1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/mib2.h> 76 #include <inet/ip.h> 77 #include <inet/ip6.h> 78 #include <inet/ip6_asp.h> 79 #include <inet/tcp.h> 80 #include <inet/ip_multi.h> 81 #include <inet/ip_ire.h> 82 #include <inet/ip_ftable.h> 83 #include <inet/ip_rts.h> 84 #include <inet/ip_ndp.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_impl.h> 87 #include <inet/tun.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 #include <inet/sadb.h> 94 #include <inet/ipsec_impl.h> 95 #include <sys/iphada.h> 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize, boolean_t insert); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 196 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 197 198 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 199 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 200 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 201 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 202 static void ipif_save_ire(ipif_t *, ire_t *); 203 static void ipif_remove_ire(ipif_t *, ire_t *); 204 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 205 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 206 static void phyint_free(phyint_t *); 207 208 /* 209 * Per-ill IPsec capabilities management. 210 */ 211 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 212 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 213 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 214 static void ill_ipsec_capab_delete(ill_t *, uint_t); 215 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 216 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 217 boolean_t); 218 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 220 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 221 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 222 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 223 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 224 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 225 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 226 dl_capability_sub_t *); 227 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 228 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 229 int *); 230 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 231 static void ill_capability_dld_ack(ill_t *, mblk_t *, 232 dl_capability_sub_t *); 233 static void ill_capability_dld_enable(ill_t *); 234 static void ill_capability_ack_thr(void *); 235 static void ill_capability_lso_enable(ill_t *); 236 static void ill_capability_send(ill_t *, mblk_t *); 237 238 static ill_t *ill_prev_usesrc(ill_t *); 239 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 240 static void ill_disband_usesrc_group(ill_t *); 241 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 242 243 #ifdef DEBUG 244 static void ill_trace_cleanup(const ill_t *); 245 static void ipif_trace_cleanup(const ipif_t *); 246 #endif 247 248 /* 249 * if we go over the memory footprint limit more than once in this msec 250 * interval, we'll start pruning aggressively. 251 */ 252 int ip_min_frag_prune_time = 0; 253 254 /* 255 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 256 * and the IPsec DOI 257 */ 258 #define MAX_IPSEC_ALGS 256 259 260 #define BITSPERBYTE 8 261 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 262 263 #define IPSEC_ALG_ENABLE(algs, algid) \ 264 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 265 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 266 267 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 typedef uint8_t ipsec_capab_elem_t; 272 273 /* 274 * Per-algorithm parameters. Note that at present, only encryption 275 * algorithms have variable keysize (IKE does not provide a way to negotiate 276 * auth algorithm keysize). 277 * 278 * All sizes here are in bits. 279 */ 280 typedef struct 281 { 282 uint16_t minkeylen; 283 uint16_t maxkeylen; 284 } ipsec_capab_algparm_t; 285 286 /* 287 * Per-ill capabilities. 288 */ 289 struct ill_ipsec_capab_s { 290 ipsec_capab_elem_t *encr_hw_algs; 291 ipsec_capab_elem_t *auth_hw_algs; 292 uint32_t algs_size; /* size of _hw_algs in bytes */ 293 /* algorithm key lengths */ 294 ipsec_capab_algparm_t *encr_algparm; 295 uint32_t encr_algparm_size; 296 uint32_t encr_algparm_end; 297 }; 298 299 /* 300 * The field values are larger than strictly necessary for simple 301 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 302 */ 303 static area_t ip_area_template = { 304 AR_ENTRY_ADD, /* area_cmd */ 305 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 306 /* area_name_offset */ 307 /* area_name_length temporarily holds this structure length */ 308 sizeof (area_t), /* area_name_length */ 309 IP_ARP_PROTO_TYPE, /* area_proto */ 310 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 311 IP_ADDR_LEN, /* area_proto_addr_length */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 313 /* area_proto_mask_offset */ 314 0, /* area_flags */ 315 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 316 /* area_hw_addr_offset */ 317 /* Zero length hw_addr_length means 'use your idea of the address' */ 318 0 /* area_hw_addr_length */ 319 }; 320 321 /* 322 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 323 * support 324 */ 325 static area_t ip6_area_template = { 326 AR_ENTRY_ADD, /* area_cmd */ 327 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 328 /* area_name_offset */ 329 /* area_name_length temporarily holds this structure length */ 330 sizeof (area_t), /* area_name_length */ 331 IP_ARP_PROTO_TYPE, /* area_proto */ 332 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 333 IPV6_ADDR_LEN, /* area_proto_addr_length */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 335 /* area_proto_mask_offset */ 336 0, /* area_flags */ 337 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 338 /* area_hw_addr_offset */ 339 /* Zero length hw_addr_length means 'use your idea of the address' */ 340 0 /* area_hw_addr_length */ 341 }; 342 343 static ared_t ip_ared_template = { 344 AR_ENTRY_DELETE, 345 sizeof (ared_t) + IP_ADDR_LEN, 346 sizeof (ared_t), 347 IP_ARP_PROTO_TYPE, 348 sizeof (ared_t), 349 IP_ADDR_LEN, 350 0 351 }; 352 353 static ared_t ip6_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IPV6_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IPV6_ADDR_LEN, 360 0 361 }; 362 363 /* 364 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 365 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 366 * areq is used). 367 */ 368 static areq_t ip_areq_template = { 369 AR_ENTRY_QUERY, /* cmd */ 370 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 371 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 372 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 373 sizeof (areq_t), /* target addr offset */ 374 IP_ADDR_LEN, /* target addr_length */ 375 0, /* flags */ 376 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 377 IP_ADDR_LEN, /* sender addr length */ 378 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 379 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 380 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 381 /* anything else filled in by the code */ 382 }; 383 384 static arc_t ip_aru_template = { 385 AR_INTERFACE_UP, 386 sizeof (arc_t), /* Name offset */ 387 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 388 }; 389 390 static arc_t ip_ard_template = { 391 AR_INTERFACE_DOWN, 392 sizeof (arc_t), /* Name offset */ 393 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 394 }; 395 396 static arc_t ip_aron_template = { 397 AR_INTERFACE_ON, 398 sizeof (arc_t), /* Name offset */ 399 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 400 }; 401 402 static arc_t ip_aroff_template = { 403 AR_INTERFACE_OFF, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arma_t ip_arma_multi_template = { 409 AR_MAPPING_ADD, 410 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 411 /* Name offset */ 412 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 413 IP_ARP_PROTO_TYPE, 414 sizeof (arma_t), /* proto_addr_offset */ 415 IP_ADDR_LEN, /* proto_addr_length */ 416 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 417 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 418 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 419 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 420 IP_MAX_HW_LEN, /* hw_addr_length */ 421 0, /* hw_mapping_start */ 422 }; 423 424 static ipft_t ip_ioctl_ftbl[] = { 425 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 426 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 427 IPFT_F_NO_REPLY }, 428 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 429 IPFT_F_NO_REPLY }, 430 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 431 { 0 } 432 }; 433 434 /* Simple ICMP IP Header Template */ 435 static ipha_t icmp_ipha = { 436 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 437 }; 438 439 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 440 441 static ip_m_t ip_m_tbl[] = { 442 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 443 ip_ether_v6intfid }, 444 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 445 ip_nodef_v6intfid }, 446 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 447 ip_nodef_v6intfid }, 448 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 449 ip_nodef_v6intfid }, 450 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 451 ip_ether_v6intfid }, 452 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 453 ip_ib_v6intfid }, 454 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 455 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 456 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 457 ip_nodef_v6intfid } 458 }; 459 460 static ill_t ill_null; /* Empty ILL for init. */ 461 char ipif_loopback_name[] = "lo0"; 462 static char *ipv4_forward_suffix = ":ip_forwarding"; 463 static char *ipv6_forward_suffix = ":ip6_forwarding"; 464 static sin6_t sin6_null; /* Zero address for quick clears */ 465 static sin_t sin_null; /* Zero address for quick clears */ 466 467 /* When set search for unused ipif_seqid */ 468 static ipif_t ipif_zero; 469 470 /* 471 * ppa arena is created after these many 472 * interfaces have been plumbed. 473 */ 474 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 475 476 /* 477 * Allocate per-interface mibs. 478 * Returns true if ok. False otherwise. 479 * ipsq may not yet be allocated (loopback case ). 480 */ 481 static boolean_t 482 ill_allocate_mibs(ill_t *ill) 483 { 484 /* Already allocated? */ 485 if (ill->ill_ip_mib != NULL) { 486 if (ill->ill_isv6) 487 ASSERT(ill->ill_icmp6_mib != NULL); 488 return (B_TRUE); 489 } 490 491 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 492 KM_NOSLEEP); 493 if (ill->ill_ip_mib == NULL) { 494 return (B_FALSE); 495 } 496 497 /* Setup static information */ 498 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 499 sizeof (mib2_ipIfStatsEntry_t)); 500 if (ill->ill_isv6) { 501 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 502 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 503 sizeof (mib2_ipv6AddrEntry_t)); 504 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 505 sizeof (mib2_ipv6RouteEntry_t)); 506 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 507 sizeof (mib2_ipv6NetToMediaEntry_t)); 508 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 509 sizeof (ipv6_member_t)); 510 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 511 sizeof (ipv6_grpsrc_t)); 512 } else { 513 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 514 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 515 sizeof (mib2_ipAddrEntry_t)); 516 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 517 sizeof (mib2_ipRouteEntry_t)); 518 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 519 sizeof (mib2_ipNetToMediaEntry_t)); 520 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 521 sizeof (ip_member_t)); 522 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 523 sizeof (ip_grpsrc_t)); 524 525 /* 526 * For a v4 ill, we are done at this point, because per ill 527 * icmp mibs are only used for v6. 528 */ 529 return (B_TRUE); 530 } 531 532 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 533 KM_NOSLEEP); 534 if (ill->ill_icmp6_mib == NULL) { 535 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 536 ill->ill_ip_mib = NULL; 537 return (B_FALSE); 538 } 539 /* static icmp info */ 540 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 541 sizeof (mib2_ipv6IfIcmpEntry_t); 542 /* 543 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 544 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 545 * -> ill_phyint_reinit 546 */ 547 return (B_TRUE); 548 } 549 550 /* 551 * Common code for preparation of ARP commands. Two points to remember: 552 * 1) The ill_name is tacked on at the end of the allocated space so 553 * the templates name_offset field must contain the total space 554 * to allocate less the name length. 555 * 556 * 2) The templates name_length field should contain the *template* 557 * length. We use it as a parameter to bcopy() and then write 558 * the real ill_name_length into the name_length field of the copy. 559 * (Always called as writer.) 560 */ 561 mblk_t * 562 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 563 { 564 arc_t *arc = (arc_t *)template; 565 char *cp; 566 int len; 567 mblk_t *mp; 568 uint_t name_length = ill->ill_name_length; 569 uint_t template_len = arc->arc_name_length; 570 571 len = arc->arc_name_offset + name_length; 572 mp = allocb(len, BPRI_HI); 573 if (mp == NULL) 574 return (NULL); 575 cp = (char *)mp->b_rptr; 576 mp->b_wptr = (uchar_t *)&cp[len]; 577 if (template_len) 578 bcopy(template, cp, template_len); 579 if (len > template_len) 580 bzero(&cp[template_len], len - template_len); 581 mp->b_datap->db_type = M_PROTO; 582 583 arc = (arc_t *)cp; 584 arc->arc_name_length = name_length; 585 cp = (char *)arc + arc->arc_name_offset; 586 bcopy(ill->ill_name, cp, name_length); 587 588 if (addr) { 589 area_t *area = (area_t *)mp->b_rptr; 590 591 cp = (char *)area + area->area_proto_addr_offset; 592 bcopy(addr, cp, area->area_proto_addr_length); 593 if (area->area_cmd == AR_ENTRY_ADD) { 594 cp = (char *)area; 595 len = area->area_proto_addr_length; 596 if (area->area_proto_mask_offset) 597 cp += area->area_proto_mask_offset; 598 else 599 cp += area->area_proto_addr_offset + len; 600 while (len-- > 0) 601 *cp++ = (char)~0; 602 } 603 } 604 return (mp); 605 } 606 607 mblk_t * 608 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 609 { 610 caddr_t addr; 611 mblk_t *mp; 612 area_t *area; 613 uchar_t *areap; 614 ill_t *ill = ipif->ipif_ill; 615 616 if (ill->ill_isv6) { 617 ASSERT(ill->ill_flags & ILLF_XRESOLV); 618 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 619 areap = (uchar_t *)&ip6_area_template; 620 } else { 621 addr = (caddr_t)&ipif->ipif_lcl_addr; 622 areap = (uchar_t *)&ip_area_template; 623 } 624 625 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 626 return (NULL); 627 628 /* 629 * IPMP requires that the hardware address be included in all 630 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 631 * If there are no active underlying ills in the group (and thus no 632 * hardware address, DAD will be deferred until an underlying ill 633 * becomes active. 634 */ 635 if (IS_IPMP(ill)) { 636 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 637 freemsg(mp); 638 return (NULL); 639 } 640 } else { 641 ill_refhold(ill); 642 } 643 644 area = (area_t *)mp->b_rptr; 645 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 646 area->area_flags |= optflags; 647 area->area_hw_addr_length = ill->ill_phys_addr_length; 648 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 649 area->area_hw_addr_length); 650 651 ill_refrele(ill); 652 return (mp); 653 } 654 655 mblk_t * 656 ipif_ared_alloc(ipif_t *ipif) 657 { 658 caddr_t addr; 659 uchar_t *aredp; 660 661 if (ipif->ipif_ill->ill_isv6) { 662 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 663 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 664 aredp = (uchar_t *)&ip6_ared_template; 665 } else { 666 addr = (caddr_t)&ipif->ipif_lcl_addr; 667 aredp = (uchar_t *)&ip_ared_template; 668 } 669 670 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 671 } 672 673 mblk_t * 674 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 675 { 676 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 677 (char *)&addr)); 678 } 679 680 mblk_t * 681 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 682 { 683 mblk_t *mp = ill_arp_alloc(ill, template, 0); 684 arie_t *arie; 685 686 if (mp != NULL) { 687 arie = (arie_t *)mp->b_rptr; 688 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 689 } 690 return (mp); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * Remove multicast references added as a result of calls to 750 * ip_join_allmulti(). 751 */ 752 ip_purge_allmulti(ill); 753 754 /* 755 * If the ill being deleted is under IPMP, boot it out of the illgrp. 756 */ 757 if (IS_UNDER_IPMP(ill)) 758 ipmp_ill_leave_illgrp(ill); 759 760 /* 761 * ill_down will arrange to blow off any IRE's dependent on this 762 * ILL, and shut down fragmentation reassembly. 763 */ 764 ill_down(ill); 765 766 /* Let SCTP know, so that it can remove this from its list. */ 767 sctp_update_ill(ill, SCTP_ILL_REMOVE); 768 769 /* 770 * If an address on this ILL is being used as a source address then 771 * clear out the pointers in other ILLs that point to this ILL. 772 */ 773 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 774 if (ill->ill_usesrc_grp_next != NULL) { 775 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 776 ill_disband_usesrc_group(ill); 777 } else { /* consumer of the usesrc ILL */ 778 prev_ill = ill_prev_usesrc(ill); 779 prev_ill->ill_usesrc_grp_next = 780 ill->ill_usesrc_grp_next; 781 } 782 } 783 rw_exit(&ipst->ips_ill_g_usesrc_lock); 784 } 785 786 static void 787 ipif_non_duplicate(ipif_t *ipif) 788 { 789 ill_t *ill = ipif->ipif_ill; 790 mutex_enter(&ill->ill_lock); 791 if (ipif->ipif_flags & IPIF_DUPLICATE) { 792 ipif->ipif_flags &= ~IPIF_DUPLICATE; 793 ASSERT(ill->ill_ipif_dup_count > 0); 794 ill->ill_ipif_dup_count--; 795 } 796 mutex_exit(&ill->ill_lock); 797 } 798 799 /* 800 * ill_delete_tail is called from ip_modclose after all references 801 * to the closing ill are gone. The wait is done in ip_modclose 802 */ 803 void 804 ill_delete_tail(ill_t *ill) 805 { 806 mblk_t **mpp; 807 ipif_t *ipif; 808 ip_stack_t *ipst = ill->ill_ipst; 809 810 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 811 ipif_non_duplicate(ipif); 812 ipif_down_tail(ipif); 813 } 814 815 ASSERT(ill->ill_ipif_dup_count == 0 && 816 ill->ill_arp_down_mp == NULL && 817 ill->ill_arp_del_mapping_mp == NULL); 818 819 /* 820 * If polling capability is enabled (which signifies direct 821 * upcall into IP and driver has ill saved as a handle), 822 * we need to make sure that unbind has completed before we 823 * let the ill disappear and driver no longer has any reference 824 * to this ill. 825 */ 826 mutex_enter(&ill->ill_lock); 827 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 828 cv_wait(&ill->ill_cv, &ill->ill_lock); 829 mutex_exit(&ill->ill_lock); 830 ASSERT(!(ill->ill_capabilities & 831 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 832 833 if (ill->ill_net_type != IRE_LOOPBACK) 834 qprocsoff(ill->ill_rq); 835 836 /* 837 * We do an ipsq_flush once again now. New messages could have 838 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 839 * could also have landed up if an ioctl thread had looked up 840 * the ill before we set the ILL_CONDEMNED flag, but not yet 841 * enqueued the ioctl when we did the ipsq_flush last time. 842 */ 843 ipsq_flush(ill); 844 845 /* 846 * Free capabilities. 847 */ 848 if (ill->ill_ipsec_capab_ah != NULL) { 849 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 850 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 851 ill->ill_ipsec_capab_ah = NULL; 852 } 853 854 if (ill->ill_ipsec_capab_esp != NULL) { 855 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 856 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 857 ill->ill_ipsec_capab_esp = NULL; 858 } 859 860 if (ill->ill_mdt_capab != NULL) { 861 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 862 ill->ill_mdt_capab = NULL; 863 } 864 865 if (ill->ill_hcksum_capab != NULL) { 866 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 867 ill->ill_hcksum_capab = NULL; 868 } 869 870 if (ill->ill_zerocopy_capab != NULL) { 871 kmem_free(ill->ill_zerocopy_capab, 872 sizeof (ill_zerocopy_capab_t)); 873 ill->ill_zerocopy_capab = NULL; 874 } 875 876 if (ill->ill_lso_capab != NULL) { 877 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 878 ill->ill_lso_capab = NULL; 879 } 880 881 if (ill->ill_dld_capab != NULL) { 882 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 883 ill->ill_dld_capab = NULL; 884 } 885 886 while (ill->ill_ipif != NULL) 887 ipif_free_tail(ill->ill_ipif); 888 889 /* 890 * We have removed all references to ilm from conn and the ones joined 891 * within the kernel. 892 * 893 * We don't walk conns, mrts and ires because 894 * 895 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 896 * 2) ill_down ->ill_downi walks all the ires and cleans up 897 * ill references. 898 */ 899 ASSERT(ilm_walk_ill(ill) == 0); 900 901 /* 902 * If this ill is an IPMP meta-interface, blow away the illgrp. This 903 * is safe to do because the illgrp has already been unlinked from the 904 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 905 */ 906 if (IS_IPMP(ill)) { 907 ipmp_illgrp_destroy(ill->ill_grp); 908 ill->ill_grp = NULL; 909 } 910 911 /* 912 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 913 * could free the phyint. No more reference to the phyint after this 914 * point. 915 */ 916 (void) ill_glist_delete(ill); 917 918 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 919 if (ill->ill_ndd_name != NULL) 920 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 921 rw_exit(&ipst->ips_ip_g_nd_lock); 922 923 if (ill->ill_frag_ptr != NULL) { 924 uint_t count; 925 926 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 927 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 928 } 929 mi_free(ill->ill_frag_ptr); 930 ill->ill_frag_ptr = NULL; 931 ill->ill_frag_hash_tbl = NULL; 932 } 933 934 freemsg(ill->ill_nd_lla_mp); 935 /* Free all retained control messages. */ 936 mpp = &ill->ill_first_mp_to_free; 937 do { 938 while (mpp[0]) { 939 mblk_t *mp; 940 mblk_t *mp1; 941 942 mp = mpp[0]; 943 mpp[0] = mp->b_next; 944 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 945 mp1->b_next = NULL; 946 mp1->b_prev = NULL; 947 } 948 freemsg(mp); 949 } 950 } while (mpp++ != &ill->ill_last_mp_to_free); 951 952 ill_free_mib(ill); 953 954 #ifdef DEBUG 955 ill_trace_cleanup(ill); 956 #endif 957 958 /* Drop refcnt here */ 959 netstack_rele(ill->ill_ipst->ips_netstack); 960 ill->ill_ipst = NULL; 961 } 962 963 static void 964 ill_free_mib(ill_t *ill) 965 { 966 ip_stack_t *ipst = ill->ill_ipst; 967 968 /* 969 * MIB statistics must not be lost, so when an interface 970 * goes away the counter values will be added to the global 971 * MIBs. 972 */ 973 if (ill->ill_ip_mib != NULL) { 974 if (ill->ill_isv6) { 975 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 976 ill->ill_ip_mib); 977 } else { 978 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 979 ill->ill_ip_mib); 980 } 981 982 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 983 ill->ill_ip_mib = NULL; 984 } 985 if (ill->ill_icmp6_mib != NULL) { 986 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 987 ill->ill_icmp6_mib); 988 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 989 ill->ill_icmp6_mib = NULL; 990 } 991 } 992 993 /* 994 * Concatenate together a physical address and a sap. 995 * 996 * Sap_lengths are interpreted as follows: 997 * sap_length == 0 ==> no sap 998 * sap_length > 0 ==> sap is at the head of the dlpi address 999 * sap_length < 0 ==> sap is at the tail of the dlpi address 1000 */ 1001 static void 1002 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1003 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1004 { 1005 uint16_t sap_addr = (uint16_t)sap_src; 1006 1007 if (sap_length == 0) { 1008 if (phys_src == NULL) 1009 bzero(dst, phys_length); 1010 else 1011 bcopy(phys_src, dst, phys_length); 1012 } else if (sap_length < 0) { 1013 if (phys_src == NULL) 1014 bzero(dst, phys_length); 1015 else 1016 bcopy(phys_src, dst, phys_length); 1017 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1018 } else { 1019 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1020 if (phys_src == NULL) 1021 bzero((char *)dst + sap_length, phys_length); 1022 else 1023 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1024 } 1025 } 1026 1027 /* 1028 * Generate a dl_unitdata_req mblk for the device and address given. 1029 * addr_length is the length of the physical portion of the address. 1030 * If addr is NULL include an all zero address of the specified length. 1031 * TRUE? In any case, addr_length is taken to be the entire length of the 1032 * dlpi address, including the absolute value of sap_length. 1033 */ 1034 mblk_t * 1035 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1036 t_scalar_t sap_length) 1037 { 1038 dl_unitdata_req_t *dlur; 1039 mblk_t *mp; 1040 t_scalar_t abs_sap_length; /* absolute value */ 1041 1042 abs_sap_length = ABS(sap_length); 1043 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1044 DL_UNITDATA_REQ); 1045 if (mp == NULL) 1046 return (NULL); 1047 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1048 /* HACK: accomodate incompatible DLPI drivers */ 1049 if (addr_length == 8) 1050 addr_length = 6; 1051 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1052 dlur->dl_dest_addr_offset = sizeof (*dlur); 1053 dlur->dl_priority.dl_min = 0; 1054 dlur->dl_priority.dl_max = 0; 1055 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1056 (uchar_t *)&dlur[1]); 1057 return (mp); 1058 } 1059 1060 /* 1061 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1062 * Return an error if we already have 1 or more ioctls in progress. 1063 * This is used only for non-exclusive ioctls. Currently this is used 1064 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1065 * and thus need to use ipsq_pending_mp_add. 1066 */ 1067 boolean_t 1068 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1069 { 1070 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1071 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1072 /* 1073 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1074 */ 1075 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1076 (add_mp->b_datap->db_type == M_IOCTL)); 1077 1078 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1079 /* 1080 * Return error if the conn has started closing. The conn 1081 * could have finished cleaning up the pending mp list, 1082 * If so we should not add another mp to the list negating 1083 * the cleanup. 1084 */ 1085 if (connp->conn_state_flags & CONN_CLOSING) 1086 return (B_FALSE); 1087 /* 1088 * Add the pending mp to the head of the list, chained by b_next. 1089 * Note down the conn on which the ioctl request came, in b_prev. 1090 * This will be used to later get the conn, when we get a response 1091 * on the ill queue, from some other module (typically arp) 1092 */ 1093 add_mp->b_next = (void *)ill->ill_pending_mp; 1094 add_mp->b_queue = CONNP_TO_WQ(connp); 1095 ill->ill_pending_mp = add_mp; 1096 if (connp != NULL) 1097 connp->conn_oper_pending_ill = ill; 1098 return (B_TRUE); 1099 } 1100 1101 /* 1102 * Retrieve the ill_pending_mp and return it. We have to walk the list 1103 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1104 */ 1105 mblk_t * 1106 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1107 { 1108 mblk_t *prev = NULL; 1109 mblk_t *curr = NULL; 1110 uint_t id; 1111 conn_t *connp; 1112 1113 /* 1114 * When the conn closes, conn_ioctl_cleanup needs to clean 1115 * up the pending mp, but it does not know the ioc_id and 1116 * passes in a zero for it. 1117 */ 1118 mutex_enter(&ill->ill_lock); 1119 if (ioc_id != 0) 1120 *connpp = NULL; 1121 1122 /* Search the list for the appropriate ioctl based on ioc_id */ 1123 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1124 prev = curr, curr = curr->b_next) { 1125 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1126 connp = Q_TO_CONN(curr->b_queue); 1127 /* Match based on the ioc_id or based on the conn */ 1128 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1129 break; 1130 } 1131 1132 if (curr != NULL) { 1133 /* Unlink the mblk from the pending mp list */ 1134 if (prev != NULL) { 1135 prev->b_next = curr->b_next; 1136 } else { 1137 ASSERT(ill->ill_pending_mp == curr); 1138 ill->ill_pending_mp = curr->b_next; 1139 } 1140 1141 /* 1142 * conn refcnt must have been bumped up at the start of 1143 * the ioctl. So we can safely access the conn. 1144 */ 1145 ASSERT(CONN_Q(curr->b_queue)); 1146 *connpp = Q_TO_CONN(curr->b_queue); 1147 curr->b_next = NULL; 1148 curr->b_queue = NULL; 1149 } 1150 1151 mutex_exit(&ill->ill_lock); 1152 1153 return (curr); 1154 } 1155 1156 /* 1157 * Add the pending mp to the list. There can be only 1 pending mp 1158 * in the list. Any exclusive ioctl that needs to wait for a response 1159 * from another module or driver needs to use this function to set 1160 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1161 * the other module/driver. This is also used while waiting for the 1162 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1163 */ 1164 boolean_t 1165 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1166 int waitfor) 1167 { 1168 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1169 1170 ASSERT(IAM_WRITER_IPIF(ipif)); 1171 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1172 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1173 ASSERT(ipx->ipx_pending_mp == NULL); 1174 /* 1175 * The caller may be using a different ipif than the one passed into 1176 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1177 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1178 * that `ipx_current_ipif == ipif'. 1179 */ 1180 ASSERT(ipx->ipx_current_ipif != NULL); 1181 1182 /* 1183 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1184 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1185 */ 1186 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1187 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1188 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1189 1190 if (connp != NULL) { 1191 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1192 /* 1193 * Return error if the conn has started closing. The conn 1194 * could have finished cleaning up the pending mp list, 1195 * If so we should not add another mp to the list negating 1196 * the cleanup. 1197 */ 1198 if (connp->conn_state_flags & CONN_CLOSING) 1199 return (B_FALSE); 1200 } 1201 mutex_enter(&ipx->ipx_lock); 1202 ipx->ipx_pending_ipif = ipif; 1203 /* 1204 * Note down the queue in b_queue. This will be returned by 1205 * ipsq_pending_mp_get. Caller will then use these values to restart 1206 * the processing 1207 */ 1208 add_mp->b_next = NULL; 1209 add_mp->b_queue = q; 1210 ipx->ipx_pending_mp = add_mp; 1211 ipx->ipx_waitfor = waitfor; 1212 mutex_exit(&ipx->ipx_lock); 1213 1214 if (connp != NULL) 1215 connp->conn_oper_pending_ill = ipif->ipif_ill; 1216 1217 return (B_TRUE); 1218 } 1219 1220 /* 1221 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1222 * queued in the list. 1223 */ 1224 mblk_t * 1225 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1226 { 1227 mblk_t *curr = NULL; 1228 ipxop_t *ipx = ipsq->ipsq_xop; 1229 1230 *connpp = NULL; 1231 mutex_enter(&ipx->ipx_lock); 1232 if (ipx->ipx_pending_mp == NULL) { 1233 mutex_exit(&ipx->ipx_lock); 1234 return (NULL); 1235 } 1236 1237 /* There can be only 1 such excl message */ 1238 curr = ipx->ipx_pending_mp; 1239 ASSERT(curr->b_next == NULL); 1240 ipx->ipx_pending_ipif = NULL; 1241 ipx->ipx_pending_mp = NULL; 1242 ipx->ipx_waitfor = 0; 1243 mutex_exit(&ipx->ipx_lock); 1244 1245 if (CONN_Q(curr->b_queue)) { 1246 /* 1247 * This mp did a refhold on the conn, at the start of the ioctl. 1248 * So we can safely return a pointer to the conn to the caller. 1249 */ 1250 *connpp = Q_TO_CONN(curr->b_queue); 1251 } else { 1252 *connpp = NULL; 1253 } 1254 curr->b_next = NULL; 1255 curr->b_prev = NULL; 1256 return (curr); 1257 } 1258 1259 /* 1260 * Cleanup the ioctl mp queued in ipx_pending_mp 1261 * - Called in the ill_delete path 1262 * - Called in the M_ERROR or M_HANGUP path on the ill. 1263 * - Called in the conn close path. 1264 */ 1265 boolean_t 1266 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1267 { 1268 mblk_t *mp; 1269 ipxop_t *ipx; 1270 queue_t *q; 1271 ipif_t *ipif; 1272 1273 ASSERT(IAM_WRITER_ILL(ill)); 1274 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1275 1276 /* 1277 * If connp is null, unconditionally clean up the ipx_pending_mp. 1278 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1279 * even if it is meant for another ill, since we have to enqueue 1280 * a new mp now in ipx_pending_mp to complete the ipif_down. 1281 * If connp is non-null we are called from the conn close path. 1282 */ 1283 mutex_enter(&ipx->ipx_lock); 1284 mp = ipx->ipx_pending_mp; 1285 if (mp == NULL || (connp != NULL && 1286 mp->b_queue != CONNP_TO_WQ(connp))) { 1287 mutex_exit(&ipx->ipx_lock); 1288 return (B_FALSE); 1289 } 1290 /* Now remove from the ipx_pending_mp */ 1291 ipx->ipx_pending_mp = NULL; 1292 q = mp->b_queue; 1293 mp->b_next = NULL; 1294 mp->b_prev = NULL; 1295 mp->b_queue = NULL; 1296 1297 ipif = ipx->ipx_pending_ipif; 1298 ipx->ipx_pending_ipif = NULL; 1299 ipx->ipx_waitfor = 0; 1300 ipx->ipx_current_ipif = NULL; 1301 ipx->ipx_current_ioctl = 0; 1302 ipx->ipx_current_done = B_TRUE; 1303 mutex_exit(&ipx->ipx_lock); 1304 1305 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1306 if (connp == NULL) { 1307 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1308 } else { 1309 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1310 mutex_enter(&ipif->ipif_ill->ill_lock); 1311 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1312 mutex_exit(&ipif->ipif_ill->ill_lock); 1313 } 1314 } else { 1315 /* 1316 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1317 * be just inet_freemsg. we have to restart it 1318 * otherwise the thread will be stuck. 1319 */ 1320 inet_freemsg(mp); 1321 } 1322 return (B_TRUE); 1323 } 1324 1325 /* 1326 * The ill is closing. Cleanup all the pending mps. Called exclusively 1327 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1328 * knows this ill, and hence nobody can add an mp to this list 1329 */ 1330 static void 1331 ill_pending_mp_cleanup(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 queue_t *q; 1335 1336 ASSERT(IAM_WRITER_ILL(ill)); 1337 1338 mutex_enter(&ill->ill_lock); 1339 /* 1340 * Every mp on the pending mp list originating from an ioctl 1341 * added 1 to the conn refcnt, at the start of the ioctl. 1342 * So bump it down now. See comments in ip_wput_nondata() 1343 */ 1344 while (ill->ill_pending_mp != NULL) { 1345 mp = ill->ill_pending_mp; 1346 ill->ill_pending_mp = mp->b_next; 1347 mutex_exit(&ill->ill_lock); 1348 1349 q = mp->b_queue; 1350 ASSERT(CONN_Q(q)); 1351 mp->b_next = NULL; 1352 mp->b_prev = NULL; 1353 mp->b_queue = NULL; 1354 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1355 mutex_enter(&ill->ill_lock); 1356 } 1357 ill->ill_pending_ipif = NULL; 1358 1359 mutex_exit(&ill->ill_lock); 1360 } 1361 1362 /* 1363 * Called in the conn close path and ill delete path 1364 */ 1365 static void 1366 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1367 { 1368 ipsq_t *ipsq; 1369 mblk_t *prev; 1370 mblk_t *curr; 1371 mblk_t *next; 1372 queue_t *q; 1373 mblk_t *tmp_list = NULL; 1374 1375 ASSERT(IAM_WRITER_ILL(ill)); 1376 if (connp != NULL) 1377 q = CONNP_TO_WQ(connp); 1378 else 1379 q = ill->ill_wq; 1380 1381 ipsq = ill->ill_phyint->phyint_ipsq; 1382 /* 1383 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1384 * In the case of ioctl from a conn, there can be only 1 mp 1385 * queued on the ipsq. If an ill is being unplumbed, only messages 1386 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1387 * ioctls meant for this ill form conn's are not flushed. They will 1388 * be processed during ipsq_exit and will not find the ill and will 1389 * return error. 1390 */ 1391 mutex_enter(&ipsq->ipsq_lock); 1392 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1393 curr = next) { 1394 next = curr->b_next; 1395 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1396 /* Unlink the mblk from the pending mp list */ 1397 if (prev != NULL) { 1398 prev->b_next = curr->b_next; 1399 } else { 1400 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1401 ipsq->ipsq_xopq_mphead = curr->b_next; 1402 } 1403 if (ipsq->ipsq_xopq_mptail == curr) 1404 ipsq->ipsq_xopq_mptail = prev; 1405 /* 1406 * Create a temporary list and release the ipsq lock 1407 * New elements are added to the head of the tmp_list 1408 */ 1409 curr->b_next = tmp_list; 1410 tmp_list = curr; 1411 } else { 1412 prev = curr; 1413 } 1414 } 1415 mutex_exit(&ipsq->ipsq_lock); 1416 1417 while (tmp_list != NULL) { 1418 curr = tmp_list; 1419 tmp_list = curr->b_next; 1420 curr->b_next = NULL; 1421 curr->b_prev = NULL; 1422 curr->b_queue = NULL; 1423 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1424 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1425 CONN_CLOSE : NO_COPYOUT, NULL); 1426 } else { 1427 /* 1428 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1429 * this can't be just inet_freemsg. we have to 1430 * restart it otherwise the thread will be stuck. 1431 */ 1432 inet_freemsg(curr); 1433 } 1434 } 1435 } 1436 1437 /* 1438 * This conn has started closing. Cleanup any pending ioctl from this conn. 1439 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1440 */ 1441 void 1442 conn_ioctl_cleanup(conn_t *connp) 1443 { 1444 mblk_t *curr; 1445 ipsq_t *ipsq; 1446 ill_t *ill; 1447 boolean_t refheld; 1448 1449 /* 1450 * Is any exclusive ioctl pending ? If so clean it up. If the 1451 * ioctl has not yet started, the mp is pending in the list headed by 1452 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1453 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1454 * is currently executing now the mp is not queued anywhere but 1455 * conn_oper_pending_ill is null. The conn close will wait 1456 * till the conn_ref drops to zero. 1457 */ 1458 mutex_enter(&connp->conn_lock); 1459 ill = connp->conn_oper_pending_ill; 1460 if (ill == NULL) { 1461 mutex_exit(&connp->conn_lock); 1462 return; 1463 } 1464 1465 curr = ill_pending_mp_get(ill, &connp, 0); 1466 if (curr != NULL) { 1467 mutex_exit(&connp->conn_lock); 1468 CONN_DEC_REF(connp); 1469 inet_freemsg(curr); 1470 return; 1471 } 1472 /* 1473 * We may not be able to refhold the ill if the ill/ipif 1474 * is changing. But we need to make sure that the ill will 1475 * not vanish. So we just bump up the ill_waiter count. 1476 */ 1477 refheld = ill_waiter_inc(ill); 1478 mutex_exit(&connp->conn_lock); 1479 if (refheld) { 1480 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1481 ill_waiter_dcr(ill); 1482 /* 1483 * Check whether this ioctl has started and is 1484 * pending. If it is not found there then check 1485 * whether this ioctl has not even started and is in 1486 * the ipsq_xopq list. 1487 */ 1488 if (!ipsq_pending_mp_cleanup(ill, connp)) 1489 ipsq_xopq_mp_cleanup(ill, connp); 1490 ipsq = ill->ill_phyint->phyint_ipsq; 1491 ipsq_exit(ipsq); 1492 return; 1493 } 1494 } 1495 1496 /* 1497 * The ill is also closing and we could not bump up the 1498 * ill_waiter_count or we could not enter the ipsq. Leave 1499 * the cleanup to ill_delete 1500 */ 1501 mutex_enter(&connp->conn_lock); 1502 while (connp->conn_oper_pending_ill != NULL) 1503 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1504 mutex_exit(&connp->conn_lock); 1505 if (refheld) 1506 ill_waiter_dcr(ill); 1507 } 1508 1509 /* 1510 * ipcl_walk function for cleaning up conn_*_ill fields. 1511 */ 1512 static void 1513 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1514 { 1515 ill_t *ill = (ill_t *)arg; 1516 ire_t *ire; 1517 1518 mutex_enter(&connp->conn_lock); 1519 if (connp->conn_multicast_ill == ill) { 1520 /* Revert to late binding */ 1521 connp->conn_multicast_ill = NULL; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_dhcpinit_ill == ill) { 1528 connp->conn_dhcpinit_ill = NULL; 1529 ASSERT(ill->ill_dhcpinit != 0); 1530 atomic_dec_32(&ill->ill_dhcpinit); 1531 } 1532 if (connp->conn_ire_cache != NULL) { 1533 ire = connp->conn_ire_cache; 1534 /* 1535 * Source address selection makes it possible for IRE_CACHE 1536 * entries to be created with ire_stq coming from interface X 1537 * and ipif coming from interface Y. Thus whenever interface 1538 * X goes down, remove all references to it by checking both 1539 * on ire_ipif and ire_stq. 1540 */ 1541 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1542 (ire->ire_type == IRE_CACHE && 1543 ire->ire_stq == ill->ill_wq)) { 1544 connp->conn_ire_cache = NULL; 1545 mutex_exit(&connp->conn_lock); 1546 ire_refrele_notr(ire); 1547 return; 1548 } 1549 } 1550 mutex_exit(&connp->conn_lock); 1551 } 1552 1553 static void 1554 ill_down_ipifs_tail(ill_t *ill) 1555 { 1556 ipif_t *ipif; 1557 1558 ASSERT(IAM_WRITER_ILL(ill)); 1559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1560 ipif_non_duplicate(ipif); 1561 ipif_down_tail(ipif); 1562 } 1563 } 1564 1565 /* ARGSUSED */ 1566 void 1567 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1568 { 1569 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1570 ill_down_ipifs_tail(q->q_ptr); 1571 freemsg(mp); 1572 ipsq_current_finish(ipsq); 1573 } 1574 1575 /* 1576 * ill_down_start is called when we want to down this ill and bring it up again 1577 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1578 * all interfaces, but don't tear down any plumbing. 1579 */ 1580 boolean_t 1581 ill_down_start(queue_t *q, mblk_t *mp) 1582 { 1583 ill_t *ill = q->q_ptr; 1584 ipif_t *ipif; 1585 1586 ASSERT(IAM_WRITER_ILL(ill)); 1587 1588 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1589 (void) ipif_down(ipif, NULL, NULL); 1590 1591 ill_down(ill); 1592 1593 (void) ipsq_pending_mp_cleanup(ill, NULL); 1594 1595 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1596 1597 /* 1598 * Atomically test and add the pending mp if references are active. 1599 */ 1600 mutex_enter(&ill->ill_lock); 1601 if (!ill_is_quiescent(ill)) { 1602 /* call cannot fail since `conn_t *' argument is NULL */ 1603 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1604 mp, ILL_DOWN); 1605 mutex_exit(&ill->ill_lock); 1606 return (B_FALSE); 1607 } 1608 mutex_exit(&ill->ill_lock); 1609 return (B_TRUE); 1610 } 1611 1612 static void 1613 ill_down(ill_t *ill) 1614 { 1615 ip_stack_t *ipst = ill->ill_ipst; 1616 1617 /* Blow off any IREs dependent on this ILL. */ 1618 ire_walk(ill_downi, ill, ipst); 1619 1620 /* Remove any conn_*_ill depending on this ill */ 1621 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * Source address selection makes it possible for IRE_CACHE 1635 * entries to be created with ire_stq coming from interface X 1636 * and ipif coming from interface Y. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 mblk_t *mp; 1742 1743 ASSERT(IAM_WRITER_ILL(ill)); 1744 1745 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1746 ill->ill_dlpi_capab_state != IDCS_FAILED) 1747 return; 1748 1749 /* 1750 * We are starting a new cycle of capability negotiation. 1751 * Free up the capab reset messages of any previous incarnation. 1752 * We will do a fresh allocation when we get the response to our probe 1753 */ 1754 if (ill->ill_capab_reset_mp != NULL) { 1755 freemsg(ill->ill_capab_reset_mp); 1756 ill->ill_capab_reset_mp = NULL; 1757 } 1758 1759 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1760 1761 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1762 if (mp == NULL) 1763 return; 1764 1765 ill_capability_send(ill, mp); 1766 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1767 } 1768 1769 void 1770 ill_capability_reset(ill_t *ill, boolean_t reneg) 1771 { 1772 ASSERT(IAM_WRITER_ILL(ill)); 1773 1774 if (ill->ill_dlpi_capab_state != IDCS_OK) 1775 return; 1776 1777 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1778 1779 ill_capability_send(ill, ill->ill_capab_reset_mp); 1780 ill->ill_capab_reset_mp = NULL; 1781 /* 1782 * We turn off all capabilities except those pertaining to 1783 * direct function call capabilities viz. ILL_CAPAB_DLD* 1784 * which will be turned off by the corresponding reset functions. 1785 */ 1786 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1787 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1788 } 1789 1790 static void 1791 ill_capability_reset_alloc(ill_t *ill) 1792 { 1793 mblk_t *mp; 1794 size_t size = 0; 1795 int err; 1796 dl_capability_req_t *capb; 1797 1798 ASSERT(IAM_WRITER_ILL(ill)); 1799 ASSERT(ill->ill_capab_reset_mp == NULL); 1800 1801 if (ILL_MDT_CAPABLE(ill)) 1802 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1803 1804 if (ILL_HCKSUM_CAPABLE(ill)) { 1805 size += sizeof (dl_capability_sub_t) + 1806 sizeof (dl_capab_hcksum_t); 1807 } 1808 1809 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1810 size += sizeof (dl_capability_sub_t) + 1811 sizeof (dl_capab_zerocopy_t); 1812 } 1813 1814 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1815 size += sizeof (dl_capability_sub_t); 1816 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1817 NULL, NULL); 1818 } 1819 1820 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1821 size += sizeof (dl_capability_sub_t) + 1822 sizeof (dl_capab_dld_t); 1823 } 1824 1825 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1826 STR_NOSIG, &err); 1827 1828 mp->b_datap->db_type = M_PROTO; 1829 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1830 1831 capb = (dl_capability_req_t *)mp->b_rptr; 1832 capb->dl_primitive = DL_CAPABILITY_REQ; 1833 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1834 capb->dl_sub_length = size; 1835 1836 mp->b_wptr += sizeof (dl_capability_req_t); 1837 1838 /* 1839 * Each handler fills in the corresponding dl_capability_sub_t 1840 * inside the mblk, 1841 */ 1842 ill_capability_mdt_reset_fill(ill, mp); 1843 ill_capability_hcksum_reset_fill(ill, mp); 1844 ill_capability_zerocopy_reset_fill(ill, mp); 1845 ill_capability_ipsec_reset_fill(ill, mp); 1846 ill_capability_dld_reset_fill(ill, mp); 1847 1848 ill->ill_capab_reset_mp = mp; 1849 } 1850 1851 static void 1852 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1853 { 1854 dl_capab_id_t *id_ic; 1855 uint_t sub_dl_cap = outers->dl_cap; 1856 dl_capability_sub_t *inners; 1857 uint8_t *capend; 1858 1859 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1860 1861 /* 1862 * Note: range checks here are not absolutely sufficient to 1863 * make us robust against malformed messages sent by drivers; 1864 * this is in keeping with the rest of IP's dlpi handling. 1865 * (Remember, it's coming from something else in the kernel 1866 * address space) 1867 */ 1868 1869 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1870 if (capend > mp->b_wptr) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: " 1872 "malformed sub-capability too long for mblk"); 1873 return; 1874 } 1875 1876 id_ic = (dl_capab_id_t *)(outers + 1); 1877 1878 if (outers->dl_length < sizeof (*id_ic) || 1879 (inners = &id_ic->id_subcap, 1880 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1881 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1882 "encapsulated capab type %d too long for mblk", 1883 inners->dl_cap); 1884 return; 1885 } 1886 1887 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1888 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1889 "isn't as expected; pass-thru module(s) detected, " 1890 "discarding capability\n", inners->dl_cap)); 1891 return; 1892 } 1893 1894 /* Process the encapsulated sub-capability */ 1895 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1896 } 1897 1898 /* 1899 * Process Multidata Transmit capability negotiation ack received from a 1900 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1901 * DL_CAPABILITY_ACK message. 1902 */ 1903 static void 1904 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1905 { 1906 mblk_t *nmp = NULL; 1907 dl_capability_req_t *oc; 1908 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1909 ill_mdt_capab_t **ill_mdt_capab; 1910 uint_t sub_dl_cap = isub->dl_cap; 1911 uint8_t *capend; 1912 1913 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1914 1915 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1916 1917 /* 1918 * Note: range checks here are not absolutely sufficient to 1919 * make us robust against malformed messages sent by drivers; 1920 * this is in keeping with the rest of IP's dlpi handling. 1921 * (Remember, it's coming from something else in the kernel 1922 * address space) 1923 */ 1924 1925 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1926 if (capend > mp->b_wptr) { 1927 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1928 "malformed sub-capability too long for mblk"); 1929 return; 1930 } 1931 1932 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1933 1934 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1935 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1936 "unsupported MDT sub-capability (version %d, expected %d)", 1937 mdt_ic->mdt_version, MDT_VERSION_2); 1938 return; 1939 } 1940 1941 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1942 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1943 "capability isn't as expected; pass-thru module(s) " 1944 "detected, discarding capability\n")); 1945 return; 1946 } 1947 1948 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1949 1950 if (*ill_mdt_capab == NULL) { 1951 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1952 KM_NOSLEEP); 1953 if (*ill_mdt_capab == NULL) { 1954 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1955 "could not enable MDT version %d " 1956 "for %s (ENOMEM)\n", MDT_VERSION_2, 1957 ill->ill_name); 1958 return; 1959 } 1960 } 1961 1962 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1963 "MDT version %d (%d bytes leading, %d bytes trailing " 1964 "header spaces, %d max pld bufs, %d span limit)\n", 1965 ill->ill_name, MDT_VERSION_2, 1966 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1967 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1968 1969 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1970 (*ill_mdt_capab)->ill_mdt_on = 1; 1971 /* 1972 * Round the following values to the nearest 32-bit; ULP 1973 * may further adjust them to accomodate for additional 1974 * protocol headers. We pass these values to ULP during 1975 * bind time. 1976 */ 1977 (*ill_mdt_capab)->ill_mdt_hdr_head = 1978 roundup(mdt_ic->mdt_hdr_head, 4); 1979 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1980 roundup(mdt_ic->mdt_hdr_tail, 4); 1981 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1982 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1983 1984 ill->ill_capabilities |= ILL_CAPAB_MDT; 1985 } else { 1986 uint_t size; 1987 uchar_t *rptr; 1988 1989 size = sizeof (dl_capability_req_t) + 1990 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1991 1992 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1993 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1994 "could not enable MDT for %s (ENOMEM)\n", 1995 ill->ill_name); 1996 return; 1997 } 1998 1999 rptr = nmp->b_rptr; 2000 /* initialize dl_capability_req_t */ 2001 oc = (dl_capability_req_t *)nmp->b_rptr; 2002 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2003 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2004 sizeof (dl_capab_mdt_t); 2005 nmp->b_rptr += sizeof (dl_capability_req_t); 2006 2007 /* initialize dl_capability_sub_t */ 2008 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2009 nmp->b_rptr += sizeof (*isub); 2010 2011 /* initialize dl_capab_mdt_t */ 2012 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2013 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2014 2015 nmp->b_rptr = rptr; 2016 2017 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2018 "to enable MDT version %d\n", ill->ill_name, 2019 MDT_VERSION_2)); 2020 2021 /* set ENABLE flag */ 2022 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2023 2024 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2025 ill_capability_send(ill, nmp); 2026 } 2027 } 2028 2029 static void 2030 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2031 { 2032 dl_capab_mdt_t *mdt_subcap; 2033 dl_capability_sub_t *dl_subcap; 2034 2035 if (!ILL_MDT_CAPABLE(ill)) 2036 return; 2037 2038 ASSERT(ill->ill_mdt_capab != NULL); 2039 2040 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2041 dl_subcap->dl_cap = DL_CAPAB_MDT; 2042 dl_subcap->dl_length = sizeof (*mdt_subcap); 2043 2044 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2045 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2046 mdt_subcap->mdt_flags = 0; 2047 mdt_subcap->mdt_hdr_head = 0; 2048 mdt_subcap->mdt_hdr_tail = 0; 2049 2050 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2051 } 2052 2053 static void 2054 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2055 { 2056 dl_capability_sub_t *dl_subcap; 2057 2058 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2059 return; 2060 2061 /* 2062 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2063 * initialized below since it is not used by DLD. 2064 */ 2065 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2066 dl_subcap->dl_cap = DL_CAPAB_DLD; 2067 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2068 2069 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2070 } 2071 2072 /* 2073 * Send a DL_NOTIFY_REQ to the specified ill to enable 2074 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2075 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2076 * acceleration. 2077 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2078 */ 2079 static boolean_t 2080 ill_enable_promisc_notify(ill_t *ill) 2081 { 2082 mblk_t *mp; 2083 dl_notify_req_t *req; 2084 2085 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2086 2087 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2088 if (mp == NULL) 2089 return (B_FALSE); 2090 2091 req = (dl_notify_req_t *)mp->b_rptr; 2092 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2093 DL_NOTE_PROMISC_OFF_PHYS; 2094 2095 ill_dlpi_send(ill, mp); 2096 2097 return (B_TRUE); 2098 } 2099 2100 /* 2101 * Allocate an IPsec capability request which will be filled by our 2102 * caller to turn on support for one or more algorithms. 2103 */ 2104 static mblk_t * 2105 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2106 { 2107 mblk_t *nmp; 2108 dl_capability_req_t *ocap; 2109 dl_capab_ipsec_t *ocip; 2110 dl_capab_ipsec_t *icip; 2111 uint8_t *ptr; 2112 icip = (dl_capab_ipsec_t *)(isub + 1); 2113 2114 /* 2115 * The first time around, we send a DL_NOTIFY_REQ to enable 2116 * PROMISC_ON/OFF notification from the provider. We need to 2117 * do this before enabling the algorithms to avoid leakage of 2118 * cleartext packets. 2119 */ 2120 2121 if (!ill_enable_promisc_notify(ill)) 2122 return (NULL); 2123 2124 /* 2125 * Allocate new mblk which will contain a new capability 2126 * request to enable the capabilities. 2127 */ 2128 2129 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2130 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2131 if (nmp == NULL) 2132 return (NULL); 2133 2134 ptr = nmp->b_rptr; 2135 2136 /* initialize dl_capability_req_t */ 2137 ocap = (dl_capability_req_t *)ptr; 2138 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2139 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2140 ptr += sizeof (dl_capability_req_t); 2141 2142 /* initialize dl_capability_sub_t */ 2143 bcopy(isub, ptr, sizeof (*isub)); 2144 ptr += sizeof (*isub); 2145 2146 /* initialize dl_capab_ipsec_t */ 2147 ocip = (dl_capab_ipsec_t *)ptr; 2148 bcopy(icip, ocip, sizeof (*icip)); 2149 2150 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2151 return (nmp); 2152 } 2153 2154 /* 2155 * Process an IPsec capability negotiation ack received from a DLS Provider. 2156 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2157 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2158 */ 2159 static void 2160 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2161 { 2162 dl_capab_ipsec_t *icip; 2163 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2164 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2165 uint_t cipher, nciphers; 2166 mblk_t *nmp; 2167 uint_t alg_len; 2168 boolean_t need_sadb_dump; 2169 uint_t sub_dl_cap = isub->dl_cap; 2170 ill_ipsec_capab_t **ill_capab; 2171 uint64_t ill_capab_flag; 2172 uint8_t *capend, *ciphend; 2173 boolean_t sadb_resync; 2174 2175 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2176 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2177 2178 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2179 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2180 ill_capab_flag = ILL_CAPAB_AH; 2181 } else { 2182 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2183 ill_capab_flag = ILL_CAPAB_ESP; 2184 } 2185 2186 /* 2187 * If the ill capability structure exists, then this incoming 2188 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2189 * If this is so, then we'd need to resynchronize the SADB 2190 * after re-enabling the offloaded ciphers. 2191 */ 2192 sadb_resync = (*ill_capab != NULL); 2193 2194 /* 2195 * Note: range checks here are not absolutely sufficient to 2196 * make us robust against malformed messages sent by drivers; 2197 * this is in keeping with the rest of IP's dlpi handling. 2198 * (Remember, it's coming from something else in the kernel 2199 * address space) 2200 */ 2201 2202 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2203 if (capend > mp->b_wptr) { 2204 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2205 "malformed sub-capability too long for mblk"); 2206 return; 2207 } 2208 2209 /* 2210 * There are two types of acks we process here: 2211 * 1. acks in reply to a (first form) generic capability req 2212 * (no ENABLE flag set) 2213 * 2. acks in reply to a ENABLE capability req. 2214 * (ENABLE flag set) 2215 * 2216 * We process the subcapability passed as argument as follows: 2217 * 1 do initializations 2218 * 1.1 initialize nmp = NULL 2219 * 1.2 set need_sadb_dump to B_FALSE 2220 * 2 for each cipher in subcapability: 2221 * 2.1 if ENABLE flag is set: 2222 * 2.1.1 update per-ill ipsec capabilities info 2223 * 2.1.2 set need_sadb_dump to B_TRUE 2224 * 2.2 if ENABLE flag is not set: 2225 * 2.2.1 if nmp is NULL: 2226 * 2.2.1.1 allocate and initialize nmp 2227 * 2.2.1.2 init current pos in nmp 2228 * 2.2.2 copy current cipher to current pos in nmp 2229 * 2.2.3 set ENABLE flag in nmp 2230 * 2.2.4 update current pos 2231 * 3 if nmp is not equal to NULL, send enable request 2232 * 3.1 send capability request 2233 * 4 if need_sadb_dump is B_TRUE 2234 * 4.1 enable promiscuous on/off notifications 2235 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2236 * AH or ESP SA's to interface. 2237 */ 2238 2239 nmp = NULL; 2240 oalg = NULL; 2241 need_sadb_dump = B_FALSE; 2242 icip = (dl_capab_ipsec_t *)(isub + 1); 2243 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2244 2245 nciphers = icip->cip_nciphers; 2246 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2247 2248 if (ciphend > capend) { 2249 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2250 "too many ciphers for sub-capability len"); 2251 return; 2252 } 2253 2254 for (cipher = 0; cipher < nciphers; cipher++) { 2255 alg_len = sizeof (dl_capab_ipsec_alg_t); 2256 2257 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2258 /* 2259 * TBD: when we provide a way to disable capabilities 2260 * from above, need to manage the request-pending state 2261 * and fail if we were not expecting this ACK. 2262 */ 2263 IPSECHW_DEBUG(IPSECHW_CAPAB, 2264 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2265 2266 /* 2267 * Update IPsec capabilities for this ill 2268 */ 2269 2270 if (*ill_capab == NULL) { 2271 IPSECHW_DEBUG(IPSECHW_CAPAB, 2272 ("ill_capability_ipsec_ack: " 2273 "allocating ipsec_capab for ill\n")); 2274 *ill_capab = ill_ipsec_capab_alloc(); 2275 2276 if (*ill_capab == NULL) { 2277 cmn_err(CE_WARN, 2278 "ill_capability_ipsec_ack: " 2279 "could not enable IPsec Hardware " 2280 "acceleration for %s (ENOMEM)\n", 2281 ill->ill_name); 2282 return; 2283 } 2284 } 2285 2286 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2287 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2288 2289 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2290 cmn_err(CE_WARN, 2291 "ill_capability_ipsec_ack: " 2292 "malformed IPsec algorithm id %d", 2293 ialg->alg_prim); 2294 continue; 2295 } 2296 2297 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2298 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2299 ialg->alg_prim); 2300 } else { 2301 ipsec_capab_algparm_t *alp; 2302 2303 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2304 ialg->alg_prim); 2305 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2306 ialg->alg_prim)) { 2307 cmn_err(CE_WARN, 2308 "ill_capability_ipsec_ack: " 2309 "no space for IPsec alg id %d", 2310 ialg->alg_prim); 2311 continue; 2312 } 2313 alp = &((*ill_capab)->encr_algparm[ 2314 ialg->alg_prim]); 2315 alp->minkeylen = ialg->alg_minbits; 2316 alp->maxkeylen = ialg->alg_maxbits; 2317 } 2318 ill->ill_capabilities |= ill_capab_flag; 2319 /* 2320 * indicate that a capability was enabled, which 2321 * will be used below to kick off a SADB dump 2322 * to the ill. 2323 */ 2324 need_sadb_dump = B_TRUE; 2325 } else { 2326 IPSECHW_DEBUG(IPSECHW_CAPAB, 2327 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2328 ialg->alg_prim)); 2329 2330 if (nmp == NULL) { 2331 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2332 if (nmp == NULL) { 2333 /* 2334 * Sending the PROMISC_ON/OFF 2335 * notification request failed. 2336 * We cannot enable the algorithms 2337 * since the Provider will not 2338 * notify IP of promiscous mode 2339 * changes, which could lead 2340 * to leakage of packets. 2341 */ 2342 cmn_err(CE_WARN, 2343 "ill_capability_ipsec_ack: " 2344 "could not enable IPsec Hardware " 2345 "acceleration for %s (ENOMEM)\n", 2346 ill->ill_name); 2347 return; 2348 } 2349 /* ptr to current output alg specifier */ 2350 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2351 } 2352 2353 /* 2354 * Copy current alg specifier, set ENABLE 2355 * flag, and advance to next output alg. 2356 * For now we enable all IPsec capabilities. 2357 */ 2358 ASSERT(oalg != NULL); 2359 bcopy(ialg, oalg, alg_len); 2360 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2361 nmp->b_wptr += alg_len; 2362 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2363 } 2364 2365 /* move to next input algorithm specifier */ 2366 ialg = (dl_capab_ipsec_alg_t *) 2367 ((char *)ialg + alg_len); 2368 } 2369 2370 if (nmp != NULL) 2371 /* 2372 * nmp points to a DL_CAPABILITY_REQ message to enable 2373 * IPsec hardware acceleration. 2374 */ 2375 ill_capability_send(ill, nmp); 2376 2377 if (need_sadb_dump) 2378 /* 2379 * An acknowledgement corresponding to a request to 2380 * enable acceleration was received, notify SADB. 2381 */ 2382 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2383 } 2384 2385 /* 2386 * Given an mblk with enough space in it, create sub-capability entries for 2387 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2388 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2389 * in preparation for the reset the DL_CAPABILITY_REQ message. 2390 */ 2391 static void 2392 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2393 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2394 { 2395 dl_capab_ipsec_t *oipsec; 2396 dl_capab_ipsec_alg_t *oalg; 2397 dl_capability_sub_t *dl_subcap; 2398 int i, k; 2399 2400 ASSERT(nciphers > 0); 2401 ASSERT(ill_cap != NULL); 2402 ASSERT(mp != NULL); 2403 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2404 2405 /* dl_capability_sub_t for "stype" */ 2406 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2407 dl_subcap->dl_cap = stype; 2408 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2409 mp->b_wptr += sizeof (dl_capability_sub_t); 2410 2411 /* dl_capab_ipsec_t for "stype" */ 2412 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2413 oipsec->cip_version = 1; 2414 oipsec->cip_nciphers = nciphers; 2415 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2416 2417 /* create entries for "stype" AUTH ciphers */ 2418 for (i = 0; i < ill_cap->algs_size; i++) { 2419 for (k = 0; k < BITSPERBYTE; k++) { 2420 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2421 continue; 2422 2423 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2424 bzero((void *)oalg, sizeof (*oalg)); 2425 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2426 oalg->alg_prim = k + (BITSPERBYTE * i); 2427 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2428 } 2429 } 2430 /* create entries for "stype" ENCR ciphers */ 2431 for (i = 0; i < ill_cap->algs_size; i++) { 2432 for (k = 0; k < BITSPERBYTE; k++) { 2433 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2434 continue; 2435 2436 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2437 bzero((void *)oalg, sizeof (*oalg)); 2438 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2439 oalg->alg_prim = k + (BITSPERBYTE * i); 2440 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2441 } 2442 } 2443 } 2444 2445 /* 2446 * Macro to count number of 1s in a byte (8-bit word). The total count is 2447 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2448 * POPC instruction, but our macro is more flexible for an arbitrary length 2449 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2450 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2451 * stays that way, we can reduce the number of iterations required. 2452 */ 2453 #define COUNT_1S(val, sum) { \ 2454 uint8_t x = val & 0xff; \ 2455 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2456 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2457 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2458 } 2459 2460 /* ARGSUSED */ 2461 static int 2462 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2463 int *esp_cntp, int *esp_lenp) 2464 { 2465 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2466 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2467 uint64_t ill_capabilities = ill->ill_capabilities; 2468 int ah_cnt = 0, esp_cnt = 0; 2469 int ah_len = 0, esp_len = 0; 2470 int i, size = 0; 2471 2472 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2473 return (0); 2474 2475 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2476 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2477 2478 /* Find out the number of ciphers for AH */ 2479 if (cap_ah != NULL) { 2480 for (i = 0; i < cap_ah->algs_size; i++) { 2481 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2482 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2483 } 2484 if (ah_cnt > 0) { 2485 size += sizeof (dl_capability_sub_t) + 2486 sizeof (dl_capab_ipsec_t); 2487 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2488 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2489 size += ah_len; 2490 } 2491 } 2492 2493 /* Find out the number of ciphers for ESP */ 2494 if (cap_esp != NULL) { 2495 for (i = 0; i < cap_esp->algs_size; i++) { 2496 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2497 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2498 } 2499 if (esp_cnt > 0) { 2500 size += sizeof (dl_capability_sub_t) + 2501 sizeof (dl_capab_ipsec_t); 2502 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2503 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2504 size += esp_len; 2505 } 2506 } 2507 2508 if (ah_cntp != NULL) 2509 *ah_cntp = ah_cnt; 2510 if (ah_lenp != NULL) 2511 *ah_lenp = ah_len; 2512 if (esp_cntp != NULL) 2513 *esp_cntp = esp_cnt; 2514 if (esp_lenp != NULL) 2515 *esp_lenp = esp_len; 2516 2517 return (size); 2518 } 2519 2520 /* ARGSUSED */ 2521 static void 2522 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2523 { 2524 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2525 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2526 int ah_cnt = 0, esp_cnt = 0; 2527 int ah_len = 0, esp_len = 0; 2528 int size; 2529 2530 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2531 &esp_cnt, &esp_len); 2532 if (size == 0) 2533 return; 2534 2535 /* 2536 * Clear the capability flags for IPsec HA but retain the ill 2537 * capability structures since it's possible that another thread 2538 * is still referring to them. The structures only get deallocated 2539 * when we destroy the ill. 2540 * 2541 * Various places check the flags to see if the ill is capable of 2542 * hardware acceleration, and by clearing them we ensure that new 2543 * outbound IPsec packets are sent down encrypted. 2544 */ 2545 2546 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2547 if (ah_cnt > 0) { 2548 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2549 cap_ah, mp); 2550 } 2551 2552 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2553 if (esp_cnt > 0) { 2554 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2555 cap_esp, mp); 2556 } 2557 2558 /* 2559 * At this point we've composed a bunch of sub-capabilities to be 2560 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2561 * by the caller. Upon receiving this reset message, the driver 2562 * must stop inbound decryption (by destroying all inbound SAs) 2563 * and let the corresponding packets come in encrypted. 2564 */ 2565 } 2566 2567 static void 2568 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2569 boolean_t encapsulated) 2570 { 2571 boolean_t legacy = B_FALSE; 2572 2573 /* 2574 * Note that only the following two sub-capabilities may be 2575 * considered as "legacy", since their original definitions 2576 * do not incorporate the dl_mid_t module ID token, and hence 2577 * may require the use of the wrapper sub-capability. 2578 */ 2579 switch (subp->dl_cap) { 2580 case DL_CAPAB_IPSEC_AH: 2581 case DL_CAPAB_IPSEC_ESP: 2582 legacy = B_TRUE; 2583 break; 2584 } 2585 2586 /* 2587 * For legacy sub-capabilities which don't incorporate a queue_t 2588 * pointer in their structures, discard them if we detect that 2589 * there are intermediate modules in between IP and the driver. 2590 */ 2591 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2592 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2593 "%d discarded; %d module(s) present below IP\n", 2594 subp->dl_cap, ill->ill_lmod_cnt)); 2595 return; 2596 } 2597 2598 switch (subp->dl_cap) { 2599 case DL_CAPAB_IPSEC_AH: 2600 case DL_CAPAB_IPSEC_ESP: 2601 ill_capability_ipsec_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_MDT: 2604 ill_capability_mdt_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_HCKSUM: 2607 ill_capability_hcksum_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_ZEROCOPY: 2610 ill_capability_zerocopy_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_DLD: 2613 ill_capability_dld_ack(ill, mp, subp); 2614 break; 2615 default: 2616 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2617 subp->dl_cap)); 2618 } 2619 } 2620 2621 /* 2622 * Process a hardware checksum offload capability negotiation ack received 2623 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2624 * of a DL_CAPABILITY_ACK message. 2625 */ 2626 static void 2627 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2628 { 2629 dl_capability_req_t *ocap; 2630 dl_capab_hcksum_t *ihck, *ohck; 2631 ill_hcksum_capab_t **ill_hcksum; 2632 mblk_t *nmp = NULL; 2633 uint_t sub_dl_cap = isub->dl_cap; 2634 uint8_t *capend; 2635 2636 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2637 2638 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2639 2640 /* 2641 * Note: range checks here are not absolutely sufficient to 2642 * make us robust against malformed messages sent by drivers; 2643 * this is in keeping with the rest of IP's dlpi handling. 2644 * (Remember, it's coming from something else in the kernel 2645 * address space) 2646 */ 2647 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2648 if (capend > mp->b_wptr) { 2649 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2650 "malformed sub-capability too long for mblk"); 2651 return; 2652 } 2653 2654 /* 2655 * There are two types of acks we process here: 2656 * 1. acks in reply to a (first form) generic capability req 2657 * (no ENABLE flag set) 2658 * 2. acks in reply to a ENABLE capability req. 2659 * (ENABLE flag set) 2660 */ 2661 ihck = (dl_capab_hcksum_t *)(isub + 1); 2662 2663 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2664 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2665 "unsupported hardware checksum " 2666 "sub-capability (version %d, expected %d)", 2667 ihck->hcksum_version, HCKSUM_VERSION_1); 2668 return; 2669 } 2670 2671 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2672 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2673 "checksum capability isn't as expected; pass-thru " 2674 "module(s) detected, discarding capability\n")); 2675 return; 2676 } 2677 2678 #define CURR_HCKSUM_CAPAB \ 2679 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2680 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2681 2682 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2683 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2684 /* do ENABLE processing */ 2685 if (*ill_hcksum == NULL) { 2686 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2687 KM_NOSLEEP); 2688 2689 if (*ill_hcksum == NULL) { 2690 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2691 "could not enable hcksum version %d " 2692 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2693 ill->ill_name); 2694 return; 2695 } 2696 } 2697 2698 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2699 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2700 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2701 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2702 "has enabled hardware checksumming\n ", 2703 ill->ill_name)); 2704 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2705 /* 2706 * Enabling hardware checksum offload 2707 * Currently IP supports {TCP,UDP}/IPv4 2708 * partial and full cksum offload and 2709 * IPv4 header checksum offload. 2710 * Allocate new mblk which will 2711 * contain a new capability request 2712 * to enable hardware checksum offload. 2713 */ 2714 uint_t size; 2715 uchar_t *rptr; 2716 2717 size = sizeof (dl_capability_req_t) + 2718 sizeof (dl_capability_sub_t) + isub->dl_length; 2719 2720 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2721 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2722 "could not enable hardware cksum for %s (ENOMEM)\n", 2723 ill->ill_name); 2724 return; 2725 } 2726 2727 rptr = nmp->b_rptr; 2728 /* initialize dl_capability_req_t */ 2729 ocap = (dl_capability_req_t *)nmp->b_rptr; 2730 ocap->dl_sub_offset = 2731 sizeof (dl_capability_req_t); 2732 ocap->dl_sub_length = 2733 sizeof (dl_capability_sub_t) + 2734 isub->dl_length; 2735 nmp->b_rptr += sizeof (dl_capability_req_t); 2736 2737 /* initialize dl_capability_sub_t */ 2738 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2739 nmp->b_rptr += sizeof (*isub); 2740 2741 /* initialize dl_capab_hcksum_t */ 2742 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2743 bcopy(ihck, ohck, sizeof (*ihck)); 2744 2745 nmp->b_rptr = rptr; 2746 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2747 2748 /* Set ENABLE flag */ 2749 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2750 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2751 2752 /* 2753 * nmp points to a DL_CAPABILITY_REQ message to enable 2754 * hardware checksum acceleration. 2755 */ 2756 ill_capability_send(ill, nmp); 2757 } else { 2758 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2759 "advertised %x hardware checksum capability flags\n", 2760 ill->ill_name, ihck->hcksum_txflags)); 2761 } 2762 } 2763 2764 static void 2765 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2766 { 2767 dl_capab_hcksum_t *hck_subcap; 2768 dl_capability_sub_t *dl_subcap; 2769 2770 if (!ILL_HCKSUM_CAPABLE(ill)) 2771 return; 2772 2773 ASSERT(ill->ill_hcksum_capab != NULL); 2774 2775 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2776 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2777 dl_subcap->dl_length = sizeof (*hck_subcap); 2778 2779 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2780 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2781 hck_subcap->hcksum_txflags = 0; 2782 2783 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2784 } 2785 2786 static void 2787 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2788 { 2789 mblk_t *nmp = NULL; 2790 dl_capability_req_t *oc; 2791 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2792 ill_zerocopy_capab_t **ill_zerocopy_capab; 2793 uint_t sub_dl_cap = isub->dl_cap; 2794 uint8_t *capend; 2795 2796 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2797 2798 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2799 2800 /* 2801 * Note: range checks here are not absolutely sufficient to 2802 * make us robust against malformed messages sent by drivers; 2803 * this is in keeping with the rest of IP's dlpi handling. 