->ci_ipif = ipif;
8229 	return (0);
8230 }
8231 
8232 /*
8233  * Return the total number of ipifs.
8234  */
8235 static uint_t
8236 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8237 {
8238 	uint_t numifs = 0;
8239 	ill_t	*ill;
8240 	ill_walk_context_t	ctx;
8241 	ipif_t	*ipif;
8242 
8243 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8244 	ill = ILL_START_WALK_V4(&ctx, ipst);
8245 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8246 		if (IS_UNDER_IPMP(ill))
8247 			continue;
8248 		for (ipif = ill->ill_ipif; ipif != NULL;
8249 		    ipif = ipif->ipif_next) {
8250 			if (ipif->ipif_zoneid == zoneid ||
8251 			    ipif->ipif_zoneid == ALL_ZONES)
8252 				numifs++;
8253 		}
8254 	}
8255 	rw_exit(&ipst->ips_ill_g_lock);
8256 	return (numifs);
8257 }
8258 
8259 /*
8260  * Return the total number of ipifs.
8261  */
8262 static uint_t
8263 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8264 {
8265 	uint_t numifs = 0;
8266 	ill_t	*ill;
8267 	ipif_t	*ipif;
8268 	ill_walk_context_t	ctx;
8269 
8270 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8271 
8272 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8273 	if (family == AF_INET)
8274 		ill = ILL_START_WALK_V4(&ctx, ipst);
8275 	else if (family == AF_INET6)
8276 		ill = ILL_START_WALK_V6(&ctx, ipst);
8277 	else
8278 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8279 
8280 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8281 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
8282 			continue;
8283 
8284 		for (ipif = ill->ill_ipif; ipif != NULL;
8285 		    ipif = ipif->ipif_next) {
8286 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8287 			    !(lifn_flags & LIFC_NOXMIT))
8288 				continue;
8289 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8290 			    !(lifn_flags & LIFC_TEMPORARY))
8291 				continue;
8292 			if (((ipif->ipif_flags &
8293 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8294 			    IPIF_DEPRECATED)) ||
8295 			    IS_LOOPBACK(ill) ||
8296 			    !(ipif->ipif_flags & IPIF_UP)) &&
8297 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8298 				continue;
8299 
8300 			if (zoneid != ipif->ipif_zoneid &&
8301 			    ipif->ipif_zoneid != ALL_ZONES &&
8302 			    (zoneid != GLOBAL_ZONEID ||
8303 			    !(lifn_flags & LIFC_ALLZONES)))
8304 				continue;
8305 
8306 			numifs++;
8307 		}
8308 	}
8309 	rw_exit(&ipst->ips_ill_g_lock);
8310 	return (numifs);
8311 }
8312 
8313 uint_t
8314 ip_get_lifsrcofnum(ill_t *ill)
8315 {
8316 	uint_t numifs = 0;
8317 	ill_t	*ill_head = ill;
8318 	ip_stack_t	*ipst = ill->ill_ipst;
8319 
8320 	/*
8321 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8322 	 * other thread may be trying to relink the ILLs in this usesrc group
8323 	 * and adjusting the ill_usesrc_grp_next pointers
8324 	 */
8325 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8326 	if ((ill->ill_usesrc_ifindex == 0) &&
8327 	    (ill->ill_usesrc_grp_next != NULL)) {
8328 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8329 		    ill = ill->ill_usesrc_grp_next)
8330 			numifs++;
8331 	}
8332 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8333 
8334 	return (numifs);
8335 }
8336 
8337 /* Null values are passed in for ipif, sin, and ifreq */
8338 /* ARGSUSED */
8339 int
8340 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8341     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8342 {
8343 	int *nump;
8344 	conn_t *connp = Q_TO_CONN(q);
8345 
8346 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8347 
8348 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8349 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8350 
8351 	*nump = ip_get_numifs(connp->conn_zoneid,
8352 	    connp->conn_netstack->netstack_ip);
8353 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8354 	return (0);
8355 }
8356 
8357 /* Null values are passed in for ipif, sin, and ifreq */
8358 /* ARGSUSED */
8359 int
8360 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8361     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8362 {
8363 	struct lifnum *lifn;
8364 	mblk_t	*mp1;
8365 	conn_t *connp = Q_TO_CONN(q);
8366 
8367 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8368 
8369 	/* Existence checked in ip_wput_nondata */
8370 	mp1 = mp->b_cont->b_cont;
8371 
8372 	lifn = (struct lifnum *)mp1->b_rptr;
8373 	switch (lifn->lifn_family) {
8374 	case AF_UNSPEC:
8375 	case AF_INET:
8376 	case AF_INET6:
8377 		break;
8378 	default:
8379 		return (EAFNOSUPPORT);
8380 	}
8381 
8382 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8383 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8384 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8385 	return (0);
8386 }
8387 
8388 /* ARGSUSED */
8389 int
8390 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8391     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8392 {
8393 	STRUCT_HANDLE(ifconf, ifc);
8394 	mblk_t *mp1;
8395 	struct iocblk *iocp;
8396 	struct ifreq *ifr;
8397 	ill_walk_context_t	ctx;
8398 	ill_t	*ill;
8399 	ipif_t	*ipif;
8400 	struct sockaddr_in *sin;
8401 	int32_t	ifclen;
8402 	zoneid_t zoneid;
8403 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8404 
8405 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8406 
8407 	ip1dbg(("ip_sioctl_get_ifconf"));
8408 	/* Existence verified in ip_wput_nondata */
8409 	mp1 = mp->b_cont->b_cont;
8410 	iocp = (struct iocblk *)mp->b_rptr;
8411 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8412 
8413 	/*
8414 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8415 	 * the user buffer address and length into which the list of struct
8416 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8417 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8418 	 * the SIOCGIFCONF operation was redefined to simply provide
8419 	 * a large output buffer into which we are supposed to jam the ifreq
8420 	 * array.  The same ioctl command code was used, despite the fact that
8421 	 * both the applications and the kernel code had to change, thus making
8422 	 * it impossible to support both interfaces.
8423 	 *
8424 	 * For reasons not good enough to try to explain, the following
8425 	 * algorithm is used for deciding what to do with one of these:
8426 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8427 	 * form with the output buffer coming down as the continuation message.
8428 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8429 	 * and we have to copy in the ifconf structure to find out how big the
8430 	 * output buffer is and where to copy out to.  Sure no problem...
8431 	 *
8432 	 */
8433 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8434 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8435 		int numifs = 0;
8436 		size_t ifc_bufsize;
8437 
8438 		/*
8439 		 * Must be (better be!) continuation of a TRANSPARENT
8440 		 * IOCTL.  We just copied in the ifconf structure.
8441 		 */
8442 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8443 		    (struct ifconf *)mp1->b_rptr);
8444 
8445 		/*
8446 		 * Allocate a buffer to hold requested information.
8447 		 *
8448 		 * If ifc_len is larger than what is needed, we only
8449 		 * allocate what we will use.
8450 		 *
8451 		 * If ifc_len is smaller than what is needed, return
8452 		 * EINVAL.
8453 		 *
8454 		 * XXX: the ill_t structure can hava 2 counters, for
8455 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8456 		 * number of interfaces for a device, so we don't need
8457 		 * to count them here...
8458 		 */
8459 		numifs = ip_get_numifs(zoneid, ipst);
8460 
8461 		ifclen = STRUCT_FGET(ifc, ifc_len);
8462 		ifc_bufsize = numifs * sizeof (struct ifreq);
8463 		if (ifc_bufsize > ifclen) {
8464 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8465 				/* old behaviour */
8466 				return (EINVAL);
8467 			} else {
8468 				ifc_bufsize = ifclen;
8469 			}
8470 		}
8471 
8472 		mp1 = mi_copyout_alloc(q, mp,
8473 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8474 		if (mp1 == NULL)
8475 			return (ENOMEM);
8476 
8477 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8478 	}
8479 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8480 	/*
8481 	 * the SIOCGIFCONF ioctl only knows about
8482 	 * IPv4 addresses, so don't try to tell
8483 	 * it about interfaces with IPv6-only
8484 	 * addresses. (Last parm 'isv6' is B_FALSE)
8485 	 */
8486 
8487 	ifr = (struct ifreq *)mp1->b_rptr;
8488 
8489 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8490 	ill = ILL_START_WALK_V4(&ctx, ipst);
8491 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8492 		if (IS_UNDER_IPMP(ill))
8493 			continue;
8494 		for (ipif = ill->ill_ipif; ipif != NULL;
8495 		    ipif = ipif->ipif_next) {
8496 			if (zoneid != ipif->ipif_zoneid &&
8497 			    ipif->ipif_zoneid != ALL_ZONES)
8498 				continue;
8499 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8500 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8501 					/* old behaviour */
8502 					rw_exit(&ipst->ips_ill_g_lock);
8503 					return (EINVAL);
8504 				} else {
8505 					goto if_copydone;
8506 				}
8507 			}
8508 			ipif_get_name(ipif, ifr->ifr_name,
8509 			    sizeof (ifr->ifr_name));
8510 			sin = (sin_t *)&ifr->ifr_addr;
8511 			*sin = sin_null;
8512 			sin->sin_family = AF_INET;
8513 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8514 			ifr++;
8515 		}
8516 	}
8517 if_copydone:
8518 	rw_exit(&ipst->ips_ill_g_lock);
8519 	mp1->b_wptr = (uchar_t *)ifr;
8520 
8521 	if (STRUCT_BUF(ifc) != NULL) {
8522 		STRUCT_FSET(ifc, ifc_len,
8523 		    (int)((uchar_t *)ifr - mp1->b_rptr));
8524 	}
8525 	return (0);
8526 }
8527 
8528 /*
8529  * Get the interfaces using the address hosted on the interface passed in,
8530  * as a source adddress
8531  */
8532 /* ARGSUSED */
8533 int
8534 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8535     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8536 {
8537 	mblk_t *mp1;
8538 	ill_t	*ill, *ill_head;
8539 	ipif_t	*ipif, *orig_ipif;
8540 	int	numlifs = 0;
8541 	size_t	lifs_bufsize, lifsmaxlen;
8542 	struct	lifreq *lifr;
8543 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8544 	uint_t	ifindex;
8545 	zoneid_t zoneid;
8546 	int err = 0;
8547 	boolean_t isv6 = B_FALSE;
8548 	struct	sockaddr_in	*sin;
8549 	struct	sockaddr_in6	*sin6;
8550 	STRUCT_HANDLE(lifsrcof, lifs);
8551 	ip_stack_t		*ipst;
8552 
8553 	ipst = CONNQ_TO_IPST(q);
8554 
8555 	ASSERT(q->q_next == NULL);
8556 
8557 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8558 
8559 	/* Existence verified in ip_wput_nondata */
8560 	mp1 = mp->b_cont->b_cont;
8561 
8562 	/*
8563 	 * Must be (better be!) continuation of a TRANSPARENT
8564 	 * IOCTL.  We just copied in the lifsrcof structure.
8565 	 */
8566 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8567 	    (struct lifsrcof *)mp1->b_rptr);
8568 
8569 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8570 		return (EINVAL);
8571 
8572 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8573 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8574 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8575 	    ip_process_ioctl, &err, ipst);
8576 	if (ipif == NULL) {
8577 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8578 		    ifindex));
8579 		return (err);
8580 	}
8581 
8582 	/* Allocate a buffer to hold requested information */
8583 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8584 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8585 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8586 	/* The actual size needed is always returned in lifs_len */
8587 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8588 
8589 	/* If the amount we need is more than what is passed in, abort */
8590 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8591 		ipif_refrele(ipif);
8592 		return (0);
8593 	}
8594 
8595 	mp1 = mi_copyout_alloc(q, mp,
8596 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8597 	if (mp1 == NULL) {
8598 		ipif_refrele(ipif);
8599 		return (ENOMEM);
8600 	}
8601 
8602 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8603 	bzero(mp1->b_rptr, lifs_bufsize);
8604 
8605 	lifr = (struct lifreq *)mp1->b_rptr;
8606 
8607 	ill = ill_head = ipif->ipif_ill;
8608 	orig_ipif = ipif;
8609 
8610 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8611 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8612 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8613 
8614 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8615 	for (; (ill != NULL) && (ill != ill_head);
8616 	    ill = ill->ill_usesrc_grp_next) {
8617 
8618 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8619 			break;
8620 
8621 		ipif = ill->ill_ipif;
8622 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8623 		if (ipif->ipif_isv6) {
8624 			sin6 = (sin6_t *)&lifr->lifr_addr;
8625 			*sin6 = sin6_null;
8626 			sin6->sin6_family = AF_INET6;
8627 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8628 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8629 			    &ipif->ipif_v6net_mask);
8630 		} else {
8631 			sin = (sin_t *)&lifr->lifr_addr;
8632 			*sin = sin_null;
8633 			sin->sin_family = AF_INET;
8634 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8635 			lifr->lifr_addrlen = ip_mask_to_plen(
8636 			    ipif->ipif_net_mask);
8637 		}
8638 		lifr++;
8639 	}
8640 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8641 	rw_exit(&ipst->ips_ill_g_lock);
8642 	ipif_refrele(orig_ipif);
8643 	mp1->b_wptr = (uchar_t *)lifr;
8644 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8645 
8646 	return (0);
8647 }
8648 
8649 /* ARGSUSED */
8650 int
8651 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8652     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8653 {
8654 	mblk_t *mp1;
8655 	int	list;
8656 	ill_t	*ill;
8657 	ipif_t	*ipif;
8658 	int	flags;
8659 	int	numlifs = 0;
8660 	size_t	lifc_bufsize;
8661 	struct	lifreq *lifr;
8662 	sa_family_t	family;
8663 	struct	sockaddr_in	*sin;
8664 	struct	sockaddr_in6	*sin6;
8665 	ill_walk_context_t	ctx;
8666 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8667 	int32_t	lifclen;
8668 	zoneid_t zoneid;
8669 	STRUCT_HANDLE(lifconf, lifc);
8670 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8671 
8672 	ip1dbg(("ip_sioctl_get_lifconf"));
8673 
8674 	ASSERT(q->q_next == NULL);
8675 
8676 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8677 
8678 	/* Existence verified in ip_wput_nondata */
8679 	mp1 = mp->b_cont->b_cont;
8680 
8681 	/*
8682 	 * An extended version of SIOCGIFCONF that takes an
8683 	 * additional address family and flags field.
8684 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8685 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8686 	 * interfaces are omitted.
8687 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8688 	 * unless LIFC_TEMPORARY is specified.
8689 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8690 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8691 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8692 	 * has priority over LIFC_NOXMIT.
8693 	 */
8694 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8695 
8696 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8697 		return (EINVAL);
8698 
8699 	/*
8700 	 * Must be (better be!) continuation of a TRANSPARENT
8701 	 * IOCTL.  We just copied in the lifconf structure.
8702 	 */
8703 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8704 
8705 	family = STRUCT_FGET(lifc, lifc_family);
8706 	flags = STRUCT_FGET(lifc, lifc_flags);
8707 
8708 	switch (family) {
8709 	case AF_UNSPEC:
8710 		/*
8711 		 * walk all ILL's.
8712 		 */
8713 		list = MAX_G_HEADS;
8714 		break;
8715 	case AF_INET:
8716 		/*
8717 		 * walk only IPV4 ILL's.
8718 		 */
8719 		list = IP_V4_G_HEAD;
8720 		break;
8721 	case AF_INET6:
8722 		/*
8723 		 * walk only IPV6 ILL's.
8724 		 */
8725 		list = IP_V6_G_HEAD;
8726 		break;
8727 	default:
8728 		return (EAFNOSUPPORT);
8729 	}
8730 
8731 	/*
8732 	 * Allocate a buffer to hold requested information.
8733 	 *
8734 	 * If lifc_len is larger than what is needed, we only
8735 	 * allocate what we will use.
8736 	 *
8737 	 * If lifc_len is smaller than what is needed, return
8738 	 * EINVAL.
8739 	 */
8740 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8741 	lifc_bufsize = numlifs * sizeof (struct lifreq);
8742 	lifclen = STRUCT_FGET(lifc, lifc_len);
8743 	if (lifc_bufsize > lifclen) {
8744 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8745 			return (EINVAL);
8746 		else
8747 			lifc_bufsize = lifclen;
8748 	}
8749 
8750 	mp1 = mi_copyout_alloc(q, mp,
8751 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8752 	if (mp1 == NULL)
8753 		return (ENOMEM);
8754 
8755 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8756 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8757 
8758 	lifr = (struct lifreq *)mp1->b_rptr;
8759 
8760 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8761 	ill = ill_first(list, list, &ctx, ipst);
8762 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8763 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
8764 			continue;
8765 
8766 		for (ipif = ill->ill_ipif; ipif != NULL;
8767 		    ipif = ipif->ipif_next) {
8768 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8769 			    !(flags & LIFC_NOXMIT))
8770 				continue;
8771 
8772 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8773 			    !(flags & LIFC_TEMPORARY))
8774 				continue;
8775 
8776 			if (((ipif->ipif_flags &
8777 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8778 			    IPIF_DEPRECATED)) ||
8779 			    IS_LOOPBACK(ill) ||
8780 			    !(ipif->ipif_flags & IPIF_UP)) &&
8781 			    (flags & LIFC_EXTERNAL_SOURCE))
8782 				continue;
8783 
8784 			if (zoneid != ipif->ipif_zoneid &&
8785 			    ipif->ipif_zoneid != ALL_ZONES &&
8786 			    (zoneid != GLOBAL_ZONEID ||
8787 			    !(flags & LIFC_ALLZONES)))
8788 				continue;
8789 
8790 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8791 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8792 					rw_exit(&ipst->ips_ill_g_lock);
8793 					return (EINVAL);
8794 				} else {
8795 					goto lif_copydone;
8796 				}
8797 			}
8798 
8799 			ipif_get_name(ipif, lifr->lifr_name,
8800 			    sizeof (lifr->lifr_name));
8801 			lifr->lifr_type = ill->ill_type;
8802 			if (ipif->ipif_isv6) {
8803 				sin6 = (sin6_t *)&lifr->lifr_addr;
8804 				*sin6 = sin6_null;
8805 				sin6->sin6_family = AF_INET6;
8806 				sin6->sin6_addr =
8807 				    ipif->ipif_v6lcl_addr;
8808 				lifr->lifr_addrlen =
8809 				    ip_mask_to_plen_v6(
8810 				    &ipif->ipif_v6net_mask);
8811 			} else {
8812 				sin = (sin_t *)&lifr->lifr_addr;
8813 				*sin = sin_null;
8814 				sin->sin_family = AF_INET;
8815 				sin->sin_addr.s_addr =
8816 				    ipif->ipif_lcl_addr;
8817 				lifr->lifr_addrlen =
8818 				    ip_mask_to_plen(
8819 				    ipif->ipif_net_mask);
8820 			}
8821 			lifr++;
8822 		}
8823 	}
8824 lif_copydone:
8825 	rw_exit(&ipst->ips_ill_g_lock);
8826 
8827 	mp1->b_wptr = (uchar_t *)lifr;
8828 	if (STRUCT_BUF(lifc) != NULL) {
8829 		STRUCT_FSET(lifc, lifc_len,
8830 		    (int)((uchar_t *)lifr - mp1->b_rptr));
8831 	}
8832 	return (0);
8833 }
8834 
8835 static void
8836 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
8837 {
8838 	ip6_asp_t *table;
8839 	size_t table_size;
8840 	mblk_t *data_mp;
8841 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8842 	ip_stack_t	*ipst;
8843 
8844 	if (q->q_next == NULL)
8845 		ipst = CONNQ_TO_IPST(q);
8846 	else
8847 		ipst = ILLQ_TO_IPST(q);
8848 
8849 	/* These two ioctls are I_STR only */
8850 	if (iocp->ioc_count == TRANSPARENT) {
8851 		miocnak(q, mp, 0, EINVAL);
8852 		return;
8853 	}
8854 
8855 	data_mp = mp->b_cont;
8856 	if (data_mp == NULL) {
8857 		/* The user passed us a NULL argument */
8858 		table = NULL;
8859 		table_size = iocp->ioc_count;
8860 	} else {
8861 		/*
8862 		 * The user provided a table.  The stream head
8863 		 * may have copied in the user data in chunks,
8864 		 * so make sure everything is pulled up
8865 		 * properly.
8866 		 */
8867 		if (MBLKL(data_mp) < iocp->ioc_count) {
8868 			mblk_t *new_data_mp;
8869 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
8870 			    NULL) {
8871 				miocnak(q, mp, 0, ENOMEM);
8872 				return;
8873 			}
8874 			freemsg(data_mp);
8875 			data_mp = new_data_mp;
8876 			mp->b_cont = data_mp;
8877 		}
8878 		table = (ip6_asp_t *)data_mp->b_rptr;
8879 		table_size = iocp->ioc_count;
8880 	}
8881 
8882 	switch (iocp->ioc_cmd) {
8883 	case SIOCGIP6ADDRPOLICY:
8884 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
8885 		if (iocp->ioc_rval == -1)
8886 			iocp->ioc_error = EINVAL;
8887 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8888 		else if (table != NULL &&
8889 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
8890 			ip6_asp_t *src = table;
8891 			ip6_asp32_t *dst = (void *)table;
8892 			int count = table_size / sizeof (ip6_asp_t);
8893 			int i;
8894 
8895 			/*
8896 			 * We need to do an in-place shrink of the array
8897 			 * to match the alignment attributes of the
8898 			 * 32-bit ABI looking at it.
8899 			 */
8900 			/* LINTED: logical expression always true: op "||" */
8901 			ASSERT(sizeof (*src) > sizeof (*dst));
8902 			for (i = 1; i < count; i++)
8903 				bcopy(src + i, dst + i, sizeof (*dst));
8904 		}
8905 #endif
8906 		break;
8907 
8908 	case SIOCSIP6ADDRPOLICY:
8909 		ASSERT(mp->b_prev == NULL);
8910 		mp->b_prev = (void *)q;
8911 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8912 		/*
8913 		 * We pass in the datamodel here so that the ip6_asp_replace()
8914 		 * routine can handle converting from 32-bit to native formats
8915 		 * where necessary.
8916 		 *
8917 		 * A better way to handle this might be to convert the inbound
8918 		 * data structure here, and hang it off a new 'mp'; thus the
8919 		 * ip6_asp_replace() logic would always be dealing with native
8920 		 * format data structures..
8921 		 *
8922 		 * (An even simpler way to handle these ioctls is to just
8923 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
8924 		 * and just recompile everything that depends on it.)
8925 		 */
8926 #endif
8927 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
8928 		    iocp->ioc_flag & IOC_MODELS);
8929 		return;
8930 	}
8931 
8932 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
8933 	qreply(q, mp);
8934 }
8935 
8936 static void
8937 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
8938 {
8939 	mblk_t 		*data_mp;
8940 	struct dstinforeq	*dir;
8941 	uint8_t		*end, *cur;
8942 	in6_addr_t	*daddr, *saddr;
8943 	ipaddr_t	v4daddr;
8944 	ire_t		*ire;
8945 	char		*slabel, *dlabel;
8946 	boolean_t	isipv4;
8947 	int		match_ire;
8948 	ill_t		*dst_ill;
8949 	ipif_t		*src_ipif, *ire_ipif;
8950 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8951 	zoneid_t	zoneid;
8952 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
8953 
8954 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8955 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8956 
8957 	/*
8958 	 * This ioctl is I_STR only, and must have a
8959 	 * data mblk following the M_IOCTL mblk.
8960 	 */
8961 	data_mp = mp->b_cont;
8962 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
8963 		miocnak(q, mp, 0, EINVAL);
8964 		return;
8965 	}
8966 
8967 	if (MBLKL(data_mp) < iocp->ioc_count) {
8968 		mblk_t *new_data_mp;
8969 
8970 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
8971 			miocnak(q, mp, 0, ENOMEM);
8972 			return;
8973 		}
8974 		freemsg(data_mp);
8975 		data_mp = new_data_mp;
8976 		mp->b_cont = data_mp;
8977 	}
8978 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
8979 
8980 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
8981 	    end - cur >= sizeof (struct dstinforeq);
8982 	    cur += sizeof (struct dstinforeq)) {
8983 		dir = (struct dstinforeq *)cur;
8984 		daddr = &dir->dir_daddr;
8985 		saddr = &dir->dir_saddr;
8986 
8987 		/*
8988 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
8989 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
8990 		 * and ipif_select_source[_v6]() do not.
8991 		 */
8992 		dir->dir_dscope = ip_addr_scope_v6(daddr);
8993 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
8994 
8995 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
8996 		if (isipv4) {
8997 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
8998 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
8999 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9000 		} else {
9001 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9002 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9003 		}
9004 		if (ire == NULL) {
9005 			dir->dir_dreachable = 0;
9006 
9007 			/* move on to next dst addr */
9008 			continue;
9009 		}
9010 		dir->dir_dreachable = 1;
9011 
9012 		ire_ipif = ire->ire_ipif;
9013 		if (ire_ipif == NULL)
9014 			goto next_dst;
9015 
9016 		/*
9017 		 * We expect to get back an interface ire or a
9018 		 * gateway ire cache entry.  For both types, the
9019 		 * output interface is ire_ipif->ipif_ill.
9020 		 */
9021 		dst_ill = ire_ipif->ipif_ill;
9022 		dir->dir_dmactype = dst_ill->ill_mactype;
9023 
9024 		if (isipv4) {
9025 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9026 		} else {
9027 			src_ipif = ipif_select_source_v6(dst_ill,
9028 			    daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid);
9029 		}
9030 		if (src_ipif == NULL)
9031 			goto next_dst;
9032 
9033 		*saddr = src_ipif->ipif_v6lcl_addr;
9034 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9035 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9036 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9037 		dir->dir_sdeprecated =
9038 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9039 		ipif_refrele(src_ipif);
9040 next_dst:
9041 		ire_refrele(ire);
9042 	}
9043 	miocack(q, mp, iocp->ioc_count, 0);
9044 }
9045 
9046 /*
9047  * Check if this is an address assigned to this machine.
9048  * Skips interfaces that are down by using ire checks.
9049  * Translates mapped addresses to v4 addresses and then
9050  * treats them as such, returning true if the v4 address
9051  * associated with this mapped address is configured.
9052  * Note: Applications will have to be careful what they do
9053  * with the response; use of mapped addresses limits
9054  * what can be done with the socket, especially with
9055  * respect to socket options and ioctls - neither IPv4
9056  * options nor IPv6 sticky options/ancillary data options
9057  * may be used.
9058  */
9059 /* ARGSUSED */
9060 int
9061 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9062     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9063 {
9064 	struct sioc_addrreq *sia;
9065 	sin_t *sin;
9066 	ire_t *ire;
9067 	mblk_t *mp1;
9068 	zoneid_t zoneid;
9069 	ip_stack_t	*ipst;
9070 
9071 	ip1dbg(("ip_sioctl_tmyaddr"));
9072 
9073 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9074 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9075 	ipst = CONNQ_TO_IPST(q);
9076 
9077 	/* Existence verified in ip_wput_nondata */
9078 	mp1 = mp->b_cont->b_cont;
9079 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9080 	sin = (sin_t *)&sia->sa_addr;
9081 	switch (sin->sin_family) {
9082 	case AF_INET6: {
9083 		sin6_t *sin6 = (sin6_t *)sin;
9084 
9085 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9086 			ipaddr_t v4_addr;
9087 
9088 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9089 			    v4_addr);
9090 			ire = ire_ctable_lookup(v4_addr, 0,
9091 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9092 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9093 		} else {
9094 			in6_addr_t v6addr;
9095 
9096 			v6addr = sin6->sin6_addr;
9097 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9098 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9099 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9100 		}
9101 		break;
9102 	}
9103 	case AF_INET: {
9104 		ipaddr_t v4addr;
9105 
9106 		v4addr = sin->sin_addr.s_addr;
9107 		ire = ire_ctable_lookup(v4addr, 0,
9108 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9109 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9110 		break;
9111 	}
9112 	default:
9113 		return (EAFNOSUPPORT);
9114 	}
9115 	if (ire != NULL) {
9116 		sia->sa_res = 1;
9117 		ire_refrele(ire);
9118 	} else {
9119 		sia->sa_res = 0;
9120 	}
9121 	return (0);
9122 }
9123 
9124 /*
9125  * Check if this is an address assigned on-link i.e. neighbor,
9126  * and makes sure it's reachable from the current zone.
9127  * Returns true for my addresses as well.
9128  * Translates mapped addresses to v4 addresses and then
9129  * treats them as such, returning true if the v4 address
9130  * associated with this mapped address is configured.
9131  * Note: Applications will have to be careful what they do
9132  * with the response; use of mapped addresses limits
9133  * what can be done with the socket, especially with
9134  * respect to socket options and ioctls - neither IPv4
9135  * options nor IPv6 sticky options/ancillary data options
9136  * may be used.
9137  */
9138 /* ARGSUSED */
9139 int
9140 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9141     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9142 {
9143 	struct sioc_addrreq *sia;
9144 	sin_t *sin;
9145 	mblk_t	*mp1;
9146 	ire_t *ire = NULL;
9147 	zoneid_t zoneid;
9148 	ip_stack_t	*ipst;
9149 
9150 	ip1dbg(("ip_sioctl_tonlink"));
9151 
9152 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9153 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9154 	ipst = CONNQ_TO_IPST(q);
9155 
9156 	/* Existence verified in ip_wput_nondata */
9157 	mp1 = mp->b_cont->b_cont;
9158 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9159 	sin = (sin_t *)&sia->sa_addr;
9160 
9161 	/*
9162 	 * Match addresses with a zero gateway field to avoid
9163 	 * routes going through a router.
9164 	 * Exclude broadcast and multicast addresses.
9165 	 */
9166 	switch (sin->sin_family) {
9167 	case AF_INET6: {
9168 		sin6_t *sin6 = (sin6_t *)sin;
9169 
9170 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9171 			ipaddr_t v4_addr;
9172 
9173 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9174 			    v4_addr);
9175 			if (!CLASSD(v4_addr)) {
9176 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9177 				    NULL, NULL, zoneid, NULL,
9178 				    MATCH_IRE_GW, ipst);
9179 			}
9180 		} else {
9181 			in6_addr_t v6addr;
9182 			in6_addr_t v6gw;
9183 
9184 			v6addr = sin6->sin6_addr;
9185 			v6gw = ipv6_all_zeros;
9186 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9187 				ire = ire_route_lookup_v6(&v6addr, 0,
9188 				    &v6gw, 0, NULL, NULL, zoneid,
9189 				    NULL, MATCH_IRE_GW, ipst);
9190 			}
9191 		}
9192 		break;
9193 	}
9194 	case AF_INET: {
9195 		ipaddr_t v4addr;
9196 
9197 		v4addr = sin->sin_addr.s_addr;
9198 		if (!CLASSD(v4addr)) {
9199 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9200 			    NULL, NULL, zoneid, NULL,
9201 			    MATCH_IRE_GW, ipst);
9202 		}
9203 		break;
9204 	}
9205 	default:
9206 		return (EAFNOSUPPORT);
9207 	}
9208 	sia->sa_res = 0;
9209 	if (ire != NULL) {
9210 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9211 		    IRE_LOCAL|IRE_LOOPBACK)) {
9212 			sia->sa_res = 1;
9213 		}
9214 		ire_refrele(ire);
9215 	}
9216 	return (0);
9217 }
9218 
9219 /*
9220  * TBD: implement when kernel maintaines a list of site prefixes.
9221  */
9222 /* ARGSUSED */
9223 int
9224 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9225     ip_ioctl_cmd_t *ipip, void *ifreq)
9226 {
9227 	return (ENXIO);
9228 }
9229 
9230 /*
9231  * ARP IOCTLs.
9232  * How does IP get in the business of fronting ARP configuration/queries?
9233  * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9234  * are by tradition passed in through a datagram socket.  That lands in IP.
9235  * As it happens, this is just as well since the interface is quite crude in
9236  * that it passes in no information about protocol or hardware types, or
9237  * interface association.  After making the protocol assumption, IP is in
9238  * the position to look up the name of the ILL, which ARP will need, and
9239  * format a request that can be handled by ARP.  The request is passed up
9240  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9241  * back a response.  ARP supports its own set of more general IOCTLs, in
9242  * case anyone is interested.
9243  */
9244 /* ARGSUSED */
9245 int
9246 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9247     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9248 {
9249 	mblk_t *mp1;
9250 	mblk_t *mp2;
9251 	mblk_t *pending_mp;
9252 	ipaddr_t ipaddr;
9253 	area_t *area;
9254 	struct iocblk *iocp;
9255 	conn_t *connp;
9256 	struct arpreq *ar;
9257 	struct xarpreq *xar;
9258 	int flags, alength;
9259 	uchar_t *lladdr;
9260 	ire_t *ire;
9261 	ip_stack_t *ipst;
9262 	ill_t *ill = ipif->ipif_ill;
9263 	ill_t *proxy_ill = NULL;
9264 	ipmp_arpent_t *entp = NULL;
9265 	boolean_t if_arp_ioctl = B_FALSE;
9266 	boolean_t proxyarp = B_FALSE;
9267 
9268 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9269 	connp = Q_TO_CONN(q);
9270 	ipst = connp->conn_netstack->netstack_ip;
9271 
9272 	if (ipip->ipi_cmd_type == XARP_CMD) {
9273 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9274 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9275 		ar = NULL;
9276 
9277 		flags = xar->xarp_flags;
9278 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
9279 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9280 		/*
9281 		 * Validate against user's link layer address length
9282 		 * input and name and addr length limits.
9283 		 */
9284 		alength = ill->ill_phys_addr_length;
9285 		if (ipip->ipi_cmd == SIOCSXARP) {
9286 			if (alength != xar->xarp_ha.sdl_alen ||
9287 			    (alength + xar->xarp_ha.sdl_nlen >
9288 			    sizeof (xar->xarp_ha.sdl_data)))
9289 				return (EINVAL);
9290 		}
9291 	} else {
9292 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9293 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9294 		xar = NULL;
9295 
9296 		flags = ar->arp_flags;
9297 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
9298 		/*
9299 		 * Theoretically, the sa_family could tell us what link
9300 		 * layer type this operation is trying to deal with. By
9301 		 * common usage AF_UNSPEC means ethernet. We'll assume
9302 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9303 		 * for now. Our new SIOC*XARP ioctls can be used more
9304 		 * generally.
9305 		 *
9306 		 * If the underlying media happens to have a non 6 byte
9307 		 * address, arp module will fail set/get, but the del
9308 		 * operation will succeed.
9309 		 */
9310 		alength = 6;
9311 		if ((ipip->ipi_cmd != SIOCDARP) &&
9312 		    (alength != ill->ill_phys_addr_length)) {
9313 			return (EINVAL);
9314 		}
9315 	}
9316 
9317 	ipaddr = sin->sin_addr.s_addr;
9318 
9319 	/*
9320 	 * IPMP ARP special handling:
9321 	 *
9322 	 * 1. Since ARP mappings must appear consistent across the group,
9323 	 *    prohibit changing ARP mappings on the underlying interfaces.
9324 	 *
9325 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
9326 	 *    IP itself, prohibit changing them.
9327 	 *
9328 	 * 3. For proxy ARP, use a functioning hardware address in the group,
9329 	 *    provided one exists.  If one doesn't, just add the entry as-is;
9330 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
9331 	 */
9332 	if (IS_UNDER_IPMP(ill)) {
9333 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
9334 			return (EPERM);
9335 	}
9336 	if (IS_IPMP(ill)) {
9337 		ipmp_illgrp_t *illg = ill->ill_grp;
9338 
9339 		switch (ipip->ipi_cmd) {
9340 		case SIOCSARP:
9341 		case SIOCSXARP:
9342 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
9343 			if (proxy_ill != NULL) {
9344 				proxyarp = B_TRUE;
9345 				if (!ipmp_ill_is_active(proxy_ill))
9346 					proxy_ill = ipmp_illgrp_next_ill(illg);
9347 				if (proxy_ill != NULL)
9348 					lladdr = proxy_ill->ill_phys_addr;
9349 			}
9350 			/* FALLTHRU */
9351 		case SIOCDARP:
9352 		case SIOCDXARP:
9353 			ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL,
9354 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
9355 			if (ire != NULL) {
9356 				ire_refrele(ire);
9357 				return (EPERM);
9358 			}
9359 		}
9360 	}
9361 
9362 	/*
9363 	 * We are going to pass up to ARP a packet chain that looks
9364 	 * like:
9365 	 *
9366 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9367 	 *
9368 	 * Get a copy of the original IOCTL mblk to head the chain,
9369 	 * to be sent up (in mp1). Also get another copy to store
9370 	 * in the ill_pending_mp list, for matching the response
9371 	 * when it comes back from ARP.
9372 	 */
9373 	mp1 = copyb(mp);
9374 	pending_mp = copymsg(mp);
9375 	if (mp1 == NULL || pending_mp == NULL) {
9376 		if (mp1 != NULL)
9377 			freeb(mp1);
9378 		if (pending_mp != NULL)
9379 			inet_freemsg(pending_mp);
9380 		return (ENOMEM);
9381 	}
9382 
9383 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9384 	    (caddr_t)&ipaddr);
9385 	if (mp2 == NULL) {
9386 		freeb(mp1);
9387 		inet_freemsg(pending_mp);
9388 		return (ENOMEM);
9389 	}
9390 	/* Put together the chain. */
9391 	mp1->b_cont = mp2;
9392 	mp1->b_datap->db_type = M_IOCTL;
9393 	mp2->b_cont = mp;
9394 	mp2->b_datap->db_type = M_DATA;
9395 
9396 	iocp = (struct iocblk *)mp1->b_rptr;
9397 
9398 	/*
9399 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9400 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9401 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9402 	 * ioc_count field; set ioc_count to be correct.
9403 	 */
9404 	iocp->ioc_count = MBLKL(mp1->b_cont);
9405 
9406 	/*
9407 	 * Set the proper command in the ARP message.
9408 	 * Convert the SIOC{G|S|D}ARP calls into our
9409 	 * AR_ENTRY_xxx calls.
9410 	 */
9411 	area = (area_t *)mp2->b_rptr;
9412 	switch (iocp->ioc_cmd) {
9413 	case SIOCDARP:
9414 	case SIOCDXARP:
9415 		/*
9416 		 * We defer deleting the corresponding IRE until
9417 		 * we return from arp.
9418 		 */
9419 		area->area_cmd = AR_ENTRY_DELETE;
9420 		area->area_proto_mask_offset = 0;
9421 		break;
9422 	case SIOCGARP:
9423 	case SIOCGXARP:
9424 		area->area_cmd = AR_ENTRY_SQUERY;
9425 		area->area_proto_mask_offset = 0;
9426 		break;
9427 	case SIOCSARP:
9428 	case SIOCSXARP:
9429 		/*
9430 		 * Delete the corresponding ire to make sure IP will
9431 		 * pick up any change from arp.
9432 		 */
9433 		if (!if_arp_ioctl) {
9434 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9435 		} else {
9436 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9437 			if (ipif != NULL) {
9438 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9439 				    ipst);
9440 				ipif_refrele(ipif);
9441 			}
9442 		}
9443 		break;
9444 	}
9445 	iocp->ioc_cmd = area->area_cmd;
9446 
9447 	/*
9448 	 * Fill in the rest of the ARP operation fields.
9449 	 */
9450 	area->area_hw_addr_length = alength;
9451 	bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9452 
9453 	/* Translate the flags. */
9454 	if (flags & ATF_PERM)
9455 		area->area_flags |= ACE_F_PERMANENT;
9456 	if (flags & ATF_PUBL)
9457 		area->area_flags |= ACE_F_PUBLISH;
9458 	if (flags & ATF_AUTHORITY)
9459 		area->area_flags |= ACE_F_AUTHORITY;
9460 
9461 	/*
9462 	 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it
9463 	 * so that IP can update ARP as the active ills in the group change.
9464 	 */
9465 	if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD &&
9466 	    (area->area_flags & ACE_F_PERMANENT)) {
9467 		entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp);
9468 
9469 		/*
9470 		 * The second part of the conditional below handles a corner
9471 		 * case: if this is proxy ARP and the IPMP group has no active
9472 		 * interfaces, we can't send the request to ARP now since it
9473 		 * won't be able to build an ACE.  So we return success and
9474 		 * notify ARP about the proxy ARP entry once an interface
9475 		 * becomes active.
9476 		 */
9477 		if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
9478 			mp2->b_cont = NULL;
9479 			inet_freemsg(mp1);
9480 			inet_freemsg(pending_mp);
9481 			return (entp == NULL ? ENOMEM : 0);
9482 		}
9483 	}
9484 
9485 	/*
9486 	 * Before sending 'mp' to ARP, we have to clear the b_next
9487 	 * and b_prev. Otherwise if STREAMS encounters such a message
9488 	 * in freemsg(), (because ARP can close any time) it can cause
9489 	 * a panic. But mi code needs the b_next and b_prev values of
9490 	 * mp->b_cont, to complete the ioctl. So we store it here
9491 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9492 	 * when the response comes down from ARP.
9493 	 */
9494 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9495 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9496 	mp->b_cont->b_next = NULL;
9497 	mp->b_cont->b_prev = NULL;
9498 
9499 	mutex_enter(&connp->conn_lock);
9500 	mutex_enter(&ill->ill_lock);
9501 	/* conn has not yet started closing, hence this can't fail */
9502 	if (ipip->ipi_flags & IPI_WR) {
9503 		VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9504 		    pending_mp, 0) != 0);
9505 	} else {
9506 		VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9507 	}
9508 	mutex_exit(&ill->ill_lock);
9509 	mutex_exit(&connp->conn_lock);
9510 
9511 	/*
9512 	 * Up to ARP it goes.  The response will come back in ip_wput() as an
9513 	 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9514 	 */
9515 	putnext(ill->ill_rq, mp1);
9516 
9517 	/*
9518 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
9519 	 */
9520 	if (entp != NULL)
9521 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
9522 
9523 	return (EINPROGRESS);
9524 }
9525 
9526 /*
9527  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9528  * the associated sin and refhold and return the associated ipif via `ci'.
9529  */
9530 int
9531 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9532     cmd_info_t *ci, ipsq_func_t func)
9533 {
9534 	mblk_t	*mp1;
9535 	int	err;
9536 	sin_t	*sin;
9537 	conn_t	*connp;
9538 	ipif_t	*ipif;
9539 	ire_t	*ire = NULL;
9540 	ill_t	*ill = NULL;
9541 	boolean_t exists;
9542 	ip_stack_t *ipst;
9543 	struct arpreq *ar;
9544 	struct xarpreq *xar;
9545 	struct sockaddr_dl *sdl;
9546 
9547 	/* ioctl comes down on a conn */
9548 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9549 	connp = Q_TO_CONN(q);
9550 	if (connp->conn_af_isv6)
9551 		return (ENXIO);
9552 
9553 	ipst = connp->conn_netstack->netstack_ip;
9554 
9555 	/* Verified in ip_wput_nondata */
9556 	mp1 = mp->b_cont->b_cont;
9557 
9558 	if (ipip->ipi_cmd_type == XARP_CMD) {
9559 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9560 		xar = (struct xarpreq *)mp1->b_rptr;
9561 		sin = (sin_t *)&xar->xarp_pa;
9562 		sdl = &xar->xarp_ha;
9563 
9564 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9565 			return (ENXIO);
9566 		if (sdl->sdl_nlen >= LIFNAMSIZ)
9567 			return (EINVAL);
9568 	} else {
9569 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9570 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9571 		ar = (struct arpreq *)mp1->b_rptr;
9572 		sin = (sin_t *)&ar->arp_pa;
9573 	}
9574 
9575 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9576 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9577 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9578 		    mp, func, &err, ipst);
9579 		if (ipif == NULL)
9580 			return (err);
9581 		if (ipif->ipif_id != 0) {
9582 			ipif_refrele(ipif);
9583 			return (ENXIO);
9584 		}
9585 	} else {
9586 		/*
9587 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
9588 		 * of 0: use the IP address to find the ipif.  If the IP
9589 		 * address is an IPMP test address, ire_ftable_lookup() will
9590 		 * find the wrong ill, so we first do an ipif_lookup_addr().
9591 		 */
9592 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
9593 		    CONNP_TO_WQ(connp), mp, func, &err, ipst);
9594 		if (ipif == NULL) {
9595 			ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0,
9596 			    IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL,
9597 			    MATCH_IRE_TYPE, ipst);
9598 			if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9599 				if (ire != NULL)
9600 					ire_refrele(ire);
9601 				return (ENXIO);
9602 			}
9603 			ipif = ill->ill_ipif;
9604 			ipif_refhold(ipif);
9605 			ire_refrele(ire);
9606 		}
9607 	}
9608 
9609 	if (ipif->ipif_net_type != IRE_IF_RESOLVER) {
9610 		ipif_refrele(ipif);
9611 		return (ENXIO);
9612 	}
9613 
9614 	ci->ci_sin = sin;
9615 	ci->ci_ipif = ipif;
9616 	return (0);
9617 }
9618 
9619 /*
9620  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
9621  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
9622  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
9623  * up and thus an ill can join that illgrp.
9624  *
9625  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
9626  * open()/close() primarily because close() is not allowed to fail or block
9627  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
9628  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
9629  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
9630  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
9631  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
9632  * state if I_UNLINK didn't occur.
9633  *
9634  * Note that for each plumb/unplumb operation, we may end up here more than
9635  * once because of the way ifconfig works.  However, it's OK to link the same
9636  * illgrp more than once, or unlink an illgrp that's already unlinked.
9637  */
9638 static int
9639 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
9640 {
9641 	int err;
9642 	ip_stack_t *ipst = ill->ill_ipst;
9643 
9644 	ASSERT(IS_IPMP(ill));
9645 	ASSERT(IAM_WRITER_ILL(ill));
9646 
9647 	switch (ioccmd) {
9648 	case I_LINK:
9649 		return (ENOTSUP);
9650 
9651 	case I_PLINK:
9652 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
9653 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
9654 		rw_exit(&ipst->ips_ipmp_lock);
9655 		break;
9656 
9657 	case I_PUNLINK:
9658 		/*
9659 		 * Require all UP ipifs be brought down prior to unlinking the
9660 		 * illgrp so any associated IREs (and other state) is torched.
9661 		 */
9662 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
9663 			return (EBUSY);
9664 
9665 		/*
9666 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
9667 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
9668 		 * join this group.  Specifically: ills trying to join grab
9669 		 * ipmp_lock and bump a "pending join" counter checked by
9670 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
9671 		 * joins can occur (since we have ipmp_lock).  Once we drop
9672 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
9673 		 * find the illgrp (since we unlinked it) and will return
9674 		 * EAFNOSUPPORT.  This will then take them back through the
9675 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
9676 		 * back through I_PLINK above.
9677 		 */
9678 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
9679 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
9680 		rw_exit(&ipst->ips_ipmp_lock);
9681 		return (err);
9682 	default:
9683 		break;
9684 	}
9685 	return (0);
9686 }
9687 
9688 /*
9689  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9690  * atomically set/clear the muxids. Also complete the ioctl by acking or
9691  * naking it.  Note that the code is structured such that the link type,
9692  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9693  * its clones use the persistent link, while pppd(1M) and perhaps many
9694  * other daemons may use non-persistent link.  When combined with some
9695  * ill_t states, linking and unlinking lower streams may be used as
9696  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9697  */
9698 /* ARGSUSED */
9699 void
9700 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9701 {
9702 	mblk_t		*mp1, *mp2;
9703 	struct linkblk	*li;
9704 	struct ipmx_s	*ipmxp;
9705 	ill_t		*ill;
9706 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9707 	int		err = 0;
9708 	boolean_t	entered_ipsq = B_FALSE;
9709 	boolean_t	islink;
9710 	ip_stack_t	*ipst;
9711 
9712 	if (CONN_Q(q))
9713 		ipst = CONNQ_TO_IPST(q);
9714 	else
9715 		ipst = ILLQ_TO_IPST(q);
9716 
9717 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9718 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
9719 
9720 	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9721 
9722 	mp1 = mp->b_cont;	/* This is the linkblk info */
9723 	li = (struct linkblk *)mp1->b_rptr;
9724 
9725 	/*
9726 	 * ARP has added this special mblk, and the utility is asking us
9727 	 * to perform consistency checks, and also atomically set the
9728 	 * muxid. Ifconfig is an example.  It achieves this by using
9729 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9730 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9731 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9732 	 * and other comments in this routine for more details.
9733 	 */
9734 	mp2 = mp1->b_cont;	/* This is added by ARP */
9735 
9736 	/*
9737 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9738 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9739 	 * get the special mblk above.  For backward compatibility, we
9740 	 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9741 	 * The utility will use SIOCSLIFMUXID to store the muxids.  This is
9742 	 * not atomic, and can leave the streams unplumbable if the utility
9743 	 * is interrupted before it does the SIOCSLIFMUXID.