2804 * (Remember, it's coming from something else in the kernel 2805 * address space) 2806 */ 2807 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2808 if (capend > mp->b_wptr) { 2809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2810 "malformed sub-capability too long for mblk"); 2811 return; 2812 } 2813 2814 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2815 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2816 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2817 "unsupported ZEROCOPY sub-capability (version %d, " 2818 "expected %d)", zc_ic->zerocopy_version, 2819 ZEROCOPY_VERSION_1); 2820 return; 2821 } 2822 2823 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2824 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2825 "capability isn't as expected; pass-thru module(s) " 2826 "detected, discarding capability\n")); 2827 return; 2828 } 2829 2830 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2831 if (*ill_zerocopy_capab == NULL) { 2832 *ill_zerocopy_capab = 2833 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2834 KM_NOSLEEP); 2835 2836 if (*ill_zerocopy_capab == NULL) { 2837 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2838 "could not enable Zero-copy version %d " 2839 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2840 ill->ill_name); 2841 return; 2842 } 2843 } 2844 2845 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2846 "supports Zero-copy version %d\n", ill->ill_name, 2847 ZEROCOPY_VERSION_1)); 2848 2849 (*ill_zerocopy_capab)->ill_zerocopy_version = 2850 zc_ic->zerocopy_version; 2851 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2852 zc_ic->zerocopy_flags; 2853 2854 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2855 } else { 2856 uint_t size; 2857 uchar_t *rptr; 2858 2859 size = sizeof (dl_capability_req_t) + 2860 sizeof (dl_capability_sub_t) + 2861 sizeof (dl_capab_zerocopy_t); 2862 2863 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2864 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2865 "could not enable zerocopy for %s (ENOMEM)\n", 2866 ill->ill_name); 2867 return; 2868 } 2869 2870 rptr = nmp->b_rptr; 2871 /* initialize dl_capability_req_t */ 2872 oc = (dl_capability_req_t *)rptr; 2873 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2874 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2875 sizeof (dl_capab_zerocopy_t); 2876 rptr += sizeof (dl_capability_req_t); 2877 2878 /* initialize dl_capability_sub_t */ 2879 bcopy(isub, rptr, sizeof (*isub)); 2880 rptr += sizeof (*isub); 2881 2882 /* initialize dl_capab_zerocopy_t */ 2883 zc_oc = (dl_capab_zerocopy_t *)rptr; 2884 *zc_oc = *zc_ic; 2885 2886 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2887 "to enable zero-copy version %d\n", ill->ill_name, 2888 ZEROCOPY_VERSION_1)); 2889 2890 /* set VMSAFE_MEM flag */ 2891 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2892 2893 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2894 ill_capability_send(ill, nmp); 2895 } 2896 } 2897 2898 static void 2899 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2900 { 2901 dl_capab_zerocopy_t *zerocopy_subcap; 2902 dl_capability_sub_t *dl_subcap; 2903 2904 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2905 return; 2906 2907 ASSERT(ill->ill_zerocopy_capab != NULL); 2908 2909 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2910 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2911 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2912 2913 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2914 zerocopy_subcap->zerocopy_version = 2915 ill->ill_zerocopy_capab->ill_zerocopy_version; 2916 zerocopy_subcap->zerocopy_flags = 0; 2917 2918 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2919 } 2920 2921 /* 2922 * DLD capability 2923 * Refer to dld.h for more information regarding the purpose and usage 2924 * of this capability. 2925 */ 2926 static void 2927 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2928 { 2929 dl_capab_dld_t *dld_ic, dld; 2930 uint_t sub_dl_cap = isub->dl_cap; 2931 uint8_t *capend; 2932 ill_dld_capab_t *idc; 2933 2934 ASSERT(IAM_WRITER_ILL(ill)); 2935 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2936 2937 /* 2938 * Note: range checks here are not absolutely sufficient to 2939 * make us robust against malformed messages sent by drivers; 2940 * this is in keeping with the rest of IP's dlpi handling. 2941 * (Remember, it's coming from something else in the kernel 2942 * address space) 2943 */ 2944 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2945 if (capend > mp->b_wptr) { 2946 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2947 "malformed sub-capability too long for mblk"); 2948 return; 2949 } 2950 dld_ic = (dl_capab_dld_t *)(isub + 1); 2951 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2952 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2953 "unsupported DLD sub-capability (version %d, " 2954 "expected %d)", dld_ic->dld_version, 2955 DLD_CURRENT_VERSION); 2956 return; 2957 } 2958 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2959 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2960 "capability isn't as expected; pass-thru module(s) " 2961 "detected, discarding capability\n")); 2962 return; 2963 } 2964 2965 /* 2966 * Copy locally to ensure alignment. 2967 */ 2968 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2969 2970 if ((idc = ill->ill_dld_capab) == NULL) { 2971 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 2972 if (idc == NULL) { 2973 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2974 "could not enable DLD version %d " 2975 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 2976 ill->ill_name); 2977 return; 2978 } 2979 ill->ill_dld_capab = idc; 2980 } 2981 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 2982 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 2983 ip1dbg(("ill_capability_dld_ack: interface %s " 2984 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 2985 2986 ill_capability_dld_enable(ill); 2987 } 2988 2989 /* 2990 * Typically capability negotiation between IP and the driver happens via 2991 * DLPI message exchange. However GLD also offers a direct function call 2992 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 2993 * But arbitrary function calls into IP or GLD are not permitted, since both 2994 * of them are protected by their own perimeter mechanism. The perimeter can 2995 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 2996 * these perimeters is IP -> MAC. Thus for example to enable the squeue 2997 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 2998 * to enter the mac perimeter and then do the direct function calls into 2999 * GLD to enable squeue polling. The ring related callbacks from the mac into 3000 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3001 * protected by the mac perimeter. 3002 */ 3003 static void 3004 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3005 { 3006 ill_dld_capab_t *idc = ill->ill_dld_capab; 3007 int err; 3008 3009 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3010 DLD_ENABLE); 3011 ASSERT(err == 0); 3012 } 3013 3014 static void 3015 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3016 { 3017 ill_dld_capab_t *idc = ill->ill_dld_capab; 3018 int err; 3019 3020 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3021 DLD_DISABLE); 3022 ASSERT(err == 0); 3023 } 3024 3025 boolean_t 3026 ill_mac_perim_held(ill_t *ill) 3027 { 3028 ill_dld_capab_t *idc = ill->ill_dld_capab; 3029 3030 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3031 DLD_QUERY)); 3032 } 3033 3034 static void 3035 ill_capability_direct_enable(ill_t *ill) 3036 { 3037 ill_dld_capab_t *idc = ill->ill_dld_capab; 3038 ill_dld_direct_t *idd = &idc->idc_direct; 3039 dld_capab_direct_t direct; 3040 int rc; 3041 3042 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3043 3044 bzero(&direct, sizeof (direct)); 3045 direct.di_rx_cf = (uintptr_t)ip_input; 3046 direct.di_rx_ch = ill; 3047 3048 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3049 DLD_ENABLE); 3050 if (rc == 0) { 3051 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3052 idd->idd_tx_dh = direct.di_tx_dh; 3053 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3054 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3055 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 3056 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 3057 /* 3058 * One time registration of flow enable callback function 3059 */ 3060 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3061 ill_flow_enable, ill); 3062 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3063 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3064 } else { 3065 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3066 "capability, rc = %d\n", rc); 3067 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3068 } 3069 } 3070 3071 static void 3072 ill_capability_poll_enable(ill_t *ill) 3073 { 3074 ill_dld_capab_t *idc = ill->ill_dld_capab; 3075 dld_capab_poll_t poll; 3076 int rc; 3077 3078 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3079 3080 bzero(&poll, sizeof (poll)); 3081 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3082 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3083 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3084 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3085 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3086 poll.poll_ring_ch = ill; 3087 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3088 DLD_ENABLE); 3089 if (rc == 0) { 3090 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3091 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3092 } else { 3093 ip1dbg(("warning: could not enable POLL " 3094 "capability, rc = %d\n", rc)); 3095 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3096 } 3097 } 3098 3099 /* 3100 * Enable the LSO capability. 3101 */ 3102 static void 3103 ill_capability_lso_enable(ill_t *ill) 3104 { 3105 ill_dld_capab_t *idc = ill->ill_dld_capab; 3106 dld_capab_lso_t lso; 3107 int rc; 3108 3109 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3110 3111 if (ill->ill_lso_capab == NULL) { 3112 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3113 KM_NOSLEEP); 3114 if (ill->ill_lso_capab == NULL) { 3115 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3116 "could not enable LSO for %s (ENOMEM)\n", 3117 ill->ill_name); 3118 return; 3119 } 3120 } 3121 3122 bzero(&lso, sizeof (lso)); 3123 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3124 DLD_ENABLE)) == 0) { 3125 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3126 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3127 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3128 ip1dbg(("ill_capability_lso_enable: interface %s " 3129 "has enabled LSO\n ", ill->ill_name)); 3130 } else { 3131 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3132 ill->ill_lso_capab = NULL; 3133 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3134 } 3135 } 3136 3137 static void 3138 ill_capability_dld_enable(ill_t *ill) 3139 { 3140 mac_perim_handle_t mph; 3141 3142 ASSERT(IAM_WRITER_ILL(ill)); 3143 3144 if (ill->ill_isv6) 3145 return; 3146 3147 ill_mac_perim_enter(ill, &mph); 3148 if (!ill->ill_isv6) { 3149 ill_capability_direct_enable(ill); 3150 ill_capability_poll_enable(ill); 3151 ill_capability_lso_enable(ill); 3152 } 3153 ill->ill_capabilities |= ILL_CAPAB_DLD; 3154 ill_mac_perim_exit(ill, mph); 3155 } 3156 3157 static void 3158 ill_capability_dld_disable(ill_t *ill) 3159 { 3160 ill_dld_capab_t *idc; 3161 ill_dld_direct_t *idd; 3162 mac_perim_handle_t mph; 3163 3164 ASSERT(IAM_WRITER_ILL(ill)); 3165 3166 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3167 return; 3168 3169 ill_mac_perim_enter(ill, &mph); 3170 3171 idc = ill->ill_dld_capab; 3172 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3173 /* 3174 * For performance we avoid locks in the transmit data path 3175 * and don't maintain a count of the number of threads using 3176 * direct calls. Thus some threads could be using direct 3177 * transmit calls to GLD, even after the capability mechanism 3178 * turns it off. This is still safe since the handles used in 3179 * the direct calls continue to be valid until the unplumb is 3180 * completed. Remove the callback that was added (1-time) at 3181 * capab enable time. 3182 */ 3183 mutex_enter(&ill->ill_lock); 3184 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3185 mutex_exit(&ill->ill_lock); 3186 if (ill->ill_flownotify_mh != NULL) { 3187 idd = &idc->idc_direct; 3188 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3189 ill->ill_flownotify_mh); 3190 ill->ill_flownotify_mh = NULL; 3191 } 3192 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3193 NULL, DLD_DISABLE); 3194 } 3195 3196 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3197 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3198 ip_squeue_clean_all(ill); 3199 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3200 NULL, DLD_DISABLE); 3201 } 3202 3203 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3204 ASSERT(ill->ill_lso_capab != NULL); 3205 /* 3206 * Clear the capability flag for LSO but retain the 3207 * ill_lso_capab structure since it's possible that another 3208 * thread is still referring to it. The structure only gets 3209 * deallocated when we destroy the ill. 3210 */ 3211 3212 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3213 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3214 NULL, DLD_DISABLE); 3215 } 3216 3217 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3218 ill_mac_perim_exit(ill, mph); 3219 } 3220 3221 /* 3222 * Capability Negotiation protocol 3223 * 3224 * We don't wait for DLPI capability operations to finish during interface 3225 * bringup or teardown. Doing so would introduce more asynchrony and the 3226 * interface up/down operations will need multiple return and restarts. 3227 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3228 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3229 * exclusive operation won't start until the DLPI operations of the previous 3230 * exclusive operation complete. 3231 * 3232 * The capability state machine is shown below. 3233 * 3234 * state next state event, action 3235 * 3236 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3237 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3238 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3239 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3240 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3241 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3242 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3243 * ill_capability_probe. 3244 */ 3245 3246 /* 3247 * Dedicated thread started from ip_stack_init that handles capability 3248 * disable. This thread ensures the taskq dispatch does not fail by waiting 3249 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3250 * that direct calls to DLD are done in a cv_waitable context. 3251 */ 3252 void 3253 ill_taskq_dispatch(ip_stack_t *ipst) 3254 { 3255 callb_cpr_t cprinfo; 3256 char name[64]; 3257 mblk_t *mp; 3258 3259 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3260 ipst->ips_netstack->netstack_stackid); 3261 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3262 name); 3263 mutex_enter(&ipst->ips_capab_taskq_lock); 3264 3265 for (;;) { 3266 mp = list_head(&ipst->ips_capab_taskq_list); 3267 while (mp != NULL) { 3268 list_remove(&ipst->ips_capab_taskq_list, mp); 3269 mutex_exit(&ipst->ips_capab_taskq_lock); 3270 VERIFY(taskq_dispatch(system_taskq, 3271 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3272 mutex_enter(&ipst->ips_capab_taskq_lock); 3273 mp = list_head(&ipst->ips_capab_taskq_list); 3274 } 3275 3276 if (ipst->ips_capab_taskq_quit) 3277 break; 3278 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3279 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3280 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3281 } 3282 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3283 CALLB_CPR_EXIT(&cprinfo); 3284 thread_exit(); 3285 } 3286 3287 /* 3288 * Consume a new-style hardware capabilities negotiation ack. 3289 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3290 */ 3291 static void 3292 ill_capability_ack_thr(void *arg) 3293 { 3294 mblk_t *mp = arg; 3295 dl_capability_ack_t *capp; 3296 dl_capability_sub_t *subp, *endp; 3297 ill_t *ill; 3298 boolean_t reneg; 3299 3300 ill = (ill_t *)mp->b_prev; 3301 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3302 3303 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3304 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3305 /* 3306 * We have received the ack for our DL_CAPAB reset request. 3307 * There isnt' anything in the message that needs processing. 3308 * All message based capabilities have been disabled, now 3309 * do the function call based capability disable. 3310 */ 3311 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3312 ill_capability_dld_disable(ill); 3313 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3314 if (reneg) 3315 ill_capability_probe(ill); 3316 goto done; 3317 } 3318 3319 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3320 ill->ill_dlpi_capab_state = IDCS_OK; 3321 3322 capp = (dl_capability_ack_t *)mp->b_rptr; 3323 3324 if (capp->dl_sub_length == 0) { 3325 /* no new-style capabilities */ 3326 goto done; 3327 } 3328 3329 /* make sure the driver supplied correct dl_sub_length */ 3330 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3331 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3332 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3333 goto done; 3334 } 3335 3336 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3337 /* 3338 * There are sub-capabilities. Process the ones we know about. 3339 * Loop until we don't have room for another sub-cap header.. 3340 */ 3341 for (subp = SC(capp, capp->dl_sub_offset), 3342 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3343 subp <= endp; 3344 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3345 3346 switch (subp->dl_cap) { 3347 case DL_CAPAB_ID_WRAPPER: 3348 ill_capability_id_ack(ill, mp, subp); 3349 break; 3350 default: 3351 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3352 break; 3353 } 3354 } 3355 #undef SC 3356 done: 3357 inet_freemsg(mp); 3358 ill_capability_done(ill); 3359 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3360 } 3361 3362 /* 3363 * This needs to be started in a taskq thread to provide a cv_waitable 3364 * context. 3365 */ 3366 void 3367 ill_capability_ack(ill_t *ill, mblk_t *mp) 3368 { 3369 ip_stack_t *ipst = ill->ill_ipst; 3370 3371 mp->b_prev = (mblk_t *)ill; 3372 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3373 TQ_NOSLEEP) != 0) 3374 return; 3375 3376 /* 3377 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3378 * which will do the dispatch using TQ_SLEEP to guarantee success. 3379 */ 3380 mutex_enter(&ipst->ips_capab_taskq_lock); 3381 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3382 cv_signal(&ipst->ips_capab_taskq_cv); 3383 mutex_exit(&ipst->ips_capab_taskq_lock); 3384 } 3385 3386 /* 3387 * This routine is called to scan the fragmentation reassembly table for 3388 * the specified ILL for any packets that are starting to smell. 3389 * dead_interval is the maximum time in seconds that will be tolerated. It 3390 * will either be the value specified in ip_g_frag_timeout, or zero if the 3391 * ILL is shutting down and it is time to blow everything off. 3392 * 3393 * It returns the number of seconds (as a time_t) that the next frag timer 3394 * should be scheduled for, 0 meaning that the timer doesn't need to be 3395 * re-started. Note that the method of calculating next_timeout isn't 3396 * entirely accurate since time will flow between the time we grab 3397 * current_time and the time we schedule the next timeout. This isn't a 3398 * big problem since this is the timer for sending an ICMP reassembly time 3399 * exceeded messages, and it doesn't have to be exactly accurate. 3400 * 3401 * This function is 3402 * sometimes called as writer, although this is not required. 3403 */ 3404 time_t 3405 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3406 { 3407 ipfb_t *ipfb; 3408 ipfb_t *endp; 3409 ipf_t *ipf; 3410 ipf_t *ipfnext; 3411 mblk_t *mp; 3412 time_t current_time = gethrestime_sec(); 3413 time_t next_timeout = 0; 3414 uint32_t hdr_length; 3415 mblk_t *send_icmp_head; 3416 mblk_t *send_icmp_head_v6; 3417 zoneid_t zoneid; 3418 ip_stack_t *ipst = ill->ill_ipst; 3419 3420 ipfb = ill->ill_frag_hash_tbl; 3421 if (ipfb == NULL) 3422 return (B_FALSE); 3423 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3424 /* Walk the frag hash table. */ 3425 for (; ipfb < endp; ipfb++) { 3426 send_icmp_head = NULL; 3427 send_icmp_head_v6 = NULL; 3428 mutex_enter(&ipfb->ipfb_lock); 3429 while ((ipf = ipfb->ipfb_ipf) != 0) { 3430 time_t frag_time = current_time - ipf->ipf_timestamp; 3431 time_t frag_timeout; 3432 3433 if (frag_time < dead_interval) { 3434 /* 3435 * There are some outstanding fragments 3436 * that will timeout later. Make note of 3437 * the time so that we can reschedule the 3438 * next timeout appropriately. 3439 */ 3440 frag_timeout = dead_interval - frag_time; 3441 if (next_timeout == 0 || 3442 frag_timeout < next_timeout) { 3443 next_timeout = frag_timeout; 3444 } 3445 break; 3446 } 3447 /* Time's up. Get it out of here. */ 3448 hdr_length = ipf->ipf_nf_hdr_len; 3449 ipfnext = ipf->ipf_hash_next; 3450 if (ipfnext) 3451 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3452 *ipf->ipf_ptphn = ipfnext; 3453 mp = ipf->ipf_mp->b_cont; 3454 for (; mp; mp = mp->b_cont) { 3455 /* Extra points for neatness. */ 3456 IP_REASS_SET_START(mp, 0); 3457 IP_REASS_SET_END(mp, 0); 3458 } 3459 mp = ipf->ipf_mp->b_cont; 3460 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3461 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3462 ipfb->ipfb_count -= ipf->ipf_count; 3463 ASSERT(ipfb->ipfb_frag_pkts > 0); 3464 ipfb->ipfb_frag_pkts--; 3465 /* 3466 * We do not send any icmp message from here because 3467 * we currently are holding the ipfb_lock for this 3468 * hash chain. If we try and send any icmp messages 3469 * from here we may end up via a put back into ip 3470 * trying to get the same lock, causing a recursive 3471 * mutex panic. Instead we build a list and send all 3472 * the icmp messages after we have dropped the lock. 3473 */ 3474 if (ill->ill_isv6) { 3475 if (hdr_length != 0) { 3476 mp->b_next = send_icmp_head_v6; 3477 send_icmp_head_v6 = mp; 3478 } else { 3479 freemsg(mp); 3480 } 3481 } else { 3482 if (hdr_length != 0) { 3483 mp->b_next = send_icmp_head; 3484 send_icmp_head = mp; 3485 } else { 3486 freemsg(mp); 3487 } 3488 } 3489 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3490 freeb(ipf->ipf_mp); 3491 } 3492 mutex_exit(&ipfb->ipfb_lock); 3493 /* 3494 * Now need to send any icmp messages that we delayed from 3495 * above. 3496 */ 3497 while (send_icmp_head_v6 != NULL) { 3498 ip6_t *ip6h; 3499 3500 mp = send_icmp_head_v6; 3501 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3502 mp->b_next = NULL; 3503 if (mp->b_datap->db_type == M_CTL) 3504 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3505 else 3506 ip6h = (ip6_t *)mp->b_rptr; 3507 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3508 ill, ipst); 3509 if (zoneid == ALL_ZONES) { 3510 freemsg(mp); 3511 } else { 3512 icmp_time_exceeded_v6(ill->ill_wq, mp, 3513 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3514 B_FALSE, zoneid, ipst); 3515 } 3516 } 3517 while (send_icmp_head != NULL) { 3518 ipaddr_t dst; 3519 3520 mp = send_icmp_head; 3521 send_icmp_head = send_icmp_head->b_next; 3522 mp->b_next = NULL; 3523 3524 if (mp->b_datap->db_type == M_CTL) 3525 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3526 else 3527 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3528 3529 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3530 if (zoneid == ALL_ZONES) { 3531 freemsg(mp); 3532 } else { 3533 icmp_time_exceeded(ill->ill_wq, mp, 3534 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3535 ipst); 3536 } 3537 } 3538 } 3539 /* 3540 * A non-dying ILL will use the return value to decide whether to 3541 * restart the frag timer, and for how long. 3542 */ 3543 return (next_timeout); 3544 } 3545 3546 /* 3547 * This routine is called when the approximate count of mblk memory used 3548 * for the specified ILL has exceeded max_count. 3549 */ 3550 void 3551 ill_frag_prune(ill_t *ill, uint_t max_count) 3552 { 3553 ipfb_t *ipfb; 3554 ipf_t *ipf; 3555 size_t count; 3556 3557 /* 3558 * If we are here within ip_min_frag_prune_time msecs remove 3559 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3560 * ill_frag_free_num_pkts. 3561 */ 3562 mutex_enter(&ill->ill_lock); 3563 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3564 (ip_min_frag_prune_time != 0 ? 3565 ip_min_frag_prune_time : msec_per_tick)) { 3566 3567 ill->ill_frag_free_num_pkts++; 3568 3569 } else { 3570 ill->ill_frag_free_num_pkts = 0; 3571 } 3572 ill->ill_last_frag_clean_time = lbolt; 3573 mutex_exit(&ill->ill_lock); 3574 3575 /* 3576 * free ill_frag_free_num_pkts oldest packets from each bucket. 3577 */ 3578 if (ill->ill_frag_free_num_pkts != 0) { 3579 int ix; 3580 3581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3582 ipfb = &ill->ill_frag_hash_tbl[ix]; 3583 mutex_enter(&ipfb->ipfb_lock); 3584 if (ipfb->ipfb_ipf != NULL) { 3585 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3586 ill->ill_frag_free_num_pkts); 3587 } 3588 mutex_exit(&ipfb->ipfb_lock); 3589 } 3590 } 3591 /* 3592 * While the reassembly list for this ILL is too big, prune a fragment 3593 * queue by age, oldest first. 3594 */ 3595 while (ill->ill_frag_count > max_count) { 3596 int ix; 3597 ipfb_t *oipfb = NULL; 3598 uint_t oldest = UINT_MAX; 3599 3600 count = 0; 3601 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3602 ipfb = &ill->ill_frag_hash_tbl[ix]; 3603 mutex_enter(&ipfb->ipfb_lock); 3604 ipf = ipfb->ipfb_ipf; 3605 if (ipf != NULL && ipf->ipf_gen < oldest) { 3606 oldest = ipf->ipf_gen; 3607 oipfb = ipfb; 3608 } 3609 count += ipfb->ipfb_count; 3610 mutex_exit(&ipfb->ipfb_lock); 3611 } 3612 if (oipfb == NULL) 3613 break; 3614 3615 if (count <= max_count) 3616 return; /* Somebody beat us to it, nothing to do */ 3617 mutex_enter(&oipfb->ipfb_lock); 3618 ipf = oipfb->ipfb_ipf; 3619 if (ipf != NULL) { 3620 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3621 } 3622 mutex_exit(&oipfb->ipfb_lock); 3623 } 3624 } 3625 3626 /* 3627 * free 'free_cnt' fragmented packets starting at ipf. 3628 */ 3629 void 3630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3631 { 3632 size_t count; 3633 mblk_t *mp; 3634 mblk_t *tmp; 3635 ipf_t **ipfp = ipf->ipf_ptphn; 3636 3637 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3638 ASSERT(ipfp != NULL); 3639 ASSERT(ipf != NULL); 3640 3641 while (ipf != NULL && free_cnt-- > 0) { 3642 count = ipf->ipf_count; 3643 mp = ipf->ipf_mp; 3644 ipf = ipf->ipf_hash_next; 3645 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3646 IP_REASS_SET_START(tmp, 0); 3647 IP_REASS_SET_END(tmp, 0); 3648 } 3649 atomic_add_32(&ill->ill_frag_count, -count); 3650 ASSERT(ipfb->ipfb_count >= count); 3651 ipfb->ipfb_count -= count; 3652 ASSERT(ipfb->ipfb_frag_pkts > 0); 3653 ipfb->ipfb_frag_pkts--; 3654 freemsg(mp); 3655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3656 } 3657 3658 if (ipf) 3659 ipf->ipf_ptphn = ipfp; 3660 ipfp[0] = ipf; 3661 } 3662 3663 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3664 "obsolete and may be removed in a future release of Solaris. Use " \ 3665 "ifconfig(1M) to manipulate the forwarding status of an interface." 3666 3667 /* 3668 * For obsolete per-interface forwarding configuration; 3669 * called in response to ND_GET. 3670 */ 3671 /* ARGSUSED */ 3672 static int 3673 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3674 { 3675 ill_t *ill = (ill_t *)cp; 3676 3677 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3678 3679 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3680 return (0); 3681 } 3682 3683 /* 3684 * For obsolete per-interface forwarding configuration; 3685 * called in response to ND_SET. 3686 */ 3687 /* ARGSUSED */ 3688 static int 3689 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3690 cred_t *ioc_cr) 3691 { 3692 long value; 3693 int retval; 3694 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3695 3696 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3697 3698 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3699 value < 0 || value > 1) { 3700 return (EINVAL); 3701 } 3702 3703 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3704 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3705 rw_exit(&ipst->ips_ill_g_lock); 3706 return (retval); 3707 } 3708 3709 /* 3710 * Helper function for ill_forward_set(). 3711 */ 3712 static void 3713 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3714 { 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3718 3719 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3720 (enable ? "Enabling" : "Disabling"), 3721 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3722 mutex_enter(&ill->ill_lock); 3723 if (enable) 3724 ill->ill_flags |= ILLF_ROUTER; 3725 else 3726 ill->ill_flags &= ~ILLF_ROUTER; 3727 mutex_exit(&ill->ill_lock); 3728 if (ill->ill_isv6) 3729 ill_set_nce_router_flags(ill, enable); 3730 /* Notify routing socket listeners of this change. */ 3731 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3732 } 3733 3734 /* 3735 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3736 * socket messages for each interface whose flags we change. 3737 */ 3738 int 3739 ill_forward_set(ill_t *ill, boolean_t enable) 3740 { 3741 ipmp_illgrp_t *illg; 3742 ip_stack_t *ipst = ill->ill_ipst; 3743 3744 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3745 3746 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3747 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3748 return (0); 3749 3750 if (IS_LOOPBACK(ill)) 3751 return (EINVAL); 3752 3753 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3754 /* 3755 * Update all of the interfaces in the group. 3756 */ 3757 illg = ill->ill_grp; 3758 ill = list_head(&illg->ig_if); 3759 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3760 ill_forward_set_on_ill(ill, enable); 3761 3762 /* 3763 * Update the IPMP meta-interface. 3764 */ 3765 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3766 return (0); 3767 } 3768 3769 ill_forward_set_on_ill(ill, enable); 3770 return (0); 3771 } 3772 3773 /* 3774 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3775 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3776 * set or clear. 3777 */ 3778 static void 3779 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3780 { 3781 ipif_t *ipif; 3782 nce_t *nce; 3783 3784 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3785 /* 3786 * NOTE: we match across the illgrp because nce's for 3787 * addresses on IPMP interfaces have an nce_ill that points to 3788 * the bound underlying ill. 3789 */ 3790 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3791 B_FALSE); 3792 if (nce != NULL) { 3793 mutex_enter(&nce->nce_lock); 3794 if (enable) 3795 nce->nce_flags |= NCE_F_ISROUTER; 3796 else 3797 nce->nce_flags &= ~NCE_F_ISROUTER; 3798 mutex_exit(&nce->nce_lock); 3799 NCE_REFRELE(nce); 3800 } 3801 } 3802 } 3803 3804 /* 3805 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3806 * for this ill. Make sure the v6/v4 question has been answered about this 3807 * ill. The creation of this ndd variable is only for backwards compatibility. 3808 * The preferred way to control per-interface IP forwarding is through the 3809 * ILLF_ROUTER interface flag. 3810 */ 3811 static int 3812 ill_set_ndd_name(ill_t *ill) 3813 { 3814 char *suffix; 3815 ip_stack_t *ipst = ill->ill_ipst; 3816 3817 ASSERT(IAM_WRITER_ILL(ill)); 3818 3819 if (ill->ill_isv6) 3820 suffix = ipv6_forward_suffix; 3821 else 3822 suffix = ipv4_forward_suffix; 3823 3824 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3825 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3826 /* 3827 * Copies over the '\0'. 3828 * Note that strlen(suffix) is always bounded. 3829 */ 3830 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3831 strlen(suffix) + 1); 3832 3833 /* 3834 * Use of the nd table requires holding the reader lock. 3835 * Modifying the nd table thru nd_load/nd_unload requires 3836 * the writer lock. 3837 */ 3838 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3839 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3840 nd_ill_forward_set, (caddr_t)ill)) { 3841 /* 3842 * If the nd_load failed, it only meant that it could not 3843 * allocate a new bunch of room for further NDD expansion. 3844 * Because of that, the ill_ndd_name will be set to 0, and 3845 * this interface is at the mercy of the global ip_forwarding 3846 * variable. 3847 */ 3848 rw_exit(&ipst->ips_ip_g_nd_lock); 3849 ill->ill_ndd_name = NULL; 3850 return (ENOMEM); 3851 } 3852 rw_exit(&ipst->ips_ip_g_nd_lock); 3853 return (0); 3854 } 3855 3856 /* 3857 * Intializes the context structure and returns the first ill in the list 3858 * cuurently start_list and end_list can have values: 3859 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3860 * IP_V4_G_HEAD Traverse IPV4 list only. 3861 * IP_V6_G_HEAD Traverse IPV6 list only. 3862 */ 3863 3864 /* 3865 * We don't check for CONDEMNED ills here. Caller must do that if 3866 * necessary under the ill lock. 3867 */ 3868 ill_t * 3869 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3870 ip_stack_t *ipst) 3871 { 3872 ill_if_t *ifp; 3873 ill_t *ill; 3874 avl_tree_t *avl_tree; 3875 3876 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3877 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3878 3879 /* 3880 * setup the lists to search 3881 */ 3882 if (end_list != MAX_G_HEADS) { 3883 ctx->ctx_current_list = start_list; 3884 ctx->ctx_last_list = end_list; 3885 } else { 3886 ctx->ctx_last_list = MAX_G_HEADS - 1; 3887 ctx->ctx_current_list = 0; 3888 } 3889 3890 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3891 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3892 if (ifp != (ill_if_t *) 3893 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3894 avl_tree = &ifp->illif_avl_by_ppa; 3895 ill = avl_first(avl_tree); 3896 /* 3897 * ill is guaranteed to be non NULL or ifp should have 3898 * not existed. 3899 */ 3900 ASSERT(ill != NULL); 3901 return (ill); 3902 } 3903 ctx->ctx_current_list++; 3904 } 3905 3906 return (NULL); 3907 } 3908 3909 /* 3910 * returns the next ill in the list. ill_first() must have been called 3911 * before calling ill_next() or bad things will happen. 3912 */ 3913 3914 /* 3915 * We don't check for CONDEMNED ills here. Caller must do that if 3916 * necessary under the ill lock. 3917 */ 3918 ill_t * 3919 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3920 { 3921 ill_if_t *ifp; 3922 ill_t *ill; 3923 ip_stack_t *ipst = lastill->ill_ipst; 3924 3925 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3926 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3927 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3928 AVL_AFTER)) != NULL) { 3929 return (ill); 3930 } 3931 3932 /* goto next ill_ifp in the list. */ 3933 ifp = lastill->ill_ifptr->illif_next; 3934 3935 /* make sure not at end of circular list */ 3936 while (ifp == 3937 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3938 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3939 return (NULL); 3940 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3941 } 3942 3943 return (avl_first(&ifp->illif_avl_by_ppa)); 3944 } 3945 3946 /* 3947 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3948 * The final number (PPA) must not have any leading zeros. Upon success, a 3949 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3950 */ 3951 static char * 3952 ill_get_ppa_ptr(char *name) 3953 { 3954 int namelen = strlen(name); 3955 int end_ndx = namelen - 1; 3956 int ppa_ndx, i; 3957 3958 /* 3959 * Check that the first character is [a-zA-Z], and that the last 3960 * character is [0-9]. 3961 */ 3962 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3963 return (NULL); 3964 3965 /* 3966 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3967 */ 3968 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3969 if (!isdigit(name[ppa_ndx - 1])) 3970 break; 3971 3972 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 3973 return (NULL); 3974 3975 /* 3976 * Check that the intermediate characters are [a-z0-9.] 3977 */ 3978 for (i = 1; i < ppa_ndx; i++) { 3979 if (!isalpha(name[i]) && !isdigit(name[i]) && 3980 name[i] != '.' && name[i] != '_') { 3981 return (NULL); 3982 } 3983 } 3984 3985 return (name + ppa_ndx); 3986 } 3987 3988 /* 3989 * use avl tree to locate the ill. 3990 */ 3991 static ill_t * 3992 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3993 ipsq_func_t func, int *error, ip_stack_t *ipst) 3994 { 3995 char *ppa_ptr = NULL; 3996 int len; 3997 uint_t ppa; 3998 ill_t *ill = NULL; 3999 ill_if_t *ifp; 4000 int list; 4001 ipsq_t *ipsq; 4002 4003 if (error != NULL) 4004 *error = 0; 4005 4006 /* 4007 * get ppa ptr 4008 */ 4009 if (isv6) 4010 list = IP_V6_G_HEAD; 4011 else 4012 list = IP_V4_G_HEAD; 4013 4014 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4015 if (error != NULL) 4016 *error = ENXIO; 4017 return (NULL); 4018 } 4019 4020 len = ppa_ptr - name + 1; 4021 4022 ppa = stoi(&ppa_ptr); 4023 4024 ifp = IP_VX_ILL_G_LIST(list, ipst); 4025 4026 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4027 /* 4028 * match is done on len - 1 as the name is not null 4029 * terminated it contains ppa in addition to the interface 4030 * name. 4031 */ 4032 if ((ifp->illif_name_len == len) && 4033 bcmp(ifp->illif_name, name, len - 1) == 0) { 4034 break; 4035 } else { 4036 ifp = ifp->illif_next; 4037 } 4038 } 4039 4040 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4041 /* 4042 * Even the interface type does not exist. 4043 */ 4044 if (error != NULL) 4045 *error = ENXIO; 4046 return (NULL); 4047 } 4048 4049 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4050 if (ill != NULL) { 4051 /* 4052 * The block comment at the start of ipif_down 4053 * explains the use of the macros used below 4054 */ 4055 GRAB_CONN_LOCK(q); 4056 mutex_enter(&ill->ill_lock); 4057 if (ILL_CAN_LOOKUP(ill)) { 4058 ill_refhold_locked(ill); 4059 mutex_exit(&ill->ill_lock); 4060 RELEASE_CONN_LOCK(q); 4061 return (ill); 4062 } else if (ILL_CAN_WAIT(ill, q)) { 4063 ipsq = ill->ill_phyint->phyint_ipsq; 4064 mutex_enter(&ipsq->ipsq_lock); 4065 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4066 mutex_exit(&ill->ill_lock); 4067 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4068 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4069 mutex_exit(&ipsq->ipsq_lock); 4070 RELEASE_CONN_LOCK(q); 4071 if (error != NULL) 4072 *error = EINPROGRESS; 4073 return (NULL); 4074 } 4075 mutex_exit(&ill->ill_lock); 4076 RELEASE_CONN_LOCK(q); 4077 } 4078 if (error != NULL) 4079 *error = ENXIO; 4080 return (NULL); 4081 } 4082 4083 /* 4084 * comparison function for use with avl. 4085 */ 4086 static int 4087 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4088 { 4089 uint_t ppa; 4090 uint_t ill_ppa; 4091 4092 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4093 4094 ppa = *((uint_t *)ppa_ptr); 4095 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4096 /* 4097 * We want the ill with the lowest ppa to be on the 4098 * top. 4099 */ 4100 if (ill_ppa < ppa) 4101 return (1); 4102 if (ill_ppa > ppa) 4103 return (-1); 4104 return (0); 4105 } 4106 4107 /* 4108 * remove an interface type from the global list. 4109 */ 4110 static void 4111 ill_delete_interface_type(ill_if_t *interface) 4112 { 4113 ASSERT(interface != NULL); 4114 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4115 4116 avl_destroy(&interface->illif_avl_by_ppa); 4117 if (interface->illif_ppa_arena != NULL) 4118 vmem_destroy(interface->illif_ppa_arena); 4119 4120 remque(interface); 4121 4122 mi_free(interface); 4123 } 4124 4125 /* 4126 * remove ill from the global list. 4127 */ 4128 static void 4129 ill_glist_delete(ill_t *ill) 4130 { 4131 ip_stack_t *ipst; 4132 phyint_t *phyi; 4133 4134 if (ill == NULL) 4135 return; 4136 ipst = ill->ill_ipst; 4137 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4138 4139 /* 4140 * If the ill was never inserted into the AVL tree 4141 * we skip the if branch. 4142 */ 4143 if (ill->ill_ifptr != NULL) { 4144 /* 4145 * remove from AVL tree and free ppa number 4146 */ 4147 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4148 4149 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4150 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4151 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4152 } 4153 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4154 ill_delete_interface_type(ill->ill_ifptr); 4155 } 4156 4157 /* 4158 * Indicate ill is no longer in the list. 4159 */ 4160 ill->ill_ifptr = NULL; 4161 ill->ill_name_length = 0; 4162 ill->ill_name[0] = '\0'; 4163 ill->ill_ppa = UINT_MAX; 4164 } 4165 4166 /* Generate one last event for this ill. */ 4167 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4168 ill->ill_name_length); 4169 4170 ASSERT(ill->ill_phyint != NULL); 4171 phyi = ill->ill_phyint; 4172 ill->ill_phyint = NULL; 4173 4174 /* 4175 * ill_init allocates a phyint always to store the copy 4176 * of flags relevant to phyint. At that point in time, we could 4177 * not assign the name and hence phyint_illv4/v6 could not be 4178 * initialized. Later in ipif_set_values, we assign the name to 4179 * the ill, at which point in time we assign phyint_illv4/v6. 4180 * Thus we don't rely on phyint_illv6 to be initialized always. 4181 */ 4182 if (ill->ill_flags & ILLF_IPV6) 4183 phyi->phyint_illv6 = NULL; 4184 else 4185 phyi->phyint_illv4 = NULL; 4186 4187 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4188 rw_exit(&ipst->ips_ill_g_lock); 4189 return; 4190 } 4191 4192 /* 4193 * There are no ills left on this phyint; pull it out of the phyint 4194 * avl trees, and free it. 4195 */ 4196 if (phyi->phyint_ifindex > 0) { 4197 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4198 phyi); 4199 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4200 phyi); 4201 } 4202 rw_exit(&ipst->ips_ill_g_lock); 4203 4204 phyint_free(phyi); 4205 } 4206 4207 /* 4208 * allocate a ppa, if the number of plumbed interfaces of this type are 4209 * less than ill_no_arena do a linear search to find a unused ppa. 4210 * When the number goes beyond ill_no_arena switch to using an arena. 4211 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4212 * is the return value for an error condition, so allocation starts at one 4213 * and is decremented by one. 4214 */ 4215 static int 4216 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4217 { 4218 ill_t *tmp_ill; 4219 uint_t start, end; 4220 int ppa; 4221 4222 if (ifp->illif_ppa_arena == NULL && 4223 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4224 /* 4225 * Create an arena. 4226 */ 4227 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4228 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4229 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4230 /* allocate what has already been assigned */ 4231 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4232 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4233 tmp_ill, AVL_AFTER)) { 4234 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4235 1, /* size */ 4236 1, /* align/quantum */ 4237 0, /* phase */ 4238 0, /* nocross */ 4239 /* minaddr */ 4240 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4241 /* maxaddr */ 4242 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4243 VM_NOSLEEP|VM_FIRSTFIT); 4244 if (ppa == 0) { 4245 ip1dbg(("ill_alloc_ppa: ppa allocation" 4246 " failed while switching")); 4247 vmem_destroy(ifp->illif_ppa_arena); 4248 ifp->illif_ppa_arena = NULL; 4249 break; 4250 } 4251 } 4252 } 4253 4254 if (ifp->illif_ppa_arena != NULL) { 4255 if (ill->ill_ppa == UINT_MAX) { 4256 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4257 1, VM_NOSLEEP|VM_FIRSTFIT); 4258 if (ppa == 0) 4259 return (EAGAIN); 4260 ill->ill_ppa = --ppa; 4261 } else { 4262 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4263 1, /* size */ 4264 1, /* align/quantum */ 4265 0, /* phase */ 4266 0, /* nocross */ 4267 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4268 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4269 VM_NOSLEEP|VM_FIRSTFIT); 4270 /* 4271 * Most likely the allocation failed because 4272 * the requested ppa was in use. 4273 */ 4274 if (ppa == 0) 4275 return (EEXIST); 4276 } 4277 return (0); 4278 } 4279 4280 /* 4281 * No arena is in use and not enough (>ill_no_arena) interfaces have 4282 * been plumbed to create one. Do a linear search to get a unused ppa. 4283 */ 4284 if (ill->ill_ppa == UINT_MAX) { 4285 end = UINT_MAX - 1; 4286 start = 0; 4287 } else { 4288 end = start = ill->ill_ppa; 4289 } 4290 4291 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4292 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4293 if (start++ >= end) { 4294 if (ill->ill_ppa == UINT_MAX) 4295 return (EAGAIN); 4296 else 4297 return (EEXIST); 4298 } 4299 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4300 } 4301 ill->ill_ppa = start; 4302 return (0); 4303 } 4304 4305 /* 4306 * Insert ill into the list of configured ill's. Once this function completes, 4307 * the ill is globally visible and is available through lookups. More precisely 4308 * this happens after the caller drops the ill_g_lock. 4309 */ 4310 static int 4311 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4312 { 4313 ill_if_t *ill_interface; 4314 avl_index_t where = 0; 4315 int error; 4316 int name_length; 4317 int index; 4318 boolean_t check_length = B_FALSE; 4319 ip_stack_t *ipst = ill->ill_ipst; 4320 4321 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4322 4323 name_length = mi_strlen(name) + 1; 4324 4325 if (isv6) 4326 index = IP_V6_G_HEAD; 4327 else 4328 index = IP_V4_G_HEAD; 4329 4330 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4331 /* 4332 * Search for interface type based on name 4333 */ 4334 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4335 if ((ill_interface->illif_name_len == name_length) && 4336 (strcmp(ill_interface->illif_name, name) == 0)) { 4337 break; 4338 } 4339 ill_interface = ill_interface->illif_next; 4340 } 4341 4342 /* 4343 * Interface type not found, create one. 4344 */ 4345 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4346 ill_g_head_t ghead; 4347 4348 /* 4349 * allocate ill_if_t structure 4350 */ 4351 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4352 if (ill_interface == NULL) { 4353 return (ENOMEM); 4354 } 4355 4356 (void) strcpy(ill_interface->illif_name, name); 4357 ill_interface->illif_name_len = name_length; 4358 4359 avl_create(&ill_interface->illif_avl_by_ppa, 4360 ill_compare_ppa, sizeof (ill_t), 4361 offsetof(struct ill_s, ill_avl_byppa)); 4362 4363 /* 4364 * link the structure in the back to maintain order 4365 * of configuration for ifconfig output. 4366 */ 4367 ghead = ipst->ips_ill_g_heads[index]; 4368 insque(ill_interface, ghead.ill_g_list_tail); 4369 } 4370 4371 if (ill->ill_ppa == UINT_MAX) 4372 check_length = B_TRUE; 4373 4374 error = ill_alloc_ppa(ill_interface, ill); 4375 if (error != 0) { 4376 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4377 ill_delete_interface_type(ill->ill_ifptr); 4378 return (error); 4379 } 4380 4381 /* 4382 * When the ppa is choosen by the system, check that there is 4383 * enough space to insert ppa. if a specific ppa was passed in this 4384 * check is not required as the interface name passed in will have 4385 * the right ppa in it. 4386 */ 4387 if (check_length) { 4388 /* 4389 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4390 */ 4391 char buf[sizeof (uint_t) * 3]; 4392 4393 /* 4394 * convert ppa to string to calculate the amount of space 4395 * required for it in the name. 4396 */ 4397 numtos(ill->ill_ppa, buf); 4398 4399 /* Do we have enough space to insert ppa ? */ 4400 4401 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4402 /* Free ppa and interface type struct */ 4403 if (ill_interface->illif_ppa_arena != NULL) { 4404 vmem_free(ill_interface->illif_ppa_arena, 4405 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4406 } 4407 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4408 ill_delete_interface_type(ill->ill_ifptr); 4409 4410 return (EINVAL); 4411 } 4412 } 4413 4414 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4415 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4416 4417 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4418 &where); 4419 ill->ill_ifptr = ill_interface; 4420 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4421 4422 ill_phyint_reinit(ill); 4423 return (0); 4424 } 4425 4426 /* Initialize the per phyint ipsq used for serialization */ 4427 static boolean_t 4428 ipsq_init(ill_t *ill, boolean_t enter) 4429 { 4430 ipsq_t *ipsq; 4431 ipxop_t *ipx; 4432 4433 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4434 return (B_FALSE); 4435 4436 ill->ill_phyint->phyint_ipsq = ipsq; 4437 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4438 ipx->ipx_ipsq = ipsq; 4439 ipsq->ipsq_next = ipsq; 4440 ipsq->ipsq_phyint = ill->ill_phyint; 4441 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4442 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4443 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4444 if (enter) { 4445 ipx->ipx_writer = curthread; 4446 ipx->ipx_forced = B_FALSE; 4447 ipx->ipx_reentry_cnt = 1; 4448 #ifdef DEBUG 4449 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4450 #endif 4451 } 4452 return (B_TRUE); 4453 } 4454 4455 /* 4456 * ill_init is called by ip_open when a device control stream is opened. 4457 * It does a few initializations, and shoots a DL_INFO_REQ message down 4458 * to the driver. The response is later picked up in ip_rput_dlpi and 4459 * used to set up default mechanisms for talking to the driver. (Always 4460 * called as writer.) 4461 * 4462 * If this function returns error, ip_open will call ip_close which in 4463 * turn will call ill_delete to clean up any memory allocated here that 4464 * is not yet freed. 4465 */ 4466 int 4467 ill_init(queue_t *q, ill_t *ill) 4468 { 4469 int count; 4470 dl_info_req_t *dlir; 4471 mblk_t *info_mp; 4472 uchar_t *frag_ptr; 4473 4474 /* 4475 * The ill is initialized to zero by mi_alloc*(). In addition 4476 * some fields already contain valid values, initialized in 4477 * ip_open(), before we reach here. 4478 */ 4479 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4480 4481 ill->ill_rq = q; 4482 ill->ill_wq = WR(q); 4483 4484 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4485 BPRI_HI); 4486 if (info_mp == NULL) 4487 return (ENOMEM); 4488 4489 /* 4490 * Allocate sufficient space to contain our fragment hash table and 4491 * the device name. 4492 */ 4493 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4494 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4495 if (frag_ptr == NULL) { 4496 freemsg(info_mp); 4497 return (ENOMEM); 4498 } 4499 ill->ill_frag_ptr = frag_ptr; 4500 ill->ill_frag_free_num_pkts = 0; 4501 ill->ill_last_frag_clean_time = 0; 4502 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4503 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4504 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4505 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4506 NULL, MUTEX_DEFAULT, NULL); 4507 } 4508 4509 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4510 if (ill->ill_phyint == NULL) { 4511 freemsg(info_mp); 4512 mi_free(frag_ptr); 4513 return (ENOMEM); 4514 } 4515 4516 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4517 /* 4518 * For now pretend this is a v4 ill. We need to set phyint_ill* 4519 * at this point because of the following reason. If we can't 4520 * enter the ipsq at some point and cv_wait, the writer that 4521 * wakes us up tries to locate us using the list of all phyints 4522 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4523 * If we don't set it now, we risk a missed wakeup. 4524 */ 4525 ill->ill_phyint->phyint_illv4 = ill; 4526 ill->ill_ppa = UINT_MAX; 4527 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4528 4529 if (!ipsq_init(ill, B_TRUE)) { 4530 freemsg(info_mp); 4531 mi_free(frag_ptr); 4532 mi_free(ill->ill_phyint); 4533 return (ENOMEM); 4534 } 4535 4536 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4537 4538 /* Frag queue limit stuff */ 4539 ill->ill_frag_count = 0; 4540 ill->ill_ipf_gen = 0; 4541 4542 ill->ill_global_timer = INFINITY; 4543 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4544 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4545 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4546 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4547 4548 /* 4549 * Initialize IPv6 configuration variables. The IP module is always 4550 * opened as an IPv4 module. Instead tracking down the cases where 4551 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4552 * here for convenience, this has no effect until the ill is set to do 4553 * IPv6. 4554 */ 4555 ill->ill_reachable_time = ND_REACHABLE_TIME; 4556 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4557 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4558 ill->ill_max_buf = ND_MAX_Q; 4559 ill->ill_refcnt = 0; 4560 4561 /* Send down the Info Request to the driver. */ 4562 info_mp->b_datap->db_type = M_PCPROTO; 4563 dlir = (dl_info_req_t *)info_mp->b_rptr; 4564 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4565 dlir->dl_primitive = DL_INFO_REQ; 4566 4567 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4568 4569 qprocson(q); 4570 ill_dlpi_send(ill, info_mp); 4571 4572 return (0); 4573 } 4574 4575 /* 4576 * ill_dls_info 4577 * creates datalink socket info from the device. 4578 */ 4579 int 4580 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4581 { 4582 size_t len; 4583 ill_t *ill = ipif->ipif_ill; 4584 4585 sdl->sdl_family = AF_LINK; 4586 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4587 sdl->sdl_type = ill->ill_type; 4588 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4589 len = strlen(sdl->sdl_data); 4590 ASSERT(len < 256); 4591 sdl->sdl_nlen = (uchar_t)len; 4592 sdl->sdl_alen = ill->ill_phys_addr_length; 4593 sdl->sdl_slen = 0; 4594 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4595 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4596 4597 return (sizeof (struct sockaddr_dl)); 4598 } 4599 4600 /* 4601 * ill_xarp_info 4602 * creates xarp info from the device. 4603 */ 4604 static int 4605 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4606 { 4607 sdl->sdl_family = AF_LINK; 4608 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4609 sdl->sdl_type = ill->ill_type; 4610 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4611 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4612 sdl->sdl_alen = ill->ill_phys_addr_length; 4613 sdl->sdl_slen = 0; 4614 return (sdl->sdl_nlen); 4615 } 4616 4617 static int 4618 loopback_kstat_update(kstat_t *ksp, int rw) 4619 { 4620 kstat_named_t *kn; 4621 netstackid_t stackid; 4622 netstack_t *ns; 4623 ip_stack_t *ipst; 4624 4625 if (ksp == NULL || ksp->ks_data == NULL) 4626 return (EIO); 4627 4628 if (rw == KSTAT_WRITE) 4629 return (EACCES); 4630 4631 kn = KSTAT_NAMED_PTR(ksp); 4632 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4633 4634 ns = netstack_find_by_stackid(stackid); 4635 if (ns == NULL) 4636 return (-1); 4637 4638 ipst = ns->netstack_ip; 4639 if (ipst == NULL) { 4640 netstack_rele(ns); 4641 return (-1); 4642 } 4643 kn[0].value.ui32 = ipst->ips_loopback_packets; 4644 kn[1].value.ui32 = ipst->ips_loopback_packets; 4645 netstack_rele(ns); 4646 return (0); 4647 } 4648 4649 /* 4650 * Has ifindex been plumbed already? 4651 */ 4652 boolean_t 4653 phyint_exists(uint_t index, ip_stack_t *ipst) 4654 { 4655 ASSERT(index != 0); 4656 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4657 4658 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4659 &index, NULL) != NULL); 4660 } 4661 4662 /* Pick a unique ifindex */ 4663 boolean_t 4664 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4665 { 4666 uint_t starting_index; 4667 4668 if (!ipst->ips_ill_index_wrap) { 4669 *indexp = ipst->ips_ill_index++; 4670 if (ipst->ips_ill_index == 0) { 4671 /* Reached the uint_t limit Next time wrap */ 4672 ipst->ips_ill_index_wrap = B_TRUE; 4673 } 4674 return (B_TRUE); 4675 } 4676 4677 /* 4678 * Start reusing unused indexes. Note that we hold the ill_g_lock 4679 * at this point and don't want to call any function that attempts 4680 * to get the lock again. 4681 */ 4682 starting_index = ipst->ips_ill_index++; 4683 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4684 if (ipst->ips_ill_index != 0 && 4685 !phyint_exists(ipst->ips_ill_index, ipst)) { 4686 /* found unused index - use it */ 4687 *indexp = ipst->ips_ill_index; 4688 return (B_TRUE); 4689 } 4690 } 4691 4692 /* 4693 * all interface indicies are inuse. 4694 */ 4695 return (B_FALSE); 4696 } 4697 4698 /* 4699 * Assign a unique interface index for the phyint. 4700 */ 4701 static boolean_t 4702 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4703 { 4704 ASSERT(phyi->phyint_ifindex == 0); 4705 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4706 } 4707 4708 /* 4709 * Initialize the flags on `phyi' as per the provided mactype. 4710 */ 4711 static void 4712 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 4713 { 4714 uint64_t flags = 0; 4715 4716 /* 4717 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 4718 * we always presume the underlying hardware is working and set 4719 * PHYI_RUNNING (if it's not, the driver will subsequently send a 4720 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 4721 * there are no active interfaces in the group so we set PHYI_FAILED. 4722 */ 4723 if (mactype == SUNW_DL_IPMP) 4724 flags |= PHYI_FAILED; 4725 else 4726 flags |= PHYI_RUNNING; 4727 4728 switch (mactype) { 4729 case SUNW_DL_VNI: 4730 flags |= PHYI_VIRTUAL; 4731 break; 4732 case SUNW_DL_IPMP: 4733 flags |= PHYI_IPMP; 4734 break; 4735 case DL_LOOP: 4736 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 4737 break; 4738 } 4739 4740 mutex_enter(&phyi->phyint_lock); 4741 phyi->phyint_flags |= flags; 4742 mutex_exit(&phyi->phyint_lock); 4743 } 4744 4745 /* 4746 * Return a pointer to the ill which matches the supplied name. Note that 4747 * the ill name length includes the null termination character. (May be 4748 * called as writer.) 4749 * If do_alloc and the interface is "lo0" it will be automatically created. 4750 * Cannot bump up reference on condemned ills. So dup detect can't be done 4751 * using this func. 4752 */ 4753 ill_t * 4754 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4755 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4756 ip_stack_t *ipst) 4757 { 4758 ill_t *ill; 4759 ipif_t *ipif; 4760 ipsq_t *ipsq; 4761 kstat_named_t *kn; 4762 boolean_t isloopback; 4763 in6_addr_t ov6addr; 4764 4765 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4766 4767 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4768 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4769 rw_exit(&ipst->ips_ill_g_lock); 4770 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4771 return (ill); 4772 4773 /* 4774 * Couldn't find it. Does this happen to be a lookup for the 4775 * loopback device and are we allowed to allocate it? 4776 */ 4777 if (!isloopback || !do_alloc) 4778 return (NULL); 4779 4780 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4781 4782 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4783 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4784 rw_exit(&ipst->ips_ill_g_lock); 4785 return (ill); 4786 } 4787 4788 /* Create the loopback device on demand */ 4789 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4790 sizeof (ipif_loopback_name), BPRI_MED)); 4791 if (ill == NULL) 4792 goto done; 4793 4794 *ill = ill_null; 4795 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4796 ill->ill_ipst = ipst; 4797 netstack_hold(ipst->ips_netstack); 4798 /* 4799 * For exclusive stacks we set the zoneid to zero 4800 * to make IP operate as if in the global zone. 4801 */ 4802 ill->ill_zoneid = GLOBAL_ZONEID; 4803 4804 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4805 if (ill->ill_phyint == NULL) 4806 goto done; 4807 4808 if (isv6) 4809 ill->ill_phyint->phyint_illv6 = ill; 4810 else 4811 ill->ill_phyint->phyint_illv4 = ill; 4812 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4813 phyint_flags_init(ill->ill_phyint, DL_LOOP); 4814 4815 ill->ill_max_frag = IP_LOOPBACK_MTU; 4816 /* Add room for tcp+ip headers */ 4817 if (isv6) { 4818 ill->ill_isv6 = B_TRUE; 4819 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4820 } else { 4821 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4822 } 4823 if (!ill_allocate_mibs(ill)) 4824 goto done; 4825 ill->ill_max_mtu = ill->ill_max_frag; 4826 /* 4827 * ipif_loopback_name can't be pointed at directly because its used 4828 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4829 * from the glist, ill_glist_delete() sets the first character of 4830 * ill_name to '\0'. 4831 */ 4832 ill->ill_name = (char *)ill + sizeof (*ill); 4833 (void) strcpy(ill->ill_name, ipif_loopback_name); 4834 ill->ill_name_length = sizeof (ipif_loopback_name); 4835 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4836 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4837 4838 ill->ill_global_timer = INFINITY; 4839 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4840 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4841 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4842 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4843 4844 /* No resolver here. */ 4845 ill->ill_net_type = IRE_LOOPBACK; 4846 4847 /* Initialize the ipsq */ 4848 if (!ipsq_init(ill, B_FALSE)) 4849 goto done; 4850 4851 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4852 if (ipif == NULL) 4853 goto done; 4854 4855 ill->ill_flags = ILLF_MULTICAST; 4856 4857 ov6addr = ipif->ipif_v6lcl_addr; 4858 /* Set up default loopback address and mask. */ 4859 if (!isv6) { 4860 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4861 4862 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4863 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4864 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4865 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4866 ipif->ipif_v6subnet); 4867 ill->ill_flags |= ILLF_IPV4; 4868 } else { 4869 ipif->ipif_v6lcl_addr = ipv6_loopback; 4870 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4871 ipif->ipif_v6net_mask = ipv6_all_ones; 4872 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4873 ipif->ipif_v6subnet); 4874 ill->ill_flags |= ILLF_IPV6; 4875 } 4876 4877 /* 4878 * Chain us in at the end of the ill list. hold the ill 4879 * before we make it globally visible. 1 for the lookup. 4880 */ 4881 ill->ill_refcnt = 0; 4882 ill_refhold(ill); 4883 4884 ill->ill_frag_count = 0; 4885 ill->ill_frag_free_num_pkts = 0; 4886 ill->ill_last_frag_clean_time = 0; 4887 4888 ipsq = ill->ill_phyint->phyint_ipsq; 4889 4890 if (ill_glist_insert(ill, "lo", isv6) != 0) 4891 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4892 4893 /* Let SCTP know so that it can add this to its list */ 4894 sctp_update_ill(ill, SCTP_ILL_INSERT); 4895 4896 /* 4897 * We have already assigned ipif_v6lcl_addr above, but we need to 4898 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4899 * requires to be after ill_glist_insert() since we need the 4900 * ill_index set. Pass on ipv6_loopback as the old address. 4901 */ 4902 sctp_update_ipif_addr(ipif, ov6addr); 4903 4904 /* 4905 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4906 * If so, free our original one. 4907 */ 4908 if (ipsq != ill->ill_phyint->phyint_ipsq) 4909 ipsq_delete(ipsq); 4910 4911 if (ipst->ips_loopback_ksp == NULL) { 4912 /* Export loopback interface statistics */ 4913 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4914 ipif_loopback_name, "net", 4915 KSTAT_TYPE_NAMED, 2, 0, 4916 ipst->ips_netstack->netstack_stackid); 4917 if (ipst->ips_loopback_ksp != NULL) { 4918 ipst->ips_loopback_ksp->ks_update = 4919 loopback_kstat_update; 4920 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4921 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4922 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4923 ipst->ips_loopback_ksp->ks_private = 4924 (void *)(uintptr_t)ipst->ips_netstack-> 4925 netstack_stackid; 4926 kstat_install(ipst->ips_loopback_ksp); 4927 } 4928 } 4929 4930 if (error != NULL) 4931 *error = 0; 4932 *did_alloc = B_TRUE; 4933 rw_exit(&ipst->ips_ill_g_lock); 4934 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4935 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4936 return (ill); 4937 done: 4938 if (ill != NULL) { 4939 if (ill->ill_phyint != NULL) { 4940 ipsq = ill->ill_phyint->phyint_ipsq; 4941 if (ipsq != NULL) { 4942 ipsq->ipsq_phyint = NULL; 4943 ipsq_delete(ipsq); 4944 } 4945 mi_free(ill->ill_phyint); 4946 } 4947 ill_free_mib(ill); 4948 if (ill->ill_ipst != NULL) 4949 netstack_rele(ill->ill_ipst->ips_netstack); 4950 mi_free(ill); 4951 } 4952 rw_exit(&ipst->ips_ill_g_lock); 4953 if (error != NULL) 4954 *error = ENOMEM; 4955 return (NULL); 4956 } 4957 4958 /* 4959 * For IPP calls - use the ip_stack_t for global stack. 4960 */ 4961 ill_t * 4962 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4963 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4964 { 4965 ip_stack_t *ipst; 4966 ill_t *ill; 4967 4968 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4969 if (ipst == NULL) { 4970 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4971 return (NULL); 4972 } 4973 4974 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4975 netstack_rele(ipst->ips_netstack); 4976 return (ill); 4977 } 4978 4979 /* 4980 * Return a pointer to the ill which matches the index and IP version type. 4981 */ 4982 ill_t * 4983 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4984 ipsq_func_t func, int *err, ip_stack_t *ipst) 4985 { 4986 ill_t *ill; 4987 ipsq_t *ipsq; 4988 phyint_t *phyi; 4989 4990 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4991 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4992 4993 if (err != NULL) 4994 *err = 0; 4995 4996 /* 4997 * Indexes are stored in the phyint - a common structure 4998 * to both IPv4 and IPv6. 4999 */ 5000 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5001 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5002 (void *) &index, NULL); 5003 if (phyi != NULL) { 5004 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5005 if (ill != NULL) { 5006 /* 5007 * The block comment at the start of ipif_down 5008 * explains the use of the macros used below 5009 */ 5010 GRAB_CONN_LOCK(q); 5011 mutex_enter(&ill->ill_lock); 5012 if (ILL_CAN_LOOKUP(ill)) { 5013 ill_refhold_locked(ill); 5014 mutex_exit(&ill->ill_lock); 5015 RELEASE_CONN_LOCK(q); 5016 rw_exit(&ipst->ips_ill_g_lock); 5017 return (ill); 5018 } else if (ILL_CAN_WAIT(ill, q)) { 5019 ipsq = ill->ill_phyint->phyint_ipsq; 5020 mutex_enter(&ipsq->ipsq_lock); 5021 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5022 rw_exit(&ipst->ips_ill_g_lock); 5023 mutex_exit(&ill->ill_lock); 5024 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5025 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5026 mutex_exit(&ipsq->ipsq_lock); 5027 RELEASE_CONN_LOCK(q); 5028 if (err != NULL) 5029 *err = EINPROGRESS; 5030 return (NULL); 5031 } 5032 RELEASE_CONN_LOCK(q); 5033 mutex_exit(&ill->ill_lock); 5034 } 5035 } 5036 rw_exit(&ipst->ips_ill_g_lock); 5037 if (err != NULL) 5038 *err = ENXIO; 5039 return (NULL); 5040 } 5041 5042 /* 5043 * Return the ifindex next in sequence after the passed in ifindex. 5044 * If there is no next ifindex for the given protocol, return 0. 5045 */ 5046 uint_t 5047 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5048 { 5049 phyint_t *phyi; 5050 phyint_t *phyi_initial; 5051 uint_t ifindex; 5052 5053 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5054 5055 if (index == 0) { 5056 phyi = avl_first( 5057 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5058 } else { 5059 phyi = phyi_initial = avl_find( 5060 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5061 (void *) &index, NULL); 5062 } 5063 5064 for (; phyi != NULL; 5065 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5066 phyi, AVL_AFTER)) { 5067 /* 5068 * If we're not returning the first interface in the tree 5069 * and we still haven't moved past the phyint_t that 5070 * corresponds to index, avl_walk needs to be called again 5071 */ 5072 if (!((index != 0) && (phyi == phyi_initial))) { 5073 if (isv6) { 5074 if ((phyi->phyint_illv6) && 5075 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5076 (phyi->phyint_illv6->ill_isv6 == 1)) 5077 break; 5078 } else { 5079 if ((phyi->phyint_illv4) && 5080 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5081 (phyi->phyint_illv4->ill_isv6 == 0)) 5082 break; 5083 } 5084 } 5085 } 5086 5087 rw_exit(&ipst->ips_ill_g_lock); 5088 5089 if (phyi != NULL) 5090 ifindex = phyi->phyint_ifindex; 5091 else 5092 ifindex = 0; 5093 5094 return (ifindex); 5095 } 5096 5097 /* 5098 * Return the ifindex for the named interface. 5099 * If there is no next ifindex for the interface, return 0. 5100 */ 5101 uint_t 5102 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5103 { 5104 phyint_t *phyi; 5105 avl_index_t where = 0; 5106 uint_t ifindex; 5107 5108 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5109 5110 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5111 name, &where)) == NULL) { 5112 rw_exit(&ipst->ips_ill_g_lock); 5113 return (0); 5114 } 5115 5116 ifindex = phyi->phyint_ifindex; 5117 5118 rw_exit(&ipst->ips_ill_g_lock); 5119 5120 return (ifindex); 5121 } 5122 5123 /* 5124 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5125 * that gives a running thread a reference to the ill. This reference must be 5126 * released by the thread when it is done accessing the ill and related 5127 * objects. ill_refcnt can not be used to account for static references 5128 * such as other structures pointing to an ill. Callers must generally 5129 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5130 * or be sure that the ill is not being deleted or changing state before 5131 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5132 * ill won't change any of its critical state such as address, netmask etc. 5133 */ 5134 void 5135 ill_refhold(ill_t *ill) 5136 { 5137 mutex_enter(&ill->ill_lock); 5138 ill->ill_refcnt++; 5139 ILL_TRACE_REF(ill); 5140 mutex_exit(&ill->ill_lock); 5141 } 5142 5143 void 5144 ill_refhold_locked(ill_t *ill) 5145 { 5146 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5147 ill->ill_refcnt++; 5148 ILL_TRACE_REF(ill); 5149 } 5150 5151 int 5152 ill_check_and_refhold(ill_t *ill) 5153 { 5154 mutex_enter(&ill->ill_lock); 5155 if (ILL_CAN_LOOKUP(ill)) { 5156 ill_refhold_locked(ill); 5157 mutex_exit(&ill->ill_lock); 5158 return (0); 5159 } 5160 mutex_exit(&ill->ill_lock); 5161 return (ILL_LOOKUP_FAILED); 5162 } 5163 5164 /* 5165 * Must not be called while holding any locks. Otherwise if this is 5166 * the last reference to be released, there is a chance of recursive mutex 5167 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5168 * to restart an ioctl. 5169 */ 5170 void 5171 ill_refrele(ill_t *ill) 5172 { 5173 mutex_enter(&ill->ill_lock); 5174 ASSERT(ill->ill_refcnt != 0); 5175 ill->ill_refcnt--; 5176 ILL_UNTRACE_REF(ill); 5177 if (ill->ill_refcnt != 0) { 5178 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5179 mutex_exit(&ill->ill_lock); 5180 return; 5181 } 5182 5183 /* Drops the ill_lock */ 5184 ipif_ill_refrele_tail(ill); 5185 } 5186 5187 /* 5188 * Obtain a weak reference count on the ill. This reference ensures the 5189 * ill won't be freed, but the ill may change any of its critical state 5190 * such as netmask, address etc. Returns an error if the ill has started 5191 * closing. 5192 */ 5193 boolean_t 5194 ill_waiter_inc(ill_t *ill) 5195 { 5196 mutex_enter(&ill->ill_lock); 5197 if (ill->ill_state_flags & ILL_CONDEMNED) { 5198 mutex_exit(&ill->ill_lock); 5199 return (B_FALSE); 5200 } 5201 ill->ill_waiters++; 5202 mutex_exit(&ill->ill_lock); 5203 return (B_TRUE); 5204 } 5205 5206 void 5207 ill_waiter_dcr(ill_t *ill) 5208 { 5209 mutex_enter(&ill->ill_lock); 5210 ill->ill_waiters--; 5211 if (ill->ill_waiters == 0) 5212 cv_broadcast(&ill->ill_cv); 5213 mutex_exit(&ill->ill_lock); 5214 } 5215 5216 /* 5217 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5218 * driver. We construct best guess defaults for lower level information that 5219 * we need. If an interface is brought up without injection of any overriding 5220 * information from outside, we have to be ready to go with these defaults. 5221 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5222 * we primarely want the dl_provider_style. 5223 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5224 * at which point we assume the other part of the information is valid. 5225 */ 5226 void 5227 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5228 { 5229 uchar_t *brdcst_addr; 5230 uint_t brdcst_addr_length, phys_addr_length; 5231 t_scalar_t sap_length; 5232 dl_info_ack_t *dlia; 5233 ip_m_t *ipm; 5234 dl_qos_cl_sel1_t *sel1; 5235 int min_mtu; 5236 5237 ASSERT(IAM_WRITER_ILL(ill)); 5238 5239 /* 5240 * Till the ill is fully up ILL_CHANGING will be set and 5241 * the ill is not globally visible. So no need for a lock. 5242 */ 5243 dlia = (dl_info_ack_t *)mp->b_rptr; 5244 ill->ill_mactype = dlia->dl_mac_type; 5245 5246 ipm = ip_m_lookup(dlia->dl_mac_type); 5247 if (ipm == NULL) { 5248 ipm = ip_m_lookup(DL_OTHER); 5249 ASSERT(ipm != NULL); 5250 } 5251 ill->ill_media = ipm; 5252 5253 /* 5254 * When the new DLPI stuff is ready we'll pull lengths 5255 * from dlia. 5256 */ 5257 if (dlia->dl_version == DL_VERSION_2) { 5258 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5259 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5260 brdcst_addr_length); 5261 if (brdcst_addr == NULL) { 5262 brdcst_addr_length = 0; 5263 } 5264 sap_length = dlia->dl_sap_length; 5265 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5266 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5267 brdcst_addr_length, sap_length, phys_addr_length)); 5268 } else { 5269 brdcst_addr_length = 6; 5270 brdcst_addr = ip_six_byte_all_ones; 5271 sap_length = -2; 5272 phys_addr_length = brdcst_addr_length; 5273 } 5274 5275 ill->ill_bcast_addr_length = brdcst_addr_length; 5276 ill->ill_phys_addr_length = phys_addr_length; 5277 ill->ill_sap_length = sap_length; 5278 5279 /* 5280 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5281 * but we must ensure a minimum IP MTU is used since other bits of 5282 * IP will fly apart otherwise. 5283 */ 5284 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5285 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5286 ill->ill_max_mtu = ill->ill_max_frag; 5287 5288 ill->ill_type = ipm->ip_m_type; 5289 5290 if (!ill->ill_dlpi_style_set) { 5291 if (dlia->dl_provider_style == DL_STYLE2) 5292 ill->ill_needs_attach = 1; 5293 5294 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 5295 5296 /* 5297 * Allocate the first ipif on this ill. We don't delay it 5298 * further as ioctl handling assumes at least one ipif exists. 5299 * 5300 * At this point we don't know whether the ill is v4 or v6. 5301 * We will know this whan the SIOCSLIFNAME happens and 5302 * the correct value for ill_isv6 will be assigned in 5303 * ipif_set_values(). We need to hold the ill lock and 5304 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5305 * the wakeup. 5306 */ 5307 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5308 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5309 mutex_enter(&ill->ill_lock); 5310 ASSERT(ill->ill_dlpi_style_set == 0); 5311 ill->ill_dlpi_style_set = 1; 5312 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5313 cv_broadcast(&ill->ill_cv); 5314 mutex_exit(&ill->ill_lock); 5315 freemsg(mp); 5316 return; 5317 } 5318 ASSERT(ill->ill_ipif != NULL); 5319 /* 5320 * We know whether it is IPv4 or IPv6 now, as this is the 5321 * second DL_INFO_ACK we are recieving in response to the 5322 * DL_INFO_REQ sent in ipif_set_values. 5323 */ 5324 if (ill->ill_isv6) 5325 ill->ill_sap = IP6_DL_SAP; 5326 else 5327 ill->ill_sap = IP_DL_SAP; 5328 /* 5329 * Set ipif_mtu which is used to set the IRE's 5330 * ire_max_frag value. The driver could have sent 5331 * a different mtu from what it sent last time. No 5332 * need to call ipif_mtu_change because IREs have 5333 * not yet been created. 5334 */ 5335 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5336 /* 5337 * Clear all the flags that were set based on ill_bcast_addr_length 5338 * and ill_phys_addr_length (in ipif_set_values) as these could have 5339 * changed now and we need to re-evaluate. 5340 */ 5341 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5342 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5343 5344 /* 5345 * Free ill_resolver_mp and ill_bcast_mp as things could have 5346 * changed now. 5347 * 5348 * NOTE: The IPMP meta-interface is special-cased because it starts 5349 * with no underlying interfaces (and thus an unknown broadcast 5350 * address length), but we enforce that an interface is broadcast- 5351 * capable as part of allowing it to join a group. 5352 */ 5353 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5354 if (ill->ill_resolver_mp != NULL) 5355 freemsg(ill->ill_resolver_mp); 5356 if (ill->ill_bcast_mp != NULL) 5357 freemsg(ill->ill_bcast_mp); 5358 if (ill->ill_flags & ILLF_XRESOLV) 5359 ill->ill_net_type = IRE_IF_RESOLVER; 5360 else 5361 ill->ill_net_type = IRE_IF_NORESOLVER; 5362 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5363 ill->ill_phys_addr_length, 5364 ill->ill_sap, 5365 ill->ill_sap_length); 5366 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5367 5368 if (ill->ill_isv6) 5369 /* 5370 * Note: xresolv interfaces will eventually need NOARP 5371 * set here as well, but that will require those 5372 * external resolvers to have some knowledge of 5373 * that flag and act appropriately. Not to be changed 5374 * at present. 5375 */ 5376 ill->ill_flags |= ILLF_NONUD; 5377 else 5378 ill->ill_flags |= ILLF_NOARP; 5379 5380 if (ill->ill_phys_addr_length == 0) { 5381 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5382 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5383 } else { 5384 /* pt-pt supports multicast. */ 5385 ill->ill_flags |= ILLF_MULTICAST; 5386 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5387 } 5388 } 5389 } else { 5390 ill->ill_net_type = IRE_IF_RESOLVER; 5391 if (ill->ill_bcast_mp != NULL) 5392 freemsg(ill->ill_bcast_mp); 5393 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5394 ill->ill_bcast_addr_length, ill->ill_sap, 5395 ill->ill_sap_length); 5396 /* 5397 * Later detect lack of DLPI driver multicast 5398 * capability by catching DL_ENABMULTI errors in 5399 * ip_rput_dlpi. 5400 */ 5401 ill->ill_flags |= ILLF_MULTICAST; 5402 if (!ill->ill_isv6) 5403 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5404 } 5405 5406 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 5407 if (ill->ill_mactype == SUNW_DL_IPMP) 5408 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5409 5410 /* By default an interface does not support any CoS marking */ 5411 ill->ill_flags &= ~ILLF_COS_ENABLED; 5412 5413 /* 5414 * If we get QoS information in DL_INFO_ACK, the device supports 5415 * some form of CoS marking, set ILLF_COS_ENABLED. 5416 */ 5417 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5418 dlia->dl_qos_length); 5419 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5420 ill->ill_flags |= ILLF_COS_ENABLED; 5421 } 5422 5423 /* Clear any previous error indication. */ 5424 ill->ill_error = 0; 5425 freemsg(mp); 5426 } 5427 5428 /* 5429 * Perform various checks to verify that an address would make sense as a 5430 * local, remote, or subnet interface address. 5431 */ 5432 static boolean_t 5433 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5434 { 5435 ipaddr_t net_mask; 5436 5437 /* 5438 * Don't allow all zeroes, or all ones, but allow 5439 * all ones netmask. 5440 */ 5441 if ((net_mask = ip_net_mask(addr)) == 0) 5442 return (B_FALSE); 5443 /* A given netmask overrides the "guess" netmask */ 5444 if (subnet_mask != 0) 5445 net_mask = subnet_mask; 5446 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5447 (addr == (addr | ~net_mask)))) { 5448 return (B_FALSE); 5449 } 5450 5451 /* 5452 * Even if the netmask is all ones, we do not allow address to be 5453 * 255.255.255.255 5454 */ 5455 if (addr == INADDR_BROADCAST) 5456 return (B_FALSE); 5457 5458 if (CLASSD(addr)) 5459 return (B_FALSE); 5460 5461 return (B_TRUE); 5462 } 5463 5464 #define V6_IPIF_LINKLOCAL(p) \ 5465 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5466 5467 /* 5468 * Compare two given ipifs and check if the second one is better than 5469 * the first one using the order of preference (not taking deprecated 5470 * into acount) specified in ipif_lookup_multicast(). 5471 */ 5472 static boolean_t 5473 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5474 { 5475 /* Check the least preferred first. */ 5476 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5477 /* If both ipifs are the same, use the first one. */ 5478 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5479 return (B_FALSE); 5480 else 5481 return (B_TRUE); 5482 } 5483 5484 /* For IPv6, check for link local address. */ 5485 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5486 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5487 V6_IPIF_LINKLOCAL(new_ipif)) { 5488 /* The second one is equal or less preferred. */ 5489 return (B_FALSE); 5490 } else { 5491 return (B_TRUE); 5492 } 5493 } 5494 5495 /* Then check for point to point interface. */ 5496 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5497 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5498 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5499 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5500 return (B_FALSE); 5501 } else { 5502 return (B_TRUE); 5503 } 5504 } 5505 5506 /* old_ipif is a normal interface, so no need to use the new one. */ 5507 return (B_FALSE); 5508 } 5509 5510 /* 5511 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5512 * The ipif must be up, and its ill must multicast-capable, not 5513 * condemned, not an underlying interface in an IPMP group, and 5514 * not a VNI interface. Order of preference: 5515 * 5516 * 1a. normal 5517 * 1b. normal, but deprecated 5518 * 2a. point to point 5519 * 2b. point to point, but deprecated 5520 * 3a. link local 5521 * 3b. link local, but deprecated 5522 * 4. loopback. 5523 */ 5524 ipif_t * 5525 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5526 { 5527 ill_t *ill; 5528 ill_walk_context_t ctx; 5529 ipif_t *ipif; 5530 ipif_t *saved_ipif = NULL; 5531 ipif_t *dep_ipif = NULL; 5532 5533 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5534 if (isv6) 5535 ill = ILL_START_WALK_V6(&ctx, ipst); 5536 else 5537 ill = ILL_START_WALK_V4(&ctx, ipst); 5538 5539 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5540 mutex_enter(&ill->ill_lock); 5541 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5542 !(ill->ill_flags & ILLF_MULTICAST)) { 5543 mutex_exit(&ill->ill_lock); 5544 continue; 5545 } 5546 for (ipif = ill->ill_ipif; ipif != NULL; 5547 ipif = ipif->ipif_next) { 5548 if (zoneid != ipif->ipif_zoneid && 5549 zoneid != ALL_ZONES && 5550 ipif->ipif_zoneid != ALL_ZONES) { 5551 continue; 5552 } 5553 if (!(ipif->ipif_flags & IPIF_UP) || 5554 !IPIF_CAN_LOOKUP(ipif)) { 5555 continue; 5556 } 5557 5558 /* 5559 * Found one candidate. If it is deprecated, 5560 * remember it in dep_ipif. If it is not deprecated, 5561 * remember it in saved_ipif. 5562 */ 5563 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5564 if (dep_ipif == NULL) { 5565 dep_ipif = ipif; 5566 } else if (ipif_comp_multi(dep_ipif, ipif, 5567 isv6)) { 5568 /* 5569 * If the previous dep_ipif does not 5570 * belong to the same ill, we've done 5571 * a ipif_refhold() on it. So we need 5572 * to release it. 5573 */ 5574 if (dep_ipif->ipif_ill != ill) 5575 ipif_refrele(dep_ipif); 5576 dep_ipif = ipif; 5577 } 5578 continue; 5579 } 5580 if (saved_ipif == NULL) { 5581 saved_ipif = ipif; 5582 } else { 5583 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5584 if (saved_ipif->ipif_ill != ill) 5585 ipif_refrele(saved_ipif); 5586 saved_ipif = ipif; 5587 } 5588 } 5589 } 5590 /* 5591 * Before going to the next ill, do a ipif_refhold() on the 5592 * saved ones. 5593 */ 5594 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5595 ipif_refhold_locked(saved_ipif); 5596 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5597 ipif_refhold_locked(dep_ipif); 5598 mutex_exit(&ill->ill_lock); 5599 } 5600 rw_exit(&ipst->ips_ill_g_lock); 5601 5602 /* 5603 * If we have only the saved_ipif, return it. But if we have both 5604 * saved_ipif and dep_ipif, check to see which one is better. 5605 */ 5606 if (saved_ipif != NULL) { 5607 if (dep_ipif != NULL) { 5608 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5609 ipif_refrele(saved_ipif); 5610 return (dep_ipif); 5611 } else { 5612 ipif_refrele(dep_ipif); 5613 return (saved_ipif); 5614 } 5615 } 5616 return (saved_ipif); 5617 } else { 5618 return (dep_ipif); 5619 } 5620 } 5621 5622 /* 5623 * This function is called when an application does not specify an interface 5624 * to be used for multicast traffic (joining a group/sending data). It 5625 * calls ire_lookup_multi() to look for an interface route for the 5626 * specified multicast group. Doing this allows the administrator to add 5627 * prefix routes for multicast to indicate which interface to be used for 5628 * multicast traffic in the above scenario. The route could be for all 5629 * multicast (224.0/4), for a single multicast group (a /32 route) or 5630 * anything in between. If there is no such multicast route, we just find 5631 * any multicast capable interface and return it. The returned ipif 5632 * is refhold'ed. 5633 */ 5634 ipif_t * 5635 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5636 { 5637 ire_t *ire; 5638 ipif_t *ipif; 5639 5640 ire = ire_lookup_multi(group, zoneid, ipst); 5641 if (ire != NULL) { 5642 ipif = ire->ire_ipif; 5643 ipif_refhold(ipif); 5644 ire_refrele(ire); 5645 return (ipif); 5646 } 5647 5648 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5649 } 5650 5651 /* 5652 * Look for an ipif with the specified interface address and destination. 5653 * The destination address is used only for matching point-to-point interfaces. 5654 */ 5655 ipif_t * 5656 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5657 ipsq_func_t func, int *error, ip_stack_t *ipst) 5658 { 5659 ipif_t *ipif; 5660 ill_t *ill; 5661 ill_walk_context_t ctx; 5662 ipsq_t *ipsq; 5663 5664 if (error != NULL) 5665 *error = 0; 5666 5667 /* 5668 * First match all the point-to-point interfaces 5669 * before looking at non-point-to-point interfaces. 5670 * This is done to avoid returning non-point-to-point 5671 * ipif instead of unnumbered point-to-point ipif. 5672 */ 5673 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5674 ill = ILL_START_WALK_V4(&ctx, ipst); 5675 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5676 GRAB_CONN_LOCK(q); 5677 mutex_enter(&ill->ill_lock); 5678 for (ipif = ill->ill_ipif; ipif != NULL; 5679 ipif = ipif->ipif_next) { 5680 /* Allow the ipif to be down */ 5681 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5682 (ipif->ipif_lcl_addr == if_addr) && 5683 (ipif->ipif_pp_dst_addr == dst)) { 5684 /* 5685 * The block comment at the start of ipif_down 5686 * explains the use of the macros used below 5687 */ 5688 if (IPIF_CAN_LOOKUP(ipif)) { 5689 ipif_refhold_locked(ipif); 5690 mutex_exit(&ill->ill_lock); 5691 RELEASE_CONN_LOCK(q); 5692 rw_exit(&ipst->ips_ill_g_lock); 5693 return (ipif); 5694 } else if (IPIF_CAN_WAIT(ipif, q)) { 5695 ipsq = ill->ill_phyint->phyint_ipsq; 5696 mutex_enter(&ipsq->ipsq_lock); 5697 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5698 mutex_exit(&ill->ill_lock); 5699 rw_exit(&ipst->ips_ill_g_lock); 5700 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5701 ill); 5702 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5703 mutex_exit(&ipsq->ipsq_lock); 5704 RELEASE_CONN_LOCK(q); 5705 if (error != NULL) 5706 *error = EINPROGRESS; 5707 return (NULL); 5708 } 5709 } 5710 } 5711 mutex_exit(&ill->ill_lock); 5712 RELEASE_CONN_LOCK(q); 5713 } 5714 rw_exit(&ipst->ips_ill_g_lock); 5715 5716 /* lookup the ipif based on interface address */ 5717 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5718 ipst); 5719 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5720 return (ipif); 5721 } 5722 5723 /* 5724 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5725 */ 5726 static ipif_t * 5727 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5728 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5729 ip_stack_t *ipst) 5730 { 5731 ipif_t *ipif; 5732 ill_t *ill; 5733 boolean_t ptp = B_FALSE; 5734 ipsq_t *ipsq; 5735 ill_walk_context_t ctx; 5736 5737 if (error != NULL) 5738 *error = 0; 5739 5740 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5741 /* 5742 * Repeat twice, first based on local addresses and 5743 * next time for pointopoint. 5744 */ 5745 repeat: 5746 ill = ILL_START_WALK_V4(&ctx, ipst); 5747 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5748 if (match_ill != NULL && ill != match_ill && 5749 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5750 continue; 5751 } 5752 GRAB_CONN_LOCK(q); 5753 mutex_enter(&ill->ill_lock); 5754 for (ipif = ill->ill_ipif; ipif != NULL; 5755 ipif = ipif->ipif_next) { 5756 if (zoneid != ALL_ZONES && 5757 zoneid != ipif->ipif_zoneid && 5758 ipif->ipif_zoneid != ALL_ZONES) 5759 continue; 5760 /* Allow the ipif to be down */ 5761 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5762 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5763 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5764 (ipif->ipif_pp_dst_addr == addr))) { 5765 /* 5766 * The block comment at the start of ipif_down 5767 * explains the use of the macros used below 5768 */ 5769 if (IPIF_CAN_LOOKUP(ipif)) { 5770 ipif_refhold_locked(ipif); 5771 mutex_exit(&ill->ill_lock); 5772 RELEASE_CONN_LOCK(q); 5773 rw_exit(&ipst->ips_ill_g_lock); 5774 return (ipif); 5775 } else if (IPIF_CAN_WAIT(ipif, q)) { 5776 ipsq = ill->ill_phyint->phyint_ipsq; 5777 mutex_enter(&ipsq->ipsq_lock); 5778 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5779 mutex_exit(&ill->ill_lock); 5780 rw_exit(&ipst->ips_ill_g_lock); 5781 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5782 ill); 5783 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5784 mutex_exit(&ipsq->ipsq_lock); 5785 RELEASE_CONN_LOCK(q); 5786 if (error != NULL) 5787 *error = EINPROGRESS; 5788 return (NULL); 5789 } 5790 } 5791 } 5792 mutex_exit(&ill->ill_lock); 5793 RELEASE_CONN_LOCK(q); 5794 } 5795 5796 /* If we already did the ptp case, then we are done */ 5797 if (ptp) { 5798 rw_exit(&ipst->ips_ill_g_lock); 5799 if (error != NULL) 5800 *error = ENXIO; 5801 return (NULL); 5802 } 5803 ptp = B_TRUE; 5804 goto repeat; 5805 } 5806 5807 /* 5808 * Check if the address exists in the system. 5809 * We don't hold the conn_lock as we will not perform defered ipsqueue 5810 * operation. 5811 */ 5812 boolean_t 5813 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5814 { 5815 ipif_t *ipif; 5816 ill_t *ill; 5817 ill_walk_context_t ctx; 5818 5819 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5820 5821 ill = ILL_START_WALK_V4(&ctx, ipst); 5822 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5823 mutex_enter(&ill->ill_lock); 5824 for (ipif = ill->ill_ipif; ipif != NULL; 5825 ipif = ipif->ipif_next) { 5826 if (zoneid != ALL_ZONES && 5827 zoneid != ipif->ipif_zoneid && 5828 ipif->ipif_zoneid != ALL_ZONES) 5829 continue; 5830 /* Allow the ipif to be down */ 5831 /* 5832 * XXX Different from ipif_lookup_addr(), we don't do 5833 * twice lookups. As from bind()'s point of view, we 5834 * may return once we find a match. 5835 */ 5836 if (((ipif->ipif_lcl_addr == addr) && 5837 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5838 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5839 (ipif->ipif_pp_dst_addr == addr))) { 5840 /* 5841 * Allow bind() to be successful even if the 5842 * ipif is with IPIF_CHANGING bit set. 5843 */ 5844 mutex_exit(&ill->ill_lock); 5845 rw_exit(&ipst->ips_ill_g_lock); 5846 return (B_TRUE); 5847 } 5848 } 5849 mutex_exit(&ill->ill_lock); 5850 } 5851 5852 rw_exit(&ipst->ips_ill_g_lock); 5853 return (B_FALSE); 5854 } 5855 5856 /* 5857 * Lookup an ipif with the specified address. For point-to-point links we 5858 * look for matches on either the destination address or the local address, 5859 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5860 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5861 * (or illgrp if `match_ill' is in an IPMP group). 5862 */ 5863 ipif_t * 5864 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5865 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5866 { 5867 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5868 func, error, ipst)); 5869 } 5870 5871 /* 5872 * Special abbreviated version of ipif_lookup_addr() that doesn't match 5873 * `match_ill' across the IPMP group. This function is only needed in some 5874 * corner-cases; almost everything should use ipif_lookup_addr(). 5875 */ 5876 static ipif_t * 5877 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5878 { 5879 ASSERT(match_ill != NULL); 5880 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 5881 NULL, NULL, NULL, NULL, ipst)); 5882 } 5883 5884 /* 5885 * Look for an ipif with the specified address. For point-point links 5886 * we look for matches on either the destination address and the local 5887 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5888 * is set. 5889 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 5890 * ill (or illgrp if `match_ill' is in an IPMP group). 5891 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5892 */ 5893 zoneid_t 5894 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5895 { 5896 zoneid_t zoneid; 5897 ipif_t *ipif; 5898 ill_t *ill; 5899 boolean_t ptp = B_FALSE; 5900 ill_walk_context_t ctx; 5901 5902 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5903 /* 5904 * Repeat twice, first based on local addresses and 5905 * next time for pointopoint. 5906 */ 5907 repeat: 5908 ill = ILL_START_WALK_V4(&ctx, ipst); 5909 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5910 if (match_ill != NULL && ill != match_ill && 5911 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 5912 continue; 5913 } 5914 mutex_enter(&ill->ill_lock); 5915 for (ipif = ill->ill_ipif; ipif != NULL; 5916 ipif = ipif->ipif_next) { 5917 /* Allow the ipif to be down */ 5918 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5919 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5920 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5921 (ipif->ipif_pp_dst_addr == addr)) && 5922 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5923 zoneid = ipif->ipif_zoneid; 5924 mutex_exit(&ill->ill_lock); 5925 rw_exit(&ipst->ips_ill_g_lock); 5926 /* 5927 * If ipif_zoneid was ALL_ZONES then we have 5928 * a trusted extensions shared IP address. 5929 * In that case GLOBAL_ZONEID works to send. 5930 */ 5931 if (zoneid == ALL_ZONES) 5932 zoneid = GLOBAL_ZONEID; 5933 return (zoneid); 5934 } 5935 } 5936 mutex_exit(&ill->ill_lock); 5937 } 5938 5939 /* If we already did the ptp case, then we are done */ 5940 if (ptp) { 5941 rw_exit(&ipst->ips_ill_g_lock); 5942 return (ALL_ZONES); 5943 } 5944 ptp = B_TRUE; 5945 goto repeat; 5946 } 5947 5948 /* 5949 * Look for an ipif that matches the specified remote address i.e. the 5950 * ipif that would receive the specified packet. 5951 * First look for directly connected interfaces and then do a recursive 5952 * IRE lookup and pick the first ipif corresponding to the source address in the 5953 * ire. 5954 * Returns: held ipif 5955 */ 5956 ipif_t * 5957 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5958 { 5959 ipif_t *ipif; 5960 ire_t *ire; 5961 ip_stack_t *ipst = ill->ill_ipst; 5962 5963 ASSERT(!ill->ill_isv6); 5964 5965 /* 5966 * Someone could be changing this ipif currently or change it 5967 * after we return this. Thus a few packets could use the old 5968 * old values. However structure updates/creates (ire, ilg, ilm etc) 5969 * will atomically be updated or cleaned up with the new value 5970 * Thus we don't need a lock to check the flags or other attrs below. 5971 */ 5972 mutex_enter(&ill->ill_lock); 5973 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5974 if (!IPIF_CAN_LOOKUP(ipif)) 5975 continue; 5976 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5977 ipif->ipif_zoneid != ALL_ZONES) 5978 continue; 5979 /* Allow the ipif to be down */ 5980 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5981 if ((ipif->ipif_pp_dst_addr == addr) || 5982 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5983 ipif->ipif_lcl_addr == addr)) { 5984 ipif_refhold_locked(ipif); 5985 mutex_exit(&ill->ill_lock); 5986 return (ipif); 5987 } 5988 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5989 ipif_refhold_locked(ipif); 5990 mutex_exit(&ill->ill_lock); 5991 return (ipif); 5992 } 5993 } 5994 mutex_exit(&ill->ill_lock); 5995 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5996 NULL, MATCH_IRE_RECURSIVE, ipst); 5997 if (ire != NULL) { 5998 /* 5999 * The callers of this function wants to know the 6000 * interface on which they have to send the replies 6001 * back. For IREs that have ire_stq and ire_ipif 6002 * derived from different ills, we really don't care 6003 * what we return here. 6004 */ 6005 ipif = ire->ire_ipif; 6006 if (ipif != NULL) { 6007 ipif_refhold(ipif); 6008 ire_refrele(ire); 6009 return (ipif); 6010 } 6011 ire_refrele(ire); 6012 } 6013 /* Pick the first interface */ 6014 ipif = ipif_get_next_ipif(NULL, ill); 6015 return (ipif); 6016 } 6017 6018 /* 6019 * This func does not prevent refcnt from increasing. But if 6020 * the caller has taken steps to that effect, then this func 6021 * can be used to determine whether the ill has become quiescent 6022 */ 6023 static boolean_t 6024 ill_is_quiescent(ill_t *ill) 6025 { 6026 ipif_t *ipif; 6027 6028 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6029 6030 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6031 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6032 return (B_FALSE); 6033 } 6034 } 6035 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6036 return (B_FALSE); 6037 } 6038 return (B_TRUE); 6039 } 6040 6041 boolean_t 6042 ill_is_freeable(ill_t *ill) 6043 { 6044 ipif_t *ipif; 6045 6046 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6047 6048 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6049 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6050 return (B_FALSE); 6051 } 6052 } 6053 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6054 return (B_FALSE); 6055 } 6056 return (B_TRUE); 6057 } 6058 6059 /* 6060 * This func does not prevent refcnt from increasing. But if 6061 * the caller has taken steps to that effect, then this func 6062 * can be used to determine whether the ipif has become quiescent 6063 */ 6064 static boolean_t 6065 ipif_is_quiescent(ipif_t *ipif) 6066 { 6067 ill_t *ill; 6068 6069 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6070 6071 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6072 return (B_FALSE); 6073 } 6074 6075 ill = ipif->ipif_ill; 6076 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6077 ill->ill_logical_down) { 6078 return (B_TRUE); 6079 } 6080 6081 /* This is the last ipif going down or being deleted on this ill */ 6082 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6083 return (B_FALSE); 6084 } 6085 6086 return (B_TRUE); 6087 } 6088 6089 /* 6090 * return true if the ipif can be destroyed: the ipif has to be quiescent 6091 * with zero references from ire/nce/ilm to it. 6092 */ 6093 static boolean_t 6094 ipif_is_freeable(ipif_t *ipif) 6095 { 6096 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6097 ASSERT(ipif->ipif_id != 0); 6098 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6099 } 6100 6101 /* 6102 * The ipif/ill/ire has been refreled. Do the tail processing. 6103 * Determine if the ipif or ill in question has become quiescent and if so 6104 * wakeup close and/or restart any queued pending ioctl that is waiting 6105 * for the ipif_down (or ill_down) 6106 */ 6107 void 6108 ipif_ill_refrele_tail(ill_t *ill) 6109 { 6110 mblk_t *mp; 6111 conn_t *connp; 6112 ipsq_t *ipsq; 6113 ipxop_t *ipx; 6114 ipif_t *ipif; 6115 dl_notify_ind_t *dlindp; 6116 6117 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6118 6119 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6120 /* ip_modclose() may be waiting */ 6121 cv_broadcast(&ill->ill_cv); 6122 } 6123 6124 ipsq = ill->ill_phyint->phyint_ipsq; 6125 mutex_enter(&ipsq->ipsq_lock); 6126 ipx = ipsq->ipsq_xop; 6127 mutex_enter(&ipx->ipx_lock); 6128 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6129 goto unlock; 6130 6131 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6132 6133 ipif = ipx->ipx_pending_ipif; 6134 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6135 goto unlock; 6136 6137 switch (ipx->ipx_waitfor) { 6138 case IPIF_DOWN: 6139 if (!ipif_is_quiescent(ipif)) 6140 goto unlock; 6141 break; 6142 case IPIF_FREE: 6143 if (!ipif_is_freeable(ipif)) 6144 goto unlock; 6145 break; 6146 case ILL_DOWN: 6147 if (!ill_is_quiescent(ill)) 6148 goto unlock; 6149 break; 6150 case ILL_FREE: 6151 /* 6152 * ILL_FREE is only for loopback; normal ill teardown waits 6153 * synchronously in ip_modclose() without using ipx_waitfor, 6154 * handled by the cv_broadcast() at the top of this function. 6155 */ 6156 if (!ill_is_freeable(ill)) 6157 goto unlock; 6158 break; 6159 default: 6160 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6161 (void *)ipsq, ipx->ipx_waitfor); 6162 } 6163 6164 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6165 mutex_exit(&ipx->ipx_lock); 6166 mp = ipsq_pending_mp_get(ipsq, &connp); 6167 mutex_exit(&ipsq->ipsq_lock); 6168 mutex_exit(&ill->ill_lock); 6169 6170 ASSERT(mp != NULL); 6171 /* 6172 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6173 * we can only get here when the current operation decides it 6174 * it needs to quiesce via ipsq_pending_mp_add(). 6175 */ 6176 switch (mp->b_datap->db_type) { 6177 case M_PCPROTO: 6178 case M_PROTO: 6179 /* 6180 * For now, only DL_NOTIFY_IND messages can use this facility. 6181 */ 6182 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6183 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6184 6185 switch (dlindp->dl_notification) { 6186 case DL_NOTE_PHYS_ADDR: 6187 qwriter_ip(ill, ill->ill_rq, mp, 6188 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6189 return; 6190 case DL_NOTE_REPLUMB: 6191 qwriter_ip(ill, ill->ill_rq, mp, 6192 ill_replumb_tail, CUR_OP, B_TRUE); 6193 return; 6194 default: 6195 ASSERT(0); 6196 ill_refrele(ill); 6197 } 6198 break; 6199 6200 case M_ERROR: 6201 case M_HANGUP: 6202 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6203 B_TRUE); 6204 return; 6205 6206 case M_IOCTL: 6207 case M_IOCDATA: 6208 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6209 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6210 return; 6211 6212 default: 6213 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6214 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6215 } 6216 return; 6217 unlock: 6218 mutex_exit(&ipsq->ipsq_lock); 6219 mutex_exit(&ipx->ipx_lock); 6220 mutex_exit(&ill->ill_lock); 6221 } 6222 6223 #ifdef DEBUG 6224 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6225 static void 6226 th_trace_rrecord(th_trace_t *th_trace) 6227 { 6228 tr_buf_t *tr_buf; 6229 uint_t lastref; 6230 6231 lastref = th_trace->th_trace_lastref; 6232 lastref++; 6233 if (lastref == TR_BUF_MAX) 6234 lastref = 0; 6235 th_trace->th_trace_lastref = lastref; 6236 tr_buf = &th_trace->th_trbuf[lastref]; 6237 tr_buf->tr_time = lbolt; 6238 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6239 } 6240 6241 static void 6242 th_trace_free(void *value) 6243 { 6244 th_trace_t *th_trace = value; 6245 6246 ASSERT(th_trace->th_refcnt == 0); 6247 kmem_free(th_trace, sizeof (*th_trace)); 6248 } 6249 6250 /* 6251 * Find or create the per-thread hash table used to track object references. 6252 * The ipst argument is NULL if we shouldn't allocate. 6253 * 6254 * Accesses per-thread data, so there's no need to lock here. 6255 */ 6256 static mod_hash_t * 6257 th_trace_gethash(ip_stack_t *ipst) 6258 { 6259 th_hash_t *thh; 6260 6261 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6262 mod_hash_t *mh; 6263 char name[256]; 6264 size_t objsize, rshift; 6265 int retv; 6266 6267 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6268 return (NULL); 6269 (void) snprintf(name, sizeof (name), "th_trace_%p", 6270 (void *)curthread); 6271 6272 /* 6273 * We use mod_hash_create_extended here rather than the more 6274 * obvious mod_hash_create_ptrhash because the latter has a 6275 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6276 * block. 6277 */ 6278 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6279 MAX(sizeof (ire_t), sizeof (nce_t))); 6280 rshift = highbit(objsize); 6281 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6282 th_trace_free, mod_hash_byptr, (void *)rshift, 6283 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6284 if (mh == NULL) { 6285 kmem_free(thh, sizeof (*thh)); 6286 return (NULL); 6287 } 6288 thh->thh_hash = mh; 6289 thh->thh_ipst = ipst; 6290 /* 6291 * We trace ills, ipifs, ires, and nces. All of these are 6292 * per-IP-stack, so the lock on the thread list is as well. 6293 */ 6294 rw_enter(&ip_thread_rwlock, RW_WRITER); 6295 list_insert_tail(&ip_thread_list, thh); 6296 rw_exit(&ip_thread_rwlock); 6297 retv = tsd_set(ip_thread_data, thh); 6298 ASSERT(retv == 0); 6299 } 6300 return (thh != NULL ? thh->thh_hash : NULL); 6301 } 6302 6303 boolean_t 6304 th_trace_ref(const void *obj, ip_stack_t *ipst) 6305 { 6306 th_trace_t *th_trace; 6307 mod_hash_t *mh; 6308 mod_hash_val_t val; 6309 6310 if ((mh = th_trace_gethash(ipst)) == NULL) 6311 return (B_FALSE); 6312 6313 /* 6314 * Attempt to locate the trace buffer for this obj and thread. 6315 * If it does not exist, then allocate a new trace buffer and 6316 * insert into the hash. 6317 */ 6318 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6319 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6320 if (th_trace == NULL) 6321 return (B_FALSE); 6322 6323 th_trace->th_id = curthread; 6324 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6325 (mod_hash_val_t)th_trace) != 0) { 6326 kmem_free(th_trace, sizeof (th_trace_t)); 6327 return (B_FALSE); 6328 } 6329 } else { 6330 th_trace = (th_trace_t *)val; 6331 } 6332 6333 ASSERT(th_trace->th_refcnt >= 0 && 6334 th_trace->th_refcnt < TR_BUF_MAX - 1); 6335 6336 th_trace->th_refcnt++; 6337 th_trace_rrecord(th_trace); 6338 return (B_TRUE); 6339 } 6340 6341 /* 6342 * For the purpose of tracing a reference release, we assume that global 6343 * tracing is always on and that the same thread initiated the reference hold 6344 * is releasing. 6345 */ 6346 void 6347 th_trace_unref(const void *obj) 6348 { 6349 int retv; 6350 mod_hash_t *mh; 6351 th_trace_t *th_trace; 6352 mod_hash_val_t val; 6353 6354 mh = th_trace_gethash(NULL); 6355 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6356 ASSERT(retv == 0); 6357 th_trace = (th_trace_t *)val; 6358 6359 ASSERT(th_trace->th_refcnt > 0); 6360 th_trace->th_refcnt--; 6361 th_trace_rrecord(th_trace); 6362 } 6363 6364 /* 6365 * If tracing has been disabled, then we assume that the reference counts are 6366 * now useless, and we clear them out before destroying the entries. 6367 */ 6368 void 6369 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6370 { 6371 th_hash_t *thh; 6372 mod_hash_t *mh; 6373 mod_hash_val_t val; 6374 th_trace_t *th_trace; 6375 int retv; 6376 6377 rw_enter(&ip_thread_rwlock, RW_READER); 6378 for (thh = list_head(&ip_thread_list); thh != NULL; 6379 thh = list_next(&ip_thread_list, thh)) { 6380 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6381 &val) == 0) { 6382 th_trace = (th_trace_t *)val; 6383 if (trace_disable) 6384 th_trace->th_refcnt = 0; 6385 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6386 ASSERT(retv == 0); 6387 } 6388 } 6389 rw_exit(&ip_thread_rwlock); 6390 } 6391 6392 void 6393 ipif_trace_ref(ipif_t *ipif) 6394 { 6395 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6396 6397 if (ipif->ipif_trace_disable) 6398 return; 6399 6400 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6401 ipif->ipif_trace_disable = B_TRUE; 6402 ipif_trace_cleanup(ipif); 6403 } 6404 } 6405 6406 void 6407 ipif_untrace_ref(ipif_t *ipif) 6408 { 6409 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6410 6411 if (!ipif->ipif_trace_disable) 6412 th_trace_unref(ipif); 6413 } 6414 6415 void 6416 ill_trace_ref(ill_t *ill) 6417 { 6418 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6419 6420 if (ill->ill_trace_disable) 6421 return; 6422 6423 if (!th_trace_ref(ill, ill->ill_ipst)) { 6424 ill->ill_trace_disable = B_TRUE; 6425 ill_trace_cleanup(ill); 6426 } 6427 } 6428 6429 void 6430 ill_untrace_ref(ill_t *ill) 6431 { 6432 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6433 6434 if (!ill->ill_trace_disable) 6435 th_trace_unref(ill); 6436 } 6437 6438 /* 6439 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6440 * failure, ipif_trace_disable is set. 6441 */ 6442 static void 6443 ipif_trace_cleanup(const ipif_t *ipif) 6444 { 6445 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6446 } 6447 6448 /* 6449 * Called when ill is unplumbed or when memory alloc fails. Note that on 6450 * failure, ill_trace_disable is set. 6451 */ 6452 static void 6453 ill_trace_cleanup(const ill_t *ill) 6454 { 6455 th_trace_cleanup(ill, ill->ill_trace_disable); 6456 } 6457 #endif /* DEBUG */ 6458 6459 void 6460 ipif_refhold_locked(ipif_t *ipif) 6461 { 6462 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6463 ipif->ipif_refcnt++; 6464 IPIF_TRACE_REF(ipif); 6465 } 6466 6467 void 6468 ipif_refhold(ipif_t *ipif) 6469 { 6470 ill_t *ill; 6471 6472 ill = ipif->ipif_ill; 6473 mutex_enter(&ill->ill_lock); 6474 ipif->ipif_refcnt++; 6475 IPIF_TRACE_REF(ipif); 6476 mutex_exit(&ill->ill_lock); 6477 } 6478 6479 /* 6480 * Must not be called while holding any locks. Otherwise if this is 6481 * the last reference to be released there is a chance of recursive mutex 6482 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6483 * to restart an ioctl. 6484 */ 6485 void 6486 ipif_refrele(ipif_t *ipif) 6487 { 6488 ill_t *ill; 6489 6490 ill = ipif->ipif_ill; 6491 6492 mutex_enter(&ill->ill_lock); 6493 ASSERT(ipif->ipif_refcnt != 0); 6494 ipif->ipif_refcnt--; 6495 IPIF_UNTRACE_REF(ipif); 6496 if (ipif->ipif_refcnt != 0) { 6497 mutex_exit(&ill->ill_lock); 6498 return; 6499 } 6500 6501 /* Drops the ill_lock */ 6502 ipif_ill_refrele_tail(ill); 6503 } 6504 6505 ipif_t * 6506 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6507 { 6508 ipif_t *ipif; 6509 6510 mutex_enter(&ill->ill_lock); 6511 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6512 ipif != NULL; ipif = ipif->ipif_next) { 6513 if (!IPIF_CAN_LOOKUP(ipif)) 6514 continue; 6515 ipif_refhold_locked(ipif); 6516 mutex_exit(&ill->ill_lock); 6517 return (ipif); 6518 } 6519 mutex_exit(&ill->ill_lock); 6520 return (NULL); 6521 } 6522 6523 /* 6524 * TODO: make this table extendible at run time 6525 * Return a pointer to the mac type info for 'mac_type' 6526 */ 6527 static ip_m_t * 6528 ip_m_lookup(t_uscalar_t mac_type) 6529 { 6530 ip_m_t *ipm; 6531 6532 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6533 if (ipm->ip_m_mac_type == mac_type) 6534 return (ipm); 6535 return (NULL); 6536 } 6537 6538 /* 6539 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6540 * ipif_arg is passed in to associate it with the correct interface. 6541 * We may need to restart this operation if the ipif cannot be looked up 6542 * due to an exclusive operation that is currently in progress. The restart 6543 * entry point is specified by 'func' 6544 */ 6545 int 6546 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6547 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6548 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6549 struct rtsa_s *sp, ip_stack_t *ipst) 6550 { 6551 ire_t *ire; 6552 ire_t *gw_ire = NULL; 6553 ipif_t *ipif = NULL; 6554 boolean_t ipif_refheld = B_FALSE; 6555 uint_t type; 6556 int match_flags = MATCH_IRE_TYPE; 6557 int error; 6558 tsol_gc_t *gc = NULL; 6559 tsol_gcgrp_t *gcgrp = NULL; 6560 boolean_t gcgrp_xtraref = B_FALSE; 6561 6562 ip1dbg(("ip_rt_add:")); 6563 6564 if (ire_arg != NULL) 6565 *ire_arg = NULL; 6566 6567 /* 6568 * If this is the case of RTF_HOST being set, then we set the netmask 6569 * to all ones (regardless if one was supplied). 6570 */ 6571 if (flags & RTF_HOST) 6572 mask = IP_HOST_MASK; 6573 6574 /* 6575 * Prevent routes with a zero gateway from being created (since 6576 * interfaces can currently be plumbed and brought up no assigned 6577 * address). 6578 */ 6579 if (gw_addr == 0) 6580 return (ENETUNREACH); 6581 /* 6582 * Get the ipif, if any, corresponding to the gw_addr 6583 */ 6584 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6585 ipst); 6586 if (ipif != NULL) { 6587 if (IS_VNI(ipif->ipif_ill)) { 6588 ipif_refrele(ipif); 6589 return (EINVAL); 6590 } 6591 ipif_refheld = B_TRUE; 6592 } else if (error == EINPROGRESS) { 6593 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6594 return (EINPROGRESS); 6595 } else { 6596 error = 0; 6597 } 6598 6599 if (ipif != NULL) { 6600 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6601 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6602 } else { 6603 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6604 } 6605 6606 /* 6607 * GateD will attempt to create routes with a loopback interface 6608 * address as the gateway and with RTF_GATEWAY set. We allow 6609 * these routes to be added, but create them as interface routes 6610 * since the gateway is an interface address. 6611 */ 6612 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6613 flags &= ~RTF_GATEWAY; 6614 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6615 mask == IP_HOST_MASK) { 6616 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6617 ALL_ZONES, NULL, match_flags, ipst); 6618 if (ire != NULL) { 6619 ire_refrele(ire); 6620 if (ipif_refheld) 6621 ipif_refrele(ipif); 6622 return (EEXIST); 6623 } 6624 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 6625 "for 0x%x\n", (void *)ipif, 6626 ipif->ipif_ire_type, 6627 ntohl(ipif->ipif_lcl_addr))); 6628 ire = ire_create( 6629 (uchar_t *)&dst_addr, /* dest address */ 6630 (uchar_t *)&mask, /* mask */ 6631 (uchar_t *)&ipif->ipif_src_addr, 6632 NULL, /* no gateway */ 6633 &ipif->ipif_mtu, 6634 NULL, 6635 ipif->ipif_rq, /* recv-from queue */ 6636 NULL, /* no send-to queue */ 6637 ipif->ipif_ire_type, /* LOOPBACK */ 6638 ipif, 6639 0, 6640 0, 6641 0, 6642 (ipif->ipif_flags & IPIF_PRIVATE) ? 6643 RTF_PRIVATE : 0, 6644 &ire_uinfo_null, 6645 NULL, 6646 NULL, 6647 ipst); 6648 6649 if (ire == NULL) { 6650 if (ipif_refheld) 6651 ipif_refrele(ipif); 6652 return (ENOMEM); 6653 } 6654 error = ire_add(&ire, q, mp, func, B_FALSE); 6655 if (error == 0) 6656 goto save_ire; 6657 if (ipif_refheld) 6658 ipif_refrele(ipif); 6659 return (error); 6660 6661 } 6662 } 6663 6664 /* 6665 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6666 * and the gateway address provided is one of the system's interface 6667 * addresses. By using the routing socket interface and supplying an 6668 * RTA_IFP sockaddr with an interface index, an alternate method of 6669 * specifying an interface route to be created is available which uses 6670 * the interface index that specifies the outgoing interface rather than 6671 * the address of an outgoing interface (which may not be able to 6672 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6673 * flag, routes can be specified which not only specify the next-hop to 6674 * be used when routing to a certain prefix, but also which outgoing 6675 * interface should be used. 6676 * 6677 * Previously, interfaces would have unique addresses assigned to them 6678 * and so the address assigned to a particular interface could be used 6679 * to identify a particular interface. One exception to this was the 6680 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6681 * 6682 * With the advent of IPv6 and its link-local addresses, this 6683 * restriction was relaxed and interfaces could share addresses between 6684 * themselves. In fact, typically all of the link-local interfaces on 6685 * an IPv6 node or router will have the same link-local address. In 6686 * order to differentiate between these interfaces, the use of an 6687 * interface index is necessary and this index can be carried inside a 6688 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6689 * of using the interface index, however, is that all of the ipif's that 6690 * are part of an ill have the same index and so the RTA_IFP sockaddr 6691 * cannot be used to differentiate between ipif's (or logical 6692 * interfaces) that belong to the same ill (physical interface). 6693 * 6694 * For example, in the following case involving IPv4 interfaces and 6695 * logical interfaces 6696 * 6697 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6698 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6699 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6700 * 6701 * the ipif's corresponding to each of these interface routes can be 6702 * uniquely identified by the "gateway" (actually interface address). 6703 * 6704 * In this case involving multiple IPv6 default routes to a particular 6705 * link-local gateway, the use of RTA_IFP is necessary to specify which 6706 * default route is of interest: 6707 * 6708 * default fe80::123:4567:89ab:cdef U if0 6709 * default fe80::123:4567:89ab:cdef U if1 6710 */ 6711 6712 /* RTF_GATEWAY not set */ 6713 if (!(flags & RTF_GATEWAY)) { 6714 queue_t *stq; 6715 6716 if (sp != NULL) { 6717 ip2dbg(("ip_rt_add: gateway security attributes " 6718 "cannot be set with interface route\n")); 6719 if (ipif_refheld) 6720 ipif_refrele(ipif); 6721 return (EINVAL); 6722 } 6723 6724 /* 6725 * As the interface index specified with the RTA_IFP sockaddr is 6726 * the same for all ipif's off of an ill, the matching logic 6727 * below uses MATCH_IRE_ILL if such an index was specified. 6728 * This means that routes sharing the same prefix when added 6729 * using a RTA_IFP sockaddr must have distinct interface 6730 * indices (namely, they must be on distinct ill's). 6731 * 6732 * On the other hand, since the gateway address will usually be 6733 * different for each ipif on the system, the matching logic 6734 * uses MATCH_IRE_IPIF in the case of a traditional interface 6735 * route. This means that interface routes for the same prefix 6736 * can be created if they belong to distinct ipif's and if a 6737 * RTA_IFP sockaddr is not present. 6738 */ 6739 if (ipif_arg != NULL) { 6740 if (ipif_refheld) { 6741 ipif_refrele(ipif); 6742 ipif_refheld = B_FALSE; 6743 } 6744 ipif = ipif_arg; 6745 match_flags |= MATCH_IRE_ILL; 6746 } else { 6747 /* 6748 * Check the ipif corresponding to the gw_addr 6749 */ 6750 if (ipif == NULL) 6751 return (ENETUNREACH); 6752 match_flags |= MATCH_IRE_IPIF; 6753 } 6754 ASSERT(ipif != NULL); 6755 6756 /* 6757 * We check for an existing entry at this point. 6758 * 6759 * Since a netmask isn't passed in via the ioctl interface 6760 * (SIOCADDRT), we don't check for a matching netmask in that 6761 * case. 6762 */ 6763 if (!ioctl_msg) 6764 match_flags |= MATCH_IRE_MASK; 6765 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6766 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6767 if (ire != NULL) { 6768 ire_refrele(ire); 6769 if (ipif_refheld) 6770 ipif_refrele(ipif); 6771 return (EEXIST); 6772 } 6773 6774 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6775 ? ipif->ipif_rq : ipif->ipif_wq; 6776 6777 /* 6778 * Create a copy of the IRE_LOOPBACK, 6779 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6780 * the modified address and netmask. 6781 */ 6782 ire = ire_create( 6783 (uchar_t *)&dst_addr, 6784 (uint8_t *)&mask, 6785 (uint8_t *)&ipif->ipif_src_addr, 6786 NULL, 6787 &ipif->ipif_mtu, 6788 NULL, 6789 NULL, 6790 stq, 6791 ipif->ipif_net_type, 6792 ipif, 6793 0, 6794 0, 6795 0, 6796 flags, 6797 &ire_uinfo_null, 6798 NULL, 6799 NULL, 6800 ipst); 6801 if (ire == NULL) { 6802 if (ipif_refheld) 6803 ipif_refrele(ipif); 6804 return (ENOMEM); 6805 } 6806 6807 /* 6808 * Some software (for example, GateD and Sun Cluster) attempts 6809 * to create (what amount to) IRE_PREFIX routes with the 6810 * loopback address as the gateway. This is primarily done to 6811 * set up prefixes with the RTF_REJECT flag set (for example, 6812 * when generating aggregate routes.) 6813 * 6814 * If the IRE type (as defined by ipif->ipif_net_type) is 6815 * IRE_LOOPBACK, then we map the request into a 6816 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6817 * these interface routes, by definition, can only be that. 6818 * 6819 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6820 * routine, but rather using ire_create() directly. 6821 * 6822 */ 6823 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6824 ire->ire_type = IRE_IF_NORESOLVER; 6825 ire->ire_flags |= RTF_BLACKHOLE; 6826 } 6827 6828 error = ire_add(&ire, q, mp, func, B_FALSE); 6829 if (error == 0) 6830 goto save_ire; 6831 6832 /* 6833 * In the result of failure, ire_add() will have already 6834 * deleted the ire in question, so there is no need to 6835 * do that here. 6836 */ 6837 if (ipif_refheld) 6838 ipif_refrele(ipif); 6839 return (error); 6840 } 6841 if (ipif_refheld) { 6842 ipif_refrele(ipif); 6843 ipif_refheld = B_FALSE; 6844 } 6845 6846 /* 6847 * Get an interface IRE for the specified gateway. 6848 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6849 * gateway, it is currently unreachable and we fail the request 6850 * accordingly. 6851 */ 6852 ipif = ipif_arg; 6853 if (ipif_arg != NULL) 6854 match_flags |= MATCH_IRE_ILL; 6855 again: 6856 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6857 ALL_ZONES, 0, NULL, match_flags, ipst); 6858 if (gw_ire == NULL) { 6859 /* 6860 * With IPMP, we allow host routes to influence in.mpathd's 6861 * target selection. However, if the test addresses are on 6862 * their own network, the above lookup will fail since the 6863 * underlying IRE_INTERFACEs are marked hidden. So allow 6864 * hidden test IREs to be found and try again. 6865 */ 6866 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6867 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6868 goto again; 6869 } 6870 return (ENETUNREACH); 6871 } 6872 6873 /* 6874 * We create one of three types of IREs as a result of this request 6875 * based on the netmask. A netmask of all ones (which is automatically 6876 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6877 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6878 * created. Otherwise, an IRE_PREFIX route is created for the 6879 * destination prefix. 6880 */ 6881 if (mask == IP_HOST_MASK) 6882 type = IRE_HOST; 6883 else if (mask == 0) 6884 type = IRE_DEFAULT; 6885 else 6886 type = IRE_PREFIX; 6887 6888 /* check for a duplicate entry */ 6889 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6890 NULL, ALL_ZONES, 0, NULL, 6891 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 6892 if (ire != NULL) { 6893 ire_refrele(gw_ire); 6894 ire_refrele(ire); 6895 return (EEXIST); 6896 } 6897 6898 /* Security attribute exists */ 6899 if (sp != NULL) { 6900 tsol_gcgrp_addr_t ga; 6901 6902 /* find or create the gateway credentials group */ 6903 ga.ga_af = AF_INET; 6904 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6905 6906 /* we hold reference to it upon success */ 6907 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6908 if (gcgrp == NULL) { 6909 ire_refrele(gw_ire); 6910 return (ENOMEM); 6911 } 6912 6913 /* 6914 * Create and add the security attribute to the group; a 6915 * reference to the group is made upon allocating a new 6916 * entry successfully. If it finds an already-existing 6917 * entry for the security attribute in the group, it simply 6918 * returns it and no new reference is made to the group. 6919 */ 6920 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6921 if (gc == NULL) { 6922 /* release reference held by gcgrp_lookup */ 6923 GCGRP_REFRELE(gcgrp); 6924 ire_refrele(gw_ire); 6925 return (ENOMEM); 6926 } 6927 } 6928 6929 /* Create the IRE. */ 6930 ire = ire_create( 6931 (uchar_t *)&dst_addr, /* dest address */ 6932 (uchar_t *)&mask, /* mask */ 6933 /* src address assigned by the caller? */ 6934 (uchar_t *)(((src_addr != INADDR_ANY) && 6935 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6936 (uchar_t *)&gw_addr, /* gateway address */ 6937 &gw_ire->ire_max_frag, 6938 NULL, /* no src nce */ 6939 NULL, /* no recv-from queue */ 6940 NULL, /* no send-to queue */ 6941 (ushort_t)type, /* IRE type */ 6942 ipif_arg, 6943 0, 6944 0, 6945 0, 6946 flags, 6947 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6948 gc, /* security attribute */ 6949 NULL, 6950 ipst); 6951 6952 /* 6953 * The ire holds a reference to the 'gc' and the 'gc' holds a 6954 * reference to the 'gcgrp'. We can now release the extra reference 6955 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6956 */ 6957 if (gcgrp_xtraref) 6958 GCGRP_REFRELE(gcgrp); 6959 if (ire == NULL) { 6960 if (gc != NULL) 6961 GC_REFRELE(gc); 6962 ire_refrele(gw_ire); 6963 return (ENOMEM); 6964 } 6965 6966 /* 6967 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6968 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6969 */ 6970 6971 /* Add the new IRE. */ 6972 error = ire_add(&ire, q, mp, func, B_FALSE); 6973 if (error != 0) { 6974 /* 6975 * In the result of failure, ire_add() will have already 6976 * deleted the ire in question, so there is no need to 6977 * do that here. 6978 */ 6979 ire_refrele(gw_ire); 6980 return (error); 6981 } 6982 6983 if (flags & RTF_MULTIRT) { 6984 /* 6985 * Invoke the CGTP (multirouting) filtering module 6986 * to add the dst address in the filtering database. 6987 * Replicated inbound packets coming from that address 6988 * will be filtered to discard the duplicates. 6989 * It is not necessary to call the CGTP filter hook 6990 * when the dst address is a broadcast or multicast, 6991 * because an IP source address cannot be a broadcast 6992 * or a multicast. 6993 */ 6994 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6995 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 6996 if (ire_dst != NULL) { 6997 ip_cgtp_bcast_add(ire, ire_dst, ipst); 6998 ire_refrele(ire_dst); 6999 goto save_ire; 7000 } 7001 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7002 !CLASSD(ire->ire_addr)) { 7003 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7004 ipst->ips_netstack->netstack_stackid, 7005 ire->ire_addr, 7006 ire->ire_gateway_addr, 7007 ire->ire_src_addr, 7008 gw_ire->ire_src_addr); 7009 if (res != 0) { 7010 ire_refrele(gw_ire); 7011 ire_delete(ire); 7012 return (res); 7013 } 7014 } 7015 } 7016 7017 /* 7018 * Now that the prefix IRE entry has been created, delete any 7019 * existing gateway IRE cache entries as well as any IRE caches 7020 * using the gateway, and force them to be created through 7021 * ip_newroute. 7022 */ 7023 if (gc != NULL) { 7024 ASSERT(gcgrp != NULL); 7025 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7026 } 7027 7028 save_ire: 7029 if (gw_ire != NULL) { 7030 ire_refrele(gw_ire); 7031 } 7032 if (ipif != NULL) { 7033 /* 7034 * Save enough information so that we can recreate the IRE if 7035 * the interface goes down and then up. The metrics associated 7036 * with the route will be saved as well when rts_setmetrics() is 7037 * called after the IRE has been created. In the case where 7038 * memory cannot be allocated, none of this information will be 7039 * saved. 7040 */ 7041 ipif_save_ire(ipif, ire); 7042 } 7043 if (ioctl_msg) 7044 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7045 if (ire_arg != NULL) { 7046 /* 7047 * Store the ire that was successfully added into where ire_arg 7048 * points to so that callers don't have to look it up 7049 * themselves (but they are responsible for ire_refrele()ing 7050 * the ire when they are finished with it). 7051 */ 7052 *ire_arg = ire; 7053 } else { 7054 ire_refrele(ire); /* Held in ire_add */ 7055 } 7056 if (ipif_refheld) 7057 ipif_refrele(ipif); 7058 return (0); 7059 } 7060 7061 /* 7062 * ip_rt_delete is called to delete an IPv4 route. 7063 * ipif_arg is passed in to associate it with the correct interface. 7064 * We may need to restart this operation if the ipif cannot be looked up 7065 * due to an exclusive operation that is currently in progress. The restart 7066 * entry point is specified by 'func' 7067 */ 7068 /* ARGSUSED4 */ 7069 int 7070 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7071 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7072 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7073 { 7074 ire_t *ire = NULL; 7075 ipif_t *ipif; 7076 boolean_t ipif_refheld = B_FALSE; 7077 uint_t type; 7078 uint_t match_flags = MATCH_IRE_TYPE; 7079 int err = 0; 7080 7081 ip1dbg(("ip_rt_delete:")); 7082 /* 7083 * If this is the case of RTF_HOST being set, then we set the netmask 7084 * to all ones. Otherwise, we use the netmask if one was supplied. 7085 */ 7086 if (flags & RTF_HOST) { 7087 mask = IP_HOST_MASK; 7088 match_flags |= MATCH_IRE_MASK; 7089 } else if (rtm_addrs & RTA_NETMASK) { 7090 match_flags |= MATCH_IRE_MASK; 7091 } 7092 7093 /* 7094 * Note that RTF_GATEWAY is never set on a delete, therefore 7095 * we check if the gateway address is one of our interfaces first, 7096 * and fall back on RTF_GATEWAY routes. 7097 * 7098 * This makes it possible to delete an original 7099 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7100 * 7101 * As the interface index specified with the RTA_IFP sockaddr is the 7102 * same for all ipif's off of an ill, the matching logic below uses 7103 * MATCH_IRE_ILL if such an index was specified. This means a route 7104 * sharing the same prefix and interface index as the the route 7105 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7106 * is specified in the request. 7107 * 7108 * On the other hand, since the gateway address will usually be 7109 * different for each ipif on the system, the matching logic 7110 * uses MATCH_IRE_IPIF in the case of a traditional interface 7111 * route. This means that interface routes for the same prefix can be 7112 * uniquely identified if they belong to distinct ipif's and if a 7113 * RTA_IFP sockaddr is not present. 7114 * 7115 * For more detail on specifying routes by gateway address and by 7116 * interface index, see the comments in ip_rt_add(). 7117 */ 7118 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7119 ipst); 7120 if (ipif != NULL) 7121 ipif_refheld = B_TRUE; 7122 else if (err == EINPROGRESS) 7123 return (err); 7124 else 7125 err = 0; 7126 if (ipif != NULL) { 7127 if (ipif_arg != NULL) { 7128 if (ipif_refheld) { 7129 ipif_refrele(ipif); 7130 ipif_refheld = B_FALSE; 7131 } 7132 ipif = ipif_arg; 7133 match_flags |= MATCH_IRE_ILL; 7134 } else { 7135 match_flags |= MATCH_IRE_IPIF; 7136 } 7137 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7138 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7139 ALL_ZONES, NULL, match_flags, ipst); 7140 } 7141 if (ire == NULL) { 7142 ire = ire_ftable_lookup(dst_addr, mask, 0, 7143 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7144 match_flags, ipst); 7145 } 7146 } 7147 7148 if (ire == NULL) { 7149 /* 7150 * At this point, the gateway address is not one of our own 7151 * addresses or a matching interface route was not found. We 7152 * set the IRE type to lookup based on whether 7153 * this is a host route, a default route or just a prefix. 7154 * 7155 * If an ipif_arg was passed in, then the lookup is based on an 7156 * interface index so MATCH_IRE_ILL is added to match_flags. 7157 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7158 * set as the route being looked up is not a traditional 7159 * interface route. 7160 */ 7161 match_flags &= ~MATCH_IRE_IPIF; 7162 match_flags |= MATCH_IRE_GW; 7163 if (ipif_arg != NULL) 7164 match_flags |= MATCH_IRE_ILL; 7165 if (mask == IP_HOST_MASK) 7166 type = IRE_HOST; 7167 else if (mask == 0) 7168 type = IRE_DEFAULT; 7169 else 7170 type = IRE_PREFIX; 7171 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7172 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7173 } 7174 7175 if (ipif_refheld) 7176 ipif_refrele(ipif); 7177 7178 /* ipif is not refheld anymore */ 7179 if (ire == NULL) 7180 return (ESRCH); 7181 7182 if (ire->ire_flags & RTF_MULTIRT) { 7183 /* 7184 * Invoke the CGTP (multirouting) filtering module 7185 * to remove the dst address from the filtering database. 7186 * Packets coming from that address will no longer be 7187 * filtered to remove duplicates. 7188 */ 7189 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7190 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7191 ipst->ips_netstack->netstack_stackid, 7192 ire->ire_addr, ire->ire_gateway_addr); 7193 } 7194 ip_cgtp_bcast_delete(ire, ipst); 7195 } 7196 7197 ipif = ire->ire_ipif; 7198 if (ipif != NULL) 7199 ipif_remove_ire(ipif, ire); 7200 if (ioctl_msg) 7201 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7202 ire_delete(ire); 7203 ire_refrele(ire); 7204 return (err); 7205 } 7206 7207 /* 7208 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7209 */ 7210 /* ARGSUSED */ 7211 int 7212 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7213 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7214 { 7215 ipaddr_t dst_addr; 7216 ipaddr_t gw_addr; 7217 ipaddr_t mask; 7218 int error = 0; 7219 mblk_t *mp1; 7220 struct rtentry *rt; 7221 ipif_t *ipif = NULL; 7222 ip_stack_t *ipst; 7223 7224 ASSERT(q->q_next == NULL); 7225 ipst = CONNQ_TO_IPST(q); 7226 7227 ip1dbg(("ip_siocaddrt:")); 7228 /* Existence of mp1 verified in ip_wput_nondata */ 7229 mp1 = mp->b_cont->b_cont; 7230 rt = (struct rtentry *)mp1->b_rptr; 7231 7232 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7233 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7234 7235 /* 7236 * If the RTF_HOST flag is on, this is a request to assign a gateway 7237 * to a particular host address. In this case, we set the netmask to 7238 * all ones for the particular destination address. Otherwise, 7239 * determine the netmask to be used based on dst_addr and the interfaces 7240 * in use. 7241 */ 7242 if (rt->rt_flags & RTF_HOST) { 7243 mask = IP_HOST_MASK; 7244 } else { 7245 /* 7246 * Note that ip_subnet_mask returns a zero mask in the case of 7247 * default (an all-zeroes address). 7248 */ 7249 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7250 } 7251 7252 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7253 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7254 if (ipif != NULL) 7255 ipif_refrele(ipif); 7256 return (error); 7257 } 7258 7259 /* 7260 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7261 */ 7262 /* ARGSUSED */ 7263 int 7264 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7265 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7266 { 7267 ipaddr_t dst_addr; 7268 ipaddr_t gw_addr; 7269 ipaddr_t mask; 7270 int error; 7271 mblk_t *mp1; 7272 struct rtentry *rt; 7273 ipif_t *ipif = NULL; 7274 ip_stack_t *ipst; 7275 7276 ASSERT(q->q_next == NULL); 7277 ipst = CONNQ_TO_IPST(q); 7278 7279 ip1dbg(("ip_siocdelrt:")); 7280 /* Existence of mp1 verified in ip_wput_nondata */ 7281 mp1 = mp->b_cont->b_cont; 7282 rt = (struct rtentry *)mp1->b_rptr; 7283 7284 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7285 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7286 7287 /* 7288 * If the RTF_HOST flag is on, this is a request to delete a gateway 7289 * to a particular host address. In this case, we set the netmask to 7290 * all ones for the particular destination address. Otherwise, 7291 * determine the netmask to be used based on dst_addr and the interfaces 7292 * in use. 7293 */ 7294 if (rt->rt_flags & RTF_HOST) { 7295 mask = IP_HOST_MASK; 7296 } else { 7297 /* 7298 * Note that ip_subnet_mask returns a zero mask in the case of 7299 * default (an all-zeroes address). 7300 */ 7301 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7302 } 7303 7304 error = ip_rt_delete(dst_addr, mask, gw_addr, 7305 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7306 mp, ip_process_ioctl, ipst); 7307 if (ipif != NULL) 7308 ipif_refrele(ipif); 7309 return (error); 7310 } 7311 7312 /* 7313 * Enqueue the mp onto the ipsq, chained by b_next. 7314 * b_prev stores the function to be executed later, and b_queue the queue 7315 * where this mp originated. 7316 */ 7317 void 7318 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7319 ill_t *pending_ill) 7320 { 7321 conn_t *connp; 7322 ipxop_t *ipx = ipsq->ipsq_xop; 7323 7324 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7325 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7326 ASSERT(func != NULL); 7327 7328 mp->b_queue = q; 7329 mp->b_prev = (void *)func; 7330 mp->b_next = NULL; 7331 7332 switch (type) { 7333 case CUR_OP: 7334 if (ipx->ipx_mptail != NULL) { 7335 ASSERT(ipx->ipx_mphead != NULL); 7336 ipx->ipx_mptail->b_next = mp; 7337 } else { 7338 ASSERT(ipx->ipx_mphead == NULL); 7339 ipx->ipx_mphead = mp; 7340 } 7341 ipx->ipx_mptail = mp; 7342 break; 7343 7344 case NEW_OP: 7345 if (ipsq->ipsq_xopq_mptail != NULL) { 7346 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7347 ipsq->ipsq_xopq_mptail->b_next = mp; 7348 } else { 7349 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7350 ipsq->ipsq_xopq_mphead = mp; 7351 } 7352 ipsq->ipsq_xopq_mptail = mp; 7353 ipx->ipx_ipsq_queued = B_TRUE; 7354 break; 7355 7356 case SWITCH_OP: 7357 ASSERT(ipsq->ipsq_swxop != NULL); 7358 /* only one switch operation is currently allowed */ 7359 ASSERT(ipsq->ipsq_switch_mp == NULL); 7360 ipsq->ipsq_switch_mp = mp; 7361 ipx->ipx_ipsq_queued = B_TRUE; 7362 break; 7363 default: 7364 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7365 } 7366 7367 if (CONN_Q(q) && pending_ill != NULL) { 7368 connp = Q_TO_CONN(q); 7369 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7370 connp->conn_oper_pending_ill = pending_ill; 7371 } 7372 } 7373 7374 /* 7375 * Dequeue the next message that requested exclusive access to this IPSQ's 7376 * xop. Specifically: 7377 * 7378 * 1. If we're still processing the current operation on `ipsq', then 7379 * dequeue the next message for the operation (from ipx_mphead), or 7380 * return NULL if there are no queued messages for the operation. 7381 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7382 * 7383 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7384 * not set) see if the ipsq has requested an xop switch. If so, switch 7385 * `ipsq' to a different xop. Xop switches only happen when joining or 7386 * leaving IPMP groups and require a careful dance -- see the comments 7387 * in-line below for details. If we're leaving a group xop or if we're 7388 * joining a group xop and become writer on it, then we proceed to (3). 7389 * Otherwise, we return NULL and exit the xop. 7390 * 7391 * 3. For each IPSQ in the xop, return any switch operation stored on 7392 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7393 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7394 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7395 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7396 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7397 * each phyint in the group, including the IPMP meta-interface phyint. 7398 */ 7399 static mblk_t * 7400 ipsq_dq(ipsq_t *ipsq) 7401 { 7402 ill_t *illv4, *illv6; 7403 mblk_t *mp; 7404 ipsq_t *xopipsq; 7405 ipsq_t *leftipsq = NULL; 7406 ipxop_t *ipx; 7407 phyint_t *phyi = ipsq->ipsq_phyint; 7408 ip_stack_t *ipst = ipsq->ipsq_ipst; 7409 boolean_t emptied = B_FALSE; 7410 7411 /* 7412 * Grab all the locks we need in the defined order (ill_g_lock -> 7413 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7414 */ 7415 rw_enter(&ipst->ips_ill_g_lock, 7416 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7417 mutex_enter(&ipsq->ipsq_lock); 7418 ipx = ipsq->ipsq_xop; 7419 mutex_enter(&ipx->ipx_lock); 7420 7421 /* 7422 * Dequeue the next message associated with the current exclusive 7423 * operation, if any. 7424 */ 7425 if ((mp = ipx->ipx_mphead) != NULL) { 7426 ipx->ipx_mphead = mp->b_next; 7427 if (ipx->ipx_mphead == NULL) 7428 ipx->ipx_mptail = NULL; 7429 mp->b_next = (void *)ipsq; 7430 goto out; 7431 } 7432 7433 if (ipx->ipx_current_ipif != NULL) 7434 goto empty; 7435 7436 if (ipsq->ipsq_swxop != NULL) { 7437 /* 7438 * The exclusive operation that is now being completed has 7439 * requested a switch to a different xop. This happens 7440 * when an interface joins or leaves an IPMP group. Joins 7441 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7442 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7443 * (phyint_free()), or interface plumb for an ill type 7444 * not in the IPMP group (ip_rput_dlpi_writer()). 7445 * 7446 * Xop switches are not allowed on the IPMP meta-interface. 7447 */ 7448 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7449 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7450 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7451 7452 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7453 /* 7454 * We're switching back to our own xop, so we have two 7455 * xop's to drain/exit: our own, and the group xop 7456 * that we are leaving. 7457 * 7458 * First, pull ourselves out of the group ipsq list. 7459 * This is safe since we're writer on ill_g_lock. 7460 */ 7461 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7462 7463 xopipsq = ipx->ipx_ipsq; 7464 while (xopipsq->ipsq_next != ipsq) 7465 xopipsq = xopipsq->ipsq_next; 7466 7467 xopipsq->ipsq_next = ipsq->ipsq_next; 7468 ipsq->ipsq_next = ipsq; 7469 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7470 ipsq->ipsq_swxop = NULL; 7471 7472 /* 7473 * Second, prepare to exit the group xop. The actual 7474 * ipsq_exit() is done at the end of this function 7475 * since we cannot hold any locks across ipsq_exit(). 7476 * Note that although we drop the group's ipx_lock, no 7477 * threads can proceed since we're still ipx_writer. 7478 */ 7479 leftipsq = xopipsq; 7480 mutex_exit(&ipx->ipx_lock); 7481 7482 /* 7483 * Third, set ipx to point to our own xop (which was 7484 * inactive and therefore can be entered). 7485 */ 7486 ipx = ipsq->ipsq_xop; 7487 mutex_enter(&ipx->ipx_lock); 7488 ASSERT(ipx->ipx_writer == NULL); 7489 ASSERT(ipx->ipx_current_ipif == NULL); 7490 } else { 7491 /* 7492 * We're switching from our own xop to a group xop. 7493 * The requestor of the switch must ensure that the 7494 * group xop cannot go away (e.g. by ensuring the 7495 * phyint associated with the xop cannot go away). 7496 * 7497 * If we can become writer on our new xop, then we'll 7498 * do the drain. Otherwise, the current writer of our 7499 * new xop will do the drain when it exits. 7500 * 7501 * First, splice ourselves into the group IPSQ list. 7502 * This is safe since we're writer on ill_g_lock. 7503 */ 7504 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7505 7506 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7507 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7508 xopipsq = xopipsq->ipsq_next; 7509 7510 xopipsq->ipsq_next = ipsq; 7511 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7512 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7513 ipsq->ipsq_swxop = NULL; 7514 7515 /* 7516 * Second, exit our own xop, since it's now unused. 7517 * This is safe since we've got the only reference. 7518 */ 7519 ASSERT(ipx->ipx_writer == curthread); 7520 ipx->ipx_writer = NULL; 7521 VERIFY(--ipx->ipx_reentry_cnt == 0); 7522 ipx->ipx_ipsq_queued = B_FALSE; 7523 mutex_exit(&ipx->ipx_lock); 7524 7525 /* 7526 * Third, set ipx to point to our new xop, and check 7527 * if we can become writer on it. If we cannot, then 7528 * the current writer will drain the IPSQ group when 7529 * it exits. Our ipsq_xop is guaranteed to be stable 7530 * because we're still holding ipsq_lock. 7531 */ 7532 ipx = ipsq->ipsq_xop; 7533 mutex_enter(&ipx->ipx_lock); 7534 if (ipx->ipx_writer != NULL || 7535 ipx->ipx_current_ipif != NULL) { 7536 goto out; 7537 } 7538 } 7539 7540 /* 7541 * Fourth, become writer on our new ipx before we continue 7542 * with the drain. Note that we never dropped ipsq_lock 7543 * above, so no other thread could've raced with us to 7544 * become writer first. Also, we're holding ipx_lock, so 7545 * no other thread can examine the ipx right now. 7546 */ 7547 ASSERT(ipx->ipx_current_ipif == NULL); 7548 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7549 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7550 ipx->ipx_writer = curthread; 7551 ipx->ipx_forced = B_FALSE; 7552 #ifdef DEBUG 7553 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7554 #endif 7555 } 7556 7557 xopipsq = ipsq; 7558 do { 7559 /* 7560 * So that other operations operate on a consistent and 7561 * complete phyint, a switch message on an IPSQ must be 7562 * handled prior to any other operations on that IPSQ. 7563 */ 7564 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7565 xopipsq->ipsq_switch_mp = NULL; 7566 ASSERT(mp->b_next == NULL); 7567 mp->b_next = (void *)xopipsq; 7568 goto out; 7569 } 7570 7571 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7572 xopipsq->ipsq_xopq_mphead = mp->b_next; 7573 if (xopipsq->ipsq_xopq_mphead == NULL) 7574 xopipsq->ipsq_xopq_mptail = NULL; 7575 mp->b_next = (void *)xopipsq; 7576 goto out; 7577 } 7578 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7579 empty: 7580 /* 7581 * There are no messages. Further, we are holding ipx_lock, hence no 7582 * new messages can end up on any IPSQ in the xop. 7583 */ 7584 ipx->ipx_writer = NULL; 7585 ipx->ipx_forced = B_FALSE; 7586 VERIFY(--ipx->ipx_reentry_cnt == 0); 7587 ipx->ipx_ipsq_queued = B_FALSE; 7588 emptied = B_TRUE; 7589 #ifdef DEBUG 7590 ipx->ipx_depth = 0; 7591 #endif 7592 out: 7593 mutex_exit(&ipx->ipx_lock); 7594 mutex_exit(&ipsq->ipsq_lock); 7595 7596 /* 7597 * If we completely emptied the xop, then wake up any threads waiting 7598 * to enter any of the IPSQ's associated with it. 7599 */ 7600 if (emptied) { 7601 xopipsq = ipsq; 7602 do { 7603 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7604 continue; 7605 7606 illv4 = phyi->phyint_illv4; 7607 illv6 = phyi->phyint_illv6; 7608 7609 GRAB_ILL_LOCKS(illv4, illv6); 7610 if (illv4 != NULL) 7611 cv_broadcast(&illv4->ill_cv); 7612 if (illv6 != NULL) 7613 cv_broadcast(&illv6->ill_cv); 7614 RELEASE_ILL_LOCKS(illv4, illv6); 7615 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7616 } 7617 rw_exit(&ipst->ips_ill_g_lock); 7618 7619 /* 7620 * Now that all locks are dropped, exit the IPSQ we left. 7621 */ 7622 if (leftipsq != NULL) 7623 ipsq_exit(leftipsq); 7624 7625 return (mp); 7626 } 7627 7628 /* 7629 * Enter the ipsq corresponding to ill, by waiting synchronously till 7630 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7631 * will have to drain completely before ipsq_enter returns success. 7632 * ipx_current_ipif will be set if some exclusive op is in progress, 7633 * and the ipsq_exit logic will start the next enqueued op after 7634 * completion of the current op. If 'force' is used, we don't wait 7635 * for the enqueued ops. This is needed when a conn_close wants to 7636 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7637 * of an ill can also use this option. But we dont' use it currently. 7638 */ 7639 #define ENTER_SQ_WAIT_TICKS 100 7640 boolean_t 7641 ipsq_enter(ill_t *ill, boolean_t force, int type) 7642 { 7643 ipsq_t *ipsq; 7644 ipxop_t *ipx; 7645 boolean_t waited_enough = B_FALSE; 7646 7647 /* 7648 * Note that the relationship between ill and ipsq is fixed as long as 7649 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7650 * relationship between the IPSQ and xop cannot change. However, 7651 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7652 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7653 * waking up all ills in the xop when it becomes available. 7654 */ 7655 mutex_enter(&ill->ill_lock); 7656 for (;;) { 7657 if (ill->ill_state_flags & ILL_CONDEMNED) { 7658 mutex_exit(&ill->ill_lock); 7659 return (B_FALSE); 7660 } 7661 7662 ipsq = ill->ill_phyint->phyint_ipsq; 7663 mutex_enter(&ipsq->ipsq_lock); 7664 ipx = ipsq->ipsq_xop; 7665 mutex_enter(&ipx->ipx_lock); 7666 7667 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7668 ipx->ipx_current_ipif == NULL || waited_enough)) 7669 break; 7670 7671 if (!force || ipx->ipx_writer != NULL) { 7672 mutex_exit(&ipx->ipx_lock); 7673 mutex_exit(&ipsq->ipsq_lock); 7674 cv_wait(&ill->ill_cv, &ill->ill_lock); 7675 } else { 7676 mutex_exit(&ipx->ipx_lock); 7677 mutex_exit(&ipsq->ipsq_lock); 7678 (void) cv_timedwait(&ill->ill_cv, 7679 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7680 waited_enough = B_TRUE; 7681 } 7682 } 7683 7684 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7685 ASSERT(ipx->ipx_reentry_cnt == 0); 7686 ipx->ipx_writer = curthread; 7687 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7688 ipx->ipx_reentry_cnt++; 7689 #ifdef DEBUG 7690 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7691 #endif 7692 mutex_exit(&ipx->ipx_lock); 7693 mutex_exit(&ipsq->ipsq_lock); 7694 mutex_exit(&ill->ill_lock); 7695 return (B_TRUE); 7696 } 7697 7698 boolean_t 7699 ill_perim_enter(ill_t *ill) 7700 { 7701 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7702 } 7703 7704 void 7705 ill_perim_exit(ill_t *ill) 7706 { 7707 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7708 } 7709 7710 /* 7711 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7712 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7713 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7714 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7715 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7716 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7717 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7718 * up the interface) and are enqueued in ipx_mphead. 7719 * 7720 * If a thread does not want to reenter the ipsq when it is already writer, 7721 * it must make sure that the specified reentry point to be called later 7722 * when the ipsq is empty, nor any code path starting from the specified reentry 7723 * point must never ever try to enter the ipsq again. Otherwise it can lead 7724 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7725 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7726 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7727 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7728 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7729 * ioctl if the current ioctl has completed. If the current ioctl is still 7730 * in progress it simply returns. The current ioctl could be waiting for 7731 * a response from another module (arp or the driver or could be waiting for 7732 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7733 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7734 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7735 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7736 * all associated DLPI operations have completed. 7737 */ 7738 7739 /* 7740 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7741 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7742 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7743 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7744 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7745 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7746 */ 7747 ipsq_t * 7748 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7749 ipsq_func_t func, int type, boolean_t reentry_ok) 7750 { 7751 ipsq_t *ipsq; 7752 ipxop_t *ipx; 7753 7754 /* Only 1 of ipif or ill can be specified */ 7755 ASSERT((ipif != NULL) ^ (ill != NULL)); 7756 if (ipif != NULL) 7757 ill = ipif->ipif_ill; 7758 7759 /* 7760 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7761 * ipx of an ipsq can't change when ipsq_lock is held. 7762 */ 7763 GRAB_CONN_LOCK(q); 7764 mutex_enter(&ill->ill_lock); 7765 ipsq = ill->ill_phyint->phyint_ipsq; 7766 mutex_enter(&ipsq->ipsq_lock); 7767 ipx = ipsq->ipsq_xop; 7768 mutex_enter(&ipx->ipx_lock); 7769 7770 /* 7771 * 1. Enter the ipsq if we are already writer and reentry is ok. 7772 * (Note: If the caller does not specify reentry_ok then neither 7773 * 'func' nor any of its callees must ever attempt to enter the ipsq 7774 * again. Otherwise it can lead to an infinite loop 7775 * 2. Enter the ipsq if there is no current writer and this attempted 7776 * entry is part of the current operation 7777 * 3. Enter the ipsq if there is no current writer and this is a new 7778 * operation and the operation queue is empty and there is no 7779 * operation currently in progress 7780 */ 7781 if ((ipx->ipx_writer == curthread && reentry_ok) || 7782 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7783 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7784 /* Success. */ 7785 ipx->ipx_reentry_cnt++; 7786 ipx->ipx_writer = curthread; 7787 ipx->ipx_forced = B_FALSE; 7788 mutex_exit(&ipx->ipx_lock); 7789 mutex_exit(&ipsq->ipsq_lock); 7790 mutex_exit(&ill->ill_lock); 7791 RELEASE_CONN_LOCK(q); 7792 #ifdef DEBUG 7793 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7794 #endif 7795 return (ipsq); 7796 } 7797 7798 if (func != NULL) 7799 ipsq_enq(ipsq, q, mp, func, type, ill); 7800 7801 mutex_exit(&ipx->ipx_lock); 7802 mutex_exit(&ipsq->ipsq_lock); 7803 mutex_exit(&ill->ill_lock); 7804 RELEASE_CONN_LOCK(q); 7805 return (NULL); 7806 } 7807 7808 /* 7809 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7810 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7811 * cannot be entered, the mp is queued for completion. 7812 */ 7813 void 7814 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7815 boolean_t reentry_ok) 7816 { 7817 ipsq_t *ipsq; 7818 7819 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7820 7821 /* 7822 * Drop the caller's refhold on the ill. This is safe since we either 7823 * entered the IPSQ (and thus are exclusive), or failed to enter the 7824 * IPSQ, in which case we return without accessing ill anymore. This 7825 * is needed because func needs to see the correct refcount. 7826 * e.g. removeif can work only then. 7827 */ 7828 ill_refrele(ill); 7829 if (ipsq != NULL) { 7830 (*func)(ipsq, q, mp, NULL); 7831 ipsq_exit(ipsq); 7832 } 7833 } 7834 7835 /* 7836 * Exit the specified IPSQ. If this is the final exit on it then drain it 7837 * prior to exiting. Caller must be writer on the specified IPSQ. 7838 */ 7839 void 7840 ipsq_exit(ipsq_t *ipsq) 7841 { 7842 mblk_t *mp; 7843 ipsq_t *mp_ipsq; 7844 queue_t *q; 7845 phyint_t *phyi; 7846 ipsq_func_t func; 7847 7848 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7849 7850 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7851 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7852 ipsq->ipsq_xop->ipx_reentry_cnt--; 7853 return; 7854 } 7855 7856 for (;;) { 7857 phyi = ipsq->ipsq_phyint; 7858 mp = ipsq_dq(ipsq); 7859 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7860 7861 /* 7862 * If we've changed to a new IPSQ, and the phyint associated 7863 * with the old one has gone away, free the old IPSQ. Note 7864 * that this cannot happen while the IPSQ is in a group. 