9744 	 */
9745 	if (mp2 == NULL) {
9746 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9747 		if (err == EINPROGRESS)
9748 			return;
9749 		goto done;
9750 	}
9751 
9752 	/*
9753 	 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9754 	 * ARP has appended this last mblk to tell us whether the lower stream
9755 	 * is an arp-dev stream or an IP module stream.
9756 	 */
9757 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9758 	if (ipmxp->ipmx_arpdev_stream) {
9759 		/*
9760 		 * The lower stream is the arp-dev stream.
9761 		 */
9762 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9763 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
9764 		if (ill == NULL) {
9765 			if (err == EINPROGRESS)
9766 				return;
9767 			err = EINVAL;
9768 			goto done;
9769 		}
9770 
9771 		if (ipsq == NULL) {
9772 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9773 			    NEW_OP, B_FALSE);
9774 			if (ipsq == NULL) {
9775 				ill_refrele(ill);
9776 				return;
9777 			}
9778 			entered_ipsq = B_TRUE;
9779 		}
9780 		ASSERT(IAM_WRITER_ILL(ill));
9781 		ill_refrele(ill);
9782 
9783 		/*
9784 		 * To ensure consistency between IP and ARP, the following
9785 		 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9786 		 * This is because the muxid's are stored in the IP stream on
9787 		 * the ill.
9788 		 *
9789 		 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9790 		 * the ARP stream. On an arp-dev stream, IP checks that it is
9791 		 * not yet plinked, and it also checks that the corresponding
9792 		 * IP stream is already plinked.
9793 		 *
9794 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9795 		 * punlinking the IP stream. IP does not allow punlink of the
9796 		 * IP stream unless the arp stream has been punlinked.
9797 		 */
9798 		if ((islink &&
9799 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9800 		    (!islink && ill->ill_arp_muxid != li->l_index)) {
9801 			err = EINVAL;
9802 			goto done;
9803 		}
9804 
9805 		if (IS_IPMP(ill) &&
9806 		    (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
9807 			goto done;
9808 
9809 		ill->ill_arp_muxid = islink ? li->l_index : 0;
9810 	} else {
9811 		/*
9812 		 * The lower stream is probably an IP module stream.  Do
9813 		 * consistency checking.
9814 		 */
9815 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9816 		if (err == EINPROGRESS)
9817 			return;
9818 	}
9819 done:
9820 	if (err == 0)
9821 		miocack(q, mp, 0, 0);
9822 	else
9823 		miocnak(q, mp, 0, err);
9824 
9825 	/* Conn was refheld in ip_sioctl_copyin_setup */
9826 	if (CONN_Q(q))
9827 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9828 	if (entered_ipsq)
9829 		ipsq_exit(ipsq);
9830 }
9831 
9832 /*
9833  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9834  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9835  * module stream).  If `doconsist' is set, then do the extended consistency
9836  * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9837  * Returns zero on success, EINPROGRESS if the operation is still pending, or
9838  * an error code on failure.
9839  */
9840 static int
9841 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9842     struct linkblk *li, boolean_t doconsist)
9843 {
9844 	int		err = 0;
9845 	ill_t  		*ill;
9846 	queue_t		*ipwq, *dwq;
9847 	const char	*name;
9848 	struct qinit	*qinfo;
9849 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9850 	boolean_t	entered_ipsq = B_FALSE;
9851 
9852 	/*
9853 	 * Walk the lower stream to verify it's the IP module stream.
9854 	 * The IP module is identified by its name, wput function,
9855 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
9856 	 * (li->l_qbot) will not vanish until this ioctl completes.
9857 	 */
9858 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9859 		qinfo = ipwq->q_qinfo;
9860 		name = qinfo->qi_minfo->mi_idname;
9861 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9862 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9863 			break;
9864 		}
9865 	}
9866 
9867 	/*
9868 	 * If this isn't an IP module stream, bail.
9869 	 */
9870 	if (ipwq == NULL)
9871 		return (0);
9872 
9873 	ill = ipwq->q_ptr;
9874 	ASSERT(ill != NULL);
9875 
9876 	if (ipsq == NULL) {
9877 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9878 		    NEW_OP, B_FALSE);
9879 		if (ipsq == NULL)
9880 			return (EINPROGRESS);
9881 		entered_ipsq = B_TRUE;
9882 	}
9883 	ASSERT(IAM_WRITER_ILL(ill));
9884 
9885 	if (doconsist) {
9886 		/*
9887 		 * Consistency checking requires that I_{P}LINK occurs
9888 		 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9889 		 * occurs prior to clearing ill_arp_muxid.
9890 		 */
9891 		if ((islink && ill->ill_ip_muxid != 0) ||
9892 		    (!islink && ill->ill_arp_muxid != 0)) {
9893 			err = EINVAL;
9894 			goto done;
9895 		}
9896 	}
9897 
9898 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
9899 		goto done;
9900 
9901 	/*
9902 	 * As part of I_{P}LINKing, stash the number of downstream modules and
9903 	 * the read queue of the module immediately below IP in the ill.
9904 	 * These are used during the capability negotiation below.
9905 	 */
9906 	ill->ill_lmod_rq = NULL;
9907 	ill->ill_lmod_cnt = 0;
9908 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
9909 		ill->ill_lmod_rq = RD(dwq);
9910 		for (; dwq != NULL; dwq = dwq->q_next)
9911 			ill->ill_lmod_cnt++;
9912 	}
9913 
9914 	if (doconsist)
9915 		ill->ill_ip_muxid = islink ? li->l_index : 0;
9916 
9917 	/*
9918 	 * Mark the ipsq busy until the capability operations initiated below
9919 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
9920 	 * returns, but the capability operation may complete asynchronously
9921 	 * much later.
9922 	 */
9923 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
9924 	/*
9925 	 * If there's at least one up ipif on this ill, then we're bound to
9926 	 * the underlying driver via DLPI.  In that case, renegotiate
9927 	 * capabilities to account for any possible change in modules
9928 	 * interposed between IP and the driver.
9929 	 */
9930 	if (ill->ill_ipif_up_count > 0) {
9931 		if (islink)
9932 			ill_capability_probe(ill);
9933 		else
9934 			ill_capability_reset(ill, B_FALSE);
9935 	}
9936 	ipsq_current_finish(ipsq);
9937 done:
9938 	if (entered_ipsq)
9939 		ipsq_exit(ipsq);
9940 
9941 	return (err);
9942 }
9943 
9944 /*
9945  * Search the ioctl command in the ioctl tables and return a pointer
9946  * to the ioctl command information. The ioctl command tables are
9947  * static and fully populated at compile time.
9948  */
9949 ip_ioctl_cmd_t *
9950 ip_sioctl_lookup(int ioc_cmd)
9951 {
9952 	int index;
9953 	ip_ioctl_cmd_t *ipip;
9954 	ip_ioctl_cmd_t *ipip_end;
9955 
9956 	if (ioc_cmd == IPI_DONTCARE)
9957 		return (NULL);
9958 
9959 	/*
9960 	 * Do a 2 step search. First search the indexed table
9961 	 * based on the least significant byte of the ioctl cmd.
9962 	 * If we don't find a match, then search the misc table
9963 	 * serially.
9964 	 */
9965 	index = ioc_cmd & 0xFF;
9966 	if (index < ip_ndx_ioctl_count) {
9967 		ipip = &ip_ndx_ioctl_table[index];
9968 		if (ipip->ipi_cmd == ioc_cmd) {
9969 			/* Found a match in the ndx table */
9970 			return (ipip);
9971 		}
9972 	}
9973 
9974 	/* Search the misc table */
9975 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
9976 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
9977 		if (ipip->ipi_cmd == ioc_cmd)
9978 			/* Found a match in the misc table */
9979 			return (ipip);
9980 	}
9981 
9982 	return (NULL);
9983 }
9984 
9985 /*
9986  * Wrapper function for resuming deferred ioctl processing
9987  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9988  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9989  */
9990 /* ARGSUSED */
9991 void
9992 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9993     void *dummy_arg)
9994 {
9995 	ip_sioctl_copyin_setup(q, mp);
9996 }
9997 
9998 /*
9999  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10000  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10001  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10002  * We establish here the size of the block to be copied in.  mi_copyin
10003  * arranges for this to happen, an processing continues in ip_wput with
10004  * an M_IOCDATA message.
10005  */
10006 void
10007 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10008 {
10009 	int	copyin_size;
10010 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10011 	ip_ioctl_cmd_t *ipip;
10012 	cred_t *cr;
10013 	ip_stack_t	*ipst;
10014 
10015 	if (CONN_Q(q))
10016 		ipst = CONNQ_TO_IPST(q);
10017 	else
10018 		ipst = ILLQ_TO_IPST(q);
10019 
10020 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10021 	if (ipip == NULL) {
10022 		/*
10023 		 * The ioctl is not one we understand or own.
10024 		 * Pass it along to be processed down stream,
10025 		 * if this is a module instance of IP, else nak
10026 		 * the ioctl.
10027 		 */
10028 		if (q->q_next == NULL) {
10029 			goto nak;
10030 		} else {
10031 			putnext(q, mp);
10032 			return;
10033 		}
10034 	}
10035 
10036 	/*
10037 	 * If this is deferred, then we will do all the checks when we
10038 	 * come back.
10039 	 */
10040 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10041 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10042 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10043 		return;
10044 	}
10045 
10046 	/*
10047 	 * Only allow a very small subset of IP ioctls on this stream if
10048 	 * IP is a module and not a driver. Allowing ioctls to be processed
10049 	 * in this case may cause assert failures or data corruption.
10050 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10051 	 * ioctls allowed on an IP module stream, after which this stream
10052 	 * normally becomes a multiplexor (at which time the stream head
10053 	 * will fail all ioctls).
10054 	 */
10055 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10056 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10057 			/*
10058 			 * Pass common Streams ioctls which the IP
10059 			 * module does not own or consume along to
10060 			 * be processed down stream.
10061 			 */
10062 			putnext(q, mp);
10063 			return;
10064 		} else {
10065 			goto nak;
10066 		}
10067 	}
10068 
10069 	/* Make sure we have ioctl data to process. */
10070 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10071 		goto nak;
10072 
10073 	/*
10074 	 * Prefer dblk credential over ioctl credential; some synthesized
10075 	 * ioctls have kcred set because there's no way to crhold()
10076 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10077 	 * the framework; the caller of ioctl needs to hold the reference
10078 	 * for the duration of the call).
10079 	 */
10080 	cr = msg_getcred(mp, NULL);
10081 	if (cr == NULL)
10082 		cr = iocp->ioc_cr;
10083 
10084 	/* Make sure normal users don't send down privileged ioctls */
10085 	if ((ipip->ipi_flags & IPI_PRIV) &&
10086 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10087 		/* We checked the privilege earlier but log it here */
10088 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10089 		return;
10090 	}
10091 
10092 	/*
10093 	 * The ioctl command tables can only encode fixed length
10094 	 * ioctl data. If the length is variable, the table will
10095 	 * encode the length as zero. Such special cases are handled
10096 	 * below in the switch.
10097 	 */
10098 	if (ipip->ipi_copyin_size != 0) {
10099 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10100 		return;
10101 	}
10102 
10103 	switch (iocp->ioc_cmd) {
10104 	case O_SIOCGIFCONF:
10105 	case SIOCGIFCONF:
10106 		/*
10107 		 * This IOCTL is hilarious.  See comments in
10108 		 * ip_sioctl_get_ifconf for the story.
10109 		 */
10110 		if (iocp->ioc_count == TRANSPARENT)
10111 			copyin_size = SIZEOF_STRUCT(ifconf,
10112 			    iocp->ioc_flag);
10113 		else
10114 			copyin_size = iocp->ioc_count;
10115 		mi_copyin(q, mp, NULL, copyin_size);
10116 		return;
10117 
10118 	case O_SIOCGLIFCONF:
10119 	case SIOCGLIFCONF:
10120 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10121 		mi_copyin(q, mp, NULL, copyin_size);
10122 		return;
10123 
10124 	case SIOCGLIFSRCOF:
10125 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10126 		mi_copyin(q, mp, NULL, copyin_size);
10127 		return;
10128 	case SIOCGIP6ADDRPOLICY:
10129 		ip_sioctl_ip6addrpolicy(q, mp);
10130 		ip6_asp_table_refrele(ipst);
10131 		return;
10132 
10133 	case SIOCSIP6ADDRPOLICY:
10134 		ip_sioctl_ip6addrpolicy(q, mp);
10135 		return;
10136 
10137 	case SIOCGDSTINFO:
10138 		ip_sioctl_dstinfo(q, mp);
10139 		ip6_asp_table_refrele(ipst);
10140 		return;
10141 
10142 	case I_PLINK:
10143 	case I_PUNLINK:
10144 	case I_LINK:
10145 	case I_UNLINK:
10146 		/*
10147 		 * We treat non-persistent link similarly as the persistent
10148 		 * link case, in terms of plumbing/unplumbing, as well as
10149 		 * dynamic re-plumbing events indicator.  See comments
10150 		 * in ip_sioctl_plink() for more.
10151 		 *
10152 		 * Request can be enqueued in the 'ipsq' while waiting
10153 		 * to become exclusive. So bump up the conn ref.
10154 		 */
10155 		if (CONN_Q(q))
10156 			CONN_INC_REF(Q_TO_CONN(q));
10157 		ip_sioctl_plink(NULL, q, mp, NULL);
10158 		return;
10159 
10160 	case ND_GET:
10161 	case ND_SET:
10162 		/*
10163 		 * Use of the nd table requires holding the reader lock.
10164 		 * Modifying the nd table thru nd_load/nd_unload requires
10165 		 * the writer lock.
10166 		 */
10167 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10168 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10169 			rw_exit(&ipst->ips_ip_g_nd_lock);
10170 
10171 			if (iocp->ioc_error)
10172 				iocp->ioc_count = 0;
10173 			mp->b_datap->db_type = M_IOCACK;
10174 			qreply(q, mp);
10175 			return;
10176 		}
10177 		rw_exit(&ipst->ips_ip_g_nd_lock);
10178 		/*
10179 		 * We don't understand this subioctl of ND_GET / ND_SET.
10180 		 * Maybe intended for some driver / module below us
10181 		 */
10182 		if (q->q_next) {
10183 			putnext(q, mp);
10184 		} else {
10185 			iocp->ioc_error = ENOENT;
10186 			mp->b_datap->db_type = M_IOCNAK;
10187 			iocp->ioc_count = 0;
10188 			qreply(q, mp);
10189 		}
10190 		return;
10191 
10192 	case IP_IOCTL:
10193 		ip_wput_ioctl(q, mp);
10194 		return;
10195 	default:
10196 		cmn_err(CE_PANIC, "should not happen ");
10197 	}
10198 nak:
10199 	if (mp->b_cont != NULL) {
10200 		freemsg(mp->b_cont);
10201 		mp->b_cont = NULL;
10202 	}
10203 	iocp->ioc_error = EINVAL;
10204 	mp->b_datap->db_type = M_IOCNAK;
10205 	iocp->ioc_count = 0;
10206 	qreply(q, mp);
10207 }
10208 
10209 /* ip_wput hands off ARP IOCTL responses to us */
10210 /* ARGSUSED3 */
10211 void
10212 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
10213 {
10214 	struct arpreq *ar;
10215 	struct xarpreq *xar;
10216 	area_t	*area;
10217 	mblk_t	*area_mp;
10218 	struct iocblk *iocp;
10219 	mblk_t	*orig_ioc_mp, *tmp;
10220 	struct iocblk	*orig_iocp;
10221 	ill_t *ill;
10222 	conn_t *connp = NULL;
10223 	mblk_t *pending_mp;
10224 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10225 	int *flagsp;
10226 	char *storage = NULL;
10227 	sin_t *sin;
10228 	ipaddr_t addr;
10229 	int err;
10230 	ip_stack_t *ipst;
10231 
10232 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
10233 	ill = q->q_ptr;
10234 	ASSERT(ill != NULL);
10235 	ipst = ill->ill_ipst;
10236 
10237 	/*
10238 	 * We should get back from ARP a packet chain that looks like:
10239 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10240 	 */
10241 	if (!(area_mp = mp->b_cont) ||
10242 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10243 	    !(orig_ioc_mp = area_mp->b_cont) ||
10244 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10245 		freemsg(mp);
10246 		return;
10247 	}
10248 
10249 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10250 
10251 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10252 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10253 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10254 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10255 		x_arp_ioctl = B_TRUE;
10256 		xar = (struct xarpreq *)tmp->b_rptr;
10257 		sin = (sin_t *)&xar->xarp_pa;
10258 		flagsp = &xar->xarp_flags;
10259 		storage = xar->xarp_ha.sdl_data;
10260 		if (xar->xarp_ha.sdl_nlen != 0)
10261 			ifx_arp_ioctl = B_TRUE;
10262 	} else {
10263 		ar = (struct arpreq *)tmp->b_rptr;
10264 		sin = (sin_t *)&ar->arp_pa;
10265 		flagsp = &ar->arp_flags;
10266 		storage = ar->arp_ha.sa_data;
10267 	}
10268 
10269 	iocp = (struct iocblk *)mp->b_rptr;
10270 
10271 	/*
10272 	 * Find the pending message; if we're exclusive, it'll be on our IPSQ.
10273 	 * Otherwise, we can find it from our ioc_id.
10274 	 */
10275 	if (ipsq != NULL)
10276 		pending_mp = ipsq_pending_mp_get(ipsq, &connp);
10277 	else
10278 		pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
10279 
10280 	if (pending_mp == NULL) {
10281 		ASSERT(connp == NULL);
10282 		inet_freemsg(mp);
10283 		return;
10284 	}
10285 	ASSERT(connp != NULL);
10286 	q = CONNP_TO_WQ(connp);
10287 
10288 	/* Uncouple the internally generated IOCTL from the original one */
10289 	area = (area_t *)area_mp->b_rptr;
10290 	area_mp->b_cont = NULL;
10291 
10292 	/*
10293 	 * Restore the b_next and b_prev used by mi code. This is needed
10294 	 * to complete the ioctl using mi* functions. We stored them in
10295 	 * the pending mp prior to sending the request to ARP.
10296 	 */
10297 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10298 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10299 	inet_freemsg(pending_mp);
10300 
10301 	/*
10302 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10303 	 * Catch the case where there is an IRE_CACHE by no entry in the
10304 	 * arp table.
10305 	 */
10306 	addr = sin->sin_addr.s_addr;
10307 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10308 		ire_t			*ire;
10309 		dl_unitdata_req_t	*dlup;
10310 		mblk_t			*llmp;
10311 		int			addr_len;
10312 		ill_t			*ipsqill = NULL;
10313 
10314 		if (ifx_arp_ioctl) {
10315 			/*
10316 			 * There's no need to lookup the ill, since
10317 			 * we've already done that when we started
10318 			 * processing the ioctl and sent the message
10319 			 * to ARP on that ill.  So use the ill that
10320 			 * is stored in q->q_ptr.
10321 			 */
10322 			ipsqill = ill;
10323 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10324 			    ipsqill->ill_ipif, ALL_ZONES,
10325 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10326 		} else {
10327 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10328 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10329 			if (ire != NULL)
10330 				ipsqill = ire_to_ill(ire);
10331 		}
10332 
10333 		if ((x_arp_ioctl) && (ipsqill != NULL))
10334 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10335 
10336 		if (ire != NULL) {
10337 			/*
10338 			 * Since the ire obtained from cachetable is used for
10339 			 * mac addr copying below, treat an incomplete ire as if
10340 			 * as if we never found it.
10341 			 */
10342 			if (ire->ire_nce != NULL &&
10343 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10344 				ire_refrele(ire);
10345 				ire = NULL;
10346 				ipsqill = NULL;
10347 				goto errack;
10348 			}
10349 			*flagsp = ATF_INUSE;
10350 			llmp = (ire->ire_nce != NULL ?
10351 			    ire->ire_nce->nce_res_mp : NULL);
10352 			if (llmp != NULL && ipsqill != NULL) {
10353 				uchar_t *macaddr;
10354 
10355 				addr_len = ipsqill->ill_phys_addr_length;
10356 				if (x_arp_ioctl && ((addr_len +
10357 				    ipsqill->ill_name_length) >
10358 				    sizeof (xar->xarp_ha.sdl_data))) {
10359 					ire_refrele(ire);
10360 					freemsg(mp);
10361 					ip_ioctl_finish(q, orig_ioc_mp,
10362 					    EINVAL, NO_COPYOUT, ipsq);
10363 					return;
10364 				}
10365 				*flagsp |= ATF_COM;
10366 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10367 				if (ipsqill->ill_sap_length < 0)
10368 					macaddr = llmp->b_rptr +
10369 					    dlup->dl_dest_addr_offset;
10370 				else
10371 					macaddr = llmp->b_rptr +
10372 					    dlup->dl_dest_addr_offset +
10373 					    ipsqill->ill_sap_length;
10374 				/*
10375 				 * For SIOCGARP, MAC address length
10376 				 * validation has already been done
10377 				 * before the ioctl was issued to ARP to
10378 				 * allow it to progress only on 6 byte
10379 				 * addressable (ethernet like) media. Thus
10380 				 * the mac address copying can not overwrite
10381 				 * the sa_data area below.
10382 				 */
10383 				bcopy(macaddr, storage, addr_len);
10384 			}
10385 			/* Ditch the internal IOCTL. */
10386 			freemsg(mp);
10387 			ire_refrele(ire);
10388 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq);
10389 			return;
10390 		}
10391 	}
10392 
10393 	/*
10394 	 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE
10395 	 * on the IPMP meta-interface, ensure any ARP entries added in
10396 	 * ip_sioctl_arp() are deleted.
10397 	 */
10398 	if (IS_IPMP(ill) &&
10399 	    ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) ||
10400 	    ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) {
10401 		ipmp_illgrp_t *illg = ill->ill_grp;
10402 		ipmp_arpent_t *entp;
10403 
10404 		if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL)
10405 			ipmp_illgrp_destroy_arpent(illg, entp);
10406 	}
10407 
10408 	/*
10409 	 * Delete the coresponding IRE_CACHE if any.
10410 	 * Reset the error if there was one (in case there was no entry
10411 	 * in arp.)
10412 	 */
10413 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10414 		ipif_t *ipintf = NULL;
10415 
10416 		if (ifx_arp_ioctl) {
10417 			/*
10418 			 * There's no need to lookup the ill, since
10419 			 * we've already done that when we started
10420 			 * processing the ioctl and sent the message
10421 			 * to ARP on that ill.  So use the ill that
10422 			 * is stored in q->q_ptr.
10423 			 */
10424 			ipintf = ill->ill_ipif;
10425 		}
10426 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10427 			/*
10428 			 * The address in "addr" may be an entry for a
10429 			 * router. If that's true, then any off-net
10430 			 * IRE_CACHE entries that go through the router
10431 			 * with address "addr" must be clobbered. Use
10432 			 * ire_walk to achieve this goal.
10433 			 */
10434 			if (ifx_arp_ioctl)
10435 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10436 				    ire_delete_cache_gw, (char *)&addr, ill);
10437 			else
10438 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10439 				    ALL_ZONES, ipst);
10440 			iocp->ioc_error = 0;
10441 		}
10442 	}
10443 errack:
10444 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10445 		err = iocp->ioc_error;
10446 		freemsg(mp);
10447 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq);
10448 		return;
10449 	}
10450 
10451 	/*
10452 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10453 	 * the area_t into the struct {x}arpreq.
10454 	 */
10455 	if (x_arp_ioctl) {
10456 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10457 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10458 		    sizeof (xar->xarp_ha.sdl_data)) {
10459 			freemsg(mp);
10460 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10461 			    ipsq);
10462 			return;
10463 		}
10464 	}
10465 	*flagsp = ATF_INUSE;
10466 	if (area->area_flags & ACE_F_PERMANENT)
10467 		*flagsp |= ATF_PERM;
10468 	if (area->area_flags & ACE_F_PUBLISH)
10469 		*flagsp |= ATF_PUBL;
10470 	if (area->area_flags & ACE_F_AUTHORITY)
10471 		*flagsp |= ATF_AUTHORITY;
10472 	if (area->area_hw_addr_length != 0) {
10473 		*flagsp |= ATF_COM;
10474 		/*
10475 		 * For SIOCGARP, MAC address length validation has
10476 		 * already been done before the ioctl was issued to ARP
10477 		 * to allow it to progress only on 6 byte addressable
10478 		 * (ethernet like) media. Thus the mac address copying
10479 		 * can not overwrite the sa_data area below.
10480 		 */
10481 		bcopy((char *)area + area->area_hw_addr_offset,
10482 		    storage, area->area_hw_addr_length);
10483 	}
10484 
10485 	/* Ditch the internal IOCTL. */
10486 	freemsg(mp);
10487 	/* Complete the original. */
10488 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq);
10489 }
10490 
10491 /*
10492  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10493  * interface) create the next available logical interface for this
10494  * physical interface.
10495  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10496  * ipif with the specified name.
10497  *
10498  * If the address family is not AF_UNSPEC then set the address as well.
10499  *
10500  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10501  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10502  *
10503  * Executed as a writer on the ill.
10504  * So no lock is needed to traverse the ipif chain, or examine the
10505  * phyint flags.
10506  */
10507 /* ARGSUSED */
10508 int
10509 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10510     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10511 {
10512 	mblk_t	*mp1;
10513 	struct lifreq *lifr;
10514 	boolean_t	isv6;
10515 	boolean_t	exists;
10516 	char 	*name;
10517 	char	*endp;
10518 	char	*cp;
10519 	int	namelen;
10520 	ipif_t	*ipif;
10521 	long	id;
10522 	ipsq_t	*ipsq;
10523 	ill_t	*ill;
10524 	sin_t	*sin;
10525 	int	err = 0;
10526 	boolean_t found_sep = B_FALSE;
10527 	conn_t	*connp;
10528 	zoneid_t zoneid;
10529 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10530 
10531 	ASSERT(q->q_next == NULL);
10532 	ip1dbg(("ip_sioctl_addif\n"));
10533 	/* Existence of mp1 has been checked in ip_wput_nondata */
10534 	mp1 = mp->b_cont->b_cont;
10535 	/*
10536 	 * Null terminate the string to protect against buffer
10537 	 * overrun. String was generated by user code and may not
10538 	 * be trusted.
10539 	 */
10540 	lifr = (struct lifreq *)mp1->b_rptr;
10541 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10542 	name = lifr->lifr_name;
10543 	ASSERT(CONN_Q(q));
10544 	connp = Q_TO_CONN(q);
10545 	isv6 = connp->conn_af_isv6;
10546 	zoneid = connp->conn_zoneid;
10547 	namelen = mi_strlen(name);
10548 	if (namelen == 0)
10549 		return (EINVAL);
10550 
10551 	exists = B_FALSE;
10552 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10553 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10554 		/*
10555 		 * Allow creating lo0 using SIOCLIFADDIF.
10556 		 * can't be any other writer thread. So can pass null below
10557 		 * for the last 4 args to ipif_lookup_name.
10558 		 */
10559 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10560 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10561 		/* Prevent any further action */
10562 		if (ipif == NULL) {
10563 			return (ENOBUFS);
10564 		} else if (!exists) {
10565 			/* We created the ipif now and as writer */
10566 			ipif_refrele(ipif);
10567 			return (0);
10568 		} else {
10569 			ill = ipif->ipif_ill;
10570 			ill_refhold(ill);
10571 			ipif_refrele(ipif);
10572 		}
10573 	} else {
10574 		/* Look for a colon in the name. */
10575 		endp = &name[namelen];
10576 		for (cp = endp; --cp > name; ) {
10577 			if (*cp == IPIF_SEPARATOR_CHAR) {
10578 				found_sep = B_TRUE;
10579 				/*
10580 				 * Reject any non-decimal aliases for plumbing
10581 				 * of logical interfaces. Aliases with leading
10582 				 * zeroes are also rejected as they introduce
10583 				 * ambiguity in the naming of the interfaces.
10584 				 * Comparing with "0" takes care of all such
10585 				 * cases.
10586 				 */
10587 				if ((strncmp("0", cp+1, 1)) == 0)
10588 					return (EINVAL);
10589 
10590 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10591 				    id <= 0 || *endp != '\0') {
10592 					return (EINVAL);
10593 				}
10594 				*cp = '\0';
10595 				break;
10596 			}
10597 		}
10598 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10599 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10600 		if (found_sep)
10601 			*cp = IPIF_SEPARATOR_CHAR;
10602 		if (ill == NULL)
10603 			return (err);
10604 	}
10605 
10606 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10607 	    B_TRUE);
10608 
10609 	/*
10610 	 * Release the refhold due to the lookup, now that we are excl
10611 	 * or we are just returning
10612 	 */
10613 	ill_refrele(ill);
10614 
10615 	if (ipsq == NULL)
10616 		return (EINPROGRESS);
10617 
10618 	/* We are now exclusive on the IPSQ */
10619 	ASSERT(IAM_WRITER_ILL(ill));
10620 
10621 	if (found_sep) {
10622 		/* Now see if there is an IPIF with this unit number. */
10623 		for (ipif = ill->ill_ipif; ipif != NULL;
10624 		    ipif = ipif->ipif_next) {
10625 			if (ipif->ipif_id == id) {
10626 				err = EEXIST;
10627 				goto done;
10628 			}
10629 		}
10630 	}
10631 
10632 	/*
10633 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10634 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
10635 	 * instead.
10636 	 */
10637 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
10638 	    B_TRUE, B_TRUE)) == NULL) {
10639 		err = ENOBUFS;
10640 		goto done;
10641 	}
10642 
10643 	/* Return created name with ioctl */
10644 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10645 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10646 	ip1dbg(("created %s\n", lifr->lifr_name));
10647 
10648 	/* Set address */
10649 	sin = (sin_t *)&lifr->lifr_addr;
10650 	if (sin->sin_family != AF_UNSPEC) {
10651 		err = ip_sioctl_addr(ipif, sin, q, mp,
10652 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10653 	}
10654 
10655 done:
10656 	ipsq_exit(ipsq);
10657 	return (err);
10658 }
10659 
10660 /*
10661  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10662  * interface) delete it based on the IP address (on this physical interface).
10663  * Otherwise delete it based on the ipif_id.
10664  * Also, special handling to allow a removeif of lo0.
10665  */
10666 /* ARGSUSED */
10667 int
10668 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10669     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10670 {
10671 	conn_t		*connp;
10672 	ill_t		*ill = ipif->ipif_ill;
10673 	boolean_t	 success;
10674 	ip_stack_t	*ipst;
10675 
10676 	ipst = CONNQ_TO_IPST(q);
10677 
10678 	ASSERT(q->q_next == NULL);
10679 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10680 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10681 	ASSERT(IAM_WRITER_IPIF(ipif));
10682 
10683 	connp = Q_TO_CONN(q);
10684 	/*
10685 	 * Special case for unplumbing lo0 (the loopback physical interface).
10686 	 * If unplumbing lo0, the incoming address structure has been
10687 	 * initialized to all zeros. When unplumbing lo0, all its logical
10688 	 * interfaces must be removed too.
10689 	 *
10690 	 * Note that this interface may be called to remove a specific
10691 	 * loopback logical interface (eg, lo0:1). But in that case
10692 	 * ipif->ipif_id != 0 so that the code path for that case is the
10693 	 * same as any other interface (meaning it skips the code directly
10694 	 * below).
10695 	 */
10696 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10697 		if (sin->sin_family == AF_UNSPEC &&
10698 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10699 			/*
10700 			 * Mark it condemned. No new ref. will be made to ill.
10701 			 */
10702 			mutex_enter(&ill->ill_lock);
10703 			ill->ill_state_flags |= ILL_CONDEMNED;
10704 			for (ipif = ill->ill_ipif; ipif != NULL;
10705 			    ipif = ipif->ipif_next) {
10706 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10707 			}
10708 			mutex_exit(&ill->ill_lock);
10709 
10710 			ipif = ill->ill_ipif;
10711 			/* unplumb the loopback interface */
10712 			ill_delete(ill);
10713 			mutex_enter(&connp->conn_lock);
10714 			mutex_enter(&ill->ill_lock);
10715 
10716 			/* Are any references to this ill active */
10717 			if (ill_is_freeable(ill)) {
10718 				mutex_exit(&ill->ill_lock);
10719 				mutex_exit(&connp->conn_lock);
10720 				ill_delete_tail(ill);
10721 				mi_free(ill);
10722 				return (0);
10723 			}
10724 			success = ipsq_pending_mp_add(connp, ipif,
10725 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10726 			mutex_exit(&connp->conn_lock);
10727 			mutex_exit(&ill->ill_lock);
10728 			if (success)
10729 				return (EINPROGRESS);
10730 			else
10731 				return (EINTR);
10732 		}
10733 	}
10734 
10735 	if (ipif->ipif_id == 0) {
10736 		ipsq_t *ipsq;
10737 
10738 		/* Find based on address */
10739 		if (ipif->ipif_isv6) {
10740 			sin6_t *sin6;
10741 
10742 			if (sin->sin_family != AF_INET6)
10743 				return (EAFNOSUPPORT);
10744 
10745 			sin6 = (sin6_t *)sin;
10746 			/* We are a writer, so we should be able to lookup */
10747 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
10748 			    ipst);
10749 		} else {
10750 			if (sin->sin_family != AF_INET)
10751 				return (EAFNOSUPPORT);
10752 
10753 			/* We are a writer, so we should be able to lookup */
10754 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
10755 			    ipst);
10756 		}
10757 		if (ipif == NULL) {
10758 			return (EADDRNOTAVAIL);
10759 		}
10760 
10761 		/*
10762 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
10763 		 * lifr_name of the physical interface but with an ip address
10764 		 * lifr_addr of a logical interface plumbed over it.
10765 		 * So update ipx_current_ipif now that ipif points to the
10766 		 * correct one.
10767 		 */
10768 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
10769 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
10770 
10771 		/* This is a writer */
10772 		ipif_refrele(ipif);
10773 	}
10774 
10775 	/*
10776 	 * Can not delete instance zero since it is tied to the ill.
10777 	 */
10778 	if (ipif->ipif_id == 0)
10779 		return (EBUSY);
10780 
10781 	mutex_enter(&ill->ill_lock);
10782 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10783 	mutex_exit(&ill->ill_lock);
10784 
10785 	ipif_free(ipif);
10786 
10787 	mutex_enter(&connp->conn_lock);
10788 	mutex_enter(&ill->ill_lock);
10789 
10790 	/* Are any references to this ipif active */
10791 	if (ipif_is_freeable(ipif)) {
10792 		mutex_exit(&ill->ill_lock);
10793 		mutex_exit(&connp->conn_lock);
10794 		ipif_non_duplicate(ipif);
10795 		ipif_down_tail(ipif);
10796 		ipif_free_tail(ipif); /* frees ipif */
10797 		return (0);
10798 	}
10799 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10800 	    IPIF_FREE);
10801 	mutex_exit(&ill->ill_lock);
10802 	mutex_exit(&connp->conn_lock);
10803 	if (success)
10804 		return (EINPROGRESS);
10805 	else
10806 		return (EINTR);
10807 }
10808 
10809 /*
10810  * Restart the removeif ioctl. The refcnt has gone down to 0.
10811  * The ipif is already condemned. So can't find it thru lookups.
10812  */
10813 /* ARGSUSED */
10814 int
10815 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10816     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10817 {
10818 	ill_t *ill = ipif->ipif_ill;
10819 
10820 	ASSERT(IAM_WRITER_IPIF(ipif));
10821 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10822 
10823 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10824 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10825 
10826 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10827 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10828 		ill_delete_tail(ill);
10829 		mi_free(ill);
10830 		return (0);
10831 	}
10832 
10833 	ipif_non_duplicate(ipif);
10834 	ipif_down_tail(ipif);
10835 	ipif_free_tail(ipif);
10836 
10837 	ILL_UNMARK_CHANGING(ill);
10838 	return (0);
10839 }
10840 
10841 /*
10842  * Set the local interface address.
10843  * Allow an address of all zero when the interface is down.
10844  */
10845 /* ARGSUSED */
10846 int
10847 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10848     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10849 {
10850 	int err = 0;
10851 	in6_addr_t v6addr;
10852 	boolean_t need_up = B_FALSE;
10853 
10854 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10855 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10856 
10857 	ASSERT(IAM_WRITER_IPIF(ipif));
10858 
10859 	if (ipif->ipif_isv6) {
10860 		sin6_t *sin6;
10861 		ill_t *ill;
10862 		phyint_t *phyi;
10863 
10864 		if (sin->sin_family != AF_INET6)
10865 			return (EAFNOSUPPORT);
10866 
10867 		sin6 = (sin6_t *)sin;
10868 		v6addr = sin6->sin6_addr;
10869 		ill = ipif->ipif_ill;
10870 		phyi = ill->ill_phyint;
10871 
10872 		/*
10873 		 * Enforce that true multicast interfaces have a link-local
10874 		 * address for logical unit 0.
10875 		 */
10876 		if (ipif->ipif_id == 0 &&
10877 		    (ill->ill_flags & ILLF_MULTICAST) &&
10878 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
10879 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
10880 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
10881 			return (EADDRNOTAVAIL);
10882 		}
10883 
10884 		/*
10885 		 * up interfaces shouldn't have the unspecified address
10886 		 * unless they also have the IPIF_NOLOCAL flags set and
10887 		 * have a subnet assigned.
10888 		 */
10889 		if ((ipif->ipif_flags & IPIF_UP) &&
10890 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
10891 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
10892 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
10893 			return (EADDRNOTAVAIL);
10894 		}
10895 
10896 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10897 			return (EADDRNOTAVAIL);
10898 	} else {
10899 		ipaddr_t addr;
10900 
10901 		if (sin->sin_family != AF_INET)
10902 			return (EAFNOSUPPORT);
10903 
10904 		addr = sin->sin_addr.s_addr;
10905 
10906 		/* Allow 0 as the local address. */
10907 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
10908 			return (EADDRNOTAVAIL);
10909 
10910 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10911 	}
10912 
10913 	/*
10914 	 * Even if there is no change we redo things just to rerun
10915 	 * ipif_set_default.
10916 	 */
10917 	if (ipif->ipif_flags & IPIF_UP) {
10918 		/*
10919 		 * Setting a new local address, make sure
10920 		 * we have net and subnet bcast ire's for
10921 		 * the old address if we need them.
10922 		 */
10923 		if (!ipif->ipif_isv6)
10924 			ipif_check_bcast_ires(ipif);
10925 		/*
10926 		 * If the interface is already marked up,
10927 		 * we call ipif_down which will take care
10928 		 * of ditching any IREs that have been set
10929 		 * up based on the old interface address.
10930 		 */
10931 		err = ipif_logical_down(ipif, q, mp);
10932 		if (err == EINPROGRESS)
10933 			return (err);
10934 		ipif_down_tail(ipif);
10935 		need_up = 1;
10936 	}
10937 
10938 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
10939 	return (err);
10940 }
10941 
10942 int
10943 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10944     boolean_t need_up)
10945 {
10946 	in6_addr_t v6addr;
10947 	in6_addr_t ov6addr;
10948 	ipaddr_t addr;
10949 	sin6_t	*sin6;
10950 	int	sinlen;
10951 	int	err = 0;
10952 	ill_t	*ill = ipif->ipif_ill;
10953 	boolean_t need_dl_down;
10954 	boolean_t need_arp_down;
10955 	struct iocblk *iocp;
10956 
10957 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
10958 
10959 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
10960 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10961 	ASSERT(IAM_WRITER_IPIF(ipif));
10962 
10963 	/* Must cancel any pending timer before taking the ill_lock */
10964 	if (ipif->ipif_recovery_id != 0)
10965 		(void) untimeout(ipif->ipif_recovery_id);
10966 	ipif->ipif_recovery_id = 0;
10967 
10968 	if (ipif->ipif_isv6) {
10969 		sin6 = (sin6_t *)sin;
10970 		v6addr = sin6->sin6_addr;
10971 		sinlen = sizeof (struct sockaddr_in6);
10972 	} else {
10973 		addr = sin->sin_addr.s_addr;
10974 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10975 		sinlen = sizeof (struct sockaddr_in);
10976 	}
10977 	mutex_enter(&ill->ill_lock);
10978 	ov6addr = ipif->ipif_v6lcl_addr;
10979 	ipif->ipif_v6lcl_addr = v6addr;
10980 	sctp_update_ipif_addr(ipif, ov6addr);
10981 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
10982 		ipif->ipif_v6src_addr = ipv6_all_zeros;
10983 	} else {
10984 		ipif->ipif_v6src_addr = v6addr;
10985 	}
10986 	ipif->ipif_addr_ready = 0;
10987 
10988 	/*
10989 	 * If the interface was previously marked as a duplicate, then since
10990 	 * we've now got a "new" address, it should no longer be considered a
10991 	 * duplicate -- even if the "new" address is the same as the old one.
10992 	 * Note that if all ipifs are down, we may have a pending ARP down
10993 	 * event to handle.  This is because we want to recover from duplicates
10994 	 * and thus delay tearing down ARP until the duplicates have been
10995 	 * removed or disabled.
10996 	 */
10997 	need_dl_down = need_arp_down = B_FALSE;
10998 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
10999 		need_arp_down = !need_up;
11000 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11001 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11002 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11003 			need_dl_down = B_TRUE;
11004 		}
11005 	}
11006 
11007 	ipif_set_default(ipif);
11008 
11009 	/*
11010 	 * If we've just manually set the IPv6 link-local address (0th ipif),
11011 	 * tag the ill so that future updates to the interface ID don't result
11012 	 * in this address getting automatically reconfigured from under the
11013 	 * administrator.
11014 	 */
11015 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
11016 		ill->ill_manual_linklocal = 1;
11017 
11018 	/*
11019 	 * When publishing an interface address change event, we only notify
11020 	 * the event listeners of the new address.  It is assumed that if they
11021 	 * actively care about the addresses assigned that they will have
11022 	 * already discovered the previous address assigned (if there was one.)
11023 	 *
11024 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11025 	 */
11026 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11027 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
11028 		    NE_ADDRESS_CHANGE, sin, sinlen);
11029 	}
11030 
11031 	mutex_exit(&ill->ill_lock);
11032 
11033 	if (need_up) {
11034 		/*
11035 		 * Now bring the interface back up.  If this
11036 		 * is the only IPIF for the ILL, ipif_up
11037 		 * will have to re-bind to the device, so
11038 		 * we may get back EINPROGRESS, in which
11039 		 * case, this IOCTL will get completed in
11040 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11041 		 */
11042 		err = ipif_up(ipif, q, mp);
11043 	}
11044 
11045 	if (need_dl_down)
11046 		ill_dl_down(ill);
11047 	if (need_arp_down)
11048 		ipif_resolver_down(ipif);
11049 
11050 	return (err);
11051 }
11052 
11053 /*
11054  * Restart entry point to restart the address set operation after the
11055  * refcounts have dropped to zero.
11056  */
11057 /* ARGSUSED */
11058 int
11059 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11060     ip_ioctl_cmd_t *ipip, void *ifreq)
11061 {
11062 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11063 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11064 	ASSERT(IAM_WRITER_IPIF(ipif));
11065 	ipif_down_tail(ipif);
11066 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11067 }
11068 
11069 /* ARGSUSED */
11070 int
11071 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11072     ip_ioctl_cmd_t *ipip, void *if_req)
11073 {
11074 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11075 	struct lifreq *lifr = (struct lifreq *)if_req;
11076 
11077 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11078 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11079 	/*
11080 	 * The net mask and address can't change since we have a
11081 	 * reference to the ipif. So no lock is necessary.
11082 	 */
11083 	if (ipif->ipif_isv6) {
11084 		*sin6 = sin6_null;
11085 		sin6->sin6_family = AF_INET6;
11086 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11087 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11088 		lifr->lifr_addrlen =
11089 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11090 	} else {
11091 		*sin = sin_null;
11092 		sin->sin_family = AF_INET;
11093 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11094 		if (ipip->ipi_cmd_type == LIF_CMD) {
11095 			lifr->lifr_addrlen =
11096 			    ip_mask_to_plen(ipif->ipif_net_mask);
11097 		}
11098 	}
11099 	return (0);
11100 }
11101 
11102 /*
11103  * Set the destination address for a pt-pt interface.
11104  */
11105 /* ARGSUSED */
11106 int
11107 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11108     ip_ioctl_cmd_t *ipip, void *if_req)
11109 {
11110 	int err = 0;
11111 	in6_addr_t v6addr;
11112 	boolean_t need_up = B_FALSE;
11113 
11114 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11115 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11116 	ASSERT(IAM_WRITER_IPIF(ipif));
11117 
11118 	if (ipif->ipif_isv6) {
11119 		sin6_t *sin6;
11120 
11121 		if (sin->sin_family != AF_INET6)
11122 			return (EAFNOSUPPORT);
11123 
11124 		sin6 = (sin6_t *)sin;
11125 		v6addr = sin6->sin6_addr;
11126 
11127 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11128 			return (EADDRNOTAVAIL);
11129 	} else {
11130 		ipaddr_t addr;
11131 
11132 		if (sin->sin_family != AF_INET)
11133 			return (EAFNOSUPPORT);
11134 
11135 		addr = sin->sin_addr.s_addr;
11136 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11137 			return (EADDRNOTAVAIL);
11138 
11139 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11140 	}
11141 
11142 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11143 		return (0);	/* No change */
11144 
11145 	if (ipif->ipif_flags & IPIF_UP) {
11146 		/*
11147 		 * If the interface is already marked up,
11148 		 * we call ipif_down which will take care
11149 		 * of ditching any IREs that have been set
11150 		 * up based on the old pp dst address.
11151 		 */
11152 		err = ipif_logical_down(ipif, q, mp);
11153 		if (err == EINPROGRESS)
11154 			return (err);
11155 		ipif_down_tail(ipif);
11156 		need_up = B_TRUE;
11157 	}
11158 	/*
11159 	 * could return EINPROGRESS. If so ioctl will complete in
11160 	 * ip_rput_dlpi_writer
11161 	 */
11162 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11163 	return (err);
11164 }
11165 
11166 static int
11167 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11168     boolean_t need_up)
11169 {
11170 	in6_addr_t v6addr;
11171 	ill_t	*ill = ipif->ipif_ill;
11172 	int	err = 0;
11173 	boolean_t need_dl_down;
11174 	boolean_t need_arp_down;
11175 
11176 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11177 	    ipif->ipif_id, (void *)ipif));
11178 
11179 	/* Must cancel any pending timer before taking the ill_lock */
11180 	if (ipif->ipif_recovery_id != 0)
11181 		(void) untimeout(ipif->ipif_recovery_id);
11182 	ipif->ipif_recovery_id = 0;
11183 
11184 	if (ipif->ipif_isv6) {
11185 		sin6_t *sin6;
11186 
11187 		sin6 = (sin6_t *)sin;
11188 		v6addr = sin6->sin6_addr;
11189 	} else {
11190 		ipaddr_t addr;
11191 
11192 		addr = sin->sin_addr.s_addr;
11193 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11194 	}
11195 	mutex_enter(&ill->ill_lock);
11196 	/* Set point to point destination address. */
11197 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11198 		/*
11199 		 * Allow this as a means of creating logical
11200 		 * pt-pt interfaces on top of e.g. an Ethernet.
11201 		 * XXX Undocumented HACK for testing.
11202 		 * pt-pt interfaces are created with NUD disabled.
11203 		 */
11204 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11205 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11206 		if (ipif->ipif_isv6)
11207 			ill->ill_flags |= ILLF_NONUD;
11208 	}
11209 
11210 	/*
11211 	 * If the interface was previously marked as a duplicate, then since
11212 	 * we've now got a "new" address, it should no longer be considered a
11213 	 * duplicate -- even if the "new" address is the same as the old one.
11214 	 * Note that if all ipifs are down, we may have a pending ARP down
11215 	 * event to handle.
11216 	 */
11217 	need_dl_down = need_arp_down = B_FALSE;
11218 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11219 		need_arp_down = !need_up;
11220 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11221 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11222 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11223 			need_dl_down = B_TRUE;
11224 		}
11225 	}
11226 
11227 	/* Set the new address. */
11228 	ipif->ipif_v6pp_dst_addr = v6addr;
11229 	/* Make sure subnet tracks pp_dst */
11230 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11231 	mutex_exit(&ill->ill_lock);
11232 
11233 	if (need_up) {
11234 		/*
11235 		 * Now bring the interface back up.  If this
11236 		 * is the only IPIF for the ILL, ipif_up
11237 		 * will have to re-bind to the device, so
11238 		 * we may get back EINPROGRESS, in which
11239 		 * case, this IOCTL will get completed in
11240 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11241 		 */
11242 		err = ipif_up(ipif, q, mp);
11243 	}
11244 
11245 	if (need_dl_down)
11246 		ill_dl_down(ill);
11247 	if (need_arp_down)
11248 		ipif_resolver_down(ipif);
11249 
11250 	return (err);
11251 }
11252 
11253 /*
11254  * Restart entry point to restart the dstaddress set operation after the
11255  * refcounts have dropped to zero.