7865 */ 7866 if (mp_ipsq != ipsq && phyi == NULL) { 7867 ASSERT(ipsq->ipsq_next == ipsq); 7868 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7869 ipsq_delete(ipsq); 7870 } 7871 7872 if (mp == NULL) 7873 break; 7874 7875 q = mp->b_queue; 7876 func = (ipsq_func_t)mp->b_prev; 7877 ipsq = mp_ipsq; 7878 mp->b_next = mp->b_prev = NULL; 7879 mp->b_queue = NULL; 7880 7881 /* 7882 * If 'q' is an conn queue, it is valid, since we did a 7883 * a refhold on the conn at the start of the ioctl. 7884 * If 'q' is an ill queue, it is valid, since close of an 7885 * ill will clean up its IPSQ. 7886 */ 7887 (*func)(ipsq, q, mp, NULL); 7888 } 7889 } 7890 7891 /* 7892 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7893 * and `ioccmd'. 7894 */ 7895 void 7896 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7897 { 7898 ill_t *ill = ipif->ipif_ill; 7899 ipxop_t *ipx = ipsq->ipsq_xop; 7900 7901 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7902 ASSERT(ipx->ipx_current_ipif == NULL); 7903 ASSERT(ipx->ipx_current_ioctl == 0); 7904 7905 ipx->ipx_current_done = B_FALSE; 7906 ipx->ipx_current_ioctl = ioccmd; 7907 mutex_enter(&ipx->ipx_lock); 7908 ipx->ipx_current_ipif = ipif; 7909 mutex_exit(&ipx->ipx_lock); 7910 7911 /* 7912 * Set IPIF_CHANGING on one or more ipifs associated with the 7913 * current exclusive operation. IPIF_CHANGING prevents any new 7914 * references to the ipif (so that the references will eventually 7915 * drop to zero) and also prevents any "get" operations (e.g., 7916 * SIOCGLIFFLAGS) from being able to access the ipif until the 7917 * operation has completed and the ipif is again in a stable state. 7918 * 7919 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 7920 * ioctl. For internal operations (where ioccmd is zero), all ipifs 7921 * on the ill are marked with IPIF_CHANGING since it's unclear which 7922 * ipifs will be affected. 7923 * 7924 * Note that SIOCLIFREMOVEIF is a special case as it sets 7925 * IPIF_CONDEMNED internally after identifying the right ipif to 7926 * operate on. 7927 */ 7928 switch (ioccmd) { 7929 case SIOCLIFREMOVEIF: 7930 break; 7931 case 0: 7932 mutex_enter(&ill->ill_lock); 7933 ipif = ipif->ipif_ill->ill_ipif; 7934 for (; ipif != NULL; ipif = ipif->ipif_next) 7935 ipif->ipif_state_flags |= IPIF_CHANGING; 7936 mutex_exit(&ill->ill_lock); 7937 break; 7938 default: 7939 mutex_enter(&ill->ill_lock); 7940 ipif->ipif_state_flags |= IPIF_CHANGING; 7941 mutex_exit(&ill->ill_lock); 7942 } 7943 } 7944 7945 /* 7946 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7947 * the next exclusive operation to begin once we ipsq_exit(). However, if 7948 * pending DLPI operations remain, then we will wait for the queue to drain 7949 * before allowing the next exclusive operation to begin. This ensures that 7950 * DLPI operations from one exclusive operation are never improperly processed 7951 * as part of a subsequent exclusive operation. 7952 */ 7953 void 7954 ipsq_current_finish(ipsq_t *ipsq) 7955 { 7956 ipxop_t *ipx = ipsq->ipsq_xop; 7957 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7958 ipif_t *ipif = ipx->ipx_current_ipif; 7959 7960 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7961 7962 /* 7963 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 7964 * (but in that case, IPIF_CHANGING will already be clear and no 7965 * pending DLPI messages can remain). 7966 */ 7967 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 7968 ill_t *ill = ipif->ipif_ill; 7969 7970 mutex_enter(&ill->ill_lock); 7971 dlpi_pending = ill->ill_dlpi_pending; 7972 if (ipx->ipx_current_ioctl == 0) { 7973 ipif = ill->ill_ipif; 7974 for (; ipif != NULL; ipif = ipif->ipif_next) 7975 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7976 } else { 7977 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7978 } 7979 mutex_exit(&ill->ill_lock); 7980 } 7981 7982 ASSERT(!ipx->ipx_current_done); 7983 ipx->ipx_current_done = B_TRUE; 7984 ipx->ipx_current_ioctl = 0; 7985 if (dlpi_pending == DL_PRIM_INVAL) { 7986 mutex_enter(&ipx->ipx_lock); 7987 ipx->ipx_current_ipif = NULL; 7988 mutex_exit(&ipx->ipx_lock); 7989 } 7990 } 7991 7992 /* 7993 * The ill is closing. Flush all messages on the ipsq that originated 7994 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7995 * for this ill since ipsq_enter could not have entered until then. 7996 * New messages can't be queued since the CONDEMNED flag is set. 7997 */ 7998 static void 7999 ipsq_flush(ill_t *ill) 8000 { 8001 queue_t *q; 8002 mblk_t *prev; 8003 mblk_t *mp; 8004 mblk_t *mp_next; 8005 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8006 8007 ASSERT(IAM_WRITER_ILL(ill)); 8008 8009 /* 8010 * Flush any messages sent up by the driver. 8011 */ 8012 mutex_enter(&ipx->ipx_lock); 8013 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8014 mp_next = mp->b_next; 8015 q = mp->b_queue; 8016 if (q == ill->ill_rq || q == ill->ill_wq) { 8017 /* dequeue mp */ 8018 if (prev == NULL) 8019 ipx->ipx_mphead = mp->b_next; 8020 else 8021 prev->b_next = mp->b_next; 8022 if (ipx->ipx_mptail == mp) { 8023 ASSERT(mp_next == NULL); 8024 ipx->ipx_mptail = prev; 8025 } 8026 inet_freemsg(mp); 8027 } else { 8028 prev = mp; 8029 } 8030 } 8031 mutex_exit(&ipx->ipx_lock); 8032 (void) ipsq_pending_mp_cleanup(ill, NULL); 8033 ipsq_xopq_mp_cleanup(ill, NULL); 8034 ill_pending_mp_cleanup(ill); 8035 } 8036 8037 /* 8038 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8039 * refhold and return the associated ipif 8040 */ 8041 /* ARGSUSED */ 8042 int 8043 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8044 cmd_info_t *ci, ipsq_func_t func) 8045 { 8046 boolean_t exists; 8047 struct iftun_req *ta; 8048 ipif_t *ipif; 8049 ill_t *ill; 8050 boolean_t isv6; 8051 mblk_t *mp1; 8052 int error; 8053 conn_t *connp; 8054 ip_stack_t *ipst; 8055 8056 /* Existence verified in ip_wput_nondata */ 8057 mp1 = mp->b_cont->b_cont; 8058 ta = (struct iftun_req *)mp1->b_rptr; 8059 /* 8060 * Null terminate the string to protect against buffer 8061 * overrun. String was generated by user code and may not 8062 * be trusted. 8063 */ 8064 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8065 8066 connp = Q_TO_CONN(q); 8067 isv6 = connp->conn_af_isv6; 8068 ipst = connp->conn_netstack->netstack_ip; 8069 8070 /* Disallows implicit create */ 8071 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8072 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8073 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8074 if (ipif == NULL) 8075 return (error); 8076 8077 if (ipif->ipif_id != 0) { 8078 /* 8079 * We really don't want to set/get tunnel parameters 8080 * on virtual tunnel interfaces. Only allow the 8081 * base tunnel to do these. 8082 */ 8083 ipif_refrele(ipif); 8084 return (EINVAL); 8085 } 8086 8087 /* 8088 * Send down to tunnel mod for ioctl processing. 8089 * Will finish ioctl in ip_rput_other(). 8090 */ 8091 ill = ipif->ipif_ill; 8092 if (ill->ill_net_type == IRE_LOOPBACK) { 8093 ipif_refrele(ipif); 8094 return (EOPNOTSUPP); 8095 } 8096 8097 if (ill->ill_wq == NULL) { 8098 ipif_refrele(ipif); 8099 return (ENXIO); 8100 } 8101 /* 8102 * Mark the ioctl as coming from an IPv6 interface for 8103 * tun's convenience. 8104 */ 8105 if (ill->ill_isv6) 8106 ta->ifta_flags |= 0x80000000; 8107 ci->ci_ipif = ipif; 8108 return (0); 8109 } 8110 8111 /* 8112 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8113 * and return the associated ipif. 8114 * Return value: 8115 * Non zero: An error has occurred. ci may not be filled out. 8116 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8117 * a held ipif in ci.ci_ipif. 8118 */ 8119 int 8120 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8121 cmd_info_t *ci, ipsq_func_t func) 8122 { 8123 char *name; 8124 struct ifreq *ifr; 8125 struct lifreq *lifr; 8126 ipif_t *ipif = NULL; 8127 ill_t *ill; 8128 conn_t *connp; 8129 boolean_t isv6; 8130 boolean_t exists; 8131 int err; 8132 mblk_t *mp1; 8133 zoneid_t zoneid; 8134 ip_stack_t *ipst; 8135 8136 if (q->q_next != NULL) { 8137 ill = (ill_t *)q->q_ptr; 8138 isv6 = ill->ill_isv6; 8139 connp = NULL; 8140 zoneid = ALL_ZONES; 8141 ipst = ill->ill_ipst; 8142 } else { 8143 ill = NULL; 8144 connp = Q_TO_CONN(q); 8145 isv6 = connp->conn_af_isv6; 8146 zoneid = connp->conn_zoneid; 8147 if (zoneid == GLOBAL_ZONEID) { 8148 /* global zone can access ipifs in all zones */ 8149 zoneid = ALL_ZONES; 8150 } 8151 ipst = connp->conn_netstack->netstack_ip; 8152 } 8153 8154 /* Has been checked in ip_wput_nondata */ 8155 mp1 = mp->b_cont->b_cont; 8156 8157 if (ipip->ipi_cmd_type == IF_CMD) { 8158 /* This a old style SIOC[GS]IF* command */ 8159 ifr = (struct ifreq *)mp1->b_rptr; 8160 /* 8161 * Null terminate the string to protect against buffer 8162 * overrun. String was generated by user code and may not 8163 * be trusted. 8164 */ 8165 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8166 name = ifr->ifr_name; 8167 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8168 ci->ci_sin6 = NULL; 8169 ci->ci_lifr = (struct lifreq *)ifr; 8170 } else { 8171 /* This a new style SIOC[GS]LIF* command */ 8172 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8173 lifr = (struct lifreq *)mp1->b_rptr; 8174 /* 8175 * Null terminate the string to protect against buffer 8176 * overrun. String was generated by user code and may not 8177 * be trusted. 8178 */ 8179 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8180 name = lifr->lifr_name; 8181 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8182 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8183 ci->ci_lifr = lifr; 8184 } 8185 8186 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8187 /* 8188 * The ioctl will be failed if the ioctl comes down 8189 * an conn stream 8190 */ 8191 if (ill == NULL) { 8192 /* 8193 * Not an ill queue, return EINVAL same as the 8194 * old error code. 8195 */ 8196 return (ENXIO); 8197 } 8198 ipif = ill->ill_ipif; 8199 ipif_refhold(ipif); 8200 } else { 8201 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8202 &exists, isv6, zoneid, 8203 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8204 ipst); 8205 if (ipif == NULL) { 8206 if (err == EINPROGRESS) 8207 return (err); 8208 err = 0; /* Ensure we don't use it below */ 8209 } 8210 } 8211 8212 /* 8213 * Old style [GS]IFCMD does not admit IPv6 ipif 8214 */ 8215 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8216 ipif_refrele(ipif); 8217 return (ENXIO); 8218 } 8219 8220 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8221 name[0] == '\0') { 8222 /* 8223 * Handle a or a SIOC?IF* with a null name 8224 * during plumb (on the ill queue before the I_PLINK). 8225 */ 8226 ipif = ill->ill_ipif; 8227 ipif_refhold(ipif); 8228 } 8229 8230 if (ipif == NULL) 8231 return (ENXIO); 8232 8233 ci->ci_ipif = ipif; 8234 return (0); 8235 } 8236 8237 /* 8238 * Return the total number of ipifs. 8239 */ 8240 static uint_t 8241 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8242 { 8243 uint_t numifs = 0; 8244 ill_t *ill; 8245 ill_walk_context_t ctx; 8246 ipif_t *ipif; 8247 8248 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8249 ill = ILL_START_WALK_V4(&ctx, ipst); 8250 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8251 if (IS_UNDER_IPMP(ill)) 8252 continue; 8253 for (ipif = ill->ill_ipif; ipif != NULL; 8254 ipif = ipif->ipif_next) { 8255 if (ipif->ipif_zoneid == zoneid || 8256 ipif->ipif_zoneid == ALL_ZONES) 8257 numifs++; 8258 } 8259 } 8260 rw_exit(&ipst->ips_ill_g_lock); 8261 return (numifs); 8262 } 8263 8264 /* 8265 * Return the total number of ipifs. 8266 */ 8267 static uint_t 8268 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8269 { 8270 uint_t numifs = 0; 8271 ill_t *ill; 8272 ipif_t *ipif; 8273 ill_walk_context_t ctx; 8274 8275 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8276 8277 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8278 if (family == AF_INET) 8279 ill = ILL_START_WALK_V4(&ctx, ipst); 8280 else if (family == AF_INET6) 8281 ill = ILL_START_WALK_V6(&ctx, ipst); 8282 else 8283 ill = ILL_START_WALK_ALL(&ctx, ipst); 8284 8285 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8286 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8287 continue; 8288 8289 for (ipif = ill->ill_ipif; ipif != NULL; 8290 ipif = ipif->ipif_next) { 8291 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8292 !(lifn_flags & LIFC_NOXMIT)) 8293 continue; 8294 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8295 !(lifn_flags & LIFC_TEMPORARY)) 8296 continue; 8297 if (((ipif->ipif_flags & 8298 (IPIF_NOXMIT|IPIF_NOLOCAL| 8299 IPIF_DEPRECATED)) || 8300 IS_LOOPBACK(ill) || 8301 !(ipif->ipif_flags & IPIF_UP)) && 8302 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8303 continue; 8304 8305 if (zoneid != ipif->ipif_zoneid && 8306 ipif->ipif_zoneid != ALL_ZONES && 8307 (zoneid != GLOBAL_ZONEID || 8308 !(lifn_flags & LIFC_ALLZONES))) 8309 continue; 8310 8311 numifs++; 8312 } 8313 } 8314 rw_exit(&ipst->ips_ill_g_lock); 8315 return (numifs); 8316 } 8317 8318 uint_t 8319 ip_get_lifsrcofnum(ill_t *ill) 8320 { 8321 uint_t numifs = 0; 8322 ill_t *ill_head = ill; 8323 ip_stack_t *ipst = ill->ill_ipst; 8324 8325 /* 8326 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8327 * other thread may be trying to relink the ILLs in this usesrc group 8328 * and adjusting the ill_usesrc_grp_next pointers 8329 */ 8330 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8331 if ((ill->ill_usesrc_ifindex == 0) && 8332 (ill->ill_usesrc_grp_next != NULL)) { 8333 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8334 ill = ill->ill_usesrc_grp_next) 8335 numifs++; 8336 } 8337 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8338 8339 return (numifs); 8340 } 8341 8342 /* Null values are passed in for ipif, sin, and ifreq */ 8343 /* ARGSUSED */ 8344 int 8345 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8346 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8347 { 8348 int *nump; 8349 conn_t *connp = Q_TO_CONN(q); 8350 8351 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8352 8353 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8354 nump = (int *)mp->b_cont->b_cont->b_rptr; 8355 8356 *nump = ip_get_numifs(connp->conn_zoneid, 8357 connp->conn_netstack->netstack_ip); 8358 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8359 return (0); 8360 } 8361 8362 /* Null values are passed in for ipif, sin, and ifreq */ 8363 /* ARGSUSED */ 8364 int 8365 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8366 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8367 { 8368 struct lifnum *lifn; 8369 mblk_t *mp1; 8370 conn_t *connp = Q_TO_CONN(q); 8371 8372 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8373 8374 /* Existence checked in ip_wput_nondata */ 8375 mp1 = mp->b_cont->b_cont; 8376 8377 lifn = (struct lifnum *)mp1->b_rptr; 8378 switch (lifn->lifn_family) { 8379 case AF_UNSPEC: 8380 case AF_INET: 8381 case AF_INET6: 8382 break; 8383 default: 8384 return (EAFNOSUPPORT); 8385 } 8386 8387 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8388 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8389 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8390 return (0); 8391 } 8392 8393 /* ARGSUSED */ 8394 int 8395 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8396 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8397 { 8398 STRUCT_HANDLE(ifconf, ifc); 8399 mblk_t *mp1; 8400 struct iocblk *iocp; 8401 struct ifreq *ifr; 8402 ill_walk_context_t ctx; 8403 ill_t *ill; 8404 ipif_t *ipif; 8405 struct sockaddr_in *sin; 8406 int32_t ifclen; 8407 zoneid_t zoneid; 8408 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8409 8410 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8411 8412 ip1dbg(("ip_sioctl_get_ifconf")); 8413 /* Existence verified in ip_wput_nondata */ 8414 mp1 = mp->b_cont->b_cont; 8415 iocp = (struct iocblk *)mp->b_rptr; 8416 zoneid = Q_TO_CONN(q)->conn_zoneid; 8417 8418 /* 8419 * The original SIOCGIFCONF passed in a struct ifconf which specified 8420 * the user buffer address and length into which the list of struct 8421 * ifreqs was to be copied. Since AT&T Streams does not seem to 8422 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8423 * the SIOCGIFCONF operation was redefined to simply provide 8424 * a large output buffer into which we are supposed to jam the ifreq 8425 * array. The same ioctl command code was used, despite the fact that 8426 * both the applications and the kernel code had to change, thus making 8427 * it impossible to support both interfaces. 8428 * 8429 * For reasons not good enough to try to explain, the following 8430 * algorithm is used for deciding what to do with one of these: 8431 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8432 * form with the output buffer coming down as the continuation message. 8433 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8434 * and we have to copy in the ifconf structure to find out how big the 8435 * output buffer is and where to copy out to. Sure no problem... 8436 * 8437 */ 8438 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8439 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8440 int numifs = 0; 8441 size_t ifc_bufsize; 8442 8443 /* 8444 * Must be (better be!) continuation of a TRANSPARENT 8445 * IOCTL. We just copied in the ifconf structure. 8446 */ 8447 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8448 (struct ifconf *)mp1->b_rptr); 8449 8450 /* 8451 * Allocate a buffer to hold requested information. 8452 * 8453 * If ifc_len is larger than what is needed, we only 8454 * allocate what we will use. 8455 * 8456 * If ifc_len is smaller than what is needed, return 8457 * EINVAL. 8458 * 8459 * XXX: the ill_t structure can hava 2 counters, for 8460 * v4 and v6 (not just ill_ipif_up_count) to store the 8461 * number of interfaces for a device, so we don't need 8462 * to count them here... 8463 */ 8464 numifs = ip_get_numifs(zoneid, ipst); 8465 8466 ifclen = STRUCT_FGET(ifc, ifc_len); 8467 ifc_bufsize = numifs * sizeof (struct ifreq); 8468 if (ifc_bufsize > ifclen) { 8469 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8470 /* old behaviour */ 8471 return (EINVAL); 8472 } else { 8473 ifc_bufsize = ifclen; 8474 } 8475 } 8476 8477 mp1 = mi_copyout_alloc(q, mp, 8478 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8479 if (mp1 == NULL) 8480 return (ENOMEM); 8481 8482 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8483 } 8484 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8485 /* 8486 * the SIOCGIFCONF ioctl only knows about 8487 * IPv4 addresses, so don't try to tell 8488 * it about interfaces with IPv6-only 8489 * addresses. (Last parm 'isv6' is B_FALSE) 8490 */ 8491 8492 ifr = (struct ifreq *)mp1->b_rptr; 8493 8494 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8495 ill = ILL_START_WALK_V4(&ctx, ipst); 8496 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8497 if (IS_UNDER_IPMP(ill)) 8498 continue; 8499 for (ipif = ill->ill_ipif; ipif != NULL; 8500 ipif = ipif->ipif_next) { 8501 if (zoneid != ipif->ipif_zoneid && 8502 ipif->ipif_zoneid != ALL_ZONES) 8503 continue; 8504 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8505 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8506 /* old behaviour */ 8507 rw_exit(&ipst->ips_ill_g_lock); 8508 return (EINVAL); 8509 } else { 8510 goto if_copydone; 8511 } 8512 } 8513 ipif_get_name(ipif, ifr->ifr_name, 8514 sizeof (ifr->ifr_name)); 8515 sin = (sin_t *)&ifr->ifr_addr; 8516 *sin = sin_null; 8517 sin->sin_family = AF_INET; 8518 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8519 ifr++; 8520 } 8521 } 8522 if_copydone: 8523 rw_exit(&ipst->ips_ill_g_lock); 8524 mp1->b_wptr = (uchar_t *)ifr; 8525 8526 if (STRUCT_BUF(ifc) != NULL) { 8527 STRUCT_FSET(ifc, ifc_len, 8528 (int)((uchar_t *)ifr - mp1->b_rptr)); 8529 } 8530 return (0); 8531 } 8532 8533 /* 8534 * Get the interfaces using the address hosted on the interface passed in, 8535 * as a source adddress 8536 */ 8537 /* ARGSUSED */ 8538 int 8539 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8540 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8541 { 8542 mblk_t *mp1; 8543 ill_t *ill, *ill_head; 8544 ipif_t *ipif, *orig_ipif; 8545 int numlifs = 0; 8546 size_t lifs_bufsize, lifsmaxlen; 8547 struct lifreq *lifr; 8548 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8549 uint_t ifindex; 8550 zoneid_t zoneid; 8551 int err = 0; 8552 boolean_t isv6 = B_FALSE; 8553 struct sockaddr_in *sin; 8554 struct sockaddr_in6 *sin6; 8555 STRUCT_HANDLE(lifsrcof, lifs); 8556 ip_stack_t *ipst; 8557 8558 ipst = CONNQ_TO_IPST(q); 8559 8560 ASSERT(q->q_next == NULL); 8561 8562 zoneid = Q_TO_CONN(q)->conn_zoneid; 8563 8564 /* Existence verified in ip_wput_nondata */ 8565 mp1 = mp->b_cont->b_cont; 8566 8567 /* 8568 * Must be (better be!) continuation of a TRANSPARENT 8569 * IOCTL. We just copied in the lifsrcof structure. 8570 */ 8571 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8572 (struct lifsrcof *)mp1->b_rptr); 8573 8574 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8575 return (EINVAL); 8576 8577 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8578 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8579 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8580 ip_process_ioctl, &err, ipst); 8581 if (ipif == NULL) { 8582 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8583 ifindex)); 8584 return (err); 8585 } 8586 8587 /* Allocate a buffer to hold requested information */ 8588 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8589 lifs_bufsize = numlifs * sizeof (struct lifreq); 8590 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8591 /* The actual size needed is always returned in lifs_len */ 8592 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8593 8594 /* If the amount we need is more than what is passed in, abort */ 8595 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8596 ipif_refrele(ipif); 8597 return (0); 8598 } 8599 8600 mp1 = mi_copyout_alloc(q, mp, 8601 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8602 if (mp1 == NULL) { 8603 ipif_refrele(ipif); 8604 return (ENOMEM); 8605 } 8606 8607 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8608 bzero(mp1->b_rptr, lifs_bufsize); 8609 8610 lifr = (struct lifreq *)mp1->b_rptr; 8611 8612 ill = ill_head = ipif->ipif_ill; 8613 orig_ipif = ipif; 8614 8615 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8616 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8617 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8618 8619 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8620 for (; (ill != NULL) && (ill != ill_head); 8621 ill = ill->ill_usesrc_grp_next) { 8622 8623 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8624 break; 8625 8626 ipif = ill->ill_ipif; 8627 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8628 if (ipif->ipif_isv6) { 8629 sin6 = (sin6_t *)&lifr->lifr_addr; 8630 *sin6 = sin6_null; 8631 sin6->sin6_family = AF_INET6; 8632 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8633 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8634 &ipif->ipif_v6net_mask); 8635 } else { 8636 sin = (sin_t *)&lifr->lifr_addr; 8637 *sin = sin_null; 8638 sin->sin_family = AF_INET; 8639 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8640 lifr->lifr_addrlen = ip_mask_to_plen( 8641 ipif->ipif_net_mask); 8642 } 8643 lifr++; 8644 } 8645 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8646 rw_exit(&ipst->ips_ill_g_lock); 8647 ipif_refrele(orig_ipif); 8648 mp1->b_wptr = (uchar_t *)lifr; 8649 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8650 8651 return (0); 8652 } 8653 8654 /* ARGSUSED */ 8655 int 8656 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8657 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8658 { 8659 mblk_t *mp1; 8660 int list; 8661 ill_t *ill; 8662 ipif_t *ipif; 8663 int flags; 8664 int numlifs = 0; 8665 size_t lifc_bufsize; 8666 struct lifreq *lifr; 8667 sa_family_t family; 8668 struct sockaddr_in *sin; 8669 struct sockaddr_in6 *sin6; 8670 ill_walk_context_t ctx; 8671 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8672 int32_t lifclen; 8673 zoneid_t zoneid; 8674 STRUCT_HANDLE(lifconf, lifc); 8675 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8676 8677 ip1dbg(("ip_sioctl_get_lifconf")); 8678 8679 ASSERT(q->q_next == NULL); 8680 8681 zoneid = Q_TO_CONN(q)->conn_zoneid; 8682 8683 /* Existence verified in ip_wput_nondata */ 8684 mp1 = mp->b_cont->b_cont; 8685 8686 /* 8687 * An extended version of SIOCGIFCONF that takes an 8688 * additional address family and flags field. 8689 * AF_UNSPEC retrieve both IPv4 and IPv6. 8690 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8691 * interfaces are omitted. 8692 * Similarly, IPIF_TEMPORARY interfaces are omitted 8693 * unless LIFC_TEMPORARY is specified. 8694 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8695 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8696 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8697 * has priority over LIFC_NOXMIT. 8698 */ 8699 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8700 8701 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8702 return (EINVAL); 8703 8704 /* 8705 * Must be (better be!) continuation of a TRANSPARENT 8706 * IOCTL. We just copied in the lifconf structure. 8707 */ 8708 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8709 8710 family = STRUCT_FGET(lifc, lifc_family); 8711 flags = STRUCT_FGET(lifc, lifc_flags); 8712 8713 switch (family) { 8714 case AF_UNSPEC: 8715 /* 8716 * walk all ILL's. 8717 */ 8718 list = MAX_G_HEADS; 8719 break; 8720 case AF_INET: 8721 /* 8722 * walk only IPV4 ILL's. 8723 */ 8724 list = IP_V4_G_HEAD; 8725 break; 8726 case AF_INET6: 8727 /* 8728 * walk only IPV6 ILL's. 8729 */ 8730 list = IP_V6_G_HEAD; 8731 break; 8732 default: 8733 return (EAFNOSUPPORT); 8734 } 8735 8736 /* 8737 * Allocate a buffer to hold requested information. 8738 * 8739 * If lifc_len is larger than what is needed, we only 8740 * allocate what we will use. 8741 * 8742 * If lifc_len is smaller than what is needed, return 8743 * EINVAL. 8744 */ 8745 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8746 lifc_bufsize = numlifs * sizeof (struct lifreq); 8747 lifclen = STRUCT_FGET(lifc, lifc_len); 8748 if (lifc_bufsize > lifclen) { 8749 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8750 return (EINVAL); 8751 else 8752 lifc_bufsize = lifclen; 8753 } 8754 8755 mp1 = mi_copyout_alloc(q, mp, 8756 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8757 if (mp1 == NULL) 8758 return (ENOMEM); 8759 8760 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8761 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8762 8763 lifr = (struct lifreq *)mp1->b_rptr; 8764 8765 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8766 ill = ill_first(list, list, &ctx, ipst); 8767 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8768 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8769 continue; 8770 8771 for (ipif = ill->ill_ipif; ipif != NULL; 8772 ipif = ipif->ipif_next) { 8773 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8774 !(flags & LIFC_NOXMIT)) 8775 continue; 8776 8777 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8778 !(flags & LIFC_TEMPORARY)) 8779 continue; 8780 8781 if (((ipif->ipif_flags & 8782 (IPIF_NOXMIT|IPIF_NOLOCAL| 8783 IPIF_DEPRECATED)) || 8784 IS_LOOPBACK(ill) || 8785 !(ipif->ipif_flags & IPIF_UP)) && 8786 (flags & LIFC_EXTERNAL_SOURCE)) 8787 continue; 8788 8789 if (zoneid != ipif->ipif_zoneid && 8790 ipif->ipif_zoneid != ALL_ZONES && 8791 (zoneid != GLOBAL_ZONEID || 8792 !(flags & LIFC_ALLZONES))) 8793 continue; 8794 8795 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8796 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8797 rw_exit(&ipst->ips_ill_g_lock); 8798 return (EINVAL); 8799 } else { 8800 goto lif_copydone; 8801 } 8802 } 8803 8804 ipif_get_name(ipif, lifr->lifr_name, 8805 sizeof (lifr->lifr_name)); 8806 lifr->lifr_type = ill->ill_type; 8807 if (ipif->ipif_isv6) { 8808 sin6 = (sin6_t *)&lifr->lifr_addr; 8809 *sin6 = sin6_null; 8810 sin6->sin6_family = AF_INET6; 8811 sin6->sin6_addr = 8812 ipif->ipif_v6lcl_addr; 8813 lifr->lifr_addrlen = 8814 ip_mask_to_plen_v6( 8815 &ipif->ipif_v6net_mask); 8816 } else { 8817 sin = (sin_t *)&lifr->lifr_addr; 8818 *sin = sin_null; 8819 sin->sin_family = AF_INET; 8820 sin->sin_addr.s_addr = 8821 ipif->ipif_lcl_addr; 8822 lifr->lifr_addrlen = 8823 ip_mask_to_plen( 8824 ipif->ipif_net_mask); 8825 } 8826 lifr++; 8827 } 8828 } 8829 lif_copydone: 8830 rw_exit(&ipst->ips_ill_g_lock); 8831 8832 mp1->b_wptr = (uchar_t *)lifr; 8833 if (STRUCT_BUF(lifc) != NULL) { 8834 STRUCT_FSET(lifc, lifc_len, 8835 (int)((uchar_t *)lifr - mp1->b_rptr)); 8836 } 8837 return (0); 8838 } 8839 8840 static void 8841 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8842 { 8843 ip6_asp_t *table; 8844 size_t table_size; 8845 mblk_t *data_mp; 8846 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8847 ip_stack_t *ipst; 8848 8849 if (q->q_next == NULL) 8850 ipst = CONNQ_TO_IPST(q); 8851 else 8852 ipst = ILLQ_TO_IPST(q); 8853 8854 /* These two ioctls are I_STR only */ 8855 if (iocp->ioc_count == TRANSPARENT) { 8856 miocnak(q, mp, 0, EINVAL); 8857 return; 8858 } 8859 8860 data_mp = mp->b_cont; 8861 if (data_mp == NULL) { 8862 /* The user passed us a NULL argument */ 8863 table = NULL; 8864 table_size = iocp->ioc_count; 8865 } else { 8866 /* 8867 * The user provided a table. The stream head 8868 * may have copied in the user data in chunks, 8869 * so make sure everything is pulled up 8870 * properly. 8871 */ 8872 if (MBLKL(data_mp) < iocp->ioc_count) { 8873 mblk_t *new_data_mp; 8874 if ((new_data_mp = msgpullup(data_mp, -1)) == 8875 NULL) { 8876 miocnak(q, mp, 0, ENOMEM); 8877 return; 8878 } 8879 freemsg(data_mp); 8880 data_mp = new_data_mp; 8881 mp->b_cont = data_mp; 8882 } 8883 table = (ip6_asp_t *)data_mp->b_rptr; 8884 table_size = iocp->ioc_count; 8885 } 8886 8887 switch (iocp->ioc_cmd) { 8888 case SIOCGIP6ADDRPOLICY: 8889 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8890 if (iocp->ioc_rval == -1) 8891 iocp->ioc_error = EINVAL; 8892 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8893 else if (table != NULL && 8894 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8895 ip6_asp_t *src = table; 8896 ip6_asp32_t *dst = (void *)table; 8897 int count = table_size / sizeof (ip6_asp_t); 8898 int i; 8899 8900 /* 8901 * We need to do an in-place shrink of the array 8902 * to match the alignment attributes of the 8903 * 32-bit ABI looking at it. 8904 */ 8905 /* LINTED: logical expression always true: op "||" */ 8906 ASSERT(sizeof (*src) > sizeof (*dst)); 8907 for (i = 1; i < count; i++) 8908 bcopy(src + i, dst + i, sizeof (*dst)); 8909 } 8910 #endif 8911 break; 8912 8913 case SIOCSIP6ADDRPOLICY: 8914 ASSERT(mp->b_prev == NULL); 8915 mp->b_prev = (void *)q; 8916 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8917 /* 8918 * We pass in the datamodel here so that the ip6_asp_replace() 8919 * routine can handle converting from 32-bit to native formats 8920 * where necessary. 8921 * 8922 * A better way to handle this might be to convert the inbound 8923 * data structure here, and hang it off a new 'mp'; thus the 8924 * ip6_asp_replace() logic would always be dealing with native 8925 * format data structures.. 8926 * 8927 * (An even simpler way to handle these ioctls is to just 8928 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8929 * and just recompile everything that depends on it.) 8930 */ 8931 #endif 8932 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 8933 iocp->ioc_flag & IOC_MODELS); 8934 return; 8935 } 8936 8937 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8938 qreply(q, mp); 8939 } 8940 8941 static void 8942 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8943 { 8944 mblk_t *data_mp; 8945 struct dstinforeq *dir; 8946 uint8_t *end, *cur; 8947 in6_addr_t *daddr, *saddr; 8948 ipaddr_t v4daddr; 8949 ire_t *ire; 8950 char *slabel, *dlabel; 8951 boolean_t isipv4; 8952 int match_ire; 8953 ill_t *dst_ill; 8954 ipif_t *src_ipif, *ire_ipif; 8955 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8956 zoneid_t zoneid; 8957 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8958 8959 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8960 zoneid = Q_TO_CONN(q)->conn_zoneid; 8961 8962 /* 8963 * This ioctl is I_STR only, and must have a 8964 * data mblk following the M_IOCTL mblk. 8965 */ 8966 data_mp = mp->b_cont; 8967 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8968 miocnak(q, mp, 0, EINVAL); 8969 return; 8970 } 8971 8972 if (MBLKL(data_mp) < iocp->ioc_count) { 8973 mblk_t *new_data_mp; 8974 8975 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8976 miocnak(q, mp, 0, ENOMEM); 8977 return; 8978 } 8979 freemsg(data_mp); 8980 data_mp = new_data_mp; 8981 mp->b_cont = data_mp; 8982 } 8983 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8984 8985 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8986 end - cur >= sizeof (struct dstinforeq); 8987 cur += sizeof (struct dstinforeq)) { 8988 dir = (struct dstinforeq *)cur; 8989 daddr = &dir->dir_daddr; 8990 saddr = &dir->dir_saddr; 8991 8992 /* 8993 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8994 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8995 * and ipif_select_source[_v6]() do not. 8996 */ 8997 dir->dir_dscope = ip_addr_scope_v6(daddr); 8998 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 8999 9000 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9001 if (isipv4) { 9002 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9003 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9004 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9005 } else { 9006 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9007 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9008 } 9009 if (ire == NULL) { 9010 dir->dir_dreachable = 0; 9011 9012 /* move on to next dst addr */ 9013 continue; 9014 } 9015 dir->dir_dreachable = 1; 9016 9017 ire_ipif = ire->ire_ipif; 9018 if (ire_ipif == NULL) 9019 goto next_dst; 9020 9021 /* 9022 * We expect to get back an interface ire or a 9023 * gateway ire cache entry. For both types, the 9024 * output interface is ire_ipif->ipif_ill. 9025 */ 9026 dst_ill = ire_ipif->ipif_ill; 9027 dir->dir_dmactype = dst_ill->ill_mactype; 9028 9029 if (isipv4) { 9030 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9031 } else { 9032 src_ipif = ipif_select_source_v6(dst_ill, 9033 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9034 } 9035 if (src_ipif == NULL) 9036 goto next_dst; 9037 9038 *saddr = src_ipif->ipif_v6lcl_addr; 9039 dir->dir_sscope = ip_addr_scope_v6(saddr); 9040 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9041 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9042 dir->dir_sdeprecated = 9043 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9044 ipif_refrele(src_ipif); 9045 next_dst: 9046 ire_refrele(ire); 9047 } 9048 miocack(q, mp, iocp->ioc_count, 0); 9049 } 9050 9051 /* 9052 * Check if this is an address assigned to this machine. 9053 * Skips interfaces that are down by using ire checks. 9054 * Translates mapped addresses to v4 addresses and then 9055 * treats them as such, returning true if the v4 address 9056 * associated with this mapped address is configured. 9057 * Note: Applications will have to be careful what they do 9058 * with the response; use of mapped addresses limits 9059 * what can be done with the socket, especially with 9060 * respect to socket options and ioctls - neither IPv4 9061 * options nor IPv6 sticky options/ancillary data options 9062 * may be used. 9063 */ 9064 /* ARGSUSED */ 9065 int 9066 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9067 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9068 { 9069 struct sioc_addrreq *sia; 9070 sin_t *sin; 9071 ire_t *ire; 9072 mblk_t *mp1; 9073 zoneid_t zoneid; 9074 ip_stack_t *ipst; 9075 9076 ip1dbg(("ip_sioctl_tmyaddr")); 9077 9078 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9079 zoneid = Q_TO_CONN(q)->conn_zoneid; 9080 ipst = CONNQ_TO_IPST(q); 9081 9082 /* Existence verified in ip_wput_nondata */ 9083 mp1 = mp->b_cont->b_cont; 9084 sia = (struct sioc_addrreq *)mp1->b_rptr; 9085 sin = (sin_t *)&sia->sa_addr; 9086 switch (sin->sin_family) { 9087 case AF_INET6: { 9088 sin6_t *sin6 = (sin6_t *)sin; 9089 9090 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9091 ipaddr_t v4_addr; 9092 9093 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9094 v4_addr); 9095 ire = ire_ctable_lookup(v4_addr, 0, 9096 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9097 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9098 } else { 9099 in6_addr_t v6addr; 9100 9101 v6addr = sin6->sin6_addr; 9102 ire = ire_ctable_lookup_v6(&v6addr, 0, 9103 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9104 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9105 } 9106 break; 9107 } 9108 case AF_INET: { 9109 ipaddr_t v4addr; 9110 9111 v4addr = sin->sin_addr.s_addr; 9112 ire = ire_ctable_lookup(v4addr, 0, 9113 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9114 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9115 break; 9116 } 9117 default: 9118 return (EAFNOSUPPORT); 9119 } 9120 if (ire != NULL) { 9121 sia->sa_res = 1; 9122 ire_refrele(ire); 9123 } else { 9124 sia->sa_res = 0; 9125 } 9126 return (0); 9127 } 9128 9129 /* 9130 * Check if this is an address assigned on-link i.e. neighbor, 9131 * and makes sure it's reachable from the current zone. 9132 * Returns true for my addresses as well. 9133 * Translates mapped addresses to v4 addresses and then 9134 * treats them as such, returning true if the v4 address 9135 * associated with this mapped address is configured. 9136 * Note: Applications will have to be careful what they do 9137 * with the response; use of mapped addresses limits 9138 * what can be done with the socket, especially with 9139 * respect to socket options and ioctls - neither IPv4 9140 * options nor IPv6 sticky options/ancillary data options 9141 * may be used. 9142 */ 9143 /* ARGSUSED */ 9144 int 9145 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9146 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9147 { 9148 struct sioc_addrreq *sia; 9149 sin_t *sin; 9150 mblk_t *mp1; 9151 ire_t *ire = NULL; 9152 zoneid_t zoneid; 9153 ip_stack_t *ipst; 9154 9155 ip1dbg(("ip_sioctl_tonlink")); 9156 9157 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9158 zoneid = Q_TO_CONN(q)->conn_zoneid; 9159 ipst = CONNQ_TO_IPST(q); 9160 9161 /* Existence verified in ip_wput_nondata */ 9162 mp1 = mp->b_cont->b_cont; 9163 sia = (struct sioc_addrreq *)mp1->b_rptr; 9164 sin = (sin_t *)&sia->sa_addr; 9165 9166 /* 9167 * Match addresses with a zero gateway field to avoid 9168 * routes going through a router. 9169 * Exclude broadcast and multicast addresses. 9170 */ 9171 switch (sin->sin_family) { 9172 case AF_INET6: { 9173 sin6_t *sin6 = (sin6_t *)sin; 9174 9175 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9176 ipaddr_t v4_addr; 9177 9178 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9179 v4_addr); 9180 if (!CLASSD(v4_addr)) { 9181 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9182 NULL, NULL, zoneid, NULL, 9183 MATCH_IRE_GW, ipst); 9184 } 9185 } else { 9186 in6_addr_t v6addr; 9187 in6_addr_t v6gw; 9188 9189 v6addr = sin6->sin6_addr; 9190 v6gw = ipv6_all_zeros; 9191 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9192 ire = ire_route_lookup_v6(&v6addr, 0, 9193 &v6gw, 0, NULL, NULL, zoneid, 9194 NULL, MATCH_IRE_GW, ipst); 9195 } 9196 } 9197 break; 9198 } 9199 case AF_INET: { 9200 ipaddr_t v4addr; 9201 9202 v4addr = sin->sin_addr.s_addr; 9203 if (!CLASSD(v4addr)) { 9204 ire = ire_route_lookup(v4addr, 0, 0, 0, 9205 NULL, NULL, zoneid, NULL, 9206 MATCH_IRE_GW, ipst); 9207 } 9208 break; 9209 } 9210 default: 9211 return (EAFNOSUPPORT); 9212 } 9213 sia->sa_res = 0; 9214 if (ire != NULL) { 9215 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9216 IRE_LOCAL|IRE_LOOPBACK)) { 9217 sia->sa_res = 1; 9218 } 9219 ire_refrele(ire); 9220 } 9221 return (0); 9222 } 9223 9224 /* 9225 * TBD: implement when kernel maintaines a list of site prefixes. 9226 */ 9227 /* ARGSUSED */ 9228 int 9229 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9230 ip_ioctl_cmd_t *ipip, void *ifreq) 9231 { 9232 return (ENXIO); 9233 } 9234 9235 /* ARGSUSED */ 9236 int 9237 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9238 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9239 { 9240 ill_t *ill; 9241 mblk_t *mp1; 9242 conn_t *connp; 9243 boolean_t success; 9244 9245 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9246 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9247 /* ioctl comes down on an conn */ 9248 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9249 connp = Q_TO_CONN(q); 9250 9251 mp->b_datap->db_type = M_IOCTL; 9252 9253 /* 9254 * Send down a copy. (copymsg does not copy b_next/b_prev). 9255 * The original mp contains contaminated b_next values due to 'mi', 9256 * which is needed to do the mi_copy_done. Unfortunately if we 9257 * send down the original mblk itself and if we are popped due to an 9258 * an unplumb before the response comes back from tunnel, 9259 * the streamhead (which does a freemsg) will see this contaminated 9260 * message and the assertion in freemsg about non-null b_next/b_prev 9261 * will panic a DEBUG kernel. 9262 */ 9263 mp1 = copymsg(mp); 9264 if (mp1 == NULL) 9265 return (ENOMEM); 9266 9267 ill = ipif->ipif_ill; 9268 mutex_enter(&connp->conn_lock); 9269 mutex_enter(&ill->ill_lock); 9270 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9271 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9272 mp, 0); 9273 } else { 9274 success = ill_pending_mp_add(ill, connp, mp); 9275 } 9276 mutex_exit(&ill->ill_lock); 9277 mutex_exit(&connp->conn_lock); 9278 9279 if (success) { 9280 ip1dbg(("sending down tunparam request ")); 9281 putnext(ill->ill_wq, mp1); 9282 return (EINPROGRESS); 9283 } else { 9284 /* The conn has started closing */ 9285 freemsg(mp1); 9286 return (EINTR); 9287 } 9288 } 9289 9290 /* 9291 * ARP IOCTLs. 9292 * How does IP get in the business of fronting ARP configuration/queries? 9293 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9294 * are by tradition passed in through a datagram socket. That lands in IP. 9295 * As it happens, this is just as well since the interface is quite crude in 9296 * that it passes in no information about protocol or hardware types, or 9297 * interface association. After making the protocol assumption, IP is in 9298 * the position to look up the name of the ILL, which ARP will need, and 9299 * format a request that can be handled by ARP. The request is passed up 9300 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9301 * back a response. ARP supports its own set of more general IOCTLs, in 9302 * case anyone is interested. 9303 */ 9304 /* ARGSUSED */ 9305 int 9306 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9307 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9308 { 9309 mblk_t *mp1; 9310 mblk_t *mp2; 9311 mblk_t *pending_mp; 9312 ipaddr_t ipaddr; 9313 area_t *area; 9314 struct iocblk *iocp; 9315 conn_t *connp; 9316 struct arpreq *ar; 9317 struct xarpreq *xar; 9318 int flags, alength; 9319 uchar_t *lladdr; 9320 ire_t *ire; 9321 ip_stack_t *ipst; 9322 ill_t *ill = ipif->ipif_ill; 9323 ill_t *proxy_ill = NULL; 9324 ipmp_arpent_t *entp = NULL; 9325 boolean_t if_arp_ioctl = B_FALSE; 9326 boolean_t proxyarp = B_FALSE; 9327 9328 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9329 connp = Q_TO_CONN(q); 9330 ipst = connp->conn_netstack->netstack_ip; 9331 9332 if (ipip->ipi_cmd_type == XARP_CMD) { 9333 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9334 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9335 ar = NULL; 9336 9337 flags = xar->xarp_flags; 9338 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9339 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9340 /* 9341 * Validate against user's link layer address length 9342 * input and name and addr length limits. 9343 */ 9344 alength = ill->ill_phys_addr_length; 9345 if (ipip->ipi_cmd == SIOCSXARP) { 9346 if (alength != xar->xarp_ha.sdl_alen || 9347 (alength + xar->xarp_ha.sdl_nlen > 9348 sizeof (xar->xarp_ha.sdl_data))) 9349 return (EINVAL); 9350 } 9351 } else { 9352 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9353 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9354 xar = NULL; 9355 9356 flags = ar->arp_flags; 9357 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9358 /* 9359 * Theoretically, the sa_family could tell us what link 9360 * layer type this operation is trying to deal with. By 9361 * common usage AF_UNSPEC means ethernet. We'll assume 9362 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9363 * for now. Our new SIOC*XARP ioctls can be used more 9364 * generally. 9365 * 9366 * If the underlying media happens to have a non 6 byte 9367 * address, arp module will fail set/get, but the del 9368 * operation will succeed. 9369 */ 9370 alength = 6; 9371 if ((ipip->ipi_cmd != SIOCDARP) && 9372 (alength != ill->ill_phys_addr_length)) { 9373 return (EINVAL); 9374 } 9375 } 9376 9377 ipaddr = sin->sin_addr.s_addr; 9378 9379 /* 9380 * IPMP ARP special handling: 9381 * 9382 * 1. Since ARP mappings must appear consistent across the group, 9383 * prohibit changing ARP mappings on the underlying interfaces. 9384 * 9385 * 2. Since ARP mappings for IPMP data addresses are maintained by 9386 * IP itself, prohibit changing them. 9387 * 9388 * 3. For proxy ARP, use a functioning hardware address in the group, 9389 * provided one exists. If one doesn't, just add the entry as-is; 9390 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9391 */ 9392 if (IS_UNDER_IPMP(ill)) { 9393 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9394 return (EPERM); 9395 } 9396 if (IS_IPMP(ill)) { 9397 ipmp_illgrp_t *illg = ill->ill_grp; 9398 9399 switch (ipip->ipi_cmd) { 9400 case SIOCSARP: 9401 case SIOCSXARP: 9402 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9403 if (proxy_ill != NULL) { 9404 proxyarp = B_TRUE; 9405 if (!ipmp_ill_is_active(proxy_ill)) 9406 proxy_ill = ipmp_illgrp_next_ill(illg); 9407 if (proxy_ill != NULL) 9408 lladdr = proxy_ill->ill_phys_addr; 9409 } 9410 /* FALLTHRU */ 9411 case SIOCDARP: 9412 case SIOCDXARP: 9413 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9414 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9415 if (ire != NULL) { 9416 ire_refrele(ire); 9417 return (EPERM); 9418 } 9419 } 9420 } 9421 9422 /* 9423 * We are going to pass up to ARP a packet chain that looks 9424 * like: 9425 * 9426 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9427 * 9428 * Get a copy of the original IOCTL mblk to head the chain, 9429 * to be sent up (in mp1). Also get another copy to store 9430 * in the ill_pending_mp list, for matching the response 9431 * when it comes back from ARP. 9432 */ 9433 mp1 = copyb(mp); 9434 pending_mp = copymsg(mp); 9435 if (mp1 == NULL || pending_mp == NULL) { 9436 if (mp1 != NULL) 9437 freeb(mp1); 9438 if (pending_mp != NULL) 9439 inet_freemsg(pending_mp); 9440 return (ENOMEM); 9441 } 9442 9443 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9444 (caddr_t)&ipaddr); 9445 if (mp2 == NULL) { 9446 freeb(mp1); 9447 inet_freemsg(pending_mp); 9448 return (ENOMEM); 9449 } 9450 /* Put together the chain. */ 9451 mp1->b_cont = mp2; 9452 mp1->b_datap->db_type = M_IOCTL; 9453 mp2->b_cont = mp; 9454 mp2->b_datap->db_type = M_DATA; 9455 9456 iocp = (struct iocblk *)mp1->b_rptr; 9457 9458 /* 9459 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9460 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9461 * cp_private field (or cp_rval on 32-bit systems) in place of the 9462 * ioc_count field; set ioc_count to be correct. 9463 */ 9464 iocp->ioc_count = MBLKL(mp1->b_cont); 9465 9466 /* 9467 * Set the proper command in the ARP message. 9468 * Convert the SIOC{G|S|D}ARP calls into our 9469 * AR_ENTRY_xxx calls. 9470 */ 9471 area = (area_t *)mp2->b_rptr; 9472 switch (iocp->ioc_cmd) { 9473 case SIOCDARP: 9474 case SIOCDXARP: 9475 /* 9476 * We defer deleting the corresponding IRE until 9477 * we return from arp. 9478 */ 9479 area->area_cmd = AR_ENTRY_DELETE; 9480 area->area_proto_mask_offset = 0; 9481 break; 9482 case SIOCGARP: 9483 case SIOCGXARP: 9484 area->area_cmd = AR_ENTRY_SQUERY; 9485 area->area_proto_mask_offset = 0; 9486 break; 9487 case SIOCSARP: 9488 case SIOCSXARP: 9489 /* 9490 * Delete the corresponding ire to make sure IP will 9491 * pick up any change from arp. 9492 */ 9493 if (!if_arp_ioctl) { 9494 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9495 } else { 9496 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9497 if (ipif != NULL) { 9498 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9499 ipst); 9500 ipif_refrele(ipif); 9501 } 9502 } 9503 break; 9504 } 9505 iocp->ioc_cmd = area->area_cmd; 9506 9507 /* 9508 * Fill in the rest of the ARP operation fields. 9509 */ 9510 area->area_hw_addr_length = alength; 9511 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9512 9513 /* Translate the flags. */ 9514 if (flags & ATF_PERM) 9515 area->area_flags |= ACE_F_PERMANENT; 9516 if (flags & ATF_PUBL) 9517 area->area_flags |= ACE_F_PUBLISH; 9518 if (flags & ATF_AUTHORITY) 9519 area->area_flags |= ACE_F_AUTHORITY; 9520 9521 /* 9522 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9523 * so that IP can update ARP as the active ills in the group change. 9524 */ 9525 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9526 (area->area_flags & ACE_F_PERMANENT)) { 9527 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9528 9529 /* 9530 * The second part of the conditional below handles a corner 9531 * case: if this is proxy ARP and the IPMP group has no active 9532 * interfaces, we can't send the request to ARP now since it 9533 * won't be able to build an ACE. So we return success and 9534 * notify ARP about the proxy ARP entry once an interface 9535 * becomes active. 9536 */ 9537 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9538 mp2->b_cont = NULL; 9539 inet_freemsg(mp1); 9540 inet_freemsg(pending_mp); 9541 return (entp == NULL ? ENOMEM : 0); 9542 } 9543 } 9544 9545 /* 9546 * Before sending 'mp' to ARP, we have to clear the b_next 9547 * and b_prev. Otherwise if STREAMS encounters such a message 9548 * in freemsg(), (because ARP can close any time) it can cause 9549 * a panic. But mi code needs the b_next and b_prev values of 9550 * mp->b_cont, to complete the ioctl. So we store it here 9551 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9552 * when the response comes down from ARP. 9553 */ 9554 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9555 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9556 mp->b_cont->b_next = NULL; 9557 mp->b_cont->b_prev = NULL; 9558 9559 mutex_enter(&connp->conn_lock); 9560 mutex_enter(&ill->ill_lock); 9561 /* conn has not yet started closing, hence this can't fail */ 9562 if (ipip->ipi_flags & IPI_WR) { 9563 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9564 pending_mp, 0) != 0); 9565 } else { 9566 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9567 } 9568 mutex_exit(&ill->ill_lock); 9569 mutex_exit(&connp->conn_lock); 9570 9571 /* 9572 * Up to ARP it goes. The response will come back in ip_wput() as an 9573 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9574 */ 9575 putnext(ill->ill_rq, mp1); 9576 9577 /* 9578 * If we created an IPMP ARP entry, mark that we've notified ARP. 9579 */ 9580 if (entp != NULL) 9581 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9582 9583 return (EINPROGRESS); 9584 } 9585 9586 /* 9587 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9588 * the associated sin and refhold and return the associated ipif via `ci'. 9589 */ 9590 int 9591 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9592 cmd_info_t *ci, ipsq_func_t func) 9593 { 9594 mblk_t *mp1; 9595 int err; 9596 sin_t *sin; 9597 conn_t *connp; 9598 ipif_t *ipif; 9599 ire_t *ire = NULL; 9600 ill_t *ill = NULL; 9601 boolean_t exists; 9602 ip_stack_t *ipst; 9603 struct arpreq *ar; 9604 struct xarpreq *xar; 9605 struct sockaddr_dl *sdl; 9606 9607 /* ioctl comes down on a conn */ 9608 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9609 connp = Q_TO_CONN(q); 9610 if (connp->conn_af_isv6) 9611 return (ENXIO); 9612 9613 ipst = connp->conn_netstack->netstack_ip; 9614 9615 /* Verified in ip_wput_nondata */ 9616 mp1 = mp->b_cont->b_cont; 9617 9618 if (ipip->ipi_cmd_type == XARP_CMD) { 9619 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9620 xar = (struct xarpreq *)mp1->b_rptr; 9621 sin = (sin_t *)&xar->xarp_pa; 9622 sdl = &xar->xarp_ha; 9623 9624 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9625 return (ENXIO); 9626 if (sdl->sdl_nlen >= LIFNAMSIZ) 9627 return (EINVAL); 9628 } else { 9629 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9630 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9631 ar = (struct arpreq *)mp1->b_rptr; 9632 sin = (sin_t *)&ar->arp_pa; 9633 } 9634 9635 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9636 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9637 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9638 mp, func, &err, ipst); 9639 if (ipif == NULL) 9640 return (err); 9641 if (ipif->ipif_id != 0) { 9642 ipif_refrele(ipif); 9643 return (ENXIO); 9644 } 9645 } else { 9646 /* 9647 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9648 * of 0: use the IP address to find the ipif. If the IP 9649 * address is an IPMP test address, ire_ftable_lookup() will 9650 * find the wrong ill, so we first do an ipif_lookup_addr(). 9651 */ 9652 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9653 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9654 if (ipif == NULL) { 9655 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9656 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9657 MATCH_IRE_TYPE, ipst); 9658 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9659 if (ire != NULL) 9660 ire_refrele(ire); 9661 return (ENXIO); 9662 } 9663 ipif = ill->ill_ipif; 9664 ipif_refhold(ipif); 9665 ire_refrele(ire); 9666 } 9667 } 9668 9669 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9670 ipif_refrele(ipif); 9671 return (ENXIO); 9672 } 9673 9674 ci->ci_sin = sin; 9675 ci->ci_ipif = ipif; 9676 return (0); 9677 } 9678 9679 /* 9680 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9681 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9682 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9683 * up and thus an ill can join that illgrp. 9684 * 9685 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9686 * open()/close() primarily because close() is not allowed to fail or block 9687 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9688 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9689 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9690 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9691 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9692 * state if I_UNLINK didn't occur. 9693 * 9694 * Note that for each plumb/unplumb operation, we may end up here more than 9695 * once because of the way ifconfig works. However, it's OK to link the same 9696 * illgrp more than once, or unlink an illgrp that's already unlinked. 9697 */ 9698 static int 9699 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9700 { 9701 int err; 9702 ip_stack_t *ipst = ill->ill_ipst; 9703 9704 ASSERT(IS_IPMP(ill)); 9705 ASSERT(IAM_WRITER_ILL(ill)); 9706 9707 switch (ioccmd) { 9708 case I_LINK: 9709 return (ENOTSUP); 9710 9711 case I_PLINK: 9712 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9713 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9714 rw_exit(&ipst->ips_ipmp_lock); 9715 break; 9716 9717 case I_PUNLINK: 9718 /* 9719 * Require all UP ipifs be brought down prior to unlinking the 9720 * illgrp so any associated IREs (and other state) is torched. 9721 */ 9722 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9723 return (EBUSY); 9724 9725 /* 9726 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9727 * with an SIOCSLIFGROUPNAME request from an ill trying to 9728 * join this group. Specifically: ills trying to join grab 9729 * ipmp_lock and bump a "pending join" counter checked by 9730 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9731 * joins can occur (since we have ipmp_lock). Once we drop 9732 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9733 * find the illgrp (since we unlinked it) and will return 9734 * EAFNOSUPPORT. This will then take them back through the 9735 * IPMP meta-interface plumbing logic in ifconfig, and thus 9736 * back through I_PLINK above. 9737 */ 9738 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9739 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9740 rw_exit(&ipst->ips_ipmp_lock); 9741 return (err); 9742 default: 9743 break; 9744 } 9745 return (0); 9746 } 9747 9748 /* 9749 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9750 * atomically set/clear the muxids. Also complete the ioctl by acking or 9751 * naking it. Note that the code is structured such that the link type, 9752 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9753 * its clones use the persistent link, while pppd(1M) and perhaps many 9754 * other daemons may use non-persistent link. When combined with some 9755 * ill_t states, linking and unlinking lower streams may be used as 9756 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9757 */ 9758 /* ARGSUSED */ 9759 void 9760 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9761 { 9762 mblk_t *mp1, *mp2; 9763 struct linkblk *li; 9764 struct ipmx_s *ipmxp; 9765 ill_t *ill; 9766 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9767 int err = 0; 9768 boolean_t entered_ipsq = B_FALSE; 9769 boolean_t islink; 9770 ip_stack_t *ipst; 9771 9772 if (CONN_Q(q)) 9773 ipst = CONNQ_TO_IPST(q); 9774 else 9775 ipst = ILLQ_TO_IPST(q); 9776 9777 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9778 ioccmd == I_LINK || ioccmd == I_UNLINK); 9779 9780 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9781 9782 mp1 = mp->b_cont; /* This is the linkblk info */ 9783 li = (struct linkblk *)mp1->b_rptr; 9784 9785 /* 9786 * ARP has added this special mblk, and the utility is asking us 9787 * to perform consistency checks, and also atomically set the 9788 * muxid. Ifconfig is an example. It achieves this by using 9789 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9790 * to /dev/udp[6] stream for use as the mux when plinking the IP 9791 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9792 * and other comments in this routine for more details. 9793 */ 9794 mp2 = mp1->b_cont; /* This is added by ARP */ 9795 9796 /* 9797 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9798 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9799 * get the special mblk above. For backward compatibility, we 9800 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9801 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9802 * not atomic, and can leave the streams unplumbable if the utility 9803 * is interrupted before it does the SIOCSLIFMUXID. 9804 */ 9805 if (mp2 == NULL) { 9806 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9807 if (err == EINPROGRESS) 9808 return; 9809 goto done; 9810 } 9811 9812 /* 9813 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9814 * ARP has appended this last mblk to tell us whether the lower stream 9815 * is an arp-dev stream or an IP module stream. 9816 */ 9817 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9818 if (ipmxp->ipmx_arpdev_stream) { 9819 /* 9820 * The lower stream is the arp-dev stream. 9821 */ 9822 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9823 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9824 if (ill == NULL) { 9825 if (err == EINPROGRESS) 9826 return; 9827 err = EINVAL; 9828 goto done; 9829 } 9830 9831 if (ipsq == NULL) { 9832 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9833 NEW_OP, B_FALSE); 9834 if (ipsq == NULL) { 9835 ill_refrele(ill); 9836 return; 9837 } 9838 entered_ipsq = B_TRUE; 9839 } 9840 ASSERT(IAM_WRITER_ILL(ill)); 9841 ill_refrele(ill); 9842 9843 /* 9844 * To ensure consistency between IP and ARP, the following 9845 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9846 * This is because the muxid's are stored in the IP stream on 9847 * the ill. 9848 * 9849 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9850 * the ARP stream. On an arp-dev stream, IP checks that it is 9851 * not yet plinked, and it also checks that the corresponding 9852 * IP stream is already plinked. 9853 * 9854 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9855 * punlinking the IP stream. IP does not allow punlink of the 9856 * IP stream unless the arp stream has been punlinked. 9857 */ 9858 if ((islink && 9859 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9860 (!islink && ill->ill_arp_muxid != li->l_index)) { 9861 err = EINVAL; 9862 goto done; 9863 } 9864 9865 if (IS_IPMP(ill) && 9866 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9867 goto done; 9868 9869 ill->ill_arp_muxid = islink ? li->l_index : 0; 9870 } else { 9871 /* 9872 * The lower stream is probably an IP module stream. Do 9873 * consistency checking. 9874 */ 9875 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9876 if (err == EINPROGRESS) 9877 return; 9878 } 9879 done: 9880 if (err == 0) 9881 miocack(q, mp, 0, 0); 9882 else 9883 miocnak(q, mp, 0, err); 9884 9885 /* Conn was refheld in ip_sioctl_copyin_setup */ 9886 if (CONN_Q(q)) 9887 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9888 if (entered_ipsq) 9889 ipsq_exit(ipsq); 9890 } 9891 9892 /* 9893 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9894 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9895 * module stream). If `doconsist' is set, then do the extended consistency 9896 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9897 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9898 * an error code on failure. 9899 */ 9900 static int 9901 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9902 struct linkblk *li, boolean_t doconsist) 9903 { 9904 int err = 0; 9905 ill_t *ill; 9906 queue_t *ipwq, *dwq; 9907 const char *name; 9908 struct qinit *qinfo; 9909 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9910 boolean_t entered_ipsq = B_FALSE; 9911 9912 /* 9913 * Walk the lower stream to verify it's the IP module stream. 9914 * The IP module is identified by its name, wput function, 9915 * and non-NULL q_next. STREAMS ensures that the lower stream 9916 * (li->l_qbot) will not vanish until this ioctl completes. 9917 */ 9918 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9919 qinfo = ipwq->q_qinfo; 9920 name = qinfo->qi_minfo->mi_idname; 9921 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9922 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9923 break; 9924 } 9925 } 9926 9927 /* 9928 * If this isn't an IP module stream, bail. 9929 */ 9930 if (ipwq == NULL) 9931 return (0); 9932 9933 ill = ipwq->q_ptr; 9934 ASSERT(ill != NULL); 9935 9936 if (ipsq == NULL) { 9937 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9938 NEW_OP, B_FALSE); 9939 if (ipsq == NULL) 9940 return (EINPROGRESS); 9941 entered_ipsq = B_TRUE; 9942 } 9943 ASSERT(IAM_WRITER_ILL(ill)); 9944 9945 if (doconsist) { 9946 /* 9947 * Consistency checking requires that I_{P}LINK occurs 9948 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9949 * occurs prior to clearing ill_arp_muxid. 9950 */ 9951 if ((islink && ill->ill_ip_muxid != 0) || 9952 (!islink && ill->ill_arp_muxid != 0)) { 9953 err = EINVAL; 9954 goto done; 9955 } 9956 } 9957 9958 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9959 goto done; 9960 9961 /* 9962 * As part of I_{P}LINKing, stash the number of downstream modules and 9963 * the read queue of the module immediately below IP in the ill. 9964 * These are used during the capability negotiation below. 9965 */ 9966 ill->ill_lmod_rq = NULL; 9967 ill->ill_lmod_cnt = 0; 9968 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9969 ill->ill_lmod_rq = RD(dwq); 9970 for (; dwq != NULL; dwq = dwq->q_next) 9971 ill->ill_lmod_cnt++; 9972 } 9973 9974 if (doconsist) 9975 ill->ill_ip_muxid = islink ? li->l_index : 0; 9976 9977 /* 9978 * Mark the ipsq busy until the capability operations initiated below 9979 * complete. The PLINK/UNLINK ioctl itself completes when our caller 9980 * returns, but the capability operation may complete asynchronously 9981 * much later. 9982 */ 9983 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 9984 /* 9985 * If there's at least one up ipif on this ill, then we're bound to 9986 * the underlying driver via DLPI. In that case, renegotiate 9987 * capabilities to account for any possible change in modules 9988 * interposed between IP and the driver. 9989 */ 9990 if (ill->ill_ipif_up_count > 0) { 9991 if (islink) 9992 ill_capability_probe(ill); 9993 else 9994 ill_capability_reset(ill, B_FALSE); 9995 } 9996 ipsq_current_finish(ipsq); 9997 done: 9998 if (entered_ipsq) 9999 ipsq_exit(ipsq); 10000 10001 return (err); 10002 } 10003 10004 /* 10005 * Search the ioctl command in the ioctl tables and return a pointer 10006 * to the ioctl command information. The ioctl command tables are 10007 * static and fully populated at compile time. 10008 */ 10009 ip_ioctl_cmd_t * 10010 ip_sioctl_lookup(int ioc_cmd) 10011 { 10012 int index; 10013 ip_ioctl_cmd_t *ipip; 10014 ip_ioctl_cmd_t *ipip_end; 10015 10016 if (ioc_cmd == IPI_DONTCARE) 10017 return (NULL); 10018 10019 /* 10020 * Do a 2 step search. First search the indexed table 10021 * based on the least significant byte of the ioctl cmd. 10022 * If we don't find a match, then search the misc table 10023 * serially. 10024 */ 10025 index = ioc_cmd & 0xFF; 10026 if (index < ip_ndx_ioctl_count) { 10027 ipip = &ip_ndx_ioctl_table[index]; 10028 if (ipip->ipi_cmd == ioc_cmd) { 10029 /* Found a match in the ndx table */ 10030 return (ipip); 10031 } 10032 } 10033 10034 /* Search the misc table */ 10035 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10036 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10037 if (ipip->ipi_cmd == ioc_cmd) 10038 /* Found a match in the misc table */ 10039 return (ipip); 10040 } 10041 10042 return (NULL); 10043 } 10044 10045 /* 10046 * Wrapper function for resuming deferred ioctl processing 10047 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10048 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10049 */ 10050 /* ARGSUSED */ 10051 void 10052 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10053 void *dummy_arg) 10054 { 10055 ip_sioctl_copyin_setup(q, mp); 10056 } 10057 10058 /* 10059 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10060 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10061 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10062 * We establish here the size of the block to be copied in. mi_copyin 10063 * arranges for this to happen, an processing continues in ip_wput with 10064 * an M_IOCDATA message. 10065 */ 10066 void 10067 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10068 { 10069 int copyin_size; 10070 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10071 ip_ioctl_cmd_t *ipip; 10072 cred_t *cr; 10073 ip_stack_t *ipst; 10074 10075 if (CONN_Q(q)) 10076 ipst = CONNQ_TO_IPST(q); 10077 else 10078 ipst = ILLQ_TO_IPST(q); 10079 10080 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10081 if (ipip == NULL) { 10082 /* 10083 * The ioctl is not one we understand or own. 10084 * Pass it along to be processed down stream, 10085 * if this is a module instance of IP, else nak 10086 * the ioctl. 10087 */ 10088 if (q->q_next == NULL) { 10089 goto nak; 10090 } else { 10091 putnext(q, mp); 10092 return; 10093 } 10094 } 10095 10096 /* 10097 * If this is deferred, then we will do all the checks when we 10098 * come back. 10099 */ 10100 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10101 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10102 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10103 return; 10104 } 10105 10106 /* 10107 * Only allow a very small subset of IP ioctls on this stream if 10108 * IP is a module and not a driver. Allowing ioctls to be processed 10109 * in this case may cause assert failures or data corruption. 10110 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10111 * ioctls allowed on an IP module stream, after which this stream 10112 * normally becomes a multiplexor (at which time the stream head 10113 * will fail all ioctls). 10114 */ 10115 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10116 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10117 /* 10118 * Pass common Streams ioctls which the IP 10119 * module does not own or consume along to 10120 * be processed down stream. 10121 */ 10122 putnext(q, mp); 10123 return; 10124 } else { 10125 goto nak; 10126 } 10127 } 10128 10129 /* Make sure we have ioctl data to process. */ 10130 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10131 goto nak; 10132 10133 /* 10134 * Prefer dblk credential over ioctl credential; some synthesized 10135 * ioctls have kcred set because there's no way to crhold() 10136 * a credential in some contexts. (ioc_cr is not crfree() by 10137 * the framework; the caller of ioctl needs to hold the reference 10138 * for the duration of the call). 10139 */ 10140 cr = msg_getcred(mp, NULL); 10141 if (cr == NULL) 10142 cr = iocp->ioc_cr; 10143 10144 /* Make sure normal users don't send down privileged ioctls */ 10145 if ((ipip->ipi_flags & IPI_PRIV) && 10146 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10147 /* We checked the privilege earlier but log it here */ 10148 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10149 return; 10150 } 10151 10152 /* 10153 * The ioctl command tables can only encode fixed length 10154 * ioctl data. If the length is variable, the table will 10155 * encode the length as zero. Such special cases are handled 10156 * below in the switch. 10157 */ 10158 if (ipip->ipi_copyin_size != 0) { 10159 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10160 return; 10161 } 10162 10163 switch (iocp->ioc_cmd) { 10164 case O_SIOCGIFCONF: 10165 case SIOCGIFCONF: 10166 /* 10167 * This IOCTL is hilarious. See comments in 10168 * ip_sioctl_get_ifconf for the story. 10169 */ 10170 if (iocp->ioc_count == TRANSPARENT) 10171 copyin_size = SIZEOF_STRUCT(ifconf, 10172 iocp->ioc_flag); 10173 else 10174 copyin_size = iocp->ioc_count; 10175 mi_copyin(q, mp, NULL, copyin_size); 10176 return; 10177 10178 case O_SIOCGLIFCONF: 10179 case SIOCGLIFCONF: 10180 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10181 mi_copyin(q, mp, NULL, copyin_size); 10182 return; 10183 10184 case SIOCGLIFSRCOF: 10185 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10186 mi_copyin(q, mp, NULL, copyin_size); 10187 return; 10188 case SIOCGIP6ADDRPOLICY: 10189 ip_sioctl_ip6addrpolicy(q, mp); 10190 ip6_asp_table_refrele(ipst); 10191 return; 10192 10193 case SIOCSIP6ADDRPOLICY: 10194 ip_sioctl_ip6addrpolicy(q, mp); 10195 return; 10196 10197 case SIOCGDSTINFO: 10198 ip_sioctl_dstinfo(q, mp); 10199 ip6_asp_table_refrele(ipst); 10200 return; 10201 10202 case I_PLINK: 10203 case I_PUNLINK: 10204 case I_LINK: 10205 case I_UNLINK: 10206 /* 10207 * We treat non-persistent link similarly as the persistent 10208 * link case, in terms of plumbing/unplumbing, as well as 10209 * dynamic re-plumbing events indicator. See comments 10210 * in ip_sioctl_plink() for more. 10211 * 10212 * Request can be enqueued in the 'ipsq' while waiting 10213 * to become exclusive. So bump up the conn ref. 10214 */ 10215 if (CONN_Q(q)) 10216 CONN_INC_REF(Q_TO_CONN(q)); 10217 ip_sioctl_plink(NULL, q, mp, NULL); 10218 return; 10219 10220 case ND_GET: 10221 case ND_SET: 10222 /* 10223 * Use of the nd table requires holding the reader lock. 10224 * Modifying the nd table thru nd_load/nd_unload requires 10225 * the writer lock. 10226 */ 10227 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10228 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10229 rw_exit(&ipst->ips_ip_g_nd_lock); 10230 10231 if (iocp->ioc_error) 10232 iocp->ioc_count = 0; 10233 mp->b_datap->db_type = M_IOCACK; 10234 qreply(q, mp); 10235 return; 10236 } 10237 rw_exit(&ipst->ips_ip_g_nd_lock); 10238 /* 10239 * We don't understand this subioctl of ND_GET / ND_SET. 10240 * Maybe intended for some driver / module below us 10241 */ 10242 if (q->q_next) { 10243 putnext(q, mp); 10244 } else { 10245 iocp->ioc_error = ENOENT; 10246 mp->b_datap->db_type = M_IOCNAK; 10247 iocp->ioc_count = 0; 10248 qreply(q, mp); 10249 } 10250 return; 10251 10252 case IP_IOCTL: 10253 ip_wput_ioctl(q, mp); 10254 return; 10255 default: 10256 cmn_err(CE_PANIC, "should not happen "); 10257 } 10258 nak: 10259 if (mp->b_cont != NULL) { 10260 freemsg(mp->b_cont); 10261 mp->b_cont = NULL; 10262 } 10263 iocp->ioc_error = EINVAL; 10264 mp->b_datap->db_type = M_IOCNAK; 10265 iocp->ioc_count = 0; 10266 qreply(q, mp); 10267 } 10268 10269 /* ip_wput hands off ARP IOCTL responses to us */ 10270 /* ARGSUSED3 */ 10271 void 10272 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10273 { 10274 struct arpreq *ar; 10275 struct xarpreq *xar; 10276 area_t *area; 10277 mblk_t *area_mp; 10278 struct iocblk *iocp; 10279 mblk_t *orig_ioc_mp, *tmp; 10280 struct iocblk *orig_iocp; 10281 ill_t *ill; 10282 conn_t *connp = NULL; 10283 mblk_t *pending_mp; 10284 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10285 int *flagsp; 10286 char *storage = NULL; 10287 sin_t *sin; 10288 ipaddr_t addr; 10289 int err; 10290 ip_stack_t *ipst; 10291 10292 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10293 ill = q->q_ptr; 10294 ASSERT(ill != NULL); 10295 ipst = ill->ill_ipst; 10296 10297 /* 10298 * We should get back from ARP a packet chain that looks like: 10299 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10300 */ 10301 if (!(area_mp = mp->b_cont) || 10302 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10303 !(orig_ioc_mp = area_mp->b_cont) || 10304 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10305 freemsg(mp); 10306 return; 10307 } 10308 10309 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10310 10311 tmp = (orig_ioc_mp->b_cont)->b_cont; 10312 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10313 (orig_iocp->ioc_cmd == SIOCSXARP) || 10314 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10315 x_arp_ioctl = B_TRUE; 10316 xar = (struct xarpreq *)tmp->b_rptr; 10317 sin = (sin_t *)&xar->xarp_pa; 10318 flagsp = &xar->xarp_flags; 10319 storage = xar->xarp_ha.sdl_data; 10320 if (xar->xarp_ha.sdl_nlen != 0) 10321 ifx_arp_ioctl = B_TRUE; 10322 } else { 10323 ar = (struct arpreq *)tmp->b_rptr; 10324 sin = (sin_t *)&ar->arp_pa; 10325 flagsp = &ar->arp_flags; 10326 storage = ar->arp_ha.sa_data; 10327 } 10328 10329 iocp = (struct iocblk *)mp->b_rptr; 10330 10331 /* 10332 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10333 * Otherwise, we can find it from our ioc_id. 10334 */ 10335 if (ipsq != NULL) 10336 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10337 else 10338 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10339 10340 if (pending_mp == NULL) { 10341 ASSERT(connp == NULL); 10342 inet_freemsg(mp); 10343 return; 10344 } 10345 ASSERT(connp != NULL); 10346 q = CONNP_TO_WQ(connp); 10347 10348 /* Uncouple the internally generated IOCTL from the original one */ 10349 area = (area_t *)area_mp->b_rptr; 10350 area_mp->b_cont = NULL; 10351 10352 /* 10353 * Restore the b_next and b_prev used by mi code. This is needed 10354 * to complete the ioctl using mi* functions. We stored them in 10355 * the pending mp prior to sending the request to ARP. 10356 */ 10357 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10358 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10359 inet_freemsg(pending_mp); 10360 10361 /* 10362 * We're done if there was an error or if this is not an SIOCG{X}ARP 10363 * Catch the case where there is an IRE_CACHE by no entry in the 10364 * arp table. 10365 */ 10366 addr = sin->sin_addr.s_addr; 10367 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10368 ire_t *ire; 10369 dl_unitdata_req_t *dlup; 10370 mblk_t *llmp; 10371 int addr_len; 10372 ill_t *ipsqill = NULL; 10373 10374 if (ifx_arp_ioctl) { 10375 /* 10376 * There's no need to lookup the ill, since 10377 * we've already done that when we started 10378 * processing the ioctl and sent the message 10379 * to ARP on that ill. So use the ill that 10380 * is stored in q->q_ptr. 10381 */ 10382 ipsqill = ill; 10383 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10384 ipsqill->ill_ipif, ALL_ZONES, 10385 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10386 } else { 10387 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10388 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10389 if (ire != NULL) 10390 ipsqill = ire_to_ill(ire); 10391 } 10392 10393 if ((x_arp_ioctl) && (ipsqill != NULL)) 10394 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10395 10396 if (ire != NULL) { 10397 /* 10398 * Since the ire obtained from cachetable is used for 10399 * mac addr copying below, treat an incomplete ire as if 10400 * as if we never found it. 10401 */ 10402 if (ire->ire_nce != NULL && 10403 ire->ire_nce->nce_state != ND_REACHABLE) { 10404 ire_refrele(ire); 10405 ire = NULL; 10406 ipsqill = NULL; 10407 goto errack; 10408 } 10409 *flagsp = ATF_INUSE; 10410 llmp = (ire->ire_nce != NULL ? 10411 ire->ire_nce->nce_res_mp : NULL); 10412 if (llmp != NULL && ipsqill != NULL) { 10413 uchar_t *macaddr; 10414 10415 addr_len = ipsqill->ill_phys_addr_length; 10416 if (x_arp_ioctl && ((addr_len + 10417 ipsqill->ill_name_length) > 10418 sizeof (xar->xarp_ha.sdl_data))) { 10419 ire_refrele(ire); 10420 freemsg(mp); 10421 ip_ioctl_finish(q, orig_ioc_mp, 10422 EINVAL, NO_COPYOUT, ipsq); 10423 return; 10424 } 10425 *flagsp |= ATF_COM; 10426 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10427 if (ipsqill->ill_sap_length < 0) 10428 macaddr = llmp->b_rptr + 10429 dlup->dl_dest_addr_offset; 10430 else 10431 macaddr = llmp->b_rptr + 10432 dlup->dl_dest_addr_offset + 10433 ipsqill->ill_sap_length; 10434 /* 10435 * For SIOCGARP, MAC address length 10436 * validation has already been done 10437 * before the ioctl was issued to ARP to 10438 * allow it to progress only on 6 byte 10439 * addressable (ethernet like) media. Thus 10440 * the mac address copying can not overwrite 10441 * the sa_data area below. 10442 */ 10443 bcopy(macaddr, storage, addr_len); 10444 } 10445 /* Ditch the internal IOCTL. */ 10446 freemsg(mp); 10447 ire_refrele(ire); 10448 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10449 return; 10450 } 10451 } 10452 10453 /* 10454 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10455 * on the IPMP meta-interface, ensure any ARP entries added in 10456 * ip_sioctl_arp() are deleted. 10457 */ 10458 if (IS_IPMP(ill) && 10459 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10460 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10461 ipmp_illgrp_t *illg = ill->ill_grp; 10462 ipmp_arpent_t *entp; 10463 10464 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10465 ipmp_illgrp_destroy_arpent(illg, entp); 10466 } 10467 10468 /* 10469 * Delete the coresponding IRE_CACHE if any. 10470 * Reset the error if there was one (in case there was no entry 10471 * in arp.) 10472 */ 10473 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10474 ipif_t *ipintf = NULL; 10475 10476 if (ifx_arp_ioctl) { 10477 /* 10478 * There's no need to lookup the ill, since 10479 * we've already done that when we started 10480 * processing the ioctl and sent the message 10481 * to ARP on that ill. So use the ill that 10482 * is stored in q->q_ptr. 10483 */ 10484 ipintf = ill->ill_ipif; 10485 } 10486 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10487 /* 10488 * The address in "addr" may be an entry for a 10489 * router. If that's true, then any off-net 10490 * IRE_CACHE entries that go through the router 10491 * with address "addr" must be clobbered. Use 10492 * ire_walk to achieve this goal. 10493 */ 10494 if (ifx_arp_ioctl) 10495 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10496 ire_delete_cache_gw, (char *)&addr, ill); 10497 else 10498 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10499 ALL_ZONES, ipst); 10500 iocp->ioc_error = 0; 10501 } 10502 } 10503 errack: 10504 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10505 err = iocp->ioc_error; 10506 freemsg(mp); 10507 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10508 return; 10509 } 10510 10511 /* 10512 * Completion of an SIOCG{X}ARP. Translate the information from 10513 * the area_t into the struct {x}arpreq. 10514 */ 10515 if (x_arp_ioctl) { 10516 storage += ill_xarp_info(&xar->xarp_ha, ill); 10517 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10518 sizeof (xar->xarp_ha.sdl_data)) { 10519 freemsg(mp); 10520 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10521 ipsq); 10522 return; 10523 } 10524 } 10525 *flagsp = ATF_INUSE; 10526 if (area->area_flags & ACE_F_PERMANENT) 10527 *flagsp |= ATF_PERM; 10528 if (area->area_flags & ACE_F_PUBLISH) 10529 *flagsp |= ATF_PUBL; 10530 if (area->area_flags & ACE_F_AUTHORITY) 10531 *flagsp |= ATF_AUTHORITY; 10532 if (area->area_hw_addr_length != 0) { 10533 *flagsp |= ATF_COM; 10534 /* 10535 * For SIOCGARP, MAC address length validation has 10536 * already been done before the ioctl was issued to ARP 10537 * to allow it to progress only on 6 byte addressable 10538 * (ethernet like) media. Thus the mac address copying 10539 * can not overwrite the sa_data area below. 10540 */ 10541 bcopy((char *)area + area->area_hw_addr_offset, 10542 storage, area->area_hw_addr_length); 10543 } 10544 10545 /* Ditch the internal IOCTL. */ 10546 freemsg(mp); 10547 /* Complete the original. */ 10548 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10549 } 10550 10551 /* 10552 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10553 * interface) create the next available logical interface for this 10554 * physical interface. 10555 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10556 * ipif with the specified name. 10557 * 10558 * If the address family is not AF_UNSPEC then set the address as well. 10559 * 10560 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10561 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10562 * 10563 * Executed as a writer on the ill. 10564 * So no lock is needed to traverse the ipif chain, or examine the 10565 * phyint flags. 10566 */ 10567 /* ARGSUSED */ 10568 int 10569 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10570 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10571 { 10572 mblk_t *mp1; 10573 struct lifreq *lifr; 10574 boolean_t isv6; 10575 boolean_t exists; 10576 char *name; 10577 char *endp; 10578 char *cp; 10579 int namelen; 10580 ipif_t *ipif; 10581 long id; 10582 ipsq_t *ipsq; 10583 ill_t *ill; 10584 sin_t *sin; 10585 int err = 0; 10586 boolean_t found_sep = B_FALSE; 10587 conn_t *connp; 10588 zoneid_t zoneid; 10589 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10590 10591 ASSERT(q->q_next == NULL); 10592 ip1dbg(("ip_sioctl_addif\n")); 10593 /* Existence of mp1 has been checked in ip_wput_nondata */ 10594 mp1 = mp->b_cont->b_cont; 10595 /* 10596 * Null terminate the string to protect against buffer 10597 * overrun. String was generated by user code and may not 10598 * be trusted. 10599 */ 10600 lifr = (struct lifreq *)mp1->b_rptr; 10601 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10602 name = lifr->lifr_name; 10603 ASSERT(CONN_Q(q)); 10604 connp = Q_TO_CONN(q); 10605 isv6 = connp->conn_af_isv6; 10606 zoneid = connp->conn_zoneid; 10607 namelen = mi_strlen(name); 10608 if (namelen == 0) 10609 return (EINVAL); 10610 10611 exists = B_FALSE; 10612 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10613 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10614 /* 10615 * Allow creating lo0 using SIOCLIFADDIF. 10616 * can't be any other writer thread. So can pass null below 10617 * for the last 4 args to ipif_lookup_name. 10618 */ 10619 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10620 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10621 /* Prevent any further action */ 10622 if (ipif == NULL) { 10623 return (ENOBUFS); 10624 } else if (!exists) { 10625 /* We created the ipif now and as writer */ 10626 ipif_refrele(ipif); 10627 return (0); 10628 } else { 10629 ill = ipif->ipif_ill; 10630 ill_refhold(ill); 10631 ipif_refrele(ipif); 10632 } 10633 } else { 10634 /* Look for a colon in the name. */ 10635 endp = &name[namelen]; 10636 for (cp = endp; --cp > name; ) { 10637 if (*cp == IPIF_SEPARATOR_CHAR) { 10638 found_sep = B_TRUE; 10639 /* 10640 * Reject any non-decimal aliases for plumbing 10641 * of logical interfaces. Aliases with leading 10642 * zeroes are also rejected as they introduce 10643 * ambiguity in the naming of the interfaces. 10644 * Comparing with "0" takes care of all such 10645 * cases. 10646 */ 10647 if ((strncmp("0", cp+1, 1)) == 0) 10648 return (EINVAL); 10649 10650 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10651 id <= 0 || *endp != '\0') { 10652 return (EINVAL); 10653 } 10654 *cp = '\0'; 10655 break; 10656 } 10657 } 10658 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10659 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10660 if (found_sep) 10661 *cp = IPIF_SEPARATOR_CHAR; 10662 if (ill == NULL) 10663 return (err); 10664 } 10665 10666 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10667 B_TRUE); 10668 10669 /* 10670 * Release the refhold due to the lookup, now that we are excl 10671 * or we are just returning 10672 */ 10673 ill_refrele(ill); 10674 10675 if (ipsq == NULL) 10676 return (EINPROGRESS); 10677 10678 /* We are now exclusive on the IPSQ */ 10679 ASSERT(IAM_WRITER_ILL(ill)); 10680 10681 if (found_sep) { 10682 /* Now see if there is an IPIF with this unit number. */ 10683 for (ipif = ill->ill_ipif; ipif != NULL; 10684 ipif = ipif->ipif_next) { 10685 if (ipif->ipif_id == id) { 10686 err = EEXIST; 10687 goto done; 10688 } 10689 } 10690 } 10691 10692 /* 10693 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10694 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10695 * instead. 10696 */ 10697 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10698 B_TRUE, B_TRUE)) == NULL) { 10699 err = ENOBUFS; 10700 goto done; 10701 } 10702 10703 /* Return created name with ioctl */ 10704 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10705 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10706 ip1dbg(("created %s\n", lifr->lifr_name)); 10707 10708 /* Set address */ 10709 sin = (sin_t *)&lifr->lifr_addr; 10710 if (sin->sin_family != AF_UNSPEC) { 10711 err = ip_sioctl_addr(ipif, sin, q, mp, 10712 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10713 } 10714 10715 done: 10716 ipsq_exit(ipsq); 10717 return (err); 10718 } 10719 10720 /* 10721 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10722 * interface) delete it based on the IP address (on this physical interface). 10723 * Otherwise delete it based on the ipif_id. 10724 * Also, special handling to allow a removeif of lo0. 10725 */ 10726 /* ARGSUSED */ 10727 int 10728 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10729 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10730 { 10731 conn_t *connp; 10732 ill_t *ill = ipif->ipif_ill; 10733 boolean_t success; 10734 ip_stack_t *ipst; 10735 10736 ipst = CONNQ_TO_IPST(q); 10737 10738 ASSERT(q->q_next == NULL); 10739 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10740 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10741 ASSERT(IAM_WRITER_IPIF(ipif)); 10742 10743 connp = Q_TO_CONN(q); 10744 /* 10745 * Special case for unplumbing lo0 (the loopback physical interface). 10746 * If unplumbing lo0, the incoming address structure has been 10747 * initialized to all zeros. When unplumbing lo0, all its logical 10748 * interfaces must be removed too. 10749 * 10750 * Note that this interface may be called to remove a specific 10751 * loopback logical interface (eg, lo0:1). But in that case 10752 * ipif->ipif_id != 0 so that the code path for that case is the 10753 * same as any other interface (meaning it skips the code directly 10754 * below). 10755 */ 10756 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10757 if (sin->sin_family == AF_UNSPEC && 10758 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10759 /* 10760 * Mark it condemned. No new ref. will be made to ill. 10761 */ 10762 mutex_enter(&ill->ill_lock); 10763 ill->ill_state_flags |= ILL_CONDEMNED; 10764 for (ipif = ill->ill_ipif; ipif != NULL; 10765 ipif = ipif->ipif_next) { 10766 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10767 } 10768 mutex_exit(&ill->ill_lock); 10769 10770 ipif = ill->ill_ipif; 10771 /* unplumb the loopback interface */ 10772 ill_delete(ill); 10773 mutex_enter(&connp->conn_lock); 10774 mutex_enter(&ill->ill_lock); 10775 10776 /* Are any references to this ill active */ 10777 if (ill_is_freeable(ill)) { 10778 mutex_exit(&ill->ill_lock); 10779 mutex_exit(&connp->conn_lock); 10780 ill_delete_tail(ill); 10781 mi_free(ill); 10782 return (0); 10783 } 10784 success = ipsq_pending_mp_add(connp, ipif, 10785 CONNP_TO_WQ(connp), mp, ILL_FREE); 10786 mutex_exit(&connp->conn_lock); 10787 mutex_exit(&ill->ill_lock); 10788 if (success) 10789 return (EINPROGRESS); 10790 else 10791 return (EINTR); 10792 } 10793 } 10794 10795 if (ipif->ipif_id == 0) { 10796 ipsq_t *ipsq; 10797 10798 /* Find based on address */ 10799 if (ipif->ipif_isv6) { 10800 sin6_t *sin6; 10801 10802 if (sin->sin_family != AF_INET6) 10803 return (EAFNOSUPPORT); 10804 10805 sin6 = (sin6_t *)sin; 10806 /* We are a writer, so we should be able to lookup */ 10807 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10808 ipst); 10809 } else { 10810 if (sin->sin_family != AF_INET) 10811 return (EAFNOSUPPORT); 10812 10813 /* We are a writer, so we should be able to lookup */ 10814 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10815 ipst); 10816 } 10817 if (ipif == NULL) { 10818 return (EADDRNOTAVAIL); 10819 } 10820 10821 /* 10822 * It is possible for a user to send an SIOCLIFREMOVEIF with 10823 * lifr_name of the physical interface but with an ip address 10824 * lifr_addr of a logical interface plumbed over it. 10825 * So update ipx_current_ipif now that ipif points to the 10826 * correct one. 10827 */ 10828 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10829 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10830 10831 /* This is a writer */ 10832 ipif_refrele(ipif); 10833 } 10834 10835 /* 10836 * Can not delete instance zero since it is tied to the ill. 10837 */ 10838 if (ipif->ipif_id == 0) 10839 return (EBUSY); 10840 10841 mutex_enter(&ill->ill_lock); 10842 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10843 mutex_exit(&ill->ill_lock); 10844 10845 ipif_free(ipif); 10846 10847 mutex_enter(&connp->conn_lock); 10848 mutex_enter(&ill->ill_lock); 10849 10850 /* Are any references to this ipif active */ 10851 if (ipif_is_freeable(ipif)) { 10852 mutex_exit(&ill->ill_lock); 10853 mutex_exit(&connp->conn_lock); 10854 ipif_non_duplicate(ipif); 10855 ipif_down_tail(ipif); 10856 ipif_free_tail(ipif); /* frees ipif */ 10857 return (0); 10858 } 10859 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10860 IPIF_FREE); 10861 mutex_exit(&ill->ill_lock); 10862 mutex_exit(&connp->conn_lock); 10863 if (success) 10864 return (EINPROGRESS); 10865 else 10866 return (EINTR); 10867 } 10868 10869 /* 10870 * Restart the removeif ioctl. The refcnt has gone down to 0. 10871 * The ipif is already condemned. So can't find it thru lookups. 10872 */ 10873 /* ARGSUSED */ 10874 int 10875 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10876 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10877 { 10878 ill_t *ill = ipif->ipif_ill; 10879 10880 ASSERT(IAM_WRITER_IPIF(ipif)); 10881 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10882 10883 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10884 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10885 10886 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10887 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10888 ill_delete_tail(ill); 10889 mi_free(ill); 10890 return (0); 10891 } 10892 10893 ipif_non_duplicate(ipif); 10894 ipif_down_tail(ipif); 10895 ipif_free_tail(ipif); 10896 10897 ILL_UNMARK_CHANGING(ill); 10898 return (0); 10899 } 10900 10901 /* 10902 * Set the local interface address. 10903 * Allow an address of all zero when the interface is down. 10904 */ 10905 /* ARGSUSED */ 10906 int 10907 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10908 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10909 { 10910 int err = 0; 10911 in6_addr_t v6addr; 10912 boolean_t need_up = B_FALSE; 10913 10914 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10915 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10916 10917 ASSERT(IAM_WRITER_IPIF(ipif)); 10918 10919 if (ipif->ipif_isv6) { 10920 sin6_t *sin6; 10921 ill_t *ill; 10922 phyint_t *phyi; 10923 10924 if (sin->sin_family != AF_INET6) 10925 return (EAFNOSUPPORT); 10926 10927 sin6 = (sin6_t *)sin; 10928 v6addr = sin6->sin6_addr; 10929 ill = ipif->ipif_ill; 10930 phyi = ill->ill_phyint; 10931 10932 /* 10933 * Enforce that true multicast interfaces have a link-local 10934 * address for logical unit 0. 10935 */ 10936 if (ipif->ipif_id == 0 && 10937 (ill->ill_flags & ILLF_MULTICAST) && 10938 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10939 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10940 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10941 return (EADDRNOTAVAIL); 10942 } 10943 10944 /* 10945 * up interfaces shouldn't have the unspecified address 10946 * unless they also have the IPIF_NOLOCAL flags set and 10947 * have a subnet assigned. 10948 */ 10949 if ((ipif->ipif_flags & IPIF_UP) && 10950 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10951 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10952 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10953 return (EADDRNOTAVAIL); 10954 } 10955 10956 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10957 return (EADDRNOTAVAIL); 10958 } else { 10959 ipaddr_t addr; 10960 10961 if (sin->sin_family != AF_INET) 10962 return (EAFNOSUPPORT); 10963 10964 addr = sin->sin_addr.s_addr; 10965 10966 /* Allow 0 as the local address. */ 10967 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10968 return (EADDRNOTAVAIL); 10969 10970 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10971 } 10972 10973 /* 10974 * Even if there is no change we redo things just to rerun 10975 * ipif_set_default. 10976 */ 10977 if (ipif->ipif_flags & IPIF_UP) { 10978 /* 10979 * Setting a new local address, make sure 10980 * we have net and subnet bcast ire's for 10981 * the old address if we need them. 10982 */ 10983 if (!ipif->ipif_isv6) 10984 ipif_check_bcast_ires(ipif); 10985 /* 10986 * If the interface is already marked up, 10987 * we call ipif_down which will take care 10988 * of ditching any IREs that have been set 10989 * up based on the old interface address. 10990 */ 10991 err = ipif_logical_down(ipif, q, mp); 10992 if (err == EINPROGRESS) 10993 return (err); 10994 ipif_down_tail(ipif); 10995 need_up = 1; 10996 } 10997 10998 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10999 return (err); 11000 } 11001 11002 int 11003 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11004 boolean_t need_up) 11005 { 11006 in6_addr_t v6addr; 11007 in6_addr_t ov6addr; 11008 ipaddr_t addr; 11009 sin6_t *sin6; 11010 int sinlen; 11011 int err = 0; 11012 ill_t *ill = ipif->ipif_ill; 11013 boolean_t need_dl_down; 11014 boolean_t need_arp_down; 11015 struct iocblk *iocp; 11016 11017 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11018 11019 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11020 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11021 ASSERT(IAM_WRITER_IPIF(ipif)); 11022 11023 /* Must cancel any pending timer before taking the ill_lock */ 11024 if (ipif->ipif_recovery_id != 0) 11025 (void) untimeout(ipif->ipif_recovery_id); 11026 ipif->ipif_recovery_id = 0; 11027 11028 if (ipif->ipif_isv6) { 11029 sin6 = (sin6_t *)sin; 11030 v6addr = sin6->sin6_addr; 11031 sinlen = sizeof (struct sockaddr_in6); 11032 } else { 11033 addr = sin->sin_addr.s_addr; 11034 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11035 sinlen = sizeof (struct sockaddr_in); 11036 } 11037 mutex_enter(&ill->ill_lock); 11038 ov6addr = ipif->ipif_v6lcl_addr; 11039 ipif->ipif_v6lcl_addr = v6addr; 11040 sctp_update_ipif_addr(ipif, ov6addr); 11041 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11042 ipif->ipif_v6src_addr = ipv6_all_zeros; 11043 } else { 11044 ipif->ipif_v6src_addr = v6addr; 11045 } 11046 ipif->ipif_addr_ready = 0; 11047 11048 /* 11049 * If the interface was previously marked as a duplicate, then since 11050 * we've now got a "new" address, it should no longer be considered a 11051 * duplicate -- even if the "new" address is the same as the old one. 11052 * Note that if all ipifs are down, we may have a pending ARP down 11053 * event to handle. This is because we want to recover from duplicates 11054 * and thus delay tearing down ARP until the duplicates have been 11055 * removed or disabled. 11056 */ 11057 need_dl_down = need_arp_down = B_FALSE; 11058 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11059 need_arp_down = !need_up; 11060 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11061 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11062 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11063 need_dl_down = B_TRUE; 11064 } 11065 } 11066 11067 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11068 !ill->ill_is_6to4tun) { 11069 queue_t *wqp = ill->ill_wq; 11070 11071 /* 11072 * The local address of this interface is a 6to4 address, 11073 * check if this interface is in fact a 6to4 tunnel or just 11074 * an interface configured with a 6to4 address. We are only 11075 * interested in the former. 11076 */ 11077 if (wqp != NULL) { 11078 while ((wqp->q_next != NULL) && 11079 (wqp->q_next->q_qinfo != NULL) && 11080 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11081 11082 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11083 == TUN6TO4_MODID) { 11084 /* set for use in IP */ 11085 ill->ill_is_6to4tun = 1; 11086 break; 11087 } 11088 wqp = wqp->q_next; 11089 } 11090 } 11091 } 11092 11093 ipif_set_default(ipif); 11094 11095 /* 11096 * When publishing an interface address change event, we only notify 11097 * the event listeners of the new address. It is assumed that if they 11098 * actively care about the addresses assigned that they will have 11099 * already discovered the previous address assigned (if there was one.) 11100 * 11101 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11102 */ 11103 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11104 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11105 NE_ADDRESS_CHANGE, sin, sinlen); 11106 } 11107 11108 mutex_exit(&ill->ill_lock); 11109 11110 if (need_up) { 11111 /* 11112 * Now bring the interface back up. If this 11113 * is the only IPIF for the ILL, ipif_up 11114 * will have to re-bind to the device, so 11115 * we may get back EINPROGRESS, in which 11116 * case, this IOCTL will get completed in 11117 * ip_rput_dlpi when we see the DL_BIND_ACK. 11118 */ 11119 err = ipif_up(ipif, q, mp); 11120 } 11121 11122 if (need_dl_down) 11123 ill_dl_down(ill); 11124 if (need_arp_down) 11125 ipif_resolver_down(ipif); 11126 11127 return (err); 11128 } 11129 11130 /* 11131 * Restart entry point to restart the address set operation after the 11132 * refcounts have dropped to zero. 11133 */ 11134 /* ARGSUSED */ 11135 int 11136 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11137 ip_ioctl_cmd_t *ipip, void *ifreq) 11138 { 11139 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11141 ASSERT(IAM_WRITER_IPIF(ipif)); 11142 ipif_down_tail(ipif); 11143 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11144 } 11145 11146 /* ARGSUSED */ 11147 int 11148 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11149 ip_ioctl_cmd_t *ipip, void *if_req) 11150 { 11151 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11152 struct lifreq *lifr = (struct lifreq *)if_req; 11153 11154 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11155 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11156 /* 11157 * The net mask and address can't change since we have a 11158 * reference to the ipif. So no lock is necessary. 11159 */ 11160 if (ipif->ipif_isv6) { 11161 *sin6 = sin6_null; 11162 sin6->sin6_family = AF_INET6; 11163 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11164 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11165 lifr->lifr_addrlen = 11166 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11167 } else { 11168 *sin = sin_null; 11169 sin->sin_family = AF_INET; 11170 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11171 if (ipip->ipi_cmd_type == LIF_CMD) { 11172 lifr->lifr_addrlen = 11173 ip_mask_to_plen(ipif->ipif_net_mask); 11174 } 11175 } 11176 return (0); 11177 } 11178 11179 /* 11180 * Set the destination address for a pt-pt interface. 11181 */ 11182 /* ARGSUSED */ 11183 int 11184 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11185 ip_ioctl_cmd_t *ipip, void *if_req) 11186 { 11187 int err = 0; 11188 in6_addr_t v6addr; 11189 boolean_t need_up = B_FALSE; 11190 11191 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11192 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11193 ASSERT(IAM_WRITER_IPIF(ipif)); 11194 11195 if (ipif->ipif_isv6) { 11196 sin6_t *sin6; 11197 11198 if (sin->sin_family != AF_INET6) 11199 return (EAFNOSUPPORT); 11200 11201 sin6 = (sin6_t *)sin; 11202 v6addr = sin6->sin6_addr; 11203 11204 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11205 return (EADDRNOTAVAIL); 11206 } else { 11207 ipaddr_t addr; 11208 11209 if (sin->sin_family != AF_INET) 11210 return (EAFNOSUPPORT); 11211 11212 addr = sin->sin_addr.s_addr; 11213 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11214 return (EADDRNOTAVAIL); 11215 11216 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11217 } 11218 11219 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11220 return (0); /* No change */ 11221 11222 if (ipif->ipif_flags & IPIF_UP) { 11223 /* 11224 * If the interface is already marked up, 11225 * we call ipif_down which will take care 11226 * of ditching any IREs that have been set 11227 * up based on the old pp dst address. 11228 */ 11229 err = ipif_logical_down(ipif, q, mp); 11230 if (err == EINPROGRESS) 11231 return (err); 11232 ipif_down_tail(ipif); 11233 need_up = B_TRUE; 11234 } 11235 /* 11236 * could return EINPROGRESS. If so ioctl will complete in 11237 * ip_rput_dlpi_writer 11238 */ 11239 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11240 return (err); 11241 } 11242 11243 static int 11244 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11245 boolean_t need_up) 11246 { 11247 in6_addr_t v6addr; 11248 ill_t *ill = ipif->ipif_ill; 11249 int err = 0; 11250 boolean_t need_dl_down; 11251 boolean_t need_arp_down; 11252 11253 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11254 ipif->ipif_id, (void *)ipif)); 11255 11256 /* Must cancel any pending timer before taking the ill_lock */ 11257 if (ipif->ipif_recovery_id != 0) 11258 (void) untimeout(ipif->ipif_recovery_id); 11259 ipif->ipif_recovery_id = 0; 11260 11261 if (ipif->ipif_isv6) { 11262 sin6_t *sin6; 11263 11264 sin6 = (sin6_t *)sin; 11265 v6addr = sin6->sin6_addr; 11266 } else { 11267 ipaddr_t addr; 11268 11269 addr = sin->sin_addr.s_addr; 11270 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11271 } 11272 mutex_enter(&ill->ill_lock); 11273 /* Set point to point destination address. */ 11274 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11275 /* 11276 * Allow this as a means of creating logical 11277 * pt-pt interfaces on top of e.g. an Ethernet. 11278 * XXX Undocumented HACK for testing. 11279 * pt-pt interfaces are created with NUD disabled. 11280 */ 11281 ipif->ipif_flags |= IPIF_POINTOPOINT; 11282 ipif->ipif_flags &= ~IPIF_BROADCAST; 11283 if (ipif->ipif_isv6) 11284 ill->ill_flags |= ILLF_NONUD; 11285 } 11286 11287 /* 11288 * If the interface was previously marked as a duplicate, then since 11289 * we've now got a "new" address, it should no longer be considered a 11290 * duplicate -- even if the "new" address is the same as the old one. 11291 * Note that if all ipifs are down, we may have a pending ARP down 11292 * event to handle. 11293 */ 11294 need_dl_down = need_arp_down = B_FALSE; 11295 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11296 need_arp_down = !need_up; 11297 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11298 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11299 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11300 need_dl_down = B_TRUE; 11301 } 11302 } 11303 11304 /* Set the new address. */ 11305 ipif->ipif_v6pp_dst_addr = v6addr; 11306 /* Make sure subnet tracks pp_dst */ 11307 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11308 mutex_exit(&ill->ill_lock); 11309 11310 if (need_up) { 11311 /* 11312 * Now bring the interface back up. If this 11313 * is the only IPIF for the ILL, ipif_up 11314 * will have to re-bind to the device, so 11315 * we may get back EINPROGRESS, in which 11316 * case, this IOCTL will get completed in 11317 * ip_rput_dlpi when we see the DL_BIND_ACK. 11318 */ 11319 err = ipif_up(ipif, q, mp); 11320 } 11321 11322 if (need_dl_down) 11323 ill_dl_down(ill); 11324 if (need_arp_down) 11325 ipif_resolver_down(ipif); 11326 11327 return (err); 11328 } 11329 11330 /* 11331 * Restart entry point to restart the dstaddress set operation after the 11332 * refcounts have dropped to zero. 11333 */ 11334 /* ARGSUSED */ 11335 int 11336 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11337 ip_ioctl_cmd_t *ipip, void *ifreq) 11338 { 11339 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11340 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11341 ipif_down_tail(ipif); 11342 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11343 } 11344 11345 /* ARGSUSED */ 11346 int 11347 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11348 ip_ioctl_cmd_t *ipip, void *if_req) 11349 { 11350 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11351 11352 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11353 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11354 /* 11355 * Get point to point destination address. The addresses can't 11356 * change since we hold a reference to the ipif. 11357 */ 11358 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11359 return (EADDRNOTAVAIL); 11360 11361 if (ipif->ipif_isv6) { 11362 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11363 *sin6 = sin6_null; 11364 sin6->sin6_family = AF_INET6; 11365 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11366 } else { 11367 *sin = sin_null; 11368 sin->sin_family = AF_INET; 11369 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11370 } 11371 return (0); 11372 } 11373 11374 /* 11375 * Set interface flags. Many flags require special handling (e.g., 11376 * bringing the interface down); see below for details. 11377 * 11378 * NOTE : We really don't enforce that ipif_id zero should be used 11379 * for setting any flags other than IFF_LOGINT_FLAGS. This 11380 * is because applications generally does SICGLIFFLAGS and 11381 * ORs in the new flags (that affects the logical) and does a 11382 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11383 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11384 * flags that will be turned on is correct with respect to 11385 * ipif_id 0. For backward compatibility reasons, it is not done. 11386 */ 11387 /* ARGSUSED */ 11388 int 11389 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11390 ip_ioctl_cmd_t *ipip, void *if_req) 11391 { 11392 uint64_t turn_on; 11393 uint64_t turn_off; 11394 int err = 0; 11395 phyint_t *phyi; 11396 ill_t *ill; 11397 uint64_t intf_flags, cantchange_flags; 11398 boolean_t phyint_flags_modified = B_FALSE; 11399 uint64_t flags; 11400 struct ifreq *ifr; 11401 struct lifreq *lifr; 11402 boolean_t set_linklocal = B_FALSE; 11403 boolean_t zero_source = B_FALSE; 11404 11405 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11406 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11407 11408 ASSERT(IAM_WRITER_IPIF(ipif)); 11409 11410 ill = ipif->ipif_ill; 11411 phyi = ill->ill_phyint; 11412 11413 if (ipip->ipi_cmd_type == IF_CMD) { 11414 ifr = (struct ifreq *)if_req; 11415 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11416 } else { 11417 lifr = (struct lifreq *)if_req; 11418 flags = lifr->lifr_flags; 11419 } 11420 11421 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11422 11423 /* 11424 * Have the flags been set correctly until now? 11425 */ 11426 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11427 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11428 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11429 /* 11430 * Compare the new flags to the old, and partition 11431 * into those coming on and those going off. 11432 * For the 16 bit command keep the bits above bit 16 unchanged. 11433 */ 11434 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11435 flags |= intf_flags & ~0xFFFF; 11436 11437 /* 11438 * Explicitly fail attempts to change flags that are always invalid on 11439 * an IPMP meta-interface. 11440 */ 11441 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11442 return (EINVAL); 11443 11444 /* 11445 * Check which flags will change; silently ignore flags which userland 11446 * is not allowed to control. (Because these flags may change between 11447 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11448 * control, we need to silently ignore them rather than fail.) 11449 */ 11450 cantchange_flags = IFF_CANTCHANGE; 11451 if (IS_IPMP(ill)) 11452 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11453 11454 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11455 if (turn_on == 0) 11456 return (0); /* No change */ 11457 11458 turn_off = intf_flags & turn_on; 11459 turn_on ^= turn_off; 11460 11461 /* 11462 * All test addresses must be IFF_DEPRECATED (to ensure source address 11463 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11464 * allow it to be turned off. 11465 */ 11466 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11467 (turn_on|intf_flags) & IFF_NOFAILOVER) 11468 return (EINVAL); 11469 11470 if (turn_on & IFF_NOFAILOVER) { 11471 turn_on |= IFF_DEPRECATED; 11472 flags |= IFF_DEPRECATED; 11473 } 11474 11475 /* 11476 * On underlying interfaces, only allow applications to manage test 11477 * addresses -- otherwise, they may get confused when the address 11478 * moves as part of being brought up. Likewise, prevent an 11479 * application-managed test address from being converted to a data 11480 * address. To prevent migration of administratively up addresses in 11481 * the kernel, we don't allow them to be converted either. 11482 */ 11483 if (IS_UNDER_IPMP(ill)) { 11484 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11485 11486 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11487 return (EINVAL); 11488 11489 if ((turn_off & IFF_NOFAILOVER) && 11490 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11491 return (EINVAL); 11492 } 11493 11494 /* 11495 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11496 * IPv6 interfaces. 11497 */ 11498 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11499 return (EINVAL); 11500 11501 /* 11502 * cannot turn off IFF_NOXMIT on VNI interfaces. 11503 */ 11504 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11505 return (EINVAL); 11506 11507 /* 11508 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11509 * interfaces. It makes no sense in that context. 11510 */ 11511 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11512 return (EINVAL); 11513 11514 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11515 zero_source = B_TRUE; 11516 11517 /* 11518 * For IPv6 ipif_id 0, don't allow the interface to be up without 11519 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11520 * If the link local address isn't set, and can be set, it will get 11521 * set later on in this function. 11522 */ 11523 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11524 (flags & IFF_UP) && !zero_source && 11525 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11526 if (ipif_cant_setlinklocal(ipif)) 11527 return (EINVAL); 11528 set_linklocal = B_TRUE; 11529 } 11530 11531 /* 11532 * If we modify physical interface flags, we'll potentially need to 11533 * send up two routing socket messages for the changes (one for the 11534 * IPv4 ill, and another for the IPv6 ill). Note that here. 11535 */ 11536 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11537 phyint_flags_modified = B_TRUE; 11538 11539 /* 11540 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11541 * (otherwise, we'd immediately use them, defeating standby). Also, 11542 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11543 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11544 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11545 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11546 * will not be honored. 11547 */ 11548 if (turn_on & PHYI_STANDBY) { 11549 /* 11550 * No need to grab ill_g_usesrc_lock here; see the 11551 * synchronization notes in ip.c. 11552 */ 11553 if (ill->ill_usesrc_grp_next != NULL || 11554 intf_flags & PHYI_INACTIVE) 11555 return (EINVAL); 11556 if (!(flags & PHYI_FAILED)) { 11557 flags |= PHYI_INACTIVE; 11558 turn_on |= PHYI_INACTIVE; 11559 } 11560 } 11561 11562 if (turn_off & PHYI_STANDBY) { 11563 flags &= ~PHYI_INACTIVE; 11564 turn_off |= PHYI_INACTIVE; 11565 } 11566 11567 /* 11568 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11569 * would end up on. 11570 */ 11571 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11572 (PHYI_FAILED | PHYI_INACTIVE)) 11573 return (EINVAL); 11574 11575 /* 11576 * If ILLF_ROUTER changes, we need to change the ip forwarding 11577 * status of the interface. 11578 */ 11579 if ((turn_on | turn_off) & ILLF_ROUTER) 11580 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11581 11582 /* 11583 * If the interface is not UP and we are not going to 11584 * bring it UP, record the flags and return. When the 11585 * interface comes UP later, the right actions will be 11586 * taken. 11587 */ 11588 if (!(ipif->ipif_flags & IPIF_UP) && 11589 !(turn_on & IPIF_UP)) { 11590 /* Record new flags in their respective places. */ 11591 mutex_enter(&ill->ill_lock); 11592 mutex_enter(&ill->ill_phyint->phyint_lock); 11593 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11594 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11595 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11596 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11597 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11598 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11599 mutex_exit(&ill->ill_lock); 11600 mutex_exit(&ill->ill_phyint->phyint_lock); 11601 11602 /* 11603 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11604 * same to the kernel: if any of them has been set by 11605 * userland, the interface cannot be used for data traffic. 11606 */ 11607 if ((turn_on|turn_off) & 11608 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11609 ASSERT(!IS_IPMP(ill)); 11610 /* 11611 * It's possible the ill is part of an "anonymous" 11612 * IPMP group rather than a real group. In that case, 11613 * there are no other interfaces in the group and thus 11614 * no need to call ipmp_phyint_refresh_active(). 11615 */ 11616 if (IS_UNDER_IPMP(ill)) 11617 ipmp_phyint_refresh_active(phyi); 11618 } 11619 11620 if (phyint_flags_modified) { 11621 if (phyi->phyint_illv4 != NULL) { 11622 ip_rts_ifmsg(phyi->phyint_illv4-> 11623 ill_ipif, RTSQ_DEFAULT); 11624 } 11625 if (phyi->phyint_illv6 != NULL) { 11626 ip_rts_ifmsg(phyi->phyint_illv6-> 11627 ill_ipif, RTSQ_DEFAULT); 11628 } 11629 } 11630 return (0); 11631 } else if (set_linklocal || zero_source) { 11632 mutex_enter(&ill->ill_lock); 11633 if (set_linklocal) 11634 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11635 if (zero_source) 11636 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11637 mutex_exit(&ill->ill_lock); 11638 } 11639 11640 /* 11641 * Disallow IPv6 interfaces coming up that have the unspecified address, 11642 * or point-to-point interfaces with an unspecified destination. We do 11643 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11644 * have a subnet assigned, which is how in.ndpd currently manages its 11645 * onlink prefix list when no addresses are configured with those 11646 * prefixes. 11647 */ 11648 if (ipif->ipif_isv6 && 11649 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11650 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11651 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11652 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11653 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11654 return (EINVAL); 11655 } 11656 11657 /* 11658 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11659 * from being brought up. 11660 */ 11661 if (!ipif->ipif_isv6 && 11662 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11663 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11664 return (EINVAL); 11665 } 11666 11667 /* 11668 * The only flag changes that we currently take specific action on are 11669 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11670 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11671 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11672 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11673 * of bringing it back up will trigger the address to be moved. 11674 */ 11675 if ((turn_on|turn_off) & 11676 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11677 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11678 IPIF_NOFAILOVER)) { 11679 /* 11680 * Taking this ipif down, make sure we have 11681 * valid net and subnet bcast ire's for other 11682 * logical interfaces, if we need them. 11683 */ 11684 if (!ipif->ipif_isv6) 11685 ipif_check_bcast_ires(ipif); 11686 11687 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11688 !(turn_off & IPIF_UP)) { 11689 if (ipif->ipif_flags & IPIF_UP) 11690 ill->ill_logical_down = 1; 11691 turn_on &= ~IPIF_UP; 11692 } 11693 err = ipif_down(ipif, q, mp); 11694 ip1dbg(("ipif_down returns %d err ", err)); 11695 if (err == EINPROGRESS) 11696 return (err); 11697 ipif_down_tail(ipif); 11698 } 11699 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11700 } 11701 11702 static int 11703 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11704 { 11705 ill_t *ill; 11706 phyint_t *phyi; 11707 uint64_t turn_on, turn_off; 11708 uint64_t intf_flags, cantchange_flags; 11709 boolean_t phyint_flags_modified = B_FALSE; 11710 int err = 0; 11711 boolean_t set_linklocal = B_FALSE; 11712 boolean_t zero_source = B_FALSE; 11713 11714 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11715 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11716 11717 ASSERT(IAM_WRITER_IPIF(ipif)); 11718 11719 ill = ipif->ipif_ill; 11720 phyi = ill->ill_phyint; 11721 11722 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11723 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11724 if (IS_IPMP(ill)) 11725 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11726 11727 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11728 turn_off = intf_flags & turn_on; 11729 turn_on ^= turn_off; 11730 11731 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11732 phyint_flags_modified = B_TRUE; 11733 11734 /* 11735 * Now we change the flags. Track current value of 11736 * other flags in their respective places. 11737 */ 11738 mutex_enter(&ill->ill_lock); 11739 mutex_enter(&phyi->phyint_lock); 11740 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11741 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11742 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11743 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11744 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11745 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11746 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11747 set_linklocal = B_TRUE; 11748 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11749 } 11750 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11751 zero_source = B_TRUE; 11752 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11753 } 11754 mutex_exit(&ill->ill_lock); 11755 mutex_exit(&phyi->phyint_lock); 11756 11757 if (set_linklocal) 11758 (void) ipif_setlinklocal(ipif); 11759 11760 if (zero_source) 11761 ipif->ipif_v6src_addr = ipv6_all_zeros; 11762 else 11763 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11764 11765 /* 11766 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11767 * the kernel: if any of them has been set by userland, the interface 11768 * cannot be used for data traffic. 11769 */ 11770 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11771 ASSERT(!IS_IPMP(ill)); 11772 /* 11773 * It's possible the ill is part of an "anonymous" IPMP group 11774 * rather than a real group. In that case, there are no other 11775 * interfaces in the group and thus no need for us to call 11776 * ipmp_phyint_refresh_active(). 11777 */ 11778 if (IS_UNDER_IPMP(ill)) 11779 ipmp_phyint_refresh_active(phyi); 11780 } 11781 11782 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11783 /* 11784 * XXX ipif_up really does not know whether a phyint flags 11785 * was modified or not. So, it sends up information on 11786 * only one routing sockets message. As we don't bring up 11787 * the interface and also set PHYI_ flags simultaneously 11788 * it should be okay. 11789 */ 11790 err = ipif_up(ipif, q, mp); 11791 } else { 11792 /* 11793 * Make sure routing socket sees all changes to the flags. 11794 * ipif_up_done* handles this when we use ipif_up. 11795 */ 11796 if (phyint_flags_modified) { 11797 if (phyi->phyint_illv4 != NULL) { 11798 ip_rts_ifmsg(phyi->phyint_illv4-> 11799 ill_ipif, RTSQ_DEFAULT); 11800 } 11801 if (phyi->phyint_illv6 != NULL) { 11802 ip_rts_ifmsg(phyi->phyint_illv6-> 11803 ill_ipif, RTSQ_DEFAULT); 11804 } 11805 } else { 11806 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11807 } 11808 /* 11809 * Update the flags in SCTP's IPIF list, ipif_up() will do 11810 * this in need_up case. 11811 */ 11812 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11813 } 11814 return (err); 11815 } 11816 11817 /* 11818 * Restart the flags operation now that the refcounts have dropped to zero. 11819 */ 11820 /* ARGSUSED */ 11821 int 11822 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11823 ip_ioctl_cmd_t *ipip, void *if_req) 11824 { 11825 uint64_t flags; 11826 struct ifreq *ifr = if_req; 11827 struct lifreq *lifr = if_req; 11828 11829 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11830 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11831 11832 ipif_down_tail(ipif); 11833 if (ipip->ipi_cmd_type == IF_CMD) { 11834 /* cast to uint16_t prevents unwanted sign extension */ 11835 flags = (uint16_t)ifr->ifr_flags; 11836 } else { 11837 flags = lifr->lifr_flags; 11838 } 11839 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11840 } 11841 11842 /* 11843 * Can operate on either a module or a driver queue. 11844 */ 11845 /* ARGSUSED */ 11846 int 11847 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11848 ip_ioctl_cmd_t *ipip, void *if_req) 11849 { 11850 /* 11851 * Has the flags been set correctly till now ? 11852 */ 11853 ill_t *ill = ipif->ipif_ill; 11854 phyint_t *phyi = ill->ill_phyint; 11855 11856 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11857 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11858 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11859 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11860 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11861 11862 /* 11863 * Need a lock since some flags can be set even when there are 11864 * references to the ipif. 11865 */ 11866 mutex_enter(&ill->ill_lock); 11867 if (ipip->ipi_cmd_type == IF_CMD) { 11868 struct ifreq *ifr = (struct ifreq *)if_req; 11869 11870 /* Get interface flags (low 16 only). */ 11871 ifr->ifr_flags = ((ipif->ipif_flags | 11872 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11873 } else { 11874 struct lifreq *lifr = (struct lifreq *)if_req; 11875 11876 /* Get interface flags. */ 11877 lifr->lifr_flags = ipif->ipif_flags | 11878 ill->ill_flags | phyi->phyint_flags; 11879 } 11880 mutex_exit(&ill->ill_lock); 11881 return (0); 11882 } 11883 11884 /* ARGSUSED */ 11885 int 11886 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11887 ip_ioctl_cmd_t *ipip, void *if_req) 11888 { 11889 int mtu; 11890 int ip_min_mtu; 11891 struct ifreq *ifr; 11892 struct lifreq *lifr; 11893 ire_t *ire; 11894 ip_stack_t *ipst; 11895 11896 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11897 ipif->ipif_id, (void *)ipif)); 11898 if (ipip->ipi_cmd_type == IF_CMD) { 11899 ifr = (struct ifreq *)if_req; 11900 mtu = ifr->ifr_metric; 11901 } else { 11902 lifr = (struct lifreq *)if_req; 11903 mtu = lifr->lifr_mtu; 11904 } 11905 11906 if (ipif->ipif_isv6) 11907 ip_min_mtu = IPV6_MIN_MTU; 11908 else 11909 ip_min_mtu = IP_MIN_MTU; 11910 11911 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11912 return (EINVAL); 11913 11914 /* 11915 * Change the MTU size in all relevant ire's. 11916 * Mtu change Vs. new ire creation - protocol below. 11917 * First change ipif_mtu and the ire_max_frag of the 11918 * interface ire. Then do an ire walk and change the 11919 * ire_max_frag of all affected ires. During ire_add 11920 * under the bucket lock, set the ire_max_frag of the 11921 * new ire being created from the ipif/ire from which 11922 * it is being derived. If an mtu change happens after 11923 * the ire is added, the new ire will be cleaned up. 11924 * Conversely if the mtu change happens before the ire 11925 * is added, ire_add will see the new value of the mtu. 11926 */ 11927 ipif->ipif_mtu = mtu; 11928 ipif->ipif_flags |= IPIF_FIXEDMTU; 11929 11930 if (ipif->ipif_isv6) 11931 ire = ipif_to_ire_v6(ipif); 11932 else 11933 ire = ipif_to_ire(ipif); 11934 if (ire != NULL) { 11935 ire->ire_max_frag = ipif->ipif_mtu; 11936 ire_refrele(ire); 11937 } 11938 ipst = ipif->ipif_ill->ill_ipst; 11939 if (ipif->ipif_flags & IPIF_UP) { 11940 if (ipif->ipif_isv6) 11941 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11942 ipst); 11943 else 11944 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11945 ipst); 11946 } 11947 /* Update the MTU in SCTP's list */ 11948 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11949 return (0); 11950 } 11951 11952 /* Get interface MTU. */ 11953 /* ARGSUSED */ 11954 int 11955 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11956 ip_ioctl_cmd_t *ipip, void *if_req) 11957 { 11958 struct ifreq *ifr; 11959 struct lifreq *lifr; 11960 11961 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11962 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11963 if (ipip->ipi_cmd_type == IF_CMD) { 11964 ifr = (struct ifreq *)if_req; 11965 ifr->ifr_metric = ipif->ipif_mtu; 11966 } else { 11967 lifr = (struct lifreq *)if_req; 11968 lifr->lifr_mtu = ipif->ipif_mtu; 11969 } 11970 return (0); 11971 } 11972 11973 /* Set interface broadcast address. */ 11974 /* ARGSUSED2 */ 11975 int 11976 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11977 ip_ioctl_cmd_t *ipip, void *if_req) 11978 { 11979 ipaddr_t addr; 11980 ire_t *ire; 11981 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11982 11983 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11984 ipif->ipif_id)); 11985 11986 ASSERT(IAM_WRITER_IPIF(ipif)); 11987 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11988 return (EADDRNOTAVAIL); 11989 11990 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11991 11992 if (sin->sin_family != AF_INET) 11993 return (EAFNOSUPPORT); 11994 11995 addr = sin->sin_addr.s_addr; 11996 if (ipif->ipif_flags & IPIF_UP) { 11997 /* 11998 * If we are already up, make sure the new 11999 * broadcast address makes sense. If it does, 12000 * there should be an IRE for it already. 12001 * Don't match on ipif, only on the ill 12002 * since we are sharing these now. 12003 */ 12004 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12005 ipif, ALL_ZONES, NULL, 12006 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12007 if (ire == NULL) { 12008 return (EINVAL); 12009 } else { 12010 ire_refrele(ire); 12011 } 12012 } 12013 /* 12014 * Changing the broadcast addr for this ipif. 12015 * Make sure we have valid net and subnet bcast 12016 * ire's for other logical interfaces, if needed. 12017 */ 12018 if (addr != ipif->ipif_brd_addr) 12019 ipif_check_bcast_ires(ipif); 12020 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12021 return (0); 12022 } 12023 12024 /* Get interface broadcast address. */ 12025 /* ARGSUSED */ 12026 int 12027 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12028 ip_ioctl_cmd_t *ipip, void *if_req) 12029 { 12030 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12031 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12032 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12033 return (EADDRNOTAVAIL); 12034 12035 /* IPIF_BROADCAST not possible with IPv6 */ 12036 ASSERT(!ipif->ipif_isv6); 12037 *sin = sin_null; 12038 sin->sin_family = AF_INET; 12039 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12040 return (0); 12041 } 12042 12043 /* 12044 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12045 */ 12046 /* ARGSUSED */ 12047 int 12048 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12049 ip_ioctl_cmd_t *ipip, void *if_req) 12050 { 12051 int err = 0; 12052 in6_addr_t v6mask; 12053 12054 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12055 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12056 12057 ASSERT(IAM_WRITER_IPIF(ipif)); 12058 12059 if (ipif->ipif_isv6) { 12060 sin6_t *sin6; 12061 12062 if (sin->sin_family != AF_INET6) 12063 return (EAFNOSUPPORT); 12064 12065 sin6 = (sin6_t *)sin; 12066 v6mask = sin6->sin6_addr; 12067 } else { 12068 ipaddr_t mask; 12069 12070 if (sin->sin_family != AF_INET) 12071 return (EAFNOSUPPORT); 12072 12073 mask = sin->sin_addr.s_addr; 12074 V4MASK_TO_V6(mask, v6mask); 12075 } 12076 12077 /* 12078 * No big deal if the interface isn't already up, or the mask 12079 * isn't really changing, or this is pt-pt. 12080 */ 12081 if (!(ipif->ipif_flags & IPIF_UP) || 12082 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12083 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12084 ipif->ipif_v6net_mask = v6mask; 12085 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12086 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12087 ipif->ipif_v6net_mask, 12088 ipif->ipif_v6subnet); 12089 } 12090 return (0); 12091 } 12092 /* 12093 * Make sure we have valid net and subnet broadcast ire's 12094 * for the old netmask, if needed by other logical interfaces. 12095 */ 12096 if (!ipif->ipif_isv6) 12097 ipif_check_bcast_ires(ipif); 12098 12099 err = ipif_logical_down(ipif, q, mp); 12100 if (err == EINPROGRESS) 12101 return (err); 12102 ipif_down_tail(ipif); 12103 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12104 return (err); 12105 } 12106 12107 static int 12108 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12109 { 12110 in6_addr_t v6mask; 12111 int err = 0; 12112 12113 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12114 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12115 12116 if (ipif->ipif_isv6) { 12117 sin6_t *sin6; 12118 12119 sin6 = (sin6_t *)sin; 12120 v6mask = sin6->sin6_addr; 12121 } else { 12122 ipaddr_t mask; 12123 12124 mask = sin->sin_addr.s_addr; 12125 V4MASK_TO_V6(mask, v6mask); 12126 } 12127 12128 ipif->ipif_v6net_mask = v6mask; 12129 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12130 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12131 ipif->ipif_v6subnet); 12132 } 12133 err = ipif_up(ipif, q, mp); 12134 12135 if (err == 0 || err == EINPROGRESS) { 12136 /* 12137 * The interface must be DL_BOUND if this packet has to 12138 * go out on the wire. Since we only go through a logical 12139 * down and are bound with the driver during an internal 12140 * down/up that is satisfied. 12141 */ 12142 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12143 /* Potentially broadcast an address mask reply. */ 12144 ipif_mask_reply(ipif); 12145 } 12146 } 12147 return (err); 12148 } 12149 12150 /* ARGSUSED */ 12151 int 12152 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12153 ip_ioctl_cmd_t *ipip, void *if_req) 12154 { 12155 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12156 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12157 ipif_down_tail(ipif); 12158 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12159 } 12160 12161 /* Get interface net mask. */ 12162 /* ARGSUSED */ 12163 int 12164 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12165 ip_ioctl_cmd_t *ipip, void *if_req) 12166 { 12167 struct lifreq *lifr = (struct lifreq *)if_req; 12168 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12169 12170 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12171 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12172 12173 /* 12174 * net mask can't change since we have a reference to the ipif. 12175 */ 12176 if (ipif->ipif_isv6) { 12177 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12178 *sin6 = sin6_null; 12179 sin6->sin6_family = AF_INET6; 12180 sin6->sin6_addr = ipif->ipif_v6net_mask; 12181 lifr->lifr_addrlen = 12182 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12183 } else { 12184 *sin = sin_null; 12185 sin->sin_family = AF_INET; 12186 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12187 if (ipip->ipi_cmd_type == LIF_CMD) { 12188 lifr->lifr_addrlen = 12189 ip_mask_to_plen(ipif->ipif_net_mask); 12190 } 12191 } 12192 return (0); 12193 } 12194 12195 /* ARGSUSED */ 12196 int 12197 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12198 ip_ioctl_cmd_t *ipip, void *if_req) 12199 { 12200 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12201 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12202 12203 /* 12204 * Since no applications should ever be setting metrics on underlying 12205 * interfaces, we explicitly fail to smoke 'em out. 12206 */ 12207 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12208 return (EINVAL); 12209 12210 /* 12211 * Set interface metric. We don't use this for 12212 * anything but we keep track of it in case it is 12213 * important to routing applications or such. 12214 */ 12215 if (ipip->ipi_cmd_type == IF_CMD) { 12216 struct ifreq *ifr; 12217 12218 ifr = (struct ifreq *)if_req; 12219 ipif->ipif_metric = ifr->ifr_metric; 12220 } else { 12221 struct lifreq *lifr; 12222 12223 lifr = (struct lifreq *)if_req; 12224 ipif->ipif_metric = lifr->lifr_metric; 12225 } 12226 return (0); 12227 } 12228 12229 /* ARGSUSED */ 12230 int 12231 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12232 ip_ioctl_cmd_t *ipip, void *if_req) 12233 { 12234 /* Get interface metric. */ 12235 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12236 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12237 12238 if (ipip->ipi_cmd_type == IF_CMD) { 12239 struct ifreq *ifr; 12240 12241 ifr = (struct ifreq *)if_req; 12242 ifr->ifr_metric = ipif->ipif_metric; 12243 } else { 12244 struct lifreq *lifr; 12245 12246 lifr = (struct lifreq *)if_req; 12247 lifr->lifr_metric = ipif->ipif_metric; 12248 } 12249 12250 return (0); 12251 } 12252 12253 /* ARGSUSED */ 12254 int 12255 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12256 ip_ioctl_cmd_t *ipip, void *if_req) 12257 { 12258 12259 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12261 /* 12262 * Set the muxid returned from I_PLINK. 12263 */ 12264 if (ipip->ipi_cmd_type == IF_CMD) { 12265 struct ifreq *ifr = (struct ifreq *)if_req; 12266 12267 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12268 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12269 } else { 12270 struct lifreq *lifr = (struct lifreq *)if_req; 12271 12272 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12273 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12274 } 12275 return (0); 12276 } 12277 12278 /* ARGSUSED */ 12279 int 12280 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12281 ip_ioctl_cmd_t *ipip, void *if_req) 12282 { 12283 12284 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12285 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12286 /* 12287 * Get the muxid saved in ill for I_PUNLINK. 12288 */ 12289 if (ipip->ipi_cmd_type == IF_CMD) { 12290 struct ifreq *ifr = (struct ifreq *)if_req; 12291 12292 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12293 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12294 } else { 12295 struct lifreq *lifr = (struct lifreq *)if_req; 12296 12297 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12298 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12299 } 12300 return (0); 12301 } 12302 12303 /* 12304 * Set the subnet prefix. Does not modify the broadcast address. 12305 */ 12306 /* ARGSUSED */ 12307 int 12308 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12309 ip_ioctl_cmd_t *ipip, void *if_req) 12310 { 12311 int err = 0; 12312 in6_addr_t v6addr; 12313 in6_addr_t v6mask; 12314 boolean_t need_up = B_FALSE; 12315 int addrlen; 12316 12317 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12318 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12319 12320 ASSERT(IAM_WRITER_IPIF(ipif)); 12321 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12322 12323 if (ipif->ipif_isv6) { 12324 sin6_t *sin6; 12325 12326 if (sin->sin_family != AF_INET6) 12327 return (EAFNOSUPPORT); 12328 12329 sin6 = (sin6_t *)sin; 12330 v6addr = sin6->sin6_addr; 12331 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12332 return (EADDRNOTAVAIL); 12333 } else { 12334 ipaddr_t addr; 12335 12336 if (sin->sin_family != AF_INET) 12337 return (EAFNOSUPPORT); 12338 12339 addr = sin->sin_addr.s_addr; 12340 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12341 return (EADDRNOTAVAIL); 12342 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12343 /* Add 96 bits */ 12344 addrlen += IPV6_ABITS - IP_ABITS; 12345 } 12346 12347 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12348 return (EINVAL); 12349 12350 /* Check if bits in the address is set past the mask */ 12351 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12352 return (EINVAL); 12353 12354 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12355 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12356 return (0); /* No change */ 12357 12358 if (ipif->ipif_flags & IPIF_UP) { 12359 /* 12360 * If the interface is already marked up, 12361 * we call ipif_down which will take care 12362 * of ditching any IREs that have been set 12363 * up based on the old interface address. 12364 */ 12365 err = ipif_logical_down(ipif, q, mp); 12366 if (err == EINPROGRESS) 12367 return (err); 12368 ipif_down_tail(ipif); 12369 need_up = B_TRUE; 12370 } 12371 12372 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12373 return (err); 12374 } 12375 12376 static int 12377 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12378 queue_t *q, mblk_t *mp, boolean_t need_up) 12379 { 12380 ill_t *ill = ipif->ipif_ill; 12381 int err = 0; 12382 12383 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12384 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12385 12386 /* Set the new address. */ 12387 mutex_enter(&ill->ill_lock); 12388 ipif->ipif_v6net_mask = v6mask; 12389 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12390 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12391 ipif->ipif_v6subnet); 12392 } 12393 mutex_exit(&ill->ill_lock); 12394 12395 if (need_up) { 12396 /* 12397 * Now bring the interface back up. If this 12398 * is the only IPIF for the ILL, ipif_up 12399 * will have to re-bind to the device, so 12400 * we may get back EINPROGRESS, in which 12401 * case, this IOCTL will get completed in 12402 * ip_rput_dlpi when we see the DL_BIND_ACK. 12403 */ 12404 err = ipif_up(ipif, q, mp); 12405 if (err == EINPROGRESS) 12406 return (err); 12407 } 12408 return (err); 12409 } 12410 12411 /* ARGSUSED */ 12412 int 12413 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12414 ip_ioctl_cmd_t *ipip, void *if_req) 12415 { 12416 int addrlen; 12417 in6_addr_t v6addr; 12418 in6_addr_t v6mask; 12419 struct lifreq *lifr = (struct lifreq *)if_req; 12420 12421 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12422 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12423 ipif_down_tail(ipif); 12424 12425 addrlen = lifr->lifr_addrlen; 12426 if (ipif->ipif_isv6) { 12427 sin6_t *sin6; 12428 12429 sin6 = (sin6_t *)sin; 12430 v6addr = sin6->sin6_addr; 12431 } else { 12432 ipaddr_t addr; 12433 12434 addr = sin->sin_addr.s_addr; 12435 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12436 addrlen += IPV6_ABITS - IP_ABITS; 12437 } 12438 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12439 12440 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12441 } 12442 12443 /* ARGSUSED */ 12444 int 12445 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12446 ip_ioctl_cmd_t *ipip, void *if_req) 12447 { 12448 struct lifreq *lifr = (struct lifreq *)if_req; 12449 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12450 12451 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12452 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12453 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12454 12455 if (ipif->ipif_isv6) { 12456 *sin6 = sin6_null; 12457 sin6->sin6_family = AF_INET6; 12458 sin6->sin6_addr = ipif->ipif_v6subnet; 12459 lifr->lifr_addrlen = 12460 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12461 } else { 12462 *sin = sin_null; 12463 sin->sin_family = AF_INET; 12464 sin->sin_addr.s_addr = ipif->ipif_subnet; 12465 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12466 } 12467 return (0); 12468 } 12469 12470 /* 12471 * Set the IPv6 address token. 12472 */ 12473 /* ARGSUSED */ 12474 int 12475 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12476 ip_ioctl_cmd_t *ipi, void *if_req) 12477 { 12478 ill_t *ill = ipif->ipif_ill; 12479 int err; 12480 in6_addr_t v6addr; 12481 in6_addr_t v6mask; 12482 boolean_t need_up = B_FALSE; 12483 int i; 12484 sin6_t *sin6 = (sin6_t *)sin; 12485 struct lifreq *lifr = (struct lifreq *)if_req; 12486 int addrlen; 12487 12488 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12489 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12490 ASSERT(IAM_WRITER_IPIF(ipif)); 12491 12492 addrlen = lifr->lifr_addrlen; 12493 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12494 if (ipif->ipif_id != 0) 12495 return (EINVAL); 12496 12497 if (!ipif->ipif_isv6) 12498 return (EINVAL); 12499 12500 if (addrlen > IPV6_ABITS) 12501 return (EINVAL); 12502 12503 v6addr = sin6->sin6_addr; 12504 12505 /* 12506 * The length of the token is the length from the end. To get 12507 * the proper mask for this, compute the mask of the bits not 12508 * in the token; ie. the prefix, and then xor to get the mask. 12509 */ 12510 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12511 return (EINVAL); 12512 for (i = 0; i < 4; i++) { 12513 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12514 } 12515 12516 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12517 ill->ill_token_length == addrlen) 12518 return (0); /* No change */ 12519 12520 if (ipif->ipif_flags & IPIF_UP) { 12521 err = ipif_logical_down(ipif, q, mp); 12522 if (err == EINPROGRESS) 12523 return (err); 12524 ipif_down_tail(ipif); 12525 need_up = B_TRUE; 12526 } 12527 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12528 return (err); 12529 } 12530 12531 static int 12532 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12533 mblk_t *mp, boolean_t need_up) 12534 { 12535 in6_addr_t v6addr; 12536 in6_addr_t v6mask; 12537 ill_t *ill = ipif->ipif_ill; 12538 int i; 12539 int err = 0; 12540 12541 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12542 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12543 v6addr = sin6->sin6_addr; 12544 /* 12545 * The length of the token is the length from the end. To get 12546 * the proper mask for this, compute the mask of the bits not 12547 * in the token; ie. the prefix, and then xor to get the mask. 12548 */ 12549 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12550 for (i = 0; i < 4; i++) 12551 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12552 12553 mutex_enter(&ill->ill_lock); 12554 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12555 ill->ill_token_length = addrlen; 12556 mutex_exit(&ill->ill_lock); 12557 12558 if (need_up) { 12559 /* 12560 * Now bring the interface back up. If this 12561 * is the only IPIF for the ILL, ipif_up 12562 * will have to re-bind to the device, so 12563 * we may get back EINPROGRESS, in which 12564 * case, this IOCTL will get completed in 12565 * ip_rput_dlpi when we see the DL_BIND_ACK. 12566 */ 12567 err = ipif_up(ipif, q, mp); 12568 if (err == EINPROGRESS) 12569 return (err); 12570 } 12571 return (err); 12572 } 12573 12574 /* ARGSUSED */ 12575 int 12576 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12577 ip_ioctl_cmd_t *ipi, void *if_req) 12578 { 12579 ill_t *ill; 12580 sin6_t *sin6 = (sin6_t *)sin; 12581 struct lifreq *lifr = (struct lifreq *)if_req; 12582 12583 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12584 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12585 if (ipif->ipif_id != 0) 12586 return (EINVAL); 12587 12588 ill = ipif->ipif_ill; 12589 if (!ill->ill_isv6) 12590 return (ENXIO); 12591 12592 *sin6 = sin6_null; 12593 sin6->sin6_family = AF_INET6; 12594 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12595 sin6->sin6_addr = ill->ill_token; 12596 lifr->lifr_addrlen = ill->ill_token_length; 12597 return (0); 12598 } 12599 12600 /* 12601 * Set (hardware) link specific information that might override 12602 * what was acquired through the DL_INFO_ACK. 12603 * The logic is as follows. 12604 * 12605 * become exclusive 12606 * set CHANGING flag 12607 * change mtu on affected IREs 12608 * clear CHANGING flag 12609 * 12610 * An ire add that occurs before the CHANGING flag is set will have its mtu 12611 * changed by the ip_sioctl_lnkinfo. 12612 * 12613 * During the time the CHANGING flag is set, no new ires will be added to the 12614 * bucket, and ire add will fail (due the CHANGING flag). 12615 * 12616 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12617 * before it is added to the bucket. 12618 * 12619 * Obviously only 1 thread can set the CHANGING flag and we need to become 12620 * exclusive to set the flag. 12621 */ 12622 /* ARGSUSED */ 12623 int 12624 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12625 ip_ioctl_cmd_t *ipi, void *if_req) 12626 { 12627 ill_t *ill = ipif->ipif_ill; 12628 ipif_t *nipif; 12629 int ip_min_mtu; 12630 boolean_t mtu_walk = B_FALSE; 12631 struct lifreq *lifr = (struct lifreq *)if_req; 12632 lif_ifinfo_req_t *lir; 12633 ire_t *ire; 12634 12635 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12636 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12637 lir = &lifr->lifr_ifinfo; 12638 ASSERT(IAM_WRITER_IPIF(ipif)); 12639 12640 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12641 if (ipif->ipif_id != 0) 12642 return (EINVAL); 12643 12644 /* Set interface MTU. */ 12645 if (ipif->ipif_isv6) 12646 ip_min_mtu = IPV6_MIN_MTU; 12647 else 12648 ip_min_mtu = IP_MIN_MTU; 12649 12650 /* 12651 * Verify values before we set anything. Allow zero to 12652 * mean unspecified. 12653 */ 12654 if (lir->lir_maxmtu != 0 && 12655 (lir->lir_maxmtu > ill->ill_max_frag || 12656 lir->lir_maxmtu < ip_min_mtu)) 12657 return (EINVAL); 12658 if (lir->lir_reachtime != 0 && 12659 lir->lir_reachtime > ND_MAX_REACHTIME) 12660 return (EINVAL); 12661 if (lir->lir_reachretrans != 0 && 12662 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12663 return (EINVAL); 12664 12665 mutex_enter(&ill->ill_lock); 12666 ill->ill_state_flags |= ILL_CHANGING; 12667 for (nipif = ill->ill_ipif; nipif != NULL; 12668 nipif = nipif->ipif_next) { 12669 nipif->ipif_state_flags |= IPIF_CHANGING; 12670 } 12671 12672 if (lir->lir_maxmtu != 0) { 12673 ill->ill_max_mtu = lir->lir_maxmtu; 12674 ill->ill_user_mtu = lir->lir_maxmtu; 12675 mtu_walk = B_TRUE; 12676 } 12677 mutex_exit(&ill->ill_lock); 12678 12679 if (lir->lir_reachtime != 0) 12680 ill->ill_reachable_time = lir->lir_reachtime; 12681 12682 if (lir->lir_reachretrans != 0) 12683 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12684 12685 ill->ill_max_hops = lir->lir_maxhops; 12686 12687 ill->ill_max_buf = ND_MAX_Q; 12688 12689 if (mtu_walk) { 12690 /* 12691 * Set the MTU on all ipifs associated with this ill except 12692 * for those whose MTU was fixed via SIOCSLIFMTU. 12693 */ 12694 for (nipif = ill->ill_ipif; nipif != NULL; 12695 nipif = nipif->ipif_next) { 12696 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12697 continue; 12698 12699 nipif->ipif_mtu = ill->ill_max_mtu; 12700 12701 if (!(nipif->ipif_flags & IPIF_UP)) 12702 continue; 12703 12704 if (nipif->ipif_isv6) 12705 ire = ipif_to_ire_v6(nipif); 12706 else 12707 ire = ipif_to_ire(nipif); 12708 if (ire != NULL) { 12709 ire->ire_max_frag = ipif->ipif_mtu; 12710 ire_refrele(ire); 12711 } 12712 12713 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12714 nipif, ill); 12715 } 12716 } 12717 12718 mutex_enter(&ill->ill_lock); 12719 for (nipif = ill->ill_ipif; nipif != NULL; 12720 nipif = nipif->ipif_next) { 12721 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12722 } 12723 ILL_UNMARK_CHANGING(ill); 12724 mutex_exit(&ill->ill_lock); 12725 12726 /* 12727 * Refresh IPMP meta-interface MTU if necessary. 12728 */ 12729 if (IS_UNDER_IPMP(ill)) 12730 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12731 12732 return (0); 12733 } 12734 12735 /* ARGSUSED */ 12736 int 12737 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12738 ip_ioctl_cmd_t *ipi, void *if_req) 12739 { 12740 struct lif_ifinfo_req *lir; 12741 ill_t *ill = ipif->ipif_ill; 12742 12743 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12744 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12745 if (ipif->ipif_id != 0) 12746 return (EINVAL); 12747 12748 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12749 lir->lir_maxhops = ill->ill_max_hops; 12750 lir->lir_reachtime = ill->ill_reachable_time; 12751 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12752 lir->lir_maxmtu = ill->ill_max_mtu; 12753 12754 return (0); 12755 } 12756 12757 /* 12758 * Return best guess as to the subnet mask for the specified address. 12759 * Based on the subnet masks for all the configured interfaces. 12760 * 12761 * We end up returning a zero mask in the case of default, multicast or 12762 * experimental. 12763 */ 12764 static ipaddr_t 12765 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12766 { 12767 ipaddr_t net_mask; 12768 ill_t *ill; 12769 ipif_t *ipif; 12770 ill_walk_context_t ctx; 12771 ipif_t *fallback_ipif = NULL; 12772 12773 net_mask = ip_net_mask(addr); 12774 if (net_mask == 0) { 12775 *ipifp = NULL; 12776 return (0); 12777 } 12778 12779 /* Let's check to see if this is maybe a local subnet route. */ 12780 /* this function only applies to IPv4 interfaces */ 12781 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12782 ill = ILL_START_WALK_V4(&ctx, ipst); 12783 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12784 mutex_enter(&ill->ill_lock); 12785 for (ipif = ill->ill_ipif; ipif != NULL; 12786 ipif = ipif->ipif_next) { 12787 if (!IPIF_CAN_LOOKUP(ipif)) 12788 continue; 12789 if (!(ipif->ipif_flags & IPIF_UP)) 12790 continue; 12791 if ((ipif->ipif_subnet & net_mask) == 12792 (addr & net_mask)) { 12793 /* 12794 * Don't trust pt-pt interfaces if there are 12795 * other interfaces. 12796 */ 12797 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12798 if (fallback_ipif == NULL) { 12799 ipif_refhold_locked(ipif); 12800 fallback_ipif = ipif; 12801 } 12802 continue; 12803 } 12804 12805 /* 12806 * Fine. Just assume the same net mask as the 12807 * directly attached subnet interface is using. 12808 */ 12809 ipif_refhold_locked(ipif); 12810 mutex_exit(&ill->ill_lock); 12811 rw_exit(&ipst->ips_ill_g_lock); 12812 if (fallback_ipif != NULL) 12813 ipif_refrele(fallback_ipif); 12814 *ipifp = ipif; 12815 return (ipif->ipif_net_mask); 12816 } 12817 } 12818 mutex_exit(&ill->ill_lock); 12819 } 12820 rw_exit(&ipst->ips_ill_g_lock); 12821 12822 *ipifp = fallback_ipif; 12823 return ((fallback_ipif != NULL) ? 12824 fallback_ipif->ipif_net_mask : net_mask); 12825 } 12826 12827 /* 12828 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12829 */ 12830 static void 12831 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12832 { 12833 IOCP iocp; 12834 ipft_t *ipft; 12835 ipllc_t *ipllc; 12836 mblk_t *mp1; 12837 cred_t *cr; 12838 int error = 0; 12839 conn_t *connp; 12840 12841 ip1dbg(("ip_wput_ioctl")); 12842 iocp = (IOCP)mp->b_rptr; 12843 mp1 = mp->b_cont; 12844 if (mp1 == NULL) { 12845 iocp->ioc_error = EINVAL; 12846 mp->b_datap->db_type = M_IOCNAK; 12847 iocp->ioc_count = 0; 12848 qreply(q, mp); 12849 return; 12850 } 12851 12852 /* 12853 * These IOCTLs provide various control capabilities to 12854 * upstream agents such as ULPs and processes. There 12855 * are currently two such IOCTLs implemented. They 12856 * are used by TCP to provide update information for 12857 * existing IREs and to forcibly delete an IRE for a 12858 * host that is not responding, thereby forcing an 12859 * attempt at a new route. 12860 */ 12861 iocp->ioc_error = EINVAL; 12862 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12863 goto done; 12864 12865 ipllc = (ipllc_t *)mp1->b_rptr; 12866 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12867 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12868 break; 12869 } 12870 /* 12871 * prefer credential from mblk over ioctl; 12872 * see ip_sioctl_copyin_setup 12873 */ 12874 cr = msg_getcred(mp, NULL); 12875 if (cr == NULL) 12876 cr = iocp->ioc_cr; 12877 12878 /* 12879 * Refhold the conn in case the request gets queued up in some lookup 12880 */ 12881 ASSERT(CONN_Q(q)); 12882 connp = Q_TO_CONN(q); 12883 CONN_INC_REF(connp); 12884 if (ipft->ipft_pfi && 12885 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12886 pullupmsg(mp1, ipft->ipft_min_size))) { 12887 error = (*ipft->ipft_pfi)(q, 12888 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12889 } 12890 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12891 /* 12892 * CONN_OPER_PENDING_DONE happens in the function called 12893 * through ipft_pfi above. 12894 */ 12895 return; 12896 } 12897 12898 CONN_OPER_PENDING_DONE(connp); 12899 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12900 freemsg(mp); 12901 return; 12902 } 12903 iocp->ioc_error = error; 12904 12905 done: 12906 mp->b_datap->db_type = M_IOCACK; 12907 if (iocp->ioc_error) 12908 iocp->ioc_count = 0; 12909 qreply(q, mp); 12910 } 12911 12912 /* 12913 * Lookup an ipif using the sequence id (ipif_seqid) 12914 */ 12915 ipif_t * 12916 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12917 { 12918 ipif_t *ipif; 12919 12920 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12921 12922 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12923 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12924 return (ipif); 12925 } 12926 return (NULL); 12927 } 12928 12929 /* 12930 * Assign a unique id for the ipif. This is used later when we send 12931 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12932 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12933 * IRE is added, we verify that ipif has not disappeared. 