11256  */
11257 /* ARGSUSED */
11258 int
11259 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11260     ip_ioctl_cmd_t *ipip, void *ifreq)
11261 {
11262 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11263 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11264 	ipif_down_tail(ipif);
11265 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11266 }
11267 
11268 /* ARGSUSED */
11269 int
11270 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11271     ip_ioctl_cmd_t *ipip, void *if_req)
11272 {
11273 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11274 
11275 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11276 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11277 	/*
11278 	 * Get point to point destination address. The addresses can't
11279 	 * change since we hold a reference to the ipif.
11280 	 */
11281 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11282 		return (EADDRNOTAVAIL);
11283 
11284 	if (ipif->ipif_isv6) {
11285 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11286 		*sin6 = sin6_null;
11287 		sin6->sin6_family = AF_INET6;
11288 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11289 	} else {
11290 		*sin = sin_null;
11291 		sin->sin_family = AF_INET;
11292 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11293 	}
11294 	return (0);
11295 }
11296 
11297 /*
11298  * Set interface flags.  Many flags require special handling (e.g.,
11299  * bringing the interface down); see below for details.
11300  *
11301  * NOTE : We really don't enforce that ipif_id zero should be used
11302  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11303  *	  is because applications generally does SICGLIFFLAGS and
11304  *	  ORs in the new flags (that affects the logical) and does a
11305  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11306  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11307  *	  flags that will be turned on is correct with respect to
11308  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11309  */
11310 /* ARGSUSED */
11311 int
11312 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11313     ip_ioctl_cmd_t *ipip, void *if_req)
11314 {
11315 	uint64_t turn_on;
11316 	uint64_t turn_off;
11317 	int	err = 0;
11318 	phyint_t *phyi;
11319 	ill_t *ill;
11320 	uint64_t intf_flags, cantchange_flags;
11321 	boolean_t phyint_flags_modified = B_FALSE;
11322 	uint64_t flags;
11323 	struct ifreq *ifr;
11324 	struct lifreq *lifr;
11325 	boolean_t set_linklocal = B_FALSE;
11326 	boolean_t zero_source = B_FALSE;
11327 
11328 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11329 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11330 
11331 	ASSERT(IAM_WRITER_IPIF(ipif));
11332 
11333 	ill = ipif->ipif_ill;
11334 	phyi = ill->ill_phyint;
11335 
11336 	if (ipip->ipi_cmd_type == IF_CMD) {
11337 		ifr = (struct ifreq *)if_req;
11338 		flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11339 	} else {
11340 		lifr = (struct lifreq *)if_req;
11341 		flags = lifr->lifr_flags;
11342 	}
11343 
11344 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11345 
11346 	/*
11347 	 * Have the flags been set correctly until now?
11348 	 */
11349 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11350 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11351 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11352 	/*
11353 	 * Compare the new flags to the old, and partition
11354 	 * into those coming on and those going off.
11355 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11356 	 */
11357 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11358 		flags |= intf_flags & ~0xFFFF;
11359 
11360 	/*
11361 	 * Explicitly fail attempts to change flags that are always invalid on
11362 	 * an IPMP meta-interface.
11363 	 */
11364 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
11365 		return (EINVAL);
11366 
11367 	/*
11368 	 * Check which flags will change; silently ignore flags which userland
11369 	 * is not allowed to control.  (Because these flags may change between
11370 	 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's
11371 	 * control, we need to silently ignore them rather than fail.)
11372 	 */
11373 	cantchange_flags = IFF_CANTCHANGE;
11374 	if (IS_IPMP(ill))
11375 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
11376 
11377 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
11378 	if (turn_on == 0)
11379 		return (0);	/* No change */
11380 
11381 	turn_off = intf_flags & turn_on;
11382 	turn_on ^= turn_off;
11383 
11384 	/*
11385 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
11386 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
11387 	 * allow it to be turned off.
11388 	 */
11389 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
11390 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
11391 		return (EINVAL);
11392 
11393 	if (turn_on & IFF_NOFAILOVER) {
11394 		turn_on |= IFF_DEPRECATED;
11395 		flags |= IFF_DEPRECATED;
11396 	}
11397 
11398 	/*
11399 	 * On underlying interfaces, only allow applications to manage test
11400 	 * addresses -- otherwise, they may get confused when the address
11401 	 * moves as part of being brought up.  Likewise, prevent an
11402 	 * application-managed test address from being converted to a data
11403 	 * address.  To prevent migration of administratively up addresses in
11404 	 * the kernel, we don't allow them to be converted either.
11405 	 */
11406 	if (IS_UNDER_IPMP(ill)) {
11407 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
11408 
11409 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
11410 			return (EINVAL);
11411 
11412 		if ((turn_off & IFF_NOFAILOVER) &&
11413 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
11414 			return (EINVAL);
11415 	}
11416 
11417 	/*
11418 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11419 	 * IPv6 interfaces.
11420 	 */
11421 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11422 		return (EINVAL);
11423 
11424 	/*
11425 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
11426 	 */
11427 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11428 		return (EINVAL);
11429 
11430 	/*
11431 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11432 	 * interfaces.  It makes no sense in that context.
11433 	 */
11434 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11435 		return (EINVAL);
11436 
11437 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11438 		zero_source = B_TRUE;
11439 
11440 	/*
11441 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11442 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11443 	 * If the link local address isn't set, and can be set, it will get
11444 	 * set later on in this function.
11445 	 */
11446 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11447 	    (flags & IFF_UP) && !zero_source &&
11448 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11449 		if (ipif_cant_setlinklocal(ipif))
11450 			return (EINVAL);
11451 		set_linklocal = B_TRUE;
11452 	}
11453 
11454 	/*
11455 	 * If we modify physical interface flags, we'll potentially need to
11456 	 * send up two routing socket messages for the changes (one for the
11457 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11458 	 */
11459 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11460 		phyint_flags_modified = B_TRUE;
11461 
11462 	/*
11463 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
11464 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
11465 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
11466 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
11467 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
11468 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
11469 	 * will not be honored.
11470 	 */
11471 	if (turn_on & PHYI_STANDBY) {
11472 		/*
11473 		 * No need to grab ill_g_usesrc_lock here; see the
11474 		 * synchronization notes in ip.c.
11475 		 */
11476 		if (ill->ill_usesrc_grp_next != NULL ||
11477 		    intf_flags & PHYI_INACTIVE)
11478 			return (EINVAL);
11479 		if (!(flags & PHYI_FAILED)) {
11480 			flags |= PHYI_INACTIVE;
11481 			turn_on |= PHYI_INACTIVE;
11482 		}
11483 	}
11484 
11485 	if (turn_off & PHYI_STANDBY) {
11486 		flags &= ~PHYI_INACTIVE;
11487 		turn_off |= PHYI_INACTIVE;
11488 	}
11489 
11490 	/*
11491 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
11492 	 * would end up on.
11493 	 */
11494 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
11495 	    (PHYI_FAILED | PHYI_INACTIVE))
11496 		return (EINVAL);
11497 
11498 	/*
11499 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11500 	 * status of the interface.
11501 	 */
11502 	if ((turn_on | turn_off) & ILLF_ROUTER)
11503 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11504 
11505 	/*
11506 	 * If the interface is not UP and we are not going to
11507 	 * bring it UP, record the flags and return. When the
11508 	 * interface comes UP later, the right actions will be
11509 	 * taken.
11510 	 */
11511 	if (!(ipif->ipif_flags & IPIF_UP) &&
11512 	    !(turn_on & IPIF_UP)) {
11513 		/* Record new flags in their respective places. */
11514 		mutex_enter(&ill->ill_lock);
11515 		mutex_enter(&ill->ill_phyint->phyint_lock);
11516 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11517 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11518 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11519 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11520 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11521 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11522 		mutex_exit(&ill->ill_lock);
11523 		mutex_exit(&ill->ill_phyint->phyint_lock);
11524 
11525 		/*
11526 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
11527 		 * same to the kernel: if any of them has been set by
11528 		 * userland, the interface cannot be used for data traffic.
11529 		 */
11530 		if ((turn_on|turn_off) &
11531 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
11532 			ASSERT(!IS_IPMP(ill));
11533 			/*
11534 			 * It's possible the ill is part of an "anonymous"
11535 			 * IPMP group rather than a real group.  In that case,
11536 			 * there are no other interfaces in the group and thus
11537 			 * no need to call ipmp_phyint_refresh_active().
11538 			 */
11539 			if (IS_UNDER_IPMP(ill))
11540 				ipmp_phyint_refresh_active(phyi);
11541 		}
11542 
11543 		if (phyint_flags_modified) {
11544 			if (phyi->phyint_illv4 != NULL) {
11545 				ip_rts_ifmsg(phyi->phyint_illv4->
11546 				    ill_ipif, RTSQ_DEFAULT);
11547 			}
11548 			if (phyi->phyint_illv6 != NULL) {
11549 				ip_rts_ifmsg(phyi->phyint_illv6->
11550 				    ill_ipif, RTSQ_DEFAULT);
11551 			}
11552 		}
11553 		return (0);
11554 	} else if (set_linklocal || zero_source) {
11555 		mutex_enter(&ill->ill_lock);
11556 		if (set_linklocal)
11557 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11558 		if (zero_source)
11559 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11560 		mutex_exit(&ill->ill_lock);
11561 	}
11562 
11563 	/*
11564 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11565 	 * or point-to-point interfaces with an unspecified destination. We do
11566 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11567 	 * have a subnet assigned, which is how in.ndpd currently manages its
11568 	 * onlink prefix list when no addresses are configured with those
11569 	 * prefixes.
11570 	 */
11571 	if (ipif->ipif_isv6 &&
11572 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11573 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11574 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11575 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11576 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11577 		return (EINVAL);
11578 	}
11579 
11580 	/*
11581 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11582 	 * from being brought up.
11583 	 */
11584 	if (!ipif->ipif_isv6 &&
11585 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11586 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11587 		return (EINVAL);
11588 	}
11589 
11590 	/*
11591 	 * The only flag changes that we currently take specific action on are
11592 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
11593 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
11594 	 * IPIF_NOFAILOVER.  This is done by bring the ipif down, changing the
11595 	 * flags and bringing it back up again.  For IPIF_NOFAILOVER, the act
11596 	 * of bringing it back up will trigger the address to be moved.
11597 	 */
11598 	if ((turn_on|turn_off) &
11599 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11600 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
11601 	    IPIF_NOFAILOVER)) {
11602 		/*
11603 		 * Taking this ipif down, make sure we have
11604 		 * valid net and subnet bcast ire's for other
11605 		 * logical interfaces, if we need them.
11606 		 */
11607 		if (!ipif->ipif_isv6)
11608 			ipif_check_bcast_ires(ipif);
11609 
11610 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11611 		    !(turn_off & IPIF_UP)) {
11612 			if (ipif->ipif_flags & IPIF_UP)
11613 				ill->ill_logical_down = 1;
11614 			turn_on &= ~IPIF_UP;
11615 		}
11616 		err = ipif_down(ipif, q, mp);
11617 		ip1dbg(("ipif_down returns %d err ", err));
11618 		if (err == EINPROGRESS)
11619 			return (err);
11620 		ipif_down_tail(ipif);
11621 	}
11622 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
11623 }
11624 
11625 static int
11626 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
11627 {
11628 	ill_t	*ill;
11629 	phyint_t *phyi;
11630 	uint64_t turn_on, turn_off;
11631 	uint64_t intf_flags, cantchange_flags;
11632 	boolean_t phyint_flags_modified = B_FALSE;
11633 	int	err = 0;
11634 	boolean_t set_linklocal = B_FALSE;
11635 	boolean_t zero_source = B_FALSE;
11636 
11637 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
11638 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
11639 
11640 	ASSERT(IAM_WRITER_IPIF(ipif));
11641 
11642 	ill = ipif->ipif_ill;
11643 	phyi = ill->ill_phyint;
11644 
11645 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11646 	cantchange_flags = IFF_CANTCHANGE | IFF_UP;
11647 	if (IS_IPMP(ill))
11648 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
11649 
11650 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
11651 	turn_off = intf_flags & turn_on;
11652 	turn_on ^= turn_off;
11653 
11654 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11655 		phyint_flags_modified = B_TRUE;
11656 
11657 	/*
11658 	 * Now we change the flags. Track current value of
11659 	 * other flags in their respective places.
11660 	 */
11661 	mutex_enter(&ill->ill_lock);
11662 	mutex_enter(&phyi->phyint_lock);
11663 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11664 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11665 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11666 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11667 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11668 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11669 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
11670 		set_linklocal = B_TRUE;
11671 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
11672 	}
11673 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
11674 		zero_source = B_TRUE;
11675 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
11676 	}
11677 	mutex_exit(&ill->ill_lock);
11678 	mutex_exit(&phyi->phyint_lock);
11679 
11680 	if (set_linklocal)
11681 		(void) ipif_setlinklocal(ipif);
11682 
11683 	if (zero_source)
11684 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11685 	else
11686 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
11687 
11688 	/*
11689 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
11690 	 * the kernel: if any of them has been set by userland, the interface
11691 	 * cannot be used for data traffic.
11692 	 */
11693 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
11694 		ASSERT(!IS_IPMP(ill));
11695 		/*
11696 		 * It's possible the ill is part of an "anonymous" IPMP group
11697 		 * rather than a real group.  In that case, there are no other
11698 		 * interfaces in the group and thus no need for us to call
11699 		 * ipmp_phyint_refresh_active().
11700 		 */
11701 		if (IS_UNDER_IPMP(ill))
11702 			ipmp_phyint_refresh_active(phyi);
11703 	}
11704 
11705 	if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
11706 		/*
11707 		 * XXX ipif_up really does not know whether a phyint flags
11708 		 * was modified or not. So, it sends up information on
11709 		 * only one routing sockets message. As we don't bring up
11710 		 * the interface and also set PHYI_ flags simultaneously
11711 		 * it should be okay.
11712 		 */
11713 		err = ipif_up(ipif, q, mp);
11714 	} else {
11715 		/*
11716 		 * Make sure routing socket sees all changes to the flags.
11717 		 * ipif_up_done* handles this when we use ipif_up.
11718 		 */
11719 		if (phyint_flags_modified) {
11720 			if (phyi->phyint_illv4 != NULL) {
11721 				ip_rts_ifmsg(phyi->phyint_illv4->
11722 				    ill_ipif, RTSQ_DEFAULT);
11723 			}
11724 			if (phyi->phyint_illv6 != NULL) {
11725 				ip_rts_ifmsg(phyi->phyint_illv6->
11726 				    ill_ipif, RTSQ_DEFAULT);
11727 			}
11728 		} else {
11729 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
11730 		}
11731 		/*
11732 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
11733 		 * this in need_up case.
11734 		 */
11735 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11736 	}
11737 	return (err);
11738 }
11739 
11740 /*
11741  * Restart the flags operation now that the refcounts have dropped to zero.
11742  */
11743 /* ARGSUSED */
11744 int
11745 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11746     ip_ioctl_cmd_t *ipip, void *if_req)
11747 {
11748 	uint64_t flags;
11749 	struct ifreq *ifr = if_req;
11750 	struct lifreq *lifr = if_req;
11751 
11752 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
11753 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11754 
11755 	ipif_down_tail(ipif);
11756 	if (ipip->ipi_cmd_type == IF_CMD) {
11757 		/* cast to uint16_t prevents unwanted sign extension */
11758 		flags = (uint16_t)ifr->ifr_flags;
11759 	} else {
11760 		flags = lifr->lifr_flags;
11761 	}
11762 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
11763 }
11764 
11765 /*
11766  * Can operate on either a module or a driver queue.
11767  */
11768 /* ARGSUSED */
11769 int
11770 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11771     ip_ioctl_cmd_t *ipip, void *if_req)
11772 {
11773 	/*
11774 	 * Has the flags been set correctly till now ?
11775 	 */
11776 	ill_t *ill = ipif->ipif_ill;
11777 	phyint_t *phyi = ill->ill_phyint;
11778 
11779 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
11780 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11781 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11782 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11783 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11784 
11785 	/*
11786 	 * Need a lock since some flags can be set even when there are
11787 	 * references to the ipif.
11788 	 */
11789 	mutex_enter(&ill->ill_lock);
11790 	if (ipip->ipi_cmd_type == IF_CMD) {
11791 		struct ifreq *ifr = (struct ifreq *)if_req;
11792 
11793 		/* Get interface flags (low 16 only). */
11794 		ifr->ifr_flags = ((ipif->ipif_flags |
11795 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
11796 	} else {
11797 		struct lifreq *lifr = (struct lifreq *)if_req;
11798 
11799 		/* Get interface flags. */
11800 		lifr->lifr_flags = ipif->ipif_flags |
11801 		    ill->ill_flags | phyi->phyint_flags;
11802 	}
11803 	mutex_exit(&ill->ill_lock);
11804 	return (0);
11805 }
11806 
11807 /* ARGSUSED */
11808 int
11809 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11810     ip_ioctl_cmd_t *ipip, void *if_req)
11811 {
11812 	int mtu;
11813 	int ip_min_mtu;
11814 	struct ifreq	*ifr;
11815 	struct lifreq *lifr;
11816 	ire_t	*ire;
11817 	ip_stack_t *ipst;
11818 
11819 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
11820 	    ipif->ipif_id, (void *)ipif));
11821 	if (ipip->ipi_cmd_type == IF_CMD) {
11822 		ifr = (struct ifreq *)if_req;
11823 		mtu = ifr->ifr_metric;
11824 	} else {
11825 		lifr = (struct lifreq *)if_req;
11826 		mtu = lifr->lifr_mtu;
11827 	}
11828 
11829 	if (ipif->ipif_isv6)
11830 		ip_min_mtu = IPV6_MIN_MTU;
11831 	else
11832 		ip_min_mtu = IP_MIN_MTU;
11833 
11834 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
11835 		return (EINVAL);
11836 
11837 	/*
11838 	 * Change the MTU size in all relevant ire's.
11839 	 * Mtu change Vs. new ire creation - protocol below.
11840 	 * First change ipif_mtu and the ire_max_frag of the
11841 	 * interface ire. Then do an ire walk and change the
11842 	 * ire_max_frag of all affected ires. During ire_add
11843 	 * under the bucket lock, set the ire_max_frag of the
11844 	 * new ire being created from the ipif/ire from which
11845 	 * it is being derived. If an mtu change happens after
11846 	 * the ire is added, the new ire will be cleaned up.
11847 	 * Conversely if the mtu change happens before the ire
11848 	 * is added, ire_add will see the new value of the mtu.
11849 	 */
11850 	ipif->ipif_mtu = mtu;
11851 	ipif->ipif_flags |= IPIF_FIXEDMTU;
11852 
11853 	if (ipif->ipif_isv6)
11854 		ire = ipif_to_ire_v6(ipif);
11855 	else
11856 		ire = ipif_to_ire(ipif);
11857 	if (ire != NULL) {
11858 		ire->ire_max_frag = ipif->ipif_mtu;
11859 		ire_refrele(ire);
11860 	}
11861 	ipst = ipif->ipif_ill->ill_ipst;
11862 	if (ipif->ipif_flags & IPIF_UP) {
11863 		if (ipif->ipif_isv6)
11864 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
11865 			    ipst);
11866 		else
11867 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
11868 			    ipst);
11869 	}
11870 	/* Update the MTU in SCTP's list */
11871 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11872 	return (0);
11873 }
11874 
11875 /* Get interface MTU. */
11876 /* ARGSUSED */
11877 int
11878 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11879 	ip_ioctl_cmd_t *ipip, void *if_req)
11880 {
11881 	struct ifreq	*ifr;
11882 	struct lifreq	*lifr;
11883 
11884 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
11885 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11886 	if (ipip->ipi_cmd_type == IF_CMD) {
11887 		ifr = (struct ifreq *)if_req;
11888 		ifr->ifr_metric = ipif->ipif_mtu;
11889 	} else {
11890 		lifr = (struct lifreq *)if_req;
11891 		lifr->lifr_mtu = ipif->ipif_mtu;
11892 	}
11893 	return (0);
11894 }
11895 
11896 /* Set interface broadcast address. */
11897 /* ARGSUSED2 */
11898 int
11899 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11900 	ip_ioctl_cmd_t *ipip, void *if_req)
11901 {
11902 	ipaddr_t addr;
11903 	ire_t	*ire;
11904 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11905 
11906 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
11907 	    ipif->ipif_id));
11908 
11909 	ASSERT(IAM_WRITER_IPIF(ipif));
11910 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
11911 		return (EADDRNOTAVAIL);
11912 
11913 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
11914 
11915 	if (sin->sin_family != AF_INET)
11916 		return (EAFNOSUPPORT);
11917 
11918 	addr = sin->sin_addr.s_addr;
11919 	if (ipif->ipif_flags & IPIF_UP) {
11920 		/*
11921 		 * If we are already up, make sure the new
11922 		 * broadcast address makes sense.  If it does,
11923 		 * there should be an IRE for it already.
11924 		 * Don't match on ipif, only on the ill
11925 		 * since we are sharing these now.
11926 		 */
11927 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
11928 		    ipif, ALL_ZONES, NULL,
11929 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
11930 		if (ire == NULL) {
11931 			return (EINVAL);
11932 		} else {
11933 			ire_refrele(ire);
11934 		}
11935 	}
11936 	/*
11937 	 * Changing the broadcast addr for this ipif.
11938 	 * Make sure we have valid net and subnet bcast
11939 	 * ire's for other logical interfaces, if needed.
11940 	 */
11941 	if (addr != ipif->ipif_brd_addr)
11942 		ipif_check_bcast_ires(ipif);
11943 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
11944 	return (0);
11945 }
11946 
11947 /* Get interface broadcast address. */
11948 /* ARGSUSED */
11949 int
11950 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11951     ip_ioctl_cmd_t *ipip, void *if_req)
11952 {
11953 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
11954 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11955 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
11956 		return (EADDRNOTAVAIL);
11957 
11958 	/* IPIF_BROADCAST not possible with IPv6 */
11959 	ASSERT(!ipif->ipif_isv6);
11960 	*sin = sin_null;
11961 	sin->sin_family = AF_INET;
11962 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
11963 	return (0);
11964 }
11965 
11966 /*
11967  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
11968  */
11969 /* ARGSUSED */
11970 int
11971 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11972     ip_ioctl_cmd_t *ipip, void *if_req)
11973 {
11974 	int err = 0;
11975 	in6_addr_t v6mask;
11976 
11977 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
11978 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11979 
11980 	ASSERT(IAM_WRITER_IPIF(ipif));
11981 
11982 	if (ipif->ipif_isv6) {
11983 		sin6_t *sin6;
11984 
11985 		if (sin->sin_family != AF_INET6)
11986 			return (EAFNOSUPPORT);
11987 
11988 		sin6 = (sin6_t *)sin;
11989 		v6mask = sin6->sin6_addr;
11990 	} else {
11991 		ipaddr_t mask;
11992 
11993 		if (sin->sin_family != AF_INET)
11994 			return (EAFNOSUPPORT);
11995 
11996 		mask = sin->sin_addr.s_addr;
11997 		V4MASK_TO_V6(mask, v6mask);
11998 	}
11999 
12000 	/*
12001 	 * No big deal if the interface isn't already up, or the mask
12002 	 * isn't really changing, or this is pt-pt.
12003 	 */
12004 	if (!(ipif->ipif_flags & IPIF_UP) ||
12005 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12006 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12007 		ipif->ipif_v6net_mask = v6mask;
12008 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12009 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12010 			    ipif->ipif_v6net_mask,
12011 			    ipif->ipif_v6subnet);
12012 		}
12013 		return (0);
12014 	}
12015 	/*
12016 	 * Make sure we have valid net and subnet broadcast ire's
12017 	 * for the old netmask, if needed by other logical interfaces.
12018 	 */
12019 	if (!ipif->ipif_isv6)
12020 		ipif_check_bcast_ires(ipif);
12021 
12022 	err = ipif_logical_down(ipif, q, mp);
12023 	if (err == EINPROGRESS)
12024 		return (err);
12025 	ipif_down_tail(ipif);
12026 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12027 	return (err);
12028 }
12029 
12030 static int
12031 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12032 {
12033 	in6_addr_t v6mask;
12034 	int err = 0;
12035 
12036 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12037 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12038 
12039 	if (ipif->ipif_isv6) {
12040 		sin6_t *sin6;
12041 
12042 		sin6 = (sin6_t *)sin;
12043 		v6mask = sin6->sin6_addr;
12044 	} else {
12045 		ipaddr_t mask;
12046 
12047 		mask = sin->sin_addr.s_addr;
12048 		V4MASK_TO_V6(mask, v6mask);
12049 	}
12050 
12051 	ipif->ipif_v6net_mask = v6mask;
12052 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12053 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12054 		    ipif->ipif_v6subnet);
12055 	}
12056 	err = ipif_up(ipif, q, mp);
12057 
12058 	if (err == 0 || err == EINPROGRESS) {
12059 		/*
12060 		 * The interface must be DL_BOUND if this packet has to
12061 		 * go out on the wire. Since we only go through a logical
12062 		 * down and are bound with the driver during an internal
12063 		 * down/up that is satisfied.
12064 		 */
12065 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12066 			/* Potentially broadcast an address mask reply. */
12067 			ipif_mask_reply(ipif);
12068 		}
12069 	}
12070 	return (err);
12071 }
12072 
12073 /* ARGSUSED */
12074 int
12075 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12076     ip_ioctl_cmd_t *ipip, void *if_req)
12077 {
12078 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12079 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12080 	ipif_down_tail(ipif);
12081 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12082 }
12083 
12084 /* Get interface net mask. */
12085 /* ARGSUSED */
12086 int
12087 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12088     ip_ioctl_cmd_t *ipip, void *if_req)
12089 {
12090 	struct lifreq *lifr = (struct lifreq *)if_req;
12091 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12092 
12093 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12094 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12095 
12096 	/*
12097 	 * net mask can't change since we have a reference to the ipif.
12098 	 */
12099 	if (ipif->ipif_isv6) {
12100 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12101 		*sin6 = sin6_null;
12102 		sin6->sin6_family = AF_INET6;
12103 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12104 		lifr->lifr_addrlen =
12105 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12106 	} else {
12107 		*sin = sin_null;
12108 		sin->sin_family = AF_INET;
12109 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12110 		if (ipip->ipi_cmd_type == LIF_CMD) {
12111 			lifr->lifr_addrlen =
12112 			    ip_mask_to_plen(ipif->ipif_net_mask);
12113 		}
12114 	}
12115 	return (0);
12116 }
12117 
12118 /* ARGSUSED */
12119 int
12120 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12121     ip_ioctl_cmd_t *ipip, void *if_req)
12122 {
12123 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12124 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12125 
12126 	/*
12127 	 * Since no applications should ever be setting metrics on underlying
12128 	 * interfaces, we explicitly fail to smoke 'em out.
12129 	 */
12130 	if (IS_UNDER_IPMP(ipif->ipif_ill))
12131 		return (EINVAL);
12132 
12133 	/*
12134 	 * Set interface metric.  We don't use this for
12135 	 * anything but we keep track of it in case it is
12136 	 * important to routing applications or such.
12137 	 */
12138 	if (ipip->ipi_cmd_type == IF_CMD) {
12139 		struct ifreq    *ifr;
12140 
12141 		ifr = (struct ifreq *)if_req;
12142 		ipif->ipif_metric = ifr->ifr_metric;
12143 	} else {
12144 		struct lifreq   *lifr;
12145 
12146 		lifr = (struct lifreq *)if_req;
12147 		ipif->ipif_metric = lifr->lifr_metric;
12148 	}
12149 	return (0);
12150 }
12151 
12152 /* ARGSUSED */
12153 int
12154 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12155     ip_ioctl_cmd_t *ipip, void *if_req)
12156 {
12157 	/* Get interface metric. */
12158 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12159 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12160 
12161 	if (ipip->ipi_cmd_type == IF_CMD) {
12162 		struct ifreq    *ifr;
12163 
12164 		ifr = (struct ifreq *)if_req;
12165 		ifr->ifr_metric = ipif->ipif_metric;
12166 	} else {
12167 		struct lifreq   *lifr;
12168 
12169 		lifr = (struct lifreq *)if_req;
12170 		lifr->lifr_metric = ipif->ipif_metric;
12171 	}
12172 
12173 	return (0);
12174 }
12175 
12176 /* ARGSUSED */
12177 int
12178 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12179     ip_ioctl_cmd_t *ipip, void *if_req)
12180 {
12181 
12182 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12183 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12184 	/*
12185 	 * Set the muxid returned from I_PLINK.
12186 	 */
12187 	if (ipip->ipi_cmd_type == IF_CMD) {
12188 		struct ifreq *ifr = (struct ifreq *)if_req;
12189 
12190 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12191 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12192 	} else {
12193 		struct lifreq *lifr = (struct lifreq *)if_req;
12194 
12195 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12196 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12197 	}
12198 	return (0);
12199 }
12200 
12201 /* ARGSUSED */
12202 int
12203 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12204     ip_ioctl_cmd_t *ipip, void *if_req)
12205 {
12206 
12207 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12208 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12209 	/*
12210 	 * Get the muxid saved in ill for I_PUNLINK.
12211 	 */
12212 	if (ipip->ipi_cmd_type == IF_CMD) {
12213 		struct ifreq *ifr = (struct ifreq *)if_req;
12214 
12215 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12216 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12217 	} else {
12218 		struct lifreq *lifr = (struct lifreq *)if_req;
12219 
12220 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12221 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12222 	}
12223 	return (0);
12224 }
12225 
12226 /*
12227  * Set the subnet prefix. Does not modify the broadcast address.
12228  */
12229 /* ARGSUSED */
12230 int
12231 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12232     ip_ioctl_cmd_t *ipip, void *if_req)
12233 {
12234 	int err = 0;
12235 	in6_addr_t v6addr;
12236 	in6_addr_t v6mask;
12237 	boolean_t need_up = B_FALSE;
12238 	int addrlen;
12239 
12240 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12241 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12242 
12243 	ASSERT(IAM_WRITER_IPIF(ipif));
12244 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12245 
12246 	if (ipif->ipif_isv6) {
12247 		sin6_t *sin6;
12248 
12249 		if (sin->sin_family != AF_INET6)
12250 			return (EAFNOSUPPORT);
12251 
12252 		sin6 = (sin6_t *)sin;
12253 		v6addr = sin6->sin6_addr;
12254 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12255 			return (EADDRNOTAVAIL);
12256 	} else {
12257 		ipaddr_t addr;
12258 
12259 		if (sin->sin_family != AF_INET)
12260 			return (EAFNOSUPPORT);
12261 
12262 		addr = sin->sin_addr.s_addr;
12263 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12264 			return (EADDRNOTAVAIL);
12265 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12266 		/* Add 96 bits */
12267 		addrlen += IPV6_ABITS - IP_ABITS;
12268 	}
12269 
12270 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12271 		return (EINVAL);
12272 
12273 	/* Check if bits in the address is set past the mask */
12274 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12275 		return (EINVAL);
12276 
12277 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12278 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12279 		return (0);	/* No change */
12280 
12281 	if (ipif->ipif_flags & IPIF_UP) {
12282 		/*
12283 		 * If the interface is already marked up,
12284 		 * we call ipif_down which will take care
12285 		 * of ditching any IREs that have been set
12286 		 * up based on the old interface address.
12287 		 */
12288 		err = ipif_logical_down(ipif, q, mp);
12289 		if (err == EINPROGRESS)
12290 			return (err);
12291 		ipif_down_tail(ipif);
12292 		need_up = B_TRUE;
12293 	}
12294 
12295 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12296 	return (err);
12297 }
12298 
12299 static int
12300 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12301     queue_t *q, mblk_t *mp, boolean_t need_up)
12302 {
12303 	ill_t	*ill = ipif->ipif_ill;
12304 	int	err = 0;
12305 
12306 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12307 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12308 
12309 	/* Set the new address. */
12310 	mutex_enter(&ill->ill_lock);
12311 	ipif->ipif_v6net_mask = v6mask;
12312 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12313 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12314 		    ipif->ipif_v6subnet);
12315 	}
12316 	mutex_exit(&ill->ill_lock);
12317 
12318 	if (need_up) {
12319 		/*
12320 		 * Now bring the interface back up.  If this
12321 		 * is the only IPIF for the ILL, ipif_up
12322 		 * will have to re-bind to the device, so
12323 		 * we may get back EINPROGRESS, in which
12324 		 * case, this IOCTL will get completed in
12325 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12326 		 */
12327 		err = ipif_up(ipif, q, mp);
12328 		if (err == EINPROGRESS)
12329 			return (err);
12330 	}
12331 	return (err);
12332 }
12333 
12334 /* ARGSUSED */
12335 int
12336 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12337     ip_ioctl_cmd_t *ipip, void *if_req)
12338 {
12339 	int	addrlen;
12340 	in6_addr_t v6addr;
12341 	in6_addr_t v6mask;
12342 	struct lifreq *lifr = (struct lifreq *)if_req;
12343 
12344 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12345 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12346 	ipif_down_tail(ipif);
12347 
12348 	addrlen = lifr->lifr_addrlen;
12349 	if (ipif->ipif_isv6) {
12350 		sin6_t *sin6;
12351 
12352 		sin6 = (sin6_t *)sin;
12353 		v6addr = sin6->sin6_addr;
12354 	} else {
12355 		ipaddr_t addr;
12356 
12357 		addr = sin->sin_addr.s_addr;
12358 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12359 		addrlen += IPV6_ABITS - IP_ABITS;
12360 	}
12361 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12362 
12363 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12364 }
12365 
12366 /* ARGSUSED */
12367 int
12368 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12369     ip_ioctl_cmd_t *ipip, void *if_req)
12370 {
12371 	struct lifreq *lifr = (struct lifreq *)if_req;
12372 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12373 
12374 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12375 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12376 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12377 
12378 	if (ipif->ipif_isv6) {
12379 		*sin6 = sin6_null;
12380 		sin6->sin6_family = AF_INET6;
12381 		sin6->sin6_addr = ipif->ipif_v6subnet;
12382 		lifr->lifr_addrlen =
12383 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12384 	} else {
12385 		*sin = sin_null;
12386 		sin->sin_family = AF_INET;
12387 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12388 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12389 	}
12390 	return (0);
12391 }
12392 
12393 /*
12394  * Set the IPv6 address token.
12395  */
12396 /* ARGSUSED */
12397 int
12398 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12399     ip_ioctl_cmd_t *ipi, void *if_req)
12400 {
12401 	ill_t *ill = ipif->ipif_ill;
12402 	int err;
12403 	in6_addr_t v6addr;
12404 	in6_addr_t v6mask;
12405 	boolean_t need_up = B_FALSE;
12406 	int i;
12407 	sin6_t *sin6 = (sin6_t *)sin;
12408 	struct lifreq *lifr = (struct lifreq *)if_req;
12409 	int addrlen;
12410 
12411 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12412 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12413 	ASSERT(IAM_WRITER_IPIF(ipif));
12414 
12415 	addrlen = lifr->lifr_addrlen;
12416 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12417 	if (ipif->ipif_id != 0)
12418 		return (EINVAL);
12419 
12420 	if (!ipif->ipif_isv6)
12421 		return (EINVAL);
12422 
12423 	if (addrlen > IPV6_ABITS)
12424 		return (EINVAL);
12425 
12426 	v6addr = sin6->sin6_addr;
12427 
12428 	/*
12429 	 * The length of the token is the length from the end.  To get
12430 	 * the proper mask for this, compute the mask of the bits not
12431 	 * in the token; ie. the prefix, and then xor to get the mask.
12432 	 */
12433 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12434 		return (EINVAL);
12435 	for (i = 0; i < 4; i++) {
12436 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12437 	}
12438 
12439 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12440 	    ill->ill_token_length == addrlen)
12441 		return (0);	/* No change */
12442 
12443 	if (ipif->ipif_flags & IPIF_UP) {
12444 		err = ipif_logical_down(ipif, q, mp);
12445 		if (err == EINPROGRESS)
12446 			return (err);
12447 		ipif_down_tail(ipif);
12448 		need_up = B_TRUE;
12449 	}
12450 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12451 	return (err);
12452 }
12453 
12454 static int
12455 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12456     mblk_t *mp, boolean_t need_up)
12457 {
12458 	in6_addr_t v6addr;
12459 	in6_addr_t v6mask;
12460 	ill_t	*ill = ipif->ipif_ill;
12461 	int	i;
12462 	int	err = 0;
12463 
12464 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12465 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12466 	v6addr = sin6->sin6_addr;
12467 	/*
12468 	 * The length of the token is the length from the end.  To get
12469 	 * the proper mask for this, compute the mask of the bits not
12470 	 * in the token; ie. the prefix, and then xor to get the mask.
12471 	 */
12472 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12473 	for (i = 0; i < 4; i++)
12474 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12475 
12476 	mutex_enter(&ill->ill_lock);
12477 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12478 	ill->ill_token_length = addrlen;
12479 	ill->ill_manual_token = 1;
12480 
12481 	/* Reconfigure the link-local address based on this new token */
12482 	ipif_setlinklocal(ill->ill_ipif);
12483 
12484 	mutex_exit(&ill->ill_lock);
12485 
12486 	if (need_up) {
12487 		/*
12488 		 * Now bring the interface back up.  If this
12489 		 * is the only IPIF for the ILL, ipif_up
12490 		 * will have to re-bind to the device, so
12491 		 * we may get back EINPROGRESS, in which
12492 		 * case, this IOCTL will get completed in
12493 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12494 		 */
12495 		err = ipif_up(ipif, q, mp);
12496 		if (err == EINPROGRESS)
12497 			return (err);
12498 	}
12499 	return (err);
12500 }
12501 
12502 /* ARGSUSED */
12503 int
12504 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12505     ip_ioctl_cmd_t *ipi, void *if_req)
12506 {
12507 	ill_t *ill;
12508 	sin6_t *sin6 = (sin6_t *)sin;
12509 	struct lifreq *lifr = (struct lifreq *)if_req;
12510 
12511 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12512 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12513 	if (ipif->ipif_id != 0)
12514 		return (EINVAL);
12515 
12516 	ill = ipif->ipif_ill;
12517 	if (!ill->ill_isv6)
12518 		return (ENXIO);
12519 
12520 	*sin6 = sin6_null;
12521 	sin6->sin6_family = AF_INET6;
12522 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12523 	sin6->sin6_addr = ill->ill_token;
12524 	lifr->lifr_addrlen = ill->ill_token_length;
12525 	return (0);
12526 }
12527 
12528 /*
12529  * Set (hardware) link specific information that might override
12530  * what was acquired through the DL_INFO_ACK.
12531  * The logic is as follows.
12532  *
12533  * become exclusive
12534  * set CHANGING flag
12535  * change mtu on affected IREs
12536  * clear CHANGING flag
12537  *
12538  * An ire add that occurs before the CHANGING flag is set will have its mtu
12539  * changed by the ip_sioctl_lnkinfo.
12540  *
12541  * During the time the CHANGING flag is set, no new ires will be added to the
12542  * bucket, and ire add will fail (due the CHANGING flag).
12543  *
12544  * An ire add that occurs after the CHANGING flag is set will have the right mtu
12545  * before it is added to the bucket.
12546  *
12547  * Obviously only 1 thread can set the CHANGING flag and we need to become
12548  * exclusive to set the flag.
12549  */
12550 /* ARGSUSED */
12551 int
12552 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12553     ip_ioctl_cmd_t *ipi, void *if_req)
12554 {
12555 	ill_t		*ill = ipif->ipif_ill;
12556 	ipif_t		*nipif;
12557 	int		ip_min_mtu;
12558 	boolean_t	mtu_walk = B_FALSE;
12559 	struct lifreq	*lifr = (struct lifreq *)if_req;
12560 	lif_ifinfo_req_t *lir;
12561 	ire_t		*ire;
12562 
12563 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12564 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12565 	lir = &lifr->lifr_ifinfo;
12566 	ASSERT(IAM_WRITER_IPIF(ipif));
12567 
12568 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12569 	if (ipif->ipif_id != 0)
12570 		return (EINVAL);
12571 
12572 	/* Set interface MTU. */
12573 	if (ipif->ipif_isv6)
12574 		ip_min_mtu = IPV6_MIN_MTU;
12575 	else
12576 		ip_min_mtu = IP_MIN_MTU;
12577 
12578 	/*
12579 	 * Verify values before we set anything. Allow zero to
12580 	 * mean unspecified.
12581 	 */
12582 	if (lir->lir_maxmtu != 0 &&
12583 	    (lir->lir_maxmtu > ill->ill_max_frag ||
12584 	    lir->lir_maxmtu < ip_min_mtu))
12585 		return (EINVAL);
12586 	if (lir->lir_reachtime != 0 &&
12587 	    lir->lir_reachtime > ND_MAX_REACHTIME)
12588 		return (EINVAL);
12589 	if (lir->lir_reachretrans != 0 &&
12590 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12591 		return (EINVAL);
12592 
12593 	mutex_enter(&ill->ill_lock);
12594 	ill->ill_state_flags |= ILL_CHANGING;
12595 	for (nipif = ill->ill_ipif; nipif != NULL;
12596 	    nipif = nipif->ipif_next) {
12597 		nipif->ipif_state_flags |= IPIF_CHANGING;
12598 	}
12599 
12600 	if (lir->lir_maxmtu != 0) {
12601 		ill->ill_max_mtu = lir->lir_maxmtu;
12602 		ill->ill_user_mtu = lir->lir_maxmtu;
12603 		mtu_walk = B_TRUE;
12604 	}
12605 	mutex_exit(&ill->ill_lock);
12606 
12607 	if (lir->lir_reachtime != 0)
12608 		ill->ill_reachable_time = lir->lir_reachtime;
12609 
12610 	if (lir->lir_reachretrans != 0)
12611 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12612 
12613 	ill->ill_max_hops = lir->lir_maxhops;
12614 
12615 	ill->ill_max_buf = ND_MAX_Q;
12616 
12617 	if (mtu_walk) {
12618 		/*
12619 		 * Set the MTU on all ipifs associated with this ill except
12620 		 * for those whose MTU was fixed via SIOCSLIFMTU.
12621 		 */
12622 		for (nipif = ill->ill_ipif; nipif != NULL;
12623 		    nipif = nipif->ipif_next) {
12624 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12625 				continue;
12626 
12627 			nipif->ipif_mtu = ill->ill_max_mtu;
12628 
12629 			if (!(nipif->ipif_flags & IPIF_UP))
12630 				continue;
12631 
12632 			if (nipif->ipif_isv6)
12633 				ire = ipif_to_ire_v6(nipif);
12634 			else
12635 				ire = ipif_to_ire(nipif);
12636 			if (ire != NULL) {
12637 				ire->ire_max_frag = ipif->ipif_mtu;
12638 				ire_refrele(ire);
12639 			}
12640 
12641 			ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change,
12642 			    nipif, ill);
12643 		}
12644 	}
12645 
12646 	mutex_enter(&ill->ill_lock);
12647 	for (nipif = ill->ill_ipif; nipif != NULL;
12648 	    nipif = nipif->ipif_next) {
12649 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
12650 	}
12651 	ILL_UNMARK_CHANGING(ill);
12652 	mutex_exit(&ill->ill_lock);
12653 
12654 	/*
12655 	 * Refresh IPMP meta-interface MTU if necessary.
12656 	 */
12657 	if (IS_UNDER_IPMP(ill))
12658 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
12659 
12660 	return (0);
12661 }
12662 
12663 /* ARGSUSED */
12664 int
12665 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12666     ip_ioctl_cmd_t *ipi, void *if_req)
12667 {
12668 	struct lif_ifinfo_req *lir;
12669 	ill_t *ill = ipif->ipif_ill;
12670 
12671 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
12672 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12673 	if (ipif->ipif_id != 0)
12674 		return (EINVAL);
12675 
12676 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
12677 	lir->lir_maxhops = ill->ill_max_hops;
12678 	lir->lir_reachtime = ill->ill_reachable_time;
12679 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
12680 	lir->lir_maxmtu = ill->ill_max_mtu;
12681 
12682 	return (0);
12683 }
12684 
12685 /*
12686  * Return best guess as to the subnet mask for the specified address.
12687  * Based on the subnet masks for all the configured interfaces.
12688  *
12689  * We end up returning a zero mask in the case of default, multicast or
12690  * experimental.
12691  */
12692 static ipaddr_t
12693 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
12694 {
12695 	ipaddr_t net_mask;
12696 	ill_t	*ill;
12697 	ipif_t	*ipif;
12698 	ill_walk_context_t ctx;
12699 	ipif_t	*fallback_ipif = NULL;
12700 
12701 	net_mask = ip_net_mask(addr);
12702 	if (net_mask == 0) {
12703 		*ipifp = NULL;
12704 		return (0);
12705 	}
12706 
12707 	/* Let's check to see if this is maybe a local subnet route. */
12708 	/* this function only applies to IPv4 interfaces */
12709 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
12710 	ill = ILL_START_WALK_V4(&ctx, ipst);
12711 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
12712 		mutex_enter(&ill->ill_lock);
12713 		for (ipif = ill->ill_ipif; ipif != NULL;
12714 		    ipif = ipif->ipif_next) {
12715 			if (!IPIF_CAN_LOOKUP(ipif))
12716 				continue;
12717 			if (!(ipif->ipif_flags & IPIF_UP))
12718 				continue;
12719 			if ((ipif->ipif_subnet & net_mask) ==
12720 			    (addr & net_mask)) {
12721 				/*
12722 				 * Don't trust pt-pt interfaces if there are
12723 				 * other interfaces.
12724 				 */
12725 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
12726 					if (fallback_ipif == NULL) {
12727 						ipif_refhold_locked(ipif);
12728 						fallback_ipif = ipif;
12729 					}
12730 					continue;
12731 				}
12732 
12733 				/*
12734 				 * Fine. Just assume the same net mask as the
12735 				 * directly attached subnet interface is using.
12736 				 */
12737 				ipif_refhold_locked(ipif);
12738 				mutex_exit(&ill->ill_lock);
12739 				rw_exit(&ipst->ips_ill_g_lock);
12740 				if (fallback_ipif != NULL)
12741 					ipif_refrele(fallback_ipif);
12742 				*ipifp = ipif;
12743 				return (ipif->ipif_net_mask);
12744 			}
12745 		}
12746 		mutex_exit(&ill->ill_lock);
12747 	}
12748 	rw_exit(&ipst->ips_ill_g_lock);
12749 
12750 	*ipifp = fallback_ipif;
12751 	return ((fallback_ipif != NULL) ?
12752 	    fallback_ipif->ipif_net_mask : net_mask);
12753 }
12754 
12755 /*
12756  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
12757  */
12758 static void
12759 ip_wput_ioctl(queue_t *q, mblk_t *mp)
12760 {
12761 	IOCP	iocp;
12762 	ipft_t	*ipft;
12763 	ipllc_t	*ipllc;
12764 	mblk_t	*mp1;
12765 	cred_t	*cr;
12766 	int	error = 0;
12767 	conn_t	*connp;
12768 
12769 	ip1dbg(("ip_wput_ioctl"));
12770 	iocp = (IOCP)mp->b_rptr;
12771 	mp1 = mp->b_cont;
12772 	if (mp1 == NULL) {
12773 		iocp->ioc_error = EINVAL;
12774 		mp->b_datap->db_type = M_IOCNAK;
12775 		iocp->ioc_count = 0;
12776 		qreply(q, mp);
12777 		return;
12778 	}
12779 
12780 	/*
12781 	 * These IOCTLs provide various control capabilities to
12782 	 * upstream agents such as ULPs and processes.	There
12783 	 * are currently two such IOCTLs implemented.  They
12784 	 * are used by TCP to provide update information for
12785 	 * existing IREs and to forcibly delete an IRE for a
12786 	 * host that is not responding, thereby forcing an
12787 	 * attempt at a new route.
12788 	 */
12789 	iocp->ioc_error = EINVAL;
12790 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
12791 		goto done;
12792 
12793 	ipllc = (ipllc_t *)mp1->b_rptr;
12794 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
12795 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
12796 			break;
12797 	}
12798 	/*
12799 	 * prefer credential from mblk over ioctl;
12800 	 * see ip_sioctl_copyin_setup
12801 	 */
12802 	cr = msg_getcred(mp, NULL);
12803 	if (cr == NULL)
12804 		cr = iocp->ioc_cr;
12805 
12806 	/*
12807 	 * Refhold the conn in case the request gets queued up in some lookup
12808 	 */
12809 	ASSERT(CONN_Q(q));
12810 	connp = Q_TO_CONN(q);
12811 	CONN_INC_REF(connp);
12812 	if (ipft->ipft_pfi &&
12813 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
12814 	    pullupmsg(mp1, ipft->ipft_min_size))) {
12815 		error = (*ipft->ipft_pfi)(q,
12816 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
12817 	}
12818 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
12819 		/*
12820 		 * CONN_OPER_PENDING_DONE happens in the function called
12821 		 * through ipft_pfi above.