12934 */ 12935 12936 static void 12937 ipif_assign_seqid(ipif_t *ipif) 12938 { 12939 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12940 12941 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 12942 } 12943 12944 /* 12945 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 12946 * administratively down (i.e., no DAD), of the same type, and locked. Note 12947 * that the clone is complete -- including the seqid -- and the expectation is 12948 * that the caller will either free or overwrite `sipif' before it's unlocked. 12949 */ 12950 static void 12951 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 12952 { 12953 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 12954 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 12955 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12956 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12957 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 12958 ASSERT(sipif->ipif_arp_del_mp == NULL); 12959 ASSERT(dipif->ipif_arp_del_mp == NULL); 12960 ASSERT(sipif->ipif_igmp_rpt == NULL); 12961 ASSERT(dipif->ipif_igmp_rpt == NULL); 12962 ASSERT(sipif->ipif_multicast_up == 0); 12963 ASSERT(dipif->ipif_multicast_up == 0); 12964 ASSERT(sipif->ipif_joined_allhosts == 0); 12965 ASSERT(dipif->ipif_joined_allhosts == 0); 12966 12967 dipif->ipif_mtu = sipif->ipif_mtu; 12968 dipif->ipif_flags = sipif->ipif_flags; 12969 dipif->ipif_metric = sipif->ipif_metric; 12970 dipif->ipif_zoneid = sipif->ipif_zoneid; 12971 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 12972 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 12973 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 12974 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 12975 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 12976 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 12977 12978 /* 12979 * While dipif is down right now, it might've been up before. Since 12980 * it's changing identity, its packet counters need to be reset. 12981 */ 12982 dipif->ipif_ib_pkt_count = 0; 12983 dipif->ipif_ob_pkt_count = 0; 12984 dipif->ipif_fo_pkt_count = 0; 12985 12986 /* 12987 * As per the comment atop the function, we assume that these sipif 12988 * fields will be changed before sipif is unlocked. 12989 */ 12990 dipif->ipif_seqid = sipif->ipif_seqid; 12991 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 12992 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 12993 dipif->ipif_state_flags = sipif->ipif_state_flags; 12994 } 12995 12996 /* 12997 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 12998 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 12999 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13000 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13001 * down (i.e., no DAD), of the same type, and unlocked. 13002 */ 13003 static void 13004 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13005 { 13006 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13007 ipxop_t *ipx = ipsq->ipsq_xop; 13008 13009 ASSERT(sipif != dipif); 13010 ASSERT(sipif != virgipif); 13011 13012 /* 13013 * Grab all of the locks that protect the ipif in a defined order. 13014 */ 13015 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13016 if (sipif > dipif) { 13017 mutex_enter(&sipif->ipif_saved_ire_lock); 13018 mutex_enter(&dipif->ipif_saved_ire_lock); 13019 } else { 13020 mutex_enter(&dipif->ipif_saved_ire_lock); 13021 mutex_enter(&sipif->ipif_saved_ire_lock); 13022 } 13023 13024 ipif_clone(sipif, dipif); 13025 if (virgipif != NULL) { 13026 ipif_clone(virgipif, sipif); 13027 mi_free(virgipif); 13028 } 13029 13030 mutex_exit(&sipif->ipif_saved_ire_lock); 13031 mutex_exit(&dipif->ipif_saved_ire_lock); 13032 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13033 13034 /* 13035 * Transfer ownership of the current xop, if necessary. 13036 */ 13037 if (ipx->ipx_current_ipif == sipif) { 13038 ASSERT(ipx->ipx_pending_ipif == NULL); 13039 mutex_enter(&ipx->ipx_lock); 13040 ipx->ipx_current_ipif = dipif; 13041 mutex_exit(&ipx->ipx_lock); 13042 } 13043 13044 if (virgipif == NULL) 13045 mi_free(sipif); 13046 } 13047 13048 /* 13049 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13050 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13051 * be inserted into the first space available in the list. The value of 13052 * ipif_id will then be set to the appropriate value for its position. 13053 */ 13054 static int 13055 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13056 { 13057 ill_t *ill; 13058 ipif_t *tipif; 13059 ipif_t **tipifp; 13060 int id; 13061 ip_stack_t *ipst; 13062 13063 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13064 IAM_WRITER_IPIF(ipif)); 13065 13066 ill = ipif->ipif_ill; 13067 ASSERT(ill != NULL); 13068 ipst = ill->ill_ipst; 13069 13070 /* 13071 * In the case of lo0:0 we already hold the ill_g_lock. 13072 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13073 * ipif_insert. 13074 */ 13075 if (acquire_g_lock) 13076 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13077 mutex_enter(&ill->ill_lock); 13078 id = ipif->ipif_id; 13079 tipifp = &(ill->ill_ipif); 13080 if (id == -1) { /* need to find a real id */ 13081 id = 0; 13082 while ((tipif = *tipifp) != NULL) { 13083 ASSERT(tipif->ipif_id >= id); 13084 if (tipif->ipif_id != id) 13085 break; /* non-consecutive id */ 13086 id++; 13087 tipifp = &(tipif->ipif_next); 13088 } 13089 /* limit number of logical interfaces */ 13090 if (id >= ipst->ips_ip_addrs_per_if) { 13091 mutex_exit(&ill->ill_lock); 13092 if (acquire_g_lock) 13093 rw_exit(&ipst->ips_ill_g_lock); 13094 return (-1); 13095 } 13096 ipif->ipif_id = id; /* assign new id */ 13097 } else if (id < ipst->ips_ip_addrs_per_if) { 13098 /* we have a real id; insert ipif in the right place */ 13099 while ((tipif = *tipifp) != NULL) { 13100 ASSERT(tipif->ipif_id != id); 13101 if (tipif->ipif_id > id) 13102 break; /* found correct location */ 13103 tipifp = &(tipif->ipif_next); 13104 } 13105 } else { 13106 mutex_exit(&ill->ill_lock); 13107 if (acquire_g_lock) 13108 rw_exit(&ipst->ips_ill_g_lock); 13109 return (-1); 13110 } 13111 13112 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13113 13114 ipif->ipif_next = tipif; 13115 *tipifp = ipif; 13116 mutex_exit(&ill->ill_lock); 13117 if (acquire_g_lock) 13118 rw_exit(&ipst->ips_ill_g_lock); 13119 13120 return (0); 13121 } 13122 13123 static void 13124 ipif_remove(ipif_t *ipif) 13125 { 13126 ipif_t **ipifp; 13127 ill_t *ill = ipif->ipif_ill; 13128 13129 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13130 13131 mutex_enter(&ill->ill_lock); 13132 ipifp = &ill->ill_ipif; 13133 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13134 if (*ipifp == ipif) { 13135 *ipifp = ipif->ipif_next; 13136 break; 13137 } 13138 } 13139 mutex_exit(&ill->ill_lock); 13140 } 13141 13142 /* 13143 * Allocate and initialize a new interface control structure. (Always 13144 * called as writer.) 13145 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13146 * is not part of the global linked list of ills. ipif_seqid is unique 13147 * in the system and to preserve the uniqueness, it is assigned only 13148 * when ill becomes part of the global list. At that point ill will 13149 * have a name. If it doesn't get assigned here, it will get assigned 13150 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13151 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13152 * the interface flags or any other information from the DL_INFO_ACK for 13153 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13154 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13155 * second DL_INFO_ACK comes in from the driver. 13156 */ 13157 static ipif_t * 13158 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13159 boolean_t insert) 13160 { 13161 ipif_t *ipif; 13162 ip_stack_t *ipst = ill->ill_ipst; 13163 13164 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13165 ill->ill_name, id, (void *)ill)); 13166 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13167 13168 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13169 return (NULL); 13170 *ipif = ipif_zero; /* start clean */ 13171 13172 ipif->ipif_ill = ill; 13173 ipif->ipif_id = id; /* could be -1 */ 13174 /* 13175 * Inherit the zoneid from the ill; for the shared stack instance 13176 * this is always the global zone 13177 */ 13178 ipif->ipif_zoneid = ill->ill_zoneid; 13179 13180 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13181 13182 ipif->ipif_refcnt = 0; 13183 ipif->ipif_saved_ire_cnt = 0; 13184 13185 if (insert) { 13186 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13187 mi_free(ipif); 13188 return (NULL); 13189 } 13190 /* -1 id should have been replaced by real id */ 13191 id = ipif->ipif_id; 13192 ASSERT(id >= 0); 13193 } 13194 13195 if (ill->ill_name[0] != '\0') 13196 ipif_assign_seqid(ipif); 13197 13198 /* 13199 * If this is the zeroth ipif on the IPMP ill, create the illgrp 13200 * (which must not exist yet because the zeroth ipif is created once 13201 * per ill). However, do not not link it to the ipmp_grp_t until 13202 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 13203 */ 13204 if (id == 0 && IS_IPMP(ill)) { 13205 if (ipmp_illgrp_create(ill) == NULL) { 13206 if (insert) { 13207 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13208 ipif_remove(ipif); 13209 rw_exit(&ipst->ips_ill_g_lock); 13210 } 13211 mi_free(ipif); 13212 return (NULL); 13213 } 13214 } 13215 13216 /* 13217 * We grab ill_lock to protect the flag changes. The ipif is still 13218 * not up and can't be looked up until the ioctl completes and the 13219 * IPIF_CHANGING flag is cleared. 13220 */ 13221 mutex_enter(&ill->ill_lock); 13222 13223 ipif->ipif_ire_type = ire_type; 13224 13225 if (ipif->ipif_isv6) { 13226 ill->ill_flags |= ILLF_IPV6; 13227 } else { 13228 ipaddr_t inaddr_any = INADDR_ANY; 13229 13230 ill->ill_flags |= ILLF_IPV4; 13231 13232 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13233 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13234 &ipif->ipif_v6lcl_addr); 13235 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13236 &ipif->ipif_v6src_addr); 13237 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13238 &ipif->ipif_v6subnet); 13239 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13240 &ipif->ipif_v6net_mask); 13241 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13242 &ipif->ipif_v6brd_addr); 13243 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13244 &ipif->ipif_v6pp_dst_addr); 13245 } 13246 13247 /* 13248 * Don't set the interface flags etc. now, will do it in 13249 * ip_ll_subnet_defaults. 13250 */ 13251 if (!initialize) 13252 goto out; 13253 13254 ipif->ipif_mtu = ill->ill_max_mtu; 13255 13256 /* 13257 * NOTE: The IPMP meta-interface is special-cased because it starts 13258 * with no underlying interfaces (and thus an unknown broadcast 13259 * address length), but all interfaces that can be placed into an IPMP 13260 * group are required to be broadcast-capable. 13261 */ 13262 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13263 /* 13264 * Later detect lack of DLPI driver multicast capability by 13265 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 13266 */ 13267 ill->ill_flags |= ILLF_MULTICAST; 13268 if (!ipif->ipif_isv6) 13269 ipif->ipif_flags |= IPIF_BROADCAST; 13270 } else { 13271 if (ill->ill_net_type != IRE_LOOPBACK) { 13272 if (ipif->ipif_isv6) 13273 /* 13274 * Note: xresolv interfaces will eventually need 13275 * NOARP set here as well, but that will require 13276 * those external resolvers to have some 13277 * knowledge of that flag and act appropriately. 13278 * Not to be changed at present. 13279 */ 13280 ill->ill_flags |= ILLF_NONUD; 13281 else 13282 ill->ill_flags |= ILLF_NOARP; 13283 } 13284 if (ill->ill_phys_addr_length == 0) { 13285 if (IS_VNI(ill)) { 13286 ipif->ipif_flags |= IPIF_NOXMIT; 13287 } else { 13288 /* pt-pt supports multicast. */ 13289 ill->ill_flags |= ILLF_MULTICAST; 13290 if (ill->ill_net_type != IRE_LOOPBACK) 13291 ipif->ipif_flags |= IPIF_POINTOPOINT; 13292 } 13293 } 13294 } 13295 out: 13296 mutex_exit(&ill->ill_lock); 13297 return (ipif); 13298 } 13299 13300 /* 13301 * If appropriate, send a message up to the resolver delete the entry 13302 * for the address of this interface which is going out of business. 13303 * (Always called as writer). 13304 * 13305 * NOTE : We need to check for NULL mps as some of the fields are 13306 * initialized only for some interface types. See ipif_resolver_up() 13307 * for details. 13308 */ 13309 void 13310 ipif_resolver_down(ipif_t *ipif) 13311 { 13312 mblk_t *mp; 13313 ill_t *ill = ipif->ipif_ill; 13314 13315 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13316 ASSERT(IAM_WRITER_IPIF(ipif)); 13317 13318 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13319 return; 13320 13321 /* Delete the mapping for the local address */ 13322 mp = ipif->ipif_arp_del_mp; 13323 if (mp != NULL) { 13324 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13325 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13326 putnext(ill->ill_rq, mp); 13327 ipif->ipif_arp_del_mp = NULL; 13328 } 13329 13330 /* 13331 * Make IPMP aware of the deleted data address. 13332 */ 13333 if (IS_IPMP(ill)) 13334 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13335 13336 /* 13337 * If this is the last ipif that is going down and there are no 13338 * duplicate addresses we may yet attempt to re-probe, then we need to 13339 * clean up ARP completely. 13340 */ 13341 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13342 /* 13343 * If this was the last ipif on an IPMP interface, purge any 13344 * IPMP ARP entries associated with it. 13345 */ 13346 if (IS_IPMP(ill)) 13347 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13348 13349 /* Send up AR_INTERFACE_DOWN message */ 13350 mp = ill->ill_arp_down_mp; 13351 if (mp != NULL) { 13352 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13353 *(unsigned *)mp->b_rptr, ill->ill_name, 13354 ipif->ipif_id)); 13355 putnext(ill->ill_rq, mp); 13356 ill->ill_arp_down_mp = NULL; 13357 } 13358 13359 /* Tell ARP to delete the multicast mappings */ 13360 mp = ill->ill_arp_del_mapping_mp; 13361 if (mp != NULL) { 13362 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13363 *(unsigned *)mp->b_rptr, ill->ill_name, 13364 ipif->ipif_id)); 13365 putnext(ill->ill_rq, mp); 13366 ill->ill_arp_del_mapping_mp = NULL; 13367 } 13368 } 13369 } 13370 13371 /* 13372 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13373 * is non-NULL, then upon success it will contain an mblk that can be passed 13374 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13375 * will have already been notified to create the mapping. Returns zero on 13376 * success, -1 upon failure. 13377 */ 13378 int 13379 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13380 { 13381 mblk_t *del_mp = NULL; 13382 mblk_t *add_mp = NULL; 13383 mblk_t *mp; 13384 ill_t *ill = ipif->ipif_ill; 13385 phyint_t *phyi = ill->ill_phyint; 13386 ipaddr_t addr, mask, extract_mask = 0; 13387 arma_t *arma; 13388 uint8_t *maddr, *bphys_addr; 13389 uint32_t hw_start; 13390 dl_unitdata_req_t *dlur; 13391 13392 ASSERT(IAM_WRITER_IPIF(ipif)); 13393 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13394 return (0); 13395 13396 /* 13397 * IPMP meta-interfaces don't have any inherent multicast mappings, 13398 * and instead use the ones on the underlying interfaces. 13399 */ 13400 if (IS_IPMP(ill)) 13401 return (0); 13402 13403 /* 13404 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13405 * ipif_resolver_down() will send this up to ARP, but it may be that 13406 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13407 */ 13408 mp = ill->ill_arp_del_mapping_mp; 13409 if (mp != NULL) { 13410 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13411 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13412 putnext(ill->ill_rq, mp); 13413 ill->ill_arp_del_mapping_mp = NULL; 13414 } 13415 13416 if (arp_add_mapping_mp != NULL) 13417 *arp_add_mapping_mp = NULL; 13418 13419 /* 13420 * Check that the address is not to long for the constant 13421 * length reserved in the template arma_t. 13422 */ 13423 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13424 return (-1); 13425 13426 /* Add mapping mblk */ 13427 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13428 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13429 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13430 (caddr_t)&addr); 13431 if (add_mp == NULL) 13432 return (-1); 13433 arma = (arma_t *)add_mp->b_rptr; 13434 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13435 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13436 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13437 13438 /* 13439 * Determine the broadcast address. 13440 */ 13441 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13442 if (ill->ill_sap_length < 0) 13443 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13444 else 13445 bphys_addr = (uchar_t *)dlur + 13446 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13447 /* 13448 * Check PHYI_MULTI_BCAST and length of physical 13449 * address to determine if we use the mapping or the 13450 * broadcast address. 13451 */ 13452 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13453 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13454 bphys_addr, maddr, &hw_start, &extract_mask)) 13455 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13456 13457 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13458 (ill->ill_flags & ILLF_MULTICAST)) { 13459 /* Make sure this will not match the "exact" entry. */ 13460 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13461 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13462 (caddr_t)&addr); 13463 if (del_mp == NULL) { 13464 freemsg(add_mp); 13465 return (-1); 13466 } 13467 bcopy(&extract_mask, (char *)arma + 13468 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13469 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13470 /* Use link-layer broadcast address for MULTI_BCAST */ 13471 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13472 ip2dbg(("ipif_arp_setup_multicast: adding" 13473 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13474 } else { 13475 arma->arma_hw_mapping_start = hw_start; 13476 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13477 " ARP setup for %s\n", ill->ill_name)); 13478 } 13479 } else { 13480 freemsg(add_mp); 13481 ASSERT(del_mp == NULL); 13482 /* It is neither MULTICAST nor MULTI_BCAST */ 13483 return (0); 13484 } 13485 ASSERT(add_mp != NULL && del_mp != NULL); 13486 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13487 ill->ill_arp_del_mapping_mp = del_mp; 13488 if (arp_add_mapping_mp != NULL) { 13489 /* The caller just wants the mblks allocated */ 13490 *arp_add_mapping_mp = add_mp; 13491 } else { 13492 /* The caller wants us to send it to arp */ 13493 putnext(ill->ill_rq, add_mp); 13494 } 13495 return (0); 13496 } 13497 13498 /* 13499 * Get the resolver set up for a new IP address. (Always called as writer.) 13500 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13501 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13502 * 13503 * The enumerated value res_act tunes the behavior: 13504 * * Res_act_initial: set up all the resolver structures for a new 13505 * IP address. 13506 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13507 * ARP message in defense of the address. 13508 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13509 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13510 * 13511 * Returns zero on success, or an errno upon failure. 13512 */ 13513 int 13514 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13515 { 13516 mblk_t *arp_up_mp = NULL; 13517 mblk_t *arp_down_mp = NULL; 13518 mblk_t *arp_add_mp = NULL; 13519 mblk_t *arp_del_mp = NULL; 13520 mblk_t *arp_add_mapping_mp = NULL; 13521 mblk_t *arp_del_mapping_mp = NULL; 13522 ill_t *ill = ipif->ipif_ill; 13523 int err = ENOMEM; 13524 boolean_t added_ipif = B_FALSE; 13525 boolean_t publish; 13526 boolean_t was_dup; 13527 13528 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13529 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13530 ASSERT(IAM_WRITER_IPIF(ipif)); 13531 13532 was_dup = B_FALSE; 13533 if (res_act == Res_act_initial) { 13534 ipif->ipif_addr_ready = 0; 13535 /* 13536 * We're bringing an interface up here. There's no way that we 13537 * should need to shut down ARP now. 13538 */ 13539 mutex_enter(&ill->ill_lock); 13540 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13541 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13542 ill->ill_ipif_dup_count--; 13543 was_dup = B_TRUE; 13544 } 13545 mutex_exit(&ill->ill_lock); 13546 } 13547 if (ipif->ipif_recovery_id != 0) 13548 (void) untimeout(ipif->ipif_recovery_id); 13549 ipif->ipif_recovery_id = 0; 13550 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13551 ipif->ipif_addr_ready = 1; 13552 return (0); 13553 } 13554 /* NDP will set the ipif_addr_ready flag when it's ready */ 13555 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13556 return (0); 13557 13558 if (ill->ill_isv6) { 13559 /* 13560 * External resolver for IPv6 13561 */ 13562 ASSERT(res_act == Res_act_initial); 13563 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13564 } else { 13565 /* 13566 * IPv4 arp case. If the ARP stream has already started 13567 * closing, fail this request for ARP bringup. Else 13568 * record the fact that an ARP bringup is pending. 13569 */ 13570 mutex_enter(&ill->ill_lock); 13571 if (ill->ill_arp_closing) { 13572 mutex_exit(&ill->ill_lock); 13573 err = EINVAL; 13574 goto failed; 13575 } else { 13576 if (ill->ill_ipif_up_count == 0 && 13577 ill->ill_ipif_dup_count == 0 && !was_dup) 13578 ill->ill_arp_bringup_pending = 1; 13579 mutex_exit(&ill->ill_lock); 13580 } 13581 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13582 } 13583 13584 if (IS_IPMP(ill) && publish) { 13585 /* 13586 * If we're here via ipif_up(), then the ipif won't be bound 13587 * yet -- add it to the group, which will bind it if possible. 13588 * (We would add it in ipif_up(), but deleting on failure 13589 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13590 * then the ipif has already been added to the group and we 13591 * just need to use the binding. 13592 */ 13593 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13594 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13595 /* 13596 * We couldn't bind the ipif to an ill yet, 13597 * so we have nothing to publish. 13598 */ 13599 publish = B_FALSE; 13600 } 13601 added_ipif = B_TRUE; 13602 } 13603 } 13604 13605 /* 13606 * Add an entry for the local address in ARP only if it 13607 * is not UNNUMBERED and it is suitable for publishing. 13608 */ 13609 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13610 if (res_act == Res_act_defend) { 13611 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13612 if (arp_add_mp == NULL) 13613 goto failed; 13614 /* 13615 * If we're just defending our address now, then 13616 * there's no need to set up ARP multicast mappings. 13617 * The publish command is enough. 13618 */ 13619 goto done; 13620 } 13621 13622 /* 13623 * Allocate an ARP add message and an ARP delete message (the 13624 * latter is saved for use when the address goes down). 13625 */ 13626 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13627 goto failed; 13628 13629 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13630 goto failed; 13631 13632 if (res_act != Res_act_initial) 13633 goto arp_setup_multicast; 13634 } else { 13635 if (res_act != Res_act_initial) 13636 goto done; 13637 } 13638 /* 13639 * Need to bring up ARP or setup multicast mapping only 13640 * when the first interface is coming UP. 13641 */ 13642 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13643 goto done; 13644 13645 /* 13646 * Allocate an ARP down message (to be saved) and an ARP up message. 13647 */ 13648 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13649 if (arp_down_mp == NULL) 13650 goto failed; 13651 13652 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13653 if (arp_up_mp == NULL) 13654 goto failed; 13655 13656 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13657 goto done; 13658 13659 arp_setup_multicast: 13660 /* 13661 * Setup the multicast mappings. This function initializes 13662 * ill_arp_del_mapping_mp also. This does not need to be done for 13663 * IPv6, or for the IPMP interface (since it has no link-layer). 13664 */ 13665 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13666 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13667 if (err != 0) 13668 goto failed; 13669 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13670 ASSERT(arp_add_mapping_mp != NULL); 13671 } 13672 done: 13673 if (arp_up_mp != NULL) { 13674 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13675 ill->ill_name, ipif->ipif_id)); 13676 putnext(ill->ill_rq, arp_up_mp); 13677 arp_up_mp = NULL; 13678 } 13679 if (arp_add_mp != NULL) { 13680 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13681 ill->ill_name, ipif->ipif_id)); 13682 /* 13683 * If it's an extended ARP implementation, then we'll wait to 13684 * hear that DAD has finished before using the interface. 13685 */ 13686 if (!ill->ill_arp_extend) 13687 ipif->ipif_addr_ready = 1; 13688 putnext(ill->ill_rq, arp_add_mp); 13689 arp_add_mp = NULL; 13690 } else { 13691 ipif->ipif_addr_ready = 1; 13692 } 13693 if (arp_add_mapping_mp != NULL) { 13694 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13695 ill->ill_name, ipif->ipif_id)); 13696 putnext(ill->ill_rq, arp_add_mapping_mp); 13697 arp_add_mapping_mp = NULL; 13698 } 13699 13700 if (res_act == Res_act_initial) { 13701 if (ill->ill_flags & ILLF_NOARP) 13702 err = ill_arp_off(ill); 13703 else 13704 err = ill_arp_on(ill); 13705 if (err != 0) { 13706 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13707 err)); 13708 goto failed; 13709 } 13710 } 13711 13712 if (arp_del_mp != NULL) { 13713 ASSERT(ipif->ipif_arp_del_mp == NULL); 13714 ipif->ipif_arp_del_mp = arp_del_mp; 13715 } 13716 if (arp_down_mp != NULL) { 13717 ASSERT(ill->ill_arp_down_mp == NULL); 13718 ill->ill_arp_down_mp = arp_down_mp; 13719 } 13720 if (arp_del_mapping_mp != NULL) { 13721 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13722 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13723 } 13724 13725 return ((ill->ill_ipif_up_count != 0 || was_dup || 13726 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13727 failed: 13728 ip1dbg(("ipif_resolver_up: FAILED\n")); 13729 if (added_ipif) 13730 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13731 freemsg(arp_add_mp); 13732 freemsg(arp_del_mp); 13733 freemsg(arp_add_mapping_mp); 13734 freemsg(arp_up_mp); 13735 freemsg(arp_down_mp); 13736 ill->ill_arp_bringup_pending = 0; 13737 return (err); 13738 } 13739 13740 /* 13741 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13742 * just gone back up. 13743 */ 13744 static void 13745 ipif_arp_start_dad(ipif_t *ipif) 13746 { 13747 ill_t *ill = ipif->ipif_ill; 13748 mblk_t *arp_add_mp; 13749 13750 /* ACE_F_UNVERIFIED restarts DAD */ 13751 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13752 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13753 ipif->ipif_lcl_addr == INADDR_ANY || 13754 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13755 /* 13756 * If we can't contact ARP for some reason, that's not really a 13757 * problem. Just send out the routing socket notification that 13758 * DAD completion would have done, and continue. 13759 */ 13760 ipif_mask_reply(ipif); 13761 ipif_up_notify(ipif); 13762 ipif->ipif_addr_ready = 1; 13763 return; 13764 } 13765 13766 putnext(ill->ill_rq, arp_add_mp); 13767 } 13768 13769 static void 13770 ipif_ndp_start_dad(ipif_t *ipif) 13771 { 13772 nce_t *nce; 13773 13774 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13775 B_FALSE); 13776 if (nce == NULL) 13777 return; 13778 13779 if (!ndp_restart_dad(nce)) { 13780 /* 13781 * If we can't restart DAD for some reason, that's not really a 13782 * problem. Just send out the routing socket notification that 13783 * DAD completion would have done, and continue. 13784 */ 13785 ipif_up_notify(ipif); 13786 ipif->ipif_addr_ready = 1; 13787 } 13788 NCE_REFRELE(nce); 13789 } 13790 13791 /* 13792 * Restart duplicate address detection on all interfaces on the given ill. 13793 * 13794 * This is called when an interface transitions from down to up 13795 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13796 * 13797 * Note that since the underlying physical link has transitioned, we must cause 13798 * at least one routing socket message to be sent here, either via DAD 13799 * completion or just by default on the first ipif. (If we don't do this, then 13800 * in.mpathd will see long delays when doing link-based failure recovery.) 13801 */ 13802 void 13803 ill_restart_dad(ill_t *ill, boolean_t went_up) 13804 { 13805 ipif_t *ipif; 13806 13807 if (ill == NULL) 13808 return; 13809 13810 /* 13811 * If layer two doesn't support duplicate address detection, then just 13812 * send the routing socket message now and be done with it. 13813 */ 13814 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13815 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13816 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13817 return; 13818 } 13819 13820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13821 if (went_up) { 13822 if (ipif->ipif_flags & IPIF_UP) { 13823 if (ill->ill_isv6) 13824 ipif_ndp_start_dad(ipif); 13825 else 13826 ipif_arp_start_dad(ipif); 13827 } else if (ill->ill_isv6 && 13828 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13829 /* 13830 * For IPv4, the ARP module itself will 13831 * automatically start the DAD process when it 13832 * sees DL_NOTE_LINK_UP. We respond to the 13833 * AR_CN_READY at the completion of that task. 13834 * For IPv6, we must kick off the bring-up 13835 * process now. 13836 */ 13837 ndp_do_recovery(ipif); 13838 } else { 13839 /* 13840 * Unfortunately, the first ipif is "special" 13841 * and represents the underlying ill in the 13842 * routing socket messages. Thus, when this 13843 * one ipif is down, we must still notify so 13844 * that the user knows the IFF_RUNNING status 13845 * change. (If the first ipif is up, then 13846 * we'll handle eventual routing socket 13847 * notification via DAD completion.) 13848 */ 13849 if (ipif == ill->ill_ipif) { 13850 ip_rts_ifmsg(ill->ill_ipif, 13851 RTSQ_DEFAULT); 13852 } 13853 } 13854 } else { 13855 /* 13856 * After link down, we'll need to send a new routing 13857 * message when the link comes back, so clear 13858 * ipif_addr_ready. 13859 */ 13860 ipif->ipif_addr_ready = 0; 13861 } 13862 } 13863 13864 /* 13865 * If we've torn down links, then notify the user right away. 13866 */ 13867 if (!went_up) 13868 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13869 } 13870 13871 static void 13872 ipsq_delete(ipsq_t *ipsq) 13873 { 13874 ipxop_t *ipx = ipsq->ipsq_xop; 13875 13876 ipsq->ipsq_ipst = NULL; 13877 ASSERT(ipsq->ipsq_phyint == NULL); 13878 ASSERT(ipsq->ipsq_xop != NULL); 13879 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 13880 ASSERT(ipx->ipx_pending_mp == NULL); 13881 kmem_free(ipsq, sizeof (ipsq_t)); 13882 } 13883 13884 static int 13885 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 13886 { 13887 int err; 13888 ipif_t *ipif; 13889 13890 if (ill == NULL) 13891 return (0); 13892 13893 ASSERT(IAM_WRITER_ILL(ill)); 13894 ill->ill_up_ipifs = B_TRUE; 13895 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13896 if (ipif->ipif_was_up) { 13897 if (!(ipif->ipif_flags & IPIF_UP)) 13898 err = ipif_up(ipif, q, mp); 13899 ipif->ipif_was_up = B_FALSE; 13900 if (err != 0) { 13901 ASSERT(err == EINPROGRESS); 13902 return (err); 13903 } 13904 } 13905 } 13906 mutex_enter(&ill->ill_lock); 13907 ill->ill_state_flags &= ~ILL_CHANGING; 13908 mutex_exit(&ill->ill_lock); 13909 ill->ill_up_ipifs = B_FALSE; 13910 return (0); 13911 } 13912 13913 /* 13914 * This function is called to bring up all the ipifs that were up before 13915 * bringing the ill down via ill_down_ipifs(). 13916 */ 13917 int 13918 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13919 { 13920 int err; 13921 13922 ASSERT(IAM_WRITER_ILL(ill)); 13923 13924 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 13925 if (err != 0) 13926 return (err); 13927 13928 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 13929 } 13930 13931 /* 13932 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 13933 * down the ipifs without sending DL_UNBIND_REQ to the driver. 13934 */ 13935 static void 13936 ill_down_ipifs(ill_t *ill, boolean_t logical) 13937 { 13938 ipif_t *ipif; 13939 13940 ASSERT(IAM_WRITER_ILL(ill)); 13941 13942 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13943 /* 13944 * We go through the ipif_down logic even if the ipif 13945 * is already down, since routes can be added based 13946 * on down ipifs. Going through ipif_down once again 13947 * will delete any IREs created based on these routes. 13948 */ 13949 if (ipif->ipif_flags & IPIF_UP) 13950 ipif->ipif_was_up = B_TRUE; 13951 13952 /* 13953 * Need to re-create net/subnet bcast ires if 13954 * they are dependent on ipif. 13955 */ 13956 if (!ipif->ipif_isv6) 13957 ipif_check_bcast_ires(ipif); 13958 if (logical) { 13959 (void) ipif_logical_down(ipif, NULL, NULL); 13960 ipif_non_duplicate(ipif); 13961 ipif_down_tail(ipif); 13962 } else { 13963 (void) ipif_down(ipif, NULL, NULL); 13964 } 13965 } 13966 } 13967 13968 /* 13969 * Redo source address selection. This is called when a 13970 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 13971 */ 13972 void 13973 ill_update_source_selection(ill_t *ill) 13974 { 13975 ipif_t *ipif; 13976 13977 ASSERT(IAM_WRITER_ILL(ill)); 13978 13979 /* 13980 * Underlying interfaces are only used for test traffic and thus 13981 * should always send with their (deprecated) source addresses. 13982 */ 13983 if (IS_UNDER_IPMP(ill)) 13984 return; 13985 13986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13987 if (ill->ill_isv6) 13988 ipif_recreate_interface_routes_v6(NULL, ipif); 13989 else 13990 ipif_recreate_interface_routes(NULL, ipif); 13991 } 13992 } 13993 13994 /* 13995 * Finish the group join started in ip_sioctl_groupname(). 13996 */ 13997 /* ARGSUSED */ 13998 static void 13999 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14000 { 14001 ill_t *ill = q->q_ptr; 14002 phyint_t *phyi = ill->ill_phyint; 14003 ipmp_grp_t *grp = phyi->phyint_grp; 14004 ip_stack_t *ipst = ill->ill_ipst; 14005 14006 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14007 ASSERT(!IS_IPMP(ill) && grp != NULL); 14008 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14009 14010 if (phyi->phyint_illv4 != NULL) { 14011 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14012 VERIFY(grp->gr_pendv4-- > 0); 14013 rw_exit(&ipst->ips_ipmp_lock); 14014 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14015 } 14016 if (phyi->phyint_illv6 != NULL) { 14017 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14018 VERIFY(grp->gr_pendv6-- > 0); 14019 rw_exit(&ipst->ips_ipmp_lock); 14020 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14021 } 14022 freemsg(mp); 14023 } 14024 14025 /* 14026 * Process an SIOCSLIFGROUPNAME request. 14027 */ 14028 /* ARGSUSED */ 14029 int 14030 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14031 ip_ioctl_cmd_t *ipip, void *ifreq) 14032 { 14033 struct lifreq *lifr = ifreq; 14034 ill_t *ill = ipif->ipif_ill; 14035 ip_stack_t *ipst = ill->ill_ipst; 14036 phyint_t *phyi = ill->ill_phyint; 14037 ipmp_grp_t *grp = phyi->phyint_grp; 14038 mblk_t *ipsq_mp; 14039 int err = 0; 14040 14041 /* 14042 * Note that phyint_grp can only change here, where we're exclusive. 14043 */ 14044 ASSERT(IAM_WRITER_ILL(ill)); 14045 14046 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14047 (phyi->phyint_flags & PHYI_VIRTUAL)) 14048 return (EINVAL); 14049 14050 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14051 14052 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14053 14054 /* 14055 * If the name hasn't changed, there's nothing to do. 14056 */ 14057 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14058 goto unlock; 14059 14060 /* 14061 * Handle requests to rename an IPMP meta-interface. 14062 * 14063 * Note that creation of the IPMP meta-interface is handled in 14064 * userland through the standard plumbing sequence. As part of the 14065 * plumbing the IPMP meta-interface, its initial groupname is set to 14066 * the name of the interface (see ipif_set_values_tail()). 14067 */ 14068 if (IS_IPMP(ill)) { 14069 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14070 goto unlock; 14071 } 14072 14073 /* 14074 * Handle requests to add or remove an IP interface from a group. 14075 */ 14076 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14077 /* 14078 * Moves are handled by first removing the interface from 14079 * its existing group, and then adding it to another group. 14080 * So, fail if it's already in a group. 14081 */ 14082 if (IS_UNDER_IPMP(ill)) { 14083 err = EALREADY; 14084 goto unlock; 14085 } 14086 14087 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14088 if (grp == NULL) { 14089 err = ENOENT; 14090 goto unlock; 14091 } 14092 14093 /* 14094 * Check if the phyint and its ills are suitable for 14095 * inclusion into the group. 14096 */ 14097 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14098 goto unlock; 14099 14100 /* 14101 * Checks pass; join the group, and enqueue the remaining 14102 * illgrp joins for when we've become part of the group xop 14103 * and are exclusive across its IPSQs. Since qwriter_ip() 14104 * requires an mblk_t to scribble on, and since `mp' will be 14105 * freed as part of completing the ioctl, allocate another. 14106 */ 14107 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14108 err = ENOMEM; 14109 goto unlock; 14110 } 14111 14112 /* 14113 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14114 * IPMP meta-interface ills needed by `phyi' cannot go away 14115 * before ip_join_illgrps() is called back. See the comments 14116 * in ip_sioctl_plink_ipmp() for more. 14117 */ 14118 if (phyi->phyint_illv4 != NULL) 14119 grp->gr_pendv4++; 14120 if (phyi->phyint_illv6 != NULL) 14121 grp->gr_pendv6++; 14122 14123 rw_exit(&ipst->ips_ipmp_lock); 14124 14125 ipmp_phyint_join_grp(phyi, grp); 14126 ill_refhold(ill); 14127 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14128 SWITCH_OP, B_FALSE); 14129 return (0); 14130 } else { 14131 /* 14132 * Request to remove the interface from a group. If the 14133 * interface is not in a group, this trivially succeeds. 14134 */ 14135 rw_exit(&ipst->ips_ipmp_lock); 14136 if (IS_UNDER_IPMP(ill)) 14137 ipmp_phyint_leave_grp(phyi); 14138 return (0); 14139 } 14140 unlock: 14141 rw_exit(&ipst->ips_ipmp_lock); 14142 return (err); 14143 } 14144 14145 /* 14146 * Process an SIOCGLIFBINDING request. 14147 */ 14148 /* ARGSUSED */ 14149 int 14150 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14151 ip_ioctl_cmd_t *ipip, void *ifreq) 14152 { 14153 ill_t *ill; 14154 struct lifreq *lifr = ifreq; 14155 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14156 14157 if (!IS_IPMP(ipif->ipif_ill)) 14158 return (EINVAL); 14159 14160 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14161 if ((ill = ipif->ipif_bound_ill) == NULL) 14162 lifr->lifr_binding[0] = '\0'; 14163 else 14164 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14165 rw_exit(&ipst->ips_ipmp_lock); 14166 return (0); 14167 } 14168 14169 /* 14170 * Process an SIOCGLIFGROUPNAME request. 14171 */ 14172 /* ARGSUSED */ 14173 int 14174 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14175 ip_ioctl_cmd_t *ipip, void *ifreq) 14176 { 14177 ipmp_grp_t *grp; 14178 struct lifreq *lifr = ifreq; 14179 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14180 14181 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14182 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14183 lifr->lifr_groupname[0] = '\0'; 14184 else 14185 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14186 rw_exit(&ipst->ips_ipmp_lock); 14187 return (0); 14188 } 14189 14190 /* 14191 * Process an SIOCGLIFGROUPINFO request. 14192 */ 14193 /* ARGSUSED */ 14194 int 14195 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14196 ip_ioctl_cmd_t *ipip, void *dummy) 14197 { 14198 ipmp_grp_t *grp; 14199 lifgroupinfo_t *lifgr; 14200 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14201 14202 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14203 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14204 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14205 14206 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14207 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14208 rw_exit(&ipst->ips_ipmp_lock); 14209 return (ENOENT); 14210 } 14211 ipmp_grp_info(grp, lifgr); 14212 rw_exit(&ipst->ips_ipmp_lock); 14213 return (0); 14214 } 14215 14216 static void 14217 ill_dl_down(ill_t *ill) 14218 { 14219 /* 14220 * The ill is down; unbind but stay attached since we're still 14221 * associated with a PPA. If we have negotiated DLPI capabilites 14222 * with the data link service provider (IDS_OK) then reset them. 14223 * The interval between unbinding and rebinding is potentially 14224 * unbounded hence we cannot assume things will be the same. 14225 * The DLPI capabilities will be probed again when the data link 14226 * is brought up. 14227 */ 14228 mblk_t *mp = ill->ill_unbind_mp; 14229 14230 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14231 14232 ill->ill_unbind_mp = NULL; 14233 if (mp != NULL) { 14234 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14235 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14236 ill->ill_name)); 14237 mutex_enter(&ill->ill_lock); 14238 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14239 mutex_exit(&ill->ill_lock); 14240 /* 14241 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14242 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14243 * ill_capability_dld_disable disable rightaway. If this is not 14244 * an unplumb operation then the disable happens on receipt of 14245 * the capab ack via ip_rput_dlpi_writer -> 14246 * ill_capability_ack_thr. In both cases the order of 14247 * the operations seen by DLD is capability disable followed 14248 * by DL_UNBIND. Also the DLD capability disable needs a 14249 * cv_wait'able context. 14250 */ 14251 if (ill->ill_state_flags & ILL_CONDEMNED) 14252 ill_capability_dld_disable(ill); 14253 ill_capability_reset(ill, B_FALSE); 14254 ill_dlpi_send(ill, mp); 14255 } 14256 14257 /* 14258 * Toss all of our multicast memberships. We could keep them, but 14259 * then we'd have to do bookkeeping of any joins and leaves performed 14260 * by the application while the the interface is down (we can't just 14261 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14262 * on a downed interface). 14263 */ 14264 ill_leave_multicast(ill); 14265 14266 mutex_enter(&ill->ill_lock); 14267 ill->ill_dl_up = 0; 14268 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14269 mutex_exit(&ill->ill_lock); 14270 } 14271 14272 static void 14273 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14274 { 14275 union DL_primitives *dlp; 14276 t_uscalar_t prim; 14277 boolean_t waitack = B_FALSE; 14278 14279 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14280 14281 dlp = (union DL_primitives *)mp->b_rptr; 14282 prim = dlp->dl_primitive; 14283 14284 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14285 dl_primstr(prim), prim, ill->ill_name)); 14286 14287 switch (prim) { 14288 case DL_PHYS_ADDR_REQ: 14289 { 14290 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14291 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14292 break; 14293 } 14294 case DL_BIND_REQ: 14295 mutex_enter(&ill->ill_lock); 14296 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14297 mutex_exit(&ill->ill_lock); 14298 break; 14299 } 14300 14301 /* 14302 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14303 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14304 * we only wait for the ACK of the DL_UNBIND_REQ. 14305 */ 14306 mutex_enter(&ill->ill_lock); 14307 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 14308 (prim == DL_UNBIND_REQ)) { 14309 ill->ill_dlpi_pending = prim; 14310 waitack = B_TRUE; 14311 } 14312 14313 mutex_exit(&ill->ill_lock); 14314 putnext(ill->ill_wq, mp); 14315 14316 /* 14317 * There is no ack for DL_NOTIFY_CONF messages 14318 */ 14319 if (waitack && prim == DL_NOTIFY_CONF) 14320 ill_dlpi_done(ill, prim); 14321 } 14322 14323 /* 14324 * Helper function for ill_dlpi_send(). 14325 */ 14326 /* ARGSUSED */ 14327 static void 14328 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14329 { 14330 ill_dlpi_send(q->q_ptr, mp); 14331 } 14332 14333 /* 14334 * Send a DLPI control message to the driver but make sure there 14335 * is only one outstanding message. Uses ill_dlpi_pending to tell 14336 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14337 * when an ACK or a NAK is received to process the next queued message. 14338 */ 14339 void 14340 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14341 { 14342 mblk_t **mpp; 14343 14344 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14345 14346 /* 14347 * To ensure that any DLPI requests for current exclusive operation 14348 * are always completely sent before any DLPI messages for other 14349 * operations, require writer access before enqueuing. 14350 */ 14351 if (!IAM_WRITER_ILL(ill)) { 14352 ill_refhold(ill); 14353 /* qwriter_ip() does the ill_refrele() */ 14354 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14355 NEW_OP, B_TRUE); 14356 return; 14357 } 14358 14359 mutex_enter(&ill->ill_lock); 14360 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14361 /* Must queue message. Tail insertion */ 14362 mpp = &ill->ill_dlpi_deferred; 14363 while (*mpp != NULL) 14364 mpp = &((*mpp)->b_next); 14365 14366 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14367 ill->ill_name)); 14368 14369 *mpp = mp; 14370 mutex_exit(&ill->ill_lock); 14371 return; 14372 } 14373 mutex_exit(&ill->ill_lock); 14374 ill_dlpi_dispatch(ill, mp); 14375 } 14376 14377 static void 14378 ill_capability_send(ill_t *ill, mblk_t *mp) 14379 { 14380 ill->ill_capab_pending_cnt++; 14381 ill_dlpi_send(ill, mp); 14382 } 14383 14384 void 14385 ill_capability_done(ill_t *ill) 14386 { 14387 ASSERT(ill->ill_capab_pending_cnt != 0); 14388 14389 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14390 14391 ill->ill_capab_pending_cnt--; 14392 if (ill->ill_capab_pending_cnt == 0 && 14393 ill->ill_dlpi_capab_state == IDCS_OK) 14394 ill_capability_reset_alloc(ill); 14395 } 14396 14397 /* 14398 * Send all deferred DLPI messages without waiting for their ACKs. 14399 */ 14400 void 14401 ill_dlpi_send_deferred(ill_t *ill) 14402 { 14403 mblk_t *mp, *nextmp; 14404 14405 /* 14406 * Clear ill_dlpi_pending so that the message is not queued in 14407 * ill_dlpi_send(). 14408 */ 14409 mutex_enter(&ill->ill_lock); 14410 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14411 mp = ill->ill_dlpi_deferred; 14412 ill->ill_dlpi_deferred = NULL; 14413 mutex_exit(&ill->ill_lock); 14414 14415 for (; mp != NULL; mp = nextmp) { 14416 nextmp = mp->b_next; 14417 mp->b_next = NULL; 14418 ill_dlpi_send(ill, mp); 14419 } 14420 } 14421 14422 /* 14423 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14424 */ 14425 boolean_t 14426 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14427 { 14428 t_uscalar_t pending; 14429 14430 mutex_enter(&ill->ill_lock); 14431 if (ill->ill_dlpi_pending == prim) { 14432 mutex_exit(&ill->ill_lock); 14433 return (B_TRUE); 14434 } 14435 14436 /* 14437 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14438 * without waiting, so don't print any warnings in that case. 14439 */ 14440 if (ill->ill_state_flags & ILL_CONDEMNED) { 14441 mutex_exit(&ill->ill_lock); 14442 return (B_FALSE); 14443 } 14444 pending = ill->ill_dlpi_pending; 14445 mutex_exit(&ill->ill_lock); 14446 14447 if (pending == DL_PRIM_INVAL) { 14448 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14449 "received unsolicited ack for %s on %s\n", 14450 dl_primstr(prim), ill->ill_name); 14451 } else { 14452 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14453 "received unexpected ack for %s on %s (expecting %s)\n", 14454 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14455 } 14456 return (B_FALSE); 14457 } 14458 14459 /* 14460 * Complete the current DLPI operation associated with `prim' on `ill' and 14461 * start the next queued DLPI operation (if any). If there are no queued DLPI 14462 * operations and the ill's current exclusive IPSQ operation has finished 14463 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14464 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14465 * the comments above ipsq_current_finish() for details. 14466 */ 14467 void 14468 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14469 { 14470 mblk_t *mp; 14471 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14472 ipxop_t *ipx = ipsq->ipsq_xop; 14473 14474 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14475 mutex_enter(&ill->ill_lock); 14476 14477 ASSERT(prim != DL_PRIM_INVAL); 14478 ASSERT(ill->ill_dlpi_pending == prim); 14479 14480 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14481 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14482 14483 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14484 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14485 if (ipx->ipx_current_done) { 14486 mutex_enter(&ipx->ipx_lock); 14487 ipx->ipx_current_ipif = NULL; 14488 mutex_exit(&ipx->ipx_lock); 14489 } 14490 cv_signal(&ill->ill_cv); 14491 mutex_exit(&ill->ill_lock); 14492 return; 14493 } 14494 14495 ill->ill_dlpi_deferred = mp->b_next; 14496 mp->b_next = NULL; 14497 mutex_exit(&ill->ill_lock); 14498 14499 ill_dlpi_dispatch(ill, mp); 14500 } 14501 14502 void 14503 conn_delete_ire(conn_t *connp, caddr_t arg) 14504 { 14505 ipif_t *ipif = (ipif_t *)arg; 14506 ire_t *ire; 14507 14508 /* 14509 * Look at the cached ires on conns which has pointers to ipifs. 14510 * We just call ire_refrele which clears up the reference 14511 * to ire. Called when a conn closes. Also called from ipif_free 14512 * to cleanup indirect references to the stale ipif via the cached ire. 14513 */ 14514 mutex_enter(&connp->conn_lock); 14515 ire = connp->conn_ire_cache; 14516 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14517 connp->conn_ire_cache = NULL; 14518 mutex_exit(&connp->conn_lock); 14519 IRE_REFRELE_NOTR(ire); 14520 return; 14521 } 14522 mutex_exit(&connp->conn_lock); 14523 14524 } 14525 14526 /* 14527 * Some operations (e.g., ipif_down()) conditionally delete a number 14528 * of IREs. Those IREs may have been previously cached in the conn structure. 14529 * This ipcl_walk() walker function releases all references to such IREs based 14530 * on the condemned flag. 14531 */ 14532 /* ARGSUSED */ 14533 void 14534 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14535 { 14536 ire_t *ire; 14537 14538 mutex_enter(&connp->conn_lock); 14539 ire = connp->conn_ire_cache; 14540 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14541 connp->conn_ire_cache = NULL; 14542 mutex_exit(&connp->conn_lock); 14543 IRE_REFRELE_NOTR(ire); 14544 return; 14545 } 14546 mutex_exit(&connp->conn_lock); 14547 } 14548 14549 /* 14550 * Take down a specific interface, but don't lose any information about it. 14551 * (Always called as writer.) 14552 * This function goes through the down sequence even if the interface is 14553 * already down. There are 2 reasons. 14554 * a. Currently we permit interface routes that depend on down interfaces 14555 * to be added. This behaviour itself is questionable. However it appears 14556 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14557 * time. We go thru the cleanup in order to remove these routes. 14558 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14559 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14560 * down, but we need to cleanup i.e. do ill_dl_down and 14561 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14562 * 14563 * IP-MT notes: 14564 * 14565 * Model of reference to interfaces. 14566 * 14567 * The following members in ipif_t track references to the ipif. 14568 * int ipif_refcnt; Active reference count 14569 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14570 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14571 * 14572 * The following members in ill_t track references to the ill. 14573 * int ill_refcnt; active refcnt 14574 * uint_t ill_ire_cnt; Number of ires referencing ill 14575 * uint_t ill_nce_cnt; Number of nces referencing ill 14576 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14577 * 14578 * Reference to an ipif or ill can be obtained in any of the following ways. 14579 * 14580 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14581 * Pointers to ipif / ill from other data structures viz ire and conn. 14582 * Implicit reference to the ipif / ill by holding a reference to the ire. 14583 * 14584 * The ipif/ill lookup functions return a reference held ipif / ill. 14585 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14586 * This is a purely dynamic reference count associated with threads holding 14587 * references to the ipif / ill. Pointers from other structures do not 14588 * count towards this reference count. 14589 * 14590 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14591 * associated with the ipif/ill. This is incremented whenever a new 14592 * ire is created referencing the ipif/ill. This is done atomically inside 14593 * ire_add_v[46] where the ire is actually added to the ire hash table. 14594 * The count is decremented in ire_inactive where the ire is destroyed. 14595 * 14596 * nce's reference ill's thru nce_ill and the count of nce's associated with 14597 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14598 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14599 * table. Similarly it is decremented in ndp_inactive() where the nce 14600 * is destroyed. 14601 * 14602 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14603 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14604 * in ilm_walker_cleanup() or ilm_delete(). 14605 * 14606 * Flow of ioctls involving interface down/up 14607 * 14608 * The following is the sequence of an attempt to set some critical flags on an 14609 * up interface. 14610 * ip_sioctl_flags 14611 * ipif_down 14612 * wait for ipif to be quiescent 14613 * ipif_down_tail 14614 * ip_sioctl_flags_tail 14615 * 14616 * All set ioctls that involve down/up sequence would have a skeleton similar 14617 * to the above. All the *tail functions are called after the refcounts have 14618 * dropped to the appropriate values. 14619 * 14620 * The mechanism to quiesce an ipif is as follows. 14621 * 14622 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14623 * on the ipif. Callers either pass a flag requesting wait or the lookup 14624 * functions will return NULL. 14625 * 14626 * Delete all ires referencing this ipif 14627 * 14628 * Any thread attempting to do an ipif_refhold on an ipif that has been 14629 * obtained thru a cached pointer will first make sure that 14630 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14631 * increment the refcount. 14632 * 14633 * The above guarantees that the ipif refcount will eventually come down to 14634 * zero and the ipif will quiesce, once all threads that currently hold a 14635 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14636 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14637 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14638 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14639 * in ip.h 14640 * 14641 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14642 * 14643 * Threads trying to lookup an ipif or ill can pass a flag requesting 14644 * wait and restart if the ipif / ill cannot be looked up currently. 14645 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14646 * failure if the ipif is currently undergoing an exclusive operation, and 14647 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14648 * is restarted by ipsq_exit() when the current exclusive operation completes. 14649 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14650 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14651 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14652 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14653 * until we release the ipsq_lock, even though the the ill/ipif state flags 14654 * can change after we drop the ill_lock. 14655 * 14656 * An attempt to send out a packet using an ipif that is currently 14657 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14658 * operation and restart it later when the exclusive condition on the ipif ends. 14659 * This is an example of not passing the wait flag to the lookup functions. For 14660 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14661 * out a multicast packet on that ipif will fail while the ipif is 14662 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14663 * currently IPIF_CHANGING will also fail. 14664 */ 14665 int 14666 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14667 { 14668 ill_t *ill = ipif->ipif_ill; 14669 conn_t *connp; 14670 boolean_t success; 14671 boolean_t ipif_was_up = B_FALSE; 14672 ip_stack_t *ipst = ill->ill_ipst; 14673 14674 ASSERT(IAM_WRITER_IPIF(ipif)); 14675 14676 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14677 14678 if (ipif->ipif_flags & IPIF_UP) { 14679 mutex_enter(&ill->ill_lock); 14680 ipif->ipif_flags &= ~IPIF_UP; 14681 ASSERT(ill->ill_ipif_up_count > 0); 14682 --ill->ill_ipif_up_count; 14683 mutex_exit(&ill->ill_lock); 14684 ipif_was_up = B_TRUE; 14685 /* Update status in SCTP's list */ 14686 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14687 ill_nic_event_dispatch(ipif->ipif_ill, 14688 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14689 } 14690 14691 /* 14692 * Blow away memberships we established in ipif_multicast_up(). 14693 */ 14694 ipif_multicast_down(ipif); 14695 14696 /* 14697 * Remove from the mapping for __sin6_src_id. We insert only 14698 * when the address is not INADDR_ANY. As IPv4 addresses are 14699 * stored as mapped addresses, we need to check for mapped 14700 * INADDR_ANY also. 14701 */ 14702 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14703 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14704 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14705 int err; 14706 14707 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14708 ipif->ipif_zoneid, ipst); 14709 if (err != 0) { 14710 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14711 } 14712 } 14713 14714 /* 14715 * Delete all IRE's pointing at this ipif or its source address. 14716 */ 14717 if (ipif->ipif_isv6) { 14718 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14719 ipst); 14720 } else { 14721 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14722 ipst); 14723 } 14724 14725 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14726 /* 14727 * Since the interface is now down, it may have just become 14728 * inactive. Note that this needs to be done even for a 14729 * lll_logical_down(), or ARP entries will not get correctly 14730 * restored when the interface comes back up. 14731 */ 14732 if (IS_UNDER_IPMP(ill)) 14733 ipmp_ill_refresh_active(ill); 14734 } 14735 14736 /* 14737 * Cleaning up the conn_ire_cache or conns must be done only after the 14738 * ires have been deleted above. Otherwise a thread could end up 14739 * caching an ire in a conn after we have finished the cleanup of the 14740 * conn. The caching is done after making sure that the ire is not yet 14741 * condemned. Also documented in the block comment above ip_output 14742 */ 14743 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14744 /* Also, delete the ires cached in SCTP */ 14745 sctp_ire_cache_flush(ipif); 14746 14747 /* 14748 * Update any other ipifs which have used "our" local address as 14749 * a source address. This entails removing and recreating IRE_INTERFACE 14750 * entries for such ipifs. 14751 */ 14752 if (ipif->ipif_isv6) 14753 ipif_update_other_ipifs_v6(ipif); 14754 else 14755 ipif_update_other_ipifs(ipif); 14756 14757 /* 14758 * neighbor-discovery or arp entries for this interface. 14759 */ 14760 ipif_ndp_down(ipif); 14761 14762 /* 14763 * If mp is NULL the caller will wait for the appropriate refcnt. 14764 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14765 * and ill_delete -> ipif_free -> ipif_down 14766 */ 14767 if (mp == NULL) { 14768 ASSERT(q == NULL); 14769 return (0); 14770 } 14771 14772 if (CONN_Q(q)) { 14773 connp = Q_TO_CONN(q); 14774 mutex_enter(&connp->conn_lock); 14775 } else { 14776 connp = NULL; 14777 } 14778 mutex_enter(&ill->ill_lock); 14779 /* 14780 * Are there any ire's pointing to this ipif that are still active ? 14781 * If this is the last ipif going down, are there any ire's pointing 14782 * to this ill that are still active ? 14783 */ 14784 if (ipif_is_quiescent(ipif)) { 14785 mutex_exit(&ill->ill_lock); 14786 if (connp != NULL) 14787 mutex_exit(&connp->conn_lock); 14788 return (0); 14789 } 14790 14791 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14792 ill->ill_name, (void *)ill)); 14793 /* 14794 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14795 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14796 * which in turn is called by the last refrele on the ipif/ill/ire. 14797 */ 14798 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14799 if (!success) { 14800 /* The conn is closing. So just return */ 14801 ASSERT(connp != NULL); 14802 mutex_exit(&ill->ill_lock); 14803 mutex_exit(&connp->conn_lock); 14804 return (EINTR); 14805 } 14806 14807 mutex_exit(&ill->ill_lock); 14808 if (connp != NULL) 14809 mutex_exit(&connp->conn_lock); 14810 return (EINPROGRESS); 14811 } 14812 14813 void 14814 ipif_down_tail(ipif_t *ipif) 14815 { 14816 ill_t *ill = ipif->ipif_ill; 14817 14818 /* 14819 * Skip any loopback interface (null wq). 14820 * If this is the last logical interface on the ill 14821 * have ill_dl_down tell the driver we are gone (unbind) 14822 * Note that lun 0 can ipif_down even though 14823 * there are other logical units that are up. 14824 * This occurs e.g. when we change a "significant" IFF_ flag. 14825 */ 14826 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14827 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14828 ill->ill_dl_up) { 14829 ill_dl_down(ill); 14830 } 14831 ill->ill_logical_down = 0; 14832 14833 /* 14834 * Has to be after removing the routes in ipif_down_delete_ire. 14835 */ 14836 ipif_resolver_down(ipif); 14837 14838 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14839 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14840 } 14841 14842 /* 14843 * Bring interface logically down without bringing the physical interface 14844 * down e.g. when the netmask is changed. This avoids long lasting link 14845 * negotiations between an ethernet interface and a certain switches. 14846 */ 14847 static int 14848 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14849 { 14850 /* 14851 * The ill_logical_down flag is a transient flag. It is set here 14852 * and is cleared once the down has completed in ipif_down_tail. 14853 * This flag does not indicate whether the ill stream is in the 14854 * DL_BOUND state with the driver. Instead this flag is used by 14855 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14856 * the driver. The state of the ill stream i.e. whether it is 14857 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14858 */ 14859 ipif->ipif_ill->ill_logical_down = 1; 14860 return (ipif_down(ipif, q, mp)); 14861 } 14862 14863 /* 14864 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14865 * If the usesrc client ILL is already part of a usesrc group or not, 14866 * in either case a ire_stq with the matching usesrc client ILL will 14867 * locate the IRE's that need to be deleted. We want IREs to be created 14868 * with the new source address. 14869 */ 14870 static void 14871 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14872 { 14873 ill_t *ucill = (ill_t *)ill_arg; 14874 14875 ASSERT(IAM_WRITER_ILL(ucill)); 14876 14877 if (ire->ire_stq == NULL) 14878 return; 14879 14880 if ((ire->ire_type == IRE_CACHE) && 14881 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 14882 ire_delete(ire); 14883 } 14884 14885 /* 14886 * ire_walk routine to delete every IRE dependent on the interface 14887 * address that is going down. (Always called as writer.) 14888 * Works for both v4 and v6. 14889 * In addition for checking for ire_ipif matches it also checks for 14890 * IRE_CACHE entries which have the same source address as the 14891 * disappearing ipif since ipif_select_source might have picked 14892 * that source. Note that ipif_down/ipif_update_other_ipifs takes 14893 * care of any IRE_INTERFACE with the disappearing source address. 14894 */ 14895 static void 14896 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 14897 { 14898 ipif_t *ipif = (ipif_t *)ipif_arg; 14899 14900 ASSERT(IAM_WRITER_IPIF(ipif)); 14901 if (ire->ire_ipif == NULL) 14902 return; 14903 14904 if (ire->ire_ipif != ipif) { 14905 /* 14906 * Look for a matching source address. 14907 */ 14908 if (ire->ire_type != IRE_CACHE) 14909 return; 14910 if (ipif->ipif_flags & IPIF_NOLOCAL) 14911 return; 14912 14913 if (ire->ire_ipversion == IPV4_VERSION) { 14914 if (ire->ire_src_addr != ipif->ipif_src_addr) 14915 return; 14916 } else { 14917 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 14918 &ipif->ipif_v6lcl_addr)) 14919 return; 14920 } 14921 ire_delete(ire); 14922 return; 14923 } 14924 /* 14925 * ire_delete() will do an ire_flush_cache which will delete 14926 * all ire_ipif matches 14927 */ 14928 ire_delete(ire); 14929 } 14930 14931 /* 14932 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 14933 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 14934 * 2) when an interface is brought up or down (on that ill). 14935 * This ensures that the IRE_CACHE entries don't retain stale source 14936 * address selection results. 14937 */ 14938 void 14939 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 14940 { 14941 ill_t *ill = (ill_t *)ill_arg; 14942 14943 ASSERT(IAM_WRITER_ILL(ill)); 14944 ASSERT(ire->ire_type == IRE_CACHE); 14945 14946 /* 14947 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14948 * ill, but we only want to delete the IRE if ire_ipif matches. 14949 */ 14950 ASSERT(ire->ire_ipif != NULL); 14951 if (ill == ire->ire_ipif->ipif_ill) 14952 ire_delete(ire); 14953 } 14954 14955 /* 14956 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 14957 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 14958 * the IPMP ill. 14959 */ 14960 void 14961 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 14962 { 14963 ill_t *ill = (ill_t *)ill_arg; 14964 14965 ASSERT(IAM_WRITER_ILL(ill)); 14966 ASSERT(ire->ire_type == IRE_CACHE); 14967 14968 /* 14969 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14970 * ill, but we only want to delete the IRE if ire_stq matches. 14971 */ 14972 if (ire->ire_stq->q_ptr == ill_arg) 14973 ire_delete(ire); 14974 } 14975 14976 /* 14977 * Delete all broadcast IREs with a source address on `ill_arg'. 14978 */ 14979 static void 14980 ill_broadcast_delete(ire_t *ire, char *ill_arg) 14981 { 14982 ill_t *ill = (ill_t *)ill_arg; 14983 14984 ASSERT(IAM_WRITER_ILL(ill)); 14985 ASSERT(ire->ire_type == IRE_BROADCAST); 14986 14987 if (ire->ire_ipif->ipif_ill == ill) 14988 ire_delete(ire); 14989 } 14990 14991 /* 14992 * Initiate deallocate of an IPIF. Always called as writer. Called by 14993 * ill_delete or ip_sioctl_removeif. 14994 */ 14995 static void 14996 ipif_free(ipif_t *ipif) 14997 { 14998 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14999 15000 ASSERT(IAM_WRITER_IPIF(ipif)); 15001 15002 if (ipif->ipif_recovery_id != 0) 15003 (void) untimeout(ipif->ipif_recovery_id); 15004 ipif->ipif_recovery_id = 0; 15005 15006 /* Remove conn references */ 15007 reset_conn_ipif(ipif); 15008 15009 /* 15010 * Make sure we have valid net and subnet broadcast ire's for the 15011 * other ipif's which share them with this ipif. 15012 */ 15013 if (!ipif->ipif_isv6) 15014 ipif_check_bcast_ires(ipif); 15015 15016 /* 15017 * Take down the interface. We can be called either from ill_delete 15018 * or from ip_sioctl_removeif. 15019 */ 15020 (void) ipif_down(ipif, NULL, NULL); 15021 15022 /* 15023 * Now that the interface is down, there's no chance it can still 15024 * become a duplicate. Cancel any timer that may have been set while 15025 * tearing down. 15026 */ 15027 if (ipif->ipif_recovery_id != 0) 15028 (void) untimeout(ipif->ipif_recovery_id); 15029 ipif->ipif_recovery_id = 0; 15030 15031 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15032 /* Remove pointers to this ill in the multicast routing tables */ 15033 reset_mrt_vif_ipif(ipif); 15034 /* If necessary, clear the cached source ipif rotor. */ 15035 if (ipif->ipif_ill->ill_src_ipif == ipif) 15036 ipif->ipif_ill->ill_src_ipif = NULL; 15037 rw_exit(&ipst->ips_ill_g_lock); 15038 } 15039 15040 static void 15041 ipif_free_tail(ipif_t *ipif) 15042 { 15043 mblk_t *mp; 15044 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15045 15046 /* 15047 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15048 */ 15049 mutex_enter(&ipif->ipif_saved_ire_lock); 15050 mp = ipif->ipif_saved_ire_mp; 15051 ipif->ipif_saved_ire_mp = NULL; 15052 mutex_exit(&ipif->ipif_saved_ire_lock); 15053 freemsg(mp); 15054 15055 /* 15056 * Need to hold both ill_g_lock and ill_lock while 15057 * inserting or removing an ipif from the linked list 15058 * of ipifs hanging off the ill. 15059 */ 15060 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15061 15062 ASSERT(ilm_walk_ipif(ipif) == 0); 15063 15064 #ifdef DEBUG 15065 ipif_trace_cleanup(ipif); 15066 #endif 15067 15068 /* Ask SCTP to take it out of it list */ 15069 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15070 15071 /* Get it out of the ILL interface list. */ 15072 ipif_remove(ipif); 15073 rw_exit(&ipst->ips_ill_g_lock); 15074 15075 mutex_destroy(&ipif->ipif_saved_ire_lock); 15076 15077 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15078 ASSERT(ipif->ipif_recovery_id == 0); 15079 15080 /* Free the memory. */ 15081 mi_free(ipif); 15082 } 15083 15084 /* 15085 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15086 * is zero. 15087 */ 15088 void 15089 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15090 { 15091 char lbuf[LIFNAMSIZ]; 15092 char *name; 15093 size_t name_len; 15094 15095 buf[0] = '\0'; 15096 name = ipif->ipif_ill->ill_name; 15097 name_len = ipif->ipif_ill->ill_name_length; 15098 if (ipif->ipif_id != 0) { 15099 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15100 ipif->ipif_id); 15101 name = lbuf; 15102 name_len = mi_strlen(name) + 1; 15103 } 15104 len -= 1; 15105 buf[len] = '\0'; 15106 len = MIN(len, name_len); 15107 bcopy(name, buf, len); 15108 } 15109 15110 /* 15111 * Find an IPIF based on the name passed in. Names can be of the 15112 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15113 * The <phys> string can have forms like <dev><#> (e.g., le0), 15114 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15115 * When there is no colon, the implied unit id is zero. <phys> must 15116 * correspond to the name of an ILL. (May be called as writer.) 15117 */ 15118 static ipif_t * 15119 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15120 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15121 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15122 { 15123 char *cp; 15124 char *endp; 15125 long id; 15126 ill_t *ill; 15127 ipif_t *ipif; 15128 uint_t ire_type; 15129 boolean_t did_alloc = B_FALSE; 15130 ipsq_t *ipsq; 15131 15132 if (error != NULL) 15133 *error = 0; 15134 15135 /* 15136 * If the caller wants to us to create the ipif, make sure we have a 15137 * valid zoneid 15138 */ 15139 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15140 15141 if (namelen == 0) { 15142 if (error != NULL) 15143 *error = ENXIO; 15144 return (NULL); 15145 } 15146 15147 *exists = B_FALSE; 15148 /* Look for a colon in the name. */ 15149 endp = &name[namelen]; 15150 for (cp = endp; --cp > name; ) { 15151 if (*cp == IPIF_SEPARATOR_CHAR) 15152 break; 15153 } 15154 15155 if (*cp == IPIF_SEPARATOR_CHAR) { 15156 /* 15157 * Reject any non-decimal aliases for logical 15158 * interfaces. Aliases with leading zeroes 15159 * are also rejected as they introduce ambiguity 15160 * in the naming of the interfaces. 15161 * In order to confirm with existing semantics, 15162 * and to not break any programs/script relying 15163 * on that behaviour, if<0>:0 is considered to be 15164 * a valid interface. 15165 * 15166 * If alias has two or more digits and the first 15167 * is zero, fail. 15168 */ 15169 if (&cp[2] < endp && cp[1] == '0') { 15170 if (error != NULL) 15171 *error = EINVAL; 15172 return (NULL); 15173 } 15174 } 15175 15176 if (cp <= name) { 15177 cp = endp; 15178 } else { 15179 *cp = '\0'; 15180 } 15181 15182 /* 15183 * Look up the ILL, based on the portion of the name 15184 * before the slash. ill_lookup_on_name returns a held ill. 15185 * Temporary to check whether ill exists already. If so 15186 * ill_lookup_on_name will clear it. 15187 */ 15188 ill = ill_lookup_on_name(name, do_alloc, isv6, 15189 q, mp, func, error, &did_alloc, ipst); 15190 if (cp != endp) 15191 *cp = IPIF_SEPARATOR_CHAR; 15192 if (ill == NULL) 15193 return (NULL); 15194 15195 /* Establish the unit number in the name. */ 15196 id = 0; 15197 if (cp < endp && *endp == '\0') { 15198 /* If there was a colon, the unit number follows. */ 15199 cp++; 15200 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15201 ill_refrele(ill); 15202 if (error != NULL) 15203 *error = ENXIO; 15204 return (NULL); 15205 } 15206 } 15207 15208 GRAB_CONN_LOCK(q); 15209 mutex_enter(&ill->ill_lock); 15210 /* Now see if there is an IPIF with this unit number. */ 15211 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15212 if (ipif->ipif_id == id) { 15213 if (zoneid != ALL_ZONES && 15214 zoneid != ipif->ipif_zoneid && 15215 ipif->ipif_zoneid != ALL_ZONES) { 15216 mutex_exit(&ill->ill_lock); 15217 RELEASE_CONN_LOCK(q); 15218 ill_refrele(ill); 15219 if (error != NULL) 15220 *error = ENXIO; 15221 return (NULL); 15222 } 15223 /* 15224 * The block comment at the start of ipif_down 15225 * explains the use of the macros used below 15226 */ 15227 if (IPIF_CAN_LOOKUP(ipif)) { 15228 ipif_refhold_locked(ipif); 15229 mutex_exit(&ill->ill_lock); 15230 if (!did_alloc) 15231 *exists = B_TRUE; 15232 /* 15233 * Drop locks before calling ill_refrele 15234 * since it can potentially call into 15235 * ipif_ill_refrele_tail which can end up 15236 * in trying to acquire any lock. 15237 */ 15238 RELEASE_CONN_LOCK(q); 15239 ill_refrele(ill); 15240 return (ipif); 15241 } else if (IPIF_CAN_WAIT(ipif, q)) { 15242 ipsq = ill->ill_phyint->phyint_ipsq; 15243 mutex_enter(&ipsq->ipsq_lock); 15244 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15245 mutex_exit(&ill->ill_lock); 15246 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15247 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15248 mutex_exit(&ipsq->ipsq_lock); 15249 RELEASE_CONN_LOCK(q); 15250 ill_refrele(ill); 15251 if (error != NULL) 15252 *error = EINPROGRESS; 15253 return (NULL); 15254 } 15255 } 15256 } 15257 RELEASE_CONN_LOCK(q); 15258 15259 if (!do_alloc) { 15260 mutex_exit(&ill->ill_lock); 15261 ill_refrele(ill); 15262 if (error != NULL) 15263 *error = ENXIO; 15264 return (NULL); 15265 } 15266 15267 /* 15268 * If none found, atomically allocate and return a new one. 15269 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15270 * to support "receive only" use of lo0:1 etc. as is still done 15271 * below as an initial guess. 15272 * However, this is now likely to be overriden later in ipif_up_done() 15273 * when we know for sure what address has been configured on the 15274 * interface, since we might have more than one loopback interface 15275 * with a loopback address, e.g. in the case of zones, and all the 15276 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15277 */ 15278 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15279 ire_type = IRE_LOOPBACK; 15280 else 15281 ire_type = IRE_LOCAL; 15282 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15283 if (ipif != NULL) 15284 ipif_refhold_locked(ipif); 15285 else if (error != NULL) 15286 *error = ENOMEM; 15287 mutex_exit(&ill->ill_lock); 15288 ill_refrele(ill); 15289 return (ipif); 15290 } 15291 15292 /* 15293 * This routine is called whenever a new address comes up on an ipif. If 15294 * we are configured to respond to address mask requests, then we are supposed 15295 * to broadcast an address mask reply at this time. This routine is also 15296 * called if we are already up, but a netmask change is made. This is legal 15297 * but might not make the system manager very popular. (May be called 15298 * as writer.) 