12822 		 */
12823 		return;
12824 	}
12825 
12826 	CONN_OPER_PENDING_DONE(connp);
12827 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
12828 		freemsg(mp);
12829 		return;
12830 	}
12831 	iocp->ioc_error = error;
12832 
12833 done:
12834 	mp->b_datap->db_type = M_IOCACK;
12835 	if (iocp->ioc_error)
12836 		iocp->ioc_count = 0;
12837 	qreply(q, mp);
12838 }
12839 
12840 /*
12841  * Lookup an ipif using the sequence id (ipif_seqid)
12842  */
12843 ipif_t *
12844 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
12845 {
12846 	ipif_t *ipif;
12847 
12848 	ASSERT(MUTEX_HELD(&ill->ill_lock));
12849 
12850 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12851 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
12852 			return (ipif);
12853 	}
12854 	return (NULL);
12855 }
12856 
12857 /*
12858  * Assign a unique id for the ipif. This is used later when we send
12859  * IRES to ARP for resolution where we initialize ire_ipif_seqid
12860  * to the value pointed by ire_ipif->ipif_seqid. Later when the
12861  * IRE is added, we verify that ipif has not disappeared.
12862  */
12863 
12864 static void
12865 ipif_assign_seqid(ipif_t *ipif)
12866 {
12867 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12868 
12869 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
12870 }
12871 
12872 /*
12873  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
12874  * administratively down (i.e., no DAD), of the same type, and locked.  Note
12875  * that the clone is complete -- including the seqid -- and the expectation is
12876  * that the caller will either free or overwrite `sipif' before it's unlocked.
12877  */
12878 static void
12879 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
12880 {
12881 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
12882 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
12883 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
12884 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
12885 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
12886 	ASSERT(sipif->ipif_arp_del_mp == NULL);
12887 	ASSERT(dipif->ipif_arp_del_mp == NULL);
12888 	ASSERT(sipif->ipif_igmp_rpt == NULL);
12889 	ASSERT(dipif->ipif_igmp_rpt == NULL);
12890 	ASSERT(sipif->ipif_multicast_up == 0);
12891 	ASSERT(dipif->ipif_multicast_up == 0);
12892 	ASSERT(sipif->ipif_joined_allhosts == 0);
12893 	ASSERT(dipif->ipif_joined_allhosts == 0);
12894 
12895 	dipif->ipif_mtu = sipif->ipif_mtu;
12896 	dipif->ipif_flags = sipif->ipif_flags;
12897 	dipif->ipif_metric = sipif->ipif_metric;
12898 	dipif->ipif_zoneid = sipif->ipif_zoneid;
12899 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
12900 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
12901 	dipif->ipif_v6src_addr = sipif->ipif_v6src_addr;
12902 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
12903 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
12904 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
12905 
12906 	/*
12907 	 * While dipif is down right now, it might've been up before.  Since
12908 	 * it's changing identity, its packet counters need to be reset.
12909 	 */
12910 	dipif->ipif_ib_pkt_count = 0;
12911 	dipif->ipif_ob_pkt_count = 0;
12912 	dipif->ipif_fo_pkt_count = 0;
12913 
12914 	/*
12915 	 * As per the comment atop the function, we assume that these sipif
12916 	 * fields will be changed before sipif is unlocked.
12917 	 */
12918 	dipif->ipif_seqid = sipif->ipif_seqid;
12919 	dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp;
12920 	dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt;
12921 	dipif->ipif_state_flags = sipif->ipif_state_flags;
12922 }
12923 
12924 /*
12925  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
12926  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
12927  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
12928  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
12929  * down (i.e., no DAD), of the same type, and unlocked.
12930  */
12931 static void
12932 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
12933 {
12934 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
12935 	ipxop_t *ipx = ipsq->ipsq_xop;
12936 
12937 	ASSERT(sipif != dipif);
12938 	ASSERT(sipif != virgipif);
12939 
12940 	/*
12941 	 * Grab all of the locks that protect the ipif in a defined order.
12942 	 */
12943 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
12944 	if (sipif > dipif) {
12945 		mutex_enter(&sipif->ipif_saved_ire_lock);
12946 		mutex_enter(&dipif->ipif_saved_ire_lock);
12947 	} else {
12948 		mutex_enter(&dipif->ipif_saved_ire_lock);
12949 		mutex_enter(&sipif->ipif_saved_ire_lock);
12950 	}
12951 
12952 	ipif_clone(sipif, dipif);
12953 	if (virgipif != NULL) {
12954 		ipif_clone(virgipif, sipif);
12955 		mi_free(virgipif);
12956 	}
12957 
12958 	mutex_exit(&sipif->ipif_saved_ire_lock);
12959 	mutex_exit(&dipif->ipif_saved_ire_lock);
12960 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
12961 
12962 	/*
12963 	 * Transfer ownership of the current xop, if necessary.
12964 	 */
12965 	if (ipx->ipx_current_ipif == sipif) {
12966 		ASSERT(ipx->ipx_pending_ipif == NULL);
12967 		mutex_enter(&ipx->ipx_lock);
12968 		ipx->ipx_current_ipif = dipif;
12969 		mutex_exit(&ipx->ipx_lock);
12970 	}
12971 
12972 	if (virgipif == NULL)
12973 		mi_free(sipif);
12974 }
12975 
12976 /*
12977  * Insert the ipif, so that the list of ipifs on the ill will be sorted
12978  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
12979  * be inserted into the first space available in the list. The value of
12980  * ipif_id will then be set to the appropriate value for its position.
12981  */
12982 static int
12983 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
12984 {
12985 	ill_t *ill;
12986 	ipif_t *tipif;
12987 	ipif_t **tipifp;
12988 	int id;
12989 	ip_stack_t	*ipst;
12990 
12991 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
12992 	    IAM_WRITER_IPIF(ipif));
12993 
12994 	ill = ipif->ipif_ill;
12995 	ASSERT(ill != NULL);
12996 	ipst = ill->ill_ipst;
12997 
12998 	/*
12999 	 * In the case of lo0:0 we already hold the ill_g_lock.
13000 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13001 	 * ipif_insert.
13002 	 */
13003 	if (acquire_g_lock)
13004 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13005 	mutex_enter(&ill->ill_lock);
13006 	id = ipif->ipif_id;
13007 	tipifp = &(ill->ill_ipif);
13008 	if (id == -1) {	/* need to find a real id */
13009 		id = 0;
13010 		while ((tipif = *tipifp) != NULL) {
13011 			ASSERT(tipif->ipif_id >= id);
13012 			if (tipif->ipif_id != id)
13013 				break; /* non-consecutive id */
13014 			id++;
13015 			tipifp = &(tipif->ipif_next);
13016 		}
13017 		/* limit number of logical interfaces */
13018 		if (id >= ipst->ips_ip_addrs_per_if) {
13019 			mutex_exit(&ill->ill_lock);
13020 			if (acquire_g_lock)
13021 				rw_exit(&ipst->ips_ill_g_lock);
13022 			return (-1);
13023 		}
13024 		ipif->ipif_id = id; /* assign new id */
13025 	} else if (id < ipst->ips_ip_addrs_per_if) {
13026 		/* we have a real id; insert ipif in the right place */
13027 		while ((tipif = *tipifp) != NULL) {
13028 			ASSERT(tipif->ipif_id != id);
13029 			if (tipif->ipif_id > id)
13030 				break; /* found correct location */
13031 			tipifp = &(tipif->ipif_next);
13032 		}
13033 	} else {
13034 		mutex_exit(&ill->ill_lock);
13035 		if (acquire_g_lock)
13036 			rw_exit(&ipst->ips_ill_g_lock);
13037 		return (-1);
13038 	}
13039 
13040 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13041 
13042 	ipif->ipif_next = tipif;
13043 	*tipifp = ipif;
13044 	mutex_exit(&ill->ill_lock);
13045 	if (acquire_g_lock)
13046 		rw_exit(&ipst->ips_ill_g_lock);
13047 
13048 	return (0);
13049 }
13050 
13051 static void
13052 ipif_remove(ipif_t *ipif)
13053 {
13054 	ipif_t	**ipifp;
13055 	ill_t	*ill = ipif->ipif_ill;
13056 
13057 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13058 
13059 	mutex_enter(&ill->ill_lock);
13060 	ipifp = &ill->ill_ipif;
13061 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13062 		if (*ipifp == ipif) {
13063 			*ipifp = ipif->ipif_next;
13064 			break;
13065 		}
13066 	}
13067 	mutex_exit(&ill->ill_lock);
13068 }
13069 
13070 /*
13071  * Allocate and initialize a new interface control structure.  (Always
13072  * called as writer.)
13073  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13074  * is not part of the global linked list of ills. ipif_seqid is unique
13075  * in the system and to preserve the uniqueness, it is assigned only
13076  * when ill becomes part of the global list. At that point ill will
13077  * have a name. If it doesn't get assigned here, it will get assigned
13078  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13079  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13080  * the interface flags or any other information from the DL_INFO_ACK for
13081  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13082  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13083  * second DL_INFO_ACK comes in from the driver.
13084  */
13085 static ipif_t *
13086 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
13087     boolean_t insert)
13088 {
13089 	ipif_t	*ipif;
13090 	ip_stack_t *ipst = ill->ill_ipst;
13091 
13092 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13093 	    ill->ill_name, id, (void *)ill));
13094 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13095 
13096 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13097 		return (NULL);
13098 	*ipif = ipif_zero;	/* start clean */
13099 
13100 	ipif->ipif_ill = ill;
13101 	ipif->ipif_id = id;	/* could be -1 */
13102 	/*
13103 	 * Inherit the zoneid from the ill; for the shared stack instance
13104 	 * this is always the global zone
13105 	 */
13106 	ipif->ipif_zoneid = ill->ill_zoneid;
13107 
13108 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13109 
13110 	ipif->ipif_refcnt = 0;
13111 	ipif->ipif_saved_ire_cnt = 0;
13112 
13113 	if (insert) {
13114 		if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) {
13115 			mi_free(ipif);
13116 			return (NULL);
13117 		}
13118 		/* -1 id should have been replaced by real id */
13119 		id = ipif->ipif_id;
13120 		ASSERT(id >= 0);
13121 	}
13122 
13123 	if (ill->ill_name[0] != '\0')
13124 		ipif_assign_seqid(ipif);
13125 
13126 	/*
13127 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
13128 	 * (which must not exist yet because the zeroth ipif is created once
13129 	 * per ill).  However, do not not link it to the ipmp_grp_t until
13130 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
13131 	 */
13132 	if (id == 0 && IS_IPMP(ill)) {
13133 		if (ipmp_illgrp_create(ill) == NULL) {
13134 			if (insert) {
13135 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13136 				ipif_remove(ipif);
13137 				rw_exit(&ipst->ips_ill_g_lock);
13138 			}
13139 			mi_free(ipif);
13140 			return (NULL);
13141 		}
13142 	}
13143 
13144 	/*
13145 	 * We grab ill_lock to protect the flag changes.  The ipif is still
13146 	 * not up and can't be looked up until the ioctl completes and the
13147 	 * IPIF_CHANGING flag is cleared.
13148 	 */
13149 	mutex_enter(&ill->ill_lock);
13150 
13151 	ipif->ipif_ire_type = ire_type;
13152 
13153 	if (ipif->ipif_isv6) {
13154 		ill->ill_flags |= ILLF_IPV6;
13155 	} else {
13156 		ipaddr_t inaddr_any = INADDR_ANY;
13157 
13158 		ill->ill_flags |= ILLF_IPV4;
13159 
13160 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13161 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13162 		    &ipif->ipif_v6lcl_addr);
13163 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13164 		    &ipif->ipif_v6src_addr);
13165 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13166 		    &ipif->ipif_v6subnet);
13167 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13168 		    &ipif->ipif_v6net_mask);
13169 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13170 		    &ipif->ipif_v6brd_addr);
13171 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13172 		    &ipif->ipif_v6pp_dst_addr);
13173 	}
13174 
13175 	/*
13176 	 * Don't set the interface flags etc. now, will do it in
13177 	 * ip_ll_subnet_defaults.
13178 	 */
13179 	if (!initialize)
13180 		goto out;
13181 
13182 	ipif->ipif_mtu = ill->ill_max_mtu;
13183 
13184 	/*
13185 	 * NOTE: The IPMP meta-interface is special-cased because it starts
13186 	 * with no underlying interfaces (and thus an unknown broadcast
13187 	 * address length), but all interfaces that can be placed into an IPMP
13188 	 * group are required to be broadcast-capable.
13189 	 */
13190 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
13191 		/*
13192 		 * Later detect lack of DLPI driver multicast capability by
13193 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
13194 		 */
13195 		ill->ill_flags |= ILLF_MULTICAST;
13196 		if (!ipif->ipif_isv6)
13197 			ipif->ipif_flags |= IPIF_BROADCAST;
13198 	} else {
13199 		if (ill->ill_net_type != IRE_LOOPBACK) {
13200 			if (ipif->ipif_isv6)
13201 				/*
13202 				 * Note: xresolv interfaces will eventually need
13203 				 * NOARP set here as well, but that will require
13204 				 * those external resolvers to have some
13205 				 * knowledge of that flag and act appropriately.
13206 				 * Not to be changed at present.
13207 				 */
13208 				ill->ill_flags |= ILLF_NONUD;
13209 			else
13210 				ill->ill_flags |= ILLF_NOARP;
13211 		}
13212 		if (ill->ill_phys_addr_length == 0) {
13213 			if (IS_VNI(ill)) {
13214 				ipif->ipif_flags |= IPIF_NOXMIT;
13215 			} else {
13216 				/* pt-pt supports multicast. */
13217 				ill->ill_flags |= ILLF_MULTICAST;
13218 				if (ill->ill_net_type != IRE_LOOPBACK)
13219 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13220 			}
13221 		}
13222 	}
13223 out:
13224 	mutex_exit(&ill->ill_lock);
13225 	return (ipif);
13226 }
13227 
13228 /*
13229  * If appropriate, send a message up to the resolver delete the entry
13230  * for the address of this interface which is going out of business.
13231  * (Always called as writer).
13232  *
13233  * NOTE : We need to check for NULL mps as some of the fields are
13234  *	  initialized only for some interface types. See ipif_resolver_up()
13235  *	  for details.
13236  */
13237 void
13238 ipif_resolver_down(ipif_t *ipif)
13239 {
13240 	mblk_t	*mp;
13241 	ill_t	*ill = ipif->ipif_ill;
13242 
13243 	ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13244 	ASSERT(IAM_WRITER_IPIF(ipif));
13245 
13246 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13247 		return;
13248 
13249 	/* Delete the mapping for the local address */
13250 	mp = ipif->ipif_arp_del_mp;
13251 	if (mp != NULL) {
13252 		ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13253 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13254 		putnext(ill->ill_rq, mp);
13255 		ipif->ipif_arp_del_mp = NULL;
13256 	}
13257 
13258 	/*
13259 	 * Make IPMP aware of the deleted data address.
13260 	 */
13261 	if (IS_IPMP(ill))
13262 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
13263 
13264 	/*
13265 	 * If this is the last ipif that is going down and there are no
13266 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13267 	 * clean up ARP completely.
13268 	 */
13269 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13270 		/*
13271 		 * If this was the last ipif on an IPMP interface, purge any
13272 		 * IPMP ARP entries associated with it.
13273 		 */
13274 		if (IS_IPMP(ill))
13275 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
13276 
13277 		/* Send up AR_INTERFACE_DOWN message */
13278 		mp = ill->ill_arp_down_mp;
13279 		if (mp != NULL) {
13280 			ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13281 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13282 			    ipif->ipif_id));
13283 			putnext(ill->ill_rq, mp);
13284 			ill->ill_arp_down_mp = NULL;
13285 		}
13286 
13287 		/* Tell ARP to delete the multicast mappings */
13288 		mp = ill->ill_arp_del_mapping_mp;
13289 		if (mp != NULL) {
13290 			ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13291 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13292 			    ipif->ipif_id));
13293 			putnext(ill->ill_rq, mp);
13294 			ill->ill_arp_del_mapping_mp = NULL;
13295 		}
13296 	}
13297 }
13298 
13299 /*
13300  * Set up the multicast mappings for `ipif' in ARP.  If `arp_add_mapping_mp'
13301  * is non-NULL, then upon success it will contain an mblk that can be passed
13302  * to ARP to create the mapping.  Otherwise, if it's NULL, upon success ARP
13303  * will have already been notified to create the mapping.  Returns zero on
13304  * success, -1 upon failure.
13305  */
13306 int
13307 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13308 {
13309 	mblk_t	*del_mp = NULL;
13310 	mblk_t *add_mp = NULL;
13311 	mblk_t *mp;
13312 	ill_t	*ill = ipif->ipif_ill;
13313 	phyint_t *phyi = ill->ill_phyint;
13314 	ipaddr_t addr, mask, extract_mask = 0;
13315 	arma_t	*arma;
13316 	uint8_t *maddr, *bphys_addr;
13317 	uint32_t hw_start;
13318 	dl_unitdata_req_t *dlur;
13319 
13320 	ASSERT(IAM_WRITER_IPIF(ipif));
13321 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13322 		return (0);
13323 
13324 	/*
13325 	 * IPMP meta-interfaces don't have any inherent multicast mappings,
13326 	 * and instead use the ones on the underlying interfaces.
13327 	 */
13328 	if (IS_IPMP(ill))
13329 		return (0);
13330 
13331 	/*
13332 	 * Delete the existing mapping from ARP.  Normally, ipif_down() ->
13333 	 * ipif_resolver_down() will send this up to ARP, but it may be that
13334 	 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer().
13335 	 */
13336 	mp = ill->ill_arp_del_mapping_mp;
13337 	if (mp != NULL) {
13338 		ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n",
13339 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13340 		putnext(ill->ill_rq, mp);
13341 		ill->ill_arp_del_mapping_mp = NULL;
13342 	}
13343 
13344 	if (arp_add_mapping_mp != NULL)
13345 		*arp_add_mapping_mp = NULL;
13346 
13347 	/*
13348 	 * Check that the address is not to long for the constant
13349 	 * length reserved in the template arma_t.
13350 	 */
13351 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13352 		return (-1);
13353 
13354 	/* Add mapping mblk */
13355 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13356 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13357 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13358 	    (caddr_t)&addr);
13359 	if (add_mp == NULL)
13360 		return (-1);
13361 	arma = (arma_t *)add_mp->b_rptr;
13362 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13363 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13364 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13365 
13366 	/*
13367 	 * Determine the broadcast address.
13368 	 */
13369 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13370 	if (ill->ill_sap_length < 0)
13371 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13372 	else
13373 		bphys_addr = (uchar_t *)dlur +
13374 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13375 	/*
13376 	 * Check PHYI_MULTI_BCAST and length of physical
13377 	 * address to determine if we use the mapping or the
13378 	 * broadcast address.
13379 	 */
13380 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13381 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13382 		    bphys_addr, maddr, &hw_start, &extract_mask))
13383 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13384 
13385 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13386 	    (ill->ill_flags & ILLF_MULTICAST)) {
13387 		/* Make sure this will not match the "exact" entry. */
13388 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13389 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13390 		    (caddr_t)&addr);
13391 		if (del_mp == NULL) {
13392 			freemsg(add_mp);
13393 			return (-1);
13394 		}
13395 		bcopy(&extract_mask, (char *)arma +
13396 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13397 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13398 			/* Use link-layer broadcast address for MULTI_BCAST */
13399 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13400 			ip2dbg(("ipif_arp_setup_multicast: adding"
13401 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13402 		} else {
13403 			arma->arma_hw_mapping_start = hw_start;
13404 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13405 			    " ARP setup for %s\n", ill->ill_name));
13406 		}
13407 	} else {
13408 		freemsg(add_mp);
13409 		ASSERT(del_mp == NULL);
13410 		/* It is neither MULTICAST nor MULTI_BCAST */
13411 		return (0);
13412 	}
13413 	ASSERT(add_mp != NULL && del_mp != NULL);
13414 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13415 	ill->ill_arp_del_mapping_mp = del_mp;
13416 	if (arp_add_mapping_mp != NULL) {
13417 		/* The caller just wants the mblks allocated */
13418 		*arp_add_mapping_mp = add_mp;
13419 	} else {
13420 		/* The caller wants us to send it to arp */
13421 		putnext(ill->ill_rq, add_mp);
13422 	}
13423 	return (0);
13424 }
13425 
13426 /*
13427  * Get the resolver set up for a new IP address.  (Always called as writer.)
13428  * Called both for IPv4 and IPv6 interfaces, though it only sets up the
13429  * resolver for v6 if it's an ILLF_XRESOLV interface.  Honors ILLF_NOARP.
13430  *
13431  * The enumerated value res_act tunes the behavior:
13432  * 	* Res_act_initial: set up all the resolver structures for a new
13433  *	  IP address.
13434  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
13435  *	  ARP message in defense of the address.
13436  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
13437  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
13438  *
13439  * Returns zero on success, or an errno upon failure.
13440  */
13441 int
13442 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13443 {
13444 	mblk_t	*arp_up_mp = NULL;
13445 	mblk_t	*arp_down_mp = NULL;
13446 	mblk_t	*arp_add_mp = NULL;
13447 	mblk_t	*arp_del_mp = NULL;
13448 	mblk_t	*arp_add_mapping_mp = NULL;
13449 	mblk_t	*arp_del_mapping_mp = NULL;
13450 	ill_t	*ill = ipif->ipif_ill;
13451 	int	err = ENOMEM;
13452 	boolean_t added_ipif = B_FALSE;
13453 	boolean_t publish;
13454 	boolean_t was_dup;
13455 
13456 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13457 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13458 	ASSERT(IAM_WRITER_IPIF(ipif));
13459 
13460 	was_dup = B_FALSE;
13461 	if (res_act == Res_act_initial) {
13462 		ipif->ipif_addr_ready = 0;
13463 		/*
13464 		 * We're bringing an interface up here.  There's no way that we
13465 		 * should need to shut down ARP now.
13466 		 */
13467 		mutex_enter(&ill->ill_lock);
13468 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13469 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13470 			ill->ill_ipif_dup_count--;
13471 			was_dup = B_TRUE;
13472 		}
13473 		mutex_exit(&ill->ill_lock);
13474 	}
13475 	if (ipif->ipif_recovery_id != 0)
13476 		(void) untimeout(ipif->ipif_recovery_id);
13477 	ipif->ipif_recovery_id = 0;
13478 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13479 		ipif->ipif_addr_ready = 1;
13480 		return (0);
13481 	}
13482 	/* NDP will set the ipif_addr_ready flag when it's ready */
13483 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13484 		return (0);
13485 
13486 	if (ill->ill_isv6) {
13487 		/*
13488 		 * External resolver for IPv6
13489 		 */
13490 		ASSERT(res_act == Res_act_initial);
13491 		publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr);
13492 	} else {
13493 		/*
13494 		 * IPv4 arp case. If the ARP stream has already started
13495 		 * closing, fail this request for ARP bringup. Else
13496 		 * record the fact that an ARP bringup is pending.
13497 		 */
13498 		mutex_enter(&ill->ill_lock);
13499 		if (ill->ill_arp_closing) {
13500 			mutex_exit(&ill->ill_lock);
13501 			err = EINVAL;
13502 			goto failed;
13503 		} else {
13504 			if (ill->ill_ipif_up_count == 0 &&
13505 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13506 				ill->ill_arp_bringup_pending = 1;
13507 			mutex_exit(&ill->ill_lock);
13508 		}
13509 		publish = (ipif->ipif_lcl_addr != INADDR_ANY);
13510 	}
13511 
13512 	if (IS_IPMP(ill) && publish) {
13513 		/*
13514 		 * If we're here via ipif_up(), then the ipif won't be bound
13515 		 * yet -- add it to the group, which will bind it if possible.
13516 		 * (We would add it in ipif_up(), but deleting on failure
13517 		 * there is gruesome.)  If we're here via ipmp_ill_bind_ipif(),
13518 		 * then the ipif has already been added to the group and we
13519 		 * just need to use the binding.
13520 		 */
13521 		if (ipmp_ipif_bound_ill(ipif) == NULL) {
13522 			if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) {
13523 				/*
13524 				 * We couldn't bind the ipif to an ill yet,
13525 				 * so we have nothing to publish.
13526 				 */
13527 				publish = B_FALSE;
13528 			}
13529 			added_ipif = B_TRUE;
13530 		}
13531 	}
13532 
13533 	/*
13534 	 * Add an entry for the local address in ARP only if it
13535 	 * is not UNNUMBERED and it is suitable for publishing.
13536 	 */
13537 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) {
13538 		if (res_act == Res_act_defend) {
13539 			arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND);
13540 			if (arp_add_mp == NULL)
13541 				goto failed;
13542 			/*
13543 			 * If we're just defending our address now, then
13544 			 * there's no need to set up ARP multicast mappings.
13545 			 * The publish command is enough.
13546 			 */
13547 			goto done;
13548 		}
13549 
13550 		/*
13551 		 * Allocate an ARP add message and an ARP delete message (the
13552 		 * latter is saved for use when the address goes down).
13553 		 */
13554 		if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL)
13555 			goto failed;
13556 
13557 		if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL)
13558 			goto failed;
13559 
13560 		if (res_act != Res_act_initial)
13561 			goto arp_setup_multicast;
13562 	} else {
13563 		if (res_act != Res_act_initial)
13564 			goto done;
13565 	}
13566 	/*
13567 	 * Need to bring up ARP or setup multicast mapping only
13568 	 * when the first interface is coming UP.
13569 	 */
13570 	if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup)
13571 		goto done;
13572 
13573 	/*
13574 	 * Allocate an ARP down message (to be saved) and an ARP up message.
13575 	 */
13576 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13577 	if (arp_down_mp == NULL)
13578 		goto failed;
13579 
13580 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13581 	if (arp_up_mp == NULL)
13582 		goto failed;
13583 
13584 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13585 		goto done;
13586 
13587 arp_setup_multicast:
13588 	/*
13589 	 * Setup the multicast mappings. This function initializes
13590 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13591 	 * IPv6, or for the IPMP interface (since it has no link-layer).
13592 	 */
13593 	if (!ill->ill_isv6 && !IS_IPMP(ill)) {
13594 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13595 		if (err != 0)
13596 			goto failed;
13597 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13598 		ASSERT(arp_add_mapping_mp != NULL);
13599 	}
13600 done:
13601 	if (arp_up_mp != NULL) {
13602 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13603 		    ill->ill_name, ipif->ipif_id));
13604 		putnext(ill->ill_rq, arp_up_mp);
13605 		arp_up_mp = NULL;
13606 	}
13607 	if (arp_add_mp != NULL) {
13608 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13609 		    ill->ill_name, ipif->ipif_id));
13610 		/*
13611 		 * If it's an extended ARP implementation, then we'll wait to
13612 		 * hear that DAD has finished before using the interface.
13613 		 */
13614 		if (!ill->ill_arp_extend)
13615 			ipif->ipif_addr_ready = 1;
13616 		putnext(ill->ill_rq, arp_add_mp);
13617 		arp_add_mp = NULL;
13618 	} else {
13619 		ipif->ipif_addr_ready = 1;
13620 	}
13621 	if (arp_add_mapping_mp != NULL) {
13622 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13623 		    ill->ill_name, ipif->ipif_id));
13624 		putnext(ill->ill_rq, arp_add_mapping_mp);
13625 		arp_add_mapping_mp = NULL;
13626 	}
13627 
13628 	if (res_act == Res_act_initial) {
13629 		if (ill->ill_flags & ILLF_NOARP)
13630 			err = ill_arp_off(ill);
13631 		else
13632 			err = ill_arp_on(ill);
13633 		if (err != 0) {
13634 			ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n",
13635 			    err));
13636 			goto failed;
13637 		}
13638 	}
13639 
13640 	if (arp_del_mp != NULL) {
13641 		ASSERT(ipif->ipif_arp_del_mp == NULL);
13642 		ipif->ipif_arp_del_mp = arp_del_mp;
13643 	}
13644 	if (arp_down_mp != NULL) {
13645 		ASSERT(ill->ill_arp_down_mp == NULL);
13646 		ill->ill_arp_down_mp = arp_down_mp;
13647 	}
13648 	if (arp_del_mapping_mp != NULL) {
13649 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13650 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13651 	}
13652 
13653 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13654 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13655 failed:
13656 	ip1dbg(("ipif_resolver_up: FAILED\n"));
13657 	if (added_ipif)
13658 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
13659 	freemsg(arp_add_mp);
13660 	freemsg(arp_del_mp);
13661 	freemsg(arp_add_mapping_mp);
13662 	freemsg(arp_up_mp);
13663 	freemsg(arp_down_mp);
13664 	ill->ill_arp_bringup_pending = 0;
13665 	return (err);
13666 }
13667 
13668 /*
13669  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13670  * just gone back up.
13671  */
13672 static void
13673 ipif_arp_start_dad(ipif_t *ipif)
13674 {
13675 	ill_t *ill = ipif->ipif_ill;
13676 	mblk_t *arp_add_mp;
13677 
13678 	/* ACE_F_UNVERIFIED restarts DAD */
13679 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13680 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13681 	    ipif->ipif_lcl_addr == INADDR_ANY ||
13682 	    (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) {
13683 		/*
13684 		 * If we can't contact ARP for some reason, that's not really a
13685 		 * problem.  Just send out the routing socket notification that
13686 		 * DAD completion would have done, and continue.
13687 		 */
13688 		ipif_mask_reply(ipif);
13689 		ipif_up_notify(ipif);
13690 		ipif->ipif_addr_ready = 1;
13691 		return;
13692 	}
13693 
13694 	putnext(ill->ill_rq, arp_add_mp);
13695 }
13696 
13697 static void
13698 ipif_ndp_start_dad(ipif_t *ipif)
13699 {
13700 	nce_t *nce;
13701 
13702 	nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr,
13703 	    B_FALSE);
13704 	if (nce == NULL)
13705 		return;
13706 
13707 	if (!ndp_restart_dad(nce)) {
13708 		/*
13709 		 * If we can't restart DAD for some reason, that's not really a
13710 		 * problem.  Just send out the routing socket notification that
13711 		 * DAD completion would have done, and continue.
13712 		 */
13713 		ipif_up_notify(ipif);
13714 		ipif->ipif_addr_ready = 1;
13715 	}
13716 	NCE_REFRELE(nce);
13717 }
13718 
13719 /*
13720  * Restart duplicate address detection on all interfaces on the given ill.
13721  *
13722  * This is called when an interface transitions from down to up
13723  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13724  *
13725  * Note that since the underlying physical link has transitioned, we must cause
13726  * at least one routing socket message to be sent here, either via DAD
13727  * completion or just by default on the first ipif.  (If we don't do this, then
13728  * in.mpathd will see long delays when doing link-based failure recovery.)
13729  */
13730 void
13731 ill_restart_dad(ill_t *ill, boolean_t went_up)
13732 {
13733 	ipif_t *ipif;
13734 
13735 	if (ill == NULL)
13736 		return;
13737 
13738 	/*
13739 	 * If layer two doesn't support duplicate address detection, then just
13740 	 * send the routing socket message now and be done with it.
13741 	 */
13742 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
13743 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
13744 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
13745 		return;
13746 	}
13747 
13748 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13749 		if (went_up) {
13750 			if (ipif->ipif_flags & IPIF_UP) {
13751 				if (ill->ill_isv6)
13752 					ipif_ndp_start_dad(ipif);
13753 				else
13754 					ipif_arp_start_dad(ipif);
13755 			} else if (ill->ill_isv6 &&
13756 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
13757 				/*
13758 				 * For IPv4, the ARP module itself will
13759 				 * automatically start the DAD process when it
13760 				 * sees DL_NOTE_LINK_UP.  We respond to the
13761 				 * AR_CN_READY at the completion of that task.
13762 				 * For IPv6, we must kick off the bring-up
13763 				 * process now.
13764 				 */
13765 				ndp_do_recovery(ipif);
13766 			} else {
13767 				/*
13768 				 * Unfortunately, the first ipif is "special"
13769 				 * and represents the underlying ill in the
13770 				 * routing socket messages.  Thus, when this
13771 				 * one ipif is down, we must still notify so
13772 				 * that the user knows the IFF_RUNNING status
13773 				 * change.  (If the first ipif is up, then
13774 				 * we'll handle eventual routing socket
13775 				 * notification via DAD completion.)
13776 				 */
13777 				if (ipif == ill->ill_ipif) {
13778 					ip_rts_ifmsg(ill->ill_ipif,
13779 					    RTSQ_DEFAULT);
13780 				}
13781 			}
13782 		} else {
13783 			/*
13784 			 * After link down, we'll need to send a new routing
13785 			 * message when the link comes back, so clear
13786 			 * ipif_addr_ready.
13787 			 */
13788 			ipif->ipif_addr_ready = 0;
13789 		}
13790 	}
13791 
13792 	/*
13793 	 * If we've torn down links, then notify the user right away.
13794 	 */
13795 	if (!went_up)
13796 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
13797 }
13798 
13799 static void
13800 ipsq_delete(ipsq_t *ipsq)
13801 {
13802 	ipxop_t *ipx = ipsq->ipsq_xop;
13803 
13804 	ipsq->ipsq_ipst = NULL;
13805 	ASSERT(ipsq->ipsq_phyint == NULL);
13806 	ASSERT(ipsq->ipsq_xop != NULL);
13807 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
13808 	ASSERT(ipx->ipx_pending_mp == NULL);
13809 	kmem_free(ipsq, sizeof (ipsq_t));
13810 }
13811 
13812 static int
13813 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
13814 {
13815 	int err;
13816 	ipif_t *ipif;
13817 
13818 	if (ill == NULL)
13819 		return (0);
13820 
13821 	ASSERT(IAM_WRITER_ILL(ill));
13822 	ill->ill_up_ipifs = B_TRUE;
13823 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13824 		if (ipif->ipif_was_up) {
13825 			if (!(ipif->ipif_flags & IPIF_UP))
13826 				err = ipif_up(ipif, q, mp);
13827 			ipif->ipif_was_up = B_FALSE;
13828 			if (err != 0) {
13829 				ASSERT(err == EINPROGRESS);
13830 				return (err);
13831 			}
13832 		}
13833 	}
13834 	mutex_enter(&ill->ill_lock);
13835 	ill->ill_state_flags &= ~ILL_CHANGING;
13836 	mutex_exit(&ill->ill_lock);
13837 	ill->ill_up_ipifs = B_FALSE;
13838 	return (0);
13839 }
13840 
13841 /*
13842  * This function is called to bring up all the ipifs that were up before
13843  * bringing the ill down via ill_down_ipifs().
13844  */
13845 int
13846 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
13847 {
13848 	int err;
13849 
13850 	ASSERT(IAM_WRITER_ILL(ill));
13851 
13852 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
13853 	if (err != 0)
13854 		return (err);
13855 
13856 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
13857 }
13858 
13859 /*
13860  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
13861  * down the ipifs without sending DL_UNBIND_REQ to the driver.
13862  */
13863 static void
13864 ill_down_ipifs(ill_t *ill, boolean_t logical)
13865 {
13866 	ipif_t *ipif;
13867 
13868 	ASSERT(IAM_WRITER_ILL(ill));
13869 
13870 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13871 		/*
13872 		 * We go through the ipif_down logic even if the ipif
13873 		 * is already down, since routes can be added based
13874 		 * on down ipifs. Going through ipif_down once again
13875 		 * will delete any IREs created based on these routes.
13876 		 */
13877 		if (ipif->ipif_flags & IPIF_UP)
13878 			ipif->ipif_was_up = B_TRUE;
13879 
13880 		/*
13881 		 * Need to re-create net/subnet bcast ires if
13882 		 * they are dependent on ipif.
13883 		 */
13884 		if (!ipif->ipif_isv6)
13885 			ipif_check_bcast_ires(ipif);
13886 		if (logical) {
13887 			(void) ipif_logical_down(ipif, NULL, NULL);
13888 			ipif_non_duplicate(ipif);
13889 			ipif_down_tail(ipif);
13890 		} else {
13891 			(void) ipif_down(ipif, NULL, NULL);
13892 		}
13893 	}
13894 }
13895 
13896 /*
13897  * Redo source address selection.  This is called when a
13898  * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up.
13899  */
13900 void
13901 ill_update_source_selection(ill_t *ill)
13902 {
13903 	ipif_t *ipif;
13904 
13905 	ASSERT(IAM_WRITER_ILL(ill));
13906 
13907 	/*
13908 	 * Underlying interfaces are only used for test traffic and thus
13909 	 * should always send with their (deprecated) source addresses.
13910 	 */
13911 	if (IS_UNDER_IPMP(ill))
13912 		return;
13913 
13914 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13915 		if (ill->ill_isv6)
13916 			ipif_recreate_interface_routes_v6(NULL, ipif);
13917 		else
13918 			ipif_recreate_interface_routes(NULL, ipif);
13919 	}
13920 }
13921 
13922 /*
13923  * Finish the group join started in ip_sioctl_groupname().
13924  */
13925 /* ARGSUSED */
13926 static void
13927 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
13928 {
13929 	ill_t		*ill = q->q_ptr;
13930 	phyint_t	*phyi = ill->ill_phyint;
13931 	ipmp_grp_t	*grp = phyi->phyint_grp;
13932 	ip_stack_t	*ipst = ill->ill_ipst;
13933 
13934 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
13935 	ASSERT(!IS_IPMP(ill) && grp != NULL);
13936 	ASSERT(IAM_WRITER_IPSQ(ipsq));
13937 
13938 	if (phyi->phyint_illv4 != NULL) {
13939 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13940 		VERIFY(grp->gr_pendv4-- > 0);
13941 		rw_exit(&ipst->ips_ipmp_lock);
13942 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
13943 	}
13944 	if (phyi->phyint_illv6 != NULL) {
13945 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13946 		VERIFY(grp->gr_pendv6-- > 0);
13947 		rw_exit(&ipst->ips_ipmp_lock);
13948 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
13949 	}
13950 	freemsg(mp);
13951 }
13952 
13953 /*
13954  * Process an SIOCSLIFGROUPNAME request.
13955  */
13956 /* ARGSUSED */
13957 int
13958 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13959     ip_ioctl_cmd_t *ipip, void *ifreq)
13960 {
13961 	struct lifreq	*lifr = ifreq;
13962 	ill_t		*ill = ipif->ipif_ill;
13963 	ip_stack_t	*ipst = ill->ill_ipst;
13964 	phyint_t	*phyi = ill->ill_phyint;
13965 	ipmp_grp_t	*grp = phyi->phyint_grp;
13966 	mblk_t		*ipsq_mp;
13967 	int		err = 0;
13968 
13969 	/*
13970 	 * Note that phyint_grp can only change here, where we're exclusive.
13971 	 */
13972 	ASSERT(IAM_WRITER_ILL(ill));
13973 
13974 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
13975 	    (phyi->phyint_flags & PHYI_VIRTUAL))
13976 		return (EINVAL);
13977 
13978 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
13979 
13980 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13981 
13982 	/*
13983 	 * If the name hasn't changed, there's nothing to do.
13984 	 */
13985 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
13986 		goto unlock;
13987 
13988 	/*
13989 	 * Handle requests to rename an IPMP meta-interface.
13990 	 *
13991 	 * Note that creation of the IPMP meta-interface is handled in
13992 	 * userland through the standard plumbing sequence.  As part of the
13993 	 * plumbing the IPMP meta-interface, its initial groupname is set to
13994 	 * the name of the interface (see ipif_set_values_tail()).
13995 	 */
13996 	if (IS_IPMP(ill)) {
13997 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
13998 		goto unlock;
13999 	}
14000 
14001 	/*
14002 	 * Handle requests to add or remove an IP interface from a group.
14003 	 */
14004 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
14005 		/*
14006 		 * Moves are handled by first removing the interface from
14007 		 * its existing group, and then adding it to another group.
14008 		 * So, fail if it's already in a group.
14009 		 */
14010 		if (IS_UNDER_IPMP(ill)) {
14011 			err = EALREADY;
14012 			goto unlock;
14013 		}
14014 
14015 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
14016 		if (grp == NULL) {
14017 			err = ENOENT;
14018 			goto unlock;
14019 		}
14020 
14021 		/*
14022 		 * Check if the phyint and its ills are suitable for
14023 		 * inclusion into the group.
14024 		 */
14025 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
14026 			goto unlock;
14027 
14028 		/*
14029 		 * Checks pass; join the group, and enqueue the remaining
14030 		 * illgrp joins for when we've become part of the group xop
14031 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
14032 		 * requires an mblk_t to scribble on, and since `mp' will be
14033 		 * freed as part of completing the ioctl, allocate another.
14034 		 */
14035 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
14036 			err = ENOMEM;
14037 			goto unlock;
14038 		}
14039 
14040 		/*
14041 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
14042 		 * IPMP meta-interface ills needed by `phyi' cannot go away
14043 		 * before ip_join_illgrps() is called back.  See the comments
14044 		 * in ip_sioctl_plink_ipmp() for more.
14045 		 */
14046 		if (phyi->phyint_illv4 != NULL)
14047 			grp->gr_pendv4++;
14048 		if (phyi->phyint_illv6 != NULL)
14049 			grp->gr_pendv6++;
14050 
14051 		rw_exit(&ipst->ips_ipmp_lock);
14052 
14053 		ipmp_phyint_join_grp(phyi, grp);
14054 		ill_refhold(ill);
14055 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
14056 		    SWITCH_OP, B_FALSE);
14057 		return (0);
14058 	} else {
14059 		/*
14060 		 * Request to remove the interface from a group.  If the
14061 		 * interface is not in a group, this trivially succeeds.
14062 		 */
14063 		rw_exit(&ipst->ips_ipmp_lock);
14064 		if (IS_UNDER_IPMP(ill))
14065 			ipmp_phyint_leave_grp(phyi);
14066 		return (0);
14067 	}
14068 unlock:
14069 	rw_exit(&ipst->ips_ipmp_lock);
14070 	return (err);
14071 }
14072 
14073 /*
14074  * Process an SIOCGLIFBINDING request.
14075  */
14076 /* ARGSUSED */
14077 int
14078 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14079     ip_ioctl_cmd_t *ipip, void *ifreq)
14080 {
14081 	ill_t		*ill;
14082 	struct lifreq	*lifr = ifreq;
14083 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14084 
14085 	if (!IS_IPMP(ipif->ipif_ill))
14086 		return (EINVAL);
14087 
14088 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14089 	if ((ill = ipif->ipif_bound_ill) == NULL)
14090 		lifr->lifr_binding[0] = '\0';
14091 	else
14092 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
14093 	rw_exit(&ipst->ips_ipmp_lock);
14094 	return (0);
14095 }
14096 
14097 /*
14098  * Process an SIOCGLIFGROUPNAME request.
14099  */
14100 /* ARGSUSED */
14101 int
14102 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14103     ip_ioctl_cmd_t *ipip, void *ifreq)
14104 {
14105 	ipmp_grp_t	*grp;
14106 	struct lifreq	*lifr = ifreq;
14107 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14108 
14109 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14110 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
14111 		lifr->lifr_groupname[0] = '\0';
14112 	else
14113 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
14114 	rw_exit(&ipst->ips_ipmp_lock);
14115 	return (0);
14116 }
14117 
14118 /*
14119  * Process an SIOCGLIFGROUPINFO request.
14120  */
14121 /* ARGSUSED */
14122 int
14123 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14124     ip_ioctl_cmd_t *ipip, void *dummy)
14125 {
14126 	ipmp_grp_t	*grp;
14127 	lifgroupinfo_t	*lifgr;
14128 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
14129 
14130 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
14131 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
14132 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
14133 
14134 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14135 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
14136 		rw_exit(&ipst->ips_ipmp_lock);
14137 		return (ENOENT);
14138 	}
14139 	ipmp_grp_info(grp, lifgr);
14140 	rw_exit(&ipst->ips_ipmp_lock);
14141 	return (0);
14142 }
14143 
14144 static void
14145 ill_dl_down(ill_t *ill)
14146 {
14147 	/*
14148 	 * The ill is down; unbind but stay attached since we're still
14149 	 * associated with a PPA. If we have negotiated DLPI capabilites
14150 	 * with the data link service provider (IDS_OK) then reset them.
14151 	 * The interval between unbinding and rebinding is potentially
14152 	 * unbounded hence we cannot assume things will be the same.
14153 	 * The DLPI capabilities will be probed again when the data link
14154 	 * is brought up.
14155 	 */
14156 	mblk_t	*mp = ill->ill_unbind_mp;
14157 
14158 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
14159 
14160 	ill->ill_unbind_mp = NULL;
14161 	if (mp != NULL) {
14162 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
14163 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
14164 		    ill->ill_name));
14165 		mutex_enter(&ill->ill_lock);
14166 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
14167 		mutex_exit(&ill->ill_lock);
14168 		/*
14169 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
14170 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
14171 		 * ill_capability_dld_disable disable rightaway. If this is not
14172 		 * an unplumb operation then the disable happens on receipt of
14173 		 * the capab ack via ip_rput_dlpi_writer ->
14174 		 * ill_capability_ack_thr. In both cases the order of
14175 		 * the operations seen by DLD is capability disable followed
14176 		 * by DL_UNBIND. Also the DLD capability disable needs a
14177 		 * cv_wait'able context.
14178 		 */
14179 		if (ill->ill_state_flags & ILL_CONDEMNED)
14180 			ill_capability_dld_disable(ill);
14181 		ill_capability_reset(ill, B_FALSE);
14182 		ill_dlpi_send(ill, mp);
14183 	}
14184 
14185 	/*
14186 	 * Toss all of our multicast memberships.  We could keep them, but
14187 	 * then we'd have to do bookkeeping of any joins and leaves performed
14188 	 * by the application while the the interface is down (we can't just
14189 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
14190 	 * on a downed interface).
14191 	 */
14192 	ill_leave_multicast(ill);
14193 
14194 	mutex_enter(&ill->ill_lock);
14195 	ill->ill_dl_up = 0;
14196 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
14197 	mutex_exit(&ill->ill_lock);
14198 }
14199 
14200 static void
14201 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
14202 {
14203 	union DL_primitives *dlp;
14204 	t_uscalar_t prim;
14205 	boolean_t waitack = B_FALSE;
14206 
14207 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
14208 
14209 	dlp = (union DL_primitives *)mp->b_rptr;
14210 	prim = dlp->dl_primitive;
14211 
14212 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
14213 	    dl_primstr(prim), prim, ill->ill_name));
14214 
14215 	switch (prim) {
14216 	case DL_PHYS_ADDR_REQ:
14217 	{
14218 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
14219 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
14220 		break;
14221 	}
14222 	case DL_BIND_REQ:
14223 		mutex_enter(&ill->ill_lock);
14224 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
14225 		mutex_exit(&ill->ill_lock);
14226 		break;
14227 	}
14228 
14229 	/*
14230 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
14231 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
14232 	 * we only wait for the ACK of the DL_UNBIND_REQ.
14233 	 */
14234 	mutex_enter(&ill->ill_lock);
14235 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
14236 	    (prim == DL_UNBIND_REQ)) {
14237 		ill->ill_dlpi_pending = prim;
14238 		waitack = B_TRUE;
14239 	}
14240 
14241 	mutex_exit(&ill->ill_lock);
14242 	putnext(ill->ill_wq, mp);
14243 
14244 	/*
14245 	 * There is no ack for DL_NOTIFY_CONF messages
14246 	 */
14247 	if (waitack && prim == DL_NOTIFY_CONF)
14248 		ill_dlpi_done(ill, prim);
14249 }
14250 
14251 /*
14252  * Helper function for ill_dlpi_send().
14253  */
14254 /* ARGSUSED */
14255 static void
14256 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
14257 {
14258 	ill_dlpi_send(q->q_ptr, mp);
14259 }
14260 
14261 /*
14262  * Send a DLPI control message to the driver but make sure there
14263  * is only one outstanding message. Uses ill_dlpi_pending to tell
14264  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
14265  * when an ACK or a NAK is received to process the next queued message.
14266  */
14267 void
14268 ill_dlpi_send(ill_t *ill, mblk_t *mp)
14269 {
14270 	mblk_t **mpp;
14271 
14272 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
14273 
14274 	/*
14275 	 * To ensure that any DLPI requests for current exclusive operation
14276 	 * are always completely sent before any DLPI messages for other
14277 	 * operations, require writer access before enqueuing.
14278 	 */
14279 	if (!IAM_WRITER_ILL(ill)) {
14280 		ill_refhold(ill);
14281 		/* qwriter_ip() does the ill_refrele() */
14282 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
14283 		    NEW_OP, B_TRUE);
14284 		return;
14285 	}
14286 
14287 	mutex_enter(&ill->ill_lock);
14288 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
14289 		/* Must queue message. Tail insertion */
14290 		mpp = &ill->ill_dlpi_deferred;
14291 		while (*mpp != NULL)
14292 			mpp = &((*mpp)->b_next);
14293 
14294 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
14295 		    ill->ill_name));
14296 
14297 		*mpp = mp;
14298 		mutex_exit(&ill->ill_lock);
14299 		return;
14300 	}
14301 	mutex_exit(&ill->ill_lock);
14302 	ill_dlpi_dispatch(ill, mp);
14303 }
14304 
14305 static void
14306 ill_capability_send(ill_t *ill, mblk_t *mp)
14307 {
14308 	ill->ill_capab_pending_cnt++;
14309 	ill_dlpi_send(ill, mp);
14310 }
14311 
14312 void
14313 ill_capability_done(ill_t *ill)
14314 {
14315 	ASSERT(ill->ill_capab_pending_cnt != 0);
14316 
14317 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
14318 
14319 	ill->ill_capab_pending_cnt--;
14320 	if (ill->ill_capab_pending_cnt == 0 &&
14321 	    ill->ill_dlpi_capab_state == IDCS_OK)
14322 		ill_capability_reset_alloc(ill);
14323 }
14324 
14325 /*
14326  * Send all deferred DLPI messages without waiting for their ACKs.
14327  */
14328 void
14329 ill_dlpi_send_deferred(ill_t *ill)
14330 {
14331 	mblk_t *mp, *nextmp;
14332 
14333 	/*
14334 	 * Clear ill_dlpi_pending so that the message is not queued in
14335 	 * ill_dlpi_send().
14336 	 */
14337 	mutex_enter(&ill->ill_lock);
14338 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
14339 	mp = ill->ill_dlpi_deferred;
14340 	ill->ill_dlpi_deferred = NULL;
14341 	mutex_exit(&ill->ill_lock);
14342 
14343 	for (; mp != NULL; mp = nextmp) {
14344 		nextmp = mp->b_next;
14345 		mp->b_next = NULL;
14346 		ill_dlpi_send(ill, mp);
14347 	}
14348 }
14349 
14350 /*
14351  * Check if the DLPI primitive `prim' is pending; print a warning if not.
14352  */
14353 boolean_t
14354 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
14355 {
14356 	t_uscalar_t pending;
14357 
14358 	mutex_enter(&ill->ill_lock);
14359 	if (ill->ill_dlpi_pending == prim) {
14360 		mutex_exit(&ill->ill_lock);
14361 		return (B_TRUE);
14362 	}
14363 
14364 	/*
14365 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
14366 	 * without waiting, so don't print any warnings in that case.
14367 	 */
14368 	if (ill->ill_state_flags & ILL_CONDEMNED) {
14369 		mutex_exit(&ill->ill_lock);
14370 		return (B_FALSE);
14371 	}
14372 	pending = ill->ill_dlpi_pending;
14373 	mutex_exit(&ill->ill_lock);
14374 
14375 	if (pending == DL_PRIM_INVAL) {
14376 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14377 		    "received unsolicited ack for %s on %s\n",
14378 		    dl_primstr(prim), ill->ill_name);
14379 	} else {
14380 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14381 		    "received unexpected ack for %s on %s (expecting %s)\n",
14382 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
14383 	}
14384 	return (B_FALSE);
14385 }
14386 
14387 /*
14388  * Complete the current DLPI operation associated with `prim' on `ill' and
14389  * start the next queued DLPI operation (if any).  If there are no queued DLPI
14390  * operations and the ill's current exclusive IPSQ operation has finished
14391  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
14392  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
14393  * the comments above ipsq_current_finish() for details.
14394  */
14395 void
14396 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
14397 {
14398 	mblk_t *mp;
14399 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14400 	ipxop_t *ipx = ipsq->ipsq_xop;
14401 
14402 	ASSERT(IAM_WRITER_IPSQ(ipsq));
14403 	mutex_enter(&ill->ill_lock);
14404 
14405 	ASSERT(prim != DL_PRIM_INVAL);
14406 	ASSERT(ill->ill_dlpi_pending == prim);
14407 
14408 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
14409 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
14410 
14411 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
14412 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
14413 		if (ipx->ipx_current_done) {
14414 			mutex_enter(&ipx->ipx_lock);
14415 			ipx->ipx_current_ipif = NULL;
14416 			mutex_exit(&ipx->ipx_lock);
14417 		}
14418 		cv_signal(&ill->ill_cv);
14419 		mutex_exit(&ill->ill_lock);
14420 		return;
14421 	}
14422 
14423 	ill->ill_dlpi_deferred = mp->b_next;
14424 	mp->b_next = NULL;
14425 	mutex_exit(&ill->ill_lock);
14426 
14427 	ill_dlpi_dispatch(ill, mp);
14428 }
14429 
14430 void
14431 conn_delete_ire(conn_t *connp, caddr_t arg)
14432 {
14433 	ipif_t	*ipif = (ipif_t *)arg;
14434 	ire_t	*ire;
14435 
14436 	/*
14437 	 * Look at the cached ires on conns which has pointers to ipifs.
14438 	 * We just call ire_refrele which clears up the reference
14439 	 * to ire. Called when a conn closes. Also called from ipif_free
14440 	 * to cleanup indirect references to the stale ipif via the cached ire.
14441 	 */
14442 	mutex_enter(&connp->conn_lock);
14443 	ire = connp->conn_ire_cache;
14444 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
14445 		connp->conn_ire_cache = NULL;
14446 		mutex_exit(&connp->conn_lock);
14447 		IRE_REFRELE_NOTR(ire);
14448 		return;
14449 	}
14450 	mutex_exit(&connp->conn_lock);
14451 
14452 }
14453 
14454 /*
14455  * Some operations (e.g., ipif_down()) conditionally delete a number
14456  * of IREs. Those IREs may have been previously cached in the conn structure.
14457  * This ipcl_walk() walker function releases all references to such IREs based
14458  * on the condemned flag.
14459  */
14460 /* ARGSUSED */
14461 void
14462 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
14463 {
14464 	ire_t	*ire;
14465 
14466 	mutex_enter(&connp->conn_lock);
14467 	ire = connp->conn_ire_cache;
14468 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
14469 		connp->conn_ire_cache = NULL;
14470 		mutex_exit(&connp->conn_lock);
14471 		IRE_REFRELE_NOTR(ire);
14472 		return;
14473 	}
14474 	mutex_exit(&connp->conn_lock);
14475 }
14476 
14477 /*
14478  * Take down a specific interface, but don't lose any information about it.
14479  * (Always called as writer.)
14480  * This function goes through the down sequence even if the interface is
14481  * already down. There are 2 reasons.
14482  * a. Currently we permit interface routes that depend on down interfaces
14483  *    to be added. This behaviour itself is questionable. However it appears
14484  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
14485  *    time. We go thru the cleanup in order to remove these routes.
14486  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
14487  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
14488  *    down, but we need to cleanup i.e. do ill_dl_down and
14489  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
14490  *
14491  * IP-MT notes:
14492  *
14493  * Model of reference to interfaces.
14494  *
14495  * The following members in ipif_t track references to the ipif.
14496  *	int     ipif_refcnt;    Active reference count
14497  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
14498  *	uint_t  ipif_ilm_cnt;   Number of ilms's references this ipif.
14499  *
14500  * The following members in ill_t track references to the ill.
14501  *	int             ill_refcnt;     active refcnt
14502  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
14503  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
14504  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
14505  *
14506  * Reference to an ipif or ill can be obtained in any of the following ways.
14507  *
14508  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
14509  * Pointers to ipif / ill from other data structures viz ire and conn.
14510  * Implicit reference to the ipif / ill by holding a reference to the ire.
14511  *
14512  * The ipif/ill lookup functions return a reference held ipif / ill.
14513  * ipif_refcnt and ill_refcnt track the reference counts respectively.
14514  * This is a purely dynamic reference count associated with threads holding
14515  * references to the ipif / ill. Pointers from other structures do not
14516  * count towards this reference count.
14517  *
14518  * ipif_ire_cnt/ill_ire_cnt is the number of ire's
14519  * associated with the ipif/ill. This is incremented whenever a new
14520  * ire is created referencing the ipif/ill. This is done atomically inside
14521  * ire_add_v[46] where the ire is actually added to the ire hash table.
14522  * The count is decremented in ire_inactive where the ire is destroyed.
14523  *
14524  * nce's reference ill's thru nce_ill and the count of nce's associated with
14525  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
14526  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
14527  * table. Similarly it is decremented in ndp_inactive() where the nce
14528  * is destroyed.
14529  *
14530  * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's)
14531  * is incremented in ilm_add_v6() and decremented before the ilm is freed
14532  * in ilm_walker_cleanup() or ilm_delete().
14533  *
14534  * Flow of ioctls involving interface down/up
14535  *
14536  * The following is the sequence of an attempt to set some critical flags on an
14537  * up interface.
14538  * ip_sioctl_flags
14539  * ipif_down
14540  * wait for ipif to be quiescent
14541  * ipif_down_tail
14542  * ip_sioctl_flags_tail
14543  *
14544  * All set ioctls that involve down/up sequence would have a skeleton similar
14545  * to the above. All the *tail functions are called after the refcounts have
14546  * dropped to the appropriate values.
14547  *
14548  * The mechanism to quiesce an ipif is as follows.
14549  *
14550  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
14551  * on the ipif. Callers either pass a flag requesting wait or the lookup
14552  *  functions will return NULL.
14553  *
14554  * Delete all ires referencing this ipif
14555  *
14556  * Any thread attempting to do an ipif_refhold on an ipif that has been
14557  * obtained thru a cached pointer will first make sure that
14558  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
14559  * increment the refcount.
14560  *
14561  * The above guarantees that the ipif refcount will eventually come down to
14562  * zero and the ipif will quiesce, once all threads that currently hold a
14563  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
14564  * ipif_refcount has dropped to zero and all ire's associated with this ipif
14565  * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and
14566  * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK()
14567  * in ip.h
14568  *
14569  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
14570  *
14571  * Threads trying to lookup an ipif or ill can pass a flag requesting
14572  * wait and restart if the ipif / ill cannot be looked up currently.
14573  * For eg. bind, and route operations (Eg. route add / delete) cannot return
14574  * failure if the ipif is currently undergoing an exclusive operation, and
14575  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
14576  * is restarted by ipsq_exit() when the current exclusive operation completes.
14577  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
14578  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
14579  * change while the ill_lock is held. Before dropping the ill_lock we acquire
14580  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
14581  * until we release the ipsq_lock, even though the the ill/ipif state flags
14582  * can change after we drop the ill_lock.
14583  *
14584  * An attempt to send out a packet using an ipif that is currently
14585  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
14586  * operation and restart it later when the exclusive condition on the ipif ends.
14587  * This is an example of not passing the wait flag to the lookup functions. For
14588  * example an attempt to refhold and use conn->conn_multicast_ipif and send
14589  * out a multicast packet on that ipif will fail while the ipif is
14590  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
14591  * currently IPIF_CHANGING will also fail.
14592  */
14593 int
14594 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
14595 {
14596 	ill_t		*ill = ipif->ipif_ill;
14597 	conn_t		*connp;
14598 	boolean_t	success;
14599 	boolean_t	ipif_was_up = B_FALSE;
14600 	ip_stack_t	*ipst = ill->ill_ipst;
14601 
14602 	ASSERT(IAM_WRITER_IPIF(ipif));
14603 
14604 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14605 
14606 	if (ipif->ipif_flags & IPIF_UP) {
14607 		mutex_enter(&ill->ill_lock);
14608 		ipif->ipif_flags &= ~IPIF_UP;
14609 		ASSERT(ill->ill_ipif_up_count > 0);
14610 		--ill->ill_ipif_up_count;
14611 		mutex_exit(&ill->ill_lock);
14612 		ipif_was_up = B_TRUE;
14613 		/* Update status in SCTP's list */
14614 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
14615 		ill_nic_event_dispatch(ipif->ipif_ill,
14616 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
14617 	}
14618 
14619 	/*
14620 	 * Blow away memberships we established in ipif_multicast_up().
14621 	 */
14622 	ipif_multicast_down(ipif);
14623 
14624 	/*
14625 	 * Remove from the mapping for __sin6_src_id. We insert only
14626 	 * when the address is not INADDR_ANY. As IPv4 addresses are
14627 	 * stored as mapped addresses, we need to check for mapped
14628 	 * INADDR_ANY also.
14629 	 */
14630 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
14631 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
14632 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14633 		int err;
14634 
14635 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
14636 		    ipif->ipif_zoneid, ipst);
14637 		if (err != 0) {
14638 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
14639 		}
14640 	}
14641 
14642 	/*
14643 	 * Delete all IRE's pointing at this ipif or its source address.
14644 	 */
14645 	if (ipif->ipif_isv6) {
14646 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
14647 		    ipst);
14648 	} else {
14649 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
14650 		    ipst);
14651 	}
14652 
14653 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
14654 		/*
14655 		 * Since the interface is now down, it may have just become
14656 		 * inactive.  Note that this needs to be done even for a
14657 		 * lll_logical_down(), or ARP entries will not get correctly
14658 		 * restored when the interface comes back up.
14659 		 */
14660 		if (IS_UNDER_IPMP(ill))
14661 			ipmp_ill_refresh_active(ill);
14662 	}
14663 
14664 	/*
14665 	 * Cleaning up the conn_ire_cache or conns must be done only after the
14666 	 * ires have been deleted above. Otherwise a thread could end up
14667 	 * caching an ire in a conn after we have finished the cleanup of the
14668 	 * conn. The caching is done after making sure that the ire is not yet
14669 	 * condemned. Also documented in the block comment above ip_output
14670 	 */
14671 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
14672 	/* Also, delete the ires cached in SCTP */
14673 	sctp_ire_cache_flush(ipif);
14674 
14675 	/*
14676 	 * Update any other ipifs which have used "our" local address as
14677 	 * a source address. This entails removing and recreating IRE_INTERFACE
14678 	 * entries for such ipifs.
14679 	 */
14680 	if (ipif->ipif_isv6)
14681 		ipif_update_other_ipifs_v6(ipif);
14682 	else
14683 		ipif_update_other_ipifs(ipif);
14684 
14685 	/*
14686 	 * neighbor-discovery or arp entries for this interface.
14687 	 */
14688 	ipif_ndp_down(ipif);
14689 
14690 	/*
14691 	 * If mp is NULL the caller will wait for the appropriate refcnt.
14692 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
14693 	 * and ill_delete -> ipif_free -> ipif_down
14694 	 */
14695 	if (mp == NULL) {
14696 		ASSERT(q == NULL);
14697 		return (0);
14698 	}
14699 
14700 	if (CONN_Q(q)) {
14701 		connp = Q_TO_CONN(q);
14702 		mutex_enter(&connp->conn_lock);
14703 	} else {
14704 		connp = NULL;
14705 	}
14706 	mutex_enter(&ill->ill_lock);
14707 	/*
14708 	 * Are there any ire's pointing to this ipif that are still active ?
14709 	 * If this is the last ipif going down, are there any ire's pointing
14710 	 * to this ill that are still active ?
14711 	 */
14712 	if (ipif_is_quiescent(ipif)) {
14713 		mutex_exit(&ill->ill_lock);
14714 		if (connp != NULL)
14715 			mutex_exit(&connp->conn_lock);
14716 		return (0);
14717 	}
14718 
14719 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
14720 	    ill->ill_name, (void *)ill));
14721 	/*
14722 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
14723 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
14724 	 * which in turn is called by the last refrele on the ipif/ill/ire.
14725 	 */
14726 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
14727 	if (!success) {
14728 		/* The conn is closing. So just return */
14729 		ASSERT(connp != NULL);
14730 		mutex_exit(&ill->ill_lock);
14731 		mutex_exit(&connp->conn_lock);
14732 		return (EINTR);
14733 	}
14734 
14735 	mutex_exit(&ill->ill_lock);
14736 	if (connp != NULL)
14737 		mutex_exit(&connp->conn_lock);
14738 	return (EINPROGRESS);
14739 }
14740 
14741 void
14742 ipif_down_tail(ipif_t *ipif)
14743 {
14744 	ill_t	*ill = ipif->ipif_ill;
14745 
14746 	/*
14747 	 * Skip any loopback interface (null wq).
14748 	 * If this is the last logical interface on the ill
14749 	 * have ill_dl_down tell the driver we are gone (unbind)
14750 	 * Note that lun 0 can ipif_down even though
14751 	 * there are other logical units that are up.
14752 	 * This occurs e.g. when we change a "significant" IFF_ flag.
14753 	 */
14754 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
14755 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
14756 	    ill->ill_dl_up) {
14757 		ill_dl_down(ill);
14758 	}
14759 	ill->ill_logical_down = 0;
14760 
14761 	/*
14762 	 * Has to be after removing the routes in ipif_down_delete_ire.
14763 	 */
14764 	ipif_resolver_down(ipif);
14765 
14766 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
14767 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
14768 }
14769 
14770 /*
14771  * Bring interface logically down without bringing the physical interface
14772  * down e.g. when the netmask is changed. This avoids long lasting link
14773  * negotiations between an ethernet interface and a certain switches.
14774  */
14775 static int
14776 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
14777 {
14778 	/*
14779 	 * The ill_logical_down flag is a transient flag. It is set here
14780 	 * and is cleared once the down has completed in ipif_down_tail.
14781 	 * This flag does not indicate whether the ill stream is in the
14782 	 * DL_BOUND state with the driver. Instead this flag is used by
14783 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
14784 	 * the driver. The state of the ill stream i.e. whether it is
14785 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
14786 	 */
14787 	ipif->ipif_ill->ill_logical_down = 1;
14788 	return (ipif_down(ipif, q, mp));
14789 }
14790 
14791 /*
14792  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
14793  * If the usesrc client ILL is already part of a usesrc group or not,
14794  * in either case a ire_stq with the matching usesrc client ILL will
14795  * locate the IRE's that need to be deleted. We want IREs to be created
14796  * with the new source address.
14797  */
14798 static void
14799 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
14800 {
14801 	ill_t	*ucill = (ill_t *)ill_arg;
14802 
14803 	ASSERT(IAM_WRITER_ILL(ucill));
14804 
14805 	if (ire->ire_stq == NULL)
14806 		return;
14807 
14808 	if ((ire->ire_type == IRE_CACHE) &&
14809 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
14810 		ire_delete(ire);
14811 }
14812 
14813 /*
14814  * ire_walk routine to delete every IRE dependent on the interface
14815  * address that is going down.	(Always called as writer.)
14816  * Works for both v4 and v6.
14817  * In addition for checking for ire_ipif matches it also checks for
14818  * IRE_CACHE entries which have the same source address as the
14819  * disappearing ipif since ipif_select_source might have picked
14820  * that source. Note that ipif_down/ipif_update_other_ipifs takes
14821  * care of any IRE_INTERFACE with the disappearing source address.
14822  */
14823 static void
14824 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
14825 {
14826 	ipif_t	*ipif = (ipif_t *)ipif_arg;
14827 
14828 	ASSERT(IAM_WRITER_IPIF(ipif));
14829 	if (ire->ire_ipif == NULL)
14830 		return;
14831 
14832 	if (ire->ire_ipif != ipif) {
14833 		/*
14834 		 * Look for a matching source address.
14835 		 */
14836 		if (ire->ire_type != IRE_CACHE)
14837 			return;
14838 		if (ipif->ipif_flags & IPIF_NOLOCAL)
14839 			return;
14840 
14841 		if (ire->ire_ipversion == IPV4_VERSION) {
14842 			if (ire->ire_src_addr != ipif->ipif_src_addr)
14843 				return;
14844 		} else {
14845 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
14846 			    &ipif->ipif_v6lcl_addr))
14847 				return;
14848 		}
14849 		ire_delete(ire);
14850 		return;
14851 	}
14852 	/*
14853 	 * ire_delete() will do an ire_flush_cache which will delete
14854 	 * all ire_ipif matches
14855 	 */
14856 	ire_delete(ire);
14857 }
14858 
14859 /*
14860  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
14861  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
14862  * 2) when an interface is brought up or down (on that ill).
14863  * This ensures that the IRE_CACHE entries don't retain stale source
14864  * address selection results.
14865  */
14866 void
14867 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
14868 {
14869 	ill_t	*ill = (ill_t *)ill_arg;
14870 
14871 	ASSERT(IAM_WRITER_ILL(ill));
14872 	ASSERT(ire->ire_type == IRE_CACHE);
14873 
14874 	/*
14875 	 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches
14876 	 * ill, but we only want to delete the IRE if ire_ipif matches.
14877 	 */
14878 	ASSERT(ire->ire_ipif != NULL);
14879 	if (ill == ire->ire_ipif->ipif_ill)
14880 		ire_delete(ire);
14881 }
14882 
14883 /*
14884  * Delete all the IREs whose ire_stq's reference `ill_arg'.  IPMP uses this
14885  * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references
14886  * the IPMP ill.
14887  */
14888 void
14889 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
14890 {
14891 	ill_t	*ill = (ill_t *)ill_arg;
14892 
14893 	ASSERT(IAM_WRITER_ILL(ill));
14894 	ASSERT(ire->ire_type == IRE_CACHE);
14895 
14896 	/*
14897 	 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches
14898 	 * ill, but we only want to delete the IRE if ire_stq matches.
14899 	 */
14900 	if (ire->ire_stq->q_ptr == ill_arg)
14901 		ire_delete(ire);
14902 }
14903 
14904 /*
14905  * Delete all the IREs whose ire_stq's reference any ill in the same IPMP
14906  * group as `ill_arg'.  Used by ipmp_ill_deactivate() to flush all IRE_CACHE
14907  * entries for the illgrp.
14908  */
14909 void
14910 ill_grp_cache_delete(ire_t *ire, char *ill_arg)
14911 {
14912 	ill_t	*ill = (ill_t *)ill_arg;
14913 
14914 	ASSERT(IAM_WRITER_ILL(ill));
14915 
14916 	if (ire->ire_type == IRE_CACHE &&
14917 	    IS_IN_SAME_ILLGRP((ill_t *)ire->ire_stq->q_ptr, ill)) {
14918 		ire_delete(ire);
14919 	}
14920 }
14921 
14922 /*
14923  * Delete all broadcast IREs with a source address on `ill_arg'.
14924  */
14925 static void
14926 ill_broadcast_delete(ire_t *ire, char *ill_arg)
14927 {
14928 	ill_t *ill = (ill_t *)ill_arg;
14929 
14930 	ASSERT(IAM_WRITER_ILL(ill));
14931 	ASSERT(ire->ire_type == IRE_BROADCAST);
14932 
14933 	if (ire->ire_ipif->ipif_ill == ill)
14934 		ire_delete(ire);
14935 }
14936 
14937 /*
14938  * Initiate deallocate of an IPIF. Always called as writer. Called by
14939  * ill_delete or ip_sioctl_removeif.
14940  */
14941 static void
14942 ipif_free(ipif_t *ipif)
14943 {
14944 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14945 
14946 	ASSERT(IAM_WRITER_IPIF(ipif));
14947 
14948 	if (ipif->ipif_recovery_id != 0)
14949 		(void) untimeout(ipif->ipif_recovery_id);
14950 	ipif->ipif_recovery_id = 0;
14951 
14952 	/* Remove conn references */
14953 	reset_conn_ipif(ipif);
14954 
14955 	/*
14956 	 * Make sure we have valid net and subnet broadcast ire's for the
14957 	 * other ipif's which share them with this ipif.
14958 	 */
14959 	if (!ipif->ipif_isv6)
14960 		ipif_check_bcast_ires(ipif);
14961 
14962 	/*
14963 	 * Take down the interface. We can be called either from ill_delete
14964 	 * or from ip_sioctl_removeif.
14965 	 */
14966 	(void) ipif_down(ipif, NULL, NULL);
14967 
14968 	/*
14969 	 * Now that the interface is down, there's no chance it can still
14970 	 * become a duplicate.  Cancel any timer that may have been set while
14971 	 * tearing down.
14972 	 */
14973 	if (ipif->ipif_recovery_id != 0)
14974 		(void) untimeout(ipif->ipif_recovery_id);
14975 	ipif->ipif_recovery_id = 0;
14976 
14977 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14978 	/* Remove pointers to this ill in the multicast routing tables */
14979 	reset_mrt_vif_ipif(ipif);
14980 	/* If necessary, clear the cached source ipif rotor. */
14981 	if (ipif->ipif_ill->ill_src_ipif == ipif)
14982 		ipif->ipif_ill->ill_src_ipif = NULL;
14983 	rw_exit(&ipst->ips_ill_g_lock);
14984 }
14985 
14986 static void
14987 ipif_free_tail(ipif_t *ipif)
14988 {
14989 	mblk_t	*mp;
14990 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
14991 
14992 	/*
14993 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
14994 	 */
14995 	mutex_enter(&ipif->ipif_saved_ire_lock);
14996 	mp = ipif->ipif_saved_ire_mp;
14997 	ipif->ipif_saved_ire_mp = NULL;
14998 	mutex_exit(&ipif->ipif_saved_ire_lock);
14999 	freemsg(mp);
15000 
15001 	/*
15002 	 * Need to hold both ill_g_lock and ill_lock while
15003 	 * inserting or removing an ipif from the linked list
15004 	 * of ipifs hanging off the ill.
15005 	 */
15006 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15007 
15008 	ASSERT(ilm_walk_ipif(ipif) == 0);
15009 
15010 #ifdef DEBUG
15011 	ipif_trace_cleanup(ipif);
15012 #endif
15013 
15014 	/* Ask SCTP to take it out of it list */
15015 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
15016 
15017 	/* Get it out of the ILL interface list. */
15018 	ipif_remove(ipif);
15019 	rw_exit(&ipst->ips_ill_g_lock);
15020 
15021 	mutex_destroy(&ipif->ipif_saved_ire_lock);
15022 
15023 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
15024 	ASSERT(ipif->ipif_recovery_id == 0);
15025 
15026 	/* Free the memory. */
15027 	mi_free(ipif);
15028 }
15029 
15030 /*
15031  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
15032  * is zero.
15033  */
15034 void
15035 ipif_get_name(const ipif_t *ipif, char *buf, int len)
15036 {
15037 	char	lbuf[LIFNAMSIZ];
15038 	char	*name;
15039 	size_t	name_len;
15040 
15041 	buf[0] = '\0';
15042 	name = ipif->ipif_ill->ill_name;
15043 	name_len = ipif->ipif_ill->ill_name_length;
15044 	if (ipif->ipif_id != 0) {
15045 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
15046 		    ipif->ipif_id);
15047 		name = lbuf;
15048 		name_len = mi_strlen(name) + 1;
15049 	}
15050 	len -= 1;
15051 	buf[len] = '\0';
15052 	len = MIN(len, name_len);
15053 	bcopy(name, buf, len);
15054 }
15055 
15056 /*
15057  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
15058  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
15059  * implied unit id is zero. <phys> must correspond to the name of an ILL.
15060  * (May be called as writer.)
15061  */
15062 static ipif_t *
15063 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
15064     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
15065     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
15066 {
15067 	char	*cp;
15068 	char	*endp;
15069 	long	id;
15070 	ill_t	*ill;
15071 	ipif_t	*ipif;
15072 	uint_t	ire_type;
15073 	boolean_t did_alloc = B_FALSE;
15074 	ipsq_t	*ipsq;
15075 
15076 	if (error != NULL)
15077 		*error = 0;
15078 
15079 	/*
15080 	 * If the caller wants to us to create the ipif, make sure we have a
15081 	 * valid zoneid
15082 	 */
15083 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
15084 
15085 	if (namelen == 0) {
15086 		if (error != NULL)
15087 			*error = ENXIO;
15088 		return (NULL);
15089 	}
15090 
15091 	*exists = B_FALSE;
15092 	/* Look for a colon in the name. */
15093 	endp = &name[namelen];
15094 	for (cp = endp; --cp > name; ) {
15095 		if (*cp == IPIF_SEPARATOR_CHAR)
15096 			break;
15097 	}
15098 
15099 	if (*cp == IPIF_SEPARATOR_CHAR) {
15100 		/*
15101 		 * Reject any non-decimal aliases for logical
15102 		 * interfaces. Aliases with leading zeroes
15103 		 * are also rejected as they introduce ambiguity
15104 		 * in the naming of the interfaces.
15105 		 * In order to confirm with existing semantics,
15106 		 * and to not break any programs/script relying
15107 		 * on that behaviour, if<0>:0 is considered to be
15108 		 * a valid interface.
15109 		 *
15110 		 * If alias has two or more digits and the first
15111 		 * is zero, fail.
15112 		 */
15113 		if (&cp[2] < endp && cp[1] == '0') {
15114 			if (error != NULL)
15115 				*error = EINVAL;
15116 			return (NULL);
15117 		}
15118 	}
15119 
15120 	if (cp <= name) {
15121 		cp = endp;
15122 	} else {
15123 		*cp = '\0';
15124 	}
15125 
15126 	/*
15127 	 * Look up the ILL, based on the portion of the name
15128 	 * before the slash. ill_lookup_on_name returns a held ill.
15129 	 * Temporary to check whether ill exists already. If so
15130 	 * ill_lookup_on_name will clear it.
15131 	 */
15132 	ill = ill_lookup_on_name(name, do_alloc, isv6,
15133 	    q, mp, func, error, &did_alloc, ipst);
15134 	if (cp != endp)
15135 		*cp = IPIF_SEPARATOR_CHAR;
15136 	if (ill == NULL)
15137 		return (NULL);
15138 
15139 	/* Establish the unit number in the name. */
15140 	id = 0;
15141 	if (cp < endp && *endp == '\0') {
15142 		/* If there was a colon, the unit number follows. */
15143 		cp++;
15144 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
15145 			ill_refrele(ill);
15146 			if (error != NULL)
15147 				*error = ENXIO;
15148 			return (NULL);
15149 		}
15150 	}
15151 
15152 	GRAB_CONN_LOCK(q);
15153 	mutex_enter(&ill->ill_lock);
15154 	/* Now see if there is an IPIF with this unit number. */
15155 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15156 		if (ipif->ipif_id == id) {
15157 			if (zoneid != ALL_ZONES &&
15158 			    zoneid != ipif->ipif_zoneid &&
15159 			    ipif->ipif_zoneid != ALL_ZONES) {
15160 				mutex_exit(&ill->ill_lock);
15161 				RELEASE_CONN_LOCK(q);
15162 				ill_refrele(ill);
15163 				if (error != NULL)
15164 					*error = ENXIO;
15165 				return (NULL);
15166 			}
15167 			/*
15168 			 * The block comment at the start of ipif_down
15169 			 * explains the use of the macros used below
15170 			 */
15171 			if (IPIF_CAN_LOOKUP(ipif)) {
15172 				ipif_refhold_locked(ipif);
15173 				mutex_exit(&ill->ill_lock);
15174 				if (!did_alloc)
15175 					*exists = B_TRUE;
15176 				/*
15177 				 * Drop locks before calling ill_refrele
15178 				 * since it can potentially call into
15179 				 * ipif_ill_refrele_tail which can end up
15180 				 * in trying to acquire any lock.
15181 				 */
15182 				RELEASE_CONN_LOCK(q);
15183 				ill_refrele(ill);
15184 				return (ipif);
15185 			} else if (IPIF_CAN_WAIT(ipif, q)) {
15186 				ipsq = ill->ill_phyint->phyint_ipsq;
15187 				mutex_enter(&ipsq->ipsq_lock);
15188 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
15189 				mutex_exit(&ill->ill_lock);
15190 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
15191 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
15192 				mutex_exit(&ipsq->ipsq_lock);
15193 				RELEASE_CONN_LOCK(q);
15194 				ill_refrele(ill);
15195 				if (error != NULL)
15196 					*error = EINPROGRESS;
15197 				return (NULL);
15198 			}
15199 		}
15200 	}
15201 	RELEASE_CONN_LOCK(q);
15202 
15203 	if (!do_alloc) {
15204 		mutex_exit(&ill->ill_lock);
15205 		ill_refrele(ill);
15206 		if (error != NULL)
15207 			*error = ENXIO;
15208 		return (NULL);
15209 	}
15210 
15211 	/*
15212 	 * If none found, atomically allocate and return a new one.
15213 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
15214 	 * to support "receive only" use of lo0:1 etc. as is still done
15215 	 * below as an initial guess.
15216 	 * However, this is now likely to be overriden later in ipif_up_done()
15217 	 * when we know for sure what address has been configured on the
15218 	 * interface, since we might have more than one loopback interface
15219 	 * with a loopback address, e.g. in the case of zones, and all the
15220 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
15221 	 */
15222 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
15223 		ire_type = IRE_LOOPBACK;
15224 	else
15225 		ire_type = IRE_LOCAL;
15226 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE);
15227 	if (ipif != NULL)
15228 		ipif_refhold_locked(ipif);
15229 	else if (error != NULL)
15230 		*error = ENOMEM;
15231 	mutex_exit(&ill->ill_lock);
15232 	ill_refrele(ill);
15233 	return (ipif);
15234 }
15235 
15236 /*
15237  * This routine is called whenever a new address comes up on an ipif.  If
15238  * we are configured to respond to address mask requests, then we are supposed
15239  * to broadcast an address mask reply at this time.  This routine is also
15240  * called if we are already up, but a netmask change is made.  This is legal
15241  * but might not make the system manager very popular.	(May be called
15242  * as writer.)
15243  */
15244 void
15245 ipif_mask_reply(ipif_t *ipif)
15246 {
15247 	icmph_t	*icmph;
15248 	ipha_t	*ipha;
15249 	mblk_t	*mp;
15250 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15251 
15252 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
15253 
15254 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
15255 		return;
15256 
15257 	/* ICMP mask reply is IPv4 only */
15258 	ASSERT(!ipif->ipif_isv6);
15259 	/* ICMP mask reply is not for a loopback interface */
15260 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
15261 
15262 	mp = allocb(REPLY_LEN, BPRI_HI);
15263 	if (mp == NULL)
15264 		return;
15265 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
15266 
15267 	ipha = (ipha_t *)mp->b_rptr;
15268 	bzero(ipha, REPLY_LEN);
15269 	*ipha = icmp_ipha;
15270 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
15271 	ipha->ipha_src = ipif->ipif_src_addr;
15272 	ipha->ipha_dst = ipif->ipif_brd_addr;
15273 	ipha->ipha_length = htons(REPLY_LEN);
15274 	ipha->ipha_ident = 0;
15275 
15276 	icmph = (icmph_t *)&ipha[1];
15277 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
15278 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
15279 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
15280 
15281 	put(ipif->ipif_wq, mp);
15282 
15283 #undef	REPLY_LEN
15284 }
15285 
15286 /*
15287  * When the mtu in the ipif changes, we call this routine through ire_walk
15288  * to update all the relevant IREs.
15289  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
15290  */
15291 static void
15292 ipif_mtu_change(ire_t *ire, char *ipif_arg)
15293 {
15294 	ipif_t *ipif = (ipif_t *)ipif_arg;
15295 
15296 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
15297 		return;
15298 
15299 	mutex_enter(&ire->ire_lock);
15300 	if (ire->ire_marks & IRE_MARK_PMTU) {
15301 		/* Avoid increasing the PMTU */
15302 		ire->ire_max_frag = MIN(ipif->ipif_mtu, ire->ire_max_frag);
15303 		if (ire->ire_max_frag == ipif->ipif_mtu)
15304 			ire->ire_marks &= ~IRE_MARK_PMTU;
15305 	} else {
15306 		ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
15307 	}
15308 	mutex_exit(&ire->ire_lock);
15309 }
15310 
15311 /*
15312  * When the mtu in the ill changes, we call this routine through ire_walk
15313  * to update all the relevant IREs.
15314  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
15315  */
15316 void
15317 ill_mtu_change(ire_t *ire, char *ill_arg)
15318 {
15319 	ill_t	*ill = (ill_t *)ill_arg;
15320 
15321 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
15322 		return;
15323 
15324 	mutex_enter(&ire->ire_lock);
15325 	if (ire->ire_marks & IRE_MARK_PMTU) {
15326 		/* Avoid increasing the PMTU */
15327 		ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
15328 		    ire->ire_max_frag);
15329 		if (ire->ire_max_frag == ire->ire_ipif->ipif_mtu) {
15330 			ire->ire_marks &= ~IRE_MARK_PMTU;
15331 		}
15332 	} else {
15333 		ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET);
15334 	}
15335 	mutex_exit(&ire->ire_lock);
15336 }
15337 
15338 /*
15339  * Join the ipif specific multicast groups.
15340  * Must be called after a mapping has been set up in the resolver.  (Always
15341  * called as writer.)
15342  */
15343 void
15344 ipif_multicast_up(ipif_t *ipif)
15345 {
15346 	int err;
15347 	ill_t *ill;
15348 
15349 	ASSERT(IAM_WRITER_IPIF(ipif));
15350 
15351 	ill = ipif->ipif_ill;
15352 
15353 	ip1dbg(("ipif_multicast_up\n"));
15354 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
15355 		return;
15356 
15357 	if (ipif->ipif_isv6) {
15358 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
15359 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
15360 
15361 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
15362 
15363 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
15364 			return;
15365 
15366 		ip1dbg(("ipif_multicast_up - addmulti\n"));
15367 
15368 		/*
15369 		 * Join the all hosts multicast address.  We skip this for
15370 		 * underlying IPMP interfaces since they should be invisible.
15371 		 */
15372 		if (!IS_UNDER_IPMP(ill)) {
15373 			err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid,
15374 			    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15375 			if (err != 0) {
15376 				ip0dbg(("ipif_multicast_up: "
15377 				    "all_hosts_mcast failed %d\n", err));
15378 				return;
15379 			}
15380 			ipif->ipif_joined_allhosts = 1;
15381 		}
15382 
15383 		/*
15384 		 * Enable multicast for the solicited node multicast address
15385 		 */
15386 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
15387 			err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid,
15388 			    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15389 			if (err != 0) {
15390 				ip0dbg(("ipif_multicast_up: solicited MC"
15391 				    " failed %d\n", err));
15392 				if (ipif->ipif_joined_allhosts) {
15393 					(void) ip_delmulti_v6(&v6allmc, ill,
15394 					    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15395 					ipif->ipif_joined_allhosts = 0;
15396 				}
15397 				return;
15398 			}
15399 		}
15400 	} else {
15401 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
15402 			return;
15403 
15404 		/* Join the all hosts multicast address */
15405 		ip1dbg(("ipif_multicast_up - addmulti\n"));
15406 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
15407 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15408 		if (err) {
15409 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
15410 			return;
15411 		}
15412 	}
15413 	ipif->ipif_multicast_up = 1;
15414 }
15415 
15416 /*
15417  * Blow away any multicast groups that we joined in ipif_multicast_up().
15418  * (Explicit memberships are blown away in ill_leave_multicast() when the
15419  * ill is brought down.)
15420  */
15421 void
15422 ipif_multicast_down(ipif_t *ipif)
15423 {
15424 	int err;
15425 
15426 	ASSERT(IAM_WRITER_IPIF(ipif));
15427 
15428 	ip1dbg(("ipif_multicast_down\n"));
15429 	if (!ipif->ipif_multicast_up)
15430 		return;
15431 
15432 	ip1dbg(("ipif_multicast_down - delmulti\n"));
15433 
15434 	if (!ipif->ipif_isv6) {
15435 		err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
15436 		    B_TRUE);
15437 		if (err != 0)
15438 			ip0dbg(("ipif_multicast_down: failed %d\n", err));
15439 
15440 		ipif->ipif_multicast_up = 0;
15441 		return;
15442 	}
15443 
15444 	/*
15445 	 * Leave the all-hosts multicast address.
15446 	 */
15447 	if (ipif->ipif_joined_allhosts) {
15448 		err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
15449 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15450 		if (err != 0) {
15451 			ip0dbg(("ipif_multicast_down: all_hosts_mcast "
15452 			    "failed %d\n", err));
15453 		}
15454 		ipif->ipif_joined_allhosts = 0;
15455 	}
15456 
15457 	/*
15458 	 * Disable multicast for the solicited node multicast address
15459 	 */
15460 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
15461 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
15462 
15463 		ipv6_multi.s6_addr32[3] |=
15464 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
15465 
15466 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
15467 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15468 		if (err != 0) {
15469 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
15470 			    err));
15471 		}
15472 	}
15473 
15474 	ipif->ipif_multicast_up = 0;
15475 }
15476 
15477 /*
15478  * Used when an interface comes up to recreate any extra routes on this
15479  * interface.
15480  */
15481 static ire_t **
15482 ipif_recover_ire(ipif_t *ipif)
15483 {
15484 	mblk_t	*mp;
15485 	ire_t	**ipif_saved_irep;
15486 	ire_t	**irep;
15487 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15488 
15489 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
15490 	    ipif->ipif_id));
15491 
15492 	mutex_enter(&ipif->ipif_saved_ire_lock);
15493 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
15494 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
15495 	if (ipif_saved_irep == NULL) {
15496 		mutex_exit(&ipif->ipif_saved_ire_lock);
15497 		return (NULL);
15498 	}
15499 
15500 	irep = ipif_saved_irep;
15501 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
15502 		ire_t		*ire;
15503 		queue_t		*rfq;
15504 		queue_t		*stq;
15505 		ifrt_t		*ifrt;
15506 		uchar_t		*src_addr;
15507 		uchar_t		*gateway_addr;
15508 		ushort_t	type;
15509 
15510 		/*
15511 		 * When the ire was initially created and then added in
15512 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
15513 		 * in the case of a traditional interface route, or as one of
15514 		 * the IRE_OFFSUBNET types (with the exception of
15515 		 * IRE_HOST types ire which is created by icmp_redirect() and
15516 		 * which we don't need to save or recover).  In the case where
15517 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
15518 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
15519 		 * to satisfy software like GateD and Sun Cluster which creates
15520 		 * routes using the the loopback interface's address as a
15521 		 * gateway.
15522 		 *
15523 		 * As ifrt->ifrt_type reflects the already updated ire_type,
15524 		 * ire_create() will be called in the same way here as
15525 		 * in ip_rt_add(), namely using ipif->ipif_net_type when
15526 		 * the route looks like a traditional interface route (where
15527 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
15528 		 * the saved ifrt->ifrt_type.  This means that in the case where
15529 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
15530 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
15531 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
15532 		 */
15533 		ifrt = (ifrt_t *)mp->b_rptr;
15534 		ASSERT(ifrt->ifrt_type != IRE_CACHE);
15535 		if (ifrt->ifrt_type & IRE_INTERFACE) {
15536 			rfq = NULL;
15537 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
15538 			    ? ipif->ipif_rq : ipif->ipif_wq;
15539 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15540 			    ? (uint8_t *)&ifrt->ifrt_src_addr
15541 			    : (uint8_t *)&ipif->ipif_src_addr;
15542 			gateway_addr = NULL;
15543 			type = ipif->ipif_net_type;
15544 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
15545 			/* Recover multiroute broadcast IRE. */
15546 			rfq = ipif->ipif_rq;
15547 			stq = ipif->ipif_wq;
15548 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15549 			    ? (uint8_t *)&ifrt->ifrt_src_addr
15550 			    : (uint8_t *)&ipif->ipif_src_addr;
15551 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
15552 			type = ifrt->ifrt_type;
15553 		} else {
15554 			rfq = NULL;
15555 			stq = NULL;
15556 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15557 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
15558 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
15559 			type = ifrt->ifrt_type;
15560 		}
15561 
15562 		/*
15563 		 * Create a copy of the IRE with the saved address and netmask.
15564 		 */
15565 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
15566 		    "0x%x/0x%x\n",
15567 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
15568 		    ntohl(ifrt->ifrt_addr),
15569 		    ntohl(ifrt->ifrt_mask)));
15570 		ire = ire_create(
15571 		    (uint8_t *)&ifrt->ifrt_addr,
15572 		    (uint8_t *)&ifrt->ifrt_mask,
15573 		    src_addr,
15574 		    gateway_addr,
15575 		    &ifrt->ifrt_max_frag,
15576 		    NULL,
15577 		    rfq,
15578 		    stq,
15579 		    type,
15580 		    ipif,
15581 		    0,
15582 		    0,
15583 		    0,
15584 		    ifrt->ifrt_flags,
15585 		    &ifrt->ifrt_iulp_info,
15586 		    NULL,
15587 		    NULL,
15588 		    ipst);
15589 
15590 		if (ire == NULL) {
15591 			mutex_exit(&ipif->ipif_saved_ire_lock);
15592 			kmem_free(ipif_saved_irep,
15593 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
15594 			return (NULL);
15595 		}
15596 
15597 		/*
15598 		 * Some software (for example, GateD and Sun Cluster) attempts
15599 		 * to create (what amount to) IRE_PREFIX routes with the
15600 		 * loopback address as the gateway.  This is primarily done to
15601 		 * set up prefixes with the RTF_REJECT flag set (for example,
15602 		 * when generating aggregate routes.)
15603 		 *
15604 		 * If the IRE type (as defined by ipif->ipif_net_type) is
15605 		 * IRE_LOOPBACK, then we map the request into a
15606 		 * IRE_IF_NORESOLVER.
15607 		 */
15608 		if (ipif->ipif_net_type == IRE_LOOPBACK)
15609 			ire->ire_type = IRE_IF_NORESOLVER;
15610 		/*
15611 		 * ire held by ire_add, will be refreled' towards the
15612 		 * the end of ipif_up_done
15613 		 */
15614 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
15615 		*irep = ire;
15616 		irep++;
15617 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
15618 	}
15619 	mutex_exit(&ipif->ipif_saved_ire_lock);
15620 	return (ipif_saved_irep);
15621 }
15622 
15623 /*
15624  * Used to set the netmask and broadcast address to default values when the
15625  * interface is brought up.  (Always called as writer.)
15626  */
15627 static void
15628 ipif_set_default(ipif_t *ipif)
15629 {
15630 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
15631 
15632 	if (!ipif->ipif_isv6) {
15633 		/*
15634 		 * Interface holds an IPv4 address. Default
15635 		 * mask is the natural netmask.
15636 		 */
15637 		if (!ipif->ipif_net_mask) {
15638 			ipaddr_t	v4mask;
15639 
15640 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
15641 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
15642 		}
15643 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15644 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
15645 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
15646 		} else {
15647 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
15648 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
15649 		}
15650 		/*
15651 		 * NOTE: SunOS 4.X does this even if the broadcast address
15652 		 * has been already set thus we do the same here.
15653 		 */
15654 		if (ipif->ipif_flags & IPIF_BROADCAST) {
15655 			ipaddr_t	v4addr;
15656 
15657 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
15658 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
15659 		}
15660 	} else {
15661 		/*
15662 		 * Interface holds an IPv6-only address.  Default
15663 		 * mask is all-ones.
15664 		 */
15665 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
15666 			ipif->ipif_v6net_mask = ipv6_all_ones;
15667 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15668 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
15669 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
15670 		} else {
15671 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
15672 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
15673 		}
15674 	}
15675 }
15676 
15677 /*
15678  * Return 0 if this address can be used as local address without causing
15679  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
15680  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
15681  * Note that the same IPv6 link-local address is allowed as long as the ills
15682  * are not on the same link.
15683  */
15684 int
15685 ip_addr_availability_check(ipif_t *new_ipif)
15686 {
15687 	in6_addr_t our_v6addr;
15688 	ill_t *ill;
15689 	ipif_t *ipif;
15690 	ill_walk_context_t ctx;
15691 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
15692 
15693 	ASSERT(IAM_WRITER_IPIF(new_ipif));
15694 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
15695 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
15696 
15697 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
15698 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
15699 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
15700 		return (0);
15701 
15702 	our_v6addr = new_ipif->ipif_v6lcl_addr;
15703 
15704 	if (new_ipif->ipif_isv6)
15705 		ill = ILL_START_WALK_V6(&ctx, ipst);
15706 	else
15707 		ill = ILL_START_WALK_V4(&ctx, ipst);
15708 
15709 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
15710 		for (ipif = ill->ill_ipif; ipif != NULL;
15711 		    ipif = ipif->ipif_next) {
15712 			if ((ipif == new_ipif) ||
15713 			    !(ipif->ipif_flags & IPIF_UP) ||
15714 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
15715 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
15716 			    &our_v6addr))
15717 				continue;
15718 
15719 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
15720 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
15721 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
15722 				ipif->ipif_flags |= IPIF_UNNUMBERED;
15723 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
15724 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
15725 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
15726 				continue;
15727 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
15728 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
15729 				continue;
15730 			else if (new_ipif->ipif_ill == ill)
15731 				return (EADDRINUSE);
15732 			else
15733 				return (EADDRNOTAVAIL);
15734 		}
15735 	}
15736 
15737 	return (0);
15738 }
15739 
15740 /*
15741  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
15742  * IREs for the ipif.