15299 */ 15300 void 15301 ipif_mask_reply(ipif_t *ipif) 15302 { 15303 icmph_t *icmph; 15304 ipha_t *ipha; 15305 mblk_t *mp; 15306 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15307 15308 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15309 15310 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15311 return; 15312 15313 /* ICMP mask reply is IPv4 only */ 15314 ASSERT(!ipif->ipif_isv6); 15315 /* ICMP mask reply is not for a loopback interface */ 15316 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15317 15318 mp = allocb(REPLY_LEN, BPRI_HI); 15319 if (mp == NULL) 15320 return; 15321 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15322 15323 ipha = (ipha_t *)mp->b_rptr; 15324 bzero(ipha, REPLY_LEN); 15325 *ipha = icmp_ipha; 15326 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15327 ipha->ipha_src = ipif->ipif_src_addr; 15328 ipha->ipha_dst = ipif->ipif_brd_addr; 15329 ipha->ipha_length = htons(REPLY_LEN); 15330 ipha->ipha_ident = 0; 15331 15332 icmph = (icmph_t *)&ipha[1]; 15333 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15334 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15335 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15336 15337 put(ipif->ipif_wq, mp); 15338 15339 #undef REPLY_LEN 15340 } 15341 15342 /* 15343 * When the mtu in the ipif changes, we call this routine through ire_walk 15344 * to update all the relevant IREs. 15345 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15346 */ 15347 static void 15348 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15349 { 15350 ipif_t *ipif = (ipif_t *)ipif_arg; 15351 15352 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15353 return; 15354 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15355 } 15356 15357 /* 15358 * When the mtu in the ill changes, we call this routine through ire_walk 15359 * to update all the relevant IREs. 15360 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15361 */ 15362 void 15363 ill_mtu_change(ire_t *ire, char *ill_arg) 15364 { 15365 ill_t *ill = (ill_t *)ill_arg; 15366 15367 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15368 return; 15369 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15370 } 15371 15372 /* 15373 * Join the ipif specific multicast groups. 15374 * Must be called after a mapping has been set up in the resolver. (Always 15375 * called as writer.) 15376 */ 15377 void 15378 ipif_multicast_up(ipif_t *ipif) 15379 { 15380 int err; 15381 ill_t *ill; 15382 15383 ASSERT(IAM_WRITER_IPIF(ipif)); 15384 15385 ill = ipif->ipif_ill; 15386 15387 ip1dbg(("ipif_multicast_up\n")); 15388 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15389 return; 15390 15391 if (ipif->ipif_isv6) { 15392 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15393 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15394 15395 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15396 15397 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15398 return; 15399 15400 ip1dbg(("ipif_multicast_up - addmulti\n")); 15401 15402 /* 15403 * Join the all hosts multicast address. We skip this for 15404 * underlying IPMP interfaces since they should be invisible. 15405 */ 15406 if (!IS_UNDER_IPMP(ill)) { 15407 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15408 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15409 if (err != 0) { 15410 ip0dbg(("ipif_multicast_up: " 15411 "all_hosts_mcast failed %d\n", err)); 15412 return; 15413 } 15414 ipif->ipif_joined_allhosts = 1; 15415 } 15416 15417 /* 15418 * Enable multicast for the solicited node multicast address 15419 */ 15420 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15421 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15422 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15423 if (err != 0) { 15424 ip0dbg(("ipif_multicast_up: solicited MC" 15425 " failed %d\n", err)); 15426 if (ipif->ipif_joined_allhosts) { 15427 (void) ip_delmulti_v6(&v6allmc, ill, 15428 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15429 ipif->ipif_joined_allhosts = 0; 15430 } 15431 return; 15432 } 15433 } 15434 } else { 15435 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15436 return; 15437 15438 /* Join the all hosts multicast address */ 15439 ip1dbg(("ipif_multicast_up - addmulti\n")); 15440 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15441 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15442 if (err) { 15443 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15444 return; 15445 } 15446 } 15447 ipif->ipif_multicast_up = 1; 15448 } 15449 15450 /* 15451 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15452 * (Explicit memberships are blown away in ill_leave_multicast() when the 15453 * ill is brought down.) 15454 */ 15455 void 15456 ipif_multicast_down(ipif_t *ipif) 15457 { 15458 int err; 15459 15460 ASSERT(IAM_WRITER_IPIF(ipif)); 15461 15462 ip1dbg(("ipif_multicast_down\n")); 15463 if (!ipif->ipif_multicast_up) 15464 return; 15465 15466 ip1dbg(("ipif_multicast_down - delmulti\n")); 15467 15468 if (!ipif->ipif_isv6) { 15469 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15470 B_TRUE); 15471 if (err != 0) 15472 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15473 15474 ipif->ipif_multicast_up = 0; 15475 return; 15476 } 15477 15478 /* 15479 * Leave the all-hosts multicast address. 15480 */ 15481 if (ipif->ipif_joined_allhosts) { 15482 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15483 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15484 if (err != 0) { 15485 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15486 "failed %d\n", err)); 15487 } 15488 ipif->ipif_joined_allhosts = 0; 15489 } 15490 15491 /* 15492 * Disable multicast for the solicited node multicast address 15493 */ 15494 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15495 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15496 15497 ipv6_multi.s6_addr32[3] |= 15498 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15499 15500 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15501 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15502 if (err != 0) { 15503 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15504 err)); 15505 } 15506 } 15507 15508 ipif->ipif_multicast_up = 0; 15509 } 15510 15511 /* 15512 * Used when an interface comes up to recreate any extra routes on this 15513 * interface. 15514 */ 15515 static ire_t ** 15516 ipif_recover_ire(ipif_t *ipif) 15517 { 15518 mblk_t *mp; 15519 ire_t **ipif_saved_irep; 15520 ire_t **irep; 15521 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15522 15523 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15524 ipif->ipif_id)); 15525 15526 mutex_enter(&ipif->ipif_saved_ire_lock); 15527 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15528 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15529 if (ipif_saved_irep == NULL) { 15530 mutex_exit(&ipif->ipif_saved_ire_lock); 15531 return (NULL); 15532 } 15533 15534 irep = ipif_saved_irep; 15535 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15536 ire_t *ire; 15537 queue_t *rfq; 15538 queue_t *stq; 15539 ifrt_t *ifrt; 15540 uchar_t *src_addr; 15541 uchar_t *gateway_addr; 15542 ushort_t type; 15543 15544 /* 15545 * When the ire was initially created and then added in 15546 * ip_rt_add(), it was created either using ipif->ipif_net_type 15547 * in the case of a traditional interface route, or as one of 15548 * the IRE_OFFSUBNET types (with the exception of 15549 * IRE_HOST types ire which is created by icmp_redirect() and 15550 * which we don't need to save or recover). In the case where 15551 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15552 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15553 * to satisfy software like GateD and Sun Cluster which creates 15554 * routes using the the loopback interface's address as a 15555 * gateway. 15556 * 15557 * As ifrt->ifrt_type reflects the already updated ire_type, 15558 * ire_create() will be called in the same way here as 15559 * in ip_rt_add(), namely using ipif->ipif_net_type when 15560 * the route looks like a traditional interface route (where 15561 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15562 * the saved ifrt->ifrt_type. This means that in the case where 15563 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15564 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15565 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15566 */ 15567 ifrt = (ifrt_t *)mp->b_rptr; 15568 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15569 if (ifrt->ifrt_type & IRE_INTERFACE) { 15570 rfq = NULL; 15571 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15572 ? ipif->ipif_rq : ipif->ipif_wq; 15573 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15574 ? (uint8_t *)&ifrt->ifrt_src_addr 15575 : (uint8_t *)&ipif->ipif_src_addr; 15576 gateway_addr = NULL; 15577 type = ipif->ipif_net_type; 15578 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15579 /* Recover multiroute broadcast IRE. */ 15580 rfq = ipif->ipif_rq; 15581 stq = ipif->ipif_wq; 15582 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15583 ? (uint8_t *)&ifrt->ifrt_src_addr 15584 : (uint8_t *)&ipif->ipif_src_addr; 15585 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15586 type = ifrt->ifrt_type; 15587 } else { 15588 rfq = NULL; 15589 stq = NULL; 15590 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15591 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15592 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15593 type = ifrt->ifrt_type; 15594 } 15595 15596 /* 15597 * Create a copy of the IRE with the saved address and netmask. 15598 */ 15599 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15600 "0x%x/0x%x\n", 15601 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15602 ntohl(ifrt->ifrt_addr), 15603 ntohl(ifrt->ifrt_mask))); 15604 ire = ire_create( 15605 (uint8_t *)&ifrt->ifrt_addr, 15606 (uint8_t *)&ifrt->ifrt_mask, 15607 src_addr, 15608 gateway_addr, 15609 &ifrt->ifrt_max_frag, 15610 NULL, 15611 rfq, 15612 stq, 15613 type, 15614 ipif, 15615 0, 15616 0, 15617 0, 15618 ifrt->ifrt_flags, 15619 &ifrt->ifrt_iulp_info, 15620 NULL, 15621 NULL, 15622 ipst); 15623 15624 if (ire == NULL) { 15625 mutex_exit(&ipif->ipif_saved_ire_lock); 15626 kmem_free(ipif_saved_irep, 15627 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15628 return (NULL); 15629 } 15630 15631 /* 15632 * Some software (for example, GateD and Sun Cluster) attempts 15633 * to create (what amount to) IRE_PREFIX routes with the 15634 * loopback address as the gateway. This is primarily done to 15635 * set up prefixes with the RTF_REJECT flag set (for example, 15636 * when generating aggregate routes.) 15637 * 15638 * If the IRE type (as defined by ipif->ipif_net_type) is 15639 * IRE_LOOPBACK, then we map the request into a 15640 * IRE_IF_NORESOLVER. 15641 */ 15642 if (ipif->ipif_net_type == IRE_LOOPBACK) 15643 ire->ire_type = IRE_IF_NORESOLVER; 15644 /* 15645 * ire held by ire_add, will be refreled' towards the 15646 * the end of ipif_up_done 15647 */ 15648 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15649 *irep = ire; 15650 irep++; 15651 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15652 } 15653 mutex_exit(&ipif->ipif_saved_ire_lock); 15654 return (ipif_saved_irep); 15655 } 15656 15657 /* 15658 * Used to set the netmask and broadcast address to default values when the 15659 * interface is brought up. (Always called as writer.) 15660 */ 15661 static void 15662 ipif_set_default(ipif_t *ipif) 15663 { 15664 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15665 15666 if (!ipif->ipif_isv6) { 15667 /* 15668 * Interface holds an IPv4 address. Default 15669 * mask is the natural netmask. 15670 */ 15671 if (!ipif->ipif_net_mask) { 15672 ipaddr_t v4mask; 15673 15674 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15675 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15676 } 15677 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15678 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15679 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15680 } else { 15681 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15682 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15683 } 15684 /* 15685 * NOTE: SunOS 4.X does this even if the broadcast address 15686 * has been already set thus we do the same here. 15687 */ 15688 if (ipif->ipif_flags & IPIF_BROADCAST) { 15689 ipaddr_t v4addr; 15690 15691 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15692 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15693 } 15694 } else { 15695 /* 15696 * Interface holds an IPv6-only address. Default 15697 * mask is all-ones. 15698 */ 15699 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15700 ipif->ipif_v6net_mask = ipv6_all_ones; 15701 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15702 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15703 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15704 } else { 15705 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15706 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15707 } 15708 } 15709 } 15710 15711 /* 15712 * Return 0 if this address can be used as local address without causing 15713 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15714 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15715 * Note that the same IPv6 link-local address is allowed as long as the ills 15716 * are not on the same link. 15717 */ 15718 int 15719 ip_addr_availability_check(ipif_t *new_ipif) 15720 { 15721 in6_addr_t our_v6addr; 15722 ill_t *ill; 15723 ipif_t *ipif; 15724 ill_walk_context_t ctx; 15725 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15726 15727 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15728 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15729 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15730 15731 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15732 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15733 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15734 return (0); 15735 15736 our_v6addr = new_ipif->ipif_v6lcl_addr; 15737 15738 if (new_ipif->ipif_isv6) 15739 ill = ILL_START_WALK_V6(&ctx, ipst); 15740 else 15741 ill = ILL_START_WALK_V4(&ctx, ipst); 15742 15743 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15744 for (ipif = ill->ill_ipif; ipif != NULL; 15745 ipif = ipif->ipif_next) { 15746 if ((ipif == new_ipif) || 15747 !(ipif->ipif_flags & IPIF_UP) || 15748 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15749 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15750 &our_v6addr)) 15751 continue; 15752 15753 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15754 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15755 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15756 ipif->ipif_flags |= IPIF_UNNUMBERED; 15757 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15758 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15759 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15760 continue; 15761 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15762 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15763 continue; 15764 else if (new_ipif->ipif_ill == ill) 15765 return (EADDRINUSE); 15766 else 15767 return (EADDRNOTAVAIL); 15768 } 15769 } 15770 15771 return (0); 15772 } 15773 15774 /* 15775 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15776 * IREs for the ipif. 15777 * When the routine returns EINPROGRESS then mp has been consumed and 15778 * the ioctl will be acked from ip_rput_dlpi. 15779 */ 15780 int 15781 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15782 { 15783 ill_t *ill = ipif->ipif_ill; 15784 boolean_t isv6 = ipif->ipif_isv6; 15785 int err = 0; 15786 boolean_t success; 15787 uint_t ipif_orig_id; 15788 ip_stack_t *ipst = ill->ill_ipst; 15789 15790 ASSERT(IAM_WRITER_IPIF(ipif)); 15791 15792 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15793 15794 /* Shouldn't get here if it is already up. */ 15795 if (ipif->ipif_flags & IPIF_UP) 15796 return (EALREADY); 15797 15798 /* 15799 * If this is a request to bring up a data address on an interface 15800 * under IPMP, then move the address to its IPMP meta-interface and 15801 * try to bring it up. One complication is that the zeroth ipif for 15802 * an ill is special, in that every ill always has one, and that code 15803 * throughout IP deferences ill->ill_ipif without holding any locks. 15804 */ 15805 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15806 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15807 ipif_t *stubipif = NULL, *moveipif = NULL; 15808 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15809 15810 /* 15811 * The ipif being brought up should be quiesced. If it's not, 15812 * something has gone amiss and we need to bail out. (If it's 15813 * quiesced, we know it will remain so via IPIF_CHANGING.) 15814 */ 15815 mutex_enter(&ill->ill_lock); 15816 if (!ipif_is_quiescent(ipif)) { 15817 mutex_exit(&ill->ill_lock); 15818 return (EINVAL); 15819 } 15820 mutex_exit(&ill->ill_lock); 15821 15822 /* 15823 * If we're going to need to allocate ipifs, do it prior 15824 * to starting the move (and grabbing locks). 15825 */ 15826 if (ipif->ipif_id == 0) { 15827 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15828 B_FALSE); 15829 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15830 B_FALSE); 15831 if (moveipif == NULL || stubipif == NULL) { 15832 mi_free(moveipif); 15833 mi_free(stubipif); 15834 return (ENOMEM); 15835 } 15836 } 15837 15838 /* 15839 * Grab or transfer the ipif to move. During the move, keep 15840 * ill_g_lock held to prevent any ill walker threads from 15841 * seeing things in an inconsistent state. 15842 */ 15843 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15844 if (ipif->ipif_id != 0) { 15845 ipif_remove(ipif); 15846 } else { 15847 ipif_transfer(ipif, moveipif, stubipif); 15848 ipif = moveipif; 15849 } 15850 15851 /* 15852 * Place the ipif on the IPMP ill. If the zeroth ipif on 15853 * the IPMP ill is a stub (0.0.0.0 down address) then we 15854 * replace that one. Otherwise, pick the next available slot. 15855 */ 15856 ipif->ipif_ill = ipmp_ill; 15857 ipif_orig_id = ipif->ipif_id; 15858 15859 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15860 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15861 ipif = ipmp_ill->ill_ipif; 15862 } else { 15863 ipif->ipif_id = -1; 15864 if (ipif_insert(ipif, B_FALSE) != 0) { 15865 /* 15866 * No more available ipif_id's -- put it back 15867 * on the original ill and fail the operation. 15868 * Since we're writer on the ill, we can be 15869 * sure our old slot is still available. 15870 */ 15871 ipif->ipif_id = ipif_orig_id; 15872 ipif->ipif_ill = ill; 15873 if (ipif_orig_id == 0) { 15874 ipif_transfer(ipif, ill->ill_ipif, 15875 NULL); 15876 } else { 15877 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 15878 } 15879 rw_exit(&ipst->ips_ill_g_lock); 15880 return (ENOMEM); 15881 } 15882 } 15883 rw_exit(&ipst->ips_ill_g_lock); 15884 15885 /* 15886 * Tell SCTP that the ipif has moved. Note that even if we 15887 * had to allocate a new ipif, the original sequence id was 15888 * preserved and therefore SCTP won't know. 15889 */ 15890 sctp_move_ipif(ipif, ill, ipmp_ill); 15891 15892 /* 15893 * If the ipif being brought up was on slot zero, then we 15894 * first need to bring up the placeholder we stuck there. In 15895 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 15896 * to ipif_up() itself, if we successfully bring up the 15897 * placeholder, we'll check ill_move_ipif and bring it up too. 15898 */ 15899 if (ipif_orig_id == 0) { 15900 ASSERT(ill->ill_move_ipif == NULL); 15901 ill->ill_move_ipif = ipif; 15902 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 15903 ASSERT(ill->ill_move_ipif == NULL); 15904 if (err != EINPROGRESS) 15905 ill->ill_move_ipif = NULL; 15906 return (err); 15907 } 15908 15909 /* 15910 * Bring it up on the IPMP ill. 15911 */ 15912 return (ipif_up(ipif, q, mp)); 15913 } 15914 15915 /* Skip arp/ndp for any loopback interface. */ 15916 if (ill->ill_wq != NULL) { 15917 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 15918 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 15919 15920 if (!ill->ill_dl_up) { 15921 /* 15922 * ill_dl_up is not yet set. i.e. we are yet to 15923 * DL_BIND with the driver and this is the first 15924 * logical interface on the ill to become "up". 15925 * Tell the driver to get going (via DL_BIND_REQ). 15926 * Note that changing "significant" IFF_ flags 15927 * address/netmask etc cause a down/up dance, but 15928 * does not cause an unbind (DL_UNBIND) with the driver 15929 */ 15930 return (ill_dl_up(ill, ipif, mp, q)); 15931 } 15932 15933 /* 15934 * ipif_resolver_up may end up sending an 15935 * AR_INTERFACE_UP message to ARP, which would, in 15936 * turn send a DLPI message to the driver. ioctls are 15937 * serialized and so we cannot send more than one 15938 * interface up message at a time. If ipif_resolver_up 15939 * does send an interface up message to ARP, we get 15940 * EINPROGRESS and we will complete in ip_arp_done. 15941 */ 15942 15943 ASSERT(connp != NULL || !CONN_Q(q)); 15944 if (connp != NULL) 15945 mutex_enter(&connp->conn_lock); 15946 mutex_enter(&ill->ill_lock); 15947 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 15948 mutex_exit(&ill->ill_lock); 15949 if (connp != NULL) 15950 mutex_exit(&connp->conn_lock); 15951 if (!success) 15952 return (EINTR); 15953 15954 /* 15955 * Crank up the resolver. For IPv6, this cranks up the 15956 * external resolver if one is configured, but even if an 15957 * external resolver isn't configured, it must be called to 15958 * reset DAD state. For IPv6, if an external resolver is not 15959 * being used, ipif_resolver_up() will never return 15960 * EINPROGRESS, so we can always call ipif_ndp_up() here. 15961 * Note that if an external resolver is being used, there's no 15962 * need to call ipif_ndp_up() since it will do nothing. 15963 */ 15964 err = ipif_resolver_up(ipif, Res_act_initial); 15965 if (err == EINPROGRESS) { 15966 /* We will complete it in ip_arp_done() */ 15967 return (err); 15968 } 15969 15970 if (isv6 && err == 0) 15971 err = ipif_ndp_up(ipif, B_TRUE); 15972 15973 ASSERT(err != EINPROGRESS); 15974 mp = ipsq_pending_mp_get(ipsq, &connp); 15975 ASSERT(mp != NULL); 15976 if (err != 0) 15977 return (err); 15978 } else { 15979 /* 15980 * Interfaces without underlying hardware don't do duplicate 15981 * address detection. 15982 */ 15983 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 15984 ipif->ipif_addr_ready = 1; 15985 } 15986 15987 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 15988 if (err == 0 && ill->ill_move_ipif != NULL) { 15989 ipif = ill->ill_move_ipif; 15990 ill->ill_move_ipif = NULL; 15991 return (ipif_up(ipif, q, mp)); 15992 } 15993 return (err); 15994 } 15995 15996 /* 15997 * Perform a bind for the physical device. 15998 * When the routine returns EINPROGRESS then mp has been consumed and 15999 * the ioctl will be acked from ip_rput_dlpi. 16000 * Allocate an unbind message and save it until ipif_down. 16001 */ 16002 static int 16003 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16004 { 16005 areq_t *areq; 16006 mblk_t *areq_mp = NULL; 16007 mblk_t *bind_mp = NULL; 16008 mblk_t *unbind_mp = NULL; 16009 conn_t *connp; 16010 boolean_t success; 16011 uint16_t sap_addr; 16012 16013 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16014 ASSERT(IAM_WRITER_ILL(ill)); 16015 ASSERT(mp != NULL); 16016 16017 /* Create a resolver cookie for ARP */ 16018 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16019 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16020 if (areq_mp == NULL) 16021 return (ENOMEM); 16022 16023 freemsg(ill->ill_resolver_mp); 16024 ill->ill_resolver_mp = areq_mp; 16025 areq = (areq_t *)areq_mp->b_rptr; 16026 sap_addr = ill->ill_sap; 16027 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16028 } 16029 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16030 DL_BIND_REQ); 16031 if (bind_mp == NULL) 16032 goto bad; 16033 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16034 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16035 16036 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16037 if (unbind_mp == NULL) 16038 goto bad; 16039 16040 /* 16041 * Record state needed to complete this operation when the 16042 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16043 */ 16044 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16045 ASSERT(connp != NULL || !CONN_Q(q)); 16046 GRAB_CONN_LOCK(q); 16047 mutex_enter(&ipif->ipif_ill->ill_lock); 16048 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16049 mutex_exit(&ipif->ipif_ill->ill_lock); 16050 RELEASE_CONN_LOCK(q); 16051 if (!success) 16052 goto bad; 16053 16054 /* 16055 * Save the unbind message for ill_dl_down(); it will be consumed when 16056 * the interface goes down. 16057 */ 16058 ASSERT(ill->ill_unbind_mp == NULL); 16059 ill->ill_unbind_mp = unbind_mp; 16060 16061 ill_dlpi_send(ill, bind_mp); 16062 /* Send down link-layer capabilities probe if not already done. */ 16063 ill_capability_probe(ill); 16064 16065 /* 16066 * Sysid used to rely on the fact that netboots set domainname 16067 * and the like. Now that miniroot boots aren't strictly netboots 16068 * and miniroot network configuration is driven from userland 16069 * these things still need to be set. This situation can be detected 16070 * by comparing the interface being configured here to the one 16071 * dhcifname was set to reference by the boot loader. Once sysid is 16072 * converted to use dhcp_ipc_getinfo() this call can go away. 16073 */ 16074 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16075 (strcmp(ill->ill_name, dhcifname) == 0) && 16076 (strlen(srpc_domain) == 0)) { 16077 if (dhcpinit() != 0) 16078 cmn_err(CE_WARN, "no cached dhcp response"); 16079 } 16080 16081 /* 16082 * This operation will complete in ip_rput_dlpi with either 16083 * a DL_BIND_ACK or DL_ERROR_ACK. 16084 */ 16085 return (EINPROGRESS); 16086 bad: 16087 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16088 16089 freemsg(bind_mp); 16090 freemsg(unbind_mp); 16091 return (ENOMEM); 16092 } 16093 16094 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16095 16096 /* 16097 * DLPI and ARP is up. 16098 * Create all the IREs associated with an interface bring up multicast. 16099 * Set the interface flag and finish other initialization 16100 * that potentially had to be differed to after DL_BIND_ACK. 16101 */ 16102 int 16103 ipif_up_done(ipif_t *ipif) 16104 { 16105 ire_t *ire_array[20]; 16106 ire_t **irep = ire_array; 16107 ire_t **irep1; 16108 ipaddr_t net_mask = 0; 16109 ipaddr_t subnet_mask, route_mask; 16110 ill_t *ill = ipif->ipif_ill; 16111 queue_t *stq; 16112 ipif_t *src_ipif; 16113 ipif_t *tmp_ipif; 16114 boolean_t flush_ire_cache = B_TRUE; 16115 int err = 0; 16116 ire_t **ipif_saved_irep = NULL; 16117 int ipif_saved_ire_cnt; 16118 int cnt; 16119 boolean_t src_ipif_held = B_FALSE; 16120 boolean_t loopback = B_FALSE; 16121 ip_stack_t *ipst = ill->ill_ipst; 16122 16123 ip1dbg(("ipif_up_done(%s:%u)\n", 16124 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16125 /* Check if this is a loopback interface */ 16126 if (ipif->ipif_ill->ill_wq == NULL) 16127 loopback = B_TRUE; 16128 16129 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16130 /* 16131 * If all other interfaces for this ill are down or DEPRECATED, 16132 * or otherwise unsuitable for source address selection, remove 16133 * any IRE_CACHE entries for this ill to make sure source 16134 * address selection gets to take this new ipif into account. 16135 * No need to hold ill_lock while traversing the ipif list since 16136 * we are writer 16137 */ 16138 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16139 tmp_ipif = tmp_ipif->ipif_next) { 16140 if (((tmp_ipif->ipif_flags & 16141 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16142 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16143 (tmp_ipif == ipif)) 16144 continue; 16145 /* first useable pre-existing interface */ 16146 flush_ire_cache = B_FALSE; 16147 break; 16148 } 16149 if (flush_ire_cache) 16150 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16151 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16152 16153 /* 16154 * Figure out which way the send-to queue should go. Only 16155 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16156 * should show up here. 16157 */ 16158 switch (ill->ill_net_type) { 16159 case IRE_IF_RESOLVER: 16160 stq = ill->ill_rq; 16161 break; 16162 case IRE_IF_NORESOLVER: 16163 case IRE_LOOPBACK: 16164 stq = ill->ill_wq; 16165 break; 16166 default: 16167 return (EINVAL); 16168 } 16169 16170 if (IS_LOOPBACK(ill)) { 16171 /* 16172 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16173 * ipif_lookup_on_name(), but in the case of zones we can have 16174 * several loopback addresses on lo0. So all the interfaces with 16175 * loopback addresses need to be marked IRE_LOOPBACK. 16176 */ 16177 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16178 htonl(INADDR_LOOPBACK)) 16179 ipif->ipif_ire_type = IRE_LOOPBACK; 16180 else 16181 ipif->ipif_ire_type = IRE_LOCAL; 16182 } 16183 16184 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16185 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16186 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16187 /* 16188 * Can't use our source address. Select a different 16189 * source address for the IRE_INTERFACE and IRE_LOCAL 16190 */ 16191 src_ipif = ipif_select_source(ipif->ipif_ill, 16192 ipif->ipif_subnet, ipif->ipif_zoneid); 16193 if (src_ipif == NULL) 16194 src_ipif = ipif; /* Last resort */ 16195 else 16196 src_ipif_held = B_TRUE; 16197 } else { 16198 src_ipif = ipif; 16199 } 16200 16201 /* Create all the IREs associated with this interface */ 16202 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16203 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16204 16205 /* 16206 * If we're on a labeled system then make sure that zone- 16207 * private addresses have proper remote host database entries. 16208 */ 16209 if (is_system_labeled() && 16210 ipif->ipif_ire_type != IRE_LOOPBACK && 16211 !tsol_check_interface_address(ipif)) 16212 return (EINVAL); 16213 16214 /* Register the source address for __sin6_src_id */ 16215 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16216 ipif->ipif_zoneid, ipst); 16217 if (err != 0) { 16218 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16219 return (err); 16220 } 16221 16222 /* If the interface address is set, create the local IRE. */ 16223 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16224 (void *)ipif, 16225 ipif->ipif_ire_type, 16226 ntohl(ipif->ipif_lcl_addr))); 16227 *irep++ = ire_create( 16228 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16229 (uchar_t *)&ip_g_all_ones, /* mask */ 16230 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16231 NULL, /* no gateway */ 16232 &ip_loopback_mtuplus, /* max frag size */ 16233 NULL, 16234 ipif->ipif_rq, /* recv-from queue */ 16235 NULL, /* no send-to queue */ 16236 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16237 ipif, 16238 0, 16239 0, 16240 0, 16241 (ipif->ipif_flags & IPIF_PRIVATE) ? 16242 RTF_PRIVATE : 0, 16243 &ire_uinfo_null, 16244 NULL, 16245 NULL, 16246 ipst); 16247 } else { 16248 ip1dbg(( 16249 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16250 ipif->ipif_ire_type, 16251 ntohl(ipif->ipif_lcl_addr), 16252 (uint_t)ipif->ipif_flags)); 16253 } 16254 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16255 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16256 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16257 } else { 16258 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16259 } 16260 16261 subnet_mask = ipif->ipif_net_mask; 16262 16263 /* 16264 * If mask was not specified, use natural netmask of 16265 * interface address. Also, store this mask back into the 16266 * ipif struct. 16267 */ 16268 if (subnet_mask == 0) { 16269 subnet_mask = net_mask; 16270 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16271 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16272 ipif->ipif_v6subnet); 16273 } 16274 16275 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16276 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16277 ipif->ipif_subnet != INADDR_ANY) { 16278 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16279 16280 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16281 route_mask = IP_HOST_MASK; 16282 } else { 16283 route_mask = subnet_mask; 16284 } 16285 16286 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16287 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16288 (void *)ipif, (void *)ill, 16289 ill->ill_net_type, 16290 ntohl(ipif->ipif_subnet))); 16291 *irep++ = ire_create( 16292 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16293 (uchar_t *)&route_mask, /* mask */ 16294 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16295 NULL, /* no gateway */ 16296 &ipif->ipif_mtu, /* max frag */ 16297 NULL, 16298 NULL, /* no recv queue */ 16299 stq, /* send-to queue */ 16300 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16301 ipif, 16302 0, 16303 0, 16304 0, 16305 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16306 &ire_uinfo_null, 16307 NULL, 16308 NULL, 16309 ipst); 16310 } 16311 16312 /* 16313 * Create any necessary broadcast IREs. 16314 */ 16315 if (ipif->ipif_flags & IPIF_BROADCAST) 16316 irep = ipif_create_bcast_ires(ipif, irep); 16317 16318 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16319 16320 /* If an earlier ire_create failed, get out now */ 16321 for (irep1 = irep; irep1 > ire_array; ) { 16322 irep1--; 16323 if (*irep1 == NULL) { 16324 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16325 err = ENOMEM; 16326 goto bad; 16327 } 16328 } 16329 16330 /* 16331 * Need to atomically check for IP address availability under 16332 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16333 * ills or new ipifs can be added while we are checking availability. 16334 */ 16335 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16336 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16337 /* Mark it up, and increment counters. */ 16338 ipif->ipif_flags |= IPIF_UP; 16339 ill->ill_ipif_up_count++; 16340 err = ip_addr_availability_check(ipif); 16341 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16342 rw_exit(&ipst->ips_ill_g_lock); 16343 16344 if (err != 0) { 16345 /* 16346 * Our address may already be up on the same ill. In this case, 16347 * the ARP entry for our ipif replaced the one for the other 16348 * ipif. So we don't want to delete it (otherwise the other ipif 16349 * would be unable to send packets). 16350 * ip_addr_availability_check() identifies this case for us and 16351 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16352 * which is the expected error code. 16353 */ 16354 if (err == EADDRINUSE) { 16355 freemsg(ipif->ipif_arp_del_mp); 16356 ipif->ipif_arp_del_mp = NULL; 16357 err = EADDRNOTAVAIL; 16358 } 16359 ill->ill_ipif_up_count--; 16360 ipif->ipif_flags &= ~IPIF_UP; 16361 goto bad; 16362 } 16363 16364 /* 16365 * Add in all newly created IREs. ire_create_bcast() has 16366 * already checked for duplicates of the IRE_BROADCAST type. 16367 */ 16368 for (irep1 = irep; irep1 > ire_array; ) { 16369 irep1--; 16370 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16371 /* 16372 * refheld by ire_add. refele towards the end of the func 16373 */ 16374 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16375 } 16376 16377 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16378 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16379 ipif_saved_irep = ipif_recover_ire(ipif); 16380 16381 if (!loopback) { 16382 /* 16383 * If the broadcast address has been set, make sure it makes 16384 * sense based on the interface address. 16385 * Only match on ill since we are sharing broadcast addresses. 16386 */ 16387 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16388 (ipif->ipif_flags & IPIF_BROADCAST)) { 16389 ire_t *ire; 16390 16391 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16392 IRE_BROADCAST, ipif, ALL_ZONES, 16393 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16394 16395 if (ire == NULL) { 16396 /* 16397 * If there isn't a matching broadcast IRE, 16398 * revert to the default for this netmask. 16399 */ 16400 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16401 mutex_enter(&ipif->ipif_ill->ill_lock); 16402 ipif_set_default(ipif); 16403 mutex_exit(&ipif->ipif_ill->ill_lock); 16404 } else { 16405 ire_refrele(ire); 16406 } 16407 } 16408 16409 } 16410 16411 if (ill->ill_need_recover_multicast) { 16412 /* 16413 * Need to recover all multicast memberships in the driver. 16414 * This had to be deferred until we had attached. The same 16415 * code exists in ipif_up_done_v6() to recover IPv6 16416 * memberships. 16417 * 16418 * Note that it would be preferable to unconditionally do the 16419 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16420 * that since ill_join_allmulti() depends on ill_dl_up being 16421 * set, and it is not set until we receive a DL_BIND_ACK after 16422 * having called ill_dl_up(). 16423 */ 16424 ill_recover_multicast(ill); 16425 } 16426 16427 if (ill->ill_ipif_up_count == 1) { 16428 /* 16429 * Since the interface is now up, it may now be active. 16430 */ 16431 if (IS_UNDER_IPMP(ill)) 16432 ipmp_ill_refresh_active(ill); 16433 16434 /* 16435 * If this is an IPMP interface, we may now be able to 16436 * establish ARP entries. 16437 */ 16438 if (IS_IPMP(ill)) 16439 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16440 } 16441 16442 /* Join the allhosts multicast address */ 16443 ipif_multicast_up(ipif); 16444 16445 /* 16446 * See if anybody else would benefit from our new ipif. 16447 */ 16448 if (!loopback && 16449 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16450 ill_update_source_selection(ill); 16451 } 16452 16453 for (irep1 = irep; irep1 > ire_array; ) { 16454 irep1--; 16455 if (*irep1 != NULL) { 16456 /* was held in ire_add */ 16457 ire_refrele(*irep1); 16458 } 16459 } 16460 16461 cnt = ipif_saved_ire_cnt; 16462 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16463 if (*irep1 != NULL) { 16464 /* was held in ire_add */ 16465 ire_refrele(*irep1); 16466 } 16467 } 16468 16469 if (!loopback && ipif->ipif_addr_ready) { 16470 /* Broadcast an address mask reply. */ 16471 ipif_mask_reply(ipif); 16472 } 16473 if (ipif_saved_irep != NULL) { 16474 kmem_free(ipif_saved_irep, 16475 ipif_saved_ire_cnt * sizeof (ire_t *)); 16476 } 16477 if (src_ipif_held) 16478 ipif_refrele(src_ipif); 16479 16480 /* 16481 * This had to be deferred until we had bound. Tell routing sockets and 16482 * others that this interface is up if it looks like the address has 16483 * been validated. Otherwise, if it isn't ready yet, wait for 16484 * duplicate address detection to do its thing. 16485 */ 16486 if (ipif->ipif_addr_ready) 16487 ipif_up_notify(ipif); 16488 return (0); 16489 16490 bad: 16491 ip1dbg(("ipif_up_done: FAILED \n")); 16492 16493 while (irep > ire_array) { 16494 irep--; 16495 if (*irep != NULL) 16496 ire_delete(*irep); 16497 } 16498 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16499 16500 if (ipif_saved_irep != NULL) { 16501 kmem_free(ipif_saved_irep, 16502 ipif_saved_ire_cnt * sizeof (ire_t *)); 16503 } 16504 if (src_ipif_held) 16505 ipif_refrele(src_ipif); 16506 16507 ipif_resolver_down(ipif); 16508 return (err); 16509 } 16510 16511 /* 16512 * Turn off the ARP with the ILLF_NOARP flag. 16513 */ 16514 static int 16515 ill_arp_off(ill_t *ill) 16516 { 16517 mblk_t *arp_off_mp = NULL; 16518 mblk_t *arp_on_mp = NULL; 16519 16520 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16521 16522 ASSERT(IAM_WRITER_ILL(ill)); 16523 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16524 16525 /* 16526 * If the on message is still around we've already done 16527 * an arp_off without doing an arp_on thus there is no 16528 * work needed. 16529 */ 16530 if (ill->ill_arp_on_mp != NULL) 16531 return (0); 16532 16533 /* 16534 * Allocate an ARP on message (to be saved) and an ARP off message 16535 */ 16536 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16537 if (!arp_off_mp) 16538 return (ENOMEM); 16539 16540 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16541 if (!arp_on_mp) 16542 goto failed; 16543 16544 ASSERT(ill->ill_arp_on_mp == NULL); 16545 ill->ill_arp_on_mp = arp_on_mp; 16546 16547 /* Send an AR_INTERFACE_OFF request */ 16548 putnext(ill->ill_rq, arp_off_mp); 16549 return (0); 16550 failed: 16551 16552 if (arp_off_mp) 16553 freemsg(arp_off_mp); 16554 return (ENOMEM); 16555 } 16556 16557 /* 16558 * Turn on ARP by turning off the ILLF_NOARP flag. 16559 */ 16560 static int 16561 ill_arp_on(ill_t *ill) 16562 { 16563 mblk_t *mp; 16564 16565 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16566 16567 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16568 16569 ASSERT(IAM_WRITER_ILL(ill)); 16570 /* 16571 * Send an AR_INTERFACE_ON request if we have already done 16572 * an arp_off (which allocated the message). 16573 */ 16574 if (ill->ill_arp_on_mp != NULL) { 16575 mp = ill->ill_arp_on_mp; 16576 ill->ill_arp_on_mp = NULL; 16577 putnext(ill->ill_rq, mp); 16578 } 16579 return (0); 16580 } 16581 16582 /* 16583 * Checks for availbility of a usable source address (if there is one) when the 16584 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16585 * this selection is done regardless of the destination. 16586 */ 16587 boolean_t 16588 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16589 { 16590 uint_t ifindex; 16591 ipif_t *ipif = NULL; 16592 ill_t *uill; 16593 boolean_t isv6; 16594 ip_stack_t *ipst = ill->ill_ipst; 16595 16596 ASSERT(ill != NULL); 16597 16598 isv6 = ill->ill_isv6; 16599 ifindex = ill->ill_usesrc_ifindex; 16600 if (ifindex != 0) { 16601 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16602 NULL, ipst); 16603 if (uill == NULL) 16604 return (NULL); 16605 mutex_enter(&uill->ill_lock); 16606 for (ipif = uill->ill_ipif; ipif != NULL; 16607 ipif = ipif->ipif_next) { 16608 if (!IPIF_CAN_LOOKUP(ipif)) 16609 continue; 16610 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16611 continue; 16612 if (!(ipif->ipif_flags & IPIF_UP)) 16613 continue; 16614 if (ipif->ipif_zoneid != zoneid) 16615 continue; 16616 if ((isv6 && 16617 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16618 (ipif->ipif_lcl_addr == INADDR_ANY)) 16619 continue; 16620 mutex_exit(&uill->ill_lock); 16621 ill_refrele(uill); 16622 return (B_TRUE); 16623 } 16624 mutex_exit(&uill->ill_lock); 16625 ill_refrele(uill); 16626 } 16627 return (B_FALSE); 16628 } 16629 16630 /* 16631 * IP source address type, sorted from worst to best. For a given type, 16632 * always prefer IP addresses on the same subnet. All-zones addresses are 16633 * suboptimal because they pose problems with unlabeled destinations. 16634 */ 16635 typedef enum { 16636 IPIF_NONE, 16637 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16638 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16639 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16640 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16641 IPIF_DIFFNET, /* normal and different subnet */ 16642 IPIF_SAMENET /* normal and same subnet */ 16643 } ipif_type_t; 16644 16645 /* 16646 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16647 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16648 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16649 * the first one, unless IPMP is used in which case we round-robin among them; 16650 * see below for more. 16651 * 16652 * Returns NULL if there is no suitable source address for the ill. 16653 * This only occurs when there is no valid source address for the ill. 16654 */ 16655 ipif_t * 16656 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16657 { 16658 ill_t *usill = NULL; 16659 ill_t *ipmp_ill = NULL; 16660 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16661 ipif_type_t type, best_type; 16662 tsol_tpc_t *src_rhtp, *dst_rhtp; 16663 ip_stack_t *ipst = ill->ill_ipst; 16664 boolean_t samenet; 16665 16666 if (ill->ill_usesrc_ifindex != 0) { 16667 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16668 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16669 if (usill != NULL) 16670 ill = usill; /* Select source from usesrc ILL */ 16671 else 16672 return (NULL); 16673 } 16674 16675 /* 16676 * Test addresses should never be used for source address selection, 16677 * so if we were passed one, switch to the IPMP meta-interface. 16678 */ 16679 if (IS_UNDER_IPMP(ill)) { 16680 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16681 ill = ipmp_ill; /* Select source from IPMP ill */ 16682 else 16683 return (NULL); 16684 } 16685 16686 /* 16687 * If we're dealing with an unlabeled destination on a labeled system, 16688 * make sure that we ignore source addresses that are incompatible with 16689 * the destination's default label. That destination's default label 16690 * must dominate the minimum label on the source address. 16691 */ 16692 dst_rhtp = NULL; 16693 if (is_system_labeled()) { 16694 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16695 if (dst_rhtp == NULL) 16696 return (NULL); 16697 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16698 TPC_RELE(dst_rhtp); 16699 dst_rhtp = NULL; 16700 } 16701 } 16702 16703 /* 16704 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16705 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16706 * After selecting the right ipif, under ill_lock make sure ipif is 16707 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16708 * we retry. Inside the loop we still need to check for CONDEMNED, 16709 * but not under a lock. 16710 */ 16711 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16712 retry: 16713 /* 16714 * For source address selection, we treat the ipif list as circular 16715 * and continue until we get back to where we started. This allows 16716 * IPMP to vary source address selection (which improves inbound load 16717 * spreading) by caching its last ending point and starting from 16718 * there. NOTE: we don't have to worry about ill_src_ipif changing 16719 * ills since that can't happen on the IPMP ill. 16720 */ 16721 start_ipif = ill->ill_ipif; 16722 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16723 start_ipif = ill->ill_src_ipif; 16724 16725 ipif = start_ipif; 16726 best_ipif = NULL; 16727 best_type = IPIF_NONE; 16728 do { 16729 if ((next_ipif = ipif->ipif_next) == NULL) 16730 next_ipif = ill->ill_ipif; 16731 16732 if (!IPIF_CAN_LOOKUP(ipif)) 16733 continue; 16734 /* Always skip NOLOCAL and ANYCAST interfaces */ 16735 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16736 continue; 16737 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16738 continue; 16739 if (ipif->ipif_zoneid != zoneid && 16740 ipif->ipif_zoneid != ALL_ZONES) 16741 continue; 16742 16743 /* 16744 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16745 * are not valid as source addresses. 16746 */ 16747 if (ipif->ipif_lcl_addr == INADDR_ANY) 16748 continue; 16749 16750 /* 16751 * Check compatibility of local address for destination's 16752 * default label if we're on a labeled system. Incompatible 16753 * addresses can't be used at all. 16754 */ 16755 if (dst_rhtp != NULL) { 16756 boolean_t incompat; 16757 16758 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16759 IPV4_VERSION, B_FALSE); 16760 if (src_rhtp == NULL) 16761 continue; 16762 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16763 src_rhtp->tpc_tp.tp_doi != 16764 dst_rhtp->tpc_tp.tp_doi || 16765 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16766 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16767 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16768 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16769 TPC_RELE(src_rhtp); 16770 if (incompat) 16771 continue; 16772 } 16773 16774 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16775 16776 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16777 type = samenet ? IPIF_SAMENET_DEPRECATED : 16778 IPIF_DIFFNET_DEPRECATED; 16779 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16780 type = samenet ? IPIF_SAMENET_ALLZONES : 16781 IPIF_DIFFNET_ALLZONES; 16782 } else { 16783 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16784 } 16785 16786 if (type > best_type) { 16787 best_type = type; 16788 best_ipif = ipif; 16789 if (best_type == IPIF_SAMENET) 16790 break; /* can't get better */ 16791 } 16792 } while ((ipif = next_ipif) != start_ipif); 16793 16794 if ((ipif = best_ipif) != NULL) { 16795 mutex_enter(&ipif->ipif_ill->ill_lock); 16796 if (!IPIF_CAN_LOOKUP(ipif)) { 16797 mutex_exit(&ipif->ipif_ill->ill_lock); 16798 goto retry; 16799 } 16800 ipif_refhold_locked(ipif); 16801 16802 /* 16803 * For IPMP, update the source ipif rotor to the next ipif, 16804 * provided we can look it up. (We must not use it if it's 16805 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16806 * ipif_free() checked ill_src_ipif.) 16807 */ 16808 if (IS_IPMP(ill) && ipif != NULL) { 16809 next_ipif = ipif->ipif_next; 16810 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16811 ill->ill_src_ipif = next_ipif; 16812 else 16813 ill->ill_src_ipif = NULL; 16814 } 16815 mutex_exit(&ipif->ipif_ill->ill_lock); 16816 } 16817 16818 rw_exit(&ipst->ips_ill_g_lock); 16819 if (usill != NULL) 16820 ill_refrele(usill); 16821 if (ipmp_ill != NULL) 16822 ill_refrele(ipmp_ill); 16823 if (dst_rhtp != NULL) 16824 TPC_RELE(dst_rhtp); 16825 16826 #ifdef DEBUG 16827 if (ipif == NULL) { 16828 char buf1[INET6_ADDRSTRLEN]; 16829 16830 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16831 ill->ill_name, 16832 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16833 } else { 16834 char buf1[INET6_ADDRSTRLEN]; 16835 char buf2[INET6_ADDRSTRLEN]; 16836 16837 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16838 ipif->ipif_ill->ill_name, 16839 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16840 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16841 buf2, sizeof (buf2)))); 16842 } 16843 #endif /* DEBUG */ 16844 return (ipif); 16845 } 16846 16847 /* 16848 * If old_ipif is not NULL, see if ipif was derived from old 16849 * ipif and if so, recreate the interface route by re-doing 16850 * source address selection. This happens when ipif_down -> 16851 * ipif_update_other_ipifs calls us. 16852 * 16853 * If old_ipif is NULL, just redo the source address selection 16854 * if needed. This happens when ipif_up_done calls us. 16855 */ 16856 static void 16857 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16858 { 16859 ire_t *ire; 16860 ire_t *ipif_ire; 16861 queue_t *stq; 16862 ipif_t *nipif; 16863 ill_t *ill; 16864 boolean_t need_rele = B_FALSE; 16865 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16866 16867 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16868 ASSERT(IAM_WRITER_IPIF(ipif)); 16869 16870 ill = ipif->ipif_ill; 16871 if (!(ipif->ipif_flags & 16872 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16873 /* 16874 * Can't possibly have borrowed the source 16875 * from old_ipif. 16876 */ 16877 return; 16878 } 16879 16880 /* 16881 * Is there any work to be done? No work if the address 16882 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 16883 * ipif_select_source() does not borrow addresses from 16884 * NOLOCAL and ANYCAST interfaces). 16885 */ 16886 if ((old_ipif != NULL) && 16887 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 16888 (old_ipif->ipif_ill->ill_wq == NULL) || 16889 (old_ipif->ipif_flags & 16890 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 16891 return; 16892 } 16893 16894 /* 16895 * Perform the same checks as when creating the 16896 * IRE_INTERFACE in ipif_up_done. 16897 */ 16898 if (!(ipif->ipif_flags & IPIF_UP)) 16899 return; 16900 16901 if ((ipif->ipif_flags & IPIF_NOXMIT) || 16902 (ipif->ipif_subnet == INADDR_ANY)) 16903 return; 16904 16905 ipif_ire = ipif_to_ire(ipif); 16906 if (ipif_ire == NULL) 16907 return; 16908 16909 /* 16910 * We know that ipif uses some other source for its 16911 * IRE_INTERFACE. Is it using the source of this 16912 * old_ipif? 16913 */ 16914 if (old_ipif != NULL && 16915 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 16916 ire_refrele(ipif_ire); 16917 return; 16918 } 16919 if (ip_debug > 2) { 16920 /* ip1dbg */ 16921 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 16922 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 16923 } 16924 16925 stq = ipif_ire->ire_stq; 16926 16927 /* 16928 * Can't use our source address. Select a different 16929 * source address for the IRE_INTERFACE. 16930 */ 16931 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 16932 if (nipif == NULL) { 16933 /* Last resort - all ipif's have IPIF_NOLOCAL */ 16934 nipif = ipif; 16935 } else { 16936 need_rele = B_TRUE; 16937 } 16938 16939 ire = ire_create( 16940 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 16941 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 16942 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 16943 NULL, /* no gateway */ 16944 &ipif->ipif_mtu, /* max frag */ 16945 NULL, /* no src nce */ 16946 NULL, /* no recv from queue */ 16947 stq, /* send-to queue */ 16948 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16949 ipif, 16950 0, 16951 0, 16952 0, 16953 0, 16954 &ire_uinfo_null, 16955 NULL, 16956 NULL, 16957 ipst); 16958 16959 if (ire != NULL) { 16960 ire_t *ret_ire; 16961 int error; 16962 16963 /* 16964 * We don't need ipif_ire anymore. We need to delete 16965 * before we add so that ire_add does not detect 16966 * duplicates. 16967 */ 16968 ire_delete(ipif_ire); 16969 ret_ire = ire; 16970 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 16971 ASSERT(error == 0); 16972 ASSERT(ire == ret_ire); 16973 /* Held in ire_add */ 16974 ire_refrele(ret_ire); 16975 } 16976 /* 16977 * Either we are falling through from above or could not 16978 * allocate a replacement. 16979 */ 16980 ire_refrele(ipif_ire); 16981 if (need_rele) 16982 ipif_refrele(nipif); 16983 } 16984 16985 /* 16986 * This old_ipif is going away. 16987 * 16988 * Determine if any other ipif's are using our address as 16989 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 16990 * IPIF_DEPRECATED). 16991 * Find the IRE_INTERFACE for such ipifs and recreate them 16992 * to use an different source address following the rules in 16993 * ipif_up_done. 16994 */ 16995 static void 16996 ipif_update_other_ipifs(ipif_t *old_ipif) 16997 { 16998 ipif_t *ipif; 16999 ill_t *ill; 17000 char buf[INET6_ADDRSTRLEN]; 17001 17002 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17003 17004 ill = old_ipif->ipif_ill; 17005 17006 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17007 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17008 17009 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17010 if (ipif == old_ipif) 17011 continue; 17012 ipif_recreate_interface_routes(old_ipif, ipif); 17013 } 17014 } 17015 17016 /* ARGSUSED */ 17017 int 17018 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17019 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17020 { 17021 /* 17022 * ill_phyint_reinit merged the v4 and v6 into a single 17023 * ipsq. We might not have been able to complete the 17024 * operation in ipif_set_values, if we could not become 17025 * exclusive. If so restart it here. 17026 */ 17027 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17028 } 17029 17030 /* 17031 * Can operate on either a module or a driver queue. 17032 * Returns an error if not a module queue. 17033 */ 17034 /* ARGSUSED */ 17035 int 17036 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17037 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17038 { 17039 queue_t *q1 = q; 17040 char *cp; 17041 char interf_name[LIFNAMSIZ]; 17042 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17043 17044 if (q->q_next == NULL) { 17045 ip1dbg(( 17046 "if_unitsel: IF_UNITSEL: no q_next\n")); 17047 return (EINVAL); 17048 } 17049 17050 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17051 return (EALREADY); 17052 17053 do { 17054 q1 = q1->q_next; 17055 } while (q1->q_next); 17056 cp = q1->q_qinfo->qi_minfo->mi_idname; 17057 (void) sprintf(interf_name, "%s%d", cp, ppa); 17058 17059 /* 17060 * Here we are not going to delay the ioack until after 17061 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17062 * original ioctl message before sending the requests. 17063 */ 17064 return (ipif_set_values(q, mp, interf_name, &ppa)); 17065 } 17066 17067 /* ARGSUSED */ 17068 int 17069 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17070 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17071 { 17072 return (ENXIO); 17073 } 17074 17075 /* 17076 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17077 * minimum (but complete) set exist. This is necessary when adding or 17078 * removing an interface to/from an IPMP group, since interfaces in an 17079 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17080 * its test address subnets overlap with IPMP data addresses). It's also 17081 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17082 * interface when the nominated broadcast interface changes. 17083 */ 17084 void 17085 ill_refresh_bcast(ill_t *ill) 17086 { 17087 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17088 ire_t **irep; 17089 ipif_t *ipif; 17090 17091 ASSERT(!ill->ill_isv6); 17092 ASSERT(IAM_WRITER_ILL(ill)); 17093 17094 /* 17095 * Remove any old broadcast IREs. 17096 */ 17097 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17098 ill_broadcast_delete, ill, ill); 17099 17100 /* 17101 * Create new ones for any ipifs that are up and broadcast-capable. 17102 */ 17103 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17104 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17105 (IPIF_UP|IPIF_BROADCAST)) 17106 continue; 17107 17108 irep = ipif_create_bcast_ires(ipif, ire_array); 17109 while (irep-- > ire_array) { 17110 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17111 if (*irep != NULL) 17112 ire_refrele(*irep); 17113 } 17114 } 17115 } 17116 17117 /* 17118 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17119 * `irep'. Returns a pointer to the next free `irep' entry (just like 17120 * ire_check_and_create_bcast()). 17121 */ 17122 static ire_t ** 17123 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17124 { 17125 ipaddr_t addr; 17126 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17127 ipaddr_t subnetmask = ipif->ipif_net_mask; 17128 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17129 17130 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17131 17132 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17133 17134 if (ipif->ipif_lcl_addr == INADDR_ANY || 17135 (ipif->ipif_flags & IPIF_NOLOCAL)) 17136 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17137 17138 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17139 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17140 17141 /* 17142 * For backward compatibility, we create net broadcast IREs based on 17143 * the old "IP address class system", since some old machines only 17144 * respond to these class derived net broadcast. However, we must not 17145 * create these net broadcast IREs if the subnetmask is shorter than 17146 * the IP address class based derived netmask. Otherwise, we may 17147 * create a net broadcast address which is the same as an IP address 17148 * on the subnet -- and then TCP will refuse to talk to that address. 17149 */ 17150 if (netmask < subnetmask) { 17151 addr = netmask & ipif->ipif_subnet; 17152 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17153 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17154 flags); 17155 } 17156 17157 /* 17158 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17159 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17160 * created. Creating these broadcast IREs will only create confusion 17161 * as `addr' will be the same as the IP address. 17162 */ 17163 if (subnetmask != 0xFFFFFFFF) { 17164 addr = ipif->ipif_subnet; 17165 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17166 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17167 irep, flags); 17168 } 17169 17170 return (irep); 17171 } 17172 17173 /* 17174 * Broadcast IRE info structure used in the functions below. Since we 17175 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17176 */ 17177 typedef struct bcast_ireinfo { 17178 uchar_t bi_type; /* BCAST_* value from below */ 17179 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17180 bi_needrep:1, /* do we need to replace it? */ 17181 bi_haverep:1, /* have we replaced it? */ 17182 bi_pad:5; 17183 ipaddr_t bi_addr; /* IRE address */ 17184 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17185 } bcast_ireinfo_t; 17186 17187 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17188 17189 /* 17190 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17191 * return B_TRUE if it should immediately be used to recreate the IRE. 17192 */ 17193 static boolean_t 17194 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17195 { 17196 ipaddr_t addr; 17197 17198 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17199 17200 switch (bireinfop->bi_type) { 17201 case BCAST_NET: 17202 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17203 if (addr != bireinfop->bi_addr) 17204 return (B_FALSE); 17205 break; 17206 case BCAST_SUBNET: 17207 if (ipif->ipif_subnet != bireinfop->bi_addr) 17208 return (B_FALSE); 17209 break; 17210 } 17211 17212 bireinfop->bi_needrep = 1; 17213 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17214 if (bireinfop->bi_backup == NULL) 17215 bireinfop->bi_backup = ipif; 17216 return (B_FALSE); 17217 } 17218 return (B_TRUE); 17219 } 17220 17221 /* 17222 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17223 * them ala ire_check_and_create_bcast(). 17224 */ 17225 static ire_t ** 17226 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17227 { 17228 ipaddr_t mask, addr; 17229 17230 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17231 17232 addr = bireinfop->bi_addr; 17233 irep = ire_create_bcast(ipif, addr, irep); 17234 17235 switch (bireinfop->bi_type) { 17236 case BCAST_NET: 17237 mask = ip_net_mask(ipif->ipif_subnet); 17238 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17239 break; 17240 case BCAST_SUBNET: 17241 mask = ipif->ipif_net_mask; 17242 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17243 break; 17244 } 17245 17246 bireinfop->bi_haverep = 1; 17247 return (irep); 17248 } 17249 17250 /* 17251 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17252 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17253 * that are going away are still needed. If so, have ipif_create_bcast() 17254 * recreate them (except for the deprecated case, as explained below). 17255 */ 17256 static ire_t ** 17257 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17258 ire_t **irep) 17259 { 17260 int i; 17261 ipif_t *ipif; 17262 17263 ASSERT(!ill->ill_isv6); 17264 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17265 /* 17266 * Skip this ipif if it's (a) the one being taken down, (b) 17267 * not in the same zone, or (c) has no valid local address. 17268 */ 17269 if (ipif == test_ipif || 17270 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17271 ipif->ipif_subnet == 0 || 17272 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17273 (IPIF_UP|IPIF_BROADCAST)) 17274 continue; 17275 17276 /* 17277 * For each dying IRE that hasn't yet been replaced, see if 17278 * `ipif' needs it and whether the IRE should be recreated on 17279 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17280 * will return B_FALSE even if `ipif' needs the IRE on the 17281 * hopes that we'll later find a needy non-deprecated ipif. 17282 * However, the ipif is recorded in bi_backup for possible 17283 * subsequent use by ipif_check_bcast_ires(). 17284 */ 17285 for (i = 0; i < BCAST_COUNT; i++) { 17286 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17287 continue; 17288 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17289 continue; 17290 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17291 } 17292 17293 /* 17294 * If we've replaced all of the broadcast IREs that are going 17295 * to be taken down, we know we're done. 17296 */ 17297 for (i = 0; i < BCAST_COUNT; i++) { 17298 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17299 break; 17300 } 17301 if (i == BCAST_COUNT) 17302 break; 17303 } 17304 return (irep); 17305 } 17306 17307 /* 17308 * Check if `test_ipif' (which is going away) is associated with any existing 17309 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17310 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17311 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17312 * 17313 * This is necessary because broadcast IREs are shared. In particular, a 17314 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17315 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17316 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17317 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17318 * same zone, they will share the same set of broadcast IREs. 17319 * 17320 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17321 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17322 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17323 */ 17324 static void 17325 ipif_check_bcast_ires(ipif_t *test_ipif) 17326 { 17327 ill_t *ill = test_ipif->ipif_ill; 17328 ire_t *ire, *ire_array[12]; /* see note above */ 17329 ire_t **irep1, **irep = &ire_array[0]; 17330 uint_t i, willdie; 17331 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17332 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17333 17334 ASSERT(!test_ipif->ipif_isv6); 17335 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17336 17337 /* 17338 * No broadcast IREs for the LOOPBACK interface 17339 * or others such as point to point and IPIF_NOXMIT. 17340 */ 17341 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17342 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17343 return; 17344 17345 bzero(bireinfo, sizeof (bireinfo)); 17346 bireinfo[0].bi_type = BCAST_ALLZEROES; 17347 bireinfo[0].bi_addr = 0; 17348 17349 bireinfo[1].bi_type = BCAST_ALLONES; 17350 bireinfo[1].bi_addr = INADDR_BROADCAST; 17351 17352 bireinfo[2].bi_type = BCAST_NET; 17353 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17354 17355 if (test_ipif->ipif_net_mask != 0) 17356 mask = test_ipif->ipif_net_mask; 17357 bireinfo[3].bi_type = BCAST_SUBNET; 17358 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17359 17360 /* 17361 * Figure out what (if any) broadcast IREs will die as a result of 17362 * `test_ipif' going away. If none will die, we're done. 17363 */ 17364 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17365 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17366 test_ipif, ALL_ZONES, NULL, 17367 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17368 if (ire != NULL) { 17369 willdie++; 17370 bireinfo[i].bi_willdie = 1; 17371 ire_refrele(ire); 17372 } 17373 } 17374 17375 if (willdie == 0) 17376 return; 17377 17378 /* 17379 * Walk through all the ipifs that will be affected by the dying IREs, 17380 * and recreate the IREs as necessary. Note that all interfaces in an 17381 * IPMP illgrp share the same broadcast IREs, and thus the entire 17382 * illgrp must be walked, starting with the IPMP meta-interface (so 17383 * that broadcast IREs end up on it whenever possible). 17384 */ 17385 if (IS_UNDER_IPMP(ill)) 17386 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17387 17388 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17389 17390 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17391 ipmp_illgrp_t *illg = ill->ill_grp; 17392 17393 ill = list_head(&illg->ig_if); 17394 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17395 for (i = 0; i < BCAST_COUNT; i++) { 17396 if (bireinfo[i].bi_willdie && 17397 !bireinfo[i].bi_haverep) 17398 break; 17399 } 17400 if (i == BCAST_COUNT) 17401 break; 17402 17403 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17404 } 17405 } 17406 17407 /* 17408 * Scan through the set of broadcast IREs and see if there are any 17409 * that we need to replace that have not yet been replaced. If so, 17410 * replace them using the appropriate backup ipif. 17411 */ 17412 for (i = 0; i < BCAST_COUNT; i++) { 17413 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17414 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17415 &bireinfo[i], irep); 17416 } 17417 17418 /* 17419 * If we can't create all of them, don't add any of them. (Code in 17420 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17421 * non-loopback copy and loopback copy for a given address.) 17422 */ 17423 for (irep1 = irep; irep1 > ire_array; ) { 17424 irep1--; 17425 if (*irep1 == NULL) { 17426 ip0dbg(("ipif_check_bcast_ires: can't create " 17427 "IRE_BROADCAST, memory allocation failure\n")); 17428 while (irep > ire_array) { 17429 irep--; 17430 if (*irep != NULL) 17431 ire_delete(*irep); 17432 } 17433 return; 17434 } 17435 } 17436 17437 for (irep1 = irep; irep1 > ire_array; ) { 17438 irep1--; 17439 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17440 ire_refrele(*irep1); /* Held in ire_add */ 17441 } 17442 } 17443 17444 /* 17445 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17446 * from lifr_flags and the name from lifr_name. 17447 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17448 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17449 * Returns EINPROGRESS when mp has been consumed by queueing it on 17450 * ill_pending_mp and the ioctl will complete in ip_rput. 17451 * 17452 * Can operate on either a module or a driver queue. 17453 * Returns an error if not a module queue. 17454 */ 17455 /* ARGSUSED */ 17456 int 17457 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17458 ip_ioctl_cmd_t *ipip, void *if_req) 17459 { 17460 ill_t *ill = q->q_ptr; 17461 phyint_t *phyi; 17462 ip_stack_t *ipst; 17463 struct lifreq *lifr = if_req; 17464 17465 ASSERT(ipif != NULL); 17466 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17467 17468 if (q->q_next == NULL) { 17469 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17470 return (EINVAL); 17471 } 17472 17473 /* 17474 * If we are not writer on 'q' then this interface exists already 17475 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17476 * so return EALREADY. 17477 */ 17478 if (ill != ipif->ipif_ill) 17479 return (EALREADY); 17480 17481 if (ill->ill_name[0] != '\0') 17482 return (EALREADY); 17483 17484 /* 17485 * Set all the flags. Allows all kinds of override. Provide some 17486 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17487 * unless there is either multicast/broadcast support in the driver 17488 * or it is a pt-pt link. 17489 */ 17490 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17491 /* Meaningless to IP thus don't allow them to be set. */ 17492 ip1dbg(("ip_setname: EINVAL 1\n")); 17493 return (EINVAL); 17494 } 17495 17496 /* 17497 * If there's another ill already with the requested name, ensure 17498 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17499 * fuse together two unrelated ills, which will cause chaos. 17500 */ 17501 ipst = ill->ill_ipst; 17502 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17503 lifr->lifr_name, NULL); 17504 if (phyi != NULL) { 17505 ill_t *ill_mate = phyi->phyint_illv4; 17506 17507 if (ill_mate == NULL) 17508 ill_mate = phyi->phyint_illv6; 17509 ASSERT(ill_mate != NULL); 17510 17511 if (ill_mate->ill_media->ip_m_mac_type != 17512 ill->ill_media->ip_m_mac_type) { 17513 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17514 "use the same ill name on differing media\n")); 17515 return (EINVAL); 17516 } 17517 } 17518 17519 /* 17520 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17521 * ill_bcast_addr_length info. 17522 */ 17523 if (!ill->ill_needs_attach && 17524 ((lifr->lifr_flags & IFF_MULTICAST) && 17525 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17526 ill->ill_bcast_addr_length == 0)) { 17527 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17528 ip1dbg(("ip_setname: EINVAL 2\n")); 17529 return (EINVAL); 17530 } 17531 if ((lifr->lifr_flags & IFF_BROADCAST) && 17532 ((lifr->lifr_flags & IFF_IPV6) || 17533 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17534 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17535 ip1dbg(("ip_setname: EINVAL 3\n")); 17536 return (EINVAL); 17537 } 17538 if (lifr->lifr_flags & IFF_UP) { 17539 /* Can only be set with SIOCSLIFFLAGS */ 17540 ip1dbg(("ip_setname: EINVAL 4\n")); 17541 return (EINVAL); 17542 } 17543 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17544 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17545 ip1dbg(("ip_setname: EINVAL 5\n")); 17546 return (EINVAL); 17547 } 17548 /* 17549 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17550 */ 17551 if ((lifr->lifr_flags & IFF_XRESOLV) && 17552 !(lifr->lifr_flags & IFF_IPV6) && 17553 !(ipif->ipif_isv6)) { 17554 ip1dbg(("ip_setname: EINVAL 6\n")); 17555 return (EINVAL); 17556 } 17557 17558 /* 17559 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17560 * we have all the flags here. So, we assign rather than we OR. 17561 * We can't OR the flags here because we don't want to set 17562 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17563 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17564 * on lifr_flags value here. 17565 */ 17566 /* 17567 * This ill has not been inserted into the global list. 17568 * So we are still single threaded and don't need any lock 17569 */ 17570 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17571 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17572 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17573 17574 /* We started off as V4. */ 17575 if (ill->ill_flags & ILLF_IPV6) { 17576 ill->ill_phyint->phyint_illv6 = ill; 17577 ill->ill_phyint->phyint_illv4 = NULL; 17578 } 17579 17580 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17581 } 17582 17583 /* ARGSUSED */ 17584 int 17585 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17586 ip_ioctl_cmd_t *ipip, void *if_req) 17587 { 17588 /* 17589 * ill_phyint_reinit merged the v4 and v6 into a single 17590 * ipsq. We might not have been able to complete the 17591 * slifname in ipif_set_values, if we could not become 17592 * exclusive. If so restart it here 17593 */ 17594 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17595 } 17596 17597 /* 17598 * Return a pointer to the ipif which matches the index, IP version type and 17599 * zoneid. 17600 */ 17601 ipif_t * 17602 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17603 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17604 { 17605 ill_t *ill; 17606 ipif_t *ipif = NULL; 17607 17608 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17609 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17610 17611 if (err != NULL) 17612 *err = 0; 17613 17614 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17615 if (ill != NULL) { 17616 mutex_enter(&ill->ill_lock); 17617 for (ipif = ill->ill_ipif; ipif != NULL; 17618 ipif = ipif->ipif_next) { 17619 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17620 zoneid == ipif->ipif_zoneid || 17621 ipif->ipif_zoneid == ALL_ZONES)) { 17622 ipif_refhold_locked(ipif); 17623 break; 17624 } 17625 } 17626 mutex_exit(&ill->ill_lock); 17627 ill_refrele(ill); 17628 if (ipif == NULL && err != NULL) 17629 *err = ENXIO; 17630 } 17631 return (ipif); 17632 } 17633 17634 /* 17635 * Change an existing physical interface's index. If the new index 17636 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17637 * Finally, we update other systems which may have a dependence on the 17638 * index value. 17639 */ 17640 /* ARGSUSED */ 17641 int 17642 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17643 ip_ioctl_cmd_t *ipip, void *ifreq) 17644 { 17645 ill_t *ill; 17646 phyint_t *phyi; 17647 struct ifreq *ifr = (struct ifreq *)ifreq; 17648 struct lifreq *lifr = (struct lifreq *)ifreq; 17649 uint_t old_index, index; 17650 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17651 avl_index_t where; 17652 17653 if (ipip->ipi_cmd_type == IF_CMD) 17654 index = ifr->ifr_index; 17655 else 17656 index = lifr->lifr_index; 17657 17658 /* 17659 * Only allow on physical interface. Also, index zero is illegal. 17660 */ 17661 ill = ipif->ipif_ill; 17662 phyi = ill->ill_phyint; 17663 if (ipif->ipif_id != 0 || index == 0) { 17664 return (EINVAL); 17665 } 17666 17667 /* If the index is not changing, no work to do */ 17668 if (phyi->phyint_ifindex == index) 17669 return (0); 17670 17671 /* 17672 * Use phyint_exists() to determine if the new interface index 17673 * is already in use. If the index is unused then we need to 17674 * change the phyint's position in the phyint_list_avl_by_index 17675 * tree. If we do not do this, subsequent lookups (using the new 17676 * index value) will not find the phyint. 17677 */ 17678 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17679 if (phyint_exists(index, ipst)) { 17680 rw_exit(&ipst->ips_ill_g_lock); 17681 return (EEXIST); 17682 } 17683 17684 /* The new index is unused. Set it in the phyint. */ 17685 old_index = phyi->phyint_ifindex; 17686 phyi->phyint_ifindex = index; 17687 17688 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17689 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17690 &index, &where); 17691 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17692 phyi, where); 17693 rw_exit(&ipst->ips_ill_g_lock); 17694 17695 /* Update SCTP's ILL list */ 17696 sctp_ill_reindex(ill, old_index); 17697 17698 /* Send the routing sockets message */ 17699 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17700 if (ILL_OTHER(ill)) 17701 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17702 17703 return (0); 17704 } 17705 17706 /* ARGSUSED */ 17707 int 17708 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17709 ip_ioctl_cmd_t *ipip, void *ifreq) 17710 { 17711 struct ifreq *ifr = (struct ifreq *)ifreq; 17712 struct lifreq *lifr = (struct lifreq *)ifreq; 17713 17714 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17715 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17716 /* Get the interface index */ 17717 if (ipip->ipi_cmd_type == IF_CMD) { 17718 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17719 } else { 17720 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17721 } 17722 return (0); 17723 } 17724 17725 /* ARGSUSED */ 17726 int 17727 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17728 ip_ioctl_cmd_t *ipip, void *ifreq) 17729 { 17730 struct lifreq *lifr = (struct lifreq *)ifreq; 17731 17732 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17733 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17734 /* Get the interface zone */ 17735 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17736 lifr->lifr_zoneid = ipif->ipif_zoneid; 17737 return (0); 17738 } 17739 17740 /* 17741 * Set the zoneid of an interface. 17742 */ 17743 /* ARGSUSED */ 17744 int 17745 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17746 ip_ioctl_cmd_t *ipip, void *ifreq) 17747 { 17748 struct lifreq *lifr = (struct lifreq *)ifreq; 17749 int err = 0; 17750 boolean_t need_up = B_FALSE; 17751 zone_t *zptr; 17752 zone_status_t status; 17753 zoneid_t zoneid; 17754 17755 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17756 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17757 if (!is_system_labeled()) 17758 return (ENOTSUP); 17759 zoneid = GLOBAL_ZONEID; 17760 } 17761 17762 /* cannot assign instance zero to a non-global zone */ 17763 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17764 return (ENOTSUP); 17765 17766 /* 17767 * Cannot assign to a zone that doesn't exist or is shutting down. In 17768 * the event of a race with the zone shutdown processing, since IP 17769 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17770 * interface will be cleaned up even if the zone is shut down 17771 * immediately after the status check. If the interface can't be brought 17772 * down right away, and the zone is shut down before the restart 17773 * function is called, we resolve the possible races by rechecking the 17774 * zone status in the restart function. 17775 */ 17776 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17777 return (EINVAL); 17778 status = zone_status_get(zptr); 17779 zone_rele(zptr); 17780 17781 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17782 return (EINVAL); 17783 17784 if (ipif->ipif_flags & IPIF_UP) { 17785 /* 17786 * If the interface is already marked up, 17787 * we call ipif_down which will take care 17788 * of ditching any IREs that have been set 17789 * up based on the old interface address. 17790 */ 17791 err = ipif_logical_down(ipif, q, mp); 17792 if (err == EINPROGRESS) 17793 return (err); 17794 ipif_down_tail(ipif); 17795 need_up = B_TRUE; 17796 } 17797 17798 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17799 return (err); 17800 } 17801 17802 static int 17803 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17804 queue_t *q, mblk_t *mp, boolean_t need_up) 17805 { 17806 int err = 0; 17807 ip_stack_t *ipst; 17808 17809 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17810 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17811 17812 if (CONN_Q(q)) 17813 ipst = CONNQ_TO_IPST(q); 17814 else 17815 ipst = ILLQ_TO_IPST(q); 17816 17817 /* 17818 * For exclusive stacks we don't allow a different zoneid than 17819 * global. 17820 */ 17821 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17822 zoneid != GLOBAL_ZONEID) 17823 return (EINVAL); 17824 17825 /* Set the new zone id. */ 17826 ipif->ipif_zoneid = zoneid; 17827 17828 /* Update sctp list */ 17829 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17830 17831 if (need_up) { 17832 /* 17833 * Now bring the interface back up. If this 17834 * is the only IPIF for the ILL, ipif_up 17835 * will have to re-bind to the device, so 17836 * we may get back EINPROGRESS, in which 17837 * case, this IOCTL will get completed in 17838 * ip_rput_dlpi when we see the DL_BIND_ACK. 17839 */ 17840 err = ipif_up(ipif, q, mp); 17841 } 17842 return (err); 17843 } 17844 17845 /* ARGSUSED */ 17846 int 17847 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17848 ip_ioctl_cmd_t *ipip, void *if_req) 17849 { 17850 struct lifreq *lifr = (struct lifreq *)if_req; 17851 zoneid_t zoneid; 17852 zone_t *zptr; 17853 zone_status_t status; 17854 17855 ASSERT(ipif->ipif_id != 0); 17856 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17857 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17858 zoneid = GLOBAL_ZONEID; 17859 17860 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17861 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17862 17863 /* 17864 * We recheck the zone status to resolve the following race condition: 17865 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17866 * 2) hme0:1 is up and can't be brought down right away; 17867 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17868 * 3) zone "myzone" is halted; the zone status switches to 17869 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17870 * the interfaces to remove - hme0:1 is not returned because it's not 17871 * yet in "myzone", so it won't be removed; 17872 * 4) the restart function for SIOCSLIFZONE is called; without the 17873 * status check here, we would have hme0:1 in "myzone" after it's been 17874 * destroyed. 17875 * Note that if the status check fails, we need to bring the interface 17876 * back to its state prior to ip_sioctl_slifzone(), hence the call to 17877 * ipif_up_done[_v6](). 17878 */ 17879 status = ZONE_IS_UNINITIALIZED; 17880 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 17881 status = zone_status_get(zptr); 17882 zone_rele(zptr); 17883 } 17884 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 17885 if (ipif->ipif_isv6) { 17886 (void) ipif_up_done_v6(ipif); 17887 } else { 17888 (void) ipif_up_done(ipif); 17889 } 17890 return (EINVAL); 17891 } 17892 17893 ipif_down_tail(ipif); 17894 17895 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 17896 B_TRUE)); 17897 } 17898 17899 /* 17900 * Return the number of addresses on `ill' with one or more of the values 17901 * in `set' set and all of the values in `clear' clear. 17902 */ 17903 static uint_t 17904 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 17905 { 17906 ipif_t *ipif; 17907 uint_t cnt = 0; 17908 17909 ASSERT(IAM_WRITER_ILL(ill)); 17910 17911 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 17912 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 17913 cnt++; 17914 17915 return (cnt); 17916 } 17917 17918 /* 17919 * Return the number of migratable addresses on `ill' that are under 17920 * application control. 17921 */ 17922 uint_t 17923 ill_appaddr_cnt(const ill_t *ill) 17924 { 17925 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 17926 IPIF_NOFAILOVER)); 17927 } 17928 17929 /* 17930 * Return the number of point-to-point addresses on `ill'. 17931 */ 17932 uint_t 17933 ill_ptpaddr_cnt(const ill_t *ill) 17934 { 17935 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 17936 } 17937 17938 /* ARGSUSED */ 17939 int 17940 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17941 ip_ioctl_cmd_t *ipip, void *ifreq) 17942 { 17943 struct lifreq *lifr = ifreq; 17944 17945 ASSERT(q->q_next == NULL); 17946 ASSERT(CONN_Q(q)); 17947 17948 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 17949 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17950 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 17951 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 17952 17953 return (0); 17954 } 17955 17956 /* Find the previous ILL in this usesrc group */ 17957 static ill_t * 17958 ill_prev_usesrc(ill_t *uill) 17959 { 17960 ill_t *ill; 17961 17962 for (ill = uill->ill_usesrc_grp_next; 17963 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 17964 ill = ill->ill_usesrc_grp_next) 17965 /* do nothing */; 17966 return (ill); 17967 } 17968 17969 /* 17970 * Release all members of the usesrc group. This routine is called 17971 * from ill_delete when the interface being unplumbed is the 17972 * group head. 17973 */ 17974 static void 17975 ill_disband_usesrc_group(ill_t *uill) 17976 { 17977 ill_t *next_ill, *tmp_ill; 17978 ip_stack_t *ipst = uill->ill_ipst; 17979 17980 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 17981 next_ill = uill->ill_usesrc_grp_next; 17982 17983 do { 17984 ASSERT(next_ill != NULL); 17985 tmp_ill = next_ill->ill_usesrc_grp_next; 17986 ASSERT(tmp_ill != NULL); 17987 next_ill->ill_usesrc_grp_next = NULL; 17988 next_ill->ill_usesrc_ifindex = 0; 17989 next_ill = tmp_ill; 17990 } while (next_ill->ill_usesrc_ifindex != 0); 17991 uill->ill_usesrc_grp_next = NULL; 17992 } 17993 17994 /* 17995 * Remove the client usesrc ILL from the list and relink to a new list 17996 */ 17997 int 17998 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 17999 { 18000 ill_t *ill, *tmp_ill; 18001 ip_stack_t *ipst = ucill->ill_ipst; 18002 18003 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18004 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18005 18006 /* 18007 * Check if the usesrc client ILL passed in is not already 18008 * in use as a usesrc ILL i.e one whose source address is 18009 * in use OR a usesrc ILL is not already in use as a usesrc 18010 * client ILL 18011 */ 18012 if ((ucill->ill_usesrc_ifindex == 0) || 18013 (uill->ill_usesrc_ifindex != 0)) { 18014 return (-1); 18015 } 18016 18017 ill = ill_prev_usesrc(ucill); 18018 ASSERT(ill->ill_usesrc_grp_next != NULL); 18019 18020 /* Remove from the current list */ 18021 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18022 /* Only two elements in the list */ 18023 ASSERT(ill->ill_usesrc_ifindex == 0); 18024 ill->ill_usesrc_grp_next = NULL; 18025 } else { 18026 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18027 } 18028 18029 if (ifindex == 0) { 18030 ucill->ill_usesrc_ifindex = 0; 18031 ucill->ill_usesrc_grp_next = NULL; 18032 return (0); 18033 } 18034 18035 ucill->ill_usesrc_ifindex = ifindex; 18036 tmp_ill = uill->ill_usesrc_grp_next; 18037 uill->ill_usesrc_grp_next = ucill; 18038 ucill->ill_usesrc_grp_next = 18039 (tmp_ill != NULL) ? tmp_ill : uill; 18040 return (0); 18041 } 18042 18043 /* 18044 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18045 * ip.c for locking details. 18046 */ 18047 /* ARGSUSED */ 18048 int 18049 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18050 ip_ioctl_cmd_t *ipip, void *ifreq) 18051 { 18052 struct lifreq *lifr = (struct lifreq *)ifreq; 18053 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18054 ill_flag_changed = B_FALSE; 18055 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18056 int err = 0, ret; 18057 uint_t ifindex; 18058 ipsq_t *ipsq = NULL; 18059 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18060 18061 ASSERT(IAM_WRITER_IPIF(ipif)); 18062 ASSERT(q->q_next == NULL); 18063 ASSERT(CONN_Q(q)); 18064 18065 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18066 18067 ifindex = lifr->lifr_index; 18068 if (ifindex == 0) { 18069 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18070 /* non usesrc group interface, nothing to reset */ 18071 return (0); 18072 } 18073 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18074 /* valid reset request */ 18075 reset_flg = B_TRUE; 18076 } 18077 18078 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18079 ip_process_ioctl, &err, ipst); 18080 if (usesrc_ill == NULL) { 18081 return (err); 18082 } 18083 18084 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18085 NEW_OP, B_TRUE); 18086 if (ipsq == NULL) { 18087 err = EINPROGRESS; 18088 /* Operation enqueued on the ipsq of the usesrc ILL */ 18089 goto done; 18090 } 18091 18092 /* USESRC isn't currently supported with IPMP */ 18093 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18094 err = ENOTSUP; 18095 goto done; 18096 } 18097 18098 /* 18099 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18100 * used by IPMP underlying interfaces, but someone might think it's 18101 * more general and try to use it independently with VNI.) 18102 */ 18103 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18104 err = ENOTSUP; 18105 goto done; 18106 } 18107 18108 /* 18109 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18110 * already a client then return EINVAL 18111 */ 18112 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18113 err = EINVAL; 18114 goto done; 18115 } 18116 18117 /* 18118 * If the ill_usesrc_ifindex field is already set to what it needs to 18119 * be then this is a duplicate operation. 18120 */ 18121 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18122 err = 0; 18123 goto done; 18124 } 18125 18126 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18127 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18128 usesrc_ill->ill_isv6)); 18129 18130 /* 18131 * The next step ensures that no new ires will be created referencing 18132 * the client ill, until the ILL_CHANGING flag is cleared. Then 18133 * we go through an ire walk deleting all ire caches that reference 18134 * the client ill. New ires referencing the client ill that are added 18135 * to the ire table before the ILL_CHANGING flag is set, will be 18136 * cleaned up by the ire walk below. Attempt to add new ires referencing 18137 * the client ill while the ILL_CHANGING flag is set will be failed 18138 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18139 * checks (under the ill_g_usesrc_lock) that the ire being added 18140 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18141 * belong to the same usesrc group. 18142 */ 18143 mutex_enter(&usesrc_cli_ill->ill_lock); 18144 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18145 mutex_exit(&usesrc_cli_ill->ill_lock); 18146 ill_flag_changed = B_TRUE; 18147 18148 if (ipif->ipif_isv6) 18149 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18150 ALL_ZONES, ipst); 18151 else 18152 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18153 ALL_ZONES, ipst); 18154 18155 /* 18156 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18157 * and the ill_usesrc_ifindex fields 18158 */ 18159 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18160 18161 if (reset_flg) { 18162 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18163 if (ret != 0) { 18164 err = EINVAL; 18165 } 18166 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18167 goto done; 18168 } 18169 18170 /* 18171 * Four possibilities to consider: 18172 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18173 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18174 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18175 * 4. Both are part of their respective usesrc groups 18176 */ 18177 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18178 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18179 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18180 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18181 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18182 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18183 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18184 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18185 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18186 /* Insert at head of list */ 18187 usesrc_cli_ill->ill_usesrc_grp_next = 18188 usesrc_ill->ill_usesrc_grp_next; 18189 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18190 } else { 18191 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18192 ifindex); 18193 if (ret != 0) 18194 err = EINVAL; 18195 } 18196 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18197 18198 done: 18199 if (ill_flag_changed) { 18200 mutex_enter(&usesrc_cli_ill->ill_lock); 18201 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18202 mutex_exit(&usesrc_cli_ill->ill_lock); 18203 } 18204 if (ipsq != NULL) 18205 ipsq_exit(ipsq); 18206 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18207 ill_refrele(usesrc_ill); 18208 return (err); 18209 } 18210 18211 /* 18212 * comparison function used by avl. 18213 */ 18214 static int 18215 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18216 { 18217 18218 uint_t index; 18219 18220 ASSERT(phyip != NULL && index_ptr != NULL); 18221 18222 index = *((uint_t *)index_ptr); 18223 /* 18224 * let the phyint with the lowest index be on top. 18225 */ 18226 if (((phyint_t *)phyip)->phyint_ifindex < index) 18227 return (1); 18228 if (((phyint_t *)phyip)->phyint_ifindex > index) 18229 return (-1); 18230 return (0); 18231 } 18232 18233 /* 18234 * comparison function used by avl. 18235 */ 18236 static int 18237 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18238 { 18239 ill_t *ill; 18240 int res = 0; 18241 18242 ASSERT(phyip != NULL && name_ptr != NULL); 18243 18244 if (((phyint_t *)phyip)->phyint_illv4) 18245 ill = ((phyint_t *)phyip)->phyint_illv4; 18246 else 18247 ill = ((phyint_t *)phyip)->phyint_illv6; 18248 ASSERT(ill != NULL); 18249 18250 res = strcmp(ill->ill_name, (char *)name_ptr); 18251 if (res > 0) 18252 return (1); 18253 else if (res < 0) 18254 return (-1); 18255 return (0); 18256 } 18257 18258 /* 18259 * This function is called on the unplumb path via ill_glist_delete() when 18260 * there are no ills left on the phyint and thus the phyint can be freed. 18261 */ 18262 static void 18263 phyint_free(phyint_t *phyi) 18264 { 18265 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18266 18267 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18268 18269 /* 18270 * If this phyint was an IPMP meta-interface, blow away the group. 18271 * This is safe to do because all of the illgrps have already been 18272 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18273 * If we're cleaning up as a result of failed initialization, 18274 * phyint_grp may be NULL. 18275 */ 18276 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18277 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18278 ipmp_grp_destroy(phyi->phyint_grp); 18279 phyi->phyint_grp = NULL; 18280 rw_exit(&ipst->ips_ipmp_lock); 18281 } 18282 18283 /* 18284 * If this interface was under IPMP, take it out of the group. 18285 */ 18286 if (phyi->phyint_grp != NULL) 18287 ipmp_phyint_leave_grp(phyi); 18288 18289 /* 18290 * Delete the phyint and disassociate its ipsq. The ipsq itself 18291 * will be freed in ipsq_exit(). 18292 */ 18293 phyi->phyint_ipsq->ipsq_phyint = NULL; 18294 phyi->phyint_name[0] = '\0'; 18295 18296 mi_free(phyi); 18297 } 18298 18299 /* 18300 * Attach the ill to the phyint structure which can be shared by both 18301 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18302 * function is called from ipif_set_values and ill_lookup_on_name (for 18303 * loopback) where we know the name of the ill. We lookup the ill and if 18304 * there is one present already with the name use that phyint. Otherwise 18305 * reuse the one allocated by ill_init. 18306 */ 18307 static void 18308 ill_phyint_reinit(ill_t *ill) 18309 { 18310 boolean_t isv6 = ill->ill_isv6; 18311 phyint_t *phyi_old; 18312 phyint_t *phyi; 18313 avl_index_t where = 0; 18314 ill_t *ill_other = NULL; 18315 ip_stack_t *ipst = ill->ill_ipst; 18316 18317 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18318 18319 phyi_old = ill->ill_phyint; 18320 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18321 phyi_old->phyint_illv6 == NULL)); 18322 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18323 phyi_old->phyint_illv4 == NULL)); 18324 ASSERT(phyi_old->phyint_ifindex == 0); 18325 18326 /* 18327 * Now that our ill has a name, set it in the phyint. 18328 */ 18329 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18330 18331 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18332 ill->ill_name, &where); 18333 18334 /* 18335 * 1. We grabbed the ill_g_lock before inserting this ill into 18336 * the global list of ills. So no other thread could have located 18337 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18338 * 2. Now locate the other protocol instance of this ill. 18339 * 3. Now grab both ill locks in the right order, and the phyint lock of 18340 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18341 * of neither ill can change. 18342 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18343 * other ill. 18344 * 5. Release all locks. 18345 */ 18346 18347 /* 18348 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18349 * we are initializing IPv4. 18350 */ 18351 if (phyi != NULL) { 18352 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18353 ASSERT(ill_other->ill_phyint != NULL); 18354 ASSERT((isv6 && !ill_other->ill_isv6) || 18355 (!isv6 && ill_other->ill_isv6)); 18356 GRAB_ILL_LOCKS(ill, ill_other); 18357 /* 18358 * We are potentially throwing away phyint_flags which 18359 * could be different from the one that we obtain from 18360 * ill_other->ill_phyint. But it is okay as we are assuming 18361 * that the state maintained within IP is correct. 18362 */ 18363 mutex_enter(&phyi->phyint_lock); 18364 if (isv6) { 18365 ASSERT(phyi->phyint_illv6 == NULL); 18366 phyi->phyint_illv6 = ill; 18367 } else { 18368 ASSERT(phyi->phyint_illv4 == NULL); 18369 phyi->phyint_illv4 = ill; 18370 } 18371 18372 /* 18373 * Delete the old phyint and make its ipsq eligible 18374 * to be freed in ipsq_exit(). 18375 */ 18376 phyi_old->phyint_illv4 = NULL; 18377 phyi_old->phyint_illv6 = NULL; 18378 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18379 phyi_old->phyint_name[0] = '\0'; 18380 mi_free(phyi_old); 18381 } else { 18382 mutex_enter(&ill->ill_lock); 18383 /* 18384 * We don't need to acquire any lock, since 18385 * the ill is not yet visible globally and we 18386 * have not yet released the ill_g_lock. 18387 */ 18388 phyi = phyi_old; 18389 mutex_enter(&phyi->phyint_lock); 18390 /* XXX We need a recovery strategy here. */ 18391 if (!phyint_assign_ifindex(phyi, ipst)) 18392 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18393 18394 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18395 (void *)phyi, where); 18396 18397 (void) avl_find(&ipst->ips_phyint_g_list-> 18398 phyint_list_avl_by_index, 18399 &phyi->phyint_ifindex, &where); 18400 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18401 (void *)phyi, where); 18402 } 18403 18404 /* 18405 * Reassigning ill_phyint automatically reassigns the ipsq also. 18406 * pending mp is not affected because that is per ill basis. 18407 */ 18408 ill->ill_phyint = phyi; 18409 18410 /* 18411 * Now that the phyint's ifindex has been assigned, complete the 18412 * remaining 18413 */ 18414 18415 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18416 if (ill->ill_isv6) { 18417 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18418 ill->ill_phyint->phyint_ifindex; 18419 ill->ill_mcast_type = ipst->ips_mld_max_version; 18420 } else { 18421 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18422 } 18423 18424 /* 18425 * Generate an event within the hooks framework to indicate that 18426 * a new interface has just been added to IP. For this event to 18427 * be generated, the network interface must, at least, have an 18428 * ifindex assigned to it. (We don't generate the event for 18429 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 18430 * 18431 * This needs to be run inside the ill_g_lock perimeter to ensure 18432 * that the ordering of delivered events to listeners matches the 18433 * order of them in the kernel. 18434 */ 18435 if (!IS_LOOPBACK(ill)) { 18436 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18437 ill->ill_name_length); 18438 } 18439 RELEASE_ILL_LOCKS(ill, ill_other); 18440 mutex_exit(&phyi->phyint_lock); 18441 } 18442 18443 /* 18444 * Notify any downstream modules of the name of this interface. 18445 * An M_IOCTL is used even though we don't expect a successful reply. 18446 * Any reply message from the driver (presumably an M_IOCNAK) will 18447 * eventually get discarded somewhere upstream. The message format is 18448 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18449 * to IP. 18450 */ 18451 static void 18452 ip_ifname_notify(ill_t *ill, queue_t *q) 18453 { 18454 mblk_t *mp1, *mp2; 18455 struct iocblk *iocp; 18456 struct lifreq *lifr; 18457 18458 mp1 = mkiocb(SIOCSLIFNAME); 18459 if (mp1 == NULL) 18460 return; 18461 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18462 if (mp2 == NULL) { 18463 freeb(mp1); 18464 return; 18465 } 18466 18467 mp1->b_cont = mp2; 18468 iocp = (struct iocblk *)mp1->b_rptr; 18469 iocp->ioc_count = sizeof (struct lifreq); 18470 18471 lifr = (struct lifreq *)mp2->b_rptr; 18472 mp2->b_wptr += sizeof (struct lifreq); 18473 bzero(lifr, sizeof (struct lifreq)); 18474 18475 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18476 lifr->lifr_ppa = ill->ill_ppa; 18477 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18478 18479 putnext(q, mp1); 18480 } 18481 18482 static int 18483 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18484 { 18485 int err; 18486 ip_stack_t *ipst = ill->ill_ipst; 18487 phyint_t *phyi = ill->ill_phyint; 18488 18489 /* Set the obsolete NDD per-interface forwarding name. */ 18490 err = ill_set_ndd_name(ill); 18491 if (err != 0) { 18492 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18493 err); 18494 } 18495 18496 /* 18497 * Now that ill_name is set, the configuration for the IPMP 18498 * meta-interface can be performed. 18499 */ 18500 if (IS_IPMP(ill)) { 18501 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18502 /* 18503 * If phyi->phyint_grp is NULL, then this is the first IPMP 18504 * meta-interface and we need to create the IPMP group. 18505 */ 18506 if (phyi->phyint_grp == NULL) { 18507 /* 18508 * If someone has renamed another IPMP group to have 18509 * the same name as our interface, bail. 18510 */ 18511 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18512 rw_exit(&ipst->ips_ipmp_lock); 18513 return (EEXIST); 18514 } 18515 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18516 if (phyi->phyint_grp == NULL) { 18517 rw_exit(&ipst->ips_ipmp_lock); 18518 return (ENOMEM); 18519 } 18520 } 18521 rw_exit(&ipst->ips_ipmp_lock); 18522 } 18523 18524 /* Tell downstream modules where they are. */ 18525 ip_ifname_notify(ill, q); 18526 18527 /* 18528 * ill_dl_phys returns EINPROGRESS in the usual case. 18529 * Error cases are ENOMEM ... 18530 */ 18531 err = ill_dl_phys(ill, ipif, mp, q); 18532 18533 /* 18534 * If there is no IRE expiration timer running, get one started. 18535 * igmp and mld timers will be triggered by the first multicast 18536 */ 18537 if (ipst->ips_ip_ire_expire_id == 0) { 18538 /* 18539 * acquire the lock and check again. 18540 */ 18541 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18542 if (ipst->ips_ip_ire_expire_id == 0) { 18543 ipst->ips_ip_ire_expire_id = timeout( 18544 ip_trash_timer_expire, ipst, 18545 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18546 } 18547 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18548 } 18549 18550 if (ill->ill_isv6) { 18551 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18552 if (ipst->ips_mld_slowtimeout_id == 0) { 18553 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18554 (void *)ipst, 18555 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18556 } 18557 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18558 } else { 18559 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18560 if (ipst->ips_igmp_slowtimeout_id == 0) { 18561 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18562 (void *)ipst, 18563 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18564 } 18565 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18566 } 18567 18568 return (err); 18569 } 18570 18571 /* 18572 * Common routine for ppa and ifname setting. Should be called exclusive. 18573 * 18574 * Returns EINPROGRESS when mp has been consumed by queueing it on 18575 * ill_pending_mp and the ioctl will complete in ip_rput. 18576 * 18577 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18578 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18579 * For SLIFNAME, we pass these values back to the userland. 18580 */ 18581 static int 18582 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18583 { 18584 ill_t *ill; 18585 ipif_t *ipif; 18586 ipsq_t *ipsq; 18587 char *ppa_ptr; 18588 char *old_ptr; 18589 char old_char; 18590 int error; 18591 ip_stack_t *ipst; 18592 18593 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18594 ASSERT(q->q_next != NULL); 18595 ASSERT(interf_name != NULL); 18596 18597 ill = (ill_t *)q->q_ptr; 18598 ipst = ill->ill_ipst; 18599 18600 ASSERT(ill->ill_ipst != NULL); 18601 ASSERT(ill->ill_name[0] == '\0'); 18602 ASSERT(IAM_WRITER_ILL(ill)); 18603 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18604 ASSERT(ill->ill_ppa == UINT_MAX); 18605 18606 /* The ppa is sent down by ifconfig or is chosen */ 18607 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18608 return (EINVAL); 18609 } 18610 18611 /* 18612 * make sure ppa passed in is same as ppa in the name. 18613 * This check is not made when ppa == UINT_MAX in that case ppa 18614 * in the name could be anything. System will choose a ppa and 18615 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18616 */ 18617 if (*new_ppa_ptr != UINT_MAX) { 18618 /* stoi changes the pointer */ 18619 old_ptr = ppa_ptr; 18620 /* 18621 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18622 * (they don't have an externally visible ppa). We assign one 18623 * here so that we can manage the interface. Note that in 18624 * the past this value was always 0 for DLPI 1 drivers. 18625 */ 18626 if (*new_ppa_ptr == 0) 18627 *new_ppa_ptr = stoi(&old_ptr); 18628 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18629 return (EINVAL); 18630 } 18631 /* 18632 * terminate string before ppa 18633 * save char at that location. 18634 */ 18635 old_char = ppa_ptr[0]; 18636 ppa_ptr[0] = '\0'; 18637 18638 ill->ill_ppa = *new_ppa_ptr; 18639 /* 18640 * Finish as much work now as possible before calling ill_glist_insert 18641 * which makes the ill globally visible and also merges it with the 18642 * other protocol instance of this phyint. The remaining work is 18643 * done after entering the ipsq which may happen sometime later. 18644 * ill_set_ndd_name occurs after the ill has been made globally visible. 18645 */ 18646 ipif = ill->ill_ipif; 18647 18648 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18649 ipif_assign_seqid(ipif); 18650 18651 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18652 ill->ill_flags |= ILLF_IPV4; 18653 18654 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18655 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18656 18657 if (ill->ill_flags & ILLF_IPV6) { 18658 18659 ill->ill_isv6 = B_TRUE; 18660 if (ill->ill_rq != NULL) { 18661 ill->ill_rq->q_qinfo = &iprinitv6; 18662 ill->ill_wq->q_qinfo = &ipwinitv6; 18663 } 18664 18665 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18666 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18667 ipif->ipif_v6src_addr = ipv6_all_zeros; 18668 ipif->ipif_v6subnet = ipv6_all_zeros; 18669 ipif->ipif_v6net_mask = ipv6_all_zeros; 18670 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18671 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18672 /* 18673 * point-to-point or Non-mulicast capable 18674 * interfaces won't do NUD unless explicitly 18675 * configured to do so. 18676 */ 18677 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18678 !(ill->ill_flags & ILLF_MULTICAST)) { 18679 ill->ill_flags |= ILLF_NONUD; 18680 } 18681 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18682 if (ill->ill_flags & ILLF_NOARP) { 18683 /* 18684 * Note: xresolv interfaces will eventually need 18685 * NOARP set here as well, but that will require 18686 * those external resolvers to have some 18687 * knowledge of that flag and act appropriately. 18688 * Not to be changed at present. 18689 */ 18690 ill->ill_flags &= ~ILLF_NOARP; 18691 } 18692 /* 18693 * Set the ILLF_ROUTER flag according to the global 18694 * IPv6 forwarding policy. 18695 */ 18696 if (ipst->ips_ipv6_forward != 0) 18697 ill->ill_flags |= ILLF_ROUTER; 18698 } else if (ill->ill_flags & ILLF_IPV4) { 18699 ill->ill_isv6 = B_FALSE; 18700 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18701 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18702 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18703 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18704 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18705 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18706 /* 18707 * Set the ILLF_ROUTER flag according to the global 18708 * IPv4 forwarding policy. 18709 */ 18710 if (ipst->ips_ip_g_forward != 0) 18711 ill->ill_flags |= ILLF_ROUTER; 18712 } 18713 18714 ASSERT(ill->ill_phyint != NULL); 18715 18716 /* 18717 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18718 * be completed in ill_glist_insert -> ill_phyint_reinit 18719 */ 18720 if (!ill_allocate_mibs(ill)) 18721 return (ENOMEM); 18722 18723 /* 18724 * Pick a default sap until we get the DL_INFO_ACK back from 18725 * the driver. 18726 */ 18727 if (ill->ill_sap == 0) { 18728 if (ill->ill_isv6) 18729 ill->ill_sap = IP6_DL_SAP; 18730 else 18731 ill->ill_sap = IP_DL_SAP; 18732 } 18733 18734 ill->ill_ifname_pending = 1; 18735 ill->ill_ifname_pending_err = 0; 18736 18737 /* 18738 * When the first ipif comes up in ipif_up_done(), multicast groups 18739 * that were joined while this ill was not bound to the DLPI link need 18740 * to be recovered by ill_recover_multicast(). 18741 */ 18742 ill->ill_need_recover_multicast = 1; 18743 18744 ill_refhold(ill); 18745 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18746 if ((error = ill_glist_insert(ill, interf_name, 18747 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18748 ill->ill_ppa = UINT_MAX; 18749 ill->ill_name[0] = '\0'; 18750 /* 18751 * undo null termination done above. 18752 */ 18753 ppa_ptr[0] = old_char; 18754 rw_exit(&ipst->ips_ill_g_lock); 18755 ill_refrele(ill); 18756 return (error); 18757 } 18758 18759 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18760 18761 /* 18762 * When we return the buffer pointed to by interf_name should contain 18763 * the same name as in ill_name. 18764 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18765 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18766 * so copy full name and update the ppa ptr. 18767 * When ppa passed in != UINT_MAX all values are correct just undo 18768 * null termination, this saves a bcopy. 18769 */ 18770 if (*new_ppa_ptr == UINT_MAX) { 18771 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18772 *new_ppa_ptr = ill->ill_ppa; 18773 } else { 18774 /* 18775 * undo null termination done above. 18776 */ 18777 ppa_ptr[0] = old_char; 18778 } 18779 18780 /* Let SCTP know about this ILL */ 18781 sctp_update_ill(ill, SCTP_ILL_INSERT); 18782 18783 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18784 B_TRUE); 18785 18786 rw_exit(&ipst->ips_ill_g_lock); 18787 ill_refrele(ill); 18788 if (ipsq == NULL) 18789 return (EINPROGRESS); 18790 18791 /* 18792 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18793 */ 18794 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18795 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18796 else 18797 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18798 18799 error = ipif_set_values_tail(ill, ipif, mp, q); 18800 ipsq_exit(ipsq); 18801 if (error != 0 && error != EINPROGRESS) { 18802 /* 18803 * restore previous values 18804 */ 18805 ill->ill_isv6 = B_FALSE; 18806 } 18807 return (error); 18808 } 18809 18810 void 18811 ipif_init(ip_stack_t *ipst) 18812 { 18813 int i; 18814 18815 for (i = 0; i < MAX_G_HEADS; i++) { 18816 ipst->ips_ill_g_heads[i].ill_g_list_head = 18817 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18818 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18819 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18820 } 18821 18822 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18823 ill_phyint_compare_index, 18824 sizeof (phyint_t), 18825 offsetof(struct phyint, phyint_avl_by_index)); 18826 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18827 ill_phyint_compare_name, 18828 sizeof (phyint_t), 18829 offsetof(struct phyint, phyint_avl_by_name)); 18830 } 18831 18832 /* 18833 * Lookup the ipif corresponding to the onlink destination address. For 18834 * point-to-point interfaces, it matches with remote endpoint destination 18835 * address. For point-to-multipoint interfaces it only tries to match the 18836 * destination with the interface's subnet address. The longest, most specific 18837 * match is found to take care of such rare network configurations like - 18838 * le0: 129.146.1.1/16 18839 * le1: 129.146.2.2/24 18840 * 18841 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18842 * supported on underlying interfaces in an IPMP group, underlying interfaces 18843 * are ignored when looking up a match. (If we didn't ignore them, we'd 18844 * risk using a test address as a source for outgoing traffic.) 18845 */ 18846 ipif_t * 18847 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18848 { 18849 ipif_t *ipif, *best_ipif; 18850 ill_t *ill; 18851 ill_walk_context_t ctx; 18852 18853 ASSERT(zoneid != ALL_ZONES); 18854 best_ipif = NULL; 18855 18856 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18857 ill = ILL_START_WALK_V4(&ctx, ipst); 18858 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18859 if (IS_UNDER_IPMP(ill)) 18860 continue; 18861 mutex_enter(&ill->ill_lock); 18862 for (ipif = ill->ill_ipif; ipif != NULL; 18863 ipif = ipif->ipif_next) { 18864 if (!IPIF_CAN_LOOKUP(ipif)) 18865 continue; 18866 if (ipif->ipif_zoneid != zoneid && 18867 ipif->ipif_zoneid != ALL_ZONES) 18868 continue; 18869 /* 18870 * Point-to-point case. Look for exact match with 18871 * destination address. 18872 */ 18873 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18874 if (ipif->ipif_pp_dst_addr == addr) { 18875 ipif_refhold_locked(ipif); 18876 mutex_exit(&ill->ill_lock); 18877 rw_exit(&ipst->ips_ill_g_lock); 18878 if (best_ipif != NULL) 18879 ipif_refrele(best_ipif); 18880 return (ipif); 18881 } 18882 } else if (ipif->ipif_subnet == (addr & 18883 ipif->ipif_net_mask)) { 18884 /* 18885 * Point-to-multipoint case. Looping through to 18886 * find the most specific match. If there are 18887 * multiple best match ipif's then prefer ipif's 18888 * that are UP. If there is only one best match 18889 * ipif and it is DOWN we must still return it. 18890 */ 18891 if ((best_ipif == NULL) || 18892 (ipif->ipif_net_mask > 18893 best_ipif->ipif_net_mask) || 18894 ((ipif->ipif_net_mask == 18895 best_ipif->ipif_net_mask) && 18896 ((ipif->ipif_flags & IPIF_UP) && 18897 (!(best_ipif->ipif_flags & IPIF_UP))))) { 18898 ipif_refhold_locked(ipif); 18899 mutex_exit(&ill->ill_lock); 18900 rw_exit(&ipst->ips_ill_g_lock); 18901 if (best_ipif != NULL) 18902 ipif_refrele(best_ipif); 18903 best_ipif = ipif; 18904 rw_enter(&ipst->ips_ill_g_lock, 18905 RW_READER); 18906 mutex_enter(&ill->ill_lock); 18907 } 18908 } 18909 } 18910 mutex_exit(&ill->ill_lock); 18911 } 18912 rw_exit(&ipst->ips_ill_g_lock); 18913 return (best_ipif); 18914 } 18915 18916 /* 18917 * Save enough information so that we can recreate the IRE if 18918 * the interface goes down and then up. 18919 */ 18920 static void 18921 ipif_save_ire(ipif_t *ipif, ire_t *ire) 18922 { 18923 mblk_t *save_mp; 18924 18925 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 18926 if (save_mp != NULL) { 18927 ifrt_t *ifrt; 18928 18929 save_mp->b_wptr += sizeof (ifrt_t); 18930 ifrt = (ifrt_t *)save_mp->b_rptr; 18931 bzero(ifrt, sizeof (ifrt_t)); 18932 ifrt->ifrt_type = ire->ire_type; 18933 ifrt->ifrt_addr = ire->ire_addr; 18934 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 18935 ifrt->ifrt_src_addr = ire->ire_src_addr; 18936 ifrt->ifrt_mask = ire->ire_mask; 18937 ifrt->ifrt_flags = ire->ire_flags; 18938 ifrt->ifrt_max_frag = ire->ire_max_frag; 18939 mutex_enter(&ipif->ipif_saved_ire_lock); 18940 save_mp->b_cont = ipif->ipif_saved_ire_mp; 18941 ipif->ipif_saved_ire_mp = save_mp; 18942 ipif->ipif_saved_ire_cnt++; 18943 mutex_exit(&ipif->ipif_saved_ire_lock); 18944 } 18945 } 18946 18947 static void 18948 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 18949 { 18950 mblk_t **mpp; 18951 mblk_t *mp; 18952 ifrt_t *ifrt; 18953 18954 /* Remove from ipif_saved_ire_mp list if it is there */ 18955 mutex_enter(&ipif->ipif_saved_ire_lock); 18956 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 18957 mpp = &(*mpp)->b_cont) { 18958 /* 18959 * On a given ipif, the triple of address, gateway and 18960 * mask is unique for each saved IRE (in the case of 18961 * ordinary interface routes, the gateway address is 18962 * all-zeroes). 18963 */ 18964 mp = *mpp; 18965 ifrt = (ifrt_t *)mp->b_rptr; 18966 if (ifrt->ifrt_addr == ire->ire_addr && 18967 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 18968 ifrt->ifrt_mask == ire->ire_mask) { 18969 *mpp = mp->b_cont; 18970 ipif->ipif_saved_ire_cnt--; 18971 freeb(mp); 18972 break; 18973 } 18974 } 18975 mutex_exit(&ipif->ipif_saved_ire_lock); 18976 } 18977 18978 /* 18979 * IP multirouting broadcast routes handling 18980 * Append CGTP broadcast IREs to regular ones created 18981 * at ifconfig time. 18982 */ 18983 static void 18984 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 18985 { 18986 ire_t *ire_prim; 18987 18988 ASSERT(ire != NULL); 18989 ASSERT(ire_dst != NULL); 18990 18991 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 18992 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18993 if (ire_prim != NULL) { 18994 /* 18995 * We are in the special case of broadcasts for 18996 * CGTP. We add an IRE_BROADCAST that holds 18997 * the RTF_MULTIRT flag, the destination 18998 * address of ire_dst and the low level 18999 * info of ire_prim. In other words, CGTP 19000 * broadcast is added to the redundant ipif. 19001 */ 19002 ipif_t *ipif_prim; 19003 ire_t *bcast_ire; 19004 19005 ipif_prim = ire_prim->ire_ipif; 19006 19007 ip2dbg(("ip_cgtp_filter_bcast_add: " 19008 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19009 (void *)ire_dst, (void *)ire_prim, 19010 (void *)ipif_prim)); 19011 19012 bcast_ire = ire_create( 19013 (uchar_t *)&ire->ire_addr, 19014 (uchar_t *)&ip_g_all_ones, 19015 (uchar_t *)&ire_dst->ire_src_addr, 19016 (uchar_t *)&ire->ire_gateway_addr, 19017 &ipif_prim->ipif_mtu, 19018 NULL, 19019 ipif_prim->ipif_rq, 19020 ipif_prim->ipif_wq, 19021 IRE_BROADCAST, 19022 ipif_prim, 19023 0, 19024 0, 19025 0, 19026 ire->ire_flags, 19027 &ire_uinfo_null, 19028 NULL, 19029 NULL, 19030 ipst); 19031 19032 if (bcast_ire != NULL) { 19033 19034 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19035 B_FALSE) == 0) { 19036 ip2dbg(("ip_cgtp_filter_bcast_add: " 19037 "added bcast_ire %p\n", 19038 (void *)bcast_ire)); 19039 19040 ipif_save_ire(bcast_ire->ire_ipif, 19041 bcast_ire); 19042 ire_refrele(bcast_ire); 19043 } 19044 } 19045 ire_refrele(ire_prim); 19046 } 19047 } 19048 19049 /* 19050 * IP multirouting broadcast routes handling 19051 * Remove the broadcast ire 19052 */ 19053 static void 19054 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19055 { 19056 ire_t *ire_dst; 19057 19058 ASSERT(ire != NULL); 19059 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19060 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19061 if (ire_dst != NULL) { 19062 ire_t *ire_prim; 19063 19064 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19065 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19066 if (ire_prim != NULL) { 19067 ipif_t *ipif_prim; 19068 ire_t *bcast_ire; 19069 19070 ipif_prim = ire_prim->ire_ipif; 19071 19072 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19073 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19074 (void *)ire_dst, (void *)ire_prim, 19075 (void *)ipif_prim)); 19076 19077 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19078 ire->ire_gateway_addr, 19079 IRE_BROADCAST, 19080 ipif_prim, ALL_ZONES, 19081 NULL, 19082 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19083 MATCH_IRE_MASK, ipst); 19084 19085 if (bcast_ire != NULL) { 19086 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19087 "looked up bcast_ire %p\n", 19088 (void *)bcast_ire)); 19089 ipif_remove_ire(bcast_ire->ire_ipif, 19090 bcast_ire); 19091 ire_delete(bcast_ire); 19092 ire_refrele(bcast_ire); 19093 } 19094 ire_refrele(ire_prim); 19095 } 19096 ire_refrele(ire_dst); 19097 } 19098 } 19099 19100 /* 19101 * IPsec hardware acceleration capabilities related functions. 19102 */ 19103 19104 /* 19105 * Free a per-ill IPsec capabilities structure. 19106 */ 19107 static void 19108 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19109 { 19110 if (capab->auth_hw_algs != NULL) 19111 kmem_free(capab->auth_hw_algs, capab->algs_size); 19112 if (capab->encr_hw_algs != NULL) 19113 kmem_free(capab->encr_hw_algs, capab->algs_size); 19114 if (capab->encr_algparm != NULL) 19115 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19116 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19117 } 19118 19119 /* 19120 * Allocate a new per-ill IPsec capabilities structure. This structure 19121 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19122 * an array which specifies, for each algorithm, whether this algorithm 19123 * is supported by the ill or not. 19124 */ 19125 static ill_ipsec_capab_t * 19126 ill_ipsec_capab_alloc(void) 19127 { 19128 ill_ipsec_capab_t *capab; 19129 uint_t nelems; 19130 19131 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19132 if (capab == NULL) 19133 return (NULL); 19134 19135 /* we need one bit per algorithm */ 19136 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19137 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19138 19139 /* allocate memory to store algorithm flags */ 19140 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19141 if (capab->encr_hw_algs == NULL) 19142 goto nomem; 19143 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19144 if (capab->auth_hw_algs == NULL) 19145 goto nomem; 19146 /* 19147 * Leave encr_algparm NULL for now since we won't need it half 19148 * the time 19149 */ 19150 return (capab); 19151 19152 nomem: 19153 ill_ipsec_capab_free(capab); 19154 return (NULL); 19155 } 19156 19157 /* 19158 * Resize capability array. Since we're exclusive, this is OK. 19159 */ 19160 static boolean_t 19161 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19162 { 19163 ipsec_capab_algparm_t *nalp, *oalp; 19164 uint32_t olen, nlen; 19165 19166 oalp = capab->encr_algparm; 19167 olen = capab->encr_algparm_size; 19168 19169 if (oalp != NULL) { 19170 if (algid < capab->encr_algparm_end) 19171 return (B_TRUE); 19172 } 19173 19174 nlen = (algid + 1) * sizeof (*nalp); 19175 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19176 if (nalp == NULL) 19177 return (B_FALSE); 19178 19179 if (oalp != NULL) { 19180 bcopy(oalp, nalp, olen); 19181 kmem_free(oalp, olen); 19182 } 19183 capab->encr_algparm = nalp; 19184 capab->encr_algparm_size = nlen; 19185 capab->encr_algparm_end = algid + 1; 19186 19187 return (B_TRUE); 19188 } 19189 19190 /* 19191 * Compare the capabilities of the specified ill with the protocol 19192 * and algorithms specified by the SA passed as argument. 19193 * If they match, returns B_TRUE, B_FALSE if they do not match. 19194 * 19195 * The ill can be passed as a pointer to it, or by specifying its index 19196 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19197 * 19198 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19199 * packet is eligible for hardware acceleration, and by 19200 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19201 * to a particular ill. 19202 */ 19203 boolean_t 19204 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19205 ipsa_t *sa, netstack_t *ns) 19206 { 19207 boolean_t sa_isv6; 19208 uint_t algid; 19209 struct ill_ipsec_capab_s *cpp; 19210 boolean_t need_refrele = B_FALSE; 19211 ip_stack_t *ipst = ns->netstack_ip; 19212 19213 if (ill == NULL) { 19214 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19215 NULL, NULL, NULL, ipst); 19216 if (ill == NULL) { 19217 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19218 return (B_FALSE); 19219 } 19220 need_refrele = B_TRUE; 19221 } 19222 19223 /* 19224 * Use the address length specified by the SA to determine 19225 * if it corresponds to a IPv6 address, and fail the matching 19226 * if the isv6 flag passed as argument does not match. 19227 * Note: this check is used for SADB capability checking before 19228 * sending SA information to an ill. 19229 */ 19230 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19231 if (sa_isv6 != ill_isv6) 19232 /* protocol mismatch */ 19233 goto done; 19234 19235 /* 19236 * Check if the ill supports the protocol, algorithm(s) and 19237 * key size(s) specified by the SA, and get the pointers to 19238 * the algorithms supported by the ill. 19239 */ 19240 switch (sa->ipsa_type) { 19241 19242 case SADB_SATYPE_ESP: 19243 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19244 /* ill does not support ESP acceleration */ 19245 goto done; 19246 cpp = ill->ill_ipsec_capab_esp; 19247 algid = sa->ipsa_auth_alg; 19248 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19249 goto done; 19250 algid = sa->ipsa_encr_alg; 19251 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19252 goto done; 19253 if (algid < cpp->encr_algparm_end) { 19254 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19255 if (sa->ipsa_encrkeybits < alp->minkeylen) 19256 goto done; 19257 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19258 goto done; 19259 } 19260 break; 19261 19262 case SADB_SATYPE_AH: 19263 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19264 /* ill does not support AH acceleration */ 19265 goto done; 19266 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19267 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19268 goto done; 19269 break; 19270 } 19271 19272 if (need_refrele) 19273 ill_refrele(ill); 19274 return (B_TRUE); 19275 done: 19276 if (need_refrele) 19277 ill_refrele(ill); 19278 return (B_FALSE); 19279 } 19280 19281 /* 19282 * Add a new ill to the list of IPsec capable ills. 19283 * Called from ill_capability_ipsec_ack() when an ACK was received 19284 * indicating that IPsec hardware processing was enabled for an ill. 19285 * 19286 * ill must point to the ill for which acceleration was enabled. 19287 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19288 */ 19289 static void 19290 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19291 { 19292 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19293 uint_t sa_type; 19294 uint_t ipproto; 19295 ip_stack_t *ipst = ill->ill_ipst; 19296 19297 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19298 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19299 19300 switch (dl_cap) { 19301 case DL_CAPAB_IPSEC_AH: 19302 sa_type = SADB_SATYPE_AH; 19303 ills = &ipst->ips_ipsec_capab_ills_ah; 19304 ipproto = IPPROTO_AH; 19305 break; 19306 case DL_CAPAB_IPSEC_ESP: 19307 sa_type = SADB_SATYPE_ESP; 19308 ills = &ipst->ips_ipsec_capab_ills_esp; 19309 ipproto = IPPROTO_ESP; 19310 break; 19311 } 19312 19313 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19314 19315 /* 19316 * Add ill index to list of hardware accelerators. If 19317 * already in list, do nothing. 19318 */ 19319 for (cur_ill = *ills; cur_ill != NULL && 19320 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19321 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19322 ; 19323 19324 if (cur_ill == NULL) { 19325 /* if this is a new entry for this ill */ 19326 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19327 if (new_ill == NULL) { 19328 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19329 return; 19330 } 19331 19332 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19333 new_ill->ill_isv6 = ill->ill_isv6; 19334 new_ill->next = *ills; 19335 *ills = new_ill; 19336 } else if (!sadb_resync) { 19337 /* not resync'ing SADB and an entry exists for this ill */ 19338 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19339 return; 19340 } 19341 19342 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19343 19344 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19345 /* 19346 * IPsec module for protocol loaded, initiate dump 19347 * of the SADB to this ill. 19348 */ 19349 sadb_ill_download(ill, sa_type); 19350 } 19351 19352 /* 19353 * Remove an ill from the list of IPsec capable ills. 19354 */ 19355 static void 19356 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19357 { 19358 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19359 ip_stack_t *ipst = ill->ill_ipst; 19360 19361 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19362 dl_cap == DL_CAPAB_IPSEC_ESP); 19363 19364 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19365 &ipst->ips_ipsec_capab_ills_esp; 19366 19367 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19368 19369 prev_ill = NULL; 19370 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19371 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19372 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19373 ; 19374 if (cur_ill == NULL) { 19375 /* entry not found */ 19376 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19377 return; 19378 } 19379 if (prev_ill == NULL) { 19380 /* entry at front of list */ 19381 *ills = NULL; 19382 } else { 19383 prev_ill->next = cur_ill->next; 19384 } 19385 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19386 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19387 } 19388 19389 /* 19390 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19391 * supporting the specified IPsec protocol acceleration. 19392 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19393 * We free the mblk and, if sa is non-null, release the held referece. 19394 */ 19395 void 19396 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19397 netstack_t *ns) 19398 { 19399 ipsec_capab_ill_t *ici, *cur_ici; 19400 ill_t *ill; 19401 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19402 ip_stack_t *ipst = ns->netstack_ip; 19403 19404 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19405 ipst->ips_ipsec_capab_ills_esp; 19406 19407 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19408 19409 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19410 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19411 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19412 19413 /* 19414 * Handle the case where the ill goes away while the SADB is 19415 * attempting to send messages. If it's going away, it's 19416 * nuking its shadow SADB, so we don't care.. 19417 */ 19418 19419 if (ill == NULL) 19420 continue; 19421 19422 if (sa != NULL) { 19423 /* 19424 * Make sure capabilities match before 19425 * sending SA to ill. 19426 */ 19427 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19428 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19429 ill_refrele(ill); 19430 continue; 19431 } 19432 19433 mutex_enter(&sa->ipsa_lock); 19434 sa->ipsa_flags |= IPSA_F_HW; 19435 mutex_exit(&sa->ipsa_lock); 19436 } 19437 19438 /* 19439 * Copy template message, and add it to the front 19440 * of the mblk ship list. We want to avoid holding 19441 * the ipsec_capab_ills_lock while sending the 19442 * message to the ills. 19443 * 19444 * The b_next and b_prev are temporarily used 19445 * to build a list of mblks to be sent down, and to 19446 * save the ill to which they must be sent. 19447 */ 19448 nmp = copymsg(mp); 19449 if (nmp == NULL) { 19450 ill_refrele(ill); 19451 continue; 19452 } 19453 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19454 nmp->b_next = mp_ship_list; 19455 mp_ship_list = nmp; 19456 nmp->b_prev = (mblk_t *)ill; 19457 } 19458 19459 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19460 19461 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19462 /* restore the mblk to a sane state */ 19463 next_mp = nmp->b_next; 19464 nmp->b_next = NULL; 19465 ill = (ill_t *)nmp->b_prev; 19466 nmp->b_prev = NULL; 19467 19468 ill_dlpi_send(ill, nmp); 19469 ill_refrele(ill); 19470 } 19471 19472 if (sa != NULL) 19473 IPSA_REFRELE(sa); 19474 freemsg(mp); 19475 } 19476 19477 /* 19478 * Derive an interface id from the link layer address. 19479 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19480 */ 19481 static boolean_t 19482 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19483 { 19484 char *addr; 19485 19486 if (ill->ill_phys_addr_length != ETHERADDRL) 19487 return (B_FALSE); 19488 19489 /* Form EUI-64 like address */ 19490 addr = (char *)&v6addr->s6_addr32[2]; 19491 bcopy(ill->ill_phys_addr, addr, 3); 19492 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19493 addr[3] = (char)0xff; 19494 addr[4] = (char)0xfe; 19495 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19496 return (B_TRUE); 19497 } 19498 19499 /* ARGSUSED */ 19500 static boolean_t 19501 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19502 { 19503 return (B_FALSE); 19504 } 19505 19506 typedef struct ipmp_ifcookie { 19507 uint32_t ic_hostid; 19508 char ic_ifname[LIFNAMSIZ]; 19509 char ic_zonename[ZONENAME_MAX]; 19510 } ipmp_ifcookie_t; 19511 19512 /* 19513 * Construct a pseudo-random interface ID for the IPMP interface that's both 19514 * predictable and (almost) guaranteed to be unique. 19515 */ 19516 static boolean_t 19517 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19518 { 19519 zone_t *zp; 19520 uint8_t *addr; 19521 uchar_t hash[16]; 19522 ulong_t hostid; 19523 MD5_CTX ctx; 19524 ipmp_ifcookie_t ic = { 0 }; 19525 19526 ASSERT(IS_IPMP(ill)); 19527 19528 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19529 ic.ic_hostid = htonl((uint32_t)hostid); 19530 19531 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19532 19533 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19534 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19535 zone_rele(zp); 19536 } 19537 19538 MD5Init(&ctx); 19539 MD5Update(&ctx, &ic, sizeof (ic)); 19540 MD5Final(hash, &ctx); 19541 19542 /* 19543 * Map the hash to an interface ID per the basic approach in RFC3041. 19544 */ 19545 addr = &v6addr->s6_addr8[8]; 19546 bcopy(hash + 8, addr, sizeof (uint64_t)); 19547 addr[0] &= ~0x2; /* set local bit */ 19548 19549 return (B_TRUE); 19550 } 19551 19552 /* ARGSUSED */ 19553 static boolean_t 19554 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19555 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19556 { 19557 /* 19558 * Multicast address mappings used over Ethernet/802.X. 19559 * This address is used as a base for mappings. 19560 */ 19561 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19562 0x00, 0x00, 0x00}; 19563 19564 /* 19565 * Extract low order 32 bits from IPv6 multicast address. 19566 * Or that into the link layer address, starting from the 19567 * second byte. 19568 */ 19569 *hw_start = 2; 19570 v6_extract_mask->s6_addr32[0] = 0; 19571 v6_extract_mask->s6_addr32[1] = 0; 19572 v6_extract_mask->s6_addr32[2] = 0; 19573 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19574 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19575 return (B_TRUE); 19576 } 19577 19578 /* 19579 * Indicate by return value whether multicast is supported. If not, 19580 * this code should not touch/change any parameters. 19581 */ 19582 /* ARGSUSED */ 19583 static boolean_t 19584 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19585 uint32_t *hw_start, ipaddr_t *extract_mask) 19586 { 19587 /* 19588 * Multicast address mappings used over Ethernet/802.X. 19589 * This address is used as a base for mappings. 19590 */ 19591 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19592 0x00, 0x00, 0x00 }; 19593 19594 if (phys_length != ETHERADDRL) 19595 return (B_FALSE); 19596 19597 *extract_mask = htonl(0x007fffff); 19598 *hw_start = 2; 19599 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19600 return (B_TRUE); 19601 } 19602 19603 /* 19604 * Derive IPoIB interface id from the link layer address. 19605 */ 19606 static boolean_t 19607 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19608 { 19609 char *addr; 19610 19611 if (ill->ill_phys_addr_length != 20) 19612 return (B_FALSE); 19613 addr = (char *)&v6addr->s6_addr32[2]; 19614 bcopy(ill->ill_phys_addr + 12, addr, 8); 19615 /* 19616 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19617 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19618 * rules. In these cases, the IBA considers these GUIDs to be in 19619 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19620 * required; vendors are required not to assign global EUI-64's 19621 * that differ only in u/l bit values, thus guaranteeing uniqueness 19622 * of the interface identifier. Whether the GUID is in modified 19623 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19624 * bit set to 1. 19625 */ 19626 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19627 return (B_TRUE); 19628 } 19629 19630 /* 19631 * Note on mapping from multicast IP addresses to IPoIB multicast link 19632 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19633 * The format of an IPoIB multicast address is: 19634 * 19635 * 4 byte QPN Scope Sign. Pkey 19636 * +--------------------------------------------+ 19637 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19638 * +--------------------------------------------+ 19639 * 19640 * The Scope and Pkey components are properties of the IBA port and 19641 * network interface. They can be ascertained from the broadcast address. 19642 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19643 */ 19644 19645 static boolean_t 19646 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19647 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19648 { 19649 /* 19650 * Base IPoIB IPv6 multicast address used for mappings. 19651 * Does not contain the IBA scope/Pkey values. 19652 */ 19653 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19654 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19655 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19656 19657 /* 19658 * Extract low order 80 bits from IPv6 multicast address. 19659 * Or that into the link layer address, starting from the 19660 * sixth byte. 19661 */ 19662 *hw_start = 6; 19663 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19664 19665 /* 19666 * Now fill in the IBA scope/Pkey values from the broadcast address. 19667 */ 19668 *(maddr + 5) = *(bphys_addr + 5); 19669 *(maddr + 8) = *(bphys_addr + 8); 19670 *(maddr + 9) = *(bphys_addr + 9); 19671 19672 v6_extract_mask->s6_addr32[0] = 0; 19673 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19674 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19675 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19676 return (B_TRUE); 19677 } 19678 19679 static boolean_t 19680 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19681 uint32_t *hw_start, ipaddr_t *extract_mask) 19682 { 19683 /* 19684 * Base IPoIB IPv4 multicast address used for mappings. 19685 * Does not contain the IBA scope/Pkey values. 19686 */ 19687 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19688 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19689 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19690 19691 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19692 return (B_FALSE); 19693 19694 /* 19695 * Extract low order 28 bits from IPv4 multicast address. 19696 * Or that into the link layer address, starting from the 19697 * sixteenth byte. 19698 */ 19699 *extract_mask = htonl(0x0fffffff); 19700 *hw_start = 16; 19701 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19702 19703 /* 19704 * Now fill in the IBA scope/Pkey values from the broadcast address. 19705 */ 19706 *(maddr + 5) = *(bphys_addr + 5); 19707 *(maddr + 8) = *(bphys_addr + 8); 19708 *(maddr + 9) = *(bphys_addr + 9); 19709 return (B_TRUE); 19710 } 19711 19712 /* 19713 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19714 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19715 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19716 * the link-local address is preferred. 19717 */ 19718 boolean_t 19719 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19720 { 19721 ipif_t *ipif; 19722 ipif_t *maybe_ipif = NULL; 19723 19724 mutex_enter(&ill->ill_lock); 19725 if (ill->ill_state_flags & ILL_CONDEMNED) { 19726 mutex_exit(&ill->ill_lock); 19727 if (ipifp != NULL) 19728 *ipifp = NULL; 19729 return (B_FALSE); 19730 } 19731 19732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19733 if (!IPIF_CAN_LOOKUP(ipif)) 19734 continue; 19735 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19736 ipif->ipif_zoneid != ALL_ZONES) 19737 continue; 19738 if ((ipif->ipif_flags & flags) != flags) 19739 continue; 19740 19741 if (ipifp == NULL) { 19742 mutex_exit(&ill->ill_lock); 19743 ASSERT(maybe_ipif == NULL); 19744 return (B_TRUE); 19745 } 19746 if (!ill->ill_isv6 || 19747 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19748 ipif_refhold_locked(ipif); 19749 mutex_exit(&ill->ill_lock); 19750 *ipifp = ipif; 19751 return (B_TRUE); 19752 } 19753 if (maybe_ipif == NULL) 19754 maybe_ipif = ipif; 19755 } 19756 if (ipifp != NULL) { 19757 if (maybe_ipif != NULL) 19758 ipif_refhold_locked(maybe_ipif); 19759 *ipifp = maybe_ipif; 19760 } 19761 mutex_exit(&ill->ill_lock); 19762 return (maybe_ipif != NULL); 19763 } 19764 19765 /* 19766 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19767 * If a pointer to an ipif_t is returned then the caller will need to do 19768 * an ill_refrele(). 19769 */ 19770 ipif_t * 19771 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19772 ip_stack_t *ipst) 19773 { 19774 ipif_t *ipif; 19775 ill_t *ill; 19776 19777 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19778 ipst); 19779 if (ill == NULL) 19780 return (NULL); 19781 19782 mutex_enter(&ill->ill_lock); 19783 if (ill->ill_state_flags & ILL_CONDEMNED) { 19784 mutex_exit(&ill->ill_lock); 19785 ill_refrele(ill); 19786 return (NULL); 19787 } 19788 19789 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19790 if (!IPIF_CAN_LOOKUP(ipif)) 19791 continue; 19792 if (lifidx == ipif->ipif_id) { 19793 ipif_refhold_locked(ipif); 19794 break; 19795 } 19796 } 19797 19798 mutex_exit(&ill->ill_lock); 19799 ill_refrele(ill); 19800 return (ipif); 19801 } 19802 19803 /* 19804 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19805 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19806 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19807 * for details. 19808 */ 19809 void 19810 ill_fastpath_flush(ill_t *ill) 19811 { 19812 ip_stack_t *ipst = ill->ill_ipst; 19813 19814 nce_fastpath_list_dispatch(ill, NULL, NULL); 19815 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19816 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19817 } 19818 19819 /* 19820 * Set the physical address information for `ill' to the contents of the 19821 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19822 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19823 * EINPROGRESS will be returned. 19824 */ 19825 int 19826 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19827 { 19828 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19829 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19830 19831 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19832 19833 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19834 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19835 /* Changing DL_IPV6_TOKEN is not yet supported */ 19836 return (0); 19837 } 19838 19839 /* 19840 * We need to store up to two copies of `mp' in `ill'. Due to the 19841 * design of ipsq_pending_mp_add(), we can't pass them as separate 19842 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19843 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19844 */ 19845 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19846 freemsg(mp); 19847 return (ENOMEM); 19848 } 19849 19850 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19851 19852 /* 19853 * If we can quiesce the ill, then set the address. If not, then 19854 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19855 */ 19856 ill_down_ipifs(ill, B_TRUE); 19857 mutex_enter(&ill->ill_lock); 19858 if (!ill_is_quiescent(ill)) { 19859 /* call cannot fail since `conn_t *' argument is NULL */ 19860 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19861 mp, ILL_DOWN); 19862 mutex_exit(&ill->ill_lock); 19863 return (EINPROGRESS); 19864 } 19865 mutex_exit(&ill->ill_lock); 19866 19867 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19868 return (0); 19869 } 19870 19871 /* 19872 * Once the ill associated with `q' has quiesced, set its physical address 19873 * information to the values in `addrmp'. Note that two copies of `addrmp' 19874 * are passed (linked by b_cont), since we sometimes need to save two distinct 19875 * copies in the ill_t, and our context doesn't permit sleeping or allocation 19876 * failure (we'll free the other copy if it's not needed). Since the ill_t 19877 * is quiesced, we know any stale IREs with the old address information have 19878 * already been removed, so we don't need to call ill_fastpath_flush(). 19879 */ 19880 /* ARGSUSED */ 19881 static void 19882 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 19883 { 19884 ill_t *ill = q->q_ptr; 19885 mblk_t *addrmp2 = unlinkb(addrmp); 19886 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 19887 uint_t addrlen, addroff; 19888 19889 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19890 19891 addroff = dlindp->dl_addr_offset; 19892 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 19893 19894 switch (dlindp->dl_data) { 19895 case DL_IPV6_LINK_LAYER_ADDR: 19896 ill_set_ndmp(ill, addrmp, addroff, addrlen); 19897 freemsg(addrmp2); 19898 break; 19899 19900 case DL_CURR_PHYS_ADDR: 19901 freemsg(ill->ill_phys_addr_mp); 19902 ill->ill_phys_addr = addrmp->b_rptr + addroff; 19903 ill->ill_phys_addr_mp = addrmp; 19904 ill->ill_phys_addr_length = addrlen; 19905 19906 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 19907 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 19908 else 19909 freemsg(addrmp2); 19910 break; 19911 default: 19912 ASSERT(0); 19913 } 19914 19915 /* 19916 * If there are ipifs to bring up, ill_up_ipifs() will return 19917 * EINPROGRESS, and ipsq_current_finish() will be called by 19918 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 19919 * brought up. 19920 */ 19921 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 19922 ipsq_current_finish(ipsq); 19923 } 19924 19925 /* 19926 * Helper routine for setting the ill_nd_lla fields. 19927 */ 19928 void 19929 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 19930 { 19931 freemsg(ill->ill_nd_lla_mp); 19932 ill->ill_nd_lla = ndmp->b_rptr + addroff; 19933 ill->ill_nd_lla_mp = ndmp; 19934 ill->ill_nd_lla_len = addrlen; 19935 } 19936 19937 /* 19938 * Replumb the ill. 19939 */ 19940 int 19941 ill_replumb(ill_t *ill, mblk_t *mp) 19942 { 19943 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19944 19945 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19946 19947 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19948 19949 /* 19950 * If we can quiesce the ill, then continue. If not, then 19951 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 19952 */ 19953 ill_down_ipifs(ill, B_FALSE); 19954 19955 mutex_enter(&ill->ill_lock); 19956 if (!ill_is_quiescent(ill)) { 19957 /* call cannot fail since `conn_t *' argument is NULL */ 19958 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19959 mp, ILL_DOWN); 19960 mutex_exit(&ill->ill_lock); 19961 return (EINPROGRESS); 19962 } 19963 mutex_exit(&ill->ill_lock); 19964 19965 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 19966 return (0); 19967 } 19968 19969 /* ARGSUSED */ 19970 static void 19971 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 19972 { 19973 ill_t *ill = q->q_ptr; 19974 19975 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19976 19977 ill_down_ipifs_tail(ill); 19978 19979 freemsg(ill->ill_replumb_mp); 19980 ill->ill_replumb_mp = copyb(mp); 19981 19982 /* 19983 * Successfully quiesced and brought down the interface, now we send 19984 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 19985 * DL_NOTE_REPLUMB message. 19986 */ 19987 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 19988 DL_NOTIFY_CONF); 19989 ASSERT(mp != NULL); 19990 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 19991 DL_NOTE_REPLUMB_DONE; 19992 ill_dlpi_send(ill, mp); 19993 19994 /* 19995 * If there are ipifs to bring up, ill_up_ipifs() will return 19996 * EINPROGRESS, and ipsq_current_finish() will be called by 19997 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 19998 * brought up. 19999 */ 20000 if (ill->ill_replumb_mp == NULL || 20001 ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) { 20002 ipsq_current_finish(ipsq); 20003 } 20004 } 20005 20006 major_t IP_MAJ; 20007 #define IP "ip" 20008 20009 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20010 #define UDPDEV "/devices/pseudo/udp@0:udp" 20011 20012 /* 20013 * Issue REMOVEIF ioctls to have the loopback interfaces 20014 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20015 * the former going away when the user-level processes in the zone 20016 * are killed * and the latter are cleaned up by the stream head 20017 * str_stack_shutdown callback that undoes all I_PLINKs. 20018 */ 20019 void 20020 ip_loopback_cleanup(ip_stack_t *ipst) 20021 { 20022 int error; 20023 ldi_handle_t lh = NULL; 20024 ldi_ident_t li = NULL; 20025 int rval; 20026 cred_t *cr; 20027 struct strioctl iocb; 20028 struct lifreq lifreq; 20029 20030 IP_MAJ = ddi_name_to_major(IP); 20031 20032 #ifdef NS_DEBUG 20033 (void) printf("ip_loopback_cleanup() stackid %d\n", 20034 ipst->ips_netstack->netstack_stackid); 20035 #endif 20036 20037 bzero(&lifreq, sizeof (lifreq)); 20038 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20039 20040 error = ldi_ident_from_major(IP_MAJ, &li); 20041 if (error) { 20042 #ifdef DEBUG 20043 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20044 error); 20045 #endif 20046 return; 20047 } 20048 20049 cr = zone_get_kcred(netstackid_to_zoneid( 20050 ipst->ips_netstack->netstack_stackid)); 20051 ASSERT(cr != NULL); 20052 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20053 if (error) { 20054 #ifdef DEBUG 20055 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20056 error); 20057 #endif 20058 goto out; 20059 } 20060 iocb.ic_cmd = SIOCLIFREMOVEIF; 20061 iocb.ic_timout = 15; 20062 iocb.ic_len = sizeof (lifreq); 20063 iocb.ic_dp = (char *)&lifreq; 20064 20065 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20066 /* LINTED - statement has no consequent */ 20067 if (error) { 20068 #ifdef NS_DEBUG 20069 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20070 "UDP6 error %d\n", error); 20071 #endif 20072 } 20073 (void) ldi_close(lh, FREAD|FWRITE, cr); 20074 lh = NULL; 20075 20076 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20077 if (error) { 20078 #ifdef NS_DEBUG 20079 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20080 error); 20081 #endif 20082 goto out; 20083 } 20084 20085 iocb.ic_cmd = SIOCLIFREMOVEIF; 20086 iocb.ic_timout = 15; 20087 iocb.ic_len = sizeof (lifreq); 20088 iocb.ic_dp = (char *)&lifreq; 20089 20090 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20091 /* LINTED - statement has no consequent */ 20092 if (error) { 20093 #ifdef NS_DEBUG 20094 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20095 "UDP error %d\n", error); 20096 #endif 20097 } 20098 (void) ldi_close(lh, FREAD|FWRITE, cr); 20099 lh = NULL; 20100 20101 out: 20102 /* Close layered handles */ 20103 if (lh) 20104 (void) ldi_close(lh, FREAD|FWRITE, cr); 20105 if (li) 20106 ldi_ident_release(li); 20107 20108 crfree(cr); 20109 } 20110 20111 /* 20112 * This needs to be in-sync with nic_event_t definition 20113 */ 20114 static const char * 20115 ill_hook_event2str(nic_event_t event) 20116 { 20117 switch (event) { 20118 case NE_PLUMB: 20119 return ("PLUMB"); 20120 case NE_UNPLUMB: 20121 return ("UNPLUMB"); 20122 case NE_UP: 20123 return ("UP"); 20124 case NE_DOWN: 20125 return ("DOWN"); 20126 case NE_ADDRESS_CHANGE: 20127 return ("ADDRESS_CHANGE"); 20128 case NE_LIF_UP: 20129 return ("LIF_UP"); 20130 case NE_LIF_DOWN: 20131 return ("LIF_DOWN"); 20132 default: 20133 return ("UNKNOWN"); 20134 } 20135 } 20136 20137 void 20138 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20139 nic_event_data_t data, size_t datalen) 20140 { 20141 ip_stack_t *ipst = ill->ill_ipst; 20142 hook_nic_event_int_t *info; 20143 const char *str = NULL; 20144 20145 /* create a new nic event info */ 20146 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20147 goto fail; 20148 20149 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20150 info->hnei_event.hne_lif = lif; 20151 info->hnei_event.hne_event = event; 20152 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20153 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20154 info->hnei_event.hne_data = NULL; 20155 info->hnei_event.hne_datalen = 0; 20156 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20157 20158 if (data != NULL && datalen != 0) { 20159 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20160 if (info->hnei_event.hne_data == NULL) 20161 goto fail; 20162 bcopy(data, info->hnei_event.hne_data, datalen); 20163 info->hnei_event.hne_datalen = datalen; 20164 } 20165 20166 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20167 DDI_NOSLEEP) == DDI_SUCCESS) 20168 return; 20169 20170 fail: 20171 if (info != NULL) { 20172 if (info->hnei_event.hne_data != NULL) { 20173 kmem_free(info->hnei_event.hne_data, 20174 info->hnei_event.hne_datalen); 20175 } 20176 kmem_free(info, sizeof (hook_nic_event_t)); 20177 } 20178 str = ill_hook_event2str(event); 20179 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20180 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20181 } 20182 20183 void 20184 ipif_up_notify(ipif_t *ipif) 20185 { 20186 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20187 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20188 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20189 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20190 NE_LIF_UP, NULL, 0); 20191 } 20192