15743  * When the routine returns EINPROGRESS then mp has been consumed and
15744  * the ioctl will be acked from ip_rput_dlpi.
15745  */
15746 int
15747 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
15748 {
15749 	ill_t		*ill = ipif->ipif_ill;
15750 	boolean_t 	isv6 = ipif->ipif_isv6;
15751 	int		err = 0;
15752 	boolean_t	success;
15753 	uint_t		ipif_orig_id;
15754 	ip_stack_t	*ipst = ill->ill_ipst;
15755 
15756 	ASSERT(IAM_WRITER_IPIF(ipif));
15757 
15758 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
15759 
15760 	/* Shouldn't get here if it is already up. */
15761 	if (ipif->ipif_flags & IPIF_UP)
15762 		return (EALREADY);
15763 
15764 	/*
15765 	 * If this is a request to bring up a data address on an interface
15766 	 * under IPMP, then move the address to its IPMP meta-interface and
15767 	 * try to bring it up.  One complication is that the zeroth ipif for
15768 	 * an ill is special, in that every ill always has one, and that code
15769 	 * throughout IP deferences ill->ill_ipif without holding any locks.
15770 	 */
15771 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
15772 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
15773 		ipif_t	*stubipif = NULL, *moveipif = NULL;
15774 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
15775 
15776 		/*
15777 		 * The ipif being brought up should be quiesced.  If it's not,
15778 		 * something has gone amiss and we need to bail out.  (If it's
15779 		 * quiesced, we know it will remain so via IPIF_CHANGING.)
15780 		 */
15781 		mutex_enter(&ill->ill_lock);
15782 		if (!ipif_is_quiescent(ipif)) {
15783 			mutex_exit(&ill->ill_lock);
15784 			return (EINVAL);
15785 		}
15786 		mutex_exit(&ill->ill_lock);
15787 
15788 		/*
15789 		 * If we're going to need to allocate ipifs, do it prior
15790 		 * to starting the move (and grabbing locks).
15791 		 */
15792 		if (ipif->ipif_id == 0) {
15793 			moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
15794 			    B_FALSE);
15795 			stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
15796 			    B_FALSE);
15797 			if (moveipif == NULL || stubipif == NULL) {
15798 				mi_free(moveipif);
15799 				mi_free(stubipif);
15800 				return (ENOMEM);
15801 			}
15802 		}
15803 
15804 		/*
15805 		 * Grab or transfer the ipif to move.  During the move, keep
15806 		 * ill_g_lock held to prevent any ill walker threads from
15807 		 * seeing things in an inconsistent state.
15808 		 */
15809 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15810 		if (ipif->ipif_id != 0) {
15811 			ipif_remove(ipif);
15812 		} else {
15813 			ipif_transfer(ipif, moveipif, stubipif);
15814 			ipif = moveipif;
15815 		}
15816 
15817 		/*
15818 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
15819 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
15820 		 * replace that one.  Otherwise, pick the next available slot.
15821 		 */
15822 		ipif->ipif_ill = ipmp_ill;
15823 		ipif_orig_id = ipif->ipif_id;
15824 
15825 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
15826 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
15827 			ipif = ipmp_ill->ill_ipif;
15828 		} else {
15829 			ipif->ipif_id = -1;
15830 			if (ipif_insert(ipif, B_FALSE) != 0) {
15831 				/*
15832 				 * No more available ipif_id's -- put it back
15833 				 * on the original ill and fail the operation.
15834 				 * Since we're writer on the ill, we can be
15835 				 * sure our old slot is still available.
15836 				 */
15837 				ipif->ipif_id = ipif_orig_id;
15838 				ipif->ipif_ill = ill;
15839 				if (ipif_orig_id == 0) {
15840 					ipif_transfer(ipif, ill->ill_ipif,
15841 					    NULL);
15842 				} else {
15843 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
15844 				}
15845 				rw_exit(&ipst->ips_ill_g_lock);
15846 				return (ENOMEM);
15847 			}
15848 		}
15849 		rw_exit(&ipst->ips_ill_g_lock);
15850 
15851 		/*
15852 		 * Tell SCTP that the ipif has moved.  Note that even if we
15853 		 * had to allocate a new ipif, the original sequence id was
15854 		 * preserved and therefore SCTP won't know.
15855 		 */
15856 		sctp_move_ipif(ipif, ill, ipmp_ill);
15857 
15858 		/*
15859 		 * If the ipif being brought up was on slot zero, then we
15860 		 * first need to bring up the placeholder we stuck there.  In
15861 		 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call
15862 		 * to ipif_up() itself, if we successfully bring up the
15863 		 * placeholder, we'll check ill_move_ipif and bring it up too.
15864 		 */
15865 		if (ipif_orig_id == 0) {
15866 			ASSERT(ill->ill_move_ipif == NULL);
15867 			ill->ill_move_ipif = ipif;
15868 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
15869 				ASSERT(ill->ill_move_ipif == NULL);
15870 			if (err != EINPROGRESS)
15871 				ill->ill_move_ipif = NULL;
15872 			return (err);
15873 		}
15874 
15875 		/*
15876 		 * Bring it up on the IPMP ill.
15877 		 */
15878 		return (ipif_up(ipif, q, mp));
15879 	}
15880 
15881 	/* Skip arp/ndp for any loopback interface. */
15882 	if (ill->ill_wq != NULL) {
15883 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
15884 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
15885 
15886 		if (!ill->ill_dl_up) {
15887 			/*
15888 			 * ill_dl_up is not yet set. i.e. we are yet to
15889 			 * DL_BIND with the driver and this is the first
15890 			 * logical interface on the ill to become "up".
15891 			 * Tell the driver to get going (via DL_BIND_REQ).
15892 			 * Note that changing "significant" IFF_ flags
15893 			 * address/netmask etc cause a down/up dance, but
15894 			 * does not cause an unbind (DL_UNBIND) with the driver
15895 			 */
15896 			return (ill_dl_up(ill, ipif, mp, q));
15897 		}
15898 
15899 		/*
15900 		 * ipif_resolver_up may end up sending an
15901 		 * AR_INTERFACE_UP message to ARP, which would, in
15902 		 * turn send a DLPI message to the driver. ioctls are
15903 		 * serialized and so we cannot send more than one
15904 		 * interface up message at a time. If ipif_resolver_up
15905 		 * does send an interface up message to ARP, we get
15906 		 * EINPROGRESS and we will complete in ip_arp_done.
15907 		 */
15908 
15909 		ASSERT(connp != NULL || !CONN_Q(q));
15910 		if (connp != NULL)
15911 			mutex_enter(&connp->conn_lock);
15912 		mutex_enter(&ill->ill_lock);
15913 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
15914 		mutex_exit(&ill->ill_lock);
15915 		if (connp != NULL)
15916 			mutex_exit(&connp->conn_lock);
15917 		if (!success)
15918 			return (EINTR);
15919 
15920 		/*
15921 		 * Crank up the resolver.  For IPv6, this cranks up the
15922 		 * external resolver if one is configured, but even if an
15923 		 * external resolver isn't configured, it must be called to
15924 		 * reset DAD state.  For IPv6, if an external resolver is not
15925 		 * being used, ipif_resolver_up() will never return
15926 		 * EINPROGRESS, so we can always call ipif_ndp_up() here.
15927 		 * Note that if an external resolver is being used, there's no
15928 		 * need to call ipif_ndp_up() since it will do nothing.
15929 		 */
15930 		err = ipif_resolver_up(ipif, Res_act_initial);
15931 		if (err == EINPROGRESS) {
15932 			/* We will complete it in ip_arp_done() */
15933 			return (err);
15934 		}
15935 
15936 		if (isv6 && err == 0)
15937 			err = ipif_ndp_up(ipif, B_TRUE);
15938 
15939 		ASSERT(err != EINPROGRESS);
15940 		mp = ipsq_pending_mp_get(ipsq, &connp);
15941 		ASSERT(mp != NULL);
15942 		if (err != 0)
15943 			return (err);
15944 	} else {
15945 		/*
15946 		 * Interfaces without underlying hardware don't do duplicate
15947 		 * address detection.
15948 		 */
15949 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
15950 		ipif->ipif_addr_ready = 1;
15951 	}
15952 
15953 	err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif);
15954 	if (err == 0 && ill->ill_move_ipif != NULL) {
15955 		ipif = ill->ill_move_ipif;
15956 		ill->ill_move_ipif = NULL;
15957 		return (ipif_up(ipif, q, mp));
15958 	}
15959 	return (err);
15960 }
15961 
15962 /*
15963  * Perform a bind for the physical device.
15964  * When the routine returns EINPROGRESS then mp has been consumed and
15965  * the ioctl will be acked from ip_rput_dlpi.
15966  * Allocate an unbind message and save it until ipif_down.
15967  */
15968 static int
15969 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
15970 {
15971 	areq_t	*areq;
15972 	mblk_t	*areq_mp = NULL;
15973 	mblk_t	*bind_mp = NULL;
15974 	mblk_t	*unbind_mp = NULL;
15975 	conn_t	*connp;
15976 	boolean_t success;
15977 	uint16_t sap_addr;
15978 
15979 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
15980 	ASSERT(IAM_WRITER_ILL(ill));
15981 	ASSERT(mp != NULL);
15982 
15983 	/* Create a resolver cookie for ARP */
15984 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
15985 		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
15986 		if (areq_mp == NULL)
15987 			return (ENOMEM);
15988 
15989 		freemsg(ill->ill_resolver_mp);
15990 		ill->ill_resolver_mp = areq_mp;
15991 		areq = (areq_t *)areq_mp->b_rptr;
15992 		sap_addr = ill->ill_sap;
15993 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
15994 	}
15995 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
15996 	    DL_BIND_REQ);
15997 	if (bind_mp == NULL)
15998 		goto bad;
15999 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
16000 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
16001 
16002 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
16003 	if (unbind_mp == NULL)
16004 		goto bad;
16005 
16006 	/*
16007 	 * Record state needed to complete this operation when the
16008 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
16009 	 */
16010 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
16011 	ASSERT(connp != NULL || !CONN_Q(q));
16012 	GRAB_CONN_LOCK(q);
16013 	mutex_enter(&ipif->ipif_ill->ill_lock);
16014 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
16015 	mutex_exit(&ipif->ipif_ill->ill_lock);
16016 	RELEASE_CONN_LOCK(q);
16017 	if (!success)
16018 		goto bad;
16019 
16020 	/*
16021 	 * Save the unbind message for ill_dl_down(); it will be consumed when
16022 	 * the interface goes down.
16023 	 */
16024 	ASSERT(ill->ill_unbind_mp == NULL);
16025 	ill->ill_unbind_mp = unbind_mp;
16026 
16027 	ill_dlpi_send(ill, bind_mp);
16028 	/* Send down link-layer capabilities probe if not already done. */
16029 	ill_capability_probe(ill);
16030 
16031 	/*
16032 	 * Sysid used to rely on the fact that netboots set domainname
16033 	 * and the like. Now that miniroot boots aren't strictly netboots
16034 	 * and miniroot network configuration is driven from userland
16035 	 * these things still need to be set. This situation can be detected
16036 	 * by comparing the interface being configured here to the one
16037 	 * dhcifname was set to reference by the boot loader. Once sysid is
16038 	 * converted to use dhcp_ipc_getinfo() this call can go away.
16039 	 */
16040 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
16041 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
16042 	    (strlen(srpc_domain) == 0)) {
16043 		if (dhcpinit() != 0)
16044 			cmn_err(CE_WARN, "no cached dhcp response");
16045 	}
16046 
16047 	/*
16048 	 * This operation will complete in ip_rput_dlpi with either
16049 	 * a DL_BIND_ACK or DL_ERROR_ACK.
16050 	 */
16051 	return (EINPROGRESS);
16052 bad:
16053 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
16054 
16055 	freemsg(bind_mp);
16056 	freemsg(unbind_mp);
16057 	return (ENOMEM);
16058 }
16059 
16060 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
16061 
16062 /*
16063  * DLPI and ARP is up.
16064  * Create all the IREs associated with an interface bring up multicast.
16065  * Set the interface flag and finish other initialization
16066  * that potentially had to be differed to after DL_BIND_ACK.
16067  */
16068 int
16069 ipif_up_done(ipif_t *ipif)
16070 {
16071 	ire_t	*ire_array[20];
16072 	ire_t	**irep = ire_array;
16073 	ire_t	**irep1;
16074 	ipaddr_t net_mask = 0;
16075 	ipaddr_t subnet_mask, route_mask;
16076 	ill_t	*ill = ipif->ipif_ill;
16077 	queue_t	*stq;
16078 	ipif_t	 *src_ipif;
16079 	ipif_t   *tmp_ipif;
16080 	boolean_t	flush_ire_cache = B_TRUE;
16081 	int	err = 0;
16082 	ire_t	**ipif_saved_irep = NULL;
16083 	int ipif_saved_ire_cnt;
16084 	int	cnt;
16085 	boolean_t	src_ipif_held = B_FALSE;
16086 	boolean_t	loopback = B_FALSE;
16087 	ip_stack_t	*ipst = ill->ill_ipst;
16088 
16089 	ip1dbg(("ipif_up_done(%s:%u)\n",
16090 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
16091 	/* Check if this is a loopback interface */
16092 	if (ipif->ipif_ill->ill_wq == NULL)
16093 		loopback = B_TRUE;
16094 
16095 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
16096 	/*
16097 	 * If all other interfaces for this ill are down or DEPRECATED,
16098 	 * or otherwise unsuitable for source address selection, remove
16099 	 * any IRE_CACHE entries for this ill to make sure source
16100 	 * address selection gets to take this new ipif into account.
16101 	 * No need to hold ill_lock while traversing the ipif list since
16102 	 * we are writer
16103 	 */
16104 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
16105 	    tmp_ipif = tmp_ipif->ipif_next) {
16106 		if (((tmp_ipif->ipif_flags &
16107 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
16108 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
16109 		    (tmp_ipif == ipif))
16110 			continue;
16111 		/* first useable pre-existing interface */
16112 		flush_ire_cache = B_FALSE;
16113 		break;
16114 	}
16115 	if (flush_ire_cache)
16116 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16117 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
16118 
16119 	/*
16120 	 * Figure out which way the send-to queue should go.  Only
16121 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
16122 	 * should show up here.
16123 	 */
16124 	switch (ill->ill_net_type) {
16125 	case IRE_IF_RESOLVER:
16126 		stq = ill->ill_rq;
16127 		break;
16128 	case IRE_IF_NORESOLVER:
16129 	case IRE_LOOPBACK:
16130 		stq = ill->ill_wq;
16131 		break;
16132 	default:
16133 		return (EINVAL);
16134 	}
16135 
16136 	if (IS_LOOPBACK(ill)) {
16137 		/*
16138 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
16139 		 * ipif_lookup_on_name(), but in the case of zones we can have
16140 		 * several loopback addresses on lo0. So all the interfaces with
16141 		 * loopback addresses need to be marked IRE_LOOPBACK.
16142 		 */
16143 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
16144 		    htonl(INADDR_LOOPBACK))
16145 			ipif->ipif_ire_type = IRE_LOOPBACK;
16146 		else
16147 			ipif->ipif_ire_type = IRE_LOCAL;
16148 	}
16149 
16150 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) ||
16151 	    ((ipif->ipif_flags & IPIF_DEPRECATED) &&
16152 	    !(ipif->ipif_flags & IPIF_NOFAILOVER))) {
16153 		/*
16154 		 * Can't use our source address. Select a different
16155 		 * source address for the IRE_INTERFACE and IRE_LOCAL
16156 		 */
16157 		src_ipif = ipif_select_source(ipif->ipif_ill,
16158 		    ipif->ipif_subnet, ipif->ipif_zoneid);
16159 		if (src_ipif == NULL)
16160 			src_ipif = ipif;	/* Last resort */
16161 		else
16162 			src_ipif_held = B_TRUE;
16163 	} else {
16164 		src_ipif = ipif;
16165 	}
16166 
16167 	/* Create all the IREs associated with this interface */
16168 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16169 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16170 
16171 		/*
16172 		 * If we're on a labeled system then make sure that zone-
16173 		 * private addresses have proper remote host database entries.
16174 		 */
16175 		if (is_system_labeled() &&
16176 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
16177 		    !tsol_check_interface_address(ipif))
16178 			return (EINVAL);
16179 
16180 		/* Register the source address for __sin6_src_id */
16181 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
16182 		    ipif->ipif_zoneid, ipst);
16183 		if (err != 0) {
16184 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
16185 			return (err);
16186 		}
16187 
16188 		/* If the interface address is set, create the local IRE. */
16189 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
16190 		    (void *)ipif,
16191 		    ipif->ipif_ire_type,
16192 		    ntohl(ipif->ipif_lcl_addr)));
16193 		*irep++ = ire_create(
16194 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
16195 		    (uchar_t *)&ip_g_all_ones,		/* mask */
16196 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
16197 		    NULL,				/* no gateway */
16198 		    &ip_loopback_mtuplus,		/* max frag size */
16199 		    NULL,
16200 		    ipif->ipif_rq,			/* recv-from queue */
16201 		    NULL,				/* no send-to queue */
16202 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
16203 		    ipif,
16204 		    0,
16205 		    0,
16206 		    0,
16207 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
16208 		    RTF_PRIVATE : 0,
16209 		    &ire_uinfo_null,
16210 		    NULL,
16211 		    NULL,
16212 		    ipst);
16213 	} else {
16214 		ip1dbg((
16215 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
16216 		    ipif->ipif_ire_type,
16217 		    ntohl(ipif->ipif_lcl_addr),
16218 		    (uint_t)ipif->ipif_flags));
16219 	}
16220 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16221 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16222 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
16223 	} else {
16224 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
16225 	}
16226 
16227 	subnet_mask = ipif->ipif_net_mask;
16228 
16229 	/*
16230 	 * If mask was not specified, use natural netmask of
16231 	 * interface address. Also, store this mask back into the
16232 	 * ipif struct.
16233 	 */
16234 	if (subnet_mask == 0) {
16235 		subnet_mask = net_mask;
16236 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
16237 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
16238 		    ipif->ipif_v6subnet);
16239 	}
16240 
16241 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
16242 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
16243 	    ipif->ipif_subnet != INADDR_ANY) {
16244 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
16245 
16246 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
16247 			route_mask = IP_HOST_MASK;
16248 		} else {
16249 			route_mask = subnet_mask;
16250 		}
16251 
16252 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
16253 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
16254 		    (void *)ipif, (void *)ill,
16255 		    ill->ill_net_type,
16256 		    ntohl(ipif->ipif_subnet)));
16257 		*irep++ = ire_create(
16258 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
16259 		    (uchar_t *)&route_mask,		/* mask */
16260 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
16261 		    NULL,				/* no gateway */
16262 		    &ipif->ipif_mtu,			/* max frag */
16263 		    NULL,
16264 		    NULL,				/* no recv queue */
16265 		    stq,				/* send-to queue */
16266 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
16267 		    ipif,
16268 		    0,
16269 		    0,
16270 		    0,
16271 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
16272 		    &ire_uinfo_null,
16273 		    NULL,
16274 		    NULL,
16275 		    ipst);
16276 	}
16277 
16278 	/*
16279 	 * Create any necessary broadcast IREs.
16280 	 */
16281 	if (ipif->ipif_flags & IPIF_BROADCAST)
16282 		irep = ipif_create_bcast_ires(ipif, irep);
16283 
16284 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
16285 
16286 	/* If an earlier ire_create failed, get out now */
16287 	for (irep1 = irep; irep1 > ire_array; ) {
16288 		irep1--;
16289 		if (*irep1 == NULL) {
16290 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
16291 			err = ENOMEM;
16292 			goto bad;
16293 		}
16294 	}
16295 
16296 	/*
16297 	 * Need to atomically check for IP address availability under
16298 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
16299 	 * ills or new ipifs can be added while we are checking availability.
16300 	 */
16301 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16302 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
16303 	/* Mark it up, and increment counters. */
16304 	ipif->ipif_flags |= IPIF_UP;
16305 	ill->ill_ipif_up_count++;
16306 	err = ip_addr_availability_check(ipif);
16307 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
16308 	rw_exit(&ipst->ips_ill_g_lock);
16309 
16310 	if (err != 0) {
16311 		/*
16312 		 * Our address may already be up on the same ill. In this case,
16313 		 * the ARP entry for our ipif replaced the one for the other
16314 		 * ipif. So we don't want to delete it (otherwise the other ipif
16315 		 * would be unable to send packets).
16316 		 * ip_addr_availability_check() identifies this case for us and
16317 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
16318 		 * which is the expected error code.
16319 		 */
16320 		if (err == EADDRINUSE) {
16321 			freemsg(ipif->ipif_arp_del_mp);
16322 			ipif->ipif_arp_del_mp = NULL;
16323 			err = EADDRNOTAVAIL;
16324 		}
16325 		ill->ill_ipif_up_count--;
16326 		ipif->ipif_flags &= ~IPIF_UP;
16327 		goto bad;
16328 	}
16329 
16330 	/*
16331 	 * Add in all newly created IREs.  ire_create_bcast() has
16332 	 * already checked for duplicates of the IRE_BROADCAST type.
16333 	 */
16334 	for (irep1 = irep; irep1 > ire_array; ) {
16335 		irep1--;
16336 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
16337 		/*
16338 		 * refheld by ire_add. refele towards the end of the func
16339 		 */
16340 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
16341 	}
16342 
16343 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
16344 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
16345 	ipif_saved_irep = ipif_recover_ire(ipif);
16346 
16347 	if (!loopback) {
16348 		/*
16349 		 * If the broadcast address has been set, make sure it makes
16350 		 * sense based on the interface address.
16351 		 * Only match on ill since we are sharing broadcast addresses.
16352 		 */
16353 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
16354 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
16355 			ire_t	*ire;
16356 
16357 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
16358 			    IRE_BROADCAST, ipif, ALL_ZONES,
16359 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
16360 
16361 			if (ire == NULL) {
16362 				/*
16363 				 * If there isn't a matching broadcast IRE,
16364 				 * revert to the default for this netmask.
16365 				 */
16366 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
16367 				mutex_enter(&ipif->ipif_ill->ill_lock);
16368 				ipif_set_default(ipif);
16369 				mutex_exit(&ipif->ipif_ill->ill_lock);
16370 			} else {
16371 				ire_refrele(ire);
16372 			}
16373 		}
16374 
16375 	}
16376 
16377 	if (ill->ill_need_recover_multicast) {
16378 		/*
16379 		 * Need to recover all multicast memberships in the driver.
16380 		 * This had to be deferred until we had attached.  The same
16381 		 * code exists in ipif_up_done_v6() to recover IPv6
16382 		 * memberships.
16383 		 *
16384 		 * Note that it would be preferable to unconditionally do the
16385 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
16386 		 * that since ill_join_allmulti() depends on ill_dl_up being
16387 		 * set, and it is not set until we receive a DL_BIND_ACK after
16388 		 * having called ill_dl_up().
16389 		 */
16390 		ill_recover_multicast(ill);
16391 	}
16392 
16393 	if (ill->ill_ipif_up_count == 1) {
16394 		/*
16395 		 * Since the interface is now up, it may now be active.
16396 		 */
16397 		if (IS_UNDER_IPMP(ill))
16398 			ipmp_ill_refresh_active(ill);
16399 
16400 		/*
16401 		 * If this is an IPMP interface, we may now be able to
16402 		 * establish ARP entries.
16403 		 */
16404 		if (IS_IPMP(ill))
16405 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
16406 	}
16407 
16408 	/* Join the allhosts multicast address */
16409 	ipif_multicast_up(ipif);
16410 
16411 	/*
16412 	 * See if anybody else would benefit from our new ipif.
16413 	 */
16414 	if (!loopback &&
16415 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
16416 		ill_update_source_selection(ill);
16417 	}
16418 
16419 	for (irep1 = irep; irep1 > ire_array; ) {
16420 		irep1--;
16421 		if (*irep1 != NULL) {
16422 			/* was held in ire_add */
16423 			ire_refrele(*irep1);
16424 		}
16425 	}
16426 
16427 	cnt = ipif_saved_ire_cnt;
16428 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
16429 		if (*irep1 != NULL) {
16430 			/* was held in ire_add */
16431 			ire_refrele(*irep1);
16432 		}
16433 	}
16434 
16435 	if (!loopback && ipif->ipif_addr_ready) {
16436 		/* Broadcast an address mask reply. */
16437 		ipif_mask_reply(ipif);
16438 	}
16439 	if (ipif_saved_irep != NULL) {
16440 		kmem_free(ipif_saved_irep,
16441 		    ipif_saved_ire_cnt * sizeof (ire_t *));
16442 	}
16443 	if (src_ipif_held)
16444 		ipif_refrele(src_ipif);
16445 
16446 	/*
16447 	 * This had to be deferred until we had bound.  Tell routing sockets and
16448 	 * others that this interface is up if it looks like the address has
16449 	 * been validated.  Otherwise, if it isn't ready yet, wait for
16450 	 * duplicate address detection to do its thing.
16451 	 */
16452 	if (ipif->ipif_addr_ready)
16453 		ipif_up_notify(ipif);
16454 	return (0);
16455 
16456 bad:
16457 	ip1dbg(("ipif_up_done: FAILED \n"));
16458 
16459 	while (irep > ire_array) {
16460 		irep--;
16461 		if (*irep != NULL)
16462 			ire_delete(*irep);
16463 	}
16464 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
16465 
16466 	if (ipif_saved_irep != NULL) {
16467 		kmem_free(ipif_saved_irep,
16468 		    ipif_saved_ire_cnt * sizeof (ire_t *));
16469 	}
16470 	if (src_ipif_held)
16471 		ipif_refrele(src_ipif);
16472 
16473 	ipif_resolver_down(ipif);
16474 	return (err);
16475 }
16476 
16477 /*
16478  * Turn off the ARP with the ILLF_NOARP flag.
16479  */
16480 static int
16481 ill_arp_off(ill_t *ill)
16482 {
16483 	mblk_t	*arp_off_mp = NULL;
16484 	mblk_t	*arp_on_mp = NULL;
16485 
16486 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
16487 
16488 	ASSERT(IAM_WRITER_ILL(ill));
16489 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
16490 
16491 	/*
16492 	 * If the on message is still around we've already done
16493 	 * an arp_off without doing an arp_on thus there is no
16494 	 * work needed.
16495 	 */
16496 	if (ill->ill_arp_on_mp != NULL)
16497 		return (0);
16498 
16499 	/*
16500 	 * Allocate an ARP on message (to be saved) and an ARP off message
16501 	 */
16502 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
16503 	if (!arp_off_mp)
16504 		return (ENOMEM);
16505 
16506 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
16507 	if (!arp_on_mp)
16508 		goto failed;
16509 
16510 	ASSERT(ill->ill_arp_on_mp == NULL);
16511 	ill->ill_arp_on_mp = arp_on_mp;
16512 
16513 	/* Send an AR_INTERFACE_OFF request */
16514 	putnext(ill->ill_rq, arp_off_mp);
16515 	return (0);
16516 failed:
16517 
16518 	if (arp_off_mp)
16519 		freemsg(arp_off_mp);
16520 	return (ENOMEM);
16521 }
16522 
16523 /*
16524  * Turn on ARP by turning off the ILLF_NOARP flag.
16525  */
16526 static int
16527 ill_arp_on(ill_t *ill)
16528 {
16529 	mblk_t	*mp;
16530 
16531 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
16532 
16533 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
16534 
16535 	ASSERT(IAM_WRITER_ILL(ill));
16536 	/*
16537 	 * Send an AR_INTERFACE_ON request if we have already done
16538 	 * an arp_off (which allocated the message).
16539 	 */
16540 	if (ill->ill_arp_on_mp != NULL) {
16541 		mp = ill->ill_arp_on_mp;
16542 		ill->ill_arp_on_mp = NULL;
16543 		putnext(ill->ill_rq, mp);
16544 	}
16545 	return (0);
16546 }
16547 
16548 /*
16549  * Checks for availbility of a usable source address (if there is one) when the
16550  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
16551  * this selection is done regardless of the destination.
16552  */
16553 boolean_t
16554 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
16555 {
16556 	uint_t	ifindex;
16557 	ipif_t	*ipif = NULL;
16558 	ill_t	*uill;
16559 	boolean_t isv6;
16560 	ip_stack_t	*ipst = ill->ill_ipst;
16561 
16562 	ASSERT(ill != NULL);
16563 
16564 	isv6 = ill->ill_isv6;
16565 	ifindex = ill->ill_usesrc_ifindex;
16566 	if (ifindex != 0) {
16567 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
16568 		    NULL, ipst);
16569 		if (uill == NULL)
16570 			return (NULL);
16571 		mutex_enter(&uill->ill_lock);
16572 		for (ipif = uill->ill_ipif; ipif != NULL;
16573 		    ipif = ipif->ipif_next) {
16574 			if (!IPIF_CAN_LOOKUP(ipif))
16575 				continue;
16576 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
16577 				continue;
16578 			if (!(ipif->ipif_flags & IPIF_UP))
16579 				continue;
16580 			if (ipif->ipif_zoneid != zoneid)
16581 				continue;
16582 			if ((isv6 &&
16583 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
16584 			    (ipif->ipif_lcl_addr == INADDR_ANY))
16585 				continue;
16586 			mutex_exit(&uill->ill_lock);
16587 			ill_refrele(uill);
16588 			return (B_TRUE);
16589 		}
16590 		mutex_exit(&uill->ill_lock);
16591 		ill_refrele(uill);
16592 	}
16593 	return (B_FALSE);
16594 }
16595 
16596 /*
16597  * IP source address type, sorted from worst to best.  For a given type,
16598  * always prefer IP addresses on the same subnet.  All-zones addresses are
16599  * suboptimal because they pose problems with unlabeled destinations.
16600  */
16601 typedef enum {
16602 	IPIF_NONE,
16603 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
16604 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
16605 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
16606 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
16607 	IPIF_DIFFNET,			/* normal and different subnet */
16608 	IPIF_SAMENET			/* normal and same subnet */
16609 } ipif_type_t;
16610 
16611 /*
16612  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
16613  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
16614  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
16615  * the first one, unless IPMP is used in which case we round-robin among them;
16616  * see below for more.
16617  *
16618  * Returns NULL if there is no suitable source address for the ill.
16619  * This only occurs when there is no valid source address for the ill.
16620  */
16621 ipif_t *
16622 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
16623 {
16624 	ill_t	*usill = NULL;
16625 	ill_t	*ipmp_ill = NULL;
16626 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
16627 	ipif_type_t type, best_type;
16628 	tsol_tpc_t *src_rhtp, *dst_rhtp;
16629 	ip_stack_t *ipst = ill->ill_ipst;
16630 	boolean_t samenet;
16631 
16632 	if (ill->ill_usesrc_ifindex != 0) {
16633 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
16634 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
16635 		if (usill != NULL)
16636 			ill = usill;	/* Select source from usesrc ILL */
16637 		else
16638 			return (NULL);
16639 	}
16640 
16641 	/*
16642 	 * Test addresses should never be used for source address selection,
16643 	 * so if we were passed one, switch to the IPMP meta-interface.
16644 	 */
16645 	if (IS_UNDER_IPMP(ill)) {
16646 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
16647 			ill = ipmp_ill;	/* Select source from IPMP ill */
16648 		else
16649 			return (NULL);
16650 	}
16651 
16652 	/*
16653 	 * If we're dealing with an unlabeled destination on a labeled system,
16654 	 * make sure that we ignore source addresses that are incompatible with
16655 	 * the destination's default label.  That destination's default label
16656 	 * must dominate the minimum label on the source address.
16657 	 */
16658 	dst_rhtp = NULL;
16659 	if (is_system_labeled()) {
16660 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
16661 		if (dst_rhtp == NULL)
16662 			return (NULL);
16663 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
16664 			TPC_RELE(dst_rhtp);
16665 			dst_rhtp = NULL;
16666 		}
16667 	}
16668 
16669 	/*
16670 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
16671 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
16672 	 * After selecting the right ipif, under ill_lock make sure ipif is
16673 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
16674 	 * we retry. Inside the loop we still need to check for CONDEMNED,
16675 	 * but not under a lock.
16676 	 */
16677 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16678 retry:
16679 	/*
16680 	 * For source address selection, we treat the ipif list as circular
16681 	 * and continue until we get back to where we started.  This allows
16682 	 * IPMP to vary source address selection (which improves inbound load
16683 	 * spreading) by caching its last ending point and starting from
16684 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
16685 	 * ills since that can't happen on the IPMP ill.
16686 	 */
16687 	start_ipif = ill->ill_ipif;
16688 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
16689 		start_ipif = ill->ill_src_ipif;
16690 
16691 	ipif = start_ipif;
16692 	best_ipif = NULL;
16693 	best_type = IPIF_NONE;
16694 	do {
16695 		if ((next_ipif = ipif->ipif_next) == NULL)
16696 			next_ipif = ill->ill_ipif;
16697 
16698 		if (!IPIF_CAN_LOOKUP(ipif))
16699 			continue;
16700 		/* Always skip NOLOCAL and ANYCAST interfaces */
16701 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
16702 			continue;
16703 		if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready)
16704 			continue;
16705 		if (ipif->ipif_zoneid != zoneid &&
16706 		    ipif->ipif_zoneid != ALL_ZONES)
16707 			continue;
16708 
16709 		/*
16710 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
16711 		 * are not valid as source addresses.
16712 		 */
16713 		if (ipif->ipif_lcl_addr == INADDR_ANY)
16714 			continue;
16715 
16716 		/*
16717 		 * Check compatibility of local address for destination's
16718 		 * default label if we're on a labeled system.	Incompatible
16719 		 * addresses can't be used at all.
16720 		 */
16721 		if (dst_rhtp != NULL) {
16722 			boolean_t incompat;
16723 
16724 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
16725 			    IPV4_VERSION, B_FALSE);
16726 			if (src_rhtp == NULL)
16727 				continue;
16728 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
16729 			    src_rhtp->tpc_tp.tp_doi !=
16730 			    dst_rhtp->tpc_tp.tp_doi ||
16731 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
16732 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
16733 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
16734 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
16735 			TPC_RELE(src_rhtp);
16736 			if (incompat)
16737 				continue;
16738 		}
16739 
16740 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
16741 
16742 		if (ipif->ipif_flags & IPIF_DEPRECATED) {
16743 			type = samenet ? IPIF_SAMENET_DEPRECATED :
16744 			    IPIF_DIFFNET_DEPRECATED;
16745 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
16746 			type = samenet ? IPIF_SAMENET_ALLZONES :
16747 			    IPIF_DIFFNET_ALLZONES;
16748 		} else {
16749 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
16750 		}
16751 
16752 		if (type > best_type) {
16753 			best_type = type;
16754 			best_ipif = ipif;
16755 			if (best_type == IPIF_SAMENET)
16756 				break; /* can't get better */
16757 		}
16758 	} while ((ipif = next_ipif) != start_ipif);
16759 
16760 	if ((ipif = best_ipif) != NULL) {
16761 		mutex_enter(&ipif->ipif_ill->ill_lock);
16762 		if (!IPIF_CAN_LOOKUP(ipif)) {
16763 			mutex_exit(&ipif->ipif_ill->ill_lock);
16764 			goto retry;
16765 		}
16766 		ipif_refhold_locked(ipif);
16767 
16768 		/*
16769 		 * For IPMP, update the source ipif rotor to the next ipif,
16770 		 * provided we can look it up.  (We must not use it if it's
16771 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
16772 		 * ipif_free() checked ill_src_ipif.)
16773 		 */
16774 		if (IS_IPMP(ill) && ipif != NULL) {
16775 			next_ipif = ipif->ipif_next;
16776 			if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif))
16777 				ill->ill_src_ipif = next_ipif;
16778 			else
16779 				ill->ill_src_ipif = NULL;
16780 		}
16781 		mutex_exit(&ipif->ipif_ill->ill_lock);
16782 	}
16783 
16784 	rw_exit(&ipst->ips_ill_g_lock);
16785 	if (usill != NULL)
16786 		ill_refrele(usill);
16787 	if (ipmp_ill != NULL)
16788 		ill_refrele(ipmp_ill);
16789 	if (dst_rhtp != NULL)
16790 		TPC_RELE(dst_rhtp);
16791 
16792 #ifdef DEBUG
16793 	if (ipif == NULL) {
16794 		char buf1[INET6_ADDRSTRLEN];
16795 
16796 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
16797 		    ill->ill_name,
16798 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
16799 	} else {
16800 		char buf1[INET6_ADDRSTRLEN];
16801 		char buf2[INET6_ADDRSTRLEN];
16802 
16803 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
16804 		    ipif->ipif_ill->ill_name,
16805 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
16806 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
16807 		    buf2, sizeof (buf2))));
16808 	}
16809 #endif /* DEBUG */
16810 	return (ipif);
16811 }
16812 
16813 /*
16814  * If old_ipif is not NULL, see if ipif was derived from old
16815  * ipif and if so, recreate the interface route by re-doing
16816  * source address selection. This happens when ipif_down ->
16817  * ipif_update_other_ipifs calls us.
16818  *
16819  * If old_ipif is NULL, just redo the source address selection
16820  * if needed. This happens when ipif_up_done calls us.
16821  */
16822 static void
16823 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
16824 {
16825 	ire_t *ire;
16826 	ire_t *ipif_ire;
16827 	queue_t *stq;
16828 	ipif_t *nipif;
16829 	ill_t *ill;
16830 	boolean_t need_rele = B_FALSE;
16831 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16832 
16833 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
16834 	ASSERT(IAM_WRITER_IPIF(ipif));
16835 
16836 	ill = ipif->ipif_ill;
16837 	if (!(ipif->ipif_flags &
16838 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
16839 		/*
16840 		 * Can't possibly have borrowed the source
16841 		 * from old_ipif.
16842 		 */
16843 		return;
16844 	}
16845 
16846 	/*
16847 	 * Is there any work to be done? No work if the address
16848 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
16849 	 * ipif_select_source() does not borrow addresses from
16850 	 * NOLOCAL and ANYCAST interfaces).
16851 	 */
16852 	if ((old_ipif != NULL) &&
16853 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
16854 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
16855 	    (old_ipif->ipif_flags &
16856 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
16857 		return;
16858 	}
16859 
16860 	/*
16861 	 * Perform the same checks as when creating the
16862 	 * IRE_INTERFACE in ipif_up_done.
16863 	 */
16864 	if (!(ipif->ipif_flags & IPIF_UP))
16865 		return;
16866 
16867 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
16868 	    (ipif->ipif_subnet == INADDR_ANY))
16869 		return;
16870 
16871 	ipif_ire = ipif_to_ire(ipif);
16872 	if (ipif_ire == NULL)
16873 		return;
16874 
16875 	/*
16876 	 * We know that ipif uses some other source for its
16877 	 * IRE_INTERFACE. Is it using the source of this
16878 	 * old_ipif?
16879 	 */
16880 	if (old_ipif != NULL &&
16881 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
16882 		ire_refrele(ipif_ire);
16883 		return;
16884 	}
16885 	if (ip_debug > 2) {
16886 		/* ip1dbg */
16887 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
16888 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
16889 	}
16890 
16891 	stq = ipif_ire->ire_stq;
16892 
16893 	/*
16894 	 * Can't use our source address. Select a different
16895 	 * source address for the IRE_INTERFACE.
16896 	 */
16897 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
16898 	if (nipif == NULL) {
16899 		/* Last resort - all ipif's have IPIF_NOLOCAL */
16900 		nipif = ipif;
16901 	} else {
16902 		need_rele = B_TRUE;
16903 	}
16904 
16905 	ire = ire_create(
16906 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
16907 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
16908 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
16909 	    NULL,				/* no gateway */
16910 	    &ipif->ipif_mtu,			/* max frag */
16911 	    NULL,				/* no src nce */
16912 	    NULL,				/* no recv from queue */
16913 	    stq,				/* send-to queue */
16914 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
16915 	    ipif,
16916 	    0,
16917 	    0,
16918 	    0,
16919 	    0,
16920 	    &ire_uinfo_null,
16921 	    NULL,
16922 	    NULL,
16923 	    ipst);
16924 
16925 	if (ire != NULL) {
16926 		ire_t *ret_ire;
16927 		int error;
16928 
16929 		/*
16930 		 * We don't need ipif_ire anymore. We need to delete
16931 		 * before we add so that ire_add does not detect
16932 		 * duplicates.
16933 		 */
16934 		ire_delete(ipif_ire);
16935 		ret_ire = ire;
16936 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
16937 		ASSERT(error == 0);
16938 		ASSERT(ire == ret_ire);
16939 		/* Held in ire_add */
16940 		ire_refrele(ret_ire);
16941 	}
16942 	/*
16943 	 * Either we are falling through from above or could not
16944 	 * allocate a replacement.
16945 	 */
16946 	ire_refrele(ipif_ire);
16947 	if (need_rele)
16948 		ipif_refrele(nipif);
16949 }
16950 
16951 /*
16952  * This old_ipif is going away.
16953  *
16954  * Determine if any other ipif's are using our address as
16955  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
16956  * IPIF_DEPRECATED).
16957  * Find the IRE_INTERFACE for such ipifs and recreate them
16958  * to use an different source address following the rules in
16959  * ipif_up_done.
16960  */
16961 static void
16962 ipif_update_other_ipifs(ipif_t *old_ipif)
16963 {
16964 	ipif_t	*ipif;
16965 	ill_t	*ill;
16966 	char	buf[INET6_ADDRSTRLEN];
16967 
16968 	ASSERT(IAM_WRITER_IPIF(old_ipif));
16969 
16970 	ill = old_ipif->ipif_ill;
16971 
16972 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name,
16973 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf))));
16974 
16975 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
16976 		if (ipif == old_ipif)
16977 			continue;
16978 		ipif_recreate_interface_routes(old_ipif, ipif);
16979 	}
16980 }
16981 
16982 /* ARGSUSED */
16983 int
16984 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
16985 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16986 {
16987 	/*
16988 	 * ill_phyint_reinit merged the v4 and v6 into a single
16989 	 * ipsq.  We might not have been able to complete the
16990 	 * operation in ipif_set_values, if we could not become
16991 	 * exclusive.  If so restart it here.
16992 	 */
16993 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
16994 }
16995 
16996 /*
16997  * Can operate on either a module or a driver queue.
16998  * Returns an error if not a module queue.
16999  */
17000 /* ARGSUSED */
17001 int
17002 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
17003     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
17004 {
17005 	queue_t		*q1 = q;
17006 	char 		*cp;
17007 	char		interf_name[LIFNAMSIZ];
17008 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
17009 
17010 	if (q->q_next == NULL) {
17011 		ip1dbg((
17012 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
17013 		return (EINVAL);
17014 	}
17015 
17016 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
17017 		return (EALREADY);
17018 
17019 	do {
17020 		q1 = q1->q_next;
17021 	} while (q1->q_next);
17022 	cp = q1->q_qinfo->qi_minfo->mi_idname;
17023 	(void) sprintf(interf_name, "%s%d", cp, ppa);
17024 
17025 	/*
17026 	 * Here we are not going to delay the ioack until after
17027 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
17028 	 * original ioctl message before sending the requests.
17029 	 */
17030 	return (ipif_set_values(q, mp, interf_name, &ppa));
17031 }
17032 
17033 /* ARGSUSED */
17034 int
17035 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
17036     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
17037 {
17038 	return (ENXIO);
17039 }
17040 
17041 /*
17042  * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the
17043  * minimum (but complete) set exist.  This is necessary when adding or
17044  * removing an interface to/from an IPMP group, since interfaces in an
17045  * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever
17046  * its test address subnets overlap with IPMP data addresses).	It's also
17047  * used to refresh the IRE_BROADCAST entries associated with the IPMP
17048  * interface when the nominated broadcast interface changes.
17049  */
17050 void
17051 ill_refresh_bcast(ill_t *ill)
17052 {
17053 	ire_t *ire_array[12];	/* max ipif_create_bcast_ires() can create */
17054 	ire_t **irep;
17055 	ipif_t *ipif;
17056 
17057 	ASSERT(!ill->ill_isv6);
17058 	ASSERT(IAM_WRITER_ILL(ill));
17059 
17060 	/*
17061 	 * Remove any old broadcast IREs.
17062 	 */
17063 	ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST,
17064 	    ill_broadcast_delete, ill, ill);
17065 
17066 	/*
17067 	 * Create new ones for any ipifs that are up and broadcast-capable.
17068 	 */
17069 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17070 		if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) !=
17071 		    (IPIF_UP|IPIF_BROADCAST))
17072 			continue;
17073 
17074 		irep = ipif_create_bcast_ires(ipif, ire_array);
17075 		while (irep-- > ire_array) {
17076 			(void) ire_add(irep, NULL, NULL, NULL, B_FALSE);
17077 			if (*irep != NULL)
17078 				ire_refrele(*irep);
17079 		}
17080 	}
17081 }
17082 
17083 /*
17084  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
17085  * `irep'.  Returns a pointer to the next free `irep' entry (just like
17086  * ire_check_and_create_bcast()).
17087  */
17088 static ire_t **
17089 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
17090 {
17091 	ipaddr_t addr;
17092 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
17093 	ipaddr_t subnetmask = ipif->ipif_net_mask;
17094 	int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
17095 
17096 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
17097 
17098 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
17099 
17100 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
17101 	    (ipif->ipif_flags & IPIF_NOLOCAL))
17102 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
17103 
17104 	irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
17105 	irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
17106 
17107 	/*
17108 	 * For backward compatibility, we create net broadcast IREs based on
17109 	 * the old "IP address class system", since some old machines only
17110 	 * respond to these class derived net broadcast.  However, we must not
17111 	 * create these net broadcast IREs if the subnetmask is shorter than
17112 	 * the IP address class based derived netmask.  Otherwise, we may
17113 	 * create a net broadcast address which is the same as an IP address
17114 	 * on the subnet -- and then TCP will refuse to talk to that address.
17115 	 */
17116 	if (netmask < subnetmask) {
17117 		addr = netmask & ipif->ipif_subnet;
17118 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
17119 		irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
17120 		    flags);
17121 	}
17122 
17123 	/*
17124 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
17125 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
17126 	 * created.  Creating these broadcast IREs will only create confusion
17127 	 * as `addr' will be the same as the IP address.
17128 	 */
17129 	if (subnetmask != 0xFFFFFFFF) {
17130 		addr = ipif->ipif_subnet;
17131 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
17132 		irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
17133 		    irep, flags);
17134 	}
17135 
17136 	return (irep);
17137 }
17138 
17139 /*
17140  * Broadcast IRE info structure used in the functions below.  Since we
17141  * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
17142  */
17143 typedef struct bcast_ireinfo {
17144 	uchar_t		bi_type;	/* BCAST_* value from below */
17145 	uchar_t		bi_willdie:1, 	/* will this IRE be going away? */
17146 			bi_needrep:1,	/* do we need to replace it? */
17147 			bi_haverep:1,	/* have we replaced it? */
17148 			bi_pad:5;
17149 	ipaddr_t	bi_addr;	/* IRE address */
17150 	ipif_t		*bi_backup;	/* last-ditch ipif to replace it on */
17151 } bcast_ireinfo_t;
17152 
17153 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
17154 
17155 /*
17156  * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
17157  * return B_TRUE if it should immediately be used to recreate the IRE.
17158  */
17159 static boolean_t
17160 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
17161 {
17162 	ipaddr_t addr;
17163 
17164 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
17165 
17166 	switch (bireinfop->bi_type) {
17167 	case BCAST_NET:
17168 		addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
17169 		if (addr != bireinfop->bi_addr)
17170 			return (B_FALSE);
17171 		break;
17172 	case BCAST_SUBNET:
17173 		if (ipif->ipif_subnet != bireinfop->bi_addr)
17174 			return (B_FALSE);
17175 		break;
17176 	}
17177 
17178 	bireinfop->bi_needrep = 1;
17179 	if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
17180 		if (bireinfop->bi_backup == NULL)
17181 			bireinfop->bi_backup = ipif;
17182 		return (B_FALSE);
17183 	}
17184 	return (B_TRUE);
17185 }
17186 
17187 /*
17188  * Create the broadcast IREs described by `bireinfop' on `ipif', and return
17189  * them ala ire_check_and_create_bcast().
17190  */
17191 static ire_t **
17192 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
17193 {
17194 	ipaddr_t mask, addr;
17195 
17196 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
17197 
17198 	addr = bireinfop->bi_addr;
17199 	irep = ire_create_bcast(ipif, addr, irep);
17200 
17201 	switch (bireinfop->bi_type) {
17202 	case BCAST_NET:
17203 		mask = ip_net_mask(ipif->ipif_subnet);
17204 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
17205 		break;
17206 	case BCAST_SUBNET:
17207 		mask = ipif->ipif_net_mask;
17208 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
17209 		break;
17210 	}
17211 
17212 	bireinfop->bi_haverep = 1;
17213 	return (irep);
17214 }
17215 
17216 /*
17217  * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
17218  * going away, and determine if any of the broadcast IREs (named by `bireinfop')
17219  * that are going away are still needed.  If so, have ipif_create_bcast()
17220  * recreate them (except for the deprecated case, as explained below).
17221  */
17222 static ire_t **
17223 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
17224     ire_t **irep)
17225 {
17226 	int i;
17227 	ipif_t *ipif;
17228 
17229 	ASSERT(!ill->ill_isv6);
17230 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17231 		/*
17232 		 * Skip this ipif if it's (a) the one being taken down, (b)
17233 		 * not in the same zone, or (c) has no valid local address.
17234 		 */
17235 		if (ipif == test_ipif ||
17236 		    ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
17237 		    ipif->ipif_subnet == 0 ||
17238 		    (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
17239 		    (IPIF_UP|IPIF_BROADCAST))
17240 			continue;
17241 
17242 		/*
17243 		 * For each dying IRE that hasn't yet been replaced, see if
17244 		 * `ipif' needs it and whether the IRE should be recreated on
17245 		 * `ipif'.  If `ipif' is deprecated, ipif_consider_bcast()
17246 		 * will return B_FALSE even if `ipif' needs the IRE on the
17247 		 * hopes that we'll later find a needy non-deprecated ipif.
17248 		 * However, the ipif is recorded in bi_backup for possible
17249 		 * subsequent use by ipif_check_bcast_ires().
17250 		 */
17251 		for (i = 0; i < BCAST_COUNT; i++) {
17252 			if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
17253 				continue;
17254 			if (!ipif_consider_bcast(ipif, &bireinfo[i]))
17255 				continue;
17256 			irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
17257 		}
17258 
17259 		/*
17260 		 * If we've replaced all of the broadcast IREs that are going
17261 		 * to be taken down, we know we're done.
17262 		 */
17263 		for (i = 0; i < BCAST_COUNT; i++) {
17264 			if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
17265 				break;
17266 		}
17267 		if (i == BCAST_COUNT)
17268 			break;
17269 	}
17270 	return (irep);
17271 }
17272 
17273 /*
17274  * Check if `test_ipif' (which is going away) is associated with any existing
17275  * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
17276  * using those broadcast IREs.  If so, recreate the broadcast IREs on one or
17277  * more of those other ipifs.  (The old IREs will be deleted in ipif_down().)
17278  *
17279  * This is necessary because broadcast IREs are shared.  In particular, a
17280  * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
17281  * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
17282  * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
17283  * ipifs on.  Thus, if there are two IPIF_UP ipifs on the same subnet with the
17284  * same zone, they will share the same set of broadcast IREs.
17285  *
17286  * Note: the upper bound of 12 IREs comes from the worst case of replacing all
17287  * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
17288  * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
17289  */
17290 static void
17291 ipif_check_bcast_ires(ipif_t *test_ipif)
17292 {
17293 	ill_t		*ill = test_ipif->ipif_ill;
17294 	ire_t		*ire, *ire_array[12]; 		/* see note above */
17295 	ire_t		**irep1, **irep = &ire_array[0];
17296 	uint_t 		i, willdie;
17297 	ipaddr_t	mask = ip_net_mask(test_ipif->ipif_subnet);
17298 	bcast_ireinfo_t	bireinfo[BCAST_COUNT];
17299 
17300 	ASSERT(!test_ipif->ipif_isv6);
17301 	ASSERT(IAM_WRITER_IPIF(test_ipif));
17302 
17303 	/*
17304 	 * No broadcast IREs for the LOOPBACK interface
17305 	 * or others such as point to point and IPIF_NOXMIT.
17306 	 */
17307 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
17308 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
17309 		return;
17310 
17311 	bzero(bireinfo, sizeof (bireinfo));
17312 	bireinfo[0].bi_type = BCAST_ALLZEROES;
17313 	bireinfo[0].bi_addr = 0;
17314 
17315 	bireinfo[1].bi_type = BCAST_ALLONES;
17316 	bireinfo[1].bi_addr = INADDR_BROADCAST;
17317 
17318 	bireinfo[2].bi_type = BCAST_NET;
17319 	bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
17320 
17321 	if (test_ipif->ipif_net_mask != 0)
17322 		mask = test_ipif->ipif_net_mask;
17323 	bireinfo[3].bi_type = BCAST_SUBNET;
17324 	bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
17325 
17326 	/*
17327 	 * Figure out what (if any) broadcast IREs will die as a result of
17328 	 * `test_ipif' going away.  If none will die, we're done.
17329 	 */
17330 	for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
17331 		ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
17332 		    test_ipif, ALL_ZONES, NULL,
17333 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
17334 		if (ire != NULL) {
17335 			willdie++;
17336 			bireinfo[i].bi_willdie = 1;
17337 			ire_refrele(ire);
17338 		}
17339 	}
17340 
17341 	if (willdie == 0)
17342 		return;
17343 
17344 	/*
17345 	 * Walk through all the ipifs that will be affected by the dying IREs,
17346 	 * and recreate the IREs as necessary. Note that all interfaces in an
17347 	 * IPMP illgrp share the same broadcast IREs, and thus the entire
17348 	 * illgrp must be walked, starting with the IPMP meta-interface (so
17349 	 * that broadcast IREs end up on it whenever possible).
17350 	 */
17351 	if (IS_UNDER_IPMP(ill))
17352 		ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
17353 
17354 	irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
17355 
17356 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
17357 		ipmp_illgrp_t *illg = ill->ill_grp;
17358 
17359 		ill = list_head(&illg->ig_if);
17360 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) {
17361 			for (i = 0; i < BCAST_COUNT; i++) {
17362 				if (bireinfo[i].bi_willdie &&
17363 				    !bireinfo[i].bi_haverep)
17364 					break;
17365 			}
17366 			if (i == BCAST_COUNT)
17367 				break;
17368 
17369 			irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
17370 		}
17371 	}
17372 
17373 	/*
17374 	 * Scan through the set of broadcast IREs and see if there are any
17375 	 * that we need to replace that have not yet been replaced.  If so,
17376 	 * replace them using the appropriate backup ipif.
17377 	 */
17378 	for (i = 0; i < BCAST_COUNT; i++) {
17379 		if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
17380 			irep = ipif_create_bcast(bireinfo[i].bi_backup,
17381 			    &bireinfo[i], irep);
17382 	}
17383 
17384 	/*
17385 	 * If we can't create all of them, don't add any of them.  (Code in
17386 	 * ip_wput_ire() and ire_to_ill() assumes that we always have a
17387 	 * non-loopback copy and loopback copy for a given address.)
17388 	 */
17389 	for (irep1 = irep; irep1 > ire_array; ) {
17390 		irep1--;
17391 		if (*irep1 == NULL) {
17392 			ip0dbg(("ipif_check_bcast_ires: can't create "
17393 			    "IRE_BROADCAST, memory allocation failure\n"));
17394 			while (irep > ire_array) {
17395 				irep--;
17396 				if (*irep != NULL)
17397 					ire_delete(*irep);
17398 			}
17399 			return;
17400 		}
17401 	}
17402 
17403 	for (irep1 = irep; irep1 > ire_array; ) {
17404 		irep1--;
17405 		if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
17406 			ire_refrele(*irep1);		/* Held in ire_add */
17407 	}
17408 }
17409 
17410 /*
17411  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
17412  * from lifr_flags and the name from lifr_name.
17413  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
17414  * since ipif_lookup_on_name uses the _isv6 flags when matching.
17415  * Returns EINPROGRESS when mp has been consumed by queueing it on
17416  * ill_pending_mp and the ioctl will complete in ip_rput.
17417  *
17418  * Can operate on either a module or a driver queue.
17419  * Returns an error if not a module queue.
17420  */
17421 /* ARGSUSED */
17422 int
17423 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17424     ip_ioctl_cmd_t *ipip, void *if_req)
17425 {
17426 	ill_t	*ill = q->q_ptr;
17427 	phyint_t *phyi;
17428 	ip_stack_t *ipst;
17429 	struct lifreq *lifr = if_req;
17430 	uint64_t new_flags;
17431 
17432 	ASSERT(ipif != NULL);
17433 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
17434 
17435 	if (q->q_next == NULL) {
17436 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
17437 		return (EINVAL);
17438 	}
17439 
17440 	/*
17441 	 * If we are not writer on 'q' then this interface exists already
17442 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
17443 	 * so return EALREADY.
17444 	 */
17445 	if (ill != ipif->ipif_ill)
17446 		return (EALREADY);
17447 
17448 	if (ill->ill_name[0] != '\0')
17449 		return (EALREADY);
17450 
17451 	/*
17452 	 * If there's another ill already with the requested name, ensure
17453 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
17454 	 * fuse together two unrelated ills, which will cause chaos.
17455 	 */
17456 	ipst = ill->ill_ipst;
17457 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17458 	    lifr->lifr_name, NULL);
17459 	if (phyi != NULL) {
17460 		ill_t *ill_mate = phyi->phyint_illv4;
17461 
17462 		if (ill_mate == NULL)
17463 			ill_mate = phyi->phyint_illv6;
17464 		ASSERT(ill_mate != NULL);
17465 
17466 		if (ill_mate->ill_media->ip_m_mac_type !=
17467 		    ill->ill_media->ip_m_mac_type) {
17468 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
17469 			    "use the same ill name on differing media\n"));
17470 			return (EINVAL);
17471 		}
17472 	}
17473 
17474 	/*
17475 	 * We start off as IFF_IPV4 in ipif_allocate and become
17476 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
17477 	 * The only flags that we read from user space are IFF_IPV4,
17478 	 * IFF_IPV6, IFF_XRESOLV and IFF_BROADCAST.
17479 	 *
17480 	 * This ill has not been inserted into the global list.
17481 	 * So we are still single threaded and don't need any lock
17482 	 *
17483 	 * Saniy check the flags.
17484 	 */
17485 
17486 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
17487 	    ((lifr->lifr_flags & IFF_IPV6) ||
17488 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
17489 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
17490 		    "or IPv6 i.e., no broadcast \n"));
17491 		return (EINVAL);
17492 	}
17493 
17494 	new_flags =
17495 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_XRESOLV|IFF_BROADCAST);
17496 
17497 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
17498 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
17499 		    "IFF_IPV4 or IFF_IPV6\n"));
17500 		return (EINVAL);
17501 	}
17502 	/*
17503 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
17504 	 */
17505 	if ((new_flags & IFF_XRESOLV) && !(new_flags & IFF_IPV6) &&
17506 	    !(ipif->ipif_isv6)) {
17507 		ip1dbg(("ip_sioctl_slifname: XRESOLV only allowed on "
17508 		    "IPv6 interface\n"));
17509 		return (EINVAL);
17510 	}
17511 
17512 	/*
17513 	 * We always start off as IPv4, so only need to check for IPv6.
17514 	 */
17515 	if ((new_flags & IFF_IPV6) != 0) {
17516 		ill->ill_flags |= ILLF_IPV6;
17517 		ill->ill_flags &= ~ILLF_IPV4;
17518 	}
17519 
17520 	if ((new_flags & IFF_BROADCAST) != 0)
17521 		ipif->ipif_flags |= IPIF_BROADCAST;
17522 	else
17523 		ipif->ipif_flags &= ~IPIF_BROADCAST;
17524 
17525 	if ((new_flags & IFF_XRESOLV) != 0)
17526 		ill->ill_flags |= ILLF_XRESOLV;
17527 	else
17528 		ill->ill_flags &= ~ILLF_XRESOLV;
17529 
17530 	/* We started off as V4. */
17531 	if (ill->ill_flags & ILLF_IPV6) {
17532 		ill->ill_phyint->phyint_illv6 = ill;
17533 		ill->ill_phyint->phyint_illv4 = NULL;
17534 	}
17535 
17536 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
17537 }
17538 
17539 /* ARGSUSED */
17540 int
17541 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17542     ip_ioctl_cmd_t *ipip, void *if_req)
17543 {
17544 	/*
17545 	 * ill_phyint_reinit merged the v4 and v6 into a single
17546 	 * ipsq.  We might not have been able to complete the
17547 	 * slifname in ipif_set_values, if we could not become
17548 	 * exclusive.  If so restart it here
17549 	 */
17550 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
17551 }
17552 
17553 /*
17554  * Return a pointer to the ipif which matches the index, IP version type and
17555  * zoneid.
17556  */
17557 ipif_t *
17558 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
17559     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
17560 {
17561 	ill_t	*ill;
17562 	ipif_t	*ipif = NULL;
17563 
17564 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
17565 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
17566 
17567 	if (err != NULL)
17568 		*err = 0;
17569 
17570 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
17571 	if (ill != NULL) {
17572 		mutex_enter(&ill->ill_lock);
17573 		for (ipif = ill->ill_ipif; ipif != NULL;
17574 		    ipif = ipif->ipif_next) {
17575 			if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES ||
17576 			    zoneid == ipif->ipif_zoneid ||
17577 			    ipif->ipif_zoneid == ALL_ZONES)) {
17578 				ipif_refhold_locked(ipif);
17579 				break;
17580 			}
17581 		}
17582 		mutex_exit(&ill->ill_lock);
17583 		ill_refrele(ill);
17584 		if (ipif == NULL && err != NULL)
17585 			*err = ENXIO;
17586 	}
17587 	return (ipif);
17588 }
17589 
17590 /*
17591  * Change an existing physical interface's index. If the new index
17592  * is acceptable we update the index and the phyint_list_avl_by_index tree.
17593  * Finally, we update other systems which may have a dependence on the
17594  * index value.
17595  */
17596 /* ARGSUSED */
17597 int
17598 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17599     ip_ioctl_cmd_t *ipip, void *ifreq)
17600 {
17601 	ill_t		*ill;
17602 	phyint_t	*phyi;
17603 	struct ifreq	*ifr = (struct ifreq *)ifreq;
17604 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17605 	uint_t	old_index, index;
17606 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
17607 	avl_index_t	where;
17608 
17609 	if (ipip->ipi_cmd_type == IF_CMD)
17610 		index = ifr->ifr_index;
17611 	else
17612 		index = lifr->lifr_index;
17613 
17614 	/*
17615 	 * Only allow on physical interface. Also, index zero is illegal.
17616 	 */
17617 	ill = ipif->ipif_ill;
17618 	phyi = ill->ill_phyint;
17619 	if (ipif->ipif_id != 0 || index == 0) {
17620 		return (EINVAL);
17621 	}
17622 
17623 	/* If the index is not changing, no work to do */
17624 	if (phyi->phyint_ifindex == index)
17625 		return (0);
17626 
17627 	/*
17628 	 * Use phyint_exists() to determine if the new interface index
17629 	 * is already in use. If the index is unused then we need to
17630 	 * change the phyint's position in the phyint_list_avl_by_index
17631 	 * tree. If we do not do this, subsequent lookups (using the new
17632 	 * index value) will not find the phyint.
17633 	 */
17634 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17635 	if (phyint_exists(index, ipst)) {
17636 		rw_exit(&ipst->ips_ill_g_lock);
17637 		return (EEXIST);
17638 	}
17639 
17640 	/* The new index is unused. Set it in the phyint. */
17641 	old_index = phyi->phyint_ifindex;
17642 	phyi->phyint_ifindex = index;
17643 
17644 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
17645 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17646 	    &index, &where);
17647 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17648 	    phyi, where);
17649 	rw_exit(&ipst->ips_ill_g_lock);
17650 
17651 	/* Update SCTP's ILL list */
17652 	sctp_ill_reindex(ill, old_index);
17653 
17654 	/* Send the routing sockets message */
17655 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
17656 	if (ILL_OTHER(ill))
17657 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
17658 
17659 	return (0);
17660 }
17661 
17662 /* ARGSUSED */
17663 int
17664 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17665     ip_ioctl_cmd_t *ipip, void *ifreq)
17666 {
17667 	struct ifreq	*ifr = (struct ifreq *)ifreq;
17668 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17669 
17670 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
17671 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17672 	/* Get the interface index */
17673 	if (ipip->ipi_cmd_type == IF_CMD) {
17674 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
17675 	} else {
17676 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
17677 	}
17678 	return (0);
17679 }
17680 
17681 /* ARGSUSED */
17682 int
17683 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17684     ip_ioctl_cmd_t *ipip, void *ifreq)
17685 {
17686 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17687 
17688 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
17689 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17690 	/* Get the interface zone */
17691 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17692 	lifr->lifr_zoneid = ipif->ipif_zoneid;
17693 	return (0);
17694 }
17695 
17696 /*
17697  * Set the zoneid of an interface.
17698  */
17699 /* ARGSUSED */
17700 int
17701 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17702     ip_ioctl_cmd_t *ipip, void *ifreq)
17703 {
17704 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17705 	int err = 0;
17706 	boolean_t need_up = B_FALSE;
17707 	zone_t *zptr;
17708 	zone_status_t status;
17709 	zoneid_t zoneid;
17710 
17711 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17712 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
17713 		if (!is_system_labeled())
17714 			return (ENOTSUP);
17715 		zoneid = GLOBAL_ZONEID;
17716 	}
17717 
17718 	/* cannot assign instance zero to a non-global zone */
17719 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
17720 		return (ENOTSUP);
17721 
17722 	/*
17723 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
17724 	 * the event of a race with the zone shutdown processing, since IP
17725 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
17726 	 * interface will be cleaned up even if the zone is shut down
17727 	 * immediately after the status check. If the interface can't be brought
17728 	 * down right away, and the zone is shut down before the restart
17729 	 * function is called, we resolve the possible races by rechecking the
17730 	 * zone status in the restart function.
17731 	 */
17732 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
17733 		return (EINVAL);
17734 	status = zone_status_get(zptr);
17735 	zone_rele(zptr);
17736 
17737 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
17738 		return (EINVAL);
17739 
17740 	if (ipif->ipif_flags & IPIF_UP) {
17741 		/*
17742 		 * If the interface is already marked up,
17743 		 * we call ipif_down which will take care
17744 		 * of ditching any IREs that have been set
17745 		 * up based on the old interface address.
17746 		 */
17747 		err = ipif_logical_down(ipif, q, mp);
17748 		if (err == EINPROGRESS)
17749 			return (err);
17750 		ipif_down_tail(ipif);
17751 		need_up = B_TRUE;
17752 	}
17753 
17754 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
17755 	return (err);
17756 }
17757 
17758 static int
17759 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
17760     queue_t *q, mblk_t *mp, boolean_t need_up)
17761 {
17762 	int	err = 0;
17763 	ip_stack_t	*ipst;
17764 
17765 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
17766 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17767 
17768 	if (CONN_Q(q))
17769 		ipst = CONNQ_TO_IPST(q);
17770 	else
17771 		ipst = ILLQ_TO_IPST(q);
17772 
17773 	/*
17774 	 * For exclusive stacks we don't allow a different zoneid than
17775 	 * global.
17776 	 */
17777 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
17778 	    zoneid != GLOBAL_ZONEID)
17779 		return (EINVAL);
17780 
17781 	/* Set the new zone id. */
17782 	ipif->ipif_zoneid = zoneid;
17783 
17784 	/* Update sctp list */
17785 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
17786 
17787 	if (need_up) {
17788 		/*
17789 		 * Now bring the interface back up.  If this
17790 		 * is the only IPIF for the ILL, ipif_up
17791 		 * will have to re-bind to the device, so
17792 		 * we may get back EINPROGRESS, in which
17793 		 * case, this IOCTL will get completed in
17794 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
17795 		 */
17796 		err = ipif_up(ipif, q, mp);
17797 	}
17798 	return (err);
17799 }
17800 
17801 /* ARGSUSED */
17802 int
17803 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17804     ip_ioctl_cmd_t *ipip, void *if_req)
17805 {
17806 	struct lifreq *lifr = (struct lifreq *)if_req;
17807 	zoneid_t zoneid;
17808 	zone_t *zptr;
17809 	zone_status_t status;
17810 
17811 	ASSERT(ipif->ipif_id != 0);
17812 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17813 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
17814 		zoneid = GLOBAL_ZONEID;
17815 
17816 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
17817 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17818 
17819 	/*
17820 	 * We recheck the zone status to resolve the following race condition:
17821 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
17822 	 * 2) hme0:1 is up and can't be brought down right away;
17823 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
17824 	 * 3) zone "myzone" is halted; the zone status switches to
17825 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
17826 	 * the interfaces to remove - hme0:1 is not returned because it's not
17827 	 * yet in "myzone", so it won't be removed;
17828 	 * 4) the restart function for SIOCSLIFZONE is called; without the
17829 	 * status check here, we would have hme0:1 in "myzone" after it's been
17830 	 * destroyed.
17831 	 * Note that if the status check fails, we need to bring the interface
17832 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
17833 	 * ipif_up_done[_v6]().
17834 	 */
17835 	status = ZONE_IS_UNINITIALIZED;
17836 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
17837 		status = zone_status_get(zptr);
17838 		zone_rele(zptr);
17839 	}
17840 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
17841 		if (ipif->ipif_isv6) {
17842 			(void) ipif_up_done_v6(ipif);
17843 		} else {
17844 			(void) ipif_up_done(ipif);
17845 		}
17846 		return (EINVAL);
17847 	}
17848 
17849 	ipif_down_tail(ipif);
17850 
17851 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
17852 	    B_TRUE));
17853 }
17854 
17855 /*
17856  * Return the number of addresses on `ill' with one or more of the values
17857  * in `set' set and all of the values in `clear' clear.
17858  */
17859 static uint_t
17860 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
17861 {
17862 	ipif_t	*ipif;
17863 	uint_t	cnt = 0;
17864 
17865 	ASSERT(IAM_WRITER_ILL(ill));
17866 
17867 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
17868 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
17869 			cnt++;
17870 
17871 	return (cnt);
17872 }
17873 
17874 /*
17875  * Return the number of migratable addresses on `ill' that are under
17876  * application control.
17877  */
17878 uint_t
17879 ill_appaddr_cnt(const ill_t *ill)
17880 {
17881 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
17882 	    IPIF_NOFAILOVER));
17883 }
17884 
17885 /*
17886  * Return the number of point-to-point addresses on `ill'.
17887  */
17888 uint_t
17889 ill_ptpaddr_cnt(const ill_t *ill)
17890 {
17891 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
17892 }
17893 
17894 /* ARGSUSED */
17895 int
17896 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17897 	ip_ioctl_cmd_t *ipip, void *ifreq)
17898 {
17899 	struct lifreq	*lifr = ifreq;
17900 
17901 	ASSERT(q->q_next == NULL);
17902 	ASSERT(CONN_Q(q));
17903 
17904 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
17905 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17906 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
17907 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
17908 
17909 	return (0);
17910 }
17911 
17912 /* Find the previous ILL in this usesrc group */
17913 static ill_t *
17914 ill_prev_usesrc(ill_t *uill)
17915 {
17916 	ill_t *ill;
17917 
17918 	for (ill = uill->ill_usesrc_grp_next;
17919 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
17920 	    ill = ill->ill_usesrc_grp_next)
17921 		/* do nothing */;
17922 	return (ill);
17923 }
17924 
17925 /*
17926  * Release all members of the usesrc group. This routine is called
17927  * from ill_delete when the interface being unplumbed is the
17928  * group head.
17929  */
17930 static void
17931 ill_disband_usesrc_group(ill_t *uill)
17932 {
17933 	ill_t *next_ill, *tmp_ill;
17934 	ip_stack_t	*ipst = uill->ill_ipst;
17935 
17936 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
17937 	next_ill = uill->ill_usesrc_grp_next;
17938 
17939 	do {
17940 		ASSERT(next_ill != NULL);
17941 		tmp_ill = next_ill->ill_usesrc_grp_next;
17942 		ASSERT(tmp_ill != NULL);
17943 		next_ill->ill_usesrc_grp_next = NULL;
17944 		next_ill->ill_usesrc_ifindex = 0;
17945 		next_ill = tmp_ill;
17946 	} while (next_ill->ill_usesrc_ifindex != 0);
17947 	uill->ill_usesrc_grp_next = NULL;
17948 }
17949 
17950 /*
17951  * Remove the client usesrc ILL from the list and relink to a new list
17952  */
17953 int
17954 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
17955 {
17956 	ill_t *ill, *tmp_ill;
17957 	ip_stack_t	*ipst = ucill->ill_ipst;
17958 
17959 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
17960 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
17961 
17962 	/*
17963 	 * Check if the usesrc client ILL passed in is not already
17964 	 * in use as a usesrc ILL i.e one whose source address is
17965 	 * in use OR a usesrc ILL is not already in use as a usesrc
17966 	 * client ILL
17967 	 */
17968 	if ((ucill->ill_usesrc_ifindex == 0) ||
17969 	    (uill->ill_usesrc_ifindex != 0)) {
17970 		return (-1);
17971 	}
17972 
17973 	ill = ill_prev_usesrc(ucill);
17974 	ASSERT(ill->ill_usesrc_grp_next != NULL);
17975 
17976 	/* Remove from the current list */
17977 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
17978 		/* Only two elements in the list */
17979 		ASSERT(ill->ill_usesrc_ifindex == 0);
17980 		ill->ill_usesrc_grp_next = NULL;
17981 	} else {
17982 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
17983 	}
17984 
17985 	if (ifindex == 0) {
17986 		ucill->ill_usesrc_ifindex = 0;
17987 		ucill->ill_usesrc_grp_next = NULL;
17988 		return (0);
17989 	}
17990 
17991 	ucill->ill_usesrc_ifindex = ifindex;
17992 	tmp_ill = uill->ill_usesrc_grp_next;
17993 	uill->ill_usesrc_grp_next = ucill;
17994 	ucill->ill_usesrc_grp_next =
17995 	    (tmp_ill != NULL) ? tmp_ill : uill;
17996 	return (0);
17997 }
17998 
17999 /*
18000  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
18001  * ip.c for locking details.
18002  */
18003 /* ARGSUSED */
18004 int
18005 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18006     ip_ioctl_cmd_t *ipip, void *ifreq)
18007 {
18008 	struct lifreq *lifr = (struct lifreq *)ifreq;
18009 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
18010 	    ill_flag_changed = B_FALSE;
18011 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
18012 	int err = 0, ret;
18013 	uint_t ifindex;
18014 	ipsq_t *ipsq = NULL;
18015 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
18016 
18017 	ASSERT(IAM_WRITER_IPIF(ipif));
18018 	ASSERT(q->q_next == NULL);
18019 	ASSERT(CONN_Q(q));
18020 
18021 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
18022 
18023 	ifindex = lifr->lifr_index;
18024 	if (ifindex == 0) {
18025 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
18026 			/* non usesrc group interface, nothing to reset */
18027 			return (0);
18028 		}
18029 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
18030 		/* valid reset request */
18031 		reset_flg = B_TRUE;
18032 	}
18033 
18034 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
18035 	    ip_process_ioctl, &err, ipst);
18036 	if (usesrc_ill == NULL) {
18037 		return (err);
18038 	}
18039 
18040 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
18041 	    NEW_OP, B_TRUE);
18042 	if (ipsq == NULL) {
18043 		err = EINPROGRESS;
18044 		/* Operation enqueued on the ipsq of the usesrc ILL */
18045 		goto done;
18046 	}
18047 
18048 	/* USESRC isn't currently supported with IPMP */
18049 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
18050 		err = ENOTSUP;
18051 		goto done;
18052 	}
18053 
18054 	/*
18055 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
18056 	 * used by IPMP underlying interfaces, but someone might think it's
18057 	 * more general and try to use it independently with VNI.)
18058 	 */
18059 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
18060 		err = ENOTSUP;
18061 		goto done;
18062 	}
18063 
18064 	/*
18065 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
18066 	 * already a client then return EINVAL
18067 	 */
18068 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
18069 		err = EINVAL;
18070 		goto done;
18071 	}
18072 
18073 	/*
18074 	 * If the ill_usesrc_ifindex field is already set to what it needs to
18075 	 * be then this is a duplicate operation.
18076 	 */
18077 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
18078 		err = 0;
18079 		goto done;
18080 	}
18081 
18082 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
18083 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
18084 	    usesrc_ill->ill_isv6));
18085 
18086 	/*
18087 	 * The next step ensures that no new ires will be created referencing
18088 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
18089 	 * we go through an ire walk deleting all ire caches that reference
18090 	 * the client ill. New ires referencing the client ill that are added
18091 	 * to the ire table before the ILL_CHANGING flag is set, will be
18092 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
18093 	 * the client ill while the ILL_CHANGING flag is set will be failed
18094 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
18095 	 * checks (under the ill_g_usesrc_lock) that the ire being added
18096 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
18097 	 * belong to the same usesrc group.
18098 	 */
18099 	mutex_enter(&usesrc_cli_ill->ill_lock);
18100 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
18101 	mutex_exit(&usesrc_cli_ill->ill_lock);
18102 	ill_flag_changed = B_TRUE;
18103 
18104 	if (ipif->ipif_isv6)
18105 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
18106 		    ALL_ZONES, ipst);
18107 	else
18108 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
18109 		    ALL_ZONES, ipst);
18110 
18111 	/*
18112 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
18113 	 * and the ill_usesrc_ifindex fields
18114 	 */
18115 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
18116 
18117 	if (reset_flg) {
18118 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
18119 		if (ret != 0) {
18120 			err = EINVAL;
18121 		}
18122 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
18123 		goto done;
18124 	}
18125 
18126 	/*
18127 	 * Four possibilities to consider:
18128 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
18129 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
18130 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
18131 	 * 4. Both are part of their respective usesrc groups
18132 	 */
18133 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
18134 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
18135 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
18136 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
18137 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
18138 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
18139 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
18140 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
18141 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
18142 		/* Insert at head of list */
18143 		usesrc_cli_ill->ill_usesrc_grp_next =
18144 		    usesrc_ill->ill_usesrc_grp_next;
18145 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
18146 	} else {
18147 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
18148 		    ifindex);
18149 		if (ret != 0)
18150 			err = EINVAL;
18151 	}
18152 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
18153 
18154 done:
18155 	if (ill_flag_changed) {
18156 		mutex_enter(&usesrc_cli_ill->ill_lock);
18157 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
18158 		mutex_exit(&usesrc_cli_ill->ill_lock);
18159 	}
18160 	if (ipsq != NULL)
18161 		ipsq_exit(ipsq);
18162 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
18163 	ill_refrele(usesrc_ill);
18164 	return (err);
18165 }
18166 
18167 /*
18168  * comparison function used by avl.
18169  */
18170 static int
18171 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
18172 {
18173 
18174 	uint_t index;
18175 
18176 	ASSERT(phyip != NULL && index_ptr != NULL);
18177 
18178 	index = *((uint_t *)index_ptr);
18179 	/*
18180 	 * let the phyint with the lowest index be on top.
18181 	 */
18182 	if (((phyint_t *)phyip)->phyint_ifindex < index)
18183 		return (1);
18184 	if (((phyint_t *)phyip)->phyint_ifindex > index)
18185 		return (-1);
18186 	return (0);
18187 }
18188 
18189 /*
18190  * comparison function used by avl.
18191  */
18192 static int
18193 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
18194 {
18195 	ill_t *ill;
18196 	int res = 0;
18197 
18198 	ASSERT(phyip != NULL && name_ptr != NULL);
18199 
18200 	if (((phyint_t *)phyip)->phyint_illv4)
18201 		ill = ((phyint_t *)phyip)->phyint_illv4;
18202 	else
18203 		ill = ((phyint_t *)phyip)->phyint_illv6;
18204 	ASSERT(ill != NULL);
18205 
18206 	res = strcmp(ill->ill_name, (char *)name_ptr);
18207 	if (res > 0)
18208 		return (1);
18209 	else if (res < 0)
18210 		return (-1);
18211 	return (0);
18212 }
18213 
18214 /*
18215  * This function is called on the unplumb path via ill_glist_delete() when
18216  * there are no ills left on the phyint and thus the phyint can be freed.
18217  */
18218 static void
18219 phyint_free(phyint_t *phyi)
18220 {
18221 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
18222 
18223 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
18224 
18225 	/*
18226 	 * If this phyint was an IPMP meta-interface, blow away the group.
18227 	 * This is safe to do because all of the illgrps have already been
18228 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
18229 	 * If we're cleaning up as a result of failed initialization,
18230 	 * phyint_grp may be NULL.
18231 	 */
18232 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
18233 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
18234 		ipmp_grp_destroy(phyi->phyint_grp);
18235 		phyi->phyint_grp = NULL;
18236 		rw_exit(&ipst->ips_ipmp_lock);
18237 	}
18238 
18239 	/*
18240 	 * If this interface was under IPMP, take it out of the group.
18241 	 */
18242 	if (phyi->phyint_grp != NULL)
18243 		ipmp_phyint_leave_grp(phyi);
18244 
18245 	/*
18246 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
18247 	 * will be freed in ipsq_exit().
18248 	 */
18249 	phyi->phyint_ipsq->ipsq_phyint = NULL;
18250 	phyi->phyint_name[0] = '\0';
18251 
18252 	mi_free(phyi);
18253 }
18254 
18255 /*
18256  * Attach the ill to the phyint structure which can be shared by both
18257  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
18258  * function is called from ipif_set_values and ill_lookup_on_name (for
18259  * loopback) where we know the name of the ill. We lookup the ill and if
18260  * there is one present already with the name use that phyint. Otherwise
18261  * reuse the one allocated by ill_init.
18262  */
18263 static void
18264 ill_phyint_reinit(ill_t *ill)
18265 {
18266 	boolean_t isv6 = ill->ill_isv6;
18267 	phyint_t *phyi_old;
18268 	phyint_t *phyi;
18269 	avl_index_t where = 0;
18270 	ill_t	*ill_other = NULL;
18271 	ip_stack_t	*ipst = ill->ill_ipst;
18272 
18273 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
18274 
18275 	phyi_old = ill->ill_phyint;
18276 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
18277 	    phyi_old->phyint_illv6 == NULL));
18278 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
18279 	    phyi_old->phyint_illv4 == NULL));
18280 	ASSERT(phyi_old->phyint_ifindex == 0);
18281 
18282 	/*
18283 	 * Now that our ill has a name, set it in the phyint.
18284 	 */
18285 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
18286 
18287 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18288 	    ill->ill_name, &where);
18289 
18290 	/*
18291 	 * 1. We grabbed the ill_g_lock before inserting this ill into
18292 	 *    the global list of ills. So no other thread could have located
18293 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
18294 	 * 2. Now locate the other protocol instance of this ill.
18295 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
18296 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
18297 	 *    of neither ill can change.
18298 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
18299 	 *    other ill.
18300 	 * 5. Release all locks.
18301 	 */
18302 
18303 	/*
18304 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
18305 	 * we are initializing IPv4.
18306 	 */
18307 	if (phyi != NULL) {
18308 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
18309 		ASSERT(ill_other->ill_phyint != NULL);
18310 		ASSERT((isv6 && !ill_other->ill_isv6) ||
18311 		    (!isv6 && ill_other->ill_isv6));
18312 		GRAB_ILL_LOCKS(ill, ill_other);
18313 		/*
18314 		 * We are potentially throwing away phyint_flags which
18315 		 * could be different from the one that we obtain from
18316 		 * ill_other->ill_phyint. But it is okay as we are assuming
18317 		 * that the state maintained within IP is correct.
18318 		 */
18319 		mutex_enter(&phyi->phyint_lock);
18320 		if (isv6) {
18321 			ASSERT(phyi->phyint_illv6 == NULL);
18322 			phyi->phyint_illv6 = ill;
18323 		} else {
18324 			ASSERT(phyi->phyint_illv4 == NULL);
18325 			phyi->phyint_illv4 = ill;
18326 		}
18327 
18328 		/*
18329 		 * Delete the old phyint and make its ipsq eligible
18330 		 * to be freed in ipsq_exit().
18331 		 */
18332 		phyi_old->phyint_illv4 = NULL;
18333 		phyi_old->phyint_illv6 = NULL;
18334 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
18335 		phyi_old->phyint_name[0] = '\0';
18336 		mi_free(phyi_old);
18337 	} else {
18338 		mutex_enter(&ill->ill_lock);
18339 		/*
18340 		 * We don't need to acquire any lock, since
18341 		 * the ill is not yet visible globally  and we
18342 		 * have not yet released the ill_g_lock.
18343 		 */
18344 		phyi = phyi_old;
18345 		mutex_enter(&phyi->phyint_lock);
18346 		/* XXX We need a recovery strategy here. */
18347 		if (!phyint_assign_ifindex(phyi, ipst))
18348 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
18349 
18350 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18351 		    (void *)phyi, where);
18352 
18353 		(void) avl_find(&ipst->ips_phyint_g_list->
18354 		    phyint_list_avl_by_index,
18355 		    &phyi->phyint_ifindex, &where);
18356 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
18357 		    (void *)phyi, where);
18358 	}
18359 
18360 	/*
18361 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
18362 	 * pending mp is not affected because that is per ill basis.
18363 	 */
18364 	ill->ill_phyint = phyi;
18365 
18366 	/*
18367 	 * Now that the phyint's ifindex has been assigned, complete the
18368 	 * remaining
18369 	 */
18370 
18371 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
18372 	if (ill->ill_isv6) {
18373 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
18374 		    ill->ill_phyint->phyint_ifindex;
18375 		ill->ill_mcast_type = ipst->ips_mld_max_version;
18376 	} else {
18377 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
18378 	}
18379 
18380 	/*
18381 	 * Generate an event within the hooks framework to indicate that
18382 	 * a new interface has just been added to IP.  For this event to
18383 	 * be generated, the network interface must, at least, have an
18384 	 * ifindex assigned to it.  (We don't generate the event for
18385 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
18386 	 *
18387 	 * This needs to be run inside the ill_g_lock perimeter to ensure
18388 	 * that the ordering of delivered events to listeners matches the
18389 	 * order of them in the kernel.
18390 	 */
18391 	if (!IS_LOOPBACK(ill)) {
18392 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
18393 		    ill->ill_name_length);
18394 	}
18395 	RELEASE_ILL_LOCKS(ill, ill_other);
18396 	mutex_exit(&phyi->phyint_lock);
18397 }
18398 
18399 /*
18400  * Notify any downstream modules of the name of this interface.
18401  * An M_IOCTL is used even though we don't expect a successful reply.
18402  * Any reply message from the driver (presumably an M_IOCNAK) will
18403  * eventually get discarded somewhere upstream.  The message format is
18404  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
18405  * to IP.
18406  */
18407 static void
18408 ip_ifname_notify(ill_t *ill, queue_t *q)
18409 {
18410 	mblk_t *mp1, *mp2;
18411 	struct iocblk *iocp;
18412 	struct lifreq *lifr;
18413 
18414 	mp1 = mkiocb(SIOCSLIFNAME);
18415 	if (mp1 == NULL)
18416 		return;
18417 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
18418 	if (mp2 == NULL) {
18419 		freeb(mp1);
18420 		return;
18421 	}
18422 
18423 	mp1->b_cont = mp2;
18424 	iocp = (struct iocblk *)mp1->b_rptr;
18425 	iocp->ioc_count = sizeof (struct lifreq);
18426 
18427 	lifr = (struct lifreq *)mp2->b_rptr;
18428 	mp2->b_wptr += sizeof (struct lifreq);
18429 	bzero(lifr, sizeof (struct lifreq));
18430 
18431 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
18432 	lifr->lifr_ppa = ill->ill_ppa;
18433 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
18434 
18435 	putnext(q, mp1);
18436 }
18437 
18438 static int
18439 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
18440 {
18441 	int		err;
18442 	ip_stack_t	*ipst = ill->ill_ipst;
18443 	phyint_t	*phyi = ill->ill_phyint;
18444 
18445 	/* Set the obsolete NDD per-interface forwarding name. */
18446 	err = ill_set_ndd_name(ill);
18447 	if (err != 0) {
18448 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
18449 		    err);
18450 	}
18451 
18452 	/*
18453 	 * Now that ill_name is set, the configuration for the IPMP
18454 	 * meta-interface can be performed.
18455 	 */
18456 	if (IS_IPMP(ill)) {
18457 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
18458 		/*
18459 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
18460 		 * meta-interface and we need to create the IPMP group.
18461 		 */
18462 		if (phyi->phyint_grp == NULL) {
18463 			/*
18464 			 * If someone has renamed another IPMP group to have
18465 			 * the same name as our interface, bail.
18466 			 */
18467 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
18468 				rw_exit(&ipst->ips_ipmp_lock);
18469 				return (EEXIST);
18470 			}
18471 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
18472 			if (phyi->phyint_grp == NULL) {
18473 				rw_exit(&ipst->ips_ipmp_lock);
18474 				return (ENOMEM);
18475 			}
18476 		}
18477 		rw_exit(&ipst->ips_ipmp_lock);
18478 	}
18479 
18480 	/* Tell downstream modules where they are. */
18481 	ip_ifname_notify(ill, q);
18482 
18483 	/*
18484 	 * ill_dl_phys returns EINPROGRESS in the usual case.
18485 	 * Error cases are ENOMEM ...
18486 	 */
18487 	err = ill_dl_phys(ill, ipif, mp, q);
18488 
18489 	/*
18490 	 * If there is no IRE expiration timer running, get one started.
18491 	 * igmp and mld timers will be triggered by the first multicast
18492 	 */
18493 	if (ipst->ips_ip_ire_expire_id == 0) {
18494 		/*
18495 		 * acquire the lock and check again.
18496 		 */
18497 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
18498 		if (ipst->ips_ip_ire_expire_id == 0) {
18499 			ipst->ips_ip_ire_expire_id = timeout(
18500 			    ip_trash_timer_expire, ipst,
18501 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
18502 		}
18503 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
18504 	}
18505 
18506 	if (ill->ill_isv6) {
18507 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
18508 		if (ipst->ips_mld_slowtimeout_id == 0) {
18509 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
18510 			    (void *)ipst,
18511 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
18512 		}
18513 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
18514 	} else {
18515 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
18516 		if (ipst->ips_igmp_slowtimeout_id == 0) {
18517 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
18518 			    (void *)ipst,
18519 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
18520 		}
18521 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
18522 	}
18523 
18524 	return (err);
18525 }
18526 
18527 /*
18528  * Common routine for ppa and ifname setting. Should be called exclusive.
18529  *
18530  * Returns EINPROGRESS when mp has been consumed by queueing it on
18531  * ill_pending_mp and the ioctl will complete in ip_rput.
18532  *
18533  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
18534  * the new name and new ppa in lifr_name and lifr_ppa respectively.
18535  * For SLIFNAME, we pass these values back to the userland.
18536  */
18537 static int
18538 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
18539 {
18540 	ill_t	*ill;
18541 	ipif_t	*ipif;
18542 	ipsq_t	*ipsq;
18543 	char	*ppa_ptr;
18544 	char	*old_ptr;
18545 	char	old_char;
18546 	int	error;
18547 	ip_stack_t	*ipst;
18548 
18549 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
18550 	ASSERT(q->q_next != NULL);
18551 	ASSERT(interf_name != NULL);
18552 
18553 	ill = (ill_t *)q->q_ptr;
18554 	ipst = ill->ill_ipst;
18555 
18556 	ASSERT(ill->ill_ipst != NULL);
18557 	ASSERT(ill->ill_name[0] == '\0');
18558 	ASSERT(IAM_WRITER_ILL(ill));
18559 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
18560 	ASSERT(ill->ill_ppa == UINT_MAX);
18561 
18562 	/* The ppa is sent down by ifconfig or is chosen */
18563 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
18564 		return (EINVAL);
18565 	}
18566 
18567 	/*
18568 	 * make sure ppa passed in is same as ppa in the name.
18569 	 * This check is not made when ppa == UINT_MAX in that case ppa
18570 	 * in the name could be anything. System will choose a ppa and
18571 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
18572 	 */
18573 	if (*new_ppa_ptr != UINT_MAX) {
18574 		/* stoi changes the pointer */
18575 		old_ptr = ppa_ptr;
18576 		/*
18577 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
18578 		 * (they don't have an externally visible ppa).  We assign one
18579 		 * here so that we can manage the interface.  Note that in
18580 		 * the past this value was always 0 for DLPI 1 drivers.
18581 		 */
18582 		if (*new_ppa_ptr == 0)
18583 			*new_ppa_ptr = stoi(&old_ptr);
18584 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
18585 			return (EINVAL);
18586 	}
18587 	/*
18588 	 * terminate string before ppa
18589 	 * save char at that location.
18590 	 */
18591 	old_char = ppa_ptr[0];
18592 	ppa_ptr[0] = '\0';
18593 
18594 	ill->ill_ppa = *new_ppa_ptr;
18595 	/*
18596 	 * Finish as much work now as possible before calling ill_glist_insert
18597 	 * which makes the ill globally visible and also merges it with the
18598 	 * other protocol instance of this phyint. The remaining work is
18599 	 * done after entering the ipsq which may happen sometime later.
18600 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
18601 	 */
18602 	ipif = ill->ill_ipif;
18603 
18604 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
18605 	ipif_assign_seqid(ipif);
18606 
18607 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
18608 		ill->ill_flags |= ILLF_IPV4;
18609 
18610 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
18611 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
18612 
18613 	if (ill->ill_flags & ILLF_IPV6) {
18614 
18615 		ill->ill_isv6 = B_TRUE;
18616 		if (ill->ill_rq != NULL) {
18617 			ill->ill_rq->q_qinfo = &iprinitv6;
18618 			ill->ill_wq->q_qinfo = &ipwinitv6;
18619 		}
18620 
18621 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
18622 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
18623 		ipif->ipif_v6src_addr = ipv6_all_zeros;
18624 		ipif->ipif_v6subnet = ipv6_all_zeros;
18625 		ipif->ipif_v6net_mask = ipv6_all_zeros;
18626 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
18627 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
18628 		/*
18629 		 * point-to-point or Non-mulicast capable
18630 		 * interfaces won't do NUD unless explicitly
18631 		 * configured to do so.
18632 		 */
18633 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
18634 		    !(ill->ill_flags & ILLF_MULTICAST)) {
18635 			ill->ill_flags |= ILLF_NONUD;
18636 		}
18637 		/* Make sure IPv4 specific flag is not set on IPv6 if */
18638 		if (ill->ill_flags & ILLF_NOARP) {
18639 			/*
18640 			 * Note: xresolv interfaces will eventually need
18641 			 * NOARP set here as well, but that will require
18642 			 * those external resolvers to have some
18643 			 * knowledge of that flag and act appropriately.
18644 			 * Not to be changed at present.
18645 			 */
18646 			ill->ill_flags &= ~ILLF_NOARP;
18647 		}
18648 		/*
18649 		 * Set the ILLF_ROUTER flag according to the global
18650 		 * IPv6 forwarding policy.
18651 		 */
18652 		if (ipst->ips_ipv6_forward != 0)
18653 			ill->ill_flags |= ILLF_ROUTER;
18654 	} else if (ill->ill_flags & ILLF_IPV4) {
18655 		ill->ill_isv6 = B_FALSE;
18656 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
18657 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
18658 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
18659 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
18660 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
18661 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
18662 		/*
18663 		 * Set the ILLF_ROUTER flag according to the global
18664 		 * IPv4 forwarding policy.
18665 		 */
18666 		if (ipst->ips_ip_g_forward != 0)
18667 			ill->ill_flags |= ILLF_ROUTER;
18668 	}
18669 
18670 	ASSERT(ill->ill_phyint != NULL);
18671 
18672 	/*
18673 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
18674 	 * be completed in ill_glist_insert -> ill_phyint_reinit
18675 	 */
18676 	if (!ill_allocate_mibs(ill))
18677 		return (ENOMEM);
18678 
18679 	/*
18680 	 * Pick a default sap until we get the DL_INFO_ACK back from
18681 	 * the driver.
18682 	 */
18683 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
18684 	    ill->ill_media->ip_m_ipv4sap;
18685 
18686 	ill->ill_ifname_pending = 1;
18687 	ill->ill_ifname_pending_err = 0;
18688 
18689 	/*
18690 	 * When the first ipif comes up in ipif_up_done(), multicast groups
18691 	 * that were joined while this ill was not bound to the DLPI link need
18692 	 * to be recovered by ill_recover_multicast().
18693 	 */
18694 	ill->ill_need_recover_multicast = 1;
18695 
18696 	ill_refhold(ill);
18697 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
18698 	if ((error = ill_glist_insert(ill, interf_name,
18699 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
18700 		ill->ill_ppa = UINT_MAX;
18701 		ill->ill_name[0] = '\0';
18702 		/*
18703 		 * undo null termination done above.
18704 		 */
18705 		ppa_ptr[0] = old_char;
18706 		rw_exit(&ipst->ips_ill_g_lock);
18707 		ill_refrele(ill);
18708 		return (error);
18709 	}
18710 
18711 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
18712 
18713 	/*
18714 	 * When we return the buffer pointed to by interf_name should contain
18715 	 * the same name as in ill_name.
18716 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
18717 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
18718 	 * so copy full name and update the ppa ptr.
18719 	 * When ppa passed in != UINT_MAX all values are correct just undo
18720 	 * null termination, this saves a bcopy.
18721 	 */
18722 	if (*new_ppa_ptr == UINT_MAX) {
18723 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
18724 		*new_ppa_ptr = ill->ill_ppa;
18725 	} else {
18726 		/*
18727 		 * undo null termination done above.
18728 		 */
18729 		ppa_ptr[0] = old_char;
18730 	}
18731 
18732 	/* Let SCTP know about this ILL */
18733 	sctp_update_ill(ill, SCTP_ILL_INSERT);
18734 
18735 	/*
18736 	 * ill_glist_insert has made the ill visible globally, and
18737 	 * ill_phyint_reinit could have changed the ipsq. At this point,
18738 	 * we need to hold the ips_ill_g_lock across the call to enter the
18739 	 * ipsq to enforce atomicity and prevent reordering. In the event
18740 	 * the ipsq has changed, and if the new ipsq is currently busy,
18741 	 * we need to make sure that this half-completed ioctl is ahead of
18742 	 * any subsequent ioctl. We achieve this by not dropping the
18743 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
18744 	 * ensuring that new ioctls can't start.
18745 	 */
18746 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
18747 	    B_TRUE);
18748 
18749 	rw_exit(&ipst->ips_ill_g_lock);
18750 	ill_refrele(ill);
18751 	if (ipsq == NULL)
18752 		return (EINPROGRESS);
18753 
18754 	/*
18755 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
18756 	 */
18757 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
18758 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
18759 	else
18760 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
18761 
18762 	error = ipif_set_values_tail(ill, ipif, mp, q);
18763 	ipsq_exit(ipsq);
18764 	if (error != 0 && error != EINPROGRESS) {
18765 		/*
18766 		 * restore previous values
18767 		 */
18768 		ill->ill_isv6 = B_FALSE;
18769 	}
18770 	return (error);
18771 }
18772 
18773 void
18774 ipif_init(ip_stack_t *ipst)
18775 {
18776 	int i;
18777 
18778 	for (i = 0; i < MAX_G_HEADS; i++) {
18779 		ipst->ips_ill_g_heads[i].ill_g_list_head =
18780 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
18781 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
18782 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
18783 	}
18784 
18785 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
18786 	    ill_phyint_compare_index,
18787 	    sizeof (phyint_t),
18788 	    offsetof(struct phyint, phyint_avl_by_index));
18789 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18790 	    ill_phyint_compare_name,
18791 	    sizeof (phyint_t),
18792 	    offsetof(struct phyint, phyint_avl_by_name));
18793 }
18794 
18795 /*
18796  * Lookup the ipif corresponding to the onlink destination address. For
18797  * point-to-point interfaces, it matches with remote endpoint destination
18798  * address. For point-to-multipoint interfaces it only tries to match the
18799  * destination with the interface's subnet address. The longest, most specific
18800  * match is found to take care of such rare network configurations like -
18801  * le0: 129.146.1.1/16
18802  * le1: 129.146.2.2/24
18803  *
18804  * This is used by SO_DONTROUTE and IP_NEXTHOP.  Since neither of those are
18805  * supported on underlying interfaces in an IPMP group, underlying interfaces
18806  * are ignored when looking up a match.  (If we didn't ignore them, we'd
18807  * risk using a test address as a source for outgoing traffic.)
18808  */
18809 ipif_t *
18810 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
18811 {
18812 	ipif_t	*ipif, *best_ipif;
18813 	ill_t	*ill;
18814 	ill_walk_context_t ctx;
18815 
18816 	ASSERT(zoneid != ALL_ZONES);
18817 	best_ipif = NULL;
18818 
18819 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18820 	ill = ILL_START_WALK_V4(&ctx, ipst);
18821 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18822 		if (IS_UNDER_IPMP(ill))
18823 			continue;
18824 		mutex_enter(&ill->ill_lock);
18825 		for (ipif = ill->ill_ipif; ipif != NULL;
18826 		    ipif = ipif->ipif_next) {
18827 			if (!IPIF_CAN_LOOKUP(ipif))
18828 				continue;
18829 			if (ipif->ipif_zoneid != zoneid &&
18830 			    ipif->ipif_zoneid != ALL_ZONES)
18831 				continue;
18832 			/*
18833 			 * Point-to-point case. Look for exact match with
18834 			 * destination address.
18835 			 */
18836 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
18837 				if (ipif->ipif_pp_dst_addr == addr) {
18838 					ipif_refhold_locked(ipif);
18839 					mutex_exit(&ill->ill_lock);
18840 					rw_exit(&ipst->ips_ill_g_lock);
18841 					if (best_ipif != NULL)
18842 						ipif_refrele(best_ipif);
18843 					return (ipif);
18844 				}
18845 			} else if (ipif->ipif_subnet == (addr &
18846 			    ipif->ipif_net_mask)) {
18847 				/*
18848 				 * Point-to-multipoint case. Looping through to
18849 				 * find the most specific match. If there are
18850 				 * multiple best match ipif's then prefer ipif's
18851 				 * that are UP. If there is only one best match
18852 				 * ipif and it is DOWN we must still return it.
18853 				 */
18854 				if ((best_ipif == NULL) ||
18855 				    (ipif->ipif_net_mask >
18856 				    best_ipif->ipif_net_mask) ||
18857 				    ((ipif->ipif_net_mask ==
18858 				    best_ipif->ipif_net_mask) &&
18859 				    ((ipif->ipif_flags & IPIF_UP) &&
18860 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
18861 					ipif_refhold_locked(ipif);
18862 					mutex_exit(&ill->ill_lock);
18863 					rw_exit(&ipst->ips_ill_g_lock);
18864 					if (best_ipif != NULL)
18865 						ipif_refrele(best_ipif);
18866 					best_ipif = ipif;
18867 					rw_enter(&ipst->ips_ill_g_lock,
18868 					    RW_READER);
18869 					mutex_enter(&ill->ill_lock);
18870 				}
18871 			}
18872 		}
18873 		mutex_exit(&ill->ill_lock);
18874 	}
18875 	rw_exit(&ipst->ips_ill_g_lock);
18876 	return (best_ipif);
18877 }
18878 
18879 /*
18880  * Save enough information so that we can recreate the IRE if
18881  * the interface goes down and then up.
18882  */
18883 static void
18884 ipif_save_ire(ipif_t *ipif, ire_t *ire)
18885 {
18886 	mblk_t	*save_mp;
18887 
18888 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
18889 	if (save_mp != NULL) {
18890 		ifrt_t	*ifrt;
18891 
18892 		save_mp->b_wptr += sizeof (ifrt_t);
18893 		ifrt = (ifrt_t *)save_mp->b_rptr;
18894 		bzero(ifrt, sizeof (ifrt_t));
18895 		ifrt->ifrt_type = ire->ire_type;
18896 		ifrt->ifrt_addr = ire->ire_addr;
18897 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
18898 		ifrt->ifrt_src_addr = ire->ire_src_addr;
18899 		ifrt->ifrt_mask = ire->ire_mask;
18900 		ifrt->ifrt_flags = ire->ire_flags;
18901 		ifrt->ifrt_max_frag = ire->ire_max_frag;
18902 		mutex_enter(&ipif->ipif_saved_ire_lock);
18903 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
18904 		ipif->ipif_saved_ire_mp = save_mp;
18905 		ipif->ipif_saved_ire_cnt++;
18906 		mutex_exit(&ipif->ipif_saved_ire_lock);
18907 	}
18908 }
18909 
18910 static void
18911 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
18912 {
18913 	mblk_t	**mpp;
18914 	mblk_t	*mp;
18915 	ifrt_t	*ifrt;
18916 
18917 	/* Remove from ipif_saved_ire_mp list if it is there */
18918 	mutex_enter(&ipif->ipif_saved_ire_lock);
18919 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
18920 	    mpp = &(*mpp)->b_cont) {
18921 		/*
18922 		 * On a given ipif, the triple of address, gateway and
18923 		 * mask is unique for each saved IRE (in the case of
18924 		 * ordinary interface routes, the gateway address is
18925 		 * all-zeroes).
18926 		 */
18927 		mp = *mpp;
18928 		ifrt = (ifrt_t *)mp->b_rptr;
18929 		if (ifrt->ifrt_addr == ire->ire_addr &&
18930 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
18931 		    ifrt->ifrt_mask == ire->ire_mask) {
18932 			*mpp = mp->b_cont;
18933 			ipif->ipif_saved_ire_cnt--;
18934 			freeb(mp);
18935 			break;
18936 		}
18937 	}
18938 	mutex_exit(&ipif->ipif_saved_ire_lock);
18939 }
18940 
18941 /*
18942  * IP multirouting broadcast routes handling
18943  * Append CGTP broadcast IREs to regular ones created
18944  * at ifconfig time.
18945  */
18946 static void
18947 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
18948 {
18949 	ire_t *ire_prim;
18950 
18951 	ASSERT(ire != NULL);
18952 	ASSERT(ire_dst != NULL);
18953 
18954 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
18955 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
18956 	if (ire_prim != NULL) {
18957 		/*
18958 		 * We are in the special case of broadcasts for
18959 		 * CGTP. We add an IRE_BROADCAST that holds
18960 		 * the RTF_MULTIRT flag, the destination
18961 		 * address of ire_dst and the low level
18962 		 * info of ire_prim. In other words, CGTP
18963 		 * broadcast is added to the redundant ipif.
18964 		 */
18965 		ipif_t *ipif_prim;
18966 		ire_t  *bcast_ire;
18967 
18968 		ipif_prim = ire_prim->ire_ipif;
18969 
18970 		ip2dbg(("ip_cgtp_filter_bcast_add: "
18971 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
18972 		    (void *)ire_dst, (void *)ire_prim,
18973 		    (void *)ipif_prim));
18974 
18975 		bcast_ire = ire_create(
18976 		    (uchar_t *)&ire->ire_addr,
18977 		    (uchar_t *)&ip_g_all_ones,
18978 		    (uchar_t *)&ire_dst->ire_src_addr,
18979 		    (uchar_t *)&ire->ire_gateway_addr,
18980 		    &ipif_prim->ipif_mtu,
18981 		    NULL,
18982 		    ipif_prim->ipif_rq,
18983 		    ipif_prim->ipif_wq,
18984 		    IRE_BROADCAST,
18985 		    ipif_prim,
18986 		    0,
18987 		    0,
18988 		    0,
18989 		    ire->ire_flags,
18990 		    &ire_uinfo_null,
18991 		    NULL,
18992 		    NULL,
18993 		    ipst);
18994 
18995 		if (bcast_ire != NULL) {
18996 
18997 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
18998 			    B_FALSE) == 0) {
18999 				ip2dbg(("ip_cgtp_filter_bcast_add: "
19000 				    "added bcast_ire %p\n",
19001 				    (void *)bcast_ire));
19002 
19003 				ipif_save_ire(bcast_ire->ire_ipif,
19004 				    bcast_ire);
19005 				ire_refrele(bcast_ire);
19006 			}
19007 		}
19008 		ire_refrele(ire_prim);
19009 	}
19010 }
19011 
19012 /*
19013  * IP multirouting broadcast routes handling
19014  * Remove the broadcast ire
19015  */
19016 static void
19017 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
19018 {
19019 	ire_t *ire_dst;
19020 
19021 	ASSERT(ire != NULL);
19022 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
19023 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19024 	if (ire_dst != NULL) {
19025 		ire_t *ire_prim;
19026 
19027 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
19028 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19029 		if (ire_prim != NULL) {
19030 			ipif_t *ipif_prim;
19031 			ire_t  *bcast_ire;
19032 
19033 			ipif_prim = ire_prim->ire_ipif;
19034 
19035 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
19036 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
19037 			    (void *)ire_dst, (void *)ire_prim,
19038 			    (void *)ipif_prim));
19039 
19040 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
19041 			    ire->ire_gateway_addr,
19042 			    IRE_BROADCAST,
19043 			    ipif_prim, ALL_ZONES,
19044 			    NULL,
19045 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
19046 			    MATCH_IRE_MASK, ipst);
19047 
19048 			if (bcast_ire != NULL) {
19049 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
19050 				    "looked up bcast_ire %p\n",
19051 				    (void *)bcast_ire));
19052 				ipif_remove_ire(bcast_ire->ire_ipif,
19053 				    bcast_ire);
19054 				ire_delete(bcast_ire);
19055 				ire_refrele(bcast_ire);
19056 			}
19057 			ire_refrele(ire_prim);
19058 		}
19059 		ire_refrele(ire_dst);
19060 	}
19061 }
19062 
19063 /*
19064  * IPsec hardware acceleration capabilities related functions.
19065  */
19066 
19067 /*
19068  * Free a per-ill IPsec capabilities structure.
19069  */
19070 static void
19071 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
19072 {
19073 	if (capab->auth_hw_algs != NULL)
19074 		kmem_free(capab->auth_hw_algs, capab->algs_size);
19075 	if (capab->encr_hw_algs != NULL)
19076 		kmem_free(capab->encr_hw_algs, capab->algs_size);
19077 	if (capab->encr_algparm != NULL)
19078 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
19079 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
19080 }
19081 
19082 /*
19083  * Allocate a new per-ill IPsec capabilities structure. This structure
19084  * is specific to an IPsec protocol (AH or ESP). It is implemented as
19085  * an array which specifies, for each algorithm, whether this algorithm
19086  * is supported by the ill or not.
19087  */
19088 static ill_ipsec_capab_t *
19089 ill_ipsec_capab_alloc(void)
19090 {
19091 	ill_ipsec_capab_t *capab;
19092 	uint_t nelems;
19093 
19094 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
19095 	if (capab == NULL)
19096 		return (NULL);
19097 
19098 	/* we need one bit per algorithm */
19099 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
19100 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
19101 
19102 	/* allocate memory to store algorithm flags */
19103 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
19104 	if (capab->encr_hw_algs == NULL)
19105 		goto nomem;
19106 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
19107 	if (capab->auth_hw_algs == NULL)
19108 		goto nomem;
19109 	/*
19110 	 * Leave encr_algparm NULL for now since we won't need it half
19111 	 * the time
19112 	 */
19113 	return (capab);
19114 
19115 nomem:
19116 	ill_ipsec_capab_free(capab);
19117 	return (NULL);
19118 }
19119 
19120 /*
19121  * Resize capability array.  Since we're exclusive, this is OK.
19122  */
19123 static boolean_t
19124 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
19125 {
19126 	ipsec_capab_algparm_t *nalp, *oalp;
19127 	uint32_t olen, nlen;
19128 
19129 	oalp = capab->encr_algparm;
19130 	olen = capab->encr_algparm_size;
19131 
19132 	if (oalp != NULL) {
19133 		if (algid < capab->encr_algparm_end)
19134 			return (B_TRUE);
19135 	}
19136 
19137 	nlen = (algid + 1) * sizeof (*nalp);
19138 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
19139 	if (nalp == NULL)
19140 		return (B_FALSE);
19141 
19142 	if (oalp != NULL) {
19143 		bcopy(oalp, nalp, olen);
19144 		kmem_free(oalp, olen);
19145 	}
19146 	capab->encr_algparm = nalp;
19147 	capab->encr_algparm_size = nlen;
19148 	capab->encr_algparm_end = algid + 1;
19149 
19150 	return (B_TRUE);
19151 }
19152 
19153 /*
19154  * Compare the capabilities of the specified ill with the protocol
19155  * and algorithms specified by the SA passed as argument.
19156  * If they match, returns B_TRUE, B_FALSE if they do not match.
19157  *
19158  * The ill can be passed as a pointer to it, or by specifying its index
19159  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
19160  *
19161  * Called by ipsec_out_is_accelerated() do decide whether an outbound
19162  * packet is eligible for hardware acceleration, and by
19163  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
19164  * to a particular ill.
19165  */
19166 boolean_t
19167 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
19168     ipsa_t *sa, netstack_t *ns)
19169 {
19170 	boolean_t sa_isv6;
19171 	uint_t algid;
19172 	struct ill_ipsec_capab_s *cpp;
19173 	boolean_t need_refrele = B_FALSE;
19174 	ip_stack_t	*ipst = ns->netstack_ip;
19175 
19176 	if (ill == NULL) {
19177 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
19178 		    NULL, NULL, NULL, ipst);
19179 		if (ill == NULL) {
19180 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
19181 			return (B_FALSE);
19182 		}
19183 		need_refrele = B_TRUE;
19184 	}
19185 
19186 	/*
19187 	 * Use the address length specified by the SA to determine
19188 	 * if it corresponds to a IPv6 address, and fail the matching
19189 	 * if the isv6 flag passed as argument does not match.
19190 	 * Note: this check is used for SADB capability checking before
19191 	 * sending SA information to an ill.
19192 	 */
19193 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
19194 	if (sa_isv6 != ill_isv6)
19195 		/* protocol mismatch */
19196 		goto done;
19197 
19198 	/*
19199 	 * Check if the ill supports the protocol, algorithm(s) and
19200 	 * key size(s) specified by the SA, and get the pointers to
19201 	 * the algorithms supported by the ill.
19202 	 */
19203 	switch (sa->ipsa_type) {
19204 
19205 	case SADB_SATYPE_ESP:
19206 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
19207 			/* ill does not support ESP acceleration */
19208 			goto done;
19209 		cpp = ill->ill_ipsec_capab_esp;
19210 		algid = sa->ipsa_auth_alg;
19211 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
19212 			goto done;
19213 		algid = sa->ipsa_encr_alg;
19214 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
19215 			goto done;
19216 		if (algid < cpp->encr_algparm_end) {
19217 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
19218 			if (sa->ipsa_encrkeybits < alp->minkeylen)
19219 				goto done;
19220 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
19221 				goto done;
19222 		}
19223 		break;
19224 
19225 	case SADB_SATYPE_AH:
19226 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
19227 			/* ill does not support AH acceleration */
19228 			goto done;
19229 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
19230 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
19231 			goto done;
19232 		break;
19233 	}
19234 
19235 	if (need_refrele)
19236 		ill_refrele(ill);
19237 	return (B_TRUE);
19238 done:
19239 	if (need_refrele)
19240 		ill_refrele(ill);
19241 	return (B_FALSE);
19242 }
19243 
19244 /*
19245  * Add a new ill to the list of IPsec capable ills.
19246  * Called from ill_capability_ipsec_ack() when an ACK was received
19247  * indicating that IPsec hardware processing was enabled for an ill.
19248  *
19249  * ill must point to the ill for which acceleration was enabled.
19250  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
19251  */
19252 static void
19253 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
19254 {
19255 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
19256 	uint_t sa_type;
19257 	uint_t ipproto;
19258 	ip_stack_t	*ipst = ill->ill_ipst;
19259 
19260 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
19261 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
19262 
19263 	switch (dl_cap) {
19264 	case DL_CAPAB_IPSEC_AH:
19265 		sa_type = SADB_SATYPE_AH;
19266 		ills = &ipst->ips_ipsec_capab_ills_ah;
19267 		ipproto = IPPROTO_AH;
19268 		break;
19269 	case DL_CAPAB_IPSEC_ESP:
19270 		sa_type = SADB_SATYPE_ESP;
19271 		ills = &ipst->ips_ipsec_capab_ills_esp;
19272 		ipproto = IPPROTO_ESP;
19273 		break;
19274 	}
19275 
19276 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
19277 
19278 	/*
19279 	 * Add ill index to list of hardware accelerators. If
19280 	 * already in list, do nothing.
19281 	 */
19282 	for (cur_ill = *ills; cur_ill != NULL &&
19283 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
19284 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
19285 		;
19286 
19287 	if (cur_ill == NULL) {
19288 		/* if this is a new entry for this ill */
19289 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
19290 		if (new_ill == NULL) {
19291 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19292 			return;
19293 		}
19294 
19295 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
19296 		new_ill->ill_isv6 = ill->ill_isv6;
19297 		new_ill->next = *ills;
19298 		*ills = new_ill;
19299 	} else if (!sadb_resync) {
19300 		/* not resync'ing SADB and an entry exists for this ill */
19301 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19302 		return;
19303 	}
19304 
19305 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19306 
19307 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
19308 		/*
19309 		 * IPsec module for protocol loaded, initiate dump
19310 		 * of the SADB to this ill.
19311 		 */
19312 		sadb_ill_download(ill, sa_type);
19313 }
19314 
19315 /*
19316  * Remove an ill from the list of IPsec capable ills.
19317  */
19318 static void
19319 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
19320 {
19321 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
19322 	ip_stack_t	*ipst = ill->ill_ipst;
19323 
19324 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
19325 	    dl_cap == DL_CAPAB_IPSEC_ESP);
19326 
19327 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
19328 	    &ipst->ips_ipsec_capab_ills_esp;
19329 
19330 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
19331 
19332 	prev_ill = NULL;
19333 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
19334 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
19335 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
19336 		;
19337 	if (cur_ill == NULL) {
19338 		/* entry not found */
19339 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19340 		return;
19341 	}
19342 	if (prev_ill == NULL) {
19343 		/* entry at front of list */
19344 		*ills = NULL;
19345 	} else {
19346 		prev_ill->next = cur_ill->next;
19347 	}
19348 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
19349 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19350 }
19351 
19352 /*
19353  * Called by SADB to send a DL_CONTROL_REQ message to every ill
19354  * supporting the specified IPsec protocol acceleration.
19355  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
19356  * We free the mblk and, if sa is non-null, release the held referece.
19357  */
19358 void
19359 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
19360     netstack_t *ns)
19361 {
19362 	ipsec_capab_ill_t *ici, *cur_ici;
19363 	ill_t *ill;
19364 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
19365 	ip_stack_t	*ipst = ns->netstack_ip;
19366 
19367 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
19368 	    ipst->ips_ipsec_capab_ills_esp;
19369 
19370 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
19371 
19372 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
19373 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
19374 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
19375 
19376 		/*
19377 		 * Handle the case where the ill goes away while the SADB is
19378 		 * attempting to send messages.  If it's going away, it's
19379 		 * nuking its shadow SADB, so we don't care..
19380 		 */
19381 
19382 		if (ill == NULL)
19383 			continue;
19384 
19385 		if (sa != NULL) {
19386 			/*
19387 			 * Make sure capabilities match before
19388 			 * sending SA to ill.
19389 			 */
19390 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
19391 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
19392 				ill_refrele(ill);
19393 				continue;
19394 			}
19395 
19396 			mutex_enter(&sa->ipsa_lock);
19397 			sa->ipsa_flags |= IPSA_F_HW;
19398 			mutex_exit(&sa->ipsa_lock);
19399 		}
19400 
19401 		/*
19402 		 * Copy template message, and add it to the front
19403 		 * of the mblk ship list. We want to avoid holding
19404 		 * the ipsec_capab_ills_lock while sending the
19405 		 * message to the ills.
19406 		 *
19407 		 * The b_next and b_prev are temporarily used
19408 		 * to build a list of mblks to be sent down, and to
19409 		 * save the ill to which they must be sent.
19410 		 */
19411 		nmp = copymsg(mp);
19412 		if (nmp == NULL) {
19413 			ill_refrele(ill);
19414 			continue;
19415 		}
19416 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
19417 		nmp->b_next = mp_ship_list;
19418 		mp_ship_list = nmp;
19419 		nmp->b_prev = (mblk_t *)ill;
19420 	}
19421 
19422 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19423 
19424 	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
19425 		/* restore the mblk to a sane state */
19426 		next_mp = nmp->b_next;
19427 		nmp->b_next = NULL;
19428 		ill = (ill_t *)nmp->b_prev;
19429 		nmp->b_prev = NULL;
19430 
19431 		ill_dlpi_send(ill, nmp);
19432 		ill_refrele(ill);
19433 	}
19434 
19435 	if (sa != NULL)
19436 		IPSA_REFRELE(sa);
19437 	freemsg(mp);
19438 }
19439 
19440 /*
19441  * Derive an interface id from the link layer address.
19442  * Knows about IEEE 802 and IEEE EUI-64 mappings.
19443  */
19444 static void
19445 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19446 {
19447 	char		*addr;
19448 
19449 	ASSERT(ill->ill_phys_addr_length == ETHERADDRL);
19450 
19451 	/* Form EUI-64 like address */
19452 	addr = (char *)&v6addr->s6_addr32[2];
19453 	bcopy(ill->ill_phys_addr, addr, 3);
19454 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
19455 	addr[3] = (char)0xff;
19456 	addr[4] = (char)0xfe;
19457 	bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
19458 }
19459 
19460 /* ARGSUSED */
19461 static void
19462 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19463 {
19464 }
19465 
19466 typedef struct ipmp_ifcookie {
19467 	uint32_t	ic_hostid;
19468 	char		ic_ifname[LIFNAMSIZ];
19469 	char		ic_zonename[ZONENAME_MAX];
19470 } ipmp_ifcookie_t;
19471 
19472 /*
19473  * Construct a pseudo-random interface ID for the IPMP interface that's both
19474  * predictable and (almost) guaranteed to be unique.
19475  */
19476 static void
19477 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19478 {
19479 	zone_t		*zp;
19480 	uint8_t		*addr;
19481 	uchar_t		hash[16];
19482 	ulong_t 	hostid;
19483 	MD5_CTX		ctx;
19484 	ipmp_ifcookie_t	ic = { 0 };
19485 
19486 	ASSERT(IS_IPMP(ill));
19487 
19488 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
19489 	ic.ic_hostid = htonl((uint32_t)hostid);
19490 
19491 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
19492 
19493 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
19494 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
19495 		zone_rele(zp);
19496 	}
19497 
19498 	MD5Init(&ctx);
19499 	MD5Update(&ctx, &ic, sizeof (ic));
19500 	MD5Final(hash, &ctx);
19501 
19502 	/*
19503 	 * Map the hash to an interface ID per the basic approach in RFC3041.
19504 	 */
19505 	addr = &v6addr->s6_addr8[8];
19506 	bcopy(hash + 8, addr, sizeof (uint64_t));
19507 	addr[0] &= ~0x2;				/* set local bit */
19508 }
19509 
19510 /* ARGSUSED */
19511 static boolean_t
19512 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19513     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19514 {
19515 	/*
19516 	 * Multicast address mappings used over Ethernet/802.X.
19517 	 * This address is used as a base for mappings.
19518 	 */
19519 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
19520 	    0x00, 0x00, 0x00};
19521 
19522 	/*
19523 	 * Extract low order 32 bits from IPv6 multicast address.
19524 	 * Or that into the link layer address, starting from the
19525 	 * second byte.
19526 	 */
19527 	*hw_start = 2;
19528 	v6_extract_mask->s6_addr32[0] = 0;
19529 	v6_extract_mask->s6_addr32[1] = 0;
19530 	v6_extract_mask->s6_addr32[2] = 0;
19531 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
19532 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
19533 	return (B_TRUE);
19534 }
19535 
19536 /*
19537  * Indicate by return value whether multicast is supported. If not,
19538  * this code should not touch/change any parameters.
19539  */
19540 /* ARGSUSED */
19541 static boolean_t
19542 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19543     uint32_t *hw_start, ipaddr_t *extract_mask)
19544 {
19545 	/*
19546 	 * Multicast address mappings used over Ethernet/802.X.
19547 	 * This address is used as a base for mappings.
19548 	 */
19549 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
19550 	    0x00, 0x00, 0x00 };
19551 
19552 	if (phys_length != ETHERADDRL)
19553 		return (B_FALSE);
19554 
19555 	*extract_mask = htonl(0x007fffff);
19556 	*hw_start = 2;
19557 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
19558 	return (B_TRUE);
19559 }
19560 
19561 /* ARGSUSED */
19562 static boolean_t
19563 ip_nodef_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19564     uint32_t *hw_start, ipaddr_t *extract_mask)
19565 {
19566 	return (B_FALSE);
19567 }
19568 
19569 /* ARGSUSED */
19570 static boolean_t
19571 ip_nodef_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19572     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19573 {
19574 	return (B_FALSE);
19575 }
19576 
19577 /*
19578  * Derive IPoIB interface id from the link layer address.
19579  */
19580 static void
19581 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19582 {
19583 	char		*addr;
19584 
19585 	ASSERT(ill->ill_phys_addr_length == 20);
19586 	addr = (char *)&v6addr->s6_addr32[2];
19587 	bcopy(ill->ill_phys_addr + 12, addr, 8);
19588 	/*
19589 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
19590 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
19591 	 * rules. In these cases, the IBA considers these GUIDs to be in
19592 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
19593 	 * required; vendors are required not to assign global EUI-64's
19594 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
19595 	 * of the interface identifier. Whether the GUID is in modified
19596 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
19597 	 * bit set to 1.
19598 	 */
19599 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
19600 }
19601 
19602 /*
19603  * Note on mapping from multicast IP addresses to IPoIB multicast link
19604  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
19605  * The format of an IPoIB multicast address is:
19606  *
19607  *  4 byte QPN      Scope Sign.  Pkey
19608  * +--------------------------------------------+
19609  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
19610  * +--------------------------------------------+
19611  *
19612  * The Scope and Pkey components are properties of the IBA port and
19613  * network interface. They can be ascertained from the broadcast address.
19614  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
19615  */
19616 
19617 static boolean_t
19618 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19619     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19620 {
19621 	/*
19622 	 * Base IPoIB IPv6 multicast address used for mappings.
19623 	 * Does not contain the IBA scope/Pkey values.
19624 	 */
19625 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
19626 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
19627 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
19628 
19629 	/*
19630 	 * Extract low order 80 bits from IPv6 multicast address.
19631 	 * Or that into the link layer address, starting from the
19632 	 * sixth byte.
19633 	 */
19634 	*hw_start = 6;
19635 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
19636 
19637 	/*
19638 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
19639 	 */
19640 	*(maddr + 5) = *(bphys_addr + 5);
19641 	*(maddr + 8) = *(bphys_addr + 8);
19642 	*(maddr + 9) = *(bphys_addr + 9);
19643 
19644 	v6_extract_mask->s6_addr32[0] = 0;
19645 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
19646 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
19647 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
19648 	return (B_TRUE);
19649 }
19650 
19651 static boolean_t
19652 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19653     uint32_t *hw_start, ipaddr_t *extract_mask)
19654 {
19655 	/*
19656 	 * Base IPoIB IPv4 multicast address used for mappings.
19657 	 * Does not contain the IBA scope/Pkey values.
19658 	 */
19659 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
19660 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
19661 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
19662 
19663 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
19664 		return (B_FALSE);
19665 
19666 	/*
19667 	 * Extract low order 28 bits from IPv4 multicast address.
19668 	 * Or that into the link layer address, starting from the
19669 	 * sixteenth byte.
19670 	 */
19671 	*extract_mask = htonl(0x0fffffff);
19672 	*hw_start = 16;
19673 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
19674 
19675 	/*
19676 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
19677 	 */
19678 	*(maddr + 5) = *(bphys_addr + 5);
19679 	*(maddr + 8) = *(bphys_addr + 8);
19680 	*(maddr + 9) = *(bphys_addr + 9);
19681 	return (B_TRUE);
19682 }
19683 
19684 /*
19685  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
19686  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
19687  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
19688  * of RFC4213.
19689  */
19690 static void
19691 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
19692 {
19693 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
19694 	v6addr->s6_addr32[2] = 0;
19695 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
19696 }
19697 
19698 /*
19699  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
19700  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
19701  * id.
19702  */
19703 static void
19704 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
19705 {
19706 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
19707 
19708 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
19709 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
19710 }
19711 
19712 static void
19713 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19714 {
19715 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
19716 }
19717 
19718 static void
19719 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
19720 {
19721 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
19722 }
19723 
19724 static void
19725 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19726 {
19727 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
19728 }
19729 
19730 static void
19731 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
19732 {
19733 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
19734 }
19735 
19736 /*
19737  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
19738  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
19739  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
19740  * the link-local address is preferred.
19741  */
19742 boolean_t
19743 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
19744 {
19745 	ipif_t	*ipif;
19746 	ipif_t	*maybe_ipif = NULL;
19747 
19748 	mutex_enter(&ill->ill_lock);
19749 	if (ill->ill_state_flags & ILL_CONDEMNED) {
19750 		mutex_exit(&ill->ill_lock);
19751 		if (ipifp != NULL)
19752 			*ipifp = NULL;
19753 		return (B_FALSE);
19754 	}
19755 
19756 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19757 		if (!IPIF_CAN_LOOKUP(ipif))
19758 			continue;
19759 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
19760 		    ipif->ipif_zoneid != ALL_ZONES)
19761 			continue;
19762 		if ((ipif->ipif_flags & flags) != flags)
19763 			continue;
19764 
19765 		if (ipifp == NULL) {
19766 			mutex_exit(&ill->ill_lock);
19767 			ASSERT(maybe_ipif == NULL);
19768 			return (B_TRUE);
19769 		}
19770 		if (!ill->ill_isv6 ||
19771 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
19772 			ipif_refhold_locked(ipif);
19773 			mutex_exit(&ill->ill_lock);
19774 			*ipifp = ipif;
19775 			return (B_TRUE);
19776 		}
19777 		if (maybe_ipif == NULL)
19778 			maybe_ipif = ipif;
19779 	}
19780 	if (ipifp != NULL) {
19781 		if (maybe_ipif != NULL)
19782 			ipif_refhold_locked(maybe_ipif);
19783 		*ipifp = maybe_ipif;
19784 	}
19785 	mutex_exit(&ill->ill_lock);
19786 	return (maybe_ipif != NULL);
19787 }
19788 
19789 /*
19790  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
19791  * If a pointer to an ipif_t is returned then the caller will need to do
19792  * an ill_refrele().
19793  */
19794 ipif_t *
19795 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
19796     ip_stack_t *ipst)
19797 {
19798 	ipif_t *ipif;
19799 	ill_t *ill;
19800 
19801 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
19802 	    ipst);
19803 	if (ill == NULL)
19804 		return (NULL);
19805 
19806 	mutex_enter(&ill->ill_lock);
19807 	if (ill->ill_state_flags & ILL_CONDEMNED) {
19808 		mutex_exit(&ill->ill_lock);
19809 		ill_refrele(ill);
19810 		return (NULL);
19811 	}
19812 
19813 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19814 		if (!IPIF_CAN_LOOKUP(ipif))
19815 			continue;
19816 		if (lifidx == ipif->ipif_id) {
19817 			ipif_refhold_locked(ipif);
19818 			break;
19819 		}
19820 	}
19821 
19822 	mutex_exit(&ill->ill_lock);
19823 	ill_refrele(ill);
19824 	return (ipif);
19825 }
19826 
19827 /*
19828  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
19829  * There is one exceptions IRE_BROADCAST are difficult to recreate,
19830  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
19831  * for details.
19832  */
19833 void
19834 ill_fastpath_flush(ill_t *ill)
19835 {
19836 	ip_stack_t *ipst = ill->ill_ipst;
19837 
19838 	nce_fastpath_list_dispatch(ill, NULL, NULL);
19839 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
19840 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
19841 }
19842 
19843 /*
19844  * Set the physical address information for `ill' to the contents of the
19845  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
19846  * asynchronous if `ill' cannot immediately be quiesced -- in which case
19847  * EINPROGRESS will be returned.
19848  */
19849 int
19850 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
19851 {
19852 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
19853 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
19854 
19855 	ASSERT(IAM_WRITER_IPSQ(ipsq));
19856 
19857 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
19858 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
19859 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
19860 		/* Changing DL_IPV6_TOKEN is not yet supported */
19861 		return (0);
19862 	}
19863 
19864 	/*
19865 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
19866 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
19867 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
19868 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
19869 	 */
19870 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
19871 		freemsg(mp);
19872 		return (ENOMEM);
19873 	}
19874 
19875 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
19876 
19877 	/*
19878 	 * If we can quiesce the ill, then set the address.  If not, then
19879 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
19880 	 */
19881 	ill_down_ipifs(ill, B_TRUE);
19882 	mutex_enter(&ill->ill_lock);
19883 	if (!ill_is_quiescent(ill)) {
19884 		/* call cannot fail since `conn_t *' argument is NULL */
19885 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
19886 		    mp, ILL_DOWN);
19887 		mutex_exit(&ill->ill_lock);
19888 		return (EINPROGRESS);
19889 	}
19890 	mutex_exit(&ill->ill_lock);
19891 
19892 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
19893 	return (0);
19894 }
19895 
19896 /*
19897  * Once the ill associated with `q' has quiesced, set its physical address
19898  * information to the values in `addrmp'.  Note that two copies of `addrmp'
19899  * are passed (linked by b_cont), since we sometimes need to save two distinct
19900  * copies in the ill_t, and our context doesn't permit sleeping or allocation
19901  * failure (we'll free the other copy if it's not needed).  Since the ill_t
19902  * is quiesced, we know any stale IREs with the old address information have
19903  * already been removed, so we don't need to call ill_fastpath_flush().
19904  */
19905 /* ARGSUSED */
19906 static void
19907 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
19908 {
19909 	ill_t		*ill = q->q_ptr;
19910 	mblk_t		*addrmp2 = unlinkb(addrmp);
19911 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
19912 	uint_t		addrlen, addroff;
19913 
19914 	ASSERT(IAM_WRITER_IPSQ(ipsq));
19915 
19916 	addroff	= dlindp->dl_addr_offset;
19917 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
19918 
19919 	switch (dlindp->dl_data) {
19920 	case DL_IPV6_LINK_LAYER_ADDR:
19921 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
19922 		freemsg(addrmp2);
19923 		break;
19924 
19925 	case DL_CURR_DEST_ADDR:
19926 		freemsg(ill->ill_dest_addr_mp);
19927 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
19928 		ill->ill_dest_addr_mp = addrmp;
19929 		if (ill->ill_isv6) {
19930 			ill_setdesttoken(ill);
19931 			ipif_setdestlinklocal(ill->ill_ipif);
19932 		}
19933 		freemsg(addrmp2);
19934 		break;
19935 
19936 	case DL_CURR_PHYS_ADDR:
19937 		freemsg(ill->ill_phys_addr_mp);
19938 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
19939 		ill->ill_phys_addr_mp = addrmp;
19940 		ill->ill_phys_addr_length = addrlen;
19941 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
19942 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
19943 		else
19944 			freemsg(addrmp2);
19945 		if (ill->ill_isv6) {
19946 			ill_setdefaulttoken(ill);
19947 			ipif_setlinklocal(ill->ill_ipif);
19948 		}
19949 		break;
19950 	default:
19951 		ASSERT(0);
19952 	}
19953 
19954 	/*
19955 	 * If there are ipifs to bring up, ill_up_ipifs() will return
19956 	 * EINPROGRESS, and ipsq_current_finish() will be called by
19957 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
19958 	 * brought up.
19959 	 */
19960 	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
19961 		ipsq_current_finish(ipsq);
19962 }
19963 
19964 /*
19965  * Helper routine for setting the ill_nd_lla fields.
19966  */
19967 void
19968 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
19969 {
19970 	freemsg(ill->ill_nd_lla_mp);
19971 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
19972 	ill->ill_nd_lla_mp = ndmp;
19973 	ill->ill_nd_lla_len = addrlen;
19974 }
19975 
19976 /*
19977  * Replumb the ill.
19978  */
19979 int
19980 ill_replumb(ill_t *ill, mblk_t *mp)
19981 {
19982 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
19983 
19984 	ASSERT(IAM_WRITER_IPSQ(ipsq));
19985 
19986 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
19987 
19988 	/*
19989 	 * If we can quiesce the ill, then continue.  If not, then
19990 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
19991 	 */
19992 	ill_down_ipifs(ill, B_FALSE);
19993 
19994 	mutex_enter(&ill->ill_lock);
19995 	if (!ill_is_quiescent(ill)) {
19996 		/* call cannot fail since `conn_t *' argument is NULL */
19997 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
19998 		    mp, ILL_DOWN);
19999 		mutex_exit(&ill->ill_lock);
20000 		return (EINPROGRESS);
20001 	}
20002 	mutex_exit(&ill->ill_lock);
20003 
20004 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
20005 	return (0);
20006 }
20007 
20008 /* ARGSUSED */
20009 static void
20010 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
20011 {
20012 	ill_t *ill = q->q_ptr;
20013 
20014 	ASSERT(IAM_WRITER_IPSQ(ipsq));
20015 
20016 	ill_down_ipifs_tail(ill);
20017 
20018 	freemsg(ill->ill_replumb_mp);
20019 	ill->ill_replumb_mp = copyb(mp);
20020 
20021 	/*
20022 	 * Successfully quiesced and brought down the interface, now we send
20023 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
20024 	 * DL_NOTE_REPLUMB message.
20025 	 */
20026 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
20027 	    DL_NOTIFY_CONF);
20028 	ASSERT(mp != NULL);
20029 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
20030 	    DL_NOTE_REPLUMB_DONE;
20031 	ill_dlpi_send(ill, mp);
20032 
20033 	/*
20034 	 * If there are ipifs to bring up, ill_up_ipifs() will return
20035 	 * EINPROGRESS, and ipsq_current_finish() will be called by
20036 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
20037 	 * brought up.
20038 	 */
20039 	if (ill->ill_replumb_mp == NULL ||
20040 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) {
20041 		ipsq_current_finish(ipsq);
20042 	}
20043 }
20044 
20045 /*
20046  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
20047  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
20048  * as per the ioctl.  On failure, an errno is returned.
20049  */
20050 static int
20051 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
20052 {
20053 	int rval;
20054 	struct strioctl iocb;
20055 
20056 	iocb.ic_cmd = cmd;
20057 	iocb.ic_timout = 15;
20058 	iocb.ic_len = bufsize;
20059 	iocb.ic_dp = buf;
20060 
20061 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
20062 }
20063 
20064 /*
20065  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
20066  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
20067  */
20068 static int
20069 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
20070     uint_t *bufsizep, cred_t *cr)
20071 {
20072 	int err;
20073 	struct lifnum lifn;
20074 
20075 	bzero(&lifn, sizeof (lifn));
20076 	lifn.lifn_family = af;
20077 	lifn.lifn_flags = LIFC_UNDER_IPMP;
20078 
20079 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
20080 		return (err);
20081 
20082 	/*
20083 	 * Pad the interface count to account for additional interfaces that
20084 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
20085 	 */
20086 	lifn.lifn_count += 4;
20087 	bzero(lifcp, sizeof (*lifcp));
20088 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
20089 	lifcp->lifc_family = af;
20090 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
20091 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
20092 
20093 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
20094 	if (err != 0) {
20095 		kmem_free(lifcp->lifc_buf, *bufsizep);
20096 		return (err);
20097 	}
20098 
20099 	return (0);
20100 }
20101 
20102 /*
20103  * Helper for ip_interface_cleanup() that removes the loopback interface.
20104  */
20105 static void
20106 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
20107 {
20108 	int err;
20109 	struct lifreq lifr;
20110 
20111 	bzero(&lifr, sizeof (lifr));
20112 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
20113 
20114 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
20115 	if (err != 0) {
20116 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
20117 		    "error %d\n", isv6 ? "v6" : "v4", err));
20118 	}
20119 }
20120 
20121 /*
20122  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
20123  * groups and that IPMP data addresses are down.  These conditions must be met
20124  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
20125  */
20126 static void
20127 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
20128 {
20129 	int af = isv6 ? AF_INET6 : AF_INET;
20130 	int i, nifs;
20131 	int err;
20132 	uint_t bufsize;
20133 	uint_t lifrsize = sizeof (struct lifreq);
20134 	struct lifconf lifc;
20135 	struct lifreq *lifrp;
20136 
20137 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
20138 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
20139 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
20140 		return;
20141 	}
20142 
20143 	nifs = lifc.lifc_len / lifrsize;
20144 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
20145 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
20146 		if (err != 0) {
20147 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
20148 			    "flags: error %d", lifrp->lifr_name, err);
20149 			continue;
20150 		}
20151 
20152 		if (lifrp->lifr_flags & IFF_IPMP) {
20153 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
20154 				continue;
20155 
20156 			lifrp->lifr_flags &= ~IFF_UP;
20157 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
20158 			if (err != 0) {
20159 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
20160 				    "bring down (error %d); IPMP interface may "
20161 				    "not be shutdown", lifrp->lifr_name, err);
20162 			}
20163 
20164 			/*
20165 			 * Check if IFF_DUPLICATE is still set -- and if so,
20166 			 * reset the address to clear it.
20167 			 */
20168 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
20169 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
20170 				continue;
20171 
20172 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
20173 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
20174 			    lifrp, lifrsize, cr)) != 0) {
20175 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
20176 				    "reset DAD (error %d); IPMP interface may "
20177 				    "not be shutdown", lifrp->lifr_name, err);
20178 			}
20179 			continue;
20180 		}
20181 
20182 		lifrp->lifr_groupname[0] = '\0';
20183 		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
20184 		if (err != 0) {
20185 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
20186 			    "IPMP group (error %d); associated IPMP interface "
20187 			    "may not be shutdown", lifrp->lifr_name, err);
20188 			continue;
20189 		}
20190 	}
20191 
20192 	kmem_free(lifc.lifc_buf, bufsize);
20193 }
20194 
20195 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
20196 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
20197 
20198 /*
20199  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
20200  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
20201  * when the user-level processes in the zone are killed and the latter are
20202  * cleaned up by str_stack_shutdown().
20203  */
20204 void
20205 ip_interface_cleanup(ip_stack_t *ipst)
20206 {
20207 	ldi_handle_t	lh;
20208 	ldi_ident_t	li;
20209 	cred_t		*cr;
20210 	int		err;
20211 	int		i;
20212 	char		*devs[] = { UDP6DEV, UDPDEV };
20213 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
20214 
20215 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
20216 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
20217 		    " error %d", err);
20218 		return;
20219 	}
20220 
20221 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
20222 	ASSERT(cr != NULL);
20223 
20224 	/*
20225 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
20226 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
20227 	 * the loop.)
20228 	 */
20229 	for (i = 0; i < 2; i++) {
20230 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
20231 		if (err != 0) {
20232 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
20233 			    " error %d", devs[i], err);
20234 			continue;
20235 		}
20236 
20237 		ip_loopback_removeif(lh, i == 0, cr);
20238 		ip_ipmp_cleanup(lh, i == 0, cr);
20239 
20240 		(void) ldi_close(lh, FREAD|FWRITE, cr);
20241 	}
20242 
20243 	ldi_ident_release(li);
20244 	crfree(cr);
20245 }
20246 
20247 /*
20248  * This needs to be in-sync with nic_event_t definition
20249  */
20250 static const char *
20251 ill_hook_event2str(nic_event_t event)
20252 {
20253 	switch (event) {
20254 	case NE_PLUMB:
20255 		return ("PLUMB");
20256 	case NE_UNPLUMB:
20257 		return ("UNPLUMB");
20258 	case NE_UP:
20259 		return ("UP");
20260 	case NE_DOWN:
20261 		return ("DOWN");
20262 	case NE_ADDRESS_CHANGE:
20263 		return ("ADDRESS_CHANGE");
20264 	case NE_LIF_UP:
20265 		return ("LIF_UP");
20266 	case NE_LIF_DOWN:
20267 		return ("LIF_DOWN");
20268 	default:
20269 		return ("UNKNOWN");
20270 	}
20271 }
20272 
20273 void
20274 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
20275     nic_event_data_t data, size_t datalen)
20276 {
20277 	ip_stack_t		*ipst = ill->ill_ipst;
20278 	hook_nic_event_int_t	*info;
20279 	const char		*str = NULL;
20280 
20281 	/* create a new nic event info */
20282 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
20283 		goto fail;
20284 
20285 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
20286 	info->hnei_event.hne_lif = lif;
20287 	info->hnei_event.hne_event = event;
20288 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
20289 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
20290 	info->hnei_event.hne_data = NULL;
20291 	info->hnei_event.hne_datalen = 0;
20292 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
20293 
20294 	if (data != NULL && datalen != 0) {
20295 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
20296 		if (info->hnei_event.hne_data == NULL)
20297 			goto fail;
20298 		bcopy(data, info->hnei_event.hne_data, datalen);
20299 		info->hnei_event.hne_datalen = datalen;
20300 	}
20301 
20302 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
20303 	    DDI_NOSLEEP) == DDI_SUCCESS)
20304 		return;
20305 
20306 fail:
20307 	if (info != NULL) {
20308 		if (info->hnei_event.hne_data != NULL) {
20309 			kmem_free(info->hnei_event.hne_data,
20310 			    info->hnei_event.hne_datalen);
20311 		}
20312 		kmem_free(info, sizeof (hook_nic_event_t));
20313 	}
20314 	str = ill_hook_event2str(event);
20315 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
20316 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
20317 }
20318 
20319 void
20320 ipif_up_notify(ipif_t *ipif)
20321 {
20322 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
20323 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
20324 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
20325 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
20326 	    NE_LIF_UP, NULL, 0);
20327 